
Liesert

PE E KS

POKE 5

COMM en al

 EIN DATA BECKER BUCH

Liesert

PE E KS

POKE Ss

commone ORE 64

 EIN DATA BECKER BUCH

ISBN 3-89011-032-0

Copyright (C) 1984 DATA BECKER GmbH

Merowingerstr. 30

4000 Düsseldorf

Alle Rechte vorbehalten. Kein Teil dieses Buches

irgendeiner Form (Druck, Fotokopie oder einem

darf in

anderen

Verfahren) ohne schriftliche Genehmigung der DATA BECKER GmbH

reproduziert oder unter Verwendung elektronischer

verarbeitet, vervielfältigt oder verbreitet werden.

Systeme

Wichtiger Hinweis!

Die in diesem Buch wiedergegebenen Schaltungen, Verfahren

und Programme werden ohne Rücksicht auf die Patentlage

mitgeteilt. Sie sind ausschließlich für Amateur- und Lehr-

zwecke bestimmt und dürfen nicht gewerblich genutzt werden.

Alle Schaltungen, technische Angaben und Programme in

diesem Buch wurden von den Autoren mit größter Sorgfalt

erarbeitet bzw. zusammengestellt und unter Einschaltung

wirksamer Kontrollmaßnahmen reproduziert. Trotzdem sind

Fehler nicht ganz auszuschließen. DATA BECKER sieht sich

deshalb gezwungen, darauf hinzuweisen, daß weder eine

Garantie noch die juristische Verantwortung oder irgendeine

Haftung für Folgen, die auf fehlerhafte Angaben zurückgehen,

übernommen werden kann. Für die Mitteilung eventueller Fehler

sind die Autoren jederzeit dankbar.

INHALTSVERZEICHNIS

VORWORT

1. DIE ARBEITSWEISE DES MIKROPROZESSORS............

1.1. SPINNE MIT 16 BEINEN............ 0c ee eee eeeeees

1.2. WAS IST EIN BETRIEBSSYSTEM.............0.00004

1.3. WIE ARBEITET DER INTERPRETER?............e000.

1.4. PEEK, POKE UND ANDERE GEMEINHEITEN............

1.5. DER AUFBAU DES RECHNERS... .. co zn nn

1.6. FÜR EIGENE EXPERIMENTE: DER RESETTASTER.......

2. DIE ZEROPAGE. zo ve nern

1. DIE ZEROPAGE IST KEINR NULL...................

.2. POINTER & STACKS.... oo oo

3. DER SPEICHER... oo oo onen

3.1. DER SPEICHERBELEGUNGSPLAN. . | Dee ee ee eee eens

3.2. DAS MAGISCHE BYTE 1...........00c cee eaceceeeas

3.3. SPEICHER SCHÜTZEN... zoo oo onen

3.4. FREIER SPEICHER... oo oo

4.

B
b

BD

on
B®

W

NO

=

MASSENSPEICHERUNG UND PERIPHERIE we ee ee ee eee

ABSPEICHERN VON GRAFIKEN, BILDSCHIRMEN USW....

MERGE PER HAND...........-. 0... eee eee eee eens

DIRECTORIES...... 2m ou one ern nn

VERSCHIEDENES RUND UM DIE PERIPHERIE..........

DIE STATUSVARIABLE ST......... oo une.

a
m

O
M

OH
0

A
D

HD
HD

DH
N

SI

J
S
 ~

a
v

F
W

N

=

m
W
 HN

a

. —_ .

DER BILDSCHIRM. 22m oon ernennen 43

BLOCKGRAFIK. Son more 43

BALKENGRAFIR. . oo oo oo on 46

DIE BETRIEBSARTEN IM ZEICHENMODUS............. 48

CHARACTER-GENERATOR VERLEGEN...... nn 52

VIDEO-RAM VERLEGEN..............-.-. rn 54

VERSCHIEDENE TRICKS FÜR DEN BILDSCHIRM........ 58

HOCHAUFLÖSENDE GRAFIK... oo oo moon 62

DIE GRAFIKMODT. . oo oem 62

DIE BIT-MAD. . oo oo nn 63

GRAFIK EINSCHALTEN... oo mm 65

PUNKTE SETZEN... oo oo onen 67

LINIEN ZIEHEN. . oo o nn 71

KREISE ZEICHNEN... 2. oo nme 72

SPRITES... So errrreeen 75

MULTICOLOR SPRITES..... oo onen 75

KOLLISIONEN. . 2 oo mann 77

PRIORITÄTEN & BEWEGUNGSBEREICH....... cc... .. 79

IDEEN FUR DIE SPRITEPROGRAMMIERUNG............ 80

TONERZEUGUNG......... 000 c cece cece ee eee eee eneeees 83

DIE ARBEITSWEISE DES SID.............0cc0ceeee 83

DIE PROGRAMMIERUNG... oo moon .84

DIE TASTATUR... oo oem 89

DD

0

WO
WwW

n
n
»

Ww

N

10.

10.

10.

10.

10.

11.

11.

11.

11 .3.

12.

12.

12.

12.

12.

12.

12.

12.

12.

13.

13.

13.

13.

m

W

NY

=

1.

oo

Ss
9

VW
SF

W

DN

—

GLEICHZEITIGE ABFRAGE VON ZWEI TASTEN......... 90

TASTEN SPERREN... eco com 93

DIE REPEATFUNKTION.. . oo oo on 95

TASTATURABFRAGE EINMAL ANDERS... nn... 97

JOYSTICK, PADDLES, LIGHTPEN UND ANDERES......... 99

DER IONSTICK. . oo oo onen 99

PADDLES.. oc een. 101

DER LIGHTPEN. . oo corner 103

ANDERE ZUBEHÖRTEILE.... oc cc. 104

DER USER-PORT. . oo om nern 106

ALLGEMEINES ÜBER SCHNITTSTELLENBAUSTEINE..... 106

WIE BENUTZE ICH DEN USER-PORT?..............:. 110

ANWENDUNGBEISPIELE.. ... oo oo con. 111

BASIC & BETRIEBSSYSTEM. onen 113

ERZEUGEN VON BASIC-ZEILEN PER PROGRAMM....... 113

LISTSCHUTZ oe een rn 115

RENUMBER . 2 2 oo oe. 117

RENEW. oo Coon ernennen nen 118

RESTORE....... oe ee eee eee ee eneas nn 122

VERSCHIEDENE TRICKS..........00cecceeeuceeaas 123

BASIC ERWEITERUNGEN.. .. oo oo. 125

ANDERE PROGRAMMIERSPRACHEN..... cn. 126

MASCHINENSPRACHE. . zo zo m m nennen 128

WAS IST MASCHINENSPRACHE ÜBERHAUPT?.......... 128

DER TART...: oo ernennen 129

13.

13.

13.

13.

13.

13.

13.

13.

13.

13.

13.

13.

14.

14.

14.

15.

16.

17.

o
n
 V
I

A
 BINARE ADDITION. 0... eee eee eee eee

BINARE SUBTRARKTION...........-. 02. e cue e er eens

HOHERE RECHENARTEN..........2 0-02 eee eee eee

VERGLEICHE..... 2... ee te ee eee

DIE BEFEHLE DES SIMULATORS...................

10. DAS ERSTE PROGRAMM................- 2022s eee

11. DER ZWEITE SCHRITT: 16 BIT-ADDITION..........

12. SUBTRARTION....... 2... 202 rennen

13. MULTIPLIKATION............. onen ner een een

14. WEITERE MOGLICHKEITEN.................00 000 0-

15. WIE FUNKTIONIEREN SYS-ERWEITERUNGEN?.........

1. M-TRAINER...... oo oou ee ee ee nes

2. AUTORENNEN... 2.2... 22. ee ee ee ee ees

ERLAUTERUNGEN ZU SONDERZEICHEN.................

SPEICHERBELEGUNGSPLAN.......... 2.2.0. e ee eee ee eee

STICHWORTVERZEICHNIS......... ee ee ee ee

VORWORT

Sie kennen das Problem: Die mitgelieferte Anleitung des

Commodore :64 haben Sie durchgelesen. Schon nach kurzer Zeit

wollen Sie mehr wissen, als die unbestreitbar ungenügende

CBM-Publikation hergibt. Sie fragen sich vielleicht, wie man

die groß angekündigte Kollisionskontrolle bei Sprites

durchführt, wie man hochauflösende Grafik erzeugt, oder wie

man zwei Tasten gleichzeitig abfragen kann. Im Anhang

befindet sich zwar eine Liste mit Einzelheiten aus der

Zeropage, aber:

1. Was ist eine Zeropage überhaupt? und

2. Wie mache ich sie mir zunutze?

Wenn dies Ihre Probleme sind, dann halten Sie das richtige

Buch in Händen.

Wir werden zusammen eine Reise durch Speicher und

Betriebssystem des 64ers unternehmen - wie, Sie wissen

nicht, was ein Betriebssystem ist? Macht nichts, auch das

wird erklärt.

Zu diesem Zweck besteht das Buch aus drei Teilen. Im ersten

Abschnitt schaffen wir die Grundlagen für die dann folgenden

Tricks (Abschnitt 2). Dazu gehört die Erläuterung der

BASIC-Befehle PEEK, POKE und dergleichen mehr. Wenn Sie nach

diesem Abschnitt dann die Programmierung und Funktionsweise

Ihres Rechners besser verstehen, folgen eine Menge Tricks,

die alle vom BASIC aus funktionieren. Sie benötigen also

keine Maschinensprachekenntnisse, um in Zukunft komfortabler

programmieren zu können.

Jedem Abschnitt mit Tricks ist eine kurze Zusammenfassung

nachgestellt, damit man beim späteren Nachschlagen nicht

unbedingt alle Erläuterungen mitlesen muß.

Wenn Sie sich genau an die Beschreibungen halten, kann ich

Ihnen garantieren, daß alle Tricks und Programme

funktionieren.

Apropos Maschinensprache: Im 3. Abschnitt finden Sie ein

Simulationsprogramm für einen Miniprozessor und eine kleine

Einführung in die Anfänge der Maschinensprache, die Ihnen

den Einstieg in weitere Lektüre erleichtern soll.

Besitzern des VC-20 sei gesagt, daß fast alles, was sich auf

die Zeropage bezieht, prinzipiell auch auf dem kleinen

Bruder des 64ers laufen kann, wenn auch mit kleinen

Änderungen. Hier hilft vielleicht ein kleiner Blick in die

bekannten DATA-BECKER-Bücher.

Mir bleibt nur noch, Ihnen viel Spaß bei der Nutzung der

neuen Möglichkeiten in der Programmierung Ihres CBM zu

wünschen.

Hans Joachim Liesert

Münster, im Mai 1984

1. DIE ARBEITSWEISE DES RECHNERS

In den folgenden Abschnitten lernen Sie den 64er und seine

Funktionsweise kennen. Diejenigen, die schon einigermaßen

sattelfest in der Computertechnik sind, können getrost

weiterblättern. Die "Supercracks" unter Ihnen mögen mir

etwaige Vereinfachungen verzeihen, die ich des besseren

Verständnisses wegen gemacht habe.

1.1. SPINNE MIT 16 BEINEN: DER MIKROPROZESSOR

Zunächst etwas Grundsätzliches. Jeder Mikroprozessor kann

einen bestimmten Speicherbereich adressieren, d.h. eine

gewisse Anzahl von Speicherzellen ansprechen. Dies ist

abhängig von der Zahl der Adressleitungen, die der Prozessor

besitzt. Jede Adressleitung repräsentiert ein Bit (was das

ist, wissen Sie hoffentlich aus dem CBM-Handbuch, Kapitel

Spritegrafik) und kann demzufolge zwei Zustände einnehmen: O

und 1.

Der 6510-Mikroprozessor (der das "Gehirn" Ihres 64ers

bildet) hat 16 Adressleitungen. Mit diesem Adressbus (=

Gesamtheit aller Adressleitungen) kann er 216 = 65536

Speicherzellen ansprechen.

Jede dieser Zellen umfaßt 8 Bits und kann demnach ein Byte

speichern. Hat der 6510 mit seinen 16 Beinen (=

Adressleitungen) eine Speicherzelle erreicht, so benutzt er

seine 8 Hände (sprich Datenleitungen), um Bytes entweder zu

holen oder abzuspeichern.

Da der Datenbus genau halb so breit ist wie der Adressbus,

braucht man zwei Bytes, um eine Adresse darzustellen.

Mikroprozessoren haben auch ihr eigenes Zahlensystem,

nämlich das Hexadezimalsystem. Es hat sechzehn Ziffern (O -

9 und A - F fur 10 bis 15) und bietet den Vorteil, daß eine

—- 3-

Hexziffer (Kurzform für Hexadezimalziffer) immer genau 4

Bits umfaßt: F = 15 = 1111.

Ein Byte benötigt daher 2 , eine Adresse 4 Ziffern.

All dies gilt für jeden 8-Bit-Prozessor (8 nach der

Datenbusbreite). Doch ab jetzt wollen wir uns mit den

speziellen Eigenschaften des 64ers beschäftigen.

1.2. WAS IST EIN BETRIEBSSYSTEM?

Wenn Sie sich mit einschlägiger Computerliteratur befassen,

so werden Sie oft auf Wörter wie "Betriebssystem",

"Interpreter" oder (besonders beim CBM-64) "Interrupt"

stoßen.

Nun, die Funktion des Interpreters (engl. Übersetzer) ist

dem Namen leicht zu entnehmen. Es handelt sich hier einfach

um das Programm, das die BASIC-Anweisungen, die Sie

eingeben, für den Computer übersetzt.

Der 64er und alle anderen Mikrocomputer können nämlich

eigentlich nur ihre spezielle Maschinensprache verstehen.

Erst der BASIC-Interpreter, der in einem ROM gespeichert

ist, ist in der Lage, Programmzeilen aus dem Speicher zu

holen und diese abzuarbeiten. Wenn das BASIC im Direktmodus

abläuft, holt es die Anweisungen nicht aus dem

Programmspeicher, sondern aus dem BASIC-Eingabepuffer.

Dieser Eingabepuffer stellt eine Art "Übergabebereich für

Tastendrucke" dar, d.h., das Betriebssystem (ein weiteres

Programm im ROM), das für die Abfrage der Tastatur, die

Erzeugung des Cursors und die Bedienung der Peripheriegeräte

zuständig ist, teilt dem BASIC hier mit, was der Anwender

"draußen vor der Tastatur" eingegeben hat.

Sowohl BASIC-Interpreter als auch Betriebssystem sind

Maschinenprogramme. Beide werden mit dem Einschalten des

Rechners gestartet und laufen so lange weiter, bis ein

anderes Programm in Maschinensprache aufgerufen wird.

Geschieht dies durch den SYS-Befehl, so kehrt der Rechner

nach Beendigung der Maschinenroutine zum BASIC zuruck.

Wie Sie von der BASIC-Programmierung her wissen, kann ein

Computer (Multiprozessorsysteme ausgenommen) immer nur ein

Programm zur gleichen Zeit ausführen. Interpreter und

Betriebssystem sind aber zwei getrennte Programme, die zur

Erledigung bestimmter Aufgaben simultan ablaufen müssen. Wie

wird dieses Problem gemeistert?

Die einfachste Möglichkeit, zwei Programme fast gleichzeitig

ablaufen zu lassen, ist der gegenseitige Aufruf. Immer wenn

das BASIC mit einem Teil seiner Arbeit fertig ist, schaltet

es das Betriebssystem ein und umgekehrt. Dies geschieht zum

Beispiel, wenn auf Peripheriegeräte zugegriffen werden soll.

Das BASIC stellt lediglich die Informationen zur Verfügung,

die das Betriebssystem dann zum Gerät schickt. Dies

beinhaltet aber auch, daß z.B. die Tastatur nur dann

abgefragt wird, wenn das Betriebssystem gerade läuft. Nun

soll aber während des Programmlaufs zumindest die

RUN/STOP-Taste eine sinnvolle Wirkung zeigen. Um dieses

Problem zu lösen, erfanden die Computerhersteller den

INTERRUPT (engl. Unterbrechung). Jede 1/60 Sekunde

unterbricht der Prozessor das gerade laufende

Maschinenprogramm (ob BASIC oder Betriebssystem) und springt

in die Unterprogramme für Tastaturabfrage und ähnliche

Dinge. "Entdeckt" der Rechner dabei einen Druck auf die

RUN/STOP-Taste, so wird das gerade laufende BASIC-Programm

abgebrochen. Sollte eine andere Taste gedrückt worden sein,

so wird dies im Tastaturpuffer (übrigens eine sehr nützliche

Einrichtung) gespeichert. \

Für den Anwender scheint es, als ob die Tastatur ständig

abgefragt würde, da selbst der schnellste Tipper wohl kaum

mehr als 15 Zeichen in der Sekunde eingeben kann. Für den

Mikroprozessor dagegen erscheint die Zeit zwischen zwei

Interrupts ewig lange, da er mit einem Takt von ca. 980 000

Schlägen pro Sekunde läuft und ein Maschinenbefehl im

Durchschnitt 3 bis 4 solche Schläge zur Ausführung benötigt.

Der Prozessor kann also Tausende von Instruktionen

durchführen, ehe ein Interrupt ihn aus seiner Arbeit reißt.

Nach der Tastaturabfrage macht der Prozessor an der Stelle

5 —

weiter, an der er vor dem Interrupt aufgehort hat.

Leider hat die Interruptroutine eine unangenehme

Nebenwirkung. Sie verändert bei. jedem Durchlauf bestimmte

Bytes im Speicher, die für unsere Zwecke vielleicht anders

aussehen sollten. Daher ist es auch vom BASIC aus nicht ohne

weiteres möglich, auf das RAM in den Adressbereichen

zuzugreifen, die vom ROM überlagert sind - doch davon später

mehr.

Machen wir zum Schluß noch einen kleinen Test. Eine

FOR-NEXT-Schleife, wie sie unten aufgelistet ist, benötigt

ca. 46 Sekunden Laufzeit. Schalten wir den Interrupt jedoch

ab (wie das genau funktioniert, behandeln wir in einem

späteren Kapitel), so läuft das Ganze immerhin eine Sekunde

schneller! Die höhere Geschwindigkeit können Sie allerdings

nicht mit dem TI$ des CBM-BASIC messen, da die

Interruptroutine auch für das Weitersetzen der Uhr zuständig

ist.

Bevor Sie das kleine Programm (siehe unten) eintippen,

sollten Sie den POKE-Befehl aus Zeile 10 im Direktmodus

ausprobieren. Wenn der Cursor verschwindet und die Tastatur

nicht mehr abgefragt wird, ist der Interrupt ausgeschaltet -

jetzt rettet Sie nur noch RUN/STOP-RESTORE. Viel Spaß!

10 POKE 56334, PEEK (56334) AND 254: REM Interrupt aus

20 FOR I= 1 TO 1000: PRINT I: NEXT I

30 POKE 56334, PEEK (56334) OR 1: REM Interrupt ein

1.3. WIE ARBEITET DER INTERPRETER ?

Wie schon gesagt, ist der BASIC-Interpreter ftir die

Abarbeitung der BASIC-Befehle zuständig. Für den Benutzer,

der davon nur das Ergebnis (nämlich den Programmablauf)

sieht, ist es interessant zu erfahren, wie das funktioniert.

Beginnen wir bei der Eingabe der Befehle. Der 64er speichert

unsere BASIC-Zeilen nicht einfach als Folge von Buchstaben.

Das würde viel zuviel Speicherplatz beanspruchen; für den

PRINT-Befehl alleine 5 Bytes (eines für jeden Buchstaben).

Vielmehr werden alle Befehlswörter als sogenannte TOKENS

gespeichert, d.h. sie werden in einen Code ähnlich dem ASCII

übersetzt. Zahlen und Buchstaben, die keinen Befehl bilden,

werden dagegen direkt im ASCII-Code abgespeichert. Daher

belegt der Befehl PRINT I auch nur zwei Bytes, eines für den

Befehl, das andere für den Variablennamen.

Damit ist der erste Teil der Übersetzung auch schon getan,

und, so unglaublich es klingen mag, dies alles und noch mehr

geschieht in der "Zeitspanne" zwischen dem Druck auf die

RETURN-Taste am Zeilenende und dem Wiedererscheinen des

Cursors. Oft muß dabei auch noch der gesamte Programmtext im

Speicher verschoben werden (wenn eine neue Zeile

nachträglich eingefügt wird).

Der zweite Teil der Übersetzung läuft ab, nachdem wir RUN

eingegeben haben. Anhand der TOKENS springt der Interpreter

in seine verschiedenen Unterroutinen, die dann die

eigentliche Arbeit übernehmen. Beim PRINT-Befehl wären dies

z.B. die Unterprogramme für "Ausdruck auswerten" (die

Variable, die auf dem Bildschirm erscheinen soll) und

"Zeichen auf den Bildschirm bringen", das für jedes

auszugebende Zeichen einmal angesprungen wird. Für andere

Befehle gibt es weitere Unterprogramme im ROM, so z.B.

Arithmetik-Routinen und ähnliches.

Natürlich könnte man sich diese Routinen jetzt näher ansehen

und sie analysieren, doch dies würde den Rahmen dieses

Buches sprengen. Wer jedoch Interesse daran hat, sollte sich

— 7 -

mit dem DATA-BECKER-Buch "64-intern" befassen. Es umfaßt

unter anderem ein komplettes ROM-Listing des Interpreters

und des Betriebssystens und enthält viele nützliche

Maschinenspracheprogramme.

1.4. PEEK. POKE UND ANDERE GEMEINHEITEN

Stellen Sie sich folgende Situation vor: Sie finden in einer

der zahlreichen Computerzeitschriften ein Superprogramm zum

Eintippen. Sie haben inzwischen das 20 K Listing eingetippt,

doch der Probelauf endete vorzeitig mit einem ERROR.

Es hilft nichts, Sie müssen die Funktionsweise des Programms

verstehen, um den Fehler zu beseitigen, wenn Sie nicht jeden

Buchstaben im Listing einzeln vergleichen wollen. Wenn da

nur nicht diese blöden POKE-Befehle wären! Die benutzt doch

kein normaler Programmierer! Es ist also an der Zeit, das

Pseudo-Geheimnis um solche Instruktionen zu lüften.

1.4.1. PEEK & POKE

Nehmen wir zuerst den POKE-Befehl. Seine Syntax dürfte

bekannt sein: POKE Adresse, Byte. Die Adresse darf zwischen

O und 65535 liegen, das Byte zwischen O und 255. Die Aufgabe

dieses Befehls ist es, das Byte unter der angegebenen

Adresse abzuspeichern. Dies kann vielen Zwecken dienen, je

nach Adresse kann man damit den Bildschirm füllen, eine

Farbe festlegen oder anderes mehr. Damit können wir dem

Computer ganz schön ins Handwerk pfuschen, denn sowohl

Betriebssystem als auch Interpreter müssen sich zwangsläufig

irgendwo bestimmte Daten "merken". Wie diese Daten aussehen,

erfahren wir durch PEEK. Auch hier dürfte die Syntax

hinlänglich bekannt sein: PRINT PEEK (Adresse) gibt das

-8 —

unter der angegebenen Adresse abgespeicherte Byte aus.

Wichtig ist, daß PEEK eine FUNKTION ist und deshalb nur

innerhalb einer Zuweisung (A=PEEK...) oder eines anderen

Ausdrucks stehen darf.

Gemeinsam haben beide Befehle die Eigenart, daß sich der

Zweck nach der Adresse richtet, auf die zugegriffen werden

soll. Es empfiehlt sich daher, bei solchen Befehlen im

Speicherbelegungsplan nachzusehen, in welchem Bereich

gearbeitet wird. Meist läßt sich daraus die Funktion

entnehmen.

1.4.2. SYS & USR

Kommen wir nun zu den Befehlen, die eigentlich nur für

Maschinenprogrammierer interessant sind: SYS Adresse und

PRINT USR (x). Beide dienen zum Aufruf von Programmen in

Maschinensprache.

Beim SYS-Befehl gibt die Adresse das Byte an, mit dem die

Ausführung des Programmes beginnen soll. Nach Beendigung der

.Maschinenroutine kehrt der Interpreter wie aus einem

Unterprogramm in das BASIC-Programm zurück. |

“Die USR-Funktion läuft ähnlich ab, aber es gibt nützliche

und wichtige Erweiterungen. Der erste Unterschied liegt in

der Syntax. USR ist eine Funktion wie PEEK und SIN und muß

daher innerhalb eines Ausdrucks stehen (aber das kennen Sie

bereits).

Außerdem brauchen Sie keine Start-Adresse anzugeben. Diese

wird in einem "elektronischen Briefkasten" in den

Speicherzellen 785 und 786 übergeben. Immer, wenn der

Interpreter eine USR-Funktion ausführen soll, sieht er in

den besagten Bytes nach, wo das Maschinenprogramm steht, das

er dann ausführt. Danach kehrt er wieder ins BASIC zurück.

Das wichtigste ist aber die Möglichkeit, Daten an das

Maschinenprogramm zu übergeben und umgekehrt. Der Wert in

den Klammern wird zu diesem Zweck vom Interpreter in den

—9_—

sogenannten Fließkommaakkumulator (97 - 101) gebracht. Der

Fließkommaakkumulator ist ein internes Rechenregister, in

dem alle arithmetischen Operationen durchgeführt werden. Von

dort kann sich das selbstgeschriebene Maschinenprogramm die

zahl abholen und bearbeiten. Nach dem Ende der USR-Routine

wird die Zahl, die dann im Fließkommaakkumulator steht, an

das BASIC übergeben. Auf diese Weise kann man von

Maschinensprache aus Zahlen an Variablen schicken (per

A= USR (x)).

Sinn dieser Einrichtung ist es, dem Maschinenprogrammierer

die Definiton eigener schneller Funktionen (z.B. Fakultät

oder Sortierfunktionen) zu ermöglichen. So gesehen stellt

die USR-Funktion eigentlich einen Superbefehl dar.

1.4.3. EIN KLEINER AUSFLUG IN DIE BINÄRARITHMETIK

Zu den beschriebenen Befehlen gesellen sich noch einige, die

Sie bestimmt schon kennen, aber deren Vielseitigkeit Ihnen

bisher verborgen blieb. Als erstes sind hier AND, OR und NOT

zu nennen. Bisher haben Sie sie immer nur in

IF-THEN-Konstruktionen - verwendet, z.B. in dieser Form:

IF A=O AND B=0 THEN 100

Eigentlich sind sie aber für die logische Verknüpfung von

Variablen und Zahlen gedacht. Dazu muß man wissen, daß der

Rechner auch Vergleiche wie Zahlen behandelt. Probieren Sie

einmal folgende Befehle:

PRINT (1=2)

PRINT (1=1)

Ein Vergleich mit dem Ergebnis "wahr" liefert eine -1, ein

"falsch" eine O. Im Binärsystem sieht eine -1 so aus:

1111 1111. - Wenn man das am weitesten links stehende Bit

nicht als Vorzeichen interpretiert, so ergibt die gleiche

Kombination 255. Was aber haben die BASIC-Befehle damit zu

tun?

Eine IF-THEN-Konstruktion wird immer dann verlassen, wenn

—- 10 -

das Ergebnis des Terms gleich O ist. Es ware also auch

folgende Befehlsfolge denkbar: IF 3*A THEN 110

Die Ergebnisse der einzelnen Vergleiche werden einfach

miteinander verknüpft, und das Ergebnis daraus bestimmt den

weiteren Programmablauf. Um die Wirkungsweise der einzelnen

Verknüpfungen zu verstehen, machen wir Jetzt einen kleinen

Ausflug in die Binärarithmetik.

AND, OR und NOT sind sogenannte BOOLESCHE OPERATIONEN, die

der Verknüpfung von logischen Zuständen dienen. Und wie Sie

wissen, können logische Zustände mit Bits sehr einfach

dargestellt werden (O für "falsch", 1 für "wahr").

Jeweils zwei Bits werden miteinander verknüpft. Was dabei

herauskommt, geben die Tabellen an.

AND I O [1 OR IO 11

0 IO 0 Oo IO 1

----I ----I

1101 111714

Sie sehen, daß das Ergebnis auf jeden Fall dann 1 ist, wenn

beide Eingangsbits 1 sind. Man kann beide Funktionen

wörtlich übersetzen. Bei AND ist das Ergebnis dann 1, wenn

Bit 1 UND Bit 2 auf 1 sind, bei OR, wenn Bit 1 ODER Bit 2

auf 1 sind.

Anders verhält es sich mit NOT. Diese Funktion invertiert

einfach das Eingangsbit.

NOT I OT 1

— nn nn

So weit so gut. Leider bleibt für uns unbedarfte

BASIC-Programmieter noch ein Problem. Im BASIC nützen uns

einzelne Bits wenig. Dort haben wir es mit Dezimalzahlen zu

tun. Um zu berechnen, was der Ausdruck 45 AND 123 ergibt,

müssen wir folgendermaßen vorgehen:

— 11 -

1. Zahl in Dualsystem umwandeln

Das geht einfacher als Sie denken. Sie müssen die

Dezimalzahl nur fortwährend durch 2 teilen und den Rest

jeder Division als Bit notieren, bis das Ergebnis O wird.

Beispiel: 23 : 2 = 11 Rest 1---------- if

11 2 = 5 Rest 1--------- N

5 2 = 2 Rest 1--------

2 2 = 1 Rest O------- i

1 2 = 0 Rest 1------

10111

Wie der umgekehrte Weg funktioniert, wissen Sie aus dem

CBM-Handbuch (Kapitel über Sprites).

Die Zahlen 45 und 123 sehen im Binärsystem so aus:

45 = 00101101

123 = 01111011

2. Dualzahlen bitweise verknüpfen

In unserem Beispiel 45 AND 123 ergibt das:

00101101.

AND 01111011

00101001

3. Ergebnis in Dezimalsystem umwandeln

00101001 = 41

Das könnten Sie natürlich auch einfacher haben, indem Sie

einfach PRINT 45 AND 123 eintippen. Aber so hat man ungleich

mehr Einblick.

Mit Recht stellen Sie jetzt die Frage, wozu das gut sein

soll. Neben der Verknüpfung von Vergleichen werden diese

Befehle oft zum Beeinflussen einzelner Bits benutzt. Durch

eine AND-Verknüpfung mit 254 wird auf jeden Fall das am

weitesten rechts stehende Bit gelöscht, durch eine

OR-Verknüpfung mit 1 wird es auf jeden Fall wieder gesetzt.

Probieren Sie es mit beliebigen Zahlen aus!

— 12 -

Jetzt bleibt nur noch ein geheimnisvoller Befehl:

WAIT Adresse, X, Y.

Er hat eine Aufgabe, bei der sich jedem Prozessor die Bits

im Speicher umdrehen. Er soll nämlich warten. Und das mag

ein Computer überhaupt nicht. Dies geschieht durch

fortlaufende Verknüpfung von Bytes. Kommt der Interpreter zu

einem WAIT-Befehl, so liest er zunächst den Inhalt der

angegebenen Speicherzelle. Diese Zahl wird EXKLUSIV-ODER mit

der Zahl Y verknüpft. Wie der Name schon andeutet, ist XOR

(Kurzform für EXKLUSIV-ODER) ein Verwandter der

ODER-Verknüpfung. Die Tabelle zeigt die Arbeitsweise.

XOR I OT 1

o ı0o 1

--=-I

111 0

Das Ergebnis wird nur dann 1, wenn entweder Bit 1 oder Bit 2

auf 1 sind, nicht aber beide.

Das Ergebnis der ersten Verknüpfung wird nun noch

AND-verknüpft mit der Zahl X. Sollte dieses Ergebnis O sein,

so wiederholt der Interpreter die ganze Prozedur,

andernfalls macht er mit dem nächsten Befehl weiter.

Es gibt aber auch noch eine zweite Variante des

WAIT-Befehls, bei der das Y-Argument nicht angegeben wird.

Hier wartet der Interpreter, bis der Inhalt der angegebenen

Speicherzelle AND X ungleich O wird.

-13 -

1.5. DER AUFBAU DES RECHNERS

Keine Angst, auch hier wird es nicht zu technisch. Es ist

für das Verständnis einiger Tricks sehr nützlich, wenn man

etwas über das Innenleben des 64ers weiß. |

Sie werden sich sicher schon gewundert haben, daß Commodore

mit der Angabe "64 k RAM" wirbt, für das BASIC aber nur 38 K

zur Verfügung stehen.

Nun, die 64 Kilobytes sind tatsächlich vorhanden, doch Sie

können sie nicht direkt nutzen. Der Mikroprozessor 6510 kann

insgesamt nur 64 K adressieren, d.h. er kann 65536

verschiedene Speicherplätze ansprechen. Mit dem RAM wären

also die Möglichkeiten des Rechners voll ausgenutzt. Doch

leider braucht ein Computer auch ROMs und Speicherplätze für

interne Funktionen. Zum einen ist da die schon erwähnte

Zeropage, zum anderen die ROMs mit dem BASIC-Interpreter,

dem Betriebssystem und dem Charaktergenerator (was das ist,

und wie er funktioniert, sehen wir später; vorläufig reicht

die Information, daß hier die Formen der Bildschirmzeichen

gespeichert sind).

Der ROM-Bereich belegt 20 K. Von unseren 64 K bleiben also

noch ganze 44, von denen wir noch zwei Kilobytes für

Videoram und Zeropage sowie 4 K freies RAM ab Speicherzelle

49152 abziehen. Es bleiben die erwähnten 38 Kilobytes.

Abb. 1. zeigt ein vereinfachtes Blockschaltbild des

Rechners. Wie Sie- sehen, liegen ROM und RAM nebeneinander

und belegen den gleichen Adressbereich. Um zwischen beiden

umschalten zu können, muß man die Speicherzelle 1 verändern.

Hier wird festgelegt, ob ROM oder RAM benutzt werden können.

Leider ist dies vom BASIC aus nicht so ohne weiteres

möglich. Würden wir nämlich das BASIC-ROM abschalten, so

fände der Prozessor sein Programm nicht mehr vor, sondern

nur noch leeren Speicher. Die Folge davon wäre ein Aufhängen

des Rechners und ein recht überzeugender Aufschrei des

Benutzers ob der verlorenen Daten.

Eine kleine Hilfe gibt uns der CBM trotzdem. Vom BASIC aus

- 14 —

ist nämlich das Schreiben in die überlagerten Bereiche

mittels POKE oder LOAD jederzeit möglich, lediglich das

Lesen durch PEEK oder SAVE kann nicht durchgeführt werden.

Das bedeutet, daß ein POKE, der eine Speicherzelle im ROM

adressiert, das darunterliegende RAM beeinflußt, ein PEEK

mit der gleichen Adresse dagegen tatsächlich das ROM

ausliest.

Es bleiben noch die 4 K RAM im oberen Drittel des

Adressbereiches. Sie sind für die Programmierung in

Maschinensprache gedacht, können aber auch von

BASIC-Programmen mittels PEEK und POKE als Datenspeicher

genutzt werden.

Schließlich gibt es noch den sogenannten I/O-Bereich. I

steht für INPUT, O für OUTPUT. Hier liegen nämlich die

Bausteine, die für die Schnittstellen, die Tastatur, den

Bildschirm und die Tonerzeugung zuständig sind. Der

Prozessor liefert hier seine Daten ab, die der entsprechende

Baustein dann beispielsweise zu einem TV-Signal, einem Ton

oder einem Floppyzugriff verarbeitet. Umgekehrt kommen hier

auch die Daten von der Tastatur oder den Peripheriegeräten

an. Außerdem befindet sich hier noch das COLOR-RAM.

Wie das Blockbild zeigt, "stapeln" sich hier die Bytes sogar

dreifach, da die I/O-Bausteine jeweils eigene

"RAM-Abteilungen" besitzen. Wenn wir also auf die

Speicherzelle 53280 zugreifen, um die Rahmenfarbe zu ändern,

dann wird das Byte nicht in das RAM, sondern in das Register

des Bausteines selbst geschrieben. Dies gilt auch für das

COLOR-RAM.

Der 64er besitzt insgesamt 4 TI/O-Bausteine. Zwei davon

kennen Sie, nämlich den VIC (der für die Grafik und den

Bildschirm zuständig ist) und den SID (der für die

Tonerzeugung eingesetzt wird). Es bleiben noch zwei -CIAs

(Complex Interface Adapter), die die Tastatur und einige

Schnittstellen wie z.B. den USER-PORT bedienen.

Bu 15 _

2048

40960

49152

53247

57344

65535

Abb. 1

Belegt

< Mikroprozessor
6510

38 K
RAM
für

BASIC-
Daten

8KROM
BASIC

Interpreter

Schnittstellen

CHAR-ROMAK | 1/0 Bereich > TV-AnschluB |

8 K ROM
Betriebs-
system

— 16-

1.6. FÜR EIGENE EXPERIMENTE: RESETTASTER

Wenn Sie selbst mit PEEK und POKE experimentieren wollen,

kann es passieren, daß sich der Rechner "aufhängt". In

vielen Fällen läßt sich dies mit der Tastenkombination

RUN/STOP-RESTORE beheben. Oft ist dies jedoch nicht möglich,

so daß das Ausschalten des Rechners unumgänglich erscheint,

will man den 64er aus Seiner "stabilen Umlaufbahn um den

Saturn" herausholen (so ein freundlicher Zeitgenosse). Dabei

gehen eventuell benutzte Hilfsprogramme (wie z.B.

Hex-Monitor o0.a.) verloren. Um dies zu vermeiden, ist der

Selbstbau eines RESETTASTERS anzuraten. Man benötigt hierzu

einen USER-PORT-Stecker (z.B. Cardcon 251-12-50-170 von TRW)

und einen einfachen Taster. Der Stecker kostet ca. 12,- DM.

Trotzdem sollte man vor dieser Ausgabe nicht

zurückschrecken, da sich der USER-PORT sehr vielseitig

einsetzen läßt und der Stecker mehrfach genutzt werden kann.

Der Taster wird mit den Pins 1 und 3 (siehe Abb. 2.) des

USER-PORTs verbunden. Wird der Stromkreis geschlossen, so

führt der Prozessor einen RESET aus, das heißt, er bringt

den Rechner in den Einschaltzustand. Dabei werden jedoch nur

vom Betriebssystem benötigte Bytes verändert. Vom BASIC aus

kann dies auch per Software durch SYS 64738 ausgelöst

werden. Eventuell im Speicher befindliche

Maschinenspracheprogramme wie z.B. SIMONS BASIC oder

Assembler bleiben erhalten, da die Spannung ja nicht

abgeschaltet wird, und können ggf. mit SYS xxxxx (vorher

Startadresse merken!) wieder gestartet werden. Besitzt man

ein Programm, mit dem ‚der NEW-Befehl rückgängig gemacht

werden kann, so lassen sich sogar BASIC-Programme wieder

restaurieren.

Eine Warnung noch an Besitzer von Diskettenlaufwerken. Wird

ein RESET des Rechners ausgelöst, so wird auch die Floppy.

neu initialisiert. Daher sollte man vorher eine evtl. noch

im Gerät steckende Diskette herausnehmen, ‘um Unheil zu

vermeiden.

— 17 -

Abb. 2 USER-PORT an der Rückseite des CBM-64

1234567 8 9 1011 12

ABCDEFHJKLMN

2. DIE ZEROPAGE

2.1. DIE ZEROPAGE IST KEINE NULL

Wenn Sie sich schon einmal den Anhang des CBM-Handbuches

angesehen haben, so ist Ihnen sicher der Abschnitt mit der

Zeropage aufgefallen. Sie bietet dem Anwender eine wahre

Fundgrube mit Tricks und neuen Programmiermöglichkeiten -

man muß sie nur zu nutzen wissen.

Der Name Zeropage ist übrigens nicht ganz richtig.

Üblicherweise bezeichnet man damit die ersten 256 Bytes des

Adressbereiches eines Mikroprozessors. Hier ist jedoch das

erste Kilobyte gemeint. Sinn und Zweck des Ganzen ist

schnell erklärt. Betriebssystem und Interpreter brauchen

Register, um sich Zustände, Zahlen oder Codes merken zu

können. Wie Schulkinder bei der Addition “1 im Sinn"

behalten, so tut dies der Computer in der sog. Zeropage. Die

ersten 256 Bytes sind gut für die schnelle Speicherung von

Daten geeignet, da sie mit nur einem einzigen Byte (und

daher besonders schnell) adressiert werden können.

Viele Register in der Zeropage müssen eine bestimmte Zahl

enthalten, um ein ordnungsgemäßes Funktionieren des Rechners

zu gewährleisten. Andere werden gar nicht benutzt und stehen

uns zur freien Verfügung. Weitere Bytes können vom Anwender

sinnvoll und wirksam beeinflußt werden.

2.2. POINTER & STACKS

Zwei Fachbegriffe, auf die Sie immer wieder stoßen werden,

sind Pointer und Stack.

Pointer (engl. Zeiger) zeigen auf bestimmte Stellen im

Speicher und werden auch Vektoren genannt. Dort können

— 19 —

entweder Informationen oder Unterprogramme stehen. Der

Cursorpointer beispielsweise zeigt auf die Stelle im

Bildschirmspeicher, wo der Cursor gerade steht und damit auf

den Buchstabencode des blinkenden Zeichens. Zeiger auf

Unterprogramme wurden eingeführt, um Erweiterungen des

Interpreters zu ermöglichen. Ändern wir den Vektor auf die

Routine für Zeichenausgabe, so ist es z.B. möglich, mittels

einer eigenen Maschinenroutine den PRINT-Befehl so zu

ändern, daß jedes Zeichen gleichzeitig auf Bildschirm und

Drucker erscheint.

Pointer haben immer ein bestimmtes Format. Sie bestehen im

allgemeinen aus zwei Bytes, wovon das erste LOWBYTE

(niederwertiges Byte) und das zweite HIGHBYTE (höherwertiges

Byte) genannt werden. Um die Position des Cursors oder das

Byte zu erhalten, auf das gezeigt wird, benutzt man folgende

Formel:

Adresse = Lowbyte + 256 * Highbyte

Es gehört zu den Besonderheiten der Computer, daß das

Lowbyte immer vor dem Highbyte im Speicher steht.

Ein-Byte-Pointer zeigen innerhalb eines bestimmten Bereichs

(z.B. Tastaturpuffer, Stack) auf die aktuelle Position (O -

255) und werden zu einer BASISADRESSE addiert.

Ein Stack (engl. Stapel) hat die Aufgabe, Daten

zwischenzuspeichern und in der umgekehrten Reihenfolge

wieder zurückzugeben, wenn sie benötigt werden. Wie bei

einem richtigen Stapel kann man immer nur das oberste

Element herunternehmen und auch nur ganz oben neue Daten

dazulegen. Dies wird vor allem für Unterprogramme benötigt.

Beim Aufruf des Unterprogramms wird die gegenwärtige Stelle

im Programm auf dem Stack zwischengespeichert, beim RETURN

holt sich der Rechner diese Adresse zurück und setzt das

Programm fort.

Der 64er hat neben anderen Interpreterstacks für Variablen

u.ä. drei solche Stapel, die nicht verändert werden sollten.

1. Prozessorstack (256 - 511) für Maschinensprache

2. Stack für BASIC-Unterprogramme

3. Stack für FOR-NEXT-Schleifen

—- 20 —

Wundern Sie sich nicht, wenn Sie die beiden Letztgenannten

im Anhang des Handbuches und im Speicherbelegungsplan nicht

finden werden. Sie sind in "verschieden genutzten Bereichen"

versteckt. Das sollte uns aber nicht weiter stören.

Nach soviel Theorie werden wir nun in die Praxis einsteigen.

In den nächsten Abschnitten finden Sie (neben nötigen

theoretischen Abhandlungen) interessante Tricks, die Ihnen

bei der Programmierung Ihres 64ers helfen können.

Zusammenfassung: Zeiger

Lowbyte + 256 * Highbyte

Lowbyte Adresse AND 255

Highbyte = INT(Adresse / 256)
Zeiger bestehen im Normalfall aus zwei Bytes, die immer in

der Reihenfolge LOW /HIGH angeordnet sind.

Adresse

3. DER SPEICHER

3.1. DER SPEICHERBELEGUNGSPLAN

Im Kapitel 16 finden Sie einen genauen Speicherbelegungsplan

des CBM-64. Neben der Zeropage ist auch der I/0O-Bereich .

aufgelistet. Besonderes Augenmerk sollten Sie Abweichungen

von der Zeropageliste im CBM-Handbuch widmen. So sind z.B.

die ersten 5 Bytes des angeblich freien Bereichs von 673 bis

767 durch die CIAs belegt. Es ist also Vorsicht geboten,

wenn man die Zeropage als Datenspeicher benutzen will. Ein

falscher POKE kann zum Abstürzen des Interpreters führen.

Trotzdem sollten Sie sich dadurch nicht vom Experimentieren

abhalten lassen. Viele Tricks wurden durch Zufall entdeckt,

andere traten nach gezielter Suche zutage. Soweit ich weiß,

kann keine POKE-Kombination den Rechner zu Schäden führen.

Viel Spaß also beim Experimentieren!

3.2. DAS MAGISCHE BYTE 1

Magisch ist das Byte, weil es - wie schon angesprochen - die

Speicheraufteilung steuert. Dabei werden allerdings nur die

Bits O - 2 eingesetzt. Im Normalfall sind alle drei Bits auf

1. Wird eines dieser Bits auf O gesetzt, so ändert sich die

Speicheraufteilung entsprechend.

Mit Bit O kann das BASIC-ROM (40960 - 49151) abgeschaltet

werden, mit Bit 1 werden BASIC UND Betriebssystem

gleichzeitig abgeschaltet. Sind beide Bits auf QO, so wird

außerdem noch der I/O-Bereich abgeschaltet, d.h. es stehen

jetzt 62 K zur Verfügung (da Zeropage und TV-RAM nicht

überlagert werden). Bit 2 bestimmt schließlich, ob der

Charaktergenerator ausgelesen werden kann (Sie erinnern

— 22 —

sich: dreifache Belegung).

Leider hat dieses System einen Haken. Schalten wir BASIC und

Betriebssystem ab, so hängt sich der Rechner auf. Daher

können wir nur über die Maschinensprache auf das recht

überzeugend versteckte RAM zugreifen.

Etwas anders verhält es sich beim Charaktergenerator. Hier

befindet sich kein Programm, das zum Betrieb des Rechners

notwendig wäre. Trotzdem hängt sich der 64er auf,. wenn Bit 2

auf O gesetzt wird, da damit automatisch nicht mehr auf den

I/O-Bereich zugegriffen werden kann. Nichts anderes aber tut

die Interruptroutine, um die Tastatur abzufragen. Hier hilft

es, wenn wir den Interrupt nach bekanntem Muster (siehe Kap.

1.2.) ausschalten.

Um Ihnen die Benutzung von stolzen 62 Kilobytes wenigstens

mittels PEEK und POKE zu ermöglichen, muß ich mein im

Vorwort gegebenes Versprechen brechen und Ihnen ein winziges

Maschinenspracheprogramm vorstellen, dessen Entsprechung in

BASIC zwar programmiert werden kann, aber nicht

funktioniert. Ich habe das BASIC-Programm der leichteren

Verständlichkeit wegen trotzdem aufgelistet:

1 REM Achtung! Auf keinen Fall starten!

10 POKE 56334, PEEK (56334) AND 254: REM Interrupt aus

20 POKE 1, PEEK (1) AND 252: REM ROM abschalten

30 POKE 2, PEEK (PEEK (251) + 256 * PEEK (252))

40 POKE 1, PEEK (1) OR 3: REM ROM einschalten

50 POKE 56334, PEEK (56334) OR 1: REM Interrupt an

30a POKE (PEEK (251) + 256 * PEEK (252)), PEEK (2)

10 DATA 120, 165, 1, 41, 252, 133, 1, 160, O, 177, 251, 133,

2, 165, 1, 9, 3, 133, 1, 88, 96

20 DATA 120, 165, 1, 41, 252, 133, 1, 160, O, 165, 2, 145,

251, 165, 1, 9, 3, 133, 1, 88, 96

30 FOR I= 680 TO 721: READ A: POKE I, A: NEXT I

—- 23 —

Sehen wir uns die Programme näher an. Die Zeilen 10 und 50

müßten Ihnen bekannt vorkommen. In Zeile 20 werden die Bits

O und 1 von Register 1 gelöscht und damit 62 K RAM nutzbar

gemacht. In Zeile 30 wird das gewünschte Byte ausgelesen und

in Byte 2 zwischengespeichert, damit wir als Benutzer es

später abholen (sprich PEEKen) können. Die Adresse des

anzusprechenden Bytes ist als Zeiger in den Speicherstellen

251 und 252 angelegt. Der Term innerhalb der Klammern des

ersten PEEK-Befehls berechnet aus LOW- und HIGHBYTE die

Adresse.

Nehmen wir an, Sie wollen das Byte 56000 (übrigens liegt es

unter dem COLOR-RAM) ansprechen. Das Highbyte des Zeigers

berechnet sich folgendermaßen: :

HIGHBYTE = INT (56000 / 256)

Um das Lowbyte zu erhalten, blenden wir einfach das

‚höherwertige Byte aus der 16-Bit-Zahl 56000 aus: |

LOWBYTE = 56000 AND 255 a

Um den Zeiger zu setzen, benutzen wir folgende Befehle:

POKE 251, LOWBYTE: POKE 252, HIGHBYTE

Nach SYS 680 können wir das gewünschte Byte mittels PRINT

PEEK (2) ausgeben.

Nun zu Zeile 30a. Wenn wir in das RAM unter dem I/O-Bereich

schreiben wollen, so geht dies im Gegensatz zu den anderen

überlagerten Bereichen nicht mit dem normalen POKE-Befehl.

Also müssen wir auch hier das ROM abschalten.

Das Programm dazu ist fast identisch mit dem PEEK-Programm,

Lediglich Zeile 30 wird (im BASIC) durch 30a ersetzt; das

Funktionsprinzip ist fast das gleiche. Nur muß der POKE-Wert

jetzt vorher in Byte 2 abgespeichert werden. Der Zeiger auf

das gewünschte Byte wird wie üblich gesetzt. Gestartet wird.

diesmal mit SYS 701.

Unter dem BASIC-Programm finden Sie das Ladeprogramm für die

beiden Maschinenroutinen. Zeile 10 umfaßt das gesamte

PEEK-Programm, Zeile 20 das POKE-Programm. Die beiden Zeilen

unterscheiden sich nur in 4 Bytes.

Die Routinen können unabhängig voneinander benutzt und

~ 24 —

verschoben werden, d.h. sie können dorthin gePOKEd werden

(siehe Zeile 30), wo Sie es möchten. Man nennt diese

Eigenschaft Relokatibilität.

Die Länge jeder Routine beträgt 21 Bytes.

Damit sind wir in der Lage, 62 K RAM zu benutzen, davon 38 K

für BASIC-Programme und Variablen. Die verbleibenden 24

Kilobytes können mittels POKE beschrieben werden (Ausnahme:

4 K LI/O-Bereich von 53248 bis 57343) und durch die

beschriebene Routine wieder ausgelesen werden.

Weil die Handhabung des beschriebenen Programms nicht gerade

komfortabel ist, folgt unten noch eine andere Version, die

mit PRINT USR (Adresse) aufgerufen werden kann. Für das

POKEn unter den I/O-Bereich kann man folgende Kombination

benutzen:

SYS 715, Adresse, Byte

Wer sich jetzt wundert, daß eine solche ungewöhnliche Syntax

zulässig, ist, dem sei verraten, daß der 64er für

Maschinenprogrammierer geradezu paradiesische Möglichkeiten

bietet. Unter Ausnutzung von ROM-Routinen kann man sich

eigene Befehle der beschriebenen Art programmieren.

Auch dieses Programm ist relokatibel, man muß dann jedoch

den USR-Vektor, der dem Interpreter mitteilt, wo die

USR-Funktion steht, in Zeile 70 wieder richtig

initialisieren: Dies funktioniert genau wie die

Zeigerberechnung für die erste Version des PEEK-Programns.

Der Zeiger muß immer auf die Adresse weisen, mit der die

FOR-NEXT-Schleife aus Zeile 60 beginnt.

10 DATA 165, 20, 72, 165, 21, 72, 32, 247, 183, 120, 165,

41, 252, 133 |
20 DATA 1, 160, 0, 177, 20, 168, 165, 1, 9, 3, 133, 1, 88,

104, 133, 21

30 DATA 104, 133, 20, 76, 162, 179, 32, 253, 174, 32, 138,
173, 32, 247 |

40 DATA 183, 32, 253, 174, 32, 158, 183, 165, 1, 41, 252,

133, 1, 138

— 25 —-

50 DATA 160, O, 145, 20, 165, 1, 9, 3, 133, 1, 96

60 FOR I= 678 TO 747: READ A: POKE 1,A: NEXT I

70 POKE 785, 166: POKE 786, 2

Zusammenfassung: Speicherüberlagerung

Wird über Speicherzelle 1 gesteuert. Bits O - 2 im

Normalfall auf 1. Bei Löschen der Bits Veränderung der

Aufteilung. Bit O schaltet BASIC-ROM ab, Bit 1 BASIC und

Betriebssystem gleichzeitig, beide Bits zusammen zusätzlich

auch I/O-Bereich. Bit 2 ermoglicht Auslesen des

Charaktergenerators (vom BASIC aus nach Abschalten des

Interrupts möglich).

— 26 -

3.3. SPEICHER SCHUTZEN

Nachdem wir uns die unendlichen Weiten eines 62-K-Speichers

erschlossen haben, tun wir jetzt genau das Gegenteil: Wir

verkleinern den BASIC-Speicher, um bestimmte Daten vor dem

Interpreter zu schützen. Hier stellt sich sofort die Frage,

wozu das gut sein soll. Nehmen wir an, Sie wollten ein

Programm schreiben, das mit 8 verschiedenen Sprites

arbeitet.

Vier davon können wir in den Blöcken 11, 13, 14 und 15

unterbringen. Aber nach Block 15 schließen sich TV-RAM und

BASIC-Speicher an - beides Bereiche, die man tunlichst nicht

überschreiben sollte. Konsequenz: Wir müssen den Beginn des

BASIC-Programms verlegen, um Platz zu schaffen. Dazu stellt

uns die Zeropage Zeiger zur Verfügung, die den Beginn bzw.

das Ende des Speichers anzeigen.

Um das BASIC-Programm bei Speicherstelle 2560 beginnen zu

lassen, müssen wir den Zeiger in den Speicherzellen 43/44 in

der bekannten Weise ändern:

POKE 43, (2560 + 1) AND 255

POKE 44, (2560 + 1) / 256

Die Addition von 1 ist nötig, da der Zeiger auf den Beginn

der ersten Zeile weisen soll. Das erste Byte im

BASIC-Programm muß O sein, also:

POKE 2560, O

Es bleibt nur noch CLR übrig, um die Zeiger für Variablen,

Arrays u.ä. der neuen Situation anzupassen. Diese zeigten’

noch auf den alten BASIC-Start bei 2048.

Um das Ende des BASIC-RAMs nach unten zu verlegen, gehen wir

ähnlich vor. Wir benutzen allerdings die Register 55/56 und

können uns das POKEn einer O sparen.

Leider bringt diese Methode noch einen groBen Nachteil mit

Sich. Durch das Setzen der Zeiger auf einen neuen Bereich

wird nicht automatisch auch der Programmtext im Speicher

verschoben. Also müssen diese Befehle vor der Eingabe bzw.

— 27 -

dem Laden des Programms gegeben werden. Der einfachste Weg

ist ein kleines Ladeprogramm, mit dem die Zeiger neu gesetzt

und das Hauptprogramm geladen wırd. Hierzu ist unten ein

kleines Listing abgedruckt.

10 POKE 43, (2560 + 1) AND 255

20 POKE 44, (2560 + 1) / 256: POKE 2560, O: CLR

30 LOAD "Hauptprogramm"

Wenn dieses Programm abläuft, dann macht der 64er eigentlich

etwas unmogliches. In den ersten beiden Zeilen wird der

Zeiger auf den BASIC-Anfang hochgesetzt. Damit läßt sich das

Programm nicht mehr listen, eigentlich existiert es für den

Interpreter gar nicht mehr. Trotzdem führt er die restlichen ;

Zeilen noch aus. Nur Sprung- oder ähnliche Befehle kann er

nicht mehr ausführen, da er in diesem Fall ab der

augenblicklichen Zeigerposition nach der betreffenden

Zeilennummer suchen würde.

Auch der LOAD-Befehl beinhaltet einen kleinen Trick. Wird

LOAD während des Programmlaufs ausgeführt, so macht der

Rechner nach dem Ladevorgang nicht im alten Programm weiter,

sondern beginnt am neuen Programmanfang mit der Ausführung.

Damit wird das Hauptprogramm also automatisch gestartet.

Bei der Programmerstellung sollten die Zeiger vorher von

Hand hochgesetzt werden, damit die Sprites (oder anderes)

nicht die mühsam eingegebenen Programmzeilen überschreiben.

Sollte das Programm schon fertig sein und nur noch auf das

Verschieben warten, so sollte man es auf Diskette oder

Cassette abspeichern und dann mit dem beschriebenen Lader

wieder in den Speicher bringen.

Wir werden in den folgenden Abschnitten noch einige

Anwendungen kennenlernen, für die wir Teile des

BASIC-Speichers schützen müssen.

Zusammenfassung: Speicher schützen

BASIC-Anfang hochsetzen:

POKE 43, LOW: POKE 44, HIGH: POKE Adresse, O: CLR

BASIC-Ende heruntersetzen: |

POKE 55, LOW: POKE 56, HIGH: CLR

3.4. FREIER SPEICHER

Es ist zwar schon oft behandelt worden, dennoch sei es hier

fur die "Nachzügler" noch einmal erwähnt: Das Problem mit

der FRE (0)-Funktion.

Ist der freie Speicher kleiner als 32768 Bytes, so erhalten

wir nach PRINT FRE(O) die positive Anzahl freier Bytes. Ist

der freie Bereich jedoch größer (z.B. nach dem Einschalten),

so erhalten wir eine negative Zahl, die zudem nichts über

die Speichergröße auszusagen scheint. Woran liegt das?

Die FRE-Funktion liefert einen Integerwert.

Integer-Variablen des BASICs haben jedoch einen Wertebereich

von -32767 bis +32767. Der Interpreter muß bei einer

größeren Zahl (z.B. 38000) auf die negativen Werte

ausweichen. Die wirkliche Anzahl freier Bytes erfahren wir

durch PRINT 65538 + FRE (O0), sofern FRE(O) kleiner O ist.

Nun zu einem anderen Thema. Oft möchte man ein paar Daten

abspeichern, um sie einem Maschinenprogramm zu übergeben,

oder man möchte nicht unbedingt eine ganze Variable für, ein

Byte oder gar ein Bit "verschwenden". Ebenfalls ist es

denkbar, daß zwar in einem Programm alle Variablen gelöscht

werden sollen (per CLR), eine oder mehrere Steuervariablen

jedoch unbedingt erhalten werden müssen. Was tun?

Es empfiehlt sich, einen freien Bereich in der Zeropage zu

suchen, um die Daten dorthin zu POKEn. Von einem CLR oder

NEW werden sie dann nicht berührt. Unten finden Sie eine

Liste von freien Bereichen in der Zeropage sowie Bemerkungen

dazu (soweit erforderlich).

— 29 —

mn mem mem ee me ae me ser mE mern MER Mm Set mem eee me cee Se ree rem meme terre mm eee tees ree eee es ee ee are.

2

251 - 254 können evtl. verändert werden

678 - 767

780 - 783 nur wenn kein SYS gegeben wird

820 - 827

828 - 1019 wird bei Kassettenbetrieb überschrieben

1020 - 1023

2024 - 2039

— 30 -—

4. MASSENSPEICHERUNG UND PERIPHERIE

4.1. ABSPEICHERN VON GRAFIKEN. BILDSCHIRMINHALTEN USW.

Die SAVE-Routine des BASIC-Interpreters gehort nicht gerade

zu den komfortabelsten. Doch wenn es um das Abspeichern von

Grafikseiten, Maschinenprogrammen oder ähnlichem geht, dann

versagt sie ganz, weil wir dazu die Start- und Endadresse

des abzuspeichernden Bereiches angeben müßten. Aber wie

immer in diesen Fällen gibt es auch hier einen Trick,

zunächst nur für die DATASETTE, um "künstliche" Files (=

Aufzeichnungen auf Band oder Diskette) zu erzeugen.

Wie so oft leistet wieder einmal die Zeropage gute Dienste.

Im Bereich der Speicherzellen 170 bis 195 finden wir Zeiger

und Register für die Dateiverwaltung.

Das wichtigste sind zunächst die Zeiger für Anfang und Ende

des abzuspeichernden Bereiches. Den Zeiger auf den Anfang

finden wir in den Speicherzellen 193 und 194, der Endvektor

liegt in den Registern 174 und 175. Den SAVE-Befehl können

wir mit SYS 62954 aufrufen. Wir müssen aber noch einen Namen

mit auf die Reise schicken. Diesen schreiben wir am besten

in eine REM-Zeile am Anfang des Programmspeichers. Wo der

Filename steht, sagt dem Betriebssystem ein Zeiger in den

Bytes 187/188.

Schließlich brauchen wir noch Sekundäradresse, Gerätenummer

und die Länge des Filenamens. Am besten, Sie sehen es sich

selbst an: |
nn 5

10 REM Filename

20 POKE 193, SL: POKE 194, SH: REM Startadresse (Low/High)

30 POKE 174, EL: POKE 175, EH: REM Endadresse (Low/High)

40 POKE 187, PEEK (43) + 6: POKE 188, PEEK (44): REM Zeiger

auf Filename

50 POKE 183, L: REM Filenamenlange

60 POKE 186, 1: POKE 185, O: REM Gerat/Sekundaradr.

70 SYS 62954: REM Aufruf der SAVE-Routine im ROM

Solcherart abgespeicherte Programmfiles, Grafikseiten u.ä.

können mit LOAD "Filename", 1, 1 an die gleiche Stelle

zurückgeladen werden, da die Anfangsadresse mitgespeichert

wird. | .

“Noch einige Erläuterungen zu Zeile 40: Hier wird dem

Betriebssystem mitgeteilt, wo es den Filenamen findet. Steht ©

dieser in der ersten Zeile hinter REM, so muß man nur 6 zum

Zeiger auf den BASIC-Anfang addieren, um die Position zu

erhalten. Sollte PEEK (43) + 6 einen größeren Wert als 255

ergeben, so gibt der Rechner einen ILLEGAL-QUANTITY-ERROR

aus. In diesem Fall sollte man die Adresse aus der Formel

PEEK (43) + 6 + PEEK (44) * 256 berechnen und daraus dann

die neuen Zeigerbytes ableiten.

Besitzer einer Floppy-Station haben es erheblich leichter.

Sie können nämlich mittels einer sinnreichen BASIC-Funktion

fast wie mit POKE auf die Diskette schreiben. Gemeint ist

die Befehlskombination PRINT #1, CHR$ (x). Sie schickt genau

ein ASCII-Zeichen zur Floppy. Um das sinnvoll anwenden zu

können, muß man das Format der Speicherung von Programmfiles

auf Diskette kennen. Jedes Programm besteht aus einem

Directory-Eintrag und dem Programmtext; am Beginn des Textes

stehen zwei Bytes, die die Startadresse für den Ladevorgang

angeben. Im Normalfall sind dies O und 8 (0 + 256 * 8 = 2048

= BASIC-Start). Der Programmtext ist byteweise als Folge von

Interpretercodes gespeichert. Grundsätzlich wird jedes Byte

von der Floppy-Station wie ein ASCII-Code behandelt, gleich

welchen Zweck es erfüllt. Wenn man also einen Zeiger.

ausliest, der aus zwei Bytes mit Inhalt 65 und 66 besteht,

dann erscheinen diese nach GET #1, A$, B$ als A und B in den

beiden Strings. Läßt man sich die ASCII-Codes dieser Strings

ausgeben, so erscheinen die beiden Bytes. 7

Schicken wir ein Zeichen mit PRINT #1, CHR$ (x) zur Floppy,

so wird die Zahl x auf der aktuellen Position auf der Platte

gespeichert. .

würden wir dagegen PRINT #1, X eingeben, so würde X als

— 32 —

mehrere Bytes lange Folge abgelegt (1 Byte pro Stelle).

Daraus ergibt sich ein einfaches Verfahren, um Programmfiles

zu erzeugen:

1. Directoryeintrag erzeugen

Dies übernimmt ein OPEN-Befehl für uns.

2. Startadresse "poken"

Dies geschieht folgendermaßen:

PRINT #1, CHR$ (Lowbyte): PRINT #1, CHR$ (Highbyte)

3. Text abspeichern

Der Text kann zum Bespiel auch eine Bildschirmgrafik

sein, die byteweise abgespeichert wird.

Hier das entsprechende Programm, das einen Bildschirminhalt

auf Diskette kopiert:

10 OPEN 1, 8, 1, "O:BILDSCHIRM"

20 PRINT #1, CHR$ (0): PRINT #1, CHR$ (4): REM Startpointer

30 FOR I = 1024 TO 2023

40 PRINT #1, CHR$ (PEEK (I))
50 NEXT I: CLOSE 1

Auch hier kann das Ergebnis mit LOAD "BILDSCHIRM", 8, 1

zuriickgeladen werden. |

Zeile 10 sollte nur im Filenamen (hinter "0O:") verändert

werden. Ganz wichtig ist die Sekundäradresse 1, die dem DOS

(Disk Operating System = Diskettenbetriebssystem) mitteilt,

daß wir SAVEn wollen.

Auf keinen. Fall sollte man das CLOSE am Ende der Routine

vergessen, da der File sonst zerstört würde! |

Soll ein alter File überschrieben werden, so muß vor die

Null innerhalb der Anführungsstriche noch ein Klammeraffe

gesetzt werden.

4.2. MERGE PER HAND

Wir kommen jetzt zu einem häufig auftretenden Problem. Oft

gibt es Programmteile, die getrennt getestet und

abgespeichert wurden und nun zusammen ein wunderbares Paar

abgeben könnten. Es bleibt in den meisten Fällen nichts

anderes übrig, als einen der beiden Teile neu einzutippen,

es sei denn, man besitzt ein MERGE-Hilfsprogramm, mit dem

man Programme einfach aneinanderhängen kann. Das muß aber

nicht so sein. Mit ein paar einfachen Befehlen kann man dies

auch "von Hand" erreichen.

Wenn wir das Problem genauer besehen, so reduziert es sich

auf die Tatsache, daß das nachzuladende Programm das alte

überschreibt. Es wäre wünschenswert, wenn man dem

Interpreter sagen könnte, wohin er den zweiten Teil laden

soll. Da dies aber nicht ohne Schwierigkeiten geht, lautet

die logische Konsequenz,. den Bereich des alten Programms vor

dem Interpreterzugriff zu schützen (und das können wir)!

Ist der Speicher erst einmal geschützt, können wir den neuen

Programmteil einfach mit LOAD nachladen und danach den

geschützten Bereich wieder freigeben. Wichtig ist aber, daß

der zweite Teil höhere Zeilennummern als der erste hat.

Sonst könnten wir die angehängten Zeilen zwar listen, doch

könnte der Interpreter sie nicht ausführen.

Hier nun die genaue Vorgehensweise:

1. PRINT PEEK (43), PEEK (44)

Damit wird der Pointer auf den BASIC-Anfang ausgegeben(im

Normalfall 1 und 8). Diese beiden Zahlen müssen wir uns

unbedingt merken, da wir damit später die alte Konfiguration

wieder herstellen wollen.

2. POKE 43, (PEEK (45) + 256 * PEEK (46) - 2) AND 255

POKE 44, (PEEK (45) + 256 * PEEK (46) - 2) / 256

In den Speicherzellen 45 und 46 befindet sich der Zeiger auf

den Beginn des Variablenbereichs. 2 Bytes vor dem

Variablenstart endet das BASIC-Programm.

Der Variablenbereich setzt immer genau nach dem Programmtext

an, weil er bei jeder Änderung von Zeilen um ein

— 34 —

entsprechendes Stück verschoben wird. Wir verlegen mit den

beiden POKE-Befehlen also den Programmanfang (zumindest für

den Interpreter) hinter den alten Text und schützen ihn so

vor dem Überschreiben.

3. NEW

Da sich die übrigen Zeiger der neuen Situation anpassen

müssen und außerdem Reste von Variablen als unerwünschte

Programmzeilen interpretiert werden könnten, müssen wiır den

verbleibenden Speicherbereich mit NEW neu initialisieren.

Das ursprüngliche Programm wird davon jedoch nicht berührt

(es ist Ja Jetzt geschützt).

4. LOAD

Jetzt können wir das anzuhängende Programm einfach mit LOAD

in den Speicher bringen. Wir dürfen aber auf keinen Fall

LOAD "Name", X, 1 eingeben, da dann das ursprüngliche

Programm ohne Rücksicht auf die Zeiger überschrieben würde.

Es besteht außerdem jetzt die Möglichkeit, anstelle eines

Programms eine Directory zu laden, ohne das im Speicher

befindliche Programm zu zerstören. In diesem Falle können

wir das Inhaltsverzeichnis nach dem Ladevorgang ganz normal

listen. Vor dem nächsten Schritt muß allerdings nochmals NEW

eingegeben werden, damit die Directory gelöscht wird (sie

soll ja nicht angehängt werden). Nach der ganzen Prozedur

erhalten wir dann den Ausgangszustand zurück.

5. POKE 43, 1. gemerkte Zahl: POKE 44, 2. gemerkte Zahl

Hiermit stellen wir die ursprüngliche Speicherkonfiguration

wieder her. Die beiden Programme werden dadurch

aneinandergehängt und können jetzt zusammen benutzt und

abgespeichert werden.

— 35 —

Zusammenfassung: Merge per Hand

1. PRINT PEEK (43), PEEK (44)

Zahlen merken!

2. POKE 43, (PEEK (45) + 256 * PEEK (46) - 2) AND 255

POKE 44, (PEEK (45) + 256 * PEEK (46) - 2) / 256

NEW

4. LOAD

POKE 43, 1. gemerkte Zahl: POKE 44, 2. gemerkte Zahl

— 36-—

4.3. DIRECTORIES

Dieser Abschnitt bezieht sich leider nur auf das

Diskettenlaufwerk VC-1541. Die geneigten Leser ohne dieses

nützliche Requisit mögen mir verzeihen und bis zum nächsten

Abschnitt weiterblättern.

Den ersten Trick kennen wir schon aus dem letzten Abschnitt,

nämlich das Laden einer Directory ohne Programmverlust. Es.

kann aber auch nützlich sein, das Inhaltsverzeichnis per

Programm zu laden und dann z.B. als Array abzulegen

(beispielsweise für Dateiverwaltungsprogramme etc.). Ein

Programm hierzu finden Sie im Anhang der 1541-Anleitung und

auf der TEST/DEMO-Diskette unter dem Namen "DIR". Man kann

es sich für eigene Zwecke leicht umschreiben. Es ist aber

auch sehr interessant, sich einmal die Struktur der

Directory anzusehen. Auch hierzu liefert das Handbuch gute

Informationen. Außerdem sollten Sie sich nicht scheuen, die

Directory mittels OPEN 1,8,5,"$" anzusprechen

(vorsichtshalber eine Versuchsdiskette nehmen) und per

GET#1, A$ byteweise auszulesen..

Es spricht wieder einmal gegen das VC-1541-Handbuch, daß es

Floppy-Befehle gibt, die nicht aufgeführt wurden. So kann

man das Inhaltsverzeichnis auch nach bestimten Kriterien

laden.

Die einfachste Form ist LOAD "$$",8. Damit wird nur noch der

Diskettenname und die Anzahl freier Blocks geladen.

will man nur bestimmte Einträge ansehen (z.B. alle Files,

die mit ABC beginnen), so benutzt man LOAD "$:ABC*",8

Ein ähnliches Verfahren gibt es für Filetypen. Hier heißt

der Befehl LOAD "$:*=Typ",8, wobei für "Typ" der

Anfangsbuchstabe der Dateiart (Prg, Seq, Rel, Usr)

einzusetzen ist. Jetzt wird die Directory zwar noch geladen,

aber es erscheinen nur die Files des angegebenen Typs.

Das funktioniert z.B. auch bei SCRATCH (PRINT#15, "S:*=S"

löscht alle sequentiellen Files).

- 37 —

Zum SchluB noch ein Trick, der Geld sparen hilft.

Normalerweise verarbeitet das Laufwerk nur Disketten vom Typ

"single-sided", also einseitig beschreibbar.

Die meisten dieser Single-sided-Disketten sind jedoch auch

beidseitig benutzbar, wenn man eine zweite

Schreibschutzkerbe anbringt. Dies geht am besten, wenn man

einen Locher nimmt, dessen Boden abgenommen wurde. Man kann

dann leicht durch die Bohrung eine vorher angebrachte

Markierung in Höhe der anderen Kerbe anpeilen und lochen.

Die zusätzliche Kerbe kann kleiner sein als die alte. Es

reicht also eine halbmondförmige Lochung, wie sie Abb. 3

zeigt. | ce

Um endgültige Gewißheit über die Funktionstüchtigkeit des

neuen Speicherplatzes zu erhalten, sollte man das Programm

CHECK-DISK von der TEST/DEMO-Diskette einsetzen. Es

beschreibt alle Spuren einer formatierten Diskette mit Daten

und testet dann auf Lesefehler, die eine fehlerhafte

Beschichtung anzeigen. Sollten einzelne Blocks beschädigt

sein, so wird dies auf dem Bildschirm angezeigt. Nach dem

Programmdurchlauf (leider sehr, sehr langwierig) ist das

Inhaltsverzeichnis immer noch leer, doch wird "O Blocks

free" angezeigt. Dies läßt sich durch OPEN 1, 8, 15, "V":

CLOSE 1 ändern. Es stehen dann wieder alle 664 Blöcke zur

Verfügung.

Zusammenfassung: Directories

LOAD "$$",8 lädt nur Header und Blockanzahl.

LOAD "$:ABC*",8 ladt Directory nur mit Files, deren Name mit

ABC beginnt. |

LOAD "$:*=Typ",8 lädt Directory nur mit Files, die vom

angegebenen Typ sind.

— 38 —

Abb. 3 Ä Zweite Schreibschutzkerbe‘

— 39 —

4.4. VERSCHIEDENES RUND UM DIE PERIPHERIE

Nach den "großen" Tricks nun ein paar kleine PEEKs und POKEs

‚ die bei der Programmierung der Datenein- und -ausgabe

helfen können.

Es kann nützlich sein, die Anzahl der bereits offenen Files

zu erfahren. Wie Sie wissen, dürfen maximal 10 Files

gleichzeitig geöffnet sein. Wird ein elfter eröffnet, so

reagiert der Rechner mit einem TOO-MANY-FILES-OPEN-ERROR.

Diesen kann man vermeiden, wenn man sich vorher mittels PEEK

(152) die Anzahl der offenen Dateien ausgeben läßt. 1

Mit dem CMD-Befehl kann man - wie bekannt - die Ausgabe vom

Bildschirm auf Peripheriegeräte umleiten. Die physikalische

Adresse dieses Gerätes steht in der Speicherzelle 154 (1 =

Datasette, 4 = Drucker, 8 = Floppy). Ebenso kann die

CMD-Belegung durch POKE 154, 3 wieder rückgängig gemacht

werden. Ein File bleibt davon unberührt. Deshalb kann die

Ausgabe auch durch POKE 154, X wieder auf das Gerät

umgeleitet werden.

Ähnlich funktioniert Speicherzelle 153. Hier wird das

aktuelle Eingabegerät gespeichert. Soll der Computer z.B.

über eine V.24-Schnittstelle ferngesteuert werden, so könnte

hier eine 2 stehen. Erhält der Rechner Daten von einem

Peripheriegerät, so ist die entsprechende Gerätenummer

gespeichert, bei normalem Tastaturbetrieb ist es eine 0.

Ebenfalls interessant ist Speicherzelle 184. Hier steht die

Nummer des zuletzt verwendeten Files. Die Sekundäradresse

dieses Files steht in Register 185. Hier kann man z.B.

feststellen, ob ein Drucker in einen bestimmten Modus

gebracht wurde o.4a..

Der Dritte im Bunde ist Speicherzelle 186. Hier steht die

— 40 —

physikalische Nummer des zuletzt benutzten Geräts. Diese

Adresse kann man in Programmen benutzen, die je nach

Ausstattung des gerade verwendeten Computers entweder auf

Kassette oder Diskette zugreifen sollen. Nach dem Laden

stellt das Programm dann anhand der Speicherzelle 186 fest,

welches Gerät der jeweilige Anwender besitzt (sprich: woher

das Programm geladen wurde) und kann dann dementsprechend

reagieren.

Interessant könnte auch Register 147 sein. Hier läßt sich

feststellen, ob der letzte Lesebefehl für Floppy bzw.

Datasette ein LOAD (=0) oder ein VERIFY (=1) gewesen ist.

Wenn Ihnen dann die Files schnuppe sind, können Sie alle

noch geöffneten Dateien mit SYS 62255 schlagartig wieder

schließen.

Der letzte Trick wendet sich an Besitzer einer Datasette.

Speicherzelle 150 enthält den Kassettenmotorflag. Ist der

Motor nicht eingeschaltet, so enthält dieses Byte O0,

andernfalls ist es ungleich O.

Zusammenfassung: Peripherietricks

PRINT PEEK (152): Anzahl offener Files

PRINT PEEK (153): aktuelles Eingabegerät

PRINT PEEK (154): aktuelles Ausgabegerät

PRINT PEEK (184): aktueller File

PRINT PEEK (185): aktuelle Sekundäradresse

PRINT PEEK (186): aktuelles Gerät

PRINT PEEK (147): letzter Lesebefehl

SYS 62255: schließt alle Files

PRINT PEEK (150): Kassettenmotorflag

— 41 —

4.5. DIE STATUSVARIABLE ST

Sie haben sicher schon von der Statusvariablen ST gehört.

Sie zeigt Fehler bei LOAD und VERIFY vom Band und bei der

Benutzung des seriellen Busses an.

Je nach Art des Fehlers werden verschiedene Bits der

Variablen gesetzt. Ist kein Fehler aufgetreten, so ist ST=

O. Beim seriellen Bus wird die Meldung DEVICE NOT PRESENT

durch den Wert -128 angezeigt. Sollte ein Schreibfehler

aufgetreten sein, so ist ST= 1, beim Lesen ist ST= 2. Sollte

das Ende eines Datenblocks erreicht sein, so ist der Wert

von ST 64 (sowohl bei Kassette als auch bei Diskette).

Das Bandende (bei Datasette) wird durch -128 angezeigt, ein

Prüfsummenfehler durch 32. Dieser Fehler kann auch dann

aufgetreten sein, wenn die Operation ordnungsgemäß und ohne

Fehleranzeige abgeschlossen wurde. Konnte der Fehler aber

nicht "ausgebügelt" werden (durch den Kontrollblock bei LOAD

und VERIFY), so ist Bit 4 (=16) gesetzt. Sollten sich Fehler

in der Blocklänge ergeben, so ist ST= 4 (zu kurz) bzw. 8 (zu

lang).

Sind mehrere Fehler gleichzeitig aufgetreten, so wurden die

entsprechenden Bits gesetzt und dadurch die Zahlen addiert.

Sollte ein Prüfsummenfehler aufgetreten und außerdem das

Bandende erreicht sein, so ist ST= -96 = -128 + 32.

Auf diese Art und Weise lassen sich Fehler bei Band- und

Floppyzugriff leicht feststellen.

— 42 —

5. DER BILDSCHIRM

Hier soll vom normalen Bildschirmaufbau und seiner

Manipulation die Rede sein, denn es muß nicht immer

hochauflösende Grafik sein, mit der ein gutes Bild

programmiert werden kann.

5.1. BLOCKGRAFIK

Haben Sie sich die Grafikzeichen Ihres 64ers schon einmal

genauer angesehen? Es befinden sich darunter auch solche,

die genau ein Viertel des Platzes einnehmen, den ein

Bildschirmzeichen maximal beansprucht. Ebenso gibt es

solche, die genau die Hälfte einnehmen. Nehmen wir den

reversen Satz noch dazu, dann haben wir auch Dreiviertel-

und ganze Zeichen.

Da der Bildschirm 25 Zeilen mit je 40 Zeichen hat, könnten

mit dieser Viertelpunktgrafik 50 x 80 Punkte benutzt werden.

Da die angesprochenen Grafikzeichen pı aktischerweise

zusammen mit der Commodoretaste erreicht werden, können wir

sie auch im Kleinschriftmodus benutzen.

Es wäre nur wünschenswert, könnten wir diese Zeichen über

ein Unterprogramm aufrufen. Größtes Problem: Wenn schon

Punkte gesetzt worden sind, kann man nicht einfach ein

anderes Viertelpunktzeichen in die betrefffende

Bildschirmzelle POKEn. Dadurch würde der alte Punkt

gelöscht. Vielmehr muß das alte Zeichen in das neue mit

eingerechnet werden. Je nach Aussehen der alten

Bildschirmzelle muß ein bestimmter Code abgespeichert

werden.

Eine Möglichkeit wäre, den gesamten Bildschirminhalt in ein

Array zu kopieren und dann in diesem Array jeweils einzelne

Punkte zu setzen. Eine Unterroutine überträgt dann den

Inhalt des Arrays in Bildschirmcodes.

-43 —

Einfacher ist es, für jede mögliche Kombination von

Bildschirmzeichen und zu setzendem Punkt in einer Tabelle

das zu pokende Byte aufzuschreiben.

Diese Tabelle wird in den Speicher des BASICs übertragen.

Dann kann der Rechner sich bei jedem Aufruf der

Blockgrafikroutine das gewünschte Zeichen aus der Tabelle

heraussuchen. Unten finden Sie ein Programm, daß diese

Block- oder Viertelpunktgrafik erzeugen kann.

Im ersten Teil geschieht die Initialisierung, die die

nötigen Tabellen einliest. Diese sind recht umfangreich

geworden, da auch eine Löschroutine integriert worden ist.

Ab Zeile 60000 stehen die Setz- und Löschunterprogramme. Mit

GOSUB 60000: wird die Setzroutine, mit GOSUB 60001 die

Löschroutine aufgerufen.

Ist die Variable L gleich O (Zeilen 60000, 60001), so wird

der erste Teil der Tabelle benutzt (=setzen), bei L=1 wird

der zweite Teil benutzt (=löschen).

Die Koordinaten des anzusprechenden Punktes werden in den

Variablen X (O bis 49) und Y (O bis 79) übergeben. Der Code J

der Farbe, die benutzt werden soll, steht (hoffentlich) in

co.

Hier das Listing:

PRO DAT OGM! : tbe 14}

TIM POAC Ls lel deo urea lS

FOR B= Tod: Pee POR STAT PC Sb To]

RERTIP DAC E sso oe HERTS oto. B

FORT=ETO15 RERDPZEL I>:HE=TI

= Es
}

Ze

tn

Po
p

m

ne

pe
e

Sr

a

im
a

a DATE LEE DEE SF LSP. SP S51 Da SSS. 127 S58. 168.252.251.258 .1668
Si UATAISS.97 S55 .125.98 97 254 258 98 252 255.294.252.160 .256.168
52 DATAIS4 226.124 255 ‚225 238 ‚225 226 ‚254 291.299 254 168.251 236,16
So DATALGS Lo? S85 GE LEE 252 225 251.38 1 2P S84 254 25S .851 160.168
Sa DATA 32.32 124,123,108 123 225 124.98, 188.255 254,99 225.055 254
S5 DATA 2.128.124 .38 1O8 1 S8 S25 2268 188.127 a4. 225 127.251.226.251
Se DATA 2.128 LSS LBS SP GS Se Se LSP LSS GR. S521 SF oY Sse
57 DATA 32-126 .124. 123,32 97 124 226,123,126 .255 255 037 22 8 BRS ESS
So TATA SO .LS8 124.123.108.597 S25. S26 98,127 S55 254 252.251.258.160

a Leiste
I Lei

SEE Wedge Selb Ose) SelM Teves PO=SHE
@ MISH<2eS Maes! -2ee MS=PEER LEBd+PO)

SAG39 FRG: PORLSGTOLS TPMS=P2ne 1) THEMMS=1 °F = 4
Geh MENT I
SQQ5 [FF =@THEMMS=@: [FL=1 THEMRETURH
SAGGG PORE LG24+P0 .PDRCL Md M2. 8S0 : PORESS296+F0 000: RETURH

READY .

In den Zeilen 60010 und 60020 werden Position im

Bildschirmspeicher (PO) und Art des Punktes innerhalb des

Zeichenrasters (links/rechts in X1, oben/unten in X2)

berechnet. Die Zeilen 60030 und 60040 suchen anhand des

schon vorhandenen Zeichens aus dem Bildschirmspeicher nach

der richtigen Tabellenspalte (X3). Sollte das Zeichen kein

Graphikzeichen sein, so wird dies in Zeile 60050

registriert. Beim Setzmodus wird das alte Zeichen dann

einfach überschrieben, beim Löschen bleibt es zur Freude des

Benutzers stehen.

Die Krönung des Unterprogrammes ist Zeile 60060, in der das

Zeichen aus der Tabelle herausgesucht und gePOKEd wird.

Ein Wort noch zu den Koordinaten. Der Ursprung des

Koordinatensystems ist in der linken unteren Ecke. Damit ist

es besonders einfach, Funktionen o.ä. auf den Bildschirm zu

bringen.

5.2. BALKENGRAPHIK

Für die graphische Darstellung von Bilanzen oder Messwerten

ist-es nützlich und üblich, Balkengraphiken zu verwenden. So

lassen sich zum Beispiel Verkaufszahlen sehr gut in

waagerechten Balken für jeden Monat des Jahres verewigen.

Leider bietet kaum ein Computer standardmäßig einen Befehl

zur Erstellung dieser Balken. Deshalb habe ich unten eine

Unterroutine \ aufgelistet, die die Erzeugung von

Balkengraphiken sehr erleichtern kann. Sie wird ähnlich wie

die Blockgrafikroutine benutzt.

Auch hier leisten uns die Graphikzeichen wieder gute

Dienste. Wir konnen in horizontaler Richtung 320

verschiedene Langen von Balken ausgeben lassen, da wir auf

40 Zeichen zu je 8 Punkten Breite zugreifen können. Für jede

Breite (von O bis 8) gibt es ein Grafikzeichen im Vorrat des

64ers. J

Wir müssen also nur noch berechnen, wieviele ganze reverse

Leerzeichen sich in der Länge des Balkens unterbringen

lassen und für den Rest das entsprechende Grafikzeichen

auswählen. Auch hierzu wird wieder ein kleines Array

benutzt. Hier das Listing:

La TIMSPES Po PORITS@TO? READKFES Do MEST
ke Te TR 3 tH 5 ny 2 3 Hy 3 ’ ni i} ’ rh 13 x ve au 4 Bm \ Hi kd pata

AS lee Abe" DEY YM THEM = eh
BESTE SPY Ae = TA TORR OOS oR oe

BEE SE TR GSE THEHF OR T=) TOG: AREF + og Me EST

BASSE AME AE + SPE OAR

BHR CiseFPEER Ce tao OCS=@FEER CSL Ll) Oo S=FPEER Cease 2

SHES FORE Reds io: Set epee ee Pe TAM TAME

BEBE SO BESL4 DL PORES LOS SYSSSPse: RETURH SS POR eee oo: Ro

READ? .

— 46—

Die Bedeutung der ersten beiden Zeilen dürfte klar sein,

hier werden die benötigten Zeichen eingelesen.

Sicherheitshalber hier noch einmal die ASCII-Codes der

Zeichen aus Zeile 20 (ohne RVS-ON/ RVS-OFF):

32, 165, 180, 181, 161, 182, 170, 167

Aufgerufen wird die Routine mit GOSUB 60500. Die Lange des

Balkens (1 bis 320) soll in der Variablen Y übergeben

werden. Die Zeile, in der er stehen soll, wird inX

angegeben (O bis 39). Um das Erstellen von Graphiken oder

ähnlichem zu erleichtern, kann auch die Spalte bestimmt

werden, ab der der Balken starten soll (O0 - 24). Sollte die

Lange des Balkens den noch freien Raum in der Zeile

übersteigen, so wird der Balken automatisch verkürzt. Dies

bewirkt Zeile 60500. Zeile 60510 berechnet die Anzahl der

ganzen Revers-Zeichen im Balken (G) und die Anzahl der

verbleibenden Punkte (XA). Zeile 60520 fügt die ganzen

Zeichen zu einem String (AN$) zusammen, Zeile 60530 hängt

das letzte Zeichen mit dem Rest an.

Um die normalen PRINT-Befehle nicht zu beeinflussen, wird

die alte Cursorposition sowie die gerade benutzte Farbe

gespeichert (ct, C2, C3, siehe Zeile 60540). In der nächsten

Zeile wird dann der Cursor neu gesetzt, die Farbe Ihren

Wünschen entsprechend geändert (=CO) und der Balken

ausgegeben. Die letzte Zeile stellt schließlich wieder den

alten Zustand her und beendet das Unterprogramm.

Da wieder nur zeichen benutzt wurden, die auch im

Kleinschriftmodus zur Verfügung stehen, kann diese Routine

in fast jeder Anwendung eingesetzt werden.

- 47 -

9.3. DIE BETRIEBSARTEN IM ZEICHENMODUS

In diesem Abschnitt klaren wir die Frage, woher die kleinen

und großen As, Bs, Cs u.s.w. herkommen. Die Zahl 1, die

vielleicht im Video-RAM in Speicherzelle 1024 gespeichert

ist, sagt uns zwar, daB an der betreffenden Stelle ein A auf

dem Bildschirm erscheinen sollte, doch tiber die Form dieses

Buchstabens sagt sie nichts aus. Das Muster flir das A (und

alle seine Geschwister vom B bis zum letzten Grafikzeichen)

ist im Charakter-ROM gespeichert. Es liegt im Bereich von

53248 bis 57343.

Jedes Bildschirmzeichen beansprucht von diesen 4 Kilobytes

genau 8 Bytes, da die Zeichenmatrix 8 x 8 Punkte umfaßt.

Jeweils eine Punktzeile belegt ein Byte; ein Bit

repräsentiert also einen Punkt. Ist dieses Bit auf 1

gesetzt, so erscheint auf dem Bildschirm ein Punkt in der

Farbe, die im Color-RAM an der gleichen Stelle steht; ist

das Bit auf 0, so wird dieser Punkt der Matrix die Farbe des)

Hintergrundregisters 53280 annehmen.

Die Zahl, die im Video-RAM steht, hat dabei eine besondere

Aufgabe. Sie wird vom VIC (Video Interface Chip) mit 8

multipliziert und ergibt so die Stelle innerhalb des

Charaktergenerators, ab der das gewünschte Muster zu finden

ist. Versuchen Sie es einmal. Nehmen Sie ein beliebiges

Zeichen , suchen Sie dessen Bildschirmcode aus der Tabelle

im CBM-Handbuch heraus (nicht ASCII-Code) und starten Sie

dann folgendes Miniprogramm:

i Drill?
= PREIMTUDP
La IHFUT"EILDESCHIEMCODE" SV
A ATES S24 S408 S
aa PORES S334. PEER OS eo54 oAMDete
46 FPOREL PEERS Lo AWTS 1
Sa FORITSGTOP Me losFEER CAD+ 2 o> HEXT
Se FORE L PEERS LOR
TA PORES S354 .PEER C3854 00]
pb F Op: =:f3 Thy: : Fife. Ta cara TE Fr ~- |

— 48 ~

23 TE She L 2 AHDEt Jo THEHPR IAT GOTOLLS
1G@a PRIHT".": |
Lia HESTICOPRIMT HESTI
128 PRINT’ TASTE" PORELS& .@°WAITIGS 1 GETAS: GoTOS

RED'S .

Mit diesem Programm können Sie sich die Bitmuster der

Zeichen im Großschriftmodus ansehen. Wollen Sie die Zeichen

des Kleinschriftmodus ausgeben lassen, so muß die

Basisadresse in Zeile 20 von 53248 in 55296 geändert werden.

Andere Möglichkeit: Sie addieren einfach 256 zum

Bildschirmcode (Beispiel: a = 1 + 256 = 257).

Bitte wundern Sie sich nicht über die kleinen Tricks im

Programm, die Sie noch nicht kennen; sie werden in späteren

Abschnitten vorgestellt.

Es reicht zur Erklärung, daß sich das "Progrämmchen" in zwei

Teile trennen läßt. .Im ersten Teil (Zeilen 5 - 70) werden

die gewünschten Bytes des Zeichengenerators in das Array

M(I) eingelesen. Dazu wird der Interrupt abgeschaltet (Zeile

30) und das Charaktergenerator-ROM eingeschaltet (Zeile 40).

Es folgen die FOR-NEXT-Schleife mit den PEEKs (AD enthält

übrigens die Startadresse des gewählten Zeichens) und das

Wiedereinschalten von I/O-Bereich und Interrupt.

Im zweiten Teil werden die acht Bits in Bitmuster zerlegt.

Wenn das n-te Bit in M(I) auf 1 ist, so ergibt der Ausdruck

(M(I) AND 2 * n) eine 1. Dies nimmt der IF-Befehl zum Anlaß,

in den THEN-Teil zu verzweigen und einen Stern auszugeben.

Andernfalls erscheint ein Punkt (Zeile 100). Das Besondere

daran ist, daß im IF-THEN kein Vergleich steht, sondern

lediglich ein Term in Klammern. Sobald dieser ungleich O

wird, verzweigt der Interpreter zum THEN. Statt des

Ausdrucks könnte man auch eine Variable oder ähnliches

setzen.

Nun aber zurück zum eigentlichen Thema! Wie Sie der

Überschrift dieses Abschnitts vielleicht entnehmen, ist der

beschriebene Modus nicht der einzige.

-49 -

Der EXTENDED-COLOR-MODE ist dem Normalmodus recht ähnlich.

Die Bits des Zeichenmusters, die auf 1 gesetzt sind, ergeben

nach wie vor einen Punkt in der im Color-RAM gespeicherten

Farbe. Die Farbe der O-Bits kann dagegen verschieden sein.

Sie richtet sich nach den Registern für die

Hintergrundfarben O - 3 (53281 - 53284). Einigen Lesern wird

sich jetzt vielleicht ein lautes "Aha!" entringen, da diese

Register im Anhang des CBM-Handbuchs zwar aufgeführt sind,

ihre Anwendung aber nicht beschrieben wurde.

Welche der 4 Farben fur die O-Bits verwendet wird, richtet

sich nach den beiden hochstwertigen Bits des Bildschirmcodes

im Video-RAM. Betrachtet man diese beiden als eigenstandige

Zahl (Zahl = Bit 7 * 2 + Bit 6), so gibt diese die Nummer

des verwendeten Registers an (Beispiel: 102=1¥%* 2+08=

2).

Diese beiden Bits lassen sich nun allerdings nicht mehr als

Zeiger auf die Position im Charaktergenerator einsetzen.

Dafür bleiben nur noch 6 Bits übrig. Damit lassen sich dann

die ersten 2 ° 6 = 64 Zeichen ansprechen. J

Den Extended-Color-Mode können Sie durch POKE 53265, PEEK

(53265) OR 64 an- und durch POKE 53265, PEEK (53265) AND 191

wieder einschalten.

Jetzt wird es haarig! Der Multi-Color-Mode ist ziemlich

kompliziert, kann aber bei richtiger Anwendung tolle

Ergebnisse liefern. |

Wie Sie sich entsinnen werden, kann jedes Bildschirmzeichen

hochstens zwei Farben haben: Zeichenfarbe (aus dem

Color-RAM) und Hintergrundfarbe (aus den VIC-Registern). Der

Multi-Color-Mode erlaubt dagegen bis zu 4 Farben pro

Zeichen. Erkauft wird dies allerdings mit einer

Vereinfachung der Punktmatrix.

Verantwortlich ist diesmal das Farbbyte aus dem Color-RAM.

Ist Bit 3 nicht gesetzt (Byte (AND 2 | 3) = 0), dann bleibt

fast alles beim alten. Leider können jetzt aber nur noch die

Farben O bis 7 benutzt werden, da ja das für mehr Farben

nötige Bit 3 durch das Multi-Color-Flag belegt ist.

Ist das Bit 3 jedoch auf 1, so wirkt die Mehrfarbigkeit

(endlich). Die normale 8 x 8 Matrix wird in eine 4 x 8

Matrix umgewandelt. Je zwei Bits des Charactergenerators

werden jetzt zu einem Punkt zusammengefaßt. Sind beide Bits

auf O0, so erhält dieser Punkt die Hintergrundfarbe. Sind

beide Bits auf 1, so holt sich der VIC die Farbe aus dem

Color-RAM (allerdings wieder nur die Farben.O bis 7). Bei

den anderen beiden Kombinationen (O 1 bzw. 1 0) wird die

Farbe für den Punkt wie beim Extended-Color-Mode aus den

Hintergrundfarbenregistern 1 und 2 geholt. Auch diesen Modus

können Sie vom BASIC aus per POKE 53270, PEEK (53270) OR 16

einschalten. Ausgeschaltet wird mit POKE 53270, PEEK (53270)

AND 239.

Wie Sie jetzt sehen, sind die Zeichen in diesem Modus sehr

zerfranst und chaotisch. Findige Programmierer können sich

aber den Charaktergenerator ins RAM kopieren und dann

"vernünftige" Mehrfarbenzeichen entwerfen.

Zusammenfassung: Betriebsarten im Zeichenmodus

Extended-Color-Mode an: POKE 53265, PEEK (53265) OR 64

Extended-Color-Mode aus: POKE 53265, PEEK (53265) AND 191

Multi-Color-Mode an: POKE 53270, PEEK (53270) OR 16

Multi-Color-Mode aus: POKE 53270, PEEK (53270) AND 239

5.4. CHARACTER-GENERATOR VERLEGEN

Wie wohl unschwer zu erraten ist, wird auch die Lage des

Zeichengenerators vom VIC gesteuert (er ist der Tausendsassa

des C-64; er überwacht die Zusammenarbeit von Prozessor und

übrigen Bausteinen, erzeugt ein Videosignal, steuert Sprites

und hochauflösende Grafiken und generiert so ganz nebenbei

auch den Takt für den gesamten Rechner). Ganz speziell

sollte uns hier die Speicherzelle 53272 interessieren.

Innerhalb dieser Speicherzelle bestimmen die Bits 1 bis 3

die Adresse des Zeichengenerators. Diese hängt zwar noch von

anderen Faktoren ab, doch diese sind schwerer zu

beeinflussen. Alle folgenden Angaben sind deshalb auf die

Normalkonfiguration zugeschnitten; etwaige Hilfsprogramme

können diese unter bestimmten Umständen verändern (vor allem

Grafikhilfsprogramme). c

Die untenstehende Tabelle zeigt, welche Bitkombinationen

welche Bereiche adressieren. | J

000 I O

001 I 2048

010 I Großschrift

011 I Kleinschrift

100 I 8192

101 I 10240

110 I 12288

111 I 14336

Eine Sonderstellung nehmen dabei die Kombinationen 010 und

011 ein. Sie adressieren das ROM (53248 bzw. 55296).

Auf die 3 Bits in Speicherzelle 53272 sollte am besten nur

per AND und OR zugegriffen werden. Um die Belegung zu

ändern, sollte man das Byte zuerst mit der Binärzahl

1111 0001 (=241) AND-verknüpfen. Dadurch werden die Bits 1

bis 3 gelöscht. Sodann können per OR die gewünschten

Kombinationen eingestellt werden. Beispiel: Um den.

Character-Generator nach 2048 (BASIC-Anfang!) zu verlegen,

muß die Kombination 001 in Speicherzelle 53272 stehen. Bit OÖ

dieses Bytes kann von uns nicht beeinflußt werden, es bleibt

immer auf 1. Wir bilden daher von der Bitkombination die

dezimale Entsprechung; das ist in unserem Fall 1. Da das

Ganze um ein Bit nach links verschoben im Byte stehen soll,

muß noch mit 2 multipliziert werden. Der gesamte Befehl zum

Verschieben des Zeichengenerators lautet also:

POKE 53272, (PEEK (53272) AND 241) OR 2

Damit ist der Generator zwar verlegt, doch wir können damit

nichts anfangen, auf dem Bildschirm steht jedenfalls nur ein

Punktegewirr. Machen wir uns also ans Werk. Mit dem

untenstehenden Progrämmchen kann das Charactergenerator-ROM

ausgelesen und ins RAM kopiert werden. Vorher müssen wir

allerdings noch den BASIC-Anfang nach 6144 verlegen, da ja

die ersten 4 K vom Generator belegt werden sollen. Dies

geschieht durch /

POKE 43,1: POKE 44,24: POKE 6144,0: CLR.

Soll ein Programm selbsttätig den Zeichengenerator verlegen,

so muß ein Ladeprogramm benutzt werden; siehe Kapitel 3.3.

Jetzt können die unten aufgeführten Zeilen eingegeben

werden:

10 POKE 56334, PEEK (56334) AND 254: REM Interrupt aus

20 POKE 1, PEEK (1) AND 251: REM ROM einschalten

30 FORI= O TO 4095: POKE 2048+I, PEEK (53248+1): NEXTI

40 POKE 1, PEEK (1) OR 4: REM ROM ausschalten

50 POKE 56334, PEEK (56334) OR 1: REM Interrupt ein

Wenn Sie jetzt auf den neuen Charaktergenerator umschalten,

haben die Zeichen immer noch ihre alte Form, doch - und das

ist das Erfreuliche - kommt diese nun aus dem RAM. Dort läßt

sie sich leicht per POKE ändern. Bildschirmzeichen lassen

sich wie Sprites definieren, unterschiedlich sind nur die

Matrix (8 x 8 statt 21 * 24) und die Lage im Speicher.

zum Betrachten der Muster können Sie wieder das Programm aus

Kapitel 5.2. benutzen, doch das Abschalten des Interrupts

und das Verändern von Speicherzelle 1 ist jetzt unnötig.

Natürlich muß auch die Basisadresse in Zeile 20 (jetzt 2048)

verändert werden.

Die neuen Bildschirmzeichen können Sie jetzt einfach

einpoken - versuchen Sie es! Besonders im Multi-Color-Mode

sind der Kreativität des Programmierers keine Grenzen

gesetzt.

Abschalten können Sie den neuen Zeichensatz übrigens mit

. POKE 53272, (PEEK (53272) AND 241) OR 4 (für Großschrift)

bzw. 6 (für Kleinschrift).

Zusammenfassung: Verlegen des Zeichengenerators

Bits 1 - 3 der Speicherstelle geben den Ort des Generators

an. Bei Verlegung in den BASIC-Speicherbereich ist ein

Schützen des belegten Bereiches notwendig (siehe Kap. 3.3.).

Zeichensatz kann nach Abschalten des Interrupts und

ROM-Umschaltung ausgelesen und ins RAM gePOKEd werden.

Eigener Satz ein: POKE 53272, (PEEK (53272) AND 241) OR x
Eigener Satz aus: POKE 53272, (PEEK (53272) AND ‚241) OR 4

bzw. 6

5,5. VIDEO-RAM VERLEGEN

Ähnlich wie der Charactergenerator läßt sich auch das

Video-RAM durch die Speicherzelle 53272 verschieben.

Zuständig sind diesmal die Bits 4 bis 7.

Mit diesen vier Bits läßt sich das TV-RAM in Schritten von

einem Kilobyte verschieben. Im Normalfall ist nur Bit 4

gesetzt, was dann den Bereich von 1024 bis 2023 selektiert.

Hier wieder eine Tabelle mit Bitkombinationen und deren

Ergebnis:

0000 I O

0001 I 1024

0010 I 2048

— 54 —

0011 I 3072

0100 I ROM

0101 I ROM

0110 I ROM

0111 I ROM

1000 I 8192
1001 I 9216

1010 I 10240

1011 I 11264
1100 I 12288

1101 I 13312

1110 I 14336

1111 I 15360

Wie Sie sehen, bilden die Kombinationen, die mit ROM

gekennzeichnet sind, eine Ausnahme. Dies ist notwendig,

damit der VIC auf den Charaktergenerator im ROM zugreifen

kann. Diese Bereiche werden in den Speicher von 4096 bis

8191 hineingespiegelt. Für den VIC liegt das ROM also hier

und nicht ab 53248! Umgeschaltet wird wieder mit AND, OR,

PEEK und POKE. Zunächst müssen die vier höchstwertigen Bits

gelöscht werden. Das geht am besten durch AND 15. Sodann

müssen wir die Binärkombination in eine Dezimalzahl

verwandeln. Wollen wir das TV-RAM nach 15360 verlegen, so

ware dies 15. Diese Zahl muß (wegen der Verschiebung im

Byte) mit 16 multipliziert werden. Das Ergebnis setzen wir

in die OR-Verknüpfung ein. Der gesamte Befehl lautet dann:

POKE 53272, (PEEK (53272) AND 15) OR X. .

Ist Ihnen an der Zahl, die wir vor der Mulitplikation aus

der Binärkombination errechnet hatten, etwas aufgefallen?

Richtig - sie gibt an, im wievielten Kilobyte des Speichers

das Video-RAM stehen soll. In Zukunft brauchen Sie also

nicht mehr mühsam Binärkombinationen umrechnen, Sie setzen

einfach das gewünschte K in den folgenden Befehl ein:

POKE 53272, (PEEK (53272) AND 15) OR K * 16.

Eine arge Enttäuschung erleben Sie aber, wenn Sie diesen

Befehl so ausprobieren. Auf dem Bildschirm erscheint ein

heilloses Durcheinander von Zeichen, die sich auch über die

‚Tastatur ° nicht unbedingt bandigen lassen. Wir haben

vergessen, dem Betriebssystem mitzuteilen, wo das neue

TV-RAM steht. Der VIC holt sich jetzt die Bildschirmdaten

von einem Ort, wo das Betriebssystem noch gar nichts ablegt.

Wenn Sie in dieser Situation die Taste CLR drucken, so

loscht das Betriebssystem noch den alten Bildschirmspeicher

und das Color-RAM. Aber auch dagegen ist ein Kraut

gewachsen. | |

Die Speicherzelle 648 teilt dem Rechner das Highbyte der

Video-RAM-Startadresse mit. Dieses erhalten wir, indem wir

die Startadresse durch 256 teilen. Um bei unserem Beispiel

zu bleiben: 15360 / 256 ergibt 60. Mit POKE 648, 60 ist die

Welt dann für uns und den C-64 wieder in Ordnung. Zum Glück

gibt es auch hier wieder eine Vereinfachung. Es reicht aus,

die Kilobyte-Nummer mit A zu multiplizieren, um das

gewünschte Highyte zu bekommen. .

Noch etwas ist zu beachten, wenn Sie Sprites verwenden. Die

Zeiger auf die Biöcke, in denen die Sprites definiert

werden, liegen nicht mehr in den Speicherzellen 2040 bis

2047. Sie wurden mitverschoben. In unserem Beispiel lägen

sie also im Bereich von 16376 bis 16383. \

Bitte denken Sie auch daran, daß wieder der

BASIC-Speicherbereich geschützt werden muß, wenn Sie das

Video-RAM verlegen.

Besonders reizvoll erscheint mir die Möglichkeit, zwei

getrennte Bildschirmseiten zu definieren und zwischen beiden

bei Bedarf hin- und herzuschalten. Allerdings wirken die

PRINT-Befehle des BASICs nur auf die gerade eingeschaltete

Seite, auf die andere müßte dann mit PEEK und POKE

zugegriffen werden. Weiteres Problem: Das Color-RAM kann

nicht verschoben werden, beide Bildschirmseiten müssen also

die gleichen Zeichenfarben benutzen.

— 56-

Zusammenfassung: Video-RAM verlegen

TV-RAM kann über die Bits 4 - 7 der Speicherzelle 53272

gesteuert werden. Die Nummer des Kilobytes, das den

Bildschirmspeicheraufnehmen soll, ist in K einzusetzen:

POKE 53272, (PEEK (53272) AND 15) OR K * 16

POKE 648, K * 4

5.6. VERSCHIEDENE TRICKS FÜR DEN BILDSCHIRM

Auch für den normalen Zeichenmodus gibt es einige Tricks,

die einem das Programmieren einer Textausgabe o.ä.

erleichtern können.

Fangen wir mit der Farbe an. Die zur Zeit eingeschaltete

Zeichenfarbe können Sie aus Speicherzelle 646 erfahren. Mit

POKE 646, Farbcode können Sie das gleiche bewirken wie über

die Tastenkombinationen CTRL + Farbe bzw. Commodore + Farbe.

Diese Methode bietet aber den Vorteil, daß der Farbcode

direkt angegeben werden kann. Dies ist zum Beispiel

nützlich, wenn man die Schriftfarbe je nach RND-Wert

zufällig umschalten will.

Die Speicherzelle 647 nennt überdies die Farbe des Zeichens

unter dem Cursor (auch, wenn dieser abgeschaltet ist). Diese

laBt sich aber leider nicht durch POKE 647, X verandern.

Apropos verandern: Fur alle Speicherzellen, die mit Farben

| zu tun haben, gilt, daß sich die Bits 4 bis 7 verändern

können. Dies sollte uns aber nicht stören, da die

Farbencodes ja doch nur von O bis 15 reichen und demnach nur

die Bits O - 3 belegen. Wundern Sie sich deshalb nicht, wenn

die Speicherzelle 55296 im Color-RAM, die Sie eben mit O

"gefüllt" haben, plötzlich eine 32 oder andere Werte

enthält.

In den Speicherzellen 243 und 244 finden Sie den Zeiger auf

die aktuelle Position im Farb-RAM. Er wird immer dann vom

Betriebssystem aktualisiert, wenn ein Zeichen ausgedruckt

werden soll. Beim Ausdruck von Steuerzeichen (z.B. HOME)

bleibt er dagegen auf der alten Position, da es zur

Ausführung solcher Befehle nicht notwendig ist, auf das

Color-RAM zuzugreifen. Beispiel: PRINT "(HOME)" läßt den

Pointer unverändert, nach PRINT "(HOME)ABC" wird er dagegen

auf die neue Cursorpositon gesetzt.

Einen ähnlichen Zeiger gibt es auch für das Video-RAM.

Allerdings ist er zweigeteilt. Die Register 209 und 210

— 58 -

bilden den Zeiger auf die Stelle im Speicher, an der die

Zeile beginnt, in der der Cursor gerade steht. Zu diesem

Wert mu8 nur noch die aktuelle Spalte (O - 39) aus Register

211 addiert werden, dann erhalt man die Adresse des Bytes,

das “unter" dem Cursor liegt.

Die Nummer der aktuellen Zeile (O - 24) steht in

Speicherzelle 214. Mittels der letzten beiden Register

können wir den Cursor recht einfach auf dem Bildschirm

positionieren. Die Spalte wird in Register 211 gePOKEd, die

Zeile in 214 abgelegt. Das reicht allerdings noch nicht. Das.

Betriebssystem weiß dadurch noch nicht, daß der Cursor

verschoben werden soll. Es gibt aber eine ROM-Routine, die

diese Arbeit für uns übernimmt. Mit SYS 58732 kann sie

aufgerufen werden. Demnach sieht die gesamte Befehlsfolge so

aus:

POKE 211, Spalte: POKE 214, Zeile: SYS 58732

Dieser Trick wurde schon in Kap. 5.2. angewandt.

Haben Sie sich nicht auch schon gewünscht, den Cursor auch

während einer Eingabe mit GET einschalten zu können? Das ist

gar nicht schwierig! Speicherzelle 204 sagt dem

Betriebssystem (genauer: der Interruptroutine), ob der

Cursor erscheinen soll (in diesem Fall ergibt PEEK (204) O),

oder ob gerade wieder ein Nickerchen (natürlich nur für ein

gewisses kleines Quadrat) angesagt ist. Starten wir ein

Programm, so wird die Speicherzelle 204 vom Interpreter mit

1 geladen - der Cursor hört auf zu blinken.

Was das Betriebssystem kann, können wir schon lange. Mit

POKE 204, O wird der Cursor einfach "während der Fahrt"

eingeschaltet. Die Interruptroutine denkt nicht einmal

daran, deswegen aufzumucken. Beim Ausschalten mit POKE 204,

1 müssen wir aufpassen, daß der Cursor nicht mitten in der

Arbeit aufgehalten wird und ein reverses Zeichen

unbeabsichtigt stehenbleibt. Auch hier hilft wieder ein

POKE. Register 207 gibt an, ob der Cursor gerade auf

reverser oder normaler Darstellung (=0) ist. Mit POKE 207,0:

POKE 204, 1 können wir also den Cursor in bester

— 59 —

Betriebssystemmanier abschalten.

Um bei der Eingabe zu bleiben, hier noch ein Tip für den

nächsten INPUT-Befehl: Mit INPUT "text(crsr right) (crsr

right)Z(crsr left)(crsr left)(crsr left)"; A$ wird das

Zeichen Z bei Aufruf des INPUTs als Cursorzeichen benutzt.

Sobald Sie eine Taste drücken, wird dieses Zeichen

überschrieben.

Der nächste Befehl bezieht sich auf den Reverse-Modus.

Unabhängig davon, ob der auszugebende String ein

entsprechendes Steuerzeichen enthält oder nicht, wird mit

POKE 199, 1 die umgekehrte Darstellung eingeschaltet.

Abgeschaltet wird mit POKE 199,0.

Möchten Sie die Steuerzeichen eines Strings per Programm auf

dem Bildschirm ausgeben? Bitte sehr - Speicherzelle 216

steht zur Verfügung. Sie gibt die Anzahl der noch

ausstehenden Inserts an. Wie Sie wissen, werden

Steuerzeichen im Insertmodus nicht ausgeführt, sondern

lediglich als reverse Zeichen ausgegeben. Diesen Modus

können Sie mit POKE 216, X einschalten, wobei. X größer als O

N . sein muß.

Zu guter Letzt spielen wir noch einmal Betriebssystem. Wenn

Sie schon einmal mit der Datasette gearbeitet haben, dann

wissen Sie, daß während der Kassettenoperationen der

Bildschirm ausgeschaltet wird. Auch hierfür ist wieder der

VIC zuständig. In Speicherzelle 53265 sagt Bit 4, wie der

Bildschirm aussehen soll. Mit POKE 53265, PEEK (53265) AND

239 wird ausgeschaltet, mit POKE 53265, PEEK (53265) OR 16

wieder eingeschaltet.

- 60 —

Zusammenfassung: Bildschirmtricks

Schriftfarbe ändern: POKE 646, Farbcode

Aktuelle Zeichenfarbe: PRINT PEEK (647)

Aktuelle Position im Color-RAM: PRINT PEEK (243) + 256 *

PEEK (244)

Aktuelle Position im Video-RAM:

PRINT PEEK (209) + 256 * PEEK (210) + PEEK (211).

Cursorspalte: PRINT PEEK (211)

Cursorzeile: PRINT PEEK (214)

Cursor setzen:

POKE 211, Spalte: POKE 214, Zeile: SYS 58372

Cursor einschalten: POKE 204, O |

Cursor abschalten: POKE 207, O: POKE 204, 1

INPUT mit speziellem Cursor: INPUT “text(2 x crsr right)Z(3

x crsr left)"; A$

Reverse-On: POKE 199,1

Reverse-Off: POKE 199,0

Sonderzeichen-Modus an: POKE 216, X

Bildschirm abschalten: POKE 53265, PEEK (53265) AND 239
Bildschirm einschalten: POKE 53265, PEEK (53265) OR 16

- 61 —

6. HOCHAUFLOSENDE GRAFIK

Jetzt kommt Butter bei die Fische (wie Tegtmeier das

ausdrücken würde). Wir nähern uns nun den Gemächern der

hochauflösenden Grafik, die leider von den

Commodore-Ingenieuren recht überzeugend in den meterdicken

Mauern des Betriebssystems versteckt wurden. Aber wie fast

immer in diesem Buch ist es das gleiche Sesam-Ööffne-dich,

das uns ans Ziel führt: ein POKE-Befehl.

6.1. DIE GRAFIK-MODI

Wie auch bei der normalen Zeichendarstellung gibt es bei der

hochauflösenden Grafik verschiedene Modi. Diesmal fehlt

allerdings der Extended-Color-Mode (wozu sollte er auch bei

Hochauflösung gut sein?). Im Normalmodus können wir 320 x

200 Punkte ansprechen. Diese 64000 Punkte lassen sich

(ähnlich dem Charactergenerator) in 8000 Bytes unterbringen.

Dieser achtmal größere Bildschirmspeicher heißt Bit-Map. Wie

auf einer richtigen Landkarte geben die 1-Bits im Speicher

an, ob win der Wirklichkeit (= Bildschirm) Hügel (= Punkte)

vorhanden sind oder nicht. Die Farbe der Punkte gibt das

Video-RAM an (wohlgemerkt: nicht das Color-RAM). Jedes Byte

im ehemaligen Bildschirmspeicher ist dabei für einen Bereich

zuständig, der im Normalmodus einem Zeichen entspricht. Die

4 höherwertigen Bits geben die Farbe (O - 15) der Punkte an,

die von 1-Bits repräsentiert werden, die 4 niederwertigen

Bits die Farbe der Hintergrundpunkte (= O-Bits).

Beim Multi-Color-Mode (jetzt aber hochauflösend!) wird die

Punktematrix wieder eingeschränkt. Statt 320 x 200 Punkten

haben wir jetzt nur noch 160 x 200 zur Verfügung. Da auch

hier wieder je 2 Bits einen Punkt darstellen, brauchen wir

8000 Bytes für die Bit-Map, können damit aber auch 4 Farben

- 62 -

pro Bildschirmzelle darstellen. Die Farben stammen nicht nur

aus dem alten Video-RAM, sondern jetzt auch aus dem

Hintergrundfarbregister O0 und dem Farb-RAM. Das Register

53281 (für die Hintergrundfarbe) wird für alle

OO-Kombinationen benutzt. Bei 01 werden die höherwertigen,

bei 10 die niederwertigen 4 Bits aus dem Video-RAM benutzt.

Sind beide Bits auf 1, so holt sich der VIC den Farbcode aus

dem entsprechenden Byte des Farb-RAMs.

6.2. DIE BIT-MAP

Zunächst etwas zur Lage der Bit-Map im Speicher. Wie immer

bei diesen Dingen hat die Speicherzelle 53272 wieder ihre

Finger äh Bits im Spiel. Je nach Zustand des Bits 3 liegt

die Bit-Map bei 8192 (wenn Bit 3 = 1) oder bei Speicherzelle

O. Letzteres nützt uns herzlich wenig, da sich dort die

Zeropage befindet, die man ohne Wissen und Erlaubnis des

Betriebssystems nicht überschreiben sollte.

Aufgebaut ist die Bit-Map wie ein Zeichengenerator. Die

ersten 8 Bytes stellen die 8 Punktzeilen des ersten Quadrats

(oder Zeichenblocks) dar usw. Deshalb kann es vorkommen, daß

Sie nach dem Einschalten der Grafik normale

Bildschirmzeichen auf dem Monitor sehen. Kopieren Sie einmal

den Zeichengenerator in die Bit-Map und ändern Sie einige

Bytes - das Ergebnis sollte Ihnen bekannt vorkommen.

Auch beim Multi-Color-Mode sieht es ähnlich aus. Nur sind

hier jeweils 2 Bits für einen doppelt so breiten Punkt

zuständig (aber das kennen Sie ebenfalls aus Kap. 5).

Die Lage der Bit-Map macht es unerläßlich, _ den

BASIC-Speicher zu schützen. Ba nur 8000 und nicht 8192 Bytes

(was genau 8 K entspräche) benötigt werden, können wir den

Speicher ab 16192 benutzen. Die Zeiger dafür sollten Sie

eigentlich berechnen können (siehe Kap. 3.3.).

2

- 63 —

Da der normale BASIC-Speicher ab 2048 beginnt, haben wir

sozusagen 6 Kilobytes übrig. Dieser freie Bereich könnte für

Sprites eingesetzt werden. Weitere Ks sollten schließlich

für die Farbgebung und weitere Bildschirmseiten reserviert

werden. Wie Sie jetzt wissen, wird das Video-RAM als

Farbspeicher mißbraucht. Dabei werden aber auch alte Texte

überschrieben. Um dies zu vermeiden, sollte bei jedem

Einschalten der hochauflösenden Grafik auf eine andere

Bildschirmseite umgeschaltet werden (siehe Kap. 5.5.). Die

beiden Modi beeinflussen sich somit nicht mehr gegenseitig.

Einziger Nachteil: Die Sprite-Pointer müssen jetzt zweimal

gePOKEG werden, sofern die Sprites in beiden Modi benutzt

werden: Einmal für den Zeichenmodus in 2040 bis 2047, das

zweite Mal für die Hochauflösung in den verschobenen

Bereich. Leider funktioniert dies beim Multi-Color-Mode

nicht ganz so elegant, da hier auch das Farb-RAM benutzt

wird und sich dementsprechend die Farben des alten Textes

ändern können.

— 64 —

6.3. GRAFIK EINSCHALTEN

Um die Grafik einzuschalten, müssen wir drei Schritte

vornehmen. Zunächst muß der Speicherbereich für die Bit-Map

geschützt werden. Dies geschieht (wenn das Programm bereits

fertig ist) durch ein Ladeprogramm, äüas folgende Befehle

enthält:

POKE 43, 65: POKE 44, 63: POKE 16192, O: CLR

Bei der Programmerstellung sollten diese Befehle vorher im

Direktmodus gegeben werden. Innerhalb des Programmes kann

dann die Grafik eingeschaltet werden. Dazu muß Bit 5 in

Speicherzelle 53265 auf 1 gesetzt werden. Damit weiß der

Vic, daß keine Zeichen, sondern hochauflösende Grafiken

dargestellt werden. Sollen mehrfarbige Grafiken eingesetzt

werden, so muß zusätzlich noch das Multi-Color-Bit in

Speicherzelle 53270 auf 1 gesetzt werden (genau wie im

Zeichenmodus). Damit noch nicht genug. Die Lage der Bit-Map

‚wird durch Bit 3 in Speicherzelle 53272 angezeigt. Daher muß

auch dieses Bit auf 1 gesetzt werden. Schließlich sollten

wir noch das Video-RAM verlegen, um den Bildschirminhalt

nicht zu zerstören. \

Wenn dies geschehen ist, sehen Sie ein ziemlich chaotisches

Bild auf dem Monitor. Es fehlt noch der dritte Schritt! Mit

einer FOR-NEXT-Schleife muß die Bit-Map gelöscht werden,

ebenso das Video-RAM. Geschafft! |

Hier die komplette Befehlsfolge:

POKE 43, 65: POKE 44, 63: POKE 16192, O: CLR: REM Speicher

schützen |

POKE 53265, 59: REM Grafik-Modus einschalten

(POKE 53270, 216: REM Multi-Color-Modus einschalten)

POKE 53272, 40: REM Bit-Map-Lage + Video-RAM-Verschiebung

nach 2048

FOR I= 8192 TO 16191: POKE I, O: NEXT: REM Bit-Map löschen

FOR I= 2048 TO 3047: POKE I, Punktfarbe * 16 +

Hintergrundfarbe: NEXT: REM Farben setzen

Nach diesen POKEs finden wir das Video-RAM in den

Speicherzellen von 2048 bis 3047 wieder. Ab 3072 stehen

weitere 5 K fur diverse Zwecke wie Sprites,

Maschinenroutinen u.ä. zur Verfügung.

Da jede Grafik einmal ein Ende hat, hier die POKEs, die zum

Ausschalten gebraucht werden:

POKE 53265, 155: REM Grafik-Modus ausschalten

(POKE 53270, 8: REM Multi-Color-Modus ausschalten)

POKE 53272, 21: REM Zeichensatz Großschrift einschalten

Haben Sie schon Ihre ersten Grafiken ausprobiert? Wenn ja,

dann hat Sie sicher das langsame Löschen der Bit-Map

geärgert. Deshalb folgt unten ein kleines Maschinenprogramm,

das diese Aufgabe ungleich schneller bewältigt:,

O FOR I= 3600 TO 3659: READ A: POKE I,A: NEXT
1 DATA 169, 32, 133, 252, 169, 0, 133, 251, 162, 31, 160, 0,

145, 251, 136, 208, 251, 230, 252 -

2 DATA. 202, 208, 246, 160, 64, 145, 251, 136, 16, 251, 169,
8, 133, 252, 165, 2, 162, 3, 160 —

3 DATA O0, 145, 251, 136, 208, 251, 230, 252, 202, 208, 246,
160, 232, 145, 251, 136, 208, 251 |

A DATA 141, 0, 11, 96

Gestartet wird dieses Maschinenprogramm mit SYS 3600. Es

1öscht zunächst die Bit-Map, dann wird das Video-RAM (2048 -

3047) mit Punkt- und Hintergrundfarben geladen. Welche

Farben dies sind, bestimmt Speicherzelle 2. Durch POKE 2,

Punktfarbe * 16 + Hintergrundfarbe kann dies dem Programm

mitgeteilt werden.

Die Maschinenroutine ist voll relokatibel, d.h. sie kann

ebensogut im Kassettenpuffer oder andernorts stehen.

Anfangsadresse ist immer das Byte, mit dem die

FOR-NEXT-Schleife in Zeile O beginnt. Probieren Sie einmal

die Geschwindigkeit aus. In Bruchteilen von Sekunden wird

erledigt, was sonst einen längeren Zeitraum einnimmt.

— 66 -

SchlieBlich noch ein kleiner Tip. Wenn Sie Sprites,

Grafikseite, Farben und Löschprogramm mit dem Hauptprogramm

zusammen auf Diskette oder Cassette abspeichern wollen, so

geht dies ziemlich einfach. Nach der Fertigstellung, wenn

Sprites, Grafikseite und Maschinenprogramm schon im

geschützten Bereich stehen, wird der Pointer in 43/44 auf

den normalen BASIC-Anfang zurückgesetzt und dann ganz normal

geSAVEd. Natürlich kann man, um Speicherkapazität zu sparen,

den Pointer auf höhere Adressen zeigen lassen, wenn z.B. das

Farb-RAM nicht mit abgespeichert werden soll. Wird das

Programm dann (immer noch durch einen Lader, der die Zeiger

setzt) mit LOAD "Name",8,1 zurückgeladen, so stehen Grafik,

Sprites etc. bereits fix und fertig im Speicher. Dies ist

besonders für Spielprogramme sehr nützlich.

Zusammenfassung: Grafik einschalten

Mit folgenden POKEs wird die hochauflösende Grafik bzw.

Multi-Color-Grafik eingeschaltet. Das Video-RAM liegt in

dieser Zeit zwischen 2048 und 3047, der BASIC-Start muß auf

16192 hochgesetzt werden.

POKE 53265, 59: REM Hochauflösung ein

(POKE 53270, 216: REM Multi-Color dazuschalten)

POKE 53272, 40: REM Bit-Map und Video-RAM verschieben

Danach müssen Video-RAM und BIt-Map noch gelöscht werden.

Ausgeschaltet wird so:

POKE 53265, 155: REM Grafik aus

(POKE 53270, 8: REM Multi-Color-Modus aus)

POKE 53272, 21: REM Großschrift einschalten

6.4. PUNKTE SETZEN

Wenn Sie einen bestimmten Punkt auf der Grafikseite setzen

wollen, so können Sie auf Millimeterpapier zuerst das Bild

— 67 -

aufzeichnen und dann die Kästchen in Byteinhalte umwandeln.

Sollte sich jetzt bei Ihnen eine Vision aus Arbeit, Schweiß

und Tobsuchtsanfällen aufbauen, so teilen Sie diese

Erscheinung mit dem Autor dieses Werkes. Daher folgen jetzt

zwei Routinen, die die Grafikprogrammierung erheblich

erleichtern können.

6.4.1. PUNKTE SETZEN IM HOCHAUFLOÜSUNGSMDDUS

Die unten aufgelistete Subroutine funktioniert vom Prinzip

her genau wie die Blockgrafikroutine aus Kapitel 5.1. Da wir

diesmal aber keine speziellen Grafikzeichen poken müssen,

brauchen wir keine Tabelle, mit der die Punktkoordinaten

umgesetzt werden können.

ELAR REP FUME TE He TET WMO LOE SCHEH IM HOWCHALIP LE SU

nn ya) eh DR pe = 33 THENBETUFN

SESE TPR CEOR eS Lay HEME ETRE -

61030 SleTiT oat oaee DAT ego: ATS 1 IEE SEE | Ek

ci See bOP- O RANDY oo CAS eet | tbe

512 PORECA LO PEER OCA OAMOL Soe Leak

SLAE8 TFL. THEMPOREAD PEER CADDO AMD 2S

ELESE PORERD PEER ADO OR e SRE TURE

220 RE TURK

MER.

Aufgerufen wird das Unterprogramm mit GOSUB 61000. Die

Koordinaten X (O0 - 319) und Y (O - 199) geben den Ort des

Punktes an. Der Koordinatenursprung liegt in der linken

unteren Ecke. Sollten die Werte von X und Y nicht im

zulässigen Bereich liegen, so wird die Routine in 61010 bzw.

61020 beendet. Damit ist es möglich, z.B. Linien scheinbar

über den Bildschirmrand hinaus zu ziehen.

Zeile 61030 berechnet die Adresse des Bytes innerhalb der

Bit-Map, das geändert werden soll. Dabei stellt INT (X/8)

die Spalte dar, die im Farb-RAM belegt wurde. Dieser Wert

— 68 —

SAME?

wird mit 8 multipliziert, da eine Zelle im Farb-RAM 8 Bytes

in der Bit-Map repräsentiert. INT (Y/8) stellt analog dazu

die Zeile im Farb-RAM dar. Um die Adresse der entsprechenden

Zeile in der Bit-Map zu erhalten, wird dieser Wert mit der

Anzahl der möglichen Punkte pro Zeile (320) multipliziert. Y

AND 7 ergibt schließlich die Zeile innerhalb des

Farbquadrates an.

Die Variable X3 gibt den Wert an, der mit den schon

gesetzten Bits verknüpft werden muß, um die gewünschten

Punkte zu setzen oder löschen. AD enthält schließlich die

POKE-Adresse für den Punkt, CA für die Farbe. Zeile 61050

POKEd die Farbe aus CO (OO - 15) in die 4 höherwertigen Bits

der zugehörigen Farbspeicherzelle. Bitte beachten Sie, daß

damit die Farbe für die Punkte des gesamten Quadrats

geändert wird!

Ist die Variable L= 1, so bedeutet dies für die Routine, daß

der angegebene Punkt gelöscht werden soll. In diesem Fall

wird in Zeile 61060 verzweigt, andernfalls wird in der

letzten Zeile der Funktionsteil "Setzen" aufgerufen.

Ein typischer Aufruf dieser Routine könnte so aussehen:

X= 100: Y= 25: REM Koordinaten setzen

CO= 2: L= O0: REM Farbe= ROT, Modus= SETZEN

GOSUB 61000: REM Routine aufrufen

6.4.2. PUNKTE IM MULTI-COLOR-MODUS

Im Multi-Color-Modus müssen pro Punkt 2 Bits gesetzt werden,

je nach Farbe verschiedene Kombinationen. Das legt die

Methode nahe, pro Multi-Color-Punkt zweimal die

Punktsetzroutine aufzurufen. Für das erste Bit wird einfach

die X-Koordinate verdoppelt, für das Zweite Bit wird die

verdoppelte Koordinate noch um 1 erhöht. Da die zwei Bits

aber auf jeden Fall im gleichen Byte liegen, kann auf den

zweifachen Aufruf der Berechnung der POKE-Adresse verzichtet

werden. Sehen Sie es sich selbst an:

— 69 -

mL Ee 2 REP? MUL TE-COLOE-FUME TE SE TEEHM

1621
m
y

Ass Dee’ OTR RY | oe THE MRE TLR

LEE See DP ROR SS Le THEMRE TURE

LEE KA=INTCHEBI Me INTEWFEN | Pb] REEPERBAHN

BLE Reape Pe ARAM OP oo sehen Pe aL ORI 2

BLES FOREAT PEER OATS AWT BEE ee eb

Ele FOREAD PEER CORDS Oro OCR 3 HESS CORDS 3 ABA ME TÜREN

MER

Aufgerufen wird mit GOSUB 61000: Die Koordinaten sind wieder

in X (0 - 159) und Y (0 - 199) abgelegt. Die Farben und der

Setz- bzw. Löschmodus müssen nicht mehr angegeben werden,

dafür die Farbkennzahl (0 -3) in CO, die die Bitkombination

angibt. Soll ein Punkt gelöscht werden, so wird CO einfach

auf O gesetzt. Die Farben, die durch die Bitkombination

angesprochen werden sollen, mussen ggf. vorher mittels POKE

in die entsprechenden Register geladen werden (für das

Video-RAM übernimmt dies die Löschroutine). Bis auf eine

kleine Änderung sind die Zeilen 61010 bis 61030 gegenüber

dem normalen Hochauflösungsmodus nicht verändert.

Zeile 61040 berechnet die Verknüpfungsmasken für die beiden

Bits (X3 und X4). Dann werden die beiden Bits zunächst

gelöscht (Zeile 61050). Schließlich wird die Bitkombination

durch Zeile 61060 in das betreffende Byte eingeblendet. CO

AND 1 gibt dabei das niederwertige Byte der Kombination an,

(CO AND 2)/2 das höherwertige. Ist ein Bit O0, so wird das

gesamte Produkt gleich 0. Folge: Das betreffende Bit aus dem

Speicher wird mit O0 oder-verknüpft und bleibt demnach auf

dem alten Stand, andernfalls wird mit 1 verknüpft - das Bit

wird auf jeden Fall gleich 1. Fertig!

Hier noch ein Beispiel für einen typischen Aufruf:

X= 100: Y= 50: REM Koordinaten

CO= 2: REM Farbe aus höherwertigen Bits des Video-RAM holen

GOSUB 61000: REM Aufruf des Unterprogramnms

—- 70 -

6.5. LINIEN ZIEHEN

Die folgende Unterroutine ist fur beide Grafikmodi

gleichermaBen geeignet. Sie benutzt die Punktsetzroutine aus

dem Kap. 6.4. als Unterprogramm, daher beschränkt sie sich

auf die Berechnung der Koordinaten für die einzelnen Punkte

der Linie.

Si1aa BEM LIMIEH ZIEHEN
61118 TFHRSCHE-KEOSARSCTE- TE THENGL LE
Bille SPE Ve-VAoO CABS RE-RA+ LE Se YER

1123 FPORRAS= RA TO BE STER fiGH SE - AAO

1142 Rete -ASR CYSs TAT oR So Se GCS LEE 1 See

11.4 HEATH: Re TURE

mill G SRE CSE -RAD CHES Ye WRAL E-Seo o A E EE

milire FOR SSEYe TO YE STEFF SGM YE Frio

ILS see ak bor ae TATA So eee GOEL ae

milise HES TAS: BE TUR

A

Aufgerufen wird diesmal mit GOSUB 61100. Die

Startkoordinaten der Linie werden in XA und YA, die

Endkoordinaten in XE und YE übergeben. Je nach benutzter

Punktsetzroutine müssen außerdem noch Farbe (CO) und Modus

(Löschen/Setzen in L) für Hochauflösung bzw. nur die

Farbkennzahl für Multicolor angegeben werden.

Der Algorithmus ist eigentlich sehr simpel. Zunächst wird

festgestellt, ob der Abstand der X-Koordinaten zueinander

kleiner als der Abstand der Y-Koordinaten ist (Zeile 61110).

Trifft dies zu, so wird der ganze Prozeß einfach umgedreht,

die Funktionsweise bleibt aber gleich. Wozu das gut ist,

zeigt sich bei den nächsten Schritten. Nehmen wir an, der

X-Abstand ist größer als der Y-Abstand. Das heißt, daß

mehrere Punkte der Lifie die gleiche Y-Koordinate haben

müssen, da wir auf dem Bildschirm nie eine wirklich schräg

verlaufende Linie, sondern immer nur- ein angenähertes

Zick-Zack-Muster erzeugen können. Daher können wir einfach

mit einer FOR-NEXT-Schleife (Zeile 61130) alle X-Koordinaten

- 71 —-

zwischen XA und XE “abklappern" und dazu die entsprechenden

Y-Koordinaten berechnen. Ware der X-Abstand kleiner als der

Y-Abstand, so könnte es passieren, daß pro X-Koordinate

mehrere Punkte in der Y-Richtung gesetzt werden müßten. Beim

umgedrehten Verfahren wird daher einfach die Y-Richtung

abgefahren und der X-Wert berechnet.

Diese Berechnung ist ebenfalls sehr simpel. Vor der Schleife

wird die Schrittweite (SP) berechnet. Sie gibt den Abstand

zweier aufeinanderfolgender Punkte in Y-Richtung an. Bei

jedem Durchlauf der Schleife wird eine Hilfsvariable (YK) um

diese Schrittweite erhöht. Dieser Wert wird gerundet (INT

(YK + .5)) und dann als Y-Wert an die Punktsetzroutine

übergeben (Zeile 61140). |

Sollten die Koordinaten der zu setzenden Punkte nicht im

erlaubten Bereich liegen, so wird dies von. der

Punktsetzroutine abgefangen. Leider ist dieses Unterprogramm

nicht sehr schnell, doch für einfache Anwendungen (z.B.

Funktionenplot) reicht es völlig aus. Legt man großen Wert

auf Schnelligkeit, so solte man diese Unterroutinen durch

ein spezielles Hilfsprogramm wie die SUPERGRAPHIK 64 von

DATA BECKER ersetzen. Sie enthalten sehr schnelle Befelle

zum Arbeiten mit hochauflösender Grafik, Sprites usw.

6.6. KREISE ZEICHNEN

Neben vielen anderen Figuren ist der Kreis eines der am

häufigsten verwendeten grafischen Elemente. Er 1äßt sich

auch nicht aus einem Systen von Linien aufbauen. Deshalb

finden Sie unten eine entsprechende Subroutine. Sie ist zwar

sehr langsam, doch meine ich, daß es besser ist, einen Kreis

langsam zu zeichnen, als überhaupt nicht. Wie die Routine

zum Linienziehen kann auch diese in beiden Grafikmodi

verwendet werden.

—- 72 -

mile REN EREISE ZE i HET

milele POR RS=e TORS

miles WY TAHT Ose beer ote oe 3

BLS SA ee CSL bes Eee

ELS SA Wee Ae SLB | eee

BIE RSA es Re GS Les 1 as

EER RS RRR | At Ee PUGS LBS | ees

SLEFEO He MP yy We AS GCSES AB

mil SS Ree We Aes SLB 1] Set

SLES SERA Wea ee GCS LBS | ae

ELSE BA ee eres OG CSL Be Las

1214 HER THe RE TURE

PE ADs

Der Aufrufbefehl ist GOSUB 61200. Die Ubergabevariablen sind

X und Y für die Koordinaten des Kreismittelpunktes sowie R

für den Radius (der in der Anzahl der Punkte angegeben wird,

die der Radius messen soll) und die bekannten CO und L für

"normale" Hochauflösung bzw. CO als Farbkennzahl für

Multi-Color.

Wenn Sie sich das Entstehen eines Kreises auf dem Bildschirm

ansehen, dann ahnen Sie vielleicht schon das

Funktionsprinzip. Grundlage ist die Kreisgleichung

X | 2+ Y | 2= 1 bzw. deren . umgewandelte Form

Y= SQR (1 - X] 2).

In einer Schleife, die den Radius vom Mittelpunkt des

Kreises bis zu dem Punkt, der etwa 45 Grad entspricht,

abfahrt, wird zu Jedem X-Wert der entsprechende Y-Wert

berechnet. Würde man die Schleife bis zum 90-Grad-Punkt

verlängern, so träte das gleiche Problem auf, wie beim

Linienalgorithmus. Je steiler der Kreis nach unten abfällt,

desto ofter kommt es vor, daß pro X-Wert mehrere Punkte in

Y-Richtung gesetzt werden müssen. Deshalb wird der

entstehende Viertelkreis durch die Zeilen 61230 bis 61300 an

die fehlenden Stellen gespiegelt. Wenn man von der

X-Koordinate des Mittelspunkts die gerade aktuelle Position

auf dem Radius abzieht, so erhält man den linken Teil des

Kreises usw.

Da sich die oben angegebene Formel nur auf den sogenannten

Einheitskreis (mit dem Radius 1) bezieht, müssen die

Koordinaten in der Berechnung in Zeile 61220 zunächst durch

R geteilt und dann wieder mit dem Radius multipliziert

werden. Das ist schon alles. Viel Spaß beim "Kreisen"!

— 74 —

7. SPRITES

Die Sprites stellen das bekannteste Ausstattungsmerkmal des

64ers dar. Keine andere Grafikart ist so vielseitig

einzusetzen. Das ist vielleicht auch der Grund, warum von

allen Grafikmoglichkeiten nur diese im CBM-Handbuch

beschrieben ist. Doch auch hier hat Commodore durch einen

unerfindlichen Ratschluß wieder heillose Verwirrung

gestiftet. Wo ist die Kontrolle von Spritekollisionen

erklärt? Wie erzeuge ich Multi-Color-Sprites?

Die verschiedenen Möglichkeiten, die auch die Sprites

bieten, sind in den folgenden Abschnitten beschrieben. Damit

können Sie Commodore ein Schnippchen schlagen!

7.1. MULTI-COLOR-SPRITES

Ja, Sie haben eben richtig gelesen. Neben den normalen,

hochauflösenden "Mini-Grafiken" läßt sich der VIC auch auf

Multi-Color-Sprites programmieren. Das ist gar nicht schwer.

Eingeschaltet wird der Multi-Color-Modus durch das Setzen

des der Sprite-Nummer entsprechenden Bits im VIC-Register 28

(53276). Um z.B. Sprite 6 im Multi-Color-Mode zu definieren,

benutzt man diese Folge:

POKE 53276, PEEK (53276) OR (216)

Natürlich kann durch

POKE 53276, PEEK (53276) AND (255-276) das Bit wieder auf O

gesetzt werden.

Damit wäre das Sprite schon auf Mehrfarbenbetrieb

umgeschaltet. Da wieder je 2 Bits der Matrix einen Punkt

darstellen, bleiben uns nur noch 12 x 21 Punkte. Wie dieser

Modus funktioniert, wissen Sie , es fehlt nur noch die

Information, welche Bitkombinationen welche Farben erzeugen.

Sind beide Bits auf 0, so ist der betreffende Punkt des

Sprites transparent, d.h. der Hintergrund (z.B. ein

— 7/75 —-

Buchstabe) scheint an dieser Stelle durch das Sprite

hindurch. Ist das niederwertige der beiden Bits auf 1, so

holt sich der VIC die Farbe aus den Multi-Color-Registern 37

und 38 (53285 und 53286). Welches der beiden benutzt wird,

entscheidet Bit 2. Ist es 0, so wird Register 37 benutzt,

sonst 38. Bei der Kombination 1 O stammt die Farbinformation

aus dem normalen Farbregister des Sprites. Diese Farbe kann

für jedes Sprite verschieden sein, nicht jedoch die

Multi-Color-Farben. Diese stammen für alle Sprites aus den

gleichen Registern und dürfen nur im Bereich von O bis 7

liegen. Multi-Color-Sprites werden genauso definiert wie

normale, lediglich die Zuordnung von Bits zu Punkten ist

anders. Auch die Koordinaten auf dem Bildschirm bleiben

gleich. Der größte Vorteil ist wohl, daß man verschiedene

Sprite- und Grafikmodi mischen kann. So können

Hochauflosungs- und Multi-Color-Sprites nebeneinander auf

dem Bildschirm stehen. Überdies ist es dem VIC egal, ob auf

dem Bildschirm gerade Zeichen oder Grafiken stehen. \

Einzige Einschränkung: Während eines Floppyzugriffs sollte

man darauf achten, daß die Sprites ausgeschaltet sind (POKE

53269, O), da der VIC den Taktablauf regelt und dieser um so

mehr Zeit braucht, je mehr Sprites auf dem Bildschirm

sichtbar sind. Das kann die Datenübertragung stören.

Zusammenfassung: Multi-Color-Sprites

Modus einschalten: entsprechendes Bit in Reg. 28 (53276) auf

1 setzen.

Farben aus Reg. 37 (bei O 1) und aus Reg. 38 (bei 1 1) sowie

aus normalem Farbenregister für das Sprite (bei 10).

Sprites und Grafiken der verschiedenen Modi können gemischt

werden.

— 76-

7.2. KOLLISIONEN

Der VIC zeigt jede Berührung eines Sprites mit einem anderen

Sprite oder Bildschirmpunkt in seinen Registern an. Erfolgt

eine Kollision zwischen zwei oder mehreren Sprites, so

erscheint dies in Register 30 (53278). Die Nummern der

beteiligten Sprites werden durch . das Setzen der

entsprechenden Bits in diesem Register angezeigt. Mit

PRINT PEEK (53278) AND 2[n
können Sie demnach feststellen, ob das Sprite n an der

Kollision beteiligt war. Ist dies der Fall, so liefert der

obige Befehl die Zahl n als Ergebnis die Zahl 2j]n als

Ergebnis, sonst O. Die Kollision wird nur dann angezeigt,

wenn sich wirklich 2 Punkte berühren, nicht aber, wenn sich

zwei Sprites in Bereichen überlagern, die völlig punktleer

sind. Die Bits bleiben solange gesetzt, bis Sie sie durch

POKE 53278,0 löschen. Es kann also vorkommen, daß eine

Berührung angezeigt wird, obwohl sich die Sprites längst

wieder voneinander entfernt haben. Ich empfehle daher, vor

jedem Abfragen dieser Register alle Bits zu löschen. Besteht

noch eine Kollision, so werden die entsprechenden Zahlen

sofort wieder gesetzt, so daß der dann folgende PEEK-Befehl

dies entdecken wird.

Die Kontrolle von Sprite-Hintergrund-Kollisionen erfolgt in

gleicher Weise. Die entsprechenden Bits werden auf 1

gebracht, wenn in der Bit-Map oder im Zeichengenerator ein

vom Sprite überlagerter Punkt durch eine 1 repräsentiert

wird. Mit anderen Worten: Jede Berührung eines Sprites mit

einem Zeichen oder Grafikpunkt wird registriert. Zuständig

ist diesmal Register 31 (53279).

zur Veranschaulichung der Programmierung von

Sprite-Kollisions-Kontrollen ist unten ein kleines Spiel

aufgelistet. Dabei handelt es sich um ein sehr simples

Autorennen. Ziel ist es, mittels der Tasten Z (= LINKS) und

/ (= RECHTS) einem Hindernisauto auszuweichen. Jede

Berührung des eigenen Wagens mit dem Fahrbahnrand oder dem

anderen Wagen wird in den Kollisionsregistern registriert

und führt zu einem CRASH. Selbstverständlich können die REMs

beim Eintippen weggelassen werden; sie würden das Spiel

ohnehin nur verzögern.

Zusammenfassung: Kollisionen

Berührungen von Sprites mit anderen Sprites oder

Hintergrundzeichen werden durch Setzen der entsprechenden

Bits angezeigt. Dies geschieht in den Registern 30 (53278)

und 31 (53271) des VIC. Die Bits bleiben solange gesetzt,

bis der Anwender sie löscht.

SEHEN SIE HIERZU DAS PROGRAMM "AUTORENNEN" IM ANHANG.

!

— 78 -

7.3. PRIORITÄTEN & BEWEGUNGSBEREICH

Wußten Sie, daß es verschiedene Möglichkeiten der

Überlagerung von Bildschirmzeichen, Grafik und Sprites gibt?

Im Normalfall stehen die Sprites vor dem aktuellen

Bildschirminhalt. Doch oft ist es wünschenswert, daß die

Zeichen vor dem Sprite stehen (z.B. wenn ein Flugzeug hinter

einem Haus herfliegen soll). Auch hierfür hat der VIC wieder

ein Register "in Reserve". |

Das Register hat die Adresse 53275 (V+27). Wird hier ein Bit

auf 1 gesetzt, so bedeutet dies, daß das zugehörige Sprite

hinter den Bildschirmzeichen abgebildet wird. Im Normalfall

sind alle diese Bits auf O, das Sprite hat also gegenüber

den Zeichen höhere Priorität. |

Kurios wird es, wenn mehrere Sprites mit verschiedenen

Prioritaten abgebildet werden. Wie Sie wissen, wird das

Sprite mit der kleinsten Nummer immer vor seinen Kollegen

abgebildet. Ist das vorderste Sprite aber auf niedrige

Priorität gegenüber den Bildschirmzeichen eingestellt, so

erscheint es zwar unter der Schrift, aber immer noch vor den

anderen Sprites, auch wenn diese Vorrang vor den Zeichen

hätten. Damit lassen sich leicht optische Täuschungen

erzeugen.

Haben Sie .schon einmal Grafiken erzeugt und versucht,

Sprites damit in Deckung zu bringen? Wenn ja, dann werden

Sie festgestellt haben, daß die Koordinaten von Sprites und

Grafik nicht übereinstimmen. Der Bewegungsbereich der

Sprites wurde größer definiert, um ein "Herausfahren" aus

dem Bildschirm zu ermöglichen. In die linke obere Ecke

können Sie eine solche "Grafik in der Grafik" mit den

Koordinaten 24 und 50 bewegen. Diese beiden Zahlen stellen

die Korrekturfaktoren dar, die man zu den Grafik-Koordinaten

addieren muß, um das Sprite richtig zu positionieren. Die

Mitte des Bildschirms erreicht man also mit den Werten

160+24 und 100+50 (alles auf die linke obere Ecke des

Sprites bezogen).

—- 79 -

Zusammenfassung: Prioritäten und Bewegungsbereich

Sprite-Priorität (vor/hinter Zeichen) regelt das zugehörige

Bit in VIC-Register 27 (53275). Durch Setzen des Bits wird

das Sprite hinter den Zeichen abgebildet.

Korrekturfaktoren für Sprites gegenüber Grafik-Koordinaten:

24 (X-Richtung) und 50 (Y-Richtung)

7.4. IDEEN FÜR. DIE SPRITE-PROGRAMMIERUNG

Viele Spielprogramme benutzen die sogenannte Animation, um

z.B. einen kleinen Sprite-Mann möglichst naturgetreu zu

seiner Sprite-Frau laufen zu lassen. Das sieht dann so aus,

als würden Arme und Beine einzeln bewegt. Auf den zweiten

Blick stellt man allerdings fest, daß es im Grunde nur zwei

oder drei verschiedene Positionen für Arme und Beine gibt.

Das Prinzip dieser Animation ist damit klar. Ein Sprite

besteht in diesem Fall aus zwei getrennten Blöcken, (zwischen

denen während der Fortbewegung immer wieder umgeschaltet

wird. In einem Block ist das Sprite mit geschlossenen Armen

und Beinen definiert, im anderen schreitet es gerade weit

aus. Werden diese beiden Bilder mittels der Pointer (2040 -

2047) abwechselnd eingeschaltet, so entsteht der Eindruck

einer laufenden Figur. In Wirklichkeit werden nur die

"Vorlagen" für die Sprites ständig ausgewechselt. So einfach

ist das. Voraussetzung ist natürlich, daß genug

Speicherplatz für die verschiedenen Bilder vorhanden ist.

Hier sollte man wieder den BASIC-Anfang in weiter oben

liegende Bereiche verlegen. Wenn Sie hochauflösende Grafik

benutzen, haben Sie ja sowieso genug Platz. |

Oft ist es auch nützlich, wenn man die Sprite-Blöcke auf

Diskette oder Cassette abspeichert. Ein Programm dazu kennen

-80 —

Sie bereits aus Kapitel 4.1.

Interessant erscheint mir auch die Idee, die hochauflösenden

Sprites als kleine Grafikbildschirme innerhalb des

Zeichenmodus zu "mißbrauchen". Nehmen wir an, Sie möchten

den Graphen einer beliebigen Funktion in Hochauflösung

gleichzeitig auch ein Kommentare

Möglichkeit

darstellen, aber paar

dazusetzen. Eine ist, die Punktmatrizen der

benötigten Buchstaben aus dem Zeichengenerator auszulesen

Setzen von Grafikpunkten die

Aber

durch entsprechendes

künstlich

und

Zeichen zu erzeugen. das ist sehr

umständlich, ebenso wie der umgekehrte Weg, bei dem der

Zeichensatz so umdefiniert wird, daß die für den Graphen

nötigen Punkte

Es bleiben

Quadrat

und berechne für jeden Punkt die zu setzenden Bits innerhalb

innerhalb der Zeichenmatrix gesetzt werden.

die Sprites. Man nehme derer 4, ordne sie im

auf dem Bildschirm an der gewünschten Position an

der Spritematrix. Dies erledigt für uns die untenstehende

Routine. Ich verzichte diesmal auf eine nähere Erklärung, da:

das Programm vom Aufbau und der Funktionsweise her der

Punktsetzroutine für hochauflösende Grafik entspricht.

E
T

La
i

la

fa
}

21
R
B

td

foe

am

h
a

ae i
n

|
Pa

Z
i

T
r
,

ut

Fa

= an

F
E

et
e

R
N

R
i
e
d

3

iF

i

Fy

TT

Rs

fa

fa

fa

AG

PG

ro
i

~,

ta
i

at

ta
l

yr

mg

a
r

e
r

it
Ty

rt
,

z
T
e

Ts

:
R2
3

2
3
0
3

1
%

8

a

3

a

a
D
a

zu

Er

mi

me

oF

3

ri

iT
 Zu

ni
gd

eas
e!

ww

2

=
“3

ma
i

$

w
h

P
y

b
P

i
d

is

at

=
 it 1 Lö

READY

Pili Ts See} To Pe

FoR T Secs OLAS :

PORE SE48 . 11° PORE SEAL ois

Vie tes PORE. Lee PORE N+ 1. LEIS PORE M+ .

PORE eb

PUR T= 23 Toe :

IHFUTTER PRIOR a:

SPOKE D8: MEXT
PORE TD ‚2: NEST

‘PORE S842 14 FÜKERA4E LS
14: POKEVES

SPOR EWP . Lac
AS POKEV+23 .15: POKEV+29 .

Lee

IGE PORE +E. debe POR E+ . deb

POR EMV +T HER TICRPOREYN +21

THRU Rooke oy

15
u ent 000, oe

SOSE EN GOTO 1 ae oe Nese” Hoon

ieeh Pt TP YO eb) THERE TUR

TP ea BORSA? THEME TURE

EH=IMTCHeZE BY Ss HT eee 21 2) IP EM=GANDBY=@THENBAS Foe GOTOSZE46
BSP Sa+ Bes + Boel 2S
EN=k-ZEBN : Bysshe
MIS IMT CBHOS) Ma=7-CBMAMD? 3 MS Bye
Alı= BAA Seed

PEER « “ALT. IAT SS RE TPH TFL=1 THEMPORERD » Te

RE TURE POREAD PEER CADIORCeT w tn Ry

— 81 —

Aufgerufen wird mit GOSUB 62000. Wie bei der hochauflösenden

Grafik werden die Koordinaten in X und Y, die Modusangabe

(Setzen/Löschen) in L übergeben. Es werden die Sprites O bis

3 und die Blöcke 11, 13, 14, 15 benutzt. In der

vorgestellten Version wurden die Sprites in beide Richtungen

vergrößert. Wer möchte, kann sie auch in normaler Größe

erscheinen lassen, muß dann aber .die Positionen (siehe

Zeilen 30 und 40) korrigieren.

Innerhalb der 4A Sprites können 48 x 42 Punkte gesetzt

werden. Da es sich nicht um Multi-Color-Sprites handelt,

haben alle Punkte die gleiche Farbe. Diese wird in Zeile 50

festgelegt.

Wer möchte, kann sich die Routine zum Linienzeichnen auf

Sprite-Graphik umschreiben, es ist gar nicht schwer. Alle

Sonderfunktionen (wie Priorität, Kollisionen etc.) können

wie üblich auch für die Sprites O - 3 eingesetzt werden, da

das Unterprogramm nur auf die Punktmatrizen in den Bereichen

704 - 766, 832 - 894, 896 - 958 und 960 - 1022 wirkt. Es

lohnt sich also, ein wenig zu experimentieren.

Damit ist das Kapitel über die Programmierung mit Sprites zu

Ende. Dies sollte’Sie jedoch auf keinen Fall davon abhalten,

weiter mit den VIC-Registern zu experimentieren. Es gibt

viele Einsatzmöglichkeiten für die Sprites, die noch der,

Entdeckung harren!

— 82 —-

8. TONERZEUGUNG

Was der VIC für den Bildschirm ist, stellt der SID (Sound

Interface Device) für die Töne dar. Dieser bietet für jede

Möglichkeit der Tonerzeugung ein entsprechendes Register.

Leider wurden auch diese nicht ausführlich im CBM-Handbuch

beschrieben. Da aber die Darstellung aller Möglichkeiten des

SID viel zu umfangreich wäre, folgen hier nur die

Grundtechniken der Soundprogrammierung.

8.1. DIE ARBEITSWEISE DES SID

In diesem Abschnitt soll im Vordergrund stehen, was im

Computer abläuft, wenn ein Ton erzeugt werden soll.

Wird ein bestimmtes Startbit auf 1 gesetzt, so sieht der SID

zuerst nach, welche Frequenz der Ton haben soll. Dann

erzeugt er eine entsprechende Schwingung. Diese wird durch

eine Art "elektronische Töpferscheibe", den

Wellenformmodulator geschickt. Dadurch erhält der Ton die

einprogrammierte Wellenform (Dreieck, Rechteck, Sägezahn,

Rauschen) und deren charakteristisches Klangbild.

Dann formt der SID den Tonverlauf anhand der sogenannten

Hüllkurve. Sie gibt an, welche Lautstärke der Ton in den

verschiedenen Phasen hat. Die Hüllkurve setzt sich dazu aus

4 Parametern zusammen. Der Anschlag bestimmt, wie schnell

die in einem eigenen Register angegebene Höchstlautstärke

erreicht wird. Danach schwillt der Ton bis zu einem

bestimmten Wert wieder ab, der im Parameter "HALTEN" zu

finden ist. Die Geschwindigkeit dieses Abschwellens zeigt

der Parameter "Abschwellen" an. Die jetzt erreichte

Laustärke bleibt erhalten, bis das Startbit wieder auf O

gesetzt wird. Der Parameter "AUSKLINGEN" gibt die

Geschwindigkeit vor, mit der der Ton abgeschaltet wird.

Damit kann ein Nachhall erzeugt werden.

— 83 -—

Bei Rechteckschwingungen kann zusätzlich noch das sogenannte

Tastverhältnis abgegeben werden, das das Verhältnis zwischen

Impuls-Ein und Impuls-Aus regelt. Auch damit kann die

Klangfarbe beeinflußt werden.

Weitere Möglichkeiten (die hier aber nicht beschrieben

werden sollen) sind z.B. Ringmodulation, bei der der Ton

einer Stimme in Abhängigkeit der beiden anderen erzeugt

wird, und Filter, die verschiedene Frequenzbereich

ausfiltern können.

8.2. DIE PROGRAMMIERUNG

Jetzt geht es zur Sache. In diesem Kapitel werden wir die

Programmierung von Tönen und Tonfolgen beschreiben. Dabei

werden wir zum Teil von der im CBM-Handbuch vorgestellten

Methode abweichen, da diese die Nutzung eines Teils der

Möglichkeiten schlicht und einfach unmöglich macht.

Egal wie Ihr Soundprogramm aussieht, eines sollte immer“ ganz

am Anfang stehen: Die Lautstärke. Sie wird in die 4

niederwertigen Bits des Registers 24 (54296) gePOKEd, Ein

Versuch, dieses oder eines der anderen Register (von O bis

24) mittels PEEK auszulesen, wird immer zum Scheitern

verurteilt sein. Aufgrund einer besonderen Konstruktion

lassen sich diese Bytes nicht auslesen, sondern nur

beschreiben. Ein PEEK-Befehl kann daher unsinnige Ergebnisse

liefern. <

Genau umgekehrt verhält es sich mit den Registern 25 - 28.

Hier kann nur gelesen werden, ein POKE bleibt dagegen

unwirksam.

Doch zurück zur Musik_ Da die A höherwertigen Bits des

Lautstärkeregisters im Normalfall auf O sein sollten, können

wir die gewünschte Zahl einfach einPOKEn. Mit POKE 54296,0

wird demnach die Lautstärke ganz zurückgenommen, mit POKE

54296, 15 dagegen können wir "volle Pulle" geben. Die

Lautstärke kann immer nur für alle drei Stimmen gleichzeitig

— 84 —

gesetzt werden .:

Als nächstes kommt die Frequenz, also die Tonhöhe dran. Sie

können zwischen 65536 verschiedenen Frequenzen wählen.

Welche Sie nehmen, bleibt Ihnen uberlassen. Beim

Programmieren von Melodien ist die Notentabelle im Anhang

des Handbuches nützlich. Wie Sie die Frequenzzahl in High-

und Low-Byte aufspalten konnen, wissen Sie aus dem Kapitel

uber Zeiger. Diese Zahlen werden in die Register O und 1

(fur Stimme 1), 7 und 8 (für Stimme 2) oder 14 und 15 (für

Stimme 3) gePOKEd.

Jetzt sollten Sie daran gehen, die Hiillkurve festzulegen.

Für den Anschlag und die Dauer des Abschwellens ist Register

5 (bzw. 12 oder 19) zuständig. Der Anschlag ist in den

höherwertigen Bits zu Hause, der Wert für das Abschwellen in

den niederwertigen. Ähnlich geht es den Werten für Halten

und Ausklingen in Register 6, 13 oder 20., wobei "Halten"

die höherwertigen Bits belegt. Ist dieser Wert O, so bleibt

die Stimme stumm. Ansonsten stellt er die Lautstarke des

Tons im Verhältnis zur Höchstlautstärke aus Register 24 dar.

Wollen Sie Rechteckschwingungen benutzen, so braucht der SID

noch das Tastverhältnis. Es kann Werte zwischen O und 4095

annehmen und liegt in den Registerpaaren 2/3, 9/10 oder

16/17. Von den höherwertigen Bytes dieser Paare werden

jeweils nur die ersten (niederwertigen) Bits benutzt. Höhere

zahlen als 15 in einem dieser Register machen also keinen

Unterschied.

So weit - so gut. Bisher sind wir wie im Handbuch

vorgegangen. Um die Wellenform festzulegen, sollten wir

Register 4 (bzw. 11 oder 18) betrachten. Ähnlich einigen

VIC-Speicherzellen hat auch hier jedes Bit eine eigene

Bedeutung. Bit O stellt das schon erwähnte Start-Stop-Bit

für den Tonablauf dar. Wird es auf 1 gesetzt, so wird der

Ton der zugehörigen Stimme eingeschaltet und der

Hüllkurvenablauf gestartet. Wird es wieder auf O gesetzt, So

wird der Ton je nach Hüllkurve in einer entsprechenden Zeit

beendet. Bitte beachten Sie bei der Programmierung, daß der

VIC in der Ausklingzeit möglichst keinen neuen Ton mit der

gleichen Stimme erzeugt. Sollen z.B. fiir Melodien schnell

aufeinanderfolgende Töne programmiert werden, so empfiehlt

es sich, für die Ausklingzeit einen sehr kleinen Wert zu

wählen.

Die Bits 1 und 2 des Registers 4 dienen Steuerungszwecken.

Bit 3 ist für uns wieder sehr nützlich. Sollten zwei oder

mehr Wellenformen gleichzeitig eingeschaltet worden sein, so

kann der SID blockieren, d.h. es wird kein Ton mehr erzeugt.

Durch Setzen des Bits 3 und durch Löschen der Wellenformen

kann dies aufgehoben werden. Mittels POKE 54276, 8 wird der

SID also neu initialisiert.

Die Bits 4 bis 7 bestimmen schließlich die Wellenform. Ist

ein Bit auf 1 gesetzt, so wird die entsprechende Form

erzeugt, wobei Bit 4 für Dreiecks-, Bit 5 für Sägezahn- und

Bit 6 für Rechteckschwingungen zuständig sind. Bit 7 erzeugt

ein Rauschen. Diese Schwingungsformen können auch gemischt

werden. | | |

Um einen Ton einzuschalten, müssen Wellenform und Start-Bit

gleichzeitig gePOKEd werden. Daraus ergeben sich die im

CBM-Handbuch angegebenen Codes für die verschiedenen Klänge

(17, 33, 65, 129). Zum Ausschalten darf jedoch nicht einfach

Reg. 4 (bzw. 11 oder 18) mit O geladen werden. Dasckäme dem

Abwürgen eines Motors mitten auf der Autobahn gleich. Der

SID findet plötzlich keine Angabe über die Wellenform und

kann so auch keine Hüllkurve ordnungsgemäß beenden (womit

auch?). Das Ergebnis ist der typische Ausschaltknack. Wird

dagegen nur Bit O gelöscht, so entfällt das Knacken und der

Ton klingt weich aus. Dies erreicht man durch POKEn der

Formcodes -1 (also 16, 32, 64 oder 128). Und siehe da, wir

haben unsere Bits als Zwelerpotenzen zurück. <

Zur Verdeutlichung der Vorgehensweise und als Ersatz für das

nicht lauffähige Listing aus dem 64er-Handbuch hier ein

Programn, das das Spielen von Melodien per Tastatur

ermöglicht:

10 PRINT "(CLEAR)"

20 PRINT" WE T Y U"

30 PRINT “ AS DFGH J K"

100 S= 54272

— 86 —

110 POKE 5+24, 15: REM Lautstärke

120 POKE S+5, 136: REM Anschlag & Abschwellen

130 POKE S+6, 248: REM Halten & Ausklingen

140 POKE S+4, 8: REM SID initialisieren

150 FOR I= 0 TO 40: NEXT I: POKE S+4, 16: REM Startbit=0O

160 GET A$: IF A$="" THEN 160

170 IF A$= "A" THEN POKE S, 207: POKE S+1, 34

180 IF A$= "S" THEN POKE S, 18: POKE St+1, 39

190 IF A$= "D" THEN POKE S, 219: POKE S+1, 43

200 IF A$= "F" THEN POKE S, 118: POKE S+1, 46

210 IF A$= "G" THEN POKE S, 39: POKE S+1, 52

220 IF A$= "H" THEN POKE S, 138: POKE S+1, 58
230 IF A$= "J" THEN POKE S, 181: POKE S+1, 65

240 IF A$= "K" THEN POKE S, 157: POKE S+1, 69

250 IF A$= “W" THEN POKE S, 225: POKE S+1, 36

260 IF A$= "E" THEN POKE S, 101: POKE S+1, 41

270 IF A$= "T" THEN POKE S, 58: POKE S+1, 49

280 IF A$= "Y" THEN POKE S, 65: POKE S+1, 55

290 IF A$= "U" THEN POKE S, 5: POKE S+1, 62

300 POKE S+4, 17: GOTO 150

Die Zeilen 10 - 30 verdeutlichen die Tastaturbelegung. Dann

folgt der Vorbereitungsteil (100 - 140). In Zeile 150

befindet sich eine kleine Warteschleife, die das

ordnungsgemäße Ausklingen des Tons ermöglicht. Außerdem wird

durch den PORE-Befehl das Start-Stop-Bit auf O gesetzt. Wer

die Wellenform wechseln möchte, kann die Werte in dieser und

in Zeile 300 ändern. Die Funktion der Zeilen 160 - 290

dürfte klar sein; hier wird die Frequenz entsprechend der

gedrückten Taste gesetzt.

Wer nähere Informationen über die Tonerzeugung haben möchte,

sollte sich Spezialliteratur, z.B. das Musikbuch von DATA

BECKER besorgen. Hier werden auch ausgefallene

Programmiertechniken beschrieben.

— 87 -

Zusammenfassung: Tonerzeugung

Lautstarke in Reg. 24. Bereich: O - 15.

Anschlag: hoherwertiges Halbbyte in Reg. 5/12/19

Abschwellen: niederwertiges Halbbyte in Reg. 5/12/19

Halten: höherwertiges Halbbyte in Reg. 6/13/20

Ausklingen: niederwertiges Halbbyte in Reg. 6/13/20

Wellenform: Register 4/11/18

Bit 4: Dreieck

Bit 5: Sagezahn

Bit 6: Rechteck

Bit 7: Rauschen

auBerdem: Bit 3: Initialisierung

Bit 1: Start-Stop-Bit

Frequenz: Registerpaare O/1, 7/8 oder 14/15

9. DIE TASTATUR

Schon rein äußerlich stellt die Tastatur das auffälligste

Merkmal des 64ers dar. Kaum ein Computer dieser Preisklasse

ist mit einer qualitativ so hochwertigen Tastatur

ausgestattet. Daß sie nicht nur Schreibkomfort, sondern auch

Programmiertricks ermöglicht, soll Ihnen dieses Kapitel

zeigen.

9.1. AUFBAU UND FUNKTIONSWEISE DER TASTATUR

Beginnen wir mit dem Ansprechen der Tastatur. Normalerweise

geschieht dies von BASIC-Programmen aus durch INPUT und GET.

Ein Blick in das CBM-Handbuch verrät uns außerdem, daß sich

die Tastatur mit der Geratenummer O auch über OPEN erreichen

1äßt. Man kann dann durch die bekannten Peripheriebefehle

wie auf eine Floppy oder eine Datasette zugreifen. Im

Gegensatz zum normalen INPUT gibt dieser Befehl übrigens

kein Fragezeichen aus. Dies gibt zur Vermutung Anlaß, daß

auch die "Folterstrecke für Adler-Such-System-Tipper" (so

ein Zeitgenosse) über eine Art Interface an den I/O-Bereich

angeschlossen ist. Dieses Interface ist der CIA 1. An zwei

parallelen Ports (die sehr nahe mit dem USER-PORT verwandt

Sind) wird die Abfrage vollzogen. Dazu sind die 64 Tasten

elektrisch in 8 Zeilen und 8 Spalten aufgeteilt worden.

Einer der beiden Ports ist auf Ausgabe programmiert. Hier

wird die Spalte ausgegeben, die abgefragt werden soll. Ist

eine Taste gedrückt worden, so wird dies in dem auf Eingabe

geschalteten zweiten Port registriert. Die

Interrupt-Routine, die für die Tastaturabfrage zuständig

ist, hat also nichts weiter zu tun, als nacheinander alle 8

Spalten anzuwählen und die gedrückten Tasten festzustellen.

Anhand einer Dekodiertabelle im ROM wird dann der ASCII-Code

der Taste errechnet und . dieser im Tastaturpuffer

— 89 —

zwischengespeichert.

Läuft der Interpreter im Direktmodus, so holt er sich nach

dem Interrupt den ASCII-Code aus dem Puffer ab und

verarbeitet diesen dann (z.B. 13 = RETURN, bewirkt eine

Befehlsausführung). Sollte gerade ein BASIC-Programm laufen,

so wird der Tastaturpuffer so lange unverändert bleiben, bis

ein GET, INPUT oder Programmende auftritt. Bei GET holt der

Interpreter einfach das erste Zeichen aus dem Puffer und

speichert es in der im Befehl angegebenen Variablen ab. Ein

INPUT funktioniert ähnlich, nur werden die Zeichen hier

zusätzlich noch auf den Bildschirm geschrieben und die

Abfrage so lange wiederholt, bis ein RETURN eingegeben

wurde.

Die oben beschriebene Tastaturmatrix weist übrigens noch

zwei Besonderheiten auf. So ist die RESTORE-Taste in dieser

Matrix nicht enthalten. Sie wirkt direkt auf den Prozessor

(ähnlich dem RESET-Taster aus Kap. 1.6.) und lost dort einen

speziellen Interrupt aus. Diese Routine prüft, ob

gleichzeitig die RUN/STOP-Taste gedrückt wurde. Ist dies der

Fall, so wird eine Art MINI-RESET ausgeführt, sonst lauft

alles normal weiter. C

Die zweite Besonderheit stellen die SHIFT-Tasten dar. Der

Rechner kann zwischen der linken und rechten Taste

unterscheiden, da beide in verschiedenen Spalten liegen. Im

Gegensatz dazu ist die SHIFT-LOCK-Taste aber nur eine

besondere Form der linken SHIFT-Taste, d.h. zwischen beiden

kann nicht unterschieden werden.

Das ganze Prinzip läßt sich übrigens mühelos auf den VC-20

übertragen, nur die elektrische Anordnung der Tasten ist

anders.

9.2. GLEICHZEITIGE ABFRAGE VON ZWEI TASTEN

Wir werden jetzt die Kenntnisse aus dem letzten Kapitel in

praktische Anwendungen umsetzen. Für viele Programme ist es

— 90 —

wünschenswert, mehrere Tasten gleichzeitig abfragen zu

können, um z.B. zwei Raumschiffe unabhängig voneinander

steuern zu können. Sehen wir uns dazu einmal die

Tastaturmatrix (Abb. 4) an.

Die beiden Speicherzellen, an denen die Tastatur

angeschlossen ist, sind 56320 und 56321. Im Normalfall sind

alle Bits dieser Register auf 1. Soll eine bestimmte Spalte

angewählt werden, so muß das betreffende Bit in 56320 auf O

gebracht werden. Ähnlich verhält es sich mit der Rückmeldung

von der Tastatur. Ist eine Taste gedrückt, so wird das

entsprechende Bit in 56321 auf O gesetzt.

Was die Interruptroutine kann, können wir schon lange. Durch

einen POKE-Befehl können wir eine bestimmte Spalte auswählen

und dann die Bits der abzufragenden Tasten testen. Sollten

die beiden Tasten in verschiedenen Spalten liegen, so fragen

wir diese einfach nacheinander ab.

Da die Interruptroutine uns ins Handwerk pfuschen könnte

(auch sie trifft ja eine Spaltenauswahl), schalten wir sie

einfach ab. Außerdem muß die RUN-STOP-Taste mittels POKE

788, 52 gesperrt werden, da sonst jede Abfrage der untersten

Tastaturzeile einen BREAK hervorrufen wurde.

Alles zusammen ergibt dann diese Befehle:

POKE 56334, PEEK (56334) AND 254

POKE 788, 52 |
POKE 56320, Spaltencode

IF (PEEK (56321) AND (2°Bitnr.)=-0) THEN PRINT "Taste

gedrückt"

POKE 56334, PEEK (56334) OR 1 >

POKE 788, 49

Damit läßt sich eine Taste abfragen. Sollen mehrere Tasten

"beobachtet" ‘ werden, müssen noch weitere

IF-THEN-Konstruktionen und ggf. auch weitere POKE-Befehle

zur Spaltenauswahl eingefügt werden. Der Spaltencode

berechnet sich nach dieser Formel:

CODE= 255-2°Spaltennr.

Die Spaltennr. stellt die Position des Bits innerhalb der

Speicherzelle 56320 dar, das die gewünschte Spalte anwählt.

Die IF-THEN-Konstruktion in den oben genannten Befehlen hat

die Aufgabe, zu testen, ob das gewünschte Zeilenbit auf OÖ

gesetzt wurde.

Die Zeilen- und Spaltennummern können Sie auch der Abbildung

4 entnehmen.

Eine andere Möglichkeit, zwei Tasten gleichzeitig

abzufragen, bietet Speicherzelle 653. Hier wird das aktuelle

SHIFT-Muster angezeigt, d.h., die Bits dieses Registers

geben wieder, welche der drei Tasten SHIFT, COMMODORE und -

CONTROL gerade gedrückt werden. Für ein SHIFT wird Bit O auf

1 gesetzt, für C= Bit 2, für CONTROL Bit 3. Das Setzen der

Bits geschieht unabhängig voneinander, sind alle drei Tasten

gleichzeitig gedrückt, so werden auch alle drei Bits

gleichzeitig gesetzt. Zuständig dafür ist wieder (wie könnte

es anders sein) die Interruptroutine. Wollen wir die

Speicherzelle 653 nutzen, darf der Interrupt nicht c

ausgeschaltet sein. Mit der Befehlsfolge |

IF (PEEK (653) AND 2°Bitnr.) THEN PRINT "Taste gedrückt"

kann der Rechner vom BASIC aus feststellen, ob eine

bestimmte Taste gedrückt wird.

Zusammenfassung: Gleichzeitige Tastaturabfrage

Es gibt zwei Möglichkeiten:

a. PEEK (653) gibt das SHIFT-Muster an. Damit können drei

Tasten unabhängig voneinander getestet werden. r

b. Nach Spaltenauswahl durch POKE 56320, X kann in

Speicherzelle 56321 abgelesen werden, welche Taste in der

Spalte gedrückt wurde. Die Anordnung ist in Abb. 4

aufgelistet.

. 56321 Bit

inst

Ir e54 0

Wher. 253 | 1

A nan 251 2

4 IF 247 3

239 4

SFI3 za 5

EIFS 191 6

<
i
C
l
x
i
w
l
a
l
i
a
|
l
<
|
~

x

|
N
O
]

O
U

1

N 7 a
m
a

5 55

z
o
l
x
!
z
e
j
-
|
—
|
o

ASR 127 7

RUN 2
stop] 7 |

56320 127 1191 $223 1239] 247) 251] 253) 254

Bit 7/6 75 | 4 2 2 1 0

SHIFT LOCK = SHIFT LINKS, RESTORE nicht abfragbar

Abb. 4. Tastaturmatrix

9.3. TASTEN SPERREN

Für viele Anwendungen ist es wünschenswert, einzelne Tasten

(vor allem RUN/STOP) oder die ganze Tastatur zu Sperren.

Dafür gibt es, beim 64er viele Möglichkeiten.

Um die gesamte Tastaturabfrage zu sperren, kann die

Interruptroutine abgeschaltet werden. Es wird jetzt auch

kein Cursor mehr erzeugt - der Rechner scheint sich

aufzuhängen. Mit RUN/STOP-RESTORE kann dies jedoch

aufgehoben werden.

Das gleiche gilt für POKE 649,0. Auch hier wird die Tastatur

— 903 —

abgeschaltet, der Cursor kann jedoch weiterhin erzeugt.

werden (auch künstlich). Auch die RUN/STOP-Taste behält ihre

wirkung. Interessant ist die Entstehung dieser Sperre.

Speicherzelle 649 gibt die Länge des Tastaturpuffers an.

wird jetzt die Länge auf O gesetzt (normal = 10), so meint

das Betriebssystem, der Tastaturpuffer sei schon voll und

vergißt deshalb die gedrückte Taste. Da das BASIC alle

Tastendrücke (egal ob im Direktmodus oder per GET oder

INPUT) über den Puffer holt, funktionieren keine Eingaben

mehr.

Das gleiche Ergebnis liefert POKE 655,71. Damit wird der

Zeiger auf die Tastaturdekodiertabelle geändert. Folge: Die

Interruptroutine kann keine ASCII-Codes mehr bilden - der

Tastaturpuffer bleibt leer. Wieder eingeschaltet wird mit

POKE 655,72. | |
will man nur die RUN/STOP-Taste abschalten, so kann der

Befehl POKE 788, 52 benutzt werden. Danach kann ein

BASIC-Programm nur noch per RUN/STOP-RESTORE gestoppt

werden. Die BREAK-Funktion wird durch POKE 788, 49 wieder

eingeschaltet.

Durch POKE 792, 193 wird der Mini-Reset (STOP & RESTORE)

verhindert. Die STOP-Taste zeigt aber weiterhin Wirkung.

Kombiniert man die letzten beiden POKEs, so läßt sich ein

BASIC-Programm gar nicht mehr stoppen (außer mit der

brutalen EIN-AUS-Methode). Soll das Programm zusätzlich noch

vor LIST geschützt werden, so sollte POKE 808, 234

eingegeben werden. Danach sind alle BREAK-Möglichkeiten

unwirksam und ein LIST liefert unsinnige Ergebnisse.

Zusammenfasssung: Tastatursperren

Ganze Tastatur abschalten:_

1. Interrupt abschalten

2. POKE 649,0 (Tastaturpuffer auf Länge O)

3. POKE 655,71 (Zeiger auf Dekodiertabelle ändern)

RUN/STOP aus: POKE 788, 52

RUN/STOP ein: POKE 788, 49

— 94 —

RESTORE aus: POKE 792, 193

RESTORE ein: POKE 792, 71

BREAK aus + Listschutz: POKE 808, 234

9.4. DIE REPEATFUNKTION

Sie benutzen sie immer dann, wenn Sie mit dem Cursor an

entfernte Stellen auf dem Bildschirm “fahren" wollen. Doch

in den wenigsten Fällen haben Sie die Repeatfunktion bewußt

wahrgenommen, und wenn, dann nur, wenn Sie sie mit anderen

Tasten als der Cursorsteuerung benutzen wollten. Dieser

Wunsch läßt sich erfüllen!

Speicherzelle 650 regelt den Umfang der Repeatfunktion. Im

Normalfall steht in diesem Register eine O. Das zeigt der

Interruptroutine an, daß nur die Cursortasten und Space

wiederholt werden sollen. Ist Bit 6 gesetzt (per POKE 650,

64), so wird die Repeatfunktion ganz abgeschaltet. POKE 650,

128 bewirkt genau das Gegenteil. Jetzt haben Sie auch auf

den normalen Zeichentasten wie A, S, D etc. die

Wiederholfunktion. Neben diesen primär nützlichen Details

gibt es auch anderes Wissenswertes zum Repeat. Deshalb sei

hier erklärt, wie die Interruptroutine überhaupt die

Tastenwiederholung erzeugt. Bevor ein Tastendruck

automatisch wiederholt wird, vergeht eine gewisse

Vorlaufzeit (ca. 0,5 Sekunden). Dies soll verhindern, daß

ein verfrühtes Repeat den Benutzer bei der Arbeit stört,

wenn eine Taste zufällig etwas länger niedergedrückt wird.

Diese Vorlaufzeit wird in Register 652 erzeugt. Die dort

gerade stehende Zahl (meist 16) wird durch den Interrupt bis

auf O0 heruntergezählt. Erst wenn die O erreicht ist, kann

die Repeatfunktion starten. In diesem Fall wird in ähnlicher

Weise der Inhalt der Speicherzelle 651 heruntergezahlt.

Immer, wenn die O erreicht ist, wird ein neuer "Tastendruck"

zusätzlich in den Puffer hereingeschoben und das Register

mit einem neuen Startwert (4) geladen. Daher kann durch POKE

— 95 —

651, 255 die Repeatfunktion um ca. 4 Sekunden hinausgezögert

werden.

Das ist schon das ganze Geheimnis um die Tastenwiederholung!

Zusammenfassung: Repeatfunktion

POKE 650, 128: Repeat auf alle Tasten

POKE 650, 64: Repeat abschalten

POKE 650, O: Urzustand

POKE 651, 255: Repeat um 4 Sek. verzögern

_ 96—

9.5. TASTATURABFRAGE EINMAL ANDERS

Wie Sie aus den letzten Abschnitten wissen, bringt die

Interuptroutine die Tastendrücke als ASCII-Codes in den

Tastaturpuffer. Auf dem Weg dahin gibt es aber eine.

Zwischenstation - die Speicherzelle 203. Hier wird der

sogenannte Tastaturcode zwischengespeichert, der als Zeiger

innerhalb der Dekodiertabelle dient. Der Code erscheint so

lange in diesem Register, wie die Taste gedrückt wird. Man

kann daher mittels PEEK (203) z.B. zeitabhängige Eingaben

programmieren, bei denen das Ergebnis von der Dauer des

Tastendrucks abhängt. In Tabelle 1 finden Sie eine Übersicht

über die Tastaturcodes, die leider nicht sehr viel mit den

ASCII-Codes gemeinsam haben.

Ein Tastendruck, der durch PEEK (203) entdeckt wurde, ist

dadurch noch nicht aus dem Tastaturpuffer gelöscht. Er kann

durch GET oder INPUT in eine Variable gebracht werden. Damit

kann man schon vor der eigentlichen Eingabe Daten

überprüfen. Außerdem wird das Zwischenspeichern des

Tastaturcodes nur durch das Abschalten des Interrupts

verhindert. Eine Tastatursperre kann so eventuell umgangen

werden.

Der Tastaturpuffer läßt sich übrigens auch löschen. Die

Speicherzelle 198 gibt die Anzahl der schon gespeicherten

ASCII-Codes an. Durch POKE 198,0 wird ein Löschen bewirkt,

da jedes jetzt eintreffende Zeichen ein altes im Puffer

überschreibt. Nach dem Löschen kann mit WAIT 198, 1 bis zum

nächsten Tastendruck angehalten werden. Sobald ein neues

Zeichen eintrifft, wird dies im Pufferzähler (also der

Speicherzelle 198) registriert. Der WAIT-Befehl hat dabei

nur die Aufgabe, die Ankunft des Zeichen zu erkennen und

dann den Programmablauf wieder freizugeben. Danach kann das

Zeichen per GET aus dem Puffer geholt werden. Man spart sich

so umständliche IF-THEN-Konstruktionen. |

Der Tastaturpuffer selbst liegt in den Speicherzellen 631

bis 640. Hier werden die Zeichen als ASCII-Codes abgelegt,

Gie das BASIC sich dann abholen kann. Durch das EinPOKEn von

— 97 —

Zeichen können Tastendrücke simuliert werden. Dabei muß

allerdings auch der Zeiger in Speicherzelle 198 entsprechend

erhöht werden, sonst "entdeckt" das BASIC diese Zeichen gar

nicht.

Wie sie jetzt sicher selbst feststellen, ist die

Tastaturabfrage sehr vielseitig. Entwickeln Sie eigene

Ideen, wie Sie sie nutzen Können!

Zusammenfassung: Tastaturabfrage

PEEK (203) gibt den sog. Tastaturcode der gerade gedruckten

Taste aus.

POKE 198, O loscht den Tastaturpuffer

POKE 198, O: WAIT 198, 1 wartet auf einen Tastendruck

Die Speicherzellen 631 - 640 enthalten den Tastaturpuffer._

Durch EinPOKEn von Codes können Tastendrücke simuliert

werden.

A 10 O 38 2 59 @ 46 FR 6
B 28 P 41 3 8 x Ag F7 3.

C 20 Q 62 4 11 2 54 .STOF 63

D 18 R 17 5 16 © 45 SFC 60

E 14 S 13 6 19 ; 50 | |
F 21 “T 22 7 24 . = 53

G 26 U 30 8 27 RET 1

H 29 v 31 9 32 , AT

I 33 W 9 & 57 ~ 44

J 34 X 23 + AC / 55

K 37 Y 25 - 43 v 1

L 42 Z 12 £ 48 > 2
M 36 G 35 CLR 51 FI 4

N 39 1 56 DEL 0 F3 5
Tabelle 1: Tastaturcodes

— 98 —

10. JOYSTICK. PADDLES. LIGHTPEN UND ANDERES

Jeder kennt sie, aber kaum jemand weiß, wie sie

funktionieren. Gemeint sind die Zusatzgeräte für Grafik- und

Spielprogramme. Der Joystick ist am weitesten verbreitet, es

gibt sogar Menschen, die sagen, ein C-64 ohne Joystick sei

nicht vollständig. Nichts desto trotz folgen jetzt die

Beschreibungen der einzelnen Zubehörteile, wobei sowohl

Funktionsweise als auch Abfragetechniken aufgeführt sind.

10.1. DER JOYSTICK

Viele wird es verblüffen, aber es stimmt. Für den 64er ist

der Joystick eigentlich nur eine Art zweiter Tastensatz. Er

wird nämlich über eine Tastaturspalte abgefragt. Die beiden

Joystickports sind jeweils an der CIA 1 angeschlossen. Bei

Port 1 wird das Register 56321 zur Rückmeldung benutzt. Die

Joystickpositionen entsprechen den Tasten der Spalte 7. Soll

also der Joyport 1 abgefragt werden, so muß Speicherzelle

56320 den Wert 127 enthalten. Dies immer dann der Fall, wenn

die Interruptroutine die Tastaturabfrage beendet hat. Ist

dagegen die Tastatur vorher über die Speicherzellen 56320/1

abgefragt worden, so sollte vor der Joystickbenutzung

jeweils POKE 56320, 127 erfolgen.

Je nach Stellung des Steuerknüppels werden verschiedene Bits

in 56321 gelöscht. Die Tabelle zeigt, welche Bits wofür

zuständig sind:

Bit 7 6 5 4 3 2 1 OÖ

Richtung - - - KNOPF RECHTS LINKS UNTEN OBEN

Taste - ~ - Space 2 Ctrl | 1

Unter den Belegungen sind die Tasten angegeben, mit denen

— 99 —

der Joystick "simuliert" werden kann.

Ist die RUN/STOP-Taste nicht abgeschaltet, so kann man die

Speicherzelle 145 zweckentfremden. Hier wird vom

Betriebssystem eine Kopie der Speicherzelle 56321 erzeugt.

Daher kann Joyport 1 auch per PEEK (145) abgefragt werden.

Etwas komplizierter verhält es sich mit Joyport 2. Er belegt

die Speicherzelle 56320. Diese ist aber eigentlich für die

Spaltenauswahl (also eine Ausgabe) vorgesehen. Die Abfrage

des Joysticks verlangt aber eine Eingabe von außen. Also muß

dieser Port des CIA umgeschaltet werden. Das kann durch POKE

56322, 224 erreicht werden. Dieser Befehl hat zwei Dinge zur

Folge. Zum einen kann in Speicherzelle 56320 jetzt genau wie

in Speicherzelle 56321 die Joystickbewegung abgelesen

werden. Hinzu kommt aber auch eine Tastatursperre, die

entweder durch RUN/STOP-RESTORE oder durch POKE 56322, 255

aufgehoben werden kann.

Die Funktionsweise eines Joysticks ist sehr einfach. Er

besteht einfach aus 5 mehr oder weniger aufwendigen Tastern.

Einer wird für den Feuerknopf benutzt, die anderen sind

unter dem Steuerknüppel in den vier verschiedenen

Bewegungsrichtungen angebracht. Je nach Stellung des

Knüppels wird dann der entsprechende Taster betätigt - der

64er registriert das dann in den genannten Speicherzellen.

Natürlich gibt es auch unter den verschiedenen Joysticks auf

dem Markt Unterschiede. Einfache Exemplare (wie z.B. der

Commodore-Joystick VC-1311) arbeiten mit einfachen

Folienkontakten (ehemaligen 2ZX-81-Besitzern sicher noch in

unguter Erinnerung), aufwendigere Verwandte dagegen besitzen

Mikroschalter, die sich meist mit einem kleinen Klick

bemerkbar machen.

"Beim Kauf sollte darauf geachtet werden, daß der Joystick

möglichst abgerundete Kanten besitzt. Andernfalls können

beim Spiel sehr schnell Ermüdungserscheinungen auftreten. Im

übrigen passen alle Atari-kompatiblen Joysticks auch für den

Commodore.

— 100 —

Zusammenfassung: Joysticks

Joyport 1 abfragen: PEEK (56321)

Dabei muß Speicherzelle 56320 den Wert 127 enthalten

Joyport 2 abfragen: POKE 56322, 224: REM auf Port umschalten

PEEK (56320)

Port 1 kann auch hilfsweise über PEEK (145) abgefragt

werden.

10.2. PADDLES

Die Paddles sind allgemein auch als Drehregler bekannt. Ihre

Aufgabe ist es im Gegensatz zum Joystick, der nur eine

Richtung angibt, durch die Stellung des Reglers eine

Position oder einen Wert an den Rechner zu übermitteln. Dazu

ist ein Potentiometer eingebaut. Je weiter man es in die

eine Richtung dreht, desto besser kann (vereinfacht gesagt)

der Strom aus dem Rechner hindurchfließen, und umgekehrt.

Der 64er kann über sogenannte AD-Wandler

(Analog-Digital-Wandler) den ankommenden Strom messen und

das analoge Meßergebnis in eine digitale Zahl umwandeln.

Diese Zahl kann dann in speziellen Registern abgelesen

werden. Die AD-Wandler und diese Register sind Teil des SID.

Da pro Joyport zwei Paddles (allerdings nur an einem

Stecker) angeschlossen werden können, gibt es auch zwei

Wandler und zwei Register. Deren Adressen sind 54297 und

54298. Beide Paddles haben auch je einen Feuerknopf. Diese

können wie die Joystickrichtungen "Links" und "Rechts" in

den Registern 56321 (für Port 1) und 56320 (für Port 2; hier

bitte das Umschalten auf Eingabe nicht vergessen) abgefragt

werden. -

Der aufmerksame Leser wird es längst festgestellt haben -

die Beschreibung ist noch nicht komplett. Wir können

insgesamt 4 Paddles an unseren C-64 anschließen, doch es

stehen nur zwei Wandler zur Verfügung. Daher muß es eine

- 101 -

Möglichkeit geben, zwischen beiden Ports umzuschalten. Durch

Setzen des Bits 7 in Speicherzelle 56320 wird die Übernahme

der Messwerte auf Port 2 verlegt. Dies kann aber wieder nur

geschehen, wenn der Interrupt uns dabei nicht stört. Also:

Ausschalten.

Zusammenfassung: Paddles

Abfragen der Paddlewerte in Registern 54297 und 54298.

Knopfdrücke werden durch Joystickpositionen "Links" und

"Rechts" repräsentiert.

Umschalten der AD-Wandler auf Port 2 durch Setzen des Bits 7

in Register 56320.

— 102 —

10.3. DER LIGHTPEN

Wir kommen jetzt zu einem Wunderwerk der Technik - zumindest

erscheint es Außenstehenden so. Wie schafft es ein so

unscheinbares Gerät wie ein Lightpen (der deutsche Name

Lichtgriffel klingt noch unscheinbarer), Punkte auf dem

Bildschirm zu setzen? Des Pudels bzw. Griffels Kern ist

eigentlich gar nicht so kompliziert.

Das eigentliche Setzen der Punkte wird von einem Programm

übernommen. Es funktioniert wie die Grafikroutine aus

Kapitel 6. Für den Stift bleibt nur noch die Aufgabe, die

Koordinaten für die Punkte zu liefern.

Diese werden in zwei Registern übergeben. Woher weiß der VIC

aber, wo der Lightpen gerade auf den Schirm zeigt? Um diese

Frage zu beantworten, braucht man Kenntnisse über den Aufbau

eines Fernsehbildes. Wie Sie sicher schon bemerkt haben,

besteht es aus einzelnen Zeilen. Ein Elektronenstrahl wird

Zeile für Zeile über den Schirm geführt. Soll ein Punkt

aufleuchten, so wird der Strahl eingeschaltet. Dies bringt

eine spezielle Beschichtung auf dem Glas zum Leuchten. Soll

der Punkt dunkel bleiben, so bleibt der Strahl aus. Das

Abfahren des Schirms geschieht so schnell, daß unser Auge

das als stehendes Bild wahrnimmt. Der Aufbau eines. einzelnen

Bildes dauert nur Bruchteile von Sekunden.

Wird jetzt der Lightpen auf den Bildschirm gehalten und wird

er dabei vom Elektronenstrahl getroffen, so schickt er einen

Stromimpuls zum VIC. Dieser sieht nach, welcher Punkt

innerhalb des Schirmbildes gerade zum TV-Ausgang geschickt

wird. Da der VIC das Videosignal erzeugt, kann er immer

feststellen, welche Koordinaten gerade an der Reihe sind.

Die X- und Y-Werte werden dann in den Registern 19 (53267)

und 20 (53268) des VIC abgelegt, wo sie ein Programm abholen

kann. Vom BASIC aus kann dies per PEEK geschehen.

Die dadurch erhaltenen Werte liegen in einem Bereich von O -

255. Durch einen einfachen Dreisatz kann man sie umrechnen

und dann den entsprechenden Punkt setzen.

— 103 -

Zusammenfassung: Lightpen

Lightpen-Koordinaten werden in den VIC-Registern 19 (53267)

und 20 (53268) übergeben. Damit kann eine entsprechende

Grafikroutine veranlaßt werden, Punkte zu Setzen.

10.4. ANDERE ZUBEHORTEILE

Sie werden in einschlagigen Zeitschriften sicher schon

einmal ein sogenanntes Grafiktablett gesehen haben. Der

Anwender kann darauf wie auf einem Blatt Papier zeichnen,

das Bild erscheint dann auf dem Bildschirm in

hochauflösender Grafik.

Es gibt verschiedene Funktionsprinzipien für solche

Grafiktabletts. Gemeinsam ist jedoch allen, daß erkannt

wird, an welcher Stelle sich der Finger, Stift o.ä. gerade

befindet. Meist wird das dann als mehr oder minder starker

Strom an die Paddleeingänge geschickt. Dort kann der Rechner

dann für alles weitere sorgen. Auch hier kommt man also

nicht ohne die entsprechende Software aus.

Auch mit den Paddleeingängen zu tun hat eine spezielle Sorte

von Joystick, die ich hier Proportionaljoystick nennen

möchte. Sie liefern nicht nur die allgemeine

Bewegungsrichtung, sondern eine genaue Positionsbestimmung,

bestehend aus zwei Koordinaten. Dies wird durch ein

x/Y-Pontentionmeter möglich gemacht. Eigentlich handelt es

sich dabei um zwei Potentiometer in einem Gehäuse mit nur

einem gemeinsamen Regler, eines für die X-, das andere für

die Y-Richtung. Bewegt man den Steuerknüppel, so ändern sich

die Werte, die die beiden Potentiometer liefern,

entsprechend der Richtung. Auf diese Art und Weise kann man

dann jeden Punkt des Bildschirms ansteuern.

- 104 —

Der Vorteil dieser beiden Geräte liegt darin, daß sie

fertige Positionskoordinaten liefern. Damit kann man sich

das langwierige Hin- und Herfahren mit den herkömmlichen

Joysticks sparen.

- 105 —

11. DER USER-PORT

Der User-Port macht den C-64 zu einem sehr vielseitigen

Instrument. Leider erwähnt das Handbuch die Handhabung und

Programmierung nicht mit einer einzigen Silbe. Angesichts

dieser sträflichen Mißachtung (auch seitens des BASICs)

sollen hier aushilfsweise wenigstens die Grundtechniken der

Programmierung besprochen werden.

11.1. ALLGEMEINES ÜBER SCHNITTSTELLENBAUSTEINE

Wie auch die Tastatur und die Joysticks wird der User-Port

über ein CIA betrieben, diesmal handelt es sich dabei um CIA

2. Die CIA sind sogenannte Schnittstellen- oder

I/O-Bausteine. Das sind Chips, deren Aufgabe es ist, Daten

von Peripheriegeräten zu empfangen, an diese zu senden und

die Kommunikation mit dem Prozessor zu gewährleisten.

Im allgemeinen besteht ein solcher Baustein aus drei

Elementen. Zum einen ist da eine Einheit für parallele

Ports, die Sie von der Tastaturabfrage her bereits kennen.

Dazu kommen noch eine Zeitgebereinheit (die Sie auch schon

kräftig benutzt haben, allerdings ohne es zu wissen) und ein

serieller Port.

Die folgenden drei Abschnitte sollen Ihnen die

Funktionsweise dieser Elemente verdeutlichen.

11.1.1. DER SERIELLE PORT

Fangen wir beim einfachsten Teil an. Wie Sie wissen,

verarbeitet der Computer alle Bytes parallel, d.h. die 8

Bits werden gleichzeitig bewegt, manipuliert etc. Eine

— 106-

serielle Schnittstelle bewegt die 8 Bits eines Bytes aber

nacheinander über den Draht. Das geht zwangsläufig etwas

langsamer als die parallele Übertragung, bietet aber den

Vorteil, daß man keine 8 getrennten Datenleitungen braucht,

sondern nur eine. So können Daten z.B. über Telefon

übertragen werden.

Die Arbeit des Schnittstellenbausteins besteht in der

Umwandlung der verschiedenen Formate. Der Prozessor liefert

die zu sendenden Bits parallel am Baustein ab, dieser

schickt sie dann nacheinander und im richtigen Takt über den

Draht.

Umgekehrt werden ankommende Bits wie Perlen auf die Schnur

gereiht, bis ein Byte komplett ist. Dieses wird dann an den

Prozessor übergeben.

Müßte der Prozessor diese Arbeiten selbst ausführen, so wäre

der Datenaustausch über einen seriellen Bus sehr sehr

langsam, da für jedes zu übertragende Bit mehrere

Maschinenbefehle ausgeführt werden müßten.

Da ich der Meinung bin, daß sich eine serielle Schnittstelle

nur in Maschinensprache wirklich effektiv programmieren

laßt, werde ich die dazu nötigen Methoden nicht vorstellen.

Überdies enthält das ROM des 64ers bereits die komplette

Software, die zum Betrieb einer seriellen RS.232 (als

Steckmodul für den User-Port erhältlich) nötig ist. Damit

kann die Schnittstelle über OPEN 1,2 angesprochen werden.

11.1.2. DER TIMER

Immer, wenn ein interner Zeitablauf zu regeln ist, tritt der

Timer in Aktion. Man kann seine_Register mit beliebigen

Zeitwerten laden. Dieser Wert wird kontinuierlich

heruntergezählt. Ist die O erreicht, schickt der Timer ein

entsprechendes Signal an den Prozessor. Ein Beispiel für

diese Art der internen Regelung stellt der Interrupt dar

(Aha!). Der Timer wurde so programmiert, daß er in Abständen

—- 107

von 1/60 Sekunde Alarm schlägt und danach wieder von vorne

anfängt. Der Prozessor reagiert auf einen solchen Alarm mit

der Unterbrechung des Hauptprogramms und dem Anspringen der

Interruptroutine - voila!

In diesem Zusammenhang sei noch erklärt, wie das Abschalten

des Interrupts aus Kapitel 1 funktioniert. Das Bit O der

Speicherzelle 56334 bestimmt, ob der für den Interrupt

zuständige Timer gerade herunterzählt, oder ob er in seiner

Arbeit innehdlt. Ist das Bit auf O (und genau das bewirkt

der POKE-Befehl), so bleibt der Zeitgeber einfach stehen.

Folge: Es werden keine Unterbrechungen mehr ausgelöst.

Außer diesem Trick sollten Sie sich nicht an die Timer im

64er heranwagen. In den meisten Fällen wird ein

Experimentieren mit dem Aufhängen des Rechners enden.

11.1.3. DER PARALLELE PORT

Alle Schnittstellenbausteine für den 6502 bzw. 6510 haben

eines gemeinsam: Die Art der Programmierung der parallelen

Ports. Meistens besitzt ein Baustein gleich zwei solcher

Ports, wie auch die CIAs.

Jeder dieser Ports verfügt uber 8 Datenleitungen, die

entweder auf Ausgabe oder Eingabe programmiert werden

können. Dazu besitzt der Chip zwei spezielle Register. Das

Datenrichtungsregister zeigt an, auf welchen Modus die

einzelnen Leitungen geschaltet sind. Eine 1 bedeutet

Ausgabe, eine OÖ steht für Eingabe.

Diese Wahl hat übrigens einen besonderen Grund. würde ein O

für den Ausgabemodus stehen, so könnte es beim Einschalten

des Computers dazu kommen, daß zufällig Impulse an

Peripheriegeräte geschickt werden. Diese könnten dadurch

unbeabsichtigt in Aktion treten und z.B. Daten auf einer

Diskette zerstören.

Das zweite Register für den Port hat je nach. Modus

— 108 —

verschiedene Aufgaben. Für Eingabeleitungen fungiert es als

Auffangbyte, d.h. hier kann sich der Prozessor die

empfangenen Daten abholen.

Bei Ausgabeleitungen schreibt der Prozessor hierhin die

Daten, die zum Peripheriegerät geschickt werden sollen. Um

dem angesprochenen Gerät mitzuteilen, daß die Daten

bereitliegen, gibt es die sogenannten Handshakeverfahren.

Hat der Prozessor sein Byte beim I/O-Baustein abgeliefert,

so teilt dieser durch eine spezielle Handshakeleitung mit,

daß der Ansprechpartner die Datenbits in sein Register

übernehmen kann. Der Sender wartet mit dem nächsten Byte

aber so lange, bis der Empfänger ebenfalls auf einer

Handshakeleitung meldet, daß er mit der Datentibernahme

fertig ist. Dabei kann das ganze Handshakeverfahren über nur

eine, aber auch über 2 Leitungen ablaufen.

Neben diesen Funktionen bieten die Bausteine meist noch

weitere Einrichtungen, z.B. zum Senden und Empfangen von

Impulsen. Auch muß die Datenübertragung nicht unbedingt nach

dem Handshakesystem ablaufen.

- 109 -

11.2. WIE BENUTZE ICH DEN USER-PORT?

Der User-Port stellt uns einen parallelen Port und

verschiedene "Zubehörleitungen" zur Verfügung. Die meisten

dieser Leitungen liefern jedoch intern bereits genutzte

Signale. So werden wir uns auf einen 8 Bit breiten Port und

eine "ausgeliehene" Steuerleitung beschränken. Ausgeliehen

deshalb, weil sie eigentlich vom Port A des CIA 2 stammt,

also eine Datenleitung darstellt.

Der CIA 2 hat die Basisadresse 56576. Das ist auch die

Adresse des Datenregisters für Port A (Reg. O), wo Bit 2 den

Zustand der Steuerleitung wiedergibt. Alle anderen Leitungen

dieses Ports werden intern genutzt, deshalb darf nur Bit 2

manipuliert werden!

Anders verhält es sich mit Register 1 (56577). Das ist das

Datenregister für Port B, der den eigentlichen User-Port

darstellt. Hier sind alle acht Leitungen frei verfügbar.

Die Datenrichtungsregister folgen dann unter den Nummern 2

(56578 für Port A; Achtung, nur Bit 2 verändern!) und 3°

(56579 für Port B). Diese werden in der bereits

beschriebenen Weise benutzt.

Mit POKE 56579, 255 werden also alle 8 Datenleitungen auf

Ausgabe programmiert, POKE 56579, 0 setzt sie wieder auf

Eingabe.

Für die Steuerleitung muß diese Programmierung etwas.

vorsichtiger erfolgen. POKE 56578, PEEK (56578) AND 251

schaltet auf Eingabe, POKE 56578, PEEK (56578) OR 4 bewirkt

das Gegenteil.

Um Daten auf dem Port auszugeben, schreiben wir diese

einfach in Speicherzelle 56577. Umgekehrt können wir die

ankommenden Daten direkt auslesen.

Den Strom auf der Steuerleitung können wir mit POKE 56576,

PEEK (56576) OR 4 einschalten, ausgeschaltet wird mit POKE

56576, PEEK(56576) AND 251. Setzen wir beide Befehle direkt

nacheinander ins Programm, so kann damit ein kurzer Impuls

erzeugt werden.

Die Steuerleitung belegt den Pin M des User-Ports (siehe

110 -

Abb. 2 oder CBM-Handbuch), die 8 Datenleitungen befinden

sich an den Pins C bis L.

Zusammenfassung: Programmierung des User-Ports

Datenrichtungsregister für 8 Datenleitungen: 56579

Datenrichtungsregister für Steuerleitung: 56578 (nur Bit 2)

Datenregister für Port: 56577

Datenregister für Steuerleitung: 56576 (nur Bit 2)

11.3. ANWENDUNGSBEISPIELE

Der User-Port läßt sich sehr vielseitig einsetzen. Daher

sollen hier auch keine Beispielprogramme vorgestellt werden,

sondern nur ein paar Anregungen für eigene Entwicklungen.

Das einfachste Beispiel stellen Lampen oder LEDs dar, die

evtl. über Treibertransistoren oder Relais an den User-Port

angeschlossen und geschaltet werden. Damit läßt sich z.B.

eine Lichtorgel realisieren, die die Lautstärke der Musik

über ein am AD-Wandler angeschlossenes Mikrofon mißt und

dementsprechend die Lampen ein- und ausschaltet. Mit einem

anderen Programm könnte ein Lauflicht oder weitere Effekte

erzeugt werden.

Denkbar ist auch die Koppelung von zwei Commodore-Computern

(egal welchen Typs, da sie alle einen User-Port besitzen),

um Daten auszutauschen. Auf diese Weise könnte z.B. ein

VC-20 Messungen vornehmen, die der 64er gleichzeitig auf

seinem größeren Bildschirm in hochauflösender Grafik

darstellt.

Elektronisch begabte Leser könnten sich auch an den Bau

einer eigenen seriellen Schnittstelle machen, um damit z.B.

Daten über Telefon fernzuübertragen. Ebenfalls denkbar ist

auch der Anschluß eines Nicht-Commodoredruckers an den C-64.

Auch dafür geeignet sind Fernschreiber, Lochstreifenstanzer

- 111 -

und -leser, Home-Roboter oder Taschenrechner. Dem

Erfindungsreichtum des Bastlers sind keine Grenzen gesetzt.

I

- 112 -

12. BASIC & BETRIEBSSYSTEM

Das Betriebssystem und auch das BASIC stellen uns viele

Funktionen zur Verfügung, die nicht mit einem der in den

vorherigen Kapiteln beschriebenen Details zusammenhängen.

Oft ist es jedoch wünschenswert, diese Funktionen (z.B.

List) zu beeinflußen, um bestimmte Zwecke zu verfolgen. Von

diesen Manipulationsmöglichkeiten soll hier die Rede sein.

12.1. ERZEUGEN VON BASIC-ZEILEN PER PROGRAMM

Stellen Sie sich vor, Sie wollten ein Programm schreiben,

das den Graphen einer beliebigen Funktion in Hochauflösung

auf den Bildschirm zeichnet. Wenn das Programm die Funktion

nicht fest vorgeben soll, muß es eine Möglichkeit geben, den

Term einzutippen. Für einfachere Versionen reicht es, wenn

der Benutzer vorher in einer speziellen Programmzeile die

Funktion per DEFFN selbst ins Programm einbaut. Doch dazu

braucht der Benutzer Programmierkenntnisse. Bequemer wäre

es, die Rechenvorschrift über INPUT einzugeben. Doch was

nützt uns ein String, in dem ein Term gespeichert ist -

ausgeführt werden kann er nicht. Die letzte Möglichkeit

wäre, den Rechner sich selbst programmieren zu lassen. Das

geht sogar sehr einfach.

Um die Methode zu verstehen, sollten wir zunächst einen

Blick auf die normale Entstehung einer Programmzeile werfen.

Alles beginnt damit, daß ein Anwender eine (hoffentlich)

durchdachte Folge von Buchstaben und Zeichen eintippt. Diese

Zeichen erscheinen gleichzeitig auf dem Bildschirm. War

eines dieser Zeichen ein RETRUN, so übernimmt der

BASIC-Interpreter die gesamte Bildschirmzeile (nicht nur die

eingetippten Zeichen) in den BASIC-Eingabepuffer und wandelt

die Zeichenfolge in eine Programmzeile oder (wenn keine

- 113 —

Zeilennummer am Anfang stand) in direkt ausführbare Befehle

um. Dem Interpreter ist es also egal, ob die Zeichen

eingetipppt oder etwa gePRINTet wurden. Darauf baut unsere

Methode auf. Zunächst wird der beabsichtigte Text der

Programmzeile auf dem Bildschirm ausgegeben. Dann müssen wir

nur noch die Umwandlung in eine Programmzeile veranlassen. ~

Dazu wird ein künstlicher Tastendruck erzeugt, indem der

ASCII-Code in den Tastaturpuffer gePOKEd wird. Folgt jetzt

im Programm ein END, so werden diese Tastendrücke nach dem

Programmabbruch ausgeführt. Dabei ergeben sich zwei

Probleme. Durch die Erzeugung einer neuen Zeile werden die

Variablen gelöscht (wie auch bei der normalen

Programmeingabe). Daraus folgt, daß die Erzeugung

künstlicher Zeilen erfolgen sollte, wenn keine wichtigen

Daten angefallen sind, also am Programmanfang. Müssen einige

‚Variablen erhalten werden, so empfiehlt es sich, diese in

freie RAM-Bereiche einzuPOKEn, die vom Betriebssystem nicht

benutzt werden.

Zusätzlich soll das Programm nach der Zeilenerzeugung

weiterlaufen. Daher muß nach der Zeile ein künstliches GOTO

xxx stehen, das nach dem gleichen Muster wie die Zeile

erzeugt wird. Hier ein Beispiellisting:

16 IHFUT" TERM: Werle: REM CEINGABE FUNETIOHSTERM
2a PRINTER DEFFHFCHD="SASSREM ZEILE AUSGEREN
38 PRINT"GOTOFE@';: REM BEFEHL ZUR PROGRAMMFORTSETZUNG
4 429 PORE ESL. LS SPORE SS. LS REM RETURMME TD MAL RBETIRH
24 PORE LSS Se REM TASTATURFPURPFER IMITIALISIEREN ©
mE EMD

t

READY

Wenn Sie dieses Programm eingetippt und gestartet haben,

werden Sie sehr schnell den Sinn der einzelnen Anweisungen

verstehen, vor allem was die Bildschirmausgabe betrifft. Die

erzeugte Zeile unterscheidet sich nicht von einer normal

eingegebenen Zeile. Das Programm kann beliebig oft

- 114 -

durchlaufen werden. Sollte eine fehlerhafte Eingabe gemacht

worden sein, so quittiert der Interpreter dies mit einem

SYNTAX-ERROR nach dem Durchlauf der neuen Zeile.

Diese Anwendung läßt sich übrigens noch stark erweitern. So

können auf diese Weise auch Programmzeilen gelöscht werden,

die man nicht mehr benötigt. Auch können mehrere Zeilen

gleichzeitig erzeugt werden. So ist die Eingabe ganzer

Unterprogramme per INPUT möglich.

12.2. LISTSCHUTZ

Bei Programmen, die auf persönliche Daten zugreifen,

empfiehlt es sich, eine Codewortabfrage einzubauen. Damit

das Codewort nicht durch LIST aufgedeckt werden kann, sollte

die betreffende Programmzeile geschützt werden. Dies kann

durch einen POKE-Befehl erreicht werden.

Zum Verständnis ist es nötig, das Format einer Programmzeile

im Speicher zu kennen. Die ersten beiden Bytes einer Zeile

bilden den Zeiger auf die nächste Zeile. Damit kann sich der

Interpreter von Zeile zu Zeile "hangeln". Sind diese beiden

Bytes O, so ist danach keine Programmzeile mehr gespeichert;

hier befindet sich also das Programmende.

Nach dem Zeiger folgen zwei Bytes mit der Zeilennummer. Auch

diese ist wie ein Pointer aufgebaut. Dann folgen die Befehle

im Interpretercode. Das Zeilenende wird durch eine Null

repräsentiert. Mit dieser O können wir den Interpreter ein

wenig hereinlegen. POKEn wir nämlich direkt nach der

Zeilennummer eine O ein, so meint die LIST-Routine, die

Zeile wäre bereits abgeschlossen und holt sich die nächste

Programmzeile (der Pointer am Zeilenanfang blieb ja

unverändert). Auch ein GOTO wird dadurch nicht beeinflußt,

da die Routine, die eine bestimmte Zeile im Text sucht, sich

ebenfalls an diesen Pointern orientiert. Die Routine, die

den nächsten Befehl im Programm sucht, tut dies aber nicht,

— 115 -

sondern überspringt nach einer O einfach 4 Bytes. Deshalb

“fehlen" die ersten vier Bytes der Zeile beim

Programmablauf. Um die Ausführung der Befehle nicht zu

behindern, müssen beim Schreiben der Programmzeile 5

beliebige Zeichen (aber kein Befehlswort!) eingefügt werden.

Das erste dieser Zeichen wird durch die O überschrieben, die

restlichen vier dienen als Platzhalter.

Woher wissen wir aber, welches Byte wir überschreiben

müssen? Nun, auch dafür gibt es einen Trick. Wir bauen vor

der zu schützenden Zeile einen STOP-Befehl ein und lassen

das Programm bis hierhin ablaufen. Nach dem BREAK steht in

den Speicherzellen 61 und 62 der Pointer auf dem nächsten

BASIC-Befehl. Wenn der Stop-Befehl am Ende der Zeile steht,

zeigt der Pointer auf das Zeilenende, also auf eine Null.

Addiert man zu dieser Adresse noch 5 dazu, so erhält man das

gewünschte Byte. Also frisch ans Werk mit POKE AD, O. Nach

diesem Befehl erscheint beim LISTen nur noch die

Zeilennummer, der Text wird nicht mehr gezeigt. Es bleibt

nur noch, den STOP-Befehl (der jetzt überflüssig ist) zu

löschen. Hier noch einmal die Zusammenfassung der einzelnen

Schritte:

1. Vor Zeile STOP einfügen.

In Zeile 5 Platzhalter (beliebige Zeichen) einfügen.

AD= PEEK (61) + 256*PEEK (62) + 5

POKE AD, O

STOP-Befehl loschen. N

hm
W

Nh

Wollen Sie das ganze Programm vor LIST schiitzen, so bietet

es sich an, den Vektor auf die LIST-Routine in der Zeropage

zu verändern. Dadurch findet der Rechner sein Unterprogramm

nicht wieder. Der Vektor steht in den Speicherzellen

774/775. Durch POKE 775, 1 wird dieser Zeiger derart

"umgebogen", daß jeder LIST-Befehl wie RUN/STOP-Restore

wirkt. Dieser Listschutz kann durch POKE 775, 167 aufgehoben

werden.

- 116-

ae
.

'o

art 17

B
E
R
N

1
7

in

I
h
 Fy

12.3. RENUMBER

Besitzern einer BASIC-Erweiterung wie EXBASIC oder SIMONS

BASIC ist er in guter Erinnerung: Der Renumberbefehl. Damit

kann das im Speicher stehende Programm umnumeriert werden,

was z.B. bei MERGE sehr vorteilhaft sein kann. Dieser Befehl

kann aber auch ohne Basic-Erweiterung simuliert werden.

Wie Sie aus dem letzen Abschnitt wissen, beginnt jede

Programmzeile im Speicher mit 2 Pointern. Der erste zeigt

auf den Beginn der nächsten Zeile, der zweite verdient den

Namen Zeiger eigentlich nicht, da er nur die Zeilennummer im

Pointerformat angibt. Addieren wir zum Zeiger auf die

nächste Zeile noch 2 hinzu, so erhalten wir die Adresse der

nächsten Zeilennummer. Auf diese Weise können wir alle

Programmzeilen abklappern und durch POKE die Zeilennummer

ändern. Hier das Programm dazu:

S508 BA=PEER C43)+255#PEER C44 >
S88 INPUT" STARTHR "GSFC TMFUT SCHR ITTHELTE" 3 Sh
S328 HI=SAM256 : LO SAAMDeSS
S938 A=PEER BATE 3 +25 6ePEER ¢ BAS 9
S348 [FP AD=S39G8THEMPR IIHT "Ok 11 EMI
3350 POREBAt+E .LO: POKEBA+3 HI
S968 BA PEER (BAD +2564ePEERK ¢ BA+1 >: SAh=SA4+Sl
S570 PRIMTSA"="A GOTOSs920

Diese Routine wird an das umzunumerierende Programm

angehangt (entweder eintippen oder MERGEn) und dann mit RUN

63900 gestartet. Die hohen Zeilennummern wurden gewahlt,

damit es immer am Ende des Programms steht.

Zeile 63900 berechnet die Basisadresse der ersten Zeile aus

dem Pointer auf den BASIC-Start. Bei Durchlauf der Zeile

63910 gibt der Benutzer ein, mit welcher Startnummer

begonnen und mit welchem Zeilenabstand das Programm

umnumeriert werden soll. Wenn Sie möchten, daß das Programm

mit Zeile 10 beginnt und der übliche Zehnerabstand

eingehalten werden soll, geben Sie hier zweimal 10 ein.

- 117 -

Zeile 63920 berechnet High- und Lowbyte der neuen

Zeilennummer, Zeile 63930 holt die alte Zeilennummer aus dem

Speicher. Ist diese größer-gleich 63900, so wird der

Renumbervorgang abgebrochen, da die Routine sich nicht

selbst umnumerieren darf.

Die nächste Zeile POKEd High- und Lowbyte der neuen Nummer

ein.

Schließlich wird noch die Basisadresse der nächsten Zeile

berechnet, die Zeilennummer um die Schrittweite erhöht und

ein Umnumerierungsprotokoll ausgegeben. Dieses Protokoll

zeigt für jede neue Zeilennummer das alte Äquivalent an.

Damit wird das Anpassen der GOTO, GOSUB und sonstiger

Sprungbefehle erleichtert. Unsere Routine kann nämlich die

Sprungadressen innerhalb des Programmtextes nicht ändern.

Besitzern eines Druckers empfehle ich, die Protokollausgabe

umzuleiten, damit man die Vergleichstabelle hinterher

schwarz auf weiß vor sich hat. Zu diesem Zweck sollte am

Anfang der Routine OPEN 1,4: CMD 1 eingefügt werden.

12.4. RENEW

Der NEW-Befehl führt von allen BASIC-Befehlen am häufigsten

zu Tobsuchtsanfällen bei Computerbesitzern. Denn eines haben

alle Computer gemeinsam. Durch das unbedachte Eintippen

dieser drei Buchstaben (+ RETURN) hat sich schon mancher

Programmierer ungewollt um die Früchte harter Arbeit

gebracht, weil er vergessen hatte, das Programm vorher zu

speichern. Um gegen solche Schicksalsschläge gewappnet zu

sein, habe ich mir ein Programm geschrieben, das die

NEW-Katastrophe wieder rückgängig machen kann.

Unter Commodore-Programmierern ist es längst kein Geheimnis

mehr, daß durch NEW der Speicher nicht etwa vollständig

gelöscht wird, sondern nur die beiden zentralen Stützzeiger

des Programms zurückgesetzt werden. Der erste dieser beiden

- 118 -

ist der Pointer auf den Beginn der Variablen. Nach dem NEW

zeigt er auf den Programmanfang, was dazu führt, daß alle

Variablen, die jetzt benutzt werden, das alte Programm (das

immer noch im Speicher stand) überschreiben. Deshalb

oberstes Gebot nach einem versehentlichen NEW: Keine Befehle-

oder Zeichen eingeben, die nichts mit RENEW zu tun haben!

Auch ein einfacher Buchstabe + RETURN erzeugt schon eine

Variable, obwohl der Rechner einen Syntax Error ausgibt!

Der zweite Zeiger befindet sich in der ersten Programmzeile,

genauer gesagt an den Adressen 2049 und 2050. Normalerweise

zeigt er auf die nächste Zeile, jetzt aber enthält er zwei

Nullen, um das Programmende zu markieren. Für RENEW bleiben

also zwei Dinge zu tun:

1. Ende der ersten Zeile suchen. Dieses wird durch eine O

markiert. Ist diese Null gefunden, so muß deren Adresse + 1

als Zeiger in die Bytes 2049 und 2050 gePOKEd werden.

2. Programmende suchen. Das Programmende läßt sich durch

eine Null im Highbyte des Zeigers auf die nächste Zeile

erkennen. Ist das Ende gefunden, so wird die Adresse um 2

erhöht, was den Beginn des Variablenbereiches angibt. Damit

kann der Zeiger entsprechend geladen werden.

Hier das Programm:

LG Ale sass
28 ALSeAD+L : TEPEER CAD C>e THEMES
20 Fe FTI+ A
40 POKESE49 . ADAHDSS5 PORK E SSS . AD S568
SQ [FPEERCAD+ 12 ¢>8THEHAD]F EEK OATS +25 6eFE ER CAD 10 GOTOSE

B® PRIMTUPOKESS oC AD+S AMES 5" PORES oY TAT cADe So See
a PRIMT Sooo PORE 44 8 PQK ESS . Se CLR"

BAY

Dazu einige Erläuterungen. Zeile 20 sucht das Ende der

ersten Zeile. Ist dies gefunden, so wird die Adresse um1.-

erhöht (Zeile 30) und der Pointer auf die zweite Zeile

restauriert (Zeile 40).

Zeile 50 hangelt sich von Pointer zu Pointer vor, bis dieser

- 119 -

schließlich O wird (= Programmende). Die jetzt gefundene

Adresse wird aber nicht direkt eingePOKEd, da sich die

Routine dadurch selbst aufhängen würde. Statt dessen werden

die nötigen Befehle per PRINT auf den Bildschirm gebracht

(Zeile 60) und der Cursor darüber gefahren (Zeile 70). Nach

dem Programmende braucht der Benutzer nur noch auf RETURN zw

drücken, und der Variablenzeiger ist wieder komplett.

Allerdings ergibt sich noch ein Problem. Würden wir das

Programm so eintippen, so würde dadurch das alte, eigentlich

noch vorhandene Programm endgültig zerstört. Deshalb muß der

BASIC-Speicher in einen Bereich verlegt werden, der

üblicherweise nicht vom Interpreter benutzt wird. Hier

bieten sich die 4 K RAM von 49162 bis 53247 an. Um den

gesamten BASIC-Bereich (mit Kind und Kegel sozusagen) nach

dorthin zu verlegen, brauchen wir 4 Befehle:

POKE 44, 192: POKE 56, 208: POKE 49152, O: NEW

wir haben uns jetzt einen zweiten unabhängigen

Speicherbereich geschaffen und können das RENEW-Programm

eintippen. Bevor wir es aber starten, sollten wir es ganz

normal abspeichern. Dann können wir es später ganz einfach

in den verlegten BASIC-Bereich laden.

Nun kann das Programm mit RUN gestartet werden. Sollten Sie

den BASIC-Anfang verschoben haben, (z.B. für HiRes-Graphik),

müssen Sie nur die Startadresse in den Zeilen 10 und 20 und

die POKE-Befehle in Zeile 60 entsprechend ändern. Durch die

POKEs wird auch der BASIC-Speicher wieder zurückverlegt

(POKE 44, 8). Sie können das alte Programm jetzt wieder

normal benutzen.

Das RENEW-Programm sollten Sie dagegen nur einmal benutzen.

Ein Zurückholen ist nur dann möglich, wenn Sie auch die

Variablenpointer wieder verändern und den NEW-Befehl aus der

Initialisierungsroutine fortlassen. Einfacher ist es, das

RENEW ein zweites Mal zu laden. Werden die Variablenpointer

nicht durch NEW oder POKE angepaßt, so kann es zum Aufhängen

des Rechners kommen.

— 120 -

Apropos Aufhangen: Haben Sie Ihren C-64 mittels Resettaster

aus einem Absturz zurückgeholt, so können Sie RENEW

einsetzen, um ein BASIC-Programm wieder zu restaurieren.

Solange der Strom nicht abgeschaltet wurde, sind alle Daten

noch vorhanden. |

- 121 -

12.5. RESTORE

Der RESTORE-Befehl wird nicht sehr oft benutzt. Geschieht es

doch einmal, daß man den DATA-Zeiger zurücksetzen muß, so

ist es meist sinnvoller, eine Zeilennummer oder gar das

Data-Element selbst angeben zu können, um den Zeiger nicht

auf weiter vorn stehende Daten, die nicht mehr gebraucht

werden, zurücksetzen zu müssen. So ließe es sich vermeiden,

daß die nicht benötigten Daten jedesmal überlesen werden

müssen, bevor man auf das eigentliche Datum zugreifen kann.

Mit ein paar POKE-Befehlen kann jedoch auch hier Abhilfe

geschaffen werden. Dazu muß man wissen, daß der Interpreter

sowohl die Zeilennummer als auch die Adresse des letzen

DATA-Elements in der Zeropage speichert. Die Zeilennummer

ist als Bytepaar (pointerähnlich) in den Speicherzellen

63/64 abgelegt, die Adresse des Bytes nach dem letzten

DATA-Element, das gelesen wurde, finden wir in 65/66.

Wollen wir jetzt ein RESTORE simulieren, so können wir

folgendermaßen vorgehen:

1. DATAs bis zum Element vor dem gewünschten Ziel lesen

lassen (z.B. im Direktmodus). Soll auf das 5. Element

zurückgesetzt werden, so müssen also die ersten 4 DATAs

gelesen werden.

2. PRINT PEEK (63), PEEK (64) ; .

Die erscheinenden Zahlen reprasentieren die Zeilennummer.

Zahlen bitte merken!

3. PRINT PEEK (65), PEEK (66)

Auch diese Zahlen müssen wir uns merken! Sie bilden den

Zeiger auf das Byte nach dem letzten DATA-Element. Bis

hierhin müssen alle Befehle vor dem eigentlichen

Programmablauf gegeben werden.

A. POKE 63, 1. Zahl: POKE 64, 2. Zahl

POKE 65, 3. Zahl: POKE 66, 4. Zahl

Diese Befehle werden statt RESTORE ins Programm an die

Stelle eingebaut, an der der Datazeiger zurückgesetzt werden

soll. Dadurch werden die Pointer auf den Stand gebracht, den

- 122 -

Sie vor dem Lesen des gewünschten Elements hatten. Für das

BASIC entsteht der Eindruck, als hätte es die nachfolgenden

DATA-Zeilen noch nicht gelesen. |

Allerdings hat diese Methode einen Nachteil. Nach jeder

Anderung in Programmzeilen, die vor der gewünschten Position

des Zeigers liegen, ändert sich die Adresse, die im

Data-Pointer stehen sollte, da das BASIC den gesamten

Programmtext im Speicher verschiebt. Deshalb sollten solche

DATA-Blöcke ganz am Anfang des Programms vor den

eigentlichen Befehlen stehen.

Zusammenfassung: RESTORE

Zeilennummer des letzten DATA-Elements ist in den

Speicherzellen 63 und 64 gespeichert. Die Adresse des Bytes

nach dem letzten Element befindet sich als Zeiger in den

Bytes 65 und 66. Beide Pointer können durch POKE verändert

werden (vorher gewünschte Pointerwerte feststellen).

12.6. VERSCHIEDENE TRICKS

Nach einer Programmunterbrechung oder einem Error zeigt der

Rechner an, win welcher Zeile das Programm verlassen wurde.

Hat man etwas voreilig den Bildschirm gelöscht, so erfährt

man diese Zeilennummer meist nicht mehr. Hier schaffen die

Speicherzellen 59 und 60 Abhilfe. Hier wird (im

Zeigerformat) die letzte Zeilennummer abgelegt, die man sich

durch

PRINT PEEK (59) + 256 * PEEK (60) ausgeben lassen kann.

Ein Programm vor SAVE schützen kann man mit dieser Sequenz:

POKE 801, O: POKE 802, O: POKE 818, 165

Dadurch werden die Vektoren, die der SAVE-Befehl benotigt,

so umgebogen, daß kein Abspeichern mehr möglich ist.

- 123 -

Nachteil: Schon durch einfaches Drücken von RUN/STOP-RESTORE

hängt sich der Rechner auf.

Schließlich noch einige SYS-Befehle, die sich gut in eigenen

Programmen verwenden lassen:

SYS 65499 setzt den TI$ auf 000000. Das geht schneller als

die Zuweisung eines neuen Strings.

Ästheten unter den Commodore-Besitzern können ein Programm

durch SYS 42115 (statt END) beenden. Damit wird ein

Warmstart des BASICs bewirkt, was nichts anderes heißt, als

daß das BASIC in den Direktmodus umschaltet. Dabei wird aber

kein Ready ausgegeben; der Cursor steht sofort in der

nächsten Zeile. Auch ein CONT bleibt nach SYS erfolglos.

Soll das Programm mit dem Einschaltbild beendet und

gleichzeitig gelöscht werden, so bietet sich SYS 58253 an.

Und einen künstlichen SYNTAX ERROR erzielt man durch SYS

44808.

Zusammenfassung: Tricks zum Betriebssystem

Letzte Zeilennummer ist in Speicherzellen 59 und 60

gespeichert.

SAVE-Schutz: POKE 801, O: POKE 802, O: POKE 818, 165

TI$ auf O setzen: SYS 65499

End ohne Ready: SYS 42115

Einschaltbild: SYS 58253

Syntax Error: SYS 44808

— 124 —

12.7. BASIC-ERWEITERUNGEN

Fast jeder Commodore-Besitzer kennt BASIC-Erweiterungen

zumindest aus Anzeigen, wenn er nicht sogar selbst ein

solches Programm besitzt. Die ersten Exemplare dieser

nützlichen Helfer gab es schon zu den Zeiten des seligen PET

(oder CBM 2000). Zunächst enthielten sie nur sogenannte

Toolkit-Befehle, die das Editieren von Programmen

erleichtern. Darunter fällt zum Beispiel AUTO. Dieser Befehl

gibt automatisch die Zeilennummern im gewählten Abstand

(z.B. 10) fur die einzugebenden Programmzeilen vor, so daß

man sich diese Tipparbeit sparen kann. FIND findet bestimmte

Ausdrücke im Programmtext, RENUMBER, MERGE und RENEW kennen

Sie bereits aus den vorhergehenden Kapiteln. Mit DEL können

Sie ganze Programmteile löschen. TRACE ermöglicht durch

Ausgabe der durchlaufenen Zeilen eine einfache Überwachung

des Programmablaufes beim Testen. DUMP gibt alle benutzten

Variablen samt Inhalt aus.

Komfortablere Versionen ermöglichen das Auffangen von

Errors. Damit wird zum Beispiel die Korrektur von

fehlerhaften Eingaben ermöglicht, ohne daß ein

TYPE-MISMATCH-ERROR erscheint.

Seltener findet man die Möglichkeit, die Funktionstasten mit

Zeichenfolgen zu belegen.

Da das BASIC des 64ers die phantastischen Sound- und

Grafik-Möglichkeiten nicht unterstützt, bieten viele

BASIC-Erweiterungen auch hier Befehle zum Zeichnen und zum

Programmieren von Tonfolgen.

Einige Programme stellen auch Strukturierungsbefehle zur

Verfügung, mit denen man Programme ohne GOTO-Befehle

schreiben kann. In diesem Fall werden die einzelnen

Programmteile in sogenannten Moduln (ähnlich

Unterprogrammen) programmiert. Statt GOSUB wird jetzt z.B.

mit CALL PLOT X,Y aufgerufen, um eine Punktsetzroutine zu

erreichen. Diese Technik fördert die Übersichtlichkeit eines

Programmes sehr.

- 125 —

Verbreitet ist auch der Einbau von speziellen DOS-Befehlen,

die es z.B. ermöglichen, eine Directory direkt auf den

Bildschirm zu holen, ohne ein Programm im Speicher zu

löschen.

)

12.8. ANDERE PROGRAMMIERSPRACHEN

Der Commodore 64 zeichnet sich auch dadurch aus, daß es

möglich ist, andere Programmiersprachen als das BASIC zu

laden und damit zu arbeiten. Am bekanntesten ist hier wohl

PASCAL. Sein Grundkonzept ist die strukturierte

Programmierung, d.h. GOTO ist verpönt (einige

PASCAL-Versionen beinhalten diesen Befehl gar nicht erst),

Modularität ist Trumpf. Das soll verhindern, daß der’

Programmierer einfach drauflostippt, statt sich vorher ein

Konzept auszuarbeiten. PASCAL wird immer als Compiler .

geliefert, d.h. vor dem Programmablauf wird der Programmtext.

zunächst in eine computer-freundliche Version (meistens

Maschinensprache oder eine schnelle Zwischensprache)

übersetzt.

Im Gegensatz dazu stellt FORTH eine Interpretersprache dar.

Auch hier wird auf Strukturierung Wert gelegt, ja man kommt

gar nicht drumherum, weil man sich eigene Befehle

(allerdings nicht in Maschinensprache) definieren muß. FORTH .

stellt nur wenige Grund-Befehle zur Verfügung und steht

damit der Maschinensprache sehr nahe. Daraus resultiert auch

eine sehr hohe Geschwindigkeit.

— 126-

Ebenfalls sehr weit verbreitet ist LOGO. Diese Sprache ist

so einfach zu erlernen, daß sogar Erstkläßler damit umgehen

können. Hauptmerkmale: Turtle-Grafik (man bewegt eine

gedachte Schildkröte wie einen Zeichenstift über den

Bildschirm und kann damit sehr einfache Grafiken

programmieren) und Modularität. LOGO eignet sich besonders

für mathematische und geometrische Probleme.

- 127 -

13. MASCHINENSPRACHE

Auf die Dauer kommt man nicht ohne

Maschinensprachekenntnisse aus, wenn man sich ernsthaft mit

der Programmierung des C-64 beschäftigen will. Vielen

Anfängern fällt es jedoch schwer, sich in die Besonderheiten

der maschinennahen” Programmierung hineinzudenken. Dem soll

dieses Kapitel abhelfen. Mit dem Simulator am Ende des

Buches kann eine Art Minimalsprache ausprobiert werden.

Jeder kann dann selbst entscheiden, ob er richtig in die

Maschinensprache einsteigen will, oder ob er lieber weiter

in BASIC programmieren möchte (auch kein schlechter Weg!).

Da der Simulator selbst in BASIC geschrieben wurde, kann er

natürlich nicht die ernorme Geschwindigkeit der

Maschinensprache verdeutlichen; dazu sehe man sich z.B. die

Grafiklöschroutine aus Kapitel 6 an.

13.1. WAS IST MASCHINENSPRACHE ÜBERHAUPT?

Wie Sie sicher wissen, stellt die Maschinensprache die

einzige Möglichkeit dar, den Prozessor ohne Umweg über einen

Compiler oder Interpreter direkt zu programmieren. Daher

ermöglicht diese Sprache auch so immens hohe

Geschwindigkeiten.

Die Maschinensprache umfaßt verschiedene Grundoperationen,

aus denen sich alle komplexeren Befehle des BASICs oder

anderer Sprachen zusammensetzen lassen. Man kann die

Maschinenbefehle grob in drei Gruppen einteilen. Für

BASIC-Programmierer am einfachsten zu verstehen sind die

Sprungbefehle, mit der das Programm ähnlich GOTO und GOSUB

im Speicher umherspringen kann. Andere Befehle bewirken

Datenmanipulationen (z.B Additionen, Verknüpfungen etc.).

Die letzte Gruppe umfaßt die Operationen, die Daten von

einem Ort zum anderen innerhalb des Speichers bewegen.

— 128 -

Grundsätzlich gilt, daß es für Mikroprozessoren keine

Variablen gibt. Er kennt nur die normalen Speicherzellen und

interne Register. Im allgemeinen können Datenmanipulationen

nur in den internen Registern ablaufen.

Ein Maschinenbefehl besteht immer aus einem Byte

(Operationscode genannt) und bis zu 2 Bytes für Operanden

etc. Ein Speicherzelleninhalt kann also Befehl, Adresse oder

Datum sein - je nach Ablauf des bisherigen Programms.

13.2. DER TAKT

Alles im Computer richtet sich nach einem kleinen

unscheinbaren Quarz, der den Takt (0.98 MHz = 980000 Schläge

oder Zyklen pro Sekunde) vorgibt.

Pro Taktzyklus kann der Prozessor eine Grundoperation

ausführen. dabei sind mit Grundoperationen die Vorgänge

gemeint, die während eines einzigen Maschinensprachebefehls

ablaufen. Der kürzeste Maschinenbefehl braucht zwei Zyklen -

für "Befehl aus dem Speicher holen und dekodieren" und

"Befehl ausführen". Andere Befehle für komplexere

Operationen brauchen mehr Zyklen.

13.3. DAS HEXADEZIMALSYSTEM

Wann immer Sie sich mit Maschinensprache beschäftigen,

werden Sie auf die Zahlendarstellung im Hexadezimalsystem

treffen. Dieses System besitzt 16 Ziffern (0 - I9& A -F).

Es wird so häufig benutzt, weil die Umwandlung von Binär- in

Hexzahlen sehr einfach ist. Man nimmt dazu jeweils ein

Halbbyte und wandelt es in eine Hex-Ziffer um. Die Tabelle

zeigt die dezimalen und binären Entsprechungen:

— 129 —

binär I dez. I hex

-- kan____4-

000 I 0 I oO

0001 I 1 1 1

0010 I 2 I 2

0011 I 3 I 3

0100 I 4 I 4

010115 15

0110 I 6 I 6

0111 I 7 I 7

1000 I 8 I 8

10011 9 I 9
1010 I 10 I A

1011 I 11 I B

1100 IT 12 I ec

1101 I 13 I D

1110 I 14 I E

1111 1 IF 15

Aus dem Byte 10101011 wird also die hexadezimale Zahl AB.

Für die Umwandlung von Hexzahlen in Dezimalzahlen überträgt

man zunächst alle Ziffern für sich in das Dezimalsystenm.

Diese Zahlen werden dann mit ihren Stellenwerten (Potenzen

von 16) multipliziert und die Produkte schließlich

aufaddiert. Ein Beispiel:

ABCD

= 10 * 16°3 + 11 * 16°2 + 12 * 16°1 + 13 * 16°O

10 * 4096 + 11 * 256 + 12 * 16 + 13 * 1

43981

Fur den umgekehrten Weg können Sie die Dezimalzahl

fortwährend durch 16 teilen und die Divisionsreste als

Hexziffern notieren.

Beispiel:

53000 / 16 = 3312 Rest 8 ---- 8

3312 / 16 = 207 Rest O --- O

— 130 -

207 / 16 = 12 Rest 15 -- F

12 / 16 = O Rest 12 -C

=) 53000 (dez) = CFO8 (hex)

Inzwischen gibt es viele Taschenrechner, die eine spezielle

Funktion fiir die Basisumwandlung besitzen. Gute Assembler

bzw. Monitore bieten diese Funktion ebenfails.

- 131 —

13.4. BINARE ADDITION

Um es gleich zu Anfang zu sagen: Die binare Addition

unterscheidet sich von der dezimalen nur im Zahlensysten,

ansonsten funktioniert sie genauso.

Die Summen von zwei Nullen oder einer Null und einer Eins

(egal in welcher Reihenfolge) bedürfen keiner Erläuterung,

hier wird ganz normal addiert. Wollen wir jedoch 1 + 1

rechnen, so ergibt sich ein Problem. In der dezimalen

Entsprechung wäre das Ergebnis eine 2. Die gibt es jedoch im

binären System nicht. Also muß (wie beim Überschreiten der

10 im Dezimalsystem) ein Übertrag auf die nächste Stelle

gemacht werden:

1

+ 1

10

Bei ganzen Bytes funktioniert das ebenso einfach:

01101110 = 110

+ 00001001 + 9

01110111 119

Sollte es vorkommen, daß zwei Einsen addiert werden müssen

und noch ein Übertrag dazukommt (1+1+1=3) so ist das

Ergebnis 1 1 (eigentlich klar!)

Versuchen Sie einmal diese Addition:

10010011

+ 11011111

101110010

Jetzt haben wir im Ergebnis plötzlich 9 Bits! Das neunte Bit

— 132 —

heißt Carry- oder Übertrags-Bit. Es zeigt an, daß die

Addition von zwei 8-Bit-Zahlen den zulässigen Bereich für

ein Byte (O - 255) überschritten hat. Es muß dann ggf. zu

einem zweiten Byte addiert werden. Damit sind wir auch schon

bei der 16-Bit-Addition. Kein Computer kommt mit nur 8-Bit

fiir die Zahlendarstellung aus, die Zahlen haben meist einen

viel groBeren Bereich. Tatsache ist aber, daß ein

8-Bit-Mikroprozessor (wie der 6510) immer nur 8 Bits

gleichzeitig verarbeiten kann. Besteht eine Zahl z.B. aus

zwei Bytes, so muß die Addition nacheinander an beiden

durchgeführt werden. Da bis auf den Übertrag die beiden

Teile der Zahl völlig unabhängig voneinander addiert werden

können, braucht man nur das Carry-Bit, um auch größere

Zahlen zu bearbeiten. Es hat die Aufgabe, den Übertrag von

der letzten Stelle des ersten Bytes zur ersten Stelle des

zweiten Bytes zwischenzuspeichern.

Ein Beispiel:

00110101 10010011

+ 10011011 11011111

1111111 11111 (Überträge)

11010001 01110010

Zur besseren Übersicht sind die: Überträge zwischen den

einzelnen Stellen aufgeführt. Den rechten Teil der Addition

kennen Sie bereits aus dem vorherigen Beispiel.

13.5. BINARE SUBTRAKTION

Wenn ein Computer ein Zahl von einer anderen subtrahieren

will, so bildet er zunächst das negative Äquivalent dieser

zahl und addiert es dann. Dies läuft so ab, weil eine

Addition und eine Negierung aus elektronischen

— 133 —

Grundbausteinen (wie AND, OR, XOR, NOT) zusammengesetzt

werden kann, nicht aber eine Subtraktion.

Um eine negative Zahl darzustellen. wird der Zahlenbereich

eines Bytes von O - 255 nach -128 bis +127 verschoben. Das

höchstwertige Bit (Bit 7) dient dann als Vorzeichen. Ist es

auf 1, so haben wir eine negative Zahl vor uns, bei O ist

das Byte positiv. Dabei kann aber zur Negierung einer Zahl

nicht einfach Bit 7 gesetzt werden. Ein Beispiel

verdeutlicht die Schwierigkeiten:

00000001

+ 10000001

un een mm mem mm Mn Min men ann man

10000010

In Dezimalsystem übertragen würde dies bedeuten, daß 1 - 1 =

-2 ist. Deshalb wird ein anderer Weg gegangen. Ein Byte kann

durch Bildung des sogenannten Zweierkomplements sehr einfach

mit 1 multipliziert werden. Dazu werden alle Bits

invertiert und zusätzlich eine 1 addiert.

Beispiel: 01011011

invertiert: 10100100

+ 1

10100101

Wenn wir nach diesem Schema 1 - 1 im binaren System

berechnen, so erhalten wir das richtige Ergebnis:

00000001

+ 111111119

eet meee omen Mint Men wem men mem mes weni

100000000

Wie Sie sehen, entsteht scheinbar ein Übertrag. Doch auch

hier verhält sich die Subtraktion anders. Ist das Carry-Bit

auf 1, so entstand kein Übertrag, bei O dagegen ist eine

~ 134 -

Bereichsüberschreitung aufgetreten. Aus diesem Grund muß das

Carry-Bit auch vor jeder Subtraktion auf 1 gesetzt werden.

Bis auf das Setzen des Carry-Bits erledigt der

6510-Mikroprozessor alle diese Aufgaben automatisch, wenn er

einen Subtraktionsbefehl ausführt.

13.6. HÖHERE RECHENARTEN

Auch wenn Sie es nicht glauben: Die 6510-Maschinensprache

hat nur zwei Rechenbefehle, und zwar für Addition und

Subtraktion. Alle anderen Rechenarten werden aus diesen

Grundbausteinen zusammengesetzt. Um z.B. eine Multiplikation

x * n zu erzeugen, wird x einfach n-mal addiert. Dies

funktioniert natürlich nur bei ganzen Zahlen. Für gebrochene

zahlen werden aufwendigere Algorithmen benötigt (z.B. werden

Zahlen Stelle für Stelle und nicht als Ganzes miteinander

verknüpft), die aber im Prinzip ähnlich funktionieren.

Um x durch n zu teilen, wird einfach fortwährend n von x

abgezogen. Die Anzahl der möglichen Subtraktionen bis n

größer x wird, gibt das Ergebnis der Division an. Hier ein

Beispiel:

10 / 3 = ?

10 - 3 = 7 Zahlregister= 1

7-324 Zahlregister= 2

4-3 = 1 Zahlregister= 3

=) 10 / 3 = 3 Rest 1

Diese Methoden sind möglich, weil die Maschinensprache so

ungeheuer große Geschwindigkeiten erlaubt. Übrigens arbeitet

auch ein Taschenrechner nach diesem Prinzip. Jedesmal, wenn

Sie eine Rechentaste drücken, läuft ein kleines

Maschinenprogramm (natürlich mit den erwähnten aufwendigen

Algorithmen) ab.

Aus den 4 Grundrechenarten lassen sich dann noch höhere

— 135 —

Funktionen (z.B. Potenzen, Sinus o.ä.) zusammensetzen. Auf

diese Art und Weise könnte jede mathematische Operation

durch kleinste AND-, OR-, XOR- und NOT-Operationen

ausgedrückt werden.

— 136-

13.7. VERGLEICHE

Im BASIC stellen Vergleiche nichts Ungewöhnliches dar. Doch

wie kann man sie in Maschinensprache erzeugen? Sehen wird

uns dazu einmal ein Beispiel an:

A=B (=) A-B=0

Wie Sie sehen, kann ein Vergleich zwischen 2 Zahlen (hier A

und B) recht einfach umgeformt werden. Für den Computer hat

diese Form den Vorteil, daß auf der rechten Seite der

Gleichung eine O steht. Die O ist die einzige Zahl, von der

der Mikroprozessor feststellen kann, ob sie gerade im

internen Rechenregister (meist Accu genannt) steht oder

nicht. Dazu werden einfach alle Bits miteinander

ODER-verknüpft - etwa so:

Bit 7 OR Bit 6 OR Bit 5 OR Bit 4 OR Bit 3 OR Bit 2 OR Bit 1

OR Bit O

Wenn alle 8 Bits des Accus auf O waren, so ist das Ergebnis

dieser Verknüpfungskette eine 0, in allen anderen Fällen

(d.h. wenn mindestens ein Bit auf 1 ist) ist das Ergebnis 1.

So kann der Mikroprozessor angeben, ob das Rechenregister

(wo fast immer das Ergebnis der letzten Operation steht)

gleich oder ungleich O ist - voila, die ersten beiden

Vergleiche sind erzeugt. Für einen Vergleich A=B oder A

ungleich B brauchen wir also nur die beiden Zahlen

voneinander zu subtrahieren und dann festzustellen, ob der

Inhalt des Accus O ist.

Bei "größer" und "kleiner" gehen wir ähnlich vor. Nach der

Subtraktion sehen wir nach, ob die Zahl im Accu kleiner oder

größer O ist, erkennbar am Vorzeichenbit:

A größer B (=) A - B größer O (erfüllt, wenn Bit 7 = O)

A kleiner B (=) A - B kleiner O (erfüllt, wenn Bit 7 =

1)

— 137 —

13.8. DIE BEFEHLE DES SIMULATORS

Nachdem wir die theoretischen Grundlagen für die

Maschinensprache geschaffen haben, sollen jetzt die

einzelnen Befehle vorgestellt werden, mit denen innerhalb

des Maschinensprachesimulators programmiert werden kann. Wir

bleiben auch hier bei der Unterteilung in drei Gruppen. Sie

brauchen aber keine Angst zu haben, wenn Sie die Befehle

noch nicht auf Anhieb verstehen. Sie werden in den

nachfolgenden Beispielen erläutert. Hinter jedem Befehlswort

finden Sie außerdem die englische Bedeutung der Abkürzung.\/

N

13.8.1. BEFEHLE ZUR DATENMANIPULATION

ADC: add with carry

Dieser Befehl addiert einen nachfolgenden Operanden und das

Carrybit zur Zahl im Accu. Sollte ein Übertrag auftreten, so

wird dieser im Carrybit gespeichert. |

Für den Operanden gibt es zwei Möglichkeiten. Entweder wird

die Adresse des Bits angegeben, das addiert werden soll,

oder die Zahl steht direkt nach dem Befehl im Speicher.

Mögliche Formen:

ADC $HH (addiert Inhalt der Speicherzelle HH)

ADC #HH (addiert Zahl HH zum Accu)

SBC: subtract with carry

Funktioniert wie ADC, es wird jedoch subtrahiert.

Mögliche Formen:

SBC $HH (subtrahiert Inhalt von HH)

SBC #HH (subtrahiert HH)

AND: and with accu

Führt UND-Verknüpfung des Accuinhalts mit dem Operanden

— 138 -

durch. Carrybit wird nicht beachtet.

Mögliche Formen:

AND $HH

AND #HH

ORA: or with accu

Wie AND, jedoch ODER-Verknüpfung

Mögliche Formen:

ORA $HH

ORA #HH

EOR: exclusive or with accu

Operand wie bei ADC.

Wie AND, jedoch Exklusiv-ODER-Verknüpfung

EOR mit 11111111 (binär) wirkt wie NOT.

Mögliche Formen:

EOR $HH

EOR #HH

DEC: decrement

Das Byte unter der angegebenen Adresse wird um 1 vermindert.

Sollte das Ergebnis O werden, so wird das Zero-Bit gesetzt,

ebenso das Negativ-Bit bei negativen Zahlen. Das Carry-Bit

wird jedoch nicht verändert.

Nur DEC $HH möglich

DEX: decrement X

Wie DEC, jedoch wird das X-Register vermindert.

Nur DEX möglich

INC: increment

Wie DEC, jedoch Erhöhung um 1

Nur INC $HH möglich

INX: increment X

Wie INC, jedoch für X-Register

Nur INX möglich

CLC: clear carry

— 139 -

Loscht das Carry-Bit.

Nur CLC möglich

SEC: set carry

Setzt Carry-Bit auf 1.

Nur SEC möglich

ASL: arithmetic shift left

Verschiebt alle Bits des Accus um eine Stelle nach links.

Bit 7 wird in das Carry-Bit geschoben, Bit O wird mit einer

1 geladen.

Nur ASL möglich

LSR: logical shift right

Verschiebt alle Bits des Accus um eine Stelle nach rechts.

Bit O wird in das Carry-Bit geschoben, Bit 7 wird O.

Nur LSR möglich

13.8.2. SPRUNGBEFEHLE

JMP: jump

Das Programm wird an der angegebenen Adresse fortgesetzt.

Nur JMP $HH möglich

JSR: jump to subroutine

Aufruf eines Unterprogramms an der angegebenen Adresse.

Nur JSR $HH möglich

RTS: return from subroutine

Rückkehr aus dem Unterprogramm bzw. in den Simulator.

Nur RTS möglich

BCC: branch on carry clear

Verzweigt zur angegebenen Adresse, wenn Carry-Bit auf O ist.

Nur BCC $HH möglich

- 140 -

BCS: branch on carry set

Verzweigt zur angegebenen Adresse, wenn Carry-Bit auf 1 ist.

Nur BCS $HH möglich

BEQ: branch on equal to zero

Verzeigt, wenn Zeroflag auf 1 ist. Das Zeroflag gibt an, ob

das Ergebnis der letzten Operation Null war.

Nur BEQ $HH möglich

BNE: branch on not equal to zero

Verzeigt, wenn Zeroflag auf O ist.

Nur BNE $HH moglich

BMI: branch on minus

Verzweigt, wenn Negativ-Flag auf 1 ist. Das Negativ-Flag

zeigt an, ob das Ergebnis der letzten Operation kleiner Null

war.

Nur BMI $HH möglich

BPL: branch on plus

Verzweigt, wenn Negativ-Flag auf O ist.

Nur BPL $HH möglich

13.8.3. DATENBEWEGUNGEN

LDA: load accu

Lädt den Accu mit dem nachfolgenden Argument. Ist das

Argument eine Adresse, so wird der Accu gleich dem Wert des

adressierten Byte. Bei direkter Wertangabe wird der Accu mit

dem nachfolgenden Byte geladen.

Mögliche Formen:

LDA $HH (lädt Inhalt der Adresse HH)

LDA #HH (lädt HH in den Accu)

- 141 -

LDX: load X

Wie LDA, jedoch für X-Register.

Mögliche Formen:

LDX $HH (lädt Inhalt der Adresse HH)

LDX #HH (lädt HH in das X-Register)

STA: store accu

Speichert Accuinhalt unter der angegebenen Adresse ab.

Nur STA $HH möglich

STX: store X

Wie STA, jedoch für X-Register.

Nur STX $HH möglich

TAX: transfer accu into X

Lädt X mit Accuinhalt.

Nur TAX möglich

TXA: transfer X into accu

Ladt Accu mit Inhalt von X.

Nur TXA möglich

— 142 -

13.9. DER SIMULATOR

Auf den nachsten Seiten finden Sie das Listing des

Maschinensprache-Simulators. Dieser soll ein erstes

Kennenlernen der maschinennahen Programmierung ermöglichen.

Da er in BASIC geschrieben wurde, ist er sehr sehr langsam.

Besitzer eines Compilers können ihn jedoch compilieren und

dadurch höhere Geschwindigkeiten erzeilen.

Nach dem Start befindet sich der Simulator im

Assembler-Modus. Jetzt können Maschinenbefehle eingegeben

werden. Dazu müssen in der Eingabezeile im oberen Drittel

des Bildschirms folgende Angaben gemacht werden:

Adresse Befehl Operand

Bei Einbytebefehlen entfällt der Operand. Zwischen den

einzelnen Angaben muß jeweils 1 Zeichen frei gelassen

werden. Die Eingabe wird mit RETURN abgeschlossen. Sollte

ein Fehler aufgetreten sein, So wird dies mit drei

Fragezeichen am rechten Rand der Eingabezeile quittiert.

Drückt man eine beliebige Taste, so werden die Fragezeichen

gelöscht und der nächste Befehl kann eingegeben werden.

Im oberen Drittel des Bildschirms werden ständig wichtige

Registerinhalte und Bits angezeigt. Die letzten vier Bytes

des Adressbereiches werden in hexadezimaler, binärer und

ASCII-Darstellung angezeigt. Darunter sehen Sie den

Program-Counter (PC), den Accu, das X-Register und

verschiedene Bits (Carry, Negative, Zero). Die letzte

Anzeige bezieht sich auf den TRACE-Status (ON/OFF). Alle

Zahlen werden im Hexadezimalsystem eingegeben!

Soll kein Maschinenbefehl eingegeben werden, so muß der

Eingabe ein Linkspfeil vorangestellt werden. Dann folgt der

Kennbuchstabe des- Befehls und ggf. Operanden.

Als erstes wäre hier der C-Befehl zu nennen. Damit kann der

untere Bildschirmbereich gelöscht werden. Es empfiehlt sich,

während der Befehlseingabe keine Tasten wie CLR o.ä. zu

benutzen, da damit die Bildschirmmaske zerstört werden kann.

- 143 -

Der nächste Befehl heißt T. Damit kann der Trace-Modus ein-

bzw. ausgeschaltet werden.

Mit G Adresse kann ein "Maschinen"-Programm ab der

angegebenen Adresse gestartet werden.

Durch D Adresse Adresse wird das Programm zwischen den

beiden Adressen disassembliert, d.h. gelistet. Mit

Z Adresse Byte kann der angegebenen Adresse ein Wert

zugewiesen werden.

13.10. DAS ERSTE PROGRAMM

Wir werden die ersten Gehversuche in Maschinensprache mit

Additionen und Subtraktionen machen, weil Sie dadurch die

Arbeitsweise eines Mikroprozessors am besten kennenlernen.

Beginnen wir deshalb mit einem Additionsprogramm für zwei

zahlen.

Die beiden Bytes, die addiert werden sollen, legen wir

vorher in den Speicherzellen FF und FE ab. Dies geschieht im

Direktmodus durch den Zuweisungsbefehl 2; eine zwar nicht

besonders komfortable Methode, doch sie reicht aus. Tippen

Sie also den Linkspfeil, ein Z, ein Leerzeichen, die Adresse

(FF oder FE), ein weiteres Leerzeichen, die gewünschte Zahl

(im Hexadezimalsystem) und RETURN. ein. Sollten jetzt am

rechten Rand die drei Error-Fragezeichen erscheinen, so war

die Eingabe fehlerhaft. Dies kann auch der Fall sein, wenn

der Cursor während der Eingabe in eine andere Zeile gefahren

wurde. Haben Sie alles richtig gemacht, so sollte der Wert

nach der Befehlsausführung in der Registeranzeige zu sehen

sein. Auf diese Weise können Sie die beiden zu addieren

Zahlen einspeichern.

Wie Ihnen wahrscheinlich schon aufgefallen ist, wird am

Anfang der Eingabezeile immer eine Hexadresse ausgegeben.

Sie nennt die Adresse, ab der der nächste Assembler-Befehl

tunlichst abgespeichert werden sollte. Bevor wir dies tun

— 144 -

können, müssen wir uns noch Gedanken um das Aussehen dieser

Befehle machen.

Der erste Grundsatz der Assemblerprogrammierung lautet:

(Fast) alle Datenmanipulationen laufen im Accu ab. Daher muß

der Accu durch den ersten Befehl im Programm mit der ersten

Zahl geladen werden. Dazu dient LDA $FF. Da es sein kann,

daß das Carrybit noch gesetzt worden ist, müssen wir es mit

CLC löschen. Dann kommt der eigentliche Additionsbefehl ADC

$FE. Dieser Befehl holt sich die zweite Zahl aus der

Speicherzelle FE ab und addiert sie zum Accuinhalt. Das

Ergebnis dieser Addition steht dann wieder im Accu.

Da dieses Ergebnis angezeigt werden soll, befördert es der

Befehl STA $FD in eine der vier Speicherzellen, die ständig

im oberen Bildschirmdrittel sichtbar sind. Damit ist die

Addition beendet. Es fehlt nur noch der Rücksprung zum

Assembler durch RTS. Sollte bei der Addition das Carry-Bit

gesetzt worden sein, so '1äßt sich dies ebenfalls auf dem

Bildschirm ablesen.

Das ganze Programm sieht also jetzt so aus:

LDA $FF

CLC

ADC $FE

STA $FD

RTS ©

Diese Befehle sollen im Speicher ab 00 gespeichert werden.

Steht diese Adresse am Beginn der Eingabezeile, so sollten

Sie den Cursor soweit nach rechts fahren, daß eine Stelle

zwischen Adresse und Befehl freibleibt. Dann tippen Sie den

Befehl samt Operand genau so ein, wie er oben aufgelistet

ist. Nach einem RETURN wird der Befehl dann abgespeichert.

Steht am Anfang der Zeile nicht die richtige Adresse, so

tippen wir einfach OO darüber und machen dann normal weiter.

Auf diese Weise wird jetzt das ganze Programm eingegeben. Es

kann jederzeit disassembliert werden. Dazu müssen

Linkspfeil, D (für den Befehl) sowie Anfangs- und Endadresse .

eingegeben werden. Ist ein Fehler im Listing sichtbar, so

— 145 -

wird der betreffende Befehl einfach ein zweites Mal

eingetippt.

Das Programm kann jetzt mit G 00 gestartet werden

(Linkspfeil nicht vergessen). Nach der Programmausführung

werden die Registeranzeigen aktualisiert und der Cursor

erscheint wieder.

Sollen die Anzeigen nach jedem ausgeführten Befehl erneuert

werden, so sollte der Trace-Modus eingeschaltet werden. Dann

wird der gerade abgearbeitete Befehl in der rechten unteren

Ecke angezeigt und der Simulator wartet auf einen

Tastendruck. So kann man den Ablauf ausgezeichnet verfolgen.

- 146-

13.11. DER ZWEITE SCHRITT: 16-BIT-ADDITION

Wie schon erwähnt, braucht man zur Behandlung größerer

Zahlen die 16-Bit-Addition oder noch aufwendigere

Algorithmen. Unten wird ein Programm beschrieben, daß eine

beliebige 16-Bit-Zahl zu einer Konstanten addiert. Die Zahl

wird wieder per Zuweisung in die Speicherzellen FF

(Highbyte) und FE (Lowbyte) gebracht. Da die Zahl 16 Bits

hat, werden zwei Bytes und zwei Addtionsschritte gebraucht.

Zunachst beginnt jedoch alles normal mit

LDA $FE und

CLC.

Da jedoch eine Konstante addiert werden soll, benutzen wir

jetzt ADC #Lowbyte (# steht für das Doppelkreuz). Dieser

Befehl holt sich die zweite Zahl jetzt nicht mehr aus einer

angegebenen Adresse ab, sondern nimmt direkt das

nachfolgende Byte (also die gewünschte Konstante).

Nach diesem Befehl ist die niederwertige Hälfte des

Ergebnisses bereits komplett. Sie wird durch STA $FC in die

Anzeige gebracht. Ein eventueller Übertrag ist jetzt im

Carrybit gespeichert und wird auch durch das Laden der

zweiten Hälfte per LDA $FF nicht gelöscht. Jetzt kann wieder

normal addiert werden mit ADC #Highbyte.

STA $FD bringt auch den zweiten Teil des Ergebnisses in die

Anzeige. Mit RTS wird das Programm abgeschlossen. Hier das

ganze Listing:

00 LDA $FE

O2 CLC

03 ADC #E8

05 STA $FC

07 LDA $FF

09 ADC #03

OB STA $FD

OD RTS

Als Konstante wurde O3E8 (= 1000 dezimal) gewählt.

~ 147 -

13.12. SUBTRAKTION

Da die Subtraktion bis auf Carry-Bit und Rechenbefehl der

Addition entspricht, soll hier nur kurz das Programm

aufgelistet werden (vgl. 8-Bit-Addition).

OO LDA $FF |

02 SEC (Carry setzen)

03 SBC $FE (subtrahieren)

O5 STA $FD

07 RTS

13.13. MULTIPLIKATION

Wie Sie aus Kapitel 13.6. wissen, stellt eine Multiplikation

eine mehrfache Addition dar. Dies wollen wir uns jetzt

zunutze machen, um eine Multiplikation und so ganz nebenbei

auch ein Unterprogramm in Maschinensprache zu erstellen.

Bei der beschriebenen Methode liegt es nahe, die Addition in

ein eigenständiges Unterprogramm zu verlegen (was zwar

eigentlich nicht nötig wäre, aber so stillen wir wenigstens

unseren Bildungshunger) und dieses von einer Schleife aus

aufzurufen. Beginnen wir wieder bei der Addition.

Bei der Multiplikation von zwei 8-Bit-Zahlen erhalten wir

ein 16-Bit-Ergebnis. Die Additionsroutine muß daher ein

einzelnes Byte zu einer 2-Bytezahl addieren. Dies läßt sich

vereinfachen, wenn man sich zur 8-Bit-Zahl eine O als

Highbyte dazudenkt und dann eine normale 16-Bit-Addition

durchführt. Damit wird der Übertrag zum Highbyte des

Ergebnisses gewährleistet. Das sieht dann so aus:

- 148 -

LDA $FE (Lowbyte des Ergebnisses)

CLC

ADC $FC (8-Bit-Zahl addieren)

STA $FE (zurückspeichern)

LDA $FF (Highbyte des Ergebnisses)

ADC #00 (O und’ Carry-Bit addieren)

STA $FF (zurückspeichern) |

RTS (Unterprogrammende)

Nach der Addition steht das Ergebnis in FE/FF, die

8-Bit-Zahl stand vorher in FC. Jetzt fehlt nur noch die

Schleife. Die Länge wird durch den Multiplikator vorgegeben,

der vorher in Speicherzelle FD abgelegt wurde (per

2-Befehl).

Die einfachste Methode, eine Schleife mit variabler Länge zu

programmieren, besteht darin, nach jedem Durchlauf ein

spezielles Register um 1 zu vermindern. Ist das Register auf

O heruntergezählt, so kann die Schleife beendet werden. Dazu

eignet sich am besten das X-Register. Am Beginn der Schleife

wird durch LDX $FD der Zähler initialisiert (FD enthält ja

den Multiplikator). .

Dann folgt der Unterprogrammaufruf mit JSR $Addition (ftir

Addition wird die Einsprungadresse eingesetzt). Nach dem

Unterprogramm muß der Schleifenzähler dekrementiert (d.h. um

1 vermindert) werden. Dies übernimmt der Einbytebefehl DEX.

Das besondere an ihm ist, daß auch er die Z- und N-Bits

verändert. Damit wird dann angezeigt, ob der Inhalt des

X-Registers Null oder negativ ist. Die Steuerbits beziehen

sich also nicht nur auf den Accu.

Tabelle 2 zeigt, welche Befehle welche Bits verändern

können. Anhand der Steuerbits können die sogenannten

Branch-Befehle bedingte Verzweigungen ausführen. Solch eine

Bedingung finden wir auch in unserer Schleife, sie soll ja

bei X=O abgebrochen werden. Ist X ungleich O, so soll ein

Rücksprung erfolgen. Dafür ist BNE $Adresse (branch on not

- 149 -

equal to zero) zuständig. Ist das Zerobit auf 1, so heißt

dies, daß die letzte Operation das Ergebnis O hatte, bei Z=0

war es ungleich 0. Der BNE-Befehl prüft das Z-Bit. Ist es

auf O0, so verzeigt er zur angegebenen Adresse, sonst wird

mit dem nächsten Befehl weitergemacht.. Im Trace-Modus

können Sie den Programmablauf durch den Program-Counter (PC)

verfolgen. Er sagt dem Prozessor, wo der nächste Befehl

steht. Nach einem Branch-Befehl kann man dessen Ergebnis im

PC ablesen.

Gegenuber dem echten .6502/6510-Assembler sind die

Verzweigungen übrigens etwas vereinfacht, da im Normalfall

nicht Sprungadressen, sondern nur der Abstand zum nächsten

Befehl (z.B. 3 vorwärts oder 20 zurück) angegeben wird.

Bevor die Schleife beginnt, müssen die beiden Ergebnisbytes

allerdings noch gelöscht werden. Sehen Sie es sich selbst

an:

OO LDA #00

O2 STA $FF (FF löschen)

04 STA $FE (FE löschen)

06 LDX $FD (X laden)

08 JSR $0E (Unterprogrammaufruf)

OA DEX (X decrementieren)

OB BNE $08 (Verzweigung)

OD RTS (Hauptprogrammende)

OE LDA $FE (Additionsupg.)

10 CLC

11 ADC $FC

13 STA $FE

15 LDA $FF
17 ADC #00

19 STA $FF

1B RTS (Upg.-Ende)

— 150 —

Befehl CN 2 Befehl C N 2

ADC XXX LDA xX Xx
AND 2 X LDX X X

ASL X X X LSR X X X

CLC x ORA x x
DEC X X SBC KX X X

DEX X X SEC X

EOR X X TAX X X

INC x X TXA X X

‚INX X X

Tabelle 2: Steuerbit-Beeinflußung

13.14. WEITERE MOGLICHKEITEN

Sie haben jetzt die Grundprinzipien der

Assemblerprogrammierung kennengelernt. Es ist wohl.

überflüssig, zu sagen, daß die "echte" Maschinensprache

weitaus mehr Möglichkeiten bietet. So können zum Beispiel

durch verschiedene Adressierungsarten Teile des Speichers

wie eindimensionale Arrays angesprochen werden; spezielle

Befehle ermöglichen eigene Interruptroutinen und vieles

mehr.

In diesem Abschnitt sollen deshalb nur noch ein paar

Grundtechniken erläutert werden, die man immer wieder

antrifft.

Beginnen wir mit den sogenannten Schiebebefehlen. Sie

verschieben die Bits im Accu um eine Stelle nach links oder

rechts. Damit kann der Accuinhalt auf einfache Weise

verdoppelt oder halbiert werden. Durch eine

Linksverschiebung wird verdoppelt, (verschiebt man bei

Dezimalzahlen die Ziffern um eine Stelle nach links, so wird

die Zahl verzehnfacht), der umgekehrte Weg halbiert das

Byte. Dabei gelten die Verschiebungsschemata aus den Abb. 5.

und 6.

— 151 —

Die nächsten Befehle kennen Sie eigentlich schon aus dem

BASIC. Mit AND, ORA und EOR können Daten aus dem Speicher

wie durch ADC mit dem Accu verknüpft werden. Daher lassen

sich die bekannten Techniken zum Setzen und Löschen von

einzelnen Bits auch in Maschinensprache anwenden.

Der INX-Befehl stellt einen nahen Verwandten des DEX dar. Er

wirkt im Grunde genauso, nur wird das X-Register nicht um 1

vermindert, sondern erhöht. Das nennt man auch

inkrementieren. Jetzt müßten Sie auch die Befehle DEC und

INC erklären können. Sie wirken direkt auf Speicherzellen

statt auf das X-Register.

Gemeinsam ist allen diesen Befehlen, daß ein Übertrag aus

der letzten Stelle nicht im Carry-Bit registriert wird. Ist

ein Byte nach dem Inkrement bei FF angekommen, so macht der

nächste INC-Befehl anstandslos mit OO weiter. Daher eignen

sich diese Instruktionen auch kaum ftir Arithmetik.

Jetzt bleiben nur noch TAX und TXA. Damit werden Accu und

X-Register gleichgesetzt. Bei TAX wird X mit dem Accuinhalt

geladen, bei TXA läuft dies umgekehrt ab.

Sie sollten sich nicht davon abhalten lassen, ein wenig mit

der Maschinensprache zu experimentieren. Der Simulator

bietet den Vorteil, daß er sich in keiner Situation

"aufhängen" kann, im Gegensatz zur echten Maschinensprache.

Jedes "Maschinenprogramm" läßt sich außerdem durch die

RUN-STOP-Taste stoppen.

Abb. 5 ASL Bit O wird mit O geladen

EISEIBIBISLIE BIC ISIN Accubits
Abb. SR Bit 7 wird mit O geladen

n-8-8-2-2-2-[HE \ Accubits

- 152 -

13.15. WIE FUNKTIONIEREN SYS-ERWEITERUNGEN?

Sozusagen als Draufgabe soll hier wenigstens in den

Grundzügen erklärt werden, wie man Befehlserweiterungen wie

SYS Adresse, Datum programmiert.

Nach einem SYS-Befehl steht der interne BASIC-Programmzeiger

(ähnlich dem Program-Counter) auf dem Byte nach der Adresse.

Bei einem normalen SYS-Aufruf würde der Interpreter nach der

Rückkehr aus der Maschinenroutine hier mit der

Syntax-Prüfung fortfahren.

Wir können den Interpreter aber mittels JSR $Subroutine

veranlassen, die nachfolgenden Daten bis zum nächsten Komma,

Doppelpunkt oder Zeilenende in den Fließkommaakku (kein

Prozessorregister, sondern einige reservierte Speicherzellen

in der Zeropage) einzulesen. Der BASIC-Programmzeiger steht

jetzt auf dem Byte nach den Daten. Waren die Daten

fehlerhaft, so quittiert dies die ROM-Routine mit einem

Error. Soll mit normalen Zahlenwerten gearbeitet werden, so

kann dies jetzt unbehindert geschehen. Auch dazu stellt das

Interpreter-ROM verschiedene Unterroutinen zur Verfügung.

Sind die Daten aber als Integerzahlen oder Adressen gedacht,

so muß eine weitere ROM-Routine die Zahlen im Fließkommaakku

in das gewünschte Format umwandeln. Dann können auch diese

von unseren, Maschinenprogrammen an den entsprechenden

Stellen im Speicher abgeholt und weiterverarbeitet werden.

Das ist schon das ganze Geheimnis.

Befehlserweiterungen wie SIMONS BASIC oder EXBASIC haben

dieses System noch weiter perfektioniert. Hier wird die

Routine, die die Befehle erkennt und aufschlüsselt, um einen

speziellen Teil erweitert, der die Erweiterungen decodiert

und dann in die entsprechenden Unterprogramme verzweigt.

— 153 —

14. ANHANG : PROGRAMMLISTINGS

M-TRAINER
1000 REM REE EKRHEHEEEREEHEEE EEE EERE KH

idol REM MASCHINENSFRACHE-SIMULATOR 1.0

1002 REM COFYRIGHT 1984 BY

1003 REM HANS JOACHIM LIESERT

1004 REM EIN DATA-BECHKHER-FRODUET

1005 REPL REE EEE EEE EEE EE EEE EK

LOOS 3:

1010 REM RER EEE HIER EEE EE

1011 REM INIT

LOLD REM KERNE KR

1020 FRINTCHRE (142) 3 ; CHRF (8) : FOEE788, 52

1030 FRINT"AIr aly

1040 PRINT" | REG HE X BIN ASC I";
1050 FRINT" IFF/FE= ENS

1060 PRINT" [FD/FC= 1";
1070 PRINT" F 4"5
1080 PRINT" |IFC= AC= XR= C= N= Z= Ts 1"3

1090 PRINT" + aS
1100 PRINT" "

1110 FRINT" Tr T "ys
1120 FRINT" ADR MNE I CODES 1 MESSAGES"
1130 FORI=1T0O1F: PRINT" | I"2NEXT
1140 FRINT" | 1";
1150 DIMB(255) ,C (255) „H$ (255) „EB# (34) ,„EB(34) ,‚Fi#(10),F2
$(10) ,PS# (10)
1160 FORI=0TO255: READH#(1):B(1) =255:C (1) =255:NEXTI
1170 FORI=0TO034: READEBS (1) ,ER(I)sNEXTI
1180 FORI=0TO1O:F1i#¢(1)=" He Poe (T=! Ns
NEXTI
1997’ REM SERRE ERE KEE KHER KREREEEREHER

1998 REM ASSEMBLER
1FI9F REM FREE KHK HT HT HK TR HERR

2000 GOSUR 4000.
2010 POKE214,8:POKE211,0:SYS58732
2015 IFAD=256THENAD=0
2020 PRINTS" SHE CAD) s "SME's
2030 INFUT" SRE s INE
2040 IFLEFT#(IN#,1)="="THEN 2200
2050 FO=1: GOSUB4400: IFEFTHEN4500
2060 AD=0D: AF=MIDE(INF,A4,3)+" "ıfl=-i
2070 FORI=OTO8: IFAF=EBE (I) THENFL=I
2080 NEXTI: IFFL< >~1 THENB (AD) =EB (FL) C (AD) =FL:AD=AD+1:60
TO2000

2090 AF=MIDE CINE, 4,5)
2100 FORI=9TO34: IFAt=EBSs (I) THENFL=I
2110 NEXTIs IFFL=—10RAD=255THEN4500
2120 B(AD) =EB(FL):C (AD) =FL
2130 FPO=9: GOSUB4400: IFEFTHEN4S500

— 154 -

2140
2150
2197
2198
2199
2200
210

3220 Be ler dire

al

240

2260
2297

2278
22977
OQ
2310

.r EEE

SEO

2340

2350

297

2:98

2599

2400

2410

SED

2430

2440

2450

2440

2470

24830

2490

24977

24978

24979

2500

=10

2530
2850,

540

"2940,
u SO

y2l2o
2560
„„el0O
2570

25970

AD=AD+1:B (AD) =0:C (AD) =O
AD=AD+1: 50 T0O2000
REM HH ESE HE EE EE IE EEE RE RE

REM DIREKTREFEHLE
REM KREIEREN KK KT HT HH N HR KR

AF=MIDF(INF, 2,1)
IFAF="T" THENT=1-T:G60TO2000
IFAF="Z" THENZ3OO
IFA#="D" THENS 400
IFAF="G" THENSSO0
IFA#="C"THEN4S 600
GOTO4500
REM HIE SEER HERE KEE EKEH KEKE HE

REM ZUWEISUNG
REM KHER HEHEHE REE KEE EEE RHE

FO=4: GOSUB4400: IFEFTHENA4SOO

AD=0: FO=7: GOSUB4400: IFEFTHEN4SOO
B{iAD)=0:FL=-1
FORI=OTOS4: IFO=ER (I) THENFL=I

NEXTI:s IFFL< >-1THENC (AD) =FL: GOTO2000
CCAD) =O: GOTOZO0OO
FRED HIKE HEE EEEKEEEERHEEEEKEHREH

REM DISASSEMBLER
REM SHH HERE HERE HEERKHEEE

PO=4: GOSUBR4400: IFEFTHEN4SS00

AD=0:F0=7: GOSUB4400: IFEFTHEN4S00
IFAD *OTHEN4SS00
HiS=HE (AD) HES=" "SH4E=Ht (BCAD))
IFC (AD) +S4THENH2$="777 ":G0TO2470
H2$=E Bs (CCAD))
IFC (AD) >B8THENAD=AD+1: HS#=H#F (HCAD))
AD=AD+1: GOSUB4300
IFAD“ =OTHEN2430
GOTOZOOO

REPL HREM EE EERE RHEE ER EEE

REM FROGRAMMABLAUF
FREED HHH RRR EEE EEE TR KR FR HF TH FR HERR

PO=4; GOSUB4400: IFEFTHEN4500
PC=0
CO=C (PC) s:AD=FC:PC=FPC+1: IFCOSS4THENS3S00
IFCO< PTHENONCO+1G0TO2700,2720,2730, 2770,2790,2810,
2840 , 2850

CO= co- 8: IFCO< 9THENONCOGOTO2860 , 2880,2900, 2910,2 20
2960, 2980

CO=CO-8: TFCO< STHENONCOGOTOS000 , 3020 , 5040 , 3080 , 3100
, 2140, 5150

CO=CO-8: IFCO< 9THENONCOGOTOS160, 3170, 3180, 35190, 3200
3220 ,5240
ONCO-860T03280 ,3270
N=0: IFA>127THENN=1

- 155 -

2600

2610

2615

2420

2630

2640

Zoo

2660

2070

2680

26976

2677

2678

2699
2700

2710

2719

2720

2729

27230

2740

2750

2740

2749

2770

2790

2789

2790

2800

2809

2810

2820

2929

2B30

2839

2840

2849

2850

2859

2860

2870

2879

2880

2890

289899

2900

2909

2916

2919

2920

Z=0: IFA=ÖTHENZ=1
IFFEER (203) =62 THENZ400
IF T=OTHEN2520
GOSUB4000: FORT=0T09: P23 (1) =P 3S (I+1)2NEXTI
Pit (10) =HF(AD) +" “+EBE(C CAD)) |
IFC (AD) *8THENF S$ (10) =PS34 (10) +H (C CAD+1)) s GOTO2660

CLO SEPSECLO+ 8
POKE2S14,12:POKE211,0:SYSS8732

FORT=0OTOLOsPRINTSPC (27) sPSé(01) sNEXTI
FOKE198,0:WAITI98,1:GET IN#:GOTO2520
REM BERR KEREKEERKRKRHEEKREREKE KEE REE

REM BEFEHLSUFROS
REP ERE KEKE EKEKHRERKEEKEEHEEREHREREEE

REM ASL
A=2*A:C=0: IFAS2Z55THENA=A-256:C=1
GOTOLS9O © .
REM CLC
C=O: GOTOL610 “
REM DEX
X=X-1: IFX{OTHENX=X+256
Z=0: IFX=ÖTHENZ=I
N=0: IFX>127THENN=1
GOTOS4610

REM INX
X=X+1: 1IFX>255THENX=X-256

GOTO2740
REM LSR
A=A/2:C=O0: IFINT (A) < FÖTHENA=INT (A):C=l
GOTOE570

REM RTS
IFS=OTHEN 2000
FC=5(S):5=5-1:GOTO2610

REM SEC
C=1:50T02610
REM TAX
X=A: GOTO2740
REM TXA
A=X: GOTO2Z590
REM ADC #
A=A+B (PC) +0: C=O: IFA? 255 THENA=A—-256: C=1
PC=PC+1:GO0TO2590 N
REM ADC # |
A=A+B(C (PC))+4C:C=0: IFA?255THENA=A-256: C=1
PC=PC+1:60T02590
REM AND #
A=A AND B(PC) :PC=FC+126G0TO02590
REM AND #
A=A AND B(C(PC)) sPC=PC+1:G0TO02590
REM BCC #
IFC=OTHENFC=B (PC) sGOTO2610

— 156-

2930

2939

2940

29750

2959

2960

2970

2979

2980
2990

2997

S000

2010

3019

S020

SO3O

S039

S040

S030

S060

3070

079

5080

S090

3100

3110

S119

S120

S130

3139

3140

3149

2150

3159

3160

2169

34170

3179

3180

2189

3190

3197

S200

SO?

S216

mel?

AO

a)
3259

240

PC=PC+1:60T02410
REM BCS $
IFC=1THENFC=B (FC) :GOTO2Z610
PC=PC+1:GOTO2610
REM BEG ¥
IFZ=1THENFC=B (PC) :GOTO2610
PC=PC+1:60T02610
REM EMI $
IFN=1 THENPC=B (PC) :GOTO2610
PC=FC+1:60T02410
REM BNE #
IFZ=OTHENPC=B (FC) :GOTO2610
FC=PC+1:GOTO2610
REM BPL #
IFN=OTHENFC=B (PC) :GOTO2610
PC=FC+1:G0TO2610
REM DEC #
H=B(C (PC)) sH=H-1: IFH<OTHENH=H+256
Z=0: IFH=OTHENZ=1
N=O: IFH?127THENN=1
B(C(PC)) =H: C0 (C (PC)) =H: PC=PC+1:GOTO2610
REM EOR # |
H=A OR B(PC):A=A AND BCFC)
A=NOT (A) s:A= H AND A: FC=FC+1:GOTO02590
H=A OR B(CC(PC)) sA=A AND BFC)

BOTO3090
REM INC #
H=B(C (FC)) :H=H+12 IFH>255THENH=H-256
GOTOZOSO
REM JMF #
PC=B (FC) sG0TOZ610
REM JSR # |
5=5+1:8(8)=PC+1:PC=B (PC) :60T02610
REM LDA #
A=E (PC): PC=PC+1: 60702590
REM LDA # |
A=B(C(PC)):PC=PC+1:G0T02590
REM LDX #
X=B(PC) sPC=PC+1:GOT02740
REM LDX # |
X=B(C(PC)) :PC=PC+1s GOTO2740
REM ORA #
A=A OR BCPC) sPC=PC+1:GOTO2590
REM ORA # |
A=A OR B(C(PC)) sPC=FPC+1:G0TO2590
REM SBC #
A=A-B (PC) —-14+C:C=12 IFAS OTHENA=A+256: C=0
PC=PC+1:G0TO02590
REM SBC #
A=A-B(C(PC))-14+0:C=1: IFACOTHENA=A+256: C=0

— 157 -

PB

3400
Cc) : us

3410
3937

3998
3999
A000

40106

4020
4020

4040
4O5 0

A060

+70

> FC=FE+1:650T02590
REM STA #
BIC (FC)) =A: C(C (PC)) =A: PC=FC+1:GOTO2610
REM STX #
B(C CFC) =X: C (CCPC))=XsPC=FC+1: GOTO2Z610
REM EERE EERE EERE REE ERE HERE HEHE

REM RUN-TIME-ERROR
REM RER ER TRIETR THE RHRRERE

; FOKE214,8: FOKE?11,0:8Y858732: PRINT"BAD CODE ERROR
HE (FC- 1)
FOKE198,0:WAIT198,1:GETIN$: GOTO2000
REM KR RKRRRNETKR KT TR ET RR RN FH

REM BREAK
REM HEME HEHEREKRHRHERKEE RHEE EEREKREREE 7

POKE214,8:POKE211,2:SYSS8732:PRINT"BREAK IN "3H#(P

POKE198,0:WAITI98, 1:GETIN#: GOTOZ000
REM HERE HEKEEREHEKKEHKKKEHKRKRKEKRKRKREREEEEK

REM REGISTERANZEIGE
REM KR KKEKKKKK RR HR HH

HE=H# (B(255))+" "+H CB (254))
POKE214,2:POKE211,9:SYSS8732:FRINTH#;" "5
H+="": FORJ=255T02548TEP-1:H=B(J)
FORI=7TOOSTEP~1: IF (211 ANDH) THENH#=H#+"1": GOTO4050
HE=HE+"0"
NEXTIEHE=HE$+" ":NEXTI
PRINTH#;" "5
H1g=CHR# (B (255)) + IFB (255) <320RB (255) >127ANDE (255) <

L60THENHI4="— "
40830 H2$=CHR# (B(254)) 2 IPB (284) <320RB (254) >127ANDB (254) <
L6é0THENH2#=" "
4090
4100

4110
4120
4130
4140
4150
4166

FRINTHI#s;" "sHe#
H#=H# (BC253) 04+" "+HF (BCS52))
POKES14,3:FOKE211,9:SYSS8732:PRINTH#s;" "5
Ht="": FORJ=253T02525TEF-1:H=B (0)
FORI=7TOOSTEF-1: IF {ZT LANDH) THENH#=H#+"1": GOTO4150
HF=HE+"O"
NEXT.IsHt=Ht+" "sNEXTIJ

PRINTH#;" "s
4170 HIF=CHRE (B(255))2 IF RB(2535)<S20REB (253) -1S7ANDB(253) 2
L6é0THENHI#="— "

4180 H2$=CHRE (B(252)) 2 IF R(252) <S20RB (252) 21 27ANDE (252) <
L6é0THENHS$="— "

4190 PRINTHIF," "HF
4200 FOFE214,5: FOEEZ11,4:5Y5598732: FRINTHE (FC) 3
4210 PRINT" REES HS (A); "ERBE; HECK); RE";
4220
he

4230
4240

FRINTMID&E(STRE(C) „2, 2); "IRRE": MIDECSTRECN) „2, 1): "nl

PRINTMID# (STR#(Z),2,1) 5 "SBE":
IFTTHEN FRINT"ON "3: RETURN

— 158 —

4250

4297

4298

4299

2.300

4310

4320

4330

4340

N

4397

4293

4399

4400
al)

4410

4420
4430

4446

4450

4497

4498

- 4499

4500

4510

4520

4597

4398

4599

4ASO0

4610

PRINT“OFF"; : RETURN
REM KRRRRRRRERKKRHKH RR TR TR KR RETTET TEN NER

REM BEFEHLE AUSGEBEN
REM KERERRRRRERTR THREE RR ER RR

FORP=OTO009: P14 (P) =P 1 (P+1) s P28 (P)=P2e (P+1) sNEXTP
FIf(1O)SH1#+" = "+4H2S+HSe+"
P2#(10)=H4$+" "+HI#
FOKE214, 12: POKE211,0:8Y858732
FORF=OTO102 PRINT" M's Ps (F) 3 "MM" 3 P2$(P) : NEXTP: RETUR

REM RER FN KR RÄT KR RT THE TH KH TH N N RR RR

REM ARGUMENT HOLEN
REM KFRFRFHRRRRHRRR KHK RR IR TR KH FH NH

I1=ASC (MIDE(INE,FO,1)) : 12=ASC (MID$ (IN$,FO+1,1)):EF

IFNOT (I1>47ANDI1{ZSBSORII1 >S4ANDILZ 71) THENEF=1: RETURN

IFNOT (12747 ANDI2< S80RI2>64ANDI2< 71) THENEF=1: RETURN

Ti=I1-48: IFIis>9THENI1=I11--7

[2=[2-48: IFI3:9THENI2=[2-7

O0=11#16+12: RETURN .

REM HERE EERE REE RE REE EERE

REM ERROR

REM KREIEREN TH RR RR HR HR

FOKE2Z14,8:FOKE211,346:SYS58732

PRINT" 22?" s 3 POKEI98,0:WAITI998,1:GETIN#

FRINT" Sil "ss GOTO2000

REM KARRIERE TH HR HH RT

REM CLEAR SCREEN

REM SRH KH HH RR HR RR

POKE214,12:POKE211,0:SYS58732

FORI=0TO10O: FIF (DI =" "SP2¢ (I) =" "

2PSE(T)="
4620 PRINT O's PLE (1) sR SP O61) 5 ME SPSS CL) NMEXTI:GO

— 159 —

TO2000 '
REM KERR RHEE EERE THREE RER HR RER 7997

7998

7999

Booa
Hog

Boos

BOLO
2 19"

B015

Boso
Wage

B025

BURO
mag ot

BOE

BO40

a! 4g"

8045

850
neg a}

BOSS

8060
Wao

BOSS

8570
wept

8075

BOBG
190 i

8085

3090
"Nog rn

BOSS

8100
yw Ags"

8105

8110
ti BS!

Bilis

8120
ut co!

B125

3130
rt ng"

8135
8140
ıEO a

8145

8150
Neg

B1i55

REM HEXADEZIMAL-TABELLE
REM KEE EREEKREREHEE EERE EERE EE ER ERE

DATA

DATA
DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

DATA

u Oo tl 5 u Ol n 5 ut oo" 5 8 O5 st 5 ng ; ae 05 ul

a! 5 "OB 1 5 Ooo u 5 "op" 4 ng" y ı nF "

yo" 5 yy! 5 nyo" 5 wa 5 4" 5 45"

mya" 5 "aR! 5 a i „ "TD" 5 a 5 Nap

. r “u te RE Os moo", "21", ma", wot "24 'y 2

moe" ' won" 5 ec! 5 Hop" 5 Hoe! q ung

ato ut a a] tt t crt urn ta“ u on et ui) 4 ! “4 8 | 4 *

ir °C 6 SE ! Sf 1 u sh" s aB" 1% i" n DD" 1107 tt iv t

HAG" 5 "a1 u" 1 gan ’ waa „ a4" , gas"

mag 4 tage y "ac" 5 "ap" 5 ap" 5 "aru

reg 5 Wed ! 5 hep 4 nn 4 wea" y mE!

ma" 5 NEE" 5 nec 5 HED! 5 "SE" y ze

an" 5 "Oi i! 5 "oo 4 won y "eA! 5 "au

HoeA" 5 "OBR! 5 too" : "Oop! 5 "OE! 5 Nop

mercy 5 “71 it 5 zip 5 wee 5 ya 4 nye

"7a" y "7" y "7D" 5 "7D" 5 "IE" 4 ey

"So" 5 "31 at 5 neg 5 a ; "94" 5 u

"oa" y "SE" 5 "on" 5 "ep" 4 "Be" 4 np"

"OO" y Noy! ; ginn 5 "gm 5 ya , Hoe

ya 5 "VOR" 5 noo" 5 "Op! 5 NOR! 5 gr"

"Aga" 5 "Al it 5 na" 4 tan 5 Ing" 5 hast

mea" 5 tank! 5 mac" 5 "AD" 5 SE" 5 "Ar"

"RO" y "AY „ 5 Ete 5 "Ba" 5 "hg ' pe

ma" 4 "Rp 5 "Rn" 5 "RD" 5 MRE! 5 Hyp

oo" 5 "C1 tt y "oe 5 "om 5 nog ; ae en

moa 4 "OR" 4 a I 3 tep" 5 ree 5 "oR!

mo" 5 "Di “ 5 mmo 5 "ps 5 "pai 5 pe"

“pA” 5 IDEE" 5 Mpc" 5 "pp" 5 DE" 5 UPpPr

neo" 4 requ 5 new 5 Em 5 "eg" 5 wee

teat 5 NERY 5 Mec! 9 MED" 5 TEEN 4 NER

neg y "21 Ht ; nee 5 pons, 5 Negi 5 Nee

reg 5 Hee! 5 Nec ee 5 "ey! y "EEE" 5 ep

— 160 -

,206", "07", "08",

lot nz tion, |

"Ba" ,"27","28",

"36", "37", "38",

5 "ag!" 5 waz 5 ag" 5

So" ST" so",

"66" "67" "OB",

S876", "77" "78",

/"86","87", "88",

PS" "97", "9B",

"AG", "A7", "AB",

/"B6","B7", "BR",

206", "C7", "C8",

»"D6", "D7", "DB",

"E6","E7", "EB",

5 Meg" 5 up yt y weg 5

3197 REM KEKE KKEKRERKEHREEEKREEEEEHRHEEEREHE

8178 REM BEFEHLS-TABELLE

E1IIF REM FERHRHHKER KK ÄRA KR RK KHK KERN

3200 DATA "ASL ",10,"CLCO ",24,"DEX ",202,"INX ",2352
„"LSR ",74,"RTS. ",96
8201 DATA "SEC ",56,"TAX ",170,"TXA",138
8203 DATA "ADC #",105,"ADC #",101,"AND #",41,"AND #",37
8205 DATA "BCC £",144,"BCS #",176,"BEQ #",240
8215 DATA "BMI $", 48,"BNE #",208,"BPL #", 16
8220 DATA "DEC #",198,"EOR #", 73,"E0R #",49
8225 DATA "INC #",230,"JMF #", 76,"JSR #", 32
8250 DATA "LDA #",169,"LDA #",165,"LDX #",162,"LDX #",1
&&
8235 DATA "ORA #", 9,"ORA $", 5 |
8240 DATA "SBC #",233,"SBC $",229,"STA #",155
8245 DATA "STX #",134

READY.

—- 161 —

AUTORENNEN
TL REM HERE EERE ERE RRR KEKE KEKE FR NR

2 REM #*###*% AU TO- RENN EN 4484
a REM FE EE EH EE EE HR TR TR IR TH EE

10 FRINT"II"': FOKES3E2SO, Os FORESE2B1 ,0:V=53248: REM BILDSCH
IRM VORBEREITEN |
20 FORT=8327T0894: READA: FOREI,A:NEXT:REM AUTO-SPRITE EIN

LESEN u

ZO FORI=896T0958: READA: FOKEI,A:NEXT:REM CRASH-SPRITE EI
NLESEN .

40 FPORE2O40, 13:POKE2041,13:POKEV+39, 1:POKEV+40,2:REM SP
RITEFOINTER % FARBEN

506 FORI=O0T024: FOKE10S36+1*40, 160: POKESSZOB+I#40,1

&0 FOHELOS1+1#*40, 160: FORESSSPE+T#40,1:NEXTI:REM FAHRBAH
N AUSGEBEN

70 FOEEV, 168: FOKEV+1,170: FOHEV+21 ,3: X=168: REM STARTFOS.

AUTO & SFRITES EIN \

80 FOREV+2,168:POKEV+3,0:HX=166:HY=O:REM STARTPOSITION
HINDERNIS

90 POKEV+30,0:FOKEV+31,0:REM KOLLISIONSKONTROLLE LOESCH
EN |
100 A=FEEK (203):REM TASTATURABFRAGE

110 IFA=12THENX=X-1:REM Z GEDRUECKT
120 IFA=55THENX=X+1:REM / GEDRUECKT
1>0 FOEEV,X:REM AUTO BEWEGEN

140 IFPEEK (V+30) < >OORFEEE (V+31)< >OTHENFOKEFO40 , 14: FORI=
OTOSOO:NEXT:RUN:REM CRASH -

150 HY=HY+2: IFHY>240THENHY=30: REM BEWEGUNG NACH UNTEN
160 HX=HX+INT CRND (TI) #5) ~-2: [FHX< 1 2O0THENHX=120:REM KOOR.
% LINKER RAND

170 IFHX>Z1&THENHX=216: REM RECHTER RAND?
180 FOKEV+2,HX: FOKEV+3,HY:GOTO1OO: REM HINDERNIS BEWEGEN
1000 REM SFRITE-DATA AUTO

1100 DATA 0,0,0

1101 DATA 0,128,0

1102 DATA 0,126,0
1103 DATA 0,255,0
1104 DATA 12,255,48
1105 DATA 15,255,240
1106 DATA 12,255,48
1107 DATA 0,255,0
1108 DATA 0,255,0
1169 DATA 1,231,128
1110 DATA 1,195,128
1iii DATA 1,195,128
1112 DATA 1,195,128

1113 DATA 3,195,192

- 162 -

1114
1115
1116
1117
1118
1119
1120
ZO0OO
2100
2101
2102
2103

2104
2105
2106

2107
2108
2109
2110
zı11l
2112
2113
2114
115
2116
2117
2118
211%
2120

DATA 3,195,192
DATA 115,255,206
DATA 115,255,206
DATA 127,255,254
DATA 115,255,206
DATA 115,255,206
DATA 0,0,0

REM SFRITE-DATA CRASH
DATA 123,20,0
DATA 0,24,0
DATA 30,44,77
DATA 21,126,353

DATA 240,125,48
DATA 15,205,240
DATA 22,155,41
DATA 1,205,156
DATA 0,155,0
DATA 1,201,108
DATA 1,105,108
DATA 1,093,028
DATA 1,155,158
DATA 23,115,192
DATA 32,242,132

DATA 35,239,216
DATA 1,095,028
DATA 32,242,132

DATA 68,155,0
DATA 27,125,48
DATA 0,0,0

READY .

— 163 —

15. ERLAUTERUNGEN ZU SONDERZEICHEN

Im Text finden Sie von Zeit zu Zeit ein kleines Dach "*".

Wenn Sie sich schön gefragt haben sollten, wie Sie dieses

eingeben können, so sei gesagt, daß dieses Dach der Pfeil

hoch auf Ihrer Commodore Tastatur ist, also die Taste

unmittelbar links neben der RESTORE- und über der

RETURN-Taste.

Die meisten Drucker drucken keinen Pfeil, sondern dieses

kleine Dach, so daß Sie auch in Zukunft bescheid wissen,

wenn Sie dieses "Dach" in einem Listing sehen sollten.

In einigen Listings finden Sie auch Commodore Sonderzeichen

vor, die Sie genaustens eingeben sollten, da die Programme

sonst andere Ergebnisse auf den Bildschirm bringen könnten,

als sie sollten.

~ 164 -

. 16. SPEICHERBELEGUNGSPLAN
o
n

wo
N

=

O

11

12

13

14

15

16

17

18

19
20
22
23
25
34
38
43
45
47
49
51
53
55
57
59
61

m
n

u

N

Ma

21

24

33

37

42

44

46

48

50

52

54

56

58

60

62

Prozessorport Datenrichtungsregister

Prozessorport Datenregister

unbenutzt |

Vektor f. Umwandlung Fließkomma - Fest

Vektor f. Umwandlung Fest - Fließkomma

Suchzeichen

Flag £. Sonderzeichenmodus

TAB-Spalte

O= LOAD bzw. 1= VERIFY letzter Befehl

Zeiger f. Eingabepuffer / Dimensionen

DIM-Flag

Variablentyp: FF=String, 00=2ahl

80= Integervar., 00= Fließkommavar.

Sonderzeichenmodus bei LIST

Flag für FNx

Eingabe: OO= INPUT, 40= GET, 98= READ

Vorzeichen bei ARCTAN / letzter Vergleich:

1= größer, 2= "=", 4= kleiner

aktueller File

Integer-Zahl, z.B. Adressen, FRE(O)

Vektor f. Stringstack

Zeiger auf letzten String

Stringstack

diverse Zeiger

Arithmetikregister

Zeiger auf BASIC-Programm-Anfang

Zeiger auf Variablenstart

Zeiger auf Beginn der Felder

Zeiger auf Ende der Felder

Zeiger auf Stringanfang (bewegt sich abwärts)

Stringhilfszeiger "

Zeiger auf Speichergrenze

augenblickliche BASIC-Zeilennummer

vorherige BASIC-Zeilennummer

Zeiger auf nächsten Befehl für CONT

— 165 -

63 / 64

65 / 66

67 / 68

69 / 70

71 / 72

73 / 74

75 / 76

77

78 / 79
80 - 83

84 - 86

87 - 91

92 - 96

97 - 101

102

103

104

105 - 109

110

111

112
113 - 114

115 -

BASIC-Pgm

122 / 123

139 - 143

144

145

146

147

148

149

150.

151

152

153°

154

155

138

aktuelle DATA-Zeile

Zeiger auf nächstes DATA-Element

Zeiger auf letztes DATA/INPUT/GET

aktuelle Variable (2 Buchstaben)

Zeiger auf aktuelle Variablen

Zeiger auf aktuelle FOR-NEXT-Variable

Hilfsregister f. BASIC-Programmzeiger

Hilfsregister f. Vergleiche

Zeiger für FNx

Hilfsregister f. Strings

Sprungvektor für Funktionen

Arithmetik-Akku 3

Arithmetik-Akku 4

Arithmetik-Akku 1

Vorzeichen von Akku 1

zähler f. Polynomauswertung

Rundungsbyte für Akku 1 |

Arithmetik-Akku 2

Vorzeichen von Akku 2

Vergleichsregister Akku 1& 2

Rundungsbyte |

Zeiger f. Polynomauswertung

CHRGET-Routine holt nächstes Byte aus

BASIC-Programmzeiger

letzter RND-Wert

Status (wie Variable ST)

Flags £. Tastaturspalte 1

Zeitkonstante f. Cassettenbetrieb

O= LOAD, 1= VERIFY

Flag fur IEC-Bus

Zeichen für IEC-Bus

Flag f. End of Tape (Kassettenende)

Zwischenspeicher f. Register

Anzahl der geöffneten Files

aktuelles Eingabegerät (normal: 0O)

aktuelles Ausgabegerät (CMD, normal: 3)

Paritätsbyte bei Kassettenbetrieb

— 166-

156
157
158
159
160
163
164
165
166
167
172
174
176
178
180
181
182
183
184
185
186
187
189
190
191
192
193
195
197
198
199
200
201
203
204
205

206
207

162

171

173

175

177

179

188

194

196

202

Flag für Byte empfangen

Ausgabemodus (128= direkt, O= Programm)

Prufsumme bei Kassettenbetrieb

Fehlerkorrektur bei Kassettenbetrieb

Uhr

Bitzähler bei serieller Ausgabe

Zahler bei Bandbetrieb

Zahler fiir Schreiben auf Band

Zeiger in Kassettenpuffer

Flags für Bandbetrieb

Zeiger für Kassettenpuffer |

Zeiger auf Programmende (LOAD / SAVE)

Zeitkonstanten für Kassette

Zeiger auf Kassettenpufferstart

Bitzähler (Kassette)

Nächstes Bit für RS 232 (Senden)

Auszugebendes Byte

Zeichenanzahl im Filenamen

aktuelle logische Filenummer

aktuelle Sekundäradresse

aktuelle Gerätenummer (z.B. 8 für Floppy)

Zeiger auf Filennamen

Hilfsregister f. serielle Ausgabe

Blockzähler f. Bandbetrieb

Wortpuffer f. serielle Ausgabe

Flag f. Kassettenmotor

Startadresse f. LOAD / SAVE

Endadresse f. LOAD / SAVE

gedrückte Taste

Anzahl Tastendrücke im Puffer

Flag für RVS

Zeilenende bei Eingabe (Zeiger)

Zeiger auf Eingabecursor (Zeile, Spalte)

. gedrückte Taste

Flag £f. Cursor (O= blinkt)

zähler für Blinkzeit

Zeichen unter Cursor

Blinkflag

- 167 -

208

209

211
212

213

214

215

216

217
243

245
247

249

251

255

256

256

256

512

601

611

621

631

641

643

645

646

647

648

649

650
651

652

653

654

655

657

658

/ 210

- 242

244

246

248

250

- 254

T
E

n
e

- 511

- 266

- 318

- 600

- 610

- 620

- 630

- 640

642

643

/ 656

Flag f. Eingabe von Tastatur / Bildschirm

Zeiger auf aktuelle Bildschirmzeile

Cursorspalte |

Art des Cursors (programmiert / direkt)

Länge der Bildschirmzeile (40 / 80)

Cursorzeile

letzte Taste

Anzahl der Inserts

Highbytes der Zeilenanfänge

Cursorposition im Farb-RAM

Zeiger auf Tastaturdekodiertabelle

Zeiger auf Eingabepuffer für RS 232

Zeiger auf Ausgabepuffer für RS 232

Freie Bytes für Betriebssystem

Beginn des BASIC-Speichers (* 64)

Prozessorstack

Zwischenspeicher für Formatumwandlung

Korrektur von Bandfehlern

BASIC-Eingabepuffer

logische Filenummern

Gerätenummern

Sekundäradressen

Tastaturpuffer

Zeiger auf BASIC-RAM-Start

Zeiger auf BASIC-RAM-Ende

Flag £. Zeitfehler auf seriellem Bus

aktuelle Schriftfarbe

Farbe unter Cursorposition

Highbyte der TV-RAM-Basisadresse

max. Lange des Tastaturpuffers

Flag f. Repeat (O=normal, 128=alle, 127=aus)

zähler f. Repeatgeschwindigkeit

Zähler f. Repeatverzögerung

Flag £. SHIFT, Commodore und Control

Wie 653

Zeiger auf Tastaturdekodiertabelle

Flag f. Zeichensatzumschaltungssperre

Flag fur Scrolling

— 168 -

659

660

661

663

664

665

667

668

669

670

671

673

674

675

676

677

678

704

768

770

772

774

776

778

780

781

782

783

1784

788

790

792

794

796

798

800

802

804

~A
N
E
E
E

TS

~“~
™

O
E
S

O
E

666

672

767

166

769

771

773

775

777

779

787

789

791

793

795

797

799

801

803

805

Kontrollregister f. RS 232

Befehlsregister f. RS 232

Bit-Zeit

Statusregister f. RS 232

Anzahl zu sendender Bits f. RS 232

Baudrate für RS 232

Zeiger auf empfangenes Byte f. RS 232

Zeiger auf Eingabe von RS 232

Zeiger auf auszugebendes Byte f. RS 232

Zeiger auf Ausgabe aus RS 232

Zwischenspeicher £. IRQ bei Bandbetrieb

NMI-Flag CIA 2

Timer A des CIA 1

Interruptflag des CIA 1

Flag £f. Timer A

Bildschirmzeile

freier RAM-Bereich

Sprite-Block 11

Zeiger f£. Fehlermeldung

Zeiger auf BASIC-Warmstart

Zeiger auf Umwandlung Text - Kode

Zeiger auf Umwandlung Kode - Text

Zeiger auf Befehlsausführung

Zeiger auf Ausdrucksauswertung

Akku für SYS

X-Register für SYS

Y-Register für SYS

P-Register für SYS

USR-Sprung (Adresse in 785 / 786)

Zeiger auf Hardware-Interrupt

Zeiger auf BRK-Interrupt

Zeiger auf NMI

Zeiger auf OPEN

Zeiger auf CLOSE

Zeiger auf Zeicheneingabe

Zeiger auf Zeichenausgabe

Zeiger auf Kanäle löschen

Zeiger auf Eingabe

— 169 -

Zeiger

Zeiger

Zeiger

Zeiger

Zeiger

Zeiger

Zeiger

freier

Ausgabe

STOP-TASTE abfragen

GET

alle Kanäle schließen

Benutzer-IRQ

LOAD

auf SAVE

RAM-Bereich

auf

auf

auf

auf

auf

auf

Kassettenpuffer

Sprite-

Sprite-

Sprite-

frei

Block 13

Block 14

Block 15

806 / 807

808 / 809

810 / 811

812 / 813

814 / 815

816 / 817

818 / 819

820 - 827

828 - 1019

832 - 894

896 - 958

960 - 1022

1023

1024 2023

2024 2039

2040 2047

2048 40960

8192 16192

40960 49151

49152 53247

53248 57343

53248 53294

53295 54271

54272 54300

54301 55295

55296 56295

56296 56319

56320 56335

56320 56321

56336 56575

56576 56591

56577 56579

56592 57343

57334 65535

TV-RAM

frei

Zeiger für Sprites

BASIC-Speicher

Bit-Map £.

BASIC-Interpreter-ROM

4 K RAM für Maschinenprogramme

hochauflösende Grafiken

Charaktergenerator

Register des VIC

977 Bytes leer

Register des SID

995 Bytes leer

Color-RAM

24 Bytes leer

Register des CIA 1

Tastaturabfrage und Joysticks

240 Bytes leer

Register des CIA 2

USER-PORT-Register

752 Bytes leer

Betriebssystem-ROM

 — 170 -

17. STICHWORTVERZEICHNIS

A

ADC 2... ee ee te eee

Additionsprogramm

" (16-Bit)

Adressbus-

AD-Wandler

AND 0.00 e une enna

Animation0-.

Anschlag00008:

Anwendungsbeispiele

ASL 2... ee et ee et eee es

Assemblermodus

Ausgabegerät ernennen

Ausklingen

B

Balkengrafik

BASIC

-Eingabepuffer

-Erweiterungen

-Zeilen erzeugen

Basisumwandlung

BCC . ow ce ee tt ew wes

BEQ ... 2.2 ee ee tet et et te wee

Betriebssystem

Bewegungsbereich

Bildschirm ein/aus

Binär

-Addition

-Arithmetik

-Subtraktion

- 171 -

13.8.1.

Blockgrafik0.0.4. 5.1.

BMI En 13.8.2

BNE eee ee ee ee ene 13.8.2

BPL 1... . eee ee ee ee ns 13.8.2

Boolesche Operationen 1.4.3.

C

Carry-Bit 2... ce eee ee 13.4., 13.5

Charaktergenerator 3.2., 5.3

" verlegen 5.4.

CLO 2... ee ee ee ee eee 13.8.1

Color-RAM-.0006- 5.3

Color-RAM-Zeiger 5.6

Cursor

ein/auSi.0068. 5.6

SETZEN 2220000. 5.6.

~Spalte 202.02 ee 5.6.

-Zeile .. 2... eee ee, 5.6

D

Datazeiger0.4. 12.5

Datenbewegungen 13.8.3.

Datenbus2--. 1.1.

Datenmanipulationen 13.8.1.

DEC 2... et es 13.8.1.

DEX 1... ce ee ee ees 13.8.1.

DirectorieS00.. 4.3.

Direktbefehle 13.9

Division0 eee eee 13.6

E

Einbytebefehle:..... 13.9.

Eingabegerat 4.4.

Einschaltbild 12.6

End ohne Ready 12.6

EOR 1... ee ee ee ee 13.8.1

Exklusiv-Oder 1.4.3

Extended-Color-Modus 5.3.

172 -

File

aktueller 4.4.

offene 4.4.

schließen 4.4.

FlieBkommaakku 1.4.2.

FORTH2.0 0002200 0ee 12.8

FRE-Funktion 3.4.

Frequenz2. 00. c ee encase 8.1.,

G

Gerät, aktuelles 4.4.

Grafik einschalten 6.3.

Grafikseiten speichern 4.1.

Grafiktablet Deren 10.4

H

Halten-.--.2-2206- 8.1.,

Hexadezimalsystem 13.3.

Highbyte0004. 2.2.

Hochauflösende Grafik 6.1.

Hüllkurve 22 sonne 8.1.,

I

INC J... ee ee ee ee es 13.8.1

INPUT 2.02.00. ee ee ee ene 5.6

Interpreter22000- 1.2.,

Interrupt2 0002 ee 1.2.

INX 2... 2... eee ee ee eee 13.8.1

I/O-Bereich00- 1.5.,

J |

IMP Lol. ce ee ee ens 13.8.2

Joystick ee ee 10.1

I 15) nee 13.8.2

- 173 -

K
Kassettenmotorflag 4.4.

Kollisionen06. 7.2.

Kreise zeichnen 6.6.

L

Ladeprogram rennen 3.3.

Lautstarke 0002 ee 8.1.,

LDAoooo oo none eeeeeneen 13.8.3

1 1) 3) GE 13.8.3.

Lightpen00 eee eee 10.3.

Linien ziehen 6.5.

Listschutz20005 12.2.

LOGO eee ee ee ees 12.8

Lowbyte .. 2.2... eee te ee es 2.2

LSR wo... ee eee ees 13.8.1

M

Maschinensprache 13.1.

Merge per Hand 4.2.

Multi-Color

Grafik een. 6.1.
-Modus2 222er 5.3.

~SpritesS ce ce ee eee 7.1.

Multiplikation 13.6.

Multiplikationsprogramm 13.13.

N

NOT 1... .. 0. ee eee eee ees 1.4.3

0

OR Lo. cee ee eee 1.4.3

ORA .. 1... ee eee eee eens 13.8.1

P .

Paddleabfrage 10.2.

PASCAL--24000- re 12.8.

Parallelport 11.1.3.

PEEK een . 1.4.1.

POKE 2.2. e ee eee ee ee ee 1.4.1

Prioritaten4. 7.3

Proportionaljoystick 10.4.

Punkte setzen 6.4.

R

relokatibel005. 3.2.
Renew-. 022 eee eee eee 12.4.

Renumber2000 0c eae 12.3.

Repeatfunktion 9.4.

Resettaster06-. 1.6.

Restore2.02 eee eee 12.5.

RTS Vooooonneeeeeeeenreeennnn 13.8.2.

S

SAVE-Schutz2-. 12.6.

153 = | Oe 13.8.1.

Schiebebefehle 13.14.

Schleife-. 13.13.

Schnittstellenbausteine 11.1.

Schreibschutzkerbe 4.3.

Schriftfarbe 5.6.

SEC 2... ee ee ee eee une. 13.8.1.

Sekundaradresse 4.4.

serieller Port 11.1.1.

SHIFT-Muster 9.2.

SID

~Arbeitsweise 8.1.

-Programmierung 8.2.

Simulator22400e ee 13.9.

Speicher, freier4. 3.4.

Speicher schützen 3.3.

Speicher

~Aufteilung 3.2.

-Belegungsplan 3.1.

-Uberlagerung 1.5.

Sprite

— 175 -

~Grafikc00 cues 7.4.

-Zeiger nenn 5.5.

Sprites speichern 7.4.

Sprungbefehle 13.8.2.

STA LL. ee ee ee 13.8.3

Stack 2... Ionen 2.2

Start-Stop-Bit 8.1.,

Statusvariable 4.5.

Strukturlerung 12.7.,

STX oo oo onen nenn 13.8.3

Subtraktionsprogramm 13.12

SYS on ooo nennen nne 1.4.2

SYS-Erweiterungen 13.15

T

Takt ... 2... eee eee eee ee un 13.2

Tastatur

~Abfrage2 0c wees 9.2

-Code2. 2.0 eee ewes 9.5

~-Matrix .. 2... eee ee eee eee 9.1.

~Puffer ... es 9.1.,

-Sperre ce ee ew ee es 9.3

TAX 2... ec ee et ee ee es 13.8.3

Timer .. 2... ee ee ee 11.1.2

a Me ME: BER 12.6

TOKENS--00 2c eee eee 1.3

TYACe .. 1. eee ee ee ee ee eee 13.10

TXA Lo. ee ee ee ee ee ees 13.8.3

U

Unterprogramme 13.13.

USER-PORT nennen 11.2.
USR .. cee ee ee eee 1.4.2

- 176-

V

Vergleiche ..

VIC

Video-RAM

...verlegen

-Zeiger ...

Vorzeichenbit

Z

Zeilenformat

Zeilennummer,

Zeropage

- 177 -

 SCHULBUCH —

Ein neues DATA BECKER BUCH, COMMODORE 64
das den Einsatz des COMMO-

DORE 64 in der Schule ent-
scheidend mitprägen dürfte,
wurde von Professor Voß

geschrieben. Besonders: für

"Schüler der Mittel- und Ober-
stufe geschrieben, enthält

das Buch viele interessante

Problemldosungs- und Lernprogramme, die beson-

ders ausführlich und leicht verständlich beschrie-
ben sind. Sie ermöglichen ein intensives und anre-

EIN DATA BECKER BUCH

gendes Lernen, unter anderem mit foigenden The-.
men: Satz des Pythagoras, quadratische Gleichun-

.gen, geometrische Reihen, Pendelbewegungen,
mechanische Hebel, Molekülbildung, exponentiel- .
leswachstum, Vokabeln lernen, unregelmäßigeVer-
ben, Zinseszinsrechnung. Ein kurzer Überblick über
die Grundlagen der EDV, eine knappeWiederholung
der wichtigsten BASIC-Elemente und eine Einfüh-
rung in die Grundziige der Problemanalyse vervoll-
ständigen das Ganze. Mit diesem Buch machen die
Hausaufgaben wieder Spaß! —

DAS SCHULBUCH ZUM COMMODORE 64, 1984, über 300
Seiten, DM 49,-

Tempo!
MASCHINENSPRACHE FÜR
FORTGESCHRITTENE ist be-
reits das zweite Buch von .fjj *anssnacne IE
Lothar Englisch zum Thema Ülllsr ronmmesemermene| 1)
Maschinenprogrammierung i
mit dem COMMODORE 64.
Hier wird von der Problem-
analyse bis zum Maschinen-
sprachealgorithmus in die
Grundlagen der professio-
nellen Maschinensprache-
programmierung eingeführt. In diesem Buch fin-
den Sie unter anderem folgende Themen behan-
delt: Problemlösungen in Maschinensprache, Pro-
grammierung von Interruptroutinen, Interrupt-
quellen beim COMMODORE 64, Interrupts durch
ClAs und Videocontroller, Programmierung der
Ein-Ausgabe-Bausteine, die CIAs des COMMODORE
64, Timer, Echtzeituhr, parallele und serielle Ein/
Ausgabe, BASIC-Erweiterungen, Programmierung
eigener BASIC-Befehle und -Funktionen, Möglich-
keiten zur Einbindung ins Betriebssystem sowie
viele weitere Tips & Tricks zur Maschinenprogram-
mierung. Dieses Buch sollte jeder haben, der wirk-
lich intensiv mit der Maschinensprache des COM-
MODORE 64 arbeiten will.

MASCHINENSPRACHE FÜR FORTGESCHRITTENE, 1984,
Ca. 200 Seiten, DM 39-

EIN DATA BECKER BUCH

und Hardwareinformatio-

Macht Druck.
DAS GROSSE DRUCKERBUCH
für Drucker-Anwender mit
COMMODORE-Computern ist
endlich da! Es enthält eine
riesige Sammlung von Tips
& Tricks, Programmlistings

nen. Rolf Brückmann und
Klaus Gerits beschäftigen
sich mit Sekundäradressen,
Anschluß einer Schreib-
maschine am Userport, Druckerschnittstellen (Cen-
tronics, V 24, IEC-Bus), hochauflösender Grafik, Text-
und Grafikhardcopy, Grafik mit Standardzeichen-
satz, formatierter Datenausgabe, Plakatschrift,
Textverarbeitung und vieles mehr. Zusätzlich wird
das Betriebssystem des MPS801 zerlegt, mit Prozes-
sorbeschreibung (8035), Blockschaltbild und einem
ausführlich komnäentierten ROM-Listing. Thomas
Wiens schrieb def Teil über die Programmierung
des PlottersVC-1520: Handhabung desPlotters, Pro-
grammierung von Sonderzeichen, Funktionendar-
stellung, Kuchen und Säulendiagramme, Entwurf
dreidimensionaler Gegenstände. Natürlich wieder
viele interessante Listings. Unentbehrlich für
jeden, der einen COMMODORE 64 oder VC-20 und
einen Drucker besitzt.

DAS GROSSE DRUCKERBUCH, 1984, über 300 Seiten,
DM 49- .

 EIN DATA BECKER BUCH

Tausend-
SaSSa.
Fast alles, was man mit dem
COMMODORE 64 machen
kann, ist in diesem Buch aus-
führlich beschrieben. Es ist
nicht nur spannend zu lesen
wie ein Roman, sondern ent-
hält neben nützlichen Pro-
grammlistings vor allem
viele, viele Anwendungs- ,
möglichkeiten des C64. Dabei wurde besonderer
Wert darauf gelegt, daß das Buch auch für Laien
leicht verständlich ist. Eine Auswahl aus der The-
menvielfalt: Gedichte vom Computer, Einladung
zur Party, Diplomarbeit - professionell gestaltet,
individuelle Werbebriefe, Autokosten im Griff, Bau-
kostenberechnung, Taschenrechner, Rezeptkartei,
Lagerliste, persönliches Gesundheitsarchiv, Diät-
plan elektronisch, intelligentes Wörterbuch, kleine
Notenschule, CAD. für Handarbeit, Routenoptimie-
rung, Schaufensterwerbung, Strategiespiele. Teil-
weise sind Programmnlistings fertig zum Eintippen
enthalten, soweit sich die „Rezepte“ auf 1-2 Seiten
realisieren ließen. Wenn Sie bisher. nicht immer
wußten, was Sie mitIhrem 64er alles anfangen soll-
ten, nach dem Lesen des IDEENBUCHES wissen Sie's
bestimmt!

DAS IDEENBUCH ZUM COMMODORE 64, 1984, über 200
Seiten, DM 29,-

Prof. 64.
Ein faszinierendes Buch, um COMMODORE 64
in die Welt der Wissenschaft FUR TECHNIK

WISSENSCHAFT einzusteigen, hat Rainer
Severin geschrieben. Zu-

nächst werden Variablen- Hay
typen, Rechengenauigkeit pit
und nützliche POKE-Adres- Sauger
sen des COMMODORE 64 1.2, TIIT
bezüglich den Anforderun-
gen wissenschaftlicher Pro-
bleme analysiert. Verschie-
dene Sortieralgorithmen wie Bubble, Quick und
Shell-Sort werden miteinander verglichen. Die Pro-
grammbeispiele aus der Mathematik nehmen
dabei eine zentrale Stelle im Buch ein: Nullstellen
nach Newton, numerische Ableitung mit dem Dif-
ferenzenquotienten, lineare und nichtlineare
Regression, Chi-Quadrat-Verteilung und Anpas-
sungstest, Fourieranalyse und -Synthese, Skalar-,
Vektor- und Spatprodukt, ein Programmpaket zur
Matrizenrechnung fur Inversion, Eigenwerte und
vieles weitere mehr. Programme aus der Chemie
(Periodensystem), Physik, Biologie (Schadstoffe in

. Gewässern - Erfassung der Meßwerte), Astronomie
(Planetenpositionen) und Technik (Berechnung
komplexer Netzwerke, Platinenlayout am Bild-
Schirm) und viele weitere Softwarelistings zeigen
die riesigen Möglichkeiten auf, diederComputerin
Wissenschaft und Technik hat.

COMMODORE 64 FÜR TECHNIK UND WISSENSCHAFT,
1984, Uber 200 Seiten, DM 49-

Grundkurs.
Das neue BASIC-Trainings- pas

führliche, didaktisch gut TRAININGSBUCH
geschriebene Einführung in zum
das CBM BASIC V2. Alle
Befehle werden ausführlich
erläutert. Dieses Buch geht
aber über eine reine Befehls-
beschreibung hinaus, es wird EIN DATA BECKER BUCH

eine fundierte Einführung in’
die Programmierung gege-
ben. Von der Problemanalyse bis zum fertigen
Algorithmus lernt man das Entwerfen eines Pro-
grammes und den Entwurf von Datenflußplänen.
ASCII-Code und verschiedene Zahlensysteme wie
hexadezimal, binär und dezimal sind nach der Lek-
ture des Buches keine Fremdworte mehr. Die Pro-
grammierung von Schleifen, Sorungen, bedingten

 s$prüngen lernt man leicht durch „learning by
doing“ So enthält das Trainingsbuch viele Auf-
gaben, Übungen und unzählige Beispiele. Den
Schluß des Buches bildet eine Einführung ins pro-
fessionelle Programmieren, in der es um mehr-
dimensionale Felder, Menuesteuerung und Unter-
programmtechnik. geht. Endlich ein Buch, das
Ihnen wirklich hilft, solide und sicher BASIC zu ler-
nen.

BASIC TRAININGSBUCH ZUM COMMODORE 64, 1984,
ca. 250 Seiten, DM 39-

COMMODORE 64

Der COMMODORE 64 ist ein

‚zu nutzen. DieThemenbreite

für Hobbyelektroniker hat

beschrieben und kurz die

Sang und Klang!

Musikgenie. DAS MUSIKBUCH Dochesi
hilft Ihnen, die riesigen
Klangmöglichkeiten des C64

Das
MUSIKBUCH

reicht von einer Einführung
in die Computermusik über
die Erklärung der Hardware-
grundlagen desCOMMODORE
64 und die Programmierung
in BASIC bis hin zur fort-
geschrittenen Musikpro-
grammierung in Maschinensprache. Einiges aus
dem Inhalt: Soundregister des COMMODORE 64,
Gate-Signal, Programmierung der "ADSR"Werte,
Synchronisation und Ring-Modulation, Counter-
prinzip, lineare und nichtlineare Musikprogram-
mierung, Frequenzmodulation, Interrupts in der
Musikprogrammierung und vieles mehr. Zahl-
reiche Beispielprogramme, komplette Songs und
nützliche Routinen ergänzen den Text. Geschrie-
ben wurde das Buch von Thomas Dachsel, dem —
Autor der weltbekannten Musikprogramme Syn-
thimat und Synthesound. Erschließen Sie sich die
Welt des Sounds und der Computermusik mit dem
Musikbuch zum C-64!

DAS MUSIKBUCH ZUM COMMODORE 64, Uber 200 Sei-
ten, DM 39-

Nützlich.
Das Trainingsbuch zu MULTI-
PLAN bietet eine gute Einfiih-
rung in die Grundlagen der
Tabellenkalkulation. Dabei
wird großer Wert auf ein
möglichstschnellesEinarbei-
ten in die wichtigsten
Befehle gelegt, so daß man
bald sicher mit MULTIPLAN
arbeiten kann, ob nun auf if E
dem COMMODORE 64 oder PEN PET
einem anderen Rechner. Am
Ende wird man in der Lage sein, den umfangrei-

chen Befehlssatz von MULTIPLAN auch kommerziell
zu nutzen. Übungen am Ende jedes Kapitelssorgen
dafür, daß man das Gelernte lange behält. Grund-
lage des Buches sind viele Seminare, die der Autor
zu MULTIPLAN konzipiert und erfolgreich durch-
geführt hat.

DAS TRAININGSBUCH ZU MULTIPLAN, 1984, ca. 250 Sei-
ten, DM 49-

Fur Tuftier.
Ein hochinteressantes Buch

Rolf Brückmann vorgelegt.
Er ist ein engagierter Techni- DER
ker, für den der Computer jj) COMMODORE 6s
Hobby und Beruf zur glei- | over nssr er weır
chen Zeit ist. Vor allem aber jj
kennt er den C-64 in- und aus-
wendig. So werden einfüh-
rend die Schnittstellen des
COMMODORE 64 detailliert

Funktionsweise der CIAS 6526 erläutert. Hauptteil
des Buches sind die Beschreibungen der vielfälti-
gen Einsatzmöglichkeiten des COMMODORE 64. Die
vielen Schaltungen, von Rolf Brückmann alle selbst

entwickelt, sind jeweils umfangreich dokumen-
tiert und leichtverständlich erklärt. Die Reihe der
hier ausführlich behandelten Anwendungen mit
dem COMMODORE 64 ist äußerst umfangreich:
Motorsteuerung, Stoppuhr mit Lichtschranke,
Lichtorgel, A/D-Wandler, Soannungsmessung, Tem-
peraturmessung und vieles mehr. Dazu kommen
noch eine Reihe kompletter scha ungen zum Sel-
berbauen, wie ein EPROM Progra miergerat fur
den C-64, eine EPROM-Karte, ein ‘Frequenzzahler
und Sprachein/ausgabe (!). Zusätzlich sind jeweils
Schaltplan, Softwarelisting und zu einigen Schal-
Lungen sogar zusätzlich Platinenlayouts vorhan-
en

DER COMMODORE 64 UND DER REST DER WELT, 1984,
ca. 220 Seiten, DM 49,-

Computerkünstler.
Das Grafikbuch zum COMMODORE 64 Buch aus der
Bestseller-Serie von DATA BECKER stammt aus der

Feder von Axel Plenge. Es geht weit über die reine

Hardware- Beschreibung der

Grafikeigenschaften desC-64
hinaus. Der Inhalt reicht von

den Grundlagen der Grafik-
programmierung bis zum

Computer Aided Design. Es DASS
ist ein Buch für alle, die mit GRAFIKBUCH
ihrem C-64 kreativ tätig sein
wollen. Themen sind z.B.: Zei-
chensatzprogrammierung,

bewegte Sprites, High-Re-
solution, Multicolor-Grafik,
Lightpenanwendungen, Be- _ empavane

triebsarten des VIC, Verschie- HL.
ben der Bildschirmspeicher,
IRQ-Handhabung, 3-Dimensionale Grafik, Projektio-
nen, Kurven- Balken- und Kuchendiagramme, Lauf-

schr iften, Animation, bewegte Bilder. Viele Pro-

_ grammlistings und Beispiele sind selbstverständ-
lich. Das COMMODORE-BASIC V2 unterstützt die her-

ausragenden Grafikeigenschaften des C-64 be-
kanntlich kaum. Hier helfen die vielen Beispielpro-
gramme in diesem Buch weiter, die die faszinie-
rende Weit der Computergrafik jedermann zu-
gänglich machen. Kompetent ist der Autor dazu wie
kaum ein anderer, schließlich hat er das äußerst lei-
stungsfähige Programm SUPERGRAFIK geschrieben.

_ DAS GRAFIKBUCH ZUM COMMODORE 64, 1984, 295 Sei-
ten, DM 39-. |

Vielfalt.
Auf dem neuesten Stand ist -
VC-20 TIPS & TRICKS von Dirk
Paulissen gebracht worden,

. der über hundert Seiten
hinzufügte. Bisher schon
enthalten waren Informatio-
nen über Speicheraufbau

Angerhausen Riedner
Schellenberger Paulissen

VC-20
Tips & Tricks

des VC-20 und die Erweite- Eine Fundgrube tür den
rungsmöglichkeiten, ein Gra-
fikkapitel über program-
mierbare Zeichen, . Lauf- FIN DATA BECKER BUCH
schrift und die Supererwei-
terung. Stark erweitert wurde der Abschnitt über
POKEs und andere nützliche Routinen. Obesum die
Programmierung der Funktionstasten, Pro-

. gramme die sich selber Starten, „Maus“ ‚Simulation
mit dem Joystick oder die Anderung von Speicher-
bereichen geht, man ist immer wieder über die
Fülle der Möglichkeiten erstaunt. Der Clou dieses

Buches sind aber die vielen Programmiistings. Die
BASIC-Erweiterungen allein stellen schon ein erst-
klassiges Toolkit dar: APPEND (Anhängen von Pro-
grammen, AUTO (automatische Zeilennummerie-
rung), BASIC-Befehle auf Tastendruck, PRINT POSI-
TION, UNNEW, Strings größer als88 Zeichen einlesen
und vieles mehr. Die Bandbreite reicht von Spielen
wie Goldgräber oder Starshooter bis zu nützlichen
Programmen wie Cassetteninhaltsverzeichnis und
-Katalog mit automatischem Suchen nach Dateien
und einem Terminkalender. Fur den VC-20 Anwen-
der ist dieser 324 Seiten-Wälzer eine wahre Fund-
grube, in der. es immer etwas neues zu entdecken
gibt

VC-20 TIPS & TRICKS, 3. erweiterte und Uberarbeitete
Auflage, 1984, 324 Seiten, DM 49-

interessant.
Einen guten Einstieg in PAS-
CAL bietet dieses Trainings-
buch. Es gibt eine leichtver-
standliche Einführung, ,
sowohl in UCSD-PASCAL wie mammasauch
auch in PASCAL64, wohßei “
allerdings EDV-und BASIC- PASCAL
Grundkenntnisse voraus- uno pascal 64
gesetzt werden. Der Autor,
Ottmar Korbmacher, ist Stu-
dent der Mathematik. ihm .
gelingt es, in einem sprach-
lich aufgelockerten Stil mit vielen interessanten
Beispielprogrammen, dem Leser Programmstruk-
turen, Ein/Ausgabe, Arithmetik und Funktionen,
Prozeduren und Rekursionen, Sets, Files und
Records näherzubringen. Die Übungsaufgaben am
Ende jeden Kapitels helfen dabei, das Gelernte zu
vertiefen. Ein Anhang mit allen PASCAL-Schlüssel-
worten, der ansich schon ein umfangreiches Lexi-
kon darstellt, macht das Buch für. jeden PASCAL-
Anwender interessant.

DAS TRAININGSBUCH ZU PASCAL, 1984, ca. 250 Seiten;
DM —

r-

EIN DATA BECKER BUCH

Bewährt.
Die bereits dritte Auflage
von VC-20 INTERN ist wieder
erheblich erweitert worden.
Das Buch beschäftigt sich
ausführlich mit der Technik
und dem Betriebssystem des
VC-20. Dazu gehört natürlich
zuerst einmal ein ausführlich
dokumentiertesROM-Listing.
Dazu gehört auch die Bele-
gung der Zeropage, dem
wichtigsten Speicherbe-
reich für den 6502-Prozessor, eine übersichtliche
Auflistung der Adressen aller Betriebssystemrouti-
nen, ihrer Bedeutung und ihrer Übergabeparame-
ter. Dies ermöglicht dem Programmierer endlich,
den VC-20 von Maschinensprache aus sinnvoll ein-
zusetzen. Denn warum Routinen, die bereits vor-
handen sind, noch einmal schreiben? Weiterer
Inhalt: Einführung in die Maschinensprache -
Maschinensprachemonitor, Assembler, Disassem-
bler - Verbindung von Maschinensprache- und
BASIC-Programmen - Beschreibung der wichtigen
IC’s des VC-20 - Blockschaltbild - drei Original COM-
MODORE-Schaltpläne. Das Buch braucht jeder der
sich intensiv mit der Maschinenspracheprogram-
mierung des VC-20 auseinandersetzen möchte.

VC-20 INTERN, 3. Auflage, 1984, ca. 230 Seiten, DM 49,-

EIN DATA BECKER BUCH

Starthilfe!
DassolltelhrerstesBuchzum
COMMODORE 64 sein: 64 FÜR
EINSTEIGER ist eine sehr
‚leicht verständliche Einfüh-
rung in Handhabung, Ein-
satz, Ausbaumöglichkeiten FÜR EINSTEIGER

, und Programmierung des EDV
COMMODORE 64, die keinerlei el
Vorkenntnisse voraussetzt. »
Sie reicht vom Anschluß des et |
Geräts über die Erklärung EN DATA BECKER BUCH
der einzelnen Tasten und

-Funktionen sowie die Peripheriegeräte und ihre |
Bedienung bis zum ersten Befehl. Schritt für
Schritt führt das Buch Sie in die Programmier-
sprache BASIC ein, wobei Sie nach und nach eine
komplette Adressenverwaltung erstellen, die Sie
anschließend nutzen können. Zahlreiche Abbildun-
gen und Bildschirmfotos ergänzen den Text. Viele
Anwendungsbeispiele geben nützliche Anregun-
gen zum sinnvollen Einsatz des COMMODORE 64. Das
Buch ist sowohl als Einfuhrung als auch als Orientie-
rung vor dem 64er Kauf gut geeignet.

64 FOR EINSTEIGER, 1984, ca. 200 Seiten, DM 29-

Von A bis Z.
So etwas haben Sie gesucht: Umfassendes Nach-
schlagewerk Zum COMMODORE 64 und seiner Pro-
grammierung. Aligemeines Computerlexikon mit
Fachwissen von A-Z und
Fachwörterbuch mit Über-
setzungen wichtiger engli-
scher Fachbegriffe - das
DATA BECKER LEXIKON ZUM §&
COMMODORE 64 stelit prak-
tisch drei Bücher in einem
dar. Es enthält eine unglaub-
liche Vielfalt an Informatio-
nen und dient so zugleich als
kompetentes Nachschlage-
werk und als unentbehr-
liches Arbeitsmittel. Viele
Abbildungen und Beispiele ergänzen den Text. Ein
Muß für jeden COMMODORE 64 Anwender!

DAS DATA BECKER LEXIKON zuM COMMODORE 64,
1984, 354 Seiten, DM 49,-

Fundgrube.
64 Tips & Tricks ist einehoch-
interessante Sammlung von
Anregungen zur fortge-
schrittenen Programmie-
rung des COMMODORE 64, 64
POKEs und andere nütz- . :
liche Routinen, interessan- ||| ZPs& licks
ten Programmen - sowie ki nti i an
interessanten Programmier-
tips & -tricks. Aus dem inhalt:
3D-Graphik in BASIC —-Farbige
Balkengraphik - Definition
eines eigenen Zeichensatzes - Tastaturbelegung
und ihre Anderung - Dateneingabe mit Komfort -
Simulation der Maus mit einem Joystick -BASIC für
Fortgeschrittene - C-64 spricht deutsch -CP/M auf
dem COMMODORE 64 - Druckeranschluß über den
USER-Port - Datenübertragung von und zu ande-
ren Rechnern -Expansion-Port-SynthesizerinSte-
reo -Retten einer nichtordnungsgemäß geschlos-
senen Datei - Erzeugen einer BASIC-Zeile in BASIC -
Kassettenpuffer als Datenspeicher - Sortieren von
Stringfelder - Multitasking auf dem COMMODORE
64 — POKE’s und die Zeropage - GOTO, GOSUB und
RESTORE mit berechneten Zeilennummern, INSTR
und STRING-Funktion - Repeat-Funktion für alle

Jordan Schellenberger

DAS
DATA BECKER

EIN DATA BECKER BUCH

EIN DATA BECKER BUCH

Tasten - und vieles andere mehr. Alle Maschinen-
programme mit BASIC-Ladeprogrammen. 64 Tips &
Tricks ist eine echte Fundgrube für jeden COMMO-
DORE 64 Anwender. Schon über 65000mal verkauft!

64 TIPS & TRICKS, 1984, über 300 Seiten, DM 49,-

Know-how!
350 Seiten dick ist die 4.
erweiterte und überarbei-
tete Auflage von 64 INTERN
geworden. Das bereits über
65000mal verkaufte Stan-
dardwerk bietet jetzt noch
mehr Informationen. Hinzu-
gekommen ist ein Kapitel
über den IEC-Bus und viele,
viele Ergänzungen, die sich
im Laufe der Zeit angesam-
melt haben. Ebenfalls über- Side
arbeitet und noch ausführlicher ist jetzt die Doku-
mentation des ROM-Listings. Weitere Themen:
genaue Beschreibung des Sound- und Video-Con-
trollers mit vielen Hinweisen zur Programmierung
von Sound und Grafik, der Ein/Ausgabesteuerung
(CIAs), BASIC-Erweiterungen (RENEW, HARDCOPY,
PRINTUSING), Hinweise zur Maschinenprogrammie-
rung wie Nutzung der E/A-Routinen des Betriebs-
systems, Programmierung der Schnittstelle RS 232,
ein Vergleich VC20 - C-64 - CBM zur Umsetzung von
Programmen. Dies und viele weitere Informatio-
nen machen das umfangreiche Werk zu einem
unentbenhrlichen Arbeitsmittel für jeden, der sich
ernsthaft mit Betriebssystem und Technik des C-64
auseinandersetzen will. Zum professionellen
Gehalt des Buches tragen auch zwei Original-COM-
MODORE-Schaltpläne zum Ausklappen und zahl-
reiche ausführlich beschriebene und dokumen-
tierte Fotos, Schaltbilder und Blockdiagramme bei.

6AINTERN, 4.überarbeiteteund erweiterte Auflage,
1984, ca. 350 Seiten, DM69-

EIN DATA BECKER BUCH

Erfolgreich.
64 für Profis zeigt, wie man
erfoigreich Anwendungs- | |
probleme in BASIC löst und a
verrät die Erfolgsgeheim-
nisse der Programmier- 64
profis. Vom Programment- für Profis
wurf über Menüsteuerung,
Maskenaufbau, Parametri-
sierung, Datenzugriff und
Druckausgabe bis hin zur
guten Dokumentation wird
anschaulich mit vielen Bei-
spielen dargestellt wie Profi-Programmierung vor
sich geht. Besonders stolz sind wir auf die völlig
neuartige Datenzugriffsmethode QUISAM, die in
diesem Buch zum ersten Mal vorgestellt wird.
QUISAM erlaubt eine beliebige Datensatzlänge, die

EIN DATA BECKER BUCH

_ dynamisch mit der Eingabe der Daten wächst. Eine
lauffertige Literaturstellenverwaltung veran-
schaulicht die Arbeitsweise von QUISAM. Nebendie-
sem Programm finden Sie noch weitere Pro-
grammezurLager- und Adressenverwaltung, Text-
verarbeitung und einen Reportgenerator. Alle
diese Programme sind mit Variablenliste versehen

und ausführlich beschrieben. Damit sind diese für
Ihre Erweiterungen offen und können von Ihnen
an Ihre persönlichen Bedürfnisse angepaßt wer-
den. Steigen Sie in die Welt der programmierprofis
ein.

64 FÜR PROFIS, 2. Auflage, 1984, ca. 300 Seiten,

DM 49-

Rundum gut!
Endlich ein Buch, das Ihnen

ausführlich und verständlich
die Arbeit mit der Floppy VC-
1541 erklärt. Das große

Floppybuch ist für Anfänger,

Fortgeschrittene und Profis
gleichermaßen. interessant.

Sein Inhalt reicht von der

Programmspeicherung bis

zum DOS-Zugriff, von der

sequentiellen Datenspeiche- EIN DATA BECKER BUCH

rung bis zum Direktzugriff,

von der technischen Beschreibung bis zum aus-

führlich dokumentierten DOS-Listing, von den
Systembefehlen bis zur detaillierten Beschreibung
der Programme auf der Test-Demo-Diskette. Exakt
beschriebene Beispiel- und Hilfsprogrammeeergän-
zen dieses neue Superbuch. Aus dem Inhalt: Spei-
chern von Programmen -Floppy-Systembefehle -
Sequentielle Datenspeicherung - relative Daten-
speicherung - Fehlermeldungen und ihre Ursa-
chen - Direktzugriff - DOS-Listing der VC-1541 -
BASIC-Erweiterungen und Programme - Overlay-
technik - Diskmonitor - IEC-Bus und serieller. Bus -
Vergleich mit den großen CBM-Floppies.EinMuß für
jeden Floppy-Anwender! Bereits über 45.000mal
verkauft.

BASIC-PLUS.
SIMON’s BASIC ist ein Hit -
wenn man es richtig nutzen
kann. Auf über 300 Seiten
erklärt Ihnen das DATA
BECKER Trainingsbuch detail- SIMON’s
liert den Umgang mit den BASIC
über 100 Befehlen des TE
SIMON'’s BASIC. Alle Befehle bee reiningsbuch# um

SIMON's BASIC

werden ausführlich dar-
gestellt, auch die, die nicht
im Handbuch stehen! Natür- FIN DATA BECKER BUCH
lich zeigen wir auch die ’
Macken des SIMON’s BASIC und geben wichtige Hin-
weise wie man diese umgeht. Natürlich enthält das
Buch viele Beispielprogramme und viele inter-
essante Programmiertricks. Weiterer Inhalt: Ein-
führung in das CBM-BASIC 2.0 - Programmiierhilfen
- Fehlerbehandlung - Programmschutz - Pro-
grammstruktur - Variablen - Zanlenbehandlung -
Eingabekontrolle-Ein/ Ausgabe Peripheriebefehle
- Graphik - Zeichensatzerstellung - Sprites - Musik
~SIMON'SBASIC und dieVertraglichkeit mitanderen
Erweiterungen und Programmen. Dazu ein um-
fangreicher Anhang. Nach jedem Kapitel finden Sie
Testaufgaben zum optimalen Selbststudium und
zur Lernerfolgskontrolle.

DAS TRAININGSBUCH ZUM SIMON's BASIC, 2. über-
arbeitete Auflage, 1984, ca. 380 Seiten, DM 49-

. attraktiven Superspielen

Füttern
erwünscht!

Diese beliebte umfangreiche ||| 04% BECSER's
Programmsammlung hat es
in sich. Über 50 Spitzenpro-
gramme für den COMMO-
DORE 64 aus den unterschied-
lichsten Bereichen, von

(Senso, Pengo, Master Mind,
Seeschliacht, Poisson Square,
Memory) über Grafik- und
Soundprogramme (Fourier 64, Akustograph, Funk-
tionsplotter) und mathematische Prograrhme
(Kurvendiskussion, Dreieck) sowie Utilities (SORT,
RENUMBER, DISK INIT, MENUE) bis hin zu kompletten
Anwendungsprogrammen wie ‚Videothek‘, „File
Manager“ und einer komfortablen Haushaltsbuch-
fuhrung, in der fast professionell gebucht wird. Der
Hit zu jedem Programm sind aktuelle Program-
miertips und Tricks der einzeinen Autoren zum Sel-
bermachen. Also nicht nur abtippen, sondern auch
dabei lernen und wichtige Anregungen für die
eigene Programmierung sammeln.

DATA BECKER’s GROSSE 64er PROGRAMMSAMMLUNG,
1984, 250 Seiten, DM 49-

Schrittmacher.
Eine leicht verstandliche Ein- pas
führung in die Maschinen- MASCHINENSPRACHE

spracheprogrammierung |
für alle, denen das C-64 BASIC
nicht mehr ausreicht. Sie LDA
lernen Aufbau und Arbeits- Se
weise des 6510-Mikroprozes- ‚I?
sors kennen und anwenden. EIN DATA BECKER BUCH
Dabei werden die Analogien
zu BASIC Ihnen beim Verständnis helfen. Ein weite-
res Kapitel beschäftigt sich mit der Eingabe von
Maschinenprogrammen. Dort erfahren Sie auch
alles über Monitor-Programme sowie über Assem-
bler. Zum einfachen und komfortablen Erstellen
Ihrer eigenen Maschinensprache enthält das Buch
einen kompletten ASSEMBLER, damit Sie gleich von
Anfang an komfortabel und effektiv programmie-
ren können. Weiterhin finden Sie dort einen DIS-
ASSEMBLER, mit dem Sie sich Ihre Maschinenpro-
gramme oder die Routinen des BASIC-Interpreters
und des BASIC-Betriebssystems ansehen können.
Ein besonderer Clou ist ein in BASIC geschriebener
Einzelschrittsimulator, mit dem Sie Ihre Pro-
gramme schrittweise ausführen können. Dabei
werden Sie nach jedem Schritt über Register-
inhalte und Flags informiert und können den logi-
schen Ablauf Ihres Programmes verfolgen. Eine
unschätzbare Hilfe, besonders für den Anfänger.
Als Beispielorogramm finden Sie ausführlich
beschriebene Routinen. zur Grafikprogrammie-
rung und fiir BASIC-Erweiterungen. Natürlich sind
alle Beispiele und Programme auf den C-64 zuge-
Schnitten.

DAS MASCHINENSPRACHEBUCH ZUM COMMODORE 64,
ca. 200 Seiten, DM 39,-

BUCH
ZUM COMMODORE 64

SYNTHIMAT
SYNTHIMAT verwandelt Ihren COMMODORE 64 in

. einen professionellen, polyphonen, dreistimmi-
gen Synthesizer, der in seinen unglaublich vie-
len Möglichkeiten großen Systemen kaum

nachsteht.

SYNTHIMAT in Stichworten:
drei Oszillatoren (VCOs) mit 7 Fußlagen und 8
Wellenformen - drei Hüllkurvengeneratoren
(ADSRS) - ein Filter (VCF) mit 8 Betriebsarten und
Resonanzregulierung - VCF mit Eingang für
externe Signalquelle - ein Verstärker (VCA) -
Ringmodulation mit allen drei VCOs - 8 soft-
waremäßig realisierte Oszillatoren (LFOS) - kräf-
tiger Klang durch polyphones Spielen - zwei
Manuale (Solo und Begleitung) - speichern von
bis zu 256 Klangregistern - schneller Register-
wechsel - speichern von 9 Registerdateien auf
Diskette - „Bandaufnahme* auf Diskette durch |
direktes Spielen - keine lästige Noteneingabe -
speichern von bis zu 9 „Bandaufnanmen' je Dis-
kette - integrierte 24 Stunden-Echtzeituhr -
einstellbares PITCH-BENDING - farblich gekenn-
zeichnete, übersichtlich angeordnete Module -
umfangreiches Handbuch —lauft mit einem Dis-
kettenlaufwerk - Diskettenprogramm.

DM 99- .

STRUKTO 64
STRUKTO 64 ist eine fantastische neue Program-
miersprache für strukturiertes Programmieren
mit dem C-64 und für alleProgrammierer geeignet,
die den C-64 als Allround-Computer einsetzen und
auf einfache Weise anspruchsvolle Programme
erstellen wollen.

STRUKTO 64 in Stichworten:
Interpretersprache, die die Vorzüge von BASIC und
PASCAL vereint - strukturiertes Programmieren -
übersichtliche Programme - leichte Erlernbarkeit
- einfache Bedienung — eingebautes Toolkit erleich-
tert das Eingeben und Verbessern von Program-
men - leichteres Arbeiten mit der Floppy - Sprite-
Editor ermöglicht das Einlesen der Sprite-Formen
direkt vom Bildschirm - Graphikbedienung wird
mit gut durchdachten Befehlen unterstützt -.
Abspielen von Musik ist unabhängig vom Pro-
grammablauf möglich -ca.80 neue Befehle -Iiefer-
bar als Diskettenprogramm - ausführliches deut-
sches Handbuch.

DM 99-

Für viele ein Traum, für die meisten bisher zu
teuer: die Rede ist von einer echten Datenbank
für den 64er. SUPERBASE 64 füllt eine Lücke.
Nicht allein die Kapazität, die verwaltet werden
kann, bewegt sich in professionellen Regionen,
die ausgeprägten Fähigkeiten des SUPERBASE
64 im Rechnen und Kalkulieren lassen dieses
Paket beinahe als Rund-Um-Software erschei-

nen.

SUPERBASE 64 in Stichworten:
maximale Datensatzlänge 1108 Zeichen, verteilt
auf bis zu 4 Bildschirmseiten - bis zu 127 Felder
pro Datensatz, wobei Textfelder bis zu 255 Zei-
chen lang sein können - insgesamt 15 Einzel-
dateien können zu einer SUPERBASE-Datenbank
verknüpft werden - Speicherkapazität nur

“ durch Diskette begrenzt - umfangreiche Aus-
wertungsmöglichkeiten und komfortabler
Report-Generator - Kalkulationsmöglichkeiten
und Rechnen - Import- (Einlesen von externen
-Daten) und Export- (Ausgabe von SUPERBASE
Dataien als sequentielle Datei) Funktionen
ermöglichen Datenaustausch mit anderen Pro-
grammen - durch leistungsfähige, eigene
Datenbanksprache auch als kompletter An-
wendungsgenerator verwendbar _

DM 393,-

 5

MASTER 64
MASTER 64 ist ein professionelles Programm-
entwicklungssystem für den C-64, das es Ihnen
ermöglicht, die Programmentwicklungszeit
auf einen Bruchteil der sonst üblichen Zeit zu
reduzieren. MASTER 64 bietet einen Programm-
komfort, den Sie nutzen sollten.

MASTER 64 In Stichworten:
70 zusätzliche Befehle - Bildschirmmasken-
generator - definieren von Bildschirmzonen -
Eingabe aus Zonen - formatierte Ausgabe -

 Abspeicherung von Bildschirminhalten - Arbei-
ten mit mehreren Bildschirmmasken — ISAM
Dateiverwaltung, in der Datensätze über einen
Zugriffschlüsselangesprochen werden können
- Datensätze bis zu 254 Zeichen -Schlüssellänge
bis zu 30 Zeichen - Dateigröße nur von Disket-
tenkapazität abhängig - Zugriff über Schlüssel
und Auswahlmasken - Bildschirm- und Druck-
maskengenerator - Erstellung beliebiger For-
mulare und Ausgabemasken - BASIC-Erweite-
rungen - Toolkitfunktionen - Mehrfachgenaue
Aremetik (Rechnen mit 22 Stellen Genauig-

eit). |

DM 198 -

TEXTOMAT
Das Bearbeiten vonTexten gehört zum wichtig-
sten Betätigungsfeld von Homecomputer-An-
wendern. So ist es auch nicht verwunderlich,
daß eine Unzahl verschiedenerTextprogramme
für den 64er angeboten wird. TEXTOMAT zeich-
net sich dadurch aus, daß er auch vom Einstei-
ger sofort benutzt werden kann. Über eine
Menuezeile können alle Funktionen angewählt
werden. Selbstverständlich beherrscht TEXTO-
MAT deutsche Umlaute und Sonderzeichen.

TEXTOMAT in Stichworten:
Diskettenprogramm - durchgehend menue-
gesteuert - deutscher Zeichensatz auch auf
COMMODORE-Druckern Rechenfunktionen für
alleGrundrechenarten -24.000 Zeichen proText
im Speicher - beliebig lange Texte durch Ver-
knüpfung - horizontales Scrolling für 80 Zei-
chen pro Zeile - läuft mit 1oder 2Floppies -frei
programmierbare Steuerzeichen - Formular-
steuerung für Randeinstellung u.s.w. - kom-
plette Bausteinverarbeitung - Blockoperatio-
nen, Suchen und Ersetzen - Serienbriefschrei-
bung mit DATAMAT - formatierte Ausgabe auf
Bildschirm - an fast jeden Drucker anpaßbar -
ausführliches deutsches Handbuch mit
Übungslektionen.

DM 99,-

PAINT PIC
Malen (!) mit dem Computer, welch eine faszinie-
rende Idee. Mit dem Malprogramm PAINT PIC für
den COMMODORE 64 wird diese Idee Realität. Mit
PAINT PIC ist es auch fur den Einsteiger leicht, fanta-
stische Computerbilder zu erstellen. Man kann die
Bilder auf Diskette abspeichern und wieder laden
und selbstverständlich steht auch weiterhin der
COMMODORE-Zeichensatz zur Verfügung. Wichtig:
PAINT PIC benötigt keine zusätzliche Hardware.

PAINT PIC in Stichworten:
Programmsteuerung: Tastatur -— Steuerung des

Stifts: Cursortasten und eckige Klammer (diag.)

(Joystick kann benutzt werden) - Routinen: Linien,

Rechtecke, Dreiecke, Parallelogramme, Kreise,

Kreisbögen, Ellipsen, Bestimmung vonMittelpunkt,
und perspektivischer Linie, Kopieren und Drehen

von Teilbildern, Verdoppeln, halbieren und spiel-

geln von Teilbildern - Modi: Malstiftmodus

(schmale Linie) Pinselmodus (8 verschiedene Brei-

ten) (Art der Linie selbst definierbar) — Textmodus

(kompl. Zeichensatz COMMODORE) (Hoch-Tief-
schrift) - Speichern: Teilbilder (Blöcke) oder ganze

Bilder — Menue: 1 Hauptmenue mit 8 Untermenues

-—mit ausfinrlicnem deutschen Handbuch - Disket-
tenprogramm - Bilder kann man auf Diskette
abspeichern.

DM 99,-

PROFIMAT
Wer sich tiefer in die Innereien des Computers
begeben will, kommt ohne besonderes Werk-
zeug nicht aus. Einerseits muß der volle Einblick
in alle Speicherbereiche möglich sein, anderer-
seits soll der Umgang mit Maschinenprogram-
men so komfortabel wiemöglich gestaltet sein.
PROFIMAT hat Lösungen für beide Probleme:
Der Maschinensprache-Monitor PROFI-MON bie-
tet alle Hilfsmittel zum Umgang mit Maschinen-
programmen; PROFI-ASS ist ein Macro-Assem-
bler, der das Schreiben von Maschinenpro-
grammen fast so einfach macht wie das Pro-
grammieren in BASIC. |

PROFIMAT in Stichworten:
Registerinhalte und Flags anzeigen - Speicher-

inhalte anzeigen - -Maschinenprogramme

laden, ausführen und Speichern _ Speicher-

bereiche durchsuchen, vergleichen, füllen und

verschieben - echter Einzelschrittmodus - Set-

zen von Unterbrechungspunkten - Schneller

Trace-Modus - Rückkehr zu BASIC -formatfreie

Eingabe - Verkettung beliebig vieler Quellpro-

gramme - erzeugter Objektcode kann in Spei-

cher oder auf Diskette gehen - formatiertes’

Assemblerlisting -— ladbare Symboltabellen -

redefinierbare Symbole - Operatoren - Unter-

stützung der Fließkommaarithmetik - be-
dingte Assemblierung - Assemblerschleifen -

MACROS mit beliebigen Parametern.

DM 99-

 KONTOMAT
KONTOMAT ist ein menuegesteuertes Einnah-
me-Überschußprogramm nach 8413) EStG mit
Kassenbuch, Bankkontenüberwachung, auto-
matischer Steuerbuchung, AFA Tabellenerstel-
lung, Kontenblättern, Ermittlung der USt.Vor-
anmeldungswerte und Monats- und Jahres-
abrechnung. Der neue KONTOMAT ist voll para-
meterisiert und läßt sich damit an Ihre Bedürf-
nisse anpassen. Für alleGewerbetreibenden, die
nicht laut HGB zur Buchführung verpflichtet
sind. KONTOMAT ist für den gewerblichen Ein-
Satz, aber auch als Lernprogramm oder zur
Haushaltsbuchführung geeignet.

KONTOMAT in Stichworten:
Diskettenprogramm - maximal 120 Konten -
Beträge mit bis zu 6Vor- und 2Nachkommastellen -
4 Mehrwert- und Vorsteuersätze - intervallmäßige
Belegeingabe - A Buchungsarten (SOLL, HABEN,
SOLL/HABEN und’HABEN/SOLL) - Anzeige der Soll-
und: Habensumme bei mehrfachen Buchungssät-
zen - komfortable Belegeingabe mit Datum,
Buchungstext, Stuerkennzeichen und Betrag -
Druck des Journals während der Belegeingabe -
Druck von umfangreichen Kontenblättern - Druck
einer Summen- und Saldenliste mit Monats- und
Jahresumsatzsummen - betriebswirtschaftliche
Auswertung mit Druckausgabe - Ermittlung und
Druckausgabe der Umsatzsteuerzahllast -Speiche-
rung der Anlagegüter und automatische Abschrei-
bung am Jahresende - übersichtliche AfA-Liste -
arbeitet mit 1 oder 2Laufwerken - umfangreiches

deutsches Handbuch.

DM 148-

FAKTUMAT
Mit FAKTUMAT ist das Schreiben von Rechnun-

gen kein Alptraum mehr. Eine Sofortfakturie-

rung mit integrierter Lagerbuchführung. Indi-

viduelle Anpassung von Steuersätzen, MaBein-

heiten und Firmendaten. Kunden- und Artikel-

stamm voll pflegbar. Schneller Zugriff auf Kun-

den- und Artikeldaten, Uber freidefinierbaren,
6-stelligen Schlüssel. Automatische Fortschrei-

bung von Artikel- und Kundendaten, individuell

nutzbar. Alles in allem die Arbeits- und Zeit-

ersparnis, die Sie sich schon immer gewünscht

haben.

FAKTUMAT in Stichworten:
voll menuegesteuert -lauft mit einer oder zwei
Floppies - Diskettenwechsel (eine Floppy) nur
beim Wechsel vom Hauptmenue ins Unterpro-
gramm und umgekehrt - mit Ausnahme des
Ausschaltens der Floppy während derVerarbei-
tung werden alle Fehler abgefangen (z.B. Druk-
'kernicht eingeschaltet - arbeitet mit 1525, 1526
(9, MPS 801, EPSON Drucker und DATA BECKER
Interface - voll parameterisiert: Firmenkopf,
MWSt. und Rabattsätze, Größe der Dateien belie-
big wählbar - 5 Zeilen für Firmenkopf je 30
Zeichen (erste Zeile erscheint auf derRechnung
in Breitschrift - 4 Mehrwertsteuer-Sätze; wäh-
rend der Rechnungsschreibung können also
Artikel mit unterschiedlichem Mehrwert-
steuer-Satz verrechnet werden - 10 Rabatt-
sätze (Rabattsatz 1 vorbelegt mit 0%), bei der
Rechnungsschreibung kann jedem Artikel ein
Rabattsatz zugewiesen werden - maximal 1900
Artikel bei 50 Kunden oder 950 Kunden bei 100
Artikel (max. Artikel = [1000-Kundenl*2; max.
Kunden = [2000-Artikell/2) - manuelle Eingabe
von Artikeln und/oder Kunde während der
Rechnungsschreibung - d.h. es können mehr
Artikel verrechnet weden als überhaupt in die
Datei passen (bei Verzicht auf Lagerbuchfüh-
rung) bzw. es können Rechnungen an Kunden
geschrieben werden, die nicht erfaßt wurden -

integrierte Lagerbuchführung mit Ausgabe

einer Inventurliste - Rechnungsbeträge und

Datum werden in der Kundendatei festgehal-

ten - Druck von: Rechnung (mit Abbuchen aus

Lager), Rechnung (ohne Abbuchen aus Lager),

Lieferschein - deutsches detailliertes Hand-

buch mit Übungs- und Anwendungsteil -

deutsche Bedienerführung innerhalb des Pro-

gramms (z.B. „Artikel nicht: vorhanden’ anstelle

„RECORD NOT PRESENT”).

DM 148, -

UNI-TAB
Heute schon die Bundesliga-Tabelle von morgen
kennen, das geht mit UNI-TAB. AlleRechnereien, die
man ohne dieses Programm nie machen würde,
lassen sich in Sekundenschnelle durchführen. Wer

_ will, kann mit simulierten Spielergebnissen den
Weltmeister '86 vorausberechnen. Aber nicht nur
Fußball-Ligen können tabellarisch erfaßt werden,
fast alle Sportarten sind UNI-TAB-fähig. Gag am
Rande: für viele Sportarten stehen die bekannten
Piktogramme zur Verfügung. |

UNI-TAB In Stichworten:
Menuesteuerung über die Funktionstasten mit
leicht verständlichen Auswahlmöglichkeiten -
Bedienerfreundlich (Mannschaften werden über
Kennzahlen gesteuert) - Ligen mit 4 bis 20 Mann-
schaften können verwaitet werden (6 bis 38 Spiel-
tage möglich) - unsinnigeLigen (2.B.13 Mannschaf-
ten sollen 5 Spieltage absolvieren) sind ausge-
schlossen - favorisierte Mannschaft kann während
des Programmablaufs durch reverse Darstellung
gekennzeichnet werden - Tabelle kann geändert
werden (wichtig bei Spielanullierungen) - drei ver-
schiedene Tabellenarten können abgespeichert
und später eingelesen werden (die aktuelle Tabelle
iunabhängig von der Vollständigkeit eines Spiel-
tagesl, der komplette Spieltag [Vollständigkeit und
Nummer des Spieitages werden automatisch
errechnet], die simulierte Tabelle [der Anwender
kann so selbst Schicksal spielen und seinen Tip spä-
ter mit dem tatsächlichen Geschehen verglei-
chen) - zwei verschiedene Arten der Saisonüber-
sicht (die statistische Übersicht zeigt an, welchen
Tabellenplatz das jeweilige Team bei welchem
Punkte- und Torverhältnis an den einzelnen Spiel-
tagen einnahm; die graphische Übersicht zeigt die
Leistungskurve jeder Mannschaft) - alle Tabellen
und Graphiken sind als Hardcopy auf einem Druk-
ker darstellbar - bei Fehlbedienung (2Z.B. ge-
wünschte Druckausgabe bei nicht eingeschalte-
tem Drucker) erscheinen leicht verständliche
deutsche Fehlermeldungen.

DM 69-

SUPERGRAFIK 64
Entdecken Sie die faszinierende Welt der Com-
putergraphik mit SUPERGRAFIK 64, der starken
Befehiserweiterung mit den vielseitigen M6g-
lichkeiten. Durch die neue verbesserte Version
jetzt noch leistungsstärker.

SUPERGRAFIK 64 in Stichworten:
2 unabhängige Graphikseiten (320x200 Punkte)
- logische Verknüpfung der beiden Graphiksei-
ten (AND, OR, EXOR) - 1 Standard Low-Graphik
Seite (80x50 Punkte) - Normalfarben Graphik
(300 x 200 Punkte) - Multicolor-Graphik (160 x200
Punkte) - verdecktes Zeichnen (z.B. Text sicht-
bar, Graphikseite 2 wird erstellt) -Textfensterin
der Graphik - 183 Befehle und Befehlskombina-
tionen (1. Für jeden Befehl wählbare Zwischen-
modi: Zeichnen, Löschen, Punktieren, Graphik-
Cursor bewegen, Zeichnen mit/ohne Farbset-
zung, Punkte zählen; 2. Durch einfache Befehle
zu steuernde Graphikfiguren: Punkt, Linie,
Linienschar, Linie vom Graphik-Cursor, Kreise,
Kreisbögen, Ellipse, Ellipsenbögen, selbstdefi-
nierbare Figuren, rotieren und vegrößern die-
ser Figuren, Rahmen, Feld, Text in Graphik; 3.
Weitere Graphikbefehle: Graphikseiten- und
Moduswechsel, Graphik löschen, Graphik inver-
tieren, Scrolling von Text und Graphik, Wählen
der Rahmen- Hintergrund- Zeichen- oder
Punktfarbe) - Speichern, Laden von Graphik
(auch verdeckt) - Kopieren des Textbildschirms
in die Graphikseite - Hardcopies für EPSON, Sei-
kosha GPA00VC, Farbildrucker Seikosha GP700
und andere mit DATA BECKER Interface - 16!
Sprites gleichzeitig auf dem Bildschirm - alle
Sprite-Eigenschaften veränderbar - Positionie-
ren und Bewegen (!) von 16 Sprites gleichzeitig
und unabhängig voneinander, während das
übrige Programm weiterläuft (IRQ) - Sprite-Kol-
lisionsüberprüfung, Joystickunterstützung -
automatische Unterbrechung des BASIC-Pro-
gramms bei Kollisionen (interrupt), Sprung in
Unterbrechungsroutine, dann Weiterfuhrung
des Hauptprogramms - komfortable Sound-
programmierung mit Verstellung aller Mög-
lichen Sound-Parameter (Lautstärke, Klang, Fil-
ter, Tonhöhe, Tonlänge), ebenfalls unabhängig
vom übrigen Programmlauf - zahlreichen Pro-
grammiertools (MERGE, RENUMBER usw. - uUMm-
fangreiche Anleitung - Diskettenprogramm.

DM 99,-

PASCAL 64
Beim Wort „Compiler“ fällt dem Eingeweihten
sicher der Begriff ‚Geschwindigkeit ein. Ein
PASCAL-Compiler sollte jedoch weitere Assozia-
tionen wecken. Strukturiertes Programmieren
heißt das Zauberwort. PASCAL wurde eigens zu
didaktischen Zwecken entwickelt und erfüllt

diese Aufgabe auch heute noch. Der PASCAL 64
Compiler bringt diese phantastische Program-
miersprache auf den 64er.
Gerade die neue, verbesserte Version unter-
stützt die Möglichkeiten des C-64 in jeder Hin-

. sicht und macht leistungsfähige Programme

. möglich.

PASCAL 64 In Stichworten:
besitzt einen sehr umfangreichen Befehlsvor-
rat - erlaubt Interruptprogrammierung und
bietet Schnittstellen zu Monitor und Assembler
- erzeugt sehr schnelle Programme in reinem
Maschinencode - unterstützt relative Dateiver-
waltung, Graphik und Sound - bietet die Daten-
typen REAL, INTEGER, CHAR und BOOLEAN sowie
Aufzahitypen und POINTER, die zu Datenstruk-
turen RECORD, SET, ARRAY und PACKED ARRAY
kombiniert werden können - erlaubt vorzeiti-
gen Abschluß von Prozeduren mit EXIT, unein-
geschränkte Rekursionen und komfortableVer-
arbeitung von Teilfeldern (Strings) - ist ein aus-
gereiftes, deutsches Produkt und wird mit aus-
führlichem Handbuch geliefert.

DM 99,-

DISKOMAT
Der Umgang mit Diskettenlaufwerken ist für
viele noch immer mit Geheimnissen belastet.
Andere stören sich an den wenig komfortabien
Diskettenbefehlen des BASIC V2. DISKOMAT
bringt Abhilfe; alle Diskettenbefehle des BASIC
4.0 stehen zur Verfügung. Außerdem können
mit dem Programm SUPERTWIN zwei 1541-Lauf-
werke wie ein Doppellaufwerk verwaltet wer-
den. Für Benutzer, die sich die Fähigkeiten der
Floppy 1541 ganz erschließen wollen, steht der
DISK-MONITOR bereit; er macht es endlich mög-
lich, den direkten Zugriff auf einzelne Blocks
einfach und bequem vorzunehmen.

DISKOMAT in Stichworten:
Diskettenprogramm - DISK BASIC unterstützt

Diskettenbefehle des BASIC 4.0 (CONCAT,
HEADER, APPEND, RENAME, OPEN, COLLECT,
DSAVE, SCRATCH, DCLOSE, BACKUP, DLOAD, DIREC-
TORY, RECORD, COPY, CATALOG, DS & DS$) - SUPER
TWIN behandelt 2 Laufwerke 1541 wie ein Dop-

pellaufwerk-DISK-MONITOR ermöglicht direkte
Analyse und Manipulation von Disketten (direk-
tes Lesen und Schreiben einzelner Blöcke,

ändern von Blöcken mittels Bildschirm-Editor,
Anzeige des Diskettenstatus, direktes Absen-

den von Disketten-Befehlen) - ausführliches

deutsches Handbuch beschreibt jeden einzel-

nen der 3 Programmteile.

DM 99,-

OB
B
B

ba
h

i
Bn
 B
at

a
R
t

et

Rae
tie

!
ee

E
E
R
 E
R
E

R
E

B
R
A
T
S
 L
!

R
E
S
T

E
I
N

N
HAUSVERWALTUNG
Jetzt können alle Hausbesitzer aufatmen: das Pro-
gramm HAUSVERWALTUNG bietet ihnen eine sehr
komfortable Verwaltung der Mietwohnungen mit
dem COMMODORE 64.
Alles, wasSie dazu brauchen, istein COMMODORE 64,
ein Diskettenlaufwerk 1541, ein anschlußfähiger
Drucker und das obengenannte Programm HAUS-
VERWALTUNG. Die nachfolgenden und viele weitere
leistungsfähige Featuresermöglichen eineäußerst
rationelle Verwaitung ihrer Mietwohnungen.

HAUSVERWALTUNG In Stichworten:
Dikettenprogramm -Verwaltung von 50 Einheiten
pro Objekt möglich - Stammdatenverwaltung für
Häuser und Mieter - Verbuchen der Miete, Neben-
kosten und Garagenmieten - Mietkontoanzeige -
Haus- und Mieteraufstellung - Mahnungen - Ver-
buchen der anfallenden Kosten - Kostengegen-
überstellung - Jahresendabrechnung mit automa-
tischem Jahresübertrag - umfangreiches deut-
sches Handbuch.

DM 198-

TRAININGSKURS zu ADA
Diese Programmiersprache der Zukunft, die das
Pentagon in Auftrag gegeben hat, wird jetzt
durch DATA BECKER auch dem C-64 Anwender
zugänglich gemacht durch den TRAININGSKURS
zu ADA, der eine sehr gute Einführung in diese
Supersprache bietet. Der dazu gelieferte Com-
piler liefert ein umfangreiches Subset der
Sprache.

ADA in Stichworten:
blockstrukturierte Programme - modularer
Aufbau der Programme - ermöglicht die
Behandlung von Ausnahmezuständen -Fehler-
überprüfung beim Übersetzen und zur Laufzeit
- ermöglicht das einfache Einbinden von
Maschinenprogrammen - sehr leichtes Arbei-
ten mit Programmbibliotheken - Programm-
diskette enthält Editor, Übersetzer, Assembler
und Disassembler - umfangreiches deutsches
Handbuch.

DM 198,-

DATAMAT
Daten verwalten kann ein schier endloses Han-
tieren mit Karteikästen und Aktenordnern
bedeuten; Kann aber auch C-64 plus DATAMAT
heißen. Dann wird Suchen und Sortieren zum
Spaß. Der DATAMAT bietet in seiner neuen Ver-
sion einiges, was in dieser Preisklasse bisher
unvorstellbar schien. Nicht nur Geschwindig-
keit und Bedienungsfreundlichkeit wurden
weiter verbessert, auch die Anpassung an die
meisten Drucker ist inzwischen machbar.

DATAMAT in Stichworten:
menuegesteuertes Diskettenprogramm, da-
durch extrem einfach zu bedienen - für jede
Art von Daten - völlig frei gestaltbare Eingabe-
maske - 50 Felder pro Datensatz - 253 Zeichen
pro Datensatz - biszu 2000 Datensätze pro Datei
je nach Umfang - Schnittstelle zu TEXTOMAT —
lauft mit 1 oder 2 Floppies - völlig in Maschinen-
sprache - extrem schnell - deutscher Zeichen-
satz auch auf COMMODORE-Druckern -fastjeder
Drucker anschließbar - ausdrucken über RS 232
- duplizieren der Datendiskette - verbesserte
Benutzerführung - Hauptprogramm komplett
im Speicher (kein Diskettenwechsel mehr) -
integrierte Minitextverarbeitung - deutsches
Handbuch mit Übungslektionen
Sie können:
jeden Datensatzin2-3Sekunden suchen -nach
beliebigen Feldern selektieren - nach allen Fel-
dern gleichzeitig sortieren - Listen in völlig
freiem Format drucken - Etiketten drucken.

DM 99,-

 ZAHLUNGSVERKEHR
Umfangreicher Zahlungsverkehr kann zur
Plage werden. Das Software-Paket ZAHLUNGS-
VERKEHR übernimmt den größten Teil dieser
Arbeit. Außerden notwendigen Fähigkeitenfür
das Ausfüllen und Auflisten von Überweisun-
gen und Schecks ist der ZAHLUNGSVERKEHR in
der Lage, Sammellisten, Einzugslisten etc. selb-
ständig zusammenzustellen.

ZAHLUNGSVERKEHR in Stichworten:

Diskettenprogramm - max. 100 Zahlungsemp-
fänger pro Diskette - drei definierbare Absen-
derbanken - 25 Zahlungsdateien.- 14 frei defi-
nierbare Formulare - Kontrolidruck bei Beleg-
eingabe möglich - Eingabe von Rechnungs-
daten oder eines Verwendungszwecks — AuS-
druck einer Sammel-Überweisungsliste - Kor-
rekturmöglichkeit der einzelnen Zahiungs-
dateien -—arbeitet mit einer oder zwei Floppies-
umfangreiches deutsches Handbuch.

DM 148,~

DAS STEHT DRIN:
Dieses Buch erklärt Ihnen leichtverstandlich den
Umgang mit PEEKs und POKESs. Mit einer riesigen
Anzahl wichtiger POKEs und ihren Anwendungsmög-
lichkeiten. Dazu wird der Aufbau des 64ers prima
erklärt:

Aus dem Inhalt:

— Betriebssystem, Interpreter
— Zeropage, Pointer und Stacks
— Charaktergenerator, Sprite-Register

— Programmierung von Schnittstellen
— Interruptprogrammierung

Dazu eine Einführung in die Maschinensprache. Für

jeden, der tiefer in die Geheimnisse seines COMMO-

DORE-64 einsteigen will.

UND GESCHRIEBEN HAT DIESES BUCH:
Hans Joachim Liesert, Abiturient, ist begeisterter
Anwender des C-64 und seines Betriebssystems.
Seine journalistischen Erfahrungen als Schülerzei-
tungsredakteur verhalfen ihm dazu, dieses Buch aus-
gesprochen interessant und spannend zu schreiben.

ISBN 3-8901 1-032-0

