
  

[
n
n
 

cd 

  
5 
j 

| | 

2 

; 

       



ISBN 3—921682—48—7 

Es kann keine Gewähr dafür übernommen werden, daß die in diesem Buche ver- 

wendeten Angaben, Schaltungen, Warenbezeichnungen und Warenzeichen, sowie 

Programmlistings frei von Schutzrechten Dritter sind. Alle Angaben werden nur für 

Amateurzwecke mitgeteilt. Alle Daten und Vergleichsangaben sind als unverbind- 

liche Hinweise zu verstehen. Sie geben auch keinen Aufschluß über eventuelle 

Verfügbarkeit oder Liefermöglichkeit. In jedem Falle sind die Unterlagen der 

Hersteller zur Information heranzuziehen. 

Nachdruck und öffentliche Wiedergabe, besonders die Übersetzung in andere 

Sprachen verboten. Programmlistings dürfen weiterhin nicht in irgendeiner Form 

vervielfältigt oder verbreitet werden. Alle Programmlistings sind Copyright der 

Fa. Ing. W. Hofacker GmbH. Verboten ist weiterhin die öffentliche Vorführung 

und Benutzung dieser Programme in Seminaren und Ausstellungen. Irrtum, sowie 

alle Rechte vorbehalten. 

COPYRIGHT by Ing. W. HOFACKER © 1984, 

Tegernseerstr. 18, 8150 Holzkirchen 

6. völlig neu überarbeitete Auflage 1984 

Gedruckt in der Bundesrepublik Deutschland — .Printed in West-Germany — 

Imprime’en RFA.



BASIE 
Programmier-Handbuch 

  

C. Lorenz 

Einfuhrung und 
Nachschlagewerk 

Speziell fur die BASIC-Versionen der modernen 
Personal-Computer





Vorwort 

Die grundlegende Verbindung zwischen dem Programmierer und dem 

Computer ist die Programmiersprache. Eine der erfachsten und sehr 

leicht erlernbaren Computersprachen ist BASIC. Dieses Buch will Ihnen 

die Grundelemente von BASIC mitteilen und Sie in die Lage versetzen, 

selbst Programme schreiben zu können. 

Die Beispielprogramme wurden auf SINCLAIR, APPLE, ATARI und 

COMMODORE Rechnern getestet. Auf Unterschiede zwischen den 

einzelnen BASIC Dialekten wird hingewiesen. Das Buch eignet sich 

darüber hinaus jedoch für alle heute am Markt befindlichen Personal- 

computer. 

Neben den ausführlichen Befehlsbeschreibungen findet der Leser einen 

BASIC-Einsteiger Kurs für Anfänger, der besonders den Erstanwender 

ansprechen soll. 

Als Nachschlagewerk wird es dem erfahrenen Programmierer immer 

zur Seite stehen. 

Wir wünschen Ihnen beim Programmieren viel Spaß und hoffen, daß 

auch Sie später einen praktischen Nutzen daraus ziehen können. 

Holzkirchen, Frühjahr 1984 C. Lorenz





Inhaltsverzeichnis 

Einfuhrung ....... 0c ce ect eee ee eee nenn 1 

Allgemeines... 0... 0. cc cc ee ee ete ner nennen 1 

Was ist ein Programm ?....... 00 cc ee ee ee ee eee eee tenes 2 

Wir wollen nun anfangen zu programmieren..........00000aee 3 

Schreiben eines BASIC-Programmes .... 22 nos eos een 3 

Der prinzipielle Aufbau eines Rechners............00cceveeeaee 5 

Systembefehle. ....... 2222 no 200 nn nn Er nenn nn 9 

1 1 0] || ER 11 

STOP... ccc et ee ee eee t eee eee eee eeenas 11 

| .2ooooouounenn nenn nennen 11 

LIST NM wo... ccc ce er ee ee ee eee ete ae aeaes 13 

eS unennnner nennen rer nennen nen 13 

SAVE soo onen nennen nennen ernennen 15 

LOAD... cc eee ec tee etn eee een e ene 17 

FRE(X). 0. ce ee et eee eee eee eee tee e eee 17 

Programm Anweisungen ......... 0c cece eee nee eee eeanees 19 

LET. Ce ce ee ee eee teen e eee nent tetas 21 

PRINT. 2... 0. ccc ee ete eee te eee tee tenet enene 25 

1 17, = 27 

PRINT AT. 2... cc ccc cc ee et eet ee eee ee eee etna eees 29 

N 1 U ee ee rete teeter eeeenes 31 

INKEYS .. 0. ce ccc ce ee ee tee eee eee tee enes 33 

0] = ER 35 

READDATA .....2: 2 soon seee nennen rennen en 37 

RESTORE....... 2:2 cos eonnneeennesren rennen nenne 39 

15 1 2 1 41 

(CT 6 1 1 0 DR 43 

IF... THEN...oooooocoeouueeneenennenrene nennen 45 

FOR ...NEXT. 0... ccc ee ee ee tee eens ena 47



POKE ..... om om ennur ernennen nn ran 57 

GOSUB ...RETURN............ 0. nennen 59 

ON ...GOSUB....... 0. ccc ee ee ee eee eens 61 

ON ...GOTO.... cc eee ee ee eens 63 

ON ERROR GOTO..........,. cee ec ee eee eee eee 65 

USR(X). oc ce ee ee en ee eee ee teen t eee eee eeeene 67 

Funktionen... 0... eee ee eee eee eee ee eee eee ee eee 69 

RND 0... ccc ee ee ee eee eee eee ee tee eee e eens 71 

DS een 73 

No] 6] 5 75 

[N > Ve RER 77 

SD nern 79 

COS. cc eee eee eee eee eee eee eee e nee 79 

TAN oo een 81 

7 81 

© | Cn 81 

EXP. eee cee eee eee eee eee ene tee eens 83 

SGN woo. cc ee ee ee ee eee eee tee eee ween eens 83 

DEF FN .. 1... ce ee ee eee ten eee eee eee 85 

[N \\ | 87 

6 ] > 89 

NOT oo onen een 91 

Funktionen fiir Zeichenketten. ..........00 cece eee en eeneees 93 

ASCHXD) : 2 22 2er 95 

CHRG(X). 222er 97 
LEN(X8).......... ER 99 

LEFTEIXDN) 222er ernennen 101 

MIDE(XG$,Y,Z) . 0. ee ene ee eee eee nea 103 

RIGHTS(XG,Y). 0... ce ee eee eee eee eee eeens 107 

STREÄN) 2: oo nennen 109 

VALIND) 22er en 111 

BASIC-Grundkurs. .. 2.222220 nun lo nennen nn 113 

~ Wie lernt man BASIC ?............0000% eee eee nes 133



Einführung 

Einführung 

Die Programmiersprache BASIC gehört zu den einfachsten höheren 

Programmiersprachen und wurde zu Anfang der 60er Jahre im ameri- 

kanischen Darthmouth College entwickelt. 

Sie läßt sich sehr leicht erlernen und bietet doch ein sehr leistungs- 

fähiges Werkzeug für den Programmierer. Der Erfolg dieser Program- 

miersprache rührt auch daher, daß BASIC in 90% aller Time-Sharing- 

Systeme verwendet wurde, und daß die Minicomputer ein erweitertes 

BASIC enthielten. Bei den modernen Microcomputern ist es heute 

selbstverständlich, daß ein BASIC-Interpreter zur Verfügung steht. Der 

große Einsatzbereich hat natürlich dazu geführt, daß sich unzählige 

BASIC-Versionen bis heute herausgebildet haben. 

Dieses Buch will Ihnen die Version näher bringen, die heute auf den 

modernen Microcomputern implementiert ist. Wenn Sie es gelernt 

haben, diese eine Version anzuwenden, ist es sehr leicht, auch mit 

einer anderen Version zu arbeiten. Sie werden bald sehen, wie einfach 

es ist, sich selbst seine eigenen Programme zu erstellen (sei es für die 

Buchhaltung, Textverarbeitung, math. wissenschaftliche Probleme 

oder auch nur zur Unterhaltung). 

Allgemeines 

Die Popularität von BASIC läßt sich ganz kurz auf die wichtigsten 

Punkte zurückführen: 

1. Einfache Ausdrücke, die sich auf eine begrenzte Zahl von Befehlen 

beschränken. 

2.Die Möglichkeit, mit Strings (Zeichenketten) und Matrizen zu 

arbeiten.



3. Eingabe und Editiervorgänge sind einfach zu handhaben. Leichte 

Fehlersuche und Anwendungsmöglichkeit. 

4. Leichte Übersetzung durch einen Interpreter, der zwar relativ lang- 

sam ist, aber eine interaktive Arbeit zwischen Programmierer und 

Computer ermöglicht (z. B. beim Fehlersuchen und Fehlerbeheben). 

5. Relativ einfache Programmerstellung. 

Erklärungen 

Strings 

Die Behandlung von Zeichen im Computer (anstelle von Zahlen). Sie 

befinden sich meist bereits in einer angeordneten Reihenfolge. 

Implementieren 

Auf ein System zuschneiden. In ein Computersystem anpassen. 

Interpreter 

Ein Interpreter ist jede Programmiersprache, die die Befehle des 

Quellenprogrammes direkt ausführt. Jeder Befehl wird für sich inter- 

pretiert und ausgeführt. Es wird nicht erst das gesamte Programm in 

Maschinensprache übersetzt und dann die Ausführung begonnen (dies 

ist der Unterschied zum Compiler). 

Sie werden sicher auch oft vergeblich nach einfachen Erklärungen von 

schwierigen Zusammenhängen gesucht haben, wobei man Ihnen jedoch 

meist mit komplizierten Antworten auf einfache Fragen geantwortet 

hat. 

Wir wollen jedoch im nachfolgenden Buch versuchen, Ihnen den Start 

in die BASIC-Programmierung so einfach wie möglich zu machen. Sie 

sollten nach Durcharbeitung des Buches in der Lage sein, selbstständig 

Programme zu entwickeln oder vorhandene Programme auf Ihren 

Bedarf abzuändern. 

Was ist ein Programm ? 

Ein Programm ist ein Paket von Befehlen, oder auch ein Rezept, 

Welches verwendet wird, dem Computer eine Information zu geben, 

damit er uns ein gewünschtes (gesuchtes) Ergebnis liefert. 

2



Man gibt dem Computer eine Reihe von Daten (Zutaten beim Kuchen- 

backen) ein, die nach bestimmten Befehlen verarbeitet werden 

müssen (z. B. beim Backen: 1/4 Stunde rühren, etc.). Alles muß in 

einer bestimmten Reihenfolge eingegeben und verarbeitet werden. Am 

Ende erhalten wir dann ein Ergebnis (beim Backen ist es eben der 

Kuchen). 

Wenn Sie Fehler machen, geht es Ihnen genau so wie beim Kuchen- 
backen. Es wird dann halt kein Kuchen, sondern eine Pizza. 

Ein Programm (dies gilt für alle Programmiersprachen) muß folgende 

Bedingungen erfüllen, um einwandfrei laufen zu können. 

1. Der Computer muß die Sprache des Programmierers verstehen. 

2. Alle Anweisungen müssen so gegeben werden, daß sie der Computer 

auch versteht. Der Computer tut immer das, was Sie ihm eingeben. 

Sorgen Sie aber dafür, daß Sie ihm das eingeben, was Sie ihm wirklich 

mitteilen wollen. 

Wir wollen nun anfangen zu programmieren 

Das Programmschreiben in BASIC ist sehr einfach. Deshalb wollen wir 

jetzt gleich mit unseren ersten Versuchen beginnen. Wichtig ist es, 

daß Sie ein Computersystem zur Verfügung haben. Das Lernen auf dem 

"“Trockenen’’ kann wie das Wort im doppelten Sinne schon sagt, sehr 

trocken sein. Aber es gibt heute bereits so preiswerte BASIC-Computer, 

so daß es nicht so schwer sein dürfte, sich einen zu beschaffen oder aus- 

zuleihen. 

Schreiben eines BASIC-Programmes 

Um ein BASIC-Programm zu schreiben, müssen Sie zuerst einmal eine 

Zeilenzahl eingeben. Der Zeilenzahl muß ein Statement (Befehl) folgen. 

Die Zeilenzahlen werden vom erfahrenen Programmierer so gewählt, 

daß man später noch etwas einfügen kann (z. B. fängt man mit Zeile 10 

an und numeriert die Zeilen dann im Abstand von 10 nach oben). 

Der Computer führt das Programm dann der Reihenfolge nach aus. Er 

beginnt mit der niedrigsten Zeilenzahl und arbeitet sich dann aufwärts 

3



weiter. Geben Sie z. B. zwei Zeilen mit der gleichen Zeilenzahl ein, wird 

die erste Zeilenzahl und der in der gleichen Zeile stehende Text über- 

schrieben.



Der prinzipielle 
Aufbau 

eines Rechners 
Der prinzipielle Aufbau eines Rechners 

Die folgende Abbildung zeigt den prinzipiellen Aufbau eines Rechners. 

    

  

Kassette . Diskette     
          
  

  

  

  

  

      

  

  

    
      

rn 

| 

| 
| ROM | = 

Drucker 

| | 
| RAM- 
| Speicher | 

| | 
Bild-Speicher 

| | 

| | Bildschirm 

, | 

LT ce | 
Lo Ld   
  

  

Tastatur



Innerhalb des gestrichelten Teils befindet sich der eigentliche Rechner. 

Er besteht aus einem Speicher, der Zentraleinheit und dem Ein-/Aus- 

gabeteil. 

Der Speicher ist aus zwei verschiedenartigen Elementen zusammen- 

gesetzt. Dies ist der RAM- und ROM-Speicher. 

RAM bedeutet Random-Access-Memory, d. h. Speicher mit wahl- 

freien Zugriff. Jede einzelne Zelle dieses Bereiches kann beschrieben 

und gelesen werden. 

Der ROM-Speicher ist ein ‘‘Nur Lese Speicher’’ (Read Only Memory). 

Aus diesem Bereich können nur Daten gelesen, aber nicht einge- 

schrieben werden. In diesem Speicher ist das Betriebssystem des 

Rechners gespeichert, das nach dem Einschalten des Rechners aktiv 

wird und auch der BASIC-Interpreter gespeichert. 

Die CPU (Central Prozessing Unit) überwacht diesen Speicher und 

führt die dort gespeicherten Befehle aus. Diese Befehle sind nicht 

Worte der BASIC-Sprache, sondern Bitmusterfolgen, die durch diese 

Worte aufgerufen werden. 

Außerhalb der gestrichelten Linie befinden sich die externen (peri- 

phere) Geräte. Für die Eingabe wird eine Tastatur verwendet. Von ihr 

werden Bitmuster über den Ein-/Ausgabeteil (l/O) in den Speicher 
gebracht. Nach betätigen der RETURN-Taste wird die Eingabe ent- 

schlusselt und das Betriebssystem oder der BASIC-Interpreter ent- 

sprechend verzweigt. 

Die Ausgabe erfolgt in den meisten Fällen auf einem Bildschirm. Dieser 

benötigt einen kleinen Teil des RAM-Speichers, um die Zeichen, die auf 

dem Bildschirm angezeigt werden, zu speichern. Über die Ein-/Ausgabe- 

Schnittstelle sind auch der Massenspeicher, Kassettenrekorder oder 

das Diskettenlaufwerk angeschlossen. Mit diesem werden auf Magnet- 

bändern oder Disketten Daten aus dem Speicher aufgezeichnet. 

Für die Druckausgabe kann über die gleiche Schnittstelle ein Drucker 

angeschlossen werden. Dieser Prinzipielle Aufbau gilt für alle Rechner. 

Für den normalen Benutzer spielt es keine Rolle, welche Zentraleinheit 

6



(CPU) verwendet wird. Die bekanntesten sind: 

6502 (APPLE, ATARI, COMMODORE) 

Zz80 (ZX81, SPECTRUM, TRS-80, GENIE, SHARP) 

8080 (in älteren wie ATARI, Dai, usw.) 
6909 (Dragon Color Computer) 

8085 (TRS-80 Model 100) 
8088 (IBM-PC-Junior, IBM PC) 

  
Im Bild sehen Sie den Commodore-64



NOTIZEN



  

Systembefehle 
Dies sind Befehle, die das Betriebssystem (Monitor) ver- 

anlassen, ein BASIC-Programm zu starten, auf einem 

externen Speicher abzulegen oder einen Programmausdruck 

auf den Bildschirm auszugeben. 

 





    RUN 
RUNN 

RUN startet ein Programm. Wird RUN ohne Zahl eingegeben, so wird 

bei der ersten Zeilennummer begonnen. Wird zum Beispiel RUN 1000 

eingegeben, so beginnt das Programm bei Zeilennummer 1000. RUN 

löscht die Werte aller Variablen und Felder. 

  

STOP 
STOP hält ein Programm an. Die Zeilennummer der STOP-Anweisung 

wird ausgegeben. Werden keine Veränderungen im Programm vorge- 

nommen, so kann es mit CONT fortgesetzt werden. Durch die GOTO- 

Anweisung kann ein Programm an einer anderen Zeilennummer fort- 

gesetzt werden, ohne daß die augenblicklichen Werte der Variablen 

geändert werden. 

END 
END 

Die Anweisung END beendet ein Programm. 

11



12 

NOTIZEN



LIST N,M 
LIST 

LIST NM 

LIST gibt ein Programm auf den Bildschirm aus. Wird hinter LIST nur 

eine Zeilennummer angegeben, so wird diese Zeile ausgegeben. Werden 

zwei Zeilennummern angegeben, so wird von Zeile N bis Zeile M 

ausgedruckt. M muß größer N sein. | 

Für die Ausgabe auf einen Drucker müssen unter Umständen weitere 

Angaben gemacht werden. Bei einigen Rechnern (TRS-80, ZX81, 

SPECTRUM) wird durch LLIST N,M das Programm auf den Drucker 

ausgegeben. 

Beim APPLE wird nur LIST eingegeben. Vorher muß aber durch 

PR# (NR) der Drucker eingeschaltet werden. (NR) ist die Nummer des 

Steckplatzes, in welchen die Interfacekarte für den Drucker steckt. 

Beim ATARI wird die Ausgabe auf den Drucker durch LIST ‘P:’ 

eingeleitet. 

Beim COMMODORE-64: LIST N—M 

NEW 

  

NEW 

NEW löscht das Programm im Speicher. 

13



14 

NOTIZEN



SAVE 

SAVE 

SAVE wird zur Speicherung eines Programmes auf Kassette oder 

Diskette verwendet. Dieser Befehl ist bei allen Rechnern verschieden. 

Einige Beispiele: 

2X81, SPECTRUM 

Speichern auf Kassette mit SAVE “NAME” 

APPLE II 

Speichern auf Kassette mit SAVE 

Speichern auf Diskette mit SAVE NAME 

ATARI 

Speichern auf Kassette mit SAVE’C:NAME’ 
oder CSAVE’NAME” 

Speichern auf Diskette mit SAVE’’D:NAME” 

COMMODORE-64 
Speichern auf Kassette mit SAVE ‘“‘NAME” 

Speichern auf Diskette, Device # 8 mit SAVE "NAME’'8 

15



16 

NOTIZEN



LOAD 

LOAD wird zum Lesen eines Programmes von Kassette oder Diskette 

verwendet. Dieser Befehl ist bei allen Rechnern verschieden. 

Einige Beispiele: 

ZX81 und SPECTRUM 

Laden von Kassette mit LOAD“NAME“ 

Ist der Name nicht bekannt, so wird durch LOAD’ (kein Zwischen- 
raum zwischen “ ‘') das nächste Programm geladen, das auf der Kassette 

gefunden wird. 

APPLE II 

Laden von Kassette: LOAD 

Laden von Diskette: LOAD NAME 

ATARI 

Laden von Kassette: LOAD “C:NAME” 

| oder CLOAD’NAME” 

Laden von Diskette: LOAD “‘D:NAME“ 

COMMODORE 64 
Laden von Kassette: LOAD “NAME” 

Laden von Diskette, Device # 8: LOAD "NAME" ,8 

FRE(X) 
PRINT FRE(X) gibt den für ein BASIC-Programm noch freien Speicher- 

platz aus. X ist eine Variable, die keine Bedeutung hat (Dummy). 

  
17



18 

NOTIZEN



  | Programm- 
Anweisungen 

: Diese Befehle dienen zur Festlegung des Programmablaufs. 

Damit werden Variablen Werte zugewiesen, endliche 

| Schleifen durchlaufen oder Programme verzweigt.   
  

  
19





LEI 

LET 

Zuweisungs- oder Anweisungsbefehl 

Variablen können wir uns als kleine Kästchen im Computer vorstellen, 

denen durch LET Werte zugewiesen werden. 

Hier kommt der Wert 

der Variablen hinein 

Bezeichnung der 

Variablen > 

  

  

  

  

  

A 0 

0 

C 0 

D 0 

E 0         
Bei vielen BASIC-Versionen kann man das Wort LET aus Rationali- 

sierungsgrunden weglassen. 

10 LET X = 1 wird dann einfach zu 10 X = 1. 

Nur beim ZX81 und beim SPECTRUM muß LET eingegeben werden. 

Beide Rechner überwachen auch die Zuweisung von Werten an 

Variablen. Ist in der Zeile 

20 LET X=A+1 

21



der Variablen A noch kein Wert zugewiesen worden, so erscheint eine 

Fehlermeldung. 

Wollen wir jetzt eine neue Variable E einführen, und dieser den Wert 8 

zuweisen, so können wir dies dem Computer mit der Zuordnungsan- 

weisung: 

100 LET E=8 

mitteilen. Die Variablen können wir mit den Buchstaben des Alpha- 

betes festlegen. Bei den meisten BASIC-Versionen kann man Variablen- 

namen auch aus mehreren Buchstaben zusammensetzen. Die Werte, 

die der Variablen zugeordnet werden können, sind Zahlen beliebiger 

Größe, mathematische Ausdrücke oder auch Strings (Zeichenketten). 

110 LET F=-259 
120 LET G=5*9 
130 LET H=F*E 
140 LET I=J*K 
150 PRINT G 
160 PRINT H 
170 PRINT I 

Es können auch Variable einer anderen Variablen zugewiesen werden. 

Hier ist es jedoch wichtig, daß die als Wert verwendete Variable vorher 

einen Wert zugewiesen bekam. 

Wenn nicht, wird ihr Wert einfach mit Null angenommen. Sie können 

dies leicht nachprufen, wenn Sie jetzt die obigen Programmzeilen ein- 

geben und mit RUN 100 starten, können wir uns die Ergebnisse an- 

sehen. Das geschieht mit den PRINT-Befehlen. Sie geben uns die Werte 

für G, H und | auf dem Bildschirm aus. 

Wie schon erwähnt, können wir einer Variablen auch eine Zeichenkette 

zuordnen. 

180 LET H$="HOFACKER" 
190 LET G$="VERLAG" 
200 PRINT H$,G$ 

22



210 PRINT G 
220 PRINT H 

Geben wir dies nun ein und starten ab Zeile 180 mit RUN 180 (oder 

GOTO 180) so sehen wir, da& der Stringvariablen HS der Wert “HOF- 

ACKER” und der Stringvariablen G% der Wert ‘“VERLAG” als Zeichen- 

kette zugewiesen wurde. Wir drucken dies aus, um das Ergebnis zu 

sehen. 

Wir drucken auch noch einmal die Vairablen G und H aus. Wir sehen, 

sie sind nicht durch G$% oder H$3 verändert worden. 

Eine. Veranderung der Werte kann bei Variablen und Stringvariablen 

nur durch eine neue Anweisung erfolgen. 

230 LET G$="SOFTWARE" 
240 LET G=6*8 
250 PRINT H$,G$ 
260 PRINT G 

Wir geben RUN 100 und sehen, wie sich die Sache verändert. Pro- 

bieren Sie auch einmal mit einem Semicolon zwischen den Strings 

H$ und G$ (H$; G$) und sehen Sie sich das Ergebnis an. 

7 LET X$=" HANS" 
10 PRINT "BASIC", "HANDBUCH" 
20 PRINT 19*4/3 
30 PRINT A;B;C;D 
40 PRINT "SERVUS";X$ 
50 PRINT tesa 

100 LET E=8 
110 LET F=-259 
120 LET G=5*9 
130 LET H=F*E 
140 LET I=J*K 
150 PRINT G 
160 PRINT H 

23



170 
180 
190 
200 
210 
220 
230 
240 
250 
260 

24 

PRINT I 
LET H$="HOFACKER" 
LET G$="VERLAG" 
PRINT H$,G$ 
PRINT G 
PRINT H | 
LET G$="SOFTWARE" 
LET G=6*8 
PRINT H$,G$ 
PRINT G



PRINT     
PRINT 

10 PRINT "BASIC", "HANDBUCH" 
20 PRINT 19*4/3 
30 PRINT A;B;C;D 
40 PRINT "SERVUS";X$ 
50 PRINT "s# esse 

Der PRINT-Befehl dient dazu, ein Ergebnis, die Werte von Daten, 

Variablen oder Strings (Zeichenketten) auf eine Ausgabeeinheit zu 

bringen. Die Ausgabeeinheit kann ein Drucker, ein Bildschirm, eine 

Siebensegmentanzeige etc. sein. Wie Sie aus dem Beispielprogramm 

ersehen, können auch mehrere Variablen oder Zeichen nach einem 

PRINT-Befehl folgen. 

Für die Ausgabe von Daten stehen einfache Formatierungsbefehle zur 

Verfügung. Ein Komma (,) fügt zwischen die Ausgabe von zwei 

Variablen oder Strings 10 Leerzeichen ein. 

Beispiel: 
10 A=1:B=2 

20 PRINT A,B 
RUN 
1 2 

Wird in Zeile 20 das Komma durch einen Strichpunkt ersetzt, so 

werden die beiden Variablen ohne Zwischenraum nebeneinander aus- 

gegeben. 

10 A=1:B=2 
20 PRINT A;B 

RUN 

12 

Soll Text ausgegeben werden, so muß dieser in Anführungszeichen 

25



gesetzt werden. Soll zum Beispiel zwischen den beiden Zahlen ein 

Zwischenraum eingefügt werden so wird Zeile 20 wie folgt geändert. 

20 PRINT A;" ";B 

Wird eine PRINT-Anweisung mit einem Strichpunkt abgeschlossen, 

so wird mit der nachsten PRINT-Anweisung keine neue Zeile ange- 

fangen, sondern die Ausgabe in der gleichen Zeile fortgeführt. 

10 A=1:B=2 
20 PRINT A;" "; 
eo PRINT B 

RUN 
12 

26



TAB 

TAB 

Für APPLE: HTAB 

Die TAB(X)-Funktion sorgt für eine genaue und definierte Positionier- 

rung von Zeichen oder Leerzeichen. Sie muß immer in Verbindung mit 

einem PRINT-Befehl verwendet werden. 

Die TAB-Funktion repräsentiert immer einen absoluten Wert, der den 

Abstand vom linken Bildschirmrand angibt. 

Der Wert in Klammern sollte immer eine ganze Zahl sein. Wenn nicht, 

wird von den meisten BASIC-Versionen automatisch auf- oder ab- 

gerundet. 

Beispiel: 

900 REM TAB DEMO 
905 REM FOR APPLE TAB=HTAB 
907 REM NO SUCH WORD ON THE ATARI 

910 X = 3:Y = 4 

920 A = 1:B = 2:C = 3:D = 4 

930 PRINT A;: HTAB X: PRINT B;: HTAB Y 

940 PRINT C;: HTAB X * Y: PRINT D 

Ob ein Semikolon oder ein Komma zwischen den einzelnen Werten 

gesetzt wird, hängt von Ihrer BASIC-Version ab. Bitte sehen Sie in 

Ihrem Rechner-Manual nach und machen sich entsprechende Notizen. 

27



10 FOR X = 1 TO 10 
20 HTAB X: PRINT "HOFACKER VERLAG" 
39 NEXT X 

JRUN 
HOFACKER VERLAG 
HOFACKER VERLAG 
HOFACKER VERLAG 
HOFACKER VERLAG 
HOFACKER VERLAG 
HOFACKER VERLAG 
HOFACKER VERLAG 
HOFACKER VERLAG 
HOFACKER VERLAG 
HOFACKER VERLAG 

28



PRINT AT 

PRINT AT 

Der PRINT AT-Befehl ist in einigen BASIC-Versionen wie z. B. beim 

TRS-80 Model I Level II und Modell Il und beim Video Genie imple- 

mentiert. Ebenso beim ZX81 und SPECTRUM. 

Er ermöglicht es, daß ein PRINT-Befehl ab einer bestimmten Stelle 

auf dem Bildschirm ausgeführt wird. Die AT-Funktion kann eine Zahl, 

eine Variable oder ein mathematischer Ausdruck sein. Zwischen dem 

String und der Funktion muß ein Komma eingefügt werden. 

5 REM NOT ON APPLE, ATARI, COMMODORE 
10 REM PRINT AT TEST 
20 PRINT AT(22), "ANFANG?" 
30 PRINT AT(D), "ENDE?" 
40 GOTO 40 
93 END 

Beim ZX81 und beim Spectrum folgen nach AT zwei Angaben Z und 

S. 

PRINT AT Z,S; 

Dabei ist Z die Zeile und S die Spalte. 

PRINT AT 10,15; “A” 

schreibt ein A in die 10te Zeile und die 15te Spalte. Nach Z, S muß 

ein Strichpunkt folgen. 

29



- Beispiel für ZX81 

100 
110 
120 
130 
140 
150 
160 
170 
180 

Fur ATARI: 

100 POSITION 8,20:PRINT”A” 

30 

  T 4 
LET AS=" gm, v Leerzeichen 
LET V=0 
FOR H=0 TO 26 
PRINT AT V,H;:AS 
NEXT H 
FOR H=26 TO 0 STEP -1 
PRINT AT V,H;AS 
NEXT H 
GOTO 120



INPUT 

INPUT 

Jetzt wollen wir einmal einen Befehl kennenlernen, der dem Computer- 

programm direkt einen Wert zuführt, d. h., wenn der Computer im 

Laufe seines Programmlaufes feststellt, daß er einen Wert oder eine 

Information vom Programmierer benötigt, muß er sich ja bemerkbar 

machen können. Er tut dies, indem er mit dem Programm anhält und 

einen Wert erfragt. 

Für diesen Zweck verwenden wir den INPUT-Befehl. Dieser Befehl 

bringt den Wert für eine Variable auf Anforderung des Computers in 

die besagten Kästchen. Es gilt hier vieles bzüglich Strings etc. wie bei 

der LET-Anweisung. 

Beispiel: 

300 REM INPUT STATEMENT 
310 LET PI=3.14159 
320 INPUT Y 
330 LET R=SOR(Y)/PI 
340 PRINT "RADIUS=";R 
350 INPUT A,B 
355 LET F=A*B 
360 PRINT "FLAECHE=",F 
370 INPUT X,Y,Z,0,P 
380 LET L=X*Y*Z*0*P 
390 PRINT "ERGEBNIS=";L 
395 END 

Merke: 

Sollten mehrere Eingaben in einer Zeile erfolgen, müssen die einzelnen 

Variablen durch Komma getrennt werden. Siehe Zeile 370. Wie man 

hier mit Zahlen umgehen kann, so kann man es auch mit Zeichenketten 

tun. 

31



100 
110 
120 

130 
140 
150 

160 
170 
180 
190 
200 
210 

220 
230 

REM INPUT MIT ZEICHENKETTEN 
INPUT "WIE HEISST DU ? ";A$ 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT 

: PRINT "DANKE": PRINT 
JETZT WEISS ICH, DASS DU ";A$;'" HEISST" 
DIES BEHALTE ICH SOLANGE, BIS" 
DU DEN WERT A$ AENDERST" 
DURCH PRINT A$ WIRD DEIN NAME" 
IMMER WIEDER GESCHRIEBEN" 
PRINT A$: PRINT 
WILLST DU, DASS ICH DEINEN" 
NAMEN IN DIE GLEICHE ZEILE MIT" 
ABSTAND DRUCKE, SO GILT FOLGENDES:" 

DEIN NAME IST",A$ 
DEIN NAME IST ";A$ 

Bei INPUT-Funktion konnen auch Strings und Werte gemischt werden. 

300 
310 
320 
330 
340 

350 

REM INPUT MIT ZEICHENKETTEN 
REM UND ZAHLEN 
PRINT : PRINT " WIE ALT BIST DU ? ":A$ 
INPUT " "sA 
PRINT " JETZT WEISS ICH, DASS DU ";A;" JAHRE ALT": 
PRINT " BIST" 

PRINT A;" JAHRE IST EIN SCHOENES ALTER" 

Bitte beachten Sie bei diesem Beispiel den Unterschied zwischen dem 

Komma und Semikolon (unterschiedliche Auswirkung). 

32



-INKEY$ 

  

INKEY$ 

Die INKEY$-Funktion finden wir bei den Radio Shack Modellen 

(TRS-80 Model I und Il) sowie beim ZX81 und Spectrum. 

INKEY$ wird dazu verwendet ein Zeichen von der Tastatur her einzu- 

geben, ohne die RETURN-Taste drücken zu müssen, wie wir das vom 

INPUT-Befehl her bereits kennen. 

Viele Computer kennen diesen Befehl leider nicht. Es lässt sich aber 

dann eine kleine Routine schreiben, die eine ähnliche Funktion be- 

wirkt. Man muß wissen wo das Programm liegt, welches die Tastatur 

abfragt. 

Wenn Sie eine bestimmte Taste prüfen wollen, müssen Sie die Variable 

P$ durch eine 1F THEN Funktion vorher abfragen, bevor Sie ein Pro- 

gramm weiterfahren und solange in die INKEY$ Routine springen, bis 

der gewünschte Buchstabe auf der Tastatur gedrückt wird. 

Beispiel für den ZX-SPECTRUM: 

Bewegen des Buchstaben A mit den Cursortasten über den Bild- 

schirm, 

300 LET v=1: LET u=0: PRINT AT v,u;"A" 
310 IF INKEY$ ="5" THEN LET u=su-1 
315 IF u<O THEN LET u=0 
320 IF INKEY$ ="6" THEN LET v=v+1 

325 IF v>17 THEN LET v=17 
330 IF INKEY$ ="7" THEN LET v=v-1 
335 IF v<1 THEN LET vel 
340 IF INKEY$ ="8" THEN LET uzu+¢1 
345 IF u>26 THEN LET u=26 

33



350 GOSUB 208 | 
355 IF INKEY$ ="" THEN GOTO 355 
360 GOTO 310 

34



GET 

GET 

Der GET-Befehl wird beim PET/CBM und APPLE meist zu Abfragen 

ohne Carriage Return (ähnlich INKEY$) verwendet. 

10 
20 
30 
40 

PRINT "EINGABE ";: GET A$ 
IF A$ = "A" THEN PRINT "AHA AHA" 
IF A$ < > "A" THEN GOTO 10 
END 

35



36 

NOTIZEN



READ DATA 
READ DATA 

Wir haben jetzt gesehen, wie man vom Programm her nach einer Reihe 

von Zahlen oder Zeichenketten fragen kann und eine Eingabe von 

außen erwartet. 

Jetzt wollen wir uns mit einem Befehl beschäftigen, der es ermöglicht, 

große Mengen von Daten mit einer Anweisung einzugeben. Man kann 

für diesen Zweck auch den INPUT-Befehl genau so gut benutzen, aber 

dies würde sehr viel Rechnerzeit in Anspruch nehmen. Aus diesem 

Grunde verwendet man in diesen Fällen die READ DATA-Anweisung. 

Diese Anweisung verhält sich bei Zahlen und Strings ähnlich wie die 

LET- und INPUT-Anweisung. Die READ DATA-Anweisung wird vom 

erfahrenen Programmierer so gehandhabt, daß die DATA-Anweisung 

meist an den Schluß des Programmes gelegt wird. Im Programm kann 

dann von den entsprechenden Stellen aus mit dem READ-Befehl aus 

den DATA-Statements gelesen werden. 

Beispiel: 

700 REM READ DATA BEFEHL 
710 REM BEISPIEL 
720 READ N 
730 PRINT N 
740 DATA 10 
750 READ A$ 
760 PRINT A$ 
770 DATA "HOFACKER VERLAG" 
780 READ N,M,0,P 
790 PRINT N,M,O,P 
800 DATA 1,2,3,4 

Die Variablen und String-Variablen müssen immer durch Kommas 

getrennt sein. Dem letzten Wert im DATA-Statement darf kein Komma 

37



folgen. 

Ein schönes Beispiel für die Mischung von Strings und Variablen zeigt 

das folgende kleine Programm: 

810 READ B$,C$,A,B,C 
820 PRINT A;" ":B$; 
825 PRINT B;" ";B$;C;C$;A+B+C 
830 DATA PLUS , ERGIBT ,‚9,2,11 
835 END 

Die erste Variable oder Stringvariable in der READ-Anweisung gehört 

immer zu dem ersten Wert in der unmittelbar folgenden DATA-An- 

weisung. 

Beispiel: 

840 READ R,S 
850 READ T 
860 READ U,V 
870 LET X=R+S-T+U+V 
880 PRINT X 
890 PRINT R,S,T,U,V 
900 DATA 2,3,4 
910 DATA 5 
920 DATA 6 

Sie müssen also beim Programmieren darauf achten, daß Sie immer die 

richtige Zuordnungsreihenfolge einhalten. Auch die Anzahl der Daten 

in den DATA-Statements muß genau mit der Anzahl der READ-An- 
weisungen übereinstimmen. 

Der Unterschied zum INPUT-Befehl besteht jedoch darin, daß die 

Daten in den DATA-Statements als Bestandteil des Programmes zur 

Verfügung stehen müssen. Die Daten verändern sich nicht. 

In DATA-Statements können nur Werte und Strings gegeben werden, 

keine mathematischen Ausdrücke oder Formeln ! 

Leerzeichen müssen wie andere Zeichen auch, zwischen Doppelapo- 

strophe gesetzt werden. 

38



RESTORE 

RESTORE 

Der Zusammenhang zwischen den Variablen im READ-Befehl und den 

Elementen in den DATA-Statements wird durch einen speziellen, 

internen Pointer (Zeiger) gesteuert. 

Dieser Zeiger zeigt immer auf das DATA-Element, welches als nächstes 

gelesen werden muß. 

Der Befehl RESTORE bringt diesen Pointer an den Anfang, so daß 

alle Werte in den DATA-Statements noch einmal gelesen werden. 

1000 
1010 
1020 

READ A,B,C,D 
RESTORE 
READ E,F,G 

1030 
1040 
1050 
1060 
1070 
1080 

RESTORE 
READ H,I 
DATA 1,2,3, 
PRINT A,B,C 
PRINT E,F,G 
PRINT H,I 

5 4, 
‚D 

In unserem Beispiel werden zuerst den Variablen A, B, C, D die Werte 

1, 2, 3, 4, 5 zugeordnet. Dann werden den Variablen E, F und G die 

Werte 1, 2, 3 zugeordnet. In Zeile 1040 werden dann den Variablen 

H, I die Werte 1 und 2 zugeordnet. 

39



40 

NOTIZEN



REM 

REM 

Wir haben diese Anweisung schon benutzt, ohne sie zu erklären. Die 

REM-Anweisung dient zur Dokumentation (Beschreibung) Ihres Pro- 

grammes, damit Sie später noch wissen, wie Sie das Programm ent- 

wickelt haben und welche Bedeutung die nachfolgenden Programm- 

zeilen haben. 

300 
310 
320 
330 
340 
350 
355 
360 
370 

380 
390 
395 

REM INPUT STATEMENT 
LET PI=3.14159 
INPUT Y 
LET R=SOR(Y)/PI 
PRINT "RADIUS=";R 
INPUT A,B 
LET F=A*B 
PRINT "FLAECHE=",F 
INPUT X,Y,Z,O,P 

LET L=X*Y*Z*O*P 
PRINT "ERGEBNIS=";L 
END 

Eine weitere Anwendung der REM-Anweisung ist das Löschen einer 

Zeile, ohne sie aus dem Programmausdruck zu entfernen. 

Beispiel: 

10 A=20 
20 B=30 
30 REM C=40 
40 D=A*B+C 

In diesem Programm wurde fiir Testzwecke die Zeile 30 logisch ge- 

41



Iöscht. Nach Entfernen der REM-Anweisung ist sie wieder in den Pro- 

grammablauf eingefügt. Diese Technik wird dann angewendet, wenn die 

Zeilen sehr lang sind und zum Programmtesten aus dem Listing ent- 

fernt werden müssen. 

42



GOTO 

GOTO 

Bis jetzt haben wir nur Befehle besprochen, die vom Computer nach- 

einander Schritt für Schritt ausgeführt werden. Alles ist der Reihe 

nach, mit der niedrigsten Zeilenzahl angefangen, bis zu höchsten Zeilen- 

zahl abgelaufen. 

Mit GOTO bekommen wir erstmals einen Befehl in die Hand, mit dem 

wir diesen Fluß umsteuern können. Der Befehl GOTO mit nachfolgen- 

der Zeilenzahl führt uns als unbedingter Sprung auf eine beliebig ge- 

wünschte Zeilenzahl. Dort läuft dann das Programm weiter ab (von der 

niederen Zeilenzahl zur höheren Zeilenzahl). Es sei denn, es stößt 

wieder auf einen anderen GOTO-Befehl. 

1050 GOTO 300 
1060 GOTO 200 

Man kann nach vorne oder nach hinten im Programm springen. Der 

GOTO-Befehl läßt sich beim Zurückspringen auch für eine Schleife 
(Loop) verwenden. 

Beispiel: 

1070 PRINT "ICH BEFINDE MICH IN EINER" 
1080 PRINT "GOTO-SCHLEIFE" 

1090 GOTO 1070 

Dieses kleine, simple Programm versetzt den Computer in eine Schleife 

und beläßt ihn dort, bis man durch die Break-Taste anhält. 

Diese Wiederholfunktion läßt sich praktisch bei allen Programmen 

anwenden, die ständig durchlaufen werden müssen. Sollen andere Werte 

eingegeben werden, kann z. B. mit INPUT unterbrochen werden. 

43



Beispiel: 

1100 REM GOTO DEMOPROGRAMM 
1110 PRINT "EINGABE A,B,C" 
1120 INPUT A,B,C 
1130 LET X=A*B*C 
1140 PRINT "PRODUKT IST ";X 
1150 GOTO 1110 

Dieses Programm läuft solange, bis Sie es anhalten. Bitte sehen Sie im 

Manual Ihres speziellen Computers nach, welche Funktionstaste (CRL, 

Control C, RUN/STOP, etc.) hierfiir in Frage kommt. 

Das Programm läßt sich mit READ DATA auch von selbst anhalten, 

und zwar dann, wenn die Daten aufgebraucht sind. 

1200 READ A,B,C 
1210 LET D=A+B+C 

1220 PRINT "DIE SUMME IST ";D 

1230 DATA 10,20,30,40,50,60 

1240 GOTO 1200 
1250 END 

Es endet mit einem OUT OF DATA-Error in Zeile 1200, da dem Pro- 

gramm nach dem zweiten Durchlauf die Daten ausgehen. Im ersten 

Durchlauf werden 10, 20 und 30 addiert. Im zweiten Durchlauf 40, 50 

und 60. Dann sind die Daten aufgebraucht. 

Wenn Sie jetzt noch mehrere Daten in Zeile 1230 eingeben, werden 

entsprechend mehrere Zyklen durchlaufen. Diesen OUT OF DATA- 
Error könnte man dadurch vermeiden, daß man dem Computer sagt, 

wie oft er durch die Schleife gehen soll. Hierzu sehen wir uns den 

nächsten Befehl an. 

44



IF... THEN 
IF... THEN 

Der IF ... THEN-Befehl dient zur Programmierung von Vergleichs- 

operationen und Entscheidungen. Es kann nach zwei Durchläufen in 

unserem vorhergehenden Programm z. B. eine Entscheidung getroffen 

werden, daß die Schleife verlassen werden soll. 

1200 READ A,B,C 
1210 LET D=A+B+C 
1215 LET X=X+1 
1220 PRINT "DIE SUMME IST ";D 
1230 DATA 10,20,30,40,50,60 
1240 IF X=2 THEN 1260 
1250 GOTO 1200 
1260 END 

Bei diesem Programm zahlen wir die Durchlaufe mit dem Statement 

1210 LET X = X + 1 und prufen mit Zeile 1240 auf den Wert X. Wenn 

X = 2 ist, verlassen wir die Schleife und gehen zum Ende in Zele 1260. 

Der IF .. . THEN-Befehl kann mit verschiedenen Bedingungen ver- 

knüpft werden. 

IF (Bedingung) THEN (Was geschehen soll) 

Die Bedingung kann z.B. sein: 

X=2 

X (3 

x)4 

X=2+3/4 

Was geschehen soll, kann z. B. sein: 

Zeilenzahl 

GOTO-Zeilenzahl 

PRINT “MITTEILUNG” 

45



46 

NOTIZEN



FOR...NEXT 

FOR...NEXT 

Der FOR... . NEXT-Befehl erlaubt die einfache Programmierung von 

Schleifen. Oft haben wir beim Programmieren den Wunsch, daß ein 

Vorgang automatisch immer wieder wiederholt wird. Ein Beispiel 

wäre z. B. die Addition von mehreren Zahlen hintereinander. 

1+2+3+4+5+6+7+ 8 etc. 

Ein solches Problem könnte man auch ohne Schleife lösen, aber es 

würde erheblich mehr Aufwand erfordern und die Wahrscheinlichkeit, 

einen Fehler beim Programmieren zu machen, wäre auch relativ hoch. 

Wir wollen nun an einem einfachen Programmbeispiel den Befehl 

FOR... NEXT demonstrieren. 

400 FOR I=1 TO 100 
410 PRINT I 
420 NEXT I 

Alles, was sich innerhalb der FOR-NEXT-Schleife befindet, in unserem 

Falle hier nur der Befehl PRINT I wird so lange wiederholt, wie in Zeile 

400 angegeben wurde. 

Insgesamt also 100 Schleifendurchläufe. Wenn hinter dem Befehl 

FOR I = 1 TO 100 nichts mehr folgt, so nimmt das Programm an, daß 

der Schritt 1 sein soll. Wir können dies z. B. ändern, indem wir 

folgendes programmieren: 

430 FOR I=1 TO 100 STEP 2 
440 PRINT I 
450 NEXT I 

47



Jetzt werden nur 50 Zahlen ausgedruckt, da der Schritt um zwei nach 

vorne erfolgt. Es können auch negative Schrittwerte verwendet werden. 

460 FOR I=100 TO 1 STEP -2 
470 PRINT I 
480 NEXT I 

Merke: 

1. Anfangswert und Endwert mussen verschieden sein. 

2. Die Laufvariable kann auch innerhalb der Schleife verwendet werden. 

Siehe vorheriges Beispiel. Sie wird durch FOR-TO-STEP festgelegt 

und läßt sich nicht mehr ändern. 

3. Bei gleichem Anfangs- und Endwert wird die Schleife nur einmal 

durchlaufen. 

4. Wenn die Schrittzahl positiv ist, muß der Anfangswert immer kleiner 

sein, als der Endwert. 

5. Wenn die Schrittzahl negativ ist, muß der Anfangswert größer als der 

Endwert sein. 

Verschachtelte FOR NEXT-Schleifen 

Verschachtelte Schleifen bestehen aus zwei ineinanderliegenden 

Schleifen. Wichtig ist nur, daß die innere Schleife kleiner ist, als die 

äußere Schleife. 

Dies bedeutet, daß immer zuerst die letzte Schleife durch NEXT abge- 

schlossen werden kann. 

10 FOR X=1 TO 100 

20 FOR Y=1 TO 10 

25 PRINT Y;" "5 

30 NEXT Y 

35 PRINT X 

40 NEXT X 

Ein praktisches Beispiel: 

Wir wollen nun einmal einen Casinogang simulieren. Es soll simuliert 

48



werden, wie oft rot oder schwarz auf dem Rouletteller erscheint. 

900 
910 

520 
930 
940 
990 
960 
970 
980 
990 
600 
610 
620 
630 
640 
650 
660 

670 
680 

REM CASINOSIMULATION — | 
REM WIE OFT KOMMT ROT UND SCHWARZ 
PRINT "WUERFE", "ROT", "SCHWARZ" 
FOR I=100 TO 1000 STEP 100 
LET R=0 2. 
LET S=0 
FOR J=1 TO I 
LET A=INT(10*RND(1) ) 
LET X=5*A 
LET Y=X/2 
LET W=INT(Y) 
IF W=Y THEN 640 
LET R=R+1 
GOTO 650 
LET S=S+1 
NEXT J 
PRINT I,R,S 
NEXT I 
END 

49



50 

NOTIZEN



DIM 

DIM 

Eindimensionale und mehrdimensionale Felder, indizierte Variablen 

Wenn wir mehrere Variable addieren wollen, ist es oft von Vorteil, 

wenn man mit indizierten Variablen arbeitet. Nehmen wir einmal an, 

wir wollen 5 Variable addieren. 

5=b, +b, +b; +b, +b, 

In der Mathematik sieht dies wie folgt aus: 

5 
S= 2 by 

K=1 

Das Zeichen 2 gibt an, daf$ die Variablen b von K = 1 bis K = 5 addiert 

werden sollen. Ä 

Eine Variable wird in BASIC durch eine Variable mit nachfolgendem 

Klammerausdruck wie folgt dargestellt. 

A(X) 

B(C1) 

C(Y + 1) 

Das Argument in den Klammern darf nicht negativ sein. Bei den 
einzelnen BASIC-Versionen ist es auch teilweise begrenzt, z. B. bis 256 
oder ähnlich. 

Eine Ansammlung von Variablen mit dem selben Namen nennt man ein 
Feld oder auch eindimensionale Arrays. 

Nachfolgend wollen wir ein Beispiel zur Anwendung eines Feldes 

51



geben: 

10 REM DEMO FOR DIM 

20 PRINT "WIEVIELE DATEN SOLLEN EINGEGBEN" 

25 INPUT "WERDEN ? N=";N 7 

30 DIM AIN) 

40 REM DATENEINGABE. 

50 FOR I = 1T0N 

60 PRINT "Al";I;: INPUT ")=";A(I) 
70 Y = Y + A(T) 

80 NEXT I 

90 W=Y/N 

100 PRINT "DER MITTELWERT IST ";W 

Das vorherige Programm ermittelt uns den Durchschnittswert einer 

Reihe von Zahlen. Die Zahlen können vom Programmierer eingegeben 

werden. Ein Array wird aufgefüllt und die Werte addiert. Anschließend 

wird die Summe durch die Anzahl der Elemente geteilt. 

Programme, wie oben beschrieben, können meist nur bis zu einer Größe 

von 10 Elementen verwendet werden. Bei mehr als 10 Elementen muß 

man die Anweisung DIM verwenden. Z. B. DIM A(N) 

Der Befehl reserviert im Speicher einen bestimmten Platz für Variable. 

Dem Wert DIM folgen die verschiedenen Bezeichnungen für die Felder, 

z.B. DIM A(10), B(20),C(30) 

Die einzelnen Feldbezeichnungen müssen durch Kommas getrennt 

werden. 

Je nachdem, ob es sich um eindimensionale, zweidimensionale oder 

dreidimensionale Felder handelt, muß die Größe angegeben werden. 

Zweidimensional: DIM A(10,15), B(22,30) 

Eindimensional: DIM A(10), B(15), C(20) 

Es können auch Arrays mit Strings aufgebaut werden. Dann werden 

eben keine Werte, sondern Zeichenketten abgespeichert. 

DIM F% (14,15) 

52



Jedes Element kann im Array durch Angabe seines Platzes beschrieben 

werden. A (5,5) ist z. B. das Element in der 5. Reihe und 5. Spalte. 

Bei der Dimensionierung von Arrays mit Zeichenketten treten Unter- 

schiede auf. In Microsoft BASIC bedeutet die Angabe 

DIM Ag (10) 

ein Feld von 10 Zeichenketten mit je 256 Zeichen. 

Beim ATARI, ZX81, SPECTRUM dagegen eine Zeichenkette mit 10 | 

Zeichen. 

Hier muß auch beachtet werden, daß bei einen Vergleich von Zeichen- 

ketten beide gleich dimensioniert sein müssen. 

Beispiel (ATARI, ZX81, SPECTRUM): 

DIM A$(5) 

DIM B%(10) 

LET A% = “HANS” 

LET BS = “HANS” 

Die Bedingung: 

IF AS=BS THEN... 

ist nicht erfullt. 

53



54 

NOTIZEN



PEEK 

PEEK 
Der PEEK-Befehl erlaubt dem Programmierer, direkt in eine Speicher- 

zelle zu sehen. 

10 PEEK (Speicherzellennummer) 

Die Speicherzellennummer muß dabei in Dezimal angegeben werden. 

Die Sichtbarmachung des Speicherinhaltes geschieht durch 

10 PRINT PEEK(59459) 
20 PRINT PEEK(X) 

Auslesen eines Speicherbereiches: 

10 FOR X=1 TO 500 
20 PRINT PEEK(X) 
30 NEXT X 

40 END 

55



NOTIZEN



POKE 
POKE 

Der POKE-Befehl ermöglicht dem Programmierer das direkte Eingeben 

von Daten in eine Speicherzelle. 

POKE A,B 

wobei B = Daten oder eine Variable sein kann 

und A = die Adresse in Dezimal. 

10 POKE 59459,255 

Da der Programmierer aber meist an Hexadezimalzahlen gewöhnt ist, 

muß zuerst in Dezimal umgerechnet werden. 

Der POKE-Befehl erlaubt es, vom BASIC aus, Programme in Maschinen- 

sprache in einen gewünschten Speicherbereich zu legen. Uber USR, 

CALL oder SYS-Befehle kann dann vom BASIC aus in das Maschinen- 

unterprogramm gesprungen werden. 

Beispiel: 

10 REM POKE DEMO 
20 FOR X=826 TO 836 
30 READ Y 
40 POKE X,Y 
50 NEXT X 
60 DATA 1,2,3,4,5,6,7,8,9,10,11 
70 END 

Das Programm liest die Werte 1 — 11 in die Speicherzellen 826 bis 836. 

57



58 

NOTIZEN



  

GOSUB...RETURN 
GOSUB... RETURN 

Der GOSUB-Befehl ist ein unbedingter Sprung in ein Unterprogramm. 

Dem GOSUB-Befehl folgt -unmittelbar die Zeilennummer, in der das 

Unterprogramm beginnt. Am Ende des Unterprogrammes wird der 

Befehl RETURN gegeben. Dieser sorgt dafür, daß das Programm wieder 

zurück springt und im Hauptprogramm weiterfährt. 

Hauptprogramm 
  

GOSUB 100   

  

  

30 GOSUB 100 Unterprogramm 
4 60 PRINT Y 

90 GOTO 200) 100 ..... 
  

  

  
y 

199 RETURN 
                

59



Programmbeispiel: 

Das nachfolgende Programm verwendet eine sehr kleine Unterroutine, 

die eine bestimmte Berechnung durchführt. Eine solche Unterroutine 

kann jedoch auch aus wesentlich mehr Befehlszeilen bestehen. Sie 

können auch vom Unterprogramm aus noch in ein weiteres oder in 

mehrere Unterprogramme springen. Der Computer merkt sich auto- 

matisch die Zeilennummer, bei der er das Hauptprogramm verlassen 

hat und kehrt dann in die darauffolgende Zeile zurück. 

10 REM DEMPROGRAMM FUER UNTERPROGRAMM 
20 REM MIT DEM GOSUB BEFEHL 
30 PRINT "GEBE EINE ZAHLE EIN "; 
35 INPUT X 

40 IF X=0 THEN 150 
50 GOSUB 100 
60 PRINT Y 
70 GOTO 30 

100 LET Y=X*15-3+4 
110 RETURN | 
150 END 

60



ON...GOSUB 

ON... GOSUB 

Der Befehl ON X GOSUB wird dann verwendet, wenn eine Reihe von 

Unterprogrammen aufgerufen werden sollen. Meist wird dazu eine 

Variable gesetzt (in unserem Beispiel X). Wird dieser Variablen der 

Wert 1 zugewiesen, so wird an die erste Adresse nach dem GOSUB- 

Befehl gesprungen. Wird der Variablen der Wert 2 zugewiesen, geht der 

Sprung an die darauffolgende Adresse. 

Beispiel: 

200 REM ON GOSUB DEMO 
210 PRINT " EINGABE EINER ZAHL " 
215 PRINT " ZWISCHEN 1 UND 5 "; 
218 INPUT X 
220 IF X>5 THEN 300 
230 ON X GOSUB 260,280,290,295, 285 
235 PRINT Y 
240 GOTO 210 
260 Y=X*20 
261 RETURN 
280 Y=X/10 
281 RETURN 
285 Y=X+20 
286 RETURN 
290 Y=X+15 
292 RETURN 
295 Y=X°2 
296 RETURN 
300 END 

Die Variable X kann auch ein mathematischer Ausdruck oder eine 

Formel sein. Z.B. X * 5 oder ähnlich. 

61



Zweites Beispiel: 

62 

10 
20 
30 
40 
50 
60 
65 
70 

80 
90 
100 
110 
200 
210 
300 
310 
400 
410 

REM ON GOSUB TEST 
PRINT "MENUE-UEBERSICHT" 
PRINT "(1) ADRESSEN EINGEBEN" 
PRINT "(2) ADRESSEN AENDERN" 
PRINT "(3) AUSDRUCKEN" 
PRINT "(4) ENDE" 
PRINT | 
INPUT "BITTE GEWUENSCHTE FUNKTION EINGEBEN :";X 

ON X GOSUB 100,200,300,400 
PRINT : GOTO 20 
PRINT "GEBEN SIE RUHIG EIN!" 

PRINT "TEST": RETURN 
PRINT "AENDERN SIE RUHIG" 

RETURN 
PRINT "AHA JETZT WIRD GEDRUCKT" 
RETURN 
PRINT "AUF WIEDERSEHEN" 
END



ON.. 

ON...GOTO 

.GOTO 

ON GOTO arbeitet ähnlich wie der ON GOSUB Befehl. Auch hier sind 

IF THEN Abfragen eingebaut. ON X GOTO 100, 200, 300 sagt dem 

Computer, daß je nach dem welcher Wert die Variable X (1, 2 oder 3) 

hat, das Programm nach Zeile 100, 200 oder 300 springen soll. 

Beispiel: 

10 REM ON-GOTO TEST 
30 INPUT "GEBEN SIE BITTE 1,2,3 ODER 4 EIN 
40 ON X GOTO 100,200,300,999 
100 
110 
200 
210 
300 
310 
999 

PRINT "SIE HABEN (1) EINGEGEBEN-STIMMTS 
GOTO 10 
PRINT "SIE HABEN (2) EINGEGEBEN-STIMMTS 
GOTO 10 
PRINT "SIE HABEN (3) EINGEGEBEN-STIMMTS 
GOTO 10 
END 

1X 

ou 

ou 

ou 

63



64 

NOTIZEN



ON ERROR GOTO 

ON ERROR GOTO 

Das folgende Programmstück ist Teil eines Programmes, das Dateien auf 

einer Diskette verwaltet. Wird nun nach einer bestimmten Datei gesucht 

und das DOS findet diese nicht, wird das Programm mit einer Fehler- 

meldung abgebrochen. Um dies zu verhindern wird der ON ERROR 

GOTO Befehl verwendet. 

5600 REM ara ar ar de ara ae 2h ae 2 he he 2 

5605 REM DATEI VORHANDEN ? 
5610 REM 22% soe ee a oe ak ae ak a ae a ok 

9615 ON ERR GOTO 5630 
5620 PRINT D$;"VERIFY":FS$; "CODE" 
9625 GOTO 5650 
5635 PRINT "*** DOS FEHLER ***":GOTO 400 
9645 PRINT "*** DATEI NICHT VORHANDEN ***":GOTO 400 
5650 RETURN 
6530 I=PEEK(222):IF I=6 THEN GOTO 5645 

In Zeile 5615 wird der Sprung in die Zeile 5630 bei Auftreten eines 

Fehlers in der folgenden Zeile 5620 programmiert. Dort wird in Zelle 

222 nachgeschaut welcher DOS-Fehler aufgetreten ist. Bei nicht vor- 

handener Datei wird eine entsprechende Fehlermeldung ausgegeben. 

Tritt ein anderer Fehler auf, erscheint die Meldung DOS-FEHLER. 

Nach einem tatsächlich aufgetretenen Fehler sind alle Rücksprung- 

adressen verloren, so daß mit GOTO das Programm weitergeführt 

werden muß (gilt nur für APPLE II). 

65



66 

NOTIZEN



USR (X) 
USR(X) 

Die USR(X)-Funktion wird in einigen Microsoft-BASIC-Versionen 

dazu benutzt, einen Wert X an ein Maschinenunterprogramm zu über- 

geben. Die Anfangsadresse dieser Maschinenroutine muß dann in 

bestimmten Zellen (beim APPLE z. B. OA, OB) gespeichert sein. Der 
Wert X wird in den Floating-Point Accumulator geschrieben. 

Eine andere Bedeutung hat der USR-Befehl beim ZX81 oder Spectrum. 

Hier ist X die Anfangsadresse eines Maschinenprogrammes. Dieser 

Befehl muß in einer Dummy-Zuweisung verwendet werden. Z. B. 

PRINT USR X 

Dann wird beim Rücksprung der Inhalt des BC-Registers der Z80 CPU 

auf den Bildschirm ausgegeben. 

67



68 

NOTIZEN



Funktionen 

Bei einer Funktion wird der Wert einer Variablen durch die 

Funktion und durch das an die Funktion übergebene Argu- 

ment bestimmt. 

10 PI = 3.14159 
20 Y =SIN (PI/2) 

Der Wert von Y (= 1) wird durch die Funktion sin (sinus) und 

durch das Argument Pi/2 bestimmt. Das Argument muß bei 
allen Rechnern in Klammern gesetzt werden. 

Ausnahme: ZX81, SPECTRUM. 

Hier kann 

20 Y=SINPI 

eingegeben werden, wenn das Argument aus einer Zahl oder 

Variablen besteht. Zusammengesetzte Ausdrücke müssen 

auch hier in Klammern gesetzt werden. 

20 Y =SIN (PI/2) 

 



70



RND 

RND 

Die Random-Funktion erzeugt Zufallszahlen. Diese Funktion hat auf 

den verschiedensten Rechnern unterschiedliches Verhalten. 

ZX81, SPECTRUM 

LET R=RND * 26+ 1 

erzeugt Zufallszahlen zwischen 1 und 26. 

Zusatzbefehl: RAND 

Nach RAND 1 wird immer die gleiche Zufallszahl erzeugt. Nach 
RAND O oder nur RAND wird wieder eine Folge von Zufallszahlen 

erzeugt. 

APPLE 

R = RND(X) 

X)0O Erzeugt Zufallszahlen größer, gleich Null und kleiner 1(0=R (1). 

X=0 Eswird immer die gleiche Zufallszahl erzeugt. 

X (0 Erzeugt für jedes Argument X die gleiche Zufallszahl. 

RND (-1) ist ungleich RND (—4) 

ATARI 

R= RND(X) Erzeugt Zufallszahl größer, gleich O und kleiner 1 

(0=(R(N). 

X ist eine Dummy-Variable. Sie beeinflusst nicht die Bildung der 

Zufallszahlen. 

COMMODORE-64 

R=RND(X) 

X)0 Erzeugt Zufallszahl größer, gleich Null und kleiner 1. 

71



Es wird immer die gleiche Folge von Zufallszahlen gebildet. 

X = 0 Die Zufallszahl wird durch einen Zähler im Rechner gebildet. 

X )0 Bei jeden Programmlauf wird eine andere Folge von Zufalls- 
zahlen erzeugt. 

72



INT 

INT 

Die INT-Funktion (Integer = ganze Zahl) liefert die ganze Zahl aus 

einer gebrochenen Zahl. 

40 PRINT INT(X) 
20 LET Y=INT(Z+I) 
30 LET X=INT(100*RND(1)) 

Sie wird dort angewendet, wo von gebrochenen Zahlen nur der ganz- 

zahlige, positive Wert benotigt wird, z. B. in unserer Casionosimulation. 

Dort werden Zufallszahlen zwischen O und 1 erzeugt (0,000001...... 

0,999999). 

Indem man die ganzen Zahlen herauslost und mit 100 multipliziert, 

erhält man Zufallszahlen zwischen O und 100. 

10 REM DEMOPROGRAMM 
20 REM FUER DIE INT(X) FUNKTION 
30 FOR X=1 TO 10 
40 LET I=X/3 
50 PRINT INT(IJ;" "; 
60 PRINT X 
70 NEXT X 

Achtung: Beim ZX81 und SPECTRUM 

INT (0.5 x 6) liefert 2 und nicht 3, wie bei anderen Rechnern. 

73



74 

NOTIZEN



SQR 

SQR 

Die SQOR(X)-Funktion (Quadratwurzelfunktion) liefert die Quadrat- 

wurzel des Wertes, der in der nachfolgenden Klammer steht. 

Beispiel: 

10 PRINT SQR(100) 

Der Ausdruck kann auch in einer Rechenoperation verwendet werden. 

20 
30 
40 
50 
60 
70 
80 
90 

PRINT SGR(10*15+SQR (5) ) 
LET X=2 
Y=SOR (X) 
PRINT Y 
FOR X=1 TO 100 
LET Y=SOR(X) 
PRINT Y 
NEXT X 

100 PRINT "EINGABE EINER ZAHL "; 
105 INPUT X 
110 PRINT "DIE WURZEL IST ";SQR(X) 
120 END 

75



76 

NOTIZEN



ABS 

ABS 

Mit der ABS-Funktion können Sie den Absolutwert einer Zahl oder 

einer Variablen erhalten. Unter dem Absolutwert einer Zahl versteht 

man die eigentliche Zahl ohne jedes Vorzeichen. 

Beispiele: 

a) PRINT ABS (—12) 
druckt die Zahl 12 aus (ohne den Minusvorzeichen). 

PRINT ABS (+14) 

druckt die Zahl 14 ohne das Pluszeichen aus. 

b) SBLETX=-25:LETY=+4.75 

10 PRINT ABS(X) 
20 PRINT ABS(Y) 

77



78 

NOTIZEN



SIN 

SIN 

Diese Funktion liefert den Sinuswert für ein gegebenes Argument. 

5 Pl = 3.14159 
10 PRINT SIN (PI/2) 

Das Argument wird immer im Bogemaß angegeben. Hier entspricht 

einen Winkel mit den Gradmaß 0° der Wert O im Bogenmaß und einen 

Winkel von 360° der Wert 2*PI. 

Die Umrechnung von Grad ins Bogenmaß kann durch 

X 
Y = —____*P 

180 

mit X im Gradmaß erfolgen. 

Beim ATARI kann durch die Anweisung DEGREE der Rechner zur 

Rechnung ins Gradmaß umgeschaltet werden. 

COS 
COS 

Berechnung der Cosinusfunktion. 

79



80 

NOTIZEN



  

TAN 
TAN | 

Berechnung der Tangensfunktion. 

AIN 
ATN ist die Umkehrfunktion zur Tangensfunktion. Sie liefert den 

Arcus-Tangens zu einem gegebenen Argument. Der Wert der Funktion 

liegt zwischen —PI/2 und +PI/2. 

  

LOG 
Diese Funktion liefert den natürlichen Logarithmus (In) zu einem ge- 

gebenen Argument. 

LOGIN) 
om a EEE TEE 

LOG(10) 

rechnet den natürlichen Logarithmus (Basis 2) in den decadischen 

Logarithmus (Basis 10) um. 

81



82 

NOTIZEN



EXP 

EXP 

Durch EXP wird der Wert der e-Funktion für ein gegebenes Argument 

berechnet. 

  

SGN 
Die SGN (Signum) Funktion liefert den Wert des Vorzeichens für ein 

gegebenes Argument. 

Y = SGN(X) 
Y=1 wenn X)=0 

Y = —1 wenn X(0 

Formeln für Funktionen, die nicht in BASIC enthalten sind: 

Sinus-Umkehrfunktion ARCSIN 

Y =ATN (X/SQR(—X*X+1)) 

Cosinus-Umkehrfunktion ARCCOS 

= —ATN (X/SOQR(—X*X+1))+P1/2 

Sinus-Hyperbolicus SINH 

Y = (EXP(X)—EXP(—X))/2 

Cosinus-Hyperbolicus COSH 

Y = (EXP(X)+EXP(—X))/2 

83



Tangens-Hyperbolicus TANH 

| Y = —EXP(—X)/(EXP(X) + EXP(—X))*2 + 1 

Modulo-Funktion 
Die Modulo-Funktion liefert den Rest Y, der bei einer Division A/B 

auftritt. 

Y = INT (A/B —INT(A/B))*B + 0.05 

Diese Funktionen können mit DEF FN in eine BASIC-Programm ein- 

gebaut werden. 

84



DEF FN 

  

DEF FN 

Wenn ein Teil eines Programmes als Funktion verwendet wird, und sehr 

häufig beim Programmieren eingesetzt werden muß, empfiehlt es sich, 

es über DEF in eine Funktion zu verwandeln. 

DEF ermöglicht es dem Programmierer, z. B. einen mathematischen 

Ausdruck wie B = (X -5)/Y als Funktion festzulegen und über DEF 

aufzurufen. 

Der DEF-Befehl besteht aus dem Wort DEF, gefolgt von einer Defi- 

nition. Danach folgt ein Gleichheitszeichen mit einer Formel, Kon- 

stanten oder Variablen. Die Definition ist auch der Name der Funktion. 

100 DEF FNI (X,Y)=(X+1)/(Y-3) 

Es können auch Strings eingesetzt werden. 

200 DEF FNI$ = “ELCOMP”’ 

Programmbeispiel: 

Die nachfolgede Programmzeile soll gebrochene Zahlen aufrunden: 

10 DEF FNR(A) = INT (X * 100 + 0.5)/100 

85



In Zeile 10 wird der mathematische Ausdruck rechts neben dem Gleich- 

heitszeichen als Funktion FNR (A) festgelegt. Der Wert X in DEF 

FNR(X) ist nur eine Ersatzvariable, die später in die FNR(X)-Funktion 

eingesetzt wird. Jedesmal, wenn die Funktion benötigt wird, kann ich 

X durch die gewünschte Variable ersetzen. 

F = FNR (X) 

liefert dann das Ergebnis wie 

Y = INT (X * 100 + 0.5)/100 

Man spart sich dadurch sehr viel Schreibarbeit und vermindert die 

Fehlerwahrscheinlichkeit. 

86



AND 

AND 

Der AND-Befehi wird in einzelnen Computern zur logischen Ver- 

knüpfung in FOR NEXT Befehlen verwendet. Weiterhin wird der AND- 

Befehl zur logischen Verknüpfung zweier Binärzahlen verwendet. 

10 REM AND DEMO 
20 X=12 
30 Y=22 
40 IF X=12 AND Y=22 THEN 100 
100 PRINT "AHA! - ES GEHT" 
110 REM AENDERN SIE JETZT EINMAL 
120 REM DIE ZEILE 20 IN X=13 

Sie können den AND-Befehl immer dann verwenden, wenn Sie mehrere 

Bedingungen abfragen müssen. Z. B. in einer Adressliste. Alle Kunden 

mit Anfangsbuchstaben B aus dem Postleitzahlgebiet 8150. 

Einige Computer erlauben es mit der AND-Funktion auf zwei be- 

stimmte Kriterien prüfen zu lassen. Wenn die beiden Kriterien erfüllt 

sind, liefert die AND-Funktion den Wert 1. Wenn einer der beiden 

Bedingungen nicht erfüllt ist, wird eine Null geliefert. 

Beispiel: 

10 REM AND TEST FUER LOGISCHE OPERATIONEN 
2e0 PRINT "GEBEN SIE EINE ZAHL ZWISCHEN 2 UND 9 EIN " 
3D INPUT X 
35 IF X<O THEN END 

87



AD IF X>3 AND X<10 THEN GOTO 100 
99 PRINT X;" IST NICHT GROESSER ALS 3" 
96 PRINT " UND KLEINER ALS 10" 
97 GOTO 10 
100 PRINT X;" IST GROESSER ALS 3" 
110 PRINT " UND KLEINER ALS 10" 
120 GOTO 10 

Sie können jedoch auch mit der AND-Funktion logische Operationen 

simulieren, z. B. die UND-Funktion. 

UND-Funktion Tabelle: 

Mit der AND-Funktion können Sie leicht die Wertetabelle eines UND- 

Gatters errechnen und ausdrucken (siehe Beispiel). 

10 REM UND FUNKTION 
20 X=0 AND O 
30 Y=1 AND O 
40 Z=0 AND 1 
50 U=1 AND 1 
60 PRINT "LOGIKTABELLE FUER UND" 

70 PRINT 
80 PRINT "O UND O = "5X 
90 PRINT "1 UND 0 = ";Y 
100 PRINT "O UND 
110 PRINT "1 UND —_

 
u
 

m 
N 

Bei einigen Rechnern verknüpft die AND-Funktion jede binäre Stelle 

des Wertes mit der binären Stelle des anderen Wertes. Ä 

Diese Technik wird oft in der Ein-, Ausgabeprogrammierung und bei 

der Programmierung von Joysticks etc. verwendet. D. h. überall dort wo 

einzIne Bits manipuliert werden müssen. Zusammen mit der OR- 

‚Funktion und einer Negierung (Verneinung NOT) können Sie alle 

beliebigen logischen Fuktionen simulieren und Ihr Programm einbauen. 

88



OR 

OR 

Die OR-Funktion wird zu logischen Verknüpfung von zwei Zahlen oder 

Ausdrücken verwendet. Wenn einer der beiden Ausdrücke *'wahr”’ ist, 

ist die Bedingung erfüllt. Genau wie der der AND-Funktion werden bei 

Dezimalzahlen die binaren Aquivalente ‘‘geodert”’. 

10 REM ODER FUNKTION DEMO 
20 X=0 OR O | 
30 Y=1 OR O 
40 Z=0 OR 1 
90 U=1 OR 1 
60 PRINT 
70 PRINT "O ODER O 

80 PRINT "1 ODER O = ";Y 
90 PRINT "O ODER 1 "SZ 
100 PRINT "1 ODER 1 = ";U 

X 

10 IF B)AORA)C THEN 7 
Neyo Ne i” 

Ausdruck 1 Ausdruck 2 

Wenn eine der beiden Ausdrücke erfüllt ist, B größer A oder A größer 

C, springt das Programm nach Zeile 7. Dieser Befehl wird oft zur Ab- 

frage von Tasten bei der Eingabe verwendet. 

89



90 

NOTIZEN



NOT 

NOT 

Die NOT-Funktion in Microsoft-BASIC entspricht der logischen 

NICHT-Verknüpfung (Invertierung). Sie invertiert die binären Reprä- 

sentationen der einzelnen Werte. Ähnlich wie AND und OR. 

10 REM NOT-FUNKTION 
20 X=0 
30 Y= NOT X 
40 PRINT Y 

Mit NOT wird die negative Zahl im Zweier-Complement gebildet. 

Complementieren einer Binärzahl bedeutet vertauschen von Null und 

Eins. Bei der Bildung des 2-er Complements wird zu dieser Ver- 

tauschung noch eine Eins dazuaddiert. 

Beispiel: Bestimmung der 2-er Complemente von +1: 

Ä +1 = %00000001 

Complement = % 11111110 

Eins dazuaddiert +% 00000001 

ergibt —1 = %*11111111 «= SFF 

Die Zahl —1 wird also durch %1 1111111 oder SFF gekennzeich- 

net. 

91



92 

_ NOTIZEN



    

Funktionen 

für 

Zeichenketten 

Die Sprache BASIC enthalt Funktionen, die auf Zeichen- 

ketten angewendet werden können. 

Diese Zeichenketten können “addiert‘’, aufgeteilt und mit- 

einander verglichen werden. 

 



94



ASC(X$) 

ASC(X$) 

  

Die ASC(X$)-Funktion verwandelt ein Zeichen oder eine String- 
Variable in den ASCII-Integercode. 

Diese Werte finden Sie in einer Dezimal-ASCII-Tabelle. 

PRINT ASC(‘B’) druckt den Dezimal-ASCII-Wert = 66 des Buch- 

stabens B auf dem Bildschirm aus. 

10 
15 
20 
30 

40 
50 
95 
60 
99 

REM ASC(X$) TEST 
GOTO 100 

PRINT "DER ASCII WERT FUER DEN" 
INPUT “BUCHSTABEN :";xX$ 
PRINT "IST "; 
PRINT ASC (X$) 
PRINT 
RETURN 
END 

100 GOSUB 20 
110 IF ASC (X$) = 65 THEN END 
120 GOTO 100 

ZX81 verwendet CODE. | 

CODA A gibt den intern vereinbarten Code fiir A%. Dieser entspricht 

nicht dem ASCII-Code. Das gleiche gilt für SPECTRUM. 

95



ASCII CHARACTER CODES 

Code 

Dec Hex 

fr
et
 
pe
n 

fe
et
 

ee
d 

fe
t 

ft
 

W
P
 
W
H
E
 

S
S
 
O
O
 

NS
 
C
O
M
 

FF
 
W
N
H
e
 

BS 

96 

90 
G1 

93 
G4 
G5 
G6 
G7 
G8 
g9 
GA 
GB 
QC 
QD 
GE 
OF 
19 
ll 
12 
13 

15 

16 

17 
18 

19 
1A 
1B 

IC 
1D 
lE 

IF 

Char 

NUL 
SOH 
STX 
ETX 
EOT 
ENQ 
ACK 
BEL 
BS 
HT 
LF 
VT 
FF 
CR 
SO 
SI 
DLE 
DC1 
DC2 
DC3 
DC4 
NAK 
SYN 
ETB 
CAN 
EM 
SUB 
ESC 
FS 

RS 

US 

Code 

Dec Hex 

32 

33 

35 

36 

37 
38 

39 

4g 
4] 

42 

43 
44 

45 

46 
47 

48 
49 
5¢ 
51 

52 
53 

54 

55 
56 

57 

59 

69 
61 
62 
63 

29 
21 

23 

24 

25 

27 
28 
29 
2A 
2B 
2C 
2D 
2E 
2F 
39 
31 
32 
33 

35 
36° 
37 
38 

39 

3B 

3C 
3D 

| 3E 

3F 

Char 

=
 

=
 

v
a
n
 

un 
=
=
 

+ 
v
a
 

“ 
W
O
N
 

K
D
U
H
P
W
 
H
e
 
A
™
 

* 
o> 
V
H
A
 

w
o
 
e
e
 

Code 

Dec Hex 

64 

65 

67 

68 

69 
7 
71 

72 
73 

74 

75 
76 

77 

78 
89 
8 
81 
82 
83 

85 
86 
87 
88 
89 
99 
91 
92 

94 

95 

4p 
41 

43 

44 

45 

47 
48 
49 
4A 
4B 
4C 
4D 
4E 
4F 
59 
51 
52 
53 

55 

56 

57 
58 

59 

SB 

5C 
5D 
5E 

oF 

Char 

e
K
 
O
N
K
 

M
E
 
S
O
H
N
 
W
O
V
O
Z
 

F
M
A
 
G
H
T
O
A
M
A
M
I
O
I
A
D
P
Y
S
 
@
 

199 

193 

184 
145 

196 

197 
198 
189 
119 
111 
112 
113 
114 
115 
116 
117 

118 

119 
126 
121 
122 
123 

124 
125 
126 

127 

Char 

I
V
—
 
A
N
S
 

K
E
 

GCE 
M
H
 
A
N
O
V
O
D
 
B
E
A
U
 
H
O
w
 
h
a
n
 

T
P
 

DEL



CHR$(X) 
CHR$(X) 

Dieser Befehl bewirkt genau das Gegenteil, was ASC (X$) bewirkt. 
CHR$(X) besorgt Ihnen aus dem Dezimal-ASCII-Wert X in der 
Klammer den zugehörigen Buchstaben oder das zugehörige Zeichen. 

PRINT CHR3(66) durckt Ihnen z. B. den Buchstaben B auf den Bild- 
schrim. Der gesamte ASCII-Code kann mit den Zahlen O — 127 dar- 
gestellt werden. Einige Computer haben einen erweiterten Vorrat mit 

255 ASCII-Zeichen, Symbole, Spielesymbole etc. (Grafik). 

10 REM CHR$(X) DEMO 
20 FOR X = 1 TO 255 
30 AS = CHR$ (X) 
40 PRINT A$;" "; 
50 NEXT X 

Dieses Programm druckt Ihnen alle ASCII-Zeichen mit den Werte I — 

255 auf dem Bildschirm aus. 

Beim ZX81 wird das intern verwendete Zeichen gebracht. Beim 

SPECTRUM der ASCII-Code. 

97



98 

NOTIZEN



LEN (X$) 
LEN(X$) 

Der LEN(X$) Befehl liefert Ihnen die Anzahl der BYTE (Zeichen), 

eines Strings X$. Diesen Befehl brauchen Sie immer dort, wo Sie die 

Lange eines Strings oder einer Zahl wissen müssen. Handelt es sich 

um eine Zahl, müssen Sie diese zuerst in einen String umwandeln. 

10 A$ = "ELCOMP!":B$ = "SOFTWARE" 
20 X$ = A$: GOSUB 100 
30 X$ = BS: GOSUB 100 

40 END 
100 HTAB (40 — LEN (X$)): PRINT X$ 
110 RETURN 

Dieses kleine Programm druckt die Zeichenketten A% und B§ rechts- 

biindig am rechten Rand aus. | 

Die Zahl 40 wurde so gewählt, weil die meisten Rechner 40 Zeichen/ 

Zeile ausgeben. 

Beispiel: 

10 REM LEN(X$) DEMO 
20 INPUT "GEBEN SIE EINIGE ZEICHEN EIN ";A$ 
30 PRINT "SIE HABEN "; LEN (A$);'" ZEICHEN EINGEGEBEN" 

99



NOTIZEN 

100



_ LEFT$(X$,Y) 

LEFT$(X$,Y) 

Dieser Befehl gibt Ihnen die ersten Y-Zeichen von links in einen String. 

Sie brauchen diesen Befehl unbedingt, wenn Sie mit Files und ernst- 

haften Geschaftsprogrammen arbeiten wollen. 

Der Befehl: 

PRINT LEFTS("HOFACKER VERLAG’' 8) 

druckt Ihnen auf dem Bildschirm HOFACKER VERLAG aus. 

Y=8 (von links die ersten 8 Zeichen) 
mm 

“HOFACKER VERLAG” 

Der Befehl wird u. a. nach einer Zusammenfassung von mehreren 

Strings dazu verwendet umd die beiden wieder zu trennen. 

Auch bei der Festlegung von Feldern in Files können Sie den LEFT$ 
(X8,Y) Befehl verwenden. 
  

          

5 5 5 

3 Felder a’ 5 Stellen 

1. Feld 2. Feld 3. Feld 

BS H$ IS 

Sie wollen Zahlen in diese Felder einschreiben und immer auf fünf 

Stellen auffüllen (mit Leerzeichen oder Sternchen). Zuerst legen Sie 

ein Dummy-String mit fiinf Leerfeldern fest. Z. B. N$ =“ —-———— “ 
— = Leerzeichen (Blanks).



Dann verwandeln Sie Ihre Zahl in einen String und addieren den String, 

bestehend aus 5 Leerzeichen zu der in A ein String umgewandelten 

Zahl. 

10 REM LEFTS(A$,X) DEMO 
20 G$ = "2"sH$ = "15":1$ = "105" 
30 N$ = WeeeeeH 

50 X$ = G$: GOSUB 100 
60 X$ = H$: GOSUB 100 
70 X$ = I$: GOSUB 100 
80 END 
100 X$ = LEFTS (X$ + N$,5) 
105 PRINT X$; 
110 RETURN 

]RUN 
ORIG 

Im Beispiel haben wir Sternchen anstelle von Leerzeichen verwendet. 

Die Stringwerte 2, 15 und 105 sind jetzt in Felder gepackt, welche 

jeweils 5 Zeichen lang sind. 

Wir sehen später, bei der Erläuterung des MID3(X$, Y, Z) Befehles, 

warum man den LEN(X$) Befehl in diesem Zusammenhang anwendet. 

ZX81 und SPECTRUM verwenden die Schreibweise 

AS (n TO n’) 

Die Zeichenkette wird von Zeichen n bis Zeichen n’ ausgedruckt. Mit 

A$ = ''ELCOMP° entspricht 

LEFT$ (A$,2) gleich AS (1 TO 2) oder auch 
A$( TO 2) 

Beim ATARI wird die Schreibweise 

A$ (n, n’) 

verwendet. PRINT A$ (1,2) druckt, beginnend beim ersten Zeichen, 2 

Zeichen aus. 

102



  

MID$(X$,Y, Z) 

MID3(X$,Y ,Z) 

Der MID$-Befeh! wird dazu verwendet aus einem String Z-Zeichen 

herauszuschneiden, welche Y-Zeichen vom äußerst linken Zeichen 

an beginnen. 

8 4 
mm Tr Ken 

PRINT MID$ ("ELCOMP-MAGAZINE'',8,4) 

würde auf dem Bildschirm MAGA erscheinen lassen. 

Diesen Befehl verwendet man u. a. zum Auftrennen von Summen- 

strings. Sehen Sie bitte in diesen Zusammenhang den Befehl LEFT$ 
(X8,Y) noch einmal an. Nehmen wir an, wir haben für die dort ver- 

wendeten einzelnen Stringfelder mit je 5 Zeichen eine Summenstring- 

variable | 

J$ = G + H Ig 

J5 = ch 
5 5 5 

      

gebildet. 

Dieses Variable speichern wir auf Diskette oder Cassette. Anschließend 

lesen wir diese wieder ein und mussen sie wieder trennen, um unsere 

einzelnen Variablen wieder zu finden. Dazu benötigen wir den MID$ 

Befehl. 

103



Beispiel: 

10 REM LEFTS(A$,X) DEMO 
20 GS = "2":H$ = "45":1$ = "405" 
30 N$ = 19 Xe ae ahe ahe ah 18 

50 X$ = G$: GOSUB 100 
60 X$ = H$: GOSUB 100 
70 X$ = I$: GOSUB 100 
75 PRINT 
80 G$ = LEFT$ (u$,5) 
85 H$ = MID$ (J$,6,5) 
90 I$ = RIGHT$ (u$,5) 
95 PRINT G$: PRINT H$: PRINT I$ 
99 END 
100 X$ = LEFT$ (X$ + N$,5) 
105 PRINT %X$; 

110 J$ = J$ + %$ 

120 RETURN 

JRUN 
De 5 4 OB ee 
ORR 
q5eee 

105** 

Sehen Sie sich dieses Beispiel einmal ganz genau an. Diese Technik ist 

sehr wichtig für alle Geschäftsprogramme. Die Stringvariablen G$, H$ 

und 15 werden so aufbereitet, daß die jeweiligen Felder immer 5 

Zeichen lang sind, gleich welche Zahl zwischen 0 und 99999 Sie hinein- 

schreiben. Mit dem LEFT$ Befehl geschieht die Einteilung in 5 
Gruppen. Anstelle der Asteriks (Sternchen) können Sie auch Leer- 

zeichen im String N$ verwenden. Die einzelnen Fünfergruppen werden 

dann im Summenstring J3 durch Addition zusammengefasst. 

Hierzu verwenden wir den LEFTS Befehl für die erste Fünfergruppe. 

Der MID$ Befehl wird für die zweite Fünfergruppe und der RIGHTS 
Befehl für die dritte Fünfergruppe. 

104



Anschließend sehen Sie, wie die Zahlen wieder in gleicher Weise er- 

scheinen wie wir sie am Anfang aufbereitet haben. Diese Technik 

können Sie bei allen Geschäftsprogrammen wie z. B. Adressenliste, 

Lagerverwaltung etc. verwenden. Die einzelnen Datensätze werden 

dann in einem String zusammengefasst und auf Diskette gespeichert. 

A$” “85 Zeichen für Kundennummer 
BS” “ 20 Zeichen fiir Name 
C$” “12 Zeichen für Postleitzahl 
D$” "20 Zeichen für Ort 

EZ="* * # eH 

FRU RRR RR RR RR RH HH HH OD Actoriks 

GG="* FRR RH HR HH HR HE 12 Asteriks 

A$ = LEFT$(AS+N$,5) 
BS = LEFT$(BS+F$,20) 
C$ = LEFT$(C$+G$, 12) 
D3 = LEFTS(D$+F$,20) usw. 

Ein anderes Beispiel: 

10 A$ = " HOFACKER VERLAG " 
15 L$ =" "; REM 10 LEERZEICHEN 
20 X = INT ( LEN (A$) / 2) +2 
30 FOR I = 1 TO LEN (A$) / 2 
40 PRINT LEFT$ (L$,X — I + 1); MID$ (A$,X -I,2 * I - 1) 
80 NEXT I. 

]RUN 
R 

ER 
KER V 

CKER VE 
ACKER VER 

FACKER VERL 
OFACKER VERLA 

HOFACKER VERLAG 

105



Beim ZX81 und SPECTRUM 

MID$ (AS 2,5) lautet hier 

A$ (2 TO 5) 

Beim ATARI 

AS (2,5) 

106



RIGHT$(X$,Y) 

RIGHT3(X3,Y) 

Dieser Befehl arbeitet ähnlich wie der LEFT$(X3,Y), nur wird hier 

nicht von links, sondern von rechts her gezählt. 

Sie können den RIGHT-Befehl für das gleiche Beispiel wie unter 

LEFTS(X$8,Y) verwenden. Es ergäbe sich folgender Unterschied im 

Feldaufbau. 

RIGHTS(X$,Y ,5) LEFTS(X$,Y,5) 

    

    

    

    

Feld Feld 

00002 20000 

00015 15000 O = Blanks oder auch Sternchen 

00105 10500         

Beispiel fir RIGHTS(X$,Y) 

10 REM RIGHTS(A$,X) DEMO 
20 G$ = "2":H$ = "15":1$ = "105" 
30 N$ = "aaa 

50 X$ = G$: GOSUB 100 
60 X$ = H$: GOSUB 100 
70 X$ = I$: GOSUB 100 
80 END 
100 X$ = RIGHTS (N$ + X$,5) 
105 PRINT X$; 
110 RETURN 

]RUN 
ea ae a Osa 4 BA OS 

107



10 A$ = "HOFACKER VERLAG" 
20 FOR I= 1 TO LEN (A$) 
30 PRINT RIGHTS (A$,T) 
40 NEXT I 

JRUN 
G 
AG 
LAG 
RLAG 
ERLAG 
VERLAG 
VERLAG 

R VERLAG 
ER VERLAG 
KER VERLAG 
CKER VERLAG 
ACKER VERLAG 
FACKER VERLAG 
OFACKER VERLAG 
HOFACKER VERLAG 

Beim ZX81 und SPECTRUM entspricht RICHT$(A3,5) 

Beim ATARI 

108 

A$ (LEN A$—5 TO LEN A$) 

A$ (LEN(A$)—5, 5)



STR$(X) 

STR$(X) 

Dieser Befehl liefert einen String, welcher die numerische Zahl X 

repräsentiert. Sie können damit Zahlen in einen String umwandeln. Der 

Befehl wird oft dort verwendet wo Zahlen auf Diskette oder Cassette 
gespeichert werden müssen. Meist kann man jedoch nur Strings auf 

Diskette und Cassette speichern. Man verwandelt daher Zahlen in 
Strings oder behandelt sie von Anfang an als String. Erst wenn Be- 

rechnungen durchgeführt werden müssen, werden sie wieder in 

numerische Zahlen oder Variablen verwandelt. Wenn Sie z. B. die An- 

zahl der Stellen einer Zahl zählen wollen, verwandeln Sie diese zuerst 

einmal mit STR$S(X) in einen String. Anschließend zählen Sie die 

Stellen mit LEN(X$). 

Beispiel: 

10 REM STR$ DEMO 
20 INPUT "BETRAG :";A 

30 B=BtA 

40 B$ = STR$ (B) 
45 B1$ LEFT$ (BS, LEN (B$) - 2) 

47 Bes RIGHTS (B$,2) 
49 BS = B1$ + "." + B2s 
50 HTAB 40 — LEN (B$): PRINT B$ 

60 GOTO 20 

JRUN 
BETRAG: 1000 

BETRAG :10000 
110.00 

BETRAG :233 
112.33 

BETRAG: 

109



Im Beispielprogramm wird in Zeile 20 eine Zahl A eingegeben. Diese 

Zahl entspricht der Einheit Pfennig. Sie wird zur schon vorhandenen 

Zahl B addiert. Die Ausgabe soll nun rechtsbündig am rechten Bild- 

schirmrand ausgegeben werden. Außerdem soll ein Dezimalpunkt bei 

der Ausgabe eingesetzt werden. 

Die Zahl B wird deshalb in eine Zeichenkette B$ gewandelt und diese 

in zwei Teilketten B1$ und B23 aufgeteilt. 

In Zeile 49 wird zwischen B1$ und B2$ ein Dezimalpunkt eingefügt. 

Die Ausgabe erfolgt in Zeile 50. HTAB für den APPLE muß durch TAB 

oder PRINT AT für andere Rechner ersetzt werden. 

110



  

VAL(XS) 

VAL(X$) 

Dieser Befehl verwandelt die String-Variable X3 wieder zurück in eine 
Zahl. Er stellt die Umkehrung des Befehles STR$(X) dar. 

10 REM VAL(X$) DEMO 
20 INPUT "BETRAG:":A$ 
22 FOR I = 1 TO LEN (A$) 
24 IF MID$ (A$,I,1) = "." THEN 26 
25 NEXT I: GOTO 20 
26 AS = LEFT$ (A$,I - 1) + RIGHTS (A$, LEN (A$) - I) 
30 B=B+ VAL (A$) 
40 B$ = STR$ (B) 
45 B1$ = LEFT$ (B$, LEN (B$) - 2) 
47 B2$ = RIGHTS (B$,2) 
49 BS = B1$ + "," + Bos 
50 HTAB 40 - LEN (B$): PRINT B$ 
60 GOTO 20 

]RUN 

BETRAG :10.00 
10.00 

BETRAG :122.50 
132.50 

BETRAG :1234.56 
1367.06 

BETRAG: 10000.00 
11367.06 

BETRAG: 

111



VAL(X$) verwendet man immer dann, wenn Zahlen als String ver- 

arbeitet wurden und es so weit ist, daß man mit den Zahlen rechnen 

muß. Manipulieren Sie alle Zahlen so lange wie möglich als Strings und 

wandeln Sie erst vor der Rechenoperation in eine Zahl um. 

Im Beispiel erfolgt die Eingabe als Zeichenkette. Vor dem Wandeln 

der Zeichenkette in eine Zahl wird der Dezimalpunkt entfernt. Ab 
Zeile 30 entspricht der Programmablauf dem Beispiel STR$. 

112



BIT NEINLENELE NEU NT LEINEN NENNE EEE NENNE EEE NEE INT ENENE I NEE 

    

Grundkurs 

D-O-O-O0-O-9000-0020-90-0-0-90-0-0-0-0-90-0-0-0-0-0-0-0-0-0-0-0-0-9-0-9-0-0-900-09-0-0-0-00-0- 00-00-0090 0-.0 OO DD OIOOODDODLDILILIH LEN



114



BASIC-Grundkurs 

Die folgende Einführung ist für den ersten Kontakt mit einem Com- 

puter geschrieben. Dabei werden die meisten Befehle, die in der Zu- 

sammenstellung aufgeführt sind, nochmals in kleinen Programmen vor- 

gestellt. Es wird allerdings versucht, so wenig als möglich, rechner- 

spezifische Befehle zu verwenden. Als Grundlage für die Befehle soll die 

BASIC-Version von MICROSOFT dienen. Diese Version dürfte wohl die 

am weitesten verbreitete sein. 

Der erste Kontakt: 

Wenn man zum ersten Mal vor einem Computer sitzt, so sieht man die 

Tastatur und den Bildschirm. Auf letzterem ist ein weißes blinkendes 

Rechteck zu sehen. Dieses ist der Cursor, und zeigt an, daß der Com- 

puter auf eine Eingabe wartet. Ist kein Cursor zu sehen, so gibt es zwei 

Möglichkeiten. Entweder der Rechner bearbeitet ein Programm, oder er 

ist bei der Ausführung von Befehlen "im Wald’ gelandet. Das bedeutet, 

der Rechner irrt zwischen Befehlen hin- und her und findet keinen Aus- 

weg mehr. In diesem Fall ist es das Beste, den Rechner aus- und wieder 

einzuschalten. Die Hersteller von Rechnern führen an dieser Stelle einen 

ersten Intelligenztest mit dem Benutzer durch. Der Einschaltknopf ist 

meist so angebracht, daß er erst nach längeren Suchen gefunden wird. 

Nach dem Einschalten des Rechners erscheint meistens ein Hinweis auf 

den Rechner und den Hersteller und der blinkende Cursor ist zu sehen. 

Nun kann ein erster Befehl eingegeben werden. Der Rechner soll als 

erstes, den Namen des Benutzers auf den Bildschirm ausgeben. Dazu 

wird der PRINT-Befehl verwendet. In den Rechner wird die Anweisung 

PRINT “HEINRICH MEIER” 

über die Tastatur eingegeben. Nach dem Drücken einer Taste, rückt 

der Cursor eine Stelle weiter. Ist das letzte Zeichen '‘ eingegeben, so 

muß dem Rechner mitgeteilt werden, daß die Eingabe beendet ist. Dies 

geschieht mit der RETURN-Taste. Diese Taste veranlasst den Rechner, 

den eingegebenen Befehl auszuführen. In diesem Beispiel wird der 

Name HEINRICH MEIER auf den Bildschirm ausgegeben. Der 

blinkende Cursor zeigt an, daß eine neue Eingabe gemacht werden 

kann. Der Text zwischen den ° Zeichen wird als Zeichenkette be- 

zeichnet. 

115



Das Wort Computer bedeutet Rechnen, und so soll dieser nun eine 

Rechenaufgabe ausführen. Mit der Anweisung 

PRINT 3 * 1.25 

führt der Rechner die Rechenaufgabe 3 * 1.25 nach Betätigen der 
RETURN-Taste aus und gibt das Ergebnis auf den Bildschirm aus. 

Was muß man machen, wenn man sich bei der Eingabe vertippt. 

Anstatt PRINT wurde PRUNT eingegeben. Bei allen Rechnern kann 

der Cursor durch eine Taste nach links und nach rechts, meistens auch 

nach oben oder unten bewegt werden. Welche Tasten dies sind, muß in 

den einzelnen Handbüchern nachgeschlagen werden. 

Wird der Cursor nach links bewegt, so gibt es zwei Möglichkeiten. Der 

Buchstabe unter dem Cursor wird gelöscht oder nicht gelöscht. Im 

ersten Fall wird man bei der Fehleingabe PRUNT die Buchstaben bis 

zum R Löschen und denn die Buchstaben INT eingeben. Im zweiten 

Fall wird der Cursor über das U gesetzt und dan ein | eingegeben. 

Danach wird der Cursor wieder nach rechts bis zum Ende der bis- 

herigen Eingabe bewegt. 

Die beiden Anweisungen werden vom Rechner sofort, direkt ausgeführt. 

BASIC kann zwei Arten der Befehlsausführung, die direkte Bearbeitung 

einer Anweisung oder die Bearbeitung von Anweisungen in einem Pro- 

gramm. Wird eine Zeile ohne Zeilennummer, wie z.B. 

PRINT3+4 

eingegeben, so wird nach Beendigung der Eingabe durch RETURN, 

der Befehl ausgeführt. Das Ergebnis 7 wird auf dem Bildschirm aus- 

gegeben. Wird dagegen die Zeile als 

10 PRINT3+4 

eingegeben, so wird diese Anweisung nach der Eingabe von RETURN, 

als Programmzeile 10 im Rechner gespeichert. 

Die Sprache BASIC ist ein INTERPRETER. Ein Interpreter liest 

116



jeweils eine Programmzeile aus dem Programmspeicher, entschlüsselt 

diese und führt die Anweisungen aus. Ist diese Zeile fertig bearbeitet, so 

wird die Zeile .mit der nächst höheren Zeilennummer geholt und ausge- 

führt. Es gibt aber besondere Anweisungen, die den Interpreter veran- 

lassen, an eine andere Zeilennummer zu springen. Davon später. 

Ein erstes Programm: 

Ein Vorteil des Rechners ist, eine gestellte Aufgabe immer wieder zu 

wiederholen. Als Beispiel soll ein kleines Programm geschrieben werden, 

das den Namen HEINRICH MEIER 10 mal auf den Bildschirm ausgibt. 

Man könnte natürlich ein Programm schreiben, das folgendermaßen 

aussieht: 

10 PRINT "HEINRICH MEIER" 
20 PRINT "HEINRICH MEIER" 

100 PRINT "HEINRICH MEIER" 
110 END 

Das stellt eine erhebliche Schreibarbeit dar. Einfacher geht es mit der 

FOR...NEXT 

Schleife. 

Das Programm lautet dann 

10 FOR I = 1 TO 10 STEP 1 
20 PRINT "HEINRICH MEIER" 
30 NEXT I 
40 END 

In Zeile 10 ist eine Variable, eine veränderliche Größe, I vereinbart. 

117



Diese wird in der FOR... NEXT Schleife auch als Laufvariable be- 

zeichnet. Der erste Wert von I ist Eins. Hat der Interpreter die Zeile 10 

entschlüsselt, so wird Zeile 20 und danach Zeile 30 ausgeführt. In Zeile 

30 wird die Variable I durch die Angabe STEP 1 um Eins erhöht. Nun 

prüft der Interpreter, ob der Wert von I größer als der Endwert 10 ist. 

Wenn nicht, dann wird mit | = 2 die Schleife nochmals durchlaufen. 

Des geschieht solange, bis in Zeile 30 der Wert von I größer als 10 ist. 

Das Programm hält dann in Zeile 40, wobei | den Wert 11 hat. 

Zu diesem Programm müssen aber noch weitere Bemerkungen gemacht 

werden. 

In allen BASIC-Versionen kann die Angabe STEP 1 weggelassen wer- 

den, wenn die Laufvariable immer um Eins erhöht wird. 

Eine Schleife wird immer mindestens einmal durchlaufen. Wenn die 

Zeile 10 aus Versehen so geschrieben wurde 

10 FOR I=10TO 1STEP1 

so wird erst in Zeile 30 festgestellt, daß | größer als Eins ist. Die Zeile 

20 wird also einmal durchlaufen. 

Ein erster Programmlauf: 

Ist ein Programm geschrieben und zeilenweise im Rechner gespeichert, 

so kann es gestartet werden. Die Anweisung dazu lautet RUN. Diese 

Anweisung wird direkt eingegeben. Das Programm beginnt zu laufen 

und der in Zeile 20 programmierte Name wird auf den Bildschirm aus- 

gegeben. Ist der Rechner wieder zu einer Eingabe bereit, so wird durch 

PRINT | 

der Wert der Variablen | ausgegeben. In diesem Beispiel muß I den Wert 

11 haben. 

Ein nächstes Beispiel: 

Es soll ein Programm geschrieben werden, das die Zahlen von Eins bis 

118



Zehn zusammenzählt. Vor der Eingabe des neuen Programms wird mit 

NEW 

das alte Programm gelöscht. 

Das Programm lautet: 

10 S=0 
20 FOR I=1 TO 10 
30 S=S+I 
40 NEXT I 
50 PRINT S 
60 END 

S ist eine Variable, die zu Beginn des Programms den Wert Null hat. 

Diese Zeile kann in.den meisten Fallen entfallen, da die Anweisung 

RUN alle Variablen zu Null macht. 

In Zeile 20 beginnt eine Schleife, die in Zeile 40 endet. In dieser 

Schleife wird die Anweisung 

30 S=S+! 

ausgeführt. Diese Zeile scheint mathematisch falsch zu sein, den S kann 

niemals gleich S plus einer Zahl I sein. Das Gleichheitszeichen wird in 

BASIC in zwei verschiedenen Bedeutungen behandelt. In diesem Fall 

bedeutet es nicht “‘gleich’’ sondern "ersetzt durch’. In Worten lautet 

Zeile 30: Der neue Wert der Variablen S wird ersetzt (ist gleich) dem 

alten Wert von S, plus der Zahl I. Beim ersten Durchlauf durch die 

Schleife hat S den Wert Null und I den Wert Eins. Nach Ausführung der 

AnweisungS=S+ I hat S den Wert Eins. 

Beim zweiten Schleifendurchlauf ist S gleich Eins und | gleich Zwei. 

Das neue S wird somit 3. 

Nach dem Ende der Schleife wird das Ergebnis S = 55 ausgedruckt. 

119



Anmerkung für den ZX81 und den SPECTRUM 

Bei beiden Rechnern muß die Zeile 10 vorhanden sein. Der Interpreter 

dieser BASIC-Version überprüft in Zeile 30, ob der Variablen S auf der 

rechten Seite ein Wert zugewiesen wurde. Ohne Zeile 10 ist dies nicht 

der Fall und der Interpreter beendet das Programm in Zeile 30 mit einer 

Fehlermeldung. 

Andere BASIC-Versionen machen diese Überprüfung nicht, was zu 

katastrophalen Fehlberechnungen führen kann. 

Frage: 

Welche Anweisung muß wo eingesetzt werden, damit bei jeden 

Schleifendurchlauf der neue Wert von S ausgdruckt wird. 

Antwort: 

35 PRINTS 

Die Beantwortung dieser Frage zeigt auch, warum Zeilennummern 

meistens in Abständen von Zehn eingegeben werden. Dadurch ist Platz 

für weitere Anweisungen vorhanden. Beim Schreiben eines Programmes 

wird die Zeile an die richtige Stelle eingefügt. 

Mit 

LIST 

wird ein Programm. auf den Bildschirm ausgegeben. Dieses Einfügen 

einer Zeile kann leicht beobachtet werden, wenn das Beispielprogramm 

mit LIST auf den Bildschirm ausgegeben, danach die Zeile 35 eingefügt, 

und das Programm nochmals mit LIST ausgegeben wird. 

Einzelne Zeilen können mit 

LIST 10 

bzw. 

LIST 10,40 (Commodore-Rechner LIST 10-40) 

angezeigt werden. 

120



Soll eine Zeile gelöscht werden, so wird die Zeilennummer ohne eine 

Anweisung eingegeben. 

Die Eingabe 

35 

gefolgt von einen RETURN löscht Zeile 35 wieder. 

Eine schönere Ausgabe: 

In dem Beispielprogramm soll jeweils die Laufvariable I und die Summe 

S ausgegeben werden. Eine Möglichkeit ist 

35 PRINT I,S 

Diese Anweisung bewirkt, daß der Wert von | und der Wert von S in 

einer Zeile ausgegeben wird. Durch das Komma werden zwischen beide 

Zahlen Leerzeichen eingefügt. Die Anzahl der Leerzeichen ist von 

Rechner zu Rechner verschieden. 

Werden in einem Programm viele Werte von verschiedenen Variablen 

ausgegeben, so kann der Name der Variablen mit ausgegeben werden. 

Zeile 35 lautet dann: 

35 PRINT "I=";1;" S=:S 

Hier wird zuerst der Text I = und der Zwischenraum der Wert der 

Variablen | ausgedruckt. Der ; gibt an, daß kein Zwischenraum bei der 

Ausgabe eingefügt wird. Nach der Ausgabe des Wertes vor S folgt keine 

weitere Angabe (; oder ‚) so daß dann eine neue Zeile angefangen 

wird. Dies wird auch durch eine leere PRINT-Anweisung (ohne Angabe 

eines Variablennamens) erreicht. 

Noch mehr Schleifen: 

Das folgende Programm zeichnet ein Dreieck aus «. 

10 FOR I=1 TO 10 

121



20 FOR J=1 TO I 
30 PRINT "*"; 
40 NEXT J 
90 PRINT 
60 NEXT I 
70 END 

Hier werden zwei geschachtelte Schleifen mit den Laufvariablen | und J 

verwendet. Die Schleife J geht von Zeile 20 bis 40 und druckt | mal ein 

Sternchen aus. Die obere Grenze der inneren Schleife ist die Lauf- 

variable I der äußeren Schleife. 

Nach dem Programmstart ist | = 1 und J = 1. Nun wird die innere 

Schleife von J = 1 bis J = 1, also einmal durchlaufen. Danach wird in 

Zeile 50 eine neue Zeile auf dem Bildschirm aufgefangen. In Zeile 60 

wird I = 2. Die innere Schleife wird nun von J = 1 bis J = 2, also 

zweimal, durchlaufen. Dies geschieht solange, bis | größer als 10 ist. 

Dann wird das Programm beendet. 

Bei geschachtelten Schleifen muß darauf geachtet werden, daß sich die 

Schleifen nicht überschneiden. Dies wäre der Fall, wenn das Programm 

folgendermaßen falsch geschrieben wäre: 

30 
40 NEXTI 
50 
60 NEXT J 
70 

Die Schleifen I und J überschreiben sich. 

Frage: 

Was wird ausgegeben ? 

Antwort: 

10 Sternchen und die Fehlermeldung: 

NEXT WITHOUT FOR ERROR IN 60. 

122



Bei Schleifen muß auch noch auf etwas anderes geachtet werden. 

Innerhalb einer Schleife darf eine Laufvariable nicht verändert werden. 

Das folgende Programm zeigt dies: 

10 FOR I=1 TO 10 
20 I=I+I 
30 PRINT I 
40 NEXT I 
90 END 

In diesem Programm nimmt | nicht die Werte 1,2,3 usw. bis 10 an, 

sondern die Werte 2,6 und 14. Noch schlimmer ist es, wenn Zeile 20 in 

20 |=I-I 

geandert wird. Die obere Grenze 10 wird nie erreicht und das Programm 

ist "im Wald’’ und kann nur durch RESET wieder angehalten werden. 

Eine kleine Spielerei: 

Es soll ein kleines Programm geschrieben werden, bei welchen der 

Computer nach dem Namen des Benutzers fragt, und diesen dann mit 

“GUTEN TAG‘ gefolgt vor Namen begrüsst. 

Das Programm lautet: 

10 INPUT"DEIN NAME ";A$ 
20 PRINT :PRINT 
30 PRINT"GUTEN TAG ";A$ 
40 END 

In Zeile 10 wird die INPUT-Anweisung verwendet. Damit wird der Wert 

einer Variablen uber die Tastatur eingegeben. Bei den meisten BASIC- 

Versionen kann nach INPUT ein Text angefuhrt werden, der beim 

Programmlauf auf dem Bildschirm ausgegeben wird. Nach dem Text 

folgt nach einem Strichpunkt der Name der Variablen. Kann nach 

INPUT kein Text angegeben werden, so kann dies durch 

PRINT DEIN NAME: “:INPUT A$ 

123



umgangen werden. 

In Zeile 20 folgen zwei PRINT Anweisungen. Werden mehrere An- 

weisungen in eine Zeile geschrieben, so werden diese durch : getrennt. 

In Zeile 30 wird nun der Text GUTEN TAG und der Inhalt der Text- 

variablen (String-Variable) Ad ausgegeben. 

Entscheidungen und Sprünge: 

In BASIC gibt es zwei Anweisungen, ein Programm zu verzweigen. Da 

ist einmal die bedingte Verzweigung mit IF... THEN und die unbe- 

dingte Verzweigung mit GOTO. Die letztere wird von vielen BASIC- 

Programmierern dazu verwendet, ungeniesbare Spaghetti-Programme zu 

erzeugen. 

Das sind Progrmme, bei denen man zwar einen Anfang erkennen kann, 

der Programmablauf dann aber mit GOTO'’s irgendwohin verschwindet 

und nicht mehr erkennbar ist. Es tauchen hin und da wieder Anfänge 

und Enden von Programmteilen auf, aber ein übersichtlicher Programm- 

aufbau ist nicht erkennbar. Trotzdem lassen sich mit GOTO übersicht- 

liche Programme schreiben, wenn man gewisse Regeln einhält. Auf 

diese wird im weiteren Verlauf dieses Grundkurses noch eingegangen 

werden. 

Als Beispiel für die bedingte Programmverzweigung soll ein kleines 

Zahlenratespiel programmiert werden. Meistens ist es so programmiert, 

daß der Computer eine Zahl sich ausdenkt, die vom Benutzer erraten 

werden soll. Das folgende Beispiel macht es umgekehrt. Der Benutzer 

denkt sich eine Zahl, die vom Computer erraten werden soll. Die Zahl 

darf zwischen Eins und 100 liegen. Das Programm sieht folgender- 

mafen aus: 

10 PRINT"ICH RATE DEINE ZAHL":PRINT 
20 J1=0:J2=100 
25 N=INT((J1+J2)/2) 
30 PRINT"IST DEINE ZAHL ";N;" ?" 
40 PRINT"DEINE ANTWORT: ZU GROSS" 
80 PRINT" ZU KLEIN" 

55 PRINT" RICHTIG" 

124



60 INPUT A$ 
70 IF A$="ZU GROSS" THEN J2=N:GOTO 100 
80 IF A$="ZU KLEIN" THEN J1=N:GOTO 100 
85 IF A$="RICHTIG" THEN END 
90 GOTO 40 
100 IF ABS(J1-J2)<>2 THEN GOTO 25 

110 PRINT"DEINE ZAHL IST ";INT((J1+J2)/2) 
120 END 

Als Lösungsverfahren wird das klassische binäre Suchen verwendet. 

Zuerst wird das Intervall halbiert. Ist die vom Computer zu ratende 

Zahl größer als 50 wird "ZU KLEIN’ andernfalls ZU GROSS’' oder 

“RICHTIG” eingegeben. 

Wenn die vom Computer ausgegebene Zahl zu klein war, dann wird die 

obere Hälfte halbiert und ausgegeben. Dieses Verfahren wird solange 

fortgesetzt, bis die richtige Zahl gefunden oder das Intervall nur aus 

einer einzigen Zahl besteht. Dies ist dann die gesuchte Zahl. 

Die erste bedingte Verzweigung ist in Zeile 70. Ist die Eingabe A$ = 

ZU GROSS, dann wird die obere Intervallgrenze J2 gleich N. In Zeile 

25 wird das verbleibende Intervall halbiert, und die Zahl in der Mitte 

als neue Zahl ausgegeben. Bei einer bedingten Verzweigung mit IF 

werden nach THEN alle Anweisungen ausgeführt, die in der gleichen 

Zeile stehen. Die GOTO 100 Anweisung setzt das Programm in Zeile 

100 fort. Dort ist wieder eine Abfrage mit IF programmiert. Diesmal 

wird untersucht, ob das Intervall nur noch eine Zahl enthält. Ist dies 

der Fall, sow wird diese Zahl ausgegeben und das Programm beendet. 

Sonst wird nach Zeile 25 zurückgesprungen. 

Der Sprung in Zeile 90 wird dann ausgeführt, wenn bei der Eingabe 

von Aß nicht eines der drei vereinbarten Worte eingegeben wird. 

Die in diesem Programm vorhandenen Sprungbefehle sind notwendig, 

da es in den meisten BASIC-Versionen nur eine Abfrage 

WENN ... DANN (IF... THEN) 

gibt und kein Abfragen der Form 

125



WENN...DANN (DIES) ODER (DAS) ENDE 
(IF... THEN...ELSE...END) 

Hier wird, wenn die Abfrage erfüllt ist, der Programmteil (DIES), und 

wenn die Abfrage nicht erfüllt ist, der Programmteil (DAS) ausgeführt. 

In BASIC muß diese Verzweigung dann folgendermaßen programmiert 

werden. 

100 IF (BEDINGUNG THEN (ANWEISUNGEN 1):GOTO 120 
110 ANWEISUNGEN 2 
120 PROGRAMM FORTSETZUNG 

Wenn die Bedingung erfüllt ist, werden die ANWEISUNGEN 1 ausge- 

führt und dann nach Zeile 120 gesprungen. Ist die Bedingung nicht er- 

füllt, dann wird das Programm in Zeile 110 fortgesetzt und danach die 

Zeile 120 ausgeführt. In diesen Fällen sind die GOTO-Befehle not- 

wendig und sinnvoll. 

Das Programm verwendet zwei Funktionen. Dies sind die INT und die 

ABS-Funktion. 

INT rundet immer auf die nächste kleinere Zahl ab. 

PRINT INT(7.9/2) ergibt 3 

PRINT INT(6/2) ergibt auch 3 

Anmerkung für ZX81 oder SPECTRUM 

Die Anweisung PRINT 0.6*5 ergibt 3, dagegen ergibt 

PRINT INT(0.6*5) 2. 

Die Funktion ABS bilden den Absolutwert einer Zahl 

PRINT ABS (-2) ergibt 2 

Haupt- und Unterprogramme: 

In einem BASIC-Programm ist der Programmablauf durch die Zeilen- 

nummern gegeben. Änderungen dieses Ablaufs werden durch Ver- 

zweigung mit dem GOTO-Befehl durchgeführt. Eine andere Art der 
Programmverzweigung ist ein Sprung in ein Unterprogramm. Anders als 

126



beim GOTO-Befehl wird nach Beendigung des Unterprogramms an die 

Stelle im Hauptprogramm zurückgesprungen, an welcher dieses ver- 

lassen wurde. 

100 ... 

110 GOSUB 1000 Hauptprogramm 

120 ... 

1000 ... 

Unterprogramm 

1900 RETURN 

Im Beispiel wird in Zeile 110 in das Unterprogramm, das bei 1000 be- 

ginnt, gesprungen. Wird dort in Zeile 1900 die Anweisung RETURN 

gefunden, so wird im Hauptprogramm bei Zeile 120 das Programm 

fortgesetzt. 

Wann werden Unterprogramme gebraucht ? 

Unterprogramme werden immer dann verwendet, wenn an ver- 

schiedenen Stellen im Programm eine gleiche, festgelegte Folge von An- 

weisungen benötigt wird. Dazu das folgende Beispiel: 

10 REM ROEMISCHE ZAHLEN 
100 INPUT"Z=";Z:B=Z 
120 IF B<=3000 THEN GOTO 500 

130 PRINT "ZU GROSS":GOTO 100 

900 F=1000:A$="M":GOSUB 1000 
510 F=900 :A$="CM":GOSUB 1000 
520 F=500:A$="D":GOSUB 1000 

030 F=400:A$="CD":GOSUB 1000 
940 F=100:A$="C":GOSUB 1000 
550 F=90:A$="XC":GOSUB 1000 
560 F=50:A$="L":GOSUB 1000 
570 F=40:A$="XL":GOSUB 1000 
980 F=10:A$="X":GOSUB 1000 
590 F=9:A$="IX":GOSUB 1000 
600 F=5:A$="V":GOSUB 1000 
610 F=4:A$="IV":GOSUB 1000 
620 F=1:A$="I":GOSUB 1000 
999 END 

127



1000 B=INT(Z/F) 
1010 IF B<>0 THEN GOSUB 1100 
1020 Z=Z-B*F 
1030 RETURN 
1100 FOR I=1 TO B 
1110 PRINT A$; 

1120 NEXT I 
1130 RETURN 

Das Programm ROEM rechnet Dezimalzahlen kleiner gleich 3000 in 

roemische Zahlen um. 

Die Zeilen 100 bis 130 enthalten die Eingabe. In den Zeilen 500 bis 620 

sind die dezimalen Wertigkeiten und die entsprechenden Zahlensymbole 

vereinbart. 

Das Unterprogramm ab Zeile 1000 bis 1030 berechnet eine Stelle des 

römischen Zahlensystems. Der Wert von B gibt an, wie oft das Zahlen- 

symbol gedruckt werden muß. Wenn B ungleich Null ist, wird in ein 

weiteres Unterprogramm ab Zeile 1100 gesprungen. Die Schachtelung 

von Unterprogrammen ist möglich. 

Zum Programmaufbau: 

In diesem Beispiel wurde das Unterprogramme an das Ende des Pro- 

gramms nach dem Hauptprogramm gehängt (Ende des Hauptprogramms 

in Zeile 999). 

Oft werden Unterprogramme vor dem eigentlichen Hauptprogramm 

aufgeführt. Dies hat in BASIC den folgenden Grund. Wird ein Unterpro- 

gramm aufgerufen, so fängt der Interpreter bei der kleinsten Zeilen- 

nummer an, nach der Zeilennummer des Unterprogramms zu suchen. Je 

früher er diese findet, desto schneller ist die Programmausführung. 

Anmerkung für ZX81, SPECTRUM und ATARI 

Bei diesen Rechnern sind Unterprogrammaufrufe mit Namen erlaubt. 

Beispiel: 
10 MENU = 1000 

100 GOSUB MENU 

128



Durch diese Namensgebung kann ein Programm leserlicher gemacht 

werden. 

Einige Anmerkungen zum Programmaufbau 

Ein Programm sollte immer in einzelne Blöcke aufgeteilt sein. Für ein 

Inventur-Programm braucht man zum Beispiel folgende Teile: 

1. Einen Menueteil 

2. Eingabe von Artikeln 

3. Ausgabe auf Drucker 

4. Veränderung des Lagerbestandes 

Der Programmaufbau kann dann folgendermaßen aussehen: 

Zeilen 

10— 99 Hinweis auf Autor, Programmart 

100 — 199 Wertzuweisung an Variablen 

Dimensionierung von Feldern 

200 — 999 Häufig gebrauchte Unterprogramme 

1000 — 1999 Menueteil 

2000 — 2999 Eingabe von Artikeln 

3000 — 3999 Ausgabe auf Drucker oder Bildschirm 
4000 — 4999 Verändern des Lagerbestandes 

5000 — 5999 Unterprogramme, die Fehler bei der Bedingung des 

Programms überwachen. 

Das Programm wird in Zeile 10 mit einem GOTO 1000, einem Sprung 

in Menue beginnen. Von dort werden die Programmteile über bedingte 

Verzweigungen als Unterprogramme angesprungen, und von dort wird 

wieder ins Menue zurückgesprungen. 

Dieser modulartige Aufbau macht es leichter, ein Programm zu über- 

schauen und auch zu testen. 

Fehler: 

Im Prinzip kann man davon ausgehen, daß kein Programm auf Anhieb 

fehlerfrei ist. Durch die Syntaxprüfung sind Schreibfehler schon bei der 

Eingabe gefunden worden. Logische Fehler werden erst im Programm- 

lauf gefunden. 

129



Einige der häufigsten Fehlerursachen sind die folgenden: 

Oft wird vergessen, einer Variablen, die auf der rechten Seite einer An- 

weisung steht, einen Wert zuzuweisen. Nur beim ZX81 und beim 

SPECTRUM wird dieser Fehler erkannt. Bei allen anderen wird der | 

Wert der Variablen als Null angenommen. 

Rechenergebnisse sollten daher mit dem Taschenrechner einmal über- 

pruft werden. 

Der Variablenname | wird häufig als Laufvariable in FOR... NEXT- 

Schleifen verwendet. Manchmal vergisst man, daß man diesen Namen 

schon verwendet hat und programmiert eine neue Schleife mit dem 

gleichen Namen. Als Rechenergebnisse kommen dann reine Zufalls- 

zahlen auf. 

Wenn man einen Variablennamen in einem Programm mehrfach 

benutzt, so muß man sicher sein, daß der augenblickliche Wert nicht 

später noch gebraucht wird. 

Wenn ein Programm gestartet wurde, und es erscheint längere Zeit keine 

Ausgabe auf dem Bildschirm, so kann das Programm in einer unend- 

lichen Scheife stecken. Das Programm kann dann durch die BREAK- 

Taste unterbrochen werden. Dann wird die Zeilennummer ausgegeben 

bei welcher das Programm unterbrochen wurde. In dieser Gegend muß 
man dann nach Möglichkeiten einer unendlichen Schleifenbildung 

suchen. Meistens ist es ein GOTO-Befehl mit einr falschen Zeilen- 

nummer, oder eine nicht erfüllte IF... THEN Bedingung wie im 

folgenden Beispiel: 

10 I = 1 
15I1I=1I+r2 
20 IF I = 100 THEN GOTO 50 
30 GOTO 15 
50 END 

Die Bedingung | = 100 ist nie erfüllt, da | immer eine ungerade Zahl ist. 

Nach | = 99 wird I = 101. Damit stellt dies eine unendliche Schleife 

dar. Richtig wäre in Zeile 20 die Abfrage gewesen. 

130



20 IF I) = 100 THEN GOTO 50 

Damit wäre die Schleife mit | = 101 verlassen worden. 

Meistens ist aber nicht klar ersichtlich, wo im. Programm so eine 

Schleife auftritt. Dann wird man versuchen, durch PRINT-Anweisungen 

oder durch Einfügen des STOP-Befehls den Fehler einzukreisen. 

BASIC ist eine interpretative Sprache. Das heißt, das eingegebene Pro- 
gramm oder Teile des Programms können sofort ausgeführt werden. 

Dies sollte man dazu benutzen, kleine Programmabschnitte (Module) 

sofort zu testen. Dies ist wesentlich einfacher, als ein vollständiges 

Programm auf Fehler zu untersuchen. 

Leider führt dies aber auch dazu, daß Programme nur am Rechner ent- 

wickelt werden und nebenher keine Notizen zum Programmablauf 

gemacht werden. Bevor man mit dem Schreiben eines Programms 

beginnt, sollten die wesentlichen Grundzüge des Programmablaufs 

schriftlich festgehalten werden. Dies erleichtert wesentlich die Fehler- 

suche. 

Auf eine weitere Fehlermöglichkeit, die Instabilität der angewendeten 

mathematischen Verfahren, soll hier nicht eingegangen werden. 

Im Allgemeinen kann man sagen, daß die Fehlersuche mindestens 

ebenso lange dauert, wie das Schreiben des Programms. 

Schluß: 

Dieser Grundkurs sollte nur die notwendigsten Befehle eines BASIC- 

Programms erläutern. Ein Computer-Neuling sollte zu Beginn seiner 

Programmiererfahrung kurze und einfache Programme abtippen und 

daraus lernen. Das Abtippen langer Programme führt immer zur 

Frustration, da diese auf Anhieb nicht laufen und Fehler nicht ge- 

funden werden. Selbst für einen versierten Programmierer ist es nicht 

leicht, einen Fehler in einem fremden Programm zu finden. Statt dem 

sturen Abtippen gibt es noch eine andere, bessere Methode. Soll ein 

längeres Programm in einen Rechner eingegeben werden, so sollte 

das Programm vorher untersucht werden, welche Teile es enthält. Dies 

geht meistens aus der Aufgabenstellung hervor. Dann sollten nur diese 

131



Teile programmiert werden, wobei das ursprüngliche Programm als 

Vorlage dienen kann. Sobald sich eine Möglichkeit zeigt, einen Test 

eines Programmteils durchzuführen, dann sollte dies auch gemacht 

werden. Fehler sind in kleinen Programmteilen leichter zu finden, als 

in einem großen Programm. Fehler lassen sich leichter in einem aus- 

gedruckten Protokoll als auf dem Bildschirm finden. 

Bei .abgetippten Programmen kann man bei der Fehlersuche auch so 
vorgehen, daß eine Person das Programm laut liest und eine andere 
Person dies auf dem Bildschirm vergleicht. So können auch lange 
Programme zum Laufen gebracht werden. Besser ist es allerdings, 
zu Versuchen, die Teile eines Programms zu verstehen um sie dann 
selbst zu programmieren. 

132



Wie lernt man BASIC? 

Wie lernt man BASIC ? 

1. Allgemeines 

Die Programmiersprache BASIC gehört heute zu 

den leichtesten höheren Programmiersprachen. 
Sie wurde ursprünglich im Jahre 1960 in einem 

amerikanischen College entwickelt und seit die- 

ser Zeit haben sich unzählige Einzelversionen 

entwickelt. Diese einzelnen BASIC-Sprachen 

unterscheiden sich meist nur durch die Anzahl 

der Funktionen und in gewissen Besonderheiten 

der Computerhersteller. (DEC BASIC, HP-BA- 

SIC, WANG-BASIC, ALTAIR-BASIC, COMMO- 

DORE-BASIC, TANDY LEVEL I und LEVEL II 

BASIC, MICROSOFT BASIC u. v. a.) 

Das genormte Standard BASIC (ANSI-BASIC) 

wird man jedoch in relativ wenig Systemen heu- 

te finden. Jeder Microcomputer hat seine be- 

sonderen Vorteile und auch diese werden meist 

durch geschickt gewählte BASIC-Befehle ge- 

nutzt. 

Für eine Einführung in die BASIC-Programmier- 

sprache ist es jedoch nur von zweitrangiger Be- 

deutung, welches BASIC man benutzt. Wichtig 

ist nur, man lernt irgendein BASIC. Dann hat 

man sicher die Voraussetzungen, eine andere 

Version in kürzester Zeit zu durchschauen und 

zu verstehen. 

BASIC besteht nur aus einer kleinen Anzahl von 

Befehlen. Sie sind meist Abkürzungen englischer 

Worte, die man leicht im Gedächtnis behalten 

kann. 

Wie viele andere Programmiersprachen, kann 

man auch BASIC in zwei große Bereiche auf- 

teilen. 

1. Einfache Befehle für einfache Opera- 

tionen 

2. Hochentwickelte Befehle für kompli- 

zierte Operationen 

Wir wollen uns hier nur mit Punkt 1 befassen. 

Der Vorteil liegt dabei auch darin, daß die ein- 

fachen, gebräuchlichen Befehle auch in allen 

BASIC-Versionen vorhanden sind. Beachten Sie 

deshalb dies bei Ihren Programmier-Experimen- 

ten. Je elementarer die Befehle beim Programm- 

aufbau gewählt werden, um so größer ist die An- 
zahl der Versionen, die es verarbeiten kann. Die 

Manuals der Computerhersteller soliten auf je- 

den Fall benutzt werden. Und hier wären wir 

schon beim nächsten Punkt. Es ist unerlässlich, 

daß man zum Erlernen von BASIC ein System 
zur Verfügung hat. Durch Lesen alleine dürfte 

es sehr schwer sein, sich einzuarbeiten. Man 

muß einfach einmal Programme eingeben und 

die Ergebnisse kontrollieren können. 

Dies gilt übrigens für die gesamte Microcompu- 

tertechnik. Auch geht in den meisten Fällen 

Probieren übers Studieren. Diesen Bedürfnissen 

sind einige Hersteller ja heute wirklich entge- 

gengekommen. TRS-80 TANDY und COMMO— 

DORE, um nur eirmal die bekanntesten zu 

nennen. In ein paar Jahren werden es sicher 

mehr sein und die Preise werden auch anders 

aussehen. 

2. Was kann man mit BASIC anfangen? 

Sie können einfache mathematische Rechnungen 

durchführen (wie mit einem wissenschaftlichen 

Taschenrechner). Es ist aber auch möglich, klei- 

ne Programme zu entwickeln. die einem die All- 

tagsarbeit erleichtern. (Haushaltsfinanzen, 

Scheckbuchkontrolle, Heim- und Hobbyanwen- 

dungen). Viele BASIC-Versionen verfügen heute 

über eine phantastische Programmierbarkeit des 
Bildschirms. Sie können so Spiele und Graphik- 

Programme erstellen. (Computer-Kunst) Andere 

BASIC-Versionen erlauben eine vielseitige Ein- 
Ausgabe-Programmierung. Hier können sie 

133



Steuerungen, Zeitschalter, Analog/Digitalwand- 

ler, Digital/Analogwandler, Spracherkennung, 

künstliche Spracherzeugung usw. programmie- 

ren. 

Der Phantasie sind eigentlich keine Grenzen 

mehr gesetzt. „‚Fast‘‘ alles ist machbar. 

3. Wir fangen nun an zu programmieren 

Wir nehmen an, Sie haben sich einen kleinen 

Computer (Heimcomputer etc.) besorgt und 
sitzen nun vor Ihrem Gerät. Nach dem Ein- 

schalten meldet sich der BASIC-Interpreter bei 

vielen Systemen bereits mit einem bestimmten 

Zeichen. Dieses Zeichen sagt uns meist, daß 

der Computer bereit ist, einen Befehl, Anwei- 

sungen oder ein Kommando von uns entgegen- 

zunehmen. 

Andere Rechner wieder müssen erst gestartet 
werden, oder der BASIC-Interpreter muß erst 

von einem Massenspeicher (Cassette oder Flop- 

py) in den Arbeitsspeicher geladen und an- 
schließend aufgerufen werden. Die modernen 

CompactComputer (wie Commodore-PET und 

TANDY TRS-80) haben ein residentes BASIC, 
d. h. es ist in Festwertspeichern (ROM) gespei- 

chert und ist sofort nach Einschalten der Versor- 

gungsspannung für Befehle aufnahmebereit. Da 

der BASIC-Interpreter resident ist, ergeben sich 

folgende Vorteile: 

1. Keine Fehler beim Laden 

2.Es wird kein Arbeitsspeicherbereich 

durch den Interpreter belegt. (ROM 

sind billiger als RAM) 

3.Der gesamte Arbeitsspeicher (RAM) 

steht fiir meine Anwenderprogramme 

  

  

  

  

zur Verfiigung. 

1. Möglichkeit 

BASIC wird geladen 

0000 

Interpreter 

RAM 

Anwenderprogramm 

FFFF       
134 

  

  

  

  

2. Möglichkeit 

BASIC in ROM 

0000 

Interpreter ROM 

Anwenderprogramm RAM 

FFFF       

Grundsätzlich unterscheiden wir bei BASIC 

zwischen fünf verschiedenen Gruppen von An- 

weisungen und Befehlen. 

1. Systemkommandos. Diese können (meist) 

nicht programmiert werden. Beispiele: RUN, 

LIST etc. 

2. BASIC-Befehle (PRINT, LET, READ, GOTO 
usw. 

3. Anweisungen (LOAD, SAVE usw.) 

4. Funktionen. Arithmetische und sonstige 

Funktionen (SINUS, COSINUS, RND usw.) 

5. Operatoren (arithmetische Operatoren) 

Die wichtigsten Systemkommandos sind fast 

bei allen BASIC-Versionen gleich: 

NEW: Eingabe eines neuen Programmes, alles 

wird aus dem Arbeitsspeicher gelöscht. 

SCR: Gleiche Bedeutung wie NEW 

LIST: Das im Speicher vorhandene Programm 

wird auf dem Bildschirm etc. ausge- 

druckt. 

RUN: Übersetzung (compiling) des im Spei- 
cher befindlichen Programmes und Star- 

ten des Programmes.



Manche BASIC-Versionen erlauben die 

Möglichkeit, an einer bestimmten Zeile 

zu starten, z.B. RUN 200. 

Die Befehle werden wir im folgenden genau be- 

sprechen. 

Die bekanntesten Anweisungen sind: 

SAVE: Abspeichern eines Programmes auf ei- 

nen Massenspeicher (Cassette oder 

Diskette) 

STORE: wie SAVE 

LOAD: Laden von einem Massenspeicher her 

VERIFY: Kontrolle des abgespeicherten Pro- 

grammes 

Verlassen des BASIC-Modes und 

Rückkehr in einen Monitor. 

BYE: 

Die Anzahl der Funktionen in einem BASIC- 

Interpreter hängt meist von seiner Größe ab. 

Es gibt heute BASIC-Versionen von 2K, 4K, 

8K, 12K bis hin zu 16K-Versionen. Dement- 

sprechend ist meist die Anzahl der Funktio- 

nen. Die RND-Funktion ist meist auch in den 

kleinen Versionen zu finden, da sie sich beson- 

ders zum Programmieren von Spielen eignet. 

Die RND-Funktion erzeugt in BASIC eine Rei- 

he von Zufallszahlen. In welchem Bereich, 

wird meist in einem Argument, welches unmit- 

telbar der Funktion folgt, festgelegt. 

z.B. RND (1) 

Weitere Funktionen sind: 

SIN (X ) Sinus Y 
SGN (X) Sinus X 
ABS (X) Absolutwert von X 
TAB(X) Ausdrucken von Reihen 
INT(X) Führt zu ganzen Zahlen 

CHR$ (X) Zeichenaufruf 
u.v.a. 

Operatoren (arithmetische Operatoren) 

Arithmetische Berechnungen in einer höheren 

Programmiersprache, wie z. b. BASIC werden 

wie in der gewöhnlichen Arithmetik als Aus- 

drücke pro Zeile behandelt. Mit allen verfügba- 

ren Operatoren, wie z. b. (+; -;*;/; 1; etc.) kön- 

nen Formeln zusammengestellt werden. Die 

mathematischen Regeln werden dabei vom Com- 

puter automatisch beachtet. 

a) Ausdrücke in Klammern werden zuerst 

ausgerechnet und dann später in weite- 

ren Rechenoperationen berücksichtigt. 

b) Zwei Operatoren können meist nicht 

aufeinanderfolgen. 

c) Bei Berechnungen ohne Klammern heißt 

es auch hier Punktrechnung geht vor 

Strichrechnung, Potenzierung ent- 

sprechend noch vor der Punktrechnung. 

d) Sind in einem arithmetischen Ausdruck kei- 

ne Klammern enthalten, erfolgt die Be- 

rechnung von links nach rechts. ( Punkt u. 

Strichrechnung werden natürlich berücksich- 

tigt. 

Beispiele: 

(A+(3*B)) ** 2. Das Produkt aus 3 * 

B wird zu A hinzu- 
addiert und qua- 

driert. 

B wird von A abge- 

zogen und C wird 

vom Ergebnis der er- 

sten Operation abge- 

zogen. 

Zum Vergleich zweier oder mehrer Größen gibt 
es in den meisten BASIC-Versionen auch ver- 

gleichbare Operatoren, wie z. B. die größer ) und 

die ( Kleiner-Zeichen. Sie werden oft in Ver- 

bindung mit IF-Befehlen verwendet. 

Beispiel A = B, bedeu- 

tet A gleich B, 

= Gleichheitszeichen, 

Beispiel A ( B, bedeu- 

tet A kleiner B 

( kleiner Zeichen, 

Beispiel A ) B, bedeu- 

tet A größer B 

) größer Zeichen, 

(= kleiner gleich, Beispiel A ( = B, be- 
deutet A kleiner gleich 

B 

135



Beispiel A ) = B, be- 

deutet A größer gleich 

B 

)= größer gleich, 

A‘) B;A nicht gleich 

B 
() nicht gleich, 

Zeileneinheiten 

In jedem BASIC-Programm muß jeder Befehl 

mit einer Zeilenangabe versehen werden. Die An- 

zahl der möglichen Zeilenzahlen hängt von der 

Arbeitsspeichergröße ab. Meist werden die Zei- 

lenzahlen von 10 an aufwärts in Schritten von 

5 oder 10 gewählt. Man hat dann später beim 

Korregieren noch Platz, einen Befehl irgendwo 

einzuschieben. Neue Zeilen werden vom BASIC- 

Programm genau dort ins Programm eingesetzt, 

wo sie hingehören. 

Einfache BASIC-Befehle 

Spätestens zu diesem Zeitpunkt sollten wir die 

Möglichkeit haben, einen BASIC-Computer zu 

benützen. Es ist von großer Wichtigkeit, daß 

man zum Erlernen einer Programmiersprache 

ein System zur Verfügung hat. Heute gibt es 

bereits BASIC-Computer zu recht günstigen 

Preisen, so daß auch der Amateur in der Lage 

ist, sich ein eigenes System anzuschaffen. 

Wir wollen diesen BASIC-Kurs auf dem Com- 

modore Computer PET 2001 durchführen und 

auch dessen BASIC-Version beschreiben. Sie 

können jedoch die meisten Befehle und Pro- 

gramme aus dieser Version auch auf andere 

Computersysteme übertragen. 

Wir schalten nun unser Gerät ein und auf dem 

Bildschirm erscheint eine Angabe über die 

BASIC-Version, den maximal verfügbaren Spei- 

cherbereich, das Wort READY und ein blin- 

kender Cursor. 

Das Wort READY und der blinkende Cursor 

sagen uns, daß der Computer jetzt eine Eingabe 

über die Tastatur erwartet. 

Das wollen wir jetzt auch tun und tippen ganz 

einfach einmal unseren Namen ein. Was wird 

der Computer jetzt tun? 

Eingabe: OSWALD (Return-Taste drücken) 

136 

Es erscheint die Meldung „SYNTAX-ERROR“. 

Dies bedeutet, daß der Computer uns nicht ver- 

standen hat. Wir müssen also jetzt Worte ver- 

wenden, die der Computer versteht. Ganz zu 

Anfang hatten wir ja schon einmal einige BASIC- 

Befehle angedeutet. 

Auch der Befehl PRINT wurde dort schon ge- 

nannt. PRINT bedeutet „ Ausdrucken” und 

sagt dem Computer, daß er einen Text auf dem 

Bildschirm ausgeben soll. Der Text muß hinter 

dem Befehl in Anführungszeichen gesetzt wer- 

den. 

Beispiel: 

Geben Sie folgendes ein: 

20 PRINT „ BASIC IST EINFACH‘ (Return) 

Vergessen Sie nicht, nach jeder Eingabe die 

RETURN-Taste zu drücken, da der Computer 

die Eingabe erst nach Drücken dieser Taste in 

seinen Arbeitsspeicher aufgenommen hat. 

Jetzt haben wir schon unser erstes Computer- 

Programm geschrieben und es steht im Speicher. 

Es ist zwar ein sehr kurzes und einfaches Pro- 

gramm, da es nur aus einer Zeile besteht, aber 

es ist ein Programm. 

Jetzt müssen wir unser Programm auch noch 

starten. In BASIC geschieht dies u. a. durch die 

Eingabe des Kommandos RUN. Beachten Sie, 
daß wir zur Eingabe eines BASIC-Kommandos 

keine Zeilenzahl benötigen. 

Also geben wir jetzt RUN ein. 

Der Computer antwortet uns: 

BASIC IST EINFACH 

und sagt uns mit einem READY-Zeichen und 

dem blinkenden Cursor, daß das Programm aus- 

geführt wurde und er zur Aufnahme neuer Be- 

fehle und Kommandos bereit ist. 

Durch die Eingabe des „RUN’ Kommandos 

wird der Computer aufgefordert, an der nieder- 

wertigsten Zeilenzahl mit der Abarbeitung 

des Programmes zu beginnen. Er ging also zu 

Zeile 10 und hat den Befehl PRINT ausgeführt. 

Der Befehl PRINT „BASIC IST EINFACH” 

sagte ihm, daß er den Text in Anführungszei- 

chen auf dem Bildschirm ausdrucken soll. Man 

bezeichnet diesen Text zwischen zwei Anfüh- 

rungszeichen auch als „, String’. Der PET-Com-



Unser kleines Programm bleibt jetzt im Spei- 

cher, bis wir unseren Computer ausschalten oder 

ihm durch ein Kommando sagen, daß diese 

Befehlszeile gelöscht werden muß Der PET 
hat hier das Kommando NEW. Andere Compu- 

ter haben SCR oder CLEAR etc. Wir geben 

nun NEW mit anschließendem Drücken der RE- 

TURN-Taste ein und probieren ein neues Pro- 

gramm. 

puter hat jetzt noch ‘einige kleine Vorteile. 

Man kann auch RUN 10 eingeben, um das Pro- 

gramm an einer von uns gewunschten Zeilen- 

zahl zu starten. Weiterhin kann man sich beim 

Schreiben der Zeile 10 das zweite Anführungs- 

zeichen sparen. Bedingt ist jedoch, ‘daß kein 

weiterer Text mehr nach dem letzten Wort in 

der gleichen Zeile folgt. 

Fordern Sie unseren Katalog an ! 

150 Seiten vollgepackt 
mit neuen Büchern für 

Elektronik und Micro- 

computer. 

Software für: 

— COMMODORE-64 
— VC-20 
— PET/CBM 
— ATARI 400/800 
— SINCLAIR 
— TRS-80 
— GENIE 
— APPLE II 
— OSBORNE 

Heute noch bestellen |! 

2,— DM in Briefmarken 
oder Vorkasse auf Post- 

scheckkonto München 

15 994-807. 

Ing. W. Hofacker GmbH 
Tegernseer Straße 18 

D- 8150 Holzkirchen 

Telefon (0 80 24) 73 31, 

NEW 
10 PRINT ,, BASIC” 
20 PRINT ,, IST DOCH” 
30 PRINT „GANZ " 
40 PRINT „ EINFACH“ 
RUN 
BASIC 
IST DOCH 
GANZ 
EINFACH 

Der Computer arbeitet jetzt Zeile pro Zeile ab 

und druckt die Strings zwischen den Anführungs- 

zeichen aus. Machen Sie jetzt einige Versuche 

und geben Sie ganze Sätze oder Graphik-Symbo- 

le als Strings ein. 

Ka ln | 

  | ae eg 

Telex: 52 69 73 137



Wie lernt man BASIC, 

Teil ll 

Wie lernt man BASIC? Teil li 

Rückblick: 
Im ersten Teil unseres kleinen BASIC-Kurses 

haben wir den PRINT-Befehl kennengelernt. 
Wir haben ein kleines Programm geschrieben, 

welches uns nach Eingabe von RUN einen klei- 

nen Text auf dem Bildschirm ausdruckt. 
Wollen wir uns jetzt unser Programm noch ein- 

mal ansehen, geben wir einfach LIST (Return- 

Taste drücken) ein. Der Computer druckt uns 

jetzt unser Programm noch einmal so aus, wie 

wir es eingegeben haben. Sie können jetzt Ände- 
rungen vornehmen, z. B. neue Zeilen eingeben 

oder auch vorhandene Zeilen löschen. 

Neu Eingeben geschieht einfach durch 

Schreiben einer neuen Zeile mit dem 

neuen Befehl oder der neuen Anwei- 

sung. 

LIST 

10 PRINT „BASIC” 
20 PRINT ,, IST DOCH” 
3 PRINT „GANZ 
40 PRINT „EINFACH“ 
READY 

Nehmen wir einmal an, wir wollten jetzt unse- 

ren auszudruckenden Text ändern. Alles, was 

man nun tun muß, ist einfach die gewünschte. 
Zeile neu eingeben. 

30 PRINT ,, SEHR” 

LIST (Return) 

Jetzt wird alles noch einmal ausgedruckt. 

10 PRINT ,, BASIC” 
20 PRINT ,, IST DOCH” 
30 PRINT ,, SEHR” 
40 PRINT „EINFACH“ 
READY 

138 

Der PET bietet für solche Änderungen eine 
ganz praktische Methode. 

Man braucht hier nicht die ganze Zeile noch 

einmal zu schreiben, sondern geht mit dem 

Cursor an die zu ändernde Stelle. 
Mit den beiden Cursor-Tasten und der Shift- 

Taste kann der Cursor auf dem Bildschirm an 

jede beliebige Stelle gebracht werden. Von die- 

ser Stelle aus kann ich dann den zu ändernden 

Text einfach überschreiben. Durch Drücken 

der SPACE-Taste wird ein vorhandenes Zei- 

chen gelöscht. Mit der Insert-Funktion können 

auch Zeichen eingefügt werden. Wichtig ist, daß 

nach einer vorgenommenen Änderung in einer 

Zeile die RETURN-Taste gedrückt wird. 

Nun wollen wir ein anderes kleines Programm 

mit PRINT-Befehlen schreiben. 

10 PRINT 10 + 10 
20 PRINT 5 + 5 
30 PRINT 10 — 10 

RUN 

20 
10 
0 

Wollen wir die Ergebnisse nebeneinander haben, 

geben wir folgendes ein: 

NEW (Sorgt dafiir, da& der Speicher gelöscht 

wird) 

READY 

10 PRINT 10 + 10,5 +5, 10 — 10 

RUN 

20 10 0 

Wir sehen hier, daß wir eine Verteilung der Er- 

gebnisse auf einer bzw. zwei Zeilen vornehmen 

können. 

Es können auch mehrere Operationen in eine 

Zeile eingegeben werden.



Übungen: 

1. Schreiben Sie ein BASIC-Programm, 

welches Ihren Namen und Ihre Adresse 

ausdruckt. Der Ausdruck soll in vier 

Zeilen erfolgen. 
2. Was muß eingegeben werden, um den 

Speicher des Computers zu löschen? 

3. Welches Kommando muß man verwen- 

den, um ein Programm aus dem Spei- 

cher ausschreiben zu lassen. 

Die LET-Anweisung 

Die LET-Anweisung wird dazu benutzt, 

a) einen Wert (Zahl) 

b) ein Ergebnis einer Berechnung 

einer bestimmten Größe (Variable) oder auch 

mehreren Variablen zuzuordnen. Grundsätzlich 

sieht eine LET- oder auch Zuordnungsanweisung 

wie folgt aus: 

100 LET (Variable) = (Zahl od. Ergeb- 

Ä nis einer Berechnung) 

In einigen BASIC-Versionen kann das Wort LET 

auch der Einfachheit wegen weggelassen werden. 

100 LET Y=2 

Man kann also auch schreiben 100 Y = 2. Auch 

können in manchen Versionen mehrere Variable 

demselben Wert zugeordnet werden. 

100 LET Y = X2=W=3 

Auch konnen die Variablen auf beiden Seiten 

des Gleichheitszeichens geschrieben werden. 

Die Berechnung erfolgt dann so, da& Daten 

vor der Rechnung der Variablen links neben 

dem Gleichheitszeichen und Daten nach der 

Berechnung den Variablen rechts neben dem 

Gleichheitszeichen zugeordnet werden. 

100 LET X=X+1 

nimmt den Anfangswert von X, addiert eines 

dazu und weist das Ergebnis als neuen Wert 

von X aus. 

Die LET-Anweisung ist keine algebraische Glei- 

chung. Sie ist lediglich ein Befehl, eine Berech- 

nung durchzufuhren und das Ergebnis einer vor- 

her festgelegten Variablen zuzuordnen. 

PROGRAMMBEISPIEL: 

10 REM DIESES PROGRAMM ZEIGT DIE 
20 REM ANWENDUNG DES LET-BEFEHLS 
30 PRINT ,, EINGABE EINER POSITIVEN,” 
35 PRINT „GANZEN ZAHL" 
40 INPUT X 
60 LET Y=X+1 
70 LET A=LOG (X) 
80 LET B=SIN (X) 
90 PRINT X, Y,A,B 
100 END 

Wir haben hier bei diesem Beispielprogramm 

jetzt drei neue Befehle kennengelernt, die man 

sehr oft beim Programmieren in BASIC benö- 

tigt. 

REM, INPUT und END 

Wir wollen diese Befehle deshalb jetzt gleich be- 

sprechen. Die Anweisung REM dient zur Doku- 

mentation des Programmes. Alles, was hinter 

dem Befehl REM folgt, wird nur als Text im 

Programm angesehen und wirkt sich nicht auf 

den Ablauf aus. Der Befehl END sagt dem Com- 

puter, daß an dieser Stelle das Programm zu 

Ende ist. END sollte dann die höchste Zeilen- 

zahl im Programm haben. 

Die INPUT-Anweisung (Eingabe) 

Die Input-Anweisung wird dazu verwendet, nu- 

merische oder String-Daten während des Pro- 

grammablaufes in den Computer zu geben. 

Der Befehl besteht aus der Anweisung INPUT 

mit nachfolgenden Variablen. Diese Variablen 

müssen durch ein Komma getrennt sein. Nume- 

rische Variable und String Variable können in 

einem Input-Befehl vorkommen. String Variable 

(Zeichenketten) erlauben die Eingabe beliebi- 

ger Zeichen wie Buchstaben, Zahlen, Satzzei- 

chen und graphische Zeichen). 

Beispiel: 

100 INPUT „WIE ALT BIST DU’, X 

RUN String 

Diese Anweisung druckt die Frage: Wie alt 

bist Du? in die folgende Zeile. Das Fragezeichen 

bedeutet hier in erster Linie, daß der Computer 

auf eine Eingabe wartet. Erst wenn er diese Ein- 

gabe vom Programmierer bekommen hat, wird 

er im Programm fortfahren. Folgendes muß bei 

Anwendung des INPUT-Befehles beachtet wer- 

den: 

139



1. Die einzugebenden Daten müssen zu den 

Variablen im INPUT-Befehl gehören. 

2. Mehrere Daten müssen durch ein Komma 

getrennt werden. 

3. Ein String sollte immer in Anführungs- 

zeichen gesetzt werden. 

Treten große Mengen von Daten auf, sollten an- 

stelle des Input-Befehls die Anweisungen READ 

und DATA benutzt werden. 

PROGRAMMIERBEISPIEL: 

10 REM Dieses Programm zeigt Ihnen, 

20 REM wie der INPUT-Befehl arbeitet 

30 INPUT X 

40 LET R = (X/3.14159) 105 

50 PRINT „RADIUS ="; R 
60 INPUT B,H 
70 LET A=(B*H) 12 
80 PRINT „FLAECHE ="; A 
90 INPUT K,J,LM,N,O,P 
100 LET S=K+J+L+M+N+O+P 
110 PRINT „DIE SUMME IST =";S 
120 END 

READ und DATA Statements 

Wenn der Computer mit einer großen Anzahl 

von Daten versorgt werden muß, kann die Ein- 

gabe über den INPUT-Befehl recht mühsam 

werden. In diesem Falle greift man dann zu den 

READ, DATA -Befehlen. 

Der READ-Befehl legt die Variablen fest, deren 

Werte über das Programm in den Computer ge- 

geben werden sollen. Dieser Befehl besteht aus 

dem Wort READ, gefolgt von einer Liste von 

Eingabevariablen. Diese Variablen müssen durch 

Komma getrennt werden. Die Liste kann Zahlen, 

Strings oder beides enthalten. 

Der Sinn des DATA-Befehls ist es nun, den 

Variablen aus dem READ-Befehl die zugehöri- 

gen Werte zuzuordnen. Der DATA-Befehl be- 

steht aus dem eigentlichen Befehl DATA” 

gefolgt von den entsprechenden Zahlen oder 

String. (Jede Position muß wieder durch 

Komma getrennt werden). 

Programmbeispiel: 

10 READ A,B,C,D 
20 DATA 100, BERTA, CAESAR, 200 

140 

Bevor das Programm startet, nimmt der BASIC- 

Interpreter alle Daten aus den DATA-Anwei- 

sungen in der eingegebenen Reihenfolge von 

links nach rechts und speichert sie in einem 

groBen Block. Wenn dann im Programm eine 

READ-Anweisung erscheint, wird der zugehöri- 

ge Wert aus dem Datenblock geholt und zuge- 

ordnet. 

Wenn mehr READ-Anweisungen im Programm 

vorkommen, als zugehörige Daten vorhanden 

sind, wird eine Fehlermeldung gegeben. 

Die READ-Befehle werden im Normalfall 

zu Beginn des Programmes platziert. Die DATA- 

Befehle können im Programm an beliebiger 

Stelle eingeführt werden. Wichtig ist nur, daß 

die Reihenfolge stimmt. Viele Programmierer 

bevorzugen jedoch die DATA-Anweisungen am 

Programmende zu platzieren. 

Merke: 

1. Die Werte in den DATA-Statements 

müssen den zugehörigen Variablen in den 

READ-Anweisungen entsprechen. 

2. Es müssen mindestens so viele Datenele- 

mente in DATA-Anweisungen vorhanden 

sein, wie READ-Anweisungen gegeben 

werden. Zusätzliche Daten werden igno- 

riert. 

3. Die Elemente in den DATA-Statements 

müssen durch Komma getrennt werden. 

Nach dem letzten Element folgt kein 

Komma. 

4, Die Elemente in DATA-Statements müs- 

sen Daten oder Strings sein, keine Varia- 

blen oder Formeln. 

5. Strings in der DATA-Anweisung, die ein 

Komma enthalten, oder mit einem Leer- 

zeichen beginnen oder enden, müssen in 

Anführungszeichen gesetzt werden. 

Der GOTO-Befehl 

Der GOTO-Befehl wird dazu benutzt, an eine be- 

stimmte Stelle (Zeile) im Programm zu springen. 

Normalerweise arbeitet das Programm von der 

Zeile mit der kleinsten Zeilennummer an, bis 

zur größten Zeilenzahl ab. Wenn ein unbe- 

dingter Sprung erforderlich ist, wird der GOTO- 

Befehl benutzt. Bei einem solchen unbedingten 

Sprung erfolgt keine logische Entscheidung.



Der Programmablauf wird durch den GOTO- 

Befehl in seiner Reihenfolge unterbrochen und 
das Programm geht an die im GOTO-Befehl 

angegebene Zeilenzahl. Von dort wird dann wie- 

der in der bisherigen Reihenfolge weiter abge- 

arbeitet. 

Programmbeispiel: 

20 REM SPRUNG DURCH GOTO 
30 REM UNBEDINGTER SPRUNG 
40 REM DIESES PROGRAMM BE- 
45 REM RECHNET DEN MITTELWERT 
50 REM VON N ZAHLEN. UM DIE 
60 REM SCHLEIFE ZU VERLASSEN 
70 REM GEBENSIE OEIN 
80 LET K=0 
90 LET N=0 
100 INPUT J 
110 IF J=O THEN 150 
120 LET K = K+J 
190 LET N=N+1 
140 GOTO 100 
150 PRINT „SUMME IST="xX 
160 PRINT „DURCHSCHNITT IST ="; K/N 
170 END 

Im vorangegangenen Beispiel sind wir wieder 

auf eine unbekannte Anweisung gestoßen. 
(110 IF J=O THEN 150) 

Der IF-Befehl 

Der IF-Befehl wird für bedingte Sprünge ver- 

wendet. Mit ihm kann dann von der normalen 

Reihenfolge (d. h. Abarbeiten von der klein- 
sten Zeilenzahl zur höchsten Zeilenzahl) abge- 
wickelt werden. Das Programm springt dann 

zu der im IF-Befehl definierten Zeilennummer, 

wenn die gestellte Bedingung erfüllt ist. 

Beispiel: 

100 IFX=0THEN 200 
200 IFSIN(X) (=0,5 THEN 100 
300 LETY=1 

Bei diesem Beispiel erfolgt ein Sprung des Pro- 

grammes in Zeile 200, wenn der Wert für X 

null ist. Wenn SIN (X) kleiner gleich 0,5 ist, 

erfolgt ein Rücksprung nach Zeile 100. Wenn 
beide Bedingungen nicht erfüllt sind, geht das 

Programm zur nächsten Zeile (z.B. 300). | 

FOR ........ NEXT-Schleifen 

Wenn wir beim Programmieren wissen, wie oft 

ein Befehl oder eine Gruppe von Befehlen 

wiederholt werden muß, können wir den FOR- 

Befehl verwenden. Diese Anweisung legt fest, 

wie oft eine Programmschleife durchlaufen wird. 

Dem unmittelbaren Befehlswort FOR folgt 
die Ablaufvariable. Der Wert dieser Variable än- 

dert sich nach jedem Durchlauf der Schleife. 

Die Anzahl der Durchläufe wird durch den An- 

fangs- und Endwert dieser Variablen festgelegt. 

Beispiel: 

100 FOR X = 1 TO 100 

200 FOR Y = 10 TO 200 

Beim Befehl hier in Zeile 100 wird zu Beginn 

des ersten Schleifendurchlaufes die Ablauf- 

variable auf 1 gesetzt. Dann wird diese nach je- 

dem Durchlauf um eins erhöht, bis der Wert 

100 erreicht wird. Die Ablaufvariable wird 

grundsätzlich um eins erhöht, es sei denn, es 

wird etwas anderes vorgeschrieben. 
Eine solche Änderung kann mit dem STEP- 
Befehl herbeigeführt werden. Mit diesem Befehl 

können wir die Ablaufvariable um einen vorge- 

gebenen Wert erhöhen oder auch vermindern. 

100 FOR Y=1TO 20STEP2 
200 FOR Y = 100 TO 10 STEP — 10 

Generell gilt: FOR (Ablaufvariable) = Anfangs- 

wert) TO (Endwert) STEP 

(Schrittgröße) 

Um eine FOR TO-Schleife abzuschließen, be- 

nötigen wir den NEXT-Befehl. Der NEXT-Be- 

fehl besteht aus einer Zeilenzahl der NEXT- 

Anweisung und der Ablaufvariablen. Auf jeden 

Fall muß die Ablaufvariable folgen, die zur ge- 

wünschten Schleife gehört. 

100 FOR X=ATOB 

110) (beliebiger Befeh!) 

120 on. eee (beliebiger Befehl) 

130 (beliebiger Befehl) 

140 NEXT X 

Merkregeln: 

1. Die Ablaufvariable kann in einem weite- 

ren Befehl innerhalb der Schleife erschei- 

nen, kann aber nicht geändert werden. 

2. Wenn der Anfangswe:t und Endwert 

in einer Schleife gleich ist, und die Schritt- 

141



größe nicht O ist, wird die Schleife 

nur einmal durchlaufen. 

- PROGRAMMBEISPIEL: 

DIESES PROGRAMM _ BE- 

NUTZT EINE FOR...NEXT 

10 REM 
20 REM 
25 REM SCHLEIFE 
30 FOR 1=1T010 
40 PRINT 1* 10 
560 NEXT | 
60 END 

Flußdiagramm: 

     

  

FOR 

|Schleife 
  

  

Ausgabe I * 10 

    
  

Unterprogramme GOSUB 

Wenn eine bestimmte Reihenfolge von Befehlen 

in einem Programm ständig benutzt werden soll, 

können diese Befehle als Unterprogramm ge- 

schrieben werden. Ein Unterprogramm ist ein 

komplettes, vollständiges Programm, welches 

vom Hauptprogramm oder von anderen Unter- 

programmen aufgerufen werden kann. In BASIC 

erfolgt der Sprung in ein Unterprogramm durch 

den Befehl GOSUB mit nachfolgender Zeilen- 

142 

angabe, wo sich das Unterprogramm befindet. 

Der Computer merkt sich die Zeilennummer, 

von der er ins Unterprogramm gesprungen ist. 

Wenn das Unterprogramm abgearbeitet ist und 

ein RETURN-Befehl gegeben wurde, kehrt das 

Programm an die Zeile zurück, die als nächste 

unmittelbar dem GOSUB-Befehl folgt. Von dort 

aus wird dann im Hauptprogramm „‚weiterge- 

fahren”. 

Der RETURN-Befehl besteht einfach aus Zeilen- 

zahl und RETURN. Z.B. 

100 RETURN 

PROGRAMMBEISPIEL: 

10 REM DIESES PROGRAMM ZEIGT 
20 REM DIE ARBEITSWEISE DES GO— 
25 REM SUB-BEFEHLES 
30 PRINT „EINGABE EINER ZAHL” 
40 INPUT | 
50 IFI=OTHEN 110 
60 GOSUB 90 
70 PRINTK 
80 GOTO 30 
90 LET K=(1*2)/3 
100 RETURN 
110 END 

RUN 
EINGABE EINER ZAHL 
?5 
3.3333 
EINGABE EINER ZAHL 
? 1256 
837.333 
EINGABE EINER ZAHL 
?0 
READY 

Strings (Zeichenketten) 

Neben Zahlen als Variable können auch String 

Variable benutzt werden. Ein String (Zeichen- 

kette) ist eine Folge von Zeichen (alphanume- 

risch), Sonderzeichen, Leerzeichen etc. Auf 
keinen Fall jedoch die Anführungszeichen. 

Sie bezeichnen Anfang und Ende einer Zeichen- 

kette (String). Die Anzahl der Zeichen, die Sie 
in einem String verwenden können, hängt von 

Ihrer BASIC-Version ab. 

Die Aufgabe von Strings ist es, nicht numerische 

Daten, wie Bezeichnungen und Erläuterungen zu 

repräsentieren. Eine Folge von Zahlen in einem 

String repräsentiert deshalb keine numerischen 

Daten!



PROGRAMMBEISPIEL: 

10 REM DIESES PROGRAMM ZEIGT 
20 REM DIE STRINGVERWENDUNG 
30 PRINT „GEBEN SIE EINFACH VIER 

BELIEBIGE BUCHSTABEN EIN 
40 INPUT J$(1),J$(2),J$ (3),J$ (4) 
50 FOR M=1T04 
60 FOR N=1T04 
70 IFN=MTHEN 140 
80 FORP=1T0O4 

90 IF P=M THEN 130 
100 IF P= N THEN 130 
110 LET R=10(M+N+P) 
120 PRINT J$ (M); J $ (N); J $ (P); J $ (R) 
130 NEXT P 
140 NEXT 10 
150 NEXT M 

Einfaches Beispiel: 

10 LET C$= „BASIC IST“ 

20 LET E$= SEHR“ 
30 LET F $= ,EINFACH” 

40 PRINT C$;E$;E$;F$ 

RUN 

BASIC IST SEHR SEHR EINFACH 

INPUT MIT STRINGS 

Bei der Eingabe von Text wird ähnlich wie bei 
der Eingabe von Daten verfahren. Es wird dem 

Wert lediglich ein Dollarzeichen nachgestellt. 

Beispiel: 

10 INPUT „WIE HEISST DU’;N$ 
20 PRINT N $; „IST MEIN NAME.” 
30 INPUT „WIE ALT BIST DU“; J 
40 PRINT N$;” ‚DU BIST"; J ; “JAHRE 

ALT.” 

READ und DATA mit String 

READ und DATA Befehle arbeiten mit Strings 

(Zeichenketten) ähnlich wie mit Daten. 

Beispiel 1: 

10 READ A$ 
20 PRINT A$ 
30 DATA NEUNZEHN 

RUN 
NEUNZEHN 

Beispiel 2: 

10 READ B$ 
20 PRINT B$ 
30 DATA 19 
RUN 
19 

Im zweiten Beispiel wird die Zahl 19 wie eine 

Textaussage aufgefaßt. Sie kann nicht weiter- 

verarbeitet werden. Obwohl dem DATA -Befehl 

eine Zahl folgt. 

Beispiel: 

10 READ A$, B$, C$, D$ 
20 PRINT C$, B$, D$, A$ 
30 DATA,PETER,DER,SOLANG,ALTE 
RUN 

SOLANG DER ALTE PETER 

Beachten Sie bitte bei diesen Beispielen, daß 

der READ-Befehl die Zeichenkette aus den 

DATA-Statements so zuordnet, wie Sie in der 

READ-Anweisung vorgegeben sind. Es spielt 

keine Rolle, wo die DATA-Anweisungen im Pro- 

gramm angeordnet werden. 

Jetzt wollen wir einmal versuchen, in den Data- 

statements Strings und Werte (Daten) zu ver- 

wenden. 

10 READ A$, B$,C, D 

20 PRINT C; B$; D; A$;C + D 

90 DATA UND, IST, 1,2 

RUN 

1 UND 2 IST 3 

Wir sehen also, daß unser Computer numerische 

Variable und Stringvariable in READ und DA- 

TA-Befehlen verarbeiten kann. 

Mehrfache Anweisungen in einer Zeile 

Der PET-Computer bietet wie viele andere lei- 

stungsfähige Computersysteme die Möglichkeit, 

in einer Zeile mehrere Anweisungen anzuord- 

nen. 

100A=-2:B=-3:C=-5:?A*B*C 
RUN 

30 

Die einzelnen Statements werden durch Doppel- 

143



punkt voneinander getrennt. Das Fragezeichen 

ist eine praktische Abkürzung für den PRINT- 

Befehl. 

Die Quadrat- und Wurzelfunktion 

Wie in der Einleitung bereits erwähnt, enthalten 

viele BASIC-Versionen automatische Berech- 

nungsabläufe, genannt Funktionen. Oft be- 

stehen diese Funktionen aus kompletten For- 

mein, die Zahlen sowie Zeichenketten handha- 

ben können. 

Die erste BASIC-Funktion, die wir heute be- 

sprechen wollen, ist die SQR (Squareroot = 

Quadratwurzel)-Funktion. 

Beispiel: 

10 LET A=81 
20 PRINT SOR (A) 

Die Quadrierung von Zahlen erfolgt beim PET 

durch das ,, tf “ Zeichen. In anderen BASIC-Ver- 

sionen findet man auch „ * * “ (Zwei Sternchen 

hintereinander). 

Das Beispiel: 

10PRINTA?t2 

liefert das Quadrat von A. 

Die INT (X)-Funktion 

Die INT. (X)-Funktion liefert immer eine ganze, 

positive Zahl. (Also keine gebrochenen Zahlen) 
Die Anwendung dieser Funktion finden wir u.a. 

in Spielprogrammen, in der die Random (RND)- 

Funktion verwendet wird. Die RND-Funktion 

(Zufallsfunktion) liefert z. B. beim PET eine 

Zufallszahl zwischen O und 1. Da diese Zufalls- 
zahlen jetzt alle aebrochen sind, erreicht man 
durch die INT (A)-Funktion eine Auswahl der 

ganzen Zahlen. 

Beispiel: 

10 LET X = INT (100 * RND (1)) 

Dieses Statement erzeugt also nur Zufallszahlen 

im Bereich zwischen 1 und 100. 

Beispiel: 

10 PRINT INT (3, 1) 
3 

144 

20 PRINT SOR (52), INT (SQR (52)) 
7211 7 

Sie sehen also, daß diese Funktion immer nur 

eine ganze Zahl liefert. 

Die RND (X)-Funktion 

In einem der obigen Beispiele sind wir wieder 

auf eine neue und recht wichtige Funktion ge- 

stoßen, die RND (X) oder auch Randomfunk- 

tion. 

Sie ist nichts anderes als eine Zufallsfunktion. Es 

werden Zufallszahlen in einem bestimmten Be- 

reich generiert. 

Dies geschieht ähnlich wie in einer Zahlen- 

lotterie. 

Die RND-Funktion liefert, wie schon erwähnt, 

nur gebrochene Zahlen zwischen O und 1, nie- 

mals O und niemals 1, nur Zahlen dazwischen. 

Beim Commodore PET liefern die Argumente 

in Klammern folgende Werte: 

RND (X) X kleiner O0. Bei jedem Aufruf 

wird die gleiche Zufallszahl gene- 

riert. 

X = 0. Bei jedem Aufruf wird die 

die gleiche Reihe von Zufallszah- 

len generiert. 

X größer OD. Bei jedem Aufruf wird 

eine neue Reihe von Zufallszahlen 

generiert. 

RND (X) 

RND (X) 

Das Argument ist positiv 

Beispiele: 

10 X=1 
20 PRINT RND (X):GOTO 20 
RUN 

0.43481 
0.69751 
0.47892 
0.86533 
0.12411 

BREAK IN 20 
READY



Das Argument ist Null 

10 X=0 
20 PRINT RND (X) : GOTO 20 
RUN 

0.21212 
0.21212 
0.21212 
0.21212 

BREAK in 20 
READY 

Argument ist negativ 

10 X=-0,4 
20 PRINT RND (X) : GOTO 20 
RUN 

0.90235 
0.90235 
0.90235 

BREAK IN 20 
READY 

Beispiel: 

05 REM ZUFALLSGENERATOR MIT WIE- 

DERHOLUNG 
10 LET X = RND (-0.3) 
20 PRINTRND (1) 
30 GOTO 20 
RUN 
0.56789 
0.72154 
0.31431 
0.67891 

STOP 

RUN 

0.56789 
0.72154 
0.31431 
0.67891 
STOP 

In diesem Programm wird bei jedem Ablauf im- 
mer die gleiche Liste von Zufallszahlen generiert. 

Die Funktion RND (-0.3) erzeugt am Anfang 

immer die gleiche Zufaliszahl. RND (1) erzeugt 

dann beliebige Zahlen. 

145



Wie lernt man BASIC, 

Teil ill 
Wie lernt man BASIC? Teil Ill 

Rückblick: 

In den vorangegangenen zwei Lektionen sind 

wir bis zur RND (X) Funktion gekommen. 

Heute wollen wir gleich mit einem interessanten 

Beispiel zur RND(X) Funktion beginnen .Wie wir 
gelernt haben, erzeugt die Funktion RND (1) 
bei jedem Aufruf eine neue Reihe von Zufalls- 

zahlen. 

Wir wollen nun einmal ein kleines Programm 

schreiben, welches uns eine Reihe von Zufalls- 
zahlen erzeugt. 

READY. 

100 REM ZUFALLSZAHLEN 
120 PRINT" WIE VIEL ZAHLEN SOLL ICH 

ERZEUGEN"; 
130 INPUT N 
140 PRINT 
150 FOR K=1TON 
160 PRINT INTCRND(1)849) 5 
170 NEXT K 
180 PRINT 
190 PRINT 
200 GOTO 120 
999 END 

READY. 

RUN 
WIEVIEL ZAHLEN SOLL ICH ERZEUGEN?10 
147932 1569 

WIEVIEL ZAHLEN SOLL ICH ERZEUGEN? 
BREAK IN 200 
READY 

Versuchen Sie einige Experimente mit diesem 

Programm. Lassen Sie einmal das Semikolon 

in Zeile 160 weg. Entfernen Sie einmal die Zei- 

len 180 und 190. Beobachten Sie, was sich ver- 

ändert. 

Versuchen Sie einmal Zufallszahlen zwischen O 

und 49 (Lottozahlen) zu erzeugen. 

146 

Die TAB-Funktion 

Eine andere wichtige Funktion ist die TAB- 

Funktion. Sie wird in PRINT-Anweisungen ange- 

wendet und arbeitet wie der Tabulator bei ei- 

ner Schreibmaschine. Der Computer wird da- 

durch angewiesen, einen bestimmten freien 

Raum auf dem Bildschirm zu überspringen. 

Hierzu einige Beispiele: 

READY. 

10 PRINT” A a” 
30 END 
40 PRINT TABCIO);"A";TABLIA),"A" 
50 END 

REABY. 

Wenn hier die: Eingabe in Zeile 10 mit 10 Leer- 

tasten erfolgt, 10 PRINT’ + 10 Leertasten 

A < 5 Leertasten > A, so kann mit Zeile 40 

das gleiche erreicht werden. 

Beim Commodore PET haben wir 40 Zeichen 

pro Zeile. TAB 20 würde dort das Zeichen 

in der Mitte der Bildschirmzeile bringen. 

In der Klammer, die dem TAB(X)-Befehl folgt, 

kann eine Zahl, eine Variable oder ein mathe- 

matischer Ausdruck sein. 

Beispiel: TAB (20), TAB (A), TAB (INT(10 
*RND(1))) 

READY. 

10 REM DENOPROGRANN FUER TAB 
20 FOR I=1 TO 23 
30 PRINT TABCI)"ELCONP" 
40 NEXT I 
50 END 

READY.



RUN 
ELCOMP 

ELCOMP 
ELCOMP 

ELCOMP 
‚ELCOMP 

READY 

Ein weiteres Beispiel: 

10 REM TAB-DEMO II 
20 READ Y 
30 PRINT TAB (Y);Y 
40 GOTO 10 
50 DATA 1, 2, 3, 4,5, 6, 7,8,9, 10 
99 END 

RUN 
1 

8 

9 

10 

READY 

Hier wird die Zahl Y, die nacheinander aus Data- 

Statements gelesen wird, um die entsprechende 

Anzahl von Schritten nach rechts versetzt. (Y = 

Zahl = Schritte nach rechts) 

Ändern Sie einmal Zeile % in 

30 PRINT TAB (Y);’‘*“ 

und starten Sie das Programm. 

Die TAB-Funktion wird meist in der Computer- 

Graphik und zum Ausdrucken von mathemati- 

schen Funktionen angewendet. 

Ein weiteres Beispiel: 

READY. 
5 REM SORTIERPROGRANN 
10 PRINT"UNTER 1000.-DM" sTAB(18) 5 “UNTER 

2000.-DH” 
20 READ X 
30 IF X<1000 THEN 60 
40 IF X<2000 THEN 80 
50 6010 20 
60 PRINT X 
70 BOTO 20 
80 PRINT TAB(18) 5X 
90 GOTO 20 
100 BATA 1000,1100,1500,1600, 2500 
110 DATA 2600,900,700, 2850, 2900 

READY. 

Wir haben jetzt die wichtigsten Funktionen ei- 

nes BASIC, wie SOR, INT, TAB und RND ken- 

nengelernt. Zum Schluß wollen wir Ihnen noch 

eine Anweisung zeigen, mit der Sie selbst ihre 

eigenen Funktionen festlegen können. Sie kön- 

nen somit selbst eine Rechnung, die immer wie- 

der vorkommt als Funktion festlegen: 

Sie werden als Anweisung in einem Programm 

geschrieben. 

Beispiel: 

10 DEF FNR (X) = (INT(X*100+0,5))/100 

10 = Zeilenzahl 

DEF = DEFINE-Anweisung 
FN = Funktion 

R =Genaue Bezeichnung der Funktion R = 

Runden. Es können alle Buchstaben von 

A bis Z als Kennzeichen verwendet wer- 

den. 

(X) =Variable als Ersatz für alle kommenden 

Variablen. 

Will man nun im Programm diese Funktion 

für eine Variable benutzen, wird die FNR- 

Funktion (Variable) geschrieben. 

Beispiel eines Programmes zum Abrunden 

von Zahlen 

05 REM DEF-DEMO 
10 DEF FNR (X) = (INT (*100+0,5))/100 
20 PRINT "ZAHL DIE ABGERUNDET WER-” 
25 PRINT ''DEN SOLL“; 
30 INPUT Y 
40 PRINT Y; "GERUNDETE ZAHL AUF” 
45 PRINT “2 DEZIMALSTELLEN=";FNR (Y) 
50 PRINT 
60 GOTO 20 
70 END 

ARRAYS ( Felder) 

Arrays sind Ansammlungen von Informationen 

im Speicher, welche sich an einer nummerier- 

ten Position befinden. Die Positionen (Spei- 
cherplätze) können alle möglichen Informatio- 

nen enthalten. (Daten, Zahlen, Buchstaben etc.) 

Die Inhalte gehören meist auf irgendeine Weise 

zusammen. 

147



Beispiel für ein Eindimensionales Feld: VEKTOR 

Position: 

BHE 
n = letzte Position 

  

      
s........,.,::> n—2 n—1 n | 

        

Es gibt ein, zwei, drei- oder auch mehrdimen- 

sionale Felder. 

Wir wollen uns heute nur mit den ein- zwei- 

und dreidimensionalen Feldern beschäftigen. 

Das eindimensionale Feld ist wie ein Vektor. 

(Eine Reihe von Positionen in eine Richtung) 

Ein zweidimensionales Feld ist wie eine Ma- 

trix (Tabelle). 

  

  

  

  

  

vo... ,,, ,0 

  

  

                    

Beispiel für ein zweidimensionales Array (Ma- 

trix). Ein dreidimensionales Feld ist wie ein 

Würfel. 

e 
° eo 

.” 

Die einzelnen Elemente in solch einem Array 

(gleich welche Dimension) werden durch Indi- 

zierung angesprochen. Je nachdem, wieviele Di- 

mensionen das Feld hat, wird es entsprechend 

indiziert (bezeichnet). 

Eindimensionales Feld: VEKTOR 
Zweidimensionales Feld: MATRIX 

Nehmen wir an, wir haben ein ein- 

dimensionales Feld mit dem Namen 

NAM. Man kann in einem Programm 

nach dem dritten Element in diesem 

Array durch NAM (3) zugreifen. Ei- 

ne weitere Möglichkeit ist es, wenn 

man anstelle der Zahl 3 eine Variable 

z. B. X verwendet und durch Verän- 

dern dieser Variable zu dem gesam- 

ten Feld zugreifen kann. 

Beispiel: 

READY. 

10 REM ARRAY DENG PROGRAMA 
20 DIN NAN(2O) 
30 FOR I=1 TO 20 
35 PRINT°NAN( STS") =" SNAM(I) 

40 LET NAN(TDI=I 
30 NEXT I 

60 END 
READY.



Dieses kleine Demoprogramm erstellt ein eindi- 

mensionales Feld mit 20 Positionen und druckt 

den Inhalt der Felder aus. Dies bleibt auch so, 

bis es durch das Programm geändert wird. Beim 

Microsoft können Arrays bis 255 Elemente pro- 

grammiert werden. Die Änderung einer Zelle 
kann jetzt ganz einfach erfolgen, indem wir 

die Zeile 40 durch 

40 LET NAM (3) = 4 

ersetzen. Damit schreiben wir in das Array mit 

dem Namen NAM in Zelle 3 die Zahl 4 ein. 

Wollen wir in alle Zellen etwas hineinschrei- 

ben, so fügen wir folgendes ein. 

READY. 

10 REM ARRAY DEMO PROGRANN 
20 DIM NAN(20) 
30 FOR I=1 TO 20 
35 PRINT"NAN("SI5")@° SNAM(TID 
36 FOR X=1T0 20 
37 LET NAM(X)=X-1 
38 NEXT X 
50 NEXT I 
60 END 

READY. 

Dieses Programm bringt uns die Zahlen von 0-19 

in die Positionen 1 — 20 des Feldes mit dem Na- 

men NAM. 

Bei Arrays mit mehreren Dimensionen gilt das 

gleiche Prinzip. Man kann jedes Element im 

Array durch Angabe der Zahl in Klammern an- 

sprechen. 

Beispiel für ein zweidimensionales Array 

Nehmen wir einmal an, wir haben eine Preis- 

liste für verschiedene Artikel in unterschiedli- 

chen Größen. Hieraus ergibt sich ein zweidi- 

mensionales Feld wie folgt: 

Größe 1 

2 

3 

4! 31,--| 42 
5 _ 

6 10,-- 

  

Typ12 3 4 5 

Ware der Name dieses zweidimensionalen Fel- 

des z. B. PREIS, so wäre der Preis von DM 54 -- 

PREIS ( 4,3) 

da er sich in Reihe 4 und Zeile 3 befindet. 

So, wie man Arrays mit Zahlen aufbauen kann, 

kann man auch Namen benutzen. 

Sie haben nun in groben Zügen erfahren, wie 

Arrays aufgebaut sind. Was man damit machen 

kann, können Sie jetzt selbst ausprobieren. 

Man kann Zahlen, Namen etc. sortieren und 

verschieben und hat immer leichten Zugriff zu 

jedem Element. 

Beispiele zu der Feldanweisung DIM 

Wir wollen mit unserem BASIC-Rechner einen 

Würfel simulieren. Dieser liefert uns Zufalls- 

zahlen zwischen 1 und 6. Damit wir nach dem 
Würfeln wissen, wie oft jede Zahl geworfen wur- 

de, wollen wir die einzelnen Würfel notieren. 

Hierzu verwenden wir ein Feld (Array). 

3 REMSINULATIONSPROGRANN 
10 DIMT(4) 

15 INPUT"WIEVIELE WUERFE" su 
20 FOR X=1 TO U 
30 D=INT(6*RND(1)) +1 
40 LET T(D)<T(D) +1 
50 NEXT X 

60 FOR X=1706 
70 PRINT X5"S2"sT(X) 
80 NEXT X 
90 PRINT 
91 FOR J=1T06 
92 LET T(J)=0 
93 NEXT J 
100 GOTO 15 
110 END 

Zerstören wir einmal die Zeile 10 und versuchen 

wir das Programm wieder zu starten. Was wird 

geschenen? 

Siehe da, es läuft auch ohne diese Anweisung. 

Jetzt werden Sie denken ‚Alles umsonst, was 

ich bis jetzt über DIM gelernt habe‘. Aber war- 

ten wir ab! 

149



Ändern Sie jetzt einmal das Programm wie folgt 

ab. 

READY. 

5 RENSINULATIONSPROGRANN 
10 DINT(49) 
15 INPUT"WIEVIELE WUERFE" ;U 
20 FOR X=1 TO U | 
30 D=INT(49SRND(1)) 41 
40 LET T(D)=T(D) 41 
50 NEXT X 
60 FOR X=11049 
70 PRINT X3"Ss"sTCX) 
80 NEXT X 
90 PRINT 
91 FOR J=1T049 
92 LET T(J)=0 
93 NEXT J 
100 GOTO 15 
110 END 

READY. 

Dieses Programm simuliert die Lottozahlen- 

maschine und sagt Ihnen, wie oft bei mehre- 

ren Ziehungen die eine oder andere Zahl gezo- 

gen wurde. 

Löschen Sie jetzt auch wieder Zeile 10 und ver- 

suchen Sie das Programm zu starten. Jetzt be- 

kommen Sie eine Fehlermeldung. 

Bei mehr als 10 Felder in einem Array oder bei 
mehreren Arrays pro Programm muß auf jeden 

Fall eine DIM(X) Anweisung gegeben werden. 

Unter zehn kann mit fortlaufenden Variablen ge- 

arbeitet werden (subscripted variables). 

Auffüllen von Arrays aus DATA-Statements 

Wir haben unsere Felder bei den vorangegangen- 

en Beispielen immer durch die LET-Funktion 

aufgefüllt. 

40 LET T (D) =T(D) +1 

Wir können die Felder natürlich auch aus DATA- 

Statements her auffüllen. Bei größeren Mengen 

von Daten ist dies wesentlich praktischer. 

Beispiel: 

Wir haben zum Beispiel in unserer Abteilung 

zwei Artikelgruppen 1 und 2. Wir wollen am 

150 

Abend wissen, wieviele Artikel gesamt verkauft 

wurden. Wieviele davon waren 1 und wieviele da- 

von 2, 

_ READY. 

5 REM DIN UND DATA DEMO 
9 DIN T(2) 
10 READ I 
20 IF 129999 THEN 50 
30 LET TCL)=T(1) 41 
40 GOTO 10 
50 PRINT"GESANT:"51(1)+T(2) 
60 PRINT"PRODUKTIS"5T(1) 
70 PRINT"PRODUKT23”5T(2) 
900 DATA 1,1,1,151y2,2n2,22,2,2,2,1 
904 DATA 1,2,2,2,2, 1,11 
905 DATA 9999 

READY. 

Ich brauche jetzt immer nur die Artikel Nr. 

in die DATA-Statements einzugeben. Am Abend 

gebe ich RUN ein und habe die gesamte ver- 

kaufte Stückzahl und die Stückzahl nach Arti- 

kelnummern aufgegliedert. 

Sie können dieses Programm bis zu 255 Arti- 

kelgruppen einfach erweitern. 

Die Listings wurden über einen Drucker ohne 

Graphiksymbole ausgedruckt. Wir bitten Sie 

deshalb, bei der Eingabe in Ihren PET darauf 

zu achten.



    

Teil IV 

Wie lernt man BASIC, Teil IV 

Rückblick: 
In der letzten Lektion (ELCOMP 1/79) sind 
wir bis zu den Arrays (Feldern) gekommen. 
Speziell haben wir uns zuletzt mit den Feldern 
beschäftigt, die mehr als 10 Elemente enthalten. 

Hierbei haben wir den Befehl DIM I(X) kennen- 

gelernt. 

Mit diesem Befehl wird die Anzahl X der Ele- 

mente in einem Feld mit dem Namen | fest- 

gelegt. 

Z. B. ist DIM 1(10) ein Feld mit zehn Elemen- 

ten. Es gibt auch BASIC-Versionen, die ein Ele- 

ment Null kennen. Dann haben wir es in die- 

sem Fall mit 11 Elementen zu tun: 

Die Zahl in Klammern (X) hinter dem DIM- 

Befehl kann niemals eine Variable sein. X kann 

nur eine ganzzahlige, ungebrochene Zahl sein. 

Der Programmierer bevorzugt es, die DIM- 

Statements immer an den Anfang eines Program- 

mes zu setzen. Hier hat man eine gute Über- 
sicht und kann leicht kontrollieren, ob alle Fel- 

der richtig dimensioniert sind. 

Wir wollen uns zur Vertiefung noch einige Bei- 

spiele ansehen. Ganz abgesehen davon, daß der 

DIM-Befehl beim Programmierer eine sehr wich- 

tige Stellung einnimmt. 

Zweidimensionale Arrays 

Wir haben bis jetzt nur Felder kennengelernt, 

deren Elemente nur eine einzige Zuordnungs- 

variable (Subscript) haben. Oft ist es jedoch 

beim Programmieren notwendig, mit zwei Va- 

riablen zu arbeiten. 

Man nennt diese Arrays, wie im letzten Kurs- 

abschnitt schon angedeutet, zweidimensionale 

Felder. Diese Felder eignen sich besonders zur 

Darstellung von Tabellen oder Variablen mit 

Wie lernt man BASIC, 

zwei Zuordnungswerten (Subscripts). Gleich ein 

Beispiel. 

Nehmen wir einmal an, wir wollen eine Statistik 

(Aufzeichnung) von Artikelnummern pro Wo- 

chentag anfertigen. Im letzten Kurs hatten wir 

ein kleines Programm entworfen, welches uns 

pro Artikelgruppe eine Gesamtmenge angibt. 

Jetzt wollen wir dieses Programm insoweit aus- 

dehnen, daß wir Artikelgruppen pro Wochentag 

untersuchen wollen. Eine Liste könnte hierzu 

wie folgt aussehen: 

Artikel-Nr. Fr. Sa. Su 

1 10 20 3 

2 5 10 15 

(100 Artikel sind hier möglich) 

Diese Tabelle sagt uns z. B., daß am Freitag 5 

Stück aus der Artikelgruppe 2 und 10 Stück aus 

der Artikelgruppe 1 verkauft wurden. Am Sam- 

stag waren es 10 aus Warengruppe 2 und 20 aus 

Warengruppe 1. 

Wir wollen jetzt wieder ein kleines Programm 

entwerfen, welches uns die einzelnen Stückzah- 

len pro Artikel und Tag aufaddiert und am Ende 

eine Übersicht über unsere verkaufte Menge pro 
Artikelgruppe und pro Tag gibt. Wir haben in 

einem Beispiel nur zwei Tage genommen, da der 

Platz beim PET gerade über den Bildschirm 

reicht. Sie können jedoch auf beliebig viele Tage 

(max. 255) erweitern, indem Sie in Zeile 20 den 

Befehl DIM (100,4) entsprechend ändern, und 

die Frage nach Eingabe mit INPUT entsprechend 

ausdehnen. 

151



READY. 

I REN COPYRIGHT ING W HOFACKER GMBH 
2 REM DEMO FUER ARRAYS 

15 REM FUER ZWEIDIMENSIONALE FELDER 

20 DIM A100, 4) 
30 REM DATENEINGABE 
40 PRINT"GEBEN SIE BITTE DIE ANZAHL DER 
42 PRINT"ARTIKEL EIN! MAXIMAL 100" 

50 INPUT N 
60 PRINT"GEBEN SIE BITTE DIE ARTIKELNUN- 

MER EIN! VON 1 BIS N (REIHENFOLGE) 
735 INPUT K | 

77 FOR K=1 TON 
82 PRINT"ANZAHL ARTIKELGRUPPE";K,"AM 

FREITAG 
90 INPUT A(K,1) 
91 NEXT K 
92 FOR Kz 1 TON 
96 PRINT"ANZAHL ARTIKELGRUPPE";K;"AN 

SAMSTAG 
97 INPUT A(K,2) 
98 LETA(K,3)=A(K,1)#A(K,2) 
99 NEXT K 
110 REM TABELLE 
120 PRINT"ART.NR.", "FR", "SA", "SU" 
130 FOR J= 1 TON 
140 PRINT J,A(J,1),A(J,2),ACd,3) 
155 NEXT J 
160 REM AUFSTELLUNG DER VERKAUFSZAHLEN 
999 END 

READY. 

Das Programm lieBe sich noch dahingehend er- 

weitern, daß man die verkauften Artikel dann 

nach Mengen ordnet, um die Renner von den 

Schleichern zu trennen. 

Geben Sie dieses Beispielprogramm nun einmal 

in Ihren Commodore PET Computer und füllen 

Sie das Array mit zwei Artikelnummern (N=Z) 

und geben Sie Beispieldaten für verkaufte Stück- 

zahlen ein. Z. B. Artikel-Nr. 1 Montag 20 Stück, 

Artikel-Nr. 2 Montag 32 Stück, Artikel-Nr. 1 

Samstag 54 Stück und Artikel-Nr. 2 am Samstag 
89 Stück. Nach der Eingabe erstellt der Compu- 

ter sofort eine kleine Statistik mit der Gesamt- 

stückzahl pro Artikelgruppe. 

Sie können jetzt in die einzelnen Zellen des 

Arrays A(100,4) einsehen, indem Sie ?A(X,Y) 

mit Return eingeben. (X und Y sind die ge- 

wünschten Koordinaten). 

Geben Sie einmal ?A(1,1) Return ein! Sie er- 

halten 20. Das ist die erste Eingabe (20 Stück 

von Artikelgruppe 1 am Freitag). 

Sie sehen, wie man jetzt leicht jedes einzelne 

152 

Element des Arrays ansehen kann. Sie können 

jetzt auch mit diesen Elementen arbeiten, indem 
Sie sie verknüpfen oder manipulieren. 

Beispiel: ?A(1,1)+ A(2,1) 

Stellen Sie jetzt selbst einige Versuche mit die- 

sem Programm an, um etwas Erfahrungen zu 

sammeln. 

Eingabe und Auslesen eines Feldes 

Das nachfolgende kleine DEMO-Programm zeigt 
uns, wie man ein Array (Feld) auffüllen und aus- 

lesen kann. Wenn es sich wiederholen soll, geben 

Sie bitte in Zeile 230 GOTO 80 ein. 

So, das soll nun vorerst über Felder (Arrays) 

genug sein. Sie können jetzt bereits einige kleine 

Programme selbst entwerfen und damit experi- 

mentieren. 

READY. 

3 REM ARRAY DENO 
10 DIM A(3,4). 

20 FOR X=1 T0 3 
50 FOR Y=1 TO 4 
40 INPUT A(X,Y) 
50 NEXT Y 
60 NEXT X 
70 PRINT"DAS ARRAY IST VOLL!!" 

80 PRINT"WELCHES ELEMENT WILLST DU SEHEN?" 
90 INPUT"WELCHE REIHE" SX 
100 INPUT"WELCHE SPALTE" SY 
110 PRINT"AC"SXS "SYS" )z"AlX,Y) 
150 REM ORDNEN IN REIHENFOLGE 
160 PRINT" DER GESAMTINHALT DES FELDES 
170 FOR X=1 T0 3 
180 FOR Y=1 TO 4 
190 LET Z=A(X,Y) 
195 FOR Z=1 TO 4 
200 PRINT A(X,Y) 
210 NEXT Y 
220 NEXT X 
999 END 

READY. 

Der RESTORE -Befehl 

Der RESTORE-Befehl ist ein wichtiges Hilfs- 

mittel beim Arbeiten mit READ und DATA- 

Anweisungen. Der Zusammenhang zwischen der 

READ-Anweisung und den zugehörigen Daten 

in DATA-Statements wird durch einen inter- 

nen Pointer hergestellt. 

Was ist ein Pointer? Ein Pointer ist das zuletzt 

gespeicherte Wort im Stack, welches die Adresse 
einer anderen Speicherzelle beinhaltet. Meistens 

nach Springen in Unterprogramme etc.



Der interne Pointer zeigt bei den meisten BA— 

SIC-Versionen auf das nächste zu lesende Daten- 

element. Werden Strings und Zahlen in DATA- 

Statements abgelegt, müssen zwei Pointer bereit- 

gestellt werden. Jedesmal, wenn ein DATA- 

Element gelesen wird, wird der Pointer um eins 

erhoht. 

Wenn nun das gleiche Datenelement oder ein 

Block von Datenelementen noch einmal gelesen 

werden soll, wird der RESTORE-Befehl ver- 

_ wendet. Der Befehl besteht nur aus einem ein- 
zigen Wort , RESTORE”. Er sorgt dafiir, daB der 

Pointer wieder zurück zum ersten DATA -Ele- 

ment gebracht wird. Die nachfolgende READ- 

Anweisung beginnt dann wieder beim ersten 

DATA-Element. 

Beispiel für READ-DATA: 

10READA,B,C 
20 PRINT A, B,C 
30 DATA 2,5, 10 

Beispiel fir READ-DATA mit RESTORE 

10 READ A,B,C 
20 PRINT A 
25 RESTORE 
27 READ B 
30 PRINT B 
40 PRINT C 
50 DATA 2,5, 10 

RUN 
2 
2 
10 

Mit RESTORE und READ können Sie jetzt ein- 

mal einige Versuche mit diesem kleinen Pro- 

gramm machen. Sie sehen dann genau, wie Sie 

diesen Befehl in Zukunft nützlich einsetzen 

können. RESTORE arbeitet beim PET 2001 nur 
mit numerischen DATA-Elemente, nicht mit 

Strings. 
Die Fortsetzung dieses BASIC-Kurses finden 

Sie in dem Buch 

“BASIC für Fortgeschrittene” 

Best.-Nr.: 122 39,— DM 

vom Hofacker Verlag. 

153



Literatur- und Quellenverzeichnis 
u
n
 

. BASIC, Robert L. Albrecht, Leroy Finkel und Jerald R. Brown, 

John Wiley + Sons. Inc. New York, London, Sydney, Toronto 

2.FIRE BASIC-USER-GUIDE, Fairchild 464 Ellis Street, Mountain 

View, CA 94042, USA 

3. The BASIC Cookbook, Ken Tracton, TAB Books (Hofacker Verlag, 

Holzkirchen) 

4. BASIC Programmieren für Anfänger, Haase/Stucky, 
Bibliographisches Institut, Mannheim 

5. North-Star-Horizon, Prospekt 

6. APPLE II Reference Manual, Apple Computer Inc. 

10260 Brandley Dr. Cupertino, CA 95014, USA 

7.BASIC für blutige Laien (Best.-Nr. 139), Hofacker Verlag GmbH, 

Holzkirchen 

8. BASIC für Fortgeschrittene (Best.-Nr. 122), Hofacker Verlag GmbH, 

Holzkirchen 

Besonderen Dank gilt Herrn Flögel, der dieses Buch sorgfältig über- 

arbeitet hat. 

154



  

Leercassetien tur 
  

IMicrocomputer 
C—10 

Die ideale Cassettenlänge für Ihren Personalcomputer. 
Praktisch — handlich und betriebssicher 

  

Kassetten mit nur 10 Minuten Spieldauer (2 x 5 Minuten) haben sich zur Aufzeichnung von Daten 
im Mikrocomputerbereich bestens bewährt. 

  

Vorteile der C-10 Computer Cassette vom Die C-10 HOFACKER Datencassette bietet 
HOFACKER Verlag: weiterhin: 

e weniger Bandsalat @ extrem hoch aussteuerbares Bandmaterial 
© kurze Rückspulzeiten (Agfa) 
e schnelles Auffinden von Programmen © hochwertiges Cassettengehäuse, 5fach ver- 

© bessere Gleichlaufeigenschaften schraubt 
© einfache Programmverwaltung @ Tefloneinlage fiir gute Laufruhe 

e Staubdichtes Glasfenster 

Die C-10 HOFACKER Datencassette wird seit 1978 speziell für Microcomputeranwender produziert., 
Die Cassetten bieten ein Höchstmaß an Betriebssicherheit bezüglich fehlerfreier Aufnahme und Wieder- 
gabe. 

Hier eine kurze Übersicht über die Anzahl der Bytes, die Sie auf eine C-10 Cassette abspeichern 
können: 
  

  

  

  

  

  

  

  

            

  

  

  

  
  

Computer Speichermöglichkeit Computer Speichermöglichkeit 

ATARI 400/800 16K APPLE -136K 

Sharp MZ-80 32K APPLE II 16K 

AIM 65 16K Heathkit 36K 

Ohio Scientific 10K Kansas City Std. 16K 

TRS-80 16K KIM-1 12K 

TRS-80 Color Computer| 24K NASCOM 12K 
Video Genie 16K Exidy Sorcerer 12K 

Sinclair ZX80/81 16K SYM-1 12K 

I I IT TI TOT ——— | (GE (mb rum ehe m — 

BESTELLSCHEIN Lieferanschrift 

Menge | Beschreibung Preis/DM | Gesamt | name... o.oo occ cece cece ceeeeeees 

1 Cassette 3,50 StraBe een 

10 Cassetten 29,80 Ort oo c ccc cece eee eee eee e nes 
100 Cassetten 249,00 

Datum........ Unterschrift......0......... 
Len eens | ee L — u hee wh _ L —— m meee eee eee eee         

Ing. W. Hofacker GmbH 
Tegernseerstr. 18 
D--8150 Holzkirchen 

Tel.: (0 80 24) 73 31 

  

    
 



 


