
David Lawrence 

Sachbuchreihe Band 9 

  
PROGRAMMIERTECHNIKEN 
FUR FORTGESCHRITTENE AUF 
DEM COMMODORE 64 

Wertvolle Ideen und Anwendungen 
anwendbar auch auf dem Commodore 128





David Lawrence 

_ PROGRAMMIERTECHNIKEN 
FUR FORTGESCHRITTENE AUF DEM 

COMMODORE 64





Commodore Sachbuchreihe Band9 

David Lawrence 

_ PROGRAMMIERTECHNIKEN 
FUR FORTGESCHRITTENE AUF DEM 

COMMODORE 64 
Wertvolle Ideen und Anwendungen 

anwendbar auch auf dem Commodore 128 

  

Commodore



Titel der Originalausgabe: Advanced programming techniques on the Commodore 64 

Copyright © 1983 
Sunshine Books (an imprint of Scot Press Ltd.) 
12-13 Little Newport Street, London WC2R 3LD 

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or 
transmitted in any form or by any means, electronical, mechanical, photocopying, recording, or 
otherwise without the prior permission of the publishers. 

Aus dem Englischen übertragen von Brigitte Pohl. 

Copyright © der deutschen Ausgabe bei Commodore Büromaschinen GmbH, Frankfurt 1985. 

Alle deutschsprachigen Rechte vorbehalten. Kein Teil des Werkes darf in irgendeiner Form (Druck, 
Fotokopie, Mikrofilm oder einem anderen Verfahren) ohne schriftliche Genehmigung von COMMO- 
DORE reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder 
verbreitet werden. 

Nachdruck, auch auszugsweise, nur mit schriftlicher Genehmigung von COMMODORE. 

Artikel-Nr. 556 435/4.85 Änderungen vorbehalten. ISBN-NR. 3-89133-009-X



INHALT 

Kapitell ..........: Coco moeeeeenre een nennen 
Modulares Programmieren | 

Wie man ein lauffähiges Programm schreibt — Abgrenzen des Pro- 

gramms — Planen des Programms — Schreiben der Module — Einge- 

ben des Programms — Hinweise und Tips 

Kapitel2 2.0... eens 
Fehlerbeseitigung 

Information — Zeilenspezifische Fehlermeldungen — Nicht lokalisierte 

Fehlermeldungen — Fehlermeldungen und ihre Bedeutung 

Kapitel3 ........ 0.0... ce ene 
Strings 

Verkettung oder String-Addition — String-Subtraktion — Einfügen von 

Zeichen in Strings — Umstellung von Zeichen in Strings — Suchen in 

Strings — Regelmäßige Stringsstrukturen — Mehrelementige Stringfel- 

der — Daten in Strings variabler Länge — Garbage Collection 

Kapitel4 2... eens 
Dateneingabe . 
Eingabe von Informationen: INPUT — Einfache Eingaben mit INPUT — 

INPUT mehrerer Elemente in dieselbe Bildschirmzeile — INPUT in 

Bildschirmfenster — GET — Wartestatus mit GET — GET und befristete 

Antwortzeiten — GET und invertierte Fenster — Bildschirmeditierung 

mit GET — Einfache Bildschirmeditierung mit INPUT 

Kapitel5 ........:: tees 
Fehlerkontrolle 

Fehlervorsorge — Fehlerkontrolle — Bestimmung von Grenzwerten — 

Verstümmelte Eingaben — Selbstentworfene Fehlermeldungen 

Kapitel6 .........22. ee eens 
Speichern und Laden 

Speichern von Programmen — Speichern und Laden von Daten — 

Speichern auf Band — Ausgabe auf eine Datei — Laden vom Band — 

Speicher- und Laderoutine — Besonderheiten bei Disketten



Kapitel? .......... Cocoon eneneeeeneneee een 
Logische Bedingungen 

Das bescheidene IF — Sicherung gegen ungültige Werte — Durch IF 

hervorgerufene Fehler — IF... THEN... ELSE — IF mit >, < und = — 

IF mit den Operatoren AND und OR — Kombinieren von AND und OR — 

Entschachteln komplexer Bedingungen — Bestimmung von Grenzwer- 

ten — IF mit NOT — Anwendung logischer Bedingungen — Wert einer 

Bedingung — Anwendung von Bedingungen als Werte — Plus oder 

Minus? — Multiplikation und Division — Vermeiden einer Isolierung 

durch IF — AND und OR mit Zahlen — POKE mit AND und OR - 

Speichern mit AND/OR — Gerade oder ungerade? 

Kapitel8 .. 0... eee 
Sortieren 

Sortieren: Warum und wozu? — Der Bubble-Sort — Programmieren des 

Bubble-Sort — Der Delayed-Replacement-Sort — Der Shell-Metzner- 

Sort 

Kapitel9 0... ee ee ees 
Datenstrukturen | 

Einfache Datenstrukturen — Datenstrukturen fur Zahlen — Bytezahlen 

in Integerfeldern — Ablegen im freien Speicher — Zahlen in Strings — 

Stacks — Stringdaten-Strukturen — Verdichtete Strings — Verdichtete 

Strings mit numerischen Feldzeigern 

Kapitel1O .......:.::: ce ee ns 
Datenstrukturen Il 

Verkettete Listen — Zeigerstrings — Löschen mit Zeigern — Schwarze 

Löcher 

Kapitel 11... 0... ee eee 
Einfugen von Daten 

Normales Suchen und Verschieben — Binares Suchen — Reines 

Suchen — Binares Suchen mit Zeigerfeldern 

Kapitel 12 0.0... ens 
Vermischtes 

Vom Benutzer definierte Funktionen — Beenden von FOR-Schleifen — 

DATA-Anweisungen — Zeitsteuerung mit TI und TI$ — Runden mit INT



Kapitel 13 2.0.0.0... ee tees 169 
Formatieren 

Cursorsteuerung —. Verwendung von Cursor-Steuerzeichen — TAB — 

SPC — Nachahmung von PRINT USING — Justieren — Einfache Logos 

und Grafiken 

Steuerzeichen in Programmlistings 

Die in den Programmzeilen verwendeten Steuerzeichen haben folgende 

Bedeutung (vgl. auch Anhang F des Commodore-64-Bedienungshandbuchs): 

BEZEICHNUNG SYMBOL TASTEN ODER CHRECKKRR) 

[SCHIRM NEU] "3" = <SHIFT>+<CLR> CHR#( 147) 

[CRSR HOCH] "DD" = <SHIFT>+<ERSR> CHRSC145) 

[CRSR RUNTER) "9" = <CRSR> CHR$S(17) 

CCRSR LINKS] "Mi = <SHIFT>+<CRSR> CHR#( 157) 

[CCRSR RECHTS] "BM" = <CRSR> CHRS(29) 

CSCHWARZ J "me" = <CTRLO+<1> CHRS( 144) 

[WEISS] "a" = <CTRL>+S2> CHRS(5) 

CROT I “Mm = <CTRLO+<3> CHRS$(28) 

[CYAN] “me” = <CTRLO+<4> CHRS( 159) 

CPURPUR ] "@" = <CTRLU>+<S> CHRS#¢ 156) 

[GRUEN] "Bi" = <CTRL>+<6> CHR$(38 ) 

[BLAU] "a" = <CTRLO+<7> CHR#(31> 

[GELB] "Gi" = <CTRL>+<8> CHRS( 158) 

[REVERS EIN) "3" = <CTRLO+<9> CHRS(18) 

[REVERS AUS] "WE" = <CTRL>?+<Q> CHRS( 146) 

CORANGE J Nea” = €C=>+< 13 CHR#( 129) 

[BRAUN] "Me" = <C=>+<2>. CHR$(1493) 

CHELLROT J "@" = <C=#>+<3> CHR#( 1505 

[GRAU 1] "Mm" = <C=>+<4> CHRS$S(1351) 

[GRAU 2] "ma" = <C#eo+<S> © CHRS¢( 152 > 

CHELLGRUEN] "gu" = <C=>+<6)> CHR$S<153? 

[HELLBLAU] "aa" = <C=>+<7> CHRS(154) 

[GRAU 3) "SEP = <C=}+<8> CHR$( 155) 

<CTRL> BEDEUTET 'CONTROL-TASTE'. 

<C=> BEDEUTET ‘COMMODORE -TASTE’.





EINLEITUNG 

Dieses Buch soll sich von allen anderen in Ihrem Bücherregal unterscheiden. Es 

stellt keine Programmsammlung dar, keine Einführung in die verfügbaren BASIC- 

Befehle und auch keine Sammlung üblicher Routinen, wie z. B. ein zweizeiliges 

Unterprogramm zur Umrechnung von Fahrenheit in Celsius. 

Es ist vielmehr den Lesern gewidmet, die ihren Mikrocomputer für nützliche 

Aufgaben einsetzen wollen — die Art von Aufgaben, die man normalerweise 

‘Anwendungsprogramme’ nennt. Die Zeiten, in denen man sich damit begnügte, die 

Leistungsfähigkeit eines Mikrocomputers nur für Spiele zu nutzen, sind hoffentlich 

endgültig vorbei. Die Leute wollen mit den Mikrocomputern arbeiten. Die Frage ist 

nur: Wie schreibt man ein geeignetes Programm? 

Die Legenden, die sich um anwendungsbezogenes Programmieren gebildet haben, 

sind meistens Unsinn. Einfach gesagt, ist ein Anwendungsprogramm etwas, das die 

Eingabe von Informationen ermöglicht, sie speichert, verarbeitet und zu irgendei- 

nem Zweck wieder ausgibt. Die Information kann aus Namen und Adressen 

bestehen, Waren und Preisen, Finanzunterlagen etc. — die Liste ist endlos. Ebenso 

unbegrenzt sind die Möglichkeiten der Informationsverarbeitung: Manches muß nur 

gespeichert, anderes nach bestimmten Kriterien sortiert werden, wieder anderes 

wird komplizierten mathematischen Verfahren unterworfen. Kein Buch kann den 

Anspruch haben, Anleitungen für alle möglichen Verarbeitungsweisen von Daten zu 

geben, die ein Mikrocomputer speichern kann. Die Art der Verarbeitung hängt von 

der Information und dem Zweck ab, zu dem sie gespeichert wird. 

Einige Richtlinien für Verfahrensweisen im Rahmen eines Kernprogramms müssen 

hier genügen: wie man ein Programm so schreibt, daß es reibungslos funktioniert; 

wie man es austestet; wie man Daten möglichst ökonomisch und schnell speichert; 

wie man sortiert; wie man die Ausgabe so formatiert, daß sie klar und verständlich 

ist. Solche Dinge werden den Löwenanteil der Programmierarbeit fur jeden ernst- 

haften Anwendungszweck ausmachen, und dieses Buch soll erklären, wie man sie 

mit sparsamen Mitteln erfolgreich bewältigt. 

Die Komplexität der behandelten Themen ist äußerst unterschiedlich. In den 

folgenden Kapiteln werden Sie viele Techniken vorfinden, die nur eine einzige 

Programmzeile erfordern, daneben zwei- oder dreizeilige Routinen für einfache 

Zwecke wie die Ausrichtung von Dezimalstellen bei einer Zahlenkolonne, aber auch 

längere und komplexere Routinen, mit denen man Daten sehr schnell in große 

Felder schreiben kann. Alle sind aufgeführt, weil sie nützlich sind, denn das 

vorliegende Buch ist kein theoretisches Werk. Ich habe versucht, sowohl eigene 

Techniken als auch die Arbeit anderer auf gemeinsame Aufgabenstellungen und 

Methoden hin zu untersuchen. Das Buch enthält nichts, das bei der Lösung eines 

bestimmten Problems nicht schon erprobt worden wäre.



Es befaßt sich nicht mit dem Einsatz von Mathematik beim Programmieren. Das ist 

ein Spezialgebiet, das mindestens ein eigenes Buch wert ist. Selbstverständlich 

enthält auch dieses Buch hier und da ein bißchen Mathematik, aber nur so viel, wie 

für ein betriebsfähiges Programm unbedingt nötig ist. Wenn Sie sich gründlicher mit 

dem mathematischen Bereich beschäftigen wollen, sollten Sie sich Czes Kosniows- 

kis neues Buch für den C 64, ‘Mathematik mit dem Commodore 64’, (Commodore 

Sachbuchreihe, Band 8) anschaffen. Grafische Techniken läßt das vorliegende 

Buch ebenfalls außer acht, abgesehen von dem, was man für eine klare und 

übersichtliche Datengestaltung braucht. Dies ist ebenso ein eigenes Spezialthema. 

Mein Dank geht an alle Leser, die mich zum Schreiben eines derartigen Buches 

ermutigt haben. Ich hoffe, es entspricht wenigstens zum Teil ihren Erwartungen. 

Dank gilt auch Mark England, Koautor von ‘Programmierung in Maschinensprache 

auf dem Commodore 64’ (Commodore Sachbuchreihe, Band 12 und 13), der 

geduldig die Vollendung dieses Buches abgewartet hat, bevor wir unser nächstes 

gemeinsames angehen können. Schließlich bedanke ich mich ganz nachdrücklich 

bei Barny und Tom, weil sie Verständnis dafür hatten, daß es manchmal wichtiger 

sein kann, am Computer zu sitzen als zu spielen, und bei meiner Frau Jane, weil sie 

in dieser Zeit alle Sorgen allein zu tragen hatte. 

Ich hoffe, das Resultat rechtfertigt diesen Aufwand. Ich hoffe, dies ist ein Buch, auf 

das Sie immer wieder zurückgreifen werden, weil es etwas Licht in die unvermeidli- 

chen Probleme bringt, die sich beim Programmieren ergeben. Am meisten hoffe 

ich, daß es Sie zu neuen Ideen anregt. Es gibt Ihnen die Hilfsmittel zum Program- 

mieren an die Hand, aber es hat seine Aufgabe noch nicht erfüllt, wenn Sie diese 

Hilfsmittel nur verstehen, sondern erst, wenn Sie sie für neue Zwecke einsetzen. 

David Lawrence 

Nach dem großen Erfolg, den David Lawrence mit seinem Buch in England gehabt 

hat, bringen wir auch für den deutschen Leser dieses Standardwerk heraus, das für 

das Programmieren nicht nur am Commodore 64 sondern ebenso auch am 'größe- 

ren Bruder’, dem neuen Commodore 128, seine Aktualität behalten wird. 

Commodore Verlagsabteilung 

Sachbuchredaktion 

10



KAPITEL 1 

MODULARES PROGRAMMIEREN 

WIE MAN EIN LAUFFÄHIGES PROGRAMM SCHREIBT 

Es scheint vielleicht ungewöhnlich, ein Buch über BASIC-Programmiertechniken 

mit einem Kapitel anzufangen, das sich weniger mit BASIC als mit Problemen von 

Stil und Aufbau eines Programms beschäftigt. Es gibt jedoch einen einfachen Grund 

für dieses Kapitel: Da ich es mit Fragen und Problemen der Mikrocomputer-Besitzer 

zu tun habe, die ihre Programme selbst schreiben, sehe ich immer deutlicher, daß 

ihr größtes Problem oft nicht in mangelnder Kenntnis der Funktion von BASIC liegt, 

sondern in der unsystematischen Art, wie sie an die eigentliche Aufgabe herange- 

hen: nämlich BASIC in einem Programm effizient einzusetzen. 

Die Programmiertechnik, die ich selbst sowohl in Büchern als auch in eigenen 

Programmen benutze, heißt 'modulares Programmieren’. Zunächst bedeutet das 

nur, Programme zu schreiben, die aus selbständigen Bausteinen zusammengesetzt 

sind. Die meisten praktischen Beispiele im Buch sind in dieser Form geschrieben. 

Sie können direkt in jedes beliebige eigene Programm, wo nötig, eingebunden 

werden. Modulares Programmieren geht jedoch noch viel weiter. Es enthält die 

ganze Philosophie eines Programmierstils, und wenn das zu großartig klingt: Es soll 

weiter nichts heißen, als daß man seinen gesunden Menschenverstand beim 

Schreiben von Computerprogrammen einsetzt. 

In diesem Kapitel werden wir einige Schritte erörtern, die zum Schreiben eines 

erfolgreichen Programms gehören und schon notwendig sind — oder sein sollten —, 

lange bevor Sie die Tastatur Ihres 64 zum ersten Mal berühren. 

ABGRENZEN DES PROGRAMMS 

Die schlechtesten Programme, die überhaupt geschrieben werden, sind die, von 

denen man schon vorher begeistert ist. Man hat eine Idee, stürzt sich voller 

Zuversicht auf die Tastatur und versucht, seine Vision in die Praxis umzusetzen. 

Wenn man sich auskennt, kann man in kurzer Zeit ein betriebsfähiges Kernpro- 

gramm erstellen. Dann aber merkt man, daß es z. B. keine Möglichkeit gibt, Daten 

ordentlich einzugeben, und so schiebt man das in irgendeine Lücke des Programms 

ein oder hängt zu diesem Zweck eine Routine an den Schluß. Dann fügt man noch 

etwas an, damit fehlerhafte Elemente im Bedarfsfall entfernt werden, und noch 

etwas zur Berücksichtigung ungültiger Eingaben, die das Programm zum Absturz 

11



bringen würden (das passiert immer, wenn ein anderer es in die Finger bekommt). 

Zusätzlich braucht man natürlich noch ein paar Zeilen zum Speichern von Daten auf 

Band. Dann fällt einem ein, daß sonst niemand weiß, wie man mit dem Programm 

umgeht, also muß es um ein besseres "Menü’ und vielleicht ein paar Anweisungen 

erweitert werden... 

Zum guten Schluß ist aus dem Programm ein Mischmasch aus ungeordneten 

Zeilennummern und verwickelten, in alle Richtungen weisenden GOTOs und 

GOSUBs geworden. Trifft man dann auf einen unvermeidlichen Fehler, ist die Art 

des Fehlers weniger problematisch herauszufinden als sein Ort. Das kann Tage 

oder gar Wochen dauern. 

Die besten Programme entstehen dann, wenn man zwar weiß, daß man sie 

schreiben muß, aber eigentlich keine Lust dazu hat oder nicht genau weiß, wie es 

gemacht wird. Das hat einen einfachen Grund: Wenn man nicht sicher ist, ob man 

das gewünschte Programm schreiben kann, setzt man sich erst einmal hin und 

denkt über das Vorhaben nach. In diesem Moment hat man die erste und in vieler 

Hinsicht wichtigste Hürde beim Entwerfen eines erfolgreichen Programms ge- 

nommen. 

Ein Programm besteht nicht nur in dem Verfahren, mit dem seine zentrale Aufgabe 

gelöst wird, wie z.B. die Berechnung von Steuern oder das Speichern von 

Namens- und Adreßdateien. Es ist vielmehr ein ganzer Komplex von Funktionen: 

Es muß die Eingabe einer Information und ihre korrekte Wiedergabe bewältigen, 

klare Angaben über die Art seiner Bedienung machen, sich mit Fehlern befassen 

und Korrekturen zulassen, die nach der Eingabe fehlerhafter Informationen nötig 

sind. Diese und viele andere Aufgaben sind für ein brauchbares Programm genauso 

wesentlich wie die Routine im Programmkern. 

Selbst wenn Sie sich nur auf die zentrale Aufgabe und die dafür notwendigen Zeilen 

beschränken, ist die erste Idee selten die beste. Sie wollen also Ihre Steuer 

ausrechnen, aber was soll alles in dieser Aufgabenstellung inbegriffen sein? 

Interessieren Sie die Ergebnisse bei jeweils unterschiedlichen Steuersätzen? Soll 

der Abzug von Unkosten berücksichtigt werden? Welchen Zeitraum wollen Sie 

abdecken, und, falls er über ein Jahr hinausgeht: Was passiert, wenn die Steuer- 

sätze sich von einem Jahr zum anderen (oder sogar innerhalb eines Jahres) 

ändern? Wollen Sie das Programm so anlegen, daß es ‘Was, wenn’-Fragen bearbei- 

tet (z. B. „Was würde passieren, wenn mein Einkommen monatlich um DM 78,70 

stiege?“), ohne bereits eingegebene Daten zu beeinflussen? Möchten Sie die 

Informationen speichern oder jedesmal neu eingeben, wenn Sie das Programm 

laufen lassen? Soll das Gehalt des Ehepartners mit einbezogen werden? Alle diese 

Fragen fallen mir ganz spontan ein. Nach längerem Nachdenken könnte man eine 

ganze Seite mit alledem füllen, was man wissen muß, bevor man endlich mit dem 

Programmieren einer zunächst scheinbar völlig eindeutigen Aufgabe anfangen 

kann. Möglicherweise werden Sie auch dann ein funktionierendes Programm 

12



zustandebringen, wenn Sie vorher die Anwendungsmöglichkeiten nicht gründlich 

durchdacht haben — aber es gibt überall schon mehr als genug überflüssige 

Kassetten mit funktionierenden Programmen, die im Grunde unbrauchbar sind. 

Die erste Aufgabe beim Schreiben eines Programms besteht also darin, sich 

hinzusetzen und nachzudenken und in klaren Worten aufzuschreiben, was das 

Programm Ihrer Vorstellung gemäß leisten soll. Wenn das erledigt ist, lassen Sie es 

eine Zeitlang liegen, bevor Sie sich wieder damit beschäftigen. Bei nochmaliger 

Prüfung wird es selten so perfekt aussehen wie vorher, und Sie werden es um 

einige Funktionen erweitern wollen. Wird ein Programm von anderen benutzt (und 

sei es noch so selten), müssen Sie deren Erwartungen berücksichtigen. Es ist 

absolut zwecklos, Ihre Kinder davon überzeugen zu wollen, wie spannend und 

unterhaltsam das ausgezeichnete neue Lernprogramm ist, das Sie geschrieben 

haben — solange es nicht das leistet, was Ihre Kinder gern hätten. Entweder tut das 

Programm, was die Benutzer möchten und erwarten, oder nicht. Wenn nicht, haben 

Sie mit dem Schreiben eine Menge Zeit verschwendet. 

Daraus folgt, daß Sie bei der Funktionsbestimmung Ihres Programms nie zu weit 

gehen können. Sie sollten bei der Planung weit mehr als die bloßen Notwendigkei- 

ten berücksichtigen. Wenn Sie mit dem ausführlichen Planen und Schreiben 

beginnen, müssen Sie vielleicht einige Ideen wieder aufgeben, weil die Speicherka- 

pazität oder aber Ihre Kenntnisse dazu nicht ausreichen. Viel öfter werden Sie sich 

jedoch in der Lage sehen, ein Programm tatsächlich nach Ihren Vorstellungen 

schreiben zu können. Gerade auf die Programme, die ein Gebiet vollständig 

abdecken, werden Sie immer wieder zurückgreifen. 

PLANEN DES PROGRAMMS 

Planen? Hatten wir das nicht schon? Eben nicht, denn bis jetzt haben Sie nicht 

einmal über ein Computerprogramm nachgedacht. Sie haben lediglich den idealen 

Sklaven beschrieben, der eine Arbeit genauso erledigt, wie Sie es sich vorstellen. 

Wenn Sie die Aufgabe richtig angefaßt haben, dann haben Sie bis jetzt keine 

Rücksicht darauf genommen, ob Sie sie mit dem C 64 realisieren können, oder was 

man überhaupt damit machen kann. Ihre Aufgabe ist es jetzt, die ideale Funktions- 

beschreibung in Bausteine zu zerlegen, die der C 64 verarbeiten kann, und die Sie 

programmieren können. 

Dabei geht man am besten in zwei Stufen vor. Im ersten Stadium werden allge- 

meine Programmbereiche wie Eingabe, Ausgabe, Datenverarbeitung, Speicher 

u. a. bestimmt. Wenn diese ziemlich einfache Angelegenheit erledigt ist, kommt der 

komplizierte Teil, in dem die eigentlichen Bausteine oder Module bestimmt werden, 

aus denen das Programm aufgebaut ist. ° 

In der Regel unterteilt man dazu die Programmfunktionen so weit wie möglich in 

13



getrennte Einheiten, selbst wenn man dabei Funktionen teilen muß, die sonst 

scheinbar immer zusammengehören. Ein streng in Funktionseinheiten gegliedertes 

Programm ist immer am leichtesten zu schreiben und am unkompliziertesten, wenn 

die unvermeidliche Suche nach Fehlern beginnt. Außerdem sind Programme, die in 

Klare Funktionseinheiten eingeteilt sind, paradoxerweise oft kürzer als solche, in 

denen alle Programmfunktionen eng gebündelt sind. Der Grund dafür ist folgender: 

Wenn Sie ein Programm konsequent zerlegen, stellen Sie fest, daß bestimmte 

Funktionen in verschiedenen Teilen und an verschiedenen Stellen des Programms 

immer wieder gebraucht werden. 

Nehmen wir als Beispiel unser hypothetisches Programm zur Berechnung von 

Steuern: Die Anzeige der Daten auf dem Bildschirm erfordert eine kurze Routine, 

damit Zahlen mit zwei Dezimalstellen und in einer Kolonne mit untereinander 

ausgerichteten Dezimalstellen erscheinen (siehe Kapitel 13). Sie könnten diese 

drei- bis vierzeiligen Routinen einfach an die Ausgabeeinheit des Programms 

hängen. Aber dann kommen Sie beim Löschen einzelner Elemente darauf, daß sie 

in demselben Format angezeigt werden sollten, damit der Benutzer genau verfolgen 

kann, was gelöscht wird. Dasselbe gilt für die Eingabe, die Sie gern formatiert auf 

dem Bildschirm sähen. Da Sie aber die kurze Formatierroutine in einem anderen 

Programmteil untergebracht haben, ist es unmöglich, von einer anderen Stelle aus 

darauf zuzugreifen, und daher müssen Sie die Routine bei Bedarf jedesmal neu 

schreiben. 

Das klingt vielleicht lächerlich, aber werfen Sie nur einen Blick auf die Programme, 

die im Anhang von Computerzeitschriften veröffentlicht werden. Überall werden Sie 

solche Wiederholungen entdecken. In einem ordentlich entworfenen Programm 

Kann auf jede Funktion von jeder Stelle aus zugegriffen werden. Sehr oft werden Sie 

sogar entdecken, daß ein sorgfältig geschriebenes Programm um zusätzliche 

Funktionen erweitert werden kann, indem man eine Anzahl von Funktionen einfach 

in einer anderen Reihenfolge aufruft. 

Auf lange Sicht ist es am wichtigsten, daß das Schreiben weiterer Programme 

enorm erleichtert wird, wenn Sie erst einmal über drei oder vier Programme mit klar 

abgegrenzten Funktionen verfügen. Es gibt in Wirklichkeit nur sehr wenige Techni- 

ken, die für ernsthaftes Programmieren wichtig sind. Wenn Sie diese einmal in 

einem Programm angewendet haben, werden Sie schnell dazu übergehen, sie nach 

dem Baukastenprinzip für die Erstellung anderer Programme auszuwählen und zu 

benutzen. 

Die grundlegende Technik für ein sorgfältig strukturiertes Programm besteht darin, 

sich jeden Aspekt des Programms zu beschreiben: 

“In diesem Abschnitt möchte ich dem Benutzer erläutern, wie Daten einzugeben 

sind, dann die Daten annehmen, sie auf bestimmte Fehler hin überprüfen, den 

Benutzer auffordern, die Richtigkeit der Daten zu bestätigen, und schließlich die 

Daten an den richtigen Platz speichern.” 

14



In diesem einfachen und relativ untechnischen Satz haben Sie bereits mindestens 

fünf Funktionen unterschieden, die Sie sofort notieren sollten. Arbeiten Sie sich auf 

die gleiche Weise durch alle allgemeinen Programmteile. Als Resultat ergibt sich 

eine Liste von Funktionen, die offenbar für ein Programm ausreichen. 

Jetzt geht man daran, die weiter zerlegbaren Funktionen zu bestimmen. Wir haben 

z. B. oben erwähnt, daß die Eingabe noch einmal auf dem Bildschirm angezeigt 

werden soll, etwa damit der Benutzer die Korrektheit der Eingabe bestätigen kann. 

Zum Formatieren der Anzeige braucht man wie gesagt eine Formatierroutine. Ein 

weiteres Beispiel wäre die letztgenannte Funktion: das Speichern der Daten an den 

richtigen Platz. Wenn Sie den Inhalt alphabetisch oder chronologisch geordnet 

haben, müßte beim Einfügen eines neuen Datenelements zuerst die richtige Stelle 

gesucht und dann Platz dafür gemacht werden. Daß es sich dabei um zwei 

verschiedene Prozesse handelt, merken Sie spätestens dann, wenn Sie dem 

Benutzer die Möglichkeit geben wollen, ein bestimmtes Element zu benennen, das 

aufgerufen und angezeigt werden soll. Dann werden Sie nämlich feststellen, daß 

Ihre Suchroutine und die Zeilen zum Einschieben eines Elements aneinanderge- 

Koppelt sind. 

Wie bei den allgemeinen Programmteilen gehen Sie bei jeder einzelnen Funktion 

des Programms vor und beschreiben sie. Sollten Sie bei einer Funktion auf zwei 

oder drei verschiedene Schritte kommen, so ist sie wahrscheinlich zur nochmaligen 

Zerlegung geeignet. 

Am Ende der Prozedur haben Sie eine Liste von Funktionen, die der © 64 nach Ihrer 

Ansicht zur Ausführung des geplanten Programms benötigt. Sie können sich ein 

Bild von dem gesamten Programm, der ungefähren Länge, der Art der Struktur und 

den möglicherweise problematischen Bereichen machen. Gehen Sie am Schluß zur 

Probe ein paar typische Operationen durch, die Sie mit Ihrem Programm ausführen 

möchten, und benutzen Sie dabei Ihre Notizen statt den C 64: 

“Anschalten, RUN (aha, ein Menü zur Funktionsbeschreibung fehlt), anzeigen, daß 

ich Daten eingeben will, Eingabe bestätigen, das nächste Element eingeben .. .” 

Wenn alles in Ordnung ist, sollten Ihre Notizen fast genauso gut funktionieren wie 

später der C 64. 

SCHREIBEN DER MODULE 

Inzwischen können Sie der Versuchung kaum noch widerstehen, sich endlich an 

den C 64 zu setzen und loszulegen, aber es ist noch immer nicht soweit. Ein 

Programm schreibt man am besten überhaupt nicht am Computer, sondern auf 

einem Blatt Papier. Damit will ich nicht sagen, daß Sie erst jede Zeile des BASIC- 

Programms genau aufschreiben sollen, bevor Sie mit der Eingabe beginnen kön- 

15



nen. Vielmehr sollen Sie in diesem Stadium von jeder einzelnen Programmfunktion 

ein Arbeitsmodell entwerfen. An diese Modelle, die sicher nicht sehr detailliert sind, 

können Sie sich halten, wenn die einzelnen Funktionen schließlich als Programm- 

module eingegeben werden. 

Das bekannteste Verfahren zur schrittweisen Entwicklung von Programmen ist wohl 

das Flußdiagramm. Das Problem dabei ist allerdings, daß die Besitzer von Mikro- 

computern sie kaum einsetzen, auch wenn Computerprofis ihren Gebrauch sehr 

empfehlen. Es ist wohl realistischer, die sogenannte ‘'Programm-Entwicklungsspra- 

che’ (PDL; program development language) anzuwenden. Das klingt vielleicht 

etwas entmutigend, und tatsächlich hat sich PDL in den Händen professioneller 

Programmierer zu einem technischen Instrument entwickelt, das die meisten 

BASIC-Programmierer kaum verstehen, geschweige denn benutzen. Auf so kom- 

plizierte Dinge will ich aber hier nicht hinaus, sondern ich meine mit PDL eine 

einfache Mischung aus BASIC und Umgangssprache, die dem fertigen Modul zwar 

ähnelt, aber viel schneller zu schreiben ist. 

Einen Eingabemodul könnte man dann etwa so schreiben: 

## PRINT CTITLE 

PRINT (CVERFUEGBARE KOMMANOOS] NEU/ENDE 

77 INPUT“WERT"? TA 

IF TA=-39939 THEN RETURN 

GOSUB ERROR CHECK 

IF ERROR THEN 7 

INPUT "BESCHRE IBUNG";: TDS 

GOSUB FORMAT 

KLAR AB MENUE 

PRINT TOS? "5"; FRMATS 

INPUT “"KORREKT "2 Q$: "N" THENIO@ 

GOSUB PLATZSUCHE 

16



DATENE INGABE 

GOTO ## 

[VARIABLEN ERFORDERLICH: KEINE) 

VERWENDETE VARIABLEN: 

TA = Zwischenspeicher für den Wert 

TD$ = Zwischenspeicher für die Beschreibung 

Q$ = Eingabevariable 

FRMAT$ = durch Formatierroutine formatierter Wert 

Wenn das Modul in dieser Form aufgeschrieben ist, sehe ich genau, welche 

Bestimmung es haben soll. Ich kann mir genau vorstellen, wie ich es programmie- 

ren werden. Wie Sie sehen, habe ich einzelne Anweisungen ausgeschrieben; denn 

das ist genauso kurz wie die verbale Umschreibung. Andere Funktionen, insbeson- 

dere im Zusammenhang mit der Bildschirmanzeige, werden zunächst nur erwähnt; 

es ist einfacher, erst bei der endgültigen Eingabe des Moduls zu entscheiden, wie 

viele Bildschirmzeilen für die Neueingabe eines Elements freigemacht werden 

müssen, oder in welcher Farbe Titel und Menü gedruckt werden sollen. Manchmal 

ist es günstig, ein Verfahren mit einer Zeile zu beschreiben, wenn man sich im 

Moment über die genaue Form noch nicht im klaren ist, aber weiß, daß das Problem 

mit etwas Nachdenken und Probieren gelöst werden kann. In diesen Fällen versieht 

man die entsprechende Zeile mit einer Bemerkung und schreibt später ein Ergän- 

zungsblatt. 

Die Zeilen sind nicht numeriert — teils, weil ich darauf verzichtet habe, jede Zeile in 

der endgultigen Form auszuschreiben, und teils, weil ich dadurch beim Schreiben 

aufgehalten werden wurde. Ein oder zwei Markierungen am Zeilenanfang wie ## 

und %% sind ausreichend. Wenn ich das Modul später in den C 64 eingebe, 

schreibe ich GOTO***** für Vorwärtssprünge und aktualisiere die Zeile, sobald ich 

die Nummer der Zieladresse kenne. Rückwärtssprünge sind problemlos, weil die 

Sprungadresse des Ziels schon bekannt ist. Wie Sie sehen, sind auch die GOSUB- 

Adressen noch nicht bestimmt, sondern tragen nur die Namen anderer, vielleicht 

noch gar nicht geschriebener Unterprogramme. Bei der späteren Programmeingabe 

weise ich zunächst jedem Modul einen Zeilenblock von jeweils mindestens 1000 

Zeilen zu; die Adresse vermerke ich oben auf den einzelnen Seiten mit den 

Beschreibungen der Programmfunktionen. 

Am Ende des Listings sehen Sie eine Liste der verwendeten Variablen. Manche 

davon dienen mir als Hinweis auf die Variablen, die vor Aufruf des Moduls definiert 

werden müssen. Sie werden auch für eine vollständige Aufstellung der Variablenna- 

men benötigt, anhand derer ich mich vergewissern kann, daß kein Name zweimal 

17



vergeben wird. Hilfsvariablen, die nur für die Dauer des Moduls gebraucht werden, 

und deren Inhalt entweder vergessen oder zur Dauerspeicherung an eine andere 

Variable übergeben wird, dürfen Namen haben, die auch in anderen Modulen 

vorkommen. Andere würden Verwirrung stiften, wenn man sie versehentlich an 

verschiedenen Stellen für verschiedene Zwecke benutzte. 

Natürlich kommt man mit dieser schlichten Methode nicht bei jedem Modul weiter. 

Einige Module enthalten vielleicht zwei bis drei Zeilen mit mathematischen Berech- 

nungen; diese Zeilen würde ich schon explizit aufschreiben. Ihren Bedürfnissen frei 

angepaßt, verhilft Ihnen diese Methode aber im allgemeinen dazu, sich ein klares 

Bild des Programms zu machen und es dann viel schneller eingeben zu können, als 

wenn Sie es direkt an der Tastatur versucht hätten. Sie sollen nicht etwa streng nach 

dem Muster des o. g. Beispiels vorgehen, sondern daraus nur erkennen, daß ein 

Programm schnell und verständlich geschrieben werden kann, wenn Sie sich eine 

solche Methode zu eigen machen. 

EINGEBEN DES PROGRAMMS 

Jetzt können Sie sich endlich dem C 64 in der Gewißheit zuwenden, daß Sie etwas 

in der Hand haben, das Sie eingeben können und das einem betriebsfähigen 

Programm sehr nahe kommt. Als Rohmaterial dient Ihnen ein Stapel von Notizen mit 

den verschiedenen Programmfunktionen. Sie sollten jedoch keinesfalls das Pro- 

gramm einfach von Anfang bis Ende eingeben. 

Modulares Programmieren eignet sich vorzüglich zur Fehlerbeseitigung während 

der Programmeingabe. Es ist viel leichter, ein Programm zu korrigieren, während 

Sie die einzelnen Module eingeben, als später Fehler aufzuspüren, wenn das ganze 

Programm schon läuft. In diesem Stadium kann die Fehlerbeseitigung zwar noch 

nicht perfekt sein; denn viele Fehler werden erst dann sichtbar, wenn alle Module 

zusammen arbeiten, aber Sie ersparen sich damit trotzdem viel Kopfzerbrechen. 

Um ein Programm laufend zu korrigieren, müssen Sie die Module bestimmen, die 

am häufigsten gebraucht werden (wahrscheinlich für triviale Zwecke), und diese 

zuerst eingeben. 

Das oben abgedruckte Eingabemodul könnte man z.B. auch ohne die PLATZ- 

SUCHE oder DATENEINGABE-Routinen austesten. Diese ließen sich einfach 

durch zwei RETURN-Befehle in den passenden Anfangszeilen derjenigen Blöcke 

ersetzen, in denen sie später stehen sollen. Das Eigabemodul können Sie dagegen 

nicht austesten, solange die ERROR CHECK- und FORMAT-Routinen noch nicht 

eingegeben sind. Wenn Sie das getan haben, können Sie beliebig viele Daten 

eingeben. Erst einmal wird damit nichts weiter gemacht, aber Sie haben jetzt die 

Möglichkeit zu prüfen, ob die Bildschirmdarstellung übersichtlich ist, und ob Einga- 

ben angenommen und überprüft werden. 

18



Es ist nie möglich, die Reihenfolge für die Eingabe der Module optimal zu treffen. Es 

wird oft passieren, daß Sie den Wert einer oder zwei Variablen im Direktmodus 

zuweisen müssen (zZ. B. LET A$='STEUERABZUG'’ ohne Zeilennummer) und dann 

mit GOTO zum Anfang der Routine springen (RUN würde die gerade eingegebene 

Variable wieder löschen). Manchmal werden Sie zwei oder drei Module zusammen 

eingeben müssen, wie etwa PLATZSUCHE und DATENEINGABE, weil sie gewöhn- 

lich zusammen arbeiten. Trotz dieser Ausnahmen von der Regel sollten Sie immer 

alles so früh wie möglich nach der Eingabe auszutesten versuchen, denn Sie 

können davon ausgehen, daß jeder Fehler, den sie entdecken, relativ einfach 

aufzuspüren und zu korrigieren ist, weil die Chancen zwanzig zu eins stehen, daß er 

sich in dem (den) zuletzt eingegebenen Modul(en) befindet. 

All das wird Ihnen, wie gesagt, noch kein fehlerfreies Programm bescheren, aber 

das Programm wird viel weniger Fehler enthalten, als wenn Sie es von Anfang bis 

Ende einfach eingetippt hätten. Zumindest haben Sie am Schluß ein ganzes 

Programm ohne einen einzigen SYNTAX ERROR, da vor Beendigung der Pro- 

grammeingabe jede einzelne Zeile schon einmal durchlaufen ist. 

HINWEISE UND TIPS 

Im folgenden finden Sie einige Punkte, auf die Sie achten müssen, wenn Sie ein 

Programm modular schreiben. Die Liste ist nicht vollständig, gibt jedoch einen 

Überblick über die Punkte, die allzuoft beim Programmieren vernachlässigt werden: 

1. Programme sind übersichtlicher, wenn alle Module eine kommentierende Über- 

schrift haben. Ich selbst benutze immer dieses Format: 

19000 REMAKEKKKKKKKKKKKKKK 

i901 REM NAME DES MODULS 

1882 REMEKKKKAKKKKKEKKKEK 

Damit ist das Modul im Programm deutlich markiert, wovon Sie erheblich profitieren, 

wenn Sie nach einiger Zeit auf das Listing zuruckkommen. 

2. Nachdem Sie dem Modul eine Uberschrift gegeben haben, sollten Sie bei allen 

auf die Routine weisenden GOTOs und GOSUBs die Zeilennummer der Uberschrift 

(1000) angeben, und zwar aus folgendem Grund: Falls Sie dem Arbeitsteil des 

Moduls eine neue erste Zeile geben oder die bestehende erste Zeile löschen 

wollen, werden bei jedem Aufrufen des Moduls UNDEF’STATEMENT-Fehler auf- 

tauchen. Da die Position der Überschrift unverändert bleibt, sind Veränderungen an 

der eigentlichen Routine problemlos. | 

19



3. Seien Sie bitte großzügig mit Kommentaren in REM-Zeilen. Wenn Sie drei 

Monate später das Programm ändern wollen, werden Sie heilfroh über das bißchen 

Extraarbeit sein, das Sie sich gemacht haben: Ohne Kommentare würde es später 

Stunden dauern, bis Sie auch nur herausgefunden hätten, worum es geht. 

4. Jedes Programm, besonders ein umfangreiches, wird durch anschauliche Varia- 

blennamen leichter verständlich. Solche Namen können jedoch zu interessanten 

Fehlern führen, wenn sie Buchstabenkombinationen enthalten, die mit dem Anfang 

von BASIC-Schlüsselwörtern übereinstimmen. Wie Sie sehen, fehlt im oben 

gezeigten Listing das ‘O’ in FRMAT$, da das Wort mit ‘FOR’ am Anfang nicht 

angenommen wird. Es gibt noch ein weiteres Problem bei beschreibenden Namen, 

und zwar kann es beim relevanten Teil des Namens (die ersten zwei Buchstaben) 

leicht zu unbemerkten Doppelanwendungen kommen. PAYMENT und PARAME- 

TER sind z. B. in Wirklichkeit ein und dieselbe Variable. Hier leistet Ihnen die 

wahrend des Schreibens erstellte Variablenliste unschatzbare Dienste. 

5. Die meisten Variablen in einem modularen Programm sind Hilfsvariablen (oder 

sollten es sein). Eine Eingabe, die Sie direkt in das Feld oder in die Variable mit den 

permanent gespeicherten Daten übernehmen, ist viel schwerer zu korrigieren, 

wenn sie sich als fehlerhaft erweist. Eingaben sollten einer Hilfsvariablen zugewie- 

sen werden, wobei es überflüssig ist, ihnen in jedem Modul einen anderen Namen 

zu geben; normalerweise werden ein oder zwei wie T$, Q$, T und Q ausreichen, 

ohne Verwirrung zu stiften, weil sie am Ende des Moduls vergessen werden. 

6. Einige Hilfsvariablen sind weniger temporär als andere. Im oben aufgelisteten 

Eingabemodul sind die Daten in zwei Variablen (TA und TD$) gespeichert, die 

danach oben noch an zwei andere Module übergeben werden sollen, bevor sie in 

die Hauptdatenfelder des Programms übernommen werden. In diesem Fall ist es 

sinnvoll, den Variablennamen mit T anzufangen, damit deutlich wird, daß es sich um 

eine Hilfsvariable handelt, aber fügen Sie noch einen oder mehrere Buchstaben als 

Hinweis auf die Funktion der Variablen an, und behalten Sie dabei die Gefahr einer 

Namensduplikation im Auge. 

7. Bestimmen Sie sorgfältig die Reihenfolge, in der die Module im Programm 

angelegt werden sollen. Hierbei ist zweierlei zu beachten: 

a) Oft gebrauchte Module werden etwas schneller ausgeführt, wenn sie am Pro- 

grammanfang stehen. 

b) Andererseits ist nichts schwerer zu durchschauen als ein Programm, in dem alle 

Module offenbar ohne logische Reihenfolge durcheinanderstehen. 

20



Wenn Ihr Vorhaben nicht übermäßig kompliziert ist und keinen riesigen Aufwand an 

Zeit und Berechnungen erfordert, ist es sicher besser, das Programm so anzulegen, 

daß die Module logische Gruppen bilden; dabei sollten die kleineren Module, die in 

verschiedenen Bereichen des Programmes gebraucht werden (wie die FORMAT- 

Routine im o.g. Beispiel), am Ende stehen. Sie werden höchstwahrscheinlich 

keinen Unterschied in der Geschwindigkeit feststellen. 

8. Die Programminitialisierung, d. h. die Definition der verschiedenen Felder und 

Variablen, ist eine eigene Funktion und sollte ein eigenes Modul haben, das bei 

Bedarf aufgerufen werden kann. Das gibt Ihnen die Möglichkeit, das Programm 

beim ersten Durchlauf einzurichten und, wenn es danach wieder aufgerufen wird, 

Daten beliebig zu löschen. Programme können so eingerichtet werden, daß sie sich 

selbst initialisieren. Sie definieren Felder dann, wenn sie gebraucht werden, vermei- 

- den es aber, den Speicher zu löschen, falls er schon brauchbare Daten enthält. 

Dazu stellen Sie den Programmabschnitt, der den Speicher löscht, ganz an den 

Kopf des Programms. An den Anfang des Moduls setzen Sie eine Zeile, die eine 

wichtige Variable auf Null testet. Die gewählte Variable sollte immer einen anderen 

Wert als Null haben, wenn das Programm Daten im Speicher hat. Die Auto- 

Initialisierungszeile überspringt nun die Initialisierungsroutine, wenn die Variable 

nicht gleich Null ist. Nehmen Sie dazu folgendes Beispiel: 

1888 REMKRKKKKEKERI KK 

1861 REM INITIALISIERUNG 

18982 REMEKKKKEKKKKKKKKKEKKS 

1061@ IFIT< s@THEN1I500 

1828 CLR 

19030 DIM AS(C10) ,ANACSOO>) ,BAC100>) ,CAC1LOO>) 

Hier dient IT dazu, die Anzahl der vom Programm gespeicherten Daten aufzuzeich- 

nen. Wenn Sie Daten eingeben, das Programm anhalten und mit GOTO 1000 neu 

starten wollen, überspringt Zeile 1010 ohne Datenverlust die Zeilen, die den 

Speicher löschen und die Felder neu belegen. Wollen Sie dagegen die vorhande- 

nen Daten löschen, müssen Sie das Programm nur mit RUN starten. Damit machen 

Sie den Speicher frei und setzen alle Variablen auf Null, IT eingeschlossen. 

9. Ein Programm verdient eigentlich erst den Namen Programm, wenn es ein Menü 

besitzt, das zumindest einen Überblick darüber gibt, welche Funktionen das Pro- 

gramm hat und wie Sie zwischen den verschiedenen Funktionen wählen können. 

Abgesehen von diesem Hauptmenü könnten viele der einzelnen Module, wenn sie 

den Zugriff auf mehr als eine Funktion erlauben, eventuell durch ein eigenes kleines 

Menü verbessert werden. 

21



10. Modulares Programmieren läßt sich durch den Einsatz von ‘Flags’ erleichtern. 

Das sind Variablen, mit denen man einem Modul anzeigt, daß in einem anderen 

etwas (nicht) passiert ist. Das klassische Beispiel dafür ist der Fehler-Flag. Modula- 

res Programmieren bietet sich für den Einbau einer gesonderten Routine zur 

Meldung verschiedener Fehlerarten an, aber wie soll diese Routine heißen, und wie 

können Sie verhindern, daß ein Fehler das Programm abstürzen läßt? Die Lösung 

besteht im Gebrauch eines oder mehrerer Flags. 

Nehmen Sie z. B. an, Sie sind entlang einer GOSUB-Kette vier Unterprogramme 

hinabgestiegen, d.h. das erste Programm hat das zweite aufgerufen, das zweite 

das dritte und das dritte das vierte. An diesem Punkt findet sich ein Fehler in den 

Daten, der vorher nicht aufgespürt werden konnte; sagen wir, Sie möchten eine 

Information einfügen, und es stellt sich heraus, daß im Feld kein Platz mehr 

verfügbar ist. Jetzt wollen Sie zweierlei: erstens den Benutzer von dem Problem in 

Kenntnis setzen, und zweitens sicherstellen, daß es keine Katastrophe gibt, wenn 

Sie das laufende Unterprogramm mit RETURN verlassen. Das wird gewöhnlich mit 

Hilfe eines Fehler-Flags erreicht, z. B. einer mit ERR (ERRor) bezeichneten Varia- 

blen. Diese würde im Normalfall auf Null gesetzt, erhält aber jetzt einen dem 

Fehlertyp entsprechenden Wert. Alle Module enthalten eine oder mehrere Zeilen, 

die herausfinden, ob ERR noch gleich Null ist. Wenn nicht, geben Sie lediglich mit 

RETURN die Ausführung an das in der Kette vorhergehende Modul weiter. Am 

Anfang der Kette steht dann ein Modul, das entdeckt, daß ERR gesetzt ist und das 

ERROR MESSAGE-Modul aufruft, um eine Fehlermeldung mit der Nummer ERR 

auszugeben. Dies ist nur ein Beispiel für den Gebrauch von Flags. Sie werden 

merken, wie unentbehrlich sie sind, wann immer eine Meldung zum Stand der 

Dinge von einem Modul an ein anderes übergeben werden muß (s. auch Erläute- 

rungen zur Verwendung von Fehler-Flags in Kapitel 5). 

11. Streuen Sie die Nummern der Anfangszeilen Ihrer Module großzügig. Sie 

werden das Programm sicherlich später weiter ausbauen wollen, und dann ist es 

sehr ärgerlich, wenn Sie die saubere Struktur verderben müssen, indem Sie ein 

neues Modul mit jeweils um 1 aufsteigenden Zeilennummern dazwischenklemmen 

oder weitere Module an den Schluß hängen, die eigentlich zu einer Gruppe in der 

Mitte des Programms gehören. Eine Streuung von 2000 pro Modul dürfte bei vielen 

Programmen für den Anfang nicht zuviel sein. 

12. Unter Umständen kann die Ausführung eines Programms vereinfacht werden, 

wenn man RETURN-Anweisungen durch GOTOs ersetzt, z. B.: Modul 1 ruft Modul 

2 auf. Ist eine gewisse Bedingung erfüllt, muß Modul 3 aufgerufen werden, statt mit 

RETURN zu Modul 1 zurückzuspringen. Es besteht die Möglichkeit, Modul 3 mit 

GOSUB aufzurufen, mit RETURN zu Modul 2 zurückzuspringen und von da aus mit 

22



RETURN zu Modul 1. Man kann aber auch einfach mit GOTO Modul 3 aufrufen, an 

dessen Ende die RETURN-Anweisung die Ausführung an Modul 1 zurückgibt, ohne 

vorher erst mit RETURN Modul 2 aufzusuchen. Ein Beispiel für den Gebrauch 

dieser Technik wäre die oben beschriebene Fehlerkontrolle. Wenn wir jedes Modul, 

das direkt vom Hauptmenü des Programms aufgerufen wird, als Modul ‘zweiter 

Ebene’ betrachten, dann könnte jedes Modul zweiter Ebene eine Fehlersuchzeile 

haben, die mit GOTO das Fehlermeldungsmodul aufsuchen und von da mit 

RETURN zum Menü zurückspringen würde. Bei diesem Verfahren ist jedoch 

Sorgfalt geboten, denn wenn man sich bei der Anzahl der beteiligten GOSUBs und 

RETURNs verzählt, kann das entweder zu einem Programmstop durch OUT OF 

MEMORY ERROR führen, weil nicht durch RETURNs gelöschte GOSUBSs die 

Speicherkapazität überlasten, oder zur Ausführung eines unerwarteten Unterpro- 

gramms. 

13. Denken Sie daran, daß ein modular geschriebenes Programm leicht zu ändern 

ist. Halten Sie Ausschau nach besseren Techniken für die Bewältigung einer 

bestimmten Aufgabe. Wenn Sie in einem Buch oder einer Zeitschrift eine Verbesse- . 

rung finden, werfen Sie das ursprüngliche Modul heraus, und ersetzen Sie es durch 

ein neues mit dem besseren Verfahren. Bringen Sie Ihre Programme auf den 

neuesten Stand, sonst verschenken Sie einen der größten Vorteile, die dieser 

Programmiierstil bietet. 

14. Module, die wichtige Techniken enthalten, speichert man am besten sowohl 

einzeln als auch innerhalb des Programms. Sie können sie dann leicht in spätere 

Programme übernehmen, indem Sie entweder ein ‘Misch’-Programm benutzen, 

wie in ‘Der Commodore 64 in der Praxis’, Band 11 der Sachbuchreihe, beschrieben, 

oder einfach die Routine vom Band oder von der Diskette laden, und den Cursor mit 

der RETURN-Taste die Bildschirmzeilen hinunterfahren. Damit fügen Sie natürlich 

die Zeilen auf dem Bildschirm (aber nur diese!) in das neue Programm ein. 

Beachten Sie dabei, daß Sie eventuell die Zeilennummern im Modul ändern 

müssen, bevor Sie es einfügen. 

15. Zum Schluß vergessen Sie nicht, daß fast alles modular geschrieben werden 

kann. Gute, professionelle Programme enthalten oft sehr viele einzelne Unterpro- 

gramme mit nur zwei oder drei Zeilen. Man kann dieses Verfahren zwar auch zu weit 

treiben, aber so leicht passiert das nicht. 

23



SCHLUSS 

Von allen Kapiteln kann man dieses zweifellos am ehesten überspringen. Es enthält 

sehr wenige praktische Beispiele und keine Arbeits-BASIC. Nur wenn Sie die hier 

dargestellten Prinzipien in die Praxis umsetzen, erkennen Sie, daß — auf den 

gesamten Inhalt des Buches bezogen — gerade dieses Kapitel entscheidenden 

Einfluß haben wird auf Ihre Versuche, erfolgreiche, brauchbare und verständliche 

Programme zu schreiben. 

24



KAPITEL 2 

FEHLERBESEITIGUNG 
Eine englische Computerzeitschrift brachte kürzlich eine Artikelserie, in der die 

vielen verschiedenen Computersprachen erklärt wurden, die es heute gibt. Nach 

Abschluß der Serie wurde in einem Leserbrief darauf hingewiesen, daß man gerade 

die Sprache, die allen Computer-Besitzern — gleich welchen Typs — geläufig ist, 

vergessen hatte: Fluchen. 

Auch wenn Sie Ihr Programm eingegeben, es dabei laufend getestet, es vielleicht 

sogar schon ein- oder zweimal ohne sichtliche Schwierigkeiten haben durchlaufen 

lassen, wird es trotzdem irgendwann dazu kommen, daß es im Chaos zusammen- 

bricht. Schlimm genug, wenn das mit einem Ihrer eigenen Programme passiert, 

dessen Arbeitsweise Sie verstehen. Aber noch schlimmer wird es, wenn Sie ein 

fremdes Programm eingeben, das möglicherweise aus einem Buch oder einer 

Zeitschrift stammt. Sie können beim besten Willen kein instinktives Gefühl dafür 

haben, was alles wo vor sich geht. Meines Wissens haben auch manche meiner 

Leser schon Wochen oder Monate mit dem Versuch verbracht, ein Programm zu 

korrigieren, bei dessen Eingabe sie einen Fehler gemacht hatten. Wenn sie mich 

dann endlich ansprachen, waren sie oft schon der Verzweiflung nahe und davon 

überzeugt, daß ihr C 64 nicht richtig funktioniert. Tatsächlich hätten sie ihre Pro- 

bleme innerhalb von Minuten selbst lösen können, wenn sie nur einige einfache 

Techniken gekannt und angewendet hätten. 

INFORMATION — 
DER SCHLUSSEL ZUR FEHLERBESEITIGUNG 
Wenn Sie einen Fehler in Ihrem Programm finden, sollten Sie zuallererst daran 

denken, daß sich alle Informationen, die Sie zum Aufspüren des Fehlers brauchen, 

sicher in Ihrem C 64 befinden — und diese unschätzbaren Inhalte wollen Sie auf 

keinen Fall auslöschen. Ignorieren Sie deshalb einen entdeckten Fehler niemals, 

und lassen Sie das Programm nie nochmals laufen in der Hoffnung, daß der Fehler 

beim nächsten Mal nicht mehr auftritt. Sie könnten damit Erfolg haben — das 

Programm würde scheinbar reibungslos ablaufen —, aber Sie hätten die Chance 

vertan, einen Fehler zu entfernen, der später unweigerlich wieder auftreten würde 

und dann wahrscheinlich zu einem Zeitpunkt, zu dem sich schon wichtige Daten im 

Speicher befinden. Also ist das erste Gebot der Fehlerbeseitigung, jedem Fehler 

nachzugehen, sobald man ihn bemerkt. 

Vorausgesetzt, Sie haben das einmal beschlossen: Auf welche Weise können Sie 

25



die verfügbaren Informationen am besten nutzen? Um das zu entscheiden, müssen 

Sie die Information genau beurteilen: 

1. Der Fehler, der das Programm gestoppt hat, ist möglicherweise von der Art, daß 

er das Problem auf eine bestimmte Zeile begrenzt. In dem Fall hat der C 64 die Art 

des gefundenen Fehlers und die Stelle im Programm, an der er vorkommt, identifi- 

ziert. Die Fehlermeldung wird so aussehen: 

? CFEHLER-MELDUNG] IN ZEILE x% 

2. Manche Fehler können das Programm stoppen, obwohl die Zeile, in der es 

"hängenbleibt’, völlig korrekt aussieht. Daneben gibt es die Fehler, die das Pro- 

gramm veranlassen, ein sinnloses Ergebnis zu liefern, ohne es zu stoppen. Die 

Ursache solcher Fehler ist äußerst schwer zurückzuverfolgen, zumal es in vielen 

Fällen keinen Hinweis auf den Ort der Panne gibt. 

ZEILENSPEZIFISCHE FEHLERMELDUNGEN 

In den meisten Fällen, in denen Sie eine Fehlermeldung bekommen, sind Ihre 

Probleme schon halb gelöst, weil der C 64 die zu überprüfende Programmzeile 

bereits für Sie lokalisiert hat. Es kann sein, daß die eigentliche Korrektur des 

Programms an einer oder mehreren anderen Zeilen vorgenommen werden muß, 

aber der Schlüssel für die Art des Fehlers findet sich immer in der Zeile, auf die die 

Fehlermeldung hinweist. In vielen Fällen müssen Sie nicht weiter suchen als bis zu 

der in der Meldung erwähnten Zeile, worüber sich viele Programmierer nicht im 

Klaren sind. 

Nehmen sie z. B. den geläufigsten aller Fehler, den SYNTAX ERROR. Wann immer 

Sie diese Meldung bekommen, wissen Sie, daß Sie beim Eingeben der genannten 

Zeile IN LINE XX einen Fehler gemacht haben müssen. Es hat keinen Zweck, die 

fragliche Zeile durchzulesen, zu dem Schluß zu kommen, sie sei in Ordnung, und 

dann das Programm versuchsweise noch einmal durchlaufen zu lassen oder es zum 

Funktionieren bringen zu wollen, indem man andere Zeilen ändert. Die angegebene 

Zeile enthält etwas, das der C 64 nicht als BASIC erkennt, und bevor diese Zeile 

nicht korrigiert worden ist, wird das Programm nicht laufen. 

Fehlermeldungen, die normalerweise die genaue Stelle des Fehlers angeben, sind: 

SYNTAX ERROR, FILE NOT FOUND, FORMULA TOO COMPLEX, REDIMMED 

ARRAY, TYPE MISMATCH, UNDEFINED FUNCTION, UNDEFINED STATEMENT. 

Die Vorgehensweise bei diesen 'zeilenspezifischen’ Fehlern ist wie folgt: 

1. Listen Sie den Programmbereich auf, der sich vor der Zeile befindet, damit Sie 

die Zeile im Zusammenhang sehen. 

26



2. Listen Sie die Zeile selbst nochmals separat auf, wobei Sie sie durch eine oder 

zwei Leerzeilen von den bereits aufgelisteten Zeilen trennen. Das sollen Sie 

deswegen tun, weil man auf dem C 64 sehr leicht zwei Zeilen so eingeben kann, 

daß sie als eine einzige Zeile angenommen werden. Es ist fast unmöglich, solche 

Fehler zu entdecken, wenn man eine Zeile nicht separat auflistet. 

Untersuchen Sie diese Zeilen: 

16 FOR I=1 TO 18 : LET 4=*=1*100-50/( 12) 

28 NEXT I 

Wie groß wird die Enttäuschung sein, wenn der Durchlauf zu nichts führt als zum 

Aufblinken von ?SYNTAX ERROR IN LINE 10 auf dem Bildschirm. Die Suche nach 

dem Fehler kann Stunden oder Tage dauern. In Wirklichkeit ist weiter nichts 

passiert, als daß am Ende von Zeile 10 statt RETURN die Leertaste gedrückt wurde, 

worauf der Cursor an den Anfang der nächsten Zeile sprang und Zeile 20 eingege- 

ben wurde. Für den C 64 sieht die vollständige Version von Zeile 10 so aus: 

1@ FOR I=1 TO 18 : LET %=1*100-380/( 122920 
NEXT I 

Es ist nicht weiter verwunderlich, daß dies für den C 64 etwas schwer zu verstehen 

ist. 

3. Wenn die Zeile aufgelistet ist und keine groben Fehler enthält, muß sie Befehl für 

Befehl und Zeichen für Zeichen untersucht werden. Um zu gewährleisten, daß Sie 

die Zeile nicht zu hastig überfliegen, können Sie den Cursor an den Zeilenanfang 

bringen und ihn mit der Steuertaste langsam nach rechts die Zeile entlangführen, 

während Sie jedes Zeichen und den Befehl, in dem es enthalten ist, überprüfen. Die 

meisten Syntax Errors (und die anderen Fehler, die sich ergeben, wenn der C 64 

eine Zeile nicht wie von Ihnen beabsichtigt versteht) entstehen durch Weglassen 

von Zeichen (vor allem Klammern), Schreibfehler in Schlüsselwörtern oder verse- 

hentliche Umstellung von Zeichen. Auf fehlende Kommas zwischen Befehlen, auf 

Verwechslungen der Zahl 1 mit dem Buchstaben ‘|’ und der Null mit dem Buchsta- 

ben ‘OQ’ sollte man besonders achten. Zum Beispiel: 

GOTO I900 anstatt GOTO 1000 ergaebe 

UNDEF' STATEMENT ERROR 

4. Auch bei sorgfaltigem Lesen der Zeile werden Sie den Fehler oft nicht ausfindig 

machen. Dann hangt der nachste Schritt davon ab, ob Sie den Variablenwert im 

Speicher erhalten müssen oder nicht. Im Fall eines Syntax Error ist der Variablen- 

27



wert nicht relevant, so daß Sie in der Zeile ruhig der Fehlersuche dienende 

Änderungen vornehmen können, auch wenn damit der Variablenbereich gelöscht 

wird. Wenn das Problem den Wert einer oder mehrerer Variablen mitbetrifft, 

schlagen Sie den Abschnitt mit der Uberschrift ‘Nicht lokalisierte Fehlermeldungen’ 

weiter hinten in diesem Kapitel auf. 

5. Vorausgesetzt, die Variablen sind entbehrlich, setzen Sie eine STOP-Anweisung 

in eine neue Zeile direkt hinter derjenigen, die laut Hinweis den Fehler enthalt. Nun 

fangen Sie mit der letzten Anweisung in der fehlerhaften Zeile an und fügen ein 

REM ganz am Anfang der Anweisung ein. Lassen Sie die Zeile nochmals durchlau- 

fen (in Einzelfällen werden Sie das ganze Programm wieder bis zu dieser Stelle 

laufen lassen müssen). Wenn der Syntax Error jetzt verschwunden ist, befindet sich 

der Fehler in der letzten Anweisung, da diese durch REM aus der Zeile entfernt 

worden ist. Besteht der Syntax Error weiterhin, löschen Sie das REM und fügen es 

am Anfang der vorhergehenden Anweisung derselben Zeile ein. Wenn Sie bei der 

ersten Anweisung der Zeile angekommen sind, haben Sie festgestellt, welche 

Anweisung den Syntax Error enthält. 

6. Sollten Sie den Fehler noch immer nicht gefunden haben, fangen Sie an, die 

Variablennamen zu ändern, und versuchen Sie es wieder. Bedenken Sie, daß der 

tatsächliche Variblenwert für einige Fehler nicht die geringste Rolle spielt. Die Form 

der Zeile ist falsch. Die Änderung von Variablennamen hat den Zweck herauszufin- 

den, ob Sie ungültige Namen, vielleicht mit denselben Anfangsbuchstaben wie ein 

BASIC-Schlüsselwort, eingegeben haben. 

NICHT LOKALISIERTE FEHLERMELDUNGEN 

Wie schon erwähnt, bezeichnen manche Fehlermeldungen nicht die genaue Stelle 

des Fehlers im Programm; sie verraten nur, wo der Schlüssel zum Fehler zu finden 

ist. Diese Unterscheidung gilt nicht uneingeschränkt. Wenn Sie eine Zeile eingeben 

wie: 

ia A=18/8 

werden Sie eine Fehlermeldung DIVISION BY ZERO bekommen, und der Grund 

dafür ist leicht zu finden. Im ganzen werden jedoch BAD DATA, BAD SUBSCRIPT, 

DIVISION BY ZERO, FILE NOT OPEN, FILE OPEN, ILLEGAL QUANTITY, NEXT 

WITHOUT FOR, NOT INPUT FILE, NOT OUTPUT FILE, OUT OF DATA, OUT OF 

MEMORY, OVERFLOW, UNDEFINED FUNCTION und STRING TOO LONG meist 

28



dann auftauchen, wenn der wirkliche Fehler sich nicht in der angegebenen Pro- 

grammzeile befindet, sondern weiter vorn in der Ausführung des Programms. 

Das Verfahren ist in diesen Fällen nicht so klar wie bei der Korrektur einer einzelnen 

Zeile. Meist besteht der erste Schritt darin, den Wert jeder einzelnen in der Zeile 

enthaltenen Variablen auszudrucken. Wenn die Zeile also hieße 

188 A=KsY/CT1IxT2) 

würden Sie eingeben 

78 

?Y 

?T1 

?T2 

und sich die Werte notieren, die dabei herauskamen. Jetzt gehen Sie die Zeile in 

Gedanken oder auf dem Papier durch, um festzustellen, warum gerade diese Werte 

zu der Fehlermeldung geführt haben, die das Programm gestoppt hat. Bevor Sie 

den Grund nicht gefunden haben, können Sie die Fehlersuche nicht fortsetzen. In 

der Regel stellt das kein Problem dar, aber falls die Zeile so kompliziert ist, daß sie 

nicht erkennen können, wie die Variablen zusammenarbeiten, müssen Sie die in der 

Zeile enthaltenen Befehle neu eingeben — diesmal auf zwei oder drei kürzere 

Zeilen verteilt —, bevor Sie das Programm wieder laufen lassen. Das sollten Sie 

jedoch nur im Notfall tun, denn wenn Sie nicht in der Lage sind, die genaue 

Reihenfolge der Ereignisse, die zu dem Fehler geführt haben, zu rekonstruieren, 

könnte der Fehler beim nächstenmal ausbleiben und irgendwann plötzlich wieder 

auftauchen. | 
Nachdem man die fehlerhafte Variable identifiziert hat, bleibt einem nichts übrig, als 

die Ausführung des Programms in Gedanken bis zu der Stelle zurückzuverfolgen, 

wo die Variable den unrichtigen Wert angenommen hat. Leider ist das in einem 

komplexen Programm oft unmöglich. In einer solchen Lage besteht die Lösung in 

einer Programmänderung, durch die während des Programmablaufs eine regelmä- 

Bige Überprüfung des Variablenwerts ermöglicht wird. Zu diesem Zweck schiebt 

man hinter den Programmabschnitten, wo die Variable geändert werden könnte, 

neue Zeilen ein, die jeweils nur aus STOP bestehen; der Nachteil dabei ist, daß 

durch Einfügung neuer Zeilen der Speicher gelöscht wird, so daß Sie das Programm 

ganz neu bestimmen müssen. 

Nach der Eingabe der vorläufigen STOP-Zeilen läßt man das Programm wieder 

29



laufen, um eine Wiederholung des Fehlers zu veranlassen. Bei jedem Programm- 

STOP können Sie den Wert der fehlerhaften Variablen ausdrucken und dann mit 

CONT das Programm fortsetzen, solange Sie den Fehler noch nicht gefunden 

haben. Falls Sie auf den Bereich stoßen, in dem das Problem anscheinend 

entstanden ist, die Programmzeilen jedoch korrekt aussehen, sollten Sie u. a. nach 

möglichen Doppelanwendungen von Variablennamen Ausschau halten. Die Zeilen, 

die eine wichtige Variable enthalten, können tatsächlich fehlerlos sein, und doch 

liefert das Programm Unsinn, weil es demselben Variablennamen irgendwann eine 

andere Funktion zuweist; denken Sie daran, daß bei allen Variablen nur die ersten 

beiden Buchstaben relevant sind. 

Sie können sich die Arbeit grundsätzlich erleichtern, wenn Sie diese beiden Regeln 

beachten: 

1. Bei der Verarbeitung komplexer Datensätze sollten Sie als eines der ersten 

Programm-Module die Dateiroutine zum Speichern der Informationen auf Band 

oder Diskette eingeben. Speichern Sie die zum Austesten eingegebenen Daten 

regelmäßig ab; falls das Programm abstürzt, können Sie so den letzten Datensatz 

vom Band neu laden und brauchen ihn nicht von Anfang an neu einzutippen. 

2. Die meisten Programmfehler zeigen sich bei einer geringen Anzahl von Daten 

genauso wie bei einer größeren Datenmenge. Anstatt riesige Mengen direkt einzu- 

geben, geben Sie zunächst nur drei oder vier Daten ein und gehen Sie damit alle 

Programmfunktionen durch. Sollte ein Fehler auftreten, ist es bei nur vier eingege- 

benen Daten leicht, die Sequenz erneut zu simulieren, vor allem bei stilisierten 

Elementen oder Werten wie AAAA, BBBB, CCCC, 1111, 2222 und 3333. 

Die Suche nach einem Fehler, der an einer unbestimmten Stelle des Programms 

steckt, kann als Testaufgabe angesehen werden. Sie kann nur dann erfolgreich 

bewältigt werden, wenn man gründlich vorgeht und der Ausführung des Programms 

im einzelnen folgt, und wenn Ihnen die Aufgabe jedes Programmabschnitts völlig 

Klar ist. Sobald solche Fehler auftauchen, werden Sie es besonders zu schätzen 

wissen, daß Sie den in Kapitel 1 gegebenen Rat befolgt und Ihr Programm in streng 

funktionale Module eingeteilt haben, denn diese Programmstruktur macht das 

Aufspüren von Fehlern erheblich leichter. 

FEHLERMELDUNGEN UND IHRE BEDEUTUNG 

Es gibt so viele verschiedene Programmfehler wie Programmierer, weil sie ganz 

einfach von Programmierern begangen werden. Deshalb ist es ganz unmöglich, 

eine vollständige Aufstellung der Bedeutungen aller möglichen Fehlermeldungen 

30



zu machen. Im folgenden finden Sie eine Liste der geläufigen Meldungen und ihrer 

wahrscheinlichen Ursachen: 

BAD DATA: Der übliche Grund: Die Struktur der Sicherheitsroutine wurde in der 

entsprechenden Laderoutine nicht genau nachgebildet. Als weitere Ursache kommt 

in Frage, daß die gespeicherten Daten nicht korrekt mit CHR$(13) nach jedem 

Element getrennt wurden. Beim Gebrauch einer Variablen als Trennzeichen zwi- 

schen den Elementen (z. B. PRINT#1,A$,R$,B$,R$,A,R$,B) vergewissern Sie sich, 

ob Sie den Separator tatsächlich definiert haben. Das Modul kann zwar äußerlich in 

Ordnung sein, aber wenn R$ nicht als CHR$(13) definiert wurde, werden die Daten 

auf dem Band oder der Diskette verschmolzen, und im Lademodul wird dann die 

Reihenfolge gegenüber der gespeicherten verschoben sein. 

BAD SUBSCRIPT: Sehen Sie sich die Werte in Klammern hinter dem Feldnamen 

an, weil einer davon größer ist als der entsprechende Bereich, den Sie dem Feld bei 

der DIMensionierung zugewiesen haben. Falls der Fehler nicht sofort klar ist, prüfen 

Sie nach, ob Sie das Feld auch wirklich dimensioniert haben, denn das Programm 

nimmt Verweise auf die Elemente O bis 9 eines eindimensionalen Feldes an, auch 

wenn es nicht DIMensioniert wurde, aber es bricht ab, wenn Sie Element 10 

anzusprechen versuchen. 

DEVICE NOT PRESENT: Entweder haben Sie bei einer Anweisung, die sich auf 

eine Datei bezieht (z. B. OPEN 1,7,1), die falsche Nummer angegeben, oder Sie 

haben vergessen, die Floppy oder den Kassettenrecorder anzuschließen, auf die 

das Programm zuzugreifen versucht. Leider kann dieser Fehler auch auftauchen, 

wenn andere Fehler bei der Dateiverwaltung vorkommen und das INPUT/OUTPUT- 

System durcheinandergerät. In manchen Fällen kann man das beheben, indem man 

das betreffende Gerät ausschaltet, in anderen muß der C 64 aus- und wieder 

eingeschaltet werden, was den Verlust von Programm und Daten zur Folge hat. 

DIVISION BY ZERO: Da Sie wahrscheinlich nicht /O in eine Zeile geschrieben 

haben, liegt die Fehlerursache vermutlich darin, daß eine Variable vom Programm 

nicht richtig verarbeitet wurde oder ein falscher Variablenname benutzt wurde. 

EXTRA IGNORED: Eine Input-Abfrage erwartet eine bestimmte Anzahl von Daten, 

z. B. ist nach INPUT A,B die Eingabe von zwei Zahlen erforderlich. Wenn Sie mit 

einer größeren Anzahl von Daten antworten, wie z. B. 10,12,14, dann teilt Ihnen das 

Programm mit, daß ein Element eingegeben wurde, das nicht berücksichtigt wird. 

Diese Meldung erfolgt auch dann, wenn String-Eingaben selbst Kommas enthalten; 

denn sie werden als Separatoren zwischen Daten gedeutet. In solchen Fällen kann 

man sich nur mit einer GET-Operation behelfen. 

31



FILE NOT FOUND: Entweder haben Sie den falschen Dateinamen angegeben, 

oder Sie benutzen die falsche Kassette/Diskette. 

FILE NOT OPEN: Sie haben eine Operation mit einer Dateinummer auszuführen 

versucht, für die der C 64 entweder keine OPEN-Anweisung findet, oder die bereits 

mit CLOSE abgeschlossen wurde. 

FILE OPEN: Die Umkehrung des vorigen Fehlers. Der häufigste Grund ist Verges- 

sen der CLOSE-Anweisung in einer früheren Routine mit derselben Dateinummer. 

Wenn Sie also Daten in ein Programm laden und dabei ein File mit der Nummer ‘1’ 

benutzen, nach dem Laden aber vergessen, CLOSE 1 einzugeben, werden Sie in 

Zukunft keine Daten mehr unter der Dateinummer 1 speichern können. 

FORMULA TOO COMPLEX: Die einfache Lösung könnte darin bestehen, den 

Ausdruck der betreffenden Zeile in zwei Ausdrücke in verschiedenen Zeilen 

aufzuteilen. Leider kommt der Fehler auch in einer Reihe von Situationen vor, in 

denen das Betriebssystem durcheinandergerät; für diese Fälle gibt es keinen 

verläßlichen Hinweis auf die mögliche Bedeutung der Meldung. 

ILLEGAL QUANTITY: Eine der Variablen, die auf ein Feld zugreifen, könnte 

negativ sein; oder Sie haben vielleicht versucht, eine außerhalb von —32768 bis 

+32767 liegende Zahl in ein Integerfeld einzusetzen. Es kann auch sein, daß Sie 

eine Ein-Byte-Funktion auf eine Zahl außerhalb von 0-225 anzuwenden ver- 

suchten. Im Zweifel geben Sie die einzelnen Anweisungen der Zeile im Direktmo- 

dus (ohne Zeilennummern) ein und lassen sich vom C 64 zeigen, welche er nicht 

akzeptiert. 

NEXT WITHOUT FOR: Das Programm erkennt den Anfang der Schleife nicht, auf 

die sich die Anweisung bezieht. Sie haben entweder die FOR-Anweisung ausgelas- 

sen oder sind in die Schleife gesprungen, weshalb das FOR nicht ausgeführt wurde. 

NOT INPUT FILE: Sie haben fälschlich eine Ausgabedatei angesprochen, anstatt 

eine Datei für die Eingabe von Daten zu Öffnen. 

NOT OUTPUT FILE: Umkehrung des o. g. Fehlers. 

OUT OF DATA: Sie wollten mehr Daten mit READ einlesen als in den DATA- 

Anweisungen des Programms enthalten sind. Wie man dieses Problem löst, lesen 

Sie bitte im Abschnitt über DATA-Anweisungen in Kapitel 12 nach. 

32



OUT OF MEMORY: Dafür gibt es vier mögliche Ursachen: 

a) Sie haben Felder dimensioniert, die für die verfügbare Speicherkapazität zu groß 

sind. Bei Programmen, die mit großen Datenmengen arbeiten, ist es ratsam, den 

verfügbaren Speicher mit FRE zu prüfen, bevor Sie die Größe der Felder endgültig 

bestimmen. 

b) Sie haben zu viele GOSUBs, die gleichzeitig laufen und dabei den Stack, d.h. 

den Speicherbereich, der sich ihre Rückkehradressen merken muß, überfüllen. 

c) Sie haben zu viele FOR-Schleifen, die gleichzeitig laufen und ebenfalls den 

Stack in Unordnung bringen, der sich den aktuellen Stand jeder Schleife merken 

muß. Dies kann in Verbindung mit b) vorkommen, wenn Sie eine lange Kette von 

GOSUBs und eine große Zahl von Schleifen ineinander verschachtelt haben. 

d) Unbestimmte Ursache. Leider ist auch dies ein Fehler, der auftreten kann, wenn 

der C 64 durcheinandergerät. 

OVERFLOW: Das Problem entsteht meist durch eine falsch definierte Variable, so 

daß z. B. eine große Zahl durch einen winzigen Bruch dividiert wird. 

REDIM’D ARRAY: Sie haben versucht, in einer DIM-Anweisung denselben Feld- 

namen zu benutzen wie in einem bereits DIMensionierten anderen Feld. Wenn Sie 

ein Feld neu dimensionieren wollen, müssen Sie zuallererst den Speicher löschen. 

REDO FROM START: Eine Input-Anweisung, die eine Zahl erwartete, ist mit einem 

String beantwortet worden. Beachten Sie, daß ein INPUT, der einen String verlangt, 

ohne Anzeichen für ein Versehen bereitwillig auch eine Zahl annimmt. 

RETURN WITHOUT GOSUB: Sie haben ohne Verwendung von GOSUB ein 

Unterprogramm eingegeben. Die häufigste Ursache sind Unterprogramme, die an 

das Programmende angehängt werden, ohne daß eine STOP-Anweisung an das 

Ende des Programmhauptteils gestellt worden ist. 

STRING TOO LONG: Bei der Addition oder der Eingabe von Strings oder beim 

Einlesen von Strings aus einer Datei haben Sie versucht, einen String zu bilden, 

dessen Länge die allgemeine Höchstmenge von 255 Zeichen oder das Maximum 

von 80 Zeichen für String-Eingaben überschreitet. Der Fehler tritt auch beim 

Löschen von Daten auf, die beim Speichern nicht ordnungsgemäß durch CHR$(13) 

getrennt wurden. 

33



?SYNTAX ERROR: Der C 64 versteht die Zeile einfach nicht, die er auszuführen 

versucht. Lesen Sie im ersten Teil des Kapitels nach, wie man unerkannte Fehler 

~ aufspurt. 

TYPE MISMATCH: Manchmal schreibt der Zusammenhang des Programms die 

Bestimmung einer Zahl vor, wahrend es tatsachlich einen String vorfindet (oder 

umgekehrt). Somit würde A=A$+B$ zu diesem Fehler führen. Häufigste Ursache 

ist versehentliches Auslassen von $-Symbolen in Zeilen, die Strings verarbeiten. 

UNDEF’D FUNCTION: Sie wollen eine vom Benutzer definierte Funktion verwen- 

den, aber das Programm erinnert sich nicht daran, daß diese Funktion definiert 

worden ist. 

UNDEF’D STATEMENT: Die Zeile, die Sie mit GOTO oder GOSUB erreichen 

wollen, existiert nicht. Wenn die Meldung auf den ersten Blick keinen Sinn zu 

ergeben scheint, untersuchen Sie die auf GOTO oder GOSUB folgende Zahl, um 

sicherzugehen, daß Sie nicht aus Versehen '!’ fur ‘1’ oder ‘O’ für ‘0’ geschrieben 

haben. Ist das nicht der Fall, dann haben Sie vielleicht, wie im ersten Teil dieses 

Kapitels beschrieben, eine Zeile an das Ende der vorhergehenden angehängt. Der 

zweite Teil der Zeile ist scheinbar vorhanden, aber er ist keine eigenständige Zeile. 

SCHLUSS 

Zur erfolgreichen Fehlerbeseitigung gelangt man durch Erfahrung, viel Nachdenken 

und harte Arbeit. Bei aller Mühe wird es doch immer ein paar Fehler geben, die Sie 

aus dem Konzept bringen, und die Sie erst Tage oder Wochen später finden. Wenn 

es soweit ist, ist die beste Unterstützung bei der Fehlerbeseitigung eine andere 

Person, die sich mit dem Problem befaßt; es kommt nämlich oft vor, daß ein anderer 

Programmierer etwas sofort entdeckt, das Sie wegen Ihrer allzu großen Vertrautheit 

mit dem Programm nicht sehen konnten. Dennoch sollten Sie erst dann jemand 

anderen rufen, wenn Sie das Problem genauer beschreiben können: die betreffen- 

den Variablenwerte und den vermutlichen Bereich, in dem das Problem entsteht. 

Nur zu wissen, daß eine bestimmte Zahl einen bestimmten Fehler erzeugt, ist nicht 

genug; das ist erst der Anfang. 

34



KAPITEL 3 

STRINGS 
Strings sind eine leichte und flexible Methode zum Speichern von Daten in den 

C 64. Wo man sie verwendet, können Informationen auch bei komplexen Operatio- 

nen fast sofort gelöscht, eingefügt oder geändert werden. Das Herumexperimentie- 

ren mit Strings kann eine Menge zum Erfolg eines Programmierers beitragen. 

Dieser Umstand scheint in weiten Kreisen unbekannt zu sein — nicht etwa, weil der 

Umgang mit Stringfunktionen an sich schwierig ist, sondern weil er oft kniffelig ist 

und Zeilen mit Stringfunktionen auf den ersten Blick kompliziert aussehen. 

Der C 64 bietet dem Anwender drei Stringfunktionen: LEFT$, RIGHT$ und MID$. 

Ihre Funktion ist den meisten völlig klar; ich gebe hier eine kurze Zusammenfas- 

sung für diejenigen, die sich nicht genau erinnern: 

1) LEFT$(A$,10) bedeutet die ersten 10 Zeichen von A$. 

2) RIGHT$(A$,10) bedeutet die /etzten 10 Zeichen von A$. 

3) MID$(A$,10) benennt den Teil von A$, der mit Zeichen Nr. 10 beginnt, bis 

zum Stringende. | 

4) MID$(A$,10,5) benennt den Teil von A$, der vom 10. Zeichen an 5 

Zeichen umfaßt. 

Für einen konkreten String A$, in diesem Fall das komplette Alphabet, ergeben 

sich: 

1) ABCDEFGHIJ 

2) QRSTUVWXYZ 

3) JKLMNOPQRSTUVWXYZ 

4) JKLMN 

Wie die Beispiele zeigen, sind die Befehle eigentlich ganz unkompliziert. Für viele 

Leute fängt es offenbar dann an schwierig zu werden, wenn die Befehle kombiniert 

werden sollen. Dann werden manche Zeilen mit Klammern derart überladen, daß 

ihre Funktion sehr komplex und kaum mehr durchschaubar erscheint. Mit dieser 

Schwierigkeit werden Sie am besten fertig, indem Sie bei dem Ausdruck mit den 

meisten Klammern anfangen, die Zeile zu übersetzen, um sie Schritt für Schritt zu 

vereinfachen. Nehmen Sie z. B. den Ausdruck 

MID$SCLEFT$SCRIGHTECAF,108>,5>,53> 

35



Was läßt sich damit machen? Wir setzen voraus, daß A$ hier wiederum das 

Alphabet ist. Wir fangen mit dem Stringausdruck in der innersten Klammer an, d.h. 

RIGHT$(A$,10), weil wir nichts sonst übersetzen müssen, um an das Ergebnis zu 

kommen. RIGHT$(A$,10) bezeichnet ‘QRSTUVWXYZ’. Wir erhalten also: 

MID$¢ LEFT#* "GRSTUVWH YZ "353,39 

Nach derselben Methode ergibt sich fur den Teil LEFT$ die Bedeutung QRSTU, und 

wir erhalten: 

MIDSC"ORSTU",3> 

oder STU. Arbeiten Sie sich wie bei jeder anderen Art von Ausdrücken auch bei 

Stringausdrücken von innen nach außen, dann wird sich das Problem von selbst 

lösen. 

Im nächsten Kapitel werden wir Methoden untersuchen, wie Stringfunktionen 

sowohl miteinander als auch mit anderen BASIC-Befehlen kombiniert werden 

können, um eine Vielfalt interessanter und nützlicher Programmiermöglichkeiten zu 

schaffen. Einige der nachfolgenden Kapitel werden die hier beschriebenen Techni- 

ken auf ganz unterschiedliche Arten anwenden, deshalb sollten Sie erst dann 

weiterblättern, wenn Sie sicher sind, daß Sie die angegebenen Beispiele verstan- 

den haben. 

VERKETTUNG ODER STRING-ADDITION 

Eine der einfachsten Operationen für Strings ist die Addition: 

106 AF =Bs+C#+D$ 

wurde einen neuen String ergeben, der aus den aneinandergereihten drei Strings 

auf der rechten Seite der Gleichung besteht. Dieses einfache Verfahren dient oft zur 

Bildung von sinnvollen Strings, die aus kleineren Teilinformationen aufgebaut sind. 

Ein einfaches Beispiel dafür wäre: 

18898 REMKKKKEKKKKKKEKKEKK 

1001 REM STRING-ADDITION 

19982 REMERKKHKKEKKKEKEKEKE 

1010 INPUT "NACHNAME : "32 NN& 

1920 INPUT "VORNAME: "3 V¥NS 

1630 INPUT"GESCHLECHT (M/F): "sG 

36



1848 N$="HERR": IF GE="F"THEN N$="FRAU” 

1859 NAMES=SN$+" "+YN$+" "+NNS 

1868 PRINT NAMES 

Nicht immer muß diese Technik auf so triviale Art angewendet werden. Einzelne 

Ausdrücke können, jeweils durch eine Markierung wie ‘*’ voneinander getrennt, zu 

einem einzigen String zusammengefaßt werden, um Speicherplatz zu sparen; denn 

jeder einzeln gespeicherte String hat einen zusätzlichen Verwaltungsbedarf von 

drei Bytes im Speicher. Solche ‘'komprimierten’ Eingaben können mit Hilfe einer 

weiter unten beschriebenen String-Suchroutine zerlegt werden; in den Kapiteln 

über Datenstrukturen werden kompliziertere und flexiblere Methoden erklärt. 

STRING-SUBTRAKTION 

Genauso wie Strings durch Addition zusammengesetzt werden können, kann man 

auch Teile von einem einzelnen String subtrahieren. Das ist nicht so einfach wie die 

Addition, denn für den C 64 ergäbe A$=B$-C$ keinen Sinn. Einen String von 

einem anderen zu subtrahieren bzw. zu entfernen, bedeutet nichts anderes als den 

ursprünglichen String neu zu definieren, so daß die zu subtrahierenden Zeichen 

ausgeschlossen werden. Das genaue Verfahren hängt von der genauen Stellung 

der zu entfernenden Zeichen im Hauptstring ab: 

1. Um LL Zeichen vom linken Ende von A$ zu entfernen, muß A$ neu definiert 

werden als der Abschnitt von A$, der auf die ersten LL Zeichen folgt: 

100 AS=MIDsFC AF,LL+1) 

2. UmLL Zeichen vom Ende von A$ zu entfernen, muß A$ neu definiert werden als 

die Gesamtheit der Zeichen bis einschließlich demjenigen, das vor dem ersten zu 

entfernenden Zeichen steht. Zu diesem Zweck stellt man mit LEN die aktuelle 

Länge des Strings fest und gibt dann an, daß er jetzt diese Länge abzüglich der 

Anzahl der zu löschenden Zeichen haben soll: 

188 A#=LEFTSCAF ,LENEN$)-LL? 

3. UmLL Buchstaben aus der Mitte eines Strings zu entfernen, muß man außer der 

Länge des zu löschenden Abschnitts nur die Startposition (SP) kennen. Wenn das 

bekannt ist, muß der String neu definiert werden als die Verknüpfung der Abschnitte 

vor und hinter den zu löschenden Zeichen: 

37



19@ AS=LEFTSC AS ,SP-1)+MIDSC AS -SP+LL? 

Diese Zeile hat den Sinn: Wenn die zu löschende Zeichengruppe bei SP beginnt, 

sollen alle Zeichen bis einschließlich SP—1 erhalten bleiben. Die eigentliche 

Buchstabengruppe umfaßt LL Zeichen und endet also in Position SP (erstes 

Zeichen) +LL (Länge) minus Eins. Demzufolge beginnt die zweite zu erhaltende 

Zeichengruppe im String bei LL+SP und erstreckt sich bis zum Stringende. Das 

läßt sich illustrieren am Beispiel des Strings ABCDEFG, vom dem CDE subtrahiert 

wird. Die Anfangsspalte von CDE ist das dritte Zeichen, die Länge beträgt drei 

Zeichen. Es blieben also die Stringabschnitte bis SP-1 (d. h. AB) und ab SP+LL 

nach der zu löschenden Zeichengruppe (d.h. FG) erhalten, woraus sich der 

Ausdruck ABFG ergäbe. 

EINFÜGEN VON ZEICHEN IN STRINGS 

Nach dem, was wir über String-Addition und -Subtraktion bisher gesagt haben, fällt 

Ihnen vielleicht auf, daß wir zwar eine Zeichengruppe aus einem vorhandenen 

String entfernen können, aber noch nicht untersucht haben, wie man Zeichen in 

einen String einschiebt. Wir haben beim Entfernen von Elementen aus einem String 

eine Methode untersucht, mit der die beiden für das Ergebnis zu speichernden 

Strings identifiziert werden können. Beim Einschieben einer neuen Zeichengruppe 

wird in etwa dieselbe Methode angewendet. Im folgenden Beispiel soll ein neuer 

String — B$ — in A$ eingefügt werden, wobei das erste Zeichen von B$ zum 

Zeichen PP des erweiterten A$ werden soll: 

100 AS=LEFTS(AS,SP-1)+BS+MIDS(AS,PP > 

UMSTELLUNG VON ZEICHEN IN STRINGS 

Nachdem wir untersucht haben, wie man einem String Zeichen anfügt oder sie 

daraus entfernt, sind wir nun in der Lage, durch Kombinieren beider Methoden 

Zeichen innerhalb eines Strings umzustellen. Im wesentlichen erfordert die Umstel- 

lung von Zeichen in einem String zwei Operationen: Die zu verschiebende Zei- 

chengruppe muß vom String subtrahiert werden und dann an anderer Stelle addiert 

werden. Zur Illustration des Verfahrens gehen wir von einem String A$ aus, der eine 

Gruppe von LL Zeichen enthält, die in der Zeichenposition SP des Strings beginnt. 

Die Aufgabe besteht darin, die Gruppe an eine neue Stelle zu verschieben, die in 

der Position FP beginnt. Als Beispiel könnte man etwa den String ABGHICDEFJKL 

38



neu ordnen, so daß man durch Umstellung von GHI (in Position drei beginnend) an 

einen anderen Ort zu dem Ergebnis ABCDEFGHIJKL gelangt. Im Ergebnisstring ist 

die neue Anfangsposition der Gruppe, also die Zeichenspalte, sieben. 

Es ist nicht ganz unkompliziert, die richtige Position zu bestimmen, an die der String 

wieder eingeschoben werden soll. Als erstes muß man von der Tatsache absehen, 

daß die Gruppe in ihrer ursprünglichen Form gelöscht wird, und einfach die neue 

Anfangsposition im bestehenden String festliegt. Im Fall des o. g. Musterstrings soll 

die verschobene Gruppe dort beginnen, wo sich zur Zeit das ‘J’ befindet, d.h. in 

Zeichenposition 10. Nun gibt es zwei Alternativen: 

a) Befindet sich die neue Anfangsposition der Zeichengruppe vor ihrem gegenwär- 

tigen Anfang, so muß die Nummer der Zielposition nicht korrigiert werden. 

b) Befindet sich die neue Anfangsposition hinter dem derzeitigen Ende der Zei- 

chengruppe, so muß die Länge der Gruppe von der Nummer der Zielposition 

subtrahiert werden. 

Im obigen Beispiel endet die Gruppe zunächst in Position fünf, und sie soll in 

Position zehn wieder eingefügt werden. Daher müssen wir die Länge der Gruppe 

(3) subtrahieren, um die Zielposition zu erreichen, die nach den vorhergehenden 

Überlegungen 7 sein muß. 
Auf das o.g. Beispiel angewendet, würde alles zusammen etwa zu folgendem 

Ergebnis führen: 

sa AS="ABGHICDEF JKL" 

60 FP=10 

78 SP=3 

38 LL=3 

2HUOO REMAKKKKKKKEKKKKKKKKKKKE 

2001 REM BEWEGEN VON ZEICHEN 

2OOL REMAKKKKKKKKKEKKEKKEKKKKKEK 

2010 IFFP><SP+LL-1>THENFP=FP-LL 

2828 TT$=MIDECAS,SP,LL? 

2030 AS=LEFTS(AS,SP-19+MIDSCAS,SP+LL) 

2040 AS=LEFTS(AS,FP-19+TTS+MIDS(AS,FP 

20650 PRINTAS 

VARIABLEN: 

A$ Ausgangsstring 

FP Anfangsposition der neuen Zeichengruppe, wenn sie ohne vorherige 

39



Löschung wieder eingefügt würde 

LL Länge der zu verschiebenden Zeichengruppe 

SP Derzeitige Anfangsposition der zu verschiebenden Zeichengruppe 

TT$ Zwischenspeicher der zu verschiebenden Zeichengruppe 

Mit den Zeilen ab 2000 kann man beliebige Gruppen innerhalb des Ausgangsstrings 

umstellen, vorausgesetzt, die Anfangsposition (SP), Zielposition (FP) und Länge 

(LL) sind bekannt. 

SUCHEN IN STRINGS 

Bei allem, was bisher über die Handhabung von Strings gesagt wurde, sind wir 

davon ausgegangen, daß der Programmierer alle nötigen Informationen für die 

Bestimmung der Anfangs- und Endstellen aller Stringabschnitte hat, auf die er 

zugreifen will. Das ist in der Regel insofern ganz anders, als nicht der Programmie- 

rer, sondern das Programm selbst entscheidet, wo entsprechend seiner vorgege- 

benen Angaben Änderungen vorgenommen werden. Sehr oft ist schon durch den 

Inhalt des Strings selbst festgelegt, wie das Programm ihn bearbeitet. 

Weiter oben in diesem Kapitel haben wir das Beispiel einer String-Addition mit 

Teilen vollständiger Namen untersucht. Zu Anfang wurde jeder Teil als ein eigener 

String gespeichert und dann zu einem längeren String der Form ‘FRAU EVA 

SCHMIDT’ zusammengefaßt. So herum ist es weiter nicht schwierig, aber wie 

macht man es umgekehrt, d. h. wie entfernt man Teile aus dem Ganzen? Bei FRAU 

oder HERR wäre es noch einfach, da sie gleich lang sind, aber es könnten auch Titel 

wie DR. vorkommen, deren Länge von der Norm abweichen. Selbst wenn wir den 

Titel leicht aus dem Namen herausholen könnten, wäre die Länge des Vornamens 

noch nicht vorhersehbar. Wie kann man also den Namen zergliedern? 

Die Antwort lautet: Alle zur Zerlegung des Namens nötigen Informationen sind im 

Namen enthalten, und zwar in Form der Leerstellen zwischen den drei Datenele- 

menten. Dieselben Zwischenräume, die wir beim Lesen des Namens in Gedanken 

machen, können vom Programm genutzt werden, sofern es über eine Methode 

verfügt, den ganzen String nach der Zeichengruppe abzusuchen, die bearbeitet 

werden soll. Hier ist eine einfache Methode, einen String A$ nach einer einzelnen 

Zeichenkombination, TARGET$, zu durchsuchen: 

106 FORI=1TOLENM A$ > -LENSTRGTF > +1 

116 IF MIDS* AS,1,LENC TRGT$ 9>9=TRGTS$ THEN 

SP=1:GOTQ 150 

128 NESTI 

40



Damit wird die Routine die Anfangsposition des ersten TRGT$ (gesuchte Zeichen- 

gruppe) innerhalb des Hauptstrings identifizieren und sie in die Variable SP ablegen. 

Mit dieser Technik können wir schnell eine Routine zur Zerlegung eines weiteren 

Strings mit mehreren Informationseinheiten entwerfen — im folgenden Beispiel die 

drei Teile eines Namens im Format 'HERR MICHAEL MAY’: 

268 NAMES="HERR MICHAEL MAY" 

60 TRGTS=" " 

78 DIM N2$(59) 

38008 

306 1 

3882 

26016 

30268 

3030 

3848 

3858 

REMKRKEKKKKIKKEK EEK I 

REM STRING SUCHE UND AUSWAHL 

RE Mok kkk kkk Kokko kk OK 

TT =LEN CNAME > -LENC TRGTS) +1 

51=1 

IT=8 

FORJ=1TOTT 

IF MIDS(CNAMES,J,LENCTRGT#) >< > TRGTST 

HEN3O7@ 

3868 N2$SCIT)=MIDS<CNAMES,S51,J-51>:S1=J+LE 

N<TRGT$>: IT=IT+i1 

3078 

3038 

30390 

3188 

3110 

NER TJ 

Ne&tciT>=MIDS(NAMES,S1):1IT=1T+!1 

FORI=8T0IT-1 

PRINTNeSC I) 

NEXT I 

VARIABLEN: 

IT Anzahl der in NA$ gefundenen Daten 

N2$ Für die in NA$ gefundenen Daten bestimmtes Feld 

NA(ME)$ Zu durchsuchender Hauptstring (NAME$ wird nur als NA$ regi- 

striert) 

S1 Beginn des zu durchsuchenden Abschnitts von NA$ 

TR(GT)$ Trennzeichen zwischen den Datenelementen 

TT Letztes Zeichen in NA$, das mit TR$ verglichen zu werden lohnt, ohne 

NA$ ganz zu durchlaufen 

Bei diesem Verfahren beginnt die Suche nach dem Zielstring beim ersten Zeichen 

des Hauptstrings; jedesmal, wenn der Zielstring gefunden wird, wird der Teil des 

Hauptstrings ab S1 bis zum Zielstring in das Feld N2$ übergeben. Die Suche wird 

dann von dem Zeichen hinter dem Zielstring an wieder aufgenommen. Die Routine 

geht davon aus, daß der Hauptstring nicht mit dem Zielstring endet, und geht daher 

41



nach Ausführung der Schleife unmittelbar an den Teil des Hauptstrings, der hinter 

dem zuletzt gefundenen Teilstring steht. 

Für solche Suchtechniken sind eine ganze Reihe von Anwendungen möglich. Wie 

im Kapitel über String-Addition beschrieben, können Informationen in Strings 

zusammengefaßt werden, und mit Hilfe einer Suchroutine die verschiedenen Teile 

wieder herausgeholt werden können. In intelligenten‘ Programmen, die den Wort- 

laut eingegebener Befehle analysieren, kann die Routine zur Abfrage dienen, ob 

bestimmte Verben oder Substantive vorkommen — diese Technik wird z. B. häufig 

bei Abenteuerspielen eingesetzt. Daneben kann sie in Dateiprogrammen zum 

Auffinden von Eintragungen in der Datei dienen, die ein bestimmtes Wort enthalten. 

REGELMÄSSIGE STRINGSTRUKTUREN 

Da Strings mit einfachen Anweisungen gehandhabt werden können, die bestimmte 

Abschnitte einfügen oder entfernen, ohne daß man sich um die Umstellung des 

vorhandenen Inhalts kümmern muß, sind sie der ideale Ort zum Speichern von 

Daten regelmäßiger Länge, in denen regelmäßig etwas eingefügt oder gelöscht 

werden muß. In einem einzelnen String mit einer maximalen Länge von 255 

Zeichen können 63 Datenelemente mit je vier Zeichen, 50 mit je fünf Zeichen etc. 

untergebracht werden. 

Wenn alle Daten einen identifizierbaren Platz bekommen sollen, muß der String 

zuerst in der für die Aufnahme aller Elemente nötigen Länge eingerichtet werden. 

Dazu benutzt man am einfachsten eine Schleife, um den String Zeichen für Zeichen 

aufzubauen. Die nächste Routine richtet einen String für die Speicherung von 

Elementen mit je vier Zeichen ein, deren Adresse der Anwender bestimmen kann: 

4888 REMAKKEKKKKKKKKRKKKEKKKKKKKKKKKKKE 

4001 REM SETZEN VON GLEICHL. STRINGS 

IBBZE REMAKKKKKKAEKKKKKKKKEKEKKKKKEKEKS 

4010 AS=""FORI=17TO252°AS=ASt"” "SNEKT 

4020 INPUT"VIERSTELLIGES ZEICHEN: "3; TS 

40360 INPUT"ZEICHEN POSITION (1-639: "7T 

4040 AS=LEFTS(AS,4%°T-1)99+TS4+MIDSCAS, THF 

+1) 

4050 PRINT" Wd" 7 AS 

4060 GOTO4620 

Ebenso leicht können Daten aus einem numerierten Platz entfernt werden. Ergän- 

zen Sie die Routine um die folgenden Zeilen, geben Sie einige Daten ein und 

42



probieren Sie dann, wenn die Stringeingabe erwartet wird, den zweiten Teil aus, 

indem Sie “***” eingeben: 

4925 IFTS="*xkeke" THENIO7O 

4878 INPUT"NUMMER DES ZU PRUEFENDEN ZEIC 

HENS: "7NN 

40980 PRINTMIDS(AS,NN*E4-3 ,4) 

4090 GOTO40c8 

Man kann Elemente aus dem Feld löschen, indem man einfach ihre Positionen neu 

definiert als vier Leerstellen. Diese Routinen sind nicht sehr stabil, d. h. sie stürzen 

leicht ab, wenn man Daten eingibt, deren Länge nicht vier Zeichen beträgt. Dem 

kann man jedoch mit ein paar einfachen Fehlertests abhelfen, wie im nächsten 

Kapitel gezeigt wird. 

MEHRELEMENTIGE STRINGFELDER 

Wenn man Strings zum Speichern von Daten regelmäßiger Länge benutzt, besteht 

eine Schwierigkeit in der maximalen Länge des einzelnen Strings. Im 0. g. Beispiel 

galt die Annahme, daß die Anzahl der abzulegenden Elemente höchstens 63 

betragen darf. Wenn das auch für eine ganze Reihe von Anwendungen ausreichen 

dürfte, wäre für viele andere eine größere Kapazität wünschenswert. Diese kann 

man relativ leicht schaffen, indem man ein Stringfeld definiert und die jeweilige 

Position eines Elements nicht nur in bezug auf seinen Ort im String, sondern auch 

auf seine genaue Adresse innerhalb des ganzen Feldes berechnet. Unten sehen 

Sie eine Bearbeitung der vorhergehenden Routine, die mit einem 20elementigen 

Feld arbeitet und somit die Aufnahme von 1260 Elementen mit vier Zeichen und den 

Zugriff darauf ermöglicht. 

5@ DIMAS(19) 
6@ FORI=1TO252:AS(O>=AS(O)+" "ENEXT 
78 FORI=1T019:A$CI)=A$(O):NEXT 
DOOD REMKKAKKKKKKKKKKKKKKKKKEKKEEKKKKE 

S@01 REM MEHRELEMENTIGE STRINGFELDER 
SBB2 REMAKKKKKKEKEKKEKKKE KKK KKK KEK 

5019 INPUT"VIERSTELLIGES ZEICHEN: 
"TS 

5Q20 IFTS="*k**k" THENSO7O 
5038 INPUT"ZEICHENPOSITION (1-1260): 

DB = 
s; 

43



S@4@ LL=INT((T-19/63)!T=T-63xeLL 
5@50 AS(LL) =LEFT#(AS(LL? ,4e¢(T-1))+TS+MID 
SCAFCLLI, Trd4+i1) 
5060 GOTOS5018 
S070 INPUT"NUMMER DES ZU PRUEF. ZEICHEN 
St o"3NN © 
S@8@ LL=INT< (NN-1 9/63) !NN=NN-634LL 
5090 PRINT MID#(AS¢LL) ,NN*e4-3,4) 
Siaa GcoTaseaia 

VARIABLEN: 

LL Nummer der Zeile, in die das neue Element eingesetzt wird; ergibt sich 

aus der Division der gewünschten Position durch die Länge der Zeilen im 

Feld 

T/NN Ursprüngliche Nummer des einzusetzenden oder zu untersuchenden 

Elements, umgewandelt in die Position des Elements in Zeile LL 

DATEN IN STRINGS VARIABLER LÄNGE 

In den letzten beiden Abschnitten wurde von einer feststehenden Länge der 

bearbeiteten Strings ausgegangen. Das hat den Vorteil, daß die Position der 

Stringelemente ebenfalls festgelegt ist. Es gibt immer 63 Elemente, und das 

Element in Position 23 wird immer dort bleiben, egal was man mit den anderen 

Positionen anfängt. Nicht alle Anwendungen erfordern jedoch den String in voller 

Länge im Speicher. Häufig wird nur eine Liste von Elementen (mit oder ohne 

bestimmte Reihenfolge) verlangt, die man einfach nacheinander durchgehen und 

durch Einfügungen oder Streichungen verändern kann. Mit der nächsten Routine 

kann man Elemente mit vier Zeichen an den Anfang einer Liste von bis zu 1240 

Elementen anfügen, die gesucht oder gelöscht werden können: 

GOGO REMAAKKKKKKRHEKKKKKEKEKRKKKAKKKKAKKKKKEK 

6661 REM DATENSTRINGS VARIABLER LAENGE 
SOGS REMEKKKKKKKKKKEKEKEKKKKKKEKKKEKKKE 

6108 DIMAS¢(19) 

6120 INPUT" Ji =E INGABE/2=SUCHEN/3=LOESCHE 

N/4=ENDE"FFF 

6139 ONFFGOSUBS299,6388,649808,6150 

6146 GOTOSI128 

6150 END 

44



6208 

6201 

6202 

6218 

"; INS 

6228 

PRE i ke ok ke ek ok 

REM EINGABE 

PRE Mk ok oe ok ke kk 

PRINT: INPUT"VIERSTELLIGES ZEICHEN: 

IFIT=1248THENPRINT'"KEIN PLATZ :FORI= 

1TO02000 : NEXT: GOTOGe90 

6230 
6240 
6250 
6268 

ASCQI=INStASCOIEITHIT+1 

IFLENCAS(O 9 >< 252 THENG2S8 

FORI=@TO18 

TTS=RIGHTSCASCI) ,4. SASCID=LEFTSCASC 

I) ,LENCASCI 99-4) 

62780 ASCI+1LI=ATTS+ASCI +193 IFLENCASCI+19¢<2 

92 THEN6290 

56288 NEXTI 

6298 RETURN 

6300 REMAxkkkKKK 

6301 REM SUCHE 

6302 REM*kkKKKKK 

6318 PRINT: INPUT"ZU SUCHENDES ZEICHEN: " 

» IN$ 

6320 FORI=1TOIT 

6330 LL=INTCC1I-109/62>°PP=44(1-LL*62 9-3 

6390 IFMIDS(CAS(LL),PP,4)9=INSTHENGS?O 

6350 NEXKTI 

6368 PRINT"NICHT VORHANDEN" :FORJ=1T0O2888 

‘NEXT? GOTO639@ 

6378 PRINT"ZEICHEN HAT NUMMER: "7 1I:PRINT 

: INPUT"WEITER SUCHEN’7QS$ 

6380 

63930 

6400 

6461 

6462 

6410 

IFLEFTS(Q$, 19="J" THENG350 

RETURN 

RE Mik ok ak ok kok kk kk 

REM LOESCHEN 

PRE Mk ok ok ok kok kK 

PRINT: INPUT"ZU LOESCHENDES ZEICHEN: 

"7; INS 

6420 

6430 

GOSUBG320: IF IOI TTHEN6S00 

AS (LL =LEFT#(CASC(LLO ,-PP-1)+MIDSCASCL 

L),PP+4) 
6440 IT=IT-1 

45



6458 PRINTIN$?" GELOESCHT":FORI=1T02998: 

NEXT 

6460 FORI=17TO18: IFLENCASC1I)>=248 OR ASCI 

2=""THEN6G436 

6470 LN=248-LENCASC ID DEASC IO RFASCID +LEF TS 

CASCI+1),LN) 

6486 ASCI+1> =MIDSCASCI+1)>,LN+1) 

64980 NEXTI 

6500 RETURN 

VERWENDETE VARIABLEN: 

FF Nummer der vom Benutzer gewählten Funktion 

IT Anzahl der Elemente mit vier Zeichen im Feld 

TT$ Hilfsvariable, mit der ein Element in die nächste Zeile verlegt wird, 

wenn die Länge einer Zeile im Feld 252 erreicht, d. h. wenn kein neues 

Element angefügt werden könnte, ohne die maximale Länge von 255 zu 

überschreiten 

LL derzeit bearbeitete Zeile innerhalb des Feldes 

PP Position eines Elements in Zeile LL des Feldes 

LN Länge des Elements, das beim Löschen innerhalb des Feldes nach 

unten verschoben wird 

Sehen Sie sich die Routine in aller Ruhe an, und lassen Sie sich nicht einschüch- 

tern; denn sie enthält wenig, das wirklich neu ist. Es sind hier lediglich einige der in 

diesem Kapitel beschriebenen Methoden angewendet worden. Das einzig Neue ist 

die Art und Weise, wie Elemente von einem String zum anderen verlegt werden, 

sobald die Länge eines Strings 252 erreicht. Dies geschieht, damit man ein neues 

Element ohne Risiko an den Anfang des Feldes anfügen kann, anstatt erst auszu- 

probieren, ob die Addition des neuen Elements zu einer unerlaubten Stringlänge 

führen würde. Beim Löschen kehrt man das Verfahren um. 

GARBAGE COLLECTION 

Bei komplizierten Stringroutinen, mit denen Strings innerhalb von Feldern häufig 

umgestellt oder im Speicher neu definiert werden, wird Ihnen gelegentlich auffallen, 

daß der C 64 die Verarbeitung scheinbar unterbricht. Der Schein trügt nicht, 

sondern das ist tatsächlich so. Der C64 — und jedes andere Gerät, das auf 

Commodore BASIC 2 läuft — ordnet im Fall der Neudefinierung eines Strings den 

Speicher nicht so, daß der vorhandene Platz optimal genutzt wird. Strings werden 

nur dann im Speicher umgestellt, wenn Platz für etwas gemacht werden muß, das 

46



an Länge zugenommen hat. Das bedeutet, daß ein durch Neudefinition verkürzter 

String keinen zusätzlichen Speicherplatz freimacht. Dadurch wird der Speicher 

nach und nach aufgefüllt, wenn große Mengen von Strings bearbeitet werden. Nach 

einiger Zeit wird das zum Problem, und der C 64 schafft mit der sogenannten 

"Garbage Collection’ Abhilfe, d. h. er ordnet den Speicher so, daß die Strings keinen 

überflüssigen Platz mehr belegen. Leider erfolgt die Garbage Collection nicht immer 

rechtzeitig genug, um den Programmstop und einen OUT OF MEMORY Error zu 

verhindern. 

Sollten Sie bei Ihren Programmen auf dieses Problem stoßen, hilft Ihnen die FRE- 

Funktion des C 64 weiter, mit der Sie die Garbage Collection erzwingen können, um 

sich einen genauen Überblick über den verfügbaren Platz im Arbeitsspeicher zu 

verschaffen. Auf den Befehl 

PRINT FREC 0) 

(der Wert in Klammern ist ohne Bedeutung) wird die Anzahl der freien Bytes im 

Speicher ausgedruckt. Eine Komplikation ergibt sich daraus, daß FRE nur die 

Zahlen von -32768 bis 32767 verarbeiten kann. Was über 32767 hinausgeht, wird 

als die Anzahl freier Bytes minus 65536 ausgedrückt. Probieren Sie das nächste 

Programm aus, und geben Sie es genauso ein wie unten angegeben, d. h. mit der 

Leertaste nach PRINT in Zeile 15 und ohne Leertaste nach PRINT in Zeile 20: 

1@ DIMAC1218) 

15 PRINT "44" 
20 PRINT FRECO) 

38 LIST 

Lassen Sie das Programm laufen; jetzt sollte der Wert 32767 oben auf dem 

Bildschirm erscheinen, darunter das Listing. Gehen Sie zum Listing, und entfernen 

Sie die Leerstelle nach PRINT in Zeile 15. Da Sie ein Byte aus dem Programm 

genommen haben, müßte der Wert des verfügbaren Speicherplatzes jetzt mit 

32768 Bytes angegeben werden, aber der erneute Programmdurchlauf gibt den 

Wert —32768 aus. Die Ursache dafür hängt damit zusammen, daß die FRE-Funktion 

mit 16-Bit-Integerarithmetik arbeitet. Streng genommen hieße das, jede Zahl von O 

bis 63535 kann ausgedrückt werden. Tatsächlich aber ist das höchste Bit einer 

binären Zahl reserviert für die Anzeige, ob eine Zahl negativ ist; daher wird jede Zahl 

über 32767, bei der alle 16 Bits gebraucht werden, als negativ gedeutet. Das 

Problem wird gelöst, wenn man eine logische Bedingung (Erklärung s. gesondertes 

Kapitel) zur Umwandlung negativer Zahlen in die korrekten positiven verwendet. 

Die folgende Zeile führt immer zum korrekten Wert: 

47



MM=FREC BI: PRINT MM-65536 x MM 8) 

Dies nur am Rande. Hauptsächlich sollte FRE hier als eine Möglichkeit vorgestellt 

werden, während des Programms die ‘Garbage Collection’ zu erzwingen und so 

einem falschen OUT OF MEMORY Error vorzubeugen. Fügen Sie einfach eine Zeile 

wie 

1600 T=FREC > 

irgendwo ein, wo sie dann planmaBig ausgefuhrt wird. Da die Garbage Collection 

Zeit braucht und den Programmablauf etwas verlangsamen wird, sollte sie nur 

verwendet werden, wo sie erfahrungsgemäß notwendig ist. 

SCHLUSS 

Sobald Ihnen die hier beschriebenen Techniken einmal geläufig sind, brauchen Sie 

bei Programmen, die ausgiebigen Gebrauch von Stringfunktionen machen und 

voller LEFT$, MID$ und RIGHT$-Funktionen in Verbindung mit einer Fülle von 

Variablen stecken, nicht mehr den Mut zu verlieren. Ein Verfahren, mit dem man 

Strings verarbeitet, besteht im wesentlichen daraus, einen Teilstring zu identifizie- 

ren, und durch umsichtigen Einsatz von Variablen läßt sich so gut wie alles mit 

einem String machen. Dies eröffnet nicht nur breite Möglichkeiten für eine effekti- 

vere Datenspeicherung. Es erlaubt dem Programmierer auch, viel ausgefeiltere 

Programme zu schreiben, mit denen der Benutzer Strings in übersichtlicherer Form 

eingeben kann. Dabei bleibt dem Programm selbst die Aufgabe überlassen, die 

wesentlichen Teile der Eingabe zu identifizieren. Wie schon am Anfang des Kapitels 

erwähnt, wird auf die hier beschriebenen Techniken im folgenden häufig Bezug 

genommen. Überspringen Sie hier nichts, denn die Anstrengung, alles genau zu 

verstehen, wird sich mehr als lohnen. 

48



KAPITEL 4 

DATENEINGABE 
Einer der wichtigsten Unterschiede zwischen den modernen Mikrocomputern und 

den leistungsfähigen Großrechnern der Vergangenheit besteht darin, daß der 

Mikrocomputer interaktiv ist, d. h. er steht in direktem Dialog mit dem Benutzer und 

erlaubt ihm den Eingriff in ein Programm, während es läuft. Vor der Erfindung des 

Mikrocomputers waren Computer meist als Geräte bekannt, die zuerst sowohl 

Programme als auch alle nötigen Daten brauchten, bevor man das Programm ohne 

jede Überprüfung der eingegebenen Daten durchlaufen ließ. Oft erhielt man das 

Ergebnis des Programmdurchlaufs erst am nächsten Tag; Fehler im Programm 

konnten bedeuten, daß der Vorgang viele Male wiederholt werden mußte, bevor der 

Benutzer auch nur eine annähernde Vorstellung davon hatte, wie das Programm 

nach Beseitigung aller Fehler arbeiten würde. 

Infolgedessen mußte der Programmierer, wenigstens der erfolgreiche, alles vorher- 

sehen, was im Laufe der Ausführung geschehen würde. Sollten im Programmablauf 

mehrere Operationen durchgeführt werden, mußten sie alle in der richtigen Reihen- 

folge und mit allen notwendigen Daten eingebaut werden, bevor das Programm 

betriebsfähig war. Sämtliche während des Programmablaufs zu treffenden Ent- 

scheidungen mußten vorher eingeplant werden; denn es gab keine Möglichkeit, ein 

Programm zu entwerfen, das Entscheidungen beim Benutzer erfragte. Wurde eine 

wichtige Entscheidung übersehen, so mußte das Programm am nächsten Tag 

nochmals gestartet werden. 

Der moderne Mikrocomputer hat die Situation verändert. Manche neuartigen 

Anwendungen von Computern, wie z. B. Spiele, wären mit Geräten ohne Kommu- 

nikationsmöglichkeit zwischen Benutzer und laufendem Programm einfach nicht zu 

realisieren gewesen. Noch entscheidender ist, daß es für die Benutzer ernsthafter 

Anwendungsprogramme heute selbstverständlich ist, während der Ausführung 

Informationen in ein Programm einzugeben, Entscheidungen über die anfallenden 

Aufgaben zu treffen und dabei das Programm unter ständiger Kontrolle zu haben. 

Diese Freiheit ist jedoch auch problematisch. Obwohl das nicht-interaktive Pro- 

grammieren oft mühselig war, garantierte es den vorsichtigen Umgang mit Program- 

men und die sorgfältige Auswahl der Daten, die sie verarbeiteten. Die direkte 

interaktive Datenverarbeitung verführt zur Leichtsinnigkeit. Da uns die Ergebnisse 

des Programms fast sofort zur Verfügung stehen, kann etwas, das falsch gelaufen 

ist, schnell korrigiert und der Programmdurchlauf wiederholt werden. 

Heute ist ein Programm nicht schon deshalb gut, weil jeder Datenausdruck so 

formuliert ist, daß er das Programm nicht zum Stolpern bringt, und jede mögliche 

wichtige Entscheidung vorausgeplant ist. Gut ist ein Programm, wenn es dem 

49



Anwender in möglichst flexibler Weise erlaubt, Informationen einzugeben, und 

wenn es ihm wichtige Entscheidungen über die Arbeitsweise des Programms 

überträgt. Wenn man bedenkt, wie leicht während eines solchen Verfahrens Fehler 

gemacht werden können, beweist sich ein gutes Programm auch darin, daß der 

Benutzer nicht versehentlich Eingaben machen kann, die das Programm zum 

Absturz bringen oder zur Verstümmelung der eingespeicherten Informationen 

führen. 

In diesem Kapitel beschäftigen wir uns mit Möglichkeiten, wie Programme Informa- 

tionen annehmen können. Im nächsten Kapitel untersuchen wir einige der Metho- 

den zum Schutz des Programms gegen mögliche Fehler, die in diesen Informatio- 

nen enthalten sind. 

EINGABE VON INFORMATIONEN: INPUT 

Der Commodore 64 läßt zwei Arten der Dateneingabe während des Programmab- 

laufs zu: INPUT- und GET-Anweisungen. Beide haben ihre Vorteile, obwohl sich die 

meisten selbstgeschriebenen Programme fast ausschließlich auf INPUT verlassen, 

selbst in Fällen, in denen der Gebrauch von GET weitaus angebrachter wäre. 

Der wichtigste Vorzug von INPUT ist sein klarer Ablauf. Eine Abfrage erscheint auf 

dem Bildschirm, worauf Buchstaben oder Zahlen ein- und ausgegeben werden 

können. Fast ebenso wichtig ist, daß die Eingaben mit Hilfe der Cursor-Pfeile in 

Verbindung mit den Tasten Insert und Delete editiert werden können. Nachdem der 

Anwender sich davon überzeugt hat, daß das Bild genau seinen Wünschen ent- 

spricht, beendet er den INPUT durch Drücken von RETURN. 

INPUT hat jedoch auch Nachteile. Erstens begrenzt es die erlaubte Menge der 

einzugebenden Informationen auf höchstens 80 Zeichen (selbst um 80 Zeichen 

einzugeben, müssen Sie den Cursor an den Anfang der Zeile nach der INPUT- 

Abfrage setzen, da nur der Inhalt zweier aufeinanderfolgender Bildschirmzeilen 

angenommen werden kann). Zweitens gibt es mehrere Zeichen, die von INPUT 

nicht korrekt verarbeitet werden, beispielsweise das Komma. Drittens bedeutet die 

Notwendigkeit, jede Eingabe mit RETURN abzuschließen, unter Umständen eine 

wirkliche Behinderung bei Programmen, die eine große Anzahl von Antworten vom 

Benutzer erwarten, oder wenn die Programmausführung ohne vorherige Eingabe 

einer Antwort durch den Benutzer fortgesetzt werden soll. Trotz der Nachteile ist die 

INPUT-Anweisung immer noch die Stütze fast aller Programme, die während des 

Ablaufs Informationen annehmen. 

50



EINFACHE EINGABEN MIT INPUT 

1. Eingabe eines einzelnen Strings: 

18 INPUT"GIB EINE ZAHL EIN "7A$ 

2. Eingabe einer einzelnen Zahl: 

18 INPUT"GIB EINEN STRING EIN ";A$ 

3. Eingabe mehrerer Strings: 

18 INPUT"NAME, VORNAME, GESCHLECHT <MIT 

KOMMAS EINGEBEN) "7NS$,VNS$,G#$ 

Beachten Sie, wie in den hier eingegebenen Daten die Kommas zur Bestimmung 

der drei getrennten Strings dienen, die von der INPUT-Anweisung erwartet werden. 

Wenn der Anwender jeden Ausdruck mit RETURN statt mit Kommas abschließen 

würde, sähe die Anzeige so aus: 

Bildschirm: 

NAME, VORNAME, GESCHLECHT (MIT KOMMAS 

EINGEBEN? ? LAWRENCE 

?? DAVID 

??? MAENNL ICH 

4. Eingabe mehrerer Zahlen: 

18 INPUT"NUMERISCHE EINGABEN 1-3:"7A,B,C 

Die Wirkung ist dieselbe wie bei der Stringeingabe unter 3. In einer Eingabezeile 

können Zahlen und Strings gemischt vorkommen. 

51



INPUT MEHRERER ELEMENTE IN DIESELBE BILDSCHIRM- 
ZEILE 

Durch die flexible Handhabung des 64er-Bildschirms in Verbindung mit der INPUT- 

Anweisung kann das oft störende Durcheinander auf dem Bildschirm bereinigt 

werden. Wenn z. B. mehrere Inputs nacheinander gemacht werden müssen und 

der Benutzer nicht darauf angewiesen ist, sie alle zugleich vor sich zu sehen, kann 

man auf recht einfache Art dafür sorgen, daß alle Eingaben in dieselbe Zeile 

erfolgen, die dabei jeweils überschrieben wird. 

1. Uberschreiben von INPUTs: 

18 PRINT" eee" 

286 INPUT"DWORT 1”°FA1S 

36 INPUT"CWORT 2"; ALS 

46 INPUT"DWORT 3"F2A3S 

Hier ist die PRINT-Ausweisung in Zeile 10 einfach ein Beispiel dafur, wie man den 

Cursor an die gewünschte Bildschirmposition bringt, am besten eine Zeile unter der 

Stelle, wo die INPUT-Abfragen erscheinen sollen. Von da an reicht es, ein ‘Cursor 

aufwärts’-Symbol an den Anfang jeder Abfrage zu setzen, damit alle Eingaben in 

dieselbe Zeile gemacht werden. Bei verschieden langen Eingaben ergibt sich nur 

das Problem, daß die frühere von der folgenden möglicherweise nicht vollständig 

gelöscht wird. In diesem Fall wäre jede INPUT-Zeile etwa so aufgebaut: 

28 PRINTOS: INPUT"DWORT 1",A1$ 

O$ ist ein String mit 39 Leerstellen, denen ein ‘Cursor aufwärts’-Symbol vorgeht. 

Bei dieser Methode löscht O$ die Zeile bis zum Ende, so daß die Eingaben immer in 

eine freie Zeile gedruckt werden. 

2. Eingaben können natürlich auch genausogut nebeneinander statt untereinander 

auf dem Bildschirm angeordnet werden, vorausgesetzt, Sie sind sicher, daß sie 

nicht über die Zeile hinausgehen und so das Bildschirmformat verderben: 

18 INPUT"WORT 1",A$ 

28 PRINT" ZBRBRRRRRBEI" ; : INPUT"LORT 2":B$ 

38 PRINT" ERBBRRRRRRBBBRBBBBRRBEBE" ; : INPUT"W 

ORT 3",C$ 

52



INPUT IN BILDSCHIRMFENSTER 

Selten wirken Eingaben so professionell wie auf einem Bildschirm mit invertierten 

Fenstern. Obwohl man für diesen Zweck besser mit GET arbeitet, kann man auch 

INPUT verwenden, wenn man sicher ist, daß die einzelnen Eingaben nicht länger 

sind als die ihnen zugewiesenen Fenster. Das Verfahren ist in folgenden Zeilen 

dargestellt: 

1@ PRINT" [REVERS EIN] 

28 INPUT"D WORT IIREVERS EINI"FA$ 

Zeile 10 bringt ein 10 Spalten langes invertiertes Fenster auf den Bildschirm, vor 

dem genügend Platz für die geplante, nicht-invers gedruckte Abfrage bleibt. Die 

INPUT-Abfrage beginnt mit einem ‘Cursor aufwärts’-Zeichen zwecks Rückkehr in 

die richtige Zeile, und [RVS] am Ende der Abfrage bewirkt die inverse Darstellung 

der Eingabe. RETURN am Ende der Eingabe schaltet den RVS-Modus aus, und 

alles folgende wird im Normal-Modus gedruckt. 

Es lohnt die Mühe, mit den vielen Möglichkeiten der Gestaltung von INPUTs auf 

dem Bildschirm zu experimentieren. Ein übersichtlich eingeteilter Bildschirm macht 

die Bedienung jedes Programms wesentlich einfacher und sorgt dafür, daß bei 

Eingaben weniger Flüchtigkeitsfehler gemacht werden. 

GET 

So nützlich INPUT auch sein mag, seine Einschränkungen sind oft hinderlich. Um 

dem abzuhelfen, bietet 64er-BASIC mit GET einen zusätzlichen Befehl. GET ist 

schwieriger zu handhaben als INPUT; denn seine einzige Funktion besteht darin, 

die Tastatur zu lesen, d. h. festzustellen, ob eine Taste gedrückt wurde oder nicht. 

GET erwartet nicht RETURN, ehe es eine Eingabe als solche annimmt; jedes GET 

liest die Tastatur und nimmt entweder das zuerst registrierte Zeichen an oder stellt 

fest, daß keine Taste angeschlagen wurde. GET empfiehlt sich besonders, wenn 

Sie die Länge einer Eingabe sofort überprüfen möchten, wenn Einzeltastenbefehle 

(ohne Gebrauch von RETURN) zweckmäßig sind, oder wenn das Programm nicht 

auf eine Eingabe warten soll, falls der Benutzer keine Taste drückt. 

WARTESTATUS MIT GET 

Die klassische Aufgabe von GET besteht darin, einen Wartestatus bis zum Drücken 

einer einzelnen Taste herzustellen: 

53



18 GETA$: IFAF$=""THENIO 

Auf diese Zeile hin führt das Programm die GET-Anweisung aus und stellt fest, ob 

eine Taste gedrückt wird. Falls nicht, wird dem String A$ der Wert Null zugeordnet, 

und die IF-Anweisung im zweiten Teil der Zeile bewirkt die nochmalige Ausführung 

der Zeile. Das Programm wartet also unbegrenzt, bis eine Taste gedrückt wird. 

Sobald dies geschieht, übernimmt A$ den Wert des Zeichens, das der Taste 

entspricht, und das Programm geht zur nächsten Zeile über. 

Ausgeklügelte Anwendungsprogramme, die dem Benutzer in verschiedenen Sta- 

dien der Ausführung Optionen anbieten, machen von GET in dieser Form sehr 

häufig Gebrauch. Wenn verschiedene Möglichkeiten zur Auswahl stehen, ist es viel 

leichter, eine einzelne Taste zu drücken, als jede Eingabe mit RETURN abschließen 

zu müssen. Unten sehen Sie ein typisches Programm-Menü, das mit GET arbeitet: 

1040 PRINT" = PROGRAMMENDE " 

1610 PRINT"1 = EINGABE DATEN" 

1020 PRINT"2 = LOESCHEN DATEN" 

1838 PRINT"3 = AENDERN DATEN" 

1040 PRINT"4 = ANZEIGE DATEN" 

1858 PRINT"BBITTE WAEHLEN" 

1868 GETIN$: IFIN$=" "THENI1868 

1070 TT=VALC IN#) +1 

1080 ON TT GOSUB 10000 ,2000 , 3080 ,4000 ,500 

8 

1030 GOTO1900 

Der Benutzer muB lediglich 0, 1, 2, 3 oder 4 eingeben, um den entsprechenden 

Programmteil aufzurufen. 

CURSORSTEUERUNG MIT GET 

Auch Spielprogramme machen ausgiebigen Gebrauch von GET, vor allem, um 

Gegenstande auf dem Bildschirm hin- und herzubewegen: 

10008 

16@ 1 

1882 
1910 

19208 

1938 

19848 

54 

REM*KeEKEKEKKKKK KK KKK 

REM BEWEGTER CURSOR 

REM kk koko KK KK KK 

GETT? 

PRINT" xii": 

FORI=1T0O50 5 NEXT 

PRINT" Hi";



1859 FOR1=-1T059:NEXT 

19368 IFT$=""THENI10989 

1070 IFTS="OD"ORTS= "BM" ORTS= "BM ORTS= "IP THE 

NPR INTTS; 

198589 GOTO100a 

Diese Routine läßt einen blinkenden ‘*’-Cursor auf dem Bildschirm erscheinen, bis 

eine Taste gedruckt wird. Die beiden Schleifen erzeugen eine kurze Pause, damit 

der Cursor nicht flackert, sondern blinkt. Um den Cursor zu bewegen, mussen Sie 

nur das mit GET-Anweisung in T$ abgelegte Zeichen überprüfen und, falls es eines 

der Cursor-Steuerzeichen ist, drucken (PRINT). Die Printposition verändert sich, 

und danach können Sie die Routine für den blinkenden Cursor wieder ausführen. 

GET UND BEFRISTETE ANTWORTZEITEN 

Bei Spielen und manchmal auch bei ernsthafteren Anwendungen kann es günstiger 

sein, dem Benutzer eine bestimmte Zeitspanne für eine Antwort zur Verfügung zu 

stellen, als das Programm auf unbegrenzte Zeit zu stoppen. Mit GET und einer 

angemessenen Zeitschleife ist das ein einfacher Vorgang: 

10 FORI=1TO100a0 

20 GETT#: IFT#< >" "THENI=1000 

380 NEXTI 

48 IFT$<}>""THENGOSUBSOO 

Hierbei hat der Benutzer zum Antworten soviel Zeit, wie die Schleife für 1000 

Ausführungen braucht. Nach erfolgter Antwort kann eine bestimmte Operation wie 

in Zeile 40 ausgeführt werden. Wurde während der 1000 Wiederholungen der 

Schleife keine Taste gedrückt, läuft das Programm von der auf Zeile 40 folgenden 

Zeile an weiter. 

GET UND INVERTIERTE FENSTER 

Wie schon erwähnt, kann man die Dateneingabe wirkungsvoll gestalten, indem man 

einen besonderen Raum wie z.B. ein invertiertes Fenster dafür reserviert. GET 

spielt bei dieser Anwendungsmethode eine wesentliche Rolle, weil es eingesetzt 

werden kann, um die Länge einer Eingabe während des Eingabevorgangs festzu- 

stellen. Die nächste Routine nimmt jede Eingabe bis zu einer Länge von 10 Zeichen 

an: 

55



ZBOEO REMEEKKKKEKKKKREKKKKEEKKEKKEKKEK 

2801 REM EINGABE IN REVERSES FELD 

POOL REMOTE K 

2810 INE="" 

2828 PRINT" [REVERS EIN] 

"REM Y LEER REV.ON 10 LEER 

2030 PRINT"DOWORT 1: CREVERS EINI]"; 

28948 GETT#: IFT#=""THEN2ES40 

2050 IFT#=CHR#¢(13>THEN2Z114 

2060 IF T#=CHR#( 20 DANOLENC IN) =OTHENLS46 

2070 IFTS=CHR#(20) THENINS=LEF T#¢( INS,-LENC 

INS) -19°PRINT"H BM": <GOTOe2O4e8 

2080 PRINTTS:; 

2090 INS=INS+TS 

2£19@ IFLENC INS) < 1O@THENeS4Q 

£1160 STOP 

Das Fenster wurde gedruckt und die Abfrage direkt davor gestellt, wobei die 

Printposition am Anfang des Fensters stehenbleibt. In das Fenster können dann 

Buchstaben geschrieben werden. Drücken der Taste DEL (CHR$(20)) löscht den 

letzten Buchstaben der Eingabe sowohl auf dem Bildschirm als auch im Speicher, 

sofern das Fenster schon etwas enthält; bei dieser Routine können Sie die Cursor- 

Steuertasten nicht benutzen, nur DEL. Die Eingabe ist beendet, wenn entweder 

RETURN (CHR$(13)) gedrückt wird, oder wenn sie eine Länge von 10 Zeichen 

erreicht hat. 

Mit einem solchen Programm können Sie verhindern, daß eine Eingabe länger wird 

als Sie möchten; damit wird sowohl eine Abweichung vom geplanten Bildschirmauf- 

bau als auch eine Verstümmelung der Struktur der Felder ausgeschlossen. 

BILDSCHIRMEDITIERUNG MIT GET 

GET bietet weiterhin die Möglichkeit, die bei INPUT vorgegebene Höchstlänge von 

Strings zu überschreiten und vorhandene Strings zu editieren, was mit INPUT sehr 

schwierig ist. Die Methode, auf dem Bildschirm erscheinende Informationen aufzu- 

bereiten und diese Modifikationen aufzuzeichnen, nennt man Bildschirmeditierung. 

Programm-Listings können beim C 64 editiert werden, indem man mit dem Cursor 

vorhandene Zeilen entlangfährt und etwas hinzufügt oder wegnimmt. Das Verfahren 

Kann auch bei Strings auf dem Bildschirm benutzt werden, obwohl solche Anwen- 

dungen meist schwierig sind. 

56



Die unten abgedruckte Routine ist ziemlich komplex, hat aber einen einfachen 

Zweck. Sie erlaubt dem Benutzer die Eingabe und gleichzeitige Editierung eines 

Strings (genannt A$). Wäre der Anfang von A$ mit einem schon im Speicher 

befindlichen String identisch, könnte die Routine auch dazu dienen, ihn auf den 

Bildschirm auszugeben und zu verändern. Die einzige Beschränkung besteht in der 

absoluten Höchstgrenze von 255 Zeichen pro String. 

SO00 REMEKKKKKKKKEKKKKKKKKKKKK 

3881 REM BILDSCHIRMEDITIERUNG 

3822 REM‘ OO OOO OK 

3010 DEF FNACP)=1024+LL*40+P 

3020 AS=" " 

30360 P=0:LL=17 

3040 PRINT". 

3050 PRINTAS 

3060 CH=PEEK (CFNACP >)? POKES4e2 ret+tFNACP) ,14 

*-POKE FNACP),160 

3070 FORTT=1TOS!:NEXTTT > POKEFNACP) ,CH 

3030 GETTS: IF T#="" THENSO40 

3090 IF T#=CHRS( 13 ORLENCAS) =2@SSTHENS TOP 

3100 IFT#=CHR#(95 DANDOP < SO THENS@30 

3110 IFTS=CHRS$ (95 DANDOP =O THENP =LENCAS)-15 

GOTO3H48 

3120 IFP SOANDTS=CHRS (20 >) THENAS=LEFTSCAS, 

P-1)+MIDS(CAS,P+19°P=P-1 

3130 IFT#=CHR#(20 > THENSS40 

3140 IFTS="Q"ORTS="" THENSO40 

3150 IFTS< > "HB" ANDTS< > "BY THENAS=LEFTSCAS, 

PI+T$+MIDS(AF,P+1>:P=P+1 

3168 IFT$="IP ANDP>BTHENP=P-1 

3178 IFTS="B"ANDP<CLENCAS) -1THENP=P +1 

3180 GOTO3040 

IRI "' 

  

Im einzelnen enthalt die Routine folgendes: 

3000 Dies ist eine fur die Bildschirmeditierung wichtige Funktion. Sie PEEKt eine 

einzelne Zeichenposition auf dem Bildschirm. Wir brauchen diese Funktion, um 

später zu ermitteln, was sich schon auf dem Bildschirm befindet, und um es 

gegebenenfalls in dieselbe Position wieder einsetzen zu können. Vom Anwender 

definierbare Funktionen werden in Kapitel 12 ausführlicher beschrieben. 

57



3020 Um überhaupt mit dem Editieren eines Strings beginnen zu können, brauchen 

wir zunächst einmal einen String. Diese Zeile geht davon aus, daß wir ganz von vorn 

anfangen, und beginnt den String als einzelne Leerstelle. Wäre hier die Editierung 

eines schon existierenden Strings beabsichtigt, so würde er vorläufig in A$ umbe- 

nannt werden, und diese Zeile würde dazu dienen, eine Leerstelle an das Ende des 

Strings anzuhängen. 

3030 Die Variable P wird in der Routine gebraucht, um die Cursorposition im String 

aufzuzeichnen, wobei die Numerierung bei Null beginnt. 

3040-3050 Diese Zeilen drucken den gewünschten String in eine Zeile, die durch 

die Anzahl der ‘Cursor abwärts’ bestimmt ist. 

3060 Diese Zeile ermittelt mit Hilfe der definierten Funktion den Bildschirmcode- 

Wert des Zeichens in Position P in Zeile LL und speichert ihn in die Variable CH ab. 

An seine Stelle wird eine inverse Leerstelle gePOKEt. 

3070 Während der Ausführung der kleinen Schleife bleibt die inverse Leerstelle für 

einen Sekundenbruchteil auf dem Bildschirm sichtbar, dann wird das ursprüngliche 

Zeichen wieder eingesetzt. 

3080 Diese Zeile läßt den Cursor einmal blinken und prüft, ob eine Taste gedrückt 

wird. Wenn nicht, blinkt der Cursor nochmals. 

3090 Um hierher zu gelangen, muß der Benutzer eine Taste gedrückt haben. Die 

Zeile prüft, ob die gedrückte Taste RETURN war, oder ob der zu editierende String 

schon 255 Zeichen umfaßt. In beiden Fällen wird die Routine beendet. Normaler- 

weise benutzt man hier nicht STOP, sondern springt mit GOTO in einen anderen 

Programmteil, der den neugeschaffenen String verarbeitet. Vor Gebrauch des 

neuen Strings müßte man das letzte Zeichen — die am Anfang eingefügte Leerstelle 

— entfernen. 

3100 Handelt es sich bei dem eingegebenen Zeichen um den ‘Pfeil nach links’ links 

oben auf der Tastatur, geht die Printposition (P) an den Anfang der Zeile zurück, falls 

sie sich nicht schon dort befindet. 

3110 Wenn bei Eingabe des ‘Pfeils nach links’ die Printposition schon am Zeilenan- 

fang steht, springt sie zum Zeilenende. Diese beiden Zeilen sind nur aufgenommen 

worden, um die Bewegungen innerhalb des Strings zu erleichtern. 

58



3120-3130 Sofern die Printposition nicht am Zeilenanfang steht, löscht die Delete- 

Taste das Zeichen links vom blinkenden Cursor. Das Programm springt dann zur 

Routine für den blinkenden Cursor zurück. 

3140-3150 Das eingegebene Zeichen wird — wenn es sich nicht um eine der 

Cursor-Steuertasten handelt — an der Cursorposition in den String eingesetzt, 

wobei sich alle Zeichen von der Cursorposition an um eine Stelle nach rechts 

verschieben. Dann wird der String wieder gedruckt. 

3160-3180 Diese Zeilen ermitteln, ob das eingegebene Zeichen ein ‘Cursor nach 

links(rechts)’—Pfeil war. Wenn ja, ist es überflüssig, den String wieder zu drucken. 

Geändert wird lediglich die Position des blinkenden Cursors. 

Mit dem vorgestellten Programm und mit etwas Phantasie werden Sie in der Lage 

sein, Daten an beliebiger Stelle auf den Bildschirm zu schreiben, sie mit Hilfe der 

‘links-’ und ‘rechts’-Cursorpfeile zu editieren, Zeichen einzufügen oder zu entfer- 

nen und die editierten Daten wieder abzuspeichern. Wenn Sie es wünschen, 

können Sie auch eine weitere Variable hinzufügen, um die Position des Cursors 

sowohl vertikal als auch horizontal aufzuzeichnen. Das gibt Ihnen die Möglichkeit, 

sich in den verschiedenen Textzeilen auf- und abwärts zu bewegen, während das 

Programm laufend registriert, welche der Zeilen gerade editiert wird. Für den 

Benutzer ist es viel leichter, so vorzugehen, als einen String zur Überprüfung 

aufrufen und in geänderter Form vollständig neu eingeben zu müssen. Bei Pro- 

grammen, die ständige Aktualisierung und Änderung von Daten erfordern, kann 

eine solche Routine vieles erleichtern. 

EINFACHE BILDSCHIRMEDITIERUNG MIT INPUT 

Bei aller Flexibilität einer Routine der oben beschriebenen Art ist es auch möglich, 

die Bildschirmeditierung mit INPUT vorzunehmen, obwohl dabei nicht mehr als 80 

Zeichen eingegeben werden können und jeweils nur mit einem String gearbeitet 

werden kann. Geben Sie dazu einfach den zu editierenden String bzw. die Zahl auf 

den Bildschirm aus, und lassen Sie davor genügend Platz für die INPUT-Abfrage: 

189 AS="ABCDEFG" 

110 PRINT TAB‘CS);7AS 

12@ INPUT"DWORT 1 "FAS 

Mit dieser Methode können Sie von allen automatischen Funktionen des Bild- 

schirmeditors, die das Betriebssystem des C 64 anbietet, Gebrauch machen; wenn 

59



Sie RETURN drücken, nimmt der C 64 dann alles, was auf die Abfrage folgt, als 

neue Form von A$ an. 

SCHLUSS 

Die Dateneingabe kann ein ansonsten ausgezeichnetes Programm leicht ruinieren. 

Werden Daten auf einem vollgestopften Bildschirm mit unklarer Bedeutung und 

ohne erkennbare Reihenfolge abgefragt, dann wird das Eingeben zu einer fehler- 

trächtigen und sicherlich mühsamen Angelegenheit. Hier ist sorgfältiges Formatie- 

ren und die zusätzliche Verwendung von Farben ausschlaggebend, indem z.B. 

aufeinanderfolgenden Abfragen verschiedene Farben zugeteilt werden und jede 

Abfrage mit einem schwarzen Steuerzeichen abgeschlossen wird, das die Antwor- 

ten von den Abfragen selbst auf dem Bildschirm abhebt. 

Wählen Sie die Methode und das Format nach Ihrem persönlichen Geschmack. 

Jetzt, da Ihnen die oben skizzierten Techniken zur Verfügung stehen, gibt es aber 

keinen Grund mehr, warum sich Ihr Programm weiterhin in langweiligen Listen 

einfarbiger Abfragen auf dem Bildschirm erschöpfen sollte. Später werden wir 

sehen, wie Sie zusätzlich noch kontrollieren können, ob die auf Abfragen erhaltenen 

Daten korrekt sind. 

60



KAPITEL 5 

FEHLERKONTROLLE 

So etwas wie ein idiotensicheres Programm gibt es nicht. Im günstigsten Fall kann 

man von einem Programm sagen, daß es bisher noch keinen Dummkopf gab, der 

phantasievoll genug gewesen wäre, es abstürzen zu lassen. Kennen Sie den Ärger, 

wenn ein schönes, brauchbares Programm im entscheidenden Moment abstürzt, 

weil der Benutzer etwas eingibt, das nicht wie üblich bearbeitet werden kann? In 

diesem Kapitel werden wir uns mit einigen Möglichkeiten befassen, wie ein Pro- 

gramm stabiler, d. h. weniger anfällig gegen die Eingabe unerwarteter oder abwegi- 

ger Daten gemacht werden kann. Das Kapitel enthält sehr wenige komplexe 

Techniken, denn Fehlerkontrolle ist größtenteils eine Sache des gesunden Men- 

schenverstandes: ein Versuch, Fehler zu erkennen, die von Benutzern wahrschein- 

lich gemacht werden, und ihnen zuvorzukommen. 

FEHLERVORSORGE — 
VERNUNFTIGE VORSICHTSMASSREGELN 

Warum müssen die Leute unbedingt Fehler machen, wenn sie mit Ihrem besten 

Programm arbeiten? Darauf gibt es viele Antworten, aber meist läuft es darauf 

hinaus, daß Ihr Lieblingsprogramm doch nicht ganz so gut ist, wie Sie meinen. Die 

meisten Eingabefehler entstehen, weil das Programm einfach nicht deutlich genug 

zeigt, in welcher Weise die verlangten Informationen vom Benutzer einzugeben 

sind. Vielleicht sind die Abfragen in den INPUT-Anweisungen zu knapp, oder der 

Bildschirm ist zu voll, um sich auf jede Abfrage richtig konzentrieren zu können. 

Vielleicht ändern Sie auch mitten im Programm die festgelegten Arbeitsbedingun- 

gen und erwarten plötzlich unausgesprochen eine alphabetische Eingabe, nachdem 

Sie vorher die Antworten immer in numerischer Form verlangt hatten. Was auch der 

Grund sein mag, es ist sinnlos, sich über die Dummheit der Leute zu beschweren, 

die Ihre Programme abstürzen lassen, denn Programme sind für den Gebrauch da, 

und deshalb sollten sie so entworfen sein, daß der Benutzer sich jederzeit über die 

laufenden Vorgänge im klaren ist. 

Wenn wir das im Auge behalten, können wir mit ein paar vernünftigen Grundsätzen 

anfangen, die mögliche Fehler zum größten Teil ausschließen werden: 

1. Machen Sie sich die Mühe, den Bildschirm mit Hilfe der im vorigen Kapitel 

beschriebenen Methoden sorgfältig zu formatieren. Die Bildschirmgestaltung sollte 

die Aufmerksamkeit des Benutzers jeweils auf die richtige Abfrage lenken und von 

allem Überflüssigen ablenken. Vermeiden Sie Unordnung auf dem Bildschirm. 

61



2. Lassen Sie möglichst jemand anderen einen Blick auf Ihre Abfragen werfen, 

bevor Sie das Programm für fertig erklären. Nachdem Sie mit der Entwicklung des 

Programms Tage oder gar Wochen verbracht haben, kennen Sie den Zweck jeder 

eingegebenen Information zweifellos im Schlaf. Andere Benutzer jedoch haben nur 

eine vage Idee vom Inhalt des Programms und können sich überhaupt nicht 

vorstellen, was die einzelnen Eingaben bezwecken, wenn sie nicht klar zu entziffern 

sind. Das gilt selbst für den Fall, daß Sie nicht beabsichtigen, Ihr Programm anderen 

zugänglich zu machen. Wenn Sie es eine Zeitlang beiseitegelegt haben und sich 

dann wieder damit beschäftigen, sind Sie darüber möglicherweise genauso verwirrt 

wie jeder andere. 

3. Geben Sie das Format der Eingabe genau an, wo immer es nicht eindeutig ist: 

Sollen Zahlen oder Buchstaben eingegeben werden? Gibt es einen maximalen 

Wert, ist die Anzahl der Zeichen begrenzt? Sollen die Elemente durch Kommas 

voneinander getrennt werden?.... Nehmen wir als Beispiel ein Menü, das auf dem 

Bildschirm erscheint: 

- PROGRAMM ENDE 

- EINGABE NEUES WORT 

LOESCHEN WORT 

- SUCHEN WORT 

- ANZEIGE DATEN i 
&)

 
M
e
 &
 

! 

Das sieht eigentlich klar aus, aber Sie können davon ausgehen, daß mancher 

daraufhin die Buchstaben ‘Display Data’ eingeben und sich dann fragen wird, 

warum nichts passiert, oder warum das Programm anhält. Die Abfrage hätte richtig 

heißen müssen ‘Welche Zahl wählen Sie?’'. In anderen Worten: Wenn das Pro- 

gramm die Eingabe in einer bestimmten Weise erwartet, sollte es den Benutzer 

zuerst darüber informieren. 

4. Machen Sie keine zu langen oder komplizierten Input-Kombinationen. Wenn Sie 

wirklich 10 Elemente hintereinander stellen müssen, zerlegen Sie sie auf dem 

Bildschirm sichtbar in logische Gruppen, und lassen Sie evtl. Freiräume dazwi- 

schen. Paradoxerweise unterlaufen dem Benutzer bei komplexen Eingaben um so 

mehr Fehler, je mehr er sich an das Programm gewöhnt, weil er dann die Abfragen 

weniger sorgfältig lesen wird. Daß jemand bei den ersten Malen ein Programm 

richtig bedient hat, schließt nicht aus, daß er nach der Eingewöhnungszeit anfängt, 

geistesabwesend die falschen Abfragen zu beantworten. 

5. Halten Sie auf jeden Fall während des gesamten Programms dieselben Konven- 

tionen ein. Wenn Eingeben von 'O’ normalerweise eine laufende Funktion ausschal- 

62



tet, an anderer Stelle aber ein Datenelement löscht, brauchen Sie sich nicht zu 

wundern, wenn Sie sich bei jemandem unbeliebt machen, dem wichtige Daten 

verlorengegangen sind, obwohl er doch eigentlich nur zum Menü zurückspringen 

wollte. 

6. Seien Sie sehr vorsichtig mit Inputs, deren Reihenfolge sich manchmal ändert. 

Wenn Sie in einem Dateiprogramm gewöhnlich nach Namen, Adresse und Alter 

fragen, aber bei einer Altersangabe von über 65 eine weitere Information brauchen, 

schreiben Sie die Zusatzabfrage nicht einfach ohne Vorwarnung auf den Bildschirm. 

Der Benutzer hat sich daran gewöhnt, drei Eingaben zu machen und wird aller 

Wahrscheinlichkeit nach wieder RETURN drücken, falls die Daten nach dem dritten 

Input nicht gleich vom Bildschirm verschwinden. Wird die dem Benutzer geläufige 

Reihenfolge verändert, lassen Sie den Bildschirm kurz andersfarbig aufleuchten, 

oder geben Sie ein akustisches Signal als Hinweis auf den geänderten Ablauf. 

7. Gehen Sie besser davon aus, daß trotz Ihrer Bemühungen immer Fehler aus 

Müdigkeit, Langeweile oder reiner Sorglosigkeit gemacht werden. Solchen Fehlern 

kann man jedoch vorbeugen, indem man die soeben eingegebene Information in 

einem anderen Format neu ausdruckt und die Bestätigung der Richtigkeit verlangt. 

Bei dieser Gelegenheit könnte dem Benutzer beispielsweise auffallen, daß Alter 

und Telefonnummer vertauscht worden sind. Die Wiederholung einer Eingabe auf 

dem Bildschirm bedeutet auch: Es geschieht nichts damit, bevor der Benutzer die 

Korrektheit der Information bestätigt hat. Wird eine Eingabe direkt in das Hauptda- 

tenfeld übergeben, ist es sehr schwer, die Situation noch zu retten, falls der 

Benutzer darin einen Fehler entdeckt. 

FEHLERKONTROLLE — 
EINFACHE PROGRAMMIERTECHNIKEN 

Mit einfachen Methoden wie den oben beschriebenen läßt sich die Fehlerquote in 

einem Ausmaß senken, das den Aufwand weit übertrifft. Da jedoch immer Fehler 

gemacht werden, prüfen wir jetzt einige Verfahren, mit denen man das Programm 

durch eingebaute Kontrollen dagegen absichert. 

BESTIMMUNG VON GRENZWERTEN 

Eine der bekanntesten Ursachen für Programmunterbrechungen besteht darin, daß 

in ein Programm, das planmäßig mit Daten innerhalb festgelegter Grenzen arbeiten 

soll, ein außerhalb dieses Bereichs liegender Ausdruck eingegeben wird. Wenn Sie 

63



z. B. ein Programm schreiben, in das zwei Zahlen eingegeben werden, worauf die 

erste durch die zweite dividiert wird, bricht es mit einer Fehlermeldung ab, falls die 

zweite Zahl Null ist. Natürlich hätte die Abfrage den Benutzer darauf hingewiesen 

müssen, daß die zweite Zahl größer als Null sein muß, aber selbst dann noch muß 

man immer auf einen Tippfehler oder besondere Begriffsstutzigkeit gefaßt sein. Man 

tut gut daran, in ein Programm, das nur innerhalb bestimmter Grenzen funktioniert, 

ein paar einfache Sicherungen einzubauen, damit keine außerhalb dieser Schran- 

ken liegenden Daten eingegeben werden können. Problematisch sind z. B. häufig 

der Wert einer Zahl und die Länge eines Strings. 

1. Der Wert einer Zahl 

Zuallererst sollten Sie beim Entwerfen und Austesten Ihres Programms den zulässi- 

gen Wertebereich für numerische Eingaben festlegen. Im o. g. Beispiel ist Null ein 

klarer Fall einer ungültigen Eingabe. Sind solche Einschränkungen einmal bekannt, 

kann man sie leicht in eine Fehlertestzeile einbauen. Angenommen, es wird z.B. 

eine Zahl von eins bis zehn als Eingabe verlangt: 

1889 INPUT"ZAHL ZWISCHEN I UND 18 EINGEB 

EN" > NN 

1910 IFNN>=1ANDNN<K = 1OTHENIOSO 

1828 PRINT"ZAHL NICHT ZWISCHEN 1 UND 18! 

1839 FORI1=-1T029888:NEXSTI:PRINT’OD",O&:PRI 

NTO$:PRINT"'ID", 

1406 GOTO14000 

Diese Routine kontrolliert lediglich, ob die Eingabe innerhalb der bestimmten 

Grenzen liegt und meldet anderenfalls für die Dauer der Schleife einen Fehler. 

Durch zweimaliges Drucken von O$, einem Leerstring von 39 Zeichen, werden 

dann Fehlermeldung und ursprüngliche Eingabe gelöscht, worauf der Benutzer 

einen neuen Versuch machen kann. Es ist nicht möglich, einen langen String über 

beide Zeilen zu drucken, weil der C 64 sich das Überschreiben des Zeilenendes 

merkt und den nächsten INPUT so behandelt, als hätte er zwei Zeilen erhalten. 

Indem er die Printposition zu weit nach unten verschiebt, zerstört er das Format. 

Obwohl die Meldung an den Benutzer und das Löschen der ursprünglichen Eingabe 

mehr Zeilen in Anspruch nehmen als die einfache Rückkehr zur ursprünglichen 

INPUT-Anweisung, lohnt es sich, weil der Benutzer so erfährt, warum die Eingabe 

nicht angenommen wurde. Die Zurückweisung einer Eingabe aus unbekannten 

Gründen ist für den Benutzer sehr frustrierend. 

64



2. Die Länge eines Strings 

Wie der Wert einer Zahl vom zulässigen Bereich abweichen und damit das Pro- 

gramm unterbrechen kann, so vertragen es manche Programme nicht, wenn sie 

einen String bestimmter Länge erwarten und nicht bekommen. Die Absicherung 

dagegen unterscheidet sich kaum von der bei Zahlen verwendeten Methode: 

1060 INPUT"EINGABE “LAENGE 1 BIS 189)" AS$ 

19010 IFLENCAS) >=1ANDLENCAS) <= 10THENIOS@0 

1@20 PRINT"FALSCHE LAENGE! " 

1030 FORI=1TO2000:NEXTISPRINT"CE)"-OS°PRI 

NTOS: PRINT "CO": 

1640 GOTO 14000 

Hier wird kontrolliert, ob die Lange des Strings im Bereich 1—10 liegt, wobei die 

Zeilen genau denen der o. g. Zahlenprüfmethode entsprechen. Für Stringeingaben 

können Sie mit einem zusätzlichen Befehl vor der INPUT-Anweisung noch eine 

weitere Sicherung einbauen: 

Dadurch wird berücksichtigt, daß A$ wie vor dem INPUT bleibt, wenn RETURN 

ohne vorherige Eingabe gedrückt wird. Hätte also A$ schon den Wert ‘SMITH’, 

würde ein versehentliches RETURN daran nichts ändern, und der Längentest würde 

umgangen. 

VERSTÜMMELTE EINGABEN 

Der Benutzer wird öfter — sei es durch Tippfehler oder falsches Lesen von Abfragen 

— etwas eingeben, das weniger die Beschränkungen verletzt als unverständlich für 

das Programm ist. Bei numerischen Eingaben geschieht das gewöhnlich, wenn man 

versehentlich einen Buchstaben statt einer Zahl schreibt. Bei Strings kann es 

vorkommen, daß der eingegebene String keinem der im Programm vorgesehenen 

und z. B. als Befehl verstandenen Strings entspricht. 

1. Ungültige Zahlenformate 

Dieser Fehlertyp tritt auf, wenn der Benutzer etwa eine Abfrage bezüglich ‘Alter’ 

irrtümlich mit einer Stringeingabe beantwortet, z. B. mit dem Teil einer Adresse. Das 

Ergebnis ist natürlich Unsinn, da diese Eingabe für den C 64 normalerweise den 

65



Wert Null hätte (es sei denn, sie beginnt mit einer oder mehreren Zahlen). Die 

einzige Möglichkeit, sich gegen derartige Fehler wirksam zu schützen, besteht 

darin, Zahlen als Strings einzugeben und dann jedes Zeichen daraufhin zu prüfen, 

ob es eine gültige Ziffer ist. Nachstehend ein typisches Programmbeispiel: 

10600 NNS="" 

1818 INPUT"EINGABE ZAHL "; NN& 

18208 IFNN$=""THENNN=98:6G0T01988 

1838 FORI=1TOLEN{NNS) 

1640 IFMIDS(NNS,1,19>="O"ANDMIDS(CNNES, I, 1 

2<="S"THENIO7@ | 

1858 PRINT"DIESE ZAHL IST NICHT GUELTIG" 

:FORJ= 1T02898:NEXTJ 

1850 PRINT"DD",O&:PRINTOS:PRINT"OD" 7 :GOT 

010610 

1970 NEXTI 

Das Verfahren verzögert die Verarbeitung einer Eingabe nicht wesentlich und 

ermittelt Fehler, die dem Benutzer sonst nicht gemeldet würden. Falsche Zahlenfor- 

mate führen nicht zur Unterbrechung des Programms, sie haben nur zur Folge, daß 

aus den Eingaben unbeabsichtigte Werte berechnet werden. 

Bedenken Sie, daß die hier aufgeführte Routine keine Sicherung gegen einfaches 

Drücken von RETURN enthält; eine solche Eingabe wird als Null interpretiert. 

Diesem Fall können Sie durch die Aufnahme einer zusätzlichen Meldung wie KEIN 

INPUT vorbeugen. 

2. Unbekannte Strings 

Wenn ein Programm so angelegt ist, daß es nur einen Befehl annimmt, der aus 

einem von mehreren möglichen Strings besteht, kann durch Vertippen beim Einge- 

ben des Befehls Verwirrung entstehen. Als Beispiel nehmen wir ein Programm, das 

die Eingabe von Daten für jeden Monat des Jahres erlaubt. Man könnte den 

Benutzer einfach die jeweilige Monatszahl eingeben lassen, aber das wäre sehr 

fehlerträchtig. Deshalb ist zu entscheiden, ob nicht der Name des Monats, für den 

die Eingabe gilt, ausgeschrieben werden sollte. In diesem Fall wäre es notwendig zu 

kontrollieren, ob die Eingabe sinnvoll war: 

1 DIMMOS¢ 12> 

1900 MMs="" 

1818 INPUT"MONATSNAME °-; MMS 

1620 FORI=6TO11 

1838 IFMMS=MOs¢ 1>THENIO?O 

66



1040 NEXTI 

1858 PRINT"FALSCHER MONATSNAME "=: FORP=1TO 

20600: NEXKT 

1960 PRINT"(CD)"- OS: PRINTOS: PRINT “CE)"? «GOT 

018010 

Voraussetzung ist hier, daß ganz vorn im Programm die Monatsnamen in den 

Elementen 0-11 des Feldes MO$(l) gespeichert wurden. Die Routine vergleicht die 

eingegebenen Daten mit den aufgezeichneten Monatsnamen und druckt eine 

Fehlermeldung, wenn sie kein Gegenstück vorfindet. 

VERNÜNFTIGE FEHLERKONTROLLE: ‘DER ZWEITE BLICK’ 

Wir haben schon im Abschnitt über vernünftige Vorsichtsmaßregeln gesehen, daß 

eine der wirksamsten Methoden zur Senkung der Fehlerquote bei Eingaben darauf 

beruht, den Benutzer zu zwingen, einen zweiten Blick auf seine Eingabe zu werfen 

und ihre Richtigkeit zu bestätigen. Soll das während des Programmlaufs regelmäßig 

geschehen, können Sie diese Aufgabe einem Unterprogramm übertragen; das 

spart Platz und garantiert gleichzeitig eine einheitliche Darstellung für das ganze 

Programm. Das Beispiel für ein solches Unterprogramm lautet: 

1600 PRINTLEFT#(CCS$,LL+1); 

1010 FORI=@TONG-1 

1920 PRINT" CGRUENI"FPPS¢CI>7"2"2 8 INPUT"CS 

CHWARZ 1"; QQS¢1) 

1030 NEXKTI 

1940 GOSUBI1128 

1050 PRINTLEFT#(CCS,LL+1)3 

1960 FORI=8TONG-1 

1070 PRINT" CGELBI";PP$C I>": CREVERS EINI" 

> TAB C20) 7 QQS¢( 15 

1880 NEXKTI 

1898 INPUT"ERICHTIG <J/NI"STT$ 

1188 GOSUB1129: IFLEFTSCTT$S,1><>"J"THENIO 

a8 

1110 RETURN 

11280 PRINTLEFT#(CCS,LL+1); 

1130 FORI=1TON@+2°5PRINTOS: NEXT 

1140 RETURN 

67



VERWENDETE VARIABLEN: 

LL Zeilenposition der ersten Abfrage 

NQ Anzahl der Fragen 

PP$ Feld, das die Abfragen enthält 

Die Routine stellt eine Reihe von Fragen in Abhängigkeit von der Variablen NQ. Die 

Fragen selbst werden vor Aufruf des Unterprogramms in das Feld PP$ abgelegt. 

Antworten werden in QQ$ gespeichert. Nachdem alle Fragen gestellt worden sind, 

werden sie zusammen mit den invers gedruckten Antworten wieder ausgegeben. 

Antwortet der Benutzer nicht mit J auf die Frage RICHTIG?, werden Fragen und 

Antworten gelöscht und nochmals gestellt. 

Die Bildschirmformatierung geschieht mit Hilfe eines String CC$, der so aufgebaut 

ist: 

CC$= ". BARIRLRERIRER EIER EEE RE EEE RER ER EEE 

  

und der betreffende Bildschirmbereich wird mit dem üblichen, aus 39 Leerstellen 

bestehenden String O$ gelöscht. 

Das eigentliche Format der Abfragen und die Art, wie sie erneut vorgelegt werden, 

ist Geschmacksache; wichtig ist nur, daß eine veränderte Gestaltung es dem 

Benutzer erleichtert, sich ein zweitesmal darauf zu konzentrieren. Wenn Sie die 

Informationen am Schluß der Routine nicht auf dem Bildschirm stehen lassen 

möchten, können Sie zum Löschen der entsprechenden Zeilen das Unterprogramm 

in Zeile 1200 aufrufen. 

Für den Aufruf der Routine brauchen Sie in Ihrem Hauptprogramm folgende oder 

ähnliche Zeilen: 

sag LL=18:NÜG=3 

516 PP#(O)="NAME" 

320 PP#(1)>="ADRESSE " 

330 PP#(2)="TELEFON" 

740 GOSUB 14000 

50@ FORI=1TON@Q: AAS 1) =QQ$C1) 2 NEXT 

Nachdem das o. g. Abfrageprogramm eingegeben ist, legen diese kurzen Zeilen die 

Position der ersten Abfrage auf dem Bildschirm (in Zeilen) und die Anzahl der zu 

stellenden Fragen fest und formulieren dann die Abfragen. Danach formatiert das 

Unterprogramm die Abfragen und fordert den Benutzer auf, die Richtigkeit der 

Antworten zu bestatigen. Die Abfragen werden solange wiederholt, bis die korrek- 

ten Antworten gegeben werden. Beim Verlassen des Unterprogramms werden die 

68



Antworten im Feld QQ$ festgehalten und können an jeden beliebigen Ort überge- 

ben und auf Dauer gespeichert werden. 

Natürlich hätte es wenig Sinn, eine Routine wie diese in einem kurzen Programm 

oder in einem, das überhaupt nur ein oder zwei Abfragen enthält, zu verwenden. 

Wenn ein Programm jedoch eine ganze Reihe von Fragen stellt, kann das Unterpro- 

gramm für exaktere Antworten sorgen; gleichzeitig kann es der Notwendigkeit 

abhelfen, für jede vorkommende Abfrage eigens die Testroutine einzubauen. 

SELBSTENTWORFENE FEHLERMELDUNGEN: 
DIE ELEGANTE LOSUNG 

Bis jetzt haben wir nur Routinen berücksichtigt, die sich zum Einbau in diverse 

Programmteile eignen, um dort verschiedene Fehlerkontrollen — hauptsächlich im 

Hinblick auf falsche Eingaben — durchzuführen. Das ganze Verfahren setzt voraus, 

daß man schon bei der Eingabe erkennen kann, ob sie falsch ist. Dies ist nicht 

immer möglich. Manchmal gibt man etwas ein, das weder zu lang ist noch einen zu 

niedrigen Wert hat, nicht leicht auf Schreibfehler hin zu überprüfen ist, und das 

trotzdem zu Schwierigkeiten im Programm führen kann. Das Problem dabei ist, daß 

die tatsächlich entstandene Schwierigkeit nicht erkennbar ist, bevor die eingegebe- 

nen Daten nicht wenigstens zum Teil vom Programm verarbeitet worden sind. Bei 

einiger Voraussicht könnte man wohl überblicken, wo solche Fehler auftreten 

können, und die entsprechenden Stellen mit Tests und Fehlermeldungen aus- 

statten. 

Damit sind jedoch nicht alle Probleme gelöst. Man kann sich z. B. ein Programm 

vorstellen, das nach der Annahme einer Eingabe die Ausführung an fünf aufeinan- 

derfolgende Unterprogramme übergibt, die jeweils verschiedene Aufgaben abarbei- 

ten, und das zum Schluß die verarbeiteten Daten permanent speichert oder das 

bisherige Gesamtergebnis des Programms verändert. Nun stellt sich im vierten 

oder fünften Unterprogramm heraus, daß mit den eingegebenen Daten etwas nicht 

stimmt; der Fehler führt zwar nicht zur Unterbrechung des Programms, aber zu 

einem unsinnigen Endresultat der verarbeiteten Daten. Was ist dagegen zu tun? 

Sicher könnte man in das vierte Unterprogramm einen Fehlertest einbauen und die 

Ausgabe der passenden Fehlermeldung veranlassen. Außerdem gibt es aber noch 

das Problem, wie man die Kette der fünf Unterprogramme verläßt. Es reicht nicht, 

einfach das vierte Unterprogramm zu beenden, weil danach automatisch das fünfte 

ausgeführt werden würde, und wie wir gesehen haben, hätte das verhängnisvolle 

Folgen. Richtig geht man vor, indem man das Auffinden eines Fehlers vermerkt und 

mit Hilfe dieser Aufzeichnung die weitere Bearbeitung der betreffenden Daten 

verhindert. D.h. man baut beim Verlassen des vierten Unterprogramms eine 

besondere Kontrolle in das Programm ein, die die Ausführung des fünften Unterpro- 

69



gramms aufhält, wenn dieser spezielle Fehler entdeckt wird. Das wäre eine Lösung; 

aber da in einem etwas komplexeren Programm an allen möglichen Stellen Fehler 

auftreten können, ergäbe sich schließlich eine ganze Reihe von Tests, die jeweils 

auf einen bestimmten Fehler spezialisiert wären. 

Das Problem wird elegant gelöst, indem die Aufzeichnung aller während des 

Programms gefundenen Fehler an eine einzige, regelmäßig zu überprüfende Varia- 

ble übergeben und einem Unterprogramm die Erledigung aller erforderlichen Feh- 

lermeldungen übertragen wird. Dieses Verfahren erleichtert es einerseits, neue 

Fehlertests einzufügen und neue Fehler zu definieren, andererseits erledigt es das 

Problem, wie bei auftretenden Schwierigkeiten die Ausführung bestimmter Pro- 

grammteile verhindert werden kann. 

Die Methode wird hier an einem Programm veranschaulicht, das für drei bekannte 

Fehler anfällig ist: 

1. Im Verlauf einer Berechnung entsteht eine Zahl, die für eine sinnvolle Verarbei- 

tung durch das Programm zu groß ist. 

2. Es wird ein Datenname vergeben, der schon im Programmspeicher enthalten ist. 

3. Daten müssen in relativ komplexem Format eingegeben werden, und es kann 

erst nach teilweiser Verarbeitung der Daten überprüft werden, ob dabei Fehler 

unterlaufen sind. 

Sie fangen an, indem Sie beim ersten Programmdurchlauf ein Feld ERR$(3) 

definieren und die Elemente Eins bis Drei des Feldes auf 

a) ZAHL ZU GROSS 
b) DATENNAME BEREITS VERGEBEN 
c) FORMATFEHLER BEI DER EINGABE 

setzen. Außerdem wird eine Variable ERR bestimmt und auf Null gesetzt. 

Im Programm selbst werden die Tests für bestimmte Fehler mit den zugehörigen 

Fehlermeldungen durch solche ersetzt, die lediglich den Wert von ERR ändern, 

wenn ein Fehler auftritt. Z. B. wird 

1528 IFNN?65535 THEN PRINT "ZAHL 

ZU GROSS 

ersetzt durch 

IFNN>65535 THEN ERR=1 

70



In jedes entsprechende Unterprogramm wird nun eine neue Zeile eingesetzt, die 

die Ausführung des Unterprogramms verhindert, wenn irgendein Fehler entdeckt 

worden ist. Die Eingangszeile eines Unterprogramms könnte so aussehen: 

IFERR“ >ATHEN RETURN 

Das heißt, wenn ERR einen anderen Wert als Null hat, wird das Unterprogramm 

nicht ausgeführt. Bei Unterprogrammen, die weitere Unterprogramme aufrufen, 

können die Zieladressen geändert werden, damit nach der Rückkehr aus einem 

Unterprogramm, in dem ein Fehler gemeldet wurde, die Daten vom Programm nicht 

weiterverarbeitet werden: 

1778 GOSUB 2500: IF ERR< >3BTHENRETURN 

Am Schluß springt das Programm in das Hauptmodul zurück, das bestimmt, in 

welcher Reihenfolge die Unterprogramme aufgerufen werden. Das Modul wird wie 

folgt um eine Zeile erweitert: 

1120 IF ERR THEN GOSUB 3000 

Diese Zeile ruft ein einfaches Unterprogramm auf, das so aufgebaut ist: 

3000 REMEXKKKKKKKKEKKKKKKEKEE 

3001 REM FEHLER MITTEILUNG 

3OO02 REMKAKKKKKKKKKKEKKEKKKEE 

3610 PRINTERR#SCERR >) 

3020 ERR=0 

3838 RETURN 

Wenn Sie möglichen neuen Fehlern während der Programmentwicklung vorbeugen 

wollen, stellt dieses System insofern eine schöne Lösung dar, als Sie nur eine neue 

Fehlermeldung in ERR$ aufzunehmen und einen Test einzufügen brauchen, der 

ERR auf den passenden Wert setzt; die eingebauten Zeilen, die ERR auf Nulltesten, 

gewährleisten den Schutz des Programms gegen den von Ihnen ermittelten mögli- 

chen Fehler. Sie können in dieser Weise nach Belieben neue Fehler mit geringem 

Aufwand identifizieren. 

71



SCHLUSS 

Mit den in diesem Kapitel umrissenen Methoden können Sie Programme erstellen, 

die fast jede schlechte Behandlung durch Benutzer überleben. Wie weit Sie die 

Schutzmaßnahmen ausbauen, hängt teils davon ab, wie kompliziert das Programm 

ist, und teils davon, wie wichtig die Daten sind, die es bearbeitet. Selbst ein 

einfaches Programm kann mit Daten laufen, deren Eingabe vielleicht viel Zeit kostet, 

so daß ein Absturz nach einer halben Stunde Arbeit äußerst unangenehm wäre. Der 

wichtigste Aspekt ist vielleicht das Erfolgserlebnis, ein Programm geschrieben zu 

haben, das offenbar die Situation beherrscht — und nicht eines, das man aus Furcht 

vor Komplikationen nur vorsichtig behandelt. 

Seien Sie trotzdem gewarnt! Geben Sie nie damit an, wie robust Ihr Lieblingspro- 

gramm sei. Derjenige, dem Sie das erzählen, wird unweigerlich die einzige Taste 

drücken, mit der Sie nicht gerechnet haben — und das könnte sich vernichtend auf 

Ihren guten Ruf auswirken. 

72



KAPITEL 6 

SPEICHERN UND LADEN 
Eines Tages wird es eine Computergeneration mit genügend großen Speichern 

geben, um alle Daten und Programme aufzunehmen, die wir benutzen möchten. 

Und nicht nur das: Daten und Programme werden sofort nach dem Einschalten des 

Computers als permanenter Speicherinhalt jederzeit verfügbar sein. Solche Geräte 

bedeuten einen genauso großen Schritt nach vorn wie die Heimcomputer in den 

letzten Jahren. Bis dahin müssen die Mikrocomputer-Besitzer jedoch lernen, mit 

Geräten auszukommen, die nur einen Teil der gesamten, ständig gebrauchten 

Datenmenge aufnehmen können. 

Da ein Gerät wie der C 64 nicht mehr als ein Programm und die dazugehörigen 

Daten zur gleichen Zeit fassen kann, bietet Commodore eine Erweiterung für den 

Speicher des C 64 an. Der C 1530-Kassettenrekorder und das 1541-Diskettenlauf- 

werk sind im Grunde nichts weiter als zusatzliche Speicher. Verglichen mit der 

Geschwindigkeit, mit der Daten aus den RAM-Chips des C 64 geholt werden, 

-arbeitet der Kassettenrekorder und sogar das Diskettenlaufwerk unbestreitbar im 

Schneckentempo. Effizientes Programmieren, vor allem was Programme für ernst- 

hafte Anwendungen betrifft, kann sich jedoch die zusätzliche Kapazität des C 1530 

und der 1541 zunutze machen, um sowohl die Beschränkung des Speichers im 

C64 zu überwinden als auch den Umstand, daß die heutige Generation von 

Mikrocomputern nicht in der Lage ist, Daten zu behalten, während das Gerät 

ausgeschaltet ist. 

Obwohl die meisten Mikrocomputer-Besitzer willens sind, viel Geld für Zubehör 

auszugeben, das die Speicherkapazität ihrer Rechner vergrößert (oft nur unwesent- 

lich), nutzen nur wenige mit ihren selbstgeschriebenen Programmen die Kapazität 

ihrer Floppy voll aus, nicht einmal die des bescheideren Rekorders. In diesem 

Kapitel wollen wir uns die nötigen Techniken zur besseren Ausnutzung des C 1530 

und der 1541 aneignen. Das Thema wird nicht erschöpfend behandelt, vor allem in 

bezug auf den Gebrauch des Diskettenlaufwerks; über den Einsatz der Floppy 

könnte man leicht ein ganzes Buch schreiben (‘Floppy-Programmierung mit dem 

Commodore 64’, Band 16 der Sachbuchreihe). Trotzdem werden die hier erläuter- 

ten Techniken Sie befähigen, Daten sicherer und in größerer Menge abzuspei- 

chern, Daten mit den auf Band oder Diskette gespeicherten auszutauschen und den 

verfügbaren Speicherplatz optimal auszunutzen. 

73



SPEICHERN VON PROGRAMMEN 
Der wichtigste und augenfälligste Zweck der externen Speicherung ist die sichere 

Aufbewahrung Ihrer Programme zum weiteren Gebrauch. Es überrascht oft, wie 

sorglos die meisten dabei vorgehen und versäumen, während der Programment- 

wicklung die Aktualisierungen regelmäßig zu speichern und sich von der korrekten 

Aufzeichnung des Programms zu überzeugen, dabei wichtige Programme nur 

einmal speichern und Bänder und Disketten überall herumliegen lassen. Ein paar 

vernünftige Regeln sollte man beim Speichern von Programmen auf jeden Fall 

beachten: 

1. Speichern (SAVE) Sie neue Programme während des Schreibens regelmäßig. 

Wie jeder andere Mikrocomputer kann auch der C 64 Programme verlieren, falls 

Stromschwankungen auftreten, jemand an den Stecker stößt oder Sie selbst den 

C 64 beim Programmieren aus dem Gleichgewicht bringen. Wieviel Arbeit dabei 

verlorengeht, hängt davon ab, wann Sie Ihr Programm zuletzt gespeichert haben. 

Wenn ein Programm schnell eingetippt wird, ist es nicht ratsam, mehr als 15 

Minuten lang Zeilen einzugeben, ohne das Programm erneut zu speichern. Im 

Verlauf des Austestens, bei dem weniger Änderungen anfallen, kann man die 

Zeitspanne auf eine halbe Stunde ausdehnen. Das richtet sich im Grunde danach, 

wieviel Sie zu verlieren bereit sind. Wenn Sie Ihre Programme nicht regelmäßig 

speichern, werden Sie sicherlich früher oder später ein wichtiges verlieren, dessen 

Eingabe viel Zeit gekostet hat. 

2. Um den Speichervorgang zu vereinfachen und mich selbst zu motivieren, stelle 

ich an den Programmanfang vier Zeilen, die es mir ersparen, bei jedem Abspeichern 

den Programmnamen auszuschreiben: 

1 GOTO4 
2 SAVE "PROGRAMM NAME": INPUT"ZURUECKSPULE 
N - TASTE FUER 'VERIFY'"7Q% 
3 VERIFY"PROGRAMM NAME ":STOP 
4 REM 

Innerhalb eines Programms hat diese Routine den Vorteil, ein Abspeichern unter 

falschem Namen infolge eines Tippfehlers auszuschlieBen, weil zum Speichern nur 

'GOTO 2’ eingegeben werden muß; außerdem können Sie damit alle Programme 

einheitlich mit 'GOTO 1’ starten, falls Sie nicht RUN benutzen und schon gespei- 

cherte Variablen löschen möchten. VERIFY kann nach Belieben verwendet werden 

und wird von vielen überhaupt nicht gebraucht. Bevor Sie jedoch einen Entschluß 

fassen, beachten Sie den nächsten Unterpunkt. Sollten Sie sich entscheiden, auf 

74



VERIFY zu verzichten, brauchen Sie Zeile 3 natürlich nicht, wohl aber das STOP, da 

ansonsten das Programm bei jedem SAVE mit der Ausführung neu beginnen 

würde. 

Wenn Sie ein Diskettenlaufwerk benutzen, können Sie eine ähnliche Routine wie 

oben einfügen: 

i GOTO3 

2 SAVE"EB: PROGRAMM NAME" ,„S:VERIFY"PROGRA 

MM NAME" ,8:STOP 

3 REM 

Floppy-Besitzer seien hier gewarnt: Das Laufwerk 1541 verstummelt manchmal 

infolge eines Schwachpunkts im Disketten-Betriebssystem bei fast vollen Disketten 

die eigene Dateiverwaltung, wenn dem Dateinamen ‘@0’ vorangestellt wird (damit 

wird die Speicherung des Programms besorgt, selbst wenn schon eine Datei mit 

demselben Namen existiert). Das zuletzt gespeicherte Programm wird nicht 

beschädigt, aber es könnte schwierig werden, ein anderes Programm von der 

Diskette zu laden. Sollte das zu Problemen führen, kann man entweder die 

vorhandene Programmadatei löschen und dann die neue Version abermals spei- 

chern oder eine Zahl an das Ende des Programmnamens in Zeile 2 anhängen, die 

bei jedem Speichern des Programms geändert wird, oder man läßt den Namen 

stehen und bestätigt die Gültigkeit der Diskette nach dem Speichern. 

Für Floppy-Besitzer gibt es keine Entschuldigung, wenn sie versäumen, die Auf- 

zeichnung eines Programms mit VERIFY zu überprüfen. Wenn Sie das unterlassen, 

haben Sie verdient, was Ihnen bestimmt passiert. 

3. Der C 1530-Kassettenrekorder des C 64 ist eines der sichersten Geräte zum 

Laden und Speichern, die auf dem Markt zu haben sind. Daher benutzen viele 

VERIFY zu Anfang jedes Mal, wenn sie ein Programm abspeichern, und später nie 

mehr, weil sie nie Probleme hatten. Sind Sie von Natur aus ein vorsichtiger Mensch, 

werden Sie das, was Sie gespeichert haben, sicher jedesmal überprüfen wollen. 

Wenn Sie eher lässig vorgehen, wenden Sie VERIFY bei Ihren Programmen sicher 

niemals an. Der goldene Mittelweg liegt zwischen diesen beiden Extremen. 

Beim Eingeben langer Programme kann VERIFY allerhand Zeit in Anspruch neh- 

men. Noch mehr Zeit kann aber der Verlust des Programms kosten, was doch 

gelegentlich vorkommt. Ab und zu geht ein Programm wegen gewisser Beschrän- 

kungen im SAVE-Programm des C 64 verloren, häufiger jedoch macht die Qualität 

des benutzten Bandes Schwierigkeiten. Diese Probleme treten zwar selten auf, 

dann aber können sie sehr ärgerlich sein. 

Der beste Weg ist ein Kompromiß. Wenn Sie der Qualität Ihres Bandes trauen, dann 

entwickeln Sie ein Programm z. B. auf einer C 60-Kassette, nehmen Sie jede neue 

75



Version nach der ursprünglichen auf, und drehen Sie die Kassette dann um oder 

spulen Sie sie zurück. Auf diese Weise müßten Sie erst das Programm im 

Computer verlieren und eine fehlerhafte Aufzeichnung gemacht haben, bevor Sie 

mehr als den letzten Stand des Programms verlieren. Soll jedoch die endgültige 

Version abgespeichert werden, prüfen Sie das Band immer mit VERIFY. 

4. Während lange Bänder beim Entwerfen von Programmen ausgesprochen gute 

Dienste leisten, ist für die Langzeitspeicherung auf Band der Gebrauch spezieller 

Computerkassetten zweifellos vorzuziehen, wobei jedem Programm eine eigene 

Kassette vorbehalten sein sollte. Das ist zwar etwas teurer, aber so können Sie auf 

jedes Programm direkt zugreifen, ohne auf langen Bändern nach dem richtigen 

Anfang suchen zu müssen. Außerdem besteht so weniger Gefahr, ein vorhandenes 

Programm versehentlich zu überspielen. 

5. Halten Sie Aufnahme- und Wiedergabekopf des Rekorders sauber. Reinigungs- 

zubehör ist billig und einfach anzuwenden, dagegen ist es äußerst frustrierend, ein 

Programm zu verlieren, weil die Bänder auf den Köpfen eine Schmutzschicht 

hinterlassen haben. 

6. Behalten Sie von Ihren Programmen mehr als eine Kopie, und bewahren Sie die 

zweite an einem ganz anderen Platz auf als die Bänder oder Disketten, mit denen 

Sie gewöhnlich arbeiten. Es besteht immer die Gefahr, daß Ihre Arbeitskopie auf 

irgendeine Weise beschädigt wird — sei es durch übermäßige Hitze, oder gar weil 

ein Kind mit einem Magneten spielt. Wenn Sie nicht jedes Programm auf einem 

eigenen Band duplizieren wollen, können Sie Ihre Sicherungskopien auf längere 

Bänder abspeichern und später auf kürzere Kassetten überspielen, falls sie 

gebraucht werden sollten. 

Für Floppy-Besitzer sind Sicherungskopien besonders wichtig. Nicht selten stößt 

man beim Laden oder Speichern auf Schwierigkeiten, oder eine Diskette wird 

zufällig beschädigt. Andererseits sind Kopien viel einfacher herzustellen, denn das 

Abspeichern von Programmen auf zwei Disketten macht kaum zusätzliche Mühe. 

Auch wenn Sie ein Diskettenlaufwerk haben, sollten Sie die relative Sicherheit und 

Verläßlichkeit von Bandgeräten nicht außer acht lassen, wenn von wichtigem 

Material Sicherungskopien erstellt werden sollen. Ein ernsthafter Defekt am Disket- 

tenlaufwerk kann viel Ärger für den Fall bedeuten, daß die Kopien des benötigten 

Programms nur auf Diskette erhalten geblieben sind. 

76



SPEICHERN UND LADEN VON DATEN 

Die meisten wirklich benutzten Programme brauchen als Arbeitsunterlage eine 

gewisse Menge von Daten. Bei nicht konstanten Daten, die also direkt in das 

Programm geschrieben werden können, haben Sie zwei Möglichkeiten: Entweder 

geben Sie die Daten jedesmal neu ein, oder Sie gehen das Problem an, wie Daten 

auf Band oder Diskette gespeichert und später wieder in das Programm geladen 

werden. 

Das erste Problem, mit dem Sie beim Speichern auf Band oder Diskette konfrontiert 

werden, ist die genaue Bestimmung dessen, was Sie speichern möchten. Es ist 

unsinnig, den Inhalt eines Feldes abzuspeichern, wenn Sie nicht daran denken, 

auch die Variable zu speichern, die vielleicht zu dem Feld gehörte und die Anzahl 

der darin enthaltenen Elemente aufzeichnete. Machen Sie also als erstes eine 

vollständige Liste der für Ihr Programm wichtigen Variablen. Das sind keineswegs 

alle vorkommenden Variablen, da vielen erst beim Programmdurchlauf ein Wert 

zugeordnet wird. Speichern müssen Sie nur diejenigen, die nötig sind, um das 

Programm beim nächsten Gebrauch zum Laufen zu bringen. In diesem Zusammen- 

hang ist darauf zu achten, daß von Feldern nur die maßgebenden Bereiche 

gespeichert werden. Sie haben möglicherweise ein Stringfeld von 500 Zeilen 

dimensioniert, in dem Sie allmählich einen Datenvorrat anlegen. Wenn Sie erst 170 

Zeilen des Feldes belegt haben, sollten Sie unbedingt eine Variable haben, die die 

Anzahl der belegten Zeilen aufzeichnet, und nur diese Zeilen abspeichern. Das ist 

deswegen sinnvoll, weil die Übertragung von Daten Byte für Byte auf Band oder 

Diskette länger dauert als das Laden und Speichern eines Programms, und man 

sollte nicht noch mehr Zeit als nötig mit unnötigen Elementen verschwenden. 

SPEICHERN AUF BAND 

Nachdem Sie Variablen und Teilfelder bestimmt haben, müssen Sie sie in einem 

Modul unterbringen, das sie sicher auf Band speichert. Zu diesem Zweck Öffnet 

man zuerst eine Datei mit einer Zeile wie: 

1710 OPENI,1,1,"FILE NAME" 

Bei einem Mikrocomputer wie dem C 64 ist die ‘Datei’ kein statischer Ort, in den 

Daten abgelegt werden, sondern eine Kommunikationsleitung. Die drei Zahlen in 

der Musterzeile bedeuten, daß die geöffnete Datei jedes Mal, wenn etwas zu 

speichern ist, durch Datei 1 oder kurz ‘#1’ angesprochen wird, daß die Zeile eine 

Verbindung zu ‘Gerät Nummer 1’ herstellt, und daß die Kommunikation von C 64 

zum Peripheriegerät erfolgt statt umgekehrt. Während die Datei arbeitet, können 

77



andere geöffnet werden. Es können bis zu 10 Dateien gleichzeitig offen sein, 

obwohl sehr selten mehr als eine oder zwei zusammen gebraucht werden. 

Beim Öffnen einer Datei zum Abspeichern auf Band kann zwischen zwei möglichen 

Sekundäradressen gewählt werden, nämlich Eins und Zwei. Sekundäradresse Eins 

benennt eine Ausgabedatei, die alle vorgefundenen Daten annimmt. Sekundära- 

dresse Zwei bezeichnet ebenfalls eine Ausgabedatei, in der zusätzlich ein beson- 

deres Dateiende-Zeichen den Abschluß der Datei markiert. Beim zweiten Dateityp 

kann man Bytes aus der Datei lesen, ohne ihre genaue Anzahl zu kennen, wobei 

eine Prüfzeile das Dateiende ermittelt und eine Eingabe über das Dateiende hinaus 

verhindert, was einen Fehler erzeugen würde: 

1718 NN=B:OPENI1,1,8,"FILENAME" 

i720 INPUT#1,T 

1738 IFST=64 THENCLOSE1:RETURN 

1740 ACNND=T 

1758 NN=NN+1:G0T01728 

Diese Routine nimmt solange Daten vom Band an, bis sie auf das Dateiende- 

Zeichen trifft. Dieses Zeichen ändert den Wert der Systemvariablen ST (STATUS), 

worauf die Programmausführung fortgesetzt wird. Vorsichtshalber weise ich darauf 

hin, daß die Verwendung der Sekundäradresse Zwei manchmal seltsame Auswir- 

Kungen auf das hat, was hinter der fraglichen Datei auf dasselbe Band abgespei- 

chert wird. Meistens ist das EOF (End of File)-Zeichen nicht nötig, denn ein 

ordentliches Programm müßte sich merken können, wie viele Datenelemente es 

speichert und folglich auch, wie viele noch gespeichert werden müssen. Wenn das 

bekannt ist, kann man an den Anfang jedes Datenblocks Variablen für die Daten- 

menge stellen und das Programm so anlegen, daß es diese bestimmte Anzahl von 

Elementen wieder lädt, ohne dabei das EOF-Zeichen zu verwenden. In Klartext: 

Gebrauchen Sie Sekundäradresse Zwei nur dann, wenn es unbedingt nötig ist. 

Das übliche Format zum Öffnen einer Datei sieht etwa so aus: 

OPEN [FILE NUMMER]J,TGERAET NUMMER], CART 

DES FILES (SEKUNDAERADRESSE)],"FILE NAME" 

Jeder Versuch der Datenübertragung in eine Datei, die nicht geöffnet wurde, führt 

zu einer Fehlermeldung. 

Der betreffende Dateiname muß nicht in der Programmzeile selbst ausgeschrieben 

werden, er kann auch als Antwort auf eine INPUT-Anweisung vom Benutzer 

angegeben werden: 

78



171@ INPUT"NAME DES FILES "HFF$ 
iv2@@ OPEN 1,1,1,FFS 

Damit kann ein einzelnes Programm Dateien mit ganz verschiedenen Namen 

erzeugen. Diese Technik kann bei der Dateieingabe dazu dienen, verschiedene 

Eingabedateien zu bezeichnen, damit das Programm je nach Zweck zwischen den 

verschiedenen Dateien wechseln kann. 

AUSGABE AUF EINE DATEI 

Nachdem die Datei geöffnet ist, müssen nun Daten in sie geschrieben werden. Das 

geschieht mit der PRINT#-Anweisung. Alles auf PRINT# und die passende Datei- 

nummer Folgende wird genauso in die Datei übertragen, wie es mit PRINT auf den 

Bildschirm gedruckt würde (Drucken auf den Bildschirm ist bei Öffnen einer Datei 

auf Gerät Nr. 3 sogar möglich), aber es gibt doch einige Unterschiede: 

1. Anders als viele andere Mikrocomputer markiert der C 64 nicht automatisch die 

Trennung zwischen Variablen, die mit einem Befehl wie 

PRINT#1, AS ,BE,CF 

durch dieselbe Zeile mit PRINT abgelegt werden. Beim Einlesen der Daten vom 

Band würde diese Zeile als ein String ermittelt, der aus A$, B$ und C$ zusammen 

besteht. Will man Ausdrücke getrennt speichern, gibt es zwei Möglichkeiten: 

Entweder druckt man jedes Datenelement mit einer eigenen PRINT#-Anweisung 

oder man fügt zwischen den Ausdrücken Trennzeichen ein. 

Bei Feldern verwendet man zur Trennung von Ausdrücken eine Schleife, die ein 

Element nach dem anderen speichert, z. B.: 

1716 FOR I=1LTOITEMS 

1720 PRINT#1 ASC ID 

1738 NEXT I 

Sollen einzelne Ausdrücke in eine Datei geschrieben werden, muß ihnen ein 

‘Return’-Zeichen (CHR$(13)) folgen. In der Regel definiert man zu diesem Zweck 

bei der Initialisierung des Programms einen String, z.B. R$, als CHR$(13) und 

trennt dann mit R$ die einzelnen Ausdrücke, anstatt jedes Mal CHR$(13) zu tippen: 

1746 PRINT#1,TT$ RF COS RF IT RF NN RE Q 

Qs 

79



Beachten Sie, daß die Ausdrücke nicht durch Interpunktion gegliedert sind. Sie 

können zwar Kommas oder Semikolons einfügen, diese werden aber vom C 64 

ignoriert. 

2. Der C 64 kann keine Zeichen speichern oder ausgeben, die nicht zu den normal 

druckbaren Zeichen gehören. Wenn Sie Strings speichern wollen, die außer den 

normalen Bestandteilen von Strings wie Cursor- oder Farbsteuerung noch andere 

Steuerzeichen enthalten, müssen Sie wenigstens einen Teil des Strings Zeichen für 

Zeichen in Zahlen übersetzen und diese Zahlen einzeln abspeichern. 

irıa PRINT#AIL,LENEAF> 

if20 FOR I1=1TOLEN( AS > 

1738 PRINT#1, ASCCMIDFCAF, 1,122 

Denken Sie daran, die Stringlänge abzuspeichern, damit das Programm beim Laden 

weiß, wo die übersetzten Stringzeichen zu Ende sind. 

3. Sie können keine leeren Strings abspeichern. Das kann bei Stringfeldern, die oft 

leere Elemente enthalten, Probleme ergeben. Wenn nämlich das erste Element 

eines Feldes leer ist, wird es nicht gespeichert. Auf dem Band rückt das zweite 

Element an die Stelle des ersten und zerstört damit beim Laden die Reihenfolge des 

Feldes. Dies kann man am einfachsten lösen, indem man jedes Element des Feldes 

mit einem führenden Zeichen ‘polstert’, bevor man es speichert: 

1718 FOR I=1TOITEMS 

1728 TF="x"A$C II:SPRINT#RI1,T$ 

1730 NEXT 

Naturlich durfen Sie nicht vergessen, diese Zeichen beim Laden wieder zu entfer- 

nen, aber es dauert nicht länger, alle Elemente aufzufüllen, als bei jedem zu 

untersuchen, ob es ein Leerstring ist, und dann nur die Leerstrings zu polstern. 

4. Die Reihenfolge, in der Sie die Daten speichern, kann für den späteren Zugriff 

darauf ausschlaggebend sein. Erinnern Sie sich an ein früheres Beispiel, das von 

einem Stringfeld mit 500 Elementen und einer Variablen ausging, die sich die 

Anzahl der “ITEMS” genannten, derzeit gebrauchten Elemente merkte. Den Inhalt 

dieses Feldes speichern Sie mit einer Schleife ab: 

171a@ FOR 1=8T0ITEMS 

80



Folglich braucht das Programm beim Laden einen Wert für ITEMS, bevor es die 

Daten wieder vom Band holen kann. Daraus ergibt sich die einfache Regel: Werden 

irgendwelche Variablen aus dem Programm für die Steuerung der Datenspeiche- 

rung gebraucht, sollten sie vor diesen Daten abgelegt werden. 

5. Nachdem alle Daten gespeichert sind, muß die Datei geschlossen werden. 

Geschieht das nicht, führt jeder weiterer Versuch, eine Datei mit derselben Nummer 

zu öffnen, zur Unterbrechung des Programms mit einer Fehlermeldung. Das 

Schließen einer Datei geschieht folgendermaßen: 

CLOSECFILE NUMMER J 

Man sollte jedoch vor AbschluB einer Datei sichergehen, ob sich nichts mehr im 

‘Speicherpuffer’ befindet, wo Daten während ihrer Ausgabe auf Band abgelegt 

werden, da ansonsten das bzw. die letzte(n) Datenelement(e) unter Umständen 

nicht richtig abgespeichert werden. Dazu müßte zwar CLOSE genügen, aber 

erfahrungsgemäß ist es sicherer, wenn man den zusätzlichen Befehl PRINT# (file 

number) ohne Angabe bestimmter Daten verwendet. Daraus ergibt sich für das 

Schließen einer Datei folgendes Format: 

PRINT#IFILE NUMMER]J:CLOSEIFILE NUMMER] 

LADEN VOM BAND 

Der Vorgang spiegelt in vieler Hinsicht das Speichern auf Band wider. Die wichtig- 

sten Unterschiede sind: 

1. Die Art der geöffneten Datei ist anders, d. h.: 

OPEN! ,1,60,"FILE NAME" 

Die Null zeigt an, daB der C 64 diese Datei benutzt, um Daten aus einem Peripherie- 

gerat zu empfangen. 

2. Die wichtigsten Befehle zum Einlesen von Daten vom Band sind INPUT# und 

GET#. Sie werden später ausführlicher behandelt. 

3. Wenn die Datenelemente beim Speichern ordnungsgemäß getrennt worden 

sind, ist eine Ermittlung der Trennzeichen nicht erforderlich: 

81



18460 INPUT#1,TT# -CD$,1T,NN,QQ4 

würde ausreichen, um die Daten, die im obigen Beispiel zum Gebrauch von R$ als 

Trennzeichen gespeichert wurden, vom Band zu holen. 

4. Führende Zeichen, die in Strings aufgenommen wurden, müssen wieder ent- 

fernt werden: 

1310 FOR 1=8T0ITEMS 

18e@ INPUT#1,TS ASC LO =MIDS¢( TE 2) 

1830 NEXT I 

5. Strings, die in Form von numerischen Entsprechungen ihrer Zeichen abgelegt 

wurden, müssen in Strings zurückverwandelt werden: 

1818 A#=: INPUT#1,LS 

1828 FOR 1=1TOLS 

1838 INPUT#1,T:AF=AF+CHRECTD 

1840 NEXT I 

6. Da INPUT# im Unterschied zum einfachen INPUT nur Eingaben von maximal 80 

Zeichen verarbeiten kann, muß man diese Beschränkung manchmal umgehen. In 

solchen Fällen stellt man mit GET#, das ein Zeichen nach dem anderen vom Band 

holt, den ursprünglichen String zeichenweise wieder her. 

i810 Ag="" 

16260 GETHL,TS$: IF T#$< SCHRS¢ 13> THENAS =AS +TE 

:G0T01828 

Hier liest GET# solange Zeichen ein und übergibt sie an A$, bis das Stringende- 

Zeichen ermittelt wird. 

7. Im allgemeinen stellt man das Programm-Modul zum Laden von Daten am 

besten direkt hinter das Speichermodul. Der sicherste Weg, eine Laderoutine zu 

schreiben, die genau die Reihenfolge des vorherigen Speicherns widerspiegelt, 

besteht nämlich darin, die Zeilennummern der Speicherroutine zu editieren und 

PRINT#-Befehle gegen INPUT# auszutauschen. Trotzdem kann das Programm die 

beiden Routinen auf mehrere verschiedene Arten aufrufen. 

Die Speicherroutine sollte eine normale, vom Menü aufrufbare Programmfunktion 

sein und vielleicht vor Programmabschluß (der besser durch Menü-Option als durch 

82



einfaches Drücken von ‘STOP’ erfolgen sollte) den Benutzer darauf hinweisen, daß 

er gut daran tut, die Daten zu speichern, bevor sie verlorengehen. Beim Eingeben 

großer Datenmengen in das Programm kann der Benutzer sie so durch regelmäßi- 

ges Speichern gegen mögliche Probleme mit dem C 64 oder dem Programm 

absichern. 

Ganz anders kann die Laderoutine mit einer Selbstladefunktion am Programman- 
fang aufgerufen werden, die in mancher Hinsicht der in Kapitel 1 beschriebenen 

Selbstinitialisierung ähnelt. Bei der Selbstinitialisierung hat der Benutzer die Wahl, 

entweder das Programm mit RUN zu starten — wobei die Variablen auf Null gesetzt 

werden — oder mit GOTO, das die Ausführung des Initialisierungsmoduls verhin- 

dert, wenn das Programm schon Daten enthält. 

Als weitere Möglichkeit läßt die Selbstladefunktion den Benutzer bestimmen, ob 

neue Daten über die Tastatur eingegeben oder zuerst auf Band vorhandene Daten 

geladen werden sollen, wenn das Programm keine Daten enthält. Entscheidet er 

sich, Daten vom Band zu laden, wird die Initialisierungsroutine teilweise ausgeführt, 

und zwar derjenige Teil, der die Felder für die Aufnahme von Daten einrichtet: die 

Variablen werden jedoch nicht auf ihren Anfangswert gesetzt, da sie ohnehin vom 

Band geladen werden. Es folgt ein Beispiel für ein solches Modul: 

1000 IFAS< OO THENIS500 

1818 DIM A$< 1003 ,B$6 25) ,AXKC 1988) ,» BA ESIESL 

IMIT=16060:R# =CHRC 139 

1828 INPUT"SOLL VON KASSETTE GELADEN WER 

DEN JMD "70% 

1839 IF LEFTFCOF,1L>="T"THEN GOSUB LADER: 

GOTO 1588 

1@4@ ITEMS=S9:NN=8:CT=-12:BASE=2 

Hier enthält Zeile 1000 die Selbstinitialisierung. Die zweite Zeile dimensioniert vier 

Felder und definiert eine Variable, deren Wert während des Programmablaufs 

unverändert bleibt — in diesem Fall die Höchstzahl der zugelassenen Elemente. 

Danach kann der Benutzer angeben, ob Daten vom Band geladen werden sollen. 

Wenn ja, denken Sie daran, daß die Daten alle Variablen enthalten müssen, die an 

den nicht ausgeführten Teil des Initialisierungsmoduls übergeben werden. Deshalb 

ist es hier noch wichtiger als sonst, als Gedächtnisstütze beim Schreiben der 

Speicher- und Lademodule alle Variablen aufzuschreiben, selbst die mit einem 

Anfangswert von Null. 

83



SPEICHER- UND LADEROUTINEN: EIN ARBEITSBEISPIEL 

Weiter unten finden Sie eine Speicher-/Laderoutine, die aus einem meiner eigenen 

Programme stammt. Sie brauchen die Funktionen der einzelnen Variablen nicht zu 

verstehen, da an dem Beispiel nur die Verfahrensweise bei größeren Datenvolumen 

gezeigt werden soll: 

EBBEOO REMKXKKKKKKKKKKKEK 

20001 REM DATEN FILES 

2OO02 REMEKXKKKKKKKKKKK 

eam25 RE=CHRECI1Z3) 

29838 INPUT"KASSETTE RICHTIG EINGELEGT - 

[REVERS EINJIRETURN"7QSE 

20040 IFNNE$=""THEN29140 

eaasd OPENI,1,1,"FILE NAME":PRINT#1,NN$, 

R$,Q0G04,R¢,CU,R#, ITEMS 

2069@ IFCU=OTHENeE@ 110 

201060 FORI=O0TOCU-1:PRINT#1,T#C(1,@),R#,TS 

(1,09 ,RS,TCIOSNEXT 

20110 IFIT=OTHEN2O139 

29120 FORI=@TOIT-1:PRINTH1I ,ASCI,O) ,.R#,AS 

<1I,1>,R$,CCID:NEXT 

28138 PRINT#H1:CLOSE1:RETURN 

28148 OPENI1,1,9,."FILE NAME": INPUT#1,NN®$, 

OQOE,CU,ITEMS 

20150 IFCU=QTHEN2eO170 

26016060 FORII=0@TOCU-1: INPUT#1,T#C(1,0),TS#CI 

‚I>,TIID:NEXT 

28178 IFIT=93THEN28198 

28188 FORI=OTOIT-1: INPUT#1 -ASCI,.@) ,ASCI, 

1>,CCID>:NERT 

29198 CLOSE1:RETURN 

Der Benutzer hat hier die Möglichkeit, das Band in Position zu bringen. Danach 

ermittelt das Modul automatisch, ob Daten gespeichert oder geladen werden sollen, 

je nachdem, ob der String NN$ leer ist. Das entspricht insofern der Selbstinitialisie- 

rung, als für diesen Test unbedingt eine Variable gewählt werden muß, die nie leer 

ist, solange das Programm Daten enthalt. Diese ‘Selbstladezeile’ ware durch ein 

einfaches zweizeiliges Menu ersetzbar, indem der Benutzer sich fur Laden oder 

Speichern entscheiden kann. Danach werden zwei Felder gespeichert oder gela- 

84



den, wobei die Anzahl der zu verarbeitenden Daten vom Inhalt der beiden Variablen 

CU und IT abhängt. Zum Schluß wird die Datei abgemeldet. Wie Sie bemerken, ist 

das Format der beiden Modulhälften genau gleich. Tatsächlich diente die Speicher- 

routine als Vorlage für die Laderoutine, indem die Zeilennummern geändert und die 

Zeilen editiert wurden: Damit ist gewährleistet, daß die Elemente in derselben 

Reihenfolge abgerufen werden, in der sie gespeichert wurden. 

BESONDERHEITEN BEI DISKETTEN 

Die Arbeit mit Dateien ist für Floppy-Besitzer wesentlich angenehmer, weil Daten 

einfach schneller geladen und gespeichert werden. Das liegt nicht nur an der hohen 

Arbeitsgeschwindigkeit der Floppy, sondern auch daran, daß das Laufwerk eine 

Ausgabedatei auf der Diskette automatisch positioniert oder die gewünschte Einga- 

bedatei auffindet. Die Methoden zum Speichern von Daten, zur Trennung von 

Elementen usw. sind dieselben, jedoch sind zusätzliche Vorkehrungen für die 

Angabe des gewünschten Dateityps und zum Überschreiben einer Datei nötig, 

wenn unter demselben Dateinamen bereits andere Daten abgelegt wurden. 

1. Das Diskettenlaufwerk verlangt neben der Bestimmung des Dateityps durch die 

Zahlen hinter dem OPEN-Befehl und dem Dateinamen noch eine besondere 

Angabe. Der von uns gebrauchte Dateityp heißt ‘sequentielle’ Datei, d.h. sie 

speichert Dateielemente in der Reihenfolge der Eingabe und kann sie in derselben 

Reihenfolge wieder ausgeben. Dieser Dateityp wird mit einer OPEN-Anweisung wie 

folgt eingerichtet: 

OPENI1,8,2,"FILE NAME,S,W" 

8 ist die Gerätenummer des Diskettenlaufwerks. S bezeichnet eine sequentielle 

Datei, und W bedeutet, daß es sich um eine 'Schreibdatei’ (‘write file’) handelt, d.h. 

daß Daten darauf ausgegeben werden. Normalerweise werden Diskettendateien mit 

Sekundäradresse Zwei angesprochen, die beim Rekorder erwähnten Nachteile 

gelten hier nicht. 

Das Einlesen von der Diskette erfolgt durch eine OPEN-Anweisung des Formats 

OPEN ,5,8,"FILE NAME,S,R" 

wobei R anzeigt, daß es sich um eine ‘Lesedatei’ (‘read file’) handelt, bzw. daß 

Daten daraus in den © 64 zurückgeholt werden. Wird der Zusatz W/R ausgelassen, 

betrachtet das Diskettenlaufwerk die fragliche Datei als Lesedatei. 

85



2. Die zweite Schwierigkeit im Umgang mit einem Diskettenlaufwerk ergibt sich im 

Grunde aus seiner intelligenten Eigenschaft, die auf der benutzten Diskette enthal- 

tenen Daten genau zu kennen. Wenn man wie in dem o. g. Speicher/Lademodul mit 

einer Kassette arbeitet, kann der C 1530-Rekorder nicht ermitteln, ob und welche 

neuen Daten überschrieben werden. Der Benutzer bestimmt durch Bandpositionie- 

rung genau, wo Daten gespeichert werden sollen. 

Die Floppy enthält eine Sicherung gegen versehentliches Löschen einer vorhande- 

nen Datei bei dem Versuch, etwas unter demselben Namen zu speichern. Das ist 

zwar eine wertvolle Schutzmaßnahme, aber manche Dateien werden öfter von der 

Diskette gelesen, erweitert oder berichtigt und dann wieder gespeichert, wie es 

beim fortgesetzten Gebrauch eines Programms häufig geschieht. Zu diesem Zweck 

Kann man einen besonderen Ausdruck vor den Dateinamen stellen, damit eine evtl. 

existierende Datei desselben Namen und Typs überschrieben wird. Das Format 

dafür ist: 

OPEN! ,8,2,"®:FILE NAME,S,W" 

Dies kann natürlich mit der Möglichkeit kombiniert werden, den Dateinamen zuzu- 

ordnen, oder auch mit der Wahlfreiheit des Benutzers, ob eine Datei überschrieben 

werden soll oder nicht: | 

171@ INPUT"FILE NAME ";FFS:FFS=FFS+"S,W" 

1728 Q$="N": INPUT"BESTEHENDES FILE UEBER 

SCHREIBEN <J/ND ";Q% 

1730 IFQ$="J"THENFF$S="@9: "+FF$ 
174@ OPEN2,8,2,FF%



SCHLUSS 

Auch wenn das Speichern und Laden von Daten im Grunde eine einfache Angele- 

genheit ist, kann in einem komplexen Programm der richtige Aufbau des Dateimo- 

duls eine knifflige Arbeit sein. Das sollte aber nicht von der Tatsache ablenken, daß 

Programme zur Verarbeitung großer Datenvolumen einen externen Speicher brau- 

chen. Noch sollten wir uns vom Computerzeitalter verleiten lassen, die Geschwin- 

digkeit, mit der ein Diskettenlaufwerk oder auch ein Rekorder große Datenmengen 

in den Arbeitsspeicher des C 64 laden können, geringzuschätzen. Floppys und 

Rekorder sind verläßliche und sogar relativ schnelle Geräte zum Speichern nützli- 

cher Daten. Ihre Verwendung ist trotz aller Einschränkungen sicherlich der Arbeit 

mit Programmen vorzuziehen, die entweder nur über eine eingebaute Datengruppe 

oder nur über soviele Daten verfügen, wie in einem Arbeitsgang an der Tastatur 

eingegeben werden können. Wenn eine Datengruppe die Verarbeitung lohnt, ist sie 

höchstwahrscheinlich auch die Mühe wert, sie für den späteren Gebrauch sicher 

abzuspeichern. 

87





KAPITEL 7 

LOGISCHE BEDINGUNGEN 
Es gibt nur wenige Techniken, die zur Verkürzung von Programmzeilen oder 

überhaupt zur eleganten Form eines Programms mehr beitragen als der richtige 

Gebrauch der internen Logik des C 64 in Verbindung mit gewöhnlichem Program- 

mieren in BASIC. Dieses Kapitel führt uns in die gelegentlich schwer verständliche 

Welt der logischen Bedingung IF und der logischen Operatoren AND und OR. Viele 

Mikrocomputer-Besitzer wenden sie regelmäßig in ihren Programmen an, ohne sich 

jemals über die Gesamtheit ihrer Möglichkeiten im klaren zu sein. 

DAS BESCHEIDENE IF 

Jeder BASIC-Programmierer benutzt IF — eines der wichtigsten Programmierwerk- 

zeuge. Trotzdem wird IF nicht immer so direkt eingesetzt wie es aussieht, d. h. viele 

Ergebnisse lassen sich mit IF-Anweisungen direkter erzielen, als manchem Mikro- 

computer-Besitzer bekannt zu sein scheint. 

Das Wesentliche bei IF ist, daß damit eine Operation ausgeführt oder unterlassen 

werden kann, je nachdem, ob eine vom Programmierer gesetzte Bedingung erfüllt 

ist. Demnach wird in einer Zeile wie 

IF A21@ THEN K=K+1 

der Ausdruck im zweiten Teil der Zeile nur dann ausgeführt, wenn A größer als 10 

ist. Das gilt für alles, was in einer Zeile auf eine IF-Anweisung folgt. Innerhalb einer 

einzelnen auf 80 Zeichen begrenzten Programmzeile kann in dieser Weise eine 

Reihe von Befehlen ausgeführt oder ignoriert werden, z. B.: 

188 IF A>19 THEN K=K+1:%=-4-109:Y=-Yxk1l99:60 

TO 288 

Wenn auf eine einzelne Bedingung mehr Befehle folgen als in einer Zeile Platz 

haben, ist es am einfachsten, mit Hilfe der entgegengesetzten Bedingung einen 

Programmabschnitt zu überspringen: 

196 IFA< 1OTHENGOTO1260 

118 PRINT"DER WERT VON A IST GROESSER AL 

5 18":K=-Kri:a=k-198:V=-Yx100:60T0289



SICHERUNG GEGEN UNGÜLTIGE WERTE 

Den Effekt von IF, den darauffolgenden Teil der Zeile zu isolieren, kann man u.a. 

zum Schutz gegen mögliche falsche Variablenwerte nutzen, die das Programm 

unterbrechen würden. Im nächsten Beispiel erzeugt Zeile 20 einen BAD SUB- 

SCRIPT ERROR: 

18 DIM rC20) 

15 55-25 

28 IF ARACSS?>1B8THENSO 

Das Problem wird umgangen, wenn man das ursprüngliche IF in Zeile 20 selbst 

einem IF unterordnet: 

29 IF SS<=20 THEN IF ASSS>9>10 THEN 58 

Die mögliche Zahl der so verschachtelten IFs ist nur durch die Zeilenlänge be- 

grenzt. 

DURCH IF HERVORGERUFENE FEHLER 

Ein weit verbreiteter Programmierfehler ist auf die oft vergessene Tatsache zurück- 

zuführen, daß IF eine Zeile teilweise unberücksichtigt lassen kann. So könnte z. B. 

ein Programmierer in der Absicht, ein Feld abzusuchen und 10 von allen Zahlen 

über 100 zu subtrahieren, folgende Zeile eingeben: 

188 FORI=8T099: IFAC I>>LBBTHENAC II =SAC TI> -1 

B:NEHT I 

Die gewünschte Korrektur würde jedoch nur dann ausgeführt, wenn alle vorgefun- 

denen Elemente größer als 100 wären. Beim ersten Wert unter 100 würde NEXT | 

ignoriert und die Schleife beendet. 

IF...THEN...ELSE 

Die IF-Anweisung auf dem C 64 ist in einer Beziehung unzulänglich, denn ihr fehlt 

eine Einrichtung, die sich als Bestandteil des BASIC vieler anderer Heimcomputer 

bewährt hat: die IF...THEN...ELSE-Anweisung. Bei diesem Format darf der 

90



Benutzer zwei Operationen nach dem IF angeben: Eine wird ausgeführt, wenn die 
Bedingung wahr ist, die andere, wenn sie falsch ist. Eine Zeile wie 

198 IF A>18 THEN K=K+1 ELSE K=K-1 

wurde 1 zu K addieren, wenn A größer als 10 wäre, und 1 subtrahieren, wenn 

nicht. — Nur: Auf dem C 64 funktioniert das nicht! Dieser Befehl ist in den vielen 

Fällen hilfreich, in denen der Programmierer entweder/oder-Entscheidungen im 

Programm treffen muß; auf dem C 64 muß das Problem anders gelöst werden. Der 

einfachste Weg sieht vor, eine Anweisung vor das IF zu stellen und die zweite 

dahinter. Also kann 

i@@ IF A+1iB THEN K=K+1 ELSE K=0 

nachgeahmt werden durch: 

188 TT=K:K=-9: IFA>18 THEN K=TT+i 

Wenn die auszuführenden Operationen länger als eine Zeile sind, kann man sie auf 

zwei Zeilen mit den jeweils entgegengesetzten Bedingungen verteilen: 

188 IFA>1IBOTHENPRINT"MEHR ALS ZEHN EINHEI 

TEN":K=K+1:G0T0289 

118 IFA<SIBOTHENPRINT"NOCH KEINE ZEHN EINH 

EITEN EINGEGEBEN" :K=-8:60T0259 

IF mit >, < und = 

Wie Sie sehen, kommen in den angeführten Beispielen Kombinationen mit >= und 

<= vor. Wenn man in einer Zeile Bedingungen verwendet, muß man zwischen 

Einfachheit und leichter Lesbarkeit des Programms wählen. Soll z. B. eine Opera- 

tion ausgeführt werden, wenn A gleich oder kleiner als 10 ist, könnte man die 

Bedingung so formulieren: 

IF AX 1OTHEN..... 

oder sie könnte in den meisten Fällen auch lauten: 

IF AX =10THEN..... 

91



Der zweite Ausdruck ist kürzer, aber da der relevante Wert 10 ist, kann die 11 beim 

Lesen des Programms irritieren. Außerdem ist zu berücksichtigen, daß bei Verwen- 

dung von nicht-ganzzahligen Werten, d. h. von Zahlen, die keine ganzen Zahlen 

sein müssen, <11 nicht dasselbe ist wie <10, denn <11 kann jeder Wert zwischen 

10 und 11 sein. 

IF MIT DEN OPERATOREN AND UND OR 

Der Wirkungsbereich der IF-Anweisung wird bedeutend durch die in BASIC enthal- 

tenen Operatoren AND, OR und NOT erweitert. Mit den ersten beiden kann der 

Programmierer verschiedene IF-Anweisungen in einer Zeile kombinieren. In den 

Zeilen 

188 IFA>LBTHENIZ2DO 

118 GOTO 138 

120 IFB< =1Q@@THENK=K+1 

mussen beide gesetzten Bedingungen erfullt sein, sonst wird der zweite Teil von 

Zeile 120 nicht ausgeführt. Mit AND können die Zeilen zu einer einzigen zusam- 

mengefaBt werden: 

ig@@ IFA>1@ AND B<=100 THEN F=K+1 

Ein anderes Problem ergibt sich bei den Zeilen 

190 I[FA>1@6 THEN 138 
16@ IFAC =180QTHEN 136 

ie GOTO 146 

130 K=K+1 

wo die Erfüllung einer von beiden Bedingungen ausreicht, damit Zeile 130 ausge- 

führt wird. Hier ist der Gebrauch von OR angezeigt: 

1aa@ IFA?1@ ORB<=100@ THEN K=K+1 

92



KOMBINIEREN VON AND UND OR 

AND und OR können in derselben Zeile zur Herstellung komplexer Bedingungsge- 

füge eingesetzt werden, wenn man die Reihenfolge berücksichtigt, in der sie vom 

C 64 ausgewertet werden. Geben Sie folgende Zeilen ein: 

160 A=18 

119 B=100 

128 C=508 

130 PRINT" wd" 
14@ IFA=10 AND B=100 OR C=10 THEN PRINT"OK" 

Das Programm gibt am Ende des Durchlaufs ein OK aus, woraus man schließen 

kann, daß die ersten beiden durch AND verbundenen Bedingungen ausreichen, die 

angegebene Operation auszuführen, obwohl © nicht gleich 10 ist. Jetzt ändern Sie 

Zeile 140 in: | 

140 IFA=10 AND B=150 CR C=-18 THEN PRINT" 

OK" 

worauf Zeile 140 kein OK ausgibt. Wenn Sie Zeile 140 noch einmal andern: 

14@ IFA=1@ AND B=15@ GR C=5@ THEN PRINT" 
OK" 

ist das Ergebnis wieder OK — aber was heiBt das? Es gibt zwei mogliche Erkla- 

rungen: 

1. Die wahre Bedingung fur C ist an die Stelle der falschen fur B getreten, so daB 

die Zeile als IF A=10 (B=150 OR C=50) gelesen wird. 

2. Die wahre Bedingung fur C tritt an die Stelle beider durch AND verbundenen 

Bedingungen, so daß die Zeile als IF (A=10 AND B=150) OR C=50 gelesen wird. 

Das läßt sich nur entscheiden, indem man an Zeile 140 eine weitere Änderung 

vornimmt: 

14@ IFA=2@ AND B=15@ OR C=5@ THEN PRINT" 
OK" 

Wir sehen nun, daB die Bedingung hinter OR die beiden durch AND verbundenen 

Bedingungen wie eine einzige behandelt hat. Daraus folgt, daB alle durch AND 

93



verknüpften Bedingungen so erfüllt werden müssen, als wären sie eine einzige 

Bedingung. Andererseits ist jede Bedingung vor OR eigenständig. 

Die strenge Hierarchie von AND und OR sorgt manchmal für Überraschungen, 

wenn scheinbar folgerichtige Zeilen nicht zum erwarteten Ergebnis führen. Sollten 

Sie sich also über die Verknüpfung einer Bedingungsfolge nicht ganz im klaren sein, 

so verwenden Sie besser Klammern. Lesen Sie diese Zeile: 

14@ IFC A=19 OR B=100>) AND ¢C=50 OR D=28) 

THEN PRINT "OK" 

Die Klammern trennen die zweite und dritte Bedingung von AND und erzwingen die 

Auswertung der ersten beiden und letzten beiden Bedingungen, bevor AND 

berücksichtigt wird. Wenn Ihnen das noch immer unklar ist, fügen sie der 0.9. 

kurzen Routine versuchsweise eine neue Zeile an: 

les D=20 

Passen Sie Zeile 140 der letztgenannten Version an. Wie zu erwarten, gibt das 

Programm zum Schluß OK aus, da jede Bedingung der Zeile erfüllt ist. Jetzt ändern 

Sie Zeile 140 nochmals: 

148 IF<A=18 OR B=200> AND (C=38 OR D=208) 

THEN PRINT "OK" 

und das Resultat ist immer noch OK. Da A gleich 10 ist, ist das Bedingungspaar in 

Klammern erfüllt. Da D gleich 20 ist, ist auch das zweite Bedingungspaar erfüllt. 

AND ist jetzt von zwei wahren Bedingungen umgeben, folglich kann die Zeile 

verarbeitet werden. 

ENTSCHACHTELN KOMPLEXER BEDINGUNGEN 

Wenn Sie große Probleme mit komplexen Bedingungsblöcken haben — und so 

ergeht es vielen —, dann zerlegen Sie die betreffende Zeile in eine Reihe von 

‘wahren’ und ‘falschen’ Bedingungen, und vereinfachen Sie diese den folgenden 

Regeln entsprechend: 

WAHR UND WAHR = WAHR 

WAHR UND UNWAHR = UNWAHR 

UNWAHR UND UNWAHR = UNWAHR 

WAHR ODER WAHR = WAHR & 
W
W
 

o- 

Se
 

N
e
”



5 > WAHR ODER UNWAHR = WAHR 

6 > UNWAHR ODER UNWAHR = UNWAHR 

Nehmen Sie z. B. an, im o. g. Programm sei A=10, B=100, C=50 und D=20; die 

Bedingungen der Zeile 

IFA=1@ ANO B=200 OR C=50 THEN..... 

lauten Ubersetzt: 

WAHR UNO UNWAHR ODER WAHR 

was nach den oben angefuhrten Regeln zunachst zu 

UNWAHR ODER WAHR 

vereinfacht werden kann, und schlieBlich zu 

WAHR 

IFC A=100RB=2098 )ANDC C=300RD0=10>THEN... 

wird Zu 

(WAHR ODER UNWAHR >UNDS UNWAHR ODER WAHR > 

WAHR UND UNWAHR 

UNWAHR 

BESTIMMUNG VON GRENZWERTEN 

Bedingungen dienen oft dazu, einen Bereich fur eine Variable zu bestimmen, 

innerhalb dessen eine Operation ausgefuhrt wird. Das Format dieser Anweisungen 

ist: 

1. Bei einer Operation, die ausgeführt werden soll, wenn eine Variable im Bereich 

11-20 liegt, und nicht ausgeführt werden soll, wenn sie außerhalb dieses Berei- 

ches liegt: 

95



166 IF A=>11 AND At =20 THEN... 

2. Bei einer Operation, die nicht ausgeführt werden soll, wenn eine Variable im 

Bereich 11-20 liegt, und die ausgeführt werden soll, wenn sie außerhalb des 

Bereiches liegt: 

166 IF A<1ii AND A+20 THEN... 

Manchmal ist die Bestimmung zweier möglicher Bereiche notwendig. Das 

geschieht oft beim Überprüfen der Eingabe eines Zeichens in ein Programm, wenn 

z. B. die zulässigen Zeichen entweder die Zahlen O bis 9 oder die Buchstaben A bis 

Z sind. Dazu brauchen wir zwei Bedingungspaare: 

ige IF «INS >="O"AND IN¢<="S"> OR (INS >= 

"A"AND IN$S="Z2") THEN GOTO2088 

IF MIT NOT 

NOT ist vielen gar nicht als Programmelement geläufig, und es leistet auch 

tatsächlich nur wenig, das nicht mit anderen Mitteln erreichbar wäre. NOT hat die 

Funktion, die Wirkung einer Bedingung umzukehren, und kann die Lesbarkeit 

mancher Zeilen erleichtern. Bei der Nachahmung von IF...THEN...ELSE sind 

z. B. in zwei aufeinanderfolgenden Zeilen entgegengesetzte Bedingungen enthal- 

ten. Das hätte man sicher übersichtlicher ausdrücken können: 

188 IF A>18 THEN PRINT"MEHR ALS 18 EINGA 

BEN":K=K+1:G0T0O 288 

118 IF NOT A>=18 THEN PRINT"1B EINGABEN 

NOCH NICHT ERREICHT" :K=8:G60T0 258 

ANWENDUNG LOGISCHER BEDINGUNGEN 

Im Kapitel über Stringfunktionen kam eine einfache Zeile vor, die einen mit FRE 

ermittelten, unechten Wert in den richtigen verwandelte. Wenn der von FRE 

angegebene Wert negativ war, mußte 65536 dazu addiert werden. Das hätte mit 

einer Zeile wie 

KR=FRE* @3: IFK< OTHENK=K +65536 

96



erreicht werden können. Tatsächlich sah die Zeile aber so aus: 

K=FRE(DOJ:K=K-8655356 xC K{ 9) 

Wenn wir davon ausgehen, daß die beiden Anweisungen genau dieselbe Bedeu- 

tung haben, können wir daraus etwas über die zweite Version erfahren. Offenbar 

wird darin ‘IF K<0‘) irgendwie durch (K<O) ersetzt. Da wir je nach Situation 

manchmal 65536 addieren möchten und manchmal nichts, muß (K<O) in der 

zweiten Fassung außerdem seltsamerweise einmal für den Wert Null und einmal für 

den Wert —1 stehen, sonst ergäbe die Zahl —65536 keinen Sinn. Wie ist das zu 

erklären? 

WERT EINER BEDINGUNG 

Bei der Auswertung einer Bedingung in einem Programm setzt der C 64 wie alle 

Mikrocomputer voraus, daß etwas entweder wahr oder falsch ist. Der © 64 merkt 

sich seine Entscheidung, indem er den Ausdruck hinter IF überprüft und ihm einen 

von zwei Werten gibt: — 1, wenn die Bedingung wahr ist, und 0, wenn sie falsch ist. 

Nehmen Sie z. B. ein Programm mit den zwei Variablen X und Y, wobei X gleich 7 

und Y gleich 5 ist. Betrachten Sie jetzt folgende Zeilen, und zwar als Aussagen von 

der Art ‘John ist größer als Bill‘: 

Ad A=Y 

B) s>Y 

B) Yin 

DI Yan 

Ganz offensichtlich sind die Aussagen a) und d) falsch, während b) und c) richtig 

sind. 

Im Zusammenhang mit einer IF-Anweisung wurde a) und d) der Wert Null, b) und c) 

den Wert —1 zugewiesen. Wo solche Bedingungen wie oben vorkommen, wird die 

in der IF-Anweisung angegebene Operation ausgeführt, wenn die Bedingung den 

Wert —1 bekommen hat. Grundsätzlich kann man alles hinter die IF-Anweisung 

stellen, was einen Wert erhalten kann. Die Zeile 

188 IF TT THEN 128 

würde den Sprung der Zeile 120 nicht nur veranlassen, wenn der Wert von IT —1 

wäre, sondern überhaupt ungleich Null. Auch mit Strings kann so verfahren werden: 

97



188 IF AS THEN 128 

würde ausgeführt, wenn A$ etwas anderes als ein leerer String wäre. Diese 

Methode kann angewendet werden, wann immer es von Bedeutung ist, daß ein 

Wert Null ermittelt wird. Eine mögliche Anwendung, die häufig bei der Suche nach 

Programmierfehlern zum Einsatz kommt, ist im Kapitel über Methoden der Fehler- 

suche beschrieben. 

ANWENDUNG VON BEDINGUNGEN ALS WERTE 

Neben der Möglichkeit, eine IF-Anweisung mit Hilfe einer einzelnen Variablen zur 

Ausführung zu bringen, ergibt sich aus der Art, wie Bedingungen mit Null oder — 1 

bewertet werden, eine weitere interessante Perspektive: Bedingungen können 

nämlich überall im Programm für die Zuordnung von Werten benutzt werden, nicht 

nur in einer IF-Anweisung. Auf dieser Tatsache beruht die o. g. Zeile, mit der FRE 

umgewandelt wird. Das Programm ordnet jeder Bedingung, auf die es während der 

Ausführung trifft, einen Wert zu, und mit diesem Wert kann das Programm genauso 

gesteuert werden wie mit jeder anderen Variablen. Bei der o. g. FRE-Funktion wird 

65536 zum Ergebnis von FRE(0) nur dann addiert, wenn die Bedingung (K<O) wahr 

ist. Solche Bedingungen kann man elegant miteinander kombinieren, um eine 

Anhäufung von IF-Anweisungen zu vermeiden. Die Zeilen: 

100 K=10@8 

110 IF Trrie@ THEN K=K+50 

120 IF &x<5@ THEN K=K-25 

13a IF yYs="MINUS"THEN K=K+100 

140 IF FF=@ THEN K=Kx*2Z 

und viele andere dieser Art könnten etwa so ersetzt werden: 

188 K=tiang-s5aox‘tTT>128) + Z5xKCHH<508) - 100% 

CY$="MINUS">> * ZZ+HCZZ-IIKCRFS>O)) 

PLUS ODER MINUS? 

Das Verwirrende dabei Ist die scheinbare Vertauschung von Plus- und Minuszei- 

chen. Die Notwendigkeit dafür leuchtet aber ein, wenn man bedenkt, daß das 

Ergebnis einer wahren Bedingung nicht 1, sondern —1 ist. Falls Sie 100 zu K



addieren wollen, wenn etwas wahr ist, müssen Sie das Hundertfache des Werts der 

erfüllten Bedingung (also —1) subtrahieren, damit das Ergebnis K-(-100) bzw. 

K+100 ist. 

MULTIPLIKATION UND DIVISION 

Beim Multiplizieren (oder Dividieren) als Ergebnis einer Bedingung ist außerdem 

folgendes zu beachten: Die direkte Methode besteht darin, von der Zahl, mit der Sie 

multiplizieren wollen, zunächst ihren Wert —1 mal den Wert der Bedingung, die der 

gewählten entgegengesetzt ist, zu subtrahieren. Falls Sie also mit 1000 multiplizie- 

ren wollen, wenn X gleich Null ist, multiplizieren Sie in Wirklichkeit mit 

1000+999*(X<>0). Wenn X nicht gleich Null ist, multiplizieren Sie mit 1000-+(— 

999) bzw. 1. 

VERMEIDEN EINER ISOLIERUNG DURCH IF 

Wie Sie sich erinnern, können Bedingungen dazu dienen, die durch IF bewirkte 

Isolierung alles Nachstehenden bei nicht erfüllter Bedingung zu umgehen. Weiter 

oben wurde auf die Gefahr hingewiesen, IF in derselben Zeile zu benutzen wie 

NEXT, das eine Schleife beendet, wenn die Ausführung der ganzen Schleife 

beabsichtigt ist. Dieses Problem ist jedoch mit einer Zeile wie 

190 FORI=OTOSSSAC TIX =AC 19+10eC AC To >1000'N 

ET 

zu lösen. Vergessen Sie nicht, daß es in einigen Fällen nicht angebracht ist, IF- 

Anweisungen durch Ausdrücke zu ersetzen, die auf dem Wert von Bedingungen 

beruhen. Wo man zwei IF-Anweisungen einsetzt, um den Zugriff auf eine Variable 

mit ungültigem Wert zu verhindern, haben Bedingungen diese Schutzfunktion nicht. 

In einem früheren Abschnitt hatten wir die Zeile: 

188 IFSS<{=28 THEN IFACSS>>18 THEN K=K+i 

die das Programm vor dem Absturz bewahrt, wenn der Wert von SS größer als die 

Höchstzahl der Elemente im Feld ist. Eine Zeile wie 

1898 K=K+C SS< =298) KU ACSSY >10) 

würde dem Programm den Zugriff auf den ungültigen Wert von SS erlauben und 

damit zum Absturz führen. Außer in diesen Fällen, wo das Programm geschützt



werden soll, kann eine Reihe von IFs immer durch AND ersetzt werden. Entweder 

SO: 

100 IF A=10 AND B=20 AND C=30 AND D=40 T 

HEN K=K+16 

oder auch: 

166 K=K+16*e¢ A=165%*¢ B=28) *( C=3S0> *¥¢ O=405 

Hier ist zweierlei bemerkenswert: Erstens ist die Platzersparnis im Programm viel 

geringer, und zweitens wurde offenbar die Regel in bezug auf das Vorzeichen der 

zu addierenden Zahl nicht eingehalten. Das liegt daran, daß die Anzahl der mitein- 

ander zu multiplizierenden Bedingungen eine Rolle spielt. Hier gilt die Regel: Ist die 

Anzahl der Bedingungen gerade, so wird das Ergebnis addiert, ist sie ungerade, so 

wird das Ergebnis subtrahiert. 

Auf Bedingungen basierende Zeilen sind nicht immer leicht zu lesen, aber sie zu 

schreiben ist viel einfacher, als es den Anschein hat. Die Schwierigkeiten werden in 

vieler Hinsicht dadurch aufgewogen, daß mit ihrer Hilfe sehr kompakte Programme 

geschrieben werden Können. 

AND UND OR MIT ZAHLEN 

AND und OR besitzen eine weitere, sehr nützliche Eigenschaft im Zusammenhang 

mit Zahlen. Mit ihrer Hilfe können arithmetische Ergebnisse erzielt werden, die auf 

andere Art nur äußerst schwer herauszubekommen wären. So angewendet, üben 

AND und OR ihre besondere Wirkung auf die einzelnen Bits binärer Zahlen zu einer 

Länge von 15 Bits (O—32767) aus. Werden zwei Zahlen mit AND verknüpft, so 

ergibt sich eine Zahl, die aus den Binärstellen besteht, die in beiden ursprünglichen 

Zahlen auf 1 gesetzt waren. Werden zwei Zahlen mit OR verknüpft, ergibt sich eine 

Zahl, in der jede Binärstelle auf 1 gesetzt wird, die in einer der Ursprungszahlen auf 

1 gesetzt war, also: 

e31 <BINAER 111@0111> AND 126 ¢BINAER 81 

L1111@5=10e ©“BINAER 6110011605 

und 

231 OR 126 (BINAER 1111111152 

100



Es gibt eine ganze Reihe von Möglichkeiten, wie man sich diese scheinbar 

abwegige Eigenschaft im Programm zunutze machen kann. 

POKE MIT AND UND OR 

Auf viele. Funktionen des C 64, wie Klangeffekte und Sprites, kann man nur mit 

POKE-Anweisungen zugreifen. Häufig wird POKE benutzt, um ein einzelnes BIT 

innerhalb eines Bytes im Speicher zu verändern, ohne Einfluß auf die übrigen Bits. 

Hier leisten AND und OR gute Dienste. Um ein Bit im Byte der Adresse ADD zu 

setzen, braucht man in der Regel eine Zeile wie POKE ADD, PEEK(ADD) OR 2° BIT. 

Soll z. B. sichergestellt werden, daß Bit Null (das in einer Zahl die 1 repräsentiert) in 

der Adresse 53287 auf 1 geschaltet oder ‘gesetzt‘ wird, müßte die Zeile lauten: 

210 POKE 53287, PEEK (532987) OR2tO 

Statt 2°0 könnte man einfacher 1 schreiben, aber das gewählte Format garantiert, 

daß Sie das zu ändernde Bit nicht verwechseln. 

Um ein Bit auf Null zu setzen oder rückzusetzen, ist die Funktion AND erforderlich. 

Dazu lautet die Regel: Man verknüpft den Inhalt der betreffenden Adresse und 

255—2°BIT wie folgt durch AND: 

210 POKES3287,PEEK<! 53287 ANDG 255-2109) 

SPEICHERN MIT AND/OR 

Mit Hilfe von AND und OR kann eine einzelne Variable sehr effektiv zum Speichern 

von bis zu 15 ‘ja/nein’-Datenelementen benutzt werden. Wird die Variable zunächst 

auf Null gesetzt, so kann jedes der 15 Bits mit einer ähnlichen Methode wie beim 

Poken gesetzt werden. Mit dieser Zeile würde Bit 7 gesetzt: 

216 A=A OR et? 

Dasselbe Bit wurde ruckgesetzt mit 

210 A=A AND (255-217) 

Die Variable kann dann mit einer einfachen Schleife gelesen werden: 

101



188 FOR I=-8 TOI4: IFA AND 211 THEN K=T: 

GOSUB 1998 

L1ONEXKT I 

Ein einzelnes Bit wird überprüft mit einer Anweisung wie z.B. 

i@@ IF A AND etx THEN.... 

Ich habe ein eigenes Programm zur Aufzeichnung von Kontobewegungen, in dem 

jeweils eine einzelne Zwei-Byte-Variable pro Ausgabe den Monat der Abwicklung 

speichert. 

GERADE ODER UNGERADE? 

Oft ist es in Programmen notwendig zu prufen, ob eine Variable gerade oder 

ungerade ist. Auch das geschieht durch einen einfachen Bit-Test, in diesem Fall fur 

Bit Null der Variablen, wie z. B.: ‘ 

188 IF A AND 218 THEN.... 

SCHLUSS 

Das letzte Kapitel ist voller Bits und Schnipsel, die scheinbar in viele verschiedene 

Richtungen führen. Trotzdem hoffe ich, daß Sie in Ihren Programmen viele Gele- 

genheiten entdecken, umständliche und ungeschickte Codes durch kürzere, kla- 

rere und elegantere Befehle zu ersetzen. Auf jeden Fall werden Ihnen die in 

Zeitschriften und Büchern abgedruckten Programme nun weniger Kopfzerbrechen 

machen; denn wenn die Verfasser ihr Handwerk verstehen, wird das, was hier 

dargestellt wurde, immer eine wichtige Rolle spielen. 

102



KAPITEL 8 

SORTIEREN 
In diesem Kapitel soll erklärt werden, was mich dazu brachte, Bücher zu schreiben. 

Vor einigen Jahren veröffentlichte eine englische Computerzeitschrift ein Pro- 

gramm, mit dem der Benutzer Namen und Adressen von Bekannten speichern 

konnte. Nach Eingabe aller Namen sollten sie auf Knopfdruck vom Programm zum 

späteren Gebrauch alphabetisch sortiert werden. Es wurde vermutlich wegen seiner 

Klarheit und relativen Kürze veröffentlicht, aber ich hatte vom ersten Moment an 

Zweifel an der benutzten Methode. 

Anstatt die erlaubten 100 Namen einzutippen, ging ich daran, eine einfache Routine 

zur Erzeugung von 100 unsinnigen Namen zu schreiben. Damit ließ ich das 

Programm arbeiten. Eine halbe Stunde später war der Sortiervorgang beendet. 

Hätte ich nur 90 Namen eingegeben und später noch einen oder zwei ergänzt, dann 

hätte es beinahe noch eine weitere halbe Stunde gedauert, bis diese beiden 

zusätzlichen Namen an den richtigen Platz sortiert gewesen wären: ein an sich 

nützliches Programm, das sich durch die Wahl einer ungeeigneten Methode für alle 

praktischen Anwendungen als unbrauchbar erwies. 

Auf der Grundlage von Notizen aus einem Computerlehrgang am College schrieb 

ich einen kurzen Artikel, in dem ich zeigte, wie das betreffende Programm um etwa 

40 Prozent hätte beschleunigt werden können — das war der erste ausführliche 

Artikel von mir, der veröffentlicht wurde. Seit damals bin ich immer wieder erstaunt, 

wie viele Anwendungsprogramme darunter leiden, daß ihre Verfasser nichts davon 

wissen, daß es viele verschiedene Sortiermethoden mit sehr unterschiedlichem 

Zeitaufwand gibt. Zweifellos war das erwähnte Programm aus der Zeitschrift für 

eines der langsamsten Geräte geschrieben, die es je auf dem Heimcomputermarkt 

gab. Bei einem so hochentwickelten Gerät wie dem Commodore 64 müßten Sie 

sich sehr anstrengen, um einen Sortierprozeß dermaßen zu verlangsamen, daß er 

für nur 100 Elemente eine halbe Stunde braucht. Dennoch gilt die Regel: Eine 

angemessene Sortiermethode entscheidet darüber, ob ein Programm langsam und 

mühselig arbeitet oder schnell genug, um es einigermaßen nutzbringend einsetzen 

zu können. 

Wir werden in diesem Kapitel drei Sortiermethoden behandeln und zeigen, wie und 

warum sie funktionieren und wieso der Zeitaufwand so unterschiedlich sein kann. 

Bevor wir uns dem Sortieren mit dem Computer zuwenden, werden wir erst einmal 

genauer untersuchen, wie ein Mensch Dinge sortiert. Dabei werden wir hoffentlich 

eine klarere Vorstellung von dem bekommen, was wir vorhaben, wenn wir an der 

Tastatur sitzen. 

103



SORTIEREN: WARUM UND WOZU? 

Wir beginnen mit einem kleinen Experiment, zu dem wir 10 Zettel brauchen. Ideal 

wären Karteikarten, aber wenn Sie keine haben, zerschneiden Sie einfach ein Blatt 

Papier in 10 Quadrate von 7-8 cm Länge. Beschriften Sie die Zettel mit den Zahlen 

O bis 9, wobei Sie bitte die 6 und die 9 unterstreichen, damit sie nicht verwechselt 

werden können, falls sie zufällig umgekehrt zu liegen kommen. Machen Sie jetzt 

etwas Platz auf dem Tisch (möglichst nicht im Durchzug) und legen Sie die Zettel 

nebeneinander in dieser Reihenfolge aus: 

7315694802 

(Die Reihenfolge ist an sich ohne Bedeutung; aber wenn Sie eine andere nehmen, 

ergeben die nachfolgenden Kommentare keinen Sinn.) 

Zweck der Übung ist das Sortieren der Zettel in aufsteigender Folge von O bis 9, 

links beginnend. Die einzige Einschränkung besteht darin, daß Ihnen nur 11 Stellen 

zur Verfügung stehen: 10 sind durch die Zettel besetzt und eine ist frei. Das 

bedeutet, Sie können einen Zettel erst dann von einem Platz der Reihe auf einen 

anderen legen, wenn Sie vorher einen aus der Folge herausgenommen und auf 

dem elften Platz untergebracht haben. Damit erhalten Sie einen Platz in der Reihe, 

auf den Sie einen Zettel legen können und einen Zettel, der aus der Reihe entfernt 

und auf den Extraplatz gelegt wurde. Am Schluß sollen alle Zettel in der richtigen 

Reihenfolge liegen, und der Extraplatz soll leer sein. Probieren Sie es aus und 

versuchen Sie dabei, Ihr Vorgehen zu analysieren. 

Wenn Sie sich bis hierher an den beschriebenen Weg gehalten haben, haben Sie 

wahrscheinlich folgendes getan: 

1. Die Folge überflogen, um entweder den höchsten oder niedrigsten Wert zu 

finden. 

2. Den Zettel auf der höchsten oder niedrigsten Stelle auf den Extraplatz gelegt und 

den richtigen Zettel auf die jetzt freie Stelle in der Folge gelegt. 

3. Danach hatten Sie die Wahl, entweder den Zettel auf dem Extraplatz in die Lücke 

der Folge zu legen und bei 1. mit dem zweithöchsten bzw. -niedrigsten Wert 

weiterzumachen, oder die korrekte Position für den Zettel auf dem Extraplatz 

auszumachen und ihn dort unterzubringen, nachdem Sie den vorhandenen Zettel 

weggenommen haben. Letzteres verringert die Anzahl der notwendigen Vertau- 

schungen. 

Vielleicht sind Sie ganz anders vorgegangen. Aber wenn Sie Verstand und Augen 

richtig benutzt haben, wird folgendes für Ihre Sortiermethode zutreffen: 

104



1. Da die Zettel am Schluß die ihren Zahlen entsprechenden Positionen in der 

Reihenfolge einnehmen sollten, konnten Sie jederzeit schnell erkennen, wohin 

jeder einzelne Zettel gehört. 

2. Da die Anzahl der Zettel relativ klein war, konnten Sie die absolut höchste und 

niedrigste Zahl der Folge leicht feststellen und entsprechend vorgehen. 

3. Sie konnten die gesamte Folge fast auf einen Blick übersehen und Ihre Maßnah- 

men daran orientieren. 

Jetzt versetzen Sie sich in die Lage eines Mikrocomputers, der einen Sortiervor- 

gang beginnt. Stellen Sie sich vor, Sie hätten 100 Karteikarten vor sich liegen, auf 

denen z. B. jeweils ein anderer Personenname steht: 

1. Sie könnten sich nach keiner Reihenfolge richten, an der sofort erkennbar wäre, 

wohin jede einzelne Karte gehört. Es mag vielleicht eine Reihenfolge geben, aber 

es wäre Ihnen nicht möglich, sie zu bestimmen. Natürlich könnte man ein sehr 

schnelles Sortierprogramm schreiben, wenn man davon ausgeht, daß bei 100 

Elementen die Abstände ihrer Werte absolut regelmäßig sind, so daß ein Blick 

genügte, um sofort zu entscheiden, welche Position eine Karte schließlich einneh- 

men wird. Dieses Verfahren hat einen Nachteil: Es funktioniert eben nur bei einer 

regelmäßigen Liste. Ein normales Sortierprogramm muß mit Daten aller Art fer- 

tigqwerden und kann nicht — im Gegensatz zum menschlichen Gehirn — sagen: 

“Ach, dies ist eine regelmäßige Zahlenfolge, bei der ich jedem Element sofort den 

richtigen Platz geben kann.” 

2. Da die Daten keine bestimmte Regelmäßigkeit haben, könnten Sie nicht ganz so 

leicht das höchste oder niedrigste Element der Folge, dann das zweithöchste etc., 

bestimmen. Um die Karte mit dem höchsten Wert zu finden, müßten Sie jede 

einzelne Karte untersuchen und könnten erst ganz am Schluß feststellen, welche 

davon die höchste war. 

3. Da Sie immer nur eine Aufgabe zur gleichen Zeit erfüllen und nur einen 

Tatbestand überprüfen können, kämen Sie nie in die Lage, sich ein Bild von der 

gesamten Liste zu machen. Sie müßten jeweils hier und da ein Element verglei- 

chen, ohne überblicken zu können, was im Ganzen vor sich geht. Zeigen Sie einem 

Menschen eine Liste in der Reihenfolge: 

0123456789 

mit dem Auftrag, sie von O bis 9 zu sortieren. Sie werden sofort die Antwort 

105



bekommen: “Das ist schon sortiert.” Der Mikrocomputer könnte diese Antwort 

niemals geben, ohne vorher jedes Element der Liste zu untersuchen. 

Unter Berücksichtigung dieser wichtigen Unterschiede zwischen den Fähigkeiten 

des Menschen und des Computers könnten wir fast eine Klassifizierung von 

Sortiermethoden vornehmen: am einen Ende die Methoden, bei denen die 

Beschränkungen des Computers sämtlich akzeptiert werden, am anderen Ende 

diejenigen, die einige der Abkürzungen zu imitieren versuchen, die der menschli- 

che Verstand nehmen würde. Die einfachste aller bekannten Methoden, deren 

Arbeitsweise zugleich sehr starr '‘computergemäß'’ ist, heißt Bubble-Sort. 

DER BUBBLE-SORT 

Der Bubble-Sort gründet sich im wesentlichen auf die Fähigkeit des Mikrocompu- 

ters, zwei benachbarte Elemente vergleichen und entscheiden zu können, welches 

größer ist. Der Name rührt von der Art her, wie im Verlauf des Sortierens die 

höheren Werte die Liste gleichsam ‘aufschaumen’ (bubble up), wie die Blasenbil- 

dung am Rand eines Glases mit Sprudelwasser. 

Zur Veranschaulichung nehmen wir wieder unsere Zettel und legen sie in der 

bekannten Reihenfolge aus: 

7315694802 

Halten Sie die genannten Regeln ein, d.h. es steht Ihnen ein Extraplatz zur 

Verfügung, der am Schluß frei sein muß, und gehen Sie wie folgt vor: 

1. Beginnen Sie mit dem ersten Zettel, der 7 links außen, vergleichen Sie ihn mit 

dem Zettel daneben, in diesem Fall der 3. Da 7 größer als 3 ist, nehmen Sie die 3 

und legen Sie sie auf den Extraplatz. Bringen Sie die 7 auf dem Platz unter, wo 

vorher die 3 lag, und holen Sie nun die 3 aus dem Extraplatz auf die vorher durch die 

7 belegte Stelle. Damit haben Sie die 7 in der Folge um eine Stelle nach oben 

verschoben. 

2. Lassen Sie die 7 in der Reihenfolge weiter nach oben rücken und gehen Sie 

dabei jedesmal wie beschrieben vor, wenn Sie rechts daneben eine kleinere Zahl 

finden. Zuletzt liegt die 7 an fünfter Stelle, rechts daneben die 9. 

3. Da Sie auf eine Zahl gestoßen sind, die größer als 7 ist, nämlich die 9, wenden 

Sie sich nun dieser neuen Zahl zu und behandeln sie genauso wie vorher die 7, 

d. h. Sie vertauschen sie mit der Zahl rechts daneben, falls diese kleiner ist. Da9 die 

106



größte Zahl der Folge ist, können Sie solange damit fortfahren, bis sie am Ende der 

Folge liegt. 

4. Fangen Sie am Anfang der Reihe mit der 3 wieder an. Ist die Zahl rechts daneben 

Kleiner, tauschen Sie beide aus; wenn nicht, lassen Sie die 3 liegen und machen Sie 

mit der größeren Zahl weiter. Zum Schluß liegt die 8 an neunter Stelle links von der 

9. Da Sie beim Überfliegen der Reihe die 9 bereits als größte Zahl erkannt haben, ist 

der Vergleich mit der letzten Zahl der Reihe eigentlich überflüssig. 

5. Gehen Sie zum Anfang zurück und nehmen Sie die 1. Sie muß sofort mit der 3 

vertauscht werden. Fahren Sie weiter oben in der Reihe fort und vergessen Sie 

nicht, daß Sie die letzten Elemente nicht zu beachten brauchen, weil sie vorher 

schon korrekt eingegliedert wurden. 

6. Wiederholen Sie den Vorgang, bis Sie die ganze Reihe einmal durchgehen 

können, ohne etwas auszutauschen. Bedenken Sie, daß Sie als Computer ohne 

diesen Durchgang nicht wissen, ob die Reihenfolge stimmt; denn Sie können die 

Reihe als Ganzes nicht sehen. 

Wenn Sie genau nach Vorschrift verfahren sind, sollten die Zettel nach jedem 

Durchgang jeweils so ausliegen: 

7315694802 : START POSITION 

3156748029 

1356470289 

1354602789 

1345026789 

1340256789 

1302456789 

1023456789 

0123456789 

Nachdem Sie den Vorgang einmal durchgespielt und zuletzt eine richtig sortierte 

Reihenfolge herausbekommen haben, sollten Sie es mit beliebigen anderen Folgen 

nochmals ausprobieren, um sich mit der Methode vertraut zu machen. Es gibt 

jedoch noch mehr, was für die Beurteilung dieser und jeder anderen Sortierme- 

thode ganz wesentlich ist. 

Bauen Sie die Ausgangsfolge wieder auf und fangen Sie an, nach der Bubble-Sort- 

Methode zu sortieren. Notieren Sie sich diesmal in getrennten Spalten jeden 

Vergleich zwischen zwei Elementen (ohne Berücksichtigung der jeweiligen Größe 

der verglichenen Zahlen) und jeden Austausch von zwei Zetteln, den Sie vorneh- 

107



men. Nach meiner Rechnung erhalte ich folgendes Resultat für die 8 Durchgänge, 

bei denen etwas verändert wird, und für den letzten Durchgang, der nur die richtige 

Reihenfolge bestätigt: 

1) 9 VERGLEICHE 8 VERTAUSCHUNGEN 

2) 8 ” 4 " 

3) 7 " 3 " 

4) 6 " 3 " 

5) 5 ” 2 ” 

6) 4 " 2 ” 

7) 3 " 2 " 

8) 2 ° 1 " 

9) 1 " 0 " 

SUMME: 45 VERGLEICHE 25 VERTAUSCHUNGEN 

Damit haben Sie etwas erfahren, das für das Verständnis der Wirkungsweise aller 

Sortiermethoden von entscheidender Bedeutung ist. Sortieren heißt vergleichen 

und vertauschen; es gibt genauso viele Unterschiede zwischen Methoden wie 

Methoden selbst, wobei Vertauschungen immer viel mehr Zeit erfordern als Verglei- 

che. Es ist möglich, Sortierverfahren ihrer erwarteten Leistung entsprechend 

mathematisch einzuschätzen. Wir haben das an dieser Stelle nicht wirklich vor, aber 

dabe ergäben sich für die Bubble-Sort-Methode im besten Fall (d. h. bei einer 

schon geordneten Reihenfolge) zum Sortieren einer Reihe mit N Elementen O 

erforderliche Vertauschungen und N-1 Vergleiche. Im schlechtesten Fall (bei einer 

Reihe von Elementen in umgekehrter Reihenfolge) brauchte die Bubble-Sort- 

Methode 0.5*N*(N-1) Vertauschungen und genauso viele Vergleiche. 

In der Praxis bedeutet die kurze Formel: Der Bubble-Sort benötigt im ungünstigsten 

Fall 

für 100 Elemente: 4950 Vertauschungen, 4950 Vergleiche, 

für 1000 Elemente: 499 500 Vertauschungen, 499 500 Vergleiche. 

Daraus können Sie ersehen, daß die Bubble-Sort-Methode in bezug auf die Anzahl 

der erforderlichen Operationen ungeheuer aufwendig wird, wenn die Anzahl der zu 

sortierenden Elemente groß wird. 

Natürlich entspricht die tatsächliche Anzahl der Vertauschungen beim Sortieren 

einer bestimmten Liste sehr selten dem besten oder schlechtesten Fall. Bei unserer 

eigenen kurzen Folge hatten wir die größtmögliche Zahl von Vergleichen 

[0.5*10*(10-1)=45], und das wird auch bei anderen Listen häufig der Fall sein. 

Was die Vertauschungen betrifft, hatten wir jedoch nur etwas über die Hälfte der 

theoretisch größten Zahl. Bei Listen ist das unterschiedlich, aber im allgemeinen tut 

108



sich der Bubble-Sort mit dem schnellen Sortieren um so schwerer, je länger die 

Liste ist. Bei kurzen Listen machen sich Unterschiede im Zeitaufwand kaum 

bemerkbar. Hier kommt es eher auf möglichst einfache Programmierbarkeit des 

Sortierprogramms an. 

PROGRAMMIEREN DES BUBBLE-SORT 

Nachdem wir uns in Ruhe einen Einblick in die Bedeutung des Sortierens allgemein 

und die Arbeitsweise des Bubble-Sort im besonderen verschafft haben, wollen wir 

nun erklären, wie das im Rahmen eines Programms zu formulieren ist (falls Sie jetzt 

noch Wert darauf legen). Weiter unten ist ein einfaches Programm skizziert, mit dem 

wir drei verschiedene Sortiermethoden testen werden. Das Programm besteht aus: 

1. einem Zufallswortgenerator zur Erstellung einer Liste von 100 unsinnigen Buch- 

stabenkombinationen, der in A$ abgelegt wird; 

2. einer Kopierroutine, die die Ausgangsliste in ein zweites Feld kopiert, damit wir 

später dieselbe Liste für alle anderen Sortiermethoden benutzen und ihre Ausfüh- 

rungen vergleichen können; 

3. einer Prüfroutine, die eine Liste während der Bearbeitung durch eines der 

Sortierverfahren auf ihre richtige Reihenfolge hin untersucht; 

4. einer Routine zum Ausdruck der Liste, damit Sie die Reihenfolge selbst überprü- 

fen können. Dieses Unterprogramm werden Sie womöglich gar nicht aufrufen, 

solange alles problemlos abläuft; denn es verhindert den gleichzeitigen Bildschirm- 

ausdruck der Timings für alle drei Sortierprogramme, die eingegeben werden; 

5. einer Routine, die die ungeordnete Liste nach dem Bubble-Sort-Verfahren in 

alphabetischer Reihenfolge sortiert. 

In diesem Kapitel beschränken wir uns auf das Sortieren von Strings. Um Zahlen zu 

sortieren, muß man lediglich die Namen der Felder in numerische Felder abändern. 

Wie Sie sehen werden, arbeiten die Sortierprogramme dabei schneller, vor allem 

solche, die eine große Anzahl von Vertauschungen erfordern. Denn ständiges 

Vertauschen von Strings führt beim C 64 dazu, daß er in ziemlich regelmäßigen 

Abständen Pausen zum Aufräumen des Speichers macht. Es gibt einige Methoden, 

die — wenigstens auf dem C 64 — bei Zahlen sehr schnell sind, aber wegen der 

vielen Vertauschungen für Strings nicht zu empfehlen sind. 

In den angeführten Sortierbeispielen werden unsere Listen immer in alphabetische 

109



Reihenfolge gebracht. Wenn Sie eine Liste absteigend ordnen wollen (d. h. von Z 

bis A), müssen Sie nur die Zeilen ändern, die Bedingungen mit > und < enthalten, 

um die Bedingungen umzukehren. 

1800 

i601 

1882 

1818 

1028 

REM 

REM KONTROL ROUTINE 

REMEKKKKKKKK KKK KKK KK 

GOSUBS008 

GOSUB4000: TIS="900000" :GOSUBSO00>PR 

INTT1I#: GOSUBEO00 : GOSUB 7/800 

1160 

i999 

4000 

4@01 

4002 

4010 

4020 

4030 

4846 

808 

~O01 

~008e2 

818 

828 

3838 

2840 

38508 

868 

2070 

888 

50998 

56898 

6001 

6002 

56010 

6820 

6930 

PRINT"LISTE SORTIERT" 
STOP 

POE Peak ok ok tk kk ok kK KK 

REM KOP IERROUT INE 
REM kkk KOK KK KK 

FORI1=8T099 
BSC 1) =AS( 1D 
NEXTI 
RETURN 
Haul2 2222222 22 22 2 2 2020 

REM ERZEUGERROUTINE 
REMKKKKKKKKKKKKKK KKK 

IT=100: DIMAS IT-1),BS¢IT-1) 
FORI=OTOIT-1 
Te="" 
FORJ=1T04+INTC9#RND(8>) 
T$=TS+CHR#(65+ INTC264RND(O) >> 
NEXTJ 
ASC ID=T# 
NEXT I 
RETURN 
FRE Moke oe oe ie oe 2k 2 ke oie kK ok kk 

REM AUSDRUCKROUT INE 
REM % kkk KK KKK KKK KK 

FORI=@TOIT-1 
PRINTBS$CI) 
IFI/IB=INTCI/IQO)ITHEN GET T$: IFT$="" 

THENSB3B:REM WEITER MIT TASTE 

6040 

6950 

110 

NEXT I 

RE TURN



’o88 

real 

‘882 

7018 

7028 

STELLE 

7030 

7840 

3800 

8881 

3082 

38016 

8828 

3930 

3046 

80508 

S860 

30708 

3080 

3690 

REM KKKKKKEKK KKK 

REM PRUEFROUT INE 

REM sok kok RK KKK KKK 

FOR I=@TOIT-2 

IFBS¢ 1) >BS¢C1+1)THENPRINT"FALSCH AB 

"sz I 

NET I 

RETURN 

FRE M1 2k ok ook kK kk 

REM SORTIEREN 

PRE Beto 2k oe kok kok ok kk 

FORI=<(IT-1>TO1STEP-1 

FORJI=BTOI-1 

IFB$¢J><¢=BS¢J+1>)THENSO7O 

TS=BSC J) 

BS (J>=BSCJ+1) 

BS(J+19=TS 

NEA TJ 

NEXT I 

RETURN 

Wenn Sie genauso vorgegangen sind wie bisher beschrieben, sollten Sie mit 

diesen Zeilen keine Schwierigkeiten haben; denn sie halten sich genau an die 

Methode, die Sie schon per Hand ausprobiert haben. 

Das aufgelistete Sortierprogramm kann ohne weiteres aus dem Programm heraus- 

genommen und in Ihren eigenen Anwendungen dort untergebracht werden, wo 

kleinere Datenmengen zu sortieren sind. Sie müssen nur die Zeilennummern Ihrem 

Programm anpassen und die Namen der Felder Ihren Erfordernissen gemäß 

ändern. 

Starten Sie das Programm einfach mit RUN, und warten Sie auf die Bestätigung, daß 

die erzeugte Zufallsliste korrekt sortiert wurde. Sie werden über die Zeitspanne 

informiert, die das Sortieren der kopierten Zufallsliste vom Beginn bis zum Abschluß 

benötigte. Sie könnten das Programm auch für die Bearbeitung längerer Listen 

einrichten, indem Sie den Wert von IT in Zeile 5010 ändern — sofern es Ihnen nichts 

ausmacht, Däumchen zu drehen, während das Sortierprogramm vor sich hinläuft. 

Falls Sie sich doch zur Arbeit mit Listen entschließen, die wesentlich mehr als 100 

Elemente umfassen, sollten Sie irgendwo eine zusätzliche Zeile mit FRE(O) einfü- 

gen. Diese sorgt beim C 64 dafür, daß die Garbage Collection regelmäßig ausge- 

führt wird, und der Rechner nicht von den gewaltigen Anforderungen, die das 

Jonglieren mit hunderten verschieden langer Strings mit sich bringt, so überstrapa- 

ziert wird, daß das Programm mit einem OUT OF MEMORY ERROR abbricht. 

111



DER DELAYED-REPLACEMENT-SORT: 
EINE EINFACHE ABKURZUNG 

Denken Sie einmal an die Zettel zurück, mit denen wir zu bestimmen versuchten, 

wie ein Mensch eine Liste sortiert. Ich habe bei der Gelegenheit bemerkt, daß eine 

vermutlich von den meisten benutzte Methode darin besteht, den höchsten oder 

niedrigsten Wert der Folge festzustellen und ihn sofort auf den richtigen Platz zu 

legen. Sie hätten auch anfangen können, indem Sie den dritten Zettel auf den 

richtigen Platz legten, dann den siebten, dann den ersten — im Grunde hätten Sie 

jede beliebige Reihenfolge wählen können. Dies wäre deshalb möglich gewesen, 

weil die Liste aus Werten mit regelmäßigen Lücken bestand und Sie die richtige 

Position der Zettel schon an der Nummer erkennen konnten. Wären die Intervalle 

unregelmäßig gewesen, dann wäre es Ihnen sehr viel schwerer gefallen, den Zettel 

zu finden, der an die dritte Stelle gehörte. Die meisten Listen haben Elemente mit 

unregelmäßigen Intervallen, und wenn Sie die Position eines Elementes zweifelsfrei 

bestimmen wollen, ist es am einfachsten, zuerst das größte oder kleinste, dann das 

zweitgrößte oder -kleinste etc. herauszufinden. 

Genau so ging der Bubble-Sort vor. Bei jedem Durchgang suchte er sich den 

höchsten Wert, der noch nicht richtig plaziert war, und brachte ihn an die passende 

Stelle. Gleichzeitig nahm er Veränderungen an der restlichen Reihe vor, aber die 

meisten Vertauschungen hatten den Zweck, ein Element auf dem richtigen Platz 

unterzubringen. Es stellt sich die Frage, ob all diese Vertauschungen notwendig 

sind. Die Antwort heißt nein. 

Wir wollen anhand der bekannten Zettel untersuchen, auf wie viele Vertauschungen 

man hätte verzichten können. Legen Sie zunächst die Zettel in derselben Reihen- 

folge aus, mit der wir die Bubble-Sort-Methode geprüft haben: 

7315694802 

Nehmen Sie nun eine kleine Münze, die Sie auf den Zettel mit der 7 links außen 

legen. Die Münze bezeichnet die Position des Zettels mit dem höchsten Wert, den 

Sie gefunden haben. Das weitere Vorgehen: 

1. Vergleichen Sie den Wert des Zettels mit der Münze und den des Zettels rechts 

daneben. Der nächste Zettel, die 3, hat einen kleineren Wert, deshalb bleibt die 

Münze auf der 7 liegen. 

2. Setzen Sie den Vergleich weiter rechts fort, also bei der 1 und so weiter, solange 

die Zettel, die Sie vergleichen, im Wert niedriger sind als der Zettel mit der Münze. 

3. Wenn Sie auf einen Zettel treffen, der einen höheren Wert hat als der mit der 

112



Münze, in diesem Fall die 9, legen Sie die Münze auf diesen Zettel. Dann 

vergleichen Sie den Zettel mit dem neuen höchsten Wert mit denen rechts 

daneben: sind sie kleiner, bleibt die Münze liegen, sind sie größer, wird sie 

verschoben. In unserem Beispiel bleibt die Münze bis zum Schluß des Durchgangs 

auf der 9 liegen. 

4. Legen Sie den Zettel, mit dem Sie den Durchgang beendet haben, auf den 

Extraplatz. An die freie Stelle kommt jetzt der Zettel mit der Münze. Dann holen Sie 

den Zettel aus dem Extraplatz nach links an die Stelle, wo vorher der Zettel mit der 

Münze lag. 

5. Legen Sie die Münze auf den Zettel links außen, und wiederholen Sie den 

ganzen Vorgang, aber wie beim Bubble-Sort mit der Einschränkung, daß Sie bei 

jedem Durchgang weniger Vergleiche vornehmen, da der ungeordnete Bereich der 

Folge bei den vorhergehenden Durchgängen um jeweils eine Stelle verringert 

wurde. 

Wenn Sie sich an die beschriebene Methode halten, müßten die Reihen bei jedem 

Durchgang wie folgt ausliegen: 

7315694802 : START POSITION 

7315624809 

7315624089 

0315624789 

0315426789 

0312456789 

0312456789 

0213456789 

0123456789 

Wenn Sie Ihrer Ansicht nach die Methode begriffen haben, erwartet Sie nun die 

eigentliche Lektion über dieses Sortierverfahren; denn jetzt werden wir die Vertau- 

schungen und Vergleiche genauso abzählen wie beim Bubble-Sort. Um den 

Bubble-Sort nicht zu benachteiligen, zählen wir auch jedes Verschieben der Münze 

mit, und das erste Mal, als sie zu Anfang auf den linken äußeren Zettel gelegt wurde. 

Nach meiner Rechnung ergeben sich folgende Zahlen: 

1) 9 VERGLEICHE 1 VERTAUSCHUNGEN 2 VERSCHIEBUNGEN 

2) 8 ” 1 ” 2 ” 

3) 7 ” 1 ” 1 ” 

4) 6 " 1 " 4 " 

113



5) 5 " 1 ” 3 " 

6) 4 " 0 " 3 " 

7) 3 " 1 ” 2 " 

8) 2 " 1 ” 2 " 

9) 1 " 0 " 2 ” 

SUMME: 

45 VERGLEICHE 7 VERTAUSCHUNGEN 21 VERSCHIEBUNGEN 

Offenbar haben wir einen größeren Handel zwischen Vertauschungen und Ver- 

schiebungen der Münze durchgeführt. Selbst bei manueller Simulierung ist es viel 

einfacher, die Münze zu bewegen als zwei Zettel auszutauschen. Wird die Methode 

vom Computer gesteuert, bedeutet die einfache Wertänderung einer Variablen (die 

zur Aufzeichnung des höchsten zuletzt gefundenen Wertes dient) im Vergleich zu 

der dreiteiligen Operation beim Vertauschen von zwei Strings eine enorme Er- 

sparnis. 

Das Ergebnis für den ungünstigsten Fall bei der Delayed-Replacement-Sortierme- 

tnode macht die Situation noch deutlicher. Im denkbar schlechtesten Fall braucht 

dieses Verfahren wie der Bubble-Sort 0.5*N*(N—-1) mindestens Vergleiche. Dage- 

gen beträgt die größtmögliche Anzahl von Vertauschungen nur N-1, d.h. in 

unserem Beispiel neun. Die meisten Verschiebungen werden vorgenommen, wenn 

die Liste völlig geordnet ist. Beispielsweise ergibt ein Durchgang der vollständig 

sortierten Liste neun Verschiebungen des Zeigers bis zum höchsten Wert. Wenn 

wir uns die Anzahl der Verschiebungen pro Durchgang und die der Vergleiche im 

selben Durchgang merken, können wir sicher schließen, daß der erste Teil der 

Folge richtig geordnet ist, sobald die beiden Werte übereinstimmen. Zum Sortieren 

unserer Zettel in der Reihenfolge: 

1234567890 

sind 45 Verschiebungen notwendig, was verdächtig an die bekannte Formel 

0.5*N*(N-1) erinnert. Wir folgern daraus, daß der Delayed-Replacement-Sort im 

Höchstfall 

für 100 Elemente: 4950 Vergleiche, 99 Vertauschungen und 4950 Verschie- 

bungen, 

für 1000 Elemente: 499 500 Vergleiche, 999 Vertauschungen und 499 500 

Verschiebungen 

erfordert. 

Wenn es stimmt, daß Verschiebungen wesentlich schneller sind als Vertauschun- 

114



gen, muß der Wegfall von etwa 500 000 Vertauschungen im zweiten Fall zu einer 

merklichen Zeitersparnis führen. Das ist nur durch einen Vergleich beider Sortier- 

methoden in der Praxis zu beweisen. Zu diesem Zweck muß nur die unten 

abgedruckte, in das schon vorgestellte Programm passende Routine eingegeben 

werden: | 

1020 GOSUB4000: TIS="000000" : GOSUBS080:PR 

INTTI#: GOSUBE600 : GOSUB/ O00 

1030 GOSUB400@0: TI1S="000000":GOSUBS000:PR 

INTT1#: GOSUBEO0G : GOSUB/7 O00 

38000 

9001 

9882 

3616 

9020 

3030 

9248 

9958 

9960 

9070 

3080 

306390 

3198 

Haur2 222222 2 2 2 2 2 2 2 2 

REM SORTIERROUTINE 

REMKKKKKKKKKKKKEKKKEK 

FORI=IT-1TOISTEP-1 

NN=B 

FORJ=1TOI 

IFBS¢ J> OBS CNN THENNNE ST 

NEXT J 

T#=BSCI) 

BECII=SBEENN) 

BSCNN?=T$ 

NEXTI 

RETURN 

Nach wiederholtem Programmdurchlauf erweist sich bei dieser Methode gegenüber 

dem einfachen Bubble-Sort für 100 Elemente eine Ersparnis von 50-60 Prozent. 

Gleichzeitig wird klar, daß wir damit das Bubble-Sort-Verfahren durch Entfernen 

überflüssiger Vertauschungen lediglich ausgebessert haben. 

DER SHELL-METZNER-SORT: 
DIE WIRKUNG VON ZWEIERPOTENZEN 

Zum wirklich effizienten Sortieren müssen wir den relativ sicheren Weg wiederhol- 

ter, systematischer Datendurchgänge auf der Suche nach größten und kleinsten 

Werten verlassen. Wie bei der Binärrecherche müssen wir uns im Vertrauen auf die 

Fähigkeit binärer Methoden, Ordnung in das mutmaßliche Chaos zu bringen, auf 

eine scheinbar unsystematische Methode einlassen. Obwohl bei dieser Sortierme- 

thode in den Anfangsstadien offenbar verrückte Vertauschungen stattfinden, ordnet 

sich das Durcheinander umfangreicher Listen weit schneller als bei den anderen 

bisher verwendeten Methoden. 

115



Der Ablauf dieses Verfahrens ist nicht leicht zu begreifen, aber wir werden ver- 

suchen, es wieder mit unseren ungeordneten Zetteln nachzuvollziehen. Hierfür 

brauchen Sie jedoch außer den Zetteln vier Münzen mit unterschiedlichen Werten 

und ein Stück Papier. Wir nennen die vier Münzen in aufsteigender Wertfolge A, B, 

C und D. Auf dem Papier notieren wir die veränderlichen Werte einer Variablen, der 

wir den Namen GAP (Lücke) geben. 

Die Methode arbeitet nach dem Prinzip, Elemente auszutauschen, deren Abstand 

voneinander die höchstmögliche Zweierpotenz beträgt, die in der Liste der zu 

sortierenden Daten vorkommen kann. Nachdem wir alle entsprechenden Vertau- 

schungen ausgeführt haben, machen wir mit den halb so weit voneinander entfern- 

ten Elementen weiter etc. In unserem Fall beginnen wir mit den Vertauschungen bei 

einem Ausgangsabstand von 8; also schreiben Sie auf Ihr Blatt: GAP=8. Jetzt legen | 

Sie die Münzen A und B auf den linken äußeren Zettel (7). Im Verlauf des Sortierens 

werden wir Münze A (mit dem geringsten Wert) zur Bezeichnung des linken der 

beiden zu vertauschenden Zettel benutzen. Münze B brauchen wir zur Markierung 

der Stelle innerhalb der Reihe, die wir bei der Suche nach dem jeweiligen Wert von 

GAP erreicht haben. Münze C wird jetzt auf den äußersten rechten Zettel gelegt, 

von dem aus noch mit GAP umgestellt werden kann. Im Beispiel ist das Position 2, 

da 2 plus der Wert von GAP an das äußere Ende der Reihe führt. Münze D wird 

während des Sortierens umhergeschoben und markiert die Position des Zettels, 

den GAP rechts von dem Zettel mit Münze A unterbringt. 

Spielen Sie jetzt die unten beschriebenen Schritte nach: 

1. Legen Sie die Zettel wie vorher in der Reihenfolge 7315694802 aus. 

2. A befindet sich in Position 1; also kommt D in Position 1+GAP (=9). Die 

entsprechenden Zettel sind 7 und 0, werden also ausgetauscht. Die Münzen 

bleiben noch liegen. 

3. Auch wenn es zu diesem Zeitpunkt noch unsinnig erscheint, versuchen wir jetzt, 

A um soviele Stellen nach links zu verschieben, wie der Wert von GAP beträgt. Den 

Grund werde ich später nennen. Im Augenblick reicht es zu wissen, daß wir den 

Schritt in Erwägung ziehen, ihn nicht durchführen können und deshalb B um eins 

nach rechts verschieben. 

4. Immer wenn B um eins nach rechts verschoben wird, folgt A automatisch an 

dieselbe Stelle. Legen Sie also A zu B auf Position 2. C befindet sich ebenfalls dort. 

5. D bekommt jetzt den Platz A+GAP, d. h. 10. Die entsprechenden Zettel sind 3 

und 2, werden also ausgetauscht. 

116



6. Wir prüfen erneut die Möglichkeit, A um GAP Stellen nach links zu schieben. Da 

das auch jetzt nicht möglich ist, schieben wir B um eins nach rechts. 

7. Wie Sie jetzt sehen, ist C und B überholt worden. Das bedeutet, der erste 

Datendurchgang ist beendet. Nach jedem beendeten Durchgang müssen wir den 

Wert von GAP halbieren und alle Münzen neu auslegen. Streichen Sie die 8 auf 

dem Blatt durch, und schreiben Sie statt dessen 4 hin. B kommt wieder links außen 

zu liegen, gefolgt von A. C gehört auf die Position 10—GAP, das ist zur Zeit 6, und 

steht für die äußerste rechte Stelle, von der aus ein Austausch mit GAP4 noch 

stattfinden könnte. 

8. Jetzt können wir erneut versuchen, Elemente auszutauschen. Bringen Sie D auf 

A+GAP, also auf Position 5. Die dazugehörigen Zettel sind O und 6, folglich können 

sie nicht vertauscht werden. Kann ein Austausch nicht stattfinden, wird B um eins 

nach rechts verschoben, und A folgt auf dieselbe neue Position. D kommt auf 

Position 6 (A+GAP). 

9. Die Verschiebung von B, A und D wird solange wiederholt, bis B und A sich in 

Position 6 befinden. Bis zu diesem Punkt konnten keine Vertauschungen mit GAP4 

ausgefuhrt werden. 

10. B und A liegen an sechster Stelle, und die Werte der beiden von A und D 

markierten Zettel sind 9 und 3. Sie können also ausgetauscht werden. 

11. Da ein Austausch stattgefunden hat, überlegen wir wieder, ob A um GAP 

Stellen nach links verschoben werden kann. Diesmal ist es möglich, also bringen 

wir A auf die neue Position 2 und danach D auf A+GAP, d. h. 6. Die beiden Zettel 2 

und 3 können nicht ausgetauscht werden. Wir haben das aus folgendem Grund 

versucht: Jedesmal, wenn ein Zettel weiter unten in der Reihenfolge zu liegen 

kommt, müssen wir prüfen, ob er hätte ausgetauscht werden können, wenn er von 

Anfang an auf dem neuen Platz gelegen hätte. Wäre die Vertauschung möglich 

gewesen, hätten wir versucht, A wieder um GAP Stellen nach links zu verschieben. 

B bleibt währenddessen auf seinem Platz. 

12. Jedesmal, wenn ein Austausch nicht stattfinden kann oder A nicht um GAP 

Stellen nach links verschoben werden kann, wird B verschoben, gefolgt von A. Das 

bedeutet, B hat jetzt C überholt, und damit ist der Durchgang abgeschlossen. 

13. Verringern Sie den Wert von GAP um die Hälfte auf 2. Bringen Sie A und B auf 

Position 1 zurück. Legen Sie C auf Position 10-GAP (8) und D auf Position A+GAP 

(3). 

117



14. Nach vergeblich versuchten Vertauschungen erreichen B und A Position 4, D 

Position 6. Tauschen Sie die 5 und die 3 aus. A wandert auf Position 2 zurück. Da 

kein weiterer Austausch möglich ist, wird B um eins nach rechts gerückt. 

15. B und A befinden sich jetzt auf Position 5, und Sie können die 6 und die 4 

austauschen. Die Verschiebung von A nach links ermöglicht keine weiteren Vertau- 

schungen, also wird B verschoben. 

16. Da in Position 6, 7 und 8 nichts ausgetauscht werden kann, endet der 

Durchgang ohne weitere Vertauschungen. 

17. GAP wird auf 1 verringert, A und B werden wieder auf Position 1 gebracht. C 

kommt auf Position 10-GAP (9) und D auf Position A+GAP (2). 

18. Die Verschiebung der Zeiger bei GAP1 bewirkt einen Durchgang in derselben 

Art wie beim Bubble-Sort. Sie sollten jetzt in der Lage sein, die Münzen ohne 

weitere Anleitung zu verschieben. 

19. Wenn alles geklappt hat, ist die Liste jetzt sortiert. Das bedeutet, daß GAP beim 

nächsten Durchgang kleiner als 1 wäre. 

20. Um zu veranschaulichen, warum der Zeiger A nach jeder Vertauschung nach 

links verschoben wird, können Sie diesen letzten, dem Bubble-Sort ähnlichen 

Durchgang versuchsweise bei 5 Zetteln der Reihenfolge 0 1 34 2 ausprobieren. 

Gehen Sie mit den Münzen wie oben vor, und setzen Sie GAP auf 1. Sie stellen 

fest, daß kein Austausch möglich ist, bevor B auf Position 4 gelangt. Außerdem kann 

die Liste so nicht vollständig sortiert werden. Erst die Verschiebung von A um GAP 

Stellen nach links (auf Position 3) ermöglicht den zusätzlichen Austausch, mit dem 2 

an die korrekte Stelle gebracht werden kann. 

Wir werden bei der Shell-Metzner-Sortiermethode nicht versuchen, die Zahl der 

Vertauschungen, Vergleiche und Verschiebungen zu analysieren — teils, weil es 

den ganzen Tag dauern könnte, und teils, weil es bei dieser geringen Anzahl von 

Elementen wenig aussagen würde. Denn die Vorteile dieser Methode werden erst 

beim Sortieren größerer Datenmengen deutlich. Das heißt nicht, daß das Shell- 

Metzner-Verfahren nicht auch bei kleineren Datenvolumen angewendet werden 

kann. Ob eine kaum merkbare Beschleunigung die erforderliche zusätzliche Pro- 

grammierarbeit aufwiegt, ist reine Ansichtssache. | 

Wenn Sie mit der folgenden Routine den Shell-Metzner-Sort in das Sortiertestpro- 

gramm eingeben, werden Sie bei größeren Datenmengen eine enorme Zeiterspar- 

nis feststellen. Grundsätzlich variiert die Geschwindigkeit des Bubble-Sort etwa 

entsprechend der Formel N?/2, d.h. Erhöhungen von N werden miteinander 

118



multipliziert. Bei der Shell-Metzner-Methode ändert sich der Zeitaufwand etwa nach 

der Regel: 

1.6*N*x¢ LOG N/LOG 2). 

Das bedeutet, wenn im ungünstigsten Fall das Sortieren von 10 Elementen mit dem 

‚Bubble-Sort eine Sekunde dauerte, würde es bei 100 Elementen 100 Sekunden 

und bei 1000 Elementen 10 000 Sekunden dauern. 

Wenn wir auch beim Shell-Metzner-Verfahren wiederum vom ungünstigsten Fall 

ausgehen und annehmen, daß das Sortieren von 10 Elementen eine Sekunde 

dauert, dann würde es bei 100 Elementen 20 Sekunden und bei 1000 Elementen 

3000 Sekunden dauern. 

Dies sind keine präzisen Zahlenangaben zur Geschwindigkeit von Sortierprogram- 

men auf dem C 64, aber sie veranschaulichen die ungeheuren Unterschiede beim 

Sortieren wachsender Datenvolumen. Sie können das für sich nachprüfen, indem 

Sie im Testprogramm mit verschieden langen Listen experimentieren. 

1848 GOSUB4aa0 > TIS="O800000" :GOSUB10000:P 

RINTTI$S:GOSUBE6888 :GOSUB7998 

19000 

18081 

18882 

18818 

180828 

18938 

180848 

10050 

18068 

18078 

18888 

19090 

1@1a0 

16116 

16120 

REM&e eR KK KKKKKEKKKKKKKKKKKEKE 

REM SHELL-METZNER VERFAHREN 

REMAKE I I I EEK 

GAP=2tCINTCLOGCIT-1)9/LO0GC295+1) 

GAP =GAP /2 

C=IT-GAP-1:68=6: IFGAP< 1 THENRE TURN 

A=B 

D=A+GAP: IFBS(A) >BS(D) THENI 0080 

B=B+1: IFBOCTHENIO020 

GOTO 10049 

T#=BS (A) 

BSC A> =BS(D) 

BE(DI=-T$ 

A=A-GAP: IFACOTHENIOO6O 

GOTO 10050 

In der Praxis erreichen Sie bei der Anwendung der Shell-Metzner-Methode auf eine 

Liste von 100 Elementen eine durchschnittliche Einsparung von nur 60 Prozent 

gegenüber dem Bubble-Sort. Wird der Umfang der Liste jedoch vergrößert, so 

kommt man zu weitaus beeindruckenderen Ergebnissen. Für eine Liste mit 200 

Elementen braucht das Shell-Metzner-Verfahren nur etwa 15 Prozent der Zeit, die 

der Bubble-Sort in Anspruch nähme. 

119



SCHLUSS 

Das Thema Sortieren haben wir nicht einmal annähernd erschöpfend behandelt. Es 

gibt andere Sortiermethoden, die zwar keine astronomische, aber eine wesentliche 

Zeitersparnis gegenüber dem Shell-Metzner-Verfahren bringen. Das Problem dabei 

ist, daß sie fast ausnahmslos die Bereitstellung zusätzlicher Speicherkapazität 

erfordern, damit Daten zwischen die Hauptliste und eine oder mehrere Unterlisten 

eingeschoben werden können. Für die Praxis heißt das, ihr Tempo im Vergleich mit 

Shell-Metzner zeigt sich erst bei großen Datenmengen, die für die praktische 

Anwendung auf einem Heimcomputer zu speicherextensiv sind. Mit den Sortierme- 

thoden in diesem Kapitel können Sie von der kleinsten bis zur größten fast jede 

beliebige Datenmenge verarbeiten, die Methoden dem Schwierigkeitsgrad der 

Aufgabe anpassen und in vielen Fällen Ihre Programme enorm beschleunigen. , 

120



KAPITEL 9 

DATENSTRUKTUREN I 
Dieses Buch geht u.a. von dem Grundsatz aus, daß die meisten nützlichen 

Programme Daten speichern. Daten zu speichern und zu verarbeiten ist das, was 

Mikrocomputer am besten können; auf diesem Gebiet sind sie den Möglichkeiten 

jeder anderen Methode weit überlegen. Gelegentlich kann jedoch gerade die 

Leichtigkeit, mit der Mikrocomputer mit Informationen umgehen, als Ausrede für 

eine nachlässige und unüberlegte Datenspeicherung dienen. Erlaubt ist anschei- 

nend alles, solange das Programm die nötigen Daten im Gedächtnis behalten kann. 

Der Nachteil bei dieser Vorgehensweise ist, daß die Leistungsfähigkeit eines 

Programms durch eine falsche Datenstruktur außerordentlich beschnitten werden 

kann: Das Programm wird verlangsamt, das zu verarbeitende Material wird quantita- 

tiv eingeschränkt, oder die Struktur des Arbeitsprogramms wird unnötig verkompli- 

ziert. In diesem Kapitel wollen wir einige der zahlreichen Möglichkeiten untersu- 

chen, Daten so zu strukturieren, daß sie den Erfordernissen des Programms 

angepaßt sind und Geschwindigkeit und Speicherplatz maximieren. 

EINFACHE DATENSTRUKTUREN: 
DAS MASSGESCHNEIDERTE FELD 

Die bei weitem einfachste Struktur zum Speichern jeder Art von Informationen ist 

ein Feld, dessen Dimensionen genau darauf zugeschnitten sind, wie die Information 

selbst gegliedert ist. Ein Beispiel wäre etwa ein Programm zur Aufzeichnung von 

Umsatz, Profit, Steuern und Investitionen mehrerer Unternehmen. Hier könnte man 

ein numerisches Feld ARRAY (X,3) definieren, wobei X die Anzahl der Unterneh- 

men ist, und Daten könnte man z. B. mit folgender Routine eingeben: 

188 INPUT"FIRMENNUMMER ">CY 

118 INPUT"UMSATZ ">ARRAYICY,O? 

128 INPUT"GEWINN "7ARRAY(CCY, 1) 

130 INPUT"STEUER ";ARRAYCCY,2) 

140 INPUT" INVESTITIONEN ";ARRAYCCY,3) 

In einem Dateiprogramm zum Speichern von Namen, Adressen und Telefonnum- 

mern könnte man ein Feld ARRAY$(500,2) definieren und Eingaben mit einer 

ähnlichen Routine wie der obigen machen. 

Solche Strukturen dürfen so komplex sein, wie es das Programm erfordert. Zum 

Beispiel hätte es bei dem oben erwähnten Programm für die Unternehmen nötig 

121



sein können, alle Daten über einen Zeitraum von fünf Jahren aufzuzeichnen. In 

diesem Fall würde das Feld als ARRAY(X,3,4) definiert, und jede der verschiedenen 

Kategorien bekäme eine Schleife für fünf Eingaben, so daß aus Zeile 110 eine 

eigene Routine würde: 

11@ FORI=8@TO4 

112 PRINT"UMSAT2Z IN": 1980+17" "7: 1INPUTAR 

RAYCCY,@,12 
114 NEXT 

Solche maßgeschneiderten Felder haben den Vorteil, das Speichern und den 

Zugriff auf Daten auf direktem Wege zu erlauben. Alles hat seinen eindeutigen Platz, 

und zum Auffinden eines Datenelements braucht man nur die Nummer des Unter- 

nehmens, die Kategorie der Information — z. B. Steuern — und das Jahr zu kennen. 

Daten in solchen Feldern lassen sich auch auf andere Weisen einfach abrufen. Will 

der Benutzer z. B. wissen, welchen Profit jedes Unternehmen 1978 gemacht hat, 

würde eine einfache Schleife 

188 FOR I=8 TO ITEMS:PRINT ARRAY<CI,2,1>: 

NEXT 

die Information problemlos bereitstellen. 

Ein weiterer Vorteil maßgeschneiderter Felder besteht in der Art, in der ganze 

Gruppen von Feldern verglichen werden können, die verschiedene, aber parallele 

Reihen von Informationen enthalten. In unserem Beispiel wäre es einfach, ein 

weiteres Feld mit den Namen der beteiligten Unternehmen zu definieren, und auf 

diese Namen könnte man mit genau derselben Variablen zugreifen, die bestimmt, 

welcher Datensatz ausgedruckt werden soll. In komplexen Datenverarbeitungspro- 

grammen ist eine Reihe verschiedener Felder, die alle parallele Informationen 

enthalten, nichts Ungewöhnliches. Nehmen wir den Fall, daß vielfältige Informatio- 

nen gespeichert werden sollen, die großenteils ähnlich strukturiert sind, sich z. B. 

auf verschiedene Monate des Jahres beziehen. Dann sind maßgeschneiderte 

Felder oft der einzige praktische Weg, die Zahl der Variablen zu kontrollieren, die 

zur Beschaffung von Informationen von vielen verschiedenen Stellen nötig sind. 

Wenn alle Daten sich auf Monate des Jahres bezögen, ließen sich vielleicht 

manchmal wichtige Informationen aus jedem Feld mit einer einzigen Variablen 

gewinnen, die für den betreffenden Monat steht. 

Maßgeschneiderte Felder haben jedoch ihre Nachteile, unter anderem den Spei- 

cherplatz, den selbst ein verhältnismäßig harmloses Feld verbraucht. Ein numeri- 

sches Feld mit den Dimensionen (100,10,10) sieht wohl nicht übermäßig groß aus, 

aber es benötigt 50 000 Bytes Speicherplatz — viel mehr, als in BASIC auf dem 

122



C 64 verfügbar ist. Um den für ein gewünschtes Feld notwendigen Speicherplatz zu 

berechnen, multiplizieren Sie einfach alle bei der Definition des Feldes in den 

Klammern vorkommenden Zahlen und multiplizieren das Ergebnis dann mit 

2 bei einem Integerfeld, 

3 bei einem Stringfeld, 

5 bei einem Gleitkommafeld; 

wobei Sie berücksichtigen müssen, daß die für ein Stringfeld erhaltene Zahl nur den 

Verwaltungsbedarf enthält, und daß alles im Feld Abgelegte zum benötigten Spei- 

cherplatz hinzuaddiert werden muß. Bei numerischen Feldern ist allen Elementen 

der Wert O zugewiesen, so daß sich der erforderliche Speicherplatz nicht erhöht, 

wenn Elemente geändert werden. 

Beim Definieren großer und komplexer Felder ist es deshalb unerläßlich zu bestim- 

men, ob der Platz im Feld voll genutzt wird. Häufig müssen Dateien mit einer großen 

Anzahl von Kategorien definiert werden, ohne daß jede Eintragung Informationen in 

jeder Kategorie hat. Solche Felder heiBen ‘schwachbesetzt’ (sparse), und nur sehr 

wenige Anwendungen sind mit dem unbenutzten Speicherplatz, den ein komple- 

xes, aber schwachbesetztes Feld erzeugen kann, nicht uberfordert. 

Zusammenfassend möchte ich sagen: Bemühen Sie sich, eine Ihren Informationen 

genau angepaßte Datenstruktur zu planen, die alle Daten aufnehmen kann, die Sie 

voraussichtlich zu diesem Thema abspeichern wollen. Denn das wird Ihr späteres 

Programm zweifellos erheblich vereinfachen. Früher oder später werden Sie aller- 

dings mit Anwendungen konfrontiert sein, wo schon die Menge der Elemente oder 

die Komplexität der Struktur ein maßgeschneidertes Feld von vornherein als zu 

aufwendig erscheinen läßt. Dann werden Sie sich mit den anderen Speicherarten in 

diesem Kapitel näher beschäftigten müssen. 

DATENSTRUKTUREN FÜR ZAHLEN 

BYTEZAHLEN IN INTEGERFELDERN 

Der C 64 besitzt eine sehr sparsame Speichermethode für den Zahlenbereich, der 

in Datenverarbeitungsprogrammen meistens benutzt wird. Die meisten Werte in 

diesen Programmen — nicht die zum Speichern, sondern die zur Programmsteue- 

rung vorgesehenen Werte — sind ganze Zahlen (ohne Nachkommastellen) in einem 

Bereich, der durch die Grenzen z. B. von Feldern und Stringlängen bestimmt ist. 

Fast immer ist es reine Verschwendung, solche Werte in normalen numerischen 

Feldern unterzubringen, da jedes Element eines Gleitkommafeldes fünf Bytes im 

Speicher belegt, während ein Integerfeld nur zwei benötigt. 

123



Integerfelder können jedoch dazu dienen, den für kleine numerische Werte nötigen 

Platz noch weiter zu reduzieren, indem in jedes Feldelement mehr als ein Wert 

abgelegt wird. Das ist möglich, weil in einem Integerfeld jedes Element eine Zahl 

von —32768 bis +32767 aufnehmen kann; der Bereich umfaßt also 65536 Zahlen. 

Der verfügbare Bereich stellt einfach dar, was in einer 16-Bit-Zahl abgelegt werden 

kann, die das werthöchste der 16 Bits zur Aufzeichnung des positiven oder 

negativen Vorzeichens der Zahl benutzt; darauf wird im Abschnitt über die Funktion 

FRE im Kapitel ‘Strings’ näher eingegangen. Für uns ist wichtig, daß in einem 

Integerfeld ein Element eine Zahl bis 256*256—-1 aufnehmen kann (wenn der 

negative Bereich zugänglich ist). Wenn wir also zwei Zahlen im Bereich 0—255 

nehmen, eine davon mit 256 multiplizieren und dann die zweite addieren, werden 

effektiv zwei Zahlen in einer größeren abgespeichert. Beispielsweise könnte man 

die Zahlen 237 und 76 in dieser Reihenfolge mit Hilfe einer BASIC-Zeile speichern: 

188 NNA=256 4237 +76: REM ANTWORT = 69748 

Da der zulässige Zahlenbereich nicht 0-65535, sondern -32768 bis +32767 

umfaßt, muß jede Zahl über 32767, die in das Feld abgelegt werden soll, durch 

Subtrahieren von 65536 geändert werden. Daher müßte die BASIC-Zeile heißen: 

188 MNZ=256xr237+76: IF NN>32767THENNN=NN- 

655556 

Zur Entschlüsselung zweier Zahlen, die so in ein Element eines Integerfeldes 

abgespeichert werden, genügt eine weitere einfache BASIC-Zeile: 

100 NNFAKC XO -BS5536k( AX KOC OE NI= INTC NN-2 

S6?:N2=NN-2SEXNI 

Der Vorteil bei dieser Art der Zahlendarstellung liegt darin, daß man damit fast 

genauso viel Speicherplatz sparen kann wie beim Ablegen in einen String, d. h. ein 

Byte pro Zeichen plus geringer Verwaltungsbedarf für das Feld selbst. Außerdem 

können die Zahlen direkt auf Band oder Diskette gespeichert und geladen werden, 

ohne vorheriges Übersetzen von Zeichen in Zahlen und umgekehrt. Eher nachteilig 

dabei ist es, daß diese Methode bei normalem Gebrauch tatsächlich doppelt so 

langsam ist wie die Übersetzung von Zeichenwerten. Das wird Ihnen unter norma- 

len Umständen nicht auffallen, aber Sie müssen sich schon je nach Ausmaß der 

beabsichtigten Lade- und Speichervorgänge zwischen den beiden Methoden ent- 

scheiden. 

Zum Abspeichern einer Reihe von Werten im Bereich 0-255 ist folgende Routine 

geeignet: 

124



188 DIMAA«IS) 

118 INPUT"POSITION ";PP 

128 INPUT"WERT "7 

138 TT=A4(PP/2 )-655364CAXCPP/2)<@> 

194@ IF PP AND 1 THENTT=256*e INTCTT/256)+N 

N 

158 IF NOT PP AND 1 THENTT=cCTT+255)+256% 

NN 

160 AACPP/2>=TTt6S55364¢TT 32767 > 

176 NI=INTCRACPP/2 > /256) i N2=AXCPP/2 ) -256 

*N1I 

188 PRINTNI,N2 

196 GOTO11@ 

Zeile 130 berechnet den aktuellen Wert des richtigen Elements von A% und befaBt 

sich mit dem Problem negativer Zahlen. Die richtige Position in A% ist durch PP/2 

festgelegt, so daB die ersten beiden Werte in Element Null, die nachsten beiden in 

Element Eins etc. abgelegt werden. Beachten Sie, daß Zahlen nicht abgerundet 

werden müssen, wenn die Division von PP durch 2 z. B. 2.5 ergibt; denn der C 64 

liest A% (2.5) als A% (2). In Zeile 140 entdeckt ‘IF PP AND 1’ Werte mit ungerader 

Position; denn der logische Ausdruck PP AND 1 ist nur für ungerade Werte von PP 

wahr. Ist der Wert von PP ungerade, dann ist der abzulegende Wert der niedrigere 

der beiden Werte, die in das betreffende Element des Feldes abgelegt werden. Wir 

erhalten also den oberen Wert in der Form 256*INT(NN/256) und setzen auf diese 

Weise denjenigen Teil der Zahl auf Null, der weniger als ein ganzes Vielfaches von 

256 beträgt. Dann addieren wir die zu speichernde Zahl, die so zum unteren der 

beiden in diesem Element abgelegten Werte wird. In Zeile 150 ermittelt '\F NOT PP 

AND 1’ Werte mit geradem Index, die in die obere Position des betreffenden 

Elements im Feld abgelegt werden sollen. Das wird durch Verknüpfung von TT und 

255 mit AND erreicht. Dadurch bleiben alle Bits in NN enthalten, die Zahlen unter 

128 darstellen, und alle anderen werden eliminiert. Zum Ergebnis wird jetzt 256 mal 

der zu speichernde Wert addiert; er wird so zum oberen der beiden in dem 

betreffenden Element abgelegten Werte. Zeile 160 paßt TT wieder dem Bereich 

—32768 bis +32767 an und legt es wieder in A% ab. 

Eine solche Struktur ist leichter zu zerlegen als zu erzeugen: 

288 FORI=8T0393 

2P1B NN=AXK 17293-655368 (AAC 172 ISB) 

220 IF NOT I ANDO 1 THEN NN =INTCNN/256 ) 

225 IF I AND 1 THEN NN =NN-256¢INTCONN/25 

6) 

125



238 PRINTNN 

240 IFI/I@=INTCI/L1IO> THEN GET T$:IFT$=""T 

HEN24B8:REM WEITER MIT TASTE 

258 NEXTI 

Der Vorteil dieser Methode zur Einsparung von Speicherplatz liegt auf der Hand. Es 

sollte allerdings betont werden, daß sie mit größerem Zeitaufwand beim Speichern 

und Entschlüsseln von Werten bezahlt werden muß, wenn ständig vom Programm 

auf diese Werte zugegriffen wird. Einen Zeitgewinn bringt das Verfahren dagegen 

beim Laden und Speichern auf Band oder Diskette, da nur halb soviele Elemente 

verarbeitet werden müssen. 

ABLEGEN IM FREIEN SPEICHER 

Wer den freien Speicherplatz restlos für sein Programm nutzen möchte oder muß, 

sollte nicht vergessen, daß der C 64 noch 4096 Bytes in Reserve hat, die für das 

Erzeugen und Speichern von Variablen in normalem BASIC nicht zugänglich sind. 

Jedoch kann dieser Bereich, der bei der Speicheradresse 49152 beginnt, mit Hilfe 

von POKE- und PEEK-Befehlen genutzt werden. Fast jede ordentliche Struktur von 

numerischen Daten oder sogar Stringdaten kann dort abgelegt werden, wenn Sie 

bereit sind, einige Sorgfalt auf das Ausarbeiten der Struktur und der für den Zugriff 

auf die Daten benutzten Variablen aufzuwenden. 

Am leichtesten lassen sich in einem solchen freien Speicherbereich Daten in Form 

von Byte-Werten ablegen, d. h. ganze Zahlen von O bis 255. Um z.B. ein Feld mit 

den Dimensionen 50 mal 50 zu simulieren, können Werte mit einem Befehl 

folgender Art gespeichert werden: 

1808 FOKE 49152+50%%+Y,NN 

Dabei ist X die Zeilennummer, von O an gezählt. Y ist die Spaltennummer, ebenfalls 

von O an gezählt, und NN die zu speichernde Zahl. Einlesen kann man die Werte mit 

dem Gegenstück dieses Befehls, diesmal mit PEEK: 

1898 PEEK( 49152+504K+Y) 

Komplexer strukturierte Felder mit mehr als zwei Dimensionen lassen sich unter 

Berucksichtigung einiger Regeln erzeugen: 

1. Bestimmen Sie, wie Ihr Feld aussehen würde, wenn es in BASIC dimensioniert 

ware, z. B. A(20,10,5). 

126



2. Berechnen Sie die Anzahl der Elemente in jeder Einheit je Dimension, angefan- 

gen von rechts. Im obigen Beispiel hätte die Dimension ganz rechts in jeder Einheit 

ein Element, die zweite von rechts in jeder Einheit hätte fünf Elemente und die linke 

je 50 Elemente. 

3. Um eine Position in dem hypothetischen Feld festzulegen, beginnen Sie mit der 

Anfangsadresse des Speicherbereichs, den Sie benutzen wollen. Dann multiplizie- 

ren Sie den Index für jede Dimension mit der eben berechneten Anzahl der 

Elemente und addieren alles zur Anfangsadresse. Auf diese Weise bekäme das 

Element 14,7,3 aus dem obigen Beispiel die Adresse 49152+50*14+5*7+3. 

Für Zahlen, die zwei oder mehr Bytes in Anspruch nehmen, lassen sich komplexere 

Strukturen erzeugen, aber Sie werden immer auf die im vorigen Kapitel beschriebe- 

nen Methoden zurückgreifen müssen, um Zahlen in einzelne Bytes aufzuteilen. Bei 

Zwei-Byte-Zahlen würde die Regel lauten: Man multipliziert die aus den Dimensio- 

nen berechnete Adresse mit zwei und POKEt dann die zwei Bytes, aus denen die 

abzulegende Zahl besteht, in die errechnete und die darauffolgende Adresse. 

Innerhalb eines wie im o.g. Beispiel dimensionierten Feldes aus Zwei-Byte- 

Elementen kann man eine Zahl von 0O-65535 mit dieser Routine in Position 14,7,3 

ablegen: 

1900 NN=65 

118 A$=CHR$CNN? 

120 PRINT A$ 

ZAHLEN IN STRINGS 

Wir haben auch in Kapitel 8 gesehen, wie schnell und auch ökonomisch es sein 

kann, Daten in Strings variabler Länge abzulegen. Bei diesem Verfahren können 

neue Datenelemente an den Anfang, das Ende oder die Mitte eines Datenblocks 

eingefügt werden, wobei alle anderen bereits gespeicherten Elemente automatisch 

neu positioniert werden. Darüber hinaus ist Ihnen bekannt, daß für diese Daten die 

maximale Länge von 255 Bytes pro Einzelstring nicht gelten muß, da mehrere 

Elemente eines Stringfeldes in Anspruch genommen werden können. 

Diese Erkenntnis ist nicht nur für das Problem des Speicherns kleiner Stringdaten- 

Elemente von Bedeutung, Strings können häufig sehr sinnvoll beim Speichern 

numerischer Werte eingesetzt werden. Das ist möglich, weil im Zeichensatz des 

C 64 jedes Zeichen seinen eigenen Wert — genannt ‘ASCII-Wert’ — hat: eine Zahl 

von 0-255. In dieser numerischen Form speichert der C 64 die Zeichen. BASIC 

127



liefert dem Programmierer die beiden Funktionen ASC und CHR$, die Zahlen in 

Zeichen umwandeln und umgekehrt, so daß Zahlen in Zeichen übersetzt, als String 

gespeichert und später in Zahlen zurückverwandelt werden können. 

Folgende Zeilen demonstrieren die Umwandlung einer Zahl in ein Zeichen: 

188 Ni=INTCNN/256) > Ne=NN-256"N1 

110 PP=49152@+2*(504194+54e7+3) 

128 POKEFP,NI:POKEPP+1,NZ 

Wenn Sie diese Zeilen durchlaufen lassen, erscheint der Buchstabe A, dessen 

Zeichenwert genau 65 ist. Mit dieser Zeile machen Sie die Übersetzung rückgängig: 

159 PRINT ASCC AF) 

Daraus ersehen wir, daß CHR$ die Funktion hat, einen bestimmten Code-Wert in 

ein Zeichen umzuwandeln, während ASC den Code-Wert eines bestimmten String- 

zeichens ergibt. Wir können beide Funktionen kombinieren, um das Speichern 

kleiner numerischer Werte ökonomisch und flexibel zu gestalten: 

196 AS="" 

118 INPUT NN 

120 IFNN? =O@THENAS=AS+CHRS(CNN) 2 GOTO1198 

130 FORI=1TOLEN(CAS) 

148 PRINTASC<MIDSCA$,T>) 

158 NEATI 

Diese kurze Routine erlaubt die Eingabe von bis zu 255 Zahlen zwischen O und 255. 

Wenn Sie eine negative Zahl eingeben, wird die zweite Hälfte der Routine aktiv und 

gibt die Daten in der Reihenfolge ihrer Eingabe aus. Beachten Sie, daß die Funktion 

MID$ in Zeile 140 nicht wirklich festlegt, daß der Teilstring, aus dem ein ASC-Wert 

abgeleitet werden soll, nur ein Zeichen umfaßt. MID$(A$,I) bezeichnet in Wirklich- 

keit alles von A$ ab Zeichenposition |. Das liegt an der Eigenschaft der ASC- 

Funktion, nur jeweils auf das erste Zeichen des vorgefundenen Strings einzuwirken. 

Dieses Verfahren ist insofern nutzlich, als es den Umgang mit Strings nicht mehr auf 

einfaches Anfugen von Zeichen an einen vorhandenen String beschrankt. Zeile 120 

hätte ebensogut heißen können: 

ieß IF NN>=SB8THENA$ =SCHRFCNND +A$:GOTO11O 

128



so daß die Routine die Zahlen in umgekehrter Reihenfolge abgelegt hätte, was in 

einem normalen Feld kaum möglich wäre, ohne die vorhandenen Daten ständig 

weiterzuschieben. 

Genauso können wir uns der Methoden aus Kapitel 3 bedienen, um Zeichen 

irgendwo in den gegebenen String einzufügen: 

196 A$="" 

1198 INPUT"EINZUFUEGENDE ZAHL">NN 

128 PRINT"POSITION C1iITO'FLENCASI +17 59 "7 5 

INPUT PP 

13@ IFNN>=@THENAS=LEFTSCAS,PP-1)+CHRS CNN 

I+MIDSCAS,PP)?:GOTO110 

14@ FORI=1TOLENCAS) :PRINTASC (MIDS(CAS, 1) 9 

SNES T 

Bei Werten Uber 255 spart die Anwendung von Strings zum Speichern von 

Zahlenwerten zwar keinen Speicherplatz, sie bietet aber die sehr hilfreiche Flexibili- 

tät, Werte beliebig zwischen vorhandene Daten einzuschieben, ohne alles andere 

nach hinten verschieben zu müssen. Die nachstehende Routine fügt eine Zwei- 

Byte-Zahl (0-65535) irgendwo in einen einzelnen String ein: 

180 AS="" 

110 INPUT"E INZUFUEGENDE ZAHL"?NN 

115 Ni=INTCNN/256 >! N@=NN-256e«N1 

120 PRINT"POSITION C1TO' 7 LENCAS) ett? ' >" 

#8 INPUT PPS PP=PP x2 

130 IFNN?>=OTHENAS=LEFTSCAS,PP-2)+CHRS(NI 

2 +CHRS (N22) +MIDSCAS,PP-1):GOTO118 

140 FORI=1TOLENCAS .STEPe 

156 PRINTeS6*eASC CMIDS(CAS, I> +ASC(CMIDSCAS 

,1+1)) 

168 NEXTI 

Löschungen können problemlos mit Hilfe der in Kapitel 3 erklärten Techniken 

vorgenommen werden, und die Methoden für Stringfelder im selben Kapitel können 

zur Kapazitätserweiterung eines einzelnen Strings eingesetzt werden. Das wird 

weiter unten in diesem Kapitel im Abschnitt über Zeigerfelder erläutert. 

Für Programme, in denen ständig Werte eingefügt oder entfernt werden müssen, ist 

das Speichern von Zahlen in Strings also eine wirkliche Alternative. Der größte 

129



Nachteil dabei ist, daß viele Zeichen, auch wenn sie im Speicher als Stringzeichen 

abgelegt werden können, nicht druckbar sind, d. h. nicht zu den Zeichen gehören, 

die der C 64 normal ausdrucken kann. Das ist fur die Darstellung auf dem Bild- 

schirm kaum von Belang, da die Zeichen selbst ohnehin bedeutungslos waren — 

nur die ASCll-Werte sind fur uns von Interesse. Beim Laden und Speichern, wo 

auch PRINT in Form von PRINT# verwendet werden muß, macht es dagegen doch 

etwas aus. Leider kann der C 64 keine nicht druckbaren Zeichen als solche laden 

und speichern; sie müssen in Zahlen umgewandelt und in dieser Form gespeichert 

werden. Für einen Zeichenstring A$, in den numerische Werte eingelesen werden, 

müßte die Speicherroutine also folgendes enthalten: 

100 PRINT#1 ,-LENCAS) 

116 FORI=1TOLENCAS) 

120 PRINT#1,ASC(MIDSCAS, 1) > 

130 NEXTI 

und beim Laden muBte der String wiederhergestellt werden: 

1600 INPUT#1,LL 

110 FORI=1TOLL 

120 INPUT#1 .TTSAS=AS+CHRS (LL) 

130 NEXTI 

Da dieses Vorgehen die zum Laden und Speichern nötige Zeit erheblich verlängert, 

ist zu Überlegen, ob der Lade- und Speicheraufwand trotz der Vorteile während des 

Programmlaufs das Ablegen im Stringformat lIohnend erscheinen läßt. 

STACKS 

Die Methode, Zahlen in Strings abzulegen, wird auch für die Erzeugung von Stacks 

angewendet. Der Stack funktioniert nach demselben Prinzip wie eine (heute aus- 

sterbende) Briefablage im Büro: Briefe werden in der Reihenfolge ihres Eingangs 

auf einen Dorn gespießt und zu einem passenden Zeitpunkt wieder abgenommen 

und bearbeitet. Durch dieses Prinzip der Ablage wird immer der zuletzt eingegan- 

gene Brief als erster entnommen (‘last in — first out’). 

Stacks sind für die Datenverarbeitung sehr wichtig, da viele Operationen, die ein 

Computer ausführt, von den Informationen bestimmt werden, die in dem ‘Stack’ 

genannten Speicherbereich abgelegt sind. Zum Beispiel GOSUBs: In einer beliebi- 

gen Kette von GOSUBSs ist die Rücksprungadresse, die das Programm mit RETURN 

130



anspringt, immer das letzte GOSUB. Die Adresse jedes GOSUB wird im Stack 

obenauf abgelegt, und bei jeder RETURN-Anweisung wird die oberste Adresse im 

Stack abgearbeitet. 

In BASIC-Programmen ist der Stack verwendbar, wenn verschiedene Elemente 

gleichzeitig aus einer Datenstruktur entfernt und verändert werden müssen. Jedes 

Element kann dabei in ein anderes Feld abgelegt und seine Adresse im Hauptdaten- 

feld in einen Stack mit Zwei-Byte-Zahlen gespeichert werden. Wenn die Elemente 

wieder in das Hauptfeld eingelesen werden, können ihre richtigen Adressen vom 

Anfang des Stack an entnommen werden. 

Ein Stack wird jedoch häufiger gebraucht, um die Adressen einer Gruppe von 

Elementen mit gleichen Eigenschaften festzuhalten, vor allem Gruppen, bei denen 

viele Additionen und Subtraktionen vorgenommen werden. Weiter unten in diesem 

Kapitel werden wir sehen, wie man nach demselben Prinzip Anzahl und Ort von 

Leerstellen innerhalb eines Feldes festhalten kann. Jedesmal, wenn ein Element 

aus dem Feld entfernt wird, wird seine Adresse in einen Stack mit Zwei-Byte- 

Werten abgelegt: 

188 P1=INT< PP/256>:P2=PP-256«P1 

116 SK# =CHR$¢ P1)+CHR$¢ Ped +Sks 

wobei PP die Adresse des entfernten Elements ist. Die Adresse einer Leerstelle im 

Feld erhalt man mit: 

100 PP=256 *ASC( SK$ 9 +ASC( MIDE$( SKE -29925SKF 

=MID$¢ SKS ,2)) 

Auf diese Weise kann man etwas in ein Feld einfügen, ohne alle anderen Werte zu 

verschieben, damit die Leerstellen ans Ende kommen. Wenn SK$ auf einen leeren 

String reduziert ist, weist dies darauf hin, daß keine Leerstellen mehr verfügbar sind. 

STRINGDATEN-STRUKTUREN 

VERDICHTETE STRINGS 

Im Kapitel über Stringverarbeitung haben wir schon einige einfachere Möglichkeiten 

untersucht, wie Strings zum Speichern von Informationen benutzt werden können, 

und wie mehr auf kleinerem Raum unterzubringen ist. Ein Beispiel dafür war der 

einfache verdichtete String, in dem ein Trennzeichen zur Identifizierung der einzel- 

131



nen Teile verwendet wird, so daß eine komplette Eintragung in einer Namens- und 

Adreßdatei etwa in folgender Form gespeichert wird: 

SCHMID*KARL, OTTO*HAUPTSTR. 11 4MUSTERSTADT 

*MUSTERLAND*PF 1234TEL 8983-1122xMAENNL . 

Eine solche Struktur hat den Vorteil, daß jeder Ausdruck nicht wie ein vollständiges 

Element eines Stringfeldes drei Bytes zur Verwaltung benötigt, sondern nur ein 

Byte, nämlich das mit dem *. Damit scheint auf den ersten Blick nicht übermäßig viel 

eingespart zu sein. Aber für eine Datei, deren Eintragungen wie im obigen Beispiel 

aus je acht getrennten Ausdrücken bestehen, bedeutet es eine Einsparung von 

8*3 (für einen einzelnen Ausdruck jeder Eintragung) —3 + 7 (drei Bytes für | 

den einzelnen String plus sieben Trennzeichen) 

oder 14 Bytes bei einer einzigen Eintragung. Im Fall einer Datei mit 500 Eintragun- 

gen wäre das eine Einsparung von 7000 Bytes, und das lohnt sich, wenn der 

gesamte Speicherplatz für Programm und Daten weniger als 39.000 Bytes beträgt. 

Ein Nachteil dieses Verfahrens der Stringverdichtung ist die Zeit, die für das Suchen 

eines einzelnen Ausdrucks benötigt wird. Um das obige Beispiel wieder zu zerle- 

gen, brauchen wir eine Suchroutine zum Auffinden der Trennzeichen, wie im 

Kapitel über Stringverarbeitung beschrieben. Eine Datei mit 500 Eintragungen nach 

einem bestimmten Ausdruck abzusuchen, kann unangenehm lange dauern, beson- 

ders wenn er nahe am Ende eines Strings steht. Ein möglicher Ausweg besteht 

darin, die Informationen über den Aufbau des Strings in einem Format abzulegen, 

das leichter zugänglich ist, anstatt nach Sternchen in den Strings zu suchen. Das 

erreicht man durch den Gebrauch sogenannter ‘Zeiger’. Später werden wir untersu- 

chen, wie man Zeiger auf weitaus komplexere und effizientere Weise zum Struk- 

turieren einer Datei einsetzen kann. Hier jedoch besteht die Technik einfach darin, 

dem String Zahlen vorauszuschicken, die anzeigen, wo die Zeichenkette getrennt 

werden soll: 

190 PTRS=""iINg="" 
110 FORI=1TO8 
128 INPUTTTS$ 
138 INS=INS+TTS 
148 PTR#=PTRS+CHRS(LENC INS) > 
15@ NEXTI 
168 IN$=PTRS$+IN$ 

132



Das Programm berechnet lediglich bei der Eingabe jedes der acht Strings die Länge 

von IN$, also der gesamten Eingabe, und hängt dann an den Zeigerstring PTR$ den 

ASCII-Werten dieser Länge an. Am Ende der Schleife sind alle Strings in IN$ 

abgelegt, ohne daß gekennzeichnet ist, wo der eine aufhört und der nächste 

beginnt, während in PTR$ acht Zeichen abgelegt sind, deren ASCII-Werte anzei- 

gen, wo die einzelnen Datenelemente enden. Beide zusammen ergeben den 

String, wie er im Speicher abgelegt wird. 

Sind die Datenelemente so gespeichert, genügt eine einfache Routine, um sie 

wieder zu zerlegen: 

288 Pi1=3 

218 FORI=1TO8 

220 Pe=ASC(MIDSCING,199+8 

238 PRINTMIDS$<CINS$S,P1,P2-Pl+t1) 

240 Pi=Pertl 

250 NEXTI 

Dabei werden die Werte der Zeigerzeichen am Anfang des Strings dazu benutzt, 

beim Lesen des Strings Anfang und Ende jedes Datenelements zu bestimmen. Zu 

Beginn der Routine braucht man dazu nur die Anzahl der Zeigerzeichen zu kennen, 

um die Position des ersten Zeichens des ersten Datenelements (also des ersten 

Zeichens hinter dem Zeiger) festlegen zu können. Von da an sagt uns jedes 

Zeigerzeichen, wo ein Datenelement aufhört, und wir wissen, daß das nächste 

Datenelement ein Zeichen weiter beginnt. Die hier angegebene Routine setzt eine 

regelmäßige Struktur von acht Datenelementen voraus, aber das ist nicht unbedingt 

nötig. Man könnte auch eine beliebige Anzahl von Datenelementen bis zur maxima- 

len Stringlänge eingeben und am Anfang von PTR$ ein zusätzliches Zeichen 

einfügen, das die Anzahl der Datenelemente festhält. Die Schleife, die die Daten- 

elemente wieder isoliert, würde dann mit diesem Zeichen die Anzahl der erwarteten 

Zeigerzeichen bestimmen. 

Dieses Verfahren ist wesentlich schneller, als wenn das Programm den String 

Zeichen für Zeichen nach Trennzeichen durchsuchen müßte. Der Hauptnachteil 

liegt darin, daß es die Länge einer einzelnen Eintragung auf 255 Zeichen minus der 

für die Zeiger benötigten Anzahl von Zeichen beschränkt. Für die meisten Dateien 

sind jedoch 255 Zeichen mehr als genug; wenn nicht, nimmt man einfach zwei oder 

mehr verdichtete Strings für jede Eintragung. 

133



VERDICHTETE STRINGS MIT NUMERISCHEN FELDZEIGERN 

Die Verwendung verdichteter Strings in der oben beschriebenen Weise ist insofern 

von Nachteil, als die Berechnung des ASCIl-Wertes der einzelnen Zeichen zeitrau- 

bend sein kann, wenn viele Datenelemente verarbeitet werden. Noch störender ist, 

daß die meisten im Zeigerabschnitt des Feldes erzeugten Zeichen nicht druckbar 

sind. Das ist ohne Belang, wenn sie im Arbeitsspeicher abgelegt sind, aber der C 64 

kann solche Zeichen nicht ohne weiteres auf Band oder Diskette abspeichern. Um 

einen einzigen verdichteten String im obigen Format auf Kassette aufzuzeichnen, 

brauchte man eine Routine wie folgt: 

106 FORI=1TOS:PRINT#1 -ASC( MIOS<¢ INF,TI>:NE 

AT I 

118 PRINT#1,MIDSC IN$,9) 

und um die Daten zurückzubekommen, müßte man diese oder ähnliche Zeilen 

eingeben: 

188 IN£="":FORI=-1T08: INPUT#R1,TT: IN$=IN$ +CH 

R$CTT>:NEHKT I 

118 INPUT#1,TT$: IN$F=IN$+TT$ 

Das ganze Übersetzen zwischen Zahlen und Zeichen beim Laden und Speichern 

braucht Zeit, die sich verkürzen läßt, wenn man die Zeiger in einem numerischen 

Feld ablegt, wie es im Abschnitt über das Ablegen von Zahlen in Strings beschrie- 

ben wurde. Das geht zwar nur, wenn die Anzahl der Datenelemente in jedem 

verdichteten String bekannt und regelmäßig ist, vereinfacht jedoch das Speichern 

und Laden beträchtlich. Wenn man Zeiger in einem Integerfeld ablegen will, muß 

man zunächst bestimmen, wie viele Datenelemente man in jedem String unterbrin- 

gen will, und dann ein Integerfeld dimensionieren, das in jeder Zeile halb soviele 

Elemente hat (plus eins, wenn die Zahl ungerade ist). Um also eine Datei mit 

Datensätzen zu je 9 Elementen zu verarbeiten, wäre ein Feld der Form 

ARRAY%(500,4) zu dimensionieren und die folgende Eingaberoutine zu ver- 

wenden: 

10@ DIM ARRAY”(500 ,4> 

185 INPUT = 

116 FORI=@TOS 

128 INPUT TTS 

138 INS=INS+TTS 

134



190 NN=ARRAYACK, 1729-65536 * CARRAYACHK, 172 

><) 

158 IF 1 AND I THEN NN =e256e* INT CNN/256 ) + 

LEN( INS) | 

168 IF NOT I AND 1 THEN NN=NN-256% INT CNN 

/256 > +256 *LENC IND) 

176 ARRAYACK, 1/2)=NNt+65536% (NNO S2 767 > 

18@ NEXTI 

Diese Zeilen sehen eher abschreckend aus, enthalten aber nichts, was uns nicht 

schon bekannt ware. Die Routine ist tatsachlich das Gegenstuck zur Eingaberoutine 

aus dem Abschnitt uber das Speichern von Zahlen in ein Integerfeld. 

Eine solche Struktur zu zerlegen, ist wiederum umstandlicher, als einfach Zeichen 

im String als Zeiger zu benutzen: 

266 Pi=!1 

219 FORI=BTOS 

215 NN=AR#CK, 172) -65536% (ARACH, 17290) 
226 IF NOT I AND 1 THEN P2=INTCNN/256) 

225 IF I AND 1 THEN P2=NN-256%1INTCNN/256 

) 

238 PRINTMIDECIN$S,P1,P2-P1+1D 

240 P1=Perl 

250 NEXTI 

Man kann beide Routinen zusammen durchlaufen lassen, um Datenelemente 

einzufügen und aus einem String abzurufen, weil der Wert von ‘X’ nicht definiert, 

also Null ist. Gewöhnlich schreibt ein anderer Teil des Programms die Stelle vor, auf 

die das neue Datenelement abzulegen ist. 

Ob Sie dieses Verfahren überhaupt anwenden wollen, hängt vom Umfang der 

notwendigen Lade- und Speicherarbeit im Verhältnis zum Umfang der Operationen 

ab, denen die einzelnen Datenelemente unterworfen werden sollen. Tatsächlich 

dauert es doppelt so lange, für ein so gespeichertes Datenelement die Zeiger 

herauszusuchen oder einzusetzen, wie bei dem Verfahren, das in einem String 

dargestellte Werte verwendet. Es ist trotzdem eine nützliche Bereicherung Ihres 

Methodensortiments und merkenswert — wenigstens aus Gründen der Abwechs- 

lung. Im nächsten Kapitel untersuchen wir weitere Datenstrukturen, die erheblich 

schwieriger zu programmieren sind, die aber auch sehr viel Zeit und Speicherplatz 

sparen helfen. 

135



136



KAPITEL 10 

DATENSTRUKTUREN Il 
Im letzten Kapitel haben wir uns einige nette und einfache Methoden der Datenspei- 

cherung angesehen, mit denen sich verschiedene Probleme lösen lassen. In 

diesem Kapitel wenden wir uns Datenstrukturen zu, die ebenfalls Schwierigkeiten 

aus dem Weg schaffen können, aber bei weitem aufwendiger zu programmieren 

sind. 

VERKETTETE LISTEN 

Sie haben sicher bemerkt, daß wir bisher bei der Diskussion von Datenstrukturen 

für Zahlen sehr oft Techniken eingesetzt haben, die das Verschieben von Daten 

zum Teil einschränken. Um einen Bytewert in die erste Position eines numerischen 

Feldes einzusetzen, müssen alle vorhandenen Daten im Feld um eine Stelle nach 

hinten verschoben werden. Wie wir gesehen haben, wird beim Ablegen von Werten 

in einen String automatisch alles verschoben, wenn ein Element am Anfang 

hinzugefügt werden soll. Manchmal allerdings können sowohl bei Zahlen als auch 

bei Strings die Daten praktisch nur in einem Feld wie etwa A$(500) abgelegt 

werden, wobei jede Eintragung eine Zeile des Feldes benötigt. Vorausgesetzt, die 

Daten beginnen in Zeile Null des Feldes, macht das Einsetzen eines neuen Wertes 

nahe dem Anfang das Verschieben großer Datenmengen erforderlich, um den 

nötigen Platz zu schaffen. Das kann sehr zeitaufwendig sein und außerdem Pro- 

bleme der Garbage Collection aufwerfen, die wir in Kapitel 3 angesprochen haben. 

Die Lösung eines solchen Problems besteht oft darin, die Daten in der Reihenfolge 

der Eingabe zu speichern und getrennt aufzuzeichnen, wo jedes Element sich 

befände, wenn das Feld die gewünschte Ordnung hätte, z. B. die alphabetische 

Ordnung bei Strings. Bei einer ‘verketteten Liste’ ist an jedes Element der Liste die 

Adresse desjenigen Elements angehängt, das in der gewünschten Ordnung das 

nächste ist. Nehmen wir zum Beispiel eine Menge von drei Stringelementen: AAA, 

CCC und DDD. Wenn wir ein neues Element BBB an den alphabetisch richtigen Ort 

einfügen wollen, brauchen wir nicht CCC und DDD zu verschieben, um Platz dafür 

zu machen. Es reicht, dem Element AAA irgendwie einen Zeiger anzuhängen, der 

dem Programm sagt, daß das nächste Element in alphabetischer Reihenfolge nicht 

Element 2, sondern Element 4 ist. Ist Element 4 gefunden, so muß diesem ein 

Zeiger angehängt sein, der dem Programm sagt, daß das nächste Element in 

Position 2 zu finden ist. Wenn jedes Element den richtigen Zeiger besitzt, arbeitet 

das Programm die Elemente in der Reihenfolge 1, 4, 2, 3 ab. 

137



Um die Methode zu veranschaulichen, die wir verwenden wollen, schneiden Sie 

sechs kleine Quadrate von etwa 5 cm Seitenlänger aus Papier aus und ziehen Sie 

quer über jedes eine Linie. Die obere Hälfte jedes Quadrats soll den Zeiger auf das 

nächste Element der Liste enthalten, die untere jeweils das zu speichernde Ele- 

ment. Schreiben Sie auf einen der Zettel ‘1’ auf die obere Hälfte (ziemlich klein, weil 

die Zahl noch geändert werden soll) und ‘START’ auf die untere. Auf einen anderen 

Zettel schreiben Sie oben ‘65535’ und unten ‘STOP’. Legen Sie diese Zettel 

nebeneinander und lassen Sie daneben Platz, um die vier anderen Zettel in einer 

Reihe abzulegen. Von jetzt an fügen wir in alphabetischer Reihenfolge Zettel ein, 

wobei START jedem neuen Zettel im Alphabet vorangehen und STOP ihm folgen 

soll. 

Nehmen Sie jetzt einen anderen Zettel und schreiben Sie ‘BBB’ auf die untere 

Hälfte. Nach der obigen Regel kommt BBB nach START, also sehen Sie sich die 

obere Hälfte von START an und gehen zum angezeigten Zettel (sie sind von null an 

numeriert). Der angezeigte Zettel ist offensichtlich STOP, und BBB sollte vorher 

kommen, also haben wir die richtige Position für BBB gefunden: unmittelbar nach 

START und vor STOP. 

Jetzt kommt das Entscheidende. Verschieben Sie nicht die beiden vorhandenen 

Zettel, sondern legen Sie den Zettel BBB in der dritten Position ab (Position 2, wenn 

von null an gezählt wird). Streichen Sie die ‘1’ in der oberen Hälfte von START und 

ersetzen Sie sie durch ‘2’. START zeigt nun auf den neuen Zettel BBB. Schreiben 

Sie ‘1’ oben auf den neuen Zettel, denn der nächste Zettel in alphabetischer 

Reihenfolge ist STOP. Wenn Sie jetzt den Zeigern oben auf den Zetteln von START 

an folgen, erhalten Sie die Reihenfolge START, BBB, STOP. 

Nehmen Sie nun einen weiteren Zettel und tragen unten 'DDD'’ ein. Folgen Sie den 

Zeigern so weit, bis ein Zettel kleiner als DDD ist, aber der nächste größer. In 

unserem Fall sind Sie dann hinter BBB und vor STOP. Legen Sie DDD in die vierte 

Position. Streichen Sie die ‘1’ auf BBB und ersetzen sie durch ‘3’. Schreiben Sie ‘1’ 

auf DDD, um anzuzeigen, daß der nächste Zettel STOP ist. Die Zeiger ergeben nun 

die Reihenfolge START, BBB, DDD, STOP. 

Mit den übrigen beiden Zetteln müßten Sie jetzt selbst zurechtkommen. Einer wird 

‘AAA’, der andere ‘CCC’. Am Ende des Verfahrens sollten die Zeiger die Reihen- 

folge START, AAA, BBB, CCC, DDD, STOP ergeben. Beachten Sie, daß dies nichts 

mit der Reihenfolge der Zettel auf dem Tisch zu tun hat: Die Reihenfolge kommt nur 

über die Zeiger zustande, und zwar ohne je etwas verschieben zu müssen, das 

schon abgelegt ist. Wenn Sie das verstanden haben, können Sie nachvollziehen, 

wie dieses Verfahren in BASIC durchgeführt wird. Dabei arbeiten wir mit Strings in 

einem Feld und verwenden ein paralleles Integerfeld, um die Zeiger abzulegen. 

Die nächste Routine erzeugt eine verkettete Liste in alphabetischer Reihenfolge: 

138



1800 

1001 

1882 

1108 

1110 

1120 

1138 

1146 

1159 

RE Mk kK KK KK KKK 

REM VERKETTETE LISTE 

RE Mok kok kok bok ok kkk oR KOK KK x 

DIM AS(499), AXC499)! 1T=2:HO=0 

AS (0) =CHRS(O> 

AS C1) =CHR#¢255) 

AACHI=1 

A“ C1) =32e767 

INPUT"WORT EINGEBEN"? IN#: IF INS="END 

E" THENS TOP 

1168 

1178 

1138 

1138 

1200 

1216 

1220 

1230 

1248 

ADD=8 

FORI=1TOIT-1 

TT=ADD 

ADD =A (ADD) 

IFAS CADD >< INSTHENNEXT I 

AACTT>=IT 

ASCITI=INSIAXCIT) =ADD 

IT=IT+1 

GOTO1150 

Da zu dieser Routine einige Erklärungen nötig sind, gehen wir sie Zeile für Zeile 

durch: 

1100 A$ ist das Hauptfeld zum Speichern der Daten, in A% werden die Zeiger 

abgelegt, und IT bedeutet die Anzahl der schon gespeicherten Elemente. IT wird 

zunächst auf 2 gesetzt, weil das Feld zwei Hilfselemente enthält, die Anfang und 

Ende der verketteten Liste markieren. Die Variable HO wird später erklärt. 

1100—1140 Das sind die beiden Hilfselemente, also START und STOP in unserem 

Beispiel. Der ersten Position (Adresse O) des Feldes wird ein Element zugewiesen, 

dessen Zeiger auf die zweite Position (Adresse 1) zeigt und das den Inhalt CHR$(0) 

hat. Das bedeutet, bei allen gewöhnlichen Strings ist dieses Element immer das 

alphabetisch erste des Feldes. In der zweiten Position des Feldes steht ein Element, 

dessen Zeiger-Komponente auf 32767 zeigt (dieser Wert wird nicht gebraucht, da 

das letzte Element auf nichts zu zeigen hat), und dessen Daten-Komponente ein 

einzelnes Byte mit dem Wert 255 ist. Dieses Element wird immer das letzte der 

Datei in alphabetischer Reihenfolge sein. Diese beiden Eingaben haben den Grund, 

daß es wie bei vielen anderen Datenstrukturen einfacher ist, mit einer funktionsfähi- 

gen Datei anzufangen, als mit Hilfe besonderer Abfragen in der Routine zu testen, 

ob ein neues Element an den Anfang oder das Ende der Liste gehört. Das erste und 

139



das letzte Element der Datei müssen anders behandelt werden, weil auf das erste 

von keinem Element aus gezeigt wird und das letzte auf kein Element zeigt. Bei 

vielen Methoden der Datenspeicherung gibt es Probleme mit ersten und letzten 

Elementen, und häufig ist es einfacher, das Problem zu umgehen und eine 

künstliche erste und letzte Zeile einzufügen, wenn das Feld eingerichtet ist. 

1160 In der Variablen ADD wird die Position des gerade untersuchten Elements im 

Feld gespeichert; sie zählt von null an. 

1170 Die maximale Anzahl an Vergleichen zwischen dem eingegebenen Element 

und den vorhandenen Elementen ist gleich der Anzahl der Elemente im Feld. 

1180 TT ist normalerweise die Position des bei der alphabetischen Suche zuletzt 

geprüften Elements. Wir müssen sie uns für den Fall merken, daß das neue Element 

zwischen dieses und das nächste eingefügt werden muß, weil dann der Zeiger des 

Elements in TT geändert werden muß. 

1190 In ADD wird nun die Position abgelegt, auf die der Zeiger des Elements in TT 

zeigt, nämlich auf das nächste Element in der verketteten Liste. 

1200 Falls das aktuelle Element in ADD nicht größer als das neue Element ist, 

haben wir nicht die richtige Stelle gefunden, also bringt uns die Schleife den Zeigern 

folgend zum nächsten Element. 

1210 Wenn wir hier angekommen sind, ist die korrekte Position für das neue 

Element erreicht. Der Zeiger des Elements in TT muß jetzt so geändert werden, daß 

er auf die Position zeigt, in die ein neues Element eingegeben wird, d. h. Position IT. 

1220 Das neue Element wird eingegeben. Sein Zeiger zeigt auf das Element, auf 

das vorher vom Element in TT gezeigt wurde. 

1230 IT wird um eins erhöht, um festzuhalten, daß jetzt ein weiteres Element 

vorhanden ist. 

Um zu überprüfen, ob die Routine ordnungsgemäß funktioniert, geben Sie folgende 

Zeilen ein, die die Liste in alphabetischer Reihenfolge ausdrucken: 

140



1152 IFIN$="ANZEIGE " THENGOSUB2888:GOTO11 

JB | 

2888 REMAKKKKKKKKEKEKEK 

26601 REM ANZEIGE LISTE 

2BBZ REMKKKKKKKEKEKKKEK 

2010 ADD=O0:FORI=1TO IT-HO-2 

2820 PRINTAS(CAYCADD) > F ADD=AXCADD) 

2838 NEXTI:RETURN 

Hierbei dient das Zeigerbyte jedes Elements zum Auffinden der Adresse des 

nächsten. Wieder wird die Variable HO verwendet — sie wird nach der nächsten 

Routine erklärt. 

Gelöscht wird nach einem ähnlichen System. Diese Routine löscht ein numerisches 

Element aus der Liste — genauso einfach wäre es, den String anzugeben und vor 

dem Löschen in der Liste danach zu suchen. 

1154 IF IN¢="LOESCHEN" THENGOSUB3000: GOTO! 
1508 

3O000 REMEXKKKKKKKEKKAKEKE 

3881 REM LOESCHEN WORT 

38082 REMEXKKKEKKKKKHEK 

3818 INPUT"ZAHL DES ZU LOESCHENDEN WORTE 

"NN 

sa28 P2=8:FORI=BTONN-1 

3838 Pi1=P2:P2=A4<CP2)? 

3848 NEXTI 

3858 AACP1>=AACP2>:SHO=SHO +1: RETURN 

Beachten Sie, daß nichts wirklich gelöscht wird; es wird nur der Zeiger des 

Elements vor dem zu löschenden gleich dem Zeiger des zu löschenden Elements 

gesetzt. Das Element vor dem zu löschenden zeigt dann auf das Element nach dem 

zu löschenden, und das Programm weiß nichts mehr vom gelöschten Element, 

obwohl es noch immer vorhanden ist. Wenn Sie es wirklich löschen wollen, müssen 

Sie eine Zeile hinzufügen: 

3045 ASCAACP1)>="" 

141



In dieser Routine wird die Variable HO jedesmal um eins erhöht, wenn eine Element 

gelöscht ist. Das mag seltsam erscheinen, weil es naheliegender wäre, einfach den 

Wert von IT um eins zu vermindern. Das Problem dabei ist aber, daß neue Elemente 

stets am Ende der Liste eingefügt werden und IT das Ende der Liste anzeigt. Weil 

wir nicht wirklich beim Löschen oder Einfügen die Adresse irgendeines Elements 

ändern, würde ein Verkleinern von IT bedeuten, daß ein neues Element ein schon 

vorhandenes überschreibt. Weiter unten in diesem Kapitel werden wir untersuchen, 

was dagegen zu tun ist, daß auf diese Weise platzverschwendende ‘Locher’ im Feld 

zurückbleiben. 

Verkettete Listen lassen sich mit Gewinn in Programmen einsetzen, in denen 

regelmäßig Listen erzeugt werden müssen. Sie haben jedoch den Nachteil, daß nur 

von den Enden her auf sie zugegriffen werden kann, in diesem Fall nur von einem 

Ende her, dem Listenkopf. Man kann auch Listen erzeugen, die vorwärts und 

rückwärts verkettet sind, indem man zwei Zeiger verwendet, von denen einer auf 

das vorhergehende Element und der andere auf das dahinter zeigt. Aber auch dann 

kann man nur am Anfang und am Ende vernünftig starten. Springt man in eine 

verkettete Liste, ist es unmöglich zu entscheiden, an welcher Stelle innerhalb der 

Liste man sich befindet. Man kennt nur die Adresse eines benachbarten Elements. 

Anders gesagt: Wenn man das 30. Element einer verketteten Liste erreichen will, 

kann man nicht unmittelbar darauf zugreifen, sondern muß dem beschwerlichen 

Weg der 29 vorausgehenden Zeiger folgen. Im nächsten Abschnitt untersuchen wir 

einen Ausweg aus diesem Dilemma. 

ZEIGERSTRINGS 

Wie wir im letzten Abschnitt gesehen haben, kann man eine geordnete Liste 

erzeugen, ohne ständig Elemente in einem Feld umherschieben zu müssen. 

Elemente können einfach an das Ende eines Feldes angehängt werden, wobei 

einem getrennten Zeigerfeld die Aufgabe überlassen bleibt, ihre richtige Position zu 

bestimmen. Dabei ergab sich das Problem, daß man nicht in die Liste springen 

konnte, wenn man z. B. die Position des 30. Elements bestimmen wollte. Wir haben 

jedoch im vorigen Kapitel und in Kapitel 3 eine Art der Datenstruktur kennengelernt, 

die Einfügungen von Elementen in ihre richtige Position erlaubt, ohne die vorhande- 

nen Elemente zu verschieben: den String. Wir wissen auch, daß man Zahlen in 

Strings speichern kann, und haben mit Verfahren experimentiert, die genau das 

ermöglichen, was mit einer verketteten Liste nicht geht, nämlich auf jede beliebige 

Position im String zuzugreifen. Wenn wir dazu berücksichtigen, was wir über Zeiger 

gelernt haben, sind wir beim Zeigerstring — einer Methode, mit der wir mitten in ein 

Feld springen können und dennoch den Vorteil behalten, neue Elemente einfügen 

142



zu können, ohne erst Platz durch Verschieben des bestehenden Listeninhalts 

schaffen zu müssen. 

Dazu brauchen wir nur eine neue Technik, um Zahlen im Bereich 0-65535 in ein 

Feld von Strings einzusetzen, deren Gesamtlänge variabel ist. Es ähnelt einem 

Verfahren aus Kapitel 3 und läßt sich z. B. mit der nachstehenden Routine reali- 

sieren: 

4000 REMEKKKKKKKKKKKEKKEKS 

4881 REM INITIALISIERUNG 
4882 REMAKKKKKKKKKKEKKKKKKK 

4818 DIM PTR$S(19):1T=9:H0=8 
4028 FORI=BTO1:FORJ=1TO12S:PTRS(I)=PTR$( 
ID+"Q1":NEXTJ,1:1T=250 
SBBO REMAKKKKKKKKKKKEKK 

5081 REM EINGABE TERM 
SOB2 REMAKKKKKKEKEKKKKK 

5018 INPUT"ZAHL <1-32767) "3 
5028 NN$S=CHRSCNN/2SG ) +CHRS(NN-256 & INT (NN 
/256 >) 
5038 GOSUBSAHB 
5048 PTRS(LLI=LEFTSCPTRE(LL) ,2*LP-2) +NNS$ 
+MIDSCPTRS(LL) ,24LP-1) 
5@5@ IT=IT+1 
5060 GOSUB3HHB 
5878 GOTOS@19 
SOOO REMAKKKKKKKKKKHEKKKKKKKEKKE 

8801 REM POSITIONS BEST IMMUNG 
SOB2 REMEKEKKKKKKKKKKKKKEKKKKEK 

8019 PRINT"POSITION (1 BIS"? IT+1+(NN<=@) 
=") "32 INPUTPP | 
8028 LL=INT<(CPP-137/125):LP=PP-125#LL 
3032 RETURN 
IB8B8 REMKKKKKKKKEKKEKEK KEN 

9901 REM SETZEN DES STRINGS 
98282 REMKKKKKKKAKEKKAKKKKKKEKK 

3010 FORI=97T018 
9020 IFLENCPTRS(1>)<=25QTHENSOS@ 
9030 PTRS(I+1)=RIGHTS(PTRSC( 1) ,LENCPTRS¢ I 
))-2) 

143



9040 PTR#CIO=LEFTS(PTRSC I) ,„LEN<SPTRECIDI- 

2) 

96350 NEXTI 

938060 RETURN 

Beachten Sie, daB Zeile 4020 vorlaufig ist und nur die Routine testen soll. 

Lassen Sie die Routine durchlaufen, und geben Sie auf Abfrage folgende Werte als 

Zahl und Position ein: 

16705 

251 

16962 

252 

17219 

253 

15962 

1 

16785 

1 

16962 

126 

16785 

126 

Wenn Sie nun das Programm mit STOP/RESTORE stoppen, können Sie die 

Funktionsfähigkeit der Routine prüfen, indem Sie direkt, d. h. ohne Zeilennummer 

?PTR$CO? 

eingeben, worauf ein 01-String ausgegeben werden müßte, dem AABB vorausgeht, 

das heißt die als Zwei-Byte-Zeichenpaare dargestellten Zahlen 16705 und 16962. 

Die Eingabe 

?PTRFCL? 

144



sollte dasselbe liefern. 

Der eigentliche Test besteht jetzt in der Eingabe 

PTR$CE)» 

die den String 01010101 AABBCC ergeben müßte. Ein Abzählen der Zeichen in den 

ersten beiden Strings müßte sechs volle Zeilen plus 10 weitere Zeichen auf dem 

Bildschirm erkennen lassen. Wenn all das zutrifft, kann die Routine Zwei-Byte- 

Zahlen über die volle Länge der Daten aufnehmen und die übrigen Daten automa- 

tisch so verschieben, daß kein einziger String länger ist als 250 Bytes. 

6000 

6001 

6092 

69148 

6020 

RE Mx kk KKK KKK KKK KK KKK KKK 

REM LOESCHEN VOM STRING 

REMKKKKKEKKEKKKEKKKKEKKE 

PRINT"LOESCHEN” +? :GOSUBS888 

PTR#(LL)=LEFTS(PTR#(LLO ,2*LP-2>+MID 

S$(PTRS(LLO ,24*LPt+1 

6938 

6040 

93588 

9501 

3592 

9518 

9520 

I)=8 

3530 

93549 

3559 

9560 

GOSUBS500 

RETURN 

u) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 

REM SETZEN DES STRING ZUM LOESCHEN 

REMARK KT EIER IE 

FOR1=-8T018 

IF LENCPTR#¢1>)>=2500R LENCPTRSC(I+1 

THEN 3558 

PTR$SCII=SPTRSCII+LEFTECPTRSCI+I),2) 

PTRE<CI+13=MIDS$S<PTRS$«I+1),3) 

NEXTI 

RETURN 

Zum Löschen von Elementen brauchen wir nur noch eine leicht überarbeitete 

Version der Einfüge-Routine anzubinden, sowie eine weitere Zeile, mit der zu 

diesem zweiten Programmteil gesprungen wird: 

S81l5 IF NNK =SBTHENGOSUBEBBGH:GOTO 5919 

Lassen Sie jetzt die ganze Routine durchlaufen und geben Sie ein: 

16785 

i 

145



16795 

126 

16795 

51 

Das setzt AA an den Anfang der ersten drei Elemente des Stringfelds. Auf die 

nächste Abfrage nach einer Zahl geben Sie O ein, und wenn Sie nach der zu 

löschenden Zahl gefragt werden, antworten Sie mit ‘1’. Beim Stoppen des Pro- 

gramms mit STOP/RESTORE sollten Sie feststellen, daß PTR$(0) und PTR$(1) 

einen 01-String mit AA am Ende enthalten und PTR$(2) den String 0101. Demnach 

kann sowohl eingefügt als auch gelöscht werden, wobei jeweils die Länge des 

Strings angepaßt wird. Zeile 4020 kann jetzt gestrichen werden. 

Wir wissen jetzt genug, um mit einem Zeigerstring umgehen zu können: Wir 

brauchen ihm jetzt nur noch etwas zu geben, auf das er zeigen kann. In der 

nächsten Routine werden Strings in alphabetischer Reihenfolge in ein Feld einge- 

fügt. Der Trick dabei besteht darin, die Strings nicht einfach von Position Null bis 

zum letzten Element durchzugehen, sondern sie bei jeder neuen Eingabe in der 

durch den Zeigerstring vorgeschriebenen Reihenfolge zu untersuchen. Hier ist die 

Routine: 

4800 REMEKEKKEKKKKKKKKKKEE 

4601 REM INITIALISIERUNG 

4802 REMKKKKKKKKKKKEKEKKEKKE 

4010 DIM PTR#¢(19),A$(499)!: 1T=2:HO=a 

4820 AS(O)=CHRS(OQ> 

$030 AS C1=CHR#(255) 

48460 PTR#¢(O>=CHR#(@> +CHR$(O> +CHRS(Q>+CHR 

$¢1> 

IBOO REMEKKKKKKKKKKKEK 

“001 REM EINGABE WORT 

SOO2 REMEKKKKKKRKKKKKK 

9010 INPUT"BITTE WORT EINGEBEN ": INS 

sal4 IF IN£="ENDE" THENSTOP 

8016 IF INS="ANZE IGE" THENGOSUB780@:GOTOS 

818 

S828 GOSUBSYBE 

5838 NN&=CHR$S(IT/2568) +CHRSCIT-256 x INTCIT 

/256>) 

2048 PTR#(LL)=LEFTS(PTRS(LL) ,2*4LP-2 > +NN& 

146



+MIDS<PTRE(LL>,2%LP-1) 

5a50 
5968 
5978 
5980 
zaoa 
’ee1 
902 
7005 
7918 
728 
7938 

ASCITI=AINS 

GOSUB3000 

IT=1T+1 

GOTO50 10 

RE Mx KK KK KOR KKK KK 

REM LISTE ANZE IGEN 

REMAKKKKKKKKKKEKKKE 

IF IT-HO=2 THENRE TURN 

FORPP=2TOIT-HO-1 

LL=INTC<CPP-1371259:LP=PP-125xLL 

PA=256+ASC (MIDS<IPTRS<CLLI,2%xLP-1DI+rAÄ 

SC(CMIDS(PTRS¢(LLO ,2x*LP > > 

7840 

7858 

8608 

8008 

98081 

3882 

8010 

3820 

3830 

PRINTAS$S<PA? 

NEXTPP 

RETURN 

REP KR KKK KK KKK KE 

REM POSITION SETZEN 

REMkk KEKE KEK KKK KK KKK 

FORPP=1TOIT-HO 

LL=INTC<PP-1>7125>:LP=PP-125«LL 

PA=256x*ASC (MIDS(PTRS( LL) ,2*eLP-1)>+A 

SC (MIDS(PTRS(LL) ,2xLP >) 

3040 

3050 

9000 

9881 

39882 

3018 

9928 

98308 

1) 

3040 

2) 

3050 

3960 

IFAS CPA) < INSTHENNEX TPP 

RETURN 

PREC 1a 2 ok ok kok kok kok ok ok kok Kk kK K 

REM SETZEN DES STRING 

Haus 22 222 22322 22 222 22 2: 

FOR1=-8T018 

IF LENCPTR#SC1)9<¢ =250THENSOSO 

PTRSCI+1)=RIGHTS(PTRSC I) ,20+PTRSCI + 

PTR#¢ I> =LEFTS(PTR#¢(1),LENCPTRS¢CI>- 

NEXT I 

RETURN 

Ab 8000 liest die Routine das Stringfeld in der vom Zeigerfeld vorgeschriebenen 

Reihenfolge, wobei die richtige Adresse jedes Elements im Feld A$ in der Variablen 

PA abgelegt wird. Wenn die richtige Position endeckt ist, ist sie schon in den 

147



Variablen PP, LL und LP gespeichert. Diese werden an die Routine bei 5000 

übergeben, die schon darauf eingerichtet ist, die Position zu übernehmen, die durch 

diese drei Werte definiert wird. Bei 5000 hat die Routine eine einzige wichtige 

Änderung: NN$ — also die beiden Zeichen, in denen der neue Zeiger bis zu seinem 

Einsatz abgelegt wird — ist eine Übersetzung von IT, das sowohl die Anzahl der 

bisher gespeicherten Elemente als auch die Nummer des ersten freien Elements im 

Feld A$ darstellt. 

Wie die beiden Routinen zusammen arbeiten, kann man testen, indem man auf 

Abfrage PRINT eingibt. Daraufhin wird die Routine ab Zeile 7000 aufgerufen, die 

ganze Liste in der Reihenfolge der in PTR$ enthaltenen Werte auszudrucken. 

LÖSCHEN MIT ZEIGERN 

Nachdem wir die bei Einfügungen entstehenden Probleme bewältigt haben, können 

wir uns dem Löschen unter Verwendung eines Zeigerfelds zuwenden. Wir haben 

schon eine Routine zum Löschen einzelner Elemente aus einem Zeigerfeld. Diese 

wollen wir so modifizieren, daß der Benutzer nicht mehr aufgefordert wird, die 

Nummer des Elements anzugeben, sondern das Element selbst eingeben kann, 

worauf das Feld danach durchsucht wird und das Element und der Zeiger gelöscht 

werden. Fügen Sie folgende Zeilen an die oben abgedruckte Routine an: 

[812 IFINS="LOESCHEN" THENGOSUB6900:GOTOS 

010 

GOOG REMKKKKKKKKKKEKKKK 

6001 REM WORT LOESCHEN 

6OO2 REMKKKKKKKEKKAKKKK 

6010 INPUT"ZU LOESCHENDES WORT "7 IN$S:GOS 

UBSO08 

6020 IF INS< CASCPAD THENRE TURN 

6030 PTRS¢(LLD=LEFTS(PTRS(LL)D -2*LP-2)9+MID 

$(PTRS(LL)D ,2*LPt+1)>:GOSUBS508 

6040 HO=HO+T1'ASCPAD=""RETURN 

93590 REMEKKKKEKHKEKKEKKEKEKKKKKEKEKKKEKE 

9581 REM SETZEN D. STRING ZUM LOESCHEN 

35802 REMIS 

3518 FORI=QTOI8S 

9520 IFLENCPTR$(1))>=2500RLEN(PTRSC I +19 

=O THENSS498 

3538 PTRSCIO=PTRSCID+LEFTSCPTRSCI+19,2)5 

148



PTR#CI+1> =MIDSCPTRSCI+19,33 

9598 NEXTI:RETURN 

Zum Auffinden der richtigen Stelle wird dasselbe Verfahren wie beim Einfügen 

eines Elements angewendet: Die Liste wird in der durch den Zeigerstring vorge- 

schriebenen Reihenfolge nach dem ersten Element durchsucht, das alphabetisch 

größer als das neue Element ist. Nach dem Rücksprung aus dieser Suchroutine 

wird das gefundene Element mit dem zu löschenden verglichen und nur dann 

gelöscht, wenn beide gleich sind. Wenn das vorgegebene Element gefunden ist, ist 

seine Position schon in der Variablen PA und seine Zeigerposition in LL und LP 

gespeichert. 

Sie sollten jetzt in der Lage sein, eingegebene Elemente zu löschen. 

SCHWARZE LÖCHER 

Es bleibt ein letztes Problem zu lösen, nämlich was mit den beim Löschen von 

Elementen im Feld zurückbleibenden Lücken zu tun ist. Wenn wir nichts dagegen 

tun, wird das Feld allmählich mit solchen Lücken durchsiebt, bis sie so überhand- 

nehmen, daß kein Platz mehr für Daten bleibt, obwohl das Feld womöglich fast leer 

ist. Dem kann man mit einer schon angedeuteten Methode abhelfen, und zwar mit 

dem Einsatz eines Stacks. In unsere Zeigerfeld-Routine können wir eine neue Zeile 

einfügen: 

6065 ESF =CHRE( PA“256)+CHRF( PA-256x INTC PA 

256). +ES$ 

Auf diese Weise wird jede erzeugte Lucke in ES$ aufgezeichnet, und wir mussen 

dann nur noch die Einfuge-Routine uberreden, davon Kenntnis zu nehmen. Dazu 

werden einige Zeilen der obigen Routine geändert: 

3622 TT=IT: IFLENCESS) =OTHENSO@30 

39824 TT=256*4ASC CESS) +ASC (CMIDS(ESS,2)) 

sa26 ES$=MIDS(CESE,3) 

s923 1T=1IT-1:HO=H0-1 

3030 NNS=CHRS(TT/256 > +CHRSCTT-256*« INTCTT 

/256)) 

2O50 ASCTTI=INS 

149



Nachdem diese Zeilen eingegeben sind, wird jedes neu eingegebene Element 

immer in die erste freie Stelle des Feldes abgelegt. Erst wenn keine Lücken mehr da 

sind, wird das Element hinten angehängt. 

SCHLUSS 

Wenn Sie dieses und das vorige Kapitel durchgearbeitet haben, ist Ihnen sicher 

Klar, daß Sie sich nicht etwa morgen hinsetzen und alle diese Methoden in Ihrem 

nächsten Programm anwenden sollen. Die hier beschriebenen Datenstrukturen 

sollen Sie an die vielen Möglichkeiten erinnern, den Speicher Ihres C 64 zu nutzen: 

Alle haben ihre besonderen Stärken und Schwächen, und alle können bei der einen 

oder anderen Gelegenheit zweckmäßig sein. Die Beschäftigung mit ernsthaftem 

Programmieren wird es wahrscheinlich mehr als einmal mit sich bringen, daß ein 

bestimmter Datensatz — vielleicht nur 10 oder 20 irgendwo in einem Programm 

benutzte Elemente — Sie in Verlegenheit bringt. Dann ist es an der Zeit, sich dieses 

Kapitel noch einmal vorzunehmen und hoffentlich in einem der vielen hier darge- 

stellten Verfahren die Antwort zu finden, die Sie die ganze Zeit über gesucht haben. 

150



KAPITEL 11 

EINFÜGEN VON DATEN 
Um nicht zuviel auf einmal zu erklären, haben wir bisher die Frage ignoriert, auf 

welche Weise man neue Daten am schnellsten in ein Feld einfügt und gezielt die 

richtige Stelle dafür findet. In diesem Kapitel untersuchen wir, wie große Datenfel- 

der verschoben werden, wie schnelle Recherchen durchgeführt werden, und wie 

man diese mit den Zeigerfeld-Techniken aus dem vorigen Kapitel verbindet. 

NORMALES SUCHEN UND VERSCHIEBEN 

Die programmiertechnisch weitaus einfachste Methode, ein Element in ein geord- 

netes Feld einzufügen, besteht darin, das Feld Element für Element zu durchsuchen 

und alle Elemente im Anschluß an den gesuchten Ort eine Stelle weiter zu 

schieben. Nach Ansicht vieler ist es am günstigsten, vom Ende des Feldes her zu 

suchen, jedes Element mit dem einzufügenden zu vergleichen und es zu verschie- 

ben, wenn es sich als eines von denen herausstellt, die verschoben werden 

müßten, um weiter vorn im Feld Platz für das neue Element zu schaffen. Ob das 

richtig ist oder nicht, hängt davon ab, ob die zur Suche nach der richtigen Position 

eines Elements benötigten Zeilen mit denen kombiniert werden können, die die 

Daten verschieben, damit das neue Element aufgenommen werden kann. 

Das nächste Listung gehört zu einer einfachen Routine, die erst ein geordnetes 

Zahlenfeld initialisiert, dann das Feld nach der richtigen Stelle zum Einfügen eines 

neuen Elements durchsucht und dann durch Verschieben von Daten dafür Platz 

macht: 

200 REMAKKEKKKKKKKKKKKKKKE 

9@1 REM KONTROLL ROUTINE 

SBZE REMKKEKEKKKEKKKKKKKKEKE 

218 GOSUB 75a 

~e8 TIs="900000" 

730 GOSUB 10aa 

>49 GOSUB1588 

558 PRINTTIS$ 

Ss658 STOP 

TOO REMAKEKKKKKEKKKKEKKER 

31 REM INITIALISIERUNG 

752 REMEKKKKKEKEKKKKEKERE 

151



‚sa DIM A%<9399):1T=-9958 

78 FORI=OTOIT-1:°AXC ID =18NEKT 

780 INPUT"NEVER WERT "NI 

738 RETURN 

1888 REMAKKKKKK 

1881 REM SUCHE 

‚1982 REMKKHKKHKKHK 

1838 IF IT=8 THEN1878 

1946 FORI=@TOIT-1 

1858 IFAZCI>>=NI THEN SP=1: 1=IT-1 

166@ NEXTI 

19878 RETURN 

I5SO8 REMKKKKKKKERRK 

1581 REM EINSETZEN 

152 REMKKKKKKKKKKE 

1585 IF IT=8 THEN15498 

1518 FORI=ITTOSP+1 STEP-1 

1528 ARCII=SAHCI-1) 

1530 NEXTI 

1540 AXCSP)=NI 

1558 RETURN 

Diese allgemein gehaltene Routine kann auch auf andere Datensätze angewandt 

werden. Aus diesem Grund benutzen wir IT, um festzuhalten, wie viele Elemente 

vorhanden sind, wenn neue eingefügt werden. Es sei ausdrücklich darauf hingewie- 

sen, daß alle derartigen Routinen den Sonderfall eines Felds berücksichtigen 

müssen, das keine Elemente enthält. Leider wird die Schleife 'FOR I=0 TO IT-1' 

selbst dann einmal ausgeführt, wenn sie tatsächlich 'FOR I=0 TO —1’ bedeutet und 

deshalb logischerweise nicht ausgeführt werden sollte. Weil das Abarbeiten der 

Schleife mit diesen Werten einen ILLEGAL QUANTITY ERROR zur Folge hat, muß 

sie übersprungen werden. 

Um die Routine zu testen, geben Sie auf Abfrage nach einem neuen Element 5000 

ein. Die Ausgabe von TI$ soll zeigen, daß diese Routine in 81 Sekunden abgearbei- 

tet wird (TI$="000121”). Durchsucht man jedoch das Feld vom anderen Ende her, 

so kann man auf eine der Schleifen verzichten, wie in der nächsten Routine, die in 

die vorige eingefügt werden sollte: 

568 T1$=-"889998" 

578 GOSUB2H99 

589 PRINTTIS 

152



>38 STOP 

2EBÖEBO REMAKKKKKKEKKKKKEKKKKEKKEKE 

ce801 REM SUCHEN UND EINSETZEN 

2BO2 REMKXKKKKKKKKRKKKKKKKKKKE 

2010 IFIT=O@THENSP=08: GOTO2060 

2620 FORI=IT-1TO@STEP-1 

e838 IFNI>AZCIDTHENSP=1:1=98:6G0T020858 

2640 AACI +1 SAACID 

2858 NEXTI 

2660 AXACSP+1>=NI 

2878 IT=-IT+1 

20880 RETURN 

Diese Routine lauft nur 73 Sekunden, wenn sie durch Einfugen von 5000 getestet 

wird (TI$="000113”) — eine Ersparnis von ungefähr 10% gegenüber der letzten, 

wie Sie selbst feststellen können, wenn Sie beide zusammen durchlaufen lassen. 

Sie bekämen ganz andere Ergebnisse, wenn das einzufügende Element nahe am 

Anfang oder Ende des Felds wäre. Durch Einfügen eines Elements in der Mitte 

erhalten wir jedoch die durchschnittliche Zeit für die Eingabe einer Reihe von 

Elementen, die nicht zum Anfang oder Ende des Feldes hin gewichtet sind. 

Die zweite Methode hat den Nachteil, daß zwei verschiedene Programmfunktionen 

zusammen laufen: Suchen und Einfügen. Im vorliegenden Fall macht das überhaupt 

nichts, aber wenn wir ein schnelleres Einfüge- oder Suchverfahren finden, können 

wir es nicht einfach in das Programm einflicken. Wir haben schon im Kapitel über 

den Gebrauch von Integerfeldern schnellere Einfügemethoden kennengelernt. Es 

gibt aber auch eine viel schnellere Suchmethode. 

BINÄRES SUCHEN 

Offensichtlich sind bei den letzten beiden Routinen ungefähr 5000 Vergleiche zur 

Bestimmung der richtigen Position erforderlich. Natürlich wird das Feld nicht immer 

auf sämtlichen Stellen sinnvolle Daten enthalten. Dennoch ist die Anzahl der 

Vergleiche durchschnittlich immer gleich der Hälfte der Anzahl der Feldelemente. 

Tatsächlich ist das völlig unnötig, denn zum Auffinden der richtigen Stellen im o. g. 

Feld sind höchstens 13 Vergleiche erforderlich. Betrachten Sie das folgende 

Beispiel: 

1. Wir wollen ein Element in das obige Feld einfügen, und zwar die Zahl 6172. 

2. Wir beginnen die Suche nach der richtigen Position, indem wir diejenige Position 

153



im Feld untersuchen, die die höchste in die Gesamtzahl der Feldelemente pas- 

sende Potenz von 2 darstellt. In diesem Fall haben wir 10 000 Elemente, und die 

höchste in diese Zahl passende Potenz von 2 ist 8192. Wir nennen diese Zahl den 

‘Schrittwert’ oder SV (step value). Den ersten Vergleich stellen wir zwischen dem 

neuen Element und dem schon in Position SV des Felds befindlichen Element an. 

Die Suchposition nennen wir SP, und zu Beginn bekommt sie den Wert 8191, um 

zu berücksichtigen, daß das Feld bei Null, nicht bei 1 anfängt. 

3. Der Wert in Position 8191 (SP) ist größer als das neue Element 6172, also 

nehmen wir den ursprünglichen Schrittwert 8192, dividieren ihn durch 2 und 

erhalten so ein neues SV mit dem Wert 4096. Dieser wird von 8191 (SP) subtrahiert 

und ergibt das neue SP 4095. 

4. Nun wird ein neuer Vergleich bei 4095 (SP) durchgeführt. Die Zahl in dieser 

Position des Feldes ist kleiner als das neue, also dividieren wir SV durch 2 (=2048), 

addieren es diesmal zu SP und erhalten das neue SP 6143. 

5. Wieder ist das Element in 6143 kleiner als das neue Element, also dividieren wir 

SV durch 2 (=1024). Das wird zu SP addiert und liefert 7167. 

6. Das Element in 7161 ist größer als 6172, also wird SV durch 2 dividiert (=512) 

und von SP subtrahiert. Das Ergebnis ist 6655. 

7. Die Suche wird an folgenden Stellen und mit folgenden Sprüngen fortgesetzt: 

6655 (—256) 

6399 (—128) 

6271 (—64) 

6207 (-32) 

6175 (-16) 

6159 (+8) 

- 6167 (+4) 

6171 (+2) 

6173 (-1) 

6172, die richtige Position. 

Wie Sie sehen, haben wir nichts weiter getan, als abnehmende Potenzen von Zwei 

zu addieren oder zu subtrahieren, je nachdem ob die Zielposition weiter oben oder 

weiter unten im Feld war. Der Erfolg hängt nicht davon ab, ob das Feld wie in diesem 

Fall aus jeweils um 1 wachsenden Zahlen besteht. Man braucht nur ein beliebiges 

String- oder Zahlenfeld, das regelmäßig aufsteigend oder absteigend geordnet ist. 

154



Zum Einfügen eines neuen Elements in ein Feld ist die Anzahl der notwendigen 

Vergleiche im allgemeinen: 

INTC LOGC IT) LOG 2) +1 

Diese Formel gibt an, wie viele Stellen die binar dargestellte Anzahl IT der Elemente 

hat, plus 1, und das ist immer die maximale Anzahl der erforderlichen Vergleiche. 

Also: 

INTC LOGS 580) /LOG62539+1 =9 

und 500 ist binar: 

111110100 — neun Stellen lang. 

Dieses Suchverfahren bietet offensichtlich eine deutliche Einsparung gegenüber 

dem im vorigen Abschnitt verwendeten: Es werden 4087 Vergleiche eingespart. 

Wenn wir nach einem Element in einem Feld statt nach einer Position zum Einfügen 

suchen, kann die Einsparung sogar noch größer sein. Beim Suchen nach einem 

nicht vorhandenen Element müßte man sämtliche 10 000 Elemente durchgehen — 

beim binären Suchen würden auch dann 13 Vergleiche reichen, und wenn das 

gesuchte Element auch dann nicht gefunden wäre, wüßten wir, daß es nicht im Feld 

ist. Im nächsten Listing wird mit dem binären Suchverfahren wie bei den vorigen 

Listings ein Element bei 5000 eingefügt: 

~90 TIS="000000" 

600 GOSUB3000 

616 GOSUB4000 

628 PRINTTIS 

638 STOP 

3Q0O REMEKKKKKKKKKKKEKKE 

3001 REM BINAER SUCHE 

3O02 REMEKAKKKAEE KKK KK 

3010 IF IT=@THENSP=0:GOTO30998 

3020 POWER=INTCLOGCIT>)/LOG C2) > 

3030 SP=2TPOWER-1 

3040 FORSY=POWER-1TOOSTEP-1 

s3a58 SP=SP+2t15VrC CNI<AZCESPI>-CNI>AACSP>D 

? 

3868 IFSP>IT-ITHENSP=IT-1 

3878 NEXTSYV 

155



30808 

3098 

4000 

4001 

4002 

4016 

4020 

4938 

4248 

4958 

4068 

4078 

IFAACSP><NITHENSP=SP +1 

RETURN 

REM kk kK KKK KKK 

REM EINSETZEN 

REMEAKKEKKKEKKK 

IFIT=8THENAOSO 

FORI=ITTOSP+t+iSTEP-1 

AXACTISAACI-1) 

NEXTI 

AACSPO=NI 

IT=IT+1 

RETURN 

Es gibt hier zwei kleine Abweichungen von der vorausgehenden Beschreibung des 

Verfahrens. Erstens kann der Suchzeiger (SP) Uber die Anzahl IT—1 der Feldele- 

mente springen. Wenn das geschieht, setzt Zeile 3060 den Suchzeiger auf das 

letzte Feldelement zurück. Diese Wertänderung beeinflußt die Suchoperation nicht. 

Zweitem: Wenn das eingegebene Element sich nicht schon im Feld befindet, ist die 

gefundene Position einer der beiden Werte, die über oder unter dem Element lägen, 

falls es vorhanden wäre. Liegt der gefundene Wert darüber, kann durch Verschie- 

ben aller Daten von dieser Position an Platz geschaffen werden. Liegt der gefun- 

dene Wert darunter, muß SP erst auf das nächste Feldelement gesetzt werden, 

damit es die richtige Position angibt, bis zu der die Daten verschoben werden 

sollen. Das leistet Zeile 3080. 

Wenn Sie die Routine wieder mit dem Wert 5000 laufen lassen, ergibt sich eine 

Laufzeit von nur 49 Sekunden, die hauptsächlich auf das Verschieben der Elemente 

verwendet wird. Die Verzögerung infolge der großen Anzahl von Vergleichen ist fast 

vollständig behoben. 

REINES SUCHEN 

In den oben genannten Beispielen hatte das Suchen den Zweck, ein neues Element 

einzusetzen. Das muß natürlich nicht so sein. Mit der ersten und dritten Methode 

kann man auch einfach die Position eines Elements bestimmen, vorausgesetzt, es 

ist im Feld vorhanden. Ändern Sie die Kontrollroutine zum Ausprobieren so ab: 

SOO REMAKKKEKEKKKKKKEKKKEEK 

5@1 REM KONTROLL ROUTINE 

592 REMKKKKKKKKKKKKEKKEKE 

518 GOSUB?S0 

156



s28 TI$="Bagaaa" 

2380 GOSUB 1000 

340 PRINTSP,AACSP dD 

>58 PRINTTIS 

330 TIS="000000" 

600 GOSUB3O00 

610 PRINTSP,AXCSP > 

628 PRINTTIS 

630 STOP 

Wenn Sie jetzt einen Wert eingeben, werden er und seine Position zusammen mit 

der Zeit fur das normale Suchen und der Zeit fur das binare Suchen ausgegeben. 

Falls Sie 5000, d. h. den Wert in der Mitte des Feldes eingeben, sollte das normale 

Suchen 34 Sekunden und das binare Suchen eine Sekunde dauern. Geben Sie 

versuchsweise eine nicht-ganze Zahl ein — daraufhin wird die ganze Zahl uber oder 

unter diesem Wert ausgedruckt. Durch Erganzung eines Vergleichs wie 

615 IFAX< SP)< >NITHENPRINT"NICHT VORHANDE 
N" :STOr 

wird automatisch geprüft, ob ein Element vorhanden ist. 

BINÄRES SUCHEN MIT ZEIGERFELDERN 

Wie wir gesehen haben, reduziert binäres Suchen die Zeit für Recherchen in einem 

Feld auf einen Bruchteil, so daß nur die Zeit für das Verschieben der Daten bei 

Einfügungen übrigbleibt. Diese Verzögerung können wir wiederum größtenteils 

ausschalten, indem wir binäres Suchen mit den Zeigerfeld-Techniken kombinieren, 

die wir in Kapitel 10 kennengelernt haben. An dieser Vorgehensweise wird eine 

starke Seite des modularen Programmierens deutlich; denn um das Verfahren beim 

Suchen nach der richtigen Position zu ändern, brauchen wir nur ein Modul auszu- 

wechseln und sicherzustellen, daß es weiterhin die richtige Variable an das Haupt- 

programm übergibt. Für das übrige Programm ist es ohne Belang, was im Suchmo- 

dul passiert, solange es nur die richtige Variable übergibt. Das Modul bei 8000 im 

Zeigerfeld-Programm am Ende des letzten Kapitels wird nun: 

1@ 1T=-5:H0=3 

SOOO REMEKKKKKKKEKRKKEKKKKKKKEK 

3001 REM POSITIONS BEST IMMUNG 

3882 REMAKEKKKKKKKH EK KKK KKK KKH 

157



88108 

3620 

3830 

3049 

$650 

3860 

TT=IT-HO 

POWER=INT<LOGETT?/LOG (29) 

PP=2tPOWER 

FORSY=POWER-1TOQBSTEP-I 

LL=INTC<PP-1>/1259:LP=PP-125%LL 

PA=236xASC (MIDS<CPTRS$S<CLL)I ,-2*LP-1))+A 

SC (MIDS(PTRS(LLD .2xLP dd 

8878 

22) 

3088 

3030 

3188 

3110 

PP=PP+2TtSV«¢ CINS<ASCPAD IO -CINSOASCPA 

IFPP>TT-ITHENPP=TT-1 

NEATSV 

LL=INTCCPP-1371259:LP=PP-125%xLL 

PA=256KASC (MIDSECPTRS<LL)I ,2LP-1D)+A 

SC (MIDS(PTRS(LLD,2*LP> > 

3128 

3138 

3146 

IFAS CPASD < INSTHENPP=PP + 1 

LL=INTC<PP-1>7125>:LP=PP-125%LL 

PA=256*ASC (MIDS(PTRS(LLO ,2*LP-1))+A 

SC (MIDS (PTRS(LL) ,2*eLP >> 

8158 RETURN 

Eine solche Routine würden Sie sicher nicht in einem kurzen Programm unterbrin- 

gen, das nur geringe Datenmengen speichert. Bei großen Datenmengen ergibt sich 

jedoch eine verblüffende Geschwindigkeitsdifferenz, wenn Sie mit einem Zeigerfeld 

das Verschieben von Feldern vermeiden und durch binäres Suchen die Suchzeit 

verringern. 

158



KAPITEL 12 

VERMISCHTES 

Dieses Kapitel enthält eine Reihe nicht miteinander verwandter Techniken, die 

einzeln kein eigenes Kapitel rechtfertigen, aber dennoch beim Entwickeln eines 

Programms von Wert sein können. Die vorgestellten Methoden sind: DEF-Anwei- 

sungen, DATA-Anweisungen, FOR-Schleifen, Zeitmessung mit TI/TI$ und Runden 

mit INT. 

VOM BENUTZER DEFINIERTE FUNKTIONEN 

In BASIC ist eine Funktion eine Anweisung, die eine vollständige Operation eines 

bestimmten Typs mit einer Zahl oder einem String ausführt, um das gewünschte 

Ergebnis zu erhalten. Die meisten Funktionen auf dem C 64 sind mathematische 

Funktionen: Sie wenden mathematische Operationen auf eine Zahl an, berechnen 

z. B. den Sinus einer Zahl. Ohne diese eingebauten Funktionen müßte der Benut- 

zer jedesmal, wenn er einen Sinus, Cosinus, Tangens oder ähnliches benötigt, die 

gesamten Anweisungen für ihre Berechnung in BASIC formulieren. 

Soweit es ihre spezifischen Operationen betrifft, sind Funktionen überaus nützlich, 

um Komplexität und Umfang eines Programms zu reduzieren. Leider können sie 

nicht für alle Berechnungen eingesetzt werden, und es kommt oft vor, daß in einem 

Programm eine bestimmte Rechnung mehrfach auszuführen ist. Manchmal läßt sich 

so etwas mit einem Unterprogramm bewältigen, vielleicht sogar mit einem einzeili- 

gen. Ein einzelnes Unterprogramm kann jedoch nur einen einzigen Variablensatz 

verarbeiten: 

1889 *=Yt2 + YTS + SRY 

verarbeitet z. B. immer nur die Variablen Y und X. Soll die Variable Z verarbeitet und 

das Ergebnis in NN abgelegt werden, muBten Sie das Unterprogramm mit dieser 

Zeile aufrufen: 

2a0 Y=2 : GOSUB 1806: NN=X 

Eine flexiblere Methode besteht in der Definition einer neuen Funktion, wie etwa in 

der nächsten Zeile: 

188 DEF FNA(CY>=Yt2 + Yt3 + SHY 

159



Diese Zeile definiert eine Funktion mit dem Namen FNA (FN darf von einem 

beliebigen gültigen Variablennamen gefolgt werden), wobei die Variable Y im Laufe 

des Programms durch jede andere ersetzt werden darf: 

366 NN=FNAC Z) 

leistet dasselbe wie Zeile 200 vorhin. 

Dadurch kann die Ubersichtlichkeit eines Programms wesentlich verbessert wer- 

den. In Kapitel 11, bei der binaren Suche in Verbindung mit einem Zeigerstring, ist 

z. B. die Zeile 

FA=256*ASC( MID$¢ PTR$( LL) ,2*LP-1>>+ASCCMI 
D#< PTR$¢ LL? ,2*LP >? 

dreimal verwendet worden. Diese aufwendige und fur Eingabefehler anfallige 

Wiederholung hätte vermieden werden können, wenn bei der Programm-Initialisie- 

rung eine Funktion definiert worden wäre, zum Beispiel: 

188 DEFFNACLLI=2SSEKASCT MIDFCPTRFCLL>? , OL 

P-1)>9+ASCCMIBDSCPTR#¢ LL ,2kLP > > 

Im binären Suchmodu! hatte man dann nur noch nach diesem Muster Zeilen 

einfügen müssen: 

S060 PA=FNAC LL) 

Da hierbei keine Variable ersetzt worden ist, arbeitet die Funktion genauso wie die 

ursprüngliche Zeile. Viele Routinen in diesem Buch könnten durch die Verwendung 

definierter Funktionen gekürzt werden. 

BEENDEN VON FOR-SCHLEIFEN 

Vielleicht haben Sie bemerkt, daß in diesem Buch FOR-Streifen häufig benutzt 

werden, um Daten zu durchsuchen und die Position eines Elements in einem Feld 

oder String zu bestimmen. Wenn man eine Schleife so verwendet, taucht die Frage 

auf, wie man sie beenden soll. Dies muß genau durchdacht werden; denn wie in 

Kapitel 2 erwähnt, benötigt jede Schleife Platz im begrenzt aufnahmefähigen ‘Stack’ 

des C 64, der nur dann wieder freigemacht wird, wenn die Schleife korrekt beendet 

ist — d.h. wenn die Schleifenvariable die in der FOR-Anweisung gegebene 

Obergrenze erreicht hat. All das wird mit der nächsten Schleife erreicht: 

160



160 FORI=0TOIT-1 

118 IFASCIO=INSTHENPP=I:1=I1T-1 

120 NEXTI 

Sobald im Feld A$ das richtige Element gefunden ist, wird die Schleife beendet, 

indem | den höchsten Wert bekommt, den die Schleife verarbeiten soll. Betrachten 

Sie dagegen ein anderes Beispiel: 

188 FORI=BOTOIT-1 

110 IFASCI>=INSTHENGOTO1460 

120 NERKTI 

13@ PRINT"“WORT NICHT GEFUNDEN" :FORI=1TO5 

900: NEXT 

Wenn IN$ im Feld nicht vorhanden ist, druckt die Schleife ‘ITEM NOT FOUND’, 

anderenfalls uberspringt sie das Schleifenende und die Fehlermeldung. Damit 

bliebe die in Zeile 100 begonnene Schleife unbeendet, was einigen Platz im Stack 

kostet. Trotz dieses Nachteils verwende ich diese Technik gelegentlich, und zwar 

aus einem Grund, der beim Durchlaufen der nächsten kurzen Routine klar wird: 

188 FOR1=1T01888 

110 FORJ=1TO190 

120 NEXTI 

Hier wird die I-Schleife ganze 1000 mal ohne schlimme Folgen begonnen und nicht 

beendet. Das ist möglich, weil beim Einsprung in die Schleife mit derselben 

Schleifenvariablen kein zusätzlicher Platz im Stack belegt wird, nachdem die 

Anfangsschleife einmal definiert ist. 

Das können Sie ausnutzen, indem Sie durchgängig dieselben Variblennamen 

verwenden. Ich nehme fast immer solche, die mit | anfangen, und falls mehrere 

Schleifen gleichzeitig offen sein müssen, die nächsten Buchstaben im Alphabet. 

Wenn ich bei denselben Namen bleibe — vor allem bei Schleifen, die möglicher- 

weise nicht korrekt verlassen werden — kann ich die Vorteile unbeendeter Schleifen 

nutzen — ohne ratselhafte OUT OF MEMORY-Fehlermeldungen, weil der Stack 

wegen zu vieler unbeendeter Schleifen übergelaufen ist. 

161



DATA-ANWEISUNGEN 

Bei einem Programm, das mit einer mehr oder weniger festen Datenmenge arbeitet, 

lohnt es sich oft nicht, ein besonderes Feld zu definieren und die Daten darin 

abzulegen. DATA-Anweisungen reichen dazu aus. Sie können im selben Programm 

für viele verschiedene Zwecke eingesetzt werden. Die einzige Schwierigkeit liegt 

darin, daß viele Leute ziemlich verunsichert zu reagieren scheinen, wenn sie mit 

mehreren Datenbereichen zu verschiedenen Zeiten arbeiten müssen und nicht 

wissen, wie sie bei Bedarf an den richtigen Datenabschnitt kommen sollen. 

Dieses Problem ist in der historischen Entstehung der DATA-Anweisungen begrün- 

det, die lange vor der Geburt des Mikrocomputers bei den ersten Großrechnern 

anfängt. In Kapitel 4 sind schon die Probleme erwähnt worden, die den Program- 

mierern von Großrechnern vor der Entwicklung des Dialogbetriebs zu schaffen 

machten, bei dem der Benutzer ein Programm während der Ausführung überwa- 

chen kann. Wie alle anderen brauchten auch die Programme für solche Geräte 

Daten zum Verarbeiten. Diese standen in Form von Lochkarten zur Verfügung. Die 

Karten wurden als Stapel in einen Kartenleser gelegt, und wenn das Programm eine 

Anweisung wie ‘READ NN’ vorfand, übersetzte der Kartenleser die gestanzten 

Löcher der ersten Karte in eine Zahl, übernahm diese Zahl als Wert der Variablen 

NN und nahm dann die zweite Karte auf. Der Lochkartenstapel konnte nur in zwei 

Richtungen gelesen werden: indem man die nächste Karte untersuchte (egal, ob sie 

gebraucht wurde oder nicht), oder indem man zum Anfang des Stapels zurück- 

kehrte. Bei den ersten Mikrocomputern erkannte man die Fähigkeit, in einem 

Programm Daten zu bestimmen, zwar als nützlich an. Diese Aufgabe wurde jedoch 

so formuliert, als bezöge sie sich auf das Lesen von Karten. Ein BASIC-Programm 

enthielt Anweisungen wie diese: 

166 DATA 12,459827,67,123,76593,212,1865 

und die Datenelemente solcher Zeilen wurden mit der Anweisung gelesen: 

288 READ # 

Dabei gab es jedoch wie zuvor nur zwei Wege durch die vorhandenen Daten. Zur 

ersten Ausführung von Zeile 200 wurde der Variablen X der Wert 12 zugeordnet, 

d. h. das erste Datenelement; die zweite READ-Anweisung übergab 45 827 an eine 

Variable etc. Diese Abfolge konnte nur mit einem anderen Befehl unterbrochen 

werden: 

2800 RESTORE 

162



setzte den ‘Datenzeiger’ auf den Anfang der ersten Datazeile des Programms 

zurück. 

Viele moderne Mikrocomputer haben diese Einschränkung mit der Einführung des 

Befehls 'RESTORE LN’ überwunden. LN gibt eine Zeilennummer an, und der 

Datenzeiger wird auf das erste Element der ersten DATA-Anweisung in oder hinter 

Zeile LN des Programms gesetzt. Dadurch können verschiedene Daten-Teilberei- 

che einbezogen werden, die jeweils verschiedenen Zwecken im Programm dienen, 

und bei Bedarf kann auf Daten aus jedem Bereich leicht zugegriffen werden. Da der 

C 64 diese zusätzliche Fähigkeit leider nicht besitzt, müssen die vorhandenen 

Beschränkungen auf andere Art umgangen werden. 

Ein unkompliziertes Beispiel für die Verwendung von DATA-Anweisungen könnte 

so aussehen: 

1000 DIMMOSC11) ,AAM<CY? 

1818 DATA JANUAR „FEBRUAR „MAERZ ‚APRIL, MAI 

‚JUNI 

1828 DATA JULI ,AUGUST,SEPTEMBER -OKTOBER, 

NOVEMBER „DEZEMBER 

18308 DATA 12,125,23,64,17,176,38,78,169, 

I 

1046 DATA INITIALISIERUNG,E INFUEGEN,LOES 

CHEN,ANZE IGEN,-ENDE 

1050 FORTI=0T0O11:READ MOSCI>:NEXT 

1868 FORI=BTOI:READ AAACT) SNEXT 

1070 FORI=1TOS:READ T#IPRINTTS#: NEXT 

Hier versorgen die DATA-Zeilen ein Feld mit Monatsnamen und ein anderes mit 

nötigen Daten. Der dritte DATA-Abschnitt druckt die Optionen als Menü, um 

einzelne PRINT-Befehle für jede Option zu erübrigen. Beim ersten Lauf funktioniert 

alles einwandfrei, dann aber könnte es erforderlich werden, während des Pro- 

grammablaufs das Menü später nochmals auszudrucken. Wie die DATA-Anweisun- 

gen stehen, kann man in diesem Fall nur den Zeiger auf den Datenanfang zurück- 

setzen und alle Daten noch einmal lesen, wobei nicht benötigte ausgelassen 

werden: Die Monatsnamen müssen nicht noch einmal eingelesen werden. Diesen 

Zweck erfüllen die Zeilen: 

2000 FORI=1TO02@e2:READTS § NEXT 

261@ FORI=1TOS!READ TS? PRINT T$:NEST 

163



Anders gesagt, Daten können gelesen und abgelegt werden, wenn die Anfangspo- 

sition des gewünschten Elements genau bekannt ist. Überflüssige Daten werden als 

Strings gelesen, denn unser Beispiel akzeptiert sowohl Zahlen als auch Stringda- 

ten. Wo viele DATA-Anweisungen vorkommen, können jedoch bei der Positionsbe- 

rechnung bestimmter Datengruppen leicht Fehler gemacht werden, so daß das 

Programm auf READ die falschen Daten übergibt. Darüber hinaus stört jede 

Veränderung an der Anzahl der Elemente die Ausgewogenheit des ganzen Prozes- 

ses, so daß im gesamten Programm die Werte aller Schleifen, die Daten lesen und 

ablegen, verändert werden müssen. Im günstigsten Fall ist das nur lästig, aber bei 

Programmen, die für die Arbeit mit häufig geänderten DATAs bestimmt sind, ist es 

völlig undurchführbar. 

Hier bietet sich der Ausweg, DATA-Anweisungen mit Markierungen zu versehen, 

die dem Programm zeigen, wo es sich innerhalb der DATAs befindet und wo die 

Datei zu Ende ist. In Verbindung mit der oben abgedruckten Routine erhalten wir so: 

1898 DIMMOS<11) ,AAYCS) 
1818 DATA#1 , JANUAR ‚FEBRUAR ‚„MAERZ ‚APRIL ,M 
AI,JUNI 
1829 DATA JULI ,AUGUST,SEPTEMBER ‚OKTOBER, 
NOVEMBER , DEZEMBER 
1838 DATA#2 ,12,125,23,64,17,176,38,78,16 
9,5 
1848 DATA#3,INITIALISIERUNG ‚EINGABE ‚LOES 
CHEN ,ANZEIGE „ENDE ,#-1 
1045 FORI=1T010@0:READTS: IF TS="#1"THENI= 
10902 
1946 IFT$="#-1"THENRESTORE 
1247 NEXTI 
1050 FORI=@TO11:READMO$¢1I>!NEXT 
19055 FORI=1TO1000:READTS: IF T#="#2" THENI= 
ivoa 
19857 NEXKTI 
1@6@ FORI=@TO9:READAA%( 1)! NEXT 
1065 FORI=1T0O100@:READTS: IF TS="#3" THENI= 
1908 
1@66 IFTS="#-1"THENRESTORE 
1067 NEXTI 
1070 FORI=1TOS:READ TS: PRINTTS:NEXTI 

164



Das Programm erhält hier den Befehl, in den DATA-Anweisungen nach der Markie- 

rung des richtigen Datenabschnitts zu suchen und erst dann Informationen zu 

übernehmen. Die Zahl 1000 in den neuen Schleifen ist einfach eine beliebige Zahl, 

die größer als die Anzahl der Datenelemente in den DATA-Anweisungen sein muß. 

Wenn das Programm die Datei bis zum Ende liest, erzeugt es keinen ‘OUT OF 

DATA ERROR’, sondern entdeckt die Markierung '#-1’ und weiß, daß es bei der 

ersten DATA-Anweisung mit dem Lesen (READ) neu beginnen muß. Auf die 

wenigen Daten in unserem Beispiel würden Sie diese Methode selbstverständlich 

nicht anwenden, aber in Programmen, die große Datenmengen dieser Art verarbei- 

ten, können strukturierte DATA-Anweisungen ein Segen sein. 

ZEITSTEUERUNG MIT TI UND TI$ 

Es ist Ihnen sicher nicht entgangen, daß in den bisher angegebenen Routinen zwei 

ganz verschiedene Methoden verwendet wurden, um Timings während des Pro- 

grammablaufs vorzuschreiben und zu erzeugen. Um eine Zeitspanne vorzuschrei- 

ben, etwa für den Ausdruck einer bestimmten Meldung auf dem Bildschirm, werden 

fast immer FOR. . .TO-Schleifen benutzt, z. B.: 

100 PRINT"DIES IST EINE NACHRICHT" 

110 FORI=1TO02@00:NEXT 

i28 PRINT "wd" 

Dieser einfachen Technik kann sich jeder bedienen, wobei die erforderliche Schritt- 
größe durch Probieren ermittelt wird. Zur Steuerung komplizierterer Vorgänge ist 
die Methode jedoch ungeeignet. Einen einzelnen Vorgang kann man zwar gut 
ausdrucken und mit Hilfe einer Schleife eine Weile stehen lassen, aber das geht 
nicht, wenn Sie eine Reihe von Vorgängen ausführen und nach Ablauf der angege- 
benen Zeit beenden möchten. In Einzelfällen kann das mit einer Schleife durchge- 
führt werden, aber es ist viel einfacher, die eingebauten Zeitgeberfunktionen des 
C 64 einzusetzen: TI und TI$. 

Diese beiden sind eingebaute ‘'Systemvariablen’ mit eigenen Variablenwerten, die 
aber normalerweise nicht vom Anwender, sondern vom C 64 selbst gesetzt wer- 
den. Tl ist eine numerische Variable, die beim Einschalten des C 64 auf Null gesetzt 
wird und sich dann jede Sechzigstelsekunde um eins erhöht. Die Anzahl der seit 
dem Einschalten verstrichenen Sekunden ist demnach durch Eingeben von 

?T1/68 

einfach zu erfahren. 

165



Für den täglichen Gebrauch ist TI$ wahrscheinlich nützlicher. Es leitet sich von TI 

ab, bietet aber ein übersichtliicheres Format und kann vom Benutzer auf jeden 

beliebigen Wert gesetzt werden. TI$ initialisiert beim Einschalten des C 64 mit 

“000000” und erhöht sich im Sekundentakt. Es wird jedoch nicht einfach die 

Sekundenzahl ausgegeben, sondern STUNDEN/MINUTEN/SEKUNDEN; 021537 

bedeutet also zwei Stunden, 15 Minuten und 37 Sekunden. Um beide Variablen zu 

vergleichen, gibt. man ein: | 

?TI/698,TI$ 

TI$ kann wie jeder andere String einen beliebigen Wert zugewiesen bekommen, 

und TI wird aus diesem Wert errechnet, obwohl es nicht direkt verändert werden 

kann. Eingeben von | 

TI$="126000" 

weist TI$ 12 Stunden zu. Die wesentlichen Einschrankungen dabei sind: Wenn TI$ 

gleich einer Zahl gesetzt wird, die nicht genau sechs Stellen hat, wird ein Fehler 

erzeugt, und bei einem Wert über “240000” wird TI$ auf Null zurück gesetzt. 

Diese Eigenschaft von TI$ haben wir gelegentlich schon beim Vergleich verschie- 

dener Sortier- und Suchverfahren benutzt, indem wir am Anfang TI$ “000000” 

gesetzt und nach Beendigung des betreffenden Prozesses ausgedruckt haben, um 

die abgelaufene Zeit festzustellen. Selbst diese Technik kann auf vielfältige Weise 

eingesetzt werden, z. B. um Reaktionszeiten in Tests und Spielen zu kontrollieren, 

oder als professioneller Touch bei Anwendungsprogrammen, die dem Benutzer 

mitteilen, wie lange das Programm am Schluß einer bestimmten Arbeitssitzung in 

Betrieb ist. 

Des weiteren kann man mit TI und TI$ nicht nur Zeitspannen ausdrucken, sondern 

auch leicht vorschreiben. Lesen Sie folgende Zeilen: 

1888 TT=TI 

2600 IF T1I-TT?13000 THEN RETURN 

Stande die erste Zeile am Anfang einer Routine und ware die zweite irgendwo darin 

eingebunden, wo sie regelmäßig abgearbeitet würde, so würde die betreffende 

Routine nach fünf Minuten beendet (18 000/60 = 300 Sekunden = 5 Minuten). 

Wenn der Wert von TI nicht erhalten werden muß, kann sogar die Berechnung der 

gewünschten Anzahl von Sechzigstelsekunden entfallen. Die nächsten beiden 

Zeilen hätten dieselbe Funktion: 

166



iega TI$=-"Baagagiagea TIF=-"OOHOHHH" 

2888 IF TI£>"BO080908" THEN RETURN 

Das Haar in der Suppe ist dabei der Kassettenrekorder: Solange mit ihm kommuni- 

ziert wird, zählen TI und TI$ nicht weiter. Man kann ein Programm um die 

"Echtzeituhr'’-Funktion ergänzen, indem man Ti$ aufspaltet und etwas übersichtli- 

cher darstellt: 

1888 TT$=TI$ 

1818 PRINT LEFT$CTT$,2>37":"7MID$CTT$ ,3,2 

"="7MID$UTT$ ,5> 

Der Gebrauch eines Hilfsstrings TT$ ist der direkten Arbeit mit TI$ vorzuziehen, da 

TI$ sich während des Aufspaltens möglicherweise ändert. Wenn also TI$ beim 

Ausdrucken der Zeit “005959” gewesen und auf “010000” gesprungen wäre, 

bevor Minuten und Sekunden errechnet waren, ergäbe sich die Zeit ‘00:00:00’. 

RUNDEN MIT INT 

Die Funktion INT, die Nachkommastellen von einer Zahl abschneidet, ist in den 

vorhergehenden Routinen oft gebraucht worden. Wie wir wissen, kann INT auch die 

maximale erlaubte Anzahl von Dezimalstellen einer Zahl bestimmen. Eine Manipula- 

tion wie 

19060 NN=INT*C 18600%*NN) “19008 

ergabe drei Dezimalstellen. 

Wir sollten nicht außer acht lassen, daß INT auch Zahlen auf die nächstgrößere 

ganze Zahl aufrunden kann, nicht nur auf die nächstkleinere abrunden. Dazu addiert 

man einfach 0.5 zu einer Zahl und läßt sie dann mit INT verarbeiten. Probieren Sie 

die nächste Routine durch Eingeben einer Reihe nicht-ganzer Zahlen aus: 

188 INPUT NN 

118 PRINT INT<(NN+Q.S) 

128 GOTO1OO 

167



168



KAPITEL 13 

FORMATIEREN 
Die Fähigkeit des C 64, Informationen programmgesteuert auf den Bildschirm zu 

bringen, ist gekennzeichnet durch eine eigenartige Mischung aus großer Flexibilität 

einerseits und einem Defizit an Standardfunktionen andererseits, über die fast alle 

Mikrocomputer der heutigen Generiation verfügen. Die Flexibilität ergibt sich aus 

der Freiheit des Programmierers, mit direkten Cursor-Steuerzeichen die Printposi- 

tion zu ändern und mit anderen Steuerzeichen die Farbeigenschaften zu kontrollie- 

ren, und aus der Leichtigkeit, mit der Zeichen in den Bildschirmspeicher und von da 

auf den Bildschirm gepoket werden können. Ein Nachteil liegt im Fehlen von 

Anweisungen wie PRINT AT, das die Bestimmung einer einzelnen Bildschirmposi- 

tion durch einen einzigen BASIC-Befehl erlaubt, oder PRINT USING, das in 

derselben Weise die Bestimmung des Formats von Zahlen oder Strings ermöglicht, 

um z. B. beim Ausdrucken eine einheitliche Anzahl von Dezimalzahlen zu garantie- 

ren. In diesem Kapitel werden wir untersuchen, wie man beim C 64 das beste aus 

seinen starken Seiten macht und manche seiner schwachen Seiten umgeht. 

CURSORSTEUERUNG 

Es gibt so viele Arten, Cursor-Steuerzeichen zu benutzen, wie es verschiedene 

Verwendungsmodglichkeiten des Bildschirms zur Darstellung von Informationen 

gibt. Programme, die auf dem Bildschirm komplexe Strukturen erzeugen, sind auf 

dem C 64 wahrscheinlich viel leichter zu realisieren als auf jedem anderen ver- 

gleichbaren Heimcomputer. Informationen können seitenweise auf den Bildschirm 

geschrieben werden, ohne ständig die Position neu zu berechnen, wie es bei PRINT 

AT nötig ist. Zeichen können ganz bequem nach oben, unten, rechts oder links 

(bezogen auf das letzte Zeichen) verschoben werden. Betrachten Sie das folgende 

Beispiel, das eine Reihe von Strings mit vier Zeichen von rechts unten nach links 

oben diagonal auf dem Bildschirm schreibt: 

190 AS="k*k*e%" 

118 PRINT" IE 

  

120 FORI=1T0e2e4 

130 PRINTAS;: "CARRS"; 

1408 NEXT 

169



Aus diesem kleinen Beispiel lassen sich zwei Schlüsse ziehen. Erstens: Die 

Bewegung eines Elements in bezug auf das vorhergehende, also die ‘relative 

Bewegung), ist einfach und logisch. Sie bestimmen lediglich die Anzahl der Stellen, 

um die Sie in einer beliebigen Richtung weiterrücken möchten, und bedienen die 

entsprechende Cursorsteuerung. Der zweite Schluß ergibt sich aus Zeile 110: Die 

Cursorsteuerung kann mühsam werden, wenn man Printpositionen bestimmt, die 

nicht in der Nähe der linken oberen Bildschirmecke liegen. Diese Einschränkung 

kann durch Zuweisung von zwei Strings beim Initialisieren des Programms in 

gewisser Weise überwunden werden, z. B.: 

189 HO&= "IBRDRPRRPRRBRRRRBBERRRRBRRRREBB 
| "tREM 39 * CURSOR RECHTS 
110 VE¢=" ee 
REM 24 * CURSOR RUNTER 

  

Diese beiden Strings enthalten genügend Cursor-Steuerzeichen in VErtikaler und 

HOrizontaler Richtung, um die Printposition von links oben an jede beliebige Stelle 

auf dem Bildschirm zu bringen. Um die Printposition in die letzte Zeile zu fahren, 

müßte man etwa folgende Zeile eingeben: 

120 PRINT" QW"? LEFTS< VE$ ‚2427 LEFT$CHO$ ‚349 ) 
8 
F 

Auf der Buchseite sieht das länger aus als im Original, aber die Angabe der Strings 

in voller Länge hätte natürlich eineinhalb Zeilen ausgefüllt. Wenn Sie die Funktion, 

die im Grunde eine Version von PRINT AT ist, regelmäßig benutzen wollen, können 

Sie den Vorgang durch ein speziell für diese Aufgabe geschriebenes Unterpro- 

gramm etwas verkürzen: 

1718 PRINT" W"-LEFTS< VES -VEO>;LEFT$<¢ HO$ -HO 

27 }RE TURN 

Nach der Eingabe kann die Printposition mit einer Zeile wie 

128 VE=-12:H0=12:G0SUB1718:PRINT "HALLO" 

beliebig über den Bildschirm bewegt werden. Das ist etwas kürzer als die vorige 

Version, die jedesmal LEFT$ verwendete, und auch leichter lesbar. Man sollte dabei 

nicht vergessen, daß die Bildschirmpositionen nicht von eins sondern von null an 

numeriert sind, d. h. die Vertikale zählt von O bis 24 und die Horizontale von O bis 

170



39. Falls Sie jeweils von eins an zählen möchten, muß das Unterprogramm 

modifiziert werden, damit es mit VE-1 und HO-1 läuft. 

Damit können wir noch einmal die diagonale Stringreihe ausprobieren (HO$ und 

VE$ werden als definiert vorausgesetzt): 

120 AS="kKKKK" 

130 FOR VE=24T00 STEP-1 

140 HO=VE+196 

158 GOSUB1716:PRINTAS:; 

168 NEXT VE 

178 END 

Auch wenn dies nur eine Nachahmung ist, zeigt sich darin die Stärke von PRINT AT, 

nämlich die Möglichkeit, den Bildschirm mit Hilfe von Variablen zu formatieren. Auf 

diese Weise können ziemlich komplexe Strukturen erzeugt werden. Die nächste 

Routine bildet eine dreieckige Tabelle aus Zeichenpaaren. Es handelt sich in dem 

Beispiel um einen Pseudo-String, aber die Daten könnten genauso aus einem Feld 

mit sinnvollen Daten geholt werden. 

120 AS="kk" 
i3@ FORVE=07012 
148 FORHO=@TO3*VE STEPS 
158 GOSUB1718:PRINTA$ 
168 NEXTHO,VE 
178 END 

Mit PRINT AT kann der Benutzer auch die Bildschirmformatierung steuern, und 

diese Funktion ist oft sehr nützlich. Stellen Sie sich ein 12 mal 6 großes Feld mit 

Informationen vor, die auf dem Bildschirm in Tabellenform dargestellt werden. 

PRINT AT erlaubt dem Benutzer, neue Elemente einzufügen und ausgedruckt zu 

sehen, ohne die gesamte Bildschirmseite vom Feld aus neu schreiben zu müssen. 

Nachdem die Formatierstrings VE$ und HO$ definiert sind und das Unterprogramm 

eingegeben ist, sähe ein typisches Programm so aus: 

300 DIMAZC11,5>°PRINT "ad" 

51@ FORVE=0T011:FORHO=0TO30 STEPG6:GOSUB1 

718 

320 PRINTAACVE ,HO/6 >? NEXTHO,VE 

530 VE=21:HO=0:GOSUB1710 

171



340 INPUT"REIHE "VE 

558 INPUT"SPALTE ";HO 

568 INPUT"WERT <98-32767> "5 

380 GOSUBi1710:PRINT" "REM FUENF SPA 

CES 

399 GOSUB1718:PRINTNN 

690 GOTOSSQ 

Wenn Sie das Programm laufen lassen, werden Sie auf die Schwierigkeit stoßen, 

daß die INPUTs immer ihre Vorgänger überschreiben. Das kann verwirrend sein 

und bringt uns auf einen weiteren zweckmäßigen Formatierstring, den ich in 

eigenen Programmen meist O$ nenne. O$ enthält nichts weiter als 39 Leerstellen 

und wird wie üblich beim Programmstart definiert. Danach kann es in Verbindung 

mit PRINT AT zum Löschen häufig benutzter Zeilen dienen. Man könnte in das 

obige Programm eine Schleife einfügen: 

Se5 HO=S8:FORYE=-21T023:GOSUB1718:PRINT 0$ 

:NEHT 

In den benötigten Zeilen würden damit alle Zeichen gelöscht. 

VERWENDUNG VON CURSOR-STEUERZEICHEN 

Die Nachahmung von PRINT AT ist zwar sinnvoll, aber auf die direkte Verwendung 

von Cursor-Steuerzeichen in PRINT-Anweisungen sollte deshalb nicht verzichtet 

werden. Die meisten Bildschirmseiten haben keine regelmäßige Struktur, sondern 

sind auf Übersichtlichkeit für den Benutzer angelegt. PRINTs und INPUTs werden 

oftmals ausgerückt, als Blickfang oder zwecks Unterteilung von Informationen in 

logische Abschnitte auf dem Bildschirm. Kleine relative Bewegungen der Printposi- 

tionen werden am besten durch Cursor-Steuerzeichen veranlaßt (vgl. Seite 7): 

100 INPUT"WERT 1 "7A 

118 INPUT"SWERT 2 "7B 

120 INPUT"BRWERT 3 "FC 

1398 INPUT" MWERT 4 "7D 

140 INPUT"BRERT S "FE 

Hier ware es völlig überflüssig, die Inputs mit einem PRINT AT-Unterprogramm 

auszudrücken. Es gibt sogar regelmäßige Strukturen, die man günstiger mit Steuer- 

172



zeichen direkt gestaltet. Ein Beispiel dafür ist ein Wort, das vertikal statt horizontal 

auf den Bildschirm geschrieben werden soll. Die Verwendung von zwei Cursor- 

Steuerzeichen erspart hier die mühsame Arbeit mit Variablen: 

180 AS="HALLO" 

110 FORI=i1TOLENCAS>) 

1260 PRINTMIDS(AS,1,197 "Mpg": 

130 NEXKTI 

Auch beim Uberschreiben einer Textzeile kann man die Taktik zu weit treiben, wo 

ein einfaches ‘Cursor hoch’ denselben Zweck erfüllt: 

188 PRINT"DIES IST EIN TEXT" 

118 FORI=-1TO2888:NEXTI 

128 PRINT"QUNO DIES UEBERSCHREIBT IHN" 

Wie wir im Kapitel über Eingaben gesehen haben, kann dieselbe Technik bei 

INPUTs verwendet werden, indem die Abfrage mit ‘Cursor hoch’ eingeleitet wird. 

So kann bei einem Eingabefehler der INPUT neu geschrieben und automatisch über 

die vorhergehenden Zeichen gedruckt werden. 

TAB 

Die Funktion TAB ist eine weitere Formatierhilfe, mit der man Daten in einzelne 

Kolonnen aufteilen kann. Die nächsten Zeilen geben Zeichengruppen in gleichen 

Abständen auf den Bildschirm aus: 

188 PRINT" WwW"? <FORI=@TOSESTEPS3 

110 PRINTTABCI): "ae" 

126 NEXKTI 

Selbstverstandlich kann damit muhelos eine Tabelle auf dem Bildschirm formatiert 

werden, allerdings sind dazu einige Hinweise notig: Erstens hat TAB das Format 

TAB(X) ohne Lücke zwischen TAB und der ersten Klammer. Wenn Sie dazwischen 

eine Leerstelle lassen, was einleuchtend wäre, werden die Daten nicht formatiert, 

und vor jedem Element erscheint eine ‘0’. Zweitens arbeitet TAB immer vom Anfang 

der gerade beschriebenen Zeile an, und nur von links nach rechts. TAB(10) heißt 

also: “Drucke ab Zeichen 10, falls die Zeichenspalte 10 nicht bereits überschritten 

173



wurde.” Beim Versuch, mit TAB an eine Position vor der aktuellen Zeichenposition 

zu springen, wird TAB völlig ignoriert, und das Zeichen wird in die nächste 

verfügbare Spalte geschrieben. Sie können das überprüfen, indem Sie die oben 

angeführt Routine abändern: 

188 PRINT".":FORI=36TO8STEP -3 

1190 PRINTTABCI3: "Ojex" 

115 GETT#: IFT#=""THENI15 

126 NEXTI 

Als Ergebnis dieser veranderten Routine bewegt sich die Printposition von ‘**’ 

immer nach rechts, als ob TAB nicht vorhanden ware. Wenn Sie das Semikolon am 

SchluB von Zeile 110 entfernen, wird jedesmal eine neue Zeile begonnen und das 

Problem stellt sich nicht. 

TAB löscht nicht die Zeichen, über die es sich bewegt, sondern nur die bedruckten 

Zeichenpositionen. Aus diesem Grund kann man es — ähnlich wie bei der 0.9. 

Nachahmung von PRINT AT — zur Änderung von Tabellen verwenden: 

188 FORI1=-1T0O19:PRINT"#xx "7:NEXT:REM EIN 

SPACE NACH DEN STERNEN 

i1la PRINT'"D"; 

128 FORI1=-8T0O32STEP8S:PRINT TABCIOF "keane 

NEXT 

SPC 

SPC hat dieselbe Funktion wie TAB, d.h. es bewegt die Printposition von der 

aktuellen Spalte um mehrere Spalten nach rechts. In den Handbüchern zum C 64 

wird Space’ fälschlich als eine Funktion erklärt, die Leerstellen druckt. Genau wie 

TAB druckt SPC nichts, es bewegt einfach die Printposition, ohne die Zeichen im 

übersprungenen Bereich zu beeinträchtigen. Geben Sie zur Probe diese kurze 

Routine ein: 

188 PRINT" IRRKRK" 

110 PRINT" W"SPCC7)3 "x" 

Die von SPC übersprungene, mit X beschriebene Zeile wird nicht gelöscht. 

Da SPC immer in bezug auf die aktuelle Printposition arbeitet, eignet es sich 

weniger als TAB zum Formatieren einer regelmäßigen Struktur auf dem Bildschirm, 

es sei denn, die Länge der gedruckten Elemente ist einheitlich. Wird SPC zum 

174



Trennen von Elementen in mehreren Zeilen eingesetzt, so werden die Elemente 

zwar in gleichen Abständen, aber nicht unbedingt in Kolonnen gedruckt. SPC ist 

jedoch in einer Hinsicht überlegen: Viele Drucker haben Schwierigkeiten mit TAB, 

arbeiten jedoch reibungslos mit SPC. Falls Sie derartige Probleme mit dem Aus- 

drucken von Tabellen haben, definieren Sie zunächst die Breite der gewünschten 

Kolonne einschließlich Leerspalten und gleichen Sie dann mit SPC mögliche 

Unterschiede zwischen der Länge des zu druckenden Strings und der Breite der 

Kolonne aus: 

1899 ASCOIS"KEASCHI=S "KR EASCOI SE" KK" IA 

SIS "keane" 

110 OPENI,4:CMD1 

126 FORI=17T010 

138 FORJ=8TO3 

1490 PRINTAS( J; SPCC6-LEN(CAS( J) 993 

iS@ NEXTJIEPRINT:NEXTI 

160 PRINT#1: CLOSE 1 

Zeilen 100 und 160 der Routine öffnen eine Datei auf den Drucker, übertragen 

vorübergehend alle gedruckten Ausgaben in diese Datei und schließen die Datei 

nach Beendigung des Druckens. Beachten Sie, daß am Ende jeder Zeile von 

Elementen ein eigenes PRINT stehen muß. Wäre das nicht der Fall, würde SPC 

über das Zeilenende hinaus weitere sechs Zeichenkolonnen drucken und so das 

Format zerstören, im Unterschied zu TAB, das bei Erreichen des Zeilenendes das 

Semikolon hinter der PRINT-Anweisung ignoriert. 

NACHAHMUNG VON PRINT USING 

Tabellen lassen sich oft viel leichter formulieren, wenn man Inhalte einheitlicher 

Länge verarbeiten kann. Zur Veranschaulichung können Sie folgende Routine 

eingeben: 

100 PRINT" WJ": 

118 FORI1=-1T020 

120 PRINTCRNOCO)*«15)t2 

130 NEXT 

Wie Sie sehen, ergibt sich daraus eine recht verworrene Kolonne. Es ware wenig 

zweckmaBig, mit diesem Format eine Tabelle zu erzeugen, auch wenn hier alle 

Zeilenanfange genau untereinanderliegen. Die sinnvolle Darstellung numerischer 

175



Daten setzt voraus, daß die Formatierung den Vergleich verschiedener Zahlen auf 

einen Blick ermöglicht. 

Viele Mikrocomputer lösen die Aufgabe mit dem Befehl ‘PRINT USING’, der dem 

Programmierer erlaubt, das Format einer Zahl oder eines Strings vorzuschreiben: 

wie viele Stellen, wie viele Dezimalstellen, Ausfüllen mit Blanks bis auf Standard- 

länge. Leider besitzt der C 64 diese Funktion nicht, jedoch sind (wie PRINT AT) die 

meisten notwendigen Funktionen leicht zu simulieren. 

Um eine Zahl zu formatieren, übersetzen wir sie als erstes in einen String. Der 

ursprüngliche Wert bleibt dabei unverändert; es handelt sich nur um eine Hilfsmaß- 

nahme zum Drucken, durch die wir uns über die Länge des Elements informieren 

und das Format verändern können. Mit Hilfe einer einfachen Eigenschaft des 

Logarithmus ermitteln wir die Anzahl der Stellen vor dem Dezimalpunkt und 

standardisieren dann das Format mit einfachen Stringoperationen. Man schreibt 

dafür am besten ein Unterprogramm, da die Formatierfunktion vermutlich mehrmals 

im Programm gebraucht wird: 

198 55$=" "SREM SOV 

TEL SPACES WIE MOEGLICH 

1810 NNS=LEFT#(SS$,38-INTCLOG CABS (NN) > /LO 

GC109+19)+STRSCNND 

1828 RETURN 

Zeile 100 weist lediglich darauf hin, daß die Routine nur funktioniert, wenn vorher 

ein Leerstring SS$ definiert wurde. Der Ausdruck LOG(NN)/LOG(10) ergibt den 

Wert von NN, wenn er in Logarithmen zur Basis 10 ausgedrückt ist; auf dieser Basis 

arbeitet das Programm. Das ist einfach deswegen sinnvoll, weil der ganzzahlige Teil 

eines Logarithmus zur Basis 10 um eins kleiner ist als die Anzahl der Vorkomma- 

stellen. Also ist LOG(120)/LOG(10)=2.0918125, und durch Addieren von 1 zum 

ganzzahligen Teil (‘2’) erfahren wir, daß die Zahl drei Vorkommastellen hat. Wie Sie 

sehen, haben wir für unsere Berechnung den LOG von ABS(NN) genommen, denn 

der LOG einer negativen Zahl wäre Unsinn. Ausgerüstet mit diesen Informationen 

ist es nun ein leichtes, für eine einheitliche Anzahl von Vorkommastellen zu sorgen, 

indem man der Zahl ein ausreichend langes SS$ voranstellt. Dazu dienen LEFT$ 

und STR$; letzteres wandelt eine Zahl in einen String desselben Formats wie die 

ursprüngliche Zahl um. Bei der vorigen Routine haben die Zahlen in der Regel neun 

Vorkommastellen oder -ziffern. Es sind neun statt acht, weil STR$ an den Anfang 

einer positiven Zahl — dort, wo bei einer negativen Zahl das Minuszeichen stände — 

eine Leerstelle einsetzt. 

Sie sind nun in der Lage, anhand einer modifizierten Version der weiter oben 

erklärten Zufallszahlenerzeugung die Arbeitsweise des Unterprogramms auszupro- 

bieren: 

176



1@0 PRINT" Wd": 

116 FORI=1TOe2e@ 

126 NN=(RNOCO)*15)t2 

130 GOSUB1810 

140 PRINTNNS 

13@ NEXT 

168 END 

Das Problem der Ausrichtung von Dezimalpunkten ist damit gelöst, aber bevor wir 

Daten streng tabellarisch gestalten können, bleibt noch eine andere Frage zu 

klären: Die Anzahl der Nachkommastellen. Dabei müssen wir etwas anders vorge- 

hen. Bei Zahlen mit zu vielen Dezimalstellen kann man einfach den String aufglie- 

dern, bei zu wenigen ist das jedoch nicht ganz so leicht. Wir können nicht einfach 

den formatierten String bis zur gewünschten Länge mit Nullen auffüllen; denn es 

könnten auch Zahlen ohne Dezimalpunkt vorkommen, bei denen angehängte 

Nullen zu einem sinnlosen Ergebnis führten. Zum Glück gibt es ein einfaches Mittel, 

das uns die Überprüfung der Nachkommastellen erspart: Wir addieren zu jeder Zahl 

einen Dezimalbruch, der mit mindestens so vielen Nullen beginnt, wie unser 

Standardformat erfordert. Um zwei Dezimalstellen zu erhalten, brauchen wir dem- 

nach nur .001 zu der ursprünglichen Zahl zu addieren. Bei der Umwandlung der 

Zahl in einen String wird die ‘1’ am Ende dann einfach abgeschnitten. Zahlen, die 

schon zwei Dezimalstellen haben, ändern ihren Wert dadurch nicht, sondern 

werden nur um einen Anhang von Nullen ergänzt, und Zahlen ohne Dezimalstellen 

erhalten bei Bedarf außerdem einen Dezimalpunkt. Die einzige Komplikation betrifft 

negative Zahlen, die besondere Maßnahmen erfordern. Die Formatierung nach 

diesem Muster geschieht ebenfalls mit einer kurzen Routine: 

19808 REMKRKKEKKKEKKKEK KK 

1901 REM DEZ IMAL FORMAT 
1982 REMKEKKKKKKKKEKKEKKKKE 

1919 NNS=STRS¢ INT¢ 100%NN) 71004 ¢.001*SGN¢ 
NN?) ) 
1929 NN$=LEFT$(CSS$,3-INTCLOG<CABS<CNN>)IZ/LO 
G(10)+1))+LEF TS <(NN®,LENCNNS) - 1) 
1338 RETURN 

Hier ist nur eine Stelle unklar, nämlich die Verwendung der Funktion SGN in Zeile 

1910. Auf eine Zahl angewendet, bildet SGN das Ergebnis 1 oder —1, jenachdem, 

ob die Zahl positiv oder negativ ist. Folglich wird in Zeile 1910 das Ergebnis der 

ersten Zeilenhälfte um .001 erhöht oder vermindert, in Abhängigkeit davon, ob die 

177



ursprüngliche Zahl positiv oder negativ war. Das Ergebnis von 123 + .001 ist z.B. 

sinnvoll (123.001) und nach Entfernen der ‘1’ am Schluß zu verwenden, während 

—123 + .001 uns ein völlig sinnloses Ergebnis (-122.999) liefert, mit dem wir 

nichts anfangen können. Wenn NN —123 gewesen wäre, hätte SGN dafür gesorgt, 

daß .001 mit —1 multipliziert und daher subtrahiert statt addiert worden wäre; 

— 123.001 wäre das gewünschte Resultat. 

Wir haben jetzt fast alles, was wir brauchen, um das Format einer Zahl innerhalb der 

Grenzen zu bestimmen, die eine ordentliche Datentabelle auf dem Bildschirm 

verlangt. Es bleibt nur noch eine einzige Frage offen: mögliche Minuszeichen. Wie 

bereits angedeutet, wird einer Zahl bei der Umwandlung in einen String eine 

Leerstelle vorangestellt, wenn sie positiv ist, bzw. ein Minuszeichen, wenn sie 

negativ ist. Um möglichst viele Daten in einer Tabelle unterzubringen, kämen wir 

besser ohne Minuszeichen hin; z. B. könnten wir bei vier verfügbaren Stellen pro 

Zahl Werte bis 9999 aufnehmen, statt uns auf 999 plus Leerstelle für ein eventuell 

vorkommendes Minuszeichen zu beschränken. Die Lösung besteht einfach darin, 

das ohnehin unauffällige Minuszeichen abzuschaffen und zur Kennzeichnung nega- 

tiver Zahlen die Farbfunktionen des C 64 einzusetzen: 

2BBB REMAEKKKKKKKKKKKEKKEKKKEKKKKKKKKEKKE 

2881 REM KENNZEICHNEN NEGATIVER WERTE 

2B92 REMEKKKKKKKKKKKKKEKEKEKKKKKEKKKKE 

2818 NNS=STRSCINT*S LOQO*eNNID/100+¢. 001 *4SGN¢ 

NN? >) 
2020 NNS=LEFTS(SS$,3-INTCLOG CABS (NN> >/LO 

GC(10)9+19)+LEFTS(NNS ,LENCNNS) -1) 

2030 IF NN<@ THEN NNS="(REVERS EIN] "+NNS 
+"TREVERS AUS]" 

2848 RETURN 

Gegenüber der letzten Routine bewirkt die zusätzliche Zeile 2030, daß negative 

Zahlen nicht nur formatiert, sondern auch auf dem Bildschirm invers dargestellt, 

d. h. hervorgehoben werden. Wenn Sie einen Farbmonitor verwenden, können Sie 

die Zeichenkette auch rot drucken, indem Sie das RVS-Zeichen am Anfang durch 

das Steuerzeichen für Rot ersetzen. 

Bei entsprechender Bearbeitung dieser Technik können Sie nun komplexe Tabellen 

in ubersichtlichem Format auf den Bildschirm schreiben, die alle gewünschten 

Informationen viel wirkungsvoller vermitteln als die formlosen Zeichenkolonnen, die 

man auch nach zwei- oder dreimaligem Lesen noch nicht ganz versteht. 

178



JUSTIEREN 

Werden Strings innerhalb einer Tabelle dargestellt, ist es oft angebracht, sie in 

einheitlicher Länge zu gestalten, damit mehrere Kolonnen mit Wörtern rechts- oder 

linksbundig in aufeinanderfolgenden Zeilen gedruckt werden können. Hier kann 

man mit der Printposition taktieren, aber häufig gibt es auch die einfache Möglich- 

keit, jeden String bis auf Standardlänge aufzufüllen. Mit der nächsten Zeile wird 

beispielsweise ein String am Ende bis zu einer Gesamtlänge von zehn Zeichen mit 

Leerstellen aufgefüllt: 

100 AS=LEFTSCAS+SSS$,1039 

wobei SS$ der schon bekannte Leerstring ist. Zum Auffüllen des Anfangs (damit 

jedes Wort an derselben Stelle endet) gibt man ein: 

100 AS=RIGHTS(SSS+tAS, 10) 

Beide Zeilen basieren darauf, daß Strings innerhalb der Klammer einer Stringfunk- 

tion addiert werden können, und erübrigen die mühsame Konstruktion einer Zeile 

wie: | 

188 AS=A$ + LEFTSCSS$S,18-LEN(CAF)) 

Die beiden kürzeren Versionen führen jedoch zur Verstümmelung von A$, wenn es 

den zugewiesenen Platz überschreitet. Diese Wirkung können Sie gegebenenfalls 

auch absichtlich einsetzen, um das Format einer Tabelle zu bereinigen. 

EINFACHE LOGOS UND GRAFIKEN 
Die Auflockerung eines guten Programms mit einfachen Grafiken, einer Titelseite 

für den ersten Programmstart und einzelnen Illustrationen kann ausschlaggebend 

dafür sein, wie der spätere Benutzer damit zurechtkommt. Die Benutzer eines C 64 

haben insofern Glück, als er sich im Vergleich zu anderen Heimcomputern wahr- 

scheinlich am leichtesten für Programmkosmetik benutzen läßt, obwohl die Gestal- 

tung vieler Programme auf diesbezügliche Unkenntnis schließen läßt. Bei anderen 

Heimcomputern läßt sich eine gute Grafik oft erst nach komplizierter Planung auf 

den Bildschirm bringen: Entwurf auf Millimeterpapier und mühsame Übertragung 

der Zeichnung in Print-Anweisungen. Beim C 64 dagegen kann man den Bildschirm 

einfach wie einen Zeichenblock behandeln, auf dem man mit Hilfe des hervorragen- 

den Zeichensatzes eine beliebige Grafik entwirft und diese danach einfach in 

Programmzeilen überträgt. 

179



Zur Herstellung unkomplizierter Grafiken, die nicht mehr als 35 Zeichenspalten 

horizontal ausfüllen, löschen Sie einfach den Bildschirm, bewegen den Cursor und 

tippen oder löschen Zeichen von der Tastatur aus, ganz gleich ob Text oder Grafik. 

Die einzige Regel dabei schreibt einen mindestens fünf Zeichen breiten Rand an 

der linken Bildschirmseite und mindestens eine Leerzeile rechts vor. Wenn Sie die 

Grafik wie beschrieben auf dem Bildschirm ausgeführt haben, kehren Sie an den 

linken Rand des Bildschirms zurück und setzen Sie von oben nach unten Zeilen- 

nummern mit nachfolgendem Fragezeichen und Anführungszeichen. (Um das 

Abführungszeichen’ brauchen Sie sich nicht zu kümmern.) Natürlich sollten Sie 

jeweils RETURN-Taste drücken. 

Sie sind nach der Numerierung jeder Zeichenzeile am unteren Rand angelangt und 

haben aus Ihrer Grafik praktisch ein Programm gemacht. Auch wenn Sie mit der 

Anordnung der Zeichen auf dem Bildschirm experimentieren wollen, müssen Sie 

nicht mehr tun. Auf diese Weise kann alles eingegeben werden, was sich mit dem 

normalen Zeichensatz aufbauen läßt: ein Bild, eine Titelseite aus großformatigen 

Buchstaben, sogar der Plan für eine komplexe Tabelle. 

Die wichtigste Einschränkung betrifft die Breite der so eingegebenen Grafiken. Bei 

Eingaben, die so lang sind, daß kein Platz mehr für Zeilennummern und die 

abgekürzte Print-Anweisung (‘?’') bleibt, müssen Sie den Bildschirm zur Hälfte 

beschreiben und dann mit SHIFT/INST an den Anfang einer Zeile Leerstellen 

einfügen. Dabei läuft jede einzelne Zeile in die nächste über und zerstört so 

scheinbar die Grafik. Das soll Sie nicht beirren. Setzen Sie einfach eine Zeilennum- 

mer vor jede volle Zeile (nicht vor die Zeilenreste); beim Programmdurchlauf 

merken Sie dann, daß die Grafik korrekt ausgedruckt wird. Sie dürfen erst einmal 

nur die halbe Grafik eingeben, weil sie sich beim Zeilenüberlauf auf dem Bildschirm 

nach unten ausdehnt und alle Zeilen verlorengehen, die dabei über den unteren 

Rand hinausgeschoben werden. Nach Eingabe der halben Grafik können Sie sie 

vollständig oder teilweise auf die obere Bildschirmhälfte drucken und nach dersel- 

ben Methode ergänzen. 

Die eventuell einzufügenden Zeilennummern sind der Grund dafür, daß die letzte 

Spalte der Zeile freibleiben sollte. Reicht eine Grafik in zwei aufeinanderfolgenden 

Zeilen bis zum Bildschirmende, so interpretiert der C 64 sie als 80-Zeichen-Zeile 

und verhindert das Einfügen weiterer Zeichen. Falls Sie gezwungen sind, bis zum 

Ende des Bildschirms zu gehen, dürfen Sie das erst nach der Übertragung der 

Grafik in Programmzeilen tun. Nun können Sie am Ende jeder Zeile das notwendige 

zusätzliche Zeichen einfügen, dahinter ein abschließendes Fragezeichen und ein 

Semikolon, sonst wird die Grafik im Wechsel mit Leerstellen gedruckt. 

180



SCHLUSS 

Ein potentiell nützliches Programm, das wegen der undurchschaubaren Datendar- 

stellung im Grunde für keinen praktischen Zweck eingesetzt werden kann, gehört 

für den Computer-Benutzer zu den ärgerlichsten Dingen der Welt. Die Anwendung 

der in diesem Kapitel beschriebenen Techniken macht kaum Mühe, ihre Wirkung 

hingegen ist ganz ohne Mühe zu erkennen. Probieren Sie es. 

NACHWORT 

Wenn Sie das Buch durchgearbeitet und dabei alle Programmbeispiele eingegeben 

haben, sind Sie geduldiger als ich. Selbstverständlich habe auch ich sie eingege- 

ben, aber ich werde schließlich auch dafür bezahlt. 

Viel wahrscheinlicher haben Sie große Teile des Buches einfach überflogen und nur 

angehalten, um besonders interessante Programme und Methoden auszuprobie- 

ren. Stellen Sie das Buch danach aber nicht gleich als eines von den Nachschlag- 

werken, die man ab und zu konsultiert, zu den anderen ins Regal. Sollten Sie nicht 

gerade vorhaben, sich sofort auf ein neues Projekt einzulassen, können Sie das 

Buch am besten nutzen, indem Sie Ihre eigenen Programme starten und ver- 

suchen, das Gelernte darauf anzuwenden. Es scheint zwar merkwürdig, komplizier- 

tere Techniken auf eher einfache und sogar zufriedenstellende Programme anzu- 

wenden, aber darum geht es nicht. Datenverarbeitungstechniken kann man sich nur 

aneignen, wenn man sie ein- oder zweimal benutzt, selbst wenn der Nutzen nichts 

nützt (falls Sie mir folgen können). 

Ein weiterer Vorschlag wäre, aus den abgedruckten Routinen inklusive Einzeilern 

ein Verzeichnis nützlicher Techniken auf Band oder Diskette anzulegen. Wie Sie 

bemerkt haben, sind die komplexeren Techniken schon so dargestellt, daß sie leicht 

eingegeben und ausprobiert werden können. Einzeilige Routinen könnten zwecks 

Veranschaulichung ihrer Wirkung um eine Input- und eine Print-Anweisung ergänzt 

werden. Wenn Sie die Routinen in dieser Form abspeichern, können Sie sie zu 

einem späteren Zeitpunkt daraufhin untersuchen, ob sie eine bestimmte Aufgabe 

bewältigen; in diesem Fall können sie, wie in Kapitel 1 vorgeschlagen, in das 

Programm eingebunden werden. Weitere geeignete Routinen können aus Zeit- 

schriften und Büchern entnommen werden, auch wenn Sie an den zugehörigen 

Programmen nicht interessiert sind. Ich selbst besitze eine Sammlung von Routi- 

nen, die zur Zeit nicht viel leisten, aber bei jeder'neuen schwierigen Aufgabe bin ich 

im nachhinein froh darüber, sie angelegt zu haben. 

Vergessen Sie also nicht einfach diejenigen Techniken, für die Sie im Moment keine 

Verwendungsmöglichkeiten sehen. Früher oder später sind sie es vielleicht, die 

über Erfolg oder Mißerfolg entscheiden. 

181



FOLGENDE BÜCHER SIND BISHER IN 
DER COMMODORE SACHBUCHREIHE 
ERSCHIENEN: 

Band 1 

ALLES ÜBER DEN COMMODORE 64 
ISBN 3-89 133-000-6 
(Artikel-Nr. 55 64 20) 
1984, 480 S., Fe. Ebd. 

DM 59,- 
Band 2: 
ALLES UBER DEN VC 20 
ISBN 3-89 133-004-9 
(Artikel-Nr. 58 00 20) 
1984, 200 S., Br. 

LIDM 9,80 
Band 3: | 
LOGO FUR COMMODORE 
mit 2 Disketten 

ISBN 3-89 133-001-4 
(Artikel-Nr. 64 10 50) 
1984, 364 S., A4, Fe. Ebd. 

DM 159, - 

Band 4: 

DAS COMMODORE 64 
SPIELE-BUCH 
ISBN 3-89 133-002-2 
(Artikel-Nr. 55 64 15) 
1984, 160 S., Br. 

DM 29,80 
Band 5: 

DAS VC 20 SPIELE-BUCH 
ISBN 3-89 133-003-0 
(Artikel-Nr. 58 00 15) 
1984, 160 S., Br. 

DM 29,80 

Band 6: 

PLUS/4 ROM-LISTING 
ISBN 3-89 133-006-5 
(Artikel-Nr. 58 40 00) 
1984, 280 S., Br. 

DM 59,- 

182 

Band 7: 
AUTOMATEN UND SENSOREN 
ZUM SELBERBAUEN FUR 
COMMODORE COMPUTER 
von John Billingsley 
ISBN 3-89 133-007-3 
(Artikel-Nr. 58 00 05) 
1984, 128 S., Br. 

DM 24,80 

Band 8 
MATHEMATIK MIT DEM 
COMMODORE 64 
von Czes Kosniowski 
mit 1 Diskette | 
ISBN 3-89 133-008-1 
(Artikel-Nr. 55 64 30) 
1984, 166 S., Br. 

DM 34,80 

Band 9: . 
PROGRAMMIERTECHNIKEN FÜR 
FORTGESCHRITTENE AUF DEM 
COMMODORE 64 
von David Lawrence 
ISBN 3-89 133-009-X 
(Artikel-Nr. 55 64 35) 
1985, 184 S., Br. 

DM 29,80



Band 10: 

DER COMMODORE 64 ALS 
GRAFIK-KÜNSTLER 
von Boris Allan 

ISBN 3-89 133-010-3 
(Artikel-Nr. 55 64 38) 
1985, 144 S., Br. 

DM 24,80 
Band 11: 

DER COMMODORE 64 
IN DER PRAXIS 
von David Lawrence 

ISBN 3-89 133-011-1 
(Artikel-Nr. 55 64 23) 
1985 in Druck 

Band 12: 
PROGRAMMIERUNG IN 
MASCHINENSPRACHE AUF DEM 
COMMODORE 64: DAS WERKZEUG 
von Mark England und 
David Lawrence 
ISBN 3-89 133-012-X 
(Artikel-Nr. 55 64 25) 
1985 in Druck 

Band 13: 

PROGRAMMIERUNG IN 
MASCHINENSPRACHE AUF DEM 
COMMODORE 64: 
GRAFIK UND MUSIK 
von Mark England und 
David Lawrence 

ISBN 3-89 133-013-8 
(Artikel-Nr. 55 64 26) 
1985 in Druck 

Band 14: 

PROGRAMMIERUNG IN 
MASCHINENSPRACHE AUF DEM 
COMMODORE 64: SPIELE 
von Paul Roper 
ISBN 3-89 133-014-6 
(Artikel-Nr. 55 64 27) 
1985 in Druck 

Band 15: | 

KUNSTLICHE INTELLIGENZ AUF 
DEM COMMODORE 64 
von Keith und Steven Brain 

ISBN 3-89 133-015-4 
(Artikel-Nr. 55 64 31) 
1985 in Druck 

Band 16: 
FLOPPY-PROGRAMMIERUNG 
MIT DEM COMMODORE 64 
von David Lawrence und 
Mark England 
ISBN 3-89 133-016-2 
(Artikel-Nr. 55 64 28) 

in Vorbereitung 

Band 17: 
STRATEGIESPIELE AUF DEM 
COMMODORE 64 
EINE PROGRAMMIERANLEITUNG 
ISBN 3-89 133-017-0 
(Artikel-Nr. 55 64 32) 
in Vorbereitung 

Band 18: 
DER COMMODORE 16 
IN DER PRAXIS 
ISBN 3-89 133-018-9 
(Artikel-Nr. 55 50 00) 
in Vorbereitung 

Preisänderungen vorbehalten 
DO Unverbindliche Preisempfehlung 

C= 
ER 

Commodore 
EINE GUTE IDEE NACH DER ANDEREN 

183



Dies ist ein Buch für alle, die mit 
dem Commodore 64 (und dem 
damit voll compatiblen Commo- 
dore 128) endlich ernsthaft pro- 
grammieren wollen. Es analysiert 
einige der Techniken, die man zum 
Schreiben erfolgreicher Anwen- 
dungsprogramme braucht. 

Das Buch ist randvoll mit Rat- 
schlägen und Programmbeispielen 
von Einzeilern bis hin zu komplexe- 
ren Routinen, die eine wesentlich 
effizientere Programmiertechnik 
ermöglichen. 

Wenn Sie die hier vorgestellten 
Methoden anwenden, werden Sie 
bald Programme schreiben können, 
die besser, schneller und klarer 

sind und sich ökonomischer und 

sicherer speichern lassen. 

David Lawrence ist einer der 
erfolgreichsten Autoren zum The- 
ma Mikrocomputer in Großbritan- 
nien. Sein Name steht für eine 
Reihe von Bestsellern. Neben 
seiner Tätigkeit als Buchautor 
schreibt er auch kommerziell Soft- 
ware und verfaßt regelmäßig Artikel 
für die Zeitschrift ‘Popular Com- 
puting Weekly’. 

  

Commodore 

Commodore GmbH 

Lyoner StraBe 38 
D-6000 Frankfurt/M. 71 

Commodore AG 

Aeschenvorstadt 57 

CH-4010 Basel 

Commodore GmbH 

Kinskygasse 40—44 

A-1232 Wien 

Nachdruck, auch auszugsweise, nur mit schriftlicher Genehmigung von Commodore. 

Artikel-Nr. 556435/4.85 Änderungen vorbehalten ISBN 3-89133-009-X  


