
Messen, steuern,
regeln

mit En
al N 3 Vy Il |

es,

LT ee

ANSTO CUA ER a rad

(AUS, SOSA NE SE AC 2

Cz commodore -—

Anders Andersson Arne Kullbjer

HALLER intelligente Arbeits- und Lernmittel

Messen, steuern,
regeln
mitde ATI ST

Anders Andersson Arne Kullbjer

HALLER intelligente Arbeits- und Lernmittel

Es wird keine Gewähr dafür übernommen, daß die in diesem Buch gegebenen An-
gaben, Warenbezeichnungen, Schaltungen, Programmlistings etc. frei von Schutz-
rechten Dritter sind. Alle Angaben, auch technischer Art, sind als unverbindliche

Hinweise zu betrachten, und in jedem Fall müssen die Unterlagen der Hersteller

zur Information konsultiert werden.

Wir bedanken uns bei der Firma Commodore Büromaschinen GmbH, Lyoner
Straße 38, 6000 Frankfurt 71, die uns durch Einräumung von Nutzungsrech-
ten an bestehenden Urheberrechten unterstützt hat.

© 1984 Anders Andersson, Arne Kullbjer und Liber, Stockholm

ISBN 91-40-20683-1

Übersetzung aus dem Schwedischen: Dipl.-Ing. Hugo Haller, Fachübersetzun-
gen, Saarbrücken

Titelgestaltung: Karlheinz Reinsch, Marketing, Saarbrücken
Reproreife Gesamtgestaltung: HALLER Verlag, Saarbrücken

Liber Tryck Stockholm 1984 304378

Inhalt

Kapitel 1: WIE DER COMPUTER ARBEITET _ccccscrsncrcccssacscaneccerssereee 9

Einführung _.........2222nesesosensnsensnnennennsssnnanssnenuenenunnsnsennennnnnensnsnnensonensensnanssnansenenenseen 10
Adressbusunseessssensnnunussnnsnnssnnnnnensnnneorennneennenennsenssnnensenännenennsernnsertnsn nennen armen 12

Datenbus2220sseessnensunsnennnnensennenarsnnensensnnnsonannsnarneenaennnenannsunenensenennenäennännneneenn 12
Steuerbuscnensuesensneensnnenenennnnnnnennenrennsanenennaternnsaenenronanasensannennsensnnsssersenensnsesenenn 13

Basic-Interpreteru22enscesenesnsennennennernenennennennnn nme rauen eneennaetnnsnsnenasnneerensnssertenanee 13
ASCH-Tabelleusrennesenenensenerenonnen nennen enunsnenanensnnnsennerunssnunnssansenaansnensnensennusennn 14
Betriebssystem oo... eee ee Eee REELED EEE EERE ORE EEE EEE EER EER 15
Eingabe-/Ausgabe-Kandle ..0. 0... ccc ccc ccc ee eee ce rene renee ence EEA E ESHER EE EDB ESE DOO ESAS REESE EaE 15

Anwender-Schnittstelleanssesuesenanasesseennensrennnnenenunanenennerasssnnensuenssnensasssensenasnrensenn 15
Kontaktbelegung der Anwender-Schnittstelle _.........uu.u.sucrnaneaenasununennanenensenanssnenssnssrnenen 17

Kapitel 2; VERWENDUNG DER ANWENDER-SCHNITTSTELLE 19

Stecker und Kabel ooo... cece eee cece cere cree ene eee een OLED E DEE A NOS CE EES RE SRSA EEO UT EEE EERE REGS 20
Binärcode oo. cce ce cece cece eee eee ne etek een ELAR EE AEE OEE E DEE ROA EOD D ARETE REAP AERO R ADEE EA HEARED EEE E SEE E EE 21

Grundsätzliches über die Eingabe-/Ausgabe-Kanäle
VIA (VC-20) und CIA (C-64) anecennsssnesenassenannnannenssnnsesansannsensssenenssneenssnnsssnrnnsrsen en 23
Register der E/A-Prozessorenemnsenssnnensenunnosnnanesnsnnannnsnssssnunssnansnsnnsnssnsnanesnenerese 23
Einschränkungen _.........ucnnesnsasssnnsnnnseunnensenaenononenaunannrnennssnssesenesansnsrnenunssneterensenennnnn 25

PEEK und POKE _................: unsnennenensntnsssenenensennenenntnsannersnnsnnennnärnesränsenennenensnnnnnntenn 25
Einige Experimenteenscereosennenenenessanenspensnanessonaunssnsnnnenaennssssnannensssessassnnesnnsersennen 26

Eine Leuchtdiode zum Leuchten bringen _............essnennessnaeesunenennsnnssnsnernenansenensannssnnannn 27
Eine Leuchtdiode blinken lassenecsuenennenenessesenenennensansensnensennssnensensanensnasnenss une 28
Schalter simulierenc.nserensenssanonensunenpenesuenseruannensnnennnnenenssennentnenerssrsnentenensnanneen 28

Kapitel 3: REGELN MIT DEM MIKROCOMPUTER _....esessssnnensosnenenenennnn SL

Programmschaltwerk _...........u2scsenenennsesnennsnnssnneuennnensnnnontanennnen nennen nennnnesennon nennen 32
Steuerung von Verkehrsampelnu.sssunsnennssnononnennesnenensusnnnensennnnennneenssonnesnennnen anna 33

Verstärker für größere Stromstärken ...cneneneseeennenssunssenennanennaensnsnesnessnnsunnnerensnanensnernnan 35
Relaisbetrieb_usenseossnanunnenanennuananaennsennnnennnensenenennenennnensnnnaeneeaneenetssnensenenenten 35
Halbleiterrelaisnusenseenssensennonnunssnonsnnnnnennnnnnsansnenssnnnensssnsnensennenennennanssnenannsnnnennen 37
Automatische Telefonwahluersensunnonsnennnnansnnnnnenuoneennnennrnonsoenennensnsaennsen nennen onen 38
Erzeugung analoger Signaleccnseessnennssenesunenseneennnennnensennrnnnenenennnessnnnnensennenoensrenssn 40
Widerstandsnetzwerk2nucsenensssuenanenssnnensnnennsnennennnnnnnnnnnnennenerenesonnnenenensenarto ernennen 40

ADTS23 eeeansnerennessnensnssensneensunsenenssenssnunnesenennennenenanussnnensnnsenssensusnsnansnnenerensarnneren 4
Veränderung der Pulsbreite2seansseensnsunensansansnunnenuunensunssnannannnreneenransnsenonsarnnnen 42
Steuerung von Gleichstrom-Motoren ..u...ocnesneeesessnerenennseseneenennnsensnsnerneensnnsnstessennnene 43

Kapitel 4: MESSEN MIT DEM MIKROCOMPUTER _cscccscsnececrsceerseress 45

Mengenmessung mit einer Fotozelleennaessesnesssnennsorenunennensnennesneneneeneennsesannsnenann 46
Basic-Programm222sensnsenaessssunesnsnnnesensrennnenesassennnnnannensennenennennssenssnsnnsennssnanseneenn 47
Rechner VC-20nssuseenensnsenermensonsnnanensnnansenneneensnnnennnn ran nen reerennanssnsnensnnennneennen 48
Rechner C-64 ucenunsunnnunsentwonnensussenunennessnaneranensnnansesssnernansensnessnussenensesssanssnasensseren 50

Frequenzmessungcsesneranensunenseneneennensnnssnonunnesnesunnannessessssenansnnsnassensnnsnessenensnenenen 51
Analoge Signale für den Computeruersusenenesnnannnnsennsunnnesnsnsnssnsenssnnensnnnsnnessrneesnsnne 52
Grundlagen der A/D-Wandlercessenssensnnesnensessnesuneensonennenneneenneennenssnnsnenennonenennenn 53
V/E-Wandlung mit LM 331 00.0... e eee ete ned te ened tate e deren ne rere eH eee Ee EEO EAb eRe 54

Temperaturmessung ccc cece cece cee eee een een n ne nee D OES E EA EAU E RHEE DHEA EERE EOS EO EER EEDA ES 58

Kapitel 5: MASCHINENSPRACHE _.eeesssossennossunsnsnensonsessonsnunnonsnsonnnennnnn OL

Was ist Maschinensprache? eeeneeneneeneenenenenensnnennssnspprronnerannnesnnanssssater onen asr es 62
Maschinensprache und Basic6...c:ccccceeecceeeeeee teen eeeecee cae eeteteeeeeeeeerensteeeeeees sateteeesesens 63
Programmieren in Maschinensprache auf dem VC-20 und C-64 2.0... cece teen eeeeteee eter eee 63
Der Akkumulator oo... ccc cece tent e eben ne eee n ERE EEE EEE DAO E EERE EEG EE ERO EE EEE HEE EE EE 64
Mnemonische Zeichen cece cece eee tence eee eee eee e Eee EEE EEE SAEED ECAR REET EE 64
Maschinen-Programme aufrufenu.eneessseesennnsesenenenenennsennernnnssannssssennnssnnassnnasnnen sen 65
Adressierungsartenccenenesssannsesenessentnsnnnennennneennnnenenannenannennassnensnensnnnrassn en rnnsenens 65
Programme in den Speicher eingebenu..-..enneneeneeneeennssoneneensnensnnnonsssonsesenen 69
Programmausführungueeeenenenensssereeneneenenennnnnensnnnsnrnesnes nern ennensnenennensssssnasnntnn 70
Impuls in Maschinensprache erzeugen eemesenengeneenesersssnennsesnne naar non enenpnn 71
VCMON und G4MON oor e ee ene ene crn e a eee eee np edna ne en Hn EE One E EAH ODHE FSH Ea eR Pena Sea den ee 74

Kapitel 6: DATENUBERTRAGUNG UBER DIE
RS-232-SCHNITTSTELLE ccssccccossnssssssseccessceccescsscesenseese 75

Was ist RS-232? occ cccccccceccnece eee eeee eee ened e nee LEED EE EUS E LAGU E EC OU ERE H AGH E ESSE HENS EE GAD CAH EEE EEaE 76
Signale und Steckverbinder uu.eneneneneeeneneenseneeeneesenesensnnenesesnnsenntonsentnnrenanen 78

Wahl von Übertragungsgeschwindigkeit, Wortlänge und Parität ueeeneneeennensneeneann 80
Signale senden und empfangenenssenennannenesenennnnnensernnsensennnnnnsesenennenennnsn nennen ssenn 81

Kapitel 7: DIE IEEE-SCHNITTSTELLE _..eesssasrsonsosnonssnsssnsansnansanunonsuneene 87

Die IEEE-488-Schnittstelle censssenenensensnenusnsanarnnensnrnnannnesanesnennessensensenernennenrursnan sn 88
Die IEEE-Schnittstelle des VC-20 und C-64 ueeeennseneaunsnastnnaneraresunerenonnansnsnseserennenenn 89

Signale und Stecker 00... cece cece EEE EEE EEE ERE E EEE UE E EEA E EERE 89
Verwendung der IEEE-Schnittstelle 2000... cece cece cece ese eee eee e reer ne ee eanen ee ca neene een nen ane eees 89

Kapitel 8: EINIGE PRAKTISCHE VERSUCHE ...ereesonersonsenonnenensenenennenen OL

Lichtstift cueseesensupnnernennnnusnannarnsennnenenensarteonnsennsenersnenersenssnensnarsennennensenttsnsneennaren 92
Datalogger2..unesseseansneennennenennnnesnnnnnonessnanessennssenenensnenenennensnesnensaansenennrnenennnn 95
Temperaturregelungnuaceenseeseserensesnenennnesenneentnennenenennenensenensasnnepssnsensssensesersenennn 101
Steuerung eines Schrittmotorsuensssaresneannennensennnnnennnarsnsnennnsenensseesnennessssnasen nennen 103

Anhang A: Register der Mikroprozessoren 6502 und 6510cccccsscsscnssecrcecsseessneee 107

Anhang B: Befehlssatz der Mikroprozessoren 6502 und 6510s0000000 srerssenonnnsennenn 111

Anhang C: Tabelle für Binärzahlen und deren
Dezimaldarstellung —...........scsssessscsscescosesserscennecseeacnenonesseenaneenessse ereern 133

Vorwort

Ein wichtiger Anwendungsbereich von Computern ist die Überwachung und |
Steuerung von Prozessen und das automatische Aufnehmen von Meßwerten.

Dieses Buch soll grundlegende Kenntnisse über das Messen und Regeln mit
Mikrocomputern vermitteln und die Verwendung des VC-20 und C-64 bei

einigen Prozessen zeigen.

Um den Inhalt des Buches anwenden zu können, sind Grundkenntnisse der

Programmiersprache BASIC erforderlich und für einige Versuche auch
Kenntnisse der Dateiverwaltung. Außerdem sind Grundkenntnisse der Digital-

technik nützlich.

Das Buch wurde von Lennart Bergström, Computer-Presse-Verlag, bearbei-

tet.

Linköping, im Januar 1984

Die Autoren

ı KAPITEL 1)

Wie der Computer

arbeitet

=——VCc-20 C-64 —

Einführung

Bisher haben Sie wahrscheinlich Ihren Computer zum Rechnen, Speichern
und Verarbeiten von Daten benutzt und die Ergebnisse auf dem Bildschirm

oder Drucker ausgegeben. Dies sind sehr häufig vorkommende Anwendungs-

bereiche für Computer. Schätzungsweise 90 % der Personal-Computer wer-
den für Textverarbeitung und Berechnungen eingesetzt. Computer haben je-

doch eine weitere wichtige Funktion: Sie stellen ein ausgezeichnetes Hilfsmit-
tel zur Überwachung und Steuerung von Prozessen und zur automatischen

Meßwerterfassung dar. Der VC-20 und der Commodore-64 (wir nennen ihn

der Kürze wegen C-64) bilden hier keine Ausnahme, sie sind vielmehr für
diesen Anwendungszweck hervorragend gut geeignet.

Im vorliegenden Buch werden wir die grundlegenden Begriffe über das Mes-
sen, Steuern und Regeln mit Computern erläutern und im weiteren den VC-

20 und C-64 in einige Meß- und Regelprozesse einschalten, um wenigstens ei-
ne Andeutung von den großen Möglichkeiten des Gerätes zu zeigen, die in

ihm stecken.

Zuerst müssen wir uns jedoch ansehen, wie ein Computer prinzipiell arbeitet.

Wenn wir die Grundlagen dafür erarbeitet haben, können wir leichter verste-
hen, welche Grenzen vorhanden sind und welche Möglichkeiten es gibt, diese

zu umgehen.

Arbeitsweise des Computers

Adressen-/Daten-/Steuerbus

Zentral- Haupt- Ein-/Aus- Periphere

Einheit Speicher gabe Einheiten

Abb. 1.1

10

Das Bild zeigt das Blockschaltbild eines Computers. Dieses Blockschema ist
sehr allgemein gehalten . Im Prinzip sind alle Computer so aufgebaut, nicht

nur der VC-20 und C-64. Wir wollen nun die Funktionsweisen naher betrach-

ten.

Die Zentraleinheit führt Berechnungen und die Dateiverwaltung für den
Speicher und angeschlossene Geräte durch.

Der Speicher enthält teils die Programme, die der Zentraleinheit mitteilen,

was zu tun ist, teils Daten. Der VC-20 und C-64 enthalten zwei Speicherar-

ten, den sogenannten Nur-Lese-Speicher »ROM« (Read Only Memory) und

den Schreib-/Lese-Speicher »RAM« (Random Access Memory). Beide Arten

sind Halbleiterspeicher, d. h. integrierte Schaltkreise, die aus Zehntausenden

von Transistoren auf einem Siliziumchip bestehen, so groß etwa wie ein hal-

ber Fingernagel!

Die Nur-Lese-Speicher sind vom Hersteller fest programmiert und können

nicht verändert werden. Im VC-20 und C-64 sind im wesentlichen zwei Pro-

gramme im ROM enthalten: das Betriebssystem und der BASIC-Interpreter.

Abb. 1.2 VC-20 Mikroprozessoren

11

Abb. 1.3 C-64 Mikroprozessoren

Adressbus

Gehen wir für einen Augenblick zurück zu Abb. 1.1! Die Verbindung zwi-
schen Zentraleinheit, Speicher und Eingabe-/Ausgabe-Kanälen wird als Bus

bezeichnet und besteht aus einer Anzahl elektrischer Leitungen, die jede für

sich eine | oder 0 übertragen können. Man unterscheidet zwischen Adreßbus,

Datenbus und Steuerbus.

Der Adreßbus (der im VC-20 und C-64 aus 16 Leitungen besteht) läßt die

Zentraleinheit bestimmen, welchen Platz, welche Speicheradresse und wel-

chen Eingabe-/Ausgabe-Kanal (E/A-Kanal) sie zum Lesen oder Schreiben

verwenden will. Man sagt, daß die Zentraleinheit den Speicher bzw. den E/

A-Kanal (E/A-Adresse) adressiert. Die 16 Adreßbus-Leitungen gestatten den

Zugriff zu 2° = 65536 Adressen.

Datenbus

Der Datenbus besteht beim VC-20 und C-64 aus 8 Leitungen. Er wird zum

12

Informationsaustausch zwischen Zentraleinheit einerseits und einem adres-

sierten Speicherplatz oder einem E/A-Kanal andererseits benutzt. Die 8 Da-
tenleitungen können jeweils eine achtziffrige Binärzahl übertragen. Informa-

tiker nennen eine solche achtziffrige Binärzahl »8-Bits« oder ein Byte (wird

Beit gesprochen). Das Wort Bit stammt eigentlich vom englischen »binary

digit«, Binärzahl. »Byte« ist englischer Computerslang und heißt wörtlich
»Mundvoll«. Ein Byte ist die Informationsmenge, die die Zentraleinheit (Mi-

kroprozessor) im VC-20 und C-64 je Arbeitsschritt verarbeiten kann. Für die

ASCIH-Zeichen paßt das wunderbar: Die 128 verschiedenen Zeichen können

in nur 7 Bits untergebracht werden (27 = 128).

Wie in aller Welt schafft es aber der Computer, Rechnungen mit so vielen
Ziffern auszuführen? In 8 Bits ist ja nur für Zahlen zwischen O und 255 Platz.
Kein Problem, der Computer kann große Zahlen verarbeiten, weil er nur je-

weils einen kleinen Teil davon verwendet. Die Rechenzeit wird dadurch na-

türlich länger, das Ergebnis liegt aber trotzdem »blitzschnell« vor, wie Sie

schon bemerkt haben werden. Die Übertragung von 8-Bit-Daten dauert nur

wenige Mikrosekunden. Die Multiplikation von zwei 9-ziffrigen Zahlen dau-

ert nur wenige Hundertstel Sekunden!

Steuerbus

Der Steuerbus beim VC-20 und C-64 besteht aus 10 bis 20 Leitungen, jede

mit einer speziellen Steuerfunktion. Es gibt z. B. eine Leitung, die angibt, ob

der Mikroprozessor aus dem Speicher lesen oder in ihn schreiben soll. Eine

andere Leitung stellt den Computer beim Start auf definierte Startbedingun-

gen. Für die Computerbauer ist der Steuerbus wichtig; uns nützen solche De-

tails aber wenig, und wir gehen somit hier nicht näher auf sie ein.

Basic-Interpreter

Der Basic-Interpreter liegt im Nur-Lese-Speicher (ROM) des VC-20 und C-
64, Abb. 1.2 und 1.3. Der Basic-Interpreter übersetzt Basic-Programme in

Binärzeichen, die von der Zentraleinheit verstanden werden. Ein Binär-Code

besteht aus Einsen und Nullen. Es entspricht eine Eins z. B. +5 V und eine
Null OV. Sobald Sie den Computer einschalten, beginnt er, Teilprogramme

des Betriebssystems auszuführen. Über die Tastatur kann jetzt das Basic-Pro-
gramm eingegeben werden, das der Computer ausführen soll. Jedes der ein-

gegebenen Zeichen wird im Schreib-/Lese-Speicher (RAM) in kodierter Form

als eine Folge von Einsen und Nullen gespeichert. Die verwendeten Zeichen
werden ASCII-Zeichen genannt. Die ASCII-Zeichen sind Ihnen gewiß schon

früher begegnet, wenigstens, wenn Sie das Buch »Programmieren in BASIC

13

auf dem VC-20 und Commodore-64« gelesen haben. Dort bestanden die
ASCIH-Zeichen jedoch aus gewöhnlichen Dezimalzahlen zwischen 0 und 127.

ASCII-Tabelle

ASCII Zeichen ASCII- Zeichen ASCI- Zeichen

Code Code Code

000 NULL 043 + 086 V
001 SOH 044 , 087 Ww

002 STX 045 - 088 x
003 ETX 046 . 089 Y
004 EOT 047 / 030 zZ
005 ENO 048 0 091 [

006 ACK 049 1 092 bkslash
007 BEL 050 2 093]
008 BS 051 3 094 up arrow
009 HT 052 4 095 back arr
010 LF 053 5 096 space
011 VT 054 6 097 a
012 FF 055 7 098 b
013 CR 056 8 099 c
014 so 057 9 100 d
015 Si 058 : 101 e
016 DLE 059 ; 102 f
017 DCI 060 < 103 g

018 DC2 061 = 104 h
019 DC3 062 > 105 i

020 DCA 063 ? 106 i
021 NAK 064 @ 107 k

022 SYN 065 A 108 |
023 ETB 066 B 109 m
024 CAN 067 Cc 110 n

025 EM 068 D 111 o
026 SUB 069 E 112 p
027 ESCAPE 070 F 113 q
028 FS 073 G 114 r
029 GS 072 H 115 s

030 RS 073 | 116 t
031 US 074 J 117 u
032 SPACE 075 K 118 Vv
033 ! 076 L 119 w
034 . 077 M 120 x
035 # 078 N 121 y

036 $ 079 oO 122 z
037 % 080 P 123 ;

038 & 081 Q 124 <
039 ‘ 082 R 125 ==
040 (083 S$ 126 >
041) 084 T 127 DEL

042 * 085 U

Abb. 1.4. ASCll-Tabelle

14

Der ASCII-Code für den Buchstaben A ist 65, und für die Zahl Eins ist er

49. Der Computer behandelt die betreffenden Zeichen in binärer Form als
achtziffrige Binärzahlen. Der Buchstabe A mit dem ASCH-Zeichen 65 wird
als Binärzahl 01000001, die Ziffer 1 mit dem ASCII-Zeichen 49 als Binärzahl

00110001 abgelegt. Beim Ausschalten des Computers verschwinden durch

Wegfall der Spannung alle Informationen im Schreib-/Lese-Speicher (RAM)!

Betriebssystem

Das Betriebssystem ist ein Programm, das u. a. den Computer die Tastatur
abfragen und feststellen läßt, welche Taste gedrückt wurde und danach fest-

legt, was danach durchzuführen ist. Obwohl das Betriebssystem weit mehr
Aufgaben hat, ist es hauptsächlich für den Datenfluß verantwortlich, der zwi-

schen Tastatur, Bildschirm, Disketten, Kassettengerät, Drucker und Anwen-

derprogrammen stattfindet.

Eingabe-/Ausgabe-Kanäle

Aus Sicht der Zentraleinheit besteht kein Unterschied zwischen dem Schreib-/
Lese-Speicher und den E/A-Kanälen. Für den Anwender bestehen jedoch er-

hebliche Unterschiede. Die Informationen, welche die Zentraleinheit in Form

einer 8-Bit-Binärzahl an einen Ausgabe-Kanal weitergibt, kann an einem der
Kontakte einer externen Steckerleiste abgenommen und zur Steuerung einer

externen Einheit verwendet werden. Die Information, welche die Zentralein-

heit an den Schreib-/Lese-Speicher weitergibt, bleibt dagegen im dunkeln, da
nur die Zentraleinheit den Speicher wieder lesen kann! Entsprechend verhält

es sich mit einem Eingabe-Kanal. Der Anwender kann von außen ein 8-Bit-
Binär-Zeichen eingeben, das die Zentraleinheit durch Lesen des Eingabe-Ka-

nals aufnehmen kann.

Anwender-Schnittstelle

Die Anwender-Schnittstelle des VC-20 besteht hauptsächlich aus einem inte-
grierten Schaltkreis (Chip) mit der Bezeichnung 6522. Der Hersteller nennt
sie oft VIA (engl.: Versatile Interface Adapter). Beim C-64 wird dieser Chip
CIA (Complex Interface Adapter) genannt mit der Bezeichnung 6526. Im Zu-

sammenhang mit Computern stellt eine Schnittstelle (engl. interface) eine
Anordnung dar, die es dem Computer gestattet, an andere Einheiten zum

Transfer von Daten und Steuerimpulsen angeschlossen zu werden. Im VC-20

15

und C-64 sind Schnittstellen für die Tastatur, den Anschluß von Joysticks (für
Spielprogramme) und eines Modems (Anschluß an das Telefonnetz) vorhan-
den. Alle eingebauten Schnittstellen haben etwas gemeinsam: Sie benutzen
die obengenannten integrierten Schaltkreise VIA oder CIA. Insgesamt ent-

halten der VC-20 und der C-64 2 dieser VIA- bzw. CIA-Bausteine, jeder mit

2 sogenannten E/A-Kanälen. Wenn die eingebauten Schnittstellen ihren Auf-
gaben entsprechend belegt sind, verbleibt eine Schnittstelle für den Anwen-

der, die Anwender-Schnittstelle.

WETTE Om we we

Ri
Aa
sei |
BE

Abb. 1.5 6522 VIA (VC-20)

Die 8 Anschlüsse der Anwender-Schnittstelle (und ein paar weitere Leitun-

gen) sind an cinen Stecker an der Rückseite des Computers geführt. Der Her-

steller bezeichnet diesen Stecker als Anwender-Schnittstelle (engl.: user

port). Nun wissen wir, was unter einer Schnittstelle (oder interface) zu ver-

stehen ist!

Anwender-Schnitistelle
(User Port)

Abb. 1,6 Rückseite des C-64

16

Kontaktbelegung der Anwender-Schnittstelle

Die Signale werden an die Kontaktklemmen, wie in Abb. 1.7, geführt. Im

nächsten Kapitel werden wir uns ansehen, was die verschiedenen Signale be-

deuten und wozu sie verwendet werden.

Pin No. VC-20 C-64

1 GND GND
2 +5 V (100 mA max) | +5V (100 mA max)
3 RESET RESET
4 JOYO CNTI
5 JOY1 SP1
6 JOY2 CNT2
7 LIGHT PEN SP2
8 CASSETTE SWITCH | PC2
9 SERIAL ATN IN SERIAL ATN IN

10 +9 V (100 mA max) | 9 V AC (50 mA max)
11 GND 9 V AC (50 mA max)
12 GND GND
A GND GND
B CBI FLAG
Cc PBO BPO
D BP1 PBi
E BP2 PB?
F PB3 PB3
H PB4 PB4
J PB5 PB5
K PB6 PB6
L PB7. PB7
M CB2 PA2
N GND GND

Abb. 1.7 Kontaktleiste des VC-20/C-64 mit Pin-Belegung

Adresse der Anwender-Schnittstelle

Diese hat im VC-20 die Adresse 37136 und im C-64 die Adresse 56577. Vor
dem Start ist es jedoch erforderlich, dem VIA- bzw. CIA-Prozessor mitzutei-

len, ob er als Eingang oder Ausgang benutzt werden soll. Im nächsten Kapi-
tel wird erläutert, wie das geschieht.

17

(KAPITEL 2)

Verwendung der

Anwender-

Schnittstelle

=——VC-20 C-64 ——

Stecker und Kabel

Um mit dem User-Port (E/A-Kanal) Versuche machen zu kénnen, brauchen

Sie Kabel und einen geeigneten Stecker und auch eine Platine, auf der Sie

schnell und einfach eine Schaltung verdrahten können. Es gibt mehrere han-

delsübliche Stecker, die auf die Anwender-Schnittstelle des VC-20 und C-64
passen. Der Stecker muß 2x12 Kontaktklemmen aufweisen, Teilung 0.156”.
Am besten löten Sie ein Flachbandkabel mit verschiedenfarbigen Adern an

den Stecker. Dazu eignet sich ein 16-adriges Kabel, 0,5 bis 1 m lang. Auf der
anderen Seite wird ein DIP-Stecker mit 16 Anschlüssen angebracht.

Abb. 2.1 Kabel mit Stecker

Bei den folgenden Versuchen gehen wir davon aus, daß Sie dieses Kabel be-
nutzen. Die Verdrahtung muß folgendermaßen erfolgen:

INN an
AR _ “ 3¢—— 16 PIN,

1 DIP-Stecker

x 8

e e oO oO oO oO oO oO oO ‘

VC-20/C-64
0 “ ow

Abb. 2.2

20

Tabelle der PIN-Belegung

VC-20/C-64 DIP Signal

B 16 CB1 {FLAG)
Cc 1 PBO
D 2 PBI

E 3 PB2
F 4 PB3
H 5 PBA
J 6 PB5
K 7 PB6
L 8 PB?
M 9 CB2 (PA2)
N 12 GND
1 15 GND
2 14 +5V

7 13 LJUSPENNA (SP2)
11 10 GND (9 VAC)
12 11 GND (GND)

Binärcode

Wir beginnen, uns dem Hauptziel dieses Kapitels zu nähern, nämlich den
Computer die Elektronik außerhalb des Computers beeinflussen zu lassen,

und zwar über die Anwender-Schnittstelle. Damit wir wissen, wie das funk-

tioniert, müssen wir uns jedoch zuerst mit Binärzahlen beschäftigen.

Wir Menschen werden von Kind an darauf gedrillt, Dezimalzahlen zu benut-

zen, d. h. Zahlen mit den Ziffernsymbolen 0 bis 9. Es kann daher sein, daß

Sie das bindre Zahlensystem mit seinen zwei Ziffernsymbolen (0 und 1) etwas

befremdet. Das Dezimalsystem hat übrigens die Basis 10, das binäre System

die Basis 2.

Wie kommt es eigentlich, daß wir größere und kleine Zahlen im Dezimalsy-
stem ausdrücken können, obwohl es nur zehn Ziffernsymbole gibt? Wie kön-
nen wir wissen, ob die Zahl 186,37 »Einhundertsechsundachtzig Komma sie-

benunddreißig« bedeutet? Nun, der Kniff bei der Sache ist, daß die Stellung
einer Ziffer im Verhältnis zum Komma dieser Ziffer ein bestimmtes Gewicht
oder einen bestimmten Wert darstellt. 186,37 ist eigentlich eine Abkürzung
für

1x100 +8x10 +6+1+3x Yo + 7x Yun

21

Eine sehr brauchbare Abkürzung, nicht wahr? Mathematiker würden viel-

leicht lieber so schreiben:

1x10? + 8x10! + 6x10° + 3x 10”! + 7x 10”?

Sie verstehen jetzt sicherlich, warum wir die Basis des Dezimalsystems 10
nennen.

Das binäre System ist auch ein solches Positionssystem, d. h. die Stellung der
Ziffern bestimmt deren Gewicht oder Wert. Im Binärsystem ist der Gewichts-

faktor natürlich 2 und nicht zehn.

Die binäre Zahl 101101.01 ist folglich die verkürzte Schreibweise für

1x2° + 0x2* +1x2° +1x2? +0x2! +1x2° +0x2”! +1x2°°

oder, wenn Sie so wollen,

1x32 + Ox16 + 1x8 + 1x4 + 0x2 + 1x1 + 0xla + 1x1.

Die Summe der Einzelwerte ergibt den Dezimalwert der Binärzahl, mit der

wir begannen. Die Summe beträgt 45,25. Sie kennen jetzt also eine Methode,
mit der Sie Binärzahlen in die entsprechende Dezimalzahl umrechnen kön-

nen. Abb. 2.3 ist nützlich, wenn Sie irgendeine 8-Bit-Binärzahl von der Basis
2 in die Basis 10 umwandeln wollen (oder umgekehrt).

Wert Wert Wert Wert Wert Wert Wert Wert

128 64 32 16 8 4 2 1

Abb. 2.3

Jedes Kastchen kann eine Eins oder eine Null enthalten. 10101100, ist also
gleich 1724p.

L Bezeichnet Basis 10 Bezeichnet Basis 2

Die Umwandlung in die andere Richtung ist schwieriger, aber es geht! Z. B.

kann 135 in die Teilsummen 128 + 4 + 2 + 1 aufgeteilt werden, d. h. 135jo

= 10000111>.

Für die Umrechnung gibt es Tabellen, die uns die mühselige Arbeit des Aus-

rechnens ersparen. Sie finden eine solche Tabelle in Anhang 3.

Grundsätzliches über die Eingabe-/Ausgabe-Kanäle VIA (VC-20)
und CIA (C-64)

Die VIA- und CIA-Schnittstellen sind ganz allgemeine Eingabe-/Ausgabe-
Kanäle (E/A-Kanäle) mit vielen möglichen Verwendungen. Für unsere

Zwecke reicht glücklicherweise eine vereinfachte Betrachtung. In den folgen-
den Abschnitten wird nur so viel darüber gesagt, daß Sie den VC-20 und C-64

als Prozeßrechner verwenden können. Wollen Sie zu einem späteren Zeit-
punkt mehr darüber wissen, sollten Sie die Datenblätter des Herstellers der

Prozessoren 6522 (VIA) und 6526 (CIA) einsehen.

Register der E/A-Prozessoren

Die E/A-Bausteine enthalten nicht weniger als 16 verschiedene Bit-Register,
die der Anwender alle erreichen kann. Aus Sicht des Computers ist ein Re-

gister eine Speicherstelle, und die Zentraleinheit kann jedes Register lesen

und beschreiben. Jedes Register hat eine bestimmte Adresse. Die Register in

dem E/A-Baustein, der die Anwender-Schnittstelle bildet, haben Adressen,
die für den VC-20 im Bereich 37136-37151 und für den C-64 im Bereich
56576-56591 liegen. Der Anwender kann die Funktion der E/A-Bausteine bis

in alle Einzelheiten festlegen, wenn er die passenden Daten in den Registern

ablegt. VIA und CIA sind, wie gesagt, sehr komplexe Schnittstellen. Sie ent-
halten z. B. zwei Timer (Zeitgeber und Zeitmesser), einen seriellen Ausga-

bekanal und eine parallele Drucker-Schnittstelle. Die Register überwachen all
das und noch einiges mehr.

Wir müssen uns zunächst nur mit 2 der 16 Register beschäftigen. Das eine ist
die Anwender-Schnittstelle selbst. Über sie läuft der Informationsaustausch

mit den angeschlossenen Geräten. Das andere ist das Datenrichtungsregister.

Jeder E/A-Kanal besteht eigentlich aus 2 Hälften, genannt A und B. Es gibt
also 2 Schnittstellen und 2 Register. Wir verwenden den B-Teil und haben da-

her Zugang zu Schnittstelle B und Register B.

m

a

Beim VC-20 hat die Schnittstelle B die Adresse 37136 und das Datenrich-

tungsregister 37138. Beim C-64 hat Schnittstelle B die Adresse 56577. Daten-

richtungsregister B hat die Adresse 56579.

Die 8 Anschlüsse an Schnittstelle B haben die Bezeichnung PBO-PB7. Der

Zugang erfolgt über den DIP-Stecker des Kabels:

Masse

. . e« e @ 08 08 08 @ (Draufsicht) 16 15 14 13 12 11 10 9

PBO PB1 PB2 PB3 PB4 PBS PB6 PB7

Abb. 2.4

Wenn Sie den Computer die Information über Schnittstelle B ausgeben las-

sen, dann sind die Signale am DIP-Stecker als »1«. oder »0« (+5V oder 0V)
zugänglich. PBO ist das LSB (least significant bit), das Bit mit dem niedrig-

sten Stellenwert. Da nur 8 Bits angesprochen werden können, ist die größte

Zahl, die ausgegeben werden kann, 255,, = 11111111,. Die Zahl 135, =

10000111, läßt folgende Signalkombination an Schnittstelle B entstehen:

PB7 PB6 PBS PB4 PB3 PB2 PBI PBO
+5V OV OV OV OV +5V +5V +5V

Bevor Sie etwas ausprobieren, müssen Sie jedoch wissen, welchen Einfluß
das Datenrichtungsregister hat. Datenrichtungsregister B enthält auch 8 Bits.

Jedes Bit bestimmt die Richtung (d. h. Eingang oder Ausgang) eines der 8

Datenkanäle der Schnittstelle B. Wünschen Sie, daß alle 8 Datenkanäle PBO-

PB7 Ausgänge sein sollen, so müssen zunächst 8 Einsen in das Datenrich-

tungsregister B geschrieben werden, d. h. 11111111, = 255,,. Wollen Sie da-

gegen, daß alle Datenkanäle PBO-PB7 Eingänge sein sollen, dann müssen 8
Nullen ins Datenrichtungsregister B geschrieben werden, d. h. 00000000; =

O0. Ein- und Ausgänge können nach Gutdünken gemischt werden. Wollen

Sie z. B. PBO und PBI zu Ausgängen und die übrigen zu Eingängen machen,

verfahren Sie wie folgt:

24

Datenrichtungs-

register B 0 0 0 0 0 0 1 1

PB7 PB6 PBS PB4 PB3 PB2 PB1 PBO

Schnittstelle B

\ /\ /
Vv V

Eingänge Ausgänge
Fig. 2.5

Sie schreiben also die Zahl 00000011, = 3,, ins Datenrichtungsregister B, d.

h. in Adresse 37138 (56579 im C-64). Im nächsten Abschnitt werden wir se-

hen, wie man Register liest und in sie schreibt. Vorher noch einige Worte zur

Warnung.

Einschränkungen

E/A-Kanäle können beschädigt werden, wenn die Herstellerforderungen an
Signale nicht eingehalten werden. Denken Sie deshalb daran, daß beim Ver-
wenden eines E/A-Kanals als Eingang die Spannung des ankommenden Sig-

nals zwischen 0 und +5V liegen muß. Spannungen zwischen 0 und 0,8V wer-

den als OV betrachtet, Signale mit einer Spannung zwischen +2,4V und +5V

als 1. Wenn ein E/A-Kanal als Ausgang benutzt wird, kann er mit maximal
3mA bei 1,5V belastet werden. Er kann deshalb nur zum Steuern eines Lei-

stungstransistors oder einer Leuchtdiode dienen. Beachten Sie, daß die An-
wender-Schnittstelle bei +5V nicht mit mehr als 100mA belastet werden darf!

PEEK und POKE

Der Befehl PEEK erlaubt es, den Inhalt einer bestimmten Adresse zu lesen,

während POKE zum Schreiben in bestimmte Adressen verwendet wird. Wol-

len Sie z. B. einer Variablen den Wert zuordnen, der in Adresse 37136 (56577

beim C-64) steht, dann lautet der Befehl A=PEEK(37136) bzw.

A=PEEK(56577). A erhält einen Dezimalwert zwischen 0 und 255. Wiin-

schen Sie nur den Inhalt der Adresse 37136, so schreiben Sie natürlich

PRINT PEEK(37136) und drücken die RETURN-Taste. Der Computer ant-

wortet mit der Dezimalzahl, die dem Wert der Adresse entspricht. Es wird

daher PEEK benutzt, wenn Daten von der Anwender-Schnittstelle abgefragt

und an den Computer weitergeleitet werden sollen.

Wollen Sie eine Zahl (zwischen 1 und 255 dezimal) in eine bestimmte Spei-

cher-Adresse schreiben, müssen Sie den POKE-Befehl benutzen. POKE

37138,255 schreibt die Zahl 255 (d. h. 11111111) in die Speicher-Adresse

37138, was im übrigen dem VIA mitteilt, daß der Kanal B des VC-20 acht

Ausgänge haben soll. POKE 56579,255 führt Entsprechendes im C-64 aus.

Mit dem Befehl POKE 37136,1 wird die Zahl 1 (d. h. 00000001 binär) in die
Adresse 36136 geschrieben. Es werden dadurch im VC-20 am Kontakt PBO

der Anwender-Schnittstelle +5V angelegt. Mit dem Befehl POKE 565771

geschieht das Entsprechende im C-64.

Wir wollen jetzt einige einfache Experimente ausführen.

Einige Experimente

Wir schlagen vor, daß Sie für die Versuche eine Experimentier-Platine benut-

zen, auf der Sie die Bauteile verdrahten. Es gibt im Handel eine Vielzahl ge-
eigneter Experimental-Platinen.

BAER Rae
BER E MRR Ae =

Abb. 2.6

Verbindungen werden durch handelsüblichen isolierten Draht von 0,6 mm
Stärke hergestellt. Die übrigen Teile (Widerstände, Kondensatoren, Leucht-
dioden, Digital-Bausteine mit Sockel) passen direkt auf die Platine. Das gilt
auch für den DIP-Steckel der Anwender-Schnittstelle.

26

Eine Leuchtdiode zum Leuchten bringen

Schalten Sie eine Leuchtdiode zwischen PBO und Masse. Die Kathode der
Leuchtdiode wird an Masse angeschlossen. Der Kathodendraht ist etwas kür-
zer als der andere, kann jedoch auch etwas abgeschrägt sein.

 PBO ®

(Stift 1 des DIP-Steckers)

wv N Leuchtdiode

 Masse ©

(Stift 10 des DIP-Steckers)

Abb. 2.7

Abb. 2.8 Experimental-Aufbau

Folgendes Programm bringt die Leuchtdiode mit dem VC-20 zum Leuchten

(für den C-64 sind die Adressen zu ändern):

10 POKE 37138,255
20 POKE 37136,1

Testen Sie jetzt das Programm. Zeile 10 schaltet Schnittstelle B 8 Mal auf

Ausgang, Zeile 20 gibt eine »Eins« tiber PBO aus. Können Sie die Diode aus-

schalten?

Eine Leuchtdiode blinken lassen

Ob die Diode erlischt, wenn man die Zahl 0 in Schnittstelle B schreibt, d. h.

Adresse 37136? Wir wollen sehen, ob sie blinkt, wenn man das VC-20-Pro-

gramm in eine Schleife einbindet. (Für den C-64 bitte die Adressen entspre-
chend ändern).

10 POKE 37138,255 (8 Ausgänge)
20 POKE 37136,1 (Diode ansteuern)

30 POKE 37136,0 (Diode ausschalten)
40 GOTO 20 (Rücksprung und wieder einschalten)

Lassen Sie das Programm laufen. Sie stellen kein Blinken fest! Der Grund:
Das Ein- und Ausschalten geht viel zu schnell! Der Computer braucht nur

wenige Tausendstel-Sekunden für jede Zeile, d. h. die Diode blinkt ca. 500

Mal je Sekunde. Das menschliche Auge kann nicht so rasch folgen (das Auge
reagiert erst nach ungefähr V» Sekunde). Es sieht daher so aus, als leuchte die

Diode die ganze Zeit, wenn auch etwas schwächer.

Will man die Diode wirklich blinken sehen, muß man den Prozeß verlangsa-

men. Normalerweise verwendet man eine FOR...NEXT-Schleife, um eine

Verlängerung zu erreichen. Jede Runde der Schleife benötigt ca. 1 ms. Soll

die Diode !% Sekunde an und !% Sekunde aus sein, werden zwei FOR-

..NEXT-Schleifen gebraucht, jede 500 Runden lang. Beim VC-20 kann das

so aussehen:

10 POKE 37138,255 (8 Ausgänge)
20 POKE 37136,1 (Diode zum Leuchten bringen)
30 FOR I=1 TO 500 (Ve Sekunde warten)
40 NEXTI
50 POKE 37136,0 (Diode löschen)
60 FOR I=1 TO 500 (V2 Sekunde warten)
70 NEXTI
80 GOTO 20 (Zurückspringen und wieder

einschalten)

Jetzt blinkt die Diode einmal je Sekunde. Versuchen Sie auch andere Verzö-

gerungen zu erreichen.

Schalter simulieren

Wenn Sie an die Anwender-Schnittstelle nichts anschließen und PBO-PB7 of-

28

fen lassen, deuten die E/A-Kandle dies als »Einsen«. Das kommt daher, dah

PBO-PB7 intern über hochohmige Widerstände an +5V angeschlossen sind.
Probieren Sie folgendes VC-20-Programm aus:

10 POKE 37138,0 (8 Ausgänge)
20 A=PEEK(37136) (A wird der Wert der 8 Eingänge

zugeordnet)
30 PRINTA (Schreibt den Wert von A auf den

Bildschirm)
40 GOTO 20

Das Programm schreibt ständig den Dezimalwert der binären Zahl auf den

Bildschirm, die in Schnittstelle B eingegeben wird. Sind alle Eingänge offen,

‚wird 255 geschrieben, d. h. 11111111, binär. Wird stattdessen PBO auf Masse

gelegt, wird 254 angezeigt. Wird PB7 auf Masse gelegt, erscheint 127. Wer-
den alle Eingänge auf Masse gelegt, so erscheint natürlich 0. Probieren Sie

bitte einige Kombinationen aus!

Was macht man, wenn nur ein einziger Eingang interessant ist? Der VC-20
und C-64 haben einen Satz logischer Funktionen, die für diese Aufgabe wie
maßgeschneidert sind. Die logische AND-Funktion kann zum Maskieren
nicht erwünschter Informationen verwendet werden. Nehmen wir an, es seien
drei Schalter angeschlossen:

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO

Pritt] [|

sw2 sW1 SWO MASSE

Abb. 2.9

Nehmen wir an, es interessiere nur die Stellung des Schalters SW2, ange-

schlossen an PB2. Der Computer soll alle Information der Schnittstelle B mit
dem PEEK-Befehl abfragen (d. h. den Status aller acht Leitungen). Die sie-

ben nicht gebrauchten Bits werden mit entsprechenden Maskenbits und einer
AND-Funktion weggefiltert.

PB2 PB1 PBO

Schnittstelle B

Maskenbits

Abb. 2.10

Die AND-Funktion erzeugt Nullen in allen Positionen, in denen das Masken-

bit Null war. In der Position, in der das Maskenbit Eins war, erscheint die ur-

springliche Information der Schnittstelle B, d. h. 0 oder 1. In obenstehendem
Beispiel ist die Maske 00000100 (binär) = 4 (dezimal).

So sieht das Programm für den VC-20 aus (für den C-64 müssen die Adressen
entsprechend geändert werden):

10 POKE 37138,0 (8 Eingänge)
20 A=PEEK(37136)
30 B=A AND 4
40 PRINT B
50 GOTO 20

Wenn SW2 offen ist, wird 4 auf den Bildschirm geschrieben, wenn SW2 ge-

schlossen ist, wird 0 geschrieben. Die anderen Eingänge beeinflussen das Er-
gebnis nicht. Man kann sich die Maske als Pappscheibe mit einem »Guck-

loch« für die Einsen vorstellen. Nur die Bits, die man durch das Loch sehen

kann, beeinflussen das Ergebnis mit ihrer entsprechenden Wertigkeit.

30

(KAPITEL 3 >

Regeln mit dem

Mikrocomputer

=—=VC-20 C-64

Programmschaltwerk

Fir die sequentielle Steuerung werden oft elektromechanische Programm-

schaltwerke gebraucht. Man findet sie z. R. in Haushaltsmaschinen (Geschirr-

spülautomaten und Waschmaschinen) und in industriellen Prozeßsteuersyste-

men. Eine Schaltuhr verwendet man häufig, um potentielle Einbrecher glau-

ben zu machen, daß der Wohnungsinhaber zu Hause sei. Z. B. wird eine

Stehlampe um 19.15 Uhr ein- und um 22.35 Uhr wieder ausgeschaltet, auch

wenn sich der Wohnungsbesitzer im Süden in der Sonne aalt. Eine solche

Schaltuhr ist ein einfaches elektromechanisches Programmschaltwerk.

Abb. 3.1 Elektromechanisches Programmschaltwerk

Das Programmschaltwerk in z. B. einer Waschmaschine besteht aus einem
Synchronmotor und einem Getriebe, das die Drehzahl der Motorwelle auf ca.
1 Umdrehung je Stunde herabsetzt. Auf der Welle sitzen eine Reihe von
Nocken oder Kammscheiben, die während der langsamen Drehung der Welle

Mikroschalter ein- und ausschalten. Die Mikroschalter steuern, nach einem
durch die Kammscheiben festgelegten Programm, verschiedene Motoren,

Pumpen, Heizelemente und Ventile in der Maschine. Normalerweise kann

man auch die Drehung des Programmschaltwerks unterbrechen, bis eine be-

stimmte Bedingung erfüllt ist (z. B. bis ein Fühler bestätigt, daß die Maschine
wirklich mit Wasser gefüllt ist).

Moderne Haushaltsgeräte enthalten Mikroprozessoren,. die Relais und Moto-

ren über Schnittstellen steuern. In der Prozeßindustrie werden Prozeßrechner

für solche Steuerungsfunktionen eingesetzt. In diesem Kapitel wollen wir uns

einige solcher einfacher Regelkreise ansehen, mit denen der VC-20 und C-64

nutzbringend verwendet werden kann. Wir werden uns auch eine Schnittstelle

ansehen, die für die Regelung größerer Ströme und für die Erzeugung ana-

loger Signale gebraucht wird.

32

Steuerung von Verkehrsampeln

Zur Regelung von Verkehrsampeln an Straßenkreuzungen wird eine Regel-
folge verlangt, die eine Anzahl roter, gelber und grüner Lampen ein- und aus-

schaltet. In gewissen Fällen sollen Signale von Fühlern, die durch vorbeifah-
rende Fahrzeuge beeinflußt werden, die Regelfolge ändern. Zuerst wollen wir
uns ansehen, wie der Computer eine periodische Steuerfolge erzeugen kann.

Nehmen Sie hierzu möglichst rote, gelbe und grüne Dioden, die Sie an die

Anwender-Schnittstelle anschließen. Auf folgende Weise wollen wir eine

Verkehrsampel simulieren.

Straße 1 Straße 2

ROT eo PBO PB3

* PBI PB4
GELB x

| PB2 PB5

GRUN

Abb. 3.2 Verkehrsampel

Die Verkehrsampel wird nach Abb. 3.3 periodisch mit einem Zeitintervall
von 20 Sekunden gesteuert.

STRASSE 1

ROT PBO nenne

pe jun a

GELB PBi1
 GRÜN PB2

STRASSE 2

ROT PB3

GELB PB4 ||

GRÜN PB5

012345 67 8 9 1011121314151617181920 sek

Abb. 3.3 Steuerfolge einer Verkehrsampel 33

Als erstes muß festgestellt werden, welche Signalkombinationen in jedem

Zeitintervall erforderlich sind. Aus Abb. 3.3 ergibt sich folgende Tabelle:

Zeitintervall Ausgangssignal an der Anwender-Schnittstelle

(Sekunden) PB7 PBG6 PB5 PB4 PB3 PB2 PB1 PBO

Q--1 0 0 0 0 1 1 1 0

1--2 0 0 0 1 1 0 0 1

2-10 0 0 1 0 0 0 0 1

10-11 0 0 1 1 0 0 0 1

11-12 0 0 0 0 1 0 1 1

12-20 0 0 oO 0 1 1 0 oO
Da wir Daten mit dem POKE-Befehl ausgeben, müssen die Dezimalwerte

der Binärzeichen bestimmt werden (siehe Anhang C).

Zeitintervall (Sekunden) Dezimales Ausgangssignal

0--1 14

0--2 25
2-10 33

10-11 49

11-12 11

12-20 12

Die nötige Zeitverzögerung kann einfach mit FOR...NEXT-Schleifen (vgl.
Kapitel 2) erzielt werden.

Das Programm soll also den Computer die gewünschten Signale über Schnitt-
stelle B ausgeben lassen, etwas warten, erneut Daten ausgeben, warten, usw.

Am elegantesten macht man das, wenn die notwendige Information (Kombi-

nation der Ausgangssignale und Zeiten) in DATA-Zeilen enthalten ist. Mit

einem READ-Befehl kann der Computer die Daten einlesen und die erfor-
derlichen Maßnahmen ergreifen. Man kann z. B. die DATA-Zeile so schrei-

ben, daß jede zweite Eingabe ein Aus-Signal und jede zweite Eingabe eine
Zeiteingabe ist, z. B. so:

34

 Ausgangs-Signal Poy
DATA 14, 1, 25, 1,33, 8,49, 1,11, 1,12, 8

Vorschlag für ein Programm auf dem VC-20 (für den C-64 müssen die Adres-
sen geändert werden):

10 POKE 37138,63 (PBO-PB5 Ausgänge)
20 READ A,T (Ausgangs-Signal, Zeit lesen)
30 IF A=12 THEN (DATA-Zeile nochmals lesen)

RESTORE
40 POKE 37136,A (Einlesen)
50 FOR I=1 TO Tx800 (Zeitverzögerung T Sekunden)
60 NEXT |
70 GOTO 20
80 DATA 14,1,25,33,8,

49,1,11,1,12,8

Die Zeitverzögerung der Zeilen 50 und 60 wurde experimentell mit der Stopp-

uhr bestimmt! Finden Sie bitte heraus, wie einem Fühler in Straße 1 die Mög-

lichkeit gegeben werden kann, die Schaltfolge zu beeinflussen.

Verstärker für größere Stromstärken

Da an den E/A-Kanälen nur wenige mA abgenommen werden dürfen, ist oft
eine Verstärkerstufe notwendig. Wir wollen prüfen, wie man an einem A-Ka-
nal Relais anschließen kann.

Relaisbetrieb

Miniatur-Relais vom Typ »Reed-Schalter« können bei einer Schaltgleichspan-
nung von 100V 0,5A schalten, dürfen aber nur bis 10W belastet werden. Zur
Steuerung der Relais-Spule werden 20mA bei 5V gebraucht, was die Leistung
eines A-Kanals überschreitet. Mit einer einfachen Transistor-Verstärkerschal-

tung funktioniert das Ganze jedoch!

35

+ 5V

Reedrelais

77. 7
Silizium-Diode J | veo
IN 4148 I - -—

Von z.B. PBO

BC 167
Abb. 3.4 Relaisverstärker

Die Wahl des Transistortyps ist unproblematisch, jeder npn-Transistor klei-

ner Leistung ist geeignet. Die Aufgabe der Diode ist es, den Transistor zu

schützen, da beim Schalten der Relais-Spule Spannungsspitzen auftreten. Re-

lais zum Schalten größerer Leistung, z. B. Netzspannung von 220V und SA,

erfordern Spulen mit größerer Leistung. Ein normales Relais kann bis zu
100mA bei 5V aufnehmen. Die Schaltung nach Abb. 3.4 funktioniert auch

hier ganz ausgezeichnet. Wenn mehrere Relais gesteuert werden sollen, kann

es vorteilhaft sein, einen speziellen Relaisverstärker zu verwenden. Der Bau-

stein ULN200IA enthält 7 verschiedene Relaisverstärker (komplett mit

Schutzdiode). Jede Verstärkerstufe läßt sich mit 0,5A bei 50V belasten.

TYPE ULN2001A, DARLINGTON TRANSISTOR ARRAY

Duail-in-li ä i e 500 mA Kollektor-Nennstrom ual-in-ine Gehäuse (Draufsicht)

« Ausgangsspannung bis 50 V

«e Klemmdioden am Ausgang

 « Eingang kompatibel mit
diversen Logiktypen « Anwendungsgebiet: Relaisverstärker

e Austauschbar mit Bausteinen der
Sprague-ULN2001A-Serien

Beschreibung
Die Bausteine der Reihen ULN2002A, ULN2003A und ULN2004A sind monolithische Darlington-
Transistor-Arrays für hahe Spannungen und hohe Ströme. In jedem Baustein sind sieben npn-Dar-
lington-Transistor-Paare enthalten. Alle Einheiten haben Hochspannungsausgänge mit Klemmdio-
den (gemeinsame Kathode) zum Schalten induktiver Lasten. Der Kollektorenstrom für jedes Darling-
ton-Paar liegt bei 500 mA. Ein- und Ausgänge können für höhere Ströme jeweils parallel geschaltet
werden. Anwendungsgebiete sind u. a. Relaisverstärker, Hammertreiber, Lampentreiber, Display-
treiber (LED und Gasentladung), Leistungstreiber und Logikbuffer. Bausteine für 100 V (ansonsten
kompatibel) siehe bei SN75466 bis SN75469.

ULN2001A ist ein Universaibaustein, geeignet far DTL, TTL, P-MOS, CMOS usw. Der ULN2002A ist
insbesondere ausgelegt fir die Verwendung mit 14-25 V P-MOS Bausteinen. Hinter jedem Eingang
liegen eine Zenerdiode und ein Widerstand, um den Eingangsstrom sicher zu begrenzen.
Im ULN2003A gibt es einen Basis-Vorwiderstand für jedes Darlington-Paar. Damit wird direkter Be-
trieb mit TTL oder 5 V CMOS möglich. ULN2004A hat einen geeigneten Eingangs-Vorwiderstand,
um den direkten Betrieb mit CMOS oder P-MOS unter Nutzung der Speisespannung von 6-15 V zu
ermöglichen. Der benötigte Eingangsstrom liegt niedriger als der für ULN2003A, während die benö-
tigte Eingangsspannung kleiner ist als die für ULN2002A.

Schaltbild (je Darlington-Paar)

COM

Oil OUTPUT C
INPUT B

72k 3k

—— 4

7

Abb. 3.5 ULN 2001 A Verstärker VLNZODIA

Halbleiterrelais

Ein Halbleiterrelais besteht aus einem Optokoppler und einem Triac (oft

kommt eine elektronische Form der Nulldurchgangsregelung hinzu). In bezug

auf den Steuereingang stellt das Halbleiterrclais ganz einfach eine Leucht-

diode dar. Wenn die Diode leuchtet, wirkt das Licht auf einen Phototransi-

stor ein, der über die Nulldurchgangssteuerung den Triac leitend macht. Be-
achten Sie, daß dieser Relais-Typ sich nur für Wechselstrom eignet! Das

kommt daher, daß ein Triac nur geschaltet werden kann, wenn die Spannung

über ihn Null wird, also zwei Mal je Periode. Triacs eignen sich besonders für
das Schalten von Netzlasten. Sie verkraften zum einen große Stromstärken,
zum anderen hat das Fehlen beweglicher Teile eine große Zuverlässigkeit zur

Folge. Das Halbleiterrelais kann auf zwei Arten an den Ausgabe-Kanal an-

geschlossen werden, anhängig vom logischen Pegel des Ausgangssignals. Der

Ausgangskanal kann selbst zwar nur mit wenigen mA belastet werden, kann

aber die Steuerung von Strömen bei ca. 10 mA bewirken.

Halbleiterrelais

z. B.

PBO —+

EIN AUS

MASSE

Abb. 3.6a Der Aus-Kanal schaltet das Halbleiter-Relais

+5V Halbleiterrelais

Lf
z.B. EIN AUS

PBO

Abb. 3.6b Der Ausgabe-Kanal schaltet den Strom des Halbleiter-Relais ab

Automatische Telefonanwahl

Eine normale Wählscheibe eines Telefons unterbricht beim federgesteuerten
Rücklauf einen Stromkreis N-mal, wenn die gewählte Ziffer N ist. Bei einer

Neun entstehen also 9 Unterbrechungen, und bei einer Null sind es 10. Die
Rücklaufgeschwindigkeit wird durch einen Zentrifugalregler bestimmt, der ei-
ne Periodenzeit von 100 ms einhält. Die Unterbrechungszeit beträgt hierbei
60 ms.

Die Zahl »Vier« ergibt folgende Taktfolge:

Kontakt u

Unterbrechung

e ey
"60 a0) (Zeitinms)

100 |

Abb. 3.7

Es sind weder Periodenzeit noch Unterbrechungszeit sonderlich wichtig, Ab-

weichungen bis +10% können die Vermittlungsstellen ausgleichen.

Man kann den Computer natürlich so programmieren, daß eine Taktfolge auf
PBO wie die obige entsteht. Die Zahlen können in eine Tabelle im Speicher
geschrieben werden. Der Computer kann daher sowohl für die Ablage von

Telefonnummern als auch für das Anwählen einer Nummer benutzt werden.

38

Sie wissen bereits, wie man Takte einer gewissen Zeitdauer erzeugt. Die
Schwierigkeiten mit diesem Programm werden vermutlich mit dem Speichern

und Lesen der Nummerninformation entstehen. Das mit Sicherheit einfachste

Verfahren besteht darin, die Nummern Ziffer für Ziffer in DATA-Zeilen ab-

zulegen. Z. B. wird die Nummer 1234567 DATA 1,2,3,4,5,6,7 geschrieben.

Weiter braucht man einen READ-Befehl, um die Daten zu lesen und eine

Subroutine, welche die Takte erzeugt.

Wir definieren »Kontakt« als »Null« und »Unterbrechung« als »Eins« im

Ausgangs-Signal von PBO. Man könnte die Wählscheibe durch ein Relais am
PBO ersetzen, das verbietet jedoch die Post. Wir wollen daher das Ausgangs-

signal von PBÜ mit einer Leuchtdiode überprüfen.

10 POKE 37138,1 (PBO Ausgang)
20 READN (Ziffer lesen)
25 IF N=0 THEN N=10
30 FOR I=1 TON
40 GOSUB 80 (Taktlänge erzeugen)
50 NEXTI
60 END
70 DATA 1,2,3,4,5,6,7 (Telefonnummer)
80 POKE 37136,1 (Eine »Eins« ausgeben)
90 FOR J=1 TO 60: (60 ms warten)

NEXT J
100 POKE 37136,0 (Eine »Null« ausgeben)
110 FOR J=1 TO 40: (40 ms warten)

NEXT J
120 RETURN sche Anhang })

Die Subroutine ftir die Ausgabe einer einzigen Taktlänge beginnt in Zeile 80.
Die FOR...NEXT-Schleife in den Zeilen 30-50 erzeugt N Takte. Wiederho-
len Sie den Versuch mit einer anderen Telefonnummer in der DATA-Zeile.

Eine raffiniertere Variante des Programms wäre die Verwendung einer Tele-

fonnummer, die als »String« abgespeichert ist. Mit Hilfe der Stringfunktionen
(LEFT$, MID$, LEN usw.) können die einzelnen Ziffern der Telefonnum-
mer gelesen und die entsprechenden Taktfolgen erzeugt werden. Dadurch
entstehen ungeahnte Möglichkeiten, die automatische Nummernwahl über

ein auf Diskette gespeichertes Namen-/Nummernverzeichnis zu steuern. In-
teressante Möglichkeiten bieten sich da für Ihre private Telefonanlage! Den

39

Anschluß an das öffentliche Telefonnetz muß natürlich die Post erst geneh-
migen! Verwenden Sie nun Ihre Kenntnisse im Programmieren und Einsetzen
von Datenbanken und schreiben Sie ein Programm. Das elektronische Tele-
fonbuch muß man natürlich auch ändern können.

Erzeugung analoger Signale

Es lassen sich leider nicht alle peripheren Einheiten mit einfachen Ein-/Aus-
Signalen schalten. Will man z. B. die Drehzahl eines Gleichstrommotors steu-
ern, muß ein analoges Signal zur Verfügung stehen, d. h. eine stetig verän-

derliche Spannung. Da der Computer an den E/A-Kanälen digitale Signale,

also »Einsen« und »Nullen« erzeugt, ist eine Schnittstelle zur Umwandlung
des Signals, ein D/A (digital/analog) -Wandler erforderlich.

Widerstandsnetzwerk

Die meisten D/A-Wandler verwenden das Prinzip der Summenbildung binär
gewichteter Ströme, wo die Größe der Teilströme von der Wertigkeit der
Binärzahl abhängt. Z. B. in einem 8-Bit D/A-Wandler läßt man das Bit mit
dem niedrigsten Stellenwert die Stromquelle ansteuern, die z. B. 1 aA bei
»Eins« abgibt (und 0 „A bei »Null«). Das nächste Bit gibt 2 «A, das nächste

4 aA usw. Das Bit mit dem höchsten Stellenwert ergibt 128 „A bei »Eins«.

Die Ströme werden summiert und ergeben das Ausgangs-Signal des D/A-

Wandlers. Die Schaltung nach Abb. 3.8 enthält Relais als Schalter, gesteuert

von PBO-PB7.

U(ref} = 1V | _~_PBO 1ıMN

pai 1/2. MQ

pp2 1/4 MOQ

pp3 1/8 MO

1/16 MQ __PB4

pas 1/32. MN

PB6 1/64 MQ 1/128 MQ
Abb. 3.8 D/A-Wandler PB7

AUS

40

Die Stromquelle besteht aus geschalteten, binär gewichteten Widerständen
und einer konstanten Referenz-Spannung. Die ausgehende Stromstärke kann

alle Ganzzahlwerte von 0 bis 255 annehmen. Die Leerlaufspannung am Aus-
gang ist ebenfalls dem binären Eingangs-Signal proportional. Ein 8-Bit D/A-

Wandler hat eine Auflösung von Vs, d. h. 0,4 %. Die verwendeten Wider-

stände müssen natürlich entsprechend genau sein. In der Praxis werden nicht
Relais genommen, sondern Halbleiter-Schalter. D/A-Wandler kann man na-

türlich als IC kaufen und in den Computer einbauen. Ein 8-Bit Wandler kann

für ein paar Mark gekauft werden. Es wird sich kaum lohnen, ihn selbst zu

bauen. Im nächsten Abschnitt werden wir übungshalber einen D/A-Wandler

aufbauen, vorher sehen wir uns jedoch einen handelsüblichen IC mit der Be-
zeichnung AD 7523 an.

AD 7523

Der AD 7523 von Analog Devices ist ein typisches Beispiel für einen inte-

grierten D/A-Wandler. Im Inneren wird ein Widerstandsnetzwerk zur Stro-

merzeugung benutzt, die Steuerung erfolgt über eingebaute Halbleiterschal-
ter. Das Widerstandsnetzwerk sieht etwas anders aus. Es ist ein sogenannter

R/2R-Leiter, bei dem der Strom in jedem Knotenpunkt geteilt wird. Dadurch

ergeben sich binär gewichtete Teilströme, Abb. 3.9.

AD 7523 DIGITAL/ANALOG-WANDLER

EIGENSCHAFTEN Funktionsschema

Niedrige Kosten
Kurze Setzzeit: 100 ns Vaer
Niedrige Verlustieistung

Kleiner Wandiungsfehler:
{a LSB bei 200 kHz

Volle vier-Quadranten Multiplikation

10k 10k 10k

! Q ouT2

* © ouTt

1
1
1
t
! 40k
6 La AFEEDBACK

N MSB) BIT 2 BIT 3 BIT 8 {LSB}

ANWENDUNGEN

Batteriegetriebene Gerate

Niedrige Verlustieistung, radio-
metrische A/D Wandler

Digital steuerbare Verstarker-Schaltkreise
Digital gesteuerte Dämpfungsglieder
CRT-Zeichenerzeugung (CRT =

Kathodenstrahlröhre)

Rauscharme NF-Verstärkersteuerung

i
i
'
t
!
t

BITTE

DIGITAL INPUTS

41

ALLGEMEINE BESCHREIBUNG ;
Der AD7523 ist ein preisgünstiger, monolithi- ours [7] [16] Rreeosack
scher und verstärkender Digital/Analog-Wandier oura [77 115] Vrer IN
in einem 16-pin DIP (Dual-in-line-Gehause). Fur ano [2] [4] Von
den Baustein wird eine fortschrittliche Einkristall-,
Diinnschicht-CMOS Technologie benutzt, die ei- art 1 mse: [4 [13] we
ne 8-Bit Auflösung mit einer Genauigkeit von 10 er 2 [5] 12) NC
Bit bei sehr geringer Verlustleistung ermöglicht. air3 [6] 17] BIT 8 LSB}

Die hervorragende Verstarkercharakteristik und ara (7) 16) art?
die geringen Kosten des AD7523 erlauben seine ait s (8 ra] ait 6
Verwendung in unterschiedlichsten Einsatzberei-
chen, z. B. Steuerung rauscharmer NF-Verstär- TOP VIEW
ker, CRT-Zeichengenerierung, Steuerung von
Motordrehzahl, digital gesteuerte Dämpfungs-

glieder usw.

DIGITAL INPUT ANALOG OUTPUT

wow er 255 11111111 ~VREF (756)

10000001 VREF (256) v
- __VREF 10000000 ~VREF (356)=- 2 > Your

127 01111111 ~VREF (256)

00000001 ~VREF (533)
eno Vv Anmerkungen:

00000000 -V, (388) =0 1. Rt und R2 werden nur benötigt,
REF 125617 wenn eine Justierung der Ver-

stärkerleistung notwendig ist.
2. CR1 schützt AD7523 vor nega- - : 1 tiven Spitzenspannungen. Note: 1LSB = (238 KVRer) = 356 (Veer)

Abb. 3.9 AD 7523 Digital/Analog-Wandler

Veränderung der Pulsbreite

Ein ganz anderer Weg, ein analoges Signal zu erzeugen, besteht darin, von ei-
ner Pulsfolge mit konstanter Frequenz auszugehen. Die Pulsbreite muß pro-
portional zu der umzuwandelnden Zahl sein. Nach Bilden des Mittelwertes in
einem RC-Filter wird eine Gleichstrom-Komponente erhalten, die der Puls-

breite proportional ist und daher auch proportional zur ursprünglichen Zahl

st.

Ulein) & FE

E
C== Ufmitte) - PE

U(mittel) F
. >» © ®

x a
tp T

Abb. 3.10 D/A-Wandlung mit Veränderung der Pulsbreite

42

Mit einem Klein-Computer ist es einfach, eine Pulsfolge zu erzeugen. Die ein-

zigen extern erforderlichen Komponenten sind ein Widerstand und ein Kon-

densator. Der Nachteil der Methode besteht darin, daß es verhältnismäßig

lange dauert, das Ausgangssignal zu verändern. Mit einem Basic-Programm

ist es schwierig, eine Frequenz zu erzeugen, die höher als einige Hertz ist,

wenn die Pulsbreite in 256 Schritten (8 Bits) veränderlich sein soll. Die Zeit-

konstante des RC-Filters sollte wenigstens 20 bis 30 Mal größer sein als die

Periodenzeit. Das Ergebnis wird daher ein Wandler sein, der bis zu einer Mi-

nute braucht, um sein Ausgangssignal vom Mindest- zum Höchstwert zu ver-

ändern. Wir werden später sehen, daß ein Programm in Maschinensprache

das Problem der langen Reaktionszeit lösen kann.

Steuerung von Gleichstrom-Motoren

In diesem Abschnitt wollen wir uns ansehen, wie ein einfacher 4-Bit D/A-

Wandler gebaut werden kann, der mit einem Verstärker zur Steuerung eines

kleinen Gleichstrom-Motors dient. Ein 4-Bit D/A-Wandler kann 2* = 16 Ebe-

nen ergeben und eine Auflösung von !/6, d. h. 5 %. Diese verhältnismäßig ge-
ringe Anforderung an die Genauigkeit hat zur Folge, daß wir ein Wider-

standsnetzwerk verwenden können, das direkt vom Ausgangs-Kanal ange-

steuert wird. Es werden also keine Schalter benötigt! Andererseits müssen die

Widerstände ausreichend hochohmig sein, um eine übermäßige Belastung der
Ausgangs-Kanäle zu vermeiden. Es eignen sich Widerstände, die über 100

Ohm liegen.

800kN

PBO ——__}—_ +5V

400k |

PBI——[4 ca3140
200kQ

2 pa — It N
100kQ BD135

PB3 DJ} + Lmmmund 3 7 4

200KN I

3V Gleichstrom-Motor

a —_o—

Abb. 3.11 Steuerung eines Gleichstrom-Motors

43

Die Spannung +E darf nicht dem Computer entnommen werden, da die Strom-
abnahme auf 100 mA begrenzt ist. Ein kleiner Gleichstrom-Motor (Spielzeug-
motor) zieht jedoch mindestens 0,5 A. Der Motor sollte daher von einer 4,5V

Taschenlampen-Batterie oder einem externen 5V Netzteil gespeist werden.

Operationsverstärker und Leistungstransitoren wirken als Leistungsverstärker
mit der Spannungsverstärkung 1. Der 200 kOhm Widerstand nach Masse hin

soll den D/A-Wandler belasten, so daß die am Operationsverstärker anliegen-

de Spannung von 3V nicht überschritten wird. Um den Motor laufen zu las-
sen, ist für den VC-20 ein nur zweizeiliges Basic-Programm erforderlich. (Für

den C-64 müssen dementsprechend die Adressen geändert werden.)

10 POKE 37138,31 (PBO-PB3 Ausgang)
20 POKE 37136,15 (Drehzahl)

Wenn Sie dieses Programm laufen lassen, sollte der Motor mit maximaler
Drehzahl laufen. Wird die Zahl 15 auf 10 geändert, läuft der Motor bedeu-

tend langsamer. Probieren Sie es aus!

Soll der Motor in einer bestimmten Folge gesteuert werden, kann das Ampel-

Programm aus einem vorhergehenden Abschnitt dazu verwendet werden.

44

(KAPITEL 4 >

Messen mit dem

Mikrocomputer

==VC-20 C-64 ——

Mengenmessung mit einer Fotozelle

Eine der einfachsten Formen der Messung ist ohne Zweifel die Mengenmes-
sung. Aus Sicht des Computers stellt sich Mengenmessung so dar wie das

Festhalten der Anzahl Wechsel zwischen »0« und »l« am Eingangs-Kanal.

Abb. 4.1 Mengenmessung

In diesem Abschnitt wollen wir uns ansehen, wie eine Fotozelle an der An-

wender-Schnittstelle angeschlossen wird. Sie wird dazu verwendet, festzustel-

len, wie oft ein Lichtstrahl unterbrochen wird. Das Prinzip wird oft verwen-
det, besonders in der Prozeßautomatisierung. Je nach Stärke der Lichtquelle

kann die Schnittstelle verschiedenartig ausgelegt sein. Mit einer starken, gut
auf die Fotozelle ausgerichteten Lichtquelle braucht man nur einen Geber, ei-
nen Fototransistor, der an PB6 angeschlossen wird.

PB6

Ly
Fototransistor FPT 100

Masse

Abb. 4,2 Fototransistor

Wenn Licht auf das Lichtfenster des Fototransistors trifft, wird PB6 gleich

»0«, und wenn der Lichtstrahl unterbrochen wird, wird PB6 gleich »1«. Bei

niedrigerer Lichtstärke muß das Signal des Fototransistors verstärkt werden,
bevor es an die Schnittstelle angeschlossen wird. Auch in diesem Fall wird das
Ergebnis »0« bei Belichtung des Fototransistors und »1« bei Abdunklung,
Abb. 4.3.

46

+5V

100 KQ
 2 3 4

FPT 100 e— / p— Pe

MC 14584
Masse

Pin 7, Masse

Pin 14, +5V

Abb. 4.3 Fototransistor mit Verstarker

Basic-Programm

Nun sehen wir uns ein Programm für den VC-20 an. (Für den C-64 müssen
die Adressen geändert werden.)

10 POKE 37138,191
20 X=0
30 A=PEEK(37136) AND 64
40 IF A=0 THEN 30
50 X=X+1
60 PRINT X
70 A=PEEK(37136) AND 64
80 IF A=64 THEN 70
90 GOTO 30

Hier eine Erlauterung des Programms:

Zeile 10: Schaltet PB6 als Eingangs-Kanal

Zeile 20: X wird als Rechenvariable benutzt, d. h. X erhöht sich jedesmal,

wenn PB6 »Eins« wird.

Zeile 30: PEEK(37136) mißt den Status an allen PB. AND 64 maskiert alle

PB außer PB6. Wenn PB6=0, dann wird A=0, wenn PB6=1, dann

wird A=64.

Zeile 40: Wenn A=0, bedeutet das PB6=0, d. h. der Lichtstrahl ist noch

nicht unterbrochen worden. Man soll die Variable X nicht ausrech-

nen, sondern zurückgehen und erneut messen.

Zeile 50: A war nicht gleich 0 (d. h. 64), weswegen der Lichtstrahl unterbro-
chen worden sein muß. Rechnen Sie X aus.

47

Zeile 60: Wert von X auf den Bildschirm schreiben

Zeile 70: Wie Zeile 30!

Zeile 80: Wenn A=64 ist, bedeutet das, daß PB6=1 ist, d. h. der Lichtstrahl

ist immer noch unterbrochen. Nach 70 zurückgehen und erneut
messen, bis wieder Licht auf den Fototransistor trifft.

Zeile 90: Neuen Rechengang starten.

Da der Computer für jede Rechnung ca. I ms braucht, erfordert jeder Re-

chendurchgang ungefähr 10 ms. Die größte Rechengeschwindigkeit ist daher
auf ca. 100 Takte pro Sekunde begrenzt. Sind die Anforderungen an die Re-

chengeschwindigkeit höher, muß ein schnellerer Rechner oder ein Maschi-
nensprach-Programm benutzt werden. Wir kommen auf die Maschinenspra-

che in Kapitel 5 zurück. Untersuchen wir zunächst die Unterschiede der bei-
den Mikrocomputer.

Rechner VC-20

Schon in einem vorherigen Kapitel hatten wir erwähnt, daß die VIA-Schnitt-

stelle mehr als einen Kanal hat. U. a. enthält sie einen 16-Bit-Binär-Rechner,

der zum Zählen der Pulse an PB6 herangezogen werden kann. Im Datenblatt

des Herstellers wird der Rechner als »Timer 2« bezeichnet (es gibt aber noch

einen!). Timer 2 ist in zwei 8-Bit-Hälften geteilt. Da wir mit einem 8-Bit

Computer arbeiten, werden auf den Bussen 8-Bit-Daten transportiert. Sie

können den Computer auf Null setzen oder den gewünschten Ausgangswert
einstellen und natürlich auch ablesen. Wie gewohnt, werden hierzu POKE-

und PEEK-Befehle benutzt.

Timer 2 kann auf 2 Arten verwendet werden — einmal als Zeituhr, einmal als

Rechner. Sie können die Betriebsart wählen, indem Sie eine Zahl in das so-

genannte Kontroll-Register schreiben.

Die acht Bits mit dem niedrigsten Stellenwert haben die Adresse 37144, die

acht Bits mit dem höchsten Stellenwert haben die Adresse 37145. Das Kon-

trollregister hat die Adresse 37147. Bit 5 im Kontrollregister wird fiir die
Wahl der Betriebsart verwendet. Bit 5 = »0« stellt die Betriebsart »Zeituhr«,

Bit 5 = »1« die Betriebsart »Rechner« ein, Abb. 4.4.

48

XXOXXXXX| Adresse 37147

Zeituhr

[xx1XXXXX] Adresse 37147
Rechner

Abb. 4.4 Kontrollregister in VIA

Ein Haken bei der Sache ist, daß Timer 2 rückwärts zählt. Der Hersteller ging

davon aus, daß der Baustein eine vorher festgelegte Anzahl messen sollte (die

man vorher in den Rechner eingibt). Wenn der Rechner bis Null herunterge-

rechnet hat, erzeugt die VIA-Schnittstelle ein Signal, das an den Mikropro-
zessor weitergeleitet wird, der dann entsprechend reagiert. Wird der Baustein

zunächst mit 65535 geladen, steht er nach dem ersten Rechentakt auf 65534,

danach auf 65533 usw. bis auf Null. Die Zahl der erfolgten Takte ergibt sich

aus der Differenz zwischen 65535 und der Rechnerstellung.

Um mit Timer 2 Takte zu berechnen, sind folgende Maßnahmen erforderlich:

1. Bit 5 des Kontrollregisters auf »1« stellen (Adresse 37147).

2. PB6 als Eingangs-Kanal einstellen. Dazu muß Bit 6 des Datenrichtungsre-

gisters auf Null gesetzt werden (Adresse 37138).

3. Die 8 Bits mit dem höchsten Stellenwert voreinstellen, d. h. 255 in Adres-

se 37144 schreiben.

4. Die 8 Bits mit dem niedrigsten Stellenwert voreinstellen, d. h. 255 in
Adresse 37145 schreiben.

Der Rechner startet, wenn Punkt 4 ausgeführt worden ist.

Wenn der Rechner bis Null heruntergerechnet hat, springt er zurück und be-

ginnt von neuem, wie ein Kilometerzähler im Auto. Hierdurch können auch

größere Zahlen als 65535 gemessen werden.

Programm:

10 POKE 37147, PEEK(37147) OR 32
20 POKE 37138,191
30 POKE 37144,255
40 POKE 37145,255
50 A=PEEK(37144)
60 B=PEEK(37145)
70 PRINT 65535-(256xB+A)
80 GOTO 50

49

Auch dieses Programm erfordert eine Erklärung:

Zeile 10;

Zeile 20:

Zeile 30:

Zeile 40:

Zeile 50:

Zeile 60:

Zeile 70:

Zeile 80:

PEEK(37147) ergibt die Zahl, die im Augenblick im Kontrollregi-
ster steht. OR 32 hat zur Folge, daß alle Bits der Zahl unverändert

bleiben mit Ausnahme von Bit 5 (Wertigkeit 32), das immer auf
»1« gesetzt wird. Das Ergebnis wird im Kontrollregister abgelegt.

Durch diese Maßnahme wird die Betriebsart »Rechner« eingestellt.

Wir wollten zeigen, daß die übrigen Bits intern vom VC-20 ge-
braucht werden und eben deswegen nicht einfach eine Eins in Bit

5 geschrieben werden darf.

Macht PB6 zum Eingang.

Setzt die Rechnerhälfte mit dem niedrigsten Stellenwert auf binär
11111111, = dezimal 255,9.

Setzt die Rechnerhälfte mit dem höchsten Stellenwert auf dezimal

255,, und startet den Rechner.

Liest die Rechnerhälfte mit dem niedrigsten Stellenwert und legt
das Ergebnis in A ab.

Liest die Rechnerhälfte mit dem höchsten Stellenwert und legt das
Ergebnis in B ab.

(256*%B+A) stellt die beiden 8-Bit-Zahlen zu einer 16-Bit-Zahl zu-
sammen. Die Zahl mit den höchsten Stellenwert erhält die Wertig-
keit 256. 65535, vermindert um diese Zahl, korrigiert für das Rück-

wärtsrechnen. Das Ergebnis wird auf dem Bildschirm ausgegeben.

Zurückkehren und wieder den Rechner lesen.

Der Vorteil des Timer 2 ist, daß die Rechengeschwindigkeit bis 1 MHz an-

steigen kann. Im Vergleich dazu stehen die 100 Hz, wenn man mit einem Pro-
gramm rechnet. Eine Verzehntausendfachung der Rechengeschwindigkeit,
das ist genau das, was hier gebraucht wird.

Rechner C-64

Auch der C-64 enthält einen 16-Bit-Timer-Baustein in der Schnittstelle CIA

(Complex Interface Adapter). In ihm kann der Timer A gebraucht werden,

Der Takt ist mit CNT 1 (Anschluß 4) zu verbinden.

Es gelten folgende Adressen:

50

8 Bits mit dem niedrigsten Stellenwert: 56580
8 Bits mit dem höchsten Stellenwert: 56581

Kontroll-Register: 56590

Ansonsten gelten die Regeln der VIA-Schnittstelle des letzten Abschnitts.
Zeile 20 kann ausgelassen werden, weil PB6 nicht als Eingang beim C-64 be-

nutzt wird.

Frequenzmessung

Zur Messung von Frequenzen brauchen wir eine Zeitbasis, welche die Be-
rechnung von Takten pro Sekunde gestattet (ergibt ein Resultat in Hz). Wir

haben früher schon Zeitintervalle mit FOR... NEXT-Schleifen erzeugt. Das

ist jedoch eine ungenaue Methode, insbesondere bei kurzen Zeiten. Wir kön-

nen nur schätzen, wie lange der Basic-Interpreter zur Übersetzung des Pro-

gramms braucht, es scheint sich jedoch um einige ms je Zeile zu handeln. Es

ist besser, einen Timer in der VIA-Schnittstelle zu benutzen oder die einge-

baute Echtzeituhr im Computer. Letztere kann mit Basic-Befehlen abgelesen
werden. Das folgende Programm benutzt PB6 als Eingang und Timer 2 zum
Rechnen, genau wie im vorherigen Abschnitt. Das Programm ist für den VC-

20 geschrieben (für den C-64 müssen die Adressen wie oben geändert wer-
den, Zeile 20 kann entfallen):

10 POKE 37147, PEEK(37147) OR 32
20 POKE 37138,191
30 POKE 37144,255
40 T=TI
50 IF T=TI THEN 50
60 POKE 37145,255
70 IF TI<>T+60 THEN 70
80 PRINT 65535 — (256*PEEK(37145)+PEEK(37144))
90 GOTO 30

Kommentare zu obenstehendem Programm:

Zeile 10: Setzt Bit 5 im Kontrollregister auf »1«, um in der Betriebsart

»Rechner« des Timers 2 zu starten,

Zeile 20: Macht PB6 zum Eingang.

51

Zeile 30: Stellt die Rechnerhälfte mit dem niedrigsten Stellenwert auf 255

ein.

Zeile 40: Liest die Echtzeituhr (in Yo Sekunden) und legt den Wert in T ab.

Zeile 50: Der Computer wartet hier, bis sich TI wieder ändert und macht

dann weiter. Die Uhr wird ja »im Vorbeigehen« gelesen und hat ei-

ne Ableseungenauigkeit von Ya Sekunde, wenn nicht auf ein Zu-

rückspringen gewartet wird.

Zeile 60: Stellt die Rechnerhälfte mit dem höchsten Stellenwert auf 255 ein.

Zeile 70: Der Computer wartet hier (zählt aber an PB6 die Takte weiter), bis
insgesamt 1 Sekunde seit Beginn von Zeile 50 verstrichen ist. T+60
ergibt eine Sekunde mehr, da der Computer Sechzigstel-Sekunden

mißt.

Zeile 80: Schreibt die Frequenz auf den Bildschirm.

Zeile 90: Springt zurück und führt eine neue Messung durch.

Die höchste Frequenz, die mit diesem Programm gemessen werden kann, ist

65 kHz, weil der Timer 2 nur bis 65535 zählen kann. Der Computer kann Zei-
ten, die unter einer Sekunde liegen, nicht genau messen. Es ergibt sich ein

Fehler von einigen Millisekunden, weil der Basic-Interpreter einige Millise-
kunden zum Deuten der Zeilen 50, 60 und 70 braucht. Es ist nicht möglich,
diesen Fehler zu vermeiden, solange die Programme in Basic geschrieben

werden. Diese Sprache ist für derartige Verwendung eigentlich nicht geeig-
net. Wenn die Kenntnis genauer Zeiten wesentlich ist, programmiert man da-

her besser in Maschinensprache. Mehr darüber in Kapitel 5.

Wie auch immer — der Fehler von wenigen Promillen, die der Basic-Interpre-
ter im obenstehenden Frequenzmeßprogramm verursacht, kann oft in Kauf

genommen werden. Später werden wir Gelegenheit bekommen, das Pro-

gramm anzuwenden.

Analoge Signale für den Computer

Eingangssignale für den Computer von verschiedenen Meßfühlern liegen oft
in analoger Form vor. Im Normalfall muß eine Signalbehandlung durchge-
führt werden, z. B. Verstärkung oder Filtern, bevor das analoge Signal ver-

wendet werden kann. Mit der Elektronik, die heute zur Verfügung steht (z.

B. Operationsverstärker) kann man davon ausgehen, daß die analogen Signa-

le, die zur »Datenverarbeitung« anstehen, aus mehr oder weniger konstanten

52

Spannungen bestehen. Ehe der Computer die Daten weiterverarbeiten kann,

miissen sie digitalisiert werden. Das wird mit einem A/D-Wandler (Analog-/

Digital-Wandler) erreicht. Das Ausgangssignal des A/D-Wandlers besteht aus
»Einsen« und »Nullen«, die der Eingangskanal des Computers verarbeiten

kann.

Grundlagen der A/D-Wandler

Die A/D-Wandler, die zur Datensammlung ftir Computer benutzt werden, ar-

beiten hauptsächlich nach einem der folgenden Prinzipien: integrierend, nach

dem Wageverfahren, sukzessive Approximation und Spannungs-/Frequenz-

Wandlung. Diese Arten der A/D-Wandler können als fertige Bausteine ge-

kauft werden. Es müssen allerdings einige Widerstände und Kondensatoren
angeschlossen werden, bevor der A/D-Wandler funktioniert.

Der integrierende A/D-Wandler

Ein integrierender A/D-Wandler ist eigentlich ein Spannungs-/Zeit-Wandler,

in’ dem die Zeit mit einem Rechner und einer eingebauten Uhr gemessen

wird. Die gemessene Zeit ist der »unbekannten« Spannung proportional. Die-
ser Typ eines Wandlers integriert das Eingangssignal mit Hilfe eines Opera-

tionsverstärkers und vergleicht es mit einer Referenzspannung. Es dauert ver-

hältnismäßig lange, eine Messung durchzuführen, nämlich ca. Vi Sekunde.

Der Vorteil dabei ist, daß eventuelle Störungen im Eingangssignal in den Mit-

telwert eingehen und der Einfluß daher abgeschwächt wird. Besonders wich-

tig ist dies, wenn man lange, nicht abgeschirmte Leitungen hat, die das 50-Hz-

Brummen des Leitungsnetzes auffangen. Der Einfluß solcher Störungen kann

ganz vermieden werden, wenn die Integrationszeit ein Vielfaches der Perio-

dendauer der Netzfrequenz ist, z. B. Vo» Sekunde, Ymw Sekunde usw. Die mei-

sten Digital-Voltmeter enthalten einen integrierenden A/D-Wandler.

A/D-Wandler (Prinzip der sukzessiven Approximation)

Ein A/D-Wandler, der nach dem Wägeverfahren arbeitet, benutzt einen D/A-

Wandler, gesteuert durch digitale Elektronik und einen Komparator. Der
Komparator vergleicht die »unbekannnten« Eingangssignale mit Spannungen

des D/A-Wandlers, und die digitale Elektronik wird vom Ausgangssignal des

Komparators gesteuert. Als Endergebnis ist das Ausgangssignal des D/A-

Wandlers gleich der unbekannten Spannung. Das digitale Signal zum D/A-

Wandler entspricht der unbekannten Spannung. Das digitale Signal zum D/A-

Wandler ist gleich dem gesuchten digitalen Äquivalent der unbekannten

Spannung.

53

Eine solche Umwandlung nimmt nur kurze Zeit in Anspruch. Normale Um-
wandlungszeiten fiir 8-Bit Wandler sind 1 ms bis 100 ms. Es ist wichtig, daran
zu denken, daß Störungen großen Einfluß auf diesen Typ der Umwandlung

haben, da die Mittelwertbildung entfällt. Lösungen bieten sich durch Filtern
und Begrenzen der Bandbreite an.

A/D-Wandler vom Typ V/f (Spannungs-Frequenz-Wandler)

Der dritte Typ der A/D-Wandler, der V/f-Wandler oder Spannungs-Fre-
quenz-Wandler, ist eigentlich ein spannungsgesteuerter Oszillator. Das Aus-

gangssignal ist eine Taktfolge, deren Frequenz der angelegten »unbekannten«

Spannung proportional ist. Da der Mikroprozessor die Frequenz der Taktfol-
ge mißt, erhält man ein Maß für die Spannung. V/f-Wandler haben verhält-
nismäßig lange Umwandlungszeiten, 1-10 Sekunden. Sie haben aber auch vie-

le Vorteile, u. a. bilden sie Mittelwerte und vermindern dadurch den Einfluß

von Störungen. Weiter ist nur ein einziger Draht für das Ausgangssignal er-
forderlich. Der Wandler kann daher sehr einfach mit einem Optokoppler gal-
vanisch vom Computer getrennt werden. Die V/f-Wandler sind außerdem bil-

lig. Im nächsten Abschnitt wollen wir uns einen V/f-Wandler in einem IC,

den LM 331, näher ansehen.

V/f-Wandlung mit LM 331

Mit dem LM 331 entsteht ein linearer und genauer V/f-Wandler. Ein Teil der
Widerstände und Kondensatoren wird zusätzlich beim Aufbau auf der Expe-
rimentierplatine benötigt.

54

Schaltbild . O+5V

+ 100k2 6,8k2| | Rt
o_o} .

Yew — 10nF n
0-3V

ll
_ 10nF ce.

I 3 7 6 5 T

+5V
LM331

1Ok&S

1 2 3 4

» Zum PB6
1 AF | S (CNT 1)

= N
RL Rs

offs
472 8 x Masse

€
Abb. 4.5 VA-Wandler mit LM 331

Für das obenstehende Schema gilt die Beziehung:

f= Uri x Rs
2,09 x Ry X Ry X Cy

f ist die Frequenz des Ausgangssignals in Hz, U(ein) ist die Spannung des

Eingangssignals in V. Rs, Ry, und Ry werden in Ohm gemessen und C- in F.

Für Rs, R, und R,sollten nur Metallfilmwiderstände mit einer Toleranz von

1% genommen werden. Für die Kondensatoren sollten nur Polyesterkonden-

satoren eingebaut werden. Besonders für C; muß gute Qualität gewählt wer-

den, weil er in den die Frequenz bestimmenden Teil der Formel eingeht. Das

Abstimmpotentiometer wird für die Feinabstimmung bei der Eichung des In-

struments gebraucht. Mit den angegebenen Werten für die Bauteile ist die

Empfindlichkeit des Geräts 1 KHz/V. Mit Cr = 1 nF wird sie stattdessen 10
kHz/V. Die Linearität entspricht ungefähr der eines 3'/-ziffrigen Digitalvolt-

meters (0-1999). Mit diesem V/f-Wandler und dem Meßprogramm für Fre-
quenzen des vorherigen Abschnitts haben Sie ein ausgezeichnetes Meßgerät

für den Computer.

In

U
h

Möchten Sie sich Zugang zu mehreren Eingängen verschaffen, z. B. Daten

von bis zu acht Gebern, dann schließen Sie am besten einen analogen Mul-
tiplexer an (ein Multiplexer ist ein Umschalter, der eines von mehreren Signa-
len auswählt).

+5V

16

13 INO an Us, in Abb. 4.5

IN1 14
IN2 15 Masse

IN3 12
INA 1] mc 14051
INS 5
ING 2
IN? 4

PBO
PB1
PB2

Abb. 4.6 Multiplexer

Der Multiplexer wird von PBO-PB2 aus angesteuert. Gibt der Computer die
Zahl 0 an der Anwender-Schnittstelle aus, wird INO gewählt, gibt er 1 aus,

wird INI gewählt usw. Das Programm auf Seite 5l muß um eine Zeile erwei-
tert werden, die diese Auswahl trifft: 25 POKE 37136,N. N ist eine Zahl zwi-

schen 0 und 7, die auf den gewünschten Eingang hindeutet. Beim C-64 müs-
sen erst PBO-PB2 zu Ausgängen gemacht werden, erst dann kommt der PO-

KE-Befehl nach Adresse 56577.

Potentiometer-Eingänge

Der VC-20 ist mit zwei Potentiometereingängen ausgerüstet, die eigentlich
für die Joysticks der Spiele bestimmt sind. Die Potentiometereingänge sind an

zwei A/D-Wandler angeschlossen, die den Widerstand des Potentiometers in
digitale Form umwandeln. Die Potentiometer-Eingänge findet man leider

nicht an der Anwender-Schnittstelle wieder. Sie befinden sich am Spielaus-
gang an der rechten Seite des Computers. Die Eingänge werden POT X und

POT Y bezeichnet.

56

Spielkanal VC-20 Spielkanale C-64

Abb. 4.7 Spielkanäle

POT Y

Abb. 4.8 VC-20 Eingang des Spielkanals

+5V *8v
j

|

200 kQ se 200 Ka |

POTX 4. POTY «———_____

Abb, 4.9 Anschluß der Potentiometer

Den digitalisierten Wert von POT X findet man wieder in Adresse 36872, von

POT Y in 36873. Die Werte können mit dem PEEK-Befehl abgefragt wer-
den. Die Umwandlungszeit liegt bei einigen Millisekunden. Bitte ausprobie-

ren!

Die entsprechenden Adressen für Spielkanal I sind beim C-64 54297 (POT X)
und 54298 (POT Y). Ausprobieren!

57

Temperaturmessung

Viele physikalische Größen kann man mit billigen Gebern auf Widerstands-
basis messen.

Größe Geber

Drehwinkel Potentiometer

Lage Schiebepotentiometer

Beleuchtung Fotowiderstand

Temperatur Thermistor

Sie sahen schon im vorherigen Abschnitt, wie die Eingänge POT X und POT
Y zum Messen von Widerständen (und damit von Drehwinkeln) benutzt wur-
den. Wenn man die Potentiometer durch die anderen aufgeführten Geber er-
setzt, lassen sich auch die anderen Größen messen. Wenn die Geber einen
maximalen Widerstand haben, der 200 Ohm übersteigt, dann muß ein Kon-
densator eingefügt werden. Das Produkt R-C soll ca. 0,2 ms betragen. Ver-

wenden Sie einen Geber mit 1 kOhm, dann muß der Kondensator eine Ka-

pazität von 0,1 «F haben.

Wir wollen uns ein Beispiel ansehen, bei dem wir die Temperatur mit einem

Thermistor messen, der. an den Eingang POT X angeschlossen ist.

+5V

Thermistor, z. B. Multikomponent

5 kOhm bei 20°C

POTX

0,05 uF

Abb. 4.10 Temperaturmessung mit Thermistor jt

Der Zusammenhang zwischen der Temperatur und der umgewandelten Zahl

in Adresse 36872 (bzw. 54297 beim C-64) ist leider nicht linear. Der Wider-

stand ändert sich mit der Temperatur, aber die Abhängigkeit ist nicht linear.
Durch Eichung bei verschiedenen Temperaturen ist es jedoch möglich, den

Zusammenhang zu linearisieren. Mit einigen zusätzlichen Programmzeilen,
die den wirklichen Zusammenhang zwischen Temperatur und dem abgelese-
nen Wert wiedergeben, erhält man ein brauchbares Thermometer.

Bei einem Versuch mit der Schaltung nach Abb. 4.10 ergab sich folgender

58

Zusammenhang zwischen Temperatur und der Zahl in Adresse 36872:

Temperatur Werte

24 75
80 5
67 11
50 22

Mit Hilfe der Methode der kleinsten Fehlerquadrate kann aus diesen Werten
eine mathematische Funktion abgeleitet werden, die den gewünschten Ver-

lauf wiedergibt. Die Eichkurve sehen Sie in Abb. 4.11.

t°C A

100 -

50 -

a Zahi N

0 t F i T >

6 50 CO ‘ "100
Abb, 4.11 Eichkurve

Die Methode der kleinsten Fehlerquadrate ist aufwendig, wenn man sie von
Hand ausführt. Eine einfache grafische Annäherungslösung erfüllt mit ausrei-

chender Genauigkeit diesen Zweck. Die Kurve kann näherungsweise mit

zwei Geraden erstellt werden, Abb. 4.12.

t°C&

100

50-

4 Zahl N

0 5 rT T > T T T 50 T T T er.

Abb. 4.12 Eichkurve mit zwei Geraden 59

Aus den beiden Geraden erhält man (Gleichung einer Geraden)

90 —-2,1Xx N für O<N<20

600 -— 055 x N für N>20

t

t to
u

Das Programm für die Messung und Linearisierung (Adresse beim C-64 ist
54297):

10 N=PEEK(36872)
20 IF N<20 THEN PRINT 90—2.1xN
30 PRINT 60—0.55*«N
40 GOTO 10

60

(KAPITEL 5)

Maschinensprache

==VC-20 C-64 ——

Was ist Maschinensprache?

Schon in Kapitel 1 wiesen wir darauf hin, daß das Betriebssystem und der Ba-
sic-Interpreter des VC-20 und C-64 im Lesespeicher in Form von 8-Bit binä-
ren Zahlen gespeichert sind. Beide Programme sind Maschinen-Programme,
d. h. sie sind in Zeichen geschrieben, die der Mikroprozessor direkt lesen und

ausführen kann. Wenn Sie also ein Basicprogramm auf dem Mikro-Computer
laufen lassen, übersetzt der Basic-Interpreter das Basicprogramm in ein Ma-

schinen-Programm.

Warum nun dieser Aufwand mit der Übersetzung? Wäre es nicht einfacher,
wenn jeder Benutzer eines Computers von vornherein lernen würde, in Ma-
schinensprache anstatt in Basic zu programmieren? Es gibt da einige Nachtei-

le:

Erstens ist die Maschinensprache abhängig vom verwendeten Mikroprozes-

sor. Die Maschinensprache für den Mikroprozessor 6502, der im VC-20 (6510

im C-64) sitzt, und z. B. der Mikroprozessor Z80, der im ABC 80 eingebaut
ist, haben nichts miteinander gemeinsam. Dagegen ist das Basic im VC-20
und C-64 nahezu identisch mit dem Basic des ABC 80. Eine sogenannte ge-
hobene Programmiersprache zu benutzen, hat aus Sicht der Vereinheitlichung
einen großen Vorteil: Ein Basicprogramm kann ohne viele Änderungen auf
nahezu jedem Computer laufen.

Zweitens ist der Umfang der Befehle in der Maschinensprache sehr begrenzt.

Wenn man als Anfänger die Liste der Maschinenbefehle ansieht, stehen man-

chem die Haare zu Berge! Es zeigt sich, daß uns der Mikroprozessor, isoliert
betrachtet, kaum weiterhilft. Er kann nämlich nur ganz einfache Aufgaben

lösen, wie »addiere die Zahl mit einer 8-Bit Binärzahl«, »subtrahiere eins«,

»addiere 2 Binärzahlen« (das ist schon die Höchstleistung!), »schiebe eine
Binärzahl einen Schritt nach links«, »schiebe eine 8-Bit-Zahl vom Mikropro-

zessor zu einer bestimmten Adresse im Speicher« usw. Keine Multiplikation
oder Division! Keine trigonometrischen Funktionen!

Bei näherem Hinsehen zeigt es sich jedoch, daß man durch Kombination von

Befehlen alle gewünschten Operationen ausführen kann. Die Multiplikation

kann z. B. durch eine Reihe von Additionen ersetzt werden (so wie man sie
ausführt, wenn man mit Bleistift und Papier arbeitet). Das gilt auch für die

Division. Der Arbeitseinsatz für ein Programm, mit dem man zwei 9-stellige
Dezimalzahlen multiplizieren kann, ist vergleichsweise riesig. Ein geübter
Programmierer in Maschinensprache brauchte etliche Stunden, um das Pro-
gramm zum Laufen zu bringen. Zu Beginn der Computerwissenschaft, in den

62

vierziger Jahren, wurden grundsätzlich alle Programme in Maschinensprache
geschrieben, von gelehrten Männern in weißen Kitteln. Allmählich entstan-
den die gehobenen Programmiersprachen (ALGOL, COBOL, FORTRAN,
BASIC usw.). Das führte dazu, daß Computer schließlich auch von Nicht-
Spezialisten programmiert werden können.

Zu diesem Zeitpunkt werden Sie sich sicherlich fragen, warum dieses Buch
denn ein ganzes Kapitel über Programmierung in Maschinensprache enthält.

Hier die Erklärung:

Maschinensprache und Basic

Unter gewissen Umständen kann es sinnvollsein, kurze Maschinenprogramme.
zu schreiben anstatt eines (vermutlich noch kürzeren) Basic-Programms. Der
wichtigste Grund ist die Forderung nach Geschwindigkeit, besonders im Um-
gang mit Daten von und zu peripheren Einheiten. Das ist der Fall, wenn mit
dem Computer gesteuert und gemessen wird. Wie Sie schon wissen, benötigt
der Basic-Interpreter ca. 1 ms, um eine Zeile eines Basic-Programms zu über-

setzen und auszuführen. Wollen Sie z. B. an einem Ausgangskanal mit Hilfe
des POKE-Befehls eine Impulsfolge erzeugen, wird die Frequenz dadurch auf
einige Hundert Hz begrenzt. Ein einfaches Maschinenprogramm kann aber
bei Bedarf eine Impulsfolge im Bereich von 50 kHz erzeugen!

Bei Dateneingabe von einem schnellen A/D-Wandler kann alle 20 Millisekun-
den ein neuer Meßwert vorliegen. Ein Maschinen-Programm für den VC-20
und C-64 kann alle diese Daten aufnehmen „abspeichern und hat dann noch
eine Sicherheitsspanne. Ein Basicprogramm könnte dagegen nur jeden fünf-
hundertsten Wert aufnehmen, der Rest der Meßwerte ginge verloren. Eine
Kombination von Maschinen- und Basicprogramm ist nahezu unschlagbar!
Daher nimmt man Maschinensprache für den zeitempfindlichen Teil und Ba-
sic für den mechanischen Teil.

Es dauert sicherlich einige Zeit bis man ein versierter Programmierer für Ma-
schinensprache wird, die Grundbegriffe hingegen sind nicht schwer zu verste-
hen. In den folgenden Abschnitten wollen wir näher darauf eingehen.

Programmieren in Maschinensprache auf dem VC-20 und C-64

Der Befehlssatz des Mikroprozessors 6502 im VC-20 oder 6510 im C-64 um-

63

faßt 56 Grundbefehle. Viele von ihnen können verschiedene Varianten be-
nutzen, sog. Adressierverfahren, die wir uns etwas später ansehen wollen.
Insgesamt werden 151 verschiedene Codes verwendet, um die ausführende
Operation zu beschreiben. Jeder dieser Codes wird Operationsbefehl oder
OP-Code genannt. Er besteht aus einer 8-Bit-Binärzahl, d. h. einer Dezimal-

zahl zwischen 0 und 255. Den Befehlssatz fiir 6502 und 6510 finden Sie in An-
hang B. Das Datenblatt des Herstellers enthalt detaillierte Angaben zu den
Befehlen.

Ein guter Maschinen-Programmierer muB alle Feinheiten der 56 Grundope-
rationen und deren Varianten kennen. Es dauert eine gewisse Zeit bis man
alle Befehle meistert! Wenn man mit dem Computer nur steuern und messen

möchte und außerdem den Basic-Interpreter für Berechnungen nutzen will,
dann vermindert sich die Zahl der Codes auf eine Handvoll einfacher Befeh-

le.

Der Akkumulator

Die beiden wichtigsten Befehle sind »Lade Akkumulator« und »Speichere
Akkumulator«. Der Akkumulator ist ein 8-Bit-Register im Mikroprozessor,
der an nahezu allen Operationen teilnimmt. Sollen z. B. zwei Zahlen addiert
werden, muß die eine Zahl anfangs im Akkumulator stehen. Wollen Sie In-

formation in einer Speicherzelle ablegen oder in einem Ausgangskanal, muß
die Information vom Akkumulator kommen.

Mnemonische Zeichen

In der Befehlsliste finden Sie für jeden Befehl eine Abkürzung wieder, die

aus drei Buchstaben und dem entsprechenden OP-Code besteht. Die Abkür-
zung wird mnemonisches Zeichen oder symbolisches Zeichen, gelegentlich
Mnemonik, genannt. Sie soll das Gedächtnis des Programmierers unterstüt-
zen. Die Abkürungen sind sinnvoll ausgesucht, besonders wenn man Englisch
spricht. Der mnemonische Code für »Lade Akkumulator« ist LDA (von Lo-
aD Accumulator) und für »Speichere Akkumulator« STA (von STore Accu-
mulator).

64

Maschinen-Programme aufrufen

Es gibt zwei Basic-Befehle, mit denen man Maschinen-Programme aufrufen

kann, SYS(X) und USR(X). Am einfachsten läßt sich SYS(X) verwenden. X
ist die Speicheradresse, an der das Maschinen-Programm beginnt. Das Ma-

schinen-Programm muß mit dem Maschinenbefehl »Kehre vom Unterpro-

gramm zurück« beendet werden, Mnemonik RTS, OP-Code 96 (dezimal).
Wenn das Maschinen-Programm beendet ist, kehrt der Mikrocomputer zum
Basic zurück.

USR(X) ist schon etwas komplizierter. Der Computer beginnt mit der Aus-
führung des Programms, das in den Speicheradressen 1 und 2 steht. X ist eine
Fließkomma-Variable, die in den sog. Fließkomma-Akkumulator geladen

wird. Fließzahlen sind nicht so einfach zu verarbeiten, wir werden daher den
Befehl USR(x) nicht benutzen. Die Speicheradressen 4096-7679 beim VC-20

stehen für Benutzerprogramme zur Verfügung. Hiermit müssen Basic- und
Maschinen-Programme auskommen. Basic-Programme werden dann automa-

tisch von 4096 an aufwärts gespeichert, weshalb es am besten ist, die Maschi-
nen-Programme »am anderen Ende« abzuspeichern. Es ist nun leider so, daß
der Basic-Interpreter hier Strings (Text) abspeichert, nämlich von Adresse
7679 an abwärts. Wir haben ein Problem, das jedoch leicht zu beheben ist.

Mit ein paar POKE-Befehlen können wir Basic glauben machen, daß der
Speicherplatz etwas früher aufhört, z. B. in 7599. Der Basic-Interpreter spei-

chert dann dic Strings ab Adresse 7599 abwärts ab, und wir haben 80 Adres-

sen ab 7600 für Maschinensprache frei. Folgende Befehle müssen eingegeben
werden:

POKE 51,175
POKE 55,175

POKE 52,29
POKE 56,29

*
”

*
.

Beim C-64, der bedeutend mehr Speicherplatz zur Verfügung hat, ist in den
Adressen 49152-53427 Platz für Maschinen-Programme reserviert.

Adressierungsarten

Wir wollen uns den Befehl LDA »Lade Akkumulator« im Anhang B anse-
hen.

=

LDA (LDA Load accumulator with memory) LDA

Lade Akkumulator vom Speicher

Operation: M—A NZCIDV
WI...

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

!Unmittelbar LDA Oper 169 2 2

! Seite 0 LDA Oper 165 2 3

Seite 0, X LDA Oper, X 181 2 4

; Absolut LDA Oper 173 3 4

Absolut, X LDA Oper, X 189 3 4*

Absolut, Y LDA Oper, Y 185 3 4*

(indirekt, X) LDA (Oper, X) 161 2 6

(Indirekt), Y LDA (Oper), Y 177 2 5*
* Addiere 1, wenn Seitengrenze überschritten wurde

Es gibt nicht weniger als acht verschiedene Adressierungsarten und folglich
auch acht verschiedene OP-Codes (Operationsbefehle), zwischen denen man
wählen kann. Alle acht laden den Akkumulator, aber auf etwas unterschied-

liche Weise. Aus der Tabelle geht hervor, welcher OP-Code zu welcher

Adressierungsart gehört. Es steht aber noch mehr Information darin. »Bytes«
gibt an, wieviele 8-Bit-Gruppen insgesamt für einen Befehl benötigt werden.

»Zeitperioden« gibt an, welche Zeit der Befehl zur Ausführung benötigt. Der

Zykluszeittakt ist 0,902 Mikrosekunden lang und wird durch einen Quarzkri-
stall sehr genau bestimmt. Nehmen wir an, wir wollten den Akkumulator aus
irgendeinem Grund mit der Zahl 128 laden. (Erinnern Sie sich daran, daß der

Akkumulator ein 8-Bit Register ist und nur Ziffern zwischen 0 und 255 ver-
arbeiten kann.) Es stehen eine Reihe von Möglichkeiten zur Verfügung. Am

einfachsten wäre, die »unmittelbare Adressierungsart« auszunutzen. Die

Mnemonik schreibt sich dann LDA #128. Die Zahl 128 ist der »Operand«.

Der OP-Code ist nach der Tabelle 169, und der Befehl umfaßt zwei Bytes.
Die beien Zahlen (OP-Code 169, Operand 128) werden in zwei aufeinander-

folgende Adressen im Speicher geschrieben. Weiter geht aus der Tabelle her-

vor, daß der Computer 2x0,902 Mikrosekunden, d. h. 1,804 Mikrosekunden

braucht, um den Befehl auszuführen.

Was wäre geschehen, wenn wir den OP-Code 165 anstatt 169 genommen hät-

ten? Die Adressierungsart hieße dann »Seite 0«, und nach der Tabelle muß
der Mnemonik LDA 128 sein, aber ohne das #-Zeichen. In der Adressie-

66

rungsart »Seite 0« deutet der Mikroprozessor den Operanden als eine Adres-

se. Was dann geschieht, ist, daß der Akkumulator mit einer Zahl geladen

wird, die in Adresse 128 steht. Nachdem wir beabsichtigten, den Akkumula-
tor mit der Zahl 128 zu laden, ist offensichtlich die Adressierungsart »Seite 0«

eine schlechte Wahl. (Es sei denn, die Zahl 128 ist in Adresse 128 gespei-

chert.)

Alle übrigen Adressierungsarten stellen verschiedene Möglichkeiten dar, die
Speicherplätze anzugeben, auf denen die in den Akkumulator zu ladenden

Zahlen wiedergefunden werden. Wir wollen jetzt darauf nicht näher einge-
hen, haben jedoch Grund, später die Adressierungsart »absolut« näher unter
die Lupe zu nehmen. Zusammenfassend läßt sich sagen: Wollen Sie den Ak-
kumulator mit einer bestimmten Zahl, einer Konstanten, laden, dann müssen

Sie die Betriebsart »unmittelbar« benutzen.

Nehmen wir an, daß wir den Akkumulatorinhalt (die Zahl 128) in Richtung

Anwender-Schnittstelle, Kanal B, ausgeben wollen, d. h. an Adresse 37136

(VC-20) bzw. 56577 (C-64). Wir setzen voraus, daß die Anwender-Schnittstel-
le, wie in Kapitel 2 erläutert, zum Ausgang gemacht worden ist. Der Befehl
»Speichere Akkumulator im Speicher«, Mnemonik STA, tut genau das. Hier
bestehen sieben Adressierungsarten. Welche soll man wählen? »Seite 0« deu-
tet auf einen Speicherplatz hin, aber leider nur im Adressenbereich 0-255.
Der Befehl umfaßt nur zwei Bytes, davon ist das eine der OP-Code und das
andere die Adresse. In einem Byte kann keine Zahl gespeichert werden, die

größer als 255 ist. Unseren Ausgabe-Kanal finden wir in Adresse 37136
(56577) wieder, wir müssen daher in der Tabelle weitersuchen. Die Adressie-

rungsart »absolut« kann uns weiterbringen. Die Mnemonik ist STA 37136,
OP-Code 141, Länge 3 Bytes (davon erstes Byte 141). Die verbleibenden 2
Bytes, d. h. 16 Bits, stellen die Adresse dar. Es ist leider etwas umständlich,

die Adresse in zwei Hälften zu teilen. Gehen Sie folgendermaßen vor:

1. Adresse 37136 in die entsprechende Binärzahl übersetzen. Nach etwas
Rechnen ergibt sich 1001000100010000;.

2. Diese Zahl in zwei 8-Bit-Hälften aufteilen, d. h. 10010001, und 00100000..

3. Diese 8-Bit-Zahlen wieder in Dezimalzahlen umwandeln. 10010001, ergibt

145, 00010000, ergibt 16.

4. Ändern Sie die Reihenfolge der beiden Hälften (dies ist eine Eigenart des
Mikroprozessors 6502). Die erste Zahl muß 16, die zweite 145 sein.

67

STA (STA Store accumulator in memory) STA

Speichere Akkumulator im Speicher

Operation: A~ M NZCIDV

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Seite 0 STA Oper 133 2 3

Seite 0, X STA Oper, X 149 2 4

Absolut STA Oper 141 3 4

Absolut, X STA Oper, X 157 3 5

Absolut, Y STA Oper, Y 153 3 5

(Indirekt, X) STA (Oper, X) 129 2 6

(indirekt), Y STA (Oper), Y 145 2 6

Der vollständige Befehl EBA 37136 umfaßt also drei Zahlen, gespeichert in

drei aufeinander folgenden Speicheradressen: Erst der OP-Code 141, dann
die Zahl 16 und zuletzt die Zahl 145. 16 und 145 stellen die Adresse dar, auf-

geteilt in zwei Hälften, in der Reihenfolge vertauscht. Der Befehl hat einen
Zeitbedarf von 4x0,902 = 3,608 Mikrosekunden.

Es gibt glücklicherweise einfachere Methoden, die Adressen aufzuteilen, z.
B. die folgende:

1. Teile die Adresse durch 256. Der Ganzzahlanteil stellt die letzte der bei-

den Adressenhälften dar. In unserem Fall gilt: 37136 : 256 = 145,0625.

Der Ganzzahlanteil 145 ist die letzte Adressenhälfte.

2. Ziehen Sie den Ganzzahlanteil vom Ergebnis der Division ab und multi-

plizieren Sie den Rest mit 256. Das Ergebnis ist eine Ganzzahl und ist der
erste Teil der beiden Adressenhälften. Für unseren Fall gilt:
(145,0625 — 145) x 256 = 16. Wir wollen uns noch ein Beispiel ansehen.
Möchten Sie den Inhalt des Akkumulators in Adresse 7600 speichern,
dann sind die Codes in der richtigen Reihenfolge: 141 OP-Code, 176 (hal-
be Adresse), 29 (halbe Adresse), d. h. 141,176,29,

Wir können unser Programm jetzt schon fast laufen lassen, es fehlt jedoch
noch etwas Wichtiges: Der letzte Befehl muß RTS sein, »Rücksprung von der
Subroutine«. Dieser Befehl hat nur eine Adressierungsart, Mnemonik RTS,

OP-Code 96, Zeit 6 x 0,902 = 5,142 Mikrosekunden.

68

RTS (RTS Return from subroutine) RTS

Kehre vom Unterprogramm zurück

Operation: PC ¢ ,PC + 1-* PC NZC IDV

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Selbstverst. RTS 96 1 6

Unser in Mnemonik (auch Assembler-Programm genannt) geschriebenes Pro-
gramm sieht folgendermaßen aus:

LDA #128
STA 37136 (56577 für C-64)
RTS

Das Assembler-Programm ist nur für den Programmierer und für die Doku-
mentation wichtig. Hier die in aufeinanderfolgende Adressen in den Speicher
zu schreibenden Zahlen: 169,128,141,16,145,96. Oft schreibt man das Maschi-

nen-Programm neben das Assembler-Programm, um die Kontrolle zu erleich-

tern.

169, 128 LDA #128
141, 16, 145 STA 37136 (56577 fur C-64)
96 RTS

Das Programm hat einen Zeitbedarf von (2 + 4 + 6) x 0,902 = 10,82 Mikro-
sekunden (gs).

Programme in den Speicher eingeben

Es ist am besten, den Beginn des Maschinen-Programms in Adresse 7600

beim VC-20 und in Adresse 49152 beim C-64 zu legen. Unser kleines Pro-

gramm, das nur aus sechs Zeichen in Maschinensprache besteht, kann mit
sechs POKE-Befehlen (VC-20) abgespeichert werden:

POKE 7600,169
POKE 7601,128
POKE 7602,141
POKE 7603,16
POKE 7604,145
POKE 7605,96

69

Das entsprechende Programm ftir den C-64:

POKE 49152,169
POKE 49153,128
POKE 49154,141
POKE 49155,176
POKE 49156,29
POKE 49157,96

Beachten Sie, daß die Zeichen in aufeinander folgende Adressen abgespei-
chert werden müssen! Es ist einfacher, eine Schleife zum Einlesen zu benut-

zen, besonders bei etwas längeren Programmen:

40 FOR I=7600 TO 7605
50 READ A
60 POKE 1,A
70 NEXT |
80 DATA 169,128,141,16,145,96

Lassen Sie das Programm zur Probe laufen und kontrollieren Sie dann den
Speicher mit PRINT PEEK(7600) usw., ob die gewünschten Zeichen wirklich

in den beabsichtigten Adressen stehen.

Programmausführung

Es ist jetzt an der Zeit, alle Erkenntnisse zusammenzufügen. Um das Pro-

gramm testen zu können, müssen Sie an die Anwender-Schnittstelle PBO-PB7

Leuchtdioden anschließen, so wie das früher besprochen wurde. Unser Basic-

Programm muß mit POKE 37138,255 die Schnittstelle auf einen Ausgang mit
8 Kanälen umstellen. Das Programm muß weiter dem Basic-Interpreter vor-
täuschen, daß der Speicher bei der Adresse 7599 zu Ende sei. Hierzu werden
die POKE-Befehle 51,175 : POKE 52,29 : POKE 55,175 und POKE 56,29
verwendet. Außerdem muß das Maschinen-Programm gespeichert werden,
was mit einer Schleife, wie im vorigen Abschnitt beschrieben wurde, erfolgen
kann. Schließlich muß das Maschinen-Programm mit SYS(7600) aufgerufen
werden.

70

10 POKE 37138,255
20 POKE 51,175 : POKE 52,29
30 POKE 55,175 : POKE 56,29
40 FOR I=7600 TO 7605
50 READ A
60 POKE 1,A
70 NEXT |
80 DATA 169,128,141,16,145,96
90 SYS(7600)

Hier ist das entsprechende Programm für den C-64:

10 POKE 56579,255
20 FOR I=49152 TO 49157
30 READ A
40 POKE 1,A
50 NEXT |
60 DATA 169,128,141,16,145,96
70 SYS(49152)

Lassen Sie das Programm zur Probe laufen! Wenn alles in Ordnung ist, muß
die Leuchtdiode, die an PB7 angeschlossen ist, leuchten. (Wir haben ja den

Akkumulator mit 128 (dezimal) = 10000000 (binär) geladen.) Versuchen Sie
den Akkumulator mit einer anderen Zahl zu laden, indem Sie die Zahl 128

in der DATA-Zeile 80 (60) gegen eine andere Zahl auswechseln.

Impuls in Maschinensprache erzeugen

Obiges Programm hat die Information an Schnittstelle B »blitzschneil« bereit-
gestellt. Leider sind wir nicht in der Lage, den Wahrheitsgehalt dieser Aus-

sage zu überprüfen. Wenn Sie Zugang zu einem Öszilloskop haben, können
Sie jedoch das Programm so ändern, daß eine Taktfolge erstellt wird. Hierbei
zeigt sich die Geschwindigkeit. Wir nehmen im Assembler-Programm folgen-

de Änderung vor:

LDA #128 eine »1« an PB7 ausgeben
LDA #0 eine »O« am PB7 ausgeben
STA 37136
JMP 7600 Rücksprung zum Anfang

71

Der JMP-Befehl hat einen Sprung zum Anfang des Programms zur Folge.

Dadurch entsteht die Taktfolge an PB7. JMP ist ein neuer Befehl für uns:

J M P (JMP Jump to new location) J M P

Springe an neue Adresse

Operation: PC + 1)-* PCL NZCIDV

(PC +2) PCH On

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Absolut JMP Oper 76 3 3

Indirekt JMP (Oper) 108 3 5

1 ne

0

13,53 uS

Abb. 5.1 Taktfolge an PB7, wie mit dem Oszilloskop festgestellt

Die Taktzeit ist 13,53 Mikrosekunden. In Basic mit POKE-Befehlen ware sie

ca. 17 Millisekunden gewesen, d. h. mehr als tausendmal langsamer. Bevor
wir das Programm zum Laufen bringen, muß es in Maschinensprache über-

setzt oder »assembliert« werden, wie man dies auch nennt.

169,128 LDA #128
141,16,145 STA 37136
169,0 LDA +0
141,16,145 STA 37136
76,176,29 JMP 7600

Die Adresse 7600 im JMP-Befehl wird 176,29 in der aufteilten Form, wie wir
sie schon vorher berechnet haben. Das Basic-Programm muß in den Zeilen 40
und 80 etwas geändert werden:

40 FOR 1=7600 TO 7612
80 DATA 169,128,141,16,145,169,0

141,16,145,76,176,29

Das fertige Programm sieht dann folgendermaßen aus:

10
20
30
40
50
60
70
80

90

POKE 37138,255
POKE 51,175 : POKE 52,29
POKE 55,175 : POKE 56,29
FOR !=7600 TO 7612
READ A
POKE 1,A
NEXT |
DATA 169,128,141 ,16,145,169,0

141,16,145,76,176,29
SYS(7600)

Das entsprechende Programm fiir den C-64 kann so aussehen:

10
20
30
40
50
60
70

POKE 56579,255
FOR 1=49152 TO 49164
READ A
POKE 1,A
NEXT |
DATA 169,128,141,1,221,169,0,141,1,221,76,0,109
SYS(49152)

Aber Vorsicht! Unser Maschinen-Programm wird ja noch nicht mit RTS be-
endet, wie kurz vorher verlangt wurde! Nein, da unser Programm eine unend-

liche Schleife ist, kann es nicht beendet werden, und als Ergebnis kann der

Mikro-Computer auch nicht zum Basic-Interpreter zurückkehren. Daraus er-

gibt sich, daß die Taktfolge auch nicht mit der STOP-Taste zum Stillstand ge-
bracht werden kann. Die einzige Methode, die Maschine abzuschalten, ist,

den Aus-Schalter zu bedienen, wobei das mühsam eingegebene Programm
natürlch verloren ginge!

So können Sie das vermeiden:

1. Speichern Sie Ihr Programm auf Kassette oder Floppydisk ab, bevor Sie es

laufen lassen.

2. Beenden Sie Maschinen-Programme mit RTS, wenn Sie zum Basic-Inter-

preter zurückkehren wollen.

Trotz aller Mühe werden Sie jetzt sicher von der Geschwindigkeit der Maschi-
nen-Programme überzeugt sein.

VCMON und 64MON

Die im vorherigen Abschnitt beschriebene Methode, Maschinenprogramme
zu schreiben, ist für kleinere, kurze Programme geeignet, die nicht mehr als

20 Maschinen-Befehle umfassen. Lange Programme werden jedoch nicht auf

diese Art geschrieben. Der Grund hierfür: Der VC-20 und C-64 haben keinen
Maschinensprachen-Monitor, mit dem man die Programme kontrollieren
könnte. Wenn etwas falsch läuft, ist man hoffnungslos verloren, da keine

Möglichkeit der Diagnostik besteht.

Es gibt jedoch für den VC-20 und C-64 einen Maschinensprachen-Monitor,
der als Zubehör in Form einer Kassette erhältlich ist und an den Bus ange-
schlossen werden kann. Diese Kassette, VCMON bzw. 64MON, enthält alle

nötigen Steuerprogramme, die das Programmieren in Maschinen-Sprache er-
leichtern können. U. a. ist darauf ein einfacher Assembler, der es erlaubt, die

Programme in Mnemonik einzugeben. Weiter kann man die Register des Mi-
kroprozessors einsehen und die Programme schrittweise ablaufen lassen.

Wenn Sie die Absicht haben, sich ernstlich mit dem Programmieren in Ma-

schinensprache zu befassen, empfehlen wir ausdrücklich die Anschaffung des
Monitors. Wollen Sie es dagegen bei kurzen Maschinenprogrammen bewen-
den lassen, wäre es eine unnötige Ausgabe.

74

(KAPITEL 6 >

Datenubertragung

über die

RS-232-Schnittstelle

=—=VC-20 C-64 ——

Was ist RS-232?

RS-232 ist die Bezeichnung einer amerikanischen Industrienorm, die eine spe-

zielle Art der seriellen Datenübertragung beschreibt. Sie wird oft für die Da-

tenübertragung zwischen Computern und peripheren Einheiten benutzt. Die

Daten werden als Taktfolge gesendet und empfangen.

RS-232 ist eine Art asynchroner Datenübertragung. Das bedeutet, daß mit

den Daten kein spezielles Zeitsignal gesendet wird, was an die Synchronisie-

rung zwischen Sender und Empfänger besondere Anforderungen stellen wür-

de. Der Buchstabe »c«, ASCIH-Zeichen 67, d. h. binär 1000011, kann folgen-

dermaßen gesendet werden:

Start-Bit Paritäts-Bit Stop-Bit

| LSB MSB

T ' ' 5 i I i

0 T 27 3T 47 5T 6T 7 87 97T 10T
le J
° 4

Daten in ASCll-Zeichen

Abb. 6.1 Serielles Senden des Buchstaben »c«

»1« wird oft »MARK« und »0« wird »SPACE« genannt. Jedes Zeichen be-

ginnt mit einem Start-Bit, das zum Synchronisieren von Sender und Empfän-

ger gebraucht wird. Wenn das Start-Bit erfaßt wird, bewirkt dies im Empfän-

ger das Starten eines Zeitmessers mit der Zeitperiode T, wodurch die Über-
prüfung des seriellen Datenstroms gesteuert wird. Überprüfung bedeutet, daß
der Empfänger für jedes Zeitintervall feststellt, ob eine »1« oder eine »0« vor-

liegt und der Ziffer dann den richtigen Platz im Speicher zuweist. Nach je-

weils sieben Überprüfungen werden die Daten im Register in parallele Form

umgewandelt. Hier ist der Vorgang jedoch noch nicht abgeschlossen! Das

nächste Bit ist ein Paritäts-Bit, mit dem Fehler in der Datenübertragung fest-
gestellt werden können. Bei langen Leitungen, z. B. wenn Leitungen der Post

verwendet werden, kann es leicht geschehen, daß auftretende Störungen eine

»1« in eine »0« und umgekehrt verwandeln. Solche einfachen Bit-Fehler kön-
nen mit Hilfe des Paritäts-Bits entdeckt werden. Das Prinzip ist einfach: Im

Sender zählt man die Zahl der Einsen. Ist die Zahl der Einsen gerade, wird

eine Null als Paritätsbit gesendet; ist die Zahl ungerade, dann wird eine Eins

übermittelt. Man nennt dies »gerade Parität«, weil die Gesamtzahl der Einsen

76

immer eine gerade Zahl wird. Auf der Empfängerseite wird entsprechend

verfahren, es wird die Zahl der Einsen gezählt, und wenn die Anzahl unge-
rade ist, dann weiß man, daß etwas nicht in Ordnung ist. Der Benutzer

braucht sich um die Paritätskontrolle nicht zu kümmern, sie erfolgt automa-
tisch. Das letzte Bit, am Ende, ist ein Stopbit (gelegentlich 2 Stopbits), die
dem Empfänger mitteilen, daß ein Zeichen übertragen worden ist.

Jede serielle Datenübertragung muß ein Übertragungs-Protokoll haben, das
sicherstellt, daß der Empfänger aufnahmebereit ist, bevor die Datenübertra-

gung beginnt. Der Signalpegel der RS-232-Schnittstelle ist; 12V für »1% und

‚12V für »0«. Es werden noch eine Reihe weiterer Eigenschäften des Signals

festgelegt (u. a. muß eine RS-232-Schnittstelle kurzgeschlossen werden kön-
nen, ohne daß Defekte auftreten), es würde jedoch zu weit führen, auf diese

Einzelheiten einzugehen. Die Norm schreibt auch einen besonderen 25-poli-
gen Stecker vor, Abb. 6.2.

PIN
1 Gehäusemasse (GND)
2 Daten Aus (SOUT)
3 Daten Ein (SIN)
4 Sende-Anforderung (RTS)

aa 10) 5 Sendebereit | (CTS)
e15 2° 6 Datentbertragungs-Einrichtung klar(DSR)
eig 3° 7 Signalmasse (GND)
ei7 4 8 Daten-Empfangs-Quittung (DCD)
eig 5° 9 (nicht Verwendet)

#19 be 10 . 11 “ e20 7° u 12
.21 8e 13 ut

e22 9 14 “

«23 100 15

024 118 16 “

130 18 “

19 ae

20 Datenempfangsgerat bereit (DTR)
21 _ (nicht verwendet)
22 ac

23 at

24 “
25 “

Abb. 6.2 Stecker und Signale beim VC-20/C-64

77

Signale und Steckverbinder

Trotz des genau spezifizierten Ubertragungsprotokolls der RS-232-Schnittstel-
le ist es nicht üblich, alle zur Verfügung stehenden Steuersignale zu benutzen.

Es werden nur die beiden Datenkanäle »Daten ein«, Signalbezeichnung SIN,
und »Daten aus«, SOUT, verwendet. Es werden also drei Leitungen benö-

tigt: Daten Ein, Daten Aus und die gemeinsame Rückleitung, Masse.

Der VC-20 und der C-64 sind in der Lage, mit dieser dreiadrigen Verbindung
wie eine komplette RS-232-Schnittstelle mit allen Kontrollsignalen zu arbei-
ten. In einer Beziehung weichen der VC-20 und der C-64 von der Standard-
Schnittstelle ab: Die Signalpegel sind O und +5V. Wir kommen hierauf etwas

später zurück. Die Signale der RS-232-Schnittstelle finden wir an der Anwen-
der-Schnittstelle gemäß der Tabelle in Abb. 6.3 wieder.

Ein/ | Kontaktklemme|Standard RS-232
Signal Aus | der Anwender- |Kontaktklemme

Schnittstelle

GND (Gehäusemasse) - A 1
SIN (Daten Ein) Ein B* 3
SIN (Daten Ein) Ein C* 3
RTC (Senderanforderung) Aus D 4
DTR (Datenempfangsgerät bereit) Aus E 20
Ri (Ringindikator) Ein F 18
DCD (Daten-Empfangs-Quittung) | Ein D 8
CTS (Sendebereit) Ein K 5
DSR (Datenübertragungseinrichtung klar) | Ein L 6
SOUT (Daten Aus) Aus M 2
GND (Signalmasse) - N 7

(*) Pin B und C verbinden

Abb. 6.4 Schnittstelle

Bezeichnungen der Anwender-Schnittstelle:

123 45 6 7 8 9 10 11 12

(ae ee eee
A B C D E F J

Abb. 6.3 RS-232 Signale der Anwender-Schnittstelle

78

KLMN

Um den VC-20 und C-64 über die RS-232-Schnittstelle an eine andere Einheit
anschließen zu können, müssen normalerweise die Signalpegel an die +12V/
—12V des Standards angepaßt werden. Mit einer dreiadrigen Leitung reichen
oft die 5V-Signale als Ausgangssignale vom Computer aus, besonders wenn
die Leitung kurz ist. Schließen Sie nie ein +12V/—12V Signal als Eingangs-
signal an den Computer an, er gibt dann seinen Geist auf! Es gibt besondere

Schnittstellen zu kaufen, die man zwischen die Anwender-Schnittstelle und

den 25-poligen Steckverbinder der RS-232-Schnittstelle schalten kann. Fir
ein dreiadriges Kabel kann man diese Schnittstelle auch rasch selbst bauen,
Abb. 6.4.

+12V

"ho kQ
Anwender- LJ 7 25-poliger
Schnittstelle 2 LM741 RS-232-Stecker

2
21 6 @ | SOUT

3
Mim 3 | m | SIN

7

10kQ P| GND
-12V

Bl #
4700

Cis { }

Nim 4,7V Zenerdiode

——— —

Falls Sie Schwierigkeiten haben, die +12V/—12V zu erzeugen, die der Ope-
rationsverstärker benötigt, kann folgender Spannungsumwandler verwendet

werden. Die Ausgangsspannung beträgt zwar nur +9V/-9V, das reicht aber
aus.

79

10uF =

Von der Anwender- Schnittstelle

| 10 = +9V

ICL 7660

: 2 * > +9V Aus

+ 3| 6

IN4148

- 2 14 >—9V Aus

10uF

+ M i -
Abb. 6.5 Spannungsumwandler

asse

gun

Wahl von Übertragungsgeschwindigkeit, Wortlänge und Parität

Mit dem Inhalt von zwei Datenadressen kann der Anwender eine Menge we-
sentlicher Parameter der seriellen Datenübertragung festlegen. Die acht Bits

in Adresse 659, dem Steuerregister, haben Aufgaben, die aus Abb. 6.6 her-
vorgehen.

Adresse 659

Zahl der Stopbits |

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit! Biro

0 = 1 Stopbit
1 = 2 Stopbits

Wortlänge

Bit Bit Wortlänge
6 5

0 0 8Bits
0 1 7 Bits
1 0 6 Bits
1 1 5 Bits

Abb. 6.6 Kontrollregister

80
Wird nicht verwendet!

Datenübertragungsgeschwindigkeit in Baud

Bit Bit Bit Bit Baud

3 2 1 0

0 0 0 1 50

0 0 1 0 75

0 0 1 1 110

0 1 0 0 134,5

0 1 0 1 150

0 1 1 0 300

0 1 1 1 600

1 0 0 O 1200

1 0 0 1 1800

1 0 1 0 2400

Die acht Bits in Adresse 660, »Befehlsregister«, haben Aufgaben, die aus

Abb. 6.7 hervorgehen.

Adresse 660 Bt7 Bit6 Bid Bit4 Bit3 Bit2 Bitl BitO

m et Lo nnn

| Nicht gebraucht

Paritatsauswahl Duplex

. . . um 0 = Vollduplex
Parität Bit 7 Bit 6 Bit 5 i 1 = Halbduplex

0 0 0 kein

Paritatsbit .
0 0 1 ungerade Hand shaking:

Parität 0 = 3-adriges Kabel
0 4 { gerade 1 = echte RS-232

Paritat

1 0 1 immer

»MARK«

1 1 1 immer

»SPACE«

Abb. 6.7 Befehlsregister

Signale senden und empfangen

Bevor es möglich ist, Daten über die RS-232-Schnittstelle zu übertragen, muß

sie als logische Datei eröffnet werden. In das Feld für Dateinamen können bis

vier Zeichen eingegeben werden. Die beiden ersten werden benötigt, um dem

Kontrollregister (Adresse 659) und dem Befehlregister (Adresse 660) geeig-

nete Werte zuzuteilen. Die beiden restlichen sind für mögliche Erweiterungen
des Computers vorgesehen.

Um einen RS-232-Kanal zu eröffnen, wird der folgende Befehl gebraucht:

OPEN If,2,0,(Kontrollregister)(Befehlsregister)

»If« ist die Dateinummer, (1-255). Wenn If>127, erfolgt ein automatischer

Zeilenvorschub nach Wagenrücklauf. Ein Beispiel wird das Verständnis er-

81

leichtern. Gehen Sie davon aus, daß Ihr VC-20 oder C-64 Daten an einen Te-

xas Silent 700-Terminal mit einem dreiadrigen Kabel tibertragen soll. Das Si-
lent-Terminal sei auf die Geschwindigkeit HIGH eingestellt, was 300 Baud
entspricht. Verwendet wird 7-Bit-ASCII-Code, das Paritatsbit wird nicht be-
nutzt, und wir wollen Vollduplex einsetzen. Ein Stoppbit wird benutzt. Wir

teilen dem RS-232-Kanal die Dateinummer 2 zu.

Als erstes müssen wir feststellen, wie Kontroll- und Befehlsregister eingestellt
werden sollen. Ein schneller Rückblick in den vorigen Abschnitt ergibt fol-
gendes:

Kontroliregister:
0 0 1

nd 7777

ein Stopbit _t 4 | — 300 Baud

7-Bit ASCII nicht gebraucht

Befehisregister: 1 0 1 0 0 0 0 0

dt Nerney med .
keine Paritatskontrolle, 3-adriges

immer »MARK« Kabel

Vollduplex nicht gebraucht

Das Kontrollregister muB also die Zahl 2 + 4 + 32 = 38 und das Befehlsre-
gister die Zahl 32 + 128 = 160 aufweisen. Um den RS-Kanal zu eröffnen,
müssen wir daher den folgenden Befehl verwenden:

OPEN 2,2,0,CHR$(38)-+CHR$(160)

Beachten Sie, daß man den Kassettenrekorder oder die TEEE-Schnittstelle

nicht gleichzeitig mit der RS-232-Schnittstelle benutzen kann. Wenn die Be-
nutzung des RS-232-Kanals beendet ist, muß er geschlossen werden, was mit

dem Befehl CLOSE If geschieht, wobei If die gleiche Dateinummer wie im
OPEN-Befehl ist. In unserem Beispiel schließt man den RS-232-Kanal mit

CLOSE 2

Zeichen werden über die RS-232-Schnittstelle mit dem Befehl GET #Hf,(S-
tringvariable) entgegengenommen. In unserem Beispiel wird vom Silent-Ter-

minal der String A$ mit dem Befehl abgeholt:

GET #2,A$

82

Um Zeichen zu senden, wird der Befehl PRINT If (Stringvariable) verwen-
det. In unserem Beispiel wird der Inhalt der Stringvariablen B$ mit folgen-
dem Befehl ausgegeben:

PRINT + 2,B$

Abschließend noch ein paar Worte der Warnung. Öffnen Sie die RS-232-
Schnittstelle immer, bevor Sie DIM-Zeilen oder Variablendefinitionen in Ihr
Programm schreiben. Der Befehl OPEN hat automatisch CLR zur Folge, was
bekanntlich die Variablen wieder auf Null setzt. Bedenken Sie auch, daß vie-

le Drucker beim Wagenrücklauf keine Daten aufnehmen können. ‚Bauen Sie
deswegen in Ihr Programm eine Verzögerung ein, die es dem Drucker er-
laubt, rechtzeitig zum Zeilenbeginn zurückzufahren, ehe er weiterschreiben
soll.

83

a
t
u
w
e
B
O
l
d

abiyeynel

“BYOHICSUBUAISEYy
U

UBENLIUIELÜOIG
@
JUUSeIgeZ

-Olg
SIR

PO-D/02-OA
@
W
e
I
N
d
w
e
g

U@IOPUE
lu

USTEYOSUSWILURSNZ
@

S1aIy
e
b
a
y

Wi
UBIOIOWINIUSS

UOA
Buruaneg

@
lewolnejyer-unjsie|

e
Buniansissielss)

Dun
-Selöy

g
S
u
n
s
s
e
p
s
p
e
n
g
s
ä
g
.
g

7:
8

UBHOSAZ
Ui

“HISIU]
A
S
L
S
T
W
L
G
W
i
c
y

Ue
e
M
I
e
D
U
N
 AA

SagsIp

1U3}
UB YV@INGLUOD

J
i
O

Sui
NUaISIAR

HU
F
9
-
V
O
2
-
D
A

W
E
I
N
T
W
O
N

uSp
am

U
B
Y
e
S

e
r

+9
810P0WLU0N

PUN
OZ-DA

wep
yw

ujeGel
‘wanays

‘uassayy

[ORILLIA]
PUN

-SHOQuYy
a]Uabij/a}U!

- YAIATIWH

“‘BunseunueiBorg
a
y
s
u
n
p
n
a
s

@
t
u
d
z
l
b
l
s
i
n
d
w
o
n

sus}
-
y
o
s
e
G
u
o
y

@
sdi-

pur
s
y
o
u
a
i
W

Jn)
SYONSIC

GUN
apassey

@
(ajauqual

-swuoyry)
Sunpeqiaseaya,

s
u
e
t

ap
39

F
O
-
O
V
O
2
-
O
A

@
1
p
m

A
q
q
o
y

u
o
w
e
b

ul
wuınz

yoou
NZBD

Gun
jaypised

J
a
w
y
s
u
e
b
u
e

pun
iepyoiey

ueday
SED

I
n
d
w
o
n
)

aypusuj

aim
Buyds

Jfy
WuUoS

usu;
Uebiez

ueuedxa
{YONG

SSSSID
PyONEQ

“jaa
VaZASUe

Bnezyay,
sie

W
e
p
u
d
s

o
d
s

sje
JaBiueMm

p9-5
18PO

OZ-OA
vauıas

s
o

pQ
O
P
O
W
W
O
I

pun
0
Z
-
D
A

wap
jne

u
a
e

I6014
S
S
U
S
H
H
Y
I
S
S
Ä
H
O
Z

HALLER

men
u
e
s
s
u
s
e
g

Dur
bejsuisusedg

y
a
s
u
n
s
j
s
g
f
]

pun
usßunpsisieg

sudsiyudeie)
g

(
O
B
s
a
u
e
f
u
o
,

g
a
r
a
g
e
,

~HOSV
@

USPUILSpaim
pun

UidU>
~adsqe

uajessey
ine

uareg
@

Buns
J
a
r
u
u
e
6
o
1

wy
u
a
u
u
s
e
6

IDGALA
U
A

U
E
d
i
e
W
y
O
S

@
G
u
n
u

EZ
EA

ANZ
SiG

UBOIDDYy
LOA

yegeöiny
jeypsieiuayeiu

u
s
s
0
7
@

Yang
aystulomaßlsgne

sasaip
H
a
l
l
u
l
s
a

s
n
e
u
y
m
a
d
g
r
n
u
e
g

'usulene

nz
puaaids

nzapeab
pun

yoy
-purué

o
s
y
e

ayomidsuaindwag

aip
an

S
B
M
S
I
U
D
L
U
S
I
U
N
I
S
C

IAS
sabipusge]

WIG
1B1y

SSSIUTUUEN
O
U
L
U

IBOL,|

Suuo
se]

lapel
lopuy

ujadey
uepay

o
s
t
e
i
d

pun
v
a
p
u
e
u
u
E
d
s

fy,
ul

79
Gu0powWWw0D
Pun

0Z-9OA
Wap

jne
DISVa

ul
v
a
s
e

iBOid

F
R
E

Qvyléry
XATAL

1
8
6
9
/
1
8
9
0

“AL

A
N
V
W
H
S
D
-
"
M
/

N
A
M
O
N
Y
E
H
V
V
S

0099-0
08

S
S
S
V
H
L
S
I
O
H
N
H
V
S

OW
TeislA

Y
4
T
I
V
H
 ‘oyub

-equoepaindwoy
sap

Burueplg
@

B
u
e
y
u
y

wi
usBunsgT

Hu
uaqeBjne

-sbungN
@

WISUIHSLS
LUAULST

SEP
SIp

'usBUNSSejUSWLILWLIESNZ
g

swwWelßoid
sölyeyne]

@
ueuonelsni;

s
e
l

@
Isejleg

suyo
sjeıdsiag

pun
a
u
w
e
l
6

-O14
auaBozaqsixeid

ajaiA
18S

@
BYOBIAS

OUDIIPUBISISA
‘
Y
O
R
U

@
Jayonasıyau

~JOJUNISIOS
JEP

S
A
O
,

aiapuoseg
ipuiss

u
s
B
o
ß
e
p
e
4

abye
yosipeud

Bilszyalsıd
Jsgqe

DIP
—
S
H
O

UOA
UBSGBHYOSED

‘aes
-Yong

eusuaiyosie
Yyosineg

ul
nau

UBQSOS
auls

JAIL]
E
Y
O
N
G

esaip
vun,

BeueA
YITIVH

SQ
Hepue

Jequalz
-joAyoeu

uote}
e
l
s
e

sbl
ads

aip
jeiy

pun
ddiy

y
o
s
i
s
e
u
i
o
u
o
e
4

U
O

Sep
‘yong

afetudo
sep

yone
Jaqe

uuep
o
u
e
b

ieinduios
ueynb

WIN?
/JBWACO

#9
SI0POWIULON

Jepo

O2-DA
Usule

Jn)
Bunplayos|uy

914)
Is!

j
a
B
u
n
y
o
s
q
-
a
i
n
d
w
o
e
g

usbiyeziep

wu]

-
J
I
T
I
V
H

YITIVH 4ITIVH

(KAPITEL 7 >

Die IEEE-

Schnittstelle

——=VC-20 C-64 —

Die IEEE-488-Schnittstelle

TEEE-488 ist (wie der RS-232) die Bezeichnung einer amerikanischen Indu-
strienorm, die eine Methode der Datenübertfagung festlegt. Im praktischen

Gebrauch spricht man auch vom IEEE-Bus oder dem HP-Bus, wenn man
sich auf die Schnittstelle für IEEE-488 bezieht. Die Bezeichnung HP stammt

von Hewlett-Packard, dem großen amerikanischen Hersteller von Meßinstru-

menten, Rechnern und Computern. Hewlett-Packard war einer der Pioniere

bei der Herstellung des TEBE-Busses.

Der IEEE-Bus ist hauptsächlich für die Datenübertragung zwischen Compu-
tern und Meßinstrumenten gedacht, z. B. zum Datensammeln oder Steuern

von Prozessen. Heute gibt es auf dem Markt eine Reihe von Meßinstrumen-

ten aller möglicher Hersteller, die an den IEEE-Bus angeschlossen werden

können, wie z. B. Voltmeter, deren Meßbereich der Computer festlegt und
die der Computer natürlich auch abliest. Es gibt Signalgeneratoren, für die
der Computer über den IEEE-Bus Frequenz, Kurvenform und Amplitude

vorgibt, und es gibt Gleichstromaggregate, für die der Computer Spannung
und Polarität vorgeben kann, um nur einige Anwendungsgebiete zu nennen.

Allen diesen Geräten ist gemeinsam, daß sie einen besonderen Steckverbin-

der und eine eingebaute Schnittstelle aufweisen, welche die Forderungen des
IEEE-488 erfüllen.
Wir wollen einen kurzen Blick auf die IEEE-Busse werfen, ohne ins Einzelne
zu gehen. Die Schnittstelle besteht aus 16 Leitungen und einer Rückführung,
der Masse. Von diesen 16 werden 8 für den Quittungsbetrieb (»Hand sha-
king», »Protokoll«) gebraucht und 8 für Daten. Informationen, jeweils immer
einzeln, werden als ASCI-Zeichen (parallel) gesendet. Der Vorteil des
IEEBE-Busses ist, daß man mehrere Instrumente gleichzeitig (10 bis 15 Stück)
an den Bus anschließen kann. Jedes Instrument hat eine bestimmte 5-Bit-

Adresse, die der Anwender normalerweise festlegen kann. Durch die Anwahl
eines Instruments wird nur dieses aktiviert, die anderen bleiben inaktiv.

Es gibt drei verschiedene Instrumentenklassen, die man am Bus anschließen
kann:

Steuereinheiten (engl. Controller)
Empfänger (engl. Listener
Sender (engl. Talker)

Die Steuereinheit (normalerweise ein Computer oder Rechner) steuert den

Bus. Ein Empfänger empfängt Daten vom Bus, und ein Sender sendet Daten
über den Bus.

88

Die IEEE-Schnittstelle des VC-20 und C-64

In den VC-20 und C-64 sind stark vereinfachte Formen des IEEE-Busses ein-

gebaut worden. Anstatt des 16+1-adrigen Kabels wurde ein solches mit 4+1

Leitungen eingebaut. Die Hauptaufgabe des IEEE-Busses in diesen Compu-

tern ist die Datenausgabe an den speziellen VC-Drucker und die Datentiber-

tragung mit der Floppydisk-Einheit. Beide sind an den VC-IEEE angepaßt.

Es können jedoch keine gewöhnlichen IEEE-Instrumente an den VC-20 und
C-64 angeschlossen werden. Hierfür ist ein Adapter erforderlich, der als Zu-
behör angeschafft werden kann und der die Computer an den normalen IE-

EE-488-Standard anpaßt.

Signale und Stecker

Am VC-20 und C-64 sitzt die 6-polige DIN-Steckbuchse zum IEEE-Bus auf

der rechten Seite, Abb. 7.1.

Kontakt Nr. Signal
Serielles SRQ ein
Masse

Serielles ATN ein/aus

Serielle Uhr ein/us

Serielle Daten ein/aus

nicht belegt

85 1%

et 5 6
oo

a
O
a
b

a
r
p

—

Abb. 7.1 Steckerbuchse des IEEE-Busses

SRO bedeutet »Service Request« und ist das Signal einer peripheren Einheit,

die an den Bus angeschlossen wird. ATN bedeutet »Attention« (Vorsicht)
und wird verwendet, um Daten und Adressen zu trennen. Die Uhr wird zum

Synchronisieren der Signale auf dem Bus verwendet. »Daten« ist schließlich
der serielle Datenstrom, der einschließlich der Adressen mit dem Bus über-

tragen werden soll.

Verwendung der IEEE-Schnittstelle

Der VC-20 und C-64 können am IEEE-Bus nur als Steuereinheit, nicht aber

als Hörer oder Sprecher gebraucht werden. Drei der IEEE-Adressen sind
schon besetzt: Der Drucker VC-1515 hat die Adresse 4 oder 5 und die Flop-

pydisk-Einheit die Adresse 8. Die Adressen 9-30 sind frei und können nach

Belieben verwendet werden.

89

Bevor die IEEE-Schnittstelle benutzt werden kann, muß sie eröffnet werden.

Dies geschieht wie immer mit dem OPEN-Befehl in folgender Form:

OPEN If,d,sa,fn

»If« bedeutet Dateinummer, »d« ist die Adresse der peripheren Einheit, mit

der die Datenübertragung vorgenommen werden soll. »sa« ist die sekundäre

Adresse (0-31), mit der die Betriebsart besonderer peripherer Einheiten be-
stimmt werden kann. »fn« schließlich ist eine Buchstabenfolge (String, 128
Zeichen) und wird hauptsächlich bei Betrieb der Floppydisk-Einheit benutzt.

Beim Drucker VC-1515 z. B. bedeutet die Sekundäradresse 7, daß damit

Groß- und Kleinschrift zur Verfügung steht. Der Drucker hat die Adresse 4.
Wenn man darüber Daten ausgeben will, muß man ihn erst als Datei eröff-

nen, z. B. mit der Dateinummer 1. Der Befehl ist

OPEN 1,4,7

Die Ausgabe der Information erfolgt mit PRINT If,V$. If ist die Dateinum-
mer und V$ die Variable, welche die Daten enthält, die ausgegeben werden

sollen. Im Falle des Druckers ist dies

PRINT #1,V$

Um Information von einer peripheren Einheit einzulesen, verwendet man

INPUT #If,V$ oder
GET #If,V$

Wie gehabt, bezieht sich »If« auf die Dateinummer und V$ auf die Variable,
welche die zu übertragende Information enthält. GET #If,V$ holt nur ein

Zeichen ab, während INPUT #If,V$ einen String von Buchstaben aufbaut,

bis ein Wagenrücklauf, d. h. CHR$(13) kommt. Ein solcher String darf ma-

ximal 88 Zeichen lang sein. Das IEEE-Protokoll, d. h. das Verfahren des

»Hand shaking«, ist bei der vollausgebauten IEEE-Schnittstelle recht kompli-

ziert. Als Benutzer merken Sie davon jedoch nichts, denn auch wenn der
komplette IEEE-Adapter angeschlossen ist, werden die gleichen Befehle ein-

gesetzt wie im Falle des vereinfachten Adapters.

90

(KAPITEL 8 >

Einige praktische

Versuche

=——VC-20 C-64 ——

Einige praktische Versuche

In diesem Kapitel wollen wir uns mit einigen interessanten Anwendungen des
Computers befassen. Auf dem bisher Gelernten können Sie weiter aufbauen,

und Ihrer schöpferischen Phantasie ist keine Grenze gesetzt! Die Möglichkei-

ten umfassen sowohl Hardware als auch Software. Nach dem Durcharbeiten

der jetzt folgenden Versuche dürfen Sie davon überzeugt sein, daß Sie Ihren
Computer für das Messen, Steuern und Regeln optimal einsetzen können.

Lichtstift

Ein Lichtstift ist eine Vorrichtung, mit deren Hilfe man auf dem Bildschirm

einen Punkt auswählen und vom Computer die Koordinaten anzeigen lassen

kann. Der Lichtstift ist ein ausgezeichnetes Hilfsmittel zur Wahl von Menü-

Alternativen und zum Zeichnen von Figuren auf dem Bildschirm. Um die Ar-

beitsweise zu verstehen, müssen wir uns erst anschen, wie ein Bild auf dem

Bildschirm entsteht. Es wird von einem Elektronenstrahl gezeichnet, der ein-

und ausgeschaltet werden kann und den Bildschirm in einem bestimmten Ra-
ster überstreicht. Auf der Innenseite des Schirms befindet sich eine fluores-

zierende Substanz, die an den vom Strahl getroffenen Stellen aufleuchtet.

Hohe Strahlungsintensität erzeugt viel Licht und umgekehrt. Der Strahl wird

durch Elektromagneten wie in Abb. 8.1 gesteuert. Das geht sehr schnell! Das

Zeichnen einer Linie dauert 64 Mikrosekunden; für das ganze Bild benötigt

der Elektronenstrahl 20 Millisekunden. Der Computer zeichnet 50 Bilder je
Sekunde, so daß das Auge daher kein Flimmern feststellt.

vw
„
_
r
r
y
_
r
r
Y
Y
Y

Abb. 8.1 Das Bild wird rasterförmig aufgebaut

92

Im Videoteil des Computers befinden sich Register, die festhalten, in welcher
Position sich der Strahl jeweils befindet, d. h. seine X- und Y-Koordinaten.
Soll nur ein Buchstabe, z. B. »E«, gezeichnet werden, geschieht dies wie in

Abb. 8.2. Der Elektronenstrahl ist ausgeschaltet, außer wenn er auf die
Punkte trifft, die das betreffende Zeichen darstellen.

LT li meneame
-
no:
m
a

Abb. 8.2 Ein Zeichen wird durch Ein- und Ausschalten eines bewegten Elektronenstrahis aufgebaut

Ein Lichtstift ist ein einfaches Gerät. Er besteht aus einer Fotozelle, die auf

das Licht eines Elektronenstrahls reagiert. Der genaue Zeitpunkt, zu dem das
Licht festgestellt wird, läßt den Computer erkennen, auf welche Stelle des
Schirms er jeweils auftrifft. Der VC-20 hat einen Eingang für den Lichtstift,

besser gesagt, zwei parallelgeschaltete Eingänge. Der eine Eingang ist Pin 6
der Schnittstelle für Spiele, der andere ist Pin 7 der Anwender-Schnittstelle.
Beim C-64 gibt es einen Eingang an der Schnittstelle 1 für Spiele, Pin 6. Sie
können den Lichtstift als Zubehör kaufen, ihn aber auch einfach selbst ba-

steln. Als Fotozelle nehmen Sie am besten einen Fototransistor vom Typ FPT

100, den Sie oben in den Schaft eines Kugelschreibers einsetzen, um den Fo-

totransistor vor Streulicht zu schützen.

93

+5V

1,2kQ SN 74LS14
eka ' 2 Pin 7,

5, N p— > Anwender-Schnittstelle
Cc Pin 6, Spieleingang

FPT 100 B BC167
c E Pin 7 von SN74LS14 auf Masse legen

7, Pin 14 an +5V anschließen

E
» Pin 1,

_o— Anwender-Schnittstelle

B ECB

Ce SS, FPT100 BC167
(mit den AnschluBpins zu Ihnen hin) (mit den Anschlußpins zu Ihnen hin)

Abb. 8.8 Verdrahtung des Lichtstiftes

Im VC-20 und C-64 gibt es zwei Register, in denen die X-Koordinate und die

Y-Koordinate der Lichtgriffelposition auf dem Bildschirm gespeichert wer-
den. Im VC-20 hat das X-Register die Adresse 36870 und das Y-Register die
Adresse 36871. Im C-64 hat das X-Register die Adresse 53267 und das Y-Re-
gister die Adresse 53268. Ein Programm, das die X- und Y-Koordinaten auf
den Bildschirm schreibt, kann folgendermaßen aussehen (für den C-64 sind
die Adressen zu ändern):

10 PRINT CHR$(147)
20 X=PEEK(36870)
30 Y=PEEK(36871)
40 PRINT“X=“;X, “Y="GY
50 GOTO 10

Zeile 10 löscht den Bildschirm, Zeilen 20 und 30 lesen das X- bzw. Y-Regi-
ster, und Zeile 40 schreibt die Zahlen auf den Bildschirm. Eigentlich geht das
Ganze etwas zu schnell für das Auge. Bauen Sie deshalb eine Verzögerung in
das Programm ein:

45 FOR I=1 TO 500; NEXT |

Hier Vorschläge zum Ausbauen der Möglichkeiten mit dem Lichtstift:

94

1. Schreiben Sie ein Programm, mit dem Sie Alternativen aus einem Menti

wahlen.

2. Schreiben Sie ein Programm, das mit Hilfe des Lichtstifts Bilder auf den
Bildschirm zeichnet.

Datalogger (Meßdatenaufnehmer)

Ein Datalogger ist ein Gerät, mit dessen Hilfe man von einem oder mehreren
Gebern Meßwerte zu bestimmten Zeitpunkten erfassen und abspeichern
kann. Die Speicherung kann z. B. dadurch erfolgen, daß die Meßwerte auf
einem Drucker ausgedruckt werden. Man kann die Werte auch im Speicher

des Computers aufbewahren, um sie später auf Kassette oder Floppydisk ab-
zulegen. Es hat sich als sehr praktisch erwiesen, Meßdaten in einer Datei vor-

liegen zu haben, wenn später eine Weiterverarbeitung der Werte erfolgen
soll, wie z. B. statistische Berechnungen, Trendanalysen usw.

In diesem Abschnitt sollen Sie einen Datalogger aufbauen, der an einen Mul-
tiplexer und einen Spannungs-/Frequenz-Wandler angeschlossen ist, wie wir
das in einem der vorherigen Abschnitte schon besprochen haben. Der Data-
logger soll zu Temperaturmessungen an bis zu acht Meßfühlern verwendet

werden. Als Geber benutzen wir eine einfache Siliziumdiode, IN4148. Der
Spannungsabfall über die Diode ändert sich nämlich im Temperaturbereich
—40°C bis +150°C linear mit ca. 2 mv/°C. Der Spannungsabfall variiert natür-

lich von Diode zu Diode. Wenn man will, kann man Dioden auswählen, die
den gleichen Spannungsabfall haben. Wenn man aber einen Computer hat, ist

das nicht nötig. Abweichungen der Dioden untereinander kann man durch
Eichwerte im Programm berücksichtigen.

+5V

Zum Multiplexer und

VA-Wandler

1N4148

 nd

Abb. 8.4 Die Dioden können auf diese Weise angeschlossen werden

95

Die Stromstarke durch die Dioden betragt ca. 450 wA und der Spannungsab-

fall bei 20°C 0,55 V. Wird die Diode auf 100°C erwärmt, beträgt der Span-

nungsabfall 0,39 V. Es tritt also nur eine geringfügige Änderung auf. Leider
fällt die Spannung ab, wenn die Temperatur steigt, zweifellos wäre es ange-

nehmer, wenn sie ansteigen würde. Mit einer Brückenschaltung und einem
Differentialverstärker können wir zwei Mücken mit einer Klappe schlagen:

Wir verstärken die Spannungsänderung fünfmal und erhalten darüber hinaus
eine Spannung, die sich mit der Temperatur erhöht, Abb. 8.5.

+5V ©

470k

10kQ 4,7kQ

1kQ

1N4148

DN .
>* 4» Zum Multiplexer

+ und
Da

>» \V/f-Wandler
CA3140

Abb. 8.5 Verstärker und Temperaturgeber

Vor dem Eichen der Dioden in einem Wasserbad bekannter Temperatur soll-

te man sie mit Schrumpfschlauch isolieren, denn Wasser kann u. U. ein guter
Leiter sein! Bei der Eichung eines Geräts nach Abb. 8.5 wurde die Diode in

Wasser getaucht, das schmelzendes Eis enthielt (0 Grad). Das 1 kOhm Poten-

tiometer wurde so eingestellt, daß bei 0°C U = +1,00 V gemessen wurde.
Bei +23°C ergab sich U = +1,23 V und bei +71°C U = +1,71 V. Es besteht

also ein linearer Zusammenhang zwischen Spannung und Temperatur! Eine
grafische Darstellung des Zusammenhangs zwischen Spannung und Tempera-

tur finden Sie in Abb. 8.6. Es handelt sich hier um einen passenden Span-
nungsbereich für den Spannungs-/Frequenz-Wandler, den wir in einem vor-

hergehenden Abschnitt erläutert haben.

96

uv f

 ° NS

-40 0 +50 +100 ec

Abb, 8.6 Zusammenhang zwischen Spannung und Temperatur

Vollständig ausgebaut, mit allen 8 Gebern, Multiplexer und V/f-Wandler, fin-
den Sie das Verdrahtungsschema in Abb. 8.7.

8. 10K

 Geber »Q«
100 tOnf “u

Geber »1«

rBY
Geber »6«

n7«

Zum User Port

Abb. 8.7 8-Kanal Datalogger (Meßdatenaufnehmer)

97

Die Empfindlichkeit des V/f-Wandlers ist IkHz/V. Nach Einstellung des 1
kOhm Potentiometers kann man davon ausgehen, daß 1 kHz 0°C entspricht,

0,6 kHz —40°C usw. Der gewünschte Geber wird mit PBO, PBi und PB2 in

Binärcode entsprechend der Tabelle gewählt:

PB2 PB1 PBO Nummer des Gebers

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

Wir sind mit unserem Programm jetzt beinahe fertig. Zunächst jedoch noch
einen Hinweis. Wenn der Multiplexer auf einen neuen Geber umschaltet,

braucht der V/f-Wandler ca. 0,2 Sekunden, um sich auf die neue Frequenz

einzustellen. Das Programm muß also Verzögerungen enthalten, die dies be-

rücksichtigen.

Ein Programm für den VC-20, das 10 Meßwerte von jedem der 8 Meßpunkte
alle 10 Minuten abspeichert und um 13.00 Uhr zu messen beginnt, folgt un-
ten. Wir benutzen die Uhr, die natürlich erst gestellt werden muß, zur Fest-

legung des Meßzeitpunktes und das Programm zur Frequenzmessung aus Ka-
pitel 4 als Unterprogramm. Für den C-64 müssen die Adressen in Zeilen 10,
60, 200, 210, 240 und 260 geändert werden.

10 POKE 37138,191
20 K=130000
30 FOR S=0 TO 9
40 IF VAL(TI$)<K+1000xS THEN 40
50 FOR I=0 TO 7
60 POKE 37136,
70 FOR N=0 TO 500 : NEXT N
80 GOSUB 200
90 M(I,S)=(F—1000)/10
100 NEXT |
110 NEXT S
120 END

98

200 POKE 37147, PEEK(37147) OR 32
210 POKE 37144,255
220 T=TI
230 IF T=TI THEN 230
240 POKE 37145,255
250 IF TI<>T+60 THEN 250
260 F=65535—(256*PEEK(37135)+PEEK(37144))
270 RETURN

Zeile 10:

Zeile 20:

Zeile 30:

Zeile 40:

Zeile 50:

Zeile 60:

Zeile 70:

Zeile 80:

Zeile 90:

Macht PB6 zum Eingang und übrige PB zu Ausgängen der Anwen-

der-Schnittstelle. (Beim C-64 muß man PB6 nicht zum Ausgang
machen.)

Legt die Zeit der ersten Messung in Stunden, Minuten und Sekun-

den fest.

Bildet mit Zeile 110 eine FOR...NEXT-Schleife, die zehn Messun-

gen ergibt. Die Variable S gibt an, welcher Meßwertgeber gerade

mißt.

Liest die Uhr ab und prüft, ob gemessen werden soll. Beachten Sie,

daß TI$, die Zeitangabe, eine Stringvariable ist. VAL(TI#) ist da-

gegen eine numerische Variable. K+1000xS legt den Zeitpunkt der

nächsten Messung fest. 1000 bedeutet 10 Minuten und 00 Sekun-
den. Der Computer wartet in Zeile 40 bis wieder eine Messung

ausgeführt wird.

Bildet mit Zeile 100 die Schleife, die jeweils eine der 8 Meßstellen

auswählt. Die Variable I bezeichnet die Meßstelle.

Legt die Meßstelle fest.

Die Verzögerung von 0,5 Sekunden erlaubt dem V/f-Wandler, die

neue Frequenz zu wählen.

Springt zur Subroutine, welche die Frequenz mißt und gibt das Er-

gebnis an die Variable F weiter.

Speichert die Temperatur in Matrix M.

Zeile 200: Subroutine zur Frequenzmessung (siehe Kapitel 4).

Bevor Sie das Programm laufen lassen, muß die Uhr eingestellt werden. Das
macht man mit dem Kommando TI$=“HHMMSS“. HH sind Stunden, MM

Minuten und SS Sekunden. Zum Test des Programms stellen Sie die Uhr am

besten auf TI$=“125900“. Sie haben dann noch eine Minute Zeit, bis das
Programm anläuft (die erste Messung wird um 130000 Uhr durchgeführt).

99

Das Ergebnis der MeBserie wird in der Matrix M(I,S) gespeichert. I ist die
Nummer des Meßwertgebers, S ist die Nummer der Messung. Wollen Sie

nach Abschluß der Meßserie das Ergebnis von Meßpunkt 5 um 132000 Uhr
(dritte Messung) sehen, schreiben Sie PRINT M(5,3) und drücken auf RE-

TURN. Sie erhalten dann das Resultat.

Vorschläge für weitere Versuche:

1. Ergebnisausgabe auf dem Bildschirm nach Ende jeder Meßserie.

2. Grafische Darstellung auf dem Bildschirm, wenn mehrere Messungen ab-
geschlossen sind.

3. Richten Sie es ein, daß Sie die Meßwertgeber beliebig anwählen können,
z. B. 3, 4 und 7. Die Reihenfolge soll sich leicht verändern lassen.

4. Erweitern Sie das Programm so, daß die Meßwerte nach Beendigung der
Messung auf Kassette oder Diskette abgespeichert werden können.

5. Schreiben Sie ein Programm, das es Ihnen gestattet, abgespeicherte MeB-
werte weiterzubearbeiten. Es soll z. B. der Mittelwert der Messungen ei-

nes Meßwertgebers ermittelt werden.

6. Wie können weitere Geber vorgesehen werden?

7. Man kann mit dem Datalogger natürlich auch andere Werte als Tempera-

turen registrieren. Eine interessante Weiterentwicklung wäre eine Wetter-

station. Windrichtung und Windgeschwindigkeit sollten einfach zu messen

sein (Windflügel + Potentiometer oder optischer Geber / Propeller mit op-

tischem Geber / Magnet mit Reedrelais). Luftfeuchtigkeit und Luftdruck
sind schwieriger, aber keineswegs unmöglich zu messen.

Temperaturregelung

Ein Temperaturregler ist eine Anordnung, die z. B. in einem Prozeß oder in
einem Zimmer eine gewünschte Temperatur einhält. In diesem Abschnitt soll

der Mikrocomputer als ON/OFF- (Ein/Aus-) Regler eines Ofens dienen. Er
soll dabei die Temperatur im Ofen einhalten, indem er die Wärmezufuhr ein-

oder ausschaltet. Die Temperatur wird mit einem Thermistor gemessen. Die

Meßwerte veranlassen den Computer, die Wärmezufuhr zu starten oder ab-

zustellen. Es gibt sicherlich wesentlich bessere Regelmethoden, trotzdem wird

diese häufig verwendet.

100

Für unseren Versuch wird der »Ofen« von einem Pappkarton dargestellt, der

mit einer Glühbirne von 60W, 220V als Wärmequelle versehen ist. Der Com-

puter schaltet die Lampe mit einem Halbleiterrelais des in Kapitel 3, Abb. 3.6
angegebenen Typs ein und aus.

Halbleiterrelais @) Glühbirne

nt 220V

+5V
2 4 — | +

User Port PB? ~~

L————_—_-_—F- nv f AC

Abb. 8.8 Schaltschema der Temperaturregelung

Beachten Sie, daß PB7=»1« die Glühbirne ausschaltet, PB7=»0« sie einschal-

tet. Um die Temperatur im Ofen zu messen, benutzen wir einen Thermistor,

angeschlossen an den POT-X-Eingang gemäß Kapitel 4.

fr +5V
74

7 Thermistor (5 kKOhm bei +20°C)

Spielport < POTX

0,05uF == a

Abb. 8.9 Die Temperaturen werden mit einem Thermistor gemessen

Abb. 8.8 und 8.9 zeigen Ihnen alle Bauteile, die benötigt werden. Seien Sie
mit den 220V-Anschlüssen vorsichtig! Diese müssen alle gut isoliert und rich-
tig angeschlossen sein, bevor Sie den Strom einschalten. Weder Ihnen noch

dem Computer bekommt die Berührung mit der Netzspannung!

Zur Messung der Temperatur benutzen Sie am besten das Programm in Ka-

pitel 4, das auch den Thermistor linearisiert. Das Programm wird als Unter-

programm (Subroutine) aufgerufen, Zeile 100. Ein Programm, das als »Soll-
wert« die gewünschte Temperatur von 50°C einhält, kann folgendermaßen

aussehen (für den C-64 ändern Sie bitte die Adressen in Zeilen 10, 20, 60 und
100).

101

10 POKE 37138,128
20 POKE 37136,128
30 SW=50
40 GOSUB 100
50 IF T>SW THEN 20
60 POKE 37136,0
70 GOTO 40
100 N=PEEK(36872)
110 IF N<20 THEN T=90—2.1%«N
120 T=60—0.55«N
130 PRINT T
140 RETURN

Anmerkungen zu diesem Programm:

Zeile 10:

Zeile 20:

Zeile 30:

Zeile 40:

Zeile 50:

Zeile 60:

Zeile 70:

Setzt PB7 der Anwender-Schnittstelle als Ausgang.

Setzt PB7=»1«, d. h. stellt die Heizung an.

Der Sollwert wird auf 50°C eingestellt.

Springt zum Unterprogramm zur Temperaturmessung. Das Ergeb-

nis wird der Variablen T zugeordnet.

Der Computer priift, ob die Temperatur zu hoch ist. Wenn ja,
springt das Programm zurück nach Zeile 20, in der die Heizung ab-
gestellt wird.

Wenn die Temperatur zu niedrig ist, wird PB7=»0« gesetzt, d. h.

die Heizung wird eingeschaltet

Rücksprung nach Zeile 40, der Temperaturmessung.

Zeile 100: Den Wert N vom POT-X-Register holen.

Zeile 130: Die wirkliche Temperatur (Istwert) auf dem Bildschirm ausgeben.

Beachten Sie bitte, daß die Ausdrücke für die Linearisierung in Zeilen 110
und 120 vermutlich geändert werden müssen, um sie Ihrem Thermistor anzu-

passen (vgl. Kapitel 4). Machen Sie Probeläufe mit dem Programm, benutzen
Sie verschiedene Sollwerte und stellen Sie sicher, daß Ihr Regelgerät wirklich
funktioniert.

Vorschläge für den weiteren Ausbau der Temperaturreglung:

1. Der Vorteil des Computers im Vergleich zu einem einfachen Ein-/Ausreg-

102

ler, den man mit einem Operationsverstairker bauen kann, ist, daB man

den Sollwert in Abhängigkeit von der Zeit, entsprechend einem im voraus
festgelegten Temperaturprofil verändern kann. Ändern Sie das Programm
so ab, daß 2 Minuten lang eine Temperatur von 40°C eingehalten wird,

dann 2 Minuten 45°C und dann 3 Minuten lang 50°C. Tip: Benutzen Sie
den DATA-Befehl, um Temperatur und Zeit festzulegen, und die einge-

baute Uhr zur Zeitmessung.

2. Verändern Sie das Programm so, daß gleichzeitig zwei Öfen geregelt
werden.

Steuerung eines Schrittmotors

Bis vor wenigen Jahren mußte man eine Menge Elektronik zur Steuerung ei-
nes Schrittmotors aufwenden. Heute gibt es IC’s, die alle Signale zur Steue-

rung eines Schrittmotors erzeugen und obendrein den Verstärker zum An-
schluß an die Motorwicklung enthalten.

+2V 0

Schaltbild
won 62022

G.1aF

HH Schritimotor
10 k& wu la la 9904 112 07005

4

grau nn
+ T

 i
9 gelb AC schwart

T t

SAA 1027

t

| Anwender-Schnittstelle grau rn __ tot Anschluß
{User Port) * i Nähe Welle

6 gelb Crewe schwarz
T T

| |
| |

1 nn a
| Masse "| "|

SN7407;
PIN 7 Masse, PIN 14 +5V

Abb. 8.10 Antriebselektronik eines Schrittmotors

103

In diesem Abschnitt wollen wir einen kleinen Schrittmotor von Philips,
9904 112 1705, mit dem Bauelement SAA1027, auch von Philips, steuern.

Motor und Steuerelektronik erfordern eine Versorgung von +12V, für die ein

gesondertes Netzteil erforderlich ist. Die Antriebselektronik hat zwei digitale
Eingänge zur Steuerung des Motors. Der eine Eingang steuert die Drehrich-

tung, der andere verändert die Drehzahl Schritt für Schritt. Beide Steuersi-
gnale kann der Computer ohne Probleme erzeugen. Die einzige Schwierigkeit

besteht darin, daß das Bauteil SAA1027 für »l« +12V und für »0« OV ver-

langt. Dies ist kein großes Problem, ein TTL-Baustein SN7407 zwischen
Computer und Antriebslektronik führt die Niveauveränderung aus, Abb.

8.10.

Ein Programm, das den Computer N Takte in Richtung R, mit konstanter

Taktfrequenz, erzeugen läßt, sieht folgendermaßen aus (für den C-64 müssen

die Adressen in Zeilen 10, 50 und 70 geändert werden):

10 POKE 37138,192
20 N=45
30 R=64
40 FOR X=1 TON
50 POKE 37136,(128+R)
60 FOR T=0 TO 100 : NEXT T
70 POKE 37136,R
80 FOR T=0 TO 100 : NEXT T
90 NEXT X

Zeile 10: Setzt PB6 und PB7 der Anwender-Schnittstelle als Ausgang.

Zeile 20: N ist die Schrittzahl - hier 45 Schritte gewählt.

Zeile 30: R ist die Richtung. R=0 ergibt Drehung in der einen Richtung,

R=64 in der anderen Richtung (PB6 hat die Gewichtung 64).

Zeile 40: Ergibt zusammen mit Zeile 90 die FOR...NEXT-Schleife, die N

Takte erzeugt.

Zeile 50: Abhängig von R wird eine »1« über PB7 und eine »1« oder »0«
über PB6 erzeugt.

Zeile 60: Zeitverzögerung von 0,1 Sekunden.

Zeile 70: Abhängig von R wird eine »0« über PB7 und eine »1« oder »0«

über PB6 erzeugt.

Zeile 80: Zeitverzögerung von 0,1 Sekunden.

104

Die Pulsdauer wird hauptsächlich in Zeilen 60 und 80 bestimmt. Sie beträgt
ca. 0,2 Sekunden. Sie kann verkürzt werden und beträgt ohne Zeilen 60 und

80 ca. 15 ms, das Schnellste, das in Basic einstellbar ist. Der Motor verträgt

jedoch höhere Taktfolgen. Der Interessierte findet hier also ein typisches Bei-

spiel für den Einsatz der Maschinensprache.

Weitere Ausbaumöglichkeiten:

1. Lassen Sie den Computer den Motor nach den Werten einer Tabelle steu-
ern, d. h. Taktfolge, Drehrichtung usw.

2. Erweitern Sie die Tabelle, so daß auch die Taktfrequenz enthalten ist.

3. Erstellen Sie ein Programm, das die Drehzahl des Motors nach einer Stu-

fenfunktion beschleunigt.

105

(ANHANG A)

Register der

Mikroprozessoren

6502 und 6510

== VC-20 C-64—

Register der Mikroprozessoren 6502 und 6510

Die Mikroprozessoren 6502 und 6510 haben 6 Register, von denen eines 16

Bits und die tibrigen 8 Bits enthalten.

Der Akkumulator

Der Akkumulator ist das wichtigste Register des Prozessors. Mit Hilfe von

Befehlen in Maschinensprache kann der Inhalt von Speicherplätzen in den

Akkumulator übertragen werden. Der Inhalt des Akkumulators kann auch in
einen Speicherplatz übertragen und außerdem verändert werden. Der Akku-
mulator ist das einzige Register, in dem arithmetische Berechnungen ausge-

führt werden können.

Indexregister X

Das Indexregister X kann wie der Akkumulator benutzt werden, es können

jedoch keine arithmetischen Berechnungen ausgeführt werden. Einige Adres-

siermethoden benutzen es, um Adressen anzugeben,

Indexregister Y

Das Indexregister Y wird wie das Indexregister X verwendet.

Das Statusregister

Das Statusregister enthält 8 »Flags«, genannt N, Z, C, IT und V. Jedes Flag

zeigt an, ob ein bestimmtes Ereignis eingetreten ist oder nicht. Flag N wird

auf »1« gesetzt, wenn ein Ereignis negativ ist. Flag Z wird auf »1« gesetzt,

wenn das Ergebnis 0 ist. Flag C ist ein Erinnerungswert, der auf »1« gesetzt

wird, wenn ein Uberlauf der 8 Bits eintritt. Flag I steuert die Unterbrechung,
und Flag D ist ein Indikator in Zusammenhang mit negativen Zahlen.

Der Programmschritt-Zahler

Der Programmschritt-Zähler oder Befehlszähler ist das einzige 16-Bit-Regi-
ster. Es deutet auf die Adresse, in welcher der als nächstes auszuführende Be-

fehl in Maschinensprache steht. Der Befehlszähler bearbeitet Adresse nach
Adresse. Bestimmte Befehle, z. B. JMP (Sprung), können ihn auf einen neu-

en Wert setzen, und der Prozessor springt zu einem anderen Teil des Pro-
gramms.

108

Der Stapelzeiger

Der Stapelzeiger deutet auf den ersten freien Platz im Stapel. Der Stapel ist
ein Platz im Speicher, der fiir kurzzeitige Speicherung wichtiger Daten ver-
wendet wird.

109

(ANHANG B)

Befehlssatz der

Mikroprozessoren

6502 und 6510

== VC-20 C-64 }

Befehlssatz der Mikroprozessoren 6502 und 6510

in der Befehisliste werden folgende Bezeichnungen verwendet:

A

112

Akkumulator

Index-Register

Speicher

Statusregister
Stapelzeiger

geandert

keine Anderung
Addition

Logisches UND

Subtraktion

Logisches Exklusiv-ODER
Bringe zum Stapelzeiger

Bringe vom Stapelzeiger
Daten werden in Richtung Pfeiltransferiert

Logisches ODER

Befehlszähler

Die höchstwertigen 8 Bits des Befehiszählers
Die niederwertigen 8 Bits des Befehlszählers

Operand

Adressierungsart “direkt“

ADC (ADC Add memory to accumulator with carry) ADC

Addiere Speicher zum Akkumulator mit Ubertrag

Operation: A+ B+C*A,C NZCIDV
VALLEY

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Unmittelbar ADC Oper 105 2 2

SeiteO ADC Oper 101 2 3

Seite 0, X ADC Oper, X 117 2 4

Absolut ADC Oper 109 3 4

Absolut, X ADC Oper, X 125 3 4*

Absolut, Y ADC Oper, Y 121 3 4

(Indirekt, X) ADC (Oper, X) 97 2 6

(Indirekt), Y ADC (Oper), Y 113 2 5*

* Addiere 1, wenn Seitengrenze überschritten wird

AND (“AND* memory with accumulator) AND

Logisches UND zwischen Speicher und Akkumulator)

Operation: AA M -*A NZC IDV

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Unmittelbar AND#FOper 4 2 2

Seiteo AND Oper 37 2 3

Seite 0, X AND Oper, X 53 2 4

Absolut AND Oper 45 3 4

Absolut, X AND Oper, X 61 3 4*

Absolut, Y AND Oper, Y 57 3 4*

(Indirekt, X) AND (Oper, X) 33 2 6

{Indirekt), Y AND (Oper), Y 49 2 5

* Addiere 1, wenn Seitengrenze überschritten wird

113

AS L (ASL Shift Left One Bit (Memory or Accumulator)) AS L

Verschiebe nach links (Speicher oder Akkumulator)

Operation: c — [7l6/5]4/3]2]1]0]-- o NZCIDV
- weten.

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Akkumulator ASL A 10 1 2

Seite 0 ASL Oper 6 2 5

Seite 0, x ASL Oper, X 22 2 6

Absolut ASL Oper 14 3 6

Absolut, X ASL Oper, X 30 3 7

BCC . (BCC Branch on Carry Clear) BCC

Verzweige, wenn das Übertrags-Flag gelöscht ist

Operation: Verzweige, wenn C=0 NZCIDV

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Bedingte Verzweigung BCC Oper 144 2 2*

* Addiere 1 bei Verzweigung auf derselben Seite

* Addiere 2 bei Verzweigung zur anderen Seite

BCS (BCS Branchon carry set) BCS

Verzweige, wenn das Übertrags-Flag gesetzt ist

Operation: Verzweige, wenn C=1 NZCIDV

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Bedingte Verzweigung BCS Oper 176 2 2*

* Addiere 1 bei Verzweigung auf derselben Seite

* Addiere 2 bei Verzweigung zur anderen Seite

114

B EQ (BEQ Branch on result zero) B EQ

Verzweige, wenn das Ergebnis gleich Null ist

Operation: Verzweige, wenn Z=1 NZCIDV

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Bedingte Verzweigung BEQ Oper 240 2 2*

* Addiere 1 bei Verzweigung auf derselben Seite

* Addiere 2 bei Verzweigung zur anderen Seite

B IT (BIT Test Bits in memory with accumulator) BIT

Bits im Speicher mit dem Akkumulator testen

Operation: AA M,M, + N,M, + V NZCIDV
Bits 6 und 7 werden in das Statusregister überführt. Wenn das Ergebnis Mo = = My
vonA A MNullist, wird Z=1 gesetzt, sonst Z=0.

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

SeiteO BIT Oper 36 2 3

Absolut BIT Oper 44 3 4

BMI (BMI Branch on result minus) B Mi

Verzweige, wenn das Ergebnis negativ ist

Operation: Verzweige, wenn N=1 NZCIDV

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Bedingte Verzweigung BMI Oper 30 2 2*

* Addiere 1 bei Verzweigung auf derselben Seite

* Addiere 2 bei Verzweigung zur anderen Seite

BN E (BNE Branch on result not zero) B N E

Verzweige, wenn das Ergebnis nicht gleich Null ist

Operation: Verzweige, wenn Z#0 NZCIDV

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Bedingte Verzweigung BNE Oper 208 2 2*

* Addiere 1 bei Verzweigung auf derselben Seite

* Addiere 2 bei Verzweigung zur anderen Seite

BPL (BPL Branch on result plus) BPL

Verzweige, wenn das Ergebnis positiv ist

Operation: Verzweige, wenn N=0 NZCIDV

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Bedingte Verzweigung BPL Oper 16 2 2*

* Addiere 1 bei Verzweigung auf derselben Seite

* Addiere 2 bei Verzweigung zur anderen Seite

BRK (BRK Force Break) BRK

Programmierte Unterbrechung

Operation: Programmierte UnterbrechungPC +2 $ P 4 NZC DV

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Selbstverst. BRK 0 1 7

116

BVC (BVC Branch on overflow clear) BVC

Verzweige, wenn das Überlauf-Flag gelöscht ist

Operation: Verzweige, wenn V=0 NZCIDV

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Bedingte Verzweigung BVC Oper 80 2 2*

* Addiere 1 bei Verzweigung auf derselben Seite

* Addiere 2 bei Verzweigung zur anderen Seite

BVS (BVS Branch on overflow set) BVS

Verzweige, wenn das Uberlauf-Flag gesetzt ist

Operation: Verzweige, wenn V=1 NZCIDV

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Bedingte Verzweigung BVS Oper 112 2 2*

* Addiere 1 bei Verzweigung auf derselben Seite

* Addiere 2 bei Verzweigung zur anderen Seite

CLC (CLC Clear Carry Flag) Cc LC

Lösche Übertrags-Flag

Operation: O ~C Nze [DV

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Selbstverst. CLC 24 1 2

117

CLD (CLD Clear decimal mode) CLD

Lésche Dezimal-Betrieb

Operation: O = D NZCl oy

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Selbstverst. CLD 216 1 2

CLI (CLI Clear interrupt disable bit) CLI

Lésche Sperrbits im Status-Register

Operation: O I NZCIDV
~++Q--

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Selbstverst. CLI 88 1 2

CLV (CLV Clear overtiow flag) CLV

Lösche Überlauf-Flag

Operation: O V NZCI pw

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Selbstverst. CLV 184 1 2

118

CMP (CMP Compare memory and accumulator) CMP

Vergleiche Speicher mit Akkumulator

Operation: A~M NZCIDV
Void. - -

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Unmittelbar CMP Oper 201 2 2

Seite 0 CMP Oper 197 2 3

Seite 0, X CMP Oper, X 213 2 4

Absolut CMP Oper 205 3 4

Absolut, X CMP Oper, X 221 3 4

Absolut, Y CMP Oper, Y 217 3 4

(indirekt, X) CMP (Oper, X) 193 2 6

(indirekt), Y CMP (Oper), Y 209 2 5*

* Addiere 1, wenn Seitengrenze überschritten wurde

CPX (CPX Compare Memory and Index X) CPX

Vergleiche Speicher mit Index-Register X

Operation: X — M NZCIDV
WI ---

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Unmittelbar CPX Oper 224 2 2

Seited CPX Oper 228 2 3

Absolut CPX Oper, 236 3 4

CPY (CPY Compare Memory and index Y) CPY

Vergleiche Speicher mit Index-Register Y

Operation: Y — M NZCIDV
a

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Unmittelbar CPY Oper 192 2 2

Seite 0 CPY Oper 196 2 3

Absolut CPY Oper, 203 3 4

119

DEC (DEC Decrement memory by one) DEC

Speicher um 1 reduzieren

Operation: M~1-*M NZCIDV
VE

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Seite 0 DEC Oper 198 2 5

Seite 0, X DEC Oper,X 214 2 6

Absolut DEC Oper 206 3 6

Absolut, X DEC Oper,X 222 3 7

D EX (DEX Decrement index X by one) DEX

Index-Register X um 1 reduzieren

Operation: X —- 1X NZCIDV
VV ee

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Selbstverst. DEX 202 1 2

DEY (DEY Decrement index Y By one) DEY

Index-Register Y um 1 reduzieren

Operation: Y—1*Y NZCIDV
Wenn =

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Selbstverst. DEY 136 4 2

120

EOR (EOR “Exclusive-Or“ memory with accumulator) EOR

Logisches EXKLUSIV-ODER zwischen Speicher und Akkumulator

Operation: AYMA NZCIDV
Vee -

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Unmittelbar EOR#4# Oper 73 2 2

SeiteO EOR Oper 69 2 3

Seite 0, X EOR Oper, X 85 2 4

Absolut EOR Oper 77 3 4

Absolut, X EOR Oper, X 93 3 4*

Absolut, Y EOR Oper, Y 89 3 4*

(indirekt, X) EOR (Oper, X) 65 2 6

{Indirekt), Y EOR (Oper), Y 81 2 5*

* Addiere 1, wenn Seitengrenzen überschritten werden

INC (INC Increment memory by one) INC

Speicher um 1 erhéhen

Operation: M+ 177M NZC IDV
Vv. -+-

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Seite 0 INC Oper 230 2 5

Seite 0, X INC Oper, X 246 2 6

Absolut INC Oper 238 3 6

Absolut, X INC Oper, X 254 3 7

INX (INX Increment Index X by one) INX

Index-Register X um 1 erhöhen

Operation: X+1=X NZCIDV
Vo ee

Adressierungsart Mnemonik OP-Code Bytes Zeit-
» perioden

Selbstverst. INX 232 1 2

INY (INY Increment Index Y by one) INY

Index-Register Y um 1 erhöhen

Operation: Y+17 Y NZCIDV
v/....

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Selbstverst. INY 200 1 2

JMP (JMP Jump to new location) JMP

Springe an neue Adresse

Operation: PC + 1) -* PCL NZCIDV

(POC +2)—@PCH

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Absolut JMP Oper 76 3 3

indirekt JMP (Oper) 108 3 5

JSR (JSR Jump to new location saving return address) JSR

Springe zum Unterprogramm

Operation: PC+2% , (PC +1) PCL NZCIDV
(PC +2) PCH Or

Adressierungsart Mnemonik OP-Code Bytes Zeit-
périoden

Absolut JSR Oper 32 3 6

122

LDA (LDA Load accumulator with memory) LDA

Lade Akkumulator vom Speicher

Operation: M~PA NZCIDV
Vene.

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Unmittelbar LDA#Oper 169 2 2

Seite 0 LDA Oper 165 2 3

Seite 0, X LDA Oper, X 181 2 4

Absolut LDA Oper 173 3 4

Absolut, X LDA Oper, X 189 3 4"

Absolut, Y LDA Oper, Y 185 3 4

(indirekt, X) LDA (Oper, X) 161 2 6

(indirekt), Y LDA (Oper), Y 177 2 5*

* Addiere 1, wenn Seitengrenze überschritten wurde

LDX (LDX Load index X with memory) LDX

Lade index-Register X vom Speicher

Operation: MX ZCIDV
Veen.

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Unmittelbar LDX Oper 162 2 2

Seiteo LDX Oper 166 2 3

Seited, Y LDX Oper, Y 182 2 4

Absolut LDX Oper 174 3 4

Absolut, Y LDX Oper, Y 190 3 4"

* Addiere 1, wenn Seitengrenze überschritten wurde

123

LDY (LDY Load index Y with memory) LDY

‚Lade Index-Register Y vom Speicher

Operation: MY NZCIDV
Yo ae

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Unmittelbar LDY#’Oper 160 2 2
Seite 0 LDY Oper 164 2 3

Seite 0, X LDY Oper, Xx 180 2 4

Absolut LDY Oper 172 3 4

Absolut, X LDY Oper, xX 188 3 4°

* Addiere 1, wenn Seitengrenze überschritten wurde

LSR {LSR Shift rightone bit (memory or accumulator)} LSR

Verschiebe Inhalt des Akkumulators logisch nach rechts

Operation: O — 7lelslal3l 2] 1] 0) —C Nee IDV

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Unmittelbar LSR A 74 1 2

Seite 0 iSR Oper 70 2 5

Seite 0, X LSR Oper, X 86 2 6

Absolut LSR Oper 78 3 6

Absolut, X LSR Oper, X 94 3 7

NOP (NOP No Operation) NOP

Keine Operation

Operation: keine Operation NZCIDV

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Selbstverst. NOP 234 j 2

124

ORA (ORA "OR“ memory with accumulator) ORA

Logisches ODER zwischen Speicher und Akkumulator

Operation: AV MA NZCIDV
VV we

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Unmittelbar ORA# Oper 9 2 2

Seited ORA Oper 5 2 3

Seite0,X ORA Oper, X 21 2 4

Absolut ORA Oper 13 3 4

Absolut, X ORA Oper, X 29 3 4*

Absolut, Y ORA Oper, Y 25 3 4*

(indirekt, X) ORA (Oper, X) 1 2 6

{Indirekt), Y ORA (Oper), Y 17 2 5

* Addiere 1, wenn Seitengrenze überschritten wurde

PHA (PHA Push accumulator on stack) PHA

Bringe Akkumulator auf Stape!

Operation: Ay NZCIDV

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Selbstverst. PHA 72 1 3

PHP (PHP Push processor status on stack) PHP

Bringe Status-Register auf Stapel

Operation: P4 NZCIDV

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Selbstverst. PHP 8 1 3

P LA (PLA Pull accumulator from stack) PLA

Lade Akkumulator von der Spitze des Stapels

Operation: At NZC| DV

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Selbstverst. PLA 104 1 4

PL P (PLP Pull processor status from stack) PLP

Lade Status-Register von der Spitze des Stapels

Operation: P f NZCIDV
vom Stapel

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Seibstverst. PLP 40 1 4

RO L (ROL Rotate one bit left (memory or accumulator)) ROL

Rotiere ein Bit nach links (Speicher oder Akkumulator)

. NZCI Operation: “FEES — Gq ere

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Akkumulator ROL A 42 1 2

Seited ROL Oper 38 2 5

Seite 0, X ROL Oper, X 54 2 6

Absolut ROL Oper 46 3 6

Absolut, X ROL Oper, X 62 3 7

ROR (ROR Rotate one bit right (memory or accumulator) ROR

Rotiere ein Bit nach rechts (Speicher oder Akkumulator)

NZCIDV
Operation: Ly [¢}~(7]6[51 413/211 10) _4 „II --

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Akkumulator ROR A 106 1 2

Seite 0 ROR Oper 102 2 5

Seite 0, X ROR Oper, X 118 2 6

Absolut ROR Oper 110 3 6

Absolut, X ROR Oper, X 126 3 7

RTI (RTI Return from interrupt) RTI

Kehre von Unterbrechung zurtick

Operation: Pt Pct NZCIDV
vom Stapel

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Selbstverst. ATI 64 1 6

RTS (RTS Return from subroutine) RTS

Kehre vom Unterprogramm zurück

Operation: PC f ‚PC +1 PC NZCIDV

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Selbstverst. RTS 96 1 6

127

SBC (SBC Subtract memory from accumulator with borrow) SB Cc

Subtrahiere Speicher vom Akkumulator mit Ubertrag

Operation: A~M~C A NZCIDV
C = übertragene Zahl VII NY

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Unmitteibar SBC Oper 233 2 2

Seite 0 SBC Oper 229 2 3

Seite 0, X SBC Oper, X 245 2 4

Absolut SBC Oper 237 3 4

Absolut, X SBC Oper, X 253 3 4*

Absolut, Y SBC Oper, Y 249 3 4’

(indirekt, X) SBC (Oper, X) 225 2 6

(Indirekt), Y SBC. (Oper), Y 241 2 5*

* Addiere 1, wenn Seitengrenze überschritten wurde

SEC (SEC Set carry flag) SEC

Setze Übertrags-Flag

Operation: 1 C NZCIDV
a

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Selbstverst. SEC 56 1 2

SED (SED Set decimalmode) SED

Setze Dezimal-Betrieb

Operation: 1—D NZCIDV
„.n..f-

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Selbstverst. SED 248 1 2

SEI (SEI Set interrupt disable status) SEI

Sperre Unterbrechnungen

Operation: 11 NZCIDV
~e-4--

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Selbstverst. SEI 120 1 2

STA (STA Store accumulator in memory) STA

Speichere Akkumulator im Speicher

Operation: A *M NZCIDV

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Seite 0 STA Oper 133 2 3

Seite 0, X STA Oper, X 149 2 4

Absolut STA Oper 141 3 4

Absolut, X STA Oper, X 157 3 5

Absolut, Y STA Oper, Y 153 3 5

(indirekt, X) STA (Oper, X) 129 2 6

(Indirekt), Y STA (Oper), Y 145 2 6

STX (STX Store index Xin memory) STX

Speichere Index-Register X im Speicher

Operation: X --M NZCIDV

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Seite 0 STX Oper 134 2 3

SeiteG, Y STY Oper, Y 150 2 4

Absolut STX Oper 142 3 4

129

STY (STY Store index Yin memory) STY

Speichere Index-Register Y im Speicher

Operation: Y ~#M NZCIDV

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Seite 0 STY Oper 132 2 3

Seite 0, X STY Oper, X 148 2 4

Absolut STY Oper 140 3 4

TAX (TAX Transfer accumulator to index X) TAX

Bringe Akkumulator zum Index-Register X

Operation: A -* X Nze IDV

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Selbstverst. TAX 170 1 2

TAY (TAY Transfer accumulator to index Y) TAY

Bringe Akkumulator zum Index-Register Y

Operation: AY NZCIDV
f/f... -

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Selbstverst. TAY 168 1 2

130

TSX (TSX Transfer stack pointer to index X) TSX

Bringe Stapelzeiger zum Index-Register X

Operation: S$ > X NZCIDV
vdeo - es

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Selbstverst. TSX 186 1 2

TXA (TXA Transfer index X to accumulator) TXA

Bringe Index-Register X zum Akkumulator

Operation: X A NZCIDV
lerne

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Selbstverst. TXA 138 1 2

TXS (TXS Transter index X to stack pointer) TXS

Bringe Index-Register X zum Stapelzeiger

Operation: X-* S NZCIDV

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Selbstverst. TXS 154 1 2

131

TYA (TYA Transfer index Y to accumulator} TYA

Bringe Index-Register Y zum Akkumulator

Operation: Y A NZCIDV
oo...

Adressierungsart Mnemonik OP-Code Bytes Zeit-
perioden

Selbstverst. TYA 152 1 2

(ANHANG C)

Tabelle fur Binar-

zahlen und deren

Dezimaldarstellung

== VC-20 C-64—

Tabelle für Binärzahlen und deren Dezimaldarstellung

134

Dezimal

VD
OO

I
N
N

P
N

D
O

em
a

el
tie

nl

me
le

er

ne
et

wt
h

cn
et

m
t

et

at
n
h

ev
en

t
he

he

e
e

m

e
e

oe
at

o
O
o
O
O
O
0
0
0
0
0
0
-

Binär

10
11

100
101
110
111

1000
1001
1010
1011
1100
1101
1110
11711
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
0000
0001
0010
0011
0100
0101
0110
0111
1000

Dezimal

41
42

44
45
46
47
48
49
50
51
52

54
55
56
57
58

60
61
62
63

65
66
67
68
69
70
71
72
73

75
76
TT
78
79
80
81

10
10
10
10
10
10
10

11
11
11
11
11
11
11
11
14
11
11
11
11
11
11

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
101
101

Binär

1001
1010
1011
1100
1101
1110
1111
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
110]
1110
1111
0000
0001
0010
0011
0100
01091
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
0000
0001

Dezimal

82
83
84

85
86
87
88
89
90
9
92

93
94
95
96

97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

117
118
119

120
121
122
123
124
125

101
101
101
101
101
101
101
101
101
101

101
101
101
101
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
111
111
111
111
191
111
111
141
141
111.
111
114
111
111

Binär

0010
0011
0100
0101
0110
0111
1000
1001
1010
1011

1100
1101
1110
1111
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101

Dezimal

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

111
111

1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1001
1001
1001
1001
1001
1001
1001
1001
1001
1001
1001

1001
1001
1001
1001
1001
1010
1010
1010
1010
1010
1010
1010
1010
1010
1010

Binär

1110
1111
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
0000
0001
0010
0011
0100
0101
0110
O1i1
1000
1001

135

Dezimal Binär Dezimal Binär

170 1010 1010 213 1101 0101
171 1010 1011 214 1101 0110
172 1010 1100 215 1101 0111
173 1010 1101 216 1101 1000
174 1010 1110 217 1101 1001

175 1010 1111 218 1101 1010
176 1011 0000 219 1101 1011
177 1011 0001 220 1101 1100
178 1011 0010 221 1101 1109
179 1011 0011 222 1101 1110
180 1011 0100 223 1101 1111
181 1011 0101 224 1110 0000
182 1011 0110 225 1110 0001
183 1011 0191 226 1110 0010
184 1011 1000 227 1110 0011
185 1011 1001 228 1110 0100

186 1013 1010 229 1110 0101

187 1011 1011 230 1110 0110
188 1011 1100 231 1110 0111

189 1011 4101 232 1110 1000
190 1011 1110 233 1110 1001
191 1011 1111 234 1110 1010
192 1100 0000 235 1110 1011
193 1100 0001 236 1110 1100
194 1100 0010 237 1110 1101
195 1100 0011 238 1110 1110
196 1100 0100 239 1110 1111
197 1100 0101 240 1111 0000
198 1100 0110 241 1111 0001
199 1100 0111 242 1111 0010
200 1100 1000 243 1411 0011
201 1100 1001 244 1111 0100
202 1100 1010 245 1111 0101
203 1100 1011 246 1111 0110
204 1100 1100 247 1111 0111
205 1100 1101 248 1111 1000
206 1100 1110 249 1131 1001
207 1100 1111 250 1111 1010

208 1101 0000 251 1111 1019
209 1101 0001 252 1111 1100
210 1101 0010 253 1111 1101
211 1101 0011 254 1411 1110
212 1101 0100 255 1117 1111

136

Liber
ISBN 91-40-20683-1

HALLER VERLAG
Bahnhofstraße 80

6600 Saarbrücken

Tel.0681/36981

Telex 4421 446

Bestell-Nr. : 3-92 40 28-03-6

7 ANHANGD |}

Messen, steuern,
regeln

mitdem

WR!
und

= commodore — 644

>Bauteilempfehlungen

> Anderungshinweise
>Ergänzungen |
>Liste der Fachbegriffe

© 1984 Anders Andersson, Arne Kullbjer und Liber, Stockholm

ISBN 91-40-20683-1 Anhang D

== VC-20 C-64 ——

BAUTEILEMPFEHLUNGEN, ANDERUNGSHINWEISE UND ERGKNZUNGEN

Seite 17 / Abb. 1.7:

Für VC-20: PIN 10 und 11 9V AC (max 50 mA)

Für C-64: PIN 6 “FLAG 2"

Seite 21 / Abb. Tabelle der PIN-Belegung:

VC-20/C-64 __DIP Signal

Andern H 5 PB4

“ 7? 13 Lichtgriffe} (SP2}

" il 10 3Y A

Hinzufügen 10 - 3 AK

Seite 24 / Abb. 2.4:

Masse liegt an Anschluß 11.

Seite 27 / Abb. 2.7:

Stift 10 in 11 des DIP-Steckers dndern.

Seite 38:

Yor dem letzten Absatz ist einzuschieben:

"Es muß eine Verzögerung von 300 ms zwischen den Ziffern vorgesehen wer-

den, damit die Vermittlungssteile feststellen kann, wann eine Ziffer ge-

wählt wurde und daß der nächste Takt von einer neuen Ziffer herstamt.

Seite 39 - Geändertes Programm:

10 POKE 37138,1 PBO Ausgang

20 READ N Ziffern lesen

30 IF N<O THEN 130

40 FOR I=0 TON

50 POKE 37136,1

60 FOR J=1 TO 60 : NEXT J Taktlänge erzeugen

70 POKE 37136,0

80 FOR d=1 70.40 : NEXT J

90 NEXT I

100 FOR J=1 TO 300 : NEXT J 300 ms warten

110 GOTO 20 zum Programmbeginn springen

120 DATA 1,2,3,4,5,6,7,-1 und erneut beginnen
130 END

Seite 43 / Abb. 3.11:

800RN
PRS +BY

400k
Pat CA3140

2004 2 p82 mg
100K 80135
ror, PRS 1 3 tr 4

200k0
3¥V Glechstrom-Motor

a
Abb. 3.11 Steverung sines Gisichatrom-Motors

Seite 44 - Änderungen:

10 POKE 37138,15

20 POKE 37136,15

"Wenn Sie dieses Programm laufen lassen, sollte der Motor mit maximaler

Drehzahl laufen. Wird in Zeile 20 die Zahl 15 auf 10 geändert, läuft der

Motor bedeutend langsamer. Probieren Sie es aus!"

Seite 46 / Abb. 4.2:

Fototransistor FPT 100 kann ersetzt werden durch BPY 62 II von Siemens.

Seite 47 / Abb. 4.3:

Dito wie Seite 46.

Seite 50:

Vorletzter Satz muß lauten:

"Der Takt ist mit CNT 2 (Anschluß 6) zu verbinden.

Seite 51:

Zweiter Absatz entfällt und wird ersetzt durch:

"Im C-64 reicht es nicht, Bits im Kontroliregister 56590 auf "eins" zu

setzen. Bit 8 wird als Start- und Stopbit benutzt. Eine "Eins" startet

den Rechner und eine "Null" hält ihn an. Für den C-64 sieht das Programm

folgendermaßen aus:"

10 POKE 56580, 255

20 POKE 56581, 255

30 A=PEEK(56580)

40 B=PEEK(56581)

50 POKE 56590,PEEK(56590) OR 33 Bit 5 und Bit A werden auf "eins" gesetzt

60 PRINT 65535~(256xB+A)

70 GOTO 30

Die Taktfrequenz wiggpmit CNT 2 gerechnet.

Absatz "Frequenzmessung":

Letzter Satz muß heißen:

"Das Programm ist für den VC-20 geschrieben."

Seite 52:

Anzuschließen an Kapitel "Frequenzmessung":

"In Übereinstimmung mit dem vorher Gesagten, muß des Programm geändert wer-

den, um auf dem C-54 zu laufen. Es reicht nicht aus, den Zähler des C-64

auf Null zu stellen. Er muß vorher angehalten werden. Wir müssen wiederum

Bit 2 ändern.

Vorschlag für ein C-64-Programm:

10 POKE 56580,255
20 POKE 56581,255
30 T=Ti
#0 IF T=TI THEN 40
50 POKE 56590, PEEK{56530) OR 33
60 IF TI<>DT+60 THEN 60
70 POKE 56590,PEEK(56590) AND 254
80 PRINT 65535-(256 *PEEK(56581)+PEEK(56580))
90 GOTO 10

Zeile 70 erfordert vermutlich eine Erklärung:

(254) 49 = (1111111ß),.

Die AND-Funktion führt dazu, daß nur Bit £ verändert wird. Die übrigen sie-

ben Bits werden nicht beeinflußt.

Seite 59 / Hinweis zu Abb. 4.11:

Sie müssen natürlich für den von Ihnen benutzten Thermistor selbst eine

Eichkurve aufstellen.

Seite 60:

3. Zeile von oben ändern wie folgt:

t=60-0,55&N für N> 20

Programmzeile 20 muß lauten:

20 IF N<20 THEN PRINT 90-2.1aN : GOTO 10

Seite 70:

POKE 49155,176 soll lauten: POKE 49155 ,1

POKE 49156,29 soll lauten: POKE 49156,221

Seite 71:

60 DATA 169,128,141,176,29,96 soll lauten: 60 DATA 169,128,141,1,221,96

Seite 73:

Anderung der Programmzeile in:

60 DATA 169,128,141,1,221,169,0,141,1,221,76,0,192

Seite 78 / Abb. 6.4:

In der Tabelle unten auf Seite 78 soll das D in der fünften Zeile von unten

in 6 geändert werden.

Seite 79: Das Schaltschema Abbildung 6.4 auf Seite 79 wie folgt abändern:
Eingang 2 und 3 an LM 741 sind zu vertauschen. Ein Transistor BC 337 oder
Ähnliches sowie zwei Widerstände von 10 Ka sind einzufügen.

}
, +12V

1OkQ
Anwender- [J

25

i
-poliger

Schnittstelle 7 BR

3 LM741 RS-232-Stecker

4700 4,7V Zenerdiode

Abb. 6.4.

Seite 80: Für VC-20: Das Schaltschema Abb. 6.5 auf Seite 80 muß wie folgt
abgeändert werden:
Der Ausgang mit Bezeichnung 7 muß mit 5 bezeichnet werden.

Für Commodore 54: Im C-54 muß erst die Wechselspannung von 9V zwischen 10 und
11 gleichgerichtet werden, z. B. mit einer Brückenschaltung.
Die fertige RS-232-Schnittstelle kann als Zubehör gekauft werden.

Seite 83: Nachtrag: Vor dem letzten Absatz nach Print # 2, B 8 ist folgendes
Program einzufügen; es verwandelt den VC-20 oder C-64 in ein Terminal.

10 PRINT CHR $ C147)

20 OPEN 2,2,0, CHR $ (38) + CHR $ (160)
30 GET #2, & $

40 IF A$ =" " THEN 100
50 A = ASC CA $3
60 A =A AND 127

70 IF A >96 THEN A =A ~ 32

80 PRINT CHR $ CAD;
90 GOTO 30
100 GET B $
1lo IF B $ =" " THEN 30
120 PRINT #2, B $3
130 GOTO 30

Seite 89 / Abb. 7.1:

Für Kontakt 6 muß das Signal lauten: "Serielle Uhr ein/aus”.

Abt.7.1 Steckerbuchse des IEEE-Busses

Seite 94 / Abb. 8.3:

Statt FPT 100 kann ein BPY 62 Il von Siemens benutzt werden. Es muß dann der

Widerstand von 5,5 kn gegen einen Widerstand von 33 kn ausgetauscht werden.

Wird ein Schwarz-weiß-Fernseher oder Monitor verwendet, ist ein möglichst

heller Hintergrund zu empfehlen. Der VC-20 hat von Anfang an einen guten

Farbton. Für den C-64 schreibt man POKE 53281,1 oder POKE 53281,7, wodurch

ein weißer oder gelber Farbton auf dem Bildschirm erhalten wird.

Seite 98:

Letzter Satz im letzten Absatz ersetzen durch:

“Für den C-64 ändern Sie das Programm, wie im Kapita! 4 angegeben."

Seite 99:

Zusatz zur Zeilenerläuterung von Zeile 10:

“Benutzen Sie CNT2 als Eingang."

Seite 102 / Program:

Programmzeile 110 ersetzen durch:

110 IF N<20 THEN T=90-2.14N : GOTO 130

Seite 103 / Abb. 8.10:

Kontaktbezeichnungen 15 und 3 sind miteinander zu vertauschen.

Seite 104:

Zum Ende des ersten Absatzes:

"Man kann den 5N7407 auch durch eine einfache Transistorstufe ersetzen.

Das Signal wird dann invertiert.”

Seite 115:

In Tabelle BMI ist in Spalte OP-Code 30 durch 48 zu ersetzen.

Seite 119:

In Tabelle CPY ist in Spalte CP-Code 203 durch 204 zu ersetzen.

Erläuterung

der Fachbegriffe

== VC-20 C-64

Im folgenden finden Sie eine Aufstellung mit Erläuterung einiger im Buch vorkom-

mender Fachwörter und Abkürzungen.

ADRESSE

In der Datenverarbeitung versteht man unter Adresse einen Platz im Speicher des

Computers. In diesem befindet sich eine Anzahl von Steuerzeichen, Texten oder an-

deren Zeichen. Damit der Computer sich in allen Zeichen zurechtfindet, hat jedes

Zeichen eine Ordnungsnummer. Für die gängigen Heim-Computer benutzt man die
Ordnungsnummern von 0-65535. Diese 65536 Adressen (0 eingeschlossen) enthalten

Informationen über Ihr Programm, die eingegebenen Daten und außerdem all die

Programme, die schon von Beginn an im Rechmer sind, z. B. BASIC-Interpreter usw.

ASCH

ASCH (sprich: Aski) ist die Abkürzung für den bekanntesten Code, der in der Da-
tenverarbeitung für Texte benutzt wird. ASCH kommt aus den USA und ist die Ab-

kürzung für »American Standard Code for Information Interchange« und heißt: Co-
de zur Übertragung von Informationen.

AUFLÖSUNG

Auflösung ist eigentlich der kleinstmögliche Abstand zwischen zwei auf dem Bild-

schirm sichtbaren Punkten. Es kann also sein, daß ein auf dem Bildschirm erschei-

nender Punkt in Wirklichkeit aus zwei verschiedenen Punkten besteht. Das Wort

»Auflösung« wird häufig falsch benutzt, um die Anzahl der Punkte auf dem Bild-

schirm anzugeben, wie z. B. 200 x 320.

BAM

BAM ist eine spezielle Abkürzung für die Floppy-Disk-Einheiten VC 1540 und VC

154. Die Abkürzung steht für Block Availability Map und bezeichnet einen Teil der

Diskette. BAM überwacht, welche Teile der Diskette von Programmen und Daten

belegt sind und weiche frei zur Verfügung stehen.

BILDSPEICHER

Dieser Teil des Speichers enthält die Codes, die über die jetzt auf dem Bildschirm
zu zeigenden Zeichen Auskunft geben. Diese zeigen die Plätze (Adressen) im Zei-

chengenerator an. Der Zeichengenerator legt fest, wie das Zeichen aussehen soll.

BITMAP

Wenn der Computer für Grafiken benutzt werden soll, bedient er sich einer Metho-

de, bei der jeder Punkt auf dem Bildschirm einem Bit (Binär-Ziffer) entspricht. Ein

Bitmap ist also der Teil des Speichers, der Informationen über das Aussehen der
grafischen Darstellung enthält.

BYTE

Byte (gesprochen: Beit) ist eine in der Datenverarbeitung häufig benutzte Bezeich-

nung. Ein Byte stellt eine achtziffrige Binärzahl dar (1 oder 0, die sogenannten

Bits).

COMPUTER-GRAFIK

Computer-Grafik ist ein Sammelbegriff für die verschiedenen Techniken, Bilder,
Texte oder andere Informationen auf Papier oder Bildschirm u. dgl. darzustellen.

DATEI

Mit Datei (engl.: file) bezeichnet man einen Kanal oder Platz auf einer Diskette

oder einem anderen externen Speichergerät, in dem man Informationen und Pro-
gramme abspeichern kann.

DATEINUMMER

Der VC-20 und der C-64 können mit mehreren Dateien gleichzeitig arbeiten. Um
die Dateien unterscheiden zu können, nummeriert man sie mit Dateinummern
(Ordnungsnummern) zwischen 0 und 255, über die man mit den betreffenden Da-

teien korrespondieren kann.

DATEI MIT DIREKTEM ZUGRIFF

Eine Datei mit direktem Zugriff (Random Access File) ist eine Datei, die so geöff-

net wird, daß alle Datenblöcke in der Datei einzein zugänglich sind. Diese Datei be-
nötigt Informationen darüber, welche Spuren und Sektoren sie verwenden soll. Die-
se Informationen sind von BAM erhältlich.

DATENSTRUKTUR

Eine Datenstruktur ist eine geordnete Sammlung von Daten. Eine Datensammlung

hat spezielle Regeln für die Ein- und Ausgabe zu und von der Datenstruktur. Bei-
spiele für Datenstrukturen sind Vektoren, DATA-Anweisungen etc.

DIN-STECKER

Ein DIN-Stecker ist ein bezüglich Form und Funktion genormter Stecker, Dieser ist

wichtig, damit zwei zusammengeschaltete Geräte zusammen funktionieren. DIN ist

die Abkürzung für Deutsches Institut für Normung.

DIRECTORY (s. INHALTSVERZEICHNIS)

DISKETTE

Eine Diskette ist der Datenträger, worauf das Diskettenlaufwerk (Floppy-Disk) In-

formationen abspeichert. Der Name kommt vom englischen »flexible disk« (biegsa-
me, flexible Scheibe).

DOS

DOS, Abkürzung für Disk Operating System, ist zuständig für die Kontrolle aller
Kommandos, die zur Floppy-Disk-Einheit geschickt werden. Außerdem überwacht
das DOS, daß Fehler, die entstanden sind, nicht verheerende Folgen haben. Fehler-

meldungen werden vom DOS auspegeben, wenn die Fehler von DOS nicht behoben
werden können.

EINHEITSNUMMER

Einheitsnummer ist eine Nummer, welche die an VC-20 oder C-64 angeschlossenen

Einheiten identifiziert. Einheitsnummer darf jede Zahl zwischen 0 und 31 sein,
Wenn mehrere Floppy-Disk-Einheiten an den gleichen Computer angeschlossen

werden, dürfen sie z. B. nicht die gleiche Einheitsnummer haben. Auf der Diskette

VC 1541 TEST/DEMO gibt es ein Programm, DISK ADDR CHANGE genannt,

das fiir diesen Zweck verwendet werden kann.

FARBSPEICHER

Ein Farbspeicher ist der Speicher, der Informationen über die Farbe der augenblick-
lich auf dem Bildschirm zu zeigenden Zeichen enthält. Bei Benutzung eines

Schwarz-Weiß-Fernsehers erhält man stattdessen eine Grautonskala. Beim VC-20
befindet sich der Farbspeicher normalerweise unter den Adressen 38400-38911

(Grundausführung) oder 37888-38399 bei einem auf mehr als 3 KB erweiterten VC-
20. Beim C-64 befindet sich der Farbspeicher unter den festen Adressen 55296-

56295.

FLUSSDIAGRAMM

Unter einem Flußdiagramm versteht man einen Übersichtsplan, der veranschaulicht,
wie das Programm Anweisungen ausführen soll. Das Flußdiagramm gibt einen guten
Überblick darüber, wie der Computer die Programmaufgabe löst. Das Flußdia-

gramm ist nicht die einzige Methode, um ein Programm darzustellen, aber die am
leichtesten zu erlernende.

INDEX

Ein Index ist eine Ordnungszahl, die eine Variable in einem Variablenfeld (Matrix)

anzeigt. Eine oder mehrere Zahlen können Index sein, z. B. A$(1) oder A$(1,1),

wobei A$ ein bzw. zwei Indizes hat. Beim VC-20 und C-64 sind bis zu 255 Indizes

erlaubt.

INHALTSVERZEICHNIS

Ein Inhaltsverzeichnis (Directory) ist eine Liste über die Programme und Datenda-

teien, die auf einer Diskette gespeichert sind. Das Inhaltsverzeichnis ist meistens auf

einer bestimmten Stelle auf der Diskette gespeichert, damit es nicht im Wege ist,

wenn Programme gespeichert werden sollen. Dies muß besonders bei Dateien mit

direktem Zugriff beachtet werden, da sie sonst die Inhaltsverzeichnisspur zerstören

können. Das Inhaltsverzeichnis kann mit dem Kommando LOAD “$*,Einheitsnum-

mer gelesen werden (VC-20 und C-64). Das Inhaltsverzeichnis kann auch wie eine

Datei mit OPEN 1,Einheit,2,“$* eröffnet werden, um Programme o. ä. das Inhalts-

verzeichnis lesen zu lassen. Das Inhaltsverzeichnis kann auch so geändert werden,
daß »gelöschte« (DEL) Daten wieder zugänglich sind. Wenn eine Datei gelöscht

wird, wird sie vorerst nur aus dem Inhaltsverzeichnis entfernt.

MASCHINEN-CODE

Unter Maschinen-Code versteht man das Zeichensystem, das der Zentral-Mikropro-
zessor (CPU) des Computers akzeptiert. Der BASIC-Interpreter ist ein in Maschi-

nencode geschriebenes Programm, das ein in BASIC geschriebenes Programm für
den Zentral-Mikroprozessor (CPU) »übersetzt«.

MASSENSPEICHER

In einem Massenspeicher werden große Mengen an Informationen abgespeichert,

die auch dann noch abrufbar sein sollen, wenn z. B. der Strom ausfällt. Massenspei-
cher sind z. B.: Kassettenrekorder, Diskettenlaufwerk u. a.

MENÜ

Ein Menü ist in der Computersprache eine Liste über die Befehle und Funktionen,

mit denen man ein Programm ausführen kann. Die Funktionsauswahl erfolgt einfach

mit einer Ziffer, einem Buchstaben oder Ähnlichem.

PARALLELBUS

Ein Parallelbus ist ein Bündel von Leitungen (gewöhnlich 8 oder 16), das zur schnel-
len Informationsübertragung zum Computer verwendet wird.

PIXEL

Pixel ist ein anderes Wort für einen grafischen Punkt in einer grafischen Darstel-

lung.

POSTEN

Ein Posten ist eine Sammlung von Daten, die zusammengehören. Mehrere Posten

bilden ein Register oder eine Liste. Ein Posten kann z. B. ein Name oder eine Te-
lefonnummer sein.

PROGRAMMSTRUKTUR

Eine Programmstruktur ist eine Beschreibung, wie ein gewisser Programmteil gelöst

werden kann. Standardisierte Programmstrukturen sind Verzweigungen, Programm-

schritt-Folgen, Eingaben, Ausgaben etc.

RECORD

Ein Record ist die englische Bezeichnung für einen Datenblock, Normalerweise hat

ein Record eine bestimmte Länge. Bei relativen Dateien kann der Programmierer

aber festiegen, wie lang ein Record sein soll.

RELATIVE DATEI

Eine relative Datei ist eine Datei, in der die Struktur widerspiegelt, wie ein Register

aussehen soll. Man kann festlegen, wie groß jedes Record (Datenblock) sein soll.
Ungenützte Teile eines Datenblocks sind Verschwendung von Speicherplatz. Wenn
man eine passende Größe für jedes Record wählt, kann man mehr Informationen
auf einer Diskette abspeichern.

RGB-EINGANG

Ein RGB-Eingang ist ein Signal an einem Fernseh-Bildschirm, der eine Leitung für

jede der drei Farben Rot, Grün und Blau hat. Den RGB-Eingang gibt es nur an teu-

ren Spezial-Ferbfernsehern, den sogenannten Farbfernseh-Monitoren.

SCHLEIFE

Schleife (engl. loop) bezeichnet eine Programmfolge, die endlos abläuft oder bis ei-
ne bestimmte Bedingung erfüllt ist.

SEQUENTIELLE DATEI

Eine sequentielle Datei ist eine Sammlung von Datei, die nacheinander gelesen oder

geschrieben werden.

SERIELLER BUS

Zwei Leitungen bilden gewöhnlich einen seriellen Bus, wenn sequentiell, d. h. nach-

einander, Informationen zwischen zwei Geräten übermittelt werden.

SID

SID ist eine Abkürzung für Sound Interface Device, d. h. der Baustein oder Mikro-

prozessor des Tongenerators beim C-64.

UHF-EINGANG

Ein normales Fernsehgerät hat nur einen gewöhnlichen Antenneneingang. Dieser

wird UHF-Eingang genannt,

VIC und VIC-II

VIC ist eine Abkürzung fiir Video Interface Chip. VIC ist die Bezeichnung für den
Chip, der das Bildschirmbild beim VC-20 und beim C-64 erzeugt.

ZEICHENGENERATOR

Ein Zeichengenerator ist ein Speicher, der zeigt, wie jedes Zeichen auf dem Bild-

schirm aussehen soll. Die Standardzeichen sind in einem ROM (Festwertspeicher,

Nur-Lese-Speicher) gespeichert. Programmierbare Zeichen werden im RAM-Spei-

cher gespeichert, wo sie einfach geändert werden können.

