Markt&Technik

P Florian Matthes I

mitdem

‘ Enthalten:
5Y"-Diskette mit
professionellem
Pascal-Compiler

Pascal mit dem C64

Florian Matthes

Pascal mit dem C64

® Compiler-Beschreibung

® Pascal-Kurs

® Tips und Tricks fiir
Fortgeschrittene

Markt &Technik Verlag AG

CIP-Kurztitelaufnahme der Deutschen Bibliothek

Matthes, Florian:

Pascal mit dem C64 : Compiler-Beschreibung, Pascal-Kurs,
Tips u. Tricks fiir Fortgeschrittene / Florian Matthes. —
Haar bei Miinchen : Markt-und-Technik-Verlag, 1986.
ISBN 3-89090-222-7

Die Informationen im vorliegenden Buch werden ohne Riicksicht auf einen eventuellen Patentschutz verdffentlicht.
Warennamen werden ohne Gewihrleistung der freien Verwendbarkeit benutzt.

Bei der Zusammenstellung von Texten und Abbildungen wurde mit groBter Sorgfalt vorgegangen.
Trotzdem konnen Fehler nicht vollstédndig ausgeschlossen werden. Verlag, Herausgeber und Autoren kénnen
fiir fehlerhafte Angaben und deren Folgen weder eine juristische Verantwortung noch irgendeine
Haftung iibernehmen.

Fiir Verbesserungsvorschlidge und Hinweise auf Fehler sind Verlag und Herausgeber dankbar.

Alle Rechte vorbehalten, auch die der fotomechanischen Wiedergabe und der Speicherung in elektronischen Medien.
Die gewerbliche Nutzung der in diesem Buch gezeigten Modelle und Arbeiten ist nicht zulassig.

»Commodore 64« ist eine Produktbezeichnung der Commodore Biiromaschinen GmbH, Frankfurt,
die ebenso wie der Name »Commodore« Schutzrecht genief3t.
Der Gebrauch bzw. die Verwendung bedarf der Erlaubnis der Schutzrechtsinhaberin.

15 14 13 12 11 10 9 8 7 6
89 88 87

ISBN 3-89090-222-7

© 1986 by Markt &Technik Verlag Aktiengesellschaft,
Hans-Pinsel-Strafle 2, D-8013 Haar bei Mitnchen/West-Germany
Alle Rechte vorbehalten
Einbandgestaltung: Grafikdesign Heinz Rauner
Druck: Schoder, Gersthofen
Printed in Germany

Inhaltsverzeichnis 5

Inhaltsverzeichnis

e e T e e R e)
W W WWWN —

QI e

NN
SN -

N
W

.

2.5.1
2.5.2
2.6

2.6.1
2.6.2
2.6.3
2.6.4
2.6.5
2.7

2.8

2.8.1
2.8.2

Vorwort

Die Werkzeuge

Warum Pascal?

Was macht ein Compiler?
Das Pascal-System
Systemstart

Der Editor

Der Compiler

Das Laufzeitsystem

Einfithrung in Pascal
Symbole und Syntax-Diagramme
Programmstruktur
Deklaration von Variablen
Anweisungen und Ausdriicke
Einfache Ein- und Ausgabe
WRITE

READ

Elementare Datentypen

Der Typ INTEGER

Der Typ REAL

Gegeniiberstellung REAL und INTEGER

Der Typ CHAR

Der Typ BOOLEAN
Deklaration von Konstanten
Kontrollstrukturen
Anweisungsfolgen

Bedingte Anweisungen

11
11
12
14
14
15
17
17

21
21
25
27
28
30
30
32
35
36
37
39
40
42
44
45
46
47

6 Inhaltsverzeichnis

2.8.3
2.8.4
2.8.5
2.8.6
2.8.7

4.2

4.2.1
4.2.2
423
4.2.4
4.2.5
4.2.6

Fallunterscheidung

While- Anweisung
Repeat-Anweisung
For-Anweisung
Sprunganweisung

Die Datenstruktur Array
Eindimensionale Arrays
Strings

Mehrdimensionale Arrays
Deklaration von Typen
Prozeduren

Lokalitit von Bezeichnern
Parameter

Funktionen
Standardprozeduren
Rekursion

Skalare Typen und ihre Operationen
Aufzihlungstypen
Unterbereichstypen
Mengentypen

Der Datentyp Record
Variante Records

Der Datentyp File
Sequentiell schreiben
Sequentiell lesen

Textfiles

Dynamische Datenstrukturen
Lineare Strukturen (Listen)
Biume

Tips und Tricks
Niitzliche Pascal-Routinen
Tips zum Editor

Dokumentation Pascal-System
Das Pascal-Menii

Der Editor

Allgemeines

Gliederung des Bildschirms
Cursorsteuerung
Primary-Commands
Line-Commands

Textmodus

50
52
54
55
57
59
60
65
66
71
73
75
78
81
82
82
92
92
94
96
99
102
107
108
108
115
121
125
132

139
139
148

151
152
153
153
154
156
158
159
161

Inhaltsverzeichnis 7

4.2.7
4.2.8
4.2.9
4.2.10
4.2.11
4.2.12
4.2.13
4.3
4.3.1
4.3.2
4.3.3
434

44.1
4.4.2
4.43
444
4.4.4.1
4.4.4.2
4443
4.4.4.4
4.4.4.5
4.44.6
4.44.7
445
4.45.1
4.4.6
4.4.6.1
4.4.6.2

m mWm g O W »

FIND

CHANGE

Die Tasten f2 und f4

INPUT

OUTPUT

COPY

Fehlermeldungen im Editor
Bedienung des Compilers
Wahl der Optionen
Meldungen im Compiler
Spezielles

Riickkehr zu BASIC
Sprachbeschreibung Pascal 1.4
Grundsitzliches
Sprachumfang

Reservierte Wortsymbole
VYordefinierte Bezeichner
Konstantenbezeichner
Typbezeichner
Variablenbezeichner
Prozeduren fiir dynamische Objekte
Ein- und Ausgabe
Arithmetische Funktionen
Verschiedenes

Files in Pascal 1.4
Ubernahme von Programmen mit Files
Aktive Kommentare
Bereichstests

Include-Files

Anhang

Syntax-Diagramme Pascal 1.4
Fehlernummern Pascal 1.4
Laufzeitfehler

Operatoren in Pascal
Literaturhinweise

Index

162
163
164
165
166
168
170
172
172
173
174
176
177
177
178
182
183
183
183
183
183
184
188
189
190
192
193
193
194

195
201
205
207
211

213

8 Inhaltsverzeichnis

Vorwort 9

Vorwort

Das vorliegende Buch richtet sich an Schiiler, Studenten und Hobbypro-
grammierer, die einen C 64 besitzen und einen praktischen Einstieg in
Pascal finden wollen. Dabei werden nur minimale Kenntnisse in der Pro-
grammierung vorausgesetzt.

Durch die Einheit Buch-Diskette konnen die nicht zu unterschitzenden
Probleme eines Anfingers bei der Benutzung eines Compilers ausgeriumt
werden. Das erste Kapitel beschreibt deshalb zunichst an einem Belsplel
Schritt fir Schritt die Bedienung des Systems.

Kapitel 2 stellt einen vollstindigen Pascal-Kurs fiir Anfinger dar. Da der
beiliegende Compiler den vollen Standard (1) akzeptiert, werden alle Ele-
mente von Pascal vorgestellt. Der Leser soll moéglichst frith die Grundlagen
von Pascal erlernen, mit denen er erste einfache Programme erstellen kann.

Beispiele sollen nicht Selbstzweck sein, sondern spiter zumindest als
Schema fiir eigene Problemlésungen dienen. Im gesamten zweiten Kapitel
werden Anregungen gegeben, das erworbene Wissen durch eigene Experi-
mente am C 64 zu festigen.

Kapitel 3 richtet sich an den fortgeschfittenen Anwender. Wihrend die
Einfithrung auf systemspezifische Programme verzichtet (Sprites, Grafik,
Sound), werden hier Tricks und Tips zum Pascal-System gegeben.

In Kapitel 4 ist die Dokumentation des Pascal-Systems zusammengestellt.
Sie gibt klare Auskunft auch iiber Details des Editors und Compilers.

10 Vorwort

Die Werkzeuge 11

1 Die Werkzeuge

1.1 Warum Pascal?

An dieser Stelle sollen nicht weitschweifig die grundsitzlichen Vorteile der
Strukturierten Programmierung dargestellt werden, sondern die sinnvollen
Anwendungsgebiete fiir Pascal auf dem C 64, einem typischen Homecom-
puter, gezeigt werden.

Einerseits kann man die Sprache Pascal um ihrer selbst willen benutzen:
Man arbeitet mit Pascal, um eine moderne Programmiersprache zu be-
herrschen und vielleicht das Wissen in Schule, Universitit oder Beruf zu
verwenden.

Andererseits bieten einige Hobbyanwendungen (Logikspiele, Dateipro-
gramme, Mathematikprogramme) Beispiele fiir Gebiete, in denen eine
Sprache mit michtigeren Strukturen fiir Daten und Programme deutliche
Vorteile gegeniiber BASIC besitzt.

Schliefllich sprechen auch die hohere Ausfiihrungsgeschwindigkeit und der
kompakte Code bei groBen Programmen fiir die Verwendung von Pascal.

Nicht zu vergessen ist die Portabilitit der Programme. Ein Programm, das
auf dem C 64 in Pascal erstellt wurde und keine speziellen Eigenschaften
des C 64 benutzt (SYS-Befehle etc.), kann direkt auf einen IBM-PC,
ATARI 520 ST oder gar einen Grofrechner an der Universitit iibernom-
men werden.

12 Die Werkzeuge

Neben diesen Vorteilen diirfen aber auch die Grenzen von Pascal nicht
vergessen werden. Ein schnelles Action-Spiel wird man besser mit einem
Assembler erstellen, und Programme mit intensiven String-Operationen sind
immer noch einfacher in BASIC zu formulieren. Sicherlich wird aber die
Erfahrung mit dem strikten Formalismus in Pascal auch den Program-
mierstil in diesen Sprachen veridndern.

1.2 Was macht ein Compiler?

Um die Funktionsweise des Pascal-Systems zu verstehen, muf3 zunichst die
Aufgabe eines Compilers erliutert werden.

Vielleicht haben Sie schon gehort, dafl kein Mikrocomputer direkt BASIC
oder Pascal versteht, sondern nur in seiner speziellen Maschinensprache
programmiert werden kann. Andererseits kOnnen Sie ja offensichtlich den
C 64 mit Befehlen wie PRINT 6*4 oder GOTO 9 zu sinnvollen Titigkeiten
bewegen. Dariiber hinaus verspricht Thnen dieses Buch, auch in Pascal mit
dem C 64 kommunizieren zu konnen.

Die Losung dieses Dilemmas ist die Existenz von Hilfsprogrammen, die
BASIC oder Pascal in die primitive Maschinensprache iibersetzen.

Diese Hilfsprogramme selbst sind vollstindig in der Maschinensprache des
Mikroprozessors (des 6510 beim C 64) geschrieben und somit von diesem
direkt ausfiithrbar.

Beim C 64 befindet sich dieses Hilfsprogramm fiir BASIC bereits beim
Einschalten im Rechner, da es zusammen mit dem Betriebssystem un-
l6schbar in sogenannten ROMs gespeichert ist. Wenn Sie in BASIC eine
Zeile mit Zeilennummer eingeben, so wird diese Zeile im Rechner
gespeichert. Beim Programmstart mit RUN wird das Programm Befehl fiir
Befehl gelesen. Fiir jeden Befehl wird ein kleines Programm in Maschi-
nensprache aufgerufen, das den jeweiligen Befehl ausfithrt. Bei dem Befehl
PRINT 6*3 wiirde z.B. eine Multiplikationsroutine und dann eine Aus-

Die Werkzeuge 13

gaberoutine gestartet. Falls Sie bei der Eingabe Fehler gemacht haben,
meldet dies das System mit Angabe der Zeilennummer des fehlerhaften
Befehls:

SYNTAX ERROR IN 312

Ein Hilfsprogramm, das die Ausfithrung eines Programmes nach diesem
Schema schrittweise organisiert, nennt man Interpreter. Durch diese inter-
pretative Ausfithrung koénnen Sie in BASIC beliebig zwischen Programm-
ausfithrung und Programminderung wechseln und sogar Befehle ohne
Zeilennummer direkt ausfiithren.

Das Pascal-System auf der beiliegenden Diskette enthilt einen Compiler.
Dies ist ein Programm, das ebenfalls eine Ubersetzung der hoheren
(problemorientierten) Programmiersprache Pascal in Maschinensprache
vornimmt. Der Ubersetzungsvorgang unterscheidet sich wie folgt von der
Arbeitsweise eines Interpreters:

Zunichst erstellen Sie ein komplettes (!) Programm in Pascal. Dieses Pro-
gramm geben Sie mit einem Editor, also einem Textverarbeitungspro-
gramm, ein. Dieses Programm heiflt Quelltext (source code). Der Compiler
liest diesen Programmtext in einem Durchlauf. Dabei priift er, ob das Pro-
gramm den Syntax-Regeln fiir Pascal entspricht. Eventuelle Fehler werden
mit einem Hinweis auf die Art des Fehlers markiert. Gleichzeitig werden
fehlerfreie Anweisungen in eine Folge von Befehlen in Maschinensprache
ubersetzt.

Ergebnis der Ubersetzung ist also ein Programm, das vom Rechner ohne
weitere Hilfsprogramme ausgefithrt werden kann. Dieses Programm
bezeichnet man als Objektprogramm (object code). Theoretisch kénnten Sie
jetzt den Quelltext 18schen, da dieser nicht mehr benétigt wird. Natiirlich
werden Sie das nicht tun, da das Programm noch logische Fehler enthalten
kann, die der Compiler nicht entdeckt.

Zur Korrektur von logischen oder syntaktischen Fehlern miissen Sie wieder
von vorn anfangen: Der Quelltext muf3 nach einer Korrektur neu iibersetzt
werden. Den Vorteil einer vollstindigen Priifung auf syntaktische Korrekt-
heit erkauft man sich also durch einen groBeren Ubersetzungsaufwand. Ein
weiterer Nachteil besteht darin, daB bei Fehlern bei der Ausfithrung des
Objektprogrammes (z.B. Division durch null) kein Verweis auf die Fehler-
position im Quelltext existiert.

14 Die Werkzeuge

1.3 Das Pascal-System

In diesem Kapitel werden noch keine Eigenschaften der Sprache Pascal
vorgestellt, sondern nur die ersten Schritte bei der Bedienung des Pascal-
Systems genau erkldrt. Nachdem Sie dieses Kapitel bearbeitet haben, ken-
nen Sie das Zusammenspiel der Komponenten des Systems, so dafB3 Sie sich
ohne Probleme in der Dokumentation in Kapitel 4 zurechtfinden werden.

1.3.1 Systemstart

Entfernen Sie alle Erweiterungsmodule, und schalten Sie den C 64 aus und
dann wieder ein, um alle geladenen Hilfsprogramme zu l6schen. Mit

LOAD "PASCAL-SYSTEM",8

laden Sie das System von der beiliegenden Diskette. Auf einer anderen
Diskette legen Sie zunichst eine Sicherheitskopie des Programmes an:

SAVE "PASCAL-SYSTEM",8
VERIFY "PASCAL-SYSTEM",8

Die Beispielprogramme (xxx.P) kénnen Sie so nicht kopieren. Dazu be-
nutzen Sie den Editor (s. Abschnitt 1.3.2). Haben Sie das System mit LOAD
geladen, so gelangen Sie mit dem Befehl RUN in das zentrale Menii des
Systems. In diesem Pascal-Menii kdnnen alle Teile des Systems aufgerufen
werden. Ab jetzt bendtigen Sie die Programmdiskette nicht mehr im
Diskettenlaufwerk. Fiir die Speicherung von Pascal-Quelltexten und
Objektprogrammen konnen Sie jetzt eine andere (formatierte) Diskette
einlegen.

Alle Eingaben im System sind so organisiert, dafl Sie mit mdglichst wenigen
Zwischenschritten jede Funktion erreichen kénnen. Dabei besitzen im all-
gemeinen die Zeichen '*’ und °’?’ eine Sonderfunktion. Eingaben bei
blinkendem Cursor miissen mit der RETURN-Taste beendet werden.

Grundsitzlich wird bei lingeren Operationen (Laden, Speichern, Com-
pilieren) eine Abfrage der RUN/STOP-Taste vorgenommen, so dafl die
Ausfithrung abgebrochen werden kann.

Die Werkzeuge 15

1.3.2 Der Editor

Um Pascal-Quelltexte einzugeben und zu verdndern, enthilt das System
einen komfortablen Full-Screen-Editor. Mit diesem Programm kénnen Sie
den Bildschirm wie ein Fenster in allen vier Richtungen iiber den Text
verschieben und direkt Anderungen vornehmen, ohne sich um Zeilennum-
mern zu kiimmern.

Sie sollen zur Ubung folgenden Quelltext eingeben:

PROGRAM PROGRAMM1 (OUTPUT);

VAR I, N: INTEGER;
R : REAL;

BEGIN
WRITE("N="); READLN(N);
FOR I:= N TO 2*N DO
BEGIN
R:= 1/1;
WRITELN(I:3,R:15)
END
END.

Listing 1: Ubungsprogramm

Den Editor erreichen Sie aus dem Pascal-Menii durch die Eingabe eines
Namens aus maximal 16 Zeichen. Dieser Name darf die Zeichen **’, °$’ und
’?’ nicht enthalten. Unter diesem Namen speichert der Editor den Text
spiter auf der Diskette.

Als Namen geben Sie an dieser Stelle PROGRAMMI.P ein. Spiter kénnen
Sie dann alle Quelltexte an der Endung ’.P’ erkennen. Der Editor sucht
diesen Quelltext auf der eingelegten Diskette. Da noch kein Text mit
diesem Namen existiert, teilt Thnen der Editor mit, da3 er einen neuen
Text anlegen wird. Sie miissen nun eine Zahl eingeben, die die maximale
Linge einer Textzeile bestimmt:

==>60

Wenn Sie die Eingabe mit RETURN abschlieen, erscheint das eigentliche
Editor-Bild (s. Abschnitt 4.2). In der ersten Zeile wird die Nummer der
ersten Textspalte auf dem Bildschirm angegeben. Rechts auflen in dieser
Zeile steht der Betrag, um den das Textfenster beim Blittern (scrollen)
verschoben wird. HALF bedeutet jeweils eine halbe Bilschirmseite. Das
Blittern selbst erfolgt mit den Funktionstasten:

16 Die Werkzeuge

fl verschiebt das Fenster nach oben.
f3 verschiebt das Fenster nach unten.
f5 verschiebt das Fenster nach links.
f7 verschiebt das Fenster nach rechts.

Der Cursor wird nicht blinkend dargestellt und wie iiblich mit den Cursor-
tasten bewegt. In der obersten Zeile (weill) werden auch Befehle (Primary-
Commands) eingegeben. Geben Sie dort den folgenden Befehl ein:

COLUMNS

Damit ein Befehl ausgefithrt wird, miissen Sie die SHIFT- und die RE-
TURN-Taste driicken. Es erscheint eine Zeile, in der Spaltenmarkierungen
eingetragen sind.

Da der Textspeicher leer ist, stehen unterhalb der Spaltenmarkierungen die
Zeilen TOP und BOTTOM direkt untereinander. Sie stehen immer vor der
ersten und nach der letzten Textzeile. Um nun das Programm einzugeben,
erzeugen Sie sich zuniichst einige Leerzeilen. Dies geschieht, indem Sie in
der Zeile TOP ganz links (vor den Sternen) den Befehl (Line-Command)

110

eingeben. Wenn Sie wieder SHIFT-RETURN driicken, werden am Textan-
fang 10 Leerzeilen eingefiigt. Jetzt steht das Fenster am Textende, so daf
nur die Zeile BOTTOM sichtbar ist. Mit f1 kénnen Sie an den Anfang der
Leerzeilen gehen. Die eigentliche Texteingabe erfolgt rechts von den
weiflen Zeilennummern. Dabei springt der Cursor bei Betitigung der RE-
TURN-Taste auf den n#chsten Zeilenanfang.

Wollen Sie nach einer Zeile eine Leerzeile einfiigen, so geben Sie im
Zeilennummernbereich ’I’ ein. Analog 16scht man eine Zeile, indem man
bei ihrer Zeilennummer ein D’ eingibt. Wiederum wird der Befehl mit
SHIFT-RETURN ausgefithrt. Haben Sie den gesamten Text fertig
eingegeben, so tippen Sie in der ersten Bildschirmzeile den Befehl
(Primary-Command)

END

Nach SHIFT-RETURN wird der Text auf der eingelegten Diskette
gespeichert. AnschlieBend erreichen Sie wieder das Pascal-Menii.

Die Werkzeuge 17

1.3.3 Der Compiler

Um den Quelltext im Textspeicher zu iibersetzen, geben Sie im Pascal-
Menii ein Dollarzeichen ein. Nach dem Driicken der RETURN-Taste
meldet sich der Compiler (Pascal 1.4).

Hier soll nicht niher auf die méglichen Optionen (PCODE-START,
LISTING TO PRINTER) eingegangen werden. Sie milssen nur die
vorgegebenen Eingaben mit RETURN bestitigen. Wihrend der Compilation
wird der Quelltext am Bildschirm angezeigt.

Sollten Sie sich bei der Eingabe des Programmes vertippt haben, markiert
der Compiler den entsprechenden Fehler mit einem Pfeil. Durch die
Eingabe von ** brechen Sie dann die Ubersetzung ab. Driicken Sie nur
RETURN, so wird die Compilation fortgesetzt. Am Ende erscheint die
Meldung

ERRORS DETECTED: xx
PCODE FROM xxxx TO XXxx

(HIT RETURN FOR MENUE)

Mit der RETURN-Taste kehren Sie zum Pascal-Menii zuriick.

Traten bei der Ubersetzung Fehler auf, so miissen Sie vom Menii mit der
Eingabe

PROGRAMM1.P

zum Editor zuriickkehren und im Text Korrekturen vornehmen. Nach der
Riickkehr zum Pascal-Meniit (mit END) koénnen Sie die obigen Schritte
wiederholen.

1.3.4 Das Laufzeitsystem

Ist der Text endlich fehlerfrei, so moéchten Sie sicher als Lohn Ihrer Arbeit
das Programm auch einmal ausfithren. Dazu verlassen Sie das Pascal-Meni
mit der Eingabe **’. Es erscheint die iibliche Meldung von BASIC:

READY.

Das Objektprogramm steht jetzt im Speicher. Es kann mit RUN, SAVE
und VERIFY wie ein BASIC-Programm gestartet, gespeichert und gepriift
werden. Sie dirfen jedoch keine Zeilen 16schen oder hinzufiigen, da sonst
das Pascal-System nicht mehr korrekt arbeitet.

18 Die Werkzeuge

Das Beispielprogramm druckt nach der Eingabe einer ganzen Zahl N alle
Zahlen zwischen N und 2*N mit ihrem Kehrwert aus.

Um zu demonstrieren, wie das System auf einen Fehler wihrend der Aus-
fuhrung reagiert, wihlen Sie N=0: Diese Eingabe hat eine Division durch 0
zur Folge. Es erscheint folgende Meldung:

DIVISION BY ZERO
ERROR AT xxxx

xxxx ist eine dezimale Adresse im Objektprogramm. Notieren Sie sich diese
Zahl. Um nun den fehlerhaften Divisionsbefehl im Quellprogramm zu
lokalisieren, mufl der Compiler erneut gestartet werden. Deshalb kehren Sie
durch die Eingabe eines Sterns (*’) von BASIC zum Pascal-Menii zuriick.

Dort starten Sie den Compiler mit ’$’. Bei der ersten Eingabe wihlen Sie
die Option LOCATE ADDRESS. Dazu geben Sie die Zahl xxxx aus der
Fehlermeldung anstatt der angezeigten Zahl 1 ein. Die weiteren vorgegebe-
nen Eingaben bestitigen Sie nur mit RETURN. Wiederum wird der Quell-
text aufgelistet. Jedoch erscheinen unter dem Divisionsbefehl (R:=1/I) ein
Pfeil und die Meldung

%%% ERROR O IN 9

Der Pfeil markiert also die Position des Laufzeitfehlers. Alle Fehlernum-
mern sind im Anhang B mit Erkldrung aufgelistet.

Bild 1 zeigt noch einmal zusammenfassend die Komponenten des Pascal-
Systems.

— (Name) -
ane)> | EDITOR
PASCAL '
——>
ENGE | COMPILER
»—>
- BASIC

Bild 1: Systemstruktur

Die Werkzeuge 19

Zur Ubung konnen Sie jetzt Sicherheitskopien der Beispielprogramme auf
der beiliegenden Diskette anlegen. Durch Angabe der jeweiligen Pro-
grammnamen laden Sie die Quelltexte in den Arbeitsspeicher, wechseln die
Diskette und speichern anschlieBend die Texte mit END auf der neuen
Diskette.

Aufgaben

Jetzt sollten Sie ein wenig in den Kapiteln 4.1 bis 4.3 in der Dokumenta-
tion lesen. Dann werden Sie auch wissen, wie Sie aus dem Editor zuriick-
kehren kénnen, ohne daB3 der Quelltext auf Diskette gespeichert wird, was
die Eingabe eines Fragezeichens im Pascal-Menii bewirkt und wie Sie das
Listing von PROGRAMMI1 auf den Drucker ausgeben kénnen.

Auflerdem sollten Sie versuchen, einige der Beispielprogramme (xxx.P) auf
der Systemdiskette zu tibersetzen.

20 Die Werkzeuge

Einfiihrung in Pascal 21

2 Einfiihrung in Pascal

2.1 Symbole und Syntax-Diagramme

Leider liegt am Anfang Ihrer Arbeit mit Pascal eine Durststrecke von eini-
gen Kapiteln, die sich mit etwas abstrakteren Grundlagen beschiftigen.
Sollten Sie beim ersten Lesen einige Details nicht ganz verstehen, konnen
Sie spiter, wenn Sie etwas praktische Erfahrung am Rechner gesammelt
haben, diese Teile noch einmal bearbeiten.

Pascal ist eine formale Sprache: Programme sind Folgen von Symbolen.
Man kann zwar unendlich viele korrekte Symbolfolgen bilden, jedoch ist
die Menge der Regeln, die Syntax der Sprache Pascal, endlich.

In diesem Kapitel werden die kleinsten Einheiten von Programmen, die
Symbole von Pascal, vorgestellt. Diese Symbole sind nicht einzelne Zeichen,
sondern

- Bezeichner - Sonderzeichen
- Zahlen - Wortsymbole
- String-Konstanten - Kommentare

Die Definition einer Sprache iiber Symbole erlaubt eine gewisse Unab-
hingigkeit von den Eigenschaften spezieller Rechner. So wird z.B. in der
Sprache nie Bezug auf Zeilennummern oder die Formatierung des Quell-
textes genommen.

22 Einfiihrung in Pascal

Bezeichner bestehen aus einem Buchstaben, gefolgt von Buchstaben oder
Ziffern. Ein Bezeichner kann also theoretisch beliebig lang sein.

VARIABLE B747 ERGEBNIS A B JB007 (alle zulissig)

3MAL (das erste Zeichen ist kein Buchstabe)

ERGEBNIS-3 (Bindestrich nicht erlaubt)

In Pascal 1.4 sind nur die ersten 14 Zeichen signifikant. Somit betrachtet
der Compiler die folgenden Bezeichner als gleich:

EXTRALANGERNAME1 EXTRALANGERNAMEZ2

Zahlen sind Symbole, die aus komplizierteren Zeichenfolgen bestehen kén-
nen. Deshalb sind die Bildungsregeln auch nur schwerfillig in Worten zu
beschreiben. Eine anschauliche und iibersichtliche Beschreibung der Syntax
von Pascal liefern die Syntax-Diagramme. Bild 2 zeigt die Syntax-
Diagramme fiir Zahlen in Pascal:

GANZE ZAHL:

‘r—>@——l’——>
zAHL:
>
v < >{-
> >

Bild 2: Zwei Syntax-Diagramme

>4GANZE ZAHL [—>d1—>

Indem man den Pfeilen durch den Graphen folgt und die Zeichen in den
Kisten mit den abgerundeten Ecken notiert, erhilt man giiltige Zahlen in
Pascal. Eine ganze Zahl besteht also aus einer oder mehreren Ziffern. Im
zweiten Diagramm tritt zweimal ein Kistchen mit dem Namen ganze Zahl
auf. Da die Ecken der Kistchen nicht abgerundet sind, bedeutet dies, daf3
an diesen Stellen eine Zeichenfolge steht, die durch das Syntax- Dlagramm
ganze Zahl beschrieben wird.

Einfiihrung in Pascal 23

In spiteren Kapiteln sollen Sie diese Diagramme selbstindig lesen kdnnen.
Alle Syntax-Diagramme fiir Pascal sind im Anhang A aufgefiithrt. Fir
Zahlen wird die Syntax jedoch noch einmal verbal beschrieben, um das
Prinzip, das hinter den Diagrammen steht, zu verdeutlichen:

Eine ganze Zahl ist eine vorzeichenlose Ziffernfolge. Eine Zahl besteht aus
einer ganzen Zahl. Daran kann sich ein Dezimalpunkt mit mindestens einer
Nachkommastelle anschlieBen. Danach folgt eventuell der Buchstabe E mit
einem Exponent. Der Exponent besteht aus einer ganzen Zahl, der
eventuell das Vorzeichen "+" oder "-" vorausgeht.

1 0 1985 0.1 22.3 1E-4 1.5E8 (alle zuldssig)

1. (es muB} eine Nachkommastelle
folgen)

1 (es muf3 eine Null vor dem Punkt
stehen)

3,4 (das Komma ist nicht erlaubt)

In Pascal unterscheidet man also zwei Typen von Zahlen: Es gibt reelle und
ganze Zahlen. Reelle Zahlen sind dadurch gekennzeichnet, daB sie
Nachkommastellen und/oder einen Skalierungsfaktor (Exponent) besitzen.
Der Skalierungsfaktor gibt an, um wie viele Stellen der Dezimalpunkt ver-
schoben wird: ,

1 = 1E0 = 10E-1 = 100E-2 = 0.1E1 = 0.01E2

Eine String-Konstante besteht aus einer nicht-leeren Folge von Zeichen,
die in Anfiithrungszeichen eingeschlossen ist.

"+-+-" "ABCDE" "Leerzeichen: " (korrekt)

In Standard-Pascal werden Apostrophe und nicht Anfithrungszeichen ver-
wendet. Dort ist es auch erlaubt, Anfithrungszeichen in der Zeichenfolge zu
verwenden. Pascal 1.4 weicht von dieser Vorgabe ab, da das Betriebssystem
des C 64 (z.B. bei der Druckeransteuerung) Anfithrungszeichen gesondert
behandelt. :

’alpha’ (Anf‘ iihrungszeichen fehlen)
" (Strings der Linge Null sind unzulissig)
"klappt’s?" (korrekt)

" 1"#$5%&" (Anfiithrungszeichen nicht erlaubt)

24 Einfiihrung in Pascal

In Pascal werden folgende Sonderzeichen verwendet:

Iy~ *1 +

AV A
v
e

*

_)AF!A

.
9 o9

Addition, Vereinigung von Mengen
Subtraktion, Differenz von Mengen
Multiplikation, Schnitt von Mengen
Division

Zuweisung

gleich

ungleich

groBler oder gleich

kleiner oder gleich

Klammern

Index- und Mengenklammern
Kommentarklammern
Dereferenzier-Operator
Auslassungspunkte

Satzzeichen

Einige Symbole in der Liste bestehen aus zwei Sonderzeichen. Zwischen

den beiden Sonderzeichen darf kein Leerzeichen stehen:

= (dies ist ein Symbol)

(dies sind zwei Symbole)

Die reservierten Wortsymbole von Pascal sind in der folgenden Liste
aufgefithrt. Sie diirfen nicht als Bezeichner verwendet werden. Thre Be-

deutung wird in den weiteren Kapiteln erklirt:
AND FILE NOT
ARRAY FOR OF

BEGIN FORWARD OR

CASE FUNCTION PACKED
CONST GOTO PROCEDURE
DIV IF PROGRAM
DO IN RECORD
DOWNTO LABEL REPEAT
ELSE MOD SET

END NIL THEN

TO
TYPE
UNTIL
VAR
WHILE
WITH

Einfiithrung in Pascal 25

Im Gegensatz zu BASIC diirfen Bezeichner Wortsymbole enthalten:

FORMEL EINGABEENDE

sind also giiltige Bezeichner, obwohl sie die Zeichenfolgen FOR, OR und
END enthalten.

Da die GrofBe eines iibersetzten Programmes (Objektprogramm) nicht von
der Formatierung des Quelltextes abh#ngig ist, spart man nicht wie in
BASIC mit Leerzeichen zwischen den Symbolen. Vielmehr versucht man
durch das Layout (Einriickung, Kommentare) die Struktur des Programmes
zu unterstreichen. Leerzeichen sind jedoch nur dann syntaktisch erforder-
lich, wenn durch ihr Fehlen aus zwei Symbolen eines wiirde.

IF X = 6 * Y THEN

Hier sind nur zwischen IF und X, sowie zwischen Y und THEN
Leerzeichen notwendig.

Kommentare kénnen an jeder Stelle des Programmes eingefiigt werden, an
der auch ein Leerzeichen stehen darf. Kommentare kénnen beliebige Texte
enthalten. Da auf dem C 64 keine geschweiften Klammern vorhanden sind,
werden diese durch (* und *) ersetzt. Natiiriich darf ein Kommentar nicht
die schlieBende Klammer **)’ enthalten. Andererseits kann sich ein Kom-
mentar iber mehrere Zeilen des Quelltextes erstrecken.

Viele Compiler kennen auch aktive Kommentare, die den Compilationsvor-
gang beeinflussen konnen. In Pascal 1.4 beginnt ein aktiver Kommentar mit
einem Dollarzeichen. Die Wirkung aller aktiven Kommentare ist in der
Dokumentation beschrieben.

(*$R+ Bereichstest einschalten *)

2.2 Programmstruktur

In Pascal geniigt es nicht, die Befehle des Programmes einfach hintereinan-
derzustellen. Vielmehr ist - bildlich gesprochen - ein Rahmen erforderlich,
der die eigentlichen Anweisungen umgibt. Die Grobstruktur jedes Pro-
grammes 1468t sich schematisch so angeben:

26 Einfiihrung in Pascal

PROGRAM NAME (INPUT,OUTPUT);
(* Hier ist der Vereinbarungsteil *)

BEGIN
(* Hier ist der Anweisungsteil *)
END.

Listing 2: Grobstruktur

Die erste Zeile ist der Programmkopf. Hier wird nach dem Wortsymbol
PROGRAM dem Programm ein Name gegeben, der jedoch im Programm
keine weitere Bedeutung besitzt. Die Bezeichner INPUT und OUTPUT
deuten an, daB das Programm zwei Kandle zur Umwelt besitzt: die Tastatur
als Standardeingabe (INPUT) und den Bildschirm als Standardausgabe
(OUTPUT). Im Abschnitt 2.16 iiber Files wird niher auf diese Programm-
parameter eingegangen.

Bereits im ersten Programm (Listing 1) wurde der Vereinbarungsteil be-
nutzt. Grundsitzlich miissen in Pascal alle Bezeichner definiert werden,
bevor sie (in Anweisungen) verwendet werden kénnen.

Im Anweisungsteil eines Programmes stehen die Befehle, die den Algorith-
mus beschreiben, nach dem die Objekte aus dem Vereinbarungsteil bear-
beitet werden. :

Bitte achten Sie insbesondere auf die Satzzeichen. Sie sind genauso wichtig
wie alle anderen Symbole und diirfen nicht fehlen. Natiirlich existiert auch
ein Syntax-Diagramm, das den Aufbau eines Programmes definiert. Es
heilt PROGRAMM und steht am Ende von Anhang A.

Wenn Sie das Programm in Listing 2 mit diesem Diagramm vergleichen,
werden Sie den Pfeilen folgend bis zum Kasten BLOCK gelangen. Dieser
bezieht sich auf das Syntax-Diagramm BLOCK. Jeder Weg im Diagramm
BLOCK fiithrt vom Eingang links oben zum Ausgang rechts unten iiber die
Symbole BEGIN und END. Auch wenn Sie die vielen Namen in den
Kisten noch nicht kennen, ist Thnen sicherlich klargeworden, dafl durch
Listing 2 und das Syntax-Diagramm PROGRAMM dieselben Regeln fiir
den Rahmen eines Programmes in Pascal definiert werden.

Einfiihrung in Pascal 27

Aufgaben

1. Das Programm Struktur ist ein vollstindiges Programm! Lassen Sie es
deshalb einmal iibersetzen. Experimentieren Sie ein bi3ichen: Priifen Sie
am Programmbezeichner (NAME) die Regeln fiir Bezeichner (z.B.
STRUKTURI, 2.PROGRAMM, PROGRAM etc.), entfernen Sie ein
paar Satzzeichen (nicht zu viele!) etc. Welche Fehlermeldungen liefert
der Compiler? (Erliuterung der Fehlernummern in Anhang B).

2. An welcher Stelle im Syntax-Diagramm PROGRAMM kommt es zu
Problemen, wenn Sie folgendes Programm untersuchen?

PROGRAM FALSCH (); BEGIN END.

Beheben Sie den Fehler!

2.3 Deklaration von Variablen

Eine Variable 148t sich unter zwei verschiedenen Gesichtspunkten betrach-
ten. Einerseits dient sie zur Programmlaufzeit zur Speicherung von verin-
derlichen (variablen) Werten, wie Zwischenergebnisse oder Zustinde des
Programmes. Andererseits besitzt sie konstante Eigenschaften: Eine Variable
hat einen Namen (Variablenbezeichner), iiber den sie im Programmtext
angesprochen wird. Auflerdem kann sie nur eine gewisse Klasse von Werten
annehmen (z.B nur Zeichen oder nur Zahlen).

Diese konstanten Eigenschaften werden im Vereinbarungsteil des Pro-
grammes fiir jede im Anweisungsteil benutzte Variable festgelegt.
Gewohnlich wird man Variablen einen Namen geben, der ihre Bedeutung
im Programm widerspiegelt:

VAR I : INTEGER;
ZAEHLER : INTEGER;
GEHALT : REAL;
DELTA : REAL;
ALTER : INTEGER;
BUCHSTABE1: CHAR;
BEFEHL : CHAR;

Listing 3: Eine Variablendeklaration

28 Einfiihrung in Pascal

Eine Variablendeklaration beginnt mit dem Wortsymbol VAR. An-
schlieBend werden die Variablenbezeichner aufgefiihrt. Fiir jede Variable
wird nach einem Doppelpunkt ihr Typ angegeben. Dies ist die oben
erwihnte Klasse von Werten, die die Variable annehmen kann. In Listing 3
werden die Typen durch Bezeichner (INTEGER, REAL und CHAR)
angegeben. An dieser Stelle sei nur soviel gesagt, daB die Variablen I,
ZAEHLER und ALTER nur ganze Zahlen, GEHALT und DELTA reelle
Zahlen und BUCHSTABEI] und BEFEHL nur Zeichen speichern kénnen.

Die obige Variablendeklaration kann wie folgt abgekiirzt werden:

VAR I, ZAEHLER, ALTER :INTEGER;
GEHALT, DELTA :REAL;
BUCHSTABE1, BEFEHL :CHAR;

Der entscheidende Vorteil einer expliziten Deklaration jeder Variablen am
Programmanfang ist die Mdglichkeit, schon wihrend der Ubersetzung die
Korrektheit von Operationen zu priifen. Die folgende Zuweisung, die einer
Variablen fiir ganze Zahlen ein Zeichen zuordnen wiirde, kann sofort vom
Compiler als fehlerhaft erkannt werden:

ZAEHLER:= BEFEHL

Merke: Jeder Bezeichner muf} in Pascal vor seiner Anwendung
deklariert werden.

2.4 Anweisungen und Ausdriicke

Nun haben Sie endlich das Riistzeug beisammen, um sich dem An-
weisungsteil des Programmes zuzuwenden. Der Anweisungsteil besteht aus
einer (wie wir gesehen hatten evtl. sogar leeren) Folge von Anweisungen
zwischen den Wortsymbolen BEGIN und END.

BEGIN
Anweisung;
Anweisung;

Anweisung;
Anweisung
END.

Die Anweisungen sind voneinander durch Semikola getrennt. In diesem
Abschnitt wollen wir die elementarste Form der Anweisung, die Zuweisung

Einfiihrung in Pascal 29

vorstellen: Einer Variablen links vom Zuweisungsoperator := wird das
Ergebnis der Berechnung des Ausdruckes auf der rechten Seite zugewiesen.

I:
I:
R:

0
I+1
171

Da eine Zuweisung den alten Wert einer Variablen iiberschreibt, benétigt
man zum Vertauschen der Werte der Variablen I und J eine Hilfsvariable:

H:=1; 1:=J; J:=H (also nicht 1:=d; J:=I)
Dies ist auch ein Beispiel fiir eine Anweisungsfolge.

I+1, 1/I, I, und O sind Ausdriicke. Im allgemeinen enthalten Ausdriicke
mehrere Operanden (Variablen, Konstanten) und Operatoren (+, -, OR, =).
Die Struktur eines Ausdruckes wird durch das Syntax-Diagramm AUS-
DRUCK im Anhang A beschrieben. Deshalb werden hier nicht die for-
malen Bildungsregeln fiir Ausdriicke genannt, sondern nur die Besonder-
heiten von Pascal hervorgehoben.

1. Operatoren diirfen nicht direkt aufeinanderfolgen. Man schreibt also
A + (-B) und nicht A + -B.

2. Die Multiplikationsoperatoren *, /, DIV, MOD und AND binden
stirker als die Additionsoperatoren +, -, OR (Punkt- vor Strichrech-
nung).

A/3+2 bedeutet (A/3)+12

Die Additionsoperatoren binden stirker als die Vergleichsoperatorén
=, <>, >=, <=, <, >, IN,

3. Es gibt kein Operationssymbol zum Potenzieren. Der Pfeil 1 hat eine
vollig andere Bedeutung.

4. Eine Folge von Operatoren gleicher Prioritit wird von links nach rechts
ausgewertet.

A*B*C bedeutet (A*B)*cC
A-B-C bedeutet (A-B)-¢C

5. Im Zweifelsfall sollte man die Prioritit mit Klammern unterstreichen:

30 Einfiihrung in Pascal

(A*B) - (C*D) statt A*B-C*D

6. Wie in BASIC stehen auch Standardfunktionen zur Verfiigung, z.B. SIN,
COS, SQRT. Im Augenblick koénnen Sie diese Funktionen ndgiv
verwenden. Alle arithmetischen Funktionen sind in der Dokumentation
in Abschnitt 4.5 aufgefiihrt.

Die Operatoren werden spiter noch detailliert besprochen.

2.5 Einfache Ein- und Ausgabe

Zwar konnen Sie jetzt bereits korrekte Anweisungsfolgen bilden, jedoch
fehlt Thnen noch eine Anweisung, um die Ergebnisse der Zuweisungen am
Bildschirm zu verfolgen. In diesem Abschnitt werden deshalb die
Gegenstiicke zu PRINT und INPUT in BASIC vorgestellt.

2.5.1 WRITE

In Threm ersten Programm (Listing 1) trat bereits die Anweisung
WRITELN auf. Syntaktisch gesehen ist WRITELN ein Bezeichner, dem in
Klammern Parameter folgen kénnen. WRITE und WRITELN bewirken eine
Ausgabe auf den Bildschirm.

WwRITE (Ausdruck)

Dies ist die Grundform einer Ausgabeanweisung. Durch verschiedene
zusitzliche Parameter lassen sich die Formatierung und das Ausgabegerit
wihlen. Wir wollen uns in diesem Abschnitt nur mit der Bildschirmausgabe

beschiftigen.

In der oben angegebenen Form hingt die Ausgabe von dem Typ des Aus-
druckes ab:

1. Der Ausdruck ist ein String: z.B.
WRITE("ADAM & EVA")

Der angegebene String wird ab der momentanen Cursorposition aus-
gegeben. Der Cursor steht danach direkt hinter dem String.

Einfiihrung in Pascal 31

2. Der Parameter ist ein arithmetischer Ausdruck, der also eine Zahl als
Ergebnis liefert:

WRITE(400+44%2)

Dann wird ab der momentanen Cursorposition der Wert des Ausdruckes
(hier also 488) gedruckt. Der Cursor steht nach der Ausfiihrung des
Befehls direkt hinter der letzten Ziffer.

3. SchlieBlich kann der Ausdruck auch ein einzelnes Zeichen als Ergebnis
besitzen:

WRITE("A™)

Die Ausgabe erfolgt dann genauso wie bei (1) fiir einen String der
Linge 1. Warum die Fille (1) und (3) separat aufgefithrt werden, wird
spiter in Abschnitt 2.6.2 und 2.9.2 deutlich.

Eine einfache Formatierung der Ausgabe erreicht man, indem man die obi-
gen Parameter um eine FeldgréBe nach einem Doppelpunkt erweitert:

WRITE("GANZ RECHTS" : 40);
WRITE(30*40 : 10);

Die FeldgroBe kann ein beliebiger Ausdruck sein, der eine ganze Zahl als
Ergebnis liefert. Die FeldgroBe bestimmt eine Mindestanzahl an Zeichen,
die bei der Ausgabe gedruckt wird.

Ist die Stringkonstante kiirzer als die angegebene FeldgroBe, so wird der
String rechtsbiindig in ein Feld der geforderten Linge gestellt. Gleiches
geschieht mit einer Zahl, deren Darstellung kiirzer als die Feldgr6Be ist.
Die FeldgroBe wird ignoriert, falls die Ausgabe zu lang ist (der Punkt steht
in den Beispielen fiir ein Leerzeichen):

WRITE(3*4 : 5) druckt ...12 (rechtsblindig)
WRITE(W***1u:5) druckt ..*** (rechtsbiindig)
WRITE(-1E6: 5) druckt -1000000 (zu lang)
WRITE("XXX":1) druckt XXX (zu lang)

Zwei aufeinanderfolgende WRITE-Befehle kénnen immer zu einem
zusammengefaflt werden, wobei man die Parameter durch Kommata trennt.
Ein WRITE-Befehl kann also beliebig viele Parameter besitzen:

WRITE("DAS FELD IST", A*B: 5, " QUADRATMETER GROSS.");
WRITE(X:5, Y:5, 2:5)

32 Einfiihrung in Pascal

Um die nichste Ausgabe in der folgenden Bildschirmzeile fortzusetzen,
verwendet man den Befehl WRITELN (write line). Der Befehl WRITELN
ohne weitere Parameter setzt den Cursor auf den Anfang der nichsten
Bildschirmzeile. Mit der folgenden Befehlsfolge druckt man also drei
Leerzeilen.

WRITELN; WRITELN; WRITELN

Ersetzt man bei (1) bis (3) den Befehl WRITE durch WRITELN, so erfolgt
die Ausgabe wie oben beschrieben. Zusétzlich wird am Ende der Ausgabe
ein Zeilenvorschub durchgefiihrt:

WRITE ("DAS FELD IST", A*B: 5);
WRITELN(" QUADRATMETER GROSS.");
WRITELN("t": 13);)
WRITELN("DIES IST ZEILE 3")

2.5.2 READ

Haben Sie im Vereinbarungsteil wie im letzten Kapitel beschrieben Varia-
blen deklariert, so konnen Sie auch vom Bildschirm Werte einlesen. Dabei
erfolgt die Eingabe zeilenweise:

Der Benutzer wird mit blinkendem Cursor zu einer Eingabe aufgefordert.
Er kann dann beliebige Zeichen eingeben. Schliet er die Eingabe mit der
RETURN-Taste ab, so wird die gesamte Bildschirmzeile gespeichert. Der
Inhalt der Bildschirmzeile wird mit

READ (Variablenbezeichner)

gelesen.

Dabei gibt es folgende Moglichkeiten (Variablendeklaration s. Listing 3):

1. Die Variable ist vom Typ CHAR. Dann wird ein einzelnes Zeichen ab
der momentanen Position in der Eingabezeile gelesen und der Variablen

zugewiesen.

READ (BUCHSTABE1)

Einfiihrung in Pascal 33

2. Die Variable ist vom Typ INTEGER oder REAL. Zunichst werden
vorlaufende Leerstellen iiberlesen. Nachfolgende Ziffern werden bis
zum nichsten Leerzeichen gelesen. AnschlieBend wird der Variablen
der Wert der Ziffernfolge zugewiesen.

READ (GEHALT)

Wird bei (1) oder (2) das Ende der Eingabezeile erreicht, so wird der Be-
nutzer erneut zur Eingabe einer weiteren Zeile aufgefordert. Wie bei
WRITE konnen zwei aufeinanderfolgende Read-Anweisungen zu einer
zusammengefa3t werden. Die zwei folgenden Zeilen liefern also die gleiche
Eingabe.

READ(BEFEHL); READ(I)
READ(BEFEHL, I)

Um bei diesen Eingaben der Variablen BEFEHL das Zeichen "*" und der
Variablen I die ganze Zahl 80 zuzuweisen, sind z.B. die folgenden Eingaben
moglich:

*80 (RETURN-Taste) oder
* 80 (RETURN-Taste)

oder auch in zwei Zeilen:

* (RETURN-Taste)
80 (RETURN-Taste)

Gibt man zu viele Werte ein, z.B.

*80 90

so lesen die obigen Read-Anweisungen bis zum Leerzeichen hinter der
Zahl 80. Eine folgende Read-Anweisung wird dann die nichste Zahl - also
90 - lesen. Mochte man den Rest einer Eingabezeile ignorieren, so
verwendet man den Befehl READLN (read line). Ohne weitere Parameter
iiberliest er alle Zeichen bis zum Zeilenende. Durch die Anweisungsfolge

READ(BEFEHL, 1); READLN

wiirde also die Zahl 90 nach der Eingabe von ’* und 80 iiberlesen werden.
Die nichste Read-Anweisung wird also in der nichsten Bildschirmzeile
erfolgen. Wie bei WRITELN 148t sich eine solche Folge von READ und
READLN zu einem Befehl zusammenfassen:

34 Einfiihrung in Pascal

READLN(BEFEHL, 1)

AbschlieBend ist noch ein vollstindiges Programm mit Ein- und Ausgabe
angegeben, das Nullstellen der gemischtquadratischen Funktion x*x+p*x+q
bestimmt:

PROGRAM PQFORMEL (INPUT, OUTPUT);
VAR P,Q,W,A: REAL;

BEGIN
WRITE("P ="); READLN(P);
WRITE("Q ="); READLN(Q);
W:= SQRT(P*P/4-Q);
A:z= -P/2;
WRITELN("X1=", A+W);
WRITELN("X2=",A-W)

END.

Listing 4: Nullstellenbestimmung

Aufgaben

1. Damit Sie sich einen praktischen Uberblick iiber die vielen verschiede-
nen Moglichkeiten zur Ein- und Ausgabe verschaffen kénnen, sollten
Sie die Beispiele im Text am C 64 ausprobieren. Dabei diirfen Sie die
Deklaration der Variablen und den Rahmen aus Listing 2 nicht
vergessen.

2. Andern Sie das Programm in Listing 4 so, daB die Werte fir P und Q
vom Benutzer in einer Zeile eingegeben werden und die Ausgabe fol-
gendermafBen formatiert wird:

X1=XXXXXXXXXXXXK; N2ZXXXXXXXXXXXX

3. Bestimmen Sie die FeldgroBe, durch die der Text Uberschrift auf dem
Bildschirm zentriert erscheint. Finden Sie eine allgemeine Formel zur
Berechnung der FeldgroBe fiir gegebene Bildschirmbreite und Text-
linge!

4. Es werden folgende drei Zeilen eingegeben:

O U1 -
oo N
- N W
N o

1 1

Programmieren Sie drei Anweisungsfolgen, die folgende Werte lesen:

Einfiihrung in Pascal 35

1. Die Zahlen 1, 2, 3, 4 und 9
2. Die Zahlen 1, 5 und 9
3. Die Zahlen 4 und 8

5. Ist Thnen die genaue Wirkung der FeldgréBe noch unklar, sollten Sie
folgende Anweisungen programmieren:

READ(X, LEN);
WRITELN("IM, X:LEN,"IM)

Wihlen Sie positive und negative Zahlen fiir X und unterschiedliche
FeldgroBBen LEN!

6. Experimentieren Sie mit Ausdriicken, Anweisungsfolgen und den Ein-
und Ausgabebefehlen! Schreiben Sie kleine Programme, um ein Gefiihl
fiir Ausdriicke in Pascal zu bekommen!

~ Sollten Sie keine eigenen Ideen haben, kénnen Sie sich an der folgenden
kleinen Liste orientieren: Berechnung von Zinsen und Zinseszinsen,
Berechnung der Fliche von Kreisen und Ellipsen, des Volumens von
Kugeln und Kegeln. Berechnung des Logarithmus zur Basis 10. Ver-
gleichen Sie SIN(X)/COS(X) mit TAN(X). Ist SIN(x) * SIN(x) + COS(x)
* COS(X)=1 ? Wie berechnet man die Umkehrfunktion von SIN(X)?

2.6 Elementare Datentypen

In den vorausgehenden Abschnitten trat bereits mehrfach der Begriff Typ
auf: Zahlen wurden unterschieden in ganze Zahlen und reelle Zahlen,
Variablen wurden bei der Deklaration an einen Typ gebunden, und Aus-
driicke besaBlen einen Typ. Falls Sie bereits in BASIC programmiert haben,
wissen Sie, dal es dort nur zwei Typen gibt: (reelle) Zahlen und Strings. In
Pascal gibt es auch Objekte von véllig anderen Typen. Spiter (in Abschnitt
2.12) wird sogar beschrieben, wie man eigene Typen in Pascal definiert.

Dieser Abschnitt beschiftigt sich mit den elementaren Standardtypen
INTEGER, REAL, CHAR und BOOLEAN und stellt die Operationen mit
Objekten dieser Typen vor.

36 Einfiihrung in Pascal

2.6.1 Der Typ INTEGER

Werte vom Typ INTEGER sind ganze Zahlen, also positive und negative
Zahlen ohne Nachkommastellen. Die wichtigsten Operationen, die auf
ganze Zahlen anwendbar sind, liefern als Ergebnis wieder eine ganze Zahl:

+ Addition

- Subtraktion oder Vorzeichenwechsel
* Multiplikation

DIV ganzzahlige Division

MOD Modulo-Bildung (Divisionsrest)

Um die Wirkungsweise der letzten beiden Operationen zu verdeutlichen,
folgen noch einige Zahlenbeispiele:

10 pIv 3 = 3 0 MOD 3 = 1
(-10) pIv. 3 = -3 (-10) MOD 3 = -1
10 DIV (-3) = -3 10 MOD (-3) = 1
(-10) DIV (-3) = 3 (-10) MOD (-3) = -1

Formal hingen DIV und MOD wie folgt zusammen:

X = (XDIVY) * Y+ (X MOD Y)

Weiterhin gibt es die arithmetische Funktion ABS(n), die den Absolutwert
(Betrag) der Zahl n liefert.

Jeder Rechner kann nur Zahlen einer endlichen Gréf3e darstellen. In Pascal
1.4 sind als ganze Zahlen nur Werte mit

-MAXINT-1 <= n <= MAXINT

darstellbar. MAXINT ist ein vordefinierter Konstantenbezeichner, den Sie
auch in Thren Programmen verwenden kénnen. Die Konstante hat den Wert
MAXINT = 32787. Tritt bei einer der obigen Operationen mit ganzen
Zahlen eine Bereichsiiberschreitung auf, so meldet dies das Pascal-
Laufzeitsystem und unterbricht das laufende Programm.

Einfiithrung in Pascal 37

2.6.2 Der Typ REAL

Werte des Typs REAL sind reelle Zahlen. Die arithmetischen Operationen
(+, -, *, /) liefern angewandt auf reelle Zahlen ein Ergebnis vom Typ
REAL. Der Schrigstrich / liefert also das normale Ergebnis einer Division:

1.571.2=1.25

Andererseits diirfen die Operationen MOD und DIV nicht auf Werte vom
Typ REAL angewendet werden. Weiterhin sind alle iiblichen arithmetischen
Funktionen in Pascal definiert. Sie liefern jeweils ein Ergebnis vom Typ
REAL:

Bezeichner Bedeutung Name

in Pascal in BASIC
ABS Absolutwert ABS
SQRT Quadratwurzel SQR
EXP Exponentialfkt. EXP

LN Nat. Logarithmus LOG
SIN Sinus SIN

CcOoS Cosinus COS
ARCTAN Hauptwert arctan ATN
SQR : Quadrat ---

Die trigonometrischen Funktionen sind fiir Winkel in Bogenmaf3 definiert.
Wollen Sie mit Winkeln in Grad arbeiten, so miissen Sie zunichst eine
Umrechnung vornehmen. Diese wird als Beispiel fiir ein Programm mit
REAL-Variablen vorgestelit:

PROGRAM WINKEL (INPUT, OUTPUT);

VAR X, T : REAL;
FAKTOR1: REAL;

BEGIN :

WRITE("WINKEL:"); READLN(X);
FAKTOR1:= 1.74532925E-2; (* P1/180 *)
WRITELNCUSING, X, ")=", SIN(X*FAKTOR1));
WRITELN;
WRITE("TANGENS:"); READLN(T);
WRITEC"DER WINKEL™,ARCTAN(T)/FAKTOR1);
WRITELN(" BESITZT DEN TANGENS",T);

END.

Listing 5: Real-Variablen

38 Einfiihrung in Pascal

In Pascal 1.4 ist die Funktion SQR nicht definiert. Statt dessen sind zwei
weitere Funktionen vorhanden, die nicht im Standard vorgesehen sind.
Beide Funktionen liefern ein Ergebnis vom Typ REAL:

POWER(X,Y) berechnet x hoch y.
TAN(X) berechnet den Tangens von x.

Jede Implementierung setzt auch eine Grenze fiir den Zahlenbereich, in
dem reelle Zahlen dargestellt werden kénnen. Um die Ergebnisse von Ope-
rationen mit reellen Zahlen zu verstehen, mufl man die interne Darstellung
von Werten des Typs REAL kennen.

Wie speichert man z.B. die folgenden Zahlen am giinstigsten?

A = 9876543219876543210
B = 1230000000000
C = 0.00000000000234

Die Idee besteht darin, sich zunidchst die GréBenordnung der Zahl zu
merken: A besitzt 19 Stellen vor dem Komma, B hat 13 Vorkommastellen,
wihrend C an der 12. Stelle nach dem Komma beginnt. AuBerdem werden
fur jede Zahl moglichst viele Ziffern gespeichert.

Beim C 64 kann eine Zahl maximal 38 Stellen vor oder nach dem Komma
beginnen. Von jeder Zahl werden jedoch maximal 9 Ziffern gespeichert.
An der 9. Stelle wird gerundet. Intern wird jede Zahl also durch zwei
Werte (Mantisse und Exponent) dargestelit:

Mantisse Exponent
A = 0.987654322 , +19
B =0.123 +13
C =0.234 -11

Die Ldnge der Mantisse bestimmt also die Genauigkeit, wihrend die GréBe
des Exponenten die maximale Gréfle der darstellbaren Zahlen begrenzt.

Merke: Zahlen groBer als +/- 10 hoch 38 sind nicht darstellbar.
Zahlen kleiner als +/- 10 hoch -38 werden als 0 dargestellt.
Bei allen Zahlen wird nach der 9. Stelle gerundet.

Diese Grenzen werden in der Praxis mit einem Heimcomputer nie iiber-
schritten, auBler man wollte z.B. DM-Betrige iiber 9 Millionen auf den

Einfiihrung in Pascal 39

Pfennig genau speichern. Problematisch ist aber nicht die Speicherung der
Zahlen, sondern die Rechnung mit REAL-Zahlen: Da auch alle Zwischen-
ergebnisse nur auf neun Stellen genau sind, liefern scheinbar harmlose
Berechnungen falsche Ergebnisse:

Mit den obigen Zahlen ist z.B. C + B - B nicht gleich C, da

+B-B=(C+B) -8B
1.23 E+15 - 1.23 E+15 =0 <> C

Merke: Bei Berechnungen mit REAL-Zahlen immer zuerst Werte
der gleichen Groflenordnung verkniipfen.

Zwei REAL-Zahlen werden wie folgt auf Gleichheit getestet:

IF ABS (A - B) <= EPS THEN ... und nicht
IFA =B THEN ...

EPS ist dabei ein Wert, der von der Genauigkeit des Rechners abhingt:
Beim C 64 wihlt man EPS >= SE-9.

2.6.3 Gegeniiberstellung REAL und INTEGER

Solange alle Zwischenergebnisse in dem durch die Konstante MAXINT
angegebenen Bereich liegen, sind alle Operationen mit Werten vom Typ
INTEGER im mathematischen Sinn exakt. AuBBerdem werden ganze Zahlen
kompakter als reelle Zahlen gespeichert: In Pascal 1.4 bendtigt eine ganze
Zahl nur zwei Speicherstellen gegeniiber fiinf Speicherstellen fiir reelle
Zahlen. Schlielich sind Operationen auf ganzen Zahlen wesentlich ef-
fizienter (kiirzerer Code, hdhere Ausfithrungsgeschwindigkeit) als solche
mit reellen Zahlen.

Andererseits konnen grofle Zahlen nur mit Werten vom Typ REAL
dargestellt werden. Auch alle hoheren Funktionen liefern Werte vom Typ
REAL als Ergebnis.

Zusammenfassend 148t sich sagen, daf3 reelle Zahlen nur in mathematischen
Anwendungen (Nullstellenbestimmungen, Durchschnittswerte etc.) und in
kaufminnischen Programmen zur Darstellung groBler Zahlen verwendet
werden. Typische Anwendungen fiir ganze Zahlen sind Steuerungsaufgaben
im Programm wie Zihler, Indizes und Laufvariablen.

40 Einfiihrung in Pascal

Wihrend Sie schon einige Fille kennengelernt haben, in denen keine
REAL-Werte zulidssig sind (FeldgroBBe bei WRITE oder als Operand bei
DIV und MOD), kénnen umgekehrt iiberall dort, wo reelle Zahlen erlaubt
sind, auch ganze Zahlen stehen. Der Compiler erzeugt an diesen Stellen
Codes zur Umwandlung in die Darstellung mit Mantisse und Exponent.

Die umgekehrte Umwandlung von reellen Zahlen in ganze Zahlen muf3 ex-
plizit programmiert werden, damit festgelegt werden kann, wie die
Nachkommastellen behandelt werden. Im Pascal-Standard sind dazu die
Funktionen ROUND und TRUNC vorhanden. ROUND(x) rundet das reelle
Argument, wihrend TRUNC nur die Nachkommastellen abschneidet. In
Pascal 1.4 ist statt dieser Funktionen die Funktion INT vorhanden, die das
reelle Argument zur nichst kleineren ganzen Zahl abrundet. Beispiele
zeigen am besten die unterschiedlichen Ergebnisse:

ROUND(3.2)= 3 TRUNC(3.2)=3 INT(3.2)=3
ROUND(3.7)= 4 TRUNC(3.7)= 3 INT(3.7)=3
ROUND(-3.2)=-3 TRUNC(-3.2)=-3 INT(-3.2)=-4
ROUND(-3.7)=-4 TRUNC(-3.7)=-3 INT(-3.7)=-4

2.6.4 Der Typ CHAR

Nur ein geringer Teil aller Programme arbeitet ausschlieBlich mit Zahlen.
Eine Klasse von Objekten, die vor allem bei der Kommunikation des
Rechners mit seiner Umwelt eine grofle Rolle spielt, sind Zeichen.

Werte des Typs CHAR (character) sind einzelne Zeichen. Jedes Zeichen
besitzt eine Ordnungsnummer (Codenummer). Der Zusammenhang zwischen
Zeichen und Ordnungsnummer ist leider vom jeweiligen Rechner abhiingig.
Speziell auf Commodore-Rechnern gibt es 256 verschiedene Zeichen. Eine
Variable vom Typ CHAR kann also genau eines dieser 256 Zeichen ent-
halten. Nur 160 dieser Zeichen sind auch am Bildschirm darstellbar. Die
restlichen Zeichen (Kontrollzeichen) erfiilllen spezielle Aufgaben bei
einzelnen Geriten. So besitzen die Funktionstasten bei Tastatureingaben ein
eigenes Zeichen, mit einigen Zeichen 148t sich der Cursor am Bildschirm
bewegen, und wieder andere Zeichen wihlen den Schrifttyp am Drucker.

Konstanten vom Typ CHAR sind einzelne Zeichen, die in Apostrophe
(Anfihrungszeichen in Pascal 1.4) eingeschlossen sind:

w.n nkn IIAII llxll

Einfiihrung in Pascal 41

Vergleiche sind die einzigen Operationen, die zwischen Zeichen definiert
sind. Das Ergebnis eines Vergleichs zweier Zeichen ist durch ihre
Ordnungszahl festgelegt:

IIAII < IIZII lloll < II9I| ||!|| < Il)ll

Eine Liste aller Zeichen und Codes finden Sie im Handbuch zum C 64
(ASCII- und CHRS$-Code). Innerhalb eines Pascal-Programmes kdénnen Sie
die Ordnungsnummer jedes Zeichens mit der Standardfunktion ORD er-
halten.

ORD ("A%)
ORD ("0")

65 ORD("ZM)
48 ORD("9™)

90
57

Die Umkehrung der Funktion ORD ist die Funktion CHR: Sie liefert zu
einem Argument vom Typ INTEGER das Zeichen mit der angegebenen
Ordnungsnummer:

CHR (65) = "A" CHR(57) = nwon

Diese Umwandlung zwischen Zeichen und Ordnungsnummer ist, wie
bereits erwidhnt wurde, vom zugrundeliegenden Zeichensatz abhidngig. Eine
hiufige Anwendung ist der selektive Zugriff auf einzelne Ziffern in einer
Zeichenfolge. Das folgende Beispiel soll die Quersumme einer zweistelligen
Zahl berechnen, die der Benutzer eingibt

PROGRAM SUMME (INPUT, OUTPUT);
VAR CH1, CH2: CHAR;
N1,N2 : INTEGER

BEGIN
READLN(CH1,CH2);
N1:=ORD(CH1)-ORD("0");
N2:=0RD(CH2)-ORD("0");
WRITELN(MQUERSUMME ",N1+N2)
END.

Listing 6: Zeichenumwandlung

Obwohl Sie im Editor zu Pascal 1.4 die Moglichkeit besitzen, mit dem Be-
fehl CHANGE #xxx #yyy direkt ASCII-Codes in eine Stringkonstante
einzufiigen, sollten Sie die Codeumwandlung explizit im Programm durch-
fithren:

WRITE (CHR(147))
WRITELN(CHR(18),"ERSTE",CHR(146) ,"TEXTZEILE")

42 Einfiihrung in Pascal

2.6.5 Der Typ BOOLEAN

Zur Steuerung des Programmablaufes in Abhdngigkeit von bestimmten Be-
dingungen sind Wahrheitswerte erforderlich. Wahrheitswerte werden in
Pascal durch TRUE (wahr) und FALSE (falsch) beschrieben. Formal sind
TRUE und FALSE Konstanten vom Typ BOOLEAN. Verschiedene Opera-
tionen liefern Wahrheitswerte. Wir hatten bereits die Relationen zwischen
Zahlen und Zeichen angesprochen:

(17 = 0) FALSE nxe

< nyn TRUE
(17 > 0) TRUE npn < npn TRUE
(0.5 = 56-1) TRUE nxw = nxu FALSE

Ein weiteres Beispiel ist die Funktion ODD (n), die den Wert TRUE
liefert, falls das Argument n vom Typ INTEGER ungerade ist:

0obD (3) TRUE
obD (16) FALSE
obD (0) FALSE

Entscheidend ist nun, daB man mit diesen Relationen und Funktionen
(boolesche) Ausdriicke bilden kann. Sind Bl und B2 zwei boolesche Aus-
driicke, so kann man mit den logischen Operatoren AND, OR, NOT neue
Ausdriicke bilden.

B1 AND B2 TRUE, falls B1=TRUE und B2=TRUE
B1 OR B2 TRUE, falls B1=TRUE oder B2=TRUE
NOT B1 TRUE, falls B1=FALSE

Wenn Sie jetzt noch einmal die Syntax-Diagramme im Anhang A betrach-
ten, werden Sie feststellen, daBl dort diese logischen Operatoren mit den
arithmetischen Operatoren (+, -, * etc.) aufgefiihrt sind. AND ist ein Mul-
tiplikationsoperator, OR wirkt wie ein Additionsoperator und NOT ist wie
ein Vorzeichen definiert.

Diese Definition unterscheidet Pascal von vielen anderen Sprachen, da
hierdurch AND, OR und NOT stirker binden als die Relationen =, <, >.
Beispiele fiir Ausdriicke vom Typ BOOLEAN sollen die Unterschiede
zeigen:

TRUE

ODD(X) OR ODD(Y)

X=Y

c"1=llA|l

(X=Y) OR (A=B)

ODD(X) AND (X>0) OR ODD(Y) AND (Y>0)

NOT ODD(X) OR (X<0)

(CH>="A") AND (CH<="Z") OR (CH1>="0") AND (CH1<="9")

Einfiihrung in Pascal 43

Um die exakten Ergebnisse der Beispiele vorherzusagen, miissen Sie die
oben angegebenen Regeln sicher noch einmal genauer studieren. Zur
Sicherheit formulieren wir die Priorititsregeln noch als Merksatz:

Merke: Teilausdriicke, die Vergleiche enthalten, miissen in
booleschen Ausdriicken geklammert werden. AND bindet
stiarker als OR.

Interessant werden Variablen vom Typ BOOLEAN erst in groBen Pro-
grammen. Mit ihnen kann man Zustinde im Programmablauf beschreiben.
Nach der Variablendeklaration

VAR P, Q, SPEICHERLEER: BOOLEAN;
ALLESFALSCH, ZUGROSS: BOOLEAN;
ZAEHLER, I: INTEGER;

kann man folgende Operationen durchfiihren:

P:= TRUE; Q:= P;

SPEICHERLEER:= ZAEHLER<=0; ZUGROSS:= [>=250;
ALLESFALSCH:= SPEICHERLEER AND ZUGROSS;

IF ALLESFALSCH THEN ...

IF SPEICHERLEER AND NOT ALLESFALSCH THEN ...

Dieses Beispiel verdeutlicht auch eine Namenskonvention: Man bezeichnet
boolesche Variablen meist mit Adjektivnamen. Nur selten wird die Tat-
sache ausgenutzt, dal die Funktion ORD auch auf boolesche Argumente
anwendbar ist. Dadurch ist auch der Typ BOOLEAN geordnet. Es gilt:

ORD (FALSE) =0 ORD (TRUE) = 1
FALSE < TRUE

Eine Bitte am SchluB: Schreiben Sie in einem booleschen Ausdruck nicht

P = TRUE oder SPEICHERLEER = FALSE

Dies ist zwar vollig korrekt, zeugt aber von einem schlechten Stil. Man
schreibt einfacher und deutlicher:

P oder NOT SPEICHERLEER

44 Einfiihrung in Pascal

Aufgaben

1.

Priifen Sie die Bereichsgrenzen fiir reelle und ganze Zahlen in Pascal
1.4. Welche Fehlermeldungen erhalten Sie? Lokalisieren Sie die Fehler
im Quelltext mit der Option LOCATE ADDRESS!

Wie muBl man in Abschnitt 2.62 den Ausdruck C+B-B klammern oder
umstellen, um ein korrektes Ergebnis zu erhalten?

Schreiben Sie einen Ausdruck mit der Funktion INT, der eine reelle
Zahl R wie die Funktion ROUND rundet. (Zur Not finden Sie den
Ausdruck in der Dokumentation in Kapitel 4)

Beweisen Sie durch Einsetzen aller méglichen Kombinationen von
TRUE und FALSE, daB3 die folgenden booleschen Ausdriicke dquiva-
lent sind (Gesetze von de Morgan):

NOT(A AND B) entspricht NOT(A) OR NOT(B)

NOT(A OR B) entspricht NOT(A) AND NOT(B)

2.7 Deklaration von Konstanten

Oft gibt es gewisse Werte in einem Programm, die wihrend der gesamten
Laufzeit des Programmes nicht verdndert werden. Fiir diese Konstanten
kann man in Pascal Bezeichner vergeben. Wie die Variablendeklaration muf3
die Konstantendeklaration im Vereinbarungsteil erfolgen. Wie aus dem
Syntax-Diagramm BLOCK im Anhang A zu entnehmen ist, steht die
Konstantendeklaration vor der Variablendeklaration:

PROGRAM KONSTANTEN (OUTPUT);
CONST FAKTOR1 =1.745329252E-2; (* P1/180 *)

FAKTOR2 =57.29577951; (*1/FAKTOR1*)
CLEARSCREEN =147

ENDEKOMMANDO =t*»

VERSION ="VERSION 747";

BEGIN

WRITELN(CHR(CLEARSCREEN), "DIES IST ", VERSION);
WRITELN(FAKTOR1, 1/FAKTOR2)
END.

Listing 7: Konstantendeklaration

Einfiihrung in Pascal 45

Eine Konstantendeklaration wird durch das Wortsymbol CONST eingeleitet.
Jedem Bezeichner wird nach einem Gleichheitszeichen ein Wert zugeordnet.

Der Typ des Wertes bestimmt auch den Typ des Konstantenbezeichners.
VERSION ist also eine Stringkonstante, wihrend FAKTOR2 vom Typ
REAL ist. Nach dem Gleichheitszeichen darf nur eine Konstante (evtl. mit
Vorzeichen) folgen. Andere Ausdriicke sind nicht erlaubt:

CONST FAKTOR2 = 1/FAKTOR1; (falsch!)

2.8 Kontrollstrukturen

Bisher haben wir nur lineare Programme vorgestellt, das sind Programme,
in denen die Anweisungen genau in der Reihenfolge ausgefithrt werden, in
der sie im Programmtext stehen. Eine entscheidende Fihigkeit von Rech-
nern ist jedoch gerade die Moglichkeit, Anweisungen zu wiederholen oder
in Abhingigkeit von Bedingungen auszufithren, die wéhrend des Pro-
grammes gepriift werden. In BASIC wird dies durch Spriinge im Programm
erreicht (IF, GOTO, FOR ... NEXT, ON ... GOTO).

In diesem Abschnitt werden die entsprechenden Kontrollstrukturen in
Pascal vorgestellt. Bedingungen und Wiederholungen werden dort durch
sogenannte zusammengesetzte Anweisungen gebildet, die dem Programm
eine Blockstruktur geben.

Diese Blockstruktur ist Grundlage fiir ein fundamentales Prinzip der
Strukturierten Programmierung: Der (statische) Programmtext zeigt bereits
die dynamische Struktur (z.B. Schleifen) des Programmes. Das Programm
besteht aus Blocken, die jeweils nur einen Eingang und einen Ausgang be-
sitzen. Blécke diirfen (nach genauen Regeln) zu einem Block zusammenge-
falt werden.

In Pascal bezeichnet man einen solchen Block als eine Anweisung. In den
folgenden Abschnitten werden Sie die obigen prinzipiellen Aussagen iiber
Blocke in den Syntax-Regeln von Anweisungen in Pascal wiederfinden.

46 Einfiihrung in Pascal

2.8.1 Anweisungsfolgen

Die elementaren Bausteine eines Programmes sind die einfachen Anweisun-
gen. Beispiele fiir einfache Anweisungen kennen Sie bereits aus den
Abschnitten 2.4 und 2.5. Dort wurden die Zuweisung und die Ein- und
Ausgabeanweisungen vorgestellt:

A:= A+1
WRITE(A)
READLN

Dort wurde auch erwihnt, daBB der Anweisungsteil aus einer Folge von
Anweisungen besteht, die mit BEGIN und END gekennzeichnet wird. Da-
bei werden die Anweisungen durch Semikola getrennt:

BEGIN
Anweisung;
Anweisung;
Anweisung

END

ANWETISUNG

ANWEISUNG

ANWEISUNG

Bild 3: Anweisungsfolge

Bild 3 zeigt Thnen die Struktur einer Anweisungsfolge. Daneben ist zur
Verdeutlichung die Blockstruktur skizziert: Die einzelnen Anweisungen
betrachtet man als Blocke, die durch die Wortsymbole BEGIN und END zu
einer Anweisung (Block) geklammert werden. Diese Klammerung werden
wir spiter benutzen, um in zusammengesetzten Anweisungen, bei denen
eine einzelne Anweisung erwartet wird, eine ganze Anweisungsfolge
einzusetzen.

Einfiihrung in Pascal 47

Noch ein Wort. zu den Semikola: Ein Semikolon trennt Anweisungen. Des-
halb ist kein Semikolon vor dem abschlieBenden END erforderlich. Setzen
Sie dort auch ein Semikolon,

BEGIN WRITE(A); A:= A+1; WRITE(A); END

so erwartet der Compiler eine Anweisung. Um diesen Fall nicht als Fehler
zu behandeln, gibt es in Pascal die Leeranweisung, die aus keinem Befehl
besteht. Diese mysteridse Anweisung tritt auch in den folgenden
(korrekten) Anweisungsfolgen auf:

BEGIN END (1 Leeranweisung)
BEGIN A:=B; END (1 Leeranweisung)
BEGIN ; ; END (3 Leeranweisungen)

2.8.2 Bedingte Anweisungen

Eine bedingte Anweisung (If-Anweisung) hat die folgende Form:

1F Ausdruck THEN
Anweisung 1
ELSE
Anweisung 2

(]
" AUSDRUCK? NEIN

ANWEISUNG 1 ANWEISUNG 2

Bild 4: If-Anweisung

Der Ausdruck muB3 ein Ergebnis vom Typ BOOLEAN liefern. Ist das Er-
gebnis TRUE, wird die Anweisung nach dem Wortsymbol THEN ausge-
fithrt. Ist das Ergebnis FALSE, so wird die Nein-Anweisung ausgefithrt. Es
gibt viele verschiedene Formen, die If-Anweisung im Quelltext zu for-
matieren. In diesem Buch wird das folgende Layout verwendet:

IF KONTO>=0 THEN

WRITELN(KONTO:8,"DM GUTHABEN")
ELSE

WRITELN(-KONTO:8,"DM SCHULDEN")

48 Einfiihrung in Pascal

Bei einer anderen Form der If-Anweisung ist keine Nein-Anweisung vor-
gesehen. Nur wenn der Ausdruck den Wert TRUE liefert, wird die An-
weisung nach dem Wortsymbol THEN ausgefiihrt:

IF Ausdruck THEN
Anweisung

A ?
" USORUCK NEIN

ANWEISUNG

Bild 5: If-Anweisung

IF A<B THEN
BEGIN H:=A; A:=B; B:=H END

Dieses Beispiel zeigt auch, wie man statt einer einzelnen Anweisung eine
ganze Anweisungsfolge durch eine Bedingung kontrolliert. Der Compiler
kiitmmert sich nimlich nicht um die Einriickungen im Quelltext. Deshalb
wiirde er das folgende Programm nicht korrekt iibersetzen:

IF A>B THEN

MAX:= A; MIN:= B
ELSE

MAX:= B; MIN:= A

Nach‘der oben angegebenen Syntax der If-Anweisung muB3 nach THEN
und ELSE eine einzelne Anweisung folgen. Deshalb siest der Compiler den
folgenden Text:

IF A>B THEN
MAX:= A;

MIN:= B; ELSE

MAX:= B; MIN:= A

Um die Struktur, die durch die Einriickung beschrieben wird, auch korrekt
in Pascal zu formulieren, mufl man also die Anweisung MAX:=A; MIN:= B
zu einer Anweisungsfolge zusammenfassen:

IF A>B THEN

BEGIN MAX:= A; MIN:= B END
ELSE

BEGIN MAX:= B; MIN:= A END

Einfiihrung in Pascal 49

Auf einen weiteren Fallstrick miissen Sie noch achten: Hitten wir vor dem
Wortsymbol ELSE (also nach dem END) ein Semikolon gesetzt, wiirde der
Compiler eine If-Anweisung wie in Bild 5 erkennen und damit das ELSE
nach dem Semikolon als Fehler markieren.

Am Beispiel der Bedingten Anweisung wollen wir noch das Prinzip der
Schachtelung von Anweisungen (Blocken) zeigen. Eine If-Anweisung ist
eine zusammengesetzte Anweisung. Dadurch werden die Anweisungen nach
THEN und ELSE zu einer Anweisung zusammengefaf3t. Dies soll auch der
duBere Rahmen in den Abbildungen 4 und 5 unterstreichen. Damit kann
also eine If-Anweisung selbst als Teil einer anderen If-Anweisung auftre-
ten. Um das Maximum von drei Zahlen zu berechnen, kann man folgende
Anweisung verwenden:

IF A>B THEN
IF A>C THEN
MAX:=
ELSE
MAX:=
ELSE
IF B>C THEN
MAX:= B
ELSE
MAX:= C

4>87 e
Ja " NEIN
mer BC?
A NEIN | JA NEIN
HAX:=A | MAX:=C HAX: =B HAX: =C

Bild 6: Geschachtelte Blocke

Diese Anweisung ist korrekt, jedoch sollte man solche geschachtelten If-
Anweisungen sicherheitshalber mit BEGIN END klammern, da sonst evtl.
die ELSE-Teile ungewollt falsch gegliedert werden. Der Compiler ordnet
nimlich jedes ELSE der letzten If-Anweisung zu, die noch kein ELSE be-
sitzt. Dies fiithrt im folgenden Beispiel zu Problemen.

IF ZEILEBEENDET THEN

IF ZEILENNUMMER=5 THEN WRITE("ZEILE 5")
ELSE

WRITELN ("KEIN ZEILENENDE")

50 Einfiihrung in Pascal

Das ELSE wird hier der Bedingung IF ZEILENNUMMER=5 zugeordnet,
was sicher nicht die Absicht des Programmierers war. Um das korrekte Er-
gebnis zu erhalten, muf3 die If-Anweisung zwischen THEN und ELSE mit
BEGIN und END geklammert werden.

2.8.3 Fallunterscheidung

In manchen Fillen mufB3 man in Abhingigkeit eines einzigen Wertes unter-
schiedliche Operationen vornehmen. In diesem Fall bietet sich statt einer
Folge von If-Anweisungen die Case-Anweisung an:

CASE Ausdruck OF
Fallmarken 1: Anweisung 1;
Fallmarken 2: Anweisung 2;

Fallmarken n: Anweisung n
END

AUSDRUCK
MARKED |
MARKE2 ——
HARKE3 — |
————— MARKE N
ANU.T | ANN.2 | ANW.3 | ... | ANWLN

Bild 7: Fallunterscheidung

Die exakte Syntax ist dem Syntax-Diagramm FALLUNTERSCHEIDUNG
im Anhang A zu entnehmen. Eine Fallunterscheidung wird folgendermaBen
ausgefithrt: Zun#ichst wird der Ausdruck ausgewertet. Er muf3 einen Wert
eines skalaren Typs (z.B. CHAR, INTEGER, aber nicht REAL) liefern.
Von den nachfolgenden Anweisungen wird nur diejenige ausgefiihrt, die
den Wert des Ausdruckes in ihrer Konstantenliste enthilt. Natiirlich miissen
die Fallmarken denselben Typ wie der Ausdruck besitzen. Kommt der Wert
des Ausdruckes in keiner Fallmarke vor, so erfolgt ein Programmabbruch
mit Fehlermeldung. Im Zusammenhang mit Aufzihlungstypen und Varian-
ten Records wird sich die Case-Anweisung als besonders niitzlich erweisen.
Das folgende Beispiel zeigt eine typische Anwendung der Case-Anweisung:

Einfiihrung in Pascal 51

PROGRAM FALL (INPUT, OUTPUT);

VAR CH : CHAR;
A, B, ERG : REAL;
oK : BOOLEAN;
BEGIN
READLN(CH, A, B);
OK:= TRUE;
CASE CH OF
w_w wkn . BEGIN ERG:= A * B END;
LVAH BEGIN
IF B = 0 THEN
BEGIN
OK:= FALSE;
WRITELN("DIVISION DURCH NULL")
END
ELSE
ERG:= A / B
END;
Hyn : ERG:= A + B;
w-n : ERG:= A - B
ELSE BEGIN OK:= FALSE;
WRITELNC"'" CH,™' NICHT ERLAUBTIM)
END
END;
IF OK THEN WRITELN("ERGEBINS",ERG)
END.

Listing 8: Beispielprogramm

Das Programm benutzt bereits eine Erweiterung der Case-Anweisung in
Pascal 1.4: Durch die Angabe des Wortsymbols ELSE am Ende der Case-
Anweisung kann eine Anweisung genannt werden, die in dem Fall durch-
gefithrt wird, wenn der Wert des Ausdruckes mit keiner Fallmarke iiber-
einstimmt. Dann wird natiirlich auch kein Programmabbruch mit Fehler-
meldung durchgefiihrt.

Bitte beachten Sie die Verwendung der booleschen Variablen OK. Da die
Case-Anweisung nur einen Ausgang besitzt, mufl das Auftreten eines Feh-
lers im Inneren der Case-Anweisung explizit notiert werden.

Zum SchluB sei darauf hingewiesen, dal manche Compiler (nicht Pascal
1.4) Fallmarken aus einem zusammenhingenden Wertebereich erwarten. Sie
wiirden einen fiir folgendes Beispiel sehr ungiinstigen Code erzeugen:

CASE GANZEZAHL OF

2 : BEGIN END;
200 : BEGIN END;
2000 : BEGIN END

END

52 Einfiihrung in Pascal

2.8.4 While- Anweisung

Moéchte man eine Anweisung (einen Block) wiederholt ausfithren, so gibt es
dafiir in Pascal drei verschiedene zusammengesetzte Anweisungen, die je-
weils unterschiedliche Kontrollstrukturen bilden. Die Unterschiede bestehen
in der Form, in der die Bedingung formuliert wird, unter der die An-
weisung wiederholt wird. Dieser Abschnitt beschreibt die am hiufigsten
benutzte Wiederholungsanweisung.

Die While-Anweisung besitzt die folgende Struktur:

WHILE Ausdruck DO
Anweisung

WHILE AUSDRUCK

ANWEISUNG

EERE

Bild 8: While-Anweisung

Der Ausdruck liefert ein Ergebnis vom Typ BOOLEAN. Die Wiederholung
wird wie folgt ausgefiihrt:

1. Der boolesche Ausdruck wird ausgewertet. Ist das Ergebnis FALSE, so
wird die gesamte While-Anweisung beendet.

2. Ist das Ergebnis des Ausdruckes TRUE, so wird die Anweisung nach
dem Wortsymbol DO ausgefithrt. AnschlieBend wird die Ausfithrung
bei 1. fortgesetzt.

Ein Beispiel soll die Anwendung der Struktur erkliren. Wir wollen ohne
Logarithmusfunktion bestimmen, wie viele Stellen die Zahl X vor dem
Komma besitzt.

PROGRAM STELLEN(INPUT, OUTPUT);
VAR X: INTEGER; N: INTEGER;

BEGIN
READLN(X); N:=0
WHILE X<>0 DO
BEGIN
X:= X DIV 10; N:= N+1

Einfiihrung in Pascal 53

END;
WRITELN("ANZAHL DER STELLEN:",6N)
END.

Die Idee besteht also darin, zu zihlen, wie oft man die Zahl nach rechts
schieben kann, bis alle Ziffern hinter dem Komma stehen. Wichtig ist da-
bei, daB die Priifung des Ausdruckes (X<>0) vor der Ausfithrung der An-
weisung erfolgt. Deshalb wird fiir die Eingabe von 0 die Schleife iberhaupt
nicht durchlaufen. Also liefert das Programm fiir diese Eingabe das Ergeb-
nis N=0. Anzumerken ist noch, dal das Programm auch fiir negative Zah-
len korrekt arbeitet.

Nach der ausfiithrlichen Diskussion im letzten Abschnitt ist Thnen sicher
auch klar, warum im Programm STELLEN nach dem Wortsymbol DO eine
Anweisungsfolge (BEGIN ... END) steht. Ist dies nicht der Fall, sollten Sie
das Programm probeweise ohne die Klammerung mit BEGIN und END
iibersetzen und testen. Wenn Sie anschlieBend die beiden letzten Kapitel
noch einmal lesen, werden Sie die Bedeutung der Anweisungsfolge zur Bil-
dung von Blécken erkennen.

While-Anweisungen nennt man auch pre check loops oder abweisende
Schleifen. Durch die Eigenschaft einer While- Anweisung, die Schleife auch
nicht auszufiithren, spart man oft notwendige Sonderbehandlungen. Das fol-
gende Beispielprogramm berechnet fiir zwei natiirliche Zahlen N und K
den Wert E = N hoch K.

E:= 1; 1:=K;
WHILE 1>0 DO
BEGIN E:= E*N; I:= I-1 END

Dieses Beispiel beriicksichtigt die Sonderfille N=0 und K=0 korrekt. Es gilt
nimlich

1 fir alle N
0 fir alle K<>0

N hoch 0
0 hoch K

Auch fir die Wiederholungsanweisungen, die wir erst im nichsten Ab-
schnitt kennenlernen, gelten die folgenden Regeln, die man bei der Pro-
grammierung beachten sollte:

1. Bei der Wiederholung mufl die Schleife irgendwann beendet werden.
Deshalb muf3 man sich wihrend der Berechnung dem Ziel nihern. Fol-
gendes Programmstiick ist also auf jeden Fall sinnlos:

54 Einfiihrung in Pascal

WHILE I1<>0 DO K:= K+1

2. Wihrend jeder Ausfithrung der Wiederholung miissen gewisse Bedin-
gungen erhalten bleiben. Diese Bedingungen bezeichnet man auch als
Schleifen-Invarianten. Es ist keine schlechte Idee, diese Invarianten
durch Kommentare zu verdeutlichen:

E:= 1; I:=K;
WHILE I>0 DO (* E = X hoch (K-1) *)
BEGIN E:= E*N; I:= I-1 END

Am Ende der Schleife ist also I=0, und damit besitzt E den gewiinsch-
ten Wert.

3. Grundsitzlich soll man beim Entwurf einer Wiederholung den Sonder-
féllen besondere Aufmerksamkeit schenken, um logische Fehler nicht
erst im fertigen Programm bei seltenen Eingaben zu finden.

2.8.5 Repeat- Anweisung

Seltener als die While-Anweisung wird die Repeat-Anweisung benutzt. Sie
hat die in Abbildung 9 angegebene Struktur.

REPEAT
Anweisung;
Anweisung;
Anweisung

UNTIL Ausdruck

ANWEISUNG
ANWEISUNG

ANWEISUNG

UNTIL AUSDRUCK

Bild 9: Repeat-Anweisung

Der wesentliche Unterschied zur While-Anweisung ist die Tatsache, daB
die Anweisungsfolge mindestens einmal ausgefithrt wird:

Einfiihrung in Pascal 55

1. Die Anweisungsfolge wird ausfiihrt.

2. AnschlieBend wird der Ausdruck vom Typ BOOLEAN ausgewertet. Ist
das Ergebnis TRUE, so wird die Ausfithrung der Repeat-Anweisung
beendet. Ist das Ergebnis FALSE, so wird die Ausfithrung bei 1. fort-
gesetzt.

Im Gegensatz zur While-Anweisung kann der boolesche Ausdruck also Va-
riablen enthalten, die erst innerhalb der Anweisungsfolge berechnet
werden.

REPEAT
WRITE ("ALLES KLAR? (J,N) ");
READLN (CH)

UNTIL (CH="J") OR (CH="N")

Weitere Beispiele werden in den folgenden Abschniiten vorgestelit.

2.8.6 For- Anweisung

In BASIC bietet die For-Anweisung die beste Moglichkeit zur Struk-
turierung von Wiederholungen. In Pascal wird die For-Anweisung nur dann
verwendet, wenn die Anzahl der Wiederholungen bereits vor Eintritt in die
Schleife bekannt ist. Die Struktur der Anweisung ist wieder in einem Bild
dargestellt:

FOR Variable := Ausdruck TO Ausdruck DO
Anweisung

FOR VARIABLE:=LAUFLISTE

ANWEISUNG

Bild 10: For-Anweisung

Die Ausfithrung erfolgt nach dem folgenden Schema. Es sichert, dal der
Endwert der Schleife nicht in der Schleife verindert werden kann. Aufler-
dem kann die For-Schleife wie die While-Schleife auch nicht durchlaufen
werden, falls nimlich der Wert von Ausdruck 1 bereits groBer als der Wert
von Ausdruck 2 ist:

56 Einfiihrung in Pascal

1. Ausdruck 1 wird ausgewertet. Der Wert wird der Laufvariablen zu-ge-
wiesen. AnschlieBend wird Ausdruck 2 ausgewertet und als Endwert
der Schleife gespeichert.

2. Der Wert der Laufvariablen wird mit dem gespeicherten Endwert ver-
glichen. Ist er groBer als der Endwert, so wird die Ausfithrung der
Schleife beendet.

3. Sonst wird die Anweisung nach dem Wortsymbol DO ausgefiihrt.

4. AnschlieBend wird die Laufvariable um 1 erhéht und die Ausfithrung
der Schleife bei 2. fortgesetzt.

Die folgende Anweisungsfolge berechnet die Summe der Kehrwerte der
Zahlen von 1 bis 100.

0

S:= 0.0;
FOR I:= 1 TO 100 DO S:= S+1/1

Als Typ der Laufvariablen sind alle skalaren Typen (z.B. INTEGER,
CHAR, aber nicht REAL) zulidssig: Dementsprechend wird in Schritt 4
allgemein der Nachfolger im Wertebereich bestimmt.

FOR CH:= " ®» TQO “Z" DO
WRITELN("DER CODE VON ",CH,"™ IST",ORD(CH):4)

Die einzige Moglichkeit, die Schrittweite zu #4ndern, besteht darin, riick-
wirts zu z#dhlen: Man ersetzt das Wortsymbol TO durch das Wortsymbol
DOWNTO. Das Schema (1.-4.) gilt analog. Um andere Schrittweiten als +1
und -1 zu erhalten, mu3 man die Wiederholung explizit mit der While-
Anweisung programmieren. Besonders vorsichtig muf3 man dabei bei Lauf-
variablen vom Typ REAL sein. Addiert man stindig eine Schrittweite, so
kénnen sich die Rundungsfehler aufschaukeln. Soll z.B. die reelle Variable
W die Werte 1 0.9 0.8 0.7 ... -0.9 -1 durchlaufen, so schreibt man nicht
W:= 1.0;
WHILE W>=(-1) DO

BEGIN

WRITELN(W); W:= W-0.1
END

sondern

FOR 1:= 10 DOWNTO -10 DO
BEGIN
W:= 1/10; WRITELN(W)
END

Einfiihrung in Pascal 57

Die Erstellung einer Multiplikationstabelle ist ein anschauliches Beispiel fiir
geschachtelte For-Schleifen.

PROGRAM MULTIPLIKATION(OUTPUT);
CONST N=13;
VAR I,J : INTEGER;
BEGIN
FOR I:= 1 TO N DO
BEGIN
FOR J:= 1 TO N DO
WRITE(I*J:3);
WRITELN
END
END.

2.8.7 Sprunganweisung

In diesem Abschnitten werden alle Regeln, die die Sprunganweisung
betreffen, zusammengestellt. Deshalb werden einige Begriffe auftreten, die
erst in spiteren Abschnitten tiber Prozeduren erklirt werden.

Die Sprunganweisung paft eigentlich nicht in das Blockkonzept der Sprache
Pascal. Darum ist bei ihrer Verwendung auch die Einhaltung einiger Ne-
benbedingungen erforderlich.

Eine Sprunganweisung hat die folgende Form:

GOTO Label

Die Programmausfithrung wird beim Erreichen des Labels an der An-
weisung fortgesetzt, die durch das Label markiert wird. Labels sind positive
ganze Zahlen. Jede Anweisung kann durch ein Label markiert werden:

Label: Anweisung

Alle Labels miissen auBerdem in dem Block, in dem sich die markierte
Anweisung befindet, im Labeldeklarationsteil aufgefiihrt werden. Eine La-
beldeklaration ist die erste Deklaration in einem Block und hat die folgende
Form:

LABEL Label1, Label2, ..., LabelN;
Bei Spriingen muf3 die Blockstruktur beriicksichtigt werden:

1. Es ist nicht erlaubt, von au3en in eine Prozedur zu springen.

58 Einfiihrung in Pascal

2. Es ist nicht erlaubt, von auBlen in eine For-, With- und Case-An-

weisung zu springen.

Jedoch ist es erlaubt, aus einer geschachtelten Prozedur zu einer Marke in
einem umfassenden Block zu springen.

Sprunganweisungen sollten nur zur Behandlung selten auftretender Aus-
nahmefille benutzt werden. AuBerdem ist es sinnvoll, im Labeldeklara-
tionsteil Kommentare einzufithren, die die Bedeutung des Labels erkliren.

Aufgaben

1.

Schreiben Sie Programme zur Umwandlung arabischer Zahlen in romi-
sche Zahlen. Vielleicht haben Sie auch eine Idee, wie man die Um-
wandlung in umgekehrter Richtung vornehmen kann,

Schreiben Sie ein Programm, das Zahlenfolgen einliest und bei der Ein-
gabe der Zahl 999 die Summe iiber die Folge (natiirlich ohne 999)
druckt. Welche Wiederholungsanweisung ist hier angebracht?

Geben Sie eine Anweisungsfolge an, die fiir beliebige X- und - Y-Werte
einen Cursor in Zeile X und Spalte Y positioniert.

Erstellen Sie ein Programm, das die Nullstellen einer Funktion F nach
dem Intervallschachtelungsverfahren bestimmt: Der Benutzer gibt als
Startwerte die Intervallgrenzen L und R an, in denen eine Nullstelle
liegt. Dabei soll gelten F(L)*F(R)1=0, d.h. zwischen L und R liegt ein
Vorzeichenwechsel. Die Nullstelle wird durch sukzessive Intervallhal-
bierung gefunden. In Abhingigkeit vom Funktionswert in der Inter-
vallmitte M=(L+R)/2 wird M als rechte oder linke Intervallgrenze be-
nutzt. Die Approximation beende man, falls die .Intervallgréfe kleiner
als eine vom Benutzer vorgegebene Genauigkeit ist. Priifen Sie das Pro-
gramm mit der Funktion F:=2*SIN(X)-COS(2*x) im Intervall 0 bis 1.

Schreiben Sie ein Programm, das alle Primzahlen in einem vom Be-
nutzer vorgegebenen Intervall druckt. (Eine Zahl X heifit Prim, wenn
sie nur durch 1 und sich selbst geteilt werden kann. 1 ist keine Prim-
zahl.) Uberlegen Sie sich vor der Programmierung, welche Zahlen von
Anfang an als Primzahlen ausscheiden und bis zu welcher Grenze die
Teilbarkeit gepriifft werden muf.

Einfiihrung in Pascal 59

6. Schreiben Sie ein Programm, das eine Wahrheitstabelle in der folgenden
Form druckt:

A B A AND B
FALSE FALSE FALSE
FALSE TRUE FALSE
TRUE FALSE FALSE
TRUE TRUE TRUE

Geben Sie sich ruhig etwas Mithe bei der Formatierung. Benutzen Sie
(String-)Konstanten! Besonders schén wire es, wenn Sie zwei
geschachtelte Schleifen mit booleschen Variablen A und B verwenden
wiirden.

Priiffen Sie mit dem Programm die Ergebnisse von A<B, A>B, A<=B,
A>=B statt A AND B!

7. Uberlegen Sie, wie man die Operation I MOD 7 verwenden kann, um
die Ausgabe von Ergebnissen so zu steuern, daf3 jeweils sieben Werte in
einer Zeile stehen.

8. Schreiben Sie ein Programm, das so lange Zeichen einliest, bis es auf
eine Ziffer trifft, und dann zeichenweise eine Zahl einliest und den
Wert der Zahl in der Variablen R abspeichert.

abcdef12.34ghijk liefert den Wert R=12.34

Erweitern Sie das Programm so, daB es auch einen Skalierungsfaktor
(E+xx) einlesen kann! Vielleicht hilft Thnen bei der Programmierung das
Syntax-Diagramm ZAHL im Anhang A.

2.9 Die Datenstruktur Array

In der Praxis kommt man mit den bisher besprochenen einfachen Daten-
typen nicht aus. Will man z.B. auf einer Menge gleichartiger Werte die
gleiche Operation wiederholen, so miiBte man fir jedes Objekt einen eige-
nen Bezeichner definieren und die gleiche Operation mit jedem Wert
einzeln durchfithren.

60 Einfiihrung in Pascal

Fir solche Probleme vereinbart man - anschaulich gesprochen - eine
Tabelle aller Werte. Nur die Tabelle erhidlt einen Bezeichner, so daB jeder
einzelne Wert iiber den Bezeichner der Tabelle zusammen mit einem Index
in der Tabelle angesprochen wird. Einen solchen Datentyp nennt man in
Pascal ein Array.

Die einfachste Form eines Arrays besitzt als Elemente einzelne Werte.
Dabei spielen Arrays von Zeichen eine besondere Rolle. (Sie entsprechen
etwa den Strings in BASIC.) Im Abschnitt 2.9.3 werden wir Arrays
betrachten, deren Elemente wiederum Arrays sind.

2.9.1 Eindimensionale Arrays

Eindimensionale Arrays sind Arrays, die als Elemente nicht wieder Arrays
besitzen.

CONST N=5;
VAR A: ARRAY [5..8] OF INTEGER;
T: ARRAY [0..N] OF REAL;

A und T werden durch diese Variablendeklaration als Arrays vereinbart.
Dabei wird sowohl die Menge der zulissigen Indizes (der Indextyp) als
auch der Typ der Elemente des Arrays (der Elementtyp) angegeben.

Die Variable A ist also ein Array, das aus Zahlen vom Typ INTEGER
besteht. Zulassige Indizes fiir das Array A sind ganze Zahlen zwischen 5
und 8. Die Struktur von A entspricht einer Tabelle mit vier Elementen.
Jedes Element besitzt einen Index und enthilt eine ganze Zahl:

66
77

IR

Bild 11: Struktur des Arrays A

Die folgenden Zuweisungen fiillen das Array A mit Werten:

A[5):=0; A[61:=66; A[71:= 77; Al4+4]:=3

Einfiihrung in Pascal 61

Die letzte Zuweisung zeigt, dal man den Index eines Elementes auch als
Ergebnis eines Ausdruckes angeben kann. Dabei muf3 natiirlich der Typ des
Ausdruckes mit dem Indextyp des Arrays iibereinstimmen.

Die For-Anweisung wird am hiufigsten im Zusammenhang mit Arrays be-
nutzt. Man 148t die Laufvariable den Indexbereich iiberstreichen und kann
so in einer Wiederholung eine Operation auf alle Elemente des Arrays an-
wenden:

FOR 1:=5 TO 8 DO
WRITELN("ELEMENT",1:3," ENTHAELT DEN WERT ",A[I]1)

In Pascal miissen die Indexgrenzen in der Deklaration durch Konstanten
gegeben sein. Somit muB bereits bei der Ubersetzung die GroBe des Arrays
festgelegt werden. Um diese Einschrinkung etwas zu mildern, definiert
man die Indexgrenzen mit Konstanten, wie dies im Beispiel fiir das Array
T geschehen ist. Natiirlich miissen diese Konstanten auch im An-
weisungsteil z.B als Grenze fiir For-Anweisungen benutzt werden. Stellt
sich heraus, daB die Grenze zu groB oder zu klein gew#dhlt wurde, muf}
man nur die Konstante im Vereinbarungsteil anpassen und das Programm
neu iibersetzen.

In den bisherigen Beispielen hatten wir als Indextyp immer einen Teil-
bereich der ganzen Zahlen betrachtet. In einzelnen Fillen kann es jedoch
auch sinnvoll sein, andere Typen als Indizes zu vereinbaren. AufBler dem
Typ REAL kann man alle einfachen Typen verwenden:

ARRAY [BOOLEAN] OF CHAR;
ARRAY [CHAR] OF INTEGER;

Fir das letzte Beispiel wollen wir noch ein vollstindiges Programm
betrachten. Es soll ein Text eingelesen und die Hiufigkeit aller Buchstaben
gezihlt werden. Die Texteingabe wird durch die Eingabe eines beliebigen
Sonderzeichens beendet.

PROGRAM HAEUFIGKEIT (INPUT, OUTPUT);

CONST SPACE=" ";

VAR C: CHAR;

H: ARRAY ["A".."Z"] OF INTEGER; (* Z&hlarray *)
BEGIN
FOR C:= WA" TO "Z" DO HI[Cl:= 0; (* Z&hler ldschen *)
READ(C); X
WHILE (C>="A") AND (C<="2") OR (C=SPACE) DO
BEGIN
IF C<>SPACE THEN H[C]l:= H[C]+1;

62 Einfiihrung in Pascal

READ(C)
END;
FOR C:= "A" TO "Z" DO
WRITE(C:2, H[CI:2," IM);
END.

Jetzt werden wir noch einige typische Algorithmen in Pascal vorstellen, die
auf Arrays operieren. Dabei wird die folgende Deklaration vorausgesetzt:

PROGRAM FELD (INPUT, OUTPUT);
CONST UG=1; 06=10; (* FeldgrdBe *)
VAR I,J,K: INTEGER;
A: ARRAY [UG..OG] OF INTEGER;
SUM, MAX, W: INTEGER;

Eine Operation auf allen Elementen wird mit der For-Anweisung pro-
grammiert:

SUM:

= 0;
FOR I:=

UG TO OG DO SUM:= SUM + AI[Il;

Um den grofiten Wert in einem Array zu finden, bestimmt man schritt-
weise das Maximum der ersten i Zahlen, indem man das Maximum der
ersten i-1 Zahlen mit dem i. Element vergleicht:

MAX := A[UG];
FOR I:= UG+1 TO OG DO
IF ACII>MAX THEN MAX:= A[I]

Selbst wenn UG=0G ist, arbeitet dieses Programm korrekt, da dann die
For-Schleife wegen UG+1>0OG nicht ausgefithrt wird. Mit diesem Such-
algorithmus kann man auch ein Array sortieren: Man bestimmt das
Maximum des Arrays und vertauscht es mit dem letzten Element im Array.
AnschlieBend wiederholt man diese Prozedur fiir alle Elemente ohne das
Maximum und erhilt dadurch den zweitkleinsten Wert. Wiederholt man
dieses Verfahren bis zum kleinsten Element des Arrays, so ist das Array
schlieflich sortiert.

FOR J:= OG DOWNTO UG+1 DO

BEGIN
(* Bestimme K, den Index des Maximums *)
(* im Array A von UG bis J *)
(* Vertausche A[J] mit A[K] *)
END

Die in Kommentarklammern angegebenen Operationen hatten wir bereits
frither programmiert (s.0), so da3 wir das Programm vollstindig angeben
kénnen:

Einfiihrung in Pascal 63

FOR J:= OG DOWNTO UG+1 DO
BEGIN
MAX := A[UG); K:= UG;
FOR I:= UG+1 TO J DO
IF ALI1>MAX THEN
BEGIN K:=I; MAX:= A[I] END;
ALKl := ALJ1; ALJI:= MAX
END

Ist Thnen die genaue Funktion dieses Programmes noch nicht ganz klar,
sollten Sie mit Stift und Papier das Array mit den Werten

8 913 4 235

nach dem angegebenen Algorithmus sortieren. Dann werden Sie auch
verstehen, warum dieser Algorithmus Sortieren durch Auswahl heif3t. In
Abschnitt 2.11.5 werden wir ein anderes Sortierverfahren kennenlernen, das
fiir groBe Arrays wesentlich effizienter ist.

Eine weitere elementare Operation mit Arrays besteht darin, einen
vorgegebenen Wert im Array zu suchen. Das Ergebnis der Suche soll der
Index des Wertes im Array sein. Offensichtlich ist hier die For-Anweisung
ungeeignet. Ein erster Losungsansatz wire folgende Schleife:

(*$R+ *)
I:= UG;
WHILE (I<=0G) AND (A[I1<>W) DO I:=I+1;
IF I>0G THEN
WRITELN("NICHT GEFUNDEN")
ELSE
WRITELNC"INDEX",1);

Jedoch bewirkt diese Schleife einen Zugriff auf das nicht existierende
Element A[OG+1], falls der gesuchte Wert W nicht im Array A enthalten
ist: Im letzten Durchlauf der Schleife ist I=OG+1. AnschlieBend wird die
Bedingung der While-Anweisung ausgewertet. Zwar ist bereits das Ergebnis
des ersten Teilausdruckes (I<=OG) FALSE, dennoch wird in Pascal ein
boolescher Ausdruck immer vollstindig ausgewertet. Deshalb wird bei der
Berechnung des zweiten Teilausdruckes auf das Element A[OG+1] zuge-
griffen.

Dieser verbotene Zugriff wird normalerweise in Pascal 1.4 nicht erkannt,
da Indizes nicht auf die Grenzen in der Deklaration tiberpriift werden. Der
Kommentar in der ersten Zeile des Beispiels schaltet jedoch eine Option
des Compilers ein, die unter anderem die Indexgrenzen bei jedem Array-
Zugriff priuft, so daB beim Programmablauf eine Fehlermeldung erzeugt
wird:

64 Einfiihrung in Pascal

VALUE OUT OF BOUNDS: 11 1 10
ERROR AT XXXX

Das heif3t, es wurde versucht, das 11. Element anzusprechen, obwohl in der
Deklaration 1 und 10 als Indexgrenzen vereinbart wurden. (N#heres siehe
Dokumentation in Kapitel 4.)

Die obige Suche muf3 also umformuliert werden:

1:= UG-1;
REPEAT I:=I+1 UNTIL (A[I1=W) OR (I=0G)

Eine intelligentere Version der Suche vermeidet die stindige Priifung auf
das Ende des Arrays. Der Trick besteht darin, den gesuchten Wert am Ende
des Arrays als Marke zu speichern, so daf3 spitestens dort die Suche ab-
bricht. Dazu miissen wir aber das Array um eine Position erweitern:

PROGRAM SUCHE (INPUT, OUTPUT);
CONST UG=1; 0G=10; 0G1=11 (* OG+1 *)
VAR A: ARRAY [UG..O0G1] OF INTEGER;
1:=UG; A[OG1]:W;
WHILE A[I1<>W DO I:=1+1;
IF 1=0G1 THEN WRITELN("WERT NICHT GEFUNDEN")

Damit beschlieBen wir die Behandlung der Algorithmen auf Arrays. Sicher
werden Sie den einen oder anderen Hinweis fiir eigene Pascal-Programme
verwenden konnen. Jeder Leser, der nicht gerne jedes Mal das Rad neu
erfinden will, sei auf die Standardliteratur zum Thema Strukturierte Pro-
grammierung verwiesen. Besonders niitzlich ist das Buch 2 (siehe Anhang
E), in dem alle Algorithmen in Form von Pascal-Programmen vorgestellt
und ausfithrlich hergeleitet werden.

Bisher wurden nur einzelne Elemente eines Arrays verindert. Mochte man
z.B. den Inhalt eines Feldes A in ein Feld B desselben Typs iibertragen, so
kénnte dies wie folgt geschehen:

FOR I:= UG TO OG DO B[Il:= A[I]

In Pascal geht dies aber auch eleganter (und wesentlich schneller) mit dem
Befehl B:=A. Voraussetzung hierfiir ist, daB A und B denselben Typ be-
sitzen. Wann zwei Variablen denselben Typ besitzen, wird im Abschnitt
2.10 genau erklirt.

Einfiihrung in Pascal 65

2.9.2 Strings

Fiir die Praxis ist ein spezieller Typ von Arrays interessant. Arrays mit
Elementen vom Typ CHAR lassen sich als Strings (also Zeichenketten) in-
terpretieren:

VAR $1,S2: ARRAY [1.. 8] OF CHAR;
S3 : ARRAY [1..15] OF CHAR;

Diese Arrays bestehen also aus acht beziehungsweise fiinfzehn Zeichen.
Bereits im Abschnitt 2.1 wurden Stringkonstanten beschrieben. Eine
Stringkonstante mit N Zeichen besitzt implizit den Typ

ARRAY [1..N1 OF CHAR;

Pascal ist bei der Behandlung von Strings sehr restriktiv. Da Strings Arrays
sind, besitzen sie eine konstante Gréfle. Zuweisungen sind nur zwischen
Strings gleicher Linge erlaubt:

S1:= 82 (korrekt)
$1:="12345678" S3:="ALPHA " (korrekt)
S1:= S3 S3:=MALPHA" (falsch)

Andererseits sind zusiitzliche Operationen auf Strings definiert: Strings glei-
cher Linge kénnen mit =, <, > verglichen werden. Das Ergebnis des Ver-
gleichs hingt vom zugrundeliegenden Zeichensatz ab (s.a. Abschnitt 2.6.4).

"OTTO " < "OTTO2"
WEMILM < VERNAM
“"Emil" > VEMIL™ o)

Die folgenden Vergleiche sind wegen der unterschiedlichen Léinge der
Strings nicht erlaubt:

IF MEGON" = “EGON " THEN ...
IF S1 < S3 THEN ...

SchlieBlich kann ein String auch als Parameter in Write-Anweisungen
auftreten:

WRITE ("™ICH HEISSE ",S1);
WRITELN("UND NICHT ",6$3:20)

Die Eingabe von Strings mit nur einem Befehl ist im Standard nicht
vorgesehen. Viele Pascal-Implementierungen haben einen groBen Satz an
speziellen String-Befehlen. Sie ermdglichen auch die Definition von Strings,

66 Einfiihrung in Pascal

die eine variable Linge besitzen. Da sich jedoch auf diesem Gebiet noch
kein allgemein akzeptierter Standard herauskristallisiert hat, sind solche
Routinen nicht in Pascal 1.4 aufgenommen worden.

2.9.3 Mehrdimensionale Arrays

Der Elementtyp eines Arrays ist beliebig. Deshalb kann auch ein Array aus
Arrays gebildet werden:

CONST N=3; M=4;
VAR X: ARRAY [1..N] OF
ARRAY [1..M] OF INTEGER;

Eine solche zweidimensionale Datenstruktur bezeichnet man in der Mathe-
matik als Matrix. Man kann sich X als eine zweidimensionale Tabelle mit
ganzen Zahlen vorstellen:

1 1 2 3 4
2 5 6 1 8
3 9 10 1 12

Bild 12: Matrix X

Ublicherweise wird die obige Deklaration folgendermafBen abgekiirzt:

VAR X: ARRAY([1..N,1..M] OF INTEGER;

Elemente einer solchen Struktur spricht man durch zwei Indizes an:

X011 [21:= x(21 (11 oder abgekiirzt
X[1,21 := X[2,1

Es ist eine reine Konvention, bei solchen Matrizen den ersten Index als
Zeile und den zweiten Index als Spalte zu bezeichnen. Am Beispiel der
Ein- und Ausgabe von Matrizen kénnen Sie Thre Kenntnisse iiber die Stan-
dardprozeduren READ und WRITE wieder auffrischen:

Einfithrung in Pascal 67

Zunichst soll die Matrix eingelesen werden. Die Eingabe soll so erfolgen,
daB3 der Benutzer die Elemente zeilenweise eingibt:

1
5
9

oonNn

3
7
1

N O~

10 11 1

Nach dieser Eingabe soll also gelten: X[1,2] = 2 X[3,1]=9. Offensichtlich
brauchen wir zwei geschachtelte For-Anweisungen. Eine Laufvariable (i)
indiziert die Zeilen, die andere (j) durchlduft in jeder Zeile die Spalten.

FOR I:= 1 TO N DO
BEGIN
FOR J:= 1 TO M DO
READ(XLI,J1);
READLN
END

Das READLN sorgt also dafiir, daB die Eingabe korrekt in verschiedenen
Zeilen erfolgt. Analog erfolgt die Ausgabe der Werte in der Matrix durch
WRITE und WRITELN:

FOR I:= 1 TO N DO
BEGIN
FOR J:= 1 TO M DO
WRITE(XLI,J1:5);
WRITELN
END

Jetzt wird es Ihnen sicher leichtfallen, die obige Anweisungsfolge so zu
modifizieren, daB die transponierte Matrix X gedruckt wird:

SUWN -
O ~NONV
—_ e

N-=0Y

Im Abschnitt 2.9.1 wurde erklirt, da man auch eine Zuweisung (A:=B)
zwischen zwei Feldern durchfiihren kann. Nach der folgenden Deklaration

VAR S, T: ARRAY [1..3,1..8] OF CHAR;

kénnte man die Matrizen S und T auch als zwei Tabellen mit jeweils drei
Strings der Linge 8 betrachten. Deshalb kann man das Array mit folgenden
Anweisungen vorbelegen:

S{11:= "OTT0 ";
S[21:= ERNA ;
S[31:= "ANNA *;

68 Einfiihrung in Pascal

Mit der Anweisung S:=T, werden alle Zeilen von S nach T kopiert:

+- -+
1"QTTO "
S =T = IYERNA wi
IMANNA "i
+- -+

AuBlerdem kann man auch selektiv einzelne Zeilen ansprechen. Man gibt
hinter dem Array-Bezeichner nur den Zeilenindex an:

WRITELN(S[2]) druckt ERNA .
$[31:=S[2] iiberschreibt ANNA mit ERNA

Solche Block-Zuweisungen sind in Pascal bei jedem zusammengesetzten Typ
moglich. Man gibt beim Variablenbezeichner jeweils die Indizes nur bis zu
der Dimension ein, die komplett verdndert werden soll:

VAR H1,H2: ARRAY [0..20] OF
ARRAY [1..4] OF
ARRAY [1..10]1 OF INTEGER

Mit etwas Phantasie kann man in dieser Datenstruktur zwei HochhAuser mit
20 Stockwerken (einschlieBlich Erdgeschof8) erkennen. In jedem Stockwerk
gibt es vier Flure. Jeder Flur besitzt die Zimmernummern 1 bis 10. Fiir
jedes Zimmer wird die Anzahl der Personen gespeichert. H1 und H2 sind
also dreidimensional. Mit folgenden Zuweisungen koénnen wir einige
Umeziige vollziehen:

H110,1,2]1 :=H1[1,2,31 HI[1,2,31:= 0O

Hier zieht also eine Familie (?) aus dem 1. Stock, 2. Flur in die Nachbar-
wohnung um. Wenn die Bewohner des 3. Flurs im 2. Stock die Wohnungen
im 4. Flur im Erdgeschof3 iibernehmen sollen, wird das in der Zimmer-
buchfithrung wie folgt notiert:

H1[0,41:=H1[2,3]

GroBere Unruhe wird wohl die folgende Aktion zur Folge haben:

Einfiihrung in Pascal 69

Aufgaben

1.

Schreiben Sie ein Programm, das in einem aufsteigend sortierten Array
A ganzer Zahlen nach einer vorgegebenen Zahl W sucht. Dabei soll die
Methode der binidren Suche verwendet werden: Um im Teilarray von L
bis R das Element W zu finden, vergleicht man W mit dem Wert an der
mittleren Position M=(L+R) DIV 2. Je nachdem, ob W Kkleiner oder
grofler als A[M] ist, wihlt man M als neue linke oder rechte Array-
Grenze.

L:=UG; R:=0G;

REPEAT
M:=(L+R) DIV 2;
IF W<A[M] THEN ... ELSE
IF W>A[M] THEN ...
ELSE...

UNTIL .

Sollten Sie Probleme bei der Formulierung des Abbruchkriteriums
haben, kénnen Sie eine boolesche Variable GEFUNDEN verwenden.
Wenn Sie schon Programmiererfahrung besitzen, sollten Sie versuchen,
in der Schleife mit nur einem Vergleich zwischen W und A[M]
auszukommen. (Es geht!)

Schreiben Sie ein Programm, das das Pascalsche Dreieck druckt. Es ent-
hilt die Binomialkoeffizienten n iiber k, die man z.B zur Berechnung
von (a+b)tn bendtigt:

1 5 10 10 5 1

Dabei steht in der n. Zeile an der k. Position die Summe der Zahlen in
der n-1. Zeile an der k-1. und k. Position. (Genaueres finden Sie in je-
dem Lexikon.)

Schreiben Sie ein Programm, das ein Array reeller Zahlen verwaltet. Zu
Anfang ist das Array unbelegt. Dann sollen Werte vom Benutzer
eingegeben werden, die direkt bei der Eingabe so in das Array
eingefiigt werden, daB die Zahlen aufsteigend sortiert bleiben.

70 Einfiihrung in Pascal

LEN:=0;

REPEAT
Zahl einlesen;
2ahl einflgen;
LEN:=LEN+1

UNTIL LEN=FeldgroBe

4. Schreiben Sie ein Programm, das einen Text zeilenweise von der
Tastatur einliest (Sonderzeichen am Ende). Dieser Text soll dann im
Blocksatz auf eine Spaltenbreite von N Zeichen verteilt ausgedruckt
werden:

Dies ist ein
Beispiel fir den

Blocksatz mit
wenigen Spalten.

Sie miissen also zunichst eine Verteilung der Worter iiber die Zeilen
vornehmen. Anschlieend kénnen Sie die verbleibenden Leerzeichen am
rechten Rand auf die Zwischenriume zwischen den Wortern verteilen.
Normalerweise verteilt man die Leerzeichen abwechselnd je eine Zeile
von rechts und eine Zeile von links, um ein ausgeglichenes Schriftbild
zu erhalten,

5. Schreiben Sie ein Programm, das eine reelle Zahl formatiert ausdruckt.
Dabei sollen insgesamt N Zeichen gedruckt werden. M gibt die Anzahl
der Nachkommastellen an:

X=12.34 N=10 M=2 12.34

X=400 N=8 M=2 ..400.00

X=9.8765 N=6 M=0 9
=-32.40 N=7 M=3 -32.400

6. Erstellen Sie ein Programm, das in einem String S1 einen String S2 mit
N Zeichen Linge sucht. Die gefundene Position soll in der Variablen M
gespeichert werden.

S1:="Dies ist ein Testtext"

s2:="tt u; N=2 ergibt M=17
s2:=n n; N=1 ergibt M=5
$2:="Egon w: N=4 ergibt M=0

Sie konnen das Programm erweitern, indem Sie auch einen Joker zu-
lassen:

S2:=Mest?7xt u; N=7 ergibt M=15

Einftihrung in Pascal 71

§2:="est??xt u. N=7 ergibt M=15

7. Fiir eine Matrix mit drei Zeilen und vier Spalten sollen folgende Werte
berechnet werden:

- Maximale Zeilensumme

- Maximale Spaltensumme

- Das betragsgréfite Element in der Matrix

- Die Summe der Werte in jeder Diagonalen von links unten nach
rechts oben

- Die Summe der Werte in jeder Diagonalen von links oben nach
rechts unten.

8. Programmieren Sie das Sortierverfahren Bubblesort. Um ein Array von
N Werten zu sortieren, wird das Array (N-1)mal durchlaufen. In jedem
Durchlauf werden jeweils zwei benachbarte Elemente verglichen und
ausgetauscht, falls das zweite Element kleiner als das erste Element ist:

FOR I:= 2 TO N DO
FOR J:F cecnnvnass Do
IF ALJ+11<A[J] THEN
BEGIN
H:=A[J1; ALJ1:=A[J+1]1; AlJ+1]l:= H
END;

Bestimmen Sie die Grenzen fiir die For-Anweisung, indem Sie sich zu-
nichst die Funktionsweise mit der Anweisung FOR J:= 1 TO N-1 klar-
machen, und anschlieBend iiberlegen, bis zu welcher Grenze das Array
im I-ten Durchlauf bereits sortiert ist.

2.10 Deklaration von Typen

In der Variablendeklaration wird der Typ als eine konstante Eigenschaft
der Variablen festgelegt. Bisher kennen Sie die Standardtypen mit den
vordefinierten Bezeichnern INTEGER, REAL, CHAR und BOOLEAN. Im
Abschnitt 2.9 hatten wir bereits Array-Variablen definiert. Sie sind ein
erstes Beispiel fiir Typen, die der Programmierer definiert. Wie Konstanten
und Variablen kénnen auch Typen Bezeichner erhalten. Dies geschieht im
Typvereinbarungsteil, der im Programm zwischen dem Konstanten- und
Variablenvereinbarungsteil steht:

72 Einfiihrung in Pascal

TYPE GANZEZAHL = INTEGER;
GROSSEZAHL= REAL;
TMATRIX = ARRAY[1..4,1..4] OF GANZEZAHL;

VAR I: GANZEZAHL; J :INTEGER;
MAT1,MAT2: TMATRIX;
MAT3 : ARRAY[1..4,1..4] OF GANZEZAHL;
MAT4 : TMATRIX;

Listing 9: T'ypdeklaration

Fiir zusammengesetzte Typen ist die Benutzung von Typbezeichnern beson-
ders sinnvoll. Im letzten Abschnitt wire die Struktur der Variablen H1,H2
mit der folgenden Typdeklaration sofort erkennbar:

TYPE BELEGUNG = INTEGER;

FLUR = ARRAY[1..10] OF BELEGUNG;

STOCK = ARRAY[1..41 OF FLUR;

HAUS = ARRAY[0..20] OF STOCK;
VAR H1,H2: HAUS;

Eine wichtige Aufgabe der Typdeklaration besteht darin, die Menge der
Variablen in einem Programm in Klassen aufzuteilen. Zuweisungen und
Operationen sind nur zwischen den Mitgliedern kompatibler Klassen
moglich. Bereits bei der Ubersetzung sind dadurch weitgehende Priifungen
des Programmtextes moglich.

Die folgenden Regeln legen die Typkompatibilitit in Pascal fest:

1. Zwei Variablen eines zusammengesetzten Typs (Array, Record, Menge
und File) sind nur dann zuweisungskompatibel, wenn sie in einer
Variablendeklaration oder mit demselben Typbezeichner definiert wur-
den.

2. Strings (Werte des Typs ARRAY OF CHAR) kénnen auBerdem String-
Variablen der gleichen Linge zugewiesen werden.

3. Werte eines Unterbereichstyps (siche Abschnitt 2.12.2) koénnen
auBlerdem Variablen des Basistyps zugewiesen werden.

4. Ein ganzzahliger Wert kann immer einer reellen Variablen zugewiesen
werden.

Einfiihrung in Pascal 73

Die erste Regel soll am Beispiel der Deklaration aus Listing 9 verdeutlicht
werden:

MAT1:= MAT2 (zuldssig)
MAT4:= MAT1 (zulissig)
MAT3:= MAT1 (unzulissig)
MA1;4:= MAT3 (unzulissig)

Einige Compiler sind bei der Interpretation der Regeln zur Typkompatibi-
litit etwas groBziigiger. Sie erlauben Zuweisungen auch zwischen Variablen,
die nur die gleiche Struktur besitzen (MAT3:=MATI] ist dann zulissig,
siche auch Buch 3, Anhang E).

2.11 Prozeduren

Eine besonders erfolgreiche Strategie beim Programmentwurf besteht darin,
das Ausgangsproblem in geeignet gewihlte kleinere Teilprobleme zu zer-
legen. Ziel dieser Zerlegung ist es, iiberschaubare Programmteile zu erhal-
ten, die mit dem restlichen Programm nur iiber wohldefinierte
Schnittstellen kommunizieren, so dal die Korrektheit der Programmteile
ohne Kenntnis der Umgebung gesichert werden kann. Als Beispiel ist in
Listing 10 die Grobstruktur eines Programmes fiir ein Brettspiel mit dem
Computer angegeben.

Spielbrett belegen
REPEAT
Spielstellung anzeigen
Eingabe Spielerzug
Spielstellung anzeigen
Computerzug berechnen
UNTIL Spielende

Listing 10: Brettspiel

Jede der im Klartext angegebenen Teilaufgaben 148t sich logisch von den
anderen trennen. Ein Beispiel fiir eine Schnittstelle zwischen den Teilauf-
gaben ist die Spielstellung: Sie darf nur bei der Eingabe des Spielerzuges
und des Computerzuges verdndert werden. Die Teilaufgabe Spielstellung
anzeigen kann auf die Spielstellung nur lesend zugreifen.

74 Einfithrung in Pascal

Pascal unterstiitzt diese Modularisierung des Programmes durch das
Konzept der Prozeduren und Funktionen. Die Schnittstellen werden durch
Parameterlisten und die Sichtbarkeitsregeln fiir Bezeichner im Programm-
text festgelegt.

In Pascal wiirde man jede der obigen Teilaufgaben durch ein separates Pro-
grammstiick, eine Prozedur, definieren. Jede Prozedur erhilt in der Proze-
durdeklaration einen Namen (Bezeichner). Im Anweisungsteil wird durch
die Angabe des Namens der Prozedur die Ausfithrung der angegebenen
Prozedur veranlaflt. Diese Art von Anweisung nennt man einen Prozedur-
aufruf.

Besonders niitzlich sind Prozeduren, die von verschiedenen Stellen
aufgerufen werden. Dadurch, dal die Prozedur nur einmal deklariert wer-
den muB, spart man nicht nur Schreibarbeit und Speicherplatz, sondern
muB spitere Anderungen nur an einer Stelle durchfiihren.

Ein konkretes Beispiel soll die einfachste Form einer Prozedur vorstellen:
Wir wollen den gréBten gemeinsamen Teiler der ganzen Zahlen A und B
bestimmen. Diese Berechnung soll den GGT in der Variablen ERG ablegen.
Die dazugehorige Prozedur ist in Listing 11 angegeben.

PROCEDURE GGT;
BEGIN
X:=A; Y:=B;
WHILE X<>Y DO
IF X>Y THEN X:
Y:

X-Y
ELSE Y-X;

ERG:=X
END;

Listing 11: Die Prozedur GGT

Dies ist eine Prozedurdeklaration. Sie besteht aus dem Wortsymbol PRO-
CEDURE und dem Prozedurbezeichner GGT, die zusammen den Proze-
durkopf bilden. Zwischen den Wortsymbolen BEGIN und END stehen die
Anweisungen der Prozedur.

Die - Prozedurdeklarationen stehen am Ende des Vereinbarungsteils. Dort
werden alle Prozeduren, die das Hauptprogramm benutzt, in der Form von
Listing 12 aufgefithrt. Im Anweisungsteil des Programmes steht an zwei
Stellen der Bezeichner GGT. Dort wird also die Prozedur GGT aufgerufen.
Der GGT ist bei der Riickkehr aus der Prozedur in der Variablen ERG
gespeichert.

Einfiihrung in Pascal 75

In den nichsten Abschnitten werden wir an Hand dieses Beispielpro-
grammes noch weitere Mdglichkeiten von Pascal vorstellen, die es erlauben,
Prozeduren noch flexibler einzusetzen.

PROGRAM GGTTEST(OUTPUT);
VAR A, B, ERG, X, Y: INTEGER;

PROCEDURE GGT;
BEGIN
X:=A; Y:=B;
WHILE X<>Y DO
IF X>Y THEN X:= X-Y
ELSE Y:= Y-X;
ERG:=X
END; (* GGT *)

BEGIN (* HAUPTPROGRAMM *)
A:=9; B:= 3; GGT;
WRITELNCERG);

A:=8; B:= 3; GGT;
WRITELN(ERG)
END.

Listing 12: Prozeduraufrufe

2.11.1 Lokalitit von Bezeichnern

In Listing 12 wurden die Variablen X und Y nur innerhalb der Prozedur
GGT verwendet. Diese Zugehorigkeit driickt man dadurch aus, daB3 die
Variablen innerhalb der Prozedur deklariert werden.

PROGRAM GGTTEST(OUTPUT);
VAR A, B, ERG: INTEGER;
PROCEDURE GGT;
VAR X,Y: INTEGER;
BEGIN
X:=A; Y:=B;
WHILE X<>Y DO
IF X>Y THEN X:
ELSE Y:

ERG:=X
END; (* GGT *)

Listing 13: Lokale Variablen

Man bezeichnet X und Y als lokale Variablen der Prozedur GGT, da sie
jetzt auBerhalb der Prozedur nicht mehr sichtbar sind. D.h. eine Zuweisung

76 Einfiihrung in Pascal

X:=Y im Hauptprogramm wiirde der Compiler mit der Fehlermeldung
Bezeichner nicht deklariert quittieren.

Durch diese lokalen Deklarationen nimmt eine Prozedur die Form eines
eigenstindigen Programmes an. Tatsichlich sind alle Deklarationen, die im
Hauptprogramm erlaubt sind, auch lokal méglich. Wenn Sie wieder einmal
die Syntax-Diagramme im Anhang A zu Rate ziehen, werden Sie sehen,
daB sich an den Programm- und den Prozedurkopf ein BLOCK anschlief3t.
Das Syntax-Diagramm BLOCK enthdlt sowohl den Vereinbarungsteil als
auch den Anweisungsteil.

Grundsitzlich versucht man, den Sichtbarkeitsbereich (scope) eines
Bezeichners (Konstante, Variable etc.) moglichst klein zu halten. Diese
Strategie wird manchmal auch als Geheimnisprinzip bezeichnet: Eine
Prozedur verbirgt vor ihrer Umgebung nicht nur die Details ihres
Anweisungsteils, sondern auch die lokalen Objekte.

Ein angenehmer Nebeneffekt dieses Prinzips der Lokalitit ist eine
Speicherplatzersparnis. Bei der Programmausfithrung wird erst beim Aufruf
der Prozedur (GGT) Speicherplatz fiir die lokalen Objekte (die Variablen X
und Y) reserviert. Am Ende der Ausfithrung der Prozedur wird dieser
Speicherplatz wieder freigegeben und steht anderen Prozeduren zur
Verfiigung. Eine Folge dieser Speicherorganisation ist, daf3 bei jedem neuen
Aufruf einer Prozedur alle lokalen Variablen undefiniert sind.

Soll eine Variable ihren Wert zwischen zwei Aufrufen beibehalten, so muf3
man sie auflerhalb der Prozedur (global) deklarieren (Listing 14).

In Listing 12 waren auch X und Y globale Variablen. Gerade in groBen
Programmen ist die Verwendung von globalen Variablen eine schwer zu
entdeckende Fehlerquelle: Hitte man im Hauptprogramm in Listing 12 die
Variablen X und Y benutzt, so wiirden als Seiteneffekt bei jedem Aufruf
von GGT die Werte von X und Y iiberschrieben werden.

PROGRAM GLOBALTEST(OUTPUT);
VAR G: INTEGER;

PROCEDURE GLOBAL;
BEGIN

G:=G+1; WRITELN("AUFRUF NUMMER",G)
END; (* GLOBAL *)

BEGIN

G:=0; GLOBAL; GLOBAL; GLOBAL
END.

Listing 14: Globale Variable

Einfiihrung in Pascal 77

Nachdem nun der Unterschied zwischen globalen und lokalen Objekten
einer Prozedur bekannt ist, wollen wir uns mit der Schachtelung von
Prozeduren beschiftigen. Da alle Arten von Deklarationen in einer Proze-
dur erlaubt sind, kann eine Prozedur auch eine weitere Prozedurdeklaration
enthalten.

PROGRAM SCHACHTELUNG (OUTPUT);
VAR A: REAL; B: REAL;

PROCEDURE AUSSEN;
VAR A: INTEGER;
PROCEDURE INNEN;

VAR I: INTEGER;
BEGIN

WRITELN("INNEN")
END; (* INNEN *)

BEGIN (* AUSSEN *)
WRITELN("AUSSEN");
INNEN; INNEN; INNEN

END; (* AUSSEN *)

BEGIN (* HAUPTPROGRAMM *)
AUSSEN; AUSSEN
END.

Listing 15: Verschachtelung

Lokale Prozeduren (INNEN) verwendet man aus dem gleichen Grund wie
lokale Variablen: Die Prozedur INNEN wird nur in der Prozedur AUSSEN
benétigt. Deshalb sollte die Umgebung (in diesem Fall das Hauptprogramm)
keinen Zugriff auf die lokale Prozedur besitzen.

In Listing 13 wurden auBlerdem Variablen in verschiedenen
Schachtelungsebenen deklariert, um die folgenden Regeln iiber die Sicht-
barkeit von Bezeichnern in Pascal zu illustrieren:

1. Ein Bezeichner ist in dem Block P, in dem er deklariert wurde, sicht-
bar. AuBBerdem ist er in jedem Block sichtbar, der von P eingeschlossen
wird, solange nicht Regel 2 gilt.

2. Eine Deklaration eines Bezeichners X in einem Block macht alle
Deklarationen des Bezeichners X in duBBeren Blécken unsichtbar.

3. Die Standardbezeichner sind in einem imaginiren Block deklariert, der
das gesamte Programm umschlief3t.

78 Einfiihrung in Pascal

Durch die Regel 1 ist die Variable B im Block SCHACHTELUNG, in der
Prozedur AUSSEN und auch in der Prozedur INNEN sichtbar. Nach Regel
2 iiberdeckt die Deklaration von A:INTEGER die Variable A:REAL. In
AUSSEN und INNEN ist also nur A:INTEGER sichtbar. Durch Regel 3
sind z.B. die Standardbezeichner TRUE und FALSE im gesamten Pro-
gramm sichtbar.

Nur selten werden die Standardbezeichner mit neuer Bedeutung deklariert.
Man koénnte aber wegen Regel 2 und 3 mit der folgenden Deklaration die
vordefinierte Konstante MAXINT = 32767 ersetzen:

VAR MAXINT: INTEGER

Sollten Thnen die Regeln etwas kompliziert erscheinen, so merken Sie sich
fiir den Augenblick nur, daB man in einer Prozedur Bezeichner unabhiingig
vom {iibrigen Programm wihlen kann.

2.11.2 Parameter

Die Version der Prozedur GGT mit lokalen Variablen (Listing 13) ist
immer noch nicht optimal in Pascal formuliert. Dort werden die Eingabe-
werte A und B sowie das Ergebnis ERG iiber globale Variablen iibergeben.
Durch die Benutzung von Parametern wird die Prozedur universeller
(Listing 16).

PROGRAM PARAMETER(OUTPUT);
VAR V: INTEGER;

PROCEDURE GGT(A,B: INTEGER; VAR ERG: INTEGER);
BEGIN
WHILE A<>B DO
IF A>B THEN A:= A-B
ELSE B:= B-A;
ERG:=A
END; (* GGT *)

BEGIN (* HAUPTPROGRAMM *)
GGT(9,3,V);
WRITELN(V);
GGT(17+4,3,V);
WRITELN(V)

END.

Listing 16: GGT mit Parametern

Einfiihrung in Pascal 79

Der Prozedurkopf von GGT wird um eine Parameterliste erweitert. Die
formalen Parameter A, B und ERG werden wie lokale Variablen deklariert.
Beim Aufruf werden aktuelle Parameter angegeben, die die Werte der
Variablen festlegen. Beim Aufruf miissen Anzahl und Typ der aktuellen
und formalen Parameter {ibereinstimmen. Es gibt zwei verschiedene Typen
von Parametern, die beide in Listing 16 verwendet wurden.

Wertparameter: Im Beispiel sind A und B Wertparameter. Sie verhalten sich
in der Prozedur GGT wie normale lokale Variablen. Jedoch werden sie
beim Aufruf der Prozedur durch Ausdriicke als aktuelle Parameter (z.B.
17+4 oder 3) initialisiert. Die Prozedur kann jetzt die Variablen A und B
beliebig benutzen und ihnen auch Werte zuweisen, ohne dafl in der
aufrufenden Umgebung irgendeine Anderung bewirkt wiirde.

Damit konnten wir im Beispiel die Hilfsvariablen X und Y einsparen.
Wertparameter sind die vorherrschende Parameterart, da beliebige Aus-
driicke als aktuelle Parameter auftreten kénnen:

PROGRAM PARAMETERDEMO (OUTPUT);
VAR 1: INTEGER;

PROCEDURE KASTEN(L, B: INTEGER; ZEICHEN: CHAR);
VAR 1,J: INTEGER;
BEGIN
FOR 1:= 1 TO B DO
BEGIN
FOR J:= 1 TO L DO
WRITE(ZEICHEN);
WRITELN
END
END; (* KASTEN *)

BEGIN
FOR I:= 1 TO 10 DO KASTEN(2*I,I+2,CHR(I+ORD("A")))
END.

Listing 17: Parameterdemo

Variablenparameter: Wertparameter konnen keine Ergebnisse aus der
Prozedur an die aufrufende Umgebung zuriickliefern. In solchen Fillen
benutzt man Variablenparameter. Hier ist der aktuelle Parameter immer
eine Variable vom Typ des formalen Parameters. Variablenparameter wer-
den bei der Deklaration in der Parameterliste durch Voranstellen des
Wortsymbols YAR gekennzeichnet.

80 Einfiihrung in Pascal

Die Prozedur GGT liefert das Ergebnis iiber den Variablenparameter ERG
zuriick. Deshalb muf3 beim Aufruf der dritte Parameter immer eine Varia-
ble vom Typ INTEGER sein (z.B. V).

Bei der Ausfithrung der Prozedur dndert jede Zuweisung an einen formalen
Variablenparameter den Wert des zugehorigen aktuellen Parameters. Somit
wird durch die Zuweisung ERG:=A der Variablen V der Wert A
zugewiesen.

Der Aufruf mit Wertparametern wird auch als call by value bezeichnet.
Den Aufruf mit Variablenparametern bezeichnet man dann als call by
reference. Dies deutet bereits auf die Realisierung der Parameter auf dem
Rechner hin: Bei Wertparametern wird der Wert des Ausdruckes in den
lokalen Speicherbereich der Prozedur kopiert. Bei Variablenparametern
wird nur ein Verweis (eine Adresse) auf eine globale Variable iibergeben.

Viele weitere Beispiele werden Sie in den nichsten Abschnitten finden. Am
Ende dieses Abschnittes soll noch betont werden, daB alle Typen (auch
zusammengesetzte) als Parameter auftreten kénnen:

PROGRAM VEKTORSUMME(INPUT, OUTPUT);
CONST N=5;
TYPE VEKTOR=ARRAY[1..N1 OF REAL;
VAR X,Y,Z: VEKTOR;
M : ARRAY[1..N] OF VEKTOR; (* MATRIX!*)

PROCEDURE ADD (A,B: VEKTOR; VAR C: VEKTOR);
(* C:= A+B komponentenweise*)

VAR I: INTEGER;
BEGIN

FOR I:= 1 TO N DO C[1]:= A[11+B[I]
END; (* ADD *)
BEGIN

(* X,Y vorbelegen *)

ADD(X,Y,2);

MI[11:=Z; M[2]:= X;

ADD(MI11, M[2], M[4])
END.

Listing 18: Vektorsumme

Hier werden also Vektoren von fiinf Zahlen als Parameter iibergeben. Ak-
tuelle und formale Parameter miissen natiirlich auch hier iibereinstimmen.
Dabei ist es wichtig, daBl Sie einen Typ-Bezeichner im Prozedurkopf
angeben. Verboten ist also die Parameterliste:

PROCEDURE ADD (A,B: ARRAY[1..N]l OF REAL; VAR C: VEKTOR);

Einfiihrung in Pascal 81

2.11.3 Funktionen

Neben den Variablenparametern gibt es eine weitere Méglichkeit, Resultate
zuriickzugeben. Diese Methode lehnt sich an die Notation von Funktionen
in der Mathematik an. Dort schreibt man zum Beispiel:

X = GGT(7,29)

Der Name der Funktion reprisentiert gleichzeitig den Wert der Berechnung.
In Pascal definiert man solche Prozeduren, die nur einen skalaren Wert als
Ergebnis liefern, als Funktionen:

PROGRAM FUNKTION(OUTPUT);
VAR W: INTEGER;

FUNCTION GGT(A,B: INTEGER): INTEGER;
BEGIN
WHILE A<>B DO
IF A>B THEN A:
ELSE B:

nn
@ >

GGT:=A
END; (* GGT *)

BEGIN (* HAUPTPROGRAMM *)
W:=GGT(12345,25325);
WRITELN(W,GGT(9,3));
W:=W+GGT (234,432)

END.

Man ersetzt also das Wortsymbol PROCEDURE durch das Wortsymbol
FUNCTION. AuBerdem folgt nach der (evtl. leeren) Parameterliste und
einem Doppelpunkt ein Typbezeichner, der den Ergebnistyp der Funktion
definiert. Hier sind nur skalare Typen und Zeiger (siche Abschnitt 2.18)
erlaubt. Die Syntax-Diagramme, die Sie im Zweifelsfall zu Rate ziehen
koénnen, stehen im Anhang A unter den Namen BLOCK und
PARAMETERLISTE.

Innerhalb der Funktion muf3 das Ergebnis durch eine Zuweisung an den
Funktionsbezeichner festgelegt werden. Dies geschieht hier durch die An-
weisung GGT:=A. GGT ist also nicht nur der Name der Funktion, sondern
auch der Name fiir das Ergebnis der Funktion. Die Anweisungen im
Hauptprogramm zeigen, dal man Funktionsaufrufe nur in Ausdriicken,
nicht aber als einzelne Anweisungen wie Prozeduraufrufe verwenden kann.

82 Einfiihrung in Pascal

2.11.4 Standardprozeduren

Bereits bei Thren ersten Schritten in Pascal hatten Sie die Anweisungen
WRITE und READ sowie arithmetische Funktionen wie SIN und COS ver-
wendet.

Im Unterschied zu den Wortsymbolen BEGIN und END handelt es sich
hierbei um vordefinierte Standardbezeichner fiir Prozeduren und Funktio-
nen. Wie wir bereits in Abschnitt 2.11.1 festgestellt haben, kann man die
Standardbezeichner durch eigene Deklarationen verdecken. Als Beispiel
wollen wir (mit einer numerisch sehr stabilen Methode) eine explizite
Deklaration der Quadratwurzelfunktion geben:

FUNCTION SQRT(X: REAL): REAL;
CONST EPS= 1.0E-7; (* Genauigkeit *)
VAR Y, Z: REAL;
BEGIN
IF X<0 THEN
BEGIN
WRITELN("FEHLER IN SQRT"); HALT
END
ELSE
BEGIN Y:= 2; (* Startwert Z berechnen *)
REPEAT
2:= Y; Y:i=Y*Y
UNTIL Y>X;
REPEAT (* Iteration *)
Y:=2; Z2:=0.5%(Y+X/Y)
UNTIL ABS(Y-2)<=EPS
END;
SQRT:= Z
END; (* SQRT *)

Listing 19: Deklaration der Quadratwurzel funktion

Durch eine Erniedrigung der Genauigkeit EPS 148t sich bei Bedarf die
Geschwindigkeit der Routine erhéhen. Eine Sonderrolle nehmen die Proze-
duren READ(LN) und WRITE(LN) ein, da sie eine variable Anzahl ak-
tueller Parameter besitzen koénnen. Diese Eigenschaft kann man durch
selbstdefinierte Prozeduren und Funktionen nicht simulieren.

2.11.5 Rekursion

In Abschnitt 2.11.1 iiber die Schachtelung von Prozeduren wurde erklirt,
daB in einem Block jede Prozedur aufgerufen werden kann, deren
Bezeichner sichtbar ist. Dies bedeutet, dafl sich eine Prozedur auch selbst
aufrufen kann. Dieser Vorgang wird Rekursion genannt.

Einfithrung in Pascal 83

Durch die Tatsache, daf3 bei jedem Aufruf einer Prozedur Speicherplatz fiir
die lokalen Objekte bereitgestellt wird, werden bei rekursiven Aufrufen
verschiedene Inkarnationen der lokalen Variablen erzeugt.

Durch diese Methode der Speicherverwaltung werden beim rekursiven
Aufruf einer Prozedur P die Werte der lokalen Variablen von P nicht
tiberschrieben. Dies 14Bt sich am besten mit einem einfachen Beispielpro-
gramm verdeutlichen (Listing 20):

PROGRAM REKURSION(OUTPUT);

PROCEDURE REKURSIV(N: INTEGER);
VAR LOKAL: INTEGER;
BEGIN
LOKAL:= N;
WRITELN(" ":N, "LOKAL=", LOKAL);
IF N<4 THEN REKURSIV(N+1); (*<<---------- *)
WRITELN("™ “:N, "LOKAL=", LOKAL);
END; (* REKURSIV *)

BEGIN
REKURSIV(1)
END.

Listing 20: Rekursion

Die Prozedur REKURSIV speichert zunichst (zu Demonstrationszwecken)
den Wert des Parameters N in einer lokalen Variablen LOKAL. Dieser Wert
wird nun in zwei identischen Write-Anweisungen um N Stellen eingeriickt
ausgedruckt.

Die eigentlich interessante Anweisung ist mit einem Pfeil markiert: Ist
nimlich der Parameter N noch nicht gleich 4, so ruft sich die Prozedur
selbst auf. Als Parameter fiir diesen Selbstaufruf wird die Zahl N+1 ver-
wendet.

Da jeder Aufruf der Prozedur REKURSIV seine eigenen Variablen N und
LOKAL besitzt, wird durch diesen rekursiven Aufruf der Inhalt der Varia-
blen N und LOKAL in der aufrufenden Umgebung nicht verindert. Des-
halb ergibt sich folgende Ausgabe:

LOKAL = 1
LOKAL = 2
LOKAL = 3
LOKAL
LOKAL
LOKAL = 3
LOKAL = 2
LOKAL = 1

4
4

84 Einfiihrung in Pascal

Jeweils zwei Zeilen, die gleich weit eingeriickt sind, stammen von dersel-
ben Inkarnation der Prozedur REKURSIYV.

Dieses Programm ist zwar nicht sehr sinnvoll, zeigt aber deutlich die
geschachtelten Aufrufe:

REKURSIV(1) ruft
REKURSIV(2) ruft
REKURSIV(3) ruft
REKURSIV(4)

AuBlerdem sehen Sie, daB3 diese Folge rekursiver Aufrufe irgendwann been-
det werden muB3. Deshalb werden rekursive Aufrufe immer durch eine Be-
dingung kontrolliert. Im Beispiel Listing 20 ist dies die Bedingte
Anweisung IF N<4 THEN...

Schon jetzt mochte ich Sie davor warnen, rekursive Prozeduren Schritt fiir
Schritt nachzuvolliziehen, indem Sie sich die Werte aller lokalen Variablen
notieren und so den Programmablauf zu analysieren versuchen. Dabei wer-
den Sie nach wenigen Schritten schon an einem heillosen Durcheinander
verzweifeln.

Vielmehr muB man rekursive Prozeduren deklarativ verstehen. So kann
man z.B. die Prozedur REKURSIV wie folgt beschreiben:

1. Drucke N Stellen eingeriickt die Zahl N.

2. Ist der Text noch nicht vier Stellen eingeriickt, so drucke einen Block,
der N+1 Stellen eingeriickt ist.

3. Drucke N Stellen eingeriickt die Zahl N.

Um Ihr deklaratives Verstindnis zu trainieren, sollten Sie jetzt ein Blatt
Papier zur Hand nehmen und die Ausgabe notieren, die Sie beim Aufruf
REKURSIV2(1) der folgenden Prozedur (Listing 21) erwarten:

PROCEDURE REKURSIV2(N: INTEGER);
VAR LOKAL: INTEGER;
BEGIN
LOKAL:= N;
WRITELN(" ":N, "LOKAL=", LOKAL);
IF N<4 THEN REKURSIV2(N+1);
IF N<4 THEN REKURSIV2(N+1);
WRITELN(" ":N, "LOKAL=", LOKAL);
END; (* REKURSIVZ2 *)

Listing 21: Rekursiv (2)

Einfiihrung in Pascal 85

Diese Prozedur druckt also den gesamten eingeriickten Block zweimal. (Ein
Tip: Die Ausgabe ist genau 30 Zeilen lang!)

Das Prinzip der Rekursion besteht darin, dal man zur Ldsung einer groflen
Aufgabe die Losung der Aufgabe fiir kleinere Werte benutzt. Diese etwas
tautologisch anmutende Aussage soll das folgende Beispiel illustrieren:

Wir wollen alle méglichen Anordnungen (Permutationen) eines Strings von
n Zeichen drucken. Der rekursive Algorithmus hierfiir lautet folgender-
mafen:

Ist die Lange N gleich 1, so gibt es nur diese Anordnung. Drucke diese
Anordnung.

Sonst: Drucke alle Moglichkeiten, die ersten (N-1) Zeichen im String
anzuordnen.

Fir alle Positionen i von 1 bis N-1: Tausche das i. Zeichen mit dem letzten
Zeichen. Drucke alle Moglichkeiten fiir diese Anordnung. Mache die
Vertauschung riickgéingig

Dieser Algorithmus 148t sich direkt in Pascal formulieren (siehe Listing 22).

PROGRAM ANORDNUNGEN(INPUT, OUTPUT);

CONST LEN = 3;
TYPE STRING = ARRAY [1..LEN] OF CHAR;
VAR I: INTEGER;

A: STRING;

PROCEDURE ANORDNUNG(S: STRING; N: INTEGER);
(* Drucke alle Anordnungen der ersten N Zeichen *)

(* im String S. *)
VAR C: CHAR; I: INTEGER;
BEGIN B
IF N=1 THEN WRITE(S,"™ ")
ELSE
BEGIN

ANORDNUNG(S, N-1);
FOR I:= 1 TO N-1 DO
BEGIN

C:= S[I1; SI[I1:= SIN1; SINl:= C;
ANORDNUNG(S,N-1);
C:= S[I]; S[I1:= S[N]; SINl:= C;

END
END
END; (* ANORDNUNG *)

86 Einfiithrung in Pascal

BEGIN
FOR I:= 1 TO LEN DO READ(AILI1);
WRITELN; ANORDNUNG(A, LEN); WRITELN
END.

Listing 22: Rekursiver Algorithmus

Fir die Eingabe von ABC produziert das Programm die folgende Ausgabe:

ABC BAC CBA BCA ACB CAB

Es gibt viele Beispiele, in denen die Rekursion eine elegante Loésung des
Problems erlaubt. Bevor wir zum Schluf3 noch ein sehr effizientes rekur-
sives Sortierverfahren vorstellen, wollen wir noch ein abschreckendes
Beispiel fiir die unnétige Verwendung der Rekursion betrachten.

Es soll die Zahl n! =1 ¥ 2 * 3 * | * n berechnet werden. In der Mathe-
matik wird die Fakultitsfunktion gern als eine primitiv rekursive Funktion
definiert. Es gilt nimlich:

0t =1 und (n+1)! = n! * (n+1) fur n>=1

Somit 148t sich in Pascal die Zahl n! wie folgt berechnen:

PROGRAM FAKULTAET(INPUT, OUTPUT);
VAR X:INTEGER;

FUNCTION FAK(N: INTEGER): REAL;
BEGIN
IF N=0 THEN FAK:
ELSE FAK:
END; (* FAK *)

1.0
FAK(N-1) * N

nu

BEGIN
REPEAT
READLN(X);
WRITELN(X:3,"! =" FAK(X))
UNTIL X=0;
END.

Jedoch ist die iterative LOsung

FAK:=1;
FOR I:=1 TO N DO
FAK:= FAK*I

leichter verstindlich und auch effizienter. Jeder Prozeduraufruf bendtigt
nimlich abgesehen von dem Speicherplatz fiir die lokalen Variablen auch
einen gewissen Verwaltungsaufwand, der bei der For-Schleife vermieden
wird.

Einfithrung in Pascal 87

Jetzt kommen wir zu dem angekiindigten Sortieralgorithmus: Die Aufgabe
besteht darin, ein Array A mit N ganzen Zahlen aufsteigend zu sortieren.

Die Idee zu einer rekursiven Lésung besteht darin, das Array in zwei Teile
A[l.K] und A[K+l..N] aufzuteilen, so daB jeder Teil fiur sich, ohne
Kenntnis der Zahlen im anderen Teil, sortiert werden kann. Diese Zer-
legung und den Index K findet man mit der folgenden Strategie:

1. Man wihlt einen (zufilligen) Wert X aus dem Array. Dies kann z.B. der
Wert in der Mitte des Arrays sein.

2. AnschlieBend bestimmt man den Index K so, daB8 die linke Halfte
A[l..K-1] des Arrays nur Werte kleiner oder gleich X enthilt, wihrend
die rechte Hilfte A[K+1..N] nur Werte gréBer oder gleich X enthiilt.

3. Sortiert man anschlieBend die beiden Teilarrays, die mindestens ein
Element weniger als das urspriingliche Array enthalten, so ist
schlieBlich das gesamte Array A[l..N] sortiert.

Die Tatsache, daB in jedem Schritt die Arraygr6f3e um mindestens ein Ele-
ment sinkt, ist wichtig, damit die Rekursion auch korrekt terminiert.

Betrachten wir diese Strategie an einem Beispiel:

85763484

Da acht Elemente vorliegen, wihlt man in Schritt 1 das 4. Element (X=6)
im Array. Die Zerlegung in zwei Teile sieht nach dem 2. Schritt wie folgt
aus:

4543 6 788

Links und rechts von der Zahl 6 sind (in beliebiger Reihenfolge) die
Zahlen kleiner und groBer als 6 aufgefithrt. Da es vier Zahlen kleiner als 6
gibt, wihlen wir den Index K=4+1=5. Im 3. Schritt werden nun die Teil-
arrays getrennt sortiert:

3445 6 788

Damit haben wir die gesamte Folge sortiert. Fiir Schritt 2 (die Zerlegung in
zwei Teilarrays) wollen wir noch einen genaueren Algorithmus angeben:

88 Einfiihrung in Pascal

2.1 Setze zwei Zeiger I und J auf das erste und letzte Element im
Array.

2.2 Lasse I nach rechts wandern, bis es auf ein Element zeigt, das
grofler als X ist.
Lasse J nach links wandern, bis es auf ein Element zeigt, das
kleiner als X ist.

2.3 Da A[I] und A[J] jeweils auf der falschen Seite stehen, tausche die
beiden Elemente aus.

2.4 Wiederhole diese Schritte, bis sich beide Zeiger I und J treffen.

Die obigen Schritte beschreiben den Algorithmus Quicksort von C.A.R.
Hoare, der in Listing 23 als Pascal-Programm formuliert ist. Um die Kor-
rektheit fiir alle Belegungen des Arrays zu sichern, ist die exakte For-
mulierung der Bedingungen in den Schleifen notig. Die Diskussion solcher
Details und eine Berechnung der Rechenzeit finden Sie in (2).

Die Sortierung erfolgt in der rekursiven Prozedur QUICK:, deren Parameter
L und R den Index des ersten und letzten Elementes des zu sortierenden
Arrays enthalten. In Listing 23 sind zur Verdeutlichung die Nummern der
obigen Schritte als Kommentare angegeben.

PROGRAM SORTIEREN (INPUT, OUTPUT);
CONST N = 16;
VAR A: ARRAY [1..N] OF ELEMENT;

PROCEDURE ERZEUGEN;
VAR I: INTEGER;
BEGIN
WRITELN("UNSORTIERTE FOLGE EINGEBEN!");
FOR I:= 1 TO N DO READ(AII]1);
READLN
END; (* ERZEUGEN *)

PROCEDURE AUSGEBEN;
VAR 1: INTEGER;

BEGIN
WRITELN;
WRITELN("DIE FOLGE LAUTET");
FOR I:= 1 TO N DO WRITECA[I]:5);
WRITELN

END; (* AUSGEBEN *)

PROCEDURE QUICK (L,R: INTEGER);
VAR 1, J: INTEGER;
X, Y: INTEGER;

Einfiihrung in Pascal 89

BEGIN
X:=A[(L+R) DIV 2]
:=L; J:=R; (* 2.1 %)
REPEAT
WHILE ALII<X DO I:=I+1; (* 2.2 *)
WHILE AL41>X DO J:=J-1; (* 2.2 *)
IF I<=J THEN
BEGIN (* 2.3 %)
Y:= A[Il; AlIl:= A[J1; ALJI:=Y;
I:= I+1; J:= J-1
END
UNTIL I>J; (* 2.4 *)
IF I<R THEN QUICK(I,R); (*3 *)
IF L<J THEN QUICK(L,J) (*3 *)

END; (* QUICK *)

BEGIN
ERZEUGEN; AUSGEBEN;
QUICK(1,N); AUSGEBEN

END.

Listing 23: Quicksort

Aufgaben

1.

Formulieren Sie einige der Lésungen der Aufgaben fritherer Abschnitte
als Prozeduren oder Funktionen. Uberlegen Sie, welche Parameter diese
Prozeduren bendétigen. Beachten Sie dabei die Unterschiede zwischen
Variablen- und Wertparametern. Diese Prozeduren koénnen Sie als
Include-Files (siche Abschnitt 4.4.6.2) auf einer Diskette speichern und
spiter in eigenen Programmen verwenden. Beispiele:

PROCEDURE WRITEREAL(X: REAL; N,M: INTEGER);
(* Drucke X in ein Feld der GroBe N mit *)
(* M Nachkommastel len. *)

PROCEDURE BLOCKSATZ(VAR S: STRING; N: INTEGER;
RECHTS: BOOLEAN);

(* Formatiere Textzeile in S im Blocksatz *)

(* auf N Stellen. Falls RECHTS=TRUE werden*)

(* Leerstellen von rechts eingeflgt *)

Solche kommentierte Prozedurrimpfe sind eine einfache Methode,
gréfere Programme iiberschaubar zu halten.

Formulieren Sie ein string-package. Diese Prozedursammlung soll die
elementaren Befehle zur String-Behandlung umfassen, so daBl es in an-
deren Programmen (z.B. als Include-File) verwendet werden kann. Da
man in Pascal keine Strings variabler Linge definieren kann, hat sich
folgende Darstellungsform von Strings durchgesetzt:

90 Einfiihrung in Pascal

CONST MAXLEN
TYPE STRING

40; (* Maximale Lénge eines Strings¥)
ARRAY [0. .MAXLEN] OF CHAR;

Dabei speichert man an der Position 0 im String die tatsichliche Linge
des Strings (zwischen 0 und MAXLEN). Um in S: STRING fiinf Sterne
zu speichern, wiirde man folgende Zuweisung vornehmen:

FOR I:= 1 70 5 DO S[I1:= mem;
S[01:= CHR(5); (* 5 Zeichen lang *)

Durch diese Speicherungsform lassen sich die String-Prozeduren relativ
effizient programmieren. Ein komplettes Beispiel soll Thnen das Prinzip
verdeutlichen:

PROCEDURE CONCAT(S1,S2: STRING; VAR S3: STRING);
(* Verkette S1 und SZ zu S3. Uberlange Strings *)
(* werden abgeschnitten *)
VAR I,J: INTEGER;
BEGIN
J:= ORD(S2(01); (* Lénge S2 *)
I:= ORD(S1[0]1)+ J;
IF I>MAXLEN THEN BEGIN J:=J+MAXLEN-I; I:=MAXLEN-END;(* evtl. abschneiden*)
S§3:= 81; (* kopiere $1 *)
S3[01:= I; (* Laénge S3 *)
(* S2 nach S3 kopieren:*)
WHILE J<>0 DO
BEGIN
S3[11:=S2[J1; J:=d-1; I:=1-1
END
END; (* CONCAT *)

Nach diesem Schema koénnen Sie jetzt sicher selbst die folgenden Proze-
duren und Funktionen programmieren:

FUNCTION LENGTH(S: STRING): INTEGER;
(* Liefert die Lange des Strings S *)

PROCEDURE DELETE(VAR S: STRING; POS, N: INTEGER);
(* Loscht N Zeichen aus S ab Position POS *)

PROCEDURE INSERT(S: STRING; VAR T: STRING;
POS: INTEGER);
(* Figt S in T ab POS ein *)

PROCEDURE COPY(S: STRING; VAR T: STRING;
POS, N: INTEGER);
(* Kopiert von S N Zeichen ab POS nach T *)

PROCEDURE WRITESTRING(S: STRING; N: INTEGER);
(* Drucke S in ein Feld mit N Stellen *)

Falls Sie noch Zeit haben, kénnen Sie auch die Prozeduren VAL und
STR definieren, die Strings in Zahlen und Zahlen in Strings kon-
vertieren. Bei VAL sollten Sie einen Parameter definieren, der die Po-

Einfiihrung in Pascal 91

sition eventueller Fehler markiert bzw. angibt, an welcher Position im
String die Zahl endet.

FUNCTION GENAUIGKEIT: REAL;
VAR R: REAL;
BEGIN
R:= 1.0;
REPEAT
R:=R * 0.5
UNTIL R+1.0<1=1.0;
GENAUIGKEIT:= R
END; (* GENAUIGKEIT *)

Welches Ergebnis liefert die obige Funktion? Sollte Thnen die etwas
eigenartige Bedingung der Repeat-Anweisung Schwierigkeiten bereiten,
sollten Sie Abschnitt 2.6 zu Rate ziehen.

Das Standardbeispiel fiir die Anwendung rekursiver Prozeduren sind die
Tiirme von Hanoi: Gegeben sind drei Stibe und N Scheiben, die auf die
Stibe gesteckt werden kOnnen. Die Scheiben sind der GréBe nach nu-
meriert. Zu Beginn sind alle N Scheiben der GréBe nach sortiert zu
einem Turm auf dem 1. Stab gestapelt (sieche Bild 13).

‘ N ‘

$TAB 1 STAB 2 STAB 3

Bild 13: Tiirme von Hanoi

Die Aufgabe ist nun, den Turm in der gleichen Form auf Stab 3
aufzubauen. Dabei darf jedoch in jedem Schritt nur eine Scheibe von
einem Stab zum anderen verlegt werden. AuBlerdem darf nie eine
groflere Scheibe auf einer kleineren liegen.

Schreiben Sie eine rekursive Prozedur, die einen Turm der Héhe N von
1 nach 3 verlegt. Die Losungsidee besteht darin, daB zuerst ein Turm
der Hohe N-1 von 1 auf den Hilfsstab 2 gebracht werden muf3, um die
Scheibe N von 1 nach 3 zu verlegen. AnschlieBend kann man den Turm
der Hohe N-1 von 2 nach 3 bewegen und hat somit die Aufgabe geldst.

92 Einfiihrung in Pascal

2.12 Skalare Typen und ihre Operationen

Dieser Abschnitt setzt Abschnitt 2.6 fort. Es werden Methoden vorgestellt,
um in Pascal neue einfache Typen zu deklarieren. Die so definierten Typen
erlauben es, im Rechner ein moglichst exaktes Modell der Realitit zu
bilden. -

2.12.1 Aufzihlungstypen

Im Typvereinbarungsteil kann man eine Menge von Werten aufzihlen und
zu einem Typ zusammenfassen:

TYPE WOTAG=(MONTAG, DIENSTAG, MITTWOCH, DONNERSTAG, FREITAG, SAMSTAG, SONNTAG);
FAMSTAND=(LEDIG, VERHEIRATET, GETRENNT, GESCHIEDEN, VERWITWET);

FRUCHT=(APFEL, BIRNE, ORANGE);

VAR HEUTE, MORGEN: WOTAG;

LIEBLINGSFRUCHT: FRUCHT;

Die Variablen HEUTE und MORGEN kénnen nur die Werte MONTAG bis
SONNTAG annehmen. WOTAG, FAMSTAND und FRUCHT bezeichnet
man als Aufzéhlungstypen. Die Bezeichner in Klammern sind Konstanten
des jeweiligen Aufzihlungstyps. MONTAG ist also eine Konstante vom
Typ WOTAG. Deshalb sind die folgenden Operationen nicht erlaubt:

HEUTE:= LIEBLINGSFRUCHT MORGEN:= 4
IF HEUTE = LEDIG THEN...

Durch die Typdeklaration wird eine Ordnung auf den Konstanten definiert:

ORD(MONTAG)=0 ORD(DIENSTAG)=1 ... ORD(SONNTAG)=6
MONTAG<DIENSTAG MITTWOCH>MONTAG LEDIG<VERWITWET
IF HEUTE<=FREITAG THEN (* Werktag *)

IF LIEBLINGSFRUCHT>APFEL THEN ..

Die Standardprozeduren SUCC und PRED liefern zu jedem skalaren Typ
den Nachfolger und Vorginger im Wertebereich.

SUCC(DIENSTAG)=MITTWOCH PRED(SONNTAG)=SAMSTAG
SUCC(APFEL)=BIRNE PRED(VERHEIRATET)=LEDIG

aber auch

Einfiihrung in Pascal 93

SUCC(1)=2 SUCC(-2)=-1 SUCC(FALSE)=TRUE
SUCC(MAM)=1B"

Im Rechner existiert zur Laufzeit nur die kompakte Darstellung oiber die
Ordinalwerte. Deshalb kann man die Bezeichner der Werte des
Aufzihlungstyps nicht direkt ausgeben:

WRITE("Heute ist ", HEUTE). (falsch!)

Eine Ausgabe mufl man explizit programmieren:

PROCEDURE WRITEWOTAG(TAG: WOTAG);
BEGIN
CASE TAG OF
MONTAG : WRITE("MONTAG");
DIENSTAG: WRITE("DIENSTAG");

SONNTAG : WRITE('SONNTAG")
END (* CASE *)
END; (* WRITEWOTAG *)

WRITE ("Heute ist "); WRITEWOTAG(HEUTE)

Aufzihlungstypen erhéhen die Lesbarkeit eines Programmes enorm und
sollten wo immer moglich verwendet werden. Ein etwas spezielleres
Beispiel zeigt die Verwendung eines Aufzdhlungstyps als Indextyp: In
einem Programm soll die Anzahl der Biirger jedes Familienstandes gezihlt
werden.

Die Idee besteht darin, ein Array von Zihlern zu deklarieren, das direkt
durch Werte vom Typ FAMSTAND indiziert wird. Damit kann man in
einer Schleife, die alle Biirger erfafit, mit einer einzigen Zuweisung den
jeweiligen Zihler erhéhen (siehe Listing 24).

TYPE FAMSTAND=(LEDIG, VERHEIRATET, GETRENNT,
GESCHIEDEN, VERWITWET);
VAR ANZAHL: ARRAY [FAMSTAND] OF INTEGER;
STATUS: FAMSTAND;

ANZAHL [STATUS] := ANZAHL[STATUS] + 1;

Listing 24: Typ Familienstand

94 Einfiihrung in Pascal

2.12.2 Unterbereichstypen

Gibt es in einem Programm Variablen, die nur Werte aus einem Teilbereich
des Wertebereichs eines Typs annehmen (oder annehmen sollen), so 148t
sich diese Information bei der Deklaration einer Variablen angeben:

CONST N=3; M=4;
TYPE ZEILENINDEX = 1..N;
SPALTENINDEX = 1..M;
DATEITYP=(SEQ, INDSEQ, REL, ERASED);
VAR M: ARRAY[ZEILENINDEX, SPALTENINDEX] OF REAL;
I, 11: ZEILENINDEX;
J, J1: SPALTENINDEX;
B, BUCHSTABE: MAW_ . wZn;
ZIFFER:"OM. .WoM;
ARBEITSDATEI: SEQ..REL;

Man definiert sich also durch die Angabe von zwei Konstanten eines Stan-
dardtyps oder eines Aufzidhlungstyps einen neuen Typ, den man auch als
Indextyp fiir Arrays verwenden kann.

Variablen dieser Unterbereichstypen nehmen nur Werte des angegebenen
Intervalls an:

- Die ARBEITSDATEI darf also nicht geléscht (ERASED) sein.

- Die Werte der Variablen 1,11 nehmen nur ganze Zahlen zwischen 1 und
N an.

- Der Variablen B darf man nur GroBbuchstaben zuweisen.

Jeder Unterbereichstyp grenzt den Wertebereich des dazugehérigen Ba-
sistyps ein. Der Basistyp des Typs ZEILENINDEX ist der Standardtyp IN-
TEGER. Mit Variablen eines Unterbereichs sind die gleichen Operationen
wie mit Variablen des Basistyps moglich.

I:= 11*2; A[1,J1:=4.0/ A[1-1,4+J11;
B:= CHR(68); ZIFFER:= PRED("4M);
ARBEITSDATEI:= SEQ;

Obwohl die Einfithrung von Unterbereichstypen etwas mehr (Schreib-)
Aufwand bei der Programmierung erfordert, ermoglicht sie eine zusitzliche
Sicherheit vor unzulidssigen Zuweisungen und erlaubt so eine einfachere
Fehlersuche.

Wihlen Sie nimlich bei der Compilation mit dem aktiven Kommentar
(*$R+ *) die Option Bereichstest ein, so wird die Einhaltung der Intervall-
grenzen geprift. Bei allen nachfolgenden Zuweisungen, bei denen einer

Einfiihrung in Pascal 95

Variablen eines Unterbereichstyps ein ungiiltiger Wert zugewiesen werden
koénnte, erzeugt der Compiler zusitzlichen Code, durch den bei der
Laufzeit die Einhaltung der Intervallgrenzen gepriift wird:

I:= 11%*2 READLN(BUCHSTABE) ZIFFER:= SUCC(ZIFFER)

Bei den folgenden Zuweisungen ist keine Priifung erforderlich:

J:= J1; I:= I1; B:= BUCHSTABE

Bei der Zuweisung ZIFFER:= SUCC("9") wiirde das Programm gestoppt
und folgende Fehlermeldung erzeugt:

VALUE OUT OF BOUNDS: 58 48 57

Das bedeutet, da3 der Wert SUCC("9") mit dem Ordinalwert 58 nicht im
Intervall "0".."9" mit den Ordinalwerten 48 und 57 liegt. Generell werden
bei dieser Fehlermeldung nur die Ordinalwerte angegeben, da z.B. fiir
Aufzihlungstypen im Objektprogramm keine Bezeichner vorhanden sind.

Zumindest in der Testphase eines Programmes ist diese Option sehr zu
empfehlen, um Indizierungsfehler und Bereichsiiberschreitungen zu ent-
decken.

Aufgaben

1. Untersuchen Sie alle im Text angegebenen Beispielprogramme in den
vorangegangenen Abschnitten. Priifen Sie, ob in den Variablendeklara-
tionen die Moglichkeit besteht, Unterbereichstypen zu verwenden.
Pridestiniert fiir solche Verbesserungen sind alle Variablen, die zur In-
dizierung verwendet werden. (Diese Variablen heiflen meist I und J.)

Compilieren Sie ein Beispielprogramm mit der Option (*$R+*), und
priiffen Sie die Reaktion auf Bereichsiiberschreitungen!

2. Modifizieren Sie das Programm QUICKSORT durch die Einfithrung
von Typbezeichnern (z.B. INDEX und ITEM) im Hauptprogramm, so
daB beliebige Indexbereiche und Elementtypen sortiert-werden kdnnen.

Priifen Sie die Richtigkeit der Anderungen, indem Sie folgendes Array
sortieren:

A: ARRAY[10..20] OF CHAR;

96 Einfiihrung in Pascal

2.13 Mengentypen

Neben dem Array gibt es in Pascal noch weitere zusammengesetzte Typen.
Zu einem skalaren Typ T 148t sich z.B. ein Typ SET OF T deklarieren, der
als Werte alle méglichen Mengen von Werten des Typs T annimmt:

TYPE FRUCHT=(APFEL, BIRNE, ORANGE);
OBST = SET OF FRUCHT;

VAR LIEFERBAR, AUSVERKAUFT: OBST;
ZAHLENMENGE = SET OF 1..30;
KOMMANDOS SET OF “AM“..“EY;

Die Variablen LIEFERBAR und AUSVERKAUFT koOnnen also folgende
Werte annehmen:

[1 [APFEL] [BIRNE] [ORANGE]
[APFEL,BIRNE] [APFEL,ORANGE] [BIRNE,ORANGE]
[APFEL ,BIRNE, ORANGE]

Dies sind alle méglichen Mengen, die aus den drei Friichten gebildet wer-
den konnen (2 hoch 3 Moéglichkeiten). Um die Operationen mit Mengen in
Pascal zu verstehen, miissen Sie sich nur an den Mengenlehreunterricht
erinnern und die in der Mathematik i{iblichen geschweiften Mengenklam-
mern durch die eckigen Klammern in Pascal ersetzen. Praktisch alle Opera-
tionen der Mengenlehre sind auch in Pascal verfiigbar (A und B sind Men-
gen des gleichen Typs):

A+B bildet die Vereinigungsmenge von A und B, das sind alle
Elemente, die in A oder B enthalten sind

A*B bildet die Schnittmenge von A und B, das sind alle
Elemente, die in A und B enthalten sind

A-B bildet die Differenzmenge von A und B, das sind alle
Elemente, die in A und nicht in B enthalten sind

A=B testet die Mengen auf Gleichheit

A<=B priift, ob A Teilmenge von B ist

A>=B prift, ob A Obermenge von B ist

aIN B priift, ob das Element a in der Menge B enthalten ist

Einfithrung in Pascal 97

[1 bildet die leere Menge
[a,b] bildet eine Menge, die aus den Elementen a und b besteht
[a..b] bildet eine Menge, die alle Werte zwischen a und b enthilt.

Wie in der Mathematik ist [APFEL] nicht gleich APFEL. Das erste ist eine
einelementige Menge (vom Typ OBST) und das andere ein Wert des
Aufzihlungstyps FRUCHT. AuBlerdem enthilt eine Menge kein Element
doppelt. Um in einem Gemiiseladen Buch iiber die lieferbaren Friichte zu
fithren, kénnte man z.B die folgenden Operationen verwenden:

LIEFERBAR:= [APFEL, BIRNE, ORANGE]
AUSVERKAUFT:= []

LIEFERBAR:= LIEFERBAR + [BIRNE]
AUSVERKAUFT := AUSVERKAUFT + [ORANGE]
LIEFERBAR:= LIEFERBAR - [ORANGE]

IF [BIRNE,ORANGE]<= LIEFERBAR THEN ..
LIEFERBAR := LIEFERBAR *[BIRNE]
LIEFERBAR:=[APFEL..ORANGE]

Sie sollten sich die Mithe machen, die Bedeutung jeder einzelnen An-
weisung in Worte zu fassen, um die teilweise recht komplexen Operationen
zu verstehen.

Mengenoperationen werden in vielen Programmen zur Vereinfachung von
Abfragen benutzt:

REPEAT READ(CH) UNTIL CH IN [“]", tJn, vt nNn]
IF CH IN["O".."9"] THEN ...
IF CH IN["OM.."oM "AW,_ _“Z"] THEN ...

Grundsitzlich beschrinkt jeder Rechner die Grofle einer Menge. Als
Grundtyp scheidet deshalb neben dem Typ REAL auch der Typ INTEGER
aus (z.B. gibt es bereits fiir eine Variable vom zuldssigen Typ SET OF 1..30
genau 2 hoch 30 = 1073741824 verschiedene Werte!).

Pascal 1.4 erlaubt nur Mengen von Typen, die nicht mehr als 96 Werte an-
nehmen koénnen. Durch diese Grenze kdénnen auch Mengen von Zeichen
(SET OF CHAR) dargestellt werden, - die jedoch keine Grafikzeichen
(ORD(CH)>=96) enthalten diirfen.

Das folgende Programm berechnet mit dem Sieb des Erasthotenes alle
Primzahlen zwischen 1 und 10000. Zur Bestimmung der Primzahlen beginnt
man mit einer Tabelle aller Zahlen im Intervall 1 bis 10000. Nun streicht
man nacheinander alle Vielfachen der Zahlen 2, 3, 5, 7, 11 etc. Am Schluf3

98 FEinfiihrung in Pascal

bleiben also nur die Primzahlen in der Tabelle stehen. Im Programm wird
diese Tabelle durch eine Menge dargestellt. Sie enthilt alle Zahlen, die
Vielfache einer anderen Zahl sind.

Da Mengen jedoch maximal 96 Elemente enthalten diirfen, wird ein Array
von Mengen benutzt. Die erste Menge enthilt die Zahlen von 0 bis 95, die
zweite die Zahlen zwischen 96 und 191 etc.

PROGRAM SIEB(INPUT,OUTPUT);
(* PRIMZAHLEN MIT DEM SIEB DES ERASTHOTENES BESTIMMEN. *)

(* DAS ARRAY TEILBAR SIMULIERT EINE MENGE, DIE MAX *)
(* ELEMENTE ENTHAELT. DARSTELLUNG ERFOLGT DURCH MAX96 *)
(* MENGEN DER GROESSE SETSIZE. *)

CONST MAX=10000; (* PRIMZAHLEN VON 1 BIS MAX*)

SETSIZE=96; MAX96=105; (* = MAX DIV SETSIZE + 1 *)

VAR TEILBAR: ARRAY [0..MAX96] OF SET OF 0..95;
P, Z, 1: INTEGER;

FUNCTION PRIM(Z:INTEGER):BOOLEAN;
(* PRUEFT, OB Z PRIM IST. D.H. 2 IST NICHT IN DER MENGE *)
(* DER TEILBAREN ZAHLEN. *)
BEGIN

PRIM:=NOT((Z MOD SETSIZE) IN TEILBAR[Z DIV SETSIZE])
END; (* PRIM *)

BEGIN
(* DIE MENGE TEILBAR IST 2ZU BEGINN LEER: *)
FOR 1:=0 TO MAX96 DO TEILBARII]:=[];
P:=1;
REPEAT
(* SUCHE NAECHSTE PRIMZAHL ALS TEILER: *)

REPEAT P:=P+1 UNTIL PRIM(P);

WRITELN("STREICHE VIELFACHE VON",P:4);
2:=P*p;
WHILE Z<=MAX DO
BEGIN (*STREICHE 2 *)
1:=Z DIV SETSIZE; (*2 IST IN MENGE I*)
TEILBAR([I]:=TEILBAR[I] + [Z MOD SETSIZE];
2:=2+P
END;
UNTIL P*P>MAX;
(* DRUCKE PRIMZAHLEN: *)
FOR 1:=2 TO MAX DO
IF PRIM(CI) THEN WRITE(I:6);
WRITELN;
END.

Listing 25: Sieb des Erasthotenes

Einfiihrung in Pascal 99

2.14 Der Datentyp Record

In einem Array werden Elemente eines einzigen Typs zu einer Datenstruk-
tur zusammengefaf3it und tiber einen Index angesprochen. Um Werte ver-
schiedener Typen zu verbinden, benutzt man Records.

TYPE STRING=ARRAY[1..15] OF CHAR;
KENNZE I CHEN=RECORD
KREIS: ARRAY[1..3] OF CHAR;
B : ARRAY[1..2] OF CHAR;
NR @ 1..9999;
END;
ADRESSE =RECORD
NAME ,VORNAME: STRING;
ORT,STRASSE : STRING;
HAUSNR, PLZ : INTEGER
END;
KRAFTFAHRZEUGSCHEIN =
RECORD
WAGEN: KENNZEICHEN;
WOHNORT, STANDORT: ADRESSE;
LEISTUNG: INTEGER
END;

VAR HALTER: ADRESSE;
AUTO1, AUTO2: KENNZEICHEN;
SCHEIN1,SCHEIN2: KRAFTFAHRZEUGSCHEIN;

Listing 26: Record-Typen

Dieses etwas ausfiithrliche Beispiel zeigt, wie man Attribute eines realen
Objektes in Variablen vom Typ Record speichert: Ein Fahrzeugkennzeichen
besteht aus dem Kiirzel fir den Kreis, zwei Buchstaben und einer Num-
mer. Im Fahrzeugschein werden fiir ein Fahrzeug der Halter und der
Standort des Fahrzeugs eingetragen. Ein Record ist also eine Art
Karteikarte mit vordefinierten Feldern.

Die obigen Typen bezeichnet man auch als Verbundtypen. Auf die Felder
einer Record-Variablen greift man durch Nennung des Variablen-
bezeichners und des Feldnamens getrennt durch einen Punkt zu:

AUTO1.KREIS:= "M " AUTO2.KREIS:= “F *;
SCHEIN1.0RT:= "NEW YORK hH
IF SCHEIN1.LEISTUNG<28 THEN ...

AuBerdem kann man auch iiber mehrere Stufen auf Record-Felder zu-
greifen:

SCHEIN1.WAGEN.KREIS
SCHEIN2.STANDORT.ORT

UTO1.KREIS;
CHE IN2.WOHNORT .ORT;

w >

100 Einfiihrung in Pascal

Wirklich niitzlich wird das Konzept der Records durch die Tatsache, daf
man Zuweisungen zwischen kompletten Records des gleichen Typs
vornehmen kann:

AUTO1:= AUTO2; SCHEIN1.WOHNORT:= HALTER;
SCHEIN1:= SCHEIN2

Dadurch werden also alle Felder eines Records kopiert. In Pascal 1.4 sind
auch Vergleiche zwischen Records definiert:

IF SCHEIN1.WAGEN=AUTO1 THEN...

Die Feldnamen (Selektoren), wie ORT,B und NR, sind Bezeichner, deren
Sichtbarkeit auf den Record ihrer Deklaration beschrinkt ist. Man konnte
also durchaus ohne Namenskonflikte eine Variable KREIS deklarieren.

Eine #hnliche Bedeutung wie die For-Anweisung fiir Arrays besitzt die
With-Anweisung (Inspektionsanweisung) fiir Variablen vom Typ Record.
Sie vereinfacht Ausdriicke, die mit vielen Feldern eines Records arbeiten:

WITH SCHEIN1 DO
BEGIN.
WITH WAGEN DO
BEGIN KREIS:="MTK"; B:="M"; NR:= 939 END;
WITH WOHNORT DO

BEGIN
NAME :="MUELLER THURGAU";
VORNAME : =HANS PETER uw oL
PLZ :=6232; HAUSNR:=4
END;
STANDORT:= WOHNORT; LEISTUNG:=45
END;

In der Anweisung, die nach dem Wortsymbol DO der With-Anweisung
folgt, ist also die Angabe Variablenbezeichner vor dem Feldbezeichner nicht
erforderlich. Geschachtelte With-Anweisungen beziehen sich aber immer
auf dieselbe Record-Variable. Die folgende Schachtelung ist also verboten,
da der Record AUTOI nicht zum Record SCHEINI1 gehort

WITH SCHEIN1 DO
BEGIN
WOHNORT : =HALTER;
WITH AUTO1 DO
B[1] :=WAGEN.B[2]
END

Bei vielen Compilern (auch Pascal 1.4) bringt die With-Anweisung aufler-
dem noch Geschwindigkeitsvorteile, da alle Operationen zum Zugriff auf
die Record-Variable nur einmal benétigt werden:

Einfiihrung in Pascal 101

WITH SCHEIN1.WAGEN.KREIS DO
FOR I:= 1 TO 3 DO
ORT[I]:=" »;

ist also schneller als

FOR I:= 1 TO 3 DO
SCHEIN1.WAGEN.KREIS[I]:=" v;

Im Listing 26 wurden Arrays und Records als Teile von Records deklariert.
Natiirlich ist es auch erlaubt, Arrays mit Records als Elementen zu be-
nutzen:

VAR ZULASSUNGEN : ARRAY[1..200]1 OF KRAFTFAHRZEUGSCHEIN

Dies ist einer der Griinde fiir die Flexibilitit der Sprache Pascal. Die Stan-
dard- und Aufzihlungstypen bilden die elementaren Bausteine, mit denen
man je nach Bedarf hierarchisch strukturierte zusammengesetzte Daten-
typen definiert.

Aufgaben

1. Schreiben Sie ein Paket mit Programmen, das mit Bruchzahlen arbeitet.
Briiche sollen nicht als Zahlen vom Typ REAL dargestellt werden, son-
dern als Paare von ganzen Zahlen:

TYPE BRUCH = RECORD
ZAEHLER: INTEGER;
NENNER : INTEGER
END;

Damit der Zahlenbereich nicht bei den einfachsten Operationen iiber-
schritten wird, sollen Zihler und Nenner immer gekiirzt vorliegen
(1/134 und nicht 2345/314230). Dazu kénnen Sie die Funktion GGT
aus Abschnitt 2.11 verwenden.

PROCEDURE KUERZE (VAR A: BRUCH);

PROCEDURE PLUS (A,B: BRUCH; VAR C: BRUCH);
PROCEDURE MAL (A,B: BRUCH; VAR C: BRUCH);
PROCEDURE KEHRWERT (A: BRUCH; VAR C: BRUCH);
FUNCTION GROESSER (A,B:BRUCH): BOOLEAN;

FUNCTION GLEICH (A,B:BRUCH): BOOLEAN;

FUNCTION WERT (A: BRUCH): REAL;

(* Liefert den Wert zdhler/Nenner vom Typ REAL *)

2. Sollten Sie ab und zu mit komplexen Zahlen arbeiten (miissen), ist es
vielleicht interessanter, den Typ KOMPLEX mit seinen Operationen zu
implementieren.

TYPE KOMPLEX= RECORD RE,IM: REAL END;

102 Einfiihrung in Pascal

Als Operationen bieten sich Addition, Multiplikation, Bildung der
konjugiert komplexen Zahl, Betragsfunktion sowie die Umwandlung in
Polarkoordinaten an.

2.15 Variante Records

Eine in der Praxis recht hiufige Eigenschaft von Datensitzen ist es, fiir
einzelne Ausprigungen der Daten unterschiedliche Merkmale zu enthalten.
Als Beispiel betrachte man grafische Objekte. Die Aufgabe besteht darin,
ein Bild durch Zusammenstellung von grafischen Primitiven (Rechtecke,
Kreise, Linien, Texte) zu beschreiben:

CONST MAXOBJ = 50;
TYPE TPRIMITIV= (RECK, BLOCK, KREIS, LINIE,
TEXT, HINTERGRUND);
TKOORD = RECORD X,Y:INTEGER END;
TOBJEKT = RECORD
FARBE :(ROT, GRUEN, BLAU);
INTENS :(HELL, DUNKEL);
CASE ART: TPRIMITIV OF
RECK, BLOCK:
(RECHTSUNTEN, LINKSOBEN:
TKOORD);
KREIS:
(MITTE : TKOORD;
RADIUS: INTEGER);
LINIE:
(VON, BIS: TKOORD);
TEXT:
(POS1 : TKOORD;
STRNG: ARRAY[1..10]1 OF CHAR);
HINTERGRUND: ()
END;
VAR BILD: ARRAY[1..MAXOBJ] OF TOBJEKT;
OBJEKT: TOBJEKT;

Listing 27: Record mit Varianten

In der Deklaration von Listing 27 werden Rechtecke (RECK), ausgemalte
Rechtecke (BLOCK), Kreise, Linien und Texte beriicksichtigt. Alle Ob-
jekte besitzen gemeinsame Merkmale: Die Farbe, die Helligkeit (INTENS)
und eine Kennzeichnung, die angibt, um welches elementare Objekt es sich
handelt (ART). Diese gemeinsamen Felder werden wie in einem einfachen
Record definiert.

Einfiihrung in Pascal 103

An diesen festen Teil schlieBt sich der variante Teil an: Er wird durch das
Wortsymbol CASE eingeleitet. Thm folgt das sogenannte Auswahlfeld
(Tagfield). In diesem speziellen Beispiel ist dies das Feld ART. Der Typ
des Auswahlfeldes muB3 ein skalarer Typ (also nicht REAL oder STRING)
sein, der durch einen Typ-Bezeichner angegeben wird.

Nach dem Wortsymbol OF werden die einzelnen Varianten aufgefiihrt, die
in Abhingigkeit von dem aktuellen Wert des Auswahlfeldes (ART) giiltig
sind. Die jeweiligen Konstanten des Typs (TPRIMITIV) werden durch
Kommata getrennt. Nach einem Doppelpunkt folgen in Klammern die
Felder fiir diese Variante. Die Struktur dieser Feldliste entspricht genau der
Syntax fiir die Feldliste zwischen RECORD und END. Also kénnten dort
geschachtelt wiederum Varianten stehen.

Alle Varianten sind durch Semikola getrennt. Bitte beachten Sie, daB der
variante Teil nach dem Symbol CASE nicht durch ein eigenes END
abgeschlossen wird. Deshalb steht in Listing 27 am Ende von TOBJEKT
nur ein einzelnes END.

Nach der Zuweisung

OBJEKT.ART:= KREIS

wiren also neben den Feldern FARBE, INTENS die Felder der Variante
KREIS giiltig, die man dann wie folgt belegen kann:

OBJEKT.MITTE.X:= 30;
OBJEKT.MITTE.Y:= 30;
OBJEKT.RADIUS := 15;

Erw#ihnenswert ist noch die Tatsache, daB3 die Feldliste zu einer Varianten
leer sein kann:

HINTERGRUND: ()

Ist also OBJEKT.ART=HINTERGRUND, so sind nur die festen Felder
(FARBE, INTENS) relevant. Die Nennung leerer Varianten dient nur der
Dokumentation der Struktur und ist syntaktisch nicht verpflichtend. Die
exakte Syntax von (varianten) Records geht aus dem Syntax-Diagramm
FELDLISTE im Anhang A hervor.

Es ist ein schwerer Programmierfehler, auf Varianten zuzugreifen, die
nicht dem aktuellen Wert des Auswahlfeldes entsprechen:

WITH OBJEKT DO
BEGIN ART:=TEXT; VON.X:= 30 END;

104 Einfiihrung in Pascal

Um solche Probleme zu vermeiden, bietet sich die Verwendung der
Fallunterscheidung (Case-Anweisung) an:

WITH OBJEKT DO
BEGIN
FARBE :=ROT;
INTENS:=SUCC(CINTENS);
CASE ART OF
RECK,BLOCK: BEGIN
READK(RECHTSUNTEN);
READK (L INKSOBEN)
END;
KREIS : BEGIN
READK(MITTE); READLN(RADIUS)
END;

HINTERGRUND :
END (* CASE *)
END

(READK soll eine Prozedur bezeichnen, die Koordinatenpaare einliest und
als Variablenparameter zuriickliefert.) Die Struktur der Fallunterscheidung
spiegelt also die Struktur des varianten Records wider. Hier ist jedoch die
Angabe der leeren Fallmarke erforderlich, da sonst zur Laufzeit fir die
Variante HINTERGRUND eine Fehlermeldung (in Pascal 1.4: NO LABEL
FOR CASE) ausgegeben wiirde.

In einigen Fillen ist es sinnvoll, die Reprisentation der Daten im Rechner
zu kennen. Deshalb soll die Speicherverteilung (in Pascal 1.4) fiir variante
Records kurz umrissen werden: Da zu einem Zeitpunkt das Auswahlfeld
nur einen Wert annehmen kann, erhalten alle Varianten denselben
Speicherplatz. Die GroéfBle eines Objektes vom Typ TOBJEKT wird durch
die GroBe des festen Teils plus der Gréfle der lingsten Variante bestimmt.
Damit ergibt sich die in Bild 14 skizzierte Speicherverteilung.

Einfiihrung in Pascal 105

FARBE
INTENS
ART
RECHTSUNTEN. X MITTE. X VON. X POST.X
RECHTSUNTEN. Y MITTE.Y VON. Y POS1.Y
LINKSOBEN. X RADIUS BIS.X STRNG(1)
LINKSOBEN. Y BIS.Y STRNG(2)
STRNG(3)
STRNG(4)
STRNG(5)
STRNG(6)
STRNG(7)
STRNG(8)
STRNG(9)
STRNG(10)

Bild 14: Struktur TOBJEKT

In diesem Fall ist TEXT die lingste Variante. Alle anderen Varianten wer-
den ebenfalls mit dieser GroBe gespeichert (belegen also ungenutzten
Speicherplatz). Will man sehr groBe Arrays mit solchen Objekten bilden, so
kann es sinnvoll sein, die gréBte Variante zu kiirzen. Eine Mdglichkeit
besteht darin, das Feld STRNG auszulagern und durch einen Verweis in
eine Tabelle mit Strings zu ersetzen:

TYPE STRINGREF = 1..MAX;
VAR STRINGARRAY: ARRAY [STRINGREF] OF
ARRAY[1..10]1 OF CHAR;

Die Variante TEXT wiirde also lauten:

TEXT:
(POS1 : TKOORD;
STRNG: STRINGREF);

Um einen Text im Array BILD an I-ter Stelle einzufiigen, speichert man
zunichst den String an einer freien Position im STRINGARRAY (z.B. J-tes
Element). Dem Feld STRNG im Record wird dann der Index J zugewiesen.

WITH BILD[I] DO

BEGIN
FARBE:= BLAU; INTENS:= DUNKEL;
ART := TEXT; POS1.X:= 0; POS1.Y:=0;

(* string eintragen: *)

106 Einfiithrung in Pascal

STRINGARRAY [J] :="+....+....+";
(* Referenz notieren: *)
STRNG:= J

END;

Solche Speicherplatzoptimierungen sind gerade auf Mikrocomputern er-
forderlich und holen den angehenden Software-Engineer allzu rasch von
den abstrakten Datenmodellen auf den Boden der Realitit aus Bits und
Bytes zuriick.

Der Vollstindigkeit halber sei noch erwidhnt, daBl es in Pascal zuldssig ist,
anstelle des Auswahlfeldes nur einen Typbezeichner zu nennen. Der Pro-
grammierer muf3 dann aus dem Kontext herleiten, welche Variante des
Records giiltig ist. Diese Records ohne Tagfield werden praktisch nur zu
schmutzigen Operationen verwendet, die normalerweise (aus gutem Grund)
in Pascal verboten sind: Bei diesen Operationen nutzt man aus, daB die
einzelnen Varianten denselben Speicherplatz erhalten. So kann man mit der
folgenden Anweisung einer Variablen eines Aufzihlungstyps einen Wert
zuweisen, dessen Ordinalwert gleich 3 ist:

TYPE AUFZHL=(V1,V2,V3,V4);
VAR SCHLIMM= RECORD
CASE BOOLEAN OF
TRUE :(I:INTEGER);
FALSE: (V:AUFZHL)
END;

SCHLIMM.I:=3 (* ==> SCHLIMM.V = V4 *)

Da solche Operationen inhidrent von Eigenschaften spezieller Rechner und
Compiler abhiingig sind, sollten Sie diese nicht in Ihren Programmen ver-
wenden.

Listing 27 zeigt exemplarisch, wie man in Pascal Deklarationen strukturiert:
Angefangen bei den elementaren Bausteinen (Indexgrenzen, Aufzidhlungs-
typen) bildet man eine hohere Abstraktionsstufe: Man arbeitet z.B. mit
Koordinaten und nicht mit Integer-Zahlen. AnschlieBend kann man diese
abstrakteren Typen noch zu Records und Arrays (Verbunden und Feldern)
zusammenfassen.

Diese Vorgehensweise (von unten nach oben, bottom up) ist zwingend
notwendig: Da der Compiler den Text in einem Durchgang liest, muf3 jeder
(Typ-)Bezeichner vor der ersten Anwendung bereits deklariert sein.
Konkret bedeutet dies, daB die Deklaration des Typs TKOORD vor der
Anwendung des Typs in der Deklaration von TOBJEKT erfolgen muf.

Einfiihrung in Pascal 107

2.16 Der Datentyp File

Alle bisher behandelten Daten(typen) besitzen eine fest definierte konstante
GroBe. Ein Vorteil von Variablen dieser Typen ist, daB sie jederzeit im
Programm direkt {#ber ihren Namen (evtl. indiziert oder mit
Feldbezeichner) angesprochen werden konnen. In der Definition der
Sprache Pascal wird jedoch auch eine Datenstruktur angegeben, deren
GroBe wihrend der Laufzeit variabel ist. Dafiir ist der Zugriff auf Ele-
mente der Struktur nur in fester Reihenfolge mit speziellen Prozeduren
moglich. Diese Struktur heit File und formalisiert das Konzept der se-
quentiellen Dateien.

Zu jedem Typ T 148t sich mit FILE OF T ein File mit dem Komponen-
tentyp T bilden. Beispiele fiir Deklarationen von Files sind in Listing 28
gegeben. Dabei werden Typbezeichner benutzt, die bereits in den Listings
26 und 27 definiert wurden. ADRESSBUCH ist also eine Filevariable mit
Komponenten vom Typ ADRESSE.

TYPE (* siehe Listing 26 und Listing 27 *)

VAR ZAHLENSPEICHER = FILE OF INTEGER;
ADRESSBUCH FILE OF ADRESSE;
BILDDATEI FILE OF TOBJEKT;

Listing 28: Typ Adresse

Das englische Wort file bezeichnet urspriinglich einen Ordner oder eine
Sammelmappe. In der Datenverarbeitung wird file am besten mit Datei
iibersetzt. Dateien sind Folgen (gleichartiger) Daten, die meist auf externen
Massenspeichern abgelegt werden. Da die Verwaltung von Dateien auf
verschiedenen Rechnern sehr unterschiedlich realisiert wird, beschrinkt
sich Pascal auf sehr elementare Operationen mit sequentiellen Dateien.
Dennoch weichen viele Implementierungen der Sprache vom nachfolgend
beschriebenen Standard ab.

VAR F: FILE OF T;

deklariert eine Filevariable F. Diese Variable besteht aus einer (evtl. leeren)
Folge von Komponenten des Typs T. Die Anzahl der Komponenten ist ver-
dnderlich. Der Zugriff auf die Komponenten kann nur sequentiell lesend
oder sequentiell schreibend erfolgen. Zu jedem Zeitpunkt ist nur eine
Komponente sichtbar. Sie wird mit F? bezeichnet. Ft wird auch die
Puffervariable des Files F genannt.

108 Einfiihrung in Pascal

2.16.1 Sequentiell schreiben

Mit dem Prozeduraufruf REWRITE(F) wird F zum Schreiben vorbereitet.
Alle Komponenten der Variablen F werden geléscht. Nun kann man der
Puffervariablen F* einen Wert vom Typ T zuweisen. Durch den Prozedur-
aufruf PUT(F) wird der Inhalt der Puffervariablen als eine neue Kompo-
nente in F aufgenommen. Jeder Aufruf PUT(F) erweitert F um eine Kom-
ponente. Die Komponenten werden in der Reihenfolge gespeichert, in der
sie mit PUT erzeugt wurden.

2.16.2 Sequentiell lesen

Mit RESET(F) wird der lesende Zugriff auf F vorbereitet. Mit RESET(F)
wird der Puffervariablen Ft die erste Komponente in F als Wert
zugewiesen. Dieser Wert kann nun beliebig weiterverarbeitet werden. Durch
den Aufruf von GET(F) wird der Wert der nichsten Komponente von F
nach F? iibertragen. Somit kann man durch eine Folge von Aufrufen der
Prozedur GET jede Komponente in F erreichen. Die Funktion EOF(F) (end
of file) liefert den Wert TRUE, falls beim sequentiellen Lesen das Ende
des Files erreicht wurde. Dann ist der Inhalt der Puffervariablen Ft un-
definiert. Beim Schreiben mit REWRITE und PUT ist EOF(F) immer
TRUE.

Ein Wechsel zwischen Lesen und Schreiben ist in beliebiger Reihenfolge
moglich. Dabei ist aber zu beachten, daB Lesezugriffe nur nach RESET
und schreibende Zugriffe nur nach REWRITE méglich sind. AuBerdem
16scht jeder Aufruf von REWRITE alle eventuell vorher in F enthaltenen
Komponenten!

Damit ergibt sich das folgende Schema fiir die Bearbeitung von Files
(Listing 29).

PROGRAM FILES(INPUT, OUTPUT);
VAR ZAHLENSPEICHER: FILE OF INTEGER;
X: INTEGER;
BEGIN (* Zahlenspeicher flillen: *)
REWRITE(ZAHLENSPEICHER);
REPEAT
READLN(X);
ZAHLENSPEICHER® :=X;
PUT(ZAHLENSPEICHER)
UNTIL X=0;
(* Zahlenspeicher lesen: *)
RESET(ZAHLENSPEICHER);
WHILE NOT EOF(ZAHLENSPEICHER) DO
BEGIN

Einfiihrung in Pascal 109

X:= ZAHLENSPEICHER?;
WRITELN(X);
GET (ZAHLENSPEICHER)
END
END.

Listing 29: Fileoperationen

Filetypen kénnen wie alle anderen Typen als Teil zusammengesetzter Da-
tentypen (Record, Array) auftreten. GewoOhnlich sind jedoch keine Files
mit Komponenten erlaubt, die ebenfalls Files sind. Zuweisungen zwischen
Variablen vom Typ File sind nicht erlaubt. Files diirfen nur als Varia-
blenparameter an Prozeduren iibergeben werden.

Der Datentyp File wird in Pascal 1.4 praktisch wie oben beschrieben reali-
siert. Einen Unterschied bilden jedoch die Anweisungen RESET und
REWRITE. Das Betriebssystem des C 64 erwartet nimlich genaue Angaben
iiber jedes File. Man muf} festlegen, auf welchem Peripheriegerit (Floppy,
Datasette, serielle Schnittstelle) die Speicherung der Komponenten erfolgt,
welchen Namen das File auf dem Medium erhilt etc.

Damit Sie sich nicht um solche systemspezifischen Details kiimmern
miissen, ist auf der Systemdiskette ein Quelltext als Include-Datei vorhan-
den, der die Prozeduren RESET und REWRITE definiert. Um Pascal-Pro-
gramme zu schreiben, die RESET und REWRITE benutzen, gehen Sie
folendermaflen vor:

1. Sie definieren den Filetyp, mit dem Sie die Prozeduren RESET und
REWRITE aufrufen wollen, im Hauptprogramm mit dem Bezeichner
TAPE. AuBlerdem deklarieren Sie dort die Filevariable KOMMANDO
und teilen dem Compiler mit, da3 er das Include-File FILE.INC lesen
soll:

TYPE TAPE = FILE OF INTEGER;
VAR KOMMANDO: TEXT;
(*$"FILE.INC"*)

2. Am Anfang jedes Blockes, in dem eine Filevariable deklariert wird,
rufen Sie die Prozedur ALLOC mit der jeweiligen Filevariablen als
Parameter auf:

ALLOC(ZAHLENSPEICHER)
3. Am Ende jedes Blockes, in dem eine Filevariable deklariert wird, rufen

Sie die Prozedur FREE mit der jeweiligen Filevariablen als Parameter
auf:

110 Einfiihrung in Pascal

FREE(ZAHLENSPEICHER)

Mit diesen zusitzlichen Deklarationen kdnnen Sie jedes beliebige Pascal-
Programm, das Files verwendet, auf den C 64 i{ibernehmen.

In Buch 2 (siehe Anhang E) sind zahlreiche Programme beschrieben, um
effizient Files zu sortieren. Eine der einfachsten Methoden heif3t
Natiirliches Mischsortieren. Die Sortierung eines Files C geschieht dabei in
mehreren Durchliufen. Jeder Durchlauf gliedert sich in zwei Schritte.

1. Das File C wird Komponente fiir Komponente auf zwei weitere Files A
und B verteilt (distribute).

2. Die beiden Files A und B werden gemischt (merge). Bei dieser Opera-
tion werden aufsteigende Teilsequenzen in A und B zu lingeren Se-
quenzen zusammengefal3t und wieder in C gespeichert.

Diese beiden Schritte werden so lange wiederholt, bis C nur aus einer
aufsteigend sortierten Sequenz besteht. In Listing 30 sind die nur in Pascal
1.4 notwendigen Erweiterungen mit Kommentaren gekennzeichnet.

PROGRAM MERGE(INPUT,OUTPUT);
(*DIESES PROGRAMM IST EIN BEISPIEL FUER DIE VERWENDUNG DER*)
(*ANPASSUNGSROUTINEN FUER FILES. GLEICHZEITIG WIRD EIN *)

(*BEISPIEL FUER INCLUDE-FILES GEGEBEN. *)
(*BEIM UEBERSETZEN MUSS DIE DISKETTE MIT DEM INCLUDE-FILE *)
(*'FILE.INC' EINGELEGT SEIN. *)
(*11.11.1985 *)

(*QUELLE: N.WIRTH: ALGORITHMEN & DATENSTRUKTUREN KAP.2.3.2%)

TYPE 1TEM=RECORD
KEY: INTEGER
(* HIER KOENNEN WEITERE FELDER STEHEN *)
END;
TAPE=FILE OF ITEM;

VAR KOMMANDO: TEXT; (*<-evn-- NUR PASCAL 1.4----- *)
c : TAPE;
BUF : ITEM;
(*$"FILE.INC" INCLUDE-DATEI LESEN NUR PASCAL 1.4----- *)

PROCEDURE LIST(VAR F: TAPE);
(*ZEIGE DEN INHALT VON F AN*)
VAR X: ITEM;
BEGIN RESET(F);
WHILE NOT EOF(F) DO
BEGIN
X.KEY:=F1*.KEY;GET(F);
WRITE(X.KEY:4)
END;

Einfiihrung in Pascal 111

WRITELN
END; (* LIST *)

PROCEDURE NATURALMERGE;
(* SORTIERE FILE C. BENUTZT ZWEI HILFSFILES A UND B *)

VAR L : INTEGER; (* ANZAHL DER LAEUFE AUF C *)
EOR: BOOLEAN; (* END OF RUN, ENDE DES LAUFS *)
A,B: TAPE; (* HILFSFILES *)

PROCEDURE COPY(VAR X,Y: TAPE);
(* KOPIERE KOMPONENTE VON X NACH Y, AKTUALISIERE EOR *)
VAR BUF: ITEM;
BEGIN
BUF.KEY:=X1.KEY; GET(X);
Y1.KEY:=BUF .KEY; PUT(Y);
IF EOF(X) THEN EOR:= TRUE
ELSE EOR:= BUF.KEY>X?.KEY
END; (* COPY *)

PROCEDURE COPYRUN(VAR X,Y: TAPE);
(* KOPIERE LAUF VON X NACH Y *)
BEGIN
REPEAT COPY(X,Y) UNTIL EOR
END; (* COPYRUN *)

PROCEDURE DISTRIBUTE;
(* KOPIERE LAUEFE VON C ABWECHSELND AUF A UND B *)
BEGIN
REPEAT
COPYRUN(C,A);
IF NOT EOF(C) THEN COPYRUN(C,B)
UNTIL EOF(C)
END; (* DISTRIBUTE *)

PROCEDURE MERGE;

(* MISCHE FILE A UND B ZU FILE C *)
PROCEDURE MERGERUN;
(* MISCHE LAEUFE VON A UND B ZU LAEUFEN AUF C *)
BEGIN
REPEAT

IF At.KEY<B?.KEY THEN
BEGIN COPY(A,C);
IF EOR THEN COPYRUN(B,C)
END
ELSE
BEGIN COPY(B,C);
IF EOR THEN COPYRUN(A,C)
END
UNTIL EOR
END; (* MERGERUN *)

BEGIN (* MERGE *)
REPEAT
MERGERUN; L:=L+1
UNTIL EOF(A) OR EOF(B);
WHILE NOT EOF(A) DO

112 Einfiihrung in Pascal

BEGIN
COPYRUN(A,C); L:=L+1
END;
WHILE NOT EOF(B) DO
BEGIN
COPYRUN(B,C); L:=L+1
END
END; (* MERGE *)

BEGIN (* NATURALMERGE *)

ALLOC(A); ALLOC(B); (¥<emnnnn NUR PASCAL 1.4----- *)
REPEAT

REWRITE(A); REWRITE(B); RESET(C);

DISTRIBUTE;

RESET(A); RESET(B); REWRITE(C);
L:=0; MERGE; LIST(C)
UNTIL L=1;
FREE(A); FREE(B) (F<eemene NUR PASCAL 1.4----- *)
END; (* NATURALMERGE *)

BEGIN (* HAUPTPROGRAMM *)
WRITELN("SORTIEREN EINES SEQUENTIELLEN FILES:");
WRITELN("EINGABEZAHLEN: (O AM ENDE)");

OPEN(KOMMANDO, 8,15, "10M); (*<------ NUR PASCAL 1.4----- *)
ALLOC(C); (*<------ NUR PASCAL 1.4----- *)
REWRITE(C); READ(BUF.KEY);

REPEAT .

C*.KEY:=BUF.KEY; PUT(C);
READ (BUF .KEY)
UNTIL BUF.KEY=0;
LIST(C);
NATURALMERGE;
FREE(C) (¥<emnnn- NUR PASCAL 1.4----- *)
END.

Listing 30: Natiirliches Mischsortieren

Am Beispiel des Programmes in Listing 30 sollen Sie auch lernen, wie man
ein fremdes Pascal-Programm /liest: Dabei beginnt man am besten am Ende
des Listings. Dort steht das Hauptprogramm, das alle Prozeduren aufruft.
In diesem Fall wird dort zunichst das File C mit Werten gefiillt, die von
der Tastatur eingelesen werden. Ein wichtiges Detail sind auch die Bedin-
gungen, die Repeat- und While-Schleifen kontrollieren. Hier wird die
Schleife beendet, falls eine 0 von der Tastatur gelesen wurde. AnschlieBend
wird die Prozedur LIST mit dem File C als Parameter aufgerufen. Bei
solchen Prozeduraufrufen haben Sie zwei verschiedene Moéglichkeiten, die
Funktion des Programmes weiter zu analysieren: Entweder versuchen Sie,
die Funktion von LIST zu entschliisseln, oder Sie schliefen aus dem Namen
der Prozedur und dem Kontext auf die Bedeutung der Prozedur.

Einfiihrung in Pascal 113

An dieser Stelle ist sicherlich einsichtig, da3 die Prozedur den Inhalt des
Files am Bildschirm auflistet. An diesen Prozeduraufruf schlieBt sich die
eigentliche Sortieroperation (NATURALMERGE) an. Diese Prozedur kén-
nen Sie wie das Hauptprogramm in einzelne Teilschritte zerlegen.

NATURALMERGE vollzieht die oben angegebenen Durchliufe in zwei
Schritten. Wieder ist die Bedingung der Repeat-Schleife (L=1) entschei-
dend. Offensichtlich wird die Variable L in der Prozedur MERGE verin-
dert. Ein Blick auf die Variablendeklaration von L (im Block NATURAL-
MERGE) wird IThnen jetzt etwas weiterhelfen. Den Rest des Programmes
sollten Sie zur Ubung selbst analysieren.

Als eine kleine Hilfe sei noch der Begriff eines Laufes (run) erliutert. Ein
Lauf ist eine geordnete Teilsequenz in einem File.

(143275628)

enthilt die folgenden vier Liufe:

(1 4)
(3)
Q7
(568

Das Programm MERGE liefert fiir die obige Zahlenfolge im File C in zwei
Durchljufen ein sortiertes File:

C=(14327568) (verteile auf A und B)
A=(142T7)
B=(3568) (mische A und B zu C)
C=(13456827) (verteile auf A und B)
A=(1345628)
B=(7) (mische A und B zu C)
C=(12345678)

Natiirlich kénnen Sie mit dem Algorithmus nicht nur Dateien mit ganzen
Zahlen sortieren. Eine Anpassung des Programmes erfolgt bei der Deklara-
tion des Typs ITEM und dem Feld KEY.

Eine Erweiterung des obigen Programmes zeigt auch den Sinn zusam-
mengesetzter Datentypen, die Files als Unterstrukturen enthalten. Im soge-
nannten N-Weg-Mischen werden statt der zwei Hilfsfiles (A und B) N
verschiedene Files vom Typ TAPE benutzt. Um auf jedes File mit einem
Index zuzugreifen, kann man z.B. das folgende Array von Files benutzen:

CONST N=4 (* Anzahl der Files*)
TYPE TAPE = FILE OF ...
VAR F: ARRAY[1..N] OF TAPE;

114 Einfiithrung in Pascal

Somit kann man z.B das I-te File wie folgt mit 20 Zahlen belegen:

REWRITE(F[I1);
FOR J:=1 TO 20 DO
BEGIN
F[I11:= J; PUT(F[I1)
END

Durch die Verwendung der Routinen RESET und REWRITE wahren Sie
die Kompatibilitit mit Standard-Pascal. Andererseits kénnen Sie nicht so
gezielt wie in BASIC auf die Peripheriegerite des C 64 (Floppy, Datasette,
Drucker, Plotter, Modems) zugreifen. Deshalb unterstiitzt Pascal 1.4
wirkungsvoll das Konzept logischer Dateien im Betriebssystem des C 64.
Die Benutzung von OPEN- und CLOSE-Prozeduren in Pascal wird in der
Dokumentation exakt definiert. Im Abschnitt 3.1 werden zusitzlich
konkrete Beispielprogramme gegeben.

Aufgaben

1. Um groBe Datenbestinde, die auf sequentiellen Files gespeichert
werden miissen, zu erweitern oder zu modifizieren, verwendet man in
der kaufméinnischen Datenverarbeitung folgendes Verfahren:

Eine nach einem Schliissel (z.B. Kontonummer) sortierte Bestands-Datei
wird mit einer nach demselben Schliissel sortierten Bewegungs-Datei zu
einer (ebenfalls sortierten) neuen Bestandsdatei fortgeschrieben. Man
muB also alle Anderungen, die man am Bestand vornehmen will, in der
Bewegungsdatei sammeln:

TYPE STAMMRECORD = RECORD
KNUMMER: INTEGER;
NAME: ARRAY [1..10] OF CHAR;

KONTOSTAND: REAL

END;

BEWEGUNG = RECORD
KNUMMER: INTEGER;
UMSATZART: (EIN, AUS,
KONTOAUFGABE) ;

WERT: REAL;

END;

VAR ALT, NEU: FILE OF STAMMRECORD;
BEW: FILE OF BEWEGUNG;

Wihrend man von der Datei ALT Daten nach NEU kopiert, priift man,
ob fiir die gerade bearbeitete Kontonummer Umsitze vorliegen. Diese
werden dann mit dem Kontostand verbucht.

Einftihrung in Pascal 115

Schreiben Sie ein solches Fortschreibungsprogramm, das auch mehrere
Umsitze pro Konto erlaubt. Wenn es Sie mehr motiviert, ist auch die
Verwaltung von Adref3-, Schallplatten- und Buchdateien méglich.

2.17 Textfiles

Die im letzten Abschnitt vorgestellten Files besitzen Komponenten eines
beliebigen skalaren oder zusammengesetzten Typs. Dadurch koénnen
effizient und kompakt alle Werte der Komponenten auf einem
Hintergrundspeicher dargestellt werden. Jedoch werden die Werte als
Bytefolgen gespeichert. Diese Codierung der Daten ist eine fiur den
Menschen oder Programme in anderen Programmiersprachen ungeeignete
Darstellungsform. Da zur Ein- und Ausgabe bevorzugt Zeichenfolgen, wie

Dies ist
ein Text
in drei Zeilen.

verwendet werden, spielen Files mit dem Komponententyp CHAR eine
besondere Rolle. In Pascal existiert deshalb ein vordefinierter Typbezeich-
ner:

TYPE TEXT = FILE OF CHAR;

Die im Programmkopf genannten Bezeichner INPUT und OUTPUT sind
vordefinierte Filevariablen, die durch die folgende Deklaration definiert
sind:

VAR INPUT, OUTPUT: TEXT;

Bereits im Abschnitt 2.2 wurde erwihnt, . da3 INPUT und OUTPUT die
Standardeingabe von der Tastatur bzw. die Standardausgabe an den Bild-
schirm symbolisieren.

Files mit dem Grundtyp CHAR werden normalerweise nicht mit GET und
PUT bearbeitet. Viel bequemer ist die Verwendung der Standardprozeduren
READ(LN) und WRITE(LN). In Abschnitt 2.5 wurde nimlich nur eine
Kurzform dieser Prozeduren vorgestellt. Normalerweise muf3 bei READ
und WRITE noch ein File vom Typ TEXT (also FILE OF CHAR) als erster
Parameter angegeben werden:

116 Einfiihrung in Pascal

WRITE(f, Zeichen)
WRITE(f, reelle Zahl)
WRITE(f, String)
WRITELN()

Die obigen Prozeduren schreiben Zeichenfolgen auf das File f. Das Format
entspricht exakt den in Abschnitt 2.5 fiir Bildschirmausgaben beschriebenen
Konventionen. Insbesondere ist auch die Angabe einer Feldlinge moglich.
Gibt man kein File als ersten Parameter an, so wird die Standardausgabe
OUTPUT benutzt: WRITE(A,B,C) ist also die Abkiirzung fiir

WRITE(OUTPUT,A,B,C)

Ublicherweise sind Textfiles zusitzlich noch in Zeilen strukturiert (s.a. den
Text am Abschnittanfang). Im File wird deshalb am Zeilenende jeweils ein
spezielles Steuerzeichen (CHR(13) in Pascal 1.4) angefiigt. Damit Sie sich
nicht um die Realisierung der Zeilenstrukturierung kiimmern miissen, ist
die Prozedur WRITELN einheitlich fiir alle Ausgaben auf Bildschirm,
Drucker und Dateien auf der Floppy verwendbar.

Wie bei allen anderen Files auch, miissen Files mit dem Komponententyp
CHAR vor solchen Schreiboperationen mit RESET zum Schreiben ertffnet
werden. In diesem Kapitel wollen wir gleich die Prozéeduren OPEN und
CLOSE von Pascal 1.4 benutzen, da Textfiles meist auf Peripheriegerite
ausgegeben werden.

In dem in Listing 31 angegebenen Programm wird wieder das Muster fiir
eine zeilenweise Ausgabe verwendet. Es soll eine ASCII-Tabelle auf den
Drucker ausgegeben werden: Die Variable I gibt die momentan ausgegebene
Zeile an. In der inneren For-Anweisung fiir die Variable J wird der
ASCII-Code mit der Schrittweite 15 berechnet. Die Zeile wird mit
WRITELN(D) beendet. Bei der Ausgabe werden die Zeichen mit Codes
zwischen 0 und 31 sowie 127 und 159 nicht gedruckt, da sie am Drucker
nur Steuerfunktionen besitzen.

PROGRAM ASCII(INPUT,OUTPUT);
VAR 1,J:INTEGER;

D: TEXT; (* Filevariable fur den Drucker *)
BEGIN
OPEN(D,4,0); (* Eréffnet den Druckerkanal *)
FOR I:= 0 TO 15 DO
BEGIN

FOR J:= 0 TO 15 DO

IF J IN [0,1,8,91 THEN
(* ignoriere Steuerzeichen *)
WRITE(D," L]

ELSE

Einfiithrung in Pascal 117

WRITE(D," ",CHR(I+16*J)," ");
WRITELN(D)
END;
CLOSE(D)
END.

Listing 31: ASCI/

Sollten Sie keinen Drucker besitzen, so kénnen Sie die Ausgabe auf einem
anderen Peripheriegerit vornehmen, indem Sie den Geriteparameter 4 an-
dern (z.B. ist 3 der Bildschirm). Hier kénnen natiirlich nicht alle méglichen
Gerite besprochen werden. Details iiber die Wahl der Parameter entnehmen
Sie am besten den jeweiligen Handbiichern.

OPEN(D,4,7) (bei MPS-802 Ausgabe in Kleinschrift)
OPEN(¢D,3,0) (Ausgabe auf den Bildschirm)
OPEN(D,1,2,"ASCII") (Ausgabe auf Kassetten-File)
OPEN(D,8,3,"ASCII,S,W")

Die letzte Angabe erzeugt eine sequentielle Datei "ASCII" auf der Diskette.
Bitte beachten Sie, daBl bei Kassettenoperationen Teile des Pascal-Systems
iiberschrieben werden. Nachdem Sie ein iibersetztes Pascal-Programm, das
Kassettenfiles benutzt, mit RUN gestartet haben, miissen Sie das Pascal-
System neu laden.

Natiirlich existiert auch fiir beliebige Textfiles die Moglichkeit, Daten
einzulesen. Hierzu werden die entsprechenden READ(LN)-Prozeduren wie
bei der Tastatureingabe benutzt:

READ(F, Variable)
READLN(F)

Dabei kann ebenfalls die Angabe des Standard-Eingabefiles INPUT als
Parameter entfallen.

READLN(CINPUT,X,Y,2)
kann also zu READLN(X,Y,Z) abgekiirzt werden.

Um das Ende einer Eingabezeile bei Read-Operationen zu erkennen, ist die
Standardfunktion
EOLN(F)

(end of line) vorhanden. Ist beim Einlesen einer Zahl oder eines Zeichens
mit READ(F,...) das letzte gelesene Zeichen ein Zeilenende-Zeichen, so

118 Einfiihrung in Pascal

liefert die Funktion EOLN(F) den Wert TRUE. Jedoch werden Sie bei der
Eingabe von Textfiles nie das Zeilenende-Zeichen (CHR(13) bei Pascal 1.4)
erhalten, da dieses automatisch in ein Leerzeichen umgewandelt wird:

READ(F,CH); B:=EOLN(F)

Wird in dieser Anweisungsfolge das Zeilenende von F erreicht, so liefert
CH (vom Typ CHAR) als Wert ein Leerzeichen ’ °’. Jedoch ist dann der
Wert der booleschen Variablen B TRUE.

Bereits in Abschnitt 2.5 wurde beschrieben, daBl durch den Prozeduraufruf
READLN der Rest einer Bildschirmzeile iiberlesen wird. An dieser Stelle
sind Sie in der Lage, die exakte Definition in Zusammenhang mit der
Zeilenstruktur von Textfiles zu verstehen.

Die Prozedur READLN(F) 148t sich formal durch die folgende An-
weisungsfolge definieren:

WHILE NOT EOLN(F) DO READ(F,CH);

Das folgende Programm demonstriert die Eingabe von Files mit READ. Die
Aufgabe besteht darin, ein Eingabefile mit reellen Zahlen zu lesen und
Zeilensummen auszugeben. Zu der Eingabe

3.142 22 -0.345 0.33
1234

3

-8 -8 -8

soll also die Ausgabe

25.127 10 3 -24

erzeugt werden. Um das Zeilenende zu erkennen, mufB3 die Funktion EOLN
verwendet werden.

PROGRAM ZEILENSUMME(INPUT,QUTPUT);
VAR DATEN: TEXT;

PROCEDURE ADD(VAR F:TEXT);
VAR R, SIGMA: REAL;
BEGIN
WHILE NOT EOF(F) DO
BEGIN SIGMA:=0;
REPEAT
READ(F,R); SIGMA:= SIGMA+R
UNTIL EOLN(F);
WRITE(SIGMA:6)

Einfiihrung in Pascal 119

END
END; (* ADD *)

BEGIN
OPEN(DATEN,8,3,"DATA,S,R");
ADD(DATEN); WRITELN;

CLOSE (DATEN)

END.

Als ein Beispiel fiir Programme mit Ein- und Ausgabe auf Textfiles ist ein
Umwandlungsprogramm angegeben. Dieses Programm liest ein sequentielles
File EINGABE (auf der Diskette mit dem Namen "TEXT") und wandelt
alle Grafikzeichen mit Ordinalwerten gréBer als 127 in Buchstaben und
Sonderzeichen um. Der umgewandelte Text wird unter dem Namen
"TEXT.G" ebenfalls auf Diskette gespeichert.

PROGRAM KONVERT(INPUT,OUTPUT);
VAR EINGABE, AUSGABE: TEXT;
CH: CHAR;
BEGIN
OPEN (EINGABE, 8, 3, “TEXT,S,R");
OPEN (AUSGABE, 8, 4, "TEXT.G,S,W");
WHILE NOT EOF(EINGABE) DO
BEGIN
READ(EINGABE, CH);
WHILE NOT EOLN(EINGABE) DO
BEGIN
IF ORD(CH)>127 THEN CH:=CHR(ORD(CH)-128);
WRITE(AUSGABE, CH); READ(EINGABE, CH)
END;
WRITELN(AUSGABE)
END;
CLOSE(EINGABE); CLOSE(AUSGABE)
END.

Natiirlich kénnen die Programme auch mit Files auf anderen Speicherme-
dien (oder Bildschirm und Tastatur) arbeiten, wenn Sie die Parameter bei
OPEN geeignet wihlen.

AbschlieBend mufBB noch erwidhnt werden, dafl im Standard die Prozedur
READLN formal etwas anders definiert wird: READLN(F) liest so lange
Zeichen vom File F, bis F~ das erste Zeichen der nichsten Zeile enthilt.
Diese Definition setzt aber voraus, daBl die folgende Zeile bereits vorhan-
den ist. Dies 14Bt sich zwar bei Files auf externen Speichermedien reali-
sieren, erfordert aber bei Eingaben vom Bildschirm, da der Benutzer
bereits das erste Zeichen der nichsten Zeile eingegeben hat. Dies ist jedoch
bei Dialogprogrammen (READ und WRITE im Wechsel) auf dem C 64
nicht zu realisieren.

120 Einfiihrung in Pascal

Einige weitere Hinweise und Beispiele fiir Files finden sich in der Doku-
mentation (Kapitel 4) und bei den Tips und Tricks im Kapitel 3.

Aufgaben

1.

Erstellen Sie ein Druckprogramm, das den Inhalt eines Datenfiles, wie
es z.B. in der Aufgabe 1 in Abschnitt 2.16 beschrieben wurde,
formatiert als Liste ausgibt. Finden Sie ein moglichst allgemein
verwendbares Verfahren, um jede Seite mit einem Listenkopf (mit
Seitennummer) zu drucken.

Gegeben ist ein Datenfile, das die Umsétze von Vertretern im Bundes-
gebiet fir ein Jahr enthilt. Das File ist nach dem Feld Postleitzahl
aufsteigend sortiert. Drucken Sie eine Liste, die alle Umsitze im Bun-
desgebiet enthilt. AuBlerdem sollen Zwischensummen gebildet werden,
aus denen die Gesamtumsitze in jedem PLZ-Bereich (also z.B. 6000-
6999) hervorgehen.

Diese Gruppenkontrolle 148t sich auch mehrstufig anwenden: Innerhalb
jedes PLZ-Gebietes konnte man (bei einer entsprechenden Sortierung
der Ausgangsdaten) auch eine zusitzliche Aufschliisselung nach
Monatsumsitzen vornehmen. Im Programm muf3 man also einen Ver-
gleich des laufenden mit dem nachfolgenden (Teil-)Schliissel
vornehmen.

Ersten Satz lesen
WHILE NOT Dateiende erreicht DO
BEGIN
Vorlauf Stufe 2
REPEAT
Vorlauf Stufe 1
REPEAT
Bearbeitung Einzelposten
Neuen Satz lesen
UNTIL Wechsel 1
Gruppenabschluf 1
UNTIL Wechsel 2
GruppenabschluB 2
END

Wechsel 1 bezeichnet also einen Wechsel des Monats, wihrend Wechsel
2 eine Anderung des iibergeordneten Gruppenkriteriums (PLZ-Bereich)
bedeutet. Wechsel 1 mufl3 natiirlich auch durch Dateiende und Wechsel 2
hervorgerufen werden. Gleiches gilt fir Wechsel 2. Der Vorlauf fir
eine Gruppe enthilt das Loschen von Summenfeldern, den Druck von
Uberschriften etc., wihrend der GruppenabschluB z.B. den Druck einer
Summenzeile iiber die Gruppe bedeutet.

Einfithrung in Pascal 121

2.18 Dynamische Datenstrukturen

Mit Ausnahme der Variablen vom Typ File sind alle bisher vorgestellten
Strukturen (Arrays, Records, Mengen) statisch. Das heif3t, sie behalten
wihrend ihrer Gilltigkeit die Struktur bei, die bei der Deklaration verein-
bart wurde.

In diesem Abschnitt wird beschrieben, wie man in Pascal Objekte
konstruiert, die wihrend der Programmlaufzeit nicht nur wachsen oder
schrumpfen, sondern auch dymamisch zu Listen und beliebigen Netzen
verbunden werden kénnen. Zum Zeitpunkt der Ubersetzung wird nur die
Struktur der (statischen) Elemente definiert. Diese Bausteine besitzen meist
die Struktur eines Records. Der Speicherplatz fiir die verschiedenen
Records wird dann zur Programmlaufzeit je nach Bedarf zur Verfiigung
gestellt. Die Verbindung zu komplexen Strukturen geschieht iiber Zeiger,
die von Record zu Record fiihren.

Wir wollen eine Liste von Kunden bilden. Yon jedem Kunden sollen der
Name und die Kundennummer gespeichert werden. Da wir nicht wissen,
wie viele Kunden zu speichern sind, kénnen wir kein Array verwenden.
Andererseits wollen wir nicht stindig auf ein (langsames) Diskettenfile zu-
greifen. Dies ist ein typisches Beispiel fiir die Anwendung einer Liste, die
durch Zeiger gebildet wird.

TYPE KUNDENZEIGER = 1 KUNDE;
KUNDE = RECORD
NAME: ARRAY [1..101 OF CHAR;
KNUMMER: INTEGER;
NAECHSTER: KUNDENZEIGER
END;
VAR KUNDE1, KUNDENEU, LETZTERKUNDE: KUNDENZEIGER;

Listing 32: Zeigertypen

Mit der Typdeklaration aus Listing 32 definieren wir einen Typ KUNDE,
der die gewiinschten Informationen fiir jeden Kunden speichert. Der Typ
KUNDENZEIGER besitzt als Werte Zeiger (pointer) auf solche Kunden-
records. Als Variablen haben wir keine Kundenrecords, sondern nur
Zeigervariablen deklariert.

122 Einfithrung in Pascal

Zum Aufbau einer (Kunden-)Liste geht man folgendermaBen vor: Man
erzeugt sich fir jeden neuen Kunden einen neuen Record vom Typ
KUNDE. Diese Records werden nun durch Zeiger vom Typ KUNDEN-
ZEIGER verkettet. Der Zeiger KUNDEI1 zeigt auf den ersten Kunden-
record in der Liste. Jeder Record enthilt im Feld NAECHSTER einen
Zeiger auf seinen Nachfolger in der Liste.

Da jeder Kundenrecord keinen eigenen Bezeichner besitzt, kann man Kun-
denrecords nur durch die Angabe eines Zeigers ansprechen. Man sagt des-
halb auch, daBl dynamische Objekte anonym sind.

Um Speicherplatz fiir einen Kundenrecord zur Verfiigung zu stellen, be-
nutzt man die Standardprozedur NEW. Sie erzeugt irgendwo im Speicher
Platz fiir einen Record. Um nun auf diesen Record zuzugreifen, verlangt
die Prozedur eine Zeigervariable vom Typ KUNDENZEIGER als aktuellen
Parameter. Dieser Zeigervariablen wird die Adresse des neuen Records vom
Typ KUNDE zugewiesen:

NEW(KUNDENEU)

Uber den Zeiger KUNDENEU kénnen wir jetzt den Record vom Typ
KUNDE mit Werten fiilllen. Da bei den Zuweisungen nicht die Zeiger-
variable, sondern das Objekt, auf das der Zeiger zeigt, gemeint ist, benutzt
man den Pfeil ~ nach dem Bezeichner.

KUNDENEU?T.NAME:= "JONES "
KUNDENEU?T.KNUMMER:= 1111

Da ein Zeiger eine Referenz auf ein dynamisches Objekt darstellt, nennt
man den Pfeil auch Dereferenzier-Operator.

Um nun den Zeiger KUNDEI auf den mit NEW erzeugten Kundenrecord
zu setzen, fithrt man eine Zuweisung zwischen Zeigern durch:

KUNDE1:= KUNDENEU

Damit Sie den Unterschied zwischen Zeigern und den durch sie referen-
zierten Objekten erkennen, werden wir noch einen neuen Record an die
Liste hingen:

Zunichst miissen wir wieder einen neuen Record vom Typ Kunde bilden:

NEW(LETZTERKUNDE)

Einfiihrung in Pascal 123

Dann wird der Inhalt von LETZTERKUNDE" initialisiert:

LETZTERKUNDE?T.NAME:= "JACKSON ";
LETZTERKUNDET.KNUMMER:= 2222

Wir wollen jetzt Jackson als Nachfolger von Jones in die Liste aufnehmen.
Dazu verwenden wir den Zeiger NAECHSTER im Record von Jones, auf
den ja noch KUNDENEU zeigt. NAECHSTER soll auf den Record von
Jackson zeigen, der durch LETZTERKUNDE referenziert wird:

KUNDENEUT .NAECHSTER:= LETZTERKUNDE

Jetzt ist es an der Zeit, die Liste zu betrachten, die wir durch die obigen
Anweisungen erzeugt haben. Eine anschauliche Darstellung von dy-
namischen Strukturen stellt die einzelnen Records als Kistchen dar,
wihrend Zeiger durch Pfeile symbolisiert werden, die von Record zu
Record fiithren.

KUNDENEU —— JONES LETZTERKUNDE —— JACKSON
111 — 2222
KUNDE t ——» 0 2%

Bild 15: Kundenliste

Ein grundsitzliches Problem haben wir noch nicht beachtet: Was passiert
mit Zeigern, die (noch) auf kein Element zeigen? So hat z.B. der Record
LETZTERKUNDE? keinen Nachfolger. Eine Moglichkeit besteht darin,
jeden Record um ein boolesches Feld zu erweitern, das angibt, ob ein
Nachfolger existiert oder nicht. Da dieser Fall bei der Arbeit mit Zeigern
stindig auftritt, ist der Wertebereich von allen Zeigertypen um den Wert
NIL erweitert: Besitzt ein Zeiger P den Wert NIL, so existiert kein Objekt
P?. Deshalb fiillen wir das Feld NAECHSTER bei dem Record Jackson mit
NIL:

LETZTERKUNDE®T .NAECHSTER:= NIL

124 Einfiihrung in Pascal

Bevor wir uns einigen typischen Datenstrukturen zuwenden, die mit
Zeigern realisiert werden, fassen wir die Regeln fiir die Arbeit mit Zeiger
in Pascal zusammen:

Ein Zeigertyp Z auf Objekte eines strukturierten oder unstrukturierten
Typs T wird folgendermaflen deklariert:

TYPEZ =1 T

Soll ein Typ, der durch Zeiger angesprochen wird, selbst Zeiger enthalten,
so konnten Probleme auftreten, da (wie in Abschnitt 2.15 erklart) jeder
Bezeichner vor seiner Anwendung deklariert werden muf:

TYPE T = RECORD

*%; 2 <--e---- falsch!
END; (Z noch nicht bekannt)
2=1T

Deshalb gibt es von dieser Regel eine Ausnahme: In der Deklaration einer
Zeigervariablen kann ein Typbezeichner verwendet werden, der noch nicht
deklariert wurde. Deshalb schreibt man (wie auch in Listing 32):

TYPE 2 = 1 T; <---e-- richtig!
T = RECORD (T darf nach 1 noch unbekannt sein)
™2z
END;

Um ein neues dynamisches Objekt vom Typ T zu erzeugen, ruft man die
Prozedur NEW mit einer Variablen vom Typ Z = 1 T auf.

Enthilt eine Zeigervariable V einen Zeiger auf ein Objekt, das mit NEW
erzeugt wurde, so bezeichnet V1 dieses Objekt.

Der Wertebereich jeder Zeigervariablen V umfaf3t auch den Wert NIL. Ein
Zugriff auf das Element V1 ist dann nicht zulissig.

Eine Tatsache muf3 noch besonders betont werden. Zwar kann ein Zeiger
wihrend der Laufzeit auf beliebige Objekte gesetzt werden, jedoch bleibt
in jedem Fall die Typbindung von Pascal in Kraft. Konkret heif3t dies, daB
eine Zeigervariable, die mit

VAR V:T T;

Einfiihrung in Pascal 125

deklariert wurde, nur auf Objekte vom Typ T zeigen kann. So ist also die
folgende Anweisung nach der angegebenen Deklaration von ZI nicht zulds-
sig:

VAR 21: 1 INTEGER;
21t:= vAw;

2.18.1 Lineare Strukturen (Listen)

Im vorangegangenen Abschnitt haben wir bereits erste Schritte zum Aufbau
einer Liste von Kundenrecords gemacht. Dabei sind wir von einer in-
tuitiven Vorstellung einer Liste ausgegangen, die man am Ende erweitert.

Grundsitzlich bezeichnet man in Pascal mit einer Liste eine lineare
Datenstruktur, die durch Zeiger gebildet wird. Linear bedeutet in diesem
Zusammenhang, dafl jedes Element genau einen Vorgidnger und Nachfolger
besitzt.

Folgende Operationen sind in Listen moglich:

1. Start mit der leeren Liste
2. Erweitern der Liste
3. Loschen in der Liste

Es gibt zahlreiche verschiedene Listentypen, die sich durch die Art der
Verzeigerung unterscheiden. Wenn Sie noch einmal Bild 15 betrachten,
werden Sie feststellen, dafl man mit der Operation

KUNDENEU:= KUNDENEUT.NAECHSTER

ohne Probleme die Liste vorwdrts durchlaufen kann. Andererseits ist es
(ohne einen Zugriff auf andere Zeiger) nicht mdglich, von
LETZTERKUNDE zuriick zum Vorginger in der Liste zu gelangen. So
bestimmt also die Zeigerstruktur die Art der moglichen Zugriffe auf eine
Liste.

126 Einfiihrung in Pascal

0BEN —» | > A

0 i —r. 0 —r’ NIL
KOPF ——»]" l-' @ SCHUANZ

0 [0 NIL B

R | _r. ¢
ANKE] i i i
]

START 3 I) i f NIL 0
NIL 0 a 1]

Bild 16: Listenstrukturen
In Bild 16 sind die wichtigsten Listentypen grafisch dargestellt.

A Kellerspeicher (stack, Stapelspeicher)
B Schlange (queue)

C Ringspeicher

D Doppelt verkettete Liste

Bei einem Kellerspeicher fiigt man Elemente bei OBEN ein und 18scht sie
auch dort wieder. Weil dadurch das zuletzt eingefiigte Element zuerst
geloscht wird, heiBit ein Kellerspeicher auch LIFO-Speicher (last-in-first-
out).

Bei einer Schlange fiigt man Elemente bei SCHWANZ ein und l8scht sie
bei KOPF. Schlangen heiflen auch FIFO-Speicher (first-in-first-out).

In einigen Anwendungen sind Ringspeicher sinnvoll. Hierbei ist keine Ord-
nung auf den Elementen definiert. Jedes Element ist Nachfolger eines an-
deren. ANKER wird nur benétigt, um einen Zugriff auf ein Element des
Ringes zu besitzen. Wiare ANKER nicht vorhanden, so kénnte man nimlich
keines der Elemente {iber einen Bezeichner (z.B. mit ANKER") erreichen!

Einfiihrung in Pascal 127

Relativ aufwendige Operationen erfordert die Konstruktion einer doppelt
verketteten Liste. Ein wesentlicher Vorteil ist die Tatsache, daB man sich
in beiden Richtungen in der Liste bewegen kann.

Natiirlich kénnen wir nicht alle Typen in diesem Buch behandeln. Dieser
Uberblick sollte Thnen nur die grundsitzlichen Probleme beim Aufbau von
dynamischen Strukturen zeigen. Die Bearbeitung von Listen besteht also
grofBtenteils im Verfolgen von Zeigerketten.

In Listing 33 ist ein komplettes Programm angegeben, das die am Anfang
des Abschnitts erwihnte Kundenliste implementiert. Alle Funktionen sind
zu Modulen zusammengefaB3t und ausfithrlich kommentiert, so daB Sie die
einzelnen Operationen nachvollziehen kénnen. Auf einige Details sollten Sie
achten:

Will man in einer Liste ein Element l6schen oder einfiigen, so muf3 man
das Feld NAECHSTER beim Vorginger korrigieren. Deshalb werden in der
Suchroutine VORHANDEN zwei Zeiger verwendet. Dabei hinkt der Zeiger
Z beim Durchlaufen der Liste immer ein Record hinter dem Zeiger Z1 her.

Normalerweise mufl man die erste Einfiigung in der Liste und das Loéschen
des letzten Elementes in der Kette explizit programmieren, da hierbei an-
dere Zeiger umgesetzt werden miissen als bei allen anderen Operationen.
Um diese Sonderbehandlungen zu vermeiden, wird im Programm die Liste
um ein unbenutztes erstes und letztes Element erweitert.

Dieses letzte Element wird auch zur Aufnahme einer Marke bei. der
Suchroutine VORHANDEN verwendet (siehe auch Abschnitt 2.9 iiber die
Suche im Array).

Interessant ist vielleicht noch die folgende Variablenangabe in der Prozedur
LOESCHEN: ‘

VORT.NAECHSTER:= VOR?T.NAECHSTER?T.NAECHSTER

Auf der rechten Seite des Zuweisungsoperators wird zweimal dereferen-
ziert: Das Ergebnis ist also der Zeiger, der im Feld NAECHSTER des
Nachfolgers von YOR* steht.

128 Einfiihrung in Pascal

PROGRAM KUNDENLISTE (INPUT, OUTPUT);

(* BEISPIEL FUER DIE VERWALTUNG EINER LISTE MIT ZEIGERN. *)
(* DIE DATEN WERDEN STAENDIG SORTIERT IN EINER LISTE GE- *)
(* HALTEN. JEDER RECORD BESITZT DAZU EINEN ZEIGER AUF *)
(* DEN ALPHABETISCHEN NACHFOLGER. UM DAS EINFUEGEN UND *)
(* LOESCHEN EINFACH ZU GESTALTEN, BESITZT DIE LISTE JE *)
(* EIN LEERES ELEMENT -AM ANFANG UND ENDE. *)

CONST LEN = 10;. (* LAENGE EINES NAMENS *)

TYPE STRING = ARRAY [1..LEN] OF CHAR;
KUNDENZEIGER = 1 KUNDE;
KUNDE = RECORD
NAME : STRING;
KNUMMER :- INTEGER;
NAECHSTER: KUNDENZEIGER;

END;
VAR KOPF: KUNDENZEIGER; (* KOPF DER KUNDENLISTE *)
ENDE: KUNDENZEIGER; (* ENDE DER KUNDENLISTE *)
CH : CHAR; (* BENUTZEREINGABE *)
PROCEDURE READSTRING(VAR S: STRING);
(* STRING MIT LEN ZEICHEN VON DER TASTATUR LESEN. *)
VAR 1: INTEGER;
C: CHAR;
BEGIN
REPEAT READ(C) UNTIL C<>" ";(* VORLAUFENE LEERZEICHEN *)
I:=1; (* IGNORIEREN *)
REPEAT (* LEN ZEICHEN ODER BIS *)
S[I1:= C; I:= I+1; (* ZUM ZEILENENDE LESEN *)
READ(C)
UNTIL (I>LEN) OR EOLN;
WHILE I<=LEN DO (* S MIT LEERZEICHEN AUF- *)
BEGIN (* FUELLEN *)
S[I1:= " u; T:=1+1
END;
WRITELN

END; (* READSTRING *)

FUNCTION VORHANDEN(S:STRING; VAR Z:KUNDENZEIGER):BOOLEAN;
(* SUCHT NAME (S) IN DER LISTE. ERGEBNIS=TRUE, FALLS *)
(* S GEFUNDEN WURDE. Z ZEIGT BEI RUECKKEHR IMMER AUF *)

(* DIE POSITION DES ALPHABETISCHEN VORGAENGERS. *)
VAR 21: KUNDENZEIGER; (* 21 STEHT IMMER EIN RECORD*)
(* WEITER ALS DER ZEIGER Z *)
BEGIN
Z:= KOPF; 21:= KOPF1.NAECHSTER;
ENDET.NAME:= §; (* MARKE AM LISTENENDE *)
WHILE Z11.NAME<S DO
BEGIN
Z:= 21; 21:= Z11.NAECHSTER
END;

VORHANDEN:= (Z11.NAME=S) AND (Z1<>ENDE)
END; (* VORHANDEN *)

Einfiithrung in Pascal

129

PROCEDURE DRUCKE(Z: KUNDENZEIGER);
(* DRUCKE DEN INHALT DES REFERENZIERTEN RECORDS *)
BEGIN
WITH Z1 DO
WRITELN("NAME:",NAME:LEN+2," NUMMER:", KNUMMER:5)
END; (* DRUCKE *)

PROCEDURE EINGABE;
(* EINGABE EINES NEUEN KUNDENRECORDS *)
VAR N : STRING;
NEU: KUNDENZEIGER; (* ZEIGER AUF NEUEN RECORD *)
VOR: KUNDENZEIGER; (* ZEIGER AUF ALPABETISCHEN *)
(* VORGAENGER IN DER LISTE *)
BEGIN
WRITE("NAME:"); READSTRING(N);
IF VORHANDEN(N,VOR) THEN
WRITELN(N,"™ IST BEREITS KUNDE!")

ELSE
BEGIN
NEW(NEU); (* NEUEN RECORD BESORGEN *)
WRITE("KUNDENNUMMER:");
READLN(NEUT.KNUMMER); (* UND BELEGEN *)

NEUT.NAME:= N;
NEU?T.NAECHSTER:= VOR?T.NAECHSTER;
VORT.NAECHSTER:= NEU; (* NEU NACH VOR EINFUEGEN *)
END
END; (* EINGABE *)

PROCEDURE AUSGABE;
(* AUSGABE EINES KUNDENRECORDS *)
VAR N : STRING;
VOR: KUNDENZEIGER; (* ZEIGER AUF ALPHABETISCHEN *)
(* VORGAENGER IN DER LISTE *)
BEGIN
WRITE("NAME:"); READSTRING(N);
IF VORHANDEN(N,VOR) THEN
DRUCKE (VOR™ .NAECHSTER)
ELSE
WRITELN(N,"NICHT ALS KUNDE GESPEICHERT!")
END; (* AUSGABE *)

PROCEDURE LOESCHEN;
VAR N : STRING;
VOR: KUNDENZEIGER; (* VORGAENGER IN DER LISTE *)
BEGIN
WRITE("NAME:"); READSTRING(N);
IF VORHANDEN(N,VOR) THEN
BEGIN
WRITELN("GELOESCHT WURDE:");
DRUCKE (VOR? .NAECHSTER) ;
(* NACHFOLGER VON VOR AUS *)
(* DER LISTE STREICHEN: *)
VORT .NAECHSTER:= VORT.NAECHSTER?.NAECHSTER;
END -
ELSE
WRITELN(N,"NICHT ALS KUNDE GESPEICHERT!")
END; (* LOESCHEN *)

130 Einfiihrung in Pascal

PROCEDURE TABELLE;

(* DRUCKE EINE ALPHABETISCHE LISTE ALLER KUNDEN

VAR Z:KUNDENZEIGER;
BEGIN
Z:= KOPFT.NAECHSTER;
WHILE 2<>ENDE DO
BEGIN
DRUCKE(Z);
2:=21.NAECHSTER
END;
END; (* TABELLE *)

BEGIN (* HAUPTPROGRAMM *)
NEW(KOPF); NEW(ENDE);
KOPF? .NAECHSTER : =ENDE;
REPEAT

WRITELN("E INGABE");
WRITELN("A USGABE");
WRITELNC"L OESCHEN");
WRITELN("T ABELLE");
WRITELN("X BEENDEN");

(*
(*
(*

(*

(*
(*
(*

Z AUF ANFANG DER LISTE
SOLANGE NICHT LETZTEN
(LEEREN) RECORD ERREICHT:

ZUM NAECHSTEN KUNDEN

ANFANG UND ENDE BILDEN
LISTE IST LEER
EINGABESCHLEIFE

READLN(CH);

CASE CH OF
"Tw: TABELLE;
WEM: EINGABE;
WAW: AUSGABE;
"LW: LOESCHEN;
wye: ;
ELSE WRITELN("UNGUELTIGE WAHL")

END;

UNTIL CH="Xn;
END.

Listing 33: Programm Kundenliste

Zum AbschluB des Abschnitts sollen Sie noch ein Standardverfahren
kennenlernen, mit dem man den Speicherplatz, der durch das Ldéschen von
Records frei wird, wiederverwenden kann. Die Idee besteht darin, die
(logisch) geléschten Records zu einer neuen Liste, der Freispeicherliste, zu
verketten. Vor jedem Aufruf der Prozedur NEW priift man dann, ob sich
nicht ein unbenutzter Record in der Freispeicherliste befindet.

Einfiigungen und Loschungen in der Freispeicherliste erfolgen am ein-
fachsten am selben Ende, so daf3 diese Liste also ein LIFO (stack, Stapel)
ist. Um diese Freispeicherverwaltung in das Programm Kundenliste zu in-
tegrieren, muf3 man folgende Anderungen vornehmen: Zunichst deklariert

man einen Zeiger auf den Kopf der Freiliste.

FREI: KUNDENZEIGER;

*)

*)
*)
*)

*)

*)

Einfiithrung in Pascal 131

AnschlieBend werden die eigentlichen Prozeduren zur Verwaltung der
Freiliste definiert:)

PROCEDURE NEWKUNDE(VAR Z:KUNDENZEIGER);
(* Liefere Zeiger auf neuen Kundenrecord*)
BEGIN
IF FREI = NIL THEN
(* Freispeicher ist leer: *)
NEW(Z)
ELSE
BEGIN
(* Entferne ersten Record aus Freispeicher*)
Z:= FREI; FREI:= FREIT.NAECHSTER
END
END; (* NEWKUNDE *)

PROCEDURE DISPOSEKUNDE(Z: KUNDENZEIGER);
(* Speicherplatz von Z ist freigeworden,*)
(* Erweitere die Freispeicherliste *)
BEGIN

21 .NAECHSTER:= FREI;

FREI:= Z '
END; (* DISPOSEKUNDE *)

Jetzt miissen die Routinen nur korrekt aufgerufen werden. Dazu ersetzt
man den Aufruf NEW(NEU) durch NEWKUNDE(NEU). Um in der Proze-
dur LOESCHEN den Nachfolger von VOR zu léschen, merkt man sich zu-
nichst in einer Variablen ALT den Zeiger auf das zu léschende Objekt.
Dann kann man den Record aus der Verzeigerung der Kundenliste entfer-
nen und zum Schluf mit DISPOSEKUNDE(ALT) den Record ALT? in die
Freispeicherliste einfiigen:

PROCEDURE LOESCHEN;
VAR ...
ALT: KUNDENZEIGER;

ALT:= VORT.NAECHSTER;
VORT.NAECHSTER:= VORT.NAECHSTER®.NAECHSTER;
DISPOSEKUNDE(ALT)

Natirlich muf3 die Freispeicherliste am Programmanfang korrekt initiali-
siert werden. Da sie zu diesem Zeitpunkt noch leer ist, erhilt der Zeiger
auf den Listenanfang den Wert NIL:

FREI:= NIL

Dieses Verfahren der Verwaltung von freigewordenem Speicher ist sehr
effizient, so daB man meist die Verwendung systemspezifischer Speicher-
verwaltungsprozeduren (DISPOSE, MARK, RELEASE) vermeiden kann.

132 Einfiihrung in Pascal

Die Prozeduren MARK und RELEASE in Pascal 1.4 sind in der
Dokumentation in Kapitel 4 beschrieben.

2.18.2 Biume

Zum Abschluf3 dieser Einfiihrung in die Programmiersprache Pascal soll
noch ein Beispiel fiir eine nichtlineare dynamische Datenstruktur mit
Zeigern gegeben werden: Ein Baum ist (in der Graphentheorie) ein Graph
mit einem Eingang, in dem jeder Knoten auf genau einem Weg vom Ein-
gang erreicht werden kann (siehe Bild 17).

WURZEL

TIEFE 8

TIEFE 1

TIEFE 2

TIEFE 3 (:::) Z
*l\\\“\‘\\\:\ A

TIEFE 4 BLATTER —

Bild 17: Ein Baum

Biume zeichnet man iiblicherweise mit der Wurzel (dem Eingang) nach
oben. Jeder Knoten besitzt eine gewisse Tiefe, das ist die Distanz zum Ein-
gang (hier also Knoten 1). Knoten ohne Nachfolger bezeichnet man als

Einfithrung in Pascal 133

Blitter. Jeder innere Knoten hat eine gewisse Anzahl an direkten Nachfol-
gern, die selbst Wurzeln von Teilbdumen sind. So besitzt der Wurzelknoten
(1) zwei direkte Nachfolger (2 und 3), wobei z.B. 3 die Wurzel des Teil-
baumes aus den Knoten 3, 6, 77, 9, 10, 11 und 12 bildet. Die Maximalan-
zahl der direkten Nachfolger, die ein Knoten in einem Baum besitzt, heif3t
der Grad des Baumes.

Wir wollen uns nur mit biniren Biumen, also mit Biumen des Grades 2
beschiftigen: In ihnen besitzt ein innerer Knoten 1 oder 2 Nachfolger,
wihrend ein Blatt 0 Nachfolger besitzt. AuBerdem definieren wir eine
Ordnung auf den Knoten des Baumes. Fiir jeden Knoten K im Baum gel-
ten folgende Relationen:

1. Alle Knoten im linken Teilbaum mit der Wurzel K sind kleiner als K.
2. Alle Knoten im rechten Teilbaum mit der Wurzel K sind groBBer als K.

Mit dieser Regel ergibt sich in Bild 17 fiir die Wurzel folgende Relation:
2,4,5,8,13 <1 < 3,6,7,9,10,11, 12

Wendet man diese Regeln auch auf alle Knoten in den Teilbdumen an, so
erhiilt man eine vollstindige Ordnung.

4<2<8<13<5<1<9<6<10<3<11<7<12

Nun haben wir alle Begriffe beisammen, um unsere Kundenverwaltung in
einem bindren Baum zu organisieren. Wiederum sollen alle Kunden alpha-
betisch sortiert gespeichert werden, um ohne Nachsortieren eine nach Na-
men geordnete Liste auszugeben. Vor allen Dingen wird die Ordnung je-
doch auch benutzt, um einen Kunden in kurzer Zeit zu finden, ohne (wie
in einer Liste) alle Knoten zu untersuchen.

Die Knoten eines Baumes werden in Pascal durch einen Record dargestellt.
Wir benutzen also wieder die Kundenrecords aus dem letzten Kapitel. Je-
doch erhilt jeder Kunde zwei Nachfolger. Die Felder L und R enthalten
deshalb Zeiger auf den linken und rechten Nachfolger im Baum.

TYPE KUNDENZEIGER = 1 KUNDE;
KUNDE = RECORD
NAME : ARRAY [1..10] OF CHAR;
KNUMMER: INTEGER;
L,R :KUNDENZEIGER;
END;
VAR WURZEL: KUNDENZEIGER;

134 Einfithrung in Pascal

Die Operationen mit dieser Struktur sind in Listing 34 beschrieben. Am
Programmanfang ist der Baum leer:

WURZEL:= NIL
WURZEL ———> MUELLER
911
‘T ‘
BREHH ZEISER
232 01
l— o | o —¢ l—— 0 NIL
ALPHA KONRAD VOGEL
562 342 ot
NIL | NIL NIL | NI NIL | NIL

Bild 18: Baum mit Kundenrecords

Beim Einfiigen miissen wir die alphabetische Reihenfolge im Baum
beachten. Hierzu wandern wir ausgehend von der Wurzel zu den Blittern.
Dabei vergleichen wir in jeder Tiefe den Namen des neuen Kunden mit
dem Namen in den Knoten des Baumes. Ist der Name grdfer, so miissen
wir die Einfiigung im rechten Teilbaum ausfithren, sonst verfolgen wir den
Zeiger zum linken Teilbaum.

Um Kunze einzufiigen, bestimmen wir so den folgenden Weg:

Kunze < Mueller gehe links
Kunze > Brehm gehe rechts
Kunze > Konrad gehe rechts

Da kein rechter Nachfolger von Konrad existiert (der Zeiger R ist NIL),
kénnen wir jetzt Kunze als rechten Nachfolger von Konrad einfiigen.

Diese Strategie beschreibt die rekursive Prozedur EINFUEGEN. Sie wird
mit zwei Parametern aufgerufen: NEU ist ein Record vom Typ Kunde, um

Einfiihrung in Pascal 135

den der Baum erweitert werden soll. Der Variablenparameter Z ist ein
Zeiger auf die Wurzel des Teilbaumes, in den NEU eingefiigt werden soll.
Bitte beachten Sie, dal hier ein Variablenparameter erforderlich ist, um bei
einer Einfiigung (Z=NIL) den Zeiger auf das neue Element in der
aufrufenden Umgebung zu 4ndern.

Bei der Suche fillt auf, daB man in jedem Schritt die GréBle des noch zu
untersuchenden Teilbaumes halbiert. Somit hat man im Idealfall in einem
Baum mit N Knoten nach log(N) Schritten die Einfiigeposition bestimmt.
Natiirlich mu3 man dafiir sorgen, daB der Baum ausgeglichen bleibt.
Wiirde man nimlich stindig Einfiigungen am rechten Blatt vornehmen, so
hiitte der entstehende Baum die Form einer Liste, so da3 fiir N Knoten die
Tiefe N statt log(N) betrigt.

Zur Ausgabe der alphabetisch geordneten Tabelle muf3 man den Baum in
der vorgegebenen Ordnung durchlaufen. Dies geschieht am elegantesten mit
der rekursiven Prozedur INORDER. Der Parameter Z gibt die Wurzel des
Teilbaumes an, der gedruckt werden soll. Die oben beschriebene Ordnung
verlangt eine Ausgabe in der folgenden Reihenfolge:

1. Ausgabe aller Knoten im linken Teilbaum (Z1.L).
2. Ausgabe des Wurzelknotens Z1.
3. Ausgabe aller Knoten im rechten Teilbaum (Z41.R).

Da die Wurzel in der Ordnung zwischen dem linken und rechten Teilbaum
liegt, heiBt diese Ordnung inorder (im Gegensatz zu preorder und
postorder).

Loschungen eines inneren Knotens im geordneten biniren Baum erfordern
etwas genauere Uberlegungen, damit die Ordnung zwischen den ubrigge-
bliebenen Knoten erhalten bleibt. Ohne nihere Erliuterungen ist im Listing
34 ein Loschalgorithmus angegeben.

Sollten Sie Interesse an solchen Datenstrukturen und Algorithmen gefunden
haben, konnen Sie sich, ausgeriistet mit den Kenntnissen aus diesem Buch,
der Fachliteratur iiber Systematische Programmierung (Biicher 2, 5, 6, 7, 8
Anhang E) zuwenden.

PROGRAM KUNDENBAUM (INPUT, OUTPUT);
(* VERWALTUNG DER KUNDENDATEN IN EINEM NACH NAMEN *)
(* GEORDNETEN BINAERBAUM. *)

CONST LEN = 10; (* LAENGE EINES NAMENS *)

136 Einfiihrung in Pascal

TYPE STRING = ARRAY [1..LEN] OF CHAR;
KUNDENZEIGER = 1 KUNDE;
KUNDE = RECORD

NAME : STRING;
KNUMMER : INTEGER;
L, R : KUNDENZEIGER;
END;
VAR WURZEL: KUNDENZEIGER; (* WURZEL DES BAUMES *)
CH : CHAR; (* FUNKTIONS-AUSWAHL *)
PROCEDURE READSTRING(VAR S: STRING);
(* STRING MIT LEN ZEICHEN VON DER TASTATUR LESEN. *)
VAR 1: INTEGER;
C: CHAR;
BEGIN
REPEAT READ(C) UNTIL C<>" ";(* VORLAUFENE LEERZEICHEN *)
I:= 1; (* IGNORIEREN *)
REPEAT (* LEN ZEICHEN ODER BIS *)
S[I1:= C; I:= I+1; (* ZUM ZEILENENDE LESEN *)
READ(C)
UNTIL (I>LEN) OR EOLN;
WHILE I<=LEN DO (* S MIT LEERZEICHEN AUF- *)
BEGIN (* FUELLEN *)
S[I1:= " W; I:=I+1
END;
WRITELN

END; (* READSTRING *)

PROCEDURE DRUCKE(Z: KUNDENZEIGER);
(* DRUCKE DEN INHALT DES REFERENZIERTEN RECORDS *)
BEGIN
WITH 21 DO
WRITELN("NAME:",NAME:LEN+2," NUMMER:",KNUMMER:5)
END; (* DRUCKE *)

PROCEDURE EINGABE;
(* EINGABE EINES NEUEN KUNDENRECORDS *)
VAR K: KUNDE;

PROCEDURE EINFUEGEN(NEU:KUNDE; VAR Z:KUNDENZEIGER);
(* FUEGE NEU AN DER KORREKTEN POSITION IM TEILBAUM MIT*)

(* DER WURZEL Z EIN. *)
BEGIN

IF Z=NIL THEN (* TEILBAUM IST LEER: *)
BEGIN (* FUEGE NEU ALS BLATT EIN *)
NEW(Z2);2%:= NEU; (* BELEGE 21 MIT NAME UND *)
Z7t.L:= NIL; (* KUNDENNUMMER. 21 HAT *)
Z1.R:= NIL (* KEINE NACHFOLGER ! *)

END

ELSE
BEGIN (* VERGLEICH DER SCHLUESSEL:*)

IF NEU.NAME=Z1.NAME THEN
WRITELN(NEU.NAME ," IST BEREITS KUNDE!")
ELSE
IF NEU.NAME<Z?T.NAME THEN
EINFUEGEN(NEU,ZT.L) (* IM LINKEN ODER *)

Einfiihrung in Pascal 137

ELSE
EINFUEGEN(NEU,Z1T.R) (* IM RECHTEN TEILBAUM *)
END (* EINFUEGEN *)
END; (* EINFUEGEN *)
BEGIN (* EINGABE *)
WRITE("NAME:"); READSTRING(K.NAME);
WRITE("KUNDENNUMMER:"); READLN(K.KNUMMER);
EINFUEGEN(K, WURZEL); (* K IM BAUM EINFUEGEN *)
END; (* EINGABE *)

PROCEDURE INORDER(Z: KUNDENZEIGER);
(* DRUCKE IN ALPHABETISCHER REIHENFOLGE DIE KNOTEN DES *)

(* TEILBAUMES MIT WURZEL Z. *)
BEGIN
IF Z<>NIL THEN (* TEILBAUM IST NICHT LEER: *)
BEGIN
INORDER(ZT.L); (* DRUCKE LINKEN TEILBAUM *)
DRUCKE (2); (* DIE WURZEL SELBST UND *)
INORDER(ZT.R) (* DANN DEN RECHTEN TEILBAUM*)
END

END; (* TABELLE *)

PROCEDURE LOESCHE;
VAR NAME: STRING;

PROCEDURE ENTFERNE(N: STRING; VAR Z: KUNDENZEIGER);
(* ENTFERNE DEN KUNDEN MIT NAME N AUS DEM TEILBAUM *)
(* MIT DER WURZEL Z *)

PROCEDURE HOLEHOCH(VAR Z1: KUNDENZEIGER);
(* ERSETZE Z DURCH DEN GROESSTEN WERT IM LINKEN *)

(* TEILBAUM 27L *)
BEGIN
© IF Z11.R=NIL THEN
BEGIN (* KOPIERE FELDER NACH 21 *)
Z7.NAME := Z11.NAME;
21 .KNUMMER:= Z11.KNUMMER;
21:=211.L (* ERSETZE Z1 DURCH SEINEN *)
(* LINKEN NACHFOLGER *)
END
ELSE (* RECHTS WEITERSUCHEN: *)

HOLEHOCH(Z1%.R)
END; (* HOLEHOCH *)

BEGIN (* ENTFERNE *)
IF Z=NIL THEN
WRITELN(N," IST NICHT GESPEICHERT!™)
ELSE
IF N=21.NAME THEN (* ERSETZE Z DURCH EINEN *)
BEGIN (* SEINER NACHFOLGER *)
IF 2%.L= NIL THEN Z:=Z%.R ELSE
IF 21.R= NIL THEN Z:=2%.L
ELSE HOLEHOCH(Z?T.L)
END
ELSE (* SUCHE IN DEN TEILBAEUMEN *)
IF N<Z?.NAME THEN ENTFERNE(N,Z7.L)
ELSE ENTFERNE(N,Z?1.R)

138 Einfiihrung in Pascal

END; (* ENTFERNE *)
BEGIN (* LOESCHE *)

WRITE("NAME:"); READSTRING(NAME);

ENTFERNE (NAME ,, WURZEL) (* LOESCHE KUNDEN IM BAUM *)
END; (* LOESCHE *)

BEGIN (* HAUPTPROGRAMM *)
WURZEL:= NIL; (* BAUM IST LEER *)
REPEAT (* EINGABESCHLEIFE *)
WRITELN("T ABELLE");
WRITELN("E RWEITERN");
WRITELN("L OESCHEN");
WRITELN("X BEENDEN");

READLN(CH);

CASE CH OF
“Tu: INORDER(WURZEL); (* DRUCKE GESAMTEN BAUM *)
nEn: EINGABE;
ML": LOESCHE;
nxw:

ELSE WRITELN("UNGUELTIGE WAHL")

END;

UNTIL CH=YX";
END.

Listing 34: Kundenverwaltung in einem Baum

Aufgaben

1. Versuchen Sie, eine Kundenliste ohne leere Records am Anfang und
Ende der Liste zu verwalten. Sollten Sie nicht mehr weiterkommen,
haben Sie zumindest den Sinn dieser Hilfsrecords erkannt.

2. Um zu priifen, ob Sie die Operationen im Listing 34 im groBen und
ganzen verstanden haben, sollten Sie das Programm so dndern, dafl die
Records nach Kundennummer sortiert im Baum gespeichert werden.

3. Schreiben Sie eine rekursive Prozedur SWAP, die in einem biniren
Baum den linken und rechten Nachfolger jedes inneren Knotens ver-
tauscht.

4. Schreiben Sie eine rekursive Prozedur REVERSE, die eine Liste in-
vertiert, so daB3 der letzte Record als erster in der neuen Liste erscheint.
(Diese rekursive Losung ist nur fiir kurze Listen geeignet.)

Tips und Tricks 139

3 Tips und Tricks

3.1 Niitzliche Pascal-Routinen

Im Gegensatz zu Kapitel 2 stehen in diesem Kapitel die Besonderheiten des
C 64 im Vordergrund. Dabei sollen nicht alle POKE-, PEEK- und SYS-
Befehle, die seit Jahren verschiedene Zeitschriften zum C 64 fillen, in
Pascal formuliert werden, sondern nur exemplarisch der Zugriff auf das
Betriebssystem und die Floppy gezeigt werden.

Files

Sollten Sie in BASIC bereits mit Dateien gearbeitet haben, werden Sie
sicher keine Probleme mit den OPEN- und CLOSE-Befehlen in Pascal
haben. Haben Sie jedoch erst durch Abschnitt 2.16 Interesse an Files
gefunden, sind sicherlich die folgenden Hinweise angebracht:

Die Floppy besitzt ein eigenes Betriebssystem, das die Files auf der
Diskette verwaltet. Um ein File zum Lesen oder Schreiben zu erdffnen,
mufl man den Filenamen auf der Diskette angeben. Auflerdem nennt man
eine Sekundiradresse, die im Bereich von O bis 15 liegt. Um auf ein ge-
O6ffnetes File Bezug zu nehmen, verwendet man diese Sekundiradresse.

Dabei besitzen die Sekundiradressen 0, 1 und 15 eine besondere Bedeutung
und sollten nicht fiir sequentielle Dateien verwendet werden. Des weiteren
milssen gleichzeitig er6ffnete Dateien verschiedene Sekundiradressen er-

140 Tips und Tricks

halten. Beim OPEN-Befehl geben Sie auflerdem an, ob von der Datei gele-
sen werden soll, ob die Datei neu angelegt werden soll oder ob eine beste-
hende Datei am Ende erweitert werden soll:

OPEN(F,8,3, "EINGABE , SEQ, READ") entspricht RESET(F)
OPEN(G, 8, 4, "AUSGABE , SEQ, WRITE") entspricht REWRITE(G)
OPEN(H, 8,5, "PROTOKOLL , SEQ,APPEND") sequentiell erweitern

Der dritte OPEN-Befehl zeigt, wie man ein bestehendes File um Kompo-
nenten am Ende erweitern kann. Diese Operation 148t sich prinzipiell nicht
mit den Standardbefehlen RESET und REWRITE realisieren.

Existiert bei der Ausfithrung des zweiten OPEN-Befehls bereits eine Datei
mit dem Namen AUSGABE, so wiirde eine Fehlermeldung durch die
Floppy erzeugt. Deshalb sollte man die alte Version zuvor l6schen. Dabei
gibt es zwei verschiedene Méglichkeiten: Einerseits kann man den Filena-
men durch Voranstellen des Klammeraffen-Zeichens CHR(64) und eines
Doppelpunktes erweitern. Dann wird am Ende der Ausgabe auf das File
AUSGABE die alte Version aus dem Inhaltsverzeichnis der Diskette
geldscht. Jedoch wird der Platz, den die alte Version belegte, nicht
freigegeben. Deshalb kann beim Schreiben nicht die gesamte Speicherka-
pazitit der Diskette ausgenutzt werden. Man loscht daher besser die alte
Version des Files vor dem Eréffnen einer neuen Datei. Dafiir kann man
den Kommandokanal der Floppy (mit der Sekundiradresse 15) benutzen:

VAR KOMMANDO: TEXT;

OPEN(KOMMANDO, 8, 15);
WRITELN(KOMMANDO, "S0: AUSGABE") ;
OPEN(G, 8, 4, "AUSGABE, S, W")

Der Kommandokanal stellt die Schnittstelle des Programmes zur Floppy
dar. Uber ihn sendet man Befehle an das Betriebssystem der Floppy und
empfingt Meldungen iiber eventuell aufgetretene Fehler. Ein Beispiel fiir
die Abfrage des Kommandokanals ist die Prozedur DSTATUS im Pro-
gramm RELATIV.P auf der Systemdiskette.

Jetzt kennen Sie den Zusammenhang zwischen Files in Pascal und den se-
quentiellen Dateien der Floppy. Mit diesem Wissen kénnen Sie die Beispiele
aus dem Floppy-Handbuch als Vorbild fiir eigene Programme in Pascal be-
nutzen.

Fiir erfahrene Programmierer ist in Listing 35 ein Programm abgedruckt,
das den Zugriff auf das Directory der Diskette zeigt. Es wird eine Datei
der Floppy gelesen, die man normalerweise in BASIC mit LOAD"$",8 lidt.

Tips und Tricks 141

Alle Filenamen werden mit Typ und Lingenangabe in einer Tabelle
gespeichert. Nach einer alphabetischen Sortierung kénnen dann alle Namen
formatiert ausgedruckt werden.

PROGRAM DISKSORT(INPUT,OUTPUT);
(*FORMATIERTER AUSDRUCK DES DISKINHALTES *)
CONST MAXP=250; (* LAENGE DER NAMENSTABELLE *)
TYPE FILETYP=(PRG,SEQ,USR,REL);
EINTRAG=RECORD
NAME: ARRAY[0..15]0F CHAR;
TYP :FILETYP;
BLK :0..999;
ID :ARRAY[O..1]10F CHAR;
END;
VAR P: INTEGER; WEITER: BOOLEAN;
T:ARRAY [0..MAXP] OF EINTRAG;

PROCEDURE READALL;
(* DISKETTEN-DIRECTORY KOMPLETT EINLESEN *)
(* INFORMATIONEN IN T([P] ABLEGEN *)
VAR A,ID1,1D2: CHAR;

I,N : INTEGER;

INF : TEXT;

ENDE : BOOLEAN;

FUNCTION BYTE:INTEGER;
(* ZEICHEN LESEN UND IN BYTE WANDELN *)
VAR C:CHAR;
BEGIN
READ(INF,C);
IF EOLNCINF) THEN BYTE:=13
ELSE BYTE:=ORD(C)
END; (* BYTE *)

FUNCTION NUMBER:INTEGER;
(* L UND H-BYTE LESEN UND UMWANDELN *)
BEGIN

NUMBER:= BYTE+256*BYTE
END; (* NUMBER *)

BEGIN(*READALL*)
OPENCINF,8,0,"$0"); (* INHALTSVERZEICHNIS *)
WRITELN;WRITELN;
FOR I:=1 TO 32 DO (* TITELZEILE AUSWERTEN:*)
BEGIN READ(INF,A);
IF I IN [9..24] THEN WRITE(A);
IF 1=27 THEN ID1:=A;
IF 1=28 THEN 1D2:=A
END;
WRITELN; ENDE:= FALSE;
WHILE (P<=MAXP) AND NOT ENDE DO
BEGIN
N:=NUMBER; N:= NUMBER; (* N=ANZAHL BLOECKE*)
(* ANFUEHRUNGSZEICHEN ODER"BLOCKS FREEM™LESEN *)
REPEAT
ENDE:= EOF(INF)

142 Tips und Tricks

UNTIL (BYTE=34) OR ENDE;

IF NOT ENDE THEN
WITH TIP]1 DO
BEGIN I:=0;

(* ALLES EINTRAGEN:

(* EINTRAG FILENAME:

REPEAT READCINF,A); NAME[I1:=A; I:=I+1

UNTIL A=CHR(34

- 1:=I-1;WHILE 1<16 DO

);

- BEGIN NAME[I]:=" "; I:=I+1 END;

REPEAT READ(IN

F,A);

(*EINTRAG TYP:

UNTIL A IN [“pn, nusn nyn nRuj-

CASE A OF
HpH:TYP:=PRG
ngu:TYP:=SEQ
nyn:TYP:=USR
RN :TYP:=REL

END; (*CASE*)

REPEAT UNTIL BYTE=0;

BLK:=N;

ID[01:=1D1; ID[1]:=1D2; (*EINTRAG DISK-ID:

P:= P+1;
END
END;
CLOSE(INF);
END; (* READALL *)

-
’
-
’

.
1

(*BIS ZEILENENDE

PROCEDURE QUICK(L,R:INTEGER);
(* TABELLE NACH NAMEN AUFSTEIGEND SORTIEREN

VAR 1,J:INTEGER;
X,W:EINTRAG;

BEGIN

I:=L; J:=R; X:=TI(L+R)DIV 21;

REPEAT

WHILE TILI1<X DO I:=I+1;
WHILE X<T[J] DO J:=J-1;

IF I<=J THEN
BEGIN

We=T[I1;TII1:=TJ];TLJ]:

I1:=1+1;d:=J-1
END;
UNTIL I>J;
IF L<J THEN QUICK(
IF I<R THEN QUICK(
END; (* QUICK *)

FUNCTION OK:BOOLEAN
VAR C:CHAR;
BEGIN

L,Jd);
I,R)

I

WRITELN("™ (JA ODER NEIN)"); WRITE("==>");
REPEAT READLN(C) UNTIL C IN ["J", U“N"];

OK:= C=myn
END; (* OK *)

PROCEDURE AUSGABE;

VAR J, ZPROSEITE: INTEGR;

PRT :
BEGIN

TEXT;

*)
*)

*)

*)
*)

*)

Tips

und Tricks

143

WRITELN; WRITELN;
WRITELN("DRUCKER BEREIT?");
IF OK THEN
BEGIN
OPEN(PRT,4,0);
WRITE(MZEILEN PRO SEITE: ");READLN(ZPROSEITE);
FOR J:=0 TO P-1 DO
WITH TLJ1 DO

BEGIN
IF J MOD (ZPROSEITE-2)=0 THEN
BEGIN
WRITECPRT," NAME: TYP ");
WRITELN(PRT," BLK ID ®);
WRITECPRT, " ##### i ")
WRITELN(PRT," ### ## ");
END;
WRITE(PRT," " NAME:17," ");
CASE TYP OF

PRG:WRITE(PRT,"PRG":4);
SEQ:WRITE(PRT,"SEQ":4);
USR:WRITE(PRT,"USR":4);
REL:WRITE(PRT,"REL":4)
END;
WRITELNCPRT," ", BLK:4," ", ID:3,m wu);
END;
CLOSE(PRT)
END
END; (* AUSGABE *)

BEGIN(* MAIN *)

P:=0; (* TABELLE LEER *)
WRITELN(CHR(147),"DISK-SORT":24);

WRITELN(" w:24);

REPEAT

WRITELN; WRITELN;
WRITELN("WEITERE DISKETTEN?"); WEITER:=0K;
IF WEITER THEN READALL;
UNTIL NOT WEITER;
WRITELN; WRITELN;
WRITELN ("*** BITTE WARTEN ***u).
IF P>0 THEN QUICK(O,P-1);
AUSGABE;
END. (* MAIN *)

Listing 35: Directory lesen

Es gibt noch einen weiteren Dateityp, der vom Betriebssystem der Floppy
verwaltet wird. Es handelt sich dabei um relative Dateien. Sie kdnnen
einerseits wie sequentielle Dateien Komponente fiir Komponente gelesen
werden, andererseits besteht auch die Mdéglichkeit, gezielt auf einzelne
Komponenten des Files zuzugreifen. Dies geschieht durch Angabe der Po-
sition der Komponente in der Datei: Alle Komponenten sind von 1
aufsteigend numeriert. Da in relativen Dateien alle Komponenten dieselbe
GrofBe (in Bytes) besitzen, kann das Betriebssystem jede Komponente iiber

144 Tips und Tricks

ihre Record-Nummer direkt adressieren. Die Verarbeitung relativer Dateien
erfolgt also folgendermaflen:

1. Beim Er6ffnen der Datei wird der Dateityp REL gewidhlt. Wird eine
neue Datei angelegt, mufl auBlerdem die Linge jeder Komponenten in
Bytes angegeben werden. .

2. Vor dem Schreiben einer Komponente kann man die Record-Nummer
bestimmen, unter der die Daten gespeichert werden. Dies geschieht
itber den Kommandokanal der Floppy.

3. VYor dem Lesen einer Komponente kann man ebenfalls die Record-
Nummer der Komponente angeben, die als n#chste gelesen wird.
Geschieht dies nicht, wird die Datei sequentiell gelesen.

Diese Operationen werden im Programm RELATIV.P auf der System-
diskette demonstriert. Dabei ist die Positionierung auf die entsprechende
Record-Nummer iiber dem Kommandokanal der Floppy als Prozedur
definiert worden.

Bei der Arbeit mit relativen Dateien sind noch zwei Details zu beachten:
Man mufl beim OPEN-Befehl die Grofle einer Komponente in Bytes
angeben. Die Information iiber den Speicherplatz, den jeder Wert eines
Typs in Pascal 1.4 benoétigt, finden Sie in Abschnitt 4.4.2 unter dem
Stichwort Datentypen. Im Beispielprogramm RELATIV.P ist diese Grofie in
der Konstanten RSIZE definiert. SchlieSlich erwartet das Betriebssystem
der Floppy am Ende jeder Komponenten in einer relativen Datei das
Zeichen CHR(13). Daher wird im Programm RELATIV.P jede
Komponente um das Feld MARKE erweitert, in dem am Programmanfang
das Zeichen CHR(13) gespeichert wird.

Systemadressen

In diesem Abschnitt werden einige Beispiele gegeben, die zeigen, wie man
das Betriebssystem direkt manipuliert. Mit den Kenntnissen aus diesem
Abschnitt konnen erfahrene Programmierer die zahlreichen BASIC-Pro-
gramme, die mit PEEK und POKE Grafiken erzeugen, Sprites bewegen
und die Tongeneratoren programmieren, in Pascal umschreiben. Anfinger
konnen evtl. einige der Routinen als black box in eigenen Programmen be-
nutzen.

Die erste Prozedur zeigt, wie man den freien Speicherbereich zwischen
Heap und Stack bestimmt.

Tips und Tricks 145

FUNCTION FREEMEM: INTEGER;

VAR TOPOFSTACK: INTEGER[47];

VAR HEAPPTR : INTEGER[591;
BEGIN

FREEMEM:= ADDU(HEAPPTR, - TOPOFSTACK)
END; (* FREEMEM *)

Um am Ende des Speichers N Byte zu reservieren, muB3 man vor dem
ersten Aufruf der Standardprozedur NEW die folgende Prozedur GETMEM
aufrufen. In diesem Speicherbereich kann man dann z.B. einen Bild-
schirmspeicher ablegen.

PROCEDURE GETMEM(N:INTEGER);
VAR HEAPPTRI591;
BEGIN
IF FREEMEM<N THEN
BEGIN
WRITELN("OUT OF MEMORY ERRORM);
HALT
END
ELSE HEAPPTR:=ADDUCHEAPPTR, -N);
END; (* GETMEM *)

In Abschnitt 4.3.3 wird auBlerdem beschrieben, wie man zwischen dem
Laufzeitsystem und dem Objektprogramm einen Speicherbereich reserviert,
in dem man z.B. Maschinenprogramme ablegen kann, die mit dem Pascal-
Programm gespeichert werden sollen.

Die obigen Prozeduren und Funktionen benutzen die Moglichkeit, in Pascal
1.4 Variablen an Speicheradressen des Systems zu binden. Dies erlaubt auch
die elegante Abfrage des Joysticks am Port 2: Jedes nicht gesetzte Bit in
der Speicherstelle 65520 entspricht einer Bewegungsrichtung des Joysticks.
Da in Pascal 1.4 Mengen als Bitvektoren dargestellt werden, kann man
einfach auf einzelne Bits in einer Speicherstelle zugreifen.

PROGRAM TEST (INPUT,OUTPUT);
TYPE JOY= SET OF (AUF,AB,LI,RE,FEUER);
VAR JOYSTICK: JOY;

PROCEDURE UPDATEJOYSTICK;
VAR JOYPORT:JOY[-9216]1; (* =56320 *)
BEGIN
(* negative Logik des Ports beachten: *)
JOYSTICK:=[AUF..FEUER] - JOYPORT;
END; (* UPDATEJOYSTICK *)

BEGIN
REPEAT
UPDATEJOYSTICK;
IF RE 1IN JOYSTICK THEN...;
IF LI IN JOYSTICK THEN...;

146 Tips und Tricks

IF AUF IN JOYSTICK THEN...;
IF AB IN JOYSTICK THEN...;
UNTIL FEUER IN JOYSTICK;
END.

In einigen Anwendungen mochte man die Tastatur abfragen, ohne daf3 der
Cursor am Bildschirm erscheint. Dazu kann man die Betriebssystem-Rou-
tine GETCH (get character) benutzen. Sie beginnt bei der Adresse $FFE4
=65508. Am Ende der Routine wird das Zeichen, das von der Tastatur ein-
gelesen wurde, im Akkumulator des Mikroprozessors gespeichert. Zum
Aufruf der Routine in Pascal benutzt man den SYS-Befehl mit der Integer-
Zahl, die der Startadresse der Routine entspricht. In diesem Fall ist diese
Adresse groBer als MAXINT=32767, so daB man die Adresse im
Zweierkomplement angeben mufBl. Dazu fithrt man folgende Berechnung
durch:

$FFE4 = 65508 = -28 (65536 - 65508) im 2er-Komplement

Bei SYS wird der Akkumulator in der Speicherzelle 780 (dezimal)
gespeichert (s. Abschnitt 4.4.4.7). Somit ergibt sich folgende Funktion:

FUNCTION GETKEY:CHAR;
BEGIN
SYS(-28); (* $FFE4 *)
GETKEY:= CHR(PEEK(780)); (* Zeichen im Akku *)
END;
[REPEAT]
UNTIL GETKEY<>CHR(O);

Die Funktion liefert als Ergebnis das Zeichen CHR(0), falls keine Taste
gedriickt wurde, so daB die obige Repeat-Schleife durch die Betitigung
einer beliebigen Taste beendet wird.

Um auf die vom Betriebssystem verwaltete Systemzeit zuzugreifen, kann
man folgende Anweisungen verwenden. Zunichst wird der 24-Bit-Zihler
zuriickgestellt. AnschlieBend wird der Inhalt des Zihlers byteweise ausge-
lesen.

PROGRAM TIME(INPUT,OUTPUT);
CONST TI=160; (* Z&éhler in Z-Page *)

BEGIN
POKE(TI ,0);
POKE(TI+1,0);
POKE(TI+2,0); (* Zdhler := 0 *)
REPEAT
WRITELN(PEEK(TI),PEEK(TI+1),PEEK(TI+2))
UNTIL PEEK(TI+1)=5;

END.

Tips und Tricks 147

Als letztes Beispiel wollen wir noch die Benutzung von Routinen fiir reelle
Zahlen vorstellen. Wir wollen den Wert einer reellen Vanablen in eine
Zeichenfolge S umwandeln.

Im Interpreter fiir BASIC ist ein Unterprogramm enthalten, das eine reelle
Zahl in eine entsprechende Zeichenfolge umwandelt. Die reelle Zahl muB
vor dem Aufruf in einem sogenannten FlieBkomma-Akkumulator abgelegt
werden. Dieser wird auch vom Pascal-Laufzeitsystem benutzt, wobei jede
arithmetische Operation mit reellen Zahlen ihr Ergebnis dort ablegt. Des-
halb fithrt die folgende Prozedur zunichst eine Addition von 0.0 durch, so
daB der FlieBkomma-Akkumulator belegt wird. AnschlieBend wird die
Routine aufgerufen. Sie speichert den String ab der Adresse 256 und
schlieBt ihn mit dem Zeichen CHR(0) ab. Diesen String kopiert die Proze-
dur in die Stringvariable S, wobei der String mit Leerstellen zur vollen
Linge erweitert wird.

PROGRAM KONVERT(INPUT, OUTPUT);
CONST MAXLEN = 20;
TYPE STRING = ARRAY[O..MAXLEN] OF CHAR;
VAR 1: INTEGER;
R: REAL;
S: STRING;

PROCEDURE REALTOSTRING(R:REAL; VAR S:STRING);
CONST FLPSTR=-16931; (* $BDDD *)
BUF = 256; (* $0100 *)
VAR I: INTEGER;
BEGIN '
R:=R+0.0; (* FlieBkomma-Akummulator belegen *)
SYS(FLPSTR); (* Umwandlung *)
1:=0;
WHILE PEEK(BUF+1)<>0 DO
BEGIN
S[I]1:=CHR(PEEK(BUF+I)); I:=I+1
END;
WHILE I<=MAXLEN DO
BEGIN
S[I1:=m ¥; I:=I+1
END;
END; (* REALTOSTRING *)
BEGIN
READLN(R);
REALTOSTRING(R, S);
FOR I:=0 TO MAXLEN DO
WRITE(S[I]:2); (* drucke mit Llcken *)
END.

148 Tips und Tricks

3.2 Tips zum Editor

Sie konnen den Editor auch ohne den Pascal-Compiler benutzen. Vor dem
Aufruf des Editors mit SYS 32768 geben Sie den Speicherbereich an, der
fir den Text zur Verfiigung steht.

641/642 L und H-Byte Textanfang
643/644 L und H-Byte Textende

Da der Editor den Speicherbereich von $7F00 bis $A000 benétigt, konnen
Sie mit den folgenden Befehlen den gesamten restlichen Speicher fiir den
Text freigeben:

POKE 641,0: POKE 642,8:
POKE 643,0: POKE 644,127:
SYS 32768

Bei der Riickkehr vom Editor sind die Z-Page-Zeiger fiir BASIC von 43
bis 56 unverindert.

Sollten Sie auch die Dokumentation der Pascal-Programme mit dem Editor
erstellen, so kénnen Sie mit dem Befehl CHANGE direkt Steuerzeichen fiir
den Drucker in den Text einfiigen. Wollen Sie z.B. nach der Zeile 60 einen
Seitenvorschub erzeugen, so kénnen Sie in Zeile 61 folgende Zeichen
eingeben.

&%

Mit CHANGE & #147 und CHANGE % #12 werden diese Zeichen in
Kontrollzeichen umgewandelt, die von der Tastatur nicht direkt erreichbar
sind. Geben Sie spidter den Text mit OUT an den Drucker aus (siche
Abschnitt 4.2.11), so wird der Drucker (MPS-802) nach Zeile 60 einen
Seitenvorschub (skip page) ausfiithren.

Besonders bei der Erstellung von Tabellen sind die variablen Textgrenzen
und die Line-Commands O und OO sinnvoll anzuwenden: Méchten Sie um
eine Tabelle einen Rand aus Ausfrufezeichen "!" legen, kénnten Sie wie
folgt vorgehen:

Tips und Tricks 149

! ! ! I
variable Adresse Bedeutung

RSMEFLG 908 >0, falls RESUME erlaubt
PNT 909-922 Basic-Zeiger 43-56
COLOR-B 8957 Hintergrundfarbe
COLOR-F 8952 Rahmenfarbe

COLOR-T 8994 Farbe Textfenster
COLOR-H 8974 Farbe Kopfzeile

COLOR-L 9003 Farbe Zeilennummern

Die erste Zeile enthilt die Markierung, die fiber die darunterstehende
Tabelle kopiert werden soll. Deshalb geben Sie in der Zeile mit den Aus-
rufezeichen das Line-Command C ein. AuBBerdem markieren Sie die erste
und letzte Zeile der Tabelle mit OO. Dadurch werden die Ausrufezeichen
in die Tabelle kopiert. Wenn Sie ein wenig mit den Textgrenzen in der
Zeile BND= experimentieren, werden Sie auch einen Weg finden, selektiv
einzelne Spaltenbereiche mit),)), (und ((zu verschieben oder zu 16schen.

Die obige Tabelle zeigt iibrigens einige globale Variablen des Pascal-
Systems. So kénnten Sie z.B. in BASIC mit

POKE 908, 1

die Eingabe eines Fragezeichens beim nichsten Aufruf des Pascal-Menis
zulassen. Falls Sie die angegebenen Farben im Pascal-System dndern wollen,
miissen Sie direkt nach dem Laden des Systems (vor RUN) die
entsprechenden Speicherzellen mit POKE von Basic aus verindern. Wenn
Sie das Pascal-System anschlieBend speichern, sind die Anderungen perma-
nent.

150 Tips und Tricks

Dokumentation Pascal-System 151

4 Dokumentation Pascal-System

Inhalt der Systemdiskette

PASCAL-SYSTEM Compiler, Editor und Laufzeitsystem.

MERGE.P Beispiel fiir Include-Files und Dateien
(benotigt bei Ubersetzung FILE.INC).

FILE.INC Include-File, definiert die Prozeduren RESET
und REWRITE (siehe Abschnitt 4.4.5.1 und
2.16).

RELATIV.P Demonstration fiir Relativdateien mit C 64.

QUEEN.P Problem der acht Koniginnen.

TREE.P Darstellung einer Baumstruktur auf dem
Drucker.

ROMBERG.P Mathematikprogramm. Numerische

Berechnung von Integralen.
Start des Systems

- Zunichst miissen Sie alle Erweiterungsmodule abschalten, da diese
eventuell die Funktion des Pascal-Systems storen konnten.

- Laden Sie jetzt das Programm PASCAL-SYSTEM von der Diskette.

152 Dokumentation Pascal-System

- Nach dem Start des Programmes mit RUN erscheint das Pascal-Menii,
von dem aus Sie Programme erstellen, iibersetzen und testen kénnen.

Allgemeines

Alle Eingaben im System sind so organisiert, da3 Sie mit méglichst wenigen
Zwischenschritten jede Funktion erreichen konnen. Dabei besitzen im
allgemeinen die Zeichen **’ und ’?’ eine Sonderfunktion. Alle Eingaben bei
blinkendem Cursor miissen mit RETURN beendet werden. Grundsitzlich
wird bei lingeren Operationen (Laden, Speichern) eine Abfrage der RUN-
STOP-Taste vorgenommen, so daf3 die Ausfithrung jederzeit abgebrochen
werden kann.

4.1 Das Pascal-Menii

PASCAL -MENU

SELECT OPTION:

NAME EDIT NEW DATASET
'?' RESUME EDIT

'$! COMPILE DATASET
t*t EXIT TO BASIC

==>
Eingabe eines Namens (max. 16 Zeichen):

Der Editor sucht einen Text auf der Diskette im Laufwerk 0 mit der Geri-
teadresse 8. Als Typ wird das Suffix ’,PRG’ benutzt. Tritt beim Ladevor-
gang ein Fehler auf, so springt der Editor zum Pascal-Menii zuriick. Uber-
priifen Sie, ob die Floppy betriebsbereit war, und wiederholen Sie die
Eingabe.

Konnte der angegebene Text auf der eingelegten Diskette nicht gefunden
werden, so nimmt der Editor an, daBl Sie einen neuen Text mit diesem
Namen anlegen moéchten. Es erscheint die folgende Meldung:

Dokumentation Pascal-System 153

THIS IS A NEW DATASET!
ENTER RECORD LENGTH:

[RANGE:1.80]

['*' OR '2?' FOR END]

==>

An dieser Stelle bestimmen Sie die maximale Linge einer Textzeile fiir den
neuen Datenbestand. Giiltige Werte liegen im Bereich zwischen 1 und 80.

Wollen Sie jedoch keinen neuen Datenbestand anlegen, so kénnen Sie mit
** oder ’?’ zum Pascal-Menii zuriickkehren.

Eingabe von ’?’

Um den Datenbestand zu editieren, der sich bereits im Speicher befindet,
geniigt diese Eingabe. Sie ersparen sich hiermit die Ladezeit von der
Diskette.

Eingabe von °$’

Es wird der Compiler .aufgerufen, der den momentan im Speicher stehen-
den Datenbestand iibersetzt (siehe Abschnitt 4.3).

Eingabe von °*

Sie verlassen mit diesem Befehl das Pascal-System und kehren nach BASIC
zuriick (siehe Abschnitt 4.3.4). Von dort aus wird das Pascal-Menii durch
die Eingabe von ¥ erreicht.

4.2 Der Editor

4.2.1 Allgemeines

Mit dem Programm werden Texte im Arbeitsspeicher des Computers bear-
beitet. Eingaben erfolgen iiber ein Textfenster, das in allen vier Richtungen
(wie iiber ein Blatt Papier) mit den Funktionstasten verschoben werden
kann. Innerhalb des Pascal-Systems stehen nur 8 Kbyte Textspeicher zur
Verfiigung.

154 Dokumentation Pascal-System

Durch den Einschluf3 von Programmtexten von der Diskette kénnen jedoch
beliebig groBe Programme modular erstellt werden. Einzelheiten werden in
Abschnitt 4.4.6.2 (Include-Files) erklirt.

Die erstellten Texte werden auf Diskette gespeichert, wobei neben dem
Text selbst auch Informationen iiber Tabulatoren etc. gespeichert werden,
so daB Sie sich Textbausteine erstellen kdnnen.

4.2.2 Gliederung des Bildschirms

Scroll-Betrag

Kopf-Zeile--> 1.COL:0001 SCROLL : HALF
MSK=
Status--> BND=<
TAB=
COL=0----4----1----4----2ec-cto--Fuun-yt
TOP - Zei lE' -> Rk Rk dhkkihkkhk Top e de e g e e de de e de de ke e de e e e e
0000
0001
0002
0003 Text-Bereich
0004
0005
0006

BOTTOM-Zeile--> Fddkdkdkhdkdkk BOTTOM *akkdkikddikdkik

Das Bild gliedert sich in verschiedene Bereiche, die jeweils spezielle Auf-
gaben besitzen:

a) Die Kopfzeile (weiB)

In der Kopfzeile werden (Fehler-)Meldungen des Editors angezeigt. Liegen
keine Meldungen vor, so wird die Nummer der ersten Textspalte im
Textfenster angezeigt.

Andererseits werden in dieser Zeile auch Befehle, die sogenannten Pri-
mary-Commands, eingegeben. Bei der Eingabe in diese Zeile wird die
zuvor angezeigte Meldung ausgeblendet.

Dokumentation Pascal-System 155

b) Der Scroll-Betrag (weiB)

Beim Blidttern mit den Funktionstasten verschiebt sich der Bildschirm um
eine Anzahl von Zeilen oder Spalten, die hier angezeigt wird. Sie kdnnen
diesen Wert jederzeit durch Uberschreiben dndern. Folgende Spezifikatio-
nen sind erlaubt:

HALF halbe Bildlinge und -breite
PAGE ganze Bildlinge und -breite
nnnn vierstellige Zahl (kleiner als 128)

Anfangswert = HALF
¢) Die Statuszeilen

Diese Zeilen werden nur bei Bedarf (mit dem Primary-Command PROF)
eingeblendet.

- Der Eintrag nach "MSK=" bildet eine Maske, die beim Einfiigen neuer
Zeilen vorgegeben wird. Alle Zeichen sind erlaubt. Anfangswert =
Leerzeile.

- Der Eintrag nach 'BND=" begrenzt den Spaltenbereich bei der Text-
eingabe. Auch die Befehle FIND und CHANGE werden auf diesen
Spaltenbereich begrenzt. Giiltige Zeichen, die jeweils genau einmal
auftreten diirfen, sind:

’<’ markiert den linken Rand
’>’ markiert den rechten Rand

Anfangswert = ganze Zeile.

- Der Eintrag nach TAB=’ setzt Tabulatoren, die im Textmodus (siche
Abschnitt 4.2.6) mit der Taste SHIFT-RETURN angesprungen werden.
Jedes Zeichen entspricht einem gesetzten Tabulator. Anfangswert =
keine Tabulatoren.

Die obigen drei Statuszeilen lassen sich durch Uberschreiben auf neue
Werte setzen, die auf ihre Giiltigkeit gepriift werden.

- SchlieBlich wird nach ’COL=’ eine Spaltenmarkierung ausgegeben, die
zur Orientierung im Text dient.

156 Dokumentation Pascal-System

d) Die Zeilen TOP und BOTTOM

Diese beiden Zeilen kennzeichnen am Bildschirm den Anfang und das Ende
des Textes. Besonders zu beachten ist, da3 am linken Rand der TOP-Zeile
das Line-Command I(nsert) moglich ist.

¢) Die Zeilennummern (weiB3)

Alle Textzeilen sind von 0000 bis 9999 durchnumeriert. In diesem Bereich
werden die Line-Commands eingegeben. Die Zeilennummern dienen nur
zur Orientierung und werden nicht mit dem Text gespeichert.

f) Das Textfenster

Rechts von den Zeilennummern beginnt das Textfenster, das nach oben
durch die Kopfzeile oder die Zeile TOP begrenzt wird. Den unteren Rand
bildet die letzte Bildschirmzeile oder die Zeile BOTTOM. AuBerdem sind
alle Spalten nach der letzten Textspalte fiir Eingaben von der Tastatur ge-
sperrt.

4.2.3 Cursorsteuerung

Die Steuerung des Cursors erfolgt mit den folgenden Tasten, die - soweit
moglich - die gleiche Funktion wie bei dem BASIC-Editor besitzen:

CRSR UP Cursor eine Zeile h6her. Am oberen Bildrand Sprung in die
letzte Bildschirmzeile.

CRSR DWN Cursor eine Zeile tiefer. Am unteren Bildrand Sprung in die
erste Bildschirmzeile.

CRSR -> Cursor eine Spalte nach rechts. Am rechten Bildrand Sprung
in die erste Spalte der gleichen Zeile.

CRSR <~ Cursor eine Spalte nach links. Am linken Bildrand Sprung in
die letzte Spalte der gleichen Zeile.

HOME Sprung an die erste Position der Kopfzeile. Nochmalige
Betitigung bewirkt einen Sprung zum Scroll-Betrag.

CLR Loschen der Kopfzeile und Sprung an die 1. Position der
Kopfzeile.

Dokumentation Pascal-System 157

INSERT

DELETE

RETURN

f1
f3
f5
£7

f2

f4

Einschub eines Zeichens an der laufenden Cursorposition.
Arbeitet nur im Textfenster. Der Text bis zur letzten
Textspalte (>’ in Zeile BND=") wird verschoben. Ist am
Zeilenende kein Platz mehr, so ist die INSERT-Taste
gesperrt.

Loschen des Zeichens links neben dem Cursor. Arbeitet nur

im Textfenster. Der Text bis zur letzten Textspalte (>’ in
Zeile " BND=") wird verschoben.

Wirkung abhingig vom Eingabemodus:

Im Textmodus Sprung zur 1.Textspalte (<’ in Zeile 'BND=")
der folgenden Textzeile.

Sonst Sprung zur ersten Spalte in der nichsten
Bildschirmzeile.

Scroll up => Textfenster nach oben.

Scroll down => Textfenster nach unten.

Scroll right => Textfenster nach rechts.

Scroll left => Textfenster nach links.

Wiederhole den letzten FIND-Befehl (siehe Abschnitt 4.2.9).
Setze den Cursor auf die entsprechende Textposition.

Wiederhole den letzten CHANGE-Befehl (siche Abschnitt
4.2.9). Setze den Cursor auf die entsprechende Textposition.

Zusitzlich gibt es noch die Taste SHIFT-RETURN. Mit ihr werden alle
Befehle auf dem Bildschirm (Primary- und Line-Commands) gelesen und
ausgefiihrt. Dies geschieht auch automatisch bei jedem Blittern. Der Cursor
bleibt beim Blittern an seiner letzten Textposition, solange diese noch auf
dem neuen Bild vorhanden ist. Ansonsten springt er in die linke obere
Ecke des Bildschirmes.

Alle anderen Sondertasten (RVS ON, CTRL-BLK etc.) werden als in-
vertierte Zeichen am Bildschirm dargestellt und auch in den Text

eingefiigt.

158 Dokumentation Pascal-System

4.2.4 Primary-Commands
Die Eingabe erfolgt in der Kopfzeile. Schliisselworte sind von eventuell
folgenden Parametern durch mindestens ein Leerzeichen zu trennen. Die
Befehle werden beim Blittern oder nach der Eingabe von SHIFT-RETURN
ausgefiihrt.
Wird ein unbekannter Befehl eingegeben, so wird die gesamte Kopfzeile als
Befehl an die Floppy geschickt. So lo6scht man z.B. mit SO:TEXTI1 den
Datenbestand TEXT1 im Laufwerk 0. Nach Ausfithrung des Befehls wird
der Diskettenstatus im folgenden Format angezeigt:

Fehlernummer, Fehlertext, Spur, Sektor

Nihere Details entnehmen Sie bitte dem Handbuch der Floppy.

Tabelle Primary-Commands

Befehl Kurzform Wirkung

RESET RES Alle Statuszeilen ausblenden. Alle
unvollstindigen Line-Commands 1éschen.
Textmodus verlassen. FIND- und CHANGE-
Funktionstasten ausschalten. Repeat-Funktion
aller Tasten ausschalten.

PROFILE PROF Alle Statuszeilen anzeigen.

MSKS MSK Zeile mit Einfiigemaske anzeigen.

BNDS BND Zeile mit Textgrenzen anzeigen.

TABULATOR TAB Tabulatorzeile anzeigen.

COLUMNS COL Spaltenkennzeichnung anzeigen.

END END SAVE ausfithren und Riickkehr zum Pascal-
Menii.

CANCEL CAN Riickkehr zum Pascal-Menii. Achtung! Der

Text wird nicht auf Diskette gesichert!

Dokumentation Pascal-System 159

SAVE SAVE Alten Text unter diesem Namen auf der
Diskette 16schen. Neuen Text speichern.
Wiederholung dieser Schritte, bis kein
Verify-Error mit dem Original im Speicher

auftritt.
TEXT TE Textmodus einschalten (siehe Abschnitt 4.2.6).
REPEAT REP Alle Tasten erhalten Repeat-Funktion.
LOCATE n Ln Zeile n im Text aufsuchen (n = 0000 ..9999).
Fehlt n, erfolgt ein Sprung zum Textanfang.
FIND F Suche nach Zeichenfolge (siehe Abschnitt
4.2.7).
CHANGE C Ersetzen von Zeichenfolgen (siehe Abschnitt
4.2.8).
INPUT IN Einlesen einer sequentiellen Datei von einem

Peripheriegerit (siehe Abschnitt 4.2.10).

OUTPUT OouT Ausgabe des Textes im Speicher als
sequentielle Datei (sieche Abschnitt 4.2.11).

COPY COPY Kopieren von Teilen aus Texten auf der
Diskette (siche Abschnitt 4.2.12).

4.2.5 Line-Commands

Zur Texteditierung stehen die folgenden wirkungsvollen Zeilen- und
Blockbefehle zur Verfiigung. Sie werden im Zeilennummernbereich oder
links in der Zeile TOP eingegeben und beim Blattern oder der Eingabe von
SHIFT-RETURN ausgefiihrt.

Falls eine Zahl (n) angegeben werden kann, so wird eine fehlende Zahl
durch 1 ersetzt (I entspricht also I1). Giiltige Werte fiir n liegen zwischen 1
und 128.

Blockkommandos miissen in zwei Zeilen eingegeben werden. Sie
kennzeichnen den Anfang und das Ende des zu bearbeitenden Blockes. Ein
~ Block darf nicht mehr als 256 Zeilen umfassen.

160 Dokumentation Pascal-System

Beispiele
I8 in Zeile TOP fiigt am Textanfang acht Leerzeilen ein.

RR in Zeile 1 und in Zeile 4 wiederholt alle Zeilen zwischen 1 und 4
einmal.

I(nsert) n Nach dieser Zeile werden n Zeilen eingefiigt.
D(elete) Diese Zeile wird geldscht.
DD Ein Block beginnend ab der ersten DD-Zeile

bis zur zweiten DD-Zeile (einschlieBlich)
wird geloscht.

R(epeat) n Diese Zeile wird n-mal wiederholt.
RR n Ein Block wird n-mal wiederholt.
> n Diese Zeile wird um n Spalten nach rechts

geschoben, falls dadurch keine Zeichen aufler
dem Leerzeichen am rechten Rand verloren-
gehen. Der Spaltenbereich wird durch die
Eintrige ’<’ und ’>’ in der BND-Zeile

festgelegt.
>> n Desgleichen mit einem Block von Zeilen.
< n Diese Zeile wird um n Spalten nach links

geschoben, falls dadurch keine Zeichen aufler
dem Leerzeichen verlorengehen.

<< n Desgleichen mit einem Block von Zeilen.

) n Diese Zeile wird um n Spalten nach rechts
geschoben. Dabei kénnen eventuell am
rechten Rand Zeichen herausgeschoben
werden.

) n- Desgleichen mit einem Block von Zeilen.

(n Analog zu °)’ nach links verschieben.

Dokumentation Pascal-System 161

« n Desgleichen mit einem Block von Zeilen.

M(ove) Kennzeichnet eine Zeile, die an eine neue
Position gestellt werden soll.

MM Markiert den Anfang und das Ende eines
Blockes, der verschoben werden soll.

C(opy) Diese Zeile soll kopiert werden.

CcC Ein Block von Zeilen wird zum Kopieren
markiert.

Bei M und C muB noch eine Zielposition angegeben werden:

A(fter) Der Block wird hinter diese Zeile gestellt.
B(efore) Der Block wird vor diese Zeile gestellt.
O(verlay) Die Zeile wird iiber diese Zeile kopiert, so

daB Leerstellen in der O-Zeile durch Zeichen
der M- oder C-Zeile ersetzt werden. Der
Kopiervorgang ist dabei auf den
Spaltenbereich zwischen <’ und °>’ in der
BND-Zeile begrenzt.

00 Der Block wird iiber den Block zwischen den
beiden OO-Zeilen kopiert. Ist die Anzahl der
zu kopierenden Zeilen kleiner als der Ziel-
block, werden die Zeilen zyklisch wiederholt.

4.2.6 Textmodus

Der Textmodus ist beim Aufruf des Editors eingeschaltet. Nachdem er mit
RESET ausgeschaltet wurde, wird er mit TEXT wieder aktiviert. Dieser
spezielle Eingabemodus dient zur Eingabe langer, zusammenhingender
Texte. Erreicht ndmlich der Cursor bei der Eingabe von Zeichen den
rechten Bildrand, so folgt das Textfenster automatisch (um den gewd#hlten
Scroll-Betrag) dem Cursor. Beim Erreichen des rechten Textrandes springt
der Cursor an den linken Textrand der nichsten Zeile. Durch die Eingabe
von SHIFT-RETURN springt der Cursor an die nichste vortabulierte Posi-
tion (-’ in der Zeile "'TAB=").

162 Dokumentation Pascal-System

4.2.7 FIND

Mit dem FIND-Befehl konnen Sie nach Zeichenfolgen (Strings) mit bis zu
32 Zeichen Linge im Text suchen. Der Befehl kann um Parameter erwei-
tert werden, die in der folgenden Reihenfolge auftreten. Dabei stellen
iibereinanderstehende Parameter eine Auswahl dar, von der nur eine
Variante pro Befehl angegeben werden kann.

string ALL CHARS
FIND 'String' FIRST WORD nnn
#kkk NEXT PREFIX nnn-mmm
* SUFFIX
String Zeichenfolge von maximal 32 Zeichen ohne Leerzeichen.

Die Zeichenfolge darf nicht mit *, # oder ’ beginnen.

*String’ Die Zeichenfolge darf aus 32 beliebigen Zeichen auBer °’
bestehen.
* Es wird der Suchstring des letzten FIND- oder CHANGE-

Befehls benutzt.

#kkk Es wird nach dem ASCII-Zeichen mit dem dezimalen Code
nnn gesucht (z.B. #13 ist CR).

NEXT Die Suche beginnt ab der augenblicklichen Cursorposition
im Textfenster. Steht der Cursor nicht im Textfenster, so
wird ab dem linken Textrand der 1. Bildschirmzeile gesucht.

FIRST Die Suche beginnt bei der Textzeile 0000.
ALL Es werden alle Strings im gesamten Text gezihlt.
CHARS Der String wird auch als Teil eines anderen Wortes gefunden

(z.B FIND der CHARS findet auch das Wort jeder).

PREFIX Der String muB3 einem Trennzeichen folgen.
SUFFIX Dem String muf} ein Trennzeichen folgen.
WORD Der String muB3 mit einem Trennzeichen beginnen und

enden.

Dokumentation Pascal-System 163

nnn Der String muB} in Spalte nnn beginnen.
nnn-mmm Der String mufl zwischen Spalte nnn und mmm beginnen.

Nicht angegebene Parameter werden durch die Werte NEXT, CHARS und
die momentan giiltigen Textgrenzen aus der Statuszeile nach BND=’ ersetzt.
AuBlerdem sind die Abkiirzungen FIR, NEX, WOR, PRE und SUF erlaubt.
Nach Ausfithrung des Befehls steht der Cursor auf der gefundenen
Textposition.

Beispiele

FIND I WORD findet I, I1, I-22, 3-I, aber nicht SIN, IN, OMI.
Angezeigt wird das erste Auftreten.

FIND * ALL zahlt, wie oft der letzte String (I) im Text auftritt.

F X FIR findet das erste X im Text.

4.2.8 CHANGE

Mit dem CHANGE-Befehl kdnnen Sie Zeichenfolgen (Strings) mit bis zu
32 Zeichen Linge im Text durch andere Zeichenfolgen mit ebenfalls
maximal 32 Zeichen Linge ersetzen.

Stringl String2 ALL CHARS

CHANGE 'String1!' 'String2' FIRST WORD nnn
#kkk #kkk NEXT PREFIX nnn-mmm
* * SUFFIX

Die Suche nach String 1 wird wie beim FIND-Befehl durchgefithrt und
durch die Parameter gesteuert. Ist String 2 linger als String 1, so wird vor
der Umwandlung gepriift, ob am Zeilenende (*>’ in der Statuszeile 'BND=’)
genug Platz ist. Ist dies nicht der Fall, so wird eine Fehlermeldung aus-
gegeben. Der zweite String kann auch leer () sein, so daBl String 1
vollstindig geldscht wird. Der Parameter ALL bewirkt die Umwandlung
aller Strings im Text. Oft ist es jedoch sicherer, wie in Abschnitt 4.2.9
beschrieben mit den Funktionstasten f2 und f4 den Text durchzugehen.

164 Dokumentation Pascal-System

Beispiel

CHANGE XXX »” ALL WORD l6scht alle Worte XXX im
Text.

CHANGE INTEGER REAL WOR wandelt alle Zeichenfolgen

INTEGER in REAL um.

4.2.9 Die Tasten f2 und f4

Um die stindige Wiederholung von FIND- und CHANGE-Befehlen zu
vermeiden, kann der letzte FIND-Befehl mit f2 und der letzte CHANGE-
Befehl mit f4 wiederholt werden. Genauer gelten folgende Regeln:

f2 entspricht FIND ’Stringl’ NEXT. String 1 ist der letzte benutzte FIND-
oder CHANGE-String. Die iibrigen Parameter (z.B. WORD) entsprechen
ebenfalls denen des letzten Befehls. Wird das Textende erreicht, so er-
scheint die Meldung *BOTTOM READCHED**, Die niichste Betitigung
von f2 entspricht dann FIND ’Stringl’ FIRST. Sollte der String nicht ge-
funden werden, wird STRING NOT FOUND angezeigt.

f4 entspricht CHANGE ’Stringl’ ’String2’ mit den letzten Strings und den
zuletzt giiltigen Parametern (wie WORD und nnn) bei CHANGE.

Beispiel

CHANGE Otto Karl FIRST. Der Cursor springt auf das erste Wort
Otto im Text und wandelt es in Karl um.

f2-Taste driicken Der Cursor springt auf das n#ichste Wort
Otto.

f4-Taste driicken Der Cursor bleibt an der alten Position.
Otto wird durch Karl ersetzt.

f2-Taste driicken Der Cursor springt auf das n#ichste Wort
Otto.

f2-Taste driicken Es wird keine Anderung durchgefiihrt.

Suche nach Otto.

etc.

Dokumentation Pascal-System 165

4.2.10 INPUT

Mit diesem Befehl wird ein Menii aufgerufen, in dem nacheinander die
folgenden Parameter festgelegt werden:

DEVICE NUMBER:

['*! OR '?' FOR END]
==>

SEK. ADDRESS:

['*' OR '?' FOR NONE]
==>

FILE NAME:

['*' OR '?' FOR NONE]
==>

CODE OF DELIMITER:
['*' OR '?' FOR NONE]
==>13

Die Parameter Geriteadresse, Sekundiradresse und Filenamen miissen, wie
im Handbuch des Rechners beschrieben, angegeben werden. Mit diesen
Parametern wird dann ein OPEN-Befehl (wie in BASIC und Pascal) aus-
gefiihrt,

AnschlieBend wird bis zum Dateiende von der Datei gelesen. Die eingelese-
nen Daten werden im Text eingefiigt. Die Einfiigeposition kann vor dem
Aufruf von INPUT mit den Line-Commands A(fter) oder B(efore)
festgelegt werden. Fehlt diese Angabe, so werden die Daten am Textanfang
eingefiigt.

Die Formatierung der eingelesenen Daten in Zeilen erfolgt durch die
Angabe des Begrenzungszeichens (Delimiter).

a) Kein Begrenzungszeichen

Betrigt die Satzlinge n Zeichen (z.B. n=50), so werden jeweils n Zeichen in
jede Zeile gestellt, bevor eine neue Zeile eingefiigt wird. Alle ASCII-
Zeichen werden unverdndert {ibernommen.

b) Mit Begrenzungszeichen

Normalerweise sind Textfiles (fiir BASIC und Pascal) durch das Zeichen
Carriage Return (CR) mit dem ASCII-Code 13 in einzelne Zeilen
gegliedert. Durch die Eingabe von 13 als Delimiter werden so lange
Zeichen in eine Zeile geschrieben, bis das Begrenzungszeichen CR gelesen
wird. Dieses Zeichen wird nicht in den Text eingefiigt. Alle folgenden
Zeichen werden in die nichste Zeile geschrieben. Somit bleibt beim Einle-

166 Dokumentation Pascal-System

sen die Zeilenstruktur erhalten. Natiirlich sind beliebige Begrenzungs-
zeichen erlaubt.

Tritt ein Systemfehler auf, so wird das Einlesen beendet und ein Fehler-
code in der Kopfzeile angezeigt.

Beispiel

INPUT mit folgenden Parametern:

DEVICE NUMBER: 8
SEK. ADDRESS: 0
FILE NAME: $

0

CODE OF DELIMITER:
Hierdurch wird ab der markierten Zeile das Inhaltsverzeichnis der Diskette
in der Codierung als BASIC-Programm eingelesen (entspricht also
LOAD"$",8 in BASIC).

Beispiel

INPUT mit folgenden Parametern:

DEVICE NUMBER: 8
SEK. ADDRESS: 3
FILE NAME: TEST,S,R

CODE OF DELIMITER: 13

Eine sequentielle Datei *TEST,SEQ’ auf der Diskette wird gelesen. Eine
Anwendung des Befehls INPUT ist das Einlesen von Dateien, die mit an-
deren Programmen (z.B. Editoren) erstellt wurden. Speziell kénnen so
Textfiles gelesen werden, die in Pascal-Programmen mit WRITE erzeugt
wurden.

4.2.11 OUTPUT

Mit diesem Befehl wird ein Menii aufgerufen, in dem nacheinander die
folgenden Parameter festgelegt werden:

Dokumentation Pascal-System 167

DEVICE NUMBER:

[**' OR '?' FOR END]
==>

SEK. ADDRESS:

[**' OR '?' FOR NONE]
==>

FILE NAME:

['*' OR '?' FOR NONE]
==>

CODE OF DELIMITER:
['*' OR '?' FOR NONE]
==>13

TRUNCATE TRAILING
SPACES? [YES OR NO]
==>Y

Die Wahl der Parameter Geriteadresse, Sekundiradresse und Filenamen
erfolgt wie im Handbuch des Rechners beschrieben.

Mit diesen Parametern wird ein OPEN-Befehl (wie in BASIC) ausgefiihrt.
AnschlieBend wird der gesamte Text im Arbeitsspeicher auf die Datei aus-
gegeben.

Die Formatierung kann durch die Angabe eines Begrenzungszeichens
gesteuert werden:

a) Kein Begrenzungszeichen

Alle Zeichen einer Zeile werden ausgegeben. Ohne jegliches Trennzeichen
folgen die Zeichen der nichsten Zeile.

b) Mit Begrenzungszeichen

Jede ausgegebene Zeile wird mit dem ASCII-Zeichen beendet, dessen Code
als Delimiter angegeben wurde. BASIC- und Pascal-Programme erwarten
das ASCII-Zeichen CR mit dem Code 13 am Ende jeder Zeile. Natiirlich
sind auch andere Trennzeichen moglich.

Oft ist es wiinschenswert, da3 Leerzeichen am Zeilenende abgeschnitten
werden. Dies wird durch die Eingabe von Y’ beim letzten Meniipunkt er-
reicht. Die Druckerausgabe kann z.B. durch dieses Abschneiden von nach-
laufenden Leerzeichen in jeder Zeile erheblich beschleunigt werden.

Die Wahl eines Begrenzungszeichens und das Abschneiden sind beliebig
kombinierbar.

168 Dokumentation Pascal-System

Tritt bei der Ausgabe ein Systemfehler auf, so wird die Ausgabe beendet
und ein Fehlercode in der Kopfzeile angezeigt.

Beispiel
OUTPUT mit folgenden Parametern:

DEVICE NUMBER: 4
SEK. ADDRESS: 0
FILE NAME: *
CODE OF DELIMITER: 13
TRUNCATE SPACES: Y

Hierdurch wird der gesamte Text auf den Drucker mit der Geriteadresse 4
und der Sekundiradresse 0 ausgegeben, wobei jede Zeile mit CR beendet
wird.

Beispiel

OUTPUT mit folgenden Parametern:

DEVICE NUMBER: 8

SEK. ADDRESS: 3

FILE NAME: TEST,S,W
CODE OF DELIMITER: 13
TRUNCATE SPACES: Y

Der gesamte Text wird als Datei 'TEST,SEQ’ auf Diskette gespeichert.
Viele Programme (Assembler, Mailboxprogramme) kénnen solche Dateien
als Eingabe verwenden. Besonders niitzlich ist diese Option auch zur
Erzeugung von Testfiles fiir Pascal-Programme, die Textfiles mit READ
und READLN lesen.

4.2.12 COPY

Mit diesem Befehl konnen Sie aus einem Editortext auf der Diskette Zeilen
in den Arbeitsspeicher kopieren. Fiir diese Operation ist der Befehl INPUT
nicht geeignet, da Editortexte in einem speziellen Format gespeichert
werden.

Den Namen des Textes auf Diskette geben Sie in einem gesonderten Menii
ein:

Dokumentation Pascal-System 169

COPY DATASET

ENTER DATASET-NAME:
[**' OR '?' FOR END]

==>

Wird der Text nicht gefunden, so erfolgt ein Riicksprung in den Editor.
Dies geschieht ebenfalls bei der Eingabe von ’* oder ’?.

Problematisch ist das Kopieren aus einem Datenbestand, der eine andere
Satzlinge besitzt. Hierbei kénnen Zeilen zerstiickelt oder zusiitzliche
Leerzeichen angefiigt werden. Sie miissen deshalb das Kopieren durch die
Eingabe von ’C’ bestitigen:

THIS DATASET HAS A
DIFFERENT RECORD-SIZE!

CONFIRM COPY WITH 'C'!

==>

Jede andere Eingabe fithrt zum Editor zuriick. AnschlieBend kénnen Sie
noch den Zeilenbereich festlegen, der kopiert werden soll.

FIRST LINE COPIED:
['*' OR '?' TO COPY ALL]
==>

LAST LINE COPIED:

==>

Ein ’?’ oder ¥ bei der Eingabe der letzten Zeilennummer erlaubt IThnen,
die Anfangszeilennummer zu Kkorrigieren. Um bis zum Textende zu
kopieren, miissen Sie nur eine geniigend groBe Zeilennummer eingeben
(z.B. 9999).

Die eingelesenen Zeilen werden in den Text eingefiigt. Die Einfiigeposition
kann vor dem Aufruf von COPY mit den Line-Commands A(fter) oder
B(efore) festgelegt werden. Fehlt diese Angabe, so werden die Zeilen am
Textanfang eingefiigt.

170 Dokumentation Pascal-System

4.2.13 Fehlermeldungen im Editor

Meldung

Bedeutung und Korrekturmoglichkeit

LINE-COMM. IGNORED

COMMAND CONFLICT

OUT OF MEMORY

BLOCK TOO LONG

ILLEGAL BOUNDS

MOVE ERROR

ILLEGAL COMMAND

ENTER A STRING!

ILLEGAL COLUMN

STRING FOUND

Es wurden zu viele Line-Commands von
einem Typ angegeben. Die erkannten Line-
Commands werden angezeigt (eventuell mit
RESET die Line-Commands 16schen).

Bei MOVE oder COPY liegt die A- oder B-
Eintragung in dem zu kopierenden Block.

Der Arbeitsspeicher ist zu klein, um den Text
zu erweitern (in Pascal Include-Files be-
nutzen).

Ein Block darf nicht mehr als 256 Zeilen
umfassen (Block in einzelnen Teilen bear-
beiten).

Ungiiltige Eintrige in °’BND=’ (siehe
Abschnitt 4.2.2).

Bei den Line-Commands >’ oder ’<’ wiirden
Zeichen iiber den Textrand verschoben. Der
Fehler tritt auch bei CHANGE auf, falls in
der Einfiigezeile nicht geniigend Platz ist.

Ungiiltige Parameter bei FIND und
CHANGE.

Ein String bei FIND oder CHANGE hat nicht
die korrekte Form.

Eine Spaltenangabe bei FIND und CHANGE
verlaBBt den Textbereich.

Meldung bei FIND. Cursor steht auf dem
Suchstring.

Dokumentation Pascal-System 171

*BOTTOM REACHED**

STRING NOT FOUND

KEY NOT ACTIVE

nnnn TIMES FOUND

nnnn CHANGED

nnnn/mmmm ERRORS

SYSTEM ERROR NR. n

Bei FIND oder CHANGE wurde das Text-
ende erreicht.

Der Suchstring befindet sich nicht im
Bereich, der durch die Textgrenzen bei
"BND=’ festgelegt wird.

Die f2- und f4-Funktionstasten sind nur
aktiv, falls zuvor ein FIND- oder CHANGE-
Befehl eingegeben wurde.

Kein Fehler: Meldung nach FIND ALL.

Anzahl der gednderten Strings bei CHANGE
(ALL)

Bei CHANGE ALL wurden nnnn Strings
gefunden, von denen mmmm nicht geindert
werden konnten.

Bei einem Betriebssystemaufruf trat ein
Fehler auf:

n=1 TOO MANY FILES OPEN
n=2 FILE OPEN
n=3 FILE NOT OPEN
=4 FILE NOT FOUND
n=5 DEVICE NOT PRESENT
n=6 NOT INPUT FILE
n=7 NOT OUTPUT FILE
n=8 MISSING FILE-NAME
=9 ILLEGAL DEVICE-NUMBER

172 Dokumentation Pascal-System

4.3 Bedienung des Compilers

4.3.1 Wahl der Optionen

Grundsitzlich iibersetzt der Compiler das Pascal-Programm, das sich
augenblicklich im Speicher befindet. Eine Ausnahme hiervon bilden die
Include-Files (sieche Abschnitt 4.4.6.2). Mit ihnen ist es moglich, beliebig
grofe Teile des Programmes von der Diskette zu lesen und gemeinsam mit
dem Programm im Speicher zu iibersetzen.

Der Compiler meldet sich beim Aufruf mit der folgenden Meldung:

PASCAL 1.4

SELECT OPTION:

0 CHECK SYNTAX

1 GENERATE CODE
ELSE LOCATE ADDRESS

==>1

An dieser Stelle wihlen Sie den Ubersetzungsmodus:

Eingabe 0 (Syntax-Priifung):

Bei dieser Wahl priift der Compiler den Quelltext auf syntaktische Kor-
rektheit. Fehler werden im Programmlisting markiert. Es wird jedoch kein
Code erzeugt.

Eingabe 1 (Code-Erzeugung):

Dieser voreingestellte Modus liest den Programmtext, priift ihn auf Kor-
rektheit und erstellt im Speicher ein ablauffihiges Programm.

Uberschreitet die Linge des erzeugten Objektprogrammes etwa 11 Kbyte,
so erstellt der Compiler zwei temporire Dateien (C$ und F$). Am Ende der
Ubersetzung werden diese Dateien gelesen und im Speicher abgelegt, so
dafl dann ebenfalls der Code komplett im Speicher steht.

Dokumentation Pascal-System 173

Eingabe einer anderen Zahl (Finde Adresse):

Mit dieser Option koénnen Sie zu einer Adresse im Code (Objektprogramm)
die zugehorige Position im Pascal-Programm (Quelltext) lokalisieren. Treten
z.B. bei der Ausfithrung des Objektprogrammes Fehler auf (Division durch
0 etc.), so wird eine Fehlermeldung mit der Adresse des fehlerhaften Be-
fehls ausgegeben. Geben Sie nun diese Fehleradresse an dieser Stelle an, so
wird die Quelltextposition des Divisionsbefehls im Listing mit der Fehler-
nummer 0 markiert.

AnschlieBend werden Sie nach der Startadresse des Objektprogramnies
gefragt:

P-CODE START:
==>

In 99,9 Prozent aller Fille werden Sie hier nur RETURN eingeben, da eine
Anderung der vorgegebenen Anfangsadresse ohne weitere MaBnahmen kein
lauffihiges Programm erzeugt. Diese MaBnahmen werden in Abschnitt 4.3.3
beschrieben.

SchlieBlich konnen Sie bei Bedarf das Programmlisting mit den Fehlermel-
dungen auf den Drucker umleiten, indem Sie bei der folgenden Abfrage
ein anderes Zeichen als 'N’ (fiir NO) eingeben.

LISTING TO PRINTER?
==>N

4.3.2 Meldungen im Compiler

Bei der Ubersetzung eines jeden Programmblockes wird einmal gepriift, ob
die STOP-Taste betitigt wurde. Ist dies der Fall, so wird folgende Bestiti-
gungsmeldung ausgegeben:

1*1 STOP '?' SYNTAX
ELSE CONTINUE

==>

**' pricht die Ubersetzung ab. Natiirlich steht dann kein vollstindiges Ob-
jektprogramm im Speicher.

? schaltet auf den Modus Syntax-Test um. Der Programmtext wird nur
noch auf syntaktische Korrektheit gepriift, ohne dafl dabei Code
erzeugt wird. Ist im Augenblick eine temporire Datei eroffnet, so wird
diese Datei geschlossen.

174 Dokumentation Pascal-System

Jede andere Eingabe setzt die Ubersetzung im bisherigen Modus fort.

Wird ein Fehler im Quellprogramm gefunden, so markiert ein Pfeil das
erste Zeichen nach dem Symbol, bei dessen Verarbeitung der Fehler ent-
deckt wurde.

Beispiel (Semikolon fehlt):

BEGIN X:=Y;Y:=2 Z:=X END
)

**%%x% ERROR 14 IN Xxxxx

xxxx ist dabei die Zeilennummer im Quelltext. Wird Text von einem
Include-File gelesen, so bezieht sich die Zeilennummer auf die Zeilen in
diesem File.

Die Fehlernummer (hier also 14) wird im Anhang B erklart.

AnschlieBend wird die obige Bestitigungsmeldung angezeigt. Wurde eine
Fehleradresse gesucht (Fehler 0), so beendet der Compiler die Arbeit und
kehrt zum Pascal-Menii zuriick.

4.3.3 Spezielles

Wenn Sie bereits lingere Zeit mit dem Compiler gearbeitet haben und die
Moéglichkeiten des Pascal-Systems voll ausnutzen wollen, dann sind
eventuell die folgenden Informationen relevant:

Prinzipiell kénnen Programme den gesamten BASIC-Arbeitsspeicher bele-
gen. Da der Compiler verdeckten Speicher des C 64 benutzt, gibt es von
dieser Seite auch keine Probleme. Jedoch steht der Quelltext im Bereich
von $6000 bis $8000. AuBerdem belegt der Editor den Speicherbereich von
$8000 bis $A000. Deshalb priift der Compiler bei der Riickkehr, ob diese
Speicherbereiche durch das Objektprogramm iiberschrieben wurden. Ist der
Quelltext Uiberschrieben worden, was durch die Benutzung von Include-
Files unproblematisch ist, wird die Option RESUME im Pascal-Menii ge-
sperrt. Ist auflerdem der Editor vom Code iiberschrieben worden, kehrt der
Compiler nicht zum Pascal-Menii zuriick, sondern verli3t das Pascal-
System nach BASIC. Dort sollten Sie dann natiirlich nicht versuchen, mit '*’
das System neu zu starten.

Um nun dem iibersetzten Programm den Speicher ab $6000 zur Verfiigung
zu stellen, geben Sie folgende BASIC-Befehle ein:

Dokumentation Pascal-System 175

POKE 55,0: POKE 56,160: CLR

Es ist jedoch sehr unwahrscheinlich, dal Sie jemals soviel Speicherplatz
bendtigen werden, da zum Beispiel der komplette Compiler Pascal 1.4, der
selbst in Pascal geschrieben ist, nur etwa 20 Kbyte belegt.

AuBerdem besitzt das Pascal-System eine gewisse Flexibilitit, die eine ein-
fache Zusammenarbeit z.B. mit Maschinenprogrammen erlaubt. Ein {iber-
setztes Programm besteht aus zwei Teilen:

1. Das Laufzeitsystem mit Hilfsprogrammen von 2049 bis 5611.
2. Der eigentliche Objektcode ab 5611.

Das Laufzeitsystem erwartet nun den Objektcode ab der Adresse 5611. Je-
doch 14Bt sich der Code auch ab einer anderen Adresse ablegen (siehe
Compiler-Menii). Uberdies kann noch der Stapelspeicher des iibersetzten
Programmes beliebig verschoben werden. Um dem Laufzeitsystem die
neuen Adressen mitzuteilen, miissen folgende Bytes gesetzt werden:

Adresse 5611 <= Stackanfang L-Byte
Adresse 5612 <= Stackanfang H-Byte
Adresse 5613 <= 18 (dezimal)

Adresse 5614 <= (P-CODE Anfang+2) L-Byte
Adresse 5615 <= (P-CODE Anfang+2) H-Byte

Normalerweise beginnt der Stapelspeicher (Stack) direkt hinter dem Ob-
jektprogramm. Er wichst nach oben, d.h zu steigenden RAM-Adressen.
AufBlerdem existiert noch ein Bereich fiir dynamische Variablen (HEAP).
Dieser Speicherbereich wichst ab dem Speicherende fiir BASIC nach unten.
Beim Zusammensto3 zwischen HEAP und STACK wird eine Fehlermel-
dung vom Laufzeitsystem erzeugt.

Beispiel
Bei Ubersetzung: P-CODE-START = 9000
In BASIC: POKE 5611, PEEK(9000)

POKE 5612, PEEK(9001)
POKE 5613, 18

POKE 5614, 9002 AND 255
POKE 5615, 9002 / 256

Durch diese Eingaben bleibt ein freier Speicherbereich zwischen 5616 und
9001, der z.B. durch Maschinenprogramme, Bildschirmspeicher etc. belegt
werden kann. Der Code beginnt bei Adresse 9000 und endet an der vom
Compiler am SchluB angezeigten Speicherstelle. Durch die ersten beiden

176 Dokumentation Pascal-System

POKE-Befehle wichst der Stack (Zeiger 47/48) vom Code-Ende (Zeiger
5611/5612) aufwirts. Jeder Prozeduraufruf von NEW im Pascal-Programm
148t dann zur Laufzeit den Heap (Zeiger 59/60) vom Speicherende (Zeiger
55/56) nach unten wachsen.

4.3.4 Riickkehr zu BASIC

Nach der Riickkehr aus dem Pascal-Menii mit **’ befindet sich im Speicher
das Laufzeitsystem fiir Pascal-Objektprogramme. (LIST probieren!). Dieses
Programm darf nicht geloscht, i{iberschrieben oder geidndert werden, da
sonst das Pascal-System nicht korrekt arbeitet.

Falls Sie beim letzten Aufruf des Compilers mit ’$’ ein ausfithrbares Pro-
gramm erstellt hatten, kdénnen Sie dieses wie ein normales BASIC-Pro-
gramm behandeln: :

Mit SAVE koénnen Sie das Programm speichern und anschlieBend mit
VERIFY das Programm auf der Diskette priiffen. Natiirlich kénnen die so
gespeicherten Programme auf jedem C 64 geladen und ohne weitere Hilfs-
programme ausgefithrt werden.

Bitte beachten Sie, daB Kassettenoperationen (im Editor oder in BASIC)
Teile des Compilers iiberschreiben. Sollten Sie also ein Programm auf Kas-
sette gespeichert haben, miissen Sie vor einer erneuten Ubersetzung das
Pascal-System neu laden.

Mit RUN koénnen Sie das Programm testen. Eventuell auftretende Fehler
werden im Klartext mit der Fehleradresse angezeigt. AuBBerdem erfolgt bei
Funktionen und Prozeduren eine Auflistung der letzten Aufrufadressen
(dynamic chain).

Ein Beispiel soll die Bedeutung dieser Verweiskette kliren: Angenommen,
Sie hitten ein Programm gestartet, das im Hauptprogramm HAUPT die
Prozedur Pl aufruft. Diese Prozedur selbst benutzt die Funktion F1, in der
eine Multiplikation 1000*1000 stattfindet. Diese Operation fiihrt schlieBlich
zu einer Uberschreitung des Zahlenbereichs fiir INTEGER-Zahlen.

Dann wird folgende Fehlermeldung erzeugt:

INTEGER OVERFLOW <- Fehlerursache

ERROR AT <- Fehleradr. in Funktion F1
CALLED AT <- Aufrufadr. in Prozedur P1
CALLED AT <- Aufrufadr. im Hauptprogr.

Dokumentation Pascal-System 177

Mit der Option LOCATE ADDRESS kann jede der angegebenen (Aufruf)-
Adressen im Quellprogramm lokalisiert werden.

Das Pascal-Menii erreichen Sie von BASIC durch die Eingabe eines Sterns
*** Von dort konnen Sie dann den Fehler im Quelltext mit dem Editor be-
heben, den Text compilieren und dann einen neuen Probelauf starten.

4.4 Sprachbeschreibung Pascal 1.4

4.4.1 Grundsitzliches

Der Compiler wurde entworfen, um eine méglichst vollstindige und getreue
Realisierung des Standard-Sprachumfangs zur Verfiigung zu haben, der in
Buch 1 (sieche Anhang E) beschrieben wird. Im folgenden wird diese Quelle
als REPORT bezeichnet.

AuBerdem sollte der erzeugte Code im Speicherplatzbedarf und in der
Geschwindigkeit attraktiv im Verhiltnis zum BASIC-Interpreter und zu
compilierten BASIC-Programmen sein. SchlieBlich sollte der Aufwand fir
einen Zyklus Quelltextinderung, Ubersetzung und Testlauf so gering wie
moglich bleiben.

Daher wird dpr Compiler durch Banking verdeckt im Hintergrund gehalten
und nur zur Ubersetzung in den Vordergrund kopiert. Somit ist ein Zugriff
auf die Floppy nur fiir Include-Files und zum Abspeichern der Programme
notig.

Um eine moglichst groBe Portabilitit der Programme zu sichern, wurden
bewuflt keine rechnerspezifischen Sprachelemente (Grafik, Sound etc.)
aufgenommen.

Andererseits wurden Low-level-Sprachelemente hinzugefiigt, um in Pascal
Speicheradressen zu adressieren und Bit-Operationen durchzufithren. Bei
Bedarf konnen also die obigen Anwendungen explizit in Pascal program-
miert werden.

178 Dokumentation Pascal-System

4.4.2 Sprachumfang

Als Referenz fiir den Sprachumfang dienen die Syntax-Diagramme im An-
hang A. In diesem Abschnitt werden alle semantischen Details
angesprochen, die vom REPORT abweichen oder von diesem nur ungenau
erfaf3t werden.

Bezeichner

Sie diirfen beliebig lang sein (14 Zeichen signifikant), aber keine
Buchstaben enthalten, die mit SHIFT auf der Tastatur eingegeben werden.
Das sind in Abhédngigkeit von der Bildschirmdarstellung Grafikzeichen oder
Grof3buchstaben.

Datentypen

Alle Datenstrukturen des Standards sind vorhanden. Die Objekte der
einzelnen Typen benoétigen den folgenden Speicherplatz:

BOOLEAN, INTEGER, CHAR, Aufzihlungs- und Unterbereichstypen: 2
Byte; Pointer 2 Byte; REAL 5 Byte; Mengen 12 Byte.

Der dem Typ CHAR zugrunde gelegte Zeichensatz entspricht dem Com-
modore-Standard (ASCII erweitert).

Der Wertebereich des Typs INTEGER wird durch die vordefinierte
Konstante MAXINT=32767 definiert:

-MAXINT-1 <= X <= MAXINT.

Fiir die Elemente von Mengen mufl immer gelten:

0 <= ORD(X) <= 95

Ist aber 96 <= ORD(X) <= 255, so liefert X IN [..] den Wert FALSE. Fir
alle anderen Werte von ORD(X) sind Mengenoperationen undefiniert.

Wird bei der Deklaration eines Arrays oder Records das Schlisselwort
PACKED angegeben, so werden Komponenten der folgenden skalaren
Typen so gepackt, daf3 sie nur 1 Byte Speicherplatz verbrauchen:

- Standardtypen CHAR, BOOLEAN

- Aufzdhlungstypen (mit weniger als 257 Elementen)

- Ausschnitt-Typen der Form A..B mit ORD(A)>=0 und
ORD(B)<=255

Dokumentation Pascal-System 179

Bemerkungen zum Packen:

Gepackte Komponenten der obigen Typen konnen nicht als Variablenpa-
rameter an Unterprogramme iibergeben werden. Der Compiler erzeugt in
diesem Fall die Fehlermeldung 504.

Da Packen zusitzlichen Code erfordert, ist es nur fiir groBe Files und
groBe Tabellen im Arbeitsspeicher sinnvoll. Daher sollten bei der Uber-
nahme von Pascal-Programmen Strings normalerweise mnicht als PACKED
ARRAY OF CHAR, sondern nur als ARRAY OF CHAR dargestellt wer-
den.

Typvertriglichkeit
Zwei Variablen haben den gleichen Typ, wenn sie entweder

- in einer Variablenvereinbarung oder
- mit dem gleichen Typbezeichner deklariert wurden.

Beispiel

TYPE FELD = ARRAY [0..1]1 OF INTEGER;
VAR A :ARRAY [0..1] OF INTEGER;
B :ARRAY [0..1] OF INTEGER;
X,Y:ARRAY [0..1] OF INTEGER;
L :FELD;
M :FELD;

A und B besitzen nicht den gleichen Typ.
X und Y besitzen den gleichen Typ.
L und M besitzen den gleichen Typ.

Deshalb sind die folgenden Zuweisungen giiltig:
X:=Y; L:=M

aber nicht:

A:=B; A:=L; M:=X; A:=X

Da in Pascal bei Prozedur- und Funktionsvereinbarungen sowieso Typ-
bezeichner erwartet werden, empfiehlt sich folgende Vorgehensweise: Man
vereinbart einmalig Typbezeichner (im Beispiel FELD), die man sowohl bei
der Deklaration von Parametern in Unterprogrammen als auch bei der
Deklaration von Variablen verwendet. '

180 Dokumentation Pascal-System

Feldbezeichner

Feldbezeichner miissen im jeweils innersten Bereich eines Records ein-
deutig identifizierbar sein. Es diirfen natiirlich auch gleichnamige Varia-
blen im Programm existieren.

Records mit Varianten

Die Varianten erhalten denselben Speicherplatz. Der benétigte Speicherplatz
richtet sich nach der GroBe der lingsten Variante. Die Werte der Vari-
antenwahl (tagfield) schrinken zur Laufzeit den Zugriff auf die Varianten
nicht ein. Es erfolgt also keine Priifung.

Beispiel

TYPE TART = (KARTESISCH, POLAR);
KOORDINATE =
RECORD CASE ART: TART OF
KARTESISCH: (X, Y:REAL);
POLAR: (R,PHI:zREAL)
END;
VAR A: KOORDINATE;

Eine Variable vom Typ Koordinate benétigt also 10 Byte Speicherplatz.
AuBlerdem belegt die Variante X den Speicherplatz der Varianten R. Bei
den Zuweisungen

A.ART :=KARTESISCH; A.R:= 2.0

erfolgt keine Fehlermeldung. AuBerdem sind variante’ Records ohne Va-
riantenwahl (tagfield) erlaubt. -

With- Anweisung

Die Verwendung des With-Statements bringt erhebliche Verbesserungen im
Laufzeitverhalten des Programms, da simtliche AdreBberechnungen fiir die
folgende(n) Anweisung(en) nur genau einmal ausgefithrt werden.

Beispiel

WITH A [1,J11 DO FELD5:= FELD5 - FELD3 statt
AlI,J11.FELD5:= A[I,J11.FELD5 - A([I,J11.FELD3

Dokumentation Pascal-System 181

Sprunganweisung

Es ist nicht erlaubt, von auBlen in ein FOR .. DO-, CASE .. OF-, oder
WITH .. DO-Statement mit GOTO zu springen, da diese zur korrekten
Ausfithrung Zwischenergebnisse auf dem Stapel benétigen. Jedoch kann
auch aus einer Prozedur oder Funktion in einen der sie umgebenden Blécke
gesprungen werden, solange die obigen Einschrinkungen nicht verletzt
werden.

Vorwirtsvereinbarungen

Generell miissen alle Bezeichner vor ihrem ersten angewandten Auftreten
ein definierendes Auftreten besitzen. Es sind nur folgende Ausnahmen
moglich:

- Die explizite FORWARD-Vereinbarung von Prozeduren und
Funktionen.

- Typdeklarationen, die einen Zeiger auf einen noch nicht
deklarierten Typ definieren.

Beispiele

PROCEDURE Q(I: INTEGER); FORWARD;
PROCEDURE P(C: CHAR);

BEGIN ... Q(4) ... END;
PROCEDURE Q;

BEGIN ... P("A") ... END;

und

TYPE POINTER=TNODE;
NODE =RECORD
INFO: INFOTYP;

. NEXT :POINTER
END;
Fallunterscheidung

Optional ist die Angabe eines ELSE-Zweiges (siehe Syntax-Diagramm).
Dieser Zweig wird angesprungen, falls der Ausdruck einen Wert liefert, der
durch keine Fallmarke erfaf3t wird. Wird ELSE nicht angegeben, so erfolgt
zur Laufzeit beim Auftreten eines Wertes ohne passende Marke die
Fehlermeldung

“NO LABEL FOR CASE"

182 Dokumentation Pascal-System

Bit-Operatoren

AND, OR und NOT konnen als Operanden auch INTEGER-Zahlen be-
sitzen. Es erfolgt dann eine bitweise Verkniipfung der Operanden. Die
Operandentypen BOOLEAN und INTEGER diirfen aber nicht gemischt
werden. Die Operationen liefern ein Ergebnis des gleichen Typs
(INTEGER bzw. BOOLEAN).

Absolut adressierte Variablen

Bei einer Variablendeklaration ist die explizite Angabe einer Adresse fiir
die Variable moglich. Ein Anwendungsgebiet ist die gemeinsame Verwen-
dung von Variablen aus Maschinenprogrammen und Betriebssystem-
adressen. Natiirlich muf3 hierbei der Speicherplatzbedarf der Variablen (in
Bytes) beachtet werden.

Beispiel

IRQVEKTOR = INTEGER [7881;

Vergleiche

Die Vergleichsoperatoren (=,<>,>,<,>=,<=) koOénnen nicht nur auf alle
Skalare, Reals und Strings (gleicher Linge), sondern auch auf beliebige
(gepackte und ungepackte) zusammengesetzte Objekte angewendet werden,

sofern beide Operanden denselben Typ haben. Der Vergleich erfolgt dann
Byte fiir Byte (ohne Vorzeichen).

4.4.3 Reservierte Wortsymbole

and file not to
array for of type
begin forward or until
case function packed var
const goto procedure while
div if program with
do in record

downto . label repeat

else mod set

end nil then

Dokumentation Pascal-System 183

4.4.4 Vordefinierte Bezeichner

Die nachfolgend aufgefiithrten Bezeichner besitzen eine vordefinierte Be-
deutung. Sie koénnen jedoch auch im Programm mit neuer Bedeutung
definiert werden.

4.4.4.1 Konstantenbezeichner

FALSE, TRUE Konstanten vom Typ BOOLEAN
(FALSE <TRUE)

MAXINT Konstante vom Typ INTEGER
(MAXINT =32767)

4.4.4.2 Typbezeichner

BOOLEAN = (FALSE,TRUE)

INTEGER Ganze Zahlen von -MAXINT-1 bis MAXINT
CHAR Einzelne Zeichen

REAL Wertebereich wie in BASIC

TEXT = FILE OF CHAR

4.4.4.3 Variablenbezeichner

INPUT :TEXT (Eingabedatei)
OUTPUT :TEXT (Ausgabedatei)

4.4.4.4 Prozeduren fiir dynamische Objekte

Die dynamischen Objekte werden in einem getrennten Datenbereich (Heap)
gespeichert. Reicht zur Laufzeit der freie Speicher nicht mehr aus, wird
das Programm mit der Fehlermeldung HEAP OVERFLOW beendet.

Der Heap wird als First-in-last-out-Speicher betrieben. Daten werden an
der Seite angefiigt, an der sie geldscht werden. Das Ende des Speichers
wird durch einen Heappointer markiert.

‘Die ‘Befehle MARK und RELEASE ersetzen die in vielen anderen Dialek-
ten vorhandene Prozedur DISPOSE.

184 Dokumentation Pascal-System

NEW (Zeigervariable)

Stellt Speicherplatz fiir eine (neue) dynamische Variable zur Verfiigung.
Die Zeigervariable wird mit der Adresse des neuen Objektes initialisiert.

MARK (Zeigervariable)

weist der Zeigervariablen den momentanen Wert des Heappointers zu. Ein
anschlieBender Aufruf der Prozedur RELEASE mit dieser Zeigervariablen
setzt den Heappointer auf diesen Wert zuriick.

RELEASE (Zeigervariable)

Der Heappointer wird auf den Wert der Zeigervariablen gesetzt. Dieser
Befehl sollte nur in Zusammenhang mit dem MARK-Befehl verwendet
werden.

Beispiel

VAR A,B,C, HEAP: TINTEGER;
BEGIN
-.. MARK(HEAP) ...
NEW(A); NEW(B); NEW (C)

< .. RELEASE(HEAP)
END.

Durch die Anweisung RELEASE(HEAP) werden alle dynamischen Varia-
blen geléscht, die nach der Anweisung MARK(HEAP) mit NEW erzeugt
wurden. Im Beispiel sind dies A1, B?, und C*.

4.4.4.5 Ein- und Ausgabe

Files werden durch Dateien unter dem Betriebssystem des C 64 realisiert.
Details iiber die Zusammenarbeit mit dem Betriebssystem finden sich im
Abschnitt 4.4.5.

OPEN (filevar, dev, sek, name)

filevar Variable vom Typ FILE OF ...

dev , INTEGER-Ausdruck, der die Geratenummer
angibt.

Dokumentation Pascal-System 185

sek INTEGER-Ausdruck, der die Sekundiradresse
festlegt.

name Konstante oder Variable vom Typ ARRAY [...]
OF CHAR.

Dem angegebenen File wird eine freie logische Filenummer zugewiesen und
ein Aufruf der Betriebssystemroutine OPEN mit den obigen Parametern
durchgefiihrt. EOF(filevar).=FALSE. filevart ist undefiniert. Wird kein
Filename benotigt, so ist auch der folgende Befehl moglich:

OPEN (filevar,dev,sek)

REWRITE(f) entspricht OPEN(f,dev,sek, name)

RESET(f) entspricht OPEN(f,dev,sek,name);GET(F)

GET(f) entfallt fir Textfiles, die mit READ gelesen
werden.

CLOSE (filevar)

Das angegebene File wird geschlossen und die logische Filenummer wird
freigegeben. Files miissen wie in BASIC geschlossen werden. Dies ist
speziell vor einem erneuten OPEN erforderlich. Es kénnen maximal 10
Files gleichzeitig ge6ffnet sein.

Nach CLOSE sind keine weiteren PUT-, GET-, READ- und WRITE-
Operationen mit filevar zulissig. Wurde die durch CLOSE freigewordene
logische Filenummer wieder fiir ein anderes File vergeben, konnen Sie
beim Zugriff auf geschlossene Files nicht mit der Fehlermeldung FILE
NOT OPEN rechnen.

EOF (filevar)

Das Ergebnis dieser Funktion ist vom Typ BOOLEAN. EOF(filevar) ist
TRUE, falls beim Lesen der Datei filevar das Dateiende erreicht wurde.
Beim Schreiben ist EOF(filevar) immer TRUE. EOF alleine ist die
Abkiirzung fir EOF(INPUT). In dieser Dokumentation wird fiir jede File-
Operation die Verinderung von EOF explizit beschrieben.

STATUS (filevar)
Diese nicht im REPORT aufgefiithrte Funktion besitzt den Ergebnistyp IN-

TEGER. Das L-Byte enthilt den Status bei der letzten E/A-Operation
(READ, WRITE, GET, PUT). Dieser Wert ist wie fiir die BASIC-Variable

186 Dokumentation Pascal-System

ST definiert. Einzelheiten sind wieder den Handbiichern zum C 64 zu ent-
nehmen.

Das H-Byte enthilt die logische Filenummer, unter der das Betriebssystem
das File verwaltet. Der Wert ist nur zwischen OPEN und CLOSE definiert.
STATUS alleine entspricht STATUS(INPUT).

Beispiel

IF (STATUS(DATAFILE) AND 1) THEN
WRITELN("Zeitablauf beim Schreiben")

EOLN (filevar)

Standardfunktion mit dem Ergebnistyp BOOLEAN. Der Parameter muf} ein
Textfile sein. EOLN liefert den Wert TRUE, falls beim Lesen das Zeilen-
ende erreicht wurde. Beim Lesen mit READ(f,...) ist EOLN(f)=TRUE, falls
das letzte gelesene Zeichen ein CR (ASCII-Code 13) war. Jedoch liefert
dann ein Zugriff auf die Puffervariable f* ein Leerzeichen (space). EOLN
alleine entspricht EOLN(INPUT).

PUT (filevar)

Ubertragt den Inhalt der Puffervariablen filevart Byte fiir Byte auf das
File. EOF(filevar):=TRUE.

GET (filevar)

Fullt die Puffervariable filevar? und setzt den Lesezeiger weiter. Ist nach
dem Aufruf EOF(filevar)=TRUE, so ist der Wert von filevart undefiniert.

READLN (filevar)

Uberliest Zeichen in dem Textfile filevar bis zum Ende der Eingabezeile.
Ist EOLN(filevar) beim Aufruf von READLN bereits TRUE, so werden
keine Zeichen gelesen.

READ (filevar, Parameter, Parameter ...)

Die Ausgabe hingt vom Typ des Parameters ab:

Parameter ist eine Variable vom Typ CHAR: Es wird ein Zeichen

eingelesen und der Variablen zugewiesen. Ist das Zeichen das Zeilenende-
zeichen, so wird ein Leerzeichen * ° gelesen.

Dokumentation Pascal-System 187

Parameter ist eine Variable vom Typ INTEGER oder REAL: Leerzeichen
und Zeilentrennzeichen werden iiberlesen. Die nachfolgenden Zeichen wer-
den bis zum nichsten Leerzeichen oder Zeilenende gelesen und als Zahl
interpretiert (analog der Funktion VAL in BASIC). Ist der Parameter eine
Variable vom Typ INTEGER, so wird die Zahl noch mit der Funktion INT
angepaft.

EOF:=TRUE, falls das letzte Zeichen des Files gelesen wurde.

Die Puffervariable enthilt das letzte gelesene Zeichen. War das letzte gele-
sene Zeichen ein Zeilenendezeichen (CR), so liefert die Funktion EOLN
den Wert TRUE.

WRITELN (filevar)

Schreibt ein Zeilentrennzeichen auf das angegebene File. EOF:=TRUE.
EOLN:=TRUE.

WRITE (filevar, Parameter, Parameter, ...)

Parameter hat die Form:
- Ausdruck
oder
- Ausdruck : INTEGER-Ausdruck

Die Zahl nach dem Doppelpunkt gibt die Mindestanzahl an Zeichen an, die
ausgegeben werden. Falls noétig, werden dem Wert Leerstellen vorangestellt,
um die angegebene FeldgroBe zu erreichen. Wiederum ist die Ausgabe vom
Typ der Ausdriicke abhingig:

CHAR: Das Zeichen wird rechtsbiindig im Feld
ausgegeben.
INTEGER: Die INTEGER-Zahl wird rechtsbiindig

ausgegeben. Vor positiven Zahlen steht ein
Leerzeichen (nicht '+°).

REAL: Die Zahl wird im gleichen Format wie in
BASIC ausgegeben. Eine Angabe der Anzahl
der Nachkommastellen ist nicht moéglich.

ARRAY]..] OF CHAR: Der (ungepackte) String wird ausgegeben.

188 Dokumentation Pascal-System

4.4.4.6 Arithmetische Funktionen

ORD (Ausdruck)

Diese Funktion liefert als Ergebnis eine INTEGER-Zahl, die die Position
des Parameters im Wertebereich angibt (0,1,2,...). Der Ausdruck muf3 einen
skalaren Typ besitzen (nicht REAL).

CHR (Ausdruck)

Diese Funktion liefert ein Zeichen mit dem ASCII-Code des INTEGER-
Ausdruckes.

SUCC (Ausdruck)

Die Funktion liefert den Nachfolger im Wertebereich. Der Ausdruck muf
einen skalaren Typ besitzen (nicht REAL). Eine Prifung auf Bereichs-
tiberschreitung erfolgt nur, falls bei der Ubersetzung die Option (*$R+ *)
des Compilers gewihlt wurde.

PRED (Ausdruck)

Die Funktion liefert den Vorginger im Wertebereich. Der Ausdruck mufl
einen skalaren Typ besitzen (nicht REAL). Eine Prifung auf Bereichs-
iiberschreitung erfolgt nur, falls bei der Ubersetzung die Option (*$R+ *)
des Compilers gewihlt wurde.

ODD (Ausdruck)

Diese Funktion liefert den Wert TRUE, falls der Ausdruck vom Typ
INTEGER ungerade ist.

ABS (Ausdruck)

Der Absolutbetrag des INTEGER- oder REAL-Ausdruckes wird berechnet.
Das Ergebnis ist vom selben Typ wie das Argument.

INT (Ausdruck)

Umwandlung des reellen Argumentes in die nichstkleinere INTEGER-Zahl
(wie in BASIC).

Dokumentation Pascal-System 189

Beispiele
INT(3.2) = 3
INT(-3.2) = -4

Also liefert INT andere Ergebnisse als die im Standard definierte Funktion
TRUNC. Andererseits 148t sich ROUND(x) durch INT(x+0.5) realisieren.

SQRT(x), LN(x), EXP(x), SIN(x), COS(x), ARCTAN(x) liefern fiir einen
INTEGER-/REAL-Ausdruck das im REPORT beschriebene Ergebnis vom
Typ REAL.

TAN (x)

Liefert fiir einen INTEGER-/REAL-Ausdruck den Tangens vom Typ
REAL. Diese Funktion ist nicht im REPORT vorgesehen.

POWER (x,y)

Liefert fiir zwei INTEGER-/REAL-Ausdrucke den Wert x hoch y vom
Typ REAL. Diese Funktion ist ebenfalls nicht im Standard vorgesehen.

4.4.4.7 Verschiedenes

Die folgenden Systemfunktionen und -prozeduren erwarten teilweise
Adressen als Parameter. Da Adressen auch Werte grofler als MAXINT=
32767 annehmen, miissen gréBere Zahlen durch die entsprechende negative
Zahl im Zweierkomplement ersetzt werden.

Beispiel
$FFE4 = 65508 = -28 (= 256%256 - 65508)

Um also die Routine GETIN=$FFE4 aufzurufen, muBS man SYS(-28)
schreiben.

SYS (Ausdruck)

Sprung in ein Maschinenprogramm, das an der angegebenen Stelle beginnt.
Wie bei dem BASIC-Befehl werden vor und nach dem Aufruf die Prozes-
sorregister in den folgenden Speicherzellen (dezimal) abgelegt:

780 Akkumulator

781 X-Register

782 Y-Register

783 Status-Register

190 Dokumentation Pascal-System

POKE (Ausdruck 1, Ausdruck 2)

Schreibt den Wert von Ausdruck 2 in die Adresse Ausdruck 1 (wie BASIC).
PEEK (Ausdruck) |

Diese Standardfunktion liefert den Inhalt der angegebenen Adresse.

ADDU (Ausdruck 1, Ausdruck 2)

Diese Funktion addiert die beiden INTEGER-Ausdriicke ohne Beriicksich-
tigung des Vorzeichens. Es erfolgt keine Fehlermeldung bei Uberldufen.
Mit der Funktion ADDU (add unsigned) kann man also mit Adressen rech-
nen, ohne die Grenzen des Bereichs INTEGER (MAXINT) zu beriick-
sichtigen.

Beispiele

ADDU(3,5)=8
ADDU(32767,1)=-32768
ADDU(-32768, - 1)=32767

HALT

Beendet die Programmausfithrung ohne Fehlermeldung.

4.4.5 Files in Pascal 1.4

Zur Anpassung an das Betriebssystem des C 64 muf3te die Behandlung von
Files in einigen Details gegeniiber dem REPORT gedndert werden. Diese
Unterschiede sind hier noch einmal zusammenfassend dargestelit:

Im Programmkopf diirfen nur die Standardfiles (INPUT/OUTPUT)
angegeben werden. Externe Files werden abweichend vom REPORT nicht
im Programmkopf, sondern nur in dem Block, in dem sie benétigt werden,
als Variablen vom Typ FILE OF ... deklariert.

Jedes File F wird intern durch einen eigenen Deskriptor verwaltet, der
neben der Puffervariablen (Ft) Informationen iiber EOF(F), STATUS(F)
und EOF(F) enthilt, die bei jeder E/A-Operation mit diesem File aktuali-
siert werden. '

Dokumentation Pascal-System 191

Files konnen natirrlich Bestandteil anderer Datenstrukturen (Array, Record,
aber nicht File) sein und auch in Prozeduren oder Funktionen rekursiv
definiert werden, solange die Parameter der OPEN-Befehle geeignet
gewidhlt werden (siehe Abschnitt 4.4.5.1).

Statt der Standardprozeduren RESET/REWRITE miissen OPEN- und
CLOSE-Prozeduren wie in BASIC aufgerufen werden:

REWRITE(F) entspricht OPEN(f,dev,sek,name)
RESET(f) entspricht OPEN(f,dev,sek,name);GET(F)

GET(f) entfillt bei RESET fiir Textfiles, die mit READ gelesen werden.

Hier soll noch einmal daran erinnert werden, daB GET und PUT Files
erzeugen, die die interne Reprisentation der Daten benutzen, so daB diese
Files (insbesondere vom Typ FILE OF CHAR) nicht direkt ausgedruckt
oder von BASIC-Programmen verwendet werden koénnen. Falls ein Aus-
druck oder eine Weiterverarbeitung erwiinscht ist, sollten die Prozeduren
READ(LN)/WRITE(LN) verwendet werden. Vorteile von GET und PUT
sind die Klarheit des Konzeptes, die kompakte Speicherung der Daten und
die schnellere Ein- und Ausgabe.

Abweichend vom REPORT enthilt die Puffervariable beim Lesen von
Textfiles nicht das n#chste, sondern das zuletzt gelesene Zeichen. Also
besteht keine Mboglichkeit, iiber die Puffervariable ein Zeichen
vorauszuschauen.

Zur Bearbeitung von Textfiles dienen die Prozeduren READ(LN) und
WRITE(LN), die durch die Anderung der Bedeutung der Puffervariablen
auch fir Dialogprogramme geeignet sind.

Ausdriicklich sei darauf hingewiesen, dal STATUS(f) nur durch File-
Operationen auf dem File f beeinfluflit wird, so daB STATUS(F) (anders als
in BASIC die Variable ST) nicht durch Ein- oder Ausgabe auf einem an-
deren File als f beeinfluflt werden kann.

SchlieBlich ist es moglich, die Standardeingabe- und -ausgabefiles anderen
Geriten als der Tastatur und dem Bildschirm zuzuordnen:

Beispiele

OPEN(OUTPUT, 4,0) Ausgaben auf den Drucker
OPEN(INPUT,8,3,name) Eingaben vom File name’

192 Dokumentation Pascal-System

Diese Umleitung der Ausgabe und Eingabe kann durch die Befehle
CLOSE(OUTPUT) bzw. CLOSE(INPUT) wieder riickgiingig gemacht wer-
den. Diese Optionen sind besonders zum ‘Protokollieren von Bildschirmaus-
gaben und zum Einlesen von Kommandosequenzen von einer Datei sinn-
voll.

4.4.5.1 Ubernahme von Programmen mit Files

Wie im REPORT definiert, kénnen die Prozeduren READ und WRITE nur
auf Files vom Typ FILE OF CHAR angewendet werden. Soll ein PASCAL-
Programm umgeschrieben werden, das diese Prozeduren auch fiir Files mit
anderem Grundtyp verwendet, so konnen diese Befehle wie folgt ersetzt
werden:

READ (F,X) wird ersetzt durch x:=Ft; GET(F)
WRITECF,X) wird ersetzt durch Ft:=x; PUT(F)

AuBerdem mufl darauf geachtet werden, daB eine Prozedur, die sich
rekursiv aufruft, ein lokales File mit korrekten Parametern er6ffnet. Um
eine Anpassung moglichst einfach vorzunehmen, kann man das Include-File
FILE.INC benutzen. Es definiert die Prozeduren RESET und REWRITE.
Genaue Hinweise zur Benutzung und ein Beispielprogramm sind in
Abschnitt 2.16 gegeben.

Die Definitionen in FILE.INC werden an den Anfang des Hauptpro-
grammes gesetzt. Jedes lokale File wird am Beginn des Blockes seiner
Deklaration mit ALLOC definiert. AuBerdem wird im selben Block als
letzte Anweisung die FREE-Prozedur fiir alle lokalen Files aufgerufen.
Zwischen ALLOC und FREE darf kein File mit CLOSE geschlossen wer-
den.

Diese Routinen beruhen auf dem folgenden Prinzip: Durch ALLOC weist
das Laufzeitsystem jedem File eine eindeutige logische Filenummer zu, die
bei RESET/REWRITE zur Identifikation des Files auf der Diskette ver-
wendet wird. Das File KOMMANDO wird zum Loéschen von alten Dateien
bei REWRITE benutzt. Die logische Filenummer wird sowohl als eindeutige
Sekundiradresse fiir die Floppy als auch als Teil des Dateinamens auf der
Diskette verwendet.

Dokumentation Pascal-System 193

4.4.6 Aktive Kommentare

Kommentare kénnen beliebig im Quelltext eingefiigt werden. Sie sollten je-
doch nicht mit einem Dollarzeichen ’$’ beginnen, da dieses sogenannte
aktive Kommentare einleitet.

4.4.6.1 Bereichstests

Der Compiler besitzt einen Schalter, mit dem die Erzeugung von Code fiir
Laufzeittests gesteuert werden kann. Beim Beginn der Ubersetzung ist der
Schalter auf aus gestellt. Nach einem Kommentar der Form

(*$R+ *)

steht der Schalter fiir Bereichstests (Range Check) auf ein. Der Compiler
erzeugt dann Code, um bei der Laufzeit des Programmes die folgenden
Operationen zu priifen:

Zuweisungen von Werten eines Grundtyps an Variablen eines Unter-
bereichs. Dies betrifft auch die Grenzen von FOR .. DO-Schleifen, bei de-
nen die Laufvariable einen Unterbereichstyp besitzt.

Mengenoperationen der Form [A] [A..B] und B IN X auf giiltige Werte von
A und B (d.h. 0<=ORD(A),ORD(B)<=95). Indizierungen von Arrays der
Form ARRAY [A..B] OF ...

Ergebnisse der Standardprozeduren SUCC(X) / PRED(X), bei denen X ein
Ausdruck eines Aufzihlungs- oder Unterbereichstyps ist.

Tritt ein ungiiltiger Wert auf, so bricht die Programmausfithrung mit der
Fehlermeldung 'VALUE OUT OF BOUNDS' ab. AufBlerdem werden
nacheinander die Ordinalwerte des fehlerhaften Wertes, der unteren und
der oberen Bereichsgrenze angegeben. Ein Beispiel fiir die Interpretation
der Fehlermeldung ist in Abschnitt 2.12 gegeben.

Der Schalter wird mit dem folgenden aktiven Kommentar auf qus gestellt:
(*$R- *)

Diese Kommentare sollten nicht direkt neben Ausdriicken stehen, sondern
durch mindestens ein Symbol von dem Ausdruck getrennt sein. Sonst kénn-
te es passieren, daB der Schalter zu friih ein- oder ausgeschaltet wird.

194 Dokumentation Pascal-System

4.4.6.2 Include-Files

Wie bereits in vorangegangenen Abschnitten erwéhnt, kann der Compiler
Teile des Quelltextes bei der Ubersetzung von Diskette lesen.

Da man nur 8 Kbyte Quelltext mit dem Editor im Pascal-System auf ein-
mal bearbeiten kann, geht man bei groflen Programmen am besten wie folgt
vor:

Man entwickelt zunichst einzelne Teile des Programmes und testet diese.
Solche Module werden dann mit dem Editor auf Diskette gespeichert. Um
nun den Text eines solchen Moduls im Programm einzufiigen, geniigt es, an
der entsprechenden Position im Quelltext einen aktiven Kommentar
einzufiigen:

(*$"filename" *)

Erreicht der Compiler bei der Ubersetzung diesen Kommentar, so wird der
Rest der Zeile ignoriert und ab dieser Stelle der Programmtext von dem
Text "filename" auf der eingelegten Diskette gelesen. Am Dateiende setzt
der Compiler die Ubersetzung aus dem Speicher fort.

Die Include-Files selbst sind normale Texte, die mit dem Editor mit SAVE
oder END auf der Diskette gespeichert wurden.

Es sind beliebig viele Include-Files in einem Programm méglich. AuBBerdem
kann auch in einem Include-File ein anderes Include-File aufgerufen wer-
den. Jedoch sind keine Schachtelungen moglich, da der Compiler am Ende
eines Files immer zur Ubersetzung aus dem Speicher zuriickkehrt.

Anhang A: Syntax-Diagramme Pascal 1.4 195

Anhang A: Syntax-Diagramme Pascal 1.4

196 Anhang A: Syntax-Diagramme Pascal 1.4

SYNTAXDIAGRAMNME FPASCAL.

1 .49

BEZE ICHNER:

ZAHL:

KONSTANTE :

>4BUCHSTABE >

—< BUCHSTABE <

b

——{ ZTFFER)

>4 ZIFFER —

<
>{GANZE zAHL >D—[> Z IFFER Ly >
> >

VORZE ICHENLOSE KONSTANTE :

——>{KONST. BEZEICHNER |—> >

>

-—>-l: }——I
>

——————>4GANZE ZAHL >

NIL >

om0

—>{KONST. BEZE ICHNER }—>

EINF. TYP:

.

‘

————>4GANZE ZAHL >

A Bl B

>{TYP BEZEICHNER | >

<<

>JKONSTANTE >-E]—> KONSTANTE }—>

>4GANZE ZAHL p—>-

L >

Anhang A: Syntax-Diagramme Pascal 1.4 197

EELDLISTE:
< — K
«— K
_J
> >
>
_>{cAsE]—-J—>-|E|-:zr-: ICHNER]-)6-L>
—< < {D<—
el
—— ¢
IYP:

>EINF. TYP] > >
1
——>>-{TYP BEZE ICHNER | >4

<
— G) o @
<—E}<

e — [3
———>>>-|EINF. TYP } >
~——>>-|FEL.0L. ISTE } >{Eno } >J

PARAMETERL ISTE :

K

_L <
>>>>&>>L>> >
> < E}<

VARIABLE :
>{VAR IABLENBEZE ICHNER |—> >
—[:—>-|FELDBEZE TCHNER]——’-r’> {1}
«— K
—>{- }->{FELDBEZE ICHNER | ——>
{1} >

—<

198 Anhang A: Syntax-Diagramme Pascal 1.4

FAKTOR:
>{¥ORZE ICHENLOSE KONSTANTE } >
>-|VFIRIF\BLE } >
‘lr <-—{Z}<
>
>{NOT }—>{FAKTOR } >
—>{T) >]_>>~
>
< L‘,—_}<
TERM:

>4FAKTOR |—> > >

< —FAKTOR }<—L<—{AND }<—

EINF. AUSDRUCK:

>
> <—{+ ¢

—B

AUSDRUCK &

>{EINF. AUSDRUCK |—> >

—>{=}—>1—>{EINF. AUSDRUCK ‘—>J

Anhang A: Syntax-Diagramme Pascal 1.4 199

BLOCK:
—7)>4LABEL >4GANZE ZAHL |—>
—

< @(
= ez TomeR}— (> foETATE],
< {3}«

= TR F) T
< E}<

J

H E}(
- AT}) (- e 0
 k— ok

H< {3(
—>{FUNCT10N}—>{BEZE ICHNER |-—>{[PARAME TERL ISTE |->{: }->{TYPBEZE ICHNER |->
) —fFommRsk—)¢

—>{PROCEDURE }—>{BEZE ICHNER H—>{PARAME TERL ISTE | >

—>{BEGIN]—[>-|m~u-: Isuij—>@ >
<—3 ¢

PROGRAMM:

{(PrROGRAM }—>-{BEZE 1CHNER}—>~@-—[>>>-E]—>>-E]
—

N
I

200 Anhang A: Syntax-Diagramme Pascal 1.4

EQLLUNTERSCHEIDUNG:

—>{CASE }->{AUSDRUCK }->{OF }—+4—> >{+ }->{ANE TSUNG |- >{END }—>
|

———{7 Jc—<

T){ELSE}—)-{ﬁME 1SUNG |——

»EEETS) -
——>{For }->{vARIABLENBEZ . |->{: = }->{AUSDRUCK] >>]->
L>>>

LAUFANWE ISUNG :

ANWE ISUNG :
>{GANZE zAHL >@j
—<

hd

v
v

>{BEGIN >{ANKE 1SUNG } >{END}

)_l:<—-[3.<._4

————>{WHILE }—>{AUSDRUCK |——>{D0 }——>{ANWE TSUNG |——>

—————>{REPEAT >{ANWE ISUNG |-———>{UNT IL }->JAUSDRUCK |————>
}_[;—E]«

<—— x—

s > [FARTABLE}——» {68} —> {FE TS0 }——>-

>
—>{1F }—>{AUSDRUCK }->{THEN }—>]|ANWE 1SUNG]J—>-[EL.SE }—>{ ANWE 1SUNG |-+
>{FALLUNTERSCHE IDUNG | >

>{VARTABLE >]—>-E]—-—>-|ﬂusunucx{ >
>JFUNKTIONSBEZ. }—>

O
>JPROZEDURBEZ . —-—->> AUSDRUCK >-@-—> >
)J

>

Anhang B: Fehlernummern Pascal 1.4 201

Anhang B: Fehlernummern Pascal 1.4

0 Position eines Laufzeitfehlers (Option LOCATE ADDRESS)
1 Fehler in Typangabe
2 Bezeichner erwartet

3 'PROGRAM’ erwartet
4 ’)’ erwartet

5 *’ erwartet

8 'OF’ erwartet

9 ’C erwartet

11 [’ erwartet

12 ’T erwartet

13 END’ erwartet

14 ’;’ erwartet

15 INTEGER erwartet
16 =" erwartet

17 'BEGIN’ erwartet
20 *. erwartet
22 ', erwartet

50 Fehler in Konstante

51 =" erwartet

52 "THEN’ erwartet

53 "UNTIL’ erwartet

54 ‘DO’ erwartet

55 'TO’/’DOWNTO’ erwartet

59 Fehler in Variable (Variablenbezeichner erwartet)
60 String ist hier nicht zulissig

101 Bezeichner zweimal deklariert
102 Untere Grenze iibersteigt obere Grenze

202 Anhang B: Fehlernummern Pascal 1.4

103
104
105
106
107
109
110
111
113

116
117
118
120

121
123
125
126
127
129
130
131
132
134
135
136
137
138
139
140
141
143
144
145
146
147
152
154
155
159
161
165

Bezeichner ist nicht von der richtigen Klasse

Bezeichner nicht deklariert

Vorzeichen hier nicht zuléssig

Zahl erwartet

Inkompatible Unterbereichstypen

Grundtyp muf3 Skalartyp oder Unterbereich sein (nicht REAL)
Typ des Tagfields muf3 Skalartyp oder Unterbereich sein
Konstante nicht kompatibel mit dem Tagfield

Indextyp mufB3 Skalartyp oder Unterbereich sein (nicht REAL oder
INTEGER)

Falscher Typ eines Parameters fiir Standardprozedur

Ungeldste Vorwirtsvereinbarung (Typbezeichner oder Prozedur)
Undeklarierter Typbezeichner in Variablendeklaration
Ergebnistyp einer Funktion muf3 Skalartyp, Unterbereich oder
Zeiger sein

File als Wertparameter nicht zulissig

Ergebnistyp fehlt im Funktionskopf

Falscher Typ eines Parameters fiir Standardfunktion

Anzahl der Parameter stimmt nicht mit Deklaration iiberein
Unzuldssige Parameter-Substitution

Operandentypen nicht kompatibel

Ausdruck ist nicht vom Typ Menge

Nur Test auf Gleichheit zuléssig

Test auf echtes Enthaltensein nicht zulissig

Unzulédssiger Operandentyp

Inkompatible Strings (Linge stimmt nicht iiberein)

Elementtyp einer Menge muf3 Skalartyp oder Unterbereich sein
Elementtypen nicht kompatibel

Variable ist nicht vom Typ Array

Indextyp entspricht nicht der Deklaration

Variable ist nicht vom Typ Record

Variable ist weder Zeiger noch File

Laufvariable besitzt einen unzulissigen Typ

Ausdruck hat einen unzuldssigen Typ

Typkonflikt

Zuweisung von Files nicht zuldssig

Typ der Fallmarke nicht kompatibel mit CASE-Ausdruck

Feld existiert in diesem Record nicht

Aktueller Parameter mufl eine Variable sein

Laufvariable muf3 eine lokale, nicht gepackte Variable sein
REAL oder String nicht als Tagfield zulissig

FORWARD hier nicht zulissig

Label mehrfach (im Anweisungsteil) definiert

Anhang B: Fehlernummern Pascal 1.4 203

166
167
168
171
172
173
174
400
401
402

500
501
502
503
504
505
506
510

511
512

Label mehrfach (im Vereinbarungsteil) deklariert

Label nicht deklariert

Undefiniertes Label im vorherigen Block

Variable muf3l vom Typ File sein

Fehlende Parameter fiir Standardprozedur

File ist nicht vom Typ TEXT (PUT oder GET benutzen!)
Standardfile wiederdefiniert

Zu viele Fallmarken in Case-Anweisung

Zu viele Labels im Programm

Zu viele Bezeichner im Programm

Operandentypen miissen INTEGER sein
Ordnungszahlen des Grundtyps nicht im Bereich 0..95
Typ BOOLEAN oder INTEGER erwartet

Externe Files werden hier nicht angegeben
Variablenparameter darf nicht gepackt sein
Standardfile OUTPUT muf3 deklariert werden

’NIL’ ist hier nicht zuldssig

FORWARD-Deklaration mufl in derselben Schachtelungstiefe erfol-
gen

Ganze Zahl erwartet

Parameter diirfen keine absolute Adresse erhalten

204 Anhang B: Fehlernummern Pascal 1.4

Anhang C: Laufzeitfehler 205

Anhang C: Laufzeitfehler

STACK OVERFLOW

INTEGER OVERFLOW
DIVISION BY 0

NO LABEL IN CASE

HEAP OVERFLOW

VALUE OUT OF BOUNDS

BREAK

Am Prozeduranfang: kein Speicherplatz fiir
die lokalen Variablen. Sonst: kein Platz fiir
Zwischenergebnisse.

Bereichsiiberschreitung bei ganzen Zahlen.

Division durch Null bei MOD oder DIV.

Keine Fallmarke fiir diesen Wert in der Case-
Anweisung gefunden.

Bei NEW ist auf dem Heap kein Platz fir
eine neue dynamische Variable vorhanden.

In einem Ausdruck tritt ein illegaler Wert auf
(siehe Abschnitt 4.4.6.1). Es werden folgende
Ordinalwerte ausgegeben:

ORD (fehlerhafter Wert)

ORD (untere Bereichsgrenze)

ORD (obere Bereichsgrenze).

Programm wurde mit RUN/STOP &
RESTORE unterbrochen.

206 Anhang C: Laufzeitfehler

TOO MANY FILES OPEN Es dirfen maximal 10 Files gleichzeitig

FILE NOT FOUND

DEVICE NOT PRESENT

NOT INPUT FILE

NOT OUTPUT FILE

MISSING FILE NAME

ILLEGAL DEVICE

NUMBER

ILLEGAL QUANTITY

OVERFLOW

DIVISION BY ZERO

geOffnet sein.

Bei OPEN konnte das angegebene File nicht
gefunden werden (sieche Handbiicher).

Bei READ, WRITE, GET oder PUT wurde
festgestellt, daB3 das Peripheriegerit nicht ak-
tiv ist.

Dieses Gerit (z.B. der Bildschirm) kann keine
Daten liefern.

An dieses Gerit (z.B. die Tastatur) kann man
keine Daten senden.

Bei OPEN muf} bei diesem Gerit ein File-
name angegeben werden.

Diese Geriteadresse (bei OPEN) ist nicht
zulissig.

Beim Aufruf einer Standardfunktion, die
reelle Argumente besitzt, wurden illegale Ar-
gumente iibergeben. Diese Fehlermeldung tritt
auch bei der Funktion INT auf.

Bei einer Operation mit reellen Zahlen trat
eine Bereichsiiberschreitung auf.

Bei der Division mit (/) ist der zweite
Operand 0.0.

Anhang D: Operatoren in Pascal 207

Anhang D: Operatoren in Pascal

Operator Operation Operanden- Ergebnistyp
typen
+ (Vorz.) Identitit INTEGER, wie Operand
REAL
- (Vorz.) Vorzeichen- INTEGER, wie Operand
umkehr REAL
+ Addition INTEGER, INTEGER,
REAL REAL
Vereinigungs- Menge Menge
menge
- Subtraktion INTEGER, INTEGER,
REAL REAL
Differenz- Menge Menge
menge '
* Multiplikation INTEGER, INTEGER,
REAL REAL
Schnittmenge Menge Menge
DIV Division beide INTEGER
mit Rest INTEGER

208 Anhang D: Operatoren in Pascal

MOD

IN

NOT

OR

AND

Divisionsrest

Division

gleich

ungleich

kleiner
grofler

kleiner oder
gleich

Test auf Teil-
menge

grofler oder
gleich

Test auf Ober-
menge

Test auf Zuge-
hoérigkeit zur
Menge

nicht

oder

und

beide INTEGER
INTEGER

INTEGER, INTEGER,
REAL REAL

Skalar, Pointer BOOLEAN
Menge, String

Skalar, Pointer BOOLEAN
Menge, String

Skalar, String BOOLEAN
Skalar, String BOOLEAN
Skalar, String BOOLEAN

Menge

Skalar, String BOOLEAN

Menge

1. Operand Skalar BOOLEAN
2. Operand Menge

BOOLEAN BOOLEAN
(INTEGER) (INTEGER)
BOOLEAN BOOLEAN
(INTEGER) (INTEGER)
BOOLEAN BOOLEAN

(INTEGER) (INTEGER)

Anhang D: Operatoren in Pascal 209

Bemerkung

Die Verwendung von INTEGER-Operanden bei den logischen Operatoren
NOT, AND und OR ist nur in Pascal 1.4 erlaubt.

Bei den relationalen Operatoren aufler IN sind in Pascal 1.4 auch beliebige
zusammengesetzte Typen (RECORD, ARRAY) erlaubt. Der Vergleich
erfolgt byteweise (ohne Vorzeichen).

210 Anhang D: Operatoren in Pascal

Anhang E: Literaturhinweise 211

Anhang E: Literaturhinweise

1. Jensen, K., Wirth, N.. PASCAL, User Manual and Report Lecture
Notes in Computer Science, Vol. 18. Springer-Verlag 1974.

2. Wirth, N.. Algorithmen und Datenstrukturen. LAMM Teubner-
Studienbiicher Informatik 1979.

3. Barron, D. W. (Editor): PASCAL - The Language and its
Implementation. Wiley Series in Computing, John-Wiley and Sons 1981.

4. Harrington, S.. Computer Graphics (A Programming Approach).
International Student Edition, Mc Graw-Hill 1983.

5. Wirth, N.: Systematisches Programmieren. Eine Einfiihrung.

6. Knuth, D. E.: The Art of Computer Programming. Band 1 und Band 3.
Addison Wesley 1973.

7. Maurer, H. Datenstrukturen und Programmierverfahren. LAMM
Teubner-Studienbiicher Informatik 1974,

8. Mehlhorn, K.: Effiziente Algorithmen. LAMM Teubner-Studienbiicher
Informatik 1977.

212 Anhang E: Literaturhinweise

Anhang F: Index 213

Anhang F: Index

ABS 36f., 188

ADDU 190

Adresse 107

ALLOC 109, 192

ALT 131

AND 29, 42-

Anonym 122

- Anweisung 28, 45ff.
bedingte 47ff.
Leer- 47

ARCTAN 37

Array 59ff.
eindimensionaler 60
mehrdimensionaler 66

Ausdriicke 29

Baum 132

BEGIN 26, 28, 46, 49
Bezeichner 22, 75, 178, 183
Bezeichner, Sichtbarkeit 71
Bit-Operatoren 182
Blockstruktur 45
Block-Zuweisungen 68
BND 155

BOOLEAN 35, 42, 178, 183
Bottom up 106 :

Case-Anweisung 50, 104
CASE-OF 181

CHANGE 41, 148, 157, 159, 163
CHAR 35, 40, 118, 178

CHR 41, 188

CLOSE 116, 139, 185, 192

COL 155

Compiler 12, 17, 172

CONST 45

COPY 168

COS 30, 37

Cursorsteuerung 156

Datei 107

Datentypen, elementare 35
Deklaration 27, 44, 71, 74
Dezimale Adresse 18
DISPOSE 131, 183, 187
DIV 29, 36

DOWNTO 56

Dynamisch 121

Editor 13, 15, 148, 153 ff., 170f.
ELSE 47ff., 181

END 26, 28, 46, 49

EOF 108, 185

EOLN 117, 186

EOLN(F) 118

Ergebnistyp 81

EXP 30, 37

214 Anhang F: Index

FALSE 42, 183 MOD 29, 36
File 107, 139, 190 MSk 155
FIND 157, 159, 162
For-Anweisung 55 NATURALMERGE 113
FOR...DO 181 NEW 122, 130, 184
FREE 109 NIL 123
NOT 42
Ganze Zahl 23
GET 108, 186 Objekt-Programm 13
GETCH 148 ODD 42, 188
GOTO 57 OPEN 116, 139, 184
Operanden 29
HALT 190 Operatoren 29
HEAP-OVERFLOW 183 OR 29, 42
ORD 41, 188
If-Anweisung 48 OUT 148
IN 29, 96 Output 26, 115, 166
Index 60f.
Inkarnation 83 Parameter 78
INPUT 26, 115, 117, 165 aktuelle 79
INTEGER 35f., 39f., 178, 183 formale 79
Interpreter 13 ‘ Funktions- 81
ITEM 113 Variablen- 79
PEEK 144, 190
KEY 113 POKE 144, 190
Kommentar, aktiver 25, 193 POWER 189
Konstanten 44 Pre check loops 53
PRED 92, 188
Label 57 Primary-Command 16, 154, 158
Lauf 113 Primitiven 102
Laufzeitsystem 17 PROCEDURE 74
Line-Command 16, 159 PROF 155
Liste 121, 125 Prozeduraufruf 73
Listenstrukturen 126 Puffervariablen 107
LN 37 PUT 108, 186

Lokalitit 75
Queliltext 13

MARK 131f., 184 Quicksort 88, 90

Marke 64

Matrix 66 READ 32, 117, 119, 186
MAXINT 36, 178 READLN 119, 186
Menge 96 REAL 35, 39, 183

MERGE 113 REAL-Zahlen 39

Anhang F: Index 215

Record-Typen 99ff., 180
Rekursion 82
Rekursiver Algorithmus 86
REL 144

Relative Dateien 144
RELEASE 131, 183f.
Repeat-Anweisung 54
REPORT 177, 191
RESET 108f., 140
REWRITE 108f., 140
ROUND 40

Semikolon 47
Sequentiell 108

SIN 30, 37
Sonderzeichen 24
Sortieralgorithmus 87
Sortieren 63
Sprunganweisung 57, 181
SQR 37f., 40

SQRT 37

STATUS 185, 191
String 65

SUCC 92, 188
Symbole 21

Syntax 21

Syntax-Diagramme 22, 195ff.

SYS 146, 189

TAB 155

TAPE 109, 113
Textfenster 153, 156

TO 56

TOP 156, 159

TRUE 42

TRUNC 40

Typ 28, 35, 71, 92ff., 178f.
Typbezeichner 103, 106f.
Typdeklaration 92

VAR 28 ,
Variablen 27, 29, 182
Vergleiche 182

Wert 79

While 51ff.

WITH-DO 100, 180f.
Wortsymbole 24, 182
WRITE 30, 115ff., 187
WRITELN 30, 187

Zahlen 22

Zeichen 40
Zeichenfolgen 115
Zeiger 121
Zeigertypen 121, 124
Zeigervariable 122, 184
Zuweisung 28

Comm

odo

Konstruktion mﬂ

ﬁ%ﬁﬁwﬁﬂ& Plus

auf dem C64/C128

S.Vilsmeier

3D-Konstruktion mit GIGA-
CAD Plus auf dem C64/C128
1986, 370 Seiten, inkl. 2 Disk.
Mit GIGA-CAD kénnen Compu-
tergrafiken von besonderer
Réumlichkeit und Faszination
geschaffen werden. GIGA-CAD
Plus ist schneller und einfacher
zu bedienen, die Benutzerober-
flache wurde verbessert und
der Befehlssatz erweitert. Die
Eingabe erfolgt in erster Linie
Uber den Joystick. Hardware-
Anforderung: C64 mit Floppy
1541 oder C128 (im 64'er-
Modus), Fernseher oder Moni-
tor, Joystick und Commodore-
oder Epson-kompatibler Drucker.
® Das verbesserte GIGA-CAD-
Programm mit neuen Features
wie erweitertem Befehissatz und
bis zu 10mal schneller liegt dem
Buch im Floppy-1541-Format bei.
Best-Nr. 90409

ISBN 3-89090-409-2

DM 49
(sFr 45,10/6S 382,20)

706358

H.Haberl

Mini-CAD mit Hi-Eddi plus auf
dem C64/C128

1986, 230 Seiten, inkl. Diskette
Auf der beiliegenden Diskette
findet der Leser das vollstan-
dige Zeichenprogramm »Hi-
Eddi«, mit dem das komfortable

Erstellen von technischen Zeich-

nungen, Planen oder Diagram-
men ebenso méglich ist wie

das Malen von farbigen Bildern,

Entwurf und Ausdruck von
Gliickwunschkarten, Schildern,

ja sogar von bewegten Sequen-

zen (Kleine Trickfilme, Schau-
fenster-Werbung).

@ Wer sagt, daB CAD auf
dem C64 nicht moglich ist?!
Best-Nr. 90136

ISBN 3-89090-136-0

DM 48~
(sFr 44,20/6S 374,40)

Makt&Tecnik

MarktgFechnik

D uassende Handiouch fr o Textvarorbeltung
‘it Vizawrts 64, Flr Enstaigec und Prois.

B.Bornemann-Jeske
Vizawrite-Buch fiir den
C64/C128

1987, 228 Seiten

Mit dem »Vizawrite-Buch« liegt
erstmals ein vollstandiges und
detailliertes Arbeitsbuch flr den
Anfanger und den professionel-
len Anwender zur Textver-
arbeitung auf dem C64/C 128
vor. Die Grundlagenkapitel fiih-
ren Sie anhand kurzer Ubungs-
aufgaben in die elementaren
Funktionen des Systems ein.
Das Kapitel fiir Fortgeschrittene

zeigt Ihnen jede Programmfunk-

tion im Detail. Zahlreiche prakti-
sche Tips aus verschiedenen

Anwendungsbereichen ermégli-

chen thnen die optimale Nut-
zung lhres Textverarbeitungssy-
stems.

Best-Nr. 90231

ISBN 3-89090-231-6

DM 49,-
(sFr 45,10/6S 382,20)

Zeitschriften - Bucher

Software - Schulung

rodukte
Mt TeC“T:‘r‘kPB i
PU‘G'F achab\e\\unge“

oder \r:j War

EXPERIMENTE 70

R
KE}NS‘FL!{CH‘E@ INTELLIGENZ

O.Hartwig

Experimente zur Kiinstlichen
Intelligenz mit C64/C128

1987, 248 Seiten

Sind Maschinen intelligent?
Koénnen Computer denken?
ErschlieBen Sie sich eines der
interessantesten Gebiete der
modernen Computerforschung!
Anhand zahlreicher Programme
erfahren Sie hier die Moglichkel-
ten der Kinstlichen Intelligenz,
speziell auf dem C64 und dem
C128. Der Schwerpunkt des
Buches liegt auf der Praxis. Alle
KIechniken werden durch
anschauliche Programme vor-
gestellt, die sofort nachvollzieh-
bar sind. Zusétzlich erhalten Sie
jede Menge Anregungen zu
eigenen Experimenten. Die KI-
Programme konnen ohne weite-
res in eigene Programme inte-
griert werden.

Best-Nr. 90472

ISBN 3-89090-472-6

DM 49~
(sFr 45,10/6S 382,20)

e erhalten
andiet
eschaiten

renhause

Markt&Technik Verlag AG, Buchverlag, Hans-Pinsel-Strabe 2, 8013 Haar bei Minchen, Telefon (089) 4613-0

Co

M.Hegenbarth/R. Trierscheid
BASIC-Grundkurs

mit dem C64

1985, 377 Seiten

Kein rein theoretisch ausgeleg-
ter BASIC-Kurs, sondern praxis-
nah auf den C64 zugeschnit-
ten. Auch der Computerneuling
kann mit diesem Buch lernen,
mit seinem C64 in BASIC zu
arbeiten, und wird auf die
Besonderheiten seines Compu-
ters hingewiesen. Der leichtver-
standliche, lockere Stil und die
gute logische Gliederung der
Kapitel unterstitzen dies.
Erwéhnenswert ist ein Kapitel,
das die Kommunikation zweier
C64 beschreibt, der Anhang, in
dem-eine Liste nitzlicher PEEKS,
POKEs und SYS und noch
vieles mehr enthalten ist.

@ Fir den Lesertyp, der beim
Lernen auch noch SpaB haben
maochte.

Best-Nr. 90361

ISBN 3-89090-361-4

DM 44,
(sFr 405016 343,20)

706359

F.Matthes

Pascal mit dem C64

1986, 215 Seiten, inkl. Diskette
Buch und Compiler ermdgli-
chen jedem Besitzer eines C64
den Einstieg in die moderne
Programmiersprache Pascal.
Der Compiler akzeptiert den
gesamten Sprachumfang mit
einigen Erweiterungen. Er bildet
mit einem sehr komfortablen
Full-Screen-Editor eine schnelle
Einheit, so daB der Programm-
entwicklungsaufwand minimal
ist. Ubersetzte Programme lau-
fen ohne weitere Hilfspro-
gramme auf jedem C64, nutzen
den gesamten Programmspei-
cher des C64 und sind 3-4mal
schneller als vergleichbare Pro-
gramme in BASIC. Dem Buch
liegt ein leistungsfahiges Pascal-
System mit einigen Pascal-Pro-
grammen auf Diskette bei.
Best-Nr. 90222

ISBN 3-89090-222-7

DM 52,-
(sFr 47,80/6S 405,60)

Markt&Technik

W.Kassera/F. Kassera
C64-Programmieren in
Maschinensprache

Der Aufschwung im Program-
mieren stellt sich ein, wenn Sie
die betriebssysteminternen
ROM-Routinen kennen, tber
ihre Funktionsweise und ihr
Zusammenspiel informiert sind.
Und Sie missen die Maschi-
nensprache lhres C64 beherr-
schen. Beides ermoglicht Ihnen
dieses Buch. Es zeigt, wie Sie
bewegte Bildschirmobjekte pro-
grammieren, die Interrupt-
Routine des Systems erweitern,
die Arithmetik-Routinen im ROM
und deren Datentypen beherr-
schen, und alles, was Sie {iber
Ein-/Ausgabe, BASIC-Variable
und andere wichtige Themen
wissen miissen.

Best-Nr. 90168

ISBN 3-89090-168-9

DM 52~
(sFr 47,80/6S 405,60)

Zeitschriften - Bicher

Software - Schulung

aratechnt

in Comp“éf" chabtellungen
oder “;er \Warenhausert

H.Ponnath

C64: Wunderland der Grafik
1985, 232 Seiten, inkl. Diskette
Der Autor legt beim Leser ein
solides Fundament an Wissen,
und er tut dies auf so unterhalt-
same Art, daB Sie bestens
gerlstet sind, um so interes-
sante Aufgaben wie die Pro-
grammierung hochauflésender
zwei- und dreidimensionaler
Grafiken anzugehen. Mit Sprites
2u jonglieren ist fur Sie bald
kein Problem mehr, aber auch
das vertrackte Verdeckungs-
problem bei dreidimensionaler
Grafik kriegen Sie jetzt endlich
in den Griff. Finden Sie heraus,
was wirklich im Grafik-Chip
Ihres C64 steckt!

@ Eine lesenswerte und
kenntnisreiche Einflhrung in
dieses hochinteressante Thema
von einem sachkundigen Auto-
ren; mit allen Beispielen auf
beigefugter Diskette.

Best-Nr. 90363

ISBN 3-83090-363-0

DM 49-
(sFr 45,10/6S 382,20)

ukie erhalten
k'Prg\?chhé“d.‘e"
eschaften

\hrem

Markt&Technik Verlag AG, Buchverlag, Hans-Pinsel-StraBe 2, 8013 Haar bei Minchen, Telefon (089) 4613-0

C=Spiele
sammliung

Lassen Sie sich in eine
abenteuveriche Spielewelt entfihren!

Alles, was Sie brauchen, ist ein C64 oder ein Firebug: Hoffentlich fangt Ihr Joystick nicht
C128, beiliegende Spielediskette — und schon ebenfalls Feuer, wenn es heiBt, die wertvollen
kann die Reise losgehen. Beweisen Sie |hre Koffer aus dem brennenden Haus des Profes-
Joystick-Kinste, indem Sie sicher den Weg aus sors zu erwischen. Pirat: Takfik, Timing und

dem labyrinth finden! Bewahren Sie
lhren kihlen Kopf in aufregenden
Actionszenen! Zeigen Sie lhre
Fahigkeiten als Bérsenmakler in
lebensnahen Wirtschaftssimulo-
tionen! Mit den 15 spannenden
Spielen, der ausfohrlichen
Anleitung sowie den farbigen
Bildschirmfotos ist lhnen ein
fantastisches Spielvergnigen
gewib.

Aus dem Inhalt:
Balliard: Einfallswinkel
= Ausfallswinkel. Wer
das nicht befolgt, hat es
schwer bei dieser Mi-
schung aus Tennis Und
Billard.

The Way: Zu verschlungenen Pfaden .
gesellen sich Geldséicke und bése Geister,/die

gute Navigationskennmisse sind Voraussetzung
fur ein bis zu 25 Jahre langes Piratenleben.
Wirtschaftsmanager:
Simulation aus den hachsten
Etagen der Wirtschaft, nicht
1000 Stick, sondern ganze
Firmen gehen Uber den »laden-
~ tisch«. Vier gewinnt: Einfach,
aber gerade deshalb ein Spiel,
das schnell zu Erfolgserlebnissen
fohrt. Brainstorm: Mastermind
stand Pate fir dieses vielseitige Denk-
spiel. Hypra-Chess: Spielen Sie
Schach gegen einen C64 und auBer-
dem die Spiele Maze, Schiffe ver-
senken, Handel, Borse, Vier in
vier und Magic-Cubs.

Hardware-Anforderungen: C64
oder C128 bzw. C128D (64er-Modus),

es zu bekémpfen gilt. Vager 3: Joystickprofis Floppy 1541, 1570 oder 1571 und Joystick.
mit ungetribtem Visierblick und Tref&/erinsﬁnk’r Best.-Nr. 90429, ISBN 3-89090-429-7
kdnnen ihr Punktekonto schwer mit AbschuB- DM 39" (sFr35,90/5s 304,20)
préimien beladen. *Unverbindliche Preisempfehlung.

Markt&Iechnik

Zeitschriften - Bicher
Software - Schulung

arkt&Technik Verlag AG, Buchverlag, Hans-Pinsel-Strabe 2, 8013 Haar bei Minchen, Telefon (089) 4613-0

Z 71M25/2

2. weraderete Autage

Commodore Sachbuchreihe
Alles iiber den C64

2. Auflage 1986, 514 Seiten
Dieses umfangreiche
Grundlagenbuch zum C64
enthalt neben einem Basic-
Lexikon alle Informationen
und Tips, die der Spezialist
zur Grafik- und Musikpro-
grammierung bendtigt. Ein
Kapitel beschéftigt sich mit
der Programmierung in
Maschinensprache und der
Einbindung von Maschinen-
sprache-Routinen in Basic-
Programme. In diesem
Zusammenhang erfahren
Sie auch alles Uber einen
wichtigen Bestandteil des
Betriebssystems aller
Commodore-Computer,

das »Kernal«.

Bestell-Nr. 90379

ISBN 3-89090-379-7

DM 59,-

(sFr 54,30/6S 460,20)

711356

Sachbuch

d@uisch

Florian Miiller - Thorsten Petrowski

fir die demsche GEOS Verslon 13
aller

F. Muller/T. Petrowski
Alles iiber GEOS
Version 1.3
Anwendungs-,
Programmier- und
Systemhandbuch
1987, 532 Seiten,
inklusive Diskette

Mér&chnik

Doppelseitig bespielte Belspleldlskeils

mit vielen GEOS-Utilities. u

Das umfassende Buch Uber
Anwendung und Program-
mierung der grafischen
Benutzeroberflache GEOS.
Bestell-Nr. 90570,

ISBN 3-89090-570-6

DM 49,-

(sFr 45,10/6S 382,20)

—

Zeitschriften - Bicher

Software - Schulung

Produki
‘&Techntk handlet
Ma'sk ‘pei Ihrem BUCTT - naiten

in compc\iﬂe’F it Shabteiungen

Alles iiber
CHM3.0

 orCPIMBefel # Struktu von CPIM.

HERHRE ST

Besch
R

Prof. Dr. W-J. Becker
C128 -

Alles iiber CP/M 3.0
1986, 299 Seiten

Eine fundierte Einfuhrung
in die Anwendung des
Betriebssystems CP/M 30
bzw. CP/M Plus auf dem
Commodore 128.
Bestell-Nr. 90370

ISBN 3-89090-370-3

DM 52,-

(sFr 47,80/6S 40560)

Dr.Ruprecht

o
| C128-ROM-Listing

1986, 456 Seiten

Dieses kommentierte
ROM-Listing umfaBt das
Betriebssystem des C128,
den Monitor des C128
sowie das Basic 7.0 von
Microsoft.

Bestell-Nr. 90212

ISBN 3-89090-212-X
DM 58~

(sFr 53,40/6S 452,40)

o erhalten

oder “L‘j War enhausr

Markt&Technik Verlag AG, Buchverlag, Hans-Pinsel-Strabe 2, 8013 Haar bei Minchen, Telefon (089} 4613-0

e
Die 64'er-

Langspiel-Disketie

ACHTUNG!

Computer-Freaks aufgepaBt:
32 Spitzen-Musikprogramme aus
dem 64%er-Musik-Programmier-
wettbewerb auf einer Diskette mit
komfortablem lademend. Von Pop
bis Klassk ist for jeden Musik-
geschmack etwas dabei: Shades,
This is not America, Invention Nr.
13, Mondscheinsonate, You can
win if you want, Der Clou, Fir
Elise, The pink Panther und viele
mey.

Hardware-Anforderungen:

Commodore 64 oder Commo-
dore 128 im C-64-Modus, Floppy-
Station 1541, 1570 oder 1571

Ein »MuB«
fiir jeden 64'er-Fun!

706229-2

Einmalig in

der Computergeschichte:

® Alle Musiksticke werden in
Stereoqudlitét auf einer hochwerti-
gen Kassette mit Rauschunfer-
drickung mitgeliefert!

® Ffineinhalb Stunden erstklos-
sige Computermusik!

® Klang umwerfend!

Lieferumfang:

| Diskette beidseitig bespielt mit 32
Musikstiicken

1 Kassette mit allen Musikstiicken in
Stereoquaitét fir handelsibliche
Kassettenrecorder oder Stereoan-
lagen

Best-Nr. 39630

DM 39 90*

(sFr 34,90%/5S 399

*Unverbindliche Prelsempfehlung

Markt&Technik

Zeitschriften - Bicher

Software - Schulung

Markt&Technik Verlag AG, Buchverlag, Hans-Pinsel-StraBe 2, 8013 Haar bei Minchen, Telefon (089) 4613-0

o Bt

GEOS fiir den €128 (englisch)

Der neue Befriebssystemstandard - in der Originalversion fir den C128. GEOS
64 wurde an den 128er-Modus des C128 angepabt und kann sowohl die
doppelte Aufldsung als auch den gréBeren Speicher nutzen. Unterstitzt werden
am RGB-Eingang angeschlossene Monitore (80 Zeichen), sowie die tblichen
PAL-Monitore und Femsehapparate. Ansonsten gelten die lsistungsmerkmale

von GEOS 64.

Hardware-Anforderung:

C128, Floppy154l 1570 oder 1571, Joy-
stick oder Maus 1531.

5ls-Zoll-Diskette

Bestell-Nr. 50328 DM 119~
GEOS fiir den C128
(deutsch)

Bestell-Nr. 50327 DM 119 -+
Deskpack 1/GeoDex fiir
den C64/C128 (deutsch)

Deskpack 1/GeoDex: die niitzlichen
Zusaizprogramme for GEOS Graphics-
Grabber! "Ubertragt Grafiken von' Print
Shop, Print Master und Newsroom zur

GEOS, Version 1.3, fiir den C64/C128 (deutsch)

Der neue Betriebssystemstandard fir Commodore 64. leistungsumfang: Desk-
Top - das Grafikinterface zum GEOS-Betriebssystem. Schauen Sie sich die
Dateien dls Icons oder im Textmodus an. Automatfisches Sorfieren von Dateien
nach Alphabet, GréBe, Typ oder Datum der letzfen Anderung ist kein Problem.
Dateien kopieren, loschen und Disketten formatieren ist natorlich enthalien.

GeoPaint: ein umfangreiches Zeichenpro-
ramm in Farbe mit 14 verschiedenen
%rcflkfools 32 Pinselstirken, 32 verschie-
denen Mustern. GeoWiite: in einfaches,
leichtbedienbares Textprogramm. Desk-
Accessories: Wecker, Notizblock, Taschen-
rechner.

Hardware-Anforderungen:

Cé4 oder C128 (64er-Modus), Floppy
1541, 1570 oder 1571, Joysﬁck

Bestell-Ni. 50320 M 59,

Update von dlteren enginschen Versionen
auf die neue deutsche Version 1.3. Erhaltlich
direkt beim Markt&Technik-Buchverlag
gegen Einsendung des Originalprodukts

egen Vorauskasse.
DM 39~

n
Bestell-Nr. 50320U

Anwendung mit GeoPaint und GeoWrite.
leistungsumfang: Icon Editor - erstellt
und veréndert ?cons nach lhren Vorstellun-
gen. GeoDex - AdreB- und Notizbuch
mit Modemunterstitzung. GeoMerge -
Suchen nach AdreBgruppen aus GeoDex
sowie Erstellen von Formbriefen und Listen.
Blackiack - das Klassische Glicksspiel.
Kalender.

Hardware-Anforderungen:

C64 oder C128 F|oppy]54] 1570 oder
1571, Joystick.

Soﬁwcre-Anforderung GEOS 64.
Bestell-Nr. 50322 DM69,~

GeoWrite Workshop fiir den
C64iC128

Bestell-Nr. 50323 DM89,-=
In Vorbereitung:

GeoWrite Workshop 128

Bestell-Nr. 50329 «. DM 119~
GeofFile 128

Bestell-Nr. 50330 co. DM 119,
GeoCalc 128

Bestell-Nr. 50331 co. DM 119~

71241

GeoFlle fir den C64I/C128
DM 89

Bestell-Nr. 50324

Markt&Iechnik

Zeitschriften - Biicher

Software - Schulung

Fontpack 1 fiir den
€64/C128 (deutsch)

Die unentbehdiche Utility for GEOS-
Benutzer! Fontpack 1 wurde fir die GEOS-
Applikationen GeoPaint und GeoWrite
entwickelt und enthélt 20 neue, auBerge-
wohnliche Schriftarten, die 1eden Anwen-
der begeistern werden.
Hardware-Anforderungen:

Cé4 oder C128, Floppy]54l 1570 oder
1571, Joystick.

Soﬁwcre-Anforderungen: GEOS 64

Bestell-Nr. 50321 DM 49 -

GeoCalc fir den C64/C128
Bestell-Nr. 50325 DM 89~

* Unverbindliche Preisempfehlung

rha\\e“
Prod ukie &
hhénd\e 3 d er in den

Markt&Technik Verlag AG, Buchverlag, Hans-Pinsel-Strabe 2, 8013 Haar bei Minchen, Telefon (089) 4613-0

Bestellungen im Ausland bitte an: SCHWEIZ: Markt&Technik Vertriebs AG, Kollerstrasse 3, CH-6300 Zug, Telefon (042) 415656 - OSTERREICH: Rudolf Lechner & Sohn,
HeizwerkstraBe 10, A-1232 Wien, Telefon (0222) 677526 - Ueberreuter Media Verlagsges. mbH (GroBhandel), laudongasse 29, A-1082 Wien, Telefon (0222) 481543-0.

WordSIar 3.0

for den Commodore 128/128D

Der Bestseller unter den
Textverarbeitungsprogram-
men fur PCs bietet lhnen
bildschirmorientierte Forma-
tierung, deutschen Zeichen-
satz und DINTastatur sowie
integrierte Hilfetexte. Mit
MailMerge kénnen Sie
Serienbriefe mit persoénlicher
Anrede an eine beliebige
Anzahl von Adressen
schreiben und auch die
AdreBaufkleber drucken
oder einzelne Textbausteine
zu umfangreichen Doku-
menten verknipfen.

Installation

WordStar ist far den
Commodore 128 PC unter
CPIM 30 bereits fertig
angepaBt und kann
wahlweise mit oder chne
deutschen Zeichensatz
benutzt werden.

Hardware-Anforderungen:
Commodore 128 PC,
Diskettenlaufwerk,
80-Zeichen-Monitor,
beliebiger Commodore-
Drucker oder ein Drucker
mit Centronics-Schnittstelle

711321

Markt&Technik
128er-Software

mit MailMerge fiir den
Commodore 128 PC

5Y,"-Diskette
im Floppy 1541-Format

Bestell-Nr. 50103

DM 199,=

(sFr 178-*/6S 1890-*

* Unverbindliche Prelsempfehlung

Markt&TIechnik

Zeitschriften - Bicher

Software - Schulung

Und dazu die
weiterfiihrende
Literatur:

Markt8echnik

G.Jurgensmeier
WordStar fiir den
Commodore 128PC
1985, 435 Seiten

Eine leichtverstandliche
Anleitung fur die prakti-
sche Arbeit. Vom einfa-
chen Text bis zum Serien-
brief mit MailMerge.
Bestell-Nr. 90181,

ISBN 3-89090-181-6
DM 49,-

(sFr 4510/6S 382,20)

\,T\‘gb\e\\\.\f\ge
\N are nhéusa(

Markt&Technik Verlag AG, Buchverlag, Hans-Pinsel-StraBe 2, 8013 Haar bei Minchen, Telefon (089) 4613-0

Bitte schneiden Sie diesen Coupon aus, und schicken Sie ihn in e Kuvert an:
Markt&Technik Verlag AG, Buchverlag, Hans-Pinsel-Strabe 2,”;38']?36?{]0:!'\/8 an

= T e MRV I

Vom Einsteigerbuch fir de
puter-Neuling Uber profedsi
bucher bis hin zum Elektron

* Apple-Computer e Atafi-Corr
64/128/16/116/Plus 4 ¢ Schpeide
XT und Kompatible
sowie zu den Fachbereic
Betriebssysteme (CP/M, M
arbeitung * Datenbanksyst
Integrierte Software o Mikr?]s;
AuBerdem finden Sie profess}
in unserem preiswerten Soffy
Atari ST, Commodore 128,
Computer und fir IBM-PCs
Fordern Sie mit dem neb
neuestes Gesamtverzeichn
vice-Ubersichtenan, mithilfreic!
len Anwendungen oder pa

Markt&Technik Verlag AG, Buch
8013 Haar bei M(Jnche%

709005

Version 2.41

dBASE I

fur Commodore 128/128D

dBASE Il, das meistverkaufte
Programm unter den Daten-
banksystemen, gibt es jetzt im
CP/M-Modus fur den C128.
Es eroffnet thnen optimale
Maglichkeiten der Daten- und
Dateihandhabung. Einfach
und schnell kdnnen Daten-
strukturen definiert, benutzt
und geéndert werden. Der
Datenzugriff erfolgt sequen-
tiell oder nach frei wahlbaren
Kriterien, die integrierte Kom-
mandosprache ermdglicht
den Aufbau kompletter An-
wendungen wie Finanzbuch-
haltung, Lagerverwaltung,
Betriebsabrechnung usw.

Lieferumfang:

® Originalhandbuch von
Ashton-Tate

® Beschreibung der
Commodore-128-PC-
spezifischen Version

Hardware-Anforderungen:
Commodore 128 PC,
Diskettenlaufwerk,
80-Zeichen-Monitor,
beliebiger Commodore-
Drucker oder ein Drucker
mit Centronics-Schnittstelle
Gber Userport

711322

Und dazu die
weiterfithrende
Literatur:

Markt&Technik
128er-Software

dBASE"

HTON TATE

fiir den
Commodore 128 PC
57,"Diskette Dr P Alorecht
im Floppy 1541-Format ggﬁqsni:&?.:tg pC

Dieses kiassische Einflh-
rungs- und Nachschlage-
werk begleitet Sie mit
nltzlichen Hinweisen bei
Ihrer taglichen Arbeit mit
dBASE II.

Bestell-Nr. 90189,

Bestell-Nr. 50303

DM 199,~-

" ISBN 3-89090-189-1
(sFr 178-*/6S 1890-* DM 49,-
Unverbindliche Prexsempfehlung (sFr450/6S 382,20)

Markt&Technik

Zeitschriften - Bicher

Software - Schulung

Markt&Technik Verlag AG, Buchverlag, Hans-Pinsel-StraBe 2, 8013 Haar bei Minchen, Telefon {089) 4613-0

FLORIAN MATTHES,

geboren 1963 in Frankfurt am
Main. Abitur 1981. Ab 1983 Stu-
dium der Informatik mit Neben-
fach Physik an der Universitat

Frankfurt. Seit 1985 wissen-
schaftlicher Mitarbeiter am Lehr-
stuhl flr Technische Informatik.
Einige Verdffentlichungen in
Mikrocomputer-Fachzeitschriften
und freiberufliche Arbeit in der
DV-Branche.

Pascal
mit dem C64

Dem Buch liegt ein leistungsfahiges Pascal-System mit Beispiel-
Programmen auf Diskette bei.

Buch und Compiler erméglichen jedem Besitzer eines C64 den Ein-
stieg in die moderne Programmiersprache Pascal.

Dem Anfénger wird ein Einfihrungskurs in Pascal geboten, wobei
viele liberschaubare Beispiele aus der Praxis und Ubungsaufgaben
zum aktiven Lernen mit dem C 64 auffordern. Beim Programmieren
wird er durch eine ausfihrliche Bedienungsanleitung des Systems
unterstitzt.

Fur den Pascal-Profi gibt es neben nutzlichen Beispielprogrammen
ein spezielles Kapitel mit Tips und Tricks.

Der Compiler akzeptiert den gesamten Sprachumfang mit einigen
Erweiterungen. Der Compiler bildet mit seinem sehr komfortablen
Full-Screen-Editor eine schnelle Einheit, so daB der Programm-
entwicklungsaufwand minimal ist. Ubersetzte Programme laufen
ohne weitere Hilfsprogramme auf jedem C64, nutzen den gesamten
Programmspeicher des C64 und sind 3-4mal schneller als vergleich-
bare Programme in BASIC.

Aus dem Inhalt:

® |eistungsféahiger Compiler mit Editor auf Diskette
® vollstdndiger Einfihrungskurs in Pascal

® Beispiele und Aufgaben

® Tips&Tricks fir den Profi

e ausflihrliche Bedienungsanleitung

Hardware-Anforderung:
C64 mit Floppy 1541-/1570-/1571-Laufwerk oder C128 (im 64er-
Modus) mit Floppy 1541-1570-1571-Laufwerk.

Markt&Technik

ISB N 3-89090-222-7

©)

DM 52,-

sFr 4780
405,60

