
 Rugheimer/Spanik

Hannes Rügheimer, Christian Spanik

Mein zweites Commodore-64-Buch

Inhaltsverzeichnis

Vorwort .. 2. 1 9

Die Macher... 1... ee un 11

Zwischenspiel 1.2222 22 Cm nn 13

Eine kleine Einfiihrung ins Commodore-BASIC............... 3
IFno Ahnung THEN dieshierlesen:. 2:2 mn 15

Unterwegs zur Runway 2... ee ee 17

Startposition erreicht. Ready for TAKEOFF. .. . 2... 2 2220. . 21
10000 Meter . 2... 22H nn 27

Bitte schnallen Siesich wiederan . . 22. 22cm onen . 46

Die Commodore-64-Grafikzeichen: 222202 “49
«Das steht halt so im Betriebssystem» . 2 2 2 2 2 onen 49
Zwei Möglichkeiten, Ihre Grafiken zu schützen nn 51

Wie die Grafiklaufenlernte ... 2... 0... ee es 52

Der Speicheraufbau des Commodore 64................... 55

Also, mit SYS 61320 bin ich eigentlich deutlich im Betriebssystem .. .Oh!.. 55

Von Prozessoren, RAM, ROM und anderen Chips 56

Strom oder nicht Strom, dasisthierdieFrage.02. .. 57

Wie rechnet man mit einem Computer, dernichtbis2 zählenkann? 59

Über das Glück, einen 8-Bit-Prozessor zu besitzen, und vom Pech,

16Bitzubrauchen .. 1... 60

Wie einem ohne große Schwierigkeiten über 3000 Byte verlustiggehen . . 62

Sag mir, wo die Bytes sind, wo sind sie geblieben?2... 63

Wenn Bytes halbe-halbe machen... 2... 2 2 nun 66

Speicherzauberei . . 22 222mm 68

10

Inhalt

Selbstdefinierte Zeichen en 71
Warum der Computer Analphabet ist und was wirdavonhaben 71

Eine Umleitungsempfehlung firdenVIC...............0.. 74

Wie man Zeichen ein bitchen verandernkann 77

Zwischenspiel2 ... 2... ee 81

Ein Spiel mit Sonderzeichengrafik-. 83

Rapunzel... 2... 83

Listing 2... 90

Zwischenspiel3 . 2... 2 Cum een 92

Die hochauflésende Grafik des Commodore64 99

Ein vollig neues Grafikgefihl .. 2...-..2..2.20000. 99

Ein paar gutgemeinte böse Worte zurEinfihrung.............. 100

Der Bit(-tere) Weg zur Grafik... 222: Coon ee 100

VomChaoszumNichts. . 2. 2: Cm Come 103

Von Autos, Bits und Sinuskurven . . 2 2 2 2 mn m nn 106

Wenn's Speicherprobleme gibt... : 22. nun 110

Commodore macht's so bunt, bunter geht'snicht 111

Zwischenspiel4 .. 2... 2 ee en 118

Sprites auf dem Commodore640 050005 121

Die Riesen-Super-Sonderzeichen.2. 00.0. ee eee 121

Ab hier können Ihnen bis zu 8 Steine vom Herzen fallen 123

1.Akt:Wiemachtmaneinen Star ...:: 22mm non 125

2. Akt: Wie bringt man einen StaraufdieBUhne 129

3.Akt: AStarisborn . 2... 130

4. Akt: DerStarundsein Kostüm . .. 2... Eu nme nenn 134

Töne und Geräusche auf dem Commodore 64 2: 22222... 141

Der Ton macht die Musik... . . . nn 141

Der kleine Schwarze mit dem lauten Ton 2.2: 22 22er. 143

Wir wagen es: Ein Beispiel .. 2... 2. 2 ee en 151

Undjetzt? 2.222 oo een. eee. 152

Ein Spiel mitSprites:: CC Con 153

Schneewittchen und die sieben Zwerge...» : 2... 2.2... eee eee 153

Listing ©... 171

Input/Output beim Commodore 64004. 175

Rein in die Kartoffeln, raus aus den Kartoffeln 175

Ein kleiner Leitfaden zum Einkauf. . . 2: 2: Ho mn 177

11

12

Tipp-tipp hurra. 2. 2 Coon 178

Jetztkommteskniippeldick0. 0.00.00 eee ee ee 185

Quo vadis, Joystick? ©... 190

Die Widerstandsbewegung beim Commodore 64... . 2.222200. 192

Peripheriegeräte . . .:.: 22H on 197

Der Commodore bekommt Gesellschaft2.2004 197

Eine Scheibe mitFormat 2... 20... eee ee 198

Das Königreich von nebenan—die VC 1541... 2... 2... eee 202
Ein Umsteigebahnhof fiirrBits..... 0.0... 0.0.00 eee eee 223

Der Commodore lerntschreiben 2.2.2... nn 227

Anhang .. 1.1... 231

Kapitelzusammenfassungen ... 2... 2.2... eee ee 231

Die Grafikzeichen 2. 1... — 231

Die Steuerzeichen .. 1... 232

Die Speicheraufteilung . . . 2:2: 22m m on nn 233

Selbstdefinierbare Zeichen . . 2... 2. CC Cm onen 235

Die Hires-Grafik 2... 236

Sprites 2 239

Musik und Geräusche . . 2. 2 2 Hu nn ee 242

Input/Output . .. KH nn 244

Peripheriegeräte 2... 2 246

Listings. 2. 250

Kleines Fachwortlexikon .. 0... 260

PEEK&POKE-Tabelle. .. 2.222 22 ou on 267

Literaturverzeichnis und Software-Hinweise ... 2. 22 2222er. 276

Schlußwort . : mm on 277

Vorwort

Einer der wichtigsten Punkte beim Schreiben dieses Buches war, daß es nicht

nur informativ sein soll. Seine Aufgabe ist es auch, möglichst einfach und

unterhaltsam die Fähigkeiten Ihres Commodore 64 zu erklären. Es soll Sie

informieren, Ihnen Nützliches, Praktisches zeigen. In einem Satz: Es soll

benutzerfreundlich sein. Diesen Effekt möchten wir mit zwei Dingen errei-

chen: dem Stil, in dem die folgenden Seiten abgefaßt sind, und den Beispie-

len, die Sie am Ende dieses Buches finden werden.

Wir haben alle Beispielprogramme so kurz wie möglich gehalten. Dies hat

mehrere Gründe: Zum einen tippen nur wenige Leute gern lange Listings ab —

außerdem will man ja möglichst schnell Ergebnisse vorweisen können. Zum

anderen: Dies ist kein Tippbuch. Es gibt einfachere Wege, sich die Augen zu

verderben, als nächtelanges Lesen kleingedruckter Listings. Uns ist es wichtig,

daß Sie die Programmstruktur verstehen. Das ist sicher der beste Weg, den

Umgang mit Ihrem Commodore 64 zu lernen. Unsere Beispiele sind auch

nicht übermäßig komfortabel. Alle Schnörkel wurden weggelassen, damit die

Programme möglichst übersichtlich bleiben. Und noch etwas: Wenn es Ihnen

irgendwann zu lästig wird, dasselbe Programm immer wieder mit RUN zu

starten, werden Sie von selbst anfangen, es zu verändern. Und genau das

wollen Sie ja letztlich lernen: selbst programmieren. Sie sollen ja experimen-

tieren, die Möglichkeiten des Computers selbst herausfinden. Denn eins kann

Ihnen kein Buch ersetzen: die eigene Erfahrung mit Ihrem System. Natürlich

haben wir die Programme — soweit möglich — etwas amüsant gestaltet. Daß

das nicht immer gelingen kann, liegt in der Natur der Sache. Manche Dinge

sind halt einfach nicht lustig.

Voraussetzung für die Arbeit mit diesem Buch ist, daß Sie das zum

Commodore 64 mitgelieferte Handbuch zumindest durchgelesen und das

10 Vorwort

eine oder andere Beispiel ausprobiert haben. Unser Buch bietet zwar eine

Einführung ins Commodore-BASIC, versteht sich aber nicht als BASIC-Kurs.

Deshalb sollten Sie auch das Commodore-Handbuch möglichst immer in der

Nähe haben. Ein paar Tips noch zu unserem Buch: Wir raten Ihnen, nicht

zwischen einzelnen Kapiteln zu springen oder Kapitel auszulassen. Wichtig ist

auch, die kurzen Zusammenfassungen jedes Kapitels im Anhang zu lesen.

Diese Zusammenfassungen haben verschiedene Gründe. Sie sollen einerseits

das gezielte Suchen nach Informationen vereinfachen und so helfen, Infor-

mationen, die schnell gebraucht werden, rasch wieder aufzufrischen. Vor

allem aber wollen wir Sie in diesem «Buch im Buch» auf Nachfolgelektüre und

die Fachzeitschriften vorbereiten. Denn diese Minikapitel sind in erster Linie

technische Texte, die auch übliche Fachausdrücke verwenden.

Anhand des Stichwortverzeichnisses und des zugehörigen ausführlichen

Kapitels können Sie sich die Textinhalte relativ einfach erschließen, sammeln

so einen guten Schatz an Fachausdrücken und sind entsprechenden Texten

nicht mehr hilflos ausgeliefert.

Wenn Sie jetzt das Gefühl haben, dieses Buch ist genau das, was Sie

suchen: fein. Wenn nicht? Nun, dann hat es sich in jedem Fall gelohnt, diesen

einführenden Abschnitt zu lesen. Wenn er auch — zugegeben - etwas trocken

ist. Aber wir meinten, daß das so sein muß. In jedem Fall wünschen wir Ihnen

viel Spaß mit Ihrem Commodore 64.

Die Macher

Okay, liebe zukünftige Programmierer. Es ist anzunehmen, daß wir jetzt unter

uns sind. Deshalb sollten wir uns vielleicht erst einmal kurz bekannt machen.

Jedem, der nicht daran interessiert ist, wer hinter diesem Buch steckt, sei

empfohlen, diese Seiten zu überblättern. Oh — das ist nett von Ihnen, daß Sie

weiterlesen.

Zwei Mann sind für dieses Buch verantwortlich.

Der eine ist der Commodore-Spezialist: Hannes Rugheimer — im folgenden

einfach Hannes genannt — wurde 1965 in Oberndorf geboren. Der kleine

Hannes entwickelte schon früh reges Interesse an der Elektronik. Mit acht

Jahren jagte er deshalb den Experimentierkasten eines Freundes in die Luft.

Die Freundschaft war nur von kurzer Dauer. Als die ersten Home-Computer

auf den Markt kamen, fand Hannes damit auch ein neues Betätigungsfeld.

Mittlerweile älter und reifer geworden, stellte er hocherfreut fest, daß diese

schwarzen Kästen nicht sofort durchschmorten, wenn etwas nicht stimmte,

sich dafür aber beharrlich mit SYNTAX ERROR meldeten.

Die allerersten mit Preisen um die 2000 DM waren meist unerschwinglich.

Aber freundlicherweise lassen ja Kaufhäuser jeden an diesen Geräten herum-
probieren. Stück für Stück arbeitete sich Hannes in die Geheimnisse von

BASIC ein. Irgendwann war er es leid, ständig zu warten, bis die anderen

fertiggespielt hatten.

Glücklicherweise kam zu diesem Zeitpunkt der VC 20 auf den Markt. Mit

vereinten finanziellen Kräften wurde von der Familie dieser «Volkscomputer»

gekauft. Der Rest ist schnell erzählt. Zuerst wurde der VC 20 aufgerüstet, ein

Jahr später ein Commodore 64 gekauft; dazu ein Diskettenlaufwerk, ein

Printer-Plotter usw. Abgesehen von der finanziellen Hilfe durch die Eltern

konnte Hannes dank seines Wissens auch bald mit seinem Hobby etwas Geld

12 Die Macher

verdienen. Er erstellt Computergrafiken und hält Kurse über den Commodore

64. Außerdem berät er Kunden beim Computerkauf.

Damit sind wir beim Mittäter. Name: Christian Spanik, geboren 1963 in

Salzburg. Beruf: Juniortexter in einer Frankfurter Werbeagentur. Eigentlich ist

seine Entwicklung der von Hannes ziemlich ähnlich, außer daß es bei ihm das

Schreiben war, das ihn von jeher interessierte. Um Sie aber nicht mit noch

einer Kindheitsgeschichte zu langweilen (auch elektrische Schreibmaschinen

gehen sehr leicht kaputt ...), kommen wir am besten gleich zum Kernpunkt.

1979 trafen wir beide zusammen. Wir waren in der gleichen Schule und in

der gleichen Klasse. Schließlich fanden wir uns plötzlich auch in der gleichen

Bank wieder. Da saßen wir dann auch die restlichen drei Jahre gemeinsam ab.

Alle Unterbrechungen des Zusammensitzens sind auf höhere Gewalt zurück-

zuführen. Unsere Englischlehrerin hatte beispielsweise äußerst eigene Ansich-

ten über die Sitzordnung. Schließlich ging Christian ins Berufsleben. Hannes

blieb an der Schule, an der er zur Zeit noch ist.

Kaum im Beruf, hatte auch Christian, ehe er sich’s versah, mit Computern

zu tun. Obwohl er auf einem anderen System arbeitete, lernte er durch

Hannes viel über Commodore. Aufgrund der Commodore-Kurse, die wir

zusammen hielten, wurde das Wissen um diesen Computer logischerweise

immer stärker. Seitdem arbeiten wir als Team am Commodore 64.

Schließlich kam, was kommen mußte. Durch einen Bekannten kamen wir

mit dem Vogel-Buchverlag Würzburg in Verbindung und beschlossen, auch

hier unsere Fähigkeiten gemeinsam einzusetzen. Das Ergebnis liegt vor Ihnen.

Am besten, Sie urteilen selbst. Sollte es Ihnen gefallen, wäre es schön, wenn

Sie uns das wissen ließen. Schreiben Sie uns aber auch, was Ihrer Meinung

nach fehlt oder besser sein könnte. Für Anregungen und Tips danken wir

schon jetzt.

Weil wir gerade dabei sind, möchten wir an dieser Stelle auch all denen

danken, die bei der Entstehung dieses Buches mitgeholfen haben — nämlich

den Herren Hugo E. und Christoph Martin, Würzburg, für das Überlassen des

Arbeitsmaterials und die intensive Unterstützung, Brigitte für ihr Interesse an

unserer Arbeit und ihre Ausdauer im Warten auf Christian, Hannes’ Eltern für

ihre Geduld und der Firma Lürzer, Conrad & Leo Burnett für das Verständnis,

das sie insbesondere der Arbeit von Christian entgegenbrachte.

Zwischenspiel 1

Das Zwischenspiel werden Sie in diesem Buch insgesamt viermal finden. Es

hat die Aufgabe, die Dinge aufzunehmen, die nicht direkt in den Ablauf der

einzelnen Kapitel passen. Das erste Zwischenspiel enthält ein paar grundsätz-

liche Anmerkungen. |

Alle im Text vorkommenden Wörter, die kursiv gedruckt sind, werden im

Stichwortverzeichnis noch einmal erklärt. Die PEEKs und POKEs, die im Buch

vorkommen, sind in einem weiteren Anhang zusammengefaßt. Außerdem

finden Sie noch Literaturhinweise, Software-Empfehlungen und natürlich die

Programmlistings. Die Listings haben wir deshalb in den hinteren Teil des

Buches gepackt, weil Sie so die Möglichkeit haben, zuerst eine eigene Lösung

zu versuchen, bevor Sie das Gedruckte abtippen. Grundsätzlich halten wir es

für den besten Weg, das Buch von vorn nach hinten durchzuarbeiten.

Einfach, weil wir sozusagen «aufsteigend» vorgehen. Wer schon mehr Erfah-

rungen hat, kann natürlich gleich die späteren Kapitel aufschlagen. Die

anderen gelegentlich durchzulesen schadet sicherlich auch nicht.

Und jetzt noch ein paar ernste Worte zum Commodore 64: «Wir möchten

Sie hiermit beglückwünschen ...» Das ist der erste Satz der Einleitung in der

erstaunlich schmächtigen Anleitung, die mit dem 64er ins Haus kommt. Nun,

in gewisser Hinsicht ist dieser Satz berechtigt. Es gibt wohl kaum einen

Computer, der ein ähnlich gutes Preis-Leistungs-Verhältnis bietet. Da sind die

Töne, die tolle Grafik usw. Aber wie programmiert man das eigentlich?

Genau da wird es nämlich schwierig. Um dem Computer nur einen einzigen

Ton zu entlocken, sind mindestens (!) fünf Speicherstellen anzusprechen. Es

gibt keinen einzigen eigenen BASIC-Befehl, der Töne generiert. Genausowe-

nig gibt es dergleichen, wenn es um Grafik geht. Wenn Sie Ihren Commodore

schon länger besitzen, werden Sie diese Nachteile bereits kennengelernt

14 Zwischenspiel 1

haben. Warum das so ist, war und ist uns völlig unbegreiflich. Denn seit dem

ersten Commodore (PET) hat sich dieses BASIC praktisch nicht verändert. Der

VC 20 und der Commodore 64 benutzen also immer noch das gleiche BASIC.

Ein vergleichbares Beispiel wäre es, einen Käfer-Motor in einen Rolls-Royce

einzubauen. Das war sicher eine herbe Enttäuschung für alle, die auf den

neuen Commodore 64 umstiegen. Um eine hochauflösende Grafik zu erstel-

len, müssen Sie beim Commodore 64 jeden einzelnen Punkt mit einem

entsprechenden POKE anschalten. Das ist sicherlich nicht der bequemste

Weg, Linien zu ziehen.

Weil die Dinge nun mal so sind, wie sie sind, empfehlen wir Ihnen,

möglichst bald eine BASIC-Erweiterung zu kaufen (siehe Software-Anhang).

Unser Buch geht dennoch den harten Weg. Denn viele haben eben kein

solches Programm. Wir können nur hoffen und versuchen, mit unserer Kritik

dazu beizutragen, daß Commodore diesen Zustand alsbald abstellt. Da es

keinen anderen Computer gibt, der aufgrund seiner Möglichkeiten und

Voraussetzungen besser für Einsteiger geeignet wäre, fänden wir es nur

konsequent, das BASIC komfortabler und einstiegsfreundlicher zu machen.

1

Eine kleine Einführung ins
Commodore-BASIC

IF no Ahnung THEN dies hier lesen

Wenn Sie die Überschrift hierher verleitet hat, dann haben Sie zwei Dinge

bewiesen: Zum einen, daß Sie sich selbst gegenüber sehr ehrlich sind (und das

ist eine gute Voraussetzung für das ganze Buch). Zum zweiten haben Sie

damit gezeigt, daß Sie durchaus schon ein bißchen BASIC verstehen. Die

Kapitelüberschrift ist nämlich ein BASIC-Befehl. Obwohl Ihr Commodore

wenig erfreut sein dürfte, wenn Sie die Zeile oben eingeben und versuchen,

ihm damit irgendeine Reaktion zu entlocken.

Warum das so ist, möchten wir kurz erklären. Diese Erklärung wird Ihnen

vielleicht helfen, das restliche Kapitel und die Idee, die hinter BASIC steht,

etwas leichter zu durchschauen. |

Als Sie die Überschrift des Kapitels gelesen haben, ging Ihnen wahrschein-

lich folgendes durch den Kopf: IF no Ahnung THEN dies hier lesen. Ohne

großartig zu übersetzen, kam für Sie der Sinn heraus: Wenn ich noch gar

nichts über meinen Commodore weiß, dann sollte ich diese Seiten lesen.

Wenn wir Ihre Überlegung in lauter kleine Stückchen zerlegen, ergibt sich

ungefähr folgender Monolog: IF ist englisch. Das heißt «wenn» — glaub’ ich.

No Ahnung: Logisch, das heißt «keine Ahnung». THEN ist ja auch bekannt:

«dann» — ebenfalls aus dem Englischen. Dies hier lesen — aha. Gemeint ist:

Wenn ich noch keine Ahnung habe, dann soll ich das hier lesen.

Habe ich eigentlich schon Ahnung? Na ja, so ein bißchen schon. Aber ein

bißchen Auffrischung kann nicht schaden ... Eine Entscheidung ist gefallen.

Sie haben sich entschlossen, dieses Kapitel zu lesen, weil die Bedingungen,

das zu tun, für Sie gegeben sind. Aber es gibt Leute, die ebenfalls dieses Buch

gekauft haben und genau die andere Entscheidung getroffen haben.

16 Eine kleine Einführung ins Commodore-BASIC

Wir wollen deren Weg nicht noch einmal so auseinanderklamüsern, wich-

tig war nur, es mal an einem Beispiel zu tun. Natürlich haben Sie Ihre

Entscheidung in ein paar Sekunden gefällt, und deshalb werden auch diese

ganzen Vorgänge gar nicht so bewußt. Aber sie finden statt. Es ging nur

darum, daß Sie verstehen, was die Worte meinen. Denn auch wenn wir

IF... THEN in unserer Überschrift verwendet haben — ware der Rest beispiels-

weise in Kisuaheli geschrieben gewesen, hatten Sie den Text gar nicht oder

höchstens nur teilweise verstehen können. (Selbstverständlich nehmen wir

von dieser letzten Bemerkung all die Herrschaften der geschätzten Leser-

schaft aus, die Kisuaheli gelernt haben.)

Wenn unsere und damit auch Ihre Überlegungen erst einmal so weit

gediehen sind, dann wird Ihnen auch schnell klar werden, warum Ihr Com-

‘modore nichts mit unserer Überschrift anfangen kann. Sie besteht zwar

teilweise aus einem BASIC-Befehl, aber man kann mit an Sicherheit grenzen-

der Wahrscheinlichkeit davon ausgehen, daß Ihr Computer mit Ausdrücken

wie «no Ahnung» oder «dies hier lesen» nichts anfangen kann. (Womit

übrigens auch schon der eigentliche BASIC-Befehl aus der Überschrift verra-

ten wäre: Er heißt IF...THEN. Aber den schauen wir uns erst etwas später an.)

Langer Rede kurzer Sinn: Wir versuchten Ihnen nahezubringen, daß der

Computer seine eigene Sprache hat. Natürlich gibt es immer ein paar Leute,

die einwenden werden: «Ja, wenn der Kerl so dumm ist, daß er mich nicht

versteht, soll er das doch erst mal lernen, bevor man ihn auf die Menschheit

losläßt». Nun, diese Meinung ist sicherlich nicht ganz unberechtigt. Aber

nehmen wir das Beispiel BASIC: Schon diese Sprache ist ein Zugeständnis an

die Menschen, denn ein Computer wird nicht etwa mit BASIC als Mutterspra-

che geboren. Was er kann, ist «Strom» oder «kein Strom» voneinander zu

unterscheiden. Alles andere haben ihm Männer und Frauen in den Entwick-

lungsabteilungen der großen Computerfirmen und an Universitäten in mühe-

voller Arbeit beigebracht. Sie haben den Computer gebaut und ihm in eineı

besonderen Sprache namens Assembler oder Maschinensprache all die Dinge

beigebracht, die es heute ermöglichen, daß wir Computer einfach program-

mieren können, daß sie uns bei unserer Arbeit helfen und uns mit Spieler
unterhalten. Aber was auch immer die Experten getan haben, die BASIC

entwickelten, das Lernen und Verstehen können sie uns nicht abnehmen

Erfreulicherweise.
Wir wollen Sie deshalb in diesem Kapitel einladen, mit uns einen Flug zı

machen. Dieses Bild schien uns am besten zu passen. Wir wollen nämlich zı

einer Art Insel, die im Meer der vielen Computersprachen und BASIC-Dialekt

Eine kleine Einführung ins Commodore-BASIC 17

liegt. Lassen Sie uns diese Insel «Commodore-BASIC» nennen. Unseren Flug

dorthin und auch den Aufenthalt wollen Sie sich bitte als eine Art Studienreise

vorstellen. Sie sollen zwar etwas dabei lernen, aber es soll vor allem Spaß

machen.

Nachdem wir uns einig sind, dürfen wir unsere Passagiere an Bord unserer

Maschine bitten. Stellen Sie das Rauchen ein, schnallen Sie sich an und — das

wichtigste von allem — schalten Sie Ihren Commodore ein. Sie sollten alles,

was wir jetzt besprechen, mitmachen. Wenn Sie bereit sind, kann unser Flug

beginnen. Weil die BA (BASIC AIRWAYS) aus Kostengründen auf Stewardes-

sen verzichtet, sollten Sie sich vielleicht schon vorher etwas zu trinken und zu

knabbern holen.

Unterwegs zur Runway

Noch ein paar Anweisungen, während wir in Startposition rollen. Unsere

Flugzeit hängt ganz von Ihnen ab. Aber es sollte nie allzulange dauern, damit

Sie nicht zuviel vom Anfang vergessen. Notausgänge befinden sich überall in

der Maschine und können jederzeit gern als Ort der Ruhe und des Nachden-

kens benutzt werden. Scheuen Sie sich nicht, immer und jederzeit auszustei-

gen, um selbst auszuprobieren und zu üben. Glauben Sie uns, diesen Service

bietet Ihnen keine andere Fluggesellschaft, denn bei uns können Sie auch

jederzeit wieder zurückkommen. Die Flughöhe wird sich im Verlauf der Reise

steigern. Sollten Sie noch nie mit uns geflogen sein (und wer ist das bisher

schon ...?), nehmen Sie sich bitte noch die Sicherheitsinstruktionen zur

Hand:

. Darin finden Sie ein paar Dinge, die Sie wissen sollten. Die klingen zumeist

sehr simpel (sind es auch), aber die eine oder andere Kleinigkeit, die man

nicht beachtet hat, brachte schon allerhand Programmierantanger zur Ver-

zweiflung.

Zuerst einmal müssen Sie zwischen zwei Zuständen, in denen sich der

Computer befinden kann, unterscheiden: Direktmodus oder Programmodus.

Wenn Sie eingeben

PRINT "HALLO"

und dann (RETURN) drücken, wird Ihr Computer diesen Befehl sofort
ausführen. Wenn Sie aber statt dessen eingeben:

18 Eine kleine Einführung ins Commodore-BASIC

10 PRINT "HALLO"

und danach (RETURN), wird erst einmal gar nichts passieren, zumindest

nichts Sichtbares. Statt diese Zeile sofort auszuführen, speichert sie der

Computer ab. In einem speziell dafür reservierten Bereich werden alle Befehle

abgelegt, bis sie mit einem anderen Befehl aufgerufen werden. Damit wird

auch der Sinn der Zeilennummer klar. Irgendwie muß ja geklärt sein, welcher

der abgespeicherten Befehle zuerst ausgeführt werden soll.

Ein Beispiel aus dem berühmten «richtigen Leben» wäre ein Tagesablauf

Wenn Sie sich zum Beispiel folgendes kleine Programm für den 10. 3.

zurechtgelegt hatten: Waschen, Anziehen, zur Arbeit gehen, nach Hause

kommen, mit meiner Frau spazierengehen und sie dann zum Essen einladen,

dann dürfte es ein ziemliches Durcheinander geben, wenn Sie den Pro-

grammteil «zur Arbeit gehen» vor allen anderen ausführen. Selbst wenn Sie

einen sehr liberalen Arbeitgeber haben — spätestens Ihre Frau wird sich

weigern, mit Ihnen im Pyjama spazieren oder gar essen zu gehen.

Das zum Thema Programmablauf. Eines noch: Sie werden sicherlich schon

gemerkt haben, daß bei Programmausdrucken in Computerheften meist

Zeilennummern in Zehnerschritten verwendet werden. Das ist natürlich nicht

etwa eine Vorschrift. Sie können Zeilennummern frei zuweisen, solange Sie

dabei die Reihenfolge einhalten, die das betreffende Programm vorschreibt.

Allerdings sind die Zehnerschritte schon sehr zu empfehlen. Denn wenn

man mal etwas vergessen hat oder nachträglich einfügen möchte, ist das

meist schwer, wenn nicht genug Platz zwischen den Zeilen ist. Viele Pro-

gramme sind tatsächlich erst zwischen den Zeilen interessant geworden, weil

einem halt mitten beim Programmieren immer mehr Ideen kommen als bei

irgendwelchen Trockenübungen.

Jetzt noch ein paar Sätze zum Thema «Wie versteht mich mein Compu-

ter?». Es gibt drei «Dienstprogramme», die den Computer verständnisvoll

machen. Zusammengefaßt nennt man diese drei Programme das Betriebssy-

stem (Operating System). Da wäre zunächst einmal der BASIC-Interpreter. Er

ist dafür verantwortlich, daß Ihre BASIC-Befehle in für den Computer ver-
ständliche Maschinensignale umgewandelt werden. Vielleicht haben Sie

schon hier und da gehört, daß BASIC eine der langsamsten Computerspra-

chen sein soll. Das stimmt. Denn wenn Sie direkt in der sogenannten

Maschinensprache programmieren, sparen Sie Ihrem Computer den Weg

über das Übersetzungsbüro — das heißt, der Dolmetscher (BASIC-Interpreter)

wird nicht mehr gebraucht. Deshalb geht in Maschinensprache auch alles

Eine kleine Einführung ins Commodore-BASIC 19

schneller als in BASIC. Dafür ist sie schwerer zu erlernen, und selbst bei Profis

dauert es lange, bis ein Maschinenprogramm richtig läuft, weil jede Anwei-

sung in kleinste Schritte aufgeteilt werden muß und sich Fehler nicht nur

schneller einschleichen, sondern auch schwieriger gefunden werden. BASIC

wird deshalb auch als Interpretersprache bezeichnet.

Vielleicht haben Sie auch schon mal etwas von Compilersprachen gehört.

PASCAL ist zum Beispiel eine solche. Compiler soll zum Ausdruck bringen,

daß aus einem Programm in einer relativ einfach zu erlernenden Sprache ein

der Maschinensprache sehr ähnlicher Code gemacht wird. Der ist dann zwar

noch nicht ganz so schnell, aber doch schon ziemlich ebenbürtig.

Das nächste unserer Hauptprogramme ist das sogenannte Kernal. Es

steuert alle Prozesse im Computer, die ständig stattfinden müssen — unab-

hängig von Ihrem laufenden Programm. Es führt die nötigen Interrupts aus.

Das heißt zum Beispiel, daß es in kaum meßbaren Zeitabständen immer ein

Programm losschickt, das nachschaut, ob Sie irgend etwas über die Tastatur

eingegeben haben und ähnliches. Dann gibt es noch ein Programm, das für

die Bildschirmausgabe sorgt. Es weist bestimmte Bausteine des Computers

an, Ihre Eingaben am Bildschirm darzustellen oder eine Meldung des BASIC-

Interpreters (etwa den unvermeidlichen SYNTAX ERROR) auszugeben, damit

Sie wieder einmal erfahren, daß irgendwo in diesem M...-Programm ein

Fehler steckt. Diese Programme sind — in einem speziellen Speicher gesichert

— ständig vorhanden und überleben dort auch das Ausschalten des Compu-

ters. Mehr über die einzelnen Programme erfahren Sie noch — und auch

einiges darüber, wie Sie sich deren Fähigkeiten zunutze machen können.

Zur Demonstration der Arbeit im Computer dient folgender Dialogauszug,

frei übersetzt aus dem Stromischen ...

«Draußen vor dem Schirm, da steht ein User fein.»

«Nun, das kenn’ ich schon — am besten laßt ihn ein.»

(Zitat von K. Ernal, am 25. 2. 1982 anläßlich einer Tastaturabfrage)

Der Dialog wird zwischen mehreren Programmen stattfinden. Zeit des

Gesprächs ist etwa 22.30 Uhr. Anlaß ist der Versuch von Hannes Rügheimer,

den Fehler in einem Programm zu beheben. Teilnehmer sind: der BASIC-

Interpreter (B.l.), das Kernal (K.) und das Bildschirmprogramm (B.P.)

B.l.: «O nein!»

K.: «Doch!»

20 — Eine kleine Einführung ins Commodore-BASIC

B.l.: «Er probiert es doch nicht etwa schon wieder?»

K.: «Weiß ich nicht. Er hat mir auf jeden Fall einen Befehl aus drei Buchstaben

über die Tastatur mitgegeben. Was für einen, ist ja wohl dein Bier.»

B.l. (sich den mitgebrachten Befehl ansehend): «Tatsächlich. Schon wieder

ein RUN. Ich soll sein ganzes Programm noch mal laufen lassen. Langsam

müßte er doch kapiert haben, daß da ein Fehler drinsteckt. Das ist jetzt schon

das fünftemal.»

K.: «Hartnäckig ist er ja. Das muß man ihm lassen.»

B.l. (ruft in Richtung des Mikroprozessors): «He, mach dich mal fertig. Der

Typ da draußen will schon wieder einen Lauf.»

(Schweigen)

B.l. (dreht sich wieder um): «Was heißt hier hartnäckig! Als wir noch in

diesem Laden rumstanden, da war erst was los. Da kommen dann so Knaben

an mit Eingaben wie «ch bin do...b»

K.: «Entschuldige, wenn ich dich unterbrechen muß, aber ich höre gerade,

daß ein Interrupt kommen soll. Also wartet mal 'n Moment.»

B.l.: «Es ist immer dasselbe mit euch Kernals, nie könnt ihr euch ruhig

hinsetzen. Keine fünf Minuten quatschen kann man hier.»

K.: «Fünf Minuten! Bist du verrückt?»

B.P. (sich plötzlich einmischend): «Entschuldigung die Herrschaften, wenn ich

mich einmische. Aber wenn ihr weniger schwätzen würdet, wäre ich euch

sehr verbunden. So ein Interrupt ist nämlich gar nicht so schlecht. Dann kann

ich vielleicht mal wieder meinen Bildschirm auf Vordermann bringen.»

B.l.: «Weißt du, was mich dein Bildschirm interessiert?»

B.P.: «Will ich gar nicht wissen. Aber unser User hätte schon ganz gern mal

gewußt, ob der Herr BASIC-Interpreter in der Lage ist, dem Prozessor so éine

einfache Nachricht wie RUN zu überbringen. Und mich würde das ebenfalls

brennend interessieren, damit ich meinen blinkenden Cursor mal wegnehmen

kann und der User merkt, daß hier auch was passiert.» |

K.: «lhr entschuldigt mich bitte. Ich müßte nämlich jetzt wirklich...» _

B.l.: «Typisch, kaum wird es brenzlig, haut er ab, diese Flasche.»

B.P.: «Pflichtbewußtsein nennt man das. Schon mal gehört?»

B.l. (resignierend): «Okay, okay. Nach dem Interrupt fangen wir an...»

Wie gesagt, dies war eine freie Übersetzung. Übrigens: Die Dauer eines

solchen Gesprächs liegt bei einer sechzigstel Sekunde. Dann kommt immer

ein Interrupt.

Eine kleine Einführung ins Commodore-BASIC 21

Nachdem wir zugehört haben, können wir uns ins Geschehen begeben.

Das heißt: Lassen wir die Jungs auf der anderen Seite vom Schirm doch mal

ein bißchen für uns arbeiten. Jetzt widmen wir uns den Basics von BASIC.

Startposition erreicht. Ready for TAKE OFF

Noch eine Kleinigkeit, bevor wir uns in die BASIC-Höhen aufschwingen:

Dieser Abschnitt ist kein BASIC-Lehrgang. Das will und kann er auch gar nicht

sein. Wir wollen nur einen kleinen Überblick über die wichtigsten Befehle und

ihre Anwendung geben. Damit sind Sie dann in der Lage, einfache Pro-

gramme selbst zu schreiben. Später auftauchende Befehle, die nicht erklärt

wurden, schlagen Sie bitte in Ihrem Commodore-Handbuch nach. Feinheiten

des Programmierens lernen Sie noch in diesem Buch. Die beste Art zu lernen

ist, selbst große oder kleine Programme zu schreiben.

Jetzt geht es los. Wir starten. Während die Maschine dabei ist, in unsere

Reisehöhe zu klettern, können wir schon die ersten Überlegungen anstellen.

Die erste Frage ist: Wie spricht man mit einem Computer während eines

Programms? Unsere Frage gilt also dem Stichwort: Der Dialog.

Wenn Sie ein Programm schreiben, kann Ihr Computer zum Beispiel immer

eine Zahl durch eine andere dividieren. Die Frage ist bloß, wie macht man das

in BASIC-Programmen. Im Direktmodus würde es so aussehen:

PRINT 12/2

PRINT

Womit auch schon ein grundlegender Befehl genannt wäre. PRINT sagt dem

Computer, daß er irgend etwas zeigen oder ausgeben soll. Mit Ausgeben

kann hier natürlich nicht eine Runde in Ihrem Stammlokal gemeint sein,

sondern nur ein Wert, der irgendwo errechnet oder eine Zahl, die abgespei-

chert wurde. PRINT wird immer dann verwendet, wenn dem Computer

mitgeteilt werden soll, daß er irgend etwas anzeigen soll. Wenn Sie gerade

die Zeile von oben ausprobiert haben, werden Sie sehen, daß nach dem

(RETURN) das Ergebnis (hoffentlich die Zahl 6) ausgegeben wird. Wenn Sie

aber. statt dessen eingeben:

PRINT "12/2"

22 Eine kleine Einführung ins Commodore-BASIC

dann wird Ihnen der Computer als Ergebnis nicht sechs, sondern genau das

liefern, was zwischen den Anführungszeichen steht, und zwar ohne das Wort

PRINT und ohne die Anführungszeichen. Statt Zahlen können Sie auch Texte

verwenden, der Computer gibt alles klaglos aus. Klaglos vor allem deshalb,

weil er nicht versucht, das, was zwischen den Anführungszeichen steht, als

Befehl auszulegen. Der Interpreter merkt durch diese Zeichen, daß er nur den

Inhalt wiedergeben soll. Sie können auch versuchen,

PRINT HALLO

einzugeben. Nach diesem Versuch werden Sie als Antwort die berühmte Null-

Lösung (bekannt aus Fernsehen und Politik) erhalten. Warum das so ist,

erklären wir noch. Wenn Sie also einen Text ausgeben wollen, müssen Sie ihn

zwischen Anführungszeichen setzen. Wenn Sie jetzt also innerhalb eines

Programms Zahlen dividieren wollen, würde das Programm etwa heißen:

100 PRINT 12/2

Zugegebenermaßen ist dieses Programm nicht gerade anspruchsvoll. Um es

etwas aufzupäppeln, könnte man ja nun dazufügen:

5 PRINT "DIVISIONSPROGRAMM VON OSKAR MUELLER”

100 PRINT 12/2

Sollten Sie zufällig nicht Oskar Müller heißen, setzen Sie bitte Ihren Namen

ein.

Wenn Sie jetzt vorhaben, dieses Programm auf dem freien Markt anzubie-

ten (etwa Freunden, Eltern, Kindern und Bekannten), werden Sie schnell

merken, daß Ihr Programm bei diesen Anwendern nur begrenzten Erfolg

haben wird. Erstens werden sie, selbst wenn es sich um miserable Kopfrech-

ner handelt, nach zwei bis drei Programmläufen das Ergebnis im vorhinein

‘(vor dem Computer!) wissen. Das einzige, was man daraus noch machen

könnte, wäre ein Reaktionsspiel. Nach dem Motto: Wer sagt schneller sechs.

Doch das wird irgendwann langweilig. Vor allem wird es dann peinlich, wenn

einer der jüngsten Teilnehmer sagt: «Das kann mein Taschenrechner auch.»

Da hilft dann auch der Hinweis auf die oberste Zeile mit Ihrem Namen

nichts mehr. |

Außerdem: Wenn Sie eine andere Zahlenkombination ausprobieren wol-

len, müßten Sie immer erst das Programm listen und neue Zahlen eingeben.

Überhaupt: Unser Stichwort lautete ja: Der Dialog. Aber wenn der Computer

in einem Programm nur immer ausgibt und Sie nie eingeben, kann man

Eine kleine Einführung ins Commodore-BASIC 23

wirklich nicht von einem Dialog sprechen. Damit kommen wir an einen

Punkt, an dem der Computer im Lauf eines Programms Eingaben annehmen

können muß.

Wir möchten zum Beispiel gern die Zahlen, die dividiert werden, am

Anfang des Programms eingeben. Dazu brauchen wir einen neuen Befehl:

INPUT

Der Befehl INPUT weist den Computer an, auf eine Eingabe zu warten. Und

das tut er dann auch brav und geduldig. Aber INPUT allein reicht nicht aus,

denn wenn Sie zwei Zahlen eingeben wollen, muß der Computer beim

Dividieren zum Beispiel wissen, welche Zahl durch welche geteilt werden soll.

Damit er jede Zahl von der anderen unterscheiden kann, müssen wir unserem

Computer eine Hilfestellung geben. Weil sich die Zahl von einem Programm-

lauf zum nächsten verändern soll, also für den Computer immer eine Unbe-

kannte ist, verwenden wir Variable. Vielleicht denken Sie jetzt gerade an all

die schönen Gleichungen mit X und Y. So ähnlich ist es auch hier. Und weil es

so schön an die Schule erinnert und wir auch zufällig zwei Platzhalter

brauchen, nehmen wir doch gleich X und Y. Die beiden sind sowieso so etwas

ähnliches wie Dick und Doof der Mathematik. Unser Programm würde jetzt

also lauten:

5 PRINT "DIVISIONSPROGRAMM VON OSKAR MUELLER”

20 INPUT X

30 INPUT Y

100 PRINT X/Y

Daß sich die Zeile 100 verändern muß, ist Ihnen sicherlich klar. Sonst würde

der Computer trotzdem — wie beim vorherigen Beispiel — 12 durch 2

dividieren. Wenn Sie dieses Programm mit RUN starten, erscheint zuerst ein

Fragezeichen. Damit zeigt der Computer, daß er auf eine Eingabe wartet.

Wenn Sie jetzt eine Zahl — na, nehmen wir zur Abwechslung mal 12 —

eingeben, erscheint ein zweites Fragezeichen. Da geben Sie zum Beispiel 2

ein. Als Ergebnis erscheint sechs. (Irgendwoher kommt uns das so bekannt

vor...) |

Sie sehen: Ihr Computer nimmt jetzt Zahlen an und teilt sie. Damit Sie

sehen, wie schlau er ist, geben Sie bitte als erste Zahl 120 und als zweite Zahl

O ein. Bei dem einen oder anderen geht jetzt vielleicht eine in jahrelangen

Mathematikstunden eingebaute Warnlampe an. Durch Null dividieren?

24 Eine kleine Einführung ins Commodore-BASIC

Wenn Sie es ausprobieren, merken Sie sehr schnell, daß das auch der

Computer gelernt hat. Er sagt Ihnen nämlich, daß man nicht durch Null

dividieren darf.

Bevor Sie nun voller Stolz Ihr neues Divisionsprogramm herzeigen, wollen

wir Ihnen noch einen Tip wegen der Platzhalter geben. Da gibt es einige

Unterschiede zwischen:

A, A$, AA, AA$

Es wäre doch auch ganz schön, wenn der Benutzer seinen Namen eingeben

könnte. Wenn Sie das aber mit dem Platzhalter A versuchen, wird das nicht

funktionieren. Wie in der Mathematik können diese Platzhalter nur für Zahlen

stehen. Wenn Sie Zeichenketten zuweisen wollen, müssen Sie die Platzhalter

für Zahlen und die für Buchstaben voneinander trennen. Aber das ist nicht
weiter schwer. Damit der Computer weiß, daß der Platzhalter für eine

Zeichenkette stehen soll, hängen Sie einfach ein $-Zeichen dran. Dieses

Zeichen erinnert zwar extrem an die US-amerikanische Währung, wird aber

üblicherweise nicht A-Dollar, sondern A-String ausgesprochen. Solche Strings

können dann sowohl Buchstaben als auch Zahlen als Inhalt haben. Einfache

Buchstaben können nur als Platzhalter für Zahlenwerte stehen. Ergebnis

unserer Recherchen ist also: A nimmt nur Zahlen an und A$ Buchstaben und

Zahlen. .

Damit Ihnen auch ganz sicher nicht die Variablen ausgehen, obwohl man

selten so viele braucht, kann der Computer sogar noch den Platzhalter A vom

Platzhalter AA unterscheiden. Sie können also A einen anderen Wert zuwei-

sen als AA, und Ihr Commodore weiß, daß A nicht gleich AA ist. Genauso ist

es bei den Platzhaltern für Buchstaben. Sie haben so fast unendlich viele

Platzhalter zur Verfügung. Wenn wir jetzt den Namen des augenblicklichen

Benutzers abfragen und wieder ausgeben wollen, machen wir am besten

folgendes:

5 PRINT "DIVISIONSPROGRAMM VON OSKAR MUELLER"

10 INPUT N$ -

20 INPUT X

30 INPUT Y

100 PRINT X/Y

Die Variable N$ haben wir übrigens nur deshalb benutzt, weil man sich dann

leichter daran erinnern kann, daß N$ für NAME steht. Jetzt könnten Sie am

Schluß des Programms den Namen mit einem kleinen Dankeschön fürs

Eine kleine Einführung ins Commodore-BASIC 25

Benutzen von Ihrem Commodore ausdrucken (gemeint ist auf den Bildschirm

bringen) lassen. Zum Beispiel:

5 PRINT "DIVISIONSPROGRAMM VON OSKAR MUELLER"

10 INPUT N$

20 INPUT X

30 INPUT Y

100 PRINT X/Y

110 PRINT "VIELEN DANK FUERS RECHNEN MIT MIR, LIEBER "N$

Wenn Sie das Programm jetzt laufen lassen, werden Sie feststellen, daß sich

der Computer höflich von seinem Benutzer verabschiedet. Das Leerzeichen in

der PRINT-Zeile hat den Sinn, daß zwischen dem Namen und dem "

LIEBER" noch etwas Platz ist.

Um Text zu formatieren und dergleichen, gibt es zusätzlich einige beson-

dere Zeichen, zum Beispiel ',' oder ';'. Wenn Sie diese Zeichen vor das N$ in

Zeile 110 setzen, hat das interessante Effekte. Übrigens: Woher weiß eigent-

lich ein fremder Benutzer, daß er da seinen Namen und dort Zahlen eingeben

soll? Nun, entweder findet er es heraus, weil der Computer nicht richtig

reagiert, oder Sie geben ihm (dem Benutzer) Anweisungen. Nachdem Sie

jetzt wissen, wie man mit PRINT umgehen muß, ist das kein Problem mehr.
Um das Stichwort Dialog zu rechtfertigen, fehlt aber noch ein Befehl.

GET

Mit GET werden immer nur einzelne Zeichen eingelesen. Sie müssen danach

kein RETURN eingeben. Allerdings muß eins beachtet werden, wenn Sie mit

GET einen Buchstaben oder eine Zahl abfragen wollen. Der Commodore hat

einen Zeichenpuffer, der bis zu 10 Zeichen behalten kann. Genaueres dazu

später. Weil aber dieser Zeichenpuffer immer aktiv ist und der GET-Befehl,

sobald er ein Zeichen bekommen hat, weitermacht, muß man sicherstellen,

daß der Computer nicht einfach weiterläuft, weil er vom Puffer einen

Leerstring erhält. Deshalb muß eine GET-Abfrage folgendermaßen aussehen:

10 GET A$:IF A$="" THEN 10

Ab Zeile 20 kann dann in diesem Fall das kommen, was passieren soll, wenn

die Eingabe stattgefunden hat. Ä

Übrigens: Nur noch ein paar Minuten, dann haben wir unsere Reiseflug-

26 Eine kleine Einfiihrung ins Commodore-BASIC

höhe erreicht. Die Zeit bis dahin benutzen wir am besten, noch den Befehl zu

erklären, den Sie jetzt schon zweimal gehört oder gelesen haben.

IF... THEN

Ubersetzt bedeutet er etwa WENN...DANN. Um ein Beispiel aus dem Leben

zu nehmen, das zeigt, wann wir solche Entscheidungen gebrauchen, möch-

ten wir gern auf Christians Schwester zurückgreifen. Wenn sie keine Lust zum

Abwaschen hatte, sollte er das tun. In jedem Fall war ihr Standardsatz, wenn

Christian und Geschirr zusammenkamen, immer: «WENN du irgend etwas

runterschmeißt, DANN kannst du was erleben.»

Christian war sich immer sicher, daß sie das ernst meinte — das heißt, wenn

diese Bemerkung erst einmal gefallen war, wußte er, daß sich Konsequenzen

ergeben würden. Voraussetzung war, daß ein Teller oder irgendwelches

Geschirr die Prozedur nicht überlebte.

Und genauso ist es mit dem Computer. Wenn Sie eine IF... THEN-Klausel

einbauen, wird er sie ungerührt abfragen. Ist die Bedingung erfüllt, dann

reagiert er so, wie es abgemacht war. \

Wenn wir zum Beispiel unser kleines Rechenprogramm von vorhin nicht

immer neu starten wollen, aber andererseits die Möglichkeit zum Abbruch

nicht ganz ausschließen wollen, könnte man das so lösen:

5 PRINT "DIVISIONSPROGRAMM VON OSKAR MUELLER"

10 INPUT N$

20 INPUT X

30 INPUT Y

100 PRINT X/Y

102 PRINT "WOLLEN SIE JETZT WEITERMACHEN? (J/N)"

104 GET A$:IF A$="" THEN GOTO 104

106 IF A$="J" THEN RUN

108 IF A$="N" THEN GOTO 110

. 110 PRINT "VIELEN DANK FUERS RECHNEN MIT MIR, LIEBER "N$

Was passiert, ist wohl ziemlich klar. Zeile 102 schreibt dem Benutzer eine

Anweisung auf den Schirm, die ihm sagt, wie er antworten soll, nämlich mit.

oder N.

Zeile 104 wartet, bis eine Taste gedrückt wird. Solange das nicht geschieht

bleibt das Programm bei dieser Abfrageroutine. Wenn dann die Taste

gedrückt wurde, überprüft Zeile 106, ob es die Taste J war. War es J, danr

Eine kleine Einführung ins Commodore-BASIC 2/

gibt sich das Programm selbst den Befehl RUN, fangt also wieder von vorn

an. Zur Zeile 108 oder 110 kommt es dann gar nicht erst, weil die erste

Bedingung erfüllt war. Ist die gedrückte Taste aber N, geht das Programm zu

Zeile 110 und verabschiedet sich. Wenn Sie genau hinschauen, merken Sie

zwei Dinge. Zum einen, warum es immer gut ist, in Zehnerabständen zu

numerieren, und zum anderen, daß die Zeile 108 auch weggelassen werden

könnte. Denn wenn die Bedingung in Zeile 106 nicht erfüllt wird, arbeitet der

Computer sowieso die nächste Zeile ab. Und die ist ja die letzte Programm-

zeile. Sie sehen, Ihr Commodore ist in solchen Dingen genauso konsequent

wie Christians Schwester.

10000 Meter

Wir haben inzwischen die vorgesehene Reisehöhe erreicht und schon die

BASIC-Befehle besprochen, die bereits ein paarmal im Verlauf des Textes

aufgetaucht sind. Weil damit die drängendsten Fragen Ihrerseits wohl erle-

digt wären, gehen wir jetzt dazu über, die Befehle in alphabetischer Reihen-

folge zu erklären, denn man kann nicht sagen, daß einer wichtiger sei als der

andere. Man braucht sie alle. Wo es nötig ist, finden Sie im Text auch noch

Hinweise auf die Aussprache — damit Sie das nächstemal im Computerladen

auch mitreden können oder zumindest verstehen, was die da überhaupt

reden. |

ASC

Oft wüßte man gern, was für einen ASCII-Wert eine bestimmte Taste hat.

Man kann natürlich das Programmierhandbuch aufschlagen und diese Werte

suchen, aber weil das Buch nicht selten ganz zuunterst in einem Riesenhaufen

von Papieren liegt, erweist sich dieses Vorgehen als unpraktikabel. Zumal

man dieses Buch, sobald man danach sucht, sowieso nicht findet, selbst wenn

man schwören könnte, daß es irgendwo in dem Stapel rechts von der Tür sein

muß. Deshalb hat Commodore einen Befehl eingebaut, der es möglich

macht, diesen Wert abzufragen. Der Befehl lautet ASC ($) (sprich Äski von

einem String ...). Wollen Sie den ASCII-Wert von X erfahren, geben Sie ein:

PRINT ASC ("X")

Als Antwort erhalten Sie genau die Zahl, die Sie gesucht haben.

28 Eine kleine Einführung ins Commodore-BASIC

CHR$

Wenn Sie erst einmal den ASCII-Code eines Zeichens haben, können Sie den

sehr einfach wieder in ein Zeichen zurückverwandeln. Der Befehl CHR$ (N)

(sprich Tscharstring von N) liefert Ihnen das Zeichen, das der Zahl N, die in

Klammern steht, entspricht. Wenn Sie also gerade den ASCII-Wert von X

herausgefunden haben, können Sie das gleich mal ausprobieren. Der Wert,

den Sie bei X erhalten haben sollten, ist 88. Geben Sie jetzt ein:

PRINT CHR$ (88)

Der Lohn für Ihre Mühe wird ein X sein, das plötzlich auf dem Bildschirm

auftaucht. Was Sie davon haben, daß Sie diese CHR$ kennen und benutzen

können, werden wir im Kapitel Input/Output noch erklären. |

CLOSE

Sie werden bald merken (spätestens im Kapitel über die Peripheriegeräte)

daß der Commodore, wenn er mit angeschlossenen Geräten ein kleine:

Schwätzchen halten will, einen Kommandokanal eröffnen muß. Weil alle

Geräte hintereinander an ihm hängen, hat jedes Gerät seine Nummer. Went

der Commodore ein Gerät mit einer bestimmten Nummer sprechen will, ruf

er laut und deutlich die Gerätenummer. Dann wissen alle anderen Geräte

daß sie jetzt weghören sollen. (Ob sie es tun, ist die andere Frage.) Weil in

Alphabet der Buchstabe O (wie OPEN) nach dem Buchstaben C (wie CLOSE

kommt, ist CLOSE zwar von der Logik her der Befehl, den man erst späte

braucht, aber wir haben schließlich gesagt, wir machen es in alphabetische

Reihenfolge. Ist also irgendwo ein Kommandokanal mit OPEN eröffne

worden, wird er mit |
| CLOSE N

‚wieder geschlossen. Ist das passiert — sind also alle Kommandokanäl

geschlossen —, dann brütet unser Commodore wieder in dumpfer Einsamke

über seinen Rechenaufgaben. N steht hier wieder für eine Zahl.

CMD

CMD (sprich Command, wofür es auch die Abkürzung ist) ist ähnlich der

CLOSE ein Peripheriebefehl, das heißt, dieser Befehl hat Auswirkungen aı

die umliegenden (angeschlossenen!) Geräte. Der Fachmann umschreibt so

Eine kleine Einführung ins Commodore-BASIC 29

che Befehle auch gern mit dem Ausdruck «I/O-Befehle». Immer wenn Sie

einen Fachmann auf freier Flur treffen — zum Beispiel in Computerläden oder

Fachabteilungen der Kaufhäuser —, werden Sie bemerken, wie ein stolzes

Lächeln um seine Lippen zuckt, wenn er sagt: «Nun, wahrscheinlich ist es ein

/O-Problem.» Nach diesem Satz fliegen dann oft noch Ausdrücke wie

«Device» (sprich Diweis) oder «Floppy» durch die Gegend. Und wenn alle

diese Wörter auch nach einer Stunde noch nicht geholfen haben, ein

bestimmtes Problem zu lösen, fliegen meist nur noch relativ wenig fachliche

Kraftausdrücke herum. Sie sehen, daß an dem Ausdruck «I/O» nichts Magi-

sches hängt. Er ist nur eine Abkürzung für Input/Output, und das ist

seinerseits wieder nur die englische Version der Wörter Eingabe/Ausgabe.

Gemeint ist damit alles, was beim Computer mit der Ein- oder Ausgabe von

Daten zu tun hat. So schnell verliert der Computer und die Sprache um ihn

herum an Schrecken.

Der Vorteil von Abkürzungen ist aber unbestritten. Deshalb wollen wir ab

jetzt auch I/O-Befehl sagen, wenn wir solche Dinge meinen. Wenn Sie also

einen Kommandokanal zum Drucker aufgemacht haben, können Sie auch

Kommandos zu ihm schicken, die er ausführen soll. Der Befehl müßte dann

lauten:
CMD N: Befehl

N steht für das entsprechende Gerät, und statt Befehl müßten Sie eben einen

BASIC-Befehl einsetzen — zum Beispiel LIST, um ein Programm vom Drucker

listen zu lassen. Das geht jedoch erst, nachdem Sie einen Kommandokanal

eröffnet haben.

CONT

CONT gehört ins normale BASIC-Repertoire. Natürlich ist es eine Abkürzung,

die für Continue steht, was soviel heißt wie Weitermachen. Der Befehl wird

immer dann verwendet, wenn ein Programm zum Beispiel mit (RUN/STOP)
abgebrochen wurde, oder auch, wenn im Programm der Befehl STOP oder

END angetroffen wurde. Natürlich ergibt CONT nur dann einen Sinn, wenn

das Programm noch weitergeht. Wenn Sie aber während eines so erzwunge-

nen Programmstopps eine Zeile listen und verändern oder ein SYNTAX

ERROR auftritt, dann gibt Ihr Commodore ganz bescheiden zu, daß er leider

gar nicht weitermachen kann. Der Befehl lautet einfach nur

CONT

30 Eine kleine Einführung ins Commodore-BASIC

Die Antwort kann entweder sein, daß er das Programm weiter ausführt oder

aber auch ein

CAN'T CONTINUE ERROR

Mit CONT können Sie schon allerhand anfangen, zum Beispiel abfragen, ob

das Ergebnis einer bestimmten Rechnung auch das richtige ist, und nur dann

weiterrechnen lassen. Ihnen fällt bestimmt noch mehr ein. 7

DATA

DATA erinnert schon so deutlich an den Ausdruck «Daten». Das soll es auch.

Die eigentliche Aufgabe für Computer ist ja sowieso, bestimmte Daten zt

suchen, auszuwerten oder was immer damit zu machen. (Die Zeitungsschlag-

zeilen des letzten Jahres beweisen, daß den Leuten die unmöglichsten Dinge

einfallen, die man mit Daten machen kann oder wofür man sie braucher

könnte ...) Wofür also ein eigener Befehl für Daten? Wir müssen bein

Programmieren verschiedene Datenarten unterscheiden: die Programmdater

(das eigentliche Programm) oder die Daten der Variablen oder die Daten, die

in DATA-Zeilen abgelegt werden.

DATA-Zeilen können überall im Programm stehen. Egal wo, der Compute

wird sie immer der Reihe nach lesen, wenn man ihm sagt, daß er das tun soll

Eine DATA-Zeile in einem Programm kann ungefähr so aussehen:

DATA TARZAN JANE, CHEETAH,3

Wie man so eine Datenzeile im Programm verwendet, folgt erst beim Befet

READ. Gedulden Sie sich noch ein wenig. Dann werden Sie auch versteher

was diese komischen Ausdrücke sollen.

DIM

Das ist ein Befehl, der es möglich macht, sogenannte Felder zu DIMensionie

ren. Daher auch der Ausdruck. Sie können zum Beispiel sagen: |

DIM A (100)

Dann können Sie der Variablen A bis zu hundert verschiedene Zahle

zuweisen. Jede Zahl bekommt einen sogenannten Index. Um dann di

einzelnen Zahlen wieder hervorzuholen, geben Sie

PRINT A(0)

Eine kleine Einführung ins Commodore-BASIC 31

ein und erhalten dann den ersten Wert, den Sie A zugewiesen haben. O ist

deshalb der erste Wert, weil der Computer fast immer bei Null zu zählen

beginnt. Das ist eine seiner spleenigen Eigenarten. Im Grunde sorgt die DIM-

Anweisung nur dafür, daß genügend Speicherplatz für Daten reserviert wird.

Vergleichen könnte man das mit einem Restaurant. DIM A(5) wäre, wenn Sie

dort anrufen und sagen: «Ich möchte bitte einen Tisch für fünf Personen.»

Der Kellner reserviert für Sie den Tisch A mit fünf Plätzen. Es könnten sich
aber Probleme ergeben. Wenn Sie zum Beispiel nochmals anrufen, um zu

sagen, daß jetzt doch nur drei Leute kommen würden, wird der Kellner etwas
unwirsch reagieren. Unser Commodore auch. Er wird Ihnen sagen:

REDIM’ D ARRAY

was heißen soll, daß Sie einen bereits dimensionierten Raum noch einmal

dimensionieren. (Das sollen Sie aber nicht.)

Zum Restaurant zurück. Wenn Sie dem Telefongespräch aus dem Weg

gehen wollen und mit nur drei Leuten auftauchen, wird das dem Kellner zwar

auch nicht recht sein, aber er kommt wenigstens nicht auf die Idee, Sie an

einen kleineren Tisch zu setzen. Damit ist in manchen Gaststätten erst

gewährleistet, daß jeder ausreichend Platz zum Essen hat. Wenn Sie dasselbe

beim Commodore tun, ist ihm das ziemlich egal. Der Platz bleibt reserviert,

und wenn Sie ihn nicht ausnutzen, verschenken Sie eben Speicher. So einfach

ist das.

Wenn Sie — wieder im Restaurant — dem Ganzen aus dem Weg gehen

wollen und erst gar nicht hingehen, obwohl Sie reserviert haben, wird sich der

Kellner zwar ärgern, tun kann er aber gar nichts. Die Reaktion des Compu-

ters? Siehe oben. |

Das zum Thema Reser ... — pardon, wir meinen natürlich Dimensionie-

rungen.

END

Diesen Befehl hatten wir schon einmal kurz angesprochen. Damit kann man

ein Programm (zum Beispiel bei einem bestimmten Ergebnis) abbrechen

lassen. Um ehrlich zu sein, zu diesem Befehl gibt es nichts weiter zu sagen, so

sehr wir uns auch anstrengen, es fällt uns nichts Lustiges dazu ein. Der Befehl

ist eben wirklich nur Ä
END

32 Eine kleine Einführung ins Commodore-BASIC

Es geht natürlich weiter.

FOR...NEXT

FOR...NEXT ist ein Befehl, der oft für einen anderen eingesetzt wird:

X=X+1. Wenn Sie diesen Befehl in ein Programm bringen, weil aus irgend-

welchen Gründen gezählt werden soll, würde das Programm so aussehen:

10 X=X+1

20 PRINT X

30 IF X=10 THEN END

40 GOTO 10

Der neue Befehl GOTO in diesem Programm wird Sie wohl nicht verwirren. Er

heißt einfach nur GEHE ZU. (Erklärung folgt noch.) |
Das Programm zählt von 1 bis 10. X ist, solange ihm kein Wert zugewiesen

wird — genauso wie alle Platzhalter im Computer — eine Null. Dann wird dem

Computer in Zeile 10 gesagt, daß er zu X eine 1 addieren soll. Somit ist X beim

ersten Lauf eine 1. In Zeile 20 wird der augenblickliche X-Wert auf den

Bildschirm gebracht. Dann wird festgestellt, ob X mittlerweile den Wert 10

hat. Der schlaue Commodore merkt, daß dem nicht so ist, und geht zur Zeile

40. Die macht ihm klar, daß er wieder zur Zeile 10 soll. Dort addiert er dann

zum momentanen X-Wert eine 1 und...

Den Rest können wir uns wohl schenken. Nun ist es etwas umständlich,

vier Zeilen Programm zu brauchen, um die Leistung eines Erstkläßlers zu

erreichen.

Mit FOR...NEXT geht es einfacher. Dasselbe Programm würde hieı

lauten: 10 FOR X=1T010
20 PRINT X
30 NEXT X

Wenn X den Wert 10 erreicht hat, hört der Computer ganz von selbst auf zı

zählen. Das Ganze kann man übrigens auch in einer Zeile zusammenfassen

Das würde dann folgendermaßen aussehen:

10 FOR X=1TO10:PRINT X:NEXT X

Ein Doppelpunkt trennt immer mehrere Anweisungen voneinander. Das ha

allerdings den Nachteil, daß alles etwas unübersichtlicher wird und daß mar

natürlich das Programm immer nur zu einer bestimmten Zeilennummer un«

Eine kleine Einführung ins Commodore-BASIC 33

nie nur zu einem Teil dieser Zeile schicken kann. Zurück zu unserer FOR-

... NEXT-Anweisung. Die meisten Leute verwenden für diese Anweisung

auch den Ausdruck «FOR...NEXT-Schleife», was aber nichts mit hübsch

verpackten Geschenken zu tun hat. Nun hätte — denkt vielleicht der scharfe

Beobachter — die andere Version gegenüber der FOR... NEXT-Schleife einen

Vorteil, wenn man zum Beispiel nicht in Einer-, sondern in Zweierschritten

zählen lassen will. Mit dem erwähnten Programm würde das ja kein Problem

sein: 10 X=X+2
20 PRINT X

30 IF X=10 THEN END

40 GOTO 10

Man muß nur die erste Zeile verändern. Aber diesen Luxus kann man mit der

FOR...NEXT-Schleife genauso einfach haben. Man muß nur die Schrittweite

des Zählens angeben. Dazu dient der Befehl STEP (Schritt):

10 FOR X=1T010 STEP 2

20 PRINT X

30 NEXT X

So einfach ist das!

FRE

Eine nicht ganz uninteressante Frage, die beim Programmieren auftaucht, ist

die nach dem freien Speicherplatz. Auch hier kann der Computer mit Rat und

Tat zur Seite stehen. Weil er den Speicher sowieso ständig im Überblick

haben muß, war das Einbauen einer solchen Funktion nicht schwierig. Der

Befehl FRE(O) (sprich Frie von Null) hilft weiter. Wenn Sie einem frisch

eingeschalteten Commodore

PRINT FRE(O)

eingeben, gibt er Ihnen gern Auskunft. Sollte die Zahl, die er ausgibt, negativ

sein, dann liegt das nicht etwa daran, daß er Sie auf den Arm nehmen will,

sondern an internen Abläufen. Um die tatsächliche Zahl herauszufinden,

müssen Sie noch 65536 dazuzählen. Also schreiben Sie in diesem Fall am

besten:
PRINT FRE(O)+65536

34 Eine kleine Einführung ins Commodore-BASIC |

Dann erhalten Sie den freien Speicherplatz. Zwei Dinge noch dazu: Wenn Sie

glauben, daß Sie sich diese Zahl nicht merken können, warten Sie ab.

Spätestens wenn Sie das Kapitel «Speicheraufteilung» gelesen haben, werden

Sie von solchen Zahlen träumen. |

Und: FRE(Q) ist eine Funktion, die an praktisch jedem Computer funktio-

niert. Wenn Sie also Bekannte haben, die wenig über Computer wissen, kann

man damit Eindruck machen. Eine kleine Anleitung dazu:

1. Man nehme einen oder mehrere Bekannte und führe sie wie zufällig in

die Computerabteilung eines Kaufhauses.

2. Wenn man dann — genauso zufällig — an den kleinen geheimnisvollen

Kästen entlangstreicht, über sie plaudert, bleibe man plötzlich an einem

stehen.

3. Während sich alle — durch das plötzliche Stehenbleiben noch etwas

verwirrt — erst einmal wieder fangen müssen, lesen Sie schnell den

Namen des betreffenden Geräts.

4. Wenn Ihnen die ungeteilte Aufmerksamkeit wieder sicher ist, murmeln

Sie halblaut: «Ach schau an, der neue XYZ.» (Für XYZ setzen Sie bitte

den abgelesenen Namen ein.)

5. Dann gehen Sie zur Tastatur und tippen unser bekanntes PRINT FRE(0)

ein. Dabei ist es egal, ob mit oder ohne der Addition von 65 536.

6. Während alle vor Staunen erstarren, erhalten Sie als Ergebnis irgendeine

Zahl.

7. Ab jetzt reichen halblaut hingeworfene Bemerkungen wie «Soso» oder

«Dachte ich es mir doch» und ähnliches aus.

Sie gehen kommentarlos weiter.

9. Irgendwann wird einer Ihrer Begleiter (oft erst nach Minuten) fragen:

«Was hast Du denn da gemacht?»

10. Und jetzt kommt das Beste. Als Antwort reicht hier völlig aus: «Oh, ich

wollte nur mal feststellen, wie es so im System ausschaut. »

11. Sollten wider Erwarten doch noch Fragen kommen, sagen Sie einfach:

«Das ist jetzt zu kompliziert zu erklären. Und ich will Euch damit nich!

langweilen. Ach, dabei fällt mir ein ...»

12. Achtung! Probieren Sie diesen Trick nie, wenn Kinder in der Nähe sind

Das könnte schreckliche Folgen haben (von verhaltenem Grinsen bis zı

lautem Lachen). Und achten Sie darauf, daß keiner Ihrer Bekannten diese

Geschichte je erfährt...

Go

Eine kleine Einführung ins Commodore-BASIC 35

GOSUB

Dieser Befehl ist eine besondere Form des GOTO, das wir schon kennenge-

lernt haben, aber es funktioniert etwas anders. Zuerst zur Namensklärung.

GOSUB steht für GO SUBroutine, was (frei) übersetzt heißt: «Gehe zu einer

Unterroutine.»

Unterroutine klingt zwar großartig, aber als solche bezeichnen Program-

- mierer fast alle Programmteile, die mehr als einmal verwendet werden und

bestimmte Dinge ausführen. Wenn Sie zum Beispiel oft in einem Programm

eine Entscheidung des Programmbenutzers mit J oder N (für Ja oder Nein)

anfordern, können Sie natürlich jedesmal diesen Programmteil schreiben, in

dem diese Abfrage gemacht wird. Es reicht aber auch, wenn Sie das nur

einmal machen. Das Programm würde dann zum Beispiel so aussehen:

10 PRINT "WOLLEN SIE ANFANGEN? (/N)"

20 GOSUB 300

30 (Ab hier beginnt Ihr Programm)

100 PRINT "WOLLEN SIE WEITERMACHEN? (J/N)"

110 GOSUB 300

120 (Hier geht Ihr Programm weiter)

290 END

300 (Ab hier muß Ihre Abfrageroutine stehen)

350 (Wenn Ihre Unterroutine fertig ist, heißt der letzte Befehl:)

360 RETURN

Was passiert hier? Zuerst wird Ihre Anwenderinformation auf den Bildschirm

gebracht, denn irgendwoher muß der ja wissen, was er tun soll. Dann geht

das Programm ganz normal weiter zur nächsten Zeile. Hier trifft es dann die

Anweisung GOSUB 300. Aha, denkt das Programm, ich soll zur Zeile 300.

Aber weil da nicht GOTO, sondern GOSUB steht, merkt es sich im Vorbeihu-

schen noch schnell die Zeile, in der dieser Befehl steht. Bei 300 angelangt, _

führt es die Anweisungen dort so lange aus, bis es zum Rücksprungbefehl

RETURN kommt. Der heißt zwar genauso wie die Taste auf dem Keyboard,

hat aber damit nichts zu tun. Jetzt wird auch klar, warum die Zeilennummer

mit der Sprungadresse so wichtig war. Ganz von selbst kehrt nämlich Ihr

Programm jetzt wieder zu dem Befehl bzw. der Zeile zurück, die als nächste

hätte ausgeführt werden sollen, wenn nicht das GOSUB dagewesen wäre.

Dieses Spielchen läßt sich beliebig oft durchführen und so manche Tipperei

einsparen. Noch ein Tip dazu: Vielleicht ist Ihnen aufgefallen, daß wir genau

36 Eine kleine Einführung ins Commodore-BASIC

eine Zeile vor der Unterroutine den Befehl END gesetzt haben. Der Grund
dafür ist klar. Unterroutinen stehen immer ziemlich am Ende eines Pro-

gramms. Wenn dann das Programm zu Ende ist, steht ja die Unterroutine

immer noch da. Würden wir das Programm nicht aufhalten, würde es

unsinnigerweise unsere Unterroutine ausführen.

GOTO

Zum Thema GOTO brauchen wir wohl nach obigen Erklärungen nicht mehr

viel zu sagen. Damit wird das Programm verzweigt, wenn Sie beispielsweise

ein sogenanntes Menü in Ihr Programm einbauen. Das hört sich zwar

appetitlich an, ist es aber nicht unbedingt. Menü hat mit der Speisekarte eines

Lokals nur eins gemeinsam: die Möglichkeit der Auswahl. Ein Computermenü

könnte zum Beispiel so aussehen:

AUSWAHL:

SPIELEN... 1

LERNEN...2

ENDE.....3

BITTE DRUECKEN SIE DIE ENTSPRECHENDE ZAHLENTASTE:?

Je nachdem, ob 1, 2 oder 3 gewählt wird, kann das Programm an eine

bestimmte Stelle verzweigen, die das Gewünschte bereitstellt. Weil Sie aber ir

dieses Menü selten zurückmüssen, wird hier meist ein GOTO verwendet. Eir

GOTO kann Ihnen aber auch aus der Patsche helfen, wenn zum Beispiel ein«

bis dahin benötigte Unterroutine plötzlich beim Programmieren im Weg ist

weil diese Routine bei 300 anfängt, aber Ihre Programmzeilen bereits bis 29

fortgeschritten sind. Am elegantesten ist es in dem Fall, das Programm mi

einem | |
GOTO 400

darüber hinwegzuheben, wenn die Unterroutine beispielsweise bis 390 ode

so geht.
IF...GOTO

Wir hatten schon über IF... THEN gesprochen. Eine Abart davon ist de

IF...GOTO. Was es tut, können Sie sich sicherlich erschließen. Man kann at

Fine kleine Einführung ins Commodore-BASIC 37

das Tippen von THEN verzichten und gleich eine Programmverzweigung

veranlassen.

LET

LET ist natürlich auch englisch. Es kommt von to let, was auf deutsch einfach

«lassen» heißt. LET allein ist der Imperativ, also die Befehlsform. Wenn man

es übersetzt, heißt es schlicht «laß». Im Computer wird LET für Wertzuwei-

sungen benutzt. Das sieht im Programm so aus:

LET D=5

- Damit wird der Variablen D der Wert 5 zugewiesen. Ganz unter uns: Das LET

kann man ruhig weglassen. Ein einfaches

D=5

reicht vollauf.

LIST

LIST ist ein Kommando, das Sie sehr oft brauchen werden — zwar selten in

Programmen, aber um so öfter beim Programmieren.

Wenn Sie nämlich programmieren, wird Ihnen schnell auffallen, daß die

Programmzeilen, die Sie eingeben, langsam, aber sicher dem oberen Bild-

schirmrand zustreben. Man nennt das auch Scrolling.

Wahrscheinlich haben Sie Vertrauen zur Firma Commodore und denken

sich, daß man all das, was da oben verschwindet, sicherlich irgendwie wieder

herkriegt. Das stimmt auch, und zwar eben mit dem Befehl LIST. Wenn Sie

zum Beispiel Ihr Programm wiedersehen wollen, tippen Sie einfach

LIST

ein. Sogleich fängt der Commodore an, wie wild Ihre Programmzeilen

aufzulisten. Damit Sie nicht denken, er hätte was verloren, tut er das sogar

ganz hübsch schnell — meist etwas zu schnell zum Mitlesen. Deshalb drücken

Sie, während er listet, einfach die (CTRL)-Taste. Dann weiß er, daß Sie ihm

vertrauen, und geht die Sache etwas beschaulicher an. Wenn Sie mal wollen,

daß er ganz zu listen aufhört, weil Sie irgend etwas verbessern wollen,

drücken Sie einfach (RUN/STOP). Weil aber niemand von Ihnen verlangen
kann, daß Sie sich ein 2000 Zeilen langes Programm vom Anfang bis zum

38 Eine kleine Einführung ins Commodore-BASIC

augenblicklichen Ende anschauen, nur um an die 1979. Zeile heranzukom-

men, können Sie auch nur bestimmte Teile listen lassen:

LIST 1979

zeigt Ihnen zum Beispiel nur diese eine Zeile.

LIST 1979—

zeigt Ihnen alles ab 1979.

LIST —1979

zeigt Ihnen alles bis zur Zeile 1979.

LIST 1900-1980

zeigt Ihnen alles zwischen den Zeilen 1900 und 1980.

LIST kann natürlich auch innerhalb eines Programms verwendet werden

Allerdings befindet sich der Computer danach automatisch im Direktmodus

Das Programm muß dann neu gestartet werden.

LOAD

Dieser Befehl ist nur für Peripheriebesitzer interessant. Mit

LOAD

lassen sich Programme vom Kassettenrecorder laden. Mit

LOAD "NAME", 8

kann man ein bestimmtes (NAME) Programm von der Diskettenstation lade

lassen. Näheres zu diesem Thema im Kapitel über Peripheriegeräte.

NEW

Mit diesem Befehl sollten Sie sehr vorsichtig umgehen. Er löscht nämlich de

momentan im Speicher befindliche Programm. Was weg ist, ist weg und fi

den unbedarften Programmierer nicht mehr wiederzukriegen.

Viele Leute verwenden das NEW auch im Programm — zum Beispiel, wen

es darum geht, ein laufendes Programm zu beenden. Dann hat nämlich dı

Programmierer, der damit gearbeitet hat, sofort einen freien Speicher. Die:

Absicht ist löblich und sicherlich eine saubere Lösung. Wenn Sie es auch :

Fine kleine Einführung ins Commodore-BASIC 39

machen wollen, dann sollten Sie allerdings folgenden kleinen Ratschlag

beherzigen:

Nehmen wir an, in Zeile 2350 Ihres Programms wurde der Anwender

gefragt, ob er jetzt aufhören möchte. Nehmen wir weiter an, er hat das auch
getan, und vermuten wir nun, Sie haben für diesen Fall ein NEW in Zeile 2360
vorgesehen. Bisher war alles prima. Doch gehen wir ein paar Tage in die

Vergangenheit zurück. Es ist wieder 22.30 Uhr, und Sie sind gerade beim

letzten Programmtest. Soeben haben Sie nach langen Mühen Ihr Programm

um einen tollen Toneffekt und eine schöne Grafik bereichert. Jetzt wollen Sie

nur noch schnell ausprobieren, ob sich das alles mit dem Programm verträgt.

Sie geben Ihr RUN ein, alles läuft wunderbar. In ihrer grenzenlosen Freude

über das gelungene Programm geben Sie auf die freundliche Frage: «Wollen

Sie, lieber Hans-Peter, jetzt wirklich schon aufhören?» tatsächlich das Ja-

Wort. Es folgt der tolle Ton, auf dem Bildschirm blinkt noch einmal ein kurzes

«Tschüs, Hans-Peter», der Bildschirm wird plötzlich leer, und es ist vorbei.

«Ja», denken Sie noch, «so sieht das aus, so muß das sein.» Zufrieden

legen Sie noch einmal Ihre Hände auf die Tastatur und tippen ein letztes Mal

LIST ein. |

Jedoch alles, was erscheint, ist die READY-Meldung. Sonst nichts. Aus.

Keine Zeile des Zinseszinsprogramms ist mehr zu sehen. Sollte der Apparat,

aber nein — natürlich —, das NEW. Was jetzt?

Meist setzt in solchen Fällen noch bis Mitternacht hektische Betriebsamkeit

ein. Noch zwei, drei LIST-Versuche. Dann das Durchkramen von den abge-

speicherten alten Versionen. Aber nein. Es ist vorbei. Nach einer halben

Stunde wird dann der Entschluß immer stärker, jetzt den Computer auszu-

schalten. Man schaut noch einmal 15 Sekunden auf den Bildschirm, wo es

gerade noch war, aber es ist zu spät. Kein Wunder geschieht. Das Programm

ist weg.

Programmierers Freud und Programmierers Leid — wie nah liegen sie

beisammen. Das Bild wird dunkel. Die Arbeit ist weg. Nur noch die alte

Version — ohne Ton, ohne Grafik — ist da. Und die ist natürlich viel, viel

langweiliger, als es die andere war. _

Deshalb unser Tip: So rabiate, schicksalsschwangere Befehle wie NEW

sollten wirklich erst ganz zum Schluß, wenn das Programm abgespeichert ist,

eingefügt und ausprobiert werden. Wenn Sie es ausprobieren wollen, schrei-

ben Sie statt dessen lieber eine Zeile wie:

2360 PRINT "HIER WUERDE EIGENTLICH EIN NEW STEHEN.

GOTT SEI DANK IST ES NOCH NICHT DA!"

40 Eine kleine Einführung ins Commodore-BASIC

Diese kleine Geschichte und das Beherzigen unseres einfachen Tips können

Sie vor Verdruß bewahren. Selbst erfahrenen Programmierern ist so etwas

schon passiert, auch wir beide können Lieder von dieser Problematik singen.

OPEN

Den Befehl OPEN (das ist ebenfalls einer der I/O-Befehle) haben wir ja schon

kurz erwähnt. Er dient zum Öffnen eines Kommandokanals. Der Befehl muß

heißen: OPEN N,N,N

Die drei N stehen für Zahlen. Wann alle drei gebraucht werden und’ wann

nicht, entnehmen Sie bitte dem späteren Kapitel «Peripheriegeräte».

PEEK

PEEK ist ein äußerst nützlicher Befehl. Er liest den Inhalt einer Speicherzelle

aus. Man braucht ihn zum Beispiel bei Sprites oder zum Definieren eigener

Grafikzeichen. Wie das genau geht, erfahren Sie in den folgenden Kapiteln.

PEEKen können Sie in jede Speicherzelle zwischen O und 65535. Sie bekom-

men dabei immer einen Wert zwischen O und 255 geliefert. Für beide Zahlen,

die wir Ihnen hier genannt haben, kommen ebenfalls in den folgenden

Kapiteln die Erklärungen. Ein Beispiel für das HerausPEEKen eines Wertes ist:

?PEEK(53280)

Damit erhalten Sie den Wert, der in der Speicherzelle 53280 steht. Bei einem
frisch eingeschalteten Commodore müßte das Ergebnis 254 sein. Warum wir

diese Speicherzelle genommen haben, wird Ihnen der nächste Befehl zeigen.

POKE

POKE ist das genaue Gegenteil von PEEK. Wenn Sie etwas POKEn, dann

heißt das, daß Sie einen Wert in eine Speicherzelle schreiben. Das kann

manchmal sehr erstaunliche Effekte haben. Probieren Sie folgendes:

10 POKE 53280,0: POKE 53281,0:POKE 646,0

20 FOR X=1TO 1000

30 PRINT "X";

40 NEXT

50 POKE 646,1

Eine kleine Einführung ins Commodore-BASIC 41

Zuerst sehen Sie, daß Ihr Bildschirm plötzlich schwarz wird, und zwar der

ganze Bildschirm. Gleichzeitig verschwindet der eingegebene Text wie von

Geisterhand nach oben. Obwohl Sie eine Zeile 30 haben, in der ausdrücklich

steht, daß der Buchstabe X auf den Bildschirm gebracht werden soll, passiert

nichts — zumindest scheinbar. Doch nach einiger Zeit steht ganz unten auf

dem Bildschirm ein helles READY, obwohl der Bildschirm (wenn Sie sich an

das erinnern, was wir bei der FOR... NEXT-Schleife gesagt haben) eigentlich

voll mit lauter X sein müßte. An diesem kleinen Beispiel können Sie erkennen,

was für seltsame Dinge POKEs auslösen können. Zum besseren Verständnis

ändern Sie erst einmal die Zeile 10 ab, am besten so, daß sie dann lautet:

10 POKE 53280,0: POKE 53281,0:POKE 646, 1

Den Rest des Programms lassen Sie so, wie er ist. Das Abändern ist ziemlich

einfach. Sie müssen nur LIST 10 eingeben. Dann haben Sie die Zeile 10 vor

sich. Mit den Cursor-Tasten — ganz rechts unten auf dem Keyboard — gehen

Sie so lange nach oben, bis Sie auf der Höhe der gelisteten Zeile sind. Dann

fahren Sie mit der anderen (äußersten) Cursortaste einfach über die Zeile

hinweg. Erst bei der letzten O des POKE 646 halten Sie an. Wenn Ihr

blinkender Cursor genau darüber ist, tippen Sie eine 1. Die O darunter

verschwindet von selbst. Wenn Sie das gemacht haben, drücken Sie auf

(RETURN). Dann können Sie wieder RUN eingeben. Jetzt können Sie sehen,

wie lauter weiße X den Bildschirm auffüllen.

Zur Erklärung: Die Speicherzelle 646 ist für die Farbe der ausgegebenen

Zeichen zuständig, Speicherzelle 53280 für die Rahmenfarbe und 53281 für

die Hintergrundfarbe. Weil wir in die beiden 0 gePOKEd haben, wurde

scheinbar der ganze Bildschirm schwarz. Beim ersten Programmlauf haben

wir auch die Zeichenfarbe (Speicherzelle 646) auf Schwarz geschaltet. Des-

halb haben wir nicht gesehen, daß unser Text von einem anderen (schwar-

zen) Text nach oben geschoben wurde. Erst die letzte Zeile hat wieder die

Zeichenfarbe Weiß ausgelöst. Deshalb konnten wir das READY wieder sehen.

Ganz einfach, oder? Wenn Sie jetzt Ihr Wissen von vorhin nutzen, können Sie

sogar die Rahmenfarbe wieder auf Normal zurücksetzen. Wir haben ja vorhin

den Wert herausgePEEKed, der nach dem Einschalten in dieser Speicherzelle

steht. ZZ

Experimentieren Sie mit all diesen Zahlen ruhig ein bißchen herum. Es kann

Ihrem Commodore 64 keinen dauerhaften Schaden zufügen. Das Schlimm-

ste, was passieren kann, ist, daß der Rechner abstürzt. Und selbst, wenn das

passiert, müssen Sie sich nicht bücken. Abstürzen heißt nur, daß er plötzlich

42 Eine kleine Einfiihrung ins Commodore-BASIC

nicht mehr reagiert und nur noch durch Aus- und Wiedereinschalten zu

erlösen ist. Deshalb sollten Sie, wenn Sie das POKEn ausprobieren, auch

möglichst kein wichtiges, noch nicht auf Diskette oder Kassette abgespeicher-

tes Programm im Speicher haben. Denn das hätte sich dann natürlich in

Wohlgefallen aufgelöst.

READ

Jetzt sind wir endlich bei dem Befehl, von dem wir schon ziemlich am Anfang

unseres Fluges gesprochen haben. READ ist der Befehl, der die DATA-Zeilen

lesen kann. Wir zeigen Ihnen jetzt, was READ tut und wie dieser Befehl mit

den DATAs in Programmen umgeht. Dazu geben Sie zunächst bitte folgendes

Programm ein:

10 READ A$,B$,C$,D$

15 READ A

20 PRINT A$” UND "B$" LEBEN ZUSAMMEN IM WALD UND HABEN

EINEN RIESEN"C$", DER "A;

30 PRINT " JAHRE ALT IST UND "D$"” HEISST.”

40 DATA TARZAN JANE,AFFEN, CHEETAH,3

An diese DATA-Zeile können Sie sich vielleicht noch erinnern. Wenn Sie da:

Programm jetzt laufen lassen, bekommt auch der merkwürdige Satz, den Sie

abgeschrieben haben, einen Sinn. Die Reihenfolge, in der der Computer die

DATAs liest, hängt von der Reihenfolge ab, in der sie in der DATA-Zeile

stehen. Also müssen DATAs immer in der Reihenfolge ihres Abrufs stehen

Egal ist allerdings, wo die DATA-Zeile steht. Wenn Sie ihr zum Beispiel die

Zeilennummer 5 geben (sie also vor die READ-Anweisung legen), andert:da:

auch nichts. Die DATA-Zeile sucht sich der Computer von selbst, genauso wie

er von selbst weiß, an welchem DATA er zu lesen aufgehört hat. Denn wenr

er das nächste READ trifft, liest er genau da weiter, wo er zuletzt aufgehör

hat — also auch mitten in einer DATA-Zeile.

REM

REM kommt natürlich auch aus dem Englischen. Es ist eine Abkürzung fü

REMark, was dem deutschen Wort Anmerkung sehr nahekommt. Ein REM i

einem BASIC-Programm hat meistens den Sinn, ein Programm besser durch

Eine kleine Einführung ins Commodore-BASIC 43

schaubar zu machen. Aber bevor Sie sich jetzt falsche Hoffnungen machen,

daß damit plötzlich alles viel leichter wird, wollen wir Sie besser gleich

aufklären. Am besten zeigt Ihnen ein Beispiel, was wir meinen:

10 POKE 53280,1:REM RAHMENFARBE WEISS

20 POKE 53281,0:REM BILDSCHIRMFARBE SCHWARZ

Wie Sie sehen, ist bei diesem Programm auch noch nach drei Monaten

gewährleistet, daß Sie wissen, was in den ersten beiden Zeilen passiert. Der

REMark, die Anmerkung, erinnert Sie daran, daß die erste Zeile die Rahmen-

farbe Weiß macht und die zweite Zeile die Bildschirmfarbe Schwarz.

Wenn aber vor diesen beiden Hinweisen nicht REM stünde, würde der

Computer — genauer gesagt der BASIC-Interpreter — versuchen, die Aus-

drücke Rahmenfarbe Weiß und Bildschirmfarbe Schwarz zu verstehen oder

gar aus ihnen Befehle zu machen. Daß das in einem heillosen Durcheinander

endet, merken Sie immer daran, daß der Computer ein hilfloses SYNTAX

ERROR ausgibt. Sie können das gern mal ausprobieren, indem Sie einfach die

beiden REMs in den Zeilen 10 und 20 herausnehmen, aber den Rest lassen,

wie er ist.

REM bedeutet also für den Computer, daß er den Rest, der dahinter

kommt, nicht mehr zu beachten braucht.

REM-Statements machen es also leichter, sich selbst nach längerer Zeit

wieder in einem Programm zurechtzufinden. Allerdings haben sie zwei Nach-

teile.

Zum einen braucht natürlich jedes REM Speicherplatz. Deshalb sollte man

doch etwas sparsam damit umgehen.

Zum anderen kostet es für den Computer jedesmal Zeit, ein REM zu

erkennen, es zu übersetzen und zu verarbeiten. |

Die Kunst bei REMs ist einfach in einen Satz zu bringen: Genug zum

Zurechtfinden müssen es sein, aber wenig genug zum effektiven Program-

mieren sollen es sein.

Das ist sicher leichter gesagt als getan. Aber wir raten Ihnen, lieber ein paar

REMs mehr zu benutzen. Wenn es bei einem Programm auf Schnelligkeit

ankommt, machen Sie einfach eine Version, in der Sie alle REMs rausschmei-

Ren. Die ist dann die Laufversion. Die andere benutzen Sie, um Änderungen

zu machen. Dann kommen wieder alle REMs raus. Das ist zwar ziemlich

zeitaufwendig, aber ein passabler Kompromiß. 7

44 Eine kleine Einfiihrung ins Commodore-BASIC

RESTORE

Noch einmal kurz zu den DATA-Zeilen. Wie schon gesagt, weiß das laufende

Programm immer genau, bei welchem DATA es aufgehört hat. Um nun ein

Programm dazu zu bringen, wieder beim allerersten DATA zu lesen anzufan-

gen, gibt es nur zwei Möglichkeiten. Entweder mit RUN das Programm neu

zu starten oder eben den Befehl RESTORE. Das neuerliche Starten des

Programms bringt ja nicht viel, deshalb ist tatsächlich RESTORE die einzige

Möglichkeit, bei den DATAs wieder ganz von vorne anzufangen. Mittlerweile

haben Sie sicherlich genug BASIC-Erfahrung, um sich selbst zu denken, wie

die Befehlsform sein muß:

RESTORE

Nicht gerade schwierig oder?

RETURN

Das haben wir vorhin schon mal gehabt. RETURN ist eine Anweisung, die sein

muß, um aus einer BASIC-Unterroutine zurück zum eigentlichen Programm

zu springen. Wenn irgendwo im Programm ein GOSUB vorkommt, dann

muß es auch ein dazugehöriges RETURN geben. RETURN steht immer am

Ende der Unterroutine. Wenn der Computer auf ein RETURN trifft, ohne daß

vorher mit einem GOSUB eine Unterroutine angesprungen wurde (wie der

Fachmann sich das bildlich vorstellt, wissen wir zwar nicht, aber auf jeden Fall

sagt er «anspringen» dazu), gibt das die Fehlermeldung

RETURN WITHOUT GOSUB ERROR

Nur damit Sie Bescheid wissen, falls das einmal auftritt.

RUN

Dieser Befehl müßte Ihnen mittlerweile hinlänglich bekannt sein. Wenn man

ein Programm starten will, muß der Befehl

RUN

eingegeben werden. Sie können aber ein Programm auch erst von einer

bestimmten Zeilennummer ab starten lassen. Dazu müßten Sie dann ein-

geben:

RUN N

Eine kleine Einführung ins Commodore-BASIC 45

wobei N irgendeine Zeile sein kann. Wenn die Zeile nicht im Programm

vorkommt, bekommen Sie natürlich als Dankeschön eine kleine Fehlermel-

dung. Diesmal heißt sie zur Abwechslung

UNDEF' D STATEMENT

Um wieder ein Beispiel aus dem Leben zu bringen: Stellen Sie sich einen

riesigen Wohnblock vor. Sie suchen einen alten Bekannten, der wahrschein-

lich hier wohnt. Alles, was Sie an Lebendigem hier sehen, ist jemand, der das

Treppenhaus bohnert. Es ist ein Mann, wahrscheinlich der Hausmeister.

«Gut», denken Sie, «der sollte es ja wissen.» Sie gehen hin und fragen

höflich: «Entschuldigung, ich suche die Familie Müller .. .»

Der Mann schaut Sie kurz an und meint dann: «Die gibt's hier nicht.» Das

Haus ist Ihr Programm, die Rolle des Hausmeisters übernimmt in diesem Fall

der BASIC-Interpreter, der zwar den Namen versteht, aber sofort zurückgibt,

daß es den hier nicht gibt. So ungefähr ist die Bedeutung dieser Fehlermel-

dung.

SAVE

Dieses ist eines der großartigen I/O-Kommandos. Mit SAVE können Sie ein

Programm abspeichern, zum Beispiel auf Kassette oder Diskette. Das ist

übrigens auch die einzige Art, mit der Sie Ihre Programme dauerhaft schützen

können, denn ein BASIC-Programm, das Sie geschrieben haben, wird das

Abschalten des Computers nicht überleben. Deshalb sollte man auch wäh-

rend des Programmierens immer wieder zwischenspeichern — einfach um für

den Fall eines Stromausfalls oder anderer unglücklicher Umstände gerüstet zu

sein. Denken Sie nur an kleine Kinder («Schau mal Papa, der Stecker da...»)

oder große Eltern («Jetzt reicht's aber mit der Rumspielerei. Das Essen ist

fertig.»), die in beiden Fällen zur Unterstützung ihrer Worte den Stecker aus

der Dose ziehen.

Der Befehl selbst hängt in erster Linie vom Speichermedium ab:

SAVE "XXX"

speichert das Programm XXX auf Kassette — allerdings nur, wenn die beiden

Tasten RECORD und PLAY gedrückt sind und der Recorder deutliche Anzei-

‚chen — sowohl akustische wie auch optische - von Bewegung von sich gibt.

Übrigens kann Ihr Commodore nicht unterscheiden, ob am Recorder die

richtigen Tasten gedrückt sind. Es kann Ihnen also durchaus passieren, daß

46 Eine kleine Einführung ins Commodore-BASIC

Sie, statt zu laden, aus Versehen löschen oder hin- und herspulen. Deshalb

sollten Sie nach dem Recordergebrauch immer die (STOP)-Taste drücken.

SAVE "XXX" ,8

speichert das Programm XXX auf der Diskette. Dazu muß die Diskettenstation

allerdings eingeschaltet sein. Sonst gibt es einen

DEVICE NOT PRESENT ERROR

was soviel heißt wie: «Ist nicht da. Geht nicht.»

Bitte schnallen Sie sich wieder an...

Merken Sie was? Wir sind jetzt Uber das Meer der Programmiersprachen

hinweg. Vor uns taucht langsam die Insel Commodore-BASIC auf. Das

langersehnte Ziel ist zum Greifen nahe. Schnallen Sie sich also wieder an.

Während der Pilot langsam zum Landen ansetzt, sollten wir uns noch Uber ein

paar kleine Befehle unterhalten.

STOP

Das hatten wir ja auch schon mal. Mit STOP können Sie ein Programm an

praktisch jeder Stelle unterbrechen. Beim Programmieren ist das manchmal

ganz nützlich, um kurz vor der Zeile, in der ständig ein Fehler auftritt, das

Programm abzubrechen und zum Beispiel die Variablen zu überprüfen. Dann

können Sie mit CONT weitermachen. Die Syntax für den Befehl STOP ist

denkbar einfach. Irgendwo steht eine Zeile, die einfach den Befehl

STOP

hat. Der Ausdruck Syntax, den wir gerade verwendet haben, ist sicherlich

dem einen oder anderen aus irgendwelchen Grammatikübungen noch

bekannt. Die richtige Syntax heißt: der richtige Satzbau.

Beim Computer ist es genauso. Ein SYNTAX ERROR ist eine fehlerhafte,

unverständliche Eingabe. Deshalb nennt man auch die richtige Befehlsform

für eine bestimmte Aufgabe, die der Computer bearbeiten soll, die Syntax.

Sehen Sie, je weiter wir kommen, um so mehr können wir uns schon wie

ausgefuchste Programmierer unterhalten.

Eine kleine Einführung ins Commodore-BASIC 47

SYS

Der Befehl SYS hat eine ganz besondere Aufgabe. Auch er greift (wie PEEK

und POKE) direkt auf den interen Speicher des Commodore zurück. Er ruft

zum Beispiel bestimmte Maschinenunterroutinen auf. So können Sie den

Computer mit
SYS 64738

neu starten, ohne daß Sie ihn dazu ausschalten müssen. Wie Sie diesen Befehl

nutzen können, was Sie davon haben und wo der Unterschied zwischen einer

Maschinenunterroutine und einer BASIC-Unterroutine liegt, werden Sie am

Ziel unserer Reise erfahren.

TAB

Mit diesem Befehl können Sie — wie bei einer Schreibmaschine — Tabulatoren

setzen. Daher auch der Befehlsname. Ein TAB-Befehl wäre etwa:

10 PRINT TAB(20)" HALLO"

Wenn Sie das eingeben und starten, werden Sie gleich merken, was der Effekt

ist. Das Hallo steht nicht mehr in der ersten Spalte, sondern beginnt in der

zwanzigsten. Damit können Sie zum Beispiel Textausgaben immer genau

untereinander setzen. |

Langsam wird es jetzt Zeit, sich auf die Landung vorzubereiten. Apropos

Zeit. :

TIME

Geben Sie doch mal ein:

PRINT TI/60

Die Zahl, die Sie dann erhalten, sind die Sekunden, seit denen Ihr Commo-

dore schon läuft. Sobald Sie ihn einschalten, wird auch eine innere Uhr

angeschaltet, die alle sechzigstel Sekunde weiterzählt. Und weil wir gerade

bei der Uhrzeit sind: Sie haben auch eine richtige Uhr in Ihrem Commodore.

Wenn Sie eingeben:

_ PRINT TIS

erhalten Sie eine sechsstellige Zahl, die für Stunden, Minuten und Sekunden

steht. Mit dem Befehl oben können Sie sehen, seit wie vielen Stunden,

48 Eine kleine Einführung ins Commodore-BASIC

Minuten und Sekunden Ihr Commodore jetzt schon läuft. Sie können die Uhr

auch stellen, wenn Sie wollen. Zum Beispiel, wenn Sie eingeben:

TI$="224600"

und dann eine Minute später wieder fragen:

PRINT TI$

dann werden Sie als Antwort

224700

erhalten — zumindest dann, wenn Sie wirklich genau eine Minute später

gefragt haben.

Es ist soweit: Bitte stellen Sie jetzt das Rauchen ein. Wir setzen in wenigen

Minuten zur Landung an.

Sie müssen nur noch ein paar Minuten warten. Oh — warten. Stimmt ja.

Das ist auch ein BASIC-Befehl ... |

WAIT

Mit dem Befehl WAIT bringen Sie den Computer dazu, so lange zu warten,

bis ein bestimmter interner Speicherzustand eintritt. Was das genau bedeutet,

erfahren Sie noch. Nur ein Beispiel. Wenn Sie wollen, daß der Compute:

wartet, bis irgendeine Taste gedrückt wird, geben Sie ein

WAIT 198,1

Damit kommt man ganz elegant um ein GET- oder INPUT-Kommandc

herum, wenn es nur darum geht, irgendeine Taste zum Weitermachen zt

drücken — zum Beispiel, wenn der Anwender Ihres Programms einen Tex

lesen und dann mit dem Drücken irgendeiner Taste dem Programm Bescheic

geben sollte, daß er jetzt alles gelesen hat und weitermachen kann.

In genau dieser Situation sind jetzt auch Sie. Sie haben Ihr erstes Kapite

hinter sich. Die Maschine ist gelandet. Kapitän BASIC und seine Mannschaf

verabschieden sich. Wir hoffen, der Flug hat Ihnen gefallen.

Nun ist es an Ihnen, mit uns weiter ins Landesinnere vorzudringen und da

Innenleben Ihres Commodore zu erforschen. Die wichtigsten Grundlage:

haben Sie während unseres gemeinsamen kurzen «Fluges» erhalten.

In diesem Sinne: Auf zu neuen Taten!

2

Die Commodore-64-Grafikzeichen

«Das steht halt so im Betriebssystem»

Der Commodore 64 gehört zu den wenigen Computern, mit denen man

relativ schnell recht ansehnliche Grafiken aufbauen kann.

Das ganze Geheimnis liegt in den Tasten mit den Grafikzeichen. Daß

Commodore bei diesen Zeichen nicht gerade das Seelenheil von Geschäfts-

leuten, also Verkaufsstatistiken oder Umsatzentwicklungen, im Kopf hatte,

läßt sich recht schnell an den vorkommenden Zeichen erkennen, wenn auch

Umsatzstatistiken durch Herzchen dargestellt sicherlich sympathischer wären.

Die Grafiksymbole verführen eher zum Spielen als zur Statistik.

Um komplexere Dinge zumeist schematisch darstellen zu können, reicht

ein Symbol allein nicht aus. Erst die Kombination von verschiedenen Zeichen

läßt ein Bild ähnlich einem Mosaik entstehen. Dazu stehen allerhand Striche,

Kreisstücke, Schräglinien und Dreiecke zur Verfügung. Probieren Sie es doch

mal aus. |

Ehe wir zu den Moglichkeiten kommen, die sich damit bieten, ein paar

Vorbemerkungen:

Die Grafik- oder Sonderzeichen, die in ihrer ganzen Pracht auf den

Tastenvorderseiten abgebildet sind, können mit der (SHIFT)- oder der

(C=)-Taste erreicht werden: mit (SHIFT) die rechten, mit (C=) die linken.
Wenn Sie jetzt versucht haben, eine kleine Grafik zu erstellen, aber statt

eines Mannchens nur einen Buchstabensalat auf dem Bildschirm haben, hat

das einen einfachen Grund: Um diese Grafikzeichen benutzen zu können,

muß der Computer im «Großschrift-Modus» sein, also beim Schreiben nur

Großbuchstaben zeigen. | |
Warum das so ist, wollen wir kurz erklären. Diese Erklärung ist weder

50 | Die Commodore-64-Grafikzeichen

fundamental noch übermäßig wichtig. Es bleibt Ihnen überlassen, sie zu lesen

oder nicht.

Dem Computer fällt es ja meist nicht ganz leicht, uns Menschen geistig zu

folgen. Das heißt, egal ob Sie «Du Trottel» oder «Hallo» eintippen, der

Computer antwortet immer nur lakonisch mit «SYNTAX ERROR».

Was lernen wir daraus? Er kann willkürliche Buchstabenkombinationen

nicht verstehen.

Wer das nicht glaubt, sollte mal in die Computerabteilungen der Kaufhäu-

ser gehen. Wenn der Abteilungsleiter — absichtlich oder unabsichtlich -

vergessen hat, in einen der Computer ein Programm zu laden (oder mil

anderen Worten: Ist es auf einem der Geräte nicht möglich, Außerirdische

abzuknallen oder Bonbons zu futtern oder Frösche sicher über die Straße zu

bringen), findet man dafür immer wieder Bildschirme mit seltsamen Nachrich-

ten, zum Beispiel «MMMMMMM» oder «ZXZXZXZX 81» oder andere

unsinnige Buchstabenkombinationen. Hat derjenige, der hier die Tastatuı

bzw. den Computer ausprobieren wollte, zufällig auch ein (RETURN) einge-

geben, steht darunter noch ein «SYNTAX ERROR» und ein hilflos blinkende:

Cursor.

Irgendwann betritt dann ein Jüngling die Szene, lächelt breit ob de:

Dummheit seiner Mitmenschen, legt sein Kindergartentäschchen neben der

Computer und zaubert ein kleines Programm auf den Bildschirm.

Entsprechend seiner Erfahrung ist das Programm. Meistens bleibt es be

einem Zweizeiler. Sehr beliebt ist zum Beispiel:

10 PRINT "WER DAS LIEST IST DOOF!"

20 GOTO 10

Trotz der offensichtlichen Frechheit führt der Computer dieses Programn

klaglos aus.

Soweit unser kleiner Exkurs. Der Computer tut also nichts weiter, al:

bestimmte Buchstabenkombinationen irgendwo im Speicher abzulegen unc

bei Gelegenheit wieder hervorzukramen. Nur legt er eigentlich nicht Buchsta

ben ab, sondern Zahlen. Warum, erklären wir später. Diese Zahlen heißeı

ASCII-Codes. Jede Taste hat ihre eigene Zahl. Entsprechend dieser Zahl gib

der Computer das passende Zeichen aus. Er prüft es nicht auf Sinn und Gehal

(zumindest nicht, wie wir das tun würden), sondern er prüft es eigentlich ga

nicht.

Und jetzt wird's spannend: Gibt der Computer nämlich, wenn Sie dii

(SHIFT)-Taste und die (S)-Taste gleichzeitig drücken, kein S aus, sonderı

Die Commodore-64-Grafikzeichen 51

ein Herzchen, dann folgt daraus: Die Taste (S) hat zusammen mit (SHIFT)
einen anderen Zahlenwert oder ASCII-Code. Und wenn Sie die (C=)-Taste
und (S) gleichzeitig driicken? Richtig. Genau dasselbe Spielchen. Damit sind
wir wieder beim Großschreibmodus. Bei der Textverarbeitung, also wenn

Groß- und Kleinschreibung benötigt werden, braucht man (SHIFT) wie bei

der Schreibmaschine für die Großbuchstaben. Damit geht in diesem Modus

eine Hälfte unserer Grafikzeichen verloren, weil die ASCII-Codes zum Unter-

scheiden von Groß- und Kleinbuchstaben gebraucht werden. Was bleibt, sind

nur die Grafiksymbole, die zusammen mit der (C=)-Taste zur Verfügung
stehen. Wie gesagt: Das war alles nicht fundamental wichtig, hilft aber

hoffentlich dabei, den Computer etwas besser zu verstehen. Also, Sonderzei-

chengrafik am besten nur im Großschriftmodus. Andernfalls geht ein Großteil

der tatsächlichen Möglichkeiten verloren.

Zwei Möglichkeiten, Ihre Grafiken zu schützen

Sie können sich natürlich mit einer Keule neben Ihren Computer stellen, denn

wenn Sie mittlerweile mit viel Fleiß und Mühe eine schöne Grafik gebastelt

haben, wollen Sie selbstverständlich nicht, daß der großartige Eindruck nur

deshalb Schaden nimmt, weil irgendeiner aus Versehen die falschen Tasten

gedrückt hat (nämlich (C=) und (SHIFT) gleichzeitig). Sie können es zwar

selbst gern einmal ausprobieren, aber wie gesagt: Der Eindruck leidet. Um

dieses imagezerstörende Problem zu lösen, gibt es eine einfache Methode,

nämlich den Befehl

PRINT CHR$(8)

Dadurch wird die Umschaltung blockiert. Damit Sie den Computer nicht

ausschalten müssen, gibt es zwei Möglichkeiten, in den Normalzustand

zuruckzukommen:

Entweder (RUN STOP) und gleichzeitig (RESTORE) driicken, was aller-
dings sämtliche Sonderfunktionen, wie geänderte Farben und dergleichen,

ebenfalls ausschaltet. Weil dabei aber auch dummerweise unsere Grafik

gelöscht wird, gibt es, um die Blockade allein wieder aufzuheben, den Befehl

PRINT CHR$(9)

Bei der Gelegenheit noch zwei Tips: Derselbe Befehl mit CHR$(14) schaltet

52 Die Commodore-64-Grafikzeichen

den Computer z. B. innerhalb eines Programms von Groß- auf Kleinschrei-

bung um. CHR$(142) tut das Gegenteil.

Fragen Sie aber bitte nicht, warum es ausgerechnet diese Zahlen sein

müssen. Es gibt dafür wohl keinen besonderen Grund. Hannes’ Standardant-

wort darauf war: «Das steht halt so im Betriebssystem.» Also nehmen Sie es

hin.

Noch ein kleiner Tip am Rande: Einen ganzen, vollen Block erreicht man,

indem man eine invertierte Leerstelle druckt. Klingt toll, was? Heißt aber nur,

die Funktion RVS ON einschalten ((CTRL) und (9)), die Leertaste drücken

und Reverse mit (RVS OFF) wieder ausschalten. Hier ein paar Beispiele, was

mit Sonderzeichen alles möglich ist.

Bild 2.1 Beispiele für Grafikzeichen

Wie die Grafik laufen lernte

Jetzt kommen wir langsam zur Kernfrage: «Was soll ich damit und was hal

das alles mit Spielen zu tun?» Ganz einfach. Alles, was wir jetzt die ganze Zei!

direkt ausgeführt haben, läßt sich auch innerhalb eines Programms tun. Wie

man das macht, wollen wir jetzt erklären.

Machen Sie doch mal spaßeshalber Anführungszeichen auf ((SHIFT) unc

(2)). Okay? Gut. Jetzt versuchen Sie bitte, Ihren Cursor mit den Steuertaster
zu bewegen. Solange Sie ihn nach rechts steuern, scheint ja alles in Ordnung

auch wenn er so komische invertierte Zeichen hinterläßt. Aber wenn Sie ihr

nach oben, unten oder links bewegen wollen . A

Keine Sorge. Ihrem Commodore geht's gut. Bevor wir sagen, was das alle:

soll, drücken Sie doch bitte (RETURN). Den folgenden SYNTAX ERROF

ignorieren Sie am besten. Das sagen Computer immer, wenn sie nich

weiterwissen.

Das (RETURN) sollten Sie eigentlich auch nur eingeben, um wieder au

diesem Modus herauszukommen. Sie müßten jetzt auf Ihrem Bildschirn

allerhand invertierte Zeichen sehen.

J

Die Commodore-64-Grafikzeichen 53

Frage an Radio Eriwan: «Haben diese Zeichen irgendeinen Sinn?» Ant-

wort: «Im Prinzip ja.» Nur, damit sie diesen Sinn auch erfüllen, fehlt noch eine

Kleinigkeit, und zwar der BASIC-Befehl PRINT.

Probieren Sie es mal. Schreiben Sie PRINT, machen Sie Anführungszeichen

auf, und versuchen Sie jetzt, den Bildschirm zu löschen (also: (SHIFT) +

(CLR HOME)). Das erste, was Ihnen auffallen wird, ist, daß jetzt genauso-

wenig passiert wie vorhin bei der Cursorsteuerung. Bis auf eines: Gleich nach

dem Anführungszeichen erscheint ein invertiertes Herzchen. Jetzt versuchen

Sie wieder, den Cursor zu steuern. Am besten ein paarmal nach unten, ein

bißchen nach rechts usw.

Stück für Stück füllt sich die Zeile mit immer mehr von diesen komischen

Zeichen. Wenn Sie keine Lust mehr haben, können Sie jetzt aufhören. Mehr

als zwei Zeilen sollten Sie aber auf keinen Fall auffüllen, denn länger darf eine

BASIC-Eingabe nicht sein. Machen Sie dann die Anführungszeichen zu.

Übrigens, Ihre Cursorsteuerung funktioniert wieder normal, aber probieren

Sie es bitte noch nicht aus.

Bevor Sie (RETURN) drücken, wollen wir Ihnen sagen, was passiert ist. Sie
wissen ja, daß der Computer bestimmte Befehle verstehen und ausführen

kann. Und daß man diese Befehle in Programmen abspeichern und später

ausführen lassen kann. Genau das haben wir getan — außer, daß wir vor

unsere Programmzeile keine Zeilennummer geschrieben haben und der Com-

puter sie in dem Moment ausführt, in dem wir (RETURN) drücken. Moment!
Schauen Sie sich Ihre Zeile noch einmal an: Zuerst steht da PRINT, also ein

Befehl, der den Computer anweist, etwas auf dem Bildschirm darzustellen.

Nur folgen diesmal dem Anführungszeichen keine Wörter oder Buchstaben,

sondern unsere Zeichen. Und diese Zeichen kamen ja dadurch zustande, daß

wir versucht haben, den Bildschirm zu löschen und den Cursor zu bewegen.

Wenn diese Zeichen jetzt auch noch Steuerzeichen heißen, dann kann man

sich an fünf Fingern abzählen, was passieren wird. Der Computer wird alle

diese Zeichen als Befehle interpretieren.

Das heißt, zuerst den Bildschirm löschen und dann den Cursor an die Stelle

bewegen, die wir mit unseren Steuerzeichen angesteuert hatten. Drücken Sie

also jetzt (RETURN). Wenn Sie alles richtig gemacht haben, müßte Ihr
Bildschirm jetzt leer sein, irgendwo READY stehen und darunter der Cursor

blinken. |

Ein Nebeneffekt dabei, den man leicht übersieht, weil man ihn eben nicht

sieht, ist, daß der Cursor nicht langsam dahin wandert, wo wir ihn haben

wollten, sondern scheinbar sofort dort auftaucht. Aber eben nur scheinbar.

54 Die Commodore-64-Grafikzeichen

Denn tatsächlich führt der Computer alle Steuerzeichen eins nach dem

anderen aus. Nur unglaublich schnell. Dieser Nebeneffekt führt uns zum

zweiten Teil der Frage: Was hat das Ganze mit Spielen zu tun?

Spiele sind Animation. Computeranimation aber, also die scheinbare Bewe-

gung von Figuren auf dem Bildschirm, wird ja nur dadurch erreicht, daß

ständig Punkte gezeichnet und wieder gelöscht werden. So schnell, daß das

menschliche Auge diesem Vorgang gar nicht folgen kann. Es läßt sich

täuschen.

Mit den Steuerzeichen in einer Programmzeile können wir den Cursor

genau an einer bestimmten Stelle zeichnen lassen. Wir können Reverse an-
und ausschalten, den Bildschirm löschen usw.

Bevor wir Sie jetzt mit noch mehr Theorie quälen, ein bißchen Denksport:

Wenn Sie also wissen, wie man Grafikzeichen auf den Bildschirm bringt, wie

man diese Zeichen an die beabsichtigten Stellen bekommt, daß das alles

extrem schnell geht und daß Computeranimation eigentlich nur das schnelle

Zeichnen und Löschen von Grafiken an bestimmten Stellen ist, dann müßte

Ihnen jetzt auch ansatzweise klar sein, was das Ganze mit Spielen zu tun hat.

Denn mit unseren Grafiksymbolen und Steuerzeichen müßte sich doch

eigentlich auch einfache Animation machen lassen. Sie müssen ja nichts

weiter tun, als an derselben Stelle ein Grafikzeichen durch ein anderes zu

ersetzen. Am besten versuchen Sie es erst einmal selbst. Sie können aber auch

unser dreizeiliges (!) Programm «HUGO» benutzen, das im Listinganhang

steht. Spätestens damit können Sie schon bei allerhand Leuten Eindruck

schinden. Bei «HUGO» finden Sie übrigens noch einmal eine Erklärung deı

einzelnen Programmzeilen.

Wundern Sie sich nicht, wenn wir für das Hauptprogramm die etwas

eigenwilligen Zeilen 1000 bis 1020 benutzt haben: Der Grund dafür lieg!

darin, daß wir Ihnen vorher und nachher genug Platz lassen wollten, Hugc

zum Beispiel in einer hübschen Wohnung turnen oder sich andere zusätzliche

Dinge einfallen zu lassen.

Wir schlagen vor, daß Sie sich jetzt erst einmal mit diesen ganzen-Sonder-

und Steuerzeichen ausgiebig beschäftigen, bevor Sie das nächste Kapite

lesen. Denn wenn wir davon ausgehen, daß Sie das Buch gegen 10 Uhı

morgens gekauft haben, dann reicht die Zeit gerade noch so, bevor Sie zt

Mittag essen sollten. Wenn Sie das Buch nachmittags gekauft haben, dann is!

es auch nicht mehr weit zum Abendessen. In diesem Sinne viel Spaß. Unc

guten Appetit.

3
Der Speicheraufbau des Commodore 64

Also, mit SYS 61 320 bin ich eigentlich deutlich im
Betriebssystem ... Ohl!

Na, lieber Leser? Alles gut verdaut? Alle Informationen und das Essen? (Egal,

ob Mittag oder Abend ...)

Fein.

Wenn Sie bisher das Gefühl hatten, ein wenig unterfordert zu sein («Tasten

drücken kann doch jeder!»), dann ist das folgende Kapitel sicherlich etwas für

Sie. Denn jetzt wird es ein bißchen schwieriger. Vom technischen Verständnis

her ist dieses dritte Kapitel sicherlich eins der anspruchsvollsten.

Es beschäftigt sich mit den komischen Dingern, von denen Programmierer

ständig reden - egal, ob sie einer darum gebeten hat oder nicht: den Bits und

Bytes.

Der Sinn dieses Kapitels soll sein, Ihr Verständnis für die Vorgänge im

Computer zu schulen und Sie vor allerlei Überraschungen zu schützen, die vor

allem beim POKEn und bei SYS-Aufrufen auf Sie warten. Das Zitat in der

Überschrift beispielsweise enthält einen wichtigen Begriff. Das ist nicht etwa

die Zahl 61320 oder der Ausdruck «Betriebssystem». Nein, es ist das «OhlIl»

am Schluß.

Es zeugt davon, welch erstaunliche Wirkung bestimmte Speicherzellen

haben können. Beim zitierten «Oh» handelt es sich um den Ausdruck

ungläubigen Erstaunens, als der Computer sich, ganz gegen Hannes’ Absicht,

sang- und klanglos von uns verabschiedete. Nicht einmal seinen üblichen

«SYNTAX ERROR» brachte er noch heraus. Er war abgestürzt. Abstürzen

heißt nichts anderes, als daß das System sich irgendwo verrennt und nicht

mehr herauskommt. Übrigens, wenn Sie unseren SYS 61 320 vorhin auspro-

biert haben, sollten Sie jetzt Ihren armen Commodore durch gnädiges

Ausschalten erlösen. |

56 Der Speicheraufbau des Commodore 64

Ein falscher POKE oder SYS kann den Computer wirklich «sprachlos»

machen.

Dies ist zwar manchmal ganz lustig, aber wenn man gerade allerhand

Programmzeilen eingegeben und beim Probelauf die falsche Speicherzelle

angesprochen hat, kann das schon argerlich sein. Vor allem, wenn die einzige

Möglichkeit, den Computer wieder hinzukriegen, der kleine Knopf auf der

rechten Seite ist — ja, der zum Ein- und Ausschalten. Wenn Sie zumindest

ungefähr wissen, wo Sie herumwerkeln, lassen sich damit schon allerhand

Gefahren rechtzeitig abschätzen. Das Wissen um die Speicheraufteilung hat

noch einen anderen Effekt. Vor allem Benutzer von Kassettenrecordern als

Massenspeicher werden das zu schätzen wissen: Es ist nämlich möglich,

mehrere Programme gleichzeitig im Speicher zu haben. Das erspart Wartezei-

ten. Auch für Floppy-Besitzer ist das praktisch:

Umrechnungsprogramme oder andere Utilities können abgelegt und

abwechselnd aufgerufen werden.

Von Prozessoren, RAM, ROM und anderen Chips

Bevor wir uns solchen Programmiertechniken zuwenden, müssen wir uns ein

etwas umfassenderes Wissen über den Speicher aneignen. In diesem Sinne:

Stürzen wir uns in die Chips.

Apropos Chips. Das ist bereits der erste Begriff, über den man sich klar

werden muß. Außer mit Paprika, gesalzen, ungarisch oder in der schlichten

Kartoffelausführung gibt es diese Dinger auch im Computer. Prinzipiell lassen

sich diese elektronischen Bauteile, die ä la Lego auf eine Platine gesteckt

werden, in drei Hauptgruppen unterteilen: Die drei Kategorien sind: Prozes-

soren, Speicherbausteine und Chips, die besondere Aufgaben haben und

speziell dafür konstruiert wurden, wie zum Beispiel der Videochip oder der

Soundchip des Commodore 64. Zuerst zu den Prozessoren. In diesem Bau-

stein finden die Schaltvorgänge statt, die den Computer dazu bringen, auf

jede (für ihn mehr oder weniger sinnvolle) Eingabe eine für uns (ebenso mehr

oder weniger sinnvolle) Ausgabe folgen zu lassen. Er ist die sogenannte

«Zentraleinheit».

Im Fall unseres Commodore 64 heißt dieser Chip 6510. Hinter diesem

fantasievollen Namen stecken außer zahlreichen Transistorfunktionen auch

40 metallene Füßchen, die in etwas selbstherrlicher Weise den Computer

despotisch beherrschen - frei nach Ludwig XIV.: «Der Schaltkreis bin ich.»

Der Speicheraufbau des Commodore 64 57

Na ja, zumindest glaubt dieser kleine Mikroprotz daran. Und ganz unrecht

hat er ja nicht, da er in seiner Klasse sicherlich zu den Fähigsten gehört.

Allerdings — ganz so allein, wie man meist annimmt, beherrscht er sein

Mikroreich nicht.

Es gibt da noch andere Bausteine, die ihre eigenen und ganz speziellen

Aufgaben haben, zum Beispiel den VIC, den Video-Interface-Chip, der die

gesamte Bildschirmausgabe kontrolliert. Er ist kein Prozessor, davon gibt es
nämlich nur einen in unserem Computer. Da aber im Ernstfall die Videoinfor-

mationen, also die Bildschirmdarstellung, vorgehen, ist der VIC sogar in der

Lage, den Prozessor «warten» zu lassen.

Das also sind König und Kardinal.

Jetzt kommen wir zu den Untertanen: den Speicherbausteinen. Ihre Auf-

gabe besteht nur darin, Informationen zu speichern. Sie unterteilen sich in

zwei Gruppen: die löschbaren und die nichtlöschbaren. Während man die

einen mit Musikkassetten vergleichen kann, weil auf der Kassette die Infor-

mationen (Musik) gelöscht werden können, wenn man sie nicht mehr

braucht, sind die anderen wie Schallplatten. Sie können nicht mehr gelöscht

werden und spielen immer dasselbe Lied.

Weil Computer-Freaks ein Faible fürs Englische haben, heißt der erste

Speichertyp «RAM» (Random Access Memory, was freier Zugriffspeicher

bedeutet, besser aber mit Schreib-/Lese-Speicher umschrieben wird). Der

RAM-Bereich wird bei jedem Ausschalten des Computers gelöscht. Der

andere Typ ist das «ROM». Das hat nichts mit der gleichnamigen Stadt zu tun

und wird auch kürzer gesprochen. Ausgeschrieben heißt «ROM» Read Only

Memory oder Nur-Lese-Speicher. Im Gegensatz zum RAM wird das ROM

beim Ausschalten nicht gelöscht, kann aber auch nicht beschrieben werden.

Das heißt, daß alle Werte darin absolut feststehen, wenn sie erst einmal

festgelegt wurden.

Strom oder nicht Strom, das ist hier die Frage

Aber egal ob ROM, RAM oder Prozessoren — alle diese ICs können nur zwei

Zustände unterscheiden: Strom oder kein Strom. Und nur in dieser Art
können sie Informationen verarbeiten und speichern. Natürlich stellt sich die

Frage, wie es der Computer fertigbringt, sich beispielsweise den Namen

Brigitte zu merken, und das mit seiner Strom-an-/Strom-aus-Methode.

58 Der Speicheraufbau des Commodore 64

Erinnern Sie sich noch an unsere ASCII-Codes vom letzten Kapitel — die

Zahlenwerte für Buchstaben?

Na prima. Da hatten wir schon gesagt, daß der Computer sich keine

Buchstaben merkt, sondern alle Zeichen als Zahlen abspeichert. So hat zum

Beispiel der Buchstabe A den Wert 65.

Wenn Sie es nicht glauben, probieren Sie es aus. Geben Sie folgende Zeile

ein: PRINT ASC("A")

Als Ergebnis werden Sie 65 bekommen. Das heißt, der Computer hat

nirgends in seinem Speicher ein A rumliegen, sondern nur die Zahl 65. Wenn

er die an geeigneter Stelle antrifft, dann fängt er an, so lange rumzuwerkeln,

bis ganz zum Schluß ein A auf dem Bildschirm steht. Aber wahrscheinlich

quält Sie schon seit Anfang dieses Absatzes die Frage, wie der Computer nun

die Zahl 65 in Strom an/aus umsetzt. Also: Irgendwann kam ein schlauer

Mensch darauf, wie man sich die Denkvorgänge im Innern eines Computers

am besten vorstellen kann. Die Lösung bestand aus zwei Zahlen: 1 und O.

Merken Sie was? 1 und O, an und aus, Strom und kein Strom.

Man kann alle unsere Dezimalzahlen in dieses System umrechnen. Das

Problem bei dieser Rechnerei sind bloß wir Menschen. Denn offensichtlich

hat man bei unserer Konstruktion, zumindest bei den Händen, den techni-

schen Fortschritt völlig außer acht gelassen. Wir haben nun mal an jeder

Hand fünf Finger. Und weil wir zum Rechnen schon immer Hilfsmittel

gebraucht haben ... Sie sehen also, widrige Umstände sind daran schuld, daß

die meisten Menschen mit diesem Dualsystem nicht so zurechtkommen.

Denn dank unserer zehn Finger wurde die Zehn für uns zu einer erhabenen

Zahl.

Wenn man sich aber einmal wirklich mit diesem Dualsystem beschäftigt,

stellt man fest, daß es zwar umständlicher als unser Dezimalsystem ist, aber

keineswegs schwieriger.

Der Speicheraufbau des Commodore 64 59

Wie rechnet man mit einem Computer,

der nicht bis 2 zählen kann?

Eine Stelle kann bei uns mit den Ziffern O bis 9 besetzt werden — egal, ob

Einer, Zehner oder Hunderter. Wir machen schlicht und einfach bei allen

Zehnerpotenzen eine neue Stelle auf. Also 1, 10, 100, 1000, was 10°, 10",

10°, 10° entspricht.
Der Computer behauptet aber, aus seiner Sicht mit Fug und Recht, daß 1 +

1 nicht 2, sondern 10 sei.

Sein Problem ist, daß er nicht bis zwei zählen kann. Oder besser gesagt, er

kennt diese Zahl gar nicht.

Hätte der Mensch seit jeher nur zwei Finger, wäre dieses System für uns

das Natürlichste der Welt. Zum Glück für alle Schreibmaschinenschulen ist es

anders. Trotzdem, dank unseres Gehirns können wir uns mit dem Computer

in seinem etwas eintönigen Ein/Aus-Dialekt unterhalten. Dazu rechnen wir in

seinem System. Statt bei jeder Zehnerpotenz machen wir jetzt also bei jeder

Zweierpotenz eine neue Stelle auf. 2° (= 1) ist also 1; 2' (= 2) ist 10; 24 (=

16) ist 10000 usw.

Womit auch unser kleines Rechenbeispiel von vorhin klar ware. Wahrend

1 + 1 für uns 2 ist, muß der Computer daraus 10 machen. Wir sollten zum

besseren Verständnis nur nicht zehn, sondern eins-null sagen. Was ist dann

also 3 im Dualsystem? Richtig, 11 (eins-eins). Denn wir haben ja bei 3 im

Dualsystem noch eine Stelle frei und müssen auch keine neue aufmachen.

Zwei ist 10 (eins-null). Eins ist auch dual 1. Also zusammen 11 (eins-eins).

Voila.

Wenn Sie das alles verstanden haben: grofsartig. Zur Belohnung noch eine

kleine Aufgabe. Rechnen Sie doch mal schnell 101101101001101010101 ins

Dezimalsystem um. Wenn Sie aber bis morgen früh etwas Konstruktiveres

tun wollen, können Sie sich dazu auch ein Programm überlegen. Wenn Sie im

Gedächtnis behalten, daß der Wert der ersten Stelle eins, der zweiten zwei,

der dritten vier usw. ist, dann ist das gar nicht so schwer. Allerdings finden Sie

im Anhang ein Listing für ein entsprechendes Programm. In jedem Fall

würden wir Ihnen raten, sich noch etwas mit diesen Zahlen zu beschäftigen.

Sie werden Ihnen bald sehr hilfreich sein. Haben Sie das Binärsystem erst

einmal verstanden, ist die größte Hürde bei Bits und Bytes genommen. Jetzt

machen Sie ruhig einmal Pause.

Dazu hier Tabelle 3.1

60 Der Speicheraufbau des Commodore 64

dezimal dual

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111
Tabelle 3.1 Gegeniberstellung dezimal/dual

Uber das Gliick, einen 8-Bit-Prozessor zu besitzen,
und vom Pech, 16 Bit zu brauchen

Schön, daß Sie wieder da sind. Startbereit zum nächsten großen Abschnitt?

Wenn nicht, lesen Sie lieber den ersten Teil noch einmal. Das Buch nimmt

Ihnen ja keiner mehr weg. (Oder stehen Sie etwa immer noch bei Ihrem

Buchhändler?!) Im folgenden Abschnitt gehen wir in die Tiefe des Speichers.

Die Nullen und Einsen, von denen wir die ganze Zeit gesprochen haben,

sind die berühmten Bits, die kleinste Informationseinheit, die ein Computer

verarbeiten kann. Bit ist die Kurzform von binary digit. Und jetzt geht's los.

Wir haben in unserem Commodore nämlich einen 8-Bit-Prozessor. Das ist

der kleine Despot von vorhin, der 6510. 8-Bit-Prozessor heißt aber nichts

weiter, als daß er acht dieser kleinsten Informationen gleichzeitig verarbeiten

kann. Das Kuriose dabei ist, daß unser Chip aber auch mit einer 16-Bit-

Der Speicheraufbau des Commodore 64 61

Leitung gekoppelt ist. Durch einen technischen Trick kann unser 6510 diese

16 Bit sogar ausnutzen. Aber wozu das Ganze? Diese Leitung, von der wir

sprechen, heißt Adreßbus. Und genau dazu dient der ganze Aufwand auch:

zu einer Art Adressenverwaltung. Gemeint sind die Adressen, um das Bild von

vorhin wieder aufzugreifen, des gesamten Königreichs Computer. Der Pro-

zessor als Quasi-König muß ja die Möglichkeit haben, mit jedem seiner

Untertanen, also den RAMs und ROMSs, Verbindung aufzunehmen. Immer,

wenn Könige bisher auf diese Möglichkeit verzichteten, ging die Sache ins

Auge. Die Geschichte beweist das. Sollte Ihnen das Bild von König und Reich

zu infantil sein, der Fachmann sagt dazu: «Der Prozessor muß in der Lage

sein, jedes Byte zu adressieren.»

Wenn Sie Ihren Commodore einschalten, erfahren Sie, daß er ein 64-

KByte-RAM-System hat. 8 Bit entsprechen einem Byte. Damit läßt sich jetzt

auch ausrechnen, wie viele Bytes Sie zur Verfügung haben sollten. Ein KByte

heißt eigentlich ein Kilobyte. Das hat nichts damit zu tun, daß Speicherkapazi-

tät etwa pfundweise verkauft wird. Kilo ist nur ein traditioneller Ausdruck für

1000. Hier treffen allerdings moderne Technik und Tradition aufeinander.

Der Computer ist ja, wie wir erfahren haben, ein absoluter Zweierfetischist.

Tradition hin — Tradition her. 2'° ist halt nicht 1000, sondern 1024, und damit

Schluß. Und weil er so dickköpfig ist, stimmt auch die Sache mit dem 64K-

System nicht ganz. Denn 64mal ein Kilobyte (also 64 * 1024 Bytes) ist

65 535. (Eigentlich 65536. Die Zählung der Speicherzellen beginnt aber mit

der Zelle 0.) Damit haben wir auch die gesuchte Zahl. Was diese Zahl so

wichtig macht? Eigentlich gar nichts, bis auf die Tatsache, daß der Prozessor

sie gar nicht versteht. Und das stellt ihn eigentlich vor eine unlösbare

Aufgabe. Sie erinnern sich: Ein Byte sind 8 Bit. Damit ist der höchste Wert,

den ein Byte darstellen kann, logischerweise 11111111, und das ist 255.

Rechnen Sie ruhig nach, wenn Sie es nicht glauben. Sie können es aber auch

ausprobieren. Der höchste Wert, den man mit dem Befehl POKE in eine

Speicherzelle schreiben kann, ist 255. Alles, was darüber liegt, quittiert der

Computer mit einem kühlen "ILLEGAL QUANTITY ERROR".

Na, stimmt’s?

Weil wir aber einen 8-Bit-Prozessor haben, ergibt sich hier das gleiche

Problem. Die höchste Zahl, die er aufrufen kann, ist 255. Und genau deshalb

kommt er in Schwierigkeiten. Wie soll er einen Wert aufrufen, der in der

Speicherzelle 65535 steht? Wo er doch diese Zahl gar nicht kennt. Aber

genau deshalb gibt es den 16-Bit-Adreßbus. Denn die höchste Zahl, die man

mit 16 Bit darstellen kann, ist 65535. Was für ein Zufall...

62 Der Speicheraufbau des Commodore 64

Damit lassen wir fürs erste diese ganze Ar-byte auf sich beruhen. Wir

geben uns mit der Tatsache zufrieden, daß unser Prozessor die 16-Bit-Leitung

benutzen und somit jeder Speicherzelle Bescheid sagen kann, daß sie ihren

Inhalt vorbeischicken soll. Dieser Wert kommt dann — ganz legal — über eine

andere, reguläre 8-Bit-Leitung zum Prozessor. Die 8-Bit-Leitung heißt übri-

gens Datenbus. Und weil jetzt alles so schön klar zu sein scheint, werden wir

gleich wieder ein bißchen Unordnung reinbringen.

Wie einem ohne große Schwierigkeiten über
3000 Byte verlustig gehen

Die erste Meldung beim Einschalten Ihres Commodore 64 besagt, daß Sie

stolzer Besitzer eines 64K-RAM-Systems sind. Schön, nicht? Nur... Es stimmt

leider nicht ganz. Aber nur die Ruhe! Was wir damit meinen, ist: Es ist zwar

faktisch richtig, aber Sie haben keinen direkten Nutzen davon.

Zuerst muß zum besseren Verständnis gesagt werden, daß alle Pro-

gramme, die den Computer zum Arbeiten bringen, unauslöschlich in ROM

stehen. Auch diese Programme brauchen jedoch immer wieder Zwischenspei-

cher, wo sie Daten ablegen und aktualisieren können. Nehmen wir beispiels-

weise den Wert des BAS/IC-Anfangs (2048). Zwei Dinge müssen für diesen

Wert möglich sein, damit der Computer damit arbeiten kann. Zuerst muß er

das Ausschalten überleben. Wie wir wissen, geht das nur im ROM-Speicher.

Andererseits soll er veränderbar bleiben. Aber das Ändern geht halt wieder

nur im RAM. Einfachste Lösung dazu: den Wert, der an sich im ROM steht,

beim Einschalten ins RAM zu kopieren. Fertig: damit hat man die berühmten

zwei Fliegen mit der einen Klappe.

Natürlich braucht das Festlegen des BASIC-Anfangs nicht allein den halben

Speicher. Es gibt noch einige andere, ähnlich gehandhabte Werte von der

Cursorfarbe bis zur Länge des Kassettenpuffers. Das sind alles Dinge, die der

Computer beim Einschalten von selbst erledigt, um sich häuslich einzurichten.

Deshalb dauert es beim Initialisieren auch immer einige Sekunden, bis der

Computer soweit ist. Ein anderer Speicherplatzbenutzer — außer dem Pro-

grammierer — ist der Bildschirm. In einem bestimmten Bereich des Speichers

liegt eine «Kopie» Ihres Bildschirms. Also jeder Buchstabe, der bei Ihnen auf

dem Fernseher erscheint, ist in einer Speicherzelle als Bildschirmcode abge-

legt. Wenn Sie (CLR HOME) drücken, wird für Sie der Bildschirm gelöscht.

Der Speicheraufbau des Commodore 64 63

Tatsächlich wird aber dieser fast 1K große Bereich ausgeräumt. 1K deshalb,

weil 1000 Zeichen auf dem Bildschirm dargestellt werden können, also

müssen dafür 1000 Bytes herhalten. Und weil man gerade beim Speicher-

platzklauen ist, werden gleich noch einmal so viele mitgenommen, um die

Farbe jedes Zeichens anzugeben, da diese ja unterschiedlich sein könnte.

Womit zusammengenommen weitere 2K futsch wären.

Weiterhin gibt es noch die sogenannte Zeropage. Diese «O-Seite» ist eine

von 256, in die der ganze Speicher unterteilt werden kann. Jede Seite enthält

dabei 256 Bytes. Unsere erste Seite geht also von O bis 255.

Wie das Inhaltsverzeichnis eines Buches ist diese Seite am schnellsten vom

Computer zu erreichen. Das hat, zumindest in BASIC, zwei Gründe: Zum

einen reicht bei 255 ohne große Tricks und Umwege die 8-Bit-Kapazität des

Prozessors zum Adressieren aus. (Sie erinnern sich: Die höchste Zahl, die mit 8

Bits dargestellt werden kann, ist 255.) Der andere Grund ist, daß der

Computer auf diese Seite zuerst stößt, wenn er sein internes «Speicherbuch»

aufschlägt. Auf dieser Seite wird deshalb alles mögliche zwischengespeichert,

was besonders oft und schnell gebraucht wird. Was hier so alles rumliegt,

verrät Ihnen Ihr C-64-Handbuch ab Seite 160. In unserem PEEK&POKE-

Anhang finden Sie dazu einige Tips für interessante Anwendungen.

Die Seiten 1, 2 und 3 (also 256 bis 1023) enthalten ebenfalls allerhand

wichtige Informationen.

Aber trotz all unserer Erklärungen - bisher sind wir erst 3072 Bytes armer.

Wo ist der ganze Rest geblieben?

Sag mir, wo die Bytes sind, wo sind sie geblieben?

Lassen Sie uns rekapitulieren: 38911 Bytes sind für BASIC frei — behauptet

zumindest Ihr Commodore beim Einschalten. Von 3072 Bytes, also von satten

3K, haben wir uns im Verlauf der letzten Seiten trennen müssen. Daraus folgt,

wir sind auf der Suche nach rund 23K, die dem Computer scheinbar irgendwo

abhanden gekommen sind. Die erste wichtige Voraussetzung, um zu verste-

hen, wo das ganze Zeug geblieben ist, ist die Tatsache, daß der Prozessor des

Commodore nur 65535 Bytes adressieren kann. Diese Zahl entspricht auch

genau dem freien RAM-Bereich des Computers, und aus verschiedenen

Gründen wollte Commodore auch keinesfalls auf diese 64K-RAM verzichten.

Bis hierher ist das auch alles kein Problem — weder für uns beim Verstehen

noch für den Prozessor beim Adressieren. Allerdings kann unser kleiner 6510

64 Der Speicheraufbau des Commodore 64

nun mal kein BASIC verstehen. Kunststück! Denn wenn er nur Strom oder

kein Strom unterscheiden kann, ist klar, daß der Befehl PRINT einfach so für

ihn ein böhmisches Dorf ist. Irgend etwas muß also unsere Befehle dem

Computer übersetzen bzw. das PRINT interpretieren. Dafür gibt es ein

eigenes Programm. Sein Name ist «BASIC-Interpreter». Dieses Programm

steht unauslöschlich im ROM. Seine Aufgabe ist, kurz geschildert, BASIC-

Befehle in Codezahlen, sogenannte Tokens, umzuwandeln. Damit kann der

Computer den Befehl verstehen, ihn binär speichern und braucht so statt fünf

Bytes für PRINT sogar nur ein Byte für das Token. Soweit ist alles klar, bis auf

eins. Natürlich muß auch dieser ROM-Bereich irgendwie adressiert werden

können. Denn wenn der BASIC-Interpreter gebraucht wird, muß der Prozes-

sor ihn ja aufrufen können. Also muß er eine Adresse haben. Diese Adresse

kann bekannterweise nicht höher als 65535 sein. Denn das könnte der

Prozessor selbst mit der 16-Bit-Leitung nicht darstellen. Die einzige Möglich-

keit, beide Dinge (RAM- und ROM-Bereich) unter einen Hut zu bringen, ist,

beiden dieselbe Adresse zu geben. Weil der Computer aber nicht unterschei-

den kann, für wen ein Aufruf z. B. mit der Adresse 41 350 bestimmt ist, wird

eine Entscheidung auf unsere Kosten getroffen. Ein 8K-RAM-Baustein wird

abgeschaltet, das heißt, eigentlich ausgeblendet. Er ist zwar theoretisch

funktionstüchtig, kann aber nicht eingesetzt werden, weil der Prozessor nur

entweder RAM oder ROM adressieren, also aufrufen kann.

Nun gibt es außer dem BASIC-Interpreter noch das eine oder andere

wichtige ROM-Programm.

Alles in allem hat der Commodore etwa 20K-ROM, zu denen auch der SID

(der Tonchip) und der VIC (der Videochip) gehören, die auf diese Art und

Weise mitverwaltet werden müssen. Entsprechend dieser ROM-Größe nimmt

unser freier RAM-Bereich ab. Der Rest wird dann noch von einem AK-RAM-

Spezialspeicher benötigt, der zwischen BASIC und //O-Registern liegt.

Daß es zwecks Speichererweiterung äußerst unpraktisch wäre, das BASIC-

ROM und damit den Interpreter oder das Betriebssystem auszublenden, ist

klar. Denn dann hätten Sie zwar mehr Speicher, aber leider sonst nichts mehr.

Ohne BASIC und Betriebssystem ist es nämlich nichts mehr mit Programmie-

ren. Der Computer stürzt ab und kann nicht einmal mehr mit (RUN/STOP)

und (RESTORE) wieder in Ordnung gebracht werden. Wenn Sie das Ganze
mal probieren wollen, die ROMs lassen sich mit

POKE 1,53

ausblenden. Das Ergebnis ist, daß Sie ohne Cursor und BASIC dastehen.

Der Speicheraufbau des Commodore 64 65

Noch einen letzten Satz zu den 64K-RAM. In Maschinensprache wäre es

möglich, fast diesen ganzen RAM-Bereich zu benutzen. In BASIC müssen wir

uns damit abfinden, daß ein gewisser Teil anderweitig gebraucht wird.

Aber keine Sorge. Bis Sie allein die restlichen 38911 Bytes aufgebraucht

haben, dürften Sie schon allerhand zu tun haben. Zum besseren Verständnis

des Ganzen dienen die folgenden Skizzen.

1. Normale BASIC-Konfiguration:
177 65535

 Betriebssystem-ROM

57344
$ /O-Register
an

53248
RAM

—— 49152

| RAM | BAsIc-ROM |
 40960

38 911-Bytes

BASIC-RAM

2048
Bildschirmspeicher

1024
Zeropage

0

2. Mögliche Maschinensprachekonfiguration:

Betriebssystem-ROM |
/O-Register

53248

RAM BASIC-ROM oe ae | 40960

RAM

Das Zeichensatz ROM

Bildschirmspeicher 2048 wird nur von VIC adressiert

1024 - FE
Zeropage | = ausgeblendet

0 |

Bild 3.1 Speicherkonfigurationen

66 Der Speicheraufbau des Commodore 64

Wenn Bytes halbe-halbe machen

Bei normalen BASIC-Programmen kommt es nicht oft vor, daß man die

ganzen 38911 Bytes dafür braucht. Mit einigen Tricks ist es aber möglich,

genau diesen freien Speicherbereich auszunutzen — zum Beispiel, indem man

mehrere Programme gleichzeitig im Speicher hat, aber immer nur eins

arbeiten läßt.

Wie wir vorher gehört haben, beginnt der BASIC-Speicher bei 2048. Ab

hier werden die bereits erwähnten Tokens abgespeichert.
Wenn Ihr Programm beispielsweise 2K lang ist, geht es von Adresse 2048

bis 4095 (BASIC-Anfang + 2mal 1024 Bytes). Ab 4096 legt der Interpreter

dann die Inhalte der Variablen, wie A, A$ usw., ab. Damit sich der Computer

das auch merkt, gibt es einige Adressen in der Zeropage, zum Beispiel von 43

bis 46. Dabei gilt, daß die Adressen 43 und 44 für den Anfang, 45 und 46 für

das Ende des BASIC-Programms zuständig sind.

Warum jeweils zwei Adressen? Nach alledem, was wir in harter Arbeit über

die Speicheraufteilung gelernt haben, können BASIC-Programme normaler-

weise nur innerhalb des Speicherbereichs von 2048 bis 40960 stehen.

(Vergleichen Sie dazu auch die Skizze aus dem letzten Abschnitt.)

Damit sind wir wieder bei unserem alten Problem. Können Sie es sich

denken? Genau. Es geht wieder mal ums Adressieren. 8 Bit sind maximal 255.

Nichts ist's also mit 2048 bis 40960.

Aber wir haben ja zwei Speicherzellen. Nun, selbst damit erreichen wir

nichts, denn die höchste Summe wäre dann 510, und das ist so gut wie

nichts. Man könnte jetzt natürlich immer so viele Speicherzellen, wie nötig

sind, addieren. Nur würde das einen wesentlich höheren Speicheraufwand

bedeuten. Daß unser 6510, als die Adressierkapazität verteilt wurde, nicht

gerade in der ersten Reihe stand, haben wir ja schon gemerkt.

Glücklicherweise ist auch hier wieder jemandem etwas eingefallen. Wie

wäre es denn, wenn man 2 Bytes zur Darstellung benutzt, diese Bytes

irgendwie unterscheidet und eins dann aber nicht mit den normalen 2°

anfangen läßt, sondern mit 2° als erstem Wert? Das würde bedeuten, daß die

erste Stelle des niedrigeren Bytes ganz normal den Wert 1 hat, die erste Stelle

des höherwertigen Bytes aber bereits den Wert 256 darstellt. Damit kriegen

wir wieder unsere magische Zahl 65535 zusammen. Da staunt der Fach-

mann, und der Laie wundert sich. Um jetzt in die ganze Konfusion wenigstens

etwas System zu bringen, heißen die beiden Bytes schlicht und ergreifend

Low Byte und High Byte.

Der Speicheraufbau des Commodore 64 6/

Das alles schauen wir uns noch an einem Beispiel an.

Wie wir wissen, macht schon die Startadresse 2049 Schwierigkeiten. Binär

sieht sie folgendermaßen aus:

100000000001

Dieser Wert wird nun in zwei 8-Bit-Werte geteilt. Weil unsere Binärzahl aber

nicht aus 16, sondern nur aus 12 Stellen besteht, werden die fehlenden

vorderen Stellen einfach mit Nullen besetzt. Damit ergibt sich

00001000 / 00000001

Das Low Byte, also der Wert, dessen erste Stelle 2° entspricht, kommt in die

Speicherzelle 43. |

Das High Byte, dessen erste Stelle 2° entspricht, kommt in die Speicher-

zelle 44.

Und jetzt noch mal dieses ganze Prinzip im Schema.

High-Byte Low-Byte

[olololoJtJololo| + [ololololololo|1|
915914913912911910 99 28 7’ 26 3° 74 2? 2? 71 29

\ | \
2048 + 1

l
2049

Bild 3.2 High-Byte-/Low-Byte-Prinzip

Sie konnen das ja mal ausprobieren: Mit

? PEEK (43)

? PEEK (44)

müßten Sie im ersten Fall 1, im zweiten Fall 8 als Ergebnis erhalten. Natürlich

ergibt das nach einer Addition noch nicht die gesuchte Zahl 2049. Das liegt

daran, daß Sie noch beide Bytes gleich behandelt haben. Das High Byte muß

aber immer mit 256 multipliziert werden. Aus alledem ergibt sich die Formel

STARTADRESSE = 256 * PEEK (44) + PEEK (43)

ENDADRESSE = 256 « PEEK (46) + PEEK (45)

68 Der Speicheraufbau des Commodore 64

Ein Tip: Fast immer ist die größte Speicherzelle (hier 44 bzw. 46) das High

Byte. Wenn nicht, müßte es eigentlich angegeben sein. __

Und noch etwas: In der «eigentlichen» Startadresse von BASIC muß immer

O stehen. (Das ist eine Art Bestätigung, daß der Speicher wirklich frei ist.) Die

BASIC-Tokens gehen dann eigentlich erst in der nächsthöheren Speicherzelle

los.: Obwohl wir 2048 gemeinhin als «Start des BASIC-RAMs» bezeichnen,

steht in dieser Zelle eine O (PEEKen Sie es doch einmal nach!). Der Zeiger in

43/44 zeigt tatsächlich erst auf 2049 (s. o.).

Im selben High-Byte/Low-Byte-Schema steht in den Speicherzellen 45/46

die Endadresse von BASIC. Sie muß übrigens immer mindestens 2 Bytes höher

als der Anfang sein, selbst wenn kein Programm im Speicher ist. Das heißt, sie

muß momentan als Grundwert 2051 enthalten.

Speicherzauberei

So, bis jetzt haben Sie nur gelesen. Jetzt geht's aber in die vollen! Wir wollen

zwei BASIC-Programme gleichzeitig im Speicher haben. Zuerst setzen wir mit

POKE 44,16 den BASIC-Anfang um 2K nach oben. Damit ist die BASIC-

Startadresse 4097. Den Wert in 43 lassen wir unverändert 1.

Wir sollten aber unbedingt auch das Ende von BASIC nach oben setzen.

Denn im Augenblick zeigt das Ende auf 2051, während der Anfang bei 4097

liegt. Diese Situation ist selbst für einen Computer etwas schwer durchschau-

bar. Also POKE 45,3:POKE 46,16

Damit wäre dieses Problem gelöst. Wie bereits erwähnt, muß das BASIC-

Speicherende 2 Bytes über dem Anfang liegen. Das wäre hiermit erledigt. Das

Ende liegt jetzt nämlich bei 4099 (vgl. Formel für Endadressel). Sie müssen

aber hier auch die Zelle 43 verändern, denn der bereits erwähnte Interpreter

verschiebt bei der Eingabe einer BASIC-Zeile das Ende des Programms

automatisch nach oben. Ä

Erinnern Sie sich noch an den kleinen Tip von vorhin?

Wenn Sie jetzt NEW eingeben oder LIST oder RUN, wird der Commodore

diese Aktion deshalb mit einem SYNTAX ERROR quittieren, weil wir noch

nicht in seinem neuen Zuhause (BASIC-Speicher) aufgeräumt haben. Ein

POKE 4096,0

käme hier einem Frühjahrsputz gleich.

Der Speicheraufbau des Commodore 64 69

Um wirklich absolut sicherzugehen, sollten Sie jetzt noch einmal NEW

eingeben. Dieser Befehl hat die Eigenschaft, beide BASIC-Zeiger ins richtige

Verhältnis zueinander zu bringen für den Fall, daß Sie sich doch verrechnet

haben.

Jetzt können Sie endlich loslegen ... Schreiben Sie ein kleines Programm in

den neuen Speicher, z. B.

10 PRINT" DIES IST DAS ZWEITE PROGRAMM!"

Nach dem Befehl RUN wird dieses Programm — wie üblich — ausgeführt. Jetzt

aber setzen wir mit POKE 44,8 den Zeiger zurück auf 2048. Damit sind wir

wieder im ursprünglichen BASIC-Bereich. Auch hier sollten Sie sicherheitshal-

ber NEW eingeben. (Aufgeräumt hat der Computer beim Einschalten schon

selbst.) Damit ist der Speicher bereit zur Eingabe eines neuen, anderen

BASIC-Programms, weil der BASIC-Ende-Zeiger (in 45/46) automatisch rich-

tig auf 2051 gesetzt wurde.

10 PRINT” DIES IST DAS ERSTE PROGRAMM!"

Was nach RUN passiert, brauchen wir Ihnen sicher nicht zu erklaren. Doch

jetzt kommt der praktische Nutzen der ganzen Muhe: Tippen Sie

POKE 44,16:RUN

Folge: Es läuft das zweite Programm

POKE 44,8:RUN

Und das wäre wieder Nummer eins.
Mit diesem POKE können Sie beliebig hin- und herschalten und das

Programm aufrufen, das Sie gerade benötigen.

Aber gleich eine kleine Warnung: Programme, die Sie in dieser Art im

Speicher haben, sollten Sie nicht mehr ändern oder abspeichern. Durch die

Umschaltung kommen die Zeiger etwas durcheinander, und es kann zu recht

seltsamen Reaktionen von seiten unseres 64ers kommen.

Nur wenn Sie diese Technik des Verschiebens und Umschaltens absolut

sicher beherrschen, können Sie auch während des Programmierens gleichzei-

tig noch verschiedene Utilities im Speicher haben. Aber selbst dann sollten Sie

etwas häufiger als sonst das Programm, an dem Sie gerade arbeiten, abspei-

chern, denn das Risiko, sich doch mal zu vertun, ist erheblich. Und das kann

Sie Ihr Programm kosten.

Nach dem gezeigten Prinzip können Sie theoretisch beliebig viele Pro-

70 | Der Speicheraufbau des Commodore 64

gramme gleichzeitig im Speicher halten. Lassen Sie aber immer genug

«Abstand» zum nächsten Programm, und bereiten Sie die neuen Adressen

erst mit den gezeigten POKEs und einem NEW vor.

Wenn Sie wissen, an welche Startadresse Sie z. B. Ihr zweites Programm

legen wollen, können Sie unsere Formel genau umgekehrt anwenden: Teilen

Sie die Adresse durch 256, und Sie haben den Wert, der in die Zellen 44 und

46 gePOKEd werden muß.

Vergessen Sie nicht, die mittlerweile bekannte O in die neue Startadresse zu

POKEn.

Noch ein letztes Beispiel dazu: Sie wollen Ihr Programm ab der Zelle 10 240

im Speicher haben:

Sie teilen 10 240/256 = 40

Also wird gePOKEd:

POKE 43,1: POKE 44,40: POKE 45,3: POKE 46,40: POKE 10240,0: NEW

Auch bei diesem Thema heißt es natürlich zuerst probieren. Allerdings sollten

Sie dabei ein bißchen Vorsicht walten lassen, da — wie gesagt — so verwaltete

Programme nicht abgespeichert werden sollen. Arbeiten Sie also nur mit auf

Diskette oder Kassette gesicherten Programmen. Gründliches Kennenlernen

dieser Technik schützt Sie vor unangenehmen Überraschungen.

Das war's. Damit haben wir Ihnen so ziemlich alles über den Speicher

verraten, was für Sie irgendwie wichtig ist.

Und damit kommen wir jetzt zu einem wesentlich amüsanteren Teil — zur

eigenen Definition von Sonderzeichen.

4

Selbstdefinierte Zeichen

Warum der Computer Analphabet ist und
was wir davon haben

Erst einmal möchten wir Ihnen gratulieren. Immerhin haben Sie sich durch die

Wirrnisse und ständigen Adressierungsprobleme des Commodore-Speichers

bis hierher durchgekämpft. Eine durchaus anerkennenswerte Leistung. Der

Erfolg, den Sie davon haben, ist ein mittlerweile doch ganz ansehnliches

Wissen über die internen Abläufe im Computer. Alles, was Sie so auf Ihrem

Speicherrundgang gelernt haben, werden Sie in den folgenden Kapiteln und

auch später bei Programmierproblemen immer wieder anwenden und

gebrauchen können. Deshalb haben wir dieses Thema auch so ausführlich

behandelt. Doch zurück zu den etwas erfreulicheren Dingen. Bevor wir Ihnen

den Speicher erklärten, hatten wir uns mit Grafiken beschäftigt. Ja, sogar

schon ein bißchen mit Animation. Dazu benutzten wir die fertigen Commo-

dore-Grafikzeichen. Der Vorteil all dieser Zeichen ist, daß sie sich wie Text

ganz einfach mit PRINT, Steuer- und TAB-Anweisungen über den Bildschirm

bewegen lassen. Der einzige Nachteil bisher war, daß das Zeichen, das wir

gerade brauchen könnten, leider nicht existiert. Wenn Sie dieses Kapitel

gelesen und verstanden haben, sind Sie dieses Problem los. Ab dann können

Sie sich alles, was Sie brauchen, selbst definieren.

Um dabei allerdings auch bald mit entsprechenden Erfolgen glänzen zu

können, müssen wir noch schnell ein oder zwei Dinge besprechen, die hinter

der Zeichendarstellung des Commodore 64 stecken.

Am wichtigsten ist zuerst einmal die Tatsache, daß alles, was mit Grafik zu

tun hat — oder besser gesagt, alles, was mit Darstellungen auf dem Bildschirm

verbunden ist — von einem Chip gesteuert wird: dem VIC-II-Videochip. VIC

72 Selbstdefinierte Zeichen

ist dabei nicht die Abkürzung für den Namen Victor (das ist der Steward vom

Traumschiff, also bitte nicht verwechseln ...), sondern für die Bezeichnung

Video Interface Chip. Von diesem Baustein, im folgenden nennen wir ihn

einfach VIC, haben wir schon im Speicheraufteilungskapitel gehört. Seine

einzige Aufgabe besteht im Management der Bildschirmdarstellung. Damit

hat er genug zu tun. Er ist nicht nur dafür verantwortlich, wann welches

Zeichen wo auf Ihrem Fernsehschirm erscheint, sondern auch für die Farben

des Hintergrundes, des Rahmens und der Zeichen. Damit er das alles tun

kann, muß er sich allerhand Informationen holen, zum Beispiel aus dem

Bildschirm-RAM. Dieser Bereich ist das Abbild dessen, was Sie auf dem

Schirm sehen. Aus dem RAM kann VIC erkennen, welche Zeichen auf dem

Schirm stehen sollen, und ein entsprechendes Fernsehbild aufbauen. Alles,

was auf dem Bildschirm erscheint, ist hier in speziellen Codes abgelegt. Diese

Codes sind übrigens nicht identisch mit den ASCII-Werten. Sie finden diese

Bildschirm-Codes auf Seite 133 in Ihrem Commodore-Handbuch.

Ein anderer Informant für VIC ist das Farb-RAM. Hier kann er erkennen, in

welchen Farben er jedes Zeichen ausgeben muß. |

Die wichtigste Informationsquelle für unseren Chip ist aber sicherlich das

Zeichen-ROM. Wie dieser Name schon sagt, ist hier der Zeichensatz des

Commodore sicher aufbewahrt. Denn VIC, unser Kommunikationskünstler,

hat ein kleines Problem. Er selbst ist Analphabet. Das Zeichensatz-ROM

merkt sich wie ein guter Schüler auf ewig das Aussehen aller Zeichen. Dafür

vergißt VIC mit schöner Regelmäßigkeit — wie ein schlechter Schüler — jedes

Zeichen sofort wieder. Und deshalb braucht er — wie jeder normale Schüler —

einen Spickzettel. Jedesmal, bevor er ein Zeichen ausgibt, schaut er deshalb

im ROM nach.

Leider hat der ROM-Baustein für unsere Pläne, die Zeichensätze zu verän-
dern, zwei Nachteile. Zum einen ist er so einfach zu erreichen wie der einzige

Hundertmarkschein in einem Sparschwein. Er ist völlig zugebaut. Auf der

gleichen Adresse liegen noch die Input/Output-Register und ein RAM-

Baustein herum. Diese Speichersymbiosen sind uns ja mittlerweile bekannt.

Das andere Problem ist, daß ROM-Bausteine sowieso nicht beschrieben

werden können. Deshalb müssen wir ihn also. irgendwie ins RAM bekommen.

Aber das macht uns seine ungünstige Lage im Speicher nicht ganz einfach.

Auf jeden Fall können wir von der Vergeßlichkeit VICs profitieren. Da er

vor jeder Zeichenausgabe erst nachschaut, liegt die Vermutung nahe, daß es

irgendeine Adresse geben muß, die ihm sagt, wo.

Und noch ein Vorteil, den VIC für uns bietet: Weil er sich gar nicht darum

Selbstdefinierte Zeichen 73

kümmert, wie das Zeichen, das er ausgibt, eigentlich ausschaut, würde er es

noch nicht einmal merken, ob er seine Zeichen aus dem ROM oder von

sonstwoher liest. Ihm würde nicht auffallen, daß irgend etwas nicht stimmt,

sondern er würde brav alles auf den Bildschirm bringen. Der Grund dafür, daß

er alle Zeichen anerkennt, liegt darin, wie er seine Zeichen aus dem richtigen

Speicher liest. Er sucht sich die Zeichen nämlich nicht nach festen Adressen

zusammen.

Wird zum Beispiel der Buchstabe B gebraucht, so findet VIC im Bildschirm-

RAM den Wert 2. Dann beginnt er einfach von vorne, seine Speichereinhei-

ten (jeweils 8 Bytes) abzuzählen. Er liest einfach das entsprechende Bitmuster

aus dem angegebenen Speicher. In unserem Beispiel würde er bis zur

Speichereinheit 2 zählen (0 = @; 1 = A; 2 = B) und dieses Muster auf den

Schirm bringen.

Weil wir aber genau die Adresse, ab der VIC mit dieser Zahlerei beginnt,

ändern können, bringen wir ihn relativ einfach dazu, fast jeden Bereich zu

lesen. Zum Beispiel aus dem RAM, wo wir ja bequem Zeichensätze hinlegen

könnten.

Bevor wir damit anfangen, sollten wir erst noch ein bißchen in die Lehre

gehen. Am besten bei dem ROM-Chip, den VIC normalerweise benutzt. Dort

können wir am besten sehen, wie Buchstaben eigentlich abgespeichert sind

und wie sie entstehen.

Natürlich müssen beim Commodore auch die Zeichen mit Strom an und

Strom aus dargestellt werden.

Das Ganze geschieht in einer 8 x 8-Matrix. So bilden viele kleine Punkte ein

Ganzes, vergleichbar einem Foto in der Zeitung.

Byte 1 = ‚00011000| = 24
Byte 2 = 100111100} = 60
Byte 3 = 10110011 0; = 102

Byte 4 = 101114111 0! =126
Byte 5 = 101100110} = 102

Byte 6 = 10110011 0} = 102

Byte 7 = 10110011 0; = 102
Byte 8 = 100000000} = O

So sehen Sie So steht's im Das sind die
das A auf dem Speicher Dezimalwerte
Schirm der Bytes

Bild 4.1 Buchstabenmatrix A

74 Selbstdefinierte Zeichen

Allein der Ausdruck 8x 8 miiKte Sie aber aufhorchen lassen, nachdem wir

uns im letzten Kapitel ziemlich ausgiebig mit dieser Zahl beschäftigt haben.

Die Zeichen werden also in acht Zeilen zu jeweils acht Punkten abgelegt.

Das bedeutet, daß man für jedes Zeichen achtmal acht Bits bzw. acht Bytes

benötigt. Diese acht Bytes stellen für VIC eine Speichereinheit dar. Das war

schon die ganze Kunst. Das kleine Schaubild soll das verdeutlichen.

Eine Umleitungsempfehlung für den VIC

Wie wir vermutet haben, gibt es tatsächlich einen Zeiger, der dem VIC

klarmacht, wo er anfangen soll, die einzelnen Speichereinheiten abzuzählen

und das richtige Bitmuster hervorzuholen. Normalerweise zeigt er auf das

Zeichen-ROM. Normalerweise schon — aber wenn wir erst einmal da wa-

ren ... Wir können diesen Zeiger hinsetzen, wohin wir wollen. Und damit

lassen sich einige äußerst kuriose Effekte erzielen. Die Adresse , die geändert

werden muß, ist 53272. Je nach Wert versucht VIC jetzt, seine Zeichen zu

lesen. Nur zur Demonstration ein kleiner Exkurs. Im Rahmen der Speicherauf-

teilung haben wir erklärt, daß in der Zeropage ständig Betrieb herrscht. Daten

werden aktualisiert, Werte werden zwischengespeichert und so weiter. Das

heißt, viele Bitmuster in den Speicherzellen O bis 255, eben der Zeropage,

ändern sich ständig.

Probieren geht über Studieren.

POKE 53272, 16

Lustig, was? Je mehr «Zeichen» Sie auf dem Bildschirm haben, um so mehr ist

los. Drücken Sie mal die Taste (T). Der kleine Block auf dem Bildschirm, der

statt des Zeichens «T» erschienen ist, hat wohl mehr Ähnlichkeit mit einer

lebenden Flohsammlung. Zur Erklärung: Wir sehen die Speicherzellen 200 bis

207. Unter anderem liegt hier der Zähler für den blinkenden Cursor. Wenn

man bedenkt, daß der Cursor in zwei sekunden sechsmal blinkt, wird klar,

warum die da soviel zu tun haben. |

Übrigens, es funktioniert noch alles wie gehabt — die Cursorsteuerung und

Befehle. Denn wir dürfen nicht vergessen, daß die Zeichenwerte — sowohl die

ASCII- als auch die Bildschirmcodes — noch immer dieselben sind. Nur die

Darstellung läßt zu wünschen übrig.

Probieren Sie's ruhig aus.

Obwohl Sie beim Eintippen nichts erkennen können, sehen Sie, daß der

Commodore schreibt.

Selbstdefinierte Zeichen 15

POKE 53272, 21

Wenn Sie sich nicht vertippt haben, dann sind nach (RETURN) all die
dubiosen Zeichen wieder ganz normal. Sie können das natürlich auch mit

_ (RUN/STOP) (RESTORE) tun. |

Wenn wir jetzt einen Zeichensatz irgendwo ablegen wollen, wäre die

Zeropage aus naheliegenden Gründen nicht zu empfehlen. Natürlich bietet

sich statt dessen freier RAM-Bereich an, allerdings nur bedingt. Das hat zwei

Gründe. VIC kann maximal 16K verwalten. Das tut er üblicherweise von O bis

16 384. In diesem Bereich müssen also alle Informationen erreichbar sein, die

er zur Bildschirmdarstellung braucht -— also die Zeichenfarben, das Aussehen

der Zeichen und natürlich das Bildschirm-RAM. |

Hier noch eine kleine Information am Rande: Der kleine VIC wird mächtig

aufs Kreuz gelegt. Das Zeichen-ROM liegt tatsächlich ab 53 248, das Farb-

RAM ab 55296. Und das geht ja wohl sehr deutlich über die 16K, die der

Arme tatsächlich kennt. Deshalb spricht er in Wirklichkeit immer nur mit

einem Botschafter, der VICs Adressierung abfängt und so umwandelt, daß

VIC die tatsächlich nötigen Bausteine erwischt. Warum das so kompliziert

sein muß? Das läßt sich wohl nur mit der etwas eigenwilligen Systemarchitek-

tur des Commodore 64 erklären ... |

Doch zurück zum Thema: Weil VIC nur die 16K verwalten kann, ist es nicht

möglich, den Zeichensatz einfach ans BASIC-Ende zu hängen. Denn da kann

0 Die Zeropage lassen Sie besser in Ruhe.

2048 Sofern Sie kein BASIC-Programm hier

haben, okay. Sie könnten andernfalls den

BASIC-Anfang auch nach oben setzen.

4096 Nicht verfügbar.

6144 VIC vermutet hier ROM (vgl. Text oben).

8192 Wenn Sie hier hinter dem

10240 BASIC-Programm den Zeichensatz

12 288 ablegen, dann darf das Programm

14336 nicht zu lang sein.

Tabelle 4.1 Mögliche Startadressen und was Sie davon halten sollten

/6 Selbstdefinierte Zeichen

VIC nicht suchen. Der andere Grund sind die BASIC-Programme selbst. Denn

wenn Sie ein solches im Speicher haben und dann den Zeichensatz an Adresse

2048 ins RAM kopieren, würde das nicht gerade zur Verbesserung Ihres

Programms beitragen. Bevor wir sagen, wo überhaupt und unter welchen

Umständen am besten ein Zeichensatz im RAM sein könnte, in Tabelle 4.1

eine kleine Übersicht zu den möglichen Startadressen.

Wir schlagen folgende Lösung vor, weil sie den Programmierer nicht ein-

schränkt wie die Lösungen, die den Zeichensatz hinter das BASIC setzen. Als

erstes sollten Sie den BASIC-Anfang um 2K nach oben verschieben. Das

haben wir ja bereits im Speicherkapitel gemacht. Damit Sie nicht zurückblät-

tern müssen, hier noch einmal:

POKE44,16:POKE4096,0:NEW

Damit legen Sie den nötigen Speicher an und machen ihn sauber. Dann

können Sie den Zeichensatz in diesen Bereich kopieren und «dahinter» ein

ganz normales BASIC-Programm schreiben.

Wir werden jetzt bei den restlichen Erklärungen davon ausgehen, daß Sie

diese Speicheraufteilung benutzen. Sollte es aber nötig sein, anders aufzutei-

len, sehen Sie hier in Tabelle 4.2, wie Sie den entsprechenden Zeiger für

Sonderzeichen auf andere Bereiche legen können.

Startadresse des Zeichensatzes Zu POKEnder Wert in 53 272:

0 16

2048 18

4096 20 (nicht verfügbar -— ROM)

6144 22 (nicht verfügbar -— ROM)

8192 24

10240 26

12288 28

14336 30

Tabelle 4.2 Startadressen des Zeichensatzes

Selbstdefinierte Zeichen /1

Mit POKE 53 272, 18 sagen Sie VIC, daß er ab 2048 seinen Zeichensatz lesen

soll. Wenn Sie das getan haben, werden Sie sehr schnell merken, daß Ihnen

ab jetzt die Verständigung mit dem Computer etwas schwerfällt. Sie können

nämlich plötzlich nichts mehr lesen. Was ja logisch ist, weil die «Zeichen», die

VIC verwendet, zufällige Bitmuster sind. Ohne Hilfsmittel wäre es jetzt nicht

gut möglich, neue Zeichen zu kreieren.

Warum aber nicht ausnutzen, was andere schon vorher erarbeitet haben?

Wie man Zeichen ein bitchen verändern kann

Nachdem Sie für Ihren Computer bezahlt haben, dürfen Sie auch kopieren —

zumindest den Zeichensatz von ROM ins RAM. Allerdings ist das nicht ganz

einfach. Denn wie bereits erwähnt, erweist es sich als etwas problematisch,

gerade dieses ROM zu erreichen. Wenn Sie sich die Speicherskizze noch

einmal ansehen, werden Sie bemerken, daß auf diesem Adreßbereich drei (!)

verschiedene Chips liegen. Die I/O-Register, die ausgerechnet hier rumliegen

müssen, machen natürlich Schwierigkeiten, und zwar deshalb, weil diese

Register eine besondere Aufgabe haben. Sie werden für einen computerinter-

nen Vorgang gebraucht, den sogenannten Interrupt. Dieser wird unabhängig

vom laufenden Programm automatisch alle Yo Sekunde ausgeführt, um

bestimmte Dinge zu erledigen. Alles weitere darüber finden Sie im Stichwort-

verzeichnis. |

Damit wir aber nicht diese I/O-Register kopieren, weil sie ja dieselbe

Adresse haben, sondern das Zeichen-ROM, müssen wir sie ausblenden. Wird

aber dann ein Interrupt ausgeführt — und der kommt so sicher wie das Amen

in der Kirche, nur schneller —, würde der Computer abstürzen, weil er sich

statt auf die I/O-Register auf falsche Daten bezieht. Nun können diese

Interrupts abgeschaltet werden, ohne daß der Computer dadurch in Schwie-

rigkeiten kommt. Allerdings wird damit auch die Tastatur nicht mehr gelesen.

Das heißt, der Computer nimmt keine Zeichen mehr an. Deshalb geht das

Kopieren nur im Programmodus. Schreiben Sie also unbedingt vor jeden jetzt

folgenden Befehl eine Zeilennummer. Programme, die den Interrupt abschal-

ten, nutzen eigentlich bereits sehr fortgeschrittene Techniken und gehen dem

Computer dabei doch sehr in die Eingeweide. Deshalb diese Vorsichtsmaß-

nahmen. Erster Programmschritt wäre es, die Interrupts zu unterbinden.

10 POKE 56334, O

78 Selbstdefinierte Zeichen

Danach können wir jetzt beruhigt das Zeichen-ROM ein- und die 1/O-

Register ausblenden. Dazu brauchen wir folgende Zeile:

20 POKE 1, 51

Jetzt wollen wir den Zeichensatz ins RAM kopieren. Dazu lesen wir die Werte

mit PEEK aus dem Speicher und POKEn in die neue Adresse.

30 FORX=0TO2048:POKE2048 +X, PEEK(53248+ X):NEXTX

Das ist die eigentliche Kopierroutine. Die Variable X wird mit jedem Durchlauf

auf einen Wert von O bis 2048 erhöht und deckt damit genau 2K Speicher ab.

Dann wird in die gewünschte Adresse unseres RAMs der Inhalt der entspre-

chenden ROM-Zelle geschrieben. Um die Zeile besser zu verstehen, sollten

Sie für zwei oder drei Werte das X selbst einsetzen. Damit wäre die Kopiererei

erledigt.

Jetzt sollten wir freundlicherweise dem Computer seine I/O-Register zu-

rückgeben.
40 POKE 1, 55

Weil er jetzt wieder in der glücklichen Lage ist, Interrupts durchführen zu

können, kriegt er sie auch wieder.

50 POKE56334, 1

Setzen Sie jetzt noch einmal den Zeichensatzzeiger auf 18 (also Zeichen lesen

ab 2048).
POKE 53272, 18

Jetzt tippen Sie möglichst viele Zeichen auf Ihren Bildschirm, und drücken Sie

danach (RETURN). Dann können Sie unser Programm mit RUN starten.
Ganz eindrucksvoll, nicht wahr? |

Dabei können Sie, wenn Sie genau hinsehen, auch erkennen, wie sich die

Buchstaben von oben nach unten byte- bzw. zeilenweise aufbauen. Jetzt

geben Sie gleich mal wieder direkt ein

POKE 2056,153

Na, fällt Ihnen nichts auf? Schauen Sie doch mal genau hin. Noch genauer. Ja,

richtig: Aus allen A sind Ä geworden. Sie haben das Zeichen A geändert

Warum ausgerechnet der Wert 153 gePOKEd wurde? Vergleichen Sie dazı

noch einmal die Buchstabenmatrix im ersten Abschnitt. Dort hatte die erste

Zeile, also das erste Byte, bisher den Wert 24. Wir haben aber den Links- unc

Selbstdefinierte Zeichen 79

Byte 1 = 100000000] = O
Byte 2 = 00000000; = O
Byte 3. = 00111000; = 56
Byte 4 = 101110100] =116
Byte 5 = 111111110) =254
Byte 6 = 111141111 0] = 254
Byte 7 = 101000100; = 68
Byte 8 = 100000000; = O

Bild 4.2 Zeichenmatrix «Kleines Auto»

den Rechtsaußen unserer Bit-Mannschaft angeschaltet. Damit ergibt sich

nach dem berühmten Umrechnungsprinzip vom Dual- ins Dezimalsystem der

Wert 153. Wenn Sie jetzt eigene Zeichen entwickeln wollen, gehen Sie am

besten so vor.

Nehmen Sie ein kariertes Blatt, und entwerfen Sie das Muster auf einer

«8 x 8-Matrix». Als nächstes stellen Sie dieses Muster in Binärzahlen dar.

Jeder angeschaltete Punkt ist 1, jeder ausgeschaltete O. Jetzt müssen Sie diese

Binärzahl umrechnen (dazu können Sie ja das Umrechnungsprogramm

benutzen) und die gewonnenen Dezimalzahlen an die entsprechende Zei-

chenadresse, die Sie ändern wollen, POKEn.

Die Zeichenadresse ist die Adresse im RAM, ab der die entsprechende

Speichereinheit steht. Um ein bestimmtes Zeichen zu ändern, müssen Sie

seinen Bildschirmcode kennen. Sie finden diese Codes (nicht die ASCII-

Codes!) auf Seite 133 im Commodore-Handbuch.

Es gilt die folgende Formel:

Zeichenadresse = Startadresse des Zeichensatzes + Bildschirmcode x 8

Wenn wir unser kleines Auto also zum Beispiel anstelle des Zeichens C

einsetzen wollen, ware das Programm

10 FORX=0TO7:READA:POKE2048+3 *8+X, A:NEXT

20 DATA 0,0,56,116,254,254,68,0

Wir lassen also den Computer bei O anfangen zu zählen, dann den ersten

DATA-Wert lesen und POKEn diesen in die Zeichenadresse. A ist beim ersten

Durchlauf also O, beim zweiten auch O, beim dritten 56 usw. bis zum achten

Wert. Ganz zum Schluß haben wir dann ein neues Bitmuster in unserer 8-

Byte-Speichereinheit.

80 Selbstdefinierte Zeichen

Somit haben wir also unser erstes eigenes Sonderzeichen definiert. Ganz

nebenbei: Haben Sie auch wirklich mitgetippt?

Gut. Wenn Sie jetzt das Prinzip verstanden haben, können Sie eigentlich

loslegen. |

Auf jeden Fall können Sie eine ganze Autobahn damit darstellen, auf der

sich die Autos sogar bewegen — womit wieder bewiesen wäre, daß Compu-

tergrafik Illusion ist, denn von unseren Autobahnen kann man das ja nicht

immer sagen ...

Selbstdefinierte Zeichen 81

Zwischenspiel 2

Bevor wir an unser erstes gemeinsames Spiel gehen, erst noch ein paar Worte

der Aufklärung: Unser Ziel bei allen Listings war, sie so kurz wie möglich zu

halten. Die Gründe dafür haben wir ja schon anfangs erwähnt. Das gilt

natürlich auch für die Spiele. So ergaben sich konsequenterweise keine neuen

Softwarehits. Das war auch gar nicht unsere Absicht. Wir wollten Ihnen

vielmehr die Möglichkeit bieten, ein Spiel Stück für Stück zu programmieren

und damit Erfahrungen für Ihre eigenen zukünftigen Spiele zu sammeln. Wir

hoffen, daß Ihnen das Ergebnis zum Schluß aber doch ein bißchen Freude

macht.

Das andere, was wir gern noch losgeworden wären, ist eine Erklärung zu

den Spielideen. Hier ging es uns darum, Ihnen zu zeigen, wie wichtig die

Geschichte um ein Spiel herum ist, und Ihre Fantasie für eigene Verbesserun-

gen an den besprochenen Spielen anzuregen. Außerdem konnten Sie so auch

sehen, aus welchen unmöglichen Geschichten man Spielideen entwickeln

kann. Und natürlich hoffen wir auch, daß diese Hintergrundgeschichten

Ihnen ein bißchen Spaß beim Lesen bereiten. Zu beiden Texten sei hier noch

erwähnt, daß sämtliche Ähnlichkeiten mit tatsächlich lebenden Personen

äußerst zufällig sind.

5

Ein Spiel mit Sonderzeichengrafik

Rapunzel

Die Geschichte des Märchenreiches muß völlig neu geschrieben werden.

Unser Reporter Gerd Heinzelmann hat die geheimen Tagebücher des Frosch-

königs entdeckt. Nachdem sie gesäubert waren, stellte er fest, daß er einen

Fund von unschätzbarem Wert gemacht hatte: Was niemand für möglich

gehalten hätte, aufgrund der Freundschaft mit einem Tintenfisch hat der

Froschkönig doch angefangen, Tagebuch zu führen. Lange Zeit waren die

geheimen Tagebücher in einem Brunnen in der Nähe eines Königsschlosses

vor den Augen der engagierten Märchenerzähler verborgen. Heinzelmann,

der schon lange Zeit enge Kontakte zur Märchenwelt hatte («Schon als ich

drei war, hat mir Großmutter vor dem Einschlafen immer vorgelesen ...»),

fand die Tagebücher zufällig hinter einem Berg von goldenen Bällen und drei

Lippenstiften. Und damit mußten viele Teile der Märchengeschichte, die als

historisch gesichert galten, neu überdacht werden. Heinzelmann betrachtete

das als seine Lebensaufgabe und veröffentlichte das Ergebnis seiner Arbeiten

in einem bekannten deutschen Magazin. Mit freundlicher Genehmigung des

Verlages benutzten wir diese Serie (die leider sehr früh wieder eingestellt

werden mußte, weil man Heinzelmanns geheime Tagebücher entdeckt hatte)

als Grundlage für unsere Spiele.

Eine der ersten veröffentlichten Arbeiten war die Richtigstellung des Mär-

chenmotivs Rapunzel.

Im Gegensatz zur Lehrmeinung, spielte sich die Geschichte tatsächlich so

ab: Königssöhne, die zwar im allgemeinen reich, aber dafür meistens dumm

waren, sind aufgrund ihrer Eitelkeit oft der Grund für falsche Überlieferun-

gen. Der Prinz bei Rapunzel, der sie regelmäßig zu besuchen pflegte, traf

34 Ein Spiel mit Sonderzeichengrafik

nämlich eines Tages auf seinem Weg zum Turm eine böse Fee. Nun haben

böse Feen die Angewohnheit, immer und überall zu beweisen, daß sie auch

wirklich böse sind. Meistens tun sie das in Form von Verwandlungen. Nun

traf unser Prinz eine Fee, die normalerweise im Märchenarbeitsamt beschäf-

tigt ist und deshalb die Situation auf dem Arbeitsmarkt für Verwandelte sehr

gut kannte. Um dem Prinzen eine langwierige Umschulung zu ersparen

(Verwandlungen in Frösche, Esel oder Raben sind total überlaufen und

werden nur noch im Losungsverfahren vergeben), beschloß die Fee, ihn in

einen Floh zu verzaubern, und zog ihrer Wege.

Mühsam den Kolonnen arbeitsloser Frösche, Esel und Raben ausweichend,

aber dennoch undankbar mit seinem Schicksal hadernd, machte sich unser

Flohprinz auf den Weg in Richtung Turm.

Kaum dort angekommen, sah er sich einem mehrere Meter langen gold-

blonden Problem gegenübergestellt. Rapunzel hatte in Erwartung des Prinzen

bereits ihr gülden Haar aus dem Fenster geworfen und haarte (pardon:

harrte) der Dinge, die da kommen mochten. Glücklicherweise ist ein Floh ja

auch Fachmann in bezug auf Haare und sehr begabt im Klettern. Wenngleich

er noch nicht wußte, wie er Rapunzel seine Situation erklären sollte, machte

er sich an den Aufstieg. Doch was er vorher als Prinz nie gemerkt hatte,

konnte jetzt sein Verhängnis werden. Durch die ständigen Strapazen, die

Rapunzels Haar im Lauf der Zeit mitgemacht hatte, war Haarspliß entstan-

den. Und so bestand nun die Aufgabe unseres unglücklichen Flohs darin, sich

durch dieses Gewirr nach oben hin durchzuarbeiten. Das hatte zwei Konse-

quenzen: Zum einen, daß unser Floh immer mehr und mehr über Haarkuren

nachzudenken begann, zum anderen, daß wir daraus ein Spiel gemacht!

haben. Ihre Aufgabe ist es nun, durch ein Labyrinth bis zu Rapunzel zt

kommen und vor allem den Spielaufbau zu verstehen. Dazu wollen wir jetz

die einzelnen Programmschritte gemeinsam durchgehen.

Zeile 10: Bildschirmrahmen und Hintergrund werden schwarz. In di

beiden Adressen 53280 und 53 281 wird O gePOKEd.

Zeile 20: Da wir selbstdefinierte Sonderzeichen verwenden wollen, müs

sen wir den Zeichensatz ins RAM ab Adresse 10240 legen. POKE 5327232:

erledigt das für uns.

Zeile 30: Diese FOR... NEXT-Schleife liest die dort abgelegten Bytes ei

und POKEd sie für das Zeichen O (Klammeraffe @) ins RAM.

Zeile 40: Was wir noch brauchen, ist ein voller Cursorblock. Also POKE

wir für den Code 1 ("A") lauter «volle» Bytes 255 ins RAM.

Ein Spiel mit Sonderzeichengratik 85

Zeile 50: Genauso benötigen wir eine Leerstelle. Damit Sie's nachher

beim Eintippen des Labyrinths etwas einfacher haben, haben wir den Punkt

(Bildschirmcode 46) dazu hergenommen. Da unser Programm ja während des

Spiels keine normalen Buchstaben benötigt, brauchen wir sie auch nicht aus

dem ROM zu kopieren. Außerdem können wir frei nach Belieben die ehema-

ligen Zeichen ändern. Um dem Punkt das Aussehen einer Leerstelle

((SPACE)) zu geben, müssen wir in seine Adressen im neuen Zeichensatz

lauter O POKEn. Die Bytes, die dabei geändert werden sollen, sind (vom

Anfang des Zeichenspeichers aus gesehen) die Bytes 46 x 8 (= 368) bis 46 *

8 + 7 (= 375). Die Schleife in dieser Zeile erledigt das für uns.

Zeile 60: In dieser DATA-Zeile ist unser kleiner Floh als Sonderzeichen

abgelegt. Und so sieht er dann aus.

Bild 5.17 Zeichenmatrix «Floh»

Zeile 70: Mit GOSUB 350 wird das Unterprogramm aufgerufen, das den

Bildschirmaufbau ausführt.

Zeile 80: Die nächsten Zeilen wählen eine zufällige Startposition für

unseren Floh aus. Dafür kommen fünf Punkte in Frage. Also wird eine

Zufallszahl zwischen 1 und 5 ermittelt: | = INT (5 x RND(1)) +1

Zeilen 90 bis 130: Je nachdem, welchen Wert I jetzt zufällig erhalten hat,

wird die X-Position unseres Flohs festgelegt. Die X- und Y-Positionen ent-

sprechen hier ganzen Zeichen. So kann X also von O bis 39 und Y von O bis 24

gehen. Die Startpositionen stimmen genau mit den untersten Punkten des

Labyrinths überein.

Zeile 140: Die Zeitvariable TI$ wird auf ihren Grundwert zurückgesetzt.

So kann die Zeit gemessen werden, die ein Spieler braucht, um durch das

Labyrinth zu finden.

Zeile 150: Der Y-Wert unseres Flohs wird auf den tiefsten Punkt gesetzt:

86 Ein Spiel mit Sonderzeichengrafik

24. Damit wären die Startkoordinaten also klar. Unser Floh sitzt irgendwo auf

einem der fünf untersten Punkte im Labyrinth. Die Variablen X1 und Y1

werden jetzt erst einmal mit den «eigentlichen» Koordinaten gleichgesetzt.

Zeile 160: Mit diesem POKE, der zur Startadresse des Bildschirm-RAMs

die Y-Koordinate x 40 (40 einzelne Zeichen hat ja eine Zeile) und die X-

Koordinate addiert, wird der Floh jetzt endgültig auf den Schirm gebracht. Er

ist hellblau (Farbcode 3) — weniger, weil das die bevorzugte Farbe der bösen

Fee war, sondern mehr, weil sich diese Farbe gegen das Gelb der Haare sehr

gut abhebt. Also wird der Farbcode in die entsprechende Adresse des Farb-

RAMs gePOKEd.

Zeile 170: Hier findet die Tastaturabfrage statt. Das Programm wartet so
lange, bis eine Taste gedrückt wird.

Zeile 180: Nun wird der Reihe nach abgefragt, ob eine bestimmte Taste

gedrückt wurde. In dieser Zeile wäre die (CRSR UP) dran. Das Steuerzeichen
können Sie eingeben, indem Sie (SHIFT)-{CRSR UP/DOWN) drücken.
Wenn diese Taste wirklich die gedrückte sein sollte, wird Y1 der Wert von

Y — 1 zugewiesen. X1 bleibt X. Welchen Sinn haben diese beiden Variablen?

Nun, damit X und Y vorerst nicht verändert werden müssen (sie werden

später noch gebraucht), dienen die beiden X1 und Y1 als Ersatz.

Zeile 190: Sollte (CRSR DOWN) gedrückt worden sein, wird die Y-
Koordinate um 1 erhöht. Die X-Koordinate verändert sich nicht.

Zeile 200: Dasselbe Spielchen für (CRSR LEFT). Diesmal wird der X-Wert
um 1 erniedrigt, und Y, also die Zeile, bleibt unverändert.

Zeile 210: Der ganze Spaß für (CRSR RIGHT).

Zeile 220: Der Variablen P (das deutet schon an, was mit ihr geschehen

soll; der Inhalt von P wird gePEEKed werden) wird die nach dieser Eingabe

errechnete Position im Bildschirm-RAM zugewiesen.

Zeile 230: Wenn dort irgendein anderes Zeichen als das "A", das wir ja

zum Haar umdefiniert haben, steht, geht die Post gleich wieder zur Tastatur-

abfrage zurück, und nichts ändert sich. Der Floh darf das Haar ja schließlich

nicht verlassen ... |

Zeile 240: Nachdem hier offensichtlich Platz für unseren kleinen Floh ist,

POKEn wir ihn halt mal dahin, wohin die Variable P zeigt. Auch die Farbe wird

verändert. Das funktioniert mit folgendem kleinen Trick: Eine Adresse im

Farb-RAM ist genau 54272 Bytes von der dazugehörigen Adresse im Bild-

schirm-RAM entfernt. Wenn man also P + 54272 ausrechnet, kommt man

genau auf die gewünschte Adresse.

Ein Spiel mit Sonderzeichengrafik 8/

Zeile 250: Jetzt haben wir auch den Nutzen davon, daß wir die «alten»

Koordinaten X und Y noch nicht verändert haben. Denn mit ihrer Hilfe

können wir den alten Floh (gerade hatten wir ja für ganz kurze Zeit zwei

davon auf dem Bildschirm. Haben Sie's gemerkt?) jetzt löschen bzw. durch

ein «Stück Haar», einen Bildschirmcode 1, ersetzen. Die Farbe wird auch

wieder hergerichtet, nämlich 7 (= gelb) fürs gülden Haar. Jetzt, wo es keinen

«alten» Floh mehr gibt, können wir auch dessen Koordinaten X und Y löschen

und durch die aktuellen X1 und Y1 ersetzen. Merken Sie schon, worauf das

hinausläuft? Beim nächsten Durchlauf haben wir wieder eine neue Position,

und das hier ist die alte. So wird der neue immer an seinen Platz gePOKEd

und der alte gelöscht. Das Ganze ergibt dann ein bißchen den Effekt einer

Animation.

Zeile 260: Hier wird nochmal schnell abgecheckt, ob der Spieler nicht

schon lange gewonnen hat. Das Labyrinth ist nämlich so konstruiert, daß die

Ausgänge (die übrigens zufällig genau gegenüber den entsprechenden Start-

positionen liegen) allein in der ersten Bildschirmzeile liegen. Hat also ein Floh

irgendwie die erste Zeile erreicht, hat er diese Runde gewonnen. Auf geht's

dann zur nächsten Runde, der Floh ist ein Stück vorangekommen, aber oben

ist er noch lange nicht. R steht für «Runde». Die nächste Runde ist also

eingeläutet. Wenn Sie noch nicht die Nummer 3 ist, springt das Programm ins

Unterprogramm und läßt sich dort einen Irrgarten zurechtzimmern. Wenn

das soweit ist, springt das Programm in Zeile 150, wo die ganze Geschichte

von vorn losgeht. |

Zeile 270: Sollte aber die oberste Position erreicht worden sein und R =

3, die dritte Runde also erfolgreich bespielt wurde, dann hat der Floh ja wohl

gewonnen. Das wird dann im einzelnen ab Zeile 290 gefeiert, resultiert hier

aber erstmal in einem Bildschirmlöschen.

Zeile 280: Wenn der Floh natürlich noch nicht gewonnen hat, geht's

zurück zur Tastaturabfrage in Zeile 170.

Zeile 290: Um dem Spieler mit wieder lesbaren Worten mitteilen zu

können, daß er gewonnen hat, müssen wir den Zeichensatz wieder zurück-

schalten. POKE 53272,23 beschert uns Kleinbuchstaben.

Zeile 300: Da das Listing aber im Grafikmodus ausgedruckt wurde, was

wegen der Steuerzeichen gewisse Vorteile hat, werden die Großbuchstaben

in diesem Text als Grafikzeichen dargestellt. Das Steuerzeichen davor steht

für Hellgrün. Sie tippen also PRINT "(CTRL)-(6) Wieder ein glücklicher

Floh!” :

88 Ein Spiel mit Sonderzeichengrafik

Zeile 310: «Sie haben in» (und jetzt werden aus dem bis jetzt immer

weitergelaufenen TI$ die Minuten und Sekunden herausoperiert)” min:

"(hier stehen die Sekunden)” s zu Ihrer”

Zeile 320: "Rapunzel gefunden!"

Zeile 330: Jetzt wird der Spieler aufgefordert, eine Taste zu drücken. Das

tippen Sie dann mal so: PRINT"(3% CRSR DOWN) (RVS ON) Drücken Sie
eine Taste! (RVS OFF)"

Zeile 340: Diese Zeile wartet, bis Sie eine Taste gedrückt haben. Wir

werden Ihnen später im Input/Output-Kapitel erklären, was da im einzelnen

vor sich geht. Wenn eine Taste gedrückt wurde, startet sich das Programm

selbst mit RUN. |

Zeile 350: Hier geht es jetzt also los, unser Labyrinth-Unterprogramm.

Dazu gibt es jetzt einiges zu sagen. Wir haben uns lange überlegt, was wir

am geschicktesten mit dem Labyrinth anstellen. Natürlich sind Computer

hervorrgend dazu geeignet, Labyrinthe zu berechnen und zu entwerfen. Aber

als wir anfingen, selbst Experimente damit zu machen, und uns ansahen, wie

andere Leute das gelöst hatten, wurden wir das Gefühl nicht los, daß die

ganze Angelegenheit mit dem Spiel ins Uferlose wächst. Ein Labyrinth-

Programm zieht sich meist über mehrere Seiten hin und ist gespickt von

mathematischen Finessen. Das hätte nicht nur den Rahmen dieses Kapitels

gesprengt, sondern auch in keinem Verhältnis zu dem Programm gestanden,

das das Labyrinth dann benutzt. Kurz und gut, wir haben uns schließlich

entschieden, ein «Fertig-Labyrinth» zu verwenden. Dabei handelt es sich um

ein Labyrinth, das vollständig in PRINT-Zeilen abgelegt ist, in dem sich

allerdings Löcher befinden, und zwar so, daß, wenn nur ein Loch geflickt

wird, auch nur ein Weg frei wird.

Ein solches Labyrinth befindet sich in den Zeilen 350 bis 590. Wenn Sie

aber schon mal ein solches «Fertig-Labyrinth» als Listing gesehen haben,

waren Sie vielleicht von der Masse an Steuerzeichen schockiert, die da

verwendet wurden. Revers an, ein Space, Revers aus, zwei rechts, ein Space

USW.

Um das zu vermeiden, haben wir uns gedacht, wenn wir für den Floh eh’

schon ein Sonderzeichen verwenden, können wir zwei bekannte Zeichen, wie

"A" und ".” auch noch umdefinieren.

So haben Sie jetzt den Vorteil, relativ leicht (so hoffen wir doch) unser

Labyrinth in Ihren Commodore eingeben zu können. Die Steuerzeichen

bedeuten übrigens: Invertiertes Herzchen für (CLR/HOME); invertiertes Pi

Ein Spiel mit Sonderzeichengrafik 89

für Gelb ((CTRL)-(8)) und am Schluß der ganzen Reihe (HOME) für das
invertierte S. Übersehen Sie auch nicht den Strichpunkt am Schluß der letzten

Zeile. Der ist da, um das Scrolling zu verhindern, das stattfinden würde, wenn

der Cursor beim PRINTen in die letzte Zeile rutscht.

Zeile 600: Hier ist jetzt der Teil, der ein Loch im Labyrinth auf Zufallsbasis

flickt. In Zeile 600 wird eine Zufallszahl zwischen 1 und 5 ermittelt (verglei-

chen Sie bitte Zeile 80).

Zeilen 610 bis 650: In diesen Zeilen wird abgefragt, welche Zufallszahl

jetzt herausgekommen ist, und aufgrund dieser dann eine der Positionen der

Löcher ausgewählt.

Zeile 660: Hier wird das Loch mit einem Haarcode, also einem umdefi-

nierten "A" (BS-Code = 1) zugebaut und im Farb-RAM mit der entsprechen-

den Farbe versehen.

Zeile 670: Dieses RETURN läßt das Programm dann wieder in den

Hauptteil zurückkehren.

So, das war's. Wenn Sie jetzt mitgetippt haben oder irgendwann später

unser Listing eintippen wollen, hier ein paar gute Tips dazu: Machen Sie auch

schon während des Tippens Sicherungskopien. Es wäre wirklich schade, wenn

ausgerechnet beim Eintippen der letzten Zeile irgendein Familienmitglied

über das Stromkabel stolpert oder sonst eine Widrigkeit passiert.

Bevor Sie ein Programm wie das oben erklärte mit RUN starten, sollten Sie

auf jeden Fall eine Version davon abSAVEn; auf Diskette oder Kassette, das

ist dabei erst mal egal. |

Wenn Sie nämlich das Programm starten, sind mit ziemlicher Sicherheit

noch Fehler drin. Das ist auch ganz normal. Das Gegenteil wäre eher die

Ausnahme. Aber wenn Sie sich ausgerechnet bei einem POKE vertippt haben

oder dieser von einer falschen Adresse ausgeht, kann das böse Folgen haben.

Wenn Ihr Programm läuft, aber irgend etwas kommt Ihnen spanisch vor,

weil's einfach komisch aussieht oder was auch immer, sollten Sie sich die Zeit

nehmen, Ihr Programm noch mal mit unserem Listing zu vergleichen.

Wenn Sie das alles beherzigen, ist es wirklich nicht schwer, dieses Spiel zu

spielen. Ihren Floh steuern Sie, wie gewohnt, mit den Cursortasten. Mehr gibt

es eigentlich an Anleitung gar nicht zu sagen.

Also wünschen wir Ihnen viel Spaß mit unserem Spiel. Und experimentie-

ren Sie auch mal selber damit! Denn dazu ist es ja in erster Linie da.

or. gree,

fees “eee

‘cone Foon!

not Fsos

rie

USE

webs

el
.

wt Ee Bet

mr ba

SEH
a

ES
218

ir

f
b

fs
 Py

=
 ad
e a

=

ea
d

a!

P
a

33
3

t
s

|

« ı Sa

„all
on

2 .r eS

eh
nn pea

eel .

ef "ese"

fi
= 2

it
d

A

Sl

a F El

ks

ts

‘eae

Ein Spiel mit Sonderzeichengrafik

PORE ECS Se. PORE Seed oe

PORE SSS Pit otk

PORES TO REA PORE Ll eiteb ets od MES T

POR TO Do: BORE Teisse+s J SES MEST

STIRS SEE TOUS PS ORR E Leise VE NEST

TATRA oe TES Leb Seb Lee, LES oi

CCS LES aa

T=T HTC See Mo Lo ated

IF i=1 THEM = 5

IF IT=2THEMe= 11

[FP Il=@S THEN S28
IF T= THEME sat
IF l=S THEM A= 34
T=" GCE"

eh Uf pa oo sy

PRE 1 Git ehr EI PORE SS coe by eb 3

GETRE: TPAE= "9 THEM TPS

IFAS" 0)" THEM eyed oe de

IFAE=" 8 THEM led oe dee

TRAE = "RP THEMA eee de de

TPR "Bb THEM bee ds dee!

fess | tebe REES] -

IF FEER CR o> THEM LT Pe

PORE JG: ROKER + Behe rie oS

PORE Leite -+ kel ieee LO RPOR ESS et a eb tebe Po omy LD lace

TR ys8 THE MR ore Do TR RSS THEMGOSUEB SSeS GOTO 1 Be

OTFY=GANTE = THEMPRIMT SO GOTOe 368

GOTO Pe
Ener oe

Boat, Fa A athe

PRINT BS TEDER EIN GLUEDZELTEHER „LOHN

PRINT! @ IE HABEM IM "MIDE O Tis. a .ea"

RIGHTFETLE 22" SEC ZU ~HRER”
FRIMT”_ArFUHZEL GEFUÜNDEMGTE

FEIHTUBESWDELUEDEEHN IE EIMEOIRASTEDE

PORE TSE MAD TS PORE LSet el: RM

PPD te Pha ee eee ee ee el

PRIM TW. DARIRAR WAAR ee AAAI ee le DARA. RR

PRET T ae ee ee tte a
BREDA! JARR. QAR. ARR. WA. ARR ee ee BRIAR"

PRINT” JAAR . ee ee eh. eA. RRR Pe FA

RTA ee ee AA AR oP Pl PE Al eo PEO

PRINT! JAR . ee ee DAA ARIA. AAA. QDR. AAA”

eT we Pe ee DAIAIAIAAA a Al a ee PP A

PRD T a Plan ee ee ee ete DAA AR AAA AR WAAR FT"

PRLM TW QAR RAR AA WAAR ee nun un Pb a

FRIHTT nun nn nn nn Aa AHA. FAN. . „AARFAR

5

" dent a oe |
eet *

Are

em
ach bed bl

EHE
vr eee,
eet 1

AT 6 eve

ane! Zeves ane!

venom
mye bcd

Be ina be

E my *

8 ad
e

‘
or
e,

o
e

en

bes see, on
Prien be
eee sens ee
all

Bee
nl

gras sung ons

PRINT"
PRINT" uo

PRIM T"
PRE DMT"
FRIMT"
PRINT"
FR IMT ®

us

sh

PEIMTT..

PRIHT"
ER IMT!
PRINT"
FR IMT"
PR IMT"
PRINT"

Ein Spiel mit Sonderzeichengrafik 91

n FY mM os Ky ry P PH re F A 8 ri Fi | ven A un Ky uhr 8 1 m = "

n A una ©

n A 2 u 8

u” A un u

‚ara

ua u 5 F “

‚ARARFIE
at ir t 6 6 os Fy “

” im ou Us if a

m... nen, eve,

2 HM + | a un 3

a 8

aw

oe
ke]

wl aa 0m

afl un

eFlan enn ean n

aFlaunnuneanun

one, ve.
eae! os

peo ew a ba Pla ee oe ee

sw 8 8 u ri u if Fi rH ff fy Ft = re u 0

a

cu

od

as tt Om ts ry 3s 8 8 Ot F nn © A ir Fe P A ri r nn 8 FY "

»ARIARAAA RIAA RAP A a AI"

»ALA.ARAAAR A”

eM a Pia ee eft. eA. IAA

Fle a SPIRAL RL. eR Pe

Fan eo es te AAA. A. AAA

HARIRI oP ee ee eta eA”

eA Ae ee ee Pe AIR AAR PT

ah. A. AAAI Pl nn a

oh A PA ee AA ARRAY. AAA A”

oF. ARR AAA ARR Al a PRE”
eee,

ew } = m ea U Bm Fi una BB u AA urn MM It "

us Ff aH & 8B KR RH 8 Fl nu Rm Hw ns rH n t mo of m Ps " ’

one

no 8 on | 1 u

T= THT CSaeRMD Lod
IF L=1THENL #1225
LF Leg THEML = 1234,
Tr f= "s THE Mis 1 am

LF I

u.

FOREL 1: PORELHERRETE 7

REITLIREN

92 Ein Spiel mit Sonderzeichengrafik

Zwischenspiel 3

Wir glauben, daß wir Ihnen noch eine Erklärung schuldig sind, auf die wir

später immer wieder zurückgreifen werden. Und wenn Sie die erst einmal

verstanden haben, wird Ihnen das — wie das Verständnis für Binärzahlen —

den Umgang mit Bits und Bytes etwas vereinfachen. Was wir meinen, sind die

Booleschen Operationen.

Aber keine Sorge, dazu ist weder Vollnarkose noch ein Skalpell nötig,

sondern einfach nur ein bißchen Verständnis.

Der geistige Vater dieser Operationen ist ein gewisser George Boole, der im

19. Jahrhundert gelebt hat, also mit Computern nicht allzuviel zu schaffen

gehabt haben konnte. Aber er war Mathematiker und hat ein ziemlich

kompliziertes Modell entworfen, wie man mit Aussagen, Ereignissen und dgl.

rechnen kann.

Vieles von dem, was er sich so ausgedacht hat, ist in erster Linie dazu

geeignet, Schüler zu verwirren. Insofern unterscheidet ihn nichts von anderen

Mathematikern. Doch einige Überbleibsel seiner Theorien leben noch immer

in Ihrem Commodore fort, und zwar die BASIC-Befehle AND, OR und NOT.

Vielleicht sind sie Ihnen schon einmal aufgefallen, und Sie haben sie sogar

schon ausprobiert. Die Ergebnisse kommen einem aber meist alles andere als

logisch vor. Oder wieso bitteschön soll 1 und 2 gleich O sein? Sie glauben das

nicht? Probieren Sie es selbst:

PRINT 1 AND 2

Naaaaa ...

Unser Computer scheint auch besondere Vorlieben fiir bestimmte Zahlen

zu haben. Wenn Sie ihn (wie die Kinder bei Michael Schanze) vor die

Entscheidung 1, 2 oder 3 stellen:

Ein Spiel mit Sonderzeichengrafik 93

PRINT 1 OR 2 OR 3

entscheidet er sich prompt und stur für die 3. Nichts mit Plopp und Stop ...

Immerhin, wenn Sie ihm auftragen, nicht die 4 zu drucken, tut er es auch

nicht: PRINT NOT 4

Statt dessen druckt er -5. Da soll noch mal einer behaupten, Computer

wären nicht folgsam.

Oder sollte hinter diesen Ereignissen nicht doch irgendein logisches System

stecken? | |

Natürlich — die Lösung liegt, wie könnte es anders sein, in den Bits. Wir

wollen Ihnen mal ein bißchen auf die Spur helfen.

Stellen Sie sich die Zahlen von oben mal als Bits vor, und schreiben Sie diese

untereinander.

1 AND 2 wäre dann:

01

AND 10

00

Oder die andere Aufgabe.

1 OR 2 OR 3 würde ergeben:

01

OR 10

OR 11

11

Nachdem Sie jetzt sicher schon voller Spannung und Vorfreude sind, wollen

wir das Geheimnis lüften. Mit solchen Operationen können Sie Bits nach ganz

bestimmten Regeln vergleichen oder verknüpfen.

94 Ein Spiel mit Sonderzeichengrafik

Der AND-Befehl

Wenn Sie zwei (Binär-)Zahlen mit AND verbinden, werden nur die Bits ins

Ergebnis übernommen, die in beiden Zahlen «an» (= 1) sind.

BITNR: 7 6 5 4 3 2 1 =O

1100 1 0 1 =O (= 202)

AND 10111 0 0 O(= 184)

ergeben 1 0 0 01 0 0 O(= 136)

Zur Erklärung:

Wenn Sie

PRINT 202 AND 184

eingeben, erhalten Sie als Ergebnis 136. Denn es werden dann nur die

gleichwertigen Bits (also Bit Nummer 3 der ersten Zahl und Bit Nummer 3 der

zweiten Zahl oder Bit Nummer 7 der ersten und Bit Nummer 7 der zweiten

Zahl) verglichen. Nur wenn beide Bits gesetzt oder «an» sind (also das der

ersten Zahl UND (= AND) das der zweiten Zahl), wird das Bit auch im

Ergebnis gesetzt, zum Beispiel bei den Bits Nr. 7.

Bei den Bits Nr. 6 ist es anders: Das erste ist zwar gesetzt, das zweite aber

nicht. Deshalb ist Bit Nr. 6 im Ergebnis auch O. Und so geht das weiter, bis alle

Bits verglichen sind.

Wenn Sie also zwei Werte mit AND verbinden, ergibt sich folgendes Bild:

OANDO=0
O AND 1 =0
1 AND 0 = 0
1 AND 1 = 1

Der OR-Befehl

Bei OR geht das Ganze etwas anders. Hier genügt es, wenn eines der beiden

Bits gesetzt ist.

BITNR: 7 65 43 210
1100 1 0 1 0(= 202)

OR 1011 1 0 0 0(= 184)
ergibt 117 1 1 1 0 1 0(=250)

Ein Spiel mit Sonderzeichengrafik 95

Wieder Beispiele zur Erklärung. In Bit Nr. 7 sind beide Bits gesetzt. Weil schon

eines reichen würde, ist das entsprechende Ergebnisbit natürlich auch an. Bei

Bit Nummer 6 ist das erste an, das zweite aus. Aber das Ergebnisbit bei OR ist

natürlich 1. Denn wir sagten ja, es reicht, wenn eines der beiden «an» ist (also

das erste ODER [= OR] das zweite Bit gesetzt ist). Entsprechend läuft das

alles bei Bit Nr. 5— nur, daß diesmal erst das zweite Bit gesetzt ist. Aber das

macht ja nichts.

Zusammengefaßt ergibt das OR folgende Möglichkeiten:

0OORO=O0O

OOR1=1

10ORO=1

1OR1 = 1

So einfach ist das.

Der NOT-Befehl

Der NOT-Befehl ist nur sehr schwer mit Bitoperationen zu erklären und für

uns eigentlich auch uninteressant. Beim Programmieren braucht man ihn

nicht sehr oft.

Aber wahrscheinlich hätten Sie jetzt gerne gewußt, was Sie davon haben,

daß Sie sich das alles angehört haben.

Und genau der Beantwortung dieser Frage soll dieses Zwischenspiel

dienen.

Boolesche Operationen sind immer dann notwendig und nützlich, wenn

Sie einzelne Bits in einem Byte verändern wollen. Und da Sie beim Computer

ja letztlich immer mit diesen kleinen Dingern zu tun haben, kann die

Notwendigkeit dazu relativ häufig vorkommen. So gibt es speziell bei den

Adressen von VIC einige Bits, die «allein» eine ganz besondere Aufgabe

haben. Nehmen wir als Beispiel mal die uns ja gut bekannte Adresse 53 272.

Bei ihr haben die verschiedenen Bits folgende Aufgaben:

53272:
Bt 76543210

Bildschirm Zeichen- nicht

RAM satz belegt

Adresse

96 Ein Spiel mit Sonderzeichengrafik

Das bedeutet, Sie können durch die Bits 7 bis 4 festlegen, wo Ihr Bildschirm

RAM losgeht. Den Wert dieser 4 Speicherzellen muß man dabei mit 102:

multiplizieren. (Sie erinnern sich doch sicher noch: Mit 4 Bits kann man di

Zahlen O bis 15 darstellen. 15 x 1024 = 15360. Das wäre also die höchst:

Startadresse für das Bildschirm-RAM. Und VIC kann ja auch bekanntlicl

höchstens 16K adressieren.) Normalerweise ist also das Bit 4 an, die Bits 5 bi

7 sind aus. (Denn die normale Startadresse des Bildschirm-RAMs ist 1024 [=

1 x 1024].) Das ist auch der Grund, weshalb der niedrigste Wert, den wir be

den Sonderzeichen in diese Adresse gePOKEd haben, 16 war. Also ist Bit -

immer an. Die Adresse des Zeichensatzes wird durch die Bits 1 bis 3 bestimmt

Würden Sie POKE 53 272,4 eingeben, wäre zwar das normale Zeichensatz

ROM eingeschaltet, aber das Bildschirm-RAM lage jetzt in der Zeropage

Probieren Sie es ruhig mal aus, der Effekt ist ganz lustig.

Üblicherweise benutzt man nach diesem Versuch (RUN/STOP) und (RE
STORE). |

Falls Sie übrigens ernste Absichten mit dem Bildschirm-RAM (bezüglicl

Verschieben!) haben, dann finden Sie dazu Näheres im POKE-Anhang. Jetz

haben wir also einen Fall, wo ein einfaches POKE 53 272,18 nicht meh

ausreicht, um den Zeichensatz zu verändern. Denn damit würden Sie ja aucl

gleichzeitig den Bildschirm wieder auf seinen ursprünglichen Platz zurück

schieben. Sie könnten jetzt natürlich die Bytes ausrechnen, die diesem neueı

Zustand entsprechen. Auf die Dauer einfacher ist aber folgendes Prinzip: Wi

wollen die Bits 4 bis 7 so schützen, daß sie nicht verändert werden können

Die Bits 1 bis 3 sollen aber dafür einen bestimmten, neuen Wert erhalten.

Und jetzt können wir einsetzen, was wir gelernt haben. Um die oberen :

Bits quasi zu «konservieren», führen wir ein AND mit 1111 0000 (also 240

durch:
00010100

AND 11110000

00010000

Sie sehen: Nur die Bits, die innerhalb der obersten vier Stellen gesetzt sind

werden in das Ergebnis übernommen. Um nun den neuen Wert für deı

Zeichensatz (in unserem Fall 2) in unser Byte mit hineinzubekommen, setzeı

wir die entsprechenden Bits einfach dazu: "OR" mit 00000010

00010000

OR 00000010

00010010

Ein Spiel mit Sonderzeichengratik 97

Und damit hatten wir unseren Wert, den wir in die Adresse 53 272 POKEn

können.

In BASIC sieht das dann folgendermaßen aus:

POKE 53272,(PEEK(53272)AND 240)OR2

Den Wert, den wir am Anfang bearbeiten wollen, müssen wir mit

PEEK(53272) aus der entsprechenden Speicherzelle lesen. Dann wird er

verdndert und zurickgePOKEd.

Derartige Formeln werden Sie oft finden, da sie den Vorteil haben, wirklich

nur die Bits zu verändern, die nötig sind. Zu guter Letzt noch zwei Tips. Wenn

Sie einzelne Bits einschalten wollen, geht das folgendermaßen:

POKE (Adresse), PEEK(Adresse) OR 2 a Bitnummer

Wenn Ihnen nicht ganz klar ist, was da passiert, nehmen Sie sich ein Blatt und

schreiben Sie die zwei Werte untereinander ...

Für das Ausschalten eines Bits verwenden Sie folgenden Befehl:

POKE (Adresse), PEEK(Adresse) AND 255 — 2 a Bitnummer

Auch das sieht komplizierter aus, als es eigentlich ist. Der Ausdruck (255 — 2

A Bitnummer) ergibt ein Byte, in dem deshalb alle Bits (= 255) gesetzt sind,

außer dem einen gewünschten (2 a Bitnummer). AND bewirkt dann fol-

gendes:

Das vierte Bit soll gelöscht werden

11011011

AND 11101111

11001011

Was hiermit auch gelungen wäre. Und das war es auch schon zum Thema

Boole. Die AND- und OR-Operationen sind, wie Sie vielleicht gesehen haben,

oft unumgänglich. Wann man sie braucht, werden Sie noch im POKE-

Anhang sehen.

Sollte noch irgend etwas nicht klar sein, lesen Sie dieses Zwischenspiel am

besten noch einmal in Ruhe durch, und probieren Sie die verschiedenen

Dinge auch aus. Dann werden Sie sehr schnell ausreichend Erfahrungen mit

Herrn Boole und seinen Operationen haben.

6

Die hochauflösende Grafik des

Commodore 64

Ein völlig neues Grafikgefühl

Hallo. Da sind Sie ja wieder. Naja, das Buch ist klein. Da trifft man sich schon

ab und an, nicht?

Wir hoffen, Sie haben sich in bezug auf Sonderzeichen jetzt etwas ausge-

tobt.

Ach so, haben Sie eigentlich unser kleines Spiel von vorhin auch mal selbst

so ein bißchen verändert? Wenn nicht, sollten Sie das nämlich jetzt tun.

Damit erweitern Sie ja auch Ihre eigenen Programmierkenntnisse. Und außer-

dem: Wenn man erst mal das Grundprogramm hat, können schon kleine

Änderungen ganz witzige Effekte haben. In jedem Fall könnten Sie ja mal die

Hintergrundfarbe oder so ändern. Wenn Sie also in dieser Richtung bisher

noch nichts gemacht haben, wäre jetzt die rechte Zeit dazu.

Die anderen Herrschaften dürften wir derweil in den nächsten Saal bitten.

Die ausgestellten Stücke gehören zur Abteilung «Hochauflösende Grafik oder

von der Schwierigkeit, einfache Bilder ohne BASIC-Befehle zu machen».

Oh, Moment noch.

He, Sie da. Ja, Sie meine ich. Haben Sie auch wirklich vorher mit dem

Spielprogramm herumexperimentiert, oder schmuggeln Sie sich hier nur

einfach so dazu?

100 Hochauflösende Grafik

Ein paar gutgemeinte böse Worte zur Einführung

Dann können wir jetzt also anfangen. Wir wollen uns über eine Sache

unterhalten, die bei Einsteigern entweder völlig unbekannt ist oder nach den

. ersten Versuchen sehr schnell zu einem privaten Waterloo für die meisten

Neulinge wurde. (Sie wissen ja: In Waterloo war die Geschichte mit diesem

Franzosen, der offensichtlich auch schon bessere Schlachten gesehen hatte.)

Für jeden Commodore-Besitzer, der keine BASIC-Erweiterung hat, scheint

der sogenannte Hires-Modus erst mal in etwa so ergiebig wie ein Fingerhut

voll Waschmittel für die Wäsche einer Bundeswehrtruppe nach einer Feld-

übung im Regen. Man hat das Gefühl, es ist entweder völlig unsinnig,

überhaupt erst anzufangen, oder der Aufwand lohnt die Mühe ja eh nicht.

Dieser Eindruck ist leider nicht ganz unrichtig. Es spricht schon Bände, daß der

C 64 nahezu das gleiche Betriebssystem hat wie der VC 20. Nur — der VC 20

hatte wenigstens auch einen wesentlich primitiveren Videochip, der nicht

solche Möglichkeiten bot .

Aber man kann trotzdem allerhand mit dieser Grafik tun. Um Ihnen dieses

Unterfangen etwas zu erleichtern, haben wir auch einige Programme zusam-

mengestellt, die einfache Dinge wie Kreise, Dreiecke oder Vierecke ermögli-

chen.

Alles in allem ist dieses Manko an Ihrem Computer trotzdem erträglich,

weil man das meiste ja doch relativ einfach mit den Grafik- und Sonderzei-

‚chen hinkriegt. Aber wir finden: Wenn man schon eine Hires-Möglichkeit

einbaut, hätte man zumindest einen Befehl zum Ziehen von Linien dazuma-

chen können.

Der Bit(-tere) Weg zur Grafik

Es gibt nur eine Möglichkeit beim Commodore (ohne BASIC-Erweiterung), im

Hires-Modus zu arbeiten: jeden gewünschten Punkt ein- bzw. ausschalten.

Einzige Art, dies zu tun, ist der POKE-Befehl. Im Fall von Hires kann dieser

Befehl für zwei verschiedene Dinge zuständig sein.

Entweder verändert er RAM-Speicher oder greift direkt auf VIC zu, um

bestimmte Betriebszustände an- und abzuschalten. Um eine Grafik zu erstel-

len, muß man sich also der Methode des Bitmappings bedienen.

Bitmapping bedeutet eigentlich, daß ein bestimmter Speicherbereich (8K)

als Hires-Seite von VIC gelesen wird. VIC geht diesen Speicherbereich Byte

Hochauflösende Grafik 101

für Byte durch. Jedes gesetzte Bit in diesem Speicher entspricht dabei einem

Punkt auf dem Bildschirm. Dabei erreicht Ihr Commodore eine Auflösung von

320 Punkten horizontal und 200 Punkten vertikal.

Um das alles auf einen einfachen Nenner zu bringen: Beim Bitmapping

sehen Sie immer 8K-Speicher auf dem Bildschirm. Ähnlich wie bei den

selbstdefinierten Zeichen müssen die Werte, die dem gewünschten Bild

entsprechen, in diesen Speicher gePOKEd werden. Bevor wir uns aber noch

mehr in Theorie verstricken, schalten wir den Hires-Modus erst mal ein.

POKE 53265,59

Wenn Sie diesen Befehl direkt eingegeben haben, wird Ihr Bildschirm jetzt —

na, sagen wir mal, etwas chaotisch aussehen.

Aber keine Sorge. Dieses Chaos ist logisch. Und zwar aus zwei Gründen.

Zum ersten ist alles, was der Computer tut, logisch. Auch wenn es zugegebe-

nermaßen nicht immer so aussieht. Der zweite Grund, das ist der ernstzuneh-

mendere, ist folgender. In dem freien RAM-Bereich, den VIC ab jetzt als

Parkplatz für Hires-Daten betrachtet, sind ja momentan lauter zufällige

Werte. Daher sehen Sie auch lauter zufällige Bitmuster auf dem Schirm.

Logisch, oder? |

Weil wir uns vorstellen könnten, daß Ihnen dieses Bild auf die Dauer etwas

langweilig wird, sagen wir Ihnen besser gleich, wie man aus der ganzen Story

wieder rauskommt. (Bevor Sie auf das bewußte Knöpfchen an Ihrem Fernse-

her drücken, das es möglich macht, diese freundliche Familie da unten in

Texas zu beobachten. Sie wissen schon, die mit dem Öl und dem blonden

Gift.)

Zum Abschalten (des Hires-Modus, nicht des Fernsehers) können Sie

wahlweise (RUN/STOP) + (RESTORE) drücken oder

POKE 53265,27

eingeben. Nachdem das geklärt wäre, können wir erst mal weitermachen.

Wir haben ja schon einmal erwähnt, daß der gute VIC gleichzeitig nur

maximal 16K-Speicher adressieren kann. Das heißt, seine Möglichkeiten bei

Hofe (Sie erinnern sich doch noch an unser Bild vom Königreich?) sind

begrenzt. Damit er überhaupt was auf die Matte (pardon: Mattscheibe)

bringen kann, müssen seine wichtigsten Informanten innerhalb seines Ein-

flußbereiches sein. Diese Informanten wären das Bildschirm-RAM (welche

Zeichen sind gerade wo?), das Farb-RAM (was haben die da draußen

eigentlich für eine Farbe ...) und der Zeichensatz (... und wie schauen sie

überhaupt aus?)

102 Hochauflösende Grafik

Außerdem sind da noch eventuell vorhandene Sprite-Daten. Aber, zu
denen kommen wir erst im nächsten Kapitel. Unter den geschilderten Bedin-

gungen gibt es eigentlich gar nicht mehr so viele Möglichkeiten, wo so ein

Hires-Speicher liegen könnte.
Wir haben ja sicherlich auch schon mal erzählt, daß unser kleiner VIC von

Commodore so richtig klassisch reingelegt wird. Das Zeichensatz-ROM hat

die Startadresse 53 248. Weil diese Zahl aber zu hoch für VICs Adressierkapa-

zität ist, hat man ihm bei Commodore einen anderen Chip vor die Nase (bzw.

vor den Schaltkreis) gesetzt. Und dieser Chip manipuliert den Adreßbus von

VIC so, daß VIC zwar die für ihn darstellbare Zahl 4096 aufruft, aber dabei in

Wirklichkeit die Speicherzelle 53 248 anspricht.

Deshalb sind für VIC also offiziell die Adressen 4096 bis 8191 belegt. (Vgl.

Sie dazu auch die Tabelle 4.2.)

Alles in allem bleibt zu guter Letzt nur noch eine Möglichkeit, diesen Hires-

Speicher anzulegen: ab der freien RAM-Adresse 8192.

Noch eine Bemerkung hierzu. Natürlich gibt es doch noch eine andere

Möglichkeit. Und zwar, indem man den Adreßbereich von VIC verschiebt.

Das heißt im Grunde, VIC so zu manipulieren, daß er den Hires-Speicher nicht

mehr von O bis 16 384 (also die ersten 8K), sondern von 16 384 bis 32 767

(also die zweiten 8K) liest. Über die finsteren Intrigen, die dazu bei Hofe nötig.

sind, klären wir Sie im POKE-Anhang auf.

Denn nach dem Motto «Ehrlich währt am längsten» gehen wir erst mal nur

den legalen Weg. (Na, Sie werden doch nicht etwa zum POKE-Anhang

weiterblättern wollen?!) |

An dieser Stelle können wir übrigens auf Bekanntes zurückgreifen. Gemeint

ist die Adresse, ab der VIC unsere Bitmap lesen soll. Wir kennen sie bereits

von der Sonderzeichendefinition: 53 272. Wenn Sie eingeben

POKE 53265,59 : POKE53272,24

schalten Sie VIC in den Grafikmodus (erster POKE) und legen die Bitmap an

die Stelle, die wir vorhin zusammen ausklamüsert haben: 8192. Wenn Sie sich

gerade wundern, warum Sie beim zweiten POKE als Wert 24 eingeben

sollten, bitten wir Sie, sich nochmals mit der Tabelle bei der Sonderzeichen-

definition zu beschäftigen.

Hochauflösende Grafik 103

Vom Chaos zum Nichts

Was Sie jetzt auf dem Bildschirm sehen, entspricht wahrscheinlich immer

noch nicht Ihren Vorstellungen von einer Hires-Grafik. Trösten Sie sich:

unseren auch nicht. Je nachdem, welche Art von RAM-Chips Sie eingebaut

haben, erscheinen auf Ihrem Bildschirm wieder mehr oder weniger regelmä-

Bige Muster. Der Inhalt der jetzt bereitgestellten 8K-RAM, die bisher zufällige

Werte oder auch ein BASIC-Programm enthielten, muß erst so verändert

werden, daß er schließlich eine Grafik auf dem Bildschirm bilden kann.

Wenden wir doch am besten wieder dieselbe Methode an wie bei den

Sonderzeichen. Lassen Sie uns zuerst einmal nachschauen, wie diese Grafikin-

formationen überhaupt gespeichert werden. Sie sollten dazu bitte zuerst den

Grafikmodus verlassen. Am besten mit (RUN/STOP) + (RESTORE). Und
dann löschen Sie bitte den Bildschirm. Wenn Sie das getan haben, wird uns

folgendes kleines Programm weiterhelfen: |

10 POKE 53265,59: POKE 53272,24

20 FOR X=8192 TO 16192: POKEX,O

30 FOR Y=1T0100: NEXT Y

40 NEXT X

Wenn Sie dieses Programm mit RUN starten, bemerken Sie zuerst, daß die

Bitmap (also 8K-RAM) Stück für Stück gelöscht wird. Aber achten Sie doch

mal darauf, wie das geschieht!

(Während Sie diese Erklärung lesen, können Sie das Programm ruhig

weiterlaufen lassen.)

VIC ist es gewohnt, 8 Bytes als eine «Speichereinheit» zu lesen. Mit der

Überlegung, daß auf den Bildschirm 1000 Zeichen passen (siehe Sonderzei-

chendefinition), kommen Sie nach einigem Rechnen auf runde 8000 Bytes.

Stellen Sie sich die hochauflösende Grafik also in etwa als einen Bildschirm

voll mit 1000 ganz verschiedenen Sonderzeichen vor.

(Genauso, wie diese 1000 Sonderzeichen auf dem Schirm ein Muster

ergeben würden, ergibt auch der Hires-Speicher eines. 1000 Sonderzeichen

gehen natürlich in Wirklichkeit nicht, weil höchstens 256 verschiedene Son-

derzeichen gleichzeitig dargestellt werden können.)

Wenn Sie sich jetzt also an dieses Bild gewöhnt haben, dann ist der Rest

eigentlich ganz simpel. Genauso, wie VIC 1000 Sonderzeichen aus dem

Speicher lesen würde, also jedes als 8 x 8-Matrix, so liest er auch die Hires-

Seite. Sollten Sie das alles noch nicht so ganz verstanden haben, dann

104 Hochauflösende Grafik

schauen Sie sich jetzt noch mal Ihren Bildschirm an. Wenn Sie genau

beobachten, dann erkennen Sie, daß beim Löschen immer eine Art Block von

oben nach unten gelöscht wird. Sollten Sie das nicht erkennen, könnte es

daran liegen, daß Sie das Programm von vorhin unterbrochen haben oder es

— wir wagen gar nicht, es auszusprechen — womöglich noch überhaupt nicht

eingegeben haben.

Wenn wir jetzt also Ihre Kombinationsgabe und unsere Hinweise in einen

Topf werfen, dann ergibt sich folgende Schlußfolgerung: VIC liest, wenn er

Hires-Grafiken darstellt, immer einen Speicherbereich von je 8 Bytes und stellt

diese, wie Sonderzeichen, untereinander dar. Hat er die erste Speichereinheit

auf diese Weise erledigt, kommt die zweite, die auf dem Bildschirm neben der

ersten angesetzt wird, und so weiter und so fort. Und weil er es beim Löschen

genauso macht, können Sie das bei Ihrem laufenden Programm auch sehr

schön beobachten.

So, jetzt haben wir hoffentlich alle Klarheiten beseitigt. Mittlerweile müßte

Ihr Commodore in etwa ungefähr ein Viertel bis die Hälfte des Bildschirms

gelöscht haben. Bevor er sich bei dieser atemberaubenden Geschwindigkeit

eine Erkältung vom Zugwind holt, unterbrechen Sie das Programm am besten

mit (RUN/STOP) + (RESTORE). Dann können Sie die Zeile 30 — von der Sie
ja sicher gemerkt haben, daß Sie nur eine Warteschleife ist— rauswerfen. Und

den Rest des Programms speichern Sie am besten ab. Das ist nämlich die

Routine zum Löschen des Hires-Bildschirms. Sehr viel schneller geht das

allerdings auch nicht. Aber ohne Maschinensprache oder BASIC-Erweiterung

ist das die schnellste Möglichkeit.

(Wenn Sie den Hires-Modus schon eingeschaltet haben, fällt natürlich auch

die Zeile 10 des Programms weg. Die Löschroutine ist nur die Zeile 20.)

Am besten, Sie starten das Programm jetzt nochmals, damit es, während

wir noch beim Erklären sind, schon mal den Bildschirm frei macht. Ist das

Programm erst mal fertig, dann werden Ihnen einige farbige Kästchen

auffallen, die von Größe und Umfang her eine erstaunliche Ähnlichkeit mit

dem Cursor haben.

Um jetzt sich eventuell anbahnende Theorien auch sofort zu untermauern:

Tippen Sie ruhig mal ein bißchen auf der Tastatur herum.

Das geht selbstverständlich erst, wenn Ihr kleines Programm von vorhin

fertig ist. Wenn nicht, gedulden Sie sich noch ein bißchen. Am besten, Sie

entspannen sich jetzt mal etwas. Lehnen Sie sich zurück und genießen Sie das

Gefühl, schneller als der Computer fertig gewesen zu sein.

Wenn Ihr Computer jetzt soweit ist, dann tippen Sie mal. Vielleicht fällt

Hochauflösende Grafik 105

Ihnen auf, daß immer, wenn Sie dieselbe Taste drücken, auch dieselbe Farbe

auf dem Bildschirm erscheint. Auch hier rückt wieder eine krimimäßige

Schlußfolgerung in greifbare Nähe. Die richtige Lösung wäre: Im Grafikmo-

dus bedeuten Buchstaben offensichtlich Farben. Und das liegt daran, daß das

normale Bildschirm-RAM (Sie erinnern sich vielleicht an die Speicherauftei-

lung, wo dieser Bereich erklärt wurde) jetzt zum Farbspeicher für Hires

gemacht wird. Das Bildschirm-RAM wurde aus der einfachen Tatsache heraus

verwendet, daß es ansonsten in Hires ziemlich unnütz im Speicher herum-

liegt. Nun keimt vielleicht im Unterbewußtsein die Frage heran, die da heißt:

«Ein Farbspeicher? Wofür?» Ganz einfach. Die Punkte der Hires-Grafik

können 16 verschiedene Farben annehmen. Dasselbe gilt auch für die

Hintergrundfarbe.

Und jetzt kommt die große Stunde unseres kleinen Freundes VIC. Er bastelt

nämlich völlig eigenmächtig an einer Art High-Byte/Low-Byte-Prinzip herum.

Was der Prozessor davon denkt, interessiert unseren guten VIC dabei unge-

fähr so stark, wie wenn in der Madison Avenue in New York ein Fahrrad

umfallen würde. VIC wendet einen simplen Trick an. Er nutzt die oberen vier

Bits einer Speicherzelle (also sein selbst gedrechseltes «High Byte») als

eigenen Speicher für die Zeichenfarbe und die unteren vier (also das genauso

im Do-it-yourself-Verfahren entstandene «Low Byte») für die Hintergrund-

farbe. Damit kann er sich wenigstens ein bißchen für die ständigen Intrigen

gegen ihn rächen.

Sollte Sie also jetzt plötzlich der drängende Wunsch überkommen, eine

Grafik in Dunkelblau auf hellblauem Hintergrund darzustellen, müßten Sie in

jede Speicherzelle von 1024 bis 2024 den Wert 6 x 16 + 3 POKEn. Wie diese

Zahlen zustandekommen? Das ist eigentlich recht einfach: 6 steht für das

Dunkelblau und 3 für das Hellblau. Bliebe nur noch die Zahl 16 zu erklären.

Wie gesagt, muß VIC jetzt eine Speicherzelle in zwei Werte unterteilen. Um

dabei das eine halbe Byte vom andern halben Byte zu unterscheiden,

multipliziert er den ersten Wert (also so ähnlich wie ein richtiges High Byte mit

256) mit 16. Wenn Sie das nicht verstehen, dann können Sie noch mal in der

Speicheraufteilung unter der Überschrift «Wenn Bytes halbe-halbe machen»

nachschauen. So ähnlich, wie es die Skizze dort zeigt, läuft das auch hier.

Andererseits ist es nicht so wichtig. Sie können die ganze Sache einfach

hinnehmen - aber nicht vergessen. Sollte Sie übrigens nicht der Wunsch nach

ausgerechnet dieser erwähnten Farbkombination überfallen haben, so ver-

weisen wir auf Seite 61 Ihres Commodore-Handbuchs, wo Sie eine Farb-

tabelle finden. Die ganze POKErei machen Sie mit einer kleinen Routine.

106 Hochauflösende Grafik

FOR X=1024 TO 2024: POKE X,99: NEXT

Es empfiehlt sich, diese und alle anderen Anweisungen, die die Grafik

betreffen, in einem Programm abzuarbeiten. Dafür sprechen verschiedene

Gründe. |

Im Falle der Hintergrundfarbe zum Beispiel der, daß der Computer durch

jedes «SYNTAX ERROR» oder «READY» die Farbeinstellung wieder kaputt-

macht, weil er die Buchstaben ja als Signale für die Hintergrundfarbe ansieht.

Zweitens ist es ja so, daß Sie das, was Sie schreiben, gar nicht sehen, wenn Sie

im Grafikmodus sind und sich deshalb sehr leicht vertippen. Drittens werden

Sie bei der Arbeit mit der hochauflösenden Grafik bestimmte Operationen

immer wieder brauchen. Die können Sie dann als Unterprogramme ablegen.

Damit wären wir der ganzen Angelegenheit doch schon ein ganzes Stück

auf das Bit gekommen. Das heißt, wir haben eigentlich alle Vorbereitungen

getroffen, die nötig waren. Bliebe also nur noch eine Kleinigkeit, die wir

vielleicht noch erklären sollten: Wie mache ich jetzt eigentlich eine Hires-

Grafik?

Lehrer in der Schule haben auf solch fundamentale Sätze, vor allem, wenn

Sie von Schülern einfach mitten ins Unterrichtsgeschehen geworfen werden,

meist als erste Antwort: «Eine sehr gute Frage».

Wir möchten die Gelegenheit nutzen und uns hier an dieser Stelle zum

erstenmal auf die Seite des Lehrkörpers stellen und mit ihm diese Formulie-

rung teilen.

(Diesen kurzen Absatz widmen wir hiermit all denen, die sich in langen

Schuljahren mit uns herumplagen mußten, beziehungsweise noch immer

müssen. Ihre Arbeit war nicht umsonst!)

Von Autos, Bits und Sinuskurven

Bisher haben uns die Grafikbefehle, die der Commodore nicht hat, noch nicht

sehr gefehlt. Aber jetzt wird's schon etwas schwieriger, so ganz ohne.

Nichtsdestotrotz wollen wir mutig (wie Orpheus in die Unterwelt) in die

Hires-Page einsteigen. C

Mittlerweile wissen wir, daß im Hires-Speicher ein Bit einem Punkt auf dem

Bildschirm entspricht. Deshalb müssen wir uns jetzt eine gewisse Virtuosität

im Jonglieren mit diesen kleinen Kerlchen aneignen.

Zuletzt haben wir bei den Sonderzeichen mit Bits gearbeitet. Im Grunde

entspricht der Aufbau einer Hires-Grafik dem Basteln eines Sonderzeichens.

Hochauflösende Grafik 107

Um Ihnen das Gefühl zu geben, etwas bekanntes Terrain zu betreten, wollen

wir unser kleines Auto aus dem Sonderzeichenkapitel noch einmal her-

nehmen. |

Zuerst einmal sollten wir uns einen Parkplatz dafür aussuchen, auf dem wir

keinen Strafzettel bekommen. Nehmen wir also mal die Adresse 12 184. Die

liegt so ziemlich in der Mitte unseres Bildschirms. Wieder einmal folgt ein

kleines Programm, das unser Auto dort einparkt.

10 POKE 53265,59:POKE53272,24

20 FOR X=0T07:READ A:POKE12184 + X,A:NEXT

30 FOR Y=1024 TO 2024:POKEY,99:NEXT

40 DATA 0,0,56,116,254,254,68,0

Ist doch ganz hübsch, oder?

Natürlich hätten wir das gleiche mit Sonderzeichen auch haben können.

Der Vorteil der hochauflösenden Grafik ist aber, daß Sie volle Kontrolle über

320 x 200, also über 64. 000 einzelne Punkte haben. Und damit wird auch die

Anwendung der Hires-Grafik deutlich: überall da, wo große detaillierte

Figuren und Bilder gebraucht werden, wo viele einzelne Daten dargestellt

werden sollen oder um Funktionsgraphen auf dem Computer darstellen zu

können.

Will man aber zum Beispiel ein möglichst naturgetreues Gesicht auf den

Schirm bringen, gelingt das am besten nur mit aufwendigen Tools oder gar

mit Hardware-Hilfen wie einem sogenannten Scanner. Was kann man aber

ohne solche Hilfsmittel machen?

Um das zu klären und auch zu zeigen, ist wieder mal ein kurzer Abstecher

in die Binärrechnung nötig. Sie sehen schon: Diese Rechenart treffen wir so

sicher immer wieder wie bestimmte Gallier bestimmte Piraten.

Wir wollen aber keine Seeschlacht, sondern eine Formel finden, der wir

eine X- und eine Y-Koordinate übergeben und die uns dafür die entspre-

chende Adresse in der Bitmap liefert. Und da alle, denen Mathematik nichts

gibt, die nächsten Seiten sowieso überschlagen werden, so sei es ihnen

hiermit (seufz ...) auch erlaubt.

Ahal Da es keinen besonderen Mathematikergruß gibt, beglückwünschen

wir Sie hiermit zu Ihrem Mut. |

Allen, die sich, obwohl Sie nicht gut in Mathe sind, trotzdem hierher

vorgewagt haben, sei noch einmal besonders Trost zugesprochen. Sie sind

nicht allein! Nehmen wir uns also bei der Hand, gehen wir gemeinsam in das

Reich der Zahlen ein.

108 Hochauflösende Grafik

Nach alledem, was wir jetzt über den Bildschirm und den Hires-Speicher

wissen, kann die Y-Koordinate unseres Punktes nur zwischen O und 199

liegen. Alles, was darüber und darunter liegt, ware nur noch auf der Tastatur,

dem Zimmerboden oder der Decke zu lokalisieren. Die X-Koordinate unseres

Punktes muß zwischen O und 319 liegen, sonst würde sie die Zimmerwände

zieren. |

Als erstes Etappenziel während unseres Marathons zur Grafik setzen wir

uns am besten, zuerst mal die Spalte und die Speichereinheit (also den 8-

Byte-Block) zu lokalisieren. Das ist noch verhältnismäßig einfach. Da sowohl

horizontal wie auch vertikal ein Zeichen (also eine Speichereinheit) 8 Punkte

hat, müssen wir unsere X- und Y-Werte nur in 8er-Schritten runden. Warum

ausgerechnet 8er-Schritte? Ganz einfach: Eine Speichereinheit, also einer der

Blocks, aus der Hires aufgebaut wird, besteht aus 8 # 8 Punkten. Will man

einem Block eine Nummer geben, damit man ihn lokalisieren kann, muß man

eben in 8er-Schritten zählen. Und damit es genaue 8er-Schritte werden und

der Computer nicht rundet, muß der BASIC-Befehl INT dazu angegeben

werden (siehe auch BASIC-Kapitel).

Zeile=INT(Y/8): Spalte=INT(X/ 8)

Wenn Sie also den 64. Punkt in der 1. Zeile suchen, liegt der im 8. Zeichen

bzw. in der 8. Speichereinheit. Um auf die richtige Einheit zu kommen,

mussen Sie allerdings in Computermanier bei Null anfangen zu zahlen. Es ist

also eigentlich das 9. Zeichen gemeint. Der 65. Punkt liegt immer noch im 8.

Zeichen. Weil aber die Speichereinheiten, wie wir vorhin gesehen haben, von

oben nach unten aufgebaut werden, also reihenweise, fehlt_noch eine

Information zur genauen Lokalisierung. Wir müßten noch rauskriegen, in

welcher Reihe der Speichereinheit, d. h. in welchem Byte genau unser Y-Wert

liegt. Dazu brauchen wir den Restwert der Rundung. Um den zu erhalten,

schließt sich eine etwas kompliziertere Formel an.

REIHE=((X/8) - (INT(X/8))) #8

Wir ziehen also den gerundeten Wert vom Ganzen ab. Schreibfaulen und

Binärfreunden (z. B. Computern) sei hier verraten, daß

REIHE=Y AND 7

genau denselben Effekt hat. Über diese Art der Binärrechnung und der

Booleschen Algebra unterhielten wir uns im Zwischenspiel 3.

Ganz fertig sind wir aber immer noch nicht. Bleibt nämlich noch, das

Hochauflösende Grafik 109

richtige Bit zu treffen. Sollte Ihnen das alles etwas Schwierigkeiten machen,

dann empfehlen wir, noch einmal die Grafik über die Darstellung der Zeichen

im Sonderzeichenkapitel nachzuschlagen. Da läßt sich das auch mitverfolgen.

In hartnäckigen Fällen von Nichtverstehen helfen am besten 2 Aspirin und

etwas Ruhe.

Um unser Bit rauszupuzzeln, brauchen wir ebenfalls zunächst wieder den

Rest der Rundung.

Bit=7 —((X/8) —(INT(X/8)) *8

Das Ergebnis dieses Ausdruckes (die «überzähligen» Bits) müssen wir von 7

abziehen. Denn der Computer hat nicht nur seine eigene Art, Bits zu zahlen —

natürlich nicht von 1 bis 8, sondern von O bis 7 —, nein, er muß sie auch noch

rückwärts zählen. 1 Byte ist daher

1Bte=76543210

Wenn jetzt also das 4. Bit gesucht ist (Sie wissen schon: O, 1, 2, 3, 4— gemeint

ist natürlich das 5. Bit....), dann bringt uns die Formel 7 — 4 auf die Lösung.

Das ergibt nämlich 3. Und das ist auch das richtige Bit.

Auch hier ist der einfachere Weg die Boolesche Algebra. Die Lösung würde

lauten

Bit=7-(X AND 7)

Bevor Sie jetzt schluchzend zusammenbrechen, keine Sorge: Wir haben es

gleich geschafft. Jetzt brauchen wir nur noch die Formel:

Byte=8192+(Y AND 7)+(8x*1NT(X/8))+320x(INT(Y/8))

Das also ist die kürzeste Formel zur Berechnung eines Punktes in Hires.

Vielleicht verstehen Sie jetzt, was wir mit unkomfortabler Handhabung der

Hires-Page meinten ...

Um jetzt ein Bit in diesem Byte zu setzen, brauchen wir nur noch den Befehl

POKE(BY),PEEK(BY) OR 21 (7—(X AND 7))

Das OR in diesem Befehl ist ebenfalls eine Boolesche Verknüpfung. Wir

begrüßen übrigens auch die Leser aus nichtmathematischen Landen wieder

unter uns. Für alle Abtrünnigen also ein kurzes Resümee: Das Ergebnis

unserer Bemühungen ist die POKE-Zeile oben. Nicht erschrecken. Es sieht

schlimmer aus, als es ist. Alles, was Sie außerdem noch brauchen, ist die

Formel unmittelbar darüber, die die Adressen für die Bytes, also für den

110 Hochauflösende Grafik

Platzhalter «BY» in der POKE-Zeile errechnet. Wenn Sie diese beiden letzten

Zeilen miteinander verbinden, können Sie ein kleines Programm schreiben,

das für Sie immer die nötigen POKE-Werte errechnet. Andererseits steht

dieser Programm-Selbstentwicklung natürlich wieder die Verlockung eines

fertigen Listings im Anhang gegenüber. Was Sie jetzt tun, abschreiben oder

selbermachen, das überlassen wir Ihnen.

Noch ein Hinweis für alle, die wacker mitgekämpft haben. Sollten Sie das

alles nicht so recht verstanden haben, gibt es auch hier wieder eine einfache

Methode, sich aus der Affäre zu ziehen: Nehmen Sie das alles erst einmal hin.

Irgendwann später können Sie diesen Teil ja noch einmal lesen. Und dann

verstehen Sie es bestimmt.

Und jetzt ist der große Augenblick gekommen. Wir wollen unsere Kennt-

nisse zum erstenmal anwenden, und zwar, indem wir eine Sinuskurve plot-

ten. Wer sich das schon ohne Unterstützung zutraut, der sollte das jetzt tun.

Alle anderen dürfen wir in den Listinganhang bitten. Hier finden Sie das

notwendige Programm dazu. Da der Commodore eben keine Grafikunter-

stützung bietet, weichen wir hier ausnahmsweise etwas von unserem Kon-

zept, kein Tippbuch zu sein, ab und bieten Ihnen im Listinganhang eine Reihe

von Programmen, die die notwendigsten Grafikmöglichkeiten abdecken.

Wenn's Speicherprobleme gibt ...

Es könnte sein, daß die Bitmap manchmal ein BASIC-Programm stört oder

umgekehrt, weil zufällig beide denselben Speicherbereich brauchen. In die-

sem Falle helfen uns die Kenntnisse über die Speicheraufteilung aus der

Patsche.

Wir machen einfach auch hier das gelernte Spielchen. Gemeint ist, daß wir

den BASIC-Anfang hochsetzen — am besten hinter die Bitmap, also auf die

Adresse 16348. Eigentlich müßten Sie das ja schon selbst können. Aber für

alle, die zumindest den Willen hatten, unserem Mathe-Exkurs zu folgen,
wollen wir hier noch einmal einen kleinen Service bieten. In diesem Sinne:

I

POKE 44,64:POKE16348,0:NEW 5

Damit bleiben immer noch 24K für Ihr BASIC-Programm. Den Bereich von

2048 bis 8192 (also ca. 6K) könnten Sie anderweitig nutzen, beispielsweise

für Sprites, dazu mehr im nächsten Kapitel, oder für kleinere BASIC-Pro-

gramme (siehe Speicheraufteilung).

Hochauflösende Grafik 111

Noch ein Tip. Durch das Setzen des Anfangszeigers auf 8192 und des

Endzeigers auf 16348 können Sie die ganze Bitmap auf Diskette oder

Kassette speichern.

Wenn Sie gerade verzweifelt versuchen, POKE 44,8192 einzugeben, mus-

sen wir Sie leider noch einmal auf das Kapitel Speicheraufteilung verweisen,

wo Sie den richtigen POKE fiir diese Adresse finden.

Sie geben einfach ein

POKE 44,32

Ein NEW erübrigt sich in diesem Fall, da es die Bitmap verändern könnte. Jetzt

geben Sie wie gewohnt ein SAVE ein. Dabei müssen die BASIC-Endzeiger auf

ein BASIC-Programm über der Bitmap zeigen. Wollen Sie nur die Bitmap

abspeichern, setzen Sie das Ende auf 16348 mit

POKE 46,64

Diese Art stellt sicherlich den schnellsten und elegantesten Weg dar, Hires-

Grafiken abzuspeichern. Sie können dann auch wieder ganz normal mit

LOAD geladen werden.

Commodore macht's so bunt, bunter geht's nicht

Also, das muß man ja sagen: Mit Farbmöglichkeiten hat Commodore wirklich

nicht gegeizt. Zwei besondere Farbmodi gibt es noch im Zusammenhang mit

der Hires-Grafik. |
Da wäre zuerst einmal der Hintergrundfarbmodus (das ist eine freie

Übersetzung — das englische Original heißt Extended Background Color). Der

Zusammenhang dieses Modus mit der Hires-Grafik ist der, daß sich die

beiden nicht riechen können. Das heißt, Hires und er, das geht nicht. Oder

besser gesagt, er bringt im Hires-Modus soviel wie ein Blatt Zeitungspapier

vor dem Druck.

Dafür erweist er sich im normalen Textmodus als hübsche Erweiterung.

Eingeschaltet wird diese Hintergrundfarbe mit

POKE 53265,91

Haben Sie ihn erst mal an, heißt das auch Selbstbeschränkung. Denn dann

gibt es nur noch die Zeichen mit den Bildschirmcodes von 0 bis 63. Verglei-

chen Sie dazu auch Ihr Commodore-Handbuch auf Seite 133.

112 | Hochauflösende Grafik

Aber dafür können jetzt alle diese Zeichen vier verschiedene Hintergrund-

farben haben, die gleichzeitig auf dem Bildschirm dargestellt werden können.

Welche Farben das sind, können Sie frei von O bis 15 wählen. Bevor Sie jetzt

anfangen, das alles zu verstehen, schauen Sie sich Tabelle 6.1 an.

Bildschirmcode Farbadresse

Obis 63 = (normale Hintergrundfarbe) 53281

64 bis 127 = (SHIFT) 53282

128 bis 191 = (REVERSE) 53283

192 bis 255 = (SHIFT & REVERSE) 53284

Tabelle 6.1 Hintergrundfarbmodus

Wahrscheinlich stellt sich jetzt bei Ihnen mehr und mehr die Frage: Was soll

das alles? Keine Sorge - es ist alles gar nicht so kompliziert, wie es ausschaut.

Erst einmal klären wir zum besseren Verständnis, was überhaupt passiert.

Normalerweise können Sie beim Commodore ja vier verschiedene Schriftar-

ten darstellen, als da sind: NORMAL, SHIFT, REVERSE und zu guter Letzt

SHIFT & REVERSE gleichzeitig. Erinnern Sie sich noch ganz an den Anfang

dieses Buches? Da haben wir eine eigentlich ganz simple Sache erklärt: die

ASCII-Codes. Wenn Sie sich nicht mehr daran erinnern, blättern Sie noch mal

in der Vergangenheit. In unserer Buchgeschichte wäre das die TASTATUR-

ZEIT, auch PRÄTASTIÄR genannt, so in der Gegend um 4. n. V. (das heißt

vier nach Vorwort und heißt nach neuerer Kapitelrechnung 2).

Fein, wenn Sie jetzt also wieder wissen, was ASCII-Codes sind und wozu

der Computer sie braucht, dann dürfte der Rest nicht mehr schwerfallen. Um

die verschiedenen Schreibmodi voneinander zu unterscheiden, benutzt der

Computer natürlich wieder nur Zahlen, und zwar genau jene ASCII-Codes,

von denen wir gerade sprachen. Aber damit es nicht zu einfach wird, ist ein

kleiner Stolperstein eingebaut. Es wäre ja jetzt wirklich zu einfach, wenn die

ASCII-Codes den Zahlen entsprechen würden, die wir oben als ersteRubrik in

unserer Tabelle haben. Dem ist nicht ganz so: Die Zahlen der Tabelle sind

Bildschirmcodes. Diese Codes ergeben sich für den Computer aus den

gedrückten Tasten bzw. aus den ASCII-Codes, die die Tasten zurückwerfen.

Die ASCII-Codes werden umgewandelt und schließlich im Bildschirmspeicher

abgelegt. Findet der Computer jetzt in diesem Bildschirmspeicher den Wert 0,

Hochauflösende Grafik 113

so stellt er ein bestimmtes Zeichen im Modus NORMAL dar. Findet er den

Wert 64, so stellt er zwar dasselbe Zeichen dar, aber im SHIFT-Modus. Bei

128 ist's REVERSE und bei 192 SHIFT und REVERSE gleichzeitig. Übrigens

sind zur Freude aller Beteiligten alle genannten Zahlen selbstverständlich im

Speicher binär abgelegt.

Mittlerweile werden Sie — mit Recht - feststellen, daß das herzlich wenig

mit Farben zu tun hat. Der Trick dabei ist aber folgender.

Anstatt diese Bildschirmcodes wie bisher zum Unterscheiden der Darstel-

lungsarten zu benutzen, macht VIC daraus eben eine Art Farbspeicher. Er

stellt die Buchstaben statt REVERSE mit einer anderen Hintergrundfarbe dar,

die er in der Speicherzelle 53283 als Wert (von O bis 15) findet. Allerdings

kann er ab jetzt nur noch Großbuchstaben darstellen.

Nachdem wir jetzt offensichtlich klargemacht haben, was passiert, wollen

wir doch gleich mal diese positive Erfolgsstimmung ausnutzen, um zu erklä-

ren, was Sie machen müssen, damit Sie was davon haben. Sie könnten aber

auch selbst darauf kommen und so Ihren eigenen Wissensstand ein bißchen

überprüfen. Lesen Sie also nicht gleich weiter, sondern knobeln Sie erst mal

etwas.

Gut, jetzt wollen wir es aber erklären. Hier folgt also die Auflösung: Sie

können vier Farben gleichzeitig auf dem Bildschirm haben, weil es nur

maximal vier verschiedene Arten gibt, das gleiche Zeichen darzustellen.

Welche vier Farben das sind, können Sie aus 16 verschiedenen Angeboten

aussuchen. Wenn Ihre Wahl getroffen ist, speichern Sie die Werte der Farben

in vier Speicherzellen, und zwar in 53281, 53282, 53283 und 53 284. Um

dann die entsprechende Texthintergrundfarbe zu bekommen, drücken Sie

einfach die (SHIFT)-, die (REVERSE ON)- oder die (SHIFT/LOCK)- +

(REVERSE ON)-Tasten. Je nachdem, welchen Wert Sie in die einzelnen

Speicherzellen gePOKEd haben, ändert sich dann auch die Hintergrundfarbe

Ihres Textes. Aber bitte: Lesen Sie das nicht einfach alles durch. Probieren Sie

es aus. Dann wird es am schnellsten klar.

Und jetzt noch zwei Tips dazu.

Erstens: Immer, wenn Sie den Wert einer dieser «Farbspeicherzellen»

ändern, ändert sich auch alles auf dem Bildschirm, was in der alten Farbe

dastand, in die neue Farbe. Damit lassen sich ganz hübsche Effekte erzielen,

wenn man zum Beispiel den Text farbig blinken läßt. Wen es interessiert: Das

liegt daran, daß der Bildschirm ständig neu aufgebaut wird, also das Bild-

schirm-RAM neu gelesen und eine aktuelle Version auf den Schirm gebracht

wird.

114 Hochauflösende Grafik

Der zweite Tip: In Verbindung mit selbstdefinierbaren Zeichen ist dieser

ganze Farbmodus deshalb manchmal ganz vorteilhaft, weil Sie dann automa-

tisch nur die Codes O bis 63 kopieren und definieren müssen. Das geht

schneller und spart allerhand Speicherplatz, der sonst für die zwar normaler-

weise mitkopierten, aber nicht gebrauchten Zeichen benötigt würde. Sie

brauchen statt dessen für den Zeichensatz nur 504 Speicherzellen und

können ab 2560 (also mit POKE 44,10) wieder BASIC-Speicher anlegen.

Der wichtigere Vorteil ist aber, daß, wenn Sie die SHIFT-Funktion oder

REVERSE benutzen, trotzdem nicht zufällige Bitmuster auf den Schirm kom-

men, obwohl Sie diesen Teil der Zeichen nicht mitkopiert haben. Das würde ja

normalerweise passieren, wenn Sie den Zeichensatz nur teilweise kopieren

und VIC eine Lese-Start-Adresse im RAM angeben. Aber nicht vergessen:

Das alles geht nur im Textmodus. In Hires haben Sie leider nichts davon.

Deshalb gibt es auch (außer (RUN/STOP) + (RESTORE)) zwei Möglichkei-
ten, den Extended-Background-Color-Modus auszuschalten. Entweder nor-

mal mit |

| POKE 53265,27

oder durch das Einschalten der Hires-Seite. Die beiden sind wirklich wie ein

verkrachtes Ehepaar: «Kommst Du, dann geh’ halt ich!»

Für Hires wesentlich interessanter ist da schon der Mehrfarbmodus — vor

allem, weil er in gleicher Weise auf Zeichen, Hires und Sprites wirkt. Auch hier

wollen wir zuerst verraten, wie man ihn einschaltet.

POKE 53270,216

Sollten Sie gerade damit beschäftigt sein, diesen POKE im Textmodus auszu-

probieren, könnte es sein, daß Sie plötzlich Schwierigkeiten haben, den Text,

der da steht, noch lesen zu können. Aber keine Panik. Bevor Sie den

Augenarzt aufsuchen, schauen Sie noch mal genau hin. Mit einiger Mühe läßt

sich doch Textähnliches erkennen. (Wenn Sie nichts erkennen, wäre das mit

dem Augenarzt andererseits vielleicht doch nicht so schlecht :. .)

Sollte überhaupt nichts passieren, so ist das andererseits kein Grund, Ihren

Commodore in Reparatur zu geben. Wählen Sie statt dessen einfach eine

Zeichenfarbe über 7 — also alle Farben, die mit der (C=)-Taste gewähli
werden.

So, jetzt ist aber hoffentlich bei allen der Text nur noch schwer ZU

entziffern. Was ist also passiert?

Na, vielleicht fangen wir mit dem Unangenehmen zuerst an. Sie haben jetz

Hochauflösende Grafik 115

nur noch die halbe Auflösung. Das heißt, im Text nur mehr 4 x 8 Punkte pro

Schreibstelle. Damit erklären sich auch Ihre Leseprobleme. In der Grafik

haben Sie jetzt nur noch 160 x 200 Punkte zur Verfügung.

Jetzt das Angenehme. Sie können jetzt jedem einzelnen Punkt der Hires-

Grafik oder auch der Sonderzeichen eine von drei verschiedenen Farben

geben. Am besten erklären wir Ihnen gleich, wie das zustande kommt.

Normalerweise ist die niedrigste Auflösung immer ein Bit oder ein Punkt

gewesen. Weil jetzt aber auch noch die Information mit rein muß, in welcher
Farbe jeder Punkt dargestellt werden soll, und ein Bit nunmal nur 1 oder O

sein kann und damit unmöglich alle Informationen aufnehmen kann, wurde

auf die höchste Auflösungsstufe verzichtet. Damit besteht jetzt jeder «Punkt»

dieser Grafik tatsächlich aus zwei Punkten. Dadurch können die Bits, wie in

Tabelle 6.2 dargestellt, aussehen. Die Adressen, deren Inhalte geändert

werden müssen, sehen Sie in Tabelle 6.3.

Punkt Farbnummer

1, 00 | 0
2, 01 1

3, 10 2

4, 11 3

Tabelle 6.2 Bitmuster im Multicolormodus

Im Lores/Text-Modus ist zu ändern:

1, 53281

2, 53282

3, 53283

4, Farb-RAM ab 55296

und im Hires-Modus:

1, 53281

2, die Bits 7 bis 4 im Bildschirm-RAM

3, die Bits 3 bis O im Bildschirm-RAM

A, das Farb-RAM ab 55296
Tabelle 6.3 Farbadressen im Multicolormodus

116 Hochauflösende Grafik

Wenn Ihnen diese Zahlenkolonnen noch etwas dubios erscheinen, keine

Sorge. Wir wollen uns die ganze Geschichte zunächst einmal im Textmodus

ansehen. Zuerst geben Sie bitte ein

POKE53265,27: POKE53270,216

Im Textmodus — und das ist auch die Erklärung dafür, warum vielleicht be

Ihnen zunächst gar nichts passierte — ist der Mehrfarbmodus nur dann aktiv

wenn die Schriftfarben, die verwendet werden, größer als 7 sind — also, wie

schon gesagt, alle Farbtasten, die mit der (C=)-Taste erreicht werder

können. Wenn Sie einige Buchstaben schreiben, am besten auch ein paar ir

REVERSE, werden Sie am schnellsten erkennen, worum es eigentlich geht. Fi

die Schriftfarbe gibt es jetzt sowieso nur noch 8 Möglichkeiten: Wenn Sie

Farben mit der (CTRL)-Taste anwählen, scheinen sie normal. Wenn Sie

(C=) + eine Farbtaste drücken, sind Sie im Mehrfarbmodus. Die weiterer
Kombinationen probieren Sie am besten durch POKESs in die Adressen 53 281

bis 53283 aus. Bei der Verwendung von selbstdefinierten Sonderzeicher

lassen sich so tolle Effekte erzielen. Was wir darunter verstehen, probieren Sie

am besten mit einem Listing im Anhang aus. Bedenken Sie aber bei Ihrer

eigenen Entwürfen die vier möglichen Bit-Kombinationen.

Und jetzt zur Hires-Grafik. Wie Sie an der Tabelle erkennen können, läuf

es hier etwas anders. Geben Sie bitte folgendes kleine Beispielprogramm ein

10 POKE 53265,59: POKE 53272,24: POKE 53270,216

15 POKE 53281,6

20 FOR X=8192 TO 12352 STEP 8

30 FOR Y=0 TO 3: POKE X+Y,250:NEXT

40 FOR Y=4 TO 7: POKE X+Y,80:NEXT

50 NEXT X

60 FOR X=0 TO 511: POKE 10244+X,5: POKE 55296+X,7

70 NEXT

Das Programm schaltet zuerst in Hires- und Multicolormodus. Dann stellt e

einen halben Bildschirm voll Zeichen dar.

Als nächstes werden die Farben 0 (= Schwarz) und 5 (= Grün) nacl

folgender Formel in das Bildschirm-RAM gePOKEd: “

0*16+5=5

Also O in die obere Hälfte (damit der Computer das auch weiß, wird die Null j:

mit 16 multipliziert) und 5 in die untere Hälfte. Die 7 (= gelb) kommt danı

Hochauflösende Grafik 117

76543210
(250)

(80)

Bild 6.1 Zeichenmatrix Multicolor-Beispiel

ins Farb-RAM. Der Bildschirm ist bei alledem blau. Sie sehen jetzt auf einer

Schreibstelle vier Farben: Schwarz, Grün, Gelb, Blau. Benutzen Sie das

Programm zum Testen anderer Farbkombinationen. Die Zeilen 20 bis 50

können Sie, um Zeit zu sparen, löschen. Aber speichern Sie das Programm

zuerst! Noch ein Beispiel: Wenn Sie die Farben Blau, Rot, Weiß und Orange

gleichzeitig auf einer Schreibstelle haben wollen, müssen Sie ins Bildschirm-

RAM 6 * 16 + 2 (Blau + Rot) = 98, ins Farb-RAM 1 (= Weiß) und in die

Adresse 53281 den Wert 8 (= Orange) POKEn. Selbst auf die Gefahr hin,

daß wir Sie damit nerven: Auch hier gilt, nur lesen hat keinen Sinn. Probieren

Sie es ausl

Und noch einmal zur Erinnerung: Wenn Sie eigene, hochauflösende Mehr-

farbgrafiken probieren wollen, denken Sie an die vier möglichen Bitkombina-

tionen.

Das war's dann auch erst mal von unserer Seite zum Thema Hires-Grafik.

Natürlich sind da jetzt ganze Berge von POKEs und Informationen auf Sie

eingestürzt. Also lassen Sie sich jetzt mal ruhig etwas Zeit mit dem nächsten

Kapitel. Ausprobieren und üben ist der beste und sicherste Weg, schnell zu

lernen. Benutzen Sie auch die Programme zum Erstellen von Formen und

Figuren in Hires. Spielen Sie einfach ein bißchen. Hier gilt — wie überall im

Buch — das, was wir schon ganz am Anfang sagten. Eines kann Ihnen kein

Buch ersetzen: Die Erfahrung mit Ihrem System.

Und nach diesem ehernen Schlußwort vielleicht noch ein kleiner Tip.

Sollten Ihnen die Farbmöglichkeiten des Commodore nicht so viel Spaß

machen, denken Sie doch mal über die Anschaffung eines Farbfernsehers

nach...

Vergessen Sie trotz allem nicht, in ein paar Wochen Ihr Buch wieder

rauszuholen und weiterzulesen.

118 Hochauflösende Grafik

Zwischenspiel 4

nu

Da die letzten Kapitel doch ziemlich anstrengend waren, möchten wir Sie hier

zu einem kleinen Abenteuerurlaub einladen. Es bietet sich jetzt nämlich die

Gelegenheit, mit dem bisherigen Wissen und einer kleinen Portion Forscher-

geist an einer recht interessanten Sache teilzunehmen: Exklusiv — eine

Expedition durch den Dschungel des Commodore-Speichers.

Worum geht's? |
In diesem Zwischenspiel sollen zwei Themen, die wir bisher behandelt

haben, zusammengebracht werden: Die Speicheraufteilung und die hochauf-

lösende Grafik.

Im letzten Kapitel haben Sie gelernt, wo und wie man die Bitmap der Hires-

Grafik anlegen kann. Eine Möglichkeit haben wir dabei gleich wieder verwor-

fen, und zwar die, die Bitmap auf die Zeropage und den daran angrenzenden

Speicherbereich zu legen. Aus gutem Grund - denn es gibt Dinge zwischen

Tastatur und Platine, die man besser nicht versuchen sollte. Und dazu gehört

eben auch das Überschreiben der Zeropage. Da hier außerdem der Bild-

schirmspeicher und — normalerweise — Ihr BASIC-Programm liegt, ist der

Bereich von O bis 8192 für eine Hires-Bitmap tabu.

Andererseits hindert uns niemand daran, sich in diesem scheinbaren

Dschungel etwas umzusehen. Solange wir keine Rodungen hier veranstalten,

kann uns auch gar nichts passieren. Was also durchaus möglich ist, wäre, die

Hires-Grafik einzuschalten und die Bitmap von O bis 8000 anzulegen.-Denn

solange wir uns nach der Museumstaktik verhalten (Anschauen erlaubt —

Anfassen nicht), ist damit plötzlich die Möglichkeit eines Fensters in den

Commodore-Speicher da.

Mit |

POKE 53265,59:POKE 53272,16

Hochauflösende Grafik 119

läßt sich das alles bewerkstelligen. Und dann bringt uns unser guter Geist VIC

den Speicher als Hires-Grafik auf den Bildschirm. Jedes Bit im Speicher

entspricht dann einem Punkt dieser Grafik. Und schon haben wir die Mög-

lichkeit, unsere an und für sich sehr scheuen Freunde, die Bits, einmal auf

freier Wildbahn zu beobachten. Und das, ohne — wie die meisten Förster —

schon morgens um 3 Uhr aufstehen zu müssen. Aber vergessen Sie nicht: Wir

befinden uns in einem Wildbit-Park. Ehrensache, daß es bei einer Fotosafari

bleibt? Okay, dann alles einsteigen und ab in Richtung Urwaldexpedition.

Was einem zuerst auffällt, ist wohl, daß hier gerade Herbst zu sein scheint.

Obwohl das eigentlich gegen die Gewohnheit von Urwäldern ist. Der Grund

dafür ist recht einfach: Wie Sie ja wissen, wird im Hires-Modus der Bild-

schirmspeicher zum Farbspeicher umfunktioniert. Dabei dienen die oberen

vier Bits als Speicher für Vordergrund-, die unteren vier für die Hintergrund-

farbe. Da momentan unser Bildschirm-RAM leer ist, also mit lauter Leerstellen

(= Spaces) gefüllt ist, und diese Leerstellen den Code 32 haben, sieht eine

solche Zeile folgendermaßen aus:

BITNR.7 6 5 4 3 2 10

00100 0 0 0

Damit sind die ersten vier Bits gleich dezimal 2 und die hinteren vier Bits gleich

dezimal 0. Daraus folgt, daß die Hintergrundfarbe Schwarz ist (es wird Nacht

über unserem Speicher ...) und der Vordergrund Rot. Falls Sie eine andere

Farbe entdecken, haben Sie irgendeinen Text auf dem Bildschirm. Wenn Sie

gar keine Farbe entdecken, haben Sie wahrscheinlich einen Schwarzweißfern-

seher. |
Die Tastenkombination (SHIFT) + (CLR) macht dann alles wieder gut

(bei Farbfernsehern natürlich nur!).
Sie können den Bildschirmspeicher übrigens beobachten. Er liegt ungefähr

im zweiten Achtel Ihrer Hires-Grafik und besteht aus senkrechten Strichen.

(Das sind die 32er-Bits von vorhin, die immer an diese Stelle kommen, wenn

der Text-Bildschirm leer ist ...) Wenn Sie einige Tasten drücken, sehen Sie,

wie die Bitmuster sich ändern. Aber danach wieder aufräumen!

Unmittelbar vor diesem Speicherbereich liegt die Schlucht namens Kasset-

tenpuffer. Dieser Teil des Schirms ist gewöhnlich gähnend leer, also schwarz.

Es sei denn, Sie haben unmittelbar vorher mit der Datasette gearbeitet.

Jetzt wollen wir einen kleinen Abstecher in die linke obere Ecke machen.

Auf dem Weg dorthin können wir übrigens .einige Eingeborene beob-

achten.

120 Hochauflösende Grafik

Es sind die Bits von den Stämmen «Zeitvariable» und «Cursorsteuerung»,

die hier eine Art Tanz aufführen. Ihre Götter sind der Timestring oder der

Blinkzähler des Cursors. Und um diese bei guter Laune (bzw. beim aktuellen

Wert) zu halten, sind diese kleinen Bitianer ständig am Rumwuseln.

Ganz links oben aber, da blitzt und funkelt es nur so. Das sind die Schätze

des Königs 6510. Aber Vorsicht, wenn Sie nur etwas davon wegnehmen,

bricht das Reich zusammen. Dann vergeht lange Zeit, bis die Erlösung in Form

des «Großen Stromaus» kommt. (Bevor wir uns aber endgültig in das Reich

der Fantasy-Literatur verlieren: Technisch gesprochen sehen Sie hier die

Speicherzelle 1, die für die Verteilung von RAM- und ROM-Bausteinen unter

der gleichen Adresse zuständig ist. Weil VIC alle paar Millisekunden Zugriff

auf das Charakter-ROM und dergleichen haben muß, ist hier ständig Be-

trieb.)

Im ersten Viertel lagen also Zeropage und Bildschirmspeicher. Für die, die

keinen Kompaß haben, sei an dieser Stelle vermerkt, daß wir uns etwa bei der

Adresse 2048 befinden.

Danach entdecken Sie jetzt die Wüste RAMI. Eine riesige Landschaft, die

von Touristen auch BASIC-Speicher genannt wird. Erkennen kann man diese

Landschaft immer an relativ gleichmäßigen Mustern im zweiten Viertel des

Schirms. Beim Einschalten haben nämlich alle RAM-Chips mehr oder weniger

gleiche Bit-Muster. Es kann natürlich auch sein, daß ein Bautrupp der

Zivilisation in Form eines BASIC-Programms mittlerweile da war. Dann kann

diese Gegend natürlich ziemlich anders ausschauen. Auf jeden Fall wird es

erst mal chaotisch wirken, wie alle moderen Bauten in einer altehrwürdigen

Umgebung das halt tun.

In der zweiten Hälfte des Bildschirms steht — der Zeichensatz? Also ab

Adresse 4096. Aber das wurde doch vorhin anders erklärt, oder? _

Richtig. Der tatsächliche Zeichensatz liegt noch runde 50 KB entfernt. Aber

was Sie hier sehen, sehen Sie ja mit den Augen von VIC. Und wir haben ja

schon mehrmals darauf hingewiesen, mit welchen Methoden er reingelegt

wird. Statt eines Blicks in die freie Natur, muß VIC hier auf den Zeichensatz

schauen. Dank des Botschafters glaubt VIC nämlich, hier — ab 4096 — liegt

sein Zeichen-ROM. Nutzen Sie die Chance und sehen Sie sich die verschiede-

nen Zeichen an. Vielleicht entdecken Sie dabei ja einige Anregungen für Ihre

selbstdefinierten. Wenn Sie diesen Anblick genossen haben, bitten wir Sie,

wieder in den Bus einzusteigen. Durch Drücken von (RUN/STOP) &

(RESTORE) treten wir wieder die Heimfahrt an.

7

Sprites auf dem Commodore 64

Die Riesen-Super-Sonderzeichen

Es wäre mal wieder soweit: ein neues Kapitel, ein neues Glück. Mittlerweile

haben wir ja zusammen schon eine ganze Menge gemacht. Sie kennen sich

inzwischen ganz gut mit der Tastatur Ihres Commodore aus, alle, die es

vorher noch nicht konnten, haben noch ein Stück BASIC dazugelernt. Sie

wissen, wo was im Commodore-Speicher ist und was man damit alles

anfangen kann. Sie können eigene Sonderzeichen definieren und so bereits

bewegte Grafik machen. Wir haben zusammen ein Spiel mit eigenen Sonder-

zeichen programmiert, und auch die Hires-Möglichkeiten des Commodore 64

sind Ihnen mittlerweile kein Geheimnis mehr. Das ist doch insgesamt gesehen

ein ganzes Stück Arbeit, das wir da geschafft haben, nicht wahr?

Halt, halt, es hat keiner was von gemütlich zurücklehnen gesagt. Vor uns

liegen noch die Sprites, ein hübsches Spiel, Musik und Geräusche, Antworten

zu allen Fragen in bezug auf die Steuerung von Figuren mittels Joystick,

Paddles und Tastatur und die Handhabung von Diskettenstationen oder

anderer Peripherie.

Gehen wir also zuerst ans Nächstliegende. Das wären in unserem Fall die

Sprites. Als der Commodore auf den Markt kam, bot diese Möglichkeit keiner

der anderen günstigen Home-Computer. Erst jetzt kommen die Dinger in

Mode.

Normalerweise ist es bei Computern, die keine Sprites haben, gar nicht

einfach, bewegte Grafiken zu machen, die größer sind als ein Zeichen.

Entweder wurde das mit verschiedenen, kombinierten Sonderzeichen (und

gleichzeitig eindeutigen Zugeständnissen an die Erkennbarkeit) erreicht oder

es wurden munter drauflos Sonderzeichen definiert, die mittels ständigem

122 Sprites auf dem Commodore 64

Löschen und Neudrucken «bewegt» wurden. Und wenn keine dieser Mög-

lichkeiten funktionierte — nicht jeder Computer hat Grafikzeichen, und schon

gar nicht bei jedem Computer kann man sie so einfach verändern —, dann

blieb nur noch eins: Ein Objekt in Hires-Grafik zu entwerfen und dann

ebenfalls durch Löschen, Neuzeichnen, Löschen, Neuzeichnen usw. zu bewe-

gen — also eigentlich eine kleine Hires-Grafik in einer großen Hires-Grafik zu

bewegen. Mal abgesehen von einer nicht ganz unkomplizierten Handhabung

der genannten Methoden, kommen noch einige ganz handfeste Nachteile

dazu. Erstens haben alle drei Arten die Eigenschaft, beim Löschen der

Sonderzeichen oder Grafiken auch gleich den Hintergrund mitzulöschen. Sie

lassen es nicht zu, auf zwei Ebenen zu arbeiten. Also geht es nicht, eine

Hintergrundebene und eine Spielfigurebene zu definieren und dann die Figur

unabhängig davon zu bewegen.

Nur verliert nun mal jeder Spielhintergrund an Wirkung, wenn der Spieler

bei seiner Wanderung ein Riesenloch hinterläßt. Um etwas gegen diese

schwarzen Löcher zu unternehmen, braucht man also eine geeignete

Methode, die dann auch noch richtig ausgeführt werden muß. Die Lösung

kann eigentlich nur darin bestehen, den Hintergrund wieder neu zu zeichnen.

Aber das kostet wieder Zeit — genauso, wie das Zeichnen der Grafik, je

komplizierter sie ist, entsprechend mehr Zeit kostet. Und je mehr Zeit das

kostet, um so schwieriger ist es, die Illusion, die hinter aller Computeranima-

tion steht, aufrechtzuerhalten. Denn, wenn der Spieler sieht, wie sich ein

Zeichen nach dem anderen erst aufbaut, wird es verständlicherweise etwas

schwieriger für ihn, sich als Kommandant eines Raumschiffes zu fühlen, von

dessen geschickter Verteidigung es abhängt, ob die gute alte Mutter Erde

noch ein paar Drehungen vor sich hat oder nicht. Vor allem ist es natürlich so,

daß jede außerirdische Invasion entschieden an Schrecken verliert, wenn sich

die feindlichen Raumschiffe mit der Geschwindigkeit einer gut ausgebildeten,

besonders talentierten Rennschnecke über den Bildschirm bewegen.

Damit wären die meisten, die «nur» BASIC können, auch schon wieder aus

dem Rennen, wenn es um tolle Spielideen geht. Einfach weil diese Sprache

unter normalen Umständen zu langsam für ein richtig fixes Spiel ist. Und

genau in diesem Problembereich setzen die Sprites an. Mit ihnen wird das

alles nämlich plötzlich wunderschön leicht. Vorausgesetzt, man versteht, wie

die Sprites funktionieren. Genau das sollen Ihnen unsere nächsten Abschnitte

vermitteln.

Sprites auf dem Commodore 64 123

Ab hier können Ihnen bis zu 8 Steine vom Herzen fallen

Warum ausgerechnet 8 Steine? Nun, das liegt daran, daß Sie mit Ihrem

Commodore achtmal um so aufwendige Methoden zum Entwickeln eines

Computerspiels herumkommen, weil Ihnen nämlich 8 Sprites zur Verfügung

stehen, die gleichzeitig auf dem Bildschirm sein können. Und mit einer

Kombination aus Sprites, Grafik- und Sonderzeichen müßten Sie eigentlich

jede Spielidee verwirklichen können. Wofür sind sie nun aber da, diese

freidefinierbaren Figuren, wie schauen sie aus und wie sind sie aufgebaut?

Also gut — Sie wollten es ja wissen: Vorhang auf. Die Charaktere sollen

vorgestellt werden. Hauptdarsteller und Held dieses Stückes ist: der Sprite.

Er sieht nicht gerade aus wie Clark Gable (sollten Sie ein männlicher Leser

sein, setzen Sie statt Clark Gable bitte Marylin Monroe oder so ein), die Figur

ist eher etwas untersetzt und besteht aus 24 x 21 Punkten. Eigentlich ist er

ein kleiner Hires-Bildschirm, den Sie auf dem Bildschirm bewegen können.

Natürlich können Sie auch den großen Bildschirm bewegen. Vorausgesetzt,

Sie sind kräftig genug und lassen ihn nicht fallen. Vergessen Sie aber nicht das

Wortchen «frei definierbar», darin liegt's nämlich. Solange Sie ihm kein Leben

eingehaucht haben, ist er im wahrsten Sinne des Wortes ein etwas farbloser

Geselle. Und wenn Sie ihn auf die Röhre, die für ihn die Welt bedeutet (sprich

Ihren Bildschirm), holen, ohne ihn vorher geformt zu haben, dann sehen Sie

folglich auch nichts. Deshalb können Sie so ziemlich alles aus ihm machen,

was in die 24 x 21 Punkte paßt. Der Sprite ist eine kleine Hires-Grafik, die Sie

einfach bewegen können. Bevor wir uns aber jetzt unserem geplanten Drama

zuwenden, sollten wir vielleicht noch kurz sagen, wie er auf dem Bildschirm

dargestellt wird. Unser kleiner Star besteht aus 63 Bytes. Am besten stellen

Sie sich das so vor, wie auf Bild 7.1 zu sehen.

Eine solche Skizze sollten Sie immer in ausreichender Menge greifbar haben,

wenn Sie mit Sprites arbeiten. Da kann man sie nämlich am besten entwerfen.

Um Ihnen das etwas zu erleichtern, finden Sie im Listinganhang eine Seite,

auf der diese Skizze leer dargestellt ist. Am besten, Sie kopieren sich diese

Seite entsprechend dem Bedarf. (Übrigens wären wir Ihnen dankbar, wenn

das alles bliebe, was Sie kopieren. Alles andere ist geschützt und darf, selbst

auszugsweise, nur mit der schriftlichen Genehmigung des Verlages vervielfäl-

tigt werden. Ganz egal, wofür. Okay? Na prima.) Wie Sie dann mit dieser

Skizze arbeiten sollen, ist wahrscheinlich klar: Jeder Punkt, der erscheint bzw.

an ist, sollte hier eingetragen werden. Daraus ergeben sich dann die (wer

hätte das gedacht?) zu POKEnden Werte für den Sprite.

124 Sprites auf dem Commodore 64

Byte 1 Byte 2 Byte 3

765432107654321076543210 ~

)

W
O
N
A
U
A
R
W
N
 =

> 21 Ze

Byte 61 Byte 62 Byte 63

Bild 7.1 Leere Spritematrix

Haben wir erst mal einen Sprite definiert, übernimmt der gute VIC für ı

all die lästigen Arbeiten des Zeichnens und Löschens. Scheint doch ge

brauchbar zu sein, oder?

Natürlich ist klar, daß die 63 Bytes, aus denen ein Sprite besteht, au

irgendwo ein Zuhause haben müssen. Denn außer in Frankreich ist es w«

nirgends romantisch, ein Obdachloser zu sein. Und weil wir ja die geistig

Eltern der Dinge sind, die wir im Speicher unseres Computers aufbau«

haben wir uns gefälligst auch um geeignete Übernachtungsmöglichkeiten

kümmern. | |

Aber das war jetzt genug an Vorwissen. Das Spiel möge beginnen.

Sprites auf dem Commodore 64 125

1. Akt: Wie macht man einen Star

Mit Star meinen wir natürlich unseren Sprite. Anhand der Skizze von vorhin

und der Punkt-an-/Punkt-aus-Erklärung haben Sie bestimmt schon selbst

gemerkt, daß ein Sprite durchaus mit den selbstdefinierten Zeichen zu

vergleichen ist. Einer der großen Unterschiede ist allerdings: Wir haben nicht

mehr nur 8 * 8, sondern 24 x 21 Punkte zur Definition.

Haben wir einst bei den Sonderzeichen ein kleines Auto (im Zeichen der

Zeit wahrscheinlich einen Kleinwagen aus Turin) zusammengebaut, könnten

wir ja jetzt die Fertigung auf ein größeres Modell umstellen — vielleicht eines

der Prachtstücke aus Stuttgart, Untertürkheim. In jedem Fall soll es ein

mustergültiger Luxuswagen werden, wie ihn die Bosse der großen Werbe-

agenturen immer fahren. Es könnte beispielsweise so aussehen, wie auf Bild

7.2.

Auch hier sind wir, wie im Frankfurter Westend, natirlich erst mal dazu

gezwungen, einen geeigneten Parkplatz zu finden. Und da wie dort sind die

meisten Platze schon besetzt. Steht der Platz einmal fest, ist klar, wie wir

765432107654321076543210

W
O

O
N

D
O

B
W
H
N
Y
 =

Bild 7.2 Spritematrix «Grofes Auto».

126 Sprites auf dem Commodore 64

dahin kommen: Sie müssen die Bitmuster ausrechnen und byteweise in den

Speicher POKEn. Wir raten hier, am besten das Umrechnungsprogramm zu

benutzen, das Sie im Listinganhang schon beim Thema Speicheraufteilung

fanden. Aber bevor wir einparken, brauchen wir einen Parkplatz.

Wir haben im Laufe des Buches immer wieder darauf hingewiesen, daß VIC

nur 16K-Speicher gleichzeitig adressieren kann. Wohin also innerhalb dieses

Bereiches mit den Daten für die Sprites? Die Zeropage zu benutzen, wäre

ungefähr so, als ob Sie mitten im Halteverbot vor der Polizeiwache parken

würden. Ehe Sie sich's richtig versehen, sind Sie schon abgeschleppt worden,

und es gibt hinterher Riesenärger. Denn genauso wie die Polizei würde es uns

der 6510 sehr übelnehmen, wenn wir seine Autorität nicht berücksichtigen

würden. | ;
Aber in der Nähe der Zeropage gibt es tatsächlich ein paar freie Adressen,

die wir nutzen könnten. Da für einen Sprite immer 63 Byte gebraucht

werden, bieten sich die Unterkunftsmöglichkeiten an, die Sie aus Tabelle 7.1

ersehen können.

Speicherbereich Spritenummer Anmerkung

704 bis 766 11 | Freie Bytes

832 bis 894 13 Kassettenpuffer

896 bis 958 14 (ist frei, wenn

960 bis 1022 15 Datasette nicht
— | | benutzt wird)

2048 bis 4095 32 bis 63 — _ BASIC-RAM

8182 bis 16383 126 bis 255 (Sie können BASIC

. ja verschieben!)

| Tabelle 7.1 Speicherbereich für Sprites

Womit auch unsere Parkplatzsuche gelöst wäre, als ob wir eben ein völlig neı

erbautes Parkhaus entdeckt hätten. Die Speicherzellen 4096 bis 8191 sin«

nicht für Sprites verfügbar. Das hängt wieder einmal damit zusammen, dal

unser kleiner VIC belogen und betrogen wird und deshalb denkt, hier se

etwas ganz anderes im Speicher.

Wahrscheinlich werden Sie gerade verwundert die Tabelle oben anschaue:

und sich fragen, warum wir die ganze Zeit von 8 Sprites reden, abe

Sprites auf dem Commodore 64 127

Spritenummern von O bis 255 angeben. Nein, wir müssen Sie leider enttäu-

schen. Es bleibt bei den acht Sprites — zumindest bei den acht Sprites, die

gleichzeitig auf dem Bildschirm sichtbar sind. Allerdings hindert Sie niemand

(nicht einmal der 6510, der sonst eifrigst darauf bedacht ist, kein bißchen

Boden an VIC zu verlieren) daran, bis zu 255 Sprites im Speicher zu haben. Sie

können jeden Sprite, den Sie im Rahmen des Spieles nicht mehr (oder auch

gerade nicht) brauchen, durch einen anderen ersetzen und dann den anderen

wieder zurückholen oder ihn wieder durch einen neuen ersetzen — so lange,

bis Sie alle 255 durchhaben.

Die nächste Frage, die wir beantworten sollten, ist wahrscheinlich die nach

dem Sinn der angegebenen Spritenummern. Die Antwort ist ganz einfach: Ein

Sprite braucht eigentlich nur 63 Bytes. Nun hat der Computer ja die Ange-

-wohnheit, notgedrungen, alles in Zweierpotenzen darzustellen. 63 ist zwar

eine rundum schöne Zahl, aber leider keine Zweierpotenz. Weil unser Com-
modore aber in dieser Hinsicht kein Pardon kennt, macht er kurzerhand 64

daraus und schenkt sich dann das eine Byte. Schon ist die Welt wieder in

Ordnung. (Ein System, das sich auch in der Politik großer Beliebtheit erfreut.)

Aus dieser Rechnerei ergibt sich dann, daß Sprite O von O bis 62 liegen

würde, Nummer 1 von 64 bis 126, Nummer 3 von 128 bis 190 usw. Sprite

Nummer 255 liegt demnach von Speicherzelle 16320 bis 16382. Wenn Sie

mal die Startadresse eines Sprites suchen (und wir könnten uns vorstellen,

daß das nach Ende dieses Kapitels des öfteren der Fall sein wird), dann gilt

folgende kleine Formel:

Startadresse = Spritenummer * 64

Womit wir Sie auch über den Sinn der Spritenummern aufgeklärt hätten.

(Merken Sie was? Wir kommen ganz schön voran.)

So, wenn wir also unser Auto unter der Spritenummer 13 einparken wollen,

steht dem jetzt nichts mehr im Wege. Nach der Formel liegt die Adresse ab

832. Da sich hier der Kassettenpuffer befindet, ist unser Auto auch einiger-

maßen sicher. Das heißt, es wird nicht mit BASIC zusammenstoßen und

ziemlich sicher ohne größere Dellen wieder auf dem Bildschirm erscheinen.

Das folgende BASIC-Programm baut unser Auto zusammen:

10 FOR X=1T062:READA:POKE 832 +X,A:NEXT X

20 DATA 0,0,0 -

30 DATA 0,0,16

40 DATA 0,0,16

128 Sprites auf dem Commodore 64

50 DATA 0,0,8

60 DATA 0,254,8

70 DATA 1,147,8

80 DATA 2,146,136

90 DATA 4,146,72

100 DATA 127,255,252

110 DATA 194,16,66

120 DATA 194,22,78

130 DATA 159,16,78

140 DATA 224,144,178

150 DATA 127,255,252

160 DATA 31,0,124

170 DATA 14,0,56

180 DATA 0,0,0

190 DATA 0,0,0

200 DATA 0,0,0

210 DATA 0,0,0

220 DATA 0,0,0

Na, geschafft? Prima. Ganz hübsche Tipperei, was? Aber das Programm sieht

umfangreicher aus, als es ist. Das liegt aber nur daran, daß wir für jede Zeile

des Sprites eine neue DATA-Zeile aufgemacht haben. So erschien es uns ein

bißchen übersichtlicher. Sie können dann die einzelnen DATA-Werte nach-

rechnen und überprüfen. Dabei merken Sie auch gleich, wie sich@r Sie noch

beim Umrechnen von Binär in Dezimal sind. Wenn also für Ihren Geschmack

zu viele Zeilen im Programm sind, dann können Sie ruhig immer so viele

DATAs zusammennehmen, wie in eine Programmzeile passen.

Jetzt ist der große Moment gekommen: Unser mühsam erarbeiteter Star

soll die Bühne betreten. Wir haben ihn gemacht, ihn zu seiner Vollendung

geführt. |

Wir starten also das Programm mit RUN.

Wir sehen, daß wir nichts sehen. Geht auch nicht. Denn jetzt folgt erst der

zweite Akt. Unser Star ist zwar jetzt da (das hat das RUN bewirkt), aber er

kann noch nicht die Bühne betreten. Es fehlt noch etwas Entscheidendes.

Sprites auf dem Commodore 64 129

2. Akt: Wie bringt man einen Star auf die Bühne?

Nenn Sie vorhin RUN eingegeben haben, ist Ihnen vielleicht aufgefallen, daß

2s einen kurzen Augenblick dauerte, bevor die READY-Meldung erschien.

Jaraus ergibt sich natürlich die naheliegende Vermutung, daß unser Commo-

lore in dieser Zeit nicht etwa dasaß und Däumchen drehte, sondern offen-

iichtlich mit irgend etwas Ernsthafterem beschäftigt war — womit, können Sie

ich eigentlich denken: Er hat unseren Star zusammengebastelt und dann

rgendwo hinter dem Vorhang abgestellt. Und das ist auch der Grund, warum

wir ihn noch nicht sehen konnten. Denn in diesem Speicherbereich, wo er

etzt ist, würde er bis in die Puppen bleiben, wenn wir ihm nicht beibringen,

vie so ein richtiger Star wie ein Sprite auf die Bühne zu kommen hat. Dazu

yereitet man am besten zuerst die Bühne vor. Das heißt für uns, wir setzen die

tegister von VIC. Da ist zunächst einmal die Adresse 53269. Sie ist dafür

uständig, welche Sprites gerade an- und welche gerade ausgeschaltet sind.

/IC kann bis zu 8 Sprites gleichzeitig darstellen. Also entspricht jedes Bit in

ler Speicherzelle 53269 genau einem Sprite.

53269 = Sprte7-6 54 32 10

Nenn ein Bit gesetzt ist, ist der entsprechende Sprite eingeschaltet. Das heißt,

ınser Star kriegt in der Garderobe die Meldung: «Sprite Nummer 5 fertig zum

\uftritt.» Mit folgendem Befehl können Sie Sprites einschalten:

POKE 53269,PEEK (53269) OR2A SPRITE

Vobei SPRITE eine Zahl von O bis 7 ist. Um unser Auto einzuschalten, reicht —

veil noch kein anderer Sprite eingeschaltet ist, der sonst aus Versehen

’elöscht werden könnte - eine etwas einfachere Version:

POKE 53269, 1

Jamit wird Sprite 1 eingeschaltet. Warum das untere leichter als das obere

usschaut, liegt größtenteils an einem Herrn mit Namen Boole. Sollte Ihnen

as kein Begriff sein, haben Sie wahrscheinlich unser Zwischenspiel 3 über-

chlagen, wo wir den Versuch unternommen haben, die mathematischen

ünste von Herrn Boole dem Publikum etwas näherzubringen. Sie können

ern noch mal zurückblättern! Ausschalten können Sie das Ganze übrigens

)lgendermaßen:

POKE 53269,PEEK(53269) AND (255-2 ASPRITE)

130 Sprites auf dem Commodore 64

Auch hier ist SPRITE wieder ein Wert zwischen O und 7.

Sie sollten das aber nicht unbedingt gleich ausprobieren!

Wir gehen also weiterhin davon aus, daß Sie Ihren Sprite eingeschaltet

haben und daß Sie immer noch nichts von ihm sehen können. Das ist auch

ganz richtig so. Als nächstes will VIC nämlich wissen, ab wo er Ihren Sprite

lesen soll. Die Zeiger, die ihm das sagen, liegen recht raffiniert. Sie erinnern

sich ja vielleicht daran, daß das Bildschirm-RAM genau 1K groß ist. 1K ist

gleich 1024 Zeichen. Aber ein voller Bildschirm faßt nur 1000 Zeichen. Womit

24 Bytes übrigbleiben, die geschickterweise auch noch genau in diesem von

VIC adressierbaren Bereich liegen. Ab Adresse 2040 liegen also die Künstler-

garderoben. Ab hier kann VIC die einzelnen Sprites aufrufen. Der Zeiger für

einen ganz bestimmten Sprite kann mit der Formel: |

Zeiger = 2040 + Sprite

errechnet werden. Für unser Auto brauchen wir die erste Adresse, also 2040.

Unser Sprite hatte die Nummer 13, liegt also im Speicher ab Adresse 832.

(Beachten Sie dazu auch die Tabelle 7.1.) Deshalb ist unsere Eingabe:

POKE 2040,13

Womit der Zeiger auf die richtige Adresse gesetzt wäre.

So, jetzt haben wir es aber bald geschafft. Wir sind nämlich bei der letzten

Information angelangt, die VIC braucht, um unseren Star auf seinen Auftritt

vorzubereiten. Und zwar ist das die Stelle, an der er erscheinen soll. Probieren

Sie am besten mal die Gegend von 100 bis 150 auf dem Bildschirm:

POKE 53248,100:POKE 53249,150

Und jetzt ist es soweit.

3. Akt: A Star is born

Jetzt müßten Sie ein weißes Auto auf dem Schirm sehen. Wenn nicht, prüfen

Sie noch einmal genau nach, ob Sie auch alles so gemacht haben, wie Sie es

gelesen haben. Wenn das alles stimmt, aber Sie trotzdem nichts erkennen

können, dann sollten Sie ernsthaft anfangen, sich Gedanken über Ihren

Commodore oder Ihren Optiker zu machen — allerdings nur unter der

Voraussetzung, daß Ihr Monitor eingeschaltet war ...

Sprites auf dem Commodore 64 131

Wenn jetzt alles stimmt, können wir uns dem nächsten Teil zuwenden: der

bühnengerechten Bewegung unseres Stars. Stellen wir uns mal vor, wir

möchten gern, daß unser Star (momentan ist er ja ein Auto) in irgendeine

Richtung losfährt.

Sollten Sie sich übrigens nicht daran gewöhnen können, daß wir die ganze

Zeit von Star reden, aber eigentlich ein Auto meinen, dann denken Sie mal an

Walt Disney's verrückten Käfer Herbie. Der war ja auch ein Star unter den

Autos.

Und bei Sprites ist noch etwas zu bemerken. Es gibt nur wenige wirklich

gute Stars, bei uns genau 8 Stück. Und diese Stars werden immer so

geschminkt, daß sie praktisch jede Rolle spielen können. Was wir damit

meinen, ist einfach, daß der Sprite in Ihrem Computer tatsächlich immer einer

der acht vorhandenen ist. Er transportiert nur eben mal das eine, dann das

andere Bitmuster über Ihren Schirm. Gut. Zurück zum Thema. Folgende

kleine Zeile macht unser Auto mobil:

10 FOR X=1T0255:POKE53248,X:NEXT

Wenn Sie das Programm starten, werden Sie auch schnell sehen, mit welchen

einfachen Mitteln man durch Sprites bereits sehr eindrucksvolle Effekte

erzielen kann. Und was lernen wir aus der letzten Programmzeile? Richtig, die

Speicherzelle 53248 scheint für die horizontale Bewegung zuständig zu sein.

Wenn Sie diese Zahl in Ihrem Programm durch die nächsthöhere ersetzen

(also 53249), sehen Sie, daß sich die Sache sofort ändert. Plötzlich geht es

nicht mehr von links nach rechts, sondern von oben nach unten.

Sollte Ihr Auto plötzlich vom Schirm verschwunden sein, dann ist das ganz

normal. Mit POKE 53249,150

holen Sie es wieder zurück.

Noch etwas: Sobald Sie (RUN/STOP) + (RESTORE) drücken, schicken

Sie Ihren Sprite wieder in die Künstlergarderobe. Das heißt, er wird dadurch

ausgeschaltet.

Um ihn dann wieder herzuholen, müssen Sie die Register von VIC wie

gerade beschrieben neu setzen.

Jetzt sollten wir Ihnen aber vielleicht die Bühne noch ein bißchen besser

erklären. Wie ist das jetzt ganz genau mit diesen Bewegungskoordinaten?

Sollten wir es noch nicht erwähnt haben: Ihr Sprite ist eine kleine Hires-

Grafik aus 24 *» 21 Punkten. Unser ganzer Hires-Schirm besteht aber aus

320 * 200 Punkten. Mit den POKEs 53248 für die X- und 53249 für die Y-

132 Sprites auf dem Commodore 64

Koordinaten können Sie den Sprite auf Ihren Bildschirm bringen, und zwar

aufs i-Pünktchen genau. Allerdings entsprechen die Werte, die gePOKEd

werden, nicht genau den Bildschirmkoordinaten. Das wäre ja auch wirklich zu

einfach gewesen.

Das heißt also, daß 0,0 nicht genau die linke obere Ecke ist, sondern für den

Sprite bereits «außerhalb» des Bildschirms. Tatsächlich entsprechen die Werte

24 und 50 der Grundposition. Mit kleineren Zahlen können Sie Sprites auch

über den Rand hinaus darstellen. Und damit Ihr Fernseher von diesen

Versuchen keine Dellen kriegt, ist man bei Commodore dazu übergegangen,

den Sprite dann einfach «verschwinden» zu lassen. Das heißt, Sie sehen nur

noch so viel von ihm, wie die Koordinaten, seine Größe und der Bildschirm-

rand es zulassen.

Der untere Rand entspricht bei alledem übrigens einem Y-Wert von 229.

Aber wie auch immer Sie Ihren Sprite setzen wollen, ein kleines Problem

bleibt. Ä

Vielleicht können Sie es sich schon denken. Wenn der Bildschirm eine

horizontale Auflösung von 320 Punkten hat und eine Speicherzelle für diese

Position zuständig sein soll, dann werden Sie auf Schwierigkeiten bei der

Koordinatenangabe stoßen. Na, wissen Sie jetzt, was wir meinen?

Die größte Zahl, die ein Byte darstellen kann, ist ja bekanntlich 255, weil

nämlich 8 Bits «an» (also maximal 8mal eine 1 in einem Byte) umgerechnet

nur 255 ergeben kann, nicht mehr und nicht weniger. Was aber ist mit den

Koordinaten, die darüber liegen?

Auch hier gibt es einen Trick. Allerdings gilt für ihn genau das, was auch für

die meisten anderen Tricks zutrifft: Er macht alles etwas komplizierter.

Na, wir wollen mal versuchen, es zu erklären.

Im Grunde bleibt alles beim alten. Maximum für ein Byte sind 8 Bit.

Deshalb muß das 9. Bit ja auch in eine eigene Speicherzelle. Und wenn das 9.

Bit unserer Speicherzelle, die für einen bestimmten Sprite verantwortlich ist,

«an» ist, dann weiß der Computer: «Aha, ich muß nicht ganz vorne, sondern

bei 255 zu zählen anfangen.»

Das 9. Bit wirkt also so ähnlich wie die (SHIFT)-Taste an der Tastatur.

Wenn Sie (SHIFT) und (A) gleichzeitig drücken, dann ergibt sich daraus ein

anderer ASCII-Wert, als wenn Sie nur (A) dgücken. Sie können es aber auch

mit dem High-Byte/Low-Byte-Prinzip vergleichen, das wir Ihnen an anderer

Stelle erklärt haben. Jetzt ist natürlich noch interessant, wo dieses 9. Bit

eigentlich ist. Die Speicherzelle ist 53264.

Sprites auf dem Commodore 64

Adresse X-Koordinate Sprite-Nr.
53248 X-Koordinate 0

53250 X-Koordinate 1
53252 X-Koordinate 2

53254 X-Koordinate 3

53256 X-Koordinate 4

53258 X-Koordinate 5

53260 X-Koordinate 6

53262 X-Koordinate 7

53264 9. Bit der X-Werte

fiir alle Sprites

Adresse Y-Koordinate Sprite-Nr.

53249 Y-Koordinate 0

53251 Y-Koordinate 1

53253 Y-Koordinate 2

53255 Y-Koordinate 3

53257 Y-Koordinate 4

53259 Y-Koordinate 5

53261 Y-Koordinate 6

53263 Y-Koordinate 7

Tabelle 7.2 Spritekoordinaten

Mit

POKE 53264, 1

verschieben Sie deshalb die X-Koordinaten um 255 Positionen nach rechts.

Und nun können Sie ab dieser Stelle normale X-Werte POKEn. Um aber bei

dieser ganzen Operation auch noch Platz zu sparen, wurden alle 9er-Bits aller

Sprites in einem Byte zusammengefaßt. Das spricht mal wieder für die

Findigkeit der Commodore-Leute.

Speicherzelle 53264:

9. Bit der X-Koordinaten von Sprite7 6 5 4 3 2 1 O

Um unser Auto also über den ganzen Bildschirm zu bewegen, wäre folgendes

Programm nötig:

134 Sprites auf dem Commodore 64

‘5 POKE 53269,1:POKE 53249,100

10 POKE 53264,0

20 FOR I=0 TO 350

30 X=I

AO IF 1)255 THEN X=1-255:POKE 53264, 1

50 POKE 53248,X

60 NEXT |

Die Koordinaten der anderen 7 Sprites liegen hinter denen des 1. Sprites. In

Tabelle 7.2 noch einmal eine kleine Ubersicht tiber die Speicherzellen, die fiir

unsere Sprites wichtig sind.

So, jetzt dürften Sie eigentlich keine Probleme mehr haben, mit Sprites auf

dem Bildschirm zu spielen. Und weil das jetzt so schön war, schauen wir uns

die anderen Funktionen auch gleich an. Das gehört jetzt aber schon zum

nächsten Akt unter das Thema Kosmetik und Maske.

4. Akt: Der Star und sein Kostüm

Jeder Sprite hat beispielsweise eine eigene Farbadresse. So ist es kein Pro-

blem, zum Beispiel aus zwei erst mal äußerlich völlig gleichen Sprites bei

einem Spiel ein grünes (gutes) Waldmännchen und ein rotes (böses) Feuer-

männchen zu machen. Diese Farbadressen finden Sie übrigens ab der Adresse

53287. Damit Sie wissen, wohin Sie Ihre Farbpost schicken sollen: Mit einem

POKE53287 + (Sprite O-7),Farbnummer

können Sie sich alles farblich so zusammenstellen, wie es Ihnen gefällt.

Wenn wir beispielsweise unseren Straßenkreuzer geklaut hätten, täten wir

gut daran, ihn möglichst bald umzulackieren. War er vorher weiß, so macht

ein |

POKE 53287,10

ihn rot. (Aber nicht etwa vor Scham, wegen der Klauerei .. .)

Ubrigens: Da wir gerade beim Auto-Tuning sind, versuchen Sie doch

gerade mal

POKE 53271,1

Wie Sie sehen, können Sprites horizontal vergrößert werden. Sollten Sie

Sprites auf dem Commodore 64 135

nichts sehen, könnte es daran liegen, daß Ihr Commodore defekt ist — oder

‚daß Sie vielleicht gar nicht mittippen?

Mit einem

POKE 53277 ,1

geht dasselbe in vertikaler Richtung.

Sprites können also in einer oder zwei Richtungen gleichzeitig vergrößert

werden.

Diese Geschichte funktioniert natürlich auch bei dem Rest der Bande. Nur

weil diesmal die zuständigen Bits etwas weiter hinten im Byte liegen, müssen

wir wieder einmal unseren Meister Boole mit ins Boot ziehen:

POKE 53271,PEEK(53271) OR 2, (Sprite)

POKE 53277,PEEK(53277) OR 2, (Sprite)

Nur noch mal zur Erinnerung: Der erste POKE vergrößert horizontal, der

zweite vertikal. | |
Und diese beiden Funktionen lassen sich auch für jeden Sprite getrennt

wieder ausschalten:

POKE53271,PEEK(53271) AND (255—2 Sprite)

POKE53277,PEEK(53277) AND (255-2 A Sprite)

Auch hier wieder: POKE eins für das Ausschalten der horizontalen Vergröße-

rung, zwei für die vertikale. Ä

Langsam nähern wir uns dem Höhepunkt unseres Dramas.

Wie Ihnen wahrscheinlich beim bisherigen Experimentieren mit den Sprites

aufgefallen sein dürfte, werden die Sprites über dem Text auf dem Bildschirm

dargestellt. Und wie das bei echten Stars so üblich ist, scheren sie sich auch

keinen Deut darum, was um sie herum passiert.

So erklärt sich auch, daß ein Sprite auf dem Bildschirm nicht vom Scrolling,

also vom Rollen des Textes auf dem Bildschirm, betroffen wird. Diese stoische

Ruhe eines oder mehrerer Sprites ist bei allerhand Spielen sicherlich sehr

praktisch.

Aber wenn es Ihnen Spaß macht (oder Ihre Spielidee es verlangt), kann

unser Star auch mal ein bißchen zurückstecken. Mit

POKE 53275,1

bringen Sie ihn dazu, daß er auch mal mit einer Rolle als Statist hinter dem

Text oder irgendwelchen Grafik- und Sonderzeichen zufrieden ist.

136 Sprites auf dem Commodore 64

Da dies für jeden Sprite einzeln einstellbar ist, sind sogar mit einiger

Experimentierfreude dreidimensionale Darstellungen möglich. Einschalten

kann man mit

POKE 53275,PEEK(53275) OR 2, (Sprite)

Ausschalten läßt sich's mit

POKE 53275, PEEK(53275) AND (255—2 ~ Sprite)

Sollten Sie jetzt mehrere Sprites auf dem Bildschirm haben, wäre es vielleicht

nicht schlecht, wenn Sie etwas mehr Überblick hätten. Zumindest sollten Sie

merken, wenn es irgendwo kracht — also, wenn zum Beispiel ein Sprite in die

Kulissen rennt, weil er blind wie ein Maulwurf ist (oder der Spieler zu langsam

reagiert?), oder ob zwei Sprites ineinanderdonnern. VIC agiert in solchen

Fällen wie ein guter Polizist. Er geht davon aus, das Sie als Vater Staat die

Augen nicht überall haben können, und deshalb paßt er auf.

Mittels eines sogenannten Kollisionsdetektors kann VIC feststellen, ob sich

da Sprites zueinander oder auch zum Hintergrund besonders hingezogen

fühlen.

Das ist natürlich bei selbstprogrammierten Spielen sehr nützlich. Hier gilt

dann für alle Mitspieler die Devise: Achtung! Big VIC is watching you.

Dieser Kollisionsdetektor liegt auf der Adresse 53278. Und je nachdem,

wer da mit wem, ändert sich der Wert dieser Speicherzelle bzw. wieder die

einzelnen Bits der Zelle. Das heißt mit anderen Worten, daß nach einer

Kollision alle die Bits in 53278 gesetzt (bzw. an) sind, die den zusammenge-

stoßenen Sprites entsprechen. Und diese Bits bleiben auch so lange gesetzt,

bis sie vom richtigen Mann ausgelesen wurden, also die Zelle mit

PRINT PEEK (53278)

aufgerufen und kontrolliert wurde. (Erinnert doch irgendwie an das Vorgehen

dieser Punktesammlung in Flensburg, oder?)

Man kann sie aber auch einfach durch

POKE 53278,0

zurücksetzen.

Das sollte man am Anfang eines Programms, das diesen Detektor benutzt,

übrigens sowieso tun, um sicherzugehen, daß alles mit rechten Dingen

zugeht. Sonst kriegen Sie womöglich die Punkte vom Mitspieler ab. Übrigens:

Denken Sie daran, daß unsere kleinen Stars natürlich auch hinter der Bühne

Sprites auf dem Commodore 64 137

zusammenstoßen können. (Die Gänge zu den Garderoben sind aber auch

wirklich schlecht beleuchtet ...)

Die Adresse 53279 ist für die Kollision mit Zeichen bzw. einer Hires-Grafik

zuständig. Sie wird ebenfalls mit dem Befehl PEEK ausgelesen und kann

genauso mit
POKE 53279,0

zurückgesetzt werden.

Hier bedeutet ein bestimmtes gesetztes Bit, daß der dazugehörige Sprite

irgendwo einen Unfall mit dem Hintergrund hatte.

Hier ein kleines Programm zur Verdeutlichung.

10 POKE2040,13: POKE2041,13: POKE53269,3: POKE 53277,3: POKE

53281,0

20 X0=30:X1=120

30 POKE 53248,X0: POKE 53250,X1: POKE53249,150: POKE 53251,150:

— POKE53278,0

40 FOR I=0T0200

50 XO=X0+1.4:X1=X1+1

60 POKE 53248,X0:POKE 53250,X1

70 IF PEEK(53278)()O THEN FOR X=0TO34:POKE 53288,X:NEXT:END

80 NEXT |

Zuerst wird dieses Programm unsere beiden Autos auf den Schirm bringen.

Dann fahren beide los. Nur das eine ist etwas schneller (siehe Zeile 50), und

so kommt, was kommen muß. Es fährt auf seinen Vordermann auf. Beson-

ders aufmerksam machen wollen wir Sie nur auf die Zeilen 30 und 70. In der

ersteren wird das Kollisionsregister zurückgesetzt, in Zeile 70 wird das Regi-

ster abgefragt. Wenn es einen Wert enthält, der nicht O ist, dann reagiert der

Computer. Was all die anderen Zeilen tun, diese Frage geben wir galant an

Sie zurück. Es sind alles Ihnen mittlerweile bekannte POKESs. Sie müssen sich

das Programm nur einmal aufmerksam durchlesen. Das ist eine gute Übung.

Jetzt ganz zum Schluß wollen wir noch etwas mehr Farbe in die ganze Sache

bringen. Wir haben ja bereits, als wir im Hires-Kapitel über Farbe sprachen,

vom Multicolormodus gesprochen. Da wurde ja unter anderem gesagt, daß

dieser Modus auch bei den Sprites funktioniert. Und weil wir nie vergessen,

was wir einmal gesagt haben, wollen wir das jetzt auch erklären.

Was wollten wir doch gleich erklären?

Ach ja. Der Multicolormodus bietet die Möglichkeit, bis zu 3 Farben in

138 Sprites auf dem Commodore 64

einem Sprite darzustellen. Dafür bleibt aber nur die halbe Auflösung. Wenn

Sie das schon bei der Konzeption Ihres Sprites berücksichtigen, lassen sich

damit auch sehr hübsche Effekte erzielen. Wenn Sie sich daran nicht mehr so

recht erinnern können, sollten Sie noch mal das Hires-Kapitel aufschlagen.

Bei der Frage, welche Farbe dargestellt wird, liefern wieder einmal Bitkom-

binationen die Antwort (Tabelle 7.3).

Bitkombination Farbe Adresse

00 Hintergrund 53281

01 Sprite Multic. Nr.O 53285

10 Sprite Farbe 53287 + (Sprite)

11 Sprite Multic. Nr.1 53286 |

Tabelle 7.3 Farbadressen für Multicolorsprites

Der Ausdruck «(Sprite)» in der Tabelle steht natürlich wieder für eine Zahl

von 0 bis 7.

Wie Sie sehen, müssen die Multicolorfarben für alle Sprites zusammen

festgelegt werden. Dazu dienen die Register 53285 und 53286.

Die Spritefarbe selbst bleibt, wie gehabt, individuell.

Der Multicolormodus kann aber gezielt für einzelne Sprites eingeschaltet

werden. Und zwar mit "

POKE53276,PEEK(53276) OR 2. (Sprite)

Ausschalten können Sie genauso mit

POKE5327,PEEK(53276) AND (255—2 a Sprite)

Tja, das war dann auch schon unser kleines Star-Lexikon auf dem Commo-

dore 64.

Alles weitere, was es hier noch zu zeigen gäbe, können wir jetzt getrost

Ihrer Fantasie überlassen. Probieren Sie also ruhig erst mal ein bißchen, bevor

Sie das nächste Kapitel aufschlagen. Da geht es dann um Töne und Geräu-

sche auf dem Commodore 64. Danach kommt ein Spiel mit Sprites und

vielem mehr.

Sprites auf dem Commodore 64 139

Wie immer beim Commodore 64, wird auch die Freude an den Sprites

durch die Unmengen an POKEs etwas getrübt. Aber tragen Sie es mit

Fassung. Sollten Sie noch etwas Übung brauchen, um sich Zahlen zu merken,

dann üben Sie ruhig das erst noch ein bißchen, zum Beispiel, indem Sie das

Frankfurter Telefonbuch auswendig lernen. Na ja, wenn Sie wollen, können

Sie auch das Ihres eigenen Ortes nehmen — aber nur, wenn Sie mindestens

150 Anschlüsse haben. Und denken Sie zum Trost auch daran, daß es einen

Anhang gibt, wo die wichtigsten PEEKs und POKEs zusammengefaßt sind.

Also nicht verzweifeln. Wir lassen Sie jetzt erst mal mit Ihren neuerworbenen

Kenntnissen etwas allein. Wir haben nämlich noch zu tun. Das Frankfurter

Telefonbuch ist dick, und wir sind gerade erst beim zweiten Drittel «Müller»

angelangt.

Bis später also. Und viel Spaß!

Ende der Vorstellung. Der Vorhang fällt. Applaus?

8

Tone und Gerausche auf dem

Commodore 64

Der Ton macht die Musik

Wenn man sein erstes selbstgeschriebenes Spielchen auf dem Commodore

laufen hat, überflutet einen schon schnell der Vaterstolz. Trotzdem, wenn

man dann zwecks Information mal so einen dieser Spielautomaten bewun-

dert, vielleicht sogar eine Studienreise in die nächstgelegene Spielhalle unter-

nimmt, stellt man doch fest, daß dem eigenen Spiel noch irgend etwas an

Faszination fehlt. Die Raumschiffe können es nicht sein. Die hat man ja auch.

Die Farbe? Nein, die ist auch da. Was aber macht Donkey Kong oder

Pac-Man oder Frogger oder ... egal, was macht sie alle so stark? Bevor Sie

jetzt der Idee verfallen, an die Seite Ihres Commodore einen kleinen Kasten zu

bauen, der immer dann Strom gibt, wenn einer eine Mark hineinwirft, und

sich damit heillos in die Welt der Hardware verrennen, lesen Sie dieses

Kapitel. Wir können Ihnen versichern, daß der Vorteil der anderen Spiele

nicht etwa das Geldhineinwerfen ist, sondern das, was Sie vielleicht bei Ihrem

ersten Spielhöllenbesuch eher als lästig empfunden haben: der Krach, den sie

verursachen. Denn jede Invasion wird erst schön, wenn der Feind auch so

richtig schöne Invasionsgeräusche von sich gibt. Und da die Leute, die an

solchen Apparaten stehen, meist noch keine Invasion mitgemacht haben —

weder eine irdische, geschweige‘ denn eine außerirdische —, fällt ihnen

zumeist auch nicht auf, ob die Geräusche sehr lebensecht klingen. Und wenn

die Geräuschexperten der großen Spielehersteller gar nicht mehr weiterwis-

sen, dann versuchen sie es mit Musik.

Mit welchen Geräuschen sollte man auch um Himmels willen Frogger

unterlegen? Dieses Spiel vollzieht in erster Linie das Leben eines Frosches in

der Nähe der B 27 nach. Diese Straße hat für das Leben eines Frosches einen

142 Töne und Geräusche

entscheidenden Nachteil: nämlich den, daß Autos darauf fahren. Und weil

nun unser Frosch ausgerechnet hier sein Quartier aufschlagen mußte, steht er

bei seinem täglichen Wunsch nach einem Bad vor einem rund 8 Meter breiten

Problem. Denn geschickterweise fiel den Spielstrategen gerade noch rechtzei-

tig ein, daß unser Frosch sozusagen «drüben» wohnt. Will er also auf die

andere Seite (zum Fluß), dann muß er über die Straße. So weit, so gut. Nur

stellen Sie sich mal vor, Sie müßten jeden Morgen auf dem Weg in Ihr

Badezimmer eine Bundesstraße überqueren — für jeden, der morgens noch

halb schlafend ins Bad tappt, eine großartige Chance, seine Lebensversiche-

rung bereits sehr früh an Verwandte verteilen zu können. Unserem Frosch

ergeht es nicht besser. Wenn er flink genug ist — prima. Nur, wenn nicht,

ereilt ihn ein schnelles Schicksal in Form von mit wohlklingenden Namen

bedachten Reifenfabrikaten. Wie aber drückt man das in Geräuschen aus?

Man entschied sich in erster Linie für Musik und ein neutrales Tröten, wenn

ein Frosch die ganze Sache nicht so hinkriegt. Nachdem diese Wohnungen

neben der B 27 offensichtlich sehr günstig, nicht spekulationsgefährdet sind

und vielleicht sogar von der Bundesregierung subventioniert werden, kom-

men immer neue Frösche. Und so gibt es jeden Abend in Deutschlands

Wohnzimmern eine fröhliche Froschhatz. Wohlgemerkt: Es ist die Computer-

industrie, die zum Halali bläst. Denn Deutschlands Kinder, Väter und manch-

mal auch Mütter sind der arme kleine Frosch. Womit man deutlich sieht, daß

auch auf dem Videoschirm der Kampf der Grünen gegen die Industrie

andauert.

Soweit zum Geleit. Geräusche können in jedem Fall, wenn sie etwas

fantasievoll eingesetzt werden, aus einem mittleren Spiel ein passables

machen, und bei einem sehr guten Spiel sind sie das Tüpfelchen auf dem i —

deshalb auch dieses Kapitel. Die lange Vorrede war eigentlich nur dazu da,

Ihnen klarzumachen, daß Geräusche — genauso wie manche Spiele an sich —

sehr vom Geschmack abhängig sind. Vielleicht hätten Sie Frogger ganz

anders vertont. Vielleicht hätten Sie Frogger auch nie geschrieben — zum

Beispiel, weil Sie Mitglied im örtlichen Tierschutzverein sind. Wie auch immer:

Der eine findet jenes Geräusch gut, der andere sagt, es sei schlicht und

ergreifend schwachsinnig. Weil wir uns aus dieser ganzen Streiterei etwas

raushalten wollten, beschlossen wir, uns gerade in diesem Kapitel auf unsere

hauptsächliche Aufgabe zu besinnen und Ihnen in erster Linie zu erklären, wie

man es anstellt, dem Commodore mehr als ein dünnes Piepsen zu entlocken.

Was Sie dann mit Ihrem Wissen wiederum anstellen, überlassen wir Ihnen.

Aus alledem resultieren zwei Dinge: Zum einen, daß in diesem Kapitel in

Töne und Geräusche 143

erster Linie von bestimmten Speicherzellen die Rede sein wird, die wir

erklären. Das heißt im Grunde, daß das ganze Kapitel Ihnen im Vergleich zu

den anderen eher etwas theoretisch vorkommen wird. Das ist leider auch so.

Nur haben wir keinen anderen Weg gefunden, um Töne und Geräusche zu

erklären.

Natürlich werden wir Ihnen sagen, wie man das alles im Computer am

besten zum Arbeiten bringt. Aber praktische Beispiele werden aus den

dargestellten Gründen etwas spärlich sein.

Zum anderen heißt das aber für Sie, daß Sie gerade hier noch mehr auf das

Selbstprobieren angewiesen sind. Und das wiederum ist durchaus nicht

schlecht. Insgesamt empfehlen der Herr Doktor, dieses Kapitel erst einmal

durchzulesen. Wenn dann die Verständniskurve etwas angestiegen ist, könn-

ten Sie Ihren Commodore konsultieren. Bliebe nur noch eines: anzufangen.

Der kleine Schwarze mit dem lauten Ton

Mittlerweile kennen wir so ziemlich den ganzen Hofklüngel, der sich so um

unseren 6510 herumschart. Der 6510 selbst, die RAMs und ROMs, den

guten VIC. Jetzt wollen wir einen neuen Vertreter kennenlernen. Wahrend

die RAMs und ROMs höchstens von sich behaupten könnten, sie seien

Hoflieferanten, ist unser Neuer so eine Art Pressesprecher der Regierung.

Deshalb hat er auch eine besonders laute, fein zu nuancierende Stimme, die

kraftvoll den Raum durchdringt. Meist so kraftvoll, daß bei den ersten

Versuchen mit dem Tonchip des Commodore das ganze Haus zusammenge-

laufen kommt, um die vermeintliche Katze aus Ihren ebenso vermeintlich

brutalen Händen zu entreißen oder um sich ein Arbeitszimmer nach einer

Explosion anzusehen oder zu welchen Vermutungen auch immer das verur-

sachte Geräusch Grund gab. Diesen Effekt können Sie übrigens verstärken;

indem Sie Ihren Commodore an die Stereoanlage anschließen. Das geht mit

einem fünfpoligen DIN-Stecker. Näheres dazu finden Sie in Ihrem Commo-

dore-Handbuch. Wenn Sie das gemacht haben, können Sie damit auch prima

die zu verwendenden Geräusche ausprobieren. Wenn Sie beispielsweise an

einer Gasexplosion herumbasteln, den Ton entsprechend laut gedreht haben

und das Testprogramm laufen lassen, können Sie leicht an der Reaktion der

Umwelt erkennen, ob Sie das Geräusch halbwegs authentisch hinbekommen

haben — je nachdem, ob die Mitbewohner mit Beilen, Feuerlöschern oder

einem Krankenpfleger vor der Tür stehen ...

144 Töne und Geräusche

Aber wenn Sie das alles nicht wollen, dann sollten Sie Ihren Fernseher doch

besser während des Probierens leiser stellen, vielleicht sogar noch die Tür

zumachen. |

Noch einmal kurz zu unserem Pressesprecher. Sein Name ist SID. Und weil

es so schon romantisch ist, hat er auch eine Nummer gekriegt: SID 6581. Da

wir aber gute Bekannte werden wollen, wollen wir uns beim Vornamen

nennen. Deshalb sagen wir einfach SID. Das steht fur «Sound Interface

Device». Wenn man das so hört, staunt man doch immer wieder über die

fantasievollen Ausdrücke, die die Computerindustrie so geprägt hat. Unser

Synthesizer-Chip ist nun tatsächlich sehr leistungsfähig. Er hat drei voneinan-

der unabhängige Stimmen. Und für jede dieser Stimmen läßt sich eine eigene

ADSR-Hüllkurve programmieren. Was das genau heißt, kommt noch. Grund-

sätzlich unterscheidet man bei diesen Schwingungen vier verschiedene Arten:

Dreieck, Rechteck, Sägezahn und Rauschen. Diese Ausdrücke kommen in

erster Linie vom Aussehen der zugehörigen Töne in einem Diagramm. Dazu

gibt es noch allerhand Filter und natürlich einen softwaremäßigen Lautstärke-

regler.

Und was muß man tun, um diesem scheinbar so ausgeklügelten System

einen Ton zu entlocken? Nun, dasselbe, was man so oft bei Commodore

muß: POKEn. Und das heißt wieder einmal, sich Adressen und die richtigen

Werte dazu zu merken. Deshalb wollen wir gleich wieder ganz sachlich

werden. |

Die Startadresse unseres Soundchips liegt bei 54272. Das erinnert Sie

vielleicht irgendwie an die Kapitel Uber Speicheraufteilung und Sonderzei-

chendefinition. Stimmt. Diese Adresse liegt in den I/O-Registern. Wenn Sie

die Kenntnisse von damals noch mal auffrischen wollen, dann können Sie das

jetzt tun. Wenn nicht, machen wir einfach weiter.

Unser SID hat verschiedene Register — so ähnlich, wie das auch bei VIC der

Fall war. Diese Register sind verantwortlich für alle seine Funktionen und

Fähigkeiten, die er ausführt. Bevor wir auf sie im einzelnen eingehen, sollten

Sie folgendes wissen: Die Töne und Geräusche, die wir hören, sind lediglich

Schwingungen in der Luft, die in unserem Ohr zu verständlichen Signalen

umgewandelt werden. (Wenn sie unverständlich sind, kann es daran liegen,

daß jemand eine andere Sprache spricht, daß er undeutlich spricht, daß er

beides zusammen tut oder daß er Politiker ist.)

Für diese Schwingungen in der Luft gibt es bestimmte charakteristische

Bezeichnungen. Wir meinen hier aber.nicht so landläufige Ausdrücke wie

Geschwafel, sondern wir meinen mit Toncharakter eigentlich eher, wie

Töne und Geräusche 145

jemand diese oder jene Eigenschaft eines Tones hört. Deshalb nochmals

unsere Bitte, mitzuprobieren. Nur so können Sie hören, was sich an einem

Ton ändert oder welchen Charakter er im Laufe der Änderungen annimmt.

Denn wir müssen zu unserer Schande gestehen, daß es uns sehr schwerfällt,

einen Ton zu beschreiben.

Die Art der Wellen, die unser Ohr aufnimmt, kann sich stark unterscheiden.

Ihr Soundchip kann vier verschiedene Wellenformen erzeugen; zum ersten

die Sägezahnschwingung, die steigt und dann sofort wieder abfällt. Ein

Diagramm einer solchen Schwingung würde etwa so aussehen.

Sägezah n: Rechteck:

AA AAA
Y YV YI od En a

a) c) Ä Pulsweite

Dreieck: Zufallsschwingung (Geräusch):

NND AL ML aA
DN OORT NAT

b) d)

Bild 8.1 Schwingungsdiagramme

Etwas flüssiger im Verhältnis von Anstieg zu Abstieg und nicht so abrupt ist

die Dreieckschwingung.

Dann gibt es noch die Rechteckschwingung. Bei ihr läßt sich die «Breite» des

Rechtecks sehr gut programmieren.

Bleibt zum Schluß eine Art Zufallsschwingung, durch die das Rauschen

entsteht. Bei diesem Diagramm müssen wir ehrlich zugeben, daß es sich nicht

um authentisches Material, sondern eher um das zufällige Auf und Ab von

Hannes’ Hand handelt.

Diese ganzen Wellenformen lassen sich nun, wie schon erwähnt, für jede

Stimme einzeln einstellen. Dazu dienen die Adressen in Tabelle 8.1.

In diese Speicherzellen können folgende Werte gePOKEd werden: 17 für

Dreieckswellen, 33 für Sägezahn, 65 für Rechteck und 129 für Rauschen.

Zur Demonstration ein kleines Beispiel:

POKE 54276,17

146 Töne und Geräusche

Stimme Ad resse

1 54276

54283

3 54290

Tabelle 8.1 Wellenformen für die Stimmen 1 bis 3

schaltet für die erste Stimme die Wellenform Dreieck ein. Wenn Sie sich

wundern, daß Sie noch nichts hören, keine Sorge: können Sie auch noch gar

nicht. Vorher sind noch einige andere Parameter notwendig. Aber zuerst

noch etwas zur Rechteckschwingung. Hier müssen Sie zusätzlich noch die

Breite des Rechtecks angeben. Der Ausdruck Breite ist zwar technisch nicht

ganz richtig, trifft aber am besten das Gemeinte. (Wir hoffen, die Techniker

unter. Ihnen verzeihen uns das.) Für diesen Breitenwert kann eine Zahl

zwischen O und 4095 angegeben werden. Weil diese Zahl natürlich nicht in

eine Speicherzelle paßt (Sie erinnern sich doch hoffentlich noch an das, was

wir über das Fassungsvermögen einzelner Speicherzellen gelernt haben?),

wird sie nach dem bekannten High-Byte/Low-Byte-Prinzip umgewandelt.

Dadurch werden insgesamt sechs Speicherzellen benötigt, für jede Stimme

zwei (Tabelle 8.2).

Hier sind übrigens immer die ersten Speicherzellen, also die mit der niedrige-

ren Nummer, diejenigen, in denen sich das Low Byte wiederfindet.

Wieder ein Beispiel:

Sie wollen die Rechteckschwingung auf der Stimme 1 auf eine Länge von

2049 ? programmieren.

POKE 54274,1:POKE 54275,8

Stimme Speicherzellen

1 54274 & 54275

54281 & 54282

3 54288 & 54289

Tabelle 8.2 Breitenwert für die Stimmen 1 bis 3

Töne und Geräusche 147

Wie sich solche Änderungen der Pulslänge (das ist der technisch treffendere

Ausdruck) akustisch auswirken, überlassen wir wieder Ihnen. Probieren Sie es

später mit den ersten Tönen aus. Generell läßt sich sagen, daß ein Ton mit

abnehmender Pulslänge immer dumpfer klingt.

Und gleich noch etwas zu den Wellenformen: In diesen Speicherzellen

legte Commodore etwas Westernmentalität an den Tag: In den drei Wellen-

formregistern gibt es ein sogenanntes Key-Bit, das wie der Abzug von John

Waynes Revolver funktioniert: Wenn es gesetzt wird, klingt der Ton an,

schwillt dann ab und wird auf dem Sustain-Wert gehalten. Um den Ton

ausklingen zu lassen, löschen Sie das Bit wieder. Die Wellenform muß aber

erhalten werden: POKEn Sie zum Ausklingen des Tons einen der Werte 16,

32, 64 oder 128 - je nach Wellenform. Wenn Sie das beherzigen, können Sie

auch ein flottes Knallen programmieren.

Und jetzt wären wir bei der Lautstärke angelangt. Sie gilt für alle drei

Stimmen gleichzeitig. Die Adresse 54296 wird dafür benutzt. In diese Spei-

cherzelle POKEn Sie am besten nur Werte von 0 (kein Ton) bis 15 (viel Ton).

Aber freuen Sie sich: Das ist natürlich noch nicht alles, um unseren SID zum

Sprechen zu bringen. (Sie sehen, auch hier ist er wie ein Regierungssprecher.

Obwohl das völlig gegen seinen Namen spricht, ist es nicht ganz einfach, ihn

zum Reden zu bringen. Aber Sie werden lachen, genau das gekonnte

Schweigen macht einen Regierungssprecher erst richtig gut. Paradox, nicht?)

Die letzte Formalität, die wir noch brauchen, ist das Wissen um die

sogenannten Hüllkurven. Denn genau solche Hüllkurven müssen wir pro-

grammieren. Aber keine Angst, das hört sich nur so schlimm an. In Wirklich-

keit geht es mit einiger Übung ganz fix.
Bei einer Hüllkurve geht man von folgender Überlegung aus: Ein Ton

‘ändert in der Zeitspanne seines kurzen, bescheidenen Lebens ständig seine

Lautstärke bzw. seine Intensität. Bei einer ADSR-Hüllkurve versucht man

diesen Tonverlauf in vier Abschnitte zu unterteilen. ADSR ist die Abkürzung

für Attack/Decay/Sustain/Release, was übersetzt etwa heißen würde:

Anschlag/Abschwellen/Halten/Ausklingen. Bildlich vorstellen kann man sich

das in etwa folgendermaßen (Bild 8.2). |

Um diesen Kurvenverlauf in den Computer zu bringen, bedient man sich bei

Commodore natürlich wieder des POKE-Befehls. Für jeden Abschnitt können

Werte von O bis 15 eingegeben werden. Um Ihnen ein ungefähres Gefühl

davon zu geben, was die Werte in den einzelnen Abschnitten bewirken,
haben wir eine kleine Liste zusammengestellt, die zeigt, was der jeweils

niedrigste und der jeweils höchste Wert bedeuten.

148 Töne und Geräusche

 Attack Decay Sustain Release

Bild 82 ADSR-Hüllkurve

Beim Anschlag stehen die Werte für die Intensität, das heißt dafür, wie hart

bzw. stark man den Ton anschlägt. Der höchste Anschlagwert ist O (also

hart), der niedrigste deshalb 15 (also weich).

Das Abschwellen der Töne kann ebenfalls stark oder schwach sein. Zum

Beispiel beim Klavier. Hier schwillt der Ton langsamer ab, wenn der Spieler

kein Pedal betätigt. Wenn er es aber tut, schwillt der Ton sehr schnell ab.

Auch hier geht es also um eine Intensität. O wäre hartes, abruptes Abschwel-

len, 15 ein weiches, langsames Abschwellen.

Ein Ton kann bei einer bestimmten Lautstärke länger oder kürzer gehalten

werden. Das ist auch der nächste wichtige Wert. O heißt hier, daß er dann

gehalten wird, wenn er leise ist, 15 heißt, daß er bereits gehalten wird, wenn

er noch laut ist.

Bliebe noch das Ausklingen. Das Ausklingen eines Tones kann sehr schnell

gehen oder auch sehr langsam. Und genau dafür stehen auch die Werte: O

bedeutet schnelles Ausklingen, 15 langsames Ausklingen.

Was bedeutet das alles? Nun, ein Ton kann mehr oder weniger intensiv

angeschlagen werden, dann mehr oder weniger intensiv auf seine Normal-

oder Grundlautstärke abschwellen, auf diesem Grundwert mehr oder weniger

laut gehalten werden und dann mehr oder weniger schnell ausklingen. Das

Kreuz mit diesen ganzen Daten ist, daß man sie schlecht in Worte fassen

kann. Wenn Ihnen jetzt alle diese komischen Werte mehr oder weniger gleich

vorkommen, dann gedulden Sie sich noch einen Augenblick, bis wir den.

ersten Ton ausprobieren. Dann wird das alles etwas klarer.

Vielleicht fragen Sie sich gerade, warum wir nicht, wie sonst auch, die

"Speicherzellen bereits genannt haben. Nun, das liegt daran, daß es sich auch

mit denen etwas komplizierter verhält. Haben Sie schon mal was von einem

Nibble gehört? Nein, auch wenn es sich so ähnlich anhört, das hat nichts mit

149 Töne und Geräusche

dem Nippel zu tun, den man durch die Lasche ziehen muß. Ein Nibble ist in

der Sprache der Computerleute ein Halbbyte. Wenn Ihnen jetzt in Erinnerung

an Karl May der Ausdruck Halbblut einfällt, dann ist das gar nicht so weit weg

von dem, was wir meinen. Halbbyte ist ein 4-Bit-Wert, also ein halbes Byte.

(Genauso, wie ein Halbblut nur ein halber Indianer ist.) Und weil unsere

Werte , die wir POKEn wollen, immer nur von O bis 15 gehen, reicht ein Byte

‚auch für zwei Werte — oder ein halbes Byte für einen Wert oder ein Halbbyte

für einen Wert oder, um es fachmännisch auszudrücken, ein Nibble für einen

Wert. Und deshalb wurden immer zwei Einstellungen in einem Byte zusam-

mengefaßt. Auf diese Art und Weise wurde wieder einmal Speicherplatz

gespart.

Sicherlich kommt es Ihnen mehr und mehr so vor, als sei das Bauen eines

Computers eine Sache, bei der ständig in die Trickkiste gegriffen werden

muß. Mit dieser Vermutung kommen Sie der Wahrheit sehr nahe. Und im

Grunde ist es sogar so, daß sich oft die Ingenieure selbst wundern, daß so ein

Kasten schließlich doch läuft.

Aber jetzt ist es mal wieder soweit. Eine Liste der Speicherzellen, in die

gePOKEd wird, finden Sie in Tabelle 8.3.

Fein, werden Sie jetzt sagen, und wie bringe ich das jetzt in den Computer,

damit er. auch weiß, was wohin gehört? Eine kleine Formel soll Ihnen hier

helfen.

Im ersten Fall, also für Attack und Decay, würde die Formel lauten:

Byte Wert = 16 * Attack + Decay

Attack/Decay in Stimme

54277 1

54284 2

54291 3

Sustain/Release in Stimme

54278 1

54285 2

54292 3

Tabelle 8.3 Adressen für ADSR-Hüllkurven

150 Töne und Geräusche

Im zweiten Fall, also für Sustain und Release:

Byte Wert = 16 x Sustain + Release

Eigentlich gar nicht so schwer, oder?

Noch ein Beispiel dazu: Für einen Ton sollen in Stimme 2 die Werte Attack

gleich 15, Decay gleich 12, Sustain gleich 10 und Release gleich 3 sein.

Überlegen Sie ruhig erst mal selbst, am besten auf einem Blatt Papier.

Die Lösung wäre:

POKE 54284, 16 x 15 + 12

POKE 54285, 16 x 10 + 3

Übrigens können Sie beim Experimentieren mit den Geräuschen die Hüllkur-

ven ruhig zuerst einmal unberücksichtigt lassen. Man hat zwar die Möglich-

keit, mit Ihnen sogar die Schwingungscharakteristik bestimmter Instrumente

oder Geräusche relativ genau zu simulieren, aber der Anfänger sollte erst

einmal ein Gefühl für die richtige Wellenform, die Lautstärke (auch die kann

man ja während des Geräusches verändern) und die Frequenz bekommen.

Die Frequenz ist übrigens auch der letzte Wert, den Sie noch kennenlernen

müssen.

Ein Ton oder Geräusch — also eine Schwingung - ist nämlich außer durch

die Wellenform auch sehr stark durch die Frequenz bestimmt, mit der diese

Welle schwingt. Und diese Frequenz kann man dem Commodore natürlich

angeben und damit die Höhe des Tones, der herauskommen soll, bestimmen.

Die Frequenz geht bis etwa 4000 Hz (sprich 4000 Hertz). Der höchste Ton

entspricht einem Wert von 65535. Und weil das wieder eine Zahl ist, die

nicht in eine Speicherzelle paßt, wird das High-Byte/Low-Byte-Prinzip ver-

wendet. Wie das funktioniert, müßte mittlerweile ziemlich klar sein. Es geht

nur noch darum, welche Speicherzellen angePOKEd werden müssen (Tabelle

8.4).

Stimme High Low

1 54272 54273

54279 54280

3 54286 54287

Tabelle 8.4 Frequenzadressen fiir Stimmen 1 bis 3

Töne und Geräusche 151

Sollten Ihnen die nötigen Werte dazu nicht mehr so klar sein, würden wir Sie

bitten, das Errechnen von High-Byte- und Low-Byte-Werten im Abschnitt

Speicheraufteilung unter der Überschrift «Wenn Bytes halbe-halbe machen»

nachzuschlagen.

Wir wagen es: Ein Beispiel

Grundsätzlich ist es egal, in welcher Reihenfolge Sie die einzelnen POKEs

eingeben. Sie müssen sich nur angewöhnen, die Wellenform als letztes zu

POKEn. Denn wenn in diesen Zellen ein Wert steht, ist das für den Computer

sozusagen der Startschuß. Ein Beispiel dafür wäre der Start einer Raumfähre.

Egal, welcher Astronaut zuerst einsteigt — wichtig ist nur, daß alle drinnen

sind, sobald der Countdown bei O angelangt ist. (Wie allerdings die Erfahrung

aus der ersten Mondlandung zeigt, ist es wiederum keineswegs so egal, wer

zuerst aussteigt .. .) |

Ist erst einmal die Wellenform gePOKEd, dann wird automatisch auch der

Startvorgang ausgelöst, also das «Key-Bit» gesetzt.

Nun zu unserem Beispiel. Zuerst stellen wir die Lautstärke relativ laut ein.

Damit ist natürlich die softwaremäßige Lautstärke gemeint. Ihren Fernseher

sollten Sie höchstens auf Dallas-Lautstärke einstellen. Wenn Sie Dallas nicht

mögen, darf es auch Denver-Clan-Lautstärke sein.

POKE 54296,12

Um eine halbwegs gutklingende Frequenz zu erhalten, geben Sie

POKE 54273,20

ein. Hier-benutzen wir übrigens nur das High-Byte, weil es in unserem Fall voll

ausreicht.

Jetzt versuchen wir noch, eine möglichst «flache» (sprich ausgewogene)

Hüllkurve zu erreichen:

POKE 54277,140

POKE 54278,140

und jetzt kommt's:5...4...3...2...1...0

POKE 54276,17

schaltet unseren Ton ein — natürlich erst, wenn sie (RETURN) dazu eingege-
ben haben. Sodann hören Sie die «Dreieckige» des berühmten Tonkomponi-

sten Grinaldo Spagatıi.

152 Töne und Geräusche

Und jetzt?

Nun können wir Sie nur noch einmal bitten, zu experimentieren. Mit all Ihrem

Wissen sollte es Ihnen auch durchaus möglich sein, ein kleines Tontestpro-

gramm zu schreiben, mit dem Sie die verschiedensten Töne ausprobieren

können. Im Listinganhang finden Sie auch ein entsprechendes Programm

dazu. Aber Sie wissen ja: Selbst ist der Programmierer. Nur noch ein kleiner

Tip: Ändern Sie mal die Wellenform oder mit FOR...NEXT-Schleifen die

Lautstärke oder die Frequenz.

Sie werden schnell merken, was für erstaunliche Effekte kleine Änderungen

haben können. Und noch etwas, versuchen Sie mal, unser Programm mit den

beiden aufeinanderfahrenden Autos zu vertonen, wenn Sie sich ein bißchen

zurechtgefunden haben. Das ist eine gute Übung. Viel Spaß. Und vielleicht

sollten Sie demnächst, zumindest für die ersten paar Tage Geräuschtest, den

restlichen Familienmitgliedern eine Großpackung Oropax kaufen.

Warnung: Sämtliche Schäden, die sich im Zusammenhang mit diesem

Kapitel und seinem Ausprobieren nach und vor 22 Uhr ereignen (zum Beispiel

Fliegeralarm oder 100maliges Schreiben des Satzes «Ich darf nicht nachts

meine Eltern mit meinem Computer belästigen»), entziehen sich der Haftung

durch die Autoren oder des Verlages. -

9
Ein Spiel mit Sprites

Schneewittchen und die sieben Zwerge

Und wieder ein Stück Märchengeschichte. Eine der nächsten Veröffentlichun-

gen von Gerd Heinzelmann war die Enthüllung der tatsächlichen Vorgänge

um ein junges Mädchen namens Schneewittchen. Wie so oft, war auch hier

die Realität ganz anders, als die Überlieferung uns glauben machen will. Und

auch diesmal ist es ein Prinz, der für die geänderte Märchenschreibung

verantwortlich zu machen ist. Nachdem einer dieser Königssöhne am Sonn-

tagmorgen bei der Lektüre eines bekannten Massenblattes erfahren hatte,

daß eben jenes bewußte Mädchen hinter den sieben Bergen an Lebensmittel-

vergiftung litt (sie hatte von ihrer Stiefmutter einen vergifteten Apfel bekom-

men), machte er sich auf den Weg, sie zu retten. Da er sowieso gerade Krach

mit seinem Vater und einen Erste-Hilfe-Kurs bestanden hatte, erschien dies

auch nur angebracht. (Übrigens waren auch die Umstände seines Bestehens
ein Zeichen für den mangelnden Intellekt seiner Zunft. Denn er bestand erst

nach dem vierten Versuch, obwohl damals alles, was er können mußte,

erfolgreiches Wachküssen war.) Während der Prinz sich auf den Weg

machte, las Schneewittchens böse Stiefmutter die Geschichte in der Zeitung

und fand, daß der Apfeltrick gar keine schlechte Idee war. Die Zeitung hatte

die Story nämlich eigentlich nur erfunden, um ein hübsches Mädchen auf

dem Titelblatt zu haben. Nachdem die Stiefmutter aber viel näher bei

Schneewittchen wohnte, war sie auch schneller da als der Prinz, womit

bewiesen wäre, daß Zeitungen nicht lügen. Während die Stiefmutter ihr Ziel

erreichte, kann man das vom Prinzen nicht gerade behaupten. Als er nämlich

so seines Weges wandelte, kam er an einem Knusperhäuschen vorbei, vor

dem auch ein Junge und ein Mädchen standen. Die beiden sprachen ihn an,

154 | Ein Spiel mit Sprites

ob er nicht etwas Kleingeld hätte. Um seine edle Abstammung zu dokumen-

tieren, zog der Prinz einen Beutel Silbermünzen heraus. Damit war sein

Schicksal besiegelt. In dem Knusperhäuschen befanden sich nämlich Video-

spielautomaten. Anstatt sich selbst einen Heimcomputer zu kaufen, gab der

Prinz sein ganzes Geld beim Videospielen aus. Die Geschichte mit Schnee-

wittchen beschloß er auf später zu verschieben. Als er aber tatsächlich keinen

Groschen mehr besaß, kam ein junger gutaussehener Mann auf ihn zu und

offenbarte ihm, daß er auf Modellsuche für eine Werbeagentur sei. Was man

dort bräuchte, sei ein junger Prinz für eine gewisse Keksrolle. Weil auch das

Gehalt nicht schlecht war, sagte der Prinz freudig zu, was die Rettung von

Schneewittchen wieder deutlich verzögerte.
Was aber war in der Zwischenzeit hinter den sieben Bergen geschehen?

Schneewittchen, die von all dem in der Zeitung gelesen und in der Hoffnung

auf die Rettung durch den Prinzen den Apfel gegessen hatte, wurde des

Wartens langsam überdrüssig. Als sie dann auch noch eine Keksrolle mit

seinem Bild geschenkt bekam (unvergiftet!), beschlossen sie und die Zwerge,

ihr Schicksal selbst in die Hände zu nehmen. Die Zwerge erzählten ihr von

dem Zauberkristall, nach dem sie schon seit Jahren buddelten. Aus bisher

ungeklärten Gründen sahen die Zwerge plötzlich eine Möglichkeit, das, was

sie seit Jahren nicht geschafft hatten, in wenigen Minuten zu vollbringen.

Allerdings nur unter der Voraussetzung, daß Schneewittchen sie begleitete

und ihnen ständig aus einem der wenigen nicht von arbeitslosen Fröschen

bewohnten Brunnen in der Nähe Wasser schöpfte und sie so schneller

arbeiten konnten. |

Und genau das ist jetzt auch Ihre Aufgabe. Aber erst, nachdem Sie das Spiel

eingegeben haben, über das wir uns jetzt noch ein bißchen unterhalten

wollen.

Zeile 10: Hier werden zunächst mit POKE 53280,11 und POKE 53281,11

die Hintergrund- und Rahmenfarbe auf Hellgrau (Farbnr. 11) gesetzt. Durch

POKE 53265,91 wird der Hintergrundfarbmodus aktiviert. Das hat zur Folge,

daß der Titel, der gleich gedruckt werden soll, mit gelber Schrift auf einem

roten Balken dargestellt wird, was gleich viel besser aussieht als normale

Schrift. Mit dem POKE 53283,2 (2 ist ja Rot) wird die Farbe dieses Balkens

festgelegt. Der letzte POKE 53272,21 setzt schlieBlich den Zeichensatz auf

die normale Adresse zurück, was nötig ist, da das Spiel mit umdefinierten

Zeichen arbeitet, sich aber später von selbst wieder startet und dann für den

Titel die normalen Buchstaben verwendet.

Ein Spiel mit Sprites 155

Zeile 20: Durch PRINT CHR$(8) wird die Umschaltung zwischen Groß-

und Kleinbuchstaben blockiert, was empfehlenswert ist, da wir mit selbstdefi-

nierten Zeichen arbeiten werden, aber keine Kleinbuchstaben definiert ha-

ben...

Zeile 30: Jetzt wird endlich der Titel " SCHNEEWITTCHEN UND DIE

SIEBEN ZWERGE " gedruckt. Die Steuerzeichen bedeuten im einzelnen

folgendes: Das invertierte Herzchen steht fiir (SHIFT)-(CLR/HOME), also
Bildschirm löschen. Mit den zehn folgenden invertierten Q’s wird der Cursor

von der HOME-Position aus zehn Zeilen nach unten bewegt. Sie tippen

zehnmal (CRSR DOWN). Das invertierte Pi steht für gelbe Farbe ((CTRL)-
(8)). Wir wollen unseren Titel ja gelb auf rot schreiben. Damit wir bei den
Leerstellen auch einen Balken bekommen, drucken wir noch (RVS ON). Das
invertierte R steht dafür.

Zeilen 40 bis 70: Hier werden die Sprites aus den DATA-Zeilen gelesen

und in den Speicher gePOKEd. Dabei werden die Speicherzellen ab 704

(Spriteadresse 11), 832 (= 13), 896 (= 14) und 960 (= 15) belegt. Fur jeden

Sprite werden 63 Bytes benötigt. Deshalb FOR X=0 TO 62...

Zeile 80: Mit POKE 53269,255 werden alle 8 Sprites aktiviert. Sprite Nr. 1

(Schneewittchen) wird in Y-Richtung vergrößert. Deshalb POKE 53271,1.

Mit POKE 53276,255 werden alle Sprites in den Multicolormodus geschaltet.

Als Multicolorfarben dienen 8 (Orange, als Hautfarbe) und O (Schwarz,

beispielsweise für Schuhe und Haare...). GePOKEd werden diese Farben in

die Adressen 53285 und 53286. |

Zeile 90: Schneewittchens Kleid wird mit POKE 53287,3 hellblau

gemacht (das ist ja die Farbadresse fiir Sprite 0). Diese Farbe kann auch in

Multicolor für jeden Sprite einzeln angegeben werden. Daher bekommen die

Zwerge mit der dann folgenden Schleife auch rote (Farbnr. 2) Mäntel.

Zeile 100: Den einzelnen Sprites werden die Bitmuster zugeteilt. Sprite O

(Schneewittchen) hat die Spritenummer 13, also POKE 2040,13. Die sieben

Zwerge bekommen zunächst die Nummer 14.

Zeilen 110 bis 130: Hier sind nun die Bitmuster der Sprites. Geben Sie

beim Eintippen ganz besonders acht, daß die Zahlen stimmen. Nachher

zeigen wir Ihnen noch, wie Sie Ihre Eingaben überprüfen können. Von Zeile

110 bis 130 (später hat dieses Muster die Spritenummer 11) stehen die Daten

eines Zwerges, der etwas erschöpft in der Gegend sitzt, weil er kein Wasser

bekommen hat. Das sieht dann so aus (Bild 9.1).

156 | Ein Spiel mit Sprites

Bild 9.1 Sitzender Zwerg

Bild 9.2 Schneewittchen

Ein Spiel mit Sprites 157

Zeilen 140 bis 170: Das ist unser Schneewittchen. Es wird die Spritenum-

mer 13 haben (Bild 9.2).

Zeilen 180 bis 210: Das ist ein Zwerg in der ersten Bewegungsphase. Um

das «Laufen» der Zwerge besser aussehen zu lassen, haben wir es in zwei

verschiedenen Phasen abgespeichert. Wie bei einem Zeichentrickfilm ent-

steht dann durch das rasche Abwechseln der beiden «Teilbilder» die Illusion

einer Bewegung. Diese Phase wird als Spritenummer 14 abgelegt (Bild 9.3).

Zeilen 220 bis 250: Das ist jetzt die andere Bewegungsphase. Sie wird in

Nummer 15 gespeichert (Bild 9.4).

Zeile 260: Hier werden die verschiedenen Sonderzeichen gelesen und in

den Speicher gePOKEd, die wir verwendet haben. Dabei belegen wir die

Buchstaben «A» bis «I» (Bildschirmcodes 1 bis 9) neu. Die Buchstaben «A»

bis «C» sind Teilstücke, aus denen wir in Lego-Art unser Gebirge aufbauen,

aus den umdefinierten Buchstaben «D» bis «I» entsteht der Brunnen. Unse-

ren selbstdefinierten Zeichensatz legen wir ab der Adresse 14336 im Speicher

ab. Das ist die größtmögliche Adresse für einen eigenen Zeichensatz. Da wir

die Zeichen 1 bis 9 verändern, müssen wir deren neue Bitmuster ab dem 8.

Byte (erstes Byte des Zeichens «A» [1 * 8]) bis zum 79. Byte (letztes Byte des

Zeichens «I» [9 x 8 + 7]) POKEn. Das tut unsere Schleife FORX=8TO 79...

Zeile 270: Da wir die Zeit und die Stärke von Schneewittchen darstellen

wollen, brauchen wir einige Zeichen aus dem Charakter-ROM. Um diese

kopieren zu können, schalten wir mit POKE 56334,0 die Interrupts ab und

blenden mit POKE 1,51 das Charakter-ROM in den Adreßbereich des 6510.

Nun übernehmen wir die Zeichen «O0» (Bildschirmcode 48) bis «9» (Bild-

schirmcode 57) sowie ":" (BS-Code 58). Also kopieren wir die Bytes (vom

Anfang des Zeichensatzes aus gesehen) 384 (48 » 8) bis 471 (58 * 8 + 7).

Genau das tut unsere Schleife FOR X=384 TO 471..

Zeile 280: Hier kopieren wir den Buchstaben «S» (BS-Code 19), der uns

später als Abkürzung für «Stärke» dienen soll. Kopiert werden die Bytes 152

(19 x 8) bis 159 (19 x 8 +7).

Zeile 290: Dasselbe geschieht mit dem «Z», das wir für «Zeit» brauchen.

Es hat den Bildschirmcode 26, also kopieren wir die Bytes 208 (26 x 8) bis

215 (26 * 8+ 7).

Zeile 300: Das Zeichen «%» brauchen wir für die Angabe der Stärke

Schneewittchens in Prozent. Es hat den BS-Code 37. Also werden die Bytes

296 (37 x 8) bis 303 (37 x 8 + 7) kopiert.

158 Ein Spiel mit Sprites

Bild 9.3 Gehender Zwerg (Teilbild 1)

Bild 9.4 Gehender Zwerg (Teilbild 2)

Ein Spiel mit Sprites 159

Zeile 310: Da wir einen leeren Hintergrund brauchen, müssen wir auch

das Zeichen " " (Leertaste oder engl. (SPACE)) übernehmen. Es hat den
Bildschirmcode 32. Dieses Zeichen zu kopieren wird gern vergessen, ist aber

unbedingt nötig. Denn an der Stelle, wo im Charakter-ROM lauter O-Bits

stehen, befinden sich im RAM ja zufällige Werte. Nun besteht das Zeichen " "

aber wirklich nur aus leeren Bytes. Daher brauchen wir nicht das Charakter-

ROM zu lesen, sondern können direkt sieben Nullen in die Bytes 224 (32 x 8)

bis 231 (32 x 8 + 7) POKEn.

Zeile 320: Wir sind fertig mit dem Kopieren. Also blenden wir die I/O-

Register mit POKE 1,55 wieder ein und schalten die Interrupts mit POKE

56334,1 wieder an. Bild 9.5 zeigt die Muster umdefinierter Zeichen.

Bild 9.5 Muster umdefinierter Zeichen

160 Ein Spiel mit Sprites

Wenn Sie das Programm jetzt bis zu dieser Stelle eingegeben haben, kommen

Ihnen vielleicht Zweifel, ob Ihre DATA-Zeilen auch mit unseren übereinstim-

men. Das können Sie aber ziemlich einfach nachprüfen. Geben Sie mal

folgende Zeile ein:

500 FOR X=1 TO 324: READA: W=W-+A: NEXT X: IF W()21465 THEN

PRINT "FEHLER!!!"

und starten Sie sie mit RUN 500. Diese Zeile zählt alle DATA-Werte zusam-

men und vergleicht sie mit unserer Summe (auch «Prüfsumme» genannt).

Wenn alles stimmt, meldet sich der Computer wieder mit «READY». Wenn

aber nicht, druckt er «FEHLER!!!». Dann sollten Sie Ihre Eingaben noch mal

mit dem Listing vergleichen und Fehler ausbessern. Wenn schließlich kein

«FEHLER!!!» mehr auftritt, können Sie ziemlich sicher sein, daß Ihre DATAs

und somit Ihre Sprites und Sonderzeichen stimmen. Bevor Sie dann weiterma-

chen, sollten Sie die Zeile 500 löschen. Dazu tippen Sie einfach 500 ein und

drücken (RETURN). Ä |

Zeile 420: Nachdem wvir jetzt so fleißig alle Zeichen umdefiniert haben,

wollen wir doch auf unseren neuen Zeichensatz ab 14336 umschalten: POKE

53272,27

Zeile 430: Jetzt sehen Sie auch den tieferen Sinn, warum wir ausgerech-

net die Zeichen «A», «B» und «C» umdefiniert haben. In dieser Zeile wird der

obere Teil des Berges auf den Bildschirm gedruckt. Bei vielen Programm-

listings müssen Sie sich bei solchen Gelegenheiten durch einen unübersichtli-

chen Dschungel von Steuer- und Grafikzeichen kämpfen und nach dem

System «Dieses Zeichen könnte gemeint sein» vorgehen. Wir haben Ihnen

aber das Abtippen einfacher gemacht, indem wir normale Buchstaben ver-

wendet haben, die wir vorher umdefinierten. So können Sie ganz einfach

(«einmal C, fünfmal A...») diese Zeilen eintippen. Die Steuerzeichen vorn

bedeuten: invertiertes Herzchen für Bildschirm löschen ((SHIFT)-(CLR/
HOME)) und das invertierte Kreuz für Dunkelgrau ((C=)-(5)). Vergessen
Sie den Strichpunkt nicht, damit kein Zeilenvorschub erfolgt.

Zeile 440: Die sieben Gänge, in denen die Zwerge arbeiten, werden jetzt

gedruckt. Dazu verwenden wir dasselbe Muster 16 Zeilen lang. Also kommt

die Schleife FOR X= 1 TO 16

Zeile 450: Dieses Muster aus unseren Sonderzeichen «A», «B» und «C»

stellt wieder ein Stück Berg dar, diesmal von sieben Gängen unterbrochen. .

Ein Spiel mit Sprites 161

Zeile 460: NEXT X zu der Schleife von Zeile 440

Zeile 470: Hier drucken wir den Brunnen auf den Schirm. Dazu verwen-

den wir Steuerzeichen. Ab der aktuellen Cursorposition (sozusagen am Fuß

des Berges) gehen wir drei Zeilen runter (also drei invertierte Q's, was für Sie

dreimaliges Drücken von (CRSR DOWN) bedeutet), eine Spalte nach rechts

(wofir die invertierte Klammer steht — (CRSR RIGHT)) und drucken dort den

ersten Teil unseres Brunnens, bestehend aus den Zeichen «D» und «E».

Alsdann gehen wir mit dem Cursor eine Zeile tiefer (inv. Q — (CRSR

DOWN)) und zwei Positionen zurück. Das ergibt ein Steuerzeichen, das

aussieht wie ein invertierter Strich. Drücken Sie zweimal (CRSR LEFT). Dann

kommen die Zeichen «F» und «G», die die zweite Zeile unseres Brunnens

darstellen. Die Prozedur von oben wiederholt sich ((CRSR DOWN) (2 x
CRSR LEFT)), und wir können den letzten Teil des Brunnens drucken. «H»

und «I».

Zeile 480: Die Y-Koordinaten der sieben Zwerge (Sprites 1 bis 7) werden

allesamt auf 54 gesetzt.

Zeile 490: Die X-Koordinaten der Zwerge mußten wir beim Programmie-

ren mehr oder weniger von Hand austarieren. Daher haben wir die Werte, die

die Sprites genau so positionieren, daß sie jeweils in der Mitte ihres Ganges

sind, in der DATA-Zeile 500 abgelegt. Sie werden mit READ einzeln eingele-

sen und dann in die entsprechenden Register gePOKEd. Beachten Sie, daß

wir für die Sprites 6 und 7 noch ein zusätzliches 9. Bit im Register 53264

setzen müssen, da deren tatsächliche X-Koordinaten größer als 255 sind. Der

POKE 53264,192 (2° + 27 = 128 + 64 = 192) erledigt das.

Zeile 500: In dieser DATA-Zeile sind die X-Koordinaten abgelegt, die wir

austariert haben.

Zeile 510: Schließlich bekommt auch noch Schneewittchen eine Position.

Ihre X-Koordinate ist 30, Y ist 200.

Zeile 520: Die Variable S steht ab jetzt für «Stärke». Hier ist der prozen-

tuale Wert ihrer Kraft abgelegt. Momentan beträgt er 100%, also istS = 1.

Der Detektor für Sprite-Sprite-Kollisionen wird mit POKE 53278,0 zurückge-

setzt. Das sollte man am Anfang eines Programms immer tun, da die Sprites

beim Aufbau ja schon zusammengestoßen sein könnten. Die Variable Z steht

ab jetzt für die Anzahl der noch arbeitsfähigen Zwerge. Momentan ist sie 7.

Die Zeitvariable TI$, die wir später zur Zeitmessung benötigen, wird mit

TI$="000000" zurückgesetzt. R ist die Spielzeit in Sekunden. Da wir 4

Minuten spielen wollen, bekommt sie den Wert 240.

162 Ein Spiel mit Sprites

Zeile 530: Hier werden die Werte für den Ton gesetzt, den die Zwerge

beim Arbeiten machen. Vergleichen Sie sie damit, was Sie in unserem Kapitel

«Musik und Geräusche» gelesen haben. Die Gesamtlautstärke wird auf 9

gesetzt (POKE 54296,9). Die folgenden Einstellungen gelten für Stimme #1:

Die Frequenz des Geräusches hat den Dezimalwert 2209. Das sind rund 125

Hertz. Diese wird nach High Byte/Low Byte in die Register 53272 und 53273

gePOKEd. Die nächsten beiden POKESs legen die ADSR-Hüllkurve fest: Attack

‚= 1, Decay = 0, Sustain = 3, Release = 7. So entsteht ein Ton, der sehr hart

angeschlagen wird, sofort auf seine Normallautstärke zurückfällt und mittel-

mäßig schnell ausklingt. Das Ganze soll das Hacken der Zwerge auf Stein

untermalen.

Zeile 540: Da wir gerade beim Musikmachen sind, legen wir gleich die

Hüllkurve für die Stimme #2 fest. Diese Stimme werden wir immer dann

gebrauchen, wenn ein Zwerg erfolgreich Wasser bekommen hat (freudiges

Geräusch) oder vor Erschöpfung umfällt (weniger freudiges Geräusch ...).

Die Hüllkurve sieht folgendermaßen aus: A = 5, D = 10, 5 = 14, R = 12.

Alles in allem ist dies ein relativ träger Ton, der nicht besonders intensiv

anklingt, langsam auf sein Grundniveau zurückfällt und ebenfalls langsam

ausklingt.

Zeile 550: Hier beginnt das eigentliche Steuerprogramm. Der Variablen T

wird der Inhalt der Adresse 203 zugewiesen. In dieser Adresse steht der Code

der gerade gedrückten Taste. Vergleichen Sie dazu auch Bild 10.1.

Zeile 560: A=1- A. Diese kleine Formel ist ziemlich praktisch. Sie liefert

als Ergebnis abwechselnd die Werte O und 1. Schauen wir uns das mal

genauer an. Zuerst ist A = O. Also wird durch diese Formel A auf 1 gesetzt.

Denn 1 — O = 1 und dieser Wert wird der Variablen A zugewiesen. Das

nächstemal, wenn das Programm an dieser Stelle vorbeikommt, ist A = 1. Die

Formel macht daraus 1 — 1 = 0. A ist wieder 0. Beim nächstenmal wird aus

der O wieder 1 usw. Was hat das aber nun für einen Zweck? Unsere Zwerge

sollen mächtig aktiv, also ständig in Bewegung sein. Um das zu erreichen,

haben wir ja oben zwei Bewegungsphasen programmiert. Doch dazu gleich.

Außerdem sollen sie aber auch kräftig Lärm machen. Also spielen wir

jedesmal, wenn das Programm hier ankommt, das Geräusch an, das die

Zwerge beim Arbeiten von sich geben. Der POKE 54276 dient dazu, den Ton

auf Stimme #1 einzuschalten. Aber jetzt zu unseren Bewegungen. Alle

Zwerge bewegen sich im Gleichschritt. Das fällt im Spiel gar nicht weiter auf.

Ein Spiel mit Sprites 163

Die Schleife FORX=1 TO 7... sorgt für diese Bewegung, indem sie für jeden

der Sprites 1 bis 7 abwechselnd (abhängig von A) den zugehörigen Zeiger auf

Spritenummer 14 oder 15 setzt. Jetzt könnte es aber sein, daß einige Zwerge

schon außer Gefecht sind. Die dürfen sich natürlich nicht bewegen. Um das

zu erreichen, gibt es das Feld Z(I), also eine Variable für Z(1), eine für Z(2)

usw. bis Z(7). So ist jedem Zwerg — wie könnte es auch anders sein? — ein

Platz in diesem Feld zugeordnet. Dabei gilt, was zugegebenermaßen etwas

unüblich, aber einfacher ist, folgende Belegung: Wenn A(l) = 0, dann ist der

Zwerg Nr. I noch im Rennen. Ist aber Z(I) = 1, dann ist der Zwerg umgefallen.

Abhängig von dieser Eintragung wird der entsprechende Zwerg dann bewegt

oder eben nicht. |

Zeile 570: Da der letzte Befehl der Zeile 560 ein IF... war, wird er nicht

immer ausgeführt. Deshalb muß das NEXT unserer «Zwergenbewegungs-

schleife» in der nächsten Zeile stehen. So trifft es der Computer - egal, ob die

Bedingung erfüllt war oder nicht. Was jetzt kommt, ist sozusagen das Gift im

Programm. Die Variable S, die ja fur Schneewittchens Starke steht, wird

(wenig, aber immerhin ...) verkleinert. Der Wert 0.0013 hat sich als ganz

vernünftig erwiesen. Wenn Sie das Spiel einfacher machen wollen, setzen Sie

einen kleineren Wert ein, wenn Sie es schwieriger haben wollen, einen

höheren. B ist eine Variable, die für «Bewegung» steht. Sie wird gleich für die

Fortbewegung von Schneewittchen gebraucht. Damit Schneewittchen nicht

von allein weiterläuft, wenn der Spieler keine Taste drückt, wird dieser

Bewegungsfaktor jedesmal wieder gelöscht, wenn das Programm hier vorbei-

kommt. Nachdem diese ganzen Aktualisierungen erledigt sind (der Computer

braucht weniger als eine Sekunde dazu), können wir auch den Ton mit POKE

54276,0 wieder abschalten. So ergibt sich ein typisches «Hack» -Geräusch.

Das letzte in dieser Zeile ist.noch eine kleine Aufräumarbeit: Wenn die Stärke

S, nach der Verminderung von gerade eben, kleiner als O ist (was ja keinen

Sinn haben würde, was soll eine «negative Stärke» sein?), soll sie doch gleich

0 bleiben.

Zeile 580: Das ist der eigentliche Steuerungsteil in diesem Programm.

Wenn die (CRSR UP/DOWN)-Taste gedrückt worden ist (sie hat den Code

7, die Variable T gibt darüber Aufschluß), dann soll sich Schneewittchen nach

hinten, also in Richtung Brunnen bewegen. Dazu wird B entsprechend

negativ. S ist ja die Starke Schneewittchens. Wenn diese 100% beträgt, ist S

= 1. Das bedeutet also, daß im Bestfall ein Schritt von Schneewittchen 7

Bildschirmpunkte beträgt. Wenn sie schwächer wird, verkleinern sich ihre

164 Ein Spiel mit Sprites

Schritte entsprechend. Ist ihre Stärke O, dann kann sie sich überhaupt nicht

mehr bewegen.

Zeile 590: Hier wird dasselbe fiir die Taste (CRSR LEFT/RIGHT) (der

Code ist 2) gemacht. Nach vorn bewegt sich Schneewittchen etwas schneller.

Ein Schritt in diese Richtung beträgt im Bestfall 8 Bildschirmpunkte.

Zeile 600: Diese Zeile stellt den neuen X-Wert für Sprite O fest. Dafür

wird die augenblickliche X-Koordinate mit PEEK (53248) ausgelesen. Dazu
kommt B, also die Bewegung, die oben definiert worden ist. Wenn PEEK

(53264) = 193, dann bedeutet das, daß Schneewittchen sich rechts von der

Koordinate 255 befindet. Sie wissen ja, für die X-Richtung gibt es ein Bit Nr.

8. Allerdings sind diese Bits für die Zwerge 7 und 6 schon gesetzt (siehe Zeile

490). Demnach ist der Wert von vornherein 192. Wenn jetzt Sprite O

(Schneewittchen) dazukommt, ist der Wert 128 + 64 + 1 = 193. Und dann —

lange Zeile, kurzer Sinn — muß die X-Koordinate um 256 erhöht werden.

Zeile 610: In dieser Zeile wird abgefragt, ob Schneewittchen etwa

abhauen, also hinter dem Bildschirmrand verschwinden will. Das wäre der

Fall, wenn die X-Koordinate kleiner als 22 würde. Ist das der Fall, soll sie

schön bei 22 bleiben.

Zeile 620: Anhand der neuen X-Koordinate wird erst einmal festgestellt,

ob das 9. Bit für Schneewittchen gesetzt werden muß. Wenn dem nicht so ist,

weil die Koordinate kleiner als 256 ist, dann wird in das entsprechende

Register der «Normalwert» 192 gePOKEd. (Sie wissen ja: die beiden Rechts-

außen unter den Zwergen.) Die Variable V, die nachher in das X-Register des

Schneewittchen-Sprites gePOKEd wird, kann also bedenkenlos den X-Wert

übernehmen. |

Zeile 630: Sollte X aber größer oder gleich 256 sein (und dafür kann man

schreiben: IF X)255...), dann wird unser 9. Bit gesetzt und die Variable V,

die ja gePOKEd werden soll, also gar nicht größer als 255 sein darf, entspre-

chend verringert. Sollte V jetzt noch größer als 70 sein (also der X-Wert

größer als 256 + 70 und damit größer als 326), muß Schneewittchens Flucht

nach vorn auch entsprechend verhindert werden. Also wird V in diesem Fall

zurück auf 70 gesetzt. |

Zeile 640: Jetzt kommt der Lohn für alle unsere Mühe. Der Wert V,

unsere entsprechend behandelte X-Koordinate, kommt ins X-Register von

Sprite O (Schneewittchen).

Zeile 650: In dieser Zeile wird abgefragt, ob Schneewittchen den Brunnen

berührt. Sobald eine Kollision zwischen dem Schneewittchen-Sprite und dem

Ein Spiel mit Sprites 165

Hintergrund festgestellt wird (und das einzige Objekt im Hintergrund, mit

dem der Sprite O kollidieren könnte, ist der Brunnen), hat Schneewittchen

wieder Wasser. Zuerst wird das Kollisionsregister gelöscht. Dann wird es

abgefragt. Wenn sich Sprite O gerade über dem Brunnen befindet, ist der

Inhalt dieser Adresse gleich 1 und somit die IF... THEN-Bedingung erfüllt.

Also wird die Variable WA, die natürlich für Wasser steht, auf 1 gesetzt.

Solange sie das ist, hat Schneewittchen Wasser, das sie einem Zwerg zu

trinken geben kann. Damit der Spieler irgendwie die beiden Zustände «Was-

ser» und «kein Wasser» unterscheiden kann, wird der Rahmen blau ge-

POKEd.

Zeile 660: Hier wird die Kollision zweier Sprites überprüft. Da die Zwerge

voneinander durch den Felsen getrennt sind, kann eine Kollision nur mit

Schneewittchen stattfinden. Wieder wird zunächst das Kollisionsregister

gelöscht. Wenn sich dann der PEEK(53278) von O unterscheidet (was bedeu-

tet, daß eine Kollision stattgefunden hat) und gleichzeitig die Wasser-

Variable WA = 1 ist (was bedeutet, Schneewittchen hat Wasser), dann

passiert der Reihe nach folgendes: WA = 0, also Schneewittchen hat kein

Wasser mehr und muß neues holen. POKE53281,11 — der Rahmen wird

wieder grau, so daß auch der Spieler merkt, daß das Wasser futsch ist. OK =

1. Diese OK-Variable ist immer dann 1, wenn der Zwerg, der gerade

unterwegs ist (da kommen wir gleich drauf), sein Wasser erhalten hat, also

weiterarbeiten kann. Mit GOSUB 1000 wird in ein Tonunterprogramm

gesprungen, das diese erfreuliche Begebenheit durch ein entsprechendes

Geräusch dokumentiert.

Zeile 670: Die Variable ZW stellt auch kein Rätsel mehr für uns dar. Sie

steht für «Zwerg». Aber man sollte das schon noch etwas genauer festlegen:

ZW ist immer dann 1, wenn gerade ein Zwerg unterwegs zu Schneewittchen

ist, um Wasser zu holen. Solange diese Variable 1 ist, wird der Rest dieser

Programmzeile nicht ausgeführt. Ist ZW aber O, was bedeutet, daß kein

Zwerg unterwegs ist, dann passiert folgendes: Mit INT(7#RND(1))+1 wird

eine Zufallszahl zwischen 1 und 7 ausgewählt. Diese Zahl heißt ab jetzt ZN,

was als Abkürzung für Zwergennummer gedacht ist. Wozu diese Zwergen-

nummer? Sie ist die Nummer des Zwerges (wir haben die Zwerge natürlich

ganz lapidar von 1 bis 7 durchnumeriert), der gerade unterwegs ist. Die

Variable W ist die Bewegungsrichtung dieses Zwerges. Sie ist momentan +5,

das bedeutet, der Zwerg bewegt sich mit steigenden Y-Werten, also nach

unten. Die Variable OK wird gelöscht, denn der Zwerg, der da jetzt losmar-

schiert, hat ja noch Durst. Sollte jedoch der Zwerg, der auf Zufallsbasis

166 Ein Spiel mit Sprites

ausgewählt wurde, überhaupt nicht mehr verfügbar sein (also vor Ermattung

irgendwo im Bergwerk sitzen und ausruhen), dann war die ganze Aktion für

diesmal umsonst. ZW, die Variable, die anzeigt, ob einer unterwegs ist, wird

wieder 0, und mit einem GOTO 550 springt das Programm wieder zur

Tastaturabfrage, denn die Zeilen, die jetzt noch kommen, ‚dienen lediglich der

Bewegung des Zwerges.

Zeile 680: Und genau das tun wir dann auch gleich. Die Y-Koordinate des

auserwahlten Zwerges ZN wird um den Wert W vergrößert. Sollte W später

einmal negativ sein, bewegt sich der Sprite wieder nach oben, da die

Koordinate dann in Wirklichkeit immer kleiner wird. Der aktuelle Stand des

Zwerges wird mit PEEK aus dem zuständigen Register gelesen und, nachdem

er aktualisiert wurde, mit POKE dorthin zurückgebracht.

Zeile 690: Sollte die Y-Koordinate unseres Zwerges ZN größer als 200

sein (dann ist er nämlich auf der Höhe von Schneewittchen, wo er ja mit ihr

zusammenstoßen und somit Wasser erhalten kann), darf unser kleiner Freund

umkehren. Seine Bewegung wird also negativ (W = -5), und gleichzeitig

wird die Variable D auf 1 gesetzt. D steht ungefähr für «Rückzug». Sie sehen,

daß uns langsam die symbolträchtigen Buchstaben ausgingen ...

Zeile 700: Ist unser kleiner ZN wirklich auf dem Rückzug (D = 1) und

seine Y-Koordinate kleiner als 55, dann ist er wieder im Bergwerk. Sein

Rückzug ist also beendet (D = 0). Mit ZW = O wird gleich festgehalten, daß

keiner mehr unterwegs ist. Aber jetzt kommt's drauf an. Wenn der Arme

nämlich kein Wasser bekommen hat, dann ist wieder ein Zwerg weniger im

Rennen. Im Feld Z(ZN) wird er gelöscht, das heißt, in diesem Fall auf 1

gesetzt. Vergleichen Sie dazu die Zeile 560.

Zeile 710: Sollte die Anzahl der «gesunden» Zwerge = O sein, ist also

kein Zwerg mehr in der Lage, seine Arbeit zu verrichten, dann ist das Spiel zu

Ende. Schneewittchen hat verloren. Das Programm springt zu Zeile 900.

Zeile 720: Hier wird festgestellt, wie lange Schneewittchen noch spielen

muß. Die Zeitvariable TI$ haben wir ja am Anfang zurückgesetzt. Also war

auch TI (das ist die Variable, die in 60stel-Sekunden zählt) = O0. Nun wird

abgefragt, wie viele Sekunden seit Anfang vergangen sind. Ist die Differenz

zwischen R (der Zeit, die gespielt werden muß) und der Spielzeit kleiner als 1

Sekunde, dann ist Schluß. Da noch mindestens ein Zwerg übrig sein muß

(sonst wäre das Programm in Zeile 710 zum «Ende-Programm» ab Zeile 900

gesprungen), hat Schneewittchen gewonnen - also auf zur Zeile 800, wo der

Sieg dann auch gebührend gefeiert wird. |

Ein Spiel mit Sprites 167

Zeile 730: Hier wird ein Maschinenunterprogramm des Betriebssystems

benutzt. Das heißt, wir nutzen die Arbeit, die Commodore schon geleistet

hat, um den Computer etwas machen zu lassen, was wir sonst selbst

programmieren müßten. Dieses Maschinenprogramm setzt den Cursor an die

Position, die wir in den Adressen 211 und 214 angegeben haben. Mit SYS

58732 wird es aufgerufen. Wenn es fertig ist, springt es — wie ein gutes

Unterprogramm — dahin, wo es herkam. So ersparen wir uns komplizierte

Steuerzeichen und können direkt im rechten unteren Eck hinPRINTen, was

wir dort hinschreiben wollen. Das wäre zunächst einmal die noch verblei-

bende Spielzeit P und Schneewittchens Starke S. Damit das alles einigerma-

ßen gut aussieht, verwenden wir folgende Steuerzeichen: Der invertierte Pfeil

nach oben steht für (CTRL)-(6), also Grün. Es folgt der Buchstabe «Z:» für
«Zeit». Die eigentliche Zeitvariable muß außerhalb der Anführungszeichen

stehen, damit auch ihr Wert gedruckt wird und nicht bloß ein zweiter

Buchstabe «Z». Die dann folgenden Steuerzeichen fiir Gelb (inv. Pi, (CTRL)-

(8)) und Cursor nach links (inv. Strich, (CRSR LEFT)) müssen aber wieder
innerhalb der Anführungszeichen stehen. Der Cursor kommt wieder eine

Position nach links, weil der Commodore nach einer Zahl (wie z. B. dem Wert

von P) grundsätzlich eine Position frei läßt. Sodann folgt der Buchstabe «S:»

für «Stärke» und die Angabe dieser Stärke (die Variable hieß ja auch S) in

Prozent. Dazu muß der Wert von S, der ja irgendwo zwischen O und 1 liegt,

mit 100 multipliziert werden. Schließlich kommt noch ein (CRSR LEFT)

wegen der Leerstelle, die nach der Zahl gedruckt wird, und das % -Zeichen.

Um den Cursor von dem kritischen Bildschirmeck wegzubekommen, wo er

bei ungünstigen Fällen ein Scrolling, also ein Hochschieben unserer Grafik,

bewirken könnte, kommt er mit (HOME) (Steuerzeichen dafür ist das

invertierte S) wieder in die HOME-Position — bis zum nachstenmal.

Zeile 740: Nachdem wir jetzt endlich alles erledigt haben, springen wir

zurück zur Tastaturabfrage in Zeile 550, auf daß alles, was Sie jetzt eingege-

ben oder zumindest gelesen haben, noch mal passiert. Und noch mal. Und

noch mal. Und...

Zeile 800: Hier gehen jetzt unsere Unterprogramme los, die wir so

anspringen können. In dieser Zeile ist quasi die Siegesfeier festgelegt. Hier

springt das Programm nämlich hin, wenn Schneewittchen gewonnen hat.

Diese gute Nachricht und die Wirkung des eben freigelegten Zauberkristalls

wirken wahre Wunder: Alle Zwerge erwachen zu neuen Kräften und rennen

zu Schneewittchen. Ihre Y-Koordinate wird also in einer Schleife von 54 auf

168 Ein Spiel mit Sprites

200 hochgezählt. Ein Schritt entspricht dabei fünf Bildpunkten. Abwechselnd

(das A=1-A kennen Sie ja schon ...) wird eine von zwei Bewegungsphasen

gedruckt. Das Prinzip ist dasselbe wie in Zeile 560.

Zeile 810: Das Ganze wird mit einem entsprechenden Ton versehen. Er

läuft über Stimme #2, die wir ja für solche Anlässe schon in Zeile 540

vorbereitet haben. Seine Wellenform ist Dreieck, und so wird 33 in die

Adresse 54283 gePOKEd, womit der Ton auch gleichzeitig eingeschaltet

wird. Nun lassen wir die Zwerge vor Freude springen. Acht Sprünge sind

angesagt. Die J-Schleife («J» für engl. jump) wird sie zählen. Die X-Schleife

wird vier Töne mit den Frequenzwerten 24 « 256 (= 6144; ca. 350 Hertz),

27 x 256 (= 6912; ca. 400 Hertz), 30 x 256 (= 7680; ca. 450 Hertz) und 33

* 256 (= 8448; ca. 500 Hertz) erzeugen. Musikfreunde mögen uns beim ©

Blick auf die Frequenzen verzeihen. Diese Freudenhüpfer erheben keinen

Anspruch auf Perfektion im Sinne eines Dreiklangs in Dur. Wir haben

übrigens bloß die High Bytes gePOKEd, die Low Bytes setzen wir auf O und

können sie so vernachlässigen. |

Zeile 820: In der Z-Schleife wird den sieben Zwergen je eine neue Y-

Koordinate zugewiesen. So entsteht ein Sprung nach oben. Nächster Zwerg:

nächste Koordinate: nächster Sprung — oder auf BASIC: NEXT Z: NEXT X:

NEXT J. Ton aus. Zwerge ab von der Buhne (POKE 54283,0: POKE 53269,0).

Zeile 830: Um den Spieler auch textlich entsprechend belohnen zu

können, brauchen wir mit POKE 53272,23 unseren Text-Zeichensatz aus

dem ROM. Die Steuerzeichen, die nun gedruckt werden, stehen für (SHIFT) -

(CLR/HOME), (C=)-(6) (Hellgrün) und dreimal (CRSR DOWN). Der nun
folgende Text ist im Listing im Grafikmodus abgedruckt, so daß Großbuchsta-

ben als Grafikzeichen dargestellt werden. Das schien uns dennoch vernünfti-

ger, als das ganze Listing in Kleinschrift zu drucken, wobei z. B. völlig andere

Steuerzeichen rausgekommen wären. Der Text hier heißt: «Bravol Es ist

Ihnen gelungen,» |

Zeile 840: «Schneewittchen zu retten!!!»

Zeile 850: «{CRSR DOWN) Neues Spiel gefaellig?»

Zeile 860: «(2 * CRSR DOWN) (RVS ON) (CTRL)-(4) (Hellblau).

Druecken Sie eine Taste! (RVS OFF)»

Zeile 870: Diese Zeile wartet, bis eine Taste gedrückt wird. Die Funktion

der Adresse 198 finden Sie ausführlich im Input/Output-Kapitel. Wenn eine

Taste gedrückt wurde, fängt das Spiel mit RUN neu an.

Ein Spiel mit Sprites 169

Zeile 900: Wenn das Programm allerdings hierher kommt, gibt es weni-

ger zu feiern. Schneewittchen hat verloren. Das wird zunächst mit einer zum

traurigen Anlaß passenden Bildschirmfarbe unterstrichen (POKE53280,0:

POKE 53281,0 = Schwarz). Der Bildschirm wird gelöscht (invertiertes Herz-

chen), alle Sprites außer dem todkranken Schneewittchen verschwinden vom

Schirm, und Schneewittchen wird mit den Koordinaten 235 und 150 auf den

Schirm gesetzt. Mit ihren schwarzen Haaren auf schwarzem Grund sieht sie

schon gespenstisch aus ...

Zeile 910: Für einen Trauermarsch war hier leider kein Platz, aber einen

Ton des Beileids kann sich SID einfach nicht verkneifen. Dazu wird die

Wellenform der Stimme #2 auf Dreieck geschaltet, der Ton aktiviert und mit

einer FOR... NEXT-Schleife die Frequenzen von 8192 bis 4096 (entspricht

ca. 500 bis 250 Hertz) abwärts durchlaufen. Das Low Byte schenken wir uns

wieder. Danach wird mit POKE 54283,0 der Ton abgeschaltet, und mit POKE

53272,23 wird der Commodore in den Textmodus zurückgesetzt.

Zeile 920: Auch diesmal erhalten wir eine Mitteilung über unser Können.

Wie ab Zeile 800 gibt es hier verschiedene Steuerzeichen. Der Text im Listing

ist im Grafikmodus gedruckt. Sie geben einfach ein: PRINT «(CTRL)-(6) Es

ist Ihnen leider auch nicht gelungen, »

Zeile 930: «Schneewittchen zu retten.»

Zeile 940: «(CRSR DOWN) Jetzt koennen wir nur noch auf den»

Zeile 950: «(CRSR DOWN) Prinzen hoffen ...»

Zeile 960: «(3 x CRSR DOWN) Wollen Sie's nochmal versuchen?»

Zeile 970: «(3 * CRSR DOWN) (RVS ON) (CTRL)-(3) (Hellblau)

Druecken Sie eine Taste!»

Zeile 980: Auch diese Zeile wartet, wie Zeile 870, auf einen Tastendruck

und startet dann mit RUN das Programm neu.

Zeile 1000: Dies ist das erfreulichere Ton-Unterprogramm. Wenn eine

«Wasserübergabe» erfolgreich verlaufen ist, springt das Programm hierher

(aus Zeile 660 ...). Stimme #1 wird abgeschaltet, Stimme #2 auf Dreiecks-

schwingung und auf «Ein». Dann wird in der Schleife die Frequenz von 23 x

256 (= 5888; ca. 350 Hertz) bis 32 * 256 (= 8192: ca. 500 Hertz)

durchlaufen. Danach wird Stimme #2 wieder abgeschaltet.

Zeile 1010: Das RETURN veranlaßt den Computer, aus diesem Unterpro-

gramm zurückzuspringen.

170 Ein Spiel mit Sprites

Zeile 1100: Dieses andere Unterprogramm ist weniger erfreulich. Es wird

angesprungen, wenn ein Zwerg erschöpft zusammenbricht. Man kann hier

nicht von einem reinen Ton-Unterprogramm reden, da hier auch-noch einige

Änderungen vorgenommen werden, die für die Steuerung wichtig sind.

Erinnern Sie sich noch? Der Zwerg ZN war derjenige, der unterwegs war.

Wenn er kein Wasser bekommen hat, fällt er jetzt um. Dazu sind folgende

Schritte nötig: Der Spritezeiger des entsprechenden Sprites zeigt auf Sprite-

nummer 11. Da liegt unser Bitmuster für einen erschöpften Zwerg. Die

Anzahl der aktiven Zwerge Z wird um 1 vermindert. Da die anderen nun

länger schuften müssen, erhöht sich die Zeit, die Schneewittchen durchhalten

muß. R wird proportional zur Anzahl der erschöpften Sprites vermehrt.

Zeile 1110: Hier gibt nun noch SID seinen Kommentar zum Geschehen.

Er schaltet Stimme #1 aus und #2 mit einer Dreiecksschwingung an. Die

Frequenz wird abwärts durchlaufen, von 32 * 256 (= 81921; ca. 500 Hertz).

bis 16 * 256 (= 4096; ca. 250 Hertz). So entsteht ein entsprechend

mitleidiger Ton. Schließlich wird Stimme #2 abgeschaltet, und in...

Zeile 1120: erfolgt der Rücksprung ins Hauptprogramm.

Damit hätten wir auch dieses Spiel geschafft. Fürs Eintippen gilt dasselbe, was

wir auch schon beim ersten Spiel gesagt haben. Da dieses Programm beson-

ders viele POKEs verwendet, ist hier beim Testen ganz besondere Vorsicht

geboten.

Ansonsten ist auch hier die Anleitung zum Spielen nicht sonderlich schwer:

Schneewittchen wird mit den beiden (CRSR)-Tasten bewegt. Sie bekommt

Wasser, wenn sie den Brunnen berührt, man erkennt das an der blauen

Rahmenfarbe. Ein Zwerg bekommt Wasser, indem er Schneewittchen

berührt. Das Ganze muß durchgestanden werden, bis die Zeit, unten rechts

angezeigt, abgelaufen ist.

Viel Spaß beim Spielen!

SME
M
A
S
S

L
a
e

E
S
E
L

e
t

B
E

0,
se

n
g

SC),
S
h
 B
a
e
]

2
ee

ana?
Fone!

171

Aes
on

A
s
i
e
"

A
R
S
E

T
S
A

ed
ke

J
a
i
n

i P
e
i

A
S

ed

S
A
A
S
 a
g

E
P
I
A
A

SG
PEC

L
o
e

W
a
h
:

S
s
e

i

" 1233
a

Sb
S
e

T
A
C

hed
: é

ha
EA

LE eof
be

CT
L
e
v
e
l

C
-
S
I

D
I
H
D

dl
:
T
a
F
O
L
P
S
E
 =

& 20a
Ta

P
a
A
O
e

A

P
e
e
s

Ache

J
s

OPT
A
R
R
I
E
T
A

PUTRI
E
C
L

se
A

“si or
L
E
R

a

m
T

od

e
n
e

oe
e
e
e
?

nae
ont

a0

F
o
t
o

Bet
ST O

H
L
E

DGE
Z
U

SR

E
U

E
T

ET

D
E

Oo b
e

e
o

BA
T
L

Bre
2°

O°
SSE

O°
O°

SST
A

a
Seb

Ot
SEL

get
a

ae T
S
T

Si
Boe

S
S
D

P
E
P

PS
EGE

A
O

SS
A
O

Oe
a

a
Be

oe
ee

a
B
L
E

Bee
o
e

a
a

a
a

a
a

a
B
S
L

St

SSTH
Le

B
e

{
9
2
°

G
T

E
S
T

G
A
,

T°
OS

6S
O

O°
So

O
S

E
E
T

E
a

Oe
T
R
L

Bee
S
O

SSE
O
O

S
S
T

a
SEL

GAL
OS
S
E
L

SS
OL

S
E
L

S
T
S

wind
get

Po
PE

S
O

EGE
P
O

S
S
T

O
e

Oe
a

FE o
e

e
e

L
e

Bst
A

O°
S
S

a
e
a

AOE
Se

B
P
S

a
Sate

Le
ett

Tr
ert

khLeNT
2

a
T

r
:
.

€
A
h

r
y
a

T
r

=

r
i

r
m
t

T
r
‘
t
s

T
°

% y
e

Bey
at

T
\

je
T

’
|

1
]

L
.

H
E
T

t
z

;
i

rod

joao”
os!

coe
Fock

“

S
S
T

P
T
R

P
P
T

S
T
B

G
e

S
T
R

Be
A

R
e

b
E

L
A
T

ee

wet

woken
Yes

Ein Spiel mit Sprites

|

i

iM

©

%
fi

af oat

i

En

38

ii

A
O

a
a

a
a

a
a

a
B
L
E

SS
SS

E
L
T

Se

So
Se

G
t

aS
"ETTELLT

GET
Z
U

S
E
D

SST

P
o
a

B
A
R

OT

a
S
S

2
a

Sb
a

a
PS

a
a

SOP
BET

S
O

S
S
T

e
B

Gb

a
e

Z
e
e

e
S

G
e

e
B

a
S
i
a

B
B

a!
e
B

B
L
T

ATT

L
H
:

F vt
“
S
S
A

A
P
R
S

O
L

I
P
R
A

E
T

P
E

S
A

ed
EIEN

L
e
a
h
:

2°
S
S
A
C
:

te B
E
E

Se P

L
E
S

sad
4:

mR
E
E
E

S
a
e
e
d

I
E

S
e

S
e
d

Oo
S
S
e
S

a
e
d

e
e

St
E
S

a
e
d

: ,
"
T
E
A

S
E
E

a
o
s

Ge

J
A
S
N

oP
sr

E
S

S
N
e

P
I
R
S
A
:

S
S
O
 L
e
e

e
a
d

Get

L
e
a
h

P
T

S
6
8
9
1
0
-

D
A
T
A

al:
S
S
O

Lee
A
d

eet

L
e
a
h

oP
A+

S
o
d

M
S
A
:

S
S
O

L
e
e

e
A

e
S

L
a
e

Pits
4

It a2
3:

qed
P
U
A
:

S
o

e
e
e

a
o

Ei
a

S
e
r
i
e

Mal
a S

T
S

S
0
0

C
H
M

N
S
H
T
L
L
I
N
S
S
H
H
o
S

E
N
D
S

L
A

D
e
i

G
E

Cita
F
a
n

ALE
D
e
b

EEE

T
e

S
t
e
i
n
e
s

h
o
d

D
U
O
E
E
S
E
Z
E
G
A
N
O
G
:

TE
S
a
e
k
o

a
a
g
d
:

T
i

T
E
E
S

S
S
e
o
e
d
:

T
h

e
S
F
e
s
s
a
d
e

Bf

72

Ein Spiel mit Sprites 172
ped P

T

|
ae

h
s
e

LS

Z
e
]

eli
Ae

MLL.

l
l

u

n
e

of.
BL

at
saves

2

S
e
l
l

Tose

=
H

Se

h
i
e

To
T
e
e

A

l
H

ess
U
d
:

T
i
e
d
:

soe,
2

anes!
a
l

ea
eet

SpA
pe]

ge
“
U
A
C
 ed

re
Bae

Bese
Papel

weed
ERLE

ELE
I

'
eset

hen

 “on.
ne

00

S
A
H

Jef
.

a

a
rp

g
e
,
 LP

zu
w
d

ud

ode

e
b

ul
} P
e

| hi
eI i

ts a
a
,

o
t
t

Abed

oe

4,

he :

wees!

2.
er

a
e

e
T

W
h

a
t

d
T

STRAT
4
2

eds
mE bed bel bl bt

a
r
e

oo.

To
t
l
h
e

ele
ie Fanat

Fone
ene’

„
l
i
e

E
n

En
.

vu
ered

neon’

"
l
l

E
n

BESET
RL

ENT

ba
LET.

Teel
R
T

mobo
SH G
e
 |

rT

T
e
e

»
r
n

e
n

p
r
e
n
 ge

fat
eee

oat
t
T

d
a
l

on
:

x
l
n

.

i eae

“
1

T
e
g

cm
t

t
“og

tes
Ble

S
e

Kae
Si

sso
m,

i
f
e

v
ma

et
c

[A
k
a

“
E
u

Pr
Beer

"
T
i

et
onen!

se!
on

Face‘

T

v
a

t

T

°
d
i

r
T

°
‘so?

.
I

Tao"
Pade

«
Inne

Yr,
ues

|
aoe

oh
1

I}
L
E
]

teers
u

I
s

#100!
It

Feue”
sebee

Mean”
Sooke

h
g

e
e
 zu

RE
If

HI
ha

%
Rae

ME
Ba

i

Cae
a
t
e

T
E
E

ik N
T

tet
R
E

MOMS
oan.

Radel
web

BE

A
C
h

J

a
b
e

I
E

eee?
a
s
e

fee?
canal

fen
fi:

b
e
r

cafes

1

h
e

wie

eng
f
r
z

de

173

"ies
Te

a

a EL
Dish:

e
e
 is

Ä
h
]

D
E

3

HH
I a

1
3
 ZW W
E

Kan
a
M

T
a
d

es = ©

H
I
H
I

s
a
s

Velo
H
O
M
O

2.
I = "

T
I
E
R
.

H
T

el

1"
"
W
E
A

M
E
R
E

T
A
e

L
M

Date

e
H

A
e

H
O
O
N

A
I
M

a
l
i

M
A
H
M
A
C
H

L
Z
A
E

fil
L
A
T

Atel

“
A
S
L
A
M

Phe
M
A
R
C

T
A
S
S

D
T

eel

"
h
E

N
P
S
S

H
O
T
A

H
o
e

A
S
I
S
T

M
A
M
A

L
E
T

5

lH
Tele

Rte
e
t
e
r

ie o
A

ed
OR
E
e

ee
ot N"

bed
Lt a

:

R
S
S
:

t
"
e
d

S
L
E
S

T
O
L
L
S

e
e
d

:
fod

B
a

Po
S
e

A
b
e
d

S
E

:
T
l
:

t “ E
S
e
a
t
e
d

alla
LA

Tale
Er

T
S
S

S
o
S

ited

H
r

A
R

R
S
 T
A
A
:

T
S
E

TL
T
M

a
G
e

T
A
A

B
e

elf
ELLE

M
I
S

S
i
e

H
E
S

e
S

L
T

lel
Eres

.
L
T
E

W
i
d
@

S
o
r
e

L
a

T
a
e

g
e
s

Js
H
A
L
L
E

Pre
M
A
R
O
C

UL

OP 13
S
H
H

Ie

LM
Teed

B
e
e

“
H
S
I
S
H
P
P

TS

H
A
R

Jo
i

3...
1
d
a
]

E
R
I
T
R
E
A

L
T

ated:
ae

Khe
E
O
S

ae fp mol
Aled

O
L
A

S
I
N

: e
e

“an:
L
A
S
S
E

OS SH
e
b

Pati
A
o
,

4:

Z
u
l

Ni
EM

oi
A
L

el

nocd SLL S
e
a

TO

q
e
d

MOLL
T
a
l

ate : te =
m
 Sind

A
A

ö
l
:

A
O
L

Jali
hte

T
o
h

f
e

AC
ol

L
C

"EE oo

:

ad i

—

ir ii

A
n
:

L
a
a
t
:

L
A
A
N

b
+
e

to
S
+
e

ee

S
l

Ein Spiel mit Sprites

p
i
"

SAGES
Ted

:
be

m

e
G

T
e
s
s

L
E
T

a
H
s
e
l
!

:
e
e

v
l
l
t
:

 A
=

I

P
e
l

Al

M
i
g
s

A
o

T
b
P

S
e
a

Li
A
r
n
e

Be

us

u

oI

“ee

Ista
—;

D
T
e
t
h

o
t
h

Tall:
a
=

M oH
L
e
e

cE:
H
E
H
E
:

A
3
3
4

Beso

P
r

a
e

A
e

en
E
h

S
P
E
S
S

S
A
C

i
e
s

B
S
S

L
O
:

B
e
l
a

Ts
c
h
t
 3
“
a
n

E
e
e

ph:
P
e
e
p
:

T+
M
T
F
s
 1

AA L
E
T

S
H
l
L
E
=
P
l
Z
a
l

b
a
o
 :

: Se

S
e
t

T
S
E

:
=

D
T
T

e
e
e

S
a
a
l
e

> B
P
M

A
P
L

T
e
e

Oe
A
A
S

oT
: E

“
S
t
e
e

s
a
a
d

ES

pe
r

IL
i!

KR

+ On I

on

m.

Bu
aE

m
i
n
a
l

:
T
e
h

Pe
ce
i
g
o

A
S
S

:

Ee
E
n
e

ded
Ea

E
A

B
A
A
N

S
H

L
e

A
d

S
o
e

eee
e
T

P
S
S

S
A
D
I
S
H

L
o
e

A
d

T
e

Ein Spiel mit Sprites

toe,
wees}

= aire
at

a
l
l
e
:

es
at aM

oe
os

s
t

a
we

fe

=

he

sor, o
n

.
f Pier

Br
DI

E
E
E

faced
ones!

nt
un

l
m

T
E
L
L
E
R

m
T

ee

eet

| .
.

a
oe

wy

4,
w
u

og.
o
g
;

ses!

one, oars
e
n
t

son;
zu

de

v
o
.

s
u
.

S
P
A
,

.
K
m

*
is

P
a
r
t
e

.

fase!

M
a
n
d

ae

ne
a
l
 I:

al
H
l

=:
tt ed "

l
e

S
®
Y
T

a

—

ont

10
Input/Output beim Commodore 64

Rein in die Kartoffeln, raus aus den Kartoffeln

Stellen wir uns vor, wir haben unser Spiel fertiggeschrieben. Stellen wir uns

weiterhin vor, wir hätten alles vorbereitet, um daraus einen großartigen

Familienabend zu machen. Es ist jetzt all das da, was ein tolles Spiel so haben

muß. Und schließlich hat man alle, die wollen (oder auch nicht), zusammen-

 getrommelt, um eine richtige Spielorgie abhalten zu können und dabei die

bewundernden Worte der bisherigen Kritiker («Was denn, Du sitzt ja immer

noch an diesem Kasten ...» oder «Wir wollten nur höflich darauf aufmerk-

sam machen, daß es halb zwölf ist und Du morgen in die Schule solltest») zu

genießen. |
Obwohl Ihre Bemühungen bereits so weit fortgeschritten sind, könnte es

sein, daß Sie einen wichtigen Umstand vergessen haben. So etwas passiert

meistens dann, wenn man sieht, daß alles läuft, und in dieser ersten Euphorie

nicht bemerkt, daß man es eben nur sieht. Das Schöne an Spielen ist ja, daß

man damit spielen kann. Spielen ist aber, das lernt man schon in der

Grundschule, ein Tunwort. Ja, es gehört sogar in die Klasse der Verben. Das

lernt man allerdings meist später. Der erste Ausdruck, der wahrscheinlich

jedem Gymnasiallehrer oder auch Buchlektor die Haare zu Berge stehen

lassen wird, hat einen Vorteil. Er beinhaltet genau das Wort, auf das es

ankommt. Spielen ist etwas, das man tut. Deshalb fehlte bisher für unser

Spiel, aber auch für andere Anwendungen wie Dateien oder Textverarbei-

tung, dieses Kapitel, das I/O-Kapitel. I/O, darüber haben wir uns schon

einmal unterhalten, als wir über BASIC sprachen, ist die englische Abkürzung,

die für die deutsche Abkürzung E/A steht, und das ist die Abkürzung für

Eingabe/Ausgabe. Weil wir aber schon erfahrene Programmieranfänger sind

176 Input/Output

(und weil es so schön klingt), einigen wir uns auf I/O oder bestenfalls auf

Input/Output.

Was aber heißt das eigentlich genau? Nun, für Sie war es bisher immer die

selbstverständlichste Sache der Welt, daß Sie irgend etwas eingegeben haben

und der Commodore dafür irgend etwas ausgab. Wir sind ja schon mal in

einem früheren Kapitel darauf eingegangen, daß dazu einige Programme

ständig im Computer parat stehen, die dafür sorgen, daß es so ist. Gut, sagen

Sie jetzt, das weiß ich ja.

Schon, aber wenn Sie schon mal ein Spiel auf Ihrem Commodore haben

laufen lassen, dann haben Sie ja vielleicht gemerkt, daß die Eingabe nicht

immer nur über die Tastatur kommt.

Na klar, werden Sie jetzt forsch antworten, weiß ich auch schon. Richtig,

aber haben Sie bei diesen Spielen dann schon mal auf die Ausgabe, den

Output geachtet?

Wahrscheinlich erreicht die Diskussion dann einen Punkt, an dem Sie etwas

unsicher werden.

Ausgabe, nee. Warum Ausgabe?

Sehen Sie, das dachten wir uns. Aber wer, glauben Sie, bewegt das

Raumschiff, mit dem Sie Feinde abschießen?

Ich, oder?

Nein, eigentlich nicht. Sie bewegen nur ein Eingabegerät, auch Input-

Device genannt. Die Ausgabe, das ist übrigens das sich bewegende Raum-

schiff, macht der Computer.

Was wir mit dieser kleinen Verunsicherung bezwecken wollten, war eigent-

lich nur, Ihnen klarzumachen, daß Input/Output sich keineswegs nur auf Text

beschränkt und genausowenig nur über die Tastatur stattfinden muß. Auch

der Output muß nicht immer über den Bildschirm erfolgen. Es kann ja auch

der Drucker sein oder der Kassettenrecorder und natürlich auch das Disket-

tenlaufwerk. Diese Geräte werden dann auch als Output-Device bezeichnet.

Deshalb auch das eventuelle Problem mit Ihrem geplanten Spieltestabend.

Das Spielen wird allen Beteiligten mehr Spaß machen, wenn sie auch was

damit zu tun haben. Deshalb sollten Sie sich mit diesem Kapitel ausgiebig

beschäftigen. Eine gute I/O-Routine in einem Spiel macht schon den halben

Erfolg. Wenn sie nämlich sehr langsam ist, diese Routine, dann hat das den

Nachteil, daß auch das Spiel sehr langsam wird. Wir werden uns also im

folgenden mit mehreren Input-Gerätschaften befassen, zuerst mit dem Key-

board. Mit ihm sind sie ja (hoffentlich) im Verlauf des Buches schon sehr oft

umgegangen. Weiterhin erwarten Sie in diesem Kapitel noch Geräte, die man

Input/Output 177

meist mit Händen und Füßen traktieren kann, um dem Computer klarzuma-

chen, was Sie von ihm wollen. Nur damit Sie die Namen schon mal gehört

haben, hier ein kurzer Überblick mit ein bißchen Information zum Kauf von

solchen Dingen.

Ein kleiner Leitfaden zum Einkauf

Da wären mal die Joysticks. Wie der Name schon sagt, sollen sie Freude

(= engl. joy) bereiten. Die Menge dieser Freude ist direkt abhängig von der

Leichtigkeit, mit der man diese Steuerknüppel handhaben kann. Deshalb -

sollten Sie sie grundsätzlich, bevor Sie sich zum Kauf eines solchen entschlie-

Ben, ein bißchen testen. Am besten wäre es, einen neuen und einen bereits

im Gebrauch befindlichen zu testen. Daran läßt sich nämlich zum Beispiel sehr

gut erkennen, wie es um die Qualität eines Joysticks steht. Ist der gebrauchte

schon ziemlich ausgeleiert, sollte man lieber noch einen anderen testen. Denn

in den Geschäften, wo meist ein Computer zum Spielen herumsteht, kann

man davon ausgehen, daß der Joystick wirklich hart getestet wird. Anderer-

seits sollte der Joystick auch nicht zu hart sein, sonst ermüdet die Hand sehr

schnell. Das Spiel macht keinen Spaß mehr, weil man sich mehr auf den

Joystick als auf den Feind im Weltraum konzentrieren muß. Wichtig ist auch,

wie die Druckknöpfe reagieren. Arbeiten sie zuverlässig? Kann man gut

spüren, daß der Kontakt da war? (Das heißt: Merkt man an irgend etwas, daß

der Knopf auch tief genug gedrückt wurde?)

Am besten nehmen Sie sich eines Ihrer Lieblingsspiele mit, wenn Sie einen

Joystick kaufen, und testen ihn damit. Natürlich ist klar, daß Sie sich zuerst an

die neue Form gewöhnen müssen. Deshalb werden Sie nicht sofort einen

neuen Rekord aufstellen, aber Sie werden schnell merken, ob Ihnen der neue

im wahrsten Sinne des Wortes liegt. Sollte Ihnen das alles ein bißchen

übertrieben vorkommen: mag sein. Aber ein passabler Joystick kostet minde-

stens 35 DM. Und das ist auch Geld. Deshalb ruhig testen. Ein guter

Computerladen wird Ihnen sogar selbst dazu raten. Denn ein verärgerter

Kunde bringt auch nicht viel. |

Das zweite Gerät, das wir besprechen wollen, sind die sogenannten

Paddles. Diese «Steuerräder» haben bei manchen Spielen oder auch anderen

Anwendungen gegenüber Joysticks doch einige Vorteile. Auch bei den

Paddles sollten Sie übrigens vor einem Test nicht zurückschrecken. Hier

kommt es in erster Linie darauf an, daß Sie den höchsten Wert, in den der

178 Input/Output

Computer ihre Stromspannung umwandeln kann (das wäre die Zahl 255),

auch mühelos erreichen. Wenn Sie dieses Kapitel gelesen haben, werden Sie

sich sehr einfach ein kleines Programm schreiben können, das Ihnen die

ausgelesenen Werte anzeigt. Achten sollten Sie auch auf die Druckknöpfe..

Sie sollten nicht zu groß und nicht zu klein (meist für den Daumen) sein, und

sie müssen, wie die Feuerknöpfe der Joysticks, sauber reagieren. Soviel zum

Thema. Zuerst wollen wir uns aber mit der Tastatur, auch Keyboard genannt,

beschäftigen. Und wenn Sie jetzt sagen, was kann da schon noch kommen,

dann werden Sie aber ganz schön staunen.

Tipp-tipp hurra

«Wir wollen uns jetzt mal mit dem Keyboard beschäftigen ...» Die erste

Reaktion bei diesem Satz während unserer Kurse über den Commodore war

eigentlich immer die Antwort, daß man ja sehr wohl wisse, wie man mit

diesen Tasten umzugehen hätte. Warum also dann eine eigene Unterwei-

sung? Die Antwort ist, daß es schon den einen oder anderen Trick gibt, der

Ihnen allerhand Arbeit ersparen kann. Die BASIC-Befehle INPUT und GET

sollten Sie bereits kennen. Wenn nicht, hier noch einmal kurz: Mit INPUT

lassen sich ganze Zeichenketten (Namen, Telefonnummern u. ä.) abfragen,

mit GET dagegen nur einzelne Tasten. Allerdings schert sich das GET einen

feuchten Kehricht darum, ob Sie eine Taste gedrückt haben oder nicht.

Deshalb muß eine typische GET-Abfrage bisher meist so aussehen:

10 PRINT "DRUECKEN SIE EINE TASTE!”
20 GET A$:IF A$="" THEN 20

In Zeile 20 lassen Sie also Ihr Programm prüfen, ob sich GET bereits

zurückziehen kann oder ob es gefälligst noch warten soll, weil noch gar keine

Eingabe stattgefunden hat. Wenn dann eine Taste gedrückt würde, dann erst

macht Ihr Programm weiter.

Nach dem Motto «Gefahr erkannt, Gefahr gebannt» machen wir uns erst

mal daran, das Problem auszubaldowern. Ä

Schwierigkeit, dein Name ist Tastaturpuffer.

Die Tastaturabfrage wird ja bekanntlich alle % Sekunde während des

Interrupts durchgeführt. Bis allerdings das Zeichen oder die Funktion, die zur

entsprechenden Taste gehört, ausgeführt wird, vergeht einiges an Zeit, in der

unser Commodore rechnet, vergleicht, nachschaut usw. Natürlich geht das

Input/Output 179

alles verhältnismäßig schnell, aber bei der Konzeption seiner Computer hat

Commodore wohl einen Test mit einer ausgebildeten Sekretärin gemacht und

festgestellt, daß diese Dame mit dem Tippen ziemlich fix war, der Commo-

dore mit der Zeichendarstellung allerdings ein paar Hundertstel hinterher-

hinkte.

Ergebnis dieses Vorgangs (von dem wir leider nicht prüfen konnten, ob er

so stattfand) war offensichtlich das, was wir jetzt unter dem Namen Tastatur-

puffer besprechen. Dort werden bis zu 10 Zeichen, die schneller eingetippt

werden, als der Computer schreiben kann, zwischengespeichert. So gehen

sicher keine Buchstaben verloren. Nun ist dieser Tastaturpuffer aber nicht

etwa nur dann in Betrieb, wenn der Commodore um Hilfe brüllt, sondern

ständig bereit, alles, was auf der Tastatur passiert, zwischenzuspeichern, und

wenn es soweit ist, dem Prozessor Bescheid zu stoßen, daß da wohl Post für

ihn wäre. Die Geschehnisse eines Tastendrucks lassen sich also in etwa

folgendermaßen rekonstruieren: Während des Interrupts stellt der Computer

fest, daß eine Taste gedrückt wurde. Den Code dieser Taste legt er im

Tastaturpuffer ab. Aber eine Taste kommt selten allein, also wird alles, was

sonst noch anfällt, ebenfalls im Tastaturpuffer abgelegt. Solange genug Zeit

ist, kann sich das Betriebssystem darum kümmern, was mit dem nächsten

Zeichen geschehen soll. Deshalb liest es zunächst den ersten Wert des

Tastaturpuffers. Und das ist ja auch die Taste, die zuerst gedrückt wurde. Die

Taste wird übersetzt und entsprechend der Bedeutung weitergeleitet. Hier

verlieren sich unsere Beobachtungen der Taste erst mal in den Tiefen des

Speichers. |

Nun kann man, um nachzuprüfen, ob das alles auch wirklich so vor sich

geht, folgende kleine Zeile im Direktmodus (also keine Zeilennummer davor)

eingeben: FOR X=1T05000:NEXT

Diese Zeile ist nichts weiter als eine ordinäre Warteschleife. Aber sie. hat einen

Sinn. Sie beschäftigt unseren Commodore genauso wie uns ein spannendes

Buch. Das liegt daran, daß der Computer sowieso nur Spannung im Strom

finden kann. Wenn Sie jetzt ein READY auf dem Bildschirm sehen, dann ist

der Computer bereits fertig — während Sie diese Zeilen gelesen haben. Sollte

das so sein, geben Sie die Schleife bitte noch mal ein. Und gleich, nachdem

Sie (RETURN) getippt haben, geben Sie noch irgend etwas ein, z. B. Ihren
Namen. Sie haben rund 5 Sekunden Zeit. Dalli — Dalli ...

Wenn der Computer jetzt sein READY von sich gegeben hat, müßten Sie

noch einige andere Zeichen darunter sehen, die — mehr oder weniger

180 | Input/Output

verstümmelt — Ihren Text, den Sie tippten, widerspiegeln sollten. Wenn Sie

uns geglaubt haben, was wir Ihnen erzählten, ist das auch nur logisch. Wenn

er sie auch nicht sofort ausgeben konnte — er war ja beschäftigt —, Ihr

Commodore hat das Drücken der Tasten sehr wohl bemerkt. Und kaum hat

er seine stupide Zählerei fertig gehabt, hat er das Versäumte schleunigst

nachgeholt.

Und von diesem Wissen können wir jetzt profitieren. Dazu erst einmal

wieder ein paar POKE-Adressen. (Wenn Sie in letzter Zeit mit dem Gedanken

spielten, sich ein Adreßbuch für Ihren Computer zu kaufen, dann lassen Sie es

bleiben und denken Sie getrost an unseren PEEK& POKE-Anhang. Er enthält

noch einmal alle wichtigen Adressen.)

Im PEEK (649) steht die Anzahl der Zeichen, die der Tastaturpuffer maximal

fassen kann. Ein

PRINT PEEK (649)

ergibt konsequenterweise die Zahl 10. Diesen Wert können Sie verändern.

Bevor Sie jetzt aber gleich POKE-Werte um 255 herum eingeben und

versuchen, eine Adressensammlung im Tastaturpuffer anzulegen, lassen Sie

sich gewarnt sein. Der Puffer liegt nämlich noch sehr nahe an der Zeropage.

Und die vorhergehenden Kapitel müßten Ihnen klargemacht haben, was

passiert, wenn Sie hier wichtige Speicherzellen mit Tastaturcodes überschrei-

ben. Sie können jetzt, am besten unter der Verwendung der Warteschleife

von vorhin, mit diesen Werten etwas herumexperimentieren.

Wenn Sie aber

POKE 649,0

eingeben, dann gibt es gar keinen Tastaturpuffer mehr. Das Ergebnis können

Sie sich wahrscheinlich vorstellen. Wenn Sie es trotzdem ausprobieren: Die

Kombination (RUN/STOP) + (RESTORE) befreit Sie und Ihren Commodore
aus dieser mißlichen Lage. =

Wollen Sie also zum Beispiel im Rahmen eines Spiels die möglichen Tasten,

die zwischengespeichert werden können, auf eine bestimmte Zahl begrenzen

— jetzt wissen Sie ja, wie es geht.

Aber noch viel interessanter ist die nächste Adresse: PEEK(198) enthält die

Anzahl der Tasten, die tatsächlich gerade im ' Tastaturpuffer stehen. Wenn Sie,

während das kleine Programm

FOR X=1T02000:PRINT PEEK(198):NEXT

läuft, einige Tasten drücken, werden Sie sehen, wie dieser Wert ansteigt

Input/Output 181

Natürlich können Sie diesen Wert auch jederzeit auf O zurücksetzen. Dann

wird der Tastaturpuffer gelöscht:

FOR X=1T05000:NEXT:POKE198,0

Versuchen Sie jetzt mal nach der Methode von vorhin, Text in den Computer

zu kriegen ... Unsere GET-Abfrage von vorhin ließe sich damit auch etwas

eleganter programmieren: |

10 PRINT "DRUECKEN SIE EINE TASTE!" :POKE198,0

20 IF PEEK(198)=0 THEN 20

Solange der Tastaturpuffer leer ist, bleibt das Programm in der Zeile 20.

Wenn Sie jedoch irgendeine Taste drücken, geht das Programm über zum

nächsten Schritt. In diesem Fall würde es sich mit READY melden. Die Taste,

die Sie gedrückt haben, steht aber dennoch im Tastaturpuffer. Es hat sie ja

bisher noch keiner dort rausgeholt, und sie erscheint schließlich auf dem

Schirm.

Soll also beispielsweise eine ganz bestimmte Taste gedrückt werden, so läßt

sich das mit Hilfe des WAIT-Befehls besonders schön machen:

10 POKE 198,0:WAIT 198,1:GET A$
20 IF A$()"A” THEN 10

Das Programm fahrt nur dann fort, wenn Sie die Taste (A) driicken. Zuerst
einmal wartet es allerdings in Zeile 10 so lange, bis eine Taste gedriickt wird —

also bis in der Speicherzelle 198 der Wert 1 auftaucht. Durch den Befehl GET

bekommt dann die Variable A$ das Zeichen der entsprechenden Taste

zugewiesen. Zeile 20 überprüft dann, ob die gedrückte Taste ein A war.

Wenn nicht, dann geht das Programm wieder zur Zeile 10 und wartet. Sie

können das gern ausprobieren — vielleicht, indem Sie in der Zwischenzeit

einen Kaffee trinken gehen. Natürlich, werden nun die kritischen Leute

sagen, das kann man mit GET allein aber auch machen. Stimmt. Zwar nicht so

elegant, aber es stimmt. Doch abwarten. Der Tastaturpuffer hat noch mehr

Überraschungen auf Lager. |

Um die kennenzulernen, müssen wir Ihnen zuerst verraten, wo der Puffer

eigentlich liegt. Er befindet sich sehr nahe an der Zeropage. Das hat den

Vorteil, daß das Betriebssystem sehr schnell an ihn rankommt. Und das ist ja

wichtig. Die Speicherzellen gehen von 631 bis 640. Aber da es sich hierbei um

ganz normalen RAM-Bereich handelt, hindert Sie niemand daran, hier auch

Werte hineinzuPOKEn. Probieren Sie es aus.

182 Input/Output

10 FOR X=0T09:POKE631+X,211:NEXT

20 POKE 198,10

In Zeile 10 schreiben wir den Code 211 in den Tastaturpuffer. Welches

Zeichen das ist, werden Sie sehr bald merken, wenn Sie unser Beispiel

ausprobieren. Zeile 20 teilt Ihrem Computer dann mit, wie viele Zeichen im

Puffer stehen. Da wir ihn ganz aufgefüllt haben, POKEn wir 10.

Diese kleine Spielerei hat Ihnen gezeigt, wie man den Computer 10

Zeichen «vorprogrammieren» kann, während er beschäftigt ist. Alles, was wir

ihm auf diese Art und Weise vorher eingeben, führt er dann im Direktmodus

aus. So kann man ganze neue Programmzeilen von einem Programm selbst

einfügen lassen. |

Li FRIMT"ABENENEREM DIES TeT ZEILE 22°
ae PORE ESL LS RPORE LSS JL PR TAT" sda)".

PERI .

Zeile 20 wird gedruckt und durch den Code 13 (das entspricht der Taste

(RETURN)) dann auch wirklich eingegeben. Die Codes, die Sie POKEn

müssen, um solche oder ähnliche Effekte zu erzielen, finden Sie wieder in

Ihrem Commodore-Handbuch auf der Seite 135. Es handelt sich um die

ASCII-Codes. |
Passen Sie übrigens bei dem oberen Beispiel auf, daß die Cursorzeichen

(= Steuerzeichen) genau stimmen: sie sorgen dafür, daß der Cursor auf der

Zeile 20 steht, wenn das (RETURN) durchgeführt wird. Das wird erreicht

durch die Zeichen «HOME» und «CURSOR DOWN» (invertiertes S und

invertiertes Q).

Auf dieselbe Art konnen Sie auch mehrere Zeilen eingeben und/oder dann
im Programm weitermachen, indem Sie zum Beispiel ein RUN oder GOTO

drucken und durch ein (RETURN) im Puffer ausführen lassen. Jetzt sollten

Sie erst mal ein bißchen mit diesen neuerworbenen Kenntnissen experimen-

tieren, bevor Sie weiterlesen. Dann fällt meist auch das Verstehen leichter.

Manchmal könnte es ja sein, daß Sie genau das Gegenteil von dem wollen,

was wir jetzt besprochen haben: Eine Taste soll nicht zwischengespeichert

werden, sondern es soll sofort geprüft werden, welche es war. Auch dafür

gibt es eine Speicherzelle — nein, sogar zwei Speicherzellen. Sowohl in der

Adresse 197 wie auch in der Adresse 203 steht genau dasselbe.

Input/Output 183

Lassen Sie zu Demonstrationszwecken das folgende Miniprogramm über

längere Zeit laufen, und drücken Sie dabei einige Tasten. Sie werden sehen,

wie sich die Werte ändern.

10 PRINT PEEK(197):RUN

Sie werden andauernd neue Zahlenwerte auf den Bildschirm bekommen.

Solange Sie als Wert 64 erhalten, heißt das, daß Sie gar keine Taste drücken

(obwohl wir doch sagten, daß Sie das sollen!!). Alle anderen Tasten, außer

(SHIFT), (C=) und (CTRL), haben offensichtlich einen ganz bestimmten
Wert. Diese Werte können Sie zum Beispiel durch Ausprobieren herausbe-

kommen, wir haben Ihnen aber eine Zeichnung der Tastatur angefertigt, auf

der alle Werte stehen.

Wenn Sie diese Speicherzelle überprüfen, können Sie jederzeit feststellen,

welche Taste gedrückt wurde, unabhängig vom Tastataturpuffer. Und jetzt

kommen wir langsam zu den Spielen: Sie können zum Beispiel eine Spielfigur

mit den Tasten Z und C steuern lassen. Und die Abfrageroutine dazu kann

den BASIC-Befehl GET umgehen, ist sehr schnell und einfach zu programmie-

ren. Wenn der PEEK(197) = 12 ist, dann bewegen Sie die Figur nach links. Ist

der PEEK(197) = 20, dann eben nach rechts. Sie können also einzelnen

Tasten, wie beim Joystick bestimmte Stellungen, ganz bestimmte Richtungen

zuweisen. Wie das beim Joystick geht, kommt noch.

Kommen wir schließlich zum letzten Punkt. Und weil bekanntlich das, was

nicht so auf Anhieb geht, das Interessanteste ist, wollen wir Ihnen zeigen, wie

man (CTRL), (SHIFT) oder (C=) doch abfragen kann. Diese drei Tasten
haben nämlich, aufgrund ihrer Sonderfunktion, eine eigene Speicherzelle

bekommen, und zwar die Nummer 653. Dabei entsprechen folgende Werte

in dieser Zelle folgenden Tasten (Tabelle 10.1).

Tastenkombinationen ergeben dann die Summen der Einzelwerte, (SHIFT) &
(C=) zum Beispiel 3 oder alle zusammen 7. (Wer diese Zahl erreicht, muß
aber schon sehr aufpassen, daß er sich nicht die Finger verrenkt.)

Wer Taste

1 (SHIFT)

2 ~~ (C=)
4 (CTRL)

Tabelle 10.1 Werte in Speicherzelle 653

(Z6L)
4
4
d

Ul
sapoD

pun
ınyejseL

LOL
PIId

(09)
3D vdS

(
|

-
(ss) |

ty) |
ur) |

88 |
(6

|
ez |

Ge |
2

|
ea |

KW
-

J€SUD |
USHD

|
_LIIHS

i
<

>
W

N
g

A
J

X
Z

14IHS

WW
(es)

|
(0S) |

(Gb) |
(m |

we)
|

(ve) |
(2) |

ed)
|

GD |
(BL) |

(EH |
OW | 004

0

NSNLLEN
—

7
3

f
H

9
4

q
5

14IHS |
NNM

—
(v9)

(6r)
|

(Mm)
(Lv)

(SE)
(€€)

(O€)
(SZ)

(ZZ)
(ZL)

(ri)
(6)

(Z9)
—

901539
|

|
x

©
d

O
|

N
A

1
y

3
M

oD
TLD

l
a
n
)

en |
er) |

on
|

Ge |
wa |

un
| wo |

ı
on

[un |
@ |

co |
on |

ww
i
n

|

wil
3

_
+

0
6

8
L

9
G

y
€

Z
|

>

Input/Output 185

Wenn Sie also alles, was Sie bis jetzt gelernt haben, berücksichtigen und eine

Programmzeile schreiben, die wartet, bis jemand (CTRL) & (SPACE) gleich-
zeitig drückt, sollte das etwa so aussehen:

10 IF PEEK(653)()4 OR PEEK(197)()60 THEN 10

oder auch kürzer

10 WAIT 653,4:WAIT 197,60

So, damit hätten wir so im großen und ganzen alles, was man mit der Tastatur

(legal!!!) machen kann. Bedenken Sie aber beim Programmieren, daß nicht

alles, was machbar ist, auch unbedingt sein muß. Wenn Sie zum Beispiel ein

Textverarbeitungsprogramm schreiben, gereicht Ihnen eine Tastenkombina-

tion (CTRL) & (SHIFT) & (S) & (RETURN) als «Abkürzung» für den Befehl

«Text schreiben» sicherlich nicht zur Ehre.

Jetzt kommt es knüppeldick
5

Irgendwann kamen einige schlaue Leute darauf, daß es auf die Dauer

reichlich mühselig ist, immer «E» für Raumschiff hoch und «X» für Raum-

schiff runter zu drücken. Dann setzten sich diese Leute in ein kleines

Hinterzimmer und bastelten und werkelten, bis sie voller Stolz den ersten

Joystick gebaut hatten. Diese Leute wurden zwar nicht berühmt (es gibt

niemanden, der Herr Joystick heißt und nach dem diese Dinger benannt

worden sind), aber dafür konnten sie sich bald ein schönes, großes Auto

kaufen, weil so ein Steuerknüppel auch anderen Leuten, die nicht so

geschickt im Basteln waren, gefiel und sie sich deshalb einen bauen ließen.

Bald erkannten viele Leute, die im Basteln geschickt waren, daß sich mit der

Herstellung von Joysticks eine Familie ganz gut ernähren läßt. Das Ergebnis

waren Joystickfabriken. Damit aber auch jeder genau den Joystick kaufte, den

man selbst verkaufen wollte, machte man furchtbar viele Formen, bei denen

jeder behaupten konnte, seine sei die beste. Kurz und gut: Es gibt heute

unheimlich viele Arten von Joysticks. Und an dem Gerede von der besseren

Form ist auch sicher was dran. Warum aber alle nur über die Form reden, liegt

daran, daß praktisch alle Joysticks nach demselben Prinzip funktionieren. Und

weil man in der Werbung schlecht über das reden kann, was der andere auch

hat, macht man eine neue Form, und schwups hat man etwas, worüber man

reden kann.

186 Input/Output

Ehrlicherweise muß man aber tatsächlich zugeben, daß von der Form dieser

Geräte schon allerhand abhängt. Für das allgemeine Hobbyabend-Telespiel

reichen die relativ einfachen Joysticks aus. Sie kosten zwischen 30 und 50

DM. Das ist zwar auch nicht sooo wenig, aber immer noch billiger, als die

Tastatur nach ein paar Stunden Pac-Man zu ersetzen.

Bei Ihrem Commodore 64 kann man gleichzeitig zwei davon anschließen

(Joysticks, nicht Pac-Man). Dazu befinden sich an der rechten Seite zwei

Stecker, die den hübschen Namen «Control Port 1» und «Control Port 2»

tragen. Wie zwei eineiige Zwillinge glänzen die beiden da an der Seite. Der

Vorteil ist natürlich, daß man zwei Joysticks anschließen kann. Der Nachteil ist

allerdings, daß man zwei Joysticks anschließen kann. Das heißt eigentlich,

daß man denselben Joystick an jeden der beiden Control Ports anschließen

kann. Leider haben sich weder die Hobbyprogrammierer noch die Soft-

warehäuser für einen der beiden entschließen können. Die einzige allgemein-

gültige Regel, die man aufstellen kann, ist die: Schließt man einen Joystick an

einen Port an und startet das Spiel, so ware mit 90prozentiger Sicherheit der

andere Port der richtige gewesen.

Deshalb wollen wir die günstige Gelegenheit nutzen und hier zu zweit an

die Programmierer der Welt plädieren: Einigt euch, im Namen der Single-

Joystick-Besitzer, auf einen Port.

Und nach diesem Aufruf können wir zum eigentlichen Thema kommen:

Wenn man selbst programmiert, wie nutzt man dann die Joysticks? Erst

einmal gibt es (selbstverständlich) eine Adresse, aus der man den Wert, den

ein Joystick gerade durch seine Position in den Computer einspeist, heraus-

lesen kann. Es sind die Adressen 56320 für den Port 2 und 56321 für den

Port 1.

Wenn Sie einen Joystick haben, geben Sie bitte folgendes Programm ein:

10 PRINT PEEK(56321):RUN

Wenn Sie jetzt verschiedene Joystickstellungen durchprobieren, werden Sie

sehen, wie sich die Werte auf dem Bildschirm ändern. Dazu gleich eine

Anmerkung: Wenn Sie Ihren Joystick nach links drücken, werden Sie die Zahl

251 sehen, gleichzeitig werden die Zahlen langsamer über den Bildschirm

rollen (man nennt diesen Vorgang des Rollens auch Scrolling). Wenn Sie sich

erinnern können, haben wir einmal erwähnt, daß derselbe Effekt auch dann

auftritt, wenn man die (CTRL)-Taste gedrückt hält.

Probieren Sie doch auch das jetzt einmal aus. Sie werden sehen, daß sich

die Zahl wieder ändert, auch wenn Sie den Joystick in seine Ruhestellung

Input/Output 187

zurückkehren lassen. Wir wollen Ihnen kurz erklären, warum das so ist: Der

Joystick in Port 1 läuft über den gleichen I/O-Baustein, an dem auch die

Tastatur angeschlossen ist. Deshalb gibt es einige Tasten, die den gleichen

Effekt haben wie ein angeschlossener Joystick. Umgekehrt ist es deshalb auch

nicht zu empfehlen, den Joystick 1 während des Programmierens zu betäti-

gen. In Programmen, die Sie schreiben und die sowohl den Joystick 1 als auch

die Tastatur benutzen, empfiehlt es sich, vor jedem INPUT oder GET mit

POKE 198,0 den Tastaturpuffer zu löschen.

Beim Joystick 2 gibt es dieses Problem nicht. Näheres zu der ganzen Sache

werden Sie dann noch erfahren, wenn wir uns über die Paddles unterhalten.

Wie sind jetzt aber die PEEK-Werte, die Sie wahrscheinlich immer noch auf

Ihrem Bildschirm sehen, zu verstehen?

Wenn Sie Ihrem Joystick eine Ruhepause gönnen und ihn völlig loslassen

(was natürlich nicht meint, daß Sie den Armen auf den Boden fallen lassen

sollen!!), erscheint die Zahl 255. Und die kennen wir ja mittlerweile zur

Genüge. Sie bedeutet, daß alle Bits in der Speicherzelle an sind.
Sollten Sie wider Erwarten doch noch ein gestörtes Verhältnis zu unserer

255 haben, schauen Sie noch mal in der Speicheraufteilung nach. Ergebnis

unserer bisherigen Nachforschungen ist also, daß, wenn nichts gedrückt,

geschoben oder sonstwie verändert wird, alle Bits an sind. Drücken Sie jetzt-

den Joystick nach vorne (bzw. nach oben, das kommt ganz darauf an, wie Sie

das sehen). Sie sehen, die Zahl ändert sich in 254. Aus der Sicht unseres

Commodore heißt das, daß ein einzelnes Bit (nämlich Nummer O) gelöscht

oder «aus» ist.

Wenn Sie jetzt den Knüppel selbst wieder zurück in die Ruheposition

lassen, aber dafür den Feuerknopf drücken, erscheint 239. Das heißt für den

Computer, daß Bit Nummer 4 (= 16) gelöscht ist.

Und wenn Sie jetzt gleichzeitig noch den Knüppel wieder nach vorne

drücken (oder nach oben — ganz wie Sie meinen), erscheint aufs neue eine

andere Zahl: 238. Das heißt die Bits 4 und 1 sind soeben gelöscht worden

(255 — 16 — 1).

Ganz schön informativ, so eine Knüppelei mit dem eigenen Computer,

nicht wahr?

Und damit haben Sie das Prinzip der Joystickabfrage eigentlich schon

verstanden. In bestimmten Positionen des Joysticks oder wenn der Feuer-

knopf gedrückt wird, werden ganz bestimmte Bits gelöscht. Dadurch ergeben

sich auch ganz bestimmte Werte in unseren Speicherzellen. Um es anders zu

sagen, den einzelnen Bits in der entsprechenden Speicheradresse ist jeweils

188 Input/Output

PEEK (56321):

Bit

7 6 5 4 3 2 1 0

1128| 64 |32 | 16| 8 | 4 | 2 | 1 |

Dose

runter

links

rechts

Feuer

Das entsprechende Bit ist jeweils aus!

Joystick 1 (PEEK (56321)):

254 238

250 ! 246 234 i 230

251 <— (255) —» 247 235 <— (239) —» 231

2490 | 245 | 233 | 229
253 237

ohne Feuerknopf mit gedrücktem Feuerknopf

Bild 10.2 Joystick 1, Bitbelegung in (56321)

ein «Schalter» im Joystick für vor, zurück, links, rechts und Feuerknopf

zugeordnet. Und aus nichts anderem als aus fünf Schaltern besteht ein

Joystick. (Verstehen Sie jetzt, warum die immer von der Form sprechen?)

Zwei kleine Skizzen sollen Ihnen helfen, das besser zu verstehen und

gleichzeitig eine Wertetabelle für bestimmte Joystickpositionen darstellen.

Diese Werte erhalten Sie mit PEEK(56321). Nebenbei, in PEEK(145) steht

noch mal dasselbe. |

Zur Demonstration noch einmal ein Blick in Byte 56321 (Bild 10.2).

Input/Output 189

PEEK (56320):

Bt 7 6 5 4 3 2

[128] 64 | 32 | 16 | 8 | 4} 2 1)

4 A t
hoch

aus runter

links

>

rechts
Feuer

Das entsprechende Bit ist jeweils aus!

Joystick 2 (PEEK (56320))

126 110

122 | 118 106 | 102

123 <— (127) —» 119 107 q-—— —— 103

121 | 117 | 105 | 101

125 | 109

ohne Feuerknopf mit gedrücktem Feuerknopf

Bild 10.3 Joystick 2, Bitbelegung in (56320)

Fein, denken Sie jetzt, Ende der Fahnenstange, das war es zum Thema

Joystick. Der zweite geht ja wohl genauso.

Aber erstens kommt es anders, zweitens als man denkt. So einfach hat es

uns Commodore nicht gemacht. Sehen Sie selbst.

10 PRINT PEEK(56320):RUN

Der Wert für die Grundstellung ist hier 127. Aber keine Angst, im Prinzip ist

alles geblieben wie vorher. Der einzige Unterschied ist, daß Bit Nummer 7

190 Input/Output

(= 128) von vornherein ausgeschaltet bleibt. Und damit kann der höchste

Wert in dieser Speicherzelle nicht 255 (wie bei der anderen) sein, sondern 255

— Bit 7. Das heißt 255 — 128. Und das ergibt genau 127. Toll, oder? Unser

Joystickmodell sieht hier also folgendermaßen aus (Bild 10.3).

Übrigens, gestatten Sie uns erneut den Hinweis: Wer mit all diesen Bits noch

nicht so recht klarkommt, sollte noch einmal das Kapitel Speicheraufteilung

auf diesen Teil hin durchlesen. |

Stellt sich nur noch die Frage, wie man all das beim Programmieren gu‘

ausnützen kann.

Quo vadis, Joystick?

Quo vadis ist zweierlei. Zum einen eine der bekannten Hollywood-Mammut-

produktion, und zum anderen lateinisch. An das erstere erinnert man sict

eigentlich ganz gern, an das zweite — na ja. Hier schweigt des Sänger:

Höflichkeit ... |

Trotzdem reicht unser Latein gerade noch so, um diesen Ausdruck zt

verwenden. Quo vadis heißt nämlich «Wohin gehst Du». Jeder, der Asteri»

liest, kann sich vielleicht daran erinnern, daß es da auch vorkommt -

allerdings nicht so häufig wie das berühmte «Alea jacta est», was soviel heißt

wie «Verdammt, jetzt isses aber zu spat ...». Und genau diese Frage, jetz

reden wir wieder von Quo vadis, stellt natürlich unser Commodore den

Joystick. Schließlich muß er — zwecks Bildschirmdarstellung — wissen, wohir

die Reise gehen soll. Um diese Frage a) von einem BASIC-Programm au:

stellen zu können und b) auch noch zu beantworten, müssen wir uns wiede

der Mithilfe von Herrn Boole versichern (Zwischenspiel 3).

WERT SCHALTER

HOCH

RUNTER

LINKS

RECHTS

FEUER

O
o

K
N

=

1
Tabelle 10.2 Joystickwerte

Input/Output | 191

Die Abfrage (dieses Wort erinnert auch immer so extrem an Latein ...)

muß im Programm

IF NOT PEEK (Joystick) AND WERT THEN entsprechender Schalter an

heißen. Wir würden Ihnen natürlich nicht raten, das so einzutippen. Sie

sollten es eher interpretieren. Das heißt: Für JOYSTICK setzen Sie bitte 56320

oder 56321 (je nachdem ...) ein.

WERT sollte aus Tabelle 10.2 stammen.

Hinter dem THEN sollte der Teil des Programms stehen, der ausgeführt

werden soll, wenn der Joystick entsprechend bewegt wurde. Also beispiels-

weise:

10 IF NOT PEEK(56321) AND 16 THEN PRINT "FEUERKNOPF AM

JOYSTICK 1"

20 RUN

Natürlich muß nicht alles, was bei einer bestimmten Position zu machen ist,

direkt hinter dem THEN stehen. Hier kann genausogut ein GOTO oder

GOSUB stehen. Und wenn wir schon beim Programmieren sind, noch ein

kleiner Tip: Angenommen, Sie wollen einen Sprite oder irgendein Zeichen mit

dem Joystick steuern. Natürlich sollte das Objekt auch nach oben, wenn Sie

den Joystick nach oben bewegen. Um solche oder ähnliche Aufgaben zu

bewältigen, benutzen Sie am besten ein Koordinatensystem. Bei den Sprites

müssen Sie das ja sowieso. Also legen Sie einen X- und einen Y-Wert fest, den

Sie je nach Position des Joysticks erhöhen oder verringern. Weil das alles sehr

theoretisch klingt, haben wir ein kleines Beispielprogramm gemacht. Es geht

davon aus, daß Sie ab Adresse 832 einen Sprite im Speicher haben. Beispiels-

weise unser Auto aus dem Sprite-Kapitel:

10 POKE2040,13: POKE53269,1: X=174: Y=135: POKE53284,x:
POKE53249,Y er

20 IF NOT PEEK(56321) AND 1 THEN Y=Y-—1
30 IF NOT PEEK(56321) AND 2 THEN Y=Y+1
40 IF NOT PEEK(56321) AND 4 THEN X=X—1
50 IF NOT PEEK(56321) AND 8 THEN X=X+1
60 POKE 53248,X:POKE 53249,Y
70 GOTO 20

Ist doch gar nicht so schwer, oder? Wenn Ihnen die Bewegung zu langsam

ist, ersetzen Sie die Zahl 1 in den Zeilen 20 bis 50 einfach durch eine höhere.

Sie könnten aber auch den Feuerknopf als Gaspedal einsetzen ...

Sie sehen, schon wieder hat sich Ihrer Experimentierfreude ein weites Feld

erschlossen. ..

192 Input/Output

Die Widerstandsbewegung beim Commodore 64

Paddles sind nicht ganz so verbreitet wie Joysticks. Ein bißchen zu Unrecht

allerdings, wie wir meinen. Denn Sie können einiges, von dem Joysticks noch

nicht einmal träumen.

Der Hauptunterschied zwischen beiden ist der, daß bei den einen das

Signal, das sie geben, in guter alter Computermanier einfach nur aus Schalter

an oder Schalter aus (dem berühmten 1 und 0) besteht.

Die Paddles dagegen haben ihre eigene Ansicht darüber. Sie kommen

sozusagen schon zur Widerstandsbewegung geboren auf die Welt — natürlich

nur theoretisch.

Das heißt, sie haben einen Widerstand eingebaut, der jeden Wert von O bis

255 zurückgeben kann. Das klingt jetzt zwar völlig unproblematisch, weil 255

ja nun eine alte Bekannte ist, hat aber trotzdem seine Haken und Ösen.

Die Paddles geben natürlich keine Zahlen ins Chipgehirn, sondern verschie-

dene Stromstärken. :

Um aber jetzt diese Stromstarken in computergerechte O- und 1-Snacks zu

zerteilen, bedarf es einiger Hilfsmittel.

Ein solches Hilfsmittel ist ein A/D-Wandler. Diese Abkürzung steht selbst-

verständlich wieder für einen der sinnigen Computerfachausdrücke, und zwar

für Analog/Digital-Wandler. Wie der Name schon sagt, wandelt der Wandler

Analoges in Digitales. Vereinfacht ausgedrückt, heißt das: Er bekommt

freundlicherweise auf einer Seite Strom, der durch den Widerstand im Paddle

mehr oder weniger geschwächt wurde, und gibt diesen Strom, weil er ja kein

Egoist ist, auf der anderen Seite schön mundgerecht an eine 8-Bit-Leitung

weiter. Der Witz dabei ist, daß die Stromstärke auf der einen Seite einem

Bitwert auf der anderen entspricht. So kann der Computer mit den Paddlein-

formationen arbeiten. |

Wie wurde das jetzt technisch gelöst?

Also: Ein Paddle hat einen drehbaren Knopf auf der Oberseite. Der ist mit

einem Schiebewiderstand verbunden, und je nachdem, wie weit rechts der

Knopf oben gedreht ist, um so größer wird dieser Widerstand. So kann man

den durchfließenden Strom schwächen. Der Vorteil von Paddles ist klar:

Anstatt irgendwelche Koordinaten zu vergrößern oder zu verringern, kann

man hier die Stellung einer Figur direkt vom Ausschlag des Paddles abhängig

machen.

Paddles werden immer als Paar geliefert, also eines für die X-, eines für die

Y-Richtung bzw. eines für den ersten, eines für den zweiten Spieler. So

Input/Output 193

können Sie also vier Paddles an Ihren Commodore anschließen — zwei an Port

1 und zwei an Port 2.

Aber gleich ein Wermutstropfen. A/D-Wandler sind ziemlich teuer, und da

Sparen groBgeschrieben wird, haben die Commodore-Leute in die Trickkiste

gegriffen. Unser kleiner SID, von dem wir gerade im vorigen Kapitel gehört

haben, hat — Pech für ihn — bereits zwei solcher A/D-Wandler eingebaut. Also

werden die Paddles von einem CIA-Baustein auf diese A/D-Wandler umge-

leitet. (CIA hat in diesem Fall ausnahmsweise nichts mit dem gleichnamigen

amerikanischen Geheimdienst zu tun, obwohl die Vermutung gar nicht so

weit hergeholt wäre, sondern heißt einfach Complex Interface Adapter.)

Solche falschen Botschafter wie der CIA (Baustein!!) sind uns ja schon

bekannt. Man vergleiche es nur mit dem Schicksal von VIC. Aber so ist das

halt in diesen Königreichen. Doch mit den nötigen Bestechungs-POKEs kann

man trotzdem 4 Paddles gleichzeitig auslesen. Wie, zeigen wir gleich.

Zunächst erst mal die beiden SID-Adressen:

PEEK(54297) = Paddle 1

PEEK(54298) = Paddle 2

Die Paddles müssen zunächst an Port 1 angeschlossen werden. Sollten Sie die

Adressen gleich ausprobieren wollen, noch einige kurze Bemerkungen: Wir

sagten, die Werte können von 0 bis 255 liegen, sie müssen aber nicht...

Viele Paddles kommen selbst bei Vollausschlag nicht so weit. Deshalb auch

unsere Einkaufstips.

Zweitens werden die Werte selten ganz ruhig stehen wegen der hohen

Auflösung des Stroms. Sie müssen bedenken, daß jeder Strom, der in den

A/D-Wandler kommt, in 256 Einzelstufen zerlegt wird. Deshalb werden die

digitalen Werte des ursprünglich analogen Stromflusses um einige Stufen

nach oben und unten differieren. Ansonsten steht allerdings einem Pro-
gramm | N

10 PRINT PEEK(54297);PEEK(54298):RUN

nichts mehr im Wege.

Wenn Sie die Paddles angeschlossen haben, wird Ihnen auffallen, daß sie

an der Seite je einen Feuerknopf haben. Den muß man natürlich auch

abfragen können. Die Adresse, mit der man das bewerkstelligen kann,

kennen wir schon: 56321.

Allerdings haben die Bits diesmal eine andere Belegung.

194 Input/Output

PEEK (56321):

Bt 7 6 5 4 3 2 1 «0

g | 4 | |

tL Feuer Paddle + 1

Feuer Paddle + 2

Bild 10.4 Paddles Port 1, Bitbelegung in (56321)

Abfragen lassen sich die Paddle-Feuerknöpfe folgendermaßen:

PORT 1

IF NOT PEEK(56321) AND 4 THEN 1. PADDLE

IF NOT PEEK(56321) AND 8 THEN 2. PADDLE

Uber die sinnvolle Anwendung eines zweiten Feuerknopfes machen Sie sich

am besten Ihre eigenen Gedanken.

Oh, beinahe hätten wir es vergessen. Da war ja noch eine Intrige zu

bereinigen. Wie ist es möglich, gegen den CIA die Paddles zu lesen, die am

Port 2 hängen? Nun, die beste Art, den Feind zu schlagen, ist manchmal, sich

mit ihm zu verbünden. Also nehmen wir erst mal mit dem CIA-Typen Kontakt

auf. Er liegt gerade so ab der Adresse 56320 herum. (Schau an...)

Hier erfüllt er verschiedene Aufgaben. Zum Beispiel läuft über ihn die ganze

Tastaturabfrage. Und er ist auch für die beiden Game Ports zuständig. Sie

sehen, er ist überall da, wo Informationen fließen. Und deshalb ist es auch er,

der die Signale an den SID weiterleitet. Die obersten beiden Bits der Speicher-

zelle 56320 (Sie erinnern sich vielleicht noch: auch Joystick 2 hängt hier

daran. Dieser beeinflußt aber nur die unteren Bits); diese obersten beiden Bits
also sind dafür verantwortlich, welcher Port weitergeleitet wird.

Wenn wir nun dem CIA-Typen auf diese Weise eine fingierte Botschaft

überbringen, daß statt Port 1 der andere gelesen werden soll — schon haben

wir, was wir wollen. Allerdings müssen wir vorher noch die Tastaturabfrage

abschalten, denn während des Lesens von Paddle 2 darf sie nicht stattfinden.

Sonst merkt unser kleiner Agent, was hier gespielt wird. Und man kennt diese

Typen ja...

Eine kurze Zwischenbemerkung, solange wir uns moralisch auf unseren

kleinen Anschlag vorbereiten: Wenn Sie sowieso nur ein Paddlepaar haben,

schließen Sie es der Einfachheit halber gleich an Port 1 an. Okay, aber jetzt

Input/Output 195

geht's los. Wir schalten zuerst die Interrupts ab (wie bei der Sonderzeichen-

definition mit POKE 56334,0). Arbeiten Sie dabei, wie gehabt, mit dem

nötigen Respekt. Wenn das geschehen ist, können Sie die Bits in 56320 ohne

Skrupel ändern. Dabei gilt:

POKE Paddlesatz

56320,64 |

56320,128 II

Jetzt können wir uns die Werte der beiden Paddles beim SID abholen. Danach

sollten Sie den Interrupt wieder einschalten, damit die Tastatur wieder

gelesen werden kann (POKE 56334,1).

Und da 56320 im allgemeinen eine sehr vielseitige Adresse ist, kann man

hier auch die Feuerknépfe der Paddles von Port 2 lesen.

PEEK (56320)

Bt 7 6 5 4 3 2 10

rsjea} | felt | |
tL Feuer Paddle + 1

Feuer Paddle + 2

Port 1

Port 2

Bild 10.5 Paddles Port 2, Bitbelegung in (56320)

Wie beim Port 1 sind die Bits Nummer 2 und 3 dafür zuständig.

PORT 2 |
IF NOT PEEK(56320)-AND 4 THEN 1. PADDLE
IF NOT PEEK(56320) AND 8 THEN 2. PADDLE

Zur Abfrage der Feuerknöpfe wie auch der Joysticks dürfen die Interrupts

nicht ausgeschaltet sein. Ein Unterprogramm, das alle Paddleabfragen durch-

führt, sieht ungefähr so aus:

10 POKE56334,0

20 POKE56320,128

30 X2=PEEK(54297): Y2= PEEK(54298)

196 Input/Output

40 POKE 56320,64

50 X1=PEEK(54297):Y1=PEEK(54298)

60 POKE 56334,1

Dabei entsprechen die Variablen folgenden Werten:

X1 = WERT PADDLE 1, PORT 1

Y1 = WERT PADDLE 2, PORT 1

X2 = WERT PADDLE 1, PORT 2

Y2 = WERT PADDLE 2, PORT 2

Das war es dann für heute. Bleibt Ihnen nur noch die Kleinigkeit, ein

wahnsinnig tolles Softwarepaket um 2 oder 4 Paddles herum zu schreiben —

vielleicht eines, in dem es um Agenten vom CIA geht...

11

Peripheriegerate

Der Commodore bekommt Gesellschaft

Irgendwann kommt der Tag, an dem reicht der kleine Kassettenrecorder am

Commodore einfach nicht mehr aus. Das kann sein, weil man es satt hat,

ständig hin- und herzuspulen, oder weil man ein Programm, das man gern

möchte, nur auf Diskette bekommt, oder auch, weil man selbst ein Programm

schreiben will, das nur mit Diskette funktioniert.

Warum auch immer, der Tag kommt so gut wie sicher, an dem man sich zu

der Entscheidung gedrängt sieht, ob man eine Diskettenstation anschaffen

sollte oder nicht.

Dieses Kapitel ist natürlich in erster Linie für diejenigen geschrieben, die

schon eine Floppy (oder einen Drucker, über den wir auch kurz sprechen

wollen) besitzen. Aber auch die anderen sollten es lesen. Zum einen, um

informiert zu sein, was solche Erweiterungen bringen und ob sich ihre

Anschaffung zum gegenwärtigen Zeitpunkt lohnt. Zum anderen, um eine

solche Erweiterung schon jetzt beim Programmieren berücksichtigen zu

können. Schon manch einer, der seine Datenverwaltung vorher mit Kassette

erledigt hat, war nach dem Kauf einer Floppy wochenlang damit beschäftigt,

seine Programme umzuschreiben. Dabei hätte es bei entsprechender Pro-

grammierung schon gereicht, einige Adressen zu ändern (nicht die in der

Datei, sondern die im Programm!) |

Jetzt aber genug der Vorrede. Wir wollen uns zunächst um diese runden

schwarzen Scheiben kümmern. Nein, gemeint sind nicht angebrannte Pfann-

kuchen, sondern die Disketten selbst.

198 Peripheriegerate

Eine Scheibe mit Format

Meist das erste Zusatzgerät, das nach dem Commodore nebst Kassettenre-

corder gekauft wird, ist die Diskettenstation, abgekürzt auch gern Floppy

genannt. Schon dieser Spitzname klingt sehr lebendig, im Sinne von schnell.

Und so sind dann auch meist folgende Vorteile gegenüber dem Kassettenre-

corder ausschlaggebend für die Anschaffung: Die Floppy speichert und lädt

Daten schneller als der Recorder. Sie tut das aber auch sicherer. Ein LOAD

ERROR kommt bei Kassetten schon öfter mal vor, bei einer Floppy fast nie.

Und die Floppy ist komfortabler zu bedienen. Außerdem gibt es, wie schon

oben erwähnt — hauptsächlich für professionelle Anwendungen wie Textver-

arbeitung —, Programme, die man eh nur auf Diskette bekommt. Meist

machen sie auch nur da Sinn.

Vielleicht überlegen Sie sich jetzt, warum das so ist. Denn schließlich

speichern doch beide Geräte einfach nur magnetische Signale.

Zur Klärung schauen wir uns am besten mal kurz an, wie die Geschichte des

Speicherns ablief. |

Bekannt ist ja, daß ein Programm zumeist im RAM steht. Da steht es auch

gut, solange Strom durchfließt. Doch wird der Computer ausgeschaltet, dann

verschwindet das Programm. Nun könnte man den Computer auch die ganze

Nacht anlassen oder so eine Art Notstromspeicher in Form einer Batterie

einbauen. Gut, sicher ein Weg. Aber dann bräuchten Sie für jede Anwendung

einen eigenen Computer. Oder Sie tippen jedesmal, nachdem Sie was

anderes gemacht haben, das gewünschte Programm wieder ab. Unpraktisch,

nicht? Ein Programm muß also irgendwie, möglichst unabhängig vom Strom,

konserviert werden können und zwar so, daß der Computer es später auch

wieder einlesen kann. Zu diesem Zwecke mußten wieder unsere kleinen

Freunde, die Bits, herhalten. Denn sie kann man am einfachsten haltbar

machen. Aber bis zur Speicherung auf Floppy-Disks war es auch nach dieser

Erkenntnis noch ein weiter Weg.

Lange Zeit wurden Lochkarten zum Speichern verwendet. Sie können sich

es wohl schon denken. Loch = Strom an; kein Loch = Strom aus. Allerdings

hatte dieses System einige entscheidende Nachteile. Komplexere Programme

nahmen auf diese Weise sehr schnell das Ausmaß von ganzen Karteikästen

an. Dem stand natürlich wieder der Vorteil gegenüber, daß die Programmie-

rer zu Fasching mit genügend Konfetti versorgt waren ...

Spätestens mit der Verbreitung des Magnetbands wurde das Speichern

aber schon wesentlich vereinfacht. Die Bits wurden zu Impulsen auf Band

Peripheriegeräte 199

umgewandelt und genau wie Töne der Nachwelt erhalten. Und damit sind

wir der Entwicklung immerhin schon bis zum Kassettenrecorder nachgeeilt,

den man auch an Ihren Commodore hängen kann. |

Doch ein entscheidender Nachteil blieb. Suchte man ein Programm, das am

anderen Ende des Bandes gespeichert wurde, mußte man eben spulen. Und

das dauerte natürlich. Kurz und gut: Ein schneller Datenzugriff war immer

noch nicht möglich.

Also besannen sich die Techniker auf die (ältere) Technik der Schallplatte.

Hier kann der Tonarm ja auch, durch Hin- und Herfahren, ziemlich jede

Position blitzschnell erreichen. Zu empfehlen ist allerdings, ihn vorher von der

Platte zu heben.

Und somit stand der Floppy-Disk eigentlich nichts mehr im Wege — außer

vielleicht die Kleinigkeit der technischen Entwicklung ...

In der Tat ist eine Diskette einer Schallplatte gar nicht so unähnlich. Nur,

daß es bei der Diskette keine Rillen mehr gibt, sondern Spuren, und daß die

auch nicht einfach «gekratzt», sondern rein magnetisch aufgezeichnet

werden.

Heute gibt es im großen und ganzen zwei Arten von Disketten: Die

großen, etwas klobigen 8-Zoll-Disketten, die hauptsächlich bei Großcompu-

tern eingesetzt werden, und die Fünfeinviertel-Zoll-Disketten, wie sie auch

die VC-1541-Floppy für Ihren Commodore verwendet. Womit das Kind auch

seinen Namen hätte. Und genau diese Diskettenart wollen wir uns jetzt näher

ansehen.

Wenn wir beschreiben, wie die Diskette aussieht, wollen wir uns nicht bei

Äußerlichkeiten aufhalten. Wahrscheinlich hat jeder von Ihnen schon einmal

so eine Scheibe gesehen. Viel interessanter ist, wie so oft, was man nicht

sehen kann.

Damit hier keine Probleme aufkommen, die eigentliche Diskettenscheibe

ist natürlich rund, nicht eckig. Sie kann sich in der eckigen Hülle frei drehen.

Allerdings sollten Sie das nicht mit den Händen ausprobieren. Denn die

Oberfläche der Diskette, die aus mikrofeinen Partikeln besteht, ist sehr

empfindlich gegen Hautfett und Schweiß. Die Diskette fassen Sie am besten

immer nur an der Schutzhülle an — da, wo zum Beispiel auch der Markenauf-

kleber ist.

Wie gesagt, die Informationen befinden sich in Form magnetischer Signale

auf der Oberflache der Diskette. Dazu werden auf der Diskette konzentrische

Spuren angelegt. Die Anzahl, Breite und Lage dieser Spuren ist von Firma zu

Firma verschieden. Wohlgemerkt: nicht von Diskettenfirma zu Disketten-

200 Peripheriegeräte

firma, sondern von Computerfirma zu Computerfirma. Wenn Sie Disketten

kaufen, dann sind sie sozusagen erst mal frei von jeglichen Regeln. Das

Format wird beim ersten Einsatz aufgezeichnet. Man nennt das auch Forma-

tieren. Wie das in unserem Fall geht, zeigen wir Ihnen noch. Während des

Formatierens werden in jedem Fall konzentrische, ineinanderliegende Kreise

magnetisch vorgezeichnet. Zum Schluß sieht die Diskette dann, natürlich nur

magnetisch betrachtet, aus wie eine Schießscheibe beim Schützenverein. Bei

der 1541 werden 35 solcher Spuren gezogen.

Eine Spur wird dann ihrerseits wieder in mehrere Sektoren unterteilt. Ein

Sektor ist also ein Ausschnitt aus einer Spur. In einem solchen Sektor können

256 Bytes Informationen gespeichert werden. Wenn Sie sich noch an die

Speicheraufteilung erinnern: 256 Bytes sind für den Computer genau eine

Speicherseite. Insgesamt befinden sich auf Ihrer Diskette 683 solcher Sekto-

ren. Damit die Floppy aber bei dieser Menge von Sektoren (auch Blocks

genannt) auch immer weiß, wo sich welche Informationen befinden, gibt es

ziemlich in der Mitte der Diskette, nämlich auf der Spur 18, ein Inhaltsver-

zeichnis — die sogenannte Directory. Auf dieser Spur sind Informationen wie

der Name und die Nummer der Diskette gespeichert, außerdem die Namen

der Programme und der Datensätze, die sich auf ihr befinden, und auch ein

Zeiger, das ist so eine Art interner Wegweiser, der angibt, auf welcher Spur

und in welchem Sektor der Anfang dieser Aufzeichnung zu suchen ist.

Natürlich belegt die Directory die Spur 18 für sich, und so können hier keine

anderen Daten mehr gespeichert werden. Damit bleiben zum Schluß nur

noch 664 Blocks frei. Und das entspricht nun runden 170K Speicher.

Wenn Ihnen das jetzt alles etwas verwirrend vorkam, hier noch einmal eine

kleine Skizze und eine Übersicht über die wichtigsten Daten Ihrer Disketten.

Da zur Speicherung von 256 Bytes ein gewisser Platz nötig ist, der Platz auf

jeder Spur aber, wie die Skizze zeigt, zur Mitte hin abnimmt, ist auch

einsichtig, daß sich auf den äußeren Spuren mehr Sektoren befinden als auf

den inneren. Im einzelnen sieht das dann so, wie in Tabelle 11.1 dargestellt,

aus.

Jetzt wissen wir doch schon allerhand über das Format der Disketten. Nur
noch eine kleine Anmerkung: Sie wundern sich vielleicht über das kleine Loch

in der Diskette. Nein, das ist nicht das Versehen eines Programmierers, der

noch Lochkarten gewohnt ist. Aber ein Relikt aus vergangenen Tagen ist es

trotzdem. Wie Sie sich vorstellen können, ist es unbedingt notwendig, daß

sich die Diskette mit der absolut gleichen Geschwindigkeit dreht. Sonst würde

der Schreib-/Lese-Kopf des Laufwerks die Daten nicht mehr erkennen kön-

Directory (Spur 18)

Spur 35

Peripheriegeräte

Bild 11.1 Diskette

Anzahl der Sektoren

21

19

18

17

Spuren: 35
Sektoren: 683
Bytes je Sektor: 256
Directory: Spur 18
freie Sektoren: 664
Kapazität: ~ 170K

Spur

1 bis 17

18 bis 24

25 bis 30

31 bis 35

Tabelle 11.1 Anzahl der Sektoren pro Spur

201

202 Peripheriegeräte

nen. Stellen Sie sich nur mal vor, irgend jemand würde eine Ihrer Lieblings-

platten zu schnell oder zu langsam spielen. Dann würden Sie auch Probleme

haben, den Sänger wiederzuerkennen. Selbst Langspielplatten mit Wagners

«Ring der Nibelungen» würden an Ausdruckskraft verlieren, wenn sie in

45er-Geschwindigkeit abliefen.

Deshalb verwendete man früher dieses kleine Loch in der Hülle und in der

Magnetscheibe. Einmal pro Umdrehung sind die beiden Löcher ja deckungs-

gleich, und Licht kann hindurchscheinen. Eine Fotozelle auf der anderen Seite

zählte dann die Lichtstöße je Sekunde und regelte auf dieser Basis die

Geschwindigkeit. Bei moderneren Floppys geschieht dies durch eine magneti-

sche Synchronmarkierung, die vom Schreib-/Lese-Kopf erkannt wird.

Und noch ein Tip zur Diskettenpflege: Die Seite, auf der aufgezeichnet

wird, ist entgegen der allgemeinen Vermutung nicht oben, wo das Etikett ist,

sondern unten. Deshalb ist es nicht zu empfehlen, die Disketten nur von oben

gegen Staub zu schützen und sie mit der Unterseite irgendwo herumliegen zu

lassen. Der beste Platz für Disketten ist die Schutzhülle. Und der beste Platz

für Disketten in der Schutzhülle ist ein Diskettenkasten.

Nach all diesen theoretischen Vorbemerkungen ist es nun soweit. Wir

nehmen Kontakt mit der Floppy-Disk auf.

Das Königreich von nebenan — die VC 1541

Sie erinnern sich vielleicht noch an unser Bild vom 6510, dem Prozessor Ihres

Commodore 64. Nun, dieses Bild wollen wir hier fortsetzen. Damit lassen sich

nämlich viele Dinge ganz anschaulich erklären.

Wenn man also die Floppy als ein eigenes Reich betrachtet, und das kann

man durchaus, dann zeigt dieses Reich zuerst die typischen Eigenschaften

eines Agrarstaates, denn schließlich sind die dort alle damit beschäftigt,

irgendwelche Furchen auf der Diskette anzulegen und dort massenweise Bits

anzupflanzen. .

Auf der anderen Seite sind auch deutliche Merkmale eines Industriestaates

zu erkennen: Die Floppy ist in hohem Maße von Import und Export abhängig.

Über dieses komplizierte Staatsgefüge herrscht ein etwas älterer, aber weiser

und gemütlicher König: Sein Name ist 6502 (auf das Beiwerk «der Erste»

verzichtete man, weil auch so schon genug Zahlen im Namen vorkommen).

Er ist übrigens der Vorläufer des jungen 6510. Der 6502 ist zwar etwas

langsamer als der 6510, aber dafür hat er seine Ruhe. Er ist absoluter

Peripheriegeräte 203

Herrscher in seinem Reich. Allerdings finden wir als Besucher einige alte

Bekannte hier in der Floppy wieder: RAMs und ROMs zum Beispiel. In den

ROMs steht das Betriebssystem der Diskette, DOS (Diskette Operating

System) genannt. Auch 2K-RAM finden wir hier. Teils dienen sie als Zeropage

für das DOS und teils als Pufferspeicher. Was das genau ist, erklären wir

später noch. |

Schließlich gibt es auch ein paar I/O-Bausteine zur Kontrolle der Motorge-

schwindigkeit, des Schreib-/Lese-Kopfes und zur Kommunikation mit dem

Computer. Und damit wäre auch eine wichtige Sache von vornherein geklärt:

Die Floppy ist ein eigener, autonomer Computer, allerdings mit anderen

Aufgaben, als sie der Commodore hat. Das ist übrigens keineswegs bei allen

Computern so. |

Die Floppy braucht zum Beispiel keinen Bildschirm, dafür aber verschiedene

Elektromotoren zur Bewegung der Diskette und des Schreib-/Lese-Kopfes.

Dieser Name ist jetzt schon einige Male gefallen. Was ist eigentlich ein

Schreib-/Lese-Kopf? Nun, er ist in erster Linie für die Datenspeicherung

verantwortlich. Im Prinzip ist er nichts weiter als ein Elektromagnet. Wenn er

schreibt, wandelt er elektrische Impulse in ein Magnetfeld um, das die Partikel -

auf der Diskettenoberfläche eben magnetisiert — oder nicht (nach dem

bekannten Prinzip: Strom oder kein Strom). Wenn er liest, dann wandelt er

die magnetischen Impulse auf der Diskettenoberfläche wieder um: In Strom

an/Strom aus. Allerdings denkt er sich nicht viel dabei. Den Rest überläßt er

der Regierung — wie ein braver Bürger eben.

Wenn wir also von der Floppy irgend etwas wollen, müssen wir schon

sozusagen beim König vorsprechen. Aber das funktioniert nur, wie das halt so

ist bei Monarchen, über ein sehr strenges Protokoll. Wenn Sie das noch nicht

getan haben, dann schalten Sie Ihre Floppy jetzt ein.

Voraussetzung dafür, daß das Kommando funktioniert, ist natürlich, daß

die Floppy ordnungsgemäß an Ihren Commodore angeschlossen ist.-Sonst

tritt derselbe Effekt ein, wie bei den Western, wo die Banditen genau in dem

Moment die Telegrafenleitung kappen, in dem Old Shatterhand den Gouver-

neur in Santa F& alarmieren will.

Wenn das geklärt ist, sprechen wir doch mal beim Haushofmeister vor:

Dazu müssen wir einen Kommandokanal zur Floppy eröffnen.

OPEN 1,8,15

erledigt das für uns.

Die Zahlen bedeuten im einzelnen folgendes:

204 Peripheriegeräte

1 ist die Kanalnummer. Sie kann völlig frei von O bis 255 gewählt werden.

Wir leben ja in einer Monarchie, also fast völlig frei: Erstens empfiehlt es sich,

üblicherweise nur Nummern unter 127 zu verwenden. Der Sinn dieser

Vorschrift wird allerdings erst beim Drucker erklärt. Außerdem sollte man

möglichst dieselbe Kanalnummer verwenden wie die Gerätenummer. Das hat

den Vorteil, daß, wenn man mehrere Geräte angeschlossen hat, immer eine

ganz gute Übersicht behalten werden kann.

8 ist die zweite Zahl. Sie ist die Gerätenummer der Floppy. Man sollte sie

einfach hinnehmen. Man kann sie zwar softwaremäßig (bis zum nächsten

Ausschalten) oder auch hardwaremäßig (also für die fernere Zukunft) ändern.

Das empfiehlt sich jedoch nur, wenn man mehrere Floppys gleichzeitig

verwenden will. Denn die meisten Programme, die sich auf das Diskettenlauf-

werk beziehen, gehen davon aus, daß die Gerätenummer 8 ist.

15, als letzte Zahl, stellt schließlich die Sekundäradresse dar. Sie spricht

verschiedene Betriebsmodi an, über die wir uns später noch unterhalten

wollen. In unserem Fall steht die 15 auf jeden Fall für den Modus: «Über

diesen Kanal werden Befehle und Meldungen hin- und hergeleitet.» Förmlich

ausgedrückt, entspricht das bei Hof: «Wir bitten untertänigst um die Gnade

einer Audienz. Wenn Sire 6502, hochwohlprogrammiiert, bitte anhören wür-

den, was wir vorzubringen gedenken.»

Falls unser Ersuchen nicht abgelehnt wurde, zum Beispiel durch einen

SYNTAX ERROR oder einen ILLEGAL QUANTITY ERROR oder andere diplo-

matische Verwicklungen, dann steht die Verbindung. So, spätestens jetzt

sollten wir uns überlegen, was wir eigentlich vorzubringen gedenken. Denn

Majestäten sind ja nun sehr beschäftigte Leute.

Bevor die Floppy allerdings irgend etwas tun kann, braucht sie erst mal

Futter. Schieben Sie ihr also am besten die dem Gerät beigefügte «TEST/

DEMO» -Diskette in den Schlund. Dann machen Sie die Klappe zu. Achten Sie

darauf, daß das Etikett beim Einschieben immer oben ist und auf Sie zuzeigt —

oder andersrum, daß die ovale Aussparung an der Diskette in Richtung des

Laufwerks zeigt, wenn Sie sie einschieben. Denn nur über diese Öffnung

kann der Schreib-/Lese-Kopf direkt auf die magnetische Oberfläche zugrei-

fen. Nachdem nun wirklich alle Vorbereitungen getroffen wären, wollen wir

frisch heraus unsere Forderungen stellen: «Sire, leset die Identity in Ihro

Arbeitsspeicher». Oder, etwas moderner ausgedrückt:

PRINT#F1,"1"

Wenn jetzt das Laufwerk zu surren anfängt und die rote LED-Anzeige kurz

Peripheriegerate 205

aufleuchtet, zeigt uns der Hof sein Verstandnis. Aber ... was haben wir ihm

eigentlich gesagt?

Nun, nachdem Sie ja den Ausdruck Identity gelesen haben, müssen wir Sie

erst einmal von einer unter Umständen falschen Spur abbringen. Dieser

Ausdruck hat keineswegs damit zu tun, daß unser kleines Reich unter einer

Identitätskrise leidet. Eigentlich war der Befehl, den wir gegeben haben, sogar

etwas unnötig, und zwar aus folgendem Grund: Beim Formatieren, wir

werden das nachher noch zusammen ausprobieren, wird jeder Diskette ein

zweistelliger Identifikations-Code («Identity») zugeordnet. Anhand dieses

Codes erkennt die Floppy, um welche Diskette es sich handelt. Oder einfa-

cher gesagt, wenn sich dieser Code von dem der vorhergehenden Diskette

unterscheidet, ist alles in Butter. Dann wird nämlich alles, was der «I»-Befehl

(von Initialize) bewirkt, automatisch erledigt. Wenn aber nicht — und diese

Möglichkeit besteht, falls Sie nicht wirklich für jede Diskette eine andere

Nummer verwendet haben —, dann gibt es Probleme. Und genau deshalb

muß der Floppy dann mitgeteilt werden, daß jetzt eine neue Diskette

eingelegt wurde. Das tut der «I»-Befehl. Deshalb ist er auch eher als eine

erste schüchterne Kontaktaufnahme als ein richtiger Befehl zu sehen. Warum

interessiert die Floppy, welche Diskette eingelegt wurde? Um das zu verste-

hen, muß man sich etwas genauer über die Vorgänge bei Hofe informieren.

Das Land, das dort ständig bebaut wird (die Diskettenoberfläche), stellt mit

seinen 683 Blocks ja schon ein relativ großes Terrain dar. Und damit keine

Querelen entstehen, wem nun welches Stück Land gehört, ist beim König

eine Landkarte hinterlegt, auf der genau verzeichnet ist, ob ein Block schon

belegt ist. Das ist in erster Linie wichtig, wenn Programme oder Daten

geschrieben werden sollen. Dann muß die Floppy nämlich wissen, in welchem

Block schon Daten stehen. Dazu wird ein solcher Block auf der Karte (sie heißt

BAM = Block Availability Map) als «belegt» gekennzeichnet. Diese BAM

wird zwar auf die Diskette draufgeschrieben, aber um schneller damit arbei-

ten zu können, wird sie ins RAM kopiert. Würde man jetzt die Diskette

wechseln, ohne daß es die Floppy weiß, dann würde sie sich auf die flache

BAM in RAM beziehen. So schön sich das auch reimt, so katastrophale Folgen

kann es jedoch haben. Denn hier sind ja ganz andere Blocks frei und belegt: als

auf der Diskette. Die Auswirkungen wären wohl eine Art Flurbereinigung,

gegen Ihren Willen. Und das würde Ihren Programmen gar nicht guttun, weil

belegte Blocks eben überschrieben werden. Um genau solche Hausrevolutio-

nen zu verhindern, ist die ID-Nummer da. Denn vor jeder Schreiboperation

überprüft die Floppy diesen Code. Hat er sich geändert, wird die neue BAM

206 Peripheriegeräte

eingelesen — kein Problem. Wenn nicht, geht die Floppy, nicht ganz zu

Unrecht, davon aus, daß alles beim alten geblieben ist, und schreibt deshalb

munter drauflos — mit allen Konsequenzen, die wir oben beschrieben haben.

Für Sie sollte das jetzt konsequenterweise heißen: unterschiedliche ID-

Codes verwenden! Oder nach jedem Diskettenwechsel einen «I»-Befehl zur

Floppy schicken. Die Lösung mit der ID-Nummer ist wohl die bessere. Im

übrigen sollten Sie sich dazu ein eigenes System zurechtlegen, damit Num-

mernwiederholungen ausgeschlossen werden. Bevor wir jetzt aber anfangen,

unsere erste eigene Diskette anzulegen, wollen wir uns ein paar Dinge von

der «TEST/DEMO»-Diskette anschauen. Dazu bitten wir zunächst unseren

kleinen König, die Audienz zu beenden:

CLOSE 1

Dafür wollen wir uns jetzt das Inhaltsverzeichnis der «TEST/DEMO»--Diskette

mal genauer ansehen. Da taucht aber auch gleich wieder ein Problem auf:

Das Commodore-64-BASIC V2 ist auf Diskettenbefehle etwa so großartig

vorbereitet wie der Durchschnittsschüler auf eine Latein-Kurzarbeit, das heißt

also wenig bis gar nicht. Bei den meisten Computern gibt es einen bestimm-

ten Befehl, um sich dieses Inhaltsverzeichnis anzuschauen. Schließlich ist es ja

nicht uninteressant, zu wissen, was auf einer Diskette abgespeichert wurde.

Beim Commodore gibt es leider erst mal nur einen kleinen Umweg: Die

Directory wird als Pseudo-BASIC-Programm geladen und kann dann mit LIST

angesehen werden. Der Befehl zum Laden ist:

LOAD "$",8

Wenn Sie diesen Befehl mit dem BASIC-Kapitel vergleichen, wird Ihnen

auffallen, daß hier eigentlich ein Programm ganz normal von der Diskette

geladen wird. Nur, daß es den ominösen Namen «$» trägt. Dieser Name ist

für ein Programm nun tatsächlich etwas ungewöhnlich. Das merkt auch unser

DOS und gibt dem Computer statt dessen das Inhaltsverzeichnis. Mit einem

‚einfachen

LIST

sehen Sie dann das Gewünschte. Jetzt wollen wir kurz erklären, was Sie nun

noch außer Programmnamen auf dem Bildschirm sehen. |

In der ersten Zeile steht in invertierter Darstellung (also dunkle Buchstaben

auf hellem Grund) der Name der Diskette. In diesem Fall: «1541 TEST/

DEMO», gefolgt von der Identity, die hier «ZX» heißt. Nun haben Sie diesen

Peripheriegeräte 207

Namen vielleicht schon einmal gehört, es ist einer der Commodore-Konkur-

renten auf dem Markt der Home-Computer. Aber wir gehen von der

Vermutung aus, daß es sich hier nur um einen Zufall handelt. Ähnlichkeiten

mit tatsächlich existierenden oder noch zu erfindenden Computern wären

rein zufällig und völlig unbeabsichtigt. Als letzte Information in dieser Zeile

findet sich das Kürzel «2A». Es steht für die DOS-Version, unter der die

Diskette formatiert wurde.

Aber die interessiert uns momentan weniger.

In den nächsten Zeilen stehen die Namen der Programme, die auf dieser

Diskette gespeichert sind. Vor ihnen finden Sie jeweils eine Zahl. Das ist die

Zahl der Blocks oder Sektoren, die das jeweilige Programm dahinter belegt.

Daraus läßt sich auch in etwa die Größe eines Programms errechnen. Als

Faustregel gilt

Zahl der Blocks/4 = Länge des Programms in KByte.

Hinter den Namen können Sie an einem Kürzel noch erkennen, um welche

Art von Aufzeichnung es sich handelt.

PRG steht für Programm und ist meist das übliche.
SEQ steht für sequentielle Datei.

REL steht für relative Datei.

Ganz am Ende steht noch die Anzahl der freien Blocks, also der Blocks, die

noch nicht belegt sind. In unserem Fall müßten das rund 558 sein. Wenn Sie

jetzt feststellen, daß diese Werte und Namen relativ wenig mit Ihrer «TEST/

DEMO» -Diskette zu tun haben, dann machen Sie sich keine Sorgen. Genauso

wie manche Leute alle paar Monate einen Rappel bekommen und ihre

gesamten Möbel in der Wohnung hin- und herschieben, so scheint es auch

Commodore zu gehen. Immer mal wieder überraschen sie Käufer mit neuen

«TEST/DEMO»-Versionen. Übrigens geht das Gerücht um, daß ähnliches

auch mit dem Betriebssystem der Fall sein soll. Nur nicht so oft...

Bisher erschien Ihnen das aber alles wohl recht unproblematisch. Das liegt

zum einen sicherlich daran, daß Sie gar nichts anderes gewöhnt sind. Es gibt

zum Beispiel einen mit einer Fruchtsorte verwandten Computer, der dasselbe

einfach mit dem Befehl CATALOG erledigt. Und da ist er beileibe nicht der

einzige. Zum anderen ist Ihnen sicherlich auch noch die Konsequenz des

Ladens eines BASIC-Programms nicht ganz klar. Wenn man das nämlich tut,
dann löscht man damit immer das bereits im Speicher Befindliche. Das ist nun

an und für sich eine sehr gute Einrichtung, um ein heilloses Durcheinander

von Programmen zu verhindern. Aber stellen Sie sich jetzt mal vor, Sie haben

208 Peripheriegeräte

gerade ein ziemlich langes BASIC-Programm eingegeben und wollen nun,

nach getaner Müh', dieses Programm auf Diskette speichern. Da Sie aber

nicht genau wissen, ob noch genug Platz auf der Diskette übrig ist, wollen Sie

eben nachschauen. Aber wir würden Ihnen davon sehr abraten. Denn in dem

Augenblick, da Sie das Directory als Quasi-BASIC-Programm laden, können

Sie Ihr eigentliches BASIC-Programm nur noch als freudige Erinnerung im

Gedächtnis behalten. Denn jedes neue Programm löscht das vorhergehende.

Also heißt es nur: entweder Programm abspeichern oder auf der Diskette

nachschauen. |

Aber bevor Sie sich jetzt darüber ständig den Kopf zerbrechen, sei Ihnen

hier schon verraten, daß Commodore dafür glücklicherweise eine Lösung hat.

Nur weil alles schön der Reihe nach gehen soll, dachten wir uns, wir

formatieren erst mal eine Diskette zusammen.

Mit all unserem Wissen wollen wir jetzt mutig Neuland betreten — so, wie

die Siedler mit ihren Trecks in den rauhen Westen zogen und dort die Prärie

urbar machten. Unsere Prärie besteht aus einer unformatierten, leeren Dis-

kette. Wenn Sie eine solche momentan nicht besitzen, sollten Sie sich schnell

welche kaufen. Auf keinen Fall sollten Sie auf die Idee verfallen, Ihre «TEST/

DEMO»-Diskette neu zu formatieren. Denn das bedeutet auch den Verlust

sämtlicher bereits sowieso nur spärlich vorhandener Programme. Normaler-

weise dürfte aber der Formatierungsbefehl mit Ihrer «TEST/DEMO»-Diskette

gar nicht funktionieren. Aber man weiß ja nie.

Warum er nicht funktionieren würde? Nun schauen Sie sich diese Diskette

doch mal genau an. An der rechten Seite, wo bei anderen Disketten meist ein

kleiner viereckiger Ausschnitt zu sehen ist, befindet sich in Ihrem Fall ein
silberner Aufkleber. (Die Farbe kann differieren, die Funktion bleibt aber die
gleiche.) Dieses Stück undurchsichtiges Klebeband, um nichts anderes han-

delt es sich im Grunde, wird auch als «Schreibschutzaufkleber» bezeichnet.

Solange der kleine, viereckige Ausschnitt damit zugeklebt ist, kann auf die

Diskette nichts geschrieben werden. Solche Aufkleber befinden sich meist in

den Diskettenpackungen, so daß Sie auch selbst Ihre Disketten vor dem

Beschreiben schützen können. Ist der Aufkleber allerdings weg, ist Ihre

Diskette allen Schreibangriffen schutzlos ausgesetzt. Und weil Formatieren

wirklich ein sehr drastischer Vorgang ist, sollten Sie ihn eigentlich nur bei

frisch gekauften Disketten anwenden oder bei Disketten, bei denen Sie sicher

sind, daß entweder alle Programme irgendwo anders nochmals abgespeichert

sind oder sowieso nichts taugen und deshalb ruhig gelöscht werden können.

Neue Disketten aber müssen erst mal, wie schon erwähnt, formatiert

werden. Was passiert dabei?

Peripheriegerate 209

Ganz einfach. Ihre Commodore-Floppy wird sich Spuren und Sektoren, die

sie als passend empfindet, und die Directory anlegen. Ubrigens liegt die

Betonung hier auf «Ihre Floppy». Es kann manchmal schwierig sein, wenn

zwei Leute Programme austauschen. Wenn nämlich der Schreib-/Lese-Kopf

einer Floppy nur ein bißchen falsch justiert ist, dann kann es sein, daß die

andere Floppy die Diskette nicht lesen kann, obwohl sie auf der ersten

einwandfrei gelaufen ist. In so einem Fall sollte der Schreib-/Lese-Kopf vom

Fachhändler nachjustiert werden.

Jetzt aber zum Formatieren: Wenn Sie Ihre neue Diskette erst mal eingelegt

haben, besteht das einzige Problem noch darin, dem König mitzuteilen, daß

sich seine Arbeiter um das Neuland kümmern sollen. Also fangen wir wieder

mit einem höflichen Türklopfen an:

OPEN 1,8,15

Wenn Sie das getan haben, müssen Sie sich über zwei Punkte klarwerden:

Wie soll die Diskette heißen und welche ID-Nummer bekommt sie? Letzteres

dürfte für Sie kein Problem sein. Um Ihren (hoffentlich) guten Vorsätzen treu

zu bleiben, dürfen Sie jede zweistellige Kombination wählen, außer «ZX»,

denn das ist ja schon auf der «TEST/DEMO»-Disk verbraucht worden. Wie

gesagt, am besten legen Sie sich für diesen ganzen ID-Kram ein bestimmtes

System zurecht. Das hilft Ihnen, gleiche IDs zu vermeiden.

Zum ersten Punkt: Sie können jeder Diskette einen Namen geben. Dieser

Name kann bis zu 16 Zeichen lang sein und sollte natürlich irgendeinen Bezug

zum Inhalt der Diskette haben. Diskettennamen wie «SPIELE 1» oder «UTILI-

TIES» sind sicher besser zum späteren Wiedererkennen geeignet als Namen

wie «FRITZ» oder «C-64 DISK». Diese ganzen persönlichen Wünsche teilen

Sie am besten Ihrer Majestät selbst mit.

PRINT#1,"N: TEST,01"

Wir haben uns also für den Namen TEST und die ID-Nummer 01 entschieden.

Es steht Ihnen natürlich völlig frei, hier einzusetzen, was auch immer Ihnen

Spaß oder Sinn zu machen scheint — mit einer Einschränkung. Es dürfen nicht

die beiden Zeichen «?» und «x» vorkommen. Die werden nämlich noch

anderweitig gebraucht. Stößt ansonsten unser Ansuchen bei Hofe auf Ver-

ständnis, dann können wir gleich nach dem (RETURN) mit einer Antwort

rechnen. Sie müßte sich in einigem Rumoren und dem Leuchten der roten

LED äußern. Während das alles passiert, wird die Diskette neu formatiert.

Etwa 80 Sekunden herrscht in der Floppy derweil Hochbetrieb. Und nun

210 Ä Peripheriegeräte

kommt ein Vorteil zum Tragen, den wir vorhin schon kurz erwähnten:

Nämlich der, daß die Floppy ein eigener Computer ist. Ihr Commodore ist

nämlich während der ganzen Zeit verfügbar. Sie können damit fast alles

machen wie bisher, nur nicht auf die Floppy zugreifen. Die hat ja zu tun.

Wenn die rote LED während des Formatierens zu blinken anfängt, dann ist

irgendein Fehler aufgetreten. Prüfen Sie Ihre Eingabe zuerst einmal auf

Tippfehler. In jedem Fall sollten Sie aber einen zweiten Anlauf nehmen. Wenn

es dann immer noch nichts ist, sollten Sie das Ganze noch einmal mit einer

anderen Diskette probieren. Erst wenn das alles nichts fruchtet, bringen Sie

Ihre Floppy oder auch die verwendeten Disketten zum Fachhändler.

Ist aber alles richtig gelaufen, hört die rote LED auf zu leuchten. Wir haben

jetzt eine leere formatierte Diskette.

Das können Sie auch gleich mit

LOAD"$” ,8

nachprüfen. Ein nachfolgendes LIST müßte in etwa folgendes Bild ergeben.

READY

In der ersten Zeile steht, wieder invertiert, TEST oder wie auch immer Sie Ihre

Diskette genannt haben. Dann kommt die ID-Nummer, bei uns die 01, und

natürlich die obligatorische DOS-Version-Angabe 2A.

Darunter sollte stehen: 664 BLOCKS FREE

Sollte sich Ihr Ergebnis von unserem unterscheiden, das heißt im Klartext,

wenn Sie irgendwelche ominösen Zeichen, Symbole und ungeordnete Buch-

staben anstatt der aufgezählten Zeilen vorfinden, ist ein Fehler beim Forma-

tieren aufgetreten. Das kann verschiedene Gründe haben: Oft liegt es an den

verwendeten Disketten. Die Commodore-Floppys sind in bezug auf ihr Futter

wirklich sehr wählerisch. Es kann aber auch sein, daß die Disketten wirklich

einfach schlecht gemacht sind. Auch die besten Landarbeiter können einem

ausgelaugten Boden nichts entlocken. Versuchen Sie es auch hier im Zwei-

felsfall noch einmal. Ansonsten wäre wieder der Gang zum Händler not-

wendig.

Ein Tip am Rande: Fragen Sie den Händler, ob er eine bestimmte Diskette

empfehlen würde. Das ist meist ein brauchbarer Rat. Und versichern Sie sich,

daß Sie umtauschen können, wenn Sie das erste Mal Disketten kaufen. Dann

Peripheriegeräte 211

können Sie gut probieren, ob Diskette und Floppy sich verstehen. Und

scheuen Sie sich auch nicht davor, mangelhafte Disketten, die ohne Ihr

Verschulden einfach schlecht sind (wellig oder dergleichen), zurückzubringen

und umzutauschen.

Wenn aber alles reibungslos geklappt hat, dann hat soeben eine neue

Diskette das Licht der elektronischen Welt erblickt. (Allerdings wird kleinen

Disketten auch gern die Geschichte vom Klapperbit erzählt, das sie gebracht

haben soll .. .)
Und weil wir jetzt eine schöne, freie Diskette haben, wollen wir doch gleich

mal ausprobieren, wie das mit dem Laden und Speichern vor sich geht.

Geben Sie also ein kleines BASIC-Programm ein. Vorher sollten Sie. aber mit

NEW

den Speicher löschen.

Dann können Sie Ihrer Fantasie freien Lauf lassen. Wie gesagt, es muß

nichts Großartiges sein, vielleicht ein Spiel oder ein Textverarbeitungspro-

gramm. Im Notfall tut es auch ein BASIC-Zweizeiler.

Jetzt wollen wir dieses neue Programm auf unserer Diskette speichern.

Dazu geben Sie einfach ein:

SAVE" PROGRAMM" ,8

Wie Sie sehen, haben wir unser Programm sinnigerweise PROGRAMM

genannt. (Gut, gut, wir geben's ja zu, daß das nicht gerade ein Geniestreich

ist. Sie können es ja gerne anders machen.) Nach dieser Eingabe sollte die

Floppy aktiv werden. Wie üblich, erkennt man das am Geräusch und der

roten LED. |

Wenn die LED erlischt und auf Ihrem Bildschirm die Meldung «READY»

erscheint, ist das Programm abgespeichert. Alle, die vorher nur den Kasset-

tenrecorder kannten, dürften von dieser Geschwindigkeit schon etwas beein-

druckt sein.

Nun, wir wollen mal kontrollieren: «Die Programmausweise, bitte

schön ...» | |

LOAD "$",8

und

LIST

Aha, jetzt steht in der Directory der Programmname, den Sie vorhin beim

Abspeichern benutzt haben. Davor müßte je nach Programmlänge die Anzahl

212 Peripheriegeräte

der Blocks stehen, die davon belegt wurden. Gut, spielen wir also mit diesem

soeben angelegten Programm. Löschen wir zunächst den Speicher mit einem

resoluten

NEW

Übrigens haben wir gerade eben nicht etwa unser Programm gelöscht,

sondern die mittlerweile nachgeladene Directory — nur zur Erinnerung. Jetzt

holen wir unser kleines Programm wieder von der Diskette herunter.

LOAD "PROGRAMM" ,8

Natürlich müssen Sie Ihren Programmnamen verwenden. Das hat man halt

davon, wenn man so eigenwillig ist.

LIST

zeigt Ihnen, daß das Beispielprogramm immer noch da ist. Sie können es also

so oft von der Diskette in den Speicher holen, wie Sie wollen. Es ist nicht

nötig, es wieder zurückzuschreiben — so, wie man zum Beispiel etwas aus

einem Regal im Kaufhaus nimmt und es wieder zurücklegt, um dann doch

etwas anderes zu kaufen. Hätten Sie es aber doch mitgenommen, wäre es

jetzt halt weg. Wenn Sie aber von der Diskette etwas nehmen, dann haben

Sie eigentlich nur eine Kopie des Programms in Ihrem Speicher. Das Pro-

gramm bleibt auf der Diskette.

Dieses kleine Beispiel zeigt auch den Vorteil einer Floppy: Sie können

Programme direkt aufrufen, ohne zu spulen oder zu suchen.

Was aber, wenn Sie einige Programme auf der Diskette haben, aber nicht

mehr genau wissen, wie ein bestimmtes hieß, sich vielleicht nur noch an den

Anfang erinnern können? Oder wenn Sie einfach keine Lust haben, beim

Laden jedesmal den ganzen Namen einzugeben? Dann genügt auch ein

LOAD"PROx",8

Dieses Symbol wird auch als Joker bezeichnet - so eine Art Hofnarr, der alles

mit sich machen läßt. Allerdings kann es natürlich sein, daß hier Namens-
gleichheiten entstehen, wenn zum Beispiel auf der gleichen Diskette ein

Programm namens «PROFIT» ist. In diesen Fällen gilt folgende Regelung:

Geladen wird grundsätzlich das Programm, das am weitesten vorne in deı

Directory steht. Das ist auch der Grund dafür, warum man mit dem Befehl

LOAD" x",8

Peripheriegeräte 213

direkt nach dem Einschalten immer das erste Programm auf der Diskette

laden kann. Warum nur direkt nach dem Einschalten? Ganz einfach: Wenn

Sie erst einmal irgendein Programm geladen haben, dann ruft «x» allein

immer dieses Programm auf. Das heißt, mit |

LOAD" x" ,8

wird normalerweise immer das zuletzt geladene oder gespeicherte Programm

noch einmal geladen. Wichtig ist allerdings in diesem Zusammenhang, daß

mit jedem Ein- und Ausschalten des Commodore auch die Floppy neu

anfängt. Man nennt diesen Vorgang Initialisieren. Sie merken das — wie

immer — an der aufleuchtenden LED und am Geräusch. Nun haben wir aber
noch ein Jokersymbol, nämlich das «?» (sprich Fragezeichen).

Das Fragezeichen steht nun seit Donald Duck für Nichtwissen. Und so auch

hier. Ein Beispiel:

LOAD "P?STE" ‚8

würde Programme wie «PUSTE», «PASTE», «PISTE» und dergleichen laden.

Wenn wieder viele Programme zur Auswahl stehen, gilt: Das erste Pro-

gramm, das dem gesuchten Code entspricht, wird geladen. Sie können also

den Joker überall da hinsetzen, wo Ihnen bestimmte Buchstaben nicht

einfallen.

Beim Abspeichern funktioniert das natürlich nicht. Denn wie soll denn die

Floppy wissen, welches Programm Sie abspeichern wollen, wenn Sie es selbst

nicht wissen? Und auch im Diskettennamen und in der ID haben die Joker

nichts verloren. Grundsätzlich gilt für die drei letztgenannten Anwendungen:

«Für Hofnarren und Bedienstete verboten!»

Sollten Sie versuchen, dieses Verbot zu umgehen, dann wird das die königli-

che Syntaxwache sofort merken und Alarm schlagen. Vielleicht ist Ihnen das

auch schon passiert: Wenn ein fehlerhafter Befehl zur Floppy geschickt wird,

fängt die rote LED an, ganz aufgeregt zu blinken. Wie soll man sich bei

solchem Rot-Alarm nun verhalten? Am besten, wir fragen den König, was

ihm nicht gefällt.

Das Problem ist einfach folgendes: Nachdem die Floppy ein eigener

Computer ist, hat sie auch ihre eigenen Fehlermeldungen. Das heißt, ein

Floppyfehler wird nicht wie unser bekannter «SYNTAX ERROR» (den haben

Sie sicherlich im Laufe der Zeit sehr gut kennengelernt... .) auf dem Bildschirm

ausgegeben. (Der gehört ja zum Commodore, und so gut sind die nachbar-

214 Peripheriegerate

schaftlichen Beziehungen nun auch wieder nicht.) Wie erfahrt man aber

dann, was man falsch gemacht hat? Nun, das Protokoll kennen Sie ja.

Diesmal müssen wir nur ein kleines Programm daraus machen. Denn um

einen Fehler von der Floppy einzulesen, brauchen wir eine spezielle Art des

INPUT-Befehls. Und der kann ja nun nicht direkt ausgeführt werden. Unser

Befehl lautet INPUT# (dieses Zeichen # wird meist File ausgesprochen und

zeigt hier an, daß eine Eingabe von einem bestimmten Peripheriegerät

kommen soll).

Um also den Fehlerkanal der Floppy abzufragen, brauchen Sie folgendes

kleine Programm:

10 OPEN 1,8,15

20 INPUT#1,A,A$,B,C

30 PRINT A;A$;B;C

40 CLOSE 1

Was tut dieses Programm nun im einzelnen?

Immer, wenn die Floppy einen Fehler erkennt, blinkt die rote LED, und auf

dem Fehlerkanal werden folgende Meldungen zum besseren Verstandnis des

Fehlers ausgegeben: seine Nummer, der Fehlertext, die Spur und der Sektor,

wo der Fehler aufgetaucht ist. Diese vier Meldungen sind wie Eisenbahnwag-

gons, die bereitstehen, um abgeholt zu werden. Das oben gezeigte Beispiel-

programm weist nun jeder dieser Fehlerinformationen eine Variable zu: A ist

die Fehlernummer, A$ der Fehlertext, B die Spur und C der Sektor. Wenn Sie

das jetzt ausprobieren, werden Sie wahrscheinlich durch Zeile 30 folgende

Nachricht ausgedruckt bekommen:

0 OKOO

Das bedeutet, seine Hoheit sind mit uns zufrieden.

Wenn Sie die Floppy gerade erst eingeschaltet haben, kann der Text auch

so aussehen:

73 CBM DOS V2.6 1541 00

Das ist eine Art königliches «Guten Morgen», ähnlich der Einschaltmeldung

Ihres Commodore 64. Sollte irgendeine andere Fehlermeldung kommen, so

liegt noch ein Fehler von vorhin auf dem Kanal. Was die einzelnen Fehlerco-

des genau bedeuten, entnehmen Sie bitte Ihrem Floppy-Handbuch.

Nun stellt sich aber wieder das bereits bekannte Problem ein. Sie haben

noch immer Ihr Superprogramm (Sie wissen schon: das, was Sie vorhin

Peripheriegeräte 215

geschrieben haben) im Speicher, und beim Abspeichern desselben meldet die

Floppy einen Fehler. Um den aber auslesen zu können, brauchen Sie das

kleine Programm von vorhin. Um das aber mit Ihrem bereits vorhandenen

Programm unter einen Hut zu bringen, muß Ihnen schon was Schlaues

einfallen. Eine beliebte Verzweiflungstat war beispielsweise der Versuch, das

Fehlerprogramm noch an den Anfang oder das Ende des vorhandenen

Programms zu quetschen und dann gezielt aufzurufen.

Aber Sie sehen schon, allmählich wachsen die fehlenden Diskettenbefehle

sich zu einem ernsthaften Problem aus. Und weil das jetzt so wirklich nicht

mehr weitergehen kann, schaffen wir jetzt endgültig Abhilfe.

Commodore hat nämlich, offensichtlich im Bewußtsein dieser Schwierig-

keiten, ein Programm auf die «TEST/DEMO»-Diskette gepackt, das sich als

sehr hilfreich erweisen wird: das DOS 5.1.

Wir wollen es jetzt laden und fortan davon profitieren. Aber weiterhin gilt

natürlich, daß alle Befehle auch nach der alten Zeremonie (also OPEN

1,8,15:PRINT#1," usw.) an die Floppy geschickt werden können. Aber

wahrscheinlich werden Sie sich so an das DOS 5.1 gewöhnen, daß Sie es

während des Programmierens ständig im Speicher haben werden. Dieses

Programm ist sozusagen eine ständige Vertretung des FFS (Freien Floppy

Staates), der uns so ziemlich alle Audienzen beim König abnimmt. Und weil es

mit den dortigen Gepflogenheiten wesentlich besser vertraut ist und als

Maschinenprogramm auch ein enger Vertrauter des 6502 ist, beschleunigt es

die ganze Sache natürlich ungemein.
Und nun zum Bau des Botschaftsgebäudes: Auf Ihrer «TEST/DEMO»-

Diskette müßte sich eigentlich ein Programm befinden, das «C-64 WEDGE»

heißt. Das soll nur heißen, daß das Programm dem Commodore 64 angepaßt

wird. Wenn Sie dieses Programm laufen lassen, dann lädt und startet es das

DOS 1.5 ganz von alleine. Sie brauchen nur

LOAD" C-64 WEDGE" ,8

und danach RUN einzugeben. Damit Sie später auch eigene Programme

schreiben können, die das DOS 5.1 automatisch nachladen, wollen wir uns

dieses WEDGE-Programm mal genauer ansehen.

10 IF A=0THENA=1:LOAD"DOS 5.1" ,8,1

20 IF A=1THEN 5YS12x4096+12x256

30 NEW

Grob erklärt, passiert folgendes. In Zeile 10 wird das eigentliche DOS 5.1

216 Peripheriegerate

geladen. Wenn Sie es auf Ihrer Diskette suchen, es ist 4 Blocks lang. Da es sich

um ein Maschinenprogramm handelt, das nicht am BASIC-Anfang liegt, muß

es mit «8,1» absolut geladen werden. In Zeile 20 wird es dann gestartet. Die

Startadresse ist 12 x 4096 + 12 x 256, also 52224. Damit liegt es genau in

dem 4K-RAM-Block, der von 49152 bis 53248 reicht. Somit wurde also auch

für diesen Speicherbereich noch eine sinnvolle Anwendung gefunden. (Ver-

. gleichen Sie dazu auch das Speicherkapitel.)

In Zeile 30 wird dann der BASIC-Speicher durch des NEW wieder gelöscht,

das heißt, das Programm räumt sich sozusagen selbst auf. Ab hier könnte

aber genausogut ein normales BASIC-Programm stehen, beispielsweise eine

Auswahltabelle für alle Programme, die sich auf dieser Diskette befinden.

Was Sie jetzt noch beschäftigen dürfte, ist der tiefere Sinn der Variablen A.

Dazu muß man folgendes wissen: Wenn ein LOAD-Befehl innerhalb eines

Programms auftaucht, geht der Computer davon aus, daß ein neues BASIC-

Programm geladen wird. Also springt er nach dem Laden an den Anfang des

— vermeintlich neuen — Programms und führt es aus. Wenn nun aber, wie in

unserem Fall, ein Maschinenprogramm geladen wird, ändert sich ja nichts an

dem BASIC-Programm, das heißt, es bleibt im Speicher, wie es war. (In

diesem Fall spricht man von einem LOADER-Programm - es lädt ein anderes

Programm.) Danach springt der Computer an den Anfang des Programms

und startet es wieder in dem sicheren Glauben, es handelte sich um ein neues

Programm. Also würde noch mal geladen werden und noch mal und noch

mal und immer so weiter, bis zum Tag des jüngsten Stromausfall.

Durch den Trick mit der Variablen läßt sich das vermeiden. Denn die |

Variablen werden bei diesem Vorgang nicht gelöscht. Man spricht dabei

übrigens von einem Warmstart.

Deshalb ist A am Anfang 0. Die IF...THEN-Bedingung ist erfullt, also wird

A auf 1 gesetzt und dann der LOAD-Befehl ausgeführt. Treuherzig wie er ist,

springt der Computer wieder zum Anfang des Programms zurück (bildlich

natürlich nur!) und will wieder anfangen. Aber ... aha oder besser gesagt

A(aah). Er merkt nämlich plötzlich, daß A nicht mehr O ist. Also gilt die

Bedingung in Zeile 10 nicht mehr, und in seiner Not blickt sich der Commo-

dore suchend nach Hilfe um. Die findet er dann auch in Form der Zeile 20, die

ihm sagt, daß er einen SYS-Aufruf machen soll (also ein im Speicher befindli-

ches Maschinenprogramm aufrufen soll). Und mit diesem Aufruf wird das

DOS 5.1 gestartet. Während sich unser Commodore noch ganz verwundert

umblickt und die Betriebsamkeit, die hinter ihm ausgebrochen ist, anstarrt,

rennt er vorne in Zeile 30 in das NEW. Und damit vergißt er schlagartig, daß

Peripheriegeräte 217

er sich eben noch gewundert hat, und läßt dafür das DOS 5.1 laufen. Gar

nicht so dumm, das alles, was?

Wenn Sie jetzt also das RUN eingegeben haben und damit Ihren Computer

durch die Höhen und Tiefen seines Daseins geschickt haben, werden Sie

einen entsprechenden Text finden, der Ihnen mitteilt, wer der Autor ist und

wer infolgedessen auch Copyright auf dieses Programm hat. Wir sollten jetzt

wirklich eine Schweigeminute für diesen Mr. Fairbairn halten und ihm für

dieses Programm danken.

Geben Sie am besten gleich mal ein

)$

Also ein «Größer als»- und ein Dollarzeichen, dann das obligatorische (RE-

TURN).

Wie Sie jetzt sehen, zeigt uns der Computer nun den Inhalt der Diskette,

und zwar, ohne sich weiter um das Programm im Speicher zu kümmern. Das

ist doch schon ganz vorteilhaft.

Aber es geht noch weiter.

Durch alleinige Eingabe von

)
und (RETURN) können Sie jederzeit den Fehlerkanal abfragen. Auch für die

Lade- und Speicheroperationen gibt es jetzt Kürzel. Ein Schrägstrich, gefolgt

von einem Programmnamen, wirkt wie unser bisheriges LOAD "PRO-

GRAMMNAME" 8.

Wenn Sie statt dessen das Prozentzeichen (%) voranstellen, wirkt dies wie

LOAD” PROGRAMMNAME" 8,1. Das brauchen Sie immer dann, wenn Sie

ein Maschinenprogramm laden wollen.

Mit einem Pfeil nach oben (?) als erstem Zeichen, gefolgt von dem

Programmnamen, wird das Programm nicht nur geladen, sondern auch

automatisch gestartet.

Ein Pfeil nach links (<-) steht für das SAVE-Kommando.

Aber jetzt kommt das Beste: Nach einem ")" (Größer-als-Zeichen) kann

ein beliebiger Floppy-Befehl stehen. Wenn Sie jetzt also sagen wollen: «Herr

Botschafter, teilen Sie Ihrem König bitte mit, daß die eingelegte Diskette

formatiert werden soll», so geht das einfach so:

)N:TEST,01

Sie erinnern sich, die ausführlichere Version von früher war:

218 Peripheriegeräte

OPEN 1,8,15:PRINT#1," N: TEST,01":CLOSE15

Sie werden uns jetzt wahrscheinlich zustimmen, wenn wir sagen, daß das

DOS 5.1 die ganze Sache schon etwas einfacher und komfortabler macht.

Mit diesem starken Verbündeten wollen wir uns jetzt auch noch an die

restlichen Befehle für die Floppy machen.

Legen Sie wieder die Diskette ein, die wir ganz zu Anfang formatiert haben.

Ein |

)$

wird Ihnen zeigen, daß sich bisher nur ein Programm auf dieser Diskette

befindet, und zwar das, das wir vorhin abgespeichert haben. Dem kann

abgeholfen werden. Der COPY-Befehl kopiert Programme oder Dateien

(allgemeiner Ausdruck dafür ist Files) innerhalb einer Diskette. Dazu müssen

sie nur einen neuen Namen angeben. |

)C:KOPIE=PROGRAMM

Nun wird ein zweites Programm auf die Diskette geschrieben, das sich in

nichts von dem ersten PROGRAMM unterscheidet. Das sehen Sie zum

Beispiel an der exakt gleichen Anzahl der belegten Blocks in der Directory.

Der König hat also seine Untertanen angewiesen, zwei völlig identische

Felder anzulegen. Und die — gewohnt, zu gehorchen - fragen nicht lange,

sondern tun es. Bevor wir uns aber jetzt auf den Weg zur Monokultur

begeben, wollen wir noch ein bißchen was ändern. Es könnte ja sein, daß uns

plötzlich einfällt, daß KOPIE doch kein angemessener Name für den neuen

' Zögling ist. Wir wollen ihn umtaufen. Kein Problem. Dafür gibt es den

RENAME-Befehl. Wenn das Programm KOPIE ab sofort PROGRAMM 2
heißen soll, wenden wir uns mit unserem Anliegen einfach an die Floppysche

Botschaft.

)R:PROGRAMM 2=KOPIE

Wenn die Floppy mit dieser kurzen Aktion fertig ist und Sie sich mit

)$

das Inhaltsverzeichnis ansehen, werden Sie feststellen, daß das Programm

KOPIE verschwunden ist. Dafür gibt es jetzt ein PROGRAMM 2. Wenn Sie

sich darüber wundern, wie schnell das gegangen ist, hier noch ein kurzes

Wort zur Klärung. Bei dem letzten Befehl wird nicht etwa KOPIE in den

Speicher gelesen und dann als PROGRAMM 2 wieder auf die Diskette

Peripheriegerate 219

geschrieben. Alles, was die Floppy tut, ist, den neuen Namen über den alten

im Directory (also auf der Spur 18) zu schreiben. Das Programm selbst bleibt

davon unberührt.

Weil wir jetzt aber zweimal dasselbe Programm auf der Diskette haben,

was ja wirklich nicht sein muß, können wir auch das alte PROGRAMM wieder

löschen. j
Dazu gibt es den SCRATCH-Befehl. Aber Vorsicht. Zum einen ist dieser

Befehl sehr endgültig und zum anderen: Verwenden Sie hier keine Jokersym-

bole. Sie würden nämlich nicht nur das erste der in Frage kommenden Files,

sondern alle in Frage kommenden Files löschen. Aber zurück zum Löschen:

Der Befehl heißt

)S:PROGRAMM

Damit wird das Programm gelöscht. Das heißt, die Blocks, die es ursprünglich

belegte, werden wieder als frei gekennzeichnet und können beim nächsten

SAVE wieder neu beschrieben werden.

In jedem Fall sollte man diesen Befehl nur nach zweimaligem Nachdenken

anwenden.

Jetzt fehlt uns nur noch ein wichtiger Floppy-Befehl: VALIDATE. Wir haben

Ihnen ja schon von der ‚BAM erzählt, der Karte, auf der alle belegten Blocks

gekennzeichnet sind. Leider ist ja nun unser Monarch nicht mehr der aller-

jüngste. Und auch seine Berater und Bediensteten nehmen es nicht immer

allzu genau. Deshalb kommt es vor, daß hie und da mal ein Block als belegt

dazugeschmuggelt wird, der es gar nicht ist. Deshalb sollte man von Zeit zu

Zeit mal eine Kontrolle durchführen. :

Ahnlich, wie das der Bundesrechnungshof macht, geschieht das auch durch

den VALIDATE-Befehl.

Vv

ist alles, was man dabei eingeben muß. Der Rest wird von ganz allein

durchgeführt. Wenn man das alle paar Wochen macht, dann kommt schon

der eine oder andere Block dabei heraus.

Damit wäre unser kleiner Kurs im Vokabular der Floppy eigentlich beendet.

Es gibt zwar noch einige andere Befehle. Aber die würden wirklich den

Rahmen dieses Kapitels sprengen. Außerdem braucht man die selten schon

am Anfang. Wenn es soweit ist, sollten Sie sich alles dazu Nötige im Floppy-

Handbuch durchlesen.

Bleibt nur noch eine Kleinigkeit: der Klammeraffe. Den finden Sie hier

220 Peripheriegeräte

ausnahmsweise nicht im Zoo, sondern auf der Tastatur. Gemeint ist damit

eine Art Kringel. Darstellen tut er aber ein a im Kringel. Das Ganze sieht dann

so aus: (@.

Ursprünglich ist er ein amerikanisches Symbol für «at». Aber dafür haben

sich Programmierer nie sonderlich interessiert. Nur damit das Kind — pardon,

der Affe — einen Namen hat, kam man eben auf Klammeraffe. Nachdem wir

beide noch nie einen echten Klammeraffen gesehen haben, können wir leider

nicht feststellen, ob er tatsächlich so aussieht. Wenn aber doch, dann täte es

uns leid für ihn.

Von der freien Wildbahn wieder zurück ins traute Wohnzimmer. Hier kann

uns der Klammeraffe zwei gute Dienste leisten. Er kann zum Beispiel beim

DOS 5.1 als Ersatz für das ")" verwendet werden.
Wichtiger aber ist, daß er dafür sorgt, daß ein File unter seinem eigenen

Namen überschrieben werden kann.

Probieren Sie doch mal, irgendein Programm unter dem Namen «PRO-

GRAMM 2» auf die Diskette von vorhin zu schreiben. Man wird Ihnen sehr

bald mitteilen, daß .

63, FILE EXISTS, 00, 00

daß also ein Programm mit diesem Namen bereits auf der Diskette steht. Der

Vorteil des Ganzen ist eigentlich klar: So kann man verhindern, daß man ein

Programm aus Versehen überschreibt.

Bei Dateien kann das aber äußerst unangenehm sein. Denn wenn eine

Datei aktualisiert wird oder auch ein Programm verbessert wurde und deshalb

neu auf Diskette geschrieben werden soll, muß ja erst das alte Programm

gelöscht werden. Damit man das nicht immer vorher machen muß, kann der

Klammeraffe angewendet werden, und zwar, indem man ihn folgenderma-

Ben einsetzt:

SAVE "@:PROGRAMM 2",8

oder

<-@:PROGRAMM 2

Aus verschiedenen Gründen, die durch die Arbeitsweise des DOS bedingt

sind, kann es bei diesem Modus aber zu Fehlern kommen. Die sicherere

Methode ist die, das alte File mit SCRATCH zu löschen, und dann das neue

normal abzuspeichern. Durch den dann frei gewordenen Platz wird das DOS

dieses Programm auch «über» das alte schreiben.

Peripheriegeräte 221

Nachdem Sie jetzt das DOS 5.1 als freundlichen Helfer kennengelernt

haben, kann es sein, daß Sie es gern auch auf Ihren anderen Disketten hätten,

um nicht immer von der «TEST/DEMO»-Diskette abhängig zu sein. Wenn

das so ist, müssen Sie es kopieren. Nun haben Sie vielleicht entdeckt, daß sich

auf der «TEST/DEMO»-Diskette auch ein Kopierprogramm mit Namen

COPY ALL befindet. Und tatsächlich, dieses Programm würde unser DOS 5.1

auch kopieren — vorausgesetzt, wir haben zwei Floppylaufwerke. Wenn Sie es

nämlich starten, stellen Sie fest, daß das Programm mit einem gar nicht

funktioniert. Nun bringt das vielleicht für Commodore ein Umsatzplus, uns

aber erst mal nur Verdruß. Weil das DOS 5.1 ein Maschinenprogramm ist,

läßt es sich nicht einfach mit einer LOAD & SAVE-Kombination kopieren.

Aber es geht auch anders. Wir wollen Ihnen hier kurz zeigen, wie man nun

das DOS 5.1 doch dahin kriegt, wo man es haben will. Voraussetzung für

diese Methode ist allerdings, daß sich DOS 5.1 schon im Speicher befindet.

_ AO OPEN 1,8,2,"DOS 5.1,P,W"

20 PRINT#1,CHR$(O);

30 PRINT#1,CHR$(204);
40 FOR X=0T0870

50 PRINT#1,CHRS(PEEK(52224+X));

60 NEXT X:CLOSE1

An diesem Programm läßt sich auch sehr schön erkennen, wie Programme

auf der Floppy aufgezeichnet werden. |

In Zeile 10 wird ein File zum Schreiben geöffnet. P steht für Programm, W

für WRITE (= schreiben). Darüber werden wir uns etwas später noch mal

genauer unterhalten.

In Zeile 20 und 30 wird der Floppy die Anfangsadresse des Programms

mitgeteilt, und zwar in Low Byte (0) und High Byte (204). Denn 204 x 256 ist

ja 52224.
Wozu das? Wenn ein Programm absolut, also mit "...,8,1" geladen wird,

muß der Computer ja erfahren, wo er das Programm hinpacken soll. Diese

beiden Bytes entsprechen etwa dem Schild «Ich will nach München», das

man einem kleineren Kind in der Eisenbahn um den Hals hängt, damit es auch

dort ankommt. Oder auch dem Schild «Ich willnach München», das man bei

größeren Kindern in der Nähe der Autobahnausfahrt öfter antrifft.
Zeile 40 zählt dann von O bis 870, denn so lang ist unser Programm (das

DOS 5.1) eben: 870 Bytes.

In Zeile 50 werden die Bytes, die in den Zellen 52224 bis 53094 stehen,

222 Peripheriegerate

hintereinander auf Diskette geschrieben. In Zeile 60 schlieBlich wird das File

ordnungsgemäß geschlossen. Das ist absolut wichtig, denn erst nach diesem

Befehl werden alle wichtigen Informationen in die Directory und die BAM

übernommen. Also immer daran denken!

Wie Ihnen vielleicht aufgefallen ist, werden alle Bytes als CHR$ (sprich

Charstrings) zur Floppy geschickt. Das ist bei der Übergabe von Daten an

Peripheriegeräte allgemein so üblich und auch zweckmäßig, denn’so können

die Bits gleichzeitig übergeben werden und nicht erst die 2, dann die O und

schließlich die 4 für den Wert 204.

Im Grunde genommen haben die CHR$ auf Peripheriegeräte genau die-

selbe Funktion wie die CHR$ auf dem Bildschirm. Sie stehen nur für den

entsprechenden Code. (Bei der Bildschirmausgabe macht erst VIC ein lesbares

Zeichen daraus.)

Und damit die Werte schön hintereinander reinkommen, steht der ":”

hinter jedem Wert. Wenn Sie das Programm mit

RUN

starten, wird das DOS 5.1 auf die Diskette geschrieben, die sich gerade im

Laufwerk befindet. Von dort kann es dann, wie vorhin gezeigt, geladen

werden. Zum DOS 5.1 noch zum Abschluß zwei Bemerkungen. Es ist so

programmiert, daß es sich ständig auf die Gerätenummer 8 bezieht. Sollten

Sie jedoch mehrere Floppys einsetzen wollen, können Sie mit

)# Gerätenummer

dem Botschafter ein anderes Königreich (sprich Ihre zweite Floppy) unterju-

bein.
)#9

schaltet DOS 5.1 auf Geräteadresse Nummer 9.

)4#8

schaltet wieder zurück.

Sie können DOS-5.1-Befehle auch innerhalb Ihrer Programme verwenden.

Allerdings mit einer kleinen Änderung: Hinter dem ")" müssen die Befehle

nun in Anführungszeichen stehen, um Verwechslungen, denen der BASIC-

Interpreter sonst erliegen könnte, zu vermeiden. Beispiele hierzu:

10)"$"

zeigt die Directory wahrend eines Programms an.

Peripheriegerate 223

10)

fragt den Fehlerkanal ab

10)"1"

liest die BAM uber den Befehl «initialize» ein.

Und noch ein letzter Tip: Sie können, wann immer Sie diplomatische

Verwicklungen mit anderen Maschinenprogrammen befürchten, die Kon-

trolle über die Botschaft abbrechen.

)Q
für Quit (= verlassen) ist dann der notwendige Befehl. Das heißt aber noch

‘lange nicht, daß Sie damit den Botschafter des Landes verweisen. Genauso

wie in Camp David können Sie die Verhandlungen immer wieder aufnehmen.

Mit | |
SYS 52224

Schön, oder?

Ein Umsteigebahnhof für Bits

Im nun folgenden erfahren Sie so ziemlich das Letzte ...

Wir haben im Verlauf des letzten Abschnittes mehrmals den OPEN-Befehl

mit verschiedenen Sekundäradressen verwendet und Sie dabei immer auf

später vertröstet oder uns mit dem Ausdruck «Einstellen von verschiedenen

Betriebsmodi» vor einer Erklärung gedrückt. Das wollen wir jetzt nachholen.

Zunächst einmal grundsätzlich: Mit OPEN wird ein sogenannter Kanal

eröffnet. Das hat nichts mit Rhein-Main-Donau oder so zu tun, sondern

meint eine Art Standleitung von und/oder zur Floppy. Eine bestimmte

Leitung benutzen Sie zum Beispiel ständig: den Fehlerkanal. Aber es gibt

noch andere. Einen solchen haben wir zum Beispiel bei unserem DOS-

Kopierprogramm verwendet. Aber die Anzahl der möglichen Kanäle ist

begrenzt. Denn jeder Kanal wird mit einem sogenannten Pufferspeicher

verbunden. Der Name sagt eigentlich schon, was diese Dinger tun. Dasselbe,

was auch Puffer bei der Eisenbahn tun. Sie fangen auf - in unserem Fall Bits,

bei der Bundesbahn Stöße. Das hat einen einfachen Grund: Bei der Bundes-

bahn verhindert das, daß regelmäßig Waggons zu Schrott gefahren werden,

und bei uns dient es der Schnelligkeit. Das Kabel, mit dem die Floppy an den

224 Peripheriegeräte

Commodore angeschlossen ist, hat zwar 6 Leitungen, aber nur eine davon

dient tatsächlich der Datenübertragung. Die anderen führen irgendwelche

Strom- und Masseleitungen oder die «Aufgepaßt, es kommen Daten!»-

Leitungen. Da wir also nur eine Leitung zur Datenübertragung haben,

müssen die Bits seriell, soll heißen hintereinander, übertragen werden. Die

Straßen in Richtung Floppy sind also so eng, daß sich Reiter und Fußvolk nur

hintereinander fortbewegen können. Das ist auch der Grund, warum die VC-
Floppys im Vergleich zu vielen anderen Laufwerken so langsam sind. Die

anderen arbeiten nämlich mit einer breiten achtspurigen Autobahn, auch

Parallelbus genannt.

Da die Bits also eher tröpfchenweise eintrudeln, wäre es viel zu aufwendig,

jedes einzelne zum Schreib-/Lese-Kopf zu schicken. Statt dessen warten sie

im Pufferspeicher sozusagen auf ihren Anschlußzug in Richtung Diskette —

wie in einem Umsteigebahnhof.

Die Floppy hat aber nun mal nur eine begrenzte Anzahl solcher Pufferspei-

cher. Es sind genau fünf. Davon werden 2 vom DOS ständig reserviert: einer

für Programme lesen, einer für Programme schreiben. So bleiben nur noch

drei für den Programmierer übrig. Und die dritte Zahl beim OPEN-Befehl gibt

eben an, welcher Puffer verwendet werden soll.

OPEN 1,8,X,...

Wie gesagt, zwei Puffer sind reserviert: nämlich O und 1. Die Puffer 2 bis 4

sind frei. Man kann zwar für das X von oben auch die Zahlen 5 bis 14

einsetzen, dann werden die Puffer von der Floppy der Reihenfolge nach

angelegt. Solche Zahlen sind aber unpraktisch, weil man so schneller die

Übersicht verliert, welcher Puffer zu welchem Kanal gehört und wie viele

Puffer noch frei sind. Die Anzahl ist nämlich immer auf drei begrenzt.

Hinter dem Puffer wird in den Anführungszeichen noch angegeben, um

welchen Dateityp es sich handelt und ob gelesen oder geschrieben werden

soll.

Für den Dateityp gibt es verschiedene Möglichkeiten:

P für Programm

S für sequentielle Datei

R für relative Datei

U für User-File

Darauf können wir aber an dieser Stelle nicht weiter eingehen. Diese Kürzel

entsprechen dann den in der Directory angegebenen Dateitypen, also

Peripheriegerate 225

PRG

SEQ

REL

USR

Wir teilen dem König mit, welche speziellen Arten an Daten wir anbauen

lassen möchten und welche Datenfelder deshalb aufgemacht werden müs-

sen. Es muß auch bekannt sein, ob gesät oder geerntet werden soll bzw.

geschrieben oder gelesen. Deshalb steht R für READ und W für WRITE.

Am besten, wir sehen uns einige Beispiele an:

OPEN 1,8,2," HALLO,P,R”

Das Programm (dafür steht P) mit Namen «HALLO» wird über Puffer 2 (siehe

letzte Zahl) zum Lesen (dafür steht R) geöffnet.

OPEN 1,8,3,"@:DOS 5.1,P,W"

Ein (evtl. schon existierendes) Programm «DOS 5.1» wird über Puffer 3 zum

Schreiben (W) geöffnet. Man kann also, wie beim DOS, ein Programmfile

auch künstlich zum Lesen oder Schreiben eröffnen, es muß nicht immer über

LOAD oder SAVE gehen. Wie das geht, haben wir ja schon im DOS-

Kopierprogramm erklärt.

OPEN 2,8,4," ADRESSEN, S,R"

Die sequentielle Datei «ADRESSEN» wird über Puffer 4 zum Lesen geöffnet.

Was wir jetzt noch kurz zeigen wollen, ist, wie man eine sequentielle Datei

verwenden kann.

Wie Sie sicher schon einmal gehört haben, kann man bei einem Computer

nicht nur Programme abspeichern, sondern auch Daten, zum Beispiel Adres-

sen, Titel von Büchern und Schallplatten und so weiter. Eine Ansammlung

solcher Daten nennt man Datei. Nun gibt es natürlich verschiedene Möglich-

keiten, solche Daten abzuspeichern. Die einfachste und damit am weitesten

verbreitete Art ist die sequentielle Datei. Bei ihr werden alle Daten einfach

hintereinander auf die Diskette geschrieben — ähnlich einer Gänsefamilie,

kommt eines nach dem anderen.

Man kann diese Art der Datenspeicherung auch mit einem Telegramm

vergleichen:

Vorname — stop — Nachname - stop — Straße — stop — usw.

226 Peripheriegeräte

Die Funktion des Stop, also das Trennen einzelner Daten, übernimmt in

diesem Fall der Code für (RETURN), das heißt CHR$ (13).

Das ist noch ein Überbleibsel aus der Zeit, wo hauptsächlich Drucker

angesprochen wurden: Da war CHR$ (13) das Zeichen für «Line Feed».

Wenn der Drucker diesen Code entdeckte, wußte er, daß jetzt die Zeile zu

Ende ist.

Genauso weiß die Floppy, daß bei einem CHR$ (13) die entsprechende

Eintragung in die Datei zu Ende ist.

Es gibt nun verschiedene Möglichkeiten, wie so ein CHR$ (13) gesendet

werden kann. Darauf wollen wir aber erst beim Drucker genauer eingehen.

Hier sei Ihnen erst einmal gesagt, daß der Befehl

PRINT# N

Wei

wenn dem Text, der danach kommt, kein ";" oder "," folgt, automatisch

einen CHR$ (13) sendet.

Nachdem wir alle mal klein angefangen haben, wollen wir jetzt auch eine

ganz kleine Adreßdatei mit einer einzigen Adresse anlegen.

10 OPEN 1,8,2,"ADRESSDATEI,S,W"

20 PRINT#F1," MUELLER”

30 PRINT#1,"HANS OTTO"

40 PRINT#F1," ROSENWEG 27"

50 PRINT#1,"8001 BAYERNHAUSEN"

60 PRINT#1,88811277

70 CLOSE1

Wir haben also alle Daten in unsere Adreßdatei geschrieben. Beachten Sie,

daß die (fiktivel!) Telefonnummer in Zeile 60 kein String, wie die anderen

Daten, sondern eine numerische Variable ist. Das müssen wir beim Auslesen

auch wieder berücksichtigen. Sonst gibt es einen

FILE DATA ERROR

Ein Programm, das unsere Adresse wieder liest, könnte ungefähr so aus-

sehen:

10 OPEN 1,8,3, "ADRESSDATEI,S,R"

20 FOR X=1T04

30 INPUT#1,A$

40 PRINT A$

Peripheriegeräte 227

50 NEXT X

60 INPUT#F1,A

70 PRINT A

80 CLOSE 1

Wir eröffnen also unsere Datei zum Lesen (Zeile 10), lesen mit der

FOR... NEXT-Schleife von 20 bis 40 Daten ein und drucken sie dann auf den

Bildschirm. Zeilen 60 und 70 machen dasselbe mit der Telefonnummer. Ein

kleiner Tip: Einfacher geht's, wenn Sie auch Zahlen wie Strings behandeln.

Allerdings können Sie dann die Stringvariablen mit Zahlen nicht zum Rechnen

verwenden. |

In Zeile 80 wird die Datei wieder geschlossen.

Probieren Sie es aus. Sie könnten jetzt eigentlich ein Programm schreiben,

das mit mehreren Adressen und komfortablerer Eingabe arbeitet. Sie müssen

ja einfach nur statt des Namens aus dem ersten Listing eine Variable nehmen,

die dann vorher mittels INPUT einer Adresse zugewiesen wird.

Wenn Sie dasselbe mit dem Kassettenrecorder machen wollen, müssen Sie

nur Gerätenummer 1 verwenden und als Sekundäradresse O für Lesen und 1

für Schreiben. Zusätze wie «S,W» oder «S,R» entfallen. Lesen Sie zu einer

genaueren Beschreibung das Kapitel «Fortgeschrittene Kassettenoperation»

auf Seite 109 in Ihrem Commodore-Handbuch.

Und damit wären wir — zumindest, was die Floppy betrifft — so ziemlich am

Ende. |

Wie immer gilt, nur Übung macht den Meister. Und Sie haben ja hoffent-

lich gesehen, daß an SEQ-Dateien überhaupt nichts Geheimnisvolles ist.

Also, auf geht's. Die Adreßverwaltung wartet ...

Der Commodore lernt schreiben

Jetzt wollen wir noch einen Blick auf ein anderes wichtiges Peripheriegerät

werfen — den Drucker. Davon gibt es ja erst mal eine ganze Menge, zum

einen die, die Commodore selbst anbietet. Dann auch andere Firmen, die

Commodore-kompatible Drucker herstellen. Und schließlich gibt es noch

verschiedene Interfaces, Schnittstellen, mit denen man auch noch viele

andere Fabrikate anschließen kann. Bei diesen Interfaces kommt es darauf an,

die sequentiellen Signale der Commodore-Schnittstelle so umzumodeln, daß

der entsprechende Drucker sie auch versteht. Die meisten Drucker haben, wie

228 Peripheriegerate

die Floppy, eine eigene Regierung, also einen eigenen Prozessor mit eigenem

Betriebssystem, der auf ganz unterschiedliche Befehle reagiert. Fur richtige,

spezifische Informationen miissen wir Sie deshalb auch an das entsprechende

mitgelieferte Druckerhandbuch verweisen. |

Wir möchten hier nur einige ganz allgemeine Anwendungen und Vor-

gange aufzeigen und den einen oder anderen Trick verraten.

Am häufigsten wird ein Drucker wohl dann eingesetzt, wenn es um das

Auslisten von Programmen geht. Wie geht das?

Es gibt einen Befehl, der die Ausgabe vom Bildschirm auf ein Peripheriege-

rät umlenkt. Das ist der

CMD

-Befehl. Um ihn anwenden zu können, müssen wir wieder diplomatisch tätig

werden. Unser rotes Telefon geht diesmal zum Gerät Nummer 4. Manchmal

haben Drucker aber auch die Nummern 5 oder 6. Schauen Sie im Handbuch

nach, oder fragen Sie gegebenenfalls Ihren Händler.

Mit diesem Befehl leiten wir die Bildschirmausgabe um und listen das

Programm aus. Die ganze Syntax sieht dann so aus:

OPEN 4,4: CMD4: LIST

Wenn der Drucker fertig ist, müssen wir ihm natürlich mitteilen, daß er jetzt

erst mal keine Daten mehr bekommen wird. Gleichzeitig schalten wir die

Ausgabe zurück auf den Bildschirm und schließen unseren Kanal wieder.

PRINT#4: CLOSE4

Das «leere» PRINT#4 lenkt die Ausgabe wieder auf den Bildschirm. Bei den

meisten Druckern dürfte das so funktioniert haben.

Vielleicht hatten Sie aber auch Pech. Dann sieht das Listing entsprechend

der Länge des Programms aus, als ob eine Horde wilder Ameisen auf engstem

Raum das Papier überquert hätte — und alle mit schmutzigen Füßen. Die

gleiche Zeile wurde immer wieder überdruckt, bis das Listing zu Ende war.

Der Grund ist folgender: Ihrem Drucker hat der Zeilenvorschubcode

gefehlt. Deshalb druckte er das ganze Listing in eine Zeile. Das spart zwar auf

Dauer immens Papier, hilft aber nicht gerade bei der Programmdokumenta-

tion. Das alles kommt nur daher, daß einige Drucker, wenn ein Zeilenendcode

(CHR$ (13)) kommt, automatisch einen Zeilenvorschubcode (CHR$ (10))

anfügen. Das heißt, wenn diese Drucker merken, daß die Zeile zu Ende ist,

schieben sie von selbst das Papier weiter. Nur Ihr Drucker tut das scheinbar

Peripheriegerate 229

nicht. Ihm muß unser Commodore sagen, was Sache ist. Und das ist auch gar

kein Problem, wenn Sie eine Kanalnummer verwenden, die höher als 127 ist.

Dann wird das am Ende jeder Zeile automatisch gemacht. Probieren Sie also

in diesem Fall:

OPEN 128,4: CMD 128: LIST

Das müßte das erhoffte Listing auf den Drucker bringen. Denken Sie aber bei

Listings auch daran, daß Fremddrucker meist gar nicht in der Lage sind, die

Steuerzeichen richtig zu drucken, also invertierte Herzchen und dergleichen.

Wenn bei Ihnen schon beim ersten Versuch alles geklappt hat, aber Sie

nicht der Versuchung widerstehen konnten, das obige dennoch auszuprobie-

ren, dann haben Sie halt jetzt doppelten Zeilenabstand. Auch nicht schlecht,

oder?

Auf jeden Fall sollten Sie nach dem Listing eingeben:

PRINT##128: CLOSE128

Die meisten Commodore-kompatiblen Drucker haben zwei Druckmodi: Den

Grafikmodus, den wir schon von den Grafikzeichen kennen (also nur Groß-

buchstaben- und Grafikzeichendarstellung) und den Textmodus (Groß- und

Kleinbuchstaben). Je nachdem, was und wie Sie drucken wollen, müssen Sie

einen dieser beiden Modi wählen. Dazu dient meist die Sekundäradresse

OPEN 4,4,7

Damit wählen Sie den Textmodus. Ab jetzt müßte alles in Groß- und

Kleinbuchstaben gedruckt werden.

OPEN 4,4,0

wählt dagegen den Grafikmodus mit Großbuchstaben und Grafikzeichen.

Wenn das nicht so ist, müßte in Ihrem Druckerhandbuch unter diesen

Stichworten etwas stehen.

Wenn Sie jetzt aber keine Listings, sondern Daten und Texte von einem

Programm ausdrucken wollen, müssen Sie sich an eine ähnliche Zeremonie

halten wie bei den Verhandlungen mit der Floppy.

10 OPEN 4,4

20 PRINT#4,"DIES IST EIN DRUCKERTEST."

Wenn nötig, sollten Sie ab jetzt immer selbständig eine Kanalnummer über

127 wählen.

230 Peripheriegerate

Wenn alles klappt, druckt das Programm den obenstehenden Text aus.

Wenn Sie jetzt den automatischen Zeilenende-/Zeilenvorschubcode unter-
driicken wollen, verwenden Sie einfach einen Strichpunkt als Trennungszei-

chen, wie Sie das ja schon von den PRINT-Befehlen her kennen:

10 PRINT#4,"DIES IST EIN DRUCKERTEST" ;

20 PRINT#4," FUER IHREN DRUCKER”

Ähnlich wie bei den Steuerzeichen für Farben und Cursorbewegung bei Ihrem

Commodore 64, gibt es auch Steuerzeichen für Ihren Drucker.

CHR$ (14)

steht zum Beispiel meistens für Breitschrift.

Solche Steuerzeichen werden folgendermaßen an den Drucker geschickt:

20 PRINT#4, CHR$ (14);" BREITSCHRIFT”;

Zum Ausschalten könnte zum Beispiel CHR$ (15) dienen:

25 PRINT#4, CHR$ (15)

Je nachdem, welchen Drucker Sie haben, eröffnet sich ein großes Feld für

neue Experimente. Dieser Abschnitt sollte Ihnen nur zeigen, was man so alles

machen kann, wie die Commodore-Syntax zur Druckersteuerung ist, und im

letzten Teil dafür sorgen, daß Sie verstehen, was die Anleitungsbücher mit

CHR$ und dergleichen meinen. Wer weiß, vielleicht schreiben Sie ja schon in

den nächsten Tagen an Ihrem ganz persönlichen Textverarbeitungspro-

gramm. Wir drücken Ihnen in jedem Fall alle vier Daumen dazu und hoffen,

daß Sie viel Spaß dabei haben werden.

12
Anhang

Kapitelzusammenfassungen

«In der Kürze liegt die Würze». Diese Zusammenfassungen sollen noch mal

stark in geraffter Form zeigen, was an einem Kapitel besonders wichtig war.

So finden Sie später schnell die Informationen, die Sie brauchen. Außerdem

“richten sich diese Kapitel in Sprache und Aufbau mehr nach Fachbüchern und

Fachzeitschriften. Dadurch werden Sie schon ein bißchen auf die Lektüre

solcher Werke vorbereitet.

Die Grafikzeichen

Der Commodore 64 hat zwei alternative Zeichensätze fest eingebaut: Im

sogenannten Grafikmodus stehen Großbuchstaben und die Grafikzeichen zur

Verfügung. Im Textmodus gibt es Groß- und Kleinbuchstaben. Mit den

Tasten (C=) und (SHIFT) kénnen Sie zwischen diesen Modis wechseln.
Wenn innerhalb eines Programms zwischen den Zeichensatzen umgeschal-

tet werden soll, dienen dazu die folgenden Befehle:

PRINT CHR$(14)

schaltet den Textmodus ein.

PRINT CHR$(142)

schaltet den Grafikmodus ein.

Es kann aber nur immer ein Modus aktiv sein. Auf dem Bildschirm können

sich also nicht gleichzeitig Zeichen befinden, die in den beiden Modis

232 Anhang

unterschiedlich belegt sind (zum Beispiel Grafikzeichen und Kleinbuch-
staben ...).

Die verwendbaren Grafikzeichen sind auf den Vorderseiten der Tasten

dargestellt. Um sie zu erreichen, muß die (SHIFT)- oder die (C=)-Taste
gedrückt werden. Dabei gilt: Die Symbole rechts werden mit (SHIFT)

erreicht, die Symbole links mit (C=).
Im Textmodus muß für Großbuchstaben (SHIFT) gedrückt werden. Die

Symbole, die mit (C=) angesprochen werden, sind auch im Textmodus
verwendbar. Es handelt sich dabei vor allem um Symbole, die für die

Darstellung von Tabellen usw. interessant sind.

Um die Umschaltung zu blockieren, können Sie den Befehl

PRINT CHR$(8)

verwenden. Zur Aufhebung der Blockierung dient

PRINT CHR$(9)

Welche Symbole in welchem Modus erreichbar sind, läßt sich auch im

Anhang E des Commodore-64-Handbuchs finden (Seite 132).

Die Steuerzeichen

Die Tasten, die zur Steuerung auf dem Bildschirm dienen (also die (CRSR)-
Tasten, die Farbtasten, (CLR/HOME) und (INST/DEL), und verschiedene

Codes, die durch (CTRL) erreicht werden), können auch programmiert

werden. |

Dazu wird der PRINT-Befehl verwendet. Der Steuerzeichenmodus wird

durch ein Anführungszeichen (") oder (INST) aktiviert. Er stellt dann fiir alle
oben aufgeführten Tasten ein besonderes Steuerzeichen dar. Abgeschaltet

wird er durch ein weiteres Anführungszeichen oder (RETURN). |

Bei der Programmausführung wirkt ein solcher PRINT-Befehl dann so, als

ob die Tasten direkt gedrückt wurden.

Mit diesen Steuerzeichen können durch Löschen und Überdrucken auch

bewegte Grafiken erzeugt werden.

Anhang 233

Die Speicheraufteilung

Der Commodore 64 besitzt 64K-RAM und 20K-ROM. Außerdem werden

noch Adressen durch andere Bausteine, wie den VIC-II oder den SID,
benötigt.

Da der Mikroprozessor 6510 mit seinem 16-Bit-Adreßbus aber nur 64K

gleichzeitig adressieren kann, muß er zwischen den verschiedenen Baustei-

nen, die auf einer Adresse liegen, umschalten können. Dazu werden jeweils

8K zu Blocks zusammengefaßt, die der 6510 dann ein- oder ausblendet.

Zusätzlich greift der Videochip VIC auch noch auf das Charakter-ROM zu

und benutzt dabei den Datenbus. Also müssen sich 6510 und VIC den Bus

teilen. Dazu steuert VIC die Interrupts und benutzt genau dann den Daten-

bus, wenn der Prozessor ihn nicht benötigt.

Man kann aber einen Teil der ROM-Programme, nämlich den BASIC-

Interpreter und das Betriebssystem (Kernal), in die RAM-Bausteine kopieren,

die auf der gleichen Adresse liegen, und dann die ROMs ausblenden. So

lassen sich dann im RAM Veränderungen am Betriebssystem vornehmen.

Der Adreßbereich von 65535 Bytes wird üblicherweise in 256 «pages»

(Seiten) zu je 256 Bytes unterteilt. Die Seite Nr. O von O bis 255 heißt

Zeropage. Hier legt der Rechner wichtige Informationen ab. Einige nützliche

Adressen in diesem Speicherbereich werden im PEEK&POKE-Anhang be-

schrieben.

Auch die nächsten 3 Pages werden für interne Zwecke benötigt. Insbeson-

dere wären da der Stack, eine Art Zwischenspeicher für den Prozessor, der

Kassettenpuffer und das Bildschirm-RAM zu nennen.
Dann folgen 38911 Bytes RAM für BASIC-Programme.

Von Adresse 40960 bis 49151 ist dann normalerweise ROM eingeblendet:

Hier befindet sich der BASIC-Interpreter.

Es folgt von 49152 bis 53247 ein besonderer RAM-Bereich für Maschinen-

sprache-Programme, Befehlserweiterungen usw. Hier liegt beispielsweise

auch das DOS 5.1.

Der nächste Adreßbereich ist sogar dreifach belegt: Hier liegen die I/O-

Register (von VIC, SID und den Interface-Bausteinen). Außerdem befindet

sich hier das Charakter-ROM, das aber im Normalfall vom Prozessor nicht

gelesen werden muß. Schließlich liegen hier auch noch 4K-RAM.

In den letzten 8K von 57334 bis 65535 befindet sich das Kernal im ROM.

Mit der Speicherzelle 1 läßt sich steuern, ob RAM oder ROM für einen

bestimmten Speicherbereich eingeblendet ist.

234 Anhang

7 65535
Betriebssystem-ROM

oder 8K-RAM
57344

/O-Register
oder Zeichensatz-ROM

oder 4K-RAM
53248

4K-RAM

BASIC-ROM 49152
oder 8K-RAM

40960

38 911-Bytes-
BASIC-RAM

2048
Bildschirm-RAM

| 1024
Interner Arbeitsspeicher

256
Zeropage

0
Bild 12.1 Speicheraufteilung

Dabei sind folgende Bits für die genannten Bereiche verantwortlich:

Bit Bereich Inhalt

0 40 960 bis bis 49 151 BASIC-ROM oder RAM

1 57 344 bis 65535 KERNAL(ROM) oder RAM

2 53 248 bis 57 343 _ 1/O-Register oder Charak-

ter-ROM

Der jeweils zweite Bereich ist eingeblendet, wenn das entsprechende Bit aus

ist. Die restlichen Bits dienen zur steuerung des Kassettenrecorders und

sollten nicht verändert werden.

Mit den Zeropageadressen 43 bis 46 und anderen läßt sich der Speicherbe-

reich für BASIC-Programme verschieben. Näheres dazu finden Sie im PEEK-

& POKE-Anhang. Diese Adressen benutzen das High-Byte/Low-Byte-Prinzip,

das bei einem 8-Bit-Prozessor und einem 16-Bit-Adreßbus ständig verwendet

Anhang 235

wird. Dazu wird eine 16-Bit-Zahl in der Mitte geteilt und so in zwei Pseudo-8-

Bit-Zahlen umgewandelt.

So wird z. B. aus 2048 (00001000 00000000) das High Byte 8 (00001000)

und das Low Byte 0 (00000000).

Ein Umrechnungsprogramm zwischen Binär- und Dezimalzahlen befindet

sich im Listinganhang.

Selbstdefinierbare Zeichen

In der 8x8-Matrix, in der VIC die Zeichen auf dem Bildschirm darstellt, lassen

sich auch eigene Zeichen entwickeln.

Dazu muß zuerst der Zeichensatz aus dem Charakter-ROM ins RAM, also

in den Arbeitsspeicher kopiert werden. Dies bedeutet aber, die I/O-Register

auszublenden und dafür das Charakter-ROM in den Adreßbereich des Pro-

zessors zu übernehmen. Um das gefahrlos tun zu können, müssen während

des Kopiervorgangs die Interrupts abgeschaltet werden.

Das folgende Programm übernimmt alle diese Aufgaben:

10 POKE56334,0

20 POKE1,51

30 FORX=0TO2048: POKE (Startadresse) + X,PEEK (53248 + X) :NEXT

40 POKE1,55

50 POKE56334,1

Der Zeichensatz befindet sich nun im RAM ab der angegebenen Startadresse.

Um Verwicklungen mit einem BASIC-Programm zu vermeiden, sollte BASIC

entsprechend verschoben werden (vgl. auch PEEK&POKE-Anhang....).

Um auf den neuen Zeichensatz umschalten zu können, muß die Adresse

53272 entsprechend verändert werden:

POKE 53272, (PEEK(53272) AND 240))) OR (Zeiger)

Die möglichen Startadressen und die Zeiger dorthin entnehmen Sie bitte

Tabelle 12.1.

VIC kann gleichzeitig nur 16K verwalten. Wenn Sie (wie im PEEK &POKE-

Anhang erklärt) seinen Adreßbereich verschieben, müssen Sie die Start-

adresse dieser Speicherbank zu den oben aufgeführten Adressen addieren.

Die Zeiger bleiben. Beachten Sie dabei aber, daß sich die Adresse des

Bildschirm-RAMs evtl. auch verändert.

236 Änhang

Startadresse Zeiger

2048 2

8192 8

10240 10

12288 12

14336 14
Tabelle 12.1 Startadresse für Zeichensatz

In dem RAM-Bereich, wo sich der Zeichensatz nun befindet, kann er

beliebig abgeändert werden. Ein Hilfsprogramm dazu befindet sich im Li-

stinganhang.

Die Hires-Grafik

Im Hires-Modus benutzt VIC einen Speicherbereich von 8K als Bitmap. So

erreicht er eine Auflösung von 320 » 200 Punkten.

Dabei wird das Bildschirm-RAM als Farbspeicher benutzt. Sie können

natürlich diese Speicherbereiche wieder verschieben, aber der Normalfall

dürfte folgende Aufteilung sein:

Farbspeicher (Bildschirm-RAM) 1024 bis 2024

Bitmap (Arbeitsspeicher) 8192 bis 16192

Diese Aufteilung und das Einschalten des Hires-Modus wird durch folgende

Befehle erreicht:

POKE53272,24: POKE53265,59

Bei anderer Aufteilung muß der Inhalt der Adresse 53272 entsprechend

geändert werden. Nähere Informationen hierzu finden Sie im PEEK& POKE-

Anhang.

Zum Abschalten geben Sie ein:

POKE53272,21: POKE53265,27

Die Hires-Grafik muß jetzt in die Bitmap gePOKEd werden. Einige Hilfsrouti-

nen dazu finden Sie im Listinganhang.

Anhang 237

Im Normalmodus kann für einen Block von 8 x 8 Punkten (entsprechend

den normalen Zeichen) jeweils eine Vorder- und eine Hintergrundfarbe

angegeben werden. Dazu POKEn Sie die beiden Farben nach | folgender

Formel in die entsprechende Adresse im Farb-RAM:

POKE (Adresse), (Vordergrundfarbe) x 16 + (Hintergrundfarbe)

Es gibt auch einen Mehrfarbmodus (Multicolormodus). Er wird eingeschaltet

durch:

POKE53270,216

Wenn er aktiv ist, verringert sich die horizontale Auflösung auf 160 Punkte.

Je zwei Bits wird nun eine Farbe zugeordnet, abhängig von der Kombina-

tion der beiden: (Tabelle 12.2).

Der Multicolormodus läßt sich auch im Textmodus anwenden. Insbesondere

wird dies interessant in Verbindung mit selbstdefinierten Zeichen. Die ent-

sprechenden Adressen sind in Tabelle 12.3 zu ersehen.

Bitmuster Farbadresse

00 53281

01 Bits 7 bis 4 im Bildschirm-RAM

10 Bits 3 bis O im Bildschirm-RAM

11 Bits 3 bis O im Farb-RAM (55296 bis 56296)

Tabelle 12.2 Bitmuster für Multicolormodus

Bitmuster Farbadresse

00 53281

01 53282

10 53283

11 Bits 3 bis O im Farb-RAM (55296 bis 56296)

Tabelle 12.3 Adressen für Multicolortexte

238 | Anhang

Sie können mit

POKE 53270,200

‘den Multicolormodus abschalten.

Im Textmodus läßt sich außerdem noch der Hintergrundfarbmodus (Exten-

ded Background Color Mode) anwenden: Er wird mit

POKE 53265,91

eingeschaltet. In diesem Modus können Sie die Hintergrundfarbe eines

einzelnen Zeichens bestimmen. Es bestehen insgesamt vier verschiedene

Möglichkeiten für den Hintergrund.

Um diese Hintergrundfarben zu unterscheiden, werden die Bits 7 und 6 des

Bildschirmcodes herangezogen. Es existieren also nur noch die Zeichen O bis

63, diese dafür aber mit vier verschiedenen Hintergründen.

Der Zusammenhang zwischen Bildschirmcode und Tastatur ist wie folgt

(Tabelle 12.4).

In folgende Adressen können Sie die Hintergrundfarben POKEn (Tabelle

12.5).

BS-Code Zeichen

Obis 63 «normale» Zeichen

64 bis 127 (SHIFT) + Zeichen
128 bis 191 (RVS ON), Zeichen
192 bis 255 (RVSON), (SHIFT) + Zeichen

Tabelle 12.4 Hintergrundfarben

BS-Code Farbadresse

Obis 63 53281

64 bis 127 53282

128 bis 191 53283

192 bis 255 53284

Tabelle 12.5 Adressen für Hintergrundfarben

Anhang | 239

Um diesen Modus abzuschalten, verwenden Sie folgenden POKE:

POKE53265,27

Der Hintergrundfarbmodus ist im Hires-Modus sinnlos und kann daher dort

nicht angewendet werden.

Sprites

Sprites sind kleine Grafikblocks, die unabhängig vom Hintergrund bewegt

werden können. Sie sind 24 x 21 Punkte groß, und maximal acht von ihnen

können gleichzeitig auf dem Bildschirm dargestellt werden. Ein Sprite wird als

Bitmuster in einem Speicherbereich von 63 Bytes abgespeichert. Diese Sprites

können dann mit Hilfe von X- und Y-Koordinaten auf dem Bildschirm bewegt

werden. Da sie unabhängig vom Bildschirmhintergrund sind, kann dieser

sowohl der normale Textbildschirm sein als auch eine Hires-Grafik. Ein

weiterer Vorteil ist, daß sie den Hintergrund in keiner Weise beeinflussen, also

nicht verändern oder löschen. Weitere Möglichkeiten sind: Vergrößerung,

Kollisionsabfrage, Wechsel der Hintergrund-Priorität und Mehrfarbdarstel-

lung.

Alle diese Funktionen werden vom VIC-Videochip durch einzelne Register

gesteuert.

Zunächst muß ihm mitgeteilt werden, wo im Speicher sich das Bitmuster für

einen bestimmten Sprite befindet. Dazu werden acht bisher freie Adressen

am Ende des Bildschirm-RAMs verwendet: Die Zeiger auf die Startadresse

eines Sprites liegen in den Speicherzellen 2040 bis 2047. Dieser Zeiger gibt

jeweils den 64-Byte-Block an, um den es sich handelt. Wenn hier beispiels-

weise 13 steht, ist die Startadresse 13 x 64, also 832.

Allerdings sind einige Speicherbereiche für Spritemuster ungeeignet, bei-

spielsweise die Zeropage, das Bildschirm-RAM und der BASIC-Speicher.

Welche Adressen frei sind, erkennen Sie in der Tabelle 7.1

Wenn nun die Zeiger auf die entsprechenden Speicherbereiche gesetzt sind

und die Bitmuster der Sprites dorthin gePOKEd wurden, erfolgen alle weite-

ren Steuerungen über Register von VIC. |
Im einzelnen wären das:

Sprite einschalten: 53269

Diese Speicherzelle ist dafür verantwortlich, welcher Sprite gerade aktiv ist,

240 Anhang

also auf dem Bildschirm erscheint. Jedem der acht Sprites ist ein Bit in dieser

Speicherzelle zugeordnet, so daß ein Sprite mit folgendem Befehl eingeschal-

tet werden kann:

POKE 53269, PEEK (53269) OR 2 a Spritenummer

Die Spritenummern reichen entsprechend den Bits von O bis 7. Um einen

Sprite auszuschalten, verwenden Sie

POKE 53269, PEEK (53269) AND (255-2 a Spritenummer)

Die X- und Y-Koordinaten fur die verschiedenen Sprites stehen in den

Adressen 53248 bis 53263 also (Tabelle 12.6).

Diese Koordinaten reichen in den Rahmen hinein, so daß sich für die echte

Startposition (linkes oberes Bildschirmeck) die Koordinaten (X = 24; Y = 50)

ergeben.

Da die Bildschirmbreite größer als 255 ist, muß für die X-Koordinaten noch

ein 9. Bit bereitgestellt werden. So kann also für X ein Wert bis 511

angegeben werden, was in jedem Fall ausreicht.

Diese 9. Bits sind für alle Sprites in einem Register zusammengefaßt:

53264: 9. Bits der Sprites7 6 5 4 3 210

Um Sprites zu vergrößern, gibt es zwei Register:

53271 für Vergrößerung in Y-Richtung,

53277 für Vergrößerung in X-Richtung.

Wenn ein Bit in einer oder beiden Speicherzellen gesetzt ist, wird der

zugehörige Sprite in der jeweiligen Richtung auf die doppelte Größe ge-

streckt. |

Die Register, in denen die Farben fur die Sprites angegeben werden, liegen

von 53287 bis 53294. Für jeden Sprite kann eine Farbe von O bis 15

angegeben werden (Tabelle 12.7).

Ein Sprite kann auch im Multicolormodus dargestellt werden. Dieser wird für

jeden Sprite einzeln gewählt. Die zuständige Speicherzelle ist 53276. Wenn

hier ein Bit gesetzt ist, wird der zugehörige Sprite als Multicolorgrafik

dargestellt. -

Die Farbadressen für die vier möglichen Bitkombinationen sind (Tabelle

12.8).

Weiterhin kann die sogenannte Sprite-Hintergrund-Priorität angegeben wer-

den. Das bedeutet, es kann für jeden Sprite einzeln festgelegt werden, ob er

Anhang

X-Koordinate von Sprite +0 53248
Y-Koordinate von Sprite +40 53249

X-Koordinate von Sprite +1 | 53250

Y-Koordinate von Sprite +1 53251

X-Koordinate von Sprite #7 53262

Y-Koordinate von Sprite #7 53263

=

Tabelle 12.6 Spritekoordinaten

Farbe von Sprite #0 53287

Farbe von Sprite #1 53288

Farbe von Sprite #7 53294

Tabelle 12.7 Farbadressen für Sprites

o Bits

00

01

10

11

Adresse

53281

53285 |

Farbregister des jeweiligen Sprites

53286

Tabelle 12.8 Farbadressen für Multicolorsprites

241

vor oder hinter dem Hintergrund dargestellt wird, also vor oder hinter dem

Text bzw. vor oder hinter den Punkten der Hires-Grafik. Das geschieht mit

Adresse 53275. Ein gesetztes Bit bedeutet, der zugehörige Sprite wird hinter

dem Hintergrund dargestellt.

Schließlich gibt es noch zwei Kollisionsdetektoren: Hier kann festgestellt

werden, ob die Sprites untereinander oder mit dem Hintergrund zusammen-

gestoßen sind.

Das Register 53278 ist fur die Kollisionen untereinander zustandig: Die Bits

242 Anhang

der beteiligten Sprites sind gesetzt und bleiben gesetzt, bis sie mit PEEK

(53278) ausgelesen wurden. Da dieses System nicht hundertprozentig funk-

tioniert, sollte nach einer Abfrage der Inhalt durch POKE 53278,0 gelöscht

werden.

Nach genau demselben Prinzip arbeitet die Adresse 53 279. Sie ist für die

Kollisionen mit dem Hintergrund verantwortlich.

Musik und Geräusche

Der SID 6581 hat drei voneinander unabhängige Stimmen. Für jede dieser

Stimmen müssen verschiedene Parameter programmiert werden, die die

Charakteristik, Dauer und Lautstärke des zu erzeugenden Tons beschreiben.

Zur Einstellung dieser Werte dienen wieder Register, diesmal die des SID.

Sie liegen ab der Adresse 54 272.

Der erste Parameter ist die sogenannte Wellenform. Je nachdem, wie die

Schwingungen, die vom menschlichen Ohr als Töne wahrgenommen wer-

den, gebaut sind, klingt der Ton.

Beim SID können Sie zwischen vier verschiedenen Wellenformen wählen:

Sägezahn (17)

Dreieck (33)

Rechteck (65)

Rauschen (129)

Eine dieser Wellenformen muß nun für jede Stimme angegeben werden.

Dazu POKEn Sie die entsprechende Zahl (oben angegeben) in das Wellen-

form-Register der jeweiligen Stimme (Tabelle 12.9).

Stimme 1 54276

Stimme 2. 54283

Stimme 3 54290

Tabelle 12.9 Wellenformen für Stimmen 1 bis 3

Bei der Programmierung eines Tons sollte diese Aufgabe als letzte erfolgen,

da die Wellenform-Register das sogenannte «Key-Bit» enthalten (nämlich Bit

Anhang 243

+0), das den Ton letztlich einschaltet (bzw. ausschaltet. Deshalb können Sie

auch durch Löschen von Bit#O im jeweiligen Wellenform-Register den

gesamten Ton beenden).

Genausogut können Sie natürlich zuerst die Wellenform angeben und

dann am Schluß durch

POKE (Adresse), PEEK (Adresse) OR 1

den Ton starten.

Wenn Sie die Wellenform «Rechteck» wählen, muß zusätzlich noch das

«Tastverhältnis» (bzw. die «Pulsbreite») angegeben werden. Dies ist eine

Zahl, die die Breite des Rechtecks beschreibt. Sie wird als 12-Bit-Wert

dargestellt, kann also von O bis 4095 reichen. Dieser Wert wird für jede

Stimme in zwei aufeinanderfolgenden Registern nach dem High-Byte/Low-

Byte-Prinzip abgelegt (Tabelle 12.10).

Stimme 1 54274 und 54275

Stimme 2 54281 und 54282

Stimme 3 54288 und 54289
Tabelle 12.10 Pulsbreiten für Stimmen 1 bis 3

Der Verlauf des Tons wird beim SID nach dem ADSR-Prinzip beschrieben.

Das bedeutet, durch die vier Parameter Attack, Decay, Sustain und Release

können Änderungen der Intensität programmiert werden. Jeder Parameter

wird als 4-Bit-Wert (also O bis 15) dargestellt. Dabei können diese Parameter

folgendermaßen umschrieben werden: Attack (Anschlag) ist die Intensität,

mit der ein Ton anklingt. Decay (abschwellen) ist das Maß, die Geschwindig-

keit, mit der ein Ton auf seine Grundlautstärke zurückfällt. Sustain (aushalten)

ist diese Grundlautstärke. Release (ausklingen) ist die Geschwindigkeit, mit

der der Ton verklingt.

Da jeweils vier Bit für eine dieser Einstellungen zuständig sind, können zwei

Parameter (als Nibble) in einem Byte untergebracht werden (Tabelle 12.11).

Die wichtigste Einstellung schließlich ist die Frequenz. Sie kann von 0 bis

65535 gehen, benötigt also zu ihrer Darstellung 16 Bit. So wird auch sie

wieder in High Byte/Low Byte zerlegt (Tabelle 12.12).

244 Anhang

Stimme Attack/Decay Sustain/Release

1 54277 54278

2 54284 54285

3 54292 54293

Tabelle 12.11 Adressen für ADSR-Hüllkurven

Stimme High Byte Low Byte

1 54272 54273

2 54279 54280

3 54286 54287

Tabelle 12.12 Frequenzadressen für Stimmen 1 bis 3

Damit der Ton nun auch erklingt, muß nur noch die Lautstärke angegeben

werden. Sie ist für alle Stimmen einheitlich und liegt in der Adresse 54296.

Vergessen Sie nicht, bei Ihren Angaben die Wellenform als letztes zu

POKEn! |

Input/Output

1. Tastatur

Gedrückte Tasten werden in einem sogenannten «Tastaturpuffer» zwischen-

gespeichert, unabhängig davon, wann sie ausgelesen werden. Im Normalfall

wird das sofort sein (also Tippen eines Programms oder einer Eingabe). Wenn

während eines Programmlaufs oder während einer Warteschleife Tasten

gedrückt werden, warten diese im Tastaturpuffer so lange, bis sie aufgrund

eines INPUT- oder GET-Befehls abgefragt werden oder bis das Programm zu

Ende ist und der Inhalt des Tastaturpuffers auf den Bildschirm geschrieben

werden kann.

Die maximale Größe des Tastaturpuffers steht in der Adresse 649. Der

normale Wert ist 10. Er sollte nicht erhöht werden. Man kann aber die Anzahl

der erlaubten gedrückten Tasten so auf eine Zahl, die kleiner als 10 ist,

beschränken. Wenn der Inhalt dieser Adresse O ist, ist die Tastatur blockiert.

Anhang 245

In der Zelle 198 dagegen steht die Anzahl der Tasten, die sich tatsächlich im

Tastaturpuffer befinden. Diese läßt sich mit PEEK (198) abfragen, um bei-

spielsweise die Anzahl der bisher gedrückten Tasten zu prüfen. Sie kann auch

auf O gesetzt werden, um bisher gedrückte Tasten zu unterdrücken. Oder sie

kann im Zusammenhang mit der simulierten Tastatur verwendet werden.

Dabei werden in den Tastaturpuffer (631 bis 640) die Codes der Tasten

gePOKEd, die ausgeführt werden sollen. Dann wird der Adresse 198 die

Anzahl dieser Tasten übergeben. Damit wurde der Tastaturpuffer künstlich

gefüllt und wird nun bei der nächsten Abfrage (meist durch Rückkehr in den

Direktmodus) die vorprogrammierten Tasten ausgeben. In den Zellen 197

bzw. 204 steht der Tastaturcode der Taste, die gerade gedrückt wird. Die

Werte, die sich in dieser Zelle befinden, sind auf Bild 10.1 zu sehen.

Ob eine der Tasten (SHIFT), (C=) oder (CTRL) gedrückt wurde, läßt sich

mit PEEK (653) feststellen. Dabei erhalten Sie folgende Werte:

1 für (SHIFT)
2 für (C=)
4 für (CTRL)

Wenn mehrere dieser Tasten gehalten werden, befindet sich in der genann-

ten Speicherzelle die Summe der oben aufgelisteten Werte.

2. Joysticks

Die Joysticks werden an die beiden Control-Ports an der rechten Geräteseite

angeschlossen. Sie können mit PEEK (56321) und PEEK (56320) abgefragt

werden.

Vergleichen Sie die Bedeutung einzelner Bits im PEEK& POKE-Anhang.

3. Paddles

Zum Auslesen von Paddles benötigt man A/D-Wandler. Zwei solche Wandler

sind bereits im SID eingebaut, so daß diese zum Auslesen der Paddles

verwendet werden.

Den aktuellen Wert der Paddles kann man also durch

PEEK (54297) für Paddle 1

PEEK (54298) für Paddle 2

feststellen. Das gilt zunächst für die Paddles, die an Port 1 angeschlossen sind.

246 Anhang

Ob die Feuerknöpfe der Paddles gedrückt werden, erkennt man an den Bits

2 und 3 in der Adresse 56321.

Sie können folgendermaßen abgefragt werden:

IF NOT PEEK(56321) AND 4 THEN 1. Paddle

IF NOT PEEK(56321) AND 8 THEN 2. Paddle

Wenn Paddles am 2. Port betrieben werden sollen, erfordert dies eine etwas

andere Programmierung: Da über den gleichen Baustein auch die Tastaturab-

frage stattfindet, müssen zuerst die Interrupts abgeschaltet werden. Dazu

dient POKE 56334,0 (nur innerhalb eines Programms verwenden und danach

wieder einschalten!). |
Dann muf dem Interfacebaustein (CIA) Uber einen entsprechenden POKE

mitgeteilt werden, welche Paddlesignale an den SID weitergegeben werden

sollen:

POKE 56320,64 für Port 1

POKE 56320,128 für Port 2

Die Feuerknöpfe des zweiten Paddlesatzes können in den Bits 2 und 3 der

Adresse 56 320 abgefragt werden:

IF NOT PEEK(56320) AND 4 THEN 1. Paddle

IF NOT PEEK(56320) AND 8 THEN 2. Paddle

Noch mal: Vergessen Sie nicht, nach der Paddleabfrage die Interrupts und

somit die Tastatur wieder zu aktivieren!

Peripheriegeräte

Die Floppy VC 1541

Die Floppy zum Commodore 64 verwendet 5%-Zoll-Disketten. Die Daten

einer Diskette sind in Tabelle 12.13 dargestellt.

Vor dem ersten Verwenden muß eine frisch gekaufte Diskette «formatiert»

werden. Dabei werden die Spuren und Sektoren magnetisch vorgezeichnet.

Die Spuren auf einer Diskette sind konzentrisch um das Loch in der Mitte

angeordnet.

Die Anzahl der Blocks je Spur ist unterschiedlich (Tabelle 12.14).

Die Floppy ist ein «intelligentes» Peripheriegerät: Sie hat einen eigenen

Prozessor und ihr eigenes Betriebssystem (DOS) in ROMs eingebaut.

Anhang 247

Spuren (Tracks): 35

Sektoren (Blocks): 683

Bytes je Block: 256

Directory: Spur 18

freie Sektoren: 664

Speicherkapazität: 170 KByte
Tabelle 12.13 Daten einer Diskette

Spur: u Sektoren:

1-17 21

18-24 19

25-30 18

31-35 17

Tabelle 12.14 Sektoren je Spur

Um Floppy-Funktionen auszuführen, muß deshalb ein entsprechender

Befehl an die Diskettenstation geschickt werden.

Zum LOADen und SAVEn (also zum Laden und Abspeichern) von Pro-

grammen muß eine Gerätenummer angegeben werden:

LOAD" Programmname" ‚8

SAVE" Programmname" ‚8

Normalerweise hat die Floppy die Gerätenummer 8. Wenn gleichzeitig

mehrere Floppys verwendet werden sollen, kann diese Gerätenummer geän-

dert werden.

Um das Inhaltsverzeichnis einer Diskette (Directory) zu lesen, muß dieses

im normalen BASIC als Programm geladen werden:

LOAD"$",8

Das hat allerdings zur Folge, daß das Programm, das sich gerade im Speicher

befindet, gelöscht wird. |

Um diesen Nachteil zu umgehen, sollte man das Programm DOS 5.1

248 Anhang

verwenden, das sich auf der mitgelieferten «TEST/DEMO»--Diskette befindet.

Es wird mit LOAD"DOS 5.1",8,1 geladen. Aufgerufen wird es mit SYS

52224:NEW. |

Nun können Sie für die Anzeige des Directory den Befehl

)$

verwenden.

Zur Abfrage des Fehlerkanals verwenden Sie in BASIC normalerweise:

10 OPEN 1,8,15 : INPUT##1, A,A$,B,C : PRINT A;A$;B;C : CLOSE 1

Diese ganze Prozedur läßt sich beim DOS 5.1 durch

)
ersetzen.

Zur Übermittlung eines Befehls an die Floppy benötigen Sie in BASIC

folgende Syntax:

OPEN1,8,15: PRINT#1,Befehl: CLOSE1

Das DOS 5.1 stellt Ihnen folgende Kurzform zur Verfügung:

Befehl

Anstelle von ")" kann bei DOS-5.1-Befehlen auch "@" verwendet werden.

Eine Gegenüberstellung weiterer Befehle:

DOS 5.1 BASIC V.2

/Programm LOAD "Programm" 8

! Programm LOAD "Programm" 8

RUN

% Programm LOAD "Programm" ‚8,1

<-Programm SAVE "Programm" ‚8

Außer diesen Befehlen gibt es Befehle, die direkt an das DOS in der Floppy

übermittelt werden. Dabei ist es im Prinzip egal, ob das mit Hilfe des DOS 5.1

oder über Standard-BASIC geschieht. Es genügt generell, wenn der erste

Buchstabe eines solchen Befehls gesendet wird. Also zum Beispiel «I» anstelle
von «INITIALIZE». Die wichtigsten Befehle an die Floppy sind:

Anhang 249

INITIALIZE

Dieser Befehl weist das DOS an, die BAM (Block Availability Map) in den

Arbeitsspeicher der Floppy einzulesen.

NEW

Dieser NEW-Befehl an die Floppy (nicht zu verwechseln mit dem BASIC-

Befehl NEW) formatiert eine Diskette neu. Dazu müssen der Diskettenname

und die Identity-Nummer angegeben werden:

N:Diskname,|d

COPY

Dieser Befehl kopiert ein File innerhalb einer Diskette. Das kopierte Programm

muß einen anderen Namen als den des Originalprogramms erhalten.

C:Name der Kopie = Name des Originals

RENAME

Mit diesem Befehl kann ein File auf Diskette umbenannt werden:

R:Neuer Name = Alter Name

SCRATCH

Damit werden Files auf einer Diskette gelöscht.

S:Programmname

VALIDATE

Dieser Befehl vergleicht die belegten Blocks in der BAM mit der aktuellen

Belegung und korrigiert gegebenenfalls Falscheinträge. Die Jokersymbole:

x und ? können als Jokersymbole verwendet werden.

? ersetzt einen unbekannten Buchstaben in einem Programmnamen. So

steht H?LLO genauso für HALLO wie für HELLO.

250 Anhang

* beendet den Namen vorzeitig. EINKx kann für EINKAUF, EINKUENFTE

oder EINKOMMENSTEUERERKLAERUNG stehen.

Wird bei einem LOAD-Befehl ein Joker verwendet, wird grundsätzlich das

erste Programm geladen, auf das das Muster paßt. |

Bei den Floppy-Befehlen werden alle Programme betroffen, die passen. Ein

«S:PROx» löscht also alle Programme, die mit «PRO» anfangen. Bei SAVE

darf kein Joker verwendet werden. Das erzeugt einen SYNTAX ERROR,

ebenso bei Diskettennamen und ähnlichem.

Druckerhandhabung

Um ein Listing auf einem Drucker auszugeben, dient folgende Syntax:

OPEN 4,4: CMD 4: LIST

PRINT# 4: CLOSE 4

Wenn ein Fremddrucker verwendet wird, der dem Carriage Return-Code

(CHR$(13)) keinen automatischen Line Feed (CHR$(10)) beifügt, muß eine

Kanalnummer größer als 127 verwendet werden.

Zur Ausgabe von Daten auf den Drucker dient der PRINT#-Befehl:

OPEN4,4: PRINT# 4," DIES IST EIN TEST"

Die Trennzeichen ";" und "," wirken wie beim normalen PRINT-Befehl. Bei

jedem Drucker können durch Steuercodes oder Sekundäradressen bestimmte

Betriebsmodi gewählt werden. Vergleichen Sie dazu aber bitte Ihr Drucker-

handbuch.

Listings

In diesem Anhang finden Sie die Programmlistings, die wir Ihnen im Lauf des

Textes immer wieder versprochen haben. Vorher aber noch einige Anmer-

kungen: Erklärtes Ziel dieser Listings ist es, Ihnen Denkanstöße zu vermitteln.

Das gilt speziell für die verschiedenen Utilities. Wir haben Ihnen zwar

lauffähige Programme abgedruckt, verstehen diese aber nicht als fertige

Lösungen. Jedes der abgedruckten Programme sollte komfortabler sein. Das

zu programmieren, liegt an Ihnen.

Die abgedruckten Programme sind auch nicht gegen Fehlbedienung

geschützt. Wenn Sie eine sinnlose oder fehlerhafte Eingabe machen, wird

Anhang 251

früher oder später ein ERROR oder (bei POKEs!!!) ein Programmabsturz

eintreten.

Dennoch sollten Sie diese Programme abtippen und als Hilfe benutzen.

Speziell das Grafikutility und die Zeichen- bzw. Spriteeditoren werden Ihnen

wohl gute Dienste erweisen können.

Wir haben uns entschieden, diese Programme nicht so ausführlich zu

dokumentieren, wie Sie es von unseren beiden Spielen gewohnt sind. Das hat

zwei Gründe: Erstens würde es sich bei den meisten kurzen Programmen

sowieso nicht lohnen, und zweitens sollen Sie durch Experimente und Beob-

achtungen selbst aus diesen Programmen lernen. Die Beschreibungen zu den

einzelnen Programmen wollen nur kurz aufzeigen, welche Ideen hinter den
einzelnen Beispielen stecken.

Hugo

Dieses vierzeilige Programm zeigt, mit welch einfachen Mitteln schon ein

bißchen Animation möglich ist. In den Zeilen 20 und 30 befinden sich genau

dieselben Steuerzeichen (aus der (HOME)-Position, zweimal (CRSR
DOWN), zweimal (CRSR RIGHT), Kopf zeichnen (CRSR DOWN), zweimal
(CRSR LEFT), Arm, (RVS ON) fiir den Rumpf, Leerstelle, (RVS OFF),

anderer Arm, (CRSR DOWN), dreimal (CRSR LEFT), Bein, Bauch, Bein. Die

beiden Bewegungsphasen müssen sich aber in den Zeichen für Arme und

Beine unterscheiden. Der Trick dabei ist, beim PRINTen immer in der HOME-

Position anzufangen, damit die Zeichen auch richtig überdruckt werden. Mit

GOTO 20 erreicht man eine Endlosschleife und somit einen ständigen

Wechsel der beiden Phasen. Zeile 10 löscht einmal zum Anfang den Bild-

schirm, um störende Texte zu entfernen.

MLW

pre
POLAT" Sea he AO
INT "See ©" BOT" 1

font Foon? BF Feen” Benes Fone’

[-
if

F Yan Toms)

MER.

252 Anhang

Zeicheneditor
\

Dieses Programm braucht am Anfang ein wenig Zeit, um den Zeichensatz

von ROM ins RAM zu kopieren. Dann wird ein Feld aus 8 x 8 Punkten

aufgebaut, in dem man sich mit dem Cursor frei bewegen kann. Ein Druck auf

die Taste "." setzt einen Punkt, (SPACE)(also die Leertaste) löscht ihn

wieder. In der Matrix wird auf diese Weise ein Zeichen aufgebaut. Nach

Eingabe von (RETURN) fragt der Computer, «welches Zeichen» so umdefi-

niert werden soll. Drücken Sie einfach die entsprechende Taste. Das Zeichen

wird umdefiniert, und der Computer druckt unter der Bezeichnung DATA die

Dezimalwerte aus, die für das entwickelte Zeichen in den Speicher gePOKEd

werden müssen. Die Punkte sind in einem Datenfeld von 8 « 8 Positionen

gespeichert (A% (X,Y)). Zur Errechnung der POKE-Werte dient ab Zeile 290

eine einfache Umrechnungsroutine von Dual in Dezimal. Wenn Sie (CLR

HOME) drücken, können Sie jederzeit neu anfangen, wobei Sie allerdings

auch die Matrix löschen.

LAD RDP ue DOP Pee ie

cet CIRCE a cek EI ‚FOREL

SE PIRES FIRE Fe one FEERESSheshEr so MESTE

Sa ol SE PURE St 1 PORES: tea ack

we FR Ki NT" ZEICHE RET ENT TOR"

ret Por =] Tl

rt rl ip pe I f “4 iT H oases "

SE HEE aT

Lit GE TRE

Peck TR pbs SO THE Bee 1 TPO THE se

1m LR" Bh THEN Ve pines THER? wat

Leia TF Rb "u THE Mes TR aE THEA

aks [RAS =" THENCI Re GoTo

Liste DR RRs THE es RL OTRAS oS THEM es |

1 DR PEs THENARCH el

Lei Fiese" "TMHENFRR sell

Log TP Rs eee ee THESEN

me TP AA ee THEHFE IE

Bia TERE | ST HERS 46

weak PORE Lee Se ye. Pe

monk Te RGR THEME Ob De 1 TOL ee HE TI

Anhang

anh ect PORE DESSERT GR
Se OTe Bones “ene! Moen? 777 Tone

253

Set) PRINT" SHMDeMeDetanOeteneg EL. CHE: moe EELEHEHTUG OS PORE ete ‘exes “eee LT

Ha MAT TL oes 1 :F MIE EG? oe: FY ck Ee as]

Cie TA UPR TH TERE PRINT: PRINT' DATA"

CHE

Fake LTOS

LP Aas at oe | THE bed ee tooo

Mee Pa

PE LSet epi Ta RR DR TR "5 ei

HER

PERL.

Sinus

Dieses Programm erklärt sich weitgehend aus dem Hires-Kapitel. Um

genauere oder weniger genaue Plots zu erhalten, können Sie den STEP-Wert

in Zeile 40 beliebig abändern. Anmerkung: Im Gegensatz zu einem mathe-

matischen Koordinatensystem ist beim Computer der Punkt (0,0) oben links.

Dadurch ist die dargestellte Kurve eigentlich «spiegelverkehrt».

ma DES

12 RIK EES REGS J eS POR EBS Pit a ted

ck FÜRA=EISETOLE132FORER JE Mie T jane’

ea

SE FOR] eee Tene PORES. See MER TS

CG FOR SATS LoS TEP iL
ty Wes TMP SSE zn DENE ae

78 POKEBY PEEKCBWDORBTET-CNANDYN
Sa MENTS

Dual) Dezimal

BE Eyed oe AMD ob Se DM TO ae oe eR DAT eit oo

Dieses Programm fragt Sie nach einer Dualzahl. Wenn Sie andere Zeichen als

O oder 1 eingeben, wird das in Zeile 30 erkannt, und das Programm springt

erneut zur Abfrage. Nach der Umrechung können Sie eine beliebige Taste

drücken. Mit (E) können Sie abbrechen.

254 Anhang

TAL, > nel ‚MAL.

18 INPUT" DUALZAHL" SER
2a POR TOLEN ER |
34 IFMIDECEE ML" LANDMIDSCEE N DC" E"THENPRINT

"FEHLER IM DER ZAHLT GOTO.
4a HEATH | |
Sa PORM= 1 TOLEMS 2 >
5a TPM IDECEE 4. Loe" 1" THEME @2+2T OEMS Beek
Pa HESTE
SO PRIMTEE0 =" 2: PRINT PRINT CESsEMDE" PRINT
9 GETAS: [FAS=" " THENSE
18 IFete"E" THENEND
Lig RUM

PEAY

Dezimal) Dual

Sie können eine beliebige ganzzahlige Dezimalzahl eingeben. In Zeile 20 wird

die höchste Zweierpotenz gesucht, von Zeile 40 bis 70 liegt die eigentliche

Umrechnungsroutine. Drücken Sie irgendeine Taste, um weiterzumachen,

(E) für Ende.

TEE IMAL. TRL,

Le IMPLTUDE ee

met Diebe IF A eT Doe | THEME

= FIRS ee TE a 1

hl EC SC THEM cbs: ob epee tos OOO Pe

Bowen ES aan

Ei PRINT Pa RDM
30 PRINT" CESSENDEN : PRINT
188 GETERE DRREe THE DEN
110 IFREe"E" THEMEND
LEE BLM

BEREIT.

Anhang 255

Grafikutility

Dieses Programm haben wir für all diejenigen geschrieben, die noch keine

BASIC-Erweiterung haben oder die sich selbst mit Grafikprogrammierung

beschäftigen wollen. Dieses «Utility» besteht aus vier Unterprogrammen, die

Sie mit GOSUB aufrufen. Laden Sie die abgedruckten Programmzeilen, und

schreiben Sie dann Ihr Grafikprogramm in den Zeilen O bis 59998. Folgende

Funktionen stehen Ihnen zur Verfügung.

GOSUB 60000

Dieses Unterprogramm schaltet die Grafik ein und löscht die Bitmap. Sie

können diesem Programm in den Variablen ZF (Zeichenfarbe) und HF

(Hintergrundfarbe) Zahlen zwischen O und 15 übergeben, die dann für die

entsprechenden Farben verwendet werden.

GOSUB 61000

Diesem Unterprogramm übergeben Sie die X- und Y-Koordinate eines Punk-

tes, der gesetzt werden soll.

GOSUB 62000

Mit diesem Unterprogramm können Sie eine Linie zwischen zwei Punkten

ziehen. Sie übergeben ihm die Anfangs- und Endpunkte (X1,Y1) und (X2,Y2).

Die Genauigkeit (die bei-steilen Linien sehr viel höher sein muß als bei

flachen) können Sie in den Zeilen 62030 und 62040 angeben. Anstelle des

Wertes 320 können Sie jeden Wert zwischen 1 und 320 verwenden.

GOSUB 63000

Diesem Programm übergeben Sie den Mittelpunkt eines Kreises (X,Y) und

den Radius R. Das Programm zieht dann einen Kreis um diesen Punkt, wobei

an den äußersten Stellen Löcher auftreten, weil eine höhere Genauigkeit

außen bei den anderen Punkten zu viel Zeit kosten würde. |

Beispiele, die Sie ausprobieren sollten:

10 HF=6: ZF=1: GOSUB 60000

20 X=159: Y=99: FOR R= 90 TO 10 STEP —10: GOSUB 63000: NEXT

10 HF=2: ZF=0: GOSUB 60000

20 X1=159: Y1= 99: Y2=180: FOR X2=10 TO 310 STEP 5: GOSUB

62000: NEXT

Anhang 256

a
g
o
}

"
L
o
s
e

r

“

T
E
L

X ZIEHE

1

. Tome
C
E
D

|

e
e

J
a
]

D
o
c
]

faves
o®

E
t

a0)
"aus

.
a
.

ware)
sel

.
w
a
r

r
t
.
 .“.

T
a
l
a

Me
T
a
a
s
s
e
d
’

T
A
A
:

©
feos’

a

Ry
Toon

«+
A
a
"

~
A
L
L
E

D
A
S

D
e

Y
u

e*

Seale
T
M
A

S
L

TH =

IH
‘Saal

ied et
e
e

L
M
T
:

H
z

4 i
a

‘eae S
E
I
S

ok

HE E ‘i

re
um

u.
*

to
*

re
a
e
 aod

e
e
e

“
jo

ence

M
A
L
L

se

A
Z

+
pose,

ge

ae
M
k

|
oot

ot
4,

Bat
e

J
u

ae

m
n

g
e

Cer!
+ u
.

D
L
:

e
d

ed
d
e
d

Ay os

S
E
 eb

sk
une!

seven
a

Er
7

ne

t
e

”
e
t

“
eee

Tint
et,

“
|

m
r

e
s

seek
sabes

A
L
L

2
S
I
R
T
 CT)

W
e
l
s

K
l
.

ome
t
h
y

C
A
T
E
!

©
o
p
s

S
e
o

ey
lene |

oat
E
E

oe
et

OB,

A
s

M1
P
i
p
e
d

bis

Pil
sted

T
h

ed
i
 m
d

a
Seek

Powe”
sored

a

i
see)

sakes

7
1
2

w
i
.

e
l
e

T
S
S

ee
'

oes

M
A
W
E
S

SIC]

3
L
I
M

T
A
T

e
a
e

ge
.

A
T
S

L
A
T

N

fone!

u
l

i
h
n

f
f

Anhang 257

Vermeiden Sie folgende Variablennamen, wenn Sie eigene Programme

schreiben, die auf diese Unterprogramme zurückgreifen:

X, Y, X1, Y1, X2, Y2, R, ZF, HF, |, J

Soundmonitor

Dieses Programm bietet Ihnen die Möglichkeit, Töne auszuprobieren. Beach-

ten Sie beim Eintippen die Steuerzeichen ab Zeile 160. Diese werden von den

Funktionstasten erzeugt. Halten Sie sich bei Ihren Eingaben an die Werte in

Klammern! Bei der Wellenform Rechteck, die Sie durch (f5) erreichen,

müssen Sie zusätzlich noch eine Pulsweite eingeben.

SSH. ISEEE Patiba DT Che

oe
mk ore TR T TRIE Een IMPLITA

Hel Mie kN" BEE oa Py Ele 153"; : INPUTT

he RE DRT USES TR De Do oo DMR LET SS
mp BES TRL ro pen ESET pe LB ELT RS

Te
I

et Ha Bs

ie De PU RP REGEN eho SEH S| SI LET

oe

in

Fi

I i} reat By +] "7 fd 4 T re u gat I = T tr un I i} Ff I t rife fst i

t

"8 PORES 296. 15
OPP PARLG+L PURESAS7S Sl +k

hare Pease | POKES: F IMTER FREE EEE
LEMP CRD! SP UM SSE GEEAHH"

118 PRINT! OP Sa DRE TECK"
LEE PRINT" AP Sa RECHTECE!
La PRINTS AP Pa RAUSCHEN"
Lela GETRaR: TP Paks"! THEM Le

ars.
LS CP Pace gg THEME CRESS 7S LT
Fe LP Res oa! THENPOKES az z Sean

ze
r

3
3
2

nt ee

LS TP See THER DELI PULSE DPE 0 ee esi 3
als DEE: . sos UE Tp peop

Stes

SHE GENE + BRIBE Sicha sh oP un THT

ERS SZ EEE ah EI TEL i

Hl (Psa THEN

Pb PRET a SET Ee

wits =

REIF Ti. dy a3

258 Anhang

Spriteeditor

Er ist eine Weiterentwicklung des Zeicheneditors. Die Eingabe ist dieselbe. Die

Angabe von DATA-Werten ist aber diesmal nur auf direkten Wunsch mög-

lich; danach ist der Sprite in der Matrix gelöscht. Die DATAs müssen Sie

wahrscheinlich abschreiben, um sie in Ihren eigenen Programmen verwenden

zu können. Im Datenfeld A%(X,Y) werden die Bits abgespeichert, in

W% (X,Y) die entsprechenden Dezimalwerte.

win TiS DEF .

LG TIMARS 24.210 WECS.SL
#8 PRINT OSE
SO FORM 1 TOs 1
HE PRINT! can wenn wen nwenwnewn anneal
= MENT
Eee
7a GET AE
Sa LF Res ad THEM 4 “1: TF YS THEM 2 1
S00 TFA ON! THEM Yay + TP ye THEM |
LAG IFAg=" a THENKEX+L: IFH=SSTHENK=1
110 TP A= "9 THEM S=s~ 1: TE X=THENS= 24
LZ TF RRe" .°THEMALN ote d
(38 Fee" "THEMA Wei
{eh TREE" THENRUM
150 IFRE=ÜHREL LS THENDER
LEG TFANCH te L THENFE LESE
170 IFARCK VO =EITHENRI=A6
mh PIR Es er ee i] et

Sc TF Asks" " THEMFCR I= LTOLGG:HEXT
208 PORESSS +4446 9

mak Fr ny b n r' " "a ef fe es se CRESS SES"
EHPUTE |

239 PUKESO46 Fi: POKESSS49 150: POKESS264 .1:POKESS269 61
mete POR Re TOs

250 FORCS@ TOS: HOC. Bomo
260 FOR T= 1 Toe |
2G IFARCC#8S+] . B41 o=1THENMECC .BosWNeO .Bo+2teg-T)
280 NESTI POKER +BASHC WAC BS NEXTO.B |
230 PRINT" BININDKIMSSSINEIDINEINDATA-WERTE ©1457";
S08 PORESGM EB

Anhang 259

GETAE: TFA#=" "THEM La
POKESB? 6 POREZES «1: TPAS= "HN" THEMES
Ep Tr THE SEHE
CMT! Sqr in;
IRT=OTOSZ: PRINTPEEKCHGA HU".
EMT IO PRINT
RINT MMAR CHESTER SPRITE
SET DREIER" IT" THEHRUMN
Tres OA THEMED

ut haar

PET:
a |

fF
r

on

ov
al

wr
e 3 ., au
}

- ne

m
 mi ~ =

a
14

=
f

Kleines Fachwortlexikon

_ Viele der im Text enthaltenen Fachausdrücke sind bei ihrem ersten Auftreten
in Kursivschrift gedruckt. Hier werden sie kurz erklärt. Zusätzlich wurden in

diese Liste noch andere häufig vorkommende Begriffe aufgenommen. So

können Sie dieses kleine Fachwortlexikon auch als Nachschlagewerk be-

nutzen.

A/D-Wandler. Ein Analog-Digital-Wand-
ler ist ein Baustein oder eine Schaltung,
die ein analoges Eingangssignal (z. B.
Stromstärke) in ein digitales Ausgangssi-
gnal (z. B. 1-Byte-Wert) umwandeln
kann.

Absolutes Laden. Die ersten zwei Bytes
eines Programms auf Diskette sind das
Low Byte und das High Byte der Start-
adresse des Programms. Wenn absolut
geladen wird (das heißt LOAD” ..." ,8,1),

dann wird das Programm ab dieser Start-
adresse in den Speicher geladen. Anson-
sten (LOAD"...",8) kommt es an den

Anfang des BASIC-Speichers (normaler-
weise 2048).

Adreßbereich. Der Umfang an Speicher-
platz, den ein Prozessor adressieren kann.
Er hängt ab von der Anzahl der Leitungen
im Adreßbus. Beim 6510 sind das 16
Leitungen, also ist der AdreBbereich 2'°
(65 536 = 64 K).

Adressierung. Um ein Byte in einem Spei-
cherbaustein lesen oder schreiben zu
können, muß der Prozessor dieses ‚Byte
adressieren; das heißt, er legt die Adresse

als 16-Bit-Zahl auf den Adreßbus und
kann dann auf den Datenbus das ent-
sprechende Byte schreiben bzw. es von
ihm lesen. Ä

ADSR-Hüllkurve, engl. Attack/Decay/
Sustain/Release. Nach diesem Konzept
arbeitet der SID. Der Verlauf eines Tons
wird in vier einzelne charakteristische
Merkmale zerlegt. Attack ist die Stärke,
mit der der Ton angeschlagen wird. De-
cay ist das Maß, in dem er auf die Grund-
lautstärke abfällt. Sustain ist die Länge, in
der er auf dieser Lautstärke gehalten
wird, Release ist das Maß, in dem er

ausklingt.

Alphanumerische Variable. Ein String,
z. B. A$, ist eine Variable, die sowohl
alphabetische (also Buchstaben) als auch

Anhang

numerische Informationen (also Zahlen)

‚aufnehmen kann.

ASCII-Code, engl. American Standard
Code for Information Interchange. Ein
standardisierter Code, in dem den Buch-

staben, Zahlen und Steuerzeichen eine

Zahl zwischen O und 255 (also 1 Byte)
zugeordnet wird. Eine Tabelle befindet
sich im Commodore-Handbuch auf Seite |

135.

Assembler. 1. Die Maschinensprache des
6510. Die Maschinenbefehle lassen sich
als symbolische «Opcodes» darstellen. 2.
Hilfsprogramm zur Eingabe eines Maschi-
nenspracheprogramms.

BAM, engl. Block Availability Map - ein
Verzeichnis der belegten Blocks einer Dis-
kette. Es befindet sich auf jeder Diskette
in Spur 18 Block 0.

BASIC-Anfang. Die Adresse im RAM, ab

der das BASIC-Programm abgelegt und
abgearbeitet wird. Sie kann verschoben
werden. Siehe dazu PEEK&POKE-An-
hang bei den Adressen 43/44.

BASIC-Erweiterung. Ein (Maschinen)-
Programm auf Modul oder Diskette, das
weitere, neue BASIC-Befehle bereitstellt,

beispielsweise für die Grafik- oder Disket-
tenprogrammierung.

BASIC-Interpreter. Wie das Betriebssy-
stem (Kernal) ein Maschinenprogramm,
das ständig läuft. Es hat die Aufgabe,
BASIC-Befehle zu erkennen und auszu-
führen. .

Betriebssystem, auch Kernal. Das Ma-

schinenprogramm, das standig im Com-
puter läuft und für Funktionen wie Bild-
schirmausgabe, Tastaturabfrage usw.
verantwortlich ist.

261

Binärzahlen. Zahlensystem, basierend
auf der Zahl 2. Jede neue Stelle ist eine
Zweierpotenz. Die Zahl wird üblicherwei-
se mit O und 1 dargestellt, also

0000 (0)

0001 (1)
0010 (2)
0011 (3)
0100 (4)

USW.

Bit, engl. binary digit. Die kleinste Einheit
der Informationsspeicherung. Es kann
zwei Zustände haben: an oder aus, wahr

oder falsch, 1 oder O.

Bitmapping. Um eine hochauflösende
Grafik im Speicher verwalten zu können,
wird jedem Punkt auf dem Schirm ein Bit
im Speicher zugeordnet. Bei einer Auflö-
sung von 320 * 200 Punkten benötigt
man 8K-Speicher fiir die Bitmap.

Block. Ein Sektor auf einer Diskette. Er

kann 256 Bytes speichern. Eine VC-1541-
formatierte Diskette hat 683 Blocks.

Boolesche Algebra. Binäralgebra. Mit
verschiedenen Operationen können ein-
zelne Bits verknüpft werden; benannt

nach dem englischen Mathematiker
Boole.

Boolesche Operation. Verknüpfung in
der Booleschen Algebra — in BASIC vor
allem AND, OR und NOT.

Byte. Eine 8-Bit-Zahl. Es kann einen
(ganzzahligen) Wert zwischen O (binär
00000000) und 255 (binär 11111111)
annehmen. Eine Speicherzelle im Com-
modore 64 faßt genau 1 Byte.

Charakter-ROM. Der Speicherbaustein,
in dem das Aussehen der Zeichen beim
Commodore 64 abgespeichert ist.

262

Code ist in der Datenverarbeitung ein
genereller Ausdruck dafür, wie Daten

übertragen bzw. dargestellt werden. Das
Wort hat aber auch einige spezielle Be-
deutungen: 1. Von einem Code spricht
man auch, wenn ein einzelner Befehl (ins-

besondere bei Maschinensprache, vgl.
Opcode) gemeint ist. 2. Daher wird auch
das Ergebnis einer Übersetzung durch ei-
nen Compiler gern Code genannt. 3. Co-
de ist auch der Zahlenwert, der einem

Buchstaben, einer Taste oder etwas ähnli-

chem zugeordnet wird, z. B. der Bild-

schirmcode, Tastaturcode usw.

Compiler. Ein Compiler ist ein Überset-
zungsprogramm. Im Gegensatz zu einem
Interpreter wird das Programm aber nicht
jedesmal Stück für Stück übersetzt und
abgearbeitet, sondern einmal vollständig

in Maschinensprache übersetzt und dann
gestartet. Deshalb sind compilierte Pro-
gramme wesentlich schneller als BASIC-
Programme, aber immer noch deutlich
langsamer als reine Assembler-
programme.

CP/M, engl. Abkürzung für: Control Pro-
gram for Microcomputers. CP/M ist ein
spezielles Betriebssystem, das schon zu
einer Art Standard geworden ist. Deshalb
gibt es für dieses Betriebssystem eine rie-
sige Menge an Software. Allerdings läuft
CP/M nur auf dem Prozessor Z-80. Der
kann aber auf Modul nachgerüstet wer-
den, und so ist es auch möglich, CP/M

auf dem Commodore 64 laufen zu lassen.

Cursor. Die blinkende Schreibmarke, die
anzeigt, wo auf dem Bildschirm gerade
geschrieben wird.

Datasette. Der spezielle Kassettenrecor-
der für den Commodore 64, mit dem

Programme auf gewöhnlichen Musikkas-
setten aufgezeichnet werden können.

Anhang

Dezimalzahlen. Zahlensystem, basierend
auf der Zahl 10, oder einfach: 1, 2, 3, 4,
5,6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

usw. |

Directory. Das Inhaltsverzeichnis einer
Diskette. Es liegt auf der Spur 18. Hier
sind alle Programme, deren Lange und
Filetyp aufgeführt, die auf einer Diskette
gespeichert sind.

Disassembler. Ein Hilfsprogramm, das

Maschinenprogramme im Speicher als
«Opcodes» der Assemblersprache dar-
stellt.

DOS, engl. Diskette Operations System.
Das Betriebssystem der Floppy.

Drucker. Peripheriegerät zum Ausdruk-
ken von Texten, Listings usw. auf Papier.

Editor. Der Teil des Betriebssystems, der
für die Bildschirmeingabe zuständig ist
(also Cursorbewegung, Farbwahl, Einga-
be von Befehlen usw.).

Fehlerkanal. Der Kanal zwischen Floppy
und Computer, auf dem die Fehlermel-
dungen des DOS übertragen werden. Er
wird mit OPEN 1,8,15 geöffnet.

File, engl. «Akte». Allgemeine Bezeich-
nung für eine Aufzeichnung auf Diskette
— egal, ob Programm, Datei oder ähnli-
ches.

Floppy. Peripheriegerät zum Abspeichern
von Daten und Programmen auf Dis-
ketten.

Format. Standard, nach der die Spuren

und Sektoren auf einer Diskette aufgeteilt
sind. Es ist bei Laufwerken verschiedener
Firmen meist unterschiedlich.

Anhang

Gerätenummer. Da die Peripheriegeräte
hintereinandergehängt werden und alle
an die gleiche Leitung angeschlossen
sind, muß jedes Gerät erkennen können,

wann die Daten auf dem Kabel für dieses
Gerät bestimmt sind. Dazu hat jedes Ge-
rät eine Gerätenummer. Bei der Floppy ist
das die 8, beim Drucker 4 und beim

Printer-Plotter 6. Bei vielen Geräten kann
diese Gerätenummer geändert werden.

Hardware. Hardware nennt man die Ge-

räte und ihre Bauteile, also den Compu-
ter, die Chips usw.

Hardwarehilfe, | Hardwareerweiterung.
Davon spricht man, wenn besondere Ge-
rate oder Bauteile notwendig sind, um
eine bestimmte Aufgabe zu erfüllen, bei-
spielsweise Module zur 80-Zeichen-Dar-
stellung oder für Sprachsynthese oder
Scanner, Zeichenbretter usw.

Hexadezimalzahlen. Besonderes Zahlen-
system, das auf der Zahl 16 basiert. Ähn-
lich wie bei den Binärzahlen werden jetzt
bei 16er-Potenzen neue Stellen aufge-
macht. Die Ziffern sind: 0, 1,2...8,9, A,
B, C, D, E, F. Zur Kennzeichnung dieser

Hexadezimalzahlen wird der Zahl ein $
vorangestellt. Also: $0F = 15, $10 = 16,

$FF = 255. Dieses Zahlensystem findet
vor allen Dingen bei Monitorprogram-
men Anwendung, weil dadurch große
Zahlen auf relativ engem Raum darge-
stellt werden können.

Hires, engl. Abkürzung für High Resolu-
tion Graphics, also hochauflösende Gra-
fik. Von ihr spricht man, wenn bei einer

grafischen Darstellung direkte Kontrolle
über jeden einzelnen Punkt des Bild-
schirms besteht.

/O-Register, engl. Abkürzung für Input/
Output-Register. Das sind Adressen, die

263

nicht zu einem Speicherbaustein gehö-
ren, sondern deren Ansprechen bestimm-
te Betriebszustande bei einem
Peripheriebaustein auslöst. Solche Regi-
ster sind meist einzelne Bits. Ist zum Bei-
spiel das Bit Nr. 5 im Register 53 265
eingeschaltet, befindet sich VIC im Hires-
Modus. Wird es gelöscht, zeigt VIC wie-
der normalen Text.

IC, engl. Abkürzung für Integrated Circuit
= integrierter Baustein. Auf ihnen basiert
die gesamte Computertechnik. Ehemals
komplizierte Schaltungen, die nur mit
Röhren bzw. Transistoren und Kabeln
realisiert werden konnten, werden nun

durch Mikroelektronik auf engstem
Raum zusammengefaßt (integriert).

Initialisierung. Das «Aufwachen» des
Computers: Wenn ein Computer oder ein
Peripheriegerät eingeschaltet wird, läuft
zunächst das Initialisierungsprogramm. Es
richtet den Speicher ein, aktiviert die an-
deren Bauteile usw.

Interface, engl. Schnittstelle. Um Periphe-
riegeräte mit einer anderen Anschluß-
buchse am Commodore 64 betreiben zu
können, braucht man ein Interface. Es

formt die Signale entsprechend um, so
daß z. B. ein Drucker mit Centronics-
Interface an den seriellen Bus des Com-
modore angeschlossen werden kann. Be-
sonders verbreitete Interfaces: Centro-
nics, IEEE-488, V 24.

Interpreter. Das (Maschinen-)Programm,
das die BASIC-Befehle interpretiert, also

für das Betriebssystem und damit für den
Prozessor übersetzt.

Interrupt. Das Betriebssystem unterbricht
alle Yeo-Sekunde sein laufendes Pro-
gramm, prüft, ob eine Taste gedrückt
wird, läßt den Cursor blinken, erhöht die

264

interne Uhr, fragt die Datasette ab usw.
Während dieses Interrupts aktualisiert
VIC auch die Bildschirmausgabe. Auch
andere Bausteine sind vom Interrupt be-
troffen.

Joystick, engl. Steuerknüppel. Peripherie-
gerät zur Steuerung von Spielen. Zwei
Joysticks können gleichzeitig am Com-
modore 64 betrieben werden.

Kaltstart. Von einem Kaltstart eines Pro-
gramms spricht man, wenn quasi bei O
angefangen wird. Die Variablen haben

noch keine Werte (vgl. Warmstart).

Kanalnummer. Auch Filenummer. Die er-
ste Zahl, die beim OPEN-Befehl angege-
ben wird. Sie kann zwischen 1 und 255
liegen. Kanalnummern über 127 hängen
an jede Übertragung einen zusätzlichen
CHR$(10) (Line Feed-Code). Zweckmä-
Bigerweise verwendet man für die Kanal-
nummer dieselbe Zahl wie die Geräte-
nummer.

Kernal. Anderer Name für Betriebssy-
stem.

Kollisionsdetektor. Spezielle Funktion
des VIC. Er stellt fest, ob ein Sprite mit
einem anderen Objekt zusammengesto-
Ben ist. Dies ist vor allem bei der Spiele-
programmierung wichtig. Die Register
53278 und 53279 von VIC übernehmen
diese Aufgabe.

Kommandokanal. Das ist die andere
Richtung des Fehlerkanals. Über diesen
Kanal werden Befehle (Kommandos) zur
Floppy geschickt. Er wird eröffnet mit
OPEN 1,8,15.

kompatibel. Zwei Geräte, Programme
usw. sind kompatibel, wenn sie miteinan-
der oder einer anstelle des anderen ein-

-

Anhang

gesetzt werden können. Kompatibel sind
zum Beispiel die Drucker VC-1525 und
MPS-801 oder zwei Textprogramme, die
die gleichen Textdateien verwenden.
Nicht kompatibel sind z. B. 8-Zoll- und
5Y-Zoll-Disketten oder ein Kühlschrank
und der Commodore 64.

Lightpen. Ein Lightpen (Lichtgriffel) kann
am Joystickport angeschlossen werden.
Er besteht im wesentlichen aus einer Fo-
tozelle. Mit der nötigen softwaremäßigen
Unterstützung ist es dann z. B. möglich,
mit diesem stiftähnlichen Gerät direkt auf
den Bildschirm zu zeichnen.

Maschinensprache. Dies ist, im Gegen-
satz zu BASIC, die Sprache, die der Pro-
zessor direkt versteht. Sie ist komplizier-
ter, weil sie jede Aktion des Prozessors
einzeln vorgeben muß, wegen der weg-
fallenden Übersetzungszeit aber wesent-
lich schneller. Die Operationen in Ma-
schinensprache werden üblicherweise
durch Assembler-Opcodes dargestellt.
Beispielsweise steht LDA #$00 für «A-
Register des Prozessors mit der Zahl O
laden». Ein POKE 53280,0 sieht in Ma-
schinensprache so aus:

LDA #$00
STA $D020

Mehrfarbmodus. Multicolormodus. Spe-
zielle Betriebsart des VIC. Je zwei Punkte
werden zu einem zusammengefaßt, der
dann eine von vier möglichen Farben ha-
ben kann.

Modul. Ein Modul enthält meist zusätzli-

. che Hardware, die über den Erweite-
rungsanschluß mit dem Commodore 64
verbunden wird. Dabei kann es sich um
einen Koprozessor (z. B. den Z-80 für
CP/M) oder ROMs handeln, auf denen

. Software abgespeichert ist.

Anhang

Monitor. 1. Fernsehähnlicher Bildschirm
zur Darstellung des Computerbildes. Er
erreicht eine größere Schärfe und Auflö-
sung als ein normaler Fernseher. 2. Spe-
zielles Programm, um Speicherzellen di-
rekt zu ändern und Maschinenprogram-
me einzugeben.

numerische Variable, z. B. A. Eine Varia-

ble, die nur einen Zahlenwert aufnehmen
kann.

Opcode. Eine besondere Darstellung für
Maschinenbefehle. Ein Maschinenbefehl
ist ja eigentlich nur eine Strom-an-/
Strom-aus-Kombination. Um diese für
den Menschen besser verständlich zu
machen, verwendet man Opcodes, z. B.
LDA #$00 für «Akkumulator mit O la-
den» oder STA $01 für «Wert im Akku-
mulator in Adresse 1 ablegen». Weiteres
dazu bei Maschinensprache.

Paddle. Spezielles Gerät zu Steuerung
von Spielen. Im Gegensatz zu einem Joy-
stick wird nicht nur ein Richtungssignal
‚angegeben, sondern über einen verän-
derlichen Widerstand ein analoges Signal.

Parallelbus, -interface usw. Im Gegen-
satz zur seriellen Übertragung werden
hier mehrere Bits auf parallelen Leitungen
(meist 8) gleichzeitig übertragen. Eine
solche Leitung ist wesentlich schneller als
eine serielle.

Plotter. Druckerähnliches Gerät, das mit
Faserschreibern oder Kugelschreibern
schreibt und zeichnet. Besonders ist es
zur Ausgabe von Grafiken geeignet.

Pufferspeicher. Ein Speicher, der ankom-
mende Bits aufstaut («puffert») und dann
erst weitergibt (insbesondere bei der
Floppy an den Schreib-/Lese-Kopf und
bei einem Drucker an die Druckmecha-

265

nik). Dies wird hauptsächlich eingesetzt,
um Zeit zu sparen.

RAM, engl. Random Access Memory
(Schreib-/Lese-Speicher). Speicher-
baustein, der sowohl ausgelesen als auch
neu beschrieben werden kann. Er wird
nach dem Ausschalten gelöscht.

ROM, engl. Read Only Memory (Nur-
Lese-Speicher). Festwertspeicher. Er kann
nur gelesen werden, sein Inhalt bleibt
dafür aber auch nach dem Ausschalten
erhalten.

Routine. Anderer Name für Unterpro-
gramm. Teil eines Programms mit einer
festen Aufgabe.

Scanner. Spezielle Videokamera, die mit
einem Computer verbunden wird, um ein

Bild direkt zu «digitalisieren», also in den
Speicher (in die Bitmap) zu übertragen.

Schnittstelle. Anderer Name für Interface.
Beispielsweise die serielle Schnittstelle oder
der Userport des Commodore 64.

Scrolling, engl. Kunstwort aus screen
(Bildschirm) und rolling (Rollen), wörtlich
also «Bildschirmrollen». Wenn Sie am un-
teren Bildschirmrand einen Text einge-
ben, werden die Zeilen oben aus dem

Bildschirm herausgeschoben, um neuen
Platz zu schaffen. Gleichzeitig wandert
der ganze Text um eine Zeile nach oben.
Während des LIST- und des PRINT-Be-
fehls kann dieses Scrolling mit (CTRL)
verlangsamt werden.

Seite (page). Der Adreßbereich des 6510
wird in 256 Seiten (pages) zu je 256 Bytes
unterteilt. Page O (die sogenannte Zero-
page) geht demnach von O bis 255, Page
1 von 256 bis 511, Page 2 von 512 bis

767 usw.

266

Sektor. Ein Sektor (Block) ist ein Aus-
schnitt aus einer Spur einer Diskette. Er
kann 256 Bytes speichern.

Sekundäradresse. Sie ist die dritte Zahl,
die außer Kanalnummer und Geräte-
adresse bei einem OPEN-Befehl angege-
ben werden kann. Die Sekundäradresse
wählt verschiedene Modi bei einem Peri-
pheriegerät. Bei OPEN 4,4,X ist X die
Sekundäradresse. Ihre Funktion wird im
einzelnen in den Handbüchern zu den
entsprechenden Peripheriegeräten be-
schrieben.

Serieller Bus, serielles Interface. Hier
werden im Gegensatz zu einer parallelen
Übertragung die Bits einzeln hintereinan-
der (seriell) gesendet. Diese Art der Da-
tenübertragung ist langsamer. Der Peri-
pherieanschluß des Commodore 64 ist
seriell.

SID. Sound Interface Device. Der Chip
6581 ist der Soundchip im Commodore
64.

Software. Im Gegensatz zur Hardware
spricht man von Software, wenn die Pro-
gramme gemeint sind. Erst durch ent-
sprechende Software kann die Hardware
voll ausgenutzt werden.

Sprite. Ein Sprite ist ein bewegliches Ob-
jekt, das beim VIC aus 21 * 24 einzelnen
Punkten besteht. Beim Commodore 64
können acht Sprites gleichzeitig auf dem
Bildschirm sein. VIC unterstützt unter an-
derem die Bewegung, Vergrößerung und
Kollisionsabfrage der Sprites.

Spur. Eine Spur ist ein magnetisch vorge-
zeichneter Ring auf einer Diskette. Man
kann sie vergleichen mit einer Rille auf
einer Schallplatte. Eine VC-1541-forma-
tierte Diskette hat 35 Spuren.

Anhang

Synthesizer. Ein Synthesizer ist ein elek-
tronisches Gerät zur künstlichen Musik-
erzeugung. Der SID des Commodore 64
hat einen solchen Synthesizer eingebaut.

Token. Wenn ein BASIC-Programm im
Speicher steht, werden die Befehle als 1-
Byte-Codes dargestellt. So wird Platz ge-
spart. Das Token von PRINT ist zum Bei-
spiel 153. 4

Toolkit. Ein Toolkit ist eine spezielle
BASIC-Erweiterung, die hauptsächlich
Befehle oder Routinen zur Unterstützung
des Programmiierers bietet (also beispiels-
weise automatische Zeilennumerierung,

Suchen und Ersetzen von Befehlen in ei-
nem Programm, Auflisten der Variablen
usw.)

Unterprogramm. Ein Unterprogramm ist
Teil eines Programms, das eine feste Auf-
gabe hat und vom Hauptprogramm auf-
gerufen wird.

Userport. Das ist die Schnittstelle ganz
rechts am Commodore (von hinten gese-
hen). Sie ist eine Parallelschnittstelle, die
frei programmiert werden kann (also jede
Leitung kann einzeln als Ein- oder Ausga-
beleitung festgesetzt werden). Mit ent-
sprechender Software .kénnen so ver-
schiedene Interfaces zu Druckern oder
anderen Peripheriegeräten programmiert
werden.

Utility. Ähnlich wie Toolkit. Ein Utility ist
ein Programm, das dem Programmierer
eine bestimmte Arbeit abnimmt. Wird
auch «Dienstprogramm» genannt.

VIC. Video Interface Chip. Der VIC-II-
6567-Chip ist der Videochip im Commo-
dore 64.

Anhang 267

Warmstart. Im Gegensatz zum Kaltstart Zeropage. Die Seite Nr. O im Commodo-
spricht man von einem Warmstart, wenn re-Speicher. Da dieser Speicherbereich
zwar das Programm neu gestartet wird, vom Prozessor besonders günstig adres-
die Variablen usw. aber ihre alten Werte siert werden kann, speichert er hier wich-

beibehalten, also nicht gelöscht werden. tige und ständig gebrauchte Werte ab
(siehe auch PEEK & POKE-Anhang).

PEEK & POKE-Tabelle

In dieser Tabelle wollen wir die wichtigsten Adressen im Commodore 64 besprechen
und zeigen, was man mit ihnen anfangen kann.

Adresse Beschreibung

1: 6510 Ein-/Ausgaberegister. Mit dieser Adresse kann man die Speicheraufteilung
des 6510 einstellen. Wenn im BASIC- und Kernal-Bereich auf RAM umgestellt werden
soll, müssen diese Programme vorher ins RAM kopiert worden sein.

Bits: O BASIC-ROM (1) oder RAM (0)
Kernal-ROM (1) oder RAM (0)
|/O-Register (1) oder Charakter-ROM (0)
Datasette: Datenausgabe
Datasette: Taste nicht gedrückt (1)/gedrückt (0)
Datasette: Motor aus (1)/an (0)

6, 7 unbenutzt, immer O

Folgende POKEs sind besonders wichtig:
POKE 1,55 Normalzustand

POKE 1,54 für BASIC im RAM

POKE 1,53 für BASIC und Kernal im RAM (siehe unten)
POKE 1,51 fiir Charakter-ROM

Obwohl Bit 1 nur fiir das Kernal zustandig ist, schaltet es, wenn man es von BASIC aus
löscht, auch das BASIC ins RAM. POKE 1,52 führt dagegen zum Systemabsturz. Das
hat uns auch etwas gewundert, ist aber so...

43/44: Zeiger auf BASIC-Anfang. 43 ist das Low Byte, 44 das High Byte. Mit POKE
43,1: POKE 44,16: POKE 4096,0: NEW wird der BASIC-Anfang auf 4097 verschoben.

45/46: Zeiger auf BASIC-Ende/Variablen-Anfang. Dieser Zeiger zeigt auf dasEnde
des Programms. Beim Verschieben des BASIC-Bereichs sollte der Zeiger immer 2 Bytes
über den Anfang zeigen. Im Beispiel von oben also POKE 45,3: POKE 46,16.

47/48: Zeiger auf Beginn der Datenfelder. Die Inhalte von Feldern wie A(10,10)
werden dort gespeichert. Diese Zeiger werden nach dem Verschieben von BASIC
selbstandig gesetzt.

WO
BR

W

Nh
-
-

268 Anhang

49/50: Zeiger auf Ende der Datenfelder. Vgl. 47/48.

51/52: Zeiger auf Strings. Die Inhalte der Strings (A$,B$ usw.) wandern von der
oberen Speichergrenze nach unten. Dieser Zeiger zeigt auf die untere Grenze. Sie muß
immer größer sein als das Ende der Datenfelder (49/50), sonst gibt es einen OUT OF
MEMORY-ERROR. Normalerweise braucht sich der Programmierer darum nicht zu
kümmern. Bei platzaufwendigen Programmen läßt sich aber mit diesem Zeiger der
übrige Speicherplatz ausrechnen.

55/56: Zeiger auf Grenze des Arbeitsspeichers. Diese Zeiger zeigen dem Betriebs-
system das Ende von RAM (normalerweise 40 960, also PEEK(55)=0, PEEK(56)=160).
Wenn über dem BASIC-Speicher noch Maschinenprogramme oder ähnliches unterge-
bracht werden sollen, kann dieser Zeiger nach unten gesetzt werden.

160-162: TI. Hier ist der momentane Wert der Zeitvariablen TI gespeichert.

198: Anzahl der Zeichen im Tastaturpuffer. Wenn bereits gedrückte Tasten unter-
drückt werden sollen, kann dieser Zähler auf O gesetzt werden: POKE 198,0. Wenn mit
simulierter Tastatur gearbeitet wird, kann dieser Zeiger auf die Anzahl der Tasten

gesetzt werden (vergleiche 631 bis 640). |

203: gedrückte Taste. Mit PEEK (203) läßt sich ermitteln, welche Taste gedrückt
wurde. 64 = keine Taste. Vergleichen Sie Bild 10.1.

204: Cursor an/aus. POKE 204,0 läßt den Cursor während eines Programms an der

aktuellen Ausgabeposition blinken. POKE 204,1 schaltet ihn ab. Dabei kann der Cursor
jedoch in Blinkphase stehenbleiben. Vgl. 207.

207: Cursor in Blinkphase. Mit PEEK (207) läßt sich auslesen, ob der Cursor beim -
Blinken gerade an (1) oder aus (0) ist. Wenn der Cursor innerhalb eines Programms
verwendet wurde, empfiehlt sich, zum Ausschalten POKE 207,0: POKE 204,1 zu
verwenden. Dadurch wird sichergestellt, daß er in Aus-Position abgeschaltet wird und
nicht stehenbleibt.

211: Spalte für Cursor. Vgl. 214

214: Zeile für Cursor. Wenn der Cursor (und damit die Startposition des nächsten
PRINT-Befehls) an eine bestimmte Bildschirmposition gebracht werden soll, müssen die
Koordinaten entsprechend gePOKEd werden: POKE 211,%:POKE 214,Y. Um diese
Werte dem .Betriebssystem zu übergeben, ist außerdem ein SYS 58732 notwendig.

243/244: Farb-RAM. In Low Byte/High Byte ist hier die Adresse im Farb- RAM
gespeichert, die zur aktuellen Cursorposition gehört.

256 bis 511: Prozessor Stack. Diese Page 1 ist eine Art Zwischenspeicher für den
Prozessor. Wichtig ist für den BASIC-Programmierer in erster Linie, daß er diesen
Bereich schön in Ruhe lassen sollte.

631 bis 640: Tastaturpuffer. In diesem Speicherbereich werden die Codes der
Tasten abgelegt, die nicht direkt auf den Bildschirm gebracht wurden. Das passiert
praktisch nur, wenn eine Warteschleife oder ein BASIC-Programm läuft. Der Zeiger,
wie viele Buchstaben sich in diesem Speicher befinden, liegt in (198). Um die simulierte
Tastatur anzuwenden, ist folgendes zu tun: 1. Codes der gewiinschten Zeichen in den

Anhang 269

Tastaturpuffer POKEn. 2. Anzahl der Zeichen in 198 POKEn. 3. Programmausführung
beenden (also Computer in den Direktmodus bringen). Folgendes Programm startet
sich z. B. immer wieder selbst: 10 POKE 631, ASC("R"): POKE 632, ASC(" U"): POKE
633, ASC("N”): POKE 634,13: POKE 198,4

646: aktueller Farbcode. Ein POKE 646,X ersetzt das entsprechende Farb-Steuer-

zeichen.

648: Bildschirm-RAM. Diese Adresse beinhaltet die Startadresse des Bildschirm-
RAM für das Betriebssystem. Um das Bildschirm-RAM zu verschieben, muß auch das
Register 53 272 von VIC entsprechend verändert werden. Um das Bildschirm-RAM auf
2048 zu legen, wären folgende POKEs nötig: POKE648,8: POKE 53272,37. Diese Zeile

nimmt die notwendigen Änderungen vor. Vergleichen Sie auch (53 272).

649: maximale Größe des Tastaturpuffers. Sie ist 10. Ein höherer Wert ist nicht zu
empfehlen, denn dann werden andere Zeropage-Adressen überschrieben. Sie können
den Wert aber verringern. Um die Tastatur kurzfristig zu blockieren, kann er auch auf O

gesetzt werden.

650: Tastenwiederholung. Folgende Tasten können durch POKEs Wiederholfunk-
tion erhalten:
POKE 650,128 alle Tasten

POKE 650,64 keine Taste
POKE 650,0 normale Aufteilung ((CRSR), (SPACE) usw.)

653: Flag für (SHIFT), (C=) und (CTRL). Mit PEEK (653) läßt sich erkennen, ob
eine der genannten Tasten gedrückt wird.
Bits: O (SHIFT)

1 (C=)
2 (CTRL)

657: (SHIFT) + (C=) verriegeln. Mit POKE 657,128 wird die Umschaltung der
Zeichensdtze durch (SHIFT) + (C=) gesperrt. Mit POKE 657,0 wird diese Sperre
wieder aufgehoben. Entspricht CHR$(8) und CHR$(9).

704 bis 766: Dieser Bereich ist frei. Er kann fiir ein Sprite verwendet werden. Der
Spritezeiger ware dann 11.

774/775: Zeiger auf BASIC-Text bei LIST. In Low Byte/High Byte wird hier die
Adresse der Interpreterroutine abgespeichert, die die BASIC-Tokens in Klartext
umwandelt. Durch Verändern dieses Zeigers läßt sich ein sehr wirkungsvoller LIST-
Schutz erreichen.

785/786: USR-Adresse. Low Byte und High Byte für die Startadresse des Maschi-
nenprogramms, das mit USR angesprungen wird. USR ist ein ähnlicher Befehl wie SYS,
nur daß mit ihm noch eine Variable an das Maschinenprogramm übergeben wird.

828 bis 1023: Kassettenpuffer. Hier werden die Bytes zwischengespeichert, die
beim Laden von der Datasette ankommen. Solange keine Kassettenoperationen statt-
finden, kann dieser Speicherbereich für Sprites verwendet werden.

2/0 Anhang

Bereich Spritezeiger }
832 bis 894 13 |
896 bis 958 14
960 bis 1022 15

1024 bis 2023: Bildschirm-RAM. In diesen 1000 Bytes liegen die Bildschirmcodes
der Zeichen, die auf dem Bildschirm stehen. Bedenken Sie aber, daß das Bildschirm-
RAM verschoben werden kann (vgl. 648). \

2040 bis 2047: Spritezeiger O bis 7. Hier liegen die Zeiger auf die Speicherbereiche
in denen die Sprites O bis 7 abgelegt sind. Für die Startadresse eines Sprites gilt:
Startadresse = 64 * Spritezeiger.

2048 bis 40 959: 3891 1-Bytes-Arbeitsspeicher RAM

49 152 bis 53247: 4K-RAM, nicht für BASIC verfügbar.

53 248 bis 53263: Sprite-Koordinaten:

53 248: X-Koordinate Sprite +0
53 249: Y-Koordinate Sprite +0
53 250: X-Koordinate Sprite +1
53 251: Y-Koordinate Sprite #1

53 262: X-Koordinate Sprite +7
53 263: Y-Koordinate Sprite +7

53 264: Bits Nr. 8 für Sprites #0 bis #7. Wenn eines dieser Bits gesetzt ist, wird die
X-Koordinate des entsprechenden Sprites um 256 erhöht.

Bits: 0 9. Bit X-Koord. Sprite +O
1 9. Bit X-Koord. Sprite 41

7 9. Bit X-Koord. Sprite #7 |

53 265: Grafikmodus. Die einzelnen Bits dieses Registers haben folgende Bele-
gung:

Bits: O bis 2 Feinjustierung des Bildschirmfensters in Y-Richtung
3 24 (0) oder 25 (1) Zeilen Text
4 Bildschirm ein (1)/aus (0)
5 Hires-Modus (1 = an)
6 Hintergrundfarbmodus (1 = an)

Folgende POKEs sind besonders wichtig:
POKE 53265,27 normaler Textmodus

POKE 53265,59 Hires-Grafik ein
POKE 53265,91 Hintergrundfarben ein

Probieren Sie Werte von 24 bis 31, um ein Gefühl für die Feinjustierung zu bekommen.

53 267: X-Position des Lightpen

53 268: Y-Position des Lightpen. Wenn Sie einen Lightpen angeschlossen haben,
können Sie mit PEEK (53267) und PEEK (53268) seine Koordinaten abfragen. Diese

Anhang 271

werden wahrscheinlich nicht exakt mit den Bildschirmpunkten übereinstimmen, so daß
Sie in Ihrem Programm die Werte entsprechend umrechnen müssen, um beispielsweise

direkt auf den Bildschirm eine Hires-Grafik zeichnen zu können.

53 269: Sprites an/aus. Wenn ein Bit in diesem Register eingeschaltet ist, erscheint
der entsprechende Sprite auf dem Schirm.
Bits: 0 Sprite #0 an

1 Sprite #1 an

7 Sprite #7 an

53270: Multicolormodus und andere Register
Bits: Obis2 Feinjustierung des Bildschirmfensters in X-Richtung

3 38 (0) oder 40 (1) Zeichen pro Zeile
4 Multicolormodus ein (1)/aus (0)
5 bis 7. unbenutzt. Nicht verändern!

Um den Multicolormodus einzuschalten, verwenden Sie POKE 53270,216.
Probieren Sie auch die Feinjustierung in X-Richtung mit Werten zwischen 200 und 207.

53271: Vergrößerung der Sprites in Y-Richtung. Wieder ist jedem Sprite ein Bit
zugeordnet.
Bits: 0 Y-Vergrößerung von Sprite #0

1 Y-Vergrößerung von Sprite +1

7 Y-Vergrößerung von Sprite #7

53 272: Zeichensatz und Bildschirm-RAM. Mit diesem Register können Sie die Lage
des Bildschirm-RAMs und des Zeichensatzes festlegen.
Bits: 7bis4 Bildschirm-RAM
Bitkombination Startadresse des Bildschirm-RAM

0000 O (nicht zu empfehlen!)
0001 1024 (Normalwert)

0010 2048

0011 3072

0100 4096

0101 5120

0110 6144

0111 7168

1000 8192

1001 9216

1010 10240

1011 11264

1100 12288

1101 13312

1110 14336

1111 15360

272 Anhang

ca.10 Leerstellen 3 bis 1 Zeichensatz
Bitkombination Startadresse des Zeichensatzes

000 O (hier liegt immer noch die Zeropage!)
001 2048

010 4096 (siehe unten)
011 6144 (siehe unten)
100 8192

101 10240

110 12288

111 14336

Bit O ist unbenutzt, aber immer 1.

Wenn VIC den Zeichensatz ab 4096 sucht, liest er ihn in. Wirklichkeit ab der Adresse
53 248 (Charakter-ROM, Grafikmodus). Für 6144 wird inm 55 296 (Charakter-ROM,

Textmodus) untergejubelt. Dafür ist der Interface-Baustein verantwortlich, der uns bei
Adresse 56576 noch genauer interessieren wird.

Wenn Sie nun eine bestimmte Kombination erreichen wollen, müssen Sie einfach das

Byte aus den oben gezeigten Werten errechnen. Ein Beispiel: Sie wollen das Bildschirm-
RAM ab 4096 und den Zeichensatz ab 2048 anlegen.

Der Inhalt der Adresse 53 272 ist dann 0100 001 1, also: POKE 53272,67. Um diese

Konfiguration aber wirklich zum Laufen zu bringen, müssen Sie auch noch die Adresse
648, wie dort beschrieben, ändern. Außerdem sollten Sie BASIC auf 5120 verschieben.
(Die nötigen POKEs wären: POKE 648,16: POKE 43,1: POKE 44,20: POKE 5120,0:

NEW. Vergleichen Sie gegebenenfalls die verschiedenen Adressen.)

53275: Sprite-Hintergrund-Priorität. Normalerweise wird ein Sprite vor den Buch-
staben bzw. vor der Hires-Grafik dargestellt. Wenn nun ein Bit in dieser Adresse gesetzt
ist, wird der entsprechende Sprite hinter diesem Hintergrund dargestellt.

Bits: 0 Sprite #0 hinter dem Hintergrund
1 Sprite #1 hinter dem Hintergrund

7 Sprite #7 hinter dem Hintergrund

53 276: Sprites-Multicolor. Wenn ein Bit in dieser Adresse gesetzt ist, wird der
entsprechende Sprite in Multicolor dargestellt. Vergleichen Sie dazu auch die Farbregi-
ster 53 285 und 53 286.
Bits: 0 Sprite 40 wird in Multicolor dargestellt.

7 Sprite #7 wird in Multicolor dargestellt.

53277: Sprites-Vergrößerung in X-Richtung. Wenn ein Bit in dieser Adresse
gesetzt ist, wird der entsprechende Sprite horizontal vergrößert.
Bits: 0 Sprite #0 wird vergrößert

7 Sprite #7 wird vergrößert

53278: . Sprite-Sprite-Kollisionsdetektor. Wenn ein Zusammenstoß zwischen zwei
Sprites erfolgt, werden die Bits, die den beteiligten Sprites zugeordnet sind, gesetzt. Sie
bleiben gesetzt, bis dieser Wert mit PEEK (53278) ausgelesen wird.

Anhang 273

53279: Sprite-Hintergrund-Kollisionsdetektor. Wenn ein oder mehrere Sprites mit
dem Hintergrund (Text, Grafik) zusammenstoßen, werden die Bits, die den beteiligten

Sprites entsprechen, gesetzt. Sie bleiben gesetzt, bis dieser Wert mit PEEK (53 279)
ausgelesen wird.

53 280: Rahmenfarbe. Sie kann von O bis 15 gehen.

53 281: Hintergrundfarbe. Ebenfalls von O bis 15. Diese Farbe bekommen im
Multicolormodus auch die Punkte mit der Bitkombination 00.

53 282: weiteres Hintergrundfarbregister. Dieses Register ist im Multicolormodus
interessant: Bei mehrfarbigen Textdarstellungen nehmen die Punkte mit dem Bitmuster
01 diese Farbe an. Im Hintergrundfarbmodus bekommen die Zeichen mit den BS-
Codes 64 bis 127 diese Hintergrundfarbe.

53283: noch ein Hintergrundfarbregister. Im Multicolormodus (Textdarstellungen)

nehmen die Punkte mit dem Bitmuster 10 diese Farbe an. Im Hintergrundfarbmodus
bekommen die Zeichen mit den BS-Codes 128 bis 191 diese Hintergrundfarbe.

53 284: das letzte Hintergrundfarbregister. Im Hintergrundfarbmodus bekommen
die Zeichen mit den BS-Codes 191 bis 255 diese Hintergrundfarbe.

53 285: Sprite-Multicolor-Register 0. Die Punkte mit der Bitkombination 01
bekommen bei Multicolor-Sprites diese Farbe.

53 286: Sprite-Multicolor-Register 1. Bei Multicolor-Sprites bekommen die Punkte
mit der Bitkombination 11 diese Farbe.

53 287: Sprite O Farbregister. Dies ist im Normalmodus die Farbe von Sprite #0. Im
Multicolormodus bekommen die Punkte des Sprites #0 mit der Bitkombination 10
diese Farbe.

53 288: Sprite 1 Farbregister. Vgl. (53 287)
53 289: Sprite 2 s. o.

53290: - Sprite 3s.
53 291: Sprite 4 s.
53 292: Sprite 5 s.
53 293: Sprite 6 s.
53 294: Sprite 7 s. 0.

54272: SID Stimme 1 Frequenz: Low Byte

54273: Stimme 1 Frequenz: High Byte. Die Frequenzen fiir die drei Stimmen
können als 16-Bit-Wert (von O bis 65535) angegeben werden. Welcher Frequenz in
Hertz dies entspricht, findet sich im Commodore-64-Handbuch auf Seite 158.

54274: Stimme 1 Pulsbreite: Low Byte

54275: Stimme 1 Pulsbreite: High Byte. Wenn als Wellenform «Rechteck»
gewählt wird, muß in diesen beiden Registern die «Pulsbreite» angegeben werden. Sie
kann von O bis 4095 reichen. Das bedeutet, daß die Bits 7 bis 4 in diesem Register nicht

benutzt werden. :

9
9
9
0
0

274 Anhang

54276: Stimme 1 Wellenform usw. Dieses Register ist das eigentliche Kontrollregi-
ster.
Bits: Ton-Start (1) Stop (0) 0

1 Synchronisation Stimmen 1 und 3 an (1) aus (0)
2 Ringmodulation
3 Test-Bit (sollte O sein)
4 Wellenform Dreieck
5 Wellenform Sagezahn
6 Wellenform Rechteck
7 Wellenform Rauschen

Auf Synchronisation und Ringmodulation können wir an dieser Stelle nicht eingehen.
Wir empfehlen, diese Bits beim ersten Experimentieren auszuschalten. Damit ergeben
sich folgende POKESs:

POKE 54276,17 Dreieckwelle und Tonstart

POKE 54276,33 Sägezahnwelle und Tonstart
POKE 54276,65 Rechteckwelle und Tonstart
POKE 54276,127 Rauschen und Tonstart

Da mit Bit O der Ton gestartet wird, sollte die Einstellung dieses Registers als letzte
erfolgen.

54277: Stimme 1: Attack/Decay. Für beide Einstellungen dienen jeweils 4 Bit. Es
gibt also 16 Stufen.

Bits: 7bis4 Attack
3 bisO Decay

54278: Stimme 1: Sustain/Release. Auch hier gibt es fiir beide Einstellungen
je 4 Bits. |
Bits: 7bis 4 Sustain

3 bisO Release

54279: Stimme 2: Frequenz Low Byte

54 280: Stimme 2: Frequenz High Byte

54281: Stimme 2: Pulsbreite Low Byte

54 282: Stimme 2: Pulsbreite High Byte

54 283: Stimme 2: Wellenform usw.

54.284: Stimme 2: Attack/Decay

54.285: Stimme 2: Sustain/Release

54 286: Stimme 3: Frequenz Low Byte

54.287: Stimme 3: Frequenz High Byte

54.288: Stimme 3: Pulsbreite Low Byte

54.289: Stimme 3: Pulsbreite High Byte

54.290: Stimme 3: Wellenform usw.

54291: Stimme 3: Attack/Decay

Anhang 275

54292: Stimme 3: Sustain/Release

54.296: Lautstärke. Dieses Register regelt die Lautstärke für alle drei Stimmen.
Bits: O bis 3 Lautstärke (O bis 15)

4 bis 7 Filtermodi usw.
Auch auf die Filterprogrammierung können wir hier nicht weiter eingehen. Die Bits 4
bis 7 sollten deshalb bei Ihren ersten Experimenten aus sein.

54297: A/D-Converter Paddle 1. Hier liegen die Adressen der im SID eingebauten
A/D-Converter. Aus ihnen kann der Wert von Paddle 1 ausgelesen werden: ? PEEK

(54297)

54298: A/D-Converter Paddle 2 s. o.

55 296 bis 56295: Hier liegt das Farb-RAM. Es kann nicht verschoben werden.

56 320: |/O-Baustein A. Hier wird normalerweise der Joystick 2 abgefragt. Dieses
Register wird aber auch benötigt, um zwischen zwei angeschlossenen Paddlesätzen
umzuschalten, da nur ein Paar zum SID weitergeleitet werden kann.
POKE 56320, 64 wählt Paddlesatz am Gameport 1
POKE 56320,128 wählt Paddlesatz am Gameport 2

Für diese Umschaltung müssen allerdings die Interrupts abgeschaltet werden, denn die
Tastatur ist ebenfalls an diesem Baustein angeschlossen.
Die Bits 3 und 2 sind außerdem für die Feuerknöpfe der Paddles an Gameport 2
zuständig.

56321: |/O-Baustein B. Hier kann Joystick 1 gelesen werden.
Beim Paddlebetrieb an Port 1 sind die Bits 3 und 2 für die Feuerknöpfe der Paddles
zuständig.

56 334: Interrupt Timer Control Register. Dieses Register hat mehrere Funktionen.
Ihre wichtigste ist folgende: Da dieser Interface-Baustein alle Y6-Sekunde das Signal
an den Prozessor liefert, das den Interrupt auslöst, kann man durch Abschalten dieses
Signals die Interrupts unterbinden. |
POKE56334,0 schaltet die Interrupts ab

POKE56334,1 schaltet sie wieder ein.

56576: VIC Memory Control. Hier hätten wir jetzt also den oft erwähnten
Botschafter, der die Adressen für VIC entsprechend umformt. Die Bits 1 und O sind
dafür zuständig, welcher 16K-Block von VIC adressiert wird.
Dabei gilt folgende Bitbelegung:

Bits Startadresse des 16K-Blocks
00 49152

01 32768

10 16384
11 O (Normalwert)

Normalerweise sind also beide Bits an. VIC adressiert den Bereich von 0 bis 16 383. Hier
müssen alle für ihn wichtigen Daten, wie Bildschirm-RAM, Zeichensatz, Spriteadressen,
Spritemuster usw., liegen.
Der gesamte 16K-Block läßt sich nun verschieben. Dazu muß man die beiden Bits wie
gesagt ändern. Das geht folgendermaßen:

2/76 Anhang

POKE 56578, PEEK(56578) OR 3
POKE 56576, (PEEK(56576)AND 252) OR A

A ist der Dezimalwert der oben gezeigten Bitkombination (also O für 00, 1 für 01, 2 für
10 und 3 für 11).
Wenn Sie den 16K-Block verschieben, gibt es aber noch folgendes zu bedenken: Die
Adresse des Bildschirm-RAMs ändert sich. Sie müssen also (648) und gegebenenfalls
(53 272) entsprechend anpassen. Die Spritezeiger sind jetzt entsprechend hinter dem
neuen Bildschirm-RAM zu suchen. Also bei einem Bildschirm-RAM ab 16 384 liegen sie
jetzt bei 17 400.

In den Speicherbänken ab 16384 und 49 152 ist das Charakter-ROM nicht verfügbar.
Es muß also vorher auf jeden Fall in den entsprechenden RAM-Bereich kopiert werden.
Auch die Bitmap und der dafür zuständige Farbspeicher (das neue Bildschirm-RAM)
liegt in dieser neuen Speicherbank. Das Farb-RAM ab 55 296 bleibt in jedem Fall an
seinem Platz. r

56578: Datenrichtungsregister fiir VIC Memory Control. Es legt fest, ob die Bits in
der Adresse 56 576 beschrieben oder gelesen werden. Vor einer Umschaltung müssen
also die Bits 1 und O eingeschaltet werden, wie oben im ersten POKE geschehen.

Literaturverzeichnis und Softwarehinweise

Wir wollen Ihnen abschließend gern einige Tips über Bücher und Programme

geben, die uns positiv aufgefallen sind. Leider können diese Empfehlungen

nur sehr persönlicher Art sein. Weil sich der den Commodore 64 umgebende

Markt ständig ausbreitet, ist eine solche Übersicht sowieso nie repräsentativ,

ausgewogen oder gar vollständig. Dennoch wollen wir versuchen, Ihnen

damit die Entscheidung ein wenig zu erleichtern.

1. Bücher

64 intern. Düsseldorf: Data-Becker.

Das Interface-Age-Systemhandbuch zum Commodore 64. München: Inter-

face Age.

Das Commodore-64-Adreßbuch — PEEK POKE (Chip Special). Würzburg:

Vogel-Verlag.

Commodore 64 mit Simon's Basic. Ludwigshafen: Kiehl.

Das große Floppy-Buch. Düsseldorf: Data-Becker.

COMPOTE's First Book of Commodore 64 (engl.) Greensboro: COMPUTE!

Publications, Inc.

Mach mehr aus Deinem Commodore 64. Würzburg: Vogel-Buchverlag.

Grafik mit dem Home-Computer. Würzburg: Vogel-Buchverlag

Anhang 277

Alles über den Commodore 64. Frankfurt: Commodore

2. Software

An BASIC-Erweiterungen finden wir besonders nützlich:

Simon's BASIC. Commodore.

EXBASIC Level Il. interface Age.

BASIC 64. Omikron.

Weitere Utilities

Supergraphik 64. Data-Becker

Diskomat. Data-Becker.

SM Kit 64. SM Software.

EXDOS. Interface Age.

Anwenderprogramme wie Text- und Dateiverwaltung und Spiele sind sehr

vom persönlichen Geschmack abhängig. Sie sollte man sich im Fachhandel

vorführen lassen.

Schlußwort

Ja, liebe Leser. Damit hätten wir es geschafft. Unser Studienaufenthalt ist

vorbei. Jetzt geht es nur noch darum, die erworbenen Kenntnisse draußen

anzuwenden. Ab jetzt sollten Sie das Buch nur noch als Reiseführer verstehen,

den man irgendwo mitgenommen hat. Es wird Ihnen sicherlich immer wieder

nützlich sein, darin zu schmökern, Informationen zu suchen und dergleichen.

Und ehe Sie sich's versehen hatten, hat Sie die BASIC AIRWAYS schon wieder

nach Hause gebracht. Die Rückreise ist immer kürzer als die Hinreise. Und

wenn es Ihnen gefallen hat, dann schenken Sie doch auch einmal jemandem,

der einen Commodore hat, eine Reise mit uns. Wir glauben, daß das

genausogut Anfänger wie Fortgeschrittene sein könnten — oder Eltern, die

auch ganz gern wüßten, was ihr Sprößling so Besonderes an diesen Kästen

findet.

Zugegeben, wir wollten Sie ein bißchen vom Computern begeistern.

Vielleicht ist aus Ihnen mittlerweile ein richtiger Freak geworden. Wenn uns

das gelungen ist, fänden wir es gar nicht so schlecht. Natürlich müßte man

einige Dinge nicht wissen, die wir nebenbei erklärt haben — genausowenig,

wie man überhaupt etwas von Computern wissen muß, wenn man mit ihnen

278 Anhang

arbeiten will. Im Grunde reicht es aus, den Knopf zum Ein- und Ausschalten

zu finden und eine Diskette einzulegen. Trotzdem haben wir viele allgemeine

Dinge erklärt, die erst später interessant werden oder gar nicht sehr Commo-

dore-spezifisch sind, zum Beispiel Adreßbus und Datenbus, das High-Byte-/

Low-Byte-Prinzip. Aber das sind Dinge, die Sie irgendwann brauchen könn-

ten, und wir wollten Sie ja möglichst umfassend in die Welt der Computer

einführen.

Und jetzt noch ein paar Worte über das Problem Computer. Wenn Sie das

nicht interessiert, überlesen Sie es einfach. Es sind ein paar sehr persönliche,

subjektive Ansichten. Denn wir dachten, ganz ohne das kann man ein unserer

Ansicht nach sehr persönliches Buch über Computer eigentlich nicht

schreiben.

Vergessen Sie bei allem Eifer nie, wo er ist — der Knopf zum Ein- und

Ausschalten. Computer sind gut, aber viele andere Dinge auch. Nur weil Sie

Champion im PacMan-Spiel sind, hat das noch lange nichts mit Ihrer Kondi-

tion zu tun. Der Computer kann ein Hobby sein. Mancher will vielleicht auch

für den Beruf mehr darüber wissen. Es ist auch nur natürlich, daß man ganz

am Anfang mehr Zeit in das neue Hobby investiert als später. Und es gehört

dazu, daß man nächtelang an einem Problem, an einem Programm sitzt. Die

Freude, wenn es plötzlich doch läuft, wenn man etwas Neues entdeckt hat,

ist meist immens. Sie darf nur nicht die einzige sein. Der Computer ist nie ein

Kommunikationspartner, genausowenig die Menschen, die nur darüber

reden können. Nehmen Sie dies als kleinen Tip mit auf den Weg. Denn wir

finden, eine gehörige Portion kritischer Abstand gehört genauso zu einem

guten Programmierer oder Computerfreak wie das technische Wissen.

Warum wir das sagen? Aus dem Grund, aus dem Leute immer Ratschläge

geben: aus eigener Erfahrung.

Auch für uns war es schwer, den richtigen Weg zu finden. Aber glauben Sie

uns, wir beide sind sehr froh darüber, daß nach fast vier Monaten ständiger

Arbeit damit jetzt die Zeit dafür gekommen ist, wieder einen Commodore 64

anschauen zu können, ohne gleich an ein Buch zu denken, das wir noch

schreiben sollten. Und wahrscheinlich werden unsere 64er und auch unser

Apple (zur Textverarbeitung) jetzt ein bißchen in Ruhe ihr Leben genießen

können. Die Arbeit hat Spaß gemacht, aber glücklicherweise ist sie jetzt

vorbei — die nächsten Ferien werden wir in erster Linie zum Faulenzen

benutzen. (Na ja, vielleicht noch ein bißchen Software schreiben — aber nur

ein bißchen ...)

Anhang 279

Das war es von uns zu diesem Thema. Wir wollten Sie nur ein bißchen

nachdenklich machen. Der Computer hat nichts Böses an sich, es kommt

immer nur auf die Leute an, die davor sitzen. Und das gilt für Ihren

Heimcomputer genauso wie für die Computer, die Daten erfassen oder die in

West und Ost für militärische Zwecke eingesetzt werden. Es gibt Dinge, die

sollte man nie dem Computer überlassen. Wir hoffen, daß die Verantwortli-

chen sich darüber im klaren sind! Deshalb halten wir auch das Wissen über

Computer und ihre Arbeitsweise für sehr wichtig. Denn Wissen kann schüt-

zen — nicht nur nützen!

Jetzt nur noch eine kleine Bitte: Wir haben, bevor wir mit unserer Predigt
anfingen, sehr oft die Wörter «wollten» und «sollten» verwendet. Der Grund

dafür ist, daß wir natürlich nicht wissen, ob uns alles geglückt ist, was wir

beabsichtigt hatten. Deshalb würden wir uns freuen, von Ihnen zu hören!

Schreiben Sie uns, was Ihnen gefallen oder nicht gefallen hat. Sollten wir

uns wieder mal ans Schreiben eines Buches heranwagen, dann gibt es nur

eines, das man nicht ersetzen kann: die Erfahrung mit unserem ersten Buch.

In diesem Sinne wünschen wir Ihnen viel Freude mit Ihrem Commodore 64

und natürlich bei allen Tätigkeiten, für die Sie — außer für die Computerei —

noch Zeit finden ...

Frankfurt/Main Hannes Rügheimer

Christian Spanik

VOGEL-BUCHVERLAG WURZBURG

Senftleben, D. ı Wenn Sie aktiv mit Ihrem Commo-
Start mit dore 64 in Logo computern wollen,
Commodore- ist dieses Buch die richtige Start- Start mit
Logo hilfe für Sie. Mit dieser Einführung Commodore-
Reihe HC — erlernen Sie in 12 Lektionen das Logo
Mein Home-Computer

ca. 200 Seiten,
zahlr. Abbildungen,

- ca. 30,— DM, 1984
ISBN 3-8023-0802-6

kleine Logo-Einmaleins, bis Sie mit
Grafik, Text und Musik spielen, ex-
perimentieren und arbeiten können.
Über große Bildschirmfotos können
Sie Ihre Erfolge kontrollieren und
schon bald neue Einsatzbereiche
erschließen.

Baumann, Rüdeger

Grafik mit dem
Home-Computer

Der Leser dieser Einführung in die
Grafik-Programmierung benötigt le-
diglich Grundkenntnisse im Pro-
grammieren mit BASIC. Der Autor
hat ein Höchstmaß an Strukturie-
rung und Kommentierung der Pro-
gramme angestrebt. Sie wurden
auf dem Commodore 64 entwickelt
und getestet — sind aber so ge-
schrieben, daß sie sich leicht auf
andere grafikfähige Mikrocomputer
übertragen lassen.

Computerspiele und
Knobeleien
programmiertinBASIC —

Baumann, Rüdeger

Computerspiele |
und Knobeleien
programmiert in
BASIC

Reihe HC —
Mein Home-Computer

304 Seiten,
zahlr. Abbildungen,
4. Auflage 1984
30,— DM .
ISBN 3-8023-0786-0

Reihe HC —
Mein Home-Computer

328 Seiten,
zahlr. Abbildungen,
38,— DM, 1984
ISBN 3-8023-0769-0

Mit Eigeninitiative weg von der
Spielkonserve: Der Leser wird zum
aktiven und schöpferischen Um-
gang mit Computerspielen aufgeru-
fen und angeleitet — aus der Spiel-
idee entwickelt sich die Spielstra-
tegie und hieraus das Programm.
Das Programmieren des Computers
selbst ist das Spiel; so lernt der Le-
ser spielend das Programmieren.
Die Programmbeispiele wurden auf
Commodore-Computern erstellt.

 Mein Home-Computer

Monat für
Monat über

30 Seiten
Programme

T |

‚Mein Home-Computer

jeden Monat:
* Programme für alle gängigen Home-Computer
* Anwendungsbeispiele aus der Praxis
** Marktübersicht, Tests und Kaufberatung für Zusatzgeräte

und Home-Computer
.* Schnellkurse für Einsteiger zum Sammeln
** Tips und Tricks
:* Interessantes, Aktuelles und Unterhaltsames aus der

Home-Computer-Szene
** News, Clubnachrichten |

Holen Sie sich die neueste Ausgabe bei Ihrem Zeitschriften-
händler oder fordern Sie ein Kennenlernheft direkt beim Vogel-
Verlag, Leserservice HC, Postfach 67 40, 8700 Würzburg, an.

Ihr erstes Commodore-64-Buch war das Handbuch, das Sie mit
dem Gerät erhielten. Doch als Anfänger können Sie damit meist
keine allzu großen Sprünge machen. Wenn Sie die Bedienung
und Programmierung des Commodore 64 trotzdem ohne viele
Vorkenntnisse lernen wollen, sollten Sie dieses Buch lesen. Es
will Sie aber auch unterhalten und amüsant sein, denn aller

Anfang ist schon schwer genug!

Zuvor sollten Sie auf jeden Fall das Geräte-Handbuch durchge-
lesen und das eine oder andere Beispiel ausprobiert haben.
Dann verhilft Ihnen dieses «Zweite Commodore-64-Buch» zu
den Erfahrungen, die Sie zum selbständigen Programmieren
brauchen. Schließlich will dieses Buch Ihr «Sprungbrett» sein zu
weiterführender Computerliteratur.

& VOGEL-BUCHVERLAG

WURZBURG

ISBN 3-8023-0793-3

