
Markt&dech

Florian Matthes

mit de

A \

\ N

a2 IN \

=

\\ . \ AK

yier-Beschreist

en ‘oreaescnr
‘oye " nn
u. Ly ie a DL

Pascal mit dem C64

Monan Mathes | Pascal mit dem C64

® Compiler-Beschreibung
© Pascal-Kurs
® Tips und Tricks fiir

Fortgeschrittene

Markt & Technik Verlag AG

CIP-Kurztitelaufnahme der Deutschen Bibliothek

Matthes, Florian:

Pascal mit dem C64 : Compiler-Beschreibung, Pascal-Kurs,

Tips u. Tricks für Fortgeschrittene / Florian Matthes. -

Haar bei München : Markt-und-Technik-Verlag, 1986.

ISBN 3-89090-222-7

Die Informationen im vorliegenden Buch werden ohne Rücksicht auf einen eventuellen Patentschutz veröffentlicht.

Warennamen werden ohne Gewährleistung der freien Verwendbarkeit benutzt.

Bei der Zusammenstellung von Texten und Abbildungen wurde mit größter Sorgfalt vorgegangen.

Trotzdem können Fehler nicht vollständig ausgeschlossen werden. Verlag, Herausgeber und Autoren können

für fehlerhafte Angaben und deren Folgen weder eine juristische Verantwortung noch irgendeine

Haftung übernehmen.

Für Verbesserungsvorschläge und Hinweise auf Fehler sind Verlag und Herausgeber dankbar.

Alle Rechte vorbehalten, auch die der fotomechanischen Wiedergabe und der Speicherung in elektronischen Medien.

Die gewerbliche Nutzung der in diesem Buch gezeigten Modelle und Arbeiten ist nicht zulässig.

»Commodore 64« ist eine Produktbezeichnung der Commodore Büromaschinen GmbH, Frankfurt,

die ebenso wie der Name »Commodore« Schutzrecht genießt.

Der Gebrauch bzw. die Verwendung bedarf der Erlaubnis der Schutzrechtsinhaberin.

89 88 87

ISBN 3-89090-222-7

© 1986 by Markt &Technik Verlag Aktiengesellschaft,

Hans-Pinsel-Straße 2, D-8013 Haar bei München/West-Germany

Alle Rechte vorbehalten

Einbandgestaltung: Grafikdesign Heinz Rauner

Druck: Schoder, Gersthofen

Printed in Germany

Inhaltsverzeichnis 5

Inhaltsverzeichnis

Vorwort 9

1 Die Werkzeuge 11

1.1 Warum Pascal? 11

1.2 Was macht ein Compiler? 12

1.3 Das Pascal-System 14

1.3.1 Systemstart 14

1.3.2 Der Editor 15

1.3.3 Der Compiler 17

1.3.4 Das Laufzeitsystem 17

2 Einführung in Pascal 21

2.1 Symbole und Syntax-Diagramme 21
2.2 Programmstruktur 25

2.3 Deklaration von Variablen 27
2.4 Anweisungen und Ausdrücke 28

2.5 Einfache Ein- und Ausgabe 30

2.5.1 WRITE 30
2.5.2 READ 32
2.6 Elementare Datentypen 35

2.6.1 Der Typ INTEGER 36

2.6.2 Der Typ REAL 37
2.6.3 Gegenüberstellung REAL und INTEGER 39
2.6.4 Der Typ CHAR 40
2.6.5 Der Typ BOOLEAN 42

2.7 Deklaration von Konstanten 44

2.8 K.ontrollstrukturen 45

2.8.1 Anweisungsfolgen 46
2.8.2 Bedingte Anweisungen 47

6 Inhaltsverzeichnis

2.8.3
2.8.4
2.8.5
2.8.6
2.8.7
2.9
2.9.1
2.9.2
2.9.3
2.10
2.11
2.11.1
2.11.2
2.11.3
2.11.4
2.11.5
2.12
2.12.1
2.12.2
2.13
2.14
2.15 .
2.16
2.16.1
2.16.2
2.17
2.18
2.18.1
2.18.2

3.1
3.2

4

4.1

4.2

4.2.1

4.2.2

4.2.3

4.2.4

4.2.5

4.2.6

Fallunterscheidung

While-Anweisung

Repeat-Anweisung

For-Anweisung

Sprunganweisung |
Die Datenstruktur Array
Eindimensionale Arrays
Strings
Mehrdimensionale Arrays
Deklaration von Typen

Prozeduren

Lokalität von Bezeichnern
Parameter

Funktionen

Standardprozeduren

Rekursion
Skalare Typen und thre Operationen
Aufzählungstypen
Unterbereichstypen
Mengentypen

Der Datentyp Record
Variante Records
Der Datentyp File
Sequentiell schreiben

Sequentiell lesen
Textfiles
Dynamische Datenstrukturen
Lineare Strukturen (Listen)
Bäume

Tips und Tricks
Nützliche Pascal-Routinen

Tips zum Editor

Dokumentation Pascal-System

Das Pascal-Menü
Der Editor
Allgemeines
Gliederung des Bildschirms
Cursorsteuerung
Primary-Commands
Line-Commands
Textmodus

50
52
34
55
57
59
60
65
66
71
73
75
78
8]
82
82
92
92
94
96
99

102
107
108
108
115
121
125
132

139
139
148

151
152
153
153
154
156
158
159
161

Inhaltsverzeichnis 7

4.2.7
4.2.8

4.2.9
4.2.10
4.2.11
4.2.12
4.2.13
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.4.1
4.4.4.2
4.4.4.3
4.4.4.4
4.4.4.5
4.4.4.6
4.4.4.7
4.4.5
4.4.5.1
4.4.6
4.4.6.1
4.4.6.2

m
o

A
u

>
Tj

FIND
CHANGE
Die Tasten f2 und f4
INPUT
OUTPUT
COPY
Fehlermeldungen im Editor
Bedienung des Compilers
Wahl der Optionen

Meldungen im Compiler
Spezielles

Rickkehr zu BASIC

Sprachbeschreibung Pascal 1.4

Grundsätzliches

Sprachumfang
Reservierte Wortsymbole

Vordefinierte Bezeichner

Konstantenbezeichner

Typbezeichner
Variablenbezeichner
Prozeduren fiir dynamische Objekte
Ein- und Ausgabe

Arithmetische Funktionen
Verschiedenes

Files in Pascal 1.4

Ubernahme von Programmen mit Files
Aktive Kommentare

Bereichstests

Include-Files

Anhang

Syntax-Diagramme Pascal 1.4

Fehlernummern Pascal 1.4

Laufzeitfehler

Operatoren in Pascal

Literaturhinweise

Index

162
163
164
165.
166
168
170
172
172
173
174
176
177
177
178
182
183
183
183
183
183
184
188
189
190
192
193
193
194

195

201

205

207

211

213

8 Inhaltsverzeichnis

Vorwort 9

Vorwort

Das vorliegende Buch richtet sich an Schüler, Studenten und Hobbypro-
grammierer, die einen C 64 besitzen und einen praktischen Einstieg in
Pascal finden wollen. Dabei werden nur minimale Kenntnisse in der Pro-
grammierung vorausgesetzt.

Durch die Einheit Buch-Diskette können die nicht zu unterschätzenden
Probleme eines Anfängers bei der Benutzung eines Compilers ausgeräumt

werden. Das erste Kapitel beschreibt deshalb zunächst an einem Beispiel

Schritt für Schritt die Bedienung des Systems.

Kapitel 2 stellt einen vollständigen Pascal-Kurs für Anfänger dar. Da der

beiliegende Compiler den vollen Standard (1) akzeptiert, werden alle Ele-

mente von Pascal vorgestellt. Der Leser soll möglichst früh die Grundlagen

von Pascal erlernen, mit denen er erste einfache Programme erstellen kann.

Beispiele sollen nicht Selbstzweck sein, sondern später zumindest als

Schema für eigene Problemlösungen dienen. Im gesamten zweiten Kapitel
werden Anregungen gegeben, das erworbene Wissen durch eigene Experi-

mente am C 64 zu festigen.

Kapitel 3 richtet sıch an den fortgeschrittenen Anwender. Während die
Einführung auf systemspezifische Programme verzichtet (Sprites, Grafik,
Sound), werden hier Tricks und Tips zum Pascal-System gegeben.

In Kapitel 4 ıst die Dokumentation des Pascal-Systems zusammengestellt.
Sie gibt klare Auskunft auch über Details des Editors und Compilers.

10 Vorwort

Die Werkzeuge 11

1 Die Werkzeuge

1.1 Warum Pascal?

An dieser Stelle sollen nicht weitschweifig die grundsätzlichen Vorteile der

Strukturierten Programmierung dargestellt werden, sondern die sinnvollen

Anwendungsgebiete für Pascal auf dem C 64, einem typischen Homecom-

puter, gezeigt werden.

Einerseits kann man die Sprache Pascal um ihrer selbst willen benutzen:

Man arbeitet mit Pascal, um eine moderne Programmiersprache zu be-
herrschen und vielleicht das Wissen in Schule, Universität oder Beruf zu

verwenden.

Andererseits bieten einige Hobbyanwendungen (Logikspiele, Dateipro-
gramme, Mathematikprogramme) Beispiele für Gebiete, in denen eine
Sprache mit mächtigeren Strukturen für Daten und Programme deutliche
Vorteile gegenüber BASIC besitzt.

Schließlich sprechen auch die höhere Ausführungsgeschwindigkeit und der
kompakte Code bei großen Programmen für die Verwendung von Pascal.

Nicht zu vergessen ıst die Portabilität der Programme. Ein Programm, das
auf dem C 64 in Pascal erstellt wurde und keine speziellen Eigenschaften
des C 64 benutzt (SYS-Befehle etc.), kann direkt auf einen IBM-PC,
ATARI 520 ST oder gar einen Großrechner an der Universität übernom-

men werden.

12 Die Werkzeuge

Neben diesen Vorteilen dürfen aber auch die Grenzen von Pascal nicht
vergessen werden. Ein schnelles Action-Spiel wird man besser mit einem
Assembler erstellen, und Programme mit intensiven String-Operationen sind

immer noch einfacher in BASIC zu formulieren. Sicherlich wird aber die

Erfahrung mit dem strikten Formalismus in Pascal auch den Program-
mierstil in diesen Sprachen verändern.

1.2 Was macht ein Compiler?

Um die Funktionsweise des Pascal-Systems zu verstehen, muß zunächst die

Aufgabe eines Compilers erläutert werden.

Vielleicht haben Sie schon gehört, daß kein Mikrocomputer direkt BASIC

oder Pascal versteht, sondern nur in seiner speziellen Maschinensprache

programmiert werden kann. Andererseits können Sie ja offensichtlich den
C 64 mit Befehlen wie PRINT 6*4 oder GOTO 9 zu sinnvollen Tätigkeiten
bewegen. Darüber hinaus verspricht Ihnen dieses Buch, auch in Pascal mit
dem C 64 kommunizieren zu können.

Die Lösung dieses Dilemmas ist die Existenz von Hilfsprogrammen, die
BASIC oder Pascal in die primitive Maschinensprache übersetzen.

Diese Hilfsprogramme selbst sind vollständig in der Maschinensprache des

Mikroprozessors (des 6510 beim C 64) geschrieben und somit von diesem
direkt ausführbar.

Beim C 64 befindet sich dieses Hilfsprogramm für BASIC bereits beim

Einschalten im Rechner, da es zusammen mit dem Betriebssystem un-

löschbar in sogenannten ROMs gespeichert ist. Wenn Sie in BASIC eine
Zeile mit Zeilennummer eingeben, so wird diese Zeile im Rechner

gespeichert. Beim Programmstart mit RUN wird das Programm Befehl für

Befehl gelesen. Für jeden Befehl wird ein kleines Programm in Maschi-

nensprache aufgerufen, das den jeweiligen Befehl ausführt. Bei dem Befehl

PRINT 6*3 würde z.B. eine Multiplikationsroutine und dann eine Aus-

Die Werkzeuge 13

gaberoutine gestartet. Falls Sie bei der Eingabe Fehler gemacht haben,
meldet dies das System mit Angabe der Zeilennummer des fehlerhaften
Befehls:

SYNTAX ERROR IN 312

Ein Hilfsprogramm, das die Ausführung eines Programmes nach diesem
Schema schrittweise organisiert, nennt man Interpreter. Durch diese inter-
pretative Ausführung können Sie in BASIC beliebig zwischen Programm-
ausführung und Programmänderung wechseln und sogar Befehle ohne

Zeilennummer direkt ausführen.

Das Pascal-System auf der beiliegenden Diskette enthält einen Compiler.
Dies ist ein Programm, das ebenfalls eine Übersetzung der höheren
(problemorientierten) Programmiersprache Pascal in Maschinensprache
vornimmt. Der Übersetzungsvorgang unterscheidet sich wie folgt von | der

Arbeitsweise eines Interpreters:

Zunächst erstellen Sie ein komplettes (!) Programm in Pascal. Dieses Pro-
gramm geben Sie mit einem Editor, also einem Textverarbeitungspro-

gramm, ein. Dieses Programm heißt Quelltext (source code). Der Compiler
liest diesen Programmtext in einem Durchlauf. Dabei prüft er, ob das Pro-
gramm den Syntax-Regeln für Pascal entspricht. Eventuelle Fehler werden
mit einem Hinweis auf die Art des Fehlers markiert. Gleichzeitig werden
fehlerfreie Anweisungen in eine Folge von Befehlen in Maschinensprache
übersetzt.

Ergebnis der Übersetzung ist also ein Programm, das vom Rechner ohne
weitere Hilfsprogramme ausgeführt werden kann. Dieses Programm

bezeichnet man als Objektprogramm (object code). Theoretisch könnten Sie
jetzt den Quelltext löschen, da dieser nicht mehr benötigt wird. Natürlich
werden Sie das nicht tun, da das Programm noch logische Fehler enthalten
kann, die der Compiler nicht entdeckt.

Zur Korrektur von logischen oder syntaktischen Fehlern müssen Sie wieder
von vorn anfangen: Der Quelltext muß nach einer Korrektur neu übersetzt
werden. Den Vorteil einer vollständigen Prüfung auf syntaktische Korrekt-
heit erkauft man sich also durch einen größeren Übersetzungsaufwand. Ein
weiterer Nachteil besteht darin, daß bei Fehlern bei der Ausführung des
Objektprogrammes (z.B. Division durch null) kein Verweis auf die Fehler-
position im Quelltext existiert. |

14 Die Werkzeuge

1.3 Das Pascal-System

In diesem Kapitel werden noch keine Eigenschaften der Sprache Pascal
vorgestellt, sondern nur die ersten Schritte bei der Bedienung des Pascal-
Systems genau erklärt. Nachdem Sie dieses Kapitel bearbeitet haben, ken-

nen Sie das Zusammenspiel der Komponenten des Systems, so daß Sie sich

ohne Probleme in der Dokumentation in Kapitel 4 zurechtfinden werden.

1.3.1 Systemstart

Entfernen Sie alle Erweiterungsmodule, und schalten Sie den C 64 aus und
dann wieder ein, um alle geladenen Hilfsprogramme zu löschen. Mit

LOAD "PASCAL-SYSTEM",8

laden Sie das System von der beiliegenden Diskette. Auf einer anderen

Diskette legen Sie zunächst eine Sıcherheitskopie des Programmes an:

SAVE "PASCAL-SYSTEM",8

VERIFY "PASCAL-SYSTEM",8

Die Beispielprogramme (xxx.P) können Sie so nicht kopieren. Dazu be-
nutzen Sie den Editor (s. Abschnitt 1.3.2). Haben Sie das System mit LOAD
geladen, so gelangen Sie mit dem Befehl RUN in das zentrale Menü des
Systems. In diesem Pascal-Menü können alle Teile des Systems aufgerufen

werden. Ab jetzt benötigen Sie die Programmdiskette nicht mehr im
Diskettenlaufwerk. Für die Speicherung von Pascal-Quelltexten und

Objektprogrammen können Sie jetzt eine andere (formatierte) Diskette

einlegen.

Alle Eingaben im System sind so organisiert, daß Sie mit möglichst wenigen
Zwischenschritten jede Funktion erreichen können. Dabei besitzen im all-
gemeinen die Zeichen ’* und ’?’ eine Sonderfunktion. Eingaben bei
blinkendem Cursor müssen mit der RETURN-Taste beendet werden.

Grundsätzlich wird bei längeren Operationen (Laden, Speichern, Com-

pilieren) eine Abfrage der RUN/STOP-Taste vorgenommen, so daß die

Ausführung abgebrochen werden kann.

Die Werkzeuge 15

1.3.2 Der Editor

Um Pascal-Quelltexte einzugeben und zu verändern, enthält das System
einen komfortablen Full-Screen-Editor. Mit diesem Programm können Sie
den Bildschirm wie ein Fenster in allen vier Richtungen über den Text

verschieben und direkt Änderungen vornehmen, ohne sich um Zeilennum-
mern zu kümmern. |

Sie sollen zur Übung folgenden Quelltext eingeben:

PROGRAM PROGRAMM1 (OUTPUT);

VAR I, N: INTEGER;

R : REAL;

BEGIN
WRITEC"N="); READLN(CN);
FOR I:= N TO 2*N DO

BEGIN
R:= 1/1;

WRITELNC1:3,R:15)
END

END.

Listing 1: Übungsprogramm

Den Editor erreichen Sie aus dem Pascal-Menü durch die Eingabe eines
Namens aus maximal 16 Zeichen. Dieser Name darf die Zeichen ’*, ’$’ und

’”° nicht enthalten. Unter diesem Namen speichert der Editor den Text

später auf der Diskette.

Als Namen geben Sie an dieser Stelle PROGRAMMI.P ein. Später können

Sie dann alle Quelltexte an der Endung ’.P’ erkennen. Der Editor sucht
diesen Quelltext auf der eingelegten Diskette. Da noch kein Text mit
diesem Namen existiert, teilt Ihnen der Editor mit, daß er einen neuen

Text anlegen wird. Sie müssen nun eine Zahl eingeben, die die maximale

Länge einer Textzeile bestimmt:

==>60

Wenn Sie die Eingabe mit RETURN abschließen, erscheint das eigentliche
Editor-Bild (s. Abschnitt 4.2). In der ersten Zeile wird die Nummer der
ersten Textspalte auf dem Bildschirm angegeben. Rechts außen in dieser

Zeile steht der Betrag, um den das Textfenster beim Blättern (scrollen)

verschoben wird. HALF bedeutet jeweils eine halbe Bilschirmseite. Das
Blättern selbst erfolgt mit den Funktionstasten:

16 Die Werkzeuge

fl verschiebt das Fenster nach oben.

f3 verschiebt das Fenster nach unten.

f5 verschiebt das Fenster nach links.

f7 verschiebt das Fenster nach rechts.

Der Cursor wird nicht blinkend dargestellt und wie üblich mit den Cursor-
tasten bewegt. In der obersten Zeile (weiß) werden auch Befehle (Primary-
Commands) eingegeben. Geben Sıe dort den folgenden Befehl ein:

COLUMNS

Damit ein Befehl ausgeführt wird, müssen Sie die SHIFT- und die RE-
TURN-Taste drücken. Es erscheint eine Zeile, in der Spaltenmarkierungen

eingetragen sind.

Da der Textspeicher leer ist, stehen unterhalb der Spaltenmarkierungen die

Zeilen TOP und BOTTOM direkt untereinander. Sie stehen immer vor der

ersten und nach der letzten Textzeile. Um nun das Programm einzugeben,
erzeugen Sie sich zunächst einige Leerzeilen. Dies geschieht, indem Sie in
der Zeile TOP ganz links (vor den Sternen) den Befehl (Line-Command)

110

eingeben. Wenn Sie wieder SHIFT-RETURN drücken, werden am Textan-

fang 10 Leerzeilen eingefügt. Jetzt steht das Fenster am Textende, so daß

nur die Zeile BOTTOM sichtbar ist. Mit fl können Sie an den Anfang der
Leerzeilen gehen. Die eigentliche Texteingabe erfolgt rechts von den

weißen Zeilennummern. Dabei springt der Cursor bei Betätigung der RE-
TURN-Taste auf den nächsten Zeilenanfang.

Wollen Sie nach einer Zeile eine Leerzeile einfügen, so geben Sie im
Zeilennummernbereich ’T ein. Analog löscht man eine Zeile, indem man
bei ihrer Zeilennummer ein ’D’ eingibt. Wiederum wird der Befehl mit
SHIFT-RETURN ausgeführt. Haben Sie den gesamten Text fertig
eingegeben, so tippen Sie in der ersten Bildschirmzeile den Befehl

(Primary-Command) |

END

Nach SHIFT-RETURN wird der Text auf der eingelegten Diskette
gespeichert. Anschließend erreichen Sie wieder das Pascal-Menü.

Die Werkzeuge 17

1.3.3 Der Compiler

Um den Quelltext im Textspeicher zu übersetzen, geben Sie im Pascal-
Menü ein Dollarzeichen ein. Nach dem Drücken der RETURN-Taste
meldet sich der Compiler (Pascal 1.4).

Hier soll nicht näher auf die möglichen Optionen (PCODE-START,
LISTING TO PRINTER) eingegangen werden. Sie müssen nur die
vorgegebenen Eingaben mit RETURN bestätigen. Während der Compilatıon
wird der Quelltext am Bildschirm angezeigt.

Sollten Sie sich bei der Eingabe des Programmes vertippt haben, markiert

der Compiler den entsprechenden Fehler mit einem Pfeil. Durch die

Eingabe von ’* brechen Sie dann die Übersetzung ab. Drücken Sie nur
RETURN, so wird die Compilation fortgesetzt. Am Ende erscheint die
Meldung

ERRORS DETECTED: xx

PCODE FROM xxxx TO xxxx

(HIT RETURN FOR MENUE)

Mit der RETURN-Taste kehren Sie zum Pascal-Menü zurück.

Traten bei der Übersetzung Fehler auf, so müssen Sie vom Menü mit der
Eingabe

PROGRAMM1.P

zum Editor zurückkehren und im Text Korrekturen vornehmen. Nach der

Rückkehr zum Pascal-Menü (mit END) können Sie die obigen Schritte
wiederholen.

1.3.4 Das Laufzeitsystem

Ist der Text endlich fehlerfrei, so möchten Sie sicher als Lohn Ihrer Arbeit

das Programm auch einmal ausführen. Dazu verlassen Sie das Pascal-Menü

mit der Eingabe ’*’. Es erscheint die übliche Meldung von BASIC:

READY.

Das Objektprogramm steht jetzt im Speicher. Es kann mit RUN, SAVE
und VERIFY wie ein BASIC-Programm gestartet, gespeichert und geprüft
werden. Sie dürfen jedoch keine Zeilen löschen oder hinzufügen, da sonst
das Pascal-System nicht mehr korrekt arbeitet.

18 Die Werkzeuge

Das Beispielprogramm druckt nach der Eingabe einer ganzen Zahl N alle
Zahlen zwischen N und 2*N mit ihrem Kehrwert aus.

Um zu demonstrieren, wie das System auf einen Fehler während der Aus-

führung reagiert, wählen Sie N=0: Diese Eingabe hat eine Division durch 0
zur Folge. Es erscheint folgende Meldung:

DIVISION BY ZERO

ERROR AT xxxx

XXXX ist eine dezimale Adresse im Objektprogramm. Notieren Sie sich diese
Zahl. Um nun den fehlerhaften Divisionsbefehl im Quellprogramm zu
lokalisieren, muß der Compiler erneut gestartet werden. Deshalb kehren Sie

durch die Eingabe eines Sterns (’*) von BASIC zum Pascal-Menü zurück.

Dort starten Sie den Compiler mit ’$’. Bei der ersten Eingabe wählen Sie
die Option LOCATE ADDRESS. Dazu geben Sie die Zahl xxxx aus der
Fehlermeldung anstatt der angezeigten Zahl 1 ein. Die weiteren vorgegebe-
nen Eingaben bestätigen Sie nur mit RETURN. Wiederum wird der Quell-
text aufgelistet. Jedoch erscheinen unter dem Divisionsbefehl (R:=1/T) ein

Pfeil und die Meldung

ee ERROR 0 IN 9

Der Pfeil markiert also die Position des Laufzeitfehlers. Alle Fehlernum-

mern sind im Anhang B mit Erklärung aufgelistet.

Bild 1 zeigt noch einmal zusammenfassend die Komponenten des Pascal-
Systems.

—— (Name) —
End EDITOR

PASCAL $ >

-MENUE + COMPILER

—r BASIC
<q *

Bild 1: Systemstruktur

Die Werkzeuge 19

Zur Übung können Sie jetzt Sicherheitskopien der Beispielprogramme auf
der beiliegenden Diskette anlegen. Durch Angabe der jeweiligen Pro-
grammnamen laden Sie die Quelltexte in den Arbeitsspeicher, wechseln die

Diskette und speichern anschließend die Texte mit END auf der neuen

Diskette.

Aufgaben

Jetzt sollten Sie ein wenig in den Kapiteln 4.1 bis 4.3 in der Dokumenta-
tion lesen. Dann werden Sie auch wissen, wie Sie aus dem Editor zurück-
kehren können, ohne daß der Quelltext auf Diskette gespeichert wird, was
die Eingabe eines Fragezeichens im Pascal-Menü bewirkt und wie Sie das
Listing von PROGRAMM! auf den Drucker ausgeben können.

Außerdem sollten Sie versuchen, einige der Beispielprogramme (xxx.P) auf

der Systemdiskette zu übersetzen.

20 Die Werkzeuge

Einführung in Pascal 21

2 Einführung in Pascal

2.1 Symbole und Syntax-Diagramme

Leider liegt am Anfang Ihrer Arbeit mit Pascal eine Durststrecke von eini-
gen Kapiteln, die sich mit etwas abstrakteren Grundlagen beschäftigen.
Sollten Sie beim ersten Lesen einige Details nicht ganz verstehen, können
Sie später, wenn Sie etwas praktische Erfahrung am Rechner gesammelt

haben, diese Teile noch einmal bearbeiten.

Pascal ist eine formale Sprache: Programme sind Folgen von Symbolen.
Man kann zwar unendlich viele korrekte Symbolfolgen bilden, jedoch ist

die Menge der Regeln, die Syntax der Sprache Pascal, endlich.

In diesem Kapitel werden die kleinsten Einheiten von Programmen, die
Symbole von Pascal, vorgestellt. Diese Symbole sind nicht einzelne Zeichen,
sondern

- Bezeichner - Sonderzeichen

- Zahlen - Wortsymbole

- String-Konstanten - Kommentare

Die Definition einer Sprache über Symbole erlaubt eine gewisse Unab-
hangigkeit von den Eigenschaften spezieller Rechner. So wird z.B. in der
Sprache nie Bezug auf Zeilennummern oder die Formatierung des Quell-
textes genommen.

22 Einführung in Pascal

Bezeichner bestehen aus einem Buchstaben, gefolgt von Buchstaben oder
Ziffern. Ein Bezeichner kann also theoretisch beliebig lang sein.

VARIABLE B747 ERGEBNIS A B 4B007 (alle zulässig)

3MAL (das erste Zeichen ist kein Buchstabe)

ERGEBNIS-3 (Bindestrich nicht erlaubt)

In Pascal 1.4 sind nur die ersten 14 Zeichen signifikant. Somit betrachtet
der Compiler die folgenden Bezeichner als gleich:

EXTRALANGERNAME1 EXTRALANGERNAME2

Zahlen sind Symbole, die aus komplizierteren Zeichenfolgen bestehen kön-
nen. Deshalb sind die Bildungsregeln auch nur schwerfällig in Worten zu
beschreiben. Eine anschauliche und übersichtliche Beschreibung der Syntax
von Pascal liefern die Syntax-Diagramme. Bild 2 zeigt die Syntax-
Diagramme für Zahlen in Pascal:

GANZE ZAHL:

>{ ZIFFER |

fo
ZAHL:

(aang ZAHL aly wef? — jene ok

Bild 2: Zwei Syntax-Diagramme

Indem man den Pfeilen durch den Graphen folgt und die Zeichen in den
Kästen mit den abgerundeten Ecken notiert, erhält man gültige Zahlen in

Pascal. Eine ganze Zahl besteht also aus einer oder mehreren Ziffern. Im
zweiten Diagramm tritt zweimal ein Kästchen mit dem Namen ganze Zahl
auf. Da die Ecken der Kästchen nicht abgerundet sind, bedeutet dies, daß

an diesen Stellen eine Zeichenfolge steht, die durch das Syntax- „Diagramm

ganze Zahl beschrieben wird.

Einführung in Pascal 23

In späteren Kapiteln sollen Sie diese Diagramme selbständig lesen können.
Alle Syntax-Diagramme für Pascal sind im Anhang A aufgeführt. Für
Zahlen wird die Syntax jedoch noch einmal verbal beschrieben, um das

Prinzip, das hinter den Diagrammen steht, zu verdeutlichen:

Eine ganze Zahl ist eine vorzeichenlose Ziffernfolge. Eine Zahl besteht aus
einer ganzen Zahl. Daran kann sich ein Dezimalpunkt mit mindestens einer
Nachkommastelle anschließen. Danach folgt eventuell der Buchstabe E mit

einem Exponent. Der Exponent besteht aus einer ganzen Zahl, der

eventuell das Vorzeichen "+" oder "-" vorausgeht.

1 0 1985 0.1 22.3 1E-4 1.5E8 (alle zulässig)
1. (es muß eine Nachkommastelle

folgen)
.l (es muß eine Null vor dem Punkt

stehen)

3,4 (das Komma ist nicht erlaubt)

In Pascal unterscheidet man also zwei Typen von Zahlen: Es gibt reelle und
ganze Zahlen. Reelle Zahlen sind dadurch gekennzeichnet, daß sie
Nachkommastellen und/oder einen Skalierungsfaktor (Exponent) besitzen.
Der Skalierungsfaktor gibt an, um wie viele Stellen der Dezimalpunkt ver-
schoben wird:

1 = 1E0 = 10E-1 = 100E-2 = 0.1E1 = 0.01E2

Eine String-Konstante besteht aus einer nicht-leeren Folge von Zeichen,
die in Anführungszeichen eingeschlossen ist.

"+-+-" "ABCDE" "Leerzeichen: " (korrekt)

In Standard-Pascal werden Apostrophe und nicht Anführungszeichen ver-
wendet. Dort ist es auch erlaubt, Anführungszeichen in der Zeichenfolge zu
verwenden. Pascal 1.4 weicht von dieser Vorgabe ab, da das Betriebssystem

des C 64 (z.B. bei der Druckeransteuerung) Anführungszeichen gesondert

behandelt. Ä

’alpha’ (Anf ührungszeichen fehlen)
m (Strings der Lange Null sind unzulässig)
"klappt’s?" (korrekt)
"M2 SOO &" (Anführungszeichen nicht erlaubt)

24 Einführung in Pascal

In Pascal werden folgende Sonderzeichen verwendet:

+ Addition, Vereinigung von Mengen

- Subtraktion, Differenz von Mengen
* Multiplikation, Schnitt von Mengen

/ Division
= Zuweisung

= gleich
<> ungleich
>= größer oder gleich
<= kleiner oder gleich
() Klammern
[|] Index- und Mengenklammern
(* *) Kommentarklammern
+ Dereferenzier-Operator

Auslassungspunkte

seal Satzzeichen

Einige Symbole in der Liste bestehen aus zwei Sonderzeichen. Zwischen
den beiden Sonderzeichen darf kein Leerzeichen stehen:

(dies ist ein Symbol)
= (dies sind zwei Symbole)

Die reservierten Wortsymbole von Pascal sind in der folgenden Liste
aufgeführt. Sie dürfen nicht als Bezeichner verwendet werden. Ihre Be-
deutung wird in den weiteren Kapiteln erklärt:

AND FILE NOT TO
ARRAY FOR OF TYPE
BEGIN FORWARD OR UNTIL
CASE FUNCTION PACKED VAR
CONST GOTO PROCEDURE WHILE
DIV IF PROGRAM WITH
DO IN RECORD
DOWNTO LABEL REPEAT
ELSE MOD SET
END NIL THEN

Einführung in Pascal 25

Im Gegensatz zu BASIC dürfen Bezeichner Wortsymbole enthalten:

FORMEL EINGABEENDE

sind also gültige Bezeichner, obwohl sie die Zeichenfolgen FOR, OR und

END enthalten.

Da die Größe eines übersetzten Programmes (Objektprogramm) nicht von
der Formatierung des Quelltextes abhängig ist, spart man nicht wie in

BASIC mit Leerzeichen zwischen den Symbolen. Vielmehr versucht man

durch das Layout (Einrückung, Kommentare) die Struktur des Programmes
zu unterstreichen. Leerzeichen sınd jedoch nur dann syntaktisch erforder-
lich, wenn durch ihr Fehlen aus zwei Symbolen eines würde.

IF X = 6 * Y THEN

Hier sind nur zwischen IF und X, sowie zwischen Y und THEN

Leerzeichen notwendig.

Kommentare können an jeder Stelle des Programmes eingefügt werden, an

der auch ein Leerzeichen stehen darf. Kommentare können beliebige Texte
enthalten. Da auf dem C 64 keine geschweiften Klammern vorhanden sind,
werden diese durch (* und *) ersetzt. Natürlich darf ein Kommentar nicht
die schließende Klammer ’*)’ enthalten. Andererseits kann sich ein Kom-
mentar über mehrere Zeilen des Quelltextes erstrecken.

Viele Compiler kennen auch aktive Kommentare, die den Compilationsvor-

gang beeinflussen können. In Pascal 1.4 beginnt ein aktiver Kommentar mit
einem Dollarzeichen. Die Wirkung aller aktiven Kommentare ist in der
Dokumentation beschrieben.

(*$R+ Bereichstest einschalten *)

2.2 Programmstruktur

In Pascal genügt es nicht, die Befehle des Programmes einfach hintereinan-
derzustellen. Vielmehr ist - bildlich gesprochen - ein Rahmen erforderlich,
der die eigentlichen Anweisungen umgibt. Die Grobstruktur jedes Pro-
grammes läßt sich schematisch so angeben:

26 Einführung in Pascal

PROGRAM NAME (INPUT ,OUTPUT);
(* Hier ist der Vereinbarungsteil *)

BEGIN
(* Hier ist der Anweisungsteil %*)

END.

Listing 2: Grobstruktur

Die erste Zeile ist der Programmkopf. Hier wird nach dem Wortsymbol

PROGRAM dem Programm ein Name gegeben, der jedoch im Programm

keine weitere Bedeutung besitzt. Die Bezeichner INPUT und OUTPUT
deuten an, daß das Programm zwei Kanäle zur Umwelt besitzt: die Tastatur

als Standardeingabe (INPUT) und den Bildschirm als Standardausgabe

(OUTPUT). Im Abschnitt 2.16 über Files wird näher auf diese Programm-
parameter eingegangen.

Bereits im ersten Programm (Listing 1) wurde der Vereinbarungsteil be-

nutzt. Grundsätzlich müssen in Pascal alle Bezeichner definiert werden,

bevor sie (in Anweisungen) verwendet werden können.

Im Anweisungsteil eines Programmes stehen die Befehle, die den Algorith-
mus beschreiben, nach dem die Objekte aus dem Vereinbarungsteil bear-
beitet werden.

Bitte achten Sie insbesondere auf die Satzzeichen. Sie sind genauso wichtig
wie alle anderen Symbole und dürfen nicht fehlen. Natürlich existiert auch
ein Syntax-Diagramm, das den Aufbau eines Programmes definiert. Es
heißt PROGRAMM und steht am Ende von Anhang A.

Wenn Sie das Programm in Listing 2 mit diesem Diagramm vergleichen,
werden Sie den Pfeilen folgend bis zum Kasten BLOCK gelangen. Dieser
bezieht sich auf das Syntax-Diagramm BLOCK. Jeder Weg im Diagramm
BLOCK führt vom Eingang links oben zum Ausgang rechts unten über die
Symbole BEGIN und END. Auch wenn Sie die vielen Namen in den
Kästen noch nicht kennen, ist Ihnen sicherlich klargeworden, daß durch

Listing 2 und das Syntax-Diagramm PROGRAMM dieselben Regeln für
den Rahmen eines Programmes in Pascal definiert werden.

Einführung in Pascal 27

Aufgaben

1. Das Programm Struktur ist ein vollständiges Programm! Lassen Sie es
deshalb einmal übersetzen. Experimentieren Sie ein bißchen: Prüfen Sie
am Programmbezeichner (NAME) die Regeln für Bezeichner (z.B.
STRUKTURI, 2.PROGRAMM, PROGRAM etc.), entfernen Sie ein
paar Satzzeichen (nicht zu viele!) etc. Welche Fehlermeldungen liefert
der Compiler? (Erläuterung der Fehlernummern in Anhang B).

2. An welcher Stelle im Syntax-Diagramm PROGRAMM kommt es zu
Problemen, wenn Sie folgendes Programm untersuchen?

PROGRAM FALSCH (); BEGIN END.

Beheben Sie den Fehler!

2.3 Deklaration von Variablen

Eine Variable läßt sich unter zwei verschiedenen Gesichtspunkten betrach-

ten. Einerseits dient sie zur Programmlaufzeit zur Speicherung von verän-
derlichen (variablen) Werten, wie Zwischenergebnisse oder Zustände des
Programmes. Andererseits besitzt sie konstante Eigenschaften: Eine Variable
hat einen Namen (Variablenbezeichner), über den sie im Programmtext
angesprochen wird. Außerdem kann sie nur eine gewisse Klasse von Werten
annehmen (z.B nur Zeichen oder nur Zahlen).

Diese konstanten Eigenschaften werden im Vereinbarungsteil des Pro-
grammes für jede im Anweisungsteil benutzte Variable festgelegt.
Gewöhnlich wird man Variablen einen Namen geben, der ihre Bedeutung
im Programm widerspiegelt:

VAR I : INTEGER;
ZAEHLER : INTEGER;
GEHALT : REAL;
DELTA : REAL;
ALTER : INTEGER;
BUCHSTABE1: CHAR;
BEFEHL =: CHAR;

Listing 3: Eine Variablendeklaration

28 Einführung in Pascal

Eine Variablendeklaration beginnt mit dem Wortsymbol VAR. An-
schließend werden die Variablenbezeichner aufgeführt. Für jede Variable
wird nach einem Doppelpunkt ihr Typ angegeben. Dies ist die oben
erwähnte Klasse von Werten, die die Variable annehmen kann. In Listing 3
werden die Typen durch Bezeichner (INTEGER, REAL und CHAR)
angegeben. An dieser Stelle sei nur soviel gesagt, daß die Variablen I,

ZAEHLER und ALTER nur ganze Zahlen, GEHALT und DELTA reelle

Zahlen und BUCHSTABEI und BEFEHL nur Zeichen speichern können.

Die obige Variablendeklaration kann wie folgt abgekürzt werden:

VAR I, ZAEHLER, ALTER :INTEGER;
GEHALT, DELTA :REAL;
BUCHSTABE1, BEFEHL :CHAR;

Der entscheidende Vorteil einer expliziten Deklaration jeder Variablen am
Programmanfang ist die Möglichkeit, schon während der Übersetzung die
Korrektheit von Operationen zu prüfen. Die folgende Zuweisung, die einer
Variablen für ganze Zahlen ein Zeichen zuordnen würde, kann sofort vom
Compiler als fehlerhaft erkannt werden:

ZAEHLER:= BEFEHL

Merke: Jeder Bezeichner muß in Pascal vor seiner Anwendung
deklariert werden.

2.4 Anweisungen und Ausdrücke

Nun haben Sie endlich das Rüstzeug beisammen, um sich dem An-
weisungsteil des Programmes zuzuwenden. Der Anweisungsteil besteht aus
einer (wie wir gesehen hatten evtl. sogar leeren) Folge von Anweisungen
zwischen den Wortsymbolen BEGIN und END.

BEGIN

Anweisung;

Anweisung;

Anweisung;
Anweisung

END.

Die Anweisungen sind voneinander durch Semikola getrennt. In diesem
Abschnitt wollen wir die elementarste Form der Anweisung, die Zuweisung

Einführung in Pascal 29

vorstellen: Einer Variablen links vom Zuweisungsoperator := wird das
Ergebnis der Berechnung des Ausdruckes auf der rechten Seite zugewiesen.

0

I+1

1/1

I:

I:

R:

Da eine Zuweisung den alten Wert einer Variablen überschreibt, benötigt
man zum Vertauschen der Werte der Variablen I und J eine Hilfsvariable:

Hı=1; 1:24; J:=H (also nicht l:=J; Jı=l)

Dies ist auch ein Beispiel für eine Anweisungsfolge.

I+1, 1/I, I, und O0 sind Ausdrücke. Im allgemeinen enthalten Ausdrücke

mehrere Operanden (Variablen, Konstanten) und Operatoren (+, -, OR, =).

Die Struktur eines Ausdruckes wird durch das Syntax-Diagramm AUS-

DRUCK im Anhang A beschrieben. Deshalb werden hier nicht die for-
malen Bildungsregeln für Ausdrücke genannt, sondern nur die Besonder-

heiten von Pascal hervorgehoben.

1. Operatoren dürfen nicht direkt aufeinanderfolgen. Man schreibt also

A + (-B) und nicht A + -B.

2. Die Multiplikationsoperatoren *, /, DIV, MOD und AND binden

stärker als die Additionsoperatoren +, -, OR (Punkt- vor Strichrech-

nung).

A/3+2Z bedeutet (A/3)+Z

Die Additionsoperatoren binden stärker als die Vergleichsoperatoren

=, <>, >=, <=, <, >, IN.

3. Es gibt kein Operationssymbol zum Potenzieren. Der Pfeil f hat eine

völlig andere Bedeutung.

4. Eine Folge von Operatoren gleicher Priorität wird von links nach rechts
ausgewertet.

A*B*c bedeutet (A*B)*c

A-B-c bedeutet (A-B)-C

5. Im Zweifelsfall sollte man die Priorität mit Klammern unterstreichen:

30 Einführung in Pascal

(A*B) - (c*D) Statt A*B-C*D

6. Wie in BASIC stehen auch Standardfunktionen zur Verfügung, z.B. SIN,
COS, SQRT. Im Augenblick können Sie diese Funktionen naiv
verwenden. Alle arithmetischen Funktionen sind in der Dokumentation
in Abschnitt 4.5 aufgeführt.

Die Operatoren werden später noch detailliert besprochen.

2.5 Einfache Ein- und Ausgabe

Zwar können Sie jetzt bereits korrekte Anweisungsfolgen bilden, jedoch

fehlt Ihnen noch eine Anweisung, um die Ergebnisse der Zuweisungen am
Bildschirm zu verfolgen. In diesem Abschnitt werden deshalb die

Gegenstücke zu PRINT und INPUT in BASIC vorgestellt.

2.5.1 WRITE

In Ihrem ersten Programm (Listing 1) trat bereits die Anweisung
WRITELN auf. Syntaktisch gesehen ist WRITELN ein Bezeichner, dem in

Klammern Parameter folgen können. WRITE und WRITELN bewirken eine
Ausgabe auf den Bildschirm.

WRITE (Ausdruck)

Dies ist die Grundform einer Ausgabeanweisung. Durch verschiedene
zusätzliche Parameter lassen sich die Formatierung und das Ausgabegerät
wählen. Wir wollen uns in diesem Abschnitt nur mit der Bildschirmausgabe
beschäftigen.

In der oben angegebenen Form hängt die Ausgabe von dem Typ des Aus-

druckes ab:

1. Der Ausdruck ist ein String: z.B.

WRITEC"ADAM & EVA")

Der angegebene String wird ab der momentanen Cursorposition aus-
gegeben. Der Cursor steht danach direkt hinter dem String.

Einführung in Pascal 31

2. Der Parameter ist ein arithmetischer Ausdruck, der also eine Zahl als

Ergebnis liefert:

WRITE(400+44*2)

Dann wird ab der momentanen Cursorposition der Wert des Ausdruckes

(hier also 488) gedruckt. Der Cursor steht nach der Ausführung des
Befehls direkt hinter der letzten Ziffer.

3. Schließlich kann der Ausdruck auch ein einzelnes Zeichen als Ergebnis
besitzen: |

WRITEC"A")

Die Ausgabe erfolgt dann genauso wie bei (1) für einen String der
Länge 1. Warum die Fälle (1) und (3) separat aufgeführt werden, wird
später in Abschnitt 2.6.2 und 2.9.2 deutlich.

Eine einfache Formatierung der Ausgabe erreicht man, indem man die obi-
gen Parameter um eine Feldgröße nach einem Doppelpunkt erweitert:

WRITEC"GANZ RECHTS" : 40);
WRITE(30*40 : 10);

Die Feldgröße kann ein beliebiger Ausdruck sein, der eine ganze Zahl als
Ergebnis liefert. Die Feldgröße bestimmt eine Mindestanzahl an Zeichen,
die bei der Ausgabe gedruckt wird.

Ist die Stringkonstante kürzer als die angegebene Feldgröße, so wird der
String rechtsbündig in ein Feld der geforderten Länge gestellt. Gleiches

geschieht mit einer Zahl, deren Darstellung kürzer als die Feldgröße ist.
Die Feldgröße wird ignoriert, falls die Ausgabe zu lang ist (der Punkt steht
in den Beispielen für ein Leerzeichen):

WRITE(3*4 : 5) druckt ...12 (rechtsbündig)

WRITECH"*RRN.S5) druckt ..*** (rechtsbündig)

WRITEC-1E6: 5) druckt -1000000 (zu lang)

WRITEC™XXX"21) druckt XXX (zu lang)

Zwei aufeinanderfolgende WRITE-Befehle können immer zu einem
zusammengefaßt werden, wobei man die Parameter durch Kommata trennt.
Ein WRITE-Befehl kann also beliebig viele Parameter besitzen:

WRITEC"DAS FELD IST", A*B: 5, " QUADRATMETER GROSS.");

WRITE(X:5, Y:5, 2:5)

32 Einführung in Pascal

Um die nächste Ausgabe in der folgenden Bildschirmzeile fortzusetzen,
verwendet man den Befehl WRITELN (write line). Der Befehl WRITELN
ohne weitere Parameter setzt den Cursor auf den Anfang der nächsten
Bildschirmzeile. Mit der folgenden Befehlsfolge druckt man also drei
Leerzeilen.

WRITELN; WRITELN; WRITELN

Ersetzt man bei (1) bis (3) den Befehl WRITE durch WRITELN, so erfolgt
die Ausgabe wie oben beschrieben. Zusätzlich wird am Ende der Ausgabe

ein Zeilenvorschub durchgeführt:

WRITE ("DAS FELD IST", A*B: 5);

WRITELNC" QUADRATMETER GROSS.");
WRITELNC"T": 13);

WRITELNC"DIES IST ZEILE 3")

2.5.2 READ

Haben Sıe im Vereinbarungsteil wie im letzten Kapitel beschrieben Varia-
blen deklariert, so können Sie auch vom Bildschirm Werte einlesen. Dabei
erfolgt die Eingabe zeilenweise:

Der Benutzer wird mit blinkendem Cursor zu einer Eingabe aufgefordert.
Er kann dann beliebige Zeichen eingeben. Schließt er die Eingabe mit der
RETURN-Taste ab, so wird die gesamte Bildschirmzeile gespeichert. Der
Inhalt der Bildschirmzeile wird mit

READ (Variablenbezeichner)

gelesen.

Dabei gibt es folgende Möglichkeiten (Variablendeklaration s. Listing 3):

1. Die Variable ist vom Typ CHAR. Dann wird ein einzelnes Zeichen ab
der momentanen Position in der Eingabezeile gelesen und der Variablen
zugewiesen.

READ (BUCHSTABE1) |

Einführung in Pascal 33

2. Die Variable ist vom Typ INTEGER oder REAL. Zunächst werden
vorlaufende Leerstellen überlesen. Nachfolgende Ziffern werden bis
zum nächsten Leerzeichen gelesen. Anschließend wird der Variablen

der Wert der Ziffernfolge zugewiesen.

READ (GEHALT)

Wird bei (1) oder (2) das Ende der Eingabezeile erreicht, so wird der Be-
nutzer erneut zur Eingabe einer weiteren Zeile aufgefordert. Wie bei
WRITE können zwei aufeinanderfolgende Read-Anweisungen zu einer
zusammengefaßt werden. Die zwei folgenden Zeilen liefern also die gleiche

Eingabe.

READ(BEFEHL); READCI)
READ(BEFEHL, I)

Um bei diesen Eingaben der Variablen BEFEHL das Zeichen "*" und der
Variablen I die ganze Zahl 80 zuzuweisen, sind z.B. die folgenden Eingaben
möglich:

*80 (RETURN-Taste) oder
* 80 (RETURN-Taste)

oder auch in zwei Zeilen:

* CRETURN- Taste)

80 (RETURN- Taste)

Gibt man zu viele Werte ein, z.B.

*80 90

so lesen die obigen Read-Anweisungen bis zum Leerzeichen hinter der
Zahl 80. Eine folgende Read-Anweisung wird dann die nächste Zahl - also
90 - lesen. Möchte man den Rest einer Eingabezeile ignorieren, so
verwendet man den Befehl READLN (read line). Ohne weitere Parameter
überliest er alle Zeichen bis zum Zeilenende. Durch die Anweisungsfolge

READ(BEFEHL, I); READLN

würde also die Zahl 90 nach der Eingabe von ’* und 80 überlesen werden.
Die nächste Read-Anweisung wird also in der nächsten Bildschirmzeile

erfolgen. Wie bei WRITELN läßt sich eine solche Folge von READ und
READLN zu einem Befehl zusammenfassen:

34 Einführung in Pascal

READLN(BEFEHL, I)

Abschließend ist noch ein vollständiges Programm mit Ein- und Ausgabe
angegeben, das Nullstellen der gemischtquadratischen Funktion x*x+p*x+q
bestimmt:

PROGRAM PQFORMEL (INPUT, OUTPUT);
VAR P,Q,W,A: REAL;

BEGIN
WRITEC"P ="); READLN(P);
WRITE("Q ="); READLN(Q);
W:= SQRT(P*P/4-Q);
A:= -P/2;
WRITELNC"X1=", A+W);
WRITELNC"X2=", A-W)

END.

Listing 4: Nullstellenbestimmung

Aufgaben

1. Damit Sie sich einen praktischen Überblick über die vielen verschiede-

nen Möglichkeiten zur Ein- und Ausgabe verschaffen können, sollten
Sie die Beispiele im Text am C 64 ausprobieren. Dabei dürfen Sie die

Deklaration der Variablen und den Rahmen aus Listing 2 nicht
vergessen.

2. Ändern Sie das Programm in Listing 4 so, daß die Werte für P und Q
vom Benutzer ın einer Zeile eingegeben werden und die Ausgabe fol-
gendermaßen formatiert wird:

X1=XXXXXXXAXXXXKF XZ=XXXXXXXXXKXX

3. Bestimmen Sie die Feldgröße, durch die der Text Überschrift auf dem
Bildschirm zentriert erscheint. Finden Sie eine allgemeine Formel zur
Berechnung der Feldgröße für gegebene Bildschirmbreite und Text-
länge!

4. Es werden folgende drei Zeilen eingegeben:

0
.

V
I

=

oO

oO
o

nm
 3

7

1 N
y

oO

10 11 1

Programmieren Sie drei Anweisungsfolgen, die folgende Werte lesen:

Einführung in Pascal 35

1. Die Zahlen 1, 2, 3, 4 und 9

2. Die Zahlen 1, 5 und 9

3. Die Zahlen 4 und 8

5. Ist Ihnen die genaue Wirkung der Feldgröße noch unklar, sollten Sie

folgende Anweisungen programmieren:

READ(X, LEN);

WRITELNC™E" X:LEN,"1®)

Wählen Sie positive und negative Zahlen für X und unterschiedliche

Feldgrößen LEN!

6. Experimentieren Sie mit Ausdrücken, Anweisungsfolgen und den Ein-

und Ausgabebefehlen! Schreiben Sıe kleine Programme, um ein Gefühl

für Ausdrücke in Pascal zu bekommen!

Sollten Sie keine eigenen Ideen haben, können Sie sich an der folgenden
kleinen Liste orientieren: Berechnung von Zinsen und Zinseszinsen,
Berechnung der Fläche von Kreisen und Ellipsen, des Volumens von

Kugeln und Kegeln. Berechnung des Logarithmus zur Basis 10. Ver-
gleichen Sie SIN(X)/COS(X) mit TAN(X). Ist SIN(x) * SIN(x) + COS(x)
* COS(X)=1 ? Wie berechnet man die Umkehrfunktion von SIN(X)?

2.6 Elementare Datentypen

In den vorausgehenden Abschnitten trat bereits mehrfach der Begriff Typ

auf: Zahlen wurden unterschieden in ganze Zahlen und reelle Zahlen,
Variablen wurden bei der Deklaration an einen Typ gebunden, und Aus-
drücke besaßen einen Typ. Falls Sie bereits in BASIC programmiert haben,

wissen Sie, daß es dort nur zwei Typen gibt: (reelle) Zahlen und Strings. In
Pascal gibt es auch Objekte von völlig anderen Typen. Später (in Abschnitt
2.12) wird sogar beschrieben, wie man eigene Typen in Pascal definiert.

Dieser Abschnitt beschäftigt sich mit den elementaren Standardtypen
INTEGER, REAL, CHAR und BOOLEAN und stellt die Operationen mit

Objekten dieser Typen vor.

36 Einführung in Pascal

2.6.1 Der Typ INTEGER

Werte vom Typ INTEGER sind ganze Zahlen, also positive und negative

Zahlen ohne Nachkommastellen. Die wichtigsten Operationen, die auf

ganze Zahlen anwendbar sind, liefern als Ergebnis wieder eine ganze Zahl:

+ Addition

- Subtraktion oder Vorzeichenwechsel

* Multiplikation
DIV ganzzahlige Division

MOD Modulo-Bildung (Divisionsrest)

Um die Wirkungsweise der letzten beiden Operationen zu verdeutlichen,
folgen noch einige Zahlenbeispiele:

10 DIV 3 = 3 10 MOD 3 = 1
(-10) DIV 3 = -3 (¢-10) MOD 3 = -1

10 DIV (-3) = -3 10 MOD (-3) = 1
(-10) DIV C(-3) = 3 (¢-10) MOD (-3) = -1

Formal hangen DIV und MOD wie folgt zusammen:

X = (X DIV Y) * Y + (X MOD Y)

Weiterhin gibt es die arithmetische Funktion ABS(n), die den Absolutwert

(Betrag) der Zahl n liefert.

Jeder Rechner kann nur Zahlen einer endlichen Größe darstellen. In Pascal

1.4 sind als ganze Zahlen nur Werte mit

-MAXINT-1 <= n <= MAXINT

darstellbar. MAXINT ist ein vordefinierter Konstantenbezeichner, den Sie
auch in Ihren Programmen verwenden können. Die Konstante hat den Wert
MAXINT = 32787. Tritt bei einer der obigen Operationen mit ganzen
Zahlen eine Bereichsüberschreitung auf, so meldet dies das Pascal-

Laufzeitsystem und unterbricht das laufende Programm.

Einführung in Pascal 37

2.6.2 Der Typ REAL

Werte des Typs REAL sind reelle Zahlen. Die arıthmetischen Operationen
(+, -, *, /) liefern angewandt auf reelle Zahlen ein Ergebnis vom Typ
REAL. Der Schrägstrich / liefert also das normale Ergebnis einer Division:

1.5 / 1.2 = 1.25

Andererseits dürfen die Operationen MOD und DIV nicht auf Werte vom

Typ REAL angewendet werden. Weiterhin sind alle üblichen arithmetischen
Funktionen in Pascal definiert. Sie liefern jeweils ein Ergebnis vom Typ
REAL:

Bezeichner Bedeutung Name
ın Pascal in BASIC

ABS Absolutwert ABS

SQRT Quadratwurzel SQR
EXP Exponentialfkt. EXP

LN Nat. Logarithmus LOG

SIN Sinus SIN

COS Cosinus COS

ARCTAN Hauptwert arctan ATN

SQR Ä Quadrat ---

Die trigonometrischen Funktionen sind für Winkel in Bogenmaß definiert.
Wollen Sie mit Winkeln in Grad arbeiten, so müssen Sie zunächst eine

Umrechnung vornehmen. Diese wird als Beispiel für ein Programm mit

REAL-Variablen vorgestellt:

PROGRAM WINKEL (INPUT, OUTPUT);

VAR X, T : REAL;

FAKTOR1: REAL;

BEGIN |
WRITEC"WINKEL:"); READLN(X);
FAKTOR1:= 1.74532925E-2; (* PI/180 *)
WRITELNCHSINCH X, "=", SINCX*FAKTOR1));
WRITELN;
WRITEC"TANGENS:"); READLN(T);
WRITEC"DER WINKEL", ARCTAN(T)/FAKTOR1);
WRITELN(" BESITZT DEN TANGENS",T);

END.

Listing 5: Real-Variablen

38 Einführung in Pascal

In Pascal 1.4 ist die Funktion SQR nicht definiert. Statt dessen sind zwei
weitere Funktionen vorhanden, die nicht ım Standard vorgesehen sind.

Beide Funktionen liefern ein Ergebnis vom Typ REAL:

POWER(x,y) berechnet x hoch y.

TAN(x) berechnet den Tangens von x.

Jede Implementierung setzt auch eine Grenze für den Zahlenbereich, in

dem reelle Zahlen dargestellt werden können. Um die Ergebnisse von Ope-
rationen mit reellen Zahlen zu verstehen, muß man die interne Darstellung
von Werten des Typs REAL kennen.

Wie speichert man z.B. die folgenden Zahlen am günstigsten?

A = 9876543219876543210
B = 1230000000000
C = 0.00000000000234

Die Idee besteht darin, sich zunächst die Größenordnung der Zahl zu

merken: A besitzt 19 Stellen vor dem Komma, B hat 13 Vorkommastellen,

während C an der 12. Stelle nach dem Komma beginnt. Außerdem werden

für jede Zahl möglichst viele Ziffern gespeichert.

Beim C 64 kann eine Zahl maximal 38 Stellen vor oder nach dem Komma

beginnen. Von jeder Zahl werden jedoch maxımal 9 Ziffern gespeichert.

An der 9. Stelle wird gerundet. Intern wird jede Zahl also durch zwei

Werte (Mantisse und Exponent) dargestellt:

Mantisse Exponent

A = 0.987654322 | +19

B = 0.123 +13

C = 0.234 -11

Die Länge der Mantisse bestimmt also die Genauigkeit, während die Größe

des Exponenten die maximale Größe der darstellbaren Zahlen begrenzt.

Merke: Zahlen größer als +/- 10 hoch 38 sind nicht darstellbar.

Zahlen kleiner als +/- 10 hoch -38 werden als 0 dargestellt.

Bei allen Zahlen wird nach der 9. Stelle gerundet.

Diese Grenzen werden in der Praxis mit einem Heimcomputer nie über-

schritten, außer man wollte z.B. DM-Beträge über 9 Millionen auf den

Einführung in Pascal 39

Pfennig genau speichern. Problematisch ist aber nicht die Speicherung der
Zahlen, sondern die Rechnung mit REAL-Zahlen: Da auch alle Zwischen-

ergebnisse nur auf neun Stellen genau sind, liefern scheinbar harmlose

Berechnungen falsche Ergebnisse:

Mit den obigen Zahlen ist z.B. C + B - B nicht gleich C, da

B- B = (C + B) - B

.25 Et15 - 1.23 Et15 = 0 <> C

C +

= 1

Merke: Bei Berechnungen mit REAL-Zahlen immer zuerst Werte
der gleichen Größenordnung verknüpfen.

Zwei REAL-Zahlen werden wie folgt auf Gleichheit getestet:

IF ABS (A - B) <= EPS THEN ... und nicht
IF A=B THEN ...

EPS ist dabei ein Wert, der von der Genauigkeit des Rechners abhängt:
Beim C 64 wählt man EPS >= 5E-9.

2.6.3 Gegeniiberstellung REAL und INTEGER

Solange alle Zwischenergebnisse in dem durch die Konstante MAXINT
angegebenen Bereich liegen, sind alle Operationen mit Werten vom Typ
INTEGER im mathematischen Sinn exakt. AuBerdem werden ganze Zahlen

kompakter als reelle Zahlen gespeichert: In Pascal 1.4 bendtigt eine ganze

Zahl nur zwei Speicherstellen gegenüber fünf Speicherstellen für reelle

Zahlen. Schließlich sind Operationen auf ganzen Zahlen wesentlich ef-

fizienter (kürzerer Code, höhere Ausführungsgeschwindigkeit) als solche

mit reellen Zahlen.

Andererseits können große Zahlen nur mit Werten vom Typ REAL

dargestellt werden. Auch alle höheren Funktionen liefern Werte vom Typ
REAL als Ergebnis.

Zusammenfassend läßt sich sagen, daß reelle Zahlen nur in mathematischen

Anwendungen (Nullstellenbestimmungen, Durchschnittswerte etc.) und in
kaufmännischen Programmen zur Darstellung großer Zahlen verwendet

werden. Typische Anwendungen für ganze Zahlen sind Steuerungsaufgaben

im Programm wie Zähler, Indizes und Laufvariablen.

40 Einführung in Pascal

Während Sie schon einige Fälle kennengelernt haben, in denen keine

REAL-Werte zulässig sind (Feldgröße bei WRITE oder als Operand bei

DIV und MOD), können umgekehrt überall dort, wo reelle Zahlen erlaubt

sind, auch ganze Zahlen stehen. Der Compiler erzeugt an diesen Stellen

Codes zur Umwandlung in die Darstellung mit Mantisse und Exponent.

Die umgekehrte Umwandlung von reellen Zahlen ın ganze Zahlen muß ex-

plizit programmiert werden, damit festgelegt werden kann, wie die
Nachkommastellen behandelt werden. Im Pascal-Standard sind dazu die

Funktionen ROUND und TRUNC vorhanden. ROUND(x) rundet das reelle
Argument, während TRUNC nur die Nachkommastellen abschneidet. In
Pascal 1.4 ist statt dieser Funktionen die Funktion INT vorhanden, die das

reelle Argument zur nächst kleineren ganzen Zahl abrundet. Beispiele
zeigen am besten die unterschiedlichen Ergebnisse:

ROUND(3.2)= 3 TRUNC(3.2)= 3 INTC 3.2)= 3
ROUND(3.7)= 4 TRUNC(3.7)= 3 INTC 3.7)= 3
ROUND(-3.2)=-3 TRUNC(-3.2)=-3 = INT(-3.2)=-4
ROUND(-3.7)=-4 TRUNC(-3.7)=-3 = INT(-3.7)=-4

2.6.4 Der Typ CHAR

Nur ein geringer Teil aller Programme arbeitet ausschlieBlich mit Zahlen.
Eine Klasse von Objekten, die vor allem bei der Kommunikation des

Rechners mit seiner Umwelt eine große Rolle spielt, sind Zeichen.

Werte des Typs CHAR (character) sind einzelne Zeichen. Jedes Zeichen
besitzt eine Ordnungsnummer (Codenummer). Der Zusammenhang zwischen
Zeichen und Ordnungsnummer ist leider vom jeweiligen Rechner abhängig.
Speziell auf Commodore-Rechnern gibt es 256 verschiedene Zeichen. Eine

Variable vom Typ CHAR kann also genau eines dieser 256 Zeichen ent-
halten. Nur 160 dieser Zeichen sind auch am Bildschirm darstellbar. Die
restlichen Zeichen (Kontrollzeichen) erfüllen spezielle Aufgaben bei
einzelnen Geräten. So besitzen die Funktionstasten bei Tastatureingaben ein

eigenes Zeichen, mit einigen Zeichen läßt sich der Cursor am Bildschirm
bewegen, und wieder andere Zeichen wählen den Schrifttyp am Drucker.

Konstanten vom Typ CHAR sind einzelne Zeichen, die in Apostrophe

(Anführungszeichen in Pascal 1.4) eingeschlossen sind:

u.a nk mau uyu

Einführung in Pascal 41

Vergleiche sind die einzigen Operationen, die zwischen Zeichen definiert

sind. Das Ergebnis eines Vergleichs zweier Zeichen ist durch ihre
Ordnungszahl festgelegt:

au < nzu ngu < ngu nm < nyu

Eine Liste aller Zeichen und Codes finden Sie im Handbuch zum C 64
(ASCII- und CHR$-Code). Innerhalb eines Pascal-Programmes können Sie
die Ordnungsnummer jedes Zeichens mit der Standardfunktion ORD er-
halten.

ORD ("A")

ORD ("0")
65 ORDC"2")

48 ORD("9")

90
57

Die Umkehrung der Funktion ORD ist die Funktion CHR: Sie liefert zu
einem Argument vom Typ INTEGER das Zeichen mit der angegebenen
Ordnungsnummer:

CHR (65) = "A" CHR(57) = "9"

Diese Umwandlung zwischen Zeichen und Ordnungsnummer ist, wie

bereits erwähnt wurde, vom zugrundeliegenden Zeichensatz abhängig. Eine
häufige Anwendung ist der selektive Zugriff auf einzelne Ziffern in einer
Zeichenfolge. Das folgende Beispiel soll die Quersumme einer zweistelligen

Zahl berechnen, die der Benutzer eingibt

PROGRAM SUMME (INPUT, OUTPUT);
VAR CH1, CH2: CHAR;

N1,N2 : INTEGER

BEGIN
READLN(CH1,CH2);
N1:=ORD(CH1)-ORD("0");
N2:=ORD(CH2)-ORD("0");
WRITELNC"QUERSUMME ",N1+N2)

END.

Listing 6: Zeichenumwandlung

Obwohl Sie im Editor zu Pascal 1.4 die Möglichkeit besitzen, mit dem Be-

fehl CHANGE #xxx #yyy direkt ASCII-Codes in eine Stringkonstante
einzufügen, sollten Sie die Codeumwandlung explizit im Programm durch-

führen:

WRITE (CHR(147))
WRITELNCCHRC18) , "ERSTE", CHR(146) ,"TEXTZEILE")

42 Einführung in Pascal

2.6.5 Der Typ BOOLEAN

Zur Steuerung des Programmablaufes in Abhängigkeit von bestimmten Be-
dingungen sind Wahrheitswerte erforderlich. Wahrheitswerte werden in
Pascal durch TRUE (wahr) und FALSE (falsch) beschrieben. Formal sind
TRUE und FALSE Konstanten vom Typ BOOLEAN. Verschiedene Opera-

tionen liefern Wahrheitswerte. Wir hatten bereits die Relationen zwischen
Zahlen und Zeichen angesprochen:

(17 = 0) FALSE “x < ye" TRUE
(17 > 0) TRUE my Zu TRUE
(0.5 = 5E-1) TRUE un = xl FALSE

Ein weiteres Beispiel ist die Funktion ODD (n), die den Wert TRUE
liefert, falls das Argument n vom Typ INTEGER ungerade ist:

OOD (3) TRUE
ODD (16) FALSE
ODD (0) FALSE

Entscheidend ist nun, daß man mit diesen Relationen und Funktionen

(boolesche) Ausdrücke bilden kann. Sind Bl und B2 zwei boolesche Aus-
drücke, so kann man mit den logischen Operatoren AND, OR, NOT neue

Ausdrücke bilden.

B1 AND B2 TRUE, falls B1=TRUE und B2=TRUE
Bi OR B2 TRUE, falls B1=TRUE oder B2=TRUE
NOT B1 TRUE, falls B1=FALSE

Wenn Sie jetzt noch einmal die Syntax-Diagramme im Anhang A betrach-
ten, werden Sie feststellen, daß dort diese logischen Operatoren mit den

arithmetischen Operatoren (+, -, * etc.) aufgeführt sind. AND ist ein Mul-
tiplikationsoperator, OR wirkt wie ein Additionsoperator und NOT ist wie

ein Vorzeichen definiert.

Diese Definition unterscheidet Pascal von vielen anderen Sprachen, da

hierdurch AND, OR und NOT stärker binden als die Relationen =, <, >.

Beispiele für Ausdrücke vom Typ BOOLEAN sollen die Unterschiede
zeigen:

TRUE

ODD(X) OR ODDCY)

X=Y
CH 1 slau

(X=Y) OR (A=B)
ODD(X) AND (X>0) OR ODDCY) AND (Y>0)

NOT ODD(X) OR (X<0)
(CH>="A") AND (CH<="Z") OR (CH1>="0") AND (CH1<="9"')

Einführung in Pascal 43

Um die exakten Ergebnisse der Beispiele vorherzusagen, müssen Sie die

oben angegebenen Regeln sicher noch einmal genauer studieren. Zur

Sicherheit formulieren wir die Prioritätsregeln noch als Merksatz:

Merke: Teilausdrücke, die Vergleiche enthalten, müssen in

booleschen Ausdrücken geklammert werden. AND bindet

stärker als OR.

Interessant werden Variablen vom Typ BOOLEAN erst in großen Pro-

grammen. Mit ihnen kann man Zustände im Programmablauf beschreiben.
Nach der Variablendeklaration

VAR P, Q, SPEICHERLEER: BOOLEAN;

ALLESFALSCH, ZUGROSS: BOOLEAN;

ZAEHLER, I: INTEGER;

kann man folgende Operationen durchführen:

P:= TRUE; Q:= P;

SPEICHERLEER:= ZAEHLER<=0; ZUGROSS:= I>=250;

ALLESFALSCH:= SPEICHERLEER AND ZUGROSS;

IF ALLESFALSCH THEN ...

IF SPEICHERLEER AND NOT ALLESFALSCH THEN ...

Dieses Beispiel verdeutlicht auch eine Namenskonvention: Man bezeichnet

boolesche Variablen meist mit Adjektivnamen. Nur selten wird die Tat-
sache ausgenutzt, daß die Funktion ORD auch auf boolesche Argumente
anwendbar ist. Dadurch ist auch der Typ BOOLEAN geordnet. Es gilt:

ORD (FALSE) = 0 ORD (TRUE) = 1
FALSE < TRUE

Eine Bitte am Schluß: Schreiben Sie in einem booleschen Ausdruck nicht

P = TRUE oder SPEICHERLEER = FALSE

Dies ist zwar völlig korrekt, zeugt aber von einem schlechten Stil. Man
schreibt einfacher und deutlicher:

P oder NOT SPEICHERLEER

44 Einführung in Pascal

Aufgaben

1. Prüfen Sie die Bereichsgrenzen für reelle und ganze Zahlen in Pascal
1.4. Welche Fehlermeldungen erhalten Sie? Lokalisieren Sie die Fehler

im Quelltext mit der Option LOCATE ADDRESS!

Wie muß man in Abschnitt 2.62 den Ausdruck C+B-B klammern oder

umstellen, um ein korrektes Ergebnis zu erhalten?

Schreiben Sıe einen Ausdruck mit der Funktion INT, der eine reelle

Zahl R wie die Funktion ROUND rundet. (Zur Not finden Sie den
Ausdruck in der Dokumentation in Kapitel 4)

Beweisen Sie durch Einsetzen aller möglichen Kombinationen von

TRUE und FALSE, daß die folgenden booleschen Ausdrücke äquiva-

lent sind (Gesetze von de Morgan):

NOT(A AND B) entspricht NOT(A) OR NOT(B)

NOT(A OR B) entspricht NOTCA) AND NOT(B)

2.7 Deklaration von Konstanten

Oft gibt es gewisse Werte in einem Programm, die während der gesamten
Laufzeit des Programmes nicht verändert werden. Für diese Konstanten

kann man in Pascal Bezeichner vergeben. Wie die Variablendeklaration muß
die Konstantendeklaration im Vereinbarungsteil erfolgen. Wie aus dem
Syntax-Diagramm BLOCK im Anhang A zu entnehmen ist, steht die
Konstantendeklaration vor der Variablendeklaration:

PROGRAM KONSTANTEN (OUTPUT);

CONST FAKTOR1 =1.745329252E-2; (* PI/180 *)

FAKTOR2 =57.29577951; (*1/FAKTOR1*)
CLEARSCREEN =147

ENDEKOMMANDO =!!*"

VERSION ="VERSION 747";

BEGIN

WRITELNCCHRCCLEARSCREEN), "DIES IST ",VERSION);
WRITELNCFAKTOR1, 1/FAKTOR2)

END.

Listing 7: Konstantendeklaration

Einführung in Pascal 45

Eine Konstantendeklaration wird durch das Wortsymbol CONST eingeleitet.
Jedem Bezeichner wird nach einem Gleichheitszeichen ein Wert zugeordnet.

Der Typ des Wertes bestimmt auch den Typ des Konstantenbezeichners.

VERSION ist also eine Stringkonstante, während FAKTOR2 vom Typ
REAL ist. Nach dem Gleichheitszeichen darf nur eine Konstante (evtl. mit
Vorzeichen) folgen. Andere Ausdrücke sind nicht erlaubt:

CONST FAKTOR2 = 1/FAKTOR1; (falsch!)

2.8 Kontrolistrukturen

Bisher haben wir nur lineare Programme vorgestellt, das sind Programme,

in denen die Anweisungen genau in der Reihenfolge ausgeführt werden, in
der sie im Programmtext stehen. Eine entscheidende Fähigkeit von Rech-

nern ist jedoch gerade die Möglichkeit, Anweisungen zu wiederholen oder
in Abhängigkeit von Bedingungen auszuführen, die während des Pro-
grammes geprüft werden. In BASIC wird dies durch Sprünge im Programm
erreicht (IF, GOTO, FOR ... NEXT, ON ... GOTO).

In diesem Abschnitt werden die entsprechenden Kontrollstrukturen in

Pascal vorgestellt. Bedingungen und Wiederholungen werden dort durch
sogenannte zusammengesetzte Anweisungen gebildet, die dem Programm

eine Blockstruktur geben.

Diese Blockstruktur ist Grundlage für ein fundamentales Prinzip der
Strukturierten Programmierung: Der (statische) Programmtext zeigt bereits

die dynamische Struktur (z.B. Schleifen) des Programmes. Das Programm

besteht aus Blöcken, die jeweils nur einen Eingang und einen Ausgang be-
sitzen. Blöcke dürfen (nach genauen Regeln) zu einem Block zusammenge-

faßt werden.

In Pascal bezeichnet man einen solchen Block als eine Anweisung. In den
folgenden Abschnitten werden Sie die obigen prinzipiellen Aussagen über
Blöcke in den Syntax-Regeln von Anweisungen in Pascal wiederfinden.

46 Einführung in Pascal

2.8.1 Anweisungsfolgen

Die elementaren Bausteine eines Programmes sind die einfachen Anweisun-
gen. Beispiele für einfache Anweisungen kennen Sie bereits aus den
Abschnitten 2.4 und 2.5. Dort wurden die Zuweisung und die Ein- und
Ausgabeanweisungen vorgestellt:

A:= A+1

WRITECA)

READLN

Dort wurde auch erwähnt, daß der Anweisungsteil aus einer Folge von
Anweisungen besteht, die mit BEGIN und END gekennzeichnet wird. Da-
bei werden die Anweisungen durch Semikola getrennt:

BEGIN
Anweisung;
Anweisung;

Anweisung

END

ANWEISUNG

ANWEISUNG

ANWEISUNG

Bild 3: Anweisungsfolge

Bild 3 zeigt Ihnen die Struktur einer Anweisungsfolge. Daneben ist zur
Verdeutlichung die Blockstruktur skizziert: Die einzelnen Anweisungen
betrachtet man als Blöcke, die durch die Wortsymbole BEGIN und END zu

einer Anweisung (Block) geklammert werden. Diese Klammerung werden
wir später benutzen, um in zusammengesetzten Anweisungen, bei denen
eine einzelne Anweisung erwartet wird, eine ganze Anweisungsfolge
einzusetzen.

Einführung in Pascal 47

Noch ein Wort. zu den Semikola: Ein Semikolon trennt Anweisungen. Des-
halb ist kein Semikolon vor dem abschließenden END erforderlich. Setzen
Sie dort auch ein Semikolon,

BEGIN WRITECA); A:= A+1; WRITECA); END

so erwartet der Compiler eine Anweisung. Um diesen Fall nicht als Fehler

zu behandeln, gibt es in Pascal die Leeranweisung, die aus keinem Befehl

besteht. Diese mysteriöse Anweisung tritt auch in den folgenden

(korrekten) Anweisungsfolgen auf:

BEGIN END (1 Leeranweisung)

BEGIN A:=B; END (1 Leeranweisung)

BEGIN ; ; END (3 Leeranweisungen)

2.8.2 Bedingte Anweisungen

Eine bedingte Anweisung (If-Anweisung) hat die folgende Form:

IF Ausdruck THEN

Anweisung 1

ELSE

Anweisung 2

oP 14 AUSDRUCK? NEIN

ANWEISUNG 1 ANWEISUNG 2

Bild 4: [f-Anweisung

Der Ausdruck muß ein Ergebnis vom Typ BOOLEAN liefern. Ist das Er-
gebnis TRUE, wird die Anweisung nach dem Wortsymbol THEN ausge-
führt. Ist das Ergebnis FALSE, so wird die Nein-Anweisung ausgeführt. Es
gibt viele verschiedene Formen, die If-Anweisung im Quelltext zu for-
matieren. In diesem Buch wird das folgende Layout verwendet:

IF KONTO>=0 THEN
WRITELNC KONTO:8,"DM GUTHABEN")

ELSE
WRITELNC-KONTO:8,"DM SCHULDEN")

48 Einführung in Pascal

Bei einer anderen Form der If-Anweisung ist keine Nein-Anweisung vor-
gesehen. Nur wenn der Ausdruck den Wert TRUE liefert, wird die An-
weisung nach dem Wortsymbol THEN ausgeführt:

IF Ausdruck THEN
Anweisung

AUSDRUCK?
JA USDRUG NEIN

ANWETSUNG

Bild 5: [f-Anweisung

IF A<B THEN

BEGIN H:=A; A:=B; B:=H END

Dieses Beispiel zeigt auch, wie man statt einer einzelnen Anweisung eine

ganze Anweisungsfolge durch eine Bedingung kontrolliert. Der Compiler
kümmert sich nämlich nicht um die Einrückungen im Quelltext. Deshalb
würde er das folgende Programm nicht korrekt übersetzen:

IF A>B THEN

MAX:= A; MIN:= B

ELSE

MAX:= B; MIN:= A

Nach der oben angegebenen Syntax der If-Anweisung muß nach THEN

und ELSE eine einzelne Anweisung folgen. Deshalb sieht der Compiler den
folgenden Text:

IF A>B THEN

MAX:= A;

MIN:= B; ELSE

MAX:= B; MIN:= A

Um die Struktur, die durch die Einrückung beschrieben wird, auch korrekt

in Pascal zu formulieren, muß man also die Anweisung MAX:=A; MIN:= B
zu einer Anweisungsfolge zusammenfassen:

IF A>B THEN

BEGIN MAX:= A; MIN:= B END

ELSE

BEGIN MAX:= B; MIN:= A END

Einführung in Pascal 49

Auf einen weiteren Fallstrick müssen Sie noch achten: Hätten wir vor dem
Wortsymbol ELSE (also nach dem END) ein Semikolon gesetzt, würde der
Compiler eine If-Anweisung wie in Bild 5 erkennen und damit das ELSE
nach dem Semikolon als Fehler markieren.

Am Beispiel der Bedingten Anweisung wollen wir noch das Prinzip der
Schachtelung von Anweisungen (Blöcken) zeigen. Eine If-Anweisung ist
eine zusammengesetzte Anweisung. Dadurch werden die Anweisungen nach
THEN und ELSE zu einer Anweisung zusammengefaßt. Dies soll auch der
äußere Rahmen in den Abbildungen 4 und 5 unterstreichen. Damit kann

also eine If-Anweisung selbst als Teil einer anderen If-Anweisung auftre-
ten. Um das Maximum von drei Zahlen zu berechnen, kann man folgende
Anweisung verwenden:

IF A>B THEN
IF A>C THEN.

MAX :=

ELSE

MAX :=

ELSE

IF B>C THEN

MAX:= B

ELSE

MAX:= C

ie Ara? Br
JA ne NEIN

Br ll Be?
JA NEIN | JA nein

HAX:=A | MAX:=C NAX:=B | MAX:=C

Bild 6: Geschachtelte Blöcke

Diese Anweisung ist korrekt, jedoch sollte man solche geschachtelten If-
Anweisungen sicherheitshalber mit BEGIN END klammern, da sonst evtl.
die ELSE-Teile ungewollt falsch gegliedert werden. Der Compiler ordnet
nämlich jedes ELSE der letzten If-Anweisung zu, die noch kein ELSE be-
sitzt. Dies führt im folgenden Beispiel zu Problemen.

IF ZEILEBEENDET THEN
IF ZEILENNUMMER=5 THEN WRITEC"ZEILE 5")

ELSE
WRITELN ("KEIN ZEILENENDE")

50 Einführung in Pascal

Das ELSE wird hier der Bedingung IF ZEILENNUMMER>=5 zugeordnet,

was sicher nicht die Absicht des Programmierers war. Um das korrekte Er-
gebnis zu erhalten, muß die If-Anweisung zwischen THEN und ELSE mit
BEGIN und END geklammert werden.

2.8.3 Fallunterscheidung

In manchen Fällen muß man in Abhängigkeit eines einzigen Wertes unter-
schiedliche Operationen vornehmen. In diesem Fall bietet sich statt einer

Folge von If-Anweisungen die Case-Anweisung an:

CASE Ausdruck OF

Fallmarken 1: Anweisung 1;

Fallmarken 2: Anweisung 2;

Fallmarken n: Anweisung n

END

Tr AUSDRUCK
MARKE — Tu _ MARKE? anne MARKE3 ee

————| HARKE N

ANW.1 | ANW.2 | ANM.3 |... | ANW.N

Bild 7: Fallunterscheidung

Die exakte Syntax ist dem Syntax-Diagramm FALLUNTERSCHEIDUNG

im Anhang A zu entnehmen. Eine Fallunterscheidung wird folgendermaßen
ausgeführt: Zunächst wird der Ausdruck ausgewertet. Er muß einen Wert
eines skalaren Typs (z.B. CHAR, INTEGER, aber nicht REAL) liefern.
Von den nachfolgenden Anweisungen wird nur diejenige ausgeführt, die
den Wert des Ausdruckes in ihrer Konstantenliste enthält. Natürlich müssen
die Fallmarken denselben Typ wie der Ausdruck besitzen. Kommt der Wert

des Ausdruckes in keiner Fallmarke vor, so erfolgt ein Programmabbruch
mit Fehlermeldung. Im Zusammenhang mit Aufzählungstypen und Varian-
ten Records wird sich die Case-Anweisung als besonders nützlich erweisen.
Das folgende Beispiel zeigt eine typische Anwendung der Case-Anweisung:

Einführung in Pascal 51

PROGRAM FALL (INPUT, OUTPUT);
VAR CH : CHAR;

A, B, ERG : REAL;

OK : BOOLEAN;

BEGIN

READLN(CH, A, B);

OK:= TRUE;

CASE CH OF

nu ux: BEGIN ERG:= A * B END;

nu: BEGIN

IF B = 0 THEN

BEGIN

OK:= FALSE;

WRITELNC"DIVISION DURCH NULL")

END

ELSE

ERG:= A / B
END;

nu : ERG:= A + B;

Hou : ERG:= A - B

ELSE BEGIN OK:= FALSE;

WRITELNC""",CH,""' NICHT ERLAUBT!")

END
END;

IF OK THEN WRITELNC"ERGEBINS",ERG)
END.

Listing 8: Beispielprogramm

Das Programm benutzt bereits eine Erweiterung der Case-Anweisung in
Pascal 1.4: Durch die Angabe des Wortsymbols ELSE am Ende der Case-

Anweisung kann eine Anweisung genannt werden, die in dem Fall durch-
geführt wird, wenn der Wert des Ausdruckes mit keiner Fallmarke über-
einstimmt. Dann wird natürlich auch kein Programmabbruch mit Fehler-
meldung durchgeführt. |

Bitte beachten Sie die Verwendung der booleschen Variablen OK. Da die
Case-Anweisung nur einen Ausgang besitzt, muß das Auftreten eines Feh-
lers im Inneren der Case-Anweisung explizit notiert werden.

Zum Schluß sei darauf hingewiesen, daß manche Compiler (nicht Pascal
1.4) Fallmarken aus einem zusammenhängenden Wertebereich erwarten. Sie
würden einen für folgendes Beispiel sehr ungünstigen Code erzeugen:

CASE GANZEZAHL OF
2 =: BEGIN END;
200 : BEGIN END;
2000 : BEGIN END

END

52 Einführung in Pascal

2.8.4 While- Anweisung

Möchte man eine Anweisung (einen Block) wiederholt ausführen, so gibt es
dafür in Pascal drei verschiedene zusammengesetzte Anweisungen, die je-
weils unterschiedliche Kontrollstrukturen bilden. Die Unterschiede bestehen
in der Form, in der die Bedingung formuliert wird, unter der die An-
weisung wiederholt wird. Dieser Abschnitt beschreibt die am häufigsten
benutzte Wiederholungsanweisung.

Die While-Anweisung besitzt die folgende Struktur:

WHILE Ausdruck DO

Anweisung

WHILE AUSDRUCK

ANWEISUNG

Bild 8: While- Anweisung

Der Ausdruck liefert ein Ergebnis vom Typ BOOLEAN. Die Wiederholung

wird wie folgt ausgeführt:

1. Der boolesche Ausdruck wird ausgewertet. Ist das Ergebnis FALSE, so

wird die gesamte While-Anweisung beendet.

2. Ist das Ergebnis des Ausdruckes TRUE, so wird die Anweisung nach
dem Wortsymbol DO ausgeführt. Anschließend wird die Ausführung

bei 1. fortgesetzt.

Ein Beispiel soll die Anwendung der Struktur erklären. Wir wollen ohne

Logarithmusfunktion bestimmen, wie viele Stellen die Zahl X vor dem
Komma besitzt.

PROGRAM STELLENCINPUT, OUTPUT);

VAR X: INTEGER; N: INTEGER;

BEGIN
READLN(X); N:=0
WHILE X<>0 DO

BEGIN
X:= X DIV 10; N:= N+1

Einführung in Pascal 53

END;

WRITELNC"ANZAHL DER STELLEN:",N)

END.

Die Idee besteht also darin, zu zählen, wie oft man die Zahl nach rechts

schieben kann, bis alle Ziffern hinter dem Komma stehen. Wichtig ist da-
bei, daß die Prüfung des Ausdruckes (X<>0) vor der Ausführung der An-
weisung erfolgt. Deshalb wird für die Eingabe von 0 die Schleife überhaupt

nicht durchlaufen. Also liefert das Programm für diese Eingabe das Ergeb-
nis N=0. Anzumerken ist noch, daß das Programm auch für negative Zah-

len korrekt arbeitet.

Nach der ausführlichen Diskussion im letzten Abschnitt ist Ihnen sicher
auch klar, warum im Programm STELLEN nach dem Wortsymbol DO eine
Anweisungsfolge (BEGIN ... END) steht. Ist dies nicht der Fall, sollten Sie
das Programm probeweise ohne die Klammerung mit BEGIN und END
übersetzen und testen. Wenn Sie anschließend die beiden letzten Kapitel
noch einmal lesen, werden Sie die Bedeutung der Anweisungsfolge zur Bil-
dung von Blöcken erkennen.

While-Anweisungen nennt man auch pre check loops oder abweisende
Schleifen. Durch die Eigenschaft einer While-Anweisung, die Schleife auch
nicht auszuführen, spart man oft notwendige Sonderbehandlungen. Das fol-

gende Beispielprogramm berechnet für zwei natürliche Zahlen N und K
den Wert E = N hoch K.

E:= 1; [:= K;
WHILE I>0 DO

BEGIN E:= E*N; I:= I-1 END

Dieses Beispiel berücksichtigt die Sonderfälle N=0 und K=0 korrekt. Es gilt
nämlich

1 für alle N

0 für alle K<>0

N hoch 0

O hoch K

Auch für die Wiederholungsanweisungen, die wir erst im nächsten Ab-

schnitt kennenlernen, gelten die folgenden Regeln, die man bei der Pro-

grammierung beachten sollte:

1. Bei der Wiederholung muß die Schleife irgendwann beendet werden.
Deshalb muß man sich während der Berechnung dem Ziel nähern. Fol-

gendes Programmstück ist also auf jeden Fall sinnlos:

54 Einführung in Pascal

WHILE I<>0 DO K:= K+1

2. Während jeder Ausführung der Wiederholung müssen gewisse Bedin-
gungen erhalten bleiben. Diese Bedingungen bezeichnet man auch als
Schleifen-Invarianten. Es ist keine schlechte Idee, diese Invarianten

durch Kommentare zu verdeutlichen:

E:= 1; I:=K;

WHILE I>0 DO (* E = X hoch (K-I) *)

BEGIN E:= E*N; I:= I-1 END

Am Ende der Schleife ist also I=0, und damit besitzt E den gewünsch-

ten Wert. |

3. Grundsätzlich soll man beim Entwurf einer Wiederholung den Sonder-
fällen besondere Aufmerksamkeit schenken, um logische Fehler nicht

erst im fertigen Programm bei seltenen Eingaben zu finden.

2.8.5 Repeat- Anweisung

Seltener als die While-Anweisung wird die Repeat-Anweisung benutzt. Sie
hat die in Abbildung 9 angegebene Struktur.

REPEAT

Anweisung;

Anweisung;

Anweisung

UNTIL Ausdruck

ANWETSUNG

ANWEISUNG

ANWEISUNG

UNTIL AUSDRUCK

Bild 9: Repeat- Anweisung

Der wesentliche Unterschied zur While-Anweisung ist die Tatsache, daß
die Anweisungsfolge mindestens einmal ausgeführt wird:

Einführung in Pascal 55

1. Die Anweisungsfolge wird ausführt.

2. Anschließend wird der Ausdruck vom Typ BOOLEAN ausgewertet. Ist

das Ergebnis TRUE, so wird die Ausführung der Repeat-Anweisung
beendet. Ist das Ergebnis FALSE, so wird die Ausführung bei 1. fort-
gesetzt.

Im Gegensatz zur While-Anweisung kann der boolesche Ausdruck also Va-
riablen enthalten, die erst innerhalb der Anweisungsfolge berechnet

werden.

REPEAT
WRITE ("ALLES KLAR? (J,N) ");
READLN (CH)

UNTIL (CH="U") OR (CH="N')

Weitere Beispiele werden in den folgenden Abschniiten vorgestellt.

2.8.6 For-Anweisung

In BASIC bietet die For-Anweisung die beste Möglichkeit zur Struk-
turierung von Wiederholungen. In Pascal wird die For-Anweisung nur dann
verwendet, wenn die Anzahl der Wiederholungen bereits vor Eintritt in die

Schleife bekannt ist. Die Struktur der Anweisung ist wieder in einem Bild
dargestellt:

FOR Variable := Ausdruck TO Ausdruck DO

Anweisung

u

FOR VARIABLE: =LAUFLISTE

ANWETSUNG

Bild 10: For-Anweisung

Die Ausführung erfolgt nach dem folgenden Schema. Es sichert, daß der
Endwert der Schleife nicht in der Schleife verändert werden kann. Außer-

dem kann die For-Schleife wie die While-Schleife auch nicht durchlaufen

werden, falls nämlich der Wert von Ausdruck 1 bereits größer als der Wert
von Ausdruck 2 ist:

56 Einführung in Pascal

1. Ausdruck 1 wird ausgewertet. Der Wert wird der Laufvariablen zu-ge-
wiesen. Anschließend wird Ausdruck 2 ausgewertet und als Endwert
der Schleife gespeichert.

2. Der Wert der Laufvariablen wird mit dem gespeicherten Endwert ver-
glichen. Ist er größer als der Endwert, so wird die Ausführung der
Schleife beendet.

3. Sonst wird die Anweisung nach dem Wortsymbol DO ausgeführt.

4. Anschließend wird die Laufvarıable um 1 erhöht und die Ausführung
der Schleife bei 2. fortgesetzt.

Die folgende Anweisungsfolge berechnet die Summe der Kehrwerte der
Zahlen von 1 bis 100.

S:
F

= 0.0;

OR I:= 1 TO 100 DO S:= S+1/1

Als Typ der Laufvariablen sind alle skalaren Typen (z.B. INTEGER,
CHAR, aber nicht REAL) zulässig: Dementsprechend wird in Schritt 4
allgemein der Nachfolger im Wertebereich bestimmt.

FOR CH:= " " TO "zu DO
WRITELNC"DER CODE VON ",CH," IST" ‚ORDECH): 4)

Die einzige Möglichkeit, die Schrittweite zu ändern, besteht darin, rück-
wärts zu zählen: Man ersetzt das Wortsymbol TO durch das Wortsymbol

DOWNTO. Das Schema (1.-4.) gilt analog. Um andere Schrittweiten als +1
und -1 zu erhalten, muß man die Wiederholung explizit mit der While-
Anweisung programmieren. Besonders vorsichtig muß man dabei bei Lauf-
variablen vom Typ REAL sein. Addiert man ständig eine Schrittweite, so
können sich die Rundungsfehler aufschaukeln. Soll z.B. die reelle Variable

W die Werte 1 0.9 0.8 0.7 ... -0.9 -1 durchlaufen, so schreibt man nicht

W:= 1.0;

WHILE W>=(-1) DO

BEGIN

WRITELN(W); W:= W-0.1

END

sondern

FOR I:= 10 DOWNTO -10 DO
BEGIN

W:= 1/10; WRITELN(W)
END

Einführung in Pascal 57

Die Erstellung einer Multiplikationstabelle ist ein anschauliches Beispiel für

geschachtelte For-Schleifen.

PROGRAM MULTIPLIKATIONCOUTPUT);
CONST N=13;

VAR I,J : INTEGER;

BEGIN

FOR I:= 1 TO N DO

BEGIN

FOR J:= 1 TO N DO

WRITECI*J:3);

WRITELN

END

END.

2.8.7 Sprunganweisung

In diesem Abschnitten werden alle Regeln, die die Sprunganweisung
betreffen, zusammengestellt. Deshalb werden einige Begriffe auftreten, die
erst in späteren Abschnitten über Prozeduren erklärt werden.

Die Sprunganweisung paßt eigentlich nicht in das Blockkonzept der Sprache
Pascal. Darum ist bei ihrer Verwendung auch die Einhaltung einiger Ne-
benbedingungen erforderlich.

Eine Sprunganweisung hat die folgende Form:

GOTO Label

Die Programmausführung wird beim Erreichen des Labels an der An-
weisung fortgesetzt, die durch das Label markiert wird. Labels sind positive

ganze Zahlen. Jede Anweisung kann durch ein Label markiert werden:

Label: Anweisung

Alle Labels müssen außerdem in dem Block, in dem sich die markierte

Anweisung befindet, im Labeldeklarationsteil aufgeführt werden. Eine La-
beldeklaration ist die erste Deklaration in einem Block und hat die folgende
Form:

LABEL Label1, Label2, ..., LabelN;

Bei Sprüngen muß die Blockstruktur berücksichtigt werden:

1. Es ist nicht erlaubt, von außen in eine Prozedur zu springen.

58 Einführung in Pascal

2. Es ist nicht erlaubt, von außen in eine For-, With- und Case-An-
weisung zu Springen.

Jedoch ist es erlaubt, aus einer geschachtelten Prozedur zu einer Marke in
einem umfassenden Block zu springen.

Sprunganweisungen sollten nur zur Behandlung selten auftretender Aus-

nahmefälle benutzt werden. Außerdem ist es sınnvoll, im Labeldeklara-

tionsteil Kommentare einzuführen, die die Bedeutung des Labels erklären.

Aufgaben

l. Schreiben Sie Programme zur Umwandlung arabischer Zahlen in römi-
sche Zahlen. Vielleicht haben Sie auch eine Idee, wie man die Um-

wandlung in umgekehrter Richtung vornehmen kann.

Schreiben Sie ein Programm, das Zahlenfolgen einliest und bei der Ein-
gabe der Zahl 999 die Summe über die Folge (natürlich ohne 999)
druckt. Welche Wiederholungsanweisung ist hier angebracht?

Geben Sie eine Anweisungsfolge an, die für beliebige X- und Y-Werte
einen Cursor in Zeile X und Spalte Y positioniert.

Erstellen Sie ein Programm, das die Nullstellen einer Funktion F nach
dem Intervallschachtelungsverfahren bestimmt: Der Benutzer gibt als

Startwerte die Intervallgrenzen L und R an, in denen eine Nullstelle
liegt. Dabei soll gelten F(L)*F(R)1=0, d.h. zwischen L und R liegt ein
Vorzeichenwechsel. Die Nullstelle wird durch sukzessive Intervallhal-
bierung gefunden. In Abhängigkeit vom Funktionswert in der Inter-
vallmitte M=(L+R)/2 wird M als rechte oder linke Intervallgrenze be-

nutzt. Die Approximation beende man, falls die Intervallgröße kleiner

als eine vom Benutzer vorgegebene Genauigkeit ist. Prüfen Sıe das Pro-
gramm mit der Funktion F:=2*SIN(X)-COS(2*x) im Intervall 0 bis 1.

Schreiben Sie ein Programm, das alle Primzahlen in einem vom Be-
nutzer vorgegebenen Intervall druckt. (Eine Zahl X heißt Prim, wenn

sie nur durch | und sich selbst geteilt werden kann. 1 ist keine Prim-
zahl.) Überlegen Sie sich vor der Programmierung, welche Zahlen von
Anfang an als Primzahlen ausscheiden und bis zu welcher Grenze die
Teilbarkeit geprüft werden muß. |

Einführung in Pascal 59

6. Schreiben Sie ein Programm, das eine Wahrheitstabelle in der folgenden

Form druckt:

A B A AND B

FALSE FALSE FALSE
FALSE TRUE FALSE
TRUE FALSE FALSE
TRUE TRUE TRUE

Geben Sie sich ruhig etwas Mithe bei der Formatierung. Benutzen Sie
(String-)Konstanten! Besonders schön wäre es, wenn Sie zwei
geschachtelte Schleifen mit booleschen Variablen A und B verwenden
würden.

Prüfen Sie mit dem Programm die Ergebnisse von A<B, A>B, A<=B,
A>=B statt A AND B!

7. Uberlegen Sie, wie man die Operation I MOD 7 verwenden kann, um

die Ausgabe von Ergebnissen so zu steuern, daß jeweils sieben Werte in
einer Zeile stehen.

8. Schreiben Sie ein Programm, das so lange Zeichen einliest, bis es auf
eine Ziffer trifft, und dann zeichenweise eine Zahl einliest und den

Wert der Zahl in der Variablen R abspeichert.

abcdef12.34ghijk liefert den Wert R=12.34

Erweitern Sie das Programm so, daß es auch einen Skalierungsfaktor
(E+xx) einlesen kann! Vielleicht hilft Ihnen bei der Programmierung das
Syntax-Diagramm ZAHL im Anhang A.

2.9 Die Datenstruktur Array

In der Praxis kommt man mit den bisher besprochenen einfachen Daten-

typen nicht aus. Will man z.B. auf einer Menge gleichartiger Werte die
gleiche Operation wiederholen, so müßte man für jedes Objekt einen eige-
nen Bezeichner definieren und die gleiche Operation mit jedem Wert
einzeln durchführen.

60 Einführung in Pascal

Für solche Probleme vereinbart man - anschaulich gesprochen - eine
Tabelle aller Werte. Nur die Tabelle erhält einen Bezeichner, so daß jeder
einzelne Wert über den Bezeichner der Tabelle zusammen mit einem Index
in der Tabelle angesprochen wird. Einen solchen Datentyp nennt man in

Pascal ein Array. |

Die einfachste Form eines Arrays besitzt als Elemente einzelne Werte.

Dabei spielen Arrays von Zeichen eine besondere Rolle. (Sie entsprechen
etwa den Strings in BASIC.) Im Abschnitt 2.9.3 werden wir Arrays

betrachten, deren Elemente wiederum Arrays sind.

2.9.1 Eindimensionale Arrays

Eindimensionale Arrays sind Arrays, die als Elemente nicht wieder Arrays
besitzen.

CONST N=5;
VAR A: ARRAY [5..8] OF INTEGER;

T: ARRAY [0..N] OF REAL;

A und T werden durch diese Variablendeklaration als Arrays vereinbart.
Dabei wird sowohl die Menge der zulässigen Indizes (der Indextyp) als
auch der Typ der Elemente des Arrays (der Elementtyp) angegeben.

Die Variable A ist also ein Array, das aus Zahlen vom Typ INTEGER
besteht. Zulässige Indizes für das Array A sind ganze Zahlen zwischen 5
und 8. Die Struktur von A entspricht einer Tabelle mit vier Elementen.

Jedes Element besitzt einen Index und enthält eine ganze Zahl:

66

17

m
m
u

Bild 11: Struktur des Arrays A

Die folgenden Zuweisungen füllen das Array A mit Werten:

A(5]:=0; A[L61:=66; A[7]:= 77; Al4+4]:=3

Einführung in Pascal 61

Die letzte Zuweisung zeigt, daß man den Index eines Elementes auch als
Ergebnis eines Ausdruckes angeben kann. Dabei muß natürlich der Typ des

Ausdruckes mit dem Indextyp des Arrays übereinstimmen.

Die For-Anweisung wird am häufigsten im Zusammenhang mit Arrays be-
nutzt. Man läßt die Laufvariable den Indexbereich überstreichen und kann
so in einer Wiederholung eine Operation auf alle Elemente des Arrays an-
wenden:

FOR I:= 5 TO 8 DO

WRITELNC"ELEMENT",1:3,'" ENTHAELT DEN WERT ",A[I])

In Pascal müssen die Indexgrenzen in der Deklaration durch Konstanten

gegeben sein. Somit muß bereits bei der Übersetzung die Größe des Arrays
festgelegt werden. Um diese Einschränkung etwas zu mildern, definiert
man die Indexgrenzen mit Konstanten, wie dies im Beispiel für das Array

T geschehen ist. Natürlich müssen diese Konstanten auch im An-
weisungsteil z.B als Grenze für For-Anweisungen benutzt werden. Stellt
sich heraus, daß die Grenze zu groß oder zu klein gewählt wurde, muß

man nur die Konstante im Vereinbarungsteil anpassen und das Programm

neu übersetzen.

In den bisherigen Beispielen hatten wir als Indextyp immer einen Teil-
bereich der ganzen Zahlen betrachtet. In einzelnen Fällen kann es jedoch
auch sinnvoll sein, andere Typen als Indizes zu vereinbaren. Außer dem
Typ REAL kann man alle einfachen Typen verwenden:

ARRAY [BOOLEAN] OF CHAR;
ARRAY [CHAR] OF INTEGER;

Für das letzte Beispiel wollen wir noch ein vollständiges Programm
betrachten. Es soll ein Text eingelesen und die Häufigkeit aller Buchstaben
gezählt werden. Die Texteingabe wird durch die Eingabe eines beliebigen
Sonderzeichens beendet.

PROGRAM HAEUFIGKEIT (INPUT, OUTPUT);
CONST SPACE="" ">
VAR C: CHAR;

H: ARRAY ["A".."Z"] OF INTEGER; (* Zahlarray *)
BEGIN

FOR C:= "A" TO "Z" DO H[C]:= 0; (* Zähler löschen *)
READ(C); \
WHILE (C>="A") AND (C<="Z") OR (C=SPACE) DO

BEGIN
IF C<>SPACE THEN HL[C]:= H{C]+1;

62 Einführung in Pascal

READ(C)
END;

FOR C:= "A" TO "Z" DO
WRITECC:2, H[C]1:2," !");

END.

Jetzt werden wir noch einige typische Algorithmen in Pascal vorstellen, die
auf Arrays operieren. Dabei wird die folgende Deklaration vorausgesetzt:

PROGRAM FELD (INPUT, OUTPUT);

CONST UG=1; OG=10; (* Feldgröße *)
VAR I,J,K: INTEGER;

A: ARRAY [UG..OG] OF INTEGER;

SUM, MAX, W: INTEGER;

Eine Operation auf allen Elementen wird mit der For-Anweisung pro-

grammiert:

SUM: = 0;

FOR I:= UG TO OG DO SUM:= SUM + A[I];

Um den größten Wert in einem Array zu finden, bestimmt man schritt-
weise das Maximum der ersten i Zahlen, indem man das Maximum der

ersten i-1 Zahlen mit dem i. Element vergleicht:

MAX := A[UG];
FOR I:= UG+1 TO OG DO

IF ACLI]>MAX THEN MAX:= All]

Selbst wenn UG=OG ist, arbeitet dieses Programm korrekt, da dann die

For-Schleife wegen UG+1>OG nicht ausgeführt wird. Mit diesem Such-
algorithmus kann man auch ein Array sortieren: Man bestimmt das
Maximum des Arrays und vertauscht es mit dem letzten Element im Array.

Anschließend wiederholt man diese Prozedur für alle Elemente ohne das

Maximum und erhält dadurch den zweitkleinsten Wert. Wiederholt man
dieses Verfahren bis zum kleinsten Element des Arrays, so ist das Array
schließlich sortiert.

FOR J:= OG DOWNTO UG+1 DO
BEGIN

(* Bestimme K, den Index des Maximums *)
(* im Array A von UG bis J *)
(* Vertausche A[J] mit AIK] *)

END

Die in Kommentarklammern angegebenen Operationen hatten wir bereits

früher programmiert (s.o), so daß wir das Programm vollständig angeben
können:

Einführung in Pascal 63

FOR J:= OG DOWNTO UG+1 DO
BEGIN

MAX := A[UG]; K:= UG;

FOR I:= UGt1 TO J DO
IF ALI]>MAX THEN

BEGIN K:=I; MAX:= ALI] END;
A[K] := A[lJ]; ACJ] := MAX

END

Ist Ihnen die genaue Funktion dieses Programmes noch nicht ganz klar,
sollten Sie mit Stift und Papier das Array mit den Werten

8913 4 2 5

nach dem angegebenen Algorithmus sortieren. Dann werden Sie auch
verstehen, warum dieser Algorithmus Sortieren durch Auswahl heißt. In
Abschnitt 2.11.5 werden wir ein anderes Sortierverfahren kennenlernen, das
für große Arrays wesentlich effizienter ist.

Eine weitere elementare Operation mit Arrays besteht darin, einen
vorgegebenen Wert im Array zu suchen. Das Ergebnis der Suche soll der

Index des Wertes im Array sein. Offensichtlich ist hier die For-Anweisung
ungeeignet. Ein erster Lösungsansatz wäre folgende Schleife:

(*$R+ *)

I:= UG;

WHILE (1<=0G) AND (A[I]<>W) DO I:=I+1;

IF I>0G THEN

WRITELNC™NICHT GEFUNDEN")
ELSE

WRITELNC" INDEX", 1);

Jedoch bewirkt diese Schleife einen Zugriff auf das nicht existierende
Element A[OG+1], falls der gesuchte Wert W nicht im Array A enthalten
ist: Im letzten Durchlauf der Schleife ist I=OG+1. Anschließend wird die
Bedingung der While-Anweisung ausgewertet. Zwar ist bereits das Ergebnis
des ersten Teilausdruckes (I<=OG) FALSE, dennoch wird in Pascal ein

boolescher Ausdruck immer vollstandig ausgewertet. Deshalb wird bei der

Berechnung des zweiten Teilausdruckes auf das Element A[OG+1] zuge-
griffen.

Dieser verbotene Zugriff wird normalerweise ın Pascal 1.4 nicht erkannt,
da Indizes nicht auf die Grenzen in der Deklaration überprüft werden. Der

Kommentar in der ersten Zeile des Beispiels schaltet jedoch eine Option
des Compilers ein, die unter anderem die Indexgrenzen bei jedem Array-
Zugriff prüft, so daß beim Programmablauf eine Fehlermeldung erzeugt
wird: |

64 Einführung in Pascal

VALUE OUT OF BOUNDS: 11 1 10

ERROR AT xxxx

Das heißt, es wurde versucht, das 11. Element anzusprechen, obwohl in der

Deklaration 1 und 10 als Indexgrenzen vereinbart wurden. (Näheres siehe
Dokumentation in Kapitel 4.)

Die obige Suche muß also umformuliert werden:

l:= UG-1;

REPEAT I:=1+1 UNTIL (ALI]=W) OR (1=0G)

Eine intelligentere Version der Suche vermeidet die ständige Prüfung auf
das Ende des Arrays. Der Trick besteht darin, den gesuchten Wert am Ende
des Arrays als Marke zu speichern, so daß spätestens dort die Suche ab-

bricht. Dazu müssen wir aber das Array um eine Position erweitern:

PROGRAM SUCHE (INPUT, OUTPUT);

CONST UG=1; 0G=10; OG1=11 (* OG+1 *)
VAR A: ARRAY [UG..OG1] OF INTEGER;

1:=UG; AL[LOG1] :W;

WHILE ALI] <>W DO I:=I+1;
IF 1=0G1 THEN WRITELNC"WERT NICHT GEFUNDEN")

Damit beschlieBen wir die Behandlung der Algorithmen auf Arrays. Sicher
werden Sie den einen oder anderen Hinweis fiir eigene Pascal-Programme
verwenden können. Jeder Leser, der nicht gerne jedes Mal das Rad neu

erfinden will, sei auf die Standardliteratur zum Thema Strukturierte Pro-

grammierung verwiesen. Besonders nützlich ist das Buch 2 (siehe Anhang
E), in dem alle Algorithmen in Form von Pascal-Programmen vorgestellt

und ausführlich hergeleitet werden.

Bisher wurden nur einzelne Elemente eines Arrays verändert. Möchte man

z.B. den Inhalt eines Feldes A in ein Feld B desselben Typs übertragen, so
könnte dies wıe folgt geschehen:

FOR I:= UG TO OG DO B[I]:= A[I]

In Pascal geht dies aber auch eleganter (und wesentlich schneller) mit dem
Befehl B:=A. Voraussetzung hierfür ist, daß A und B denselben Typ be-

sitzen. Wann zwei Variablen denselben Typ besitzen, wird im Abschnitt

2.10 genau erklärt. | |

Einführung in Pascal 65

2.9.2 Strings

Für die Praxis ist ein spezieller Typ von Arrays interessant. Arrays mit
Elementen vom Typ CHAR lassen sich als Strings (also Zeichenketten) in-

terpretieren:

VAR S1,S2: ARRAY [1.. 8] OF CHAR;
S3 : ARRAY [1..15] OF CHAR;

Diese Arrays bestehen also aus acht beziehungsweise fünfzehn Zeichen.
Bereits im Abschnitt 2.1 wurden Stringkonstanten beschrieben. Eine
Stringkonstante mit N Zeichen besitzt implizit den Typ

ARRAY [1..N] OF CHAR;

Pascal ist bei der Behandlung von Strings sehr restriktiv. Da Strings Arrays
sind, besitzen sie eine konstante Größe. Zuweisungen sind nur zwischen

Strings gleicher Länge erlaubt:

S1:= S2 (korrekt)

$1:="12345678" S3:="ALPHA u (korrekt)

S1:= S3 S3:="ALPHA" (falsch)

Andererseits sind zusätzliche Operationen auf Strings definiert: Strings glei-
cher Länge können mit =, <, > verglichen werden. Das Ergebnis des Ver-

gleichs hängt vom zugrundeliegenden Zeichensatz ab (s.a. Abschnitt 2.6.4).

"OTTO " < "OTTO2"
HEMIL" < VERNA"

"Emil" > "EMIL" = (1)

Die folgenden Vergleiche sind wegen der unterschiedlichen Länge der
Strings nicht erlaubt:

IF "EGON" = "EGON " THEN ...

IF SI < S3 THEN ...

SchlieBlich kann ein String auch als Parameter in Write-Anweisungen
auftreten:

WRITE ("ICH HEISSE ",S1);
WRITELNC"UND NICHT ",S3:20)

Die Eingabe von Strings mit nur einem Befehl ist im Standard nicht
vorgesehen. Viele Pascal-Implementierungen haben einen großen Satz an
speziellen String-Befehlen. Sie ermöglichen auch die Definition von Strings,

66 Einführung in Pascal

die eine variable Länge besitzen. Da sich jedoch auf diesem Gebiet noch
kein allgemein akzeptierter Standard herauskristallisiert hat, sind solche
Routinen nicht in Pascal 1.4 aufgenommen worden.

2.9.3 Mehrdimensionale Arrays

Der Elementtyp eines Arrays ist beliebig. Deshalb kann auch ein Array aus
Arrays gebildet werden:

CONST N=3; M=4;
VAR X: ARRAY [1..N] OF

ARRAY [1..M] OF INTEGER;

Eine solche zweidimensionale Datenstruktur bezeichnet man in der Mathe-

matik als Matrix. Man kann sich X als eine zweidimensionale Tabelle mit

ganzen Zahlen vorstellen:

1 1 9 3 4

3 5 6 7 8

3 9 10 11 12

Bild 12: Matrix X

Üblicherweise wird die obige Deklaration folgendermaßen abgekürzt:

VAR X: ARRAY(1..N,1..M] OF INTEGER;

Elemente einer solchen Struktur spricht man durch zwei Indizes an:

X(2] [11 oder abgekürzt
X[2,1]

X[1] [2]:

X[1,2]

Es ist eine reine Konvention, bei solchen Matrizen den ersten Index als

Zeile und den zweiten Index als Spalte zu bezeichnen. Am Beispiel der

Ein- und Ausgabe von Matrizen können Sie Ihre Kenntnisse über die Stan-

dardprozeduren READ und WRITE wieder auffrischen:

Einführung in Pascal 67

Zunächst soll die Matrix eingelesen werden. Die Eingabe soll so erfolgen,

daß der Benutzer die Elemente zeilenweise eingibt:

1
5
9 o

O
O
N

a
n

WW

N
C
O
 &

10 11 1

Nach dieser Eingabe soll also gelten: X[1,2] = 2 X[3,1]=9. Offensichtlich
brauchen wir zwei geschachtelte For-Anweisungen. Eine Laufvariable (i)
indiziert die Zeilen, die andere (j) durchläuft in jeder Zeile die Spalten.

FOR I:= 1 TO N DO

BEGIN

FOR J:= 1 TO M DO

READ(XL[LI,J]);

READLN

END

Das READLN sorgt also dafür, daß die Eingabe korrekt ın verschiedenen

Zeilen erfolgt. Analog erfolgt die Ausgabe der Werte in der Matrix durch
WRITE und WRITELN:

FOR I:= 1 TO N DO

BEGIN

FOR J:= 1 TO M DO

WRITECXLI,J1:5);
WRITELN

END

Jetzt wird es Ihnen sicher leichtfallen, die obige Anweisungsfolge so zu
modifizieren, daß die transponierte Matrix X gedruckt wird:

W
N

=

O
n
N
O
a
V

N
o

0

1
1
1

Im Abschnitt 2.9.1 wurde erklärt, daß man auch eine Zuweisung (A:=B)

zwischen zwei Feldern durchführen kann. Nach der folgenden Deklaration

VAR S, T: ARRAY [1..3,1..8] OF CHAR;

könnte man die Matrizen S und T auch als zwei Tabellen mit jeweils drei
Strings der Länge 8 betrachten. Deshalb kann man das Array mit folgenden
Anweisungen vorbelegen:

S(1]:= "OTTO ";
S[2]:= "ERNA ";
S[3]:= "ANNA 9;

68 Einführung in Pascal

Mit der Anweisung S:=T, werden alle Zeilen von S nach T kopiert:

+- -+

OTTO "ti
S=T= I"ERNA "I

IMANNA "I
+- -+

AuBerdem kann man auch selektiv einzelne Zeilen ansprechen. Man gibt
hinter dem Array-Bezeichner nur den Zeilenindex an:

WRITELN(S [2]) druckt ERNA
S$ [3] :=S [2] überschreibt ANNA mit ERNA

Solche Block-Zuweisungen sind in Pascal bei jedem zusammengesetzten Typ
möglich. Man gibt beim Variablenbezeichner jeweils die Indizes nur bis zu
der Dimension ein, die komplett verändert werden soll:

VAR H1,H2: ARRAY [0..20] OF
ARRAY [1..4] OF

ARRAY [1..10] OF INTEGER

Mit etwas Phantasie kann man in dieser Datenstruktur zwei Hochhäuser mit
20 Stockwerken (einschließlich Erdgeschoß) erkennen. In jedem Stockwerk
gibt es vier Flure. Jeder Flur besitzt die Zimmernummern | bis 10. Für
jedes Zimmer wird die Anzahl der Personen gespeichert. Hl und H2 sind
also dreidimensional. Mit folgenden Zuweisungen können wir einige
Umzüge vollziehen: |

H1[0,1,2] :=H1[1,2,3) HI1,2,3]:= 0

Hier zieht also eine Familie (?) aus dem 1. Stock, 2. Flur in die Nachbar-
wohnung um. Wenn die Bewohner des 3. Flurs im 2. Stock die Wohnungen
ım 4. Flur im Erdgeschoß übernehmen sollen, wird das in der Zimmer-
buchführung wie folgt notiert:

H1[0,4]:=H1[2,3]

Größere Unruhe wird wohl die folgende Aktion zur Folge haben:

Einführung in Pascal 69

Aufgaben

l. Schreiben Sie ein Programm, das in einem aufsteigend sortierten Array
A ganzer Zahlen nach einer vorgegebenen Zahl W sucht. Dabei soll die

Methode der binären Suche verwendet werden: Um im Teilarray von L
bis R das Element W zu finden, vergleicht man W mit dem Wert an der

mittleren Position M=(L+R) DIV 2. Je nachdem, ob W kleiner oder

größer als A[M] ist, wählt man M als neue linke oder rechte Array-
Grenze.

L:=UG; R:=0G;

REPEAT

M:=(L+R) DIV 2;

IF W<A[M] THEN ... ELSE

IF W>A[M] THEN ...

ELSE...

UNTIL ...

Sollten Sie Probleme bei der Formulierung des Abbruchkriteriums
haben, können Sie eine boolesche Variable GEFUNDEN verwenden.

Wenn Sie schon Programmiererfahrung besitzen, sollten Sie versuchen,

in der Schleife mit nur einem Vergleich zwischen W und A[M]
auszukommen. (Es geht!)

Schreiben Sie ein Programm, das das Pascalsche Dreieck druckt. Es ent-

halt die Binomialkoeffizienten n über k, die man z.B zur Berechnung
von (a+b)tn benötigt:

1 5 10 10 5 1

Dabei steht in der n. Zeile an der k. Position die Summe der Zahlen in
der n-1. Zeile an der k-1. und k. Position. (Genaueres finden Sie in je-
dem Lexikon.) |

Schreiben Sie ein Programm, das ein Array reeller Zahlen verwaltet. Zu
Anfang ist das Array unbelegt. Dann sollen Werte vom Benutzer
eingegeben werden, die direkt bei der Eingabe so in das Array
eingefügt werden, daß die Zahlen aufsteigend sortiert bleiben.

70 Einführung in Pascal

LEN:=0;

REPEAT

Zahl einlesen;
Zahl einfügen;

LEN:=LEN+1

UNTIL LEN=Feldgröße

4. Schreiben Sie ein Programm, das einen Text zeilenweise von der

Tastatur einliest (Sonderzeichen am Ende). Dieser Text soll dann im
Blocksatz auf eine Spaltenbreite von N Zeichen verteilt ausgedruckt

werden:

Dies ist ein

Beispiel für den
Blocksatz mit
wenigen Spalten.

Sie müssen also zunächst eine Verteilung der Wörter über die Zeilen

vornehmen. Anschließend können Sie die verbleibenden Leerzeichen am

rechten Rand auf die Zwischenräume zwischen den Wörtern verteilen.
Normalerweise verteilt man die Leerzeichen abwechselnd je eine Zeile
von rechts und eine Zeile von links, um ein ausgeglichenes Schriftbild

zu erhalten.

5. Schreiben Sie ein Programm, das eine reelle Zahl formatiert ausdruckt.

Dabei sollen insgesamt N Zeichen gedruckt werden. M gibt die Anzahl
der Nachkommastellen an:

X=12.34 N=10 M=2 wee 12.34
X=400 N=8 M=2 400.00
X=9.8765 N=6 MO 9
X=-32.40 N=7 M=3 -32.400

6. Erstellen Sie ein Programm, das in einem String SI einen String S2 mit
N Zeichen Länge sucht. Die gefundene Position soll in der Variablen M
gespeichert werden.

Si:="Dies ist ein Testtext"

S2:="tt "; N=2 ergibt M=17
S2;=" "> N=1 ergibt M=5
$2:="Egon "» N=4 ergibt M=0

Sie können das Programm erweitern, indem Sie auch einen Joker zu-
lassen:

S2:="est??xt ": N=7 ergibt M=15

Einführung in Pascal 7]

S2:="est?2xt ",.n=7 ergibt M=15

7. Für eine Matrix mit drei Zeilen und vier Spalten sollen folgende Werte

berechnet werden:

- Maximale Zeilensumme
- Maximale Spaltensumme
- Das betragsgrößte Element in der Matrix
- Die Summe der Werte in jeder Diagonalen von links unten nach

rechts oben |
- Die Summe der Werte in jeder Diagonalen von links oben nach

rechts unten.

8. Programmieren Sie das Sortierverfahren Bubblesort. Um ein Array von
N Werten zu sortieren, wird das Array (N-1)mal durchlaufen. In jedem
Durchlauf werden jeweils zwei benachbarte Elemente verglichen und
ausgetauscht, falls das zweite Element kleiner als das erste Element ist:

FOR I:= 2 TO N DO
FOR Jie ceceueeees DO

IF ALJ+11<ALJI THEN
BEGIN

H:=ALJl; AlJl:=ALJ+1]; ALJ+1]:= H
END;

Bestimmen Sie die Grenzen für die For-Anweisung, indem Sie sich zu-
nächst die Funktionsweise mit der Anweisung FOR J:= 1 TO N-1 klar-
machen, und anschließend überlegen, bis zu welcher Grenze das Array

im I-ten Durchlauf bereits sortiert ist.

2.10 Deklaration von Typen

In der Variablendeklaration wird der Typ als eine konstante Eigenschaft
der Variablen festgelegt. Bisher kennen Sie die Standardtypen mit den
vordefinierten Bezeichnern INTEGER, REAL, CHAR und BOOLEAN. Im

Abschnitt 2.9 hatten wir bereits Array-Variablen definiert. Sie sind ein
erstes Beispiel für Typen, die der Programmierer definiert. Wie Konstanten

und Variablen können auch Typen Bezeichner erhalten. Dies geschieht im

Typvereinbarungsteil, der im Programm zwischen dem Konstanten- und
Variablenvereinbarungsteil steht:

72 Einführung in Pascal

TYPE GANZEZAHL = INTEGER;

VAR

GROSSEZAHL= REAL;

TMATRIX = ARRAY[1..4,1..4] OF GANZEZAHL;

I: GANZEZAHL; J :INTEGER;
MAT1,MAT2: TMATRIX;
MAT3 = ARRAYL1..4,1..41 OF GANZEZAHL;
MAT4 : TMATRIX;

Listing 9: Typdeklaration

Für zusammengesetzte Typen ist die Benutzung von Typbezeichnern beson-

ders sinnvoll. Im letzten Abschnitt wäre die Struktur der Variablen H1,H2

mit der folgenden Typdeklaration sofort erkennbar:

TYPE BELEGUNG

VAR

INTEGER;

FLUR = ARRAY[1..10] OF BELEGUNG;
STOCK = ARRAY[1..4] OF FLUR;

HAUS = ARRAY[0..20] OF STOCK;

H1,H2: HAUS;

Eine wichtige Aufgabe der Typdeklaration besteht darin, die Menge der
Variablen in einem Programm in Klassen aufzuteilen. Zuweisungen und
Operationen sind nur zwischen den Mitgliedern kompatibler Klassen
möglich. Bereits bei der Übersetzung sind dadurch weitgehende Prüfungen
des Programmtextes möglich.

Die folgenden Regeln legen die Typkompatibilität in Pascal fest:

1. Zwei Variablen eines zusammengesetzten Typs (Array, Record, Menge

und File) sind nur dann zuweisungskompatibel, wenn sie in einer
Variablendeklaration oder mit demselben Typbezeichner definiert wur-
den.

Strings (Werte des Typs ARRAY OF CHAR) können außerdem String-
Variablen der gleichen Länge zugewiesen werden.

Werte eines Unterbereichstyps (siehe Abschnitt 2.12.2) können
außerdem Variablen des Basistyps zugewiesen werden.

Ein ganzzahliger Wert kann immer einer reellen Variablen zugewiesen
werden.

Einführung in Pascal 73

Die erste Regel soll am Beispiel der Deklaration aus Listing 9 verdeutlicht
werden:

MAT1:= MAT2 (zulässig)

MAT4:= MAT1 (zulässig)

MAT3:= MAT1 (unzulässig)

MAT4:= MAT3 (unzulässig)

Einige Compiler sind bei der Interpretation der Regeln zur Typkompatibi-

lität etwas großzügiger. Sıe erlauben Zuweisungen auch zwischen Variablen,
die nur die gleiche Struktur besitzen (MAT3:=MATI ist dann zulässig,
siehe auch Buch 3, Anhang E).

2.11 Prozeduren

Eine besonders erfolgreiche Strategie beim Programmentwurf besteht darin,

das Ausgangsproblem in geeignet gewählte kleinere Teilprobleme zu zer-
legen. Ziel dieser Zerlegung ist es, überschaubare Programmteile zu erhal-
ten, die mit dem restlichen Programm nur über wohldefinierte
Schnittstellen kommunizieren, so daß die Korrektheit der Programmteile
ohne Kenntnis der Umgebung gesichert werden kann. Als Beispiel ist in
Listing 10 die Grobstruktur eines Programmes für ein Brettspiel mit dem
Computer angegeben.

Spielbrett belegen

REPEAT

Spielstellung anzeigen

Eingabe Spielerzug

Spielstellung anzeigen

Computerzug berechnen
UNTIL Spielende

Listing 10: Brettspiel

Jede der im Klartext angegebenen Teilaufgaben läßt sich logisch von den

anderen trennen. Ein Beispiel für eine Schnittstelle zwischen den Teilauf-
gaben ist die Spielstellung: Sie darf nur bei der Eingabe des Spielerzuges
und des Computerzuges verändert werden. Die Teilaufgabe Spielstellung
anzeigen kann auf die Spielstellung nur lesend zugreifen.

74 Einführung in Pascal

Pascal unterstützt diese Modularisierung des Programmes durch das

Konzept der Prozeduren und Funktionen. Die Schnittstellen werden durch

Parameterlisten und die Sichtbarkeitsregeln für Bezeichner im Programm-
text festgelegt.

In Pascal würde man jede der obigen Teilaufgaben durch ein separates Pro-

grammstück, eine Prozedur, definieren. Jede Prozedur erhält in der Proze-

durdeklaration einen Namen (Bezeichner). Im Anweisungsteil wird durch
die Angabe des Namens der Prozedur die Ausführung der angegebenen
Prozedur veranlaßt. Diese Art von Anweisung nennt man einen Prozedur-
aufruf.

Besonders nützlich sind Prozeduren, die von verschiedenen Stellen

aufgerufen werden. Dadurch, daß die Prozedur nur einmal deklariert wer-
den muß, spart man nicht nur Schreibarbeit und Speicherplatz, sondern
muß spätere Änderungen nur an einer Stelle durchführen.

Ein konkretes Beispiel soll die einfachste Form einer Prozedur vorstellen:

Wir wollen den größten gemeinsamen Teiler der ganzen Zahlen A und B
bestimmen. Diese Berechnung soll den GGT in der Variablen ERG ablegen.
Die dazugehörige Prozedur ist in Listing 11 angegeben.

PROCEDURE GGT;

BEGIN

X:=A; Y:=B;

WHILE X<>Y DO

IF X>Y THEN X:

ELSE Y: n
u

<
<

‘
e

x

=

=e

ERG:=X
END;

Listing 11: Die Prozedur GGT

Dies ist eine Prozedurdeklaration. Sie besteht aus dem Wortsymbol PRO-

CEDURE und dem Prozedurbezeichner GGT, die zusammen den Proze-

durkopf bilden. Zwischen den Wortsymbolen BEGIN und END stehen die

Anweisungen der Prozedur.

Die . Prozedurdeklarationen stehen am Ende des Vereinbarungsteils. Dort
werden alle Prozeduren, die das Hauptprogramm benutzt, in der Form von

Listing 12 aufgeführt. Im Anweisungsteil des Programmes steht an zwei
Stellen der Bezeichner GGT. Dort wird also die Prozedur GGT aufgerufen.
Der GGT ist bei der Rückkehr aus der Prozedur in der Variablen ERG
gespeichert.

Einführung in Pascal 75

In den nächsten Abschnitten werden wir an Hand dieses Beispielpro-
grammes noch weitere Möglichkeiten von Pascal vorstellen, die es erlauben,
Prozeduren noch flexibler einzusetzen.

PROGRAM GGTTEST(OUTPUT);
VAR A, B, ERG, X, Y: INTEGER;

PROCEDURE GGT;

BEGIN

X:=A; Y:=B;

WHILE X<>Y DO

IF X>Y THEN X: = X-

ELSE Y:= Y

Y
-X;

ERG:=X

END; (* GGT *)

BEGIN (* HAUPTPROGRAMM *)
A:=9; B:= 3; GGT;

WRITELNCERG);
A:=8; B:= 3; GGT;

WRITELNCERG)
END.

Listing 12: Prozeduraufrufe

2.11.1 Lokalität von Bezeichnern

In Listing 12 wurden die Variablen X und Y nur innerhalb der Prozedur
GGT verwendet. Diese Zugehörigkeit drückt man dadurch aus, daß die
Variablen innerhalb der Prozedur deklariert werden.

PROGRAM GGTTESTCOUTPUT);
VAR A, B, ERG: INTEGER;

PROCEDURE GGT;

VAR X,Y: INTEGER;

BEGIN

X:=A; Y:=B;

WHILE X<>Y DO

IF X>Y THEN X:

ELSE Y:

ERG:=X
END; (* GGT *)

Listing 13: Lokale Variablen

Man bezeichnet X und Y als lokale Variablen der Prozedur GGT, da sie

jetzt auBerhalb der Prozedur nicht mehr sichtbar sind. D.h. eine Zuweisung

76 Einführung in Pascal

X:=Y ım Hauptprogramm würde der Compiler mit der Fehlermeldung

Bezeichner nicht deklariert quittieren.

Durch diese lokalen Deklarationen nimmt eine Prozedur die Form eines
eigenständigen Programmes an. Tatsächlich sind alle Deklarationen, die im
Hauptprogramm erlaubt sind, auch lokal möglich. Wenn Sie wieder einmal

die Syntax-Diagramme im Anhang A zu Rate ziehen, werden Sie sehen,
daß sich an den Programm- und den Prozedurkopf ein BLOCK anschließt.
Das Syntax-Diagramm BLOCK. enthält sowohl den Vereinbarungsteil als
auch den Anweisungsteil.

Grundsätzlich versucht man, den Sichtbarkeitsbereich (scope) eines
Bezeichners (Konstante, Variable etc.) möglichst klein zu halten. Diese

Strategie wird manchmal auch als Geheimnisprinzip bezeichnet: Eine

Prozedur verbirgt vor ihrer Umgebung nicht nur die Details ihres

Anweisungsteils, sondern auch die lokalen Objekte.

Ein angenehmer Nebeneffekt dieses Prinzips der Lokalität ist eine
Speicherplatzersparnis. Bei der Programmausführung wird erst beim Aufruf

der Prozedur (GGT) Speicherplatz für die lokalen Objekte (die Variablen X
und Y) reserviert. Am Ende der Ausführung der Prozedur wird dieser
Speicherplatz wieder freigegeben und steht anderen Prozeduren zur

Verfügung. Eine Folge dieser Speicherorganisation ist, daß bei jedem neuen
Aufruf einer Prozedur alle lokalen Variablen undefiniert sind.

Soll eine Variable ihren Wert zwischen zwei Aufrufen beibehalten, so muß

man sie außerhalb der Prozedur (global) deklarieren (Listing 14).

In Listing 12 waren auch X und Y globale Variablen. Gerade in großen
Programmen ist die Verwendung von globalen Variablen eine schwer zu
entdeckende Fehlerquelle: Hätte man im Hauptprogramm in Listing 12 die

Variablen X und Y benutzt, so würden als Seiteneffekt bei jedem Aufruf

von GGT die Werte von X und Y überschrieben werden.

PROGRAM GLOBALTEST (OUTPUT);
VAR G: INTEGER;

PROCEDURE GLOBAL;
BEGIN
G:=G+1; WRITELNC"AUFRUF NUMMER" ,G)

END; (* GLOBAL *)

BEGIN
G:=0; GLOBAL; GLOBAL; GLOBAL

END.

Listing 14: Globale Variable

Einführung in Pascal 77

Nachdem nun der Unterschied zwischen globalen und lokalen Objekten
einer Prozedur bekannt ist, wollen wir uns mit der Schachtelung von
Prozeduren beschäftigen. Da alle Arten von Deklarationen in einer Proze-
dur erlaubt sind, kann eine Prozedur auch eine weitere Prozedurdeklaration

enthalten.

PROGRAM SCHACHTELUNG (OUTPUT);
VAR A: REAL; B: REAL;

PROCEDURE AUSSEN;

VAR A: INTEGER;

PROCEDURE INNEN;

VAR I: INTEGER;

BEGIN

WRITELNC"INNEN")

END; (* INNEN *)

BEGIN (* AUSSEN *)
WRITELNC"AUSSEN");
INNEN; INNEN; INNEN

END; (* AUSSEN *)

BEGIN (* HAUPTPROGRAMM *)
AUSSEN; AUSSEN

END.

Listing 15: Verschachtelung

Lokale Prozeduren (INNEN) verwendet man aus dem gleichen Grund wie
lokale Variablen: Die Prozedur INNEN wird nur in der Prozedur AUSSEN
benötigt. Deshalb sollte die Umgebung (in diesem Fall das Hauptprogramm)

keinen Zugriff auf die lokale Prozedur besitzen.

In Listing 13 wurden außerdem Variablen in verschiedenen
Schachtelungsebenen deklariert, um die folgenden Regeln über die Sicht-

barkeit von Bezeichnern in Pascal zu illustrieren:

1. Ein Bezeichner ist in dem Block P, in dem er deklariert wurde, sicht-

bar. Außerdem ist er in jedem Block sichtbar, der von P eingeschlossen

wird, solange nicht Regel 2 gilt.

2. Eine Deklaration eines Bezeichners X in einem Block macht alle

Deklarationen des Bezeichners X ın äußeren Blöcken unsichtbar.

3. Die Standardbezeichner sind in einem imaginären Block deklariert, der
das gesamte Programm umschließt.

78 Einführung in Pascal

Durch die Regel 1 ist die Variable B im Block SCHACHTELUNG, in der
Prozedur AUSSEN und auch in der Prozedur INNEN sichtbar. Nach Regel
2 überdeckt die Deklaration von A:INTEGER die Variable A:REAL. In
AUSSEN und INNEN ist also nur A:INTEGER sichtbar. Durch Regel 3
sind z.B. die Standardbezeichner TRUE und FALSE im gesamten Pro-
gramm sichtbar.

Nur selten werden die Standardbezeichner mit neuer Bedeutung deklariert.
Man könnte aber wegen Regel 2 und 3 mit der folgenden Deklaration die
vordefinierte Konstante MAXINT = 32767 ersetzen:

VAR MAXINT: INTEGER

Sollten Ihnen die Regeln etwas kompliziert erscheinen, so merken Sie sich

für den Augenblick nur, daß man in einer Prozedur Bezeichner unabhängig
vom übrigen Programm wählen kann.

2.11.2 Parameter

Die Version der Prozedur GGT mit lokalen Variablen (Listing 13) ist
immer noch nicht optimal in Pascal formuliert. Dort werden die Eingabe-

werte A und B sowie das Ergebnis ERG über globale Variablen übergeben.

Durch die Benutzung von Parametern wird die Prozedur universeller
(Listing 16).

PROGRAM PARAMETER(OUTPUT);

VAR V: INTEGER;

PROCEDURE GGT(A,B: INTEGER; VAR ERG: INTEGER);
BEGIN

WHILE A<>B DO
IF A>B THEN A:

ELSE B: wo

>

>

ow

'-
s

ERG:=A

END; (* GGT *)

BEGIN (* HAUPTPROGRAMM *)
GGT(9,3,V);
WRITELN(V);
GGT(17+4,3,V);
WRITELN(V)

END.

Listing 16: GGT mit Parametern

Einführung in Pascal 79

Der Prozedurkopf von GGT wird um eine Parameterliste erweitert. Die

formalen Parameter A, B und ERG werden wie lokale Variablen deklariert.

Beim Aufruf werden aktuelle Parameter angegeben, die die Werte der
Variablen festlegen. Beim Aufruf müssen Anzahl und Typ der aktuellen

und formalen Parameter übereinstimmen. Es gibt zwei verschiedene Typen

von Parametern, die beide in Listing 16 verwendet wurden.

Wertparameter: Im Beispiel sind A und B Wertparameter. Sie verhalten sich
in der Prozedur GGT wie normale lokale Variablen. Jedoch werden sie
beim Aufruf der Prozedur durch Ausdrücke als aktuelle Parameter (z.B.
17+4 oder 3) initialisiert. Die Prozedur kann jetzt die Variablen A und B
beliebig benutzen und ihnen auch Werte zuweisen, ohne daß in der
aufrufenden Umgebung irgendeine Änderung bewirkt würde.

Damit konnten wir im Beispiel die Hilfsvariablen X und Y einsparen.

Wertparameter sind die vorherrschende Parameterart, da beliebige Aus-

drücke als aktuelle Parameter auftreten können:

PROGRAM PARAMETERDEMO (OUTPUT);
VAR I: INTEGER;

PROCEDURE KASTEN(L, B: INTEGER; ZEICHEN: CHAR);
VAR I,J: INTEGER;

BEGIN
FOR I:= 1 TO B DO

BEGIN
FOR J:= 1 TO L DO

WRITECZEICHEN);
WRITELN

END
END; (* KASTEN *)

BEGIN
FOR I:= 1 TO 10 DO KASTEN(2*1,1+2,CHRCI+ORDC"A")))

END.

Listing 17: Parameterdemo

Variablenparameter: Wertparameter können keine Ergebnisse aus der

Prozedur an die aufrufende Umgebung zurückliefern. In solchen Fällen
benutzt man Variablenparameter. Hier ist der aktuelle Parameter immer

eine Variable vom Typ des formalen Parameters. Variablenparameter wer-

den bei der Deklaration in der Parameterliste durch Voranstellen des

Wortsymbols VAR gekennzeichnet.

80 Einführung in Pascal

Die Prozedur GGT liefert das Ergebnis über den Variablenparameter ERG

zurück. Deshalb muß beim Aufruf der dritte Parameter immer eine Varia-

ble vom Typ INTEGER sein (z.B. V).

Bei der Ausführung der Prozedur ändert jede Zuweisung an einen formalen
Variablenparameter den Wert des zugehörigen aktuellen Parameters. Somit
wird durch die Zuweisung ERG:=A der Variablen V der Wert A
zugewiesen.

Der Aufruf mit Wertparametern wird auch als call by value bezeichnet.
Den Aufruf mit Variablenparametern bezeichnet man dann als call by
reference. Dies deutet bereits auf die Realisierung der Parameter auf dem
Rechner hin: Bei Wertparametern wird der Wert des Ausdruckes in den

lokalen Speicherbereich der Prozedur kopiert. Bei Variablenparametern

wird nur ein Verweis (eine Adresse) auf eine globale Variable übergeben.

Viele weitere Beispiele werden Sie in den nächsten Abschnitten finden. Am
Ende dieses Abschnittes soll noch betont werden, daß alle Typen (auch

zusammengesetzte) als Parameter auftreten können:

PROGRAM VEKTORSUMME(INPUT, OUTPUT);
CONST N=5;
TYPE VEKTOR=ARRAY[1..N] OF REAL;
VAR X,Y,Z: VEKTOR;

M = ARRAYL1..N] OF VEKTOR; (* MATRIX!*)

PROCEDURE ADD (A,B: VEKTOR; VAR C: VEKTOR);
(* C:= A+B komponentenweise*)

VAR I: INTEGER;

BEGIN

FOR I:= 1 TO N DO C[I]:= ALIl]+BL[LI]
END; (* ADD *)
BEGIN

(* X,Y vorbelegen *)

ADD(X,Y,Z);
M[11:=Z; M(2]:= X;
ADD(M[1], M[2], ML4))

END.

Listing 18: Vektorsumme

Hier werden also Vektoren von fünf Zahlen als Parameter übergeben. Ak-

tuelle und formale Parameter müssen natürlich auch hier übereinstimmen.

Dabei ist es wichtig, daß Sie einen Typ-Bezeichner im Prozedurkopf

angeben. Verboten ist also die Parameterliste:

PROCEDURE ADD (A,B: ARRAY[1..N] OF REAL; VAR C: VEKTOR);

Einführung in Pascal 81

2.11.3 Funktionen

Neben den Variablenparametern gibt es eine weitere Möglichkeit, Resultate

zurückzugeben. Diese Methode lehnt sich an die Notation von Funktionen
in der Mathematik an. Dort schreibt man zum Beispiel:

x = GGT(7,29)

Der Name der Funktion repräsentiert gleichzeitig den Wert der Berechnung.

In Pascal definiert man solche Prozeduren, die nur einen skalaren Wert als

Ergebnis liefern, als Funktionen:

PROGRAM FUNKTIONCOUTPUT);
VAR W: INTEGER;

FUNCTION GGT(A,B: INTEGER): INTEGER;

BEGIN

WHILE A<>B DO

IF A>B THEN A:

ELSE B: n
u

u
»

>
»

GGT:=A
END; (* GGT *)

BEGIN (* HAUPTPROGRAMM *)
W:=GGT(12345 25325);
WRITELN(W,GGT(9,3));
W:=W+GGT (234,432)

END.

Man ersetzt also das Wortsymbol PROCEDURE durch das Wortsymbol
FUNCTION. Außerdem folgt nach der (evtl. leeren) Parameterliste und

einem Doppelpunkt ein Typbezeichner, der den Ergebnistyp der Funktion
definiert. Hier sind nur skalare Typen und Zeiger (siehe Abschnitt 2.18)
erlaubt. Die Syntax-Diagramme, die Sie im Zweifelsfall zu Rate ziehen
können, stehen im Anhang A unter den Namen BLOCK und
PARAMETERLISTE. |

Innerhalb der Funktion muß das Ergebnis durch eine Zuweisung an den
Funktionsbezeichner festgelegt werden. Dies geschieht hier durch die An-
weisung GGT:=A. GGT ist also nicht nur der Name der Funktion, sondern
auch der Name für das Ergebnis der Funktion. Die Anweisungen im

Hauptprogramm zeigen, daß man Funktionsaufrufe nur in Ausdrücken,

nicht aber als einzelne Anweisungen wie Prozeduraufrufe verwenden kann.

82 Einführung in Pascal

2.11.4 Standardprozeduren

Bereits bei Ihren ersten Schritten in Pascal hatten Sie die Anweisungen
WRITE und READ sowie arithmetische Funktionen wie SIN und COS ver-
wendet.

Im Unterschied zu den Wortsymbolen BEGIN und END handelt es sich
hierbei um vordefinierte Standardbezeichner für Prozeduren und Funktio-

nen. Wie wir bereits in Abschnitt 2.11.1 festgestellt haben, kann man die

Standardbezeichner durch eigene Deklarationen verdecken. Als Beispiel

wollen wir (mit einer numerisch sehr stabilen Methode) eine explizite
Deklaration der Quadratwurzelfunktion geben:

FUNCTION SQRT(X: REAL): REAL;

CONST EPS= 1.0E-7; (* Genauigkeit *)

VAR Y, Z: REAL;
BEGIN

IF X<O THEN

BEGIN

WRITELNC"FEHLER IN SORT"); HALT

END

ELSE

BEGIN Y:= 2; (* Startwert Z berechnen *)
REPEAT

Z:= Y; Y:=Y*Y

UNTIL Y>X;
REPEAT (* Iteration *)

Y:=Z: 2:=0.5*(Y+X/Y)
UNTIL ABSCY-2)<=EPS

END;

SQRT:= Z

END; (* SQRT *)

Listing 19: Deklaration der Quadratwurzelfunktion

Durch eine Erniedrigung der Genauigkeit EPS läßt sich bei Bedarf die
Geschwindigkeit der Routine erhöhen. Eine Sonderrolle nehmen die Proze-
duren READ(LN) und WRITE(LN) ein, da sie eine variable Anzahl ak-
tueller Parameter besitzen können. Diese Eigenschaft kann man durch
selbstdefinierte Prozeduren und Funktionen nicht simulieren.

2.11.5 Rekursion

In Abschnitt 2.11.1 über die Schachtelung von Prozeduren wurde erklärt,
daß in einem Block jede Prozedur aufgerufen werden kann, deren
Bezeichner sichtbar ist. Dies bedeutet, daß sich eine Prozedur auch selbst

aufrufen kann. Dieser Vorgang wird Rekursion genannt.

Einführung in Pascal 83

Durch die Tatsache, daß bei jedem Aufruf einer Prozedur Speicherplatz für
die lokalen Objekte bereitgestellt wird, werden bei rekursiven Aufrufen
verschiedene /nkarnationen der lokalen Variablen erzeugt.

Durch diese Methode der Speicherverwaltung werden beim rekursiven

Aufruf einer Prozedur P die Werte der lokalen Variablen von P nicht

überschrieben. Dies läßt sich am besten mit einem einfachen Beispielpro-

gramm verdeutlichen (Listing 20):

PROGRAM REKURSION(OUTPUT);

PROCEDURE REKURSIV(N: INTEGER);
VAR LOKAL: INTEGER;

BEGIN

LOKAL:= N;

WRITELNC" "N, "LOKAL=", LOKAL);

IF N<4 THEN REKURSIV(N+1); (*<<---------- *)
WRITELNC" "ZN, "LOKAL=", LOKAL);

END; (* REKURSIV *)

BEGIN

REKURSIV(1)
END.

Listing 20: Rekursion

Die Prozedur REKURSIV speichert zunächst (zu Demonstrationszwecken)
den Wert des Parameters N in einer lokalen Variablen LOKAL. Dieser Wert
wird nun in zwei identischen Write-Anweisungen um N Stellen eingerückt
ausgedruckt.

Die eigentlich interessante Anweisung ist mit einem Pfeil markiert: Ist
nämlich der Parameter N noch nicht gleich 4, so ruft sich die Prozedur
selbst auf. Als Parameter für diesen Selbstaufruf wird die Zahl N+l ver-
wendet. |

Da jeder Aufruf der Prozedur REKURSIV seine eigenen Variablen N und
LOKAL besitzt, wird durch diesen rekursiven Aufruf der Inhalt der Varıa-

blen N und LOKAL in der aufrufenden Umgebung nicht verändert. Des-

halb ergibt sich folgende Ausgabe:

LOKAL = 1

LOKAL = 2

LOKAL = 3

LOKAL = 4

LOKAL = 4

LOKAL = 3

LOKAL = 2

LOKAL = 1

84 Einführung in Pascal

Jeweils zwei Zeilen, die gleich weit eingerückt sind, stammen von dersel-
ben /Inkarnation der Prozedur REKURSIV.

Dieses Programm ist zwar nicht sehr sinnvoll, zeigt aber deutlich die

geschachtelten Aufrufe:

REKURSIV(1) ruft

REKURSIV(2) ruft

REKURSIV(3) ruft

REKURSIV(4)

Außerdem sehen Sie, daß diese Folge rekursiver Aufrufe irgendwann been-
det werden muß. Deshalb werden rekursive Aufrufe immer durch eine Be-
dingung kontrolliert. Im Beispiel Listing 20 ist dies die Bedingte

Anweisung IF N<4 THEN...

Schon jetzt möchte ich Sie davor warnen, rekursive Prozeduren Schritt für
Schritt nachzuvollziehen, indem Sie sich die Werte aller lokalen Variablen

notieren und so den Programmablauf zu analysieren versuchen. Dabei wer-

den Sie nach wenigen Schritten schon an einem heillosen Durcheinander

verzweifeln.

Vielmehr muß man rekursive Prozeduren deklarativ verstehen. So kann

man z.B. die Prozedur REKURSIV wie folgt beschreiben:

1. Drucke N Stellen eingerückt die Zahl N.

2. Ist der Text noch nicht vier Stellen eingerückt, so drucke einen Block,
der N+1 Stellen eingerückt ist.

3. Drucke N Stellen eingerückt die Zahl N.

Um Ihr deklaratives Verständnis zu trainieren, sollten Sie jetzt ein Blatt
Papier zur Hand nehmen und die Ausgabe notieren, die Sie beim Aufruf
REKURSIV2(1) der folgenden Prozedur (Listing 21) erwarten:

PROCEDURE REKURSIV2(N: INTEGER);

VAR LOKAL: INTEGER;

BEGIN

LOKAL:= N;

WRITELNC" "N, "LOKAL=", LOKAL);

IF N<4 THEN REKURSIV2(N+1);

IF N<4 THEN REKURSIV2(N+1);
WRITELNC" "=N, "LOKAL=", LOKAL);

END; (* REKURSIV2 *)

Listing 21: Rekursiv (2)

Einführung in Pascal 85

Diese Prozedur druckt also den gesamten eingerückten Block zweimal. (Ein
Tip: Die Ausgabe ist genau 30 Zeilen lang!)

Das Prinzip der Rekursion besteht darin, daß man zur Lösung einer großen
Aufgabe die Lösung der Aufgabe für kleinere Werte benutzt. Diese etwas
tautologisch anmutende Aussage soll das folgende Beispiel illustrieren:

Wir wollen alle möglichen Anordnungen (Permutationen) eines Strings von
n Zeichen drucken. Der rekursive Algorithmus hierfür lautet folgender-
maßen:

Ist die Länge N gleich 1, so gibt es nur diese Anordnung. Drucke diese
Anordnung.

Sonst: Drucke alle Möglichkeiten, die ersten (N-1) Zeichen im String

anzuordnen. |

Für alle Positionen i von 1 bis N-1: Tausche das 1. Zeichen mit dem letzten
Zeichen. Drucke alle Möglichkeiten für diese Anordnung. Mache die

Vertauschung rückgängig

Dieser Algorithmus läßt sich direkt in Pascal formulieren (siehe Listing 22).

PROGRAM ANORDNUNGENCINPUT, OUTPUT);

CONST LEN = 3;
TYPE STRING = ARRAY [1..LEN] OF CHAR;
VAR I: INTEGER;

A: STRING;

PROCEDURE ANORDNUNG(S: STRING; N: INTEGER);

(* Drucke alle Anordnungen der ersten N Zeichen *)
(* im String S. *)

VAR C: CHAR; I: INTEGER;
BEGIN ss

IF N=1 THEN WRITE(S," ")
ELSE

BEGIN
ANORDNUNG(S, .N-1);
FOR I:= 1 TO N-1 DO

BEGIN
C:= SCI]; S[IJ:=
ANORDNUNG(S,N-1);
C:= SCI); S{I]:=

END
END

END; (* ANORDNUNG *)

SIN]; SIN] := C;

S[N]; SIN]: u N

n
a

86 Einführung in Pascal

BEGIN

FOR I:= 1 TO LEN DO READ(ALI]);
WRITELN; ANORDNUNG(A, LEN); WRITELN

END.

Listing 22: Rekursiver Algorithmus

Für die Eingabe von ABC produziert das Programm die folgende Ausgabe:

ABC BAC CBA BCA ACB CAB

Es gibt viele Beispiele, in denen die Rekursion eine elegante Lösung des
Problems erlaubt. Bevor wir zum Schluß noch ein sehr effizientes rekur-

sives Sortierverfahren vorstellen, wollen wir noch ein abschreckendes

Beispiel für die unnötige Verwendung der Rekursion betrachten.

Es soll die Zahl n!= 1 * 2 * 3 * ... * n berechnet werden. In der Mathe-
matik wird die Fakultätsfunktion gern als eine primitiv rekursive Funktion
definiert. Es gilt nämlich:

Of =1 und (n+1)! = nt * (n+1) für n>=1

Somit läßt sich in Pascal die Zahl n! wie folgt berechnen:

PROGRAM FAKULTAETC INPUT, OUTPUT);

VAR X: INTEGER;

FUNCTION FAK(N: INTEGER): REAL;

BEGIN

IF N=0 THEN FAK:

ELSE FAK:

END; (* FAK *)

1.0
FAK(N-1) * N

BEGIN

REPEAT

READLN(X);
WRITELNCX:3,"! =" FAKCX))

UNTIL X=0;
END.

Jedoch ist die iterative Lösung

FAK:=1;

FOR I:=1 TO N DO
FAK:= FAK*I

leichter verständlich und auch effizienter. Jeder Prozeduraufruf benötigt
nämlich abgesehen von dem Speicherplatz für die lokalen Variablen auch

einen gewissen Verwaltungsaufwand, der bei der For-Schleife vermieden
wird.

Einführung in Pascal 87

Jetzt kommen wir zu dem angekündigten Sortieralgorithmus: Die Aufgabe
besteht darin, ein Array A mit N ganzen Zahlen aufsteigend zu sortieren.

Die Idee zu einer rekursiven Lösung besteht darin, das Array in zwei Teile

Afl..K] und A[K+1..N] aufzuteilen, so daß jeder Teil für sich, ohne
Kenntnis der Zahlen im anderen Teil, sortiert werden kann. Diese Zer-

legung und den Index K findet man mit der folgenden Strategie:

1. Man wählt einen (zufälligen) Wert X aus dem Array. Dies kann z.B. der
Wert in der Mitte des Arrays sein.

2. Anschließend bestimmt man den Index K so, daß die linke Hälfte
A[l..K-1] des Arrays nur Werte kleiner oder gleich X enthält, während
die rechte Hälfte A[K+1..N] nur Werte größer oder gleich X enthält.

3. Sortiert man anschließend die beiden Teilarrays, die mindestens ein
Element weniger als das ursprüngliche Array enthalten, so ist

schließlich das gesamte Array A[1..N] sortiert.

Die Tatsache, daß in jedem Schritt die Arraygröße um mindestens ein Ele-
ment sinkt, ist wichtig, damit die Rekursion auch korrekt terminiert.

Betrachten wir diese Strategie an einem Beispiel:

85763484

Da acht Elemente vorliegen, wahlt man in Schritt 1 das 4. Element (X=6)
im Array. Die Zerlegung in zwei Teile sieht nach dem 2. Schritt wie folgt
aus:

4543 6 788

Links und rechts von der Zahl 6 sind (in beliebiger Reihenfolge) die
Zahlen kleiner und größer als 6 aufgeführt. Da es vier Zahlen kleiner als 6
gibt, wählen wir den Index K=4+1=5. Im 3. Schritt werden nun die Teil-
arrays getrennt sortiert:

3445 6 788

Damit haben wir die gesamte Folge sortiert. Fiir Schritt 2 (die Zerlegung in
zwei Teilarrays) wollen wir noch einen genaueren Algorithmus angeben:

88 Einführung in Pascal

2.1 Setze zwei Zeiger I und J auf das erste und letzte Element im

Array.

2.2 Lasse I nach rechts wandern, bis es auf ein Element zeigt, das

größer als X ist. |
Lasse J nach links wandern, bis es auf ein Element zeigt, das

kleiner als X ist.

2.3 Da A[I] und A[J] jeweils auf der falschen Seite stehen, tausche die
beiden Elemente aus.

2.4 Wiederhole diese Schritte, bis sich beide Zeiger I und J treffen.

Die obigen Schritte beschreiben den Algorithmus Quicksort von C.A.R.

Hoare, der in Listing 23 als Pascal-Programm formuliert ist. Um die Kor-

rektheit für alle Belegungen des Arrays zu sichern, ist die exakte For-
mulierung der Bedingungen in den Schleifen nötig. Die Diskussion solcher

Details und eine Berechnung der Rechenzeit finden Sie in (2).

Die Sortierung erfolgt in der rekursiven Prozedur QUICK:, deren Parameter
L und R den Index des ersten und letzten Elementes des zu sortierenden
Arrays enthalten. In Listing 23 sind zur Verdeutlichung die Nummern der
obigen Schritte als Kommentare angegeben.

PROGRAM SORTIEREN (INPUT, OUTPUT);
CONST N = 16;
VAR A: ARRAY [1..N] OF ELEMENT;

PROCEDURE ERZEUGEN;
VAR I: INTEGER;

BEGIN
WRITELNC"UNSORTIERTE FOLGE EINGEBEN!");
FOR 1:= 1 TO N DO READCAT[I]);
READLN

END; (* ERZEUGEN *)

PROCEDURE AUSGEBEN;
VAR I: INTEGER;

BEGIN
WRITELN;
WRITELNC"DIE FOLGE LAUTET");
FOR I:= 1 TO N DO WRITECALI]:5);
WRITELN

END; (* AUSGEBEN *)

PROCEDURE QUICK (L,R: INTEGER);

VAR I, J: INTEGER;

X, Y: INTEGER;

Einführung in Pascal 89

BEGIN
X:=A[(L+R) DIV 2]
l:=L; J:=R; (* 2.1 *)

REPEAT
WHILE ALI]<X DO I:=1+1; (* 2.2 *)
WHILE ALJ]>X DO J:=J-1; (* 2.2 *)
IF I<=J THEN

BEGI (* 2.3 *)
Y:= ACI]; ACI]:= ACJ]; AlJ]:= Y;
I:= I+1; J:= J-1

END
UNTIL I>J; (* 2.4 *)
IF I<R THEN QUICKCI,R); (*3 *)
IF L<J THEN QUICK(L,J) (*3 *)

END; (* QUICK *)

BEGIN
ERZEUGEN; AUSGEBEN;
QUICK(1,N); AUSGEBEN

END.

Listing 23: Quicksort

Aufgaben

1. Formulieren Sie einige der Lösungen der Aufgaben früherer Abschnitte
als Prozeduren oder Funktionen. Überlegen Sie, welche Parameter diese

Prozeduren benötigen. Beachten Sie dabei die Unterschiede zwischen
Variablen- und Wertparametern. Diese Prozeduren können Sie als

Include-Files (siehe Abschnitt 4.4.6.2) auf einer Diskette speichern und

später in eigenen Programmen verwenden. Beispiele:

PROCEDURE WRITEREAL(X: REAL; N,M: INTEGER);

(* Drucke X in ein Feld der Größe N mit *)

(* M Nachkommastellen. *)

PROCEDURE BLOCKSATZ(VAR S: STRING; N: INTEGER;

| RECHTS: BOOLEAN);
(* Formatiere Textzeile in S im Blocksatz *)

(* auf N Stellen. Falls RECHTS=TRUE werden*)

(* Leerstellen von rechts eingefügt *)

Solche kommentierte Prozedurriimpfe sind eine einfache Methode,

größere Programme überschaubar zu halten.

Formulieren Sie ein string-package. Diese Prozedursammlung soll die
elementaren Befehle zur String-Behandlung umfassen, so daß es in an-
deren Programmen (z.B. als Include-File) verwendet werden kann. Da

man in Pascal keine Strings variabler Länge definieren kann, hat sich
folgende Darstellungsform von Strings durchgesetzt:

90 Einführung in Pascal

CONST MAXLEN

TYPE STRING

40; (* Maximale Länge eines Strings*)
ARRAY [0..MAXLEN] OF CHAR;

Dabei speichert man an der Position 0 im String die tatsächliche Länge

des Strings (zwischen 0 und MAXLEN). Um in S: STRING fünf Sterne

zu speichern, würde man folgende Zuweisung vornehmen:

FOR I:= 1 TO 5 DO S[I]:= "*";

S[0]:= CHR(5); (* 5 Zeichen lang *)

Durch diese Speicherungsform lassen sich die String-Prozeduren relativ
effizient programmieren. Ein komplettes Beispiel soll Ihnen das Prinzip

verdeutlichen:

PROCEDURE CONCAT(S1,S2: STRING; VAR S3: STRING);
(* Verkette S1 und S2 zu S3. Überlange Strings *)

(* werden abgeschnitten *)
VAR I,J: INTEGER;

BEGIN

J:= ORD(S2[0]); (* Länge S2 *)
l:= ORD(S1[0])+ J;

IF I>MAXLEN THEN BEGIN J:=J+MAXLEN-I; I:=MAXLEN-END;(* evtl. abschneiden*)

$3:= $1; (* kopiere Si *)
S3[0]:= I; (* Länge S3 *)
(* S2 nach S3 kopieren:*)
WHILE J<>0 DO

BEGIN

S3[1]1:=$S2[J]; J:=J-1; [:=1-1
END

END; (* CONCAT *)

Nach diesem Schema können Sie jetzt sicher selbst die folgenden Proze-
duren und Funktionen programmieren:

FUNCTION LENGTH(S: STRING): INTEGER;

(* Liefert die Länge des Strings S *)

PROCEDURE DELETECVAR S: STRING; POS, N: INTEGER);

(* Léscht N Zeichen aus S ab Position POS *)

PROCEDURE INSERT(S: STRING; VAR T: STRING;

POS: INTEGER);
(* Fügt S in T ab POS ein *)

PROCEDURE COPY(S: STRING; VAR T: STRING;
POS, N: INTEGER);

(* Kopiert von S N Zeichen ab POS nach T *)

PROCEDURE WRITESTRING(S: STRING; N: INTEGER);

(* Drucke S in ein Feld mit N Stellen *)

Falls Sie noch Zeit haben, können Sie auch die Prozeduren VAL und

STR definieren, die Strings in Zahlen und Zahlen in Strings kon-
vertieren. Bei VAL sollten Sie einen Parameter definieren, der die Po-

Einführung in Pascal 91

4.

sition eventueller Fehler markiert bzw. angibt, an welcher Position im
String die Zahl endet.

FUNCTION GENAUIGKEIT: REAL;
VAR R: REAL;

BEGIN
R:= 1.0;

REPEAT
R:=R * 0.5

UNTIL R+1.0<1=1.0;
GENAUIGKEIT:= R

END; (* GENAUIGKEIT *)

Welches Ergebnis liefert die obige Funktion? Sollte Ihnen die etwas

eigenartige Bedingung der Repeat-Anweisung Schwierigkeiten bereiten,
sollten Sie Abschnitt 2.6 zu Rate ziehen.

Das Standardbeispiel für die Anwendung rekursiver Prozeduren sind die

Türme von Hanoi: Gegeben sind drei Stäbe und N Scheiben, die auf die

Stäbe gesteckt werden können. Die Scheiben sind der Größe nach nu-

meriert. Zu Beginn sind alle N Scheiben der Größe nach sortiert zu
einem Turm auf dem 1. Stab gestapelt (siehe Bild 13).

STAs 1 STAB 2 STAB 3

Bild 13: Türme von Hanoi

Die Aufgabe ist nun, den Turm in der gleichen Form auf Stab 3
aufzubauen. Dabei darf jedoch in jedem Schritt nur eine Scheibe von
einem Stab zum anderen verlegt werden. Außerdem darf nie eine
größere Scheibe auf einer kleineren liegen.

Schreiben Sie eine rekursive Prozedur, die einen Turm der Höhe N von

1 nach 3 verlegt. Die Lösungsidee besteht darin, daß zuerst ein Turm
der Höhe N-1 von | auf den Hilfsstab 2 gebracht werden muß, um die
Scheibe N von I nach 3 zu verlegen. Anschließend kann man den Turm

der Höhe N-1 von 2 nach 3 bewegen und hat somit die Aufgabe gelöst.

92 Einführung in Pascal

2.12 Skalare Typen und ihre Operationen

Dieser Abschnitt setzt Abschnitt 2.6 fort. Es werden Methoden vorgestellt,

um in Pascal neue einfache Typen zu deklarieren. Die so definierten Typen
erlauben es, im Rechner ein möglichst exaktes Modell der Realität zu
bilden.

2.12.1 Aufzählungstypen

Im Typvereinbarungsteil kann man eine Menge von Werten aufzählen und
zu einem Typ zusammenfassen:

TYPE WOTAG=(MONTAG, DIENSTAG, MITTWOCH, DONNERSTAG, FREITAG, SAMSTAG, SONNTAG);
FAMSTAND=(LEDIG, VERHEIRATET, GETRENNT, GESCHIEDEN, VERWITWET);
FRUCHT=(APFEL, BIRNE, ORANGE);
VAR HEUTE, MORGEN: WOTAG;
LIEBLINGSFRUCHT: FRUCHT;

Die Variablen HEUTE und MORGEN können nur die Werte MONTAG bis
SONNTAG annehmen. WOTAG, FAMSTAND und FRUCHT bezeichnet
man als Aufzählungstypen. Die Bezeichner in Klammern sind Konstanten
des jeweiligen Aufzählungstyps. MONTAG ist also eine Konstante vom

Typ WOTAG. Deshalb sind die folgenden Operationen nicht erlaubt:

HEUTE:= LIEBLINGSFRUCHT MORGEN:= 4

IF HEUTE = LEDIG THEN...

Durch die Typdeklaration wird eine Ordnung auf den Konstanten definiert:

ORD(MONTAG)=0 ORD(DIENSTAG)=1 ... ORD(SONNTAG)=6

MONTAG<DIENSTAG MITTWOCH>MONTAG LEDIG<VERWITWET

IF HEUTE<=FREITAG THEN (* Werktag *)

IF LIEBLINGSFRUCHT>APFEL THEN ...

Die Standardprozeduren SUCC und PRED liefern zu jedem skalaren Typ
den Nachfolger und Vorgänger im Wertebereich.

SUCC(DIENSTAG)=MITTWOCH PREDCSONNTAG)=SAMSTAG
SUCC(APFEL)=BIRNE - PRED(CVERHEIRATET)=LEDIG

aber auch

Einführung in Pascal 93

SUCC(1)=2 SUCC(-2)=-1 SUCCCFALSE)=TRUE
SUCC (HAN) ="BH

Im Rechner existiert zur Laufzeit nur die kompakte Darstellung über die

Ordinalwerte. Deshalb kann man die Bezeichner der Werte des

Aufzählungstyps nicht direkt ausgeben:

WRITEC"Heute ist ",HEUTE). (falsch!)

Eine Ausgabe muß man explizit programmieren:

PROCEDURE WRITEWOTAGCTAG: WOTAG);
BEGIN

CASE TAG OF .

MONTAG =: WRITEC"MONTAG");

DIENSTAG: WRITEC"DIENSTAG");

SONNTAG : WRITEC"SONNTAG")
END (* CASE *)

END; (* WRITEWOTAG *)

WRITE ("Heute ist "); WRITEWOTAGCHEUTE)

Aufzählungstypen erhöhen die Lesbarkeit eines Programmes enorm und

sollten wo immer möglich verwendet werden. Ein etwas spezielleres
Beispiel zeigt die Verwendung eines Aufzählungstyps als Indextyp: In
einem Programm soll die Anzahl der Bürger jedes Familienstandes gezählt
werden.

Die Idee besteht darin, ein Array von Zählern zu deklarieren, das direkt

durch Werte vom Typ FAMSTAND indiziert wird. Damit kann man in
einer Schleife, die alle Bürger erfaßt, mit einer einzigen Zuweisung den
jeweiligen Zähler erhöhen (siehe Listing 24).

TYPE FAMSTAND=(LEDIG, VERHEIRATET, GETRENNT,

GESCHIEDEN, VERWITWET);

VAR ANZAHL: ARRAY[FAMSTAND] OF INTEGER;

STATUS: FAMSTAND;

ANZAHL [STATUS] := ANZAHL[STATUS] + 1;

Listing 24: Typ Familienstand

94 Einführung in Pascal

2.12.2 Unterbereichstypen

Gibt es in einem Programm Variablen, die nur Werte aus einem Teilbereich
des Wertebereichs eines Typs annehmen (oder annehmen sollen), so läßt

sich diese Information bei der Deklaration einer Variablen angeben:

CONST N=3; M=4;
TYPE ZEILENINDEX = 1..N;

SPALTENINDEX = 1..M;
DATEITYP=(SEQ, INDSEQ, REL, ERASED);

VAR M: ARRAY[ZEILENINDEX, SPALTENINDEX] OF REAL;
I, 11: ZEILENINDEX;
J, J1: SPALTENINDEX;
B, BUCHSTABE: "A", "2":
ZIFFER: "0", uO":
ARBEITSDATEI: SEQ. .REL;

Man definiert sich also durch die Angabe von zwei Konstanten eines Stan-

dardtyps oder eines Aufzählungstyps einen neuen Typ, den man auch als

Indextyp für Arrays verwenden kann.

Variablen dieser Unterbereichstypen nehmen nur Werte des angegebenen
Intervalls an:

- Die ARBEITSDATEI darf also nicht gelöscht (ERASED) sein.
- Die Werte der Variablen I,J] nehmen nur ganze Zahlen zwischen | und

N an.

- Der Variablen B darf man nur Großbuchstaben zuweisen.

Jeder Unterbereichstyp grenzt den Wertebereich des dazugehörigen Ba-
sistyps ein. Der Basistyp des Typs ZEILENINDEX ist der Standardtyp IN-
TEGER. Mit Variablen eines Unterbereichs sind die gleichen Operationen

wie mit Variablen des Basistyps möglich.

I:= 11%*2; ALI,J1:=4.0/ ALI-1,J+J1];
B:= CHR(68); ZIFFER:= PRED("4"):
ARBEITSDATEI:= SEQ;

Obwohl die Einführung von Unterbereichstypen etwas mehr (Schreib-)
Aufwand bei der Programmierung erfordert, ermöglicht sie eine zusätzliche
Sicherheit vor unzulässigen Zuweisungen und erlaubt so eine einfachere
Fehlersuche.

Wählen Sie nämlich bei der Compilation mit dem aktiven Kommentar

(*$R+ *) die Option Bereichstest ein, so wird die Einhaltung der Intervall-
grenzen geprüft. Bei allen nachfolgenden Zuweisungen, bei denen einer

Einführung in Pascal 95

Variablen eines Unterbereichstyps ein ungültiger Wert zugewiesen werden
könnte, erzeugt der Compiler zusätzlichen Code, durch den bei der

Laufzeit die Einhaltung der Intervallgrenzen geprüft wird:

I:= 11*2 READLN(CBUCHSTABE) ZIFFER:= SUCC(ZIFFER)

Bei den folgenden Zuweisungen ist keine Prüfung erforderlich:

Jı= J1; I:= 11; B:= BUCHSTABE

Bei der Zuweisung ZIFFER:= SUCC("9") würde das Programm gestoppt
und folgende Fehlermeldung erzeugt:

VALUE OUT OF BOUNDS: 58 48 57

Das bedeutet, daß der Wert SUCC("9") mit dem Ordinalwert 58 nicht im

Intervall "0".."9" mit den Ordinalwerten 48 und 57 liegt. Generell werden
bei dieser Fehlermeldung nur die Ordinalwerte angegeben, da z.B. für
Aufzählungstypen im Objektprogramm keine Bezeichner vorhanden sind.

Zumindest in der Testphase eines Programmes ist diese Option sehr zu

empfehlen, um Indizierungsfehler und Bereichsüberschreitungen zu ent-
decken.

Aufgaben

1. Untersuchen Sie alle im Text angegebenen Beispielprogramme in den
vorangegangenen Abschnitten. Prüfen Sie, ob in den Variablendeklara-
tionen die Möglichkeit besteht, Unterbereichstypen zu verwenden.
Prädestiniert für solche Verbesserungen sind alle Variablen, die zur In-
dizierung verwendet werden. (Diese Variablen heißen meist I und J.)

Compilieren Sie ein Beispielprogramm mit der Option (*$R+*), und
prüfen Sie die Reaktion auf Bereichsüberschreitungen!

2. Modifizieren Sie das Programm QUICKSORT durch die Einführung
von Typbezeichnern (z.B. INDEX und ITEM) im Hauptprogramm, so
daß beliebige Indexbereiche und Elementtypen sortiert-werden können.

Prüfen Sie die Richtigkeit der Änderungen, indem Sie folgendes Array

sortieren:

A: ARRAYL10..20] OF CHAR;

96 Einführung in Pascal

2.13 Mengentypen

Neben dem Array gibt es in Pascal noch weitere zusammengesetzte Typen.
Zu einem skalaren Typ T läßt sich z.B. ein Typ SET OF T deklarieren, der

als Werte alle möglichen Mengen von Werten des Typs T annimmt:

TYPE FRUCHT=(APFEL, BIRNE, ORANGE);

OBST = SET OF FRUCHT;

VAR LIEFERBAR, AUSVERKAUFT: OBST;

ZAHLENMENGE = SET OF 1..30;

KOMMANDOS SET OF "A". "EN;

Die Variablen LIEFERBAR und AUSVERKAUFT können also folgende

Werte annehmen:

[1] [APFEL] [BIRNE] [ORANGE]
[APFEL,BIRNE] [APFEL,ORANGE] [BIRNE, ORANGE]
[APFEL , BIRNE, ORANGE]

Dies sind alle möglichen Mengen, die aus den drei Früchten gebildet wer-
den können (2 hoch 3 Möglichkeiten). Um die Operationen mit Mengen in
Pascal zu verstehen, müssen Sie sich nur an den Mengenlehreunterricht

erinnern und die in der Mathematik üblichen geschweiften Mengenklam-
mern durch die eckigen Klammern in Pascal ersetzen. Praktisch alle Opera-
tionen der Mengenlehre sind auch in Pascal verfügbar (A und B sind Men-

gen des gleichen Typs):

A+B bildet die Vereinigungsmenge von A und B, das sind alle
Elemente, die in A oder B enthalten sind

A*B bildet die Schnittmenge von A und B, das sind alle
Elemente, die in A und B enthalten sind

A-B bildet die Differenzmenge von A und B, das sınd alle
Elemente, die in A und nicht in B enthalten sind

A=B testet die Mengen auf Gleichheit

A<=B prüft, ob A Teilmenge von B ist

A>=B prüft, ob A Obermenge von B ist

alINB prüft, ob das Element a in der Menge B enthalten ist

Einführung in Pascal 97

[] bildet die leere Menge

[a,b] bildet eine Menge, die aus den Elementen a und b besteht

[a..b] bildet eine Menge, die alle Werte zwischen a und b enthält.

Wie in der Mathematik ist [APFEL] nicht gleich APFEL. Das erste ist eine
einelementige Menge (vom Typ OBST) und das andere ein Wert des
Aufzählungstyps FRUCHT. Außerdem enthält eine Menge kein Element
doppelt. Um in einem Gemiiseladen Buch über die lieferbaren Früchte zu
führen, könnte man z.B die folgenden Operationen verwenden:

LIEFERBAR:= [APFEL, BIRNE, ORANGE]

AUSVERKAUFT:= []

LIEFERBAR:= LIEFERBAR + [BIRNE]

AUSVERKAUFT:= AUSVERKAUFT + [ORANGE]

LIEFERBAR:= LIEFERBAR - [ORANGE]
IF [BIRNE,ORANGE] <= LIEFERBAR THEN ...

LIEFERBAR := LIEFERBAR *[BIRNE]

LIEFERBAR:=[APFEL. ORANGE)

Sie sollten sich die Mühe machen, die Bedeutung jeder einzelnen An-
weisung in Worte zu fassen, um die teilweise recht komplexen Operationen

zu verstehen.

Mengenoperationen werden in vielen Programmen zur Vereinfachung von

Abfragen benutzt:

REPEAT READ(CH) UNTIL CH IN L"j", "ge, Int, Nr)

IF CH INC"O".."9")} THEN ...

IF CH INL"O",. MOM HAN, ZS) THEN ...

Grundsätzlich beschränkt jeder Rechner die Größe einer Menge. Als
Grundtyp scheidet deshalb neben dem Typ REAL auch der Typ INTEGER

aus (z.B. gibt es bereits für eine Variable vom zulässigen Typ SET OF 1..30
genau 2 hoch 30 = 1073741824 verschiedene Werte!).

Pascal 1.4 erlaubt nur Mengen von Typen, die nicht mehr als 96 Werte an-

nehmen können. Durch diese Grenze können auch Mengen von Zeichen
(SET OF CHAR) dargestellt werden, die jedoch keine Grafikzeichen
(ORD(CH)>=96) enthalten dürfen.

Das folgende Programm berechnet mit dem Sieb des Erasthotenes alle
Primzahlen zwischen | und 10000. Zur Bestimmung der Primzahlen beginnt
man mit einer Tabelle aller Zahlen im Intervall 1 bis 10000. Nun streicht

man nacheinander alle Vielfachen der Zahlen 2, 3, 5, 7, 11 etc. Am Schluß

98 Einführung in Pascal

bleiben also nur die Primzahlen in der Tabelle stehen. Im Programm wird
diese Tabelle durch eine Menge dargestellt. Sie enthält alle Zahlen, die
Vv

Da Mengen jedoch maximal 96 Elemente enthalten dürfen, wird ein Array
von Mengen benutzt. Die erste Menge enthält die Zahlen von 0 bis 95, die

ielfache einer anderen Zahl sind.

zweite die Zahlen zwischen 96 und 191 etc.

PR
(*

(*

(*

(*

BE

EN

OGRAM SIEBCINPUT ,OUTPUT);
PRIMZAHLEN MIT DEM SIEB DES ERASTHOTENES BESTIMMEN. *)
DAS ARRAY TEILBAR SIMULIERT EINE MENGE, DIE MAX *)
ELEMENTE ENTHAELT. DARSTELLUNG ERFOLGT DURCH MAX96 *)
MENGEN DER GROESSE SETSIZE. *)

CONST MAX=10000; (* PRIMZAHLEN VON 1 BIS MAX*)
SETSIZE=96; MAX96=105; (* = MAX DIV SETSIZE + 1 *)

VAR TEILBAR: ARRAY [0..MAX96] OF SET OF 0..95;
P, Z, I: INTEGER;

FUNCTION PRIM(Z: INTEGER) :BOOLEAN;
(* PRUEFT, OB Z PRIM IST. D.H. Z IST NICHT IN DER MENGE *)
(* DER TEILBAREN ZAHLEN. *)
BEGIN

PRIM:=NOT((Z MOD SETSIZE) IN TEILBAR[Z DIV SETSIZE])
END; (* PRIM *)

GIN
(* DIE MENGE TEILBAR IST ZU BEGINN LEER: *)

FOR 1:=0 TO MAX96 DO TEILBAR[I]:=[];
P:=1;
REPEAT

(* SUCHE NAECHSTE PRIMZAHL ALS TEILER: *)

REPEAT P:=P+1 UNTIL PRIM(P);

WRITELNC"STREICHE VIELFACHE VON",P:4);

Z:=P*P:

WHILE Z<=MAX DO

BEGIN (*STREICHE Z *)

I:=Z DIV SETSIZE; (*Z IST IN MENGE I*)

TEILBAR[I]:=TEILBAR[I] + [Z MOD SETSIZE];
Z2:=Z+P

END;
UNTIL P*P>MAX;

(* DRUCKE PRIMZAHLEN: *)
FOR I:=2 TO MAX DO

IF PRIMCI) THEN WRITEC(1:6);
WRITELN;

D.

Listing 25: Sieb des Erasthotenes

Einführung in Pascal 99

2.14 Der Datentyp Record

In einem Array werden Elemente eines einzigen Typs zu einer Datenstruk-
tur zusammengefaßt und über einen Index angesprochen. Um Werte ver-
schiedener Typen zu verbinden, benutzt man Records.

TYPE STRING=ARRAY[1..15] OF CHAR;

KENNZE I CHEN=RECORD

KREIS: ARRAY[1..3] OF CHAR;

B : ARRAY[1..2] OF CHAR;

NR : 1..9999;

END;

ADRESSE =RECORD

NAME ‚VORNAME : STRING;

ORT,STRASSE : STRING;

HAUSNR, PLZ : INTEGER

END;

KRAFTFAHRZEUGSCHEIN =

RECORD

WAGEN: KENNZEICHEN;

WOHNORT, STANDORT: ADRESSE;

LEISTUNG: INTEGER

END;

VAR HALTER: ADRESSE;
AUTO1, AUTO2: KENNZEICHEN;
SCHEIN1,SCHEIN2: KRAFTFAHRZEUGSCHE IN:

Listing 26: Record-Typen

Dieses etwas ausführliche Beispiel zeigt, wie man Attribute eines realen

Objektes in Variablen vom Typ Record speichert: Ein Fahrzeugkennzeichen
besteht aus dem Kürzel für den Kreis, zwei Buchstaben und einer Num-

mer. Im Fahrzeugschein werden für ein Fahrzeug der Halter und der
Standort des Fahrzeugs eingetragen. Ein Record ist also eine Art

Karteikarte mit vordefinierten Feldern.

Die obigen Typen bezeichnet man auch als Verbundtypen. Auf die Felder

einer Record-Variablen greift man durch Nennung des Variablen-
bezeichners und des Feldnamens getrennt durch einen Punkt zu:

AUTO1.KREIS:= "M " AUTO2.KREIS:= "F ";

SCHEIN1.ORT:= "NEW YORK "5

IF SCHEIN1.LEISTUNG<28 THEN ...

Außerdem kann man auch über mehrere Stufen auf Record-Felder zu-

greifen: | Ä

SCHEIN1.WAGEN.KREIS := AUTO1.KREIS;

SCHEIN2.STANDORT .ORT:= SCHEIN2.WOHNORT .ORT;

100 Einführung in Pascal

Wirklich nützlich wird das Konzept der Records durch die Tatsache, daß

man Zuweisungen zwischen kompletten Records des gleichen Typs
vornehmen kann:

AUTO1:= AUTO2; SCHEIN1.WOHNORT:= HALTER;
SCHEIN1:= SCHEIN2

Dadurch werden also alle Felder eines Records kopiert. In Pascal 1.4 sind

auch Vergleiche zwischen Records definiert:

IF SCHEIN1.WAGEN=AUTO1 THEN...

Die Feldnamen (Selektoren), wie ORT,B und NR, sind Bezeichner, deren

Sichtbarkeit auf den Record ihrer Deklaration beschränkt ist. Man könnte

also durchaus ohne Namenskonflikte eine Variable KREIS deklarieren.

Eine ähnliche Bedeutung wie die For-Anweisung fiir Arrays besitzt die
With-Anweisung (Inspektionsanweisung) fiir Variablen vom Typ Record.
Sie vereinfacht Ausdrücke, die mit vielen Feldern eines Records arbeiten:

WITH SCHEIN1 DO
BEGIN.

WITH WAGEN DO
BEGIN KREIS:="MTK"; B:="M"> NR:= 939 END;

WITH WOHNORT DO |
BEGIN

NAME s="MUELLER THURGAU";

VORNAME :=""HANS PETER "

PLZ 2=6232: HAUSNR:=4

END;

STANDORT:= WOHNORT; LEISTUNG:=45

END;

In der Anweisung, die nach dem Wortsymbol DO der With-Anweisung
folgt, ist also die Angabe Variablenbezeichner vor dem Feldbezeichner nicht
erforderlich. Geschachtelte With-Anweisungen beziehen sich aber immer
auf dieselbe Record-Variable. Die folgende Schachtelung ist also verboten,
da der Record AUTO! nicht zum Record SCHEIN] gehört

WITH SCHEIN1 DO
BEGIN

WOHNORT :=HALTER;
WITH AUTO? DO

B [1] :=WAGEN .B [2]
END

Bei vielen Compilern (auch Pascal 1.4) bringt die With-Anweisung aufer-
dem noch Geschwindigkeitsvorteile, da alle Operationen zum Zugriff auf
die Record-Variable nur einmal benötigt werden:

Einführung in Pascal 101

WITH SCHEIN1.WAGEN.KREIS DO
FOR I:= 1 TO 3 DO

ORT L[I]1:=" ";

ist also schneller als

FOR I:= 1 TO 3 DO
SCHEIN1.WAGEN.KREIS[I]:=" ";

Im Listing 26 wurden Arrays und Records als Teile von Records deklariert.
Natürlich ist es auch erlaubt, Arrays mit Records als Elementen zu be-
nutzen:

VAR ZULASSUNGEN : ARRAY[1..200] OF KRAFTFAHRZEUGSCHEIN

Dies ist einer der Gründe für die Flexibilität der Sprache Pascal. Die Stan-
dard- und Aufzählungstypen bilden die elementaren Bausteine, mit denen
man je nach Bedarf hierarchisch strukturierte zusammengesetzte Daten-
typen definiert.

Aufgaben

1. Schreiben Sie ein Paket mit Programmen, das mit Bruchzahlen arbeitet.

Brüche sollen nicht als Zahlen vom Typ REAL dargestellt werden, son-

dern als Paare von ganzen Zahlen:

TYPE BRUCH = RECORD

ZAEHLER: INTEGER;

NENNER : INTEGER

END;

Damit der Zahlenbereich nicht bei den einfachsten Operationen über-

schritten wird, sollen Zähler und Nenner immer gekürzt vorliegen
(1/134 und nicht 2345/314230). Dazu können Sie die Funktion GGT
aus Abschnitt 2.11 verwenden.

PROCEDURE KUERZE (VAR A: BRUCH);
PROCEDURE PLUS (A,B: BRUCH; VAR C: BRUCH);

PROCEDURE MAL (A,B: BRUCH; VAR C: BRUCH);
PROCEDURE KEHRWERT (A: BRUCH; VAR C: BRUCH);
FUNCTION GROESSER (A,8:BRUCH): BOOLEAN;
FUNCTION GLEICH (A,B:BRUCH): BOOLEAN;
FUNCTION WERT (A: BRUCH): REAL;
(* Liefert den Wert Zähler/Nenner vom Typ REAL *)

2. Sollten Sie ab und zu mit komplexen Zahlen arbeiten (müssen), ist es

vielleicht interessanter, den Typ KOMPLEX mit seinen Operationen zu

implementieren.

TYPE KOMPLEX= RECORD RE,IM: REAL END;

102 Einführung in Pascal

Als Operationen bieten sich Addition, Multiplikation, Bildung der

Konjugiert komplexen Zahl, Betragsfunktion sowie die Umwandlung in

Polarkoordinaten an.

2.15 Variante Records

Eine in der Praxis recht häufige Eigenschaft von Datensätzen ist es, für
einzelne Ausprägungen der Daten unterschiedliche Merkmale zu enthalten.

Als Beispiel betrachte man grafische Objekte. Die Aufgabe besteht darin,

ein Bild durch Zusammenstellung von grafischen Primitiven (Rechtecke,

Kreise, Linien, Texte) zu beschreiben:

CONST MAXOBJ = 50;
TYPE TPRIMITIV= (RECK, BLOCK, KREIS, LINIE,

TEXT, HINTERGRUND);
TKOORD = RECORD X,Y:INTEGER END;
TOBJEKT = RECORD

FARBE :(ROT, GRUEN, BLAU);
INTENS : (HELL, DUNKEL);
CASE ART: TPRIMITIV OF
RECK, BLOCK:

CRECHTSUNTEN, LINKSOBEN:
TKOORD) ;

KREIS:
(MITTE : TKOORD;
RADIUS: INTEGER);

LINIE:
(VON, BIS: TKOORD);

TEXT:
(POS1 : TKOORD;
STRNG: ARRAY[1..10] OF CHAR);

HINTERGRUND: ()
END;

VAR BILD: ARRAY[1..MAXOBJ] OF TOBJEKT;
OBJEKT: TOBJEKT;

Listing 27: Record mit Varianten

In der Deklaration von Listing 27 werden Rechtecke (RECK), ausgemalte
Rechtecke (BLOCK), Kreise, Linien und Texte berücksichtigt. Alle Ob-
jekte besitzen gemeinsame Merkmale: Die Farbe, die Helligkeit (INTENS)
und eine Kennzeichnung, die angibt, um welches elementare Objekt es sich

handelt (ART). Diese gemeinsamen Felder werden wie in einem einfachen
Record definiert.

Einführung in Pascal 103

An diesen festen Teil schließt sich der variante Teil an: Er wird durch das
Wortsymbol CASE eingeleitet. Ihm folgt das sogenannte Auswahlfeld
(Tagfield). In diesem speziellen Beispiel ist dies das Feld ART. Der Typ
des Auswahlfeldes muß ein skalarer Typ (also nicht REAL oder STRING)
sein, der durch einen Typ-Bezeichner angegeben wird.

Nach dem Wortsymbol OF werden die einzelnen Varianten aufgeführt, die
in Abhängigkeit von dem aktuellen Wert des Auswahlfeldes (ART) gültig
sind. Die jeweiligen Konstanten des Typs (TPRIMITIV) werden durch

Kommata getrennt. Nach einem Doppelpunkt folgen in Klammern die
Felder für diese Variante. Die Struktur dieser Feldliste entspricht genau der
Syntax für die Feldliste zwischen RECORD und END. Also könnten dort
geschachtelt wiederum Varianten stehen.

Alle Varianten sind durch Semikola getrennt. Bitte beachten Sie, daß der
varıante Teil nach dem Symbol CASE nicht durch ein eigenes END
abgeschlossen wird. Deshalb steht in Listing 27 am Ende von TOBJEKT
nur ein einzelnes END.

Nach der Zuweisung

OBJEKT.ART:= KREIS

wären also neben den Feldern FARBE, INTENS die Felder der Variante

KREIS gültig, die man dann wie folgt belegen kann:

OBJEKT.MITTE.X:= 30;
OBJEKT.MITTE.Y:= 30;
OBJEKT.RADIUS := 15;

Erwähnenswert ist noch die Tatsache, daß die Feldliste zu einer Varianten

leer sein kann:

HINTERGRUND: ()

Ist also OBJEKT.ART=HINTERGRUND, so sind nur die festen Felder

(FARBE, INTENS) relevant. Die Nennung leerer Varianten dient nur der
Dokumentation der Struktur und ist syntaktisch nicht verpflichtend. Die
exakte Syntax von (varianten) Records geht aus dem Syntax-Diagramm

FELDLISTE im Anhang A hervor.

Es ist ein schwerer Programmierfehler, auf Varianten zuzugreifen, die
nicht dem aktuellen Wert des Auswahlfeldes entsprechen:

WITH OBJEKT DO
BEGIN ART:=TEXT; VON.X:= 30 END;

104 Einführung in Pascal

Um solche Probleme zu vermeiden, bietet sich die Verwendung der

Fallunterscheidung (Case-Anweisung) an:

WITH OBJEKT DO

BEGIN

FARBE :=ROT;

INTENS:=SUCCCINTENS);
CASE ART OF

RECK,BLOCK: BEGIN

READK(RECHTSUNTEN);

READK(LINKSOBEN)
END;

KREIS : BEGIN

READK(MITTE); READLNCRADIUS)

END;

HINTERGRUND:

END (* CASE *)
END

(READK soll eine Prozedur bezeichnen, die Koordinatenpaare einliest und

als Variablenparameter zurückliefert.) Die Struktur der Fallunterscheidung

spiegelt also die Struktur des varianten Records wider. Hier ist jedoch die
Angabe der leeren Fallmarke erforderlich, da sonst zur Laufzeit für die

Variante HINTERGRUND eine Fehlermeldung (in Pascal 1.4: NO LABEL
FOR CASE) ausgegeben würde.

In einigen Fällen ist es sinnvoll, die Repräsentation der Daten im Rechner

zu kennen. Deshalb soll die Speicherverteilung (in Pascal 1.4) für variante
Records kurz umrissen werden: Da zu einem Zeitpunkt das Auswahlfeld

nur einen Wert annehmen kann, erhalten alle Varianten denselben

Speicherplatz. Die Größe eines Objektes vom Typ TOBJEKT wird durch
die Größe des festen Teils plus der Größe der längsten Variante bestimmt.
Damit ergibt sich die in Bild 14 skizzierte Speicherverteilung.

Einführung in Pascal 105

FARBE
INTENS
ART

RECHTSUNTEN. X MITTE. X VON. X POS1.X

RECHTSUNTEN. Y MITTE. Y VON. Y POS. Y
LINKSOBEN. X RADIUS BIS. X STRNG(1)
LINKSOBEN. Y | BIS.Y STRNG(2)

| STRNG(3)

STRNG(4)
STRNG(5)
STRNG(6)
STRNG(7)
STRNG(8)

-STRNG(9)
STRNG(10)

Bild 14: Struktur TOBJEKT

In diesem Fall ist TEXT die längste Variante. Alle anderen Varianten wer-
den ebenfalls mit dieser Größe gespeichert (belegen also ungenutzten
Speicherplatz). Will man sehr große Arrays mit solchen Objekten bilden, so

kann es sinnvoll sein, die größte Variante zu kürzen. Eine Möglichkeit
besteht darin, das Feld STRNG auszulagern und durch einen Verweis in
eine Tabelle mit Strings zu ersetzen:

TYPE STRINGREF = 1..MAX;
VAR STRINGARRAY: ARRAY [STRINGREF] OF

ARRAY[1..10] OF CHAR;

Die Variante TEXT wiirde also lauten:

TEXT:
(POS1 : TKOORD;.
STRNG: STRINGREF);

Um einen Text im Array BILD an I-ter Stelle einzufiigen, speichert man

zunächst den String an einer freien Position im STRINGARRAY (z.B. J-tes
Element). Dem Feld STRNG im Record wird dann der Index J zugewiesen.

WITH BILD[I] DO
BEGIN

FARBE:= BLAU; INTENS:= DUNKEL;
ART := TEXT; POS1.X:= 0; POS1.Y:=0;

* (* String eintragen: n
s

.

106 Einführung in Pascal

STRINGARRAY [J] :="+....+....+"5

(* Referenz notieren: *)

STRNG:= J

END;

Solche Speicherplatzoptimierungen sind gerade auf Mikrocomputern er-

forderlich und holen den angehenden Software-Engineer allzu rasch von
den abstrakten Datenmodellen auf den Boden der Realität aus Bits und

Bytes zurück.

Der Vollständigkeit halber sei noch erwähnt, daß es in Pascal zulässig ist,

anstelle des Auswahlfeldes nur einen Typbezeichner zu nennen. Der Pro-
grammierer muß dann aus dem Kontext herleiten, welche Variante des

Records gültig ist. Diese Records ohne Tagfield werden praktisch nur zu
schmutzigen Operationen verwendet, die normalerweise (aus gutem Grund)
in Pascal verboten sind: Bei diesen Operationen nutzt man aus, daß die

einzelnen Varianten denselben Speicherplatz erhalten. So kann man mit der

folgenden Anweisung einer Variablen eines Aufzählungstyps einen Wert
zuweisen, dessen Ordinalwert gleich 3 ist:

TYPE AUFZHL=(V1,V2,V3,V4);
VAR SCHLIMM= RECORD

CASE BOOLEAN OF

TRUE :(I: INTEGER);

FALSE: (V:AUFZHL)
END;

SCHLIMM.I:=3 (* ==> SCHLIMM.V = V4 *)

Da solche Operationen inhärent von Eigenschaften spezieller Rechner und

Compiler abhängig sind, sollten Sie diese nicht in Ihren Programmen ver-

wenden.

Listing 27 zeigt exemplarisch, wie man in Pascal Deklarationen strukturiert:
Angefangen bei den elementaren Bausteinen (Indexgrenzen, Aufzählungs-

typen) bildet man eine höhere Abstraktionsstufe: Man arbeitet z.B. mit
Koordinaten und nicht mit Integer-Zahlen. Anschließend kann man diese

abstrakteren Typen noch zu Records und Arrays (Verbunden und Feldern)
zusammenfassen.

Diese Vorgehensweise (von unten nach oben, bottom up) ist zwingend
notwendig: Da der Compiler den Text in einem Durchgang liest, muß jeder
(Typ-)Bezeichner vor der ersten Anwendung bereits deklariert sein.
Konkret bedeutet dies, daß die Deklaration des Typs TKOORD vor der

Anwendung des Typs in der Deklaration von TOBJEKT erfolgen muß.

Einführung in Pascal 107

2.16 Der Datentyp File

Alle bisher behandelten Daten(typen) besitzen eine fest definierte konstante
Größe. Ein Vorteil von Variablen dieser Typen ist, daß sie jederzeit im

Programm direkt über ihren Namen (evtl. indiziert oder mit
Feldbezeichner) angesprochen werden können. In der Definition der
Sprache Pascal wird jedoch auch eine Datenstruktur angegeben, deren

Größe während der Laufzeit variabel ist. Dafür ist der Zugriff auf Ele-

mente der Struktur nur in fester Reihenfolge mit speziellen Prozeduren

möglich. Diese Struktur heißt File und formalisiert das Konzept der se-
quentiellen Dateien.

Zu jedem Typ T läßt sich mit FILE OF T ein File mit dem Komponen-
tentyp T bilden. Beispiele für Deklarationen von Files sind in Listing 28
gegeben. Dabei werden Typbezeichner benutzt, die bereits in den Listings
26 und 27 definiert wurden. ADRESSBUCH ist also eine Filevariable mit
Komponenten vom Typ ADRESSE.

TYPE (* siehe Listing 26 und Listing 27 *)

VAR ZAHLENSPEICHER = FILE OF INTEGER;

ADRESSBUCH = FILE OF ADRESSE;

BILDDATEI = FILE OF TOBJEKT;

Listing 28: Typ Adresse

Das englische Wort file bezeichnet ursprünglich einen Ordner oder eine

Sammelmappe. In der Datenverarbeitung wird file am besten mit Datei

übersetzt. Dateien sind Folgen (gleichartiger) Daten, die meist auf externen
Massenspeichern abgelegt werden. Da die Verwaltung von Dateien auf

verschiedenen Rechnern sehr unterschiedlich realisiert wird, beschränkt

sich Pascal auf sehr elementare Operationen mit sequentiellen Dateien.

Dennoch weichen viele Implementierungen der Sprache vom nachfolgend

beschriebenen Standard ab.

VAR F: FILE OF T;

deklariert eine Filevariable F. Diese Variable besteht aus einer (evtl. leeren)
Folge von Komponenten des Typs T. Die Anzahl der Komponenten ist ver-

anderlich. Der Zugriff auf die Komponenten kann nur sequentiell lesend

oder sequentiell schreibend erfolgen. Zu jedem Zeitpunkt ist nur eine
Komponente sichtbar. Sie wird mit Ft bezeichnet. Ft wird auch die
Puffervariable des Files F genannt. |

108 Einführung in Pascal

2.16.1 Sequentiell schreiben

Mit dem Prozeduraufruf REWRITE(F) wird F zum Schreiben vorbereitet.
Alle Komponenten der Variablen F werden gelöscht. Nun kann man der

Puffervariablen Ft einen Wert vom Typ T zuweisen. Durch den Prozedur-
aufruf PUT(F) wird der Inhalt der Puffervariablen als eine neue Kompo-
nente in F aufgenommen. Jeder Aufruf PUT(F) erweitert F um eine Kom-
ponente. Die Komponenten werden in der Reihenfolge gespeichert, in der

sie mit PUT erzeugt wurden.

2.16.2 Sequentiell lesen

Mit RESET(F) wird der lesende Zugriff auf F vorbereitet. Mit RESET(F)
wird der Puffervariablen Ft die erste Komponente in F als Wert

zugewiesen. Dieser Wert kann nun beliebig weiterverarbeitet werden. Durch
den Aufruf von GET(F) wird der Wert der nächsten Komponente von F
nach Ft übertragen. Somit kann man durch eine Folge von Aufrufen der
Prozedur GET jede Komponente in F erreichen. Die Funktion EOF(F) (end
of file) liefert den Wert TRUE, falls beim sequentiellen Lesen das Ende

des Files erreicht wurde. Dann ist der Inhalt der Puffervariablen Ft un-
definiert. Beim Schreiben mit REWRITE und PUT ist EOF(F) immer
TRUE.

Ein Wechsel zwischen Lesen und Schreiben ist in beliebiger Reihenfolge
möglich. Dabei ist aber zu beachten, daß Lesezugriffe nur nach RESET
und schreibende Zugriffe nur nach REWRITE möglich sind. Außerdem
löscht jeder Aufruf von REWRITE alle eventuell vorher in F enthaltenen
Komponenten!

Damit ergibt sich das folgende Schema für die Bearbeitung von Files
(Listing 29).

PROGRAM FILESCINPUT, OUTPUT);
VAR ZAHLENSPEICHER: FILE OF INTEGER;

X: INTEGER;
BEGIN (* Zahlenspeicher füllen: *)
REWRITECZAHLENSPEICHER);
REPEAT

READLN(X);
ZAHLENSPEICHER?T:=X;

PUT(ZAHLENSPEICHER)
UNTIL X=0; |

(* Zahlenspeicher lesen: *)
RESET(ZAHLENSPEICHER);

WHILE NOT EOF(CZAHLENSPEICHER) DO

BEGIN

Einführung in Pascal 109

X:= ZAHLENSPEICHERY;
WRITELN(X);
GET(ZAHLENSPEICHER)

END
END.

Listing 29: Fileoperationen

Filetypen können wie alle anderen Typen als Teil zusammengesetzter Da-

tentypen (Record, Array) auftreten. Gewöhnlich sind jedoch keine Files
mit Komponenten erlaubt, die ebenfalls Files sind. Zuweisungen zwischen

Variablen vom Typ File sind nicht erlaubt. Files dürfen nur als Varia-

blenparameter an Prozeduren übergeben werden.

Der Datentyp File wird in Pascal 1.4 praktisch wie oben beschrieben reali-
siert. Einen Unterschied bilden jedoch die Anweisungen RESET und
REWRITE. Das Betriebssystem des C 64 erwartet nämlich genaue Angaben

über jedes File. Man muß festlegen, auf welchem Peripheriegerät (Floppy,
Datasette, serielle Schnittstelle) die Speicherung der Komponenten erfolgt,

welchen Namen das File auf dem Medium erhält etc.

Damit Sie sich nicht .um solche systemspezifischen Details kümmern
müssen, ist auf der Systemdiskette ein Quelltext als Include-Datei vorhan-
den, der die Prozeduren RESET und REWRITE definiert. Um Pascal-Pro-
gramme zu schreiben, die RESET und REWRITE benutzen, gehen Sie
folendermaßen vor: |

l. Sie definieren den Filetyp, mit dem Sie die Prozeduren RESET und
REWRITE aufrufen wollen, im Hauptprogramm mit dem Bezeichner
TAPE. Außerdem deklarieren Sie dort die Filevariable KOMMANDO

und teilen dem Compiler mit, daß er das Include-File FILE.INC lesen

soll:

TYPE TAPE = FILE OF INTEGER;
VAR KOMMANDO: TEXT;
(*$"FILE.INCH*)

2. Am Anfang jedes Blockes, in dem eine Filevariable deklariert wird,
rufen Sie die Prozedur ALLOC mit der jeweiligen Filevariablen als
Parameter auf:

ALLOC(ZAHLENSPEICHER)

3. Am Ende jedes Blockes, in dem eine Filevariable deklariert wird, rufen
Sie die Prozedur FREE mit der jeweiligen Filevariablen als Parameter
auf:

110 Einführung in Pascal

FREECZAHLENSPEICHER)

Mit diesen zusätzlichen Deklarationen können Sie jedes beliebige Pascal-
Programm, das Files verwendet, auf den C 64 übernehmen.

In Buch 2 (siehe Anhang E) sind zahlreiche Programme beschrieben, um
effizient Files zu sortieren. Eine der einfachsten Methoden heißt
Natürliches Mischsortieren. Die Sortierung eines Files C geschieht dabei in
mehreren Durchläufen. Jeder Durchlauf gliedert sich in zwei Schritte.

1. Das File C wird Komponente für Komponente auf zwei weitere Files A

und B verteilt (distribute).

2. Die beiden Files A und B werden gemischt (merge). Bei dieser Opera-

tion werden aufsteigende Teilsequenzen in A und B zu längeren Se-
quenzen zusammengefaßt und wieder in C gespeichert.

Diese beiden Schritte werden so lange wiederholt, bis C nur aus einer

aufsteigend sortierten Sequenz besteht. In Listing 30 sind die nur in Pascal
1.4 notwendigen Erweiterungen mit Kommentaren gekennzeichnet.

PROGRAM MERGE(INPUT OUTPUT);
(*DIESES PROGRAMM IST EIN BEISPIEL FUER DIE VERWENDUNG DER*)
(*ANPASSUNGSROUTINEN FUER FILES. GLEICHZEITIG WIRD EIN *)
(*BEISPIEL FUER INCLUDE-FILES GEGEBEN. *)
(*BEIM UEBERSETZEN MUSS DIE DISKETTE MIT DEM INCLUDE-FILE *)
(*'FILE.INC' EINGELEGT SEIN. *)
(*11.11.1985 *)
(*QUELLE: N.WIRTH: ALGORITHMEN & DATENSTRUKTUREN KAP.2.3.2*)

TYPE ITEM=RECORD

KEY: INTEGER

(* HIER KOENNEN WEITERE FELDER STEHEN *)
END;

TAPE=FILE OF ITEM;

VAR KOMMANDO: TEXT; (¥<------ NUR PASCAL 1.4----- *)

C : TAPE;

BUF : ITEM;

(*S"FILE.INC" INCLUDE-DATEI LESEN NUR PASCAL 1.4----- *)

PROCEDURE LIST(VAR F: TAPE);

(*ZEIGE DEN INHALT VON F AN*)
VAR X: ITEM;

BEGIN RESET(F);
WHILE NOT EOFCF) DO

BEGIN

X.KEY:=FT.KEY;GET(F);

WRITE(X.KEY:4)
END;

Einführung in Pascal 111

WRITELN
END; (* LIST *)

PROCEDURE NATURALMERGE;

(* SORTIERE FILE C. BENUTZT ZWEI HILFSFILES A UND B *)
VAR L : INTEGER; (* ANZAHL DER LAEUFE AUF C *)

EOR: BOOLEAN; (* END OF RUN, ENDE DES LAUFS *)

A,B: TAPE; (* HILFSFILES *)

PROCEDURE COPY(VAR X,Y: TAPE);
(* KOPIERE KOMPONENTE VON X NACH Y, AKTUALISIERE EOR *)

VAR BUF: ITEM;
BEGIN

BUF.KEY:=Xt.KEY; GET(X);
Yt.KEY:=BUF.KEY; PUT(Y);
IF EOF(X) THEN EOR:= TRUE

ELSE EOR:= BUF.KEY>Xt.KEY
END;(* COPY *)

PROCEDURE COPYRUN(VAR X,Y: TAPE); |
(* KOPIERE LAUF VON X NACH Y *)
BEGIN

REPEAT COPY(X,Y) UNTIL EOR
END;(* COPYRUN *)

PROCEDURE DISTRIBUTE;
(* KOPIERE LAUEFE VON C ABWECHSELND AUF A UND B *)
BEGIN

REPEAT
COPYRUN(C,A);
IF NOT EOF(C) THEN COPYRUN(C,B)

UNTIL EOF(C)
END;(* DISTRIBUTE *)

PROCEDURE MERGE;

(* MISCHE FILE A UND B ZU FILE C | *)

PROCEDURE MERGERUN;
(* MISCHE LAEUFE VON A UND B ZU LAEUFEN AUF C *)
BEGIN

REPEAT
IF At.KEY<Bt.KEY THEN
BEGIN COPY(A,C);

IF EOR THEN COPYRUN(B,C)
END

ELSE
BEGIN COPY(B,C);

IF EOR THEN COPYRUN(A,C)
END

UNTIL EOR
END;(* MERGERUN *)

BEGIN (* MERGE *)
REPEAT

MERGERUN; L:=L+1
UNTIL EOF(A) OR EOF(B);
WHILE NOT EOF(A) DO

112 Einführung in Pascal

BEGIN

COPYRUN(A,C); L:=L+1

END;

WHILE NOT EOF(B) DO

BEGIN

COPYRUN(B,C); L:=L+1

END

END;(* MERGE *)

BEGIN (* NATURALMERGE *)

ALLOC(A); ALLOC(B); (¥<------ NUR PASCAL 1.4----- *)
REPEAT |

REWRITECA); REWRITE(B); RESET(C);
DISTRIBUTE;
RESET(A); RESET(B); REWRITE(C);
L:=0; MERGE; LIST(C)

UNTIL L=1;
FREE(A); FREE(B) (Reece eee NUR PASCAL 1.4----- *)

END; (* NATURALMERGE *)

BEGIN (* HAUPTPROGRAMM *)
WRITELNC"SORTIEREN EINES SEQUENTIELLEN FILES:");
WRITELNC"EINGABEZAHLEN: (0 AM ENDE)");
OPEN(KOMMANDO,8,15,"1[0"): (*<------ NUR PASCAL 1.4----- *)

ALLOC(C); (A<------ NUR PASCAL 1.4----- *)
REWRITE(C); READ(BUF.KEY);
REPEAT .

C’* .KEY:=BUF.KEY; PUT(C);
READ (BUF .KEY)

UNTIL BUF.KEY=0;

LIST(C);
NATURALMERGE ;
FREE(C) (*¥<------ NUR PASCAL 1.4----- *)

END.

Listing 30: Natürliches Mischsortieren

Am Beispiel des Programmes in Listing 30 sollen Sie auch lernen, wie man
ein fremdes Pascal-Programm liest: Dabei beginnt man am besten am Ende

des Listings. Dort steht das Hauptprogramm, das alle Prozeduren aufruft.

In diesem Fall wird dort zunächst das File C mit Werten gefüllt, die von
der Tastatur eingelesen werden. Ein wichtiges Detail sind auch die Bedin-

gungen, die Repeat- und While-Schleifen kontrollieren. Hier wird die
Schleife beendet, falls eine 0 von der Tastatur gelesen wurde. Anschließend

wird die Prozedur LIST mit dem File C als Parameter aufgerufen. Bei
solchen Prozeduraufrufen haben Sie zwei verschiedene Möglichkeiten, die
Funktion des Programmes weiter zu analysieren: Entweder versuchen Sie,

die Funktion von LIST zu entschlüsseln, oder Sie schließen aus dem Namen

der Prozedur und dem Kontext auf die Bedeutung der Prozedur.

Einführung in Pascal 113

An dieser Stelle ist sicherlich einsichtig, daß die Prozedur den Inhalt des
Files am Bildschirm auflistet. An diesen Prozeduraufruf schließt sich die

eigentliche Sortieroperation (NATURALMERGE) an. Diese Prozedur kön-
nen Sie wie das Hauptprogramm in einzelne Teilschritte zerlegen.

NATURALMERGE vollzieht die oben angegebenen Durchläufe in zwei
Schritten. Wieder ist die Bedingung der Repeat-Schleife (L=1) entschei-
dend. Offensichtlich wird die Variable L in der Prozedur MERGE verän-
dert. Ein Blick auf die Variablendeklaration von L (im Block NATURAL-
MERGE) wird Ihnen jetzt etwas weiterhelfen. Den Rest des Programmes
sollten Sie zur Übung selbst analysieren.

Als eine kleine Hilfe sei noch der Begriff eines Laufes (run) erläutert. Ein

Lauf ist eine geordnete Teilsequenz in einem File.

(143275 6 8)

enthält die folgenden vier Läufe:

(1 4)
(3)
(2 7)
(5 6 8)

Das Programm MERGE liefert fiir die obige Zahlenfolge im File C in zwei
Durchläufen ein sortiertes File:

C=(143275 6 8) (verteile auf A und B)

A= (142 7)

B = (3 5 6 8) (mische A und B zu C)

C=(1345 6 82 7) (verteile auf A und B)

A=(1345 6 8)
B= (2 7) (mische A und B zu C)

C=(12345 67 8)

Natürlich können Sie mit dem Algorithmus nicht nur Dateien mit ganzen
Zahlen sortieren. Eine Anpassung des Programmes erfolgt bei der Deklara-
tion des Typs ITEM und dem Feld KEY.

Eine Erweiterung des obigen Programmes zeigt auch den Sinn zusam-
mengesetzter Datentypen, die Files als Unterstrukturen enthalten. Im soge-

nannten N-Weg-Mischen werden statt der zwei Hilfsfiles (A und B) N
verschiedene Files vom Typ TAPE benutzt. Um auf jedes File mit einem
Index zuzugreifen, kann man z.B. das folgende Array von Files benutzen:

CONST N=4 (* Anzahl der Files*)

TYPE TAPE = FILE OF ...

VAR F: ARRAY(1..N] OF TAPE;

114 Einführung in Pascal

Somit kann man z.B das I-te File wie folgt mit 20 Zahlen belegen:

REWRITECFLI]);
FOR J:=1 TO 20 DO

BEGIN
FEI]t:= J; PUTCFLI])

END

Durch die Verwendung der Routinen RESET und REWRITE wahren Sıe
die Kompatibilität mit Standard-Pascal. Andererseits können Sie nicht so

gezielt wie in BASIC auf die Peripheriegeräte des C 64 (Floppy, Datasette,

Drucker, Plotter, Modems) zugreifen. Deshalb unterstützt Pascal 1.4

wirkungsvoll das Konzept logischer Dateien im Betriebssystem des C 64.
Die Benutzung von OPEN- und CLOSE-Prozeduren in Pascal wird in der

Dokumentation exakt definiert. Im Abschnitt 3.1 werden zusätzlich

konkrete Beispielprogramme gegeben.

Aufgaben

1. Um große Datenbestände, die auf sequentiellen Files gespeichert

werden müssen, zu erweitern oder zu modifizieren, verwendet man in

der kaufmännischen Datenverarbeitung folgendes Verfahren:

Eine nach einem Schlüssel (z.B. Kontonummer) sortierte Bestands-Datei

wird mit einer nach demselben Schlüssel sortierten Bewegungs-Datei zu
einer (ebenfalls sortierten) neuen Bestandsdatei fortgeschrieben. Man

muß also alle Änderungen, die man am Bestand vornehmen will, in der

Bewegungsdatei sammeln:

TYPE STAMMRECORD = RECORD
KNUMMER: INTEGER;
NAME: ARRAY [1..10] OF CHAR;

KONTOSTAND: REAL

END;

BEWEGUNG = RECORD

KNUMMER: INTEGER;

UMSATZART: (EIN, AUS,

KONTOAUFGABE);

WERT: REAL;

END;

VAR ALT, NEU: FILE OF STAMMRECORD;

BEW: FILE OF BEWEGUNG;

Während man von der Datei ALT Daten nach NEU kopiert, prüft man,
ob fiir die gerade bearbeitete Kontonummer Umsätze vorliegen. Diese
werden dann mit dem Kontostand verbucht.

Einführung in Pascal 115

Schreiben Sie ein solches Fortschreibungsprogramm, das auch mehrere

Umsätze pro Konto erlaubt. Wenn es Sie mehr motiviert, ist auch die
Verwaltung von Adreß-, Schallplatten- und Buchdateien möglich.

2.17 Textfiles

Die im letzten Abschnitt vorgestellten Files besitzen Komponenten eines

beliebigen skalaren oder zusammengesetzten Typs. Dadurch können

effizient und kompakt alle Werte der Komponenten auf einem

Hintergrundspeicher dargestellt werden. Jedoch werden die Werte als
Bytefolgen gespeichert. Diese Codierung der Daten ist eine für den
Menschen oder Programme in anderen Programmiersprachen ungeeignete
Darstellungsform. Da zur Ein- und Ausgabe bevorzugt Zeichenfolgen, wie

Dies ist

ein Text

in drei Zeilen.

verwendet werden, spielen Files mit dem Komponententyp CHAR eine

besondere Rolle. In Pascal existiert deshalb ein vordefinierter Typbezeich-
ner:

TYPE TEXT = FILE OF CHAR;

Die im Programmkopf genannten Bezeichner INPUT und OUTPUT sind
vordefinierte Filevariablen, die durch die folgende Deklaration definiert

sind:

VAR INPUT, OUTPUT: TEXT;

Bereits im Abschnitt 2.2 wurde erwähnt, daß INPUT und OUTPUT die

Standardeingabe von der Tastatur bzw. die Standardausgabe an den Bild-

schirm symbolisieren.

Files mit dem Grundtyp CHAR werden normalerweise nicht mit GET und

PUT bearbeitet. Viel bequemer ist die Verwendung der Standardprozeduren

READ(LN) und WRITE(LN). In Abschnitt 2.5 wurde nämlich nur eine
Kurzform dieser Prozeduren vorgestellt. Normalerweise muß bei READ
und WRITE noch ein File vom Typ TEXT (also FILE OF CHAR) als erster

Parameter angegeben werden:

116 Einführung in Pascal

WRITECf, Zeichen)

WRITECf, reelle Zahl)

WRITECf, String)

WRITELN(f)

Die obigen Prozeduren schreiben Zeichenfolgen auf das File f. Das Format
entspricht exakt den in Abschnitt 2.5 für Bildschirmausgaben beschriebenen
Konventionen. Insbesondere ist auch die Angabe einer Feldlänge möglich.

Gibt man kein File als ersten Parameter an, so wird die Standardausgabe

OUTPUT benutzt: WRITE(A,B,C) ist also die Abkürzung für

WRITECOUTPUT,A,B,C)

Üblicherweise sind Textfiles zusätzlich noch in Zeilen strukturiert (s.a. den
Text am Abschnittanfang). Im File wird deshalb am Zeilenende jeweils ein

spezielles Steuerzeichen (CHR(13) in Pascal 1.4) angefügt. Damit Sie sich
nicht um die Realisierung der Zeilenstrukturierung kümmern müssen, ist
die Prozedur WRITELN einheitlich für alle Ausgaben auf Bildschirm,
Drucker und Dateien auf der Floppy verwendbar.

Wie bei allen anderen Files auch, müssen Files mit dem Komponententyp

CHAR vor solchen Schreiboperationen mit RESET zum Schreiben eröffnet

werden. In diesem Kapitel wollen wir gleich die Prozeduren OPEN und
CLOSE von Pascal 1.4 benutzen, da Textfiles meist auf Peripheriegeräte

ausgegeben werden.

In dem ın Listing 31 angegebenen Programm wird wieder das Muster für

eine zeilenweise Ausgabe verwendet. Es soll eine ASCII-Tabelle auf den
Drucker ausgegeben werden: Die Variable I gibt die momentan ausgegebene

Zeile an. In der inneren For-Anweisung für die Variable J wird der
ASCI-Code mit der Schrittweite 15 berechnet. Die Zeile wird mit
WRITELN(D) beendet. Bei der Ausgabe werden die Zeichen mit Codes
zwischen 0 und 31 sowie 127 und 159 nicht gedruckt, da sie am Drucker

nur Steuerfunktionen besitzen.

PROGRAM ASCIICINPUT OUTPUT);
VAR 1,J: INTEGER;

D: TEXT; (* Filevariable für den Drucker *)

BEGIN
OPEN(D,4,0); (* Eröffnet den Druckerkanal *)

FOR I:= 0 TO 15 DO
BEGIN

FOR J:= 0 TO 15 DO

IF J IN [0,1,8,9] THEN

(* ignoriere Steuerzeichen *)

WRITECD," 3 ")

ELSE

Einführung in Pascal 117

WRITECD," ",CHRCI+16*J)," ");

WRITELN(D)
END;

CLOSE(D)
END.

Listing 31: ASCII]

Sollten Sie keinen Drucker besitzen, so können Sie die Ausgabe auf einem

anderen Peripheriegerät vornehmen, indem Sie den Geräteparameter 4 än-
dern (z.B. ist 3 der Bildschirm). Hier können natürlich nicht alle möglichen
Geräte besprochen werden. Details über die Wahl der Parameter entnehmen

Sie am besten den jeweiligen Handbüchern.

OPEN(D,4,7) (bei MPS-802 Ausgabe in Kleinschrift)
OPEN(D,3,0) (Ausgabe auf den Bildschirm)

OPEN(D,1,2,"ASCII") (Ausgabe auf Kassetten-File)
OPEN(D,8,3,"ASCII,S,W'")

Die letzte Angabe erzeugt eine sequentielle Datei "ASCII" auf der Diskette.

Bitte beachten Sie, daß bei Kassettenoperationen Teile des Pascal-Systems

überschrieben werden. Nachdem Sie ein übersetztes Pascal-Programm, das

Kassettenfiles benutzt, mit RUN gestartet haben, müssen Sie das Pascal-

System neu laden.

Natürlich existiert auch für beliebige Textfiles die Möglichkeit, Daten
einzulesen. Hierzu werden die entsprechenden READ(LN)-Prozeduren wie
bei der Tastatureingabe benutzt:

READ(F, Variable)

READLN(F)

Dabei kann ebenfalls die Angabe des Standard-Eingabefiles INPUT als

Parameter entfallen.

READLNCINPUT,X,Y,Z)

kann also zu READLN(X,Y,Z) abgekürzt werden.

Um das Ende einer Eingabezeile bei Read-Operationen zu erkennen, ist die

Standardfunktion

EOLN(F)

(end of line) vorhanden. Ist beim Einlesen einer Zahl oder eines Zeichens
mit READ(F,...) das letzte gelesene Zeichen ein Zeilenende-Zeichen, so

118 Einführung in Pascal

| liefert die Funktion EOLN(F) den Wert TRUE. Jedoch werden Sie bei der

Eingabe von Textfiles nie das Zeilenende-Zeichen (CHR(13) bei Pascal 1.4)
erhalten, da dieses automatisch in ein Leerzeichen umgewandelt wird:

READ(F,CH); B:=EOLN(F)

Wird in dieser Anweisungsfolge das Zeilenende von F erreicht, so liefert
CH (vom Typ CHAR) als Wert ein Leerzeichen ’ ’. Jedoch ist dann der
Wert der booleschen Variablen B TRUE.

Bereits in Abschnitt 2.5 wurde beschrieben, daß durch den Prozeduraufruf

READLN der Rest einer Bildschirmzeile überlesen wird. An dieser Stelle

sind Sie in der Lage, die exakte Definition in Zusammenhang mit der
Zeilenstruktur von Textfiles zu verstehen.

Die Prozedur READLN(F) läßt sich formal durch die folgende An-
weisungsfolge definieren:

WHILE NOT EOLNCF) DO READ(F,CH);

Das folgende Programm demonstriert die Eingabe von Files mit READ. Die
Aufgabe besteht darin, ein Eingabefile mit reellen Zahlen zu lesen und
Zeilensummen auszugeben. Zu der Eingabe

3.142 22 -0.345 0.33
1234
3
"8-8 -8

soll also die Ausgabe

25.127 10 3 -24

erzeugt werden. Um das Zeilenende zu erkennen, muß die Funktion EOLN
verwendet werden.

PROGRAM ZEILENSUMME (INPUT OUTPUT);
VAR DATEN: TEXT;

PROCEDURE ADD(VAR F:TEXT);
VAR R, SIGMA: REAL;

BEGIN
WHILE NOT EOF(F) DO
BEGIN SIGMA:=0;

REPEAT
READ(F,R); SIGMA:= SIGMA+R

UNTIL EOLNCF);
WRITE(SIGMA:6)

Einführung in Pascal 119

END
END; (* ADD *)

BEGIN
OPEN(DATEN,8,3,"DATA,S,R");
ADD(DATEN); WRITELN;
CLOSE(DATEN)

END.

Als ein Beispiel für Programme mit Ein- und Ausgabe auf Textfiles ist ein

Umwandlungsprogramm angegeben. Dieses Programm liest ein sequentielles
File EINGABE (auf der Diskette mit dem Namen "TEXT") und wandelt
alle Grafikzeichen mit Ordinalwerten größer als 127 ın Buchstaben und

Sonderzeichen um. Der umgewandelte Text wird unter dem Namen

"TEXT.G" ebenfalls auf Diskette gespeichert.

PROGRAM KONVERTCINPUT , OUTPUT);
VAR EINGABE, AUSGABE: TEXT;

CH: CHAR;
BEGIN

OPEN (EINGABE, 8, 3, "TEXT,S,R");
OPEN (AUSGABE, 8, 4, "TEXT.G,S,W");
WHILE NOT EOF(EINGABE) DO
BEGIN

READ(EINGABE, CH);
WHILE NOT EOLNCEINGABE) DO
BEGIN

IF ORD(CH)>127 THEN CH:=CHRC(ORD(CH)-128);
WRITECAUSGABE, CH); READ(CEINGABE, CH)

END;
WRITELN(AUSGABE)

END;
CLOSE(EINGABE); CLOSE (AUSGABE)

END. |

Natürlich können die Programme auch mit Files auf anderen Speicherme-
dien (oder Bildschirm und Tastatur) arbeiten, wenn Sie die Parameter bei
OPEN geeignet wählen.

Abschließend muß noch erwähnt werden, daß im Standard die Prozedur

READLN formal etwas anders definiert wird: READLN(F) liest so lange
Zeichen vom File F, bis F* das erste Zeichen der nächsten Zeile enthält.

Diese Definition setzt aber voraus, daß die folgende Zeile bereits vorhan-
den ist. Dies läßt sich zwar bei Files auf externen Speichermedien reali-

sieren, erfordert aber bei Eingaben vom Bildschirm, daß der Benutzer

bereits das erste Zeichen der nächsten Zeile eingegeben hat. Dies ist jedoch
bei Dialogprogrammen (READ und WRITE im Wechsel) auf dem C 64
nicht zu realisieren.

120 Einführung in Pascal

Einige weitere Hinweise und Beispiele für Files finden sich in der Doku-

mentation (Kapitel 4) und bei den Tips und Tricks im Kapitel 3.

Aufgaben

1. Erstellen Sie ein Druckprogramm, das den Inhalt eines Datenfiles, wie

es z.B. in der Aufgabe I in Abschnitt 2.16 beschrieben wurde,
formatiert als Liste ausgibt. Finden Sie ein möglichst allgemein
verwendbares Verfahren, um jede Seite mit einem Listenkopf (mit

Seitennummer) zu drucken.

Gegeben ist ein Datenfile, das die Umsätze von Vertretern im Bundes-

gebiet für ein Jahr enthält. Das File ist nach dem Feld Postleitzahl
aufsteigend sortiert. Drucken Sie eine Liste, die alle Umsätze im Bun-
desgebiet enthält. Außerdem sollen Zwischensummen gebildet werden,
aus denen die Gesamtumsätze in jedem PLZ-Bereich (also z.B. 6000-

6999) hervorgehen.

Diese Gruppenkontrolle läßt sich auch mehrstufig anwenden: Innerhalb

jedes PLZ-Gebietes könnte man (bei einer entsprechenden Sortierung
der Ausgangsdaten) auch eine zusätzliche Aufschlüsselung nach
Monatsumsätzen vornehmen. Im Programm muß man also einen Ver-

gleich des laufenden mit dem nachfolgenden (Teil-)Schlüssel
vornehmen.

Ersten Satz lesen
WHILE NOT Dateiende erreicht DO

BEGIN

Vorlauf Stufe 2

REPEAT

Vorlauf Stufe 1
REPEAT

Bearbeitung Einzelposten
Neuen Satz lesen

UNTIL Wechsel 1 _

Gruppenabschluß 1
UNTIL Wechsel 2

Gruppenabschluß 2
END

Wechsel 1 bezeichnet also einen Wechsel des Monats, während Wechsel

2 eine Änderung des übergeordneten Gruppenkriteriums (PLZ-Bereich)
bedeutet. Wechsel 1 muß natürlich auch durch Dateiende und Wechsel 2

hervorgerufen werden. Gleiches gilt für Wechsel 2. Der Vorlauf für
eine Gruppe enthält das Löschen von Summenfeldern, den Druck von

Überschriften etc., während der Gruppenabschluß z.B. den Druck einer
Summenzeile über die Gruppe bedeutet.

Einführung in Pascal 12]

2.18 Dynamische Datenstrukturen

Mit Ausnahme der Variablen vom Typ File sind alle bisher vorgestellten
Strukturen (Arrays, Records, Mengen) statisch. Das heißt, sie behalten

während ihrer Gültigkeit die Struktur bei, die bei der Deklaration verein-

bart wurde.

In diesem Abschnitt wird beschrieben, wie man in Pascal Objekte

konstruiert, die während der Programmlaufzeit nicht nur wachsen oder

schrumpfen, sondern auch dynamisch zu Listen und beliebigen Netzen

verbunden werden können. Zum Zeitpunkt der Übersetzung wird nur die
Struktur der (statischen) Elemente definiert. Diese Bausteine besitzen meist
die Struktur eines Records. Der Speicherplatz für die verschiedenen
Records wird dann zur Programmlaufzeit je nach Bedarf zur Verfügung
gestellt. Die Verbindung zu komplexen Strukturen geschieht über Zeiger,

die von Record zu Record führen.

Wir wollen eine Liste von Kunden bilden. Von jedem Kunden sollen der

Name und die Kundennummer gespeichert werden. Da wir nicht wissen,

wie viele Kunden zu speichern sind, können wir kein Array verwenden.
Andererseits wollen wir nicht ständig auf ein (langsames) Diskettenfile zu-
greifen. Dies ist ein typisches Beispiel für die Anwendung einer Liste, die

durch Zeiger gebildet wird.

TYPE KUNDENZEIGER = T KUNDE;

KUNDE = RECORD

NAME: ARRAY [1..10] OF CHAR;

KNUMMER: INTEGER;

NAECHSTER: KUNDENZEIGER

END;

VAR KUNDE1, KUNDENEU, LETZTERKUNDE: KUNDENZEIGER;

Listing 32: Zeigertypen

Mit der Typdeklaration aus Listing 32 definieren wir einen Typ KUNDE,
der die gewünschten Informationen für jeden Kunden speichert. Der Typ
KUNDENZEIGER besitzt als Werte Zeiger (pointer) auf solche Kunden-
records. Als Variablen haben wir keine Kundenrecords, sondern nur

Zeigervariablen deklariert.

122 Einführung in Pascal

Zum Aufbau einer (Kunden-)Liste geht man folgendermaßen vor: Man

erzeugt sich für jeden neuen Kunden einen neuen Record vom Typ

KUNDE. Diese Records werden nun durch Zeiger vom Typ KUNDEN-

ZEIGER verkettet. Der Zeiger KUNDEI zeigt auf den ersten Kunden-

record in der Liste. Jeder Record enthält im Feld NAECHSTER einen
Zeiger auf seinen Nachfolger in der Liste.

Da jeder Kundenrecord keinen eigenen Bezeichner besitzt, kann man Kun-

denrecords nur durch die Angabe eines Zeigers ansprechen. Man sagt des-

halb auch, daß dynamische Objekte anonym sind.

Um Speicherplatz für einen Kundenrecord zur Verfügung zu stellen, be-

nutzt man die Standardprozedur NEW. Sie erzeugt irgendwo im Speicher

Platz für einen Record. Um nun auf diesen Record zuzugreifen, verlangt

die Prozedur eine Zeigervariable vom Typ KUNDENZEIGER als aktuellen
Parameter. Dieser Zeigervariablen wird die Adresse des neuen Records vom
Typ KUNDE zugewiesen: |

NEWCKUNDENEU)

Über den Zeiger KUNDENEU können wir jetzt den Record vom Typ
KUNDE mit Werten füllen. Da bei den Zuweisungen nicht die Zeiger-
variable, sondern das Objekt, auf das der Zeiger zeigt, gemeint ist, benutzt
man den Pfeil * nach dem Bezeichner.

KUNDENEUT.NAME:= "JONES "

KUNDENEUT.KNUMMER:= 1111

Da ein Zeiger eine Referenz auf ein dynamisches Objekt darstellt, nennt
man den Pfeil auch Dereferenzier-Operator.

Um nun den Zeiger KUNDEI auf den mit NEW erzeugten Kundenrecord
zu setzen, führt man eine Zuweisung zwischen Zeigern durch:

KUNDE1:= KUNDENEU

Damit Sie den Unterschied zwischen Zeigern und den durch sie referen-
zierten Objekten erkennen, werden wir noch einen neuen Record an die
Liste hängen:

Zunächst müssen wir wieder einen neuen Record vom Typ Kunde bilden:

NEWCLETZTERKUNDE)

Einführung in Pascal 123

Dann wird der Inhalt von LETZTERK UNDE? initialisiert:

LETZTERKUNDE?T.NAME := "JACKSON":

LETZTERKUNDET.KNUMMER:= 2222

Wir wollen jetzt Jackson als Nachfolger von Jones in die Liste aufnehmen.

Dazu verwenden wir den Zeiger NAECHSTER im Record von Jones, auf

den ja noch KUNDENEU zeigt. NAECHSTER soll auf den Record von
Jackson zeigen, der durch LETZTERKUNDE referenziert wird:

KUNDENEUT.NAECHSTER:= LETZTERKUNDE

Jetzt ist es an der Zeit, die Liste zu betrachten, die wir durch die obigen
Anweisungen erzeugt haben. Eine anschauliche Darstellung von dy-

namischen Strukturen stellt die einzelnen Records als Kästchen dar,

während Zeiger durch Pfeile symbolisiert werden, die von Record zu

Record führen.

KUNDENEU ————» JONES LETZTERKUNDE ———®> JACKSON

1111 —»— 2222

KUNDE 1 ———® 0 229

Bild 15: Kundenliste

Ein grundsätzliches Problem haben wir noch nicht beachtet: Was passiert
mit Zeigern, die (noch) auf kein Element zeigen? So hat z.B. der Record
LETZTERKUNDE? keinen Nachfolger. Eine Möglichkeit besteht darin,
jeden Record um ein boolesches Feld zu erweitern, das angibt, ob ein

Nachfolger existiert oder nicht. Da dieser Fall bei der Arbeit mit Zeigern
ständig auftritt, ist der Wertebereich von allen Zeigertypen um den Wert
NIL erweitert: Besitzt ein Zeiger P den Wert NIL, so existiert kein Objekt
Pt. Deshalb füllen wir das Feld NAECHSTER bei dem Record Jackson mit
NIL:

LETZTERKUNDE?T..NAECHSTER:= NIL

124 Einführung in Pascal

Bevor wir uns einigen typischen Datenstrukturen zuwenden, die mit
Zeigern realisiert werden, fassen wir die Regeln für die Arbeit mit Zeiger
in Pascal zusammen:

Ein Zeigertyp Z auf Objekte eines strukturierten oder unstrukturierten
Typs T wird folgendermaßen deklariert:

TYPE Z=TT

Soll ein Typ, der durch Zeiger angesprochen wird, selbst Zeiger enthalten,

so könnten Probleme auftreten, da (wie in Abschnitt 2.15 erklärt) jeder
Bezeichner vor seiner Anwendung deklariert werden muß:

TYPE T = RECORD

IT: Zoo <rrercee falsch!
END; (Z noch nicht bekannt)

zZ=7TT

Deshalb gibt es von dieser Regel eine Ausnahme: In der Deklaration einer
Zeigervariablen kann ein Typbezeichner verwendet werden, der noch nicht

deklariert wurde. Deshalb schreibt man (wie auch in Listing 32):

TYPE Z= fT; <---...- richtig!

T = RECORD (T darf nach T noch unbekannt sein)

TT: Z

END;

Um ein neues dynamisches Objekt vom Typ T zu erzeugen, ruft man die

Prozedur NEW mit einer Variablen vom Typ Z='t T auf.

Enthält eine Zeigervariable V einen Zeiger auf ein Objekt, das mit NEW
erzeugt wurde, so bezeichnet V?t dieses Objekt.

Der Wertebereich jeder Zeigervariablen V umfaßt auch den Wert NIL. Ein
Zugriff auf das Element V* ist dann nicht zulässig.

Eine Tatsache muß noch besonders betont werden. Zwar kann ein Zeiger

während der Laufzeit auf beliebige Objekte gesetzt werden, jedoch bleibt

in jedem Fall die Typbindung von Pascal in Kraft. Konkret heißt dies, daß
eine Zeigervariable, die mit

VAR V:f T;

Einführung in Pascal 125

deklariert wurde, nur auf Objekte vom Typ T zeigen kann. So ist also die

folgende Anweisung nach der angegebenen Deklaration von ZI nicht zuläs-

sig:

VAR ZI: t INTEGER;

ZIt:= "A":

2.18.1 Lineare Strukturen (Listen)

Im vorangegangenen Abschnitt haben wir bereits erste Schritte zum Aufbau
einer Liste von Kundenrecords gemacht. Dabei sind wir von einer in-
tuitiven Vorstellung einer Liste ausgegangen, die man am Ende erweitert.

Grundsätzlich bezeichnet man in Pascal mit einer Liste eine lineare
Datenstruktur, die durch Zeiger gebildet wird. Linear bedeutet in diesem
Zusammenhang, daß jedes Element genau einen Vorgänger und Nachfolger
besitzt.

Folgende Operationen sind in Listen möglich:

1. Start mit der leeren Liste

2. Erweitern der Liste

3. Löschen in der Liste

Es gibt zahlreiche verschiedene Listentypen, die sich durch die Art der
Verzeigerung unterscheiden. Wenn Sie noch einmal Bild 15 betrachten,
werden Sie feststellen, daß man mit der Operation

KUNDENEU:= KUNDENEUT.NAECHSTER

ohne Probleme die Liste vorwärts durchlaufen kann. Andererseits ist es
(ohne einen Zugriff auf andere Zeiger) nicht möglich, von
LETZTERKUNDE zurück zum Vorgänger in der Liste zu gelangen. So
bestimmt also die Zeigerstruktur die Art der möglichen Zugriffe auf eine
Liste.

126 Einführung in Pascal

an NIL

55

NIL

LJ”

bo
re

d
f
m
)

3
/
4

3
4 OBEN ——> -

KOPF ——®
0

ANKER
0

START 5
NIL

2 NIL

Bild 16: Listenstrukturen

In Bild 16 sind die wichtigsten Listentypen grafisch dargestellt.

A Kellerspeicher (stack, Stapelspeicher)

B Schlange (queue)

C Ringspeicher
D Doppelt verkettete Liste

4 SCHWANZ

B

Bei einem Kellerspeicher fügt man Elemente bei OBEN ein und löscht sie

auch dort wieder. Weil dadurch das zuletzt eingefügte Element zuerst
gelöscht wird, heißt ein Kellerspeicher auch LIFO-Speicher (last-in-first-
out).

Bei einer Schlange fügt man Elemente bei SCHWANZ ein und löscht sie
bei KOPF. Schlangen heißen auch FIFO-Speicher (first-in-first-out).

In einigen Anwendungen sınd Ringspeicher sinnvoll. Hierbei ist keine Ord-
nung auf den Elementen definiert. Jedes Element ist Nachfolger eines an-
deren. ANKER wird nur benötigt, um einen Zugriff auf ein Element des
Ringes zu besitzen. Wäre ANKER nicht vorhanden, so könnte man nämlich
keines der Elemente über einen Bezeichner (z.B. mit ANKER) erreichen!

Einführung in Pascal 127

Relativ aufwendige Operationen erfordert die Konstruktion einer doppelt
verketteten Liste. Ein wesentlicher Vorteil ist die Tatsache, daß man sich

in beiden Richtungen in der Liste bewegen kann.

Natürlich können wir nicht alle Typen ın diesem Buch behandeln. Dieser

Überblick sollte Ihnen nur die grundsätzlichen Probleme beim Aufbau von

dynamischen Strukturen zeigen. Die Bearbeitung von Listen besteht also
größtenteils im Verfolgen von Zeigerketten.

In Listing 33 ist ein komplettes Programm angegeben, das die am Anfang
des Abschnitts erwähnte Kundenliste implementiert. Alle Funktionen sind

zu Modulen zusammengefaßt und ausführlich kommentiert, so daß Sie die

einzelnen Operationen nachvollziehen können. Auf einige Details sollten Sie

achten:

Will man in einer Liste ein Element löschen oder einfügen, so muß man
das Feld NAECHSTER beim Vorgänger korrigieren. Deshalb werden in der
Suchroutine VORHANDEN zwei Zeiger verwendet. Dabei hinkt der Zeiger
Z beim Durchlaufen der Liste immer ein Record hinter dem Zeiger Z1 her.

Normalerweise muß man die erste Einfügung in der Liste und das Löschen
des letzten Elementes in der Kette explizit programmieren, da hierbei an-

dere Zeiger umgesetzt werden müssen als bei allen anderen Operationen.

Um diese Sonderbehandlungen zu vermeiden, wird im Programm die Liste

um ein unbenutztes erstes und letztes Element erweitert.

Dieses letzte Element wird auch zur Aufnahme einer Marke bei. der
Suchroutine VORHANDEN verwendet (siehe auch Abschnitt 2.9 über die
Suche im Array).

Interessant ist vielleicht noch die folgende Variablenangabe in der Prozedur
LOESCHEN: |

VORT.NAECHSTER:= VORT.NAECHSTER?T.NAECHSTER

Auf der rechten Seite des Zuweisungsoperators wird zweimal dereferen-
ziert: Das Ergebnis ist also der Zeiger, der im Feld NAECHSTER des
Nachfolgers von VOR? steht.

128 Einführung in Pascal

PROGRAM KUNDENLISTE (INPUT, OUTPUT);
(*

(*

(*

(*

(*

(*

BEISPIEL FUER DIE VERWALTUNG EINER LISTE MIT ZEIGERN. *)
DIE DATEN WERDEN STAENDIG SORTIERT IN EINER LISTE GE- *)
HALTEN. JEDER RECORD BESITZT DAZU EINEN ZEIGER AUF *)
DEN ALPHABETISCHEN NACHFOLGER. UM DAS EINFUEGEN UND *)

LOESCHEN EINFACH ZU GESTALTEN, BESITZT DIE LISTE JE *)
EIN LEERES ELEMENT AM ANFANG UND ENDE. *)

CONST LEN = 10; (* LAENGE EINES NAMENS *)

TYPE STRING = ARRAY [1..LEN] OF CHAR;

KUNDENZEIGER = tT KUNDE;

KUNDE = RECORD

NAME : STRING;

KNUMMER :- INTEGER;

NAECHSTER: KUNDENZEIGER;

END;

VAR KOPF: KUNDENZEIGER; (* KOPF DER KUNDENLISTE *)

ENDE: KUNDENZEIGER; (* ENDE DER KUNDENLISTE *)
CH : CHAR; (* BENUTZEREINGABE *)

PROCEDURE READSTRINGCVAR S: STRING);

(* STRING MIT LEN ZEICHEN VON DER TASTATUR LESEN. *)
VAR I: INTEGER;

C: CHAR;

BEGIN

REPEAT READ(C) UNTIL C<>" ";(%* VORLAUFENE LEERZEICHEN *)

l:= 1; (* IGNORIEREN *)

REPEAT (* LEN ZEICHEN ODER BIS *)

S[Il:= C; I:s= I+1; (* ZUM ZEILENENDE LESEN *)

READ(C)
UNTIL CI>LEN) OR EOLN;

WHILE I<=LEN DO (* S MIT LEERZEICHEN AUF- *)

BEGIN (* FUELLEN *)

S[IJ:= " "; Ts=1+1
END;

WRITELN

END; (* READSTRING *)

FUNCTION VORHANDEN(S:STRING; VAR Z:KUNDENZEIGER):BOOLEAN;

(* SUCHT NAME (S) IN DER LISTE. ERGEBNIS=TRUE, FALLS *)

(* S GEFUNDEN WURDE. Z ZEIGT BEI RUECKKEHR IMMER AUF *)

(* DIE POSITION DES ALPHABETISCHEN VORGAENGERS. *)
VAR Z1: KUNDENZEIGER; (* Zi STEHT IMMER EIN RECORD*)

(* WEITER ALS DER ZEIGER Z *)
BEGIN

Z:= KOPF; Z1:= KOPFT.NAECHSTER;

ENDET.NAME:= S; (* MARKE AM LISTENENDE *)
WHILE Z11.NAME<S DO

BEGIN

Z:= Z1; Z1:= Z1T.NAECHSTER

END;

VORHANDEN:= (ZIT.NAME=S) AND (21<>ENDE)
END; (* VORHANDEN *)

Einführung in Pascal 129

PROCEDURE DRUCKE(Z: KUNDENZEIGER);
(* DRUCKE DEN INHALT DES REFERENZIERTEN RECORDS *)
BEGIN
WITH Zt DO
WRITELNCHNAME =" NAME:LEN+2," NUMMER:", KNUMMER:5)

END; (* DRUCKE *)

PROCEDURE EINGABE;

(* EINGABE EINES NEUEN KUNDENRECORDS *)
VAR N : STRING;

NEU: KUNDENZEIGER; (* ZEIGER AUF NEUEN RECORD *)

VOR: KUNDENZEIGER; (* ZEIGER AUF ALPABETISCHEN *)

(* VORGAENGER IN DER LISTE *)
BEGIN

WRITEC"NAME:"); READSTRING(N);

IF VORHANDEN(N,VOR) THEN

WRITELN(CN," IST BEREITS KUNDE!")

ELSE

BEGIN

NEWCNEU); (* NEUEN RECORD BESORGEN *)

WRITEC"KUNDENNUMMER =");

READLN(NEUT.KNUMMER); (* UND BELEGEN *)
NEUt.NAME:= N;
NEUt.NAECHSTER:
VOR?t.NAECHSTER:

END
END; (* EINGABE *)

VOR?T.NAECHSTER;

NEU; (* NEU NACH VOR EINFUEGEN *)

PROCEDURE AUSGABE;
(* AUSGABE EINES KUNDENRECORDS *)
VARN : STRING;

VOR: KUNDENZEIGER; (* ZEIGER AUF ALPHABETISCHEN *)
(* VORGAENGER IN DER LISTE *)

BEGIN
WRITEC"NAME:"); READSTRING(N);
IF VORHANDEN(N,VOR) THEN

DRUCKE (VOR?T.NAECHSTER)
ELSE

WRITELN(N, "NICHT ALS KUNDE GESPEICHERT! ")
END; (* AUSGABE *)

PROCEDURE LOESCHEN;
VAR N : STRING;

VOR: KUNDENZEIGER; (* VORGAENGER IN DER LISTE *)
BEGIN

WRITEC"NAME:="); READSTRING(N);
IF VORHANDEN(N,VOR) THEN

BEGIN
WRITELNC"GELOESCHT WURDE:");
DRUCKE(VORT.NAECHSTER); |

(* NACHFOLGER VON VOR AUS *)
(* DER LISTE STREICHEN: *)

VORt.NAECHSTER:= VORT.NAECHSTER?.NAECHSTER;
END Ä

ELSE
WRITELN(N, "NICHT ALS KUNDE GESPEICHERT!")

END; (* LOESCHEN *)

130 Einführung in Pascal

PROCEDURE TABELLE;
(* DRUCKE EINE ALPHABETISCHE LISTE ALLER KUNDEN

VAR Z:KUNDENZEIGER;
BEGIN

Z:= KOPFt.NAECHSTER; (* Z AUF ANFANG DER LISTE
WHILE Z<>ENDE DO (* SOLANGE NICHT LETZTEN

BEGIN (* (LEEREN) RECORD ERREICHT:
DRUCKE(Z);
Z:=21.NAECHSTER (* ZUM NAECHSTEN KUNDEN

END;
END; (* TABELLE *)

BEGIN (* HAUPTPROGRAMM *)

NEWCKOPF); NEWCENDE); (* ANFANG UND ENDE BILDEN

KOPFT .NAECHSTER:=ENDE; (* LISTE IST LEER

REPEAT (* EINGABESCHLEIFE

WRITELNC"E INGABE");

WRITELNC"A USGABE");

WRITELNC"L OESCHEN");

WRITELNC"T ABELLE");
WRITELNC"X BEENDEN");

READLN(CH);
CASE CH OF

uy": TABELLE;

NEN: EINGABE;

NA": AUSGABE;

ML": LOESCHEN;
Dae

ELSE WRITELNC'"UNGUELTIGE WAHL")

END;

UNTIL CH=1X";

END.

Listing 33: Programm Kundenliste

Zum Abschluß des Abschnitts sollen Sie noch

kennenlernen, mit dem man den Speicherplatz, der

Einfügungen und Löschungen in der Freispeicherliste erfolgen am ein-
fachsten am selben Ende, so daß diese Liste also ein LIFO (stack, Stapel)

ist. Um diese Freispeicherverwaltung in das Programm Kundenliste zu in-
tegrieren, muß man folgende Änderungen vornehmen: Zunächst deklariert

man einen Zeiger auf den Kopf der Freiliste.

FREI: KUNDENZEIGER;

*)

*)
*)
*)

*)

*)
*)
*)

ein Standardverfahren

durch das Léschen von

Records frei wird, wiederverwenden kann. Die Idee besteht darin, die

(logisch) gelöschten Records zu einer neuen Liste, der Freispeicherliste, zu
verketten. Vor jedem Aufruf der Prozedur NEW prüft man dann, ob sich

nicht ein unbenutzter Record in der Freispeicherliste befindet.

Einführung in Pascal 131

Anschließend werden die eigentlichen Prozeduren zur Verwaltung der
Freiliste definiert:

PROCEDURE NEWKUNDE (VAR Z:KUNDENZEIGER);
(* Liefere Zeiger auf neuen Kundenrecord*)

BEGIN

IF FREI = NIL THEN

(* Freispeicher ist leer: *)
NEW(Z)

ELSE

BEGIN

(* Entferne ersten Record aus Freispeicher*)
Z:= FREI; FREI:= FREIT.NAECHSTER

END

END; (* NEWKUNDE *)

PROCEDURE DISPOSEKUNDE(Z: KUNDENZEIGER);
(* Speicherplatz von Z ist freigeworden, *)

(* Erweitere die Freispeicherliste *)
BEGIN

Zt.NAECHSTER:= FREI;

FREI:= Z |

END; (* DISPOSEKUNDE *)

Jetzt müssen die Routinen nur korrekt aufgerufen werden. Dazu ersetzt
man den Aufruf NEW(NEU) durch NEWKUNDE(NEU). Um in der Proze-
dur LOESCHEN den Nachfolger von VOR zu löschen, merkt man sich zu-

nächst in einer Variablen ALT den Zeiger auf das zu löschende Objekt.
Dann kann man den Record aus der Verzeigerung der Kundenliste entfer-

nen und zum Schluß mit DISPOSEKUNDE(ALT) den Record ALT? in die

Freispeicherliste einfügen:

PROCEDURE LOESCHEN;

VAR ...

ALT: KUNDENZEIGER;

ALT:= VORT.NAECHSTER;

VORT.NAECHSTER:= VOR? .NAECHSTERT .NAECHSTER;

DISPOSEKUNDE (ALT)

Natürlich muß die Freispeicherliste am Programmanfang korrekt initiali-
siert werden. Da sie zu diesem Zeitpunkt noch leer ist, erhält der Zeiger

auf den Listenanfang den Wert NIL:

FREI:= NIL

Dieses Verfahren der Verwaltung von freigewordenem Speicher ist sehr

effizient, so daB man meist die Verwendung systemspezifischer Speicher-
verwaltungsprozeduren (DISPOSE, MARK, RELEASE) vermeiden kann.

132 Einführung in Pascal

Die Prozeduren MARK und RELEASE in Pascal 1.4 sind in der

Dokumentation in Kapitel 4 beschrieben.

2.18.2 Bäume

Zum Abschluß dieser Einführung in die Programmiersprache Pascal soll
noch ein Beispiel für eine nichtlineare dynamische Datenstruktur mit
Zeigern gegeben werden: Ein Baum ist (in der Graphentheorie) ein Graph
mit einem Eingang, in dem jeder Knoten auf genau einem Weg vom Ein-
gang erreicht werden kann (siehe Bild 17).

WURZEL
TIEFE 8

TIEFE 1

TIEFE 2

(8) Out TIEFE 3
x _¥

TIEFE 4 BLATTER

Bild 17: Ein Baum

Bäume zeichnet man üblicherweise mit der Wurzel (dem Eingang) nach
oben. Jeder Knoten besitzt eine gewisse Tiefe, das ist die Distanz zum Ein-

gang (hier also Knoten 1). Knoten ohne Nachfolger bezeichnet man als

Einführung in Pascal 133

Blätter. Jeder innere Knoten hat eine gewisse Anzahl an direkten Nachfol-

gern, die selbst Wurzeln von Teilbäumen sind. So besitzt der Wurzelknoten
(1) zwei direkte Nachfolger (2 und 3), wobei z.B. 3 die Wurzel des Teil-
baumes aus den Knoten 3, 6, ‘7, 9, 10, 11 und 12 bildet. Die Maximalan-

zahl der direkten Nachfolger, die ein Knoten in einem Baum besitzt, heißt

der Grad des Baumes.

Wir wollen uns nur mit binären Bäumen, also mit Bäumen des Grades 2
beschäftigen: In ihnen besitzt ein innerer Knoten | oder 2 Nachfolger,
während ein Blatt 0 Nachfolger besitzt. Außerdem definieren wir eine
Ordnung auf den Knoten des Baumes. Für jeden Knoten K im Baum gel-
ten folgende Relationen:

1. Alle Knoten im linken Teilbaum mit der Wurzel K sind kleiner als K.

2. Alle Knoten im rechten Teilbaum mit der Wurzel K sind größer als K.

Mit dieser Regel ergibt sich in Bild 17 für die Wurzel folgende Relation:

2,4,5,8, 13 < 1 < 3,6, 7,9, 10, 11, 12

Wendet man diese Regeln auch auf alle Knoten in den Teilbäumen an, so

erhält man eine vollständige Ordnung.

A<2<$ <13<5<1<9<6<10<3<11<7< 12

Nun haben wir alle Begriffe beisammen, um unsere Kundenverwaltung in

einem binären Baum zu organisieren. Wiederum sollen alle Kunden alpha-

betisch sortiert gespeichert werden, um ohne Nachsortieren eine nach Na-

men geordnete Liste auszugeben. Vor allen Dingen wird die Ordnung je-
doch auch benutzt, um einen Kunden in kurzer Zeit zu finden, ohne (wie

in einer Liste) alle Knoten zu untersuchen. |

Die Knoten eines Baumes werden in Pascal durch einen Record dargestellt.

Wir benutzen also wieder die Kundenrecords aus dem letzten Kapitel. Je-

doch erhält jeder Kunde zwei Nachfolger. Die Felder L und R enthalten
deshalb Zeiger auf den linken und rechten Nachfolger im Baum.

TYPE KUNDENZEIGER = fT KUNDE;

KUNDE = RECORD

NAME : ARRAY [1..10] OF CHAR;
KNUMMER: INTEGER;
L,R :KUNDENZEIGER;

END;

VAR WURZEL: KUNDENZEIGER;

134 Einführung in Pascal

Die Operationen mit dieser Struktur sind in Listing 34 beschrieben. Am

Programmanfang ist der Baum leer:

WURZEL:= NIL

WURZEL » MUELLER

911

' |
BREHN ZEISER

232 101

7 7 7 DI NIL

ALPHA KONRAD VOGEL

562 342 011

NIL | NIL NIL | NIL NIL | NIL

Bild 18: Baum mit Kundenrecords

Beim Einfügen müssen wir die alphabetische Reihenfolge im Baum
beachten. Hierzu wandern wir ausgehend von der Wurzel zu den Blättern.
Dabei vergleichen wir in jeder Tiefe den Namen des neuen Kunden mit
dem Namen in den Knoten des Baumes. Ist der Name größer, so müssen

wir die Einfügung im rechten Teilbaum ausführen, sonst verfolgen wir den
Zeiger zum linken Teilbaum.

Um Kunze einzufügen, bestimmen wir so den folgenden Weg:

Kunze < Mueller

Kunze > Brehm

Kunze > Konrad

gehe links

gehe rechts

gehe rechts

Da kein rechter Nachfolger von Konrad existiert (der Zeiger R ist NIL),
können wir jetzt Kunze als rechten Nachfolger von Konrad einfügen.

Diese Strategie beschreibt die rekursive Prozedur EINFUEGEN. Sie wird
mit zwei Parametern aufgerufen: NEU ist ein Record vom Typ Kunde, um

Einführung in Pascal 135

den der Baum erweitert werden soll. Der Variablenparameter Z ist ein

Zeiger auf die Wurzel des Teilbaumes, in den NEU eingefügt werden soll.
Bitte beachten Sie, daß hier ein Variablenparameter erforderlich ist, um bei

einer Einfügung (Z=NIL) den Zeiger auf das neue Element in der
aufrufenden Umgebung zu ändern.

Bei der Suche fällt auf, daß man in jedem Schritt die Größe des noch zu
untersuchenden Teilbaumes halbiert. Somit hat man im Idealfall in einem
Baum mit N Knoten nach log(N) Schritten die Einfügeposition bestimmt.
Natürlich muß man dafür sorgen, daß der Baum ausgeglichen bleibt.

Würde man nämlich ständig Einfügungen am rechten Blatt vornehmen, so
hätte der entstehende Baum die Form einer Liste, so daß für N Knoten die
Tiefe N statt log(N) beträgt.

Zur Ausgabe der alphabetisch geordneten Tabelle muß man den Baum in

der vorgegebenen Ordnung durchlaufen. Dies geschieht am elegantesten mit

der rekursiven Prozedur INORDER. Der Parameter Z gibt die Wurzel des
Teilbaumes an, der gedruckt werden soll. Die oben beschriebene Ordnung
verlangt eine Ausgabe in der folgenden Reihenfolge:

1. Ausgabe aller Knoten im linken Teilbaum (Z7.L).
2. Ausgabe des Wurzelknotens Zt.
3. Ausgabe aller Knoten im rechten Teilbaum (Z7.R).

Da die Wurzel in der Ordnung zwischen dem linken und rechten Teilbaum

liegt, heißt diese Ordnung inorder (im Gegensatz zu preorder und

postorder).

Löschungen eines inneren Knotens im geordneten binären Baum erfordern
etwas genauere Überlegungen, damit die Ordnung zwischen den übrigge-

bliebenen Knoten erhalten bleibt. Ohne nähere Erläuterungen ist im Listing
34 ein Löschalgorithmus angegeben.

Sollten Sie Interesse an solchen Datenstrukturen und Algorithmen gefunden
haben, können Sie sich, ausgerüstet mit den Kenntnissen aus diesem Buch,

der Fachliteratur über Systematische Programmierung (Bücher 2, 5, 6, 7, 8

Anhang E) zuwenden.

PROGRAM KUNDENBAUM (INPUT, OUTPUT);

(* VERWALTUNG DER KUNDENDATEN IN EINEM NACH NAMEN *)

(* GEORDNETEN BINAERBAUM. *)

CONST LEN = 10; (* LAENGE EINES NAMENS *)

136 Einführung in Pascal

TYPE STRING = ARRAY [1..LEN] OF CHAR;

KUNDENZEIGER = 1 KUNDE;

KUNDE = RECORD

NAME : STRING;
KNUMMER : INTEGER;

L, R : KUNDENZEIGER;
END;

VAR WURZEL: KUNDENZEIGER; (* WURZEL DES BAUMES *)
CH : CHAR; (* FUNKTIONS- AUSWAHL *)

PROCEDURE READSTRING(VAR S: STRING);
(* STRING MIT LEN ZEICHEN VON DER TASTATUR LESEN. *)

VAR I: INTEGER;
C: CHAR;

BEGIN
REPEAT READ(C) UNTIL C<>" ";(%* VORLAUFENE LEERZEICHEN *)
I:= 1; (* IGNORIEREN *)

REPEAT (* LEN ZEICHEN ODER BIS *)
S[Il:= C; I:= 1+1; (* ZUM ZEILENENDE LESEN *)
READ(C)

UNTIL CI>LEN) OR EOLN;
WHILE I<=LEN DO (* S MIT LEERZEICHEN AUF- *)

BEGIN (* FUELLEN *)
SCI]:= " "2 Ts=1+1

END;
WRITELN

END; (* READSTRING *)

PROCEDURE DRUCKE(Z: KUNDENZEIGER);

(* DRUCKE DEN INHALT DES REFERENZIERTEN RECORDS *)
BEGIN

WITH ZT DO

WRITELNC"NAME:",NAME:LEN+2," NUMMER:", KNUMMER:5)

END; (* DRUCKE *)

PROCEDURE EINGABE;

(* EINGABE EINES NEUEN KUNDENRECORDS *)

VAR K: KUNDE;

PROCEDURE EINFUEGEN(NEU:KUNDE; VAR Z:KUNDENZEIGER);

(* FUEGE NEU AN DER KORREKTEN POSITION IM TEILBAUM MIT*)

(* DER WURZEL Z EIN. *)
BEGIN

IF Z=NIL THEN (* TEILBAUM IST LEER: *)
BEGIN (* FUEGE NEU ALS BLATT EIN *)

NEW(Z);Zt:= NEU; (* BELEGE Zt MIT NAME UND *)
Z1.L:= NIL; (* KUNDENNUMMER. Zt HAT *)
Z1.R:= NIL (* KEINE NACHFOLGER ! *)

END
ELSE

BEGIN (* VERGLEICH DER SCHLUESSEL:*)
IF NEU.NAME=ZT.NAME THEN

WRITELNCNEU.NAME," IST BEREITS KUNDE!)
ELSE

IF NEU.NAME<ZT.NAME THEN

EINFUEGEN(NEU,ZT.L) (* IM LINKEN ODER *)

Einführung in Pascal 137

ELSE

EINFUEGEN(NEU,ZT.R) (* IM RECHTEN TEILBAUM *)

END (* EINFUEGEN *)

END; (* EINFUEGEN *)

BEGIN (* EINGABE *)

WRITEC"NAME ="); READSTRING(CK.NAME);

WRITEC"KUNDENNUMMER:"); READLNCK.KNUMMER);
EINFUEGEN(K, WURZEL); (* K IM BAUM EINFUEGEN *)

END; (* EINGABE *)

PROCEDURE INORDER(Z: KUNDENZEIGER);

(* DRUCKE IN ALPHABETISCHER REIHENFOLGE DIE KNOTEN DES *)

(* TEILBAUMES MIT WURZEL Z. *)
BEGIN

IF Z<>NIL THEN (* TEILBAUM IST NICHT LEER: *)

BEGIN

INORDER(ZT.L); (* DRUCKE LINKEN TEILBAUM *)

DRUCKE (2); (* DIE WURZEL SELBST UND *)

INORDER(ZT.R) (* DANN DEN RECHTEN TEILBAUM*)

END

END; (* TABELLE *)

PROCEDURE LOESCHE;

VAR NAME: STRING;

PROCEDURE ENTFERNE(N: STRING; VAR Z: KUNDENZEIGER);

(* ENTFERNE DEN KUNDEN MIT NAME N AUS DEM TEILBAUM *)

(* MIT DER WURZEL Z *)

PROCEDURE HOLEHOCH(VAR Z1: KUNDENZEIGER);

(* ERSETZE Z DURCH DEN GROESSTEN WERT IM LINKEN *)

(* TEILBAUM ZTL *)
BEGIN

~ IF Z1f.R=NIL THEN

BEGIN (* KOPIERE FELDER NACH ZT *)

Zt .NAME = Z11.NAME;

Z1T.KNUMMER:= Z11.KNUMMER;

21:=Z11.L (* ERSETZE Z1 DURCH SEINEN *)

(* LINKEN NACHFOLGER *)
END

ELSE (* RECHTS WEITERSUCHEN: *)

HOLEHOCH(ZIT.R)

END; (* HOLEHOCH *)

BEGIN (* ENTFERNE *)
IF Z=NIL THEN

WRITELN(N,'" IST NICHT GESPEICHERT!")

ELSE

IF N=ZT.NAME THEN (* ERSETZE Z DURCH EINEN *)

BEGIN (* SEINER NACHFOLGER *)
IF Zf.L= NIL THEN Z:=Z1.R ELSE

IF ZT.R= NIL THEN Z:=Z1.L

ELSE HOLEHOCH(ZT.L)

END

ELSE (* SUCHE IN DEN TEILBAEUMEN *)

IF N<Zt.NAME THEN ENTFERNE(N,2Z7.L)

ELSE ENTFERNE(N,ZT.R)

138 Einführung in Pascal

END;(* ENTFERNE *)
BEGIN (* LOESCHE *)

WRITEC"NAME="); READSTRING(NAME);
ENTFERNE (NAME ‚WURZEL) (* LOESCHE KUNDEN IM BAUM *)

END; (* LOESCHE *)

BEGIN (* HAUPTPROGRAMM *)

WURZEL:= NIL; (* BAUM IST LEER *)

REPEAT (* EINGABESCHLEIFE *)

WRITELNC"T ABELLE");

WRITELN(C"E RWEITERN");

WRITELNC"L OESCHEN");

WRITELNC"X BEENDEN");

READLN(CH);
CASE CH OF

"TM: TNORDER(WURZEL); | (* DRUCKE GESAMTEN BAUM *)
NEW: EINGABE;
"Lt: LOESCHE;
DD ee

ELSE WRITELNC"UNGUELTIGE WAHL")
END;

UNTIL CH="X":
END.

Listing 34: Kundenverwaltung in einem Baum

Aufgaben

1. Versuchen Sie, eine Kundenliste ohne leere Records am Anfang und
Ende der Liste zu verwalten. Sollten Sie nicht mehr weiterkommen,

haben Sie zumindest den Sinn dieser Hilfsrecords erkannt.

2. Um zu prüfen, ob Sie die Operationen im Listing 34 im großen und
ganzen verstanden haben, sollten Sie das Programm so ändern, daß die

Records nach Kundennummer sortiert im Baum gespeichert werden.

3. Schreiben Sie eine rekursive Prozedur SWAP, die in einem binären

Baum den linken und rechten Nachfolger jedes inneren Knotens ver-
tauscht.

4. Schreiben Sie eine rekursive Prozedur REVERSE, die eine Liste in-
vertiert, so daß der letzte Record als erster in der neuen Liste erscheint.

(Diese rekursive Lösung ist nur für kurze Listen geeignet.)

Tips und Tricks 139

3 Tips und Tricks

3.1 Nützliche Pascal-Routinen

Im Gegensatz zu Kapitel 2 stehen in diesem Kapitel die Besonderheiten des

C 64 im Vordergrund. Dabei sollen nicht alle POKE-, PEEK- und SYS-

Befehle, die seit Jahren verschiedene Zeitschriften zum C 64 füllen, in

Pascal formuliert werden, sondern nur exemplarisch der Zugriff auf das

Betriebssystem und die Floppy gezeigt werden.

Files

Sollten Sie in BASIC bereits mit Dateien gearbeitet haben, werden Sie

sicher keine Probleme mit den OPEN- und CLOSE-Befehlen in Pascal

haben. Haben Sie jedoch erst durch Abschnitt 2.16 Interesse an Files
gefunden, sind sicherlich die folgenden Hinweise angebracht:

Die Floppy besitzt ein eigenes Betriebssystem, das die Files auf der

Diskette verwaltet. Um ein File zum Lesen oder Schreiben zu eröffnen,
muß man den Filenamen auf der Diskette angeben. Außerdem nennt man

eine Sekundäradresse, die im Bereich von 0 bis 15 liegt. Um auf ein ge-

öffnetes File Bezug zu nehmen, verwendet man diese Sekundäradresse.

Dabei besitzen die Sekundäradressen 0, 1 und 15 eine besondere Bedeutung
und sollten nicht für sequentielle Dateien verwendet werden. Des weiteren

müssen gleichzeitig eröffnete Dateien verschiedene Sekundäradressen er-

140 Tips und Tricks

halten. Beim OPEN-Befehl geben Sıe außerdem an, ob von der Datei gele-

sen werden soll, ob die Datei neu angelegt werden soll oder ob eine beste-

hende Datei am Ende erweitert werden soll:

OPENCF,8,3, "EINGABE , SEQ, READ") entspricht RESET(F)
OPEN(G,8,4, "AUSGABE ,SEQ,WRITE") entspricht REWRITE(G)
OPENCH,8,5,"PROTOKOLL,SEQ,APPEND") sequentiell erweitern

Der dritte OPEN-Befehl zeigt, wie man ein bestehendes File um Kompo-

nenten am Ende erweitern kann. Diese Operation läßt sich prinzipiell nicht

mit den Standardbefehlen RESET und REWRITE realisieren.

Existiert bei der Ausführung des zweiten OPEN-Befehls bereits eine Datei

mit dem Namen AUSGABE, so würde eine Fehlermeldung durch die
Floppy erzeugt. Deshalb sollte man die alte Version zuvor löschen. Dabei
gibt es zwei verschiedene Möglichkeiten: Einerseits kann man den Filena-
men durch Voranstellen des Klammeraffen-Zeichens CHR(64) und eines

Doppelpunktes erweitern. Dann wird am Ende der Ausgabe auf das File
AUSGABE die alte Version aus dem Inhaltsverzeichnis der Diskette
gelöscht. Jedoch wird der Platz, den die alte Version belegte, nicht
freigegeben. Deshalb kann beim Schreiben nicht die gesamte Speicherka-
pazität der Diskette ausgenutzt werden. Man löscht daher besser die alte
Version des Files vor dem Eröffnen einer neuen Datei. Dafür kann man
den Kommandokanal der Floppy (mit der Sekundäradresse 15) benutzen:

VAR KOMMANDO: TEXT;

OPEN(KOMMANDO,8, 15);
WRITELNCKOMMANDO, "SO:AUSGABE");
OPEN(G,8,4 ,"AUSGABE ‚S ‚W")

Der Kommandokanal stellt die Schnittstelle des Programmes zur Floppy

dar. Über ihn sendet man Befehle an das Betriebssystem der Floppy und

empfängt Meldungen über eventuell aufgetretene Fehler. Ein Beispiel für
die Abfrage des Kommandokanals ist die Prozedur DSTATUS im Pro-
gramm RELATIV.P auf der Systemdiskette.

Jetzt kennen Sie den Zusammenhang zwischen Files in Pascal und den se-
quentiellen Dateien der Floppy. Mit diesem Wissen können Sie die Beispiele

aus dem Floppy-Handbuch als Vorbild für eigene Programme in Pascal be-

nutzen.

Für erfahrene Programmierer ist in Listing 35 ein Programm abgedruckt,
das den Zugriff auf das Directory der Diskette zeigt. Es wird eine Datei
der Floppy gelesen, die man normalerweise in BASIC mit LOAD"$",8 lädt.

Tips und Tricks 141

Alle Filenamen werden mit Typ und Längenangabe in einer Tabelle
gespeichert. Nach einer alphabetischen Sortierung können dann alle Namen

formatiert ausgedruckt werden.

PROGRAM DISKSORT(INPUT ‚OUTPUT);
(*FORMATIERTER AUSDRUCK DES DISKINHALTES *)
CONST MAXP=250; (* LAENGE DER NAMENSTABELLE *)
TYPE FILETYP=(PRG,SEQ,USR,REL);

EINTRAG=RECORD
NAME: ARRAY[O..15]OF CHAR;
TYP :FILETYP;
BLK :0..999; |
ID :ARRAYLO..1]OF CHAR;

END;
VAR P: INTEGER; WEITER: BOOLEAN;

T:ARRAYL[O..MAXP] OF EINTRAG;

PROCEDURE READALL;

(* DISKETTEN-DIRECTORY KOMPLETT EINLESEN *)

(* INFORMATIONEN IN TLP] ABLEGEN *)
VAR A,ID1,1D2: CHAR;

I,N : INTEGER;

INF : TEXT;

ENDE : BOOLEAN;

FUNCTION BYTE: INTEGER;
(* ZEICHEN LESEN UND IN BYTE WANDELN *)

VAR C:CHAR;
BEGIN

READ(INF,C);
IF EOLNCINF) THEN BYTE:=13

ELSE BYTE:=ORD(C)
END; (* BYTE *)

FUNCTION NUMBER: INTEGER;

(* L UND H-BYTE LESEN UND UMWANDELN *)
BEGIN

NUMBER:= BYTE+256*BYTE

END; (* NUMBER *)

BEGINC*READALL*)
OPENCINF,8,0,"$0"); (* INHALTSVERZEICHNIS *)
WRITELN;WRITELN; |
FOR I:=1 TO 32 DO (* TITELZEILE AUSWERTEN:*)
BEGIN READCINF,A);

IF I IN [9..24] THEN WRITECA);
IF 1=27 THEN ID1:=A;
IF 1=28 THEN ID2:=

END;

WRITELN; ENDE:= FALSE;
WHILE (P<=MAXP) AND NOT ENDE DO
BEGIN
N:=NUMBER; N:= NUMBER; (* N=ANZAHL BLOECKE*)
(* ANFUEHRUNGSZEICHEN ODER"BLOCKS FREE"LESEN *)
REPEAT
ENDE:= EOFCINF)

142 Tips und Tricks

UNTIL (BYTE=34) OR ENDE;
IF NOT ENDE THEN (* ALLES EINTRAGEN: *)
WITH TEP] DO

BEGIN 1:=0; (* EINTRAG FILENAME: *)
REPEAT READCINF,A); NAME[I]:=A; I:=I+1
UNTIL A=CHR(34);

» I:=1-1;WHILE 1<16 DO
' BEGIN NAME [I]:=" "2 I:=1+1 END;
REPEAT READCINF,A); (*EINTRAG TYP: *)
UNTIL A IN CUP! gH nym MRT.

CASE A OF
"PN:TYP:=PRG;
"NS": TYP:=SEQ;
"UMS TYP:=USR;
UR": TYP:=REL

END; (*CASE*)
REPEAT UNTIL BYTE=0; (*BIS ZEILENENDE *)
BLK:=N;

1D[0] :=1D1; ID[1]:=ID2; (*EINTRAG DISK-ID:*)
P:= P+1;

END
END;
CLOSECINF);

END; (* READALL *)

PROCEDURE QUICK(L,R: INTEGER);

(* TABELLE NACH NAMEN AUFSTEIGEND SORTIEREN *)
VAR I,J: INTEGER;

X,W:EINTRAG;

BEGIN

l:=L; J:=R; X:=T(C(L+R)DIV 2];
REPEAT

WHILE TL[LI]J<X DO I:=1+1;
WHILE X<T{J] DO J:=J-1;

IF I<=J THEN
BEGIN

Wi=TCI]; TCI] :=T lJ] ;T[J] :=W;
l:=1+1;J:=J-1

END;

UNTIL I>J;

IF L<J THEN QUICK(L,J);
IF I<R THEN QUICKCI,R)

END; (* QUICK *)

FUNCTION OK:BOOLEAN;

VAR C:CHAR;

BEGIN

WRITELNC!" (JA ODER NEIN)"); WRITEC"==>");

REPEAT READLN(C) UNTIL C IN [L"y","N"];
OK:= C="J"

END;(* OK *)

PROCEDURE AUSGABE;

VAR J, ZPROSEITE: INTEGR;

PRT : TEXT;

BEGIN

Tips und Tricks 143

WRITELN: WRITELN;
WRITELNC"DRUCKER BEREIT?");
IF OK THEN
BEGIN
OPEN(PRT,4,0);
WRITEC"ZEILEN PRO SEITE: "):READLN(ZPROSEITE);
FOR J:=0 TO P-1 DO
WITH TLJJ DO
BEGIN

IF J MOD (ZPROSEITE-2)=0 THEN

BEGIN

WRITECPRT," NAME: TYP ");

WRITELNCPRT," BLK ID "):

WRITECPRT," ##### #H# "):

WRITELNCPRT," #44 ## N");

END;

WRITECPRT," ",NAME:17," ");

CASE TYP OF

PRG:WRITECPRT ,"PRG":4);

SEQ:WRITECPRT ,"SEQ":4);

USR:WRITECPRT ‚"USR":4);

REL:WRITE(PRT ,"REL":4)

END;

WRITELNCPRT," ",BLK:4,'" "10:3," 0);

END;

CLOSE(PRT)
END

END; (* AUSGABE *)

BEGIN(* MAIN *)
P:=0; (* TABELLE LEER *)
WRITELN(CHR(147) , "DISK-SORT":24);
WRITELNC" W224);
REPEAT
WRITELN; WRITELN;
WRITELNC"WEITERE DISKETTEN?"); WEITER:=OK;
IF WEITER THEN READALL;

UNTIL NOT WEITER;
WRITELN; WRITELN;
WRITELN ("*** BITTE WARTEN ***!)-
IF P>O THEN QUICK(O,P-1);
AUSGABE;

END. (* MAIN *)

Listing 35: Directory lesen

Es gibt noch einen weiteren Dateityp, der vom Betriebssystem der Floppy

verwaltet wird. Es handelt sich dabei um relative Dateien. Sie können

einerseits wie sequentielle Dateien Komponente für Komponente gelesen

werden, andererseits besteht auch die Möglichkeit, gezielt auf einzelne

Komponenten des Files zuzugreifen. Dies geschieht durch Angabe der Po-

sition der Komponente in der Datei: Alle Komponenten sind von |]

aufsteigend numeriert. Da in relativen Dateien alle Komponenten dieselbe

Größe (in Bytes) besitzen, kann das Betriebssystem jede Komponente über

144 Tips und Tricks

ihre Record-Nummer direkt adressieren. Die Verarbeitung relativer Dateien
erfolgt also folgendermaßen:

1. Beim Eröffnen der Datei wird der Dateityp REL gewählt. Wird eine
neue Datei angelegt, muß außerdem die Lange jeder Komponenten in

Bytes angegeben werden.

2. Vor dem Schreiben einer Komponente kann man die Record-Nummer

bestimmen, unter der die Daten gespeichert werden. Dies geschieht

über den Kommandokanal der Floppy.

3. Vor dem Lesen einer Komponente kann man ebenfalls die Record-

Nummer der Komponente angeben, die als nächste gelesen wird.
Geschieht dies nicht, wird die Datei sequentiell gelesen.

Diese Operationen werden im Programm RELATIV.P auf der System-
diskette demonstriert. Dabei ist die Positionierung auf die entsprechende
Record-Nummer über dem Kommandokanal der Floppy als Prozedur

definiert worden.

Bei der Arbeit mit relativen Dateien sind noch zwei Details zu beachten:
Man muß beim OPEN-Befehl die Größe einer Komponente in Bytes
angeben. Die Information über den Speicherplatz, den jeder Wert eines

Typs in Pascal 1.4 benötigt, finden Sie in Abschnitt 4.4.2 unter dem
Stichwort Datentypen. Im Beispielprogramm RELATIV.P ist diese Größe in
der Konstanten RSIZE definiert. Schließlich erwartet das Betriebssystem

der Floppy am Ende jeder Komponenten in einer relativen Datei das

Zeichen CHR(13). Daher wird im Programm RELATIV.P jede
Komponente um das Feld MARKE erweitert, in dem am Programmanfang
das Zeichen CHR(13) gespeichert wird.

 Systemadressen

In diesem Abschnitt werden einige Beispiele gegeben, die zeigen, wie man
das Betriebssystem direkt manipuliert. Mit den Kenntnissen aus diesem
Abschnitt können erfahrene Programmierer die zahlreichen BASIC-Pro-

gramme, die mit PEEK und POKE Grafiken erzeugen, Sprites bewegen

und die Tongeneratoren programmieren, in Pascal umschreiben. Anfänger

können evtl. einige der Routinen als black box in eigenen Programmen be-
nutzen.

Die erste Prozedur zeigt, wie man den freien Speicherbereich zwischen

Heap und Stack bestimmt. |

Tips und Tricks 145

FUNCTION FREEMEM: INTEGER;
VAR TOPOFSTACK: INTEGER[47];
VAR HEAPPTR : INTEGER[59];

BEGIN
FREEMEM:= ADDUCHEAPPTR, - TOPOFSTACK)

END; (* FREEMEM *)

Um am Ende des Speichers N Byte zu reservieren, muß man vor dem

ersten Aufruf der Standardprozedur NEW die folgende Prozedur GETMEM
aufrufen. In diesem Speicherbereich kann man dann z.B. einen Bild-
schirmspeicher ablegen.

PROCEDURE GETMEM(N: INTEGER);
VAR HEAPPTR [59] ;

BEGIN
IF FREEMEM<N THEN

BEGIN
WRITELNC"OUT OF MEMORY ERROR");
HALT

END
ELSE HEAPPTR:=ADDUCHEAPPTR, -N);

END; (* GETMEM *)

In Abschnitt 4.3.3 wird auBerdem beschrieben, wie man zwischen dem
Laufzeitsystem und dem Objektprogramm einen Speicherbereich reserviert,
in dem man z.B. Maschinenprogramme ablegen kann, die mit dem Pascal-
Programm gespeichert werden sollen.

Die obigen Prozeduren und Funktionen benutzen die Möglichkeit, in Pascal
1.4 Variablen an Speicheradressen des Systems zu binden. Dies erlaubt auch

die elegante Abfrage des Joysticks am Port 2: Jedes nicht gesetzte Bit in

der Speicherstelle 65520 entspricht einer Bewegungsrichtung des Joysticks.
Da in Pascal 1.4 Mengen als Bitvektoren dargestellt werden, kann man

einfach auf einzelne Bits in einer Speicherstelle zugreifen.

PROGRAM TEST CINPUT,OUTPUT);
TYPE JOY= SET OF (AUF,AB,LI,RE, FEUER);
VAR JOYSTICK: JOY;

PROCEDURE UPDATEJOYSTICK;

VAR JOYPORT: JOY[-9216]; (* =56320 *)
BEGIN

(* negative Logik des Ports beachten: *)

JOYSTICK:=[AUF.. FEUER] - JOYPORT;

END; (* UPDATEJOYSTICK *)

BEGIN

REPEAT

UPDATE JOYSTICK;

IF RE IN JOYSTICK THEN...;

IF LI IN JOYSTICK THEN...;

146 Tips und Tricks

IF AUF IN JOYSTICK THEN...;

IF AB IN JOYSTICK THEN...;

UNTIL FEUER IN JOYSTICK;

END.

In einigen Anwendungen möchte man die Tastatur abfragen, ohne daß der
Cursor am Bildschirm erscheint. Dazu kann man die Betriebssystem-Rou-
tine GETCH (get character) benutzen. Sie beginnt bei der Adresse $FFE4
=65508. Am Ende der Routine wird das Zeichen, das von der Tastatur ein-

gelesen wurde, im Akkumulator des Mikroprozessors gespeichert. Zum

Aufruf der Routine in Pascal benutzt man den SYS-Befehl mit der Integer-
Zahl, die der Startadresse der Routine entspricht. In diesem Fall ist diese

Adresse größer als MAXINT=32767, so daß man die Adresse im

Zweierkomplement angeben muß. Dazu führt man folgende Berechnung

durch:

$FFE4 = 65508 = -28 (65536 - 65508) im 2er-Komplement

Bei SYS wird der Akkumulator in der Speicherzelle 780 (dezimal)
gespeichert (s. Abschnitt 4.4.4.7). Somit ergibt sich folgende Funktion:

FUNCTION GETKEY:CHAR;
BEGIN

SYS(-28); (* SFFE4 *)
GETKEY:= CHR(PEEK(780)); (* Zeichen im Akku *)

END;

[REPEAT]
UNTIL GETKEY<>CHR(0);

Die Funktion liefert als Ergebnis das Zeichen CHR(0), falls keine Taste
gedrückt wurde, so daß die obige Repeat-Schleife durch die Betätigung
einer beliebigen Taste beendet wird.

Um auf die vom Betriebssystem verwaltete Systemzeit zuzugreifen, kann
man folgende Anweisungen verwenden. Zunächst wird der 24-Bit-Zähler
zurückgestellt. Anschließend wird der Inhalt des Zählers byteweise ausge-
lesen.

PROGRAM TIMECINPUT,OUTPUT);

CONST TI=160; (* Zähler in Z-Page *)

BEGIN
POKE(TI ,0);
POKE(TI+1,0);
POKE(TI+2,0); (* Zähler := 0 *)
REPEAT
WRITELN(PEEK(TI), PEEK(TI+1) , PEEK(TI+2))

UNTIL PEEK(TI+1)=5;
END.

Tips und Tricks 147

Als letztes Beispiel wollen wir noch die Benutzung von Routinen für reelle

Zahlen vorstellen. Wir wollen den Wert einer reellen Variablen in eine

Zeichenfolge S umwandeln.

Im Interpreter für BASIC ist ein Unterprogramm enthalten, das eine reelle

Zahl in eine entsprechende Zeichenfolge umwandelt. Die reelle Zahl muß

vor dem Aufruf in einem sogenannten Fließkomma-Akkumulator abgelegt
werden. Dieser wird auch vom Pascal-Laufzeitsystem benutzt, wobei jede
arithmetische Operation mit reellen Zahlen ihr Ergebnis dort ablegt. Des-

halb führt die folgende Prozedur zunächst eine Addition von 0.0 durch, so
daß der Fließkomma-Akkumulator belegt wird. Anschließend wird die

Routine aufgerufen. Sie speichert den String ab der Adresse 256 und
schließt ihn mit dem Zeichen CHR(0) ab. Diesen String kopiert die Proze-
dur in die Stringvariable S, wobei der String mit Leerstellen zur vollen
Länge erweitert wird.

PROGRAM KONVERT(INPUT, OUTPUT);

CONST MAXLEN = 20;

TYPE STRING = ARRAYL[O..MAXLEN] OF CHAR;

VAR I: INTEGER;

R: REAL;

S: STRING;

PROCEDURE REALTOSTRING(CR:REAL; VAR S:STRING);

CONST FLPSTR=-16931; (* $BDDD *)
BUF = 256; (* $0100 *)

VAR I: INTEGER;

BEGIN ,

R:=R+0.0; (* Fließkomma-Akummulator belegen *)
SYS(FLPSTR); (* Umwandlung *)
1:=0;
WHILE PEEK(BUF+I)<>0 DO
BEGIN
S[I] :=CHR(PEEK(BUF+I)); I:=I+1

END;
WHILE I<=MAXLEN DO

BEGIN

S[Il]:=" "5 I:=1+1
END;

END; (* REALTOSTRING *)
BEGIN

READLN(R);
REALTOSTRING(R,S);
FOR I:=0 TO MAXLEN DO
WRITECS[EIJ :2); (* drucke mit Lücken *)

END.

148 Tips und Tricks

3.2 Tips zum Editor

Sie können den Editor auch ohne den Pascal-Compiler benutzen. Vor dem

Aufruf des Editors mit SYS 32768 geben Sie den Speicherbereich an, der

für den Text zur Verfügung steht.

641/642 L und H-Byte Textanfang

643/644 L und H-Byte Textende

Da der Editor den Speicherbereich von $7F00 bis $A000 benötigt, können

Sie mit den folgenden Befehlen den gesamten restlichen Speicher für den
Text freigeben:

POKE 641,0: POKE 642,8:
POKE 643,0: POKE 644,127:
SYS 32768

Bei der Rückkehr vom Editor sind die Z-Page-Zeiger für BASIC von 43

bis 56 unverändert.

Sollten Sie auch die Dokumentation der Pascal-Programme mit dem Editor

erstellen, so können Sie mit dem Befehl CHANGE direkt Steuerzeichen für

den Drucker in den Text einfügen. Wollen Sie z.B. nach der Zeile 60 einen

Seitenvorschub erzeugen, so können Sie in Zeile 61 folgende Zeichen

eingeben. |

&%

Mit CHANGE & #147 und CHANGE % #12 werden diese Zeichen in
Kontrollzeichen umgewandelt, die von der Tastatur nicht direkt erreichbar
sind. Geben Sie später den Text mit OUT an den Drucker aus (siehe
Abschnitt 4.2.11), so wird der Drucker (MPS-802) nach Zeile 60 einen
Seitenvorschub (skip page) ausführen.

Besonders bei der Erstellung von Tabellen sind die varıablen Textgrenzen
und die Line-Commands O und OO sinnvoll anzuwenden: Möchten Sie um
eine Tabelle einen Rand aus Ausfrufezeichen "!" legen, könnten Sie wie
folgt vorgehen:

Tips und Tricks 149

! ! I !

Variable Adresse Bedeutung

RSMEFLG 908 >0, falls RESUME erlaubt
PNT 909-922 Basic-Zeiger 43-56

COLOR -B 8957 Hintergrundfarbe

COLOR-F 8952 Rahmenfarbe

COLOR -T 8994 Farbe Textfenster

COLOR -H 8974 Farbe Kopfzeile
COLOR-L 9003 Farbe Zeilennummern

Die erste Zeile enthält die Markierung, die über die darunterstehende

Tabelle kopiert werden soll. Deshalb geben Sie in der Zeile mit den Aus-

rufezeichen das Line-Command C ein. Außerdem markieren Sie die erste

und letzte Zeile der Tabelle mit OO. Dadurch werden die Ausrufezeichen

in die Tabelle kopiert. Wenn Sie ein wenig mit den Textgrenzen in der

Zeile BND= experimentieren, werden Sie auch einen Weg finden, selektiv

einzelne Spaltenbereiche mit),)), (und ((zu verschieben oder zu löschen.

Die obige Tabelle zeigt übrigens einige globale Variablen des Pascal-
Systems. So könnten Sıe z.B. in BASIC mit

POKE 908, 1

die Eingabe eines Fragezeichens beim nächsten Aufruf des Pascal-Menüs
zulassen. Falls Sie die angegebenen Farben im Pascal-System ändern wollen,
müssen Sie direkt nach dem Laden des Systems (vor RUN) die
entsprechenden Speicherzellen mit POKE von Basıc aus verändern. Wenn

Sie das Pascal-System anschließend speichern, sind die Änderungen perma-

nent.

150 Tips und Tricks

Dokumentation Pascal-System 151

4 Dokumentation Pascal-System

Inhalt der Systemdiskette

PASCAL-SYSTEM

MERGE.P

FILE.INC

RELATIV.P

QUEEN.P

TREE.P

ROMBERG.P

Start des Systems

Compiler, Editor und Laufzeitsystem.

Beispiel für Include-Files und Dateien

(benötigt bei Übersetzung FILE.INC).

Include-File, definiert die Prozeduren RESET

und REWRITE (siehe Abschnitt 4.4.5.1 und

2.16).

Demonstration für Relativdateien mit C 64.

Problem der acht Königinnen.

Darstellung einer Baumstruktur auf dem
Drucker.

Mathematikprogramm. Numerische
Berechnung von Integralen.

- Zunächst müssen Sie alle Erweiterungsmodule abschalten, da diese
eventuell die Funktion des Pascal-Systems stören Könnten.

- Laden Sie jetzt das Programm PASCAL-SYSTEM von der Diskette.

152 Dokumentation Pascal-System

- Nach dem Start des Programmes mit RUN erscheint das Pascal-Menü,

von dem aus Sie Programme erstellen, übersetzen und testen können.

Allgemeines

Alle Eingaben im System sind so organisiert, daß Sie mit möglichst wenigen
Zwischenschritten jede Funktion erreichen können. Dabei besitzen im
allgemeinen die Zeichen ’*’ und ’?’ eine Sonderfunktion. Alle Eingaben bei
blinkendem Cursor müssen mit RETURN beendet werden. Grundsätzlich
wird bei längeren Operationen (Laden, Speichern) eine Abfrage der RUN-
STOP-Taste vorgenommen, so daß die Ausführung jederzeit abgebrochen
werden kann.

4.1 Das Pascal-Menü

PASCAL - MENU

SELECT OPTION:

NAME EDIT NEW DATASET
‘2! RESUME EDIT
'$' COMPILE DATASET
ı#ı EXIT TO BASIC

==>

Eingabe eines Namens (max. 16 Zeichen):

Der Editor sucht einen Text auf der Diskette im Laufwerk 0 mit der Gerä-
teadresse 8. Als Typ wird das Suffix ’,PRG’ benutzt. Tritt beim Ladevor-
gang ein Fehler auf, so springt der Editor zum Pascal-Menü zurück. Über-
prüfen Sıe, ob die Floppy betriebsbereit war, und wiederholen Sie die

Eingabe.

Konnte der angegebene Text auf der eingelegten Diskette nicht gefunden
werden, so nimmt der Editor an, daß Sie einen neuen Text mit diesem

Namen anlegen möchten. Es erscheint die folgende Meldung:

Dokumentation Pascal-System 153

THIS IS A NEW DATASET!

ENTER RECORD LENGTH:

[RANGE : 1.80]
['*! OR '2' FOR END]

==>

An dieser Stelle bestimmen Sie die maximale Länge einer Textzeile für den

neuen Datenbestand. Gültige Werte liegen im Bereich zwischen | und 80.

Wollen Sie jedoch keinen neuen Datenbestand anlegen, so können Sie mit
’*’ oder ’” zum Pascal-Menü zurückkehren.

Eingabe von ’”

Um den Datenbestand zu editieren, der sich bereits im Speicher befindet,

genügt diese Eingabe. Sie ersparen sich hiermit die Ladezeit von der
Diskette.

Eingabe von ’$’

Es wird der Compiler .aufgerufen, der den momentan im Speicher stehen-

den Datenbestand übersetzt (siehe Abschnitt 4.3).

Eingabe von **’

Sie verlassen mit diesem Befehl das Pascal-System und kehren nach BASIC
zurück (siehe Abschnitt 4.3.4). Von dort aus wird das Pascal-Menü durch
die Eingabe von ’* erreicht.

4.2 Der Editor

4.2.1 Allgemeines

Mit dem Programm werden Texte im Arbeitsspeicher des Computers bear-

beitet. Eingaben erfolgen über ein Textfenster, das in allen vier Richtungen
(wie über ein Blatt Papier) mit den Funktionstasten verschoben werden
kann. Innerhalb des Pascal-Systems stehen nur 8 Kbyte Textspeicher zur
Verfügung.

154 Dokumentation Pascal-System

Durch den Einschluß von Programmtexten von der Diskette können jedoch
beliebig große Programme modular erstellt werden. Einzelheiten werden in

Abschnitt 4.4.6.2 (Include-Files) erklärt.

Die erstellten Texte werden auf Diskette gespeichert, wobei neben dem
Text selbst auch Informationen über Tabulatoren etc. gespeichert werden,
so daß Sie sich Textbausteine erstellen können.

4.2.2 Gliederung des Bildschirms

Scroll-Betrag

Kopf-Zeile--> 1.COL:0001 SCROLL : HALF
MSK=

Status--> BND=<

TAB=

COL=O--- -+--- -1----+----2----+----3----+
TOP-Zeile--> RRKKRKKKKRKKKH TOP KERKKKKKKHKT KH I N

0000

0001

0002 |
0003 Text-Bereich

0004

0005

0006
BOTTOM-Zeile--> REKKEKKKKEEKE BOTTOM REKKEEKEREEKKEKKE

Das Bild gliedert sich in verschiedene Bereiche, die jeweils spezielle Auf-

gaben besitzen:

a) Die Kopfzeile (weiß)

In der Kopfzeile werden (Fehler-)Meldungen des Editors angezeigt. Liegen

keine Meldungen vor, so wird die Nummer der ersten Textspalte im

Textfenster angezeigt.

Andererseits werden in dieser Zeile auch Befehle, die sogenannten Pri-
mary-Commands, eingegeben. Bei der Eingabe in diese Zeile wird die
zuvor angezeigte Meldung ausgeblendet.

Dokumentation Pascal-System 155

b) Der Scroll-Betrag (weiß)

Beim Blättern mit den Funktionstasten verschiebt sich der Bildschirm um

eine Anzahl von Zeilen oder Spalten, die hier angezeigt wird. Sie können

diesen Wert jederzeit durch Überschreiben ändern. Folgende Spezifikatio-
nen sind erlaubt:

HALF halbe Bildlänge und -breite

PAGE ganze Bildlänge und -breite
nnnn vierstellige Zahl (kleiner als 128)

Anfangswert = HALF

c) Die Statuszeilen

Diese Zeilen werden nur bei Bedarf (mit dem Primary-Command PROF)
eingeblendet.

- Der Eintrag nach ’MSK=’ bildet eine Maske, die beim Einfügen neuer
Zeilen vorgegeben wird. Alle Zeichen sind erlaubt. Anfangswert =

Leerzeile.

- Der Eintrag nach ’BND-=’ begrenzt den Spaltenbereich bei der Text-

eingabe. Auch die Befehle FIND und CHANGE werden auf diesen

Spaltenbereich begrenzt. Gültige Zeichen, die jeweils genau einmal
auftreten dürfen, sind:

’<’ markiert den linken Rand

’>’ markiert den rechten Rand |

Anfangswert = ganze Zeile.

- Der Eintrag nach ’TAB=’ setzt Tabulatoren, die im Textmodus (siehe
Abschnitt 4.2.6) mit der Taste SHIFT-RETURN angesprungen werden.
Jedes Zeichen entspricht einem gesetzten Tabulator. Anfangswert =
keine Tabulatoren.

Die obigen drei Statuszeilen lassen sich durch Überschreiben auf neue

Werte setzen, die auf ihre Gültigkeit geprüft werden.

- Schließlich wird nach ’COL=’ eine Spaltenmarkierung ausgegeben, die
zur Orientierung im Text dient. | |

156 Dokumentation Pascal-System

d) Die Zeilen TOP und BOTTOM

Diese beiden Zeilen kennzeichnen am Bildschirm den Anfang und das Ende
des Textes. Besonders zu beachten ist, daß am linken Rand der TOP-Zeile

das Line-Command I(nsert) möglich ist.

e) Die Zeilennummern (weiß)

Alle Textzeilen sind von 0000 bis 9999 durchnumeriert. In diesem Bereich
werden die Line-Commands eingegeben. Die Zeilennummern dienen nur
zur Orientierung und werden nicht mit dem Text gespeichert.

f) Das Textfenster

Rechts von den Zeilennummern beginnt das Textfenster, das nach oben

durch die Kopfzeile oder die Zeile TOP begrenzt wird. Den unteren Rand

bildet die letzte Bildschirmzeile oder die Zeile BOTTOM. Außerdem sind

alle Spalten nach der letzten Textspalte für Eingaben von der Tastatur ge-

sperrt.

4.2.3 Cursorsteuerung

Die Steuerung des Cursors erfolgt mit den folgenden Tasten, die - soweit

möglich - die gleiche Funktion wie bei dem BASIC-Editor besitzen:

CRSR UP Cursor eine Zeile höher. Am oberen Bildrand Sprung in die

letzte Bildschirmzeile.

CRSR DWN Cursor eine Zeile tiefer. Am unteren Bildrand Sprung in die
erste Bildschirmzeile.

CRSR -> Cursor eine Spalte nach rechts. Am rechten Bildrand Sprung
in die erste Spalte der gleichen Zeile.

CRSR <- Cursor eine Spalte nach links. Am linken Bildrand Sprung in
die letzte Spalte der gleichen Zeile.

HOME Sprung an die erste Position der Kopfzeile. Nochmalige

Betätigung bewirkt einen Sprung zum Scroll-Betrag.

CLR Löschen der Kopfzeile und Sprung an die 1. Position der
Kopfzeile.

Dokumentation Pascal-System 157

INSERT

DELETE

RETURN

fl

f3

f5

f7

f2

f4

Einschub eines Zeichens an der laufenden Cursorposition.

Arbeitet nur im Textfenster. Der Text bis zur letzten

Textspalte (’>’ in Zeile ’BND=’) wird verschoben. Ist am

Zeilenende kein Platz mehr, so ist die INSERT-Taste

gesperrt.

Löschen des Zeichens links neben dem Cursor. Arbeitet nur
im Textfenster. Der Text bis zur letzten Textspalte (’>’ in
Zeile "BND=’) wird verschoben.

Wirkung abhängig vom Eingabemodus:
Im Textmodus Sprung zur 1.Textspalte (<’ in Zeile ’BND=’)
der folgenden Textzeile.
Sonst Sprung zur ersten Spalte in der nächsten
Bildschirmzeile.

Scroll up => Textfenster nach oben.

Scroll down => Textfenster nach unten.

Scroll right => Textfenster nach rechts.

Scroll left. => Textfenster nach links.

Wiederhole den letzten FIND-Befehl (siehe Abschnitt 4.2.9).
Setze den Cursor auf die entsprechende Textposition.

Wiederhole den letzten CHANGE-Befehl (siehe Abschnitt
4.2.9). Setze den Cursor auf die entsprechende Textposition.

Zusätzlich gibt es noch die Taste SHIFT-RETURN. Mit ihr werden alle
Befehle auf dem Bildschirm (Primary- und Line-Commands) gelesen und
ausgeführt. Dies geschieht auch automatisch bei jedem Blättern. Der Cursor
bleibt beim Blättern an seiner letzten Textposition, solange diese noch auf

dem neuen Bild vorhanden ist. Ansonsten springt er in die linke obere

Ecke des Bildschirmes.

Alle anderen Sondertasten (RVS ON, CTRL-BLK etc.) werden als in-

vertierte Zeichen am Bildschirm dargestellt und auch in den Text
eingefügt.

158 Dokumentation Pascal-System

4.2.4 Primary-Commands

Die Eingabe erfolgt in der Kopfzeile. Schlüsselworte sind von eventuell
folgenden Parametern durch mindestens ein Leerzeichen zu trennen. Die

Befehle werden beim Blättern oder nach der Eingabe von SHIFT-RETURN

ausgeführt.

Wird ein unbekannter Befehl eingegeben, so wird die gesamte Kopfzeile als

Befehl an die Floppy geschickt. So löscht man z.B. mit SO:TEXT1 den

Datenbestand TEXTI1 im Laufwerk 0. Nach Ausführung des Befehls wird
der Diskettenstatus im folgenden Format angezeigt:

Fehlernummer, Fehlertext, Spur, Sektor

Nähere Details entnehmen Sie bitte dem Handbuch der Floppy.

Tabelle Primary-Commands

Befehl Kurzform Wirkung

RESET RES Alle Statuszeilen ausblenden. Alle

unvollständigen Line-Commands löschen.
Textmodus verlassen. FIND- und CHANGE-

Funktionstasten ausschalten. Repeat-Funktion

aller Tasten ausschalten.

PROFILE PROF Alle Statuszeilen anzeigen.

MSKS MSK Zeile mit Einfügemaske anzeigen.

BNDS BND Zeile mit Textgrenzen anzeigen.

TABULATOR TAB Tabulatorzeile anzeigen.

COLUMNS COL Spaltenkennzeichnung anzeigen.

END END SAVE ausführen und Rückkehr zum Pascal-
Menü.

CANCEL CAN Rückkehr zum Pascal-Menü. Achtung! Der

Text wird nicht auf Diskette gesichert!

Dokumentation Pascal-System 159

SAVE SAVE Alten Text unter diesem Namen auf der

Diskette löschen. Neuen Text speichern.

Wiederholung dieser Schritte, bis kein
Verify-Error mit dem Original im Speicher
auftritt.

TEXT TE Textmodus einschalten (siehe Abschnitt 4.2.6).

REPEAT REP Alle Tasten erhalten Repeat-Funktion.

LOCATE n Ln Zeile n im Text aufsuchen (n = 0000 ..9999).
Fehlt n, erfolgt ein Sprung zum Textanfang.

FIND F Suche nach Zeichenfolge (siehe Abschnitt

4.2.7). |

CHANGE C Ersetzen von Zeichenfolgen (siehe Abschnitt

4.2.8).

INPUT IN Einlesen einer sequentiellen Datei von einem

Peripheriegerät (siehe Abschnitt 4.2.10).

OUTPUT OUT Ausgabe des Textes im Speicher als

sequentielle Datei (siehe Abschnitt 4.2.11).

COPY COPY Kopieren von Teilen aus Texten auf der

Diskette (siehe Abschnitt 4.2.12).

4.2.5 Line-Commands

Zur Texteditierung stehen die folgenden wirkungsvollen Zeilen- und
Blockbefehle zur Verfügung. Sie werden im Zeilennummernbereich oder
links in der Zeile TOP eingegeben und beim Blättern oder der Eingabe von
SHIFT-RETURN ausgeführt.

Falls eine Zahl (n) angegeben werden kann, so wird eine fehlende Zahl
durch | ersetzt (I entspricht also Il). Gültige Werte für n liegen zwischen |
und 128.

Blockkommandos müssen in zwei Zeilen eingegeben werden. Sie

kennzeichnen den Anfang und das Ende des zu bearbeitenden Blockes. Ein
Block darf nicht mehr als 256 Zeilen umfassen.

160 Dokumentation Pascal-System

Beispiele

18 in Zeile TOP fügt am Textanfang acht Leerzeilen ein.

RR in Zeile 1 und in Zeile 4 wiederholt alle Zeilen zwischen 1 und 4
einmal.

I(nsert) n Nach dieser Zeile werden n Zeilen eingefügt.

D(elete) | Diese Zeile wird gelöscht.

DD Ein Block beginnend ab der ersten DD-Zeile
bis zur zweiten DD-Zeile (einschließlich)
wird gelöscht.

R(epeat) n Diese Zeile wird n-mal wiederholt.

RR n Ein Block wird n-mal wiederholt.

> n Diese Zeile wird um n Spalten nach rechts

geschoben, falls dadurch keine Zeichen außer
dem Leerzeichen am rechten Rand verloren-
gehen. Der Spaltenbereich wird durch die
Einträge ’<’ und ’>’ in der BND-Zeile

festgelegt.

>> n Desgleichen mit einem Block von Zeilen.

< n Diese Zeile wird um n Spalten nach links
geschoben, falls dadurch keine Zeichen außer
dem Leerzeichen verlorengehen.

<< | n Desgleichen mit einem Block von Zeilen.

) n Diese Zeile wird um n Spalten nach rechts

geschoben. Dabei können eventuell am
rechten Rand Zeichen herausgeschoben
werden.

)) n> Desgleichen mit einem Block von Zeilen.

(n Analog zu ’)’ nach links verschieben.

Dokumentation Pascal-System 161

((n Desgleichen mit einem Block von Zeilen.

M(ove) Kennzeichnet eine Zeile, die an eine neue

Position gestellt werden soll.

MM Markiert den Anfang und das Ende eines
Blockes, der verschoben werden soll.

C(opy) Diese Zeile soll kopiert werden.

CC Ein Block von Zeilen wird zum Kopieren

markiert.

Bei M und C muß noch eine Zielposition angegeben werden:

A(fter) Der Block wird hinter diese Zeile gestellt.

B(efore) Der Block wird vor diese Zeile gestellt.

O(verlay) Die Zeile wird über diese Zeile kopiert, so
daß Leerstellen in der O-Zeile durch Zeichen

der M- oder C-Zeile ersetzt werden. Der

Kopiervorgang ist dabei auf den
Spaltenbereich zwischen ’<’ und ’>’ in der

BND-Zeile begrenzt.

OO Der Block wird tiber den Block zwischen den

beiden OO-Zeilen kopiert. Ist die Anzahl der

zu kopierenden Zeilen kleiner als der Ziel-

block, werden die Zeilen zyklisch wiederholt.

4.2.6 Textmodus

Der Textmodus ist beim Aufruf des Editors eingeschaltet. Nachdem er mit
RESET ausgeschaltet wurde, wird er mit TEXT wieder aktiviert. Dieser
spezielle Eingabemodus dient zur Eingabe langer, zusammenhängender
Texte. Erreicht nämlich der Cursor bei der Eingabe von Zeichen den
rechten Bildrand, so folgt das Textfenster automatisch (um den gewählten

Scroll-Betrag) dem Cursor. Beim Erreichen des rechten Textrandes springt
der Cursor an den linken Textrand der nächsten Zeile. Durch die Eingabe
von SHIFT-RETURN springt der Cursor an die nächste vortabulierte Posi-
tion (’-’ in der Zeile "TAB=’).

162 Dokumentation Pascal-System

4.2.7 FIND

Mit dem FIND-Befehl können Sie nach Zeichenfolgen (Strings) mit bis zu
32 Zeichen Länge im Text suchen. Der Befehl kann um Parameter erwei-
tert werden, die in der folgenden Reihenfolge auftreten. Dabei stellen
übereinanderstehende Parameter eine Auswahl dar, von der nur eine
Variante pro Befehl angegeben werden kann.

String

FIND ıString!

#kkk
*

String

’String’

#kkk

NEXT

FIRST

ALL

CHARS

PREFIX

SUFFIX

WORD

ALL CHARS

FIRST WORD nnn

NEXT PREFIX nnn-mmn

SUFFIX

Zeichenfolge von maximal 32 Zeichen ohne Leerzeichen.
Die Zeichenfolge darf nicht mit *, # oder ’ beginnen.

Die Zeichenfolge darf aus 32 beliebigen Zeichen außer ’
bestehen.

Es wird der Suchstring des letzten FIND- oder CHANGE-
Befehls benutzt.

Es wird nach dem ASCII-Zeichen mit dem dezimalen Code

nnn gesucht (z.B. #13 ist CR).

Die Suche beginnt ab der augenblicklichen Cursorposition
im Textfenster. Steht der Cursor nicht im Textfenster, so

wird ab dem linken Textrand der 1. Bildschirmzeile gesucht.

Die Suche beginnt bei der Textzeile 0000.

Es werden alle Strings im gesamten Text gezählt.

Der String wird auch als Teil eines anderen Wortes gefunden
(z.B FIND der CHARS findet auch das Wort jeder).

Der String muß einem Trennzeichen folgen.

Dem String muß ein Trennzeichen folgen.

Der String muß mit einem Trennzeichen beginnen und
enden.

Dokumentation Pascal-System 163

nnn Der String muß in Spalte nnn beginnen.

nnn-mmm Der String muß zwischen Spalte nnn und mmm beginnen.

Nicht angegebene Parameter werden durch die Werte NEXT, CHARS und
die momentan gültigen Textgrenzen aus der Statuszeile nach ’BND=’ ersetzt.
Außerdem sind die Abkürzungen FIR, NEX, WOR, PRE und SUF erlaubt.

Nach Ausführung des Befehls steht der Cursor auf der gefundenen
Textposition.

Beispiele

FIND I WORD findet I, Il, I-22, 3-I, aber nicht SIN, IN, OMI.
Angezeigt wird das erste Auftreten.

FIND * ALL zählt, wie oft der letzte String (I) im Text auftritt.

F X FIR findet das erste X im Text.

4.2.8 CHANGE

Mit dem CHANGE-Befehl können Sie Zeichenfolgen (Strings) mit bis zu
32 Zeichen Lange im Text durch andere Zeichenfolgen mit ebenfalls

maximal 32 Zeichen Länge ersetzen.

Stringi String? ALL CHARS

CHANGE 'String1' 'String2! FIRST WORD nnn

#kkk #kkk NEXT PREFIX nnn - mmm
* * SUFFIX

Die Suche nach String 1 wird wie beim FIND-Befehl durchgeführt und
durch die Parameter gesteuert. Ist String 2 länger als String 1, so wird vor
der Umwandlung geprüft, ob am Zeilenende (’>’ in der Statuszeile "BND=’)
genug Platz ist. Ist dies nicht der Fall, so wird eine Fehlermeldung aus-
gegeben. Der zweite String kann auch leer (”) sein, so daß String |
vollständig gelöscht wird. Der Parameter ALL bewirkt die Umwandlung

aller Strings im Text. Oft ist es jedoch sicherer, wie in Abschnitt 4.2.9

beschrieben mit den Funktionstasten f2 und f4 den Text durchzugehen.

164 Dokumentation Pascal-System

Beispiel

CHANGE XXX ” ALL WORD löscht alle Worte XXX im

Text.

CHANGE INTEGER REAL WOR wandelt alle Zeichenfolgen

INTEGER in REAL um.

4.2.9 Die Tasten f2 und f4

Um die ständige Wiederholung von FIND- und CHANGE-Befehlen zu
vermeiden, kann der letzte FIND-Befehl mit f2 und der letzte CHANGE-
Befehl mit f4 wiederholt werden. Genauer gelten folgende Regeln:

f2 entspricht FIND ’Stringl’ NEXT. String 1 ist der letzte benutzte FIND-

oder CHANGE-String. Die übrigen Parameter (z.B. WORD) entsprechen
ebenfalls denen des letzten Befehls. Wird das Textende erreicht, so er-

scheint die Meldung **BOTTOM READCHED**. Die nächste Betätigung
von f2 entspricht dann FIND ’Stringl’ FIRST. Sollte der String nicht ge-

funden werden, wird STRING NOT FOUND angezeigt.

f4 entspricht CHANGE ’Stringl’ ’String2’ mit den letzten Strings und den
zuletzt gültigen Parametern (wie WORD und nnn) bei CHANGE.

Beispiel

CHANGE Otto Karl FIRST. Der Cursor springt auf das erste Wort
Otto im Text und wandelt es in Karl um.

f2-Taste drücken Der Cursor springt auf das nächste Wort

Otto.

f4-Taste drücken Der Cursor bleibt an der alten Position.
Otto wird durch Karl ersetzt.

f2-Taste drücken Der Cursor springt auf das nächste Wort

Otto.

f2-Taste drücken Es wird keine Änderung durchgeführt.

Suche nach Otto.

etc.

Dokumentation Pascal-System 165

4.2.10 INPUT

Mit diesem Befehl wird ein Menü aufgerufen, in dem nacheinander die
folgenden Parameter festgelegt werden:

DEVICE NUMBER:

['*' OR '?* FOR END]
==>

SEK. ADDRESS:

['*ı OR '?' FOR NONE]
==>

FILE NAME:

C'*' OR '?' FOR NONE]
==>

CODE OF DELIMITER:

['*' OR '?" FOR NONE]
==>13

Die Parameter Geräteadresse, Sekundäradresse und Filenamen müssen, wie

im Handbuch des Rechners beschrieben, angegeben werden. Mit diesen

Parametern wird dann ein OPEN-Befehl (wie in BASIC und Pascal) aus-
geführt.

Anschließend wird bis zum Dateiende von der Datei gelesen. Die eingelese-
nen Daten werden im Text eingefügt. Die Einfügeposition kann vor dem
Aufruf von INPUT mit den Line-Commands After) oder Before)
festgelegt werden. Fehlt diese Angabe, so werden die Daten am Textanfang
eingefügt.

Die Formatierung der eingelesenen Daten in Zeilen erfolgt durch die
Angabe des Begrenzungszeichens (Delimiter).

a) Kein Begrenzungszeichen

Beträgt die Satzlänge n Zeichen (z.B. n=50), so werden jeweils n Zeichen in
jede Zeile gestellt, bevor eine neue Zeile eingefügt wird. Alle ASCII-
Zeichen werden unverändert übernommen.

b) Mit Begrenzungszeichen

Normalerweise sind Textfiles (für BASIC und Pascal) durch das Zeichen
Carriage Return (CR) mit dem ASCIH-Code 13 in einzelne Zeilen
gegliedert. Durch die Eingabe von 13 als Delimiter werden so lange

Zeichen in eine Zeile geschrieben, bis das Begrenzungszeichen CR gelesen
wird. Dieses Zeichen wird nicht in den Text eingefügt. Alle folgenden
Zeichen werden in die nächste Zeile geschrieben. Somit bleibt beim Einle-

166 Dokumentation Pascal-System

sen die Zeilenstruktur erhalten. Natürlich sind beliebige Begrenzungs-
zeichen erlaubt.

Tritt ein Systemfehler auf, so wird das Einlesen beendet und ein Fehler-

code ın der Kopfzeile angezeigt.

Beispiel

INPUT mit folgenden Parametern:

DEVICE NUMBER: 8
SEK. ADDRESS: 0
FILE NAME: $
CODE OF DELIMITER: 0

Hierdurch wird ab der markierten Zeile das Inhaltsverzeichnis der Diskette
in der Codierung als BASIC-Programm eingelesen (entspricht also
LOAD"$",8 in BASIC).

Beispiel

INPUT mit folgenden Parametern:

DEVICE NUMBER: 8
SEK. ADDRESS: 3
FILE NAME: TEST,S,R
CODE OF DELIMITER: 13

Eine sequentielle Datei "TEST,SEQ’ auf der Diskette wird gelesen. Eine

Anwendung des Befehls INPUT ist das Einlesen von Dateien, die mit an-
deren Programmen (z.B. Editoren) erstellt wurden. Speziell können so

Textfiles gelesen werden, die in Pascal-Programmen mit WRITE erzeugt

wurden.

4.2.11 OUTPUT

Mit diesem Befehl wird ein Menü aufgerufen, in dem nacheinander die
folgenden Parameter festgelegt werden:

Dokumentation Pascal-System 167

DEVICE NUMBER:

['*' OR '?' FOR END]
==>

SEK. ADDRESS:

['** OR '?' FOR NONE]
==>

FILE NAME:

['*' OR '?" FOR NONE]
==>

CODE OF DELIMITER:

['** OR '?' FOR NONE] -
==>13

TRUNCATE TRAILING

SPACES? [YES OR NO]
==>Y

Die Wahl der Parameter Geräteadresse, Sekundäradresse und Filenamen

erfolgt wie 1m Handbuch des Rechners beschrieben.

Mit diesen Parametern wird ein OPEN-Befehl (wie in BASIC) ausgeführt.
Anschließend wird der gesamte Text im Arbeitsspeicher auf die Datei aus-
gegeben.

Die Formatierung kann durch die Angabe eines Begrenzungszeichens
gesteuert werden:

a) Kein Begrenzungszeichen

Alle Zeichen einer Zeile werden ausgegeben. Ohne jegliches Trennzeichen

folgen die Zeichen der nächsten Zeile.

b) Mit Begrenzungszeichen

Jede ausgegebene Zeile wird mit dem ASCII-Zeichen beendet, dessen Code

als Delimiter angegeben wurde. BASIC- und Pascal-Programme erwarten

das ASCII-Zeichen CR mit dem Code 13 am Ende jeder Zeile. Natürlich
sind auch andere Trennzeichen möglich.

Oft ist es wünschenswert, daß Leerzeichen am Zeilenende abgeschnitten

werden. Dies wird durch die Eingabe von ’Y’ beim letzten Menüpunkt er-
reicht. Die Druckerausgabe kann z.B. durch dieses Abschneiden von nach-
laufenden Leerzeichen in jeder Zeile erheblich beschleunigt werden.

Die Wahl eines Begrenzungszeichens und das Abschneiden sind beliebig
kombinierbar.

168 Dokumentation Pascal-System

Tritt bei der Ausgabe ein Systemfehler auf, so wird die Ausgabe beendet

und ein Fehlercode in der Kopfzeile angezeigt.

Beispiel

OUTPUT mit folgenden Parametern:

DEVICE NUMBER: 4

SEK. ADDRESS: 0

FILE NAME: *

CODE OF DELIMITER: 1

TRUNCATE SPACES: Y

3

Hierdurch wird der gesamte Text auf den Drucker mit der Geräteadresse 4

und der Sekundäradresse 0 ausgegeben, wobei jede Zeile mit CR beendet

wird.

Beispiel

OUTPUT mit folgenden Parametern:

DEVICE NUMBER: 8
SEK. ADDRESS: 3
FILE NAME: TEST,S,W
CODE OF DELIMITER: 13
TRUNCATE SPACES: Y

Der gesamte Text wird als Datei "TEST,SEQ’ auf Diskette gespeichert.

Viele Programme (Assembler, Mailboxprogramme) können solche Dateien
als Eingabe verwenden. Besonders niitzlich ist diese Option auch zur
Erzeugung von Testfiles fiir Pascal-Programme, die Textfiles mit READ
und READLN lesen.

4.2.12 COPY

Mit diesem Befehl können Sie aus einem Editortext auf der Diskette Zeilen

in den Arbeitsspeicher kopieren. Für diese Operation ist der Befehl INPUT

nicht geeignet, da Editortexte in einem speziellen Format gespeichert

werden.

Den Namen des Textes auf Diskette geben Sie in einem gesonderten Menü
ein:

Dokumentation Pascal-System 169

COPY DATASET

ENTER DATASET -NAME:

C'*' OR '?' FOR END]

==>

Wird der Text nicht gefunden, so erfolgt ein Riicksprung in den Editor.

Dies geschieht ebenfalls bei der Eingabe von ’*’ oder ’”.

Problematisch ist das Kopieren aus einem Datenbestand, der eine andere

Satzlänge besitzt. Hierbei können Zeilen zerstückelt oder zusätzliche
Leerzeichen angefügt werden. Sie müssen deshalb das Kopieren durch die
Eingabe von ’C’ bestätigen:

THIS DATASET HAS A

DIFFERENT RECORD -SIZE!

CONFIRM COPY WITH 'C'!

==>

Jede andere Eingabe führt zum Editor zurück. Anschließend können Sie
noch den Zeilenbereich festlegen, der kopiert werden soll.

FIRST LINE COPIED:

C'*' OR '?' TO COPY ALL]
==>

LAST LINE COPIED:
==>

Ein ’? oder ’* bei der Eingabe der letzten Zeilennummer erlaubt Ihnen,
die Anfangszeilennummer zu korrigieren. Um bis zum Textende zu
Kopieren, müssen Sie nur eine genügend große Zeilennummer eingeben

(z.B. 9999).

Die eingelesenen Zeilen werden in den Text eingefügt. Die Einfügeposition

kann vor dem Aufruf von COPY mit den Line-Commands Alfter) oder
B(efore) festgelegt werden. Fehlt diese Angabe, so werden die Zeilen am
Textanfang eingefügt.

170 Dokumentation Pascal-System

4.2.13 Fehlermeldungen im Editor

Meldung Bedeutung und Korrekturmöglichkeit

LINE-COMM. IGNORED

COMMAND CONFLICT

OUT OF MEMORY

BLOCK TOO LONG

ILLEGAL BOUNDS

MOVE ERROR

ILLEGAL COMMAND

ENTER A STRING!

ILLEGAL COLUMN

STRING FOUND

Es wurden zu viele Line-Commands von
einem Typ angegeben. Die erkannten Line-

Commands werden angezeigt (eventuell mit
RESET die Line-Commands löschen).

Bei MOVE oder COPY liegt die A- oder B-
Eintragung in dem zu kopierenden Block.

Der Arbeitsspeicher ist zu klein, um den Text

zu erweitern (in Pascal Include-Files be-
nutzen).

Ein Block darf nicht mehr als 256 Zeilen

umfassen (Block in einzelnen Teilen bear-

beiten).

Ungültige Einträge in ’BND=’ (siehe
Abschnitt 4.2.2).

Bei den Line-Commands ’>’ oder ’<’ würden

Zeichen über den Textrand verschoben. Der

Fehler tritt auch bei CHANGE auf, falls in
der Einfügezeile nicht genügend Platz ist.

Ungültige Parameter bei FIND und
CHANGE.

Ein String bei FIND oder CHANGE hat nicht
die korrekte Form.

Eine Spaltenangabe bei FIND und CHANGE
verläßt den Textbereich.

Meldung bei FIND. Cursor steht auf dem

Suchstring.

Dokumentation Pascal-System 171

BOTTOM REACHED

STRING NOT FOUND

KEY NOT ACTIVE

nnnn TIMES FOUND

nnnn CHANGED

nnnn/mmmm ERRORS

SYSTEM ERROR NR. n

Bei FIND oder CHANGE wurde das Text-

ende erreicht.

Der Suchstring befindet sich nicht im
Bereich, der durch die Textgrenzen bei
’BND=’ festgelegt wird.

Die f2- und f4-Funktionstasten sind nur

aktiv, falls zuvor ein FIND- oder CHANGE-

Befehl eingegeben wurde.

Kein Fehler: Meldung nach FIND ALL.

Anzahl der geänderten Strings bei CHANGE
(ALL)

Bei CHANGE ALL wurden nnnn Strings
gefunden, von denen mmmm nicht geändert
werden konnten.

Bei einem Betriebssystemaufruf trat ein
Fehler auf:

n=1 TOO MANY FILES OPEN
n=2 FILE OPEN
n=3 FILE NOT OPEN
n=4 FILE NOT FOUND
n=5 DEVICE NOT PRESENT
n=6 NOT INPUT FILE
n=7 NOT OUTPUT FILE
n=8 MISSING FILE-NAME
n=9 ILLEGAL DEVICE-NUMBER

172 Dokumentation Pascal-System

4.3 Bedienung des Compilers

4.3.1 Wahl der Optionen

Grundsätzlich übersetzt der Compiler das Pascal-Programm, das sich

augenblicklich im Speicher befindet. Eine Ausnahme hiervon bilden die

Include-Files (siehe Abschnitt 4.4.6.2). Mit ihnen ist es möglich, beliebig
große Teile des Programmes von der Diskette zu lesen und gemeinsam mit

dem Programm im Speicher zu übersetzen.

Der Compiler meldet sich beim Aufruf mit der folgenden Meldung:

PASCAL 1.4

SELECT OPTION:

0 CHECK SYNTAX
1 GENERATE CODE
ELSE LOCATE ADDRESS

==>]

An dieser Stelle wählen Sie den Übersetzungsmodus:

Eingabe 0 (Syntax-Prifung):

Bei dieser Wahl prüft der Compiler den Quelltext auf syntaktische Kor-
rektheit. Fehler werden im Programmlisting markiert. Es wird jedoch kein
Code erzeugt. |

Eingabe 1 (Code-Erzeugung):

Dieser voreingestellte Modus liest den Programmtext, prüft ihn auf Kor-
rektheit und erstellt im Speicher ein ablauffähiges Programm.

Überschreitet die Länge des erzeugten Objektprogrammes etwa 11 Kbyte,
so erstellt der Compiler zwei temporäre Dateien (C$ und F$). Am Ende der
Übersetzung werden diese Dateien gelesen und im Speicher abgelegt, so

daß dann ebenfalls der Code komplett im Speicher steht.

Dokumentation Pascal-System 173

Eingabe einer anderen Zahl (Finde Adresse):

Mit dieser Option können Sie zu einer Adresse im Code (Objektprogramm)
die zugehörige Position im Pascal-Programm (Quelltext) lokalisieren. Treten
z.B. bei der Ausführung des Objektprogrammes Fehler auf (Division durch
0 etc.), so wird eine Fehlermeldung mit der Adresse des fehlerhaften Be-
fehls ausgegeben. Geben Sie nun diese Fehleradresse an dieser Stelle an, so
wird die Quelltextposition des Divisionsbefehls im Listing mit der Fehler-
nummer 0 markiert.

Anschließend werden Sie nach der Startadresse des Objektprogrammes

gefragt:

P-CODE START:
==>

In 99,9 Prozent aller Fälle werden Sie hier nur RETURN eingeben, da eine

Änderung der vorgegebenen Anfangsadresse ohne weitere Maßnahmen kein
lauffähiges Programm erzeugt. Diese Maßnahmen werden in Abschnitt 4.3.3

beschrieben.

Schließlich können Sie bei Bedarf das Programmlisting mit den Fehlermel-
dungen auf den Drucker umleiten, indem Sie bei der folgenden Abfrage
ein anderes Zeichen als ’N’ (für NO) eingeben.

LISTING TO PRINTER?
==>N

4.3.2 Meldungen im Compiler

Bei der Übersetzung eines jeden Programmblockes wird einmal geprüft, ob
die STOP-Taste betätigt wurde. Ist dies der Fall, so wird folgende Bestäti-
gungsmeldung ausgegeben:

ı*ı STOP 1?! SYNTAX

ELSE CONTINUE
==>

’#’ bricht die Übersetzung ab. Natürlich steht dann kein vollständiges Ob-
jektprogramm im Speicher.

’?° schaltet auf den Modus Syntax-Test um. Der Programmtext wird nur
noch auf syntaktische Korrektheit geprüft, ohne daß dabei Code
erzeugt wird. Ist im Augenblick eine temporäre Datei eröffnet, so wird
diese Datei geschlossen.

174 Dokumentation Pascal-System

Jede andere Eingabe setzt die Übersetzung im bisherigen Modus fort.

Wird ein Fehler im Quellprogramm gefunden, so markiert ein Pfeil das

erste Zeichen nach dem Symbol, bei dessen Verarbeitung der Fehler ent-
deckt wurde.

Beispiel (Semikolon fehlt):

BEGIN X:=Y;Y:=Z Z:=X END
t

wee ERROR 14 IN XXXX

Xxxx ist dabei die Zeilennummer im Quelltext. Wird Text von einem
Include-File gelesen, so bezieht sich die Zeilennummer auf die Zeilen ın

diesem File.

Die Fehlernummer (hier also 14) wird im Anhang B erklärt.

Anschließend wird die obige Bestätigungsmeldung angezeigt. Wurde eine

Fehleradresse gesucht (Fehler 0), so beendet der Compiler die Arbeit und

kehrt zum Pascal-Menü zurück.

4.3.3 Spezielles

Wenn Sie bereits längere Zeit mit dem Compiler gearbeitet haben und die
Möglichkeiten des Pascal-Systems voll ausnutzen wollen, dann sind

eventuell die folgenden Informationen relevant:

Prinzipiell können Programme den gesamten BASIC-Arbeitsspeicher bele-
gen. Da der Compiler verdeckten Speicher des C 64 benutzt, gibt es von

dieser Seite auch keine Probleme. Jedoch steht der Quelltext im Bereich
von $6000 bis $8000. Außerdem belegt der Editor den Speicherbereich von

$8000 bis $A000. Deshalb prüft der Compiler bei der Rückkehr, ob diese
Speicherbereiche durch das Objektprogramm überschrieben wurden. Ist der
Quelltext überschrieben worden, was durch die Benutzung von Include-
Files unproblematisch ist, wird die Option RESUME im Pascal-Menü ge-

sperrt. Ist außerdem der Editor vom Code überschrieben worden, kehrt der

Compiler nicht zum Pascal-Menü zurück, sondern verläßt das Pascal-

System nach BASIC. Dort sollten Sie dann natürlich nicht versuchen, mit ’*’

das System neu zu starten.

Um nun dem übersetzten Programm den Speicher ab $6000 zur Verfügung

zu stellen, geben Sie folgende BASIC-Befehle ein:

Dokumentation Pascal-System 175

POKE 55,0: POKE 56,160: CLR

Es ist jedoch sehr unwahrscheinlich, daß Sie jemals soviel Speicherplatz

benötigen werden, da zum Beispiel der komplette Compiler Pascal 1.4, der

selbst in Pascal geschrieben ist, nur etwa 20 Kbyte belegt.

Außerdem besitzt das Pascal-System eine gewisse Flexibilität, die eine ein-

fache Zusammenarbeit z.B. mit Maschinenprogrammen erlaubt. Ein über-

setztes Programm besteht aus zwei Teilen:

1. Das Laufzeitsystem mit Hilfsprogrammen von 2049 bis 5611.
2. Der eigentliche Objektcode ab 5611.

Das Laufzeitsystem erwartet nun den Objektcode ab der Adresse 5611. Je-

doch 1äßt sich der Code auch ab einer anderen Adresse ablegen (siehe
Compiler-Menü). Überdies kann noch der Stapelspeicher des übersetzten

Programmes beliebig verschoben werden. Um dem Laufzeitsystem die
neuen Adressen mitzuteilen, müssen folgende Bytes gesetzt werden:

Adresse 5611

Adresse 5612

Adresse 5613

Adresse 5614

Adresse 5615

Stackanfang L-Byte

Stackanfang H-Byte
18 (dezimal)
(P-CODE Anfang+2) L-Byte
(P-CODE Anfang+2) H-Byte

A
A
A
A

A

Normalerweise beginnt der Stapelspeicher (Stack) direkt hinter dem Ob-

jektprogramm. Er wächst nach oben, d.h zu steigenden RAM-Adressen.
Außerdem existiert noch ein Bereich für dynamische Variablen (HEAP).
Dieser Speicherbereich wächst ab dem Speicherende für BASIC nach unten.

Beim Zusammenstoß zwischen HEAP und STACK wird eine Fehlermel-
dung vom Laufzeitsystem erzeugt.

Beispiel

Bei Übersetzung: P-CODE-START = 9000

In BASIC: POKE 5611, PEEK(9000)
POKE 5612, PEEK(9001)
POKE 5613, 18
POKE 5614, 9002 AND 255 |
POKE 5615, 9002 / 256

Durch diese Eingaben bleibt ein freier Speicherbereich zwischen 5616 und

9001, der z.B. durch Maschinenprogramme, Bildschirmspeicher etc. belegt

werden kann. Der Code beginnt bei Adresse 9000 und endet an der vom
Compiler am Schluß angezeigten Speicherstelle. Durch die ersten beiden

176 Dokumentation Pascal-System

POKE-Befehle wächst der Stack (Zeiger 47/48) vom Code-Ende (Zeiger
5611/5612) aufwärts. Jeder Prozeduraufruf von NEW im Pascal-Programm

läßt dann zur Laufzeit den Heap (Zeiger 59/60) vom Speicherende (Zeiger

55/56) nach unten wachsen.

4.3.4 Rückkehr zu BASIC

Nach der Rückkehr aus dem Pascal-Menü mit ’* befindet sich im Speicher
das Laufzeitsystem für Pascal-Objektprogramme. (LIST probieren!). Dieses

Programm darf nicht gelöscht, überschrieben oder geändert werden, da

sonst das Pascal-System nicht korrekt arbeitet.

Falls Sie beim letzten Aufruf des Compilers mit ’$’ ein ausführbares Pro-

gramm erstellt hatten, können Sie dieses wie ein normales BASIC-Pro-
gramm behandeln: 7

Mit SAVE können Sie das Programm speichern und anschließend mit

VERIFY das Programm auf der Diskette prüfen. Natürlich können die so
gespeicherten Programme auf jedem C 64 geladen und ohne weitere Hilfs-
programme ausgeführt werden.

Bitte beachten Sie, daß Kassettenoperationen (im Editor oder in BASIC)

Teile des Compilers überschreiben. Sollten Sie also ein Programm auf Kas-
sette gespeichert haben, müssen Sie vor einer erneuten Übersetzung das

Pascal-System neu laden.

Mit RUN können Sie das Programm testen. Eventuell auftretende Fehler

werden im Klartext mit der Fehleradresse angezeigt. Außerdem erfolgt bei
Funktionen und Prozeduren eine Auflistung der letzten Aufrufadressen
(dynamic chain).

Ein Beispiel soll die Bedeutung dieser Verweiskette klären: Angenommen,

Sie hätten ein Programm gestartet, das im Hauptprogramm HAUPT die
Prozedur Pl aufruft. Diese Prozedur selbst benutzt die Funktion Fl, in der

eine Multiplikation 1000*1000 stattfindet. Diese Operation führt schließlich

zu einer Überschreitung des Zahlenbereichs für INTEGER-Zahlen.

Dann wird folgende Fehlermeldung erzeugt:

INTEGER OVERFLOW <- Fehlerursache

ERROR AT <- Fehleradr. in Funktion F1

CALLED AT <- Aufrufadr. in Prozedur P1

CALLED AT <- Aufrufadr. im Hauptprogr.

Dokumentation Pascal-System 177

Mit der Option LOCATE ADDRESS kann jede der angegebenen (Aufruf)-
Adressen im Quellprogramm lokalisiert werden.

Das Pascal-Menü erreichen Sie von BASIC durch die Eingabe eines Sterns

’#»_ Von dort können Sie dann den Fehler im Quelltext mit dem Editor be-
heben, den Text compilieren und dann einen neuen Probelauf starten.

4.4 Sprachbeschreibung Pascal 1.4

4.4.1 Grundsätzliches

Der Compiler wurde entworfen, um eine möglichst vollständige und getreue
Realisierung des Standard-Sprachumfangs zur Verfügung zu haben, der in

Buch 1 (siehe Anhang E) beschrieben wird. Im folgenden wird diese Quelle
als REPORT bezeichnet.

Außerdem sollte der erzeugte Code im Speicherplatzbedarf und in der

Geschwindigkeit attraktiv im Verhältnis zum BASIC-Interpreter und zu

compilierten BASIC-Programmen sein. Schließlich sollte der Aufwand für
einen Zyklus Quelltextänderung, Übersetzung und Testlauf so gering wie

möglich bleiben.

Daher wird der Compiler durch Banking verdeckt im Hintergrund gehalten
und nur zur Übersetzung in den Vordergrund kopiert. Somit ist ein Zugriff
auf die Floppy nur für Include-Files und zum Abspeichern der Programme

nötig. |

Um eine möglichst große Portabilität der Programme zu sichern, wurden
bewußt keine rechnerspezifischen Sprachelemente (Grafik, Sound etc.)

aufgenommen. |

Andererseits wurden Low-level-Sprachelemente hinzugefügt, um in Pascal

Speicheradressen zu adressieren und Bit-Operationen durchzuführen. Bei

Bedarf können also die obigen Anwendungen explizit in Pascal program-
miert werden.

178 Dokumentation Pascal-System

4.4.2 Sprachumfang

Als Referenz für den Sprachumfang dienen die Syntax-Diagramme im An-
hang A. In diesem Abschnitt werden alle semantischen Details

angesprochen, die vom REPORT abweichen oder von diesem nur ungenau

erfaßt werden.

Bezeichner

Sie dürfen beliebig lang sein (14 Zeichen signifikant), aber keine

Buchstaben enthalten, die mit SHIFT auf der Tastatur eingegeben werden.
Das sind in Abhängigkeit von der Bildschirmdarstellung Grafikzeichen oder

Großbuchstaben.

Datentypen

Alle Datenstrukturen des Standards sind vorhanden. Die Objekte der

einzelnen Typen benötigen den folgenden Speicherplatz:

BOOLEAN, INTEGER, CHAR, Aufzählungs- und Unterbereichstypen: 2

Byte; Pointer 2 Byte; REAL 5 Byte; Mengen 12 Byte.

Der dem Typ CHAR zugrunde gelegte Zeichensatz entspricht dem Com-

modore-Standard (ASCII erweitert).

Der Wertebereich des Typs INTEGER wird durch die vordefinierte
Konstante MAXINT=32767 definiert:

-MAXINT-1 <= X <= MAXINT.

Für die Elemente von Mengen muß immer gelten:

0 <= ORD(X) <= 95

Ist aber 96 <= ORD(X) <= 255, so liefert X IN [..] den Wert FALSE. Für

alle anderen Werte von ORD(X) sind Mengenoperationen undefiniert.

Wird bei der Deklaration eines Arrays oder Records das Schlüsselwort
PACKED angegeben, so werden Komponenten der folgenden skalaren

Typen so gepackt, daß sie nur 1 Byte Speicherplatz verbrauchen:

- Standardtypen CHAR, BOOLEAN

- Aufzahlungstypen (mit weniger als 257 Elementen)
- Ausschnitt-Typen der Form A..B mit ORD(A)>=0 und

ORD(B)<=255

Dokumentation Pascal-System 179

Bemerkungen zum Packen:

Gepackte Komponenten der obigen Typen können nicht als Variablenpa-
rameter an Unterprogramme übergeben werden. Der Compiler erzeugt in

diesem Fall die Fehlermeldung 504.

Da Packen zusätzlichen Code erfordert, ist es nur für große Files und

große Tabellen im Arbeitsspeicher sinnvoll. Daher sollten bei der Über-
nahme von Pascal-Programmen Strings normalerweise nicht als PACKED
ARRAY OF CHAR, sondern nur als ARRAY OF CHAR dargestellt wer-

den.

Typverträglichkeit

Zwei Variablen haben den gleichen Typ, wenn sie entweder

- in einer Variablenvereinbarung oder

- mit dem gleichen Typbezeichner deklariert wurden.

Beispiel

TYPE FELD = ARRAY [0..1] OF INTEGER;

VAR A :ARRAY [0..1] OF INTEGER;

B :ARRAY [0..1] OF INTEGER;

X,Y:ARRAY [0..1] OF INTEGER;

L :FELD;

M :FELD;

A und B besitzen nicht den gleichen Typ.

X und Y besitzen den gleichen Typ.
L und M besitzen den gleichen Typ.

Deshalb sind die folgenden Zuweisungen gültig:

X:=Y; L:=M

aber nicht:

A:=B; A:=L; M:=X; A:=X

Da in Pascal bei Prozedur- und Funktionsvereinbarungen sowieso Typ-
bezeichner erwartet werden, empfiehlt sich folgende Vorgehensweise: Man
vereinbart einmalig Typbezeichner (im Beispiel FELD), die man sowohl bei
der Deklaration von Parametern in Unterprogrammen als auch bei der

Deklaration von Variablen verwendet. |

180 Dokumentation Pascal-System

Feldbezeichner

Feldbezeichner müssen im jeweils innersten Bereich eines Records ein-

deutig identifizierbar sein. Es dürfen natürlich auch gleichnamige Varia-
blen im Programm existieren.

Records mit Varianten

Die Varianten erhalten denselben Speicherplatz. Der benötigte Speicherplatz

richtet sich nach der Größe der längsten Variante. Die Werte der Vari-

antenwahl (tagfield) schränken zur Laufzeit den Zugriff auf die Varianten
nicht ein. Es erfolgt also keine Prüfung.

Beispiel

TYPE TART = (KARTESISCH, POLAR);
KOORDINATE =

RECORD CASE ART: TART OF

KARTESISCH:(X,Y:REAL);

POLAR: (R,PHI:REAL)
END;

VAR A: KOORDINATE;

Eine Variable vom Typ Koordinate benötigt also 10 Byte Speicherplatz.

Außerdem belegt die Variante X den Speicherplatz der Varianten R. Bei

den Zuweisungen

A.ART :=KARTESISCH; A.R:= 2.0

erfolgt keine Fehlermeldung. Außerdem sind variante Records ohne Va-

riantenwahl (tagfield) erlaubt.

With- Anweisung

Die Verwendung des With-Statements bringt erhebliche Verbesserungen im
Laufzeitverhalten des Programms, da sämtliche Adreßberechnungen für die
folgende(n) Anweisung(en) nur genau einmal ausgeführt werden.

Beispiel

WITH A [I,J]? DO FELD5:= FELD5 - FELD3 statt
ACI, J]7.FELDS:= ALI,J]T.FELDS5 - ALI,JIT.FELD3

Dokumentation Pascal-System 181

Sprunganweisung

Es ist nicht erlaubt, von außen in ein FOR .. DO-, CASE .. OF-, oder
WITH .. DO-Statement mit GOTO zu springen, da diese zur korrekten

Ausführung Zwischenergebnisse auf dem Stapel benötigen. Jedoch kann
auch aus einer Prozedur oder Funktion in einen der sie umgebenden Blöcke

gesprungen werden, solange die obigen Einschränkungen nicht verletzt

werden.

Vorwärtsvereinbarungen

Generell müssen alle Bezeichner vor ihrem ersten angewandten Auftreten

ein definierendes Auftreten besitzen. Es sind nur folgende Ausnahmen

möglich:

- Die explizite FORWARD-Vereinbarung von Prozeduren und
Funktionen.

- Typdeklarationen, die einen Zeiger auf einen noch nicht
deklarierten Typ definieren.

Beispiele

PROCEDURE Q(I: INTEGER); FORWARD;

PROCEDURE P(C: CHAR);

BEGIN ... Q(4) ... END;
PROCEDURE Q;
BEGIN ... PC"A") ... END;

und

TYPE POINTER=TNODE;

NODE =RECORD

INFO: INFOTYP;

j NEXT:POINTER

END;

Fallunterscheidung

Optional ist die Angabe eines ELSE-Zweiges (siehe Syntax-Diagramm).
Dieser Zweig wird angesprungen, falls der Ausdruck einen Wert liefert, der

durch keine Fallmarke erfaßt wird. Wird ELSE nicht angegeben, so erfolgt
zur Laufzeit beim Auftreten eines Wertes ohne passende Marke die
Fehlermeldung

"NO LABEL FOR CASE"

182 Dokumentation Pascal-System

Bit-Operatoren

AND, OR und NOT können als Operanden auch INTEGER-Zahlen be-

sitzen. Es erfolgt dann eine bitweise Verknüpfung der Operanden. Die
Operandentypen BOOLEAN und INTEGER dürfen aber nicht gemischt

werden. Die Operationen liefern ein Ergebnis des gleichen Typs
(INTEGER bzw. BOOLEAN).

Absolut adressierte Variablen

Bei einer Variablendeklaration ist die explizite Angabe einer Adresse für
die Variable möglich. Ein Anwendungsgebiet ist die gemeinsame Verwen-
dung von Variablen aus Maschinenprogrammen und Betriebssystem-
adressen. Natürlich muß hierbei der Speicherplatzbedarf der Variablen (in

Bytes) beachtet werden.

Beispiel

IRQVEKTOR = INTEGER [788];

Vergleiche

Die Vergleichsoperatoren (=,<>,>,<,>=,<=) können nicht nur auf alle

Skalare, Reals und Strings (gleicher Länge), sondern auch auf beliebige
(gepackte und ungepackte) zusammengesetzte Objekte angewendet werden,
sofern beide Operanden denselben Typ haben. Der Vergleich erfolgt dann
Byte fiir Byte (ohne Vorzeichen).

4.4.3 Reservierte Wortsymbole

and file not to

array for of type
begin forward or until

case function packed var

const goto procedure while

div if program with
do in record

downto | label repeat

else mod set

end | nil then

Dokumentation Pascal-System 183

4.4.4 Vordefinierte Bezeichner

Die nachfolgend aufgeführten Bezeichner besitzen eine vordefinierte Be-
deutung. Sie können jedoch auch im Programm mit neuer Bedeutung
definiert werden.

4.4.4.1 Konstantenbezeichner

FALSE, TRUE Konstanten vom Typ BOOLEAN
(FALSE <TRUE)

MAXINT Konstante vom Typ INTEGER

| (MAXINT =32767)

4.4.4.2 Typbezeichner

BOOLEAN = (FALSE,TRUE)

INTEGER Ganze Zahlen von -MAXINT-I bis MAXINT

CHAR Einzelne Zeichen

REAL Wertebereich wie in BASIC

TEXT = FILE OF CHAR

4.4.4.3 Variablenbezeichner

INPUT ‘TEXT (Eingabedatei)
OUTPUT ‘TEXT (Ausgabedatei)

4.4.4.4 Prozeduren fiir dynamische Objekte

Die dynamischen Objekte werden in einem getrennten Datenbereich (Heap)
gespeichert. Reicht zur Laufzeit der freie Speicher nicht mehr aus, wird

das Programm mit der Fehlermeldung HEAP OVERFLOW beendet.

Der Heap wird als First-in-last-out-Speicher betrieben. Daten werden an

der Seite angefügt, an der sie gelöscht werden. Das Ende des Speichers
wird durch einen Heappointer markiert.

Die Befehle MARK und RELEASE ersetzen die in vielen anderen Dialek-
ten vorhandene Prozedur DISPOSE.

184 Dokumentation Pascal-System

NEW (Zeigervariable)

Stellt Speicherplatz für eine (neue) dynamische Variable zur Verfügung.
Die Zeigervariable wird mit der Adresse des neuen Objektes initialisiert.

MARK (Zeigervariable)

weist der Zeigervarıablen den momentanen Wert des Heappointers zu. Ein
anschließender Aufruf der Prozedur RELEASE mit dieser Zeigervariablen
setzt den Heappointer auf diesen Wert zurück.

RELEASE (Zeigervariable)

Der Heappointer wird auf den Wert der Zeigervariablen gesetzt. Dieser

Befehl sollte nur in Zusammenhang mit dem MARK-Befehl verwendet
werden.

Beispiel

VAR A,B,C, HEAP: TINTEGER;

BEGIN
... MARKCHEAP) ...
NEW(A); NEW(B); NEW (C)

. RELEASE(CHEAP)
END.

Durch die Anweisung RELEASE(HEAP) werden alle dynamischen Varia-
blen gelöscht, die nach der Anweisung MARK(HEAP) mit NEW erzeugt
wurden. Im Beispiel sind dies At, Bt, und Ct.

4.4.4.5 Ein- und Ausgabe

Files werden durch Dateien unter dem Betriebssystem des C 64 realisiert.

Details über die Zusammenarbeit mit dem Betriebssystem finden sich im
Abschnitt 4.4.5.

OPEN (filevar, dev, sek, name)

filevar Variable vom Typ FILE OF ...

dev | INTEGER-Ausdruck, der die Gerätenummer

angibt.

Dokumentation Pascal-System 185

sek INTEGER-Ausdruck, der die Sekundäradresse

festlegt.

name Konstante oder Variable vom Typ ARRAY [...]
OF CHAR.

Dem angegebenen File wird eine freie logische Filenummer zugewiesen und
ein Aufruf der Betriebssystemroutine OPEN mit den obigen Parametern

durchgeführt. EOF(filevar);=FALSE. filevart ist undefiniert. Wird kein
Filename benötigt, so ist auch der folgende Befehl möglich:

OPEN (filevar,dev,sek)

REWRITE(f) entspricht OPEN(f,dev,sek,name)

RESET(f) entspricht OPEN(f,dev,sek,name);GET(F)
GET(f) entfallt fir Textfiles, die mit READ gelesen

werden.

CLOSE (filevar)

Das angegebene File wird geschlossen und die logische Filenummer wird
freigegeben. Files müssen wie in BASIC geschlossen werden. Dies ist
speziell vor einem erneuten OPEN erforderlich. Es können maximal 10
Files gleichzeitig geöffnet sein.

Nach CLOSE sind keine weiteren PUT-, GET-, READ- und WRITE-

Operationen mit filevar zulässig. Wurde die durch CLOSE freigewordene
logische Filenummer wieder für ein anderes File vergeben, können Sie
beim Zugriff auf geschlossene Files nicht mit der Fehlermeldung FILE
NOT OPEN rechnen.

EOF (filevar)

Das Ergebnis dieser Funktion ist vom Typ BOOLEAN. EOF(filevar) ist
TRUE, falls beim Lesen der Datei filevar das Dateiende erreicht wurde.

Beim Schreiben ist EOF(filevar) immer TRUE. EOF alleine ist die
Abkürzung für EOF(INPUT). In dieser Dokumentation wird für jede File-
Operation die Veränderung von EOF explizit beschrieben.

STATUS (filevar)

Diese nicht im REPORT aufgeführte Funktion besitzt den Ergebnistyp IN-
TEGER. Das L-Byte enthält den Status bei der letzten E/A-Operation
(READ, WRITE, GET, PUT). Dieser Wert ist wie für die BASIC-Variable

186 Dokumentation Pascal-System

ST definiert. Einzelheiten sind wieder den Handbüchern zum C 64 zu ent-

nehmen.

Das H-Byte enthält die logische Filenummer, unter der das Betriebssystem

das File verwaltet. Der Wert ist nur zwischen OPEN und CLOSE definiert.

STATUS alleine entspricht STATUS(INPUT).

Beispiel

IF (STATUS(DATAFILE) AND 1) THEN

WRITELNC"Zeitablauf beim Schreiben!)

EOLN (filevar)

Standardfunktion mit dem Ergebnistyp BOOLEAN. Der Parameter muß ein
Textfile sein. EOLN liefert den Wert TRUE, falls beim Lesen das Zeilen-

ende erreicht wurde. Beim Lesen mit READ(f,...) ist EOLN(f)=TRUE, falls
das letzte gelesene Zeichen ein CR (ASCII-Code 13) war. Jedoch liefert
dann ein Zugriff auf die Puffervariable ft ein Leerzeichen (space). EOLN |
alleine entspricht EOLN(INPUT).

PUT (filevar)

Überträgt den Inhalt der Puffervariablen filevart Byte für Byte auf das
File. EOF(filevar):=TRUE.

GET (filevar)

Füllt die Puffervariable filevart und setzt den Lesezeiger weiter. Ist nach
dem Aufruf EOF(filevar)=TRUE, so ist der Wert von filevart undefiniert.

READLN (filevar)

Überliest Zeichen in dem Textfile filevar bis zum Ende der Eingabezeile.
Ist EOLN(filevar) beim Aufruf von READLN bereits TRUE, so werden
keine Zeichen gelesen.

READ (filevar, Parameter, Parameter ...)

Die Ausgabe hängt vom Typ des Parameters ab:

Parameter ist eine Variable vom Typ CHAR: Es wird ein Zeichen

eingelesen und der Variablen zugewiesen. Ist das Zeichen das Zeilenende-
zeichen, so wird ein Leerzeichen ’ ’ gelesen.

Dokumentation Pascal-System 187

Parameter ist eine Variable vom Typ INTEGER oder REAL: Leerzeichen

und Zeilentrennzeichen werden überlesen. Die nachfolgenden Zeichen wer-

den bis zum nächsten Leerzeichen oder Zeilenende gelesen und als Zahl

interpretiert (analog der Funktion VAL in BASIC). Ist der Parameter eine

Variable vom Typ INTEGER, so wird die Zahl noch mit der Funktion INT

angepaßt.

EOF:=TRUE, falls das letzte Zeichen des Files gelesen wurde.

Die Puffervariable enthält das letzte gelesene Zeichen. War das letzte gele-
sene Zeichen ein Zeilenendezeichen (CR), so liefert die Funktion EOLN
den Wert TRUE.

WRITELN (filevar)

Schreibt ein Zeilentrennzeichen auf das angegebene File. EOF:=TRUE.

EOLN:=TRUE.

WRITE (filevar, Parameter, Parameter, ...)

Parameter hat die Form:

- Ausdruck

oder

- Ausdruck : INTEGER-Ausdruck

Die Zahl nach dem Doppelpunkt gibt die Mindestanzahl an Zeichen an, die

ausgegeben werden. Falls nötig, werden dem Wert Leerstellen vorangestellt,
um die angegebene Feldgröße zu erreichen. Wiederum ist die Ausgabe vom
Typ der Ausdrücke abhängig:

CHAR: Das Zeichen wird rechtsbündig im Feld
ausgegeben.

INTEGER: Die INTEGER-Zahl wird rechtsbündig
ausgegeben. Vor positiven Zahlen steht ein
Leerzeichen (nicht ’+’).

REAL: Die Zahl wird im gleichen Format wie in
BASIC ausgegeben. Eine Angabe der Anzahl

der Nachkommastellen ist nicht möglich.

ARRAY[..] OF CHAR: Der (ungepackte) String wird ausgegeben.

188 Dokumentation Pascal-System

4.4.4.6 Arithmetische Funktionen

ORD (Ausdruck)

Diese Funktion liefert als Ergebnis eine INTEGER-Zahl, die die Position
des Parameters im Wertebereich angibt (0,1,2,...). Der Ausdruck muß einen
skalaren Typ besitzen (nicht REAL).

CHR (Ausdruck)

Diese Funktion liefert ein Zeichen mit dem ASCII-Code des INTEGER-

Ausdruckes.

SUCC (Ausdruck)

Die Funktion liefert den Nachfolger im Wertebereich. Der Ausdruck muß
einen skalaren Typ besitzen (nicht REAL). Eine Prüfung auf Bereichs-
überschreitung erfolgt nur, falls bei der Übersetzung die Option (*$R+ *)
des Compilers gewählt wurde.

PRED (Ausdruck)

Die Funktion liefert den Vorgänger im Wertebereich. Der Ausdruck muß
einen skalaren Typ besitzen (nicht REAL). Eine Prüfung auf Bereichs-
überschreitung erfolgt nur, falls bei der Übersetzung die Option (*$R+ *)
des Compilers gewählt wurde.

ODD (Ausdruck)

Diese Funktion liefert den Wert TRUE, falls der Ausdruck vom Typ
INTEGER ungerade ist.

ABS (Ausdruck)

Der Absolutbetrag des INTEGER- oder REAL-Ausdruckes wird berechnet.
Das Ergebnis ist vom selben Typ wie das Argument.

INT (Ausdruck)

Umwandlung des reellen Argumentes in die nächstkleinere INTEGER-Zahl
(wie in BASIC).

Dokumentation Pascal-System 189

Beispiele

INT(3.2) = 3
INTC-3.2) = -4

Also liefert INT andere Ergebnisse als die im Standard definierte Funktion

TRUNC. Andererseits läßt sich ROUND(x) durch INT(x+0.5) realisieren.

SQRT(x), LN(x), EXP(x), SIN(x), COS(x), ARCTAN(x) liefern für einen
INTEGER-/REAL-Ausdruck das im REPORT beschriebene Ergebnis vom
Typ REAL.

TAN (x)

Liefert für einen INTEGER-/REAL-Ausdruck den Tangens vom Typ
REAL. Diese Funktion ist nicht im REPORT vorgesehen.

POWER (x,y)

Liefert für zwei INTEGER-/REAL-Ausdrucke den Wert x hoch y vom
Typ REAL. Diese Funktion ist ebenfalls nicht im Standard vorgesehen.

4.4.4.7 Verschiedenes

Die folgenden Systemfunktionen und -prozeduren erwarten teilweise

Adressen als Parameter. Da Adressen auch Werte größer als MAXINT=

32767 annehmen, müssen größere Zahlen durch die entsprechende negative

Zahl im Zweierkomplement ersetzt werden.

Beispiel

$FFE4 = 65508 = -28 (= 256*256 - 65508)

Um also die Routine GETIN=$FFE4 aufzurufen, muß man SYS(-28)
schreiben.

SYS (Ausdruck)

Sprung in ein Maschinenprogramm, das an der angegebenen Stelle beginnt.
Wie bei dem BASIC-Befehl werden vor und nach dem Aufruf die Prozes-
sorregister in den folgenden Speicherzellen (dezimal) abgelegt:

780 Akkumulator

781 X-Register

782 Y-Register

783 Status-Register

190 Dokumentation Pascal-System

POKE (Ausdruck 1, Ausdruck 2)

Schreibt den Wert von Ausdruck 2 in die Adresse Ausdruck 1 (wie BASIC).

PEEK (Ausdruck)

Diese Standardfunktion liefert den Inhalt der angegebenen Adresse.

ADDU (Ausdruck 1, Ausdruck 2)

Diese Funktion addiert die beiden INTEGER-Ausdrücke ohne Berücksich-
tigung des Vorzeichens. Es erfolgt keine Fehlermeldung bei Überläufen.
Mit der Funktion ADDU (add unsigned) kann man also mit Adressen rech-
nen, ohne die Grenzen des Bereichs INTEGER (MAXINT) zu berück-
sichtigen.

Beispiele

ADDU(3,5)=8
ADDU(32767,1)=-32768
ADDU(- 32768, -1)=32767

HALT

Beendet die Programmausführung ohne Fehlermeldung.

4.4.5 Files in Pascal 1.4

Zur Anpassung an das Betriebssystem des C 64 mußte die Behandlung von

Files in einigen Details gegenüber dem REPORT geändert werden. Diese
Unterschiede sınd hier noch einmal zusammenfassend dargestellt:

Im Programmkopf dürfen nur die Standardfiles (INPUT/OUTPUT)
angegeben werden. Externe Files werden abweichend vom REPORT nicht

im Programmkopf, sondern nur in dem Block, in dem sie benötigt werden,

als Variablen vom Typ FILE OF ... deklariert.

Jedes File F wird intern durch einen eigenen Deskriptor verwaltet, der
neben der Puffervariablen (Ft) Informationen über EOF(F), STATUS(F)
und EOF(F) enthält, die bei jeder E/A-Operation mit diesem File aktuali-
siert werden. |

Dokumentation Pascal-System 191

Files können natürlich Bestandteil anderer Datenstrukturen (Array, Record,
aber nicht File) sein und auch in Prozeduren oder Funktionen rekursiv
definiert werden, solange die Parameter der OPEN-Befehle geeignet
gewählt werden (siehe Abschnitt 4.4.5.1).

Statt der Standardprozeduren RESET/REWRITE müssen OPEN- und

CLOSE-Prozeduren wie in BASIC aufgerufen werden:

REWRITECF) entspricht OPEN(f,dev,sek,name)

RESET(f) entspricht OPENCf,dev,sek,name);GET(F)

GET(f) entfällt bei RESET für Textfiles, die mit READ gelesen werden.

Hier soll noch einmal daran erinnert werden, daß GET und PUT Files

erzeugen, die die interne Repräsentation der Daten benutzen, so daß diese
Files (insbesondere vom Typ FILE OF CHAR) nicht direkt ausgedruckt
oder von BASIC-Programmen verwendet werden können. Falls ein Aus-
druck oder eine Weiterverarbeitung erwünscht ist, sollten die Prozeduren
READ(LN)/WRITE(LN) verwendet werden. Vorteile von GET und PUT
sind die Klarheit des Konzeptes, die kompakte Speicherung der Daten und

die schnellere Ein- und Ausgabe.

Abweichend vom REPORT enthält die Puffervariable beim Lesen von
Textfiles nicht das nächste, sondern das zuletzt gelesene Zeichen. Also

besteht keine Möglichkeit, über die Puffervariable ein Zeichen

vorauszuschauen.

Zur Bearbeitung von Textfiles dienen die Prozeduren READ(LN) und
WRITE(LN), die durch die Anderung der Bedeutung der Puffervariablen
auch für Dialogprogramme geeignet sind.

Ausdrücklich sei darauf hingewiesen, daß STATUS(f) nur durch File-
Operationen auf dem File f beeinflußt wird, so daß STATUS(F) (anders als
in BASIC die Variable ST) nicht durch Ein- oder Ausgabe auf einem an-
deren File als f beeinflußt werden kann.

Schließlich ist es möglich, die Standardeingabe- und -ausgabefiles anderen
Geräten als der Tastatur und dem Bildschirm zuzuordnen:

Beispiele

OPEN(OUTPUT ‚4,0) Ausgaben auf den Drucker

OPENCINPUT,8,3,name) Eingaben vom File ’name’

192 Dokumentation Pascal-System

Diese Umleitung der Ausgabe und Eingabe kann durch die Befehle
CLOSE(OUTPUT) bzw. CLOSE(INPUT) wieder rückgängig gemacht wer-
den. Diese Optionen sind besonders zum Protokollieren von Bildschirmaus-

gaben und zum Einlesen von Kommandosequenzen von einer Datei sinn-

voll.

4.4.5.1 Übernahme von Programmen mit Files

Wie im REPORT definiert, können die Prozeduren READ und WRITE nur
auf Files vom Typ FILE OF CHAR angewendet werden. Soll ein PASCAL-

Programm umgeschrieben werden, das diese Prozeduren auch für Files mit
anderem Grundtyp verwendet, so können diese Befehle wie folgt ersetzt
werden:

READ (F,X) wird ersetzt durch X:=Ft; GET(F)

WRITECF,X) wird ersetzt durch Ft:=X; PUTCF)

Außerdem muß darauf geachtet werden, daß eine Prozedur, die sich

rekursiv aufruft, ein lokales File mit korrekten Parametern eröffnet. Um

eine Anpassung möglichst einfach vorzunehmen, kann man das Include-File
FILE.INC benutzen. Es definiert die Prozeduren RESET und REWRITE.
Genaue Hinweise zur Benutzung und ein Beispielprogramm sind in
Abschnitt 2.16 gegeben.

Die Definitionen in FILE.INC werden an den Anfang des Hauptpro-

grammes gesetzt. Jedes lokale File wird am Beginn des Blockes seiner
Deklaration mit ALLOC definiert. Außerdem wird im selben Block als
letzte Anweisung die FREE-Prozedur für alle lokalen Files aufgerufen.
Zwischen ALLOC und FREE darf kein File mit CLOSE geschlossen wer-
den.

Diese Routinen beruhen auf dem folgenden Prinzip: Durch ALLOC weist
das Laufzeitsystem jedem File eine eindeutige logische Filenummer zu, die
bei RESET/REWRITE zur Identifikation des Files auf der Diskette ver-

wendet wird. Das File KOMMANDO wird zum Löschen von alten Dateien
bei REWRITE benutzt. Die logische Filenummer wird sowohl als eindeutige
Sekundäradresse für die Floppy als auch als Teil des Dateinamens auf der

Diskette verwendet.

Dokumentation Pascal-System 193

4.4.6 Aktive Kommentare

Kommentare können beliebig im Quelltext eingefügt werden. Sie sollten je-
doch nicht mit einem Dollarzeichen ’$’ beginnen, da dieses sogenannte
aktive Kommentare einleitet.

4.4.6.1 Bereichstests

Der Compiler besitzt einen Schalter, mit dem die Erzeugung von Code für

Laufzeittests gesteuert werden kann. Beim Beginn der Übersetzung ist der
Schalter auf aus gestellt. Nach einem Kommentar der Form

(*$R+ *)

steht der Schalter fiir Bereichstests (Range Check) auf ein. Der Compiler
erzeugt dann Code, um bei der Laufzeit des Programmes die folgenden
Operationen zu prifen:

Zuweisungen von Werten eines Grundtyps an Variablen eines Unter-

bereichs. Dies betrifft auch die Grenzen von FOR .. DO-Schleifen, bei de-

nen die Laufvariable einen Unterbereichstyp besitzt.

Mengenoperationen der Form [A] [A..B] und B IN X auf gültige Werte von
A und B (d.h. 0<=ORD(A),ORD(B)<=95). Indizierungen von Arrays der
Form ARRAY [A..B] OF ...

Ergebnisse der Standardprozeduren SUCC(X) / PRED(X), bei denen X ein
Ausdruck eines Aufzählungs- oder Unterbereichstyps ist.

Tritt ein ungültiger Wert auf, so bricht die Programmausführung mit der
Fehlermeldung “VALUE OUT OF BOUNDS’ ab. Außerdem werden
nacheinander die Ordinalwerte des fehlerhaften Wertes, der unteren und

der oberen Bereichsgrenze angegeben. Ein Beispiel fiir die Interpretation
der Fehlermeldung ist in Abschnitt 2.12 gegeben.

Der Schalter wird mit dem folgenden aktiven Kommentar auf aus gestellt:

(*$R- *) |

Diese Kommentare sollten nicht direkt neben Ausdrücken stehen, sondern

durch mindestens ein Symbol von dem Ausdruck getrennt sein. Sonst könn-
te es passieren, daß der Schalter zu früh ein- oder ausgeschaltet wird.

194 Dokumentation Pascal-System

4.4.6.2 Include-Files

Wie bereits in vorangegangenen Abschnitten erwähnt, kann der Compiler

Teile des Quelltextes bei der Übersetzung von Diskette lesen.

Da man nur 8 Kbyte Quelltext mit dem Editor im Pascal-System auf ein-
mal bearbeiten kann, geht man bei großen Programmen am besten wie folgt

vor:

Man entwickelt zunächst einzelne Teile des Programmes und testet diese.
Solche Module werden dann mit dem Editor auf Diskette gespeichert. Um

nun den Text eines solchen Moduls im Programm einzufügen, genügt es, an
der entsprechenden Position im Quelltext einen aktiven Kommentar
einzufügen:

(*$"filename" *)

Erreicht der Compiler bei der Übersetzung diesen Kommentar, so wird der
Rest der Zeile ignoriert und ab dieser Stelle der Programmtext von dem
Text "filename" auf der eingelegten Diskette gelesen. Am Dateiende setzt
der Compiler die Übersetzung aus dem Speicher fort.

Die Include-Files selbst sind normale Texte, die mit dem Editor mit SAVE

oder END auf der Diskette gespeichert wurden.

Es sind beliebig viele Include-Files in einem Programm möglich. Außerdem
kann auch in einem Include-File ein anderes Include-File aufgerufen wer-
den. Jedoch sind keine Schachtelungen möglich, da der Compiler am Ende
eines Files immer zur Übersetzung aus dem Speicher zurückkehrt.

Anhang A: Syntax-Diagramme Pascal 1.4 195

Anhang A: Syntax-Diagramme Pascal 1.4

196 Anhang A: Syntax-Diagramme Pascal 1.4

SYNTASZDIAGSRAMME PASCAL 1.4

BEZE ICHNER:

>{BUCHSTABE }——> > >

<—__{ZIFFER }<———
GA ZAH

L | >{ ZIFFER } >

<
ZAHL:

>4-)
— GANZE PD Laz ©

> +

VORZE ICHENLOSE KONSTANTE :

>{KONST. BEZEICHNER >

>4GANZE ZAHL }———>-

>4 NIL} >4

COPE To

<
KONSTANTE:

Lom > {GANZE ZAHL |——>-

—_ Oe ne

<
EINF. TYP:

vw

ron —>JKONST. BEZEICHNER }->,

> I

>4TYP BEZE ICHNER r

STE ICHNER >> }—> 4

<

| EGS oy EE»

>4GANZE ZAHL }->- ——— >

Anhang A: Syntax-Diagramme Pascal 1.4 197

FELOLISTE:

< {7}

< {; }<

> >> BEZE ICHNER Lo REL > >

> J

>

as sere ICHNER Sabre {oF |

L
> [KONSTANTE >{: } —— >} > FEL OL N

—%
TYP:

>JEINF. TYP} > >

t—>{t } >{TYP BEZEICHNER | >4

>
<

em Ee Te} o>
<——_{,

FILE} > F} > PF] >
— {set }—>-(oF }->{E INF . TYP | >4

> {RECORD } > FELDL ISTE } ———>-{EN0 } >
PARAMETERLISTE:

RK <

—Lol mpm ICHNER yt inesess ICHNER lo L_>

> < —{,}<
VARIABLE:

———>{VAR IABLENBEZE ICHNER H-> >

>{FELOBEZE ICHNER }——>4—>? everest

<——_{, }k—

—>{. }>{PELDBEZE ICHNER }——>-

>{t } >4

nl .

198 Anhang A: Syntax-Diagramme Pascal 1.4

?-

>

>-

>-

FAKTOR:

>4VORZE ICHENLOSE KONSTANTE | >

>4{ VARIABLE |

>{FUNKTIGNSBEZ . |-> eee >{> }—>-

| | <——_{, }«

>{¢ }—>{AausoRUCK Pr

>-{NOT }—>{FAKTOR

—>{T} mcm

> JAUSDRUCK >{.. H>-[RUSDRUCK > >

>

= &
TERM:

>4FAKTOR — > >

| ee
«FRRTORK tear} —

EINF. AUSDRUCK:

DT
Le {TERM |

«RK efor}
AUSDRUCK :

— HE INF. AUSDRUCK }->

Anhang A: Syntax-Diagramme Pascal 1.4 199

BLOCK:

Se i ZAHL |->

<——_{,}«

L< {7 kK

PET ICHNER }—>-{= {KONSTANTE }->

<——_{? }k

« &
PET ICHNER }—>{= } >TYP | i

— |
r {7 K

—>-{VAR } >{BEZE ee ee

bk
i$}

rt {7 }<

4+—>{FUNCTION }—>4 BEZE ICHNER |, —>PARAMETERL ISTE | ->{: }->{TYPBEZE ICHNER }—>-

L¢ (7 —{FORWARD K—4) <

>-{PROCEDURE }->-|BEZE ICHNER H->-PARAMETERL ISTE >-

Te ısung H— {END } >

< {7 }<

PROGRAMM:

e
n

e
e

|

ad

———

(PROGRAM | ->4BEZE Te zu eer

<——_{, }k

200 Anhang A: Syntax-Diagramme Pascal 1.4

EALLUNTERSCHE JOUNG:

>-

—>{CASE ee SS ey TSUNG }-> {END }—>

<——_{, }<

—< —— rk <

Les ae ISUNG }——
LAUFANWE ISUNG:

——>{FoR}->{var IABLENBEZ. >: =} > [rusoruck >{T0 }—__>

>4DOWNTO 1

>4AUSDRUC a
Lo). me ısung +

ANWE ISUNG :

wv

-———>4GANZE ZAHL |—> = aa

wv
 NT Isung | — {END }

9
> > AUSDRUCK |———_>-{Do } —>-[ANWE ISUNG }_—>-

>{REPEAT } /—>-[ANWE SUNG }—-—>-(UNTIL }->{AUSDRUCK } >4

— F<
4 —

>{WITH I» [VARIABLE {po }#_>{ANWE ISUNG HJ ——— >

>4

>-{1F }->{AUSDRUCK | —>-{THEN }—>-[ANME amyl» cme }—>-{ANWE ISUNG }->-

>{G0To } >4GANZE ZAHL f - >-

>4LAUFANKE ISUNG — >4

>{FALLUNTERSCHE IDUNG }- >4

>{VAR u teal >

>4FUNKT IONSBEZ. i ez

po

>{PROZEDURBEZ . } >{<« }-+_>{auspruck or

>

>.

Anhang B: Fehlernummern Pascal 1.4 201

Anhang B: Fehlernummern Pascal 1.4

Position eines Laufzeitfehlers (Option LOCATE ADDRESS)
Fehler in Typangabe

Bezeichner erwartet

’PROGRAM'’ erwartet

’)’ erwartet
’?> erwartet

’OF’ erwartet

’C erwartet

U erwartet

12 ’T erwartet

13 ’END?’ erwartet

14 ’ erwartet

15 INTEGER erwartet

16 ’=’ erwartet

17 ’BEGIN’ erwartet

20 ’’ erwartet

22 >, erwartet

~
O
e
N
k
R
W
N
H
O

50 Fehler in Konstante

51 =’ erwartet

52 ’THEN’ erwartet

53 ’UNTIL’ erwartet

54 ’DO’ erwartet
55 ’TO’’DOWNTO’ erwartet

59 Fehler in Variable (Variablenbezeichner erwartet)
60 String ist hier nicht zulässig

101 Bezeichner zweimal deklariert

102 Untere Grenze übersteigt obere Grenze

202 Anhang B: Fehlernummern Pascal 1.4

103 Bezeichner ist nicht von der richtigen Klasse
104 Bezeichner nicht deklariert
105 Vorzeichen hier nicht zulässig
106 Zahl erwartet
107 Inkompatible Unterbereichstypen

109 Grundtyp muß Skalartyp oder Unterbereich sein (nicht REAL)

110 Typ des Tagfields muß Skalartyp oder Unterbereich sein
111 Konstante nicht kompatibel mit dem Tagfield

113 Indextyp muß Skalartyp oder Unterbereich sein (nicht REAL oder
INTEGER)

116 Falscher Typ eines Parameters fiir Standardprozedur

117 Ungelöste Vorwärtsvereinbarung (Typbezeichner oder Prozedur)
118 Undeklarierter Typbezeichner in Variablendeklaration
120 Ergebnistyp einer Funktion muß Skalartyp, Unterbereich oder

Zeiger sein

121 File als Wertparameter nicht zulässig
123 Ergebnistyp fehlt im Funktionskopf
125 Falscher Typ eines Parameters für Standardfunktion

126 Anzahl der Parameter stimmt nicht mit Deklaration überein
127 Unzulässige Parameter-Substitution
129 Operandentypen nicht kompatibel

130 Ausdruck ist nicht vom Typ Menge

131 Nur Test auf Gleichheit zulässig
132 Test auf echtes Enthaltensein nicht zulässig
134 Unzulässiger Operandentyp
135 Inkompatible Strings (Länge stimmt nicht überein)
136 Elementtyp einer Menge muß Skalartyp oder Unterbereich sein

137 Elementtypen nicht kompatibel

138 Variable ist nicht vom Typ Array
139 Indextyp entspricht nicht der Deklaration

140 Variable ist nicht vom Typ Record

141 Variable ist weder Zeiger noch File
143 Laufvariable besitzt einen unzulässigen Typ
144 Ausdruck hat einen unzulässigen Typ
145 Typkonflikt
146 Zuweisung von Files nicht zulässig
147 Typ der Fallmarke nicht kompatibel mit CASE-Ausdruck

152 Feld existiert in diesem Record nicht
154 Aktueller Parameter muß eine Variable sein
155 Laufvariable muß eine lokale, nicht gepackte Variable sein

159 REAL oder String nicht als Tagfield zulässig
161 FORWARD hier nicht zulässig
165 Label mehrfach (im Anweisungsteil) definiert

Anhang B: Fehlernummern Pascal 1.4 203

166
167
168
171
172
173
174
400
401
402

500
501
502
503
504
505
506
510

S11
512

Label mehrfach (im Vereinbarungsteil) deklariert
Label nicht deklariert
Undefiniertes Label im vorherigen Block
Variable muß vom Typ File sein
Fehlende Parameter fiir Standardprozedur

File ist nicht vom Typ TEXT (PUT oder GET benutzen!)
Standardfile wiederdefiniert
Zu viele Fallmarken in Case-Anweisung
Zu viele Labels im Programm

Zu viele Bezeichner im Programm

Operandentypen müssen INTEGER sein

Ordnungszahlen des Grundtyps nicht im Bereich 0..95

Typ BOOLEAN oder INTEGER erwartet

Externe Files werden hier nicht angegeben

Variablenparameter darf nicht gepackt sein
Standardfile OUTPUT muß deklariert werden

’NIL’ ist hier nicht zulässig
FORWARD-Deklaration muß in derselben Schachtelungstiefe erfol-

gen
Ganze Zahl erwartet

Parameter dürfen keine absolute Adresse erhalten

204 Anhang B: Fehlernummern Pascal 1.4

Anhang C: Laufzeitfehler 205

Anhang C: Laufzeitfehler

STACK OVERFLOW

INTEGER OVERFLOW

DIVISION BY 0

NO LABEL IN CASE

HEAP OVERFLOW

VALUE OUT OF BOUNDS

BREAK

Am Prozeduranfang: kein Speicherplatz für

die lokalen Variablen. Sonst: kein Platz für

Zwischenergebnisse.

Bereichsüberschreitung bei ganzen Zahlen.

Division durch Null bei MOD oder DIV.

Keine Fallmarke für diesen Wert in der Case-

Anweisung gefunden.

Bei NEW ist auf dem Heap kein Platz für

eine neue dynamische Variable vorhanden.

In einem Ausdruck tritt ein illegaler Wert auf
(siehe Abschnitt 4.4.6.1). Es werden folgende
Ordinalwerte ausgegeben:

ORD (fehlerhafter Wert)

ORD (untere Bereichsgrenze)

ORD (obere Bereichsgrenze).

Programm wurde mit RUN/STOP &
RESTORE unterbrochen.

206 Anhang C: Laufzeitfehler

TOO MANY FILES OPEN

FILE NOT FOUND

DEVICE NOT PRESENT

NOT INPUT FILE

NOT OUTPUT FILE

MISSING FILE NAME

ILLEGAL DEVICE
NUMBER

ILLEGAL QUANTITY

OVERFLOW

DIVISION BY ZERO

Es dürfen maxımal 10 Files gleichzeitig
geöffnet sein.

Bei OPEN konnte das angegebene File nicht

gefunden werden (siehe Handbücher).

Bei READ, WRITE, GET oder PUT wurde

festgestellt, daß das Peripheriegerät nicht ak-
tiv ist.

Dieses Gerät (z.B. der Bildschirm) kann keine
Daten liefern.

An dieses Gerät (z.B. die Tastatur) kann man
keine Daten senden.

Bei OPEN muß bei diesem Gerät ein File-

name angegeben werden.

Diese Geräteadresse (bei OPEN) ist nicht
zulässig.

Beim Aufruf einer Standardfunktion, die

reelle Argumente besitzt, wurden illegale Ar-
gumente übergeben. Diese Fehlermeldung tritt

auch bei der Funktion INT auf.

Bei einer Operation mit reellen Zahlen trat

eine Bereichsüberschreitung auf.

Bei der Division mit (/) ist der zweite
Operand 0.0.

Anhang D: Operatoren in Pascal 207

Anhang D: Operatoren in Pascal

Operator Operation Operanden- Ergebnistyp

typen

+ (Vorz.) Identität INTEGER, wie Operand

REAL

- (Vorz.) Vorzeichen- INTEGER, wie Operand
umkehr REAL

+ Addition INTEGER, INTEGER,
REAL REAL

Vereinigungs- Menge Menge

menge

- Subtraktion INTEGER, INTEGER,
REAL REAL

Differenz- Menge Menge
menge |

* Multiplikation INTEGER, INTEGER,
REAL REAL

Schnittmenge Menge Menge

DIV Division beide INTEGER
mit Rest INTEGER

208 Anhang D: Operatoren in Pascal

MOD

IN

NOT

OR

AND

Divisionsrest

Division

gleich

ungleich

kleiner

größer

kleiner oder

gleich
Test auf Teil-

menge

größer oder

gleich
Test auf Ober-
menge

Test auf Zuge-

hörigkeit zur
Menge

nicht

oder

und

beide

INTEGER

INTEGER,
REAL

Skalar, Pointer

Menge, String

Skalar, Pointer

Menge, String

Skalar, String

Skalar, String

Skalar, String

Menge

Skalar, String

Menge

INTEGER

INTEGER,
REAL

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

1. Operand Skalar BOOLEAN

2. Operand Menge

BOOLEAN
(INTEGER)

BOOLEAN
(INTEGER)

BOOLEAN
(INTEGER)

BOOLEAN
(INTEGER)

BOOLEAN
(INTEGER)

BOOLEAN
(INTEGER)

Anhang D: Operatoren in Pascal 209

Bemerkung

Die Verwendung von INTEGER-Operanden bei den logischen Operatoren

NOT, AND und OR ist nur in Pascal 1.4 erlaubt.

Bei den relationalen Operatoren außer IN sind in Pascal 1.4 auch beliebige

zusammengesetzte Typen (RECORD, ARRAY) erlaubt. Der Vergleich
erfolgt byteweise (ohne Vorzeichen).

210 Anhang D: Operatoren in Pascal

Anhang E: Literaturhinweise 211

Anhang E: Literaturhinweise

l. Jensen, K., Wirth, N.: PASCAL, User Manual and Report Lecture

Notes in Computer Science, Vol. 18. Springer-Verlag 1974.

2. Wirth, N.: Algorithmen und Datenstrukturen. LAMM Teubner-

Studienbücher Informatik 1979.

3. Barron, D. W. (Editor): PASCAL - The Language and its

Implementation. Wiley Series in Computing, John-Wiley and Sons 1981.

4. Harrington, $S.: Computer Graphics (A Programming Approach).

International Student Edition, Mc Graw-Hill 1983.

5. Wirth, N.: Systematisches Programmieren. Eine Einführung.

6. Knuth, D. E.: The Art of Computer Programming. Band 1 und Band 3.

Addison Wesley 1973.

7. Maurer, H.: Datenstrukturen und Programmierverfahren. LAMM
Teubner-Studienbücher Informatik 1974.

8. Mehlhorn, K.: Effiziente Algorithmen. LAMM Teubner-Studienbücher
Informatik 1977.

212 Anhang E: Literaturhinweise

Anhang F: Index 213

Anhang F: Index

ABS 36f., 188

ADDU 190

Adresse 107

ALLOC 109, 192

ALT 131

AND 29, 42-

Anonym 122

- Anweisung 28, 45ff.

bedingte 47ff.
Leer- 47

ARCTAN 37

Array 59ff.
eindimensionaler 60

mehrdimensionaler 66

Ausdrücke 29

Baum 132

BEGIN 26, 28, 46, 49
Bezeichner 22, 75, 178, 183

Bezeichner, Sichtbarkeit 71
Bit-Operatoren 182

Blockstruktur 45

Block-Zuweisungen 68
BND 155
BOOLEAN 35, 42, 178, 183
Bottom up 106 |

Case-Anweisung 50, 104
CASE-OF 181

CHANGE 41, 148, 157, 159, 163
CHAR 35, 40, 118, 178
CHR 41, 188
CLOSE 116, 139, 185, 192
COL 155
Compiler 12, 17, 172-

CONST 45
COPY 168
COS 30, 37
Cursorsteuerung 156

Datei 107

Datentypen, elementare 35

Deklaration 27, 44, 71, 74

Dezimale Adresse 18
DISPOSE 131, 183, 187
DIV 29, 36
DOWNTO 56
Dynamisch 121

Editor 13, 15, 148, 153 ff., 170f.
ELSE 47ff., 181
END 26, 28, 46, 49
EOF 108, 185
EOLN 117, 186
EOLN(F) 118
Ergebnistyp 81
EXP 30, 37

214 Anhang F: Index

FALSE 42, 183 MOD 29, 36
File 107, 139, 190 ~ MSk 155
FIND 157, 159, 162
For-Anweisung 55 NATURALMERGE 113
FOR...DO 181 NEW 122, 130, 184
FREE 109 NIL 123

NOT 42
Ganze Zahl 23

GET 108, 186 Objekt-Programm 13
GETCH 148 ODD 42, 188
GOTO 57 OPEN 116, 139, 184

Operanden 29
HALT 190 Operatoren 29

HEAP-OVERFLOW 183 OR 29, 42
ORD 41, 188

If-Anweisung 48 OUT 148
IN 29, 96 Output 26, 115, 166
Index 60f.
Inkarnation 83 Parameter 78

INPUT 26, 115, 117, 165 aktuelle 79
INTEGER 35f., 39f., 178, 183 formale 79
Interpreter 13 | Funktions- 81

ITEM 113 Variablen- 79

PEEK 144, 190
KEY 113 POKE 144, 190
Kommentar, aktiver 25, 193 POWER 189

Konstanten 44 Pre check loops 53

PRED 92, 188
Label 57 Primary-Command 16, 154, 158

Lauf 113 Primitiven 102

Laufzeitsystem 17 PROCEDURE 74
Line-Command 16, 159 PROF 155

Liste 121, 125 Prozeduraufruf 73

Listenstrukturen 126 Puffervariablen 107

LN 37 PUT 108, 186
Lokalität 75

Quelltext 13
MARK 131f., 184 Quicksort 88, 90
Marke 64

Matrix 66 READ 32, 117, 119, 186

MAXINT 36, 178 READLN 119, 186
Menge 96 REAL 35, 39, 183
MERGE 113 REAL-Zahlen 39

Anhang F: Index 215

Record-Typen 99ff., 180

Rekursion 82

Rekursiver Algorithmus 86
REL 144
Relative Dateien 144

RELEASE 131, 183f.
Repeat-Anweisung 54

REPORT 177, 191
RESET 108f., 140
REWRITE 108f., 140
ROUND 40

Semikolon 47

Sequentiell 108

SIN 30, 37
Sonderzeichen 24

Sortieralgorithmus 87
Sortieren 63
Sprunganweisung 57, 181

SQR 37f., 40
SQRT 37
STATUS 185, 191
String 65
SUCC 92, 188
Symbole 21

Syntax 21

Syntax-Diagramme 22, 195ff.

SYS 146, 189

TAB 155
TAPE 109, 113
Textfenster 153, 156

TO 56
TOP 156, 159
TRUE 42
TRUNC 40
Typ 28, 35, 71, 92ff., 178f.
Typbezeichner 103, 106f.

Typdeklaration 92

VAR 28 |
Variablen 27, 29, 182

Vergleiche 182

Wert 79
While SIff.
WITH-DO 100, 180f.
Wortsymbole 24, 182

WRITE 30, 115ff., 187
WRITELN 30, 187

Zahlen 22
Zeichen 40
Zeichenfolgen 115
Zeiger 121
Zeigertypen 121, 124
Zeigervariable 122, 184
Zuweisung 28

"Stefan Viisnsciee

. 3D-Konstruktion mit

S. Vilsmeier
3D-Konstruktion mit GIGA-
CAD Plus auf dem C64/C 128
1986, 370 Seiten, inkl. 2 Disk.
Mit GIGA-CAD können Compu-
tergrafiken von besonderer
Räumlichkeit und Faszination
geschaffen werden. GIGA-CAD
Plus ist schneller und einfacher
zu bedienen, die Benutzerober-
fläche wurde verbessert und
der Befehissatz erweitert. Die
Eingabe erfolgt in erster Linie
über den Joystick. Hardware-
Anforderung: C64 mit Floppy
1541 oder C128 (im 64er-
Modus), Fernseher oder Moni-
tor, Joystick und Commodore-
oder Epson-kompatibler Drucker.
@ Das verbesserte GIGA-CAD-
Programm mit neuen Features
wie erweitertem Befehlssatz und
bis zu 10mal schneller liegt dem
Buch im Floppy-1541-Format bei.
Best.-Nr. 90409
ISBN 3-89090-409-2
DM 49,-
(sFr 45,10/6S 382,20)

Markt &fechnik

MinieCAD -
mit K-Eddl plus

auf dem
65410128

H. Haber!
Mini-CAD mit Hi-Eddi plus auf
dem C64/C 128
1986, 230 Seiten, inkl. Diskette
Auf der beiliegenden Diskette
findet der Leser das vollstän-
dige Zeichenprogramm »Hi-
Eddi«, mit dem das komfortable
Erstellen von technischen Zeich-
nungen, Plänen oder Diagram-
men ebenso möglich ist wie
das Malen von farbigen Bildern,
Entwurf und Ausdruck von
Glückwunschkarten, Schildern,
ja sogar von bewegten Sequen-
zen (kleine Trickfilme, Schau-
fenster-Werbung).
@ Wer sagt, daß CAD auf
dem C64 nicht möglich ist?!
Best.-Nr. 90136
ISBN 3-89090-136-0
DM 48,-
(sFr 44,20/6S 374,40)

Das umfassende Handbuch für die Textverarbeitung
mit Vizawrite 64. Für Einsteiger und Profis.

B.Bornemann-Jeske
Vizawrite-Buch für den
C64/C 128
1987, 228 Seiten
Mit dem »Vizawrite-Buch« liegt
erstmals ein vollständiges und
detailliertes Arbeitsbuch für den
Anfänger und den professionel-
len Anwender zur Textver-
arbeitung auf dem C64/C 128
vor. Die Grundlagenkapitel füh-
ren Sie anhand kurzer Ubungs-
aufgaben in die elementaren
Funktionen des Systems ein.
Das Kapitel für Fortgeschrittene
zeigt Ihnen jede Programmfunk-
tion im Detail. Zahlreiche prakti-
sche Tips aus verschiedenen
Anwendungsbereichen ermögli-

chen Ihnen die optimale Nut-
zung Ihres Textverarbeitungssy-
stems.
Best.-Nr. 90231
ISBN 3-89090-231-6
DM 49,-
(sFr 45,10/6S 382,20)

Marktä:fechnik

„ EXPERIMENTE ZUR
KÜNSTLICHEN INTELLIGENZ

prathe,
ter-Kreafivitö),

a Rohotits und Expertemsysteme.

O. Hartwig
Experimente zur Kunstlichen
Intelligenz mit C64/C 128
1987, 248 Seiten
sind Maschinen intelligent?
Können Computer denken?
Erschließen Sie sich eines der
interessantesten Gebiete der
modernen Computerforschung!
Anhand zahlreicher Programme
erfahren Sie hier die Möglichkei-
ten der Künstlichen Intelligenz,
speziell auf dem C64 und dem
C128. Der Schwerpunkt des
Buches liegt auf der Praxis. Alle
Kl-Techniken werden durch
anschauliche Programme vor-
gestellt, die sofort nachvollzieh-
bar sind. Zusätzlich erhalten Sie
jede Menge Anregungen zu
eigenen Experimenten. Die KI-
Programme können ohne weite-
res in eigene Programme inte-
griert werden.
Best.-Nr. 90472
ISBN 3-89090-472-6
DM 49,-
(sFr 45,10/85 382,20)

Markt&dechnik
Zeitschriften - Bücher

äften
Fac escha

in Computer Fa naotellungen
e r

oder Moy Warenhäuser:

70
63
58

Software - Schulung

Markt&Technik Verlag AG, Buchverlag, Hans-Pinsel-Straße 2, 8013 Haar bei München, Telefon (089) 4613-0

M. Hegenbarth/R. Trierscheid
BASIC-Grundkurs
mit dem C64
1985, 377 Seiten

Kein rein theoretisch ausgeleg-

ter BASiC-Kurs, sondern praxis-
nah auf den C64 zugeschnit-
ten. Auch der Computerneuling
kann mit diesem Buch lernen,

mit seinem C64 in BASIC zu
arbeiten, und wird auf die
Besonderheiten seines Compu-
ters hingewiesen. Der leichtver-
ständliche, lockere Stil und die
gute logische Gliederung der
Kapitel unterstützen dies.
Erwähnenswert ist ein Kapitel,
das die Kommunikation zweier

C64 beschreibt, der Anhang, in
dem-eine Liste nützlicher PEEKs,
POKEs und SYS und noch
vieles mehr enthalten ist.
@ Für den Lesertyp, der beim
Lernen auch noch Spaß haben
möchte.
Best.-Nr. 90361
ISBN 3-89090-361-4
DM 44,-
(sFr 4050/6 343,20)

70
63
59

F. Matthes
Pascal mit dem C64
1986, 215 Seiten, inkl. Diskette
Buch und Compiler ermögli-
chen jedem Besitzer eines C64
den Einstieg in die moderne
Programmiersprache Pascal.
Der Compiler akzeptiert den
gesamten Sprachumfang mit
einigen Erweiterungen. Er bildet
mit einem sehr komfortablen
Full-Screen-Editor eine schnelle
Einheit, so daß der Programm-
entwicklungsaufwand minimal
ist. Übersetzte Programme lau-
fen ohne weitere Hilfspro-
gramme auf jedem C64, nutzen
den gesamten Programmspei-
cher des C64 und sind 3-4mal
schneller als vergleichbare Pro-
gramme in BASIC. Dem Buch
liegt ein leistungsfähiges Pascal-
System mit einigen Pascal-Pro-
grammen auf Diskette bei.
Best.-Nr. 90222
ISBN 3-89090-222-7
DM 52,-
(sFr 4780/6S 405,60)

Markt&dechnik

W. Kassera/F. Kassera
C64-Programmieren in
Maschinensprache
Der Aufschwung im Program-
mieren stellt sich ein, wenn Sie
die betriebssysteminternen
ROM-Routinen kennen, über
Ihre Funktionsweise und ihr
Zusammenspiel informiert sind.
Und Sie müssen die Maschi-
nensprache Ihres C64 beherr-
schen. Beides ermöglicht Ihnen
dieses Buch. Es zeigt, wie Sie
bewegte Bildschirmobjekte pro-
grammieren, die Interrupt-
Routine des Systems erweitern,
die Arithmetik-Routinen im ROM
und deren Datentypen beherr-
schen, und alles, was Sie Uber
Ein-/Ausgabe, BASIC-Variable
und andere wichtige Themen
wissen müssen.
Best.-Nr. 90168
ISBN 3-89090-168-9
DM 52,-
(sFr 4780/6S 405,60)

Zeitschriften - Bücher

Software - Schulung _

ten

Sarkt&technik
Produ

om

Sie be
Cachgeschätten in CompU ST achabtellungen

oder Tier Warenhäuser.

Markt&Technik

H.Ponnath

C64: Wunderland der Grafik
1985, 232 Seiten, inkl. Diskette
Der Autor legt beim Leser ein
solides Fundament an Wissen,

und er tut dies auf so unterhalt-
same Art, daß Sie bestens

gerüstet sind, um so interes-
sante Aufgaben wie die Pro-
grammierung hochauflösender
zwei- und dreidimensionaler
Grafiken anzugehen. Mit Sprites
zu jonglieren ist für Sie bald
kein Problem mehr, aber auch
das vertrackte Verdeckungs-
problem bei dreidimensionaler
Grafik kriegen Sie jetzt endlich
in den Griff, Finden Sie heraus,
was wirklich im Grafik-Chip
Ihres C64 steckt!
@ Eine lesenswerte und
kenntnisreiche Einführung in
dieses hochinteressante Thema
von einem sachkundigen Auto-
ren; mit allen Beispielen auf
beigefügter Diskette.

Best.-Nr. 90363
ISBN 3-89090-363-0
DM 49,-
(sFr 45,10/6S 382,20)

Markt&Technik Verlag AG, Buchverlag, Hans-Pinsel-Straße 2, 8013 Haar bei München, Telefon (089) 4613-0

C= Spiele
sammlung

Lassen Sie sich in eine
abenteuerliche Spielewelt entführen!
Alles, was Sie brauchen, ist ein C64 oder ein Firebug: Hoffentlich fängt Ihr Joystick nicht
C128, beiliegende Spielediskette - und schon ebenfalls Feuer, wenn es heißt, die wertvollen
kann die Reise losgehen. Beweisen Sie Ihre Koffer aus dem brennenden Haus des Profes-
Joystick-Künste, indem Sie sicher den Weg aus sors zu erwischen. Pirat: Taktik, Timing und
dem Labyrinth finden! Bewahren Sie
Ihren kühlen Kopf in aufregenden
Actionszenen! Zeigen Sie Ihre
Fähigkeiten als Börsenmakler in
lebensnahen Wirtschaftssimula-
tionen! Mit den 15 spannenden
Spielen, der ausführlichen
Anleitung sowie den farbigen
Bildschirmfotos ist Ihnen ein
fantastisches Spielvergnügen
gewiß.
Aus dem Inhalt:
Balliard: Einfallswinkel
= Ausfallswinkel. Wer
das nicht befolgt, hat es
schwer bei dieser Mi-
schung aus Tennis und
Billard.
The Way: Zu verschlungenen Pfaden
gesellen sich Geldsäcke und böse Geister,die

gute Navigationskenntnisse sind Voraussetzung
für ein bis zu 25 Jahre langes Piratenleben.

Wirtschaftsmanager:
Simulation aus den höchsten

Etagen der Wirtschaft, nicht
1000 Stück, sondern ganze
Firmen gehen über den »laden-

tisch«. Vier gewinnt: Einfach,
aber gerade deshalb ein Spiel,

das schnell zu Erfolgserlebnissen
führt. Brainstorm: Mastermind

stand Pate für dieses vielseitige Denk-
spiel. Hypra-Chess: Spielen Sie
Schach gegen einen C64 und außer-
dem die Spiele Maze, Schiffe ver-
senken, Handel, Börse, Vier in

vier und Magic-Cubs.

Hardware-Anforderungen: C 64
oder C128 bzw. C 128D (64er-Modus),

es zu bekämpfen gilt. Vager 3: Joystickprofis Floppy 1541, 1570 oder 1571 und Joystick.
mit ungetrübtem Visierblick und Trefferinstinkt Best.-Nr. 90429, ISBN 3-89090-429-7
können ihr Punktekonto schwer mit Abschuß- DM 39 * (sFr 35,901655 304,20)
prämien beladen. *Unverbindliche Preisempfehlung.

Markt&dechnik
Zeitschriften - Bücher

71
11
25
/2

Software - Schulung

Markt& Technik Verlag AG, Buchverlag, Hans-Pinsel-Straße 2, 8013 Haar bei München, Telefon (089) 4613-0

Commodore-Sachbu
Commodore
Sachbuch

2. uberarbeitete Auflage

Commodore Sachbuchreihe
Alles uber den C64
2.Auflage 1986, 514 Seiten
Dieses umfangreiche
Grundlagenbuch zum C64
enthält neben einem Basic-
Lexikon alle Informationen
und Tips, die der Spezialist
zur Grafik- und Musikpro-
grammierung benötigt. Ein
Kapitel beschäftigt sich mit
der Programmierung in
Maschinensprache und der
Einbindung von Maschinen-
sprache-Routinen in Basic-
Programme. In diesem
Zusammenhang erfahren
Sie auch alles über einen
wichtigen Bestandteil des
Betriebssystems aller
Commodore-Computer,
das »Kernal«.
Bestell-Nr. 90379
ISBN 3-89090-379-7
DM 59,-
(sFr 54,30/6S 460,20)

71
13
56

ww
Os.

Commodore
Sachbuch

Florian Müller - Thorsten Petrowski

Commodore
Sachbuch

Beschreibung der © CPIM-Befehle “ Struktur von CPIM
* CPIM-Dateii & Programmi ter CP/M

(Turbo-Pascal, Mi herosaft Ba

Prof. Dr W.-J. Becker
C128 -
Alles über CP/M 3.0
1986, 299 Seiten
Eine fundierte Einführung

Deuisc
Anwendungs. und Programmierhandbuch

für die deutsche GEOS-Version 1.3.
Mit Beschreibung aller erhältlichen GEOS-Applikationen.

in die Anwendung des
Betriebssystems CP/M 3.0
bzw. CP/M Plus auf dem

F. Müller/T. Petrowski
Alles über GEOS
Version 1.3
Anwendungs-,
Programmier- und
Systemhandbuch
1987, 532 Seiten,

inklusive Diskette

Enthalten:
Doppelseitig bespielte Beispieldiskette

mit vielen GEOS-Utilities.

Das umfassende Buch über
Anwendung und Program-
mierung der grafischen
Benutzeroberfläche GEOS.
Bestell-Nr. 90570,
ISBN 3-89090-570-6
DM 49,-
(sFr 45,10/6S 382,20)

Markt8dechnik
Zeitschriften - Bücher

Software - Schulung

. -Pro

Kigrechnik
Mere bei Ihr end

in ee cha Shteilungen
oder!

Commodore 128.
Bestell-Nr. 90370
ISBN 3-89090-370-3
DM 52,-
(sFr 47,80/6S 405,60)

Dr. Ruprecht
C 128-ROM-Listing
1986, 456 Seiten
Dieses kommentierte
ROM-Listing umfaßt das
Betriebssystem des C128,
den Monitor des C128
sowie das Basic 7.0 von
Microsoft.
Bestell-Nr. 90212
ISBN 3-89090-212-X
DM 58,-
(sFr 53,40/6S 452,40)

ke e erhalten
odu händler,

eschäften

e
der War renhauset

Markt&Technik Verlag AG, Buchverlag, Hans-Pinsel-Strabe 2, 8013 Haar bei München, Telefon (089) 4613-0

N

Die 64’e
7

f-

ACHTUNG!
Computer-Freaks aufgepaßt:
32 Spitzen-Musikprogramme aus
dem 64’er-Musik-Programmier-
wettbewerb auf einer Diskette mit
komfortablem Iademenü. Von Pop
bis Klassik ist für jeden Musik-
geschmack etwas dabei: Shades,
This is not America, Invention Nr.
13, Mondscheinsonate, You can
win it you want, Der Clou, Für
Elise, The pink Panther und viele
mehr.

Hardware-Antorderungen:
Commodore 64 oder Commo-
dore 128 im C-64-Modus, Floppy-
Station 1541, 1570 oder 1571

Ein »Muß«
für jeden 64’er-Fun!

70
62
29
-2

Langspiel-Diskette
Einmalig in
der Computergeschichte:
@ Alle Musikstücke werden in
Stereoqualität auf einer hochwert-
gen Kassette mit Rauschunter-
drückung mitgeliefert!
@ Eineinhalo Stunden erstklas-
sige Computermusik!
© Klang umwertend!

vor anef tar den Goraneaitr 84

Lieferumfang:
| Diskette beidseitig bespielt mit 32
Musikstücken
| Kassette mit allen Musikstücken in
Stereoqualität für handelsübliche
Kassettenrecorder oder Stereoan-
lagen

Best.-Nr. 39630

DM 39,90*
IsFr 34,90*165 399,*|
* Unverbindliche Preisempfehlung

Markt&dechni
Zeitschriften - Bücher

Software - Schulung

Markt&Technik Verlag AG, Buchverlag, Hans-Pinsel-Straße 2, 8013 Haar bei München, Telefon (089) 4613-0

GEOS für den C 123 (englisch)
Der neue Betriebssystemstandard - in der Originalversion für den C128. GEOS
64 wurde an den 128er-Modus des C128 angepaßt und kann sowohl die
doppelte Auflösung als auch den größeren Speicher nutzen. Unterstützt werden
am RGB-Eingang angeschlossene Monitore (80 Zeichen), sowie die üblichen
PAL-Monitore und Fernsehapparate. Ansonsten gelten die Leistungsmerkmale
von GEOS 64.
Hardware-Anforderung:
C128, Floppy 1541, 1570 oder 1571, Joy-
stick oder Maus 1531.
Sla-Zoll-Diskette
Bestell-Nr. 50328 DM 119,—

GEOS für den C128
(deutsch)
Bestell-Nr. 50327 DM 119,—

Deskpack 1/GeoDex für
den C64/C128 (deutsch)
Deskpack 1/GeoDex: die nützlichen
Zusatzprogramme für GEOS Graphics-
Grabber! Ubertragt Grafiken von Print
Shop, Print Master und Newsroom zur
Anwendung mit GeoPaint und GeoWrite.
leistungsumfang: Icon Editor - erstellt
und verändert Icons nach Ihren Vorstellun-
gen. GeoDex - Adreß- und Notizbuch
mit Modemunterstützung. GeoMerge -
Suchen nach Adreßgruppen aus GeoDex
sowie Erstellen von Formbriefen und Listen.
Blackjack - das klassische Glücksspiel.
Kalender.
Hardware-Anforderungen:
C64 oder C128, Floppy 1541, 1570 oder
1571, Joystick.
Software-Anforderung: GEOS 64.
Bestell-Nr. 50322 DM69,— eee

DESKPACKT
IEW APPLICATIONS FOR USE WITH GEOS™

GeoWrite Workshop fiir den
C64/C 128 Bestell-Nr. 50324

tear pat

GEOS, Version 1.3, für den C641C128 (deutsch)
Der neue Betriebssystemstandard für Commodore 64. leistungsumfang: Desk-
Top - das Grafikinterkace zum GEOS-Betriebssystem. Schauen Sie sich die
Dateien als Icons oder im Textmodus an. Automatisches Sortieren von Dateien
nach Alphabet, Größe, Typ oder Datum der letzten Änderung ist kein Problem.
Dateien kopieren, löschen und Disketten formatieren ist natürlich enthalten.

GeoPaint: ein umfangreiches Zeichenpro-
= gramm in Farbe mit 14 verschiedenen

Grafiktools, 32 Pinselstärken, 32 verschie-
denen Mustern. GeoWrite: ein einfaches,
leichtbedienbares Textprogramm. Desk-
Accessories: Wecker, Notizblock, Taschen-
rechner.
Hardware-Anforderungen:
C64 oder C128 (64er-Modus), Floppy
1541, 1570 oder 1571, Joystick.
Bestell-Nr. 50320 DM59,—

Update von älteren englischen Versionen
auf die neue deutsche Version 1.3. Erhältlich
direkt beim Markt&Technik-Buchverlag
gegen Einsendung des Originalprodukts
und gegen Vorauskasse.

DM 39, —

* GRAPHIC ENVIRONMENT OPERATING SYSTEM ©
En nen

n raten.

SZ
THE NEW OPERATING SYSTEM STANDARD FOR '

THE COMMODORE 4, 64 AND 118 COMPUTERS.

derkFops oapnsee snd Se manner — duukTurbn fest De bomber
x Desk Acemmation uhren cord, extculites,

he rap pune been, tas hun
Desnuenl Ink: edtcomemartcat eK wine

: enter EFREEER

Bestell-Nr. 50320U

Fontpack 1 für den
C64/C 128 (deutsch)
Die unentbehrliche Utility für GEOS-
Benutzer! Fontpack | wurde für die GEOS-
Applikationen GeoPaint und GeoWrite
entwickelt und enthält 20 neue, außerge-
wöhnliche Schriftarten, die jeden Anwen-
der begeistern werden.
Hardware-Anforderungen:
C64 oder C128, Floppy 1541,1570 oder
1571, Joystick.
Software-Anforderungen: GEOS 64

FONTPACKI
TWENTY NEW FONTS FOR USE WITH GEOS“

Geofile für den C64/C 128
D

Bestell-Nr. 50321 DM49,—

GeoCalc für den C64/C 128
M89,— Bestell-Nr. 50325 DM89,—

*
Bestel-Nr. 50923 DM 89,- * Unverbindliche Preisempfehlung

In Vorbereitung:

GeoWrite Workshop 128
Bestell-Nr. 50329 ca. DM 119,—

GeofFile 128
Bestell-Nr. 1: ca. DM 119,—* Anik Produkte erhalten

. Technik” andier, in

wa «.pmm,» Markt&dlechnik |teseiem auction adorn ser ie bel after! 7. Sn uter-Fachgese Wei rennauset-

Zeitschriften - Bücher

Software - Schulung
Cochabteilung

en

71
12
41

Markt &Technik Verlag AG, Buchverlag, Hans-Pinsel-Strabe 2, 8013 Haar bei München, Telefon (089) 4613-0

Bestellungen im Ausland bitte an: SCHWEIZ: Markt&Technik Vertriebs AG, Kollerstrasse 3, CH-6300 Zug, Telefon (042) 415656 - ÖSTERREICH: Rudolf Lechner & Sohn,
Heizwerkstraße 10, A-1232 Wien, Telefon (0222) 677526 - Ueberreuter Media Verlagsges. mbH (Großhandel), Laudongasse 29, A-1082 Wien, Telefon (0222) 481543-0.

WordStar 3.0
mit MailMerge

für den Commodore 128/128D
Der Bestseller unter den
Textverarbeitungsprogram-
men für PCs bietet Ihnen
bildschirmorientierte Forma-
tierung, deutschen Zeichen-
satz und DIN-Tastatur sowie
integrierte Hilfetexte. Mit
MailMerge können Sie
Serienbriefe mit persönlicher
Anrede an eine beliebige
Anzahl von Adressen
schreiben und auch die
Adreßaufkleber drucken
oder einzelne Textbausteine
zu umfangreichen Doku-
menten verknüpfen.

Installation
WordStar ist für den
Commodore 128 PC unter
CP/M 3.0 bereits fertig
angepaßt und kann
wahlweise mit oder ohne
deutschen Zeichensatz
benutzt werden.

Hardware-Anforderungen:
Commodore 128 PC,
Diskettenlaufwerk,
80-Zeichen-Monitor,
beliebiger Commodore-
Drucker oder ein Drucker
mit Centronics-Schnittstelle

71
13
21

Markt&fechnik
128er-Software

mit MailMerge für den
Commodore 128 PC

5',”-Diskette
im Floppy 1541-Format

Bestell-Nr. 50103

DM 199,-:
(sFr 178-"/6S 1890,-*
* Unverbindliche SA

Markt&dechnik
Zeitschriften - Bücher
Software - Schulung

Und dazu die
weiterführende
Literatur:

G. Jurgensmeier
WordStar für den
Commodore 128PC
1985, 435 Seiten
Eine leichtverständliche
Anleitung für die prakti-
sche Arbeit. Vom einfa-
chen Text bis zum Serien-
brief mit MailMerge.
Bestell-Nr. 90181,
ISBN 3-89090-181-6
DM 49,-
(sFr 45,10/6S 382,20)

Markt&Technik Verlag AG, Buchverlag, Hans-Pinsel-Straße 2, 8013 Haar bei München, Telefon (089) 4613-0

Bitte schneiden Sie diesen Coupon aus, und schicken Sie ihn in ei Kuvert an: Markt& Technik Verlag AG, Buchverlag, Hans-Pinsel-Straße 2, 8013 Haar u
ST:

Vom Einsteigerbuch für de
puter-Neuling über profe
bücher bis hin zum Elektron
essante und topaktuelle Ti

° Apple-Computer ® Ata
64/128/16/116/Plus 4 © Sch
XT und Kompatible
sowie zu den Fachbereic
Betriebssysteme (CP/M, M
arbeitung e Datenbanksys
Integrierte Software ¢ Mikr
Außerdem finden Sie profe
in unserem preiswerten S
Atari ST, Commodore 128,
Computer und für IBM-PCs
Fordern Sie mit dem neb
neuestes Gesamtverzeichn
vice-Übersichtenan,mithilf
len Anwendungen oder pa

Markt&Technik Verlag AG, Bu
8013 Haar bei Münche 7

0
9
0
0
5

Version 2.41

dBASE il
für Commodore 128/128D

dBASE II, das meistverkaufte
Programm unter den Daten-
banksystemen, gibt es jetzt im
CP/M-Modus für den © 128.
Es eröffnet Ihnen optimale
Möglichkeiten der Daten- und
Dateihandhabung. Einfach
und schnell können Daten-
strukturen definiert, benutzt
und geändert werden. Der
Datenzugriff erfolgt sequen-
tiell oder nach frei wählbaren
Kriterien, die integrierte Kom-
mandosprache ermöglicht
den Aufbau kompletter An-
wendungen wie Finanzbuch-
haltung, Lagerverwaltung,
Betriebsabrechnung usw.

Lieferumfang:
e Originalhandbuch von

Ashton-Tate
e Beschreibung der
Commodore-128-PC-
spezifischen Version

Hardware-Anforderungen:
Commodore 128 PC,
Diskettenlaufwerk,
80-Zeichen-Monitor,
beliebiger Commodore-
Drucker oder ein Drucker
mit Centronics-Schnittstelle
über Userport

71
13
22

Bestell-Nr. 50303

(sFr 178-*/6S 1890,-* DM 49,-
Unverbindliche 5)

Und dazu die
weiterführende

| Literatur:
Markt&fechnik
128er-Software

ANASHTON TATE

fur den
Commodore 128 PC

51,”-Diskette OBA Sell aie
im Floppy 1541-Format a ie PC

Dieses klassische Einfüh-
rungs- und Nachschlage-
werk begleitet Sie mit
nützlichen Hinweisen bei
Ihrer täglichen Arbeit mit
dBASE Il.
Bestell-Nr. 90189,
ISBN 3-89090-189-1

(sFr 4510/68 382,20)

Markt&dechnik
Zeitschriften - Bücher

Software - Schulung

Markt&Technik Verlag AG, Buchverlag, Hans-Pinsel-Straße 2, 8013 Haar bei München, Telefon (089) 4613-0

FLORIAN MATTHES,
geboren 1963 in Frankfurt am

Main. Abitur 1981. Ab 1983 Stu-
dium der Informatik mit Neben-

fach Physik an der Universität

Frankfurt. Seit 1985 wissen-

schaftlicher Mitarbeiteram Lehr-

stuhl für Technische Informatik.

Einige Veröffentlichungen in

Mikrocomputer-Fachzeitschriften

und freiberufliche Arbeit in der

DV-Branche.

Pascal
mit dem C64
Dem Buch liegt ein leistungsfähiges Pascal-System mit Beispiel-

Programmen auf Diskette bei.

Buch und Compiler ermöglichen jedem Besitzer eines C64 den Ein-

stieg in die moderne Programmiersprache Pascal.

Dem Anfänger wird ein Einführungskurs in Pascal geboten, wobei

viele überschaubare Beispiele aus der Praxis und Übungsaufgaben

zum aktiven Lernen mit dem C 64 auffordern. Beim Programmieren
wird er durch eine ausführliche Bedienungsanleitung des Systems

unterstützt.

Für den Pascal-Profi gibt es neben nützlichen Beispielprogrammen
ein spezielles Kapitel mit Tips und Tricks.

Der Compiler akzeptiert den gesamten Sprachumfang mit einigen
Erweiterungen. Der Compiler bildet mit seinem sehr komfortablen

Full-Screen-Editor eine schnelle Einheit, so daß der Programm-

entwicklungsaufwand minimal ist. Übersetzte Programme laufen
ohne weitere Hilfsprogramme auf jedem C64, nutzen den gesamten
Programmspeicher des C 64 und sind 3-4mal schneller als vergleich-

bare Programme in BASIC.

Aus dem Inhalt:

e leistungsfähiger Compiler mit Editor auf Diskette
e vollständiger Einführungskurs in Pascal

@ Beispiele und Aufgaben

e Tips&Tricks für den Profi

e ausführliche Bedienungsanleitung

Hardware-Anforderung:
C64 mit Floppy 1541-/1570-/1571-Laufwerk oder C128 (im 64er-
Modus) mit Floppy 1541-1570-/1571-Laufwerk.

Markt&fechnik

ISB N 3-89090-222-7

=

| J 01 4 °0

DM 52,-
sFr 47,80
6S 405,60 057°902220

