Liesert

PEEKS
POKES
ZUM

COMMODORE 64

EIN DATA BECKER BUCH

Liesert

PEEKS
POKES
ZUM

COMMODORE 64

EIN DATA BECKER BUCH

ISBN 3-89011-032-0

Copyright (C) 1984 DATA BECKER GmbH
Merowingerstr. 30
4000 Diisseldorf

Alle Rechte vorbehalten. Kein Teil dieses Buches

irgendeiner Form (Druck, Fotokopie oder einem

darf in

anderen

Verfahren) ohne schriftliche Genehmigung der DATA BECKER GmbH

reproduziert oder unter Verwendung elektronischer

verarbeitet, vervielfdltigt oder verbreitet werden.

Systeme

Wichtiger Hinweis'!

Die in diesem Buch wiedergegebenen Schaltungen, Verfahren
und Programme werden ohne Riicksicht auf die Patentlage
mitgeteilt. Sie sind ausschlieBlich fiir Amateur—- und Lehr-
zwecke bestimmt und diirfen nicht gewerblich genutzt werden.

Alle Schaltungen, technische Angaben und Programme in

diesem Buch wurden von den Autoren mit groBter Sorgfalt

erarbeitet bzw. zusammengestellt wund unter Einschaltung
wirksamer KontrollmaBnahmen reproduziert. Trotzdem sind
Fehler nicht ganz auszuschlieBen. DATA BECKER sieht sich
deshalb gezwungen, darauf hinzuweisen, daB weder eine

Garantie noch die juristische Verantwortung oder irgendeine
Haftung fiir Folgen, die auf fehlerhafte Angaben zuriickgehen,
iibernommen werden kann. Fiir die Mitteilung eventueller Fehler

sind die Autoren jederzeit dankbar.

INHALTSVERZEICHNIS

VORWORT
1. DIE ARBEITSWEISE DES MIKROPROZESSORS............
1.1. SPINNE MIT 16 BEINEN..........................
1.2. WAS IST EIN BETRIEBSSYSTEM....................
1.3. WIE ARBEITET DER INTERPRETER?.................
1.4. PEEK, POKE UND ANDERE GEMEINHEITEN............
1.5. DER AUFBAU DES RECHNERS.......................
1.6. FUR EIGENE EXPERIMENTE: DER RESETTASTER.......
2. DIE ZEROPAGE. i i
1. DIE ZEROPAGE IST KEINR NULL...................
.2. POINTER & STACKS.t
3. DER SPEICHER. ittt e i
3.1. DER SPEICHERBELEGUNGSPLAN.....................
3.2. DAS MAGISCHE BYTE 1........ ...,
3.3. SPEICHER SCHUTZEN.iuuiimiunennennn.
3.4. FREIER SPEICHER............ ...t
4. MASSENSPEICHERUNG UND PERIPHERIE................
4.1. ABSPEICHERN VON GRAFIKEN, BILDSCHIRMEN USW....
4.2. MERGE PER HAND.t
4.3. DIRECTORIES.ttt ittt ittt e
4.4. VERSCHIEDENES RUND UM DIE PERIPHERIE..........
4.5. DIE STATUSVARIABLE ST...........ciuitinuennnnn.

;o ;;m

O O OO OO O O

NN NN

o b W N =

A 0 d W N =

W -

N -

DER BILDSCHIRM.ttt 43

BLOCKGRAFIK. ittt it i eeeiaa e 43
BALKENGRAFIK.ttt it 46
DIE BETRIEBSARTEN IM ZEICHENMODUS............. 48
CHARACTER-GENERATOR VERLEGEN.................. 52
VIDEO-RAM VERLEGEN........................... 54
VERSCHIEDENE TRICKS FUR DEN BILDSCHIRM........ 58
HOCHAUFLOSENDE GRAFIK....... ..ot iiiiunennennnnn 62
DIE GRAFIKMODI.t iiiitiiiinnnnnnnnn 62
DIE BIT-MAP.ttt ittty 63
GRAFIK EINSCHALTEN..................... 65
PUNKTE SETZEN. 67
LINIEN ZIEHEN.ttt 71
KREISE ZEICHNEN.t 72
SPRITES i i it ettt it e 75
MULTICOLOR SPRITES...............0iiiinnn. 75
KOLLISIONEN.ttt it et 77
PRIORITATEN & BEWEGUNGSBEREICH................ 79
IDEEN FUR DIE SPRITEPROGRAMMIERUNG............ 80
TONERZEUGUNG. i, RIS 83
DIE ARBEITSWEISE DES SID................uvuonn. 83
DIE PROGRAMMIERUNG..............ciiitiuinnnnn. 84
DIE TASTATUR. ittt ittt ittt e 89

v W VW v

g b W N

10.

10.
10.
10.
10.

11.

11.
11.

11

.3.

12.

12.
12.
12.
12.
12.
12.
12.
12.

13.

13.
13.
13.

B W N -

o N O oW N =

GLEICHZEITIGE ABFRAGE VON ZWEI TASTEN......... 90
TASTEN SPERREN., 93
DIE REPEATFUNKTION...............0 ... 95
TASTATURABFRAGE EINMAL ANDERS................. 97
JOYSTICK, PADDLES, LIGHTPEN UND ANDERES......... 99
DER JOYSTICK.ttt ittt i 99
PADDLESt e e e 101
DER LIGHTPEN. ittt 103
ANDERE ZUBEHORTEILE................c.iuiunn.nn 104
DER USER-PORT.ttt 106
ALLGEMEINES UBER SCHNITTSTELLENBAUSTEINE..... 106
WIE BENUTZE ICH DEN USER-PORT?............... 110
ANWENDUNGBEISPIELE.00t ituuneenennnn 111
BASIC & BETRIEBSSYSTEM...............tiinnnn. 113
ERZEUGEN VON BASIC-ZEILEN PER PROGRAMM....... 113
LISTSCHUTZ. ittt it ittt iii ittt e e 115
RENUMBER.ttt 117
RENEW. i i i ettt ii e 118
RESTORE. i i ittt it eeen 122
VERSCHIEDENE TRICKS............ ...t iiunnnn. 123
BASIC ERWEITERUNGEN.......................... 125
ANDERE PROGRAMMIERSPRACHEN................... 126
MASCHINENSPRACHE. 128
WAS IST MASCHINENSPRACHE UBERHAUPT?.......... 128
DER TAKRT.ttt ittt tiiaeennnennnn 129
DAS HEXADEZIMALSYSTEM.............oiiuinn.n. 129

13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.

14.

14.

14.

15.

16.

17.

©® N o U b

10.
11.
12.
13.
14.
15.

1.
2.

BINARE ADDITION.t iiiitnieiannnenenns
BINARE SUBTRAKTION............. ..o,
HOHERE RECHENARTEN.0cuiuunon..
VERGLEICHE. it iiii i
DIE BEFEHLE DES SIMULATORS...................
DER SIMULATOR.ttt
DAS ERSTE PROGRAMM.
DER ZWEITE SCHRITT: 16 BIT-ADDITION..........
SUBTRAKTION. ittt e i ieenan

ANHANG (LISTINGS)

SPEICHERBELEGUNGSPLAN. itiinnunn...

STICHWORTVERZEICHNIS.t iinnnan..

VORWORT

' sie kennen das Problem: Die mitgelieferte Anleitung des
Commodore 64 haben Sie durchgelesen. Schon nach kurzer Zeit
wollen Sie mehr wissen, als die unbestreitbar ungeniigende
CBM-Publikation hergibt. Sie fragen sich vielleicht, wie man
die grof angekiindigte Kollisionskontrolle bei Sprites
durchfiihrt, wie man hochauflosende Grafik erzeugt, oder wie
man zwei Tasten gleichzeitig abfragen kann. Im Anhang
befindet sich 2zwar eine Liste mit Einzelheiten aus der
Zeropage, aber:

1. Was ist eine Zeropage lberhaupt? und
2. Wie mache ich sie mir zunutze?
Wenn dies Ihre Probleme sind, dann halten Sie das richtige

Buch in Hé&dnden.

Wir werden zZusammen eine Reise durch Speicher und
Betriebssystem des 64ers unternehmen - wie, Sie wissen
nicht, was ein Betriebssystem ist? Macht nichts, auch das
wird erklart.

Zu diesem Zweck besteht das Buch aus drei Teilen. Im ersten
Abschnitt schaffen wir die Grundlagen fiir die dann folgenden
Tricks (Abschnitt 2). Dazu gehort die Erlduterung der
BASIC-Befehle PEEK, POKE und dergleichen mehr. Wenn Sie nach
diesem Abschnitt dann die Programmierung und Funktionsweise
Ihres Rechners besser verstehen, folgen eine Menge Tricks,
die alle vom BASIC aus funkﬁionieren. Sie benétigen also
keine Maschinensprachekenntnisse, um in Zukunft komfortabler
programmieren zu konnen.

Jedem Abschnitt mit Tricks ist eine kurze Zusammenfassung
nachgestellt, damit man beim spdteren Nachschlagen nicht
unbedingt alle Erlduterungen mitlesen mufB.

Wenn Sie sich genau an die Beschreibungen halten, kann ich
Ihnen garantieren, dag alle Tricks und Programme
funktionieren.

Apropos Maschinensprache: Im 3. Abschnitt finden Sie ein

Simulationsprogramm fiir einen Miniprozessor und eine kleine

-1 -

Einfiihrung in die Anfdnge der Maschinensprache, die Ihnen

den Einstieg in weitere Lektiire erleichtern soll.

Besitzern des VC-20 sei gesagt, daB fast alles, was sich auf
die Zeropage bezieht, prinzipiell auch auf dem kleinen
Bruder des 64ers laufen kann, wenn auch mit kleinen
Anderungen. Hier hilft vielleicht ein kleiner Blick in die
bekannten DATA-BECKER-Biicher.

Mir bleibt nur noch, Ihnen viel SpaB bei der Nutzung der
neuen Moglichkeiten in der Programmierung Ihres CBM zu

winschen.

Hans Joachim Liesert
Miinster, im Mai 1984

1. DIE ARBEITSWEISE DES RECHNERS

In den folgenden Abschnitten lernen Sie den 64er und seine
Funktionsweise Xkennen. Diejenigen, die schon einigermafBen
sattelfest in der Computertechnik sind, konnen getrost
weiterbldattern. Die "Supercracks" unter Ihnen mdgen mir
etwaige Vereinfachungen verzeihen, die ich des besseren

Verstidndnisses wegen gemacht habe.

1.1. SPINNE MIT 16 BEINEN: DER MIKROPROZESSOR

Zundchst etwas Grundsatzliches. Jeder Mikroprozessor kann
einen bestimmten Speicherbereich adressieren, d.h. eine
gewisse Anzahl von Speicherzellen ansprechen. Dies ist
abhangig von der Zahl der Adressleitungen, die der Prozessor
besitzt. Jede Adressleitung repridsentiert ein Bit (was das
ist, wissen Sie hoffentlich aus dem CBM-Handbuch, Kapitel
Spritegrafik) und‘kann demzufolge zwei Zustidnde einnehmen: O
und 1. .

Der 6510-Mikroprozessor (der das “Gehirn" Ihres 64ers
bildet) hat 16 Adressleitungen. Mit diesem Adressbus (=
Gesamtheit aller Adressleitungen) kann er 216 = 65536
Speicherzellen ansprechen.

Jede dieser Zellen umfaBt 8 Bits und kann demnach ein Byte
speichern. Hat der 6510 mit seinen 16 Beinen (=
Adressleitungen) eine Speicherzelle erreicht, so benutzt er
seine 8 Hande (sprich Datenleitungen), um Bytes entweder zu
holen oder abzuspeichern.

Da der ‘Datenbus genau halb so breit ist wie der Adressbus,

braucht man zwei Bytes, um eine Adresse darzustellen.
Mikroprozessoren haben auch 1ihr eigenes Zahlensystenm,

namlich das Hexadezimalsystem. Es hat sechzehn Ziffern (0 -
9 und A - F fir 10 bis 15) und bietet den Vorteil, daB eine

-3 -

Hexziffer (Kurzform filir Hexadezimalziffer) immer genau 4
Bits umfaBit: F = 15 = 1111

Ein Byte bendtigt daher 2 , eine Adresse 4 Ziffern.

All dies gilt fiir Jjeden 8-Bit-Prozessor (8 nach der
Datenbusbreite). Doch ab jetzt wollen wir uns mit den
speziellen Eigenschaften des 64ers beschaftigen.

1.2. WAS IST EIN BETRIEBSSYSTEM?

Wenn Sie sich mit einschldgiger Computerliteratur befassen,
so werden Sie oft auf Worter wie ‘"Betriebssystem",
"Interpreter" oder (besonders beim CBM-64) "Interrupt"
stofBen.

Nun, die Funktion des Interpreters (engl. Ubersetzer) ist
dem Namen leicht zu entnehmen. Es handelt sich hier einfach
um das Programm, das die BASIC-Anweisungen, die Sie
eingeben, filir den Computer ilbersetzt.

Der 64er und alle anderen Mikrocomputer koénnen namlich
eigentlich nur ihre spezielle Maschinensprache verstehen.
Erst der BASIC-Interpreter, der in einem ROM gespeichert
ist, 1ist in der Lage, Programmzeilen aus dem Speicher zu
holen und diese abzuarbeiten. Wenn das BASIC im Direktmodus
ablauft, holt es die Anweisungen nicht aus dem
Programmspeicher, sondern aus dem BASIC-Eingabepuffer.
Dieser Eingabepuffer stellt eine Art "Ubergabebereich fir
Tastendrucke" dar, d.h., das Betriebssystem (ein weiteres
Programm im ROM), das filiir die Abfrage der Tastatur, die
Erzeugung des Cursors und die Bedienung der Peripheriegeriate
zustdndig ist, teilt dem BASIC hier mit, was der Anwender
"drauBBen vor der Tastatur" eingegeben hat.

Sowohl BASIC-Interpreter als auch Betriebssystem sind
Maschinenprogramme. Beide werden mit dem Einschalten des
Rechners gestartet und laufen so lange weiter, bis ein
anderes Programm in Maschinensprache aufgerufen wird.
Geschieht dies durch den SYS-Befehl, so kehrt der Rechner

— 4 -

nach Beendigung der Maschinenroutine zum BASIC zuriick.

Wie Sie von der BASIC-Programmierung her wissen, kann ein
Computer (Multiprozessorsysteme ausgenommen) immer nur ein
Programm zur gleichen Zeit ausfiihren. Interpreter und
Betriebssystem sind aber zwei getrennte Programme, die zur
Erledigung bestimmter Aufgaben simultan ablaufen miissen. Wie
wird dieses Problem gemeistert?

Die einfachste Moglichkeit, zwei Programme fast gleichzeitig
ablaufen zu lassen, ist der gegenseitige Aufruf. Immer wenn
das BASIC mit einem Teil seiner Arbeit fertig ist, schaltet
es das Betriebssystem ein und umgekehrt. Dies geschieht zum
Beispiel, wenn auf Peripheriegerate zugegriffen werden soll.
Das BASIC stellt lediglich die Informationen zur Verfiigung,
die das Betriebssystem dann zum Gerdt schickt. Dies
beinhaltet aber auch,’ daB z.B. die Tastatur nur dann
abgefragt wird, wenn das Betriebssystem gerade lduft. Nun
soll aber wahrend des Programmlaufs zumindest die
RUN/STOP-Taste eine sinnvolle Wirkung zeigen. Um dieses
Problem zu l1l0sen, erfanden die Computerhersteller den
INTERRUPT (engl. Unterbrechung) . Jede 1/60 Sekunde
unterbricht der Prozessor das gerade laufende
Maschinenprogramm (ob BASIC oder Betriebssystem) und springt
in die Unterprogramme fiir Tastaturabfrage und &hnliche
Dinge. "Entdeckt" der Rechner dabei einen Druck auf die
RUN/STOP-Taste, so wird das gerade laufende BASIC-Programm
‘abgebrochen. Sollte eine andere Taste gedriickt worden sein,
so wird dies im Tastaturpuffer (librigens eine sehr niitzliche
Einrichtung) gespeichert.

Fiir den Anwender scheint es, als ob die Tastatur standig
abgefragt wiirde, da selbst der schnellste Tipper wohl kaum
mehr als 15 Zeichen in der Sekunde eingeben kann. Fiir den
Mikroprozessor dagegen erscheint die Zeit 2zwischen zwei
Interrupts ewig lange, da er mit einem Takt von ca. 980 000
Schlagen pro Sekunde 1laduft und ein Maschinenbefehl im
Durchschnitt 3 bis 4 solche Schldge zur Ausfiihrung benétigt.
Der Prozessor kann also Tausende von Instruktionen
durchfiihren, ehe ein Interrupt ihn aus seiner Arbeit reiBt.

Nach der Tastaturabfrage macht der Prozessor an der Stelle

-5 -

weiter, an der er vor dem Interrupt aufgehort hat.

Leider hat die- Interruptroutine eine unangenehme
Nebenwirkung. Sie verdndert bei jedem Durchlauf bestimmte
Bytes im Speicher, die fir unsere Zwecke vielleicht anders
aussehen sollten. Daher ist es auch vom BASIC aus nicht ohne
weiteres mdglich, auf das RAM in den Adressbereichen
zuzugreifen, die vom ROM iiberlagert sind - doch davon spater

mehr.

Machen wir zum SchluB noch einen kleinen Test. Eine
FOR-NEXT-Schleife, wie sie unten aufgelistet ist, bendtigt
ca. 46 Sekunden Laufzeit. Schalten wir den Interrupt jedoch
ab (wie das genau funktioniert, behandeln wir in einem
spateren Kapitel), so lduft das Ganze immerhin eine Sekunde
schneller! Die hdhere Geschwindigkeit konnen Sie allerdings
nicht mit dem TI$ des CBM-BASIC messen, da die
Interruptroutine auch fiir das Weitersetzen der Uhr zustandig
ist.

Bevor Sie das kleine Programm (siehe unten) eintippen,
sollten Sie den POKE-Befehl aus Zeile 10 im Direktmodus
ausprobieren. Wenn der Cursor verschwindet und die Tastatur
nicht mehr abgefragt wird, ist der Interrupt ausgeschaltet -
jetzt rettet Sie nur noch RUN/STOP-RESTORE. Viel SpafB!

10 POKE 56334, PEEK (56334) AND 254: REM Interrupt aus
20 FOR I= 1 TO 1000: PRINT I: NEXT I
30 POKE 56334, PEEK (56334) OR 1: REM Interrupt ein

1.3. WIE ARBEITET DER INTERPRETER ?

Wie schon gesagt, ist der BASIC-Interpreter fiir die
Abarbeitung der BASIC-Befehle zustdndig. Fiir den Benutzer,
der davon nur das Ergebnis (namlich den Programmablauf)
sieht, ist es interessant zu erfahren, wie das funktioniert.
Beginnen wir bei der Eingabe der Befehle. Der 64er speichert
unsere BASIC-Zeilen nicht einfach als Folge von Buchstaben.
Das wirde viel =zuviel Speicherplatz beanspruchen; fiir den
PRINT-Befehl alleine 5 Bytes (eines filir jeden Buchstaben).
Vielmehr werden alle Befehlswdrter als sogenannte TOKENS
gespeichert, d.h. sie werden in einen Code ahnlich dem ASCII
ibersetzt. Zahlen und Buchstaben, die keinen Befehl bilden,
werden dagegen direkt im ASCII-Code abgespeichert. Daher
belegt der Befehl PRINT I auch nur zwei Bytes, eines fiir den
Befehl, das andere fiir den Variablennamen.

Damit ist der erste Teil der Ubersetzung auch schon getan,
und, so unglaublich es klingen mag, dies alles und noch mehr
geschieht in der “"Zeitspanne" zwischen dem Druck auf die
RETURN-Taste am Zeilenende und dem Wiedererscheinen des
Cursors. Oft muB dabei auch noch der gesamte Programmtext im
Speicher verschoben werden (wenn eine neue Zeile

nachtrdaglich eingefiigt wird).

Der zweite Teil der Ubersetzung lauft ab, nachdem wir RUN
eingegeben haben. Anhand der TOKENS springt der Interpreter
in seine verschiedenen Unterroutinen, die dann die
eigentliche Arbeit libernehmen. Beim PRINT-Befehl wadren dies
z.B. die Unterprogramme fiir “"Ausdruck auswerten" (die
Variable, die auf dem Bildschirm erscheinen soll) und
"Zeichen auf den Bildschirm bringen", das filir jedes
auszugebende Zeichen einmal angesprungen wird. Fiir andere
Befehle gibt es weitere Unterprogramme im ROM, so z.B.
Arithmetik-Routinen und ahnliches.

Natlirlich koénnte man sich diese Routinen jetzt ndher ansehen
und sie analysieren, doch dies wiirde den Rahmen dieses

Buches sprengen. Wer jedoch Interesse daran hat, sollte sich

7 -

mit dem DATA-BECKER-Buch "64-intern" befassen. Es umfaBt
unter anderem ein komplettes ROM-Listing des Interpreters
und des Betriebssystems und enthdlt viele niitzliche

Maschinenspracheprogramme.

1.4. PEEK. POKE UND ANDERE GEMEINHEITEN

Stellen Sie sich folgende Situation vor: Sie finden in einer
der zahlreichen Computerzeitschriften ein Superprogramm zum
Eintippen. Sie haben inzwischen das 20 K Listing eingetippt,
doch der ?robelauf endete vorzeitig mit einem ERROR.

Es hilft nichts, Sie miissen die Funktionsweise des Programms
verstehen, um den Fehler zu beseitigen, wenn Sie nicht jeden
Buchstaben im Listing einzeln vergleichen wollen. Wenn da
nur nicht diese bloden POKE-Befehle widren! Die benutzt doch
kein normaler Programmierexr! Es ist also an der Zeit, das

Pseudo-Geheimnis um solche Instruktionen zu liften.

1.4.1. PEEK & POKE

Nehmen wir zuerst den POKE-Befehl. Seine Syntax diirfte
bekannt sein: POKE Adresse, Byte. Die Adresse darf zwischen
O und 65535 liegen, das Byte zwischen O und 255. Die Aufgabe
dieses Befehls 1ist es, das Byte unter der angegebenen
Adresse abzuspeichern. Dies kann vielen Zwecken dienen, je
nach Adresse kann man damit den Bildschirm filillen, eine
Farbe festlegen oder anderes mehr. Damit konnen wir dem
Computer ganz schdén ins Handwerk pfuschen, denn sowohl
Betriebssystem als auch Interpreter miissen sich zwangsladufig
irgendwo bestimmte Daten "merken". Wie diese Daten aussehen,
erfahren wir durch PEEK. Auch hier diirfte die Syntax
hinldnglich bekannt sein: PRINT PEEK (Adresse) gibt das

-8 —

unter der angegebenen Adresse abgespeicherte Byte aus.
Wichtig ist, daB PEEK eine FUNKTION ist und deshalb nur
innerhalb einer Zuweisung (A=PEEK...) oder eines anderen
Ausdrucks stehen darf.

Gemeinsam haben beide Befehle die Eigenart, daB sich der
Zweck nach der Adresse richtet, auf die zugegriffen werden
soll. Es empfiehlt sich daher, bei solchen Befehlen im
Speicherbelegungsplan nachzusehen, in welchem Bereich
gearbeitet wird. Meist 148t sich daraus die Funktion
entnehmen.

1.4.2. SYS & USR

Kommen wir nun zu den Befehlen, die eigentlich nur fiir
Maschinenprogrammierer interessant sind: SYS Adresse und
PRINT USR (x). Beide dienen zum Aufruf von Programmen in
Maschinensprache.

Beim SYS-Befehl gibt die Adresse das Byte an, mit dem die
Ausfilhrung des Programmes beginnen soll. Nach Beendigung der

‘Maschinenroutine kehrt der Interpreter wie aus einem
Unterprogramm in das BASIC-Programm zuriick.

"Die USR-Funktion 1lduft &hnlich ab, aber es gibt niitzliche
und wichtige Erweiterungen. Der erste Unterschied liegt in
der Syntax. USR ist eine Funktion wie PEEK und SIN und muf
daher innerhalb eines Ausdrucks stehen (aber das kennen Sie
bereits).

AuBerdem brauchen Sie keine Start-Adresse anzugeben. Diese
wird in einem "elektronischen Briefkastén" in den
Speicherzellen 785 und 786 Ilibergeben. Immer, wenn der
Interpreter eine USR-Funktion ausfiihren soll, sieht er in
den besagten Bytes nach, wo das Maschinenprogramm steht, das
er dann ausfihrt. Danach kehrt er wieder ins BASIC zuriick.

Das wichtigste ist aber die Moglichkeit, Daten an das
Maschinenprogramm zu iibergeben und umgekehrt. Der Wert in
den Klammern wird zu diesem Zweck vom Interpreter in den

-9 -

sogenannten FlieBkommaakkumulator (97 - 101) gebracht. Der
FlieBkommaakkumulator ist ein internes Rechenregister, in
dem alle arithmetischen Operationen durchgefiihrt werden. Von
dort kann sich das selbstgeschriebene Maschinenprogramm die
Zahl abholen und bearbeiten. Nach dem Ende der USR-Routine
wird die Zahl, die dann im FlieBkommaakkumulator steht, an
das BASIC liibergeben. Auf diese Weise kann man von
Maschinensprache aus Zahlen an Variablen schicken (per
A= USR (x)).

Sinn dieser Einrichtung ist es, dem Maschinenprogrammierer
die Definiton eigener schneller Funktionen (z.B. Fakultidt
oder Sortierfunktionen) zu ermoglichen. So gesehen stellt

die USR-Funktion eigentlich einen Superbefehl dar.

1.4.3. EIN KLEINER AUSFLUG IN DIE BINARARITHMETIK

Zu den beschriebenen Befehlen gesellen sich noch einige, die
Sie bestimmt schon kennen, aber deren Vielseitigkeit Ihnen
bisher verborgen blieb. Als erstes sind hier AND, OR und NOT
zu nennen. Bisher haben Sie sie immer nur in
IF-THEN-Konstruktionen verwendet, z.B. in dieser Form:
IF A=0 AND B=0 THEN 100
Eigentlich sind sie aber fir die logische Verknipfung von
Variablen und Z2ahlen gedacht. Dazu muB man wissen, daB der
Rechner auch Vergleiche wie Zahlen behandelt. Probieren Sie
einmal folgende Befehle:

PRINT (1=2)

PRINT (1=1)

Ein Vergleich mit dem Ergebnis "wahr" liefert eine -1, ein
“falsch" eine 0. Im Bindrsystem sieht eine -1 so aus:
1111 1111. - Wenn man das am weitesten links stehende Bit
nicht als Vorzeichen interpretiert, so ergibt die gleiche
Kombination 255. Was aber haben die BASIC-Befehle damit zu
tun?

Eine IF-THEN-Konstruktion wird immer dann verlassen, wenn

- 10 -

das Ergebnis des Terms gleich O 1ist. Es wdre also auch
folgende Befehlsfolge denkbar: IF 3*A THEN 110

Die Ergebnisse der einzelnen Vergleiche werden einfach
miteinander verkniipft, und das Ergebnis daraus bestimmt den
weiteren Programmablauf. Um die Wirkungsweise der einzelnen
Verkniipfungen 2zu verstehen, machen wir jetzt einen kleinen

Ausflug in die Binararithmetik.

AND, OR wund NOT sind sogenannte BOOLESCHE OPERATIONEN, die
der Verkniipfung von logischen Zustdnden dienen. Und wie Sie
wissen, konnen logische Zustdnde mit Bits sehr einfach
dargestellt werden (0 fir "falsch", 1 fiir "wahr").

Jeweils zwei Bits werden miteinander verknipft. Was dabei

herauskommt, geben die Tabellen an.

AND I O It OR I O I1
0 10 O 0 10 1
s ¢ --—-I

1. 10 1 1. 11 1

Sie sehen, daB das Ergebnis auf jeden Fall dann 1 ist, wenn
beide Eingangsbits 1 sind. Man Xkann beide Funktionen
wortlich iibersetzen. Bei AND ist das Ergebnis dann 1, wenn
Bit 1 UND Bit 2 auf 1 sind, bei OR, wenn Bit 1 QDER Bit 2
auf 1 sind.)

Anders verhdlt es sich mit NOT. Diese Funktion invertiert

einfach das Eingangsbit.

NOT I O I 1

So weit so gut. Leider bleibt fir uns unbedarfte
BASIC-Programmierer noch ein Problem. Im BASIC niitzen uns
einzelne Bits wenig. Dort haben wir es mit Dezimalzahlen zu
tun. Um 2zu berechnen, was der Ausdruck 45 AND 123 ergibt,

missen wir folgendermaBen vorgehen:

- 11 -

1. Zahl in Dualsystem umwandeln
Das geht einfacher als Sie denken. Sie miissen die
Dezimalzahl nur fortwdhrend durch 2 teilen und den Rest
jeder Division als Bit notieren, bis das Ergebnis O wird.
Beispiel: 23 : 2 = 11 Rest
1 = 5 Rest
2 Rest
= 1 Rest
O Rest

NN NN
1]

Wie der umgekehrte Weg funktioniert, wissen Sie aus dem
CBM-Handbuch (Kapitel iiber Sprites).
Die Zahlen 45 und 123 sehen im Bindrsystem so aus:

45 = 00101101

123 = 01111011

2. Dualzahlen bitweise verkniipfen
In unserem Beispiel 45 AND 123 ergibt das:
00101101
AND 01111011

00101001

3. Ergebnis in Dezimalsystem umwandeln
00101001 = 41

Das konnten Sie natiirlich auch einfacher haben, indem Sie
einfach PRINT 45 AND 123 eintippen. Aber so hat man ungleich
mehr Einblick.

Mit Recht stellen Sie Jjetzt die Frage, wozu das gut sein
soll. Neben der Verknipfung von Vergleichen werden diese
Befehle oft 2zum Beeinflussen einzelner Bits benutzt. Durch
eine AND-Verknilipfung mit 254 wird auf jeden Fall das am
weitesten rechts stehende Bit geldscht, durch eine
OR-Verkniipfung mit 1 wird es auf jeden Fall wieder gesetzt.
Probieren Sie es mit beliebigen Zahlen aus!

— 12 -

Jetzt bleibt nur noch ein geheimnisvoller Befehl:
WAIT Adresse, X, Y.

Er hat eine Aufgabe, bei der sich jedem Prozessor die Bits
im Speicher umdrehen. Er soll namlich warten. Und das mag
ein ‘Computer iberhaupt nicht. Dies geschieht durch
fortlaufende Verkniipfung von Bytes. Kommt der Interpreter zu
einem WAIT-Befehl, so 1liest er zundchst den Inhalt der
angegebenen Speicherzelle. Diese Zahl wird EXKLUSIV-ODER mit
der Zahl Y verkniipft. Wie der Name schon andeutet, ist XOR
(Kurzform fir EXKLUSIV-ODER) ein Verwandter der
ODER-Verkniipfung. Die Tabelle zeigt die Arbeitsweise.

XOR I O I 1

0o 10 1
--=-1
1. 11 0O

Das Ergebnis wird nur dann 1, wenn entweder Bit 1 oder Bit 2
auf 1 sind, nicht aber beide.

Das Ergebnis der ersten Verkniipfung wird nun noch
AND-verkniipft mit der Zahl X. Sollte dieses Ergebnis O séin,
so wiederholt der Interpreter die ganze Prozedur,
andernfalls macht er mit dem ndchsten Befehl weiter.

Es gibt aber auch noch eine zweite Variante des
WAIT-Befehls, bei der das Y-Argument nicht angegeben wird.
Hier wartet der Interpreter, bis der Inhalt der angegebenen
Speicherzelle AND X ungleich O wird.

- 13 -

1.5. DER AUFBAU DES RECHNERS

Keine Angst, auch hier wird es nicht zu technisch. Es ist
fiilr das Verstdndnis einiger Tricks sehr nilitzlich, wenn man
etwas ilber das Innenleben des 64ers weif3.

Sie werden sich sicher schon gewundert haben, daB Commodore
mit der Angabe "64 k RAM" wirbt, fiir das BASIC aber nur 38 K
zur Verfligung stehen.

Nun, die 64 Kilobytes sind tatsdchlich vorhanden, doch Sie
konnen sie nicht direkt nutzen. Der Mikroprozessor 6510 kann
insgesamt nur 64 K adressieren, d.h. er kann 65536
verschiedene Speicherplatze ansprechen. Mit dem RAM wdren
also die Moglichkeiten des Rechners voll ausgenutzt. Doch
leider braucht ein Computer auch ROMs und Speicherplatze fiir
interne Funktionen. Zum einen ist da die schon erwdhnte
Zeropage, zum anderen die ROMs mit dem BASIC-Interpreter,
dem Betriebssystem und dem Charaktergene;ator (was das ist,
und wie er funktioniert, sehen wir spater; vorlaufig reicht
die Information, daB hier die Formen der Bildschirmzeichen
gespeichert sind).

Der ROM-Bereich belegt 20 K. Von unseren 64 K bleiben also
noch ganze 44, von denen wir noch zwei Kilobytes filir
Videoram und Zeropage sowie 4 K freies RAM ab Speicherzelle
49152 abziehen. Es bleiben die erwdhnten 38 Kilobytes.

Abb. 1. zeigt ein vereinfachtes Blockschaltbild des
Rechners. Wie Sie- sehen, liegen ROM und RAM nebeneinander
und belegen den gleichen Adressbereich. Um zwischen beiden
umschalten zu konnen, muB man die Speicherzelle 1 verandern.
Hier wird festgelegt, ob ROM oder RAM benutzt werden kdénnen.
Leider ist dies vom BASIC aus nicht so ohne weiteres
méglich. Wirden wir ndmlich das BASIC-ROM abschalten, so
finde der Prozessor sein Programm nicht mehr vor, sondern
nur noch leeren Speicher. Die Folge davon wadre ein Aufhdngen
des Rechners und ein recht i{berzeugender Aufschrei des
Benutzers ob der verlorenen Daten.

Eine kle;ne Hilfe gibt uns der CBM trotzdem. Vom BASIC aus

— 14 -

ist namlich das Schreiben in die iiberlagerten Bereiche
mittels POKE oder LOAD jederzeit moglich, lediglich das
Lesen durch PEEK oder SAVE kann nicht durchgefiihrt werden.
Das bedeutet, daB ein POKE, der eine Speicherzelle im ROM
adressiert, das darunterliegende RAM beeinfluBt, ein PEEK
mit der gleichen Adresse dagegen tatsdchlich das ROM
ausliest.

Es bleiben noch die 4 K RAM im oberen Drittel des
Adressbereiches. Sie sind fir die Programmierung in
Maschinensprache gedacht, konnen aber auch von
BASIC-Programmen mittels PEEK und POKE als Datenspeicher
genutzt werden.

SchlieBlich gibt es noch den sogenannten I/O-Bereich. I
steht fir INPUT, O fir OUTPUT. Hier liegen namlich die
Bausteine, die fir die Schnittstellen, die Tastatur, den
Bildschirm und die Tonerzeugung zustdndig sind. Der
Prozessor liefert hier seine Daten ab, die der entsprechende
Baustein dann beispielsweise zu einem TV-Signal, einem Ton
oder einem Floppyzugriff verarbeitet. Umgekehrt kommen hier
auch die Daten von der Tastatur oder den Peripheriegeridten
an. AuBerdem befindet sich hier noch das COLOR-RAM.

Wie das Blockbild zeigt, "stapeln" sich hier die Bytes sogar
dreifach, da die I/0-Bausteine jeweils eigene
"RAM-Abteilungen" besitzen. Wenn wir also auf die
Speicherzelle 53280 zugreifen, um die Rahmenfarbe zu andern,
dann wird das Byte nicht in das RAM, sondern in das Register
des Bausteines selbst geschrieben. Dies gilt auch fiir das
COLOR-RAM.

Der 64er besitzt insgesamt 4 I/0O-Bausteine. Zwei davon
kennen Sie, namlich den VIC (der fiir die Grafik und den
Bildschirm zustdndig ist) und den SID (der fir die
Tonerzeugung eingesetzt wird). Es bleiben noch zwei CIAs
(Complex Interface Adapter), die die Tastatur und einige
Schnittstellen wie z.B. den USER-PORT bedienen.

2048

40960

49152

53247

57344

65535

Abb.

1

Belegt
€ Mikroprozessor
6510
38K
RAM
fiir
BASIC-
Daten
8 KROM
BASIC
Interpreter
Schnittstellen
CHAR-ROM 4K | 1/0 Bereich]—> TV-AnschiuB
8 KROM
Betriebs-
system

(7

- 16—

1.6. FUR EIGENE EXPERIMENTE: RESETTASTER

Wenn Sie selbst mit PEEK und POKE experimentieren wollen,
kann es passieren, daB sich der Rechner "aufhidngt". In
vielen Fdllen 1laBt sich dies mit der Tastenkombination
RUN/STOP-RESTORE beheben. Oft ist dies jedoch nicht moglich,
so daB das Ausschalten des Rechners unumganglich erscheint,
will man den 64er aus seiner "stabilen Umlaufbahn um den
Saturn" herausholen (so ein freundlicher Zeitgenosse). Dabei
gehen eventuell benutzte Hilfsprogramme (wie z.B.
Hex-Monitor o0.4.) verloren. Um dies zu vermeiden, ist der
Selbstbau eines RESETTASTERS anzuraten. Man bendtigt hierzu
einen USER-PORT-Stecker (z.B. Cardcon 251-12-50-170 von TRW)
und einen einfachen Taster. Der Stecker kostet ca. 12,- DM.
Trotzdem sollte man vor dieser Ausgabe nicht
zurlickschrecken, da sich der USER-PORT sehr vielseitig
einsetzen 1ldBt und der Stecker mehrfach genutzt werden kann.
Der Taster wird mit den Pins 1 und 3 (siehe Abb. 2.) des
USER-PORTs verbunden. Wird der Stromkreis geschlossen, so
fiihrt der Prozessor einen RESET aus, das heiBt, er bringt
den Rechner in den Einschaltzustand. Dabei werden jedoch nur
vom Betriebssystem bendotigte Bytes verdndert. Vom BASIC aus
kann dies auch per Software durch SYS 64738 ausgelost
werden. Eventuell im Speicher befindliche
Maschinenspracheprogramme wie z.B. SIMONS BASIC oder
Assembler bleiben erhalten, da die Spannung 3ja nicht
abgeschaltet wird, und koénnen ggf. mit SYS xxxxx (vorher
Startadresse merken!) wieder gestartet werden. Besitzt man
ein Programm, mit dem der NEW-Befehl riickgdngig gemacht
werden kann, so lassen sich sogar BASIC-Programme wieder
restaurieren.

Eine Warnung noch an Besitzer von Diskettenlaufwerken. Wird
ein RESET des Rechners ausgeldst, so wird auch die Floppy
neu initialisiert. Daher sollte man vorher eine evtl. noch
im Gerdt steckende Diskette herausnehmen, "um Unheil zu

vermeiden.

- 17 —

Abb. 2 USER-PORT an der Riickseite des CBM-64

123456789 101112

e |
ABCDEFHJKLMN

2. DIE ZEROPAGE

2.1. DIE ZEROPAGE IST KEINE NULL

Wenn Sie sich schon einmal den Anhang des CBM-Handbuches
angesehen haben, so ist Ihnen sicher der Abschnitt mit der
Zeropage aufgefallen. Sie bietet dem Anwender eine wahre
Fundgrube mit Tricks und neuen Programmiermdglichkeiten -
man muf sie nur zu nutzen wissen.

Der Name Zeropage ist ilibrigens nicht ganz richtig.
Ublicherweise bezeichnet man damit die ersten 256 Bytes des
Adressbereiches eines Mikroprozessors. Hier ist jedoch das
erste Kilobyte gemeint. Sinn und Zweck des Ganzen ist
schnell erkldrt. Betriebssystem und Interpreter brauchen
Register, um sich Zustdnde, Zahlen oder Codes merken zu
konnen. Wie Schulkinder bei der Addition "1 im Sinn"
behalten, so tut dies der Computer in der sog. Zeropage. Die
ersten 256 Bytes sind gut fir die schnelle Speicherung von
Daten geeignet, da sie mit nur einem einzigen Byte (und
daher besonders schnell) adressiert werden konnen.

Viele Register 1in der Zeropage miissen eine bestimmte Zahl
enthalten, um ein ordnungsgemdfBes Funktionieren des Rechners
zu gewdhrleisten. Andere werden gar nicht benutzt und stehen
uns zur freien Verfiigung. Weitere Bytes kdnnen vom Anwender

sinnvoll und wirksam beeinfluBt werden.

2.2. POINTER & STACKS

Zwei Fachbegriffe, auf die Sie immer wieder stoBen werden,
sind Pointer und Stack.

Pointer (engl. Zeiger) zeigen auf bestimmte Stellen im
Speicher und werden auch Vektoren genannt. Dort konnen

-~ 19 -

entweder Informationen oder Unterprogramme stehen. Der
Cursorpointer beispielsweise zeigt auf die Stelle im
Bildschirmspeicher, wo der Cursor gerade steht und damit auf
den Buchstabencode des blinkenden Zeichens. Zeiger auf
Unterprogramme wurden eingefiihrt, um Erweiterungen des
Interpreters 2zu ermoglichen. Andern wir den Vektor auf die
Routine fiir Zeichenausgabe, so ist es z.B. mdglich, mittels
einer eigenen Maschinenroutine den PRINT-Befehl so zu
andern, daB Jjedes Zeichen gleichzeitig auf Bildschirm und
Drucker erscheint.

Pointer haben immer ein bestimmtes Format. Sie bestehen im
allgemeinen aus zwel Bytes, wovon das erste LOWBYTE
(niederwertiges Byte) und das zweite HIGHBYTE (hoherwertiges
Byte) genannt werden. Um die Position des Cursors oder das
Byte zu erhalten, auf das gezeigt wird, benutzt man folgende
Formel:

Adresse = Lowbyte + 256 * Highbyte

Es gehdrt 2zu den Besonderheiten der Computer, daB das
Lowbyte immer vor dem Highbyte im Speicher steht.
Ein-Byte-Pointer zeigen innerhalb eines bestimmten Bereichs
(z.B. Tastaturpuffer, Stack) auf die aktuelle Position (O -
255) und werden zu einer BASISADRESSE addiert.

Ein Stack (engl. Stapel) hat die Aufgabe, Daten
zZzwischenzuspeichern und in der umgekehrten Reihenfolge
wieder zuriickzugeben, wenn sie bendtigt werden. Wie bei
einem richtigen Stapel kann man immer nur das oberste
Element herunternehmen und auch nur ganz oben neue Daten
dazulegen. Dies wird vor allem fiir Unterprogramme bendtigt.
Beim Aufruf des Unterprogramms wird die gegenwdrtige Stelle
im Programm auf dem Stack zwischengespeichert, beim RETURN
holt sich der Rechner diese Adresse zurilick und setzt das
Programm fort.

Der 64er hat neben anderen Interpreterstacks fiir Variablen
u.d. drei solche Stapel, die nicht verdndert werden sollten.
1. Prozessorstack (256 - 511) fiir Maschinensprache

2. Stack fiir BASIC-Unterprogramme

3. Stack fiir FOR-NEXT-Schleifen

- 20 —

Wundern Sie sich nicht, wenn Sie die beiden Letztgenannten
im Anhang des Handbuches und im Speicherbelegungsplan nicht
finden werden. Sie sind in "verschieden genutzten Bereichen"
versteckt. Das sollte uns aber nicht weiter stdren.

Nach soviel Theorie werden wir nun in die Praxis einsteigen.
In den ndchsten Abschnitten finden Sie (neben noétigen
theoretischen Abhandlungen) interessante Tricks, die Ihnen

bei der Programmierung Ihres 64ers helfen konnen.

Zusammenfassung: Zeiger

Adresse Lowbyte + 256 * Highbyte

Lowbyte = Adresse AND 255

Highbyte = INT(Adresse‘/ 256)

Zeiger bestehen im Normalfall aus zwei Bytes, die immer in
der Reihenfolge LOW /HIGH angeordnet sind.

—-21 —

3. DER SPEICHER

3.1. DER SPEICHERBELEGUNGSPLAN

Im Kapitel 16 finden Sie einen genauen Speicherbelegungsplan
des CBM-64. Neben der Zeropage ist auch der I/0-Bereich
aufgelistet. Besonderes Augenmerk sollten Sie Abweichungen
von der Zeropageliste im CBM-Handbuch widmen. So sind z.B.
die ersten 5 Bytes des angeblich freién Bereichs von 673 bis
767 durch die CIAs belegt. Es ist also Vorsicht geboten,
wenn man die Zeropage als Datenspeicher benutzen will. Ein
falscher POKE kann zum Abstiirzen des Interpreters fiihren.

Trotzdem sollten Sie sich dadurch nicht vom Experimentieren
abhalten 1lassen. Viele Tricks wurden durch Zufall entdeckt,
andere traten nach gezielter Suche zutage. Soweit ich weifB,
kann keine POKE-Kombination den Rechner zu Schidden fiihren.

Viel Spafl also beim Experimentieren!

3.2. DAS MAGISCHE BYTE 1

Magisch ist das Byte, weil es - wie schon angesprochen - die
Speicheraufteilung steuert. Dabei werden allerdings nur die
Bits O - 2 eingesetzt. Im Normalfall sind alle drei Bits auf
1. Wird eines dieser Bits auf O gesetzt, so dndert sich die
Speicheraufteilung entsprechend.

Mit Bit O kann das BASIC-ROM (40960 - 49151) abgeschaltet
werden, mit Bit 1 werden BASIC UND Betriebssystem
gleichzeitig abgeschaltet. Sind beide Bits auf O, so wirdl
auBerdem noch der I/O-Bereich abgeschaltet, d.h. es stehen
jetzt 62 K zur Verfiigung (da Zeropage und TV-RAM nicht
iiberlagert werden). Bit 2 bestimmt schlieBlich, ob der
Charaktergenerator ausgelesen werden kann (Sie erinnern

- 22 —

(o4

sich: dreifache Belegung).

Leider hat dieses System einen Haken. Schalten wir BASIC und
Betriebssystem ab, so hangt sich der Rechner auf. Daher
kénnen wir nur iliber die Maschinensprache auf das recht
iiberzeugend versteckte RAM zugreifen.

Etwas anders verhdlt es sich beim Charaktergenerator. Hier
befindet sich kein Programm, das zum Betrieb des Rechners
notwendig ware. Trotzdem hdngt sich der 64er auf, wenn Bit 2
auf O gesetzt wird, da damit automatisch nicht mehr auf den
I/0-Bereich zugegriffen werden kann. Nichts anderes aber tut
die Interruptroutine, um die Tastatur abzufragen. Hier hilft
es, wenn wir den Interrupt nach bekanntem Muster (siehe Kap.
1.2.) ausschalten.

Um Ihnen die Benutzung von stolzen 62 Kilobytes wenigstens
mittels PEEK und POKE 2zu ermdglichen, muB ich mein im
Vorwort gegebenes Versprechen brechen und Ihnen ein winziges
Maschinenspracheprogramm vorstellen, dessen Entsprechung in
BASIC zZwar programmiert werden kann, aber nicht
funktioniert. Ich habe das BASIC-Programm der leichteren

Verstdandlichkeit wegen trotzdem aufgelistet:

1 REM Achtung! Auf keinen Fall starten!
10 POKE 56334, PEEK (56334) AND 254: REM Interrupt aus
20 POKE 1, PEEK (1) AND 252: REM ROM abschalten
30 POKE 2, PEEK (PEEK (251) + 256 * PEEK (252))
40 POKE 1, PEEK (1) OR 3: REM ROM einschalten
50 POKE 56334, PEEK (56334) OR 1: REM Interrupt an

30a POKE (PEEK (251) + 256 * PEEK (252)), PEEK (2)

10 DATA 120, 165, 1, 41, 252, 133, 1, 160, O, 177, 251, 133,
2, 165, 1, 9, 3, 133, 1, 88, 96

20 DATA 120, 165, 1, 41, 252, 133, 1, 160, O, 165, 2, 145,
251, 165, 1, 9, 3, 133, 1, 88, 96

30 FOR I= 680 TO 721: READ A: POKE I, A: NEXT I

- 23 -

Sehen wir uns die Programme nidher an. Die Zeilen 10 und 50
miBten Ihnen bekannt vorkommen. In Zeile 20 werden die Bits
O und 1 von Register 1 geldscht und damit 62 K RAM nutzbar
gemacht. In Zeile 30 wird das gewiinschte Byte ausgelesen und
in Byte 2 zwischengespeichert, damit wir als Benutzer es
spater abholen (sprich PEEKen) konnen. Die Adresse des
anzusprechenden Bytes ist als Zeiger in den Speicherstellen
251 und 252 angelegt. Der Term innerhalb der Klammern des
ersten PEEK-Befehls berechnet aus LOW- und HIGHBYTE die
Adresse.

Nehmen wir an, Sie wollen das Byte 56000 (iibrigens liegt es
unter dem COLOR-RAM) ansprechen. Das Highbyte des Zeigers
berechnet sich folgendermafBien:)
HIGHBYTE = INT (56000 / 256)

Um das Lowbyte 2zu erhalten, blenden wir einfach das
hoéherwertige Byte aus der 16-Bit-Zahl 56000 aus:

LOWBYTE = 56000 AND 255

Um den Zeiger zu setzen, benutzen wir folgende Befehle:

POKE 251, LOWBYTE: POKE 252, HIGHBYTE

Nach SYS 680 konnen wir das gewiinschte Byte mittels PRINT
PEEK (2) ausgeben.

Nun 2zu Zeile 30a. Wenn wir in das RAM unter dem I/0O-Bereich
schreiben wollen, so geht dies im Gegensatz zu den anderen
iiberlagerten Bereichen nicht mit dem normalen POKE-Befehl.
Also miissen wir auch hier das ROM abschalten.

Das Programm dazu ist fast identisch mit dem PEEK-Programm.
Lediglich Zeile 30 wird (im BASIC) durch 30a ersetzt; das
Funktionsprinzip ist fast das gleiche. Nur muB der POKE-Wert
jetzt vorher in Byte 2 abgespeichert werden. Der Zeiger auf
das gewilinschte Byte wird wie iliblich gesetzt. Gestartet wird
diesmal mit SYS 701.

Unter dem BASIC-Programm finden Sie das Ladeprogramm fiir die
beiden Maschinenroutinen. Zeile 10 umfaBt das gesamte
PEEK-Programm, Zeile 20 das POKE-Programm. Die beiden Zeilen
unterscheiden sich nur in 4 Bytes.

Die Routinen ko&nnen unabhidngig voneinander benutzt und

— 24 —

verschoben werden, d.h. sie konnen dorthin gePOKEd werden
(siehe 2Zeile 30), wo Sie es mochten. Man nennt diese
Eigenschaft Relokatibilitat.

Die Liange jeder Routine betrdgt 21 Bytes.

Damit sind wir in der Lage, 62 K RAM zu benutzen, davon 38 K
fiir BASIC-Programme und Variablen. Die verbleibenden 24
Kilobytes konnen mittels POKE beschrieben werden (Ausnahme:
4 K 1I/0-Bereich von 53248 bis 57343) und durch die
beschriebene Routine wieder ausgelesen werden.

Weil die Handhabung des beschriebenen Programms nicht gerade
komfortabel ist, folgt unten noch eine andere Version, die
mit PRINT USR (Adresse) aufgerufen werden kann. Filir das
POKEn unter den I/0O-Bereich kann man folgende Kombination
benutzen:

SYS 715, Adresse, Byte

Wer sich jetzt wundert, daB eine solche ungewdhnliche Syntax
zuldssig, ist, dem sei verraten, daB der 64er fir
Maschinenprogrammierer geradezu paradiesische Moglichkeiten
bietet. Unter Ausnutzung von ROM-Routinen kann man sich
eigene Befehle der beschriebenen Art programmieren.

Auch dieses Programm ist relokatibel, man muB dann jedoch
den USR-Vektor, der dem Interpreter mitteilt, wo die
USR-Funktion steht, in Zeile 70 wieder richtig
initialisieren: Dies funktioniert genau wie die
Zeigerberechnung fiir die erste Version des PEEK-Programms.
Der Zeiger muB immer auf die Adresse weisen, mit der die
FOR-NEXT-Schleife aus Zeile 60 beginnt.

10 DATA 165, 20, 72, 165, 21, 72, 32, 247, 183, 120, 165, 1,
41, 252, 133

20 DATA 1, 160, O, 177, 20, 168, 165, 1, 9, 3, 133, 1, 88,
104, 133, 21

30 DATA 104, 133, 20, 76, 162, 179, 32, 253, 174, 32, 138,
173, 32, 247

40 DATA 183, 32, 253, 174, 32, 158, 183, 165, 1, 41, 252,
133, 1, 138

- 25—

50 DATA 160, O, 145, 20, 165, 1, 9, 3, 133, 1, 96
60 FOR I= 678 TO 747: READ A: POKE I,A: NEXT I
70 POKE 785, 166: POKE 786, 2

Zusammenfassung: Speicheriiberlagerung

Wird iiber Speicherzelle 1 gesteuert. Bits O - 2 im
Normalfall auf 1. Bei Loschen der Bits Verdnderung der
Aufteilung. Bit O schaltet BASIC-ROM ab, Bit 1 BASIC und
Betriebssystem gleichzeitig, beide Bits zusammen zusatzlich
auch I/0-Bereich. Bit 2 ermoglicht Auslesen des
Charaktergenerators (vom BASIC aus nach Abschalten des

Interrupts moéglich).

— 26—

3.3. SPEICHER SCHUTZEN

Nachdem wir uns die unendlichen Weiten eines 62-K-Speichers
erschlossen haben, tun wir jetzt genau das Gegenteil: Wir
verkleinern den BASIC-Speicher, um bestimmte Daten vor dem
Interpreter zu schiitzen. Hier stellt sich sofort die Frage,
wozu das gut sein soll. Nehmen wir an, Sie wollten ein
Programm schreiben, das mit 8 verschiedenen Sprites
arbeitet.

Vier davon Xkoénnen wir in den Blocken 11, 13, 14 und 15
unterbringen. Aber nach Block 15 schlieBen sich TV-RAM und
BASIC-Speicher an - beides Bereiche, die man tunlichst nicht
iiberschreiben sollte. Konsequenz: Wir miissen den Beginn des
BASIC-Programms verlegen, um Platz zu schaffen. Dazu stellt
uns die Zeropage Zeiger zur Verfiigung, die den Beginn bzw.
das Ende des Speichers anzeigen.

Um das BASIC-Programm bei Speicherstelle 2560 beginnen zu
lassen, miissen wir den Zeiger in den Speicherzellen 43/44 in
der bekannten Weise dndern:

POKE 43, (2560 + 1) AND 255

POKE 44, (2560 + 1) / 256

Die Addition von 1 ist ndétig, da der Zeiger auf den Beginn
der ersten Zeile weisen soll. Das erste Byte im
BASIC-Programm mufl O sein, also:

POKE 2560, O

Es bleibt nur noch CLR lbrig, um die Zeiger flir Variablen,
Arrays u.a. der neuen Situation anzupassen. Diese zeigten’
noch auf den alten BASIC-Start bei 2048.

Um das Ende des BASIC-RAMs nach unten zu verlegen, gehen wir
dhnlich vor. Wir benutzen allerdings die Register 55/56 und

kdnnen uns das POKEn einer O sparen.

Leider bringt diese Methode noch einen groBen Nachteil mit
sich. Durch das Setzen der Zeiger auf einen neuen Bereich
wird nicht automatisch auch der Programmtext im Speicher

verschoben. Also miissen diese Befehle vor der Eingabe bzw.

- 27 —

dem Laden des Programms gegeben werden. Der einfachste Weg
ist ein kleines Ladeprogramm, mit dem die Zeiger neu gesetzt
und das Hauptprogramm geladen wird. Hierzu ist unten ein
kleines Listing abgedruckt.

10 POKE 43, (2560 + 1) AND 255
20 POKE 44, (2560 + 1) / 256: POKE 2560, O: CLR
30 LOAD "Hauptprogramm"

Wenn dieses Programm ablduft, dann macht der 64er eigentlich
etwas unmdgliches. In den ersten beiden Zeilen wird der
Zeiger auf den BASIC-Anfang hochgesetzt. Damit 148t sich das
Programm nicht mehr listen, eigentlich existiert es fiir den
Interpreter gar nicht mehr. Trotzdem fihrt er die restlichen .
Zeilen noch aus. Nur Sprung- oder dhnliche Befehle kann er
nicht mehr ausfiihren, da er in diesem Fall ab der
augenblicklichen Zeigerposition nach der betreffenden
Zeilennummer suchen wiirde.

Auch der LOAD-Befehl beinhaltet einen kleinen Trick. Wird
LOAD wahrend des Programmlaufs ausgefiihrt, so macht der
Rechner nach dem Ladevorgang nicht im alten Programm weiter,
sondern beginnt am neuen Programmanfang mit der Ausfiihrung.
Damit wird das Hauptprogramm also automatisch gestartet.

Bei der Programmerstellung sollten die Zeiger vorher von
Hand hochgesetzt werden, damit die Sprites (oder anderes)
nicht die miihsam eingegebenen Programmzeilen iliberschreiben.
Sollte das Programm schon fertig sein und nur noch auf das
Verschieben warten, so sollte man es auf Diskette oder
Cassette abspeichern und dann mit dem beschriebenen Lader
wieder in den Speicher bringen.

Wir werden in den folgenden Abschnitten noch einige
Anwendungen kennenlernen, fir die wir Teile des

BASIC-Speichers schiitzen miissen.

4

— 28 —

Zusammenfassung: Speicher schiitzen

BASIC-Anfang hochsetzen:

POKE 43, LOW: POKE 44, HIGH: POKE Adresse, 0: CLR
BASIC-Ende heruntersetzen:

POKE 55, LOW: POKE 56, HIGH: CLR

3.4. FREIER SPEICHER

Es 1ist zwar schon oft behandelt worden, dennoch sei es hier
fiir die "Nachziigler" noch einmal erwdhnt: Das Problem mit
der FRE (O)-Funktion.

Ist der freie Speicher kleiner als 32768 Bytes, so erhalten
wir nach PRINT FRE(O) die positive Anzahl freier Bytes. Ist
der freie Bereich jedoch gréBer (z.B. nach dem Einschalten),
so erhalten wir eine negative Zahl, die zudem nichts liber
die Speichergr6Be auszusagen scheint. Woran liegt das?

Die FRE-Funktion liefert einen Integerwert.
Integer-Variablen des BASICs haben jedoch einen Wertebereich
von -32767 bis +32767. Der Interpreter muB8 bei einer
grofleren Zahl (z.B. 38000) auf die negativen Werte
ausweichen. Die wirkliche Anzahl freier Bytes erfahren wir
durch PRINT 65538 + FRE (0), sofern FRE(O) kleiner O ist.

Nun 2zu einem anderen Thema. Oft mochte man ein paar Daten
abspeichern, um sie einem Maschinenprogramm zu ilibergeben,
oder man méchte nicht unbedingt eine ganze Variable fiir, ein
Byte oder gar ein Bit “verschwenden". Ebenfalls ist es
denkbar, daB zwar in einem Programm alle Variablen geldscht
werden sollen (per CLR), eine oder mehrere Steuer&ariablen
jedoch unbedingt erhalten werden miissen. Was tun?

Es empfiehlt sich, einen freien Bereich in der Zeropage zu
suchen, um die Daten dorthin zu POKEn. Von einem CLR oder
NEW werden sie dann nicht beriihrt. Unten finden Sie eine
Liste von freien Bereichen in der Zeropage sowie Bemerkungen

dazu (soweit erforderlich).

- 29 —

2
251 - 254 konnen evtl. veradndert werden
678 - 767

780 - 783 nur wenn kein SYS gegeben wird
820 - 827

828 - 1019 wird bei Kassettenbetrieb iliberschrieben
1020 - 1023
2024 - 2039

-30-

4. MASSENSPEICHERUNG UND PERIPHERIE

4.1. ABSPEICHERN VON GRAFIKEN. BILDSCHIRMINHALTEN USN.

Die SAVE-Routine des BASIC-Interpreters gehdrt nicht gerade
zu den komfortabelsten. Doch wenn es um das Abspeichern von
Grafikseiten, Maschinenprogrammen oder &hnlichem geht, dann
versagt sie ganz, weil wir dazu die Start- und Endadresse
des abzuspeichernden Bereiches angeben miiBten. Aber wie
immer in diesen Fadllen gibt es auch hier einen Trick,
zundchst nur fiir die DATASETTE, um “kiinstliche" Files (=
Aufzeichnungen auf Band oder Diskette) zu erzeugen.

Wie so oft leistet wieder einmal die Zeropage gute Dienste.
Im Bereich der Speicherzellen 170 bis 195 finden wir Zeiger
und Register filir die Dateiverwaltung.

Das wichtigste sind zundchst die Zeiger fiir Anfang und Ende
des abzuspeichernden Bereiches. Den Zeiger auf den Anfang
finden wir in den Speicherzellen 193 und 194, der Endvektor
liegt in den Registern 174 und 175. Den SAVE-Befehl konnen
wir mit SYS 62954 aufrufen. Wir miissen aber noch einen Namen
mit auf die Reise schicken. Diesen schreiben wir am besten
in eine REM-Zeile am Anfang des Programmspeichers. Wo der
Filename steht, sagt dem Betriebssystem ein Zeiger in den
Bytes 187/188.

SchlieBlich brauchen wir noch Sekunddradresse, Gerdtenummer
und die Lidnge des Filenamens. Am besten, Sie sehen es sich
selbst an:

10 REM Filename

20 POKE 193, SL: POKE 194, SH: REM Startadresse (Low/High)
30 POKE 174, EL: POKE 175, EH: REM Endadresse (Low/High)

40 POKE 187, PEEK (43) + 6: POKE 188, PEEK (44): REM Zeiger
auf Filename

50 POKE 183, L: REM Filenamenlénge

60 POKE 186, 1: POKE 185, O: REM Gerdt/Sekunddradr.

70 SYS 62954: REM Aufruf der SAVE-Routine im ROM

- 31—

Solcherart abgespeicherte Programmfiles, Grafikseiten u.a.
konnen mit LOAD “"Filename", 1, 1 an die gleiche Stelle
zuriickgeladen werden, da die Anfangsadresse mitgespeichert
wird.

Noch einige Erlduterungen 2zu 2Zeile 40: Hier wird dem
Betriebssystem mitgeteilt, wo es den Filenamen findet. Steht
dieser in der ersten Zeile hinter REM, so muBl man nur 6 zum
Zeiger auf den BASIC-Anfang addieren, um die Position zu
erhalten. Sollte PEEK (43) + 6 einen grdBeren Wert als 255
ergeben, 'so gibt der Rechner einen ILLEGAL-QUANTITY-ERROR
aus. In diesem Fall sollte man die Adresse aus der Formel
PEEK (43) + 6 + PEEK (44) * 256 berechnen und daraus dann

die neuen Zeigerbytes ableiten.

Besitzer einer Floppy-Station haben es erheblich leichter.
Sie konnen ndmlich mittels einer sinnreichen BASIC-Funktion
fast wie mit POKE auf die Diskette schreiben. Gemeint ist
die Befehlskombination PRINT #1, CHR$ (x). Sie schickt genau
ein ASCII-Zeichen zur Floppy. Um das sinnvoll anwenden zu
kénnen, muB man das Format der Speicherung von Programmfiles
auf Diskette kennen. Jedes Programm besteht aus einem
Directory-Eintrag und dem Programmtext; am Beginn des Textes
stehen 2zwei Bytes, die die Startadresse fiir den Ladevorgang
angeben. Im Normalfall sind dies O und 8 (0O + 256 * 8 = 2048
= BASIC-Start). Der Programmtext ist byteweise als Folge von
Interpretercodes gespeichert. Grundsadtzlich wird jedes B;fe
von der Floppy-Station wie ein ASCII-Code behandelt, gleich
welchen 2Zweck es erfiillt. Wenn man also einen Zeiger
ausliest, der aus zwei Bytes mit Inhalt 65 und 66 besteht,
dann erscheinen diese nach GET #1, A$, B$ als A und B in den
beiden Strings. LaBt man sich die ASCII-Codes dieser Strings
ausgeben, so erscheinen die beiden Bytes.)
Schicken wir ein Zeichen mit PRINT #1, CHR$ (x) zur Floppy,
so wird die Zahl x auf der aktuellen Position auf der Platte
gespeichert.)

Wirden wir dagegen PRINT #1, X eingeben, so wirde X als

- 32 -

mehrere Bytes lange Folge abgelegt (1 Byte pro Stelle).
Daraus ergibt sich ein einfaches Verfahren, um Programmfiles

zZUu erzeugen:

1. Directoryeintrag erzeugen
Dies ilbernimmt ein OPEN-Befehl fiir uns.
2. Startadresse "poken"
Dies geschieht folgendermaBen:
PRINT #1, CHR$ (Lowbyte): PRINT #1, CHR$ (Highbyte)
3. Text abspeichern ’
Der Text kann zum Bespiel auch eine Bildschirmgrafik

sein, die byteweise abgespeichert wird.

Hier aas entsprechende Programm, das einen Bildschirminhalt

auf Diskette kopiert:

10 OPEN 1, 8, 1, "O:BILDSCHIRM"

20 PRINT #1, CHR$ (O): PRINT #1, CHR$ (4): REM Startpointer
30 FOR I = 1024 TO 2023

40 PRINT #1, CHR$ (PEEK (I))

50 NEXT I: CLOSE 1

Auch hier kann das Ergebnis mit LOAD "BILDSCHIRM", 8, 1
zurickgeladen werden.

Zeile 10 sollte nur im Filenamen (hinter "0O:") verdndert
werden. Ganz wichtig ist die Sekunddradresse 1, die dem DOS
(Disk Operating System = Diskettenbetriebssystem) mitteilt,
daB wir SAVEn wollen.

Auf keinen. Fall sollte man das CLOSE am Ende der Routine
vergessen, da der File sonst zerstdrt wiirde!

Soll ein alter File iberschrieben werden, so muB vor die
Null innerhalb der Anfiihrungsstriche noch ein Klammeraffe

gesetzt werden.

— 33 —

4.2. MERGE PER HAND

Wir kommen jétzt zu einem hdufig auftretenden Problem. Oft
gibt es Programmteile, die getrennt getestet und
abgespeichert wurden und nun zusammen ein wunderbares Paar
abgeben koénnten. Es bleibt in den meisten Fdllen nichts
anderes 1ibrig, als einen der beiden Teile neu einzutippen,
es sei denn, man besitzt ein MERGE-Hilfsprogramm, mit dem
man Programme einfach aneinanderhdngen kann. Das mufl aber
nicht so sein. Mit ein paar einfachen Befehlen kann man dies
auch "von Hand" erreichen.

Wenn wir das Problem genauer besehen, so reduziert es sich
auf die Tatsache, daB das nachzuladende Programm das alte
iiberschreibt. Es ware winschenswert, wenn man dem
Interpreter sagen konnte, wohin er den zweiten Teil laden
soll. Da dies aber nicht ohne Schwierigkeiten geht, lautet
die logische Konsequenz, den Bereich des alten Programms vor
dem Interpreterzugriff zu schiitzen (und das k6nnen wir)!

Ist der Speicher erst einmal geschiitzt, konnen wir den neuen
Programmteil einfach mit LOAD nachladen und danach den
geschiitzten Bereich wieder freigeben. Wichtig ist aber, daf
der zweite Teil hohere Zeilennummern als der erste hat.
Sonst konnten wir die angehdngten Zeilen zwar listen, doch
konnte der Interpreter sie nicht ausfiihren.

Hier nun die genaue Vorgehensweise:

1. PRINT PEEK (43), PEEK (44)

Damit wird der Pointer auf den BASIC-Anfang ausgégeben\Aim
Normalfall 1 und 8). Diese beiden Zahlen miissen wir uns
unbedingt merken, da wir damit spdter die alte Konfiguration

wieder herstellen wollen.

2. POKE 43, (PEEK (45) + 256 * PEEK (46) -~ 2) AND 255

POKE 44, (PEEK (45) + 256 * PEEK (46) - 2) / 256
In den Speicherzellen 45 und 46 befindet sich der Zeiger auf
den Beginn des Variablenbereichs. 2 Bytes vor dem
Variablenstart endet das BASIC-Programm.
Der Variablenbereich setzt immer genau nach dem Programmtext

an, weil er bei Jjeder Anderung von Zeilen um ein

— 34 -

entsprechendes Stiick verschoben wird. Wir verlegen mit den
beiden POKE-Befehlen also den Programmanfang (zumindest fiir
den Interpreter) hinter den alten Text und schiitzen ihn so

vor dem Uberschreiben.

3. NEW

Da sich die iibrigen Zeiger der neuen Situation anpassen
missen und auBerdem Reste von Variablen als unerwiinschte
Prégrammzeilen interpretiert werden konnten, miissen wir den
verbleibenden Speicherbereich mit NEW neu initialisieren.
Das urspriingliche Programm wird davon jedoch nicht beriihrt
(es ist ja jetzt geschiitzt).

4. LOAD

Jetzt koOnnen wir das anzuhdngende Programm einfach mit LOAD
in den Speicher bringen. Wir diirfen aber auf keinen Fall
LOAD "Name"', X, 1 eingeben, da dann das urspriingliche
Programm ohne Riicksicht auf die Zeiger iliberschrieben wiirde.
Es besteht auBerdem jetzt die Moglichkeit, anstelle eines
Programms eine Directory zu 1laden, ohne das im Speicher
befindliche Programm zu zerstdren. In diesem Falle kOnnen
wir das Inhaltsverzeichnis nach dem Ladevorgang ganz normal
listen. Vor dem ndchsten Schritt muB8 allerdings nochmals NEW
eingegeben werden, damit die Directory geldscht wird (sie
soll Jja nicht angehdngt werden). Nach der ganzen Prozedur

erhalten wir dann den Ausgangszustand zuriick.

5. POKE 43, 1. gemerkte Zahl: POKE 44, 2. gemerkte Zahl

Hiermit stellen wir die urspriingliche Speicherkonfiguration
wieder her. Die beiden Programme werden dadurch
aneinandergehdngt und konnen jetzt 2zusammen benutzt und

abgespeichert werden.

— 35 —

Zusammenfassung: Merge per Hand

1. PRINT PEEK (43), PEEK (44)
Zahlen merken!

2. POKE 43, (PEEK (45) + 256 * PEEK (46) - 2) AND 255
POKE 44, (PEEK (45) + 256 * PEEK (46) - 2) / 256

3. NEW

4. LOAD

5. POKE 43, 1. gemerkte Zahl: POKE 44, 2. gemerkte Zahl

—_ 36_

4.3. DIRECTORIES

Dieser Abschnitt bezieht sich leider nur auf das
Diskettenlaufwerk VC-1541. Die geneigten Leser ohne dieses
niitzliche Requisit mégen mir verzeihen und bis zum nidchsten
Abschnitt weiterblattern.

Den ersten Trick kennen wir schon aus dem letzten Abschnitt,
ndmlich das Laden einer Directory ohne Programmverlust. Es
kann aber auch niitzlich sein, das Inhaltsverzeichnis per
Programm zu laden und dann 2z.B. als Array abzulegen
‘(beispielsweise fiur Dateiverwaltungsprogramme etc.). Ein
Programm hierzu finden Sie im Anhang der 1541-Anleitung und
auf der TEST/DEMO-Diskette unter dem Namen "DIR". Man kann
es sich flir eigene Zwecke leicht umschreiben. Es ist aber
auch sehr interessant, sich einmal die Struktur der
Directory anzusehen. Auch hierzu liefert das Handbuch gute
Informationen. AuBerdem sollten Sie sich nicht scheuen, die
Directory mittels OPEN 1,8,5,"$" anzusprechen
(vorsichtshalber eine Versuchsdiskette nehmen) und per
GET#1, A$ byteweise auszulesen.

Es spricht wieder einmal gegen das VC-1541-Handbuch, daB es
Floppy-Befehle gibt, die nicht aufgefiihrt wurden. So kann
man das Inhaltsverzeichnis auch nach bestimten Kriterien
laden.

Die einfachste Form ist LOAD "$$",8. Damit wird nur noch der
Diskettenname und die Anzahl freier Blocks geladen.

Will man nur bestimmte Eintrdge ansehen (z.B. alle Files,
die mit ABC beginnen), so benutzt man LOAD "$:ABC*",8

Ein 4&dhnliches Verfahren gibt es fiir Filetypen. Hier heifBit
der Befehl LOAD "$:*=Typ",8, wobei flir "Typ" der
Anfangsbuchstabe der Dateiart (Prg, Seq, Rel, Usr)
einzusetzen ist. Jetzt wird die Directory zwar noch geladen,
aber es erscheinen nur die Files des angegebenen Typs.

Das funktioniert z.B. auch bei SCRATCH (PRINT#15, "S:{=S"
10scht alle sequentiellen Files).

- 37 -

Zum SchluB noch ein Trick, der Geld sparen hilft.
Normalerweise verarbeitet das Laufwerk nur Disketten vom Typ
"single-sided", also einseitig beschreibbar.

Die meisten dieser Single-sided-Disketten sind jedoch auch
beidseitig benutzbar, wenn man eine zZweite
Schfeibschutzkerbe anbringt. Dies geht am besten, wenn man
einen Locher nimmt, dessen Boden abgenommen wurde. Man kann
dann leicht durch die Bohrung eine vorher angebrachte
Markierung in Hohe der anderen Kerbe anpeilen und lochen.
Die zusdtzliche Kerbe kann kleiner sein als die alte. Es
reicht also eine halbmondfdrmige Lochung, wie sie Abb. 3
zeigt. .
Um endgiltige GewiBheit {ber die Funktionstiichtigkeit des
neuen Speicherplatzes 2zu erhalten, sollte man das Programm
CHECK-DISK von der TEST/DEMO-Diskette einsetzen. Es
beschreibt alle Spuren einer formatierten Diskette mit Daten
und testet dann auf Lesefehler, die eine fehlerhafte
Beschichtung anzeigen. Sollten einzelne Blocks beschadigt
sein, so wird dies auf dem Bildschirm angezeigt. Nach dem
Programmdurchlauf (leider sehr, sehr 1langwierig) ist das
Inhaltsverzeichnis immer noch leer, doch wird "O Blocks
free" angezeigt. Dies 1a8t sich durch OPEN 1, 8, 15, "v“:
CLOSE 1 &ndern. Es stehen dann wieder alle 664 Blocke zur

Verfiigung.

Zusammenfassung: Directories

LOAD "$$",8 1ladt nur Header und Blockanzahl.

LOAD "$:ABC*",8 l1lddt Directory nur mit Files, deren Name mit
ABC beginnt.

LOAD "$:*=Typ",8 1laddt Directory nur mit Files, die vom

angegebenen Typ sind.

— 38 —

Abb. 3 Zweite Schreibschutzkerbe

- 39 —

4.4. VERSCHIEDENES RUND UM DIE PERIPHERIE

Nach den "groBen" Tricks nun ein paar kleine PEEKs und POKEs
, die bei der Programmierung der Datenein- und -ausgabe
helfen kénnen;

Es kann niitzlich sein, die Anzahl der bereits offenen Files
zu erfahren. Wie Sie wissen, diirfen maximal 10 Files
gleichzeitig gedffnet sein. Wird ein elfter erdffnet, so
reagiert der Rechner mit einem TOO-MANY-FILES-OPEN-ERROR.
Diesen kann man vermeiden, wenn man sich vorher mittels PEEK
(152) die Anzahl der offenen Dateien ausgeben 1&8t.

Mit dem CMD-Befehl kann man - wie bekannt - die Ausgabe vom
Bildschirm auf Peripheriegerdte umleiten. Die physikalische
Adresse dieses Gerates steht in der Speicherzelle 154 (1 =
Datasette, 4 = Drucker, 8 = Floppy). Ebenso kann die
CMD-Belegung durch POKE 154, 3 wieder riickgdngig gemacht
werden. Ein File bleibt davon unberiihrt. Deshalb kann die
Ausgabe auch durch POKE 154, X wieder auf das Gerat
umgeleitet werden.

Ahnlich funktioniert Speicherzelle 153. Hier wird das
aktuelle Eingabegerdt gespeichert. Soll der Computer z.B.
iiber eine V.24-Schnittstelle ferngesteuert werden, so konnte
hier eine 2 stehen. Erhdlt der Rechner Daten von einem
Peripheriegerit, so ist die entsprechende Gerdtenummer
gespeichert, bei normalem Tastaturbetrieb ist es eine O.

Ebenfalls interessant ist Speicherzelle 184. Hier steht die
Nummer des 2zuletzt verwendeten Files. Die Sekunddradresse
dieses Files steht in Register 185. Hier kann man z.B.
feststellen, ob ein Drucker in einen bestimmten Modus

gebracht wurde o.a..

Der Dritte im Bunde ist Speicherzelle 186. Hier steht die

— 40 —

physikalische Nummer des =zuletzt benutzten Gerdts. Diese
Adresse kann man in Programmen benutzen, die Jje nach
Ausstattung des gerade verwendeten Computers entweder auf
Kassette oder Diskette zugreifen sollen. Nach dem Laden
stellt das Programm dann anhand der Speicherzelle 186 fest,
welches Gerdt der jeweilige Anwender besitzt (sprich: woher
das Programm geladen wurde) und kann dann dementsprechend

reagieren.

Interessant koénnte auch Register 147 sein. Hier 148t sich
feststellen, ob der 1letzte Lesebefehl fiir Floppy bzw.
Datasette ein LOAD (=0) oder ein VERIFY (=1) gewesen ist.

Wenn Ihnen dann die Files schnuppe sind, konnen Sie alle
noch gedffneten Dateien mit SYS 62255 schlagartig wieder

schlieflen.

Der letzte Trick wendet sich an Besitzer einer Datasette.
Speicherzelle 150 enthdlt den Kassettenmotorflag. Ist der
Motor nicht eingeschaltet, so enthdlt dieses Byte O,

andernfalls ist es ungleich O.

Zusammenfassung: Peripherietricks

PRINT PEEK (152): Anzahl offener Files
PRINT PEEK (153): aktuelles Eingabegeridt
PRINT PEEK (154): aktuelles Ausgabegerit
PRINT PEEK (184): aktueller File

PRINT PEEK (185): aktuelle Sekunddradresse
PRINT PEEK (186): aktuelles Gerit

PRINT PEEK (147): letzter Lesebefehl

SYS 62255: schlieBt alle Files

PRINT PEEK (150): Kassettenmotorflag

— 41 —

4.5. DIE STATUSVARIABLE ST

Sie haben sicher schon von der Statusvariablen ST gehdrt.
Sie zeigt Fehler bei LOAD und VERIFY vom Band und bei der
Benutzung des seriellen Busses an.

Je nach Art des Fehlers werden verschiedene Bits der
Variablen gesetzt. 1Ist kein Fehler aufgetreten, so ist ST=
0. Beim seriellen Bus wird die Meldung DEVICE NOT PRESENT
durch den Wert -128 angezeigt. Sollte ein Schreibfehler
aufgetreten sein, so ist ST= 1, beim Lesen ist ST= 2. Sollte
das Ende eines Datenblocks erreicht sein, so ist der Wert
von ST 64 (sowohl bei Kassette als auch bei Diskette).

Das Bandende (bei Datasette) wird durch -128 angezeigt, ein
Priifsummenfehler durch 32. Dieser Fehler kann auch dann
aufgetreten sein, wenn die Operation ordnungsgemdfi und ohne
Fehleranzeige abgeschlossen wurde. Konnte der Fehler aber
nicht "ausgebiigelt" werden (durch den Kontrollblock bei LOAD
und VERIFY), so ist Bit 4 (=16) gesetzt. Sollten sich Fehler
in der Blockladnge ergeben, so ist ST= 4 (zu kurz) bzw. 8 (zu
lang).

sind mehrere Fehler gleichzeitig aufgetreten, so wurden die
entsprechenden Bits gesetzt und dadurch die Zahlen addiert.
Sollte ein Priifsummenfehler aufgetreten und auBerdem das
Bandende erreicht sein, so ist ST= -96 = —125‘+ 32.

Auf diese Art und Welise lassen sich Fehler bei Band- und

Floppyzugriff leicht feststellen.

— 42 —

5. DER BILDSCHIRM

Hier soll vom normalen Bildschirmaufbau und seiner
Manipulation die Rede sein, denn es muB nicht immer
hochaufldsende Grafik sein, mit der ein gutes Bild

programmiert werden kann.

5. 1. BLOCKGRAFIK

Haben Sie sich die Grafikzeichen Thres 64ers schon einmal
genauer angesehen? Es befinden sich darunter auch solche,
die genau ein Viertel des Platzes einnehmen, den ein
Bildschirmzeichen maximal beansprucht. Ebenso gibt es
solche, die genau die H&dlfte einnehmen. Nehmen wir den
reversen Satz noch dazu, dann haben wir auch Dreiviertel-
und ganze Zeichen.

Da der Bildschirm 25 Zeilen mit je 40 Zei-~hen hat, kdnnten
mit dieser Viertelpunktgrafik 50 x 80 Punkte benutzt werden.
Da die angesprochenen Grafikzeichen piraktischerweise
zusammen mit éer Commodoretaste erreicht werden, kdnnen wir
sie auch im Kleinschriftmodus benutzen.

Es widre nur wiinschenswert, konnten wir diese Zeichen iiber
ein Unterprogramm aufrufen. Groftes Problem: Wenn schon
Punkte gesetzt worden sind, kann man nicht einfach ein
anderes Viertelpunktzeichen in die betrefffende
Bildschirmzelle POKEn. Dadurch wirde der alte Punkt
geldscht. Vielmehr muB das alte Zeichen in das neue mit
eingerechnet werden. Je nach Aussehen der alten
Bildschirmzelle mufB ein bestimmter Code abgespeichert
werden.)

Eine Moglichkeit wdre, den gesamten Bildschirminhalt in ein
Array zu kopieren und dann in diesem Array jeweils einzelne
Punkte 2zu setzen. Eine Unterroutine ibertrdgt dann den

Inhalt des Arrays in Bildschirmcodes.

— 43 -

Einfacher ist es, fiir jede' moégliche Kombination von
Bildschirmzeichen und 2zu setzendem Punkt in einer Tabelle
das zu pokende Byte aufzuschreiben.

Diese Tabelle wird in den Speicher des BASICs ilibertragen.
Dann kann der Rechner sich bei Jjedem Aufruf der
Blockgrafikroutine das gewlinschte Zeichen aus der Tabelle
heraussuchen. Unten finden Sie ein Programm, daB diese
Block- oder Viertelpunktgrafik erzeugen kann.

Im ersten Teil geschieht die Initialisierung, die die
ndétigen Tabellen einliest. Diese sind recht umfangreich
geworden, da auch eine Loschroutine integriert worden ist.
Ab Zeile 60000 stehen die Setz- und Loschunterprogramme. Mit
GOSUB 60000 wird die Setzroutine, mit GOSUB 60001 die
Loschroutine aufgerufen.

Ist die Variable L gleich O (Zeilen 60000, 60001), so wird
der erste Teil der Tabelle benutzt (=setzen), bei L=1 wird
der zweite Teil benutzt (=1lOschen).

Die Koordinaten des anzusprechenden Punktes werden in den
Variablen X (O bis 49) und Y (0O bis 79) ilibergeben. Der Code ~
der Farbe, die benutzt werden soll, steht (hoffentlich) in
CO.

Hier das Listing:

DHETA
DFTH
DETA
TATHA

— 44 —

=0 GOTSEE L3

D b R S W
TOTHEMSZ=T : F==]

ETLIRM
2 POREESSEZREHFO L0 RETURR

FEEADNY .

In den Zeilen 60010 und . 60020 werden Position im
Bildschirmspeicher (PO) und Art des Punktes innerhalb des
Zeichenrasters (links/rechts in X1, oben/unten in X2)
berechnet. Die Zeilen 60030 und 60040 suchen anhand des
schon vorhan@enen Zeichens aus dem Bildschirmspeicher nach
der richtigen Tabellenspalte (X3). Sollte das Zeichen kein
Graphikzeichen sein, so wird dies in Zeile 60050
registriert. Beim Setzmodus wird das alte Zeichen dann
einfach liberschrieben, beim Loschen bleibt es zur Freude des
Benutzers stehen.

Die Kronung des Unterprogrammes ist Zeile 60060, in der das
Zeichen aus der Tabelle herausgesucht und gePOKEd wird.

Ein Wort noch zu den Koordinaten. Der Ursprung des
Koordinatensystems ist in der linken unteren Ecke. Damit ist
es besonders einfach, Funktionen o.4. auf den Bildschirm zu

bringen.

— 45 —

5.2. BALKENGRAPHIK

Fiir die graphische Darstellung von Bilanzen oder Messwerten
ist -es niitzlich und iblich, Balkengraphiken zu verwenden. So
lassen sich zum Beispiel Verkaufszahlen sehr gqut in
waagerechten Balken fiir jeden Monat des Jahres verewigen.
Leider bietet kaum ein Computer standardmdBig einen Befehl
zur Erstellung dieser Balken. Deshalb habe ich unten eine
Unterroutine \ aufgelistet, die die Erzeugung von
Balkengraphiken sehr erleichtern kann. Sie wird dhnlich wie

die Blockgrafikroutine benutzt.

Auch hier 1leisten uns die Graphikzeichen wieder gute
Dienste. Wir koénnen in horizontaler Richtung 320
verschiedene Lidngen von Balken ausgeben lassen, da wir auf
40 Zeichen zu je 8 Punkten Breite zugreifen konnen. Fir jede
Breite (von O bis 8) gibt es ein Grafikzeichen im Vorrat des
64ers. J
Wir miissen also nur noch berechnen, wieviele ganze reverse
Leerzeichen sich in der Lidnge des Balkens unterbringen
lassen und fiir den Rest das entsprechende Grafikzeichen
auswahlen. Auch hierzu wird wieder ein kleines Array
bgnutzt. Hie;_das Listing:

L ﬂxnnﬂin?::me1=me?=mEHnﬁH$(1}:HfﬂT
- r’__' n H . H! i . llt 1) P ”B " . llu 1 B ”.ﬂ E!ll P " n- &I) N ll;ﬂ E”
- I ”"IIFT’WHTHEHWT“H

CEREIHTARE

T r-Hf B2l e
. 2 RETLEM

CEOPOREZLE LT J

FEADY

— 46—

Die Bedeutung der ersten beiden Zeilen diirfte klar sein,
hier werden die bendtigten Zeichen eingelesen.
Sicherheitshalber hier noch einmal die ASCII-Codes der
Zeichen aus Zeile 20 (ohne RVS-ON/ RVS-OFF): '
32, 165, 180, 181, 161, 182, 170, 167

Aufgerufen wird die Routine mit GOSUB 60500. Die Linge des
Balkens (1 bis 320) soll in der Variablen Y ilibergeben
werden. Die Zeile, in der er stehen so0ll, wird in X
angegeben (O bis 39). Um das Erstellen von Graphiken oder
dhnlichem zu erleichtern, kann auch die Spalte bestimmt
werden, ab der der Balken starten soll (0 - 24). Sollte die
Linge des Balkens den noch freien Raum in der Zeile
ibersteigen, so wird der Balken automatisch verkiirzt. Dies
bewirkt Zeile 60500. Zeile 60510 berechnet die Anzahl der
ganzen Revers-Zeichen im Balken (G) und die Anzahl der
verbleibenden Punkte (XA). Zeile 60520 filigt die ganzen
Zeichen zu einem String (AN$) zusammen, Zeile 60530 hidngt
das letzte Zeichen mit dem Rest an.

Um die normalen PRINT-Befehle nicht zu beeinflussen, wird
die alte Cursorposition sowie die gerade benutzte Farbe
gespeichert (C1, C2, C3, siehe Zeile 60540). In der nachsten
Zeile wird dann der Cursor neu gesetzt, die Farbe Ihren
Winschen entsprechend gedndert (=CO0) und der Balken
ausgegeben. Die 1letzte Zeile stellt schlieflich wieder den
alten Zustand her und beendet das Unterprogramm.

Da wieder nur Zeichen benutzt wurden, die auch im
Kleinschriftmodus zur Verfiigung stehen, kann diese Routine
in fast jeder Anwendung eingesetzt werden.

— 47 —

5.3. DIE BETRIEBSARTEN IM ZEICHENMODUS

In diesem Abschnitt kldren wir die Frage, woher die kleinen
und groBen As, Bs, Cs u.s.w. herkommen. Die Zahl 1, die
vielleicht im Video-RAM in Speicherzelle 1024 gespeichert
ist, sagt uns zwar, daB an der betreffenden Stelle ein A auf
dem Bildschifm erscheinen sollte, doch lber die Form dieses
Buchstabens sagt sie nichts aus. Das Muster fiir das A (und
alle seine Geschwister vom B bis zum letzten Grafikzeichen)
ist im Charakter-ROM gespeichert. Es liegt im Bereich von
53248 bis 57343.

Jedes Bildschirmzeichen beansprucht von diesen 4 Kilobytes
genau 8 Bytes, da die Zeichenmatrix 8 x 8 Punkte umfafBt.
Jewells eine Punktzeile belegt ein Byte; ein Bit
reprasentiert also einen Punkt. Ist dieses Bit auf 1
gesetzt, so erscheint auf dem Bildschirm ein Punkt in der
Farbe, die im Color-RAM an der gleichen Stelle steht; ist
das Bit auf O, so wird dieser Punkt der Matrix die Farbe des)
Hintergrundregisters 53280 annehmen.)

Die Zahl, die im Video-RAM steht, hat dabei eine besondere
Aufgabe. Sie wird vom VIC (Video Interface Chip) mit 8
multipliziert und ergibt so die Stelle innerhalb des
Charaktergenerators, ab der das gewiinschte Muster zu finden
ist. Versuchen Sie es einmal. Nehmen Sie ein beliebiges
Zeichen , suchen Sie dessen Bildschirmcode aus der Tabelle
im CBM-Handbuch heraus (nicht ASCII-Code) und starten Sie

dann folgendes Miniprogramm:

1 OIHML T
5 RRIHT

18 IHMFUT"EILT
DE AD=SEEY S
FORESEHI , ' 3
FOKEL FEEK S L 9 AHDES
FORI=GTOF M T 0 =FEEK (AT HEXT
FOREL . FEEKY L2 0R

FOkESS 3 CSEEE 2 OR L
FORI=GTOF FORT=7TOASTER -1

— 48 —

SE TR OMO T aAHDE T T THEHPRINT "4 0t GOTo1L1a

lad PRIMTY M

118 MESTI PREIMT - HESTI

128 PRINT"TAHSTE" FOFELZZ 0 MATITIZE 1 GETHE - GOTOS
FEADY .

Mit diesem Programm konnen Sie sich die Bitmuster der
Zeichen im GroBschriftmodus ansehen. Wollen Sie die Zeichen
des Kleinschriftmodus ausgeben lassen, so mufl die
Basisadresse in Zeile 20 von 53248 in 55296 gedndert werden.
Andere Moglichkeit: Sie addieren einfach 256 zum
Bildschirmcode (Beispiel: a = 1 + 256 = 257).

Bitte wundern Sie sich nicht iiber die kleinen Tricks im
Programm, die Sie noch nicht kennen; sie werden in spdteren
Abschnitten vorgestellt.

Es reicht zur Erkldrung, daB sich das "Progrdmmchen" in zwei
Teile trennen 1ldBt. .Im ersten Teil (Zeilen 5 - 70) werden
die gewiinschten Bytes des Zeichengenerators in das Array
M(I) eingelesen. Dazu wird der Interrupt abgeschaltet (Zeile
30) und das Charaktergenerator-ROM eingeschaltet (Zeile 40).
Es folgen die FOR-NEXT-Schleife mit den PEEKs (AD enthdlt
ibrigens die Startadresse des gewadahlten Zeichens) und das
Wiedereinschalten von I/O-Bereich und Interrupt.

Im 2zweiten Teil werden die acht Bits in Bitmuster zerlegt.
Wenn das n-te Bit in M(I) auf 1 ist, so ergibt der Ausdruck
(M(I) AND 2 " n) eine 1. Dies nimmt der IF-Befehl zum AnlaB,
in den THEN-Teil zu verzweigen und einen Stern auszudeben.
Andernfalls erscheint ein Punkt (Zeile 100). Das Besondere
daran ist, daB im IF-THEN kein Vergleich steht, sondern
lediglich ein Term in Klammern. Sobald dieser ungleich O
wird, veizweigt der Interpreter zum THEN. Statt des
Ausdrucks konnte man auch eine Variable oder dhnliches

setzen.

Nun aber =zurick 2zum eigentlichen Thema! Wie Sie der
berschrift dieses Abschnitts vielleicht entnehmen, ist der

beschriebene Modus nicht der einzige.

_ 49 —

Der EXTENDED-COLOR-MODE ist dem Normalmodus recht dhnlich.
Die Bits des Zeichenmusters, die auf 1 gesetzt sind, ergeben
nach wie vor einen Punkt in der im Color-RAM gespeicherten
Farbe. Die Farbe der O-Bits kann dagegen verschieden sein.
Sie richtet sich nach den Registern fir die
Hintergrundfarben O - 3 (53281 - 53284). Einigen Lesern wird
sich Jjetzt vielleicht ein lautes "Aha!" entringen, da diese
Register im Anhang des CBM-Handbuchs zwar aufgefiihrt sind,
ihre Anwendung aber nicht beschrieben wurde.

Welche der 4 Farben filir die 0-Bits verwendet wird, richtet
sich nach den beiden hochstwertigen Bits des Bildschirmcodes
im Video-RAM. Betrachtet man diese beiden als eigenstdndige
Zahl (Zahl = Bit 7 * 2 + Bit 6), so gibt diese die Nummer
des verwendeten Registers an (Beispiel: 1 O =1 * 2 + 0 =
2).

Diese beiden Bits lassen sich nun allerdings nicht mehr als
Zeiger auf die Position im Charaktergenerator einsetzen.
Dafir bleiben nur noch 6 Bits ilibrig. Damit lassen siﬁh dann
die ersten 2 " 6 = 64 Zeichen ansprechen. J

Den Extended—Color—Mode konnen Sie durch POKE 53265, PEEK
(53265) OR 64 an- und durch POKE 53265, PEEK (53265) AND 191
wieder einschalten.

Jetzt wird es haarig! Der Multi-Color-Mode ist ziemlich
kompliziert, kann aber bei richtiger Anwendung tolle
Ergebnisse liefern.

Wie Sie sich entsinnen werden, kann jedes Bildschirmzeichen
héchstens zwel Farben haben: Zeichenfarbe (aus dem
Color-RAM) und Hintergrundfarbe (aus den VIC-Registern). Der
Multi-Color-Mode erlaubt dagegen bis 2zu 4 Farben pro
Zeichen. Erkauft wird dies allerdi;gs mit einer
Vereinfachung der Punktmatrix.

Verantwortlich ist diesmal das Farbbyte aus dem Color-RAM.
Ist Bit 3 nicht gesetzt (Byte (AND 2 | 3) = 0), dann bleibt
fast alles beim alten. Leider konnen jetzt aber nur noch die
Farben O bis 7 benutzt werden, da ja das fiir mehr Farben
notige Bit 3 durch das Multi-Color-Flag belegt ist.

- 50 -

Ist das Bit 3 Jjedoch auf 1, so wirkt die Mehrfarbigkeit
(endlich). Die normale 8 x 8 Matrix wird in eine 4 x 8
Matrix umgewandelt. Je 2zwei Bits des Charactergenerators
werden Jetzt zu einem Punkt zusammengefaBt. Sind beide Bits
auf O, so erhdlt dieser Punkt die Hintergrundfarbe. Sind
beide Bits auf 1, so holt sich der VIC die Farbe aus dem
Color-RAM (allerdings wieder nur die Farben O bis 7). Bei
den anderen beiden Kombinationen (O 1 bzw. 1 0) wird die
Farbe fiir den Punkt wie beim Extended-Color-Mode aus den
Hintergrundfarbenregistern 1 und 2 geholt. Auch diesen Modus
kdnnen Sie vom BASIC aus per POKE 53270, PEEK (53270) OR 16
einschalten. Ausgeschaltet wird mit POKE 53270, PEEK (53270)
AND 239.

Wie Sie Jjetzt sehen, sind die Zeichen in diesem Modus sehr
zerfranst und chaotisch. Findige Programmierer konnen sich
aber den Charaktergenerator ins RAM kopieren und dann

"verniinftige" Mehrfarbenzeichen entwerfen.

Zusammenfassung: Betriebsarten im Zeichenmodus

Extended-Color-Mode an: POKE 53265, PEEK (53265) OR 64
Extended-Color-Mode aus: POKE 53265, PEEK (53265) AND 191
Multi-Color-Mode an: POKE 53270, PEEK (53270) OR 16
Multi-Color-Mode aus: POKE 53270, PEEK (53270) AND 239

- 51 —

5.4. CHARACTER-GENERATOR VERLEGEN

Wie wohl unschwer zu erraten ist, wird auch die Lage des
Zeichengenerators vom VIC gesteuert (er ist der Tausendsassa
des C-64; er ilberwacht dié Zusammenarbeit von Prozessor und
iibrigen Bausteinen, erzeugt ein Videosignal, steuert Sprites
und hochauflSsende Grafiken und generiert so ganz nebenbei
auch den Takt fiir den gesamten Rechner). Ganz speziell
sollte uns hier die Speicherzelle 53272 interessieren.
Innerhalb dieser Speicherzelle bestimmen die Bits 1 bis 3
die Adresse des Zeichengenerators. Diese hdngt zwar noch von
anderen Faktoren ab, doch diese sind schwerer zu
beeinflussen. Alle folgenden Angaben sind deshalb auf die
Normalkonfiguration zugeschnitten; etwaige Hilfsprogramme
kdénnen diese unter bestimmten Umstdnden verdndern (vor allem
Grafikhilfsprogramme) . ¢

Die untenstehende Tabelle zeigt, welche Bitkombinationen

welche Bereiche adressieren. ~
000 I O

001 I 2048

010 I GroBschrift

011 I Kleinschrift

100 I 8192

101 I 10240

110 I 12288

111 I 14336

Eine Sonderstellung nehmen dabei die Kombinationen 010 und
011 ein. Sie adressieren das ROM (53248 bzw. 55296).

Auf die 3 Bits in Speicherzelle 53272 sollte am besten nur
per AND und OR zugegriffen werden. Um die Belegung zu
andern, sollte man das %yte zuerst mit der Binadrzahl
1111 0001 (=241) AND-verkniipfen. Dadurch werden die Bits 1
bis 3 geldscht. Sodann kénnen per OR die gewiinschten
Kombinationen eingestellt werden. Beispiel: Um den

Character-Generator nach 2048 (BASIC-Anfang!) zu verlegen,

— 52 —

muB die Kombination 001 in Speicherzelle 53272 stehen. Bit O
dieses Bytes kann von uns nicht beeinfluBt werden, es bleibt
immer auf 1. Wir bilden daher von der Bitkombination die
dezimale Entsprechung; das ist in unserem Fall 1. Da das
Ganze um ein Bit nach links verschoben im Byte stehen soll,
muB noch mit 2 multipliziert werden. Der gesamte Befehl zum
Verschieben des Zeichengenerators lautet also:

POKE 53272, (PEEK (53272) AND 241) OR 2

Damit ist der Generator zwar verlegt, doch wir konnen damit
nichts anfangen, auf dem Bildschirm steht jedenfalls nur ein
Punktegewirr. Machen wir uns also ans Werk. Mit dem
untenstehenden Programmchen kann das Charactergenerator-ROM
ausgelesen und ins RAM kopiert werden. Vorher miissen wir
allerdings noch den BASIC-Anfang nach 6144 verlegen, da ja
die ersten 4 K vom Generator belegt werden sollen. Dies
geschieht durch

POKE 43,1: POKE 44,24: POKE 6144,0: CLR.

S0ll ein Programm selbsttdtig den Zeichengenerator verlegen,
so muB ein Ladeprogramm benutzt werden; siehe Kapitel 3.3.
Jetzt konnen die unten aufgefﬁhrten Zeilen eingegeben

werden:

10 POKE 56334, PEEK (56334) AND 254: REM Interrupt aus
20 POKE 1, PEEK (1) AND 251: REM ROM einschalten

30 FORI= O TO 4095: POKE 2048+I, PEEK (53248+I): NEXTI
40 POKE 1, PEEK (1) OR 4: REM ROM ausschalten

50 POKE 56334, PEEK (56334) OR 1: REM Interrupt ein

Wenn Sie jetzt auf den neuen Charaktergenerator umschalten,
haben die Zeichen immer noch ihre alte Form, doch - und das
ist das Erfreuliche - kommt diese nun aus dem RAM. Dort 1l&Bt
sie sich leicht per POKE dndern. Bildschirmzeichen lassen
sich wie Sprites definieren, unterschiedlich sind nur die
Matrix (8 x 8 statt 21 * 24) und die Lage im Speicher.

Zum Betrachten der Muster konnen Sie wieder das Programm aus
Kapitel 5.2. benutzen, doch das Abschalten des Interrupts
und das Verdndern von Speicherzelle 1 ist jetzt unndtig.

Natilirlich muB8 auch die Basisadresse in Zeile 20 (jetzt 2048)

— 53 —

verandert werden.

Die neuen Bildschirmzeichen kénnen Sie jetzt einfach
einpoken - versuchen Sie es! Besonders im Multi-Color-Mode
sind der Kreativitdt des Programmierers Kkeine Grenzen
gesetzt.

Abschalten konnen Sie den neuen Zeichensatz librigens mit
POKE 53272, (PEEK (53272) AND 241) OR 4 (fiir GroBschrift)
bzw. 6 (filiir Kleinschrift).

Zusammenfassung: Verlegen des Zei;hengenerators

Bits 1 - 3 der Speicherstelle geben den Ort des Generators
an. Bei Verlegung in den BASIC-Speicherbereich ist ein
Schiitzen des belegten Bereiches notwendig (siehe Kap. 3.3.).
Zeichensatz kann nach Abschalten des Interrupts und
ROM-Umschaltung ausgelesen und ins RAM gePOKEd werden.
Eigener Satz ein: POKE 53272, (PEEK (53272) AND 241) OR x
Eigener Satz aus: POKE 53272, (PEEK (53272) AND ,241) OR 4
bzw. 6

5.5. VIDEO-RAM VERLEGEN

Ahnlich wie der Charactergenerator 1l&dBt sich auch das
Video-RAM durch die Speicherzelle 53272 verschieben.
Zustandig sind diesmal die Bits 4 bis 7.

Mit diesen vier Bits ldBt sich das TV-RAM in Schritten von
einem Kilobyte verschieben. Im Normalfall ist nur Bit 4
gesetzt, was dann den Bereich von 1024 bis 2023 selektiert.
Hier wieder eine Tabelle mit Bitkombinationen und deren

Ergebnis:
0000 1 O

0001 I 1024
0010 I 2048

— 54 -

0011 I 3072
0100 I ROM
0101 I ROM
0110 I ROM
0111 I ROM
1000 I 8192
1001 I 9216
1010 I 10240
1011 I 11264
1100 I 12288
1101 I 13312
1110 I 14336
1111 I 15360

Wie Sie sehen, bilden die Kombinationen, die mit ROM
gekennzeichnet sind, eine Ausnahme. Dies ist notwendig,
damit der VIC auf'den Charaktergenerator im ROM zugreifen
kann. Diese Bereiche werden 1in den Speicher von 4096 bis
8191 hineingespiegelt. Fir den VIC liegt das ROM also hier
und nicht ab 53248! Umgeschalfet wird wieder mit AND, OR,
PEEK und POKE. Zundchst miissen die vier hoéchstwertigen Bits
geldscht werden. Das geht am besten durch AND 15. Sodann
missen wir die Bindrkombination in eine Dezimalzahl
verwandeln. Wollen wir das TV-RAM nach 15360 verlegen, so
wiare dies 15. Diese Zahl muB (wegen der Verschiebung im
Byte) mit 16 multipliziert werden. Das Ergebnis setzen wir
in die OR-Verkniipfung ein. Der gesamte Befehl lautet dann:
POKE 53272, (PEEK (53272) AND 15) OR X.

Ist Ihnen an der Zahl, die wir vor der Mulitplikation aus
der Bindrkombination errechnet hatten, etwas aufgefallen?
Richtig - sie gibt an, im wievielten Kilobyte des Speichers
das Video-RAM stehen soll. 1In 2Zukunft brauchen Sie also
nicht mehr mihsam Bindrkombinationen umrechnen, Sie setzen
einfach das gewilinschte K in den folgenden Befehl ein:

POKE 53272, (PEEK (53272) AND 15) OR K * 16.

Eine arge Enttduschung erleben Sie aber, wenn Sie diesen
Befehl so ausprobieren. Auf dem Bildschirm erscheint ein
heilloses Durcheinander von Zeichen, die sich auch iiber die

— 55—

‘Tastatur - nicht unbedingt bdndigen lassen. Wir haben
vergessen, dem Betriebssystem mitzuteilen, wo das neue
TV-RAM steht. Der VIC holt sich jetzt die Bildschirmdaten
von einem Ort, wo das Betriebssystem noch gar nichts ablegt.
Wenn Sie 1in dieser Situation die Taste CLR driicken, so
16scht das Betriebssystem noch den alten Bildschirmspeicher
und das Color-RAM. Aber auch dagegen ist ein Kraut
gewachsen.

Die Speicherzelle 648 +teilt dem Rechner das Highbyte der
Video-RAM-Startadresse mit. Dieses erhalten wir, indem wir
die Startadresse durch 256 teilen. Um bei unserem Beispiel
zu bleiben: 15360 / 256 ergibt 60. Mit POKE 648, 60 ist die
Welt dann flir uns und den C-64 wieder in Ordnung. Zum Gliick
gibt es auch hier wieder eine Vereinfachung. Es reicht aus,
die Kilobyte-Nummer mit 4 2zu multiplizieren, um das
gewilinschte Highyte zu bekommen. i

Noch etwas ist zu beachten, wenn Sie Sprites verwenden. Die
Zeiger auf die Blocke, in denen die Sprites definiert
werden, liegen nicht mehr in den Speicherzellen 2040 bis
2047. Sie wurden mitverschoben. In unserem Beispiel ldgen
sie also im Bereich von 16376 bis 16383.

Bitte denken Sie auch daran, daB wieder der
BASIC-Speicherbereich geschiitzt werden muBl, wenn Sie das
Video-RAM verlegen.

Besonders reizvoll erscheint mir die Moglichkeit, 2zwei
getrennte Bildschirmseiten zu definieren und zwischen beiden
bei Bedarf hin- und herzuschalten. Allerdings wirken die
PRINT-Befehle des BASICs nur auf die gerade eingeschaltete
Seite, auf die andere miiBte dann mit PEEK und POKE
zugegriffen werden. Weiteres Problem: Das Color-RAM kann
nicht verschoben werden, beide Bildschirmseiten miissen also

die gleichen Zeichenfarben benutzen.

— 56—

Zusammenfassung: Video-RAM verlegen

TV-RAM kann {iber die Bits 4 - 7 der Speicherzelle 53272
gesteuert werden. Die Nummer des Kilobytes, das den
Bildschirmspeicheraufnehmen soll, ist in K einzusetzen:

POKE 53272, (PEEK (53272) AND 15) OR K * 16

POKE 648, K * 4

- 57 —

5.6. VERSCHIEDENE TRICKS FUR DEN BILDSCHIRM

Auch flir den normalen Zeichenmodus gibt es einige Tricks,
die einem das Programmieren einer Textausgabe o.&.
erleichtern konnen.

Fangen wir mit der Farbe an. Die zur Zeit eingeschaltete
Zeichenfarbe koénnen Sie aus Speicherzelle 646 erfahren. Mit
POKE 646, Farbcode kénnen Sie das gleiche bewirken wie iiber
die Tastenkombinationen CTRL + Farbe bzw. Commodore + Farbe.
Diese Methode bietet aber den Vorteil, daB der Farbcode
direkt angegeben werden kann. Dies 1ist zum Beispiel
niitzlich, wenn man die Schriftfarbe 3je nach RND-Wert
zufdllig umschalten will.

Die Speicherzelle 647 nennt liberdies die Farbe des Zeichens
unter dem Cursor (auch, wenn dieser abgeschaltet ist). Diese
ldBt sich aber leider nicht durch POKE 647, X verdndern.

Apropos verdndern: Filir alle Speicherzellen, dip mit Farben
zu tun haben, gilt, daB sich die Bits 4 bis 7 verdndern
kdnnen. Dies sollte uns aber nicht stdéren, da die
Farbencodes ja doch nur von O bis 15 reichen uﬁd demnach nur
die Bits O - 3 belegen. Wundern Sie sich deshalb nicht, wenn
die Speicherzelle 55296 im Color-RAM, die Sie eben mit O
"geflillt" haben, plotzlich eine 32 oder andere Werte
enthdlt.

In den Speicherzellen 243 und 244 finden Sie den Zeiger auf
die aktuelle Position im Farb-RAM. Er wird immer dann vom
Betriebssystem aktualisiert, wenn ein Zeichen ausgedruckt
werden soll. Beim Ausdruck von Steuerzeichen (z.B. HOME)
bleibt er dagegen auf der alten Position, da es zur
Ausfiihrung solcher Befehle nicht notwendig ist, auf das
Color-RAM zuzugreifen. Beispiel: PRINT " (HOME)" 1a4Bt den
Pointer unverdndert, nach PRINT "“(HOME)ABC" wird er dagegen
auf die neue Cursorpositon gesetzt.

Einen &hnlichen Zeiger gibt es auch fiir das Video-RAM.
Allerdings ist er zweigeteilt. Die Register 209 und 210

— 58 —

bilden den Zeiger auf die Stelle im Speicher, an der die
Zeile beginnt, in der der Cursor gerade steht. Zu diesem
Wert muB nur noch die aktuelle Spalte (O - 39) aus Register
211 addiert werden, dann erhdlt man die Adresse des Bytes,

das "unter" dem Cursor liegt.

Die Nummer der aktuellen Zeile (0 - 24) steht in
Speicherzelle 214. Mittels der letzten beiden Register
konnen wir den Cursor recht einfach auf dem Bildschirm
positionieren. Die Spalte wird in Register 211 gePOKEd, die
Zeile in 214 abgelegt. Das reicht allerdings noch nicht. Das
Betriebssystem weiB dadurch noch nicht, daB der Cursor
verschoben werden soll. Es gibt aber eine ROM-Routine, die
diese Arbeit flir uns Ubernimmt. Mit SYS 58732 kann sie
aufgerufen werden. Demnach sieht die gesamte Befehlsfolge so
aus:

POKE 211, Spalte: POKE 214, Zeile: SYS 58732

Dieser Trick wurde schon in Kap. 5.2. angewandt.

Haben Sie sich nicht auch schon gewiinscht, den Cursor auch
wahrend einer Eingabe mit GET einschalten zu kdnnen? Das ist
gar nicht schwierig! Speicherzelle 204 sagt dem
Betriebssystem (genauer: der Interruptroutine), ob der
Cursor erscheinen soll (in diesem Fall ergibt PEEK (204) 0),
oder ob gerade wieder ein Nickerchen (natiirlich nur fir ein
gewisses kleines Quadrat) angesagt ist. Starten wir ein
Programm, so wird die Speicherzelle 204 vom Interpreter mit
1 geladen - der Cursor hort auf zu blinken.

Was das Betriebssystem kann, konnen wir schon lange. Mit
POKE 204, O wird der Cursor einfach "wdhrend der Fahrt"
eingeschaltet. Die Interruptroutine denkt nicht einmal
daran, deswegen aufzumucken. Beim Ausschalten mit POKE 204,
1 miissen wir aufpassen, daB der Cursor nicht mitten in der
Arbeit aufgehalten wird und ein reverses Zeichen
unbeabsichtigt stehenbleibt. Auch hier hilft wieder ein
POKE. Register 207 gibt an, ob der Cursor gerade auf
reverser oder normaler Darstellung (=0) ist. Mit POKE 207,0:
POKE 204, 1 kénnen wir also den Cursor in bester

— 59 —

Betriebssystemmanier abschalten.

Um bei der Eingabe 2zu bleiben, hier noch ein Tip fiir den
niachsten INPUT-Befehl: Mit INPUT “text(crsr right)(crsr
right)Z(crsr 1left)(crsr 1left)(crsr 1left)"; A$ wird das
Zeichen Z bei Aufruf des INPUTs als Cursorzeichen benutzt.
Sobald Sie eine Taste driicken, wird dieses Zeichen

iiberschrieben.

Der ndchste Befehl bezieht sich auf den Reverse-Modus.
Unabhdngig davon, ob der auszugebende String ein
entsprechendes Steuerzeichen enthdlt oder nicht, wird mit
POKE 199, 1 die umgekehrte Darstellung eingeschaltet.
Abgeschaltet wird mit POKE 199,0.

Mochten Sie die Steuerzeichen eines Strings per Programm auf

dem Bildschirm ausgeben? Bitte sehr - Speicherzelle 216
steht zZur Verfligung. Sie gibt die Anzahl der noch
ausstehenden Inserts an. Wie Sie wissen, werden

Steuerzeichen im Insertmodus nicht ausgefithrt, sondern
lediglich als reverse Zeichen ausgegeben. Diesen Modus
konnen Sie mit POKE 216, X einschalten, wobei % gréBer als O

sein mufl.

Zu guter Letzt spielen wir noch einmal Betriebssystem. Wenn
Sie schon einmal mit der Datasette gearbeitet haben, dann
wissen Sie, dal wahrend der Kassettenoperationen der
Bildschirm ausgeschaltet wird. Auch hierfiir ist wieder der
VIC zustdndig. 1In Speicherzelle 53265 sagt Bit 4, wie der
Bildschirm aussehen soll. Mit POKE 53265, PEEK (53265) AND
239 wird ausgeschaltet, mit POKE 53265, PEEK (53265) OR 16

wieder eingeschaltet.

- 60 —

Zusammenfassung: Bildschirmtricks

Schriftfarbe dndern: POKE 646, Farbcode
Aktuelle Zeichenfarbe: PRINT PEEK (647)
Aktuelle Position im Color-RAM: PRINT PEEK (243) + 256 *

PEEK (244)
Aktuelle Position im Video-RAM:
PRINT PEEK (209) + 256 * PEEK (210) + PEEK (211)
Cursorspalte: PRINT PEEK (211)
Cursorzeile: PRINT PEEK (214)
Cursor sétzen:
POKE 211, Spalte: POKE 214, Zeile: SYS 58372
Cursor einschalten: POKE 204, O
Cursor abschalten: POKE 207, O: POKE 204, 1
INPUT mit speziellem Cursor: INPUT "text(2 x crsr right)Z(3
X crsr left)"; A$
Reverse-On: POKE 199,1
Reverse-Off: POKE 199,0
Sonderzeichen-Modus an: POKE 216, X
Bildschirm abschalten: POKE 53265, PEEK (53265) AND 239
Bildschirm einschalten: POKE 53265, PEEK (53265) OR 16

- 61 —

6. HOCHAUFLOSENDE GRAFIK

Jetzt kommt Butter bei die Fische (wie Tegtmeier das
ausdriicken wiirde). Wir ndhern uns nun den Gemidchern der
hochaufldsenden Grafik, die leider von den
Commodore-Ingenieuren recht {iberzeugend in den meterdicken
Mauern des Betriebssystems versteckt wurden. Aber wie fast
immer in diesem Buch ist es das gleiche Sesam-6ffne-dich,

das uns ans Ziel filhrt: ein POKE-Befehl.

6.1. DIE GRAFIK-MODI

Wie auch bei der normalen Zeichendarstellung gibt es bei der
hochaufldsenden Grafik verschiedene Modi. Diesmal fehlt
allerdings der Extended-Color-Mode (wozu sollte er auch bei
Hochaufldsung gut sein?). Im Normalmodus konnen wir 320 x
200 Punkte ansprechen. Diese 64000 Pun}te lassen sich
(dhnlich dem Charactergenerator) in 8000 Bytes unterbringen.
Dieser achtmal groBere Bildschirmspeicher heifit Bit-Map. Wie
auf einer richtigen Landkarte geben die 1-Bits im Speicher
an, ob in der Wirklichkeit (= Bildschirm) Hiigel (= Punkte)
vorhanden sind oder nicht. Die Farbe der Punkte gibt das
Video-RAM an (wohlgemerkt: nicht das Color-RAM). Jedes Byte
im ehemaligen Bildschirmspeicher ist dabei fiir einen Bereich
zustdndig, der im Normalmodus einem Zeichen entspricht. Die
4 hbéherwertigen Bits geben die Farbe (O - 15) der Punkte an,
die von 1-Bits reprdsentiert werden, die 4 niederwertigen
Bits die Farbe der Hintergrundpunkte (= O-Bits).

Beim Multi-Color-Mode (Jjetzt aber hochaufldsend!) wird die
Punktematrix wieder eingeschrdnkt. Statt 320 x 200 Punkten
haben wir Jjetzt nur noch 160 x 200 zur Verfiigung. Da auch
hier wieder Jje 2 Bits einen Punkt darstellen, brauchen wir
8000 Bytes fiir die Bit-Map, konnen damit aber auch 4 Farben

- 62—

pro Bildschirmzelle darstellen. Die Farben stammen nicht nur
aus dem alten Video-RAM, sondern Jetzt auch aus dem
Hintergrundfarbregister O und dem Farb-RAM. Das Register
53281 (fiur die Hintergrundfarbe) wird flir alle
O0O-Kombinationen benutzt. Bei 01 werden die hoherwertigen,
bei 10 die niederwertigen 4 Bits aus dem Video-RAM benutzt.
Sind beide Bits auf 1, so holt sich der VIC den Farbcode aus

dem entsprechenden Byte des Farb-RAMs.

6.2. DIE BIT-MAP

Zundchst etwas' zur Lage der Bit-Map im Speicher. Wie immer
bei diesen Dingen hat die Speicherzelle 53272 wieder ihre
Finger &h Bits im Spiel. Je nach Zustand des Bits 3 liegt
die Bit-Map bei 8192 (wenn Bit 3 = 1) oder bei Speicherzelle
0. Letzteres nitzt wuns herzlich wenig, da sich dort die
Zeropage befindet, die man ohne Wissen und Erlaubnis des
Betriebssystems nicht iiberschreiben sollte.

Aufgebaut ist die Bit-Map wie ein Zeichengenerator. Die
ersten 8 Bytes stellen die 8 Punktzeilen des ersten Quadrats
(oder Zeichenblocks) dar usw. Deshalb kann es vorkommen, dafB
Sie nach dem Einschalten der Grafik normale
Bildschirmzeichen auf dem Monitor sehen. Kopieren Sie einmal
den Zeichengenerator in die Bit-Map und &dndern Sie einige

Bytes - das Ergebnis sollte Ihnen bekannt vorkommen.

Auch beim Multi-Color-Mode sieht es &dhnlich aus. Nur sind
hier Jjeweils 2 Bits fiir einen doppelt so breiten Punkt
zustdndig (aber das kennen Sie ebenfalls aus Kap. 5).

Die Lage der Bit-Map macht es unerlaBlich, den
BASIC-Speicher zu schiitzen. Ba nur 8000 und nicht 8192 Bytes
(was genau 8 K entsprache) bendotigt werden, konnen wir den
Speicher ab 16192 benutzen. Die Zeiger dafiir sollten Sie
eigentlich berechnen konnen (siehe Kap. 3.3.).

— 63 —

Da der normale BASIC-Speicher ab 2048 beginnt, haben wir
sozusagen 6 Kilobytes librig. Dieser freie Bereich k&nnte fir
Sprites eingesetzt werden. Weitere Ks sollten schlieBlich
flir die Farbgebung und weitere Bildschirmseiten reserviert
werden. Wie Sie jetzt wissen, wird das Video-RAM als
Farbspeicher miBbraucht. Dabei werden aber auch alte Texte
iberschrieben. Um dies 2zu vermeiden, sollte bei jedem
Einschalten der hochaufldsenden Grafik auf eine andere
Bildschirmseite umgeschaltet werden (siehe Kap. 5.5.). Die
beiden Modi beeinflussen sich somit nicht mehr gegenseitig.
Einziger Nachteil: Die Sprite-Pointer miissen jetzt zweimal
gePOKEd werden, sofern die Sprites in beiden Modi benutzt
werden: Einmal filir den Zeichenmodus in 2040 bis 2047, das
zweite Mal fir die Hochaufldsung in den verschobenen
Bereich. Leider funktioniert dies beim Multi-Color-Mode
nicht ganz so elegant, da hier auch das Farb-RAM benutzt
wird und sich dementsprechend die Farben des alten Textes

dndern konnen.

— 64 —

6.3. GRAFIK EINSCHALTEN

Um die Grafik einzuschalten, miissen wir drei Schritte
vornehmen. Zundchst muB8 der Speicherbereich fiir die Bit-Map
geschﬁfzt werden. Dies geschieht (wenn das Programm bereits
fertig 1ist) durch ein Ladeprogramm, das folgende Befehle
enthdlt:

POKE 43, 65: POKE 44, 63: POKE 16192, O: CLR

Bei der Programmerstellung sollten diese Befehle vorher im
Direktmodus gegeben werden. Innerhalb des Programmes kann
dann die Grafik eingeschaltet werden. Dazu muB Bit 5 in
Speicherzelle 53265 auf 1 gesetzt werden. Damit weifl der
VIC, daB keine Zeichen, sondern hochaufldsende Grafiken
dargestellt werden. Sollen mehrfarbige Grafiken eingesetzt
werden, so muB 2zusdtzlich noch das Multi-Color-Bit in
Speicherzelle 53270 auf 1 gesetzt werden (genau wie im
Zeichenmodus). Damit noch nicht genug. Die Lage der Bit-Map
wird durch Bit 3 in Speicherzelle 53272 angezeigt. Daher muB
auch dieses Bit auf 1 gesetzt werden. SchlieBlich sollten
wir noch das Video-RAM verlegen, um den Bildschirminhalt
nicht zu zerstodren.

Wenn dies geschehen ist, sehen Sie ein ziemlich chaotisches
Bild auf dem Monitor. Es fehlt noch der dritte Schritt! Mit
einer FOR-NEXT-Schleife muB die Bit-Map geldscht werden,
ebenso das Video-RAM. Geschafft!

Hier die komplette Befehlsfolge:

POKE 43, 65: POKE 44, 63: POKE 16192, O: CLR: REM Speicher
schitzen

POKE 53265, 59: REM Grafik-Modus einschalten

(POKE 53270, 216: REM Multi-Color-Modus einschalten)

POKE 53272, 40: REM Bit-Map-Lage + Video-RAM-Verschiebung
nach 2048

FOR I= 8192 TO 16191: POKE I, O: NEXT: REM Bit-Map l&schen
FOR I= 2048 TO 3047: POKE I, Punktfarbe * 16 +
Hintergrundfarbe: NEXT: REM Farben setzen

— 65 —

Nach diesen POKEs finden wir das Video-RAM in den
Sﬁeicherzellen von 2048 bis 3047 wieder. Ab 3072 stehen
weitere 5 K fir diverse Zwecke wie Sprites,
Maschinenroutinen u.i. zur Verfiigung.

Da Jjede Grafik einmal ein Ende hat, hier die POKEs, die zum

Ausschalten gebraucht werden:

POKE 53265, 155: REM Grafik-Modus ausschalten
(POKE 53270, 8: REM Multi-Coloxr-Modus ausschalten)
POKE 53272, 21: REM Zeichensatz GroBschrift einschalten

Haben Sie schon Ihre ersten Grafiken ausprobiert? Wenn ja,
dann hat Sie sicher das langsame Loschen der Bit-Map
gedrgert. Deshalb folgt unten ein kleines Maschinenprogramm,
das diese Aufgabe ungleich schneller bewdltigt:

O FOR I= 3600 TO 3659: READ A: POKE I,A: NEXT

1 DATA 169, 32, 133, 252, 1e9, O, 133, 251, 162, 31, 160, O,
145, 251, 136, 208, 251, 230, 252)

2 DATA 202, 208, 246, 160, 64, 145, 251, 136, 16, 251, 169,
8, 133, 252, 165, 2, 162, 3, 160 c

3 DATA O, 145, 251, 136, 208, 251, 230, 252, 202, 208, 246,
160, 232, 145, 251, 136, 208, 251

4 DATA 141, O, 11, 96

Gestartet wird dieses Maschinenprogramm mit SYS 3600. Es
1oscht zundchst die Bit-Map, dann wird das Video-RAM (2048 -
3047) mit Punkt- und Hintergrundfarben geladen. Welche
Farben dies sind, bestimmt Speicherzelle 2. Durch POKE 2,
Punktfarbe * 16 + Hintergrundfarbe kann dies dem Programm
mitgeteilt werden.

Die Maschinenroutine ist voll relokatibel, d.h. sie kann
ebensogut im Kassettenpuffer oder andernorts stehen.
Anfangsadresse ist immer das Byte, mit dem die
FOR-NEXT-Schleife in Zeile O beginnt. Probieren Sie einmal
die Geschwindigkeit aus. In Bruchteilen von Sekunden wird

erledigt, was sonst einen ldngeren Zeitraum einnimmt.

- 66—

Schlieflich noch ein kleiner Tip. Wenn Sie Sprites,
Grafikseite, Farben und Loschprogramm mit dem Hauptprogramm
zusammen auf Diskette oder Cassette abspeichern wollen, so
geht dies ziemlich einfach. Nach der Fertigstellung, wenn
Sprites, Grafikseite und Maschinenprogramm schon im
geschiitzten Bereich stehen, wird der Pointer in 43/44 auf
den normalen BASIC-Anfang zuriickgesetzt und dann ganz normal
geSAVEd. Natlirlich kann man, um Speicherkapazitdt zu sparen,
den Pointer auf hohere Adressen zeigen lassen, wenn z.B. das
Farb-RAM nicht mit abgespeichert werden soll. Wird das
Programm dann (immer noch durch einen Lader, der die Zeiger
setzt) mit LOAD “Name",8,1 zuriickgeladen, so stehen Grafik[
Sprites etc. bereits fix und fertig im Speicher. Dies ist
besonders fiir Spielprogramme sehr niitzlich.

Zusammenfassung: Grafik einschalten

Mit folgenden POKEs wird die hochaufldsende Grafik bzw.
Multi-Color-Grafik eingeschaltet. Das Video-RAM liegt in
dieser Zeit zwischen 2048 und 3047, der BASIC-Start mufl auf
16192 hochgesetzt werden.

POKE 53265, 59: REM Hochaufldsung ein

(POKE 53270, 216: REM Multi-Color dazuschalten)

POKE 53272, 40: REM Bit-Map und Video-RAM verschieben

Danach miissen Video-RAM und BIt-Map noch geldscht werden.
Ausgeschaltet wird so:

POKE 53265, 155: REM Grafik aus

(POKE 53270, 8: REM Multi-Color-Modus aus)

POKE 53272, 21: REM GroBischrift einschalten

6.4. PUNKTE SETZEN

Wenn Sie einen bestimmten Punkt auf der Grafikseite setzen

wollen, so konnen Sie auf Millimeterpapier zuerst das Bild

— 67 —

aufzeichnen und dann die Kidstchen in Byteinhalte umwandeln.
Sollte sich jetzt bei Ihnen eine Vision aus Arbeit, Schweifl
und Tobsuchtsanfidllen aufbauen, so teilen Sie diese
Erscheinung mit dem Autor dieses Werkes. Daher folgen jetzt
zweli Routinen, die die Grafikprogrammierung erheblich

erleichtern konnen.

6.4.1. PUNKTE SETZEN IM HOCHAUFLOSUNGSMODUS

Die unten aufgelistete Subroutine funktioniert vom Prinzip
her genau wie die Blockgrafikroutine aus Kapitel 5.1. Da wir
diesmal aber keine speziellen Grafikzeichen poken miissen,

brauchen wir keine Tabelle, mit der die Punktkoordinaten

umgesetzt werden konnen.

ZEM LMD L Er TH HOCHRALFLOE S
fHEHHETUHH<
LIF

L BEER
L THEHFORE
AT FPEER AT OF

Aufgerufen wird das Unterprogramm mit GOSUB 61000. Die
Koordinaten X (O - 319) und Y (O - 199) geben den Ort des
Punktes an. Der Koordinatenursprung 1liegt in der linken
unteren Ecke. Sollten die Werte von X und Y nicht im
zuldssigen Bereich liegen, so wird die Routine in 61010 bzw.
61020 beendet. Damit ist es mdglich, z.B. Linien scheinbar
iiber den Bildschirmrand hinaus zu ziehen.

Zeile 61030 berechnet die Adresse des Bytes innerhalb der
Bit-Map, das gedndert werden soll. Dabei stellt INT (X/8)
die Spalte dar, die im Farb-RAM belegt wiirde. Dieser Wert

— 68 —

wird mit 8 multipliziert, da eine Zelle im Farb-RAM 8 Bytes
in der Bit-Map reprdsentiert. INT (Y/8) stellt analog dazu
die Zeile im Farb-RAM dar. Um die Adresse der entsprechenden
Zeile in der Bit-Map zu erhalten, wird dieser Wert mit der
Anzahl der mdglichen Punkte pro Zeile (320) multipliziert. Y
AND 7 ergibt schlieBlich die Zeile innerhalb dés
Farbquadrates an.

Die Variable X3 gibt den Wert an, der mit den schon
gesetzten Bits verknilipft werden muB, um die gewiinschten
Punkte 2zu setzen oder ldschen. AD enthdlt schlieBlich die
POKE-Adresse fir den Punkt, CA fir die Farbe. Zeile 61050
POKEd die Farbe aus CO (O - 15) in die 4 hoherwertigen Bits
der zugehOrigen Farbspeicherzelle. Bitte beachten Sie, daB
damit die Farbe fiir die Punkte des gesamten Quadrats
geandert wird!

Ist die Variable L= 1, so bedeutet dies fir die Routine, daB
der angegebene Punkt geldoscht werden soll. In diesem Fall
wird in Zeile 61060 verzweigt, andernfalls wird in der
letzten Zeile der Funktionsteil "Setzen" aufgerufen.

Ein typischer Aufruf dieser Routine konnte so aussehen:

X= 100: Y= 25: REM Koordinaten setzen

CO= 2: L= O: REM Farbe= ROT, Modus= SETZEN

GOSUB 61000: REM Routine aufrufen

6.4.2. PUNKTE IM MULTI-COLOR-MODUS

Im Multi-Color-Modus miissen pro Punkt 2 Bits gesetzt werden,
je nach Farbe verschiedene Kombinationen. Das 1legt die
Methode nahe, pro Multi-Color-Punkt zweimal die
Punktsetzroutine aufzurufen. Fiir das erste Bit wird einfach
die X-Koordinate verdoppelt, filir das zweite Bit wird die
verdoppelte Koordinate noch um 1 erhéht. Da die zwei Bits
aber auf Jjeden Fall im gleichen Byte liegen, kann auf den
zweifachen Aufruf der Berechnung der POKE-Adresse verzichtet

werden. Sehen Sie es sich selbst an:

- 69 —

PILILT T 120
Lot T EDRY

SEHTHE
EHRE

EA T 2

FEATDM o

Aufgerufen wird mit GOSUB 61000: Die Koordinaten sind wieder
in X (0 - 159) und Y (O - 199) abgelegt. Die Farben und der
Setz- bzw. Léschmodus miissen nicht mehr angegeben werden,
dafiir die Farbkennzahl (O -3) in CO, die die Bitkombination
angibt. Soll ein Punkt geldscht werden, so wird CO einfach
auf O gesetzt. Die Farben, die durch die Bitkombination
angesprochen werden sollen, miissen ggf. vorher mittels POKE
in die entsprechenden Register geladen werden (flir das
Video-RAM iibernimmt ~dies die LoOschroutine). Bis auf eine
kleine Anderung sind die Zeilen 61010 bis 61030 gegeniiber
dem normalen Hochaufldsungsmodus nicht verdndert.

Zeile 61040 berechnet die Verkniipfungsmasken fiir die beiden
Bits (X3 und X4). Dann werden die beiden Bits zunadchst
geldscht (Zeile 61050). SchlieBlich wird die Bitkombination
durch Zeile 61060 in das betreffende Byte eingeblendet. CO
AND 1 gibt dabei das niederwertige Byte der Kombination an,
(CO AND 2)/2 das hoherwertige. Ist ein Bit 0, so wird das
gesamte Produkt gleich O. Folge: Das betreffende Bit aus dem
Speicher wird mit O oder-verkniipft und bleibt demnach auf
dem alten Stand, andernfalls wird mit 1 verknilipft - das Bit
wird auf jeden Fall gleich 1. Fertig!

Hier noch ein Beispiel fiir einen typischen Aufruf:

X= 100: Y= 50: REM Koordinaten

CO= 2: REM Farbe aus hoherwertigen Bits des Video-RAM holen

GOSUB 61000: REM Aufruf des Unterprogramms

- 70 -

6.5. LINIEN ZIEHEN

Die folgende Unterroutine ist flir beide Grafikmodi
gleichermaBen geeignet. Sie benutzt die Punktsetzroutine aus
dem Kap. 6.4. als Unterprogramm, daher beschrdnkt sie sich
auf die Berechnung der Koordinaten filir die einzelnen Punkte

der Linie.

REM LIMIEM ZTEHEN
' FES WE - THEHE 166
HE R LE :
ITEI"’
B THT Ok
CRETURH

T E-YHA L E-S2E Y s
- SO Y

RN I oo
D0 TR

FERDY .

Aufgerufen wird diesmal mit GOSUB 61100. Die
Startkoordinaten der Linie werden in XA und YA, die
Endkoordinaten in XE und YE ilibergeben. Je nach benutzter
Punktsetzroutine missen auBerdem noch Farbe (CO) und Modus
(Loschen/Setzen in L) fir Hochaufldsung bzw. nur die
Farbkennzahl fiir Multicolor angegeben werden.

Der Algorithmus ist eigentlich sehr simpel. Zunadchst wird
festgestellt, ob der Abstand der X-Koordinaten zueinander
kleiner als der Abstand der Y-Koordinaten ist (Zeile 61110).
Trifft dies zu, so wird der ganze ProzeB einfach umgedreht,
die Funktionsweise bleibt aber gleich. Wozu das gut ist,
zeigt sich bei den ndchsten Schritten. Nehmen wir an, der
X-Abstand ist groBer als der Y-Abstand. Das heiBt, daB
mehrere Punkte der Lifiie die gleiche Y-Koordinate haben
miissen, da wir auf dem Bildschirm nie eine wirklich schrag
verlaufende Linie, sondern immer nur- ein angendhertes
Zick-Zack-Muster erzeugen konnen. Daher konnen wir einfach
mit einer FOR-NEXT-Schleife (Zeile 61130) alle X-Koordinaten

- 71 -

zwischen XA und XE "abklappern" und dazu die entsprechenden
Y-Koordinaten berechnen. Ware der X-Abstand kleiner als der
Y-Abstand, so kdnnte es passieren, daB pro X-Koordinate
mehrere Punkte in der Y-Richtung gesetzt werden miiBten. Beim
umgedrehten Verfahren wird daher einfach die Y-Richtung
abgefahren und der X-Wert berechnet.

Diese Berechnung ist ebenfalls sehr simpel. Vor der Schleife
wird die Schrittweite (SP) berechnet. Sie gibt den Abstand
zweier aufeinanderfolgender Punkte in Y-Richtung an. Bei
jedem Durchlauf der Schleife wird eine Hilfsvariable (YK) um
diese Schrittweite erhdht. Dieser Wert wird gerundet (INT
(YK + .5)) und dann als Y-Wert an die Punktsetzroutine
iibergeben (Zeile 61140).

Sollten die Koordinaten der zu setzenden Punkte nicht im
erlaubten Bereich liegen, so wird dies von der
Punktsetzroutine abgefangen. Leider ist dieses Unterprogramm
nicht sehr schnell, doch fiir einfache Anwendungen (z.B.
Funktionenplot) reicht es v6llig aus. Legt man groflen Wert
auf Schnelligkeit, so solte man diese Unterroutinen durch
ein spezielles Hilfsprogramm wie die SUPERGRAPHIK 64 von
DATA BECKER ersetzen. Sie enthalten sehr schnelle Befelle
zum Arbeiten mit hochauflésender Grafik, Sprites usw.

6.6. KREISE ZEICHNEN

Neben vielen anderen Figuren 1ist der Kreis eines der am
hdufigsten verwendeten grafischen Elemente. Er 1laBt sich
auch nicht aus einem Systen von Linien aufbauen. Deshalb
finden Sie unten eine entsprechende Subroutine. Sie ist zwar
sehr langsam, doch meine ich, daB es besser ist, einen Kreis
langsam 2zu zeichnen, als iiberhaupt nicht. Wie die Routine
zum Linienziehen kann auch diese in beiden Grafikmodi

verwendet werden.

- 72 —

.
S

3 '-:1 N |"'
1-~-|
=I '.ZHHZ?-i-’ THANY G
Dt
Dl i
'::I .“: I : : ITL_.._.HIH__‘_I n '

L b O e

h

i

[A¥]

T
b et el et feb et b b et b e
AR TR U LN B R L f GOy

0y 1T

0 0

ety e b O LTERE { BIRE
it s e GO LG
4 RETIURH

T T
LI R

.,

0y f

FEADY .

Der Aufrufbefehl ist GOSUB 61200. Die Ubergabevariablen sind
X und Y fir die Koordinaten des Kreismittelpunktes sowie R
fiir den Radius (der in der Anzahl der Punkte angegeben wird,
die der Radius messen soll) und die bekannten CO und L fiir
"normale" Hochaufldsung bzw. CO als Farbkennzahl fiir
Multi-Color.

Wenn Sie sich das Entstehen eines Kreises auf dem Bildschirm

ansehen, dann ahnen Sie vielleicht schon das
Funktionsprinzip. Grundlage ist die Kreisgleichung
X I 2 +Y I 2 =1 bzw. deren umgewandelte Form

Y= SQR (1 - X I 2).

In einer Schleife, die den Radius vom Mittelpunkt des
Kreises bis 2zu dem Punkt, der etwa 45 Grad entspricht,
abfahrt, wird zu Jjedem X-Wert der entsprechende Y-Wert
berechnet. Wirde man die Schleife bis zum 90-Grad-Punkt
verldngern, so trate das gleiche Problem auf, wie beim
Linienalgorithmus. Je steiler der Kreis nach unten abfdllt,
desto oOfter kommt es vor, daB pro X-Wert mehrere Punkte in
Y-Richtung gesetzt werden missen. Deshalb wird der
entstehende Viertelkreis durch die Zeilen 61230 bis 61300 an
die fehlenden Stellen gespiegelt. Wenn man von der
X-Koordinate des Mittelspunkts die gerade aktuelle Position
auf dem Radius abzieht, so erhdlt man den linken Teil des
Kreises usw.

Da sich die oben angegebene Formel nur auf den sogenannten

Einheitskreis (mit dem Radius 1) bezieht, miissen die

- 73 —

Koordinaten 1in der Berechnung in Zeile 61220 zunachst durch
R geteilt und dann wieder mit dem Radius multipliziert

werden. Das ist schon alles. Viel SpaB beim "Kreisen"!

)

— 74 —

7. SPRITES

Die Sprites stellen das bekannteste Ausstattungsmerkmal des
64ders dar. Keine andere Grafikart ist so vielseitig
einzusetzen. Das 1ist vielleicht auch der Grund, warum von
allen Grafikmoéglichkeiten nur diese im CBM-Handbuch
beschrieben isf. Doch auch hier hat Commodore durch einen
unerfindlichen RatschluB wieder heillose Verwirrung
gestiftet. Wo 1ist die Kontrolle von Spritekollisionen
erkldart? Wie erzeuge ich Multi-Color-Sprites?

Die verschiedenen Moglichkeiten, die auch die Sprites
bieten, sind in den folgenden Abschnitten beschrieben. Damit

kénnen Sie Commodore ein Schnippchen schlagen!

7.1. MULTI-COLOR-SPRITES

Ja, Sie haben eben richtig gelesen. Neben den normalen,
hochaufldosenden "Mini-Grafiken" 1aBt sich der VIC auch auf
Multi-Color-Sprites programmieren. Das ist gar nicht schwer.
Eingeschaltet wird der Multi-Color-Modus durch das Setzen
des der Sprite-Nummer entsprechenden Bits im VIC-Register 28
(53276). Um z.B. Sprite 6 im Multi-Color-Mode zu definieren,
benutzt man diese Folge:

POKE 53276, PEEK (53276) OR (2]6)

Natiirlich kann durch

POKE 53276, PEEK (53276) AND (255—2]6) das Bit wieder auf O
gesetzt werden.

Damit ware das Sprite schon auf Mehrfarbenbetrieb
umgeschaltet. Da wieder Jje 2 Bits der Matrix einen Punkt
darstellen, bleiben uns nur noch 12 x 21 Punkte. Wie dieser
Modus funktioniert, wissen Sie , es fehlt nur noch die
Information, welche Bitkombinationen welche Farben erzeugen.
Sind beide Bits auf O, so ist der betreffende Punkt des
Sprites transparent, d.h. der Hintergrund (z.B. ein

- 75—

Buchstabe) scheint an dieser Stelle durch das Sprite
hindurch. Ist das niederwertige der beiden Bits auf 1, so
holt sich der VIC die Farbe aus den Multi-Color-Registern 37
und 38 (53285 und 53286). Welches der beiden benutzt wird,
entscheidet Bit 2. 1Ist es O, so wird Register 37 benutzt,
sonst 38. Bei der Kombination 1 O stammt die Farbinformation
aus dem normalen Farbregister des Sprites. Diese Farbe kann
fiur jedes Sprite verschieden sein, nicht jedoch die
Multi-Color-Farben. Diese stammen flir alle Sprites aus den
gleichen Registern und diirfen nur im Bereich von O bis 7
liegen. Multi-Color-Sprites werden dgenauso definiert wie
normale, lediglich die 2Zuordnung von Bits zu Punkten ist
anders. Auch die Koordinaten auf dem Bildschirm bleiben
gleich. Der grdBte Vorteil ist wohl, daB man verschiedene
Sprite- und Grafikmodi mischen kann. So k6nnen
Hochaufldsungs- und Multi-Color-Sprites nebeneinander auf
dem Bildschirm stehen. Uberdies ist es dem VIC egal, ob auf
dem Bildschirm gerade Zeichen oder Grafiken stehen.

Einzige Einschridnkung: W&hrend eines Floppyzugriffs sollte
man darauf achten, daB die Sprites ausgeschaltet sind (POKE
53269, 0), da der VIC den Taktablauf regelt und dieser aum so
mehr Zeit braucht, je mehr Sprites auf dem Bildschirm
sichtbar sind. Das kann die Dateniibertragung stdren.

Zusammenfassung: Multi-Color-Sprites

Modus einschalten: entsprechendes Bit in Reg. 28 (53276) auf
1 setzen.

Farben aus Reg. 37 (bei O 1) und aus Reg. 38 (bei 1 1) sowie
aus normalem Farbenregister fiir das Sprite (bei 1 0).
Sprites und Grafiken der verschiedenen Modi kdénnen gemischt

werden.

— 76—

7.2. KOLLISIONEN

Der VIC zeigt jede Beriihrung eines Sprites mit einem anderen
Sprite oder Bildschirmpunkt in seinen Registern an. Erfolgt
eine Kollision 2zwischen zwei oder mehreren Sprites, so
erscheint dies 1in Register 30 (53278). Die Nummern der
beteiligten Sprites werden durch . das Setzen der
entsprechenden Bits in diesem Register angezeigt. Mit

PRINT PEEK (53278) AND ZTn

konnen Sie demnach feststellen, ob das Sprite n an der
Kollision beteiligt war. Ist dies der Fall, so liefert der
obige Befehl die Zahl n als Ergebnis die Zahl 2]n als
Ergebnis, sonst O. Die Kollision wird nur dann angezeigt,
wenn sich wirklich 2 Punkte beriihren, nicht aber, wenn sich
zwel Sprites in Bereichen lberlagern, die vdllig punktleer
sind. Die Bits bleiben solange gesetzt, bis Sie sie durch
POKE 53278,0 1lo6schen. Es kann also vorkommen, daB eine
Beriihrung angezeigt wird, obwohl sich die Sprites langst
wieder voneinander entfernt haben. Ich empfehle daher, vor
jedem Abfragen dieser Register alle Bits zu ldschen. Besteht
noch eine Kollision, so werden die entsprechenden Zahlen
sofort wieder gesetzt, so daB der dann folgende PEEK-Befehl
dies entdecken wird.

Die Kontrolle von Sprite-Hintergrund-Kollisionen erfolgt in
gleicher Weise. Die entsprechenden Bits werden auf 1
gebracht, wenn in der Bit-Map oder im Zeichengenerator ein
vom Sprite {Uberlagerter Punkt durch eine 1 reprdsentiert
wird. Mit anderen Worten: Jede Berilihrung eines Sprites mit
einem Zeichen oder Grafikpunkt wird registriert. Zustandig
ist diesmal Register 31 (53279).

Zur Veranschaulichung der Programmierung von
Sprite-Kollisions-Kontrollen ist unten ein kleines Spiel
aufgelistet. Dabei handelt es sich um ein sehr simples
Autorennen. Ziel ist es, mittels der Tasten Z (= LINKS) und
/ (= RECHTS) einem Hindernisauto auszuweichen. Jede
Berlihrung des eigenen Wagens mit dem Fahrbahnrand oder dem
anderen Wagen wird in den Kollisionsregistern registriert
und fiihrt zu einem CRASH. Selbstverstdndlich kénnen die REMs

- 77 —

beim Eintippen weggelassen werden; sie wirden das Spiel

ohnehin nur verzdgern.

Zusammenfassung: Kollisionen

Beriihrungen von Sprites mit anderen Sprites oder
Hintergrundzeichen werden durch Setzen der entsprechenden
Bits angezeigt. Dies geschieht in den Registern 30 (53278)
und 31 (53271) des VIC. Die Bits bleiben solange gesetzt,

bis der Anwender sie 1lOscht.

SEHEN SIE HIERZU DAS PROGRAMM "AUTORENNEN" IM ANHANG.

— 78 —

7.3. PRIORITATEN & BEWEGUNGSBEREICH

WuBten Sie, daB es verschiedene Moglichkeiten der
Uberlagerung von Bildschirmzeichen, Grafik und Sprites gibt?
Im Normalfall stehen die Sprites vor dem aktuellen
Bildschirminhalt. Doch oft ist es wiinschenswert, daB die
Zeichen vor dem Sprite stehen (z.B. wenn ein Flugzeug hinter
einem Haus herfliegen soll). Auch hierfiir hat der VIC wieder
ein Register "in Reserve".

Das Register hat die Adresse 53275 (V+27). Wird hier ein Bit
auf 1 gesetzt, so bedeutet dies, daB das zugehdrige Sprite
hinter den Bildschirmzeichen abgebildet wird. Im Normalfall
sind alle diese Bits auf O, das Sprite hat also gegeniiber
den Zeichen hohere Prioritat.

Kurios wird es, wenn mehrere Sprites mit verschiedenen
Prioritdten abgebildet werden. Wie Sie wissen, wird das
Sprite mit der kleinsten Nummer immer vor seinen Kollegen
abgebildet. Ist das vorderste Sprite aber auf niedrige
Prioritét gegeniiber den Bildschirmzeichen eingestellt, so
erscheint es zwar unter der Schrift, aber immer noch vor den
anderen Sprites, auch wenn diese Vorrang vor den Zeichen
hatten. Damit lassen sich 1leicht optische T&uschungen

erzeugen.

Haben Sie .schon einmal Grafiken erzeugt und versucht,
Sprites damit in Deckung zu bringen? Wenn ja, dann werden
Sie festgestellt haben, daB die Koordinaten von Sprites und
Grafik nicht libereinstimmen. Der Bewegungsbereich der
Sprites wurde groBer definiert, um ein "Herausfahren" aus
dem Bildschirm zu ermdglichen. In die linke obere Ecke
konnen Sie eine solche "Grafik in der Grafik" mit den
Koordinaten 24 und 50 bewegen. Diese beiden Zahlen stellen
die Korrekturfaktoren dar, die man zu den Grafik-Koordinaten
addieren mufl, um das Sprite richtig zu positionieren. Die
Mitte des Bildschirms erreicht man also mit den Werten
160+24 und 100450 (alles auf die linke obere Ecke des
Sprites bezogen).

- 79 —

Zusammenfassung: Prioritdten und Bewegungsbereich

Sprite-Prioritdt (vor/hinter Zeichen) regelt das zugehdrige
Bit 1in VIC-Register 27 (53275). Durch Setzen des Bits wird
das Sprite hinter den Zeichen abgebildet.

Korrekturfaktoren flix Sprites gegeniiber Grafik-Koordinaten:
24 (X-Richtung) und 50 (Y-Richtung)

7.4. IDEEN FUR DIE SPRITE-PROGRAMMIERUNG

Viele Spielprogramme benutzen die sogenannte Animation, um
z.B. einen kleinen Sprite-Mann mdglichst naturgetreu zu
seiner Sprite-Frau laufen zu lassen. Das sieht dann so aus,
als wilirden Arme und Beine einzeln bewegt. Auf den zweiten
Blick stellt man allerdings fest, daB es im Grunde nur zwei
oder drei verschiedene Positionen filir Arme und Beine gibt.
Das Prinzip dieser Animation ist damit klar. Ein Sprite
besteht in diesem Fall aus zwei getrennten Bldcken, czwischen
denen wadhrend der Fortbewegung immer wieder umgeschaltet
wird. 1In einem Block ist das Sprite mit geschlossenen Armen
und Beinen definiert, im anderen schreitet es gerade weit
aus. Werden diese beiden Bilder mittels der Pointer (2040 -
2047) abwechselnd eingeschaltet, so entsteht der Eindruck
einer laufenden Figur. In Wirklichkeit werden nur die
"Vorlagen" fiir die Sprites stdndig ausgewechselt. So einfach
ist das. Voraussetzung ist natirlich, dag genug
Speicherplatz fir die verschiedenen Bilder vorhanden ist.
Hier sollte man wieder den BASIC-Anfang 1in weiter oben
liegende Bereiche verlégen. Wenn Sie hochaufldsende Grafik
benutzgn, habgp Sie ja sowieso genug Platz.

oft ist es lauch nitzlich, wenn man die Sprite-Blocke auf
Diskette oder Cassette abspeichert. Ein Programm dazu kennen

— 80 —

Sie bereits aus Kapitel 4.1.

Interessant erscheint mir auch die Idee, die hochaufldsenden
Sprites als kleine Grafikbildschirme innerhalb des
Zeichenmodus zu "miBbrauchen". Nehmen wir an, Sie mdchten
den Graphen einer beliebigen Funktion in Hochaufldsung
darstellen, gleichzeitig aber auch ein paar Kommentare
dazusetzen. Eine Mdglichkeit ist, die Punktmatrizen der
benétigtén Buchstaben aus dem Zeichengenerator auszulesen
und durch entsprechendes Setzen von Grafikpunkten die
Zeichen kiinstlich zu erzeugen. Aber das 1ist sehr
umstdndlich, ebenso wie der umgekehrte Weg, bei dem der
Zeichensatz so umdefiniert wird, daB die fir den Graphen
ndotigen Punkte innerhalb der Zeichenmatrix gesetzt werden.
Es bleiben die Sprites. Man nehme derer 4, ordne sie im
Quadrat auf dem Bildschirm an der gewiinschten Position an
und berechne fiir jeden Punkt die zu setzenden Bits innerhalb
der Spritematrix. Dies erledigt fir uns die untenstehende
Routine. Ich verzichte diesmal auf eine ndhere Erklarung, da
das Programm vom Aufbau und der Funktionsweise her der

Punktsetzroutine fiir hochaufldsende Grafik entspricht.

-
)
A

o

K

HE LS

E14] BN LB

HE 14

S HEE LIS PORENYES LS
1 e

11

IF LT THEHRETURH
HEHRETL IF‘H
BT

i

HOEY=ETHEMNEMA=E4 : GOTOSZEE

L]

CRETURH

SEEER

FEADY .

Aufgerufen wird mit GOSUB 62000. Wie bei der hochaufldsenden
Grafik werden die Koordinaten in X und Y, die Modusangabe
(Setzen/Loschen) in L libergeben. Es werden die Sprites O bis
3 und die Blocke 11, 13, 14, 15 benutzt. 1In der
vorgestellten Version wurden die Sprites in beide Richtungen
vergroBert. Wer mdchte, kann sie auch in normaler Grofle
erscheinen lassen, muB dann aber .die Positionen (siehe
Zeilen 30 und 40) korrigieren.

Innerhalb der 4 Sprites koénnen 48 x 42 Punkte gesetzt
werden. Da es sich nicht um Multi-Color-Sprites handelt,
haben alle Punkte die gleiche Farbe. Diese wird in Zeile 50
festgelegt.

Wer moéchte, kann sich die Routine zum Linienzeichnen auf
Sprite-Graphik umschreiben, es ist gar nicht schwer. Alle
Sonderfunktionen (wie Prioritdt, Kollisionen etc.) kdnnen
wie 1blich auch fiir die Sprites O - 3 eingesetzt werden, da
das Unterprogramm nur auf die Punktmatrizen in den Bereichen
704 - 766, 832 - 894, 896 - 958 und 960 - 1022 wirkt. Es

lohnt sich also, ein wenig zu experimentieren.

Damit ist das Kapitel iiber die Programmierung mit Sprites zu
Ende. Dies sollte Sie jedoch auf keinen Fall davon abhalten,
weiter mit den VIC-Registern zu experimentieren. Es gibt
viele Einsatzmdglichkeiten fir die Sprites, die noch der
Entdeckung harren!

— 82 —

8. TONERZEUGUNG

Was der VIC fir den Bildschirm ist, stellt der SID (Sound
Interface Device) fiir die TOne dar. Dieser bietet fir jede
MOglichkeit der Tonerzeugung ein entsprechendes Register.
Leider wurden auch diese nicht ausfilhrlich im CBM-Handbuch
beschrieben. Da aber die Darstellung aller Moglichkeiten des
SID viel zu umfangreich wdre, folgen hier nur die

Grundtechniken der Soundprogrammierung.

8.1. DIE ARBEITSWEISE DES SID

In diesem Abschnitt soll im Vordergrund stehen, was im
Computer ablduft, wenn ein Ton erzeugt werden soll.

Wird ein bestimmtes Startbit auf 1 gesetzt, so sieht der SID
zuerst nach, welche Frequenz der Ton haben soll. Dann
erzeugt er eine entsprechende Schwingung. Diese wird durch
eine Art "elektronische Topferscheibe", den
Wellenformmodulator geschickt. Dadurch erhdlt der Ton die
einprogrammierte Wellenform (Dreieck, Rechteck, Sagezahn,
Rauschen) und deren charakteristisches Klangbild.

Dann formt der SID den Tonverlauf anhand der sogenannten
Hiilllkurve. Sie gibt an, welche Lautstdrke der Ton in den
verschiedenen Phasen hat. Die Hiillkurve setzt sich dazu aus
4 Parametern zusammen. Der Anschlag bestimmt, wie schnell
die in einem eigenen Register angegebene Hochstlautstdrke
erreicht wird. Danach schwillt der Ton bis zu einem
bestimmten Wert wieder ab, der im Parameter "HALTEN" zu
finden ist. Die Geschwindigkeit dieses Abschwellens zeigt

der Parameter "Abschwellen" an. Die Jjetzt erreichte
Laustdrke bleibt erhalten, bis das Startbit wieder auf O
gesetzt wird. Der Parameter "AUSKLINGEN" gibt die

Geschwindigkeit vor, mit der der Ton abgeschaltet wird.

Damit kann ein Nachhall erzeugt werden.

— 83 —

Bei Rechteckschwingungen kann zusdtzlich noch das sogenannte
Tastverhdltnis abgegeben werden, das das Verhidltnis zwischen
Impuls-Ein und Impuls-Aus regelt. Auch damit kann die
Klangfarbe beeinfluBt werden.

Weitere Moglichkeiten (die hier aber nicht beschrieben
werden sollen) sind z.B. Ringmodulation, bei der der Ton
einer Stimme in Abhdngigkeit der beiden anderen erzeugt
wird, und Filter, die verschiedene Frequenzbereich

ausfiltern konnen.

8.2. DIE PROGRAMMIERUNG

Jetzt geht es zur Sache. In diesem Kapitei werden wir die
Programmierung von Tonen und Tonfolgen beschreiben. Dabei
werden wir zum Teil von der im CBM-Handbuch vorgestellten
Methode abweichen, da diese die Nutzung eines Teils der
Moglichkeiten schlicht und einfach unméglich macht.

Egal wie Ihr Soundprogramm aussieht, eines sollte immer{ ganz
am Anfang stehen: Die Lautstdrke. Sie wird in die 4
niederwertigen Bits des Registers 24 (54296) gePOKEd. Ein
Versuch, dieses oder eines der anderen Register (von O bis
24) mittels PEEK auszulesen, wird immer zum Scheitern
verurteilt sein. Aufgrund einer besonderen Konstruktion
lassen sich diese Bytes nicht auslesen, sondern nur
beschreiben. Ein PEEK-Befehl kann daher unsinnige Ergebnisse
liefern. <
Genau umgekehrt verhdlt es sich mit den Registern 25 - 28.
Hier kann nur gelesen werden, ein POKE bleibt dagegen
unwirksam.

Doch zuriick zur Musik. Da die 4 hoherwertigen Bits des
Lautstédrkeregisters im Normalfall auf O sein sollten, konnen
wir die gewiinschte Zahl einfach einPOKEn. Mit POKE 54296,0
wird demnach die Lautstdrke ganz zurilickgenommen, mit POKE
54296,15 dagegen konnen wir "volle Pulle" geben. Die

Lautstdrke kann immer nur fir alle drei Stimmen gleichzeitig

— 84 —

gesetzt werden..

Als nidchstes kommt die Frequenz, also die Tonhohe dran. Sie
kénnen zwischen 65536 verschiedenen Frequenzen wahlen.
Welche Sie nehmen, bleibt Ihnen iberlassen. Beim
Programmieren von Melodien ist die Notentabelle im Anhang
des Handbuches niitzlich. Wie Sie die Frequenzzahl in High-
und Low-Byte aufspalten kdénnen, wissen Sie aus dem Kapitel
iiber Zeiger. Diese Zahlen werdén in die Register O und 1
(fir Stimme 1), 7 und 8 (fir Stimme 2) oder 14 und 15 (fir
Stimme 3) gePOKEd.

Jetzt sollten Sie daran gehen, die Hiillkurve festzulegen.
Fir den Anschlag und die Dauer des Abschwellens ist Register
5 (bzw. 12 oder 19) zustdndig. Der Anschlag ist in den
hdoherwertigen Bits zu Hause, der Wert fiir das Abschwellen in
den niederwertigen. Ahnlich geht es den Werten fir Halten
und Ausklingen in Register 6, 13 oder 20., wobei "Halten"
die hoherwertigen Bits belegt. Ist dieser Wert O, so bleibt
die Stimme stumm. Ansonsten stellt er die Lautstarke des
Tons im Verhdltnis zur HOchstlautstdrke aus Register 24 dar.
Wollen Sie Rechteckschwingungen benutzen, so braucht der SID
noch das Tastverhdltnis. Es kann Werte zwischen O und 4095
annehmen und 1liegt in den Registerpaaren 2/3, 9/10 oder
16/17. Von den hoherwertigen Bytes dieser Paare werden
jeweils nur die ersten (niederwertigen) Bits benutzt. Hohere
Zahlen als 15 in einem dieser Register machen also keinen
Unterschied.

So weit - so gut. Bisher sind wir wie im Handbuch
vorgegangen. Um die Wellenform festzulegen, sollten wir
Register 4 (bzw. 11 oder 18) betrachten. Ahnlich einigen
VIC-Speicherzellen hat auch hier Jjedes Bit eine eigene
Bedeutung. Bit O stellt das schon erwdhnte Start-Stop-Bit
fliir den Tonablauf dar. Wird es auf 1 gesetzt, so wird der
Ton der zugehorigen Stimme eingeschaltet und der
Hiillkurvenablauf gestartet. Wird es wieder auf O gesetzt, so
wird der Ton je nach Hiillkurve in einer entsprechenden Zeit
beendet. Bitte beachten Sie bei der Programmierung, daB der
VIC in der Ausklingzeit moglichst keinen neuen Ton mit der

gleichen Stimme erzeugt. Sollen z.B. flir Melodien schnell

— 85 —

aufeinanderfolgende ToOne programmiert werden, so empfiehlt
es sich, fiir die Ausklingzeit einen sehr kleipnen Wert zu
wahlen.

Die Bits 1 und 2 des Registers 4 dienen Steuerungszwecken.
Bit 3 ist fir uns wieder sehr niitzlich. Sollten zwei oder
mehr Wellenformen gleichzeitig eingeschaltet worden sein, so
kann der SID blockieren, d.h. es wird kein Ton mehr erzeugt.
Durch Setzen des Bits 3 und durch Ldschen der Wellenformen
kann dies aufgehoben werden. Mittels POKE 54276, 8 wird der
SID also neu initialisiert.

Die Bits 4 bis 7 bestimmen schlieBlich die Wellenform. Ist
ein Bit auf 1 gesetzt, so wird die entsprechende Form
erzeugt, wobei Bit 4 flir Dreiecks-, Bit 5 flir Sdgezahn- und
Bit_G fiir Rechteckschwingungen zustdndig sind. Bit 7 erzeugt
ein Rauschen. Diese Schwingungsformen konnen auch gemischt
werden.

Um einen Ton einzuschalten, missen Wellenform und Start-Bit
gleichzeitig gePOKEd werden. Daraus ergeben sich die im
CBM-Handbuch angegebenen Codes fiir die verschiedenen Klidnge
(17, 33, 65, 129). zum Ausschalten darf jedoch nichtreinfach
Reg. 4 (bzw. 11 oder 18) mit O geladen werden. DasCkidme dem
Abwiirgen eines Motors mitten auf der Autobahn gleich. Der
SID findet plotzlich keine Angabe iliber die Wellenform und
kann so auch keine Hiillkurve ordnungsgemdfl beenden (womit
auch?). Das Ergebnis ist der typische Ausschaltknack. Wird
dagegen nur Bit O geldscht, so entfdllt das Knacken und der
Ton klingt weich aus. Dies erreicht man durch POKEn der
Formcodes -1 (also 16, 32, 64 oder 128). Und siehe da, wir
haben unsere Bits als Zweierpotenzen zurick. N

Zur Verdeutlichung der Vorgehensweise und als Ersatz fir das
nicht lauffidhige Listing aus dem 64er-Handbuch hier ein
Programm, das das Spielen von Melodien per Tastatur

erméglicht:

10 PRINT " (CLEAR)"

20 PRINT " W E T Y U"

30 PRINT " A SDFGHJK"
100 S= 54272

— 86—

110 POKE S+24, 15: REM Lautstdrke

120 POKE S+5, 136: REM Anschlag & Abschwellen

130 POKE S+6, 248: REM Halten & Ausklingen

140 POKE S+4, 8: REM SID initialisieren

150 FOR I= O TO 40: NEXT I: POKE S+4, 16: REM Startbit=0
160 GET A$: IF A$="" THEN 160

170 IF A$= "A" THEN POKE S, 207: POKE S+1, 34
180 IF A$= “S" THEN POKE S, 18: POKE S+1, 39
190 IF A$= "D" THEN POKE S, 219: POKE S+1, 43
200 IF A$= "F" THEN POKE S, 118: POKE S+1, 46
210 IF A$= "G" THEN POKE S, 39: POKE S+1, 52
220 IF A$= “H" THEN POKE S, 138: POKE S+1, 58
230 IF A$= "J" THEN POKE S, 181: POKE S+1, 65
240 IF A$= "K" THEN POKE S, 157: POKE S+1, 69
250 IF A$= "W" THEN POKE S, 225: POKE S+1, 36
260 IF A$= "E" THEN POKE S, 101: POKE S+1, 41
270 IF A$= "“T" THEN POKE S, 58: POKE S+1, 49
280 IF A$= "Y" THEN POKE S, 65: POKE S+1, 55

290 IF A$= "U" THEN POKE S, 5: POKE S+1, 62
300 POKE S+4, 17: GOTO 150

Die Zeilen 10 - 30 verdeutlichen die Tastaturbelegung. Dann
folgt der Vorbereitungsteil (100 - 140). 1In Zeile 150
befindet sich eine kleine Warteschleife, die das
ordnungsgemafle Ausklingen des Tons ermoglicht. AuBerdem wird
durch den PORE-Befehl das Start-Stop-Bit auf O gesetzt. Wer
die Wellenform wechseln mochte, kann die Werte in dieser und
in Zeile 300 4&ndern. Die Funktion der Zeilen 160 - 290
diirfte klar sein; hier wird die Frequenz entsprechend der

gedriickten Taste gesetzt.

Wer ndhere Informationen iiber die Tonerzeugung haben mochte,
sollte sich Spezialliteratur, z.B. das Musikbuch von DATA
BECKER besorgen. Hier werden auch ausgefallene

Programmiertechniken beschrieben.

— 87 —

Zusammenfassung: Tonerzeugung

Lautstarke in Reg. 24. Bereich: 0 - 15.
Anschlag: hoherwertiges Halbbyte in Reg. 5/12/19
Abschwellen: niederwertiges Halbbyte in Reg. 5/12/19
Halten: hoherwertiges Halbbyte in Reg. 6/13/20
Ausklingen: niederwertiges Halbbyte in Reg. 6/13/20
Wellenform: Register 4/11/18

Bit 4: Dreieck

Bit 5: Sdgezahn

Bit 6: Rechteck

Bit 7: Rauschen

auBerdem: Bit 3: Initialisierung

Bit 1: Start-Stop-Bit
Frequenz: Registerpaare 0/1, 7/8 oder 14/15

— 88 —

9. DIE TASTATUR

Schon rein 4&duBerlich stellt die Tastatur das auffidlligste
Merkmal des 64ers dar. Kaum ein Computer dieser Preisklasse
ist mit einer qualitativ so hochwertigen Tastatur
ausgestattet. DaB sie nicht nur Schreibkomfort, sondern auch
Programmiertricks ermoglicht, soll Ihnen dieses Kapitel

zeigen.

9.1. AUFBAU UND FUNKTIONSWEISE DER TASTATUR

Beginnen wir mit dem Ansprechen der Tastatur. Normalerweise
geschieht dies von BASIC-Programmen aus durch INPUT und GET.
Ein Blick in das CBM-Handbuch verrdt uns auBerdem, daB sich
die Tastatur mit der Gerdtenummer O auch iliber OPEN erreichen
laB8t. Man kann dann durch die bekannten Peripheriebefehle
wie auf eine Floppy oder eine Datasette zugreifen. Im
Gegensatz zum normalen INPUT gibt dieser Befehl librigens
kein Fragezeichen aus. Dies gibt zur Vermutung AnlaB, daB
auch die “Folterstrecke fiir Adler-Such-System-Tipper" (so
ein Zeitgenosse) iliber eine Art Interface an den I/0-Bereich
angeschlossen 1st. Dieses Interface ist der CIA 1. An zwei
parallelen Ports (die sehr nahe mit dem USER-PORT verwandt
sind) wird die Abfrage vollzogen. Dazu sind die 64 Tasten
elektrisch in 8 Zeilen und 8 Spalten aufgéteilt worden.
Einer der beiden Ports ist auf Ausgabe programmiert. Hier
wird die Spalte ausgegeben, die abgefragt werden soll. Ist
eine Taste gedriickt worden, so wird dies in dem auf Eingabe
geschalteten zweiten Port registriert. Die
Interrupt-Routine, die flir die Tastaturabfrage zustdndig
ist, hat also nichts weiter zu tun, als nacheinander alle 8
Spalten anzuwdhlen und die gedrilickten Tasten festzustellen.
Anhand einer Dekodiertabelle im ROM wird dann der ASCII-Code
der Taste errechnet und . dieser im Tastaturpuffer

— 89 —

zwischengespeichert.

Liduft der Interpreter im Direktmodus, so holt er sich nach
dem Interrupt den ASCII-Code aus dem Puffer ab und
verarbeitet diesen dann (z.B. 13 = RETURN, bewirkt eine
Befehlsausfihrung). Sollte gerade ein BASIC-Programm laufen,
so wird der Tastaturpuffer so lange unverdndert bleiben, bis
ein GET, INPUT oder Programmende auftritt. Bei GET holt der
Interpreter einfach das erste Zeichen aus dem Puffer und
speichert es in der im Befehl angegebenen Variablen ab. Ein
INPUT funktioniert &hnlich, nur werden die Zeichen hier
zusdtzlich noch auf den Bildschirm geschrieben und die
Abfrage so 1lange wiederholt, bis ein RETURN eingegeben
wurde.

Die oben beschriebene Tastaturmatrix weist iibrigens noch
zwei Besonderheiten auf. So ist die RESTORE-Taste in dieser
Matrix nicht enthalten. Sie wirkt direkt auf den Prozessor
(dhnlich dem RESET-Taster aus Kap. 1.6.) und 10st dort einen
speziellen Interrupt aus. Diese Routine prift, ob
gleichzeitig die RUN/STOP-Taste gedriickt wurde. Ist dies der
Fall, so wird eine Art MINI-RESET ausgefiihrt, sohst lauft
alles normal weiter. C

Die zweite Besonderheit stellen die SHIFT-Tasten dar. Der
Rechner kann zwischen der 1linken und rechten Taste
unterscheiden, da beide in verschiedenen Spalten liegen. Im
Gegensatz dazu 1ist die SHIFT-LOCK-Taste aber nur eine
besondere Form der linken SHIFT-Taste, d.h. zwischen beiden
kann nicht unterschieden werden.

Das ganze Prinzip 148t sich ilibrigens miihelos auf den VC-20
libertragen, nur die elektrische Anordnung der Tasten ist

anders.

8.2. GLEICHZEITIGE ABFRAGE VON ZWEI TASTEN

Wir werden jetzt die Kenntnisse aus dem letzten Kapitel in

praktische Anwendungen umsetzen. Fir viele Programme ist es

- 90 —

winschenswert, mehrere Tasten gleichzeitig abfragen zu
k6nnen, um z.B. 2zwei Raumschiffe unabhidngig voneinander
steuern zu konnen. Sehen wir wuns dazu einmal die
Tastaturmatrix (Abb. 4) an.

Die beiden Speicherzellen, an denen die Tastatur
angeschlossen ist, sind 56320 und 56321. Im Normalfall sind
alle Bits dieser Register auf 1. Soll eine bestimmte Spalte
angewdhlt werden, so muB8 das betreffende Bit in 56320 auf O
gebracht werden. Ahnlich verhdlt es sich mit der Riickmeldung
von der Tastatur. 1Ist eine Taste gedriickt, so wird das
entsprechende Bit in 56321 auf O gesetzt.

Was die Interruptroutine kann, konnen wir schon lange. Durch
einen POKE-Befehl k6nnen wir eine bestimmte Spalte auswdhlen
und dann die Bits der abzufragenden Tasten testen. Sollten
die beiden Tasten in verschiedenen Spalten liegen, so fragen
wir diese einfach nacheinander ab.

Da die Interruptroutine uns ins Handwerk pfuschen kodnnte
(auch sie trifft ja eine Spaltenauswahl), schalten wir sie
einfach ab. AuBerdem muB die RUN-STOP-Taste mittels POKE
788, 52 gesperrt werden, da sonst jede Abfrage der untersten
Tastaturzeile einen BREAK hervorrufen wiirde.

Alles zusammen ergibt dann diese Befehle:

POKE 56334, PEEK (56334) AND 254

POKE 788, 52 '

POKE 56320, Spaltencode

IF (PEEK (56321) AND (2°Bitnr.)=0) THEN PRINT "Taste
gedriickt"

POKE 56334, PEEK (56334) OR 1

POKE 788, 49

Damit 14Bt sich eine Taste abfragen. Sollen mehrere Tasten
"beobachtet" - werden, missen noch weitere
IF-THEN-Konstruktionen und ggf. auch weitere POKE-Befehle
zur Spaltenauswahl eingefligt werden. Der Spaltencode
berechnet sich nach dieser Formel:

CODE= 255-2"Spaltennr.

Die Spaltennr. stellt die Position des Bits innerhalb der

- 91 —

Speicherzelle 56320 dar, das die gewiinschte Spalte anwadhlt.
Die IF-THEN-Konstruktion in den oben genannten Befehlen hat
die Aufgabe, =zu testen, ob das gewiinschte Zeilenbit auf O
gesetzt wurde.

Die Zeilen- und Spaltennummern konnen Sie auch der Abbildung

4 entnehmen.

Eine andere Moglichkeit, zwel Tasten gleichzeitig
abzufragen, bietet Speicherzelle 653. Hier wird das aktuelle
SHIFT-Muster angezeigt, d.h., die Bits dieses Registers
geben wieder, welche der drei Tasten SHIFT, COMMODORE und
CONTROL gerade gedriickt werden. Fiir ein SHIFT wird Bit O auf
1 gesetzt, flir C= Bit 2, fir CONTROL Bit 3. Das Setzen der
Bits geschieht unabhdngig voneinander, sind alle drei Tasten
gleichzeitig gedriickt, so werden auch alle drei Bits
gleichzeitig gesetzt. Zustidndig dafiir ist wieder (wie kdnnte
es anders sein) die Interruptroﬁtine. Wollen wir die
Speicherzelle 653 nutzen, darf der Interrupt nichtc
ausgeschaltet sein. Mit der Befehlsfolge

IF (PEEK (653) AND 2°Bitnr.) THEN PRINT "Taste gedriickt"
kann der Rechner vom BASIC aus feststellen, ob eine

bestimmte Taste gedriickt wird.

Zusammenfassung: Gleichzeitige Tastaturabfrage

Es gibt zwei Moglichkeiten:

a. PEEK (653) gibt das SHIFT-Muster an. Damit konnen drei
Tasten unabhdngig voneinander getestet werden.

b. Nach Spaltenauswahl durch POKE 56320, X kann 1in
Speicherzelle 56321 abgelesen werden, welche Taste in der
Spalte gedrickt wurde. Die Anordnung ist in Abb. 4
aufgelistet.

- 92 —

56321 Bit

INST

W|ner. 253 1

T
*
—|o +

Alcfsu 251 2
LIF 247 3

()
AN
S
&=
'

S IF 223 5

5
R
D
b
ClZIF1| 2 4
F
T
X

2

4
Z|0O| XXX —|—|w
<lc|x|m|o|e|<|~

Qjtr|@ EIFy o | ¢
RUN - SHIFT]
STOP / 4 U’“ ::R 127 7
56320 127 191 122312391247 |251] 253 254
Bit 716 514321 0

SHIFT LOCK = SHIFT LINKS, RESTCRE nicht abfragbar

Abb. 4. Tastaturmatrix

9.3. TASTEN SPERREN

Fiir viele Anwendungen ist es wiinschenswert, einzelne Tasten
(vor allem RUN/STOP) oder die ganze Tastatur zu sperren.
Dafiir gibt es beim 64er viele Mdglichkeiten.

Um die gesamte Tastaturabfrage zu sperren, kann die
Interruptroutine abgeschaltet werden. Es wird jetzt auch
kein Cursor mehr erzeugt - der Rechner scheint sich
aufzuhdngen. Mit RUN/STOP-RESTORE kann dies jedoch
aufgehoben werden.

Das gleiche gilt flir POKE 649,0. Auch hier wird die Tastatur

— 03 —

abgeschaltet, der Cursor kann jedoch weiterhin erzeugt
werden (auch kiinstlich). Auch die RUN/STOP-Taste behdlt ihre
Wirkung. Interessant ist die Entstehung dieser Sperre.
Speicherzelle 649 gibt die Lange des Tastaturpuffers an.
Wird Jjetzt die Ladnge auf O gesetzt (normal = 10), so meint
das Betriebssystem, der Tastaturpuffer sei schon voll und
vergiBt deshalb die gedriickte Taste. Da das BASIC alle
Tastendriicke (egal ob im Direktmodus oder per GET oder
INPUT) tUuber den Puffer holt, funktionieren keine Eingaben
mehr.

Das gleiche Ergebnis liefert POKE 655,71. Damit wird der
Zeiger auf die Tastaturdekodiertabelle gedndert. Folge: Die
Interruptroutine Xkann Xeine ASCII-Codes mehr bilden - der
Tastaturpuffer bleibt 1leer. Wieder eingeschaltet wird mit
POKE 655,72. '

Will man nur die RUN/STOP-Taste abschalten, so kann der
Befehl POKE 788, 52 benutzt werden. Danach kann ein
BASIC-Programm nur noch per RUN/STOP-RESTORE gestoppt
werden. Die BREAK-Funktion wird durch POKE 788, 49 wieder
eingeschaltet.

Durch POKE 792, 193 wird der Mini-Reset (STOP & RESTORE)
verhindert. Die STOP-Taste zeigt aber weiterhin Wirkung.
Kombiniert man die letzten beiden POKEs, so 1ldB8t sich ein
BASIC-Programm gar nicht mehr stoppen (auBler mit der
brutalen EIN-AUS-Methode). Soll das Programm zusatzlich noch
vor LIST geschlitzt werden, so sollte POKE 808, 234
eingegeben werden. Danach sind alle BREAK-Moglichkeiten
unwirksam und ein LIST liefert unsinnige Ergebnisse.

Zusammenfasssung: Tastatursperren

Ganze Tastatur abschalten:_

1. Interrupt abschalten

2. POKE 649,0 (Tastaturpuffer auf Lidnge 0)

3. POKE 655,71 (Zeiger auf Dekodiertabelle &andern)
RUN/STOP aus: POKE 788, 52

RUN/STOP ein: POKE 788, 49

-94—

RESTORE aus: POKE 792, 193
RESTORE ein: POKE 792, 71
BREAK aus + Listschutz: POKE 808, 234

9.4. DIE REPEATFUNKTION

Sie benutzen sie immer dann, wenn Sie mit dem Cursor an
entfernte Stellen auf dem Bildschirm “fahren® woilen. Doch
in den wenigsten Fidllen haben Sie die Repeatfunktion bewuBt
wahrgenommen, und wenn, dann nur, wenn Sie sie mit anderen
Tasten als der Cursorsteuefung benutzen wollten. Dieser
Wunsch 148t sich erfiillen!

Speicherzelle 650 regelt den Umfang der Repeatfunktion. Im
Normalfall steht in diesem Register eine 0. Das zeigt der
Interruptroutine an, daB nur die Cursortasten und Space
wiederholt werden sollen. Ist Bit 6 gesetzt (per POKE 650,
64), so wird die Repeatfunktion ganz abgeschaltet. POKE 650,
128 bewirkt genau das Gegenteil. Jetzt haben Sie auch auf
den normalen Zeichentasten wie A, S, D etc. die
Wiederholfunktion. Neben diesen primdr niitzlichen Details

gibt es auch anderes Wissenswertes zum Repeat. Deshalb sei

hier erklart, wie die Interruptroutine iberhaupt die
Tastenwiederholung erzeugt. Bevor ein Tastendruck
automatisch wiederholt wird, vergeht eine gewisse

Vorlaufzeit (ca. 0,5 Sekunden). Dies soll verhindern, daB
ein verfrithtes Repeat den Benutzer bei der Arbeit stort,
wenn eine Taste zufdllig etwas ldnger niedergedriickt wird.
Diese Vorlaufzeit wird in Register 652 erzeugt. Die dort
gerade stehende Zahl (meist 16) wird durch den Interrupt bis
auf O heruntergezidhlt. Erst wenn die O erreicht ist, kann
die Repeatfunktion starten. In diesem Fall wird in dhnlicher
Weise der Inhalt der Speicherzelle 651 heruntergezdhlt.
Immer, wenn die O erreicht ist, wird ein neuer "Tastendruck"
zusdtzlich in den Puffer hereingeschoben und das Register
mit einem neuen Startwert (4) geladen. Daher kann durch POKE

— 95 —

651, 255 die Repeatfunktion um ca. 4 Sekunden hinausgezdgert

werden.
Das ist schon das ganze Geheimnis um die Tastenwiederholung!

Zusammenfassung: Repeatfunktion
POKE 650, 128: Repeat auf alle Tasten
POKE 650, 64: Repeat abschalten

POKE 650, O: Urzustand
POKE 651, 255: Repeat um 4 Sek. verzdgern

- 96_

9.5. TASTATURABFRAGE EINMAL ANDERS

Wie Sie aus den letzten Abschnitten wissen, bringt die
Interuptroutine die Tastendriicke als ASCII-Codes in den
Tastaturpuffer. Auf dem Weg dahin gibt es aber eine
Zwischenstation - die Speicherzelle 203. Hier wird der
sogenannte Tastaturcode zwischengespeichert, der als Zeiger
innerhalb der Dekodiertabelle dient. Der Code erscheint so
lange in diesem Register, wie die Taste gedriickt wird. Man
kann daher mittels PEEK (203) z.B. zeitabhdngige Eingaben
programmieren, bei denen das Ergebnis von der Dauer des
Tastendrucks abhidngt. In Tabelle 1 finden Sie eine Ubersicht
iiber die Tastaturcodes, die leider nicht sehr viel mit den
ASCII-Codes gemeinsam haben.

Ein Tastendruck, der durch PEEK (203) entdeckt wurde, ist
dadurch noch nicht aus dem Tastaturpuffer geldscht. Er kann
durch GET oder INPUT in eine Variable gebracht werden. Damit
kann man schon vor der eigentlichen Eingabe Daten
iiberpriifen. AuBerdem wird das Zwischenspeichern des
Tastaturcodes nur durch das Abschalten des Interrupts
verhindert. Eine Tastatursperre kann so eventuell umgangen
werden.

Der Tastaturpuffer 1aBt sich ilbrigens auch 1l6schen. Die
Speicherzelle 198 gibt die Anzahl der schon gespeicherten
ASCII-Codes an. Durch POKE 198,0 wird ein LOschen bewirkt,
da Jjedes jetit eintreffende Zeichen ein altes im Puffer
iberschreibt. Nach dem Loschen kann mit WAIT 198, 1 bis zum
nidchsten Tastendruck angehalten werden. Sobald ein neues
Zeichen eintrifft, wird dies 1im Pufferzdhler (also der
Speicherzelle 198) registriert. Der WAIT-Befehl hat dabei
nur die Aufgabe, die Ankunft des Zeichen zu erkennen und
dann den Programmablauf wieder freizugeben. Danach kann das
Zeichen per GET aus dem Puffer geholt werden. Man spart sich
so umstdndliche IF-THEN-Konstruktionen.

Der Tastaturpuffer selbst 1liegt in den Speicherzellen 631
bis '640. Hier werden die Zeichen als ASCII-Codes abgelegt,
die das BASIC sich dann abholen kann. Durch das EinPOKEn von

— 97 —

Zeichen konnen Tastendricke simuliert werden. Dabei muB
allerdings auch der Zeiger in Speicherzelle 198 entsprechend
erhoht werden, sonst "entdeckt" das BASIC diese Zeichen gar
nicht. '

Wie Sie jetzt sicher selbst feststellen, ist die
Tastaturabfrage sehr vielseitig. Entwickeln Sie eigene

Ideen, wie Sie sie nutzen kdnnen!

Zusammenfassung: Tastaturabfrage

PEEK (203) gibt den sog. Tastaturcode der gérade gedriickten
Taste aus.

POKE 198, O l1ldscht den Tastaturpuffer

POKE 198, O: WAIT 198, 1 wartet auf einen Tastendruck

Die Speicherzellen 631 - 640 enthalten den Tastaturpuffer.

Durch EinPOKEn von Codes konnen Tastendriicke simuliert

werden.

A 10 o 38 2 59 @ 46 F5 6
B 28 P41 3 8 £ 49 T3
c 20 Q 62 4 1 + 54 STOF 63
D 18 R 17 5 16 : 45 SFC 60
E 14 s 13 6 19 ;50

P21 T 22 7 24 . = 53

G 26 U 30 8 27 RET 1

H 29 Vo3 9 32 , 47

I 33 w 9 & 57 . 44

J 34 X 23 + 40 / 55

X 37 Y 25 - 43 v 7

L 42 z 12 £ s D> 2

M 36 g 35 CIR 51 ™ 4

N 39 1 56 DEL 0 F3 5

Tabelle 1: Tastaturcodes

— 08 —

10. JOYSTICK. PADDLES. LIGHTPEN UND ANDERES

Jeder kennt sie, aber kaum jemand weiB, wie sie
funktionieren. Gemeint sind die Zusatzgerdte fiir Grafik- und
Spielprogramme. Der Joystick ist am weitesten verbreitet, es
gibt sogar Menschen, die sagen, ein C-64 ohne Joystick sei
nicht vollstdndig. Nichts desto trotz folgen jetzt die
Beschreibungen der einzelnen Zubehdrteile, wobei sowohl

Funktionsweise als auch Abfragetechniken aufgefiihrt sind.

10. 1. DER JOYSTICK

Viele wird es verbliiffen, aber es stimmt. Fiir den 64er ist
der Joystick eigentlich nur eine Art zweiter Tastensatz. Er
wird namlich lber eine Tastaturspalte abgefragt. Die beiden
Joystickports sind Jjeweils an der CIA 1 angeschlossen. Bei
Port 1 wird das Register 56321 zur Riickmeldung benutzt. Die
Joystickpositionen entsprechen den Tasten der Spalte 7. Soll
also der Joyport 1 abgefragt werden, so muB Speicherzelle
56320 den Wert 127 enthalten. Dies immer dann der Fall, wenn
die Interruptroutine die Tastaturabfrage beendet hat. Ist
dagegen die Tastatur vorher iliber die Speicherzellen 56320/1
abgefragt worden, so sollte vor der Joystickbenutzung
jeweils POKE 56320, 127 erfolgen.

Je nach Stellung des Steuerkniippels werden verschiedene Bits
in 56321 geldscht. Die Tabelle 2zeigt, welche Bits wofiir

zustdndig sind:

Bit 7 6 5 4 3 2 1 [¢]
Richtung - - - KNOPF RECHTS LINKS UNTEN OBEN
Taste - - - Space 2 Ctrl 1 1

Unter den Belegungen sind die Tasten angegeben, mit denen

- 99 —

der Joystick “simuliert" werden kann.

Ist die RUN/STOP-Taste nicht abgeschaltet, so kann man die
Speicherzelle 145 zweckentfremden. Hier wird vom
Betriebssystem eine Kopie der Speicherzelle 56321 erzeugt.
Daher kann Joyport 1 auch per PEEK (145) abgefragt werden.
Etwas komplizierter verhdlt es sich mit Joyport 2. Er belegt
die Speicherzelle 56320. Diese ist aber eigentlich fir die
Spaltenauswahl (also eine Ausgabe) vorgesehen. Die Abfrage
des Joysticks verlangt aber eine Eingabe von auBlen. Also mull
dieser Port des CIA umgeschaltet werden. Das kann durch POKE
56322, 224 erreicht werden. Dieser Befehl hat zwei Dinge zur
Folge. Zum einen kann in Speicherzelle 56320 jetzt genau wie
in Speicherzelle 56321 die Joystickbewegung abgelesen
werden. Hinzu Xkommt aber auch eine Tastatursperre, die
entweder durch RUN/STOP-RESTORE oder durch POKE 56322, 255
aufgehoben werden kann.

Die Funktionsweise eines Joysticks ist sehr einfach. Er
besteht einfach aus 5 mehr oder weniger aufwendigen Tastern.
Einer wird fiir den Feuerknopf benutzt, die anderen sind
unter dem Steuerkniippel in den vier verschiedenen
Bewegungsrichtungen angebracht. Je nach Stellung des
Kniippels wird dann der entsprechende Taster betdtigt - der
6d4er registriert das dann in den genannten Speicherzellen.
Natiirlich gibt es auch unter den verschiedenen Joysticks auf
dem Markt Unterschiede. Einfache Exemplare (wie z.B. der
Commodore-Joystick vCc-1311) arbeiten mit einfachen
Folienkontakten (ehemaligen ZX-81-Besitzern sicher noch in
unguter Erinnerung), aufwendigere Verwandte dagegen besitzen
Mikroschalter, die sich meist mit einem kleinen Klick
bemerkbar machen.

"Beim Kauf sollte darauf geachtet werden, daB der Joystick
mdglichst abgerundete Kanten besitzt. Andernfalls kénnen
beim Spiel sehr schnell Ermidungserscheinungen auftreten. Im
ibrigen passen alle Atari-kompatiblen Joysticks auch fir den

Commodore.

~100 -

Zusammenfassung: Joysticks

Joyport 1 abfragen: PEEK (56321)
Dabei muB Speicherzelle 56320 den Wert 127 enthalten
Joyport 2 abfragen: POKE 56322, 224: REM auf Port umschalten
PEEK (56320)
Port -1 kann auch hilfsweise iiber PEEK (145) abgefragt

werden.

10.2. PADDLES

Die Paddles sind allgemein auch alé Drehregler bekannt. Ihre
Aufgabe 1ist es im Gegensatz zum Joystick, der nur eine
Richtung angibt, durch die Stellung des Reglers eine
Position oder einen Wert an den Rechner zu ilbermitteln. Dazu
ist ein Potentiometer eingebaut. Je weiter man es in die
eine Richtung dreht, desto besser kann (vereinfacht gesagt)
der Strom aus dem Rechner hindurchflieBien, und umgekehrt.
Der 6der kann iber sogenannte AD-Wandler
(Analog-Digital-Wandler) den ankommenden Strom messen und
das analoge MeBergebnis in eine digitale Zahl umwandeln.
Diese Zahl kann dann in speziellen Registern abgelesen
werden. Die AD-Wandler und diese Register sind Teil des SID.
Da pro Joyport zwei Paddles (allerdings nur an einem
Stecker) angeschlossen werden koOnnen, gibt es auch zwei
Wandler und zweli Register. Deren Adressen sind 54297 und
54298. Beide Paddles haben auch je einen Feuerknopf. Diese
kénnen wie die Joystickrichtungen "Links" und "Rechts" in
den Registern 56321 (fiir Port 1) und 56320 (fiir Port 2; hier
bitte das Umschalten auf Eingabe nicht vergessen) abgefragt
werden. -

Der aufmerksame Leser wird es langst festgestellt haben -
die Beschreibung ist noch nicht komplett. Wir konnen
insgesamt 4 Paddles an unseren C-64 anschlieBen, doch es

stehen nur zwei Wandler zur Verfiligung. Daher muB es eine

=101 —

Moglichkeit geben, zwischen beiden Ports umzuschalten. Durch
Setzen des Bits 7 in Speicherzelle 56320 wird die Ubernahme
der Messwerte auf Port 2 verlegt. Dies kann aber wieder nur
geschehen, wenn der Interrupt uns dabei nicht stdrt. Also:
Ausschalten.

Zusammenfassung: Paddles

Abfragen der Paddlewerte in Registern 54297 und 54298.
Knopfdriicke werden durch Joystickpositionen "Links" und
"Rechts" reprasentiert.

Umschalten der AD-Wandler auf Port 2 durch Setzen des Bits 7
in Register 56320.

- 102 -

10.3. DER LIGHTPEN

Wir kommen jetzt zu einem Wunderwerk der Technik - zumindest
erscheint es AuBlenstehenden so. Wie schafft es ein so
unscheinbares Gerdt wie ein Lightpen (der deutsche Name
Lichtgriffel klingt noch wunscheinbarer), Punkte auf dem
Bildschirm zu setzen? Des Pudels bzw. Griffels Kern ist
eigentlich gar nicht so kompliziert.

Das eigentliche Setzen der Punkte wird von einem Programm
ibernommen. Es funktioniert wie die Grafikroutine aus
Kapitel 6. Fir den Stift bleibt nur noch die Aufgabe, die
Koordinaten fiir die Punkte zu liefern.

Diese werden in zwei Registern iilbergeben. Woher weiB der VIC
aber, wo der Lightpen gerade auf den Schirm zeigt? Um diese
Frage zu beantworten, braucht man Kenntnisse iliber den Aufbau
eines Fernsehbildes. Wie Sie sicher schon bemerkt haben,
besteht es aus einzelnen Zeilen. Ein Elektronenstrahl wird
Zeile fir Zeile 1Uber den Schirm gefiihrt. Soll ein Punkt
aufleuchten, so wird der Strahl eingeschaltet. Dies bringt
eine spezielle Beschichtung auf dem Glas zum Leuchten. Soll
der Punkt dunkel bleiben, so bleibt der Strahl aus. Das
Abfahren des Schirms geschieht so schnell, daB unser Auge
das als stehendes Bild wahrnimmt. Der Aufbau eines einzelnen
Bildes dauert nur Bruchteile von Sekunden.

Wird jetzt der Lightpen auf den Bildschirm gehalten und wird
er dabei vom Elektronenstrahl getroffen, so schickt er einen
Stromimpuls zum VIC. Dieser sieht nach, welcher Punkt
innerhalb des Schirmbildes gerade zum TV-Ausgang geschickt
wird. Da der VIC das Videosignal erzeugt, kann er immer
feststellen, welche Koordinaten gerade an der Reihe sind.
Die X- und Y-Werte werden dann in den Registern 19 (53267)
und 20 (53268) des VIC abgelegt, wo sie ein Programm abholen
kann. Vom BASIC aus kann dies per PEEK geschehen.

Die dadurch erhaltenen Werte liegen in einem Bereich von O -
255. Durch einen einfachen Dreisatz kann man sie umrechnen

und dann den entsprechenden Punkt setzen.

- 103 -

Zusammenfassung: Lightpen

Lightpen-Koordinaten werden in den VIC-Registern 19 (53267)
und 20 (53268) iibergeben. Damit kann eine entsprechende

Grafikroutine veranlaBt werden, Punkte zu setzen.

10.4. ANDERE ZUBEHORTEILE

Sie werden in einschldgigen Zeitschriften sicher schon
einmal ein sogenanntes Grafiktablett gesehen haben. Der
Anwender kann darauf wie auf einem Blatt Papier zeichnen,
das Bild erscheint dann auf dem Bildschirm in
hochauflésender Grafik.

Es gibt verschiedene Funktionsprinzipien fir solche
Grafiktabletts. Gemeinsam 1ist Jjedoch allen, daB erkannt
wird, an welcher Stelle sich der Finger, Stift o.&. gerade
befindet. Meist wird das dann als mehr oder minder starker
Strom an die Paddleeingdnge geschickt. Dort kann der Rechner
dann flir alles weitere sorgen. Auch hier kommt man also
nicht ohne die entsprechende Software aus.

Auch mit den Paddleeingdngen zu tun hat eine spezielle Sorte
von Joystick, die ich hier Proportionaljoystick nennen
méchte. Sie liefern nicht nur die allgemeine
Bewegungsrichtung, ‘sondern eine genaue Positionsbestimmung,
bestehend aus zwel Koordinaten. Dies wird durch ein
X/Y-Pontentionmeter mdglich gemacht. Eigentlich handelt es
sich dabei um 2zwei Potentiometer in einem Gehduse mit nur
einem gemeinsamen Regler, eines filir die X-, das andere fiir
die Y-Richtung. Bewegt man den Steuerkniippel, so adndern sich
die Werte, die die beiden Potentiometer liefern,
entsprechend der Richtung. Auf diese Art und Weise kann man

dann jeden Punkt des Bildschirms ansteuern.

- 104 -

Der Vorteil dieser beiden Gerate 1liegt darin, daB sie
fertige Positionskoordinaten liefern. Damit kann man sich
das langwierige Hin- und Herfahren mit den herkommlichen
Joysticks sparen.

- 105 —

11. DER USER-PORT

Der User-Port macht den C-64 zu einem sehr vielseitigen
Instrument. Leider erwdhnt das Handbuch die Handhabung und
Programmierung nicht mit einer einzigen Silbe. Angesichts
dieser straflichen MiBachtung (auch seitens des BASICs)
sollen hier aushilfsweise wenigstens die Grundtechniken der

Programmierung besprochen werden.

11.1. ALLGEMEINES UBER SCHNITTSTELLENBAUSTEINE

Wie auch die Tastatur und die Joysticks wird der User-Port
lber ein CIA betrieben, diesmal handelt es sich dabei um CIA
2. Die CIA sind sogenannte Schnittstellen- oder
I/0-Bausteine. Das sind Chips, deren Aufgabe es ist, Daten
von Peripheriegerdaten zu empfangen, an diese zu senden und
die Kommunikation mit dem Prozessor zu gewdhrleisten.

Im allgemeinen besteht ein solcher Baustein aus drei
Elementen. Zum einen ist da eine Einheit fir parallele
Ports, die Sie von der Tastaturabfrage her bereits kennen.
Dazu kommen noch eine Zeitgebereinheit (die Sie auch schon
kraftig benutzt haben, allerdings ohne es zu wissen) und ein
serieller Port.

Die folgenden drei Abschnitte sollen Ihnen die

Funktionsweise dieser Elemente verdeutlichen.

11.1.1. DER SERIELLE PORT

Fangen wir beim einfachsten Teil an. Wie Sie wissen,
verarbeitet der Computer alle Bytes parallel, d.h. die 8
Bits werden gleichzeitig bewegt, manipuliert etc. Eine

~ 106—

serielle Schnittstelle bewegt die 8 Bits eines Bytes aber
nacheinander iiber den Draht. Das geht zwangslaufig etwas
langsamer als die parallele Ubertragung, bietet aber den
Vorteil, daB man keine 8 getrennten Datenleitungen braucht,
sondern nur eine. So koénnen Daten z.B. {iber Telefon
ibertragen werden.

Die Arbeit des Schnittstellenbausteins besteht in der
Umwandlung der verschiedenen Formate. Der Prozessor liefert
die zu sendenden Bits parallel am Baustein ab, dieser
schickt sie dann nacheinander und im richtigen Takt iliber den
Draht.

Umgekehrt werden ankommende Bits wie Perlen auf die Schnur
gereiht, bis ein Byte komplett ist. Dieses wird dann an den
Prozessor ilbergeben.

MiBte der Prozessor diese Arbeiten selbst ausfiihren, so wire
der Datenaustausch {iber einen seriellen Bus sehr sehr
langsam, da fir jedes zu Ubertragende Bit mehrere
Maschinenbefehle ausgefiihrt werden miiten.

Da ich der Meinung bin, daB sich eine serielle Schnittstelle
nur 1in Maschinensprache wirklich effektiv programmieren
148t, werde ich die dazu ndtigen Methoden nicht vorstellen.
Uberdies enthdlt das ROM des 64ers bereits die komplette
Software, die zum Betrieb einer seriellen RS.232 (als
Steckmodul flir den User-Port erhdltlich) notig ist. Damit
kann die Schnittsteile iber OPEN 1,2 angesprochen werden.

11.1.2. DER TIMER

Immer, wenn ein interner Zeitablauf zu regeln ist, tritt der
Timer in Aktion. Man kann seine_Register mit beliebigen
Zeitwerten laden. Dieser Wert wird kontinuierlich
heruntergezdhlt. Ist die O erreicht, schickt der Timer ein
entsprechendes Signal an den Prozessor. Ein Beispiel fiir
diese Art der internen Regelung stellt der Interrupt dar

(Aha!). Der Timer wurde so programmiert, daB er in Abstanden

-107 -

von 1/60 Sekunde Alarm schldgt und danach wieder von vorne
anfidngt. Der Prozessor reagiert auf einen solchen Alarm mit
der Unterbrechung des Hauptprogramms und dem Anspringen der

Interruptroutine - voila!

In diesem Zusammenhang sei noch erkladrt, wie das Abschalten
des Interrupts aus Kapitel 1 funktioniert. Das Bit O der
Speicherzelle 56334 bestimmt, ob der fir den Interrupt
zustdndige Timer gerade herunterzdhlt, oder ob‘er in seiner
Arbeit innehdlt. 1Ist das Bit auf O (und genau das bewirkt
der POKE-Befehl), so0o bleibt der Zeitgeber einfach stehen.
Folge: Es werden keine Unterbrechungen mehr ausgeldst.

AuBer diesem Trick sollten Sie sich nicht an die Timer im
6der heranwagen. In den meisten Fdllen wird ein

Experimentieren mit dem Aufhdngen des Rechners enden.

11.1.3. DER PARALLELE PORT

Alle Schnittstellenbausteine fiir den 6502 bzw. 6510 haben
eines gemeinsam: Die Art der Programmierung der parallelen
Ports. Meistens besitzt ein Baustein gleich zwei solcher
Ports, wie auch die CIAs.

Jeder dieser Ports verfligt 1Uber 8 Datenleitungen, die
entweder auf Ausgabe oder Eingabe programmiert werden
kénnen. Dazu besitzt der Chip zwei spezielle Register. Das
Datenrichtungsregister zeigt an, auf welchen Modus die
einzelnen Leitungen geschaltet sind. Eine 1 bedeutet
Ausgabe, eine O steht fiir Eingabe.

Diese Wahl hat librigens einen besonderen Grund. Wiirde ein O
flir den Ausgabemodus stehen, so konnte es beim Einschalten
des Computers dazu kommen, daﬁ. zufdllig Impulse an
Peripheriegerdte geschickt werden. Diese konnten dadurch
unbeabsichtigt in Aktion treten und z.B. Daten auf einer
Diskette zerstodren.

Das zweite Register flir den Port hat Jje nach. Modus

- 108 —

)

verschiedene Aufgaben. Fiir Eingabeleitungen fungiert es als
Auffangbyte, d.h. hier kann sich der Prozessor die
empfangenen Daten abholen.

Bei Ausgabeleitungen schreibt der Prozessor hierhin die
Daten, die 2zum Peripheriegerdt geschickt werden sollen. Um
dem angesprochenen Gerdat mitzuteilen, dal die Daten
bereitliegen, gibt es die sogenannten Handshakeverfahren.
Hat der Prozessor sein Byte beim I/0-Baustein abgeliefert,
so teilt dieser durch eine spezielle Handshakeleitung mit,
daB der Ansprechpartner die Datenbits in sein Register
ibernehmen kann. Der Sender wartet mit dem ndchsten Byte
aber so lange, bis der Empfdnger ebenfalls auf einer
Handshakeleitung meldet, daB8 er mit der Dateniibernahme
fertig ist. Dabei kann das ganze Handshakeverfahren ilber nur
eine, aber auch liber 2 Leitungen ablaufen.

Neben diesen Funktionen bieten die Bausteine meist noch
weitere Einrichtungen, 2z.B. zum Senden und Empfangen von
Impulsen. Auch muB die Dateniibertragung nicht unbedingt nach

dem Handshakesystem ablaufen.

- 109 —

11.2. WIE BENUTZE ICH DEN USER-PORT?

Der User-Port stellt uns einen parallelen Port und
verschiedene "Zubehdrleitungen" zur Verfiigung. Die meisten
dieser Leitungen 1liefern Jjedoch intern bereits genutzte
Signale. So werden wir uns auf einen 8 Bit breiten Port und
eine ‘"ausgeliehene" Steuerleitung beschrdnken. Ausgeliehen
deshalb, weil sie eigentlich vom Port A des CIA 2 stammt,
also eine Datenleitung darstellt.

Der CIA 2 hat die Basisadresse 56576. Das ist auch die
Adresse des Datenregisters fiir Port A (Reg. 0O), wo Bit 2 den
Zustand der Steuerleitung wiedergibt. Alle anderen Leitungen
dieses Ports werden intern genutzt, deshalb darf nur Bit 2
manipuliert werden!

Anders verhdlt es sich mit Register 1 (56577). Das ist das
Datenregister fiir Port B, der den eigentlichen User-Port
darstellt. Hier sind alle acht Leitungen frei verfiigbar.

Die Datenrichtungsregister folgen dann unter den Nummern 2
(56578 fiir Port A; Achtung, nur Bit 2 verandern!) und 3
(56579 fiir Port B). Diese werden 1in der bereits
beschriebenen Weise benutzt.

Mit POKE 56579, 255 werden also alle 8 Datenleitungen auf
Ausgabe programmiert, POKE 56579, O setzt sie wieder auf
Eingabe.

Fir die Steuerleitung muB diese Programmierung etwas
vorsichtiger erfolgen. POKE 56578, PEEK (56578) AND 251
schaltet auf Eingabe, POKE 56578, PEEK (56578) OR 4 bewirkt
das Gegenteil.

Um Daten auf dem Port auszugeben, schreiben wir diese
einfach in Speicherzelle 56577. Umgekehrt kénnen wir die
ankommenden Daten direkt auslesen.

Den Strom auf der Steuerleitung kénnen wir mit POKE 56576,
PEEK (56576) OR 4 einschalten, ausgeschaltet wird mit POKE
56576, PEEK(56576) AND 251. Setzen wir beide Befehle direkt
nacheinander ins Programm, so kann damit ein kurzer Impuls
erzeugt werden.

Die Steuerleitung belegt den Pin M des User-Ports (siehe

- 110 -

Abb. 2 oder CBM-Handbuch), die 8 Datenleitungen befinden
sich an den Pins C bis L.

Zusammenfassung: Programmierung des User-Ports

Datenrichtungsregister fiir 8 Datenleitungen: 56579
Datenrichtungsregister fiir Steuerleitung: 56578 (nur Bit 2)
Datenregister fiir Port: 56577

Datenregister fiir Steuerleitung: 56576 (nur Bit 2)

11.3. ANWENDUNGSBEISPIELE

Der User-Port 14Bt sich sehr vielseitig einsetzen. Daher
sollen hier auch keine Beispielprogramme vorgestellt werden,
sondern nur ein paar Anregungen fiir eigene Entwicklungen.
Das einfachste Beispiel stellen Lampen oder LEDs dar, die
evtl. iiber Treibertransistoren oder Relais an den User-Port
angeschlossen und geschaltet werden. Damit 148t sich z.B.
eine Lichtorgel realisieren, die die Lautstdrke der Musik
iilber ein am AD-Wandler angeschlossenes Mikrofon miBt und
dementsprechend die Lampen ein- und ausschaltet. Mit einem
anderen Programm konnte ein Lauflicht oder weitere Effekte
erzeugt werden.

Denkbar ist auch die Koppelung von zwei Commodore-Computern
(egal welchen Typs, da sie alle einen User-Port besitzen),
um Daten auszutauschen. Auf diese Weise konnte z.B. ein
VC-20 Messungen vornehmen, die der 64er gleichzeitig auf
seinem groferen Bildschirm in hochaufldésender Grafik
darstellt.

Elektronisch begabte Leser konnten sich auch an den Bau
einer eigenen seriellen Schnittstelle machen, um damit z.B.
Daten iiber Telefon fernzuiibertragen. Ebenfalls denkbar ist
auch der AnschluB eines Nicht-Commodoredruckers an den C-64.
Auch dafiir geeignet sind Fernschreiber, Lochstreifenstanzer

- 111 -

und ~-leser, Home-Roboter oder Taschenrechner. Dem

Erfindungsreichtum des Bastlers sind keine Grenzen gesetzt.

- 112 -

12. BASIC & BETRIEBSSYSTEM

Das Betriebssystem und auch das BASIC stellen uns viele
Funktionen zur Verfiigung, die nicht mit einem der in den
vorherigen Kapiteln beschriebenen Details zusammenhédngen.
O0ft 1ist es jedoch wiinschenswert, diese Funktionen (z.B.
List) 2zu beeinflufien, um bestimmte Zwecke zu verfolgen. Von
diesen Manipulationsmdglichkeiten soll hier die Rede sein.

12.1. ERZEUGEN VON BASIC-ZEILEN PER PROGRAMM

Stellen Sie sich vor, Sie wollten ein Programm schreiben,
das den Graphen einer beliebigen Funktion in Hochauflésung
auf den Bildschirm zeichnet. Wenn das Programm die Funktion
nicht fest vorgeben soll, muB es eine Moglichkeit geben, den
Term einzutippen. Fiir einfachere Versionen reicht es, wenn
der Benutzer vorher 1in einer speziellen Programmzeile die
Funktion per DEFFN selbst ins Programm einbaut. Doch dazu
braucht der Benutzer Programmierkenntnisse. Bequemer wire
es, die Rechenvorschrift iiber INPUT einzugeben. Doch was
nitzt uns ein String, in dem ein Term gespeichert ist -
ausgefiihrt werden kann er nicht. Die letzte Moglichkeit
widre, den Rechner sich selbst programmieren zu lassen. Das

geht sogar sehr einfach.

Um die Methode 2zu verstehen, sollten wir zundchst einen
Blick auf die normale Entstehung einer Programmzeile werfen.
Alles beginnt damit, daB ein Anwender eine (hoffentlich)
durchdachte Folge von Buchstaben und Zeichen eintippt. Diese
Zeichen erscheinen gleichzeitig auf dem Bildschirm. War
eines dieser Zeichen ein RETRUN, so ilibernimmt der
BASIC-Interpreter die gesamte Bildschirmzeile (nicht nur die
eingetippten Zeichen) in den BASIC-Eingabepuffer und wandelt
die Zeichenfolge 1in eine Programmzeile oder (wenn keine

- 113 -

Zeilennummer am Anfang stand) in direkt ausfiihrbare Befehle
um. Dem Interpreter ist es also egal, ob die Zeichen
eingetipppt oder etwa gePRINTet wurden. Darauf baut unsere
Methode auf. Zundchst wird der beabsichtigte Text der
Programmzeile auf dem Bildschirm ausgegeben. Dann miissen wir
nur noch die Umwandlung in eine Programmzeile veranlassen. -
Dazu wird ein kiinstlicher Tastendruck erzeugt, indem der
ASCII-Code in den Tastaturpuffer gePOKEd wird. Folgt jetzt
im Programm ein END, so werden diese Tastendriicke nach dem
Programmabbruch ausgefiihrt. Dabei ergeben sich zwei
Probleme. Durch die Erzeugung einer neuen Zeile werden die
Variablen geldscht (wie auch bei der normalen
Programmeingabe). Daraus folgt, dag die Erzeugung
kiinstlicher Zeilen erfolgen sollte, wenn keine wichtigen
Daten angefallen sind, also am Programmanfang. Miissen einige
,Variablen erhalten werden, so empfiehlt es sich, diese in
freie RAM-Bereiche einzuPOKEn, die vom Betriebssystem nichg
benutzt werden. B
Zusdtzlich soll das Programm nach der Zeilenerzeugung
weiterlaufen. Daher muB nach der Zeile ein kiinstliches GOTO
xxx stehen, das nach dem gleichen Muster wie die Zeile

erzeugt wird. Hier ein Beispiellisting:

M ETHGABE FURETIOHSTERRM
"OREREM ZEILE AUSGEBEH

REM BEFEHL SUR PROGEAMMFORTSETZUHG
213 REM RETURMHWET MAL RETURH
IMITIALISIEREN

T8 ITHPUTY TERM: Ws="iff: RE
2@ PRIMT el 8o DEFFHF
EHE OPRIWNTYGOTOFE"
PO B ;
FORE 1
EHD

kR

FEMATM .

Wenn Sie dieses Programm eingetippt und gestartet haben,
werden Sie sehr schnell den Sinn der einzelnen Anweisungen
verstehen, vor allem was die Bildschirmausgabe betrifft. Die
erzeugte Zeile unterscheidet sich nicht von einer normal
eingegebenen Zeile. Das Programm kann beliebig oft

- 114 -

durchlaufen werden. Sollte eine fehlerhafte Eingabe gemacht
worden sein, so quittiert der Interpreter dies mit einem
SYNTAX-ERROR nach dem Durchlauf der neuen Zeile.

Diese Anwendung ldBt sich iibrigens noch stark erweitern. So
konnen auf diese Weise auch Programmzeilen geldscht werden,
die man nicht mehr bendtigt. Auch kdnnen mehrere Zeilen
gleichzeitig erzeugt werden. So ist die Eingabe ganzer

Unterprogramme per INPUT mdglich.

12.2. LISTSCHUTZ

Bei Programmen, die auf persdénliche Daten zugreifen,
empfiehlt es sich, eine Codewortabfrage einzubauen. Damit
das Codewort nicht durch LIST aufgedeckt werden kann, sollte
die betreffende Programmzeile geschiitzt werden. Dies kann
durch einen POKE-Befehl erreicht werden.

Zum Verstdndnis ist es ndtig, das Format einer Programmzeile
im Speicher zu kennen. Die ersten beiden Bytes einer Zeile
bilden den Zeiger auf die ndchste Zeile. Damit kann sich der
Interpreter von Zeile zu Zeile "hangeln". Sind diese beiden
Bytes O, so ist danach keine Programmzeile mehr gespeichert;
hier befindet sich also das Programmende.

Nach dem Zeiger folgen zwei Bytes mit der Zeilennummer. Auch
diese ist wie ein Pointer aufgebaut. Dann folgen die Befehle
im Interpretercode. Das Zeilenende wird durch eine Null
reprasentiert. Mit dieser O kdnnen wir den Interpreter ein
wenig hereinlegen. POKEn wir namlich direkt nach der
Zeilennummer eine O ein, so meint die LIST-Routine, die
Zeile wire bereits abgeschlossen und holt sich die nidchste
Programmzeile (der Pointer am Zeilenanfang blieb ja
unveridndert). Auch ein GOTO wird dadurch nicht beeinfluBt,
da die Routine, die eine bestimmte Zeile im Text sucht, sich
ebenfalls an diesen Pointern orientiert. Die Routine, die
den nidchsten Befehl im Programm sucht, tut dies aber nicht,

- 115 —

sondern iiberspringt nach einer O einfach 4 Bytes. Deshalb
"fehlen" die ersten vier Bytes der Zeile beim
Programmablauf. ' Um die Ausfilhrung der Befehle nicht zu
behindern, miissen beim Schreiben der Programmzeile 5
beliebige Zeichen (aber kein Befehlswort!) eingefiigt werden.
Das erste dieser Zeichen wird durch die O iiberschrieben, die’
restlichen vier dienen als Platzhalter.

Woher wissen wir aber, welches Byte wir iiberschreiben
miissen? Nun, auch dafiir gibt es einen Trick. Wir bauen vor
der zu schiitzenden Zeile einen STOP-Befehl ein und lassen
das Programm bis hierhin ablaufen. Nach dem BREAK steht in
den Speicherzellen 61 und 62 der Pointer auf dem nichsten
BASIC-Befehl. Wenn der Stop-Befehl am Ende der Zeile steht,
zeigt der Pointer auf das Zeilenende, also auf eine Null.
Addiert man zu dieser Adresse noch 5 dazu, so erhdlt man das
gewilinschte Byte. Also frisch ans Werk mit POKE AD, O. Nach
diesem Befehl erscheint beim LISTen nur noch die
Zeilennummer, der Text wird nicht mehr gezeigt. Es bleibt
nur noch, den STOP-Befehl (der jetzt iiberfliissig ist) zu
l6schen. Hier noch einmal die Zusammenfassung der einzelnen
Schritte:

1. Vor Zeile STOP einfiigen.

In Zeile 5 Platzhalter (beliebige Zeichen) einfiigen.

AD= PEEK (61) + 256*PEEK (62) + 5

POKE AD, O

STOP-Befehl ldschen.

o W N

Wollen Sie das ganze Programm vor LIST schiitzen, so bietet
es sich an, den Vektor auf die LIST-Routine in der Zeropage
zu verdndern. Dadurch findet der Rechner sein Unterprogramm
nicht wieder. Der Vektor steht in den Speicherzellen
774/775. Durch POKE 775, 1 wird dieser Zeiger derart
"umgebogen", daB jeder LIST-Befehl wie RUN/STOP-Restore
wirkt. Dieser Listschutz kann durch POKE 775, 167 aufgehoben

werden.

- 16—

12.3. RENUMBER

Besitzern einer BASIC-Erweiterung wie EXBASIC oder SIMONS
BASIC ist er in guter Erinnerung: Der Renumberbefehl. Damit
kann das im Speicher stehende Programm umnumeriert werden,
was z.B. beli MERGE sehr vorteilhaft sein kann. Dieser Befehl
kann aber auch ohne Basic-Erweiterung simuliert werden.

Wie Sie aus dem letzen Abschnitt wissen, beginnt jede
Programmzeile im Speicher mit 2 Pointern. Der erste zeigt
auf den Beginn der ndchsten Zeile, der zweite verdient den
Namen Zeiger eigentlich nicht, da er nur die Zeilennummer im
Pointerformat angibt. Addieren wir zum Zeiger auf die
nidchste Zeile noch 2 hinzu, so erhalten wir die Adresse der
nachsten Zeilennummer. Auf diese Weise konnen wir alle
Programmzeilen abklappern und durch POKE die Zeilennummer
andern. Hier das Programm dazu:

BA=PEER 43+ 25ERPEEE 44
THFUT " STARTHRE " SA: THPUT SCHRITTHE TTE " ; S
HT s S 25 L bt

Fis=PEER C BA+E + 256 ¥
IFA=S S @aTHEHFR THT " Ok L MDD
FUOEERA+E L0 POKE

Diese Routine wird an das umzunumerierende Programm
angehidngt (entweder eintippen oder MERGEn) und dann mit RUN
63900 gestartet. Die hohen Zeilennummern wurden gewdhlt,
damit es immer am Ende des Programms steht.

Zeile 63900 berechnet die Basisadresse der ersten Zeile aus
dem Pointer auf den BASIC-Start. Bei Durchlauf der Zeile
63910 gibt der Benutzer ein, mit welcher Startnummer
begonnen und mit welchem Zeilenabstand das Programm
umnumeriert werden soll. Wenn Sie mochten, daB das Programm
mit Zeile 10 beginnt und der {ibliche Zehnerabstand
eingehalten werden soll, geben Sie hier zweimal 10 ein.

- 117 -

Zeile 63920 berechnet High- und Lowbyte der neuen
Zeilennummer, Zeile 63930 holt die alte Zeilennummer aus dem
Speicher. Ist diese groBer-gleich 63900, so wird der
Renumbervorgang abgebrochen, da die Routine sich nicht
selbst umnumerieren darf.

Die ndchste Zeile POKEd High- und Lowbyte der neuen Nummér
ein.

SchlieBlich wird noch die Basisadresse der ndchsten Zeile
berechnet, die Zeilennummer um die Schrittweite erhoht und
ein Umnumerierungsprotokoll ausgegeben. Dieses Protokoll
zeigt filir jede neue Zeilennummer das alte Aquivalent an.
Damit wird das Anpassen der GOTO, GOSUB uﬁd sonstiger
Sprungbefehle erleichtert. Unsere Routine kann namlich die
Sprungadressen innerhalb des Programmtextes nicht andern.
Besitzern eines Druckers empfehle ich, die Protokollausgabe
umzuleiten, damit man die Vergleichstabelle hinterher
schwarz auf weiB vor sich hat. 2u diesem Zweck sollte am
Anfang der Routine OPEN 1,4: CMD 1 eingefiigt werden.

12.4. RENEW

Der NEW-Befehl fiihrt von allen BASIC-Befehlen am hdufigsten
zu Tobsuchtsanfdllen bei Computerbesitzern. Denn eines haben
alle Computer gemeinsam. Durch das unbedachte Eintippen
dieser drei Buchstaben (+ RETURN) hat sich schon mancher
Programmierer ungewollt um die Friichte harter Arbeit
gebracht, weil er vergessen hatte, das Programm vorher zu
speichern. Um gegen solche Schicksalsschldge gewappnet zu
sein, habe ich mir ein Programm geschrieben, das die
NEW-Katastrophe wieder riickgdngig machen kann.

Unter Commodore-Programmierern ist es ldngst kein Geheimnis
mehr,' daB durch NEW der Speicher nicht etwa vollstdndig
geldscht wird, sondern nur die beiden zentralen Stiitzzeiger
des Programms zuriickgesetzt werden. Der erste dieser beiden

- 118 -

ist der Pointer auf den Beginn der Variablen. Nach dem NEW
zeigt er auf den Programmanfang, was dazu fithrt, daB alle
Variablen, die jetzt benutzt werden, das alte Programm (das
immer noch im Speicher stand) iiberschreiben. Deshalb
oberstes Gebot nach einem versehentlichen NEW: Keine Befehle-
oder Zeichen eingeben, die nichts mit RENEW zu tun haben!

Auch ein einfacher Buchstabe + RETURN erzeugt schon eine
Variable, obwohl der Rechner einen Syntax Error ausgibt!

Der zweite Zeiger befindet sich in der ersten Programmzeile,

genauer gesagt an den Adressen 2049 und 2050. Normalerweise
zeigt er auf die ndchste Zeile, jetzt aber enthdlt er zwei
Nullen, um das Programmende zu markieren. Fiir RENEW bleiben
also zwei Dinge zu tun:

1. Ende der ersten Zeile suchen. Dieses wird durch eine O
markiert. 1Ist diese Null gefunden, so muB deren Adresse + 1

als Zeiger in die Bytes 2049 und 2050 gePOKEd werden.

2. Programmende suchen. Das Programmende laB8t sich durch
eine Null im Highbyte des Zeigers auf die nadchste Zeile
erkennen. Ist das Ende gefunden, so wird die Adresse um 2

erhdht, was den Beginn des Variablenbereiches angibt. Damit
kann der Zeiger entsprechend geladen werden.

Hier das Programm:

AT ETHE M2

= PORERESE AT S5
T+

PEPRIMT LTI

Dazu einige Erlduterungen. Zeile 20 sucht das Ende der
ersten Zeile. 1Ist dies gefunden, so wird die Adresse uml
erhoht (Zeile 30) und der Pointer auf die zweite Zeile
restauriert (Zeile 40).

Zeile 50 hangelt sich von Pointer zu Pointer vor, bis dieser

- 119 -

schlieBlich 0 wird (= Programmende). Die jetzt gefundene
Adresse wird aber nicht direkt eingePOKEd, da sich die
Routine dadurch selbst aufhdngen wiirde. Statt dessen werden
die notigen Befehle per PRINT auf den Bildschirm gebracht
(Zeile 60) und der Cursor dariiber gefahren (Zeile 70). Nach
dem Programmende braucht der Benutzer nur noch auf RETURN zw
driicken, und der Variablenzeiger ist wieder komplett.

Allerdings ergibt sich noch ein Problem. Wirden wir das
Programm so eintippen, so wiirde dadurch das alte, eigentlich
noch vorhandene Programm endgiiltig zerstdrt. Deshalb muB der
BASIC-Speicher in einen Bereich verlegt werden, der
iiblicherweise nicht vom Interpreter benutzt wird. Hier
bieten sich die 4 K RAM von 49162 bis 53247 an. Um den
gesamten BASIC-Bereich (mit Kind und Kegel sozusagen) nach
dorthin zu verlegen, brauchen wir 4 Befehle:

POKE 44, 192: POKE 56, 208: POKE 49152, O: NEW

Wir haben uns jetzt einen zweiten unabhangigen
Speicherbereich geschaffen und konnen das RENEW-Programm
eintippen. Bevor wir es aber starten, sollten wir es ganz
normal abspeichern. Dann kdnnen wir es spdter ganz einfach
in den verlegten BASIC-Bereich laden.

Nun kann das Programm mit RUN gestartet werden. Sollten Sie
den BASIC-Anfang verschoben haben, (z.B. fiir HiRes-Graphik),
miissen Sie nur die Startadresse in den Zeilen 10 und 20 und
die POKE-Befehle in Zeile 60 entsprechend andern. Durch die
POKEs wird auch der BASIC-Speicher wieder zuriickverlegt
(POKE 44, 8). Sie konnen das alte Programm jetzt wieder
normal benutzen.

Das RENEW-Programm sollten Sie dagegen nur einmal benutzen.
Ein Zuriickholen ist nur dann mdglich, wenn Sie auch die
Variablenpointer wieder verdndern und den NEW-Befehl aus der
Initialisierungsroutine fortlassen. Einfacher ist es, das
RENEW ein zweites Mal zu 1;den. Werden die Variablenpointer
nicht durch NEW oder POKE‘angepaBt, so kann es zum Aufhdngen
des Rechners kommen.

- 120 -

Apropos Aufhidngen: Haben Sie Ihren C-64 mittels Resettaster

aus einem Absturz zurickgeholt, so

kénnen Sie RENEW
einsetzen, um ein

BASIC-Programm wieder zu restaurieren.
der Strom nicht abgeschaltet wurde,
noch vorhanden.

Solange sind alle Daten

—121 -

12.5. RESTORE

Der RESTORE-Befehl wird nicht sehr oft benutzt. Geschieht es
doch einmal, daBd man den DATA-Zeiger zuriicksetzen muB, so
ist es meist sinnvoller, eine Zeilennummer oder gar das
Data-Element selbst angeben zu kénnen, um den Zeiger nicht
auf weiter vorn stehende Daten, die nicht mehr gebraucht
werden, zurilicksetzen zu miissen. So lieBle es sich vermeiden,
daB die nicht bendotigten Daten jedesmal liberlesen werden

miissen, bevor man auf das eigentliche Datum zugreifen kann.

Mit ein paar POKE-Befehlen kann jedoch auch hier Abhilfe
geschaffen werden. Dazu muB man wissen, daB der Interpreter
sowohl die Zeilennummer als auch die Adresse des letzen
DATA-Elements in der Zeropage speichert. Die Zeilennummer
ist als Bytepaar (pointerdhnlich) in den Speicherzellen
63/64 abgelegt, die Adresse des Bytes nach dem letzten
DATA-Element, das gelesen wurde, finden wir in 65/66.
Wollen wir Jjetzt ein RESTORE simulieren, so kdnnen wir
folgendermaﬁen‘vorgehen:
1. DATAs bis zum Element vor dem gewiinschten Ziel lesen
lassen (z.B. im Direktmodus). Soll auf das 5. Element
zuriickgesetzt werden, so miissen also die ersten 4 DATAs
gelesen werden.
2. PRINT PEEK (63), PEEK (64))
Die erscheinenden Zahlen reprdsentieren die Zeilénnummer.
Zahlen bitte merken!
3. PRINT PEEK (65), PEEK (66)
Auch diese Zahlen miissen wir uns merken! Sie bilden den
Zeiger auf das Byte nach dem 1letzten DATA-Element. Bis
hierhin miissen alle Befehle vor dem eigentlichen
Programmablauf gegeben werden.
4. POKE 63, 1. Zahl: POKE 64, 2. Zahl

POKE 65, 3. Zahl: POKE 66, 4. Zahl
Diese Befehle werden statt RESTORE ins Programm an die
Stelle eingebaut, an der der Datazeiger zurilickgesetzt werden
soll. Dadurch werden die Pointer auf den Stand gebracht, den

- 122 -

Sie vor dem Lesen des gewilinschten Elements hatten. Fiir das
BASIC entsteht der Eindruck, als hdtte es die nachfolgenden
DATA-Zeilen noch nicht gelesen.

Allerdings hat diese Methode einen Nachteil. Nach jeder
Anderung in Programmzeilen, die vor der gewiinschten Position
des Zeigers liegen, &ndert sich die Adresse, die im
Data-Pointer stehen sollte, da das BASIC den gesamten
Programmtext im Speicher verschiebt. Deshalb sollten solche
DATA-Blocke ganz am Anfang des Programms vor den

eigentlichen Befehlen stehen.

Zusammenfassung: RESTORE

Zeilennummer des letzten DATA-Elements ist in den
Speicherzellen 63 und 64 gespeichert. Die Adresse des Bytes
nach dem letzten Element befindet sich als Zeiger in den
Bytes 65 und 66. Beide Pointer koénnen durch POKE verdndert

werden (vorher gewiinschte Pointerwerte feststellen).

12.6. VERSCHIEDENE TRICKS

Nach einer Programmunterbrechung oder einem Error zeigt der
Rechner an, in welcher Zeile das Programm verlassen wurde.
Hat man etwas voreilig den Bildschirm geldscht, so erfdhrt
man diese Zeilennummer meist nicht mehr. Hier schaffen die
Speicherzellen 59 und 60 Abhilfe. Hier wird (im
Zeigerformat) die letzte Zeilennummer abgelegt, die man sich
durch

PRINT PEEK (59) + 256 * PEEK (60) ausgeben lassen kann.

Ein Programm vor SAVE schiitzen kann man mit dieser Sequenz:
POKE 801, O: POKE 802, O: POKE 818, 165
Dadurch werden die Vektoren, die der SAVE-Befehl bendtigt,

so umgebogen, daB kein Abspeichern mehr moéglich ist.

- 123 -

Nachteil: Schon durch einfaches Driicken von RUN/STOP-RESTORE
hingt sich der Rechner auf.

SchlieBlich noch einige SYS-Befehle, die sich gut in eigenen
Programmen verwenden lassen:

SYS 65499 setzt den TI$ auf 000000. Das geht schneller als
die Zuweisung eines neuen Strings.

Astheten unter den Commodore-Besitzern konnen ein Programm
durch SYS 42115 (statt END) beenden. Damit wird ein
Warmstart des BASICs bewirkt, was nichts anderes heiBt, als
daB das BASIC in den Direktmodus umschaltet. Dabei wird aber
kein Ready ausgegeben; der Cursor steht sofort in der
niachsten Zeile. Auch ein CONT bleibt nach SYS erfolglos.
Soll das Programm mit dem Einschaltbild beendet und
gleichzeitig geldscht werden, so bietet sich SYS 58253 an.
Und einen kiinstlichen SYNTAX ERROR erzielt man durch SYS
44808.

Zusammenfassung: Tricks zum Betriebssystem

Letzte Zeilennummer ist in Speicherzellen 59 und 60
gespeichert.

SAVE-Schutz: POKE 801, O: POKE 802, O: POKE 818, 165

TI$ auf O setzen: SYS 65499

End ohne Ready: SYS 42115

Einschaltbild: SYS 58253

Syntax Error: SYS 44808

~ 124 -

12.7. BASIC-ERWEITERUNGEN

Fast jeder Commodore-Besitzer kennt BASIC-Erweiterungen
zumindest aus Anzeigen, wenn er nicht sogar selbst ein
solches Programm besitzt. Die ersten Exemplare dieser
niitzlichen Helfer gab es schon zu den Zeiten des seligen PET
(oder CBM 2000). Zundchst enthielten sie nur sogenannte
Toolkit-Befehle, die das Editieren von Programmen
erleichtern. Darunter f&4llt zum Beispiel AUTO. Dieser Befehl
gibt automatisch die Zeilennummern im gewdhlten Abstand
(z.B. 10) fiir die einzugebenden Programmzeilen vor, so daB
man sich diese Tipparbeit sparen kann. FIND findet bestimmte
Ausdriicke im Programmtext, RENUMBER, MERGE und RENEW kennen
Sie bereits aus den vorhergehenden Kapiteln. Mit DEL kdnnen
Sie ganze Programmteile 16schen. TRACE ermoglicht durch
Ausgabe der durchlaufenen Zeilen eine einfache Uberwachung
des Programmablaufes beim Testen. DUMP gibt alle benutzten
Variablen samt Inhalt aus.

Komfortablere Versionen ermdglichen das Auffangen von
Errors. Damit wird zum Beispiel die Korrektur von
fehlerhaften Eingaben erméglicht, ohne dag ein
TYPE-MISMATCH-ERROR erscheint.

Seltener findet man die Moglichkeit, die Funktionstasten mit

Zeichenfolgen zu belegen.

Da das BASIC des 64ers die phantastischen Sound- und
Grafik-Mdglichkeiten nicht unterstiitzt, bieten viele
BASIC-Erweiterungen auch hier Befehle zum Zeichnen und zum
Programmieren von Tonfolgen.

Einige Programme stellen auch Strukturierungsbefehle zur

Verfiigung, mit denen man Programme ohne GOTO-Befehle
schreiben kann. In diesem Fall werden die einzelnen
Programmteile in sogenannten Moduln (dhnlich

Unterprogrammen) programmiert. Statt GOSUB wird jetzt z.B.
mit CALL PLOT X,Y aufgerufen, um eine Punktsetzroutine zu
erreichen. Diese Technik fordert die Ubersichtlichkeit eines

Programmes sehr.

- 125 -

Verbreitet ist auch der Einbau von speziellen DOS-Befehlen,
die es z.B. ermdglichen, eine Directory direkt auf den
Bildschirm 2zu holen, ohne ein Programm im Speicher zu

loschen.
{

J

12.8. ANDERE PROGRAMMIERSPRACHEN

Der Commodore 64 zeichnet sich auch dadurch aus, daB es
moéglich ist, andere Programmiersprachen als das BASIC zu
laden und damit zu arbeiten. Am bekanntesten ist hier wohl
PASCAL. Sein Grundkonzept ist die strukturierte
Programmierung, d.h. GOTO ist verpont (einige
PASCAL-Versionen beinhalten diesen Befehl gar nicht erst),
Modularitdt ist Trumpf. Das soll verhindern, daB der
Programmierer einfach drauflostippt, statt sich vorher ein
Konzept auszuarbeiten. PASCAL wird immer als Compiler
geliefert, d.h. vor dem Programmablauf wird der Programmtext
zundchst in eine computer-freundliche Version (meistens
Maschinensprache oder eine schnelle Zwischensprache)
libersetzt.

Im Gegensatz dazu stellt FORTH eine Interpretersprache dar.
Auch hier wird auf Strukturierung Wert gelegt, ja man kommt
gar nicht drumheruﬁ, weil man sich eigene Befehle
(allerdings nicht in Maschinensprache) definieren muB8. FORTH
stellt nur wenige Grund-Befehle 2zur Verfiigung und steht
damit der Maschinensprache sehr nahe. Daraus resultiert auch
eine sehr hohe Geschwindigkeit.

— 126—

Ebenfalls sehr weit verbreitet ist LOGO. Diese Sprache ist
so einfach zu erlernen, daB sogar ErstklaBler damit umgehen
kdnnen. Hauptmerkmale: Turtle-Grafik (man bewegt eine
gedachte Schildkxote wie einen Zeichenstift iiber den
Bildschirm und kann damit sehr einfache Grafiken
programmieren) und Modularitdt. LOGO eignet sich besonders

fiir mathematische und geometrische Probleme.

- 127 —

13. MASCHINENSPRACHE

Auf die Dauer kommt man nicht ohne
Maschinensprachekenntnisse aus, wenn man sich ernsthaft mit
der Programmierung des C-64 beschiftigen will. Vielen
Anfangern fallt es.jedoch schwer, sich in die Besonderheiten
der maschinennahen’” Programmierung hineinzudenken. Dem soll
dieses Kapitel abhelfen. Mit dem Simulator am Ende des
Buches kann eine Art Minimalsprache ausprobiert werden.
Jeder kann dann selbst entscheiden, ob er richtig in die
Maschinensprache einsteigen will, oder ob er lieber weiter
in BASIC programmieren mdochte (auch kein schlechter Weg!).
Da der Simulator selbst in BASIC geschrieben wurde, kann er
natiirlich nicht die ernorme Geschwindigkeit der
Maschinensprache verdeutlichen; dazu sehe man sich z.B. die
Grafikldoschroutine aus Kapitel 6 an.

13.1. WAS IST MASCHINENSPRACHE UBERHAUPT?

Wie Sie sicher wissen, stellt die Maschinensprache die
einzige Moglichkeit dar, den Prozessor ohne Umweg iliber einen
Compiler oder Interpreter direkt zu programmieren. Daher
ermoglicht diese Sprache auch so immens hohe
Geschwindigkeiten.

Die Maschinensprache umfaBt verschiedene Grundoperationen,
aus denen sich alle komplexeren Befehle des BASICs oder
anderer Sprachen zusammensetzen lassen. Man kann die
Maschinenbefehle grob in drei Gruppen einteilen. Fiir
BASIC-Programmierer am einfachsten 2zu verstehen sind die
sprungbefehle, mit der das Programm dhnlich GOTO und GOSUB
im Speicher umherspringen ‘kann. Andere Befehle bewirken
Datenmanipulationen (z.B Additionen, Verkniipfungen etc.).
Die 1letzte Gruppe umfaBt die Operationen, dié Daten von

einem Ort zum anderen innerhalb des Speichers bewegen.

— 128 -

Grundsidtzlich gilt, daB es fiir Mikroprozessoren keine
Variablen gibt. Er kennt nur die normalen Speicherzellen und
interne Register. Im allgemeinen kdénnen Datenmanipulationen
nur in den internen Registern ablaufen.

Ein Maschinenbefehl besteht immer aus einem Byte
(Operationscode genannt) und bis zu 2 Bytes fiir Operanden
etc. Ein Speicherzelleninhalt kann also Befehl, Adresse oder

Datum sein - je nach Ablauf des bisherigen Programms.

13.2. DER TAKT

Alles im Computer richtet sich nach einem kleinen
unscheinbaren Quarz, der den Takt (0.98 MHz = 980000 Schliage
oder Zyklen pro Sekunde) vorgibt.

Pro Taktzyklus kann der Prozessor eine Grundoperation
ausfiihren. dabei sind mit Grundoperationen die Vorgange
gemeint, die wdhrend eines einzigen Maschinensprachebefehls
ablaufen. Der kiirzeste Maschinenbefehl braucht zwei Zyklen -
fiir "Befehl aus dem Speicher holen und dekodieren" und
"Befehl ausfiihren" . Andere Befehle fir komplexere

Operationen brauchen mehr Zyklen.

13.3. DAS HEXADEZIMALSYSTEM

Wann immer Sie sich mit Maschinensprache beschaftigen,
werden Sie auf die Zahlendarstellung im Hexadezimalsystem
treffen. Dieses System besitzt 16 Ziffern (O - 9 & A - F).
Es wird so hdufig benutzt, weil die Umwandlung von Bindr- in
Hexzahlen sehr einfach ist. Man nimmt dazu jeweils ein
Halbbyte und wandelt es in eine Hex-Ziffer um. Die Tabelle

zeigt die dezimalen und bindren Entsprechungen:

- 129 —

bindr I dez. I hex
______ e
0000 I o I 0
0001 I 1 I 1
0010 I 2 I 2
0011 I 3 I 3
0100 I 4 I 4
0101 I 5 I 5
0110 I 6 I 6
0111 I 7 I 7
10001 8 I 8
1001 I 9 I 9
1010 I 10 I A
1011 I 11 I B
1100 I 12 I c
1101 I 13 I D
1110 I 14 I E
1111 I I F

15

Aus dem Byte 10101011 wird also die hexadezimale Zahl AB.

Fir die Umwandlung von Hexzahlen in Dezimalzahlen libertragt
man zundchst alle Ziffern fiir sich in das Dezimalsystem.
Diese Zahlen werden dann mit ihren Stellenwerten (Potenzen
von 16) multipliziert und die Produkte schlieBlich

aufaddiert. Ein Beispiel:

ABCD

10 * 16°3 '+ 11 * 1672 + 12 * 16°1 + 13 * 1670
10 * 4096 + 11 * 256 + 12 * 16 + 13 * 1
43981

[}

]

Flir den umgekehrten Weg konnen Sie die Dezimalzahl
fortwdhrend durch 16 teilen wund die Divisionsreste als
Hexziffern notieren.

Beispiel:
53000 / 16 = 3312 Rest 8 ---- 8
3312 / 16 = 207 Rest O --- O

- 130 -

207 / 16 = 12 Rest 15 -- F
122 / 16 = 0 Rest 12 - C
=) 53000 (dez) = CFO8 (hex)

Inzwischen gibt es viele Taschenrechner, die eine spezielle
Funktion filir die Basisumwandlung besitzen. Gute Assembler
bzw. Monitore bieten diese Funktion ebenfalls.

- 131 -

13.4. BINARE ADDITION

Um es gleich 2zu Anfang 2zu sagen: Die bindre Addition
unterscheidet sich von der dezimalen nur im Zahlensysten,
ansonsten funktioniert sie genauso.

Die Summen von 2zwei Nullen oder einer Null und einer Eins
(egal in welcher Reihenfolge) bediirfen keiner Erlauterung,
hier wird ganz normal addiert. Wollen wir jedoch 1 + 1
rechnen, so ergibt sich ein Problem. In der dezimalen
Entsprechung ware das Ergebnis eine 2. Die gibt es jedoch im
bindren System nicht. Also muB (wie beim Uberschreiten der
10 im Dezimalsystem) ein Ubertrag auf die ndchste Stelle
gemacht werden:

1
+ 1

10
Bei ganzen Bytes funktioniert das ebenso einfach:

01101110 = 110
+ 00001001 = + 9

01110111 119

Sollte es vorkommen, daf zwei Einsen addiert werden miissen
und noch ein Ubertrag dazukommt (1+1+1=3) so ist das
Ergebnis 1 1 (eigentlich klar!)

Versuchen Sie einmal diese Addition:

10010011
+ 11011111

101110010

Jetzt haben wir im Ergebnis plétzlich 9 Bits! Das neunte Bit

- 132 —

heiBt Carry- oder Ubertrags-Bit. Es zeigt an, daB die
Addition von 2zwei 8-Bit-Zahlen den zulidssigen Bereich fiir
ein Byte (0O - 255) liberschritten hat. Es muB8 dann ggf. zu
einem zweiten Byte addiert werden. Damit sind wir auch schon
bei der 16-Bit-Addition. Kein Computer kommt mit nur 8-Bit
fliir die Zahlendarstellung aus, die Zahlen haben meist einen
viel groBeren Bereich. Tatsache ist aber, daB ein
8-Bit-Mikroprozessor (wie der 6510) immer nur 8 Bits
gleichzeitig verarbeiten kann. Besteht eine Zahl z.B. aus
zwei Bytes, so muB die Addition nacheinander an beiden
durchgefiihrt werden. Da bis auf den Ubertrag die beiden
Teile der Zahl vdllig unabhidngig voneinander addiert werden
kénnen, braucht man nur das Carry-Bit, um auch grdBSere
Zahlen 2zu bearbeiten. Es hat die Aufgabe, den {ibertrag von
der letzten Stelle des ersten Bytes zur ersten Stelle des
zweiten Bytes zwischenzuspeichern.

Ein Beispiel:

00110101 10010011
+ 10011011 11011111

1111111 11111 (Ubertrige)

11010001 01110010

Zur besseren Ubersicht sind die: Ubertrdge zwischen den
einzelnen Stellen aufgefiihrt. Den rechten Teil der Addition

kennen Sie bereits aus dem vorherigen Beispiel.

13.5. BINARE SUBTRAKTION

Wenn ein Computer ein Zahl von einer anderen subtrahieren
will, so bildet er zundchst das negative Aquivalent dieser
Zahl und addiert es dann. Dies 1lauft so ab, weil eine
Addition und eine Negierung aus elektronischen

- 133 -

Grundbausteinen (wie AND, OR, XOR, NOT) zusammengesetzt
werden kann, nicht aber eine Subtraktion.

Um eine negative Zahl darzustellen. wird der Zahlenbereich
eines Bytes von O - 255 nach -128 bis +127 verschoben. Das
hochstwertige Bit (Bit 7) dient dann als Vorzeichen. Ist es
auf 1, so haben wir eine negative Zahl vor uns, bei O ist
das Byte positiv. Dabei kann aber zur Negierung einer Zahl
nicht einfach Bit 7 gesetzt werden. Ein Beispiel
verdeutlicht die Schwierigkeiten:

00000001
+ 10000001

10000010

In Dezimalsystem lbertragen wiirde dies bedeuten, daB 1 - 1 =
-2 ist. Deshalb wird ein anderer Weg gegangen. Ein Byte kann
durch Bildung des sogenannten Zweierkomplements sehr einfach
mit -1 multipliziert werden. Dazu werden alle Bits
invertiert und zusdtzlich eine 1 addiert.

Beispiel: 01011011
invertiert: 10100100
+ 1
10100101

Wenn wir nach diesem Schema 1 - 1 im bindren System

berechnen, so erhalten wir das richtige Ergebnis:

00000001
+ 11111111

100000000
Wie Sie sehen, entsteht scheinbar ein Ubertrag. Doch auch

hier verhdlt sich die Subtraktion anders. Ist das Carry-Bit

auf 1, so entstand kein Ubertrag, bei O dagegen ist eine

~ 134 -

Bereichsiiberschreitung aufgetreten. Aus diesem Grund muB das
Carry-Bit auch vor jeder Subtraktion auf 1 gesetzt werden.
Bis auf das Setzen des Carry-Bits erledigt der
6510-Mikroprozessor alle diese Aufgaben automatisch, wenn er
einen Subtraktionsbefehl ausfiihrt.

13.6. HOHERE RECHENARTEN

Auch wenn Sie es nicht glauben: Die 6510-Maschinensprache
hat nur 2zwei Rechenbefehle, und 2zwar filir Addition und
Subtraktion. Alle anderen Rechenarten werden aus diesen
Grundbausteinen zusammengesetzt. Um z.B. eine Multiplikation
X * n zu erzeugen, wird x einfach n-mal addiert. Dies
funktioniert natiirlich nur bei ganzen Zahlen. Fiir gebrochene
Zahlen werden aufwendigere Algorithmen bendtigt (z.B. werden
Zahlen Stelle fiir Stelle und nicht als Ganzes miteinander
verkniipft), die aber im Prinzip dhnlich funktionieren.

Um x durch n 2zu teilen, wird einfach fortwdhrend n von x
abgezogen. Die Anzahl der mdglichen Subtraktionen bis n

groBer x wird, gibt das Ergebnis der Division an. Hier ein

Beispiel:

10 / 3 = 2

10 - 3 =17 Zdhlregister= 1
7 -3 =4 Zahlregister= 2
4 - 3 =1 Zahlregister= 3

=) 10 / 3 = 3 Rest 1

Diese Methoden sind moglich, weil die Maschinensprache so
ungeheuer groBe Geschwindigkeiten erlaubt. Ubrigens arbeitet
auch ein Taschenrechner nach diesem Prinzip. Jedesmal, wenn
Sie eine Rechentaste driicken, lauft ein kleines
Maschinenprogramm (natiirlich mit den erwdhnten aufwendigen
Algorithmen) ab.

Aus den 4 Grundrechenarten lassen sich dann noch héhere

- 135 -

Funktionen (z.B. Potenzen, Sinus o0.4.) zusammensetzen. Auf
diese Art und Weise konnte jede mathematische Operation
durch kleinste AND-, OR-, XOR- und NOT-Operationen

ausgedriickt werden.

- 136-

13.7. VERGLEICHE

Im BASIC stellen Vergleiche nichts Ungewohnliches dar. Doch
wie kann man sie in Maschinensprache erzeugen? Sehen wird
uns dazu einmal ein Beispiel an:

A =8B (=) A -B=0

Wie Sie sehen, kann ein Vergleich zwischen 2 Zahlen (hier A
und B) recht einfach umgeformt werden. Fiir den Computer hat
diese Form den Vorteil, daB auf der rechten Seite der
Gleichung eine O steht. Die O ist die einzige Zahl, von der
der Mikroprozessor feststellen kann, ob sie gerade im
internen Rechenregister (meist Accu genannt) steht oder
nicht. Dazu werden einfach alle Bits miteinander

ODER-verkniipft - etwa so:

Bit 7 OR Bit 6 OR Bit 5 OR Bit 4 OR Bit 3 OR Bit 2 OR Bit 1
OR Bit O

Wenn alle 8 Bits des Accus auf O waren, so ist das Ergebnis
dieser Verkniipfungskette eine O, in allen anderen Fillen
(d.h. wenn mindestens ein Bit auf 1 ist) ist das Ergebnis 1.
So kann der Mikroprozessor angeben, ob das Rechenregister
(wo fast immer das Ergebnis der letzten Operation steht)
gleich oder ungleich O ist - voila, die ersten beiden
Vergleiche sind erzeugt. Fir einen Vergleich A=B oder A
ungleich B brauchen wir also nur die beiden Zahlen
voneinander zu subtrahieren und dann festzustellen, ob der
Inhalt des Accus O ist.

Bei ‘"groBer" und "kleiner" gehen wir &hnlich vor. Nach der
Subtraktion sehen wir nach, ob die Zahl im Accu kleiner oder

groBer O ist, erkennbar am Vorzeichenbit:
A grdBer B (=) A - B groBer O (erfiillt, wenn Bit 7 = 0)

A kleiner B (=) A - B kleiner O (erfiillt, wenn Bit 7 =
1)

- 137 -

13.8. DIE BEFEHLE DES SIMULATORS

Nachdem wir die theoretischen Grundlagen fir die
Maschinensprache geschaffen haben, sollen jetzt die
einzelnen Befehle vorgestellt werden, mit denen innerhalb
des Maschinensprachesimulators programmiert werden kann. Wir
bleiben auch hier bei der Unterteilung in drei Gruppen. Sie
brauchen aber keine Angst 2zu haben, wenn Sie die Befehle
noch nicht auf Anhieb verstehen. Sie werden in den
nachfolgenden Beispielen erldutert. Hinter jedem Befehlswort
finden Sie auBerdem die englische Bedeutung der Abkiirzung.' s

[N

13.8.1. BEFEHLE ZUR DATENMANIPULATION

ADC: add with carry

Dieser Befehl addiert einen nachfolgenden Operanden und das
Carrybit zur Zahl im Accu. Sollte ein Ubertrag auftreten, so
wird dieser im Carrybit gespeichert.

Fiir den Operanden gibt es zwei Mdoglichkeiten. Entweder wird
die Adresse des Bits angegeben, das addiert werden soll,
oder die Zahl steht direkt nach dem Befehl im Speicher.
Mogliche Formen:

ADC $HH (addiert Inhalt der Speicherzelle HH)

ADC #HH (addiert Zahl HH zum Accu)

SBC: subtract with carry

Funktioniert wie ADC, es wird jedoch subtrahiert.
Mégliche Formen:

SBC $HH (subtrahiert Inhalt von HH)

SBC #HH (subtrahiert HH)

AND: and with accu
Fithrt UND-Verkniipfung des Accuinhalts mit dem Operanden

- 138 -

durch. Carrybit wird nicht beachtet.

Mogliche Formen:
AND $HH
AND #HH

ORA: or with accu

Wie AND, jedoch ODER-Verkniipfung
Mogliche Formen:’

ORA $HH

ORA #HH

EOR: exclusive or with accu

Operand wie bei ADC.

Wie AND, jedoch Exklusiv-ODER-Verkniipfung
EOR mit 11111111 (bindr) wirkt wie NOT.

MSgliche Formen:
EOR $HH
EOR #HH

DEC: decrement

Das Byte unter der angegebenen Adresse wird um 1 vermindert.

Sollte das Ergebnis O werden, so wird das Zero-Bit gesetzt,

ebenso das Negativ-Bit bei negativen Zahlen. Das Carry-Bit

wird jedoch nicht verdndert.
Nur DEC $HH moglich

DEX: decrement X

Wie DEC, jedoch wird das X-Register vermindert.

Nur DEX mdéglich

INC: increment

Wie DEC, jedoch Erhdhung um 1
Nur INC $HH moglich

INX: increment X

Wie INC, jedoch fiir X-Register

Nur INX moglich

CLC: clear carry

- 139 -

Loscht das Carry-Bit.
Nur CLC méglich

SEC: set carry
Setzt Carry-Bit auf 1.
Nur SEC moglich

ASL: arithmetic shift left

Verschiebt alle Bits des Accus um eine Stelle nach links.
Bit 7 wird in das Carry-Bit geschoben, Bit O wird mit einer
1 geladen.

Nur ASL méglich

LSR: logical shift right

Verschiebt alle Bits des Accus um eine Stelle nach rechts.
Bit O wird in das Carry-Bit geschoben, Bit 7 wird O.

Nur LSR mdéglich

13.8.2. SPRUNGBEFEHLE

JMP: jump
Das Programm wird an der angegebenen Adresse fortgesetzt.
Nur JMP $HH mdglich

JSR: jump to subroutine
Aufruf eines Unterprogramms an der angegebenen Adresse.
Nur JSR $HH méglich

RTS: return from subroutine
Riickkehr aus dem Unterprogramm bzw. in den Simulator.

Nur RTS moéglich
BCC: branch on carry clear

Verzweigt zur angegebenen Adresse, wenn Carry-Bit auf O ist.
Nur BCC $HH moglich

~ 140 -

BCS: branch on carry set
Verzweigt zur angegebenen Adresse, wenn Carry-Bit auf 1 ist.
Nur BCS $HH mdglich

BEQ@: branch on equal to zero

Verzeigt,' wenn Zeroflag auf 1 ist. Das Zeroflag gibt an, ob
das Ergebnis der letzten Operation Null war.

Nur BEQ $HH moglich

BNE: branch on not equal to zero
Verzeigt, wenn Zeroflag auf O ist.
Nur BNE $HH mdglich

BMI: branch on minus

Verzweigt, wenn Negativ-Flag auf 1 ist. Das Negativ-Flag
zeigt an, ob das Ergebnis der letzten Operation kleiner Null
war.

Nur BMI $HH mdéglich

BPL: branch on plus
Verzweigt, wenn Negativ-Flag auf O ist.
Nur BPL $HH moglich

13.8.3. DATENBEWEGUNGEN

LDA: load accu

Ladt den Accu mit dem nachfolgenden Argument. Ist das
Argument eine Adresse, so wird der Accu gleich dem Wert des
adressierten Byte. Bei direkter Wertangabe wird der Accu mit
dem nachfolgenden Eyte geladen.

M6gliche Formen:

LDA $HH (ladt Inhalt der Adresse HH)

LDA #HH (lddt HH in den Accu)

— 141 -

LDX: load X

Wie LDA, jedoch fiir X-Register.
Mogliche Formen:

LDX $HH (ladt Inhalt der Adresse HH)
LDX #HH (lddt HH in das X-Register)

STA: store accu
Speichert Accuinhalt unter der angegebenen Adresse ab.
Nur STA $HH mdoglich

STX: store X
Wie STA, jedoch fiir X-Register.
Nur STX $HH moglich

TAX: transfer accu into X
Ladt X mit Accuinhalt.
Nur TAX moéglich

TXA: transfer X into accu

Ladt Accu mit Inhalt von X.
Nur TXA méglich

~ 142 -

13.9. DER SIMULATOR

Auf den nidchsten Seiten finden Sie das Listing des
Maschinensprache-Simulators. Dieser soll ein erstes
Kennenlernen der maschinennahen Programmierung ermdglichen.
Da er in BASIC geschrieben wurde, ist er sehr sehr langsam.
Besitzer eines Compilers konnen ihn jedoch compilieren und
dadurch hdhere Geschwindigkeiten erzeilen.

Nach dem Start befindet sich der Simulator im
Assembler-Modus. Jetzt konnen Maschinenbefehle eingegeben
werden. Dazu missen in der Eingabezeile im oberen Drittel
des Bildschirms folgende Angaben gemacht werden:

Adresse Befehl Operand

Bei Einbytebefehlen entfdllt der Operand. Zwischen den
einzelnen Angaben muB Jjeweils 1 Zeichen frei gelassen
werden. Die Eingabe wird mit RETURN abgeschlossen. Sollte
ein Fehler aufgetreten sein, so wird dies mit drei
Fragezeichen am rechten Rand der Eingabezeile quittiert.
Driickt man eine beliebige Taste, so werden die Fragezeichen

geldscht und der ndchste Befehl kann eingegeben werden.

Im oberen Drittel des Bildschirms werden stdndig wichtige
Registerinhalte und Bits angezeigt. Die letzten vier Bytes
des Adressbereiches werden in hexadezimaler, bindrer und
ASCII-Darstellung angezeigt. Darunter sehen Sie den
Program-Counter (PC), den ACcu, das X-Register und
verschiedene Bits (Carry, Negative, Zero). Die letzte
Anzeige bezieht sich auf den TRACE-Status (ON/OFF). Alle

Zahlen werden im Hexadezimalsystem eingegeben!

Soll kein Maschinenbefehl eingegeben werden, so muB der
Eingabe ein Linkspfeil vorangestellt werden. Dann folgt der
Kennbuchstabe des Befehls und ggf. Operanden.

Als erstes widre hier der C-Befehl zu nennen. Damit kann der
untere Bildschirmbereich geldscht werden. Es empfiehlt sich,
wahrend der Befehlseingabe keine Tasten wie CLR 0.4. zu

benutzen, da damit die Bildschirmmaske zerstdrt werden kann.

~ 143 -

Der nachste Befehl heifit T. Damit kann der Trace-Modus ein-
bzw. ausgeschaltet werden.

Mit G Adresse kann ein "Maschinen"-Programm ab der
angegebenen Adresse gestartet werden.

Durch D Adresse Adresse wird das Programm zwischen den
beiden Adressen disassembliert, d.h. gelistet. Mit
Z Adresse Byte kann der angegebenen Adresse ein Wert
zugewiesen werden.

13.10. DAS ERSTE PROGRAMM

Wir werden die ersten Gehversuche in Maschinensprache mit
Additionen und Subtraktionen machen, weil Sie dadurch die
Arbeitsweise eines Mikroprozessors am besten kennenlernen.
Beginnen wir deshalb mit einem Additionsprogramm fiir zwei
Zahlen.

Die beiden Bytes, die addiert werden sollen, legen wir
vorher in den Speicherzellen FF und FE ab. Dies geschieht im
Direktmodus durch den Zuweisungsbefehl Z; eine zwar nicht
besonders komfortable Methode, doch sie reicht aus. Tippen
Sie also den Linkspfeil, ein Z, ein Leerzeichen, die Adresse
(FF oder FE), ein weiteres Leerzeichen, die gewiinschte Zahl
(im Hexadezimalsystem) und RETURN _ ein. Sollten jetzt am
rechten Rand die drei Error-Fragezeichen erscheinen, so war
die Eingabe fehlerhaft. Dies kann auch der Fall sein, wenn
der Cursor wadhrend der Eingabe in eine andere Zeile gefahren
wurde. Haben Sie alles richtig gemacht, so sollte der Wert
nach der Befehlsausfilhrung in der Registeranzeige zu sehen
sein. Auf diese Weise konnen Sie die beiden zu addieren
Zahlen einspeichern.

Wie Ihnen wahrscheinlich schon aufgefallen ist, wird am
Anfang der Eingabezeile immer eine Hexadresse ausgegeben.
Sie nennt die Adresse, ab der der nidchste Assembler-Befehl

tunlichst abgespeichert werden sollte. Bevor wir dies tun

~ 144 -

konnen, missen wir uns noch Gedanken um das Aussehen dieser
Befehle machen.

Der erste Grundsatz der Assemblerprogrammierung lautet:
(Fast) alle Datenmanipulationen laufen im Accu ab. Daher muB
der Accu durch den ersten Befehl im Programm mit der ersten
Zahl geladen werden. Dazu dient LDA $FF. Da es sein kann,
daB das Carrybit noch gesetzt worden ist, miissen wir es mit
CLC 1loschen. Dann kommt der eigentliche Additionsbefehl ADC
$FE. Dieser Befehl holt sich die zweite Zahl aus der
Speicherzelle FE ab und addiert sie zum Accuinhalt. Das
Ergebnis dieser Addition steht dann wieder im Accu.

Da dieses Ergebnis angezeigt werden soll, befordert es der
Befehl STA $FD in eine der vier Speicherzellen, die stdndig
im oberen Bildschirmdrittel sichtbar sind. Damit ist die
Addition beendet. Es fehlt nur noch der Riicksprung zum
Assembler durch RTS. Sollte bei der Addition das Carry-Bit
gesetzt worden sein, so 1aBt sich dies ebenfalls auf dem
Bildschirm ablesen.

Das ganze Programm sieht also jetzt so aus:

LDA $FF
CLC
ADC $FE
STA $FD
RTS -

Diese Befehle sollen im Speicher ab OO gespeichert werden.
Steht diese Adresse am Beginn der Eingabezeile, so sollten
Sie den Cursor soweit nach rechts fahren, daB eine Stelle
zwischen Adresse und Befehl freibleibt. Dann tippen Sie den
Befehl samt Operand genau so ein, wie er oben aufgelistet
ist. Nach einem RETURN wird der Befehl dann abgespeichert.
Steht am Anfang der Zeile nicht die richtige Adresse, so
tippen wir einfach 00 dariiber und machen dann normal weiter.
Auf diese Weise wird jetzt das ganze Programm eingegeben. Es
kann jederzeit disassembliert werden. Dazu missen
Linkspfeil, D (filir den Befehl) sowie Anfangs- und Endadresse .

eingegeben werden. Ist ein Fehler im Listing sichtbar, so

~ 145 —

wird der betreffende Befehl einfach ein 2zweites Mal
eingetippt.

Das Programm kann jetzt mit G OO0 gestartet werden
(Linkspfeil nicht vergessen). Nach der Programmausfiihrung
werden die Registeranzeigen aktualisiert und der Cursor
erscheint wieder.

Sollen die Anzeigen nach jedem ausgefiilhrten Befehl erneuert
werden, so sollte der Trace-Modus eingeschaltet werden. Dann
wird der gerade abgearbeitete Befehl in der rechten unteren
Ecke angezeigt und der Simulator wartet auf einen
Tastendruck. So kann man den Ablauf ausgezeichnet verfolgen.

- 146-

13.11. DER ZWEITE SCHRITT: 16-BIT-ADDITION

Wie schon erwdahnt, braucht man zur Behandlung grdBerer
Zahlen die 16-Bit-Addition oder noch aufwendigere
Algorithmen. Unten wird ein Programm beschrieben, daB eine
beliebige 16-Bit-Zahl zu einer Konstanten addiert. Die Zzahl
wird wieder per Zuweisung 1in die Speicherzellen FF
(Highbyte) wund FE (Lowbyte) gebracht. Da die Zahl 16 Bits
hat, werden zwei Bytes und zwei Addtionsschritte gebraucht.
Zundchst beginnt jedoch alles normal mit

LDA $FE und

CLC.

Da jedoch eine Konstante addiert werden soll, benutzen wir
jetzt ADC #Lowbyte (# steht flir das Doppelkreuz). Dieser
Befehl holt sich die zweite Zahl jetzt nicht mehr aus einer
angegebenen Adresse ab, sondern nimmt direkt das
nachfolgende Byte (also die gewiinschte Konstante).

Nach diesem Befehl ist die niederwertige Halfte des
Ergebnisses bereits komplett. Sie wird durch STA $FC in die
Anzeige gebracht. Ein eventueller (Ubertrag ist jetzt im
Carrybit gespeichert und wird auch durch das Laden der
zweiten Halfte per LDA $FF nicht geldscht. Jetzt kann wieder
normal addiert werden mit ADC #Highbyte.

STA $FD bringt auch den zweiten Teil des Ergebnisses in die
Anzeige. Mit RTS wird das Programm abgeschlossen. Hier das

ganze Listing:

00 LDA $FE
02 CLC

03 ADC #ES8
05 STA $FC
07 LDA $FF
09 ADC #03
OB STA $FD
0D RTS

Als Konstante wurde O3E8 (= 1000 dezimal) gewdhlt.

— 147 —

13.12. SUBTRAKTION

Da die Subtraktion bis auf Carry-Bit und Rechenbefehl der
Addition entspricht, soll hier nur kurz das Programm

aufgelistet werden (vgl. 8-Bit-Addition).

00 LDA $FF »

02 SEC (Carry setzen)
03 SBC $FE (subtrahieren)
05 STA $FD

07 RTS

13.13. MULTIPLIKATION

Wie Sie aus Kapitel 13.6. wissen, stellt eine Multiplikation
eine mehrfache Addition dar. Dies wollen wir uns jetzt
zunutze machen, um eine Multiplikation und so ganz nebenbei

auch ein Unterprogramm in Maschinensprache zu erstellen.

Bei der beschriebenen Methode liegt es nahe, die Addition in
ein eigenstdndiges Unterprogramm zu verlegen (was zwar
eigentlich nicht noétig ware, aber so stillen wir wenigstens
unseren Bildungshunger) und dieses von einer Schleife aus
aufzurufen. Beginnen wir wieder bei der Addition.

Bei der Multiplikation von zwei 8-Bit-Zahlen erhalten wir
ein 16-Bit-Ergebnis. Die Additionsroutine muB daher ein
einzelnes Byte zu einer 2-Bytezahl addieren. Dies 1laBt sich
vereinfachen, wenn man sich zur 8-Bit-Zahl eine O als
Highbyte dazudenkt und dann eine normale 16-Bit-Addition
durchfiihrt. Damit wird der Ubertrag zum Highbyte des
Ergebnisses gewdhrleistet. Das sieht dann so aus:

~ 148 -

LDA $FE (Lowbyte des Ergebnisses)
CLC

ADC $FC (8-Bit-Zahl addieren)

STA $FE (zuriickspeichern)

LDA $FF (Highbyte des Ergebnisses)
ADC #00 (O und Carry-Bit addieren)
STA $FF (zuriickspeichern)

RTS (Unterprogrammende)

Nach der Addition steht das Ergebnis in FE/FF, die
8-Bit-Zahl stand vorher in FC. Jetzt fehlt nur noch die
Schleife. Die Ladnge wird durch den Multiplikator vorgegeben,
der vorher in Speicherzelle FD abgelegt wurde (per
Z-Befehl).

Die einfachste Methode, eine Schleife mit variabler Liange zu
programmieren, besteht darin, nach Jjedem Durchlauf ein
spezielles Register um 1 zu vermindern. Ist das Register auf
0 heruntergezdhlt, so kann die Schleife beendet werden. Dazu
eignet sich am besten das X-Register. Am Beginn der Schleife
wird durch LDX $FD der Zahler initialisiert (FD enthidlt ja
den Multiplikator). '

Dann folgt der Unterprogrammaufruf mit JSR $Addition (fir
Addition wird die Einsprungadresse eingesetzt). Nach dem
Unterprogramm mufl der Schleifenzdhler dekrementiert (d.h. um
1 vermindert) werden. Dies ilbernimmt der Einbytebefehl DEX.
Das besondere an ihm ist, daB auch er die Z- und N-Bits
verdndert. Damit wird dann angezeigt, ob der Inhalt des
X-Registers Null oder negativ ist. Die Steuerbits beziehen

sich also nicht nur auf den Accu.

Tabelle 2 =zeigt, welche Befehle welche Bits verdndern
koénnen. Anhand der Steuerbits koénnen die sogenannten
Branch-Befehle bedingte Verzweigungen ausfiihren. Solch eine
Bedingung finden wir auch in unserer Schleife, sie soll ja
bei X=0 abgebrochen werden. Ist X ungleich 0, so soll ein
Riicksprung erfolgen. Dafiir ist BNE $Adresse (branch on not

- 149 —

equal to =zero) =zustandig. Ist das Zerobit auf 1, so heifit
dies, daB die letzte Operation das Ergebnis O hatte, bei Z=0
war es ungleich O. Der BNE-Befehl prift das Z-Bit. Ist es
auf O, so verzeigt er zur angegebenen Adresse, sonst wird
mit dem nachsten Befehl weitergemacht. Im Trace-Modus
kdnnen Sie den Programmablauf durch den Program-Counter (PC)
verfolgen. Er sagt dem Prozessor, wo der nachste Befehl
steht. Nach einem Branch-Befehl kann man dessen Ergebnis im
PC ablesen.

Gegenliber dem echten 6502/6510-Assembler sind die
Verzweigungen lbrigens etwas vereinfacht, da im Normalfall
nicht Sprungadressen, sondern nur der Abstand zum nidchsten
Befehl (z.B. 3 vorwdrts oder 20 zurilick) angegeben wird.

Bevor die Schleife beginnt, miissen die beiden Ergebnisbytes
allerdings noch geldscht werden. Sehen Sie es sich selbst

an:

00 LDA #00

02 STA $FF (FF lo6schen)

04 STA $FE (FE l6schen)

06 LDX $FD (X laden)

08 JSR $0E (Unterprogrammaufruf)

OA DEX (X decrementieren)
OB BNE $08 (Verzweigung)

OD RTS (Hauptprogrammende)
OE LDA $FE (Additionsupg.)

10 CLC

11 ADC $FC

13 STA $FE

15 LDA $FF

17 ADC #00

19 STA_$FF

1B RTS (Upg.-Ende)

- 150 —

Befehl| ¢ N 2 Befehl| ¢ N 2z
ADC X X X IDA X X
AND X X DX X X
AST X X X LSR X X X
CLC X ORA X X
DEC X X SBC X X X
DEX X X SEC X
ECR X X TAX X X
INC X X TXA X X
INX X X
Tabelle 2: Steuerbit-BeeinfluBung

13.14. WEITERE MOGLICHKEITEN

Sie haben jetzt die Grundprinzipien der

Assemblerprogrammierung kennengelernt. Es ist wohl

uberfliissig, zu sagen, daB die ‘"echte" Maschinensprache
weitaus mehr MoOglichkeiten bietet. So kdnnen zum Beispiel
durch verschiedene Adressierungsarten Teile des Speichers
wie eindimensionale Arrays angesprochen werden; spezielle
Befehle ermoglichen eigene Interruptroutinen und vieles
mehr.

In diesem Abschnitt sollen deshalb nur noch ein paar
Grundtechniken erldutert werden, die man immer wieder
antrifft.

Beginnen wir mit den sogenannten Schiebebefehlen. Sie

verschieben die Bits im Accu um eine Stelle nach links oder

rechts. Damit kann der Accuinhalt auf einfache Weise
verdoppelt oder halbiert werden. Durch eine
Linksverschiebung wird verdoppelt, (verschiebt man bei

Dezimalzahlen die Ziffern um eine Stelle nach links, so wird
die Zahl verzehnfacht), der umgekehrte Weg halbiert das
Byte. Dabei gelten die Verschiebungsschemata aus den Abb. 5.

und 6.
- 151 —

Die ndchsten Befehle Xkennen Sie eigentlich schon aus dem
BASIC. Mit AND, ORA und EOR kdnnen Daten aus dem Speicher
wie durch ADC mit dem Accu verkniipft werden. Daher lassen
sich die bekannten Techniken 2zum Setzen und LOschen von
einzelnen Bits auch in Maschinensprache anwenden.

Der INX-Befehl stellt einen nahen Verwandten des DEX dar. Er
wirkt im Grunde genauso, nur wird das X-Register nicht um 1
vermindert, sondern erhéht. Das nennt man auch
inkrementieren. Jetzt miiBten Sie auch die Befehle DEC und
INC erkldren konnen. Sie wirken direkt auf Speicherzellen
statt auf das X-Register.

Gemeinsam ist allen diesen Befehlen, daB ein Ubertrag aus
der 1letzten Stelle nicht im Carry-Bit registriert wird. Ist
ein Byte nach dem Inkrement bei FF angekommen, so macht der
niachste INC-Befehl anstandslos mit OO weiter. Daher eignen
sich diese Instruktionen auch kaum fiir Arithmetik.

Jetzt bleiben nur noch TAX und TXA. Damit werden Accu und
X-Register gleichgesetzt. Bei TAX wird X mit dem Accuinhalt
geladen, bei TXA lauft dies umgekehrt ab.

Sie sollten sich nicht davon abhalten lassen, ein wenig mit
der Maschinensprache zu experimentieren. Der Simulator
bietet den Vorteil, daB er sich in Xkeiner Situation
"aufhingen" kann, im Gegensatz zur echten Maschinensprache.
Jedes “"Maschinenprogramm" 148t sich auBerdem durch die
RUN-STOP-Taste stoppen.

Abb. 5 ASL Bit 0 wird mit O geladen
‘—<—I§I<—e-é-<—<-@ Accubits
Abb. 6 SR Bit 7 wird mit O geladen

F-E-E-E-E-E-E-B-E
Accubits

- 152 —

13.15. WIE FUNKTIONIEREN SYS-ERWEITERUNGEN?

Sozusagen als Draufgabe so0ll hier wenigstens in den
Grundziigen erkldrt werden, wie man Befehlserweiterungen wie
SYS Adresse, Datum programmiert.)

Nach einem SYS-Befehl steht der interne BASIC-Programmzeiger
(dhnlich dem Program-Counter) auf dem Byte nach der Adresse.
Bei einem normalen SYS-Aufruf wiirde der Interpreter nach der
Riickkehr aus derxr Maschinenroutine hier mit der
Syntax-Priifung fortfahren.

Wir konnen den Interpreter aber mittels JSR $Subroutine
veranlassen, die nachfolgenden Daten bis zum ndchsten Komma,
Doppelpunkt oder Zeilenende in den FlieBkommaakku (kein
Prozessorregister, sondern einige reservierte Speicherzellen
in der Zeropage) einzulesen. Der BASIC-Programmzeiger steht
jetzt auf dem Byte nach den Daten. Waren die Daten
fehlerhaft, so quittiert dies die ROM-Routine mit einem
Error. Soll mit normalen Zahlenwerten gearbeitet werden, so
kann dies jetzt unbehindert geschehen. Auch dazu stellt das
Interpreter-ROM verschiedene Unterroutinen zur Verfiigung.
Sind die Daten aber als Integerzahlen oder Adressen gedacht,
so muB eine weitere ROM-Routine die Zahlen im FlieBkommaakku
in das gewiinschte Format umwandeln. Dann kénnen auch diese
von unseren, Maschinenprogrammen an den entsprechenden
Stellen im Speicher abgeholt und weiterverarbeitet werden.
Das ist schon das ganze Geheimnis.

Befehlserweiterungen wie SIMONS BASIC oder EXBASIC haben
dieses System noch weit;r perfektioniert. Hier wird die
Routine, die die Befehle erkennt und aufschliisselt, um einen
speziellen Teil erweitert, der die Erweiterungen decodiert

und dann in die entsprechenden Unterprogramme verzweigt.

- 153 —

14. ANHANG : PROGRAMMLISTINGS

M-TRAINER

1000 REM #%8 8555585 585K R XK H KK XK H XK HXHXH %

1701 REM MASCHINENSFRACHE-SIMULATOR 1.0

1002 REM COPYRIGHT 1984 RY

1003 REM HANS JOACHIM LIESERT

1004 REM EIN DATA-BECKER-FRODUET

1005 REM $%XEEKE% KR EEEEEEEEREREEXEE XX KR

1006 @

1010 REM 5355855585550 5 KKK KK W KR W N

1011 REM INIT

1012 REM %%%%KKEKKREHH K I KL RE KK XX K K%

1020 PRINTCHR#$(142) ; CHR#(8) : FOKE788,52

1030 FRINT"Ir 'y
1040 FPRINT" | REG HEX EBIN ASC 1";
1050 FRINT" IFF/FE= "3
1060 PRINT" IFD/FC= 1"

1070 PRINT" k 4"
1080 FRINT" IPC= AC= XR= C= N= I= T: "
1090 PRINT" v At
1100 PRINT" "
1110 PRINT" T s "y
1120 FRINT" ADR MNE | CODES | MESSAGES"

1130 FORI=1TO1Z:PRINT" | 1" NEXT
1140 PRINT" | 1"

1150 DIMB(255) ,C(2585) ,HF (255) ,EB¥(34) ,EB(Z4) ,F1¥(10) ,F2
F(10) ,PIF(10)

1160 FORI=0TO255:READH# (1) :B(I)=255:C(I)=255:NEXTI

1170 FORI=0OTOZ4:READEB#(I) ,EB(I):NEXTI

1180 FORI=0TO10:P1$(I)=" "aP2F(I)=" ¥ |
NEXTI

1997 REM %5 % %3 5 5 96 56536 5 5 396 K36 56 396 3 536 6 3 % %

1998 REM ASSEMEBLER

199D REM %5 36555 3565 36 3636 36636 5 3636 36 36 5636 6 % %

2000 GOSUR 4000

2010 POKE214,8:POKE211,0:8YS58732

2015 IFAD=285&6THENAD=0

2020 PRINT"sBI" ;H¥ (AD) ; "INEI"

2030 INPUT"NRRERE" ; INF

2040 IFLEFTH(INF,1)="+«"THEN 2200

2050 FO=1:605UB4400: IFEFTHEN4S00

2060 AD=0:AF=MIDF (IN¥,4,3)+" ":FL=-1

2070 FORI=OTO8: IFA¥=EB¥(I) THENFL=I

2080 NEXTI: IFFL< >~1THENE (AD)=EB(FL) :C (AD)=FL:AD=AD+1:60
TO2000

2090 AF=MIDF (IN%¥,4,5)

2100 FORI=9TO34: IFA¥=EB$(I) THENFL=I

2110 NEXTI: IFFL=-10RAD=255THEN4S00

2120 B(AD)=EB(FL) :C(AD)=FL

2130 PO=9:60SUB4400: IFEFTHEN4S00

~ 154 —

2140
2150
2197
2198
2199
2200
2210
2220
2230
2240
2250
2260
2297
2298
2299
2700
2310
2F20
2FF0
2340
2350
2397
98
2399
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2497
2498
2499
2500
2510
252
2530
2830,
2540

AD=(D+1: B (AD)=0:C (AD) =0
AD=AD+1:GOTO2000

REM 55 536536 0556 06 96 596 6 3636 3656 36 9636 3636 96 36 3 96 3 %
REM DIREKTBEFEHLE

REM 335 5% 5 5 K5 5 336 36 3056 3636 3656096 63696 363636 % % %
AF=MIDF (IN¥,2,1)
IFAF="T"THENT=1-T: GOTO2000
IFAF="Z"THEN2300

IFAF="D"THENZ2400

IFAF="G"THEN23500

IFAF="C"THEN4&60O

GOTO4500

REM 35563 5 36 36560005636 36 96963696 96 36 36 96 36 3656 3636 96 36
REM ZUWEISUNG

REM 36358565 96 % 06 963636 36 36 3636 3636 36 3 363636 366 06 6 36 06
FO=4:G0SUB4400: IFEFTHEN4S500

AD=0: FO=7: GOSUR4400: IFEF THEN4500
B(AD)=0:FL=~1
FORI=0TO34: IFO=EE (1) THENFL=I
NEXTI: IFFL< »~1THENC (AD) =FL: GOTO2000
C(AD) =0: 60TO2000

FREM 355 5% 5 55 365636 36 36 36 36 3636 36 36 96 36 3636366 36 3 8 % %
REM DISASSEMELER

REM %% %36 5 % %3 5 5 3 3 3 3 6 36 56 5636 3 336 36 6 3 36 % 3 5%
FO=4: GOSUR4400: IFEFTHEN4S00

AD=0: FO=7: GOSUB4400: IFEFTHEN4S00
IFAD*0THEN4S00

Hi¥=H% (AD) : H3%=" ":H4%=H¥ (B (AD))
IFC(AD) *J4THENHZ2F="7277 ":60T02470
H2%=EB% (C(AD))

IFC(AD) *8THENAD=AD+1 : H3¥=H#% (B (AD))
AD=AD+1: GOSUB43Z00

IFAD<=0THEN2430

GOTOZ2000

REM 3695 5% %36 3 55365 3 36 3636 356 06 96 36 6965 3636 6 36 36
REM FROGRAMMABLAUF

FREM 3696 3 3 3 365636060 5 36 6 036 3636 36 36 3606 36 06 3696 3626 36 6
PO=4: GOSUB4400: IFEFTHEN4S00

FC=0

CO=C(FC) : AD=FC: FC=PC+1: IFCO>3Z4THEN3300
IFCO<9THENONCO+160TO2700,2720,2730,2770,2790,2810,
2840,2850

CO=C0-8: IFCO<9THENDNCOGOTO2860,2880,2900,2910,2920

, 2940,2960,2980

2850

CO=C0-8: IFCO<9THENONCOGOTOZ000 , 3020, 3040 ,3080,3100

,3120,3140,3150

2560

CO=C0-8: IFCO<9THENDONCOGOTOZ160,3170,3180,3190,3200

,3210,3220, 3240

2570
2890

ONCO-BGOTOI260,3270
N=03: IFA>127THENN=1

- 155 —

Z=03: IFA=0THENZ=1

IFFEEK (203) =6ZTHENZI400

IFT=0THENZ2320

GOSUR4000: FORI=0TO9:P3F (1) =F3$ (I+1) :NEXTI
P3£(10)=H¥ (AD) +" "+EB¥(C(AD))

IFC(AD) *BTHENFIF (10) =PI (10) +H& (C (AD+1)) : GOTO26460

PEF(10)=FP3IF(10)+" "

FPOKEZ214,12: FOKE211,0: 8YS858732
FORI=O0TO10:PRINTSFC(27) 3P3$ (1)t NEXTI
FOKE198,0: WAIT198,1:6GET IN$:60T023520
REM 35 33 % % 336 % %5 5 5 56365 336 5 36363606 336 6 6 3 3 %
REM BEFEHLSUFROS

REM 953 3% 5 5 965 5 % 3 5 96 6 396 3 5 36 % 3 5 5 3696 %36 3 % %
REM ASL

A=2%A:1C=0: IFAX255THENA=A-286: C=1
GOTO2590)

REM CLC

C=0:60T02610

REM DEX

X=X—1: IFX{OTHENX=X+25&

Z=02: IFX=0THENZ=1

N=0z IFX>127 THENN=1

GOTOR610

REM INX

X=X+1: IFX»255THENX=X-256&

GOTO2740

REM LSR

A=A/2: C=03 IFINT (A) < *OTHENA=INT (A) : C=1
GOTO2590

REM RTS

IFS=0THEN 2000
PC=5(8) : 5=6-1:60T02610

REM SEC

C=1:60T02610

REM TAX

X=A: BOTO2740

REM TXA

A=X:60OTO2590

REM ADC #

A=A+B (PC) +C: C=0: IFA>255THENA=A-236:C=1
FPC=PC+1:60TO2570

REM ADC #
A=A+B(C(PC)) +C: C=0: IFA>255THENA=A-256: C=1
PC=FC+1:G60T0O25%90

REM AND #

A=A AND B(PC):FC=FC+1:60TD2590

REM AND #

A=A AND B(C(PC)):PC=PC+1:60TO2590
REM BCC #

IFC=0THENFC=E (PC) : GOTO2610

- 156—

2930
2939
2940
2950
2959
2960
2970
2979
2980
2990
2999
J000
3010
I019
F020
Z0OZ0
3039
3040
Z050
FOL0
3070
T079
3080
I0P0
3100
3110
3119
3120
3130
3139
3140
3149
3150
3159
3160
3169
3170
3179
3180
3189
3190
3199
3200
I209
I210
z219
F220
I2F0
3239
I240

PC=PC+1:60TO2610

REM BCS $
IFC=1THENFC=E(FC) : 50TO2610
PC=FC+1:B0TO2610

REM BE® $
IFZ=1THENFC=E (PC) : G0TO2610
PC=FC+1:60T02610

REM BMI %
IFN=1THENPC=E (FC) : GOTO2610
PC=FC+1:60TO2610

REM ENE $
IFZ=0THENPC=E (FC) : B0TO2610
PC=PC+1:60TO2610

REM BPL %
IFN=0THENFC=E (PC) : GOTO2610
PC=PC+1:B0TO2610

REM DEC %

H=E (C (FC)) : H=H—1: IFH{ OTHENH=H+256
7=01 IFH=0THENZ=1

N=0z IFH»127 THENN=1
B(C(FC))=H:C(C(FC))=H: PC=PC+1: GOTO2610
REM EOR #

H=A OR B(PC):A=A AND E(FC)
A=NOT (A) A= H AND A:FC=PC+1:B0TO2590
H=A OR B(C(PC)):A=A AND B(FC)
B0TO3090

REM INC $

H=B (C (FC)) : H=H+1: IFH>255THENH=H-256
GOTOZ0S0

REM JMF %

PC=B(FC) : GOTO2610

REM JSR %

5=6+1: 5 (8) =PC+1: PC=B (FC) : G0TOZ610
REM LDA #
A=B(FC) : PC=PC+1: GOTO2590

REM LDA #
A=R(C(FC)) : PC=FC+1: 60TO2590
REM LDX #
X=R(FC) : FC=FC+1:60TD2740

REM LDX #

X=R(C(FC)) :PC=FC+1:60TO2740
REM ORA #

A=A OR B(PC):FC=PC+1:60TO2590
REM ORA #

A=A OR BA(C(PC)):PC=FC+1:60T028590
REM SBC #

A=A~B(FC) —-1+C:C=1: IFA<OTHENA=A+2546: C=0
FC=FC+1:60TO2590

REM SEC #

A=A~B(C(PC))~1+C:C=1: IFA<OTHENA=A+256: C=0

- 157 -

F250 PC=FC+1:60TD2590

3259 REM STA #

I260 B(C(FC))=A:C(CFC))=A:FC=PC+1:60TO2610

3269 REM STX #

I270 B(C(FC))=X:C(C(PC))=X:PC=PC+1:60TOZ2610

T2946 REM %% %3 5% %% %5 5 3 3 5 36 3 3 K 333 3 5 K 6 % ¥ %K

3297 REM RUN-TIME-ERROR

I298 REM %% %% 33 %% % 3% 5 % 3 9 8 5 3 5 % 56 355 35 5 % 3% %%

Z3Z00 FOKEZ214,8:FOKE211,0:8Y558732: FRINT"BAD CODE ERROR
IN ";HF(FC-1)

IZ10 POKEL98,0:WAIT1I98,1: GETIN%: GOTOZ000

TIPL REM %% %K% 533535 K 53K 53K 556 K 5 K% 66X K5

3397 REM BREAEK

TP REM %% % 53 8 53 K 33 3K 336 83 8 336 303366 %

F400 FOKEZ214,8:FOKE211,2:5Y858732: FRINT"BREAE. IN "j;HE(F

(09} H " " :

3410 POKEL9B,0:WAIT198,1:6ETINF: GOTOZ000

TOQ7 REM #% %% 5355 KKK H R X XHNEXRHHR

3998 REM REGISTERANZEIGE

TP REM #% %% % %33 % %3 % 33K K3 5 X35 3K 8534

4000 HE=HF (B(253))+" "+HF(R(254))

4010 POKE214,2:FOKE211,9:8YSSB873I2: FRINTHE; " "3

A020 HF="":FORJ=253TO2848TEF-1:H=R(J)

4070 FORI=7TOOSTEF-1: IF (2T IANDH) THENH#=H%¥+"1": 6GOTO4050

4040 HE=HF+"O"

4050 NEXTI:HF=HF+" ":NEXTJ

4060 PRINTH#;" "3

4070 H1#=CHR* (B(255)) IFB(255) {320RB(255) *127ANDR (255) <
16OTHENHL =" "

4080 H2F=CHR* (B (254)) : IFB(254) <320RR(284) *127ANDE(254) <
160THENH2$=" "

4090 FPRINTH1#3" "iH2Z#

4100 HF=HF(B(253))+" "+HF (B(232))

4110 FOKEZ214,3:FOKEZ211,9:8YS58732: PRINTH®; " “s

4120 HF="":FORI=253TO252STEF~1:H=B(J)

4130 FORI=7TOOSTEF~1: IF (2T IANDH) THENH$=H$+"1": GOT0O4150

4140 HE=HF+"O"

4150 NEXTI:H#E=HF+" ":sNEXTJ

4160 PRINTH#;" "3

4170 H1#F=CHRF (B (253)): IFB(253)<320RE(253) *127ANDE (253) «
16OTHENHL $="

4180 H2¥F=CHR¥ (B(252)): IFR(252) <320RE (252) *127ANDR (252) <
160THENHZ2$=" "

4190 PRINTH1#;" "jH2%

4200 POKE214,5:FOKE211,4:8Y558732: FRINTH$ (FC)

4210 PRINT"MRINIRE" s HE (A) 5 "HRERE 3 HE (X) ; "BRI" 3

4220 PRINTMID$(STR#(C),2,1); "sNBI";MIDS (STRE(N) ,2,1) 3 "sll
3

4230 PRINTMID#F(STR$(Z) ,2,1) ; "nNRNR";

4240 IFTTHEN PRINT"ON "j:RETURN

- 158 —

4250
4297
4298
4299
4300
47310
4320
4330
4340
N
4397
4798
4399
4400
=0
4410
4420
4430
4440
4450
4497
4498
- 4499
4500
43510
4520
4597
4598
4599
44600
4510
H St 3
4620

FPRINT"OFF"; :RETURN

REM 3655 3 5% 5 35 56 5 56 3 56 36 36 36 96 96 36 36 3 56 36 3 569 % 3 %
REM BEFEHLE AUSGEBEN

REM 3% 3% % %3 3 5 5 5 6 5 5 5 56 3 36 5 3 3 3 0 5 3 5 %% %%

FORF=0TOO9: P1% (P)=F1% (F+1) : P2% (P) =P2% (F+1) : NEXTP
F1$(10)=HI$+" "+H2E+HI$+" "
P2% (10)=H4$+" "+HI#

POKE214,12: POKE211,0:5Y558732
FORF=0TO10: PRINT"M" 3 F1£(P) ; "#BI" ; P23 (P) : NEXTP: RETUR

REM %3R85 5K K53 R H AR K H S W R R R

REM ARGUMENT HOLEN

REM 5553 05K R 3 K3 F e T I 0

I1=ASC(MID¥ (IN¥,F0, 1)) : I2=ASC(MID# (IN¥,FO+1,1)) :EF

IFNOT(I1>»47ANDI1<580RI1 >*64ANDI1<71) THENEF=1: RETURN
IFNOT(I2>47ANDIZ2<S80RI2>64ANDIZ2<71) THENEF=1: RETURN
I1=11-48: IFI1*9THENI1=I1-7

I2=12-48: IFI2>9THENIZ2=I2~-7

O=11%16+12: RETURN

REM 385363 5 363 5 % 3 5565 3 3 363 396 3 39636 % 33 X %%

REM ERROR

REM 3536 3 33 3 9 3 5 5 36 336 0 963 96 36 36 33636 36 36 3 6 %
FOKE214,8:FDKE211,36:8Y538732
PRINT"???";:FOKE198,0: WAIT198,1:GETINF

FRINT"IREI "3 : GOTO2000

REM 3633 2 3 3 9 36 5 % 3 556 5 56 365 33 36 3536 6 5 3363 % %

REM CLLEAR SCREEN

REM #3335 55 % % % 5 5 % 368 5 565653 53 66 %6 5 % 6%

FOKE214,12: POKEZ211,0: 8YS58732

FORI=0TO10O:FP1£(I)=" YiF2F(I)=" "
(I)__._ll "

FRINT"M' ;PLECD) 3 "0 3 P25 (1) ; "W ; P3$F (1) s NEXTI: GO

- 159 —

TO2000
REM 365 3% % 3 3 3 3 36 5 % 56 36 3 36 36 56 36 36 3 3606 06 3606 K X6 %
REM HEXADEZIMAL-TABELLE

REM 659655 5 5 5 53650 3 3 36 300 3 36 3 36 3 3 300 X % %

7997
7998
7999
8000
" c’c;ll
8005
8010
" 19"
8015
8020
ll2(? "
BO25
8030
n:.;(?n
BOZS
8040
nggn
8045
8050
IISQ? n
BOSS
8060
llb(?ll
BOLS
8070
" 7(:; "
8075
8080
ngou
8085
B80SO
Iqull
8095
8100
IIA?II
8105
8110
ngG
B115
8120
npon
8125
8130
IIDQII
B135
8140
" EC?N
8145
8150
" F‘qll
8155

DATA

DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

DATA

noo" , ngin y "02", noEn ’ nogqn ' nogy

LreT L . "ORY , noc" , nopY y HoEn y upE"
LR , wyign , nqon y "13", nygqn , nygn

'IIA","].B","].C", “1D”.,"1E" ,"1F"

”20", noyn y noon . uoEn y nagn ’ nos

napn ’IIQBII y nopn , uap" . noEy . uopEn
nEmOn ’ Ut BL y nEoan ’ Rhctcdl y nzgn , umEn

nIAn , nIRY , nIon y nIpn y noppEn , nIEY
nagon , ngqn , ngon , ngmn , ug4n y ngsn

nann ' n4R" y ngqon) n4p" . nag" , ngpn

nEon y uEn , nean ' nET y nsqn y neEEn y

"SA", HEE", ngnn , IISDII’ =t y ngpEn

HEON AL, HERY NETN , NEq 1 LS

nHAN , "C‘)B", ngon . nep" , nLEY . HGEY
n7On , wygn y nyan y Ly sctll , nygn , Uyl

||7An, n7R" y Ly el , gl , 4=l y nZE"
ngon y ngqe , ngan y ngmy , ng4n , ugegn

ngan , ngR" , ngpe ’ ngp" . ngE" ' ugEn
LX-Ty Xl y LY Rl , ngan y ngmn y ngqn y ngen

nun’ nGR" , nQErn , noRn .,"C?E"., uQE"
LF-Yo Ll y ALY , npon Y ¥ Scal , LFAY: y npe

LY.yl , AR , LFYadl y "AD" . wAEN , nAREY
"BD", HRL" , HERN y ngE y "R4Y , nRE"

nEAY y "HB", LD =Tnall . "ED" y "RE"Y . -T2l
"CO", g y npan y npEn y negn y npsn

nean y "CR" , Ll , uep" y wCE™" ’ wCEY
wpOY , npye ’ upoe , npIZN) wpgn , npE"

DAY , "DR" . npe" ’ “pp" . upE" . "pFE"
nEQY y HE , nEoan y nEIn , nEgn y npen

nEan , WER" . nERH , vED! y HEE™" y HER"
nEQ" y nEgn y nEan y L =S4l y nEgn , = Al

HEAY . NER" , nEEn , HEDY y NEE™" ’ nEE"

- 160 —

y HOL" ' no7" , nog" ,

,"16", "17","18",

y nagn y "7, nogn y

y nZLN ’ uZgn , "38",

y LY. WAL , ngzn y ngge ,

nELn y neg7n , nsgn ,

,"66" , nL7" , nagn y

LT 7T gy,

, "86", "g7", I|88II ,

, "96", no7n , "'98",

,"Aé" , Ly 4l , nagn y

, "R ' HRT7" , "BE",

y npeY y sy Al , nege y

y n"pe" , up7e y "DB",

y HELY y nEgn y "EB",

y HELY y =4l y nEge y

B197 REM %% %% %% %5 5 9% % 5 55 5 % 35 3% 3 K% 6% K6 5% %%

8198 REM BEFEHLS-TABELLE

B1F9 REM #%% %5555 3 5% 5% 555K % 5 KK ¥ XX 5 XX %KX

8200 DATA "ASL ",10,"CLC “,24,"DEX ",202,"INX ",232
,"LSR ",74,"RTS. ",96

8201 DATA "SEC “,56,"TAX ",170,"TXA",138

8203 DATA "ADC #",105,"ADC $",101,"AND #",41,“AND $",37
8205 DATA "ECC $",144,"BCS $',176,"BEQ $",240

8215 DATA "BMI $", 48,"EBNE $",208,"EPL $", 16

8220 DATA "DEC $',198,"EOR #", 73,"EOR $",69

8225 DATA "INC $",230,"JMP $", 76,"JSR $", 32

8230 DATA “"LDA #",169,"LDA $",165,"LDX #",162,"LDX $",1
b6

8235 DATA "ORA #", 9,"ORA $", 5

8240 DATA "SBC #",23%,"SBC $",229,"STA $",133

8245 DATA "STX #",134

READY.

- 161 -

AUTORENNEN
1 REM H¥¥X¥¥EXFRAXERXXRRXXEE R EREERRXRXHR
2 REM #%%%#% A U T O - RENNE N **%i%%
I OREM %5 %555 %0 53 33 3 K W N KN NN
10 PRINT"I": POKESZ280,0: FOKES3281,0: V=53248: REM BILDSCH
IRM VOREEREITEN
20 FORI=B32T0894: READA: POKEI ,A:NEXT:REM AUTO-SFRITE EIN
LESEN a
20 FORI=B96T0O95B: READA:FOKEI ,A:NEXT: REM CRASH-SPRITE EI
NLESEN
40 POEEZ2040,13:POKEZ2041, 13: POKEV+39, 1 : POEKEV+40,2: REM SF
RITEFOINTER & FARBEN
50 FORI=0TO24:FOKE1036+1I%40,1460: FOEESSZ08+1I%40,1
60 FOKELOS1+I%40,160: FOKESS3I23+1%40,1:NEXTI:REM FAHRBAH
N AUSGEBEN
70 FOEEV,168:FOKEV+1,170:FOREV+21,3: X=168:REM STARTFOS.
AUTO & SPRITES EIN ’
80 FOKEV+2,1&68:FOKEV+E,0:HX=168B:HY=0:REM STARTPOSITION
HINDERNIS
0 FORKEV+30,0: FOKEV+31 ,0: REM KOLLISIONSEONTROLLE LOESCH
EN
100 A=FEEE (203) :REM TASTATURABFRAGE
110 IFA=12THENX=X-1:REM Z GEDRUECKT
120 IFA=33THENX=X+1:REM / GEDRUECKT
130 POEEV,X:REM AUTO BEWEGEN
140 IFFEEE (V+30) < *00RFEEE (V+31) < *OTHENFOKEZ2040,14: FORI=
OTOS00:NEXT: RUN: REM CRASH
150 HY=HY+2: IFHY >240THENHY=30: REM BEWEGUNG NACH UNTEN
160 HX=HX+INT (RND(TI)%5)~2: IFHX< 120THENHX=120: REM KOOR.
% LINKER RAND
170 IFHX*>216THENHX=21&:REM RECHTER RAND?
180 FOKEV+2,HX:FOKEV+3,HY: G0T0100:REM HINDERNIS BEWEGEN
1000 REM SFRITE-DATA AUTO
1100 DATA 0,0,0
1101 DATA 0,126,0
1102 DATA 0,126,0
1103 DATA ©0,255,0
1104 DATA 12,255,48
1105 DATA 15,255,240
1106 DATA 12,255,48
1107 DATA 0,285,0
1108 DATA 0,255,0
1109 DATA 1,231,128
1110 DATA 1,195,128
1111 DATA 1,195,128
1112 DATA 1,195,128
1113 DATA 3,195,192

- 162 —

1114
1115
1116
1117
1118
1119
1120
2000
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120

DATA
DATA
DATA
DATA
DATA
DATA
DATA

REM SFRITE-DATA CRASH

DATA
DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA

READY .

3,195,192
115,255,206
115,255,206
127,255,254
115,255,206
115,255,206
0,0,0

123,20,0
0,24,0
30,44,77
21,126,3
240,125,48
15,205,240
22,155,41
1,205,156
0,155,0
1,201,108
1,105,108
1,095,028
1,155,158
23,115,192
32,242,132
35,239,216
1,095,028
32,242,132
68,155,0
27,125,48
0,0,0

- 163 —

15. ERLAUTERUNGEN ZU SONDERZEICHEN

Im Text finden Sie von Zeit zu Zeit ein kleines Dach
Wenn Sie sich schon ggfragt haben sollten, wie Sie dieses
eingeben konnen, so sei gesagt, daB dieses Dach der Pfeil
hoch auf Ihrer Commodore Tastatur ist, also die Taste
unmittelbar links neben der RESTORE- und Uber der
RETURN-Taste.

Die meisten Drucker drucken keinen Pfeil, sondern dieses
kleine Dach, so daB Sie auch in Zukunft bescheid wissen,

wenn Sie dieses "Dach" in einem Listing sehen sollten.

In einigen Listings finden Sie auch Commodore Sonderzeichen
vor, die Sie genaustens eingeben sollten, da die Programme
sonst andere Ergebnisse auf den Bildschirm bringen kdnnten,

als sie sollten.

- 164 —

16. SPEICHERBELEGUNGSPLAN

Prozessorport Datenrichtungsregister
Prozessorport Datenregister

unbenutzt

Vektor f. Umwandlung FlieBkomma - Fest
Vektor f£. Umwandlung Fest - FlieBkomma

Suchzeichen

® N U W N a O
~ O~
LIS

Flag f. Sonderzeichenmodus

9 TAB-Spalte

10 O= LOAD bzw. 1= VERIFY letzter Befehl

11 Zeiger f. Eingabepuffer / Dimensionen

12 DIM-Flag

13 Variablentyp: FF=String, 00=Zahl

14 80= Integervar., 00= FlieBkommavar.

15 Sonderzeichenmodus bei LIST

16 Flag fiir FNx

17 Eingabe: 00= INPUT, 40= GET, 98= READ

18 Vorzeichen bei ARCTAN / letzter Vergleich:
1= groBer, 2= "=", 4= kleiner

19 aktueller File

20 / 21 Integer-Zahl, z.B. Adressen, FRE(O)

22 Vektor f£. Stringstack

23 / 24 Zeiger auf letzten String

25 - 33 Stringstack

34 - 37 diverse Zeiger

38 - 42 Arithmetikregister

43 / 44 Zeiger auf BASIC-Programm-Anfang

45 [/ 46 Zeiger auf Variablenstart

47 |/ 48 Zeiger auf Beginn der Felder

49 |/ 50 Zeiger auf Ende der Felder

51 / 52 Zeiger auf Stringanfang (bewegt sich abwarts)

53 / 54 Stringhilfszeiger

55 / 56 Zeiger auf Speichergrenze

57 / 58 augenblickliche BASIC-Zeilennummer

59 / 60 vorherige BASIC-Zeilennummer

61 / 62 Zeiger auf ndchsten Befehl fiir CONT

~ 165 —

63 / 64
65 / 66
67 / 68
69 / 70
71/ 72
73 / 74
75 / 76
77

78 / 79
80 - 83
84 - 86
87 - 91
92 ~ 96
97 - 101
102

103

104

105 - 109
110

11

112

113 - 114
115 -
BASIC-Pgm
122 / 123
139 - 143
144

145

146

147

148

149

150

151

152

153

154

155

138

aktuelle DATA-Zeile

Zeiger auf ndchstes DATA-Element

Zeiger auf letztes DATA/INPUT/GET

aktuelle Variable (2 Buchstaben)

Zeiger auf aktuelle Variablen

Zeiger auf aktuelle FOR-NEXT-Variable

Hilfsregister f. BASIC-Programmzeiger

Hilfsregister f. Vergleiche

Zeiger filir FNx

Hilfsregister f. Strings

Sprungvektor fiir Funktionen

Arithmetik-Akku 3

Arithmetik-Akku 4

Arithmetik-Akku 1

Vorzeichen von Akku 1

Zdhler f. Polynomauswertung

Rundungsbyte fir Akku 1

Arithmetik-Akku 2

Vorzeichen von Akku 2

Vergleichsregister‘Akku 1 & 2

Rundungsbyte

Zeiger f. Polynomauswertung
CHRGET-Routine holt nachstes Byte

BASIC-Programmzeiger

letzter RND-Wert

Status (wie Variable ST)

Flags f. Tastaturspalte 1
Zeitkonstante f. Cassettenbetrieb
O= LOAD, 1= VERIFY

Flag fiir IEC-Bus

Zeichen fiir IEC-Bus

Flag £f. End of Tape (Kassettenende)
Zwischenspeicher f£. Register
Anzahl der getffneten Files
aktuelles Eingabegerat (normal: O)
aktuelles Ausgabegerdt (CMD, normal: 3)
Paritdtsbyte bei Kassettenbetrieb

- 166

aus

156
157
158
159
160
163
164
165
166
167
172
174
176
178
180
181
182
183
184
185
186
187
189
190
191
192
193
195
197
198
199
200
201
203
204
205
206
207

162

171
173
175
1717
179

188

194
196

202

Flag fiir Byte empfangen

Ausgabemodus (128= direkt, O= Programm)
Priifsumme bei Kassettenbetrieb
Fehlerkorrektur bei Kassettenbetrieb
Uhr

Bitzdhler bei serieller Ausgabe
Zdhler bei Bandbetrieb

Zahler fiir Schreiben auf Band

Zeiger in Kassettenpuffer

Flags fiir Bandbetrieb

Zeiger filir Kassettenpuffer

Zeiger auf Programmende (LOAD / SAVE)
Zeitkonstanten filir Kassette

Zeiger auf Kassettenpufferstart
Bitzdhler (Kassette)

Ndchstes Bit flir RS 232 (Senden)
Auszugebendes Byte

Zeichenanzahl im Filenamen

aktuelle logische Filenummer
aktuelle Sekunddradresse

aktuelle Gerdtenummer (z.B. 8 fiir Floppy)
Zeiger auf Filennamen

Hilfsregister f. serielle Ausgabe
Blockzdhler f. Bandbetrieb
Wortpuffer f. serielle Ausgabe

Flag f. Kassettenmotor

Startadresse f£. LOAD / SAVE
Endadresse f. LOAD / SAVE

gedriickte Taste

Anzahl Tastendriicke im Puffer

Flag fiir RVS

Zeilenende bei Eingabe (Zeiger)
Zeiger auf Eingabecursor (Zeile, Spalte)

. gedriickte Taste

Flag f£. Cursor (O= blinkt)
zdhler fiir Blinkzeit
Zeichen unter Cursor
Blinkflag

- 167 -

208 Flag £. Eingabe von Tastatur / Bildschirm

209 / 210 Zeiger auf aktuelle Bildschirmzeile
211 Cursorspalte

212 Art des Cursors (programmiert / direkt)
213 Lange der Bildschirmzeile (40 / 80)
214 Cursorzeile

215 letzte Taste

216 Anzahl der Inserts

217 - 242 Highbytes der Zeilenanfange

243 /| 244 Cursorposition im Farb-RAM

245 / 246 Zeiger auf Tastaturdekodiertabelle
247 | 248 Zeiger auf Eingabepuffer fiir RS 232
249 |/ 250 Zeiger auf Ausgabepuffer fiir RS 232
251 - 254 Freie Bytes fiir Betriebssystem

255 Beginn des BASIC-Speichers (* 64)

256 - 511 Prozessorstack

256 - 266 Zwischenspeicher fiir Formatumwandlung
256 - 318 Korrektur von Bandfehlern

512 - 600 BASIC-Eingabepuffer

601 - 610 logische Filenummern

611 - 620 Gerdtenummern

621 - 630 Sekunddradressen

631 - 640 Tastaturpuffer

641 / 642 Zeiger auf BASIC-RAM-Start

643 / 643 Zeiger auf BASIC-RAM-Ende

645 Flag f. Zeitfehler auf seriellem Bus
646 aktuelle Schriftfarbe

647 Farbe unter Cursorposition

648 Highbyte der TV-RAM-Basisadresse

649 max. Lange des Tastaturpuffers

650 Flag f£. Repeat (O=normal, 128=alle, 127=aus)
651 Zdhler f. Repeatgeschwindigkeit

652 Zdhler f. Repeatverzogerung

653 Flag £. SHIFT, Commodore und Control
654 wie 653

655 / 656 Zeiger auf Tastaturdekodiertabelle
657 Flag f. Zeichensatzumschaltungssperre
658 Flag filir Scrolling

- 168 —

659
660
661
663
664
665
667
668
669
670
671
673
674
675
676
677
678
704
768
770
772
774
776
778
780
781
782
783
784
788
790
792
794
796
798
800
802
804

NN N N N

N N N N N NN NN~

666

672

767
766
769
771
773
775
7717
779

787
789
791
793
795
797
799
801
803
805

Kontrollregister f£. RS 232
Befehlsregister £. RS 232

Bit-Zeit

Statusregister £. RS 232

Anzahl zu sendender Bits f£. RS 232
Baudrate fir RS 232

Zeiger auf empfangenes Byte f. RS 232
Zeiger auf Eingabe von RS 232
Zeiger auf auszugebendes Byte f. RS 232
Zeiger auf Ausgabe aus RS 232
Zwischenspeicher f£. IRQ bei Bandbetrieb
NMI-Flag CIA 2

Timer A des CIA 1

Interruptflag des CIA 1

Flag £. Timer A

Bildschirmzeile

freier RAM-Bereich

Sprite-Block 11

Zeiger f. Fehlermelﬁung

Zeiger auf BASIC-Warmstart

Zeiger auf Umwandlung Text - Kode
Zeiger auf Umwandlung Kode - Text
Zeiger auf Befehlsausfiihrung
Zeiger auf Ausdrucksauswertung
Akku fiir SYS

X-Register filir SYS

Y-Register fir SYS

P-Register fiir SYS

USR-Sprung (Adresse in 785 / 786)
Zeiger auf Hardware-Interrupt
Zeiger auf BRK-Interrupt

Zeiger auf NMI

Zeiger auf OPEN

Zeiger auf CLOSE

Zeiger auf Zeicheneingabe

Zeiger auf Zeichenausgabe

Zeiger auf Kandle loschen

Zeiger auf Eingabe

- 169 —

806 / 807 Zeiger auf Ausgabe

808 / 809 Zeiger auf STOP-TASTE abfragen
810 / 811 Zeiger auf GET

812 / 813 Zeiger auf alle Kandle schlieBen
814 / 815 Zeiger auf Benutzer-IRQ

816 / 817 Zeiger auf LOAD

818 / 819 Zeiger auf SAVE

820 - 827 freier RAM-Bereich

828 - 1019 Kassettenpuffer

832 - 894 Sprite-Block 13

896 - 958 Sprite-Block 14

960 - 1022 Sprite-Block 15

1023 frei

1024 - 2023 TV-RAM

2024 - 2039 frei

2040 - 2047 Zeiger fiir Sprites

2048 - 40960 BASIC-Speicher

8192 - 16192 Bit-Map f£. hochauflosende Grafiken
40960 - 49151 BASIC-Interpreter-ROM

49152 ~ 53247 4 K RAM fiir Maschinenprogramme
53248 - 57343 Charaktergenerator

53248 - 53294 Register des VIC

53295 - 54271 977 Bytes leer

54272 - 54300 Register des SID

54301 - 55295 995 Bytes leer

55296 - 56295 Color-RAM

56296 - 56319 24 Bytes leer

56320 ~ 56335 Register des CIA 1

56320 / 56321 Tastaturabfrage und Joysticks
56336 - 56575 240 Bytes leer

56576 - 56591 Register des CIA 2

56577 & 56579 USER-PORT-Register

56592 - 57343 752 Bytes leer

57334 - 65535 Betriebssystem-ROM

- 170 -

17. STICHWORTVERZEICHNIS

A

Abschwellen 8.1., 8.2.
ACCUi it 13.7.

ADC ... e 13.8.1.
Additionsprogramm 13.10.

" (16-Bit) .. 13.11.
Adressbus 1.1.
AD-Wandler 10.2.

AND e 1.4.3., 13.8.1.
Animation 7.4.
Anschlag 8.1., 8.2.
Anwendungsbeispiele 11.3.
ASL .. i e 13.8.1.
Assemblermodus 13.9.
Ausgabegerdat 4.4,
Ausklingen 8.1., 8.2.
B
Balkengrafik 5.2.
BASIC
-Eingabepuffer 1.2., 12.1.
-Erweiterungen 12.7.
-Zeilen erzeugen 12.1.
Basisumwandlung 1.4.3.
BCC ..ttt e 13.8.2.
BCS tiitie i . 13.8.2.
BEQ ...ttt 13.8.2.
Betriebssystem 1.2.
Bewegungsbereich 7.3.
Bildschirm ein/aus 5.6.
Bindr
-Addition 13.4.
-Arithmetik 1.4.3.
-Subtraktion 13.5.
Bit-Mapo i it 6.2.

-171 -

BMI ... ittt 13.8.2..
BNE i 13.8.2
BPL ...ttt e 13.8.2.
Boolesche Operationen 1.4.3
c
Carry-Bit 13.4., 13.5
Charaktergenerator 3.2., 5.3
" verlegen 5.4
CLC .. i i i e 13.8.1.
Color-RAMcuu.. 5.3.
Color-RAM-Zeiger 5.6.
Cursor
einfaus 5.6.
setzen 5.6.
-Spalte 5.6
-Zeile 5.6
D
Datazeiger 12.5.
Datenbewegungen 13.8.
Datenbus 1.1.
Datenmanipulationen 13.8.
DEC e e e e e 13.8.
DEX ... e 13.8.
Directories 4.3.
Direktbefehle 13.9.
Division 13.6.
E
Einbytebefehle 13.9.
Eingabegerat 4.4,
Einschaltbild 12.6.
End ohne Ready 12.6.
EOR i i 13.8.1.
Exklusiv-Oder 1.4.3.
Extended-Color-Modus 5.3.

172

File

aktueller 4.4.

offene 4.4.

schlieBen 4.4.
FlieBkommaakku 1.4.2.
FORTHcciiiiiiinnn.. 12.8.
FRE-Funktion 3.4
Frequenzuuueuun. 8.1.,
G
Gerat, aktuelles 4.4,
Grafik einschalten 6.3.
Grafikseiten speichern 4.1.
Grafiktablet 10.4.
H
Halten, 8.1.,
Hexadezimalsystem 13.3.
Highbyte 2.2.
Hochaufldsende Grafik 6.1.
Hillkurve00uu... 8.1.,
I
INC ..t e e 13.8.1
INPUT ittt iieeennn 5.6
Interpreterc.0u... 1.2.,
Interrupt 1.2.
INX i i 13.8.1
I/0-Bereich 1.5.,
J
TMP . e e 13.8.2
Joystick 10.1.
TSR it 13.8.2

- 173

K

Kassettenmotorflag 4.4.
Kollisionen 7.2.
Kreise zeichnen 6.6.
L
Ladeproéram 3.3.
Lautstdrke 8.1.,
LDA . e e 13.8.3
LDX ..t e 13.8.3.
Lightpen 10.3.
Linien ziehen 6.5.
Listschutz 12.2.
LOGO ... ittt ittt it iiieeann 12.8
Lowbyte 2.2
LSR ottt it 13.8.1
M
Maschinensprache 13.1.
Merge per Hand 4.2.
Multi-Color
-Grafik, 6.1.
-Modus 00000, 5.3.
-Sprites 0.0 000 7.1.
Multiplikation 13.6.
Multiplikationsprogramm 13.13.
N
0 1.4.3
0
10 1.4.3
1) 2 13.8.1
P .
Paddleabfrage 10.2.
PASCALcuouvvuuuas e 12.8.
Parallelport 11.1.3.
PEEKiuiiiiiinnennnnn 1.4.1.

Pointer 2.2.

POKE00 .. 1.4.1.
Prioritaten 7.3.
Proportionaljoystick 10.4.
Punkte setzen 6.4.1.
R
relokatibel 3.2.
Renewcouieiieinnnn. 12.4.
Renumber S 12.3.
Repeatfunktion 9.4.
Resettaster 1.6.
Restorec0.... 12.5
RTS it iteiteee et 13.8.2
S
SAVE-Schutz 12.6.
SBC .ttt 13.8.1.
Schiebebefehle 13.14.
Schleife 13.13.
Schnittstellenbausteine 11.1.
Schreibschutzkerbe 4.3.
Schriftfarbe 5.6.
SEC ... i e e 13.8.1.
Sekunddradresse 4.4.
serieller Port 11.1.1.
SHIFT-Muster 9.2.
SID

-Arbeitsweise 8.1.

-Programmierung 8.2.
Simulator 13.9.
Speicher, freier 3.4.
Speicher schiitzen 3.3.
Speicher

-Aufteilung 3.2.

-Belegungsplan 3.1.,

-Uberlagerung 1.5.,
Sprite

~ 175 -

-Grafik 7.4.

-Zeigeriiiii.. 5.5.
Sprites speichern 7.4.
Sprungbefehle 13.8.2.
STA o it 13.8.3
Stack0 i, 2.2
Start-Stop-Bit 8.1.,
Statusvariable 4.5.
Strukturierung 12.7.,
STX ottt et e 13.8.3
Subtraktionsprogramm 13.12
SYS .. e e 1.4.2
SYS-Erweiterungen 13.15
T
Taktiiiiiiiiiiiiii 13.2
Tastatur

-Abfrage 9.2

“Code0iiiiiinnn. 9.5

-Matrixi.ieaa.. 9.1.

-Puffer 9.1.,

=SPEXYE 9.3
TAX ottt e e 13.8.3
Timeriiiiiiinnnnn. 11.1.2
1 5 12.6
TOKENSt nnn. 1.3
Tracec.ooiiiieieeiennn. 13.10
TXA e e e e 13.8.3
u
Unterprogramme 13.13
USER-PORTcocveuu.. 11.2
USR ..ttt it i i 1.4.2

- 176-

v

Vergleiche ..

VIC

Video-RAM
...verlegen
-Zeiger ...

Vorzeichenbit

z
Zeilenformat
Zeilennummer,

Zeropage

- 177 -

A
ad e. SCHULBUCH

Ein neues DATA BECKERBUCH, ||| comwobone s«
das den Einsatz des COMMO-
DORE 64 in der schule ent- ||| =7y,
scheidend mitpragen dirfte, e
wurde von Professor VOB {m Y
geschrieben. Besonders. fir e—~—y
“Schiler der Mittel- und Ober- EIN DATA BECKER BUCH
stufe geschrieben, enthalt
das Buch viele interessante
Problemldsungs- und Lernprogramme, die beson-
ders ausfihrlich und leicht verstandlich beschrie-
ben sind. Sie ermdglichen ein intensives und anre-
gendes Lernen, unter anderem mit folgenden The-
men: Satz des Pythagoras, quadratische Gleichun-
gen, geometrische Reihen, Pendelbewegungen,
mechanische Hebel, Molekiilbildung, exponentiel-
lesWachstum,Vokabelnlernen, unregelmaBigeVer-
ben, Zinseszinsrechnung. Ein kurzer Oberblick tber
die Grundlagen der EDV, eine knappeWiederholung
der wichtigsten BASIC-Elemente und eine Einfih-
rung in die Grundziige der Problemanalyse vervoll-
standigen das Ganze. Mit diesem Buch machen die
Hausaufgaben wieder SpaB!

DAS SCHULBUCH ZUM COMMODORE 64, 1984, (iber 300
Seiten, DM 49-

Tempo!
MASCHINENSPRACHE FUR
FORTGESCHRITTENE ist be-
reits das zweite Buch von
Lothar Englisch zum Thema
Maschinenprogrammierung
mit dem COMMODORE 64.
Hier wird von der Problem-
analyse bis zum Maschinen-
sprachealgorithmus in die
Grundlagen der professio-
nellen Maschinensprache-
programmierung eingefiihrt. In diesem Buch fin-
den Sie unter anderem folgende Themen behan-
delt: Problemldsungen in Maschinensprache, Pro-
grammierung von Interruptroutinen, Interrupt-
quellen beim COMMODORE 64, Interrupts durch
CIA's und Videocontroller, Programmierung der
Ein-Ausgabe-Bausteine, die CIA's des COMMODORE
64, Timer, Echtzeituhr, parallele und serielle Ein/
Ausgabe, BASIC-Erweiterungen, Programmierung
eigener BASIC-Befehle und -Funktionen, Moglich-
keiten zur Einbindung ins Betriebssystem sowie
viele weitere Tips & Tricks zur Maschinenprogram-
mierung. Dieses Buch solite jeder haben, der wirk-
lich intensiv mit der Maschinensprache des COM-
MODORE 64 arbeiten will.

MASCHINENSPRACHE FUR FORTGESCHRITTENE, 1984,
ca. 200 Seiten, DM 39-

Macht Druck.

DAS GROSSE DRUCKERBUCH
fur Drucker-Anwender mit
COMMODORE-Computern ist
endlich da! Es enthdlt eine
riesige Sammiung von Tips
& Tricks, Programmlistings
und Hardwareinformatio-
nen. Rolf Brickmann und
Klaus Gerits beschaftigen
sich mit Sekundéaradressen,
AnschiuB einer Schreib-
maschineam Userport, Druckerschnittstellen (Cen-
tronics, V 24, IEC-Bus), hochaufldsender Grafik, Text-
und Grafikhardcopy, Grafik mit Standardzeichen-
satz, formatierter Datenausgabe, Plakatschrift,
Textverarbeitung und vieles mehr. Zusatzlich wird
das Betriebssystem des MPS801zerlegt, mit Prozes-
sorbeschreibung (8035), Blockschaltbild und einem
ausfihrlich kommentierten ROM-Listing. Thomas
Wiens schrieb def Teil (iber die Programmierung
des PlottersvC-1520: Handhabung des Plotters, Pro-
grammierung von sonderzeichen, Funktionendar-
stellung, Kuchen und Sdulendiagramme, Entwurf
dreidimensionaler Gegenstande. Natirlich wieder
viele interessante Listings. Unentbehrlich fur
jeden, der einen COMMODORE 64 oder VC-20 und
einen Drucker besitzt.

DAS GROSSE DRUCKERBUCH, 1984, iber 300 Seiten,
DM 49~

Tausend-
sassa.

Fast alles, was man mit dem
COMMODORE 64 machen
kann, ist in diesem Buch aus-
fuhrlich beschrieben. Es ist
nicht nur spannend zu lesen
wie ein Roman, sondern ent-
halt neben nitzlichen Pro-
grammlistings vor allem
viele, viele Anwendungs- ’

maoglichkeiten des C64. Dabei wurde besonderer
Wert darauf gelegt, daB das Buch auch fur Laien
leicht verstandlich ist. Eine Auswahl aus der The-
menvielfalt: Gedichte vom Computer, Einladung
zur Party, Diplomarbeit - professionell gestaltet,
individuelle Werbebriefe, Autokosten im Griff, Bau-
kostenberechnung, Taschenrechner, Rezeptkartei,
Lagerliste, persénliches Gesundheitsarchiv, Diat-
plan elektronisch, intelligentes Wérterbuch, kleine
Notenschule, CAD.fur Handarbeit, Routenoptimie-
rung, Schaufensterwerbung, Strategiespiele. Teil-
weise sind Programmlistings fertig zum Eintippen
enthaiten, soweit sich die ,Rezepte” auf 1-2 Seiten
realisieren lieBen. Wenn Sie bisher. nicht immer
wuBten, was Sie mit Ihrem 64er alles anfangen soll-
ten, nach dem Lesen des IDEENBUCHES wissen Sie's
bestimmt!

DAS IDEENBUCH ZUM COMMODORE 64, 1984, Uiber 200
Seiten, DM 29~

Prof. 64.

Ein faszinierendes Buch, um
in die Welt der Wissenschaft
einzusteigen, hat Rainer
Severin geschrieben. Zu-
nachst werden Variablen-
typen, Rechengenauigkeit
und nitzliche POKE-Adres-
sen des COMMODORE 64 RTINS B
beziiglich den Anforderun- £ DATA BECKER BUCH
gen wissenschaftlicher Pro-
bleme analysiert. Verschie-
dene Sortieralgorithmen wie Bubble, Quick und
Shell-Sort werden miteinander verglichen. Die Pro-
grammbeispiele aus der Mathematik nehmen
dabei eine zentrale Stelle im Buch ein: Nullstellen
nach Newton, numerische Ableitung mit dem Dif-
ferenzenquotienten, lineare und nichtlineare
Regression, Chi-Quadrat-Verteilung und Anpas-
sungstest, Fourieranalyse und -synthese, Skalar-
Vektor- und Spatprodukt, ein Programmpaket zur
Matrizenrechnung fir Inversion, Eigenwerte und
vieles weitere mehr. Programme aus der Chemie
(Periodensystem), Physik, Biologie (Schadstoffe in
Gewassern - Erfassung der MeBwerte), Astronomie
(Planetenpositionen) und Technik (Berechnung
komplexer Netzwerke, Platinenlayout am Bild-
schirm) und viele weitere Softwarelistings zeigen
die riesigen Moglichkeiten auf, die der Computerin
Wwissenschaft und Technik hat.

COMMODORE 64 FUR TECHNIK UND WISSENSCHAFT,
1984, Uber 200 Seiten, DM 49-

Grundkurs.

Das neue BASICTrainings-
buch zum C-64 ist eine aus-
fuhrliche, didaktisch gut
geschriebene Einfihrung in
das CBM BASIC V2. Alle
Befehle werden ausfuhriich
erlautert. Dieses Buch geht
aber uber eine reine Befehls-
beschreibung hinaus, es wird EW DATA BECKER BUCH
eine fundierte Einfilhrung in'
die Programmierung gege-
ben. von der Problemanalyse bis zum fertigen
Algorithmus lernt man das Entwerfen eines Pro-
grammes und den Entwurf von'DatenfluBplanen.
ASCIl-Code und verschiedene Zahlensysteme wie
hexadezimal, bindr und dezimal sind nach der Lek-
tare des Buches keine Fremdworte mehr. Die Pro-
grammierung von Schleifen, Spriingen, bedingten
Spriingen lernt man leicht durch ,learning by
doing” So enthdlt das Trainingsbuch viele Auf-
gaben, Ubungen und unzdhlige Beispiele. Den
SchluB des Buches bildet eine Einfiihrung ins pro-
fessionelle Programmieren, in der es um mehr-
dimensionale Felder, Menuesteuerung und Unter-
programmtechnik. geht. Endlich ein Buch, das
lhnen wirklich hilft, solide und sicher BASIC zu ler-
nen.

BASIC TRAININGSBUCH ZUM COMMODORE 64, 1984,
ca. 250 Seiten, DM 39~

Sang und Kiang!

Der COMMODORE 64 ist ein
Musikgenie. DAS MUSIKBUCH
hilft Ihnen, die riesigen
Klangmdoglichkeiten des C64
zu nutzen. DieThemenbreite
reicht von einer Einfiihrung
in die Computermusik Uber
die Erkidarung der Hardware-
grundlagen des COMMODORE
64 und die Programmierung
in BASIC bis hin zur fort-
geschrittenen Musikpro-
grammierung in Maschinensprache. Einiges aus
dem Inhalt: Soundregister des COMMODORE 64,
Gate-Signal, Programmierung der “ADSR“Werte,
synchronisation und Ring-Modulation, Counter-
prinzip, lineare und nichtlineare Musikprogram-
mierung, Frequenzmodulation, Interrupts in der
Musikprogrammierung und vieles mehr. Zahl-
reiche Beispielprogramme, komplette Songs und
niitzliche Routinen ergdnzen den Text. Geschrie-
ben wurde das Buch von Thomas Dachsel, dem
Autor der weltbekannten Musikprogramme Syn-
thimat und Synthesound. ErschlieBen Sie sich die
Welt des Sounds und der Computermusik mit dem
Musikbuch zum C-64!

DAS MUSIKBUCH ZUM COMMODORE 64, Uber 200 Sei-
ten, DM 39~

Nutzlich.

Das Trainingsbuch zu MULTI-
PLAN bietet eine guteEinfih-
rung in die Grundlagen der
Tabellenkalkulation. Dabei
wird groBer Wert auf ein
maoglichst schnellesEinarbei-
ten in die wichtigsten
Befehle gelegt, so daB man
bald sicher mit MULTIPLAN
arbeiten kann, ob nun auf
dem COMMODORE 64 oder &N DATA BECKER BUCH
einem anderen Rechner. Am —
Ende wird man in der Lage sein, den umfangrei-
chen Befehlssatz von MULTIPLAN auch kommerziell
zu nutzen. Obungen am Ende jedes Kapitels sorgen
dafiir, daB man das Gelernte lange behalt. Grund-
lage des Buches sind viele Seminare, die der Autor
Zu MULTIPLAN konzipiert und erfolgreich durch-
gefihrt hat.

DAS TRAININGSBUCH ZU MULTIPLAN, 1984, ca. 250 Sei-
ten, DM 49~

FUr Tuftler.

Ein hochinteressantes Buch
fur Hobbyelektroniker hat
Rolf Brickmann vorgelegt.
Er ist ein engagierter Techni- DER
ker, fur den der Computer [f| CcommopoRE ¢

Hobby und Beruf zur glei- ||| oen nesroen weer
chen Zeit ist. Vor allem aber
kennt er den C-64in- und aus-
wendig. So werden einfiih-
rend die Schnittstellen des
COMMODORE 64 detailliert
beschrieben und kurz die
Funktionsweise der CIAS 6526 erldutert. Hauptteil
des Buches sind die Beschreibungen der vielfalti-
gen Einsatzmdoglichkeiten des COMMODORE 64. Die
vielen Schaltungen, von Rolf Briickmann alle selbst

entwickelt, sind jeweils umfangreich dokumen-
tiert und leichtverstandiich erkiart. Die Reihe der
hier ausfuhrlich behandelten Anwendungen mit
dem COMMODORE 64 ist duBerst umfangreich:
Motorsteuerung, Stoppuhr mit Lichtschranke,
Lichtorgel, A/D-Wandler, Spannungsmessung, Tem-
peraturmessung und vieles mehr. Dazu kommen
noch eine Reihe kompletter Schaltungen zum Sel-
berbauen, wie ein EPROM Programmiergerat fir
den C-64, eine EPROM-Karte, ein Frequenzzihler
und Sprachein/ausgabe (). Zusatzlich sind jeweils
Schaltplan, Softwarelisting und zu einigen Schal-
Eungen sogar zusatzlich Platinenlayouts vorhan-
en.

DER COMMODORE 64 UND DER REST DER WELT, 1984,
ca. 220 Seiten, DM 49 -

Computerkiinstier.

Das Grafikbuch zum COMMODORE 64 Buch aus der
Bestseller-Serie von DATA BECKER stammt aus der
Feder von Axel Plenge. Es geht weit {iber die reine
Hardware-Beschreibung der
Grafikeigenschaften desC-64
hinaus. Der Inhalt reicht von
den Grundlagen der Grafik-
programmierung bis zum
Computer Aided Design. ES
ist ein Buch fir alle, die mit
ihrem C-64 kreativ tdtig sein
wollen.Themen sind z.B.: Zei-
chensatzprogrammierung,
bewegte Sprites, High-Re-
solution, Muiticolor-Grafik,
Lightpenanwendungen, Be-
triebsarten des VIC, verschie-
ben der Bildschirmspeicher,
IRQ-Handhabung, 3-Dimensionale Grafik, Projektio-
nen, Kurven-, Balken- und Kuchendiagramme, Lauf-
schriften, Animation, bewegte Bilder. Viele Pro-
~ grammlistings und Beispiele sind selbstverstand-
Jich. Das COMMODORE-BASIC V2 unterstutzt die her-
ausragenden Grafikeigenschaften des C-64 be-
kanntlich kaum. Hier helfen die vielen Beispielpro-
gramme in diesem Buch weiter, die die faszinie-
rende Welt der Computergrafik jedermann zu-
ganglich machen. Kompetent ist der Autor dazu wie
kaum ein anderer, schlieBlich hat er das duBerst lei-
stungsfahige Programm SUPERGRAFIK geschrieben.

DAS GRAFIKBUCH ZUM COMMODORE 64, 1984, 295 Sei-
ten, DM 39~

Vielfailt.

Auf dem neuesten Stand ist
VC-20 TIPS & TRICKS von Dirk
Paulissen gebracht worden,
der Uber hundert Seiten
hinzufligte. Bisher schon
enthalten waren Informatio-
nen (ber Speicheraufbau
des VC-20 und die Erweite-
rungsmoglichkeiten, einGra-
fikkapitel Uber program-
mierbare Zeichen, - Lauf- FimoATA seckEnucH
schrift und die Supererwei-
terung. Stark erweitert wurde der Abschnitt tiber
POKES und andere nutziiche Routinen.Ob esum die
Programmierung ~ der Funktionstasten, Pro-
. gramme die sich selber starten, ,Maus" -Simulation
mit dem Joystick oder die Anderung von Speicher-
bereichen geht, man ist immer wieder Uber die
Fille der Moglichkeiten erstaunt. Der Clou dieses

Buches sind aber die vielen Programmlistings. Die
BASIC-Erweiterungen allein stellen schon ein erst-
klassiges Toolkit dar: APPEND (Anhdangen von Pro-
grammen, AUTO (automatische Zeilennummerie-
rung), BASIC-Befehle auf Tastendruck, PRINT POSI-
TION, UNNEW, Strings gréBer als 88 Zeichen einlesen
und vieles mehr. Die Bandbreite reicht von Spielen
wie Goldgraber oder Starshooter bis zu nitzlichen
Programmen wie Cassetteninhaltsverzeichnis und
-katalog mit automatischem Suchen nach Dateien
und einem Terminkalender. FUr den VC-20 Anwen-
der ist dieser 324 Seiten-Wilzer eine wahre Fund-
grgfe, in der es immer etwas neues zu entdecken
gibt.

VC-20 TIPS & TRICKS, 3. erweiterteund Uberarbeitete
Auflage, 1984, 324 Seiten, DM 49-

Interessant.

Einen guten Einstieg in PAS-
CAL bietet dieses Trainings-
buch. Es gibt eine leichtver-
standliche Einflihrung,
sowohl in UCSD-PASCAL wie
auch in PASCAL64, wolei
allerdings EDV-und BAS{C-
Grundkenntnisse voraus-
gesetzt werden. Der Autor,
Ottmar Korbmacher, ist Stu-
dent der Mathematik. Ihm
gelingt es, in einem sprach-
lich aufgelockerten Stil mit vielen interessanten
Beispielprogrammen, dem Leser Programmstruk-
turen, Ein/Ausgabe, Arithmetik und Funktionen,
Prozeduren und Rekursionen, Sets, Files und
Records niherzubringen. Die Obungsaufgaben am
Ende jeden Kapitels helfen dabei, das Gelernte zu
vertiefen. Ein Anhang mit allen PASCAL-Schiissel-
worten, der ansich schon ein umfangreiches Lexi-
kon darstellt, macht das Buch fir jeden PASCAL-
Anwender interessant.

DAS TRAININGSBUCH ZU PASCAL, 1984, ca. 250 Seiten;
DM

EIN DATA BECKER BUCH

Bewahrt.

Die bereits dritte Auflage
von VC-20 INTERN ist wieder
erheblich erweitert worden.
Das Buch' beschiftigt sich
ausfihrlich mit der Technik
und dem Betriebssystemdes
VC-20. Dazu gehdrt natirlich
zuerst einmal ein ausfihrlich
dokumentiertes ROM-Listing.
Dazu gehért auch die Bele-
gung der Zeropage, dem
wichtigsten Speicherbe-
reich flr den 6502-Prozessor, eine libersichtliche
Auflistung der Adressen aller Betriebssystemrouti-
nen, ihrer Bedeutung und ihrer Obergabeparame-
ter. Dies erméglicht dem Programmierer endlich,
den VC-20 von Maschinensprache aus sinnvoll ein-
zusetzen. Denn warum Routinen, die bereits vor-
handen sind, noch einmal schreiben? Weiterer
Inhait: Einfihrung in die Maschinensprache -
Maschinensprachemonitor, Assembler, Disassem-
bler - Verbindung von Maschinensprache- und
BASIC-Programmen - Beschreibung der wichtigen
IC's des VC-20 - Blockschaltbild - drei Original COM-
MODORE-Schaltpldne. Das Buch braucht jeder der
sich intensiv mit der Maschinenspracheprogram-
mierung des VC-20 auseinandersetzen moéchte.

VC-20INTERN, 3. Auflage, 1984, ca. 230 Seiten, DM 49~

Starthiife!

DassolitelhrerstesBuchzum
COMMODORE 64 sein: 64 FUR
EINSTEIGER ist eine sehr
leicht verstandliche Einflh-

rung in Handhabung, Ein- 64
satz, Ausbaumadoglichkeiten FUR EINSTEIGER
. und Programmierung des
COMMODORE 64, die keinerlei
Vorkenntnisse voraussetzt. »
Sie reicht vom AnschluB des q

Gerats Uber die Erkidarung emostAsecnensucn
der einzelnen Tasten und
-Funktionen sowie die Peripheriegerite und ihre
Bedienung bis zum ersten Befehl. Schritt fur
Schritt fuhrt das Buch Sie in die Programmier-
sprache BASIC ein, wobei Sie nach und nach eine
komplette Adressenverwaltung erstellen, die Sie
anschlieBend nutzen kbnnen. Zahireiche Abbildun-
gen und Bildschirmfotos erganzen den Text. Viele
Anwendungsbeispiele geben nltzliche Anregun-
gen zum sinnvollen Einsatz des COMMODORE 64. Das
Buch ist sowonhl als Einfiihrung als auch als Orientie-
rung vor dem 64er Kauf gut geeignet.

64 FOR EINSTEIGER, 1984, ca. 200 Seiten, DM 29-
Von A bis Z. '

So etwas haben Sie gesucht: Umfassendes Nach-
schlagewerk zum COMMODORE 64 und seiner Pro-
grammierung. Allgemeines Computeriexikon mit
Fachwissen von A-Z und
Fachworterbuch mit Ober-
setzungen wichtiger engli-
scher Fachbegriffe - das
DATA BECKER LEXIKON ZUM
COMMODORE 64 stelit prak-
tisch drei Bucher in einem
dar. Es enthélt eine unglaub-
liche Vielfalt an Informatio-
nen und dient so zugleich als
kompetentes ‘Nachschlage-
werk und als unentbehr-
liches Arbeitsmittel. Viele
Abbildungen und Beispiele erganzen den Text. Ein
MuB fur jeden COMMODORE 64 Anwender!

DAS DATA BECKER LEXIKON ZUM COMMODORE 64,
1984, 354 Seiten, DM 49~

Fundgrube.

64 Tips & Tricks ist eine hoch-
interessante Sammiung von
Anregungen zur fortge-
schrittenen Programmie-
rung des dCOMN(IjODORE gd,
POKE's und andere nitz- " .
liche Routinen, interessan. || TiPs&Tricks
ten Programmen - sowie o
interessanten Programmier-

tips & -tricks. Aus dem Inhalit:
3D-Graphik in BASIC-Farbige
Balkengraphik - Definition
eines eigenen Zeichensatzes - Tastaturbelegung
und ihre Anderung - Dateneingabe mit Komfort -
Simulation der Maus mit einem Joystick - BASIC fur
Fortgeschrittene - C-64 spricht deutsch - CP/M auf
dem COMMODORE 64 - DruckeranschiuB Uiber den
USER-Port - Datenuibertragung von und zu ande-
ren Rechnern -Expansion-Port-Synthesizerin Ste-
reo - Retten einer nicht ordnungsgeman geschlos-
senen Datei - Erzeugen einer BASIC-Zeile in BASIC -
Kassettenpuffer als Datenspeicher — Sortieren von
stringfelder — Multitasking auf dem COMMODORE
64 - POKE's und die Zzeropage - GOTO, GOSUB und
RESTORE mit berechneten Zeilennummern, INSTR
und STRING-Funktion - Repeat-Funktion fur alle

e

£ DATA BECKER BUCH

Tasten - und vieles andere mehr. Alle Maschinen-
programme mit BASIC-Ladeprogrammen. 64 Tips &
Tricks ist eine echte Fundgrube fiir jeden COMMO-
DORE 64 Anwender. Schon Uber 65000mal verkauft!

64 TIPS & TRICKS, 1984, Uber 300 Seiten, DM 49,

Know-how!

350 Seiten dick ist die 4.
erweiterte und Uberarbei-
tete Auflage von 64 INTERN
geworden. Das bereits iiber
65000mal verkaufte Stan-
dardwerk bietet jetzt noch
mehr Informationen. Hinzu-
gekommen ist ein Kapitel
Uber den IEC-Bus und viele,
viele Erganzungen, die sich
im Laufe der Zeit angesam-
melt haben. Ebenfalis Uber-
arbeitet und noch ausfuhrlicher ist jetzt die Doku-
mentation des ROM-Listings. Weitere Themen:
genaue Beschreibung des Sound- und Video-Con-
trollers mit vielen Hinweisen zur Programmierung
von Sound und Grafik, der Ein/Ausgabesteuerung
(CIAs), BASIC-Erweiterungen (RENEW, HARDCOPY,
PRINTUSING), Hinweise zur Maschinenprogrammie-
rung wie Nutzung der E/A-Routinen des Betriebs-
systems, Programmierung der Schnittstelle RS 232,
ein Vergleich VC20 - C-64 - CBM zur Umsetzung von
Programmen. Dies und viele weitere Informatio-
nen machen das umfangreiche Werk zu einem
unentbehrlichen Arbeitsmittel fur jeden, der sich
ernsthaft mit Betriebssystem und Technik des C-64
auseinandersetzen will. Zum professionellen
Gehalt des Buches tragen auch zwei Original-COM-
MODORE-Schaltpldane zum Ausklappen und zahl-
reiche ausfuhrlich beschriebene und dokumen-
tierte Fotos, Schaltbilder und Blockdiagramme bei.

64INTERN, 4. Uberarbeitete und erweiterte Auflage,
1984, ca. 350 Seiten, DM 69-

EINDATABECKER BUCH

Erfolgreich.

64 flr Profis zeigt, wie man
erfolgreich Anwendungs-
probleme in BASIC I6st und e
verrat die Erfolgsgeheim-
nisse der Programmier- 64
profis. vom Programment- "

wurf Gber Menisteuerung, fiir Profis
Maskenaufbau, Parametri-
sierung, Datenzugriff und
Druckausgabe bis hin zur
guten Dokumentation wird
anschaulich mit vielen Bei-
spielen dargestellt wie Profi-Programmierung vor
sich geht. Besonders stolz sind wir auf die vollig
neuartige Datenzugriffsmethode QUISAM, die in
diesem Buch zum ersten Mal vorgestelit wird.
QUISAM erlaubt eine beliebige Datensatzlange, die
dynamisch mit der Eingabe der Daten wachst. Eine
lauffertige Literaturstellenverwaltung veran-
schaulicht die Arbeitsweise von QUISAM.Neben die-
sem Programm finden Sie noch weitere Pro-
grammezurLager-undAdressenverwalitung, Text-
verarbeitung und einen Reportgenerator. Alle
diese Programme sind mit Variablenliste versehen
und ausfiihrlich beschrieben. Damit sind diese fur
Ihre Erweiterungen offen und kdnnen von lhnen
an Ihre persdnlichen Bedirfnisse angepaBt wer-
den. Steigen Sie in die Welt der Programmierprofis
ein.

64 FOR PROFIS, 2. Auflage, 1984, ca. 300 Seiten,
DM 49-

EMDATA BECKER BUCH

Rundum gut!

Endlich ein Buch, das Ihnen
ausfiihrlich und verstandlich
die Arbeit mit der Floppy VC-
1541 erkiart. Das groBe
Floppybuch ist fur Anfanger,
Fortgeschrittene und Profis
gleichermaBen. interessant.
Sein Inhalt reicht von der
Programmspeicherung bis
zum DOS-Zugriff, von der
sequentiellen Datenspeiche-
rung bis zum Direktzugriff,
von der technischen Beschreibung bis zum aus-
fahrlich dokumentierten DOS-Listing, von den
Systembefehlen bis zur detaillierten Beschreibung
der Programme auf der Test-Demo-Diskette. Exakt
beschriebene Beispiel- und Hilfsprogramme ergan-
zen dieses neue Superbuch. Aus dem Inhalit: Spei-
chern von Programmen - Floppy-Systembefehle -
Sequentielle Datenspeicherung - relative Daten-
speicherung - Fehlermeldungen und ihre Ursa-
chen - Direktzugriff - DOS-Listing der vC-1541 -
BASIC-Erweiterungen und Programme - Overlay-
technik - Diskmonitor - IEC-Bus und serieller Bus -
Vergleich mit den groBen CBM-Floppies. Ein MuB fur
jeden Floppy-Anwender! Bereits Gber 45.000mal
verkauft.

DAS GROSSEFLOPPY-BUCH, 2. Uiberarbeitete Auflage,
1984, ca. 320 Seiten, DM 49,

BASIC-PLUS.

SIMON's BASIC ist ein Hit -
wenn man es richtig nutzen
kann. Auf ber 300 Seiten
erklart lhnen das DATA
BECKER Trainingsbuch detail-
liert den Umgang mit den
ber 100 Befehlen des
SIMON's BASIC. Alle Béfehle
werden ausfiihrlich dar-
gestellt, auch die, die nicht
im Handbuch stehen! Natiir- FmpATAECRER U
lich zeigen wir auch die
Macken des SIMON's BASIC und geben wichtige Hin-
weise wie man diese umgeht. Natirlich enthalt das
Buch viele Beispielprogramme und viele inter-
essante Programmiertricks. Weiterer Inhalt: Ein-
fuhrung in das CBM-BASIC 2.0 - Programmierhilfen
- Fehlerbehandlung - Programmschutz - Pro-
grammestruktur - Variablen - Zahlenbehandlung -
Eingabekontrolle-Ein/Ausgabe Peripheriebefehle
- Graphik - Zeichensatzerstellung - Sprites - Musik
-SIMON'sBASICunddieVertraglichkeit mitanderen
Erweiterungen und Programmen. Dazu ein um-
fangreicher Anhang.Nach jedem Kapitel finden Sie
Testaufgaben zum optimalen Selbststudium und
zur Lernerfolgskontrolle.

DAS TRAININGSBUCH ZUM SIMON's BASIC, 2. Uber-
arbeitete Auflage, 1984, ca. 380 Seiten, DM 49-

Futtern
erwiinscht!

Diese beliebte umfangreiche
Programmsammiung hat es
in sich. Uber 50 Spitzenpro-
gramme fUr den COMMO-
DORE 64 ausden unterschied-
lichsten Bereichen, von
attraktiven Superspielen
(Senso, Pengo, Master Mind,
Seeschlacht, Poisson Square,
Memory) Uber Grafik- und
Soundprogramme (Fourier 64, Akustograph, Funk-
tionsplotter) und mathematische Prograrhme
(Kurvendiskussion, Dreieck) sowie Utilities (SORT,
RENUMBER, DISK INIT, MENUE) bis hin zu kompletten
Anwendungsprogrammen wie ,Videothek’, ,File
Manager” und einer komfortablen Haushaltsbuch-
fuhrung,inder fast professionellgebucht wird.Der
Hit zu jedem Programm sind aktuelle Program-
miertips und Tricks der einzelnen Autoren zum Sel-
bermachen. Also nicht nur abtippen, sondernauch
dabei lernen und wichtige Anregungen fir die
eigene Programmierung sammelin.

DATA BECKER's GROSSE 64er PROGRAMMSAMMLUNG,
1984, 250 Seiten, DM 49-

Schrittmacher.

Eine leicht verstandliche Ein-
fahrung in die Maschinen-
spracheprogrammierung
fur alle, denen das C-64 BASIC
nicht mehr ausreicht. Sie
lernen Aufbau und Arbeits-
weise des 6510-Mikroprozes-
sors kennen und anwenden.
Dabei werden die Analogien
Zu BASIC Ihnen beim Verstandnis helfen. Ein weite-
res Kapitel beschaftigt sich mit der Eingabe von
Maschinenprogrammen. Dort erfahren Sie auch
alles Uber Monitor-Programme sowie tiber Assem-
bler. Zum einfachen und komfortablen Erstelien
Ihrer eigenen Maschinensprache enthalt das Buch
einen kompletten ASSEMBLER, damit Sie gleich von
Anfang an komfortabel und effektiv programmie-
ren kénnen. Weiterhin finden Sie dort einen DIS-
ASSEMBLER, mit dem Sie sich Ihre Maschinenpro-
gramme oder die Routinen des BASIC-Interpreters
und des BASIC-Betriebssystems ansehen kdnnen.
Ein besonderer Clou ist ein in BASIC geschriebener
Einzelschrittsimulator, mit dem Sie lhre Pro-
gramme schrittweise ausfilhren konnen. Dabei
werden Sie nach jedem Schritt Gber Register-
inhalte und Flags informiert und kénnen den logi-
schen Ablauf lhres Programmes verfolgen. Eine
unschéatzbare Hilfe, besonders fir den Anfanger.
Als Beispielprogramm finden Sie ausfihrlich
beschriebene Routinen zur Grafikprogrammie-
rung und fur BASIC-Erweiterungen. Natdrlich sind
alle Beispiele und Programme auf den C-64 zuge-
schnitten.

DAS MASCHINENSPRACHEBUCH ZUM COMMODORE 64,
ca. 200 Seiten, DM 39,-

SYNTHIMAT

SYNTHIMAT verwandelt Inren COMMODORE 64in
einen professionellen, polyphonen, dreistimmi-
gen Synthesizer, der in seinen unglaublich vie-
len Moglichkeiten groBen Systemen kaum
nachsteht.

SYNTHIMAT in Stichworten:

drei Oszillatoren (VCOs) mit 7 FuBlagen und 8
Wellenformen - drei Hullkurvengeneratoren
(ADSRS) - ein Filter (VCF) mit 8 Betriebsarten und
Resonanzregulierung - VCF mit Eingang flr
externe Signalquelle - ein Verstarker (VCA) -
Ringmodulation mit allen drei VCOs - 8 soft-
waremaBig realisierte Oszillatoren (LFOs) - kraf-
tiger Klang durch polyphones Spielen - zwei
Manuale (Solo und Begleitung) - speichern von
bis zu 256 Klangregistern - schneller Register-
wechsel - speichern von 9 Registerdateien auf
Diskette - ,Bandaufnahme" auf Diskette durch
direktes Spielen - keine lastige Noteneingabe -
speichern von bis zu 9 ,Bandaufnahmen’ je Dis-
kette - integrierte 24 Stunden-Echtzeituhr -
einstellbares PITCH-BENDING - farblich gekenn-
zeichnete, Ubersichtlich angeordnete Moduie -
umfangreiches Handbuch - lduft mit einem Dis-
kettenlaufwerk - Diskettenprogramm.

DM 99~

STRUKTO 64

STRUKTO 64 ist eine fantastische neue Program-
miersprache fir strukturiertes Programmieren
mit dem C-64 und fur alle Programmierer geeignet,
die den C-64 ais Allround-Computer einsetzen und
auf einfache Weise anspruchsvolle Programme
erstellen wollen.

STRUKTO 64 in Stichworten:
Interpretersprache, die die Vorziige von BASIC und
PASCAL vereint - strukturiertes Programmieren -
ubersichtliche Programme - leichte Erlernbarkeit
-einfache Bedienung - eingebautesToolkit erleich-
tert das Eingeben und Verbessern von Program-
men - leichteres Arbeiten mit der Floppy - Sprite-
Editor ermdglicht das Einlesen der Sprite-Formen
direkt vom Bildschirm - Graphikbedienung wird
mit gut durchdachten Befehlen unterstutzt -
Abspielen von Musik ist unabhdngig vom Pro-
grammablauf méglich - ca.80 neue Befehle - liefer-
bar als Diskettenprogramm - ausfiihrliches deut-
sches Handbuch.

DM 99-

Fir viele ein Traum, fur die meisten bisher zu
teuer: die Rede ist von einer echten Datenbank
fir den 64er. SUPERBASE 64 fillt eine Licke.
Nicht allein die Kapazitit, die verwaltet werden
kann, bewegt sich in professionellen Regionen,
die ausgepragten Fahigkeiten des SUPERBASE
64 im Rechnen und Kalkulieren lassen dieses
paket beinahe als Rund-Um-Software erschei-
nen.

SUPERBASE 64 in Stichworten:
maximale Datensatzlange 1108 Zeichen, verteilt
auf bis zu 4 Bildschirmseiten - bis zu 127 Felder
pro Datensatz, wobei Textfelder bis zu 255 Zéi-
chen lang sein kénnen - insgesamt 15 Einzel-
dateien kénnen zu einer SUPERBASE-Datenbank
verknupft werden - Speicherkapazitat nur
durch Diskette begrenzt - umfangreiche Aus-
wertungsmaéglichkeiten und komfortabler
Report-Generator - Kalkulationsmoglichkeiten
und Rechnen - Import- (Einiesen von externen
Daten) und Export- (Ausgabe von SUPERBASE
Dataien als sequentielle Datei) Funktionen
ermoglichen Datenaustausch mitanderen Pro-
grammen - durch leistungsfahige, eigene
Datenbanksprache auch als kompletter An-
wendungsgenerator verwendbar.

DM 398-

=
MASTER 64
MASTER 64 ist ein professionelles Programm-
entwicklungssystem flr den C-64, das es lhnen
ermoglicht, die Programmentwicklungszeit
auf einen Bruchteil der sonst Ublichen Zeit zu
reduzieren. MASTER 64 bietet einen Programm-
komfort, den Sie nutzen soliten.

MASTER 64 In Stichworten:

70 zusatzliche Befehle - Bildschirmmasken-
generator - definieren von Bildschirmzonen -
Eingabe aus Zonen - formatierte Ausgabe -
Abspeicherung von Bildschirminhaiten - Arbei-
ten mit mehreren Bildschirmmasken - ISAM
Dateiverwaltung, in der Datensdtze uber einen
Zugriffschlussel angesprochen werdenkdénnen
-Datensatze bis zu 254 Zeichen - Schlussellange
bis zu 30 Zeichen - DateigréBe nur von Disket-
tenkapazitdt abhdngid - Zugriff tber Schiussel
und Auswahlmasken - Bildschirm- und Druck-
maskengenerator - Erstellung beliebiger For-
mulare und Ausgabemasken - BASIC-Erweite-
rungen - Toolkitfunktionen - Mehrfachgenaue
Qr}:hmetik (Rechnen mit 22 Stellen Genauig-

eit).

DM 198~

TEXTOMAT

Das Bearbeiten vonTexten gehort zum wichtig-
sten Betatigungsfeld von Homecomputer-An-
wendern. So ist es auch nicht verwunderlich,
daB eine UnzahlverschiedenerTextprogramme
fur den 64er angeboten wird. TEXTOMAT zeich-
net sich dadurch aus, daB er auch vom Einstei-
ger sofort benutzt werden kann. Ober eine
Menuezeile kénnen alle Funktionen angewahit
werden. Selbstverstandlich beherrscht TEXTO-
MAT deutsche Umlaute und Sonderzeichen.

TEXTOMAT in Stichworten:
Diskettenprogramm - durchgehend menue-
gesteuert - deutscher zZeichensatz auch auf
COMMODORE-Druckern Rechenfunktionen fir
alleGrundrechenarten-24.000Zeichen proText
im Speicher - beliebig lange Texte durch Ver-
knipfung - horizontales Scrolling fur 80 Zei-
chen pro Zeile - lauft mit1 oder 2 Floppies - frei
programmierbare Steuerzeichen - Formular-
steuerung fir Randeinstellung us.w. - kom-
plette Bausteinverarbeitung - Blockoperatio-
nen, suchen und Ersetzen - Serienbriefschrei-
bung mit DATAMAT - formatierte Ausgabe auf
Bildschirm - an fast jeden Drucker anpaBbar -
ausfuhrliches deutsches Handbuch mit
Ubungslektionen.

DM 99

PAINT PIC

Malen () mit dem Computer, welch eine faszinie-
rende Idee. Mit dem Malprogramm PAINT PIC fir
den COMMODORE 64 wird diese Idee Realitat. Mit
PAINT PICist esauch flr den Einsteiger leicht, fanta-
stische Computerbilder zu erstellen. Man kann die
Bilder auf Diskette abspeichern und wieder laden
und selbstverstandlich steht auch weiterhin der
COMMODORE-Zeichensatz zur Verfigung. Wichtig:
PAINT PIC bendtigt keine zusatzliche Hardware.

PAINT PIC Iin Stichworten:

Programmsteuerung: Tastatur - Steuerung des
Stifts: Cursortasten und eckige Klammer (diag.)
(Joystick kann benutzt werden) - Routinen: Linien,
Rechtecke, Dreiecke, Parallelogramme, Kreise,
Kreisbégen, Ellipsen, Bestimmung von Mittelpunkt,
und perspektivischer Linie, Kopieren und Drehen
von Teilbildern, Verdoppeln, halbieren und spiel-
geln von Teilbildern - Modi: Malstiftmodus
(schmale Linie) Pinselmodus (8 verschiedene Brei-
ten) (Art der Linie selbst definierbar) — Textmodus
(kompl. Zeichensatz COMMODORE) (Hoch-Tief-
schrift) - Speichern: Teilbilder (Bl6cke) oder ganze
Bilder —Menue: 1 Hauptmenue mit 8 Untermenues
—mitausfihrlichem deutschen Handbuch - Disket-

tenprogramm - Bilder kann man auf Diskette

abspeichern.
DM 99~

PROFIMAT

Wer sich tiefer in die Innereien des Computers
begeben will, kommt ohne besonderes Werk-
zeug nicht aus. Einerseits muB der volle Einblick
in alle Speicherbereiche moglich sein, anderer-
seits soll der Umgang mit Maschinenprogram-
men so komfortabel wiemdglich gestaltet sein.
PROFIMAT hat Losungen fir beide Probleme:
Der Maschinensprache-Monitor PROFI-MON bie-
tetalle Hilfsmittel zum Umgang mit Maschinen-
programmen; PROFI-ASS ist ein Macro-Assem-
bler, der das Schreiben von Maschinenpro-
grammen fast so einfach macht wie das Pro-
grammieren in BASIC.

PROFIMAT In Stichworten:
Registerinhalte und Flags anzeigen - Speicher-
inhalte anzeigen - Maschinenprogramme
laden, ausfihren und speichern - Speicher-
bereiche durchsuchen, vergleichen, fullen und
verschieben - echter Einzelschrittmodus - Set-
zen von Unterbrechungspunkten - schneller
Trace-Modus - Riickkehr zu BASIC - formatfreie
Eingabe - Verkettung beliebig vieler Quellpro-
gramme - erzeugter Objektcode kann in Spei-
cher oder auf Diskette gehen - formatiertes
Assemblerlisting - ladbare Symboltabellen -
redefinierbare Symbole - Operatoren - Unter-
stutzung der FlieBkommaarithmetik - be-
dingte Assemblierung - Assemblerschleifen -
MACROS mit beliebigen Parametern.

DM 99~

KONTOMAT

KONTOMAT ist ein menuegesteuertes Einnah-
me-OberschuBprogramm nach §4(3) EStG mit
Kassenbuch, Bankkontenuberwachung, auto-
matischer Steuerbuchung, AFA Tabellenerstel-
lung, Kontenblattern, Ermittlung der USt-Vor-
anmeldungswerte und Monats- und Jahres-
abrechnung. Der neue KONTOMAT ist voll para-
meterisiert und 148t sich damit an Ihre Bedurf-
nisse anpassen. Fur alleGewerbetreibenden, die
nicht laut HGB zur Buchflihrung verpflichtet
sind. KONTOMAT ist fir den gewerblichen Ein-
satz, aber auch als Lernprogramm oder zur
Haushaltsbuchfuhrung geeignet.

KONTOMAT In Stichworten:
Diskettenprogramm - maximal 120 Konten -
Betrige mit bis zu 6Vor-und 2Nachkommastellen -
4 Mehrwert- und Vorsteuersitze - intervalimagige
Belegeingabe - 4 Buchungsarten (SOLL, HABEN,
SOLL/HABEN und*HABEN/SOLL) - Anzeige der Soll-
und- Habensumme bei mehrfachen Buchungssat-
zen - komfortable Belegeingabe mit Datum,
Buchungstext, Stuerkennzeichen und Betrag -
Druck des Journals wiahrend der Belegeingabe -
Druck von umfangreichen Kontenblattern - Druck
einer Summen- und Saldenliste mit Monats- und
Jahresumsatzsummen - betriebswirtschaftliche
Auswertung mit Druckausgabe - Ermittlung und
Druckausgabe der Umsatzsteuerzahllast - Speiche-
rung der Anlagegiter und automatische Abschrei-
bung am Jahresende - Uibersichtliche AfA-Liste -
arbeitet mit 1 oder 2 Laufwerken -umfangreiches
deutsches Handbuch.

DM 148~

FAKTUMAT

Mit FAKTUMAT ist das Schreiben von Rechnun-
gen kein Alptraum mehr. Eine Sofortfakturie-
rung mit integrierter Lagerbuchfiihrung. Indi-
viduelle Anpassung von Steuersatzen, MaBein-
heiten und Firmendaten. Kunden- und Artikel-
stamm voll pflegbar. Schneller Zugriff auf Kun-
den- und Artikeldaten, Uber freidefinierbaren,
6-stelligen Schitissel. Automatische Fortschrei-
bung von Artikel- und Kundendaten, individuell
nutzbar. Alles in allem die Arbeits- und Zeit-
ersparnis, die Sie sich schon immer gewinscht
haben.

FAKTUMAT in Stichworten:

vollmenuggesteuert - 1duft mit eineroderzwei
Floppies - Diskettenwechsel (eine Floppy) nur
beim Wechsel vom Hauptmenue ins Unterpro-
gramm und umgekehrt - mit Ausnahme des
Ausschaltens der Floppy wahrend derVerarbei-
tung werden alle Fehler abgefangen (z.B. Druk-
ker nicht eingeschaltet - arbeitet mit 1525,1526
(?), MPS 801, EPSON Drucker und DATA BECKER
Interface - voll parameterisiert: Firmenkopf,
MWSt. und Rabattsatze, GréBe der Dateien belie-
big wahlbar - 5 Zeilen fur Firmenkopf je 30
Zeichen (erste Zeile erscheint auf derRechnung
in Breitschrift - 4 Mehrwertsteuer-Satze; wah-
rend der Rechnungsschreibung kénnen also
Artikel mit unterschiedlichem Mehrwert-
steuer-Satz verrechnet werden - 10 Rabatt-
s4tze (Rabattsatz 1 vorbelegt mit 0%), bei der
Rechnungsschreibung kann jedem Artikel ein
Rabattsatz zugewiesen werden - maximal 1900
Artikel bei 50 Kunden oder 950 Kunden bei 100
Artikel (max. Artikel = [1000-Kundenl+2; max.
Kunden = [2000-Artikell/2) - manuelle Eingabe
von Artikeln und/oder Kunde wahrend der
Rechnungsschreibung - d.h. es kbnnen mehr
Artikel verrechnet weden als Uberhaupt in die
Datei passen (bei Verzicht auf Lagerbuchfih-
rung) bzw. es kdnnen Rechnungen an Kunden
geschrieben werden, die nicht erfaBt wurden -

integrierte Lagerbuchfiihrung mit Ausgabe
einer Inventurliste - Rechnungsbetrige und
Datum werden in der Kundendatei festgehal-
ten - Druck von: Rechnung (mit Abbuchen aus
Lagen), Rechnung (ohne Abbuchen aus Lagen),
Lieferschein - deutsches detailliertes Hand-
buch mit Obungs- und Anwendungsteil -
deutsche Bedienerfiinrung innerhalb des Pro-
gramm:s (z.B. ,Artikel nicht vorhanden® anstelle
,RECORD NOT PRESENT").

DM 148 -

UNI-TAB

Heute schon die Bundesliga-Tabelle von morgen
kennen, das geht mit UNI-TAB. Alle Rechnereien, die
man ohne dieses Programm nie machen wirde,
lassen sich in Sekundenschnelle durchfiinren. Wer
will, kann mit simulierten Spielergebnissen den
Weltmeister '86 vorausberechnen. Aber nicht nur
FuBball-Ligen kdnnen tabellarisch erfaBt werden,
fast alle Sportarten sind UNI-TAB-fdhig. Gag am
Randée: flr viele Sportarten stehen die bekannten
Piktogramme zur Verfigung.

UNI-TAB in Stichworten:

Menuesteuerung Uber die Funktionstasten mit
leicht verstandlichen Auswahimdglichkeiten -
Bedienerfreundlich (Mannschaften werden uber
Kennzahien gesteuert) - Ligen mit 4 bis 20 Mann-
schaften kénnen verwaltet werden (6 bis 38 Spiel-
tage mdoglich) - unsinnigeLigen (z.B.13Mannschaf-
ten solien 5 Spieltage absolvieren) sind ausge-
schlossen - favorisierte Mannschaft kann wahrend
des Programmablaufs durch reverse Darstellung
gekennzeichnet werden - Tabelle kann geandert
werden (wichtig bei Spielanullierungen) - drei ver-
schiedene Tabellenarten kénnen abgespeichert
und spéter eingelesen werden (die aktuelle Tabelle
[unabhdngig von der Volistandigkeit eines Spiel-
tages), der komplette Spieltag [Volistandigkeit und
Nummer des Spieltages werden automatisch
errechnet], die simulierte Tabelle [der Anwender
kann so selbst Schicksal spielen und seinenTip spa-
ter mit dem tatsichlichen Geschehen verglei-
chen) - zwei verschiedene Arten der Saisonuber-
sicht (die statistische Obersicht zeigt an, welchen
Tabellenplatz das jeweilige Team bei welchem
Punkte- und Torverhdltnis an den einzelnen Spiel-
tagen einnahm; die graphische Obersicht zeigt die
Leistungskurve jeder Mannschaft) - alle Tabellen
und Graphiken sind als Hardcopy auf einem Druk-
ker darstellbar - bei Fehlbedienung (z.B. ge-
wiinschte Druckausgabe bei nicht eingeschalte-
tem Drucker) erscheinen leicht verstandliche
deutsche Fehiermeldungen.

DM 69-

SUPERGRAFIK 64

Entdecken Sie die faszinierende Welt der Com-
putergraphik mit SUPERGRAFIK 64, der starken
Befehlserweiterung mit den vielseitigen M6g-
lichkeiten. Durch die neue verbesserte Version
jetzt noch leistungsstarker.

SUPERGRAFIK 64 In Stichworten:
2unabhingige Graphikseiten (320x200 Punkte)
- logische Verknipfung der beiden Graphiksei-
ten (AND, OR, EXOR) - 1 Standard Low-Graphik
Seite (80x50 Punkte) - Normalfarben Graphik
(300 x 200 Punkte) - Multicolor-Graphik (160 X200
Punkte) - verdecktes Zeichnen (z.B. Text sicht-
bar, Graphikseite 2 wird erstellt) -Textfensterin
der Graphik - 183 Befehle und Befehlskombina-
tionen (1. Fur jeden Befehl wahibare Zwischen-
modi: Zeichnen, Loschen, Punktieren, Graphik-
Cursor bewegen, zeichnen mit/ohne Farbset-
zung, Punkte zahlen; 2. Durch einfache Befehle
zu steuernde Graphikfiguren: Punkt, Linie,
Linienschar, Linie vom Graphik-Cursor, Kreise,
Kreisbdgen, Ellipse, Ellipsenbdgen, selbstdefi-
nierbare Figuren, rotieren und vegrdBern die-
ser Figuren, Rahmen, Feld, Text in Graphik; 3.
Weitere Graphikbefehle: Graphikseiten- und
Moduswechsel, Graphik 16schen, Graphik inver-
tieren, Scrolling von Text und Graphik, Wahlen
der Rahmen- Hintergrund- Zeichen- oder
Punktfarbe) - Speichern, Laden von Graphik
(auch verdeckt) - Kopieren des Textbildschirms
in die Graphikseite - Hardcopies fur EPSON, Sei-
kosha GP100VC, Farb(hdrucker Seikosha GP700
und andere mit DATA BECKER Interface - 16!
Sprites gleichzeitig auf dem Bildschirm - alle
Sprite-Eigenschaften veranderbar - Positionie-
ren und Bewegen () von 16 Sprites gleichzeitig
und unabhingig voneinander, wahrend das
ubrige Programm weiterlduft (IRQ) - Sprite-Kol-
lisionstuiberprifung, Joystickunterstitzung -
automatische Unterbrechung des BASIC-Pro-
gramms bei Kollisionen (Interrupt), Sprung in
Unterbrechungsroutine, dann Weiterfihrung
des Hauptprogramms - komfortabie Sound-
programmierung mit Verstellung aller mog-
lichen Sound-Parameter (Lautstarke, Klang, Fil-
ter, Tonh6he, Tonldnge), ebenfalls unabhangig
vom ubrigen Programmlauf - zahireichen Pro-
grammiertools (MERGE, RENUMBER usw. - um-
fangreiche Anleitung - Diskettenprogramm.

DM 99~

PASCAL 64

Beim Wort ,Compiler* filit dem Eingeweihten
sicher der Begriff ,Geschwindigkeit’ ein. Ein
PASCAL-Compiler sollte jedoch weitere Assozia-
tionen wecken. Strukturiertes Programmieren
heiBt das Zauberwort. PASCAL wurde eigens zu
didaktischen Zwecken entwickelt und erfilit

diese Aufgabe auch heute noch. Der PASCAL 64
Compiler bringt diese phantastische Program-
miersprache auf den 64er.

Gerade die neue, verbesserte version unter-
stutzt die Méglichkeiten des C-64 in jeder Hin-
sicht und macht leistungsfahige Programme

. moglich.

PASCAL 64 in Stichworten:

besitzt einen sehr umfangreichen Befehisvor-
rat - erlaubt Interruptprogrammierung und
bietet Schnittstellen zu Monitor und Assembler
- erzeugt sehr schnelle Programme in reinem
Maschinencode - unterstitzt relative Dateiver-
waltung, Graphik und Sound - bietet die Daten-
typen REAL, INTEGER, CHAR und BOOLEAN sowie
Aufzadhitypen und POINTER, die zu Datenstruk-
turen RECORD, SET, ARRAY und PACKED ARRAY
kombiniert werden kénnen - erlaubt vorzeiti-
gen AbschiuB von Prozeduren mit EXIT, unein-
geschrankte Rekursionenund komfortableVver-
arbeitung von Teilfeldern (Strings) - ist ein aus-
gereiftes, deutsches Produkt und wird mit aus-
fuhrlichem Handbuch geliefert.

DM 99~

DISKOMAT

Der Umgang mit Diskettenlaufwerken ist fur
viele noch immer mit Geheimnissen belastet.
Andere stéren sich an den wenig komfortablen
Diskettenbefehlen des BASIC V2. DISKOMAT
bringt Abhilfe; alle Diskettenbefehle des BASIC
40 stehen zur Verfiigung. AuBerdem kdnnen
mit dem Programm SUPERTWIN zwei1541-Lauf-
werke wie ein Doppellaufwerk verwaitet wer-
(den. Fur Benutzer, die sich die Fahigkeiten der
Floppy 1541 ganz erschlieBen wollen, stent der
DISK-MONITOR bereit; er macht es endlich mog-
lich, den direkten zugriff auf einzelne Blocks
einfach und bequem vorzunehmen.

DISKOMAT In Stichworten:
Diskettenprogramm - DISK BASIC unterstutzt
Diskettenbefehle des BASIC 4.0 (CONCAT,
HEADER, APPEND, RENAME, OPEN, COLLECT,
DSAVE, SCRATCH, DCLOSE, BACKUP, DLOAD, DIREC-
TORY, RECORD, COPY, CATALOG, DS & DS$) - SUPER
TWIN behandelt 2 Laufwerke 1541 wie ein Dop-
pellaufwerk -DISK-MONITOR ermdglicht direkte
Analyse und Manipulation von Disketten (direk-
tes Lesen und Schreiben einzelner Blocke,
4ndern von Blocken mittels Bildschirm-Editor,
Anzeige des Diskettenstatus, direktes Absen-
den von Disketten-Befehlen) - ausfuhrliches
deutsches Handbuch beschreibt jeden einzel-
nen der 3 Programmteile.

DM 99~

HAUSVERWALTUNG

Jetzt kénnen alle Hausbesitzer aufatmen: das Pro-
gramm HAUSVERWALTUNG bietet ihnen eine sehr
komfortable Verwaltung der Mietwohnungen mit
dem COMMODORE 64.

Alles, was Sie dazu brauchen, ist ein COMMODORE 64,
ein Diskettenlaufwerk 1541, ein anschiuBfahiger
Drucker und das obengenannte Programm HAUS-
VERWALTUNG. Die nachfolgendenund viele weitere
leistungsfahige Featuresermaoglichen eineduBerst
rationelle verwalitung ihrer Mietwohnungen.

HAUSVERWALTUNG in Stichworten:
Dikettenprogramm -Verwaitung von 50 Einheiten
pro Objekt méglich - Stammdatenverwaltung fur
Hiuser und Mieter - Verbuchen der Miete, Neben-
kosten und Garagenmieten - Mietkontoanzeige -
Haus- und Mieteraufstellung - Mahnungen - Ver-
buchen der anfallenden Kosten - Kostengegen-
Uberstellung - Jahresendabrechnung mitautoma-
tischem Jahresibertrag - umfangreiches deut-
sches Handbuch.

DM 198~

TRAININGSKURS zu ADA

Diese Programmiersprache der Zukunft, diedas
Pentagon in Auftrag gegeben hat, wird jetzt
durch DATA BECKER auch dem C-64 Anwender
zuganglich gemacht durch den TRAININGSKURS
Zu ADA, der eine sehr gute Einfuhrung in diese
supersprache bietet. Der dazu gelieferte Com-
piler liefert ein umfangreiches Subset der
Sprache.

ADA in Stichworten:

blockstrukturierte Programme - modularer
Aufbau der Programme - ermdglicht die
Behandlung von Ausnahmezustanden - Féehler-
Uiberprufung beim Ubersetzen und zur Laufzeit
- ermoglicht das einfache Einbinden von
Maschinenprogrammen - sehr leichtes Arbei-
ten mit Programmbibliotheken - Programm-
diskette enthalt Editor, Obersetzer, Assembler
und Disassembler - umfangreiches deutsches
Handbuch.

DM 198~

DATAMAT

Daten verwalten kann ein schier endloses Han-
tieren mit Karteikdsten und Aktenordnern
bedeuten; kann aber auch C-64 plus DATAMAT
heiBen. Dann wird Suchen und Sortieren zum
SpaB. Der DATAMAT bietet in seiner neuen Ver-
sion einiges, was in dieser Preisklasse bisher
unvorstellbar schien. Nicht nur Geschwindig-
keit und Bedienungsfreundlichkeit wurden
weiter verbessert, auch die Anpassung an die
meisten Drucker ist inzwischen machbar.

DATAMAT in Stichworten:
menuegesteuertes Diskettenprogramm, da-
durch extrem einfach zu bedienen - flr jede
Art von Daten - véllig frei gestaitbare Eingabe-
maske ~ 50 Felder pro Datensatz - 253 Zeichen
pro Datensatz - bis zu 2000 Datensatze pro Datei
je nach Umfang - Schnittstelle zu TEXTOMAT -
lduft mit 1 oder 2 Floppies - véllig in Maschinen-
sprache - extrem schnell - deutscher Zeichen-
satz auch auf COMMODORE-Druckern -fastjeder
Drucker anschlieBbar - ausdrucken iiber RS 232
- duplizieren der Datendiskette - verbesserte
Benutzerfihrung - Hauptprogramm komplett
im Speicher (kein Diskettenwechsel mehr) -
integrierte Minitextverarbeitung - deutsches
Handbuch mit Obungslektionen

Sie kbnnen:

jedenDatensatzin 2-3Sekunden suchen-nach
beliebigen Feldern selektieren - nach alien Fel-
dern gleichzeitig sortieren - Listen in vollig
freiem Format drucken - Etiketten drucken.

DM 99-

ZAHLUNGSVERKEHR

Umfangreicher Zahlungsverkehr kann zur
Plage werden. Das Software-Paket ZAHLUNGS-
VERKEHR Ubernimmt den gréBten Teil dieser
Arbeit. AuBer den notwendigen Fahigkeitenfur
das Ausfillen und Auflisten von Uberweisun-
gen und Schecks ist der ZAHLUNGSVERKEHR in
der Lage, Sammellisten, Einzugslisten etc. selb-
standig zusammenzustelien.

ZAHLUNGSVERKEHR in Stichworten:
Diskettenprogramm - max. 100 Zahlungsemp-
fanger pro Diskette - drei definierbare Absen-
derbanken - 25 Zahlungsdateien - 14 frei defi-
nierbare Formulare - Kontrolldruck bei Beleg-
eingabe mdoglich - Eingabe von Rechnungs-
daten oder eines Verwendungszwecks - Aus-
druck einer Sammel-Uberweisungsliste - Kor-
rekturmaoglichkeit der einzelnen Zahlungs-
dateien -arbeitet miteiner oderzweiFloppies-
umfangreiches deutsches Handbuch. *

DM 148~

DAS STEHT DRIN:

Dieses Buch erklart lhnen leichtverstandlich den
Umgang mit PEEKs und POKEs. Mit einer riesigen
Anzahl wichtiger POKEs und ihren Anwendungsmog-
lichkeiten. Dazu wird der Aufbau des 64ers prima
erklart:

Aus dem Inhalt:

— Betriebssystem, Interpreter

— Zeropage, Pointer und Stacks

— Charaktergenerator, Sprite-Register
— Programmierung von Schnittstellen
— Interruptprogrammierung

Dazu eine Einfiihrung in die Maschinensprache. Fur
jeden, der tiefer in die Geheimnisse seines COMMO-
DORE-64 einsteigen will.

UND GESCHRIEBEN HAT DIESES BUCH:

Hans Joachim Liesert, Abiturient, ist begeisterter
Anwender des C-64 und seines Betriebssystems.
Seine journalistischen Erfahrungen als Schilerzei-
tungsredakteur verhalfen ihm dazu, dieses Buch aus-
gesprochen interessant und spannend zu schreiben.

ISBN 3-89011-032-0

