
COMMODORE

Sachbuchreihe Band 2

ALLES ÜBER
DEN VC.20
Programmierhandbuch

Commodore Sachbuchreihe Band 2

ALLES UBER DEN

VC20

Programmierhandbuch

Inhaltsverzeichnis

1. Allgemeine Beschreibung

1.1 Einfuehrung

1.2 Das VC-20-System
1.2.1 Eigenschaften
1.2.1.1 Farbe und Ton
1.2.1.2 Spezielle Schnittstellen
1.2.1.3 Speichererweiterung und Einsteckprogramme

2. Kommunikation mit dem VC20

2.1 Einfuehrung

2.2 Programmierte Befehle. Ein kurzer Ueberblick

Programmierung des VC20
Direkt-Modus
Programm-Modus
Programmanzeige und Programmveraenderungen
Anhalten des Programmablaufes BO

BO

BO

BO

B
O

e P
W
D
 o

O

P
P
P

H
P
H
P
f
F
h
p

P
R

p
H

P
H
P

H
P
A
P

H
R
P

E
W
N
W
N
W
W
W
S

6
i

Zahlen und Datenformate
Gleitkommazahlen
Rundung |
Wissenschaftliche Zahlendarstellung
Ganze Zahlen
Zeichenketten (Strings)
Variablen

Variablennamen
Gleitkommavariablen
Ganzzahl-Variablen (Integer-Variablen).
String-Variablen
Lange Variablennamen
Reservierte Woerter
Mathematische Operatoren

e
e

s

n
n

B
W
N
D
h
D
Y
 —

Boolesche Operatoren (logische Ausdruecke)
Bit-orientierte Boolesche Operationen
Felder

.1 Arithmetische Operatoren

.2 Rechenhierarchie

.3 Vergleichsoperatoren
4
5

B
O

BD
O

P
o

BD
O

B
O

B
O

B
O

B
O

BP
O

H
O

B
O

B
Y

KR
Y

B
O

B
Y

B
O

H
o

B
O

f
o

B
Y

W
O
W

D
D
D
O
N
I
N
D
D
H
A
D
A
A
U
A
W
D
 =

BASIC-Funktionen m

. i
n

Farbregulierung beim VC20
Hintergrundfarbe
Zeichenfarben
Direktdarstellung von Zeichen auf dem Bildschirm

B
O

Bo

BO

BO

BO

B
O

D
A
D
D
A
D

W
U
W
N

D
o

u

.1 Auswahl von Farbkombinationen

Seite

27
27
28
29

Beispielprogramme fuer die farbige Zeichendarstellung 30
30

D
D

e |

®

N

N

P
O

BO

BO

BO

B
O

B
O

e
e

e¢

e
e

e

C
O

CO

CO

CO

CO

00

6
t

‘
e

e

W
n

&
W
R

—

CN

N
N

N
N
N

A
N
N
A
N

N
A

W
N
W

N
W
N

N
W

N
N

A
O
N

WN

N
A
N
A

W
N

GN

W
G

O
D

WN

N
N
N

N
N
W

N
A
N

AH

A
W
G

GS

®
e

‘
e

ee

.
e

e
e

ea

e
e

s
e

e
e

e

DO

BO

PO

PO

Po

FS

KP
o

PS

fo

DO

Po

B
O

BO

PO

Ho

PO

Po

BO

Po

PO

Po

DY

e
e

%
e

e
.

e
6

e
»

e

O
C
O
M
N
~
I
N
A
I

N
T
N

P
W
D

=

e
e

‘

O
M
O
n
I
D

Pe

W
H

—

—
)

_
ı

o
o
O
o

M
N

B
N
P

=

o
e

u

u

o
Y

W
h

—=

©

.
—

Adressaenderung bei Speichererweiterung

Tonregulierung beim VC20
Erzeugung von Toenen
Beispielprogramm fuer die Tonerzeugung

Der Bildschirmeditor
Cursor-Steuermodi
Inverse Zeichendarstellung
RUN/STOP-Taste |
Zusammenstellung aller Steuertastenfunktionen
Zusaetzliche Tastenfunktionen

VC20-BASIC

Ueberblick

CBM-BASIC
Initialisierung des Rechners
Bedienungsmodi
Zeilenformat
Zeilennummern
Zeichensatz des CBM-BASIC
Konstanten des CBM-BASIC
Variablen
Variablennamen und -kennzeichnung
Namen fuer Stringvariablen
Namen fuer numerische Variablen
Feldvariablen
Umwandlung von numerischen Variablen
Ausdruecke und Operatoren
Arithmetische Operatoren
Ueberlauf und Division durch Null
Vergleichsoperatoren
Logische Operatoren
Funktionsoperatoren
String-Operationen
Editieren (Eingeben) von Programmzeilen
Fehlermeldungen

BASIC-Anweisungen
Vereinbarung der Notation
CLOSE
CLR
CMD
CONT
DATA
DEF FN
DIM
END
FOR. . .NEXT
GET und GET#
GOSUB. . . RETURN
GOTO

30

31
31
32

32
34
35
35
36
37

3.3.14
3.3.15
3.3.16
3.3.17
3.3.18
3.3.19
3.3.20
3.3.21
3.3.22
3.3.23
3.3.24
3.3.25
3.3.26
3.3.27
3.3.28
3.3.29
3.3.30
3.3.31
3.3.32
3.3.33

e
6

e
U}

6
‘

}
e

€
e

€

e
e

B
O

B
O

BO

BO

BO

BS

BO

BO

DO

a

2

n
s

ee

es

es

2

D
O

I
O
N

P
W
N

D
O

C
O
n
N
I
D

NI

P
W
D

=

©
FO

O
~
A
I
T
A

UW

P
W
D

=

©

e
e

«
‘

s
e

f
P
A
P
H
A
H
H
A
H
A
H
A
H

H
E
A

L
P
H

H
A
R
A
D
A

A
H

A
A
L
S

W
O
N

O
N

N
N

O
N
I
N

O
N
E

O
O
O

G
H

IN

e
e

‘
e

e
e

e
e

e
e

e
e

e
‘

‘
e

‘
e

e
e

e
‘

e
e

e
e

e
e

e
e

e
e

e
e

e
e

CY

8
‘

e

W
W
W

G
O
G
A

A
G
I
O
’

N
N

O
A
N
A

A
G
H
A

A
A
A

A
A
A

N
N

GH

e
e

e
6

6
‘

ea

e
‘

IF...THEN und IF...GOTO
INPUT
INPUT#
LET
LIST
LOAD
NEW
ON. ..GOSUB und ON...GOTO
OPEN
POKE
PRINT und PRINT#
READ
REM
RESTORE
RUN
SAVE
STOP
SYS
VERIFY
WAIT

BASIC-Funktionen

ABS
ASC
ATN
CHR$
COS
EXP
FRE
INT
LEFT$
LEN
LOG
MID$
PEEK
POS
RIGHT$
RND
SGN
SIN
SPC
SQR
STATUS
STR$
TAB
TAN
TIME
TIME$
USR
VAL

Hardware und Betriebssystem des VC20

Aufbau des VC20

64
65
67
68
69
70
71
72
73
74
75
77
78
79

81
82
83
84
85

86
87
88
89
90
91
92
93
94

96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

115

115

>
P
>
P
P
P
P
2
.
P
2
.
2
.
2
.
2
»
2

e
e

i)

e
e

e
e

U}

i)

‘

u

e
e

s
e
m

e
e

u

e
c

u

e
e

e

P
P
P
S

e
a

°
¢

R
O
D
S

Pw
LO

°

e
*

a
®

N
W
N
W
N
W
N
W
Q
N
W
G
S
 W

e
e

e
e

ee
ee

e@
O
N

O
n

&

WH

P
O

4
.

P
P
E
P
.
r
.
2
.
2
>

t
6

P
e
2
r
2
e
>

e
e

e
e

P
P
.
»

e
e

e

Anhaenge

7
7
n
m
n
o
n
w
>

Tabellen

D
O

BO

BO

BO

B
O

o
e

©
«©

»®

WI

B
W
R

=

A
W
G

®

ry
.

.
ry

e
e

.
N
N
D

2
.
2

e
e

e

.
D

&

G
I

B
O

D
O

—

D

P
N
D
-

Mikroprozessor
Ein- und Ausgaenge
Adressbus
Datenbus
Steuerbus
Speicher fuer das Betriebssystem (ROM)
Arbeitsspeicher (RAM)
Variabler Interface-Adapter (VIA)
Video-Interface-Chip (VIC)
Zeichengenerator

Speicherorganisation
Arbeitsspeicher und Anwenderprogramme
RAM- und ROM-Erweiterungen
Betriebssystem, Interpreter und Ein/Ausgabe

Der BASIC-Interpreter des VC20
Speicherung von BASIC-Anweisungen
Schluesselwort-Codes
Leerstellen in Programmzeilen
Null-Bytes
Programmformat bei der Kassetten-Speicherung
Programmformat-Kompatibilitaet

Zugriff auf Farb- und Zeichenmatrizen
Zeichenzeiger
Anzeige von Zeichen
Bildschirmspeicher
Farbzeiger
Formatorganisation fuer die Bildschirmanzeige

Beschreibung der RS-232(V24)-Schnittstelle
Routinen des Betriebssystems |

. Umsetzung von fremden Programmen in VC20-BASIC
Zusammenstellung der Fehlermeldungen
Mathematische Funktionen und ASCII-Codes
Beschreibung des 6561-Video-Interface-Chip (VIC)

Reservierte Namen

Mathematische Operatoren
Boolesche Wahrheitstabelle
Farbsteuerzahlen

Zahlenaequivalente fuer Musiknoten

Sonderzeichen und Cursorsteuerzeichen
BASIC-Schreibweise von algebraischen Ausdruecken

RS-232-Leitungen und -Anschluesse

115
116
116
116
116
116
117
117
117
117

118
119
120
121

121
122
124
124
124
124
125

125
125
125
125
127
127

129
138
176
179

‚185
187

16
20
21
28
31

40
44

134

B. 1 Aufrufbare Betriebssystem-Unterprogramme

C.1 Codes fuer VC20-BASIC-Anweisungen

D.1 Fehlermeldungen

Abbildungen

1.1 System-Blockschaltbild des VC20

2.1 Tastenfeld des VC20

3.1 Initialisierungsanzeige

4.1 Speicherorganisation des VC20
4.2 Aufteilung des Arbeitsspeichers
4.3 RAM/ROM-Speichererweiterungen
4.4 Speicherbereiche fuer Interpreter, Betriebssystem

und Ein/Ausgabe
4.5 Adresszeiger fuer den Anwenderprogrammbereich
4.6 Speicherung von BASIC-Programmzeilen
4.7 Schema der Bildschirmzellen fuer die Zeichen-

darstellung
4.8 Video-Matrix

A.1 Kontrollregister fuer die RS-232-Schnittstelle
A.2 Befehlsregister fuer die RS-232-Schnittstelle
A.3 RS-232-Statusregister

F.1 Typische Video-Matrix
F.2 Kontroll-Register des VC20
F.3 Pinbelegung des VIC 6561

138

178

179

38

118
119
120

121
122
123

126
127

131
132
135

189
190
196

1.1 Einfuehrung

Dieses Handbuch geht davon aus, dass Sie als Anwender des VC20-
Computers bereits ueber einige Grundkenntnisse der Programier-
sprache BASIC verfuegen und nun die vielfaeltigen Programmierungs- .
moeglichkeiten des VC20 kennenlernen moechten.
Es handelt sich hierbei um ein vollstaendig in sich geschlossenes
Programmierungshandbuch, das auch fuer den fortgeschrittenen
Programmierer viele Anregungen und Hilfen bietet. Aber auch der
Anfaenger kann unter Verwendung dieses Handbuches sehr bald
Programme schreiben und auf dem VC20 ausfuehren.
VC20-BASIC ist eine leicht zu handhabende Programmiersprache, die
die Welt der Farben und Toene in den Betrieb des Computers mit
einbezieht. |
Unter den vielen Eigenschaften des VC20 sind die normale und die
hochaufloesende Farbgrafik sowie drei darstellbare Oktaven der
Notenskala hervorzuheben. Natuerlich lassen sich auch beliebige
Geraeusche zur Untermalung der im Handel erhaeltlichen oder
selbstprogrammierten Video-Spiele erzeugen.
Sollten Sie in der Programmierung noch Anfaenger sein, so ist der
VC20 der ideale Einstieg. Der einzige Weg, die Programmierung zu
lernen, ist jedoch, einfach damit anzufangen. Unter Verwendung
dieses Handbuches werden Sie sehr bald Ihre eigenen Programme
schreiben koennen.
Zunaechst wollen wir jedoch einen Blick auf den Aufbau des VC20-
Systems werfen.

1.2 Das VC20-System

Der Commodore-Video-Computer VC20 ist ein preiswerter Home-
Computer, der in einem platzsparenden, leichten Gehaeuse
untergebracht ist und an jedes Fernsehgeraet angeschlossen werden
kann. Die vielfaeltigen Moeglichkeiten hinsichtlich der
Farbsteuerung koennen natuerlich nur beim Anschluss an ein
Farbfernsehgeraet oder einen Farbmonitor ausgeschoepft werden.
Dabei wird ein Bildschirmformat von 22 Spalten zu 23 Zeilen
erzeugt, d.h. es koennen bis zu 506 Zeichen auf dem Bildschirm
abgebildet werden. Sowohl Farbe als auch Ton lassen sich beliebig
steuern.
Das Herz Ihres VC20-Systems ist ein MCS6502-Mikroprozessor, der den
Betrieb des Bildschirms, der Tastatur, der Kassettenstation sowie
zusaetzlich anschliessbarer Peripheriegeraete vollstaendig steuert.
Das Betriebssystem und der BASIC-Interpreter koennen nicht
unbeabsichtigt zerstoert werden, da sie in ROM-Bausteinen (read
only memory = nur lesbare Speicher) gespeichert sind.

1.2.1 Eigenschaften

Der VC20-Computer ist an jedes Farbfernsehgeraet oder an einen
beliebigen Farbmonitor anschliessbar und hat folgende
grundsaetzliche Eigenschaften:

* 5 kByte Anwenderspeicher (RAM), auf bis zu
32 kByte erweiterbar.

* Standard-CBM-BASIC.
* Farbe.

Ton.

Herausgefuehrte Peripherieanschluesse.
Bildschirmanzeige 23 Zeilen/22 Spalten.
Zeichensatz in hochaufgeloester Darstellung.
Joystick, Ballschlaeger, Lichtstift.
Stecksockel fuer Speichererweiterung und
EPROM/ROM-Programme.

t
+

Zur
 e
e

1.2.1.1 Farbe und Ton

Die Veraenderungen von Farbe und Ton werden beim VC20 durch das
MSC6561-Video-Interface-Chip (VIC) gesteuert, das die
Farbvideografik und die programmierbare Farbzeichengrafik mit hoher
Bildschirmaufloesung erzeugt und es damit gestattet, System- und

Video-Spiele aneinander anzupassen.

1.2.1.2 Spezielle Schnittstellen

Die RS-232-Schnittstelle (V24-Schnittstelle) des VC20 gestattet es
unter anderem, diesen Computer ueber ein Datennetz mit anderen
Computern zu koppeln und auf diese Weise Daten zwischen
verschiedenen Systemen auszutauschen. Ausserdem lassen sich ueber
spezielle Interface-Stecker beliebige, fuer den VC20 auf dem Markt
erhaeltliche periphere Geraete (Drucker, Floppy-Disk) an die
serielle Systemschnittstelle anschliessen. Das Systemblockschalt-
bild in Abb. 1.1 zeigt diese Moeglichkeiten in schematischer Form.

Speicher-| |Einsteck-
erweit. Programme

Drucker T

| U
3-kByte- Einsteck- | |Steuer-

Kassette Modem | |Floppy Speicher- | |Programme | |platine
erweit.

I 1] — r
Kass.- Userport Serielle Erweite- HF- Farbbild-
Interface RS-232- Schnitt- rungs- Modem Schirm

Schnitt- stelle Interface
stelle

Netz -
Tteil |

Spiele- 1 Joystick
Interface 1 Schlaeger

1 Lichtstift

Abb. 1.1: Systemblockschaltbild des VC20

1.2.1.3 Speichererweiterung und Einsteckprogramme

Der Anwender- oder Arbeitsspeicher (RAM) des VC20 kann mit
einfachen ROM- oder RAM-Einsteckeinheiten erweitert oder ergaenzt
werden. Die RAM-Erweiterung kann in 3-, 8- oder 16-kByte-Schritten
bis auf 32 kByte vorgenommen werden. Ausserdem sind eine ganze
Reihe von Einsteckprogrammen zur Erweiterung der
Programmiermoeglichkeiten erhaeltlich:

Supererweiterungskarte:

* 3 kByte RAM (macht den VC20 zum 8-kByte-
Rechner).

* Hochaufloesende Grafik und PLOT-Befehle.
* Festbelegte Funktionstasten.
* Horizontales Bildschirmrollen.

Programmierhilfenkarte:

* TOOLKIT mit vielen Befehlen, die das
Entwickeln komplizierterer BASIC-Programme
erheblich erleich-tern.

* Maschinensprache-Monitor fuer den
fortgeschrittenen
Programmierer mit Systemkenntnissen.

2. Kommunikation mit dem VC20

2.1. Einfuehrung

Jede Kommunikation mit dem VC20 erfolgt ueber das Tastenfeld, das
in Verbindung mit dem VC20-BASIC-Interpreter die notwendige
Schnittstelle zwischen Ihnen als Anwender und dem Computer
darstellt.
Der VC20 hat eine schreibmaschinenaehnliche Tastatur mit 62
Einzeltasten, die die Daten in ASCII-codierter Form dem Computer
uebermittelt (ASCII = amerikanischer Standardcode fuer
Informationsaustausch). Kapitel 4 dieses Handbuches enthaelt eine
detaillierte Beschreibung der Funktionsweise der Tastatur. Abb.
2.1. zeigt das Tastenfeld des VC20.

Abb. 2.1 Tastenfeld des VC20

2.2 Programmierte Befehle. Ein kurzer Ueberblick

Ehe wir mit dem Programmieren beginnen, wollen wir exakt beschrei-
ben, was ein Programm ist, und was es tut.
Ein Programm besteht aus einer Reihe von Anweisungen, die der Com-
puter ausfuehrt, um das vom Anwender gewuenschte Ergebnis zu lie-
fern. Der Computer fuehrt diese programmierten Anweisungen Schritt
fuer Schritt aus. Die Reihenfolge, in der die Anweisungen vom Com-
puter ausgefuehrt werden, wird durch die Zeilennummern, die den
Anweisungen vorangestellt werden, festgelegt. Die Zeilennummern
bestimmen also zum einen die Reihenfolge, in der jeder Program-
schritt abgearbeitet wird. Zum anderen bedeuten sie fuer den Com-
puter, dass er die darauffolgende Information als Teil eines Pro-
gramms im Speicher ablegt. Jede vom Anwender neu eingegebene Pro-
grammzeile wird in der richtigen numerischen Reihenfolge zwischen
die schon abgespeicherten Programmzeilen eingefuegt. Wenn alle
Programmzeilen abgespeichert sind, kann der Anwender dem Computer
mitteilen, dass dieser das Programm ausfuehren soll. Wenn eine
Anweisung dem Computer vom Anwender ohne eine vorangestellte Zei-
lennummer eingegeben wird, so wird diese Anweisung sofort ausge-
fuehrt und nicht als Programmzeile ım Programmspeicher abgelegt.

2.3 Programmierung des VC20

Die folgenden Abschnitte (2.3 bis 2.4) wenden sich an den Anfaenger
und an den VC20-Neuling. Wenn Sie genau den einzelnen Schritten
folgen, werden Sie sehr schnell Erfolg haben. Wir wollen mit der
Eingabe von Befehlen in den Computer beginnen.
Wie bereits erwaehnt, koennen dem Computer Befehle in zwei
verschiedenen Modi eingegeben werden. Im Direkt-Modus und im
Programm-Modus. Um Sie mit diesen beiden Modi vertraut zu machen,
wollen wir ein wenig ueben.

2.3.1 Direkt-Modus

Im Direkt-Modus geben Sie den Befehl oder die Anweisung ueber die
Tastatur ein und druecken zum Abschluss die RETURN-Taste. Der
eingegebene Befehl wird dann sofort ausgefuehrt. Geben Sie
folgendes ein:

PRINT 10-6

Druecken Sie die RETURN-Taste. Auf dem Bildschirm erscheint:

4

Der Befehl (PRINT), den Sie eingegeben haben, wurde nach dem
Druecken der RETURN-Taste sofort ausgefuehrt. Der BASIC-Interpreter
uebersetzt den Befehl, der Computer berechnet den arithmetischen
Ausdruck und das Ergebnis wird sofort angezeigt, in diesem Fall
eine 4.
Nun geben Sie bitte folgendes ein:

PRINT 1/2,6*10

Druecken Sie die RETURN-Taste. Auf dem Bildschirm erscheint:

.> 60

Das /-Symbol bedeutet Division, das *-Symbol Multiplikation.
Sie haben jetzt ganz einfache Beispiele fuer Subtraktion, Division
und Multiplikation unter Verwendung des PRINT-Befehls kennenge-
lernt. Das Komma im zweiten Beispiel dient dazu, die Ergebnisse der
beiden einzelnen arithmetischen Operationen (1/2 und 6*10) durch 10
Leerstellen voneinander getrennt anzuzeigen.
Der Direkt-Modus wird auch als Rechner-Modus bezeichnet, weil Sie
in diesem Modus den VC20 wie einen Taschenrechner bedienen koennen.
Betrachten Sie jetzt die folgenden Darstellungen:

24.5+6.42 Addition
10.92

READY.

?500-410 Subtraktion
90

READY.
23 .4147*2 Multiplikation
6.8294

READY.
?100/3 Division

33.3333333

READY.
?6/2*4-1 Gemischte Rechnung

11

Im Direkt-Modus werden die Ergebnisse direkt in der naechsten
Bildschirmzeile angezeigt. Um arithmetische Operationen im Direkt-
Modus auszufuehren, muessen Sie die Zeile mit einem ? oder mit
PRINT beginnen. Beide bedeuten "Drucke''. Als naechstes geben Sie
den arithmetischen Ausdruck, den Sie berechnet haben wollen, ein
und druecken zum Abschluss die RETURN-Taste. Sie koennen aber auch
im Direkt-Modus das Ergebnis einer Berechnung, die der Computer
durch einen vorausgegangenen Befehl fuer Sie durchgefuehrt hat,
anzeigen:

A=567 .89*3

READY.
?A
1703.67

Bei diesem Beispiel wurden dem VC20 im Direkt-Modus zwei verschie-
dene Anweisungen eingegeben. Wenn Sie die erste Anweisung,
A=567.89*3, eingeben, wird das Ergebnis nicht angezeigt, da die
Anweisung nicht durch ? oder PRINT eingeleitet wurde. Der VC20-
BASIC-Interpreter hat jedoch die Berechnung ausgefuehrt und das
Ergebnis einer Variablen mit Namen A zugewiesen. Durch die zweite
Anweisung, ?A, wird der Inhalt der Variablen A, naemlich das
Ergebnis der vorausgegangenen Berechnung, auf dem Bildschirm
angezeigt.
Mit dieser Technik koennen Sie den Inhalt jeder Variablen, den man

als Wert der Variablen bezeichnet, anzeigen. Dabei muss die jewei-
lige Variable ihren Wert nicht durch die unmittelbar vorausgegan-
gene Anweisung zugewiesen bekommen haben, wie dies in dem eben be-
schriebenen Beispiel der Fall war.

2.3.2 Programm-Modus

Im Programm-Modus beginnt jede Anweisung mit einer Zeilennumer.
Die einzelnen Anweisungen bilden zusammen mit ihren Zeilennummern
das Programm, das vom VC20 sequentiell, Zeile fuer Zeile, abgear-
beitet wird.
Geben Sie die folgenden beiden Zeilen ein:

10 PRINT 7+8
20 PRINT 5-3

Denken Sie daran: Jede Zeile muss durch Druecken der RETURN-Taste
abgeschlossen werden. Um das Programm zu starten, geben Sie jetzt

RUN

ein und druecken die RETURN-Taste. Das Programm beginnt mit der
Ausfuehrung der Anweisung in der Zeile mit der niedrigsten Zi-
lennummer und beendet es mit der Zeile mit der hoechsten Zeilen-
nummer. Auf dem Bildschirm wird jetzt also

15
2

angezeigt.

Bei der Eingabe der Programmzeilen ist es gleichgueltig, mit
welcher Zeilennummer Sie beginnen. Der VC20-BASIC-Interpreter
bringt sie auf jeden Fall in die richtige Reihenfolge.

2.3.3 Programmanzeige und Programmveraenderungen

Um das jeweils im Programm- oder Arbeitsspeicher befindliche
Programm auf dem Bildschirm anzuzeigen, brauchen Sie nur

LIST

einzugeben und die RETURN-Taste zu druecken. Geben Sie also LIST
ein und druecken Sie die RETURN-Taste. Auf dem Bildschirm
erscheint:

LIST

10 PRINT 7+8
20 PRINT 5-3
READY.

Der Cursor (Blinker) verschwindet, waehrend das Programm gelistet
wird und erscheint nach der READY.-Meldung wieder.
Un eine Programmzeile zu loeschen, geben Sie nur deren Zeilennumer
ein und druecken die RETURN-Taste.

Also:

10 «RETURN?
LIST

VC20 antwortet:

20 PRINT 5-3
READY.

Zeile 10 ist damit im Programm geloescht. Um sie wieder einzufue-
gen, gibt man wieder 10 und die gewuenschte Anweisung ein, abge-
schlossen mit der RETURN-Taste.
Ein einfacherer Weg, Zeile 10 durch eine andere Anweisung zu erset-
zen, ist, einfach die neue Zeile 10 einzugeben und mit RETURN abzu-
schliessen. Geben Sie also folgendes ein:

10 PRINT 8-7
LIST

VC20 antwortet:

10 PRINT 8-7
20 PRINT 5-3
READY.

Programmzeilennummern sollten nicht unmittelbar aufeinander folgen
(1,2,3,4...). Es kann naemlich spaeter einmal notwendig werden,
zwischen bereits existierende Programmzeilen neue Programmzeilen
einzufuegen. Deshalb ist ein Zeilennummernabstand von 10 empfeh-
lenswert.
Um ein ganzes Programm im Programmspeicher zu loeschen, geben Sie

NEW

ein und druecken die RETURN-Taste. Ehe Sie mit der Eingabe eines
neuen Programms beginnen, sollten Sie mit NEW den Programmspeicher
loeschen.

2.3.4 Anhalten des Programmablaufes

Sie moechten ggfs. Ihr Programm waehrend der Ausfuehrung anhalten.
Dies wird Programmunterbrechung genannt und durch Druecken der
Taste RUN/STOP waehrend des Programmablaufes ausgeloest. In einem
solchen Fall gibt VC20 eine entsprechende Meldung zusammen mit der
Numer der Zeile aus, in der das Programm unterbrochen wurde. Also
zum Beispiel:

BREAK IN 40
READY.

Da Ihr VC20 nur englisch "spricht", sind alle Meldungen, Anwei-
sungen und Befehle in englischer Sprache abgefasst. BREAK heisst
Unterbrechung.
Bei einer Unterbrechung kehrt VC20 in den Direkt-Modus zurueck, in
dem Sie z. B. Direktanweisungen wie LIST, LOAD oder SAVE ausfuehren
lassen koennen.

Um ein unterbrochenes Programm fortzusetzen, geben Sie

CONT

ein und druecken die RETURN-Taste. Das Programm wird dann exakt an
der Stelle fortgesetzt, an der es unterbrochen wurde.

Jetzt haben Sie die ersten Grundkenntnisse der Programmierung Ihres
VC20 erworben und wir koennen uns mit den vom System verwendeten
Datenformaten beschaeftigen.

2.4 Zahlen und Daten-Formate

Die Zahlen, die der VC20 darstellen kann, unterliegen in ihrem
Format gewissen Beschraenkungen. VC20 speichert alle Zahlen intern
mit einer Genauigkeit von mehr als 9 Stellen. Auf dem Bildschirm
werden jedoch immer nur hoechstens 9 Stellen angezeigt. Ausserdem
koennen Zahlen auch mit einem Exponenten zur Basis 10 (wissen-

schaftliche Darstellung) dargestellt werden. Zu jedem Zeitpunkt,
wenn Sie mit Ihrem VC20 arbeiten, werden Zahlen benoetigt. VC20
kann zwei verschiedene Zahlenarten speichern:

Gleitkommazahlen (Real-Zahlen)
Ganze Zahlen (Integer-Zahlen)

2.4.1 Gleitkommazahlen

VC20 stellt die Zahlen intern standardmaessig im Gleitkommaformat
dar. Jede arithmetische Operation wird grundsaetzlich mit Gleit-
kommazahlen ausgefuehrt. Eine Gleitkommazahl kann eine ganze Zahl,
eine gebrochene Zahl mit einem voranstehenden Dezimalpunkt (im Eng-
lischen wird anstelle des Dezimalkommas der Dezimalpunkt verwendet)
oder eine Kombination aus beidem sein. Die Zahl kann ein positives
(+) oder negatives (-) Vorzeichen haben. Ein positives Vorzeichen
wird nicht mit ausgedruckt.
Betrachten wir einige Beispiele fuer Gleitkommazahlen:

Ganze Zahlen, die Integer-Zahlen entsprechen:

5
-15
6500
161
0

Gebrochene Zahlen mit einem Dezimalpunkt:

0.5
0.0165432
-0.00009
1.6
24.0085
-65.6
3.1416

Denken Sie daran, anstelle des Dezimalkommas den Dezimalpunkt zu
verwenden, sonst erhalten Sie eine Fehlermeldung statt des ge-
wuenschten Ergebnisses.

2.4.2 Rundung

VC20 bearbeitet alle Zahlen mit einer absoluten Genauigkeit von
mindestens 8 Stellen, in einigen Faellen auch mit 9 Stellen, ab-
haengig von der Zahl. Alle zusaetzlichen signifikanten Stellen
werden von VC20 aufgerundet, wenn die naechste Stelle 5 oder
groesser ist und abgerundet, wenn sie 4 oder kleiner ist. Durch die
Rundung kann es bei gebrochenen Zahlen zu Ungenauigkeiten in der 9.
Stelle kommen:

2,555555556 Hier wird noch bei
„55555555 der 6 ab-

2,555555557 und erst bei der 7

„55555556 aufgerundet.

?.111111115 Hier wird noch bei

.11111111 der 5 ab-

?.111111116 und erst bei der 6

. 11111112 aufgerundet.

Diese kleinen Ungenauigkeiten resultieren aus der Art und Weise, in
der Computer Gleitkommazahlen intern abspeichern.

2.4.3 Wissenschaftliche Zahlendarstellung

Gleitkommazahlen koennen auch in der sogenannten wissenschaftlichen
Zahlendarstellung ausgegeben werden. Wenn 10- und mehrstellige
Zahlen eingegeben werden, werden diese vom VC20 automatisch in die
wissenschaftliche Darstellung umgewandelt, sobald sie wieder aus-
gegeben werden sollen, um auf diese Weise auch grosse und sehr
grosse Zahlen mit einer beschraenkten Stellenzahl relativ genau
wiederzugeben. Zum Beispiel:

21111111114
1.11111111E+09

READY.
21111111115
1.11111112E+09

Eine Zahl in wissenschaftlicher Darstellung hat die allgemeine
Form:

ZahlE+ee

Dabei bedeuten:

Zahl eine ganze oder eine gebrochene Zahl, wie in
Abschnitt 2.4.1 beschrieben.

E der Buchstabe E fuer Exponent.

+ das Vorzeichen zum Exponenten.

10

ee ein bis zu zweistelliger Exponent zur Basis 10.
Dieser Exponent spezifiziert die Groesse der
Gleitkommazahl, d.h. die Anzahl von Stellen, um

die der Dezimalpunkt nach rechts (positiver
Exponent) oder nach links (negativer Exponent)
verschoben werden muss, um die tatsaechliche

Dezimalpunktposition einzunehmen.

Hier einige Beispiele:

Wissenschaftliche Standard-
Darstellung: Darstellung:

2E1 20
10.5E+4 105000
66E+2 6600
66E-2 0.66
-66E-2 0.66
1E-10 0.0000000001
94E20 9400000000000000000000

Wie vor allem die letzten beiden Beispiele zeigen, ist die wissen-
schaftliche Darstellung der geeignete Weg, sehr kleine oder sehr
grosse Zahlen wiederzugeben. Das VC20-BASIC gibt alle Zahlen zwi-
schen 0.01 und 999999999 in Standarddarstellung und alle Zahlen
ausserhalb dieses Bereiches in wissenschaftlicher Darstellung
wieder.
Versuchen Sie folgende Beispiele:

?.009
9E-03

READY. .
?.01
.01

READY.
299999998 .9
999999999

READY.
?999999999 .6

1E+09

Natuerlich kann Ihr VC20 nicht jede beliebige Zahlengroesse verar-
beiten, selbst in wissenschaftlicher Darstellung nicht. Die Grenzen
sind:

Groesste Gleitkommazahl: +1.70141183E+38

Kleinste Gleitkommazahl: +2 .93873588E-39

Jede groessere Zahl fuehrt zu einem sogenannten Ueberlauf-Fehler
(englisch: OVERFLOW ERROR).

11

Zum Beispiel:

?1.70141184E+38
?OVERFLOW ERROR
READY.

Jede kleinere Zahl wird auf Null abgerundet. Zum Beispiel:

22.93873587E-39
0

READY.

2.4.4 Ganze Zahlen

Eine ganze Zahl ist eine Zahl ohne Dezimalpunkt und ohne Dezimal-
stellen, die positiv (ohne Vorzeichen) oder negativ (-) sein kann.
Ganze Zahlen duerfen beim VC20 nur im Bereich zwischen -32767 und
32767 liegen. Folgende Zahlen sind ganze Zahlen:

0
1
44
32699
-15

Jede ganze Zahl kann jedoch auch in Gleitkommadarstellung wieder-
gegeben werden, da die ganzen Zahlen eine Untermenge der Gleitkom-
mazahlen sind. Wenn Sie mit ganzen Zahlen rechnen, so wandelt der
VC20-BASIC-Interpreter diese Zahlen zunaechst in Gleitkommazahlen
um, ehe die arithmetischen Operationen durchgefuehrt werden. Der
wichtigste Unterschied zwischen Gleitkommazahlen und ganzen Zahlen
besteht fuer den VC20-Anwender darin, dass ein Feld (s. Abschnitt
2.4.9) mit ganzen Zahlen erheblich weniger Speicherplatz benoetigt,
naemlich 2 Byte fuer eine ganze Zahl gegenueber 5 Byte fuer eine
Gleitkommazahl.

2.4.5. Zeichenketten (Strings)

Zeichenketten werden in der Computer-Fachsprache als Strings be-
zeichnet. Deshalb wird im folgenden in diesem Zusammenhang nur noch
von Strings gesprochen.
Ein String besteht aus einem oder mehreren Zeichen, die von Anfueh-
rungszeichen ('') am Anfang und Ende eingeschlossen sind.
Zum Beispiel:

"HALLO"

"'VC20-RECHNER"'
"12345"
"DER BETRAG IST DM 10.89"

Alle Datentasten (Buchstaben, Ziffern, Sonderzeichen, Grafiksym-
bole) mit Ausnahme der "-Taste sowie die drei Cursor-Steuertasten
(CLR/HOME, Cursor aufwaerts/abwaerts Qursor links/rechts) und die
RVS/OFF-Taste koennen zur Bildung von Strings benutzt werden.

12

Die einzigen Tasten, die nicht zur Bildung eines Strings verwendet
werden koennen, sind die SHIFT-, die RUN/STOP-, die RETURN- und die
INST/DEL-Tasten.
Alle Zeichen innerhalb eines Strings werden so abgebildet, wie sie
im String stehen. Da jedoch den Cursor-Steuertasten sowie der
RVS/OFF-Taste kein Standardzeichen entspricht, werden sie in einen

String durch besondere Zeichen in inverser Darstellung (dunkles
Zeichen auf hellem Grund) gekennzeichnet.
Wenn Sie einen String ueber das Tastenfeld eingeben, so kann dieser
eine Laenge haben, die sich aus 88 minus aller anderen fuer die
Programmzeile erforderlichen Zeichen (Zeilennummer, Anweisungen)
ergibt. Wenn Sie also im Direkt-Modus einen String anzeigen lassen
wollen, so koennen Sie bis zu 85 Stringzeichen (88 minus ? minus
zweimal '') eingeben.
Der VC20-BASIC-Interpreter kann jedoch im Speicher Strings bis zu
einer Laenge von 255 Zeichen ablegen. Solche Strings koennen Sie
durch Aneinanderfuegen von mehreren Teilstrings erzeugen (s.
Abschn. 3.2.11).

2.4.6. Variablen

Im Abschnitt 2.3.1 wurde bereits das Konzept der Variablen ange-
deutet. Dieses Konzept soll nun im folgenden eingehend beschrieben
werden.
Eine Variable ist eine Dateneinheit, deren Wert (Inhalt) veraendert
werden kann. Der Wert wird durch die Zahl bestimmt, die der Variab-
len zugewiesen wurde. Wenn Sie im Direkt-Modus

PRINT 10,20,30

eingeben, so antwortet VC20 mit

10 20 30

Wann immer Sie die obige Anweisung eingeben, erhalten Sie das
darunter dargestellte Ergebnis, da bei der PRINT-Anweisung kon-
stante Daten verwandt wurden. Sie koennen aber auch im Direkt-Modus

A=10 :B=20 :C=30 :PRINT A,B,C

eingeben und erhalten

10 20 30

Zwar ist dies dasselbe Ergebnis wie oben; es wurden jedoch die
Variablen A, B und C anstelle der Konstanten 10, 20 und 30 ver-
wendet. Indem Sie die Werte, die Sie A, B und C zugewiesen haben,
veraendern, veraendern Sie auch das von VC20 ausgegebene Ergebnis.
Geben Sie ein:

A=-4 :B=45 :C=4E2:PRINT A,B,C

und Sie erhalten:

-4 45 400

Sie werden noch sehen, dass in nahezu allen Computer-Programmen
Variablen verwendet werden.

13

2.4.6.1 Variablennamen

Variablen werden durch Namen identifiziert. In dem im letzten Ab-
schnitt beschriebenen Beispiel haben wir die Variablennamen A, B

und C verwendet. Eine Variable wird grundsaetzlich durch ihren Na-
men und durch ihren Wert gekennzeichnet. Der Variablenname reprae-
sentiert einen Speicherbereich, in dem der gegenwaertige Wert ge-
speichert wird. In dem folgenden Beispiel sei der gegenwaertige
Wert von A 14, von B 15 und von C O, also:

Name Speicherplatzinhalt

A 14
B 15
C 0

Unter Verwendung der Direkt-Modus-Anweisung

A=-1

wird der Inhalt der Speicherzellen, die durch die Variable A re-
praesentiert werden, von 14 auf -1 veraendert. Ein Variablenname
repraesentiert also eine Speicheradresse, bei der der gegenwaertige
Wert der Variablen gespeichert wird. Dabei ist eines sehr wichtig:

Variablennamen, die ja der Programmierer vergibt, sind
willkuerlich; es gibt keinen innewohnenden Zusammen-
hang zu dem Wert, den diese Namen repraesentieren.

Ein Variablenname kann aus beliebig vielen Zeichen bestehen. Das
erste Zeichen muss aber ein Buchstabe zwischen A und Z sein; das

zweite Zeichen kann entweder ebenfalls ein Buchstabe zwischen A und
Z, eine Ziffer zwischen O und 9 oder % oder $ sein. Als letztes

Zeichen des Namens darf wieder entweder ein Buchstabe oder eine

Ziffer oder aber % oder $ stehen.

2.4.6.2 Gleitkommavariablen

Gleitkommavariablen repraesentieren Gleitkommazahlen. Dieser
Variablentyp wird von Ihnen in Ihren Programmen vermutlich am
haeufigsten verwendet werden. Folgende Namen duerfen Sie z.B.
Gleitkommavariablen geben:

A
BERTA
Al
AA
255

2.4.6.3 Ganzzahl-Variablen (Integer-Variablen)

Ganzzahlvariablen repraesentieren ganze Zahlen. Namen fuer Ganz-
zahlvariablen muessen am Ende das %-Zeichen enthalten, wie die
folgenden Beispiele zeigen: |

14

A%
BERTA%
Al%
INTEGER%
X44%

Beachten Sie, dass auch Gleitkommavariablen ganze Zahlen reprae-
sentieren koennen. Sie sollten jedoch gerade bei Feldern, die in
Abschnitt 2.4.9 naeher beschrieben werden, wenn irgend moeglich
Ganzzahlvariablen verwenden, die je Feldelement nur 2 Byte gegen-
ueber 5 Byte bei Gleitkommavariablen benoetigen.

2.4.6.4 String-Variablen

Eine Stringvariable repraesentiert eine Kette beliebiger Zeichen
(z.B. Text) und muss am Ende des Variablennamens ein $-Zeichen
enthalten, wie die folgenden Beispiele zeigen:

A$
BERTA$
Al$
TEXT$
ZX$
X44$

2.4.6.5 Lange Variablennamen

Zur leichteren Lesbarkeit eines Programmes duerfen Sie auch, wie
bereits erwaehnt, Variablennamen vergeben, die laenger als 2

alphanumerische Zeichen sind. Sie muessen jedoch dabei beachten,
dass

1. nur die beiden ersten Zeichen signifikant
sind, d.h. vom VC20-BASIC-Interpreter
erkannt werden, und

2. bei String- oder Ganzzahl-Variablen das
letzte Zeichen des Namens $ oder % sein
muss.

Deshalb ist fuer den VC20-BASIC-Interpreter BANANE und BANDAGE
derselbe Name, da nur BA als Name erkannt wird.
In einem Inventurprogramm ist natuerlich der Name TEILNR fuer eine
Teilenummer aussagekraeftiger als der Name TN.
Das BASIC des VC20 erlaubt Variablennamen von bis zu 255 Zeichen
Laenge. Die folgenden Beispiele sind Namen mit mehr als der
Minimalzahl von Zeichen:

MITGLIEDER
T1234567
TEXTZEILE$
ABCDEF%

Zusammenfassend muessen Sie also bei der Vergabe laengerer Variab-
lennamen folgendes beachten:

1. Nur die ersten beiden Zeichen sowie ggfs. das
Identifikationszeichen (% oder $) sind signifi-
kant. |

2. Es gibt im VC20-BASIC "reservierte Woerter" (s.

Abschn. 2.4.7). Es handelt sich dabei um Woer-
ter, die fuer den VC20BASIC-Interpreter eine
spezielle Bedeutung haben. Keines dieser reser-
vierten Woerter darf an beliebiger Stelle eines
von Ihnen vergebenen Namens vorkommen.

3. Die zusaetzlichen Zeichen in den Namen benoeti-
gen zusaetzlichen Speicher, der vielleicht fuer
Programmverlaengerungen dringender gebraucht
wird.

2.4.7 Reservierte Woerter

Der VC20-BASIC-Interpreter erkennt einige Woerter im Programm als
Aufrufe fuer spezielle Operationen. Die Namen, die fuer solche
Aufrufe verwendet werden, werden als reservierte Woerter bezeich-
net. Diese Woerter duerfen deshalb nicht als Variablennamen verge-
ben werden; auch nicht als Teil an irgend einer Stelle des Namens.
Tabelle 2.1 enthaelt alle reservierten Woerter, von denen vor allem.
die 2-stelligen zu beachten sind, da diese am ehesten als Variab-
lennamen verwendet werden koennten.

Tabelle 2.1: Reservierte Woerter

ABS GET NOT SIN
AND GET# ON SPC
ASC GO OPEN SQR
ATN GOSUB OR ST
CHR$ GOTO PEEK STEP
CLOSE IF POKE STOP
CR INPUT POS STR$
CMD INPUT# PRINT SYS
CONT INT PRINT# TAB
COS LEFT$ READ TAN
DATA LEN REM THEN
DEF LET RESTORE TI
DIM LIST RETURN TI$
END LOAD RIGHT$ TO
EXP LOG RND USR
FN MID$ RUN VAL
FOR NEW SAVE VERIFY
FRE NEXT SGN WAIT

2.4.8 Mathematische Operatoren

Ein Operator ist ein spezielles Zeichen, das dem VC20-BASIC-Inter-
preter anzeigt, welche Operation mit den jeweils dabei angegebenen
Variablen oder konstanten Daten (Termen) auszufuehren ist. Einer
oder mehrere Operatoren in Verbindung mit einem oder mehreren Ter-
men bilden einen Ausdruck.
Im VC20-BASIC gibt es:

* Arithmetische Operatoren
* Vergleichsoperatoren
* Boolesche Operatoren

2.4.8.1 Arithmetische Operatoren

Ein arithmetischer Operator definiert eine mit den benachbarten
Termen auszufuehrende arithmetische Operation. Solche Operatoren
werden grundsaetzlich mit Gleitkommazahlen ausgefuehrt. Ganze Zah-
len werden fuer diesen Zweck deshalb vorher in Gleitkommazahlen un-
gewandelt und nach der Operation wieder zurueck in Integer-Zahlen
uebersetzt. Arithmetische Operationen und ihre Symbole sind:

Addition (+):

Das '+'-Zeichen besagt, dass der Term zur Linken zu dem Term zur
Rechten des Symbols addiert werden soll. Bei numerischen Termen ist
dies die direkte Addition. Z.B.:

2+2

A+B+C
%+1

BR+10E-2

Das '+'-Zeichen kann auch bei Stringoperationen verwendet werden.
Hier dient es jedoch zur Verkettung oder Aneinanderfuegung von
Teilstrings. Der Unterschied zwischen der numerischen Addition und
der Verkettung von Strings wird durch folgende Beispiele deutlich:

Numerische Addition: 3+4=7

String-Addition: "“BRIEF"'+''BOGEN''=""BRIEFBOGEN"

Durch die Stringverkettung lassen sich Strings mit einer Laenge bis
zu 255 Zeichen erzeugen. Z.B.:

"VOR''+'"WAERTS" ergibt 'VORWAERTS"

"HAL'+"LO" ergibt "HALLO"
A$+B$
m4 "LCH$+E$

17

Subtraktion (-):

Das '-'-Zeichen besagt, dass der Term zur Rechten des Symbols vom
Term zur Linken abgezogen werden soll. Z.B.:

4-1 ergibt 3
100-64 ergibt 36
A-B
55-142 ergibt -87

Das '-'-Zeichen kann auch als Vorzeichen (Negation) verwendet wer-
den, also z.B.:

-5
-9E4

-B

4--2 dasselbe wie 4+2

Multiplikation (*):

Ein '*' besagt, dass der Term zur Rechten des Symbols mit dem Term
zur Linken multipliziert werden soll. Z.B.:

100*2 ergibt 200
50*0 ergibt 0
A*X1
R%*14

Division (/):

Ein '/' besagt, dass der Term zur Linken des Symbols durch den Term
zur Rechten dividiert werden soll. Z.B.: |

10/2 ergibt 5
6400/4 ergibt 1600
A/B
AE2/XR

Potenzierung (?):

Der Term zur Rechten (Exponent) des '¢'-Symbols gibt den Grad an,
um den der Term zur Linken potenziert werden soll. Der Exponent
kann jede Zahl, Variable oder jeder beliebige Ausdruck sein, solan-
ge das Ergebnis der Potenzierung innerhalb des erlaubten Zahlenbe-
reiches des VC20 liegt. Z.B.:

242 ergibt 4
1292 ergibt 144
A4(B*2)
54(24A)

Wenn ein arithmetischer Ausdruck mehrere Operationen enthaelt, wie
z.B.

A+C*10/2%2,

so wird dieser Ausdruck vom VC20-BASIC-Interpreter in einer fest-
gelegten Reihenfolge (Hierarchie) abgearbeitet. Zuerst wird poten-
ziert (?), dann werden ggfs. vorhandene negative Vorzeichen be-
ruecksichtigt. Es folgen Multiplikation (*) sowie Division (/) und
dann Addition (+) sowie Subtraktion (-). Operatoren derselben Hie-
rarchie (*,/ und +,-) werden von links nach rechts abgearbeitet.
Diese festgelegte Hierarchie kann durch die Verwendung von Klammern
aufgehoben werden. Operationen innerhalb von Klammern werden grund-
saetzlich zuerst und zwar in der oben angegebenen Hierarchie durch-
gefuehrt. Z.B.:

4+1*2 ergibt 6

(4+1)*2 ergibt 10
100*4/2-1 ergibt 199
100*(4/2-1) ergibt 100

100*(4/(2-1)) ergibt 400

Wie das letzte Beispiel zeigt, koennen Klammern auch geschachtelt
werden. In einem solchen Fall wird der Ausdruck in der innersten
Klammer zuerst ermittelt, dann der in der naechstinneren usw.

2.4.8.3 Vergleichsoperatoren

Ein Vergleichsoperator spezifiziert eine "'wahr''- oder. '"unwahr"-
Bedingung zwischen ihm benachbarten Termen. Der durch den Operator
festgelegte Vergleich wird ausgefuehrt und der bezogene Ausdruck
wird dann entsprechend dem Vergleichsergebnis durch einen Wert von
-1 bei "wahr'' und von O bei "unwahr'' ersetzt. Tabelle 2.2 auf der
naechsten Seite enthaelt neben den bereits beschriebenen mathemati-
schen Operatoren alle Vergleichsoperatoren sowie die im naechsten
Abschnitt beschriebenen Booleschen Operatoren. Die Vergleichsopera-
toren liegen in der Rechenhierarchie unter den arithmetischen Ope-
ratoren, d.h., Ausdruecke mit Vergleichsoperatoren werden nach den
arithmetischen Ausdruecken ermittelt. Z.B.:

1=5-4 ist wahr (-1)
14>66 ist unwahr (0)

15>=15 ist wahr (-1)
A<>B

Vergleichsoperatoren koennen auch beim Vergleich von Strings ver-
wendet werden. In diesem Fall haben die Buchstaben des Alphabetes
die Ordnung A<B<¢C<D... Strings werden verglichen, indem ihre ge-
speicherten Zeichenwerte, also ihre ASCII-Codes (s. Anhang E) mit-
einander verglichen werden. Z.B.:

"AB" ist wahr (-1)
"X"="XX" ist unwahr (0)
C$=A$+B$

19

Tabelle 2.2: Mathematische Operatoren

Prioritaet Operator Bedeutung
hoch

Aufhebung der Hierarchie Ne
)

en

no

Potenzierung
Negation
Multiplikation
Division

Addition

Subtraktion I
N

+
|

a
w

Gleich
Ungleich
Kleiner als
Groesser als
Kleiner oder gleich
Groesser oder gleich

wv

w

w

>

Pp

h
f

pS

>
n
n

NN

NN

~I

CO

V
A
V

A
A
I

H
o
l

V
A

Logisches Komplement
Logisches UND
Logisches ODER 2S

niedrig

Die Ziffern in der Prioritaet-Spalte dienen nur zu Kennzeichnung
der hierarchischen Ordnung. Sie haben sonst keine Bedeutung.

2.4.8.4 Boolesche Operatoren (logische Ausdruecke)

Die Booleschen Operatoren NOT, AND und OR spezifizieren eine logi-
sche Verknuepfung zwischen den beiden Termen rechts und links vom
Operator. Im Fall von NOT wird nur der rechts stehende Term bear-
beitet. In der Rechenhierarchie liegen die Booleschen Operatoren an
niedrigster Stelle. Beispiele:

IF A=100 AND B=100 GOTO 10

Nur wenn sowohl A als auch B gleich 100 sind,
verzweigt das Programm nach Zeile 10.

IF X<Y AND B>=44 THEN F=0

Der Variablen F wird nur dann der Wert O zugewie-
sen, wenn sowohl X kleiner als Y als auch B groes-
ser oder gleich 44 ist.

20

IF A=100 OR B=100 GOTO 20

Das Programm verzweigt nach Zeile 20, wenn entweder
A=100 ist oder B=100 ist.

IF X<Y OR B?=44 THEN F=0

Der Variablen F wird dann der Wert O zugewiesen,
wenn entweder X kleiner als Y oder B groesser oder
gleich 44 ist.

IF A=1 AND B=2 OR C=3 GOTO 30

Das Programm verzweigt nach Zeile 30 wenn entweder
sowohl A=1 als auch B=2 ist, oder wenn C=3 ist.

Auch ein einzelner Term kann mit VC20-BASIC auf '"wahr'' oder
'"unwahr'' geprueft werden, indem naemlich jeder von Null verschie-
dene Wert als wahr und ein Null-Wert als unwahr interpretiert wird.
Z.B.:

IF A THEN B=2 Beide Befehlszeilen

IF Ac>0 THEN B=2 sind gleichwertig.

IF NOT B GOTO 100 Auch hier sind beide

IF B=0 GOTO 100 Befehlszeilen gleichwertig,
die zweite ist aber ueber-

sichtlicher.

Die Booleschen Operationen lassen sich in einer Wahrheitstabelle
zusammenfassen:

Tabelle 2.3: Boolesche Wahrheitstabelle

wahr AND wahr = wahr

unwahr AND wahr = unwahr

wahr AND unwahr = unwahr
unwahr AND unwahr = unwahr

wahr OR wahr = wahr

unwahr OR wahr = wahr
wahr OR unwahr = wahr

unwahr OR unwahr = unwahr

NOT wahr = unwahr

NOT unwahr = wahr

2.4.8.5 Bit-orientierte Boolesche Operationen

Dieser Abschnitt ist fuer Anwender gedacht, die tiefer in die Com-
puter-Mathematik eindringen wollen. Er beschaeftigt sich mit der
Moeglichkeit, einzelne Bits in einem Byte zu setzen oder zu loe-
schen oder bestimmte Bitmuster in einem Byte zu pruefen. Wenn Sie
das nicht interessiert, koennen Sie beruhigt bei Abschnitt 2.4.9
weiterlesen. Ihnen entgehen keine wichtigen Informationen.

21

Bei diesem Abschnitt werden Grundkenntnisse des Binaersystems sowie
der hexadezimalen Schreibweise von Zahlen vorausgesetzt.
Bit-orientierte Boolesche Operationen werden normalerweise an vor-
zeichenlosen, positiven 16-Bit-Zahlen durchgefuehrt, also in einem
Zahlenbereich zwischen $0000 und $FFFF (das $-Zeichen kennzeichnet
die hexadezimale Schreibweise und hat nichts mit Strings zu tun)
oder O und 65535 dezimal. Dem VC20-BASIC-Interpreter muessen die
Zahlen, mit denen bit-orientierte Boolesche Operationen durchge-
fuehrt werden sollen, jedoch als Dezimalzahlen im Bereich zwischen
-32767 und +32767 angegeben werden (s. a. Abschn. 3.2.10.4). Z.B:

Operation Hexadezimales Aequivalent

1 AND 1 ergibt 1 0001 AND 0001 ergibt 0001
1 AND -1I ergibt 1 0001 AND FFFF ergibt 0001
15 OR 240 ergibt 255 OOOF OR OOFO ergibt OOFF
NOT 0 ergibt -1 NOT 0000 ergibt FFFF
NOT 1 ergibt -2 NOT 0001 ergibt FFFE

Falls die zu bearbeitenden Terme noch nicht Integer-Zahlen sind,
werden sie zunaechst in diese Form gebracht. Anschliessend wird
jedes Bit des linken Terms entsprechend dem Booleschen Operator mit
jedem Bit des rechten Terms logisch verknuepft. Das Ergebnis stellt
wieder eine Integer-Zahl dar. Prinzipiell besteht kein Unterschied
zwischen einer gemischten Booleschen Operation wie:

A=1 OR C<2

und einer einfachen Booleschen Operation wie:

AORC

Der einzige praktische Unterschied ist der, dass im ersten Fall
zunaechst die beiden Vergleichsoperationen ausgefuehrt werden, die
O oder -1 liefern und dass dann die Boolesche Operation nur mit
Werten von O und/oder -1 ausgefuehrt wird, waehrend im zweiten Fall
A und C jede Integer-Zahl im Bereich zwischen -32767 und +32767
sein kann. Im Fall von:

IF A=B AND C<D GOTO 40

wuerden zunaechst die Vergleichsoperationen durchgefuehrt. Wenn die
linke Operation "wahr'' und die rechte "unwahr" ergibt, wird an-
schliessend die Boolesche Operation

IF -1 AND 0 GOTO 40

die das Ergebnis O liefert, also

IF 0 GOTO 40

Dies kann man, wie im letzten Abschnitt beschrieben, als

IF 0 <> 0 GOTO 40

schreiben, d.h. die Verzweigung wird nicht ausgefuehrt.

22

Eine an zwei Variablen durchgefuehrte Boolesche liefert eine
Integer-Zahl:

IF A% AND B% GOTO 40

% sei 255, B% sei 240. Dann ergibt sich aus obiger Boolescher

Operation 240, d.h. |

IF 240 GOTO 40

oder

IF 240<>0 GOTO 40

Die Verzweigung nach Programmzeile 40 wird also ausgefuehrt. Zum
Abschluss noch zwei andere Beispiele: |

=A AND 10
A=A<10

Im ersten Fall wird der gegenwaertige Wert von A logisch mit 10
verknuepft und das Ergebnis wieder der Variablen A zugewiesen. A
muss natuerlich eine Integer-Zahl im Bereich zwischen -32767 und
+32767 sein. Im zweiten Beispiel wird die Vergleichsoperation A 10
ausgefuehrt, die 0 oder -1 ergibt, d.h. der Variablen A wird
schliesslich entweder der Wert -1 oder 0 zugewiesen.

2.4.9 Felder

Ein Feld ist eine Folge von gleichartigen Variablen. Eine Zahlen-
tabelle kann z.B. als Feld betrachtet werden. Die einzelnen Zahlen
innerhalb dieser Tabelle werden dann zu Feldelementen. Wenn der
gesamten Tabelle oder dem Feld ein Name zugeordnet wird, so kann
das einzelne Feldelement durch seinen Platz in diesem Feld identi-
fiziert werden.
Ein Feld kann eine Dimension, wie z.B. die erwaehnte Zahlentabelle
haben, d.h., es handelt sich um eine Folge von Zahlen. Es kann aber
auch mehrere Dimensionen haben. Zwei Dimensionen beschreiben eine
Tabelle mit Zeilen und Spalten. Drei Dimensionen lassen sich als
Wuerfel beschreiben oder als Stapel von zweidimensionalen Tabellen.
Ab der 4. Dimension versagt unser Vorstellungsvermoegen. Mathema-
tisch lassen sich solche Felder, die man auch Matrizen nennt, je-
doch genauso einfach behandeln, wie zwei- oder dreidimensionale
Felder.
Wir wollen nun die Felder genauer betrachten. Ein einzelnes Feld-
element in einem eindimensionalen Feld hat im VC20-BASIC die all-
gemeine Form

Name (i)

wobei Name ein Variablenname getreu den in Abschnitt 2.4.6.1 be-
schriebenen Regeln ist. i gibt den Platz des Elementes in diesem
Feld an.

23

Ein eindimensionales Feld mit Namen A und 5 Elementen wird vom
VC20-BASIC-Interpreter folgendermassen angelegt:

A(0)
A(1)
A(2)
A(3)
A(4)

Die tatsaechliche Anzahl der Feldelemente ist gleich der Nummer des
letzten Feldelementes plus 1, da der Interpreter immer mit Feldele-
ment O beginnt.
Ein einzelnes Feldelement in einem zweidimensionalen Feld hat die
allgemeine Form:

Name (i, j)

Name ist wieder ein Variablenname. i bezeichnet die Nummer der Zei-
le (Zeilenindex) und j die Nummer der Spalte (Spaltenindex). Ein
zweidimensionales Feld mit Namen A$ mit 3 Zeilen und 2 Spalten wird
vom VC20-BASIC-Interpreter folgendermassen angelegt:

A$(0,0) A$(0,1)
A$(1,0) A$(1,1)
A$(2,0) A$(2,1)

Die Groesse eines solchen Feldes ergibt sich aus dem Produkt aus
dem hoechsten Zeilenelement plus 1 und dem hoechsten Spaltenelement
plus 1, in diesem Fall also 3*2=6 Elemente. Das VC20-BASIC erlaubt
bis zu 255 Dimensionen. Das ist jedoch mehr ein theoretischer Nert.
In den allermeisten Faellen werden Sie mit ein- oder zweidimen-
sionalen Feldern auskommen.
Felder mit bis zu 11 Elementen (0 bis 10 bei einem eindimensionalen
Feld) koennen ohne weitere Massnahmen wie normale Variablen verwen-
det werden. Erst wenn mehr als 11 Elemente benoetigt werden, muss
das Feld mit Hilfe der DIM-Anweisung vorher dimensioniert werden.
Diese Anweisung wird im Abschnitt 3.3.8 detailliert beschrieben.
Eine Feldvariable, zu der ja immer ein in Klammern stehender Index
gehoert, und eine gleichnamige einfache Variable werden vom VC20-
BASIC-Interpreter als zwei verschiedene Variablen behandelt. Ist
eine Variable einmal als Feld dimensioniert worden, kann sie nicht
umdimensioniert werden. |

2.5. BASIC-Funktionen

Ein wichtiger Bestandteil des VC20-BASIC sind die in BASIC inte-
grierten Funktionen. Es sind dies:

* Arithmetische Funktionen
* String-Funktionen
* Format-Funktionen
* System-Funktionen

24

Jede dieser Funktionen fuehrt an einem spezifizierten Datenelement,
das als Argument der Funktion bezeichnet wird, eine bestimmte Ope-
ration durch. Damit kann man z.B. die Quadratwurzel einer Zahl be-
rechnen, man kann eine Gleitkommazahl in eine ganze Zahl umwandeln,
man kann die Laenge eines Strings ermitteln, man kann Daten auf dem
Bildschirm tabuliert ausgeben und vieles anderes mehr. Die BASIC-
Funktionen erleichtern das Programmieren erheblich. Im folgenden
geben wir einen Ueberblick ueber alle BASIC-Funktionen des VC20.
Einzelheiten zu jeder Funktion entnehmen Sie bitte dem Kapitel 3.
Das Argument einer Funktion kann aus einzelnen oder mehreren Kon-
stanten, Variablen oder Ausdruecken bestehen. Die allgemeine
Schreibweise fuer eine VC20-BASIC-Funktion ist:

Funktion (Argument 1 ,Argument2,...)

Sind die einzelnen Argumente einer Funktion Ausdruecke, so werden
diese vom BASIC-Interpreter zuerst ermittelt, so dass die Funktion
selbst nur noch reine Zahlenwerte oder, im Falle von Stringfunkti-
onen, Teilstrings verarbeitet. Wenn eine BASIC-Anweisung Funktionen
enthaelt, so werden diese zuerst und dann erst der Rest der Anwei-

sung ausgefuehrt.

Arithmetische Funktionen:

INT Wandelt ein Gleitkommaargument in ein Integer-
Argument.

SGN Liefert das Vorzeichen des Argumentes. +1 fuer
positives, -1 fuer negatives und O fuer Null-
Argument.

ABS Liefert den Absolutwert fuer ein Argument. Ein
positives Argument wird nicht veraendert, ein
negatives Argument wird in ein positives Argument
umgewandelt.

SQR Berechnet die Quadratwurzel des Argumentes.

EXP Liefert die argument-fache Potenz der Zahl e, also
e#Argument.

LOG Liefert den natuerlichen Logarithmus des Argumen-
tes. .

RND Liefert eine Zufallszahl. Naeheres siehe Abschnitt
3.3.49.

SIN Liefert den trigonometrischen SINUS des Argumen-
tes, das im Bogenmass angegeben werden muss.

COS Liefert den trigonometrischen COSINUS des Argumen-
tes, das im Bogenmass angegeben werden muss.

TAN Liefert den trigonometrischen TANGENS des Argumen-
tes, das im Bogenmass angegeben werden muss.

25

ATN

Stringfunktionen:

STR$

VAL

CHR$

ASC

LEN

LEFT$

RIGHT$

MID$

Formatfunktionen:

SPC

TAB

POS

Systemfunktionen:

PEEK

Liefert den trigonometrischen ARCUS-TANGENS des
Argumentes, das im Bogenmass angegeben werden
muss. Das Ergebnis ist ebenfalls ein Wert im
Bogenmass.

Wandelt eine Zahl in eine entsprechende Ziffern-
zeichenkette.

Wandelt eine Ziffernzeichenkette in eine entspre-
chende Zahl.

Erzeugt aus einer Dezimalzahl das codeaequivalente
ASCII-Zeichen. Ä

Erzeugt aus einem ASCII-Zeichen eine codeaequiva-
lente Dezimalzahl.

Liefert die Laenge des durch das Argument bezeich-
neten Strings.

Liefert den linken Teil des durch das Argument
bezeichneten Strings. Das Argument enthaelt
ausserdem die Anzahl der zu extrahierenden Zei-
chen.

Liefert den rechten Teil des durch das Argument
bezeichneten Strings. Das Argument enthaelt
ausserdem die Anzahl der zu extrahierenden Zei-

chen.

Liefert einen Teilstring aus dem durch das Argu-
ment bezeichneten String. Das Argument enthaelt
ausserdem den Anfang und die Anzahl der zu extra-
hierenden Zeichen.

Erzeugt in Verbindung mit der PRINT-Anweisung
soviele Leerstellen, wie das Argument angibt. |

Erzeugt in Verbindung mit der PRINT-Anweisung
soviele Leerstellen, vom linken Zeilenanfang
gerechnet, wie das Argument angibt.

Liefert in Verbindung mit einer PRINT-Anweisung
die augenblickliche Cursor-Position in einer Bild-
schirmzeile. Das Argument ist ohne Bedeutung, muss
aber angegeben werden (z.B. POS(0)).

Liefert den binaeren Inhalt einer Speicherzelle,
deren Adresse durch das Argument bezeichnet wird.

26

TI$, TI Liefern die durch eine Systemuhr erzeugt Zeit.

FRE Liefert die Anzahl noch ungenutzter Bytes im Pro-
grammspeicher. Das Argument ist ohne Bedeutung,
muss jedoch angegeben werden (z.B. FRE(0)).

ST Liefert nach einer Ein/Ausgabeoperation das vom
System gesetzte Statusbyte.

USR Uebergibt die Programmsteuerung an ein Unterpro-
gramm in Maschinensprache.

2.6 Farbregulierung beim VC20

Die Farbwiedergabe des Fernsehschirms oder Farbmonitors kann mit
dem VC20 auf unterschiedliche Weise gesteuert werden. Entweder wird
die Hintergrundfarbe des Bildschirms als eine einzelne Variable be-
handelt, in der dann die Farbinformationen sowohl fuer den Rahmen

als auch fuer das Bildfenster zusammengefasst sind oder die Rahmen-
und Bildfenster-Farbe werden getrennt voneinander geregelt. Die
folgenden Abschnitte diskutieren diese Moeglichkeiten unter Verwen-
dung der PRINT- und POKE-Anweisungen detailliert.

2.6.1 Hintergrundfarbe

Die Hintergrundfarbe des Bildschirm wird durch Veraendern des
Inhaltes der Speicherzelle mit der Adresse $900F (dezimal 36879)
gesteuert. In diese Zelle kann eine Zahl zwischen 1 und 255 unter
Verwendung der POKE-Anweisung (s. Abschn. 3.3.23) gespeichert wer-
den. Durch jede dieser Zahlen wird eine bestimmte Mischung aus
Bildschirm und Rahmenfarbe festgelegt. Im folgenden Beispiel 1 wird
die Hintergrundfarbe mit Zufallszahlen beliebig: veraendert, waeh-
rend die Farbe, in der die einzelnen Zeichen abgebildet werden,
unveraendert bleibt. Einige Zahlen (die, bei denen das 4. Bit der.
Speicherzelle auf 1 gesetzt ist) liefern Zeichen in inverser
Darstellung:

Beispiel 1: 10 R=INT(RND(1)*255)+1
20 C=36879
30 POKE C,R
40 FOR I=1 TO 200:NEXT:GOTO 10

Beispiel 2 zeigt, wie die einzelnen Bits der Zahl, die der Variab-
len R zugewiesen wird, gesteuert werden koennen, um entweder die
Bildschirm- oder die Rahmenfarbe zu veraendern. In diesem Beispiel
ist X eine Zahl zwischen 1 und 15, die die Bildschirmfarbe, und Y
eine Zahl zwischen O und 7, die die Rahmenfarbe festlegt. Dabei ist
zu beruecksichtigen, dass die hoeherwertigen 4 Bits der Speicher-
zelle mit der Adresse dezimal 36879 die Information fuer die Bild-
schirmfarbe und die niederwertigen 4 Bits die Information fuer die
Rahmenfarbe bilden.

27

Beispiel 2: 10 C=36879
20 X=INT(RND(1)*15)
30 Y=INT(RND(1)*7)
40 R=X*16+Y+8
50 POKE C,R
60 FOR I=1 TO 200:NEXT:GOTO 20

Auch hier werden den Variablen X und Y Zufallszahlen zugewiesen. In
Zeile 40 wird die Farbinformation aus Bildschirm- und Rahmenfarbe
zusammengesetzt. Es sollte jeweils immer nur eine Farbinformation
veraendert werden, waehrend die andere konstant bleibt. Die folgen-
de Tabelle enthaelt die Farbsteuerzahlen fuer Bildschirm und Rah-
men.

Tabelle 2.4: Farbsteuerzahlen

Bildschirm Rahmen

O Schwarz O Schwarz
1 Weiss 1 Weiss
2 Rot 2 Rot
3 Blaugruen 3 Blaugruen
4 Purpur 4 Purpur
5 Gruen 5 Gruen
6 Blau 6 Blau
7 Gelb 7 Gelb
8 Orange
9 Hellorange

10 Rosa

11 Hellblaugruen
12 Hellpurpur
13 Hellgruen
14 Hellblau
15 Hellgelb

Beachten Sie bitte, dass die Bildschirm-Farbsteuerzahlen groesser
als 8 hellere Farbtoene liefern, wodurch Zeichen in dunkleren Farb-
toenen besser lesbar werden.

2.6.2 Zeichenfarben

Die Farbe, in der die Zeichen dargestellt werden koennen, laesst
sich sowohl im Direkt- als auch im Programm-Modus leicht veraen-
dern. Im Direkt-Modus brauchen Sie nur bei niedergehaltener CTRL-
Taste eine der Tasten zwischen 1 und 8 in der obersten Reihe der
Tastatur zu druecken. Der Cursor wird durch das so.erzeugte Steu-
erzeichen auf die gewaehlte Farbe eingestellt, und zwar in dersel-
ben Reihenfolge, wie sie in der Tabelle 2.4 fuer die Rahmenfarben
angegeben ist, jedoch jeweils um 1 erhoeht.
Im Programm-Modus werden die Zeichenfarben durch Drucken der Steu-
erzeichen mit Hilfe der PRINT-Anweisung veraendert. Alle Zeichen-
ketten, denen ein solches Steuerzeichen vorangestellt wird, werden
in der durch das Steuerzeichen festgelegten Farbe gedruckt. Im
folgenden Beispiel 3 wird der Buchstabe A in zufaellig erzeugten
Farben auf dem Bildschirm dargestellt.

28

Beispiel 3: 10 C$="CTRL 1><CTRL 2><CTRL 3><CTRL 4>
<CTRL 5><CTRL 6><CTRL 7><CTRL 8>"

20 C=INT(RND(1)*8)+1
30 PRINT MID$(C$,C,1)''A'';

40 GOTO 20

Die Steuerzeichenkette in Zeile 10 wird beim Eingeben des Programs
in Form von inversen Zeichen auf dem Bildschirm dargestellt. Durch
Zeile 30 wird aus diesem String wahlfrei ein Steuerzeichen ausge-
waehlt, das mit der PRINT-Anweisung in Zeile 20 die Farbe bestimt,
in der das A abgebildet wird.

2.6.2.1 Direktdarstellung von Zeichen auf dem Bildschirm

Eine andere Moeglichkeit, Zeichen auf dem Bildschirm darzustellen,
besteht darin, Sie mit einem POKE-Befehl direkt in Zellen des Bild-
schirmspeichers (Videomatrix) abzulegen. Der Bildschirmspeicher be-
ginnt bei der Adresse $1E00 (dez. 7680) und umfasst 506 Speicher-
zellen. Der Code, der zur Abbildung dieser Zeichen abgespeichert
werden muss, kann aus dem CBM-Zeichencode hergeleitet werden, der
dem ASCII-Code mit einer Ausnahme entspricht:
Dem ASCII-Code fuer kleine Buchstaben entsprechen beim CBM-Code die
Grafik-Symbole. Um jetzt aus einem gegebenen CBM-Code, der ein 8-
Bit-Code ist, den zugehoerigen Bildschirmcode zu erhalten, muss das
Bit 6, also das zweithoechste Bit, dieses 8-Bit-Codes geloescht
werden und durch Bit 7 ersetzt werden, falls dieses gesetzt ist.
Wenn also X% das Dezimalaequivalent des CBM-Codes ist, der in den
Bildschirmcode umgewandelt werden soll, so kann das mit VC20-BASIC
folgendermassen formuliert werden:

10 W%=X% AND 63
20 IF X% AND 128¢>0 THEN W%=W% OR 64
30 X%=W%

In Zeile 10 wird das 6. Bit geloescht. In Zeile 20 wird Bit 6
gesetzt, falls Bit 7 gesetzt war. In Zeile 30 wird der Integer-
variablen X% der so erzeugte Bildschirmcode zugewiesen. Um diese
Zeichen invers. darzustellen, muss zu X% zum Schluss 128 addiert
werden.
Der Bildschirmcode fuer den Buchstaben A ist 1. Durch die Anweisung

POKE 7680, 1

wird also in der obersten linken Bildschirmecke, der sogenannten
HOME-Position, ein A abgebildet, das jedoch unsichtbar bleibt,
solange nicht der Cursor ueber dem A steht. Um das A sichtbar zu
machen, muss in einer Referenz-Speicherzelle eine Farbinformation
gespeichert werden. Jeder Bildschirmspeicherzelle ist naemlich eine
Farbzelle zugeordnet, in der eine Farbinformation abgelegt werden
kann. Die 506 Farbzellen beginnen bei der Adresse $9600 (dez.
38400). Wenn also ein rotes A in der HOME-Position des Bildschirms
abgebildet werden soll, so muss der Befehl: |

29

POKE 7680, 1

gefolgt werden von

POKE 38400 ,2

Die Farbnummern sind hier dieselben wie fuer die Rahmenfarben (s.

Tab. 2.4).

2.6.3 Beispielprogramme fuer die farbige Zeichendarstellung

Das Beispielprogramm zeigt, wie der ganze Bildschirm mit blauen
Punkten beschrieben werden kann:

10 SL=7680::5C=38400
20 FOR I=0 TO 505
30 L=SL+1:C=SC+I
40 POKE L,81:POKE C,6
50 NEXT

Es ist zu beachten, dass im Verlauf der Abarbeitung der Schleife in
den Programmzeilen 20 bis 50 bei jedem Schritt zur Anfangsadresse
des Bildschirmspeichers und des Farbzellenspeichers derselbe Wert
addiert wird, so dass die rechte untere Bildschirmecke die Adresse
7680+505 hat, der die Farbzelle mit der Adresse 38400+505 zugeord-
net ist.

2.6.3.1 Auswahl von Farbkombinationen

Der VC20 erlaubt bis zu 255 Farbkombinationen fuer Zeichen-, Bild-
schirm- und Rahmenfarbe, die durch das folgende kleine Beispielpro-
gramm erzeugt werden. Sie koennen den Lauf des Programms durch
Druecken der STOP-Taste abbrechen. Die zu diesem Zeitpunkt darge-
stellte Farbkombination bleibt dann erhalten und in der linken obe-
ren Bildschirmecke wird dann ihr Zahlenwert angegeben:

10 X=1
20 POKE 36879 ,X
30 PRINT ''<CLR> POKE 36879,''X
40 X=X+1
50 FOR T=1 TO 1000:NEXT
60 GOTO 20

2.6.4 Adressaenderung bei Speichererweiterung

Eine wichtige Adressaenderung muessen Sie beachten, wenn Sie den
Speicher Ihres VC20 ueber die Adresse $2000 (dez. 8192) hinaus er-
weitern. In diesem Fall wird naemlich die Adresse des Bildschirm-
speichers automatisch auf $1000 (dez. 4096) und die des Farbzellen-
speichers auf $9400 (dez. 37888) herabgesetzt.

30

2.7. Tonregulierung beim VC20

Sie koennen mit Ihrem VC20 annaehernd 3 Oktaven, Geraeusche und
eine Vielfalt von Lautstaerken erzeugen. Die Tonfrequenz steigt mit
der Groesse der Steuerzahl. Toene und Lautstaerke werden durch Ver-
aendern der Inhalt von 5 Speicherzellen mit den Adressen $900A
(dez. 36874), $900B (dez. 36875), $900C (dez. 36876), $900D (dez.
36877) und $900E (dez. 36878) geregelt. Die ersten drei Adressen
dienen der Tonerzeugung, die vierte der Geraeuscherzeugung und die
fuenfte der Lautstaerkenregelung, bei der nur die vier niederwer-
tigen Bits ausgenutzt werden, so dass die Lautstaerke durch Zahlen
zwischen 0 (leise) und 15 (laut) geregelt werden kann.

2.7.1 Erzeugung von Toenen

Bei VC20 werden Toene erzeugt, indem in die zugeordneten drei Spei-
cherzellen mit der POKE-Anweisung Werte zwischen 128 und 255 abge-
legt werden. Die Frequenz steigt mit der Zahl. Eine Ausnahme bildet
255. Dieser Wert ist einem niederfrequenten Ton zugeordnet. Jeder
der drei Speicherzellen ist eine Stimmlage zugeordnet, die abge-
schaltet wird, wenn die Speicherzelle eine Null enthaelt. Die in
Tabelle 2.5 dargestellten Dezimalwerte erzeugen naeherungsweise 3
Oktaven der wohltemperierten Notenskala.

Tabelle 2.5: Zahlenaequivalente fuer Musiknoten

Note POKE Note POKE

C 128 G 213
C# 134 G# 215
D 141 A 217

D# 147 AH 219

E 153 B 221
F 159 GC 223

F# 164 C# 225

G 170 D 227
G# 174 D# 228

A 179 E 230

A# 183 F 231
B 187 F# 232

C 191 G 234

C# 195 G# 235
D 198 A 236

D# 201 AH 237

E 204 B 238
F 207 C 239

F# 210 C# 240

31

2.7.1.1 Beispielprogramm fuer die Tonerzeugung

Das folgende Beispielprogramm soll zeigen, welche Moeglichkeiten
der VC20 bei der Tonerzeugung bietet:

10 A=36874
20 POKE A+4,15
30 FOR K=2 TO 10
40 FOR I=1 TO 10
50 POKE A,232+K*SIN(I)
60 FOR J=0 TO 100:NEXT J,I,K
70 POKE A+4,0 Ä
80 GOTO 10

2.8. Der Bildschirmeditor

Nachdem Sie bis jetzt einige Erfahrungen mit dem Abbilden und Ver-
aendern von Zeichen auf dem Bildschirm sammeln konnten, wollen wir
im folgenden die Eigenschaften des VC20-Bildschirmeditors im Detail
beschreiben.
Kernstueck des Bildschirmeditors sind die Cursor-Steuertasten, mit
denen der Cursor auf jede beliebige Position des Bildschirms ge-
bracht werden kann, um Zeichen zu loeschen, einzufuegen oder zu
ueberschreiben. Zeichen die bereits auf dem Bildschirm stehen,
werden durch die Cursorbewegungen nicht veraendert. Die folgenden
vier Funktionstasten dienen der Cursorsteuerung:

CLR/HOME
CRSR rauf/runter
CRSR links/rechts
INST/DEL

Jede dieser Tasten hat zwei Funktionen, abhaengig davon, ob die
SHIFT-Taste mitgedrueckt wurde oder nicht. Die Funktion der letzten
drei Tasten wird automatisch solange wiederholt, wie die jeweilige
Taste niedergehalten wird. Anhand der im folgenden beschriebenen
Schritte koennen Sie sich mit den Steuertasten und ihrer Funktion
vertraut machen:

Schritt 1: Schalten Sie Ihren Computer an.

Schritt 2: Druecken Sie die CLR/HOME-Taste. Der Cursor wird in
die linke obere Bildschirmecke gestellt.

Schritt 3: Druecken Sie bei niedergehaltener SHIFT-Taste die
CLR/HOME-Taste. Der Bildschirm wird geloescht.

Schritt 4: Geben Sie jetzt das Alphabet ein. Beachten Sie, dass
der Cursor, nachdem Sie das V eingegeben haben, auf
den Anfang der naechsten Zeile wechselt, da jede
Zeile nur 22 Zeichen aufnehmen kann. Wenn Sie beim
Eingeben einen Fehler gemacht haben, so druecken Sie
die INST/DEL-Taste, wodurch das falsche Zeichen ge-
loescht wird, und geben dann weiter ein. Zum Schluss
zeigen die ersten beiden Zeilen Ihres Bildschirms
folgendes Bild:

32

Schritt 5:

Schritt 6:

Schritt 7:

Schritt 8:

Schritt 9:

Schritt 10:

Schritt 11:

Schritt 12:

ABCDEFGHIJKLMNOPORSTUV
WXYZ

Halten Sie die SHIFT-Taste nieder und druecken Sie
die CRSR links/rechts-Taste (die Taste ganz rechts
unten). Der Cursor wandert nach links und wechselt

vom Anfang der zweiten auf das Ende der ersten Zeile.
Am Ende der ersten Zeile lassen Sie die Taste los.
Nun druecken Sie die INST/DEL-Taste solange, bis etwa
die Haelfte der ersten Zeile geloescht ist und stel-
len dann den Cursor ueber den Buchstaben C:

ABCDEFGHIJKL
WXYZ

Halten Sie die SHIFT-Taste nieder und druecken Sie
die INST/DEL-Taste viermal. Es werden vier Leerstel-
len vor dem C eingefuegt und das C sowie der Text
rechts vom Cursor werden um vier Stellen nach rechts

verschoben:

AB CDEFGHIJKL
WXYZ

Schreiben Sie in diese Leerstellen vier Sterne:

AB****CDEFGHIJKL
WXYZ

Druecken Sie die CRSR links/rechts-Taste solange, bis
der Cursor auf den Anfang der zweiten Zeile wechselt
und stellen Sie den Cursor rechts neben das 2Z:

AB****CDEFGHIJKL
WXYZ

Loeschen Sie die vier Buchstaben in der zweiten Zeile

durch viermaliges Druecken der INST/DEL-Taste:

AB****CDEFGHIJKL

Loeschen Sie den Bildschirm mit der CLR/HOME-Taste

bei gedrueckter SHIFT-Taste.

Geben Sie ein:

DIES IST DIE ERSTE ZEILE

Dann druecken Sie bei niedergehaltener SHIFT-Taste
die RETURN-Taste. Nun geben Sie ein:

DIES IST DIE ZWEITE ZEILE

und druecken die CLR/HOME-Taste.

Druecken Sie die CRSR rauf/runter-Taste und zaehlen
Sie jedes Druecken. Der Cursor wandert nach unten und
erreicht nach dem 22. Druecken die unterste Bild-

schirmzeile.

33

Druecken Sie die CRSR rauf/runter-Taste ein weiteres
Mal. Die oberste Textzeile verschwindet und die
Zeile

DIES IST DIE ZWEITE ZEILE

steht nun in der ersten Bildschirmzeile. Dieses
Einfuegen von Leerzeilen am unteren Bildschirmrand
nennt man Aufrollen des Bildschirms. Der Bildschirm

fasst also insgesamt 23 Zeilen zu je 22 Zeichen.

Schritt 13: Stellen Sie den Cursor auf die unterste

Bildschirmzeile und geben Sie ein:

DIES IST DIE LETZTE ZEILE

Schritt 14: Druecken Sie jetzt die CRSR rauf/runter-Taste mehr-
mals. Die Textzeile wird bei jedem Druecken um eine
Zeile nach oben verschoeben, der Bildschirm wird

also aufgerollt. Druecken Sie nun die CLR/HOME-Taste
und anschliessend bei niedergehaltener SHIFT-Taste
die CRSR rauf/runter-Taste. Der Bildschirminhalt
veraendert sich nicht. Es ist also nur ein Aufrol-
len, kein Abrollen moeglich.

2.8.1 Cursor-Steuermodi

Der Cursor kann sowohl direkt als auch programmiert gesteuert wer-
den. Im Direkt-Modus wird der Cursor mit den im letzten Abschnitt
beschriebenen Steuertasten ueber den Bildschirm gefuehrt, waehrend
die Cursorbewegungen im Programm-Modus programmiert ausgefuehrt
werden koennen. Die programmierte Cursor-Steuerung wird wiederum
durch zwei Modi bewirkt, naemlich:

Anfuehrungsmodus
Einfuegungsmodus

Der Anfuehrungsmodus wird durch die Eingabe einer ungeraden Anzahl
von Anfuehrungszeichen ('') eingeschaltet. Danach wird der Cursor
durch Druecken einer der Cursorsteuertasten nicht mehr bewegt, son-
dern der diese Funktion bewirkende Steuercode wird als ein invers
dargestelltes Zeichen in die Zeile eingefuegt. Eine Ausnahme bilden
hier die RETURN- und DEL-Taste. Der Anfuehrungsmodus wird durch ein
weiteres Anfuehrungszeichen wieder ausgeschaltet.
Der Einfuegungsmodus wird durch Druecken der INST/DEL-Taste bei
niedergehaltener SHIFT-Taste eingeschaltet und zwar fuer soviele
Zeichen, so oft die INST/DEL-Taste gedrueckt wurde.
Diese beiden Modi koennen durch Druecken der RETURN- oder der
RESTORE-Taste ausgeschaltet werden.
Mit den beschriebenen Steuertasten und Steuermodi koennen Sie so
hilfreiche Editiermoeglichkeiten ausnutzen, wie:

* Einstellen eines Bildschirmfensters

* Loeschen ganzer Zeilen

34

* Erzeugen grafischer Darstellungen auf dem
Bildschirm

* Modifizieren von Programmen durch
Ueberschreiben aufgelisteter Programm-
zeilen. |

2.8.2 Inverse Zeichendarstellung

Normalerweise wird auf dem Bildschirm ein helles Zeichen in der ge-
waehlten Farbe auf einem Hintergrund in einer anderen gewaehlten
Farbe abgebildet. Diese Darstellung kann jedoch auch invertiert
werden, d.h. die Zeichen erhalten die Hintergrund- und der Hinter-
grund erhaelt die Zeichenfarbe.
Versuchen Sie dazu folgendes Beispiel:

Schritt 1: Schalten Sie den Computer ein.

Schritt 2: Loeschen Sie den Bildschirm mit geshifteter
CLR/HOME-Taste.

Schritt 3: Geben Sie AAA ein.

Schritt 4: Geben Sie bei niedergehaltener CTRL-Taste R
ein.

Schritt 5: Geben Sie BBB ein. Die drei B's werden in der
invertierten Darstellung wiedergegeben.

Schritt 6: Geben Sie bei niedergehaltener CTRL-Taste O
ein. Der Bildschirm wird auf seine ursprueng-
lich eingestellte Farbkombination zurueckge-
schaltet.

Schritt 7: _Pruefen Sie dies durch die Eingabe von CCC.

2.8.3 RUN/STOP-Taste

Bei niedergehaltener SHIFT-Taste bewirkt Druecken der RUN/STOP-
Taste das Laden des ersten Programms von einer angeschlossenen
Kassettenstation in den Programmspeicher des Rechners und den Start
dieses Programms. Diese Funktion wird spaeter noch detailliert
beschrieben.
Ungeshiftet hat diese Taste die Funktion einer Unterbrechungstaste.
Wird sie waehrend der Ausfuehrung einer beliebigen Direktmodus-
Anweisung oder eines Programms gedrueckt, so wird jede Aktivitaet
des Computers unterbrochen und dieser wird in den Direkt-Modus

zurueckgesetzt, indem die Meldung

READY.

auf dem Bildschirm erscheint und der blinkende Cursor auf neue
Anweisungen wartet. |

35

2.8.4 Zusammenstellung aller Steuertastenfunktionen

Im folgenden werden noch einmal alle Steuertasten fuer den
Bildschirmeditor zusammen mit ihren Funktionen beschrieben:

Taste

CLR/HOME

CRSR ob/un

CRSR li/re

INST/DEL

RETURN

RUN/STOP

SPACE

ohne SHIFT

Setzt den Cursor in die
linke obere Bildschirmecke.

Setzt den Cursor um eine

Zeile nach unten. Wenn der

Cursor vorher auf der un-
tersten Bildschirmzeile

stand, wird der Schirm um
eine Zeile aufgerollt. Zei-
chen werden nicht beein-

flusst. Hat Wiederholfunk-
tion.

Setzt den Cursor um eine

Stelle nach rechts. Geht
auf den Anfang der Folge-
zeile, wenn der Cursor vor-
her am Zeilenende stand.
Zeichen werden nicht beein-

flusst. Hat Wiederholfunk-

tion.

Loescht das Zeichen links
neben dem Cursor. Alle Zei-

chen rechts vom geloeschten
Zeichen werden um eine

Stelle nach links versetzt.
Hat Wiederholfunktion.

Uebergibt die Information
der Zeile links vom Cursor
dem Interpreter und setzt
den Cursor auf den Anfang
der naechsten Zeile.

Unterbricht die augenblik-
klich vom Computer ausge-
fuehrte Anweisung und setzt
den Computer in den Direkt-
Modus.

Druckt eine Leerstelle an
der Cursorposition. Hat
Wiederholfunktion.

36

mit SHIFT

Loescht den Bildschirm und
setzt den Cursor in die
linke obere Bildschirmecke

Setzt den Cursor um eine

Zeile nach oben. Geht nicht

ueber die obere Bildschirm-
begrenzung hinaus. Zeichen
werden nicht beeinflusst.

Hat Wiederholfunktion.

Setzt den Cursor um eine

Stelle nach links. Geht auf

das Ende der vorhergehenden
Zeile, wenn der Cursor vor-

her am Zeilenanfang stand.
Zeichen werden nicht beein-

flusst. Hat Wiederholfunk-

tion.

Fuegt an der Cursorposition
eine Leerstelle ein. Alle
Zeichen rechts davon werden

um eine Stelle nach rechts
versetzt. Hat Wiederhol-

funktion.

Setzt den Cursor auf den
Anfang der naechsten Zeile,
ohne die Information an den
Interpreter zu uebergeben.

Laedt und startet das erste
Programm von Kassette.

Druckt eine geshiftete
Leerstelle (nicht sicht-
bares grafisches Zeichen)
an der Cursorposition.

2.8.5 Zusaetzliche Tastenfunktionen

Waehlen oder Aendern einer Farbe:

Bei niedergehaltener CTRL-Taste die Taste fuer die
gewuenschte Farbe druecken.

Abbilden graphischer Symbole:

Bei niedergehaltener SHIFT-Taste die gewuenschte
Zeichentaste druecken.

Wechsel des Zeichensatzes (Gross/Grafik oder Gross/Klein)

Bei niedergehaltener SHIFT-Taste die CBM-Taste
(das ist die Taste ganz unten links aussen)
druecken.

Erzeugen eines inversen Bildschirmhintergrundes:

Bei niedergehaltener CTRL-Taste die R-Taste
druecken.

Erzeugen des normalen Bildschirmhintergrundes:

Bei niedergehaltener CTRL-Taste die O-Taste
druecken.

Abschalten verschiedener Wdi (Einfuegungs-, Anfuehrungs-
modus, hochaufloesende Grafik):

Bei niedergehaltener RUN/STOP-Taste die RESTORE-
Taste druecken.

37

3. VC20-BASIC

3.1 Ueberblick

Im folgenden wird die VC20-Version des CBM-BASIC beschrieben. Sie
lernen das Schreiben und die Syntax der BASIC-Anweisungen kennen.
Jeder einzelne Befehl wird beschrieben und an kurzen Beispielen
erlaeutert. Schliesslich wird die Datenein- und -ausgabe anhand von
Beispielprogrammen detailliert beschrieben. |

3.2 CBM-BASIC

3.2.1 Initialisierung des Rechners

Die Initialisierung des Rechners kann auf drei verschiedene Weisen
erfolgen, die alle zur selben Bildschirmanzeige (s. Abb. 3.1)
fuehren:

1. Einschalten des Rechners setzt das System in
einen definierten Ausgangszustand und initiali-
siert die Variablen des BASIC-Interpreters und
des Betriebssystems.

2. Das Ruecksetzsignal kann ohne Aus- und wieder
Einschalten des Rechners durch einen Schalter am
Speichererweiterungsanschluss generiert werden.

3. Durch einen Unterprogrammsprung (SYS) aus einem
BASIC-Programm in die Initialisierungs-Routine
des Betriebssystens.

Ein Warmstart, der das ggfs. im Speicher befindliche Programm nicht
loescht, kann durch gleichzeitiges Druecken der STOP- und der
RESTORE-Taste ausgeloest werden.

#%* CBM BASIC V2 **

3583 BYTES FREE

READY.

Abb. 3.1: Initialisierungsanzeige

38

3.2.2 Bedienungsmodi

Ihr VC20 kann von Ihnen in zwei verschiedenen Modi bedient werden.
Im Direkt-Bedienungsmodus sind den eingegebenen BASIC-Anweisungen
keine Zeilennummern vorangestellt, sondern sie werden so ausge-
fuehrt, wie sie eingegeben wurden. Die Ergebnisse arithmetischer
und logischer Operationen koennen zwar sofort angezeigt und zur
spaeteren Verwendung Variablen zugewiesen und damit gespeichert
werden. Die Anweisungen selbst sind jedoch nach der Ausfuehrung
verloren. Dieser Modus ist fuer die Fehlersuche unmittelbar nach
einem Programmabbruch durch Fehlermeldung hilfreich. Auch einfache
Probleme, fuer die kein Programm erforderlich ist, koennen in
diesem Modus schnell geloest werden.
Im indirekten Bedienungsmodus werden Programme eingegeben. Den ein-
zelnen Anweisungszeilen werden Nummern vorangestellt und die so zu-
sammengesetzten Zeilen werden als Programmbestandteil nach aufstei-
genden Zeilennummern geordnet im Speicher abgelegt. Ein so erfass-
tes Programm kann durch Eingabe der RUN-Anweisung gestartet werden.

3.2.3 Zeilenformat

BASIC-Programmzeilen haben das folgende allgemeine Format (die
eckigen Klammern kennzeichnen wahlfreie Eintraege):

nnnnn BASIC-Anweisung[:BASIC-Anweisung. .J] <RETURN>

Nach Wahl des Programmierers koennen mehrere Anweisungen in eine
Zeile geschrieben werden. Jede weitere Anweisung muss jedoch von
der vorhergehenden durch einen Doppelpunkt getrennt werden. Eine
BASIC-Programmzeile beginnt immer mit einer Zeilennummer (nnnnn),
darf hoechstens 88 Zeichen (4 Bildschirmzeilen) enthalten und muss
mit der RETURN-Taste abgeschlossen werden. —

3.2.4 Zeilennummern

Jede BASIC-Programmzeile beginnt mit einer Zeilennummer. Die Zei-
lennummern legen die Reihenfolge fest, in der die Zeilen im Pro-
grammspeicher abgelegt werden und koennen ausserdem als Referenzen
fuer Spruenge und beim Editieren dienen. Es sind nur ganzzahlige
Zeilennummern zwischen O und 63999 erlaubt.

3.2.5 Zeichensatz des CBM-BASIC

Der CBM-BASIC-Zeichensatz besteht aus alphabetischen, numerischen
und grafischen Zeichen sowie aus einigen Sonderzeichen. Die Tabelle
auf der folgenden Seite gibt die vom VC20-BASIC akzeptierten Son-
derzeichen und Cursor-Steuerzeichen wieder. Da letztere keine Zei-
chen im eigentlichen Sinne sind, sondern durch Tasten repraesen-
tiert werden, werden sie generell in spitzen Klammern (<>) dar-
gestellt.

39

Tabelle 3.1: Sonderzeichen und Cursor-Steuerzeichen

Zeichen Name oder Funktion

Leerstelle
Semikolon
Gleichheitszeichen oder Zuweisungssymbol
Plus-Zeichen oder Additionssymbol
Gedankenstrich oder Subtraktionssymbol
Stern oder Multiplikationssymbol
Schraegstrich oder Divisionssymbol
Aufwaertspfeil oder Potenzierungssymbol
linke Klammer
rechte Klammer
Prozentzeichen
Nummernzeichen
Dollarzeichen
Ausrufungszeichen
linke eckige Klammer
rechte eckige Klammer
Komma

Punkt oder Dezimalpunkt
Apostroph
Anfuehrungszeichen
Doppelpunkt
kaufmaennisches Und
Fragezeichen oder PRINT-Symbol
Linke spitze Klammer oder "kleiner als''-Zeichen
Rechte spitze Klammer oder "groesser als''-Zeichen
Schraegstrich rueckwaerts

At-Zeichen
Pfeil links
Pfund-Zeichen

 Loescht das zuletzt eingegebene Zeichen
<RETURN> Beendet die Eingabe einer Zeile
<CRSR rechts > Setzt den Cursor um eine Stelle nach rechts
<CRSR links> Setzt den Cursor um eine Stelle nach links
<CRSR runter> Setzt den Cursor um eine Zeile nach unten
<CRSR rauf> Setzt den Cursor um eine Zeile nach oben

ve
.

ky

I
-
a
E

g
o

A
N

+
1

+
I

M
P
D

S
V
A

Y
@
-
-

<CLR? loescht den Bildschirm und setzt den (ursor in
die HOME-Position

< HOME > Setzt den Cursor in die HOME-Position
< INST > Erlaubt das Einfuegen von Zeichen an der

Cursorposition
< STOP > Versetzt den Interpreter vom Programm- in den

. Direkt -Modus
< RUN > Fuehrt die Befehlsfolge LOAD<RETURN> RUN <RETURN>

aus
<CTRL > Zusammen mit den Zifferntasten 1 bis 8 wird die

gegenwaertige Bildschirmfarbe geaendert; zusammen
mit R wird inverse Zeichendarstellung
eingeschaltet

< RESTORE > Zusammen mit <STOP> wird ein Warmstart des
‚Systems ausgeloest

<CBM-Taste> Wechselt den Zeichensatz (Gross/Klein oder
Gross/Grafik)

40

3.2.6 Konstanten des CBM-BASIC

Konstanten sind aktuelle Werte, die der BASIC-Interpreter waehrend
der Programmausfuehrung verwendet. Er unterscheidet dabei zwischen

String-Konstanten
numerische Konstanten

Eine Stringkonstante ist eine Folge von bis zu 255 alphanumerischen
und/oder Sonderzeichen, eingeschlossen in Anfuehrungszeichen. Z.B.:

"HALLO"
"DM 22.50"
"HUND UND KATZE"

Numerische Konstanten sind positive oder negative Zahlen und duer-
fen keine Kommas sondern nur einen Punkt enthalten. BASIC unter-
scheidet zwei Typen von numerischen Konstanten:

Integer -Konstanten Ganze Zahlen zwischen -32767 und +32767.
Diese Zahlen duerfen keinen Dezimalpunkt
enthalten.

Gleitkomma-Konstanten Positive oder negative Zahlen, die intern in
Exponentialdarstellung (wissenschaftliche
Darstellung) gespeichert werden. Die Man-
tisse wird vom Buchstaben E und einem posi-
tiven oder negativen ganzzahligen Exponenten
im Bereich zwischen -38 und +37 gefolgt. Es
werden bis zu 9 signifikante Stellen ausge-
druckt. Beispiele:

.0235988
2359000000

235.988E-4
2359E6

3.2.7 Variablen

Variablen sind Namen, die Werte repraesentieren, welche in einem
BASIC-Programm verwendet werden. Der Wert einer Variablen kann
dieser explizit vom Programmierer oder, als Ergebnis von Berech-
nungen, vom Programm zugewiesen werden. Ehe einer Variablen ein
Wert zugewiesen wird, wird ihr Wert vom Interpreter als Null im
Fall von numerischen und als Leerstring (String der Laenge Null) im
Fall von String-Variablen angenommen.

3.2.7.1 Variablennamen und -kennzeichnung

BASIC-Namen duerfen eine beliebige Laenge von bis zu 255 Zeichen
haben. Fuer den Interpreter sind jedoch immer nur die ersten beiden
und gefs. das letzte Zeichen signifikant. Fuer Namen duerfen nur
Buchstaben und Ziffern verwendet werden, wobei das erste Zeichen
des Namens immer ein Buchstabe sein muss. Ausserdem werden die
Variablentypen durch spezielle Zeichen gekennzeichnet (siehe nach-
folgend).

41

Als Variablennamen duerfen keine reservierten Woerter (s. Abschn.
2.4.7) verwendet werden. Diese duerfen auch nicht eingebettet in
Variablennamen vorkommen. Wenn ein Variablenname z. B. mit FN be-
ginnt, betrachtet der BASIC-Interpreter dies als Aufruf einer vom

Anwender definierten BASIC-Funktion. Variablen repraesentieren im-
mer entweder einen numerischen Wert oder einen String (Zeichenket -
te).

3.2.7.2 Namen fuer Stringvariablen

Namen fuer Stringvariablen werden durch ein Dollar-Zeichen ($) auf
der letzten Stelle gekennzeichnet. Z.B.:

A$=""REGENSCHIRM"

Der Buchstabe A repraesentiert den String ''REGENSCHIRM", das $-
Zeichen bezeichnet den Variablentyp.

3.2.7.3 Namen fuer numerische Variablen

Numerische Variablen koennen durch ein Prozent-Zeichen (%) an der
letzten Stelle des Namens als Integer-(Ganzzahl-)Variablen gekenn-
zeichnet werden. Alle Namen ohne dieses Zeichen bezeichnen Gleit-

kommavariablen. Z.B.:

MI Gleitkommavariable
GRENZWERT% Integer-Variable

3.2.8 Feldvariablen

Ein Feld ist eine Gruppe oder Tabelle von Zahlen oder Strings, die
durch einen Variablennamen repraesentiert wird. Jedes Feldelement
wird mit einem Index zum Variablennamen beschrieben, der eine ganze
Zahl oder ein Integer-Ausdruck sein kann. Ein Feldvariablenname hat
genau soviele Indizes wie das Feld Dimensionen hat. Z.B.:

V(10) Beschreibt einen Wert in einem

eindimensionalen Feld.

T(1,4) Beschreibt einen Wert in einen
zweidimensionalen Feld.

Es sind theoretisch 255 Dimensionen moeglich.

3.2.9 Umwandlung von numerischen Variablen

Der VC20-BASIC-Interpreter erlaubt die Umwandlung numerischer
Variabler von einem Typ in den andren. Dabei gelten folgende Re-
geln:

* Wenn eine numerische Konstante eines Typs
einer numerischen Variablen eines anderen
Typs zugewiesen wird, so wird die Konstante
in dem Typ gespeichert, der dem der Variab-
len entspricht. Wird einer Stringvariablen

42

ein numerischer Wert zugewiesen oder umge-
kehrt, so meldet der Interpreter den Fehler

TYPE MISMATCH ERROR

Beispiel: 10 A%=23.42
20 PRINT A%
RUN
23

READY.

Alle arithmetischen und Vergleichsoperati-
onen werden intern grundsaetzlich mit binae-
ren Gleitkommazahlen durchgefuehrt. Deshalb
werden vor solchen Operationen mit Integer-
zahlen diese in das Gleitkommaformat und
nach der Operation zurueck in das Integer-
Format gewandelt.

Logische Operatoren (s. Abschn. 3.2.10.4)
konvertieren ihre Operanden in Integer-
Zahlen und liefern Integer-Ergebnisse.
Deshalb muessen die Operanden im Bereich
zwischen -32767 und +32767 liegen. Andern-
falls meldet der Interpreter den Fehler

OVERFLOW ERROR

Wenn ein Gleitkommawert in einen Integer-
Wert umgewandelt wird, so wird ersterer
grundsaetzlich auf die naechst kleinere
Integer-Zahl abgerundet. Also z.B.:

10 A%=55.58 :B%=-55 .58
20 PRINT A%,B%
RUN
39 -56

READY.

3.2.10 Ausdruecke und Operatoren

Ein Ausdruck kann einfach ein String oder eine numerische Konstan-
te, Variable oder eine Kombination aus Konstanten und Variablen mit
Operatoren zur Erzeugung eines einzelnen Wertes sein.
Operatoren fuehren mit Werten mathematische oder logische Operati-
onen durch. Der VC20-BASIC-Interpreter kennt vier verschiedene Ka-
tegorien von Operatoren:

N
M
R

—

ry
. Arithmetische Operatoren

Vergleichsoperatoren
. Logische Operatoren
. Funktionsoperatoren

43

3.2.10.1 Arithmetische Operatoren

Der VC20-BASIC-Interpreter kennt folgende arithmetischen Operatoren
in der Reihenfolge ihrer Beruecksichtigung:

Operator Operation Beispiel

4 Potenzierung XY
- Negation -X
*,/ Multiplikation, Division X*Y, X/Y

+
 „- Addition, Subtraktion X+Y, X-Y

Um diese Hierarchie aufzuheben koennen Klammern verwendet werden.
Geklammerte Ausdruecke werden vom Interpreter grundsaetzlich zuerst
ausgewertet. Werden mehrere Klammerebenen geschachtelt, so werden
die Klammerausdruecke von innen nach aussen ausgewertet. Innerhalb
eines Klammerpaares gilt die oben angegebene Hierarchie. Es duerfen
nicht mehr als 10 Klammerebenen geschachtelt werden.
Die folgende Tabelle gibt die BASIC-Schreibweise von algebraischen
Ausdruecken an:

Tabelle 3.2: BASIC-Schreibweise von algebraischen Ausdruecken

Algebraischer BASIC- Algebraischer BASIC-
Ausdruck Schreibweise Ausdruck Schreibweise

X+2Y X+2*Y x-I X-Y/Z

> X*Y/Z xt (X+Y)/Z

2.Y oo? (X*) (X92) 4Y X X4(Y4Z)

X(-Y) X*(-Y) Zwei aufeinander fol gende
Operatoren muessen durch
Klammerung getrennt werden.

5.2.10.2 Ueberlauf und Division durch Null

Trifft der BASIC-Interpreter waehrend der Auswertung eines Aus-
drucks auf eine Division durch Null, so wird die Auswertung mit der
Fehlermeldung

DIVISION BY ZERO ERROR

abgebrochen.
Wird dagegen das Ergebnis einer Berechnung groesser als die maximal
erlaubten Werte (+32767 bei Integer- und +1.70141183E+38 bei Gleit-
kommazahlen), so reagiert der Interpreter mit folgenden Fehlermel -
dungen:

ILLEGAL QUANTITY ERROR bei Integer-Zahlen
OVERFLOW ERROR bei Gleitkomma-Zahlen

Wird das Ergebnis einer Berechnung kleiner als der minimal erlaubte
Wert von +2.93873588E-39, so wird auf Null abgerundet.

44

3.2.10.3 Vergleichsoperatoren

Vergleichsoperatoren dienen dem Vergleich von zwei Werten. Das Er-
gebnis ist entweder "wahr'' mit dem Wert -1 oder ''unwahr'' mit dem
Wert O. Das Ergebnis kann dann in Verbindung mit der BASIC-Anwei -
sung IF’(s. Abschn. 3.3.14 zur Steuerung des Programmablaufes ver-
wendet werden.

Operator Vergleich auf Beispiel

= Gleichheit X=Y
<? Ungleichheit X<>Y
< Kleiner als X<Y
> Groesser als X>Y
(= Kleiner gleich als X<=Y
>= Groesser gleich als x>=Y

Das Gleichheitszeichen wird ausserdem zur Zuweisung von Werten zu
Variablen benutzt. Siehe dazu Abschnitt 3.3.17.
Wenn in einem Ausdruck sowohl arithmetische als auch Vergleichsope-
ratoren vorkommen, so werden zuerst die arithmetischen Operatoren
abgearbeitet. Z.B.:

X+Y<(T-1)/Z

Dieser Ausdruck ist wahr, wenn der Wert von X+Y kleiner ist als der
Wert von T-1 dividiert durch Z. Weitere Beispiele:

IF SIN(X)<0 GOTO 1000
IF I-INT(1I/J)<?0 THEN K=K+1

3.2.10.4 Logische Operatoren

Logische Operatoren dienen zum Testen von Mehrfachvergleichen, zur
Bit-Manipulation oder zum Durchfuehren Boolescher Operationen. Ein
logischer Operator liefert ein bitweises Ergebnis, das entweder
"wahr'' (ein von Null verschiedener Wert) oder "unwahr'' (Null) ist.
In einem gemischten Ausdruck werden die logischen Operationen nach
den arithmetischen und den Vergleichsoperationen durchgefuehrt. Im
folgenden werden die Wahrheitswerte, die die drei logischen Opera-
toren NOT, AND und OR liefern, hierarchisch angegeben:

Argument 1 Argument 2 Ergebnis

NOT wahr - | unwahr

. unwahr - wahr

AND wahr wahr wahr

wahr unwahr unwahr
unwahr wahr unwahr

unwahr unwahr unwahr

Argument 1 Argument 2 Ergebnis

OR wahr wahr wahr

wahr unwahr wahr

unwahr wahr wahr

unwahr . unwahr unwahr

Genau wie die Vergleichsoperatoren ueber ihr Ergebnis zur Steuerung
des Programmablaufes beitragen koennen, kann dies auch durch die
Verknuepfung von zwei oder mehreren Vergleichen durch logische
Operatoren geschehen, die ja wiederum "wahr''- oder "unwahr''-Werte
liefert (s. a. Abschn. 3.3.14). Beispiele:

IF D<200 AND F<4 THEN 80
IF I>10 OR K<O THEN 50
IF NOT P THEN 100

Logische Operatoren arbeiten intern folgendermassen:
Zunaechst werden die beiden Operanden in ganze, vorzeichenbehaftete
Zweierkomplement-16-Bit-Zahlen im Bereich zwischen -32767 und
+32767 umgewandelt. Sind die Operanden groesser oder kleiner, so
wird eine Fehlermeldung ausgegeben. Sind die beiden Operanden 0
und/oder -1, so liefert eine logische Operation ebenfalls 0 oder
-1. Die logische Operation wird auf jeden Fall bitweise durchge-
fuehrt, d.h. jedes Ergebnisbit wird durch die entsprechenden Bits
in den beiden Operanden bestimmt. Dadurch ist es moeglich, mit den
logischen Operatoren das Bitmuster von Speicherzellen zu testen. Z.
B. kann das Statusbyte an einer Ein/Ausgabe-Schnittstelle maskiert
werden, um den Zustand eines bestimmten Bits zu testen (s. a.

Abschn. 3.4.21). Auch kann mit dem OR-Operator in einem bestimmten
Byte ein ganz bestimmtes Bitmuster erzeugt werden. Die folgenden
Beispiele sollen die Arbeitsweise der logischen Operatoren erlaeu-
tern:

63 AND 16 = 16 0000000000111111 63
AND 0000000000010000 16

0000000000010000 = 16

15 AND 14 = 14 0000000000001111 15
AND 0000000000001110 14

0000000000001110 = 14

-1 AND 8 = 8 1111111111111191 —-1
AND 000000000000 1000 8

0000000000001000 = 8

4 OR 2 =6 0000000000000 100 4
OR 0000000000000010 2

0000000000000 1 10 6

10 OR 10 = 10 0000000000001010 10
OR 0000000000001010 10

0000000000001010 = 10

-1 OR -2 = -1 1111111111111 -1
OR. 1111111111111110 -—-2

I1111111111111111 = -1

46

-2 0000000000000001 1
NOT 111117111 1111110 = -2

NOT 1

Der Operator NOT bildet das
Einerkomplement des Operanden

3.2.10.5 Funktionsoperatoren

Eine BASIC-Funktion in einem Ausdruck wird dazu verwandt, an einem
Operanden eines festgelegte Operation auszufuehren. Solche im
BASIC-Interpreter des VC20 integrierten Funktionen sind z. B. SQR
(Quadratwurzel ziehen) oder SIN (trigonometrischer SINUS). Diese
Funktionen werden in den Abschnitten 3.3.2 ff. detailliert be-
schrieben.

3.2.11 String-Operationen

Strings (Zeichenketten) koennen mit dem '+'-Zeichen miteinander
verkettet werden, also z. B.:

10 A$="'REGEN" : B$="'SCHIRM"
ZOPRINT A$+B$+"E"
RUN
REGENSCHIRME

READY.

Strings koennen ausserdem mit den bereits beschriebenen Vergleichs-
operatoren miteinander verglichen werden. Dabei wird der Vergleich
zeichenweise mit den ASCII-Codes der jeweiligen Zeichen durchge-
fuehrt. Sind alle ASCII-Codes der miteinander verglichenen Strings
gleich, so sind auch die Strings gleich. Bei unterschiedlichen &®-
des steht der kleinere vor dem groesseren Code. Wenn waehrend des
Vergleichs das Ende eines der beiden Strings erreicht wird, so gilt
der kuerzere als der kleinere String. Vor- oder nachlaufende Leer-
stellen gehoeren mit zum String und sind daher signifikant. Z. B.:

MAAN < HAB!

"WOLKE" = "WOLKE"
xg" > "Xe"

CL! > "cit

"kg" < "KG"

MRAST'' < "RASTE!"

B$ < "9.12.78" wobei B$ = "8.12.78"

3.2.12 Editieren von Programmzeilen

Wenn beim Editieren (Eingeben) von Programmzeilen ein unkorrektes
Zeichen mit eingegeben wurde, so kann dieses einfach durch Druecken
der DEL-Taste geloescht werden und die Zeile kann weiter eingegeben
werden. Um ein bereits im Speicher befindliches Programm zu korri-
gieren, kann man durch Eingeben von

LIST n <RETURN?

47

die Zeile mit der Nummer n auf dem Bildschirm abbilden. Mit Hilfe
der Cursor-Steuertasten kann man nun den Cursor auf die fehlerhafte
Stelle positionieren, den Fehler durch Ueberschreiben beseitigen
und die so korrigierte Zeile durch Druecken der RETURN-Taste wieder
in das Programm einfuegen.
Um eine Zeile zu loeschen, brauchen Sie nur die entsprechende Zei-
lennummer gefolgt von <RETURN> einzugeben. Geshiftetes <RETURN>
setzt nur den Cursor an den Anfang der Folgezeile, ohne Informati-
onen an den Interpreter zu uebergeben.
Um ein ganzes Programm aus dem Programmspeicher Ihres VC20 zu loe-
schen, geben Sie einfach

NEW <RETURN?

ein. Das sollten Sie auch immer dann tun, wenn Sie ein neues Pro-

gramm eingeben wollen.

3.2.13 Fehlermeldungen

Jeder Fehler, den der Interpreter bei der Abarbeitung eines Pro-
gramms oder einer im Direkt-Modus eingegebenen Anweisungszeile fin-
det, fuehrt zum sofortigen Abbruch der Interpretation. Der Befehl

‚ wird nicht ausgefuehrt; es wird vielmehr eine entsprechende Fehler-
meldung auf dem Bildschirm ausgegeben und der Computer geht in den
Direkt-Modus zurueck. Im Anhang D finden Sie eine Zusammenstellung
aller Fehlermeldungen mit ausfuehrlicher Erlaeuterung.

3.3 BASIC-Anweisungen

Im folgenden werden alle VC20-BASIC-Anweisungen detailliert be-
schrieben. Die Beschreibung einer jeden Anweisung sowie jeder Funk-
tion, die in den Abschnitten 3.4.ff behandelt werden, ist nach dem
folgenden Schema aufgebaut:

Format : Zeigt das korrekte Format der Anweisung oder
Funktion. Die dabei verwendete Notation ist
unten beschrieben.

Zweck: Erlaeutert den Anwendungsbereich.

Bemerkungen: Beschreibt im Detail, wie die Anweisung oder
Funktion angewendet wird.

Beispiele: Zeigt Beispielprogramme oder -programmsegmente,
die die Anwendung der Anweisung oder Funktion
demonstrieren.

48

3.3.1 Vereinbarung der Notation

Wo immer das Format fuer eine Anweisung oder Funktion beschrieben
wird, gelten folgende Schreibregeln:

* Woerter in Grossbuchstaben muessen wie

angegeben geschrieben werden.

Woerter in Gross/Kleinschrift, eingeklei-
det in spitze Klammern (€), werden vom
Anwender eingesetzt.

Woerter in eckigen Klammern (L3) sind
wahlfrei.

Alle Sonderzeichen ausser spitzen und
eckigen Klammern, also Kommas, runde
Klammern, Semikolons, Dollarzeichen usw.,
muessen wie angegeben geschrieben werden.

Woerter, die von ... gefolgt werden,
koennen bis zur maximalen Laenge einer
Befehlszeile (88 Zeichen) wiederholt
werden.

49

3.3.2 CLOSE

Format:

Zweck:

Bemerkungen:

Beispiel:

CLOSE «Filenumner>

Beendet die Ein/Ausgabe ueber einen
Ein/Ausgabe-Kanal.

<Filenummer> ist die Nummer zwischen 1 und 255,

unter der der File (Datei) mit der OPEN-Anwei-
sung eroeffnet wurde.
Der Zusammenhang zwischen einem bestimten File.
und der Filenummer wird durch die CLOSE-Anwei-
sung aufgehoben. Der File kann dann mit der
OPEN-Anweisung unter derselben oder einer ande-
ren Filenummer wieder eroeffnet werden oder es
kann ein: beliebiger anderer File unter dieser
Filenummer eroeffnet werden.
CLOSE auf einen sequentiellen Ausgabefile ange-
wendet, schreibt den letzten Datenpuffer auf
den File und schliesst diesen mit einer File-
endemarke ab.

10 OPEN 4,4
20 PRINT#4, "DIESES SIND DRUCKDATEN"
30 CLOSE 4

50

3.3.3 CLR

Format:

Zweck:

Bemerkungen:

Beispiel:

CLR

Setzt alle numerischen Variablen auf Null, alle
Stringvariablen auf Leerstring, leert den Sta-
elspeicher und den Speicher fuer Felder und
setzt den Zeiger fuer freien Speicherplatz auf
den Wert zurueck, der sich aus der Groesse des
BASIC-Programms ohne alle Variablen ergibt.

CLR kann auch innerhalb eines BASIC-Programs
ausgefuehrt werden. Das Programm kann dann
fortgesetzt werden, wenn die oben beschriebenen
Bedingungen, insbesondere solche, die sich auf
GOSUB beziehen, beruecksichtigt werden.

X=25
CLR
PRINT X

0

READY.

31

3.3.4 CMD

Format:

Zweck :

Bemerkungen:

Beispiel:

CMD <Filenummer> [Liste von Ausdruecken}

Adressiert ein Geraet an einer Ein/Ausgabe-
Schnittstelle und laesst dieses Geraet nach der
Ausgabeoperation im adressierten Zustand.

CMD hat dieselbe Parameterliste wie die PRINT#-

Anweisung (s. Abschn. 3.3.24).

REM PROGRAMMLISTE AUF DRUCKER AUSGEBEN
OPEN 4,4
CMD4 , ""PROGRAMMLISTE"
LIST | |
PRINT#4 ‚"'CMD-MODUS WIRD BEENDET"
CLOSE4

52

3.3.5 CONT

Format:

Zweck :

Bemerkungen:

Beispiel:

CONT

Setzt ein Programm, das durch Druecken der
STOP-Taste oder die STOP- oder END-Anweisung
unterbrochen bzw. beendet wurde, fort.

Die Programmausfuehrung wird unmittelbar an
der Stelle, an der die Unterbrechung auf-
trat, fortgesetzt. Wenn die Unterbrechung
nach der Textanzeige einer INPUT-Anweisung
erfolgte, wird das Programm mit der Wieder-
holung dieser Anzeige (? oder Text) fortge-
setzt.

CONT wird ueblicherweise in Verbindung mit
der STOP-Anweisung zur Fehlersuche in Pro-
grammen verwendet. Nach der Programmunter-
brechung koennen Zwischenergebnisse ange-
zeigt oder durch Direkt-Modus-Anweisungen
veraendert werden. Die Programmausfuehrung
wird mit der Eingabe von OONT oder GOTO
zusammen mit einer bestimmten Zeilennumer
im Direkt-Modus fortgesetzt.
CONT ist ungueltig, wenn das Programm mit
einer Fehlermeldung abgebrochen wurde oder
waehrend der Unterbrechung veraendert wurde.

Siehe Beispiel in Abschnitt 3.3.30 (STOP).

53

3.3.6 DATA

Format:

Zweck :

Bemerkungen:

Beispiel:

DATA «Konstantenliste>

Speichert numerische und String-Konstanten,
auf die mit der READ-Anweisung (s. Abschn.
3.3.25) zugegriffen werden kann.

DATA-Anweisungen sind nicht ausfuehrbare An-
weisungen, die an beliebiger Stelle im Pro-
gramm stehen koennen. Jede DATA-Anweisung
kann soviele Konstanten enthalten, wie, ge-
trennt durch Komma, in eine Befehlszeile (88
Zeichen) passen. Die Zahl der DATA-Anweisun-
gen ist beliebig. Die READ-Anweisung liest
die einzelnen DATA-Zeilen in der Reihenfolge
von deren Zeilennummern. Die in diesen Zei-
len enthaltenen Daten werden unabhaengig von
ihrer Zahl und deren Plazierung im Programm
als kontinuierliche Elementliste aufgefasst.
<Konstantenliste> kann numerische Konstanten
jeden Formats, d.h. Gleitkomma- oder ganze
Zahlen enthalten. Numerische Ausdruecke sind
nicht erlaubt. String-Konstanten in DATA-An-
weisungen muessen nur dann in Anfuehrungs-
striche ('') eingekleidet werden, wenn sie
Kommas, Doppelpunkte oder vor- und/oder
nachlaufende signifikante Leerstellen ent-
halten.
Der in der READ-Anweisung deklarierte Va-
riablentyp (numerisch oder String) muss mit
dem in den zugehoerigen DATA-Anweisungen
enthaltenen Konstantentyp uebereinstimmen.
Der Lesezeiger kann mit der RESTORE-Anwei-
sung (s. Abschn. 3.3.27) auf den Anfang der
ersten DATA-Anweisung gestellt werden.

10 DATA "DAS ","WETTER ',"IST ','HEUTE
"SCHOEN yt ;

20 FOR [=1 TO 5
30 READ A$
40 PRINT A$;
50 NEXT
RUN
DAS WETTER IST HEUTE SCHOEN !
READY.

54

3.3.7 DEF FN

Format:

Zweck :

Bemerkungen:

Beispiel:

DEF FN<Name>[(<Parameter >)J=<Funktionsdefi-
nition>

Definiert und benennt eine vom Anwender program-
mierte BASIC-Funktion.

<Name> muss ein erlaubter Variablenname sein.
Dieser Name, dem FN vorangestellt wird, wird als
Name der Funktion betrachtet. <Parameter> ist das
Argument der Funktion, das in der Funktionsdefi-
nition durch eine Gleitkommavariable bezeichnet
wird. Letztere wird dann beim Aufruf der Funktion
durch den aktuellen Parameter ersetzt.
<Funktionsdefinition> ist ein beliebiger Ausdruck,
der die Operation, die die Funktion ausfuehren
soll, beinhaltet. Die Laenge des Ausdrucks ist
auf eine BASIC-Anweisungszeile (88 Zeichen)
beschraenkt. In diesem Ausdruck verwendete
Variablennamen dienen nur der formalen
Funktionsdefinition und sind nicht mit Program-
variablen desselben Namens zu verwechseln. Ein in
einer Funktionsdefinition verwendeter Variablen-
name kann als Parameter auftreten oder auch
nicht. Ist er Parameter, so wird sein Wert beim
Aufruf der Funktion ersetzt; andernfalls wird der
derzeitige Wert der Variablen verwendet.
Mit DEF FN koennen keine eigenen Stringfunktionen
definiert werden. Wenn im Funktionsname ein
Variablentyp spezifiziert wird, so wird der Wert
des Ausdruckes diesem Typ angepasst, bevor er der
aufrufenden Anweisung uebergeben wird. Wenn ein
Variablentyp im Funktionsnamen deklariert wurde,
der nicht zu dem Typ passt, den der Ausdruck lie-
fert, so wird eine TYPE MISMATCH-Fehlermeldung
ausgegeben. Die DEF FN-Anweisung muss ausgefuehrt
werden, ehe die dadurch definierte Funktion das
erste mal aufgerufen wird, sonst wird eine
UNDEFINED FUNCTION-Fehlermeldung ausgegeben. DEF
FN kann nicht im Direkt-Modus verwendet werden.

410 DEF FNAB(X)=X#3/Y43
420 T=FNAB(I)

Zeile 410 definiert die Funktion, die in Zeile
420 aufgerufen wird. Dabei wird die Variable X
durch den aktuellen Wert von I ersetzt. Die
Variable Y behaelt den ihr zum Zeitpunkt des
Funktionsaufrufes zugeordneten Wert.

55

3.3.8 DIM

Format:

Zweck :

Bemerkungen:

Beispiele:

DIM «Liste indizierter Variabler>

Spezifiziert die Maximalwerte der Variablenindi-
zes und legt den Speicher fuer das Variablenfeld
fest.

Wenn ein Feldvariablenname ohne eine vorausgegan-
gene DIM-Anweisung verwendet wird, so ist als
maximaler Index 10 erlaubt. Wird ein groesserer
Index angegeben, so wird eine BAD SUBSCRIPT-Feh-
lermeldung ausgegeben. Der kleinste Feldindex ist
immer 0. Indizes muessen ganzzahlig sein. Die
DIM-Anweisung setzt alle Elemente des spezifi-
zierten Feldes anfaenglich auf Null bzw. Leer-
string. Es koennen Matrizen mit bis zu 255 Dimen-
sionen deklariert werden, von denen jede maximal
32767 Elemente enthalten darf. Auf jeden Fall ist
die Feldgroesse durch den verfuegbaren Speicher
begrenzt.

10 DIM A(20)
20 FOR I=0 TO 20
30 READ A(I)
40 NEXT
50 DATA 1,2,3... |

10 DIM R3(5,5) :REM 36 ELEMENTE

10 DIM D$(2,2,2) :REM 27 ELEMENTE

56

3.3.9 END

Format:

Zweck:

Bemerkungen:

Beispiel:

END

Beendet den Programmlauf, schliesst alle geoeff-
neten Files und setzt den Rechner in den Direkt-
Modus.

END-Anweisungen koennen zur Programmbeendigung an
jeder Stelle eines Programs stehen. Die END-An-
weisung erzeugt keine Bildschirmmeldung wie z.B.
BREAK bei der STOP-Anweisung. Am Ende eines Pro-
gramms (letzte Zeile) ist die END-Anweisung wahl -
frei. Nachdem die END-Anweisung ausgefuehrt wurde
kehrt der Rechner in den Direkt-Modus zurueck.

520 IF K>1000 THEN END

57

3.3.10 FOR...NEXT

Format:

Zweck:

Bemerkungen:

FOR <numerische Variable>=<x> TO <y> [STEP <z>J

NEXT C<numerische Variable>J [, <numerische
Variable>..], wobei x, y und z numerische
Ausdruecke sein muessen.

Fuehrt eine Reihe von Anweisungen in einer
Schleife in einer vorgegebenen Anzahl von
Durchlaeufen aus.

<numerische Variable> wird als Zaehler fuer die
Durchlaeufe verwendet. Der erste numerische Aus-
druck <x> ist der Anfangswert, der zweite numeri-
sche Ausdruck <y> ist der Endwert des Zaehlers.
Alle Anweisungen und Programmzeilen nach der FOR-
Anweisung bis zur ersten NEXT-Anweisung werden
ausgefuehrt. Dann wird der Zaehler um den Wert
von <z> erhoeht und es wird geprueft, ob er groe-
sser als der Endwert <y> geworden ist. Wenn er
nicht groesser ist, verzweigt der Interpreter
zurueck zu der Anweisung nach der FOR-Anweisung
und der Ablauf wird wiederholt. Ist der Zaehler
groesser als <y>, so wird das Programm nach der
NEXT-Anweisung fortgesetzt. Dies versteht man un-
ter einer FOR...NEXT-Schleife.
Wenn fuer <z> ein negativer Wert angegeben ist,
so muss der Endwert <y> kleiner als der Anfangs-
wert <x> sein. <y> wird in diesem Fall bei jedem
Durchlauf um den Wert von <z> vermindert, bis der
Zaehler kleiner als der Endwert <y> wird.
Wird STEP <zy nicht angegeben, so wird der Zaeh-
ler bei jedem Durchlauf um 1 erhoeht.
FOR...NEXT-Schleifen duerfen auch geschachtelt
werden, d.h. eine Schleife darf auch innerhalb
einer anderen angeordnet sein. Jeder Schleifen-
zaehler muss dann jedoch einen eigenen Namen er-
halten. Fuer alle Zaehler in geschachtelten
Schleifen reicht eine NEXT-Anweisung, gefolgt von
den einzelnen Zaehlervariablen in der richtigen
Reihenfolge und durch Kommas getrennt, wenn die
einzelnen NEXT-Anweisungen unmittelbar aufeinan-
der folgen wuerden.
Die Variablen in der NEXT-Anweisung koennen weg-
gelassen werden. In diesem Fall bezieht sich jede
NEXT-Anweisung auf die zuletzt interpretierte
FOR-Anweisung. Findet der Interpreter eine NEXT-
Anweisung ohne vorangegangene FOR-Anweisung, so
gibt er eine NEXT WITHOUT FOR-Fehlermeldung aus
und bricht das Programm ab.
Wegen des begrenzten Stapelspeichers duerfen nur
maximal 9 FOR...NEXT-Schleifen ineinander ge-
schachtelt werden.

58

Beispiel 1:

Beispiel 2:

Beispiel 3:

10 REM GESCHACHTELTE SCHLEIFEN
20 FOR I=1 TO 3
30 FOR J=1 TO 3
40 PRINT I;J
50 NEXT J,I
RUN

A

W
W

BO

BO

BO

—

=

WM

B
O

a
W
D

W
P

=

READY.

10 REM VARIABLENAENDERUNG NACH SETZEN DER

SCHLEI FE

20 K=10

30 FOR I=1 TO K STEP 2

40 PRINT I;
50 K=K+10

60 PRINT K

70 NEXT

RUN

20

30
40

50

60 O
n
r
I
M
W
 =

READY.

10 REM DER ZWEITE WERT IST KLEINER ALS DER ERSTE
20 J=0
30 FOR I=1 TO J
40 PRINT I
90 NEXT
RUN

]

READY.

In diesem Beispiel wird die Schleife nur einmal
durchlaufen, weil der Anfangswert groesser als
der Endwert ist, was jedoch erst beim Erreichen
der NEXT-Anweisung geprueft wird.

59

Beispiel 4:

Beispiel 5:

10 REM EINE SCHON VORHER BENUTZTE VARIABLE ALS
ZAEHLER
20 I=5
30 FOR I=1 TO I+5
40 PRINT I;
50 NEXT
RUN
12 3 4 5 6

READY.

Hier wird die Schleife sechsmal durchlaufen, da

der Schleifenzaehler I nach dem Setzen in Zeile
10 noch einmal in Zeile 20 gesetzt wird.

10 REM INTEGER-VARIABLE ALS ZAEHLER
20 FOR I%=1 TO 10
30 PRINT I%
40 NEXT
RUN
?SYNTAX ERROR IN 10
READY.

Achtung: Integer-Variablen als Schleifenzaehler
sind verboten!

60

3.3.11 GET und GET#

Format:

Zweck:

Bemerkungen:

Beispiel:

GET[#<logische Filenumer >,]<Variable>

Liest ein Zeichen aus einem File (Datei) und
weist dieses Zeichen einer Variablen zu.

GET ohne die Angabe eine logischen Filenumer
liest aus dem Tastaturpuffer den Code der zuletzt
gedrueckten Taste und weist ihn der spezifizier-
ten Variablen (numerisch oder String) zu. Wurde
keine Taste gedrueckt, so liefert GET den Wert 0
bzw. einen Leerstring.
GET# liest ein Zeichen aus dem unter der logi-
schen Filenummer eroeffneten File. Wurde ein lo-
gischer File mit der Geraetenummer O eroeffnet,
so ist GET# identisch mit GET, da der Tastatur
die Geraetenummer 0 zugeordnet ist.

10 PRINT'WARTEN AUF GEDRUECKTE TASTE"
20 GET A$:IF A$='"" THEN 20

61

3.3.12 GOSUB...RETURN

Format: GOSUB <Zeilennumner>

RETURN

Zweck: Verzweigt in ein Unterprogram, das mit
<Zeilennummer> beginnt und kehrt nach Ausfueh-
rung des Unterprogramms ins Hauptprogramm zu-
rueck

Bemerkungen: <Zeilennummer> ist die erste Zeile des Unter-
programms. Die RETURN-Anweisung(en) in einem
Unterprogramm bewirken einen Ruecksprung zu der
Anweisung, die der zuletzt interpretierten
GOSUB-Anweisung folgt. Ein Unterprogramm kann
mehrere RETURN-Anweisungen enthalten, wenn ein
Ruecksprung von logisch unterschiedlichen Stel-
len erforderlich ist. Ein Unterprogramm kann an
beliebigen Stellen im Hauptprogramm stehen,
muss jedoch von diesem unterschieden werden. Um
unbeabsichtigtes Durchlaufen eines Unterpro-
gramms zu vermeiden, kann vor dem Unterprogramm
eine STOP-, END- oder GOTO-Anweisung stehen,
die die Programmsteuerung um das Unterprogramm
herumfuehrt. Wenn die Unterprogramme am Anfang
des Hauptprogramms stehen, werden diese schnel-
ler ausgefuehrt. Unterprogramme koennen in bis
zu 23 Ebenen geschachtelt werden.

Beispiel: 10 GOSUB 40
20 PRINT''AUS DEM UNTERPROGRAM ZURUECK"
30 END
40 PRINT''IM UNTERPROGRAMM'"'
50 RETURN
RUN
IM UNTERPROGRAMM
AUS DEM UNTERPROGRAM ZURUECK
READY.

62

3.3.13 GOTO

Format:

Zweck :

Bemerkungen:

Beispiel:

GOTO <Zei lennummer>

Springt unbedingt aus der normalen Programm-
abfolge zu einer spezifizierten Zeilennummer.

Wenn <Zeilennummer? eine Zeile mit einer aus-
fuehrbaren Anweisung kennzeichnet, werden diese
und die darauf folgenden Zeilen abgearbeitet.
Existiert die spezifizierte Zeile nicht, so
wird das Programm mit der naechsten auf die
spezifizierte Zeile folgenden Zeile fortge-
setzt.

10 READ R
20 PRINT'R = "";R,
30 A=3.14*R#2
40 PRINT"'FLAECHE ="';A
50 GOTO 10
60 DATA 5,7,12
RUN
R=5 FLAECHE = 78.5
R=7 FLAECHE = 153.86
R = 12 FLAECHE = 452.16

?OUT OF DATA ERROR IN 10
READY.

63

3.3.14 IF... THEN und IF...GOTO

Format:

Format:

Zweck :

Bemerkungen:

Beispiel 1:

Beispiel 2:

IF <Ausdruck> THEN <Anweisung(en)><Zeilennummer >

IF <Ausdruck> GOTO <Zeilennummer >

Es wird hinsichtlich des Programmablaufes eine
Entscheidung, basierend auf dem Ergebnis eines
Ausdrucks, gefaellt.

Wenn das Ergebnis von <Ausdruck> von Null verschie-
den ist, wird die THEN- oder GOTO-Klausel ausge-
fuehrt. THEN kann entweder von einer Zeilennummer
zum Verzweigen oder von einer oder mehrere Anwei-
sungen gefolgt werden. GOTO wird immer von einer
Zeilennumer gefolgt. Ist das Ergebnis von

<Ausdruck> Null, so wird die THEN- oder GOTO-Klausel
ignoriert und das Programm mit der folgenden
Befehlszeile fortgesetzt.
IF...THEN-Anweisungen koennen auch geschachtelt
werden, wobei die Schachtelungen nur durch die
Befehlszeilenlaenge (83 Zeichen) begrenzt werden:

IF A=B THEN IF B=C THEN PRINT"A=C'"

Wird eine im Direkt-Modus eingegebene IF...THEN-
Anweisung von einer Zeilennummer gefolgt, so ge-
neriert der Interpreter eine UNDEFINED LINE-Feh-
lermeldung, selbst wenn vorher eine Zeile mit die-
ser Nummer eingegeben wurde.
Bei Verwendung von IF zum Testen eines Wertes, der
sich aus einer Gleitkommaberechnung ergeben hat,
ist zu beachten, dass die interne Darstellung des
Wertes ungenau sein kann. Deshalb sollte ein Test
immer fuer den Bereich gemacht werden, innerhalb
dessen die Genauigkeit variiert. Es sollte also
z.B. beim Testen einer Variablen auf den berech-
neten Wert 1.0 folgendermassen verfahren werden:

IF ABS(A-1.0)<€=1.0E-6 THEN ...

Dieser Test liefert das Ergebnis 'wahr'', wenn der
Wert von A gleich 1.0 mit einem relativen Fehler
von weniger als 1.06E-6 ist.

100 IF I THEN GET I

Diese Anweisung prueft auf eine gedrueckte Taste,
falls der Wert von I nicht Null ist.

100 IF (1>10) AND (1<20) THEN DB=1979-1:GOTO 300
110 PRINT''BEREICHSUEBERSCHREITUNG"

Wenn I groesser als 10 und kleiner als 20 ist, wird
DB berechnet und das Programm wird mit Zeile 300
fortgesetzt. Sonst wird Zeile 110 ausgefuehrt.

64

3.3.15 INPUT

Format:

Zweck :

Bemerkungen:

INPUT [''<Anzeigestringa":]<Variablenliste>

Erlaubt Dateneingabe ueber die Tastatur waehrend
der Programmausfuehrung.

Trifft der Interpreter auf eine INPUT-Anweisung, so
wird der Programmlauf angehalten, ein Fragezeichen
wird auf dem Bildschirm ausgegeben, um zu zeigen,
dass das Programm Dateineingabe erwartet und der
Qursor blinkt. Wurde <Anzeigestring> spezifiziert,
so wird dieser vor dem Fragezeichen abgebildet. Die
geforderten Daten koennen dann ueber die Tastatur
eingegeben werden. Diese Daten werden der (den)
Variablen in der <Variablenliste> zugeordnet;
deshalb muss die Zahl der Dateneinheiten (getrennt
durch Kommas) mit der Zahl der Variablen in der
Liste uebereinstimmen.
Die Variablen in der Liste duerfen Namen fuer nume-
rische und String-Variablen (auch Feldvariablen)
sein. Der Typ jeder eingegebenen Dateneinheit muss
mit dem Typ der korrespondierenden Variablen ueber-
einstimmen. Eingegebene Strings muessen nicht in
Anfuehrungsstriche ('') eingekleidet werden, es sei
denn, sie enthalten Kommas und/oder Doppelpunkte.
Die Dateneingabe ist auf die Laenge einer logischen
Bildschirmzeile (88 Zeichen) begrenzt. Wegen des
Fragezeichens koennen also hoechstens 86 Zeichen
eingegeben werden. Wird diese Zahl ueberschritten,
nimmt INPUT die zuletzt eingegebene logische Bild-
schirmzeile als gesamte Eingabe. Als logische Bild-
schirmzeile werden Bildschirmdaten von bis zu 88
Zeichen, gerechnet vom Zeilenanfang bis zum Wagen-
ruecklauf-Code (RETURN-Taste), betrachtet.
Wird bei INPUT der falsche Datentyp eingegeben, al-
so z.B. Stringdaten anstatt. numerischer, so wird
die Meldung ?REDO FROM START ausgegeben und es wird
auf die richtige Eingabe gewartet.
Im Direkt-Modus ist INPUT nicht erlaubt. In diesem
Fall wird die ILLEGAL DIRECT-Fehlermeldung ausgege-
ben. Werden bei INPUT zuviele Dateneinheiten einge-
geben, wird die EXTRA IGNORED-Meldung ausgegeben.
Bei zuwenigen Dateneinheiten werden die fehlenden
mit ?? nachgefordert.

65

Beispiel 1:

Beispiel 2:

Beispiel 3:

10 REM EINGABE VON ZUVIELEN ZEICHEN
20 INPUT A$
30 PRINT: PRINT A$
RUN
? DDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDDD
**%&*K<RETURN?

KKKK

Es wurde 86 mal D und 4 mal * eingegeben. Da INPUT
bei Laengenueberschreitung nur die letzte logische
Bildschirmzeile beruecksichtigt, werden nur die 4 *
der Stringvariablen. A$ zugeordnet.

10 INPUT X
20 PRINT X''ZUM QUADRAT IST'X 2
RUN
? S<RETURN? .

5 ZUM QUADRAT IST 25
READY.

10 PI=3.14159265
20 INPUT''RADIUS EINGEBEN'';R
30 A=PI*R#2
40 PRINT''KREISFLAECHE IST'';A
50 PRINT
60 GOTO 20
RUN
RADIUS EINGEBEN? 7 .4<RETURN>
:KREISFLAECHE IST 172.033614

RADIUS EINGEBEN? usw.

66

3.3.16 INPUT#

Format:

Zweck:

Bemerkungen:

Beispiel:

INPUT#<logische Filenummer >,<Variablenliste>

Liest Daten aus einem sequentiellen oder Direktzu-
griffs-File und weist sie Programmvariablen zu.

<logische Filenummer> ist die Nummer, unter der der
File als Eingabefile mit der OPEN-Anweisung (s. Ab-
schnitt 3.3.22) eroeffnet wurde. <Variablenliste>
enthaelt die Namen der Variablen, denen die Daten-
elemente aus dem File zugewiesen werden. Die Daten-
typen muessen den Variablentypen entsprechen.
INPUT# gibt kein ? als Anzeige aus, wenn als Ein-
gabegeraet die Tastatur gewaehlt wurde.
Die Dateneinheiten in dem File muessen genauso an-
geordnet sein, als wuerden sie ueber die Tastatur
eingegeben. Vor- und nachlaufende Leerstellen, Wa-
genruecklauf- und Zeilenvorschub-Codes werden igno-
riert. Trennzeichen zwischen Variableninhalten
koennen Komma oder Doppelpunkt sein; der Wagen-
ruecklaufcode trennt auf jeden Fall einzelne Daten-
elemente voneinander. Bei Nichtuebereinstimmung von
Daten- und Variablentyp wird eine FILE DATA ERROR-
Fehlermeldung ausgegeben. Beim Versuch, Daten am
Fileende zu lesen oder bei Zeitueberschreitung an
der Eingabeschnittstelle (s. Abschn. 3.4.21) lie-
fert INPUT# einen Wagenruecklauf-Code (CHR$(13)).
INPUT# kann bei Strings maximal 88 Zeichen lesen.

10 REM LESEN VON KASSETTE BIS ZUM FILEENDE
20 OPEN 3,1,0
30 INPUT#3 , A$
40 IF STATUS AND 64 THEN FE=1
50 PRINT A$
60 IF FE THEN CLOSE 3:END
70 GOTO 30

Die Abfrage des Rechner -Statuswortes (hier in Zeile
40) wird in Abschnitt 3.4.21 ausfuehrlich beschrie-

ben. |

67

3.3.17 LET

Format:

Zweck:

Bemerkungen:

Beispiel:

[LETJ<Variable>=<Ausdruck>

Weist den Wert eines Ausdrucks einer Variablen zu.

Das Wort LET ist wahlfrei, d.h. bei der Zuweisung
eines Wertes zu einer Variablen genuegt das Gleich-
heitszeichen.

110 LET D=12:LET E=12*2
120 LET F=144 /12
130 LET SUM=D+E+F

gleichbedeutend mit:

110 D=12:E=12*2
120 F=144/12

130 SUM=D+E+F

68

3.3.18 LIST

Format 1:

Format 2:

Zweck:

Bemerkungen:

Beispiele:

LIST [< Zeilennumner >]

LIST E< Zeilennummer >7-[<Zeilennummer>?

Listet einen Teil oder ein ganzes Programm auf das
gegenwaertig aktivierte Ausgabegeraet (Bildschirm,
Drucker, Kassette, Floppy Disk).

Der Rechner wird nach der Ausfuehrung von LIST
immer in den Direkt-Modus gesetzt.

Format 1: Wenn <Zeilennummer> weggelassen wird,
wird das ganze Programm beginnend mit der
kleinsten Zeilennummer gelistet. Das Li-
sten wird entweder durch das Programmende
oder durch Druecken der STOP-Taste been-
det. Wird <Zeilennummer> angegeben, so
wird nur diese eine Zeile gelistet.

Format 2: Dieses Format erlaubt folgende Moeglich-

keiten:

1. Wird nur die erste Zeilennummer ange-
geben, so wird das Programm ab dieser
Zeilennummer gelistet.

2. Wird nur die zweite Zeilennummer an-
gegeben, so wird das Programm vom An-
fang bis einschliesslich dieser Zeile
gelistet.

3. Sind beide Zeilennummern angegeben,
wobei die zweite groesser als die
erste sein muss, so wird nur dieser
Programmbereich gelistet.

LIST Listet das gesamte im Speicher
befindliche Program.

LIST 500 Listet Zeile 500.

LIST 150- Listet alle Zeilen von Zeile 150
einschliesslich bis Programmende.

LIST -1000 Listet alle Zeilen vom Anfang des
Programms bis Zeile 1000 ein-
schliesslich.

LIST 150-1000 Listet alle Zeilen von Zeile 150

bis Zeile 1000 einschliesslich.

69

3.3.19 LOAD

Format:

Zweck:

Bemerkungen:

Beispiel:

LOAD '"«Filename>"[,‚<Geraetenummer >]

Laedt einen Programmfile von einem
externen Speichergeraet (Kassette,
Floppy Disk) in den Speicher des
Rechners.

<Filename> ist der Name, unter dem

das Programm mit der SAVE-Anweisung
(s. Abschn. 3.3.30) auf ein externes
Speichergeraet gespeichert wurde.
Wird <Geraetenummer> weggelassen, so
wird das Programm von Geraet Nr. 1
(Kassettenstation) geladen. Durch
LOAD werden alle eroeffneten Files
geschlossen sowie alle gesetzten
Variablen und das gefs. im Speicher
befindliche Programm geloescht, ehe
das spezifizierte Programm geladen
wird.

Wenn LOAD innerhalb eines Programms
ausgefuehrt wird, wird das dadurch
geladene Programm sofort gestartet,
wobei alle eroeffneten Files offen
bleiben. Dadurch koennen mehrere Pro-
gramme oder Programmsegmente mitein-
ander verkettet werden. Gesetzte Va-
riablen bleiben durch die Verkettung

erhalten. Das nachgeladene Programm
darf jedoch hoechstens genau so gross
sein, wie das aufrufende.

Laden eines Programms von Kassette:

LOAD ''TESTPRG"

70

3.3.20 NEW

Format:

Zweck :

Bemerkungen:

NEW

Loescht das gegenwaertig im Speicher
befindliche Programm sowie alle
Variablen.

NEW wird gewoehnlich im Direkt-Modus
eingegeben, ehe ein neues Programm
editiert wird. Der Interpreter setzt
den Rechner auf jeden Fall nach Aus-
fuehren von NEW in den Direkt-Modus.

71

3.3.21 ON...GOSUB und ON...GOTO

Format:

Zweck :

Bemerkungen:

Beispiel:

ON «Ausdruck? GOTO <Liste mit Zi-
lennummern>

ON «Ausdruck? GOSUB €Liste mit Zei-

lennummern?

Verzweigt zu einer von mehreren spe-
_ zifizierten Zeilennummern in Abhaen-
gigkeit vom Wert, der von«Ausdruck?
geliefert wird.

Der Wert von«Ausdruck> bestimmt, zu
welcher Zeilennummer aus der Liste
das Programm verzweigt. Wenn der Wert
z.B. 3 ist, so stellt die 3. Zeilen-
nummer in der Liste das Sprungziel
dar. Vor der Verzweigung wird der
Wert auf jeden Fall in eine ganze
Zahl umgewandelt, d.h., ggf. vorhan-
dene Dezimalstellen werden abge-
schnitten.
Bei der ON...GOSUB-Anweisung muss

jede spezifizierte Zeilennummer die
Anfangszeile eines Unterprogramms
kennzeichnen.
Ist der Wert des Ausdrucks negativ,
so wird eine ILLEGAL QUANTITY-Feh-
lermeldung ausgegeben. Ist er Null
oder groesser als die Anzahl der in
der Liste angegebenen Zeilennummern,
so wird das Programm mit der auf die-
se Anweisung folgenden Zeile fortge-
setzt.

100 ON L-1 GOTO 150,300 ‚320 ,220

72

3.3.22 OPEN

Format:

Zweck:

Bemerkungen:

Beispiel:

OPEN <logische Filenumer>[,‚<Geraetenummer>
[‚sSekundaeradresse>[,''<Filename>''J11

Eroeffnet einen Ein/Ausgabe-Kanal ueber die seri-
elle, die RS-232-, die IEEE- oder die interne
Schnittstelle.

Die logische Filenumer muss zwischen 1 und 255
liegen. Falls keine Geraetenummer angegeben wird,
wird 1 angenommen (Kassettenstation). Fuer Sekun-
daeradressen und Filenamen existieren keine Vor-
einstellungen. Mit jeder GET#-, INPUT#- oder
Print#-Anweisung werden die Geraetenummer und
eine ggfs. spezifizierte Sekundaeradresse ueber
die Schnittstelle gesendet. |
Bei Floppy-Disk-Files wird der Filetyp mit P
(Programmfile) angenommen, falls nicht S (sequen-
tieller Datenfile) getrennt durch Komma an den
Filenamen angefuegt wurde. Wird nach einem wei-
teren Komma ein W angegeben, so wird der spezifi-
zierte File zum Schreiben eroeffnet, andernfalls
zum Lesen.

Bei Kassettenfiles bezeichnet eine Sekundaer-
adresse 0 einen Lesefile, 1 einen Schreibfile
und 2 einen Schreibfile mit anschliessender Ban-
dendemarke.
Files koennen fuer Tastatur (Geraetenr. 0), Kas-
settengeraet (Geraetenr. 1), RS-232-Schnittstelle
(Geraetenr. 2, s. Anhang A) oder Bildschirm (Ge-
raetenr. 3) . eroeffnet werden. Geraetenummern
groesser als 3 beziehen sich auf Geraete, die an
der IEEE-Schnittstelle angeschlossen werden koen-
nen (z.B. 4 fuer Drucker, 8 fuer Floppy Disk).

10 REM EROEFFNEN EINES KASSETTEN-SCHREIBFILES MIT
20 REM ANSCHLIESSENDER BANDENDEMARKE
30 OPEN 6,1,2,'DATENFILE"

40 FOR I=1 TO 10
50 PRINT#6, CHR$(1)
60 NEXT
70 CLOSE 6

73

3.3.23 POKE

Format:

Zweck :

Bemerkungen:

Beispiel]:

Beispiel 2:

POKE I,J

I und J muessen ganzzahlige Ausdruecke sein.

Schreibt eine 8-Bit-Binaerinformation in eine

spezifizierte Speicherzelle.

Der Wert des Integer-Ausdrucks I bezeichnet die
zu beschreibende Speicherzelle; der Wert des In-
tegerausdrucks J bezeichnet das zu speichernde
Datum. I muss im Bereich zwischen 0 und 65535 und
J im Bereich zwischen O und 255 liegen.
Das Gegenstueck zur POKE-Anweisung ist die PEEK-
Funktion (s. Abschn. 3.4.13), deren Argument eine
Speicherzelle bezeichnet, deren Inhalt ausgelesen
werden soll.
POKE und PEEK sind effektive Hilfsmittel fuer die
Datenspeicherung, das Laden von Unterprogrammen
in Machinensprache sowie die Uebergabe von Para-
metern und Ergebnissen zwischen BASIC-Hauptpro-
grammen und Maschinensprache-Unterprogrammen.

10 REM FARB- UND ZEICHENSTEURUNG
20 POKE 7680,1:POKE 38400, 6

Hier wird der Buchstabe A in blauer Farbe in der

HOME-Position des Bildschirms abgebildet (s.a.
Abschn. 2.6).

10 REM ALLE TASTEN HABEN WIEDERHOLFUNKTION
20 POKE 650, 128
30 REM NUR DIE CURSORSTEUERTASTEN HABEN
40 REM WIEDERHOLFUNKTION
50 POKE 650,0/NUR CURSOR + SPACE

64/ KEINE TASTE

74

3.3.24 PRINT und PRINT#

Format : PRINT[#<slog. Filenummer >,J[<Liste von Ausdruecken>]

Zweck : Gibt Daten an den Bildschirm oder ueber einen
spezifizierten Ausgabekanal aus.

Bemerkungen: Wird <Liste von Ausdruecken> nicht angegeben, so
wird eine Leerzeile gedruckt. Andernfalls werden
die Ausdruecke ermittelt und deren Werte an das
in der zugehoerigen OPEN-Anweisung unter der lo-
gischen Filenummer spezifizierte Ausgabegeraet
ausgegeben. Es sind numerischen und/oder String-
ausdruecke erlaubt. Stringkonstanten muessen in
Anfuehrungsstriche eingekleidet werden.
Die Position jeder zu druckenden Dateneinheit
wird durch die Interpunktion, die die Datenein-
heiten in der Liste voneinander trennt, bestimmt.

Der BASIC-Interpreter teilt die Druckzeile in
Druckzonen von je 10 Leerstellen ein. Ein Komma
in der Liste von Ausdruecken bewirkt, dass der

Wert des darauffolgenden Ausdrucks ab dem Anfang
der naechsten Druckzone gedruckt wird, wohingegen
ein Semikolon bewirkt, dass der naechste Wert

unmittelbar hinter den vorausgehenden Wert ge-
druckt wird. Eine oder mehrere Leerstellen zwi-
schen den Ausdruecken haben dieselbe Wirkung wie
Semikolon. Ein Komma oder Semikolon am Ende einer
Liste von Ausdruecken bedeutet, dass die Werte
der naechsten PRINT-Anweisung in der naechsten
Druckzone derselben Zeile oder unmittelbar an-
schliessend in derselben Zeile gedruckt. werden.

Bei beiden Zeichen am Ende einer Liste von Aus-
druecken wird ein Wagenruecklauf-Code unter-
drueckt. Ist die zu druckende Zeile laenger als
22 Zeichen, so wird das Drucken in der naechsten

physikalischen Zeile fortgesetzt.
Gedruckten Zahlenwerten folgt immer eine Leer-
stelle. Positiven Zahlenwerten ist eine Leerstel-
le, negativen ein Minus-Zeichen vorangestellt.
Jede Zahl zwischen O und 0.01 wird in der wissen-
schaftlichen Exponentialdarstellung (s. Abschn.
2.4.3) wiedergegeben. Die PRINT-Anweisung (nicht
PRINT#) kann durch ? abgekuerzt werden.

Beispiel 1: 10 X=5
20 PRINT X+5,X-5,X*(-5) ,X#5
RUN

10 0 -25 3125
READY.

Die Kommas zwischen den Ausdruecken in Zeile 20
bewirken, dass jeder Wert an den Anfang einer 10
Leerstellen breiten Druckzone gedruckt wird.

75

Beispiel 2:

Beispiel 3:

10 INPUT X
20 PRINT X"ZUM QUADRAT IST''Xf2"UND"';
30 PRINT X"ZUM KUBIK IST"X#3
40 PRINT
50 GOTO 10
RUN
? ORETURN |
9 ZUM QUADRAT IST 81 UND 9 ZUM KUBIK IST 729

? usw.

Hier bewirkt das Semikolon am Ende von Zeile

20, dass die Werte beider PRINT-Anweisungen in
den Zeilen 20 und 30 in dieselbe Zeile gedruckt
werden. Zeile 40 bewirkt das Drucken einer

Leerzeile.

10 FOR X=1 TO 5

20 J=J+5

30 K=K+10

40 ?J;K;

50 NEXT
RUN

5 10 10 20 15 30 20 40 25 50

READY. |

Bei diesem Beispiel wurde in Zeile 40 fuer die
PRINT-Anweisung das ?-Zeichen gewaehlt. Die
Semikolons bewirken das Drucken der einzelnen
Werte unmittelbar hintereinander getrennt durch
2 Leerstellen (jede Zahl wird von einer
Leerstelle gefolgt, positiven Zahlen ist eine
Leerstelle vorangestellt). Wird. das Programm
mit LIST ausgelistet, so wird das ?-Zeichen in
Zeile 40 durch das Wort PRINT ersetzt.

76

3.3.25 READ

Format:

Zweck:

Bemerkungen:

Beispiel 1:

Beispiel 2:

READ«Variablenliste>

Liest Daten aus einer DATA-Anweisung und weist
sie Variablen zu (s.a. Abschn. 3.3.6).

Eine READ-Anweisung darf nur in Verbindung mit
einer DATA-Anweisung benutzt werden. Jeder
Variablen aus der Liste, die eine numerische

oder eine String-Variable sein kann, wird immer
nur ein Wert aus der DATA-Anweisung zugewiesen.
Daten- und Variablentypen muessen uebereinstim-
men. Andernfalls wird eine SYNTAX ERROR-Fehler -
meldung ausgegeben.
Eine einzelne READ-Anweisung kann sequentiell

auf mehrere DATA-Anweisungen zugreifen wie auch
mehrere READ-Anweisungen auf eine DATA-Anwei-
sung zugreifen koennen. Wenn die Anzahl von
Variablen in der Variablenliste groesser ist
als die Anzahl von Elementen in der (den) DATA-
Anweisung(en), wird eine OUT OF DATA-Fehlermel -
dung ausgegeben. Sind weniger Variablen in der
Liste spezifiziert als Elemente in der (den)
DATA-Anweisung(en) vorhanden sind, so lesen
folgende READ-Anweisungen die noch nicht gele-
senen Elemente. Folgen in einem solchen Fall .
keine weiteren READ-Anweisungen, so bleiben
ueberzaehlige Datenelemente unberuecksichtigt.
Um DATA-Anweisungen wiederholt von Anfang an zu
lesen, kann die RESTORE-Anweisung (s. Abschn.
3.3.27) verwendet werden.

80 FOR I=1 TO 10
90 READ A(T)
100 NEXT
110 DATA 3.08, 5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

In diesem Programmsegment werden die Elemente
der DATA-Anweisungen der Zeilen 110 und 120 in
das Feld A gelesen.

10 PRINT "PLZ", "STADT", "LAND"
20 READ PZ,S$,L$
30 DATA 6000 ,"'FRANKFURT" , "HESSEN"
40 PRINT PZ,S$,L$
RUN
PLZ STADT LAND
6000 FRANKFURT HESSEN

READY.

Hier werden numerische und String-Daten aus der
DATA-Anweisung in Zeile 30 gelesen und ausge-.
druckt.

77

3.3.26 REM

Format :

Zweck :

Bemerkungen:

Beispiel:

REM [<Kommentar>]

Fuegt erlaeuternden Kommentar in ein Programm

ein.

REM-Anweisungen werden nicht ausgefuehrt,
jedoch exakt wiedergegeben, wenn das Programm
gelistet wird.
Von einer GOTO- oder GOSUB-Anweisung kann zu

einer REM-Anweisung verzweigt werden. Das
Programm wird dann mit der naechsten auf die
REM-Anweisung folgenden ausfuehrbaren Anweisung
fortgesetzt.

10 REM BERECHNUNG DER MITTLEREN GESCHWINDIGKEIT
20 FOR I=1 TO 20
30 SUM=SUM+V(I)
40 NEXT
50 VM=SUM/(I-1)

78

3.3.27 RESTORE

Format:

Zweck :

Bemerkungen:

Beispiel:

RESTORE

Setzt den Lesezeiger der READ-Anweisung auf den
Anfang der ersten DATA-Anweisung im Program.

Nach der Ausfuehrung einer RESTORE-Anweisung
greift die naechste READ-Anweisung auf das
erste Datenelement in der ersten DATA-Anweisung
im Programm zu.

10 READ A,B,C
20 PRINT A,B,C
30 RESTORE
40 READ D,E,F
50 PRINT D,E,F
60 DATA 57,68,79
RUN
37 68 79
57 68 79

READY.

79

3.3.28. RUN

Format:

Zweck:

Bemerkungen:

RUN [Zei lennummer>]

Startet das gegenwaertig im Programmspeicher
befindli- che BASIC-Program.

Wird *Zeilennummer> spezifiziert, so wird das
Programm mit der dadurch bezeichneten Zeile
gestartet. Andernfalls beginnt die Ausfuehrung
mit der niedrigsten Zeilennumer. Vor dem
Programmstart wird durch RUN zuerst CLR (s.

Abschn. 3.3.3) ausgefuehrt.
Ein Programm wird durch Ruecksetzen des
Rechners in den Direkt-Modus beendet, wenn:

1. keine ausfuehrbaren Zeilen mehr vorhanden

sind. |

2. eine END- oder STOP-Anweisung ausgefuehrt
wurde.

3. ein Fehler waehrend der Ausfuehrung
auftritt.

80

3.3.29 SAVE

Format: SAVE [''<Filename?'"£,<Geraetenummer> CE ,‚<Befehl>]1]]

Zweck : Speichern eines BASIC-Programmfiles auf einem
spezifizierten Ausgabegeraet.

Bemerkungen : Wenn keine Geraetenummer angegeben wird, so
wird das im Programmspeicher befindliche BASIC-
Programm auf Kassette (Geraet Nr. 1) gespei-
chert. Als Befehl kann bei Speicherung auf
Kassette eine Null (keine Bandendemarke nach
dem Programmfile) oder ein von Null verschie-
dener Wert (Bandendemarke nach dem Programmfi-
le) angegeben werden. Wird <Filename> nicht
vergeben (nur bei Kassettenspeicherung er-
laubt), so wird ueberhaupt kein Name gespei-
chert. Wird als Filename eine Stringvariable
gesetzt, so muss diese in Klammern angegeben
werden.

Beispiele: SAVE

SAVE ''TESTPRG"

SAVE(A$),1,0

81

3.3.30 STOP

Format:

Zweck :

Bemerkungen :

Beispiel:

STOP

Bricht ein laufendes Programm ab und setzt den
Rechner in den Direkt-Modus.

STOP-Anweisungen duerfen an beliebiger Stelle
in einem Programm stehen. Wird ein STOP
ausgefuehrt, so meldet der Interpreter dies
mit:

BREAK IN nnnnn (nnnnn = Zeilennummer)

Die STOP-Anweisung schliesst nicht, wie die
END-Anweisung ggf. eroeffnete Dateien. Nach
einer STOP-Anweisung kann das Programm durch
Eingabe von CONT im Direkt-Modus fortgesetzt
werden (s.a. Abschn. 3.3.5).

10 INPUT A,B,C
20 K=(A+3)/2 :L=B*3
30 STOP
40 M=C*K+100:PRINT M
RUN
? 1,2,3<RETURN>
BREAK IN 30
READY.
CONT<RETURN?
106

READY.

82

3.3.31 SYS

Format:

Zweck :

Bemerkungen:

Beispiel:

SYS <Ausdruck>L(<Parameterliste>)J

Uebergibt die Programmsteuerung an ein Unter-
programm in Maschinensprache, das bei einer
spezifizierten Adresse beginnt (s.a. Abschn.
3.4.27, USR-Funktion).

Der Wert von Ausdruck muss eine ganze Zahl
zwischen O und 65535 sein. Er bezeichnet die
Adresse im Programmspeicher des VC20, bei der
das Unterprogramm in Maschinensprache beginnt.
Die Rueckkehr in das BASIC-Hauptprogramm
erfolgt durch den Assemblerbefehl RTS.
In <Parameterliste> koennen Parameter angegeben
werden, die dem Maschinensprache-Unterprogramm
uebergeben werden sollen.

SYS 7*2412(X,Y)

83

3.3.32 VERIFY

Format:

Zweck :

Bemerkungen:

Besipiel:

VERIFY [''<Filename>''L,<Geraetenummer>7J

Vergleicht ein gegenwaertig im Programmspeicher
befindliches Programm mit einem auf einem
spezifizierten Ausgabegeraet gespeicherten
Programm und meldet ggfs. Unterschiede.

Die Geraetenummer ist mit 1 (Kassettenstation)
voreingestellt. Wird kein Filename angegeben
(nur bei Kassettenfiles erlaubt), so erfolgt
der Vergleich mit dem ersten auf Kassette
gefundenen Program.

VERIFY '"PRGFILE"
PRESS PLAY ON TAPE
OK
FOUND PRGFILE
VERIFYING
VERFY OK oder VERIFYING ERROR
READY.

84

3.3.33 WAIT

Format:

Zweck:

Bemerkungen:

Beispiele:

WAIT <Adresse>,1IL,J]

Haelt die Programmausfuehrung an, bis eine
angegebene Speicherzelle des VC20 ein
spezifiziertes Bitmuster angenommen hat.

Zur Pruefung des spezifizierten Bitmusters wird
zwischen dem Inhalt der durch <Adresse> gekenn-
zeichneten Speicherzelle und dem Integer -Aus-
druck J eine exklusive ODER-Verknuepfung gebil-
det. Dieses Ergebnis wird durch ein logisches
UND mit dem Integer-Ausdruck I verknuepft. Wenn
das Ergebnis Null ist, wird das Bitmuster der
spezifizierten Speicherzelle erneut getestet.
Erst wenn das Ergebnis von Null verschieden
ist, wird die naechste BASIC-Anweisung ausge-
fuehrt. Wenn J weggelassen wird, wird sein Wert
mit Null angenommen.

Achtung: Die WAIT-Anweisung kann nicht mit der
STOP-Taste abgebrochen werden.

WAIT 37151, 64, 64

Die Programmausfuehrung wird solange angehal -
ten, bis eine Taste der Kassettenstation ge-
drueckt wird.

WAIT A,24N mit N=0,1,....,7

Die Programmausfuehrung wird solange angehalten
bis das Bit N der durch A spezifizierten
Speicherzelle logisch 1 ist.

85

3.4 BASIC-Funktionen

In den folgenden Abschnitten werden die bereits erwaehnten Funktio-
nen, die der VC20-BASIC-Interpreter zur Verfuegung stellt, detail-
liert beschrieben. Jede Funktion kann einfach ohne weitere Defini-
tion in einem Programm aufgerufen werden. Die Argumente der Funkti-
onen werden immer in runde Klammern eingeschlossen angegeben. In
den in den naechsten Abschnitten beschriebenen Funktionen werden
die Argumente wie folgt abgekuerzt:

X und Y beliebige numerische Ausdruecke
I und J beliebige Integer-Ausdruecke
X$ und Y$ beliebige String-Ausdruecke

Wird bei einer Funktion, die einen Integerausdruck als Argument
verlangt, ein Gleitkommaausdruck angegeben, so wird dessen Wert
vorher durch Abschneiden der Dezimalstellen in einen Integer-Wert
umgewandelt. Im uebrigen gilt die in Abschnitt 3.3.1 vereinbarte
Notation.

86

3.4.1 ABS

Format: ABS(X)

Wirkung: Liefert den Absolutwert des Ausdrucks X.

Beispiel: PRINT ABS(7*(-5))

READY.

87

3.4.2 ASC

Format:

Wirkung:

Beispiel:

ASC(X$)

Liefert einen numerischen, ganzzahligen Wert
zwischen O und 255, der den ASCII-Code des

ersten Zeichens des Strings X$ reprassentiert.
Ist X$ ein Leerstring, so wird eine ILLEGAL
QUANTITY-Fehlermeldung ausgegeben.

10 A$="TEST"
20 PRINT ASC(A$)
RUN
84

READY.

88

3.4.3 ATN

Format:

Wirkung:

Beispiel:

ATN(X)

Liefert den ARCUS TANGENS von X im Bogenmass im
Bereich -PI/2 bis PI/2. Der Ausdruck X kann von
jedem numerischen Typ sein; die Berechnung von
ATN erfolgt jedoch auf jeden Fall binaer im
Gleitkommaformat.

10 INPUT A
20 PRINT ATN(A)
30 RUN
? 3<RETURN?
1.24904577

89

3.4.4 CHR$

Format:

Wirkung:

Beispiele:

CHR$(I)

Liefert einen Ein-Byte-String, dessen Element
den ASCII-Code I hat. Deshalb muss I im Bereich
zwischen O0 und 255 liegen. CHR$ wird gewoehn-
lich dazu verwendet, spezielle Zeichen oder
Steuercodes zu erzeugen.

PRINT CHR$(147) Loescht den Bildschirm

PRINT CHR$(66) Druckt ein B an der Cursor-

position

90

3.4.5 COS

Format:

Wirkung:

Beispiel:

COS(X)

Liefert den COSINUS von X im Bogenmass. Die
Berechnung von COS(X) erfolgt binaer
Gleitkommaformat.

10 X=2*COS(.4)
20 PRINT X
RUN
1.84212199

READY.

91

1m

3.4.6 EXP

Format:

Wirkung:

Beispiel:

EXP(X)

Liefert die X-te Potenz der Zahl e. X muss
kleiner oder gleich 88.02969191 sein, sonst
wird eine OVERFLOW-Fehlermeldung generiert.

10 X=5
20 PRINT EXP(5-1)
RUN
54.5981501

READY.

92

3.4.7 FRE

Format:

Wirkung:

Beispiel:

FRE(X)

Liefert die Anzahl der noch nicht benutzten
Bytes im BASIC-Programmspeicher. Fuer X kann
ein beliebiges Argument angegeben werden, da es
keinerlei Wirkung hat. Als Blindargument muss
es jedoch vorhanden sein.

PRINT FRE(0)
1433

READY.

93

3.4.8 INT

Format: INT(X)

Wirkung: Liefert die groesste ganze Zahl, die kleiner
oder gleich X ist.

Beispiel: PRINT INT(99.89), INT(-12.11)
99 -13

READY.

94

3.4.9 LEFT$

Format:

Wirkung:

Beispiel:

LEFT$(X$,1)

Liefert einen String, der aus den I linken

Zeichen von X$ besteht. I muss im Bereich
zwischen O0 und 255 liegen. Wenn I groesser als
die Laenge von X$ ist, wird der gesamte String
X$ geliefert. Wenn I Null ist, dann wird ein
Leerstring (String der Laenge Null) geliefert.

10 A$="'COMMODORE BUEROMASCHINEN"'
20 B$=LEFT$(A$,9)
30 PRINT B$
RUN
COMMODORE
READY.

95

3.4.10 LEN

Format:

Wirkung:

Beispiel:

LEN(X$)

Liefert die Anzahl von Zeichen in X$. Es werden
alle Zeichen, also auch die nicht abdruckbaren

und Leerzeichen gezaehlt.

10 X$="COMMODORE NEU-ISENBURG"'
20 PRINT LEN(X$)

96

3.4.11 LOG

Format: LOG(X)

Wirkung: Liefert den natuerlichen Logarithmus von X. X
muss groesser als Null sein; andernfalls wird
eine ILLEGAL QUANTITY-Fehlermeldung ausgegeben.

Beispiel: PRINT LOG(45/7)
1.86075234

READY.

97

3.4.12 MID$

Format:

Wirkung:

Beispiel:

MID$(X$,1,£,J])

Liefert einen Teilstring von X$ mit J Zeichen,
begin- nend beim I-ten Zeichen von X$. I und J
muessen im Bereich zwischen 0 und 255 liegen.
Wird J weggelassen oder sind rechts vom I-ten
Zeichen weniger als J Zeichen in X$ vorhanden,
so werden ab dem I-ten Zeichen alle rechten
Zeichen von X$ geliefert. Ist I groesser als
die Laenge von X$, so wird ein Leerstring
(String der Laenge Null) geliefert.

10 A$="'GUTEN"
20 B$="'MORGEN ABEND MITTAG"
30 PRINT A$;MID$(B$,8,5)
RUN
GUTEN ABEND
READY.

98

3.4.13 PEEK

Format:

Wirkung:

Beispiel:

PEEK(I)

Liefert den Inhalt der Speicherzelle mit der
Adresse I als ganzzahligen Wert zwischen 0 und
255. I muss ganzzahlige Werte zwischen O und
65535 annehmen. PEEK ist das Gegenstueck zur
POKE-Anweisung (s. Abschn. 3.3.23).

A=PEEK (36879)

Der Wert der Variablen A ist nach dieser

Anweisung der Code fuer die gegenwaertig
eingestellte Hintergrundfarbe des Bildschirms.

99

3.4.14 POS

Format:

Wirkung:

Beispiel:

POS(X)

Liefert die gegenwaertige Spaltenposition des
Cursors auf dem Bildschirm. Die aeusserst linke

Spalte ist die Position 0. X ist ein Blindargu-
ment, das aus formalen Gruenden jedoch angege-

ben werden muss.

IF POS(0)20 THEN PRINTCHR$(13)

100

3.4.15 RIGHT$

Format:

Wirkung:

Beispiel:

RIGHT$(X$, I)

Liefert die rechten I Zeichen aus dem String
X$. Wenn I gleich oder groesser der Laenge von
X$ ist, wird X$ geliefert. Fuer I=0 wird ein
Leerstring (String der Laenge Null geliefert).
I muss Werte zwischen O und 255 einnehmen.

10 A$=""COMMODORE BUEROMASCHINEN''
20 PRINT RIGHT$(A$, 14)
RUN
BUEROMASCHINEN
READY.

101

3.4.16 RND

Format :

Wirkung:

Beispiel:

RND(X)

Liefert eine Zufallszahl zwischen O und 1, die,
abhaengig vom Argument X, auf drei verschiedene
Weisen generiert werden kann:

X?0: Es wird immer der naechste Wert einer
Zufallszahlenreihe, die durch einen
numerischen Algorithmus im BASIC-In-
terpreter berechnet wird, geliefert.
Die Reihe ist vom Wert des Argumentes
X unabhaengig und wird beim Einschal-
ten des Rechners durch einen zufael-
ligen Anfangswert initialisiert.

X<0: Jedes Argument X initialisiert eine
neue Zufallszahlenreihe. Gleiche Ar-
gumente fuehren zu gleichen Zufalls-
zahlenreihen.

X=0: Aus verschiedenen, von einander unab-
haengigen Zeitgebern wird durch einen
Algorithmus eine Zufallszahl erzeugt.

10 FOR I=1 TO 5
20 PRINT INT(RND(X)*100);
30 NEXT
RUN

24 30 83 45 1
READY.

102

3.4.17 SGN

Format:

Wirkung:

Beispiel:

SGN(X)

Liefert das Vorzeichen des Argumentes X in
folgender codierter Form:

X>0: SGN(X) liefert 1

X=0: SGN(X) liefert O

X<0: SGN(X) liefert -1

ON SGN(X)+2 GOTO 100,200,300

Das Programmm verzweigt nach Zeile 100, wenn
der Wert von X negativ ist, nach Zeile 200,
wenn er Null ist und nach Zeile 300, wenn er

positiv ist.

103

3.4.18 SIN

Format: SIN(X)

Wirkung: Liefert den SINUS von X im Bogenmass. Die
Berechnung von SIN(X) erfolgt binaer in
Gleitkommadarstellung. Zwischen SIN(X) und
COS(X) besteht der Zusammenhang

COSC(X)=SIN(X+3.14159265/2)

Beispiel: PRINT SIN(1.5)
.997494987

READY.

104

3.4.19 SPC

Format:

Wirkung:

Beispiel:

SPC(I)

Liefert I Leerstellen. SPC kann nur in Verbin-

dung mit der PRINT- oder PRINT#-Anweisung ver-
wendet werden. I muss Werte zwischen O und 255

einnehmen.

PRINT''HIER"SPC(15) "DA"
DA HIER

READY.

105

3.4.20 SOR

Format : SQR(X)

Wirkung: Liefert die Quadratwurzel von X. X muss
groesser oder gleich Null sein.

Beispiel: 10 FOR X=10 TO 25 STEP 5
| 20 PRINT X,SQR(X)

30 NEXT
RUN

10 3.16227766
15 3.87298335
20 4.47213595
25 > |

READY.

106

3.4.21 STATUS

Format: STATUS oder ST

Wirkung: Liefert ein Rechnerstatusbyte, dessen Inhalt auf Grund
der letzten Ein/Ausgabe-Operation gesetzt wird. Dabei
gilt folgende Tabelle:

ST-Bit ST-Dez.- Kassette Ser./IEC- Kassette
Aequiv. lesen Bus VERIFY/LOAD

0 1 Zeitab-

lauf beim

Schreiben

1 2 Zeitab-

lauf beim
Lesen

2 4 kurzer kurzer

Block Block

3 8 langer langer
Block Block

4 16 fataler fataler

Lese- Fehler
fehler

5 32 Pruefsun- Pruefsum-
menfehler - menfehler

6 64 Fileende Datenende

7 -128 Bandende Geraet Bandende
nicht
angeschl.

Beispiel: 10 OPEN 6,1,2,"MASTER FILE"
20 GET#6 , A$
30 IF ST AND 64 THEN 60

40 ?A$
50 GOTO 20
60 ?A$:CLOSE6

Achtung: Das Statuswort fuer die RS-232-Schnittstelle wird im
Anhang A.7 detailliert beschrieben.

107

3.4.22 STR$

Format:

Wirkung:

Beispiel:

STR$(X)

Liefert die Stringdarstellung von X.

10 INPUT''GIB BITTE EINE ZAHL EIN";N
20 PRINT N,LEN(STR$(N))
30 GOTO 10
RUN
GIB BITTE EINE ZAHL EIN? -124<RETURN>
-124 4
GIB BITTE EINE ZAHL EIN? 2<RETURN>

2 2 |
GIB BITTE EINE ZAHL EIN? usw.

Im zweiten Fall ist die Laenge von STR$(2) deshalb 2,
weil in der Stringdarstellung von positiven Zahlen der
Zahl immer eine Leerstelle vorangestellt wird.

108

3.4.23 TAB

Format:

Wirkung:

Beispiel:

TAB(I)

Tabuliert ueber I Spalten in der gegenwaertigen Bild-
schirmzeile. Steht der Cursor vor der Ausfuehrung von
TAB(I) bereits rechts von der I-ten Spalte, so werden I
Spalten der Folgezeile uebertabuliert. TAB bezieht sich
imner auf den Zeilenanfang in der aeusserst linken
Bildschirmspalte (Spalte 0). Die aeusserst rechte Posi-
tion in einer Zeile ist dann Spalte 21. I muss zwischen
Null und 255 liegen. TAB kann nur in Verbindung mit der
PRINT- oder PRINT#-Anweisung verwendet werden.

10 PRINT''WARE''TAB(15)''BETRAG": PRINT
20 READ A$,B$
30 PRINT A$TAB(15)B$
40 DATA "BUTTER", "DM 2.50"
RUN
WARE BETRAG

BUTTER DM 2.50
READY.

109

3.2.24 TAN

Format: TAN(X)

Wirkung: Liefert den TANGENS von X im Bogenmass. Die Berechnung
von TAN(X) erfolgt binaer im Gleitkommaformat.

Beispiel: PRINT TAN(5)/2
-1.6902575

READY.

110

3.4.25 TIME

Format:

Wirkung:

Beispiel:

TIME oder TI

Liefert den momentanen Stand der internen Intervall-
Uhr, die alle 1/60 Sekunde fortgeschrieben wird. Dies
ist keine Echtzeit-Uhr. Die Intervall-Uhr

Einschalten des Rechners initialisiert.

PRINT TI
154788

READY.

111

wird beim

3.4.26 TIME$

Format:

Wirkung:

Beispiel:

TIME$ oder TI$

Liefert einen vom Anwender setzbaren und vom System
fortgeschriebenen 6-Byte-String in der Anordnung:

HHMMSS

Wird dieser String vom Anwender auf eine bestimmte
Uhrzeit gesetzt, so wird diese 'Uhr'' zeitgerecht vom
Rechner fortgeschrieben, bis er abgeschaltet wird.

10 INPUT''BITTE ZEIT (HHMMSS) EINGEBEN";TI$
20 FOR I=1 TO 1000:NEXT
30 PRINT TI$
RUN
BITTE ZEIT (HHMMSS) EINGEBEN? 141223<RETURN>
141234
READY.

112

3.4.27 USR

Format:

Wirkung:

Beispiel:

USR(X)

Verzweigt zu einem Maschinensprache-Unterprogram,
dessen Startadresse vorher in die Zellen mit der
Adresse 1 und 2 der zero page (Organisationsspeicher
des Interpreters) gespeichert werden muss. Zelle 1
enthaelt den niederwertigen und Zelle 2 den hoeher-
wertigen Adressteil. Das Argument X wird in einem der
Gleitkommaakkumulatoren des Interpreters uebergeben, in
den auch das Ergebnis des Unterprogramms abgelegt wer-
den kann, so dass das BASIC-Hauptprogramm dieses Ergeb-
nis unmittelbar einer Variablen zuweisen kann.

10 B=T*SIN(Y)
20 C=USR(B/2)
30 D=USR(B/3)

113

3.4.28 VAL

Format:

Wirkung:

Beispiel:

VAL(X$)

Liefert den numerischen Wert eines Strings, der aus
Ziffern besteht. Ausserdem sind die Zeichen . + - und E

an den richtigen Stelle erlaubt. Beginnt der String mit
einem anderen Zeichen als einer Ziffer, einem Punkt,

Plus- oder Minuszeichen, so liefert VAL(X$) Null.

10 X$="".0053"
20 PRINT VAL(X$)
RUN
3.3E-03

READY.

114

4. Hardware und Betriebssystem des VC20

Im folgenden wird der Aufbau des VC20 anhand von Hardware und
Software beschrieben, damit Sie verstehen, wie dieser Rechner
organisiert ist und seine und Ihre Programme verarbeitet.

4.1 Aufbau des VC20

Im wesentlichen besteht Ihr VC20 aus dem Mikroprozessor MSC6502,
der Betriebssoftware in ROM-Speicherbausteinen (ROM = read only
memory = nur lesbarer Speicher), dem Anwender-Programm- und -
Datenspeicher-RAM (RAM = random access memory = Speicher fuer
wahlfreien Zugriff), den variablen Interface-Bausteinen VIA6522,
die den Datenverkehr zu den peripheren Geraeten (Tastatur,
Bildschirm, Kassettenstation, Drucker, Floppy Disk usw.) steuern,
dem Zeichengenerator-Baustein sowie dem Video-Interface-Chip
VIC6561, das die Bild- und Tonsteuerung uebernimmt.
Die grundsaetzliche Arbeitsweise dieser Systemkomponenten werden
Sie in den folgenden Abschnitten kennenlernen.

4.1.1 Mikroprozessor

Der Mikroprozessor MCS6502 ist das 'Herz' Ihres VC20 und
gleichzeitig der komplexeste Baustein auf der Elektronik-Platine.
Er steuert saemtliche Operationen des Rechners, indem er die
Betriebsprogramme in den ROM-Bausteinen Schritt fuer Schritt
abarbeitet. Die Interpretation und Ausfuehrung der einzelnen
Befehle erfolgt in den Lese- und Ausfuehrungs-Zyklen des Pro-
zessors. Im Lesezyklus wird ein Programmbefehl in das Befehls-
register (ein 1-Byte-Speicher) des Prozessors geladen. Dann wird
der Programmzaehler, der die Adresse dieses Befehls im ROM-Baustein
enthaelt, erhoeht, so dass er auf den naechsten auszufuehrenden
Befehl zeigt. Im Ausfuehrungszyklus wird der in den Prozessor
geladene Befehl interpretiert und die dadurch beschriebene
Operation durchgefuehrt. Die Adressen fuer die einzelnen zu
uebertragenden Dateneinheiten werden dabei entweder aus dem Befehl
selbst hergeleitet oder unter Verwendung von Programmdaten oder
Daten aus den internen Registern des Mikroprozessors berechnet.
Diese Steuerungsablaeufe sind als Informationsaustausch ueber den
16-Bit-Adress-Bus, die 8-Bit-Datenrichtungsleitungen sowie die
Schreibleitung zu verstehen. Unter einem Bus versteht man mehrere
parallele Leitungen, ueber die die Informationen bitparallel
gesendet werden. Die Information auf dem Adressbus bestimmt das
Ziel, zu den oder von dem Daten uebertragen werden sollen. Die
Daten selbst werden auf dem bidirektionalen Datenbus zu und vom
Prozessor uebertragen, wobei die Richtung vom Zustand der
Schreibleitung bestimt wird.

115

4.1.1.1 Ein- und Ausgaenge

Die Ein- und Ausgaenge des Mikroprozessors gliedern sich in 3
Gruppen, von denen jede einen Bus bildet. Ein Bus besteht, wie
bereits erwaehnt, aus einem Satz paralleler Leitungen, die die
einzelnen Systemkomponenten des Rechners miteinander verbinden.

4.1.1.2 Adressbus

Der Adressbus besteht aus 16 Leitungen und fuehrt die vom
Mikroprozessor generierte Adresse zu den Adresseingaengen des
Speichers und der Ein/Ausgabe-Einheiten.

4.1.1.3 Datenbus

Der Datenbus besteht aus 8 bidirektionalen Leitungen. Waehrend
einer Schreiboperation transportieren diese Leitungen die Daten vom
Prozessor zu der durch die Adressleitungen ausgewaehlten Speicher-
zelle. Bei einer Leseoperation werden die Daten vom Speicher zum
Prozessor ueber dieselben Leitungen uebertragen.

4.1.1.4 Steuerbus

Die Funktion der Steuerleitungen, die den Steuerbus bilden, soll an
Hand einer einzelnen Leitung beschrieben werden.
Da der Datenbus bidirektionale Datenuebertragung erlaubt, muss der
Prozessor eine Moeglichkeit haben, dem Speicher oder den Ein/Aus-
gabe-Bausteinen mitzuteilen, in welcher Richtung die Daten ueber-

tragen werden, ob die Daten also gelesen oder geschrieben werden
sollen. Diese Funktion erfuellt der Schreib/Lese-Ausgang des Pro-
zessors. Liegt an diesem Ausgang eine Spannung, so werden alle [a-
ten vom Speicher oder den Ein/Ausgabe-Bausteinen zum Prozessor
uebertragen (Leseoperation). Ist der Schreib/Lese-Ausgang des Pro-
zessors dagegen auf Masse geschaltet, werden Daten vom Prozessor
zum Speicher oder den Ein/Ausgabe-Bausteinen uebertragen
(Schreiboperation).
Die weiteren Leitungen des Steuerbus' sind die Systemtaktleitung
fuer die Steuerung des gesamten Systems in festen Zeitintervallen,
die Reset-Leitung, mit deren Hilfe der Prozessor beim Einschalten
des Rechners initialisiert wird, sowie die Interruptleitungen, mit
deren Hilfe die Abarbeitung eines Programms durch den Prozessor
unterbrochen und ein neues Programm bei einer spezifizierten
Speicheradresse gestartet werden kann.

4.1.2 Speicher fuer das Betriebssystem (ROM)

Der Betriebssystemspeicher enthaelt alle Programme, die zum Betrieb
Ihres VC20 erforderlich sind (Bildschirmeditor, Ein/Ausgabe-
Programme, BASIC-Interpreter). Zur Ausfuehrung dieser Programme,
die ja aus einer Folge von Befehlen und Daten bestehen, holt sich
der Prozessor die einzelnen Befehle, indem er die entsprechende
Programmadresse auf den Adressbus legt. Dadurch wird der Befehl aus
dem Speicher in Form einer binaeren 8-Bit-Information auf den
Datenbus gelegt und zum Prozessor transportiert.

116

Der Betriebssystemspeicher kann vom Prozessor nur auf die eben
beschriebene Weise gelesen werden. Es koennen keine Daten dort
hinein geschrieben werden. Andererseits bleibt die Information in
diesem Speicher im Gegensatz zum Arbeitsspeicher erhalten, wenn der
Rechner ausgeschaltet wird. Es handelt sich hier also um einen
nicht-fluechtigen Speicher.

4.1.3 Arbeitsspeicher (RAM)

Der Schreib/Lese-Speicher Ihres VC20 erlaubt die Speicherung von
Eingabedaten, arithmetischen Operationen und anderen Datenmanipu-
lationen, kurz, von allen Daten und Programmen, die mit dem VC20

verarbeitet werden sollen. Jede Adresse dieses Speichers bezeichnet
eine Gruppe von 8 Speicherzellen (Bits), die zusammen ein Byte bil-
den. Die Daten in diesen Speicherbytes bleiben jedoch nur solange
erhalten, wie der Rechner eingeschaltet ist. Beim Ausschalten wird
der gesamte RAM geloescht. Es handelt sich hierbei also um einen
fluechtigen Speicher.

4.1.4 Variable Interface-Adapter (VIA)

Die variablen Interface-Adapter stellen die Schnittstellen zwischen
Prozessor und Speicher einerseits und der Tastatur, dem Bildschirm
sowie dem Userport, Steuerport und dem seriellen Systembus anderer -
seits dar. Der serielle Systembus dient der Kommunikation Ihres
VC20 mit peripheren Geraeten wie Drucker oder Floppy Disk. Jedem
Anschluss der VIAs ist eine eigene Adresse fuer den Datenaustausch
mit dem Mikroprozessor zugeordnet.

4.1.5 Video-Interface-Chip (VIC)

Der Video-Interface-Baustein VIC6561 hat mehrere Funktionen. Er
steuert die gesamte Farbvideografik und enthaelt alle Komponenten
zur Erzeugung farblich programmierbarer Zeichen mit hoher Bild-
schirmaufloesung. Ausserdem erlaubt dieser Baustein die Erzeugung
von Toenen und Geraeuscheffekten und er enthaelt Analog-Digital-
Wandler fuer die Versorgung von Video-Spielen. Das akustische Sy-
stem des VIC besteht aus drei voneinander unabhaengig programmier-
baren Tongeneratoren, einem Generator fuer weisses Rauschen sowie
einem Amplitudenmodulator. Die Funktion dieses Bausteins wird im
Anhang F ausfuehrlich beschrieben.

4.1.6 Zeichengenerator

Der Zeichengenerator erzeugt alle Zeichen, die Ihr VC20 verwendet.
Dieser Zeichensatz ist zweimal gespeichert, und zwar fuer die
normale und die inverse Zeichendarstellung auf dem Bildschirm. Die
Zeichen sind im 6-Bit-ASCII-Code verschluesselt und in Zellen mit
8x8 Bits abgelegt. Der Zugriff auf diese Zeichenmatrizen wird im
Abschnitt 4.4 detailliert beschrieben. |

117

4.2 Speicherorganisation

Der Mikroprozessor Ihres VC20 kann bis zu 65536 voneinander unab-
haengige Speicherbytes zu je.8 Bit verwalten und adressieren. Sie
koennen sich den Speicher als Buch mit 256 Seiten zu je 256 Spei-
cherbytes vorstellen. Diese Seiten werden (in hexadezimaler
Schreibweise) von $00 bis $FF gezaehlt. So ist z.B. die Seite $80
der Speicherbereich von 256 Bytes, der von der Adresse $8000 bis
zur Adresse $80FF reicht.
Da der Mikroprozessor MCS6502 zur Bildung einer Speicheradresse
zwei Bytes verwendet, kann das eine Byte als Seitenzahl und das
andere Byte als Platznummer in dieser Seite aufgefasst werden.
Vom Gesamtspeicher kann der aktive Arbeitsspeicher (RAM) beim VC20
3.58 Kilobyte (kByte) (Adresse $1000 (dez. 4096) bis $1DFF (dez.
7679)), 6.65 kByte (Adresse $0400 (dez. 1024) bis $1DFF (dez.
7679)) oder hoechsten 32 kByte durch Hinzufuegen einer 24-kByte-
Speichererweiterung einnehmen. Der unterste Speicherbereich von 1
kByte (Adresse $0000 bis $03FF) wird vom Betriebssystem benoetigt
und steht dem Anwender daher nicht zur Verfuegung.
Damit verfuegt der VC20 also ueber drei verschiedene Speichertypen:

1. Arbeitsspeicher (RAM)
2. Betriebssystemspeicher (ROM)
3. Ein/Ausgabe-Speicherzellen der VIAs

Diese Speichertypen sowie ihre Organisation sind in der unten
stehenden Abbildung noch einmal zusammengestellt. Die einzelnen
Speicherbereiche werden in den folgenden Abschnitten beschrieben.

Dezimal Hex Dezimal Hex

0 $0000 36864 $9000
Arbeitsspeicher des VIC-Adressen
Betriebssystems 37136 $9110

1024 $0400 Ein /Ausgabe -
Speichererweiterung Speicherzellen
RAM 37888 $9400

4096 $1000 Farbzellenspeicher
BASIC-Programm- 38912 $9800
speicher RAM Ein/Ausgabe-

7680 $1E00 Speicherzellen
Bildschirmspeicher 39936 $9C00

8192 $2000 Ein/Ausgabe-
Speichererweiterung Speicherzellen
RAM/ROM 40960 $ A000

16384 $4000 Speichererweiterung
Speichererweiterung ROM
RAM/ROM 49152 $C000

24576 $6000 BASIC-Interpreter
Speichererweiterung ROM
RAM/ROM 57344 $E000

32768 $8000 Betriebssystem ROM
Zeichengenerator ROM 65535 $FFFF

36863 $8FFF

Abb. 4.1: Speicherorganisation des VC20

118

4.2.1 Arbeitsspeicher und Anwenderprogramme

Die ersten 1024 Bytes des RAM werden vom BASIC-Interpreter und vom
Betriebssystem des VC20 als Arbeitsspeicher, Stapelspeicher und
Datenpuffer fuer die Kassettenstation benoetigt und stehen Ihnen
deshalb nicht als Anwenderspeicher fuer Programme zur Verfuegung.
Ab Adresse $1000 (dez. 4096) beginnt der Anwenderspeicher der
zusammen mit dem Bildschirmspeicher bis zur Adresse $1FFF (dez.
8191) reicht.

Dezimal Hex

0. $0000
Interpreter-Arbeits-
speicher

144 $0090
Betriebssystem-Arbeits-
speicher

256 $0100
Stapelspeicher

512 $0200
Interpreter- und Be-
triebssystem-Arbeits-
speicher

828 $033C
Datenpuffer fuer
Kassettenstation

1024 $0400
Speichererweiterung
RAM

4096 $1000
BASIC-Programmspeicher

Variablen und Felder

String-Inhalte
7680 $1E00

Bildschirmspeicher
8191 $1FFF

Abb. 4.2: Aufteilung des Arbeitsspeichers

Die Speicherplaetze zwischen $0100 und $01FF (dez. 256 bis 511)
werden vom BASIC-Interpreter, vom Betriebssystem und vom Mikropro-
zessor als Stapelspeicher benoetigt. Dieser Speicher beginnt mit
der Adresse $01FF und wird abwaerts dynamisch entsprechend den An-
forderungen des Interpreters, des Betriebssystems oder des Mikro-
prozessors gefuellt oder geloescht. Falls der Stapelzeiger das Ende
des Stapelspeichers bei $0100 erreicht, wird eine OUT OF MEMORY-
Fehlermeldung ausgegeben.
Der Speicherbereich zwischen $0200 und $033D (dez. 512 bis 827)
wird als zusaetzlicher Arbeitsspeicher vom BASIC-Interpreter und
vom Betriebssystem verwendet. Die Speicherplaetze $033C bis $03FF
(dez. 828 bis 1023) bilden einen Datenpuffer fuer die Kassetten-
station.

119

Der Speicherbereich von $1000 bis $1DFF (dez. 4096 bis 7679)
repraesentiert den eigentlichen Anwenderspeicher fuer BASIC-
Programme. Dabei werden die Programme ab Adresse $1000 aufwaerts
abgelegt. Die waehrend der Programminterpretation erkannten
Variablen werden im Anschluss an das Programm abgespeichert. Ggfs.
verwendete Felder schliessen sich daran an. Die Inhalte von
Stringvariablen, also die Strings selbst, werden bei Adresse $1DFF
beginnend abwaerts gespeichert. Wenn die beiden Zeiger fuer Auf-
und Abwaertsspeicherung denselben Wert enthalten, wird eine OUT OF
MEMORY-Fehlermeldung ausgegeben.

4.2.2 RAM- und ROM-Erweiterungen

Der Adressbereich zwischen $0400 und $OFFF (dez. 1024 bis 4095) ist
fuer RAM-Speichererweiterungen vorgesehen. Im Bereich zwischen
$2000 und $7FFF (dez. 8192 bis 32767) koennen sowohl RAM- als auch
ROM-Erweiterungen eingesetzt werden, waehrend der Bereich zwischen
$A000 und $BFFF (dez. 40960 bis 49151) nur fuer ROM-Erweiterungen
reserviert ist (s.a. Abb. 4.3).

Dezimal Hex

1024 $0400
RAM-Erweiterung 3 kByte

4095 $OFFF

8192 $2000
RAM/ROM-Erweit. 8 kByte

16384 - $4000
RAM/ROM-Erweit. 8 kByte

24576 $6000
RAM/ROM-Erweit. 8 kByte

32767 $7FFF

40960 $A000
ROM-Erweiterung 8 kByte

49151 $BFFF

Abb. 4.3: RAM/ROM-Speichererweiterungen

120

4.2.3 Betriebssystem, Interpreter und Ein/Ausgabe

Die Speicherplaetze zwischen $9110 und $93FF (dez. 37136 bis 37887)
sowie zwischen $9800 und $9FFF (dez. 38912 bis 40959) sind die in
den Speicherbereich mit einbezogenen Ein/Ausgabe-Speicherplaetze.
Im Bereich zwischen $C000 und $DFFF (dez. 49152 bis 57344) ist der
BASIC-Interpreter und im Bereich zwischen $E000 und $FFFF (dez.
57345 bis 65535) das VC20-Betriebssystem untergebracht (s.a. Abb.
4.4).

Dezimal Hex

37136 $9110

Ein/Ausgabe-Bereich
37887 $93 FF

38912 $9800
Ein/Ausgabe-Bereich |

39936 $9C00
Ein/Ausgabe-Bereich

40959 $YFFF

49152 $C000
BASIC-Interpreter ROM

57344 $E000

Betriebssystem ROM
65535 $FFFF

Abb.4.4: Speicherbereiche fuer Ein/Ausgabe, Interpreter und
Betriebssystem

4.3 Der BASIC-Interpreter des VC20

Der VC20-BASIC-Interpreter fuehrt ein BASIC-Anwenderprogramm aus,
indem er jede in ihrer komprimierten Form gespeicherte Program-
zeile interpretiert.
Zunaechst wollen wir kennenlernen, wie ein BASIC-Programm im Spei-
cher abgelegt wird.
Waehrend der Eingabe einer Programmzeile ueber die Tastatur hat der
Bildschirmeditor die Kontrolle. Er erlaubt die Editierung der Zei-
le, bis die RETURN-Taste gedrueckt wird. In diesem Moment geht die
Kontrolle an den BASIC-Interpreter ueber. Dieser uebersetzt zu-
naechst die Zeile in ihre komprimierte Form, indem er alle reser-
vierten Woerter durch 1-Byte-Codes (s. Tabelle C.1 im Anhang C)
ersetzt und legt sie dann nach aufsteigender Zeilennummer im Spei-
cher ab. Dazu durchsucht der Interpreter den bisher gefuellten
Anwenderspeicher nach dieser Zeilennummer. Findet er eine Zeile mit
deselben Nummer, so wird diese Zeile durch die gerade eingegebene
ersetzt, andernfalls wird die Zeile hinter der mit der naechsthoe-
heren bzw. vor der mit der naechstniedrigeren Zeilennummer abge-
legt. Die Programmzeilen werden vom Anfang des Anwenderspeichers
beginnend (Adresse $1000 oder $0400) gespeichert.

121

Am Ende eines Programms werden die Variablen und im Anschluss daran
die Felder abgelegt. Diese drei Bereiche beginnen bei niedrigeren
Adressen und werden zu hoeheren Adressen hin aufgebaut. Die Inhalte
von Strings werden dagegen vom Ende des Anwenderspeichers zu nie-
drigeren Adressen hin abgelegt. Der BASIC-Interpreter baut diese
Bereiche im Verlaufe der Programmerstellung und -abarbeitung unter
Verwendung von 8 Paaren von Adresszeigern auf (s.a. Abb. 4.5).
Jeder Adresszeiger enthaelt eine Adresse in der Anordnung nieder-
wertiges Byte/hoeherwertiges Byte.

Zeigeradresse (hex.) und Bedeutung Typische Werte (dez.)

(2B/2C) Programmanfang 4096
| BASIC-Anweisungen

(41/42) Zeiger fuer 4879
DATA-Anweisungen

Y
(2D/2E) Beginn der —— - - - -- 5018

Variablen
Variablen

(2F/30) Ende der —- - - —- -— - — 5144
Variablen

Felder

(31/32) Ende der Felder Fr -- — — — — — — 5303

(33/34) Ende der String | - - -- - — - Pig 7557

Strings

(35/36) Anfang der Strings 7675

(37/38) Ende des Anwender- 7679
speichers

Abb. 4.5: Adresszeiger fuer den Anwenderprogrammbereich

4.3.1 Speicherung von BASIC-Anweisungen

Abb. 4.6 auf der naechsten Seite zeigt das Format, in dem die Pro-
grammzeilen vom BASIC-Interpreter im Speicher abgelegt werden. In
den Speicherzellen dez. 4096 und 4097 ist die Anfangsadresse der
naechsten Programmzeile gespeichert und zwar wie bei allen Adressen
in der Weise, dass zuerst das niederwertige Adressbyte (das die
Speicherzelle innerhalb einer Speicherseite bezeichnet) und dann
das hoeherwertige Adressbyte (das die Speicherseite selbst bezeich-
net) abgelegt wird. Die Anfangsadresse der naechsten Zeile enthaelt
wieder eine Koppeladresse zur folgenden Zeile usw. Eine Koppel-
adresse bestehend aus binaeren Nullen ($0000) kennzeichnet das Pro-
grammende.

122

BASIC-Programmzeilen werden nach aufsteigender Zeilennummer abge-
legt, obwohl Koppeladressen existieren. Letztere dienen dem schnel-
len Durchsuchen von Zeilennummern.
An die Koppeladresse schliesst sich die in gleicher Weise gespei-
cherte Zeilennumer an. Zeilennummern zwischen O und 63999 werden
in der Form
0,0 bzw. 255,249 dez. gespeichert:

4096 ‚4097 4098,4099 4100

Programm-: Koppeladresse Zeilennr. komprimierter BASIC-Text 0
anfang

Koppeladresse Zeilennr. komprimierter BASIC-Text 0

Koppeladresse Zeilennr. komprimierter BASIC-Text 0

Program-: 00
ende

Abb. 4.6: Speicherung von BASIC-Programmzeilen

Nach der Zeilennummer folgt der BASIC-Text der Anweisung(en). Alle
reservierten BASIC-Woerter und die mathematischen Operatoren werden
in einen 1-Byte-Code komprimiert. Bei diesem Code ist generell das
hoechstwertige Bit auf 1 gesetzt, so dass der Code im Bereich zwi-
schen dezimal 128 und 255 liegt. Die anderen Elemente des BASIC-
Textes wie Variablennamen, Strings usw. werden im ASCII-Code abge-
legt. Tabelle C.1 im Anhang C enthaelt alle Byte-Codes, die in kon-
primierten BASIC-Zeilen vorkommen koennen. Die Codes werden nach
dieser Tabelle interpretiert, es sei denn, sie folgen auf eine
ungerade Zahl von Anfuehrungszeichen ('"). In diesem Fall werden
solche Codes als zum String gehoerige Zeichen aufgefasst. Eine
Sonderstellung nehmen die beiden reservierten Woerter TAB und SPC
ein. Hier wird die linke Klammer als Bestanddteil des Schluessel-
wortes aufgefasst, wie in untenstehendem Beispiel dargestellt ist:

10 IF INT(A)<5 THEN PRINT TAB(X)

Lt ho lo Irsols2 181 [40 Jssla1 [i7o]s5]52]167] 32 [153 | 32{163 | 88]41[0]

Kopp- IF INT(A) < 5 THEN PRINT TABCX)
lung

Zeilen- Zeilen-
Nr. ende

123

4.3.2 Schluesselwort-Codes |

Den Operatoren + - * #<=> sowie AND, OR und NOT sind ebenfalls
1-Byte-Codes mit gesetztem hoechsten Bit zugeordnet, da sie fuer
den Interpreter die gleiche Bedeutung wie die reservierten Woerter
haben. Die entsprechenden ASCII-Codes fuer diese Zeichen werden nur
dann abgesetzt, wenn sie als Bestandteil eines Strings auftreten.

4.3.3 Leerstellen in Programmzeilen

Leerstellen in Programmzeilen werden mit Ausnahme der unmittelbar
auf die Zeilennummer folgenden grundsaetzlich in ihrem ASCII-Code
(dez. 32) mit gepeichert. Beim Listen eines Programmes wird eine
Leerstelle zwischen Zeilennummer und erstem Schluesselwort erzeugt.
Sie koennen durch Weglassen von Leerstellen in den Programmzeilen
erheblich Speicherplatz sparen. Das Programm ist dann jedoch nicht
mehr so gut lesbar. Eine weitere Moeglichkeit, Speicherplatz zu
sparen, besteht darin, mehrere Anweisungen getrennt durch Doppel-
punkt, in eine Programmzeile zu schreiben, da jede Programzeile 5
Verwaltungsbytes (je zwei fuer die Koppeladresse und Zeilennummer
und ein Null-Byte am Zeilenende) benoetigt.

4.3.4 Null-Bytes

Die Laenge einer Programmzeile ist variabel. Deshalb wird zur Kenn-
zeichnung des Zeilenendes jede Programmzeile mit einem Null-Byte
(binaere Null) abgeschlossen. Der Wert Null innerhalb einer Pro-
grammzeile wird dagegen in seinem ASCII-Code (dez. 48) gespeichert.
Diese Nullbytes verwendet der Interpreter bei der Programmaus-
fuehrung als Merkmale, wenn er durch den komprimierten BASIC-Text
von links nach rechts geht, die Schluesselwoerter heraussucht und
die dadurch bezeichneten Operationen ausfuehrt. Die dem Ende einer
Programmzeile folgenden 4 Bytes beinhalten die Koppeladresse und
Zeilennummer der Folgezeile. Zum Auffinden dieser Folgezeile wird
jedoch nicht das Null-Byte sondern vielmehr die Koppeladresse der
gerade interpretierten Zeile verwendet. Drei aufeinanderfolgende
Null-Bytes (das Zeilenende der letzten Programmzeile sowie zwei
Koppeladressbytes) kennzeichenen das Ende des BASIC-Programmtextes.

4.3.5 Programmformat bei der Kassetten-Speicherung

Programme werden auf Kassette (oder auch Floppy Disk) in demselben
Format gespeichert, wie sie im Anwenderspeicher stehen, also in
einer kontinuierlichen Folge von Bytes mit Koppeladressen und Null-
Bytes.

124

4.3.6 Programmformat-Kompatibilitaet

Die Verwendung von 1-Byte-Codes anstelle von reservierten Woertern
(Schluesselwoerter) ist keine spezielle Eigenart Ihres VC20. Es
gibt jedoch keinen standardisierten Code fuer die verschiedenen
existierenden BASIC-Interpreter. Aus diesem Grunde ist auch ein auf
Kassette gespeichertes Programm in VC20-BASIC nicht kompatibel mit _
anderen BASIC-Programmen. Andererseits koennen auf anderen Compu-
tern erzeugte BASIC-Programme nicht vom VC20-BASIC-Interpreter ge-
laden werden.

4.4 Zugriff auf Farb- und Zeichenmatrizen

Zur programmierten Erzeugung farbiger Zeichen benutzt Ihr VC20 drei

verschiedene Speicherbereiche, in denen Zeichen- und Farbzeiger so-
wie die darzustellenden Zeichen selbst gespeichert sind. Im folgen-
den werden diese Bereiche sowie der Zugriff auf sie im einzelnen
beschrieben.

4.4.1 Zeichenzeiger

Der Zeichenzeiger-Bereich ist ein Byte-Block im RAM von 506 Bytes,
der als Video-Matrix bezeichnet wird. Jedes Byte dieser Matrix
zeigt auf ein einzelnes abzubildendes Zeichen.

4.4.2 Anzeige von Zeichen

Der Bereich der darstellbaren Zeichen besteht aus Bloecken von 8
oder 16 Bytes Laenge. Diese Zellen enthalten das abzubildende
Punktraster fuer das jeweilige Zeichen und liegen im RAM oder ROM,
je nachdem, wie die Zeichen auf den Schirm gebracht werden sollen.

4.4.2.1 Bildschirmspeicher

Dieser RAM-Bereich zwischen $1E00 und $1FFF (dez. 7680 bis 8191)
ist fuer die Speicherung der auf dem Bildschirm abzubildenen
Zeichen reserviert. Jedes dargestellte Zeichen belegt in diesem
Speicher 1 Byte. Das Zeichen selbst ist, wie bereits erwaehnt, in
einem 8x8-Bit-Block gespeichert, wie dies in der Abbildung 4.7 auf
der naechsten Seite dargestellt ist.

125

$1E00 ($1000) | $1E15 ($1015)

$1E16 22 Zeichen
($1016) FH.

23 Zeichen

[A|

Zeichen

Adresse im Binaerwert der

Zeichengenerator Rasterzeile

$8000 | | $18

$8009 $24
$42
$7E

$42
$42

$42
$800F $00

Die in dem oberen Teil der Abbildung in Klammern ange-
gebenen Adressen beziehen sich auf eine vorhandene RAM-
Erweiterung von 3 kByte. In diesem Fall legt das Be-
triebssystem bei der Initialisierung den Bildschirm-
Speicher zwischen $1000 und $1FOA an.

Abb. 4.7: Schema der Bildschirmzellen fuer die
Zeichendarstellung

126

4.4.3 Farbzeiger

Der Speicherbereich fuer die Farbzeiger besteht aus einer Gruppe
von Farbzellen im RAM-Bereich $9400 bis $97FF (dez. 37888 bis
38912), der als Farbmatrix bezeichnet wird. Von diesen Farbzellen
definieren die jeweils 4 niederwertigen Bits die Farbe, in der die
einzelnen Zeichen dargestellt werden sollen und waehlen einen der
beiden Farbmodi.

4.4.4 Formatorganisation fuer die Bildschirmanzeige

Der Mikroprozessor organisiert das Format fuer die Video-Matrix,
die Farbmatrix und die Zeichenzellen in geeigneter Weise, damit die
entsprechenden Daten auf dem Bildschirm dargestellt werden koennen.
Abb. 4.8 zeigt das Format der Videomatrix, in der Zeichen in 22
Spalten und 23 Zeilen gespeichert werden koennen. Die Organisation
dieser Video-Matrix wird im Anhang F.3 detailliert beschrieben.

22 Spalten

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 10 11 12 13 14 15

00
01
02
03
04
05
06
07
08
09
OA
OB
OC
OD
OE
OF
10
11
12
13
14
15

23 Zeilen

Spalten- und Zeilennummern sind hexadezimal angegeben.

Abb. 4.8: Video-Matrix

127

Es existieren also 506 Speicherzellen fuer die Zeichen, die selbst
in einem 8x8-Punktraster abgebildet werden. Damit ergibt sich eine
Bildschirmaufloesung von 176 Punkten in der Zeile und 184 Bildpunk-
ten in der Spalte. In jede der 506 Matrixzellen kann z.B. durch
Druecken einer Taste ein Zeichenindex fuer das in dieser Position
auf dem Bildschirm abzubildende Zeichen gespeichert werden. Aus dem
Index wird mit Hilfe des Video-Interface-Chip 6561 eine Adresse
errechnet, die auf das in dieser Position abzubildende Zeichen im
Zeichengenerator zeigt. Dort wird das Zeichen geholt und in der
bezeichneten Position des Bildschirms abgebildet (s.a. Anhang F.3).

128

Anhang A

Beschreibung der RS-232(V24)-Schnittstelle

A.1 Allgemeines

Die RS-232-Schnittstelle des VC-20-Systems setzt sich aus vier Elementen zusammen:

1. Unterstützung durch den BASIC-Interpreter.
2. Puffersystem.
3. Byte/Bit-Behandlung.
4. Äußere Hardware zur Erzeugung der geeigneten Spannungspegel.

Die Programmschnittstelle zum BASIC-Interpreter wird durch die üblichen BASIC-
Anweisungen OPEN, CLOSE, CMD, INPUT, GET# und PRINTS realisiert. Die

Verwendung dieser Anweisungen wird an Hand von Beispielen im weiteren Verlauf
dieses Anhanges behandelt. Die RS-232-Schnittstelle kann sowohl von BASIC- als
auch von Maschinensprache-Programmen bedient werden.
Mit dem Puffersystem sollte sich jeder Programmierer, der die Schnittstelle benutzen
möchte, vorher vertraut machen. Das Puffersystem besteht aus zwei 256-Byte-Puffern,
die im “first-in-first-out”-Modus betrieben werden, d.h. die Zeichen werden in der

Reihenfolge aus dem Puffer ausgegeben, wie sie hineingeschrieben wurden. Das Puffer-
system belegt bei Bedarf die obersten beiden Speicher-Seiten des Anwender-Pro-
grammspeichers. Durch das Eröffnen eines RS-232-Kanals mit einer OPEN-Anwei-
sung werden diese 512 Bytes für die Puffer reserviert. Ist oberhalb des im Speicher be-
findlichen BASIC-Programms nicht mehr ausreichend Platz vorhanden, so wird keine
Fehlermeldung ausgegeben, sondern das Programm wird vielmehr zerstört. Zeichen
werden mit den Anweisungen INPUT und GET aus dem Puffer gelesen und mit
PRINT# und CMD in den Puffer geschrieben. |
Die Byte/Bit-Behandlung für die Schnittstelle läuft unter der Kontrolle von Zeitgebern
im VIA 6522-Baustein ab und ist interrupt-(unterbrechungs-)gesteuert.

129

A.2 Eroffnen eines RS-232-Datenkanals

Zu jeder Zeit sollte nur ein RS-232-Datenkanal eröffnet sein. Eine zweite RS-232-

OPEN-Anweisung würde nämlich die Pufferzeiger zurücksetzen und die noch nicht
ausgegebenen oder empfangenen Daten würden dem BASIC-Interpreter verloren-
gehen. Die Angaben für das Kontrollregister werden im Hinblick auf eine nicht imple-
mentierte Baud-Rate nicht geprüft. |

BASIC-Syntax:

If:

Kontrollregister:

Achtung:

OPEN #If,2,“chr$(Kontrollregister)”

Logische Filenummer (0 If 256). Wird eine Filenummer uber 127
angegeben, so wird nach jedem logischen Datensatz zusatzlich zum
Wagenrücklaufcode (CHR$(13)) ein Zeilensprung-Code (CHR$
(10)) ausgegeben.

Ein 1-Byte-Zeichen mit einer Bit-Kombination gemäß Abb. 3.1 zur
Einstellung der Baud-Rate (Bit-Ubertragungsrate).

Wenn Sie einen RS-232-Kanal in einem BASIC-Programm ver-
wenden, sollten Sie diesen mit der OPEN-Anweisung eröffnen,
bevor Sie irgendeine Variable oder eine DIM-Anweisung verwen-
den, da durch die OPEN-Anweisung zunächst die CLR-Anweisung
ausgeführt wird und dann am oberen Speicherende die beiden Daten-
puffer mit insgesamt 512 Byte Länge angelegt werden. Ist dieser
Platz nicht mehr vorhanden, so wird Ihr im Speicher befindliches
Programm zerstört.

130

In der nachfolgenden Abbildung 3.1 wird ein gesetztes Bit mit 1 und ein nicht gesetztes
Bit mit 0 bezeichnet:

3600 Baud (n.i.)
4800 Baud (n.i.)
7200 Baud (n.i.)
9600 Baud (ni)

19200 Baud (n.i.)

Bit Nr.: 7 65 4 3 2 1 «0

Stop-Bits: | | | | Baud-Rate

0: Ein Stop-Bit 0 0 0 0 Anwender-Rate (n.i.)
1: Zwei Stop-Bits 0001 50 Baud

00 1 0 75 Baud
001 1 110 Baud
0 1 0 0 134.5 Baud
0 101 150 Baud
0 1 1 0 300 Baud
0111 600 Baud
1000 1200 Baud
1001 1800 Baud
101 0 2400 Baud
1011
1100
11071
1110
114141

(n.i.) = nicht implementiert

Datenwort-Lange

8 Bits

7 Bits

6 Bits

5 Bits a

oe

Gn
a)

a
D

©

Bit Nr. 4 des Kontrollregisters wird
nicht verwendet.

Abb. 1: Kontrollregister fiir die RS-232-Schnittstelle

131

A.3 Daten aus einem RS-232-Kanal lesen

BASIC-Syntax:

If:

Achtung:

GET#If, Stringvariable
INPUT#I£, Variablenliste

Logische Filenummer (0 If 256)

Ist die Wortlänge (Zeichenlänge) kleiner als 8 Bits, so wird den nicht
verwendeten Bits der Wert Null zugewiesen. Findet GET# keine
Daten im Puffer, so liefert diese Anweisung einen Leerstring.
INPUT wartet so lange, bis der Puffer ein Nicht-Null-Zeichen ent-
halt. Eine Zeichenkette muß mit einem Wagenrücklauf-Code
(CHR$(13)) abgeschlossen sein. Deshalb sollte die INPUT#-
Anweisung in Verbindung mit einem RS-232-Kanal nur verwendet
werden, wenn die erforderliche Datenstruktur auch gewährleistet ist.

132

A.4 Daten über einen RS-232-Kanal ausgeben

Bei der Datenausgabe über einen RS-232-Kanal kann der Datenpuffer bis zu 255
Zeichen halten.

BASIC-Syntax: CMD If, Liste von Ausdrücken
PRINT#If, Liste von Ausdrücken

If: Logische Filenummer (0 If 256)

Achtung: Es existiert keine Sendeverzögerung nach Ausgabe eines Wagen-
rücklauf-Codes. Es können also nur Drucker an der RS-232-Schnitt-
stelle betrieben werden, die über einen eigenen Datenpuffer ver-
fügen.

A.5 Schließen eines RS-232-Kanals

Beim Schließen eines RS-232-Kanals werden alle Daten in den Ein- und Ausgabe-
puffern gelöscht, jede Bitübertragung wird angehalten und die Datenausgabeleitung
wird inaktiviert und der Speicher, der durch die beiden Puffer belegt wurde, wird wieder
freigegeben. .

BASIC-Syntax: CLOSE If

If: Logische Filenummer (0 If 256)

133

A.6 Die RS-232-Leitungen

Wie bereits im Abschnitt 1 dieses Anhanges erwähnt, wird die RS-232-Schnittstelle
durch eine Kombination eines VIA6522-Bausteins mit geeigneter Software in Maschi-
nensprache realisiert. Die einzelnen Leitungen für die RS-232-Schnittstelle gemäß des
EIA-Standards sowie ihre Pin-Zuordnung am VIA6522 im Adreßbereich $9110 bis

$9 11F (dez. 37136 bis 37151) können Sie der untenstehenden Tabelle entnehmen:

Tabelle 3.1: Die RS-232-Leitungen

Pin 6522 Beschreibung

C PBO Received data
D PB1 Request to send
E PB2 Data terminal ready
F PB3 Ring indicator
H PB4 _ Received line signal
J PBS5 Nicht belegt
K PB6 Clear to send
L PB7 Data set ready
B CB1 Received data
M CB2 Transmitted data
A GND _ Protective ground
N GND Signalground ~

EIA

(BB)
(CA)
(CD)
(CE)
(CF)

(CB)
(CC)
(BB)
(BA)
(AA)
(AB)

ABV

Sin

RTS

DTR

RI

DCD

CTS

DSR

Sin

Sout

GND

GND

Poke 37138,6 setzt die Steuersignale auf Ein- und Ausgänge

Peek (37136) liest die Steuerleitungszustände ein

134

IN/OUT

IN
OUT
OUT
IN
IN
IN
IN
IN
IN
OUT

O
O
O
O
0
O
O
9

m
m

©

Sy

A.7 BASIC-Beispielprogramm für RS-232-Schnittstelle

Das Programm steuert den bidirektionalen Datenverkehr zwischen einem VC-20 und
einem anderen VC-20. Dabei wurde folgende Betriebsart gewählt:

* Übertragungsrate 300 Baud (bit/s)
* 8-Bit- ASCII

* 0 Stop Bit

108 FOKES687S.15:REM LAUTSTAERKE EINSCHALTEH
118 OPEN2,2,3,.CHR#¢6+32)' REM KONTROLLFEGISTER SETZEH
120 REM SENDEN
138 PRIHT"I"
148 FOKEEST,125:REM VERHINDERT UMSCHALTUNG GROSS-KLEIN-SCHREIBUNG
150 FOKE’788,124:REM AUSSCHALTEN DER STOP~TASTE
1869 FOKE133,8:REM TASTATURFUFFER AUF NULL SETZEH
178 FOKESES’3,ec21:REM BILTSCHIRMFARBE
15@ PRIHT:FRINT"4 DATEH SENDEH "
158 FRINT"DATEHEMFFANHG : A Fi m
200 GETAS: IFAF>""THENZDO
218 IFAS=CHREC133> THEMHASe" T" > GOTOSIG: REM TASTE Fi
228 IFAF=SCHRECSSPTHENZBO
238 IFAS#CHREC34 9 THENSGO
240 IFAS=CHREC134 THEHAF=" 4": PRINT: GOTO31G
258 IFAS<CCHRE C31 DORASSOCHRE (96> THEN2BN
260 PRIHTAS:;
270 FOKES6874,ASCCASI+140
266 FORK=1TO0268: HEAT
250 FÜKEI6874, 11
SOG IFR$S=CHRFCIZITHENAF=SCHRFCZEII
318 FRINT#2,RF
328 IFAS=" T"THEN34B
338 GOTOZ68
3486 REM EMPFANGEH
358 POKESEST9., 178
S60 FRINT:FRINT:FRINT"4 DATEM EMPFAHGEH "
378 IHPUT#H2, AF
3588 FPOKES6S7S., ASCCAS5 +140
390 FORK=1 T0266: NEXT
4080 FOKESSS7S, 11
410 IFAS="¢" THEHAS=CHRZ C1335
420 IFAS=" T"THEH1ISG
430 PRINTAS;
448 G0T0378

135

A.8 Empfaenger /Sender-Pufferzeiger

Das Betriebssystem fuehrt fuer den Datenaustausch ueber die RS-232-
Schnittstelle zwei Pufferzeiger von je zwei Bytes, in die die je-
weiligen Anfangsadressen von Ein- und Ausgabe-Puffer eingetragen
werden, sobald die OPEN-Anweisung ausgefuehrt wird. Bei der CLOSE-
Anweisung wird in das jeweils hoeherwertige Byte Null geschrieben,
um die Freigabe des Speicherbereiches zu kennzeichnen:

Adresse symbol. Name Bedeutung

$00F7 /$00F8 RIBUF Zeiger auf Anfangsadresse des Eingabe-
puffers

$00F9/$00FA ROBUF Zeiger auf Anfangsadresse des Ausgabe-
puffers

Diese Zeiger koennen auch von Maschinenspracheprogrammen oder mit-
tels der POKE-Anweisung von BASIC-Programmen gesetzt werden, um
Datenpuffer fuer andere Zwecke zu deklarieren.

A.9 Zero-Page-Speicherplaetze fuer die RS-232-Software

Das Betriebssystem des VC20 benutzt fuer die Steuerung der RS-232-
Schnittstelle einige Speicherplaetze der "zero page''. Die zero page
ist die Seite Nr. 0 des Speichers im Adress-Bereich $0000 bis $00FF
(dez. O bis 255). Diese Plaetze werden jedoch nur lokal genutzt, da
die RS-232-Software interrupt-gesteuert ist. Sie duerfen nicht fuer
andere Zwecke vom Anwender benutzt werden. Dennoch sind sie der
Vollstaendigkeit halber auf der folgenden Seite zusammengestellt.

136

Adresse

$00A7
$00A8
$00A9

$00AA

$00AB
$00B4
$00B5

$00B6

symbol. Name Bedeutung

INBIT
BITCI
RINONE

RIDATA

RIPRTY
BITTS
NXTBIT

RODATA

Bit-Zwischenspeicher bei der Eingabe
Bit-Zaehler bei der Eingabe
Flag fuer Startbit-Check bei der
Eingabe
Zwischenpuffer fuer den Byteaufbau
(Eingabe)
Paritaetsbit-Speicher bei der Eingabe
Bit-Zaehler bei der Ausgabe
naechstes zu uebertragendes Bit
(Ausgabe)
Zwischenpuffer fuer Bytezerlegung
(Ausgabe)

137

Anhang B

Routinen des Betriebssystems

B.1 Uebersicht

Dieser Anhang enthaelt die Beschreibung der Routinen oder Unterpro-
gramme, die das Betriebssystem Ihres VC20 zur Kontrolle aller Rech-
nerfunktionen verwendet. Alle Routinen, die in der untenstehenden
Tabelle B.1 zusammengestellt sind, koennen von Maschinensprachepro-
grammen, die Sie selbst erstellt haben, wie Unterprogramme aufge-
rufen werden. Die Seitenangabe in der Tabelle bezieht sich auf die
detaillierte Beschreibung jeder einzelnen Routine im Abschnitt B.3:

Tabelle B.1: Aufrufbare Betriebssystem-Unterprogramme

Symbol. Einsprung- Funktion Seite
Name Adresse

ACPTR $FFA5 Byteeingabe ueber IEEE-Bus 140
CHKIN $FFC6 Eingabekanal eroeffnen 141
CHKOUT $FFC9 Ausgabekanal eroeffnen 142
CHRIN $FFCF Byteeingabe ueber Kanal 143
CHROUT $FFD2 Byteausgabe ueber Kanal 144
CIOUT $FFA8 Byteausgabe ueber IEEE-Bus 145
CLALL $FFE7 Alle Files schliessen 146
CLOSE $FFC3 logischen File schliessen 147
CLRCHN $FFCC Ein- und Ausgabekanaele schliessen 148
GETIN $FFE4 Zeichen von Eingabegeraet holen 149
IOBASE $FFF3 Basis-Ein/Ausgabeadresse liefern 150
LISTEN S$FFB1 LISTEN-Befehl an IEEE-Geraet 151
LOAD $FFD5 RAM von peripherem Geraet laden 152
MEMBOT $FFIC Lesen/Setzen Speicheranfangsadresse 153
MEMTOP $FF99 Lesen/Setzen Speicherendadresse 154
OPEN $FFCO logischen File eroeffnen 155
PLOT $FFFO Lesen/Setzen Cursor-X/Y-Position 156
RDTIM $FFDE Systemuhr lesen 157
READST $FFB7 Ein/Ausgabe-Statusbyte lesen 158
RESTOR $FF8A Ein/Ausgabe-Zeiger voreinstellen 159
SAVE $FFD8 RAM auf peripheres Geraet schreiben 160
SCNKEY $FFOF Tastatur abfragen 161
SCREEN $FFED X/Y-Bildschirmorganisation liefern 162
SECOND $FF93 Sekundaeradresse ausgeben 163
SETLFS $FFBA log., Prim.-, Sekundaeradr. setzen 164
SETMSG $FF9O Meldungen d. Betr.-Systems absetzen 165
SETNAM $FFBD Filenamen-Information absetzen 166
SETTIM $FFDB Systemuhr setzen 167
SETTMO $FFA2 Zeitablauf bei IEEE-Verkehr setzen 168
STOP $FFE1 STOP-Taste abfragen 169
TALK $FFB4 TALK-Befehl an IEEE-Geraet 170

TKSA $FF96 Sek.-Adr. nach TALK-Befehl senden 171
UDTIM $FFEA Systemuhr fortschreiben 172
UNLSN $FFAE UNLISTEN-Befehl an IEEE-Geraet 173

UNTLK $FFAB UNTALK-Befehl an IEEE-Geraet 174
VECTOR $FF8D Lesen/Setzen gericht. Ein/Ausgabe 175

138

B.3 Beschreibung der Betriebssystem-Unterprogramme

Die folgenden Begriffe werden bei der Beschreibung der einzelnen
Unterprogramme verwendet:

Funktionsnane:

Einsprungadresse:

Uebergaberegister :

Vor bereitungsroutinen :

Fehleranzeigen:

Stapelbedarf :

Beschreibung:

Beispiel:

Dies ist ein symbolischer Name, der der
Einsprungadresse zugeordnet ist und nur
mnemonische Bedeutung hat. Der Anwender kann
in seinen Assembler-Programmen auch andere
Namen verwenden.

Dies ist die Adresse in hexadezimaler
Schreibweise, mit der das Unterprogramm
aufgerufen wird. _

Die hier angegebenen Register des Mikropro-
zessors dienen der Parameteruebergabe zwi-
schen Anwender- und Unterprogramm.

Gelegentlich muessen Daten fuer Unterpro-
gramme aufbereitet werden. Dies geschieht
mit den unter dieser Rubrik angegebenen
Routinen.

In einigen Faellen bedeutet ein Aussprung
aus einem Unterprogramm mit gesetzter Carry-
Flag, dass der Akkumulator (Register A) die
Nummer eines Fehlers enthaelt, der waehrend
der Verarbeitung aufgetreten ist. Die je-
weils moeglichen Nummern werden unter dieser
Rubrik angegeben.

Hier wird die Anzahl der vom Unterprogramm
benoetigten Bytes des Stapelspeichers ange-
geben. Ä

Eine kurze Beschreibung soll die Funktion
des jeweiligen Unterprogramms fuer Sie ver-
staendlich machen.

Die Angabe eines kleinen Beispiels in der
mnemonischen Schreibweise der Assembler-
Sprache fuer der Mikroprozessor MCS6502 soll
Ihnen die Anwendung der Unterprogramme er-
leichtern. |

139

Funktionsname :

Einsprungadresse:

Uebergaberegister:

Vorbereitungsroutinen:

Fehleranzeigen:

Stapelbedarf :

Beschreibung:

Beispiel :

ACPTR

$FFAS

A

TALK, TKSA

Siehe READST

13

Diese Routine uebernimmt ein Datenbyte mit
Handshake vom IEEE-Bus und uebergibt es im
Akkumulator. Vorher muss das Geraet mit der
Routine TALK als talker adressiert und ggfs.
mit TKSA mit einer Sekundaeradresse versorgt
worden sein.

JSR ACPTR
STA DATA

140

Funktionsname :

Einsprungadresse:

Uebergaberegister :

Vorbereitungsroutinen:

_ Fehleranzeigen:

Stapel bedarf :

Beschreibung :

Beispiel:

CHKIN

$FFC6

OPEN

3, 5, 6

11

Ein Eingabekanal wird eroeffnet. Wenn ein
logischer File mit OPEN eroeffnet wurde, so
kann ihm abhaengig von den Charakteristika
des Eingabegeraetes ein Eingabekanal zuge-
ordnet werden. Dieses Unterprogramm muss
aufgerufen werden, ehe die Unterpro-gramme
CHRIN oder GETIN fuer andere Geraete als die
Tastatur aufgerufen werden. Bei Eingabe von
der Tastatur ohne Zusammenhang mit einem
-eroeffneten logischen File braucht CHKIN
nicht aufgerufen zu werden. Bei IEEE-
Geraeten sendet diese Routine einen TALK-
Befehl zusammen mit einer ggfs. in der OPEN-
Routine angegebenen Sekundaeradresse.

;EROEFFNE KANAL 2 FUER EINGABE
LDX #2
JSR CHKIN

141

Funktionsname:

Einsprungadresse:

Uebergaberegister :

Vorbereitungsroutinen:

Fehleranzeigen :

Stapelbedarf :

Beschreibung:

Beispiel:

Ein Ausgabekanal wird eroeffnet. Wenn ein
logischer File mit OPEN eroeffnet wurde,
so kann ihm abhaengig von den Charakteri-
stika des Ausgabegeraetes ein Ausgabeka-
nal zugeordnet werden. Dieses Unterpro-
gramm muss aufgerufen werden, ehe das Un-
terprogramm CHROUT fuer andere Ausgabege-
raete als den Bildschirm aufgerufen wird.
Bei Ausgabe auf den Bildschirm ohne Zusam-
menhang mit einem eroeffneten logischen
File braucht CHROUT nicht aufgerufen zu
werden. Bei IEEE-Geraeten sendet diese
Routine einen LISTEN-Befehl zusammen mit
einer gefs. in der OPEN-Routine angegebe-
nen Sekundaeradresse.

; EROEFFNE KANAL 3 FUER AUSGABE
LDX #3
JSR CHKOUT

142

Funktionsname :

Einsprungsadresse:

Ueber gaberegister:

Vorbereitunsroutinen:

Fehleranzeigen :

Stapelbedarf :

Beschreibung:

Beispiel:

CHRIN

$FFCF

A

Keine

Siehe READST
. |

Einlesen eines Bytes ueber einen Eingabe-
kanal, der entweder der vom System vorge-
waehlte (Tastatur) ist, oder durch CHKIN
eroeffnet wurde. Das Datum wird im Akkumu-
lator uebergeben. Der Kanal bleibt nach
Rueckkehr aus dem Unterprogramm offen. Ist
die Tastatur das Eingabegeraet, so blinkt
der Cursor nach dem Druecken einer Taste
in der naechsten Schreibposition, bis die
RETURN-Taste gedrueckt wurde. Jeder Aufruf
dieser Routine uebergibt dann ein Zeichen
der eingegebenen Zeichenkette einschliess-
lich des Wagenruecklauf-Codes.

_ JSR CHRIN
STA DATA

143

Funktionsname :

Einsprungadresse:

Uebergaberegister :

Vorbereitungsroutinen:

Fehleranzeigen:

Stapelbedarf :

Beschreibung:

Beispiel:

CHROUT

$FFD2

A

Keine

Siehe READST

3

Ausgeben eines Bytes ueber einen Ausgabe-
kanal, der entweder der vom System vorge-
waehlte (Bildschirm) ist, oder durch
CHKOUT eroeffnet wurde. Das Byte kann an
verschiedene Geraete am IEEE-Bus ausgege-
ben werden, wenn nach der zugehoerigen Ka-
naleroeffnung kein CLRCHN aufgerufen wur-
de.

;DARSTELLUNG DER BASIC-ANWEISUNG CMD4,''A"';
LDX #4 ; LOGISCHER FILE 4
JSR CHKOUT ;AUSGABEKANAL OEFFNEN
LDA #'A
JSR CHROUT ;ZEICHEN AUSGEBEN

144

Funktionsname:

Einsprungadresse:

Uebergaberegister:

Vorbereitungsroutinen:

Fehleranzeigen:

Stapelbedarf:

Beschreibung:

Beispiel:

CIOUT

$FFA8

A

LISTEN, äSECONDü

Siehe READST

1

Byteausgabe ueber IEEE-Bus. Falls das Aus-
gabegeraet nicht vorher durch LISTEN
adressiert wurde, wird eine Zeitablauf-

Fehlerbedingung gesetzt. Diese Routine
puffert immer ein Byte zwischen, das durch
die UNLSN-Routine zusammen mit dem EOI-
Signal vor dem eigentlichen UNLISTEN-
Befehl an das Ausgabegeraet gesendet wird.

LDA #'A
JSR CLOUT
JSR UNLSN

145

Funktionsname :

Einsprungadresse:

Uebergaberegister:

Vorbereitungsroutinen:

Fehleranzeigen:

Stapelbedarf:

Beschreibung:

Beispiel:

CLALL

$FFE7

Keine

Keine

Keine

11

Alle Files werden geschlossen, indem die
Zeiger der Tabelle fuer eroeffnete Files
sowie die Ein/Ausgabekanaele durch Aufruf
der Routine CLRCHN rueckgesetzt werden.

;DEFINIERTEN AUSGANGSZUSTAND BEI
; PROGRAMMBEGINN HERSTELLEN

JSR CLALL ;ALLE FILES SCHLIESSEN
JMP RUN ; PROGRAMM BEGINNEN

146

Funktionsname:

Einsprungadresse:

Uebergaberegister:

Vorbereitungsroutinen:

Fehleranzeigen:

Stapelbedarf :

Beschreibung:

Beispiel:

CLOSE

$FFC3

Keine

Keine

11

Ein logischer File wird geschlossen, wenn
dieses Unterprogramm nach Abschluss aller
Ein- oder Ausgaben mit der logischen File-
nummer im Akkumulator aufgerufen wird, die
beim OPEN verwandt wurde.

;ERSATZ DER BASIC-ANWEISUNG CLOSE 15
LDA #15
JSR CLOSE

147

Funktionsname:

Einsprungadresse:

Uebergaberegister:

Vorbereitungsroutinen:

Fehleranzeigen:

Stapelbedarf:

Beschreibung:

Beispiel:

CLRCHN

$FFCC

Keine

Keine

Keine

9

Dieses Unterprogramm schliesst nach abge-
schlossenen Ein/Ausgabe-Operationen alle
eroeffneten Kanaele und setzt Tastatur und
Bildschirm wieder als vorgewaehlte Kanaele
O und 3. Falls das Ein- oder Ausgabegeraet
ein IEEE-Geraet ist, wird durch diese

Routine ein UNTALK- oder UNLISTEN-Befehl
gesendet, wodurch der Kanal wieder freige-
geben wird.

JSR CLRCHN

148

Funktionsname:

Einsprungadresse:

Uebergaberegister:

Vorbereitungsroutinen:

Fehleranzeigen:

Stapelbedarf:

Beschreibung:

Beispiel:

GETIN

$FFE4

A

aOPEN, CHKINü

Siehe READST

11

Ein Zeichen wird aus dem Eingabepuffer
eines Eingabegeraetes gelesen und im
Akkumulator uebergeben. Falls das Eingabe-
geraet ein anderes als die Tastatur ist,
muss vorher ein Eingabekanal eroeffnet
werden. Im Falle der Tastatur wird ein
Zeichen aus dem Tastaturpuffer gelesen.
Dieser Puffer erhaelt die Zeichen durch
eine Interrupt-Tastatur-Abfrage (s.
SCNKEY).

‚AUF GEDRUECKTE TASTE WARTEN
WAIT JSR GETIN

CMP #0
BEQ WAIT

149

Funktionsname:

Einsprungadresse:

Uebergaberegister:

Vorbereitungsroutinen:

Fehleranzeigen:

Stapelbedarf:

Beschreibung:

Beispiel:

TOBASE

$FFF3

X,Y

Keine

Keine

2

Dieses Unterprogramm liefert die Adresse
der Speicherseite,
Speicherplaetze enthalten sind,

in der Ein/Ausgabe-
in den

beiden Registern X und Y. Damit kann in
Verbindung mit einem Adress-Offset auf
speicherbezogene Ein/Ausgabeeinheiten in-
nerhalb des VC20 zugegriffen werden.

JSR
STX
STY
LDA
LDY
STA

150

IOBASE

POINT

POINT+1
#0

#2

(POINT) ,Y
; ADRESS-OFFSET

Funktionsname:

Einsprungadresse:

Uebergaberegister:

Vorbereitungsroutinen:

Fehleranzeigen:

Stapelbedarf:

Beschreibung:

Beispiel:

LISTEN

$FFB 1

A

Keine

Siehe READST

8

Ein LISTEN-Befehl wird zusammen mit dem

ATN-Signal an ein IEEE-Geraet gesendet,

wobei vorher der Akkumulator mit dessen

Adresse zwischen O0 und 30 geladen werden
muss.

:LISTEN-BEFEHL AN IEEE-GERAET NR. 8

LDA #8
JSR LISTEN

151

Funktionsname:

Einsprungadresse:

Uebergaberegister:

Vorbereitungsroutinen:

Fehleranzeigen:

'Stapelbedarf:

Beschreibung

Beispiel:

LOAD

$FFD5

A, X, Y

SETLFS, SETNAM

0, 4, 5, 8, 9

11

Von einem peripheren Eingabegeraet wird
eine kontinuierliche Folge von Bytes in
den RAM geladen. Aufruf mit A=0 bedeutet
"Laden", mit A=1 ''Verifizieren". X und Y
beinhalten die Adresse, ab der in den RAM
geladen werden soll, wenn bei SETLFS als
Sekundaeradresse (SA) 3 gegeben wurde.
Wurde SA in SETLFS mit 0, 1 oder 2
gesetzt, so wird der RAM ab der Adresse
geladen, die im Kopf des zu ladenden Files
steht. Bei Rueckkehr enthalten X und Y die
Adresse des letzten durch LOAD beschriebe-
nen RAM-Bytes.

LDA DEVICE
LDX FILNO
LDY SA
JSR SETLFS
LDA #NAME1-NAME
LDX #<NAME
LDY #>NAME
JSR SETNAM
LDA #0 ; LOAD-FLAG
LDX #$FF ;VOREINGEST. RAM-BEGINN
LDY #$FF
JSR LOAD
STX VARTAB
STY VARTAB+1
JMP START

NAME .BYT 'FILE NAME!
NAME 1

152

Funktionsname:

Einsprungadresse:

Uebergaberegister

Vorbereitungsroutinen:

Fehleranzeigen:

Stapelbedarf:

Beschreibung:

Beispiel:

MEMBOT

$FFIC

X, Y

Keine

Keine

2

Wird dieses Unterprogramm mit gesetztem
Carry-Bit aufgerufen, so wird der Zeiger
auf die niedrigste RAM-Adresse gelesen und
beim Ruecksprung im X- und Y-Register
uebergeben. Der voreingestellte Wert ist
$0400 oder $1000, falls RAM-Erweiterung
eingebaut ist. Wird diese Routine mit
geloeschtem Carry-Bit aufgerufen, so wird
der Inhalt von X und Y in den genannten
Adresszeiger uebertragen.

;SPEICHERANFANG UM 1 SEITE ERHOEHEN
SEC
JSR MEMBOT
INY
CLC
JSR MEMBOT

153

Funktionsname:

Einsprungadresse:

Uebergaberegister:

Vorbereitungsroutinen:

Fehleranzeigen:

Stapelbedarf:

Beschreibung:

Beispiel:

MEMTOP

$FF99

X, Y

Keine

Keine

2

Wird dieses Unterprogramm mit gesetztem
Carry-Bit aufgerufen, so wird der Zeiger
auf die hoechste RAM-Adresse gelesen und
beim Ruecksprung im X- und Y-Register
uebergeben. Wird das Unterprogramm mit
geloeschtem Carry-Bit aufgerufen, so wird
der Inhalt des X- und Y-Registers in den
genannten Adresszeiger uebertragen.

;FREIGABE DES KASSETTENPUFFERS
SEC

JSR MEMTOP
TXA
CLC
ADC #192
BCC NOINC
INY

NOINC TAX
CLC
JSR MEMTOP

154

Funktionsname:

Einsprungadresse:

Uebergaberegister:

Vorbereitungsroutinen:

Fehleranzeigen:

"Stapelbedarf:

Beschreibung:

Beispiel:

OPEN

$FFCO

Keine

SETLFS, SETNAM

1, 2, 4, 5, 6

2

Ein logischer File wird eroeffnet. Es

werden keine Parameter an die Routine
uebergeben. Die beiden Routinen SETLFS und
SETNAM muessen jedoch vorher aufgerufen
werden.

-ERSATZ DER BASIC-ANWEISUNG
-OPEN15,8,15, "10"

LDA
LDX
LDY
JSR
LDA
LDX
LDY
JSR
JSR

NAME. BYTE
NAME2

155

#NAME2-NAME ; NAMEN-LAENGE
#NAME
#NAME
SETNAM
#15
#8
#15
SETLFS
OPEN
TO"

Funktionsname :

Einsprungadresse:

Uebergaberegister:

Vorbereitungsroutinen:

Fehleranzeigen:

Stapelbedarf:

Beschreibung:

Beispiel:

PLOT

$FFFO

X, Y

Keine

Keine

2

Wird dieses Unterprogramn mit gesetztem
Carry-Bit aufgerufen, so wird die gegen-
waertige Spalten/Zeilenposition des Cur-
sors auf dem Bildschirm gelesen und im X-
und Y-Register uebergeben. Ein Aufruf mit
geloeschtem Carry-Bit setzt den Cursor auf
eine dem Inhalt von X und Y entsprechende
Spalten/Zeilenposition auf dem Bildschirm.

;CURSOR IN SPALTE 9, ZEILE 5 SETZEN
LDX #9
LDY #5
CLC
JSR PLOT

156

Funktionsname:

Einsprungadresse:

Uebergaberegister:

Vorbereitungsroutinen:

Fehleranzeigen:

Stapelbedarf:

Beschreibung:

Beispiel:

RDTIM

$FFDE

A, X, Y

Keine

Keine

2

Die Systemuhr wird ausgelesen. Dies kann
zu jeder Zeit geschehen. Es werden 3 Bytes
als 24-Bit-Binaerzahl uebergeben. Der Wert
dieser Zahl ist die Zeit in 1/60 Sekunden,
die seit dem Einschalten des Rechners oder
dem letzten Setzen der Uhr verstrichen
ist. Der Akkumulator enthaelt die hochwer-
tigen, das X-Register die mittelwertigen
und das Y-Register die niederwertigen 8
Bits dieser Binaerzahl.

JSR RDTIM
STY TIME
STX TIME+1
STA‘ TIME+2

TIME *=*43

157

Funktionsname :

Einsprungadresse:

Uebergaberegister :

Vorbereitungsroutinen:

Fehleranzeigen:

Stapelbedarf:

Beschreibung:

Beispiel:

READST

$FFB7

Keine

Keine

2

- Der gegenwaertige Ein/Ausgabestatus wird
uebergeben. Dieses Unterprogramm wird ge-
woehnlich nach jeder Ein/Ausgabe-Operati-
on aufgerufen, um eventuelle Fehler zu
diagnostizieren. Die Bedeutung der einzel-
nen Bits in dem im Akkumulator uebergebe-
nen Byte ist in Abschnitt 3.4.20 fuer den
Kassetten-, IEEE-Bus- und seriellen Bus-
Betrieb sowie im Anhang A.7 fuer die RS-
232-Schnittstelle detailliert beschrieben.
Enthaelt der Akkumulator bei Rueckkehr aus
dieser Routine 0, so ist kein Fehler auf-

getreten.

;AUF FILEENDE PRUEFEN
JSR READST |
AND #64 ;EOF-BIT PRUEFEN
BNE EOF ‚FALLS GESETZT

158

Funktionsname:

Einsprungadresse:

Uebergaberegister:

Vorbereitungsroutinen:

Fehleranzeigen:

Stapelbedarf:

Beschreibung:

Beispiel:

RESTOR

SFF8A

Keine

Keine

Keine

2

Alle Adresszeiger des Betriebssystems, die
auf Ein/Ausgabe-Routinen zeigen, werden
voreingestellt, d.h. sie erhalten die In-

halte, die ihnen auch in der Einschaltpha-
se des Rechners gegeben werden.

JSR RESTOR

159

Funktionsname :

Einsprungadresse:

Uebergaberegister :

Vorbereitungsroutinen:

Fehleranzeigen:

Stapelbedarf:

~ Beschreibung:

Beispiel :

SAVE —

$FFD8

X, Y

SETLFS, SETNAM, [MEMBOT]

5, 8, 9

9

Der Inhalt des Speichers ab der durch
MEMBOT oder die Voreinstellung eingestell-
ten Anfangsadresse bis zu der in X und Y
uebergebenen Adresse wird an ein Ausgabe-
geraet uebertragen. Fuer das Kassettenge-
raet (Geraet 1) ist kein Filename erfor-
derlich. Bei allen anderen Geraeten muss er
angegeben werden, sonst wird eine Fehler-
anzeige gesetzt. Geraete 0 (Tastatur) und 3
(Bildschirm) sind fuer SAVE nicht
definiert.

LDX TXTTAB
LDY TXTTAB+1
JSR MEMBOT
LDA #1 :KASSETTE
JSR SETLFS
LDA #0 :KEIN FILENAME
LDX VARTAB
LDY VARTAB+1
JSR SAVE

160

Funktionsname :

Einsprungadresse:

Uebergaberegister:

Vorbereitungsroutinen:

Fehleranzeigen:

Stapelbedarf :

Beschreibung:

Beispiel:

SCNKEY

$FFOF
Keine

Keine

Keine

4

Die Tastatur wird auf eine gedrueckte Ta-
ste abgefragt, deren ASCII-Code dann im
Tastaturpuffer abgelegt wird. Diese Routine
wird waehrend des Systeminterrupts, der
alle 15 ms ausgeloest wird, durchlaufen.

GET JSR SCNKEY ;TASTATUR ABFRAGEN
JSR GETIN ;ZEICHEN HOLEN
CMP #O ;KEIN ZEICHEN ?
BEQ GET ;JA: WEITER FRAGEN
JSR CHROUT ;ZEICHEN ANZEIGEN

161

Funktionsname :

Einsprungadresse:

Uebergaberegister:

Vorbereitungsroutinen:

Fehleranzeigen :

Stapel bedarf :

Beschreibung:

Beispiel:

SCREEN

$FFED

X, Y

Keine

Keine

2

Die fuer den Rechner angegebene Spalten-
Zeilen-Organisation wird im X- und Y-
Register uebergeben. Beim VC20 also im X-
Register 22 und im Y-Register 23.

JSR SCREEN
STX MAXSPL
STY MAXZEI

162

Funktionsname :

Einsprungadresse:

Uebergaberegister :

Vorbereitungsroutinen:

Fehleranzeigen:

Stapelbedarf:

Beschreibung:

Beispiel:

SECOND

$FF93

A

LISTEN

Siehe READST

Keiner

Eine Sekundaeradresse im Akkumulator wird
nach Ausgabe eines LISTEN-Befehls an ein
IEEE-Geraet ausgegeben. SECOND darf nicht
zum Ausgeben einer Sekundaeradresse nach
einem TALK-Befehl verwendet werden.

;GERAET 8 MIT SEK.-ADR. 15
LDA #8
JSR LISTEN
LDA #15
JSR SECOND

163

Funktionsname:

Einsprungadresse:

Uebergaberegister:

Vorbereitungsroutinen:

Fehleranzeigen:

Stapelbedarf:

Beschreibung:

Beispiel:

SETLFS

$FFBA

A, X, Y

Keine

Keine

2

Logische Filenummer, Geraeteadresse und
Sekundaeradresse werden gesetzt. Die
logische Filenummer dient dem System dazu,
Daten aus einer durch OPEN aufgebauten Ta-
belle zu lesen. Die Geraeteadresse darf
zwischen O und 30 liegen. VC20 kennt
folgende Geraeteadressen:

Q Tastatur

1 Kassettenstation

2 RS-232-Schnittstelle
3 Bildschirm
4 Drucker an seriellem Bus

8 Floppy Disk an seriellem Bus

LDA #32 ;LOG. FILENUMMER
LDX #4 ;GERAET 4 (DRUCKER)
LDY #255 :KEINE SEK.-ADR.
JSR SETLFS

164

Funktionsname :

Einsprungadresse:

Uebergaberegister:

Vorbereitungsroutinen:

Fehleranzeigen:

Stapelbedarf:

Beschreibung:

Beispiel:

SETMSG

$FF90

Keine

Keine

2

Dieses Unterprogramm steuert die Ausgabe
von Fehler und Diagnosemeldungen des Be-
triebssystems. Sie wird mit einem Wert im
Akkumulator aufgerufen. Die Bits 6 und 7
dieses Wertes steuern die Ausgabe der
Meldung. Wenn Bit 7 gesetzt ist, handelt es
sich um eine Fehlermeldung wie z.B:

DEVICE NOT PRESENT ERROR

Ist Bit 6 gesetzt, so wird eine Kontroll-
meldung wie z.B:

PRESS PLAY ON TAPE

ausgegeben.

LDA #$40 ;DIAGN. -MELDUNG
JSR SETMSG |

LDA #0 ;ALLE SYSTEMMELDUNGEN
UNTERDRUECKEN

JSR SETMSG

165

Funktionsname:

Einsprungadresse:

Uebergaberegister:

Vorbereitungsroutinen:

Fehleranzeigen:

Stapelbedarf:

Beschreibung:

Beispiel:

SETNAM

$FFBD

A, X, Y

Keine

Keine

2

Die Filenameninformation wird abgesetzt.
Soll ein File ohne Namen eroeffnet werden,
so muss seine Laenge mit 0 angegeben wer-
den. Im Akkumulator wird die Namenlaenge
und im X- und Y-Register der nieder- bzw.
hoeherwertige Adressteil der Namensadresse
angegeben. Die Namensadresse kann jede
gueltige Speicheradresse sein, bei der der
den Namen repraesentierende Zeichenstring
abgelegt ist.

LDA #NAME2 -NAME
LDX #<NAME
LDY #>NAME
JSR SETNAM

NAME BYTE "FILE NAME'
NAME2

166

Funktionsname :

Einsprungadresse:

Uebergaberegister:

Vorbereitungsroutinen:

Fehleranzeigen:

Stapelbedarf:

Beschreibung:

Beispiel:

SETTIM

$FFDB

A, X, Y

Keine

Keine

2

Die Systemuhr wird gesetzt. Die im VC20 in-
tegrierte Systemuhr besteht aus einem 24-
Bit-Zaehler, der durch den System-Interrupt
alle 1/60 s (ca. 15 ms) fortgeschrieben
wird. Der Zaehler zaehlt bis 5184000, was
24 Zeitstunden entspricht, und beginnt dann
wieder bei 0. Um den Zaehler zu setzen,
wird der Akkumulator mit den hoechstwerti-
gen, das X-register mit den mittelwertigen
und das Y-Register mit den niederwertigen 8
Bits des Zeitwertes gesetzt.

;UHR AUF 10 MINUTEN = 36000 EINHEITEN
‚SETZEN

LDA #0
_ LDX #>36000

LDY #€36000
JSR‘ SETTIM

167

Funktionsname :

Einsprungadresse:

Uebergaberegister:

Vorbereitungsroutinen:

Fehleranzeigen :

Stapelbedarf :

Beschreibung :

Beispiel:

SETTMO

$FFA2

Keine

Keine

2

Zeitablauf bei IEEE-Verkehr setzen. Wenn
der Akkumulator in Bit 7 eine O enthaelt,

ist die Zeitablaufpruefung eingeschaltet
und bei 1 ausgeschaltet. Wenn die Zeitab-
laufpruefung eingeschaltet ist, so muss ein
IEEE-Geraet auf ein DAV-Signal innerhalb
von 64 ms antworten. Andernfalls wird die
Handshake-Folge abgebrochen. Fuer den
Verkehr mit langsamen IEEE-Geraeten sollte
diese Pruefung deshalb abgeschaltet werden.

; ZEITABLAUFPRUEFUNG ABSCHALTEN
LDA #0
JSR SETTMO

168

Funktionsname :

Einsprungadresse:

Uebergaberegister :

Vorbereitungsroutinen:

Fehleranzeigen:

Stapelbedarf:

Beschreibung:

Beispiel:

STOP

$FFE1

Keine

Keine

1

Die STOP-Taste wird abgefragt. Wurde sie
“ gedrueckt, so wird das Zero-Flip-Flop ge-
setzt und der Akkumulator ist QO. Alle an-

deren Flip-Flops bleiben unberuehrt. War
die STOP-Taste nicht gedrueckt, so enthaelt
der Akkumulator den Index einer Taste aus

der untersten Tastatur-Reihe.

JSR STOP
BNE *+5 ;STOP NICHT GEDRUECKT
JMP READY ;STOP GEDRUECKT

169

Funktionsname: TALK

Einsprungadresse: $FFB4

Uebergaberegister : A

Vorbereitungsroutinen: Keine

Fehleranzeigen: Siehe READST

Stapelbedarf : 1

Beschreibung: Ein TALK-Befehl wird zusammen mit dem ATN-
Signal an ein IEEE-Geraet gesendet, wobei
vorher der Akkumulator mit dessen Adresse
zwischen O und 30 geladen werden muss.

Beispiel: -TALK-BEFEHL AN IEEE-GERAET NR. 8
LDA #8
JSR TALK

170

Funktionsname :

Einsprungadresse:

Ueber gaberegister :

Vorbereitungsroutinen :

Fehleranzeigen :

Stapel bedarf :

Beschreibung :

Beispiel:

TKSA

$EF96

A

TALK

Siehe READST

Keiner

Eine Sekundaeradresse zwischen O und 31 im

Akkumulator wird nach Aufruf des TALK-Un-

terprogramms an ein IEEE-Geraet gesendet.
TKSA darf nicht zum Ausgeben einer Sekun-
daeradresse nach einem LISTEN-Befehl

verwendet werden.

:GERAET 4 MIT SEK.-ADR. 5
LDA #4
JSR TALK
LDA #5
JSR TKSA

171

Funktionsname :

Einsprungadresse:

Uebergaberegister:

Vorbereitungsroutinen:

Fehleranzeigen:

Stapelbedarf:

Beschreibung:

UDTIM

SFFEA

Keine

Keine

Keine

Keiner

Normalerweise wird dieses Unterprogramm vom
Interrupt-Programm des Systems jede 1/60
Sekunde aufgerufen, um die Systemuhr
fortzuschreiben und den Code fuer die ggfs.
gedrueckte STOP-Taste zu speichern. Wenn
Sie Ihre eigenen Interrupt-Programme
schreiben, sollten Sie diese Routine mit
beruecksichtigen, damit Systemuhr und STOP-
Taste funktionsfaehig bleiben.

172

Funktionsname: UNLSN

Einsprungadresse: $FFAE

Uebergaberegister: Keine

Vorbereitungsroutinen: Keine

Fehleranzeigen: Siehe READST

Stapelbedarf: 1

Beschreibung: Ein UNLISTEN-Befehl wird ueber den IEEE-Bus
ausgegeben.

Beispiel: JSR UNLSN

173

Funktionsname: UNTLK

Einsprungadresse: $FFAB

Uebergaberegister : Keine

Vorbereitungsroutinen: Keine

Fehleranzeigen: Siehe READST

Stapel bedarf : 1

Beschreibung: Ein UNTALK-Befehl wird ueber den IEEE-Bus
ausgegeben.

Beispiel: JSR UNTLK

174

Funktionsname:

Einsprungadresse:

Uebergaberegister:

Vorbereitungsroutinen:

Fehleranzeigen:

Stapel bedarf :

Beschreibung:

Beispiel:

VECTOR

$FF8D

X, Y

Keine

Keine

2

Wird dieses Unterprogramm mit gesetztem
Carry-Bit aufgerufen, so werden die Inhal-
te der Adresszeiger aus dem System-RAM in
eine Liste uebertragen, deren Anfangs-
adresse im X- und Y-Register uebergeben
werden muss. Bei geloeschtem Carry-Bit wird
durch dieses Unterprogramm eine Anwender-
Adresszeigerliste, deren Anfangsadresse im
X-und Y-Register uebergeben werden muss, in
die Adresszeiger des System-RAM uebertra-
gen. Hierbei sollte vorsichtig vorgegangen
werden. Es sollten zunaechst die Adresszei-
ger in die Anwendertabelle uebertragen,
dort geaendert und anschliessend zurueckko-
piert werden.

* AENDERUNG DER ZEIGER FUER DIE EINGABE-
*ROUTINEN FUER EIN NEUES SYSTEM

LDX #<TABEL

LDY #>TABEL
SEC

JSR VECTOR ;ALTE ZEIGER LESEN

LDA #<EGNEU ;AENDERN
STA TABEL+10

LDA #>EGNEU
STA TABEL+11

LDX #<TABEL

LDY #>TABEL

CLC
JSR VECTOR ;SYSTEM AENDERN

TABEL *=*+26

175

Anhang C

Unsetzen von fremden Programmen in VC20-BASIC

C.1 Uebersicht

Wenn Sie ein Program, das in der BASIC-Programmiersprache eines
anderen Rechner-Systems geschrieben ist, auf Ihrem VC20 laufen
lassen wollen, so sind einige geringfuegige Aenderungen erforder-
lich. Einige der wichtigsten Unterschiede zwischen der VC20-Version
des CBM-BASIC und anderen BASIC-Interpretern werden in den folgen-
den Abschnitten beschrieben und es wird ein Weg angegeben, wie Sie
solche Programme auf Ihrem VC20 lauffaehig machen koennen.

C.2 String-Dimensionen:

Loeschen Sie in dem fremden Programm Anweisungen, in denen
Stringlaengen deklariert werden. Eine Anweisung, wie z.B:

DIM A$(1,J)

dimensioniert in manchen BASIC-Versionen ein eindimensionales

Stringfeld mit J Strings der Laenge I. Ersetzen Sie dies durch:

DIM A$(J)

Manche BASIC-Versionen verwenden zur Kennzeichnung der String-
Verkettung ein Komma (,) oder ein kaufmaennisches "und" (&). Solche
Zeichen muessen Sie durch ein Pluszeichen (+) ersetzen.
Im VC20-BASIC werden zur Bildung von Teilstrings aus Strings die
Funkti-onen:

MID$
RIGHT$
LEFT$

verwendet. Andere BASIC-Versionen verwenden z.B:

A$(T)

um das I-te Zeichen aus A$ zu extrahieren, oder:

A$(I,J)

um einen Teilstring von A$ zu bilden, der bei Position I beginnt
und J Zeichen lang ist. In solchen Faellen schreiben Sie z.B:

fremdes BASIC VC20-BASIC

A$CI)=X$ A$=LEFT$(A$, I-1)+X$+MID$(A$, I+1)
A$CI,J)=X$ A$=LEFT$(A$, I-1)+X$+MID$(A$,J+1)

176

C.3 Mehrfache Zuweisung

Um z.B. den Variablen B und C denselben Wert zuzuweisen, erlauben
manche BASIC-Versionen:

10 LET B=C=0

VC20-BASIC wuerde in diesem Fall das zweite Gleichheitszeichen als

logischen Operator auffassen und B auf -1 setzen, falls C=0. Des-
halb muessen Sie in einem solchen Fall:

10 B=0:C=0

schreiben.

C.4 Verkettung von Anweisungen

Verschiedene BASIC-Versionen verwenden den nach links geneigten

Schraegstrich (\), um mehrere Anweisungen in einer Zeile vonein-
ander zu trennen. VC20-BASIC verwendet hier den Doppelpunkt.

C.5 MAT-Funktionen —

Programme, die die in manchen BASIC-Versionen vorhandenen MAT-
Funktionen verwenden, muessen mit Hilfe von FOR...NEXT-Schleifen
umgeschrieben werden.

C.6 VC20-BASIC-Codes

Um Speicherplatz zu sparen, werden beim Eingeben von BASIC-Pro-
grammzeilen alle BASIC-Schluesselwoerter in 1-Byte-Codes ver-
schluesselt und im Speicher abgelegt. Diese Codes finden Sie in der
Tabelle C.1 auf der naechsten Seite.

177

Tabelle C.1: Codes fuer VC20-BASIC-Schluesselwoerter

Code BASIC- Code BASIC-

(dez.) Wort (dez.) Wort

128 END 167 THEN
129 FOR 168 NOT
130 NEXT 169 STEP
131 DATA 170
132 INPUT# 171 -
133 INPUT 172 *
134 DIM 173 /
135 READ 174 4
136 LET 175 AND
137 GOTO 176 OR
138 RUN 177 >
139 IF 178 =
140 RESTORE. 179 <
141 GOSUB 180 SGN
142 RETURN 181 INT
143 REM 182 ABS
144 STOP 183 USR
45 | ON 184 FRE
146 WAIT 185 POS
147 LOAD 186 SOR
148 SAVE 187 RND
149 VERIFY 188 LOG
150 DEF 189 EXP
151 POKE 190 COS
152 PRINT# 191 SIN
153 PRINT 192 TAN
154 CONT 193 ATN
155 LIST 194 PEEK
156 CLR 195 LEN
157 CMD 196 STR$
158 SYS 197 VAL
159 OPEN 198 ASC
160 CLOSE 199 CHR$
161 GET 200 LEFT$
162 NEW 201 RIGHT$
163 TAB(. 202 MID$
164 TO 203 GO
165 FN 204 ?SYNTAX ERROR *)
166 SPC(|

*) Alle Codes zwischen 204 und 255 erzeugen diese
Fehlermeldung, wenn sie mit LIST ausgelistet
werden.

178

Anhang D

Zusammenstellung der Fehlermeldungen

D.1 Uebersicht

Dieser Anhang enthaelt eine tabellarische Zusammenstellung aller
Fehler- und Diagnosemeldungen des VC20-BASIC-Interpreters und -
Betriebssystems sowie eine detaillierte Beschreibung der Bedeutung
jeder einzelnen Meldung.

Tabelle D.1: Fehlermeldungen

BASIC-Interpreter

BAD SUBSCRIPT

CAN'T CONTINUE

DIVISION BY ZERO

FILE DATA

FORMULA TOO COMPLEX

Betriebssystem

DEVICE NOT PRESENT

FILE NOT FOUND

FILE NOT OPEN

FILE OPEN

LOAD

ILLEGAL DIRECT NOT INPUT FILE

ILLEGAL QUANTITY NOT OUTPUT FILE

NEXT WITHOUT FOR TOO MANY FILES

OUT OF DATA VERIFY

OUT OF MEMORY

OVERFLOW

REDIM'D ARRAY

REDO FROM START

RETURN WITHOUT GOSUB

STRING TOO LONG

SYNTAX

TYPE MISMATCH

UNDEF'D FUNCTION

UNDEF'D STATEMENT

179

D.2 Fortsetzung des Programms nach einer Fehlermeldung

Nachdem ein Programm von einer Fehlermeldung abgebrochen wurde,
kann es nicht mit einer im Direkt-Modus eingegebenen CONT-Anweisung
fortgesetzt werden. Alle Variablen behalten jedoch ihre Werte, was

bei der Fehlersuche hilfreich ist. GOSUB- und FOR...NEXT-Eintraege
im Stapelspeicher werden durch die Unterbrechung geloescht, so dass
eine Programmfortsetzung mit RETURN oder NEXT ebenfalls nicht moeg-
lich ist.
In einem solchen Fall kann das Programm nur mit einer GOTO <Zeilen-
nummer>-oder der RUN-Anweisung fortgesetzt bzw. neu gestartet wer-
den.

D.3 Interpreter-Meldungen und ihre Bedeutung

BAD SUBSCRIPT

Es wurde eine indizierte Variable verwendet, deren Index groesser
ist als der maximale in der DIM-Anweisung angegebene oder deren
Index groesser als 10 ist, falls die Variable mit DIM nicht dimen-
Sioniert wurde.

CAN'T CONTINUE

Nach einem Programmabbruch durch eine Fehlermeldung oder nach einer
Programmaenderung kann das Programm nicht durch CONT fortgesetzt
werden.

DIVISION BY ZERO

Bei der Ermittlung eines mathematischen Ausdrucks ist der Nenner
eines Bruches 0 geworden.

FILE DATA

Einer numerischen Variablen (Integer oder Gleitkomma) wurden bei
einer INPUT#- oder GET#-Anweisung nichtnumerische Daten aus einem
File zugewiesen.

FORMULA TOO COMPLEX

An einem Stringausdruck sind zu viele Teilstrings beteiligt. In
diesem Fall muessen Sie den Ausdruck in mehrere Teilausdruecke
zerlegen und die Zwischenergebnisse Stringvariablen zuweisen.

ILLEGAL DIRECT

GET, INPUT und DEF FN duerfen nicht im Direkt-Modus verwendet wer-
den, da diese Anweisungen den Eingabepuffer benutzen, der jedoch
zur Auswertung der Direkt-Anweisungen vom Interpreter benoetigt
wird.

180

ILLEGAL QUANTITY

Es wurde eine Variable oder eine Funktion mit einem unerlaubten
Wert oder Parameter verwendet. Diese Meldung wird in folgenden
Faellen ausgegeben:

1. Ein Feldindex < 0 oder > 32767 wurde definiert.

2. LOG wurde mit negativem oder Null-Argument aufgeru-
fen.

3. SQR wurde mit negativem Argument aufgerufen.

4. Es wurde ein mathematischer Ausdruck wie (-5)#2.3
definiert.

5. Aufruf von USR, ehe die Startadresse des Maschinen-
spracheunterprogramms gespeichert wurde.

6. Verwendung der Stringfunktionen MID$, LEFT$ oder
RIGHT$ mit ungueltigen Laengenparametern X
(O<X<256).

7. Bei ON...GOTO oder ON...GOSUB wurde ein ungueltiger
Index ermittelt.

8. Bei PEEK, POKE, WAIT oder SYS wurde eine ungueltige
Adresse X spezifiziert (0¢=X<65536).

9. Bei WAIT, POKE, TAB oder SPC wurden ungueltige
Byte-Parameter X spezifiziert (0<=X<256).

NEXT WITHOUT FOR

Entweder wurden mehrere FOR...NEXT-Schleifen falsch geschachtelt
oder zu einer NEXT-Anweisung fehlt eine vorausgegangene FOR-Anwei-
sung.

OUT OF DATA

Eine READ-Anweisung versucht, mehr Daten aus einer DATA-Anweisung
zu lesen, als vorhanden sind.

OUT OF MEMORY

Der Programmspeicher oder aber der Stapelspeicher sind voll. Im
ersten Fall kann bei sehr grossen Programmen durch die Programm-
ausfuehrung der verbleibende freie Speicher durch die Variablen,
die waehrend der Programmabarbeitung abgelegt werden, ueberlaufen.
Der zweite Fall kann durch zu viele geschachtelte FOR...NEXT-
Schleifen, GOSUB...RETURN-Kombinationen oder durch zu viele Klam-
merebenen ausgeloest werden.

181

OVERLOW

Das Ergebnis einer Berechnung hat die im VC20 maximal darstellbare
Zahl (1.70141183E+38) ueberschritten.

REDIM'D ARRAY

Es wurde versucht ein Feld mit gleichem Namen ein zweites Mal zu
dimensionieren. Dieser Fehler tritt auch auf, wenn nach einer

automatischen Dimensionierung mit einem Index < 11 das Feld mit
einer DIM-Anweisung dimensioniert werden soll.

REDO FROM START

Dies ist keine Fehlermeldung im eigentlichen Sinne. Sie wird ausge-
geben, wenn bei einer INPUT-Anweisung nichtnumerische Daten einge- —
geben wurden, wenn numerische erwartet wurden. Die Eingabe kann
nach dieser Meldung wiederholt werden.

RETURN WITHOUT GOSUB

Es soll eine RETURN-Anweisung ausgefuehrt werden, der keine GOSUB-
Anweisung vorausgegangen war.

STRING TOO LONG

Durch eine Stringverkettung ist ein String laenger als 255 Zeichen
geworden oder es wurde versucht, mit INPUT# einen String von mehr
als 80 Zeichen einzulesen.

SYNTAX

Der Interpreter findet in einer Befehlszeile eine Zeichenkombina-
tion, die er nicht versteht.

TYPE MISMATCH

Es wurde versucht, einem Variablentyp einen falschen Datentyp zuzu-
weisen (z.B. A$=B%) oder eine Funktion wurde mit einem falschen Ar-
gument versorgt (z.B. A=LEN(X%)).

UNDEF'D FUNCTION

Es wurde eine vom Anwender definierte Funktion aufgerufen, deren
Definition (DEF FN) nicht im Programm existiert.

182

UNDEF'D STATEMENT

Es wurde versucht, mit GOTO, GOSUB oder THEN zu einer Zeilennumer

zu verzweigen, die nicht im Programm existiert.

D.4 Betriebssystemfehlermeldungen und ihre Bedeutung

DEVICE NOT PRESENT

Es wurde versucht, ein Geraet am seriellen System-Bus oder am IEEE-

Bus zu adressieren (durch OPEN, CLOSE, CMD, INPUT#, GET# oder
PRINT#), wenn entweder kein Geraet angeschlossen oder kein Geraet
angeschaltet ist.

FILE NOT FOUND

Der in einer OPEN- oder LOAD-Anweisung spezifizierte File konnte
auf dem spezifizierten Eingabegeraet nicht gefunden werden. Bei der
Kassette wurde eine Band-Ende-Marke erkannt.

FILE NOT OPEN

Es wurde mit einer INPUT#-, GET#- oder PRINT#-Anweisung eine
logische Filenummer angesprochen, der durch eine entsprechende
OPEN-Anweisung noch kein Geraet zugeordnet wurde.

FILE OPEN

Es wurde versucht, eine zweite OPEN-Anweisung mit derselben logi-
schen Filenummer ohne dazwischen liegende CLOSE-Anweisung mit die-
ser Filenummer auszufuehren.

LOAD

Diese Meldung wird ausgegeben, wenn beim Laden eines Programms von
Kassette im Originalblock mehr als 31 Fehler, oder wenn im Origi-
nalblock und in der Kopie Fehler an derselben Stelle auftreten.

NOT INPUT FILE

Es wurde versucht, aus einem File, der zum Schreiben eroeffnet

wurde, Daten zu lesen.

NOT OUTPUT FILE

Es wurde versucht, in einen File, der zum Lesen eroeffnet wurde,
Daten zu schreiben.

183

TOO MANY FILES

Es koennen gleichzeitig nur bis zu 10 eroeffnete logische Files vom
Betriebssystem verwaltet werden. Wird versucht, mit OPEN einen
weiteren File zu eroeffnen, so wird diese Fehlermeldung ausgegeben.

VERIFY

Beim Vergleich zwischen dem Inhalt eines Speicherbereiches (Pro-
gramm) und dem Inhalt des korrespondierenden Files auf einem peri-
pheren Geraet tritt Ungleichheit auf.

184

Anhang E

Mathematische Funktionen und ASCII-Codes

E.1 Trigonometrische, zyklometrische und Hyperbel-Funktionen

Einige der trigonometrischen, zyklometrischen und alle Hyperbel-
funktionen sind im VC20-BASIC nicht implementiert. Sie lassen sich
jedoch durch die vorhandenen Funktionen ersetzen, wie die unten
stehende Aufstellung zeigt.

Funktion(X)

SECANS
COSECANS
COTANGENS
ARCUS SINUS
ARCUS COSINUS
ARCUS SECANS
ARCUS COSECANS
ARCUS COTANGENS
SINUS HYPERBOLICUS
COSINUS HYPERBOLICUS
TANGENS HYPERBOLICUS
SECANS HYPERBOLICUS

VC20-BASIC-Aequivalent-Funktion(X)

1/COS(X)
1/SIN(X)

1/TAN(X)
ATN(X/SOR(-X*X+1))
-ATN(X/SQR(-X*X+1))+<pi>/2
ATN(X/SQR(X*X-1))
ATN(X/SQRCX*X-1))+SGN(X)-1)*epi>r/2

ATN(X)+€pi>/2
(EXP(X)-EXP(-X))/2
(EXP(X)+EXP(-X))/2
(EXP(X)-EXP(-X)) /CEXP(X)+EXP (-X))
2/(EXP(X)+EXP(-X))
2 /(EXP(X)-EXP(-X))
(EXP(X)+EXP(-X)) /CEXP(X)-EXP(-X))
LOG(X+SQR(X*X+1))
LOG(X+SQR(X*X-1))

COSECANS HYPERBOLICUS
COTANGENS HYPERBOLICUS
AREA SINUS HYPERBOLICUS
AREA COSINUS HYPERBOLICUS
AREA TANGENS HYPERBOLICUS LOG((1+X)/(1-X))/2
AREA SECANS HYPERBOLICUS LOG((SQR(-X*X+1)+1)/X)
AREA COSECANS HYPERBOLICUS LOG((SGN(X)*SQR(X*X+1)+1)/X)
AREA COTANGENS HYPERBOLICUS LOG((X+1)/(X-1))/2

E.2 ASCII-Zeichencode

Die Aufstellung auf der naechsten Seite enthaelt den CBM-modifi-
zierten ASCII-Zeichencode in dezimaler und hexadezimaler Schreib-
weise. Der VC20-Zeichensatz weicht insofern von diesem Standard ab,
als im Gross/Grafik-Modus anstelle der Kleinbuchstaben Grafiksym-
bole codiert sind. Im Gross-/Kleinschreib-Modus sind die Kleinbuch-
staben anstelle der Grossbuchstaben codiert waehrend den Grossbuch-
staben ein um 128 gegenueber den Kleinbuchstaben erhoehter Code zu-
geordnet ist.

185

ASCII

dez

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
043

hex

$00
$01
$02

$03
$04
$05

$06
$07
$08

$09
SOA
$0B

SOC
$OD
SOE
SOF
$10

$11
$12

$13

$14
$15
$16

$17
$18
$19
S1A
$1B
$1C
$1D
SIE
$1F
$20
$21
$22
$23
$24
$25
$26
$27
$28

$29
$30

Zeichen

NULL
SOH
STX
ETX
EOT

EN)
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI
DLE
DC1
DC2
DC3
DCA
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US
Leerstelle

|

+
I
N

=
LO

5
4

IE

ASCII

dez

043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062

063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085

hex

$2B
$2C
$2D
$2E
$2F
$30
$31
$32
$33
$34
$35
$36
$37
$38
$39
$3A
$3B
$3C
$3D
$3E
$3F
$40
$41
$42
$43
$44
$45

$46

$47
$48

$49
S4A

$4B
$4C
$4D
$AE
$4F

$50
$51
$52
$53
$54
$55

186

Zeichen ASCII

C
H
N
W
D
A

V
O
S
]
S
M
A
G
H
A
O
Q
A
M
I
N
W
D
S
m
r
Y

V
I

A
v
,
“

W
M
W
I
D
N
F
W
N
H
-
O
n
~
:

dez

086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

hex

$56
$57
$58
$59
$5A
$5B
$5C
$5D
$5E
$5F
$60
$61
$62
$63
$64
$65
$66
$67
$68
$69
S6A
$6B
$6C
$6D
$6E
$6F
$70
$71
$72
$73
$74
$75
$76
$77
$78
$79
$7A
$7B
$7C
$7D
$7E
$7F

P
U

Y
A
N
K

K
E
S

Zeichen

Pfeil links

Leerstelle

V
I
A

N
I
X

st

co

e
d
t
¢
u
n
r

a
v
o

sts

3
Hr

wm
u.

T
I

m
o
m
u
n
c
m

Anhang F

Das 6561-Video-Interface-Chip (VIC)

F.1 Allgemeine Beschreibung

Der VIC-Baustein ist nach dem Mikroprozessor 6502 das vielseitigste
Bauelement des VC20. Er wurde fuer Farbvideo-Bildschirme und Video-
Heimspiele entwickelt und enthaelt als integrierter Baustein alle
Schaltkreise, die zur Erzeugung farb-programmierbarer Zeichengrafik
mit hoher Bildschirmaufloesung erforderlich sind. Ausserdem ent-
haelt VIC Tongeneratoren fuer akustische Effekte sowie Analog-Digi-
tal-Wandler fuer Video-Spiele.

F.2 Eigenschaften

Im einzelnen hat der VIC-Baustein folgende Eigenschaften:

*

*

Voll ausbaubares System mit 16-kByte-
Adressraum.

Verwendung industriekompatibler 8-Bit-
ROMs und 4-Bit-RAMs.

Masken-programmierbare Synchronisation
fuer PAL.

Erzeugung von 16 verschiedenen Farbtoe-
nen.

Bis zu 600 unabhaengig voneinander pro-
grammierbare und verschiebbare Hinter-
grundplaetze auf einem Standardfernseh-
bildschirm.

Bildschirm-Zentrierung.

Schirmgittergroesse bis zu 192 Punkte ho-
rizontal und 200 Punkte vertikal.

Zwei waehlbare grafische Zeichengroessen.

Akustisches System, bestehend aus drei
unabhaengig voneinander programmierbaren
Tongeneratoren, einem Generator fuer
weisses Rauschen sowie einem Amplituden-
modulator.

2 8-Bit-Analog-Digital-Wandler.

DMA und Adress-Generierung.

187

* Keine CPU-Wartezeiten oder Bildschirm-
ueberlagerungen waehrend der Bildwieder-
holung.

* Wahlschalter fuer Zwischenzeilenabta-

stung.

* 16 programmierbare Kontrollregister.

* Lichtkananone oder Lichtstift fuer Video-
spiele.

* 2 Farb-Betriebsmodi.

F.3 Arbeitsweise

Zur Erzeugung programmierbarer farbiger Zeichen greift VIC auf ex-
terne Speicher zu, die in drei Bereiche unterteilt werden koennen:

Zeichenzeiger
anzuzeigende Zeichen
Farbzeiger

Der Bereich der Zeichenzeiger ist ein RAM-Bereich mit 506 Speicher -
plaetzen, der als Video-Matrix bezeichnet wird. Jedem dieser Spei-
cherplaetze entspricht eine Zeichenposition auf dem Bildschirm.
Der Bereich der anzuzeigenden Zeichen besteht aus einem Satz von 8-
oder 16-Byte-Bloecken. Jeder dieser Bloecke enthaelt das Punktra-
ster fuer ein einzelnes anzuzeigendes Zeichen. Die Bloecke koennen
entweder im RAM- oder im ROM-Bereich untergebracht werden.
Der Farbzeigerbereich schliesslich besteht aus 506 Farbbytes oder
-zellen, in denen nur die niederwertigen 4 Bits zur Definition der
Farbe, in der das an der korrespondierenden Stelle stehende Zeichen
abzubilden ist sowie zur Wahl einer der beiden Farb-Modi dienen.
Dieser Bereich wird als Farb-Matrix bezeichnet.
Die Organisation der Video- und der Farb-Matrix sowie der Zeichen-
zellen uebernimmt dabei der Mikroprozessor.
Zum Verstaendnis der Arbeitsweise des VIC-Bausteins betrachten Sie
jetzt bitte die Abbildung F.1 auf der naechsten Seite. Dies ist
eine typische Video-Matrix, die das Abbild des Bildschirms mit 23
Zeilen zu 22 Spalten darstellt, also einen Bereich von 506 Anzeige-
plaetzen bei einer Bildschirmaufloesung von 176 Punkten horizontal
und 184 Punkten vertikal. Wenn jetzt eine Taste gedrueckt wird, So
wird der zugehoerige Zeichenindex in die Video-Matrix uebertragen.
Bei dem Beispiel in Abb. F.1 ist es der Index $2B, der an der Posi-
tion $0B/$15 (Zeile/Spalte) in die Video-Matrix gespeichert wurde.
VIC liest diesen Index aus der Matrix und fuehrt eine Adressberech-
nung durch, um das an dieser Position anzuzeigende Zeichen zu er-
mitteln. Diese Berechnung sieht fuer den Fall einer 8x8-Bit-Zei-
chenzelle folgendermassen aus:
Der Index wird dreimal linksgeshiftet (Multiplikation mit 8). Das
Ergebnis wird zur Startadresse des Zeichenzellenbereiches ($8000

beim VC20), die in der Initialisierungsphase in das Kontrollregi-
ster CR5 des VIC gespeichert wird, addiert, woraus sich die Adresse
$8158 in unserem Beispiel ergibt. Unter dieser Adresse findet VIC
das anzuzeigende Punktraster in einem 8x8-Bit-Zeichenzellenbereich.

188

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 10 11 12 13 14 15
0
01
02
03
O4
05]
06
07
08
09
OA
OB 2B
2B
OC
OD
OE
OF
10
11
12
13
14
15
16

Bit-Numer 7 FAR 210
Byte-Nummer des 8x8-Rasters

“
S
P
O
O
N

B
W

PD

=
©

Zellindex

4 mal linksgeshifteter
Zellindex

Basisadresse der

Zeichenzellen

Ergebnis aus Addition des geshifteten
Zellindexes und Basisadresse =

Adresse des in Zeile $0B/Spalte $15
abzubildenden Punktrasters.

Abb. F.1: Typische Video-Matrix

189

F.4 Die VIC-Kontrollregister

Bezeichnung

CRO

CR1

CR2

CR3

CR4

CR5

CR6

CR?

CR8

CR9

CRA

CRB

CRC

CRD

CRE

Adresse (hex) Inhalt

Bit 7 6 5 4 3 2 1 0

$9000 I | SX6 | SX5 | SX4 | SX3 | sx2 | SX1 | SXO

$9001 sy7| SY6 | SYS | SY4 | SY3 | sy2 | syı | syo

$9002 BV9| Mo |MS {M4 |M3 IM2 | M1 | MO

$9003 RO | NS |N4 |N3 |IN2 | N1 | NO |D

$9004 Rs 1R7 |R6 |RS5 Ira | R3 | R2 [RI

$9005 BV13 BV12| BV11l BV10| BC13| BC12 BC11} BC10

$9006 LH7 | LH6 | LHS | LH4 | LH3 | LH2 | LH1 | LHO

$9007 LV7 | LV6 | LVS | LVA | LV3 | LV2 | LV1 | LVO

$9008 PX7 | PX6 | PXS | PX4 | PX3 | PX2 | PX1 | PXO

$9009 PY7 | PY6 | PY5 | PY4 | PY3 | PY2 | PY1 | PyO

$900A S1 | F16 |F15 | F14 | F13 | F12 | F11 | F10

$900B S2 I F26 |F25 | F24 | F23 | F22 | F21 | F20

$900C S3 | F36 |F35 | F34 | F33 | F32 | F31 | F30

$900D S4 | F46 |F45 | F44 | F43 | F42 | F41 | F40

$900E CA3 | cA2 |cA1 Ica0 |A3 | AZ | A1 | AO

$900F CB3 |CB2 |CB1}CBO|R_ | CE2 | CE1 | CEO

Abb. F.2: VIC-Kontrollregister

Die in Abb. F.2 dargestellten 16 8-Bit-Kontrollregister des VIC6561
gestatten es dem Mikroprozessor, alle Betriebsmodi des VIC zu steu-
ern. Im folgenden werden die einzelnen Register und ihre Funktion
detailliert beschrieben:

CRO: Die Bits O bis 6 bestimmen, in welcher Entfernung
vom linken Rand des Bildschirms die erste Zeichen-
spalte beginnt. Damit koennen die verschiedenen
Bildschirmgroessen horizontal zentriert werden.
(te Bit 7 wird Zwischenzeilenabtastung gewaehlt
I=1).

190

CR1:

CR2:

CR3:

CR4:

CR5:

CR6:

CR7 :

CR8 :

CRO:

CRA:

CRB:

CRC:

Die Bits 0 bis 7 bestimmen, in welcher Entfernung
vom oberen Rand des Bildschirms die erste Zeichen-
zeile beginnt. Damit koennen die verschiedenen
Bildschirmgroessen vertikal zentriert werden.

Die Bits O bis 6 setzen die Spaltenzahl der Video-
Matrix. Bit 7 ist ein Bestandteil der in Register
CRS gespeicherten Anfangsadresse der Video-Matrix.

Die Bits 1 bis 6 setzen die Zeilenzahl der Video-

Matrix. Bit O waehlt entweder 8x8-Bit-Zeichenma-

trizen (D=0) oder 16x8-Bit-Zeichenmatrizen (D=1).
Bit 7 ist Bestandteil des Rasterwertes aus Regi-
ster CR4.

Enthaelt die Nummer der momentan vom Rasterstrahl

abgetasteten Zeile.

Die Bits O bis 3 bestimmen die Startadresse des

Zeichenzellenbereiches. Sie bilden die Adressbits

A13 bis Al0 der aktuellen Adresse. Die Bits 4 bis
7 zusammen mit Bit 7 aus CR2 bestimmen die An-

fangsadresse der Video-Matrix. Sie bilden die
Adressbits A135 bis A9 der aktuellen Adresse.

Enthaelt die zwischengespeicherte Horizontalposi-
tion der Lichtkanone oder des Lichtstiftes.

Enthaelt die zwischengespeicherte Vertikalposition
der Lichtkanone oder des Lichtstiftes.

Enthaelt den digitalisierten Wert des X-Potentio-
meters.

Enthaelt den digitalisierten Wert des Y-Potentio-
meters.

Die Bits O bis 6 setzen die Frequenz des ersten
Tongenerators. Bit 7 schaltet ihn ein (S1=1) oder
aus (S1=0).

Wie CRA, nur fuer den zweiten Tongenerator.

Wie CRA, nur fuer den dritten Tongenerator.

Wie CRA, nur fuer den Generator fuer weisses Rau-
schen.

Die Bits 0 bis 3 setzen die Lautstaerke des zusam-
mengesetzten Geraeuschsignals. Es muss mindestens
ein Generator zur Geraeuscherzeugung eingeschaltet
sein. Die Bits 4 bis 7 enthalten den in Verbindung
mit dem Mehrfarbbetriebsmodus verwendeten Hilfs-
Farbcode.

191

CRF: Die Bits 4 bis 7 waehlen einen von 16 Farbtoenen
fuer die allen Zeichen gemeinsame Hintergrundfar-
be. Sie setzen grundsaetzlich die Farbe fuer den
Hintergrund innerhalb der Video-Matrix. Die Bits 0
bis 2 waehlen einen von 8 Farbtoenen fuer die Rah-
menfarbe, also fuer den Bereich ausserhalb der Vi-
deo-Matrix. Bit 3 bestimmt, ob verschiedenfarbige
Zeichen auf einem einfarbigen Hintergrund (R=1)
oder ob gleichfarbige Zeichen auf einem bei jedem
Zeichen andersfarbigen Hintergrund (R=0) abgebil-
det werden. Das R-Bit hat keine Funktion, wenn

Vielfarb-Modus gewaehlt wurde.

F.5 Ein Beispiel fuer die VIC-Kontrollregister-Anwendung

Zum noch besseren Verstaendnis des VIC-Bausteines wird im folgenden
ein Beispiel fuer die Kontrollregisteranwendung des VIC-Bausteins
gegeben.
Zur Vereinfachung sei angenommen, dass. alle Zeichen im hochaufloe-
senden Modus dargestellt werden und dass die Kontrollregister mit
den folgenden Werten geladen sind:

Register Inhalt hex. Inhalt bin. Ergebnis

CRO $03 0 0000011 Verschiebt den Ursprung der
Video-Matrix um 3(x4) Punkt-
breiten nach rechts.
Zwischenzeilenabtastung ist
ausgeschaltet (I=0).

CR1 $19 00011001 Verschiebt den Ursprung der
Video-Matrix um 25 (x2)
Punkthoehen vom oberen

Bildschirmrand nach unten.

Cr2 $96 1 0010110 Setzt 22 Videomatrixspalten.
Bit 7 gehoert zu Register 5.

CR3 $2E X 010111 0 Setzt 23 Videomatrixzeilen.

Es sind 8x8-Bit-Zeichenna-

trizen gewaehlt (D=0).

CR5 sollte fuer den Zugriff auf die geeigneten Speicherplaetze ge-
setzt werden. Nehmen wir an, die Videomatrix beginnt bei $0200 und
der Zeichenzellenbereich bei $3400. Dann muss CR5 folgendermassen
gesetzt werden:

CRS $0D 0000 1101 Dazu gehoert noch Bit 7 von
CR2.

Auf der naechsten Seite wird dargestellt, wie die Adressen aus die-
ser Information erzeugt werden.

192

Video-Matrix-Startadresse (14 Bits):

CRS=Bits
76 547—— 4

CR2-Bit

00 0010 0000 0000 binaerer Inhalt

0 2 0 hexadezimaler Inhalt

Zeichenzellenbereich-Startadresse (14 Bits):

Register

CRA

CRB

CRC

CRD

CRE

CRF

CRSzBits
32 10

110100 0000 0000 binaerer Inhalt

3 4

Inhalt (hex)

$00

SOA

$00

$A5

$XF

$0E

0 hexadezimaler Inhalt

Inhalt (bin) Ergebnis

0 0000000

1 0011010

0 0000000

1 0000000

XXXX 1111

0000 1 110

Tongenerator 1 ist ausge-
schaltet.

Tongenerator 2 ist mit einer
relativen Frequenz von 26
eingeschaltet.

Tongenerator 3 ist ausge-
schaltet.

Der Rauschgenerator ist mit
einer relativen Frequenz von
37 eingeschaltet.

Die Geraeuscheffekte sind
auf groesste Lautstaerke
gestellt.

Die allen Zeichen gemeinsame
Hintergrundfarbe ist Schwarz
(0). Die Rahmenfarbe ist
dunkelblau (6) und jedes
Zeichen wird in der ihm
zugeordneten Farbe auf dem
schwarzen Hintergrund abge-
bildet (R=1).

Zusammengefasst ergibt sich aus den so eingestellten Registern
folgender Betriebszustand:
Es wird eine zentrierte Videomatrix mit 22 Spalten und 23 Zeilen
erzeugt. Jedes Zeichen erscheint farbig auf einem schwarzen, dun-
kelblau eingerahmten Hintergrund. Dabei wird als Geraeuscheffekt
eine mittlere Tonschwingung
groesster Lautstaerke erzeugt.

193

zusammen mit weissem Rauschen in

Alle beschriebenen Register koennen fuer verschiedene Effekte mit
anderen Inhalten versehen werden. Wenn der Inhalt von CRO erhoeht
wird, verschiebt sich der Video-Matrix-Bereich weiter nach rechts.
Wird der Inhalt von CRB verringert (Bit 7 bleibt 1), so verringert
sich die Frequenz von Tongenerator 2. Wenn CRF auf $06 veraendert
wird, indem Bit R geloescht wird, erscheinen schwarze Zeichen auf

unterschiedlich farbigen Hintergrund (Invers-Modus) und der Rahmen
bleibt dunkelblau.

F.5 Farb-Betriebs-Modi

Der VIC6561-Baustein erlaubt zwei verschiedene Farb-Betriebs-Modi,

naemlich den Modus fuer hohe Bildschirmaufloesung und den Vielfarb-
Modus. Grundsaetzlich bestimmt der jeweilige Modus, wie die Infor-
mation aus den Zeichenzellen in Bildpunkte auf dem Bildschirm umge-
setzt wird. Der Modus wird durch das hoechstwertige Bit des Farb-
zeigers bestimt, der jedem Speicherplatz in der Video-Matrix zu-
geordnet ist. Ist dieses Bit eines Farbzeigers 0, so wird das be-
treffende Zeichen in hoher Aufloesung, andernfalls im Vielfarb-Mo-
dus angezeigt.
Beim Modus fuer hohe Bildschirmaufloesung besteht ein Eins-zu-Eins-

- Zusammenhang zwischen gesetzten Bits in den Zeichenmatrizen und den
Bildschirmpunkten, d.h. alle 1-er-Bits eines Zeichens werden in
einer Farbe und alle O-er-Bits in einer anderen Farbe dargestellt.
Die Vordergrundfarbe des Zeichens wird durch die restlichen 3 Bits
des Zeichenfarbzeigers bestimmt, waehrend die Zeichenhintergrund-
farbe durch das Register CRF bestimmt wird.
Beim Vielfarb-Modus sind immer 2 Bits einer Zeichenzelle einem
Bildschirmpunkt zugeordnet, dessen Farbton durch den mit den 2 Bits
darstellbaren Code bestimmt wird. Es sind also 4 Farben fuer jedes
Zeichen moeglich. Da jedoch immer 2 Bits der Zellendaten zu einem
Bildpunkt gehoeren, ist die Horizontalaufloesung nur noch halb so
gross, d.h. jeder 8x8-Bit-Zeichenzelle im Speicher ist ein 8x4-
Punkt-Zeichen auf dem Bildschirm zugeordnet. Die durch die 2 Bits
erzeugten 4 verschiedenen Codes geben an, wo die Farbinformation
fuer den jeweiligen Bildpunkt zu finden ist. Diese Farbe kann die
Hintergrundfarbe (CRF), die Rahmenfarbe (CRF), die Hilfsfarbe (CRE)
oder die Vordergrundfarbe (Bits 0 bis 2 des Zeichenfarbzeigers)
sein. Die vier Codes sind:

00: Hintergrundfarbe (CRF)
01: Rahmenfarbe (CRF)
10: Vordergrundfarbe (Farbzeiger)
11: Hilfsfarbe (CRE)

Es ist zu beachten, dass dieser Code kein eigentlicher Farbcode
ist, sondern ein Zeiger auf vier verschiedene Farbinformationen,
die selbst 3- bzw. 4-Bit-Informationen sind.
Auf der naechsten Seite ist ein Beispiel angegeben, das die Ar-
beitsweise der beiden Farb-Betriebs-Modi verdeutlichen soll.

194

Gegeben sei:

CRF: $1F Farbhintergrund ist WEISS (1).
Rahmenfarbe ist GELB (7).
Keine inverse Darstellung (R=1).

‘CRE: $6X Hilfsfarbe ist BLAU (6).

Zeichenraster:

Hex-Code I

an

>

Ww

i)

—

©
 Bit

$1B
$1B
$1B
$1B
$1B
$1B
$1B
$1B

Byte 0

N
I
I
T

B
N
D

o
o
o
o
o
o
o
o

o
o
o
o
o
o
0
0
0

OV

O
O
O
O
o
o
O
o
o
o
O
o

—
oe

3
3

2
os

ss

o
o

a
o

os

Ss

o
o
o
o
o
o
o
o
0
o

S
e

a

s
s

es

PER

s
s

os

es

on

ss

‘Wenn die Farbzelle fuer dieses Zeichen 0 enthaelt (0000), dann ist
die Vordergrundfarbe SCHWARZ (0) und es ist der Modus fuer hohe
Aufloesung gewaehlt (hoechstwertiges Bit ist Null. Das Zeichen wird
dann folgendermassen abgebildet:

l-er-Bits in Vordergrundfarbe (SCHWARZ)

DD

=

O-er-Bits in Hintergrundfarbe (WEISS)

Wenn die Farbzelle fuer dieses Zeichen 8 enthaelt (1000), dann ist
die Vordergrundfarbe SCHWARZ (0) und es ist der Vielfarb-Modus ge-
waehlt (hoechstwertiges Bit ist 1). Das Zeichen wird dann folgen-
dermassen abgebildet:

on r

Der 2-Bit-Code ist 00.
Das Punktepaar wird in
der Hintergrundfarbe
(WEISS) abgebildet.

| |
Der 2-Bit-Code ist 01.
Das Punktepaar wird in
der Rahmenfarbe (GELB)
abgebildet.

Der 2-Bit-Code ist 11.
Das Punktepaar wird in
Hilfsfarbe (BLAU) ab-
gebildet.

Der 2-Bit-Code ist 10.
Das Punktepaar wird in
der Vordergrundfarbe

- (SCHWARZ) abgebildet.
L
=—_

195

F.7 VIC6561-Pin/Signal -Beschrei bung

Bezeichnung Pin Pin Bezeichnung

N.c. 4 1 40 + voD

COMP. COL. 4 2 39 E PHI1 IN

SYNC./LUM. 4 3 38. F PHI2 IN

RW 4 4 ~~~. 37s OPTION

DATA 11 4 5 36 FP PHI2

DATA 10 4 6 35. + P PHII

DATA 09 4 7 34 F ADR 13

DATA 08 + 8 33. Lb ADR 12

DATA 07 4 9 32 + ADR 11

DATA 06 4 10 31 + ADR 10

DATA 05 4 11 30 =F ADR 09

DATA 04.4 12 29 + ADR 08

DATA 03.4 (13 28 + ADR 07

DATA 02. + 14 27 + ADR 06

DATA 01 4 15 26 + ADR OS

DATA 00 +1 16 25 + ADR 04

POTX 417 24 apr 03

POTY 4 18 23 + ADR 02

COMP. SOUND 4 19 22 + ADR O1

VSS 4 20 21 F ADR 00

Abb. F.3: Pin-Belegung des VIC6561

Zum Abschluss dieses Anhangs werden auf den folgenden Seiten die
einzelnen Pins gemaess obiger Abbildung beschrieben:

196

Adress-Bus (Pins 21 bis 34):

Der 14-Bit-Adress-Bus (ADR 00 bis ADR 13) ist bidirektional.
Waehrend P PHI2=1 ist, sind die Adresspins auf Eingabemodus ge-
schaltet. In diesem Modus hat der Mikroprozessor Zugriff auf je-
des der 16 VIC-Kontrollregister. Die oberen 6 Pins des Adressbus'
(ADR 08 bis ADR 13) wirken im Eingabemodus als Chip-Select-Pins.
Eine "wahre'' Chip-Select-Bedingung ist eingetreten, wenn:

ADR 13=ADR 11=ADR O9=ADR 08=0 und ADR 12=1,

was einer VIC-Chip-Select-Adresse von $1000 entspricht. Die unte-
ren 4 Pins des Adressbus' (ADR 00 bis ADR 03) dienen als Kon-
trollregister-Select-Teil der Eingabeadresse. Waehrend P PHI1=1
ist, sind die Adresspins auf Ausgabemodus geschaltet, wenn Daten
(Zeichen- oder Farbzeiger) gelesen werden. Die Adresse von VIC
wird 50 ns nach der positiven Flanke von P PHI1 gueltig und
bleibt es bis zur positiven Flanke von P PHI2.

Schreiben/Lesen (Pin 4):

Dies ist beim 6561 ein reines Eingangssignal und steuert den Da-
tenfluss zwischen VIC und Mikroprozessor. Wenn das Schreib/Lese-
Signal auf Masse liegt und die Chip-Select-Bedingungen erfuellt
sind, kann der Mikroprozessor in das angewaehlte VIC-Kontroll-
register schreiben. Liegt das Schreib/Lese-Signal dagegen hoch,
so liest der Mikroprozessor aus dem angewaehlten VIC-Kontroll-
register.

Beachten Sie, dass der Datenaustausch zwischen Prozessor und VIC
nur bei P PHI2=1 moeglich ist. Bei P PHI1=1 liest VIC Daten fuer
die Anzeige aus dem Speicher, wobei das Schreib-/Lese-Signal
hochgehalten werden muss, um zu verhindern, dass VIC in irgend
eine Speicherzelle schreibt.

Datenbus (Pins 5 bis 16):

Der 12-Bit-Datenbus des VIC6561 (DATA 00 bis DATA 11) ist in zwei
Bereiche unterteilt. Die unteren 8 Bits (DATA 00 bis DATA 07)
dienen sowohl dem Datenaustausch mit dem Mikroprozessor als auch
zum Lesen von anzuzeigenden Daten, waehrend die oberen 4 Bits
(DATA 08 bis DATA 11) ausschliesslich zur Uebernahme von Farb-
und Modus-Informationen dienen.
Waehrend P PHI2=1 ist, werden ausschliesslich Daten zwischen
Prozessor und VIC ueber DATA 00 bis DATA 07 uebertragen. Bei
P PHI1=1 list VIC anzuzeigende Daten (Zeichen) ueber DATA 00 bis
DATA 07.

Master-Oszillator-Takteingang (PHI 1 und PHI 2, Pins 39 und 38):

VIC6561 benoetigt einen 4,433618-MHz-Takt fuer den PAL-Standard.
Die Taktsignale muessen 5 V betragen und duerfen sich nicht
ueberlappen.

197

Systemtakt (P PHI1 und P PHI2, Pins 35 und 36):

Dies ist der Master-Systemtakt-Ausgang fuer den VC20 mit 5 V
Signalspannung, 1,108 MHz und nichtueberlappend.

Speichertakt (PHIM (wahlweise), Pin 37):

Dies ist ein Einphasen-2,217-MHz-Takt, der nur dann erforderlich
ist, wenn die Speicher des VIC-Systems ein Strobe-Signal benoe-
tigen, nachdem der Adressbus gueltige Information enthaelt.

Analog-Digital-Wandler (POT X und POT Y, Pins 17 und 18):

Mit diesen Eingaengen werden Potentiometerstellungen in vom Mi-

kroprozessor lesbare 8-Bit-Binaerzahlen durch einfache RC-Zeit-
konstantenintegration umgewandelt. Eine externe an einen POT-Ein-
gang angeschlossene Kapazitaet wird dabei ueber das Potentiometer
aufgeladen.

Mischgeraeusche (Pin 19):

Dies ist der Ausgang des Ton-Synthesizers des VIC. Es ist ein
hochohmiger Ausgang (ca. 1 kOhm), der fuer den Betrieb eines
Lautsprechers extern gepuffert und verstaerkt werden muss.

Synchronisation und Helligkeit (Pin 3):

Dies ist ein Open-Collector-Ausgang, der die Information fuer die
Synchronisation und Helligkeit eines Standard-Farbfernsehschirms
liefert.

Farbe (Pin 2):

Der Farbausgang liefert die vollstaendige Information, die ein
Farbfernsehschirm fuer den Empfang eines Farbbildes benoetigt. Es
ist ein hochohmiger Ausgangspuffer, der sowohl das Referenz-
Burst-Signal als auch die farb-codierte Phasen- und Amplituden-
information bei 4,433618 MHz liefert.

Reset (wahlweise, Pin 37)

Der Reset-Ausgang gibt den Zustand des VIC bezueglich des Zu-
griffs auf den Videospeicher wieder. Der Ausgang geht 2 Mikro-
sekunden, bevor VIC auf den Speicher zugreift, auf Masse und
bleibt so, bis das gesamte Bild wiederholt wurde.

198

Licht-Kanone/Licht-Stift (wahlweise, Pin 37):

Durch dieses Eingangssignal wird die gegenwaertig abgetastete
Bildschirmposition eines Bildpunktes in die Kontrollregister CR6
und CR7 bei negativer Flanke zwischengespeichert. Dieser Eingang
wird zusammen mit einer Photozelle bei Video-Spielen oder fuer
einen Lichtstift verwendet.

199

Commodore
a ER

za 4 4 N

4 ag!

e
®

2) rf
¥y — wa

es

<i

Commodore GmbH

Lyoner StraBe 38

D-6000 Frankfurt/M. 71

Commodore AG

Aeschenvorstadt 57

CH-4010 Basel

Commodore GmbH

Fleschgasse 2
A-1130 Wien

Nachdruck, auch auszugsweise, nur mit schriftlicher Genehmigung von COMMODORE.

Artikel-Nr. 580020 Anderungen vorbehalten

