David Lawrence

Commodore Sachbuchreihe Band 9

PROGRAMMIERTECHNIKEN
FUR FORTGESCHRITTENE AUF
DEM COMMODORE 64

Wertvolle Ideen und Anwendungen
anwendbar auch auf dem Commodore 128

David Lawrence

_ PROGRAMMIERTECHNIKEN
FUR FORTGESCHRITTENE AUF DEM
COMMODORE 64

Commodore Sachbuchreihe Band 9

David Lawrence

_ PROGRAMMIERTECHNIKEN
FUR FORTGESCHRITTENE AUF DEM
COMMODORE 64

Wertvolle Ideen und Anwendungen
anwendbar auch auf dem Commodore 128

Commodore

Titel der Originalausgabe: Advanced programming techniques on the Commodore 64
Copyright © 1983

Sunshine Books (an imprint of Scot Press Ltd.)

12—-13 Little Newport Street, London WC2R 3LD

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronical, mechanical, photocopying, recording, or
otherwise without the prior permission of the publishers.

Aus dem Englischen Ubertragen von Brigitte Pohl.

Copyright © der deutschen Ausgabe bei Commodore Biromaschinen GmbH, Frankfurt 1985.

Alle deutschsprachigen Rechte vorbehalten. Kein Teil des Werkes darf in irgendeiner Form (Druck,
Fotokopie, Mikrofilm oder einem anderen Verfahren) ohne schriftliche Genehmigung von COMMO-

DORE reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfaltigt oder
verbreitet werden.

Nachdruck, auch auszugsweise, nur mit schriftlicher Genehmigung von COMMODORE.
Artikel-Nr. 556 435/4.85 Anderungen vorbehalten. ISBN-NR. 3-89133-009-X

INHALT

Kapitel1
Modulares Programmieren

Wie man ein lauffahiges Programm schreibt — Abgrenzen des Pro-
gramms — Planen des Programms — Schreiben der Module — Einge-
ben des Programms — Hinweise und Tips

Kapitel2
Fehlerbeseitigung

Information — Zeilenspezifische Fehlermeldungen — Nicht lokalisierte
Fehlermeldungen — Fehlermeldungen und ihre Bedeutung

Kapitel3
Strings

Verkettung oder String-Addition — String-Subtraktion — Einfligen von
Zeichen in Strings — Umstellung von Zeichen in Strings — Suchen in
Strings — RegelmasBige Stringsstrukturen — Mehrelementige Stringfel-
der — Daten in Strings variabler Lange — Garbage Collection

Kapitel4
Dateneingabe '

Eingabe von Informationen: INPUT — Einfache Eingaben mit INPUT —
INPUT mehrerer Elemente in dieselbe Bildschirmzeile — INPUT in
Bildschirmfenster — GET — Wartestatus mit GET — GET und befristete
Antwortzeiten — GET und invertierte Fenster — Bildschirmeditierung
mit GET — Einfache Bildschirmeditierung mit INPUT

Kapitel 5
Fehlerkontrolle

Fehlervorsorge — Fehlerkontrolle — Bestimmung von Grenzwerten —
Verstiimmelte Eingaben — Selbstentworfene Fehlermeldungen

Kapitel6
Speichern und Laden

Speichern von Programmen — Speichern und Laden von Daten —
Speichern auf Band — Ausgabe auf eine Datei — Laden vom Band —
Speicher- und Laderoutine — Besonderheiten bei Disketten

Kapitel 7
Logische Bedingungen

Das bescheidene IF — Sicherung gegen ungiltige Werte — Durch IF
hervorgerufene Fehler — IF ... THEN ... ELSE — IF mit >, <und = —
IF mit den Operatoren AND und OR — Kombinieren von AND und OR —
Entschachteln komplexer Bedingungen — Bestimmung von Grenzwer-
ten — IF mit NOT — Anwendung logischer Bedingungen — Wert einer
Bedingung — Anwendung von Bedingungen als Werte — Plus oder
Minus? — Multiplikation und Division — Vermeiden einer Isolierung
durch IF — AND und OR mit Zahlen — POKE mit AND und OR —
Speichern mit AND/OR — Gerade oder ungerade?

Kapitel 8
Sortieren

Sortieren: Warum und wozu? — Der Bubble-Sort — Programmieren des
Bubble-Sort — Der Delayed-Replacement-Sort — Der Shell-Metzner-
Sort

Kapitel 9
Datenstrukturen |

Einfache Datenstrukturen — Datenstrukturen flir Zahlen — Bytezahlen
in Integerfeldern — Ablegen im freien Speicher — Zahlen in Strings —
Stacks — Stringdaten-Strukturen — Verdichtete Strings — Verdichtete
Strings mit numerischen Feldzeigern

Kapitel 10
Datenstrukturen Ii

Verkettete Listen — Zeigerstrings — Léschen mit Zeigern — Schwarze
Lécher

Kapitel 11
Einfiigen von Daten

Normales Suchen und Verschieben — Bindres Suchen — Reines
Suchen — Bindres Suchen mit Zeigerfeldern

Kapitel12
Vermischtes

Vom Benutzer definierte Funktionen — Beenden von FOR-Schleifen —
DATA-Anweisungen — Zeitsteuerung mit Tl und TI$ — Runden mit INT

121

Kapitel13 L 169
Formatieren

Cursorsteuerung — Verwendung von Cursor-Steuerzeichen — TAB —
SPC — Nachahmung von PRINT USING — Justieren — Einfache Logos

und Grafiken

Steuerzeichen in Programmilistings

Die in den Programmzeilen verwendeten Steuerzeichen haben folgende
Bedeutung (vgl. auch Anhang F des Commodore-64-Bedienungshandbuchs):

BEZEICHNUNG SYMBOL TASTEN ODER CHRS$(XXX)
[SCHIRM NEUl "{J" = <(SHIFT>+<CLR> CHR%(147)
[CRSR HOCH]1 "O" = <SHIFT>+<{CRSR> CHR#$(145)
[CRSR RUNTER] "NM" = <(CRSR> CHR$(17)

[CRSR LINKS] "W" = <(SHIFT>+<{CRSR> CHR%(157)
[CRSR RECHTS1 "MI" = <CRSR> CHR#$(239)

[SCHWARZ] "m" = (CTRL>+<1> CHR#$(144)
[WEISS] "#" = <(CTRL>+<L2> CHR®<(3)

[ROT] "M" = (CTRL>+<3> CHR$(28)

[CYAN] "An" = (CTRL>+<4> CHR#$(139)
[PURPUR] "M = <(CTRL>+<(5> CHR#$(156)
[GRUEN] "l" = <CTRL>+<6> CHR#$(382)

[BLAU] "W®" = (CTRL>+L7> CHR#%(31)

[GELB]1 "B" = (CTRL>+<(8> CHR#(158)
[REVERS EIN1 "@#" = <CTRL>+<38)> CHR%(18)

[REVERS AUS] "W" = (CTRL>+<0> CHR#$(146)
[ORANGE] "" = LC=>+{1> CHR#$(129)
CBRAUNI] "R" = (C=>+2)>. CHR#$<¢148)
[HELLROT] "@" = (C=>+<(3> CHR#(150>
[GRAU 1] "W" = (C=>+<{4)> CHR$(151)
[GRAU 2] "al" = (C=>+<35)> CHR$(132)
[HELLGRUEN] "Hl" = <C=>+<6> CHR$(133>
[HELLBLAU] " = KC=>+L7> CHR#(1354)
[GRAU 31 "H" = (C=>+<(8> CHR#$(155)

{CTRL> BEDEUTET
BEDEUTET

{C=2>

'CONTROL-TASTE '.
'COMMODORE-TASTE ' .

EINLEITUNG

Dieses Buch soll sich von allen anderen in Inrem Blicherregal unterscheiden. Es
stellt keine Programmsammlung dar, keine Einflhrung in die verfligbaren BASIC-
Befehle und auch keine Sammlung Ublicher Routinen, wie z. B. ein zweizeiliges
Unterprogramm zur Umrechnung von Fahrenheit in Celsius.

Es ist vielmehr den Lesern gewidmet, die ihren Mikrocomputer fir nitzliche
Aufgaben einsetzen wollen — die Art von Aufgaben, die man normalerweise
‘Anwendungsprogramme’ nennt. Die Zeiten, in denen man sich damit begniigte, die
Leistungsfahigkeit eines Mikrocomputers nur flr Spiele zu nutzen, sind hoffentlich
endglltig vorbei. Die Leute wollen mit den Mikrocomputern arbeiten. Die Frage ist
nur: Wie schreibt man ein geeignetes Programm?

Die Legenden, die sich um anwendungsbezogenes Programmieren gebildet haben,
sind meistens Unsinn. Einfach gesagt, ist ein Anwendungsprogramm etwas, das die
Eingabe von Informationen ermdglicht, sie speichert, verarbeitet und zu irgendei-
nem Zweck wieder ausgibt. Die Information kann aus Namen und Adressen
bestehen, Waren und Preisen, Finanzunterlagen etc. — die Liste ist endlos. Ebenso
unbegrenzt sind die Méglichkeiten der Informationsverarbeitung: Manches muB nur
gespeichert, anderes nach bestimmten Kriterien sortiert werden, wieder anderes
wird komplizierten mathematischen Verfahren unterworfen. Kein Buch kann den
Anspruch haben, Anleitungen flr alle mdglichen Verarbeitungsweisen von Daten zu
geben, die ein Mikrocomputer speichern kann. Die Art der Verarbeitung hangt von
der Information und dem Zweck ab, zu dem sie gespeichert wird.

Einige Richtlinien fur Verfahrensweisen im Rahmen eines Kernprogramms miissen
hier gentigen: wie man ein Programm so schreibt, daB es reibungslos funktioniert;
wie man es austestet; wie man Daten méglichst ékonomisch und schnell speichert;
wie man sortiert; wie man die Ausgabe so formatiert, daB sie klar und verstandlich
ist. Solche Dinge werden den Lowenanteil der Programmierarbeit fiir jeden ernst-
haften Anwendungszweck ausmachen, und dieses Buch soll erklaren, wie man sie
mit sparsamen Mitteln erfolgreich bewaltigt.

Die Komplexitdt der behandelten Themen ist duBerst unterschiedlich. In den
folgenden Kapiteln werden Sie viele Techniken vorfinden, die nur eine einzige
Programmzeile erfordern, daneben zwei- oder dreizeilige Routinen flr einfache
Zwecke wie die Ausrichtung von Dezimalstellen bei einer Zahlenkolonne, aber auch
langere und komplexere Routinen, mit denen man Daten sehr schnell in groBe
Felder schreiben kann. Alle sind aufgefiihrt, weil sie nutzlich sind, denn das
vorliegende Buch ist kein theoretisches Werk. Ich habe versucht, sowohl eigene
Techniken als auch die Arbeit anderer auf gemeinsame Aufgabenstellungen und
Methoden hin zu untersuchen. Das Buch enthélt nichts, das bei der Ldsung eines
bestimmten Problems nicht schon erprobt worden ware.

Es befaBt sich nicht mit dem Einsatz von Mathematik beim Programmieren. Das ist
ein Spezialgebiet, das mindestens ein eigenes Buch wert ist. Selbstversténdlich
enthélt auch dieses Buch hier und da ein biBchen Mathematik, aber nur so viel, wie
flir ein betriebsfahiges Programm unbedingt nétig ist. Wenn Sie sich grindlicher mit
dem mathematischen Bereich beschaftigen wollen, sollten Sie sich Czes Kosniows-
kis neues Buch fir den C 64, ‘Mathematik mit dem Commodore 64’, (Commodore
Sachbuchreihe, Band 8) anschaffen. Grafische Techniken 148t das vorliegende
Buch ebenfalls auBer acht, abgesehen von dem, was man fir eine klare und
Ubersichtliche Datengestaltung braucht. Dies ist ebenso ein eigenes Spezialthema.
Mein Dank geht an alle Leser, die mich zum Schreiben eines derartigen Buches
ermutigt haben. Ich hoffe, es entspricht wenigstens zum Teil ihren Erwartungen.
Dank gilt auch Mark England, Koautor von ‘Programmierung in Maschinensprache
auf dem Commodore 64’ (Commodore Sachbuchreihe, Band 12 und 13), der
geduldig die Vollendung dieses Buches abgewartet hat, bevor wir unser nachstes
gemeinsames angehen kdnnen. SchlieBlich bedanke ich mich ganz nachdriicklich
bei Barny und Tom, weil sie Verstdndnis daflir hatten, daB es manchmal wichtiger
sein kann, am Computer zu sitzen als zu spielen, und bei meiner Frau Jane, weil sie
in dieser Zeit alle Sorgen allein zu tragen hatte.

Ich hoffe, das Resultat rechtfertigt diesen Aufwand. Ich hoffe, dies ist ein Buch, auf
das Sie immer wieder zuriickgreifen werden, weil es etwas Licht in die unvermeidli-
chen Probleme bringt, die sich beim Programmieren ergeben. Am meisten hoffe
ich, daB es Sie zu neuen ldeen anregt. Es gibt [hnen die Hilfsmittel zum Program-
mieren an die Hand, aber es hat seine Aufgabe noch nicht erflllt, wenn Sie diese
Hilfsmittel nur verstehen, sondern erst, wenn Sie sie flir neue Zwecke einsetzen.

David Lawrence
Nach dem groBen Erfolg, den David Lawrence mit seinem Buch in England gehabt
hat, bringen wir auch fiir den deutschen Leser dieses Standardwerk heraus, das fir
das Programmieren nicht nur am Commodore 64 sondern ebenso auch am ‘gréBe-

ren Bruder’, dem neuen Commodore 128, seine Aktualitidt behalten wird.

Commodore Verlagsabteilung
Sachbuchredaktion

10

KAPITEL 1

MODULARES PROGRAMMIEREN

WIE MAN EIN LAUFFAHIGES PROGRAMM SCHREIBT

Es scheint vielleicht ungewdhnlich, ein Buch Gber BASIC-Programmiertechniken
mit einem Kapitel anzufangen, das sich weniger mit BASIC als mit Problemen von
Stil und Aufbau eines Programms beschaftigt. Es gibt jedoch einen einfachen Grund
fur dieses Kapitel: Da ich es mit Fragen und Problemen der Mikrocomputer-Besitzer
zu tun habe, die ihre Programme selbst schreiben, sehe ich immer deutlicher, daB
ihr gréBtes Problem oft nicht in mangelnder Kenntnis der Funktion von BASIC liegt,
sondern in der unsystematischen Art, wie sie an die eigentliche Aufgabe herange-
hen: namlich BASIC in einem Programm effizient einzusetzen.

Die Programmiertechnik, die ich selbst sowohl in Bichern als auch in eigenen
Programmen benutze, heiBt ‘modulares Programmieren’. Zundchst bedeutet das
nur, Programme zu schreiben, die aus selbstindigen Bausteinen zusammengesetzt
sind. Die meisten praktischen Beispiele im Buch sind in dieser Form geschrieben.
Sie konnen direkt in jedes beliebige eigene Programm, wo nétig, eingebunden
werden. Modulares Programmieren geht jedoch noch viel weiter. Es enthalt die
ganze Philosophie eines Programmierstils, und wenn das zu groBartig klingt: Es soll
weiter nichts heiBen, als daB man seinen gesunden Menschenverstand beim
Schreiben von Computerprogrammen einsetzt.

In diesem Kapitel werden wir einige Schritte erortern, die zum Schreiben eines
erfolgreichen Programms gehdren und schon notwendig sind — oder sein sollten —,
lange bevor Sie die Tastatur Ihres 64 zum ersten Mal berihren.

ABGRENZEN DES PROGRAMMS

Die schlechtesten Programme, die (berhaupt geschrieben werden, sind die, von
denen man schon vorher begeistert ist. Man hat eine Idee, stlrzt sich voller
Zuversicht auf die Tastatur und versucht, seine Vision in die Praxis umzusetzen.
Wenn man sich auskennt, kann man in kurzer Zeit ein betriebsfédhiges Kernpro-
gramm erstellen. Dann aber merkt man, daB es z. B. keine Mdglichkeit gibt, Daten
ordentlich einzugeben, und so schiebt man das in irgendeine Liicke des Programms
ein oder hangt zu diesem Zweck eine Routine an den SchluB. Dann fligt man noch
etwas an, damit fehlerhafte Elemente im Bedarfsfall entfernt werden, und noch
etwas zur Beriicksichtigung ungiltiger Eingaben, die das Programm zum Absturz

1

bringen wiirden (das passiert immer, wenn ein anderer es in die Finger bekommt).
Zusatzlich braucht man natiirlich noch ein paar Zeilen zum Speichern von Daten auf
Band. Dann fallt einem ein, daB sonst niemand weiB, wie man mit dem Programm
umgeht, also muB es um ein besseres ‘Menl’ und vielleicht ein paar Anweisungen
erweitert werden . . .

Zum guten SchluB ist aus dem Programm ein Mischmasch aus ungeordneten
Zeilennummern und verwickelten, in alle Richtungen weisenden GOTOs und
GOSUBs geworden. Trifft man dann auf einen unvermeidlichen Fehler, ist die Art
des Fehlers weniger problematisch herauszufinden als sein Ort. Das kann Tage
oder gar Wochen dauern.

Die besten Programme entstehen dann, wenn man zwar weiB, daB man sie
schreiben muB, aber eigentlich keine Lust dazu hat oder nicht genau weiB, wie es
gemacht wird. Das hat einen einfachen Grund: Wenn man nicht sicher ist, ob man
das gewlnschte Programm schreiben kann, setzt man sich erst einmal hin und
denkt (ber das Vorhaben nach. In diesem Moment hat man die erste und in vieler
Hinsicht wichtigste Hurde beim Entwerfen eines erfolgreichen Programms ge-
nommen.

Ein Programm besteht nicht nur in dem Verfahren, mit dem seine zentrale Aufgabe
geldst wird, wie z. B. die Berechnung von Steuern oder das Speichern von
Namens- und AdreBdateien. Es ist vielmehr ein ganzer Komplex von Funktionen:
Es muB die Eingabe einer Information und ihre korrekte Wiedergabe bewdéltigen,
klare Angaben Uber die Art seiner Bedienung machen, sich mit Fehlern befassen
und Korrekturen zulassen, die nach der Eingabe fehlerhafter Informationen nétig
sind. Diese und viele andere Aufgaben sind fiir ein brauchbares Programm genauso
wesentlich wie die Routine im Programmkern.

Selbst wenn Sie sich nur auf die zentrale Aufgabe und die daflir notwendigen Zeilen
beschrénken, ist die erste Idee selten die beste. Sie wollen also lhre Steuer
ausrechnen; aber was soll alles in dieser Aufgabenstellung inbegriffen sein?
Interessieren Sie die Ergebnisse bei jeweils unterschiedlichen Steuersatzen? Soll
der Abzug von Unkosten berlicksichtigt werden? Welchen Zeitraum wollen Sie
abdecken, und, falls er Uber ein Jahr hinausgeht: Was passiert, wenn die Steuer-
satze sich von einem Jahr zum anderen (oder sogar innerhalb eines Jahres)
andern? Wollen Sie das Programm so anlegen, daB es ‘Was, wenn’-Fragen bearbei-
tet (z. B. ,,Was wirde passieren, wenn mein Einkommen monatlich um DM 78,70
stiege?”), ohne bereits eingegebene Daten zu beeinflussen? Mdchten Sie die
Informationen speichern oder jedesmal neu eingeben, wenn Sie das Programm
laufen lassen? Soll das Gehalt des Ehepartners mit einbezogen werden? Alle diese
Fragen fallen mir ganz spontan ein. Nach langerem Nachdenken kdnnte man eine
ganze Seite mit alledem flllen, was man wissen muB, bevor man endlich mit dem
Programmieren einer zunachst scheinbar vollig eindeutigen Aufgabe anfangen
kann. Moglicherweise werden Sie auch dann ein funktionierendes Programm

12

zustandebringen, wenn Sie vorher die Anwendungsmaoglichkeiten nicht griindlich
durchdacht haben — aber es gibt Uberall schon mehr als genug Uberflissige
Kassetten mit funktionierenden Programmen, die im Grunde unbrauchbar sind.
Die erste Aufgabe beim Schreiben eines Programms besteht also darin, sich
hinzusetzen und nachzudenken und in klaren Worten aufzuschreiben, was das
Programm lhrer Vorstellung gemaB leisten soll. Wenn das erledigt ist, lassen Sie es
eine Zeitlang liegen, bevor Sie sich wieder damit beschéftigen. Bei nochmaliger
Prifung wird es selten so perfekt aussehen wie vorher, und Sie werden es um
einige Funktionen erweitern wollen. Wird ein Programm von anderen benutzt (und
sei es noch so selten), mussen Sie deren Erwartungen bericksichtigen. Es ist
absolut zwecklos, Ihre Kinder davon Uberzeugen zu wollen, wie spannend und
unterhaltsam das ausgezeichnete neue Lernprogramm ist, das Sie geschrieben
haben — solange es nicht das leistet, was |hre Kinder gern hétten. Entweder tut das
Programm, was die Benutzer mdchten und erwarten, oder nicht. Wenn nicht, haben
Sie mit dem Schreiben eine Menge Zeit verschwendet.

Daraus folgt, daB Sie bei der Funktionsbestimmung lhres Programms nie zu weit
gehen konnen. Sie sollten bei der Planung weit mehr als die bloBen Notwendigkei-
ten berucksichtigen. Wenn Sie mit dem ausfihrlichen Planen und Schreiben
beginnen, missen Sie vielleicht einige Ideen wieder aufgeben, weil die Speicherka-
pazitat oder aber lhre Kenntnisse dazu nicht ausreichen. Viel éfter werden Sie sich
jedoch in der Lage sehen, ein Programm tatséchlich nach lhren Vorstellungen
schreiben zu koénnen. Gerade auf die Programme, die ein Gebiet vollstandig
abdecken, werden Sie immer wieder zurlickgreifen.

PLANEN DES PROGRAMMS

Planen? Hatten wir das nicht schon? Eben nicht, denn bis jetzt haben Sie nicht
einmal Uber ein Computerprogramm nachgedacht. Sie haben lediglich den idealen
Sklaven beschrieben, der eine Arbeit genauso erledigt, wie Sie es sich vorstellen.
Wenn Sie die Aufgabe richtig angefaBt haben, dann haben Sie bis jetzt keine
Riicksicht darauf genommen, ob Sie sie mit dem C 64 realisieren kdnnen, oder was
man lberhaupt damit machen kann. Ihre Aufgabe ist es jetzt, die ideale Funktions-
beschreibung in Bausteine zu zerlegen, die der C 64 verarbeiten kann, und die Sie
programmieren kénnen.

Dabei geht man am besten in zwei Stufen vor. Im ersten Stadium werden allge-
meine Programmbereiche wie Eingabe, Ausgabe, Datenverarbeitung, Speicher
u. a. bestimmt. Wenn diese ziemlich einfache Angelegenheit erledigt ist, kommt der
komplizierte Teil, in dem die eigentlichen Bausteine oder Module bestimmt werden,
aus denen das Programm aufgebaut ist. *

In der Regel unterteilt man dazu die Programmfunktionen so weit wie mdglich in

13

getrennte Einheiten, selbst wenn man dabei Funktionen teilen muB, die sonst
scheinbar immer zusammengehdren. Ein streng in Funktionseinheiten gegliedertes
Programm ist immer am leichtesten zu schreiben und am unkompliziertesten, wenn
die unvermeidliche Suche nach Fehlern beginnt. AuBerdem sind Programme, die in
klare Funktionseinheiten eingeteilt sind, paradoxerweise oft kiirzer als soiche, in
denen alle Programmfunktionen eng gebiindelt sind. Der Grund dafir ist folgender:
Wenn Sie ein Programm konsequent zerlegen, stellen Sie fest, daB bestimmte
Funktionen in verschiedenen Teilen und an verschiedenen Stellen des Programms
immer wieder gebraucht werden.

Nehmen wir als Beispiel unser hypothetisches Programm zur Berechnung von
Steuern: Die Anzeige der Daten auf dem Bildschirm erfordert eine kurze Routine,
damit Zahlen mit zwei Dezimalstellen und in einer Kolonne mit untereinander
ausgerichteten Dezimalstellen erscheinen (siehe Kapitel 13). Sie kénnten diese
drei- bis vierzeiligen Routinen einfach an die Ausgabeeinheit des Programms
hangen. Aber dann kommen Sie beim Ldschen einzelner Elemente darauf, daB sie
in demselben Format angezeigt werden sollten, damit der Benutzer genau verfolgen
kann, was geldscht wird. Dasselbe gilt fir die Eingabe, die Sie gern formatiert auf
dem Bildschirm s&hen. Da Sie aber die kurze Formatierroutine in einem anderen
Programmteil untergebracht haben, ist es unméglich, von einer anderen Stelle aus
darauf zuzugreifen, und daher mussen Sie die Routine bei Bedarf jedesmal neu
schreiben.

Das klingt vielleicht lacherlich, aber werfen Sie nur einen Blick auf die Programme,
die im Anhang von Computerzeitschriften verdffentlicht werden. Uberall werden Sie
solche Wiederholungen entdecken. In einem ordentlich entworfenen Programm
kann auf jede Funktion von jeder Stelle aus zugegriffen werden. Sehr oft werden Sie
sogar entdecken, daB ein sorgféltig geschriebenes Programm um zusatzliche
Funktionen erweitert werden kann, indem man eine Anzahl von Funktionen einfach
in einer anderen Reihenfolge aufruft.

Auf lange Sicht ist es am wichtigsten, daB das Schreiben weiterer Programme
enorm erleichtert wird, wenn Sie erst einmal Uber drei oder vier Programme mit klar
abgegrenzten Funktionen verfligen. Es gibt in Wirklichkeit nur sehr wenige Techni-
ken, die flr ernsthaftes Programmieren wichtig sind. Wenn Sie diese einmal in
einem Programm angewendet haben, werden Sie schnell dazu (ibergehen, sie nach
dem Baukastenprinzip fur die Erstellung anderer Programme auszuwéhlen und zu
benutzen.

Die grundlegende Technik fir ein sorgfaltig strukturiertes Programm besteht darin,
sich jeden Aspekt des Programms zu beschreiben:

“In diesem Abschnitt méchte ich dem Benutzer erlautern, wie Daten einzugeben
sind, dann die Daten annehmen, sie auf bestimmte Fehler hin Uberprifen, den
Benutzer auffordern, die Richtigkeit der Daten zu bestétigen, und schlieBlich die
Daten an den richtigen Platz speichern.”

14

In diesem einfachen und relativ untechnischen Satz haben Sie bereits mindestens
funf Funktionen unterschieden, die Sie sofort notieren sollten. Arbeiten Sie sich auf
die gleiche Weise durch alle allgemeinen Programmteile. Als Resultat ergibt sich
eine Liste von Funktionen, die offenbar fiir ein Programm ausreichen.

Jetzt geht man daran, die weiter zerlegbaren Funktionen zu bestimmen. Wir haben
z. B. oben erwéhnt, daB die Eingabe noch einmal auf dem Bildschirm angezeigt
werden soll, etwa damit der Benutzer die Korrektheit der Eingabe bestétigen kann.
Zum Formatieren der Anzeige braucht man wie gesagt eine Formatierroutine. Ein
weiteres Beispiel wére die letztgenannte Funktion: das Speichern der Daten an den
richtigen Platz. Wenn Sie den Inhalt alphabetisch oder chronologisch geordnet
haben, muBte beim Einfligen eines neuen Datenelements zuerst die richtige Stelle
gesucht und dann Platz dafiir gemacht werden. DaB es sich dabei um zwei
verschiedene Prozesse handelt, merken Sie spétestens dann, wenn Sie dem
Benutzer die Mdglichkeit geben wollen, ein bestimmtes Element zu benennen, das
aufgerufen und angezeigt werden soll. Dann werden Sie némlich feststellen, daB
Ihre Suchroutine und die Zeilen zum Einschieben eines Elements aneinanderge-
koppelt sind.

Wie bei den allgemeinen Programmteilen gehen Sie bei jeder einzelnen Funktion
des Programms vor und beschreiben sie. Sollten Sie bei einer Funktion auf zwei
oder drei verschiedene Schritte kommen, so ist sie wahrscheinlich zur nochmaligen
Zerlegung geeignet.

Am Ende der Prozedur haben Sie eine Liste von Funktionen, die der C 64 nach lhrer
Ansicht zur Ausfihrung des geplanten Programms benétigt. Sie kdnnen sich ein
Bild von dem gesamten Programm, der ungeféhren Lange, der Art der Struktur und
den moglicherweise problematischen Bereichen machen. Gehen Sie am SchiuB zur
Probe ein paar typische Operationen durch, die Sie mit Ihrem Programm ausfihren
mochten, und benutzen Sie dabei Ihre Notizen statt den C 64:

“Anschalten, RUN (aha, ein Men(zur Funktionsbeschreibung fehlt), anzeigen, daB
ich Daten eingeben will, Eingabe bestatigen, das néchste Element eingeben . . .”

Wenn alles in Ordnung ist, sollten lhre Notizen fast genauso gut funktionieren wie
spater der C 64.

SCHREIBEN DER MODULE

Inzwischen konnen Sie der Versuchung kaum noch widerstehen, sich endlich an
den C 64 zu setzen und loszulegen, aber es ist noch immer nicht soweit. Ein
Programm schreibt man am besten Uberhaupt nicht am Computer, sondern auf
einem Blatt Papier. Damit will ich nicht sagen, daB Sie erst jede Zeile des BASIC-
Programms genau aufschreiben sollen, bevor Sie mit der Eingabe beginnen kon-

15

nen. Vielmehr sollen Sie in diesem Stadium von jeder einzelnen Programmfunktion
ein Arbeitsmodell entwerfen. An diese Modelle, die sicher nicht sehr detailliert sind,
kdnnen Sie sich halten, wenn die einzelnen Funktionen schlieBlich als Programm-
module eingegeben werden.

Das bekannteste Verfahren zur schrittweisen Entwicklung von Programmen ist wohl
das FluBdiagramm. Das Problem dabei ist allerdings, daB die Besitzer von Mikro-
computern sie kaum einsetzen, auch wenn Computerprofis ihren Gebrauch sehr
empfehlen. Es ist wohl realistischer, die sogenannte ‘Programm-Entwicklungsspra-
che’ (PDL; program development language) anzuwenden. Das klingt vielleicht
etwas entmutigend, und tatséchlich hat sich PDL in den Handen professionelier
Programmierer zu einem technischen Instrument entwickelt, das die meisten
BASIC-Programmierer kaum verstehen, geschweige denn benutzen. Auf so kom-
plizierte Dinge will ich aber hier nicht hinaus, sondern ich meine mit PDL eine
einfache Mischung aus BASIC und Umgangssprache, die dem fertigen Modul zwar
ahnelt, aber viel schneller zu schreiben ist.

Einen Eingabemodul kénnte man dann etwa so schreiben:

PRINT [TITLE]
PRINT [VERFUEGBARE KOMMANDOS] NEU/ENDE
o4 INPUT"WERT":TA
IF TA=-9993 THEN RETURN
GOSUB ERROR CHECK
IF ERROR THEN XX
INPUT "BESCHREIBUNG":TD#$
GOSUB FORMAT
KLAR AB MENUE
PRINT TD#:":":FRMATS$
INPUT"KORREKT":Q%: "N"THEN180

GOSUB PLATZSUCHE

16

DATENE INGABE
GOTO ##

[VARIABLEN ERFORDERL ICH: KEINE]

VERWENDETE VARIABLEN:

TA = Zwischenspeicher flur den Wert

TD$ = Zwischenspeicher fur die Beschreibung

Q$ = Eingabevariable

FRMATS$ = durch Formatierroutine formatierter Wert

Wenn das Modul in dieser Form aufgeschrieben ist, sehe ich genau, welche
Bestimmung es haben soll. Ich kann mir genau vorstellen, wie ich es programmie-
ren werden. Wie Sie sehen, habe ich einzelne Anweisungen ausgeschrieben; denn
das ist genauso kurz wie die verbale Umschreibung. Andere Funktionen, insbeson-
dere im Zusammenhang mit der Bildschirmanzeige, werden zunéchst nur erwahnt;
es ist einfacher, erst bei der endgultigen Eingabe des Moduls zu entscheiden, wie
viele Bildschirmzeilen fiir die Neueingabe eines Elements freigemacht werden
mussen, oder in welcher Farbe Titel und Meni gedruckt werden sollen. Manchmal
ist es gunstig, ein Verfahren mit einer Zeile zu beschreiben, wenn man sich im
Moment (iber die genaue Form noch nicht im klaren ist, aber weiB, daB das Problem
mit etwas Nachdenken und Probieren geldst werden kann. In diesen Féllen versieht
man die entsprechende Zeile mit einer Bemerkung und schreibt spater ein Ergan-
zungsblatt.

Die Zeilen sind nicht numeriert — teils, weil ich darauf verzichtet habe, jede Zeile in
der endglltigen Form auszuschreiben, und teils, weil ich dadurch beim Schreiben
aufgehalten werden wiirde. Ein oder zwei Markierungen am Zeilenanfang wie ##
und %% sind ausreichend. Wenn ich das Modul spater in den C 64 eingebe,
schreibe ich GOTO™** *** fur Vorwértsspriinge und aktualisiere die Zeile, sobald ich
die Nummer der Zieladresse kenne. Rlickwartsspriinge sind problemios, weil die
Sprungadresse des Ziels schon bekannt ist. Wie Sie sehen, sind auch die GOSUB-
Adressen noch nicht bestimmt, sondern tragen nur die Namen anderer, vielleicht
noch gar nicht geschriebener Unterprogramme. Bei der spateren Programmeingabe
weise ich zunéchst jedem Modul einen Zeilenblock von jeweils mindestens 1000
Zeilen zu; die Adresse vermerke ich oben auf den einzelnen Seiten mit den
Beschreibungen der Programmfunktionen.

Am Ende des Listings sehen Sie eine Liste der verwendeten Variablen. Manche
davon dienen mir als Hinweis auf die Variablen, die vor Aufruf des Moduls definiert
werden mussen. Sie werden auch fur eine vollstandige Aufstellung der Variablenna-
men bendtigt, anhand derer ich mich vergewissern kann, daB kein Name zweimal

17

vergeben wird. Hilfsvariablen, die nur fur die Dauer des Moduls gebraucht werden,
und deren Inhalt entweder vergessen oder zur Dauerspeicherung an eine andere
Variable Ubergeben wird, dirfen Namen haben, die auch in anderen Modulen
vorkommen. Andere wirden Verwirrung stiften, wenn man sie versehentlich an
verschiedenen Stellen flr verschiedene Zwecke benutzte.

Natirlich kommt man mit dieser schlichten Methode nicht bei jedem Modul weiter.
Einige Module enthalten vielleicht zwei bis drei Zeilen mit mathematischen Berech-
nungen; diese Zeilen wiirde ich schon explizit aufschreiben. Ihren Bedurfnissen frei
angepaBt, verhilft Ihnen diese Methode aber im allgemeinen dazu, sich ein klares
Bild des Programms zu machen und es dann viel schneller eingeben zu kénnen, als
wenn Sie es direkt an der Tastatur versucht hatten. Sie sollen nicht etwa streng nach
dem Muster des o. g. Beispiels vorgehen, sondern daraus nur erkennen, daB ein
Programm schnell und verstandlich geschrieben werden kann, wenn Sie sich eine
solche Methode zu eigen machen.

EINGEBEN DES PROGRAMMS

Jetzt kdnnen Sie sich endlich dem C 64 in der GewiBheit zuwenden, daB Sie etwas
in der Hand haben, das Sie eingeben kdnnen und das einem betriebsfahigen
Programm sehr nahe kommt. Als Rohmaterial dient [hnen ein Stapel von Notizen mit
den verschiedenen Programmfunktionen. Sie sollten jedoch keinesfalls das Pro-
gramm einfach von Anfang bis Ende eingeben.

Modulares Programmieren eignet sich vorziglich zur Fehlerbeseitigung wahrend
der Programmeingabe. Es ist viel leichter, ein Programm zu korrigieren, wéhrend
Sie die einzelnen Module eingeben, als spéter Fehler aufzusplren, wenn das ganze
Programm schon lauft. In diesem Stadium kann die Fehlerbeseitigung zwar noch
nicht perfekt sein; denn viele Fehler werden erst dann sichtbar, wenn alle Module
zusammen arbeiten, aber Sie ersparen sich damit trotzdem viel Kopfzerbrechen.
Um ein Programm laufend zu korrigieren, mussen Sie die Module bestimmen, die
am héufigsten gebraucht werden (wahrscheinlich flr triviale Zwecke), und diese
zuerst eingeben.

Das oben abgedruckte Eingabemodul kdnnte man z. B. auch ohne die PLATZ-
SUCHE oder DATENEINGABE-Routinen austesten. Diese lieBen sich einfach
durch zwei RETURN-Befehle in den passenden Anfangszeilen derjenigen Blocke
ersetzen, in denen sie spéter stehen sollen. Das Eigabemodul kénnen Sie dagegen
nicht austesten, solange die ERROR CHECK- und FORMAT-Routinen noch nicht
eingegeben sind. Wenn Sie das getan haben, kénnen Sie beliebig viele Daten
eingeben. Erst einmal wird damit nichts weiter gemacht, aber Sie haben jetzt die
Md&glichkeit zu prufen, ob die Bildschirmdarstellung Gbersichtlich ist, und ob Einga-
ben angenommen und Uberprift werden.

18

Es ist nie mdglich, die Reihenfolge flr die Eingabe der Module optimal zu treffen. Es
wird oft passieren, daB Sie den Wert einer oder zwei Variablen im Direktmodus
zuweisen missen (z. B. LET A$='STEUERABZUG’ ohne Zeilennummer) und dann
mit GOTO zum Anfang der Routine springen (RUN wiirde die gerade eingegebene
Variable wieder I6schen). Manchmal werden Sie zwei oder drei Module zusammen
eingeben missen, wie etwa PLATZSUCHE und DATENEINGABE, weil sie gewdhn-
lich zusammen arbeiten. Trotz dieser Ausnahmen von der Regel soliten Sie immer
alles so frih wie moglich nach der Eingabe auszutesten versuchen, denn Sie
kénnen davon ausgehen, daB jeder Fehler, den sie entdecken, relativ einfach
aufzusplren und zu korrigieren ist, weil die Chancen zwanzig zu eins stehen, daB er
sich in dem (den) zuletzt eingegebenen Modul(en) befindet.

All das wird lhnen, wie gesagt, noch kein fehlerfreies Programm bescheren, aber
das Programm wird viel weniger Fehler enthalten, als wenn Sie es von Anfang bis
Ende einfach eingetippt hatten. Zumindest haben Sie am SchiuB ein ganzes
Programm ohne einen einzigen SYNTAX ERROR, da vor Beendigung der Pro-
grammeingabe jede einzelne Zeile schon einmal durchlaufen ist.

HINWEISE UND TIPS

Im folgenden finden Sie einige Punkte, auf die Sie achten missen, wenn Sie ein
Programm modular schreiben. Die Liste ist nicht vollstandig, gibt jedoch einen
Uberblick (iber die Punkte, die allzuoft beim Programmieren vernachlassigt werden:

1. Programme sind Ubersichtlicher, wenn alle Module eine kommentierende Uber-
schrift haben. Ich selbst benutze immer dieses Format:

1000 REM% %k %k ok ok ok %k dk ok K ok ¥k k
1e@1 REM NAME DES MODULS
1002 REM¥ ok ok 3k ok ok % ok ok ok ok ok ok ok ok ok

Damit ist das Modul im Programm deutlich markiert, wovon Sie erheblich profitieren,
wenn Sie nach einiger Zeit auf das Listing zuriickkommen.

2. Nachdem Sie dem Modul eine Uberschrift gegeben haben, sollten Sie bei allen
auf die Routine weisenden GOTOs und GOSUBs die Zeilennummer der Uberschrift
(1000) angeben, und zwar aus folgendem Grund: Falls Sie dem Arbeitsteil des
Moduls eine neue erste Zeile geben oder die bestehende erste Zeile |16schen
wollen, werden bei jedem Aufrufen des Moduls UNDEF’'STATEMENT-Fehler auf-
tauchen. Da die Position der Uberschrift unverandert bleibt, sind Veranderungen an
der eigentlichen Routine problemlos. ‘

19

3. Seien Sie bitte groBziigig mit Kommentaren in REM-Zeilen. Wenn Sie drei
Monate spéter das Programm andern wollen, werden Sie heilfroh Uber das biBchen
Extraarbeit sein, das Sie sich gemacht haben. Ohne Kommentare wirde es spéter
Stunden dauern, bis Sie auch nur herausgefunden hatten, worum es geht.

4. Jedes Programm, besonders ein umfangreiches, wird durch anschauliche Varia-
blennamen leichter verstdndlich. Solche Namen kdnnen jedoch zu interessanten
Fehlern fiihren, wenn sie Buchstabenkombinationen enthalten, die mit dem Anfang
von BASIC-Schlisselwdrtern (ibereinstimmen. Wie Sie sehen, fehlt im oben
gezeigten Listing das ‘O’ in FRMATS$, da das Wort mit ‘FOR’ am Anfang nicht
angenommen wird. Es gibt noch ein weiteres Problem bei beschreibenden Namen,
und zwar kann es beim relevanten Teil des Namens (die ersten zwei Buchstaben)
leicht zu unbemerkten Doppelanwendungen kommen. PAYMENT und PARAME-
TER sind z. B. in Wirklichkeit ein und dieselbe Variable. Hier leistet Ihnen die
wéhrend des Schreibens erstellte Variablenliste unschatzbare Dienste.

5. Die meisten Variablen in einem modularen Programm sind Hilfsvariablen (oder
sollten es sein). Eine Eingabe, die Sie direkt in das Feld oder in die Variable mit den
permanent gespeicherten Daten uUbernehmen, ist viel schwerer zu korrigieren,
wenn sie sich als fehlerhaft erweist. Eingaben sollten einer Hilfsvariablen zugewie-
sen werden, wobei es (berfllssig ist, ihnen in jedem Modul einen anderen Namen
zu geben; normalerweise werden ein oder zwei wie T$, Q$, T und Q ausreichen,
ohne Verwirrung zu stiften, weil sie am Ende des Moduls vergessen werden.

6. Einige Hilfsvariablen sind weniger temporar als andere. Im oben aufgelisteten
Eingabemodul sind die Daten in zwei Variablen (TA und TD$) gespeichert, die
danach oben noch an zwei andere Module Ubergeben werden sollen, bevor sie in
die Hauptdatenfelder des Programms (ibernommen werden. In diesem Fall ist es
sinnvoll, den Variablennamen mit T anzufangen, damit deutlich wird, daB es sich um
eine Hilfsvariable handelt, aber fligen Sie noch einen oder mehrere Buchstaben als
Hinweis auf die Funktion der Variablen an, und behalten Sie dabei die Gefahr einer
Namensduplikation im Auge.

7. Bestimmen Sie sorgféltig die Reihenfolge, in der die Module im Programm
angelegt werden sollen. Hierbei ist zweierlei zu beachten:

a) Oft gebrauchte Module werden etwas schneller ausgefiihrt, wenn sie am Pro-
grammanfang stehen.

b) Andererseits ist nichts schwerer zu durchschauen als ein Programm, in dem alle
Module offenbar ohne logische Reihenfolge durcheinanderstehen.

20

Wenn Ihr Vorhaben nicht ibermaBig kompliziert ist und keinen riesigen Aufwand an
Zeit und Berechnungen erfordert, ist es sicher besser, das Programm so anzulegen,
daB die Module logische Gruppen bilden; dabei sollten die kleineren Module, die in
verschiedenen Bereichen des Programmes gebraucht werden (wie die FORMAT-
Routine im o. g. Beispiel), am Ende stehen. Sie werden hochstwahrscheinlich
keinen Unterschied in der Geschwindigkeit feststellen.

8. Die Programminitialisierung, d. h. die Definition der verschiedenen Felder und
Variablen, ist eine eigene Funktion und sollite ein eigenes Modul haben, das bei
Bedarf aufgerufen werden kann. Das gibt Ihnen die Mdglichkeit, das Programm
beim ersten Durchlauf einzurichten und, wenn es danach wieder aufgerufen wird,
Daten beliebig zu I6schen. Programme kénnen so eingerichtet werden, daB sie sich
selbst initialisieren. Sie definieren Felder dann, wenn sie gebraucht werden, vermei-
- den es aber, den Speicher zu léschen, falls er schon brauchbare Daten enthalt.
Dazu stellen Sie den Programmabschnitt, der den Speicher I6scht, ganz an den
Kopf des Programms. An den Anfang des Moduls setzen Sie eine Zeile, die eine
wichtige Variable auf Null testet. Die gewahlte Variable sollte immer einen anderen
Wert als Null haben, wenn das Programm Daten im Speicher hat. Die Auto-
Initialisierungszeile Uberspringt nun die Initialisierungsroutine, wenn die Variable
nicht gleich Null ist. Nehmen Sie dazu folgendes Beispiel:

10068 REM¥okkokokdkok ¥k kkokkkkkk

10061 REM INITIALISIERUNG

1002 REM¥ sk ok sk ok 3k ok ok ok ok ok ok o ok ok k

1816 IFIT<>@THEN1580

18628 CLR

19380 DIM A$(18) ,AX(S500) ,B%(108) ,CX(1008)

Hier dient IT dazu, die Anzahl der vom Programm gespeicherten Daten aufzuzeich-
nen. Wenn Sie Daten eingeben, das Programm anhalten und mit GOTO 1000 neu
starten wollen, Uberspringt Zeile 1010 ohne Datenverlust die Zeilen, die den
Speicher I6schen und die Felder neu belegen. Wollen Sie dagegen die vorhande-
nen Daten I6schen, miissen Sie das Programm nur mit RUN starten. Damit machen
Sie den Speicher frei und setzen alle Variablen auf Null, IT eingeschlossen.

9. Ein Programm verdient eigentlich erst den Namen Programm, wenn es ein Menu
besitzt, das zumindest einen Uberblick dariiber gibt, welche Funktionen das Pro-
gramm hat und wie Sie zwischen den verschiedenen Funktionen wéhlen kdnnen.
Abgesehen von diesem Hauptmeni kénnten viele der einzelnen Module, wenn sie
den Zugriff auf mehr als eine Funktion erlauben, eventuell durch ein eigenes kleines
Menul verbessert werden.

21

10. Modulares Programmieren 148t sich durch den Einsatz von ‘Flags’ erleichtern.
Das sind Variablen, mit denen man einem Modul anzeigt, daB in einem anderen
etwas (nicht) passiert ist. Das klassische Beispiel daftir ist der Fehler-Flag. Modula-
res Programmieren bietet sich fir den Einbau einer gesonderten Routine zur
Meldung verschiedener Fehlerarten an, aber wie soll diese Routine heiBen, und wie
kédnnen Sie verhindern, daB ein Fehler das Programm abstiirzen 148t? Die Lésung
besteht im Gebrauch eines oder mehrerer Flags.

Nehmen Sie z. B. an, Sie sind entlang einer GOSUB-Kette vier Unterprogramme
hinabgestiegen, d. h. das erste Programm hat das zweite aufgerufen, das zweite
das dritte und das dritte das vierte. An diesem Punkt findet sich ein Fehler in den
Daten, der vorher nicht aufgespirt werden konnte; sagen wir, Sie méchten eine
Information einfligen, und es stellt sich heraus, daB im Feld kein Platz mehr
verflgbar ist. Jetzt wollen Sie zweierlei: erstens den Benutzer von dem Problem in
Kenntnis setzen, und zweitens sicherstellen, daB es keine Katastrophe gibt, wenn
Sie das laufende Unterprogramm mit RETURN verlassen. Das wird gewdhnlich mit
Hilfe eines Fehler-Flags erreicht, z. B. einer mit ERR (ERRor) bezeichneten Varia-
blen. Diese wirde im Normalfall auf Null gesetzt, erhadlt aber jetzt einen dem
Fehlertyp entsprechenden Wert. Alle Module enthalten eine oder mehrere Zeilen,
die herausfinden, ob ERR noch gleich Null ist. Wenn nicht, geben Sie lediglich mit
RETURN die Ausfiihrung an das in der Kette vorhergehende Modul weiter. Am
Anfang der Kette steht dann ein Modul, das entdeckt, daB ERR gesetzt ist und das
ERROR MESSAGE-Modul aufruft, um eine Fehlermeldung mit der Nummer ERR
auszugeben. Dies ist nur ein Beispiel fur den Gebrauch von Flags. Sie werden
merken, wie unentbehrlich sie sind, wann immer eine Meldung zum Stand der
Dinge von einem Modul an ein anderes ubergeben werden muB (s. auch Erléute-
rungen zur Verwendung von Fehler-Flags in Kapitel 5).

11. Streuen Sie die Nummern der Anfangszeilen Ihrer Module groBzugig. Sie
werden das Programm sicherlich spéter weiter ausbauen wollen, und dann ist es
sehr argerlich, wenn Sie die saubere Struktur verderben missen, indem Sie ein
neues Modul mit jeweils um 1 aufsteigenden Zeilennummern dazwischenklemmen
oder weitere Module an den SchluB héngen, die eigentlich zu einer Gruppe in der
Mitte des Programms gehdren. Eine Streuung von 2000 pro Modul diirfte bei vielen
Programmen fir den Anfang nicht zuviel sein.

12. Unter Umstanden kann die Ausfiihrung eines Programms vereinfacht werden,
wenn man RETURN-Anweisungen durch GOTOs ersetzt, z. B.: Modul 1 ruft Modul
2 auf. Ist eine gewisse Bedingung erfillt, muB Modul 3 aufgerufen werden, statt mit
RETURN zu Modul 1 zurlickzuspringen. Es besteht die Moglichkeit, Modul 3 mit
GOSUB aufzurufen, mit RETURN zu Modul 2 zuriickzuspringen und von da aus mit

22

RETURN zu Modul 1. Man kann aber auch einfach mit GOTO Modul 3 aufrufen, an
dessen Ende die RETURN-Anweisung die Ausfiihrung an Modul 1 zuriickgibt, ohne
vorher erst mit RETURN Modul 2 aufzusuchen. Ein Beispiel fir den Gebrauch
dieser Technik wére die oben beschriebene Fehlerkontrolle. Wenn wir jedes Modul,
das direkt vom Hauptmeni des Programms aufgerufen wird, als Modul ‘zweiter
Ebene’ betrachten, dann kénnte jedes Modul zweiter Ebene eine Fehlersuchzeile
haben, die mit GOTO das Fehlermeldungsmodul aufsuchen und von da mit
RETURN zum Menl zurlckspringen wirde. Bei diesem Verfahren ist jedoch
Sorgfalt geboten, denn wenn man sich bei der Anzahl der beteiligten GOSUBs und
RETURNSs verzahlt, kann das entweder zu einem Programmstop durch OUT OF
MEMORY ERROR fiihren, weil nicht durch RETURNs geldschte GOSUBs die
Speicherkapazitat Uberlasten, oder zur Ausfliihrung eines unerwarteten Unterpro-
gramms.

13. Denken Sie daran, daB ein modular geschriebenes Programm leicht zu &ndern
ist. Halten Sie Ausschau nach besseren Techniken fur die Bewadltigung einer
bestimmten Aufgabe. Wenn Sie in einem Buch oder einer Zeitschrift eine Verbesse-
rung finden, werfen Sie das urspriingliche Modul heraus, und ersetzen Sie es durch
ein neues mit dem besseren Verfahren. Bringen Sie lhre Programme auf den
neuesten Stand, sonst verschenken Sie einen der gréBten Vorteile, die dieser
Programmierstil bietet.

14. Module, die wichtige Techniken enthalten, speichert man am besten sowohl
einzeln als auch innerhalb des Programms. Sie kdnnen sie dann leicht in spéatere
Programme ubernehmen, indem Sie entweder ein ‘Misch’-Programm benutzen,
wie in ‘Der Commodore 64 in der Praxis’, Band 11 der Sachbuchreihe, beschrieben,
oder einfach die Routine vom Band oder von der Diskette laden, und den Cursor mit
der RETURN-Taste die Bildschirmzeilen hinunterfahren. Damit fligen Sie natirlich
die Zeilen auf dem Bildschirm (aber nur diese!) in das neue Programm ein.
Beachten Sie dabei, daB Sie eventuell die Zeilennummern im Modul andern
mussen, bevor Sie es einfligen.

15. Zum SchluB vergessen Sie nicht, daB fast alles modular geschrieben werden
kann. Gute, professionelle Programme enthalten oft sehr viele einzelne Unterpro-
gramme mit nur zwei oder drei Zeilen. Man kann dieses Verfahren zwar auch zu weit
treiben, aber so leicht passiert das nicht.

23

SCHLUSS

Von allen Kapiteln kann man dieses zweifellos am ehesten Uberspringen. Es enthalt
sehr wenige praktische Beispiele und keine Arbeits-BASIC. Nur wenn Sie die hier
dargestellten Prinzipien in die Praxis umsetzen, erkennen Sie, daB — auf den
gesamten Inhalt des Buches bezogen — gerade dieses Kapitel entscheidenden
EinfluB haben wird auf lhre Versuche, erfolgreiche, brauchbare und versténdliche
Programme zu schreiben.

24

KAPITEL 2

FEHLERBESEITIGUNG

Eine englische Computerzeitschrift brachte kiirzlich eine Artikelserie, in der die
vielen verschiedenen Computersprachen erklart wurden, die es heute gibt. Nach
AbschluB der Serie wurde in einem Leserbrief darauf hingewiesen, daB man gerade
die Sprache, die allen Computer-Besitzern — gleich welchen Typs — geléufig ist,
vergessen hatte: Fluchen.

Auch wenn Sie Ihr Programm eingegeben, es dabei laufend getestet, es vielleicht
sogar schon ein- oder zweimal ohne sichtliche Schwierigkeiten haben durchlaufen
lassen, wird es trotzdem irgendwann dazu kommen, daB es im Chaos zusammen-
bricht. Schlimm genug, wenn das mit einem lhrer eigenen Programme passiert,
dessen Arbeitsweise Sie verstehen. Aber noch schlimmer wird es, wenn Sie ein
fremdes Programm eingeben, das mdglicherweise aus einem Buch oder einer
Zeitschrift stammt. Sie kénnen beim besten Willen kein instinktives Gefuhl dafar
haben, was alles wo vor sich geht. Meines Wissens haben auch manche meiner
Leser schon Wochen oder Monate mit dem Versuch verbracht, ein Programm zu
korrigieren, bei dessen Eingabe sie einen Fehler gemacht hatten. Wenn sie mich
dann endlich ansprachen, waren sie oft schon der Verzweiflung nahe und davon
Uberzeugt, daB ihr C 64 nicht richtig funktioniert. Tatséchlich hétten sie ihre Pro-
bleme innerhalb von Minuten selbst I6sen kdénnen, wenn sie nur einige einfache
Techniken gekannt und angewendet hétten.

INFORMATION —
DER SCHLUSSEL ZUR FEHLERBESEITIGUNG

Wenn Sie einen Fehler in threm Programm finden, sollten Sie zuallererst daran
denken, daB sich alle Informationen, die Sie zum Aufsplren des Fehlers brauchen,
sicher in lhrem C 64 befinden — und diese unschatzbaren Inhalte wollen Sie auf
keinen Fall ausloschen. Ignorieren Sie deshalb einen entdeckten Fehler niemals,
und lassen Sie das Programm nie nochmals laufen in der Hoffnung, daB der Fehler
beim nachsten Mal nicht mehr auftritt. Sie kénnten damit Erfolg haben — das
Programm wirde scheinbar reibungslos ablaufen —, aber Sie hatten die Chance
vertan, einen Fehler zu entfernen, der spater unweigerlich wieder auftreten wirde
und dann wahrscheinlich zu einem Zeitpunkt, zu dem sich schon wichtige Daten im
Speicher befinden. Also ist das erste Gebot der Fehlerbeseitigung, jedem Fehler
nachzugehen, sobald man ihn bemerkt.

Vorausgesetzt, Sie haben das einmal beschlossen: Auf welche Weise kdnnen Sie

25

die verfligbaren Informationen am besten nutzen? Um das zu entscheiden, miissen
Sie die Information genau beurteilen:

1. Der Fehler, der das Programm gestoppt hat, ist moglicherweise von der Art, da
er das Problem auf eine bestimmte Zeile begrenzt. In dem Fall hat der C 64 die Art
des gefundenen Fehlers und die Stelle im Programm, an der er vorkommt, identifi-
ziert. Die Fehlermeldung wird so aussehen:

? [FEHLER-MELDUNG]1 IN ZEILE XX

2. Manche Fehler kénnen das Programm stoppen, obwoh! die Zeile, in der es
‘héngenbleibt’, vollig korrekt aussieht. Daneben gibt es die Fehler, die das Pro-
gramm veranlassen, ein sinnloses Ergebnis zu liefern, ohne es zu stoppen. Die
Ursache solcher Fehler ist &uBerst schwer zuriickzuverfolgen, zumal es in vielen
Fallen keinen Hinweis auf den Ort der Panne gibt.

ZEILENSPEZIFISCHE FEHLERMELDUNGEN

In den meisten Féllen, in denen Sie eine Fehlermeldung bekommen, sind lhre
Probleme schon halb gelost, weil der C 64 die zu Uberprifende Programmzeile
bereits fir Sie lokalisiert hat. Es kann sein, daB die eigentliche Korrektur des
Programms an einer oder mehreren anderen Zeilen vorgenommen werden muB,
aber der Schllssel flir die Art des Fehlers findet sich immer in der Zeile, auf die die
Fehlermeldung hinweist. In vielen Féllen missen Sie nicht weiter suchen als bis zu
der in der Meldung erwéhnten Zeile, woriber sich viele Programmierer nicht im
klaren sind.

Nehmen sie z. B. den geléufigsten aller Fehler, den SYNTAX ERROR. Wann immer
Sie diese Meldung bekommen, wissen Sie, daB Sie beim Eingeben der genannten
Zeile IN LINE XX einen Fehler gemacht haben missen. Es hat keinen Zweck, die
fragliche Zeile durchzulesen, zu dem SchluB zu kommen, sie sei in Ordnung, und
dann das Programm versuchsweise noch einmal durchlaufen zu lassen oder es zum
Funktionieren bringen zu wollen, indem man andere Zeilen &ndert. Die angegebene
Zeile enthalt etwas, das der C 64 nicht als BASIC erkennt, und bevor diese Zeile
nicht korrigiert worden ist, wird das Programm nicht laufen.

Fehlermeldungen, die normalerweise die genaue Stelle des Fehlers angeben, sind:
SYNTAX ERROR, FILE NOT FOUND, FORMULA TOO COMPLEX, REDIMMED
ARRAY, TYPE MISMATCH, UNDEFINED FUNCTION, UNDEFINED STATEMENT.
Die Vorgehensweise bei diesen ‘zeilenspezifischen’ Fehlern ist wie folgt:

1. Listen Sie den Programmbereich auf, der sich vor der Zeile befindet, damit Sie
die Zeile im Zusammenhang sehen.

26

2. Listen Sie die Zeile selbst nochmals separat auf, wobei Sie sie durch eine oder
zwei Leerzeilen von den bereits aufgelisteten Zeilen trennen. Das sollen Sie
deswegen tun, weil man auf dem C 64 sehr leicht zwei Zeilen so eingeben kann,
daB sie als eine einzige Zeile angenommen werden. Es ist fast unmdglich, solche
Fehler zu entdecken, wenn man eine Zeile nicht separat auflistet.

Untersuchen Sie diese Zeilen:

16 FOR I=1 TO 10 : LET X=1x100-50/(1x%x2)
20 NEXT 1

Wie groB wird die Enttduschung sein, wenn der Durchlauf zu nichts fihrt als zum
Aufblinken von ?SYNTAX ERROR IN LINE 10 auf dem Bildschirm. Die Suche nach
dem Fehler kann Stunden oder Tage dauern. In Wirklichkeit ist weiter nichts
passiert, als daB am Ende von Zeile 10 statt RETURN die Leertaste gedriickt wurde,
worauf der Cursor an den Anfang der néchsten Zeile sprang und Zeile 20 eingege-
ben wurde. Fur den C 64 sieht die vollstandige Version von Zeile 10 so aus:

10 FOR I=1 TO 10 : LET X=1Ix100-30/C(Ix2>20
NEXT 1

Es ist nicht weiter verwunderlich, daB dies flir den C 64 etwas schwer zu verstehen
ist.

3. Wenn die Zeile aufgelistet ist und keine groben Fehler enthalt, muB sie Befehl fiir
Befehl und Zeichen fiir Zeichen untersucht werden. Um zu gewahrleisten, daB Sie
die Zeile nicht zu hastig Uberfliegen, kdnnen Sie den Cursor an den Zeilenanfang
bringen und ihn mit der Steuertaste langsam nach rechts die Zeile entlangfiihren,
wéhrend Sie jedes Zeichen und den Befehl, in dem es enthalten ist, iberpriifen. Die
meisten Syntax Errors (und die anderen Fehler, die sich ergeben, wenn der C 64
eine Zeile nicht wie von |hnen beabsichtigt versteht) entstehen durch Weglassen
von Zeichen (vor allem Klammern), Schreibfehler in Schlisselwortern oder verse-
hentliche Umstellung von Zeichen. Auf fehlende Kommas zwischen Befehlen, auf
Verwechslungen der Zahl 1 mit dem Buchstaben ‘I’ und der Null mit dem Buchsta-
ben ‘O’ sollte man besonders achten. Zum Beispiel:

GOTO 1090 anstatt GOTO 1900 ergaebe
UNDEF' STATEMENT ERROR

4. Auch bei sorgféltigem Lesen der Zeile werden Sie den Fehler oft nicht ausfindig
machen. Dann hangt der ndchste Schritt davon ab, ob Sie den Variablenwert im
Speicher erhalten miissen oder nicht. Im Fall eines Syntax Error ist der Variablen-

27

wert nicht relevant, so daB Sie in der Zeile ruhig der Fehlersuche dienende
Anderungen vornehmen kénnen, auch wenn damit der Variablenbereich geléscht
wird. Wenn das Problem den Wert einer oder mehrerer Variablen mitbetrifft,
schlagen Sie den Abschnitt mit der Uberschrift ‘Nicht lokalisierte Fehlermeldungen’
weiter hinten in diesem Kapitel auf.

5. Vorausgesetzt, die Variablen sind entbehrlich, setzen Sie eine STOP-Anweisung
in eine neue Zeile direkt hinter derjenigen, die laut Hinweis den Fehler enthélt. Nun
fangen Sie mit der letzten Anweisung in der fehlerhaften Zeile an und fligen ein
REM ganz am Anfang der Anweisung ein. Lassen Sie die Zeile nochmals durchlau-
fen (in Einzelfallen werden Sie das ganze Programm wieder bis zu dieser Stelle
laufen lassen miissen). Wenn der Syntax Error jetzt verschwunden ist, befindet sich
der Fehler in der letzten Anweisung, da diese durch REM aus der Zeile entfernt
worden ist. Besteht der Syntax Error weiterhin, I6schen Sie das REM und fligen es
am Anfang der vorhergehenden Anweisung derselben Zeile ein. Wenn Sie bei der
ersten Anweisung der Zeile angekommen sind, haben Sie festgestellt, welche
Anweisung den Syntax Error enthalt.

6. Sollten Sie den Fehler noch immer nicht gefunden haben, fangen Sie an, die
Variablennamen zu andern, und versuchen Sie es wieder. Bedenken Sie, daB der
tatsachliche Variblenwert fur einige Fehler nicht die geringste Rolle spielt. Die Form
der Zeile ist falsch. Die Anderung von Variablennamen hat den Zweck herauszufin-
den, ob Sie ungiiltige Namen, vielleicht mit denselben Anfangsbuchstaben wie ein
BASIC-Schlusselwort, eingegeben haben.

NICHT LOKALISIERTE FEHLERMELDUNGEN

Wie schon erwahnt, bezeichnen manche Fehlermeldungen nicht die genaue Stelle
des Fehlers im Programm; sie verraten nur, wo der Schlissel zum Fehler zu finden
ist. Diese Unterscheidung gilt nicht uneingeschrankt. Wenn Sie eine Zeile eingeben
wie:

18 A=10/0

werden Sie eine Fehlermeidung DIVISION BY ZERO bekommen, und der Grund
dafiir ist leicht zu finden. Im ganzen werden jedoch BAD DATA, BAD SUBSCRIPT,
DIVISION BY ZERO, FILE NOT OPEN, FILE OPEN, ILLEGAL QUANTITY, NEXT
WITHOUT FOR, NOT INPUT FILE, NOT OUTPUT FILE, OUT OF DATA, OUT OF
MEMORY, OVERFLOW, UNDEFINED FUNCTION und STRING TOO LONG meist

28

dann auftauchen, wenn der wirkliche Fehler sich nicht in der angegebenen Pro-
grammzeile befindet, sondern weiter vorn in der Ausfiihrung des Programms.
Das Verfahren ist in diesen Fallen nicht so klar wie bei der Korrektur einer einzelnen
Zeile. Meist besteht der erste Schritt darin, den Wert jeder einzelnen in der Zeile
enthaltenen Variablen auszudrucken. Wenn die Zeile also hieBe

128 A=XxY/(T1xT2)

wirden Sie eingeben

7%
?Y
?T1
T2

und sich die Werte notieren, die dabei herauskdmen. Jetzt gehen Sie die Zeile in
Gedanken oder auf dem Papier durch, um festzustellen, warum gerade diese Werte
zu der Fehlermeldung geflhrt haben, die das Programm gestoppt hat. Bevor Sie
den Grund nicht gefunden haben, kénnen Sie die Fehlersuche nicht fortsetzen. In
der Regel stellt das kein Problem dar, aber falls die Zeile so kompliziert ist, daB sie
nicht erkennen kénnen, wie die Variablen zusammenarbeiten, missen Sie die in der
Zeile enthaltenen Befehle neu eingeben — diesmal auf zwei oder drei kirzere
Zeilen verteilt —, bevor Sie das Programm wieder laufen lassen. Das sollten Sie
jedoch nur im Notfall tun, denn wenn Sie nicht in der Lage sind, die genaue
Reihenfolge der Ereignisse, die zu dem Fehler geflihrt haben, zu rekonstruieren,
kénnte der Fehler beim ndchstenmal ausbleiben und irgendwann plétzlich wieder
auftauchen. '

Nachdem man die fehlerhafte Variable identifiziert hat, bleibt einem nichts Ubrig, als
die Ausfliihrung des Programms in Gedanken bis zu der Stelle zurlickzuverfolgen,
wo die Variable den unrichtigen Wert angenommen hat. Leider ist das in einem
komplexen Programm oft unmdglich. In einer solchen Lage besteht die Ldsung in
einer Programmaénderung, durch die wahrend des Programmablaufs eine regelma-
Bige Uberpriifung des Variablenwerts ermoglicht wird. Zu diesem Zweck schiebt
man hinter den Programmabschnitten, wo die Variable gedndert werden konnte,
neue Zeilen ein, die jeweils nur aus STOP bestehen; der Nachteil dabei ist, daB
durch Einfugung neuer Zeilen der Speicher geldscht wird, so daB Sie das Programm
ganz neu bestimmen mussen.

Nach der Eingabe der vorlaufigen STOP-Zeilen 138t man das Programm wieder

29

laufen, um eine Wiederholung des Fehlers zu veranlassen. Bei jedem Programm-
STOP kénnen Sie den Wert der fehlerhaften Variablen ausdrucken und dann mit
CONT das Programm fortsetzen, solange Sie den Fehler noch nicht gefunden
haben. Falls Sie auf den Bereich stoBen, in dem das Problem anscheinend
entstanden ist, die Programmzeilen jedoch korrekt aussehen, sollten Sie u. a. nach
maoglichen Doppelanwendungen von Variablennamen Ausschau halten. Die Zeilen,
die eine wichtige Variable enthalten, kdnnen tatsichlich fehlerlos sein, und doch
liefert das Programm Unsinn, weil es demselben Variablennamen irgendwann eine
andere Funktion zuweist; denken Sie daran, daB bei allen Variablen nur die ersten
beiden Buchstaben relevant sind.

Sie kdnnen sich die Arbeit grundsatzlich erleichtern, wenn Sie diese beiden Regeln
beachten:

1. Bei der Verarbeitung komplexer Datensétze sollten Sie als eines der ersten
Programm-Module die Dateiroutine zum Speichern der Informationen auf Band
oder Diskette eingeben. Speichern Sie die zum Austesten eingegebenen Daten
regelméaBig ab; falls das Programm abstirzt, kénnen Sie so den letzten Datensatz
vom Band neu laden und brauchen ihn nicht von Anfang an neu einzutippen.

2. Die meisten Programmfehler zeigen sich bei einer geringen Anzahl von Daten
genauso wie bei einer gréBeren Datenmenge. Anstatt riesige Mengen direkt einzu-
geben, geben Sie zundchst nur drei oder vier Daten ein und gehen Sie damit alle
Programmfunktionen durch. Sollte ein Fehler auftreten, ist es bei nur vier eingege-
benen Daten leicht, die Sequenz erneut zu simulieren, vor allem bei stilisierten
Elementen oder Werten wie AAAA, BBBB, CCCC, 1111, 2222 und 3333.

Die Suche nach einem Fehler, der an einer unbestimmten Stelle des Programms
steckt, kann als Testaufgabe angesehen werden. Sie kann nur dann erfolgreich
bewaltigt werden, wenn man griindlich vorgeht und der Ausflihrung des Programms
im einzelnen folgt, und wenn Ihnen die Aufgabe jedes Programmabschnitts véllig
klar ist. Sobald solche Fehler auftauchen, werden Sie es besonders zu schatzen
wissen, daB Sie den in Kapitel 1 gegebenen Rat befolgt und Ihr Programm in streng
funktionale Module eingeteilt haben, denn diese Programmstruktur macht das
Aufspiiren von Fehlern erheblich leichter.

FEHLERMELDUNGEN UND IHRE BEDEUTUNG

Es gibt so viele verschiedene Programmfehler wie Programmierer, weil sie ganz
einfach von Programmierern begangen werden. Deshalb ist es ganz unmdglich,
eine vollstandige Aufstellung der Bedeutungen aller méglichen Fehlermeldungen

30

zu machen. Im folgenden finden Sie eine Liste der geldufigen Meldungen und ihrer
wahrscheinlichen Ursachen:

BAD DATA: Der ibliche Grund: Die Struktur der Sicherheitsroutine wurde in der
entsprechenden Laderoutine nicht genau nachgebildet. Als weitere Ursache kommt
in Frage, daB die gespeicherten Daten nicht korrekt mit CHR$(13) nach jedem
Element getrennt wurden. Beim Gebrauch einer Variablen als Trennzeichen zwi-
schen den Elementen (z. B. PRINT#1,A$,R$,B$,R$,A,R$,B) vergewissern Sie sich,
ob Sie den Separator tatsachlich definiert haben. Das Modul kann zwar &uBerlich in
Ordnung sein, aber wenn R$ nicht als CHR$(13) definiert wurde, werden die Daten
auf dem Band oder der Diskette verschmolzen, und im Lademodul wird dann die
Reihenfolge gegenlber der gespeicherten verschoben sein.

BAD SUBSCRIPT: Sehen Sie sich die Werte in Klammern hinter dem Feldnamen
an, weil einer davon groBer ist als der entsprechende Bereich, den Sie dem Feld bei
der DIMensionierung zugewiesen haben. Falls der Fehler nicht sofort klar ist, prifen
Sie nach, ob Sie das Feld auch wirklich dimensioniert haben, denn das Programm
nimmt Verweise auf die Elemente 0 bis 9 eines eindimensionalen Feldes an, auch
wenn es nicht DIMensioniert wurde, aber es bricht ab, wenn Sie Element 10
anzusprechen versuchen.

DEVICE NOT PRESENT: Entweder haben Sie bei einer Anweisung, die sich auf
eine Datei bezieht (z. B. OPEN 1,7,1), die falsche Nummer angegeben, oder Sie
haben vergessen, die Floppy oder den Kassettenrecorder anzuschlieBen, auf die
das Programm zuzugreifen versucht. Leider kann dieser Fehler auch auftauchen,
wenn andere Fehler bei der Dateiverwaltung vorkommen und das INPUT/OUTPUT-
System durcheinandergerat. In manchen Féllen kann man das beheben, indem man
das betreffende Gerét ausschaltet, in anderen muB der C 64 aus- und wieder
eingeschaltet werden, was den Verlust von Programm und Daten zur Folge hat.

DIVISION BY ZERO: Da Sie wahrscheinlich nicht /0 in eine Zeile geschrieben
haben, liegt die Fehlerursache vermutlich darin, daB eine Variable vom Programm
nicht richtig verarbeitet wurde oder ein falscher Variablenname benutzt wurde.

EXTRA IGNORED: Eine Input-Abfrage erwartet eine bestimmte Anzahl von Daten,
z. B. ist nach INPUT A,B die Eingabe von zwei Zahlen erforderlich. Wenn Sie mit
einer groBeren Anzahl von Daten antworten, wie z. B. 10,12,14, dann teilt lhnen das
Programm mit, daB ein Element eingegeben wurde, das nicht bericksichtigt wird.
Diese Meldung erfolgt auch dann, wenn String-Eingaben selbst Kommas enthalten;
denn sie werden als Separatoren zwischen Daten gedeutet. In solchen Fallen kann
man sich nur mit einer GET-Operation behelfen.

31

FILE NOT FOUND: Entweder haben Sie den falschen Dateinamen angegeben,
oder Sie benutzen die falsche Kassette/Diskette.

FILE NOT OPEN: Sie haben eine Operation mit einer Dateinummer auszufiihren
versucht, fir die der C 64 entweder keine OPEN-Anweisung findet, oder die bereits
mit CLOSE abgeschlossen wurde.

FILE OPEN: Die Umkehrung des vorigen Fehlers. Der héufigste Grund ist Verges-
sen der CLOSE-Anweisung in einer friiheren Routine mit derselben Dateinummer.
Wenn Sie also Daten in ein Programm laden und dabei ein File mit der Nummer ‘1’
benutzen, nach dem Laden aber vergessen, CLOSE 1 einzugeben, werden Sie in
Zukunft keine Daten mehr unter der Dateinummer 1 speichern kénnen.

FORMULA TOO COMPLEX: Die einfache Losung konnte darin bestehen, den
Ausdruck der betreffenden Zeile in zwei Ausdriicke in verschiedenen Zeilen
aufzuteilen. Leider kommt der Fehler auch in einer Reihe von Situationen vor, in
denen das Betriebssystem durcheinandergeréat; fiir diese Falle gibt es keinen
verlaBlichen Hinweis auf die mégliche Bedeutung der Meldung.

ILLEGAL QUANTITY: Eine der Variablen, die auf ein Feld zugreifen, kdnnte
negativ sein; oder Sie haben vielleicht versucht, eine auBerhalb von —32768 bis
+32767 liegende Zahl in ein Integerfeld einzusetzen. Es kann auch sein, daB Sie
eine Ein-Byte-Funktion auf eine Zahl auBerhalb von 0—-225 anzuwenden ver-
suchten. Im Zweifel geben Sie die einzelnen Anweisungen der Zeile im Direktmo-
dus (ohne Zeilennummern) ein und lassen sich vom C 64 zeigen, welche er nicht
akzeptiert.

NEXT WITHOUT FOR: Das Programm erkennt den Anfang der Schleife nicht, auf
die sich die Anweisung bezieht. Sie haben entweder die FOR-Anweisung ausgelas-
sen oder sind in die Schleife gesprungen, weshalb das FOR nicht ausgefihrt wurde.

NOT INPUT FILE: Sie haben falschlich eine Ausgabedatei angesprochen, anstatt
eine Datei flr die Eingabe von Daten zu &ffnen.

NOT OUTPUT FILE: Umkehrung des o. g. Fehlers.
OUT OF DATA: Sie wollten mehr Daten mit READ einlesen als in den DATA-

Anweisungen des Programms enthalten sind. Wie man dieses Problem [8st, lesen
Sie bitte im Abschnitt Uber DATA-Anweisungen in Kapitel 12 nach.

32

OUT OF MEMORY: Dafiir gibt es vier mogliche Ursachen:

a) Sie haben Felder dimensioniert, die flr die verfligbare Speicherkapazitat zu groB
sind. Bei Programmen, die mit groBen Datenmengen arbeiten, ist es ratsam, den
verfugbaren Speicher mit FRE zu prifen, bevor Sie die GroBe der Felder endgultig
bestimmen.

b) Sie haben zu viele GOSUBs, die gleichzeitig laufen und dabei den Stack, d. h.
den Speicherbereich, der sich ihre Riickkehradressen merken muB, berfillen.

¢) Sie haben zu viele FOR-Schleifen, die gleichzeitig laufen und ebenfalls den
Stack in Unordnung bringen, der sich den aktuellen Stand jeder Schleife merken
muB. Dies kann in Verbindung mit b) vorkommen, wenn Sie eine lange Kette von
GOSUBs und eine groBe Zahl von Schleifen ineinander verschachtelt haben.

d) Unbestimmte Ursache. Leider ist auch dies ein Fehler, der auftreten kann, wenn
der C 64 durcheinandergerat.

OVERFLOW: Das Problem entsteht meist durch eine falsch definierte Variable, so
daB z. B. eine groBe Zahl durch einen winzigen Bruch dividiert wird.

REDIM’D ARRAY: Sie haben versucht, in einer DIM-Anweisung denselben Feld-
namen zu benutzen wie in einem bereits DIMensionierten anderen Feld. Wenn Sie
ein Feld neu dimensionieren wollen, miissen Sie zuallererst den Speicher I6schen.

REDO FROM START: Eine Input-Anweisung, die eine Zahl erwartete, ist mit einem
String beantwortet worden. Beachten Sie, daB ein INPUT, der einen String verlangt,
ohne Anzeichen flr ein Versehen bereitwillig auch eine Zahl annimmt.

RETURN WITHOUT GOSUB: Sie haben ohne Verwendung von GOSUB ein
Unterprogramm eingegeben. Die héufigste Ursache sind Unterprogramme, die an
das Programmende angehangt werden, ohne daB eine STOP-Anweisung an das
Ende des Programmhauptteils gestellt worden ist.

STRING TOO LONG: Bei der Addition oder der Eingabe von Strings oder beim
Einlesen von Strings aus einer Datei haben Sie versucht, einen String zu bilden,
dessen Lange die allgemeine Hochstmenge von 255 Zeichen oder das Maximum
von 80 Zeichen fiir String-Eingaben Uberschreitet. Der Fehler tritt auch beim
Loschen von Daten auf, die beim Speichern nicht ordnungsgemaB durch CHR$(13)
getrennt wurden.

33

?SYNTAX ERROR: Der C 64 versteht die Zeile einfach nicht, die er auszufiihren
versucht. Lesen Sie im ersten Teil des Kapitels nach, wie man unerkannte Fehler
* aufspdrt.

TYPE MISMATCH: Manchmal schreibt der Zusammenhang des Programms die
Bestimmung einer Zahl vor, wahrend es tatséchlich einen String vorfindet (oder
umgekehrt). Somit wiirde A=A$+B$ zu diesem Fehler fiihren. Haufigste Ursache
ist versehentliches Auslassen von $-Symbolen in Zeilen, die Strings verarbeiten.

UNDEF’D FUNCTION: Sie wollen eine vom Benutzer definierte Funktion verwen-
den, aber das Programm erinnert sich nicht daran, daB diese Funktion definiert
worden ist.

UNDEF’'D STATEMENT: Die Zeile, die Sie mit GOTO oder GOSUB erreichen
wollen, existiert nicht. Wenn die Meldung auf den ersten Blick keinen Sinn zu
ergeben scheint, untersuchen Sie die auf GOTO oder GOSUB folgende Zahl, um
sicherzugehen, daB Sie nicht aus Versehen ‘I’ fir ‘1" oder ‘O’ flr ‘0’ geschrieben
haben. Ist das nicht der Fall, dann haben Sie vielleicht, wie im ersten Teil dieses
Kapitels beschrieben, eine Zeile an das Ende der vorhergehenden angehéngt. Der
zweite Teil der Zeile ist scheinbar vorhanden, aber er ist keine eigensténdige Zeile.

SCHLUSS

Zur erfolgreichen Fehlerbeseitigung gelangt man durch Erfahrung, viel Nachdenken
und harte Arbeit. Bei aller Miihe wird es doch immer ein paar Fehler geben, die Sie
aus dem Konzept bringen, und die Sie erst Tage oder Wochen spater finden. Wenn
es soweit ist, ist die beste Unterstiitzung bei der Fehlerbeseitigung eine andere
Person, die sich mit dem Problem befaBt; es kommt ndmlich oft vor, daB ein anderer
Programmierer etwas sofort entdeckt, das Sie wegen lhrer allzu groBen Vertrautheit
mit dem Programm nicht sehen konnten. Dennoch sollten Sie erst dann jemand
anderen rufen, wenn Sie das Problem genauer beschreiben kénnen: die betreffen-
den Variablenwerte und den vermutlichen Bereich, in dem das Problem entsteht.
Nur zu wissen, daB eine bestimmte Zahl einen bestimmten Fehler erzeugt, ist nicht
genug; das ist erst der Anfang.

34

KAPITEL 3

STRINGS

Strings sind eine leichte und flexible Methode zum Speichern von Daten in den
C 64. Wo man sie verwendet, kénnen Informationen auch bei komplexen Operatio-
nen fast sofort geldscht, eingefugt oder gedndert werden. Das Herumexperimentie-
ren mit Strings kann eine Menge zum Erfolg eines Programmierers beitragen.
Dieser Umstand scheint in weiten Kreisen unbekannt zu sein — nicht etwa, weil der
Umgang mit Stringfunktionen an sich schwierig ist, sondern weil er oft kniffelig ist
und Zeilen mit Stringfunktionen auf den ersten Blick kompliziert aussehen.

Der C 64 bietet dem Anwender drei Stringfunktionen: LEFT$, RIGHT$ und MIDS$.
Ihre Funktion ist den meisten véllig klar; ich gebe hier eine kurze Zusammenfas-
sung fur diejenigen, die sich nicht genau erinnern:

1) LEFT$(A$,10) bedeutet die ersten 10 Zeichen von A$.

2) RIGHT$(A$,10) bedeutet die letzten 10 Zeichen von A$.

3) MID$(A$,10) benennt den Teil von A$, der mit Zeichen Nr. 10 beginnt, bis
zum Stringende. .

4) MID$(A$,10,5) benennt den Teil von A$, der vom 10. Zeichen an 5
Zeichen umfaBt.

Fir einen konkreten String A$, in diesem Fall das komplette Alphabet, ergeben
sich:

1) ABCDEFGHIJ

2) QRSTUVWXYZ

3) JKLMNOPQRSTUVWXYZ
4) JKLMN

Wie die Beispiele zeigen, sind die Befehle eigentlich ganz unkompliziert. Fiir viele
Leute fangt es offenbar dann an schwierig zu werden, wenn die Befehle kombiniert
werden sollen. Dann werden manche Zeilen mit Klammern derart Uberladen, daB
ihre Funktion sehr komplex und kaum mehr durchschaubar erscheint. Mit dieser
Schwierigkeit werden Sie am besten fertig, indem Sie bei dem Ausdruck mit den
meisten Klammern anfangen, die Zeile zu (ibersetzen, um sie Schritt fir Schritt zu
vereinfachen. Nehmen Sie z. B. den Ausdruck

MIDSCLEFT$(RIGHT$(A$,10>,5>,3)

35

Was 1aBt sich damit machen? Wir setzen voraus, daB A$ hier wiederum das
Alphabet ist. Wir fangen mit dem Stringausdruck in der innersten Klammer an, d. h.
RIGHT$(A$,10), weil wir nichts sonst Ubersetzen missen, um an das Ergebnis zu
kommen. RIGHT$(A$,10) bezeichnet ‘QRSTUVWXYZ'. Wir erhalten also:

MID$SCLEFT${ "GRSTUVIWXYZ " ,52,3)

Nach derselben Methode ergibt sich fiir den Teil LEFT$ die Bedeutung QRSTU, und
wir erhalten:

MID$< "QRSTU" ,3)>

oder STU. Arbeiten Sie sich wie bei jeder anderen Art von Ausdriicken auch bei
Stringausdricken von innen nach auBen, dann wird sich das Problem von selbst
|6sen.

Im nachsten Kapitel werden wir Methoden untersuchen, wie Stringfunktionen
sowohl miteinander als auch mit anderen BASIC-Befehlen kombiniert werden
kénnen, um eine Vielfalt interessanter und nutzlicher Programmiermdglichkeiten zu
schaffen. Einige der nachfolgenden Kapitel werden die hier beschriebenen Techni-
ken auf ganz unterschiedliche Arten anwenden, deshalb soliten Sie erst dann
weiterblattern, wenn Sie sicher sind, daB Sie die angegebenen Beispiele verstan-
den haben.

VERKETTUNG ODER STRING-ADDITION

Eine der einfachsten Operationen flir Strings ist die Addition:
190 A% =B%+C$+D%

wirde einen neuen String ergeben, der aus den aneinandergereihten drei Strings
auf der rechten Seite der Gleichung besteht. Dieses einfache Verfahren dient oft zur
Bildung von sinnvollen Strings, die aus kleineren Teilinformationen aufgebaut sind.
Ein einfaches Beispiel daflir ware:

1000 REM*xkkkEkkkkkkkkkkkk
1081 REM STRING-ADDITION
1002 REMkkkokkk Xk kokokkkkkkkk

10180 INPUT"NACHNAME : " 7 NN$
1928 INPUT"VORNAME: "IVNS

18630 INPUT"GESCHLECHT (M/F): ":;G#%

36

1848 N$="HERR":IF G#="F"THEN N#="FRAU"
1850 NAME$=N$+" "+VN$E+" " +NN$
1860 PRINT NAMES$

Nicht immer muB diese Technik auf so triviale Art angewendet werden. Einzelne
Ausdriicke kdnnen, jeweils durch eine Markierung wie '*’ voneinander getrennt, zu
einem einzigen String zusammengefaBt werden, um Speicherplatz zu sparen; denn
jeder einzeln gespeicherte String hat einen zusétzlichen Verwaltungsbedarf von
drei Bytes im Speicher. Solche ‘komprimierten’ Eingaben kénnen mit Hilfe einer
weiter unten beschriebenen String-Suchroutine zerlegt werden; in den Kapiteln
Uber Datenstrukturen werden kompliziertere und flexiblere Methoden erklart.

STRING-SUBTRAKTION

Genauso wie Strings durch Addition zusammengesetzt werden kénnen, kann man
auch Teile von einem einzelnen String subtrahieren. Das ist nicht so einfach wie die
Addition, denn fir den C 64 ergédbe A$=B$—C$ keinen Sinn. Einen String von
einem anderen zu subtrahieren bzw. zu entfernen, bedeutet nichts anderes als den
urspriinglichen String neu zu definieren, so daB die zu subtrahierenden Zeichen
ausgeschlossen werden. Das genaue Verfahren hangt von der genauen Stellung
der zu entfernenden Zeichen im Hauptstring ab:

1. Um LL Zeichen vom linken Ende von A$ zu entfernen, muB A$ neu definiert
werden als der Abschnitt von A$, der auf die ersten LL Zeichen folgt:

100 A$=MID$CA$,LL+1>

2. Um LL Zeichen vom Ende von A$ zu entfernen, muB A$ neu definiert werden als
die Gesamtheit der Zeichen bis einschlieBlich demjenigen, das vor dem ersten zu
entfernenden Zeichen steht. Zu diesem Zweck stellt man mit LEN die aktuelle
Lange des Strings fest und gibt dann an, daB er jetzt diese Lange abzliglich der
Anzahl der zu I8schenden Zeichen haben soll:

108 A$=LEFT$(A% ,LENCA$ I -LL)
3. Um LL Buchstaben aus der Mitte eines Strings zu entfernen, muB man auBer der
Lange des zu I6schenden Abschnitts nur die Startposition (SP) kennen. Wenn das

bekannt ist, muB der String neu definiert werden als die Verknipfung der Abschnitte
vor und hinter den zu |dschenden Zeichen:

37

108 AS=LEFT$(A$,SP-1)+MIDSCA ,SP+LL)D

Diese Zeile hat den Sinn: Wenn die zu I6schende Zeichengruppe bei SP beginnt,
sollen alle Zeichen bis einschlieBlich SP—1 erhalten bleiben. Die eigentliche
Buchstabengruppe umfaBt LL Zeichen und endet also in Position SP (erstes
Zeichen) +LL (Lange) minus Eins. Demzufolge beginnt die zweite zu erhaltende
Zeichengruppe im String bei LL+SP und erstreckt sich bis zum Stringende. Das
1aBt sich illustrieren am Beispiel des Strings ABCDEFG, vom dem CDE subtrahiert
wird. Die Anfangsspalte von CDE ist das dritte Zeichen, die Lénge betragt drei
Zeichen. Es blieben also die Stringabschnitte bis SP—1 (d. h. AB) und ab SP+LL
nach der zu léschenden Zeichengruppe (d. h. FG) erhalten, woraus sich der
Ausdruck ABFG ergabe.

EINFUGEN VON ZEICHEN IN STRINGS

Nach dem, was wir Uber String-Addition und -Subtraktion bisher gesagt haben, fallt
Ihnen vielleicht auf, daB wir zwar eine Zeichengruppe aus einem vorhandenen
String entfernen kdnnen, aber noch nicht untersucht haben, wie man Zeichen in
einen String einschiebt. Wir haben beim Entfernen von Elementen aus einem String
eine Methode untersucht, mit der die beiden fir das Ergebnis zu speichernden
Strings identifiziert werden konnen. Beim Einschieben einer neuen Zeichengruppe
wird in etwa dieselbe Methode angewendet. Im folgenden Beispiel soll ein neuer
String — B$ — in A$ eingefiigt werden, wobei das erste Zeichen von B$ zum
Zeichen PP des erweiterten A$ werden soll:

100 A$=LEFT$(A$,SP-1)+BE+MIDS(A$,PP)

UMSTELLUNG VON ZEICHEN IN STRINGS

Nachdem wir untersucht haben, wie man einem String Zeichen anfligt oder sie
daraus entfernt, sind wir nun in der Lage, durch Kombinieren beider Methoden
Zeichen innerhalb eines Strings umzustellen. Im wesentlichen erfordert die Umstel-
lung von Zeichen in einem String zwei Operationen: Die zu verschiebende Zei-
chengruppe muB vom String subtrahiert werden und dann an anderer Stelle addiert
werden. Zur lllustration des Verfahrens gehen wir von einem String A$ aus, der eine
Gruppe von LL Zeichen enthalt, die in der Zeichenposition SP des Strings beginnt.
Die Aufgabe besteht darin, die Gruppe an eine neue Stelle zu verschieben, die in
der Position FP beginnt. Als Beispiel kénnte man etwa den String ABGHICDEFJKL

38

neu ordnen, so daB man durch Umstellung von GHI (in Position drei beginnend) an
einen anderen Ort zu dem Ergebnis ABCDEFGHIJKL gelangt. Im Ergebnisstring ist
die neue Anfangsposition der Gruppe, also die Zeichenspalte, sieben.

Es ist nicht ganz unkompliziert, die richtige Position zu bestimmen, an die der String
wieder eingeschoben werden soll. Als erstes muB man von der Tatsache absehen,
daB die Gruppe in ihrer urspringlichen Form geldscht wird, und einfach die neue
Anfangsposition im bestehenden String festliegt. Im Fall des 0. g. Musterstrings soll
die verschobene Gruppe dort beginnen, wo sich zur Zeit das ‘J’ befindet, d. h. in
Zeichenposition 10. Nun gibt es zwei Alternativen:

a) Befindet sich die neue Anfangsposition der Zeichengruppe vorihrem gegenwar-
tigen Anfang, so muB die Nummer der Zielposition nicht korrigiert werden.

b) Befindet sich die neue Anfangsposition hinter dem derzeitigen Ende der Zei-
chengruppe, so muB3 die Ladnge der Gruppe von der Nummer der Zielposition
subtrahiert werden.

Im obigen Beispiel endet die Gruppe zunéchst in Position fiinf, und sie soll in
Position zehn wieder eingefiigt werden. Daher missen wir die Lange der Gruppe
(8) subtrahieren, um die Zielposition zu erreichen, die nach den vorhergehenden
Uberlegungen 7 sein muB.

Auf das o. g. Beispiel angewendet, wiirde alles zusammen etwa zu folgendem
Ergebnis flihren:

580 A$="ABGHICDEFJKL"

60 FP=1@

78 SP=3

22 LL=3

2OB0@ REMk %k ok ok ok ok ak 3 sk ok ok ok 3k ok ok ok ok ok ok ok ok

2001 REM BEWEGEN VON ZE ICHEN

2002 REMk %k ok sk ok ok xk 3 ok ok o ok 3k ok 3k ok ok ok %k ok ok

20180 IFFP>(SP+LL-1)>THENFP=FP-LL

2020 TT$=MID$(A$,SP,LL)

2030 A$=LEFT$(A$,SP-1)+MID$E(AF,SP+LL)
2040 AS=LEFTE(A$,FP-1)>+TT$+MID$(A$,FP)
2058 PRINTAS$

VARIABLEN:

A$ Ausgangsstring
FP Anfangsposition der neuen Zeichengruppe, wenn sie ohne vorherige

39

Léschung wieder eingefugt wirde

LL Lange der zu verschiebenden Zeichengruppe

SP Derzeitige Anfangsposition der zu verschiebenden Zeichengruppe
TT$ Zwischenspeicher der zu verschiebenden Zeichengruppe

Mit den Zeilen ab 2000 kann man beliebige Gruppen innerhalb des Ausgangsstrings
umstellen, vorausgesetzt, die Anfangsposition (SP), Zielposition (FP) und Lange
(LL) sind bekannt.

SUCHEN IN STRINGS

Bei allem, was bisher Uber die Handhabung von Strings gesagt wurde, sind wir
davon ausgegangen, daB der Programmierer alle nétigen Informationen fur die
Bestimmung der Anfangs- und Endstellen aller Stringabschnitte hat, auf die er
zugreifen will. Das ist in der Regel insofern ganz anders, als nicht der Programmie-
rer, sondern das Programm selbst entscheidet, wo entsprechend seiner vorgege-
benen Angaben Anderungen vorgenommen werden. Sehr oft ist schon durch den
Inhalt des Strings selbst festgelegt, wie das Programm ihn bearbeitet.

Weiter oben in diesem Kapitel haben wir das Beispiel einer String-Addition mit
Teilen vollstdndiger Namen untersucht. Zu Anfang wurde jeder Teil als ein eigener
String gespeichert und dann zu einem langeren String der Form ‘FRAU EVA
SCHMIDT’ zusammengefaBt. So herum ist es weiter nicht schwierig, aber wie
macht man es umgekehrt, d. h. wie entfernt man Teile aus dem Ganzen? Bei FRAU
oder HERR wére es noch einfach, da sie gleich lang sind, aber es kdnnten auch Titel
wie DR. vorkommen, deren Lénge von der Norm abweichen. Selbst wenn wir den
Titel leicht aus dem Namen herausholen konnten, ware die Lange des Vornamens
noch nicht vorhersehbar. Wie kann man also den Namen zergliedern?

Die Antwort lautet: Alle zur Zerlegung des Namens nétigen Informationen sind im
Namen enthalten, und zwar in Form der Leerstellen zwischen den drei Datenele-
menten. Dieselben Zwischenrdume, die wir beim Lesen des Namens in Gedanken
machen, kénnen vom Programm genutzt werden, sofern es (ber eine Methode
verflgt, den ganzen String nach der Zeichengruppe abzusuchen, die bearbeitet
werden soll. Hier ist eine einfache Methode, einen String A$ nach einer einzeinen
Zeichenkombination, TARGETS, zu durchsuchen:

188 FORI=1TOLEMN A%) -LEN(TRGT$ > +1

118 IF MID$C(A%$, 1 ,LENCTRGT$)>)>=TRGT$ THEN
SP=1:6G0T0O 150

120 NEXTI

40

Damit wird die Routine die Anfangsposition des ersten TRGT$ (gesuchte Zeichen-
gruppe) innerhalb des Hauptstrings identifizieren und sie in die Variable SP ablegen.
Mit dieser Technik kdnnen wir schnell eine Routine zur Zerlegung eines weiteren
Strings mit mehreren Informationseinheiten entwerfen — im folgenden Beispiel die
drei Teile eines Namens im Format ‘HERR MICHAEL MAY’:

58 NAME$="HERR MICHAEL MAY"

68 TRGTH=" "

78 DIM N2$(350)

3008 REMok dok ok sk ok ok ok ok % 3k ok ok ok 3k ok ok ok k0K %k ok K

3001 REM STRING SUCHE UND AUSWAHL

3002 REMk & kok ok dkokok ok ok ok ok ok ok Kk ok ok ok Kk ok k

3010 TT=LEN(NAMES$)-LENC(TRGT$) +1

3820 s1=1

3030 IT=0

3040 FORJ=1TOTT

3850 IF MID$S(NAMES,J,LEN(TRGT$))< >TRGTS$T
HEN3@78

3060 Ne$(IT)=MIDS(NAME*,S51,J-S1>:S1=J+LE
NCTRGTH)>: IT=1T+1

3870 NEXTJ

30880 N2$S(IT)>=MIDF(NAMES,S1)>:IT=1T+1

3090 FORI=@TOIT-1

3100 PRINTN2$C(I)

3118 NEKTI

VARIABLEN:

IT Anzahl der in NA$ gefundenen Daten

N2$ Fur die in NA$ gefundenen Daten bestimmtes Feld

NA(ME)$ Zu durchsuchender Hauptstring (NAME$ wird nur als NA$ regi-
striert)

S1 Beginn des zu durchsuchenden Abschnitts von NA$

TR(GT)$ Trennzeichen zwischen den Datenelementen

TT Letztes Zeichen in NA$, das mit TR$ verglichen zu werden lohnt, ohne
NA$ ganz zu durchlaufen

Bei diesem Verfahren beginnt die Suche nach dem Zielstring beim ersten Zeichen
des Hauptstrings; jedesmal, wenn der Zielstring gefunden wird, wird der Teil des
Hauptstrings ab S1 bis zum Zielstring in das Feld N2$ Ubergeben. Die Suche wird
dann von dem Zeichen hinter dem Zielstring an wieder aufgenommen. Die Routine
geht davon aus, daB der Hauptstring nicht mit dem Zielstring endet, und geht daher

41

nach Ausfliihrung der Schleife unmittelbar an den Teil des Hauptstrings, der hinter
dem zuletzt gefundenen Teilstring steht.

Fir solche Suchtechniken sind eine ganze Reihe von Anwendungen mdglich. Wie
im Kapitel Gber String-Addition beschrieben, kdnnen Informationen in Strings
zusammengefaBt werden, und mit Hilfe einer Suchroutine die verschiedenen Teile
wieder herausgeholt werden kénnen. In ‘intelligenten' Programmen, die den Wort-
laut eingegebener Befehle analysieren, kann die Routine zur Abfrage dienen, ob
bestimmte Verben oder Substantive vorkommen — diese Technik wird z. B. hdufig
bei Abenteuerspielen eingesetzt. Daneben kann sie in Dateiprogrammen zum
Auffinden von Eintragungen in der Datei dienen, die ein bestimmtes Wort enthalten.

REGELMASSIGE STRINGSTRUKTUREN

Da Strings mit einfachen Anweisungen gehandhabt werden kdnnen, die bestimmte
Abschnitte einfligen oder entfernen, ohne daB man sich um die Umstellung des
vorhandenen Inhalts kimmern muB, sind sie der ideale Ort zum Speichern von
Daten regelmaBiger Lénge, in denen regelméBig etwas eingefligt oder geléscht
werden muB. In einem einzelnen String mit einer maximalen Lange von 255
Zeichen kénnen 63 Datenelemente mit je vier Zeichen, 50 mit je finf Zeichen etc.
untergebracht werden.

Wenn alle Daten einen identifizierbaren Platz bekommen sollen, muB der String
zuerst in der fur die Aufnahme aller Elemente nétigen Lange eingerichtet werden.
Dazu benutzt man am einfachsten eine Schleife, um den String Zeichen fiir Zeichen
aufzubauen. Die néchste Routine richtet einen String fiir die Speicherung von
Elementen mit je vier Zeichen ein, deren Adresse der Anwender bestimmen kann:

4000 RE Mk ok ok 3k ok ok 3k ok 3k ok 2K K ok ok ok ok 3k ok ok ok ok ok k ok Kk ok
49001 REM SETZEN VON GLEICHL. STRINGS
4002 REMk 3k ok ok ok ok ok 3 ok ok ok 3 ok o ok ok ok ok ok ok ok ok ok ok ok ok ok of
4910 AF=""I1FORI=1TO252:A%=AS+" "INEXT
48020 INPUT"VIERSTELLIGES ZEICHEN: "} T

4930 INPUT"ZEICHEN POSITION (1-63>: ":T
4940 A$=LEFT$(A%,4%(T-1))+T$+MID$(AS, T4
+1)

4950 PRINT"J";A$

4960 GOT04020

Ebenso leicht konnen Daten aus einem numerierten Platz entfernt werden. Ergén-
zen Sie die Routine um die folgenden Zeilen, geben Sie einige Daten ein und

42

probieren Sie dann, wenn die Stringeingabe erwartet wird, den zweiten Teil aus,
indem Sie “***” eingeben:

4925 IFT$="x%x*xx"THEN4G7O

4870 INPUT"NUMMER DES ZU PRUEFENDEN ZEIC
HENS: ":NN

4080 PRINTMID$ (A%, NNx4-3,4)

4898 GOTO4020

Man kann Elemente aus dem Feld l6schen, indem man einfach ihre Positionen neu
definiert als vier Leerstellen. Diese Routinen sind nicht sehr stabil, d. h. sie stiirzen
leicht ab, wenn man Daten eingibt, deren Lange nicht vier Zeichen betragt. Dem
kann man jedoch mit ein paar einfachen Fehlertests abhelfen, wie im nachsten
Kapitel gezeigt wird.

MEHRELEMENTIGE STRINGFELDER

Wenn man Strings zum Speichern von Daten regelméBiger Lange benutzt, besteht
eine Schwierigkeit in der maximalen Lange des einzelnen Strings. Im o. g. Beispiel
galt die Annahme, daB die Anzahl der abzulegenden Elemente hdchstens 63
betragen darf. Wenn das auch fir eine ganze Reihe von Anwendungen ausreichen
durfte, wére fir viele andere eine groBere Kapazitdt wiinschenswert. Diese kann
man relativ leicht schaffen, indem man ein Stringfeld definiert und die jeweilige
Position eines Elements nicht nur in bezug auf seinen Ort im String, sondern auch
auf seine genaue Adresse innerhalb des ganzen Feldes berechnet. Unten sehen
Sie eine Bearbeitung der vorhergehenden Routine, die mit einem 20elementigen
Feld arbeitet und somit die Aufnahme von 1260 Elementen mit vier Zeichen und den
Zugriff darauf ermdglicht.

S8 DIMASC(19)
6@ FORI=1TO252:A$(B>=AFB@)+" "INEXT
70 FORI=I1TOI13:AF(I)=AF(D) :NEXT
5000 REMkdokkkkkkkkkkkokkkkkkkkkkkkkkkik
S001 REM MEHRELEMENTIGE STRINGFELDER
SO002 REM¥ ok dk ok ok ok ok ok ok ok ok 3 ok 3k 3k ok ok ok ok o ok ok ok ok k k k Xk
58010 INPUT"VIERSTELLIGES ZEICHEN:

"} TS
58280 IFTH="xkxx*x"THENSO70
5030 INPUT"ZEICHENPOSITION (1-126@):

na
’

43

58040 LL=INT((T-1>/63>:T=T-63%LL

5050 AF(LL)=LEFT$(AF(LL),4%(T-1))>+T$+MID
FASLL) , Tx4+1D

5068 GOTOSO19

5870 INPUT"NUMMER DES ZU PRUEF. ZEICHEN
g: ";

58880 LL=INTC((NN-1)63):NN=NN-63*LL

5098 PRINT MIDEC(AF(LL) ,NN*4-3,4)

51880 GOTOSA1@

VARIABLEN:

LL Nummer der Zeile, in die das neue Element eingesetzt wird; ergibt sich
aus der Division der gewunschten Position durch die Ladnge der Zeilen im
Feld

T/NN Ursprungliche Nummer des einzusetzenden oder zu untersuchenden
Elements, umgewandelt in die Position des Elements in Zeile LL

DATEN IN STRINGS VARIABLER LANGE

In den letzten beiden Abschnitten wurde von einer feststehenden L&nge der
bearbeiteten Strings ausgegangen. Das hat den Vorteil, daB die Position der
Stringelemente ebenfalls festgelegt ist. Es gibt immer 63 Elemente, und das
Element in Position 23 wird immer dort bleiben, egal was man mit den anderen
Positionen anfangt. Nicht alle Anwendungen erfordern jedoch den String in voller
Lange im Speicher. Haufig wird nur eine Liste von Elementen (mit oder ohne
bestimmte Reihenfolge) verlangt, die man einfach nacheinander durchgehen und
durch Einfligungen oder Streichungen verédndern kann. Mit der nachsten Routine
kann man Elemente mit vier Zeichen an den Anfang einer Liste von bis zu 1240
Elementen anfligen, die gesucht oder geléscht werden kénnen:

GOAB RE Mk ok dk ok o ok ok 3k ok o ok ok ok ok ok ok ok ok ok ok ok ok ok Kok ok k ok k
6081 REM DATENSTRINGS VARIABLER LAENGE
EOO2 RE Mk ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok k kkok ok k
51068 DIMAF(13)

6120 INPUT".1=E INGABE /2=SUCHEN./3=LOESCHE
N/4=ENDE" :FF

65130 ONFFGOSUBEBZ290,6300,6400.,6150

6148 GOTOE120

61586 END

44

6208 REM¥ Kk kkk k%%

6281 REM EINGABE

6202 REM® k% kkkk k%

€218 PRINT: INPUT"VIERSTELLIGES ZEICHEN:
" IN$

62280 IFIT=1240THENPRINT"KEIN PLATZ:FORI=
1TO2Z008 :NEXT:GOTOE2908

62380 AF(AI=INSF+AF (B IT=IT+1

6240 IFLEN(AS(D))I<{252THENG298

62580 FORI=@TO18

6260 TTH=RIGHT£(A%(1),4):AF(I)=LEFT$S(AH(
ID,LEN(AFE(I))>-4)

6270 AF(I+1)=TTHF+AFE(I+1): IFLEN(AS(I+1)<2

S2THENG296

6288 NEXTI

62980 RETURN

6308 REMokkkkk kk

6301 REM SUCHE

6302 REM* k& kkkk

63180 PRINT: INPUT"ZU SUCHENDES ZEICHEN: "

:INS

83280 FORI=1TOIT

6338 LL=INT((I-1)/62):PP=4x(I-LL¥62)-3

6348 IFMID$(A$S(LL) PP .,4)=IN$STHENE3708

63580 NEXTI

6360 PRINT"NICHT YORHANDEN":FORJ=1TO2000
SNEXT:GOTOE330

6378 PRINT"ZEICHEN HAT NUMMER: ":I1:PRINT
fINPUT"WEITER SUCHEN®":Q#

6380 IFLEFT#H(Q%,1>="J"THENG35@

63380 RETURN

6400 REM¥ ok kokkkk & kk

6481 REM LOESCHEN

6402 REMkkdkokkokkkkk

64180 PRINT: INPUT"ZU LOESCHENDES ZEICHEN:
" IN$

6428 GOSUBE320: IFI>I1ITTHENESS0O

6430 AS(LLI=LEFT$(A*:(LL) ,PP-1)+MID$S(AH(L

LY ,PP+4)

6440 IT=1T-1

45

6458 PRINTIN#:" GELOESCHT":FORI=1TO2000:
NEXT

6460 FORI=1T0O18: IFLENC(A$S(I))>=248 OR A$(I
)=""THENB4390

8470 LN=248-LENC(AS(I>>:AFC(II=AS(I)I+LEFTS$
CAFECI+1) ,LND

6480 AS(I+1)=MIDS(AE(I+1) ,LN+1)

5480 NEXTI

65808 RETURN

VERWENDETE VARIABLEN:

FF Nummer der vom Benutzer gewéhlten Funktion

IT Anzahl der Elemente mit vier Zeichen im Feld

TT$ Hilfsvariable, mit der ein Element in die nachste Zeile verlegt wird,
wenn die Lange einer Zeile im Feld 252 erreicht, d. h. wenn kein neues
Element angefligt werden kdnnte, ohne die maximale Lange von 255 zu
Uberschreiten

LL derzeit bearbeitete Zeile innerhalb des Feldes

PP Position eines Elements in Zeile LL des Feldes

LN Lange des Elements, das beim L&schen innerhalb des Feldes nach
unten verschoben wird

Sehen Sie sich die Routine in aller Ruhe an, und lassen Sie sich nicht einschich-
tern; denn sie enthélt wenig, das wirklich neu ist. Es sind hier lediglich einige derin
diesem Kapitel beschriebenen Methoden angewendet worden. Das einzig Neue ist
die Art und Weise, wie Elemente von einem String zum anderen verlegt werden,
sobald die Lange eines Strings 252 erreicht. Dies geschieht, damit man ein neues
Element ohne Risiko an den Anfang des Feldes anfigen kann, anstatt erst auszu-
probieren, ob die Addition des neuen Elements zu einer unerlaubten Stringlange
fihren wirde. Beim Loschen kehrt man das Verfahren um.

GARBAGE COLLECTION

Bei komplizierten Stringroutinen, mit denen Strings innerhalb von Feldern haufig
umgestellt oder im Speicher neu definiert werden, wird lhnen gelegentlich auffallen,
daB der C 64 die Verarbeitung scheinbar unterbricht. Der Schein trigt nicht,
sondern das ist tatsachlich so. Der C64 — und jedes andere Gerét, das auf
Commodore BASIC 2 lauft — ordnet im Fall der Neudefinierung eines Strings den
Speicher nicht so, daB der vorhandene Platz optimal genutzt wird. Strings werden
nur dann im Speicher umgestellt, wenn Platz fir etwas gemacht werden muB, das

46

an Lénge zugenommen hat. Das bedeutet, daB ein durch Neudefinition verkirzter
String keinen zusatzlichen Speicherplatz freimacht. Dadurch wird der Speicher
nach und nach aufgefillt, wenn groBe Mengen von Strings bearbeitet werden. Nach
einiger Zeit wird das zum Problem, und der C 64 schafft mit der sogenannten
‘Garbage Collection’ Abhilfe, d. h. er ordnet den Speicher so, daB die Strings keinen
Uberflissigen Platz mehr belegen. Leider erfolgt die Garbage Collection nichtimmer
rechtzeitig genug, um den Programmstop und einen OUT OF MEMORY Error zu
verhindern.

Sollten Sie bei Ihren Programmen auf dieses Problem stoBen, hilft Ihnen die FRE-
Funktion des C 64 weiter, mit der Sie die Garbage Collection erzwingen kénnen, um
sich einen genauen Uberblick lber den verfiigbaren Platz im Arbeitsspeicher zu
verschaffen. Auf den Befehl

FRINT FREC®)>

(der Wert in Klammern ist ohne Bedeutung) wird die Anzahl der freien Bytes im
Speicher ausgedruckt. Eine Komplikation ergibt sich daraus, daB FRE nur die
Zahlen von —32768 bis 32767 verarbeiten kann. Was tber 32767 hinausgeht, wird
als die Anzahl freier Bytes minus 65536 ausgedrlckt. Probieren Sie das nachste
Programm aus, und geben Sie es genauso ein wie unten angegeben, d. h. mit der
Leertaste nach PRINT in Zeile 15 und ohne Leertaste nach PRINT in Zeile 20:

18 DIMAC1218)
1S PRINT "i"

28 PRINT FRE<@®)
30 LIST

Lassen Sie das Programm laufen; jetzt sollte der Wert 32767 oben auf dem
Bildschirm erscheinen, darunter das Listing. Gehen Sie zum Listing, und entfernen
Sie die Leerstelle nach PRINT in Zeile 15. Da Sie ein Byte aus dem Programm
genommen haben, miBte der Wert des verfligbaren Speicherplatzes jetzt mit
32768 Bytes angegeben werden, aber der erneute Programmdurchlauf gibt den
Wert —32768 aus. Die Ursache dafiir hangt damit zusammen, daB die FRE-Funktion
mit 16-Bit-Integerarithmetik arbeitet. Streng genommen hieBe das, jede Zahl von 0
bis 63535 kann ausgedriickt werden. Tatsachlich aber ist das hdchste Bit einer
bindren Zahl reserviert fiir die Anzeige, ob eine Zahl negativ ist; daher wird jede Zahl
Uber 32767, bei der alle 16 Bits gebraucht werden, als negativ gedeutet. Das
Problem wird geldst, wenn man eine logische Bedingung (Erkldrung s. gesondertes
Kapitel) zur Umwandlung negativer Zahlen in die korrekten positiven verwendet.
Die folgende Zeile fihrt immer zum korrekten Wert:

47

MM=FRE(B):PRINT MM-B85536%{ MM{B)

Dies nur am Rande. Hauptsachlich sollte FRE hier als eine Mdglichkeit vorgestelit
werden, wahrend des Programms die ‘Garbage Collection’ zu erzwingen und so
einem falschen OUT OF MEMORY Error vorzubeugen. Fligen Sie einfach eine Zeile
wie

108 T=FRE(®>

irgendwo ein, wo sie dann planmaBig ausgefiihrt wird. Da die Garbage Collection
Zeit braucht und den Programmablauf etwas verlangsamen wird, sollte sie nur
verwendet werden, wo sie erfahrungsgemaB notwendig ist.

SCHLUSS

Sobald Ihnen die hier beschriebenen Techniken einmal geldufig sind, brauchen Sie
bei Programmen, die ausgiebigen Gebrauch von Stringfunktionen machen und
voller LEFT$, MID$ und RIGHTS$-Funktionen in Verbindung mit einer Fille von
Variablen stecken, nicht mehr den Mut zu verlieren. Ein Verfahren, mit dem man
Strings verarbeitet, besteht im wesentlichen daraus, einen Teilstring zu identifizie-
ren, und durch umsichtigen Einsatz von Variablen 1aBt sich so gut wie alles mit
einem String machen. Dies ero6ffnet nicht nur breite Moglichkeiten fur eine effekti-
vere Datenspeicherung. Es erlaubt dem Programmierer auch, viel ausgefeiltere
Programme zu schreiben, mit denen der Benutzer Strings in Ubersichtlicherer Form
eingeben kann. Dabei bleibt dem Programm selbst die Aufgabe Uberlassen, die
wesentlichen Teile der Eingabe zu identifizieren. Wie schon am Anfang des Kapitels
erwahnt, wird auf die hier beschriebenen Techniken im folgenden haufig Bezug
genommen. Uberspringen Sie hier nichts, denn die Anstrengung, alles genau zu
verstehen, wird sich mehr als lohnen.

48

KAPITEL 4

DATENEINGABE

Einer der wichtigsten Unterschiede zwischen den modernen Mikrocomputern und
den leistungsfdahigen GroBrechnern der Vergangenheit besteht darin, daB der
Mikrocomputer interaktiv ist, d. h. er steht in direktem Dialog mit dem Benutzer und
erlaubt ihm den Eingriff in ein Programm, wéhrend es lauft. Vor der Erfindung des
Mikrocomputers waren Computer meist als Gerdte bekannt, die zuerst sowohl
Programme als auch alle nétigen Daten brauchten, bevor man das Programm ohne
jede Uberpriifung der eingegebenen Daten durchlaufen lieB. Oft erhielt man das
Ergebnis des Programmdurchlaufs erst am nachsten Tag; Fehler im Programm
konnten bedeuten, daB der Vorgang viele Male wiederholt werden muBte, bevor der
Benutzer auch nur eine anndhernde Vorstellung davon hatte, wie das Programm
nach Beseitigung aller Fehler arbeiten wiirde.

Infolgedessen muBte der Programmierer, wenigstens der erfolgreiche, alles vorher-
sehen, was im Laufe der Ausfiihrung geschehen wiirde. Sollten im Programmablauf
mehrere Operationen durchgefiihrt werden, muBten sie alle in der richtigen Reihen-
folge und mit allen notwendigen Daten eingebaut werden, bevor das Programm
betriebsfahig war. Samtliche wahrend des Programmablaufs zu treffenden Ent-
scheidungen muBten vorher eingeplant werden; denn es gab keine Mdglichkeit, ein
Programm zu entwerfen, das Entscheidungen beim Benutzer erfragte. Wurde eine
wichtige Entscheidung Ubersehen, so muBte das Programm am néachsten Tag
nochmals gestartet werden.

Der moderne Mikrocomputer hat die Situation verandert. Manche neuartigen
Anwendungen von Computern, wie z. B. Spiele, waren mit Geraten ohne Kommu-
nikationsméglichkeit zwischen Benutzer und laufendem Programm einfach nicht zu
realisieren gewesen. Noch entscheidender ist, daB es fur die Benutzer ernsthafter
Anwendungsprogramme heute selbstverstandlich ist, wahrend der Ausfiihrung
Informationen in ein Programm einzugeben, Entscheidungen (ber die anfallenden
Aufgaben zu treffen und dabei das Programm unter stédndiger Kontrolle zu haben.
Diese Freiheit ist jedoch auch problematisch. Obwohl das nicht-interaktive Pro-
grammieren oft miihselig war, garantierte es den vorsichtigen Umgang mit Program-
men und die sorgféltige Auswahl der Daten, die sie verarbeiteten. Die direkte
interaktive Datenverarbeitung verfihrt zur Leichtsinnigkeit. Da uns die Ergebnisse
des Programms fast sofort zur Verfligung stehen, kann etwas, das falsch gelaufen
ist, schnell korrigiert und der Programmdurchlauf wiederholt werden.

Heute ist ein Programm nicht schon deshalb gut, weil jeder Datenausdruck so
formuliert ist, daB er das Programm nicht zum Stolpern bringt, und jede mdogliche
wichtige Entscheidung vorausgeplant ist. Gut ist ein Programm, wenn es dem

49

Anwender in mdglichst flexibler Weise erlaubt, Informationen einzugeben, und
wenn es ihm wichtige Entscheidungen Uber die Arbeitsweise des Programms
Ubertragt. Wenn man bedenkt, wie leicht wéhrend eines solchen Verfahrens Fehler
gemacht werden kdénnen, beweist sich ein gutes Programm auch darin, daB der
Benutzer nicht versehentlich Eingaben machen kann, die das Programm zum
Absturz bringen oder zur Verstimmelung der eingespeicherten Informationen
fihren.

In diesem Kapitel beschéftigen wir uns mit Moglichkeiten, wie Programme Informa-
tionen annehmen kdnnen. Im nachsten Kapitel untersuchen wir einige der Metho-
den zum Schutz des Programms gegen mdgliche Fehler, die in diesen Informatio-
nen enthalten sind.

EINGABE VON INFORMATIONEN: INPUT

Der Commodore 64 |48t zwei Arten der Dateneingabe wahrend des Programmab-
laufs zu: INPUT- und GET-Anweisungen. Beide haben ihre Vorteile, obwohl sich die
meisten selbstgeschriebenen Programme fast ausschlieBlich auf INPUT verlassen,
selbst in Féllen, in denen der Gebrauch von GET weitaus angebrachter wére.

Der wichtigste Vorzug von INPUT ist sein klarer Ablauf. Eine Abfrage erscheint auf
dem Bildschirm, worauf Buchstaben oder Zahlen ein- und ausgegeben werden
kénnen. Fast ebenso wichtig ist, daB die Eingaben mit Hilfe der Cursor-Pfeile in
Verbindung mit den Tasten Insert und Delete editiert werden kédnnen. Nachdem der
Anwender sich davon Uberzeugt hat, daB das Bild genau seinen Winschen ent-
spricht, beendet er den INPUT durch Driicken von RETURN.

INPUT hat jedoch auch Nachteile. Erstens begrenzt es die erlaubte Menge der
einzugebenden Informationen auf hochstens 80 Zeichen (selbst um 80 Zeichen
einzugeben, miissen Sie den Cursor an den Anfang der Zeile nach der INPUT-
Abfrage setzen, da nur der Inhalt zweier aufeinanderfolgender Bildschirmzeilen
angenommen werden kann). Zweitens gibt es mehrere Zeichen, die von INPUT
nicht korrekt verarbeitet werden, beispielsweise das Komma. Drittens bedeutet die
Notwendigkeit, jede Eingabe mit RETURN abzuschlieBen, unter Umsténden eine
wirkliche Behinderung bei Programmen, die eine groBe Anzahl von Antworten vom
Benutzer erwarten, oder wenn die Programmausfiihrung ohne vorherige Eingabe
einer Antwort durch den Benutzer fortgesetzt werden soll. Trotz der Nachteile ist die
INPUT-Anweisung immer noch die Stltze fast aller Programme, die wahrend des
Ablaufs Informationen annehmen.

EINFACHE EINGABEN MIT INPUT

1. Eingabe eines einzelnen Strings:
18 INPUT"GIB EINE ZAHL EIN ":A%$

2. Eingabe einer einzelnen Zahl:

18 INPUT"GIB EINEN STRING EIN ":;A$

3. Eingabe mehrerer Strings:

18 INPUT"NAME, VORNAME, GESCHLECHT <MIT
KOMMAS EINGEBEN)Y ":N$,VN#$,G#$

Beachten Sie, wie in den hier eingegebenen Daten die Kommas zur Bestimmung
der drei getrennten Strings dienen, die von der INPUT-Anweisung erwartet werden.

Wenn der Anwender jeden Ausdruck mit RETURN statt mit Kommas abschlieBen
wirde, sdhe die Anzeige so aus:

Bildschirm:

NAME , VORNAME , GESCHLECHT (MIT KOMMAS
EINGEBEN) ? LAWRENCE

2?7 DAVID

2?7?77 MAENNL ICH

4. Eingabe mehrerer Zahlen:

186 INPUT"NUMERISCHE EINGABEN 1-3:":A,B.,C

Die Wirkung ist dieselbe wie bei der Stringeingabe unter 3. In einer Eingabezeile
kdnnen Zahlen und Strings gemischt vorkommen.

51

INPUT MEHRERER ELEMENTE IN DIESELBE BILDSCHIRM-
ZEILE

Durch die flexible Handhabung des 64er-Bildschirms in Verbindung mit der INPUT-
Anweisung kann das oft stérende Durcheinander auf dem Bildschirm bereinigt
werden. Wenn z. B. mehrere Inputs nacheinander gemacht werden missen und
der Benutzer nicht darauf angewiesen ist, sie alle zugleich vor sich zu sehen, kann
man auf recht einfache Art dafiir sorgen, daB alle Eingaben in dieselbe Zeile
erfolgen, die dabei jeweils Uberschrieben wird.

1. Uberschreiben von INPUTSs:

10 DD
20 INPUT"OWORT 1":A1$
30 INPUT"[WORT 2":A2%
4@ INPUT"[JNORT 3":A3%

Hier ist die PRINT-Ausweisung in Zeile 10 einfach ein Beispiel dafiir, wie man den
Cursor an die gewlnschte Bildschirmposition bringt, am besten eine Zeile unter der
Stelle, wo die INPUT-Abfragen erscheinen sollen. Von da an reicht es, ein ‘Cursor
aufwarts’-Symbol an den Anfang jeder Abfrage zu setzen, damit alle Eingaben in
dieselbe Zeile gemacht werden. Bei verschieden langen Eingaben ergibt sich nur
das Problem, daB die frihere von der folgenden moglicherweise nicht vollstandig
geldscht wird. In diesem Fall ware jede INPUT-Zeile etwa so aufgebaut:

20 PRINTO$: INPUT"OWORT 1";Al$

O$ ist ein String mit 39 Leerstellen, denen ein ‘Cursor aufwarts’-Symbol vorgeht.
Bei dieser Methode I6scht O$ die Zeile bis zum Ende, so daB die Eingaben immer in
eine freie Zeile gedruckt werden.

2. Eingaben kdnnen natiirlich auch genausogut nebeneinander statt untereinander
auf dem Bildschirm angeordnet werden, vorausgesetzt, Sie sind sicher, daB sie
nicht Uber die Zeile hinausgehen und so das Bildschirmformat verderben:

10 INPUT"WORT 1";A$

20 PRINT"XRRBBRRBEMM': : INPUT"WORT 2":B$
30 PRINT"M RRERRRRRRRRRR ";: INPUT"W
ORT 3";C%

52

INPUT IN BILDSCHIRMFENSTER

Selten wirken Eingaben so professionell wie auf einem Bildschirm mit invertierten
Fenstern. Obwohl man fir diesen Zweck besser mit GET arbeitet, kann man auch
INPUT verwenden, wenn man sicher ist, daB die einzelnen Eingaben nicht langer
sind als die ihnen zugewiesenen Fenster. Das Verfahren ist in folgenden Zeilen
dargestellt:

18 PRINT" [REVERS EIN]

280 INPUT"O WORT 1I[REVERS EINl":A$

Zeile 10 bringt ein 10 Spalten langes invertiertes Fenster auf den Bildschirm, vor
dem genligend Platz fir die geplante, nicht-invers gedruckte Abfrage bleibt. Die
INPUT-Abfrage beginnt mit einem ‘Cursor aufwdrts’-Zeichen zwecks Rickkehr in
die richtige Zeile, und [RVS] am Ende der Abfrage bewirkt die inverse Darstellung
der Eingabe. RETURN am Ende der Eingabe schaltet den RVS-Modus aus, und
alles folgende wird im Normal-Modus gedruckt.

Es lohnt die Mihe, mit den vielen Mdglichkeiten der Gestaltung von INPUTs auf
dem Bildschirm zu experimentieren. Ein Ubersichtlich eingeteilter Bildschirm macht
die Bedienung jedes Programms wesentlich einfacher und sorgt dafir, daB bei
Eingaben weniger Flichtigkeitsfehler gemacht werden.

GET

So nitzlich INPUT auch sein mag, seine Einschrankungen sind oft hinderlich. Um
dem abzuhelfen, bietet 64er-BASIC mit GET einen zusétzlichen Befehl. GET ist
schwieriger zu handhaben als INPUT; denn seine einzige Funktion besteht darin,
die Tastatur zu lesen, d. h. festzustellen, ob eine Taste gedrickt wurde oder nicht.
GET erwartet nicht RETURN, ehe es eine Eingabe als solche annimmt; jedes GET
liest die Tastatur und nimmt entweder das zuerst registrierte Zeichen an oder stellt
fest, daB keine Taste angeschlagen wurde. GET empfiehlt sich besonders, wenn
Sie die Lénge einer Eingabe sofort Gberprifen méchten, wenn Einzeltastenbefehle
(ohne Gebrauch von RETURN) zweckméBig sind, oder wenn das Programm nicht
auf eine Eingabe warten soll, falls der Benutzer keine Taste driickt.

WARTESTATUS MIT GET

Die klassische Aufgabe von GET besteht darin, einen Wartestatus bis zum Driicken
einer einzelnen Taste herzustellen:

53

10 GETA#*: IFA$=""THENI®@

Auf diese Zeile hin fuhrt das Programm die GET-Anweisung aus und stellt fest, ob
eine Taste gedriickt wird. Falls nicht, wird dem String A$ der Wert Null zugeordnet,
und die IF-Anweisung im zweiten Teil der Zeile bewirkt die nochmalige Ausfiihrung
der Zeile. Das Programm wartet also unbegrenzt, bis eine Taste gedriickt wird.
Sobald dies geschieht, Gbernimmt A$ den Wert des Zeichens, das der Taste
entspricht, und das Programm geht zur néachsten Zeile (ber.

Ausgekligelte Anwendungsprogramme, die dem Benutzer in verschiedenen Sta-
dien der Ausfiihrung Optionen anbieten, machen von GET in dieser Form sehr
haufig Gebrauch. Wenn verschiedene Mdéglichkeiten zur Auswabhl stehen, ist es viel
leichter, eine einzelne Taste zu driicken, als jede Eingabe mit RETURN abschlieBen
zu missen. Unten sehen Sie ein typisches Programm-Men(, das mit GET arbeitet:

1900 PRINT"UP = PROGRAMMENDE"
1018 PRINT"1 EINGABE DATEN"
1828 PRINT"2 LOESCHEN DATEN"
1030 PRINT"*3 AENDERN DATEN"
1248 PRINT"4 = ANZEIGE DATEN"
1850 PRINT"MBITTE WAEHLEN"
1860 GETIN#: IFIN$=""THEN1GG6@
1070 TT=VAL (IN$>+1

1888 ON TT GOSUB10000,2000,3000,4000,500
%)

1888 GOTO1800

Der Benutzer muB lediglich O, 1, 2, 3 oder 4 eingeben, um den entsprechenden
Programmteil aufzurufen.

CURSORSTEUERUNG MIT GET

Auch Spielprogramme machen ausgiebigen Gebrauch von GET, vor allem, um
Gegenstande auf dem Bildschirm hin- und herzubewegen:

1008 REMk ok ok ok ok ok ok ok ok ok ok % &k ok %k K ok
1001 REM BEWEGTER CURSOR
1002 REMk ok s ok ok ook o 3 ok K ok ok %k
19019 GETTsS

1920 PRINT" xWli";

1038 FORI=1TOSO:NEXT

1848 PRINT" W";

54

105@ FORI=1TOS@:NEXT

1860 IFT$=""THEN10BO

1070 IFT$="OJ"ORT$="M"ORT$="M"ORT$="N"THE
NPRINTTS:

1980 GOTO100@

Diese Routine 148t einen blinkenden ‘*’-Cursor auf dem Bildschirm erscheinen, bis
eine Taste gedriickt wird. Die beiden Schleifen erzeugen eine kurze Pause, damit
der Cursor nicht flackert, sondern blinkt. Um den Cursor zu bewegen, missen Sie
nur das mit GET-Anweisung in T$ abgelegte Zeichen lberprifen und, falls es eines
der Cursor-Steuerzeichen ist, drucken (PRINT). Die Printposition verandert sich,
und danach kénnen Sie die Routine fiir den blinkenden Cursor wieder ausfiihren.

GET UND BEFRISTETE ANTWORTZEITEN

Bei Spielen und manchmal auch bei ernsthafteren Anwendungen kann es ginstiger
sein, dem Benutzer eine bestimmte Zeitspanne fiir eine Antwort zur Verfigung zu
stellen, als das Programm auf unbegrenzte Zeit zu stoppen. Mit GET und einer
angemessenen Zeitschleife ist das ein einfacher Vorgang:

18 FORI=1TOl008

20 GETT#: IFT#<>""THENI=1000
38 NEXTI

48 1FT$<>" "THENGOSUBS0@

Hierbei hat der Benutzer zum Antworten soviel Zeit, wie die Schleife fir 1000
Ausfiihrungen braucht. Nach erfolgter Antwort kann eine bestimmte Operation wie
in Zeile 40 ausgefiihrt werden. Wurde wahrend der 1000 Wiederholungen der
Schleife keine Taste gedrickt, lauft das Programm von der auf Zeile 40 folgenden
Zeile an weiter.

GET UND INVERTIERTE FENSTER

Wie schon erwahnt, kann man die Dateneingabe wirkungsvoll gestalten, indem man
einen besonderen Raum wie z. B. ein invertiertes Fenster dafur reserviert. GET
spielt bei dieser Anwendungsmethode eine wesentliche Roile, weil es eingesetzt
werden kann, um die Lange einer Eingabe wahrend des Eingabevorgangs festzu-
stellen. Die nachste Routine nimmt jede Eingabe bis zu einer Lange von 10 Zeichen
an:

2006 RE Mk dkok ok ok ok ok dk ok ok o ok ok ok ok 3 ok ok 3k ik ok ok ok ok k %
20@1 REM EINGABE IN REVERSES FELD
2002 RE Mok sk ok ok % % ok ok ok ok ok 3 ok ok ok ok ok ok ok K o ok ok ok k ok
20180 IN$=""
20280 PRINT"J [REVERS EINI1
":REM 7 LEER REV.ON 18 LEER
2830 PRINT"[OWORT 1:[REVERS EINI1";
2048 GETTS$: IFT$=""THEN2040
2050 IFT$=CHR$(13>THENZ2110
2060 IFT$=CHR$(20>ANDLEN(INS$)=0THEN2040
2070 IFTH=CHR$(20)THENIN$=LEFT$(IN$,LEN(
IN$>-1):PRINT"H W"::G0TO2040
2088 PRINTTS:
2090 IN$=IN$+TS$
2100 IFLENCINS)<18THEN2O4@
2118 STOP

Das Fenster wurde gedruckt und die Abfrage direkt davor gestellt, wobei die
Printposition am Anfang des Fensters stehenbleibt. In das Fenster kdnnen dann
Buchstaben geschrieben werden. Driicken der Taste DEL (CHR$(20)) 16scht den
letzten Buchstaben der Eingabe sowohl auf dem Bildschirm als auch im Speicher,
sofern das Fenster schon etwas enthalt; bei dieser Routine kénnen Sie die Cursor-
Steuertasten nicht benutzen, nur DEL. Die Eingabe ist beendet, wenn entweder
RETURN (CHR$(13)) gedriickt wird, oder wenn sie eine Linge von 10 Zeichen
erreicht hat.

Mit einem solchen Programm koénnen Sie verhindern, daB eine Eingabe langer wird
als Sie mdchten; damit wird sowohl eine Abweichung vom geplanten Bildschirmauf-
bau als auch eine Verstimmelung der Struktur der Felder ausgeschlossen.

BILDSCHIRMEDITIERUNG MIT GET

GET bietet weiterhin die Mdglichkeit, die bei INPUT vorgegebene Hoéchstlange von
Strings zu Uberschreiten und vorhandene Strings zu editieren, was mit INPUT sehr
schwierig ist. Die Methode, auf dem Bildschirm erscheinende Informationen aufzu-
bereiten und diese Modifikationen aufzuzeichnen, nennt man Bildschirmeditierung.
Programm-Listings kdnnen beim C 64 editiert werden, indem man mit dem Cursor
vorhandene Zeilen entlangfahrt und etwas hinzufligt oder wegnimmt. Das Verfahren
kann auch bei Strings auf dem Bildschirm benutzt werden, obwohl solche Anwen-
dungen meist schwierig sind.

56

Die unten abgedruckte Routine ist ziemlich komplex, hat aber einen einfachen
Zweck. Sie erlaubt dem Benutzer die Eingabe und gleichzeitige Editierung eines
Strings (genannt A$). Ware der Anfang von A$ mit einem schon im Speicher
befindlichen String identisch, kdnnte die Routine auch dazu dienen, ihn auf den
Bildschirm auszugeben und zu verandern. Die einzige Beschrankung besteht in der
absoluten Héchstgrenze von 255 Zeichen pro String.

3000 RE Mok ok ok ok ok ok ok & ok 3k ok % 2k ok ok ok % ok ok k
3081 REM BILDSCHIRMEDITIERUNG
30682 RE Mk %k ok dk ok ok 3k ok ok ok ok ok ok o o ok o ok ok Kk
38180 DEF FNA(P)=10294+LL%48+P
3020 Af=" "

3030 P=0:LL=17

3048 PRINT"L
3050 PRINTA$

3068 CH=PEEK(FNA(P)):POKES4272+FNAC(P), 14
tPOKE FNAC(P), 160

3078 FORTT=1TOS:NEXTTT:POKEFNA(P) ,CH
3080 GETT#: IFT$=""THEN38048

3898 IFT$=CHR$(132)0RLEN(A$)=2535THENSTOP
31080 IFT$=CHR$(395)>ANDP< >0THEN3038

3110 IFT$=CHR$(85)>ANDP=0THENP=LEN(A$)>-1:
GOTO3848

3120 IFP>OANDTH=CHR#$(28) THENA$=LEFT$(A$,
P-1)+MID$(A$,P+1):P=P-1

3138 IFT$=CHR$(20)>THEN3048

3140 IFT$="O"ORTH="M"THEN3@40

3150 IFTHE>"H"ANDTS< > "' THENA$=LEF T$ (A%,
PO>+TH+MIDS(AF,P+1)0:P=P+1

3168 IFTH="I"ANDP >@THENP=P -1

3178 IFTSH="M"ANDP<LEN(AS$)-1THENP=P +1
3180 GOTO3040

Im einzelnen enthalt die Routine folgendes:

3000 Dies ist eine fir die Bildschirmeditierung wichtige Funktion. Sie PEEKt eine
einzelne Zeichenposition auf dem Bildschirm. Wir brauchen diese Funktion, um
spater zu ermitteln, was sich schon auf dem Bildschirm befindet, und um es
gegebenenfalls in dieselbe Position wieder einsetzen zu kénnen. Vom Anwender
definierbare Funktionen werden in Kapitel 12 ausflhrlicher beschrieben.

57

3020 Um Uberhaupt mit dem Editieren eines Strings beginnen zu kénnen, brauchen
wir zunédchst einmal einen String. Diese Zeile geht davon aus, daB wir ganz von vorn
anfangen, und beginnt den String als einzelne Leerstelle. Wére hier die Editierung
eines schon existierenden Strings beabsichtigt, so wiirde er vorlaufig in A$ umbe-
nannt werden, und diese Zeile wiirde dazu dienen, eine Leerstelle an das Ende des
Strings anzuhangen.

3030 Die Variable P wird in der Routine gebraucht, um die Cursorposition im String
aufzuzeichnen, wobei die Numerierung bei Null beginnt.

3040—3050 Diese Zeilen drucken den gewtlinschten String in eine Zeile, die durch
die Anzahl der ‘Cursor abwarts’ bestimmt ist.

3060 Diese Zeile ermittelt mit Hilfe der definierten Funktion den Bildschirmcode-
Wert des Zeichens in Position P in Zeile LL und speichert ihn in die Variable CH ab.
An seine Stelle wird eine inverse Leerstelle gePOKEt.

3070 Wahrend der Ausflhrung der kleinen Schleife bleibt die inverse Leerstelle fir
einen Sekundenbruchteil auf dem Bildschirm sichtbar, dann wird das urspriingliche
Zeichen wieder eingesetzt.

3080 Diese Zeile 148t den Cursor einmal blinken und prift, ob eine Taste gedrickt
wird. Wenn nicht, blinkt der Cursor nochmals.

3090 Um hierher zu gelangen, muB der Benutzer eine Taste gedriickt haben. Die
Zeile prift, ob die gedriickte Taste RETURN war, oder ob der zu editierende String
schon 255 Zeichen umfaBt. In beiden Fallen wird die Routine beendet. Normaler-
weise benutzt man hier nicht STOP, sondern springt mit GOTO in einen anderen
Programmteil, der den neugeschaffenen String verarbeitet. Vor Gebrauch des
neuen Strings miBte man das letzte Zeichen — die am Anfang eingefligte Leerstelle
— entfernen.

3100 Handelt es sich bei dem eingegebenen Zeichen um den ‘Pfeil nach links’ links
oben auf der Tastatur, geht die Printposition (P) an den Anfang der Zeile zurlick, falls
sie sich nicht schon dort befindet.

3110 Wenn bei Eingabe des ‘Pfeils nach links’ die Printposition schon am Zeilenan-

fang steht, springt sie zum Zeilenende. Diese beiden Zeilen sind nur aufgenommen
worden, um die Bewegungen innerhalb des Strings zu erleichtern.

58

3120—3130 Sofern die Printposition nicht am Zeilenanfang steht, I6scht die Delete-
Taste das Zeichen links vom blinkenden Cursor. Das Programm springt dann zur
Routine fir den blinkenden Cursor zurick.

3140—-3150 Das eingegebene Zeichen wird — wenn es sich nicht um eine der
Cursor-Steuertasten handelt — an der Cursorposition in den String eingesetzt,
wobei sich alle Zeichen von der Cursorposition an um eine Stelle nach rechts
verschieben. Dann wird der String wieder gedruckt.

3160—3180 Diese Zeilen ermitteln, ob das eingegebene Zeichen ein ‘Cursor nach
links(rechts)’—Pfeil war. Wenn ja, ist es (iberfllssig, den String wieder zu drucken.
Geandert wird lediglich die Position des blinkenden Cursors.

Mit dem vorgestellten Programm und mit etwas Phantasie werden Sie in der Lage
sein, Daten an beliebiger Stelle auf den Bildschirm zu schreiben, sie mit Hilfe der
‘links-" und ‘rechts’-Cursorpfeile zu editieren, Zeichen einzufiigen oder zu entfer-
nen und die editierten Daten wieder abzuspeichern. Wenn Sie es wiinschen,
konnen Sie auch eine weitere Variable hinzufligen, um die Position des Cursors
sowohl vertikal als auch horizontal aufzuzeichnen. Das gibt lhnen die Méglichkeit,
sich in den verschiedenen Textzeilen auf- und abwarts zu bewegen, wahrend das
Programm laufend registriert, welche der Zeilen gerade editiert wird. Fir den
Benutzer ist es viel leichter, so vorzugehen, als einen String zur Uberpriifung
aufrufen und in geanderter Form vollstdndig neu eingeben zu missen. Bei Pro-
grammen, die stidndige Aktualisierung und Anderung von Daten erfordern, kann
eine solche Routine vieles erleichtern.

EINFACHE BILDSCHIRMEDITIERUNG MIT INPUT

Bei aller Flexibilitdt einer Routine der oben beschriebenen Art ist es auch méglich,
die Bildschirmeditierung mit INPUT vorzunehmen, obwohl dabei nicht mehr als 80
Zeichen eingegeben werden kénnen und jeweils nur mit einem String gearbeitet
werden kann. Geben Sie dazu einfach den zu editierenden String bzw. die Zahl auf
den Bildschirm aus, und lassen Sie davor genlgend Platz fir die INPUT-Abfrage:

188 A$="ABCDEFG"
118 PRINT TAB(S):A$
120 INPUT"OWORT 1 ";A$

Mit dieser Methode konnen Sie von allen automatischen Funktionen des Bild-
schirmeditors, die das Betriebssystem des C 64 anbietet, Gebrauch machen; wenn

59

Sie RETURN driicken, nimmt der C 64 dann alles, was auf die Abfrage folgt, als
neue Form von A$ an.

SCHLUSS

Die Dateneingabe kann ein ansonsten ausgezeichnetes Programm leicht ruinieren.
Werden Daten auf einem vollgestopften Bildschirm mit unklarer Bedeutung und
ohne erkennbare Reihenfolge abgefragt, dann wird das Eingeben zu einer fehler-
trachtigen und sicherlich mihsamen Angelegenheit. Hier ist sorgféltiges Formatie-
ren und die zusatzliche Verwendung von Farben ausschlaggebend, indem z. B.
aufeinanderfolgenden Abfragen verschiedene Farben zugeteilt werden und jede
Abfrage mit einem schwarzen Steuerzeichen abgeschlossen wird, das die Antwor-
ten von den Abfragen selbst auf dem Bildschirm abhebt.

Wahlen Sie die Methode und das Format nach Ihrem persénlichen Geschmack.
Jetzt, da Ihnen die oben skizzierten Techniken zur Verfligung stehen, gibt es aber
keinen Grund mehr, warum sich lhr Programm weiterhin in langweiligen Listen
einfarbiger Abfragen auf dem Bildschirm erschopfen sollte. Spater werden wir
sehen, wie Sie zusétzlich noch kontrollieren kénnen, ob die auf Abfragen erhaltenen
Daten korrekt sind.

60

KAPITEL 5

FEHLERKONTROLLE

So etwas wie ein idiotensicheres Programm gibt es nicht. Im glinstigsten Fall kann
man von einem Programm sagen, daB es bisher noch keinen Dummkopf gab, der
phantasievoll genug gewesen ware, es abstlrzen zu lassen. Kennen Sie den Arger,
wenn ein schones, brauchbares Programm im entscheidenden Moment abstlirzt,
weil der Benutzer etwas eingibt, das nicht wie Ublich bearbeitet werden kann? In
diesem Kapitel werden wir uns mit einigen Mdglichkeiten befassen, wie ein Pro-
gramm stabiler, d. h. weniger anfallig gegen die Eingabe unerwarteter oder abwegi-
ger Daten gemacht werden kann. Das Kapitel enthdlt sehr wenige komplexe
Techniken, denn Fehlerkontrolle ist groBtenteils eine Sache des gesunden Men-
schenverstandes: ein Versuch, Fehler zu erkennen, die von Benutzern wahrschein-
lich gemacht werden, und ihnen zuvorzukommen.

FEHLERVORSORGE —
VERNUNFTIGE VORSICHTSMASSREGELN

Warum missen die Leute unbedingt Fehler machen, wenn sie mit [hrem besten
Programm arbeiten? Darauf gibt es viele Antworten, aber meist lauft es darauf
hinaus, daB lhr Lieblingsprogramm doch nicht ganz so gut ist, wie Sie meinen. Die
meisten Eingabefehler entstehen, weil das Programm einfach nicht deutlich genug
zeigt, in welcher Weise die verlangten Informationen vom Benutzer einzugeben
sind. Vielleicht sind die Abfragen in den INPUT-Anweisungen zu knapp, oder der
Bildschirm ist zu voll, um sich auf jede Abfrage richtig konzentrieren zu kdnnen.
Vielleicht &ndern Sie auch mitten im Programm die festgelegten Arbeitsbedingun-
gen und erwarten plétzlich unausgesprochen eine alphabetische Eingabe, nachdem
Sie vorher die Antworten immer in numerischer Form verlangt hatten. Was auch der
Grund sein mag, es ist sinnlos, sich uber die Dummbheit der Leute zu beschweren,
die Ihre Programme abstiirzen lassen, denn Programme sind fiir den Gebrauch da,
und deshalb sollten sie so entworfen sein, daB der Benutzer sich jederzeit Uber die
laufenden Vorgange im klaren ist.

Wenn wir das im Auge behalten, kénnen wir mit ein paar verniinftigen Grundséatzen
anfangen, die mogliche Fehler zum gréBten Teil ausschlieBen werden:

1. Machen Sie sich die Mihe, den Bildschirm mit Hilfe der im vorigen Kapitel
beschriebenen Methoden sorgféltig zu formatieren. Die Bildschirmgestaltung sollte
die Aufmerksamkeit des Benutzers jeweils auf die richtige Abfrage lenken und von
allem Uberfliissigen ablenken. Vermeiden Sie Unordnung auf dem Bildschirm.

61

2. Lassen Sie moglichst jemand anderen einen Blick auf lhre Abfragen werfen,
bevor Sie das Programm fir fertig erkldren. Nachdem Sie mit der Entwicklung des
Programms Tage oder gar Wochen verbracht haben, kennen Sie den Zweck jeder
eingegebenen Information zweifellos im Schlaf. Andere Benutzer jedoch haben nur
eine vage ldee vom Inhalt des Programms und kdénnen sich Uberhaupt nicht
vorstellen, was die einzelnen Eingaben bezwecken, wenn sie nicht klar zu entziffern
sind. Das gilt selbst fiir den Fall, daB Sie nicht beabsichtigen, Ihr Programm anderen
zuganglich zu machen. Wenn Sie es eine Zeitlang beiseitegelegt haben und sich
dann wieder damit beschéaftigen, sind Sie darliber moglicherweise genauso verwirrt
wie jeder andere.

3. Geben Sie das Format der Eingabe genau an, wo immer es nicht eindeutig ist:
Sollen Zahlen oder Buchstaben eingegeben werden? Gibt es einen maximalen
Wert, ist die Anzahl der Zeichen begrenzt? Sollen die Elemente durch Kommas
voneinander getrennt werden? . . . Nehmen wir als Beispiel ein Men(, das auf dem
Bildschirm erscheint:

- PROGRAMM ENDE

- EINGABE MNEUES WORT
LOESCHEN WORT

- SUCHEN WORT

- ANZEIGE DATEN

WWwh -8
]

Das sieht eigentlich klar aus, aber Sie kdnnen davon ausgehen, daB mancher
daraufhin die Buchstaben ‘Display Data’ eingeben und sich dann fragen wird,
warum nichts passiert, oder warum das Programm anhalt. Die Abfrage hatte richtig
heiBen missen ‘Welche Zahl wéhlen Sie?’. In anderen Worten: Wenn das Pro-
gramm die Eingabe in einer bestimmten Weise erwartet, sollte es den Benutzer
zuerst darlber informieren.

4. Machen Sie keine zu langen oder komplizierten Input-Kombinationen. Wenn Sie
wirklich 10 Elemente hintereinander stellen muissen, zerlegen Sie sie auf dem
Bildschirm sichtbar in logische Gruppen, und lassen Sie evtl. Freirdume dazwi-
schen. Paradoxerweise unterlaufen dem Benutzer bei komplexen Eingaben um so
mehr Fehler, je mehr er sich an das Programm gewdéhnt, weil er dann die Abfragen
weniger sorgféltig lesen wird. DaB jemand bei den ersten Malen ein Programm
richtig bedient hat, schlieBt nicht aus, daB er nach der Eingewdhnungszeit anfangt,
geistesabwesend die falschen Abfragen zu beantworten.

5. Halten Sie auf jeden Fall wahrend des gesamten Programms dieselben Konven-
tionen ein. Wenn Eingeben von ‘0’ normalerweise eine laufende Funktion ausschal-

62

tet, an anderer Stelle aber ein Datenelement l6scht, brauchen Sie sich nicht zu
wundern, wenn Sie sich bei jemandem unbeliebt machen, dem wichtige Daten
verlorengegangen sind, obwohl er doch eigentlich nur zum Meni zurilickspringen
wollte.

6. Seien Sie sehr vorsichtig mit Inputs, deren Reihenfolge sich manchmal &ndert.
Wenn Sie in einem Dateiprogramm gewdhnlich nach Namen, Adresse und Alter
fragen, aber bei einer Altersangabe von Uber 65 eine weitere Information brauchen,
schreiben Sie die Zusatzabfrage nicht einfach ohne Vorwarnung auf den Bildschirm.
Der Benutzer hat sich daran gewdhnt, drei Eingaben zu machen und wird aller
Wahrscheinlichkeit nach wieder RETURN dricken, falls die Daten nach dem dritten
Input nicht gleich vom Bildschirm verschwinden. Wird die dem Benutzer gelaufige
Reihenfolge verandert, lassen Sie den Bildschirm kurz andersfarbig aufleuchten,
oder geben Sie ein akustisches Signal als Hinweis auf den geanderten Ablauf.

7. Gehen Sie besser davon aus, daB trotz threr Bemihungen immer Fehler aus
Mudigkeit, Langeweile oder reiner Sorglosigkeit gemacht werden. Solchen Fehlern
kann man jedoch vorbeugen, indem man die soeben eingegebene Information in
einem anderen Format neu ausdruckt und die Bestatigung der Richtigkeit verlangt.
Bei dieser Gelegenheit kdnnte dem Benutzer beispielsweise auffallen, daB Alter
und Telefonnummer vertauscht worden sind. Die Wiederholung einer Eingabe auf
dem Bildschirm bedeutet auch: Es geschieht nichts damit, bevor der Benutzer die
Korrektheit der Information bestétigt hat. Wird eine Eingabe direkt in das Hauptda-
tenfeld Gbergeben, ist es sehr schwer, die Situation noch zu retten, falls der
Benutzer darin einen Fehler entdeckt.

FEHLERKONTROLLE —
EINFACHE PROGRAMMIERTECHNIKEN

Mit einfachen Methoden wie den oben beschriebenen |48t sich die Fehlerquote in
einem AusmaB senken, das den Aufwand weit Ubertrifft. Da jedoch immer Fehler
gemacht werden, priifen wir jetzt einige Verfahren, mit denen man das Programm
durch eingebaute Kontrollen dagegen absichert.

BESTIMMUNG VON GRENZWERTEN

Eine der bekanntesten Ursachen fiir Programmunterbrechungen besteht darin, daB
in ein Programm, das planmé&Big mit Daten innerhalb festgelegter Grenzen arbeiten
soll, ein auBerhalb dieses Bereichs liegender Ausdruck eingegeben wird. Wenn Sie

63

z. B. ein Programm schreiben, in das zwei Zahlen eingegeben werden, worauf die
erste durch die zweite dividiert wird, bricht es mit einer Fehlermeldung ab, falls die
zweite Zahl Null ist. Natlrlich hatte die Abfrage den Benutzer darauf hingewiesen
mussen, daB die zweite Zahl gréBer als Null sein muB, aber selbst dann noch muB
man immer auf einen Tippfehler oder besondere Begriffsstutzigkeit gefaBt sein. Man
tut gut daran, in ein Programm, das nur innerhalb bestimmter Grenzen funktioniert,
ein paar einfache Sicherungen einzubauen, damit keine auBerhalb dieser Schran-
ken liegenden Daten eingegeben werden kénnen. Problematisch sind z. B. haufig
der Wert einer Zahl und die Lénge eines Strings.

1. Der Wert einer Zahl

Zuallererst sollten Sie beim Entwerfen und Austesten Ihres Programms den zuléssi-
gen Wertebereich flir numerische Eingaben festlegen. Im o. g. Beispiel ist Null ein
klarer Fall einer ungliltigen Eingabe. Sind solche Einschrankungen einmal bekannt,
kann man sie leicht in eine Fehlertestzeile einbauen. Angenommen, es wird z. B.
eine Zahl von eins bis zehn als Eingabe verlangt:

1808 INPUT"ZAHL ZWISCHEN 1 UND 10 EINGEB
EN" 7NN

18018 IFNN>=1ANDNN(=10THEN105©

18620 PRINT"ZAHL NICHT ZWISCHEN 1 UND 10!
1930 FORI=1TO2000:NEXTI:PRINT"[DI)";0$:PRI
NTO$:PRINT"[O]"?

1988 GOTO180e

Diese Routine kontrolliert lediglich, ob die Eingabe innerhalb der bestimmten
Grenzen liegt und meldet anderenfalls fir die Dauer der Schieife einen Fehler.
Durch zweimaliges Drucken von O$, einem Leerstring von 39 Zeichen, werden
dann Fehlermeldung und urspriingliche Eingabe geléscht, worauf der Benutzer
einen neuen Versuch machen kann. Es ist nicht mdglich, einen langen String tber
beide Zeilen zu drucken, weil der C 64 sich das Uberschreiben des Zeilenendes
merkt und den nachsten INPUT so behandelt, als hatte er zwei Zeilen erhalten.
Indem er die Printposition zu weit nach unten verschiebt, zerstort er das Format.
Obwohl die Meldung an den Benutzer und das Loschen der urspriinglichen Eingabe
mehr Zeilen in Anspruch nehmen als die einfache Rickkehr zur urspringlichen
INPUT-Anweisung, lohnt es sich, weil der Benutzer so erfahrt, warum die Eingabe
nicht angenommen wurde. Die Zuriickweisung einer Eingabe aus unbekannten
Grinden ist fur den Benutzer sehr frustrierend.

64

2. Die Lange eines Strings

Wie der Wert einer Zahl vom zuldssigen Bereich abweichen und damit das Pro-
gramm unterbrechen kann, so vertragen es manche Programme nicht, wenn sie
einen String bestimmter Lange erwarten und nicht bekommen. Die Absicherung
dagegen unterscheidet sich kaum von der bei Zahlen verwendeten Methode:

1000 INPUT"EINGABE (LAENGE 1 BIS 1@)>":A$

1810 IFLENCA#$) >=1ANDLENC(A%)<{=18THEN1858
1820 PRINT"FALSCHE LAENGE!"

1038 FORI=1TO2800:NEXTI:PRINT"[QJ"0%:PRI
NTO#£:PRINT"[DIO"

i8d4e GOTO 1063

Hier wird kontrolliert, ob die Léange des Strings im Bereich 1—10 liegt, wobei die
Zeilen genau denen der 0. g. Zahlenprifmethode entsprechen. Fiir Stringeingaben
kénnen Sie mit einem zusatzlichen Befehl vor der INPUT-Anweisung noch eine
weitere Sicherung einbauen:

Dadurch wird beriicksichtigt, daB A$ wie vor dem INPUT bleibt, wenn RETURN
ohne vorherige Eingabe gedriickt wird. Hatte also A$ schon den Wert ‘SMITH’,
wurde ein versehentliches RETURN daran nichts andern, und der Langentest wiirde
umgangen.

VERSTUMMELTE EINGABEN

Der Benutzer wird 6fter — sei es durch Tippfehler oder falsches Lesen von Abfragen
— etwas eingeben, das weniger die Beschrankungen verletzt als unverstandlich fir
das Programm ist. Bei numerischen Eingaben geschieht das gewdhnlich, wenn man
versehentlich einen Buchstaben statt einer Zahl schreibt. Bei Strings kann es
vorkommen, daB der eingegebene String keinem der im Programm vorgesehenen
und z. B. als Befehl verstandenen Strings entspricht.

1. Ungiiltige Zahlenformate

Dieser Fehlertyp tritt auf, wenn der Benutzer etwa eine Abfrage bezlglich ‘Alter’
irrtimlich mit einer Stringeingabe beantwortet, z. B. mit dem Teil einer Adresse. Das
Ergebnis ist naturlich Unsinn, da diese Eingabe flr den C 64 normalerweise den

65

Wert Null hatte (es sei denn, sie beginnt mit einer oder mehreren Zahlen). Die
einzige Mdglichkeit, sich gegen derartige Fehler wirksam zu schitzen, besteht
darin, Zahlen als Strings einzugeben und dann jedes Zeichen daraufhin zu prifen,
ob es eine glltige Ziffer ist. Nachstehend ein typisches Programmbeispiel:

1000 NMN$=""

1818 INPUT"EINGABE ZAHL ":NNs$

18280 IFNN$=""THENNN=8:G0TO 10882

18380 FORI=1TOLENC(NNS)

1048 IFMIDSC(NNE,1,1)5>="0"ANDMIDE(NNE, 1,1
){="g"THENi@7@

1850 PRINT"DIESE ZAHL IST NICHT GUELTIG"
tFORJ=1TO2880:NEXTJ

1960 PRINT"[]":;O0$:PRINTOS:PRINT"[D]"? :GOT
O19818

1878 NEXTI

Das Verfahren verzdgert die Verarbeitung einer Eingabe nicht wesentlich und
ermittelt Fehler, die dem Benutzer sonst nicht gemeldet wirden. Falsche Zahlenfor-
mate fihren nicht zur Unterbrechung des Programms, sie haben nur zur Folge, daB
aus den Eingaben unbeabsichtigte Werte berechnet werden.

Bedenken Sie, daB die hier aufgeflihrte Routine keine Sicherung gegen einfaches
Drucken von RETURN enthélt; eine solche Eingabe wird als Null interpretiert.
Diesem Fall kdnnen Sie durch die Aufnahme einer zusétzlichen Meldung wie KEIN
INPUT vorbeugen.

2. Unbekannte Strings

Wenn ein Programm so angelegt ist, daB es nur einen Befehl annimmt, der aus
einem von mehreren moglichen Strings besteht, kann durch Vertippen beim Einge-
ben des Befehls Verwirrung entstehen. Als Beispiel nehmen wir ein Programm, das
die Eingabe von Daten flr jeden Monat des Jahres erlaubt. Man kdnnte den
Benutzer einfach die jeweilige Monatszahl eingeben lassen, aber das ware sehr
fehlertrachtig. Deshalb ist zu entscheiden, ob nicht der Name des Monats, fir den
die Eingabe gilt, ausgeschrieben werden sollte. In diesem Fall ware es notwendig zu
kontrollieren, ob die Eingabe sinnvoll war:

1 DIMMOSC12)

1000 MME=""

1818 INPUT"MONATSNAME ":MM$
182@ FORI=BTO11

1930 IFMME=MO$(1)THEN1@7O

66

1848 NEXKTI

1858 PRINT"FALSCHER MONATSNAME" :FORP=1TO
2000 : NEXT

1860 PRINT"[O":;0$:PRINTO$:PRINT"[X]"; :GOT
O1910

Voraussetzung ist hier, daB ganz vorn im Programm die Monatsnamen in den
Elementen 0—11 des Feldes MO$(l) gespeichert wurden. Die Routine vergleicht die
eingegebenen Daten mit den aufgezeichneten Monatsnamen und druckt eine
Fehlermeldung, wenn sie kein Gegenstiick vorfindet.

VERNUNFTIGE FEHLERKONTROLLE: ‘DER ZWEITE BLICK’

Wir haben schon im Abschnitt Gber verniinftige VorsichtsmaBregeln gesehen, daB
eine der wirksamsten Methoden zur Senkung der Fehlerquote bei Eingaben darauf
beruht, den Benutzer zu zwingen, einen zweiten Blick auf seine Eingabe zu werfen
und ihre Richtigkeit zu bestatigen. Soll das wéahrend des Programmlaufs regelméBig
geschehen, kdnnen Sie diese Aufgabe einem Unterprogramm Ubertragen; das
spart Platz und garantiert gleichzeitig eine einheitliche Darstellung fiir das ganze
Programm. Das Beispiel fiir ein solches Unterprogramm lautet:

1008 PRINTLEFT$(CCS$,LL+1);

1019 FORI=OTONG-1

19020 PRINT"I[GRUENI1":PP$C(I>; "t "2 INPUT"LS
CHWARZ 1":0Q%(1>

1830 NEXTI

19040 GOSuBl1120©

10580 PRINTLEFT$(CC#$,LL+1);

1060 FORI=0TONR-1

1078 PRINT"I[GELB1";PP$(I>": [REVERS EIN1"
s TAB(C208):Q0H(C 1)

1880 NEXTI

1098 INPUT"ERICHTIG (J/ND";TT$

1190 GOSUB1120: IFLEFT$(TT$,1><{>"J"THEN1@
ao

111@ RETURN

1120 PRINTLEFT$(CC$,LL+1);

1130 FORI=1TONQ+2:PRINTO$:NEXT

1140 RETURN

87

VERWENDETE VARIABLEN:

LL Zeilenposition der ersten Abfrage
NQ Anzahl der Fragen

PP$ Feld, das die Abfragen enthait

Die Routine stellt eine Reihe von Fragen in Abhéngigkeit von der Variablen NQ. Die
Fragen selbst werden vor Aufruf des Unterprogramms in das Feld PP$ abgelegt.
Antworten werden in QQ$ gespeichert. Nachdem alle Fragen gestellt worden sind,
werden sie zusammen mit den invers gedruckten Antworten wieder ausgegeben.
Antwortet der Benutzer nicht mit J auf die Frage RICHTIG?, werden Fragen und
Antworten geléscht und nochmals gestellt.

Die Bildschirmformatierung geschieht mit Hilfe eines String CC$, der so aufgebaut
ist:

CCH="g

und der betreffende Bildschirmbereich wird mit dem Ublichen, aus 39 Leerstellen
bestehenden String O$ geldscht.

Das eigentliche Format der Abfragen und die Art, wie sie erneut vorgelegt werden,
ist Geschmacksache; wichtig ist nur, daB eine veranderte Gestaltung es dem
Benutzer erleichtert, sich ein zweitesmal darauf zu konzentrieren. Wenn Sie die
Informationen am SchluB der Routine nicht auf dem Bildschirm stehen lassen
maochten, kénnen Sie zum Léschen der entsprechenden Zeilen das Unterprogramm
in Zeile 1200 aufrufen.

Fir den Aufruf der Routine brauchen Sie in lhrem Hauptprogramm folgende oder
ahnliche Zeilen:

500 LL=18:NQ=3

518 PP#£<(@)="NAME"

520 PP¥(1)="ADRESSE"

538 PP#(2)>="TELEFON"

546 GOSUB 1800

550 FORI=1TONQ:AAEC(I)I=QAEC(I) INEXT

Nachdem das o. g. Abfrageprogramm eingegeben ist, legen diese kurzen Zeilen die
Position der ersten Abfrage auf dem Bildschirm (in Zeilen) und die Anzahl der zu
stellenden Fragen fest und formulieren dann die Abfragen. Danach formatiert das
Unterprogramm die Abfragen und fordert den Benutzer auf, die Richtigkeit der
Antworten zu bestétigen. Die Abfragen werden solange wiederholt, bis die korrek-
ten Antworten gegeben werden. Beim Verlassen des Unterprogramms werden die

68

Antworten im Feld QQ$ festgehalten und kénnen an jeden beliebigen Ort Uberge-
ben und auf Dauer gespeichert werden.

Naturlich hatte es wenig Sinn, eine Routine wie diese in einem kurzen Programm
oder in einem, das Uberhaupt nur ein oder zwei Abfragen enthélt, zu verwenden.
Wenn ein Programm jedoch eine ganze Reihe von Fragen stellt, kann das Unterpro-
gramm fiir exaktere Antworten sorgen; gleichzeitig kann es der Notwendigkeit
abhelfen, fir jede vorkommende Abfrage eigens die Testroutine einzubauen.

SELBSTENTWORFENE FEHLERMELDUNGEN:
DIE ELEGANTE LOSUNG

Bis jetzt haben wir nur Routinen berlicksichtigt, die sich zum Einbau in diverse
Programmteile eignen, um dort verschiedene Fehlerkontrollen — hauptsachlich im
Hinblick auf falsche Eingaben — durchzufiihren. Das ganze Verfahren setzt voraus,
daB man schon bei der Eingabe erkennen kann, ob sie falsch ist. Dies ist nicht
immer moéglich. Manchmal gibt man etwas ein, das weder zu lang ist noch einen zu
niedrigen Wert hat, nicht leicht auf Schreibfehler hin zu Gberprifen ist, und das
trotzdem zu Schwierigkeiten im Programm fiihren kann. Das Problem dabei ist, daB
die tatsachlich entstandene Schwierigkeit nicht erkennbar ist, bevor die eingegebe-
nen Daten nicht wenigstens zum Teil vom Programm verarbeitet worden sind. Bei
einiger Voraussicht kdnnte man wohl (berblicken, wo solche Fehler auftreten
kénnen, und die entsprechenden Stellen mit Tests und Fehlermeldungen aus-
statten.

Damit sind jedoch nicht alle Probleme geldst. Man kann sich z. B. ein Programm
vorstellen, das nach der Annahme einer Eingabe die Ausfiihrung an fiinf aufeinan-
derfolgende Unterprogramme Ubergibt, die jeweils verschiedene Aufgaben abarbei-
ten, und das zum SchluB die verarbeiteten Daten permanent speichert oder das
bisherige Gesamtergebnis des Programms verdndert. Nun stellt sich im vierten
oder funften Unterprogramm heraus, daB mit den eingegebenen Daten etwas nicht
stimmt; der Fehler fihrt zwar nicht zur Unterbrechung des Programms, aber zu
einem unsinnigen Endresultat der verarbeiteten Daten. Was ist dagegen zu tun?
Sicher kdnnte man in das vierte Unterprogramm einen Fehlertest einbauen und die
Ausgabe der passenden Fehlermeldung veranlassen. AuBerdem gibt es aber noch
das Problem, wie man die Kette der finf Unterprogramme verlaBt. Es reicht nicht,
einfach das vierte Unterprogramm zu beenden, weil danach automatisch das fiinfte
ausgeflihrt werden wirde, und wie wir gesehen haben, hatte das verhangnisvolle
Folgen. Richtig geht man vor, indem man das Auffinden eines Fehlers vermerkt und
mit Hilfe dieser Aufzeichnung die weitere Bearbeitung der betreffenden Daten
verhindert. D. h. man baut beim Verlassen des vierten Unterprogramms eine
besondere Kontrolle in das Programm ein, die die Ausflihrung des flinften Unterpro-

69

gramms aufhélt, wenn dieser spezielle Fehler entdeckt wird. Das wére eine Losung;
aber da in einem etwas komplexeren Programm an allen méglichen Stellen Fehler
auftreten kdnnen, ergédbe sich schlieBlich eine ganze Reihe von Tests, die jeweils
auf einen bestimmten Fehler spezialisiert wéren.

Das Problem wird elegant geldst, indem die Aufzeichnung aller wahrend des
Programms gefundenen Fehler an eine einzige, regelmaBig zu uberprifende Varia-
ble libergeben und einem Unterprogramm die Erledigung aller erforderlichen Feh-
lermeldungen (bertragen wird. Dieses Verfahren erleichtert es einerseits, neue
Fehlertests einzufligen und neue Fehler zu definieren, andererseits erledigt es das
Problem, wie bei auftretenden Schwierigkeiten die Ausflihrung bestimmter Pro-
grammteile verhindert werden kann.

Die Methode wird hier an einem Programm veranschaulicht, das fiir drei bekannte
Fehler anféllig ist:

1. Im Verlauf einer Berechnung entsteht eine Zahl, die fir eine sinnvolle Verarbei-
tung durch das Programm zu groB ist.

2. Es wird ein Datenname vergeben, der schon im Programmspeicher enthalten ist.
3. Daten muissen in relativ komplexem Format eingegeben werden, und es kann
erst nach teilweiser Verarbeitung der Daten (berpriift werden, ob dabei Fehler
unterlaufen sind.

Sie fangen an, indem Sie beim ersten Programmdurchlauf ein Feld ERR$(3)
definieren und die Elemente Eins bis Drei des Feldes auf

a) ZAHL ZU GROSS
b) DATENNAME BEREITS VERGEBEN
c) FORMATFEHLER BEI DER EINGABE

setzen. AuBerdem wird eine Variable ERR bestimmt und auf Null gesetzt.
Im Programm selbst werden die Tests fiir bestimmte Fehler mit den zugehdrigen

Fehlermeldungen durch solche ersetzt, die lediglich den Wert von ERR &ndern,
wenn ein Fehler auftritt. Z. B. wird

1528 IFNN>B85535 THEN PRINT "ZAHL
ZU GROSS

ersetzt durch

IFNMN>85535 THEMN ERR=1

70

In jedes entsprechende Unterprogramm wird nun eine neue Zeile eingesetzt, die
die Ausflihrung des Unterprogramms verhindert, wenn irgendein Fehler entdeckt
worden ist. Die Eingangszeile eines Unterprogramms kdnnte so aussehen:

IFERR< >@THEMN RETURN

Das heiBt, wenn ERR einen anderen Wert als Null hat, wird das Unterprogramm
nicht ausgefiihrt. Bei Unterprogrammen, die weitere Unterprogramme aufrufen,
kénnen die Zieladressen geandert werden, damit nach der Riickkehr aus einem
Unterprogramm, in dem ein Fehler gemeldet wurde, die Daten vom Programm nicht
weiterverarbeitet werden:

1778 GOSUB 2508:IF ERR{ >8THENRETURM

Am SchluB springt das Programm in das Hauptmodul zuriick, das bestimmt, in
welcher Reihenfolge die Unterprogramme aufgerufen werden. Das Modul wird wie
folgt um eine Zeile erweitert:

1128 IF ERR THEMN GOSUB 3060

Diese Zeile ruft ein einfaches Unterprogramm auf, das so aufgebaut ist:

3000 REM¥kkkokkkkkkkkkkkkkkkk
3881 REM FEHLER MITTE ILUNG
3002 REMakok %k ko ok ok ok ok ok ok 5k ok k ok ok k %k
3810 PRINTERRS$(ERR)

3820 ERR=0

3030 RETURN

Wenn Sie méglichen neuen Fehlern wahrend der Programmentwicklung vorbeugen
wollen, stellt dieses System insofern eine schéne Lésung dar, als Sie nur eine neue
Fehlermeldung in ERR$ aufzunehmen und einen Test einzufliigen brauchen, der
ERR auf den passenden Wert setzt; die eingebauten Zeilen, die ERR auf Null testen,
gewadhrleisten den Schutz des Programms gegen den von Ihnen ermittelten mégli-
chen Fehler. Sie kdnnen in dieser Weise nach Belieben neue Fehler mit geringem
Aufwand identifizieren.

7

SCHLUSS

Mit den in diesem Kapitel umrissenen Methoden kénnen Sie Programme erstellen,
die fast jede schlechte Behandlung durch Benutzer Uberleben. Wie weit Sie die
SchutzmaBnahmen ausbauen, héngt teils davon ab, wie kompliziert das Programm
ist, und teils davon, wie wichtig die Daten sind, die es bearbeitet. Selbst ein
einfaches Programm kann mit Daten laufen, deren Eingabe vielleicht viel Zeit kostet,
so daB ein Absturz nach einer halben Stunde Arbeit &uBerst unangenehm waére. Der
wichtigste Aspekt ist vielleicht das Erfolgserlebnis, ein Programm geschrieben zu
haben, das offenbar die Situation beherrscht — und nicht eines, das man aus Furcht
vor Komplikationen nur vorsichtig behandelt.

Seien Sie trotzdem gewarnt! Geben Sie nie damit an, wie robust Ihr Lieblingspro-
gramm sei. Derjenige, dem Sie das erzéhlen, wird unweigerlich die einzige Taste
driicken, mit der Sie nicht gerechnet haben — und das kénnte sich vernichtend auf
lhren guten Ruf auswirken.

72

KAPITEL 6

SPEICHERN UND LADEN

Eines Tages wird es eine Computergeneration mit geniigend groBen Speichern
geben, um alle Daten und Programme aufzunehmen, die wir benutzen méchten.
Und nicht nur das: Daten und Programme werden sofort nach dem Einschalten des
Computers als permanenter Speicherinhalt jederzeit verfligbar sein. Solche Gerate
bedeuten einen genauso groBen Schritt nach vorn wie die Heimcomputer in den
letzten Jahren. Bis dahin missen die Mikrocomputer-Besitzer jedoch lernen, mit
Geraten auszukommen, die nur einen Teil der gesamten, standig gebrauchten
Datenmenge aufnehmen kdénnen.

Da ein Geréat wie der C 64 nicht mehr als ein Programm und die dazugehdrigen
Daten zur gleichen Zeit fassen kann, bietet Commodore eine Erweiterung fur den
Speicher des C 64 an. Der C 1530-Kassettenrekorder und das 1541-Diskettenlauf-
werk sind im Grunde nichts weiter als zusatzliche Speicher. Verglichen mit der
Geschwindigkeit, mit der Daten aus den RAM-Chips des C 64 geholt werden,
arbeitet der Kassettenrekorder und sogar das Diskettenlaufwerk unbestreitbar im
Schneckentempo. Effizientes Programmieren, vor allem was Programme fiir ernst-
hafte Anwendungen betrifft, kann sich jedoch die zusétzliche Kapazitdt des C 1530
und der 1541 zunutze machen, um sowohl die Beschrdnkung des Speichers im
C 64 zu uberwinden als auch den Umstand, daB die heutige Generation von
Mikrocomputern nicht in der Lage ist, Daten zu behalten, wahrend das Gerat
ausgeschaltet ist.

Obwohl die meisten Mikrocomputer-Besitzer willens sind, viel Geld fiir Zubehor
auszugeben, das die Speicherkapazitat inrer Rechner vergroBert (oft nur unwesent-
lich), nutzen nur wenige mit ihren selbstgeschriebenen Programmen die Kapazitat
ihrer Floppy voll aus, nicht einmal die des bescheideren Rekorders. In diesem
Kapitel wollen wir uns die notigen Techniken zur besseren Ausnutzung des C 1530
und der 1541 aneignen. Das Thema wird nicht erschopfend behandelt, vor allem in
bezug auf den Gebrauch des Diskettenlaufwerks; Uber den Einsatz der Floppy
kdénnte man leicht ein ganzes Buch schreiben (‘Floppy-Programmierung mit dem
Commodore 64’, Band 16 der Sachbuchreihe). Trotzdem werden die hier erlauter-
ten Techniken Sie befahigen, Daten sicherer und in gréBerer Menge abzuspei-
chern, Daten mit den auf Band oder Diskette gespeicherten auszutauschen und den
verfligbaren Speicherplatz optimal auszunutzen.

73

SPEICHERN VON PROGRAMMEN

Der wichtigste und augenfilligste Zweck der externen Speicherung ist die sichere
Aufbewahrung Ihrer Programme zum weiteren Gebrauch. Es Uberrascht oft, wie
sorglos die meisten dabei vorgehen und versdumen, wahrend der Programment-
wicklung die Aktualisierungen regelméBig zu speichern und sich von der korrekten
Aufzeichnung des Programms zu Uberzeugen, dabei wichtige Programme nur
einmal speichern und Bander und Disketten Gberall herumliegen lassen. Ein paar
verninftige Regeln sollte man beim Speichern von Programmen auf jeden Fall
beachten:

1. Speichern (SAVE) Sie neue Programme wéhrend des Schreibens regelmaBig.
Wie jeder andere Mikrocomputer kann auch der C 64 Programme verlieren, falls
Stromschwankungen auftreten, jemand an den Stecker stoBt oder Sie selbst den
C 64 beim Programmieren aus dem Gleichgewicht bringen. Wieviel Arbeit dabei
verlorengeht, hangt davon ab, wann Sie Ihr Programm zuletzt gespeichert haben.
Wenn ein Programm schnell eingetippt wird, ist es nicht ratsam, mehr als 15
Minuten lang Zeilen einzugeben, ohne das Programm erneut zu speichern. Im
Verlauf des Austestens, bei dem weniger Anderungen anfallen, kann man die
Zeitspanne auf eine halbe Stunde ausdehnen. Das richtet sich im Grunde danach,
wieviel Sie zu verlieren bereit sind. Wenn Sie |hre Programme nicht regelmaBig
speichern, werden Sie sicherlich friiher oder spéter ein wichtiges verlieren, dessen
Eingabe viel Zeit gekostet hat.

2. Um den Speichervorgang zu vereinfachen und mich selbst zu motivieren, stelle
ich an den Programmanfang vier Zeilen, die es mir ersparen, bei jedem Abspeichern
den Programmnamen auszuschreiben:

1 GOTO4

2 SAVE"PROGRAMM NAME *: INPUT"ZURUECKSPULE
N - TASTE FUER 'VERIFY'":;@$

3 VERIFY"PROGRAMM NAME":STOP

4 REM

Innerhalb eines Programms hat diese Routine den Vorteil, ein Abspeichern unter
falschem Namen infolge eines Tippfehlers auszuschlieBen, weil zum Speichern nur
‘GOTO 2’ eingegeben werden muB; auBerdem kénnen Sie damit alle Programme
einheitlich mit ‘GOTO 1’ starten, falls Sie nicht RUN benutzen und schon gespei-
cherte Variablen lI6schen mochten. VERIFY kann nach Belieben verwendet werden
und wird von vielen tberhaupt nicht gebraucht. Bevor Sie jedoch einen EntschiuB
fassen, beachten Sie den nachsten Unterpunkt. Sollten Sie sich entscheiden, auf

74

VERIFY zu verzichten, brauchen Sie Zeile 3 natiirlich nicht, wohl aber das STOP, da
ansonsten das Programm bei jedem SAVE mit der Ausfiihrung neu beginnen
wirde.

Wenn Sie ein Diskettenlaufwerk benutzen, kdnnen Sie eine dhnliche Routine wie
oben einfugen:

1 GOTO3

2 SAVE"E@O:PROGRAMM NAME" ,8:VERIFY"PROGRA
MM NAME " ,8:8TOP

32 REM

Floppy-Besitzer seien hier gewarnt: Das Laufwerk 1541 verstimmelt manchmal
infolge eines Schwachpunkts im Disketten-Betriebssystem bei fast vollen Disketten
die eigene Dateiverwaltung, wenn dem Dateinamen ‘@0’ vorangestellt wird (damit
wird die Speicherung des Programms besorgt, selbst wenn schon eine Datei mit
demselben Namen existiert). Das zuletzt gespeicherte Programm wird nicht
beschédigt, aber es kdnnte schwierig werden, ein anderes Programm von der
Diskette zu laden. Sollte das zu Problemen fiihren, kann man entweder die
vorhandene Programmdatei I6schen und dann die neue Version abermals spei-
chern oder eine Zahl an das Ende des Programmnamens in Zeile 2 anhdngen, die
bei jedem Speichern des Programms geédndert wird, oder man 148t den Namen
stehen und bestétigt die Giiltigkeit der Diskette nach dem Speichern.

Fir Floppy-Besitzer gibt es keine Entschuldigung, wenn sie versdumen, die Auf-
zeichnung eines Programms mit VERIFY zu iberprifen. Wenn Sie das unterlassen,
haben Sie verdient, was |hnen bestimmt passiert.

3. Der C 1530-Kassettenrekorder des C 64 ist eines der sichersten Gerate zum
Laden und Speichern, die auf dem Markt zu haben sind. Daher benutzen viele
VERIFY zu Anfang jedes Mal, wenn sie ein Programm abspeichern, und spéter nie
mehr, weil sie nie Probleme hatten. Sind Sie von Natur aus ein vorsichtiger Mensch,
werden Sie das, was Sie gespeichert haben, sicher jedesmal Uberprifen wollen.
Wenn Sie eher lassig vorgehen, wenden Sie VERIFY bei Ihren Programmen sicher
niemals an. Der goldene Mittelweg liegt zwischen diesen beiden Extremen.

Beim Eingeben langer Programme kann VERIFY allerhand Zeit in Anspruch neh-
men. Noch mehr Zeit kann aber der Verlust des Programms kosten, was doch
gelegentlich vorkommt. Ab und zu geht ein Programm wegen gewisser Beschran-
kungen im SAVE-Programm des C 64 verloren, haufiger jedoch macht die Qualitat
des benutzten Bandes Schwierigkeiten. Diese Probleme treten zwar selten auf,
dann aber kdnnen sie sehr argerlich sein.

Der beste Weg ist ein KompromiB. Wenn Sie der Qualitat Ihres Bandes trauen, dann
entwickeln Sie ein Programm z. B. auf einer C 60-Kassette, nehmen Sie jede neue

75

Version nach der urspriinglichen auf, und drehen Sie die Kassette dann um oder
spulen Sie sie zurlick. Auf diese Weise miBten Sie erst das Programm im
Computer verlieren und eine fehlerhafte Aufzeichnung gemacht haben, bevor Sie
mehr als den letzten Stand des Programms verlieren. Soll jedoch die endgultige
Version abgespeichert werden, priifen Sie das Band immer mit VERIFY.

4. Wahrend lange Bander beim Entwerfen von Programmen ausgesprochen gute
Dienste leisten, ist fir die Langzeitspeicherung auf Band der Gebrauch spezieller
Computerkassetten zweifellos vorzuziehen, wobei jedem Programm eine eigene
Kassette vorbehalten sein sollte. Das ist zwar etwas teurer, aber so kdnnen Sie auf
jedes Programm direkt zugreifen, ohne auf langen Bandern nach dem richtigen
Anfang suchen zu missen. AuBerdem besteht so weniger Gefahr, ein vorhandenes
Programm versehentlich zu Uberspielen.

5. Halten Sie Aufnahme- und Wiedergabekopf des Rekorders sauber. Reinigungs-
zubehor ist billig und einfach anzuwenden, dagegen ist es duBerst frustrierend, ein
Programm zu verlieren, weil die Bander auf den Kopfen eine Schmutzschicht
hinterlassen haben.

6. Behalten Sie von lhren Programmen mehr als eine Kopie, und bewahren Sie die
zweite an einem ganz anderen Platz auf als die Bander oder Disketten, mit denen
Sie gewdhnlich arbeiten. Es besteht immer die Gefahr, daB lhre Arbeitskopie auf
irgendeine Weise beschadigt wird — sei es durch iberméaBige Hitze, oder gar weil
ein Kind mit einem Magneten spielt. Wenn Sie nicht jedes Programm auf einem
eigenen Band duplizieren wollen, kdnnen Sie lhre Sicherungskopien auf langere
Bénder abspeichern und spater auf kirzere Kassetten Uberspielen, falls sie
gebraucht werden sollten.

Fur Floppy-Besitzer sind Sicherungskopien besonders wichtig. Nicht selten st6Bt
man beim Laden oder Speichern auf Schwierigkeiten, oder eine Diskette wird
zuféllig beschadigt. Andererseits sind Kopien viel einfacher herzustellen, denn das
Abspeichern von Programmen auf zwei Disketten macht kaum zusatzliche Mihe.
Auch wenn Sie ein Diskettenlaufwerk haben, sollten Sie die relative Sicherheit und
VerlaBlichkeit von Bandgerdten nicht auBer acht lassen, wenn von wichtigem
Material Sicherungskopien erstellt werden sollen. Ein ernsthafter Defekt am Disket-
tenlaufwerk kann viel Arger fiir den Fall bedeuten, daB die Kopien des bendtigten
Programms nur auf Diskette erhalten geblieben sind.

76

SPEICHERN UND LADEN VON DATEN

Die meisten wirklich benutzten Programme brauchen als Arbeitsunterlage eine
gewisse Menge von Daten. Bei nicht konstanten Daten, die also direkt in das
Programm geschrieben werden kdnnen, haben Sie zwei Mdglichkeiten: Entweder
geben Sie die Daten jedesmal neu ein, oder Sie gehen das Problem an, wie Daten
auf Band oder Diskette gespeichert und spéater wieder in das Programm geladen
werden.

Das erste Problem, mit dem Sie beim Speichern auf Band oder Diskette konfrontiert
werden, ist die genaue Bestimmung dessen, was Sie speichern méchten. Es ist
unsinnig, den Inhalt eines Feldes abzuspeichern, wenn Sie nicht daran denken,
auch die Variable zu speichern, die vielleicht zu dem Feld gehorte und die Anzahl
der darin enthaltenen Elemente aufzeichnete. Machen Sie also als erstes eine
vollstandige Liste der fir Ihr Programm wichtigen Variablen. Das sind keineswegs
alle vorkommenden Variablen, da vielen erst beim Programmdurchlauf ein Wert
zugeordnet wird. Speichern muissen Sie nur diejenigen, die nétig sind, um das
Programm beim nachsten Gebrauch zum Laufen zu bringen. In diesem Zusammen-
hang ist darauf zu achten, daB von Feldern nur die maBgebenden Bereiche
gespeichert werden. Sie haben mdglicherweise ein Stringfeld von 500 Zeilen
dimensioniert, in dem Sie allmahlich einen Datenvorrat anlegen. Wenn Sie erst 170
Zeilen des Feldes belegt haben, sollten Sie unbedingt eine Variable haben, die die
Anzahl der belegten Zeilen aufzeichnet, und nur diese Zeilen abspeichern. Das ist
deswegen sinnvoll, weil die Ubertragung von Daten Byte fiir Byte auf Band oder
Diskette langer dauert als das Laden und Speichern eines Programms, und man
solite nicht noch mehr Zeit als n6étig mit unndtigen Elementen verschwenden.

SPEICHERN AUF BAND

Nachdem Sie Variablen und Teilfelder bestimmt haben, missen Sie sie in einem
Modul unterbringen, das sie sicher auf Band speichert. Zu diesem Zweck 6ffnet
man zuerst eine Datei mit einer Zeile wie:

1719 OPEN1,1,1,"FILE NAME"

Bei einem Mikrocomputer wie dem C 64 ist die ‘Datei’ kein statischer Ort, in den
Daten abgelegt werden, sondern eine Kommunikationsleitung. Die drei Zahlen in
der Musterzeile bedeuten, daB die gedffnete Datei jedes Mal, wenn etwas zu
speichern ist, durch Datei 1 oder kurz ‘#1’ angesprochen wird, daB die Zeile eine
Verbindung zu ‘Geradt Nummer 1’ herstellt, und daB die Kommunikation von C 64
zum Peripheriegerat erfolgt statt umgekehrt. Wahrend die Datei arbeitet, kdnnen

7

andere gedffnet werden. Es kénnen bis zu 10 Dateien gleichzeitig offen sein,
obwohl sehr selten mehr als eine oder zwei zusammen gebraucht werden.

Beim Offnen einer Datei zum Abspeichern auf Band kann zwischen zwei méglichen
Sekundaradressen gewéhlt werden, ndmlich Eins und Zwei. Sekundaradresse Eins
benennt eine Ausgabedatei, die alle vorgefundenen Daten annimmt. Sekundéra-
dresse Zwei bezeichnet ebenfalls eine Ausgabedatei, in der zusatzlich ein beson-
deres Dateiende-Zeichen den AbschluB der Datei markiert. Beim zweiten Dateityp
kann man Bytes aus der Datei lesen, ohne ihre genaue Anzahl zu kennen, wobei
eine Priifzeile das Dateiende ermittelt und eine Eingabe lber das Dateiende hinaus
verhindert, was einen Fehler erzeugen wirde:

17180 NN=@:0PEN1.,1,0,"FILENAME"
1720 INPUTH1,T

1730 IFST=64THENCLOSE1:RETURN
17486 A(NND =T

1758 NN=NN+1:G0TO1720

Diese Routine nimmt solange Daten vom Band an, bis sie auf das Dateiende-
Zeichen trifft. Dieses Zeichen andert den Wert der Systemvariablen ST (STATUS),
worauf die Programmausfiihrung fortgesetzt wird. Vorsichtshalber weise ich darauf
hin, daB die Verwendung der Sekundéradresse Zwei manchmal seltsame Auswir-
kungen auf das hat, was hinter der fraglichen Datei auf dasselbe Band abgespei-
chert wird. Meistens ist das EOF (End of File)-Zeichen nicht nétig, denn ein
ordentliches Programm miBte sich merken kdnnen, wie viele Datenelemente es
speichert und folglich auch, wie viele noch gespeichert werden mussen. Wenn das
bekannt ist, kann man an den Anfang jedes Datenblocks Variablen fiir die Daten-
menge stellen und das Programm so anlegen, daB es diese bestimmte Anzahl von
Elementen wieder |&dt, ohne dabei das EOF-Zeichen zu verwenden. In Klartext:
Gebrauchen Sie Sekundéradresse Zwei nur dann, wenn es unbedingt nétig ist.
Das iibliche Format zum Offnen einer Datei sieht etwa so aus:

OPEN [FILE NUMMER],[GERAET NUMMERI], [ART
DES FILES (SEKUNDAERADRESSE)>1,"FILE NAME"

Jeder Versuch der Datenlbertragung in eine Datei, die nicht gedffnet wurde, fihrt
zu einer Fehlermeldung.

Der betreffende Dateiname muB nicht in der Programmzeile selbst ausgeschrieben
werden, er kann auch als Antwort auf eine INPUT-Anweisung vom Benutzer
angegeben werden:

78

171 INPUT"NAME DES FILES ":FF#
1728 OPENMN 1,1,1,FF¢%

Damit kann ein einzelnes Programm Dateien mit ganz verschiedenen Namen
erzeugen. Diese Technik kann bei der Dateieingabe dazu dienen, verschiedene
Eingabedateien zu bezeichnen, damit das Programm je nach Zweck zwischen den
verschiedenen Dateien wechseln kann.

AUSGABE AUF EINE DATEI

Nachdem die Datei gedffnet ist, missen nun Daten in sie geschrieben werden. Das
geschieht mit der PRINT#-Anweisung. Alles auf PRINT# und die passende Datei-
nummer Folgende wird genauso in die Datei Ubertragen, wie es mit PRINT auf den
Bildschirm gedruckt wiirde (Drucken auf den Bildschirm ist bei Offnen einer Datei
auf Geréat Nr. 3 sogar mdglich), aber es gibt doch einige Unterschiede:

1. Anders als viele andere Mikrocomputer markiert der C 64 nicht automatisch die
Trennung zwischen Variablen, die mit einem Befehl wie

PRINTH1, A$,B$,C#

durch dieselbe Zeile mit PRINT abgelegt werden. Beim Einlesen der Daten vom
Band wirde diese Zeile als ein String ermittelt, der aus A$, B$ und C$ zusammen
besteht. Will man Ausdrlicke getrennt speichern, gibt es zwei Moglichkeiten:
Entweder druckt man jedes Datenelement mit einer eigenen PRINT#-Anweisung
oder man flgt zwischen den Ausdrlcken Trennzeichen ein.

Bei Feldern verwendet man zur Trennung von Ausdriicken eine Schleife, die ein
Element nach dem anderen speichert, z. B.:

1710 FOR I=1TOITEMS
1720 FRINTH#H1 ,A$C 1)
1730 NEXT I

Sollen einzelne Ausdriicke in eine Datei geschrieben werden, muB ihnen ein
‘Return’-Zeichen (CHR$(13)) folgen. In der Regel definiert man zu diesem Zweck
bei der Initialisierung des Programms einen String, z. B. R$, als CHR$(13) und
trennt dann mit R$ die einzelnen Ausdriicke, anstatt jedes Mal CHR$(13) zu tippen:

1740 PRINTH1,TT$ R$ CD$ R$ IT R$ NN R$¢ Q
Qs

79

Beachten Sie, daB die Ausdriicke nicht durch Interpunktion gegliedert sind. Sie
konnen zwar Kommas oder Semikolons einfligen, diese werden aber vom C 64
ignoriert.

2. Der C 64 kann keine Zeichen speichern oder ausgeben, die nicht zu den normal
druckbaren Zeichen gehdren. Wenn Sie Strings speichern wollen, die auBer den
normalen Bestandteilen von Strings wie Cursor- oder Farbsteuerung noch andere
Steuerzeichen enthalten, missen Sie wenigstens einen Teil des Strings Zeichen fir
Zeichen in Zahlen (ibersetzen und diese Zahlen einzeln abspeichern.

171@ PRINTHIL ,LENCA$)
17280 FOR I=1TOLEMNC A%
17380 PRINTH#1, ASC(MID$C(A$, 1,12

Denken Sie daran, die Stringldange abzuspeichern, damit das Programm beim Laden
weiB, wo die Ubersetzten Stringzeichen zu Ende sind.

3. Sie konnen keine leeren Strings abspeichern. Das kann bei Stringfeldern, die oft
leere Elemente enthalten, Probleme ergeben. Wenn némlich das erste Element
eines Feldes leer ist, wird es nicht gespeichert. Auf dem Band rickt das zweite
Element an die Stelle des ersten und zerstdrt damit beim Laden die Reihenfolge des
Feldes. Dies kann man am einfachsten I6sen, indem man jedes Element des Feldes
mit einem fihrenden Zeichen ‘polstert’, bevor man es speichert:

1710 FOR I=1TOITEMS
1720 T$="x"A$C I :PRINTH#!1,T$
1738 NEXT

Naturlich durfen Sie nicht vergessen, diese Zeichen beim Laden wieder zu entfer-
nen, aber es dauert nicht langer, alle Elemente aufzufiillen, als bei jedem zu
untersuchen, ob es ein Leerstring ist, und dann nur die Leerstrings zu polstern.

4. Die Reihenfolge, in der Sie die Daten speichern, kann flir den spateren Zugriff
darauf ausschlaggebend sein. Erinnern Sie sich an ein friheres Beispiel, das von
einem Stringfeld mit 500 Elementen und einer Variablen ausging, die sich die
Anzahl der “ITEMS” genannten, derzeit gebrauchten Elemente merkte. Den Inhalt
dieses Feldes speichern Sie mit einer Schleife ab:

171@ FOR I=0TOITEMS

80

Folglich braucht das Programm beim Laden einen Wert fir ITEMS, bevor es die
Daten wieder vom Band holen kann. Daraus ergibt sich die einfache Regel: Werden
irgendwelche Variablen aus dem Programm flir die Steuerung der Datenspeiche-
rung gebraucht, sollten sie vor diesen Daten abgelegt werden.

5. Nachdem alle Daten gespeichert sind, muB die Datei geschlossen werden.
Geschieht das nicht, flihrt jeder weiterer Versuch, eine Datei mit derselben Nummer
zu offnen, zur Unterbrechung des Programms mit einer Fehlermeldung. Das
SchlieBen einer Datei geschieht folgendermaBen:

CLOSELFILE NUMMER]

Man sollte jedoch vor AbschluB einer Datei sichergehen, ob sich nichts mehr im
‘Speicherpuffer’ befindet, wo Daten wahrend ihrer Ausgabe auf Band abgelegt
werden, da ansonsten das bzw. die letzte(n) Datenelement(e) unter Umstanden
nicht richtig abgespeichert werden. Dazu miBte zwar CLOSE geniigen, aber
erfahrungsgemas ist es sicherer, wenn man den zusétzlichen Befehl PRINT3(file
number) ohne Angabe bestimmter Daten verwendet. Daraus ergibt sich fiir das
SchlieBen einer Datei folgendes Format:

PRINTH#IFILE NUMMERI]:CLOSELFILE NUMMER]

LADEN VOM BAND

Der Vorgang spiegelt in vieler Hinsicht das Speichern auf Band wider. Die wichtig-
sten Unterschiede sind:

1. Die Art der gedffneten Datei ist anders, d. h.:
OPEM! , 1,0, "FILE NAME"

Die Null zeigt an, daB3 der C 64 diese Datei benutzt, um Daten aus einem Peripherie-
gerat zu empfangen.

2. Die wichtigsten Befehle zum Einlesen von Daten vom Band sind INPUT# und
GET4#. Sie werden spater ausflihrlicher behandelt.

3. Wenn die Datenelemente beim Speichern ordnungsgemaB getrennt worden
sind, ist eine Ermittlung der Trennzeichen nicht erforderlich:

81

1840 INPUTHL,TT$,CD$,IT,NN,QQ%

wirde ausreichen, um die Daten, die im obigen Beispiel zum Gebrauch von R$ als
Trennzeichen gespeichert wurden, vom Band zu holen.

4. Fuhrende Zeichen, die in Strings aufgenommen wurden, missen wieder ent-
fernt werden:

1818 FOR I=BTOITEMS
1828 INPUTH1 ,T$:A$C I>=MID$(T$,2>
1830 MNEXT 1

5. Strings, die in Form von numerischen Entsprechungen ihrer Zeichen abgelegt
wurden, miussen in Strings zurlickverwandelt werden:

1810 A$=: INPUTH! ,LS

1828 FOR I=1TOLS

1838 INPUTH! ,T:A$=AF+CHR$C(T
1848 MNEXT 1

6. DaINPUTs# im Unterschied zum einfachen INPUT nur Eingaben von maximal 80
Zeichen verarbeiten kann, muB man diese Beschrankung manchmal umgehen. In
solchen Fallen stellt man mit GET4#, das ein Zeichen nach dem anderen vom Band
holt, den urspriinglichen String zeichenweise wieder her.

1810 As=""

1820 GETHL ,T$: IFT$< >CHR$< 13> THEMNA$ =A$ +T#
tG0T01829

Hier liest GET# solange Zeichen ein und (bergibt sie an A$, bis das Stringende-
Zeichen ermittelt wird.

7. Im allgemeinen stellt man das Programm-Modul zum Laden von Daten am
besten direkt hinter das Speichermodul. Der sicherste Weg, eine Laderoutine zu
schreiben, die genau die Reihenfolge des vorherigen Speicherns widerspiegelt,
besteht namlich darin, die Zeilennummern der Speicherroutine zu editieren und
PRINT4#-Befehle gegen INPUT4# auszutauschen. Trotzdem kann das Programm die
beiden Routinen auf mehrere verschiedene Arten aufrufen.

Die Speicherroutine sollte eine normale, vom Meni aufrufbare Programmfunktion
sein und vielleicht vor ProgrammabschluB (der besser durch Menii-Option als durch

82

einfaches Driicken von ‘STOP’ erfolgen sollte) den Benutzer darauf hinweisen, daB
er gut daran tut, die Daten zu speichern, bevor sie verlorengehen. Beim Eingeben
groBer Datenmengen in das Programm kann der Benutzer sie so durch regelmaBi-
ges Speichern gegen mdogliche Probleme mit dem C 64 oder dem Programm
absichern.

Ganz anders kann die Laderoutine mit einer Selbstladefunktion am Programman-
fang aufgerufen werden, die in mancher Hinsicht der in Kapitel 1 beschriebenen
Selbstinitialisierung ahnelt. Bei der Selbstinitialisierung hat der Benutzer die Wahl,
entweder das Programm mit RUN zu starten — wobei die Variablen auf Null gesetzt
werden — oder mit GOTO, das die Ausfiihrung des Initialisierungsmoduls verhin-
dert, wenn das Programm schon Daten enthélt.

Als weitere Mdglichkeit 148t die Selbstladefunktion den Benutzer bestimmen, ob
neue Daten Uber die Tastatur eingegeben oder zuerst auf Band vorhandene Daten
geladen werden sollen, wenn das Programm keine Daten enthélt. Entscheidet er
sich, Daten vom Band zu laden, wird die Initialisierungsroutine teilweise ausgefuhrt,
und zwar derjenige Teil, der die Felder flr die Aufnahme von Daten einrichtet: die
Variablen werden jedoch nicht auf ihnren Anfangswert gesetzt, da sie ohnehin vom
Band geladen werden. Es folgt ein Beispiel fur ein solches Modul:

1000 IFA$C(O>THEN1IS00

1218 DIM A$C 180> ,B$(25) ,AX(188) ,BA(25) L
IMIT=180:R$=CHR(13>

1828 INFUT"SOLL YOMN KASSETTE GELADEN WER
DEN (J/N> ": Q%

1830 IF LEFT#<(Q#%,1>="J"THEN GOSUB LADER:
GOTO 1580

{e4@ ITEMS=0:MNN=0:CT=12:BASE=@2

Hier enthalt Zeile 1000 die Selbstinitialisierung. Die zweite Zeile dimensioniert vier
Felder und definiert eine Variable, deren Wert wahrend des Programmablaufs
unverandert bleibt — in diesem Fall die Hochstzahl der zugelassenen Elemente.
Danach kann der Benutzer angeben, ob Daten vom Band geladen werden sollen.
Wenn ja, denken Sie daran, daB die Daten alle Variablen enthalten missen, die an
den nicht ausgeflihrten Teil des Initialisierungsmoduls Gbergeben werden. Deshalb
ist es hier noch wichtiger als sonst, als Gedéachtnisstiitze beim Schreiben der
Speicher- und Lademodule alle Variablen aufzuschreiben, selbst die mit einem
Anfangswert von Null.

83

SPEICHER- UND LADEROUTINEN: EIN ARBEITSBEISPIEL

Weiter unten finden Sie eine Speicher-/Laderoutine, die aus einem meiner eigenen
Programme stammt. Sie brauchen die Funktionen der einzelnen Variablen nicht zu
verstehen, da an dem Beispiel nur die Verfahrensweise bei groBeren Datenvolumen
gezeigt werden soll:

20000 REM koK k ok & ok A ok ok ok

20801 REM DATEN FILES

20002 REM#® kokkkk kokkokkkk

20225 R$=CHR$(13)

2080380 INPUT"KASSETTE RICHTIG EINGELEGT -
[REVERS EINIRETURN":Q#$

20040 IFNN$=""THENZ20140

200880 OPEN1,1,1,"FILE NAME":PRINT#1 ,NN#%,

R#%,Q0% ,R$,CU,R%$, ITEMS

200398 IFCU=8THENZ®118

20100 FORI=OTOCU-1:PRINTH#1,T$(1,0) ,R$,T$
(I1,8),R$,TCI)INEXT

280110 IFIT=0THEN20130

20120 FORI=0TOIT-1:PRINTH1 ,A$(I ,0) ,R$, A%
(I,1),R$,CCI)INEXKT

20130 PRINTH#1:CLOSE1:RETURN

201480 OPEN1,1,8,"FILE NAME": INPUT#1 ,NN$,

Qa+E,CU, ITEMS

20150 IFCU=0THENZ2®179

20160 FORII=0TOCU-1:INPUTHI1 ,T$(1,8),TH(I
ST INEXT

20170 IFIT=0THENZ©190

20188 FORI=OTOIT-1:INPUTH#H1 ,A$C(1,8) AB(I,
1>,CCIHENEXT

20190 CLOSE1:RETURN

Der Benutzer hat hier die Méglichkeit, das Band in Position zu bringen. Danach
ermittelt das Modul automatisch, ob Daten gespeichert oder geladen werden sollen,
je nachdem, ob der String NN$ leer ist. Das entspricht insofern der Selbstinitialisie-
rung, als flr diesen Test unbedingt eine Variable gewéhit werden muB, die nie leer
ist, solange das Programm Daten enthalt. Diese ‘Selbstladezeile’ ware durch ein
einfaches zweizeiliges Menli ersetzbar, indem der Benutzer sich fir Laden oder
Speichern entscheiden kann. Danach werden zwei Felder gespeichert oder gela-

84

den, wobei die Anzahl der zu verarbeitenden Daten vom Inhalt der beiden Variablen
CU und IT abhangt. Zum SchluB wird die Datei abgemeldet. Wie Sie bemerken, ist
das Format der beiden Modulhélften genau gleich. Tatsachlich diente die Speicher-
routine als Vorlage fir die Laderoutine, indem die Zeilennummern gedndert und die
Zeilen editiert wurden: Damit ist gewahrleistet, daB die Elemente in derselben
Reihenfolge abgerufen werden, in der sie gespeichert wurden.

BESONDERHEITEN BEI DISKETTEN

Die Arbeit mit Dateien ist fir Floppy-Besitzer wesentlich angenehmer, weil Daten
einfach schneller geladen und gespeichert werden. Das liegt nicht nur an der hohen
Arbeitsgeschwindigkeit der Floppy, sondern auch daran, daB das Laufwerk eine
Ausgabedatei auf der Diskette automatisch positioniert oder die gewlinschte Einga-
bedatei auffindet. Die Methoden zum Speichern von Daten, zur Trennung von
Elementen usw. sind dieselben, jedoch sind zusétzliche Vorkehrungen fur die
Angabe des gewinschten Dateityps und zum Uberschreiben einer Datei nétig,
wenn unter demselben Dateinamen bereits andere Daten abgelegt wurden.

1. Das Diskettenlaufwerk verlangt neben der Bestimmung des Dateityps durch die
Zahlen hinter dem OPEN-Befehl und dem Dateinamen noch eine besondere
Angabe. Der von uns gebrauchte Dateityp heiBt ‘sequentielle’ Datei, d. h. sie
speichert Dateielemente in der Reihenfolge der Eingabe und kann sie in derselben
Reihenfolge wieder ausgeben. Dieser Dateityp wird mit einer OPEN-Anweisung wie
folgt eingerichtet:

OPEN1,8,2,"FILE NAME,S,W"

8 ist die Geratenummer des Diskettenlaufwerks. S bezeichnet eine sequentielle
Datei, und W bedeutet, daB es sich um eine ‘Schreibdatei’ (‘write file’) handelt, d. h.
daB Daten darauf ausgegeben werden. Normalerweise werden Diskettendateien mit
Sekundaradresse Zwei angesprochen, die beim Rekorder erwahnten Nachteile
gelten hier nicht.

Das Einlesen von der Diskette erfolgt durch eine OPEN-Anweisung des Formats

OPENL1 ,8,0,"FILE NAME,S,R"
wobei R anzeigt, daB es sich um eine 'Lesedatei’ (‘read file’) handelt, bzw. daB

Daten daraus in den C 64 zurlickgeholt werden. Wird der Zusatz W/R ausgelassen,
betrachtet das Diskettenlaufwerk die fragliche Datei als Lesedatei.

85

2. Die zweite Schwierigkeit im Umgang mit einem Diskettenlaufwerk ergibt sich im
Grunde aus seiner intelligenten Eigenschaft, die auf der benutzten Diskette enthal-
tenen Daten genau zu kennen. Wenn man wie in dem o. g. Speicher/Lademodul mit
einer Kassette arbeitet, kann der C 1530-Rekorder nicht ermitteln, ob und welche
neuen Daten iberschrieben werden. Der Benutzer bestimmt durch Bandpositionie-
rung genau, wo Daten gespeichert werden sollen.

Die Floppy enthalt eine Sicherung gegen versehentliches Léschen einer vorhande-
nen Datei bei dem Versuch, etwas unter demselben Namen zu speichern. Das ist
zwar eine wertvolle SchutzmaBnahme, aber manche Dateien werden ofter von der
Diskette gelesen, erweitert oder berichtigt und dann wieder gespeichert, wie es
beim fortgesetzten Gebrauch eines Programms hdufig geschieht. Zu diesem Zweck
kann man einen besonderen Ausdruck vor den Dateinamen stellen, damit eine evtl.
existierende Datei desselben Namen und Typs Uberschrieben wird. Das Format
dafir ist:

OPEN1 ,8,2,"@:FILE NAME,S,W"

Dies kann natlrlich mit der Méglichkeit kombiniert werden, den Dateinamen zuzu-
ordnen, oder auch mit der Wahlfreiheit des Benutzers, ob eine Datei (berschrieben
werden soll oder nicht:

1712 INPUT"FILE NAME ":FF$:FF$=FF$+"S, W"
1726 Q$="N": INPUT"BESTEHENDES FILE UEBER
SCHREIBEN (J/N)> ";QG#$

1730 IFQ$="J"THENFF$="@@: " +FF$
1748 OPEN2.8.,2,FF$

86

SCHLUSS

Auch wenn das Speichern und Laden von Daten im Grunde eine einfache Angele-
genheit ist, kann in einem komplexen Programm der richtige Aufbau des Dateimo-
duls eine knifflige Arbeit sein. Das sollte aber nicht von der Tatsache ablenken, daB
Programme zur Verarbeitung groBer Datenvolumen einen externen Speicher brau-
chen. Noch sollten wir uns vom Computerzeitalter verleiten lassen, die Geschwin-
digkeit, mit der ein Diskettenlaufwerk oder auch ein Rekorder groBe Datenmengen
in den Arbeitsspeicher des C 64 laden kdnnen, geringzuschétzen. Floppys und
Rekorder sind verldBliche und sogar relativ schnelle Gerdte zum Speichern nitzli-
cher Daten. lhre Verwendung ist trotz aller Einschrankungen sicherlich der Arbeit
mit Programmen vorzuziehen, die entweder nur Uber eine eingebaute Datengruppe
oder nur Uber soviele Daten verfligen, wie in einem Arbeitsgang an der Tastatur
eingegeben werden kdnnen. Wenn eine Datengruppe die Verarbeitung lohnt, ist sie
hdchstwahrscheinlich auch die Miihe wert, sie fir den spateren Gebrauch sicher
abzuspeichern.

87

KAPITEL 7

LOGISCHE BEDINGUNGEN

Es gibt nur wenige Techniken, die zur Verkirzung von Programmzeilen oder
Uberhaupt zur eleganten Form eines Programms mehr beitragen als der richtige
Gebrauch der internen Logik des C 64 in Verbindung mit gewdhnlichem Program-
mieren in BASIC. Dieses Kapitel fiihrt uns in die gelegentlich schwer versténdliche
Welt der logischen Bedingung IF und der logischen Operatoren AND und OR. Viele
Mikrocomputer-Besitzer wenden sie regelmaBig in ihren Programmen an, ohne sich
jemals Uber die Gesamtheit ihrer Moglichkeiten im klaren zu sein.

DAS BESCHEIDENE IF

Jeder BASIC-Programmierer benutzt IF — eines der wichtigsten Programmierwerk-
zeuge. Trotzdem wird IF nicht immer so direkt eingesetzt wie es aussieht, d. h. viele
Ergebnisse lassen sich mit IF-Anweisungen direkter erzielen, als manchem Mikro-
computer-Besitzer bekannt zu sein scheint.

Das Wesentliche bei IF ist, daB damit eine Operation ausgefiihrt oder unterlassen
werden kann, je nachdem, ob eine vom Programmierer gesetzte Bedingung erfullt
ist. Demnach wird in einer Zeile wie

IF A>18 THEN K=K+1

der Ausdruck im zweiten Teil der Zeile nur dann ausgefihrt, wenn A groéBer als 10
ist. Das gilt fir alles, was in einer Zeile auf eine IF-Anweisung folgt. Innerhalb einer
einzelnen auf 80 Zeichen begrenzten Programmzeile kann in dieser Weise eine
Reihe von Befehlen ausgeflhrt oder ignoriert werden, z. B.:

180 IF A>10 THEN K=sK+1:X=X-10:Y=Y%100:60
TO 288

Wenn auf eine einzelne Bedingung mehr Befehle folgen als in einer Zeile Platz
haben, ist es am einfachsten, mit Hilfe der entgegengesetzten Bedingung einen
Programmabschnitt zu iberspringen:

100 IFAL1IBTHENGOTOL1E20

11@ PRINT"DER WERT VON A IST GROESSER AL
5 18"iK=K+1:X=X-10:Y=Y*100:G0T0200

SICHERUNG GEGEN UNGULTIGE WERTE

Den Effekt von IF, den darauffolgenden Teil der Zeile zu isolieren, kann man u. a.
zum Schutz gegen mdégliche falsche Variablenwerte nutzen, die das Programm
unterbrechen wirden. Im néchsten Beispiel erzeugt Zeile 20 einen BAD SUB-
SCRIPT ERROR:

18 DIM AC20)>
15 s8=a35
280 IF ACSS)>10THENSS

Das Problem wird umgangen, wenn man das urspriingliche IF in Zeile 20 selbst
einem |F unterordnet:

28 IF SS<=2@8 THEN IF A(SS>>18 THEN S50

Die mdgliche Zahl der so verschachtelten IFs ist nur durch die Zeilenlange be-
grenzt.

DURCH IF HERVORGERUFENE FEHLER

Ein weit verbreiteter Programmierfehler ist auf die oft vergessene Tatsache zurlick-
zufiihren, daB IF eine Zeile teilweise unberucksichtigt lassen kann. So kénnte z. B.
ein Programmierer in der Absicht, ein Feld abzusuchen und 10 von allen Zahlen
iber 100 zu subtrahieren, folgende Zeile eingeben:

188 FORI=0T0S838: IFAC I>>108THENAC [)=AC 1> -1
BINERT I

Die gewlinschte Korrektur wiirde jedoch nur dann ausgefiihrt, wenn alle vorgefun-
denen Elemente groBer als 100 wéaren. Beim ersten Wert unter 100 wiirde NEXT |
ignoriert und die Schieife beendet.

IF...THEN.. .ELSE

Die IF-Anweisung auf dem C 64 ist in einer Beziehung unzulanglich, denn ihr fehlt
eine Einrichtung, die sich als Bestandteil des BASIC vieler anderer Heimcomputer
bewahrt hat: die IF...THEN .. .ELSE-Anweisung. Bei diesem Format darf der

Benutzer zwei Operationen nach dem IF angeben: Eine wird ausgefihrt, wenn die
Bedingung wahr ist, die andere, wenn sie falsch ist. Eine Zeile wie

108 IF A>18 THEN K=K+1 ELSE K=K-1

wirde 1 zu K addieren, wenn A gréBer als 10 wére, und 1 subtrahieren, wenn
nicht.— Nur: Auf dem C 64 funktioniert das nicht! Dieser Befehl ist in den vielen
Féllen hilfreich, in denen der Programmierer entweder/oder-Entscheidungen im
Programm treffen muB; auf dem C 64 muB das Problem anders geldst werden. Der
einfachste Weg sieht vor, eine Anweisung vor das IF zu stellen und die zweite
dahinter. Also kann

168 IF A>1® THEMN K=K+1 ELSE K=0

nachgeahmt werden durch:

180 TT=K:K=0:IFA>10 THEN K=TT+1

Wenn die auszufiihrenden Operationen langer als eine Zeile sind, kann man sie auf
zwei Zeilen mit den jeweils entgegengesetzten Bedingungen verteilen:

1880 IFA>1OTHENPRINT"MEHR ALS ZEHN EINHEI
TEN":K=K+1:60TO200

118 IFA<K1IBTHENPRINT"NOCH KEINE ZEHN EINH
EITEN EINGEGEBEN" :K=0:6G0T0250

IF mit >, < und =

Wie Sie sehen, kommen in den angefiihrten Beispielen Kombinationen mit >= und
<= vor. Wenn man in einer Zeile Bedingungen verwendet, muB man zwischen
Einfachheit und leichter Lesbarkeit des Programms wahlen. Soll z. B. eine Opera-
tion ausgefihrt werden, wenn A gleich oder kleiner als 10 ist, kdnnte man die
Bedingung so formulieren:

IF A< 18THEN.....
oder sie konnte in den meisten Féllen auch lauten:

IF A< =18THEN.

91

Der zweite Ausdruck ist kiirzer, aber da der relevante Wert 10 ist, kann die 11 beim
Lesen des Programms irritieren. AuBerdem ist zu berlicksichtigen, daB bei Verwen-
dung von nicht-ganzzahligen Werten, d. h. von Zahlen, die keine ganzen Zahlen
sein missen, <11 nicht dasselbe ist wie <10, denn <11 kann jeder Wert zwischen
10 und 11 sein.

IF MIT DEN OPERATOREN AND UND OR

Der Wirkungsbereich der IF-Anweisung wird bedeutend durch die in BASIC enthal-
tenen Operatoren AND, OR und NOT erweitert. Mit den ersten beiden kann der
Programmierer verschiedene IF-Anweisungen in einer Zeile kombinieren. In den
Zeilen

188 IFA:10THEN129
{18 GOTO 136
120 IFE<{=10@THEMNK=K+1

muissen beide gesetzten Bedingungen erflllt sein, sonst wird der zweite Teil von
Zeile 120 nicht ausgefihrt. Mit AND kdénnen die Zeilen zu einer einzigen zusam-
mengefaBt werden:

1080 IFA>1@ AMND B<{ =100 THEMN K=K+1
Ein anderes Problem ergibt sich bei den Zeilen

1868 IFA>18 THEMN 130

188 IFRAL{=100THEMN 130

128 GOTO 148
130 K=K+1

wo die Erfullung einer von beiden Bedingungen ausreicht, damit Zeile 130 ausge-
flhrt wird. Hier ist der Gebrauch von OR angezeigt:

1e@ IFA>10 ORB< =100 THEN K=K+1

92

KOMBINIEREN VON AND UND OR

AND und OR kénnen in derselben Zeile zur Herstellung komplexer Bedingungsge-
flige eingesetzt werden, wenn man die Reihenfolge berlicksichtigt, in der sie vom
C 64 ausgewertet werden. Geben Sie folgende Zeilen ein:

100 A=18

116 B=188

120 C=50

138 PRINT"J"

148 IFA=10 AND B=18@ OR C=10 THEN PRINT"OK"

Das Programm gibt am Ende des Durchlaufs ein OK aus, woraus man schlieBen
kann, daB die ersten beiden durch AND verbundenen Bedingungen ausreichen, die
angegebene Operation auszuflihren, obwohi C nicht gleich 10 ist. Jetzt 4ndern Sie
Zeile 140 in:

140 IFA=10 AND B=150 OR C=10 THEN PRIMNT"
ClKll

worauf Zeile 140 kein OK ausgibt. Wenn Sie Zeile 140 noch einmal andern:

140 IFA=10 AND B=15@ OR C=58 THEMN PRINT"
GKII

ist das Ergebnis wieder OK — aber was heiBt das? Es gibt zwei mogliche Erkla-
rungen:

1. Die wahre Bedingung fir C ist an die Stelle der falschen flr B getreten, so daB
die Zeile als IF A=10 (B=150 OR C=50) gelesen wird.

2. Die wahre Bedingung fiir C tritt an die Stelle beider durch AND verbundenen
Bedingungen, so daB die Zeile als IF (A=10 AND B=150) OR C=50 gelesen wird.
Das 4Bt sich nur entscheiden, indem man an Zeile 140 eine weitere Anderung
vornimmt:

140 IFA=20 AMND B=150 OR C=50 THEMN PRINT"
oK"

Wir sehen nun, daB die Bedingung hinter OR die beiden durch AND verbundenen
Bedingungen wie eine einzige behandelt hat. Daraus folgt, daB alle durch AND

93

verkniipften Bedingungen so erfillt werden missen, als waren sie eine einzige
Bedingung. Andererseits ist jede Bedingung vor OR eigenstandig.

Die strenge Hierarchie von AND und OR sorgt manchmal fiir Uberraschungen,
wenn scheinbar folgerichtige Zeilen nicht zum erwarteten Ergebnis fiihren. Sollten
Sie sich also ber die Verkniipfung einer Bedingungsfolge nicht ganz im klaren sein,
so verwenden Sie besser Klammern. Lesen Sie diese Zeile:

140 IF(A=18 OR B=100> AMND (C=50 OR D=2@)
THEN PRINT "OK"

Die Klammern trennen die zweite und dritte Bedingung von AND und erzwingen die
Auswertung der ersten beiden und letzten beiden Bedingungen, bevor AND
beriicksichtigt wird. Wenn lhnen das noch immer unklar ist, fligen sie der o. g.
kurzen Routine versuchsweise eine neue Zeile an:

125 D=z@

Passen Sie Zeile 140 der letztgenannten Version an. Wie zu erwarten, gibt das
Programm zum SchiuB OK aus, da jede Bedingung der Zeile erflllt ist. Jetzt &ndern
Sie Zeile 140 nochmals:

148 IF(A=10 OR B=200> AND (C=38 OR D=z0)>
THEMN PRINT "OK"

und das Resultat ist immer noch OK. Da A gleich 10 ist, ist das Bedingungspaar in
Klammern erfilit. Da D gleich 20 ist, ist auch das zweite Bedingungspaar erfullt.
AND st jetzt von zwei wahren Bedingungen umgeben, folglich kann die Zeile
verarbeitet werden.

ENTSCHACHTELN KOMPLEXER BEDINGUNGEN

Wenn Sie groBe Probleme mit komplexen Bedingungsbldcken haben — und so
ergeht es vielen —, dann zerlegen Sie die betreffende Zeile in eine Reihe von
‘wahren’ und ‘falschen’ Bedingungen, und vereinfachen Sie diese den folgenden
Regeln entsprechend:

WAHR UND WAHR = WAHR

WAHR UND UNWAHR = UNWAHR
UNWAHR UND UNWAHR = UNWAHR
WAHR ODER WAHR = WAHR

& W -
o v v

S) WAHR ODER UMNWAHR = WAHR
€& > UNWAHR ODER UNWAHR = UNWAHR

Nehmen Sie z. B. an, im o. g. Programm sei A=10, B=100, C=50 und D=20; die
Bedingungen der Zeile

IFA=10 AND B=200 OR C=58 THEM.....

lauten Ubersetzt:

WAHR UND UNWAHR ODER WAHR

was nach den oben angefiihrten Regeln zunéchst zu

UNWAHR ODER WAHR

vereinfacht werden kann, und schlieBlich zu

WAHR

IF(A=100RB=200)AND(C=300RD=18>THEN. ..
wird zu

(WAHR ODER UMNWAHR YUNDCUNIWAHR ODER WAHR)
WAHR UMD UMNWAHR

UNWAHR

BESTIMMUNG VON GRENZWERTEN

Bedingungen dienen oft dazu, einen Bereich fir eine Variable zu bestimmen,
innerhalb dessen eine Operation ausgefiihrt wird. Das Format dieser Anweisungen
ist:

1. Bei einer Operation, die ausgefiihrt werden soll, wenn eine Variable im Bereich

11—-20 liegt, und nicht ausgefiihrt werden soll, wenn sie auBerhalb dieses Berei-
ches liegt:

95

188 IF A=>11 AND A< =20 THEN...

2. Bei einer Operation, die nicht ausgefiihrt werden soll, wenn eine Variable im
Bereich 11-20 liegt, und die ausgefihrt werden soll, wenn sie auBerhalb des
Bereiches liegt:

188 IF A<L1 AND A28 THEN...

Manchmal ist die Bestimmung zweier moglicher Bereiche notwendig. Das
geschieht oft beim Uberpriifen der Eingabe eines Zeichens in ein Programm, wenn
z. B. die zulassigen Zeichen entweder die Zahlen 0 bis 9 oder die Buchstaben A bis
Z sind. Dazu brauchen wir zwei Bedingungspaare:

10@ IF CIN$>="B"AND IMN$<{="9") OR (IN$>=
"A"AND IN${="Z")> THEN GOTOzZ00©

IF MIT NOT

NOT ist vielen gar nicht als Programmelement geldufig, und es leistet auch
tatsachlich nur wenig, das nicht mit anderen Mitteln erreichbar wéare. NOT hat die
Funktion, die Wirkung einer Bedingung umzukehren, und kann die Lesbarkeit
mancher Zeilen erleichtern. Bei der Nachahmung von IF .. .THEN . . .ELSE sind
z. B. in zwei aufeinanderfolgenden Zeilen entgegengesetzte Bedingungen enthal-
ten. Das hatte man sicher Ubersichtlicher ausdriicken kénnen:

180 IF A>18 THEN PRINT"MEHR ALS 10 EINGA
BEN":K=K+1:G0TO 200

118 IF NOT A>=10 THEN PRINT"18 EINGABEN
NOCH NICHT ERREICHT":K=8:GOTO 250

ANWENDUNG LOGISCHER BEDINGUNGEN

Im Kapitel lber Stringfunktionen kam eine einfache Zeile vor, die einen mit FRE
ermittelten, unechten Wert in den richtigen verwandelte. Wenn der von FRE
angegebene Wert negativ war, muBte 65536 dazu addiert werden. Das hatte mit
einer Zeile wie

K=FRE{B:»: IFK{@THEMNK=K+63536

erreicht werden kdnnen. Tatsdchlich sah die Zeile aber so aus:
K=FRE(D)>:K=K-65536%{ K<)

Wenn wir davon ausgehen, daB die beiden Anweisungen genau dieselbe Bedeu-
tung haben, kdnnen wir daraus etwas uber die zweite Version erfahren. Offenbar
wird darin ‘IF K<0‘) irgendwie durch (K<O0) ersetzt. Da wir je nach Situation
manchmal 65536 addieren mdchten und manchmal nichts, muB (K<O0) in der
zweiten Fassung auBerdem seltsamerweise einmal flir den Wert Null und einmal fiir
den Wert —1 stehen, sonst ergébe die Zahl —65536 keinen Sinn. Wie ist das zu
erklaren?

WERT EINER BEDINGUNG

Bei der Auswertung einer Bedingung in einem Programm setzt der C 64 wie alle
Mikrocomputer voraus, daB etwas entweder wahr oder falsch ist. Der C 64 merkt
sich seine Entscheidung, indem er den Ausdruck hinter IF (berprift und ihm einen
von zwei Werten gibt: —1, wenn die Bedingung wahr ist, und 0, wenn sie falsch ist.
Nehmen Sie z. B. ein Programm mit den zwei Variablen X und Y, wobei X gleich 7
und Y gleich 5 ist. Betrachten Sie jetzt folgende Zeilen, und zwar als Aussagen von
der Art ‘John ist gréBer als Bill‘:

A X=Y
B) X>Y
B) Y<=X
D) ¥r=x

Ganz offensichtlich sind die Aussagen a) und d) falsch, wahrend b) und c) richtig
sind.

Im Zusammenhang mit einer IF-Anweisung wirde a) und d) der Wert Null, b) und c)
den Wert —1 zugewiesen. Wo solche Bedingungen wie oben vorkommen, wird die
in der IF-Anweisung angegebene Operation ausgefihrt, wenn die Bedingung den
Wert —1 bekommen hat. Grundsétzlich kann man alles hinter die IF-Anweisung
stellen, was einen Wert erhalten kann. Die Zeile

18@ IF TT THEN 128

wurde den Sprung der Zeile 120 nicht nur veranlassen, wenn der Wert von TT —1
waére, sondern Uberhaupt ungleich Null. Auch mit Strings kann so verfahren werden:

97

188 IF A$ THEN 120

wiirde ausgefiihrt, wenn A$ etwas anderes als ein leerer String ware. Diese
Methode kann angewendet werden, wann immer es von Bedeutung ist, daB ein
Wert Null ermittelt wird. Eine mogliche Anwendung, die haufig bei der Suche nach
Programmierfehlern zum Einsatz kommt, ist im Kapitel Gber Methoden der Fehler-

suche beschrieben.

ANWENDUNG VON BEDINGUNGEN ALS WERTE

Neben der Méglichkeit, €ine IF-Anweisung mit Hilfe einer einzelnen Variablen zur
Ausfiihrung zu bringen, ergibt sich aus der Art, wie Bedingungen mit Null oder —1
bewertet werden, eine Wweitere interessante Perspektive: Bedingungen kénnen
namlich tberall im Programm fur die Zuordnung von Werten benutzt werden, nicht
nur in einer IF-Anweisung. Auf dieser Tatsache beruht die o. g. Zeile, mit der FRE
umgewandelt wird. Das Programm ordnet jeder Bedingung, auf die es wahrend der
Ausfiihrung trifft, einen Wert zu, und mit diesem Wert kann das Programm genauso
gesteuert werden wie mit jeder anderen Variablen. Bei der 0. g. FRE-Funktion wird
65536 zum Ergebnis von FRE(0) nur dann addiert, wenn die Bedingung (K<0) wahr
ist. Solche Bedingungén kann man elegant miteinander kombinieren, um eine
Anhéufung von IF-Anweisungen zu vermeiden. Die Zeilen:

100 K=100
118 IF TT>120 THEN K=K+30

120 IF xx<se THEN K=K-23
130 IF Y$="MIMNUS"THEN K=K+100
140 IF FF=@ THEN K=Kx2Z

und viele andere dieser Art kénnten etwa so ersetzt werden:

190 K=¢10@-50%CTT>120) + 25k (XX<{50> - 100x
CY$="MINUS")>> ¥ (2Z2+(Z2Z-1)%<(FF<>8))

PLUS ODER MINUS?

Das Verwirrende dabei ist die scheinbare Vertauschung von Plus- und Minuszei-
chen. Die Notwendigkeit dafiir leuchtet aber ein, wenn man bedenkt, daB das
Ergebnis einer wahren Bedingung nicht 1, sondern —1 ist. Falls Sie 100 zu K

addieren wollen, wenn etwas wahr ist, miissen Sie das Hundertfache des Werts der
erfillten Bedingung (also —1) subtrahieren, damit das Ergebnis K—(—100) bzw.
K+100 ist.

MULTIPLIKATION UND DIVISION

Beim Multiplizieren (oder Dividieren) als Ergebnis einer Bedingung ist auBerdem
folgendes zu beachten: Die direkte Methode besteht darin, von der Zahl, mit der Sie
multiplizieren wollen, zunachst ihren Wert —1 mal den Wert der Bedingung, die der
gewahlten entgegengesetzt ist, zu subtrahieren. Falls Sie also mit 1000 multiplizie-
ren wollen, wenn X gleich Null ist, multiplizieren Sie in Wirklichkeit mit
1000+999* (X<>0). Wenn X nicht gleich Null ist, multiplizieren Sie mit 1000+ (—
999) bzw. 1.

VERMEIDEN EINER ISOLIERUNG DURCH IF

Wie Sie sich erinnern, kénnen Bedingungen dazu dienen, die durch IF bewirkte
Isolierung alles Nachstehenden bei nicht erflllter Bedingung zu umgehen. Weiter
oben wurde auf die Gefahr hingewiesen, IF in derselben Zeile zu benutzen wie
NEXT, das eine Schleife beendet, wenn die Ausfiihrung der ganzen Schleife
beabsichtigt ist. Dieses Problem ist jedoch mit einer Zeile wie

1090 FORI=0OTO99:ACI}=ACI>+10x(ACI>>100>:N
EXT

zu lésen. Vergessen Sie nicht, daB es in einigen Féllen nicht angebracht ist, IF-
Anweisungen durch Ausdriicke zu ersetzen, die auf dem Wert von Bedingungen
beruhen. Wo man zwei IF-Anweisungen einsetzt, um den Zugriff auf eine Variable
mit ungultigem Wert zu verhindern, haben Bedingungen diese Schutzfunktion nicht.
In einem friheren Abschnitt hatten wir die Zeile:

100 IFSS<{=20 THEMN IFA(SS>>10 THEN K=K+1

die das Programm vor dem Absturz bewahrt, wenn der Wert von SS groBer als die
Hdchstzahl der Elemente im Feld ist. Eine Zeile wie

180 K=K+(SS<{=28>%{A(SS)>18)

wirde dem Programm den Zugriff auf den ungtiltigen Wert von SS erlauben und
damit zum Absturz flihren. AuBer in diesen Féllen, wo das Programm geschitzt

werden soll, kann eine Reihe von IFs immer durch AND ersetzt werden. Entweder
SO:

100 IF A=1@ AND B=20 AND C=30 AND D=48 T
HEN K=K+18@

oder auch:
1900 K=K+10x(A=10>%x{(B=28)¥(C=30)>%{D=4a>

Hier ist zweierlei bemerkenswert: Erstens ist die Platzersparnis im Programm viel
geringer, und zweitens wurde offenbar die Regel in bezug auf das Vorzeichen der
zu addierenden Zahl nicht eingehalten. Das liegt daran, daB die Anzahl der mitein-
ander zu multiplizierenden Bedingungen eine Rolle spielt. Hier gilt die Regel: Ist die
Anzahl der Bedingungen gerade, so wird das Ergebnis addiert, ist sie ungerade, so
wird das Ergebnis subtrahiert.

Auf Bedingungen basierende Zeilen sind nicht immer leicht zu lesen, aber sie zu
schreiben ist viel einfacher, als es den Anschein hat. Die Schwierigkeiten werden in
vieler Hinsicht dadurch aufgewogen, daB mit ihrer Hilfe sehr kompakte Programme
geschrieben werden kénnen.

AND UND OR MIT ZAHLEN

AND und OR besitzen eine weitere, sehr niitzliche Eigenschaft im Zusammenhang
mit Zahlen. Mit ihrer Hilfe kdnnen arithmetische Ergebnisse erzielt werden, die auf
andere Art nur duBerst schwer herauszubekommen wéren. So angewendet, iben
AND und OR ihre besondere Wirkung auf die einzelnen Bits binarer Zahlen zu einer
Lange von 15 Bits (0—32767) aus. Werden zwei Zahlen mit AND verknipft, so
ergibt sich eine Zahl, die aus den Binarstellen besteht, die in beiden urspriinglichen
Zahlen auf 1 gesetzt waren. Werden zwei Zahlen mit OR verkn(pft, ergibt sich eine
Zahl, in der jede Binarstelle auf 1 gesetzt wird, die in einer der Ursprungszahlen auf
1 gesetzt war, also:

231 (BINAER 111@0111> AND 126 (BINAER ©1
11111@)=182 (BINAER ©1100116>

und

231 OR 126 (BINAER 11111111)

100

Es gibt eine ganze Reihe von Mdglichkeiten, wie man sich diese scheinbar
abwegige Eigenschaft im Programm zunutze machen kann.

POKE MIT AND UND OR

Auf viele Funktionen des C 64, wie Klangeffekte und Sprites, kann man nur mit
POKE-Anweisungen zugreifen. Haufig wird POKE benutzt, um ein einzelnes BIT
innerhalb eines Bytes im Speicher zu verandern, ohne EinfluB auf die Ubrigen Bits.
Hier leisten AND und OR gute Dienste. Um ein Bit im Byte der Adresse ADD zu
setzen, braucht man in der Regel eine Zeile wie POKE ADD, PEEK(ADD) OR 2" BIT.
Soll z. B. sichergestellt werden, daB Bit Null (das in einer Zahl die 1 reprasentiert) in
der Adresse 53287 auf 1 geschaltet oder ‘gesetzt' wird, miBte die Zeile lauten:

210 POKE 53287, PEEK (53287) OR21t0

Statt 2°0 konnte man einfacher 1 schreiben, aber das gewéhite Format garantiert,
daB Sie das zu andernde Bit nicht verwechseln.

Um ein Bit auf Null zu setzen oder rliickzusetzen, ist die Funktion AND erforderlich.
Dazu lautet die Regel: Man verknlpft den Inhalt der betreffenden Adresse und
255—2"BIT wie folgt durch AND:

210 POKES3287 ,PEEK(53287)AND(255-218>

SPEICHERN MIT AND/OR

Mit Hilfe von AND und OR kann eine einzelne Variable sehr effektiv zum Speichern
von bis zu 15 ‘ja/nein’-Datenelementen benutzt werden. Wird die Variable zunachst
auf Null gesetzt, so kann jedes der 15 Bits mit einer dhnlichen Methode wie beim
Poken gesetzt werden. Mit dieser Zeile wirde Bit 7 gesetzt:

218 A=A OR 217

Dasselbe Bit wirde riickgesetzt mit

210 A=A AND (255-217)

Die Variable kann dann mit einer einfachen Schleife gelesen werden:

101

100 FOR 1=0 TO14:1IFA AND 2t1 THEMN K=I:
GOosuB 1000
11IONEXT I

Ein einzelnes Bit wird Uberpriift mit einer Anweisung wie z. B.
16@ IF A AND 2tX THEN....

Ich habe ein eigenes Programm zur Aufzeichnung von Kontobewegungen, in dem
jeweils eine einzelne Zwei-Byte-Variable pro Ausgabe den Monat der Abwicklung
speichert.

GERADE ODER UNGERADE?

Oft ist es in Programmen notwendig zu priifen, ob eine Variable gerade oder
ungerade ist. Auch das geschieht durch einen einfachen Bit-Test, in diesem Fall fir
Bit Null der Variablen, wie z. B.: ‘

188 IF A AND 218 THEN....

SCHLUSS

Das letzte Kapitel ist voller Bits und Schnipsel, die scheinbar in viele verschiedene
Richtungen fihren. Trotzdem hoffe ich, daB Sie in Ihren Programmen viele Gele-
genheiten entdecken, umsténdliche und ungeschickte Codes durch kirzere, kla-
rere und elegantere Befehle zu ersetzen. Auf jeden Fall werden Ihnen die in
Zeitschriften und Blchern abgedruckten Programme nun weniger Kopfzerbrechen
machen; denn wenn die Verfasser ihnr Handwerk verstehen, wird das, was hier
dargestellt wurde, immer eine wichtige Rolle spielen.

102

KAPITEL 8

SORTIEREN

In diesem Kapitel soll erklart werden, was mich dazu brachte, Blicher zu schreiben.
Vor einigen Jahren verdffentlichte eine englische Computerzeitschrift ein Pro-
gramm, mit dem der Benutzer Namen und Adressen von Bekannten speichern
konnte. Nach Eingabe aller Namen sollten sie auf Knopfdruck vom Programm zum
spateren Gebrauch alphabetisch sortiert werden. Es wurde vermutlich wegen seiner
Klarheit und relativen Kurze verdéffentlicht, aber ich hatte vom ersten Moment an
Zweifel an der benutzten Methode.

Anstatt die erlaubten 100 Namen einzutippen, ging ich daran, eine einfache Routine
zur Erzeugung von 100 unsinnigen Namen zu schreiben. Damit lieB ich das
Programm arbeiten. Eine halbe Stunde spéter war der Sortiervorgang beendet.
Hatte ich nur 90 Namen eingegeben und spéter noch einen oder zwei erganzt, dann
hatte es beinahe noch eine weitere halbe Stunde gedauert, bis diese beiden
zusatzlichen Namen an den richtigen Platz sortiert gewesen waren: ein an sich
nutzliches Programm, das sich durch die Wahl einer ungeeigneten Methode fir alle
praktischen Anwendungen als unbrauchbar erwies.

Auf der Grundlage von Notizen aus einem Computerlehrgang am College schrieb
ich einen kurzen Artikel, in dem ich zeigte, wie das betreffende Programm um etwa
40 Prozent hatte beschleunigt werden kénnen — das war der erste ausfihrliche
Artikel von mir, der veroffentlicht wurde. Seit damals bin ich immer wieder erstaunt,
wie viele Anwendungsprogramme darunter leiden, daB ihre Verfasser nichts davon
wissen, daB es viele verschiedene Sortiermethoden mit sehr unterschiedlichem
Zeitaufwand gibt. Zweifellos war das erwédhnte Programm aus der Zeitschrift fur
eines der langsamsten Gerate geschrieben, die es je auf dem Heimcomputermarkt
gab. Bei einem so hochentwickelten Gerat wie dem Commodore 64 miBten Sie
sich sehr anstrengen, um einen SortierprozeB dermaBen zu verlangsamen, daB er
fir nur 100 Elemente eine halbe Stunde braucht. Dennoch gilt die Regel: Eine
angemessene Sortiermethode entscheidet darlber, ob ein Programm langsam und
muihselig arbeitet oder schnell genug, um es einigermaBen nutzbringend einsetzen
zu kénnen.

Wir werden in diesem Kapitel drei Sortiermethoden behandeln und zeigen, wie und
warum sie funktionieren und wieso der Zeitaufwand so unterschiedlich sein kann.
Bevor wir uns dem Sortieren mit dem Computer zuwenden, werden wir erst einmal
genauer untersuchen, wie ein Mensch Dinge sortiert. Dabei werden wir hoffentlich
eine klarere Vorstellung von dem bekommen, was wir vorhaben, wenn wir an der
Tastatur sitzen.

103

SORTIEREN: WARUM UND WOzZU?

Wir beginnen mit einem kleinen Experiment, zu dem wir 10 Zettel brauchen. Ideal
waren Karteikarten, aber wenn Sie keine haben, zerschneiden Sie einfach ein Blatt
Papier in 10 Quadrate von 7—8 cm Lange. Beschriften Sie die Zettel mit den Zahlen
0 bis 9, wobei Sie bitte die 6 und die 9 unterstreichen, damit sie nicht verwechselt
werden kénnen, falls sie zufillig umgekehrt zu liegen kommen. Machen Sie jetzt
etwas Platz auf dem Tisch (mdglichst nicht im Durchzug) und legen Sie die Zettel
nebeneinander in dieser Reihenfolge aus:

7315694802

(Die Reihenfolge ist an sich ohne Bedeutung; aber wenn Sie eine andere nehmen,
ergeben die nachfolgenden Kommentare keinen Sinn.)

Zweck der Ubung ist das Sortieren der Zettel in aufsteigender Folge von 0 bis 9,
links beginnend. Die einzige Einschriankung besteht darin, daB lhnen nur 11 Stellen
zur Verfligung stehen: 10 sind durch die Zettel besetzt und eine ist frei. Das
bedeutet, Sie kdnnen einen Zettel erst dann von einem Platz der Reihe auf einen
anderen legen, wenn Sie vorher einen aus der Folge herausgenommen und auf
dem elften Platz untergebracht haben. Damit erhalten Sie einen Platz in der Reihe,
auf den Sie einen Zettel legen kénnen und einen Zettel, der aus der Reihe entfernt
und auf den Extraplatz gelegt wurde. Am SchluB sollen alle Zettel in der richtigen
Reihenfolge liegen, und der Extraplatz soll leer sein. Probieren Sie es aus und
versuchen Sie dabei, Ihr Vorgehen zu analysieren.

Wenn Sie sich bis hierher an den beschriebenen Weg gehalten haben, haben Sie
wahrscheinlich folgendes getan:

1. Die Folge uberflogen, um entweder den hdchsten oder niedrigsten Wert zu
finden.

2. Den Zettel auf der hdchsten oder niedrigsten Stelle auf den Extraplatz gelegt und
den richtigen Zettel auf die jetzt freie Stelle in der Folge gelegt.

3. Danach hatten Sie die Wahl, entweder den Zettel auf dem Extraplatz in die Liicke
der Folge zu legen und bei 1. mit dem zweithdchsten bzw. -niedrigsten Wert
weiterzumachen, oder die korrekte Position fiir den Zettel auf dem Extraplatz
auszumachen und ihn dort unterzubringen, nachdem Sie den vorhandenen Zettel
weggenommen haben. Letzteres verringert die Anzahl der notwendigen Vertau-
schungen.

Vielleicht sind Sie ganz anders vorgegangen. Aber wenn Sie Verstand und Augen
richtig benutzt haben, wird folgendes fiir Ihre Sortiermethode zutreffen:

104

1. Da die Zettel am SchluB die ihren Zahlen entsprechenden Positionen in der
Reihenfolge einnehmen sollten, konnten Sie jederzeit schnell erkennen, wohin
jeder einzelne Zettel gehort.

2. Da die Anzahl der Zettel relativ klein war, konnten Sie die absolut héchste und
niedrigste Zahl der Folge leicht feststellen und entsprechend vorgehen.

3. Sie konnten die gesamte Folge fast auf einen Blick libersehen und Ihre MaBnah-
men daran orientieren.

Jetzt versetzen Sie sich in die Lage eines Mikrocomputers, der einen Sortiervor-
gang beginnt. Stellen Sie sich vor, Sie hatten 100 Karteikarten vor sich liegen, auf
denen z. B. jeweils ein anderer Personenname steht:

1. Sie kénnten sich nach keiner Reihenfolge richten, an der sofort erkennbar wére,
wohin jede einzelne Karte gehort. Es mag vielleicht eine Reihenfolge geben, aber
es ware lhnen nicht mdglich, sie zu bestimmen. Natlrlich kénnte man ein sehr
schnelles Sortierprogramm schreiben, wenn man davon ausgeht, daB bei 100
Elementen die Abstédnde ihrer Werte absolut regelméaBig sind, so daB ein Blick
genlgte, um sofort zu entscheiden, welche Position eine Karte schlieBlich einneh-
men wird. Dieses Verfahren hat einen Nachteil: Es funktioniert eben nur bei einer
regelméaBigen Liste. Ein normales Sortierprogramm muB mit Daten aller Art fer-
tigwerden und kann nicht — im Gegensatz zum menschlichen Gehirn — sagen:
“Ach, dies ist eine regelmaBige Zahlenfolge, bei der ich jedem Element sofort den
richtigen Platz geben kann.”

2. Dadie Daten keine bestimmte RegelmaBigkeit haben, kdnnten Sie nicht ganz so
leicht das hdchste oder niedrigste Element der Folge, dann das zweithéchste etc.,
bestimmen. Um die Karte mit dem hdchsten Wert zu finden, miBten Sie jede
einzelne Karte untersuchen und kdnnten erst ganz am SchluB feststellen, welche
davon die hdchste war.

3. Da Sie immer nur eine Aufgabe zur gleichen Zeit erflillen und nur einen
Tatbestand Uberprifen kdnnen, kdmen Sie nie in die Lage, sich ein Bild von der
gesamten Liste zu machen. Sie miiBten jeweils hier und da ein Element verglei-
chen, ohne Uberblicken zu kdnnen, was im Ganzen vor sich geht. Zeigen Sie einem
Menschen eine Liste in der Reihenfolge:

0123456789

mit dem Auftrag, sie von O bis 9 zu sortieren. Sie werden sofort die Antwort

105

bekommen: “Das ist schon sortiert.” Der Mikrocomputer kénnte diese Antwort
niemals geben, ohne vorher jedes Element der Liste zu untersuchen.

Unter Berlicksichtigung dieser wichtigen Unterschiede zwischen den Fahigkeiten
des Menschen und des Computers konnten wir fast eine Klassifizierung von
Sortiermethoden vornehmen: am einen Ende die Methoden, bei denen die
Beschrankungen des Computers samtlich akzeptiert werden, am anderen Ende
diejenigen, die einige der Abkirzungen zu imitieren versuchen, die der menschli-
che Verstand nehmen wirde. Die einfachste aller bekannten Methoden, deren
Arbeitsweise zugleich sehr starr ‘computergemaB’ ist, heiBt Bubble-Sort.

DER BUBBLE-SORT

Der Bubble-Sort griindet sich im wesentlichen auf die Fahigkeit des Mikrocompu-
ters, zwei benachbarte Elemente vergleichen und entscheiden zu kdnnen, welches
groBer ist. Der Name rihrt von der Art her, wie im Verlauf des Sortierens die
hoheren Werte die Liste gleichsam ‘aufschaumen’ (bubble up), wie die Blasenbil-
dung am Rand eines Glases mit Sprudelwasser.

Zur Veranschaulichung nehmen wir wieder unsere Zettel und legen sie in der
bekannten Reihenfolge aus:

7315694802

Halten Sie die genannten Regeln ein, d. h. es steht Ihnen ein Extraplatz zur
Verfligung, der am SchluB frei sein muB, und gehen Sie wie folgt vor:

1. Beginnen Sie mit dem ersten Zettel, der 7 links auBen, vergleichen Sie ihn mit
dem Zettel daneben, in diesem Fall der 3. Da 7 grdBer als 3 ist, nehmen Sie die 3
und legen Sie sie auf den Extraplatz. Bringen Sie die 7 auf dem Platz unter, wo
vorher die 3 lag, und holen Sie nun die 3 aus dem Extraplatz auf die vorher durch die
7 belegte Stelle. Damit haben Sie die 7 in der Folge um eine Stelle nach oben
verschoben.

2. Lassen Sie die 7 in der Reihenfolge weiter nach oben rlicken und gehen Sie
dabei jedesmal wie beschrieben vor, wenn Sie rechts daneben eine kleinere Zahl
finden. Zuletzt liegt die 7 an flnfter Stelle, rechts daneben die 9.

3. Da Sie auf eine Zahl gestoBen sind, die gréBer als 7 ist, namlich die 9, wenden
Sie sich nun dieser neuen Zahl zu und behandeln sie genauso wie vorher die 7,
d. h. Sie vertauschen sie mit der Zahl rechts daneben, falls diese kleiner ist. Da 9 die

106

groBte Zahl der Folge ist, kdnnen Sie solange damit fortfahren, bis sie am Ende der
Folge liegt.

4. Fangen Sie am Anfang der Reihe mit der 3 wieder an. Ist die Zahl rechts daneben
kleiner, tauschen Sie beide aus; wenn nicht, lassen Sie die 3 liegen und machen Sie
mit der groBeren Zahl weiter. Zum SchluB liegt die 8 an neunter Stelle links von der
9. Da Sie beim Uberfliegen der Reihe die 9 bereits als groBte Zahl erkannt haben, ist
der Vergleich mit der letzten Zahl der Reihe eigentlich Uberflissig.

5. Gehen Sie zum Anfang zuriick und nehmen Sie die 1. Sie muB sofort mit der 3
vertauscht werden. Fahren Sie weiter oben in der Reihe fort und vergessen Sie
nicht, daB Sie die letzten Elemente nicht zu beachten brauchen, weil sie vorher
schon korrekt eingegliedert wurden.

6. Wiederholen Sie den Vorgang, bis Sie die ganze Reihe einmal durchgehen
konnen, ohne etwas auszutauschen. Bedenken Sie, daB Sie als Computer ohne
diesen Durchgang nicht wissen, ob die Reihenfolge stimmt; denn Sie kénnen die
Reihe als Ganzes nicht sehen.

Wenn Sie genau nach Vorschrift verfahren sind, sollten die Zettel nach jedem
Durchgang jeweils so ausliegen:

7315694802 : START POSITION
3156748029
1356470289
1354602789
1345026789
1340256789
1302456789
1023456789
0123456789

Nachdem Sie den Vorgang einmal durchgespielt und zuletzt eine richtig sortierte
Reihenfolge herausbekommen haben, sollten Sie es mit beliebigen anderen Folgen
nochmals ausprobieren, um sich mit der Methode vertraut zu machen. Es gibt
jedoch noch mehr, was fiir die Beurteilung dieser und jeder anderen Sortierme-
thode ganz wesentlich ist.

Bauen Sie die Ausgangsfolge wieder auf und fangen Sie an, nach der Bubble-Sort-
Methode zu sortieren. Notieren Sie sich diesmal in getrennten Spalten jeden
Vergleich zwischen zwei Elementen (ohne Berlcksichtigung der jeweiligen GroBe
der verglichenen Zahlen) und jeden Austausch von zwei Zetteln, den Sie vorneh-

107

men. Nach meiner Rechnung erhalte ich folgendes Resultat fir die 8 Durchgénge,
bei denen etwas verandert wird, und fir den letzten Durchgang, der nur die richtige
Reihenfolge bestétigt:

1) 9 VERGLEICHE 8 VERTAUSCHUNGEN
2) 8 » 4 "

3) 7 ”
4) 6 "

= NDMNDNDO®

9) 1 " 0 "
SUMME: 45 VERGLEICHE 25 VERTAUSCHUNGEN

Damit haben Sie etwas erfahren, das flr das Verstandnis der Wirkungsweise aller
Sortiermethoden von entscheidender Bedeutung ist. Sortieren heiBt vergleichen
und vertauschen; es gibt genauso viele Unterschiede zwischen Methoden wie
Methoden selbst, wobei Vertauschungen immer viel mehr Zeit erfordern als Verglei-
che. Es ist mdglich, Sortierverfahren ihrer erwarteten Leistung entsprechend
mathematisch einzuschatzen. Wir haben das an dieser Stelle nicht wirklich vor, aber
dabe ergaben sich fir die Bubble-Sort-Methode im besten Fall (d. h. bei einer
schon geordneten Reihenfolge) zum Sortieren einer Reihe mit N Elementen 0
erforderliche Vertauschungen und N—1 Vergleiche. Im schlechtesten Fall (bei einer
Reihe von Elementen in umgekehrter Reihenfolge) brauchte die Bubble-Sort-
Methode 0.5*N*(N—1) Vertauschungen und genauso viele Vergleiche.

In der Praxis bedeutet die kurze Formel: Der Bubble-Sort benétigt im unglnstigsten
Fall

fir 100 Elemente: 4950 Vertauschungen, 4950 Vergleiche,
fir 1000 Elemente: 499 500 Vertauschungen, 499 500 Vergleiche.

Daraus kénnen Sie ersehen, daB die Bubble-Sort-Methode in bezug auf die Anzahl
der erforderlichen Operationen ungeheuer aufwendig wird, wenn die Anzahl der zu
sortierenden Elemente groB wird.

Natlrlich entspricht die tatsdchliche Anzahl der Vertauschungen beim Sortieren
einer bestimmten Liste sehr selten dem besten oder schlechtesten Fall. Bei unserer
eigenen kurzen Folge hatten wir die groBtmogliche Zahl von Vergleichen
[0.5*10*(10—1)=45], und das wird auch bei anderen Listen haufig der Fall sein.
Was die Vertauschungen betrifft, hatten wir jedoch nur etwas Uber die Halfte der
theoretisch gréBten Zahl. Bei Listen ist das unterschiedlich, aber im allgemeinen tut

108

sich der Bubble-Sort mit dem schnellen Sortieren um so schwerer, je l&nger die
Liste ist. Bei kurzen Listen machen sich Unterschiede im Zeitaufwand kaum
bemerkbar. Hier kommt es eher auf mdglichst einfache Programmierbarkeit des
Sortierprogramms an.

PROGRAMMIEREN DES BUBBLE-SORT

Nachdem wir uns in Ruhe einen Einblick in die Bedeutung des Sortierens allgemein
und die Arbeitsweise des Bubble-Sort im besonderen verschafft haben, wollen wir
nun erklaren, wie das im Rahmen eines Programms zu formulieren ist (falls Sie jetzt
noch Wert darauf legen). Weiter unten ist ein einfaches Programm skizziert, mit dem
wir drei verschiedene Sortiermethoden testen werden. Das Programm besteht aus:

1. einem Zufallswortgenerator zur Erstellung einer Liste von 100 unsinnigen Buch-
stabenkombinationen, der in A$ abgelegt wird;

2. einer Kopierroutine, die die Ausgangsliste in ein zweites Feld kopiert, damit wir
spater dieselbe Liste flr alle anderen Sortiermethoden benutzen und ihre Ausfiih-
rungen vergleichen kdnnen;

3. einer Prifroutine, die eine Liste wahrend der Bearbeitung durch eines der
Sortierverfahren auf ihre richtige Reihenfolge hin untersucht;

4. einer Routine zum Ausdruck der Liste, damit Sie die Reihenfolge selbst tiberpri-
fen kénnen. Dieses Unterprogramm werden Sie womdglich gar nicht aufrufen,
solange alles problemlos ablauft; denn es verhindert den gleichzeitigen Bildschirm-
ausdruck der Timings fir alle drei Sortierprogramme, die eingegeben werden;

5. einer Routine, die die ungeordnete Liste nach dem Bubble-Sort-Verfahren in
alphabetischer Reihenfolge sortiert.

In diesem Kapitel beschranken wir uns auf das Sortieren von Strings. Um Zahlen zu
sortieren, muB man lediglich die Namen der Felder in numerische Felder abandern.
Wie Sie sehen werden, arbeiten die Sortierprogramme dabei schneller, vor allem
solche, die eine groBe Anzahl von Vertauschungen erfordern. Denn sténdiges
Vertauschen von Strings fiihrt beim C 64 dazu, daB er in ziemlich regelmaBigen
Abstanden Pausen zum Aufraumen des Speichers macht. Es gibt einige Methoden,
die — wenigstens auf dem C 64 — bei Zahlen sehr schnell sind, aber wegen der
vielen Vertauschungen flr Strings nicht zu empfehlen sind.

In den angefiihrten Sortierbeispielen werden unsere Listen immer in alphabetische

109

Reihenfolge gebracht. Wenn Sie eine Liste absteigend ordnen wollen (d. h. von Z
bis A), mussen Sie nur die Zeilen andern, die Bedingungen mit > und < enthalten,
um die Bedingungen umzukehren.

1000
1601
1a8e
1818
18620

RE Mok ok ok ok 3 ok o ok ok ok ok ok ke akook ok

REM KONTROL ROUTINE

RE Mok sk ok ok ok ok ook ke ok okok 3K ok ok ok k

GOsUBSB0B

GOSUB4098: TI$="000000" : GOSUBB80OO: PR

INTTI$:G0SUBE0BG :GOSUB7008

1108
1889
48080
4001
4802
4010
4020
40368
4040
la]uls)
5001
See2
Seie
Seze
5030
5048
5858
5860
Seve
S088
=17 k- 1%)
c0ee
6001
(=114 1=
5010
€020
6038

PRINT"LISTE SORTIERT"
STOP

RE Pk ok ok ok ok ok ok oK ok ok ok ok ok o

REM KOP IERROUTINE

RE Mok % o ok o ok ok ok ok ok ok ok ak ke k

FORI=0T099

B$CI)=A%$CD)

NEXTI

RETURN

RE Mk ok ok ok 3k ok o ok ok ok ok ok ok ok % ok

REM ERZEUGERROUTINE

RE Mk ok % %k ok 3k ok % ok 3ok Xk ok 3ok o ok
IT=100:DIMASCIT-1),B$CIT-1)
FORI=0TOIT-1

Te=""

FORJ=1T04+INT(9*RND(@))
T$=T$+CHR$ (65 + INT(26¥RND (@)
NEXTJ

ASCID =TS

NEXTI

RETURN

RE Mk ok ok 3k ok ok ok ok ok o ok ok ok % ok ok &

REM AUSDRUCKROUTINE

RE Pk ok ok 3k ok ok ok ok ok ok ok ok o ok ok ok
FORI=BTOIT-1

PRINTB$CI)
IF1/10=INT¢1/18)THEN GET T#:IFT$=""

THENB@3@:REM WEITER MIT TASTE

€040
€058

110

NEXTI
RETURN

7008 REMk & ok ok ok % 3 ok ok 3k %k %k

7801 REM PRUEFROUTINE

7002 REMk ¥k ok ok ok ok k ok ok k k k

7810 FORI=@TOIT-2

70280 IFB$(I1)>B$(1+1)THENPRINT"FALSCH AB
STELLE ":1I

7030 NEKXKTI

72490 RETURN

8000 RE Mk k %k ¥k &k ok %k % k %

8081 REM SORTIEREN

8002 REM% %k kkkkkkkk

8010 FORI=(IT-1)>TOISTEP-1
8020 FORJ=BTOI-1

80380 IFB#(J)>{=B#$(J+1)>THENSB7O
8040 T$=B$H(J)

8058 B$H(J)=B$H(J+1)

8060 BH(J+1)=T%$

3078 NEXTJ

888@ MNEXTI

8098 RETURN

Wenn Sie genauso vorgegangen sind wie bisher beschrieben, sollten Sie mit
diesen Zeilen keine Schwierigkeiten haben; denn sie halten sich genau an die
Methode, die Sie schon per Hand ausprobiert haben.

Das aufgelistete Sortierprogramm kann ohne weiteres aus dem Programm heraus-
genommen und in lhren eigenen Anwendungen dort untergebracht werden, wo
kleinere Datenmengen zu sortieren sind. Sie missen nur die Zeilennummern lhrem
Programm anpassen und die Namen der Felder lhren Erfordernissen geméaB
andern.

Starten Sie das Programm einfach mit RUN, und warten Sie auf die Bestétigung, daB
die erzeugte Zufallsliste korrekt sortiert wurde. Sie werden Uber die Zeitspanne
informiert, die das Sortieren der kopierten Zufallsliste vom Beginn bis zum AbschluB
bendtigte. Sie kdnnten das Programm auch flr die Bearbeitung l&ngerer Listen
einrichten, indem Sie den Wert von IT in Zeile 5010 andern — sofern es lhnen nichts
ausmacht, Daumchen zu drehen, wahrend das Sortierprogramm vor sich hinlduft.
Falls Sie sich doch zur Arbeit mit Listen entschlieBen, die wesentlich mehr als 100
Elemente umfassen, sollten Sie irgendwo eine zusétzliche Zeile mit FRE(0) einfi-
gen. Diese sorgt beim C 64 dafiir, daB die Garbage Collection regelmaBig ausge-
fihrt wird, und der Rechner nicht von den gewaltigen Anforderungen, die das
Jonglieren mit hunderten verschieden langer Strings mit sich bringt, so Uiberstrapa-
ziert wird, daB das Programm mit einem OUT OF MEMORY ERROR abbricht.

m

DER DELAYED-REPLACEMENT-SORT:
EINE EINFACHE ABKURZUNG

Denken Sie einmal an die Zettel zuriick, mit denen wir zu bestimmen versuchten,
wie ein Mensch eine Liste sortiert. Ich habe bei der Gelegenheit bemerkt, daB eine
vermutlich von den meisten benutzte Methode darin besteht, den hdchsten oder
niedrigsten Wert der Folge festzustellen und ihn sofort auf den richtigen Platz zu
legen. Sie hatten auch anfangen kénnen, indem Sie den dritten Zettel auf den
richtigen Platz legten, dann den siebten, dann den ersten — im Grunde hatten Sie
jede beliebige Reihenfolge wahlen kénnen. Dies wére deshalb mdglich gewesen,
weil die Liste aus Werten mit regelmaBigen Licken bestand und Sie die richtige
Position der Zettel schon an der Nummer erkennen konnten. Waren die Intervalle
unregelmé&Big gewesen, dann ware es lhnen sehr viel schwerer gefallen, den Zettel
zu finden, der an die dritte Stelle gehdrte. Die meisten Listen haben Elemente mit
unregelmaBigen Intervallen, und wenn Sie die Position eines Elementes zweifelsfrei
bestimmen wollen, ist es am einfachsten, zuerst das groBte oder kleinste, dann das
zweitgroBte oder -kleinste etc. herauszufinden.

Genau so ging der Bubble-Sort vor. Bei jedem Durchgang suchte er sich den
hdchsten Wert, der noch nicht richtig plaziert war, und brachte ihn an die passende
Stelle. Gleichzeitig nahm er Veranderungen an der restlichen Reihe vor, aber die
meisten Vertauschungen hatten den Zweck, ein Element auf dem richtigen Platz
unterzubringen. Es stellt sich die Frage, ob all diese Vertauschungen notwendig
sind. Die Antwort heiBt nein.

Wir wollen anhand der bekannten Zettel untersuchen, auf wie viele Vertauschungen
man hatte verzichten kénnen. Legen Sie zunéchst die Zettel in derselben Reihen-
folge aus, mit der wir die Bubble-Sort-Methode gepriift haben:

7315694802
Nehmen Sie nun eine kleine Miinze, die Sie auf den Zettel mit der 7 links auBen
legen. Die Miinze bezeichnet die Position des Zettels mit dem hdchsten Wert, den
Sie gefunden haben. Das weitere Vorgehen:
1. Vergleichen Sie den Wert des Zettels mit der Miinze und den des Zettels rechts
daneben. Der néchste Zettel, die 3, hat einen kleineren Wert, deshalb bleibt die

Minze auf der 7 liegen.

2. Setzen Sie den Vergleich weiter rechts fort, also bei der 1 und so weiter, solange
die Zettel, die Sie vergleichen, im Wert niedriger sind als der Zettel mit der Minze.

3. Wenn Sie auf einen Zettel treffen, der einen hoheren Wert hat als der mit der

112

Minze, in diesem Fall die 9, legen Sie die Minze auf diesen Zettel. Dann
vergleichen Sie den Zettel mit dem neuen hdchsten Wert mit denen rechts
daneben: sind sie kleiner, bleibt die Mlnze liegen, sind sie groBer, wird sie
verschoben. In unserem Beispiel bleibt die Minze bis zum SchluB des Durchgangs
auf der 9 liegen.

4. Legen Sie den Zettel, mit dem Sie den Durchgang beendet haben, auf den
Extraplatz. An die freie Stelle kommt jetzt der Zettel mit der Minze. Dann holen Sie
den Zettel aus dem Extraplatz nach links an die Stelle, wo vorher der Zettel mit der
Miinze lag.

5. Legen Sie die Miinze auf den Zettel links auBen, und wiederholen Sie den
ganzen Vorgang, aber wie beim Bubble-Sort mit der Einschrénkung, daB Sie bei
jedem Durchgang weniger Vergleiche vornehmen, da der ungeordnete Bereich der
Folge bei den vorhergehenden Durchgéngen um jeweils eine Stelle verringert
wurde.

Wenn Sie sich an die beschriebene Methode halten, miiBten die Reihen bei jedem
Durchgang wie folgt ausliegen:

7315694802 : START POSITION
7315624809
7315624089
0315624789
0315426789
0312456789
0312456789
0213456789
0123456789

Wenn Sie lhrer Ansicht nach die Methode begriffen haben, erwartet Sie nun die
eigentliche Lektion Uber dieses Sortierverfahren; denn jetzt werden wir die Vertau-
schungen und Vergleiche genauso abz&hlen wie beim Bubble-Sort. Um den
Bubble-Sort nicht zu benachteiligen, z&hlen wir auch jedes Verschieben der Minze
mit, und das erste Mal, als sie zu Anfang auf den linken duBeren Zettel gelegt wurde.
Nach meiner Rechnung ergeben sich folgende Zahlen:

1) 9 VERGLEICHE 1 VERTAUSCHUNGEN 2 VERSCHIEBUNGEN
2) 8 ” 1 » 2 ”
3) 7 ,) .) .
4) 6 " 1 . 4 .

13

5 5 " 1 " 3 "
6) 4 ” 0 : 3 :
7) 3 " 1 " 2 "
8) 2 " 1 " 2 "
9) 1 " 0 " 2 "
SUMME:

45 VERGLEICHE 7 VERTAUSCHUNGEN 21 VERSCHIEBUNGEN

Offenbar haben wir einen gréBeren Handel zwischen Vertauschungen und Ver-
schiebungen der Miinze durchgefiihrt. Selbst bei manueller Simulierung ist es viel
einfacher, die Miinze zu bewegen als zwei Zettel auszutauschen. Wird die Methode
vom Computer gesteuert, bedeutet die einfache Wertdnderung einer Variablen (die
zur Aufzeichnung des hdchsten zuletzt gefundenen Wertes dient) im Vergleich zu
der dreiteiligen Operation beim Vertauschen von zwei Strings eine enorme Er-
sparnis.

Das Ergebnis flir den ungiinstigsten Fall bei der Delayed-Replacement-Sortierme-
thode macht die Situation noch deutlicher. Im denkbar schiechtesten Fall braucht
dieses Verfahren wie der Bubble-Sort 0.5*N*(N—1) mindestens Vergleiche. Dage-
gen betragt die groBtmdgliche Anzahl von Vertauschungen nur N—1, d. h. in
unserem Beispiel neun. Die meisten Verschiebungen werden vorgenommen, wenn
die Liste vollig geordnet ist. Beispielsweise ergibt ein Durchgang der vollstidndig
sortierten Liste neun Verschiebungen des Zeigers bis zum hdchsten Wert. Wenn
wir uns die Anzahl der Verschiebungen pro Durchgang und die der Vergleiche im
selben Durchgang merken, kénnen wir sicher schlieBen, daB der erste Teil der
Folge richtig geordnet ist, sobald die beiden Werte libereinstimmen. Zum Sortieren
unserer Zettel in der Reihenfolge:

1234567890
sind 45 Verschiebungen notwendig, was verdichtig an die bekannte Formel
0.5*N*(N—1) erinnert. Wir folgern daraus, daB der Delayed-Replacement-Sort im
Héchstfall
far 100 Elemente: 4950 Vergleiche, 99 Vertauschungen und 4950 Verschie-
bungen,
fur 1000 Elemente: 499 500 Vergleiche, 999 Vertauschungen und 499 500
Verschiebungen

erfordert.

Wenn es stimmt, daB Verschiebungen wesentlich schneller sind als Vertauschun-

114

gen, muB der Wegfall von etwa 500 000 Vertauschungen im zweiten Fall zu einer
merklichen Zeitersparnis fiihren. Das ist nur durch einen Vergleich beider Sortier-
methoden in der Praxis zu beweisen. Zu diesem Zweck muB nur die unten
abgedruckte, in das schon vorgestellte Programm passende Routine eingegeben
werden:

1920 GOSUB4900:TI$="000000 " :GOSUBS028:PR
INTTI$:G0SUBEB0O :GOSUBTB00

1830 GOSUB49RO:TI+="000000":GOSUB900OB:PR
INTTI%:6G0SUB6@@6G : GOSUB7008

SO0 REM ok k k¥ % ok % % % 3k 5 ok ok kX

9001 REM SORTIERROUTINE

S002 REMkokk ¥k Kk ok kkkkkkkk

390186 FORI=IT-1TOISTEP-1

9020 NN=©

90380 FORJ=1TOl

39240 IFB$(J) >BF(NN)THENNN=J

9058 NEXTJ

99060 T$=B$(I1)

899870 B#(1)=BH(NN)

3088 B$(NNI=TS$

9090 NEKTI

9188 RETURN

Nach wiederholtem Programmdurchlauf erweist sich bei dieser Methode gegeniiber
dem einfachen Bubble-Sort fir 100 Elemente eine Ersparnis von 50—60 Prozent.
Gleichzeitig wird klar, daB wir damit das Bubble-Sort-Verfahren durch Entfernen
Uberflissiger Vertauschungen lediglich ausgebessert haben.

DER SHELL-METZNER-SORT:
DIE WIRKUNG VON ZWEIERPOTENZEN

Zum wirklich effizienten Sortieren miissen wir den relativ sicheren Weg wiederhol-
ter, systematischer Datendurchgange auf der Suche nach gréBten und kleinsten
Werten verlassen. Wie bei der Binarrecherche missen wir uns im Vertrauen auf die
Fahigkeit bindrer Methoden, Ordnung in das mutmaBliche Chaos zu bringen, auf
eine scheinbar unsystematische Methode einlassen. Obwohl bei dieser Sortierme-
thode in den Anfangsstadien offenbar verriickte Vertauschungen stattfinden, ordnet
sich das Durcheinander umfangreicher Listen weit schneller als bei den anderen
bisher verwendeten Methoden.

115

Der Ablauf dieses Verfahrens ist nicht leicht zu begreifen, aber wir werden ver-
suchen, es wieder mit unseren ungeordneten Zetteln nachzuvolliziehen. Hierfir
brauchen Sie jedoch auBer den Zetteln vier Miinzen mit unterschiedlichen Werten
und ein Stiick Papier. Wir nennen die vier Minzen in aufsteigender Wertfolge A, B,
C und D. Auf dem Papier notieren wir die verdnderlichen Werte einer Variablen, der
wir den Namen GAP (Llcke) geben.

Die Methode arbeitet nach dem Prinzip, Elemente auszutauschen, deren Abstand
voneinander die hdochstmdgliche Zweierpotenz betragt, die in der Liste der zu
sortierenden Daten vorkommen kann. Nachdem wir alle entsprechenden Vertau-
schungen ausgefiihrt haben, machen wir mit den halb so weit voneinander entfern-
ten Elementen weiter etc. In unserem Fall beginnen wir mit den Vertauschungen bei
einem Ausgangsabstand von 8; also schreiben Sie auf |hr Blatt: GAP=8. Jetzt legen
Sie die Miinzen A und B auf den linken duBeren Zettel (7). Im Verlauf des Sortierens
werden wir Minze A (mit dem geringsten Wert) zur Bezeichnung des linken der
beiden zu vertauschenden Zettel benutzen. Minze B brauchen wir zur Markierung
der Stelle innerhalb der Reihe, die wir bei der Suche nach dem jeweiligen Wert von
GAP erreicht haben. Miinze C wird jetzt auf den duBersten rechten Zettel gelegt,
von dem aus noch mit GAP umgestellt werden kann. Im Beispiel ist das Position 2,
da 2 plus der Wert von GAP an das duBere Ende der Reihe flihrt. Miinze D wird
wahrend des Sortierens umhergeschoben und markiert die Position des Zettels,
den GAP rechts von dem Zettel mit Miinze A unterbringt.

Spielen Sie jetzt die unten beschriebenen Schritte nach:

1. Legen Sie die Zettel wie vorher in der Reihenfolge 7315694 80 2 aus.

2. A befindet sich in Position 1; also kommt D in Position 1+GAP (=9). Die
entsprechenden Zettel sind 7 und 0, werden also ausgetauscht. Die Munzen
bleiben noch liegen.

3. Auch wenn es zu diesem Zeitpunkt noch unsinnig erscheint, versuchen wir jetzt,
A um soviele Stellen nach links zu verschieben, wie der Wert von GAP betragt. Den
Grund werde ich spater nennen. Im Augenblick reicht es zu wissen, daB wir den
Schritt in Erwégung ziehen, ihn nicht durchfiihren kénnen und deshalb B um eins
nach rechts verschieben.

4. Immer wenn B um eins nach rechts verschoben wird, folgt A automatisch an
dieselbe Stelle. Legen Sie also A zu B auf Position 2. C befindet sich ebenfalls dort.

5. D bekommt jetzt den Platz A+GAP, d. h. 10. Die entsprechenden Zettel sind 3
und 2, werden also ausgetauscht.

116

6. Wir prifen erneut die Moglichkeit, A um GAP Stellen nach links zu schieben. Da
das auch jetzt nicht moglich ist, schieben wir B um eins nach rechts.

7. Wie Sie jetzt sehen, ist C und B lberholt worden. Das bedeutet, der erste
Datendurchgang ist beendet. Nach jedem beendeten Durchgang miissen wir den
Wert von GAP halbieren und alle Miinzen neu auslegen. Streichen Sie die 8 auf
dem Blatt durch, und schreiben Sie statt dessen 4 hin. B kommt wieder links auBen
zu liegen, gefolgt von A. C gehort auf die Position 10—GAP, das ist zur Zeit 6, und
steht flr die duBerste rechte Stelle, von der aus ein Austausch mit GAP4 noch
stattfinden konnte.

8. Jetzt kdnnen wir erneut versuchen, Elemente auszutauschen. Bringen Sie D auf
A+GAP, also auf Position 5. Die dazugehdrigen Zettel sind 0 und 6, folglich kdnnen
sie nicht vertauscht werden. Kann ein Austausch nicht stattfinden, wird B um eins
nach rechts verschoben, und A folgt auf dieselbe neue Position. D kommt auf
Position 6 (A+GAP).

9. Die Verschiebung von B, A und D wird solange wiederholt, bis B und A sich in
Position 6 befinden. Bis zu diesem Punkt konnten keine Vertauschungen mit GAP4
ausgefihrt werden.

10. B und A liegen an sechster Stelle, und die Werte der beiden von A und D
markierten Zettel sind 9 und 3. Sie kénnen also ausgetauscht werden.

11. Da ein Austausch stattgefunden hat, (iberlegen wir wieder, ob A um GAP
Stellen nach links verschoben werden kann. Diesmal ist es mdglich, also bringen
wir A auf die neue Position 2 und danach D auf A+GAP, d. h. 6. Die beiden Zettel 2
und 3 kdnnen nicht ausgetauscht werden. Wir haben das aus folgendem Grund
versucht: Jedesmal, wenn ein Zettel weiter unten in der Reihenfolge zu liegen
kommt, missen wir prifen, ob er hatte ausgetauscht werden kdnnen, wenn er von
Anfang an auf dem neuen Platz gelegen hatte. Ware die Vertauschung mdglich
gewesen, hatten wir versucht, A wieder um GAP Stellen nach links zu verschieben.
B bleibt wahrenddessen auf seinem Platz.

12. Jedesmal, wenn ein Austausch nicht stattfinden kann oder A nicht um GAP
Stellen nach links verschoben werden kann, wird B verschoben, gefolgt von A. Das
bedeutet, B hat jetzt C Uberholt, und damit ist der Durchgang abgeschlossen.

13. Verringern Sie den Wert von GAP um die Hélfte auf 2. Bringen Sie A und B auf

Position 1 zurlick. Legen Sie C auf Position 10—GAP (8) und D auf Position A+GAP
(3).

117

14. Nach vergeblich versuchten Vertauschungen erreichen B und A Position 4, D
Position 6. Tauschen Sie die 5 und die 3 aus. A wandert auf Position 2 zuriick. Da
kein weiterer Austausch mdglich ist, wird B um eins nach rechts gerickt.

15. B und A befinden sich jetzt auf Position 5, und Sie kdnnen die 6 und die 4
austauschen. Die Verschiebung von A nach links ermdglicht keine weiteren Vertau-
schungen, also wird B verschoben.

16. Da in Position 6, 7 und 8 nichts ausgetauscht werden kann, endet der
Durchgang ohne weitere Vertauschungen.

17. GAP wird auf 1 verringert, A und B werden wieder auf Position 1 gebracht. C
kommt auf Position 10—GAP (9) und D auf Position A+GAP (2).

18. Die Verschiebung der Zeiger bei GAP1 bewirkt einen Durchgang in derselben
Art wie beim Bubble-Sort. Sie sollten jetzt in der Lage sein, die Minzen ohne
weitere Anleitung zu verschieben.

19. Wenn alles geklappt hat, ist die Liste jetzt sortiert. Das bedeutet, daB GAP beim
nachsten Durchgang kleiner als 1 ware.

20. Um zu veranschaulichen, warum der Zeiger A nach jeder Vertauschung nach
links verschoben wird, kénnen Sie diesen letzten, dem Bubble-Sort &hnlichen
Durchgang versuchsweise bei 5 Zetteln der Reihenfolge 0 1 3 4 2 ausprobieren.
Gehen Sie mit den Minzen wie oben vor, und setzen Sie GAP auf 1. Sie stellen
fest, daB kein Austausch mdglich ist, bevor B auf Position 4 gelangt. AuBerdem kann
die Liste so nicht vollstandig sortiert werden. Erst die Verschiebung von A um GAP
Stellen nach links (auf Position 3) erméglicht den zusétzlichen Austausch, mit dem 2
an die korrekte Stelle gebracht werden kann.

Wir werden bei der Shell-Metzner-Sortiermethode nicht versuchen, die Zahl der
Vertauschungen, Vergleiche und Verschiebungen zu analysieren — teils, weil es
den ganzen Tag dauern kénnte, und teils, weil es bei dieser geringen Anzahl von
Elementen wenig aussagen wirde. Denn die Vorteile dieser Methode werden erst
beim Sortieren gréBerer Datenmengen deutlich. Das heiBt nicht, daB das Shell-
Metzner-Verfahren nicht auch bei kleineren Datenvolumen angewendet werden
kann. Ob eine kaum merkbare Beschleunigung die erforderliche zusétzliche Pro-
grammierarbeit aufwiegt, ist reine Ansichtssache. ,

Wenn Sie mit der folgenden Routine den Shell-Metzner-Sort in das Sortiertestpro-
gramm eingeben, werden Sie bei gréBeren Datenmengen eine enorme Zeiterspar-
nis feststellen. Grundsatzlich variiert die Geschwindigkeit des Bubble-Sort etwa
entsprechend der Formel N2/2, d.h. Erhdhungen von N werden miteinander

118

multipliziert. Bei der Shell-Metzner-Methode &ndert sich der Zeitaufwand etwa nach
der Regel:

1.6xNx(LOG N/LOG 2.

Das bedeutet, wenn im ungiinstigsten Fall das Sortieren von 10 Elementen mit dem
Bubble-Sort eine Sekunde dauerte, wiirde es bei 100 Elementen 100 Sekunden
und bei 1000 Elementen 10 000 Sekunden dauern.

Wenn wir auch beim Shell-Metzner-Verfahren wiederum vom ungunstigsten Fall
ausgehen und annehmen, daB das Sortieren von 10 Elementen eine Sekunde
dauert, dann wiirde es bei 100 Elementen 20 Sekunden und bei 1000 Elementen
3000 Sekunden dauern.

Dies sind keine prazisen Zahlenangaben zur Geschwindigkeit von Sortierprogram-
men auf dem C 64, aber sie veranschaulichen die ungeheuren Unterschiede beim
Sortieren wachsender Datenvolumen. Sie kdnnen das fur sich nachprifen, indem
Sie im Testprogramm mit verschieden langen Listen experimentieren.

1048 GOSUB4000: TI$="000000" :GOSUB10000: P
RINTTI$:GOSUBE00O:GOSUB7000

1000@ REMxkkkkkkkkkkkkkkokkkkkkkkkk
18801 REM SHELL-METZNER VERFAHREN
18002 REMMkkokokkkkdkokkkkkkkkkkkkkkkk
10018 GAP=2t(INT(LOG(IT-1>/L0OG(2)>+1)
180280 GAP=GAP. 2

10830 C=I1T-GAP-1:B=0: IFGAP< 1 THENRETURN
19840 A=B

18050 D=A+GAP: IFB$(A) >BH(D)THEN10830
1e@ee B=B+1:IFB>CTHEN10020

18878 GOTO10040

10880 T#=B%(A)

188390 B$(AY=B$(D)

10100 B$(D)I=T$

18118 A=A-GAP: IFA{BTHEN100OG68

18120 GOTO108508

In der Praxis erreichen Sie bei der Anwendung der Shell-Metzner-Methode auf eine
Liste von 100 Elementen eine durchschnittliche Einsparung von nur 60 Prozent
gegenliber dem Bubble-Sort. Wird der Umfang der Liste jedoch vergrdBert, so
kommt man zu weitaus beeindruckenderen Ergebnissen. Fir eine Liste mit 200
Elementen braucht das Shell-Metzner-Verfahren nur etwa 15 Prozent der Zeit, die
der Bubble-Sort in Anspruch ndhme.

119

SCHLUSS

Das Thema Sortieren haben wir nicht einmal annahernd erschépfend behandelt. Es
gibt andere Sortiermethoden, die zwar keine astronomische, aber eine wesentliche
Zeitersparnis gegeniiber dem Shell-Metzner-Verfahren bringen. Das Problem dabei
ist, daB sie fast ausnahmslos die Bereitstellung zusatzlicher Speicherkapazitét
erfordern, damit Daten zwischen die Hauptliste und eine oder mehrere Unterlisten
eingeschoben werden kdnnen. Fir die Praxis heiBt das, ihr Tempo im Vergleich mit
Shell-Metzner zeigt sich erst bei groBen Datenmengen, die fiir die praktische
Anwendung auf einem Heimcomputer zu speicherextensiv sind. Mit den Sortierme-
thoden in diesem Kapitel kdnnen Sie von der kleinsten bis zur groBten fast jede
beliebige Datenmenge verarbeiten, die Methoden dem Schwierigkeitsgrad der
Aufgabe anpassen und in vielen Fallen Ihre Programme enorm beschleunigen.

120

KAPITEL 9

DATENSTRUKTUREN |

Dieses Buch geht u.a. von dem Grundsatz aus, daB die meisten nitzlichen
Programme Daten speichern. Daten zu speichern und zu verarbeiten ist das, was
Mikrocomputer am besten kdnnen; auf diesem Gebiet sind sie den Mdglichkeiten
jeder anderen Methode weit (berlegen. Gelegentlich kann jedoch gerade die
Leichtigkeit, mit der Mikrocomputer mit Informationen umgehen, als Ausrede fir
eine nachldssige und uniiberlegte Datenspeicherung dienen. Erlaubt ist anschei-
nend alles, solange das Programm die nétigen Daten im Gedachtnis behalten kann.
Der Nachteil bei dieser Vorgehensweise ist, daB die Leistungsfahigkeit eines
Programms durch eine falsche Datenstruktur auBerordentlich beschnitten werden
kann: Das Programm wird verlangsamt, das zu verarbeitende Material wird quantita-
tiv eingeschrankt, oder die Struktur des Arbeitsprogramms wird unnétig verkompli-
ziert. In diesem Kapitel wollen wir einige der zahlreichen Méglichkeiten untersu-
chen, Daten so zu strukturieren, daB sie den Erfordernissen des Programms
angepaBt sind und Geschwindigkeit und Speicherplatz maximieren.

EINFACHE DATENSTRUKTUREN:
DAS MASSGESCHNEIDERTE FELD

Die bei weitem einfachste Struktur zum Speichern jeder Art von Informationen ist
ein Feld, dessen Dimensionen genau darauf zugeschnitten sind, wie die Information
selbst gegliedert ist. Ein Beispiel ware etwa ein Programm zur Aufzeichnung von
Umsatz, Profit, Steuern und Investitionen mehrerer Unternehmen. Hier kdnnte man
ein numerisches Feld ARRAY (X,3) definieren, wobei X die Anzah! der Unterneh-
men ist, und Daten kdnnte man z. B. mit folgender Routine eingeben:

188 INPUT"FIRMENNUMMER ":;CY

116 INPUT"UMSATZ ":ARRAY(CY,@)

120 INPUT"GEWINN ";ARRAY(CY,1)

130 INPUT"STEUER ":ARRAY(CY,2)

140 INPUT"INVESTITIONEN ":ARRAY(CY,3)

In einem Dateiprogramm zum Speichern von Namen, Adressen und Telefonnum-
mern kénnte man ein Feld ARRAY$(500,2) definieren und Eingaben mit einer
dhnlichen Routine wie der obigen machen.

Solche Strukturen dirfen so komplex sein, wie es das Programm erfordert. Zum
Beispiel hatte es bei dem oben erwdhnten Programm fir die Unternehmen nétig

121

sein kdnnen, alle Daten (ber einen Zeitraum von finf Jahren aufzuzeichnen. In
diesem Fall wiirde das Feld als ARRAY(X,3,4) definiert, und jede der verschiedenen
Kategorien bekdme eine Schleife fur finf Eingaben, so daB aus Zeile 110 eine
eigene Routine wirde:

118 FORI=0TO4

112 PRINT"UMSATZ IN":188@0+I:;" ";:INPUTAR
RAY(CY.,8,1>

114 NEXT

Solche maBgeschneiderten Felder haben den Vorteil, das Speichern und den
Zugriff auf Daten auf direktem Wege zu erlauben. Alles hat seinen eindeutigen Platz,
und zum Auffinden eines Datenelements braucht man nur die Nummer des Unter-
nehmens, die Kategorie der Information — z. B. Steuern — und das Jahr zu kennen.
Daten in solchen Feldern lassen sich auch auf andere Weisen einfach abrufen. Will
der Benutzer z. B. wissen, welchen Profit jedes Unternehmen 1978 gemacht hat,
wiirde eine einfache Schleife

188 FOR I=0 TO ITEMS:PRINT ARRAY(1.,2,1):
NEXT

die Information problemlos bereitstellen.

Ein weiterer Vorteil maBgeschneiderter Felder besteht in der Art, in der ganze
Gruppen von Feldern verglichen werden kdnnen, die verschiedene, aber paraliele
Reihen von Informationen enthalten. In unserem Beispiel ware es einfach, ein
weiteres Feld mit den Namen der beteiligten Unternehmen zu definieren, und auf
diese Namen konnte man mit genau derselben Variablen zugreifen, die bestimmt,
welcher Datensatz ausgedruckt werden soll. In komplexen Datenverarbeitungspro-
grammen ist eine Reihe verschiedener Felder, die alle parallele Informationen
enthalten, nichts Ungewdhnliches. Nehmen wir den Fall, daB vielféltige Informatio-
nen gespeichert werden sollen, die groBenteils dhnlich strukturiert sind, sich z. B.
auf verschiedene Monate des Jahres beziehen. Dann sind maBgeschneiderte
Felder oft der einzige praktische Weg, die Zahl der Variablen zu kontrollieren, die
zur Beschaffung von Informationen von vielen verschiedenen Stellen nétig sind.
Wenn alle Daten sich auf Monate des Jahres bezdgen, lieBen sich vielleicht
manchmal wichtige Informationen aus jedem Feld mit einer einzigen Variablen
gewinnen, die flir den betreffenden Monat steht.

MaBgeschneiderte Felder haben jedoch ihre Nachteile, unter anderem den Spei-
cherplatz, den selbst ein verhéltnismaBig harmloses Feld verbraucht. Ein numeri-
sches Feld mit den Dimensionen (100,10,10) sieht wohl nicht Gbermé&Big groB aus,
aber es bendtigt 50 000 Bytes Speicherplatz — viel mehr, als in BASIC auf dem

122

C 64 verflgbar ist. Um den fiir ein gewiinschtes Feld notwendigen Speicherplatz zu
berechnen, multiplizieren Sie einfach alle bei der Definition des Feldes in den
Klammern vorkommenden Zahlen und multiplizieren das Ergebnis dann mit

2 bei einem Integerfeld,
3 bei einem Stringfeld,
5 bei einem Gleitkommafeld;

wobei Sie berlicksichtigen miissen, daB die flr ein Stringfeld erhaltene Zahl nur den
Verwaltungsbedarf enthalt, und daB alles im Feld Abgelegte zum bendtigten Spei-
cherplatz hinzuaddiert werden muB. Bei numerischen Feldern ist allen Elementen
der Wert 0 zugewiesen, so daB sich der erforderliche Speicherplatz nicht erhoht,
wenn Elemente geédndert werden.

Beim Definieren groBer und komplexer Felder ist es deshalb unerlaBlich zu bestim-
men, ob der Platz im Feld voll genutzt wird. Haufig missen Dateien mit einer groBen
Anzahl von Kategorien definiert werden, ohne daB jede Eintragung Informationen in
jeder Kategorie hat. Solche Felder heiBen ‘schwachbesetzt’ (sparse), und nur sehr
wenige Anwendungen sind mit dem unbenutzten Speicherplatz, den ein komple-
xes, aber schwachbesetztes Feld erzeugen kann, nicht (iberfordert.
Zusammenfassend moéchte ich sagen: Bemihen Sie sich, eine lhren Informationen
genau angepaBte Datenstruktur zu planen, die alle Daten aufnehmen kann, die Sie
voraussichtlich zu diesem Thema abspeichern wollen. Denn das wird Ihr spateres
Programm zweifellos erheblich vereinfachen. Friher oder spater werden Sie aller-
dings mit Anwendungen konfrontiert sein, wo schon die Menge der Elemente oder
die Komplexitdt der Struktur ein maBgeschneidertes Feld von vornherein als zu
aufwendig erscheinen 1aB8t. Dann werden Sie sich mit den anderen Speicherarten in
diesem Kapitel ndher beschaftigten missen.

DATENSTRUKTUREN FUR ZAHLEN

BYTEZAHLEN IN INTEGERFELDERN

Der C 64 besitzt eine sehr sparsame Speichermethode fir den Zahlenbereich, der
in Datenverarbeitungsprogrammen meistens benutzt wird. Die meisten Werte in
diesen Programmen — nicht die zum Speichern, sondern die zur Programmsteue-
rung vorgesehenen Werte — sind ganze Zahien (ohne Nachkommastellen) in einem
Bereich, der durch die Grenzen z. B. von Feldern und Stringldngen bestimmt ist.
Fast immer ist es reine Verschwendung, solche Werte in normalen numerischen
Feldern unterzubringen, da jedes Element eines Gleitkommafeldes flinf Bytes im
Speicher belegt, wahrend ein integerfeld nur zwei bendtigt.

123

Integerfelder kénnen jedoch dazu dienen, den fir kleine numerische Werte notigen
Platz noch weiter zu reduzieren, indem in jedes Feldelement mehr als ein Wert
abgelegt wird. Das ist mdglich, weil in einem Integerfeld jedes Element eine Zahl
von —32768 bis +32767 aufnehmen kann; der Bereich umfaBt also 65536 Zahlen.
Der verfligbare Bereich stellt einfach dar, was in einer 16-Bit-Zahl abgelegt werden
kann, die das werthdchste der 16 Bits zur Aufzeichnung des positiven oder
negativen Vorzeichens der Zahl benutzt; darauf wird im Abschnitt lber die Funktion
FRE im Kapitel ‘Strings’ naher eingegangen. Fur uns ist wichtig, daB in einem
Integerfeld ein Element eine Zahl bis 256*256—1 aufnehmen kann (wenn der
negative Bereich zugénglich ist). Wenn wir also zwei Zahlen im Bereich 0—255
nehmen, eine davon mit 256 multiplizieren und dann die zweite addieren, werden
effektiv zwei Zahlen in einer gréBeren abgespeichert. Beispielsweise kdnnte man
die Zahlen 237 und 76 in dieser Reihenfolge mit Hilfe einer BASIC-Zeile speichern:

100 NNX=256%c37+7E:REM ANTWORT = 60748

Da der zulassige Zahlenbereich nicht 0—65535, sondern —32768 bis +32767
umfaBt, muB jede Zahl liber 32767, die in das Feld abgelegt werden soll, durch
Subtrahieren von 65536 gedndert werden. Daher miBte die BASIC-Zeile heiBen:

198 MMN¥=25E*237+76: IF NN>32767 THENNN=MNN-
65536

Zur Entschliisselung zweier Zahlen, die so in ein Element eines Integerfeldes
abgespeichert werden, genugt eine weitere einfache BASIC-Zeile:

188 NMN=AX(X)) -B5536x({ AXM(KICBI INI=INT(NMN/2
S6)iN2=NN-25ExN1

Der Vorteil bei dieser Art der Zahlendarstellung liegt darin, daB man damit fast
genauso viel Speicherplatz sparen kann wie beim Ablegen in einen String, d. h. ein
Byte pro Zeichen plus geringer Verwaltungsbedarf fir das Feld selbst. AuBerdem
konnen die Zahlen direkt auf Band oder Diskette gespeichert und geladen werden,
ohne vorheriges Ubersetzen von Zeichen in Zahlen und umgekehrt. Eher nachteilig
dabei ist es, daB diese Methode bei normalem Gebrauch tatséchlich doppelt so
langsam ist wie die Ubersetzung von Zeichenwerten. Das wird Ihnen unter norma-
len Umstédnden nicht auffallen, aber Sie missen sich schon je nach AusmaB der
beabsichtigten Lade- und Speichervorgéange zwischen den beiden Methoden ent-
scheiden.

Zum Abspeichern einer Reihe von Werten im Bereich 0—255 ist folgende Routine
geeignet:

124

108 DIMAX(S9)

116 INPUT"POSITION ":PP

1280 INPUT"WERT ":?

138 TT=AX(PP/2)-65536%(AX(PP 2)<@)>

148 IF PP AND 1 THENTT=256*%INT(TT/256) +N
N

158 IF NOT PP AND 1 THENTT=(TT+255)+256%
NN

160 AX(PP/2)>=TT+65536x(TT>32767)

1786 N1=INT(AX(PP/2)/256) :N2=AX%(PP/2)-256
*N1

180 PRINTNI N2

198 GOTO11@

Zeile 130 berechnet den aktuellen Wert des richtigen Elements von A% und befaBt
sich mit dem Problem negativer Zahlen. Die richtige Position in A% ist durch PP/2
festgelegt, so daB die ersten beiden Werte in Element Null, die nachsten beiden in
Element Eins etc. abgelegt werden. Beachten Sie, daB Zahlen nicht abgerundet
werden missen, wenn die Division von PP durch 2 z. B. 2.5 ergibt; denn der C 64
liest A%(2.5) als A% (2). In Zeile 140 entdeckt ‘IF PP AND 1’ Werte mit ungerader
Position; denn der logische Ausdruck PP AND 1 ist nur fir ungerade Werte von PP
wahr. Ist der Wert von PP ungerade, dann ist der abzulegende Wert der niedrigere
der beiden Werte, die in das betreffende Element des Feldes abgelegt werden. Wir
erhalten also den oberen Wert in der Form 256*INT(NN/256) und setzen auf diese
Weise denjenigen Teil der Zahl auf Null, der weniger als ein ganzes Vielfaches von
256 betragt. Dann addieren wir die zu speichernde Zahl, die so zum unteren der
beiden in diesem Element abgelegten Werte wird. In Zeile 150 ermittelt ‘IF NOT PP
AND 1’ Werte mit geradem Index, die in die obere Position des betreffenden
Elements im Feld abgelegt werden sollen. Das wird durch Verknlpfung von TT und
255 mit AND erreicht. Dadurch bleiben alle Bits in NN enthalten, die Zahlen unter
128 darstellen, und alle anderen werden eliminiert. Zum Ergebnis wird jetzt 256 mal
der zu speichernde Wert addiert; er wird so zum oberen der beiden in dem
betreffenden Element abgelegten Werte. Zeile 160 paBt TT wieder dem Bereich
—32768 bis +32767 an und legt es wieder in A% ab.

Eine solche Struktur ist leichter zu zerlegen als zu erzeugen:

200 FORI=0TO0393

218 NN=AX(1/2>-65536*%(AX(1/2)<8)

2280 IF NOT I AND 1 THEN NN =INTC(NN/236)
225 IF 1 AND 1 THEN NN =NN-256* INT(NN-235
8)

125

238 PRINTNN

240 IF1/18=INTC(I/18>THEN GET T#$: IFT#$=""T
HENZ248:REM LEITER MIT TASTE

258 NEXTI

Der Vorteil dieser Methode zur Einsparung von Speicherplatz liegt auf der Hand. Es
sollte allerdings betont werden, daB sie mit groBerem Zeitaufwand beim Speichern
und Entschlisseln von Werten bezahit werden muB, wenn stédndig vom Programm
auf diese Werte zugegriffen wird. Einen Zeitgewinn bringt das Verfahren dagegen
beim Laden und Speichern auf Band oder Diskette, da nur halb soviele Elemente
verarbeitet werden missen.

ABLEGEN IM FREIEN SPEICHER

Wer den freien Speicherplatz restlos fiir sein Programm nutzen méchte oder muB,
sollte nicht vergessen, daB der C 64 noch 4096 Bytes in Reserve hat, die fir das
Erzeugen und Speichern von Variablen in normalem BASIC nicht zuganglich sind.
Jedoch kann dieser Bereich, der bei der Speicheradresse 49152 beginnt, mit Hilfe
von POKE- und PEEK-Befehlen genutzt werden. Fast jede ordentliche Struktur von
numerischen Daten oder sogar Stringdaten kann dort abgelegt werden, wenn Sie
bereit sind, einige Sorgfalt auf das Ausarbeiten der Struktur und der flr den Zugriff
auf die Daten benutzten Variablen aufzuwenden.

Am leichtesten lassen sich in einem solchen freien Speicherbereich Daten in Form
von Byte-Werten ablegen, d. h. ganze Zahlen von 0 bis 255. Um z. B. ein Feld mit
den Dimensionen 50 mal 50 zu simulieren, kénnen Werte mit einem Befehl
folgender Art gespeichert werden:

120 POKE 439152+50%X+Y NN

Dabei ist X die Zeilennummer, von 0 an gezéhit. Y ist die Spaltennummer, ebenfalls
von 0 an gezahlt, und NN die zu speichernde Zahl. Einlesen kann man die Werte mit
dem Gegenstiick dieses Befehls, diesmal mit PEEK:

188 PEEK(48152+50%X+Y)

Komplexer strukturierte Felder mit mehr als zwei Dimensionen lassen sich unter
Berlcksichtigung einiger Regeln erzeugen:

1. Bestimmen Sie, wie Ihr Feld aussehen wiirde, wenn es in BASIC dimensioniert
wire, z. B. A(20,10,5).

126

2. Berechnen Sie die Anzahl der Elemente in jeder Einheit je Dimension, angefan-
gen von rechts. Im obigen Beispiel hitte die Dimension ganz rechts in jeder Einheit
ein Element, die zweite von rechts in jeder Einheit hatte fiinf Elemente und die linke
je 50 Elemente.

3. Um eine Position in dem hypothetischen Feld festzulegen, beginnen Sie mit der
Anfangsadresse des Speicherbereichs, den Sie benutzen wollen. Dann multiplizie-
ren Sie den Index fiir jede Dimension mit der eben berechneten Anzahl der
Elemente und addieren alles zur Anfangsadresse. Auf diese Weise bekdme das
Element 14,7,3 aus dem obigen Beispiel die Adresse 49152+50*14+5*7+3.

Fir Zahlen, die zwei oder mehr Bytes in Anspruch nehmen, lassen sich komplexere
Strukturen erzeugen, aber Sie werden immer auf die im vorigen Kapitel beschriebe-
nen Methoden zuriickgreifen missen, um Zahlen in einzelne Bytes aufzuteilen. Bei
Zwei-Byte-Zahlen wiirde die Regel lauten: Man multipliziert die aus den Dimensio-
nen berechnete Adresse mit zwei und POKEt dann die zwei Bytes, aus denen die
abzulegende Zahl besteht, in die errechnete und die darauffolgende Adresse.
Innerhalb eines wie im o.g. Beispiel dimensionierten Feldes aus Zwei-Byte-
Elementen kann man eine Zahl von 0—65535 mit dieser Routine in Position 14,7,3
ablegen:

1908 NM=E85
1190 A$=CHR$CNMN)
128 PRINT A$

ZAHLEN IN STRINGS

Wir haben auch in Kapitel 8 gesehen, wie schnell und auch ékonomisch es sein
kann, Daten in Strings variabler Ldnge abzulegen. Bei diesem Verfahren kénnen
neue Datenelemente an den Anfang, das Ende oder die Mitte eines Datenblocks
eingefiigt werden, wobei alle anderen bereits gespeicherten Elemente automatisch
neu positioniert werden. Dariiber hinaus ist lhnen bekannt, daB fir diese Daten die
maximale Lange von 255 Bytes pro Einzelstring nicht gelten muB, da mehrere
Elemente eines Stringfeldes in Anspruch genommen werden konnen.

Diese Erkenntnis ist nicht nur fiir das Problem des Speicherns kleiner Stringdaten-
Elemente von Bedeutung, Strings kdnnen héaufig sehr sinnvoll beim Speichern
numerischer Werte eingesetzt werden. Das ist moglich, weil im Zeichensatz des
C 64 jedes Zeichen seinen eigenen Wert — genannt ‘ASCII-Wert’ — hat: eine Zahl
von 0—255. In dieser numerischen Form speichert der C 64 die Zeichen. BASIC

127

liefert dem Programmierer die beiden Funktionen ASC und CHRS$, die Zahlen in
Zeichen umwandeln und umgekehrt, so daB Zahlen in Zeichen Ubersetzt, als String
gespeichert und spater in Zahlen zurlickverwandelt werden kénnen.

Folgende Zeilen demonstrieren die Umwandlung einer Zah! in ein Zeichen:

188 N1=INT(NN/256):N2=NN-256%N1
1180 PP=438152+2%(50%14+35%7+3)
1280 POKEPP ,N1:POKEPP+1,N2

Wenn Sie diese Zeilen durchlaufen lassen, erscheint der Buchstabe A, dessen
Zeichenwert genau 65 ist. Mit dieser Zeile machen Sie die Ubersetzung riickgéngig:

138 PRINT ASC(A$)

Daraus ersehen wir, daB CHR$ die Funktion hat, einen bestimmten Code-Wert in
ein Zeichen umzuwandeln, wahrend ASC den Code-Wert eines bestimmten String-
zeichens ergibt. Wir kénnen beide Funktionen kombinieren, um das Speichern
kleiner numerischer Werte dkonomisch und flexibel zu gestalten:

180 A=""

110 INPUT NN

12@ IFNN>=0THENA$=A$+CHRE(NN):60T0118
1380 FORI=1TOLEN(A%$)

148 PRINTASC(MIDSAF, 1))

158 NEXTI

Diese kurze Routine erlaubt die Eingabe von bis zu 255 Zahlen zwischen 0 und 255.
Wenn Sie eine negative Zahl eingeben, wird die zweite Hélfte der Routine aktiv und
gibt die Daten in der Reihenfolge ihrer Eingabe aus. Beachten Sie, daB die Funktion
MID$ in Zeile 140 nicht wirklich festlegt, daB der Teilstring, aus dem ein ASC-Wert
abgeleitet werden soll, nur ein Zeichen umfaBt. MID$(A$,l) bezeichnet in Wirklich-
keit alles von A$ ab Zeichenposition |. Das liegt an der Eigenschaft der ASC-
Funktion, nur jeweils auf das erste Zeichen des vorgefundenen Strings einzuwirken.
Dieses Verfahren ist insofern nitzlich, als es den Umgang mit Strings nicht mehr auf
einfaches Anfligen von Zeichen an einen vorhandenen String beschrankt. Zeile 120
hatte ebensogut heiBen kénnen:

128 IF NN>=0THEMA$=CHR${NN)>+A$:GO0TO110

128

so daB die Routine die Zahlen in umgekehrter Reihenfolge abgelegt hétte, was in
einem normalen Feld kaum mdglich ware, ohne die vorhandenen Daten standig
weiterzuschieben.

Genauso koénnen wir uns der Methoden aus Kapitel 3 bedienen, um Zeichen
irgendwo in den gegebenen String einzufiigen:

108 A%=""

118 INPUT"EINZUFUEGENDE ZAHL":NN

120 PRINT"POSITION <(1TO';LENC(AS)I+1;: 'O 22
INPUT PP

130 IFNN>=0THENA$=LEFT${(A%$,PP-1)+CHR$(NN
Y+MID$<A%E,PP):GOTO110

140 FORI=1TOLENC(AS) :PRINTASC(MIDE(A$, 1))
ENEXT

Bei Werten iiber 255 spart die Anwendung von Strings zum Speichern von
Zahlenwerten zwar keinen Speicherplatz, sie bietet aber die sehr hilfreiche Flexibili-
tat, Werte beliebig zwischen vorhandene Daten einzuschieben, ohne alles andere
nach hinten verschieben zu miissen. Die nachstehende Routine fligt eine Zwei-
Byte-Zahl (0—65535) irgendwo in einen einzelnen String ein:

1086 Ag=""

118 INPUT"EINZUFUEGENDE ZAHL":NN

115 NI=INT(NN/256) :N2=NN-256%N1

120 PRINT"POSITION (1TO';LENC(AS)/2+1:')>"
;P INPUT PP:PP=PPx2

138 IFNN>=0THENA$=LEFT$(A$,PP-2) +CHR$ (NI
)+CHR$(N2) +MID$(A%,PP-1):G0TO110

149 FORI=1TOLEN(A$)STEP2

1580 PRINT256xASC(MID$C(AS, 1) > +ASC(MIDS$(AS
L1410

168 NEXTI

Léschungen konnen problemlos mit Hilfe der in Kapitel 3 erkldrten Techniken
vorgenommen werden, und die Methoden fir Stringfelder im selben Kapitel kénnen
zur Kapazitatserweiterung eines einzelnen Strings eingesetzt werden. Das wird
weiter unten in diesem Kapitel im Abschnitt Uber Zeigerfelder erlautert.

Fiir Programme, in denen stiandig Werte eingefligt oder entfernt werden missen, ist
das Speichern von Zahlen in Strings also eine wirkliche Alternative. Der gréBte

129

Nachteil dabei ist, daB viele Zeichen, auch wenn sie im Speicher als Stringzeichen
abgelegt werden kénnen, nicht druckbar sind, d. h. nicht zu den Zeichen gehoren,
die der C 64 normal ausdrucken kann. Das ist fir die Darstellung auf dem Bild-
schirm kaum von Belang, da die Zeichen selbst ohnehin bedeutungslos wéren —
nur die ASClI-Werte sind fiir uns von Interesse. Beim Laden und Speichern, wo
auch PRINT in Form von PRINT# verwendet werden muB, macht es dagegen doch
etwas aus. Leider kann der C 64 keine nicht druckbaren Zeichen als solche laden
und speichern; sie missen in Zahlen umgewandelt und in dieser Form gespeichert
werden. Fir einen Zeichenstring A$, in den numerische Werte eingelesen werden,
miBte die Speicherroutine also folgendes enthalten:

100 PRINT#1 ,LENCAS)

118 FORI=1TOLENCAS)

120 PRINTH#1 ,ASC(MID$C(AS, 1)
130 NEXTI

und beim Laden miiBte der String wiederhergestellt werden:

108 INPUTH1 ,LL

118 FORI=1TOLL

120 INPUTH#1 ,TT:A$=AF+CHR$(LL>
130 NEXTI

Da dieses Vorgehen die zum Laden und Speichern nétige Zeit erheblich verlangert,
ist zu Uberlegen, ob der Lade- und Speicheraufwand trotz der Vorteile wahrend des
Programmlaufs das Ablegen im Stringformat lohnend erscheinen IaBt.

STACKS

Die Methode, Zahlen in Strings abzulegen, wird auch fiir die Erzeugung von Stacks
angewendet. Der Stack funktioniert nach demselben Prinzip wie eine (heute aus-
sterbende) Briefablage im Biro: Briefe werden in der Reihenfolge ihres Eingangs
auf einen Dorn gespieBt und zu einem passenden Zeitpunkt wieder abgenommen
und bearbeitet. Durch dieses Prinzip der Ablage wird immer der zuletzt eingegan-
gene Brief als erster entnommen (‘last in — first out’).

Stacks sind flr die Datenverarbeitung sehr wichtig, da viele Operationen, die ein
Computer ausflihrt, von den Informationen bestimmt werden, die in dem ‘Stack’
genannten Speicherbereich abgelegt sind. Zum Beispiel GOSUBs: In einer beliebi-
gen Kette von GOSUBs ist die Rlicksprungadresse, die das Programm mit RETURN

130

anspringt, immer das letzte GOSUB. Die Adresse jedes GOSUB wird im Stack
obenauf abgelegt, und bei jeder RETURN-Anweisung wird die oberste Adresse im
Stack abgearbeitet.

In BASIC-Programmen ist der Stack verwendbar, wenn verschiedene Elemente
gleichzeitig aus einer Datenstruktur entfernt und verandert werden mussen. Jedes
Element kann dabei in ein anderes Feld abgelegt und seine Adresse im Hauptdaten-
feld in einen Stack mit Zwei-Byte-Zahlen gespeichert werden. Wenn die Elemente
wieder in das Hauptfeld eingelesen werden, kdnnen ihre richtigen Adressen vom
Anfang des Stack an entnommen werden.

Ein Stack wird jedoch haufiger gebraucht, um die Adressen einer Gruppe von
Elementen mit gleichen Eigenschaften festzuhalten, vor allem Gruppen, bei denen
viele Additionen und Subtraktionen vorgenommen werden. Weiter unten in diesem
Kapitel werden wir sehen, wie man nach demselben Prinzip Anzahl und Ort von
Leerstellen innerhalb eines Feldes festhalten kann. Jedesmal, wenn ein Element
aus dem Feld entfernt wird, wird seine Adresse in einen Stack mit Zwei-Byte-
Werten abgelegt:

100 P1=INT(PP/256):P2=PP-256%P1

118 SK$=CHR$(P1)+CHR$(P2) +SK#$

wobei PP die Adresse des entfernten Elements ist. Die Adresse einer Leerstelle im
Feld erhdlt man mit:

180 PP=256%ASC(SK$ > +ASC(MID$(SK$,2>>:SK$
=MID$(SK$,2))

Auf diese Weise kann man etwas in ein Feld einfiigen, ohne alle anderen Werte zu
verschieben, damit die Leerstellen ans Ende kommen. Wenn SK$ auf einen leeren
String reduziert ist, weist dies darauf hin, daB keine Leerstellen mehr verfligbar sind.

STRINGDATEN-STRUKTUREN

VERDICHTETE STRINGS

Im Kapitel Uber Stringverarbeitung haben wir schon einige einfachere Méglichkeiten
untersucht, wie Strings zum Speichern von Informationen benutzt werden kdnnen,
und wie mehr auf kleinerem Raum unterzubringen ist. Ein Beispiel dafiir war der
einfache verdichtete String, in dem ein Trennzeichen zur Identifizierung der einzel-

131

nen Teile verwendet wird, so daB eine komplette Eintragung in einer Namens- und
AdreBdatei etwa in folgender Form gespeichert wird:

SCHMID*KARL OTTO*HAUPTSTR. 11 xMUSTERSTADT
*MUSTERLAND*PF 123*TEL ©88038-1122*MAENNL.

Eine solche Struktur hat den Vorteil, daB jeder Ausdruck nicht wie ein vollstandiges
Element eines Stringfeldes drei Bytes zur Verwaltung bendétigt, sondern nur ein
Byte, ndmlich das mit dem *. Damit scheint auf den ersten Blick nicht ibermaBig viel
eingespart zu sein. Aber fiir eine Datei, deren Eintragungen wie im obigen Beispiel
aus je acht getrennten Ausdriicken bestehen, bedeutet es eine Einsparung von

8*3 (fur einen einzelnen Ausdruck jeder Eintragung) —3 + 7 (drei Bytes fur "
den einzelnen String plus sieben Trennzeichen)

oder 14 Bytes bei einer einzigen Eintragung. Im Fall einer Datei mit 500 Eintragun-
gen wére das eine Einsparung von 7000 Bytes, und das lohnt sich, wenn der
gesamte Speicherplatz fir Programm und Daten weniger als 39.000 Bytes betragt.
Ein Nachteil dieses Verfahrens der Stringverdichtung ist die Zeit, die fiir das Suchen
eines einzelnen Ausdrucks benétigt wird. Um das obige Beispiel wieder zu zerle-
gen, brauchen wir eine Suchroutine zum Auffinden der Trennzeichen, wie im
Kapitel Uber Stringverarbeitung beschrieben. Eine Datei mit 500 Eintragungen nach
einem bestimmten Ausdruck abzusuchen, kann unangenehm lange dauern, beson-
ders wenn er nahe am Ende eines Strings steht. Ein méglicher Ausweg besteht
darin, die Informationen (iber den Aufbau des Strings in einem Format abzulegen,
das leichter zugénglich ist, anstatt nach Sternchen in den Strings zu suchen. Das
erreicht man durch den Gebrauch sogenannter ‘Zeiger'. Spater werden wir untersu-
chen, wie man Zeiger auf weitaus komplexere und effizientere Weise zum Struk-
turieren einer Datei einsetzen kann. Hier jedoch besteht die Technik einfach darin,
dem String Zahlen vorauszuschicken, die anzeigen, wo die Zeichenkette getrennt
werden soll:

100 PTR$="": IN$=""

118 FORI=1T08

1286 INPUTTTS

130 INS=IN$+TTS

140 FTR$=PTR$+CHR$(LENCINS))
1580 NEXTI

1680 IN$=PTR$+IN$

132

Das Programm berechnet lediglich bei der Eingabe jedes der acht Strings die Lange
von IN$, also der gesamten Eingabe, und hangt dann an den Zeigerstring PTR$ den
ASCII-Werten dieser Lange an. Am Ende der Schleife sind alle Strings in IN$
abgelegt, ohne daB gekennzeichnet ist, wo der eine aufhért und der néchste
beginnt, wahrend in PTR$ acht Zeichen abgelegt sind, deren ASCII-Werte anzei-
gen, wo die einzelnen Datenelemente enden. Beide zusammen ergeben den
String, wie er im Speicher abgelegt wird.

Sind die Datenelemente so gespeichert, genlgt eine einfache Routine, um sie
wieder zu zerlegen:

2ee P1=9

210 FORI=1TO8

220 P2=ASC(MIDS(IN$,1>)>+8
230 PRINTMID#CIN&,P1 ,P2-P1+1)
248 Pl=Pa+1

258 NEXTI

Dabei werden die Werte der Zeigerzeichen am Anfang des Strings dazu benutzt,
beim Lesen des Strings Anfang und Ende jedes Datenelements zu bestimmen. Zu
Beginn der Routine braucht man dazu nur die Anzahl der Zeigerzeichen zu kennen,
um die Position des ersten Zeichens des ersten Datenelements (also des ersten
Zeichens hinter dem Zeiger) festlegen zu kdénnen. Von da an sagt uns jedes
Zeigerzeichen, wo ein Datenelement aufhért, und wir wissen, daB das nédchste
Datenelement ein Zeichen weiter beginnt. Die hier angegebene Routine setzt eine
regelmaBige Struktur von acht Datenelementen voraus, aber das ist nicht unbedingt
nétig. Man kdnnte auch eine beliebige Anzahl von Datenelementen bis zur maxima-
len Stringlange eingeben und am Anfang von PTR$ ein zusatzliches Zeichen
einfiigen, das die Anzahl der Datenelemente festhalt. Die Schieife, die die Daten-
elemente wieder isoliert, wirde dann mit diesem Zeichen die Anzahl der erwarteten
Zeigerzeichen bestimmen.

Dieses Verfahren ist wesentlich schneller, als wenn das Programm den String
Zeichen fir Zeichen nach Trennzeichen durchsuchen miBte. Der Hauptnachteil
liegt darin, daB es die Lange einer einzelnen Eintragung auf 255 Zeichen minus der
fUr die Zeiger bendtigten Anzahl von Zeichen beschréankt. Fir die meisten Dateien
sind jedoch 255 Zeichen mehr als genug; wenn nicht, nimmt man einfach zwei oder
mehr verdichtete Strings fur jede Eintragung.

133

VERDICHTETE STRINGS MIT NUMERISCHEN FELDZEIGERN

Die Verwendung verdichteter Strings in der oben beschriebenen Weise ist insofern
von Nachteil, als die Berechnung des ASCII-Wertes der einzelnen Zeichen zeitrau-
bend sein kann, wenn viele Datenelemente verarbeitet werden. Noch stérender ist,
daB die meisten im Zeigerabschnitt des Feldes erzeugten Zeichen nicht druckbar
sind. Das ist ohne Belang, wenn sie im Arbeitsspeicher abgelegt sind, aber der C 64
kann solche Zeichen nicht ohne weiteres auf Band oder Diskette abspeichern. Um
einen einzigen verdichteten String im obigen Format auf Kassette aufzuzeichnen,
brauchte man eine Routine wie folgt:

19080 FORI=1TOB:PRINTH1 ,ASC(MID$(IN$, I>:INE
KT 1
110 PRINT#1 ,MIDS$SC IN$,3)

und um die Daten zuriickzubekommen, m{iBte man diese oder ahnliche Zeilen
eingeben:

180 IN$="":FORI=1TOS: INPUTH! ,TT: IN$=IN$+CH
RECTTOIINEXT I
110 INPUTH1 , TT$: INS=INS+TTS$

Das ganze Ubersetzen zwischen Zahlen und Zeichen beim Laden und Speichern
braucht Zeit, die sich verkirzen 148t, wenn man die Zeiger in einem numerischen
Feld ablegt, wie es im Abschnitt Gber das Ablegen von Zahlen in Strings beschrie-
ben wurde. Das geht zwar nur, wenn die Anzahl der Datenelemente in jedem
verdichteten String bekannt und regelmaBig ist, vereinfacht jedoch das Speichern
und Laden betrachtlich. Wenn man Zeiger in einem Integerfeld ablegen will, muB
man zunéchst bestimmen, wie viele Datenelemente man in jedem String unterbrin-
gen will, und dann ein Integerfeld dimensionieren, das in jeder Zeile halb soviele
Elemente hat (plus eins, wenn die Zahl ungerade ist). Um also eine Datei mit
Datensdtzen zu je 9 Elementen zu verarbeiten, wére ein Feld der Form
ARRAY%(500,4) zu dimensionieren und die folgende Eingaberoutine zu ver-
wenden:

108 DIM ARRAYXZ(500.4)
1805 INPUT X

118 FORI=GTOS

120 INPUT TT$

138 IN$=INE+TTS$

134

1480 NN=ARRAYX(X,1/2)-65536% (ARRAYX (X, 1/ 2
<)

150 IF I AND I THEN NN =258x%INT(NN-/256)+
LENCINS)

168 IF NOT I AND 1 THEN NN=NN-256% INT (NN
/256 +256 xLENC IN$)

1780 ARRAYAN(X,1/2)=NN+E5536%(NN>32767)

180 NEKXKTI

Diese Zeilen sehen eher abschreckend aus, enthalten aber nichts, was uns nicht
schon bekannt wére. Die Routine ist tatséchlich das Gegenstick zur Eingaberoutine
aus dem Abschnitt Uber das Speichern von Zahlen in ein Integerfeld.

Eine solche Struktur zu zerlegen, ist wiederum umstandlicher, als einfach Zeichen
im String als Zeiger zu benutzen:

200 Pl1=1
218 FORI=OTOS

215 NN=ARY (X, 1/2)-685536%(ARX(X,1/2)<@)
220 IF NOT I AND 1| THEN P2=INT(NN/256)

225 IF I AND 1 THEN P2=NN-256x%INT(NN/256
)

230 PRINTMID#C(INS,P1,P2-P1+1)

2490 Pil=Pa+1

250 NEXTI

Man kann beide Routinen zusammen durchlaufen lassen, um Datenelemente
einzufligen und aus einem String abzurufen, weil der Wert von ‘X’ nicht definiert,
also Null ist. Gewdhnlich schreibt ein anderer Teil des Programms die Stelle vor, auf
die das neue Datenelement abzulegen ist.

Ob Sie dieses Verfahren (berhaupt anwenden wollen, hangt vom Umfang der
notwendigen Lade- und Speicherarbeit im Verhaltnis zum Umfang der Operationen
ab, denen die einzelnen Datenelemente unterworfen werden sollen. Tats&chlich
dauert es doppelt so lange, flr ein so gespeichertes Datenelement die Zeiger
herauszusuchen oder einzusetzen, wie bei dem Verfahren, das in einem String
dargestellte Werte verwendet. Es ist trotzdem eine nitzliche Bereicherung lhres
Methodensortiments und merkenswert — wenigstens aus Griinden der Abwechs-
lung. Im nachsten Kapitel untersuchen wir weitere Datenstrukturen, die erheblich
schwieriger zu programmieren sind, die aber auch sehr viel Zeit und Speicherplatz
sparen helfen.

135

136

KAPITEL 10

DATENSTRUKTUREN II

Im letzten Kapitel haben wir uns einige nette und einfache Methoden der Datenspei-
cherung angesehen, mit denen sich verschiedene Probleme l6sen lassen. In
diesem Kapitel wenden wir uns Datenstrukturen zu, die ebenfalls Schwierigkeiten
aus dem Weg schaffen kdnnen, aber bei weitem aufwendiger zu programmieren
sind.

VERKETTETE LISTEN

Sie haben sicher bemerkt, daB wir bisher bei der Diskussion von Datenstrukturen
fir Zahlen sehr oft Techniken eingesetzt haben, die das Verschieben von Daten
zum Teil einschrdnken. Um einen Bytewert in die erste Position eines numerischen
Feldes einzusetzen, missen alle vorhandenen Daten im Feld um eine Stelle nach
hinten verschoben werden. Wie wir gesehen haben, wird beim Ablegen von Werten
in einen String automatisch alles verschoben, wenn ein Element am Anfang
hinzugefligt werden soll. Manchmal allerdings kénnen sowohl bei Zahlen als auch
bei Strings die Daten praktisch nur in einem Feld wie etwa A$(500) abgelegt
werden, wobei jede Eintragung eine Zeile des Feldes bendtigt. Vorausgesetzt, die
Daten beginnen in Zeile Null des Feldes, macht das Einsetzen eines neuen Wertes
nahe dem Anfang das Verschieben groBer Datenmengen erforderlich, um den
notigen Platz zu schaffen. Das kann sehr zeitaufwendig sein und auBerdem Pro-
bleme der Garbage Collection aufwerfen, die wir in Kapitel 3 angesprochen haben.
Die Ldsung eines solchen Problems besteht oft darin, die Daten in der Reihenfolge
der Eingabe zu speichern und getrennt aufzuzeichnen, wo jedes Element sich
befdnde, wenn das Feld die gewtiinschte Ordnung hatte, z. B. die alphabetische
Ordnung bei Strings. Bei einer ‘verketteten Liste’ ist an jedes Element der Liste die
Adresse desjenigen Elements angehangt, das in der gewiinschten Ordnung das
ndchste ist. Nehmen wir zum Beispiel eine Menge von drei Stringelementen: AAA,
CCC und DDD. Wenn wir ein neues Element BBB an den alphabetisch richtigen Ort
einfigen wollen, brauchen wir nicht CCC und DDD zu verschieben, um Platz dafir
zu machen. Es reicht, dem Element AAA irgendwie einen Zeiger anzuhangen, der
dem Programm sagt, daB das nachste Element in alphabetischer Reihenfolge nicht
Element 2, sondern Element 4 ist. Ist Element 4 gefunden, so muB diesem ein
Zeiger angehangt sein, der dem Programm sagt, daB das nachste Element in
Position 2 zu finden ist. Wenn jedes Element den richtigen Zeiger besitzt, arbeitet
das Programm die Elemente in der Reihenfolge 1, 4, 2, 3 ab.

137

Um die Methode zu veranschaulichen, die wir verwenden wolien, schneiden Sie
sechs kleine Quadrate von etwa 5 cm Seitenlanger aus Papier aus und ziehen Sie
quer Uber jedes eine Linie. Die obere Halfte jedes Quadrats soll den Zeiger auf das
nachste Element der Liste enthalten, die untere jeweils das zu speichernde Ele-
ment. Schreiben Sie auf einen der Zettel ‘1’ auf die obere Halfte (ziemlich klein, weil
die Zahl noch geédndert werden soll) und ‘START' auf die untere. Auf einen anderen
Zettel schreiben Sie oben ‘65535’ und unten ‘STOP’. Legen Sie diese Zettel
nebeneinander und lassen Sie daneben Platz, um die vier anderen Zettel in einer
Reihe abzulegen. Von jetzt an fligen wir in alphabetischer Reihenfolge Zettel ein,
wobei START jedem neuen Zettel im Alphabet vorangehen und STOP ihm folgen
soll.

Nehmen Sie jetzt einen anderen Zettel und schreiben Sie ‘BBB’ auf die untere
Hélfte. Nach der obigen Regel kommt BBB nach START, also sehen Sie sich die
obere Halfte von START an und gehen zum angezeigten Zettel (sie sind von null an
numeriert). Der angezeigte Zettel ist offensichtlich STOP, und BBB sollte vorher
kommen, also haben wir die richtige Position fir BBB gefunden: unmittelbar nach
START und vor STOP.

Jetzt kommt das Entscheidende. Verschieben Sie nicht die beiden vorhandenen
Zettel, sondern legen Sie den Zettel BBB in der dritten Position ab (Position 2, wenn
von null an gezahlt wird). Streichen Sie die ‘1’ in der oberen Halfte von START und
ersetzen Sie sie durch '2'. START zeigt nun auf den neuen Zettel BBB. Schreiben
Sie ‘1’ oben auf den neuen Zettel, denn der nachste Zettel in alphabetischer
Reihenfolge ist STOP. Wenn Sie jetzt den Zeigern oben auf den Zetteln von START
an folgen, erhalten Sie die Reihenfolge START, BBB, STOP.

Nehmen Sie nun einen weiteren Zettel und tragen unten ‘DDD’ ein. Folgen Sie den
Zeigern so weit, bis ein Zettel kleiner als DDD ist, aber der néchste grdBer. In
unserem Fall sind Sie dann hinter BBB und vor STOP. Legen Sie DDD in die vierte
Position. Streichen Sie die ‘1’ auf BBB und ersetzen sie durch ‘3’. Schreiben Sie ‘1’
auf DDD, um anzuzeigen, daB der nachste Zettel STOP ist. Die Zeiger ergeben nun
die Reihenfolge START, BBB, DDD, STOP.

Mit den Ubrigen beiden Zetteln miBten Sie jetzt selbst zurechtkommen. Einer wird
‘AAA’, der andere ‘CCC’. Am Ende des Verfahrens sollten die Zeiger die Reihen-
folge START, AAA, BBB, CCC, DDD, STOP ergeben. Beachten Sie, daB dies nichts
mit der Reihenfolge der Zettel auf dem Tisch zu tun hat: Die Reihenfolge kommt nur
Uber die Zeiger zustande, und zwar ohne je etwas verschieben zu mussen, das
schon abgelegt ist. Wenn Sie das verstanden haben, kénnen Sie nachvollziehen,
wie dieses Verfahren in BASIC durchgefiihrt wird. Dabei arbeiten wir mit Strings in
einem Feld und verwenden ein paralleles Integerfeld, um die Zeiger abzulegen.
Die nachste Routine erzeugt eine verkettete Liste in alphabetischer Reihenfolge:

138

1008 RE Mk ok ok ok ok ok ok ok ok o ok ok ok 3ok K

1601 REM VERKETTETE LISTE

18002 REM¥kdokokkkdkkokkkkkkkkk

1190 DIM A$(439), AX(499):1T=2:H0=0
1110 A$(0)=CHR$(8>

11286 AF(])=CHR#%(255)

1138 AZ@r=1

1148 AX(1)=32767

1158 INPUT"WORT EINGEBEN"? IN%: IF IN$="END
E"THENSTOP

1168 ADD=0

1170 FORI=1TOIT-1

1180 TT=ADD

1188 ADD=AX(ADD)

12080 IFA$(ADD) < INSTHENNEXTI

1218 AXC(TT>=IT

1228 ASCITI=INS:AX(IT)=ADD

1230 IT=IT+1

1248 GOTO1150

Da zu dieser Routine einige Erklarungen nétig sind, gehen wir sie Zeile fur Zeile
durch:

1100 A$ ist das Hauptfeld zum Speichern der Daten, in A% werden die Zeiger
abgelegt, und IT bedeutet die Anzahl der schon gespeicherten Elemente. IT wird
zunachst auf 2 gesetzt, weil das Feld zwei Hilfselemente enthalt, die Anfang und
Ende der verketteten Liste markieren. Die Variable HO wird spéter erklart.

1100—1140 Das sind die beiden Hilfselemente, also START und STOP in unserem
Beispiel. Der ersten Position (Adresse 0) des Feldes wird ein Element zugewiesen,
dessen Zeiger auf die zweite Position (Adresse 1) zeigt und das den Inhalt CHR$(0)
hat. Das bedeutet, bei allen gewdhnlichen Strings ist dieses Element immer das
alphabetisch erste des Feldes. In der zweiten Position des Feldes steht ein Element,
dessen Zeiger-Komponente auf 32767 zeigt (dieser Wert wird nicht gebraucht, da
das letzte Element auf nichts zu zeigen hat), und dessen Daten-Komponente ein
einzelnes Byte mit dem Wert 255 ist. Dieses Element wird immer das letzte der
Datei in alphabetischer Reihenfolge sein. Diese beiden Eingaben haben den Grund,
daB es wie bei vielen anderen Datenstrukturen einfacher ist, mit einer funktionsfahi-
gen Datei anzufangen, als mit Hilfe besonderer Abfragen in der Routine zu testen,
ob ein neues Element an den Anfang oder das Ende der Liste gehort. Das erste und

139

das letzte Element der Datei mussen anders behandelt werden, weil auf das erste
von keinem Element aus gezeigt wird und das letzte auf kein Element zeigt. Bei
vielen Methoden der Datenspeicherung gibt es Probleme mit ersten und letzten
Elementen, und héaufig ist es einfacher, das Problem zu umgehen und eine
kinstliche erste und letzte Zeile einzufligen, wenn das Feld eingerichtet ist.

1160 In der Variablen ADD wird die Position des gerade untersuchten Elements im
Feld gespeichert; sie z&hlt von null an.

1170 Die maximale Anzahl an Vergleichen zwischen dem eingegebenen Element
und den vorhandenen Elementen ist gleich der Anzahl der Elemente im Feld.

1180 TT ist normalerweise die Position des bei der alphabetischen Suche zuletzt
gepriiften Elements. Wir mussen sie uns fiir den Fall merken, daB das neue Element
zwischen dieses und das nachste eingeflgt werden muB, weil dann der Zeiger des
Elements in TT geandert werden muB.

1190 In ADD wird nun die Position abgelegt, auf die der Zeiger des Elements in TT
zeigt, namlich auf das nachste Element in der verketteten Liste.

1200 Falls das aktuelle Element in ADD nicht gréBer als das neue Element ist,
haben wir nicht die richtige Stelle gefunden, also bringt uns die Schleife den Zeigern
folgend zum nachsten Element.

1210 Wenn wir hier angekommen sind, ist die korrekte Position fir das neue
Element erreicht. Der Zeiger des Elements in TT muB jetzt so gedndert werden, daB
er auf die Position zeigt, in die ein neues Element eingegeben wird, d. h. Position IT.

1220 Das neue Element wird eingegeben. Sein Zeiger zeigt auf das Element, auf
das vorher vom Element in TT gezeigt wurde.

1230 IT wird um eins erhdht, um festzuhalten, daB jetzt ein weiteres Element
vorhanden ist.

Um zu uberprifen, ob die Routine ordnungsgemaB funktioniert, geben Sie folgende
Zeilen ein, die die Liste in alphabetischer Reihenfolge ausdrucken:

140

1152 IF IN$="ANZEIGE "THENGOSUB200@:G0TO11
50

2000 REMk k ¥k ok X xk ¥k ok 5k ok % % % % k

2881 REM ANZEIGE LISTE

2002 REM %k ok d ok ok k Aok d ok ok k ok %

2010 ADD=0:FORI=1TO IT-HO-2

2020 PRINTA$(AX(ADD)>)>:ADD=AX(ADD>

2038 NEXTI:RETURN

Hierbei dient das Zeigerbyte jedes Elements zum Auffinden der Adresse des
néachsten. Wieder wird die Variable HO verwendet — sie wird nach der nachsten
Routine erkléart.

Gel6scht wird nach einem ahnlichen System. Diese Routine I6scht ein numerisches
Element aus der Liste — genauso einfach ware es, den String anzugeben und vor
dem Ldschen in der Liste danach zu suchen.

1154 IFIN$="LOESCHEN"THENGOSUB3080:G0TO1

158e

3000 REMk ok kok %k xk ok % &k ok ok % %

3801 REM LOESCHEN WORT

3002 REMk ok ok ok dkokkkokkkkk

3018 INPUT"ZAHL DES ZU LOESCHENDEN WORTE
" 2NN

3028 P2=0:FORI=0TONN-1

3838 Pl1=P2:Pa2=AX(P2)

3048 MNEXTI

30580 AX(P1)=AX(P2):HO=HO+1:RETURN

Beachten Sie, daB nichts wirklich geldscht wird; es wird nur der Zeiger des
Elements vor dem zu Idschenden gleich dem Zeiger des zu I6schenden Elements
gesetzt. Das Element vor dem zu I6schenden zeigt dann auf das Element nach dem
zu léschenden, und das Programm weiB nichts mehr vom geléschten Element,
obwohl es noch immer vorhanden ist. Wenn Sie es wirklich I6schen wollen, missen
Sie eine Zeile hinzufigen:

3845 AS(AX(P1))=""

141

In dieser Routine wird die Variable HO jedesmal um eins erhéht, wenn eine Element
geldscht ist. Das mag seltsam erscheinen, weil es naheliegender ware, einfach den
Wert von IT um eins zu vermindern. Das Problem dabei ist aber, daB neue Elemente
stets am Ende der Liste eingefiigt werden und IT das Ende der Liste anzeigt. Weil
wir nicht wirklich beim Léschen oder Einfigen die Adresse irgendeines Elements
andern, wurde ein Verkleinern von IT bedeuten, daB ein neues Element ein schon
vorhandenes Uberschreibt. Weiter unten in diesem Kapitel werden wir untersuchen,
was dagegen zu tun ist, daB auf diese Weise platzverschwendende ‘Lécher’ im Feld
zuruckbleiben.

Verkettete Listen lassen sich mit Gewinn in Programmen einsetzen, in denen
regelmaBig Listen erzeugt werden missen. Sie haben jedoch den Nachteil, daB nur
von den Enden her auf sie zugegriffen werden kann, in diesem Fall nur von einem
Ende her, dem Listenkopf. Man kann auch Listen erzeugen, die vorwérts und
rickwérts verkettet sind, indem man zwei Zeiger verwendet, von denen einer auf
das vorhergehende Element und der andere auf das dahinter zeigt. Aber auch dann
kann man nur am Anfang und am Ende verninftig starten. Springt man in eine
verkettete Liste, ist es unmdglich zu entscheiden, an welcher Stelle innerhalb der
Liste man sich befindet. Man kennt nur die Adresse eines benachbarten Elements.
Anders gesagt: Wenn man das 30. Element einer verketteten Liste erreichen will,
kann man nicht unmittelbar darauf zugreifen, sondern muB dem beschwerlichen
Weg der 29 vorausgehenden Zeiger folgen. Im nachsten Abschnitt untersuchen wir
einen Ausweg aus diesem Dilemma.

ZEIGERSTRINGS

Wie wir im letzten Abschnitt gesehen haben, kann man eine geordnete Liste
erzeugen, ohne standig Elemente in einem Feld umherschieben zu missen.
Elemente kdnnen einfach an das Ende eines Feldes angehangt werden, wobei
einem getrennten Zeigerfeld die Aufgabe Uberlassen bleibt, ihre richtige Position zu
bestimmen. Dabei ergab sich das Problem, daB8 man nicht in die Liste springen
konnte, wenn man z. B. die Position des 30. Elements bestimmen wollte. Wir haben
jedoch im vorigen Kapitel und in Kapitel 3 eine Art der Datenstruktur kennengelernt,
die Einfligungen von Elementen in ihre richtige Position erlaubt, ohne die vorhande-
nen Elemente zu verschieben: den String. Wir wissen auch, daB man Zahlen in
Strings speichern kann, und haben mit Verfahren experimentiert, die genau das
ermoglichen, was mit einer verketteten Liste nicht geht, namlich auf jede beliebige
Position im String zuzugreifen. Wenn wir dazu berlcksichtigen, was wir Gber Zeiger
gelernt haben, sind wir beim Zeigerstring — einer Methode, mit der wir mitten in ein
Feld springen kénnen und dennoch den Vorteil behalten, neue Elemente einfigen

142

zu koénnen, ohne erst Platz durch Verschieben des bestehenden Listeninhalts

schaffen zu muissen.

Dazu brauchen wir nur eine neue Technik, um Zahlen im Bereich 0—65535 in ein
Feld von Strings einzusetzen, deren Gesamtldnge variabel ist. Es dhnelt einem
Verfahren aus Kapitel 3 und |48t sich z. B. mit der nachstehenden Routine reali-

sieren:

4000 REMk ok kok ok % ok ok ok ok % ok % ok k %k k

4801 REM INITIALISIERUNG

4002 REMX %k ok k ok ok % ok ok ok ok 3k ok k k %

4910 DIM PTR#(19):1T=0:HO=0

4020 FORI=0TO1:FORJ=1T0O125:PTR$(1)=PTR$(
1>+"@1" :NEXTJ, 1: IT=250

SOB0 RE MKk ok k k ok k ok ok ok ok k ok

5881 REM EINGABE TERM

SO02 REMk & ok dk ok %k %k ok & ok ok % k%

S@10 INPUT"ZAHL (1-32767) ";

5020 NN$=CHR$(NN/256) +CHR$ (NN-256 % INT (NN
/2565)

5030 GOSUBS00O

5048 PTR$(LL)=LEFT$(PTR$(LL),2¥LP-2) +NN$
+MID$(PTR$CLL) ,24%LP-1)

5050 IT=1T+1

5060 GOSUB9000

5870 GOTOS010

8000 RE Mk k ok 3k ko 3k ok 3 ok 3 ok ok ok 3k ok ok ok ok

8001 REM POSITIONS BESTIMMUNG

8002 REIMK & ok k ok 3k ok 5k ok ok 3 ok 3 ok ok ok ok 3k ok ok ok

8010 PRINT"POSITION (1 BIS":;IT+1+(NN<=8)
$") "::INPUTPP

8020 LL=INT((PP-1>/125):LP=PP-125%LL
8030 RETURN

9008 REMk %k ok sk ok % ok & 1k ok ok ok &k 2k ok ok 3k ok ok ok

9981 REM SETZEN DES STRINGS

9002 REM k% dk ok %k sk ok 3 ok ok ok ok ok 3k ok ok ok ke k

9910 FORI=0TO18

9020 IFLEN(PTR$(1))<=250THEN9®50

9030 PTR$(I+1)=RIGHT$(PTR$(1) ,LENCPTR$(I
))-2)

143

9040 PTREC(II=LEFT$(PTR$(I) ,LEN(PTR¥C(1))-
2

98580 NEXTI

9868 RETURN

Beachten Sie, daB Zeile 4020 voridufig ist und nur die Routine testen soll.
Lassen Sie die Routine durchlaufen, und geben Sie auf Abfrage folgende Werte als
Zahl und Position ein:

16705
251

1696e
25e

17219
253

isgez
1

16705
1

16362
126

16785
126

Wenn Sie nun das Programm mit STOP/RESTORE stoppen, kénnen Sie die
Funktionsfahigkeit der Routine priifen, indem Sie direkt, d. h. ohne Zeilennummer

?PTR$(©>

eingeben, worauf ein 01-String ausgegeben werden miite, dem AABB vorausgeht,
das heiBt die als Zwei-Byte-Zeichenpaare dargestellten Zahlen 16705 und 16962.
Die Eingabe

PTR$C 1)

144

sollte dasselbe liefern.
Der eigentliche Test besteht jetzt in der Eingabe

?PTR$C2)

die den String 01010101AABBCC ergeben muBte. Ein Abzéhlen der Zeichen in den
ersten beiden Strings muBte sechs volle Zeilen plus 10 weitere Zeichen auf dem
Bildschirm erkennen lassen. Wenn all das zutrifft, kann die Routine Zwei-Byte-
Zahlen uber die volle Lange der Daten aufnehmen und die brigen Daten automa-
tisch so verschieben, daB kein einziger String langer ist als 250 Bytes.

E000 REMkk k% 3 % ok 3k o o ok 5 ok 3k ok 3k oK ok kK k

6001 REM LOESCHEN YOM STRING

002 REMK ok ko ok 3k 3 ok ok 3 ok 3k ok ok ok ok ok ok kXK

601@ PRINT"LOESCHEN": :G0SUBB0OOB

6828 PTR$(LL)=LEFT$(PTR#$(LL)> ,2%LP-2)+MID
$(PTR$(LL) ,2%LP+1)

6038 GOSUB9SQO0

6040 RETURN

S50@ REMk koK ok ok ok 3k ok 2 o ok ok ok ok o ok ok ok Kok ok ok ok k k k k

9501 REM SETZEN DES STRING ZUM LOESCHEN

9502 REMkkkkkkkkkkokkkkkkkkkkkkkkkkkkkkxk

8518 FORI=0TO18

9520 IF LEN(PTR#%(I))>=2580R LEN(PTR$(I+1
Y)=0 THEMN 3558

89530 PTR$S(II=PTRECII+LEFTE(PTR$(1+1) ,2)

9540 PTR$E(I+1)=MIDS(PTR$C(I+1),3)

95580 NEXTI

9568 RETURN

Zum Loschen von Elementen brauchen wir nur noch eine leicht (berarbeitete
Version der Einflige-Routine anzubinden, sowie eine weitere Zeile, mit der zu
diesem zweiten Programmteil gesprungen wird:

5015 IF NNK=@THENGOSUBEP®B®:GOTO S010

Lassen Sie jetzt die ganze Routine durchlaufen und geben Sie ein:

16785
1

145

16705
126

16785
251

Das setzt AA an den Anfang der ersten drei Elemente des Stringfelds. Auf die
nachste Abfrage nach einer Zahl geben Sie O ein, und wenn Sie nach der zu
I6schenden Zahl gefragt werden, antworten Sie mit ‘1. Beim Stoppen des Pro-
gramms mit STOP/RESTORE sollten Sie feststellen, daB PTR$(0) und PTR$(1)
einen 01-String mit AA am Ende enthalten und PTR$(2) den String 0101. Demnach
kann sowohl eingefigt als auch geléscht werden, wobei jeweils die Ladnge des
Strings angepaBt wird. Zeile 4020 kann jetzt gestrichen werden.

Wir wissen jetzt genug, um mit einem Zeigerstring umgehen zu kénnen: Wir
brauchen ihm jetzt nur noch etwas zu geben, auf das er zeigen kann. In der
nachsten Routine werden Strings in alphabetischer Reihenfolge in ein Feld einge-
flgt. Der Trick dabei besteht darin, die Strings nicht einfach von Position Null bis
zum letzten Element durchzugehen, sondern sie bei jeder neuen Eingabe in der
durch den Zeigerstring vorgeschriebenen Reihenfolge zu untersuchen. Hier ist die
Routine:

4000 REMkkkkkkkkkkkkkkkkk

4001 REM INITIAL ISIERUNG

4002 REMxkokkkkkkkkkkkkkkk

4910 DIM PTR$(18) ,A%$(499):11T=2:HO=0

4820 A$F(0)=CHR$(@)>

4030 A%(1)>=CHR$(255)

4048 PTR$(0)=CHR%(0) +CHR$(0) +CHR$(®) +CHR
$(1)

SO00 REM*kkkokkkkkkkkkkk

5001 REM EINGABE WORT

SO02 REMk %k dkodkok ok ok ok %ok ok %k

5010 INPUT"BITTE WORT EINGEBEN "; IN$
5014 IF IN$="ENDE"THENSTOP

5018 IF IN$="ANZE IGE "THENGOSUB700@:G0TOS
210

Se2e GosuBseoo

5038 NN$=CHR$(IT/256)+CHR$(IT-25S6%INT(IT
/2562)

50480 PTR$(LL)=LEFT$(PTR$(LL) ,2%LP-2)+NN$

146

+MIDS(PTRE(LL> ,2%LP-1)

S850 ASC(ITI=INS

56868 GOSUBSO0B

S87e 1T=1T+1

5680 GOTOSO10

7000 RE Mk ok ok ak % ok ok ok ok ok ok o ok ok ok ok

7681 REM LISTE ANZEIGEN

7002 REM* k¥ kkkkkkkkkkkkik

7005 IFIT-HO=2THENRETURN

7818 FORPP=2TOIT-HO-1

7028 LL=INT((PP-1)>/125):LP=PP-125%LL
70380 PA=256*%ASC(MID$(PTR$C(LL) ,2%LP-1))+A
SC(MIDS(PTR$(LL) ,2%LP)>)

7848 PRINTA$(PA)

70580 NEXTPP

7068 RETURN

8000 REMkkkokkokkkkkkkkkkkk

8001 REM POSITION SETZEN

3002 RE Mk k k k ok ok o ok ok ok ok ok ok ok ok ok k

8010 FORPP=1TOIT-HO

8028 LL=INTC((PP-1>/125):LP=PP-125%LL
8030 PA=256*ASC(MIDH(PTREH(LL) ,2%LP-1))+A
SC(MIDSE(PTRE(LL) ,2%LP)

8040 IFASC(PAICINSTHENNEXTPP

8058 RETURN

SO0 RE Mk %k ok 3k % ok 3k 3k % ok ok ok 3k 3k 3k ok %k ok K

398081 REM SETZEN DES STRING

9002 REMkkkkkkkkkokkkkkkkkkk

89019 FORI=BTO18

9020 IF LENC(PTR$(I1))><{=2350THENS0S5@

9030 PTR$C(I+1)=RIGHTSH(PTR$(1),2)+PTR$(1+
1)

9240 PTR$C(I)>=LEFTH(PTR#(1) ,LEN(PTR$(I)) -
2)

898580 NEXTI

39060 RETURN

Ab 8000 liest die Routine das Stringfeld in der vom Zeigerfeld vorgeschriebenen
Reihenfolge, wobei die richtige Adresse jedes Elements im Feld A$ in der Variablen
PA abgelegt wird. Wenn die richtige Position endeckt ist, ist sie schon in den

147

Variablen PP, LL und LP gespeichert. Diese werden an die Routine bei 5000
Ubergeben, die schon darauf eingerichtet ist, die Position zu ibernehmen, die durch
diese drei Werte definiert wird. Bei 5000 hat die Routine eine einzige wichtige
Anderung: NN$ — also die beiden Zeichen, in denen der neue Zeiger bis zu seinem
Einsatz abgelegt wird — ist eine Ubersetzung von IT, das sowohl die Anzahi der
bisher gespeicherten Elemente als auch die Nummer des ersten freien Elements im
Feld A$ darstellt.

Wie die beiden Routinen zusammen arbeiten, kann man testen, indem man auf
Abfrage PRINT eingibt. Daraufhin wird die Routine ab Zeile 7000 aufgerufen, die
ganze Liste in der Reihenfolge der in PTR$ enthaltenen Werte auszudrucken.

LOSCHEN MIT ZEIGERN

Nachdem wir die bei Einfligungen entstehenden Probleme bewaltigt haben, kénnen
wir uns dem Ldschen unter Verwendung eines Zeigerfelds zuwenden. Wir haben
schon eine Routine zum Léschen einzelner Elemente aus einem Zeigerfeld. Diese
wollen wir so modifizieren, daB der Benutzer nicht mehr aufgefordert wird, die
Nummer des Elements anzugeben, sondern das Element selbst eingeben kann,
worauf das Feld danach durchsucht wird und das Element und der Zeiger geldscht
werden. Fugen Sie folgende Zeilen an die oben abgedruckte Routine an:

58012 IFIN$="LOESCHEN"THENGOSUBE0@8:G0TOS
210

6000 RE Mk ok sk ok ok 5k ok ok %k ok ok %k k k

6001 REM WORT LOESCHEN

B002 REMY k %k % % ¥ ¥ ok ok ok ok Kk K

601@ INPUT"ZU LOESCHENDES WORT ":IN$:GOS
UuBgess

5020 IF IN$< >A$(PA)THENRETURN

6038 PTR$S(LL)=LEFT$(PTR$(LL) ,2%LP-2)+MID
$(PTR$(LL) ,2xLP+1):6G0SUB3560

6048 HO=HO+1:A$(PA)=""tRETURN

SSO0G RE Mk ok ook 3k ok ok ok ok ok 3ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok K
9581 REM SETZEN D. STRING ZUM LOESCHEN
S502 REMk ok sk ok dk ok sk ok ok ok o ok ok ok ok ok ok ok ok o ok o ok ok ok ok ok ok k K
8510 FORI=0TOl8

89520 IFLEN(PTR$(1))>=2500RLEN(PTRE(I+1))
=08THENISS548

9530 PTREC(ID=PTRE(I)+LEFTH(PTR$(I+1) ,2)¢

148

PTREC(I+1)=MIDE(PTRE(I+1),3)
89548 NEXTI:RETURN

Zum Auffinden der richtigen Stelle wird dasselbe Verfahren wie beim Einfligen
eines Elements angewendet: Die Liste wird in der durch den Zeigerstring vorge-
schriebenen Reihenfolge nach dem ersten Element durchsucht, das alphabetisch
groBer als das neue Element ist. Nach dem Ricksprung aus dieser Suchroutine
wird das gefundene Element mit dem zu Iéschenden verglichen und nur dann
geldscht, wenn beide gleich sind. Wenn das vorgegebene Element gefunden ist, ist
seine Position schon in der Variablen PA und seine Zeigerposition in LL und LP
gespeichert.

Sie sollten jetzt in der Lage sein, eingegebene Elemente zu I&schen.

SCHWARZE LOCHER

Es bleibt ein letztes Problem zu lésen, ndmlich was mit den beim Ldschen von
Elementen im Feld zurlickbleibenden Liicken zu tun ist. Wenn wir nichts dagegen
tun, wird das Feld allmahlich mit solchen Liicken durchsiebt, bis sie so iberhand-
nehmen, daB kein Platz mehr fiir Daten bleibt, obwohl das Feld womdglich fast leer
ist. Dem kann man mit einer schon angedeuteten Methode abhelfen, und zwar mit
dem Einsatz eines Stacks. In unsere Zeigerfeld-Routine kbnnen wir eine neue Zeile
einfligen:

5065 ES$=CHR$(PA. 256> +CHR$(PA-256%xINT(PA
/2561) +tESS$

Auf diese Weise wird jede erzeugte Licke in ES$ aufgezeichnet, und wir missen
dann nur noch die Einflige-Routine (berreden, davon Kenntnis zu nehmen. Dazu
werden einige Zeilen der obigen Routine geandert:

5822 TT=IT:IFLENCES$)=0THENSO30

5829 TT=256*%ASC(ES$) +ASC(MIDF(ES*,2))
5026 ES$=MID$(ES%$,3)

52228 I1T=1T-1:HO=HO-1

5030 NMNE=CHR$(TT/256) +CHR$(TT-256% INT(TT
/236))

5858 AL(TTI=IN$

149

Nachdem diese Zeilen eingegeben sind, wird jedes neu eingegebene Element
immer in die erste freie Stelle des Feldes abgelegt. Erst wenn keine Licken mehr da
sind, wird das Element hinten angehangt.

SCHLUSS

Wenn Sie dieses und das vorige Kapitel durchgearbeitet haben, ist Ihnen sicher
klar, daB Sie sich nicht etwa morgen hinsetzen und alle diese Methoden in lhrem
nachsten Programm anwenden sollen. Die hier beschriebenen Datenstrukturen
sollen Sie an die vielen Méglichkeiten erinnern, den Speicher thres C 64 zu nutzen:
Alle haben ihre besonderen Starken und Schwachen, und alle kdnnen bei der einen
oder anderen Gelegenheit zweckmaBig sein. Die Beschéftigung mit ernsthaftem
Programmieren wird es wahrscheinlich mehr als einmal mit sich bringen, daB3 ein
bestimmter Datensatz — vielleicht nur 10 oder 20 irgendwo in einem Programm
benutzte Elemente — Sie in Verlegenheit bringt. Dann ist es an der Zeit, sich dieses
Kapitel noch einmal vorzunehmen und hoffentlich in einem der vielen hier darge-
stellten Verfahren die Antwort zu finden, die Sie die ganze Zeit Giber gesucht haben.

150

KAPITEL 11

EINFUGEN VON DATEN

Um nicht zuviel auf einmal zu erkldren, haben wir bisher die Frage ignoriert, auf
welche Weise man neue Daten am schnelisten in ein Feld einfugt und gezielt die
richtige Stelle daflr findet. In diesem Kapitel untersuchen wir, wie groBe Datenfel-
der verschoben werden, wie schnelle Recherchen durchgefiihrt werden, und wie
man diese mit den Zeigerfeld-Techniken aus dem vorigen Kapitel verbindet.

NORMALES SUCHEN UND VERSCHIEBEN

Die programmiertechnisch weitaus einfachste Methode, ein Element in ein geord-
netes Feld einzufligen, besteht darin, das Feld Element fir Element zu durchsuchen
und alle Elemente im AnschiuB an den gesuchten Ort eine Stelle weiter zu
schieben. Nach Ansicht vieler ist es am glinstigsten, vom Ende des Feldes her zu
suchen, jedes Element mit dem einzufligenden zu vergleichen und es zu verschie-
ben, wenn es sich als eines von denen herausstellt, die verschoben werden
miBten, um weiter vorn im Feld Platz fir das neue Element zu schaffen. Ob das
richtig ist oder nicht, hdngt davon ab, ob die zur Suche nach der richtigen Position
eines Elements bendtigten Zeilen mit denen kombiniert werden kdnnen, die die
Daten verschieben, damit das neue Element aufgenommen werden kann.

Das nachste Listung gehdrt zu einer einfachen Routine, die erst ein geordnetes
Zahlenfeld initialisiert, dann das Feld nach der richtigen Stelle zum Einfugen eines
neuen Elements durchsucht und dann durch Verschieben von Daten dafiir Platz
macht:

SO0 REM% ks ok % kK X % ok ok oK ok &k K ok K X
581 REM KONTROLL ROUTINE
SO2 REMkk koK kK 5k Kk ok %ok ok ok ok ke ok ok
5108 GOsSUB 750

520 TIi#="0oooea"

S53@ GOsUB 1900

540 GOSuBiS@ee

950 PRINTTIS

SE6@ STOP

7O RE Mk ok ok ok ok ok ok ok o o 3 ok ok ok ok ok ok
751 REM INITIALISIERUNG
732 REMok kokokok 3k 5% %ok o 3k ok ok ok ok ok ok

151

76@ DIM AX(9399):1T=9950
778 FORI=BTOIT-1:AXCI>=1:NEXT
780 INPUT"NEUER WERT ":NI
738 RETURN

1000 REMkkkkkkk

1281 REM SUCHE

1802 REMKHokkkkk

1838 IF I1T=0 THENi@ve
1848 FORI1=0TOIT-1

1858 IFAXC(I)>>=N1 THEN SP=1:1=IT-1
1866 NEXTI

1878 RETURN

1500 REM¥ %k k% ok kK ok kX

1581 REM EINSETZEN

1502 REMK K%k %k %k %k k ok

1585 IF IT=0 THEN1S4@
1510 FORI=ITTOSP+1 STEP-1
1528 AX(I>)=AY%(I-1)

1338 NEXTI

1548 RAX(SP)=NI

15586 RETURN

Diese allgemein gehaltene Routine kann auch auf andere Datensatze angewandt
werden. Aus diesem Grund benutzen wir IT, um festzuhalten, wie viele Elemente
vorhanden sind, wenn neue eingefligt werden. Es sei ausdriicklich darauf hingewie-
sen, daB alle derartigen Routinen den Sonderfall eines Felds beriicksichtigen
missen, das keine Elemente enthalt. Leider wird die Schleife ‘FOR I=0 TO IT—-1’
selbst dann einmal ausgeflhrt, wenn sie tatsachlich ‘FOR I=0 TO —1’ bedeutet und
deshalb logischerweise nicht ausgefiihrt werden sollte. Weil das Abarbeiten der
Schleife mit diesen Werten einen ILLEGAL QUANTITY ERROR zur Folge hat, muB
sie Ubersprungen werden.

Um die Routine zu testen, geben Sie auf Abfrage nach einem neuen Element 5000
ein. Die Ausgabe von TI$ soll zeigen, daB diese Routine in 81 Sekunden abgearbei-
tet wird (TI$="000121"). Durchsucht man jedoch das Feld vom anderen Ende her,
so kann man auf eine der Schleifen verzichten, wie in der nachsten Routine, die in
die vorige eingefligt werden sollte:

560 TIis="000000"
570 GOSUB200@
588 PRINTTIS$

152

58@ STOP

2000 REMK ok ok ok d ok 2k ok k¢ 3ok ok ook ok ok ok ok ok ok
2081 REM SUCHEN UND EINSETZEN
2002 RE Mok koK o ok ok 3k ok ok 3k 2k oK o 3 ok ok ok 3k ok ok ok
2010 IFIT=0THENSP=0:G0T02060
2020 FORI=IT-1TO@STEP-1

2038 IFNI>AX(I)THENSP=1:1=0:60T02050
2048 AXCI+1)X=AXCI)>

2058 NEXTI

20680 AX(SP+1)=NI

2070 IT=I1T+1

2088 RETURN

Diese Routine lauft nur 73 Sekunden, wenn sie durch Einfugen von 5000 getestet
wird (TI$="“000113") — eine Ersparnis von ungefahr 10% gegeniiber der letzten,
wie Sie selbst feststellen kénnen, wenn Sie beide zusammen durchlaufen lassen.
Sie bekdmen ganz andere Ergebnisse, wenn das einzufligende Element nahe am
Anfang oder Ende des Felds wére. Durch Einfligen eines Elements in der Mitte
erhalten wir jedoch die durchschnittliche Zeit fir die Eingabe einer Reihe von
Elementen, die nicht zum Anfang oder Ende des Feldes hin gewichtet sind.

Die zweite Methode hat den Nachteil, daB zwei verschiedene Programmfunktionen
zusammen laufen: Suchen und Einfiigen. Im vorliegenden Fall macht das tiberhaupt
nichts, aber wenn wir ein schnelleres Einflige- oder Suchverfahren finden, kdnnen
wir es nicht einfach in das Programm einflicken. Wir haben schon im Kapitel Gber
den Gebrauch von Integerfeldern schnellere Einfligemethoden kennengelernt. Es
gibt aber auch eine viel schnellere Suchmethode.

BINARES SUCHEN

Offensichtlich sind bei den letzten beiden Routinen ungefahr 5000 Vergleiche zur
Bestimmung der richtigen Position erforderlich. Naturlich wird das Feld nichtimmer
auf samtlichen Stellen sinnvolle Daten enthalten. Dennoch ist die Anzahl der
Vergleiche durchschnittlich immer gleich der Hélfte der Anzahl der Feldelemente.
Tatsdchlich ist das vollig unnétig, denn zum Auffinden der richtigen Stellen im o. g.
Feld sind hochstens 13 Vergleiche erforderlich. Betrachten Sie das folgende
Beispiel:

1. Wir wollen ein Element in das obige Feld einfligen, und zwar die Zahl 6172.
2. Wir beginnen die Suche nach der richtigen Position, indem wir diejenige Position

153

im Feld untersuchen, die die hochste in die Gesamtzahl der Feldelemente pas-
sende Potenz von 2 darstellt. In diesem Fall haben wir 10 000 Elemente, und die
héchste in diese Zahl passende Potenz von 2 ist 8192. Wir nennen diese Zahl den
‘Schrittwert’ oder SV (step value). Den ersten Vergleich stellen wir zwischen dem
neuen Element und dem schon in Position SV des Felds befindlichen Element an.
Die Suchposition nennen wir SP, und zu Beginn bekommt sie den Wert 8191, um
zu berlicksichtigen, daB das Feld bei Null, nicht bei 1 anfangt.

3. Der Wert in Position 8191 (SP) ist groBer als das neue Element 6172, also
nehmen wir den urspringlichen Schrittwert 8192, dividieren ihn durch 2 und
erhalten so ein neues SV mit dem Wert 4096. Dieser wird von 8191 (SP) subtrahiert
und ergibt das neue SP 4095.

4. Nun wird ein neuer Vergleich bei 4095 (SP) durchgefiihrt. Die Zahl in dieser
Position des Feldes ist kleiner als das neue, also dividieren wir SV durch 2 (=2048),
addieren es diesmal zu SP und erhalten das neue SP 6143.

5. Wieder ist das Element in 6143 kleiner als das neue Element, also dividieren wir
SV durch 2 (=1024). Das wird zu SP addiert und liefert 7167.

6. Das Element in 7161 ist groBer als 6172, also wird SV durch 2 dividiert (=512)
und von SP subtrahiert. Das Ergebnis ist 6655.

7. Die Suche wird an folgenden Stellen und mit folgenden Spriingen fortgesetzt:

6655 (—256)
6399 (—128)
6271 (—64)
6207 (—32)
6175 (—16)
6159 (+8)
. 6167 (+4)
6171 (+2)
6173 (—1)
6172, die richtige Position.

Wie Sie sehen, haben wir nichts weiter getan, als abnehmende Potenzen von Zwei
zu addieren oder zu subtrahieren, je nachdem ob die Zielposition weiter oben oder
weiter unten im Feld war. Der Erfolg héngt nicht davon ab, ob das Feld wie in diesem
Fall aus jeweils um 1 wachsenden Zahlen besteht. Man braucht nur ein beliebiges
String- oder Zahlenfeld, das regelmaBig aufsteigend oder absteigend geordnet ist.

154

Zum Einflgen eines neuen Elements in ein Feld ist die Anzahl der notwendigen
Vergleiche im allgemeinen:

INTCLOGC ITH>/LOGC2)) +1

Diese Formel gibt an, wie viele Stellen die binar dargestellte Anzahi IT der Elemente
hat, plus 1, und das ist immer die maximale Anzah! der erforderlichen Vergleiche.
Also:

INTCLOGC 580> /L0G(2>>+1 =8
und 500 ist binar:
111110100 — neun Stellen lang.

Dieses Suchverfahren bietet offensichtlich eine deutliche Einsparung gegeniiber
dem im vorigen Abschnitt verwendeten: Es werden 4087 Vergleiche eingespart.
Wenn wir nach einem Element in einem Feld statt nach einer Position zum Einfligen
suchen, kann die Einsparung sogar noch groBer sein. Beim Suchen nach einem
nicht vorhandenen Element miiBte man samtliche 10 000 Elemente durchgehen —
beim bindren Suchen wiirden auch dann 13 Vergleiche reichen, und wenn das
gesuchte Element auch dann nicht gefunden wére, wiiBten wir, daB es nicht im Feld
ist. Im nachsten Listing wird mit dem bindren Suchverfahren wie bei den vorigen
Listings ein Element bei 5000 eingefigt:

S90 TIis="000008"

6808 GOsSUB3©00©

618 GOsSUB4@©O

620 PRINTTI®$

638 STOP

3080 RE Mk ok ok dk ok ok ¥ ok ik ok ok k k%

3021 REM BINAER SUCHE

3002 REMk %k ok ok k% ok ok ok Kok X Kk

38180 IF IT=0THENSP=0:G0T03030
3820 POMWER=INT(LOG(IT>/LOG(2))
36030 SP=2tPOWER-1

3048 FORSY=POWER-1TO@STEP-1
305@ SP=SP+21tSVx((NI<KAX(SP)>)>~-(NI>AX%(SP)>>
)

3860 IFSP>IT-1THENSP=IT-1

3870 NEXTSV

155

3888 IFAX(SP)>{NITHENSP=SP+1
3098 RETURN

4000 REM* K%k %k k kkkkk

4001 REM EINSETZEN

4002 REM¥okokkkok kK kkk

4810 IFIT=0THEN4@58

4020 FORI=ITTOSP+1STEP-1
4038 AX(I)=AX{I-1)

4048 NEXKTI

4058 AX(SP)=NI

4068 IT=IT+1

4078 RETURN

Es gibt hier zwei kleine Abweichungen von der vorausgehenden Beschreibung des
Verfahrens. Erstens kann der Suchzeiger (SP) (ber die Anzahl IT—1 der Feldele-
mente springen. Wenn das geschieht, setzt Zeile 3060 den Suchzeiger auf das
letzte Feldelement zuriick. Diese Wertdnderung beeinfluBt die Suchoperation nicht.
Zweitem: Wenn das eingegebene Element sich nicht schon im Feld befindet, ist die
gefundene Position einer der beiden Werte, die Uber oder unter dem Element lagen,
falls es vorhanden ware. Liegt der gefundene Wert daruiber, kann durch Verschie-
ben aller Daten von dieser Position an Platz geschaffen werden. Liegt der gefun-
dene Wert darunter, muB3 SP erst auf das ndchste Feldelement gesetzt werden,
damit es die richtige Position angibt, bis zu der die Daten verschoben werden
sollen. Das leistet Zeile 3080.

Wenn Sie die Routine wieder mit dem Wert 5000 laufen lassen, ergibt sich eine
Laufzeit von nur 49 Sekunden, die hauptsachlich auf das Verschieben der Elemente
verwendet wird. Die Verzdgerung infolge der groBen Anzahl von Vergleichen ist fast
vollstdndig behoben.

REINES SUCHEN

In den oben genannten Beispielen hatte das Suchen den Zweck, ein neues Element
einzusetzen. Das muB natirlich nicht so sein. Mit der ersten und dritten Methode
kann man auch einfach die Position eines Elements bestimmen, vorausgesetzt, es
ist im Feld vorhanden. Andern Sie die Kontrollroutine zum Ausprobieren so ab:

S00 REMkkkkkkkkkkkkkkkkkk
501 REM KONTROLL ROUTINE

S02 REMkkkokkokkkkkkkkEkkkk
510 GOsSUBYS@

156

S20 Ti#="ooooea"
S3@ GOosuBleeoo

548 PRINTSP,AX(SP)
S50 PRINTTI#$

550 Tls="oaoooe"
6080 GOSUB3000

618 PRINTSP.,AX(SP)>
6280 PRINTTI#®

638 STOP

Wenn Sie jetzt einen Wert eingeben, werden er und seine Position zusammen mit
der Zeit flir das normale Suchen und der Zeit fir das bindre Suchen ausgegeben.
Falls Sie 5000, d. h. den Wert in der Mitte des Feldes eingeben, sollte das normale
Suchen 34 Sekunden und das bindre Suchen eine Sekunde dauern. Geben Sie
versuchsweise eine nicht-ganze Zahl ein — daraufhin wird die ganze Zahl iber oder
unter diesem Wert ausgedruckt. Durch Ergdnzung eines Vergleichs wie

615 IFAX(SP< >NlTHENPRINT"NiCHT VORHANDE
N" :STOP

wird automatisch geprift, ob ein Element vorhanden ist.

BINARES SUCHEN MIT ZEIGERFELDERN

Wie wir gesehen haben, reduziert bindres Suchen die Zeit fiir Recherchen in einem
Feld auf einen Bruchteil, so daB nur die Zeit fir das Verschieben der Daten bei
Einfigungen Ubrigbleibt. Diese Verzégerung kénnen wir wiederum groBtenteils
ausschalten, indem wir bindres Suchen mit den Zeigerfeld-Techniken kombinieren,
die wir in Kapitel 10 kennengelernt haben. An dieser Vorgehensweise wird eine
starke Seite des modularen Programmierens deutlich; denn um das Verfahren beim
Suchen nach der richtigen Position zu andern, brauchen wir nur ein Modul auszu-
wechseln und sicherzustellen, daB es weiterhin die richtige Variable an das Haupt-
programm (bergibt. Flr das (ibrige Programm ist es ohne Belang, was im Suchmo-
dul passiert, solange es nur die richtige Variable Ubergibt. Das Modul bei 8000 im
Zeigerfeld-Programm am Ende des letzten Kapitels wird nun:

18 IT=5:HO=3

SO06 REMakk ok k ok xk ok ok ke 3k ok ok ok 3k ok ok 3k ok ok ok ok ok
8801 REM POSITIONS BESTIMMUNG
8002 REMk ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok

157

gaie
goz2e
8038
8049
g@se
8060

TT=1T-HO

POWER=INT(LOG(TT>/LOG(2)>
PP=2tPOWER

FORSVY=POWER-1TOBSTEP-1
LL=INTC((PP-1)>/125):LP=PP-1285x*LL
PA=256%ASC (MIDS(PTRE(LL) ,2%LP-1)) +A

SC(MIDH(PTR$(LL) ,2%LP))

gave
23D

g8e8e
80308
81008
gllie

PP=PP+21tSV¥* ((INE<{AS (PR) - (IN$E>AS(PA

IFPP>TT-1THENPP=TT-1

NEXTSV
LL=INT((PP-1)>/125):LP=PP-125%LL
PA=256%ASC(MID$H(PTR$(LL) ,2%LP-1))+A

SC(MIDE(PTR$(LL) ,2%LP))>

8129

IFA$(PA> < IN$STHENPP=PP +1

8138 LL=INTC((PP-1>/185>:LP=PP-125x%LL
8140 PA=256xASC(MID$E(PTR$(LL) ,2kLP~-1))+A
SC{(MIDS(PTRE(LL) ,2%LP)>>

8158 RETURN

Eine solche Routine wirden Sie sicher nicht in einem kurzen Programm unterbrin-
gen, das nur geringe Datenmengen speichert. Bei groBen Datenmengen ergibt sich
jedoch eine verbliffende Geschwindigkeitsdifferenz, wenn Sie mit einem Zeigerfeld
das Verschieben von Feldern vermeiden und durch bindres Suchen die Suchzeit

verringern.

158

KAPITEL 12

VERMISCHTES

Dieses Kapitel enthalt eine Reihe nicht miteinander verwandter Techniken, die
einzeln kein eigenes Kapitel rechtfertigen, aber dennoch beim Entwickeln eines
Programms von Wert sein kénnen. Die vorgestellten Methoden sind: DEF-Anwei-
sungen, DATA-Anweisungen, FOR-Schleifen, Zeitmessung mit TI/TI$ und Runden
mit INT.

VOM BENUTZER DEFINIERTE FUNKTIONEN

In BASIC ist eine Funktion eine Anweisung, die eine volistandige Operation eines
bestimmten Typs mit einer Zahl oder einem String ausfiihrt, um das gewlnschte
Ergebnis zu erhalten. Die meisten Funktionen auf dem C 64 sind mathematische
Funktionen: Sie wenden mathematische Operationen auf eine Zahl an, berechnen
z. B. den Sinus einer Zahl. Ohne diese eingebauten Funktionen muBte der Benut-
zer jedesmal, wenn er einen Sinus, Cosinus, Tangens oder dhnliches bendtigt, die
gesamten Anweisungen flr ihre Berechnung in BASIC formulieren.

Soweit es ihre spezifischen Operationen betrifft, sind Funktionen beraus nitzlich,
um Komplexitdt und Umfang eines Programms zu reduzieren. Leider kénnen sie
nicht fir alle Berechnungen eingesetzt werden, und es kommt oft vor, daB in einem
Programm eine bestimmte Rechnung mehrfach auszufiihren ist. Manchmal 148t sich
so etwas mit einem Unterprogramm bewdltigen, vielleicht sogar mit einem einzeili-
gen. Ein einzelnes Unterprogramm kann jedoch nur einen einzigen Variablensatz
verarbeiten:

1808 X=Yt2 + Yt3 + 3xY

verarbeitet z. B. immer nur die Variablen Y und X. Soll die Variable Z verarbeitet und
das Ergebnis in NN abgelegt werden, miBten Sie das Unterprogramm mit dieser
Zeile aufrufen:

208 Y=Z:G0SUB18808 : NN=X

Eine flexiblere Methode besteht in der Definition einer neuen Funktion, wie etwa in
der nachsten Zeile:

1880 DEF FNACY)>=Y$2 + Y13 + 5SxY

159

Diese Zeile definiert eine Funktion mit dem Namen FNA (FN darf von einem
beliebigen gliltigen Variablennamen gefolgt werden), wobei die Variable Y im Laufe
des Programms durch jede andere ersetzt werden darf:

380 NN=FMNACZ)

leistet dasselbe wie Zeile 200 vorhin.

Dadurch kann die Ubersichtlichkeit eines Programms wesentlich verbessert wer-
den. In Kapitel 11, bei der bindren Suche in Verbindung mit einem Zeigerstring, ist
z. B. die Zeile

FA=256%ASCC MID$<PTR$CLL) ,2¥LP-1))+ASC(MI
DECPTRSCLL) ,2%LP))

dreimal verwendet worden. Diese aufwendige und fir Eingabefehler anféllige
Wiederholung hatte vermieden werden kénnen, wenn bei der Programm-Initialisie-
rung eine Funktion definiert worden wére, zum Beispiel:

180 DEFFNACLL)>=256*ASC(MID$(PTR$(LL> ,2%L
F-1)>+ASC(MID$S(PTR$CLL> ,2%LP))

Im bindren Suchmodul hatte man dann nur noch nach diesem Muster Zeilen
einfligen missen:

8060 PA=FMNACLL>

Da hierbei keine Variable ersetzt worden ist, arbeitet die Funktion genauso wie die
urspringliche Zeile. Viele Routinen in diesem Buch kdnnten durch die Verwendung
definierter Funktionen gekiirzt werden.

BEENDEN VON FOR-SCHLEIFEN

Vielleicht haben Sie bemerkt, daB in diesem Buch FOR-Streifen haufig benutzt
werden, um Daten zu durchsuchen und die Position eines Elements in einem Feld
oder String zu bestimmen. Wenn man eine Schleife so verwendet, taucht die Frage
auf, wie man sie beenden soll. Dies muB3 genau durchdacht werden; denn wie in
Kapitel 2 erwéahnt, bendtigt jede Schleife Platz im begrenzt aufnahmeféhigen ‘Stack’
des C 64, der nur dann wieder freigemacht wird, wenn die Schleife korrekt beendet
ist — d. h. wenn die Schleifenvariable die in der FOR-Anweisung gegebene
Obergrenze erreicht hat. All das wird mit der nachsten Schleife erreicht:

160

198 FORI=BTOIT-1
110 IFAS(I)=INSTHENPP=1:1=IT-1
128 NEXTI

Sobald im Feld A$ das richtige Element gefunden ist, wird die Schieife beendet,
indem | den hdéchsten Wert bekommt, den die Schieife verarbeiten soll. Betrachten
Sie dagegen ein anderes Beispiel:

18@ FORI=BTOIT-1

1190 IFAF(1)=IN$THENGOTO140

120 NEXTI

138 PRINT"WORT NICHT GEFUNDEN":FORI=1TOS
289 : NEXT

Wenn IN$ im Feld nicht vorhanden ist, druckt die Schleife ‘ITEM NOT FOUND’,
anderenfalls (berspringt sie das Schleifenende und die Fehlermeldung. Damit
bliebe die in Zeile 100 begonnene Schleife unbeendet, was einigen Platz im Stack
kostet. Trotz dieses Nachteils verwende ich diese Technik gelegentlich, und zwar
aus einem Grund, der beim Durchlaufen der nichsten kurzen Routine klar wird:

1806 FORI=1TO1000
110 FORJ=1TO10@
120 NEXTI

Hier wird die I-Schleife ganze 1000 mal ohne schlimme Folgen begonnen und nicht
beendet. Das ist mdglich, weil beim Einsprung in die Schleife mit derselben
Schleifenvariablen kein zusatzlicher Platz im Stack belegt wird, nachdem die
Anfangsschleife einmal definiert ist.

Das kdénnen Sie ausnutzen, indem Sie durchgéngig dieselben Variblennamen
verwenden. Ich nehme fast immer solche, die mit | anfangen, und falls mehrere
Schleifen gleichzeitig offen sein missen, die nachsten Buchstaben im Alphabet.
Wenn ich bei denselben Namen bleibe — vor allem bei Schleifen, die moglicher-
weise nicht korrekt verlassen werden — kann ich die Vorteile unbeendeter Schleifen
nutzen — ohne rétselhafte OUT OF MEMORY-Fehlermeldungen, weil der Stack
wegen zu vieler unbeendeter Schleifen Ubergelaufen ist.

161

DATA-ANWEISUNGEN

Bei einem Programm, das mit einer mehr oder weniger festen Datenmenge arbeitet,
lohnt es sich oft nicht, ein besonderes Feld zu definieren und die Daten darin
abzulegen. DATA-Anweisungen reichen dazu aus. Sie kénnen im selben Programm
fir viele verschiedene Zwecke eingesetzt werden. Die einzige Schwierigkeit liegt
darin, daB viele Leute ziemlich verunsichert zu reagieren scheinen, wenn sie mit
mehreren Datenbereichen zu verschiedenen Zeiten arbeiten missen und nicht
wissen, wie sie bei Bedarf an den richtigen Datenabschnitt kommen sollen.
Dieses Problem ist in der historischen Entstehung der DATA-Anweisungen begrin-
det, die lange vor der Geburt des Mikrocomputers bei den ersten GroBrechnern
anfangt. In Kapitel 4 sind schon die Probleme erwahnt worden, die den Program-
mierern von GroBrechnern vor der Entwicklung des Dialogbetriebs zu schaffen
machten, bei dem der Benutzer ein Programm wéhrend der Ausfihrung tberwa-
chen kann. Wie alle anderen brauchten auch die Programme flr solche Gerate
Daten zum Verarbeiten. Diese standen in Form von Lochkarten zur Verfigung. Die
Karten wurden als Stapel in einen Kartenleser gelegt, und wenn das Programm eine
Anweisung wie ‘READ NN’ vorfand, (bersetzte der Kartenleser die gestanzten
Locher der ersten Karte in eine Zahl, tibernahm diese Zahl als Wert der Variablen
NN und nahm dann die zweite Karte auf. Der Lochkartenstapel konnte nur in zwei
Richtungen gelesen werden: indem man die ndchste Karte untersuchte (egal, ob sie
gebraucht wurde oder nicht), oder indem man zum Anfang des Stapels zuriick-
kehrte. Bei den ersten Mikrocomputern erkannte man die F&higkeit, in einem
Programm Daten zu bestimmen, zwar als nitzlich an. Diese Aufgabe wurde jedoch
so formuliert, als bezdge sie sich auf das Lesen von Karten. Ein BASIC-Programm
enthielt Anweisungen wie diese:

198 DATA 12,45827,67,123,76583,212,10865

und die Datenelemente solcher Zeilen wurden mit der Anweisung gelesen:

208 READ »

Dabei gab es jedoch wie zuvor nur zwei Wege durch die vorhandenen Daten. Zur
ersten Ausflihrung von Zeile 200 wurde der Variablen X der Wert 12 zugeordnet,
d. h. das erste Datenelement; die zweite READ-Anweisung libergab 45 827 an eine

Variable etc. Diese Abfolge konnte nur mit einem anderen Befehl unterbrochen
werden:

3808 RESTORE

162

setzte den ‘Datenzeiger’ auf den Anfang der ersten Datazeile des Programms
zurick.

Viele moderne Mikrocomputer haben diese Einschrankung mit der Einfihrung des
Befehls ‘RESTORE LN’ dberwunden. LN gibt eine Zeilennummer an, und der
Datenzeiger wird auf das erste Element der ersten DATA-Anweisung in oder hinter
Zeile LN des Programms gesetzt. Dadurch kdnnen verschiedene Daten-Teilberei-
che einbezogen werden, die jeweils verschiedenen Zwecken im Programm dienen,
und bei Bedarf kann auf Daten aus jedem Bereich leicht zugegriffen werden. Da der
C 64 diese zusétzliche Fahigkeit leider nicht besitzt, miissen die vorhandenen
Beschrankungen auf andere Art umgangen werden.

Ein unkompliziertes Beispiel fir die Verwendung von DATA-Anweisungen kdnnte
S0 aussehen:

10908 DIMMOSC(11) ,AAX(S)

19018 DATA JANUAR ,FEBRUAR ,MAERZ ,APRIL ,MA1
»JUNI

1e2e DATA JULI ,AUGUST,SEPTEMBER ,OKTOBER,
NOVEMBER ,DEZEMBER

1838 DATA 12,125,23,64,17,176,38,78,169,
S

1648 DATA INITIALISIERUNG.,EINFUEGEM,LOES
CHEN,ANZE IGEN ,ENDE

1050 FORI=OTO11:READ MOS(I>:INEXT

19068 FORI=BTOS:READ AAXC(I):INEXT

1878 FORI=1TOS:READ T#:PRINTTS:NEXT

Hier versorgen die DATA-Zeilen ein Feld mit Monatsnamen und ein anderes mit
notigen Daten. Der dritte DATA-Abschnitt druckt die Optionen als Menl, um
einzelne PRINT-Befehle fiir jede Option zu erlibrigen. Beim ersten Lauf funktioniert
alles einwandfrei, dann aber kénnte es erforderlich werden, wéahrend des Pro-
grammablaufs das Meni spater nochmals auszudrucken. Wie die DATA-Anweisun-
gen stehen, kann man in diesem Fall nur den Zeiger auf den Datenanfang zuriick-
setzen und alle Daten noch einmal lesen, wobei nicht bendtigte ausgelassen
werden: Die Monatsnamen missen nicht noch einmal eingelesen werden. Diesen
Zweck erflllen die Zeilen:

2000 FORI=1TO22:READTS : NEXT
2018 FORI=1TOS:READ T$:PRINT T$:iNEXT

163

Anders gesagt, Daten kénnen gelesen und abgelegt werden, wenn die Anfangspo-
sition des gewlinschten Elements genau bekannt ist. Uberfliissige Daten werden als
Strings gelesen, denn unser Beispiel akzeptiert sowohl Zahlen als auch Stringda-
ten. Wo viele DATA-Anweisungen vorkommen, kdnnen jedoch bei der Positionsbe-
rechnung bestimmter Datengruppen leicht Fehler gemacht werden, so daB das
Programm auf READ die falschen Daten ubergibt. Dariiber hinaus stért jede
Veréanderung an der Anzahl der Elemente die Ausgewogenheit des ganzen Prozes-
ses, so daB im gesamten Programm die Werte aller Schleifen, die Daten lesen und
ablegen, verandert werden missen. Im gunstigsten Fall ist das nur lastig, aber bei
Programmen, die flr die Arbeit mit haufig gednderten DATAs bestimmt sind, ist es
véllig undurchfihrbar.

Hier bietet sich der Ausweg, DATA-Anweisungen mit Markierungen zu versehen,
die dem Programm zeigen, wo es sich innerhalb der DATAs befindet und wo die
Datei zu Ende ist. In Verbindung mit der oben abgedruckten Routine erhalten wir so:

1000 DIMMO$(11) ,AARX(9)

186186 DATA#1 , JANUAR ,FEBRUAR ,MAERZ ,APRIL ,M
Al,JUNI

1020 DATA JULI ,AUGUST ,SEPTEMBER ,OKTOBER,
NOVEMBER ,DEZEMBER

1838 DATA#Z,12,125,23,64,17,176,38,78,16
8,5

1048 DATA#3, INITIALISIERUNG ,E INGABE ,LOES
CHEN,ANZE IGE ,ENDE ,#-1

1845 FORI=1TO1000:READTS: IFTH="#1"THENI=
1006

19046 IFT$="#-1"THENRESTORE

1847 NEXTI

1050 FORI=0TO11:READMO$C(I)t NEXT

1855 FORI=1TO1000:READTS: IFT$="H2"THENI=
10008

1857 NEKTI

1060 FORI=0TOS:READAAX(I) INEXT

1865 FORI=1TO1000:READT$: IFT$="H3"THENI=
10008

1066 IFT$="#-1"THENRESTORE

1067 NEXTI

1870 FORI=1TOS:READ T#:PRINTTH:NEXTI

164

Das Programm erhélt hier den Befehl, in den DATA-Anweisungen nach der Markie-
rung des richtigen Datenabschnitts zu suchen und erst dann Informationen zu
Gibernehmen. Die Zahl 1000 in den neuen Schleifen ist einfach eine beliebige Zahl,
die groBer als die Anzahl der Datenelemente in den DATA-Anweisungen sein muB.
Wenn das Programm die Datei bis zum Ende liest, erzeugt es keinen ‘OUT OF
DATA ERROR’, sondern entdeckt die Markierung ‘#—1' und weiB, daB es bei der
ersten DATA-Anweisung mit dem Lesen (READ) neu beginnen muB. Auf die
wenigen Daten in unserem Beispiel wirden Sie diese Methode selbstverstandlich
nicht anwenden, aber in Programmen, die groBe Datenmengen dieser Art verarbei-
ten, kdnnen strukturierte DATA-Anweisungen ein Segen sein.

ZEITSTEUERUNG MIT Tl UND TI$

Es ist Ihnen sicher nicht entgangen, daB in den bisher angegebenen Routinen zwei
ganz verschiedene Methoden verwendet wurden, um Timings wahrend des Pro-
grammablaufs vorzuschreiben und zu erzeugen. Um eine Zeitspanne vorzuschrei-
ben, etwa flir den Ausdruck einer bestimmten Meldung auf dem Bildschirm, werden
fast immer FOR. . .TO-Schleifen benutzt, z. B.:

108 PRINT"DIES IST EINE NACHRICHT"
110 FORI=1TO2000:NEXT
120 PRINT"J"

Dieser einfachen Technik kann sich jeder bedienen, wobei die erforderliche Schritt-
gréBe durch Probieren ermittelt wird. Zur Steuerung komplizierterer Vorgange ist
die Methode jedoch ungeeignet. Einen einzelnen Vorgang kann man zwar gut
ausdrucken und mit Hilfe einer Schieife eine Weile stehen lassen, aber das geht
nicht, wenn Sie eine Reihe von Vorgéngen ausfiihren und nach Ablauf der angege-
benen Zeit beenden méchten. In Einzelfdllen kann das mit einer Schieife durchge-
fuhrt werden, aber es ist viel einfacher, die eingebauten Zeitgeberfunktionen des
C 64 einzusetzen: Tl und TI$.

Diese beiden sind eingebaute ‘Systemvariablen’ mit eigenen Variablenwerten, die
aber normalerweise nicht vom Anwender, sondern vom C 64 selbst gesetzt wer-
den. Tl ist eine numerische Variable, die beim Einschalten des C 64 auf Null gesetzt
wird und sich dann jede Sechzigstelsekunde um eins erhoht. Die Anzahl der seit
dem Einschalten verstrichenen Sekunden ist demnach durch Eingeben von

?T1/60

einfach zu erfahren.

165

Fir den taglichen Gebrauch ist TI$ wahrscheinlich nutzlicher. Es leitet sich von Tl
ab, bietet aber ein (ibersichtlicheres Format und kann vom Benutzer auf jeden
beliebigen Wert gesetzt werden. TI$ initialisiert beim Einschalten des C 64 mit
“000000” und erhoht sich im Sekundentakt. Es wird jedoch nicht einfach die
Sekundenzahl ausgegeben, sondern STUNDEN/MINUTEN/SEKUNDEN; 021537
bedeutet also zwei Stunden, 15 Minuten und 37 Sekunden. Um beide Variablen zu
vergleichen, gibt man ein:

2T1/60,TI$

TI$ kann wie jeder andere String einen beliebigen Wert zugewiesen bekommen,
und TI wird aus diesem Wert errechnet, obwohl es nicht direkt verandert werden
kann. Eingeben von '

Tis="120000"

weist TI$ 12 Stunden zu. Die wesentlichen Einschrankungen dabei sind: Wenn TI$
gleich einer Zah! gesetzt wird, die nicht genau sechs Stellen hat, wird ein Fehler
erzeugt, und bei einem Wert Gber “240000" wird TI$ auf Null zurlick gesetzt.
Diese Eigenschaft von TI$ haben wir gelegentlich schon beim Vergleich verschie-
dener Sortier- und Suchverfahren benutzt, indem wir am Anfang TI$ “000000”
gesetzt und nach Beendigung des betreffenden Prozesses ausgedruckt haben, um
die abgelaufene Zeit festzustellen. Selbst diese Technik kann auf vielfédltige Weise
eingesetzt werden, z. B. um Reaktionszeiten in Tests und Spielen zu kontrollieren,
oder als professioneller Touch bei Anwendungsprogrammen, die dem Benutzer
mitteilen, wie lange das Programm am SchluB einer bestimmten Arbeitssitzung in
Betrieb ist.

Des weiteren kann man mit Tl und TI$ nicht nur Zeitspannen ausdrucken, sondern
auch leicht vorschreiben. Lesen Sie folgende Zeilen:

1888 TT=TI
2008 IF TI-TT>1280080 THEMN RETURNMN

Stande die erste Zeile am Anfang einer Routine und wére die zweite irgendwo darin
eingebunden, wo sie regelmaBig abgearbeitet wiirde, so wirde die betreffende
Routine nach fiinf Minuten beendet (18 000/60 = 300 Sekunden = 5 Minuten).
Wenn der Wert von T nicht erhalten werden muB, kann sogar die Berechnung der
gewlinschten Anzahl von Sechzigstelsekunden entfallen. Die nachsten beiden
Zeilen hétten dieselbe Funktion:

166

1000 TIi$§="0000001000 TIif="000000"
2088 IF TIi+)>"0000808" THEN RETURN

Das Haar in der Suppe ist dabei der Kassettenrekorder: Solange mit ihm kommuni-
ziert wird, zahlen Tl und TI$ nicht weiter. Man kann ein Programm um die
‘Echtzeituhr’-Funktion erganzen, indem man Ti$ aufspaltet und etwas Ubersichtli-
cher darstellt:

10808 TT$=T1I$
1010 PRIMNT LEFT$(TT$,2>:":";MID$CTTS,3,2
"I "MIDSCTTS ,50

Der Gebrauch eines Hilfsstrings TT$ ist der direkten Arbeit mit TI$ vorzuziehen, da
TI$ sich wahrend des Aufspaltens moglicherweise dndert. Wenn also TI$ beim
Ausdrucken der Zeit “005959” gewesen und auf “010000” gesprungen waére,
bevor Minuten und Sekunden errechnet waren, ergébe sich die Zeit ‘00:00:00’.

RUNDEN MIT INT

Die Funktion INT, die Nachkommastellen von einer Zahl abschneidet, ist in den
vorhergehenden Routinen oft gebraucht worden. Wie wir wissen, kann INT auch die
maximale erlaubte Anzahil von Dezimalstellen einer Zahl bestimmen. Eine Manipula-
tion wie

180 MNMN=INT(1008 xNN) 1800

ergabe drei Dezimalstellen.

Wir sollten nicht auBer acht lassen, daB INT auch Zahlen auf die ndchstgréBere
ganze Zahl aufrunden kann, nicht nur auf die nachstkleinere abrunden. Dazu addiert
man einfach 0.5 zu einer Zahl und 148t sie dann mit INT verarbeiten. Probieren Sie
die ndchste Routine durch Eingeben einer Reihe nicht-ganzer Zahlen aus:

180 INPUT NN

118 PRINT INT(NN+@.5)
120 GOTO100

167

168

KAPITEL 13

FORMATIEREN

Die Fahigkeit des C 64, Informationen programmgesteuert auf den Bildschirm zu
bringen, ist gekennzeichnet durch eine eigenartige Mischung aus groBer Flexibilitat
einerseits und einem Defizit an Standardfunktionen andererseits, Uber die fast alle
Mikrocomputer der heutigen Generiation verfligen. Die Flexibilitat ergibt sich aus
der Freiheit des Programmierers, mit direkten Cursor-Steuerzeichen die Printposi-
tion zu dndern und mit anderen Steuerzeichen die Farbeigenschaften zu kontrollie-
ren, und aus der Leichtigkeit, mit der Zeichen in den Bildschirmspeicher und von da
auf den Bildschirm gepoket werden kdnnen. Ein Nachteil liegt im Fehlen von
Anweisungen wie PRINT AT, das die Bestimmung einer einzelnen Bildschirmposi-
tion durch einen einzigen BASIC-Befehl erlaubt, oder PRINT USING, das in
derselben Weise die Bestimmung des Formats von Zahlen oder Strings ermoglicht,
um z. B. beim Ausdrucken eine einheitliche Anzahl von Dezimalzahlen zu garantie-
ren. In diesem Kapitel werden wir untersuchen, wie man beim C 64 das beste aus
seinen starken Seiten macht und manche seiner schwachen Seiten umgeht.

CURSORSTEUERUNG

Es gibt so viele Arten, Cursor-Steuerzeichen zu benutzen, wie es verschiedene
Verwendungsmdglichkeiten des Bildschirms zur Darstellung von Informationen
gibt. Programme, die auf dem Bildschirm komplexe Strukturen erzeugen, sind auf
dem C 64 wahrscheinlich viel leichter zu realisieren als auf jedem anderen ver-
gleichbaren Heimcomputer. Informationen kdnnen seitenweise auf den Bildschirm
geschrieben werden, ohne standig die Position neu zu berechnen, wie es bei PRINT
AT notig ist. Zeichen kdnnen ganz bequem nach oben, unten, rechts oder links
(bezogen auf das letzte Zeichen) verschoben werden. Betrachten Sie das folgende
Beispiel, das eine Reihe von Strings mit vier Zeichen von rechts unten nach links
oben diagonal auf dem Bildschirm schreibt:

100 AS="xkkx"
118 PRINT"{

1280 FORI=1TO24
1380 PRINTAS; "[(INEEN" ;
148 NEXT

169

Aus diesem kleinen Beispiel lassen sich zwei Schlisse ziehen. Erstens: Die
Bewegung eines Elements in bezug auf das vorhergehende, also die ‘relative
Bewegung’, ist einfach und logisch. Sie bestimmen lediglich die Anzahl der Stellen,
um die Sie in einer beliebigen Richtung weiterriicken mdchten, und bedienen die
entsprechende Cursorsteuerung. Der zweite SchluB ergibt sich aus Zeile 110: Die
Cursorsteuerung kann mihsam werden, wenn man Printpositionen bestimmt, die
nicht in der N&he der linken oberen Bildschirmecke liegen. Diese Einschrankung
kann durch Zuweisung von zwei Strings beim Initialisieren des Programms in
gewisser Weise Uberwunden werden, z. B.:

190 H0$-'w
‘ tREM 39 x CURSOR RECHTS

1190 VE$=" X In DI
REM 24 x CURSOR RUNTER

Diese beiden Strings enthalten genugend Cursor-Steuerzeichen in VErtikaler und
HOrizontaler Richtung, um die Printposition von links oben an jede beliebige Stelle
auf dem Bildschirm zu bringen. Um die Printposition in die letzte Zeile zu fahren,
miBte man etwa folgende Zeile eingeben:

120 PRINT"J";LEFT$C(VES$,24);LEFT$C(HO$,34)

s
’

Auf der Buchseite sieht das langer aus als im Original, aber die Angabe der Strings
in voller Lange hétte natlrlich eineinhalb Zeilen ausgefillt. Wenn Sie die Funktion,
die im Grunde eine Version von PRINT AT ist, regelmaBig benutzen wollen, kénnen
Sie den Vorgang durch ein speziell fur diese Aufgabe geschriebenes Unterpro-
gramm etwas verkirzen:

1718 PRINT"J";LEFT$(VES$,VE);LEFT$(HO$,HO
7 *RETURN

Nach der Eingabe kann die Printposition mit einer Zeile wie

120 VE=12:HO=12:G0SUB1710:PRINT"HALLO"

beliebig Gber den Bildschirm bewegt werden. Das ist etwas klrzer als die vorige
Version, die jedesmal LEFT$ verwendete, und auch leichter lesbar. Man sollte dabei

nicht vergessen, daB die Bildschirmpositionen nicht von eins sondern von null an
numeriert sind, d. h. die Vertikale zahit von 0 bis 24 und die Horizontale von 0O bis

170

39. Falls Sie jeweils von eins an zdhlen mdéchten, muB das Unterprogramm
modifiziert werden, damit es mit VE—1 und HO—1 l4uft.

Damit kénnen wir noch einmal die diagonale Stringreihe ausprobieren (HO$ und
VE$ werden als definiert vorausgesetzt):

120 A$="kkkx"

1386 FOR VE=24T0@® STEP-1
140 HO=VE+1©

158 GOSUBI1710:PRINTAS;
160 NEXT VE

178 END

Auch wenn dies nur eine Nachahmung ist, zeigt sich darin die Starke von PRINT AT,
namlich die Mdglichkeit, den Bildschirm mit Hilfe von Variablen zu formatieren. Auf
diese Weise kdnnen ziemlich komplexe Strukturen erzeugt werden. Die nachste
Routine bildet eine dreieckige Tabelle aus Zeichenpaaren. Es handelt sich in dem
Beispiel um einen Pseudo-String, aber die Daten kdnnten genauso aus einem Feld
mit sinnvollen Daten geholt werden.

120 Ak="%kx"

138 FORVE=0TO12

148 FORHO=@TO3*VE STEFP3
150 GOSUB1710:PRINTAS$
160 NEXTHO ,VE

170 END

Mit PRINT AT kann der Benutzer auch die Bildschirmformatierung steuern, und
diese Funktion ist oft sehr nitzlich. Stellen Sie sich ein 12 mal 6 groBes Feld mit
Informationen vor, die auf dem Bildschirm in Tabellenform dargestellt werden.
PRINT AT erlaubt dem Benutzer, neue Elemente einzufliigen und ausgedruckt zu
sehen, ohne die gesamte Bildschirmseite vom Feld aus neu schreiben zu missen.
Nachdem die Formatierstrings VE$ und HO$ definiert sind und das Unterprogramm
eingegeben ist, séhe ein typisches Programm so aus:

508 DIMAX(11,S5):PRINT"J"

519 FORVE=0TO11:FORHO=0TO030 STEPE6:GOSUB!
710

520 PRINTAX(VE,HO/6):NEXTHO . .VE

530 VE=21:HO=0:G0SUB1710@

17

5480 INPUT"REIHE ":VE

550 INPUT"SPALTE ":;HO

568 INPUT"WERT (@-32767> ":

380 GOSUB171@:PRINT" ":REM FUENF SPA
CES

5880 GOSUB1718:PRINTNN

608 GOTOS3@

Wenn Sie das Programm laufen lassen, werden Sie auf die Schwierigkeit stoBen,
daB die INPUTs immer ihre Vorganger (berschreiben. Das kann verwirrend sein
und bringt uns auf einen weiteren zweckmaBigen Formatierstring, den ich in
eigenen Programmen meist O$ nenne. O$ enthélt nichts weiter als 39 Leerstellen
und wird wie Ublich beim Programmestart definiert. Danach kann es in Verbindung
mit PRINT AT zum L&schen haufig benutzter Zeilen dienen. Man konnte in das
obige Programm eine Schleife einfligen:

525 HO=@8:FORWE=21TO23:G0SUB1718:PRINT 0%
INEXT

In den bendtigten Zeilen wirden damit alle Zeichen geldscht.

VERWENDUNG VON CURSOR-STEUERZEICHEN

Die Nachahmung von PRINT AT ist zwar sinnvoll, aber auf die direkte Verwendung
von Cursor-Steuerzeichen in PRINT-Anweisungen sollte deshalb nicht verzichtet
werden. Die meisten Bildschirmseiten haben keine regelmaBige Struktur, sondern
sind auf Ubersichtlichkeit fiir den Benutzer angelegt. PRINTs und INPUTs werden
oftmals ausgerlckt, als Blickfang oder zwecks Unterteilung von Informationen in
logische Abschnitte auf dem Bildschirm. Kleine relative Bewegungen der Printposi-
tionen werden am besten durch Cursor-Steuerzeichen veranlaBt (vgl. Seite 7):

1880 INPUT"WERT 1 "?A
118 INPUT"MMERT 2 ":B
120 INPUT"BMERT 3 ":C
1390 INPUT"MMMWERT 4 ":D
148 INPUT"MMWERT S5 "

Hier ware es vollig Uberflissig, die Inputs mit einem PRINT AT-Unterprogramm
auszudricken. Es gibt sogar regelmaBige Strukturen, die man giinstiger mit Steuer-

172

zeichen direkt gestaltet. Ein Beispiel dafiir ist ein Wort, das vertikal statt horizontal
auf den Bildschirm geschrieben werden soll. Die Verwendung von zwei Cursor-
Steuerzeichen erspart hier die mihsame Arbeit mit Variablen:

188 AF="HALLO"

110 FORI=1TOLENC(AS)

128 PRINTMID#CA$,I1,1)>; "Hg";
1380 NEXTI

Auch beim Uberschreiben einer Textzeile kann man die Taktik zu weit treiben, wo
ein einfaches ‘Cursor hoch’ denselben Zweck erfillt:

100 PRINT"DIES IST EIN TEXT"
110 FORI=1TO2880:NEXTI
1286 PRINT"[UND DIES UEBERSCHREIBT IHN"

Wie wir im Kapitel iiber Eingaben gesehen haben, kann dieselbe Technik bei
INPUTs verwendet werden, indem die Abfrage mit ‘Cursor hoch’ eingeleitet wird.
So kann bei einem Eingabefehler der INPUT neu geschrieben und automatisch tiber
die vorhergehenden Zeichen gedruckt werden.

TAB

Die Funktion TAB ist eine weitere Formatierhilfe, mit der man Daten in einzelne
Kolonnen aufteilen kann. Die nachsten Zeilen geben Zeichengruppen in gleichen
Abstdnden auf den Bildschirm aus:

100 PRINT"J"; tFORI=0TO36STEP3
118 PRINTTABCI>? "%x%";
120 NEXTI

Selbstverstandlich kann damit miihelos eine Tabelle auf dem Bildschirm formatiert
werden, allerdings sind dazu einige Hinweise notig: Erstens hat TAB das Format
TAB(X) ohne Liicke zwischen TAB und der ersten Klammer. Wenn Sie dazwischen
eine Leerstelle lassen, was einleuchtend wére, werden die Daten nicht formatiert,
und vor jedem Element erscheint eine ‘0’. Zweitens arbeitet TAB immer vom Anfang
der gerade beschriebenen Zeile an, und nur von links nach rechts. TAB(10) heiBt
also: “Drucke ab Zeichen 10, falls die Zeichenspalte 10 nicht bereits iberschritten

173

wurde.” Beim Versuch, mit TAB an eine Position vor der aktuellen Zeichenposition
zu springen, wird TAB vollig ignoriert, und das Zeichen wird in die nachste
verfligbare Spalte geschrieben. Sie kdnnen das Uberprifen, indem Sie die oben
angeflihrt Routine abédndern:

108 PRINT"\J":FORI=36TOBSTEP-3
1180 PRINTTABCI)? "O%x%"

115 GETT$: IFT$=""THEN115

1280 NEXTI

Als Ergebnis dieser veranderten Routine bewegt sich die Printposition von “**’
immer nach rechts, als ob TAB nicht vorhanden wére. Wenn Sie das Semikolon am
SchiuB von Zeile 110 entfernen, wird |edesmal eine neue Zeile begonnen und das
Problem stellt sich nicht.

TAB I6scht nicht die Zeichen, lber die es sich bewegt, sondern nur die bedruckten
Zeichenpositionen. Aus diesem Grund kann man es — &hnlich wie bei der o. g.
Nachahmung von PRINT AT — zur Anderung von Tabellen verwenden:

18@ FORI=1TO10:PRINT"x%% “; :NEXT:REM EIN
SPACE NACH DEN STERNEN

118 PRINT"QO"?

1280 FORI=BTO32STEP8:PRINT TABC(I)>: "kkk";:

NEXT

SPC

SPC hat dieselbe Funktion wie TAB, d. h. es bewegt die Printposition von der
aktuellen Spalte um mehrere Spalten nach rechts. In den Handbiichern zum C 64
wird 'Space’ félschlich als eine Funktion erklart, die Leerstellen druckt. Genau wie
TAB druckt SPC nichts, es bewegt einfach die Printposition, ohne die Zeichen im
Ubersprungenen Bereich zu beeintrachtigen. Geben Sie zur Probe diese kurze
Routine ein:

180 PRINT"UXKXKKK"
110 PRINT"WJ"SPC(7>:"%x"

Die von SPC Ubersprungene, mit X beschriebene Zeile wird nicht geléscht.

Da SPC immer in bezug auf die aktuelle Printposition arbeitet, eignet es sich
weniger als TAB zum Formatieren einer regelmaBigen Struktur auf dem Bildschirm,
es sei denn, die Lange der gedruckten Elemente ist einheitlich. Wird SPC zum

174

Trennen von Elementen in mehreren Zeilen eingesetzt, so werden die Elemente
zwar in gleichen Abstanden, aber nicht unbedingt in Kolonnen gedruckt. SPC ist
jedoch in einer Hinsicht Uberlegen: Viele Drucker haben Schwierigkeiten mit TAB,
arbeiten jedoch reibungslos mit SPC. Falls Sie derartige Probleme mit dem Aus-
drucken von Tabellen haben, definieren Sie zundchst die Breite der gewiinschten
Kolonne einschlieBlich Leerspalten und gleichen Sie dann mit SPC mdgliche
Unterschiede zwischen der Lange des zu druckenden Strings und der Breite der
Kolonne aus:

1800 AS(BI="%x"1AS(1)="%%k"IAS(2)="x%k k" L AS(
3)="%kk%kx"

116 OPEN1 ,4:CMD1

126 FORI=1TO10

138 FORJ=8TO3

140 PRINTA$(J):SPC(E-LENC(A$E(II)I)?

150 NEXTJ:PRINT:NEXTI

168 PRINT#1:CLOSE!

Zeilen 100 und 160 der Routine 6ffnen eine Datei auf den Drucker, Ubertragen
voriibergehend alle gedruckten Ausgaben in diese Datei und schlieBen die Datei
nach Beendigung des Druckens. Beachten Sie, daB am Ende jeder Zeile von
Elementen ein eigenes PRINT stehen muB. Wére das nicht der Fall, wirde SPC
Uber das Zeilenende hinaus weitere sechs Zeichenkolonnen drucken und so das
Format zerstdren, im Unterschied zu TAB, das bei Erreichen des Zeilenendes das
Semikolon hinter der PRINT-Anweisung ignoriert.

NACHAHMUNG VON PRINT USING

Tabellen lassen sich oft viel leichter formulieren, wenn man Inhalte einheitlicher
Lange verarbeiten kann. Zur Veranschaulichung kénnen Sie folgende Routine
eingeben:

1080 PRINT"J"?

118 FORI=1TO20

120 PRINT(RND(@>%x15)t2
130 NEXT

Wie Sie sehen, ergibt sich daraus eine recht verworrene Kolonne. Es wére wenig
zweckmaBig, mit diesem Format eine Tabelle zu erzeugen, auch wenn hier alle

Zeilenanfange genau untereinanderliegen. Die sinnvolle Darstellung numerischer

175

Daten setzt voraus, daB die Formatierung den Vergleich verschiedener Zahlen auf
einen Blick ermdglicht.

Viele Mikrocomputer |6sen die Aufgabe mit dem Befehl ‘PRINT USING’, der dem
Programmierer erlaubt, das Format einer Zahl oder eines Strings vorzuschreiben:
wie viele Stellen, wie viele Dezimalstellen, Ausfiillen mit Blanks bis auf Standard-
lange. Leider besitzt der C 64 diese Funktion nicht, jedoch sind (wie PRINT AT) die
meisten notwendigen Funktionen leicht zu simulieren.

Um eine Zah! zu formatieren, Ubersetzen wir sie als erstes in einen String. Der
urspringliche Wert bleibt dabei unveréndert; es handelt sich nur um eine HilfsmaB-
nahme zum Drucken, durch die wir uns Uber die Lange des Elements informieren
und das Format verédndern kdnnen. Mit Hilfe einer einfachen Eigenschaft des
Logarithmus ermitteln wir die Anzahl der Stellen vor dem Dezimalpunkt und
standardisieren dann das Format mit einfachen Stringoperationen. Man schreibt
daflir am besten ein Unterprogramm, da die Formatierfunktion vermutlich mehrmals
im Programm gebraucht wird:

100 SS$=" ":REM SOV
IEL SPACES WIE MOEGL ICH

1818 NN$=LEFT$(SS%$,8-INT(LOG(ABS (NN>)>/L0O
G(18)+1))+STRE(NND

18280 RETURN

Zeile 100 weist lediglich darauf hin, daB die Routine nur funktioniert, wenn vorher
ein Leerstring SS$ definiert wurde. Der Ausdruck LOG(NN)/LOG(10) ergibt den
Wert von NN, wenn er in Logarithmen zur Basis 10 ausgedriickt ist; auf dieser Basis
arbeitet das Programm. Das ist einfach deswegen sinnvoll, weil der ganzzahlige Teil
eines Logarithmus zur Basis 10 um eins kleiner ist als die Anzahl der Vorkomma-
stellen. Also ist LOG(120)/LOG(10)=2.0918125, und durch Addieren von 1 zum
ganzzahligen Teil (‘2') erfahren wir, daB die Zahl drei Vorkommastellen hat. Wie Sie
sehen, haben wir fiir unsere Berechnung den LOG von ABS(NN) genommen, denn
der LOG einer negativen Zahl ware Unsinn. Ausgeristet mit diesen Informationen
ist es nun ein leichtes, fir eine einheitliche Anzahl von Vorkommastellen zu sorgen,
indem man der Zahl ein ausreichend langes SS$ voranstellt. Dazu dienen LEFT$
und STRS$; letzteres wandelt eine Zah! in einen String desselben Formats wie die
urspriingliche Zaht um. Bei der vorigen Routine haben die Zahlen in der Regel neun
Vorkommastellen oder -ziffern. Es sind neun statt acht, weil STR$ an den Anfang
einer positiven Zahl — dort, wo bei einer negativen Zahl das Minuszeichen stande —
eine Leerstelle einsetzt.

Sie sind nun in der Lage, anhand einer modifizierten Version der weiter oben
erklarten Zufallszahlenerzeugung die Arbeitsweise des Unterprogramms auszupro-
bieren:

176

100 PRINT™J":

118 FORI=1TO20

120 NN=(RND(B>%*15)12
138 GOsuBig81@

148 PRINTNNS

150 NEXT

168 END

Das Problem der Ausrichtung von Dezimalpunkten ist damit geldst, aber bevor wir
Daten streng tabellarisch gestalten kdénnen, bleibt noch eine andere Frage zu
kldren: Die Anzahl der Nachkommastellen. Dabei miissen wir etwas anders vorge-
hen. Bei Zahlen mit zu vielen Dezimalstellen kann man einfach den String aufglie-
dern, bei zu wenigen ist das jedoch nicht ganz so leicht. Wir kénnen nicht einfach
den formatierten String bis zur gewilinschten Ladnge mit Nullen aufflllen; denn es
kénnten auch Zahlen ohne Dezimalpunkt vorkommen, bei denen angehéngte
Nullen zu einem sinnlosen Ergebnis fihrten. Zum Gluck gibt es ein einfaches Mittel,
das uns die Uberpriifung der Nachkommastellen erspart: Wir addieren zu jeder Zahl
einen Dezimalbruch, der mit mindestens so vielen Nullen beginnt, wie unser
Standardformat erfordert. Um zwei Dezimalstellen zu erhalten, brauchen wir dem-
nach nur .001 zu der urspriinglichen Zahl zu addieren. Bei der Umwandlung der
Zahl in einen String wird die ‘1’ am Ende dann einfach abgeschnitten. Zahlen, die
schon zwei Dezimalstellen haben, @ndern ihren Wert dadurch nicht, sondern
werden nur um einen Anhang von Nullen erganzt, und Zahlen ohne Dezimalstellen
erhalten bei Bedarf auBerdem einen Dezimalpunkt. Die einzige Komplikation betrifft
negative Zahlen, die besondere MaBnahmen erfordern. Die Formatierung nach
diesem Muster geschieht ebenfalls mit einer kurzen Routine:

1900 REMkkk k& 5k % % &k % ok % % %k %k %k

1901 REM DEZ IMAL FORMAT

19802 REMxkkokkkkkkkkkkkkk

19190 NN$=STR$CINT(100%NN) 100+ .00 1 xSGN(
NND))

1920 NN$=LEFT$(SS%$,8- INT(LOG(ABS(NN>)>/LO
G(10)+1))+LEFTS (NN ,LENI(NN$)>-1)

1930 RETURN

Hier ist nur eine Stelle unklar, namlich die Verwendung der Funktion SGN in Zeile
1910. Auf eine Zahl angewendet, bildet SGN das Ergebnis 1 oder —1, je nachdem,
ob die Zahl positiv oder negativ ist. Folglich wird in Zeile 1910 das Ergebnis der
ersten Zeilenhalfte um .001 erhéht oder vermindert, in Abhéngigkeit davon, ob die

177

urspriingliche Zahl positiv oder negativ war. Das Ergebnis von 123 + .001 ist z. B.
sinnvoll (123.001) und nach Entfernen der ‘1’ am SchluB zu verwenden, wihrend
—123 + .001 uns ein vollig sinnloses Ergebnis (—122.999) liefert, mit dem wir
nichts anfangen kénnen. Wenn NN —123 gewesen ware, hatte SGN daflir gesorgt,
daB .001 mit —1 multipliziert und daher subtrahiert statt addiert worden wiére;
—123.001 wére das gewinschte Resultat.

Wir haben jetzt fast alles, was wir brauchen, um das Format einer Zahl innerhalb der
Grenzen zu bestimmen, die eine ordentliche Datentabelle auf dem Bildschirm
verlangt. Es bleibt nur noch eine einzige Frage offen: mdgliche Minuszeichen. Wie
bereits angedeutet, wird einer Zahl bei der Umwandlung in einen String eine
Leerstelle vorangestellt, wenn sie positiv ist, bzw. ein Minuszeichen, wenn sie
negativ ist. Um mdglichst viele Daten in einer Tabelle unterzubringen, kdmen wir
besser ohne Minuszeichen hin; z. B. kénnten wir bei vier verfigbaren Stellen pro
Zahl Werte bis 9999 aufnehmen, statt uns auf 999 plus Leerstelle fiir ein eventuell
vorkommendes Minuszeichen zu beschranken. Die Losung besteht einfach darin,
das ohnehin unauffallige Minuszeichen abzuschaffen und zur Kennzeichnung nega-
tiver Zahlen die Farbfunktionen des C 64 einzusetzen:

20008 REM ok ok ok ok 3 ok ok 3 ok ok 3 3k ok 3k ok 3 ok 3k okok oK ok okok ok ok k
2001 REM KENNZEICHNEN NEGATIVER WERTE
2002 REM ok %k ok 3 ok 3k ok ok 3k ok ok 2K 3k ok 30k 0K ok 3 ok ok ok o ok ok K ok ok
2010 NN$E=STRF(INT(100%NN) 100+ (.001 xSGN(
NNJJ)

2020 NN$=LEFT$(SS$,8-INT(LOGC(ABS (NN>)>/LO
GC10)+1)) +LEFTHE(NNS , LEN(NNS) -1)

2030 IF NN<@ THEN NN#="[REVERS EINI"+NNs$
+"[REVERS AUS]1"

28480 RETURN

Gegeniber der letzten Routine bewirkt die zusétzliche Zeile 2030, daB negative
Zahlen nicht nur formatiert, sondern auch auf dem Bildschirm invers dargestelit,
d. h. hervorgehoben werden. Wenn Sie einen Farbmonitor verwenden, kdnnen Sie
die Zeichenkette auch rot drucken, indem Sie das RVS-Zeichen am Anfang durch
das Steuerzeichen fir Rot ersetzen.

Bei entsprechender Bearbeitung dieser Technik konnen Sie nun komplexe Tabellen
in Ubersichtlichem Format auf den Bildschirm schreiben, die alle gewiinschten
Informationen viel wirkungsvoller vermitteln als die formlosen Zeichenkolonnen, die
man auch nach zwei- oder dreimaligem Lesen noch nicht ganz versteht.

178

JUSTIEREN

Werden Strings innerhalb einer Tabelle dargestellt, ist es oft angebracht, sie in
einheitlicher Lange zu gestalten, damit mehrere Kolonnen mit Wortern rechts- oder
linksbiindig in aufeinanderfolgenden Zeilen gedruckt werden kdnnen. Hier kann
man mit der Printposition taktieren, aber haufig gibt es auch die einfache Méglich-
keit, jeden String bis auf Standardlange aufzufillen. Mit der nachsten Zeile wird
beispielsweise ein String am Ende bis zu einer Gesamtldnge von zehn Zeichen mit
Leerstellen aufgefillt:

100 AS=LEFT$(AF+5S$,10)

wobei SS$ der schon bekannte Leerstring ist. Zum Auffiillen des Anfangs (damit
jedes Wort an derselben Stelle endet) gibt man ein:

100 AF=RIGHT$(SSH+A$, 18)

Beide Zeilen basieren darauf, daB Strings innerhalb der Klammer einer Stringfunk-
tion addiert werden kdnnen, und erlibrigen die mihsame Konstruktion einer Zeile
wie: '

1800 A$=A%$ + LEFTH(SSH, 10-LENCAS))

Die beiden kiirzeren Versionen fihren jedoch zur Verstimmelung von A$, wenn es
den zugewiesenen Platz Uberschreitet. Diese Wirkung kdnnen Sie gegebenenfalls
auch absichtlich einsetzen, um das Format einer Tabelle zu bereinigen.

EINFACHE LOGOS UND GRAFIKEN

Die Auflockerung eines guten Programms mit einfachen Grafiken, einer Titelseite
flr den ersten Programmestart und einzelnen lllustrationen kann ausschlaggebend
dafiir sein, wie der spatere Benutzer damit zurechtkommt. Die Benutzer eines C 64
haben insofern Glick, als er sich im Vergleich zu anderen Heimcomputern wahr-
scheinlich am leichtesten fiir Programmkosmetik benutzen 1aBt, obwohl die Gestal-
tung vieler Programme auf diesbezlgliche Unkenntnis schlieBen I14Bt. Bei anderen
Heimcomputern 3Bt sich eine gute Grafik oft erst nach komplizierter Planung auf
den Bildschirm bringen: Entwurf auf Millimeterpapier und miihsame Ubertragung
der Zeichnung in Print-Anweisungen. Beim C 64 dagegen kann man den Bildschirm
einfach wie einen Zeichenblock behandeln, auf dem man mit Hilfe des hervorragen-
den Zeichensatzes eine beliebige Grafik entwirft und diese danach einfach in
Programmzeilen Ubertrégt.

179

Zur Herstellung unkomplizierter Grafiken, die nicht mehr als 35 Zeichenspalten
horizontal ausfiillen, I6schen Sie einfach den Bildschirm, bewegen den Cursor und
tippen oder I6schen Zeichen von der Tastatur aus, ganz gleich ob Text oder Grafik.
Die einzige Regel dabei schreibt einen mindestens finf Zeichen breiten Rand an
der linken Bildschirmseite und mindestens eine Leerzeile rechts vor. Wenn Sie die
Grafik wie beschrieben auf dem Bildschirm ausgeflihrt haben, kehren Sie an den
linken Rand des Bildschirms zurlick und setzen Sie von oben nach unten Zeilen-
nummern mit nachfolgendem Fragezeichen und Anfiihrungszeichen. (Um das
‘Abfiihrungszeichen’ brauchen Sie sich nicht zu kiimmern.) Natirlich sollten Sie
jeweils RETURN-Taste driicken.

Sie sind nach der Numerierung jeder Zeichenzeile am unteren Rand angelangt und
haben aus Ihrer Grafik praktisch ein Programm gemacht. Auch wenn Sie mit der
Anordnung der Zeichen auf dem Bildschirm experimentieren wollen, mussen Sie
nicht mehr tun. Auf diese Weise kann alles eingegeben werden, was sich mit dem
normalen Zeichensatz aufbauen 148t: ein Bild, eine Titelseite aus groBformatigen
Buchstaben, sogar der Plan fir eine komplexe Tabelle.

Die wichtigste Einschrankung betrifft die Breite der so eingegebenen Grafiken. Bei
Eingaben, die so lang sind, daB kein Platz mehr fir Zeilennummern und die
abgekirzte Print-Anweisung (‘?’) bleibt, missen Sie den Bildschirm zur Halfte
beschreiben und dann mit SHIFT/INST an den Anfang einer Zeile Leerstellen
einfigen. Dabei lauft jede einzelne Zeile in die nachste lber und zerstért so
scheinbar die Grafik. Das soll Sie nicht beirren. Setzen Sie einfach eine Zeilennum-
mer vor jede volle Zeile (nicht vor die Zeilenreste); beim Programmdurchlauf
merken Sie dann, daB die Grafik korrekt ausgedruckt wird. Sie dlrfen erst einmal
nur die halbe Grafik eingeben, weil sie sich beim Zeileniberlauf auf dem Bildschirm
nach unten ausdehnt und alle Zeilen verlorengehen, die dabei Gber den unteren
Rand hinausgeschoben werden. Nach Eingabe der halben Grafik kdnnen Sie sie
vollstdndig oder teilweise auf die obere Bildschirmhalfte drucken und nach dersel-
ben Methode erganzen.

Die eventuell einzufugenden Zeilennummern sind der Grund dafir, daB die letzte
Spalte der Zeile freibleiben sollite. Reicht eine Grafik in zwei aufeinanderfolgenden
Zeilen bis zum Bildschirmende, so interpretiert der C 64 sie als 80-Zeichen-Zeile
und verhindert das Einfligen weiterer Zeichen. Falls Sie gezwungen sind, bis zum
Ende des Bildschirms zu gehen, diirffen Sie das erst nach der Ubertragung der
Grafik in Programmzeilen tun. Nun kdnnen Sie am Ende jeder Zeile das notwendige
zusétzliche Zeichen einfugen, dahinter ein abschlieBendes Fragezeichen und ein
Semikolon, sonst wird die Grafik im Wechsel mit Leerstellen gedruckt.

180

SCHLUSS

Ein potentiell nitzliches Programm, das wegen der undurchschaubaren Datendar-
stellung im Grunde flr keinen praktischen Zweck eingesetzt werden kann, gehort
fir den Computer-Benutzer zu den &rgerlichsten Dingen der Welt. Die Anwendung
der in diesem Kapitel beschriebenen Techniken macht kaum Miihe, ihre Wirkung
hingegen ist ganz ohne Mihe zu erkennen. Probieren Sie es.

NACHWORT

Wenn Sie das Buch durchgearbeitet und dabei alle Programmbeispiele eingegeben
haben, sind Sie geduldiger als ich. Selbstverstindlich habe auch ich sie eingege-
ben, aber ich werde schlieBlich auch dafur bezahlt.

Viel wahrscheinlicher haben Sie groBe Teile des Buches einfach Giberflogen und nur
angehalten, um besonders interessante Programme und Methoden auszuprobie-
ren. Stellen Sie das Buch danach aber nicht gleich als eines von den Nachschlag-
werken, die man ab und zu konsultiert, zu den anderen ins Regal. Sollten Sie nicht
gerade vorhaben, sich sofort auf ein neues Projekt einzulassen, kénnen Sie das
Buch am besten nutzen, indem Sie lhre eigenen Programme starten und ver-
suchen, das Gelernte darauf anzuwenden. Es scheint zwar merkwdirdig, komplizier-
tere Techniken auf eher einfache und sogar zufriedenstellende Programme anzu-
wenden, aber darum geht es nicht. Datenverarbeitungstechniken kann man sich nur
aneignen, wenn man sie ein- oder zweimal benutzt, selbst wenn der Nutzen nichts
nutzt (falls Sie mir folgen kénnen).

Ein weiterer Vorschlag wére, aus den abgedruckten Routinen inklusive Einzeilern
ein Verzeichnis nltzlicher Techniken auf Band oder Diskette anzulegen. Wie Sie
bemerkt haben, sind die komplexeren Techniken schon so dargestellt, daB sie leicht
eingegeben und ausprobiert werden kdnnen. Einzeilige Routinen kdnnten zwecks
Veranschaulichung ihrer Wirkung um eine Input- und eine Print-Anweisung erganzt
werden. Wenn Sie die Routinen in dieser Form abspeichern, kdnnen Sie sie zu
einem spéteren Zeitpunkt daraufhin untersuchen, ob sie eine bestimmte Aufgabe
bewaltigen; in diesem Fall kdnnen sie, wie in Kapitel 1 vorgeschlagen, in das
Programm eingebunden werden. Weitere geeignete Routinen kénnen aus Zeit-
schriften und Bichern entnommen werden, auch wenn Sie an den zugehdrigen
Programmen nicht interessiert sind. Ich selbst besitze eine Sammlung von Routi-
nen, die zur Zeit nicht viel leisten, aber bei jeder neuen schwierigen Aufgabe bin ich
im nachhinein froh dariber, sie angelegt zu haben.

Vergessen Sie also nicht einfach diejenigen Techniken, fiir die Sie im Moment keine
Verwendungsmaglichkeiten sehen. Friither oder spéter sind sie es vielleicht, die
Uber Erfolg oder MiBerfolg entscheiden.

181

FOLGENDE BUCHER SIND BISHER IN
DER COMMODORE SACHBUCHREIHE

ERSCHIENEN:

Band1
ALLES UBER DEN COMMODORE 64
ISBN 3-89 133-000-6
(Artikel-Nr. 55 64 20)
1984, 480 S., Fe. Ebd.
DM 59,—-
Band 2:
ALLES UBER DEN VC 20
ISBN 3-89 133-004-9
(Artikel-Nr. 58 00 20)
1984, 200 S., Br.
CODM 9,80
Band 3:
LOGO FUR COMMODORE
mit 2 Disketten
ISBN 3-89 133-001-4
(Artikel-Nr. 64 10 50)
1984, 364 S., A4, Fe. Ebd.
DM 159,
Band 4:
DAS COMMODORE 64
SPIELE-BUCH
ISBN 3-89 133-002-2
(Artikel-Nr. 55 64 15)
1984,160 S., Br.
DM 29,80
Band 5:
DAS VC 20 SPIELE-BUCH
ISBN 3-89 133-003-0
(Artikel-Nr. 58 00 15)
1984, 160 S., Br.
DM 29,80
Band 6:
PLUS/4 ROM-LISTING
ISBN 3-89 133-006-5
(Artikel-Nr. 58 40 00)
1984, 280 S,, Br.
DM 59,-

182

Band 7:
AUTOMATEN UND SENSOREN
ZUM SELBERBAUEN FUR
COMMODORE COMPUTER
von John Billingsley
ISBN 3-89 133-007-3
(Artikel-Nr. 58 00 05)
1984,128 S., Br.
DM 24,80

Band 8
MATHEMATIK MIT DEM
COMMODORE 64
von Czes Kosniowski
mit 1 Diskette)
ISBN 3-89 133-008-1
(Artikel-Nr. 55 64 30)
1984, 166 S., Br.

DM 34,80
Band 9: -
PROGRAMMIERTECHNIKEN FUR
FORTGESCHRITTENE AUF DEM
COMMODORE 64
von David Lawrence
ISBN 3-89 133-009-X
(Artikel-Nr. 55 64 35)
1985, 184 S., Br.

DM 29,80

Band 10:
DER COMMODORE 64 ALS
GRAFIK-KUNSTLER
von Boris Allan
ISBN 3-89 133-010-3
(Artikel-Nr. 55 64 38)
1985,144 S,, Br.

DM 24,80
Band 11:
DER COMMODORE 64
IN DER PRAXIS
von David Lawrence
ISBN 3-89 133-011-1
(Artikel-Nr. 55 64 23)
1985 in Druck

Band 12:

PROGRAMMIERUNG IN
MASCHINENSPRACHE AUF DEM
COMMODORE 64: DAS WERKZEUG
von Mark England und

David Lawrence

ISBN 3-89 133-012-X

(Artikel-Nr. 55 64 25)

1985 in Druck

Band 13:

PROGRAMMIERUNG IN
MASCHINENSPRACHE AUF DEM
COMMODORE 64:

GRAFIK UND MUSIK

von Mark England und

David Lawrence

ISBN 3-89 133-013-8

(Artikel-Nr. 55 64 26)

1985 in Druck

Band 14:

PROGRAMMIERUNG IN
MASCHINENSPRACHE AUF DEM
COMMODORE 64: SPIELE

von Paul Roper

ISBN 3-89 133-014-6

(Artikel-Nr. 55 64 27)

1985 in Druck

Band 15:

KUNSTLICHE INTELLIGENZ AUF
DEM COMMODORE 64

von Keith und Steven Brain

ISBN 3-89 133-015-4

(Artikel-Nr. 55 64 31)

1985 in Druck

Band 16:
FLOPPY-PROGRAMMIERUNG
MIT DEM COMMODORE 64
von David Lawrence und
Mark England

ISBN 3-89 133-016-2
(Artikel-Nr. 55 64 28)

in Vorbereitung

Band 17:

STRATEGIESPIELE AUF DEM
COMMODORE 64

EINE PROGRAMMIERANLEITUNG
ISBN 3-89 133-017-0

(Artikel-Nr. 55 64 32)

in Vorbereitung

Band 18:

DER COMMODORE 16
IN DER PRAXIS

ISBN 3-89 133-018-9
(Artikel-Nr. 55 50 00)

in Vorbereitung

Preisanderungen vorbehalten
OUnverbindliche Preisempfehlung

(&

Commodore
EINE GUTE IDEE NACH DER ANDEREN

183

Dies ist ein Buch fur alle, die mit
dem Commodore 64 (und dem
damit voll compatiblen Commo-
dore 128) endlich ernsthaft pro-
grammieren wollen. Es analysiert
einige der Techniken, die man zum
Schreiben erfolgreicher Anwen-
dungsprogramme braucht.

Das Buch ist randvoll mit Rat-
schlagen und Programmbeispielen
von Einzeilern bis hin zu komplexe-
ren Routinen, die eine wesentlich
effizientere Programmiertechnik
ermdglichen.

Wenn Sie die hier vorgestellten
Methoden anwenden, werden Sie
bald Programme schreiben kénnen,
die besser, schneller und klarer
sind und sich ékonomischer und
sicherer speichern lassen.

David Lawrence ist einer der
erfolgreichsten Autoren zum The-
ma Mikrocomputer in GroBbritan-
nien. Sein Name steht flr eine
Reihe von Bestsellern. Neben
seiner Tatigkeit als Buchautor
schreibt er auch kommerziell Soft-
ware und verfaBt regelmaBig Artikel
fur die Zeitschrift ‘Popular Com-
puting Weekly'.

C:

Commodore

Commodore GmbH
Lyoner StraBe 38
D-6000 Frankfurt/M. 71

Commodore AG
Aeschenvorstadt 57
CH-4010 Basel

Commodore GmbH
Kinskygasse 40 -44
A-1232 Wien

Nachdruck, auch auszugsweise, nur mit schriftlicher Genehmigung von Commodore.
Artikel-Nr. 556435/4.85 Anderungen vorbehalten ISBN 3-89133-009-X

