

ISBN 3—-921682—48—7

Es kann keine Gewahr dafiir iibernommen werden, da die in diesem Buche ver-
wendeten Angaben, Schaltungen, Warenbezeichnungen und Warenzeichen, sowie
Programmlistings frei von Schutzrechten Dritter sind. Alle Angaben werden nur fiir
Amateurzwecke mitgeteilt. Alle Daten und Vergleichsangaben sind als unverbind-
liche Hinweise zu verstehen. Sie geben auch keinen AufschluB iiber eventuelle
Verfiigbarkeit oder Liefermdglichkeit. In jedem Falle sind die Unterlagen der
Hersteller zur Information heranzuziehen.

Nachdruck und éffentliche Wiedergabe, besonders die Ubersetzung in andere
Sprachen verboten. Programmlistings diirfen weiterhin nicht in irgendeiner Form
vervielfaltigt oder verbreitet werden. Alle Programmlistings sind Copyright der
Fa. Ing. W. Hofacker GmbH. Verboten ist weiterhin die 6ffentliche Vorfiihrung
und Benutzung dieser Programme in Seminaren und Aussteliungen. Irrtum, sowie
alle Rechte vorbehalten.

COPYRIGHT by Ing. W. HOFACKER © 1984,
Tegernseerstr. 18, 8150 Holzkirchen

6. vollig neu iiberarbeitete Auflage 1984

Gedruckt in der Bundesrepublik Deutschland — . Printed in West-Germany —
Imprime’en RFA.

BASIG

Programmier-Handbuch
C. Lorenz

Einfuhrung und
Nachschlagewerk

Speziell fiir die BASIC-Versionen der modernen
Personal-Computer

Vorwort

Die grundlegende Verbindung zwischen dem Programmierer und dem
Computer ist die Programmiersprache. Eine der erfachsten und sehr
leicht erlernbaren Computersprachen ist BASIC. Dieses Buch will lThnen
die Grundelemente von BASIC mitteilen und Sie in die Lage versetzen,
selbst Programme schreiben zu kénnen.

Die Beispielprogramme wurden auf SINCLAIR, APPLE, ATARI und
COMMODORE Rechnern getestet. Auf Unterschiede zwischen den
einzelnen BASIC Dialekten wird hingewiesen. Das Buch eignet sich
dariiber hinaus jedoch fiir alle heute am Markt befindlichen Personal-
computer.

Neben den ausfiihrlichen Befehisbeschreibungen findet der Leser einen
BASIC-Einsteiger Kurs fiir Anfanger, der besonders den Erstanwender
ansprechen soll.

Als Nachschlagewerk wird es dem erfahrenen Programmierer immer
zur Seite stehen.

Wir wiinschen lhnen beim Programmieren viel SpaB und hoffen, daB
auch Sie spater einen praktischen Nutzen daraus ziehen kénnen.

Holzkirchen, Friihjahr 1984 C. Lorenz

Inhaltsverzeichnis

Einflhrung i i i ittt nannannns
AllgEemEINES. . . vt i e e e e e e
Wasistein Programm 2 ittt it 2
Wir wollen nun anfangen zu programmieren
Schreiben eines BASIC-Programmescccviivnnnn

Der prinzipielle Aufbau eines Rechners.

Systembefehle. i i i e
RUN L i e e i i i e 11
STOP. . e e 11
END .. e e e e e 11
LIST N, M L e i et e s i e, 13
NEW . e e e e e 13
SAVE L e e e e 15
10 I 17
FRE(X) . ottt it e e e e et s e e 17

Programm ANweisungencccvvieerrerennncnnenans 19
I 21
PRINT. .ot et ittt e 25
L2 = 2 27
PRINT AT . it i e it e e et e et e e 29
] O 31
INKEY S .o e e e ettt 33
3 35
READ DAT A .ttt it ettt e i 37
RESTORE. ... i e i e et e e inenns 39
REM .. e e e e e e e e 41
€10 1 43
R I o 1= 45
FOR ... NEXT. ... i i it e e i 47

POKE .. i i ettt e e e e, 57
GOSUB ...RETURN. ... i i ittt e 59
ON . ..GOSUB. . ittt e e et 61
ON .. GOTO. ittt et e et 63
ONERRORGOTO. ..ottt sttt ie et et e e e 65
USR(X) . ittt it i i e e it e e 67
FUNKLiONeNottt ittt i ittt et et enennnennnnnns 69
T 5 71
3 73
SOR L e et e e 75
ABS. i e e e 77
SIN Lot e e et 79
010 1 79
TAN L e e e e 81
N I 81
LOG i e e i e 81
) 2 83
OGN i e e i e 83
] S 85
AND L e e 87
1 89
1 91
Funktionen fiir Zeichenketten.cvvtiinnrrnnnnnnn 93
] 0 €. 95
08 1 . 97
LEN(XB) et et e e e e e 99
[S I €T 0 T 101
MIDB(XB,Y,Z) ..ttt et e e e 103
RIGHT (X8, Y) ittt ettt e et e eee 107
L I 2 14 1 109
AT I <3 11
BASIC-Grundkurs.............. ettt et ei e 113

S Wielerntman BASIC 2 ... oottt it i e et e 133

Einfuhrung

Einfiihrung

Die Programmiersprache BASIC gehort zu den einfachsten hdheren
Programmiersprachen und wurde zu Anfang der 60er Jahre im ameri-
kanischen Darthmouth College entwickelt.

Sie 1aRt sich sehr leicht erlernen und bietet doch ein sehr leistungs-
fahiges Werkzeug fiir den Programmierer. Der Erfolg dieser Program-
miersprache riihrt auch daher, daR BASIC in 90% aller Time-Sharing-
Systeme verwendet wurde, und daR die Minicomputer ein erweitertes
BASIC enthielten. Bei den modernen Microcomputern ist es heute
selbstverstandlich, dall ein BASIC-Interpreter zur Verfiigung steht. Der
groBe Einsatzbereich hat natiirlich dazu gefiihrt, daB sich unzahlige
BASIC-Versionen bis heute herausgebildet haben.

Dieses Buch will lhnen die Version naher bringen, die heute auf den
modernen Microcomputern implementiert ist. Wenn Sie es gelernt
haben, diese eine Version anzuwenden, ist es sehr leicht, auch mit
einer anderen Version zu arbeiten. Sie werden bald sehen, wie einfach
es ist, sich selbst seine eigenen Programme zu erstellen (sei es fiir die
Buchhaltung, Textverarbeitung, math. wissenschaftliche Probleme
oder auch nur zur Unterhaltung).

Allgemeines

Die Popularitat von BASIC laRt sich ganz kurz auf die wichtigsten
Punkte zuriickfiihren:

1. Einfache Ausdriicke, die sich auf eine begrenzte Zahl von Befehlen
beschranken.

2.Die Mabglichkeit, mit Strings (Zeichenketten) und Matrizen zu
arbeiten.

3. Eingabe und Editiervorgdnge sind einfach zu handhaben. Leichte
Fehlersuche und Anwendungsmoglichkeit.

4. Leichte Ubersetzung durch einen Interpreter, der zwar relativ lang-
sam ist, aber eine interaktive Arbeit zwischen Programmierer und
Computer ermdglicht (z. B. beim Fehlersuchen und Fehlerbeheben).

5. Relativ einfache Programmerstellung.

Erklarungen

Strings
Die Behandlung von Zeichen im Computer (anstelle von Zahlen). Sie
befinden sich meist bereits in einer angeordneten Reihenfolge.

Implementieren
Auf ein System zuschneiden. In ein Computersystem anpassen.

Interpreter

Ein Interpreter ist jede Programmiersprache, die die Befehle des
Quellenprogrammes direkt ausfiihrt. Jeder Befehl wird fiir sich inter-
pretiert und ausgefiihrt. Es wird nicht erst das gesamte Programm in
Maschinensprache lbersetzt und dann die Ausfilhrung begonnen (dies
ist der Unterschied zum Compiler).

Sie werden sicher auch oft vergeblich nach einfachen Erkldrungen von
schwierigen Zusammenhangen gesucht haben, wobei man lhnen jedoch
meist mit komplizierten Antworten auf einfache Fragen geantwortet
hat.

Wir wollen jedoch im nachfolgenden Buch versuchen, lhnen den Start
in die BASIC-Programmierung so einfach wie mdglich zu machen. Sie
sollten nach Durcharbeitung des Buches in der Lage sein, selbststandig
Programme zu entwickeln oder vorhandene Programme auf lhren
Bedarf abzuéandern.

Was ist ein Programm ?

Ein Programm ist ein Paket von Befehlen, oder auch ein Rezept,
Weiches verwendet wird, dem Computer eine Information zu geben,
damit er uns ein gewiinschtes (gesuchtes) Ergebnis liefert.

2

Man gibt dem Computer eine Reihe von Daten (Zutaten beim Kuchen-
backen) ein, die nach bestimmten Befehlen verarbeitet werden
miissen (z. B. beim Backen: 1/4 Stunde riihren, etc.). Alles muR in
einer bestimmten Reihenfolge eingegeben und verarbeitet werden. Am
Ende erhalten wir dann ein Ergebnis (beim Backen ist es eben der
Kuchen).

Wenn Sie Fehler machen, geht es |lhnen genau so wie beim Kuchen-
backen. Es wird dann halt kein Kuchen, sondern eine Pizza.

Ein Programm (dies gilt fiir alle Programmiersprachen) mu8 folgende
Bedingungen erfiillen, um einwandfrei laufen zu kénnen.

1. Der Computer muR die Sprache des Programmierers verstehen.

2. Alle Anweisungen miissen so gegeben werden, dal8 sie der Computer
auch versteht. Der Computer tut immer das, was Sie ihm eingeben.
Sorgen Sie aber dafiir, daB Sie ihm das eingeben, was Sie ihm wirklich
mitteilen wollen.

Wir wollen nun anfangen zu programmieren

Das Programmschreiben in BASIC ist sehr einfach. Deshalb wollen wir
jetzt gleich mit unseren ersten Versuchen beginnen. Wichtig ist es,
daB Sie ein Computersystem zur Verfilgung haben. Das Lernen auf dem
“Trockenen’’ kann wie das Wort im doppelten Sinne schon sagt, sehr
trocken sein. Aber es gibt heute bereits so preiswerte BASIC-Computer,
so daR es nicht so schwer sein diirfte, sich einen zu beschaffen oder aus-
zuleihen.

Schreiben eines BASIC-Programmes

Um ein BASIC-Programm zu schreiben, miissen Sie zuerst einmal eine
Zeilenzahl eingeben. Der Zeilenzahl muR ein Statement (Befehl) folgen.
Die Zeilenzahlen werden vom erfahrenen Programmierer so gewihlt,
daR man spater noch etwas einfiigen kann (z. B. fingt man mit Zeile 10
an und numeriert die Zeilen dann im Abstand von 10 nach oben).

Der Computer fiihrt das Programm dann der Reihenfolge nach aus. Er
beginnt mit der niedrigsten Zeilenzahl und arbeitet sich dann aufwirts

3

weiter. Geben Sie z. B. zwei Zeilen mit der gleichen Zeilenzahl ein, wird
die erste Zeilenzahl und der in der gleichen Zeile stehende Text {iber-
schrieben.

Der prinzipielle

Aufbau
eines Rechners

Der prinzipielle Aufbau eines Rechners
Die folgende Abbildung zeigt den prinzipiellen Aufbau eines Rechners.

Kassette Diskette

RAM-
Speicher I

Bild-Speicher

| Bildschirm

Tastatur

Innerhalb des gestrichelten Teils befindet sich der eigentliche Rechner.
Er besteht aus einem Speicher, der Zentraleinheit und dem Ein-/Aus-
gabeteil.

Der Speicher ist aus zwei verschiedenartigen Elementen zusammen-
gesetzt. Dies ist der RAM- und ROM-Speicher.

RAM bedeutet Random-Access-Memory, d. h. Speicher mit wahl-
freien Zugriff. Jede einzelne Zelle dieses Bereiches kann beschrieben
und gelesen werden.

Der ROM-Speicher ist ein ‘‘Nur Lese Speicher’’ (Read Only Memory).
Aus diesem Bereich kénnen nur Daten gelesen, aber nicht einge-
schrieben werden. In diesem Speicher ist das Betriebssystem des
Rechners gespeichert, das nach dem Einschalten des Rechners aktiv
wird und auch der BASIC-Interpreter gespeichert.

Die CPU (Central Prozessing Unit) iberwacht diesen Speicher und
fiihrt die dort gespeicherten Befehle aus. Diese Befehle sind nicht
Worte der BASIC-Sprache, sondern Bitmusterfolgen, die durch diese
Worte aufgerufen werden.

AuBerhalb der gestrichelten Linie befinden sich die externen (peri-
phere) Gerate. Fiir die Eingabe wird eine Tastatur verwendet. Von ihr
werden Bitmuster iiber den Ein-/Ausgabeteil (I/O) in den Speicher
gebracht. Nach betatigen der RETURN-Taste wird die Eingabe ent-
schliisselt und das Betriebssystem oder der BASIC-Interpreter ent-
sprechend verzweigt.

Die Ausgabe erfolgt in den meisten Fallen auf einem Bildschirm. Dieser
bendtigt einen kleinen Teil des RAM-Speichers, um die Zeichen, die auf
dem Bildschirm angezeigt werden, zu speichern. Uber die Ein-/Ausgabe-
Schnittstelle sind auch der Massenspeicher, Kassettenrekorder oder
das Diskettenlaufwerk angeschlossen. Mit diesem werden auf Magnet-
bandern oder Disketten Daten aus dem Speicher aufgezeichnet.

Fir die Druckausgabe kann {iber die gleiche Schnittstelle ein Drucker

angeschlossen werden. Dieser Prinzipielle Aufbau gilt fiir alle Rechner.
Fiir den normalen Benutzer spielt es keine Rolle, welche Zentraleinheit

6

(CPU) verwendet wird. Die bekanntesten sind:

6502
Z80

8080
6909
8085
8088

(APPLE, ATARI, COMMODORE)

(ZX81, SPECTRUM, TRS-80, GENIE, SHARP)
(in alteren wie ATARI, Dai, usw.)

(Dragon Color Computer)

(TRS-80 Model 100)

(IBM-PC-Junior, IBM PC)

-~

Im Bild sehen Sie den Commodore-64

NOTIZEN

Systembefehle

Dies sind Befehle, die das Betriebssystem (Monitor) ver-
anlassen, ein BASIC-Programm zu starten, auf einem
externen Speicher abzulegen oder einen Programmausdruck
auf den Bildschirm auszugeben.

RUN
RUNN

RUN startet ein Programm. Wird RUN ohne Zahl eingegeben, so wird
bei der ersten Zeilennummer begonnen. Wird zum Beispiel RUN 1000
eingegeben, so beginnt das Programm bei Zeilennummer 1000. RUN
16scht die Werte aller Variablen und Feider.

STOP

STOP halt ein Programm an. Die Zeilennummer der STOP-Anweisung
wird ausgegeben. Werden keine Veranderungen im Programm vorge-
nommen, so kann es mit CONT fortgesetzt werden. Durch die GOTO-
Anweisung kann ein Programm an einer anderen Zeilennummer fort-
gesetzt werden, ohne daR die augenblicklichen Werte der Variablen
geandert werden.

END

END

Die Anweisung END beendet ein Programm.

1

12

NOTIZEN

LIST N,M

LIST
LISTNM

LIST gibt ein Programm auf den Bildschirm aus. Wird hinter LIST nur
eine Zeilennummer angegeben, so wird diese Zeile ausgegeben. Werden
zwei Zeilennummern angegeben, so wird von Zeile N bis Zeile M
ausgedruckt. M muB gréRer N sein.

Fiir die Ausgabe auf einen Drucker miissen unter Umstdnden weitere
Angaben gemacht werden. Bei einigen Rechnern (TRS-80, ZX81,
SPECTRUM) wird durch LLIST N,M das Programm auf den Drucker
ausgegeben.

Beim APPLE wird nur LIST eingegeben. Vorher mul aber durch
PR# (NR) der Drucker eingeschaltet werden. (NR) ist die Nummer des
Steckplatzes, in welchen die Interfacekarte fiir den Drucker steckt.

Beim ATARI wird die Ausgabe auf den Drucker durch LIST “P:"
eingeleitet.

Beim COMMODORE-64: LIST N—M

NEW

NEW
NEW l6scht das Programm im Speicher.

13

14

NOTIZEN

SAVE

SAVE

SAVE wird zur Speicherung eines Programmes auf Kassette oder
Diskette vewve‘ndet. Dieser Befehl ist bei allen Rechnern verschieden.

Einige Beispiele:

ZX81,SPECTRUM
Speichern auf Kassette mit SAVE “NAME"’

APPLE i
Speichern auf Kassette mit SAVE
Speichern auf Diskette mit SAVE NAME

ATARI

Speichern auf Kassette mit SAVE“C:NAME"’
oder CSAVE”“NAME"”

Speichern auf Diskette mit SAVE‘D:NAME"

COMMODORE-64
Speichern auf Kassette mit SAVE “'NAME"’

Speichern auf Diskette, Device # 8 mit SAVE “NAME’’,8

15

16

NOTIZEN

‘ LOAD

LOAD wird zum Lesen eines Programmes von Kassette oder Diskette
verwendet. Dieser Befehl ist bei allen Rechnern verschieden.

Einige Beispiele:

ZX81 und SPECTRUM

Laden von Kassette mit LOAD“NAME*

Ist der Name nicht bekannt, so wird durch LOAD"*** (kein Zwischen-
raum zwischen ** *’) das nachste Programm geladen, das auf der Kassette
gefunden wird.

APPLE |1
Laden von Kassette: LOAD
Laden von Diskette: LOAD NAME

ATARI

Laden von Kassette: LOAD “C:NAME"’
oder CLOAD”NAME”

Laden von Diskette: LOAD “‘D:NAME*

COMMODORE 64
Laden von Kassette: LOAD “NAME"
Laden von Diskette, Device # 8: LOAD “NAME" 8

FRE(X)

PRINT FRE(X) gibt den fiir ein BASIC-Programm noch freien Speicher-
platz aus. X ist eine Variable, die keine Bedeutung hat (Dummy).

17

18

NOTIZEN

Programm-
Anweisungen

Diese Befehle dienen zur Festlegung des Programmablaufs.
Damit werden Variablen Werte zugewiesen, endliche
Schleifen durchlaufen oder Programme verzweigt.

19

LET

LET
Zuweisungs- oder Anweisungsbefehl

Variablen kénnen wir uns als kleine Kastchen im Computer vorstellen,
denen durch LET Werte zugewiesen werden.

Hier kommt der Wert
der Variablen hinein

Bezeichnung der

Variablen \

A 0
B 0
C 0
D 0
E 0

Bei vielen BASIC-Versionen kann man das Wort LET aus Rationali-
sierungsgriinden weglassen.
10 LET X =1 wird dann einfach zu 10 X = 1.

Nur beim ZX81 und beim SPECTRUM muRl LET eingegeben werden.
Beide Rechner iiberwachen auch die Zuweisung von Werten an
Variablen. Ist in der Zeile

20 LETX=A+1
21

der Variablen A noch kein Wert zugewiesen worden, so erscheint eine
Fehlermeldung.

Wollen wir jetzt eine neue Variable E einfiihren, und dieser den Wert 8
zuweisen, so konnen wir dies dem Computer mit der Zuordnungsan-
weisung:

100 LET E=8

mitteilen. Die Variablen kénnen wir mit den Buchstaben des Alpha-
betes festlegen. Bei den meisten BASIC-Versionen kann man Variablen-
namen auch aus mehreren Buchstaben zusammensetzen. Die Werte,
die der Variablen zugeordnet werden kénnen, sind Zahlen beliebiger
GroBe, mathematische Ausdriicke oder auch Strings (Zeichenketten).

110 LET F=-259
120 LET G=5%*9
130 LET H=F*E
140 LET I=J*K
150 PRINT G
160 PRINT H
170 PRINT I

Es konnen auch Variable einer anderen Variablen zugewiesen werden.
Hier ist es jedoch wichtig, dal die als Wert verwendete Variable vorher
einen Wert zugewiesen bekam.

Wenn nicht, wird ihr Wert einfach mit Null angenommen. Sie kénnen
dies leicht nachpriifen, wenn Sie jetzt die obigen Programmzeilen ein-
geben und mit RUN 100 starten, konnen wir uns die Ergebnisse an-
sehen. Das geschieht mit den PRINT-Befehlen. Sie geben uns die Werte
fiir G, H und | auf dem Bildschirm aus.

Wie schon erwdhnt, kénnen wir einer Variablen auch eine Zeichenkette
zuordnen.

180 LET HS$="HOFACKER"
180 LET G$="VERLAG"
200 PRINT HS$,G$

22

210 PRINT G
220 PRINT H

Geben wir dies nun ein und starten ab Zeile 180 mit RUN 180 (oder
GOTO 180) so sehen wir, daR der Stringvariablen H$ der Wert “HOF-
ACKER’ und der Stringvariablen G$ der Wert “VERLAG"’ als Zeichen-
kette zugewiesen wurde. Wir drucken dies aus, um das Ergebnis zu
sehen.

Wir drucken auch noch einmal die Vairablen G und H aus. Wir sehen,
sie sind nicht durch G$ oder H$ verandert worden.

Eine. Veranderung der Werte kann bei Variablen und Stringvariablen
nur durch eine neue Anweisung erfolgen.

230 LET G$="SOFTWARE"
240 LET G=6*8

250 PRINT H$,G$

260 PRINT G

Wir geben RUN 100 und sehen, wie sich die Sache verdndert. Pro-
bieren Sie auch einmal mit einem Semicolon zwischen den Strings
H$ und G$ (H$; G8) und sehen Sie sich das Ergebnis an.

7 LET X$=" HANS"

10 PRINT "BASIC", "HANDBUCH"
20 PRINT 19*4/3

30 PRINT A;B;C;D

40 PRINT "SERVUS";X$

50 PRINT "kikskskskibinn
100 LET E=8

110 LET F=-259

120 LET G=5*9

130 LET H=F*E

140 LET I=J*K

150 PRINT G

160 PRINT H

23

170
180
180
200
210
220
230
240
250
260

24

PRINT I

LET H$="HOFACKER"
LET G$="VERLAG"
PRINT H$,G$

PRINT G

PRINT H

LET G$="SOFTWARE"
LET G=6%8

PRINT H$,G$

PRINT G

PRINT

PRINT

10 PRINT "BASIC", "HANDBUCH"
20 PRINT 19*4/3

30 PRINT A;B;C;D

40 PRINT "SERVUS";X$

50 PRINT "®®skkskkxxhin

Der PRINT-Befehl dient dazu, ein Ergebnis, die Werte von Daten,
Variablen oder Strings (Zeichenketten) auf eine Ausgabeeinheit zu
bringen. Die Ausgabeeinheit kann ein Drucker, ein Bildschirm, eine
Siebensegmentanzeige etc. sein. Wie Sie aus dem Beispielprogramm
ersehen, konnen auch mehrere Variablen oder Zeichen nach einem
PRINT-Befehl folgen.

Fiir die Ausgabe von Daten stehen einfache Formatierungsbefehle zur
Verfiigung. Ein Komma (,) fiigt zwischen die Ausgabe von zwei
Variablen oder Strings 10 Leerzeichen ein.

Beispiel:
10 A=1:B=2
~ 20 PRINT A,B
RUN
1 2

Wird in Zeile 20 das Komma durch einen Strichpunkt ersetzt, so
werden die beiden Variablen ohne Zwischenraum nebeneinander aus-
gegeben.

10 A=1:B=2

20 PRINT A;B

RUN
12

Soll Text ausgegeben werden, so muB dieser in Anfiihrungszeichen

25

gesetzt werden. Soll zum Beispiel zwischen den beiden Zahlen ein
Zwischenraum eingefiigt werden so wird Zeile 20 wie folgt geandert.

20 PRINT A;" ";B

Wird eine PRINT-Anweisung mit einem Strichpunkt abgeschlossen,
so wird mit der nachsten PRINT-Anweisung keine neue Zeile ange-
fangen, sondern die Ausgabe in der gleichen Zeile fortgefiihrt.

10 A=1:B=2
20 PRINT A;" ";
25 PRINT B

RUN
12

26

TAB

TAB
Fiir APPLE: HTAB

Die TAB(X)-Funktion sorgt fiir eine genaue und definierte Positionier-
rung von Zeichen oder Leerzeichen. Sie muB immer in Verbindung mit
einem PRINT-Befehl verwendet werden.

Die TAB-Funktion repriasentiert immer einen absoluten Wert, der den
Abstand vom linken Bildschirmrand angibt.

Der Wert in Klammern sollte immer eine ganze Zahl sein. Wenn nicht,
wird von den meisten BASIC-Versionen automatisch auf- oder ab-
gerundet.

Beispiel :

900 REM TAB DEMO

905 REM FOR APPLE TAB=HTAB

907 REM NO SUCH WORD ON THE ATARI

910 X = 3:¥ = 4
=2

920 A = 1:B :C =3:D=4
930 PRINT A;: HTAB X: PRINT B;: HTAB Y
940 PRINT C;: HTAB X * Y: PRINT D

Ob ein Semikolon oder ein Komma zwischen den einzelnen Werten
gesetzt wird, hangt von lhrer BASIC-Version ab. Bitte sehen Sie in
lhrem Rechner-Manual nach und machen sich entsprechende Notizen.

27

10 FOR X =1 T0 10

20 HTAB X: PRINT "HOFACKER VERLAG"
39 NEXT X

JRUN
HOFACKER VERLAG
HOFACKER VERLAG
HOFACKER VERLAG
HOFACKER VERLAG
HOFACKER VERLAG
HOFACKER VERLAG
HOFACKER VERLAG
HOFACKER VERLAG
HOFACKER VERLAG
HOFACKER VERLAG

28

- PRINT AT

PRINT AT

Der PRINT AT-Befehl ist in einigen BASIC-Versionen wie z. B. beim
TRS-80 Model | Level 11 und Modell 1l und beim Video Genie imple-
mentiert. Ebenso beim ZX81 und SPECTRUM.

Er ermoglicht es, daB ein PRINT-Befehl ab einer bestimmten Stelle
auf dem Bildschirm ausgefiihrt wird. Die AT-Funktion kann eine Zahl,
eine Variable oder ein mathematischer Ausdruck sein. Zwischen dem
String und der Funktion muB ein Komma eingefiigt werden.

5 REM NOT ON APPLE, ATARI, COMMODORE
10 REM PRINT AT TEST

20 PRINT AT(22), "ANFANG?"

30 PRINT AT(O0],"ENDE?"

40 GOTO 40

893 END

Beim ZX81 und beim Spectrum folgen nach AT zwei Angaben Z und
S.

PRINT AT Z,S;
Dabei ist Z die Zeile und S die Spalite.
PRINT AT 10,15; “A*

schreibt ein A in die 10te Zeile und die 15te Spalte. Nach Z, S muf§
ein Strichpunkt folgen.

29

]
100 LET A$="w"™fy " Leerzeichen
110 LET V=0
120 FOR H=0 TO 26
130 PRINT AT V,H;AS
140 NEXT H
150 FOR H=26 TO 0 STEP -1
160 PRINT AT V,H;AS
170 NEXT H
180 GOTO 120

- Beispiel fiir ZX81

Fir ATARI:
100 POSITION 8,20:PRINT"”A*

30

INPUT

INPUT

Jetzt wollen wir einmal einen Befehl kennenlernen, der dem Computer-
programm direkt einen Wert zufiihrt, d. h., wenn der Computer im
Laufe seines Programmlaufes feststellt, daB er einen Wert oder eine
Information vom Programmierer benétigt, mu er sich ja bemerkbar
machen konnen. Er tut dies, indem er mit dem Programm anhalt und
einen Wert erfragt.

Fiir diesen Zweck verwenden wir den INPUT-Befehl. Dieser Befehl
bringt den Wert fiir eine Variable auf Anforderung des Computers in
die besagten Kastchen. Es gilt hier vieles bziiglich Strings etc. wie bei
der LET-Anweisung.

Beispiel:

300 REM INPUT STATEMENT
310 LET PI=3.14159

320 INPUT Y

330 LET R=SGR(Y)/PI

340 PRINT "RADIUS=";R
350 INPUT A,B

355 LET F=A*B

360 PRINT "FLAECHE=",F
370 INPUT X,Y,Z,0,P

380 LET L=X*Y*Z*0*P

390 PRINT "ERGEBNIS=";L
385 END

Merke:

Sollten mehrere Eingaben in einer Zeile erfolgen, missen die einzelnen
Variablen durch Komma getrennt werden. Siehe Zeile 370. Wie man
hier mit Zahlen umgehen kann, so kann man es auch mit Zeichenketten
tun.

31

100 REM INPUT MIT ZEICHENKETTEN

110 INPUT "WIE HEISST DU ? ";A$

120 PRINT : PRINT "DANKE": PRINT

130 PRINT " JETZT WEISS ICH, DASS DU ";A$;" HEISST"
140 PRINT " DIES BEHALTE ICH SOLANGE, BIS"

150 PRINT " DU DEN WERT A$ AENDERST"

160 PRINT " DURCH PRINT A$ WIRD DEIN NAME"

170 PRINT " IMMER WIEDER GESCHRIEBEN"

180 PRINT : PRINT A$: PRINT

180 PRINT " WILLST DU, DASS ICH DEINEN"

200 PRINT " NAMEN IN DIE GLEICHE ZEILE MIT"

210 PRINT " ABSTAND DRUCKE, SO GILT FOLGENDES:"
220 PRINT " DEIN NAME IST",A$

230 PRINT " DEIN NAME IST ";A$

Bei INPUT-Funktion kénnen auch Strings und Werte gemischt werden.

300 REM INPUT MIT ZEICHENKETTEN

310 REM UND ZAHLEN

320 PRINT : PRINT " WIE ALT BIST DU ? ";A$

330 INPUT " ";A

340 PRINT " JETZT WEISS ICH, DASS DU ";A;" JAHRE ALT":
PRINT " BIST"

350 PRINT A;" JAHRE IST EIN SCHOENES ALTER"

Bitte beachten Sie bei diesem Beispiel den Unterschied zwischen dem
Komma und Semikolon (unterschiedliche Auswirkung).

32

INKEY$

INKEY$

Die INKEY®-Funktion finden wir bei den Radio Shack Modellen
(TRS-80 Model | und 11) sowie beim ZX81 und Spectrum.

INKEY$ wird dazu verwendet ein Zeichen von der Tastatur her einzu-
geben, ohne die RETURN-Taste driicken zu miissen, wie wir das vom
INPUT-Befehl her bereits kennen.

Viele Computer kennen diesen Befehl leider nicht. Es ladsst sich aber
dann eine kleine Routine schreiben, die eine dhnliche Funktion be-
wirkt. Man mul wissen wo das Programm liegt, welches die Tastatur
abfragt.

Wenn Sie eine bestimmte Taste priifen wollen, miissen Sie die Variable
P% durch eine IF THEN Funktion vorher abfragen, bevor Sie ein Pro-
gramm weiterfahren und solange in die INKEY$ Routine springen, bis
der gewiinschte Buchstabe auf der Tastatur gedriickt wird.

Beispiel fir den ZX-SPECTRUM:

Bewegen des Buchstaben A mit den Cursortasten iiber den Biid-
schirm,

300 LET v=1: LET u=0: PRINT AT v,u;"”A"
310 IF INKEY$ ="5" THEN LET u=u-1
315 IF u<0 THEN LET u=0

320 IF INKEY$ ="6" THEN LET v=v+1
325 IF v>17 THEN LET v=17

330 IF INKEY$ ="7" THEN LET v=v-1
335 IF v<1 THEN LET v=1

340 IF INKEY$ ="8" THEN LET u=zu+1
345 IF u>26 THEN LET u=26

33

350 GOSUB 208 |
355 IF INKEY$ ="" THEN GOTO 355
360 GOTO 310

GET

GET

Der GET-Befehl wird beim PET/CBM und APPLE meist zu Abfragen
ohne Carriage Return (dhnlich INKEY$) verwendet.

10
20
30
40

PRINT "EINGABE ";: GET A$
IF A$ = "A" THEN PRINT "AHA AHA"

IF A$ < > "A" THEN GOTO 10
END

35

36

NOTIZEN

READ DATA

READ DATA

Wir haben jetzt gesehen, wie man vom Programm her nach einer Reihe
von Zahlen oder Zeichenketten fragen kann und eine Eingabe von
auBen erwartet.

Jetzt wollen wir uns mit einem Befehl beschaftigen, der es ermdglicht,
groBe Mengen von Daten mit einer Anweisung einzugeben. Man kann
fiir diesen Zweck auch den INPUT-Befehl genau so gut benutzen, aber
dies wiirde sehr viel Rechnerzeit in Anspruch nehmen. Aus diesem
Grunde verwendet man in diesen Fallen die READ DATA-Anweisung.

Diese Anweisung verhalt sich bei Zahlen und Strings ahnlich wie die
LET- und INPUT-Anweisung. Die READ DATA-Anweisung wird vom
erfahrenen Programmierer so gehandhabt, dal die DATA-Anweisung
meist an den Schluf® des Programmes gelegt wird. Im Programm kann
dann von den entsprechenden Stellen aus mit dem READ-Befehl aus
den DATA-Statements gelesen werden.

Beispiel:

700 REM READ DATA BEFEHL
710 REM BEISPIEL

720 READ N

730 PRINT N

740 DATA 10

750 READ A$

760 PRINT A$

770 DATA "HOFACKER VERLAG"
780 READ N,M,0,P

790 PRINT N,M,0,P

800 DATA 1,2,3,4

Die Variablen und String-Variablen miissen immer durch Kommas
getrennt sein. Dem letzten Wert im DAT A-Statement darf kein Komma

37

folgen.

Ein schones Beispiel fiir die Mischung von Strings und Variablen zeigt
das folgende kleine Programm:

810 READ B$,C$,A,B,C

820 PRINT A;" ";BS;

825 PRINT B;" ";B$;C;C$;A+B+C
830 DATA PLUS , ERGIBT ,9,2,11
835 END

Die erste Variable oder Stringvariable in der READ-Anweisung gehort
immer zu dem ersten Wert in der unmittelbar folgenden DATA-An-
weisung.

Beispiel:

840 READ R,S

850 READ T

860 READ U,V

870 LET X=R+S-T+U+V
880 PRINT X

890 PRINT R,S,T,U,V
900 DATA 2,3,4

910 DATA 5

920 DATA 6

Sie miissen also beim Programmieren darauf achten, daB Sie immer die
richtige Zuordnungsreihenfolge einhalten. Auch die Anzahl der Daten
in den DATA-Statements mulR genau mit der Anzahl der READ-An-
weisungen iibereinstimmen.

Der Unterschied zum INPUT-Befehl besteht jedoch darin, dall die
Daten in den DATA-Statements als Bestandteil des Programmes zur
Verfiigung stehen miissen. Die Daten veréndern sich nicht.

In DATA-Statements konnen nur Werte und Strings gegeben werden,
keine mathematischen Ausdriicke oder Formeln !

Leerzeichen miissen wie andere Zeichen auch, zwischen Doppelapo-
strophe gesetzt werden.

38

RESTORE

RESTORE

Der Zusammenhang zwischen den Variablen im READ-Befehl und den
Elementen in den DATA-Statements wird durch einen speziellen,
internen Pointer (Zeiger) gesteuert.

Dieser Zeiger zeigt immer auf das DATA-Element, welches als nachstes
gelesen werden muR.

Der Befehl RESTORE bringt diesen Pointer an den Anfang, so daR
alle Werte in den DATA-Statements noch einmal gelesen werden.

1000
1010
1020
1030
1040
1050
1060
1070
1080

READ A,B,C,D
RESTORE

READ E,F,G
RESTORE

READ H,I

DATA 1,2,3,4,5
PRINT A,B,C,D
PRINT E,F,G
PRINT H,I

In unserem Beispiel werden zuerst den Variablen A, B, C, D die Werte
1, 2, 3, 4, 5 zugeordnet. Dann werden den Variablen E, F und G die
Werte 1, 2, 3 zugeordnet. In Zeile 1040 werden dann den Variablen
H, | die Werte 1 und 2 zugeordnet.

39

40

NOTIZEN

REM

REM

Wir haben diese Anweisung schon benutzt, ohne sie zu erkléren. Die
REM-Anweisung dient zur Dokumentation (Beschreibung) lhres Pro-
grammes, damit Sie spdter noch wissen, wie Sie das Programm ent-
wickelt haben und welche Bedeutung die nachfolgenden Programm-

zeilen haben.

300
310
320
330
340
350
355
360
370
380
390
395

REM INPUT STATEMENT
LET PI=3.14159
INPUT Y

LET R=SGR(Y)/PI
PRINT "RADIUS=";R
INPUT A,B

LET F=A*B

PRINT "FLAECHE=",F
INPUT X,Y,Z,0,P

LET L=X*Y*Z*0*P
PRINT "ERGEBNIS=";L
END

Eine weitere Anwendung der REM-AnweiSung ist das Loschen einer
Zeile, ohne sie aus dem Programmausdruck zu entfernen.

Beispiel:

10 A=20
20 B=30
30 REM C=40
40 D=A*B+C

In diesem Programm wurde fiir Testzwecke die Zeile 30 logisch ge-

41

I6scht. Nach Entfernen der REM-Anweisung ist sie wieder in den Pro-
grammablauf eingefiigt. Diese Technik wird dann angewendet, wenn die
Zeilen sehr lang sind und zum Programmtesten aus dem Listing ent-

fernt werden miissen.

42

GOTO

GOTO

Bis jetzt haben wir nur Befehle besprochen, die vom Computer nach-
einander Schritt fiir Schritt ausgefiihrt werden. Alles ist der Reihe
nach, mit der niedrigsten Zeilenzahl angefangen, bis zu héchsten Zeilen-
zahl abgelaufen.

Mit GOTO bekommen wir erstmals einen Befehl in die Hand, mit dem
wir diesen FluB umsteuern kénnen. Der Befehl GOTO mit nachfolgen-
der Zeilenzahl fiihrt uns als unbedingter Sprung auf eine beliebig ge-
wiinschte Zeilenzahl. Dort 1auft dann das Programm weiter ab (von der
niederen Zeilenzahl zur hoheren Zeilenzahl). Es sei denn, es stoRt
wieder auf einen anderen GOTO-Befehl.

1050 GOTO 300
1060 GOTO 200

Man kann nach vorne oder nach hinten im Programm springen. Der
GOTO-Befehl laRt sich beim Zuriickspringen auch fiir eine Schleife
(Loop) verwenden.

Beispiel:
1070 PRINT "ICH BEFINDE MICH IN EINER"

1080 PRINT "GOTO-SCHLEIFE"
1090 GOTO 1070

Dieses kleine, simple Programm versetzt den Computer in eine Schleife
und belaBt ihn dort, bis man durch die Break-Taste anhlt.

Diese Wiederholfunktion 1aBt sich praktisch bei allen Programmen
anwenden, die stdndig durchlaufen werden miissen. Sollen andere Werte
eingegeben werden, kann z. B. mit INPUT unterbrochen werden.

43

Beispiel:

1100 REM GOTO DEMOPROGRAMM
1110 PRINT "EINGABE A,B,C"
1120 INPUT A,B,C

1130 LET X=A*B*C

1140 PRINT "PRODUKT IST ";X
1150 GOTO 1110

Dieses Programm lauft solange, bis Sie es anhalten. Bitte sehen Sie im
Manual lhres speziellen Computers nach, welche Funktionstaste (CRL,
Control C, RUN/STOP, etc.) hierfiir in Frage kommt.

Das Programm |aBt sich mit READ DATA auch von selbst anhalten,
und zwar dann, wenn die Daten aufgebraucht sind.

1200 READ A,B,C

1210 LET D=A+B+C

1220 PRINT "DIE SUMME IST ";D
1230 DATA 10,20,30,40,50,60
1240 GOTO 1200

1250 END

Es endet mit einem OUT OF DATA-Error in Zeile 1200, da dem Pro-
gramm nach dem zweiten Durchlauf die Daten ausgehen. Im ersten
Durchlauf werden 10, 20 und 30 addiert. Im zweiten Durchlauf 40, 50
und 60. Dann sind die Daten aufgebraucht.

Wenn Sie jetzt noch mehrere Daten in Zeile 1230 eingeben, werden
entsprechend mehrere Zyklen durchlaufen. Diesen OUT OF DATA-
Error kénnte man dadurch vermeiden, daR man dem Computer sagt,
wie oft er durch die Schleife gehen soll. Hierzu sehen wir ‘uns den
nachsten Befehl an.

44

IF...THEN

IF...THEN

Der IF ... THEN-Befeh!l dient zur Programmierung von Vergleichs-
operationen und Entscheidungen. Es kann nach zwei Durchldufen in
unserem vorhergehenden Programm z. B. eine Entscheidung getroffen
werden, daf} die Schleife verlassen werden soll.

1200 READ A,B,C

1210 LET D=A+B+C

1215 LET X=X+1

1220 PRINT "DIE SUMME IST ";D
1230 DATA 10,20,30,40,50,60
1240 IF X=2 THEN 1260

1250 GOTO 1200

1260 END

Bei diesem Programm zdhlen wir die Durchlaufe mit dem Statement
1210 LET X = X + 1 und priifen mit Zeile 1240 auf den Wert X. Wenn
X = 2 ist, verlassen wir die Schleife und gehen zum Ende in Zele 1260.

Der IF . . . THEN-Befehl kann mit-verschiedenen Bedingungen ver-
kniipft werden.

IF (Bedingung) THEN (Was geschehen soll)

Die Bedingung kann z. B. sein:
X=2
X(3
X4
X=2+3/4

Was geschehen soll, kann z. B. sein:

Zeilenzahl
GOTO-Zeilenzahl
PRINT “MITTEILUNG"

45

46

NOTIZEN

FOR...NEXT

FOR...NEXT

Der FOR . . . NEXT-Befehl erlaubt die einfache Programmierung von
Schleifen. Oft haben wir beim Programmieren den Wunsch, dall ein
Vorgang automatisch immer wieder wiederholt wird. Ein Beispiel
wadre z. B. die Addition von mehreren Zahlen hintereinander.

1+2+3+4+5+6+ 7+ 8etc.

Ein solches Problem kénnte man auch ohne Schleife |6sen, aber es
wiirde erheblich mehr Aufwand erfordern und die Wahrscheinlichkeit,
einen Fehler beim Programmieren zu machen, ware auch relativ hoch.

Wir wollen nun an einem einfachen Programmbeispiel den Befehi
FOR ... NEXT demonstrieren.

400 FOR I=1 TO 100
410 PRINT I
420 NEXT I

Alles, was sich innerhalb der FOR-NEXT-Schleife befindet, in unserem
Falle hier nur der Befehl PRINT | wird so lange wiederholt, wie in Zeile
400 angegeben wurde.

Insgesamt also 100 Schleifendurchidufe. Wenn hinter dem Befehl
FOR | = 1 TO 100 nichts mehr folgt, so nimmt das Programm an, dal§
der Schritt 1 sein soll. Wir konnen dies z. B. dndern, indem wir
folgendes programmieren:

430 FOR I=1 TO 100 STEP 2
440 PRINT I
450 NEXT I

47

Jetzt werden nur 50 Zahlen ausgedruckt, da der Schritt um zwei nach
vorne erfolgt. Es kdnnen auch negative Schrittwerte verwendet werden.

460 FOR I=100 TO 1 STEP -2
470 PRINT I
480 NEXT I

Merke:
1. Anfangswert und Endwert miissen verschieden sein.

2. Die Laufvariable kann auch innerhalb der Schleife verwendet werden.
Siehe vorheriges Beispiel. Sie wird durch FOR-TO-STEP festgelegt
und 4Rt sich nicht mehr andern.

3. Bei gleichem Anfangs- und Endwert wird die Schleife nur einmal
durchlaufen.

4. Wenn die Schrittzahl positiv ist, muB der Anfangswert immer kleiner
sein, als der Endwert.

5. Wenn die Schrittzahl negativ ist, mul8 der Anfangswert groRer als der
Endwert sein.

Verschachtelte FOR NEXT-Schleifen

Verschachtelte Schleifen bestehen aus zwei ineinanderliegenden
Schleifen. Wichtig ist nur, dal die innere Schleife kleiner ist, als die
duBere Schleife.

Dies bedeutet, dal immer zuerst die letzte Schleife durch NEXT abge-
schlossen werden kann,

10 FOR X=1 TO 100
20 FOR Y=1 T0O 10
25 PRINT Y;" ",
30 NEXT Y

35 PRINT X

40 NEXT X

Ein praktisches Beispiel:

Wir wollen nun einmal einen Casinogang simulieren. Es soll simuliert

48

werden, wie oft rot oder schwarz auf dem Rouletteller erscheint.

500
510
520
530
540
550
560
570
580
580
600
610
620
630
640
650
660
670
680

REM CASINOSIMULATION

REM WIE OFT KOMMT ROT UND SCHWARZ
PRINT "WUERFE","ROT","SCHWARZ"
FOR I=100 TO 1000 STEP 100

LET R=0

LET S=0

FOR J=1 TO I

LET A=INT(10*RND(1))

LET X=5%A

LET Y=X/2

LET W=INT(Y)

IF wW=Y THEN 640

LET R=R#1

GOTO 650

LET S=5+1

NEXT J

PRINT I,R,S

NEXT I

END

49

50

NOTIZEN

DIM

DIM
Eindimensionale und mehrdimensionale Felder, indizierte Variablen
Wenn wir mehrere Variable addieren wollen, ist es oft von Vorteil,
wenn man mit indizierten Variablen arbeitet. Nehmen wir einmal an,
wir wollen 5 Variable addieren.

5=b; +b, +b; +by +b;

In der Mathematik sieht dies wie folgt aus:

5
S= 2 by
K=1

Das Zeichen ¥ gibt an, daB die Variablen b von K = 1 bis K = 5 addiert
werden sollen.

Eine Variable wird in BASIC durch eine Variable mit nachfolgendem
Klammerausdruck wie folgt dargestellt.

A(X)
B(C1)
ClY +1)

Das Argument in den Klammern darf nicht negativ sein. Bei den

einzelnen BASIC-Versionen ist es auch teilweise begrenzt, z. B. bis 256
oder ahnlich.

Eine Ansammiung von Variablen mit dem selben Namen nennt man ein
Feld oder auch eindimensionale Arrays.

Nachfolgend wollen wir ein Beispiel zur Anwendung eines Feldes

51

geben:

10 REM DEMO FOR DIM

20 PRINT "WIEVIELE DATEN SOLLEN EINGEGBEN"
25 INPUT "WERDEN ? N=";N

30 DIM A(N)

40 REM DATENEINGABE

50 FOR I =1 TO N

60 PRINT "A(";I;: INPUT ")=";A(I)
70 Y =Y + A(I)

80 NEXT I

gow=Y/N

100 PRINT "DER MITTELWERT IST ";W

Das vorherige Programm ermittelt uns den Durchschnittswert einer
Reihe von Zahlen. Die Zahlen kénnen vom Programmierer eingegeben
werden. Ein Array wird aufgefiillt und die Werte addiert. AnschlieBend
wird die Summe durch die Anzahl der Elemente geteilt.

Programme, wie oben beschrieben, kénnen meist nur bis zu einer GroRRe
von 10 Elementen verwendet werden. Bei mehr als 10 Elementen muR
man die Anweisung DIM verwenden. Z. B. DIM A(N)

Der Befehl reserviert im Speicher einen bestimmten Platz fiir Variable.
Dem Wert DIM folgen die verschiedenen Bezeichnungen fiir die Felder,
z.B.DIM A(10), B(20), C(30)

Die einzelnen Feldbezeichnungen miissen durch Kommas getrennt
werden.

Je nachdem, ob es sich um eindimensionale, zweidimensionale oder
dreidimensionale Felder handelt, muB die GroRe angegeben werden.

Zweidimensional: DIM A(10,15), B(22,30)
Eindimensional: DIM A(10), B(15), C(20)

Es konnen auch Arrays mit Strings aufgebaut werden. Dann werden
eben keine Werte, sondern Zeichenketten abgespeichert.

DIM F$ (14,15)
52

Jedes Element kann im Array durch Angabe seines Platzes beschrieben
werden. A (5,5) ist z. B. das Element in der 5. Reihe und 5. Spalte.

Bei der Dimensionierung von Arrays mit Zeichenketten treten Unter-
schiede auf. In Microsoft BASIC bedeutet die Angabe

DIM A3 (10)
ein Feld von 10 Zeichenketten mit je 256 Zeichen.

Beim ATARI, ZX81, SPECTRUM dagegen eine Zeichenkette mit 10
Zeichen,

Hier muB auch beachtet werden, daR bei einen Vergleich von Zeichen-
ketten beide gleich dimensioniert sein miissen.

Beispiel (ATARI, ZX81, SPECTRUM):

DIM A3(5)

DIM B3(10)

LET A8 = “"HANS"
LET B% = “HANS"

Dig Bedingung:
IF A3=B8 THEN ...

ist nicht erfiillt.

53

NOTIZEN

PEEK

PEEK

Der PEEK-Befeh!l erlaubt dem Programmierer, direkt in eine Speicher-
zelle zu sehen.

10 PEEK (Speicherzellennummer)
Die Speicherzellennummer muB8 dabei in Dezimal angegeben werden.

Die Sichtbarmachung des Speicherinhaltes geschieht durch

10 PRINT PEEK(59459)
20 PRINT PEEK(X)

Auslesen eines Speicherbereiches:

10 FOR X=1 TO 500
20 PRINT PEEK(X)
30 NEXT X

40 END

55

NOTIZEN

POKE

POKE

Der POKE-Befehl ermdglicht dem Programmierer das direkte Eingeben
von Daten in eine Speicherzelle.

POKE A, B

wobei B = Daten oder eine Variable sein kann
und A =die Adresse in Dezimal.

10 POKE 59459,255

Da der Programmierer aber meist an Hexadezimalzahlen gewohnt ist,
muB zuerst in Dezimal umgerechnet werden.

Der POKE-Befehl erlaubt es, vom BASIC aus, Programme in Maschinen-
sprache in einen gewiinschten Speicherbereich zu legen. Uber USR,
CALL oder SYS-Befehle kann dann vom BASIC aus in das Maschinen-
unterprogramm gesprungen werden.

Beispiel:

10 REM POKE DEMO

20 FOR X=826 TO 836

30 READ Y

40 POKE X,Y

50 NEXT X

60 DATA 1,2,3,4,5,6,7,8,9,10,11
70 END

Das Programm liest die Werte 1 — 11 in die Speicherzellen 826 bis 836.
57

58

NOTIZEN

GOSUB...RETURN

GOSUB. .. RETURN

Der GOSUB-Befehl ist ein unbedingter Sprung in ein Unterprogramm.
Dem GOSUB-Befehl folgt -unmittelbar die Zeilennummer, in der das
Unterprogramm beginnt. Am Ende des Unterprogrammes wird der
Befehl RETURN gegeben. Dieser sorgt dafiir, daR das Programm wieder
zuriick springt und im Hauptprogramm weiterfahrt.

Hauptprogramm

i

GOSUB 100
50 GOSUB 100 Unteroroaram
60 PRINT Y programm
90 GOTO 200 00

Y

199 RETURN

59

Programmbeispiel:

Das nachfolgende Programm verwendet eine sehr kleine Unterroutine,
die eine bestimmte Berechnung durchfiihrt. Eine solche Unterroutine
kann jedoch auch aus wesentlich mehr Befehlszeilen bestehen. Sie
kénnen auch vom Unterprogramm aus noch in ein weiteres oder in
mehrere Unterprogramme springen. Der Computer merkt sich auto-
matisch die Zeilennummer, bei der er das Hauptprogramm verlassen
hat und kehrt dann in die darauffolgende Zeile zuriick.

10 REM DEMPROGRAMM FUER UNTERPROGRAMM
20 REM MIT DEM GOSUB BEFEHL

30 PRINT "GEBE EINE ZAHLE EIN ";
35 INPUT X

40 IF X=0 THEN 150

50 Gosus 100

60 PRINT Y

70 GOTO 30

100 LET Y=X*15-3+4

110 RETURN

150 END

60

ON...GOSUB

ON...GOSUB

Der Befehl ON X GOSUB wird dann verwendet, wenn eine Reihe von
Unterprogrammen aufgerufen werden sollen. Meist wird dazu eine
Variable gesetzt (in unserem Beispiel X). Wird dieser Variablen der
Wert 1 zugewiesen, so wird an die erste Adresse nach dem GOSUB-
Befehl gesprungen. Wird der Variablen der Wert 2 zugewiesen, geht der
Sprung an die darauffolgende Adresse.

Beispiel:

200 REM ON GOSUB DEMO

210 PRINT " EINGABE EINER ZAHL "
215 PRINT " ZWISCHEN 1 UND 5 ";
218 INPUT X

220 IF X>5 THEN 300

230 ON X GOsuB 260,280,290,285,285
235 PRINT Y

240 GOTO 210

260 Y=X*20

261 RETURN

280 Y=X/10

281 RETURN

285 Y=X+20

286 RETURN

290 Y=X+15

292 RETURN

295 Y=X"2

296 RETURN

300 END

Die Variable X kann auch ein mathematischer Ausdruck oder eine
Formel sein. Z.B. X * 5 oder adhnlich.

61

Zweites Beispiel:

62

10
20
30
40
50
60
65
70
80
90
100
110
200
210
300
310
400
410

REM ON GOSUB TEST
PRINT "MENUE-UEBERSICHT"
PRINT "(1) ADRESSEN EINGEBEN"
PRINT "(2) ADRESSEN AENDERN"
PRINT "(3) AUSDRUCKEN"
PRINT "(4) ENDE"

PRINT

INPUT "BITTE GEWUENSCHTE FUNKTION EINGEBEN:";X
ON X GOSUB 100,200,300,400
PRINT : GOTO 20

PRINT "GEBEN SIE RUHIG EIN!"
PRINT "TEST": RETURN

PRINT "AENDERN SIE RUHIG"
RETURN

PRINT "AHA JETZT WIRD GEDRUCKT"
RETURN

PRINT "AUF WIEDERSEHEN"

END

ON...GOTO

ON...GOTO

ON GOTO arbeitet dhnlich wie der ON GOSUB Befehl. Auch hier sind
IF THEN Abfragen eingebaut. ON X GOTO 100, 200, 300 sagt dem
Computer, daB8 je nach dem welcher Wert die Variable X (1, 2 oder 3)
hat, das Programm nach Zeile 100, 200 oder 300 springen soll.

Beispiel:

10 REM ON-GOTO TEST

30 INPUT "GEBEN SIE BITTE 1,2,3 ODER 4 EIN:";X
40 ON X GOTO 100,200,300,999

100 PRINT "SIE HABEN (1) EINGEGEBEN-STIMMTS ?"

110 GOTO 10

200 PRINT "SIE HABEN (2) EINGEGEBEN-STIMMTS ?"

210 GOTO 10 _

300 PRINT "SIE HABEN (3) EINGEGEBEN-STIMMTS ?"

310 GOTO 10

988 END

63

64

NOTIZEN

ON ERROR GOTO

ON ERROR GOTO

Das folgende Programmstiick ist Teil eines Programmes, das Dateien auf
einer Diskette verwaltet. Wird nun nach einer bestimmten Datei gesucht
und das DOS findet diese nicht, wird das Programm mit einer Fehler-
meldung abgebrochen. Um dies zu verhindern wird der ON ERROR
GOTO Befehl verwendet.

5600 REM ks s deadeak ek desde 3k

5605 REM DATEI VORHANDEN ?
5610 REM *#sdsdkisdakdokskdkokik

5615 ON ERR GOTO 5630

5620 PRINT D$;"VERIFY";F$;"CODE"

5625 GOTO 5650

5635 PRINT "*** DOS FEHLER ***":GOTO 400

5645 PRINT "*#** DATEI NICHT VORHANDEN ***":GOTO 400
5650 RETURN

6530 I=PEEK(222):IF I=6 THEN GOTO 5645

In Zeile 5615 wird der Sprung in die Zeile 5630 bei Auftreten eines
Fehlers in der folgenden Zeile 5620 programmiert. Dort wird in Zelle
222 nachgeschaut welcher DOS-Fehler aufgetreten ist. Bei nicht vor-
handener Datei wird eine entsprechende Fehlermeldung ausgegeben.
Tritt ein anderer Fehler auf, erscheint die Meldung DOS-FEHLER.

Nach einem tatsachlich aufgetretenen Fehler sind alle Riicksprung-
adressen verloren, so daB mit GOTO das Programm weitergefiihrt
werden muBd (gilt nur fiir APPLE Il).

65

66

NOTIZEN

USR (X)

USR(X)

Die USR(X)-Funktion wird in einigen Microsoft-BASIC-Versionen
dazu benutzt, einen Wert X an ein Maschinenunterprogramm zu iiber-
geben. Die Anfangsadresse dieser Maschinenroutine muf8 dann in
bestimmten Zellen (beim APPLE z. B. OA, OB) gespeichert sein. Der
Wert X wird in den Floating-Point Accumulator geschrieben.

Eine andere Bedeutung hat der USR-Befehl beim ZX81 oder Spectrum.
Hier ist X die Anfangsadresse eines Maschinenprogrammes. Dieser
Befehl muB in einer Dummy-Zuweisung verwendet werden. Z. B.

PRINT USR X

Dann wird beim Riicksprung der Inhalt des BC-Registers der 280 CPU
auf den Bildschirm ausgegeben.

67

68

NOTIZEN

Funktionen

Bei einer Funktion wird der Wert einer Variablen durch die
Funktion und durch das an die Funktion iibergebene Argu-
ment bestimmt.

10 PI=3.14159
20 Y =SIN (P1/2)

Der Wert von Y (= 1) wird durch die Funktion sin (sinus) und
durch das Argument Pi/2 bestimmt. Das Argument muB bei
allen Rechnern in Klammern gesetzt werden.

Ausnahme: ZX81, SPECTRUM.

Hier kann

20 Y =SINPI
eingegeben werden, wenn das Argument aus einer Zahl oder
Variablen besteht. Zusammengesetzte Ausdriicke miissen

auch hier in Klammern gesetzt werden.

20 Y =SIN (P1/2)

69

70

RND

RND

Die Random-Funktion erzeugt Zufallszahlen. Diese Funktion hat auf
den verschiedensten Rechnern unterschiedliches Verhalten.

ZX81, SPECTRUM
LETR=RND *26 +1
erzeugt Zufallszahlen zwischen 1 und 26.
Zusatzbefehl: RAND
Nach RAND 1 wird immer die gleiche Zufallszahl erzeugt. Nach

RAND 0 oder nur RAND wird wieder eine Folge von Zufallszahien
erzeugt.

APPLE

R = RND(X)
X) 0 Erzeugt Zufallszahlen groRer, gleich Null und kleiner 1 (0=R (1).
X =0 Es wird immer die gleiche Zufallszahl erzeugt.

X (0 Erzeugt fiir jedes Argument X die gleiche Zufallszahl.
RND (—1) ist ungleich RND (—4)

ATARI
R = RND(X) Erzeugt Zufallszahl groRer, gleich 0 und kleiner 1
(0=(R(1).

X ist eine Dummy-Variable. Sie beeinflusst nicht die Bildung der
Zufallszahlen.

COMMODORE-64
R = RND(X)
X)0 Erzeugt Zufallszahl groRer, gleich Null und kleiner 1.

7

Es wird immer die gleiche Folge von Zufallszahlen gebildet.
X = 0 Die Zufallszahl wird durch einen Zahler im Rechner gebildet.

X 0 Bei jeden Programmlauf wird eine andere Folge von Zufalls-
zahlen erzeugt.

72

INT

INT

Die INT-Funktion (Integer = ganze Zahl) liefert die ganze Zahl aus
einer gebrochenen Zahl.

10 PRINT INT(X)
20 LET Y=INT(Z+I)
30 LET X=INT(100*RND(1))

Sie wird dort angewendet, wo von gebrochenen Zahlen nur der ganz-
zahlige, positive Wert bendtigt wird, z. B. in unserer Casionosimulation.
Dort werden Zufallszahlen zwischen O und 1 erzeugt (0,000001
0,999999).

Indem man die ganzen Zahlen herauslost und mit 100 multipliziert,
erhélt man Zufallszahlen zwischen 0 und 100.

10 REM DEMOPROGRAMM
20 REM FUER DIE INT(X) FUNKTION
30 FOR X=1 TO 10

40 LET I=X/3

50 PRINT INT(I);" ";

60 PRINT X

70 NEXT X

Achtung: Beim ZX81 und SPECTRUM
INT (0.5 x 6) liefert 2 und nicht 3, wie bei anderen Rechnern.

73

74

NOTIZEN

SQR

SQR

Die SQR(X)-Funktion (Quadratwurzelfunktion) liefert die Quadrat-
wurzel des Wertes, der in der nachfolgenden Klammer steht.

Beispiel:

10 PRINT SQR(100)

Der Ausdruck kann auch in einer Rechenoperation verwendet werden.

20
30
40
50
60
70
80
90

PRINT SGR(10*15+S0GR(5))
LET X=2

Y=SGR (X)

PRINT Y

FOR X=1 TO 100

LET Y=SOR(X)

PRINT Y

NEXT X

100 PRINT "EINGABE EINER ZAHL ";
105 INPUT X

110 PRINT "DIE WURZEL IST ";SGR(X)
120 END

75

76

NOTIZEN

ABS

ABS

Mit der ABS-Funktion kénnen Sie den Absolutwert einer Zahl oder
einer Variablen erhalten. Unter dem Absolutwert einer Zahl versteht
man die eigentliche Zahl ohne jedes Vorzeichen.

Beispiele:

a) PRINT ABS (—12)
druckt die Zahl 12 aus (ohne den Minusvorzeichen).
PRINT ABS (+14)
druckt die Zahl 14 ohne das Pluszeichen aus.

b) BLET X=—-25:LETY =+4.75

10 PRINT ABS(X)
20 PRINT ABS(Y)

77

78

NOTIZEN

SIN

SIN

Diese Funktion liefert den Sinuswert fiir ein gegebenes Argument.

5 Pl =3.14159
10 PRINT SIN (P1/2)

Das Argument wird immer im BogemaR angegeben. Hier entspricht
einen Winkel mit den GradmaR 0° der Wert 0 im BogenmaR und einen
Winkel von 360° der Wert 2*P1.

Die Umrechnung von Grad ins Bogenmal kann durch

X
Y=— 0 *p|
180

mit X im GradmaR erfolgen.

Beim ATARI kann durch die Anweisung DEGREE der Rechner zur
Rechnung ins GradmaR umgeschaltet werden.

COS

Cos

Berechnung der Cosinusfunktion.

79

80

NOTIZEN

TAN

TAN

Berechnung der Tangensfunktion.

ATN

ATN ist die Umkehrfunktion zur Tangensfunktion. Sie liefert den
Arcus-Tangens zu einem gegebenen Argument. Der Wert der Funktion
liegt zwischen —P1/2 und +P1/2.

LOG

Diese Funktion liefert den natiirlichen Logarithmus (In) zu einem ge-
gebenen Argument.

_ LOG(X)
LOG(10)
rechnet den natiirlichen Logarithmus (Basis 2) in den decadischen

Logarithmus (Basis 10) um.

81

82

NOTIZEN

EXP

EXP

Durch EXP wird der Wert der e-Funktion fiir ein gegebenes Argument
berechnet.

SGN

Die SGN (Signum) Funktion liefert den Wert des Vorzeichens fiir ein
gegebenes Argument.

Y = SGN(X)
Y=1 wenn X)=0
Y= —1 wenn X<(0

Formeln fiir Funktionen, die nicht in BASIC enthalten sind:

Sinus-Umkehrfunktion ARCSIN
Y = ATN (X/SQR(—=X*X+1))

Cosinus-Umkehrfunktion ARCCOS
Y =--ATN (X/SQR(—=X*X+1))+P1/2

Sinus-Hyperbolicus SINH
Y = (EXP(X)—EXP(—X))/2

Cosinus-Hyperbolicus COSH
Y = (EXP(X)+EXP(—=X))/2

83

Tangens-Hyperbolicus TANH
= —EXP(—X)/(EXP(X) + EXP(—X))*2 + 1

Modulo-Funktion
Die Modulo-Funktion liefert den Rest Y, der bei einer Division A/B
auftritt,

Y =INT (A/B —INT(A/B))*B + 0.05

Diese Funktionen kdonnen mit DEF FN in eine BASIC-Programm ein-
gebaut werden.

DEF FN

DEF FN

Wenn ein Teil eines Programmes als Funktion verwendet wird, und sehr
haufig beim Programmieren eingesetzt werden muf3, empfiehlit es sich,
es iiber DEF in eine Funktion zu verwandeln.

DEF ermdglicht es dem Programmierer, z. B. einen mathematischen
Ausdruck wie B = (X —5)/Y als Funktion festzulegen und iiber DEF
aufzurufen.

Der DEF-Befehl besteht aus dem Wort DEF, gefolgt von einer Defi-
nition. Danach folgt ein Gleichheitszeichen mit einer Formel, Kon-
stanten oder Variablen. Die Definition ist auch der Name der Funktion.

100 DEF FNI (X,Y)=(X+1) /(Y =3)
Es kénnen auch Strings eingesetzt werden.

200 DEF FNI$ = “ELCOMP"”

Programmbeispiel:
Die nachfolgede Programmzeile soll gebrochene Zahlen aufrunden:

10 DEF FNR(A) = INT (X * 100 + 0.5)/100

85

In Zeile 10 wird der mathematische Ausdruck rechts neben dem Gleich-
heitszeichen als Funktion FNR (A) festgelegt. Der Wert X in DEF
FNR(X) ist nur eine Ersatzvariable, die spater in die FNR(X)-Funktion
eingesetzt wird. Jedesmal, wenn die Funktion benétigt wird, kann ich
X durch die gewiinschte Variable ersetzen.

F =FNR (X)
liefert dann das Ergebnis wie
Y =INT (X * 100 + 0.5)/100

Man spart sich dadurch sehr viel Schreibarbeit und vermindert die
Fehlerwahrscheinlichkeit.

86

AND

AND

Der AND-Befehl wird in einzelnen Computern zur logischen Ver-
kniipfung in FOR NEXT Befehlen verwendet. Weiterhin wird der AND-
Befehl zur logischen Verkniipfung zweier Bindrzahlen verwendet.

10 REM AND DEMO

20 X=12

30 Y=22

40 IF X=12 AND Y=22 THEN 100

100 PRINT "AHA! - ES GEHT"

110 REM AENDERN SIE JETZT EINMAL
120 REM DIE ZEILE 20 IN X=13

Sie konnen den AND-Befehl immer dann verwenden, wenn Sie mehrere
Bedingungen abfragen miissen. Z. B. in einer Adressliste. Alle Kunden
mit Anfangsbuchstaben B aus dem Postleitzahlgebiet 8150.

Einige Computer erlauben es mit der AND-Funktion auf zwei be-
stimmte Kriterien priifen zu lassen. Wenn die beiden Kriterien erfiillt
sind, liefert die AND-Funktion den Wert 1. Wenn einer der beiden
Bedingungen nicht erfiillt ist, wird eine Null geliefert.

Beispiel:

10 REM AND TEST FUER LOGISCHE OPERATIONEN

20 PRINT "GEBEN SIE EINE ZAHL ZWISCHEN 2 UND 9 EIN "
30 INPUT X

35 IF X<0 THEN END

87

40 IF X>3 AND X<10 THEN GOTO 100

55 PRINT X;" IST NICHT GROESSER ALS 3"
56 PRINT " UND KLEINER ALS 10"

57 GOTO 10

100 PRINT X;" IST GROESSER ALS 3"

110 PRINT " UND KLEINER ALS 10"

120 GOTO 10

Sie konnen jedoch auch mit der AND-Funktion logische Operationen
simulieren, z. B. die UND-Funktion.

UND-Funktion Tabelle:

Mit der AND-Funktion konnen Sie leicht die Wertetabelle eines UND-
Gatters errechnen und ausdrucken (siehe Beispiel).

10 REM UND FUNKTION
20 X=0 AND O

30 Y=1 AND O
40 Z=0 AND 1
50 U=1 AND 1
60 PRINT "LOGIKTABELLE FUER UND"
70 PRINT

80 PRINT "0 UND 0 = ";X

90 PRINT "1 UND O ,Y
100 PRINT "0 UND 1 = ";Z
110 PRINT "1 UND 1 = ";U

Bei einigen Rechnern verkniipft die AND-Funktion jede bindre Stelle
des Wertes mit der binaren Stelle des anderen Wertes. :

Diese Technik wird oft in der Ein-, Ausgabeprogrammierung und bei
der Programmierung von Joysticks etc. verwendet. D. h. {iberall dort wo
einzlne Bits manipuliert werden missen. Zusammen mit der OR-
Funktion und einer Negierung (Verneinung NOT) koénnen Sie alle
beliebigen logischen Fuktionen simulieren und lhr Programm einbauen.

88

OR

OR

Die OR-Funktion wird zu logischen Verkniipfung von zwei Zahlen oder
Ausdriicken verwendet. Wenn einer der beiden Ausdriicke ‘‘wahr’’ ist,
ist die Bedingung erfiilit. Genau wie der der AND-Funktion werden bei
Dezimalzahlen die bindren Aquivalente ‘‘geodert’’.

10 REM ODER FUNKTION DEMO
20 X=0 OR O

30 Y=1 OR O

40 z=0 OR 1

50 U=1 OR 1

60 PRINT

70 PRINT "O ODER O
80 PRINT "1 ODER O = ";Y
90 PRINT "0 ODER 1 = ";Z
100 PRINT "1 ODER 1 = ";U

ll;x

10 IFB>YAORA)CTHEN7?
Ausdruck 1 Ausdruck 2

Wenn eine der beiden Ausdriicke erfiillt ist, B groBer A oder A groRer
C, springt das Programm nach Zeile 7. Dieser Befehl wird oft zur Ab-
frage von Tasten bei der Eingabe verwendet.

89

90

NOTIZEN

NOT

NOT

Die NOT-Funktion in Microsoft-BASIC entspricht der logischen
NICHT-Verkniipfung (Invertierung). Sie .invertiert die bindren Repra-
sentationen der einzelnen Werte. Ahnlich wie AND und OR.

10 REM NOT-FUNKTION
20 X=0

30 Y= NOT X

40 PRINT Y

Mit NOT wird die negative Zahl im Zweier-Complement gebildet.

Complementieren einer Binirzahl bedeutet vertauschen von Null und
Eins. Bei der Bildung des 2-er Complements wird zu dieser Ver-
tauschung noch eine Eins dazuaddiert.

Beispiel: Bestimmung der 2-er Complemente von +1:

+1 = % 00000001
Complement = % 11111110
Eins dazuaddiert +% 00000001
ergibt -1 =% 11111111 = $FF

Die Zahl —1 wird alsodurch % 11111111 oder $FF gekennzeich-
net.

91

92

NOTIZEN

Funktionen
far
Zeichenketten

Die Sprache BASIC enthdlt Funktionen, die auf Zeichen-
ketten angewendet werden kénnen.

Diese Zeichenketten konnen ‘‘addiert’, aufgeteilt und mit-
einander verglichen werden.

93

94

ASC(X3)

ASC(X$)

Die ASC(X$)-Funktion verwandelt ein Zeichen oder eine String-
Variable in den ASCII-Integercode.

Diese Werte finden Sie in einer Dezimal-ASCII-Tabelle.
PRINT ASC(“B’) druckt den Dezimal-ASClI-Wert = 66 des Buch-
stabens B auf dem Bildschirm aus.

10
15
20
30
40
50
55
60
99

REM ASC(X$) TEST

GOTO 100

PRINT "DER ASCII WERT FUER DEN"
INPUT "BUCHSTABEN:";X$

PRINT "IST ";

PRINT ASC (X$)

PRINT

RETURN

END

100 GOSuB 20
110 IF ASC (X$) = 65 THEN END
120 GOTO 100

ZX81 verwendet CODE. _
CODA A9 gibt den intern vereinbarten Code fiir A$. Dieser entspricht
nicht dem ASCII-Code. Das gleiche gilt fir SPECTRUM.

95

ASCIl CHARACTER CODES

Code

Dec Hex

N
MEBEWNF-FSR VOSSNV WNES

96

1)
g1

23
g4
85
@6
97
93
29
gA
@B
gc
@D
(1))
@F
19
11
12
13
14
15
16
17
18
19

1B
1C
1D
1E
1F

Char

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS

HT

LF

FF
CR
SO
SI
DLE
DC1
DbC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS

RS
us

Code

Dec Hex

32
33
34
35
36
37
38
39
49
41
42
43
44
45
46
47
48
49
5¢
51
52
53
54
55
56
57
58
59
60
61

62 -

63

2¢
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
3¢
31
32
33
34
35
36°
37
38
39
3A
3B
3c
3D
3E
3F

Char

Se-W0
d

SR N =

1 v 4+ %~~~

W oONOOTULMBEWNFRN

DV K A v oo

Char

rtr m N M E<OHN PONWOZRIUNRGHIOHMEHD OWP D@

Code

Dec Hex

96

97

98

99
199
191
192
193
104
105
196
147
108
199
11¢
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Char

I AN X E < CMM 0 HO0T 0P B RXWEHDMRMD AN T

DEL

CHR$(X)

CHR3(X)

Dieser Befehl bewirkt genau das Gegenteil, was ASC (X$) bewirkt.
CHR®(X) besorgt lhnen aus dem Dezimal-ASClI-Wert X in der
Klammer den zugehorigen Buchstaben oder das zugehorige Zeichen.

PRINT CHR®(66) durckt Ihnen z. B. den Buchstaben B auf den Bild-
schrim. Der gesamte ASCII-Code kann mit den Zahlen 0 — 127 dar-
gestellt werden. Einige Computer haben einen erweiterten Vorrat mit
255 ASCII-Zeichen, Symbole, Spielesymbole etc. (Grafik).

10 REM CHRS$(X) DEMO
20 FOR X = 1 TO 255
30 A$ = CHRS$ (X)

40 PRINT AS;" ";

50 NEXT X

Dieses Programm druckt lhnen alle ASCil-Zeichen mit den Werte 1 —
255 auf dem Bildschirm aus.

Beim ZX81 wird das intern verwendete Zeichen gebracht. Beim
SPECTRUM der ASCII-Code.

97

98

NOTIZEN

LEN (X$)

LEN(X$)

Der LEN(X®) Befehl liefert lhnen die Anzahl der BYTE (Zeichen),
eines Strings X$. Diesen Befehl brauchen Sie immer dort, wo Sie die
Lange eines Strings oder einer Zahl wissen miissen. Handelt es sich
um eine Zahl, miissen Sie diese zuerst in einen String umwandein.

10 A$ = "ELCOMP":B$ = "SOFTWARE"
20 X$ = A$: GOSuB 100

30 X$ = B$: GOSuUB 100

40 END

100 HTAB (40 — LEN (X$)): PRINT X$
110 RETURN

Dieses kleine Programm druckt die Zeichenketten A% und B$ rechts-
biindig am rechten Rand aus.

Die Zahl 40 wurde so gewahlt, weil die meisten Rechner 40 Zeichen/
Zeile ausgeben.

Beispiel:

10 REM LEN(X$) DEMO

20 INPUT "GEBEN SIE EINIGE ZEICHEN EIN ";A$
30 PRINT "SIE HABEN "; LEN (A$);" ZEICHEN EINGEGEBEN"

99

NOTIZEN

100

LEFT$(XS$,Y)

LEFT3(X$,Y)

Dieser Befehl gibt lhnen die ersten Y-Zeichen von links in einen String.
Sie brauchen diesen Befehl unbedingt, wenn Sie mit Files und ernst-
haften Geschaftsprogrammen arbeiten wollen.

Der Befehl:
PRINT LEFT$(“HOFACKER VERLAG",8)
druckt lhnen auf dem Bildschirm HOFACKER VERLAG aus.

Y = 8 (von links die ersten 8 Zeichen)

——
"“"HOFACKER VERLAG"

Der Befehl wird u. a. nach einer Zusammenfassung von mehreren
Strings dazu verwendet umd die beiden wieder zu trennen.

Auch bei der Festlegung von Feldern in Files kédnnen Sie den LEFT$
(X$,Y) Befehl verwenden.

5 5 5
3 Felder a’' 5 Stellen
1. Feld 2. Feld 3. Feld
B HS 19

Sie wollen Zahlen in diese Felder einschreiben und immer auf fiinf
Stellen auffiillen (mit Leerzeichen oder Sternchen). Zuerst legen Sie
ein Dummy-String mit fiinf Leerfeldern fest. Z. B.N$ =" — — — — —
— = Leerzeichen (Blanks).

Dann verwandeln Sie |hre Zahl in einen String und addieren den String,

bestehend aus 5 Leerzeichen zu der in A ein String umgewandelten
Zahl.

10 REM LEFT$(A$,X) DEMO

20 G$ = "2":H$ = "5":I$ = "105"
30 N$ = MEkkkkn

50 X$ = G$: GOSuB 100

60 X$ = H$: GOSUB 100

70 X$ = I$: GOSuUB 100

80 END

100 X$ = LEFT$ (X$ + N$,5)
105 PRINT X$;
110 RETURN

IRUN
Dk G dok k] 0GR

Im Beispiel haben wir Sternchen anstelle von Leerzeichen verwendet.
Die Stringwerte 2, 15 und 105 sind jetzt in Felder gepackt, welche
jeweils 5 Zeichen lang sind.

Wir sehen spater, bei der Erlauterung des MID$(X$, Y, Z) Befehles,
warum man den LEN(X$) Befehl in diesem Zusammenhang anwendet.

ZX81 und SPECTRUM verwenden die Schreibweise
A8 (n TO n)

Die Zeichenkette wird von Zeichen n bis Zeichen n’ ausgedruckt. Mit
A% = “ELCOMP* entspricht

LEFTS$ (A8,2) gleich A$ (1 TO 2) oder auch
A% (TO2)

Beim ATARI! wird die Schreibweise
A$ (n, n’)

verwendet. PRINT A% (1,2) druckt, beginnend beim ersten Zeichen, 2
Zeichen aus.

102

MID$(XS,Y, Z)

MID$(X$,Y Z)

Der MID$-Befehl wird dazu verwendet aus einem String Z-Zeichen
herauszuschneiden, welche Y-Zeichen vom &uBerst linken Zeichen
an beginnen.

8 4
Vo . N
PRINT MID$ (“ELCOMP—-MAGAZINE",8,4)

wiirde auf dem Bildschirm MAGA erscheinen lassen.

Diesen Befehl verwendet man u. a. zum Auftrennen von Summen-
strings. Sehen Sie bitte in diesen Zusammenhang den Befehl LEFT$
(X8,Y) noch einmal an. Nehmen wir an, wir haben fiir die dort ver-
wendeten einzelnen Stringfelder mit je 5 Zeichen eine Summenstring-
variable

. I—?:Tlrllﬂl mm

- 5 5

gebildet.

Dieses Variable speichern wir auf Diskette oder Cassette. AnschlieBend
lesen wir diese wieder ein und miissen sie wieder trennen, um unsere
einzelnen Variablen wieder zu finden. Dazu bendtigen wir den MID$
Befehl.

103

Beispiel:

10 REM LEFT$(A$,X) DEMO

20 G$ = "2":H$ = ™5":I$ = 105"
30 N$ = "kkdkkkn

50 X$ = G$: GOSUB 100

60 X$ = H$: GOSUB 100

70 X$ = I$: GOSUB 100

75 PRINT

80 G$ = LEFTS$ (J$,5)

85 H$ = MID$ (J$,6,5)

90 I$ = RIGHT$ (J$,5)

95 PRINT G$: PRINT H$: PRINT IS
93 END

100 X$ = LEFT$ (X$ + N$,5)

105 PRINT X$;

110 J$ = J$ + X$

120 RETURN

IRUN
QA ER G RAR DGR
PEE T

15%%%
105%**

Sehen Sie sich dieses Beispiel einmal ganz genau an. Diese Technik ist
sehr wichtig fiir alle Geschaftsprogramme. Die Stringvariablen G$, H$
und 18 werden so aufbereitet, daB die jeweiligen Felder immer 5
Zeichen lang sind, gleich welche Zahl zwischen 0 und 99999 Sie hinein-
schreiben. Mit dem LEFT$ Befehl geschieht die Einteilung in 5
Gruppen. Anstelle der Asteriks (Sternchen) konnen Sie auch Leer-
zeichen im String N® verwenden. Die einzelnen Fiinfergruppen werden
dann im Summenstring J$ durch Addition zusammengefasst.

Hierzu verwenden wir den LEFT$ Befehl fiir die erste Fiinfergruppe.

Der MID$ Befehl wird fiir die zweite Fiinfergruppe und der RIGHT$
Befehl fiir die dritte Fiinfergruppe.

104

AnschlieBend sehen Sie, wie die Zahlen wieder in gleicher Weise er-
scheinen wie wir sie am Anfang aufbereitet haben. Diese Technik
kénnen Sie bei allen Geschaftsprogrammen wie z. B. Adressenliste,
Lagerverwaltung etc. verwenden. Die einzelnen Datensdtze werden
dann in einem String zusammengefasst und auf Diskette gespeichert.

Ag" *B Zeichen fiir Kundennummer

B$” * 20 Zeichen fiir Name
c3” 12 Zeichen fiir Postleitzahl

Dg‘ " 20 Zeichen fiir Ort

E$=H*****u

F$=,“********************“20Asteriks
Gszll************" 12ASterik$

A% = LEFT3(A$+N$,5)

B% = LEFT$(B$+F$,20)

C% = LEFT$(C$+G$,12)

D8 = LEFT$(D$+F$,20) usw.

Ein anderes Beispiel:

10 A$ = " HOFACKER VERLAG "

1L =" ": REM 10 LEERZEICHEN
20 X = INT (LEN (A8) / 2) + 2

30 FORI =1TO LEN (AS$) / 2

40 PRINT LEFT$ (L$,X - I + 1); MID$ (A$,X -I,2*1I -1)

50 NEXT I
IRUN
R
ER
KER V
CKER VE
ACKER VER

FACKER VERL
OFACKER VERLA
HOFACKER VERLAG

105

Beim ZX81 und SPECTRUM

MID$ (AS,2,5) lautet hier
A3 (2TO5)

Beim ATARI

A3 (2,5)

106

RIGHT$(XS,Y)

RIGHTS(XS3,Y)

Dieser Befehl arbeitet dhnlich wie der LEFT®(X$,Y), nur wird hier
nicht von links, sondern von rechts her gezihlt.

Sie konnen den RIGHT-Befehl fiir das gleiche Beispiel wie unter
LEFT$(X8,Y) verwenden. Es ergadbe sich folgender Unterschied im
Feldaufbau.

RIGHT3(X$,Y ,5) LEFT3(X3,Y,5)

Feld Feld
00002 20000
00015 15000 0 = Blanks oder auch Sternchen
00105 105600

Beispiel fir RIGHT$(X$,Y)

10 REM RIGHT$(A$,X) DEMO

20 G$ = "2":H$ = "5":I$ = "105"
30 N$ = M&xkxkn

50 X$ = G$: GOSuB 100

60 X$ = H$: GOSUB 100

70 X$ = I$: GOSuUB 100

80 END

100 X$ = RIGHT$ (N$ + X$,5)
105 PRINT X$;
110 RETURN

JRUN
xR DRER|5%%1] 05

107

10 A$ = "HOFACKER VERLAG"
20 FOR I =1 TO LEN (AS)
30 PRINT RIGHTS (AS$,I)
40 NEXT I

IRUN
G
AG
LAG
RLAG
ERLAG
VERLAG

VERLAG
R VERLAG
ER VERLAG
KER VERLAG
CKER VERLAG
ACKER VERLAG
FACKER VERLAG
OFACKER VERLAG
HOFACKER VERLAG

Beim Z2X81 und SPECTRUM entspricht RICHT$(A$,5)

A3 (LEN A$—5 TO LEN A3)

Beim ATARI

108

A% (LEN(A$)-5, 5)

STRS$(X)

STR3(X)

Dieser Befehl liefert einen String, welcher die numerische Zahl X
reprasentiert. Sie kdnnen damit Zahlen in einen String umwandeln. Der
Befehl wird oft dort verwendet wo Zahlen auf Diskette oder Cassette
gespeichert werden miissen. Meist kann man jedoch nur Strings auf
Diskette und Cassette speichern. Man verwandelt daher Zahlen in
Strings oder behandelt sie von Anfang an als String. Erst wenn Be-
rechnungen durchgefiihrt werden miissen, werden sie wieder in
numerische Zahlen oder Variablen verwandelt. Wenn Sie z. B. die An-
zahl der Stellen einer Zahl zdhlen wollen, verwandeln Sie diese zuerst
einmal mit STR®(X) in einen String. AnschlieBend zdhlen Sie die
Stellen mit LEN(X$).

Beispiel:

10 REM STR$ DEMO

20 INPUT "BETRAG:";A
30B=8B+A

40 B$ = STR$ (B)

45 B1$ = LEFT$ (BS, LEN (BS$) - 2)
47 B2$ = RIGHTS (B$,2)

49 B$ = B1$ + "." + B2§$

50 HTAB 40 — LEN (B$): PRINT B$

60 GOTO 20
JRUN
BETRAG:1000
BETRAG :10000

110.00
BETRAG:233

112.33
BETRAG:

109

Im Beispielprogramm wird in Zeile 20 eine Zahl A eingegeben. Diese
Zahl entspricht der Einheit Pfennig. Sie wird zur schon vorhandenen
Zahl B addiert. Die Ausgabe soll nun rechtsbiindig am rechten Bild-
schirmrand ausgegeben werden. AuBerdem soll ein Dezimalpunkt bei
der Ausgabe eingesetzt werden.

Die Zahl B wird deshalb in eine Zeichenkette B$ gewandelt und diese
in zwei Teilketten B1$ und B2% aufgeteilt.

In Zeile 49 wird zwischen B1% und B2$ ein Dezimalpunkt eingefiigt.

Die Ausgabe erfolgt in Zeile 50. HTAB fiir den APPLE muR durch TAB
oder PRINT AT fiir andere Rechner ersetzt werden.

110

VAL(XS)

VAL(X$)

Dieser Befehl verwandelt die String-Variable X$ wieder zuriick in eine
Zahl. Er stellt die Umkehrung des Befehles STR$(X) dar.

10 REM VAL(X$) DEMO

20 INPUT "BETRAG:";A$

22 FORI =1TO LEN (AS$)

24 IF MID$ (A$,I,1) = "." THEN 26
25 NEXT I: GOTO 20

26 A$ = LEFT$ (AS$,I - 1) + RIGHTS (A$, LEN (A$) - I)
30 B=B + VAL (A$)

40 B$ = STR$ (B)

45 B1$ = LEFT$ (B$, LEN (B$) - 2)
47 B2$ = RIGHTS (BS,2)

49 B$ = B1§ + "." + B2$

50 HTAB 40 - LEN (B$): PRINT B$

60 GOTO 20
IRUN
BETRAG:10.00
10.00
BETRAG:122.50
132.50
BETRAG:1234.56
1367.06
BETRAG:10000.00
11367.06
BETRAG:

LRR

VAL(X$) verwendet man immer dann, wenn Zahlen als String ver-
arbeitet wurden und es so weit ist, daB man mit den Zahlen rechnen
muB. Manipulieren Sie alle Zahlen so lange wie maoglich als Strings und
wandeln Sie erst vor der Rechenoperation in eine Zah!l um.

Im Beispiel erfolgt die Eingabe als Zeichenkette. Vor dem Wandeln

der Zeichenkette in eine Zahl wird der Dezimalpunkt entfernt. Ab
Zeile 30 entspricht der Programmablauf dem Beispiel STR$.

112

BASIC-
Grundkurs

113

114

BASIC-Grundkurs

Die folgende Einfiihrung ist fiir den ersten Kontakt mit einem Com-
puter geschrieben. Dabei werden die meisten Befehle, die in der Zu-
sammenstellung aufgefiihrt sind, nochmals in kleinen Programmen vor-
gestellt. Es wird allerdings versucht, so wenig als méglich, rechner-
spezifische Befehle zu verwenden. Als Grundlage fiir die Befehle soll die
BASIC-Version von MICROSOFT dienen. Diese Version diirfte wohl die
am weitesten verbreitete sein.

Der erste Kontakt:

Wenn man zum ersten Mal vor einem Computer sitzt, so sieht man die
Tastatur und den Bildschirm. Auf letzterem ist ein weiles blinkendes
Rechteck zu sehen. Dieses ist der Cursor, und zeigt an, da der Com-
puter auf eine Eingabe wartet. Ist kein Cursor zu sehen, so gibt es zwei
Maoglichkeiten. Entweder der Rechner bearbeitet ein Programm, oder er
ist bei der Ausfilhrung von Befehlen ““im Wald‘’ gelandet. Das bedeutet,
der Rechner irrt zwischen Befehlen hin- und her und findet keinen Aus-
weg mehr. In diesem Fall ist es das Beste, den Rechner aus- und wieder
einzuschalten. Die Hersteller von Rechnern fiihren an dieser Stelle einen
ersten Intelligenztest mit dem Benutzer durch. Der Einschaltknopf ist
meist so angebracht, daB er erst nach langeren Suchen gefunden wird.

Nach dem Einschalten des Rechners erscheint meistens ein Hinweis auf
den Rechner und den Hersteller und der blinkende Cursor ist zu sehen.
Nun kann ein erster Befehl eingegeben werden. Der Rechner soll als
erstes, den Namen des Benutzers auf den Bildschirm ausgeben. Dazu
wird der PRINT-Befehl verwendet. In den Rechner wird die Anweisung

PRINT “HEINRICH MEIER"

tiber die Tastatur eingegeben. Nach dem Driicken einer Taste, riickt
der Cursor eine Stelle weiter. Ist das letzte Zeichen *‘ eingegeben, so
mufR dem Rechner mitgeteilt werden, da die Eingabe beendet ist. Dies
geschieht mit der RETURN-Taste. Diese Taste veranlasst den Rechner,
den eingegebenen Befehl auszufiihren. In diesem Beispiel wird der
Name HEINRICH MEIER auf den Bildschirm ausgegeben. Der
blinkende Cursor zeigt an, dall eine neue Eingabe gemacht werden
kann. Der Text zwischen den * Zeichen wird als Zeichenkette be-
zeichnet.

115

Das Wort Computer bedeutet Rechnen, und so soll dieser nun eine
Rechenaufgabe ausfiihren. Mit der Anweisung

PRINT 3+« 1.25

fiihrt der Rechner die Rechenaufgabe 3 * 1.25 nach Betitigen der
RETURN-Taste aus und gibt das Ergebnis auf den Bildschirm aus.

Was muB man machen, wenn man sich bei der Eingabe vertippt.
Anstatt PRINT wurde PRUNT eingegeben. Bei allen Rechnern kann
der Cursor durch eine Taste nach links und nach rechts, meistens auch
nach oben oder unten bewegt werden. Welche Tasten dies sind, muf§ in
den einzelnen Handbiichern nachgeschlagen werden.

Wird der Cursor nach links bewegt, so gibt es zwei Moglichkeiten. Der
Buchstabe unter dem Cursor wird geldscht oder nicht geldoscht. Im
ersten Fall wird man bei der Fehleingabe PRUNT die Buchstaben bis
zum R Ldschen und denn die Buchstaben INT eingeben. Im zweiten
Fall wird der Cursor iiber das U gesetzt und dan ein | eingegeben.
Danach wird der Cursor wieder nach rechts bis zum Ende der bis-
herigen Eingabe bewegt.

Die beiden Anweisungen werden vom Rechner sofort, direkt ausgefiihrt.
BASIC kann zwei Arten der Befehlsausfiihrung, die direkte Bearbeitung

einer Anweisung oder die Bearbeitung von Anweisungen in einem Pro-
gramm. Wird eine Zeile ohne Zeilennummer, wie z. B.

PRINT3+4
eingegeben, so wird nach Beendigung. der Eingabe durch RETURN,
der Befehl ausgefiihrt. Das Ergebnis 7 wird auf dem Bildschirm aus-
gegeben. Wird dagegen die Zeile als
10 PRINT3+4

eingegeben, so wird diese Anweisung nach der Eingabe von RETURN,
als Programmzeile 10 im Rechner gespeichert.

Die Sprache BASIC ist ein INTERPRETER. Ein Interpreter liest

116

jeweils eine Programmzeile aus dem Programmspeicher, entschliisselt
diese und fiihrt die Anweisungen aus. Ist diese Zeile fertig bearbeitet, so
wird die Zeile mit der nachst hoheren Zeilennummer geholt und ausge-
fiihrt. Es gibt aber besondere Anweisungen, die den Interpreter veran-
lassen, an eine andere Zeilennummer zu springen. Davon spéter.

Ein erstes Programm:

Ein Vorteil des Rechners ist, eine gestellte Aufgabe immer wieder zu
wiederholen. Als Beispiel soll ein kleines Programm geschrieben werden,
das den Namen HEINRICH MEIER 10 mal auf den Bildschirm ausgibt.

Man koénnte natiirlich ein Programm schreiben, das folgendermaRen
aussieht:

10 PRINT "HEINRICH MEIER"
20 PRINT "HEINRICH MEIER"

100 PRINT "HEINRICH MEIER"
110 END
Das stellt eine erhebliche Schreibarbeit dar. Einfacher geht es mit der
FOR...NEXT

Schleife.
Das Programm lautet dann

10 FOR I = 1 TO 10 STEP 1
20 PRINT "HEINRICH MEIER"
30 NEXT I

40 END

In Zeile 10 ist eine Variable, eine veranderliche GroRe,. | vereinbart.

117

Diese wird in der FOR . . . NEXT Schleife auch als Laufvariable be-
zeichnet. Der erste Wert von | ist Eins. Hat der Interpreter die Zeile 10
entschliisselt, so wird Zeile 20 und danach Zeile 30 ausgefiihrt. In Zeile
30 wird die Variable | durch die Angabe STEP 1 um Eins erh6ht. Nun
priift der Interpreter, ob der Wert von | gréBer als der Endwert 10 ist.
Wenn nicht, dann wird mit | = 2 die Schleife nochmals durchlaufen.
Des geschieht solange, bis in Zeile 30 der Wert von | groBer als 10 ist.
Das Programm halt dann in Zeile 40, wobei | den Wert 11 hat.

Zu diesem Programm miissen aber noch weitere Bemerkungen gemacht
werden.

In allen BASIC-Versionen kann die Angabe STEP 1 weggelassen wer-
den, wenn die Laufvariable immer um Eins erh6éht wird.

Eine Schleife wird immer mindestens einmal durchlaufen. Wenn die
Zeile 10 aus Versehen so geschrieben wurde

10 FORI1=10TO 1 STEP 1

so wird erst in Zeile 30 festgestellt, daB | groBer als Eins ist. Die Zeile
20 wird also einmal durchlaufen.

Ein erster Programmliauf:

Ist ein Programm geschrieben und zeilenweise im Rechner gespeichert,
so kann es gestartet werden. Die Anweisung dazu lautet RUN. Diese
Anweisung wird direkt eingegeben. Das Programm beginnt zu laufen
und der in Zeile 20 programmierte Name wird auf den Bildschirm aus-
gegeben. Ist der Rechner wieder zu einer Eingabe bereit, so wird durch

PRINT |

der Wert der Variablen | ausgegeben. In diesem Beispiel muR | den Wert
11 haben.

Ein nichstes Beispiel :
Es soll ein Programm geschrieben werden, das die Zahlen von Eins bis

118

Zehn zusammenzahlt. Vor der Eingabe des neuen Programms wird mit
NEW
das alte Programm geldscht.

Das Programm lautet:

10 S=0

20 FOR I=1 TO 10
30 S=S+1

40 NEXT I

50 PRINT S

60 END

S ist eine Variable, die zu Beginn des Programms den Wert Null hat.
Diese Zeile kann in.den meisten Féllen entfallen, da die Anweisung
RUN alle Variablen zu Null macht.

In Zeile 20 beginnt eine Schlieife, die in Zeile 40 endet. In dieser
Schleife wird die Anweisung

30 S=S+1

ausgefiihrt. Diese Zeile scheint mathematisch falsch zu sein, den S kann
niemals gleich S plus einer Zahl | sein. Das Gleichheitszeichen wird in
BASIC in zwei verschiedenen Bedeutungen behandelt. in diesem Fall
bedeutet es nicht ‘“‘gleich’’ sondern “‘ersetzt durch’’. In Worten lautet
Zeile 30: Der neue Wert der Variablen S wird ersetzt (ist gleich) dem
alten Wert von S, plus der Zahl |I. Beim ersten Durchlauf durch die
Schleife hat S den Wert Null und | den Wert Eins. Nach Ausfiihrung der
Anweisung S =S + | hat S den Wert Eins.

Beim zweiten Schleifendurchlauf ist S gleich Eins und | gleich Zwei.
Das neue S wird somit 3.

Nach dem Ende der Schleife wird das Ergebnis S = 55 ausgedruckt.

119

Anmerkung fiir den ZX81 und den SPECTRUM

Bei beiden Rechnern muR die Zeile 10 vorhanden sein. Der Interpreter
dieser BASIC-Version iiberpriift in Zeile 30, ob der Variablen S auf der
rechten Seite ein Wert zugewiesen wurde. Ohne Zeile 10 ist dies nicht
der Fall und der Interpreter beendet das Programm in Zeile 30 mit einer
Fehlermeldung.

Andere BASIC-Versionen machen diese Uberpriifung nicht, was zu
katastrophalen Fehlberechnungen fiihren kann.

Frage:
Welche Anweisung mull wo eingesetzt werden, damit bei jeden
Schieifendurchlauf der neue Wert von S ausgdruckt wird.

Antwort:
35 PRINTS

Die Beantwortung dieser Frage zeigt auch, warum Zeilennummern
meistens in Abstdnden von Zehn eingegeben werden. Dadurch ist Platz
fir weitere Anweisungen vorhanden. Beim Schreiben eines Programmes
wird die Zeile an die richtige Stelle eingefiigt.
Mit
LIST

wird ein Programm. auf den Bildschirm ausgegeben. Dieses Einfiigen
einer Zeile kann leicht beobachtet werden, wenn das Beispielprogramm
mit LIST auf den Bildschirm ausgegeben, danach die Zeile 35 eingefiigt,
und das Programm nochmals mit LIST ausgegeben wird.
Einzelne Zeilen kénnen mit

LIST 10
bzw.

LIST 10,40 (Commodore-Rechner LIST 10—40)

angezeigt werden.

120

Soll eine Zeile geldoscht werden, so wird die Zeilennummer ohne eine
Anweisung eingegeben.

Die Eingabe
35

gefolgt von einen RETURN I6scht Zeile 35 wieder.

Eine schonere Ausgabe:

In dem Beispielprogramm soll jeweils die Laufvariable | und die Summe
S ausgegeben werden. Eine Mdglichkeit ist

35 PRINT I,S

Diese Anweisung bewirkt, dall der Wert von | und der Wert von S in
einer Zeile ausgegeben wird. Durch das Komma werden zwischen beide
Zahlen Leerzeichen eingefiigt. Die Anzahl der Leerzeichen ist von
Rechner zu Rechner verschieden.

Werden in einem Programm viele Werte von verschiedenen Variablen
ausgegeben, so kann der Name der Variablen mit ausgegeben werden.

Zeile 35 lautet dann:
35 PRINT “I=";1;" S=";S

Hier wird zuerst der Text | = und der Zwischenraum der Wert der
Variablen | ausgedruckt. Der ; gibt an, daB kein Zwischenraum bei der
Ausgabe eingefiigt wird. Nach der Ausgabe des Wertes vor S folgt keine
weitere Angabe (; oder ,) so daB dann eine neue Zeile angefangen
wird. Dies wird auch durch eine leere PRINT-Anweisung (ohne Angabe
eines Variablennamens) erreicht.

Noch mehr Schleifen:
Das folgende Programm zeichnet ein Dreieck aus *.

10 FOR I=1 TO 10
121

20 FOR J=1 TO I
30 PRINT "*n;
40 NEXT J

50 PRINT

60 NEXT I

70 END

Hier werden zwei geschachtelte Schleifen mit den Laufvariablen | und J
verwendet. Die Schleife J geht von Zeile 20 bis 40 und druckt | mal ein
Sternchen aus. Die obere Grenze der inneren Schleife ist die Lauf-
variable | der duBeren Schleife.

Nach dem Programmstart ist | = 1 und J = 1. Nun wird die innere
Schleife von J = 1 bis J = 1, also einmal durchlaufen. Danach wird in
Zeile 50 eine neue Zeile auf dem Bildschirm aufgefangen. In Zeile 60
wird | = 2. Die innere Schleife wird nun von J = 1 bis J = 2, also
zweimal, durchlaufen. Dies geschieht solange, bis | gréRer als 10 ist.
Dann wird das Programm beendet.

Bei geschachtelten Schleifen muRl darauf geachtet werden, daR sich die
Schleifen nicht iiberschneiden. Dies ware der Fall, wenn das Programm
folgendermalen falsch geschrieben ware:

30
40 NEXT |
50
60 NEXTJ
70

Die Schleifen | und J Giberschreiben sich.

Frage:
Was wird ausgegeben ?

Antwort:
10 Sternchen und die Fehlermeldung:
NEXT WITHOUT FOR ERROR IN 60.

122

Bei Schleifen muB auch noch auf etwas anderes geachtet werden.
Innerhalb einer Schleife darf eine Laufvariable nicht verandert werden.
Das folgende Programm zeigt dies:

10 FOR I=1 TO 10
20 I=I+I

30 PRINT I

40 NEXT I

50 END

In diesem Programm nimmt | nicht die Werte 1,2,3 usw. bis 10 an,
sondern die Werte 2,6 und 14. Noch schlimmer ist es, wenn Zeile 20 in

20 | =1-I

gedndert wird. Die obere Grenze 10 wird nie erreicht und das Programm
ist “im Wald* und kann nur durch RESET wieder angehalten werden.

Eine kleine Spielerei:

Es soll ein kleines Programm geschrieben werden, bei welchen der
Computer nach dem Namen des Benutzers fragt, und diesen dann mit
“GUTEN TAG" gefolgt vor Namen begriisst.

Das Programm lautet:

10 INPUT"DEIN NAME ";A$
20 PRINT:PRINT

30 PRINT"GUTEN TAG ";A$
40 END

In Zeile 10 wird die INPUT-Anweisung verwendet. Damit wird der Wert
einer Variablen iiber die Tastatur eingegeben. Bei den meisten BASIC-
Versionen kann nach INPUT ein Text angefiihrt werden, der beim
Programmlauf auf dem Bildschirm ausgegeben wird. Nach dem Text
folgt nach einem Strichpunkt der Name der Variablen. Kann nach
INPUT kein Text angegeben werden, so kann dies durch

PRINT “DEIN NAME:“:INPUT A%
123

umgangen werden.

In Zeile 20 folgen zwei PRINT Anweisungen. Werden mehrere An-
weisungen in eine Zeile geschrieben, so werden diese durch : getrennt.

In Zeile 30 wird nun der Text GUTEN TAG und der Inhalt der Text-
variablen (String-Variable) A$ ausgegeben.

Entscheidungen und Spriinge:

In BASIC gibt es zwei Anweisungen, ein Programm zu verzweigen. Da
ist einmal die bedingte Verzweigung mit IF . . . THEN und die unbe-
dingte Verzweigung mit GOTO. Die letztere wird von vielen BASIC-
Programmierern dazu verwendet, ungeniesbare Spaghetti-Programme zu
erzeugen.

Das sind Progrmme, bei denen man zwar einen Anfang erkennen kann,
der Programmablauf dann aber mit GOTO's irgendwohin verschwindet
und nicht mehr erkennbar ist. Es tauchen hin und da wieder Anfange
und Enden von Programmteilen auf, aber ein iibersichtlicher Programm-
aufbau ist nicht erkennbar. Trotzdem lassen sich mit GOTO iibersicht-
liche Programme schreiben, wenn man gewisse Regeln einhalt. Auf
diese wird im weiteren Verlauf dieses Grundkurses noch eingegangen
werden.

Als Beispiel fir die bedingte Programmverzweigung soll ein kleines
Zahlenratespiel programmiert werden. Meistens ist es so programmiert,
daB der Computer eine Zahl sich ausdenkt, die vom Benutzer erraten
werden soll. Das folgende Beispiel macht es umgekehrt. Der Benutzer
denkt sich eine Zahl, die vom Computer erraten werden soll. Die Zahl
darf zwischen Eins und 100 liegen. Das Programm sieht folgender-
mallen aus:

10 PRINT"ICH RATE DEINE ZAHL":PRINT
20 J1=0:J2=100

25 N=INT((J1+J42)/2)

30 PRINT"IST DEINE ZAHL ";N;" °?"
40 PRINT"DEINE ANTWORT: ZU GROSS"
50 PRINT" ZU KLEIN"
55 PRINT" RICHTIG"

124

60 INPUT A$
70 IF A$="ZU GROSS" THEN J2=N:GOTO 100
80 IF A$="ZU KLEIN" THEN J1=N:GOTO 100

85 IF A$="RICHTIG" THEN END
90 GOTO 40

100 IF ABS(J1-J2)<>2 THEN GOTO 25

110 PRINT"DEINE ZAHL IST ";INT((J1+J2)/2)
120 END

Als Losungsverfahren wird das klassische bindre Suchen verwendet.
Zuerst wird das Intervall halbiert. Ist die vom Computer zu ratende
Zahl groRer als 50 wird “ZU KLEIN* andernfalls ‘“ZU GROSS’* oder
“RICHTIG" eingegeben.

Wenn die vom Computer ausgegebene Zahl zu klein war, dann wird die
obere Hilfte halbiert und ausgegeben. Dieses Verfahren wird solange
fortgesetzt, bis die richtige Zahl gefunden oder das Intervall nur aus
einer einzigen Zahl besteht. Dies ist dann die gesuchte Zahl.

Die erste bedingte Verzweigung ist in Zeile 70. Ist die Eingabe A% =
ZU GROSS, dann wird die obere Intervallgrenze J2 gleich N. In Zeile
25 wird das verbleibende Intervall halbiert, und die Zahl in der Mitte
als neue Zahl ausgegeben. Bei einer bedingten Verzweigung mit IF
werden nach THEN alle Anweisungen ausgefiihrt, die in der gleichen
Zeile stehen. Die GOTO 100 Anweisung setzt das Programm in Zeile
100 fort. Dort ist wieder eine Abfrage mit IF programmiert. Diesmal
wird untersucht, ob das Intervall nur noch eine Zahl enthalt. Ist dies
der Fall, sow wird diese Zahl ausgegeben und das Programm beendet.
Sonst wird nach Zeile 25 zuriickgesprungen.

Der Sprung in Zeile 90 wird dann ausgefiihrt, wenn bei der Eingabe
von A$ nicht eines der drei vereinbarten Worte eingegeben wird.

Die in diesem Programm vorhandenen Sprungbefehle sind notwendig,
da es in den meisten BASIC-Versionen nur eine Abfrage

WENN ... DANN (IF ... THEN)

gibt und kein Abfragen der Form
125

WENN ... DANN (DIES) ODER (DAS) ENDE
(IF...THEN...ELSE ...END)

Hier wird, wenn die Abfrage erfiillt ist, der Programmteil (DIES), und
wenn die Abfrage nicht erfiillt ist, der Programmteil (DAS) ausgefiihrt.

In BASIC muB diese Verzweigung dann folgendermafRen programmiert
werden.

100 IF (BEDINGUNG THEN (ANWEISUNGEN 1):GOTO 120
110 ANWEISUNGEN 2
120 PROGRAMM FORTSETZUNG

Wenn die Bedingung erfiillt ist, werden die ANWEISUNGEN 1 ausge-
fiihrt und dann nach Zeile 120 gesprungen. Ist die Bedingung nicht er-
fiillt, dann wird das Programm in Zeile 110 fortgesetzt und danach die
Zeile 120 ausgefiihrt. In diesen Fallen sind die GOTO-Befehle not-

wendig und sinnvoll.

Das Programm verwendet zwei Funktionen. Dies sind die INT und die
ABS-Funktion.
INT rundet immer auf die nachste kleinere Zahl ab.

PRINT INT(7.9/2) ergibt 3
PRINT INT(6/2) ergibt auch 3

Anmerkung fiir ZX81 oder SPECTRUM

Die Anweisung PRINT 0.6*5 ergibt 3, dagegen ergibt
PRINT INT(0.6*5) 2.

Die Funktion ABS bilden den Absolutwert einer Zahl

PRINT ABS (—2) ergibt 2

Haupt- und Unterprogramme:

In einem BASIC-Programm ist der Programmablauf durch die Zeilen-
nummern gegeben. Anderungen dieses Ablaufs werden durch Ver-
zweigung mit dem GOTO-Befehl durchgefiihrt. Eine andere Art der
Programmverzweigung ist ein Sprung in ein Unterprogramm. Anders als

126

beim GOTO-Befehl wird nach Beendigung des Unterprogramms an die
Stelle im Hauptprogramm zuriickgesprungen, an welcher dieses ver-
lassen wurde.

100 ...
110 GOSUB 1000 Hauptprogramm
120 ...

1000 ...
Unterprogramm
1900 RETURN

Im Beispiel wird in Zeile 110 in das Unterprogramm, das bei 1000 be-
ginnt, gesprungen. Wird dort in Zeile 1900 die Anweisung RETURN
gefunden, so wird im Hauptprogramm bei Zeile 120 das Programm
fortgesetzt.

Wann werden Unterprogramme gebraucht ?

Unterprogramme werden immer dann verwendet, wenn an ver-
schiedenen Stellen im Programm eine gleiche, festgelegte Folge von An-
weisungen benétigt wird. Dazu das folgende Beispiel:

10 REM ROEMISCHE ZAHLEN

100 INPUT"Z=";Z:B=Z

120 IF B<=3000 THEN GOTO 500
130 PRINT "ZU GROSS":GOTO 100
500 F=1000:A$="M":GOSUB 1000
510 F=900:A$="CM" :GOSuUB 1000
520 F=500:A$="D":G0SUB 1000
530 F=400:A$="CD":G0OSUB 1000
540 F=100:A$="C":60SuUB 1000
550 F=90:A$="XC":60SUB 1000
560 F=50:A%$="L":G0SUB 1000
570 F=40:A$="XL":6G0SUB 1000
580 F=10:A%$="X":60SUB 1000
590 F=9:A$="IX":G0OSUB 1000
600 F=5:A$="V":60SUB 1000
610 F=4:A$="IV":G0SUB 1000
620 F=1:A$="1":GOSUB 1000
989 END

127

1000 B=INT(Z/F)

1010 IF B<>0 THEN GOSUB 1100
1020 Z=Z-B*F

1030 RETURN

1100 FOR I=1 TO B

1110 PRINT AS;

1120 NEXT I

1130 RETURN

Das Programm ROEM rechnet Dezimalzahlen kleiner gleich 3000 in
roemische Zahlen um.

Die Zeilen 100 bis 130 enthalten die Eingabe. In den Zeilen 500 bis 620
sind die dezimalen Wertigkeiten und die entsprechenden Zahlensymbole
vereinbart.

Das Unterprogramm ab Zeile 1000 bis 1030 berechnet eine Stelle des
romischen Zahlensystems. Der Wert von B gibt an, wie oft das Zahlen-
symbol gedruckt werden mufl. Wenn B ungleich Null ist, wird in ein
weiteres Unterprogramm ab Zeile 1100 gesprungen. Die Schachtelung
von Unterprogrammen ist moéglich.

Zum Programmaufbau:

In diesem Beispiel wurde das Unterprogramme an das Ende des Pro-
gramms nach dem Hauptprogramm gehangt (Ende des Hauptprogramms
in Zeile 999).

Oft werden Unterprogramme vor dem eigentlichen Hauptprogramm
aufgefiihrt. Dies hat in BASIC den folgenden Grund. Wird ein Unterpro-
gramm aufgerufen, so fangt der Interpreter bei der kleinsten Zeilen-
nummer an, nach der Zeilennummer des Unterprogramms zu suchen. Je
friher er diese findet, desto schneller ist die Programmausfiihrung.

Anmerkung fiir ZX81, SPECTRUM und ATARI
Bei diesen Rechnern sind Unterprogrammaufrufe mit Namen erlaubt.

Beispiel:
10 MENU = 1000
100 GOSUB MENU

128

Durch diese Namensgebung kann ein Programm leserlicher gemacht
werden,

Einige Anmerkungen zum Programmaufbau

Ein Programm sollte immer in einzelne Blocke aufgeteilt sein. Fiir ein
Inventur-Programm braucht man zum Beispiel folgende Teile:

1. Einen Menueteil

2. Eingabe von Artikeln

3. Ausgabe auf Drucker

4. Veranderung des Lagerbestandes

Der Programmaufbau kann dann folgendermalien aussehen:

Zeilen
10— 99 Hinweis auf Autor, Programmart
100 — 199 Wertzuweisung an Variablen
Dimensionierung von Feldern
200 — 999 Haufig gebrauchte Unterprogramme
1000 — 1999 Menueteil
2000 — 2999 Eingabe von Artikeln
3000 — 3999 Ausgabe auf Drucker oder Bildschirm
4000 — 4999 Verandern des Lagerbestandes
5000 — 5999 Unterprogramme, die Fehler bei der Bedingung des
Programms iiberwachen.

Das Programm wird in Zeile 10 mit einem GOTO 1000, einem Sprung
in Menue beginnen. Von dort werden die Programmteile iiber bedingte
Verzweigungen als Unterprogramme angesprungen, und von dort wird
wieder ins Menue zuriickgesprungen.

Dieser modulartige Aufbau macht es leichter, ein Programm zu iiber-
schauen und auch zu testen.

Fehler:

Im Prinzip kann man davon ausgehen, daRR kein Programm auf Anhieb
fehlerfrei ist. Durch die Syntaxpriifung sind Schreibfehler schon bei der
Eingabe gefunden worden. Logische Fehler werden erst im Programm-
lauf gefunden.

129

Einige der haufigsten Fehlerursachen sind die folgenden:

Oft wird vergessen, einer Variablen, die auf der rechten Seite einer An-
weisung steht, einen Wert zuzuweisen. Nur beim ZX81 und beim

SPECTRUM wird dieser Fehler erkannt. Bei allen anderen wird der .

Wert der Variablen als Null angenommen.

Rechenergebnisse sollten daher mit dem Taschenrechner einmal iber-
prift werden.

Der Variablenname | wird haufig als Laufvariable in FOR ... NEXT-
Schleifen verwendet. Manchmal vergisst man, daR man diesen Namen
schon verwendet hat und programmiert eine neue Schleife mit dem
gleichen Namen. Als Rechenergebnisse kommen dann reine Zufalls-
zahlen auf.

Wenn man einen Variablennamen in einem Programm mehrfach
benutzt, so mu man sicher sein, dal} der augenblickliche Wert nicht
spater noch gebraucht wird.

Wenn ein Programm gestartet wurde, und es erscheint langere Zeit keine
Ausgabe auf dem Bildschirm, so kann das Programm in einer unend-
lichen Scheife stecken. Das Programm kann dann durch die BREAK-
Taste unterbrochen werden. Dann wird die Zeilennummer ausgegeben
bei welcher das Programm unterbrochen wurde. In dieser Gegend muRl
man dann nach Méoglichkeiten einer unendlichen Schieifenbildung
suchen. Meistens ist es ein GOTO-Befehl mit einr falschen Zeilen-
nummer, oder eine nicht erfiilite IF . . . THEN Bedingung wie im
folgenden Beispiel :

00 THEN GOTO 50

Die Bedingung | = 100 ist nie erfiilit, da | immer eine ungerade Zahl ist.
Nach | = 99 wird | = 101. Damit stellt dies eine unendliche Schleife
dar. Richtig ware in Zeile 20 die Abfrage gewesen.

130

20 IF1)=100 THEN GOTO 50
Damit ware die Schleife mit | = 101 verlassen worden.

Meistens ist aber nicht klar ersichtlich, wo im.- Programm so eine
Schleife auftritt. Dann wird man versuchen, durch PRINT-Anweisungen
oder durch Einfiigen des STOP-Befehls den Fehler einzukreisen.

BASIC ist eine interpretative Sprache. Das heif3t, das eingegebene Pro-
gramm oder Teile des Programms konnen sofort ausgefiihrt werden.
Dies sollte man dazu benutzen, kleine Programmabschnitte (Module)
sofort zu testen. Dies ist wesentlich einfacher, als ein vollstdndiges
Programm auf Fehler zu untersuchen.

Leider fiihrt dies aber auch dazu, daR Programme nur am Rechner ent-
wickelt werden und nebenher keine Notizen zum Programmablauf
gemacht werden. Bevor man mit dem Schreiben eines Programms
beginnt, sollten die wesentlichen Grundziige des Programmablaufs
schriftlich festgehalten werden. Dies erleichtert wesentlich die Fehler-
suche.

Auf eine weitere Fehlermdglichkeit, die Instabilitat der angewendeten
mathematischen Verfahren, soll hier nicht eingegangen werden.

Im Aligemeinen kann man sagen, dal die Fehlersuche mindestens
ebenso lange dauert, wie das Schreiben des Programms.

SchiufR:

Dieser Grundkurs sollte nur die notwendigsten Befehle eines BASIC-
Programms erldutern. Ein Computer-Neuling sollte zu Beginn seiner
Programmiererfahrung kurze und einfache Programme abtippen und
daraus lernen. Das Abtippen langer Programme fiihrt immer zur
Frustration, da diese auf Anhieb nicht laufen und Fehler nicht ge-
funden werden. Selbst fiir einen versierten Programmierer ist es nicht
leicht, einen Fehler in einem fremden Programm zu finden. Statt dem
sturen Abtippen gibt es noch eine andere, bessere Methode. Soll ein
langeres Programm in einen Rechner eingegeben werden, so sollte
das Programm vorher untersucht werden, welche Teile es enthalt. Dies
geht meistens aus der Aufgabenstellung hervor. Dann sollten nur diese

131

Teile programmiert werden, wobei das urspriingliche Programm als
Vorlage dienen kann. Sobald sich eine Moglichkeit zeigt, einen Test
eines Programmteils durchzufiihren, dann sollte dies auch gemacht
werden. Fehler sind in kleinen Programmteilen leichter zu finden, als
in einem groBen Programm. Fehler lassen sich leichter in einem aus-
gedruckten Protokoll als auf dem Bildschirm finden.

Bei abgetippten Programmen kann man bei der Fehlersuche auch so
vorgehen, daR eine Person das Programm laut liest und eine andere
Person dies auf dem Bildschirm vergleicht. So konnen auch lange
Programme zum Laufen gebracht werden. Besser ist es allerdings,
zu Versuchen, die Teile eines Programms zu verstehen um sie dann
selbst zu programmieren.

132

Wie lernt man BASIC?

Wie lernt man BASIC ?

1. Allgemeines

Die Programmiersprache BASIC gehért heute zu
den leichtesten hoheren Programmiersprachen,
Sie wurde urspriinglich im Jahre 1960 in einem
amerikanischen College entwickelt und seit die-
ser Zeit haben sich unzahlige Einzelversionen
entwickelt. Diese einzelnen BASIC-Sprachen
unterscheiden sich meist nur durch die Anzahl
der Funktionen und in gewissen Besonderheiten
der Computerhersteller. (DEC BASIC, HP-BA-
SIC, WANG-BASIC, ALTAIR-BASIC, COMMO-
DORE-BASIC, TANDY LEVEL | und LEVEL Il
BASIC, MICROSOFT BASIC u.v.a.)

Das genormte Standard BASIC (ANSI-BASIC)
wird man jedoch in relativ wenig Systemen heu-
te finden. Jeder Microcomputer hat seine be-
sonderen Vorteile und auch diese werden meist
durch geschickt gewahite BASIC-Befehle ge-
nutzt,

Fiir eine Einfiihrung in die BASIC-Programmier-
sprache ist es jedoch nur von zweitrangiger Be-
deutung, welches BASIC man benutzt. Wichtig
ist nur, man lernt irgendein BASIC. Dann hat
man sicher die Voraussetzungen, eine andere
Version in kirzester Zeit zu durchschauen und
zu verstehen.

BASIC besteht nur aus einer kleinen Anzahl von
Befehlen. Sie sind meist Abkiirzungen englischer
Worte, die man leicht im Gedachtnis behalten
kann.

Wie viele andere Programmiersprachen, kann
man auch BASIC in zwei groBe Bereiche auf-
teilen.

1. Einfache Befehle fiir einfache Opera-
tionen

2. Hochentwickelte Befehle fiir kompli-
zierte Operationen

Wir wollen uns hier nur mit Punkt 1 befassen.
Der Vorteil liegt dabei auch darin, daB die ein-
fachen, gebrauchlichen Befehle auch in allen
BASIC-Versionen vorhanden sind. Beachten Sie
deshalb dies bei Ihren Programmier-Experimen-
ten. Je elementarer die Befehle beim Programm-
aufbau gewihit werden, um so groBer ist die An-
zah| der Versionen, die es verarbeiten kann. Die
Manuals der Computerhersteller soliten auf je-
den Fall benutzt werden. Und hier waren wir
schon beim nachsten Punkt. Es ist unerlasslich,

daB man zum Erlernen von BASIC ein System
zur Verfiigung hat. Durch Lesen alleine diirfte
es sehr schwer sein, sich einzuarbeiten. Man
muB einfach einmal Programme eingeben und
die Ergebnisse kontrollieren kénnen.

Dies gilt iibrigens fir die gesamte Microcompu-
tertechnik. Auch geht in den meisten Fillen
Probieren iibers Studieren. Diesen Bediirfnissen
sind einige Hersteller ja heute wirklich entge-
gengekommen. TRS-80 TANDY und COMMO—
DORE, um nur eirmmal die bekanntesten zu
nennen. In ein paar Jahren werden es sicher
mehr sein und die Preise werden auch anders
aussehen,

2. Was kann man mit BASIC anfangen?

Sie konnen einfache mathematische Rechnungen
durchfiilhren (wie mit einem wissenschaftlichen
Taschenrechner). Es ist aber auch maglich, klei-
ne Programme zu entwickeln, die einem die All-
tagsarbeit erleichtern. (Haushaltsfinanzen,
Scheckbuchkontrolle, Heim- und Hobbyanwen-
dungen). Viele BASIC-Versionen verfiigen heute
iiber eine phantastische Programmierbarkeit des
Bildschirms. Sie kénnen so Spiele und Graphik-
Programme erstellen. (Computer-Kunst) Andere
BASIC-Versionen erlauben eine vielseitige Ein-
Ausgabe-Programmierung. Hier kdnnen sie

133

Steuerungen, Zeitschalter, Analog/Digitalwand-
ler, Digital/Analogwandler, Spracherkennung,
kiinstliche Spracherzeugung usw. programmie-
ren.

Der Phantasie sind eigentlich keine Grenzen
mehr gesetzt. ,,Fast” alles ist machbar.

3. Wir fangen nun an zu programmieren

Wir nehmen an, Sie haben sich einen kieinen
Computer (Heimcomputer etc.) besorgt und
sitzen nun vor lhrem Gerat. Nach dem Ein-
schalten meldet sich der BASIC-Interpreter bei
vielen Systemen bereits mit einem bestimmten
Zeichen, Dieses Zeichen sagt uns meist, dal
der Computer bereit ist, einen Befehl, Anwei-
sungen oder ein Kommando von uns entgegen-
zunehmen.

Andere Rechner wieder miissen erst gestartet
werden, oder der BASIC-Interpreter mul erst
von einem Massenspeicher (Cassette oder Flop-
py) in den Arbeitsspeicher geladen und an-
schlieBend aufgerufen werden. Die modernen
Compact-Computer (wie Commodore-PET und
TANDY TRS-80) haben ein residentes BASIC,
d. h. es ist in Festwertspeichern (ROM) gespei-
chert und ist sofort nach Einschalten der Versor-
gungsspannung fiir Befehle aufnahmebereit. Da
der BASIC-Interpreter resident ist, ergeben sich
folgende Vorteile:

1. Keine Fehler beim Laden

2.Es wird kein Arbeitsspeicherbereich
durch den Interpreter belegt. (ROM
sind billiger als RAM)

3.Der gesamte Arbeitsspeicher (RAM)
steht fir meine Anwenderprogramme

zur Verfigung.
1. Moglichkeit
BASIC wird geladen
0000
Interpreter
RAM
Anwenderprogramm
FFFF

134

2. Moglichkeit
BASIC in ROM
0000
Interpreter ROM
Anwenderprogramm RAM
FFFF

Grundsétzlich unterscheiden wir bei BASIC
zwischen fiinf verschiedenen Gruppen von An-
weisungen und Befehlen.

1. Systemkommandos. Diese kénnen (meist)

nicht programmiert werden. Beispiele: RUN,
LIST etc.

2. BASIC-Befehle (PRINT, LET, READ, GOTO
usw.

3. Anweisungen (LOAD, SAVE usw.)

4. Funktionen. Arithmetische und sonstige
Funktionen (SINUS, COSINUS, RND usw.)

5. Operatoren (arithmetische Operatoren)

Die wichtigsten Systemkommandos sind fast
bei allen BASIC-Versionen gleich:

NEW: Eingabe eines neuen Programmes, alles
wird aus dem Arbeitsspeicher geloscht.

SCR: Gleiche Bedeutung wie NEW

LIST: Das im Speicher vorhandene Programm
wird auf dem Bildschirm etc. ausge-
druckt.

RUN: Ubersetzung (compiling) des im Spei-
cher befindlichen Programmes und Star-
ten des Programmes.

Manche BASIC-Versionen erlauben die
Moglichkeit, an einer bestimmten Zeile
zu starten, z. B. RUN 200.

Die Befehle werden wir im folgenden genau be-
sprechen.

Die bekanntesten Anweisungen sind:

SAVE: Abspeichern eines Programmes auf ei-
nen Massenspeicher (Cassette oder
Diskette)

STORE: wie SAVE

LOAD: Laden von einem Massenspeicher her

VERIFY: Kontrolle des abgespeicherten Pro-
grammes

BYE: Verlassen des BASIC-Modes und

Riickkehr in einen Monitor.

Die Anzahl der Funktionen in einem BASIC-
Interpreter hangt meist von seiner GroRe ab.
Es gibt heute BASIC-Versionen von 2K, 4K,
8K, 12K bis hin zu 16K-Versionen. Dement-
sprechend ist meist die Anzahl der Funktio-
nen. Die RND-Funktion ist meist auch in den
kleinen Versionen zu finden, da sie sich beson-
ders zum Programmieren von Spielen eignet.
Die RND-Funktion erzeugt in BASIC eine Rei-
he von Zufallszahlen. In welchem Bereich,
wird meist in einem Argument, welches unmit-
telbar der Funktion folgt, festgelegt.

2.8.RND (1)

Weitere Funktionen sind:

SIN(X) Sinus Y

SGN (X)) Sinus X

ABS (X) Absolutwert von X
TAB (X) Ausdrucken von Reihen
INT(X) Fiihrt zu ganzen Zahlen
CHR$ (X) Zeichenaufruf

u.v.a.

Operatoren (arithmetische Operatoren)

Arithmetische Berechnungen in einer héheren
Programmiersprache, wie 2. b. BASIC werden
wie in der gewdhnlichen Arithmetik als Aus-
driicke pro Zeile behandelt. Mit allen verfiigba-
ren Operatoren, wie z. b. (+; —;*;/; t; etc.) kén-

nen Formeln zusammengestellt werden. Die
mathematischen Regeln werden dabei vom Com-
puter automatisch beachtet.

a) Ausdriicke in Klammern werden zuerst
ausgerechnet und dann spater in weite-
ren Rechenoperationen beriicksichtigt.

b) Zwei Operatoren konnen meist nicht
aufeinanderfoligen.

c) Bei Berechnungen ohne Klammern heit
es auch hier Punktrechnung geht vor
Strichrechnung, Potenzierung ent-

sprechend noch vor der Punktrechnung.

d) Sind in einem arithmetischen Ausdruck kei-
ne Klammern enthalten, erfolgt die Be-
rechnung von links nach rechts. { Punkt u.
Strichrechnung werden natiirlich beriicksich-
tigt.

Beispiele:

(A+(3*B))**2 = Das Produkt aus 3 *

B wird zu A hinzu-

addiert und qua-
driert.

B wird von A abge-
zogen und C wird
vom Ergebnis der er-
sten Operation abge-
zogen.

Zum Vergleich zweier oder mehrer GréRen gibt
es in den meisten BASIC-Versionen auch ver-
gleichbare Operatoren, wie z. B. die gréBer) und
die (Kleiner-Zeichen. Sie werden oft in Ver-
bindung mit |F-Befehlen verwendet.

= Gleichheitszeichen, Beispiel A = B, bedeu-

tet A gleich B,

Beispiel A (B, bedeu-
tet A kleiner B

{ kleiner Zeichen,

Beispiel A) B, bedeu-
tet A groBer B

) groBer Zeichen,

Beispiel A (= B, be-
deutet A kleiner gleich
B

(= kleiner gleich,

135

Beispiel A) = B, be-
deutet A groBer gleich
B

)= groRer gleich,

A () B; A nicht gleich
B

() nicht gleich,

Zeileneinheiten

In jedem BASIC-Programm muB jeder Befehl
mit einer Zeilenangabe versehen werden. Die An-
zah! der moglichen Zeilenzahlen hingt von der
ArbeitsspeichergroRe ab. Meist werden die Zei-
lenzahlen von 10 an aufwarts in Schritten von
5 oder 10 gewahlt. Man hat dann spater beim
Korregieren noch Platz, einen Befehl irgendwo
einzuschieben. Neue Zeilen werden vom BASIC-
Programm genau dort ins Programm eingesetzt,
wo sie hingehoren.

Einfache BASIC-Befehle

Spatestens zu diesem Zeitpunkt sollten wir die
Maéglichkeit haben, einen BASIC-Computer zu
beniitzen. Es ist von groBer Wichtigkeit, daB
man zum Erlernen einer Programmiersprache
ein System zur Verfiigung hat. Heute gibt es
bereits BASIC-Computer zu recht gilnstigen
Preisen, so dal auch der Amateur in der Lage
ist, sich ein eigenes System anzuschaffen.

Wir wollen diesen BASIC-Kurs auf dem Com-
modore Computer PET 2001 durchfihren und
auch dessen BASIC-Version beschreiben. Sie
konnen jedoch die meisten Befehle und Pro-
gramme aus dieser Version auch auf andere
Computersysteme iibertragen.

Wir schalten nun unser Gerat ein und auf dem
Bildschirm erscheint eine Angabe iber die
BASIC-Version, den maximal verfigbaren Spei-
cherbereich, das Wort READY und ein blin-
kender Cursor.

Das Wort READY und der blinkende Cursor
sagen uns, dal der Computer jetzt eine Eingabe
Uber die Tastatur erwartet.

Das wollen wir jetzt auch tun und tippen ganz
einfach einmal unseren Namen ein. Was wird
der Computer jetzt tun?

Eingabe: OSWALD (Return-Taste driicken)

136

Es erscheint die Meldung ,, SYNTAX-ERROR".
Dies bedeutet, daR der Computer uns nicht ver-
standen hat. Wir miissen also jetzt Worte ver-
wenden, die der Computer versteht. Ganz zu
Anfang hatten wir ja schon einmal einige BASIC-
Befehle angedeutet.

Auch der Befehl PRINT wurde dort schon ge-
nannt. PRINT bedeutet ,, Ausdrucken” und
sagt dem Computer, daB er einen Text auf dem
Bildschirm ausgeben soll. Der Text muR hinter
dem Befehl in Anfiihrungszeichen gesetzt wer-
den.

Beispiel:
Geben Sie folgendes ein:

20 PRINT ,, BASIC IST EINFACH' (Return)

Vergessen Sie nicht, nach jeder Eingabe die
RETURN-Taste zu driicken, da der Computer
die Eingabe erst nach Driicken dieser Taste in
seinen Arbeitsspeicher aufgenommen hat.

Jetzt haben wir schon unser erstes Computer-
Programm geschrieben und es steht im Speicher.
Es ist zwar ein sehr kurzes und einfaches Pro-
gramm, da es nur aus einer Zeile besteht, aber
es ist ein Programm.

Jetzt missen wir unser Programm auch noch
starten. In BASIC geschieht dies u. a. durch die
Eingabe des Kommandos RUN. Beachten Sie,
da wir zur Eingabe eines BASIC-Kommandos
keine Zeilenzahi beno6tigen.

Also geben wir jetzt RUN ein.
Der Computer antwortet uns:
BASIC IST EINFACH

und sagt uns mit einem READY-Zeichen und
dem blinkenden Cursor, daR das Programm aus-
gefiihrt wurde und er zur Aufnahme neuer Be-
fehle und Kommandos bereit ist.

Durch die Eingabe des ,, RUN‘ Kommandos
wird der Computer aufgefordert, an der nieder-
wertigsten Zeilenzahl mit der Abarbeitung
des Programmes zu beginnen. Er ging also zu
Zeile 10 und hat den Befehl PRINT ausgefihrt.
Der Befehl PRINT ., BASIC IST EINFACH’
sagte ihm, daR er den Text in Anfihrungszei-
chen auf dem Bildschirm ausdrucken soll. Man
bezeichnet diesen Text zwischen zwei Anfiih-
rungszeichen auch als ,, String”’. Der PET-Com-

Unser kleines Programm bleibt jetzt im Spei-
cher, bis wir unseren Computer ausschalten oder
ihm durch ein Kommando sagen, daR diese
Befehliszeile geldscht werden muf Der PET
hat hier das Kommando NEW. Andere Compu-
ter haben SCR oder CLEAR etc. Wir geben
nun NEW mit anschlieRendem Driicken der RE-
TURN-Taste ein und probieren ein neues Pro-
gramm.

puter hat jetzt noch ‘einige kleine Vorteile.
Man kann auch RUN 10 eingeben, um das Pro-
gramm an einer von uns gewinschten Zeilen-
zahl zu starten. Weiterhin kann man sich beim
Schreiben der Zeile 10 das zweite Anfiihrungs-
zeichen sparen. Bedingt ist jedoch, daB kein
weiterer Text mehr nach dem letzten Wort in
der gleichen Zeile folgt.

Fordern Sie unseren Katalog an !

150 Seiten voligepackt
mit neuen Biichern fiir
Elektronik und Micro-
computer.

Software fiir:

— COMMODORE-64
—VC-20
—PET/CBM

— ATARI 400/800
— SINCLAIR

— TRS-80

— GENIE

— APPLE Il

— OSBORNE

Heute noch bestellen !

2,— DM in Briefmarken
oder Vorkasse auf Post-
scheckkonto Miinchen
15 994—-807.

Ing. W. Hofacker GmbH
Tegernseer Strale 18
D- 8150 Holzkirchen

Telefon (0 8024) 7331,

NEW

10 PRINT ,, BASIC"

20 PRINT ,, IST DOCH**
30 PRINT ,, GANZ “

40 PRINT ,, EINFACH"
RUN

BASIC

IST DOCH

GANZ

EINFACH

Der Computer arbeitet jetzt Zeile pro Zeile ab
und druckt die Strings zwischen den Anfiihrungs-
zeichen aus. Machen Sie jetzt einige Versuche
und geben Sie ganze Sitze oder Graphik-Symbo-
le als Strings ein.

GROSSE
in die ZUkunft

Betegaline DR £« Gasemiatsioy 190594

Telex: 526973 137

Wie lernt man BASIC,
Teil ll

Wie lernt man BASIC? Teil 11

Riickblick:

Im ersten Teil unseres kleinen BASIC-Kurses
haben wir den PRINT-Befehi kennengelernt.
Wir haben ein kleines Programm geschrieben,
welches uns nach Eingabe von RUN einen klei-
nen Text auf dem Bildschirm ausdruckt.

Wollen wir uns jetzt unser Programm noch ein-
mal ansehen, geben wir einfach LIST (Return-
Taste driicken) ein. Der Computer druckt uns
jetzt unser Programm noch einmal so aus, wie
wir es eingegeben haben, Sie kénnen jetzt Ande-
rungen vornehmen, z. B. neue Zeilen eingeben
oder auch vorhandene Zeilen I6schen,

Neu Eingeben geschieht einfach durch
Schreiben einer neuen Zeile mit dem
neuen Befehl oder der neuen Anwei-
sung.

LIST

10 PRINT ,, BASIC”

20 PRINT ,, IST DOCH*’
30 PRINT ,, GANZ"

40 PRINT ,, EINFACH"
READY

Nehmen wir einmal an, wir wollten jetzt unse-
ren auszudruckenden Text &ndern. Alles, was

man nun tun muB, ist einfach die gewiinschte

Zeile neu eingeben,

30 PRINT ,, SEHR”
LIST (Return)

Jetzt wird alles noch einmal ausgedruckt.

10 PRINT ,, BASIC”

20 PRINT ,, IST DOCH"
30 PRINT ,, SEHR"

40 PRINT , EINFACH"
READY

138

Der PET bietet fiir solche Anderungen eine
ganz praktische Methode.

Man braucht hier nicht die ganze Zeile noch
einmal zu schreiben, sondern geht mit dem

Cursor an die zu dndernde Stelle.
Mit den beiden Cursor-Tasten und der Shift-

Taste kann der Cursor auf dem Bildschirm an
jede beliebige Stelle gebracht werden. Von die-
ser Stelle aus kann ich dann den zu dndernden
Text einfach iiberschreiben. Durch Driicken
der SPACE-Taste wird ein vorhandenes Zei-
chen geloscht. Mit der Insert-Funktion kénnen
auch Zeichen eingefiigt werden. Wichtig ist, da
nach einer vorgenommenen Anderung in einer
Zeile die RETURN-Taste gedriickt wird.

Nun wollen wir ein anderes kleines Programm
mit PRINT-Befehlen schreiben.

10 PRINT 10 + 10
20PRINT 5 + 5
30 PRINT 10 - 10
RUN

20

10
0

Wollen wir die Ergebnisse nebeneinander haben,
geben wir folgendes ein:

NEW (Sorgt dafiir, daB der Speicher geléscht

wird)
READY
10PRINT 10+ 10,5 +5,10—-10
RUN
20 10 0

Wir sehen hier, daR wir eine Verteilung der Er-
gebnisse auf einer bzw. zwei Zeilen vornehmen
kénnen.

Es konnen auch mehrere Operationen in eine
Zeile eingegeben werden.

Ubungen:

1. Schreiben Sie ein BASIC-Programm,
welches Ihren Namen und lhre Adresse
ausdruckt. Der Ausdruck soll in vier
Zeilen erfolgen.

2. Was mufl eingegeben werden, um den
Speicher des Computers zu l6schen?

3. Weiches Kommando muB man verwen-
den, um ein Programm aus dem Spei-
cher ausschreiben zu lassen.

Die LET-Anweisung
Die LET-Anweisung wird dazu benutzt,

a) einen Wert (Zahl)
b) ein Ergebnis einer Berechnung

einer bestimmten GroBe (Variable) oder auch
mehreren Variablen zuzuordnen. Grundsatzlich
sieht eine LET- oder auch Zuordnungsanweisung
wie folgt aus:

100 LET (Variable) = (Zah! od. Ergeb-
nis einer Berechnung)

In einigen BASIC-Versionen kann das Wort LET
auch der Einfachheit wegen weggelassen werden.

100 LET Y =2

Man kann also auch schreiben 100 Y = 2. Auch
kénnen in manchen Versionen mehrere Variable
demselben Wert zugeordnet werden.

100 LETY=X2=W=3

Auch konnen die Variablen auf beiden Seiten
des Gleichheitszeichens geschrieben werden.
Die Berechnung erfolgt dann so, daR Daten
vor der Rechnung der Variablen links neben
dem Gleichheitszeichen und Daten nach der
Berechnung den Variablen rechts neben dem
Gleichheitszeichen zugeordnet werden.

100 LET X=X +1

nimmt den Anfangswert von X, addiert eines
dazu und weist das Ergebnis als neuen Wert
von X aus.

Die LET-Anweisung ist keine algebraische Glei-
chung. Sie ist lediglich ein Befehl, eine Berech-
nung durchzufiihren und das Ergebnis einer vor-
her festgelegten Variablen zuzuordnen.

PROGRAMMBEISPIEL:

10 REM DIESES PROGRAMM ZEIGT DIE
20 REM ANWENDUNG DES LET-BEFEHLS
30 PRINT ,, EINGABE EINER POSITIVEN,”
35 PRINT ,,GANZEN ZAHL"

40 INPUT X

60 LET Y=X+1

70 LET A=L0G (X)

80 LET B=SIN(X)

90 PRINT X,Y,A, B

100 END

Wir haben hier bei diesem Beispielprogramm
jetzt drei neue Befehle kennengelernt, die man
sehr oft beim Programmieren in BASIC ben6-
tigt.

REM, INPUT und END

Wir wollen diese Befehle deshalb jetzt gleich be-
sprechen. Die Anweisung REM dient zur Doku-
mentation des Programmes. Alles, was hinter
dem Befehl REM folgt, wird nur als Text im
Programm angesehen und wirkt sich nicht auf
den Ablauf aus. Der Befehl END sagt dem Com-
puter, daB an dieser Stelle das Programm zu
Ende ist. END sollte dann die hochste Zeilen-
zah! im Programm haben.

Die INPUT-Anweisung (Eingabe)

Die Input-Anweisung wird dazu verwendet, nu-
merische oder String-Daten wahrend des Pro-
grammablaufes in den Computer zu geben.
Der Befehl besteht aus der Anweisung INPUT
mit nachfolgenden Variablen. Diese Variablen
miissen durch ein Komma getrennt sein. Nume-
rische Variable und String Variable konnen in
einem Input-Befehl vorkommen. String Variable
(Zeichenketten) erlauben die Eingabe beliebi-
ger Zeichen wie Buchstaben, Zahlen, Satzzei-
chen und graphische Zeichen).

Beispiel:

100 INPUT ,, WIE ALT BIST DU", X

RUN String

Diese Anweisung druckt die Frage: Wie alt
bist Du? in die folgende Zeile. Das Fragezeichen
bedeutet hier in erster Linie, da der Computer
auf eine Eingabe wartet. Erst wenn er diese Ein-
gabe vom Programmierer bekommen hat, wird
er im Programm fortfahren. Folgendes muB bei
Anwendung des INPUT-Befehles beachtet wer-
den:

139

1. Die einzugebenden Daten miissen zu den
Variablen im INPUT-Befehl gehoren.

2. Mehrere Daten miissen durch ein Komma
getrennt werden.

3. Ein String solite immer in Anfiihrungs-
zeichen gesetzt werden.

Treten groRe Mengen von Daten auf, sollten an-
stelle des Input-Befehls die Anweisungen READ
und DATA benutzt werden.

PROGRAMMIERBEISPIEL:

REM Dieses Programm zeigt lhnen,
REM wie der INPUT-Befehl arbeitet
INPUT X

LET R =(X/3.14159) 1 0.5

PRINT ,,RADIUS ="; R

INPUT B,H

LET A=(B*H)12

PRINT ,FLAECHE="; A

INPUT K,J,L,M,N,O,P

100 LET S=K+J+L+M+N+O+P
110 PRINT ,, DIE SUMME IST =";S

120 END

883888885

READ und DATA -Statements

Wenn der Computer mit einer groBen Anzahl
von Daten versorgt werden muB, kann die Ein-
gabe iiber den INPUT-Befehl recht miihsam
werden. In diesem Falle greift man dann zu den
READ, DATA-Befehlen.

Der READ-Befehl legt die Variablen fest, deren
Werte iiber das Programm in den Computer ge-
geben werden sollen. Dieser Befehl besteht aus
dem Wort READ, gefoigt von einer Liste von
Eingabevariablen. Diese Variablen miissen durch
Komma getrennt werden. Die Liste kann Zahlen,
Strings oder beides enthalten.

Der Sinn des DATA-Befehls ist es nun, den
Variablen aus dem READ-Befehl die zugehdri-
gen Werte zuzuordnen. Der DATA-Befeh! be-
steht aus dem eigentlichen Befehl ‘“DATA"
gefolgt von den entsprechenden Zahlen oder
Strings. (Jede Position muB wieder durch
Komma getrennt werden).

Programmbeispiel:

10 READ A,B,C,D
20 DATA 100, BERTA, CAESAR, 200

140

Bevor das Programm startet, nimmt der BASIC-
Interpreter alle Daten aus den DATA-Anwei-
sungen in der eingegebenen Reihenfolge von
links nach rechts und speichert sie in einem
groBen Block. Wenn dann im Programm eine
READ-Anweisung erscheint, wird der zugehori-
ge Wert aus dem Datenblock geholt und zuge-
ordnet.

Wenn mehr READ-Anweisungen im Programm
vorkommen, als zugehérige Daten vorhanden
sind, wird eine Fehlermeldung gegeben.

Die READ-Befehle werden im Normalfall
zu Beginn des Programmes platziert. Die DATA-
Befehle kdnnen im Programm an beliebiger
Stelle eingefiihrt werden. Wichtig ist nur, daB
die Reihenfolge stimmt. Viele Programmierer
bevorzugen jedoch die DATA-Anweisungen am
Programmende zu platzieren.

Merke:

1. Die Werte in den DATA-Statements
miissen den zugehorigen Variablen in den
READ-Anweisungen entsprechen.

2. Es miissen mindestens so viele Datenele-
mente in DATA-Anweisungen vorhanden
sein, wie READ-Anweisungen gegeben
werden. Zusitzliche Daten werden igno-
riert.

3. Die Elemente in den DATA-Statements
miissen durch Komma getrennt werden.
Nach dem letzten Element folgt kein
Komma.

4, Die Elemente in DATA-Statements miis-
sen Daten oder Strings sein, keine Varia-
blen oder Formeln.

5. Strings in der DATA-Anweisung, die ein
Komma enthalten, oder mit einem Leer-
zeichen beginnen oder enden, miissen in
Anfiihrungszeichen gesetzt werden.

Der GOTO-Befehl

Der GOTO-Befehl wird dazu benutzt, an eine be-
stimmte Stelle (Zeile) im Programm zu springen.
Normalerweise arbeitet das Programm von der
Zeile mit der kleinsten Zeilennummer an, bis
zur groften Zeilenzahl ab. Wenn ein unbe-
dingter Sprung erforderlich ist, wird der GOTO-
Befehl benutzt. Bei einem solchen unbedingten
Sprung erfolgt keine logische Entscheidung.

Der Programmablauf wird durch den GOTO-
Befehl in seiner Reihenfolge unterbrochen und
das Programm geht an die im GOTO-Befehl
angegebene Zeilenzahl. Von dort wird dann wie-
der in der bisherigen Reihenfolge weiter abge-
arbeitet.

Programmbeispiel:

20 REM SPRUNG DURCH GOTO

30 REM UNBEDINGTER SPRUNG

40 REM DIESES PROGRAMM BE-—
45 REM RECHNET DEN MITTELWERT
50 REM VON N ZAHLEN. UM DIE
60 REM SCHLEIFE 2ZU VERLASSEN
70 REM GEBENSIEOEIN

80 LET K=0

90 LET N=0

100 INPUT J

110 IFJ=0THEN 150

120 LET K=K+J

130 LET N=N+1

140 GOTO 100

150 PRINT ,LSUMME IST = “K

160 PRINT ,DURCHSCHNITT IST ="; K/N
170 END

Im vorangegangenen Beispiel sind wir wieder
auf eine unbekannte Anweisung gestoRen.
(170 IF J= 0 THEN 150)

Der IF-Befehl

Der IF-Befehl wird fiir bedingte Spriinge ver-
wendet. Mit ihm kann dann von der normalen
Reihenfolge (d. h. Abarbeiten von der kliein-
sten Zeilenzahl zur hdchsten Zeilenzahl) abge-
wickelt werden. Das Programm springt dann
2u der im IF-Befehl definierten Zeilennummer,
wenn die gestellte Bedingung erfiillt ist.

Beispiel:

100 IF X=0THEN 200
200 IFSIN(X) (=05 THEN 100
300 LETY=1

Bei diesem Beispiel erfolgt ein Sprung des Pro-
grammes in Zeile 200, wenn der Wert fir X
null ist. Wenn SIN (X) kleiner gleich 0,5 ist,
erfolgt ein Riicksprung nach Zeile 100. Wenn
beide Bedingungen nicht erfillt sind, geht das
Programm zur nichsten Zeile (z. B. 300).

FOR NEXT-Schleifen

Wenn wir beim Programmieren wissen, wie oft
ein Befehl oder eine Gruppe von Befehlen
wiederholt werden muB8, konnen wir den FOR-
Befehl verwenden. Diese Anweisung legt fest,
wie oft eine Programmschleife durchlaufen wird.
Dem unmittelbaren Befehiswort FOR folgt
die Ablaufvariable. Der Wert dieser Variable an-
dert sich nach jedem Durchlauf der Schieife.
Die Anzahl der Durchlaufe wird durch den An-
fangs- und Endwert dieser Variablen festgelegt.

Beispiel:
100 FOR X=1TO 100
200 FOR Y =10TO 200

Beim Befehl hier in Zeile 100 wird zu Beginn
des ersten Schleifendurchlaufes die Ablauf-
variable auf 1 gesetzt. Dann wird diese nach je-
dem Durchlauf um eins erhoht, bis der Wert
100 erreicht wird. Die Ablaufvariable wird
grundsétzlich um eins erhoht, es sei denn, es

wird etwas anderes vorgeschrieben.
Eine solche Anderung kann mit dem STEP-

Befehl herbeigefiihrt werden. Mit diesem Befehl|
konnen wir die Ablaufvariable um einen vorge-
gebenen Wert erhéhen oder auch vermindern.

100 FOR
200 FOR

Y =1T0 20 STEP 2
Y = 100 TO 10 STEP — 10

Generell gilt: FOR (Ablaufvariable) = Anfangs-
wert) TO (Endwert) STEP
(SchrittgroBe)

Um eine FOR TO-Schleife abzuschiieBen, be-
notigen wir den NEXT-Befehl. Der NEXT-Be-
fehl besteht aus einer Zeilenzahl der NEXT-
Anweisung und der Ablaufvariablen. Auf jeden
Fall muB die Ablaufvariable folgen, die zur ge-
wiinschten Schleife gehort.

100 X=ATOB

110 (beliebiger Befehl)

120 (beliebiger Befehl)

130 ... (beliebiger Befehl)

140 NEXT X

Merkregeln:

1. Die Ablaufvariable kann in einem weite-

ren Befeh! innerhalb der Schleife erschei-
nen, kann aber nicht geandert werden.

2. Wenn der Anfangswe:t und Endwert
in einer Schleife gleich ist, und die Schritt-

141

groBe nicht 0 ist, wird die Schleife
nur einmal durchlaufen.

-PROGRAMMBEISPIEL:

10 REM DIESES PROGRAMM BE-
20 REM NUTZT EINE FOR..NEXT
25 REM SCHLEIFE

30 FOR 1=1TO10

40 PRINT 1*10

50 NEXT |

60 END

. FOR
Schleife

Ausgabe | * 10

NEXT

Unterprogramme GOSUB

Wenn eine bestimmte Reihenfoige von Befehlen
in einem Programm standig benutzt werden soll,
konnen diese Befehle als Unterprogramm ge-
schrieben werden. Ein Unterprogramm ist ein
komplettes, vollstindiges Programm, weiches
vom Hauptprogramm oder von anderen Unter-
programmen aufgerufen werden kann. In BASIC
erfolgt der Sprung in ein Unterprogramm durch
den Befehl GOSUB mit nachfolgender Zeilen-

142

angabe, wo sich das Unterprogramm befindet.
Der Computer merkt sich die Zeilennummer,
von der er ins Unterprogramm gesprungen ist.
Wenn das Unterprogramm abgearbeitet ist und
ein RETURN-Befeh! gegeben wurde, kehrt das
Programm an die Zeile zuriick, die als nachste
unmittelbar dem GOSUB-Befehl folgt. Von dort
aus wird dann im Hauptprogramm ,weiterge-
fahren".

Der RETURN-Befehl besteht einfach aus Zeilen-
zahl und RETURN. Z. B.

100 RETURN
PROGRAMMBEISPIEL:
10 REM DIESES PROGRAMM ZEIGT
20 REM DIE ARBEITSWEISE DES GO-
25 REM SUB-BEFEHLES
30 PRINT ,EINGABE EINER ZAHL”
40 INPUT |
50 IF1=0THEN 110
60 GOSuUB 90
70 PRINTK
80 GOTO 30
90 LET K=(1*2)/3
100 RETURN
110 END
RUN
EINGABE EINER ZAHL
?5
3.3333
EINGABE EINER ZAHL
? 1256
837.333
EINGABE EINER ZAHL
70
READY

Strings (Zeichenketten)

Neben Zahlen als Variable konnen auch String
Variable benutzt werden. Ein String (Zeichen-
kette) ist eine Folge von Zeichen (alphanume-
risch), Sonderzeichen, Leerzeichen etc. Auf
keinen Fall jedoch die Anfiihrungszeichen.
Sie bezeichnen Anfang und Ende einer Zeichen-
kette (String). Die Anzahl der Zeichen, die Sie
in einem String verwenden konnen, héngt von
Ihrer BASIC-Version ab.

Die Aufgabe von Strings ist es, nicht numerische
Daten, wie Bezeichnungen und Erlauterungen zu
reprasentieren. Eine Folge von Zahlen in einem
String reprasentiert deshalb keine numerischen
Daten!

PROGRAMMBEISPIEL:

10 REM DIESES PROGRAMM ZEIGT

20 REM DIE STRINGVERWENDUNG

30 PRINT ,GEBEN SIE EINFACH VIER
BELIEBIGE BUCHSTABEN EIN

40 INPUT J$(1),J$(2),J$(3),J%$(4)

50 FOR M=1T04

60 FOR N=1TO4

70 IF N=MTHEN 140

80 FORP=1TO4
90 IFP=MTHEN 130

100 IF P= N THEN 130

110 LET R=10(M+N+P)

120 PRINT J$ (M);J$ (N;J$(PEIS(R)
130 NEXT P

140 NEXT 10

150 NEXT M

Einfaches Beispiel:

10 LET Cc$=,BASIC IST"
20 LET E$=,SEHR"

30 LET F $=,EINFACH"

40 PRINT C$,E$.ES$;F$

RUN
BASIC IST SEHR SEHR EINFACH

INPUT MIT STRINGS

Bei der Eingabe von Text wird &hnlich wie bei
der Eingabe von Daten verfahren. Es wird dem
Wert lediglich ein Dollarzeichen nachgestelit.

Beispiel:

10 INPUT ,WIE HEISSTDU;N $

20 PRINT N §; ,IST MEIN NAME."

30 INPUT ,WIE ALT BIST DU”;J

40 PRINT NS§; " ,DUBIST;J ;" JAHRE
ALT.”

READ und DATA mit String

READ und DATA-Befehle arbeiten mit Strings
(Zeichenketten) ahnlich wie mit Daten.

Beispiel 1:

10 READ A$
20 PRINT A$
30 DATA NEUNZEHN

RUN
NEUNZEHN

Beispiel 2:

10 READ B$
20 PRINT B$
30 DATA19
RUN

19

Im zweiten Beispiel wird die Zahl 19 wie eine
Textaussage aufgefaBt. Sie kann nicht weiter-
verarbeitet werden. Obwohl dem DATA-Befehl
eine Zahl folgt.

Beispiel:

10 READ A$, B$, C$, D$

20 PRINT C$, B$, D$, A$

30 DATA,PETER,DER,SOLANG,ALTE
RUN

SOLANG DER ALTE PETER

Beachten Sie bitte bei diesen Beispielen, da
der READ-Befehl die Zeichenkette aus den
DATA-Statements so zuordnet, wie Sie in der
READ-Anweisung vorgegeben sind. Es spielt
keine Rolle, wo die DATA-Anweisungen im Pro-
gramm angeordnet werden.

Jetzt wollen wir einmal versuchen, in den Data-
statements Strings und Werte (Daten) zu ver-
wenden.

10 READ A$, B$,C, D
20PRINTC;B$;D; A$;C+D

90 DATA UND, IST, 1,2

RUN

1UND2IST3

Wir sehen also, daB8 unser Computer numerische

Variable und Stringvariable in READ und DA-
TA-Befehlen verarbeiten kann.

Mehrfache Anweisungen in einer Zeile

Der PET-Computer bietet wie viele andere lei-
stungsfahige Computersysteme die Mdglichkeit,
in einer Zeile mehrere Anweisungen anzuord-
nen.

100A=2:B=3:C=5:?A*B*C
RUN

30

Die einzelnen Statements werden durch Doppel-

143

punkt voneinander getrennt. Das Fragezeichen
ist eine praktische Abkiirzung fiir den PRINT-
Befehl.

Die Quadrat- und Wurzelfunktion

Wie in der Einleitung bereits erwahnt, enthalten
viele BASIC-Versionen automatische Berech-
nungsabldufe, genannt Funktionen. Oft be-
stehen diese Funktionen aus kompletten For-
meln, die Zahlen sowie Zeichenketten handha-
ben kénnen.

Die erste BASIC-Funktion, die wir heute be-
sprechen wollen, ist die SQR (Squareroot =
Quadratwurzel)-Funktion.

Beispiel:

10 LETA=81
20 PRINT SQR (A)

Die Quadrierung von Zahlen erfolgt beim PET
durch das ,, T " Zeichen. In anderen BASIC-Ver-
sionen findet man auch ,, * * ** (Zwei Sternchen
hintereinander).

Das Beispiel:

10PRINTA T2

liefert das Quadrat von A.
Die INT (X)-Funktion

Die INT (X)-Funktion liefert immer eine ganze,
positive Zahl. (Also keine gebrochenen Zahlen)
Die Anwendung dieser Funktion finden wir u.a.
in Spielprogrammen, in der die Random (RND)-
Funktion verwendet wird. Die RND-Funktion
(Zufallsfunktion) liefert z. B. beim PET eine
Zufallszahl zwischen 0 und 1. Da diese Zufalls-

zahlen jetzt alle aebrochen sind, erreicht man
durch die INT (A)-Funktion eine Auswahl der

ganzen Zahlen.
Beispiel:
10 LET X = INT (100 * RND (1))

Dieses Statement erzeugt also nur Zufaliszahlen
im Bereich zwischen 1 und 100.

Beispiel:

10 PRINTINT (3,1)
3

144

20 PRINT SQR (52), INT (SQR (52))
721 7

Sie sehen also, daB diese Funktion immer nur
eine ganze Zahl! liefert.

Die RND (X)-Funktion

In einem der obigen Beispiele sind wir wieder
auf eine neue und recht wichtige Funktion ge-
stoBen, die RND (X) oder auch Randomfunk-
tion.

Sie ist nichts anderes als eine Zufallsfunktion. Es
werden Zufallszahlen in einem bestimmten Be-
reich generiert.

Dies geschieht ahnlich wie in einer Zahlen-
lotterie.

Die RND-Funktion liefert, wie schon erwiéhnt,
nur gebrochene Zahlen zwischen 0 und 1, nie-
mals 0 und niemals 1, nur Zahlen dazwischen.

Beim Commodore PET liefern die Argumente
in Klammern folgende Werte:

RND (X) X kleiner 0. Bei jedem Aufruf
wird die gleiche Zufaliszahl gene-
riert.

X = 0. Bei jedem Aufruf wird die
die gleiche Reihe von Zufallszah-
len generiert.

X groBer 0. Bei jedem Aufruf wird
eine neue Reihe von Zufallszahlen
generiert.

RND (X)

RND (X)

Das Argument ist positiv
Beispiele:

10 X=1
20 PRINT RND (X):GOTO 20
RUN

0.43481
0.69751
0.47892
0.86533
0.12411

BREAK IN 20
READY

Das Argument ist Null

10 X=0
20 PRINT RND (X) : GOTO 20
RUN

0.21212
021212
021212
021212

BREAK in 20
READY

Argument ist negativ

10 X=-04

20 PRINT RND (X) : GOTO 20

RUN

0.90235

0.90235

0.90235

BREAK IN 20

READY

Beispiel:

05 REM ZUFALLSGENERATOR MIT WIE-
DERHOLUNG

10 LET X=RND(-0.3)
20 PRINT RND (1)

30 GOTO 20

RUN

056789

0.72154

0.31431

0.67891

STOP
RUN

056789
0.72154
0.31431
0.67891
STOP

In diesem Programm wird bei jedem Ablauf im-
mer die gleiche Liste von Zufaliszahlen generiert.
Die Funktion RND (—0.3) erzeugt am Anfang
immer die gleiche Zufaliszahl. RND (1) erzeugt
dann beliebige Zahlen.

145

Wie lernt man BASIC,
Teil lll

Wie lernt man BASIC? Teil 111

Riickblick:

In den vorangegangenen zwei Lektionen sind
wir bis zur RND (X) Funktion gekommen.
Heute wollen wir gleich mit einem interessanten
Beispiel zur RND(X) Funktion beginnen.Wie wir
gelernt haben, erzeugt die Funktion RND (1)
bei jedem Aufruf eine neue Reihe von Zufalls-
zahlen.

Wir wollen nun einmal ein kleines Programm
schreiben, welches uns eine Reihe von Zufalls-
zahlen erzeugt.

READY.

100 REM ZUFALLSZAHLEN
120 PRINT™ UIE VIEL ZAHLEN SOLL ICH
ERZEUBEN";

130 INPUT N

140 PRINT

130 FOR K=1TOM

160 PRINT INT(RND(1)s49) ;
170 NEXT K

180 PRINT

190 PRINT

200 6070 120

999 END
READY.

RUN
WIEVIEL ZAHLEN SOLL ICH ERZEUGEN?10
147932 1569

WIEVIEL ZAHLEN SOLL ICH ERZEUGEN?
BREAK IN 200
READY

Versuchen Sie einige Experimente mit diesem
Programm. Lassen Sie einmal das Semikolon
in Zeile 160 weg. Entfernen Sie einmal die Zei-
len 180 und 190. Beobachten Sie, was sich ver-
andert.

Versuchen Sie einmal Zufallszahlen zwischen 0
und 49 (Lottozahlen) zu erzeugen.

146

Die TAB-Funktion

Eine andere wichtige Funktion ist die TAB-
Funktion. Sie wird in PRINT-Anweisungen ange-
wendet und arbeitet wie der Tabulator bei ei-
ner Schreibmaschine. Der Computer wird da-
durch angewiesen, einen bestimmten freien
Raum auf dem Bildschirm zu iberspringen.

Hierzu einige Beispiele:
READY.

10 PRINT® (] A"

30 END

40 PRINT TAB(10);"A";TAB(14); A"
50 END

READY.

Wenn hier die- Eingabe in Zeile 10 mit 10 Leer-
tasten erfolgt, 10 PRINT « 10 Leertasten
A « 5 Leertasten — A, so kann mit Zeile 40
das gleiche erreicht werden.

Beim Commodore PET haben wir 40 Zeichen
pro Zeile. TAB 20 wiirde dort das Zeichen
in der Mitte der Bildschirmzeile bringen.

In der Klammer, die dem TAB(X)-Befehl folgt,
kann eine Zahl, eine Variable oder ein mathe-
matischer Ausdruck sein.

Beispiel: TAB (20), TAB (A), TAB (INT(10
*RND(1)))

READY.

10 REM DENOPROGRANM FUER TAB
20 FOR I=1 7O 23

30 PRINT TAB(I)“ELCOMP"

40 NEXT I

30 END

READY.

RUN
ELCOMP
ELCOMP
ELCOMP
ELCOMP
ELCOMP
READY

Ein weiteres Beispiel:

10 REM TAB-DEMO |1

20 READ Y

30 PRINT TAB (Y)Y

40 GOTO 10

50 DATA 1,2,3,4,5,6,7,8,9,10
99 END

RUN
1

8
9
10

READY

Hier wird die Zahl Y, die nacheinander aus Data-
Statements gelesen wird, um die entsprechende
Anzahl von Schritten nach rechts versetzt. (Y =
Zahl = Schritte nach rechts)

Andern Sie einmal Zeile 30 in
30 PRINT TAB (Y);"*"
und starten Sie das Programm.

Die TAB-Funktion wird meist in der Computer-
Graphik und zum Ausdrucken von mathemati-
schen Funktionen angewendet.

Ein weiteres Beispiel:

READY.

S REN SORTIERPROGRAMM

10 PRINT"UNTER 1000.-DN";TAB(18) ;“UNTER

2000.-DN"

20 READ X

30 IF X<1000 THEN 60

40 IF X<2000 THEN 80

50 6070 20

60 PRINT X

70 8070 20

80 PRINT TAB(18);X

90 6070 20

100 DATA 1000,1100,1500,1600,2500

110 DATA 2600,900,700,2830,2900
READY.

Wir haben jetzt die wichtigsten Funktionen ei-
nes BASIC, wie SQR, INT, TAB und RND ken-
nengelernt. Zum Schiu wollen wir thnen noch
eine Anweisung zeigen, mit der Sie selbst ihre
eigenen Funktionen festlegen konnen. Sie kon-
nen somit selbst eine Rechnung, die immer wie-
der vorkommt als Funktion festiegen:

Sie werden als Anweisung in einem Programm
geschrieben.

Beispiel:
10 DEF FNR (X) = (INT(X*100+0,5))/100

10 = Zeilenzahl

DEF = DEFINE-Anweisung

FN = Funktion

R =Genaue Bezeichnung der Funktion R =
Runden. Es konnen alle Buchstaben von
A bis Z als Kennzeichen verwendet wer-
den,

(X) =Variable als Ersatz fiir alle kommenden
Variablen.

Will man nun im Programm diese Funktion
fir eine Variable benutzen, wird die FNR-
Funktion (Variable) geschrieben.

Beispiel eines Programmes zum Abrunden
von Zahlen

05 REM DEF-DEMO

10 DEF FNR (X) = (INT (*100+05))/100
20 PRINT “ZAHL DIE ABGERUNDET WER-"
25 PRINT “DEN SOLL";

30 INPUT Y

40 PRINT Y; “GERUNDETE ZAHL AUF”
45 PRINT 2 DEZIMALSTELLEN=";FNR (Y)
50 PRINT

60 GOTO 20

70 END

ARRAYS (Felder)

Arrays sind Ansammiungen von Informationen
im Speicher, welche sich an einer nummerier-
ten Position befinden. Die Positionen (Spei-
cherplitze) konnen alle moglichen Informatio-
nen enthalten. (Daten, Zahlen, Buchstaben etc.)

Die Inhalte gehoren meist auf irgendeine Weise
zusammen.

147

Beispiel fiir ein Eindimensionales Feld:VEKTOR

Position:

XYY YTYYYIN n_..z n—1 n

1 2|3

n = |etzte Position

Es gibt ein, zwei, drei- oder auch mehrdimen-
sionale Felder.

Wir wollen uns heute nur mit den ein- zwei-
und dreidimensionalen Feldern beschaftigen.

Das eindimensionale Feld ist wie ein Vektor.
(Eine Reihe von Positionen in eine Richtung)

Ein zweidimensionales Feld ist wie eine Ma-
trix (Tabelle).

1 2
1 n—1 n
2
n—1
n

Beispiel fiir ein zweidimensionales Array (Ma-
trix). Ein dreidimensionales Feld ist wie ein
Wiirfel.

n
1
(XY ...' 2
..‘ Yy
1 L 7= s d
o
1
2 E -
o A
:]
i E M
evossetecocne : 4
: S g
n1
n

Die einzeinen Elemente in solch einem Array
(gleich welche Dimension) werden durch Indi-
zierung angesprochen. Je nachdem, wieviele Di-
mensionen das Feld hat, wird es entsprechend
indiziert (bezeichnet).

' Eindimensionales Feld: VEKTOR

Zweidimensionales Feld: MATRIX

Nehmen wir an, wir haben ein ein-
dimensionales Feld mit dem Namen
NAM. Man kann in einem Programm
nach dem dritten Element in diesem
Array durch NAM (3) zugreifen. Ei-
ne weitere Moglichkeit ist es, wenn
man anstelle der Zahl 3 eine Variable
z. B. X verwendet und durch Veran-
dern dieser Variable zu dem gesam-
ten Feld zugreifen kann.

Beispiel:

READY.

10 REN ARRAY DENO PROGRAMM
20 DIN NAN(20)
30 FOR I=1 TO 20
35 PRINT"NAN(®;1;")=" NANCI)
40 LET NAN(I)sI
30 MEXT I
40 END
READY.

Dieses kleine Demoprogramm erstellt ein eindi-
mensionales Feld mit 20 Positionen und druckt
den Inhalt der Felder aus. Dies bleibt auch so,
bis es durch das Programm geandert wird. Beim
Microsoft kénnen Arrays bis 2565 Elemente pro-
grammiert werden. Die Anderung einer Zelle
kann jetzt ganz einfach erfolgen, indem wir
die Zeile 40 durch

40 LETNAM (3) =4

ersetzen. Damit schreiben wir in das Array mit
dem Namen NAM in Zelle 3 die Zahl 4 ein.

Wollen wir in alle Zellen etwas hineinschrei-
ben, so filgen wir folgendes ein.

READY.

10 REM ARRAY DEMO PROGRAMM
20 DIN NAN(20)

30 FOR I=1 TO 20

35 PRINT"NANC";I;")="NAN(I)
36 FOR X=1T0 20

37 LET NAN(X)=X-1

38 NEXT X

50 NEXT I

60 END

READY.

Dieses Programm bringt uns die Zahlen von 0-19
in die Positionen 1 — 20 des Feldes mit dem Na-
men NAM,

Bei Arrays mit mehreren Dimensionen gilt das
gleiche Prinzip. Man kann jedes Element im
Array durch Angabe der Zahl in Klammern an-
sprechen.

Beispiel fiir ein zweidimensionales Array

Nehmen wir einmal an, wir haben eine Preis-
liste fiir verschiedene Artikel in unterschiedli-
chen GroBen. Hieraus ergibt sich ein zweidi-
mensionales Feld wie folgt:

GroBe 1
2
3
4| 314254 56| 67~
5[20,-[30,-]40,~[50,~| 60~
6/ 10,~[20,-]30,~] 40,~| 50,-

Typ1 2 3 4 5

Wire der Name dieses zweidimensionalen Fel-
des z. B. PREIS, so wire der Preis von DM 54,--

PREIS (4,3)

da er sich in Reihe 4 und Zeile 3 befindet.

So, wie man Arrays mit Zahlen aufbauen kann,
kann man auch Namen benutzen.

Sie haben nun in groben Zigen erfahren, wie
Arrays aufgebaut sind. Was man damit machen
kann, konnen Sie jetzt selbst ausprobieren.

Man kann Zahlen, Namen etc. sortieren und
verschieben und hat immer leichten Zugriff zu
jedem Element.

Beispiele zu der Feldanweisung DIM

Wir wollen mit unserem BASIC-Rechner einen
Wiirfel simulieren. Dieser liefert uns Zufalls-
zahlen zwischen 1 und 6. Damit wir nach dem
Wirfeln wissen, wie oft jede Zahl geworfen wur-
de, wollen wir die einzelnen Wiirfel notieren.
Hierzu verwenden wir ein Feld (Array).

3 REMSINULATIONSPROGRANM
10 DINT(4)

15 INPUT"VIEVIELE WUERFE*";V
20 FOR X=1 TO W

30 D=INT(6*RND(1))+1

40 LET T(D)=T(D)+1

350 NEXT X

60 FOR X=1T04

70 PRINT X;“S2*;T(X)

80 NEXT X

90 PRINT

91 FOR J=1T706

§2 LET T(N=0

93 NEXT J

100 6070 15

110 END

Zerstoren wir einmal die Zeile 10 und versuchen
wir das Programm wieder zu starten. Was wird
geschenen?

Siehe da, es lduft auch ohne diese Anweisung.
Jetzt werden Sie denken ,Alles umsonst, was
ich bis jetzt iiber DIM gelernt habe’’, Aber war-
ten wir ab!

149

Andern Sie jetzt einmal das Programm wie folgt
ab.

READY.

5 RENSINULATIONSPROGRAMM
10 DINT(49)

15 INPUT*WIEVIELE WUERFE";V
20 FOR X=1 TO W

30 D=INT(A9#RND(1))+1

40 LET T(D)=T(D)#1

50 NEXT X

40 FOR X=17049

70 PRINT X;"§:*;T¢X)

80 NEXT X

90 PRINT

91 FOR J=1T049

92 LET T(J)=0

93 NEXT J

100 GOTO 15

110 END
READY.

Dieses Programm simuliert die Lottozahlen-
maschine und sagt lhnen, wie oft bei mehre-
ren Ziehungen die eine oder andere Zahl gezo-
gen wurde.

Loschen Sie jetzt auch wieder Zeile 10 und ver-
suchen Sie das Programm zu starten. Jetzt be-
kommen Sie eine Fehlermeldung.

Bei mehr als 10 Felder in einem Array oder bei
mehreren Arrays pro Programm muB auf jeden
Fall eine DIM(X) Anweisung gegeben werden.
Unter zehn kann mit fortlaufenden Variablen ge-
arbeitet werden (subscripted variables).

Auffiillen von Arrays aus DATA-Statements

Wir haben unsere Felder bei den vorangegangen-
en Beispielen immer durch die LET-Funktion
aufgefijlit.

4O LETT(D)=T(D)+1

Wir kdnnen die Felder natiirlich auch aus DATA-

Statements her auffiillen. Bei groBeren Mengen
von Daten ist dies wesentlich praktischer.

Beispiel:

Wir haben zum Beispiel in unserer Abteilung
zwei Artikelgruppen 1 und 2. Wir wollen am

150

Abend wissen, wieviele Artikel gesamt verkauft
wurden. Wieviele davon waren 1 und wieviele da-
von 2,

READY.

S REN DIN UND DATA DENO

9 DIN T(2)

10 READ I

20 IF 129999 THEN 50

30 LET T(D=T(D)#1

40 GOTO 10

50 PRINT*GESANTz";T(1)+T(2)

60 PRINT*PRODUKT1:*;T(1)

70 PRINT“PRODUKT2:%;T(2)

900 DATA 1,1,1,1,1,2,2,2,2,2,2,2,2,
904 DATA 1,2,2,2,2,1,1,1,1,1,1,1,1,
905 DATA 9999
READY.

Ich brauche jetzt immer nur die Artikel Nr.
in die DATA-Statements einzugeben. Am Abend
gebe ich RUN ein und habe die gesamte ver-
kaufte Stiickzahl und die Stiickzahl nach Arti-
kelnummern aufgegliedert.

Sie konnen dieses Programm bis zu 255 Arti-
kelgruppen einfach erweitern.

Die Listings wurden iiber einen Drucker ohne
Graphiksymbole ausgedruckt. Wir bitten Sie
deshalb, bei der Eingabe in lhren PET darauf
zu achten.

Wie lernt man BASIC,

Teill IV

Wie lernt man BASIC, Teil IV

Riickblick:

In der letzten Lektion (ELCOMP 1/79) sind
wir bis zu den Arrays (Feldern) gekommen.
Speziell haben wir uns zuletzt mit den Feldern
beschiftigt, die mehr als 10 Elemente enthalten.
Hierbei haben wir den Befehl DIM [(X) kennen-
gelernt,

Mit diesem Befehl wird die Anzahl X der Ele-
mente in einem Feld mit dem Namen | fest-
gelegt.

Z. B. ist DIM 1(10) ein Feld mit zehn Elemen-
ten. Es gibt auch BASIC-Versionen, die ein Ele-
ment Null kennen. Dann haben wir es in die-
sem Fall mit 11 Elementen zu tun;

Die Zahl in Klammern (X) hinter dem DIM-
Befeh! kann niemals eine Variable sein. X kann
nur eine ganzzahlige, ungebrochene Zahl sein.
Der Programmierer bevorzugt es, die DIM-
Statements immer an den Anfang eines Program-
mes zu setzen. Hier hat man eine gute Uber-
sicht und kann leicht kontrollieren, ob alle Fel-
der richtig dimensioniert sind.

Wir wollen uns zur Vertiefung noch einige Bei-
spiele ansehen. Ganz abgesehen davon, dal der
DIM-Befehl beim Programmierer eine sehr wich-
tige Stellung einnimmt.

Zweidimensionale Arrays

Wir haben bis jetzt nur Felder kennengelernt,
deren Elemente nur eine einzige Zuordnungs-
variable (Subscript) haben. Oft ist es jedoch
beim Programmieren notwendig, mit zwei Va-
riablen zu arbeiten.

Man nennt diese Arrays, wie im letzten Kurs-
abschnitt schon angedeutet, zweidimensionale
Felder. Diese Felder eignen sich besonders zur
Darstellung von Tabellen oder Variablen mit

zwei Zuordnungswerten (Subscripts). Gleich ein
Beispiel.

Nehmen wir einmal an, wir wollen eine Statistik
(Aufzeichnung) von Artikelnummern pro Wo-
chentag anfertigen. Im letzten Kurs hatten wir
ein kleines Programm entworfen, welches uns
pro Artikelgruppe eine Gesamtmenge angibt.

Jetzt wollen wir dieses Programm insoweit aus-
dehnen, daB wir Artikelgruppen pro Wochentag
untersuchen wollen. Eine Liste konnte hierzu
wie folgt aussehen:

Artikel-Nr. Fr. Sa. Su
1 10 20 30
2 5 10 15

(100 Artikel sind hier méglich)

Diese"Tabelle sagt uns z. B., daB am Freitag 5
Stiick aus der Artikelgruppe 2 und 10 Stiick aus
der Artikelgruppe 1 verkauft wurden. Am Sam-
stag waren es 10 aus Warengruppe 2 und 20 aus
Warengruppe 1.

Wir wollen jetzt wieder ein kleines Programm
entwerfen, welches uns die einzelnen Stiickzah-
len pro Artikel und Tag aufaddiert und am Ende
eine Ubersicht iiber unsere verkaufte Menge pro
Artikelgruppe und pro Tag gibt. Wir haben in
einem Beispiel nur zwei Tage genommen, da der
Platz beim PET gerade iber den Bildschirm
reicht. Sie konnen jedoch auf beliebig viele Tage
(max. 255) erweitern, indem Sie in Zeile 20 den
Befehi DIM (100,4) entsprechend éndern, und
die Frage nach Eingabe mit INPUT entsprechend
ausdehnen.

151

READY.

1 REM COPYRIGHT ING W HOFACKER GMBH

2 REM DEMO FUER ARRAYS

15 REM FUER ZWEIDINENSIONALE FELDER

20 DIN A€100,4)

30 REM DATENEINGABE

40 PRINT"GEBEN SIE BITTE DIE ANZAHL DER

42 PRINT"ARTIKEL EIN! MAXIMAL 100"

50 INPUT N

40 PRINT“GEBEN SIE BITTE DIE ARTIKELNUM-
MER EIN! VON 1 BIS N (REIHENFOLGE)

75 INPUT K

77 FOR K=1 TO N

82 PRINT"ANZAHL ARTIKELGRUPPE™;K;"AM

FREITAG

90 INPUT A(K,1)

91 NEXT K

92 FOR K= 1 TO N

96 PRINT"ANZAHL ARTIKELGRUPPE";K;"AM
SANSTAG

97 INPUT A(K,2)

98 LETA(K,3)=A(K,1)+A(K,2)

99 NEXT K

110 REM TABELLE

120 PRINT"ART.NR.","FR","SA","SU"
130 FOR J= 1 TO N

140 PRINT J,A(J,1),A(J,2),A0J,3)
155 NEXT J

160 REM AUFSTELLUNG DER VERKAUFSZAHLEN
999 END
READY.

Das Programm lieBe sich noch dahingehend er-
weitern, daB man die verkauften Artikel dann
nach Mengen ordnet, um die Renner von den
Schleichern zu trennen.

Geben Sie dieses Beispielprogramm nun einmal
in thren Commodore PET Computer und fillen
Sie das Array mit zwei Artikelnummern (N=2Z)
und geben Sie Beispieldaten fiir verkaufte Stiick-
zahlen ein. Z. B. Artikel-Nr. 1 Montag 20 Stiick,
Artikel-Nr. 2 Montag 32 Stiick, Artikel-Nr, 1
Samstag 54 Stiick und Artikel-Nr.2 am Samstag
89 Stiick. Nach der Eingabe erstellt der Compu-
ter sofort eine kleine Statistik mit der Gesamt-
stiickzahl! pro Artikelgruppe.

Sie konnen jetzt in die einzelnen Zellen des
Arrays A(100,4) einsehen, indem Sie ?A(X,Y)
mit Return eingeben. (X und Y sind die ge-
wiinschten Koordinaten).

Geben Sie einmal ?A(1,1) Return ein! Sie er-
halten 20. Das ist die erste Eingabe (20 Stiick
von Artikelgruppe 1 am Freitag).

Sie sehen, wie man jetzt leicht jedes einzelne

162

Element des Arrays ansehen kann. Sie kénnen
jetzt auch mit diesen Elementen arbeiten, indem
Sie sie verkniipfen oder manipulieren.

Beispiel: 2A(1,1)+ A(2,1)

Stellen Sie jetzt selbst einige Versuche mit die-
sem Programm an, um etwas Erfahrungen zu
sammeln.

Eingabe und Auslesen eines Feldes

Das nachfolgende kleine DEMO-Programm zeigt
uns, wie man ein Array (Feld) auffiillen und aus-
lesen kann. Wenn es sich wiederholen soll, geben
Sie bitte in Zeile 230 GOTO 80 ein.

So, das soll nun vorerst iiber Felder (Arrays)
genug sein. Sie kdnnen jetzt bereits einige kleine
Programme selbst entwerfen und damit experi-
mentieren.

READY.

3 REM ARRAY DENO

10 DIN A(3,4)

20 FOR X=1 70 3

30 FOR Y=1 T0 4

40 INPUT A(X,Y)

30 NEXT ¥

60 NEXT X

70 PRINT"DAS ARRAY IST voLL!!"
80 PRINT"WELCHES ELEMENT WILLST DU SEHEN?"
90 INPUT“WELCHE REIHE":X

100 INPUT“UELCHE SPALTE";Y

110 PRINT*AC";X3 ', "3V)2 A(X,Y)
150 REM ORDNEN IN REIHENFOLGE
160 PRINT" DER GESAMTINHALT DES FELDES
170 FOR X=1 T0 3

180 FOR Y=1 T0 4

190 LET Z=A(X,Y)

195 FOR Z=1 TO 4

200 PRINT A(X,Y)

210 NEXT Y

220 NEXT X

999 END

READY.

Der RESTORE-Befehl

Der RESTORE-Befehl ist ein wichtiges Hilfs-
mittel beim Arbeiten mit READ und DATA-
Anweisungen. Der Zusammenhang zwischen der
READ-Anweisung und den zugehérigen Daten
in DATA-Statements wird durch einen inter-
nen Pointer hergestellt.

Was ist ein Pointer? Ein Pointer ist das zuletzt
gespeicherte Wort im Stack, welches die Adresse
einer anderen Speicherzelle beinhaltet. Meistens
nach Springen in Unterprogramme etc.

Der interne Pointer zeigt bei den meisten BA—
SIC-Versionen auf das nachste zu lesende Daten-
element. Werden Strings und Zahlen in DATA-
Statements abgelegt, miissen zwei Pointer bereit-
gestelit werden. Jedesmal, wenn ein DATA-
Element gelesen wird, wird der Pointer um eins
erhoht.,

Wenn nun das gleiche Datenelement oder ein
Block von Datenelementen noch einmal gelesen
werden soll, wird der RESTORE-Befehl ver-
wendet. Der Befehl besteht nur aus einem ein-
zigen Wort ,,RESTORE". Er sorgt dafiir, daB der
Pointer wieder zuriick zum ersten DATA-Ele-
ment gebracht wird, Die nachfolgende READ-
Anweisung beginnt dann wieder beim ersten
DATA-Element.

Beispiel fiir READ-DATA:

10 READ A,B,C
20 PRINT A,B,C
30 DATA 2,5,10

Beispiel fir READ-DATA mit RESTORE

10 READA,B,C
20 PRINT A

25 RESTORE

27 READ B

30 PRINT B

40 PRINT C

50 DATA 2,5,10

RUN
2

2

10

Mit RESTORE und READ konnen Sie jetzt ein-
mal einige Versuche mit diesem kieinen Pro-
gramm machen. Sie sehen dann genau, wie Sie
diesen Befeh! in Zukunft niitzlich einsetzen
kénnen. RESTORE arbeitet beim PET 2001 nur
mit numerischen DATA-Elemente, nicht mit
Strings.

Die Fortsetzung dieses BASIC-Kurses findr~n
Sie in dem Buch

“BASIC fiir Fortgeschrittene’’
Best.-Nr.: 122 39,— DM

vom Hofacker Verlag.

163

Literatur- und Quellenverzeichnis

1. BASIC, Robert L. Albrecht, Leroy Finkel und Jerald R. Brown,
John Wiley + Sons. Inc. New York, London, Sydney, Toronto

2. FIRE BASIC-USER-GUIDE, Fairchild 464 Ellis Street, Mountain
View, CA 94042, USA

3. The BASIC Cookbook, Ken Tracton, TAB Books (Hofacker Verlag,
Holzkirchen)

4. BASIC Programmieren fiir Anfanger, Haase/Stucky,
Bibliographisches Institut, Mannheim

5. North-Star-Horizon, Prospekt

6. APPLE Il Reference Manual, Apple Computer Inc.
10260 Brandley Dr. Cupertino, CA 95014, USA

7. BASIC fiir blutige Laien (Best.-Nr. 139), Hofacker Verlag GmbH,
Holzkirchen

8. BASIC fiir Fortgeschrittene (Best.-Nr. 122), Hofacker Verlag GmbH,
Holzkirchen

Besonderen Dank gilt Herrn Flogel, der dieses Buch sorgfiltig iiber-
arbeitet hat.

154

Leercassetien fur

iMicrocompuier

Cc-10

Die ideale Cassettenlange fiir lhren Personalcomputer.
Praktisch — handlich und betriebssicher

Kassetten mit nur 10 Minuten Spieldauer (2 x 5 Minuten) haben sich zur Aufzeichnung von Daten
im Mikrocomputerbereich bestens bewahrt.

Vorteile der C-10 Computer Cassette vom Die C-10 HOFACKER Datencassette bietet

HOFACKER Verlag: weiterhin:

® weniger Bandsalat ® extrem hoch aussteuerbares Bandmaterial
@ kurze Riickspulzeiten (Agfa)

® schnelles Auffinden von Programmen ® hochwertiges Cassettengehiduse, 5fach ver-
® bessere Gleichlaufeigenschaften schraubt

‘® einfache Programmverwaltung ® Tefloneinlage fiir gute Laufruhe

® Staubdichtes Glasfenster

Die C-10 HOFACKER Datencassette wird seit 1978 speziell fiir Microcomputeranwender produziert.,
Die Cassetten bieten ein HochstmaR an Betriebssicherheit beziiglich fehlerfreier Aufnahme und Wieder-
gabe.

Hier eine kurze Ubersicht iiber die Anzahl der Bytes, die Sie auf eine C-10 Cassette abspeichern
konnen:

Computer Speichermdglichkeit Computer Speichermdglichkeit
ATARI 400/800 16K APPLE 36K
Sharp MZ-80 32K APPLE 11 16K
AIM 65 16K Heathkit 36K
Ohio Scientific 10K Kansas City Std. 16K
TRS-80 16K KIM-1 12K
TRS-80 Color Computer| 24K NASCOM 12K
Video Genie 16K Exidy Sorcerer 12K
Sinclair ZX80/81 16K SYM-1 12K
BESTELLSCHEIN Lieferanschrift
Menge | Beschreibung Preis/DM | Gesamt NBME. o oo oo
1 Cassette 3,50 SHraBe . ..ot
10 Cassetten 29,80 (072 PPN
100 Cassetten 249,00
Datum........ Unterschrift
o c— — e c—— — —— —IL. — — —— — — d— — — —— —— o— — — — — — — —

Ing. W. Hofacker GmbH
Tegernseerstr. 18
D—-8150 Holzkirchen

Tel.: (080 24) 73 31

Weitere interessante Biicher von Hofacker:

Best.-Nr. Titel Preis/DM | Best.-Nr. Titel Preis/DM
Biicher in deutscher Sprache 133 Handbuch fiir MS/DOS (i. V). 29,80
aus dem Hofacker-Verlag 137 FORTH Handbueh'. . =0 Dl L Sl wd s 49,00
1 Transistor Berechnungs- und Bauanleitungsbuch — 1. 29,80 | 139 BASIC fir blutige Lalen e L Un e B b 19,80
2 Transistor Berechnungs- und Bauanleitungsbuch — 2. 19,80 140 Progr. i. BASIC u. Maschinencode mit dem ZX81. .. 29,80
G Elaktronikim AGLD. e e e 9.80 141 Programme f. VC-20 (Spiele, Utilities, Erweiterungen) 29,80
4 IC-Handbuch, TTL, CMOS, Linear. 19,80 | 143 35 Programme fiir den ZX81. 29,80
5 1C-Datenbuch, TTL, CMOS, Linear 9,80 | 144 33 Programme fiir den ZX-Spectrum 29,80
6 1C-Schaltungen, TTL, CMOS, Linear 19,80 | 145 64 Programme fiir den Commodore 64 39,00
7 Elskvonik Schaltangen . . & .. 000, Do Dy 19.80 | 146 Hardware-Erweiterungen fiir den C-64 (i. V) . . . 39,00
8 IC-Bauanleitungs-Handbuch 19,80 | 147 Beherrschen Sie Ihren Commodore 64 -
O Faldettek ttrantistoren | s ihe s i 9,80 148 Programmierhandbuch fir SHARP.
10 Elsktronikiund Radip < ¢ it (Rt A 19,80 | 149 Programme fiir TIO9/4A
11 AC-NEVareteRer 4, Vo) icimo b 0 e s 9,80 | 175 Astrologie auf dem ATARI800.
12 Beispiele integrierter Schaltungen (BIS) 19,80 | 8029 Z-80 Assembler-Handbuch
13 HEH, Hobby Elektronik Handbuch 9,80 = : :
15 Optoelektronik Handbuch 19,80 Biichef in ang.hsc"er Sprache
16 CMOS Teil 1, Einfihrung, Entwurf, Schaltbeispiele, . 19,80| 1 Von ELCOMP Publishing, Inc., Los Angeles, CA.
17 CMOS Teil 2, Entwurf und Schaltbeispiele 19,80 150 Care and Feeding of the Commodore PET. 19,80
18 CMOS Teil 3, Entwurf und Schaltbeispiele 19,80 151 8K Microsoft BASIC Reference Manual 9,80
19 IC-Experimentier Handbuch W sl 19,80 152 Expansion Handbook for 6502 and 6800 19,80
20 Operationsvertarker 154 Complex Sound Generation using the SN76477 9,80
21 Digitaltechnik Grundkurs 156 Small Business Programs.. oo Ui s st iy
22 Mikroprozessoren, Eigenschaften und Aufbau 19,80 158 The Second Book of Ohio Scientific
23 Elektronik Grundkurs, Kurzlehrgang Elektronik. 9.80| 159 The Third Book of Ohio Scientific.
24 Progr. in Maschinensprache mit Z80,Band H 29,80 160 The Fourth Book of Ohio Scientific
25 68000 Microcomputer Einfilhrung (i. V.) 39,00 | 161 The Fifth Book of Ohio Scientific . . .
26, Mikroprazessor sTmil @ i\ e BnGi s sl s 19,80 | 162 ATARI Games in BASIC...................
27 BASIC-M Anwender-HB f. 6800/09/68000 (Motorola) . 29,80 | 163 The Peripheral Handbook (i. Vo) 29,80
28 Lexikon + Worterbuch f. Elektr. u. Mikroprozessor. . 29,80 | 164 ATARI-BASIC Learningby Using 19,80
29 Mikrocomputer Datenbuch. 49,80 166 Programming in 6502 Machinelanguage PET/CBM .. 49,00
30 Floppy Disk Selbstbau-Handbuch (i. V.) 49,00 169 How to Progr. your ATARI in 6502 Machinelanguage . 29,80
31 87 Pidoramme inBASIC . et 39,00 170 FORTH on the ATARI| — Learningby Using 29,80
33 Microcomputer Programmierbeispiele. 19.80| 171 See the Future with your ATARI (Astrology) 49,00
34 TINY-BASIC Handbuch 19,80| 172 Hackerbook | (Tricks + Tips for your ATARI). 29,80
35 Der freundliche COmputerovn.n 29,80 173 PD-Program Descriptions (ATARI) 9,80
103 Oszillographen-Handbuch. 19,80 | 174 ZX-81/TIMEX Progr. i. BASIC a. Machine Lang. . .. 29,80
108 Rund um den Spectrum (Progr., Tips und Tricks). . . 29,80 176 Programs+ Tricks forVAC's o o Sl v it 29,80
109 6502 Microcomputer Programmierung 29,80 | 177 CP/M — MBASIC and the OSBORNE 29,80
110 Programmierhandbuch fir PET 2980 178 The APPLEinYourHand 39,00
111 Programmieren mit TRS-80 (Video Genie) 29,80 | 182 The Great Book of Games Vol. | - Games f. the C64. 29,80
112 PASCAL-Programmier-Handbuch 2980 183 Moreon theSixtyfour. 39,00
Hi gASIC-Programmler?Handl?uch Ceeneieaeien 19,80 Riesenprogrammsammlung in BASIC
er Microcomputer im Kleinbetrieb. 39,80 8048 BASIC Soft Vol. VI 199 00
115 6809 Programmier Handbuch (i. V.). . dooailic et inic bt ok B L e eigee
116 Einfuhrung 16-Bit Micorocomputer 29,80 8050 BASIC Sof oL VAR i Tl G T SR :
117 FORTRAN fiir Heimcomputer 19,80 OINRE S0 b ol e 29,00
118 Programmieren in Maschinensprache mit dem 6502. . 49,00 st Basio SotmwaeVolll o e s b 99,00
119 Programmieren in Maschinensprache (Z80) Band | .. 39,00 HbepnnlDgomarevallll i i o0
120 Anwenderprogramme fir TRS-80 u. Video Genie . . . 29,80 S053BASICOOINAt VMOLILV L Rl e e v b
121 Microsoft BASIC-Handbuch B0 a0 |- SBEBaSICSntWARNOL Yoc s b S S2.00
122 BASIC fir Fortgeschrittene ', . covii L S 39,00 | Der Hofacker Verlag produziert und vertreibt neben einer sehr
193 fECBus Handbliehey 7 (oL deisilera Gl i 19,80 | groBen Auswah! an Fachbuchern fur Elektronik und Micro
124 Programmieren i. Ma.-Sprache mit Commodore-64 . . 29,80| computertechnik noch:
127 Einfuhrung i. d. Microcmputer-Progr. mit 6800 49,00| — Leerplatinen und Bauanleitungen fiir Zusatzeinrichtungen fur
128 Programmieren mitdem CBM 29,80 Ihren Personalcomputer, sowie
130 Programmierbeispiele fir CBM 1980 - Programme (Software) fur die bedeutenden Personalcomputer.
330 CPIM-BPandbuch . & i o dyniie i s e n s 19,80 | (i. V. bedeutet: Buch ist in Vorbereitung)

HOLZKIRCHEN

SINGAPORE

LOS ANGELES

ISBN 3-921682-48-7

