Mein zweites
Commodore 64-Buch

DasBuch, das nach dem Handbuch kommt

Rugheimer/Spanik

Hannes Riigheimer, Christian Spanik
Mein zweites Commodore-64-Buch

Inhaltsverzeichnis

DieMacher. e .

Zwischenspiel 1

Eine kleine Einfilhrung ins Commodore-BASIC.
IFno Ahnung THEN dies hierlesen
UnterwegszurRunway
Startposition erreicht. Ready for TAKEOFF
10000 Meter e
Bitte schnallen Sie sich wiederan

Die Commodore-64-Grafikzeichen

«Das steht halt so im Betriebssystem»
Zwei Méoglichkeiten, Ihre Grafiken zu schiitzen
Wie die Grafik laufenlernte

Der Speicheraufbau des Commodore64
Also, mit SYS 61320 bin ich eigentlich deutlich im Betriebssystem ... Ohl . .
Von Prozessoren, RAM, ROM und anderen Chips
Strom oder nicht Strom, dasist hierdieFrage
Wie rechnet man mit einem Computer, der nicht bis 2 zidhlen kann?
Uber das Gliick, einen 8-Bit-Prozessor zu besitzen, und vom Pech,
16Bitzubrauchen L Lo
Wie einem ohne groBe Schwierigkeiten tiber 3000 Byte verlustig gehen

Sag mir, wo die Bytes sind, wo sind sie geblieben?
Wenn Bytes halbe-halbemachen
Speicherzauberei L Lo

1"

13

15
15
17
21
27
46

49

49
51
52

55
55
56
57

59

60
62
63
66
68

10

Inhalt
Selbstdefinierte Zeichen L. 71
Warum der Computer Analphabet ist und was wirdavon haben 71
Eine Umleitungsempfehlung firdenVIC 74
Wie man Zeichen ein bitchen verdndernkann 77
Zwischenspiel 2 L 81
Ein Spiel mit Sonderzeichengrafik 83
Rapunzel 83
Listing e 20
Zwischenspiel3 L. e 92
Die hochauflésende Grafik des Commodore64 929
Ein vollig neues Grafikgefihl 99
Ein paar gutgemeinte bose Worte zur Einfihrung 100
Der Bit(-tere) WegzurGrafik 100
Vom ChaoszumNichts. 103
Von Autos, Bitsund Sinuskurven L. 106
Wenn's Speicherprobleme gibt o oL 110
Commodore macht's so bunt, bunter geht'snicht 111
Zwischenspiel 4 118
Sprites auf dem Commodore64 121
Die Riesen-Super-Sonderzeichen 121
Ab hier kénnen lhnen bis zu 8 Steine vom Herzenfallen 123
1. Akt: Wiemacht maneinenStar 125
2. Akt: Wie bringt man einen Star auf die Bihne 129
3.Akt: AStarisborn L 130
4. Akt: Der Starund seinKostim 134
Téne und Gerdusche auf dem Commodore64 141
DerTonmachtdieMusik 141
Der kleine Schwarze mitdem lautenTon 143
Wirwagenes: Ein Beispiel 151
UNdjetzt? . . .o oo L1582
EinSpielmitSprites 153
Schneewittchen und die sieben Zwerge 153
Listing 171
Input/Output beim Commodore64 175
Rein in die Kartoffeln, raus aus den Kartoffelin 175

Ein kleiner Leitfaden zum Einkauf 177

1

12

Tipp-tipphurra. 178
Jetzt kommtesknilippeldick, 185
Quovadis, Joystick? 190
Die Widerstandsbewegung beim Commodore64 192
Peripheriegerdte 197
Der Commodore bekommt Gesellschaft 197
EineScheibemitFormat 198
Das Konigreich von nebenan—dieVC1541 202
Ein UmsteigebahnhoffiirBits 223
Der Commodore lerntschreiben 227
Anhang 231
Kapitelzusammenfassungen, 231
Die Grafikzeichen 231
Die Steuerzeichen 232
Die Speicheraufteilung o o 233
Selbstdefinierbare Zeichen, 235
DieHires-Grafik 236
Sprites e 239
Musikund Gerdusche 242
Input/Output 244
Peripheriegerdte 246
Listings 250
Kleines Fachwortlexikon 260
PEEK&POKE-Tabelle. 267
Literaturverzeichnis und Software-Hinweise 276

SchluBwort e 277

Vorwort

Einer der wichtigsten Punkte beim Schreiben dieses Buches war, daR es nicht
nur informativ sein soll. Seine Aufgabe ist es auch, moglichst einfach und
unterhaltsam die Fahigkeiten lhres Commodore 64 zu erkldren. Es soll Sie
informieren, lhnen Niitzliches, Praktisches zeigen. In einem Satz: Es soll
benutzerfreundlich sein. Diesen Effekt méchten wir mit zwei Dingen errei-
chen: dem Stil, in dem die folgenden Seiten abgefaBt sind, und den Beispie-
len, die Sie am Ende dieses Buches finden werden.

Wir haben alle Beispielprogramme so kurz wie moglich gehalten. Dies hat
mehrere Griinde: Zum einen tippen nur wenige Leute gern lange Listings ab —
auBerdem will man ja méglichst schnell Ergebnisse vorweisen kénnen. Zum
anderen: Dies ist kein Tippbuch. Es gibt einfachere Wege, sich die Augen zu
verderben, als ndchtelanges Lesen kleingedruckter Listings. Uns ist es wichtig,
dafB Sie die Programmstruktur verstehen. Das ist sicher der beste Weg, den
Umgang mit Ihrem Commodore 64 zu lernen. Unsere Beispiele sind auch
nicht iibermaRig komfortabel. Alle Schnérkel wurden weggelassen, damit die
Programme moglichst iibersichtlich bleiben. Und noch etwas: Wenn es lhnen
irgendwann zu lastig wird, dasselbe Programm immer wieder mit RUN zu
starten, werden Sie von selbst anfangen, es zu verdndern. Und genau das
wollen Sie ja letztlich lernen: selbst programmieren. Sie sollen ja experimen-
tieren, die Mdglichkeiten des Computers selbst herausfinden. Denn eins kann
Ihnen kein Buch ersetzen: die eigene Erfahrung mit lhrem System. Natiirlich
haben wir die Programme — soweit méglich — etwas amiisant gestaltet. Dafl
das nicht immer gelingen kann, liegt in der Natur der Sache. Manche Dlnge
sind halt einfach nicht lustig.

Voraussetzung fiir die Arbeit mit diesem Buch ist, daB Sie das zum
Commodore 64 mitgelieferte Handbuch zumindest durchgelesen und das

10 Vorwort

eine oder andere Beispiel ausprobiert haben. Unser Buch bietet zwar eine
Einfihrung ins Commodore-BASIC, versteht sich aber nicht als BASIC-Kurs.
Deshalb sollten Sie auch das Commodore-Handbuch méglichst immer in der
Néhe haben. Ein paar Tips noch zu unserem Buch: Wir raten Ihnen, nicht
zwischen einzelnen Kapiteln zu springen oder Kapitel auszulassen. Wichtig ist
auch, die kurzen Zusammenfassungen jedes Kapitels im Anhang zu lesen.
Diese Zusammenfassungen haben verschiedene Griinde. Sie sollen einerseits
das gezielte Suchen nach Informationen vereinfachen und so helfen, Infor-
mationen, die schnell gebraucht werden, rasch wieder aufzufrischen. Vor
allem aber wollen wir Sie in diesem «Buch im Buch» auf Nachfolgelektiire und
die Fachzeitschriften vorbereiten. Denn diese Minikapitel sind in erster Linie
technische Texte, die auch iibliche Fachausdriicke verwenden.

Anhand des Stichwortverzeichnisses und des zugehérigen ausfiihrlichen
Kapitels konnen Sie sich die Textinhalte relativ einfach erschlieBen, sammeln
so einen guten Schatz an Fachausdriicken und sind entsprechenden Texten
nicht mehr hilflos ausgeliefert.

Wenn Sie jetzt das Gefiihl haben, dieses Buch ist genau das, was Sie
suchen: fein. Wenn nicht? Nun, dann hat es sich in jedem Fall gelohnt, diesen
einfithrenden Abschnitt zu lesen. Wenn er auch — zugegeben — etwas trocken
ist. Aber wir meinten, daR das so sein muB. In jedem Fall wiinschen wir lhnen
viel SpaB mit Ihrem Commodore 64.

Die Macher

Okay, liebe zukiinftige Programmierer. Es ist anzunehmen, da8 wir jetzt unter
uns sind. Deshalb sollten wir uns vielleicht erst einmal kurz bekannt machen.
Jedem, der nicht daran interessiert ist, wer hinter diesem Buch steckt, sei
empfohlen, diese Seiten zu iiberblittern. Oh — das ist nett von Ihnen, daf Sie
weiterlesen.

Zwei Mann sind fiir dieses Buch verantwortlich.

Der eine ist der Commodore-Spezialist: Hannes Riigheimer —im folgenden
einfach Hannes genannt — wurde 1965 in Oberndorf geboren. Der kleine
Hannes entwickelte schon friih reges Interesse an der Elektronik. Mit acht
Jahren jagte er deshalb den Experimentierkasten eines Freundes in die Luft.
Die Freundschaft war nur von kurzer Dauer. Als die ersten Home-Computer
auf den Markt kamen, fand Hannes damit auch ein neues Betatigungsfeld.
Mittlerweile élter und reifer geworden, stellte er hocherfreut fest, daR diese
schwarzen Kisten nicht sofort durchschmorten, wenn etwas nicht stimmte,
sich dafiir aber beharrlich mit SYNTAX ERROR meldeten.

Die allerersten mit Preisen um die 2000 DM waren meist unerschwinglich.
Aber freundlicherweise lassen ja Kaufhduser jeden an diesen Geradten herum-
probieren. Stlick fiir Stiick arbeitete sich Hannes in die Geheimnisse von
BASIC ein. Irgendwann war er es leid, stindig zu warten, bis die anderen
fertiggespielt hatten.

Gliicklicherweise kam zu diesem Zeitpunkt der VC 20 auf den Markt. Mit
vereinten finanziellen Kraften wurde von der Familie dieser «Volkscomputer»
gekauft. Der Rest ist schnell erzdhlt. Zuerst wurde der VC 20 aufgeriistet, ein
Jahr spater ein Commodore 64 gekauft; dazu ein Diskettenlaufwerk, ein
Printer-Plotter usw. Abgesehen von der finanziellen Hilfe durch die Eltern
konnte Hannes dank seines Wissens auch bald mit seinem Hobby etwas Geld

12 Die Macher

verdienen. Er erstellt Computergrafiken und hélt Kurse tiber den Commodore
64. AuBerdem berdt er Kunden beim Computerkauf.

Damit sind wir beim Mittater. Name: Christian Spanik, geboren 1963 in
Salzburg. Beruf: Juniortexter in einer Frankfurter Werbeagentur. Eigentlich ist
seine Entwicklung der von Hannes ziemlich dhnlich, auBer daf es bei ihm das
Schreiben war, das ihn von jeher interessierte. Um Sie aber nicht mit noch
einer Kindheitsgeschichte zu langweilen (auch elektrische Schreibmaschinen
gehen sehr leicht kaputt .. .), kommen wir am besten gleich zum Kernpunkt.

1979 trafen wir beide zusammen. Wir waren in der gleichen Schule und in
der gleichen Klasse. SchlieBlich fanden wir uns plétzlich auch in der gleichen
Bank wieder. Da saBen wir dann auch die restlichen drei Jahre gemeinsam ab.
Alle Unterbrechungen des Zusammensitzens sind auf hohere Gewalt zuriick-
zufiihren. Unsere Englischlehrerin hatte beispielsweise duRerst eigene Ansich-
ten (iber die Sitzordnung. SchlieBlich ging Christian ins Berufsleben. Hannes
blieb an der Schule, an der er zur Zeit noch ist.

Kaum im Beruf, hatte auch Christian, ehe er sich's versah, mit Computern
zu tun. Obwohl er auf einem anderen System arbeitete, lernte er durch
Hannes viel .lber Commodore. Aufgrund der Commodore-Kurse, die wir
zusammen hielten, wurde das Wissen um diesen Computer logischerweise
immer stdrker. Seitdem arbeiten wir als Team am Commodore 64.

SchlieBlich kam, was kommen muBte. Durch einen Bekannten kamen wir
mit dem Vogel-Buchverlag Wiirzburg in Verbindung und beschlossen, auch
hier unsere Fahigkeiten gemeinsam einzusetzen. Das Ergebnis liegt vor Ihnen.
Am besten, Sie urteilen selbst. Sollte es thnen gefallen, wire es schén, wenn
Sie uns das wissen lieBen. Schreiben Sie uns aber auch, was lhrer Meinung
nach fehlt oder besser sein konnte. Fiir Anregungen und Tips danken wir
schon jetzt.

Weil wir gerade dabei sind, méchten wir an dieser Stelle auch all denen
danken, die bei der Entstehung dieses Buches mitgeholfen haben — namlich
den Herren Hugo E. und Christoph Martin, Wiirzburg, fiir das Uberlassen des
Arbeitsmaterials und die intensive Unterstlitzung, Brigitte fiir ihr Interesse an
unserer Arbeit und ihre Ausdauer im Warten auf Christian, Hannes' Eltern fiir
ihre Geduld und der Firma Liirzer, Conrad & Leo Burnett fiir das Verstandnis,
das sie insbesondere der Arbeit von Christian entgegenbrachte.

Zwischenspiel 1

Das Zwischenspiel werden Sie in diesem Buch insgesamt viermal finden. Es
hat die Aufgabe, die Dinge aufzunehmen, die nicht direkt in den Ablauf der
einzelnen Kapitel passen. Das erste Zwischenspiel enthélt ein paar grundsatz-
liche Anmerkungen.

Alle im Text vorkommenden Worter, die kursiv gedruckt sind, werden im
Stichwortverzeichnis noch einmal erklart. Die PEEKs und POKEs, die im Buch
vorkommen, sind in einem weiteren Anhang zusammengefaft. AuBerdem
finden Sie noch Literaturhinweise, Software-Empfehlungen und natiirlich die
Programmlistings. Die Listings haben wir deshalb in den hinteren Teil des
Buches gepackt, weil Sie so die Méglichkeit haben, zuerst eine eigene Lésung
zu versuchen, bevor Sie das Gedruckte abtippen. Grundsitzlich halten wir es
fur den besten Weg, das Buch von vorn nach hinten durchzuarbeiten.
Einfach, weil wir sozusagen «aufsteigend» vorgehen. Wer schon mehr Erfah-
rungen hat, kann natiirlich gleich die spateren Kapitel aufschlagen. Die
anderen gelegentlich durchzulesen schadet sicherlich auch nicht.

Und jetzt noch ein paar ernste Worte zum Commodore 64: «Wir mochten
Sie hiermit begliickwiinschen ...» Das ist der erste Satz der Einleitung in der
erstaunlich schméchtigen Anleitung, die mit dem 64er ins Haus kommt. Nun,
in gewisser Hinsicht ist dieser Satz berechtigt. Es gibt wohl kaum einen
Computer, der ein dhnlich gutes Preis-Leistungs-Verhdltnis bietet. Da sind die
Tone, die tolle Grafik usw. Aber wie programmiert man das eigentlich?
Genau da wird es ndmlich schwierig. Um dem Computer nur einen einzigen
Ton zu entlocken, sind mindestens (!) fiinf Speicherstellen anzusprechen. Es
gibt keinen einzigen eigenen BASIC-Befehl, der Téne generiert. Genausowe-
nig gibt es dergleichen, wenn es um Grafik geht. Wenn Sie Ihren Commodore
schon ldnger besitzen, werden Sie diese Nachteile bereits kennengelernt

14 Zwischenspiel 1

haben. Warum das so ist, war und ist uns vollig unbegreiflich. Denn seit dem
ersten Commodore (PET) hat sich dieses BASIC praktisch nicht verandert. Der
VC 20 und der Commodore 64 benutzen also immer noch das gleiche BASIC.
Ein vergleichbares Beispiel wére es, einen Kéfer-Motor in einen Rolls-Royce
einzubauen. Das war sicher eine herbe Enttduschung fiir alle, die auf den
neuen Commodore 64 umstiegen. Um eine hochauflésende Grafik zu erstel-
len, miissen Sie beim Commodore 64 jeden einzelnen Punkt mit einem
entsprechenden POKE anschalten. Das ist sicherlich nicht der bequemste
Weg, Linien zu ziehen.

Weil die Dinge nun mal so sind, wie sie sind, empfehlen wir Ihnen,
moglichst bald eine BASIC-Erweiterung zu kaufen (siehe Software-Anhang).

Unser Buch geht dennoch den harten Weg. Denn viele haben eben kein
solches Programm. Wir kénnen nur hoffen und versuchen, mit unserer Kritik
dazu beizutragen, daB Commodore diesen Zustand alsbald abstellt. Da es
keinen anderen Computer gibt, der aufgrund seiner Moglichkeiten und
Voraussetzungen besser fiir Einsteiger geeignet ware, finden wir es nur
konsequent, das BASIC komfortabler und einstiegsfreundlicher zu machen.

1
Eine kleine Einfiihrung ins
Commodore-BASIC

IF no Ahnung THEN dies hier lesen

Wenn Sie die Uberschrift hierher verleitet hat, dann haben Sie zwei Dinge
bewiesen: Zum einen, daB Sie sich selbst gegeniiber sehr ehrlich sind (und das
ist eine gute Voraussetzung fiir das ganze Buch). Zum zweiten haben Sie
damit gezeigt, daB Sie durchaus schon ein biRchen BASIC verstehen. Die
Kapiteliiberschrift ist ndmlich ein BASIC-Befehl. Obwohl Ihr Commodore
wenig erfreut sein diirfte, wenn Sie die Zeile oben eingeben und versuchen,
ihm damit irgendeine Reaktion zu entlocken.

Warum das so ist, méchten wir kurz erkldren. Diese Erklarung wird lthnen
vielleicht helfen, das restliche Kapitel und die Idee, die hinter BASIC steht,
etwas leichter zu durchschauen.

Als Sie die Uberschrift des Kapitels gelesen haben, ging lhnen wahrschein-
lich folgendes durch den Kopf: IF no Ahnung THEN dies hier lesen. Ohne
groBartig zu tibersetzen, kam fiir Sie der Sinn heraus: Wenn ich noch gar
nichts iiber meinen Commodore weiB, dann sollte ich diese Seiten lesen.
Wenn wir Ihre Uberlegung in lauter kleine Stiickchen zerlegen, ergibt sich
ungeféhr folgender Monolog: IF ist englisch. Das heifit «<wenn» — glaub’ ich.
No Ahnung: Logisch, das heiBt «keine Ahnung». THEN ist ja auch bekannt:
«dann» — ebenfalls aus dem Englischen. Dies hier lesen — aha. Gemeint ist:
Wenn ich noch keine Ahnung habe, dann soll ich das hier lesen.

Habe ich eigentlich schon Ahnung? Na ja, so ein biBchen schon. Aber ein
biBchen Auffrischung kann nicht schaden ... Eine Entscheidung ist gefallen.
Sie haben sich entschlossen, dieses Kapitel zu lesen, weil die Bedingungen,
'das zu tun, fiir Sie gegeben sind. Aber es gibt Leute, die ebenfalls dieses Buch
gekauft haben und genau die andere Entscheidung getroffen haben.

16 Eine kleine Einfiihrung ins Commodore-BASIC

Wir wollen deren Weg nicht noch einmal so auseinanderklamiisern, wich-
tig war nur, es mal an einem Beispiel zu tun. Natiirlich haben Sie lhre
Entscheidung in ein paar Sekunden geféllt, und deshalb werden auch diese
ganzen Vorgdnge gar nicht so bewuft. Aber sie finden statt. Es ging nur
darum, daB Sie verstehen, was die Worte meinen. Denn auch wenn wir
IF...THEN in unserer Uberschrift verwendet haben — wire der Rest beispiels-
weise in Kisuaheli geschrieben gewesen, hétten Sie den Text gar nicht oder
héchstens nur teilweise verstehen kénnen. (Selbstverstdndlich nehmen wir
von dieser letzten Bemerkung all die Herrschaften der geschatzten Leser-
schaft aus, die Kisuaheli gelernt haben.)

Wenn unsere und damit auch thre Uberlegungen erst einmal so weit
gediehen sind, dann wird Ihnen auch schnell klar werden, warum thr Com-
modore nichts mit unserer Uberschrift anfangen kann. Sie besteht zwar
teilweise aus einem BASIC-Befehl, aber man kann mit an Sicherheit grenzen-
der Wahrscheinlichkeit davon ausgehen, da8 Thr Computer mit Ausdriicken
wie «no Ahnung» oder «dies hier lesen» nichts anfangen kann. (Womit
iibrigens auch schon der eigentliche BASIC-Befehl aus der Uberschrift verra-
ten wire: Er heift IF.. . THEN. Aber den schauen wir uns erst etwas spater an.)

Langer Rede kurzer Sinn: Wir versuchten lhnen nahezubringen, daB der
Computer seine eigene Sprache hat. Natiirlich gibt es immer ein paar Leute,
die einwenden werden: «Ja, wenn der Kerl so dumm ist, daB er mich nicht
versteht, soll er das doch erst mal lernen, bevor man ihn auf die Menschheit
losldBt». Nun, diese Meinung ist sicherlich nicht ganz unberechtigt. Aber
nehmen wir das Beispiel BASIC: Schon diese Sprache ist ein Zugestandnis an
die Menschen, denn ein Computer wird nicht etwa mit BASIC als Mutterspra-
che geboren. Was er kann, ist «Strom» oder «kein Strom» voneinander zu
unterscheiden. Alles andere haben ihm Manner und Frauen in den Entwick-
lungsabteilungen der groRen Computerfirmen und an Universitdten in miihe-
voller Arbeit beigebracht. Sie haben den Computer gebaut und ihm in einel
besonderen Sprache namens Assembler oder Maschinensprache all die Dinge
beigebracht, die es heute erméglichen, daf wir Computer einfach program-
mieren kdénnen, daB sie uns bei unserer Arbeit helfen und uns mit Spieler
unterhalten. Aber was auch immer die Experten getan haben, die BASIC
entwickelten, das Lernen und Verstehen kdnnen sie uns nicht abnehmen
Erfreulicherweise.

Wir wollen Sie deshalb in diesem Kapitel einladen, mit uns einen Flug zi
machen. Dieses Bild schien uns am besten zu passen. Wir wollen namlich zi
einer Art Insel, die im Meer der vielen Computersprachen und BASIC-Dialekt:

Eine kleine Einfiihrung ins Commodore-BASIC 17

liegt. Lassen Sie uns diese Insel «Commodore-BASIC» nennen. Unseren Flug
dorthin und auch den Aufenthalt wollen Sie sich bitte als eine Art Studienreise
vorstellen. Sie sollen zwar etwas dabei lernen, aber es soll vor allem Spaf
machen.

Nachdem wir uns einig sind, diirfen wir unsere Passagiere an Bord unserer
Maschine bitten. Stellen Sie das Rauchen ein, schnallen Sie sich an und — das
wichtigste von allem — schalten Sie lhren Commodore ein. Sie sollten alles,
was wir jetzt besprechen, mitmachen. Wenn Sie bereit sind, kann unser Flug
beginnen. Weil die BA (BASIC AIRWAYS) aus Kostengriinden auf Stewardes-
sen verzichtet, sollten Sie sich vielleicht schon vorher etwas zu trinken und zu
knabbern holen.

Unterwegs zur Runway

Noch ein paar Anweisungen, wahrend wir in Startposition rollen. Unsere
Flugzeit hdngt ganz von lhnen ab. Aber es sollte nie allzulange dauern, damit
Sie nicht zuviel vom Anfang vergessen. Notausgange befinden sich iiberall in
der Maschine und konnen jederzeit gern als Ort der Ruhe und des Nachden-
kens benutzt werden. Scheuen Sie sich nicht, immer und jederzeit auszustei-
gen, um selbst auszuprobieren und zu tiben. Glauben Sie uns, diesen Service
bietet lhnen keine andere Fluggesellschaft, denn bei uns konnen Sie auch
jederzeit wieder zuriickkommen. Die Flughthe wird sich im Verlauf der Reise
steigern. Sollten Sie noch nie mit uns geflogen sein (und wer ist das bisher
schon ...?), nehmen Sie sich bitte noch die Sicherheitsinstruktionen zur
Hand:

_ Darin finden Sie ein paar Dinge, die Sie wissen sollten. Die klingen zumeist
sehr simpel (sind es auch), aber die eine oder andere Kleinigkeit, die man
nicht beachtet hat, brachte schon allerhand Programmieranfanger zur Ver-
zweiflung.

Zuerst einmal missen Sie zwischen zwei Zustinden, in denen sich der
Computer befinden kann, unterscheiden: Direktmodus oder Programmodus.
Wenn Sie eingeben

PRINT "HALLO"

und dann (RETURN) driicken, wird Ihr Computer diesen Befehl sofort
ausfuihren. Wenn Sie aber statt dessen eingeben:

18 Eine kleine Einfiihrung ins Commodore-BASIC

10 PRINT "HALLO"

und danach (RETURN), wird erst einmal gar nichts passieren, zumindest
nichts Sichtbares. Statt diese Zeile sofort auszufiihren, speichert sie der
Computer ab. In einem speziell dafiir reservierten Bereich werden alle Befehle
abgelegt, bis sie mit einem anderen Befehl| aufgerufen werden. Damit wird
auch der Sinn der Zeilennummer klar. Irgendwie muB ja geklart sein, welcher
der abgespeicherten Befehle zuerst ausgefiihrt werden soll.

Ein Beispiel aus dem beriihmten «richtigen Leben» ware ein Tagesablauf.
Wenn Sie sich zum Beispiel folgendes kleine Programm fiir den 10. 3.
zurechtgelegt hatten: Waschen, Anziehen, zur Arbeit gehen, nach Hause
kommen, mit meiner Frau spazierengehen und sie dann zum Essen einladen,
dann diirfte es ein ziemliches Durcheinander geben, wenn Sie den Pro-
grammteil «zur Arbeit gehen» vor allen anderen ausfiihren. Selbst wenn Sie
einen sehr liberalen Arbeitgeber haben — spdtestens lhre Frau wird sich
weigern, mit lhnen im Pyjama spazieren oder gar essen zu gehen.

Das zum Thema Programmablauf. Eines noch: Sie werden sicherlich schon
gemerkt haben, daf bei Programmausdrucken in Computerheften meist
Zeilennummern in Zehnerschritten verwendet werden. Das ist natiirlich nicht
etwa eine Vorschrift. Sie kdnnen Zeilennummern frei zuweisen, solange Sie
dabei die Reihenfolge einhalten, die das betreffende Programm vorschreibt.

Allerdings sind die Zehnerschritte schon sehr zu empfehlen. Denn wenn
man mal etwas vergessen hat oder nachtrdglich einfligen mochte, ist das
meist schwer, wenn nicht genug Platz zwischen den Zeilen ist. Viele Pro-
gramme sind tatsdchlich erst zwischen den Zeilen interessant geworden, weil
einem halt mitten beim Programmieren immer mehr Ideen kommen als bei
irgendwelchen Trockeniibungen.

Jetzt noch ein paar Sdtze zum Thema «Wie versteht mich mein Compu-
ter?». Es gibt drei «Dienstprogramme», die den Computer verstindnisvoll
machen. ZusammengefaBt nennt man diese drei Programme das Betriebssy-
stem (Operating System). Da wdre zunéchst einmal der BASIC-Interpreter. Er
ist dafiir verantwortlich, daf Ihre BASIC-Befehle in fiir den Computer ver-
standliche Maschinensignale umgewandelt werden. Vielleicht haben Sie
schon hier und da gehort, daB BASIC eine der langsamsten Computerspra-
chen sein soll. Das stimmt. Denn wenn Sie direkt in der sogenannten
Maschinensprache programmieren, sparen Sie lhrem Computer den Weg
iiber das Ubersetzungsbiiro — das heift, der Dolmetscher (BASIC-Interpreter)
wird nicht mehr gebraucht. Deshalb geht in Maschinensprache auch alles

Eine kleine Einfiihrung ins Commodore-BASIC 19

schneller als in BASIC. Dafir ist sie schwerer zu erlernen, und selbst bei Profis
dauert es lange, bis ein Maschinenprogramm richtig lduft, weil jede Anwei-
sung in kleinste Schritte aufgeteilt werden muf und sich Fehler nicht nur
schneller einschleichen, sondern auch schwieriger gefunden werden. BASIC
wird deshalb auch als Interpretersprache bezeichnet.

Vielleicht haben Sie auch schon mal etwas von Compilersprachen gehort.
PASCAL ist zum Beispiel eine solche. Compiler soll zum Ausdruck bringen,
dal aus einem Programm in einer relativ einfach zu erlernenden Sprache ein
der Maschinensprache sehr dhnlicher Code gemacht wird. Der ist dann zwar
noch nicht ganz so schnell, aber doch schon ziemlich ebenbiirtig.

Das nachste unserer Hauptprogramme ist das sogenannte Kernal. Es
steuert alle Prozesse im Computer, die stindig stattfinden miissen — unab-
hédngig von lhrem laufenden Programm. Es fiihrt die notigen Interrupts aus.
Das heiBt zum Beispiel, daR es in kaum meBbaren Zeitabstanden immer ein
Programm losschickt, das nachschaut, ob Sie irgend etwas iber die Tastatur
eingegeben haben und &hnliches. Dann gibt es noch ein Programm, das fiir
die Bildschirmausgabe sorgt. Es weist bestimmte Bausteine des Computers
an, lhre Eingaben am Bildschirm darzustellen oder eine Meldung des BASIC-
Interpreters (etwa den unvermeidlichen SYNTAX ERROR) auszugeben, damit
Sie wieder einmal erfahren, daB irgendwo in diesem M...-Programm ein
Fehler steckt. Diese Programme sind — in einem speziellen Speicher gesichert
— stdndig vorhanden und iiberleben dort auch das Ausschalten des Compu-
ters. Mehr iber die einzelnen Programme erfahren Sie noch — und auch
einiges dariiber, wie Sie sich deren Féhigkeiten zunutze machen konnen.

Zur Demonstration der Arbeit im Computer dient folgender Dialogauszug,
frei Ubersetzt aus dem Stromischen ...

«DrauBen vor dem Schirm, da steht ein User fein.»
«Nun, das kenn' ich schon — am besten laft ihn ein.»
(Zitat von K. Ernal, am 25. 2. 1982 anldRlich einer Tastaturabfrage)

Der Dialog wird zwischen mehreren Programmen stattfinden. Zeit des
Gesprdchs ist etwa 22.30 Uhr. AnlaR ist der Versuch von Hannes Riigheimer,
den Fehler in einem Programm zu beheben. Teilnehmer sind: der BASIC-
Interpreter (B.l.), das Kernal (K.) und das Bildschirmprogramm (B.P.)

B.l.: «O nein!»
K.: «Doch!»

20 Eine kleine Einfiihrung ins Commodore-BASIC

B.I.: «Er probiert es doch nicht etwa schon wieder?»

K.: «WeiB ich nicht. Er hat mir auf jeden Fall einen Befehl aus drei Buchstaben
tiber die Tastatur mitgegeben. Was fiir einen, ist ja wohl dein Bier.»

B.l. (sich den mitgebrachten Befehl ansehend): «Tatsdchlich. Schon wieder
ein RUN. Ich soll sein ganzes Programm noch mal laufen lassen. Langsam
miiBte er doch kapiert haben, daB da ein Fehler drinsteckt. Das ist jetzt schon
das fiinftemal.»

K.: «Hartndckig ist er ja. Das mufl man ihm lassen.»

B.1. (ruft in Richtung des Mikroprozessors): «He, mach dich mal fertig. Der
Typ da drauBen will schon wieder einen Lauf.»

(Schweigen)

B.l. (dreht sich wieder um): «Was heiit hier hartndckig! Als wir noch in
diesem Laden rumstanden, da war erst was los. Da kommen dann so Knaben
an mit Eingaben wie <Ich bin do...h»

K.: «Entschuldige, wenn ich dich unterbrechen muB, aber ich hore gerade,
daB ein Interrupt kommen soll. Also wartet mal 'n Moment.»

B.l.: «Es ist immer dasselbe mit euch Kernals, nie kénnt ihr euch ruhig
hinsetzen. Keine fiinf Minuten quatschen kann man hier.»

K.: «Fiinf Minuten! Bist du verriickt?»

B.P. (sich pl6tzlich einmischend): «Entschuldigung die Herrschaften, wenn ich
mich einmische. Aber wenn ihr weniger schwatzen wiirdet, wire ich euch
sehr verbunden. So ein Interrupt ist ndmlich gar nicht so schlecht. Dann kann
ich vielleicht mal wieder meinen Bildschirm auf Vordermann bringen.»

B.I.: «Weift du, was mich dein Bildschirm interessiert?»

B.P.: «Will ich gar nicht wissen. Aber unser User hétte schon ganz gern mal
gewuBt, ob der Herr BASIC-Interpreter in der Lage ist, dem Prozessor so éine
einfache Nachricht wie RUN zu tiberbringen. Und mich wiirde das ebenfalls
brennend interessieren, damit ich meinen blinkenden Cursor mal wegnehmen
kann und der User merkt, daB hier auch was passiert.»

K.: «lhr entschuldigt mich bitte. Ich miBte namlich jetzt wirklich .. .»

B.l.: «Typisch, kaum wird es brenzlig, haut er ab, diese Flasche.»

B.P.: «PflichtbewuBtsein nennt man das. Schon mal gehort?»

B.l. (resignierend): «Okay, okay. Nach dem Interrupt fangen wir an ...»

Wie gesagt, dies war eine freie Ubersetzung. Ubrigens: Die Dauer eines
solchen Gespréachs liegt bei einer sechzigstel Sekunde. Dann kommt immer
ein Interrupt.

Eine kleine Einfiihrung ins Commodore-BASIC 21

Nachdem wir zugehért haben, kénnen wir uns ins Geschehen begeben.
Das heiBt: Lassen wir die Jungs auf der anderen Seite vom Schirm doch mal
ein biBchen fiir uns arbeiten. Jetzt widmen wir uns den Basics von BASIC.

Startposition erreicht. Ready for TAKE OFF

Noch eine Kleinigkeit, bevor wir uns in die BASIC-Héhen aufschwingen:
Dieser Abschnitt ist kein BASIC-Lehrgang. Das will und kann er auch gar nicht
sein. Wir wollen nur einen kleinen Uberblick iiber die wichtigsten Befehle und
ihre Anwendung geben. Damit sind Sie dann in der Lage, einfache Pro-
gramme selbst zu schreiben. Spater auftauchende Befehle, die nicht erklart
wurden, schlagen Sie bitte in Ihrem Commodore-Handbuch nach. Feinheiten
des Programmierens lernen Sie noch in diesem Buch. Die beste Art zu lernen
ist, selbst groBe oder kleine Programme zu schreiben.

Jetzt geht es los. Wir starten. Wéhrend die Maschine dabei ist, in unsere
Reisehohe zu klettern, kénnen wir schon die ersten Uberlegungen anstellen.
Die erste Frage ist: Wie spricht man mit einem Computer wéhrend eines
Programms? Unsere Frage gilt also dem Stichwort: Der Dialog.

Wenn Sie ein Programm schreiben, kann Ihr Computer zum Beispiel immer
eine Zahl durch eine andere dividieren. Die Frage ist bloB, wie macht man das
in BASIC-Programmen. Im Direktmodus wiirde es so aussehen:

PRINT 12/2

PRINT

Womit auch schon ein grundlegender Befehl genannt ware. PRINT sagt dem
Computer, daB er irgend etwas zeigen oder ausgeben soll. Mit Ausgeben
kann hier natiirlich nicht eine Runde in lhrem Stammlokal gemeint sein,
sondern nur ein Wert, der irgendwo errechnet oder eine Zahl, die abgespei-
chert wurde. PRINT wird immer dann verwendet, wenn dem Computer
mitgeteilt werden soll, daB-er irgend etwas anzeigen soll. Wenn Sie gerade
die Zeile von oben ausprobiert haben, werden Sie sehen, daB nach dem
(RETURN) das Ergebnis (hoffentlich die Zahl 6) ausgegeben wird. Wenn Sie
aber statt dessen eingeben:

PRINT "12/2"

22 Eine kleine Einfiihrung ins Commodore-BASIC

dann wird lhnen der Computer als Ergebnis nicht sechs, sondern genau das
liefern, was zwischen den Anfithrungszeichen steht, und zwar ohne das Wort
PRINT und ohne die Anfithrungszeichen. Statt Zahlen kdnnen Sie auch Texte
verwenden, der Computer gibt alles klaglos aus. Klaglos vor allem deshalb,
weil er nicht versucht, das, was zwischen den Anflihrungszeichen steht, als
Befehl auszulegen. Der Interpreter merkt durch diese Zeichen, daR er nur den
Inhalt wiedergeben soll. Sie kénnen auch versuchen,

PRINT HALLO

einzugeben. Nach diesem Versuch werden Sie als Antwort die beriihmte Null-
Losung (bekannt aus Fernsehen und Politik) erhalten. Warum das so ist,
erkldren wir noch. Wenn Sie also einen Text ausgeben wollen, miissen Sie ihn
zwischen Anflihrungszeichen setzen. Wenn Sie jetzt also innerhalb eines
Programms Zahlen dividieren wollen, wiirde das Programm etwa heien:

100 PRINT 12/2

ZugegebenermaRen ist dieses Programm nicht gerade anspruchsvoll. Um es
etwas aufzupdppeln, kdnnte man ja nun dazufiigen:

5 PRINT "DIVISIONSPROGRAMM VON OSKAR MUELLER"
100 PRINT 12/2

Sollten Sie zuféllig nicht Oskar Miiller heiBen, setzen Sie bitte Ihren Namen
ein.

Wenn Sie jetzt vorhaben, dieses Programm auf dem freien Markt anzubie-
ten (etwa Freunden, Eltern, Kindern und Bekannten), werden Sie schnell
merken, daB lhr Programm bei diesen Anwendern nur begrenzten Erfolg
haben wird. Erstens werden sie, selbst wenn es sich um miserable Kopfrech-
ner handelt, nach zwei bis drei Programmldufen das Ergebnis im vorhinein
-(vor dem Computer!) wissen. Das einzige, was man daraus noch machen
konnte, ware ein Reaktionsspiel. Nach dem Motto: Wer sagt schneller sechs.
Doch das wird irgendwann langweilig. Vor allem wird es dann peinlich, wenn
einer der jiingsten Teilnehmer sagt: «Das kann mein Taschenrechner auch.»

Da hilft dann auch der Hinweis auf die oberste Zeile mit Ihrem Namen
nichts mehr.

AuBerdem: Wenn Sie eine andere Zahlenkombination ausprobieren wol-
len, miiBten Sie immer erst das Programm listen und neue Zahlen eingeben.
Uberhaupt: Unser Stichwort lautete ja: Der Dialog. Aber wenn der Computer
in einem Programm nur immer ausgibt und Sie nie eingeben, kann man

Eine kleine Einfiihrung ins Commodore-BASIC 23

wirklich nicht von einem Dialog sprechen. Damit kommen wir an einen
Punkt, an dem der Computer im Lauf eines Programms Eingaben annehmen
kénnen muR.

Wir mochten zum Beispiel gern die Zahlen, die dividiert werden, am
Anfang des Programms eingeben. Dazu brauchen wir einen neuen Befehl:

INPUT

Der Befehl INPUT weist den Computer an, auf eine Eingabe zu warten. Und
das tut er dann auch brav und geduldig. Aber INPUT allein reicht nicht aus,
denn wenn Sie zwei Zahlen eingeben wollen, muf der Computer beim
Dividieren zum Beispiel wissen, welche Zah| durch welche geteilt werden soll.
Damit er jede Zahl von der anderen unterscheiden kann, miissen wir unserem
Computer eine Hilfestellung geben. Weil sich die Zahl von einem Programm-
lauf zum nédchsten verandern soll, also fiir den Computer immer eine Unbe-
kannte ist, verwenden wir Variable. Vielleicht denken Sie jetzt gerade an all
die schonen Gleichungen mit X und Y. So édhnlich ist es auch hier. Und weil es
so schon an die Schule erinnert und wir auch zufillig zwei Platzhalter
brauchen, nehmen wir doch gleich X und Y. Die beiden sind sowieso so etwas
dhnliches wie Dick und Doof der Mathematik. Unser Programm wiirde jetzt
also lauten:

5 PRINT "DIVISIONSPROGRAMM VON OSKAR MUELLER"
20 INPUT X

30 INPUT Y

100 PRINT X/Y

DaB sich die Zeile 100 verdndern muB, ist lhnen sicherlich klar. Sonst wiirde
der Computer trotzdem — wie beim vorherigen Beispiel — 12 durch 2
dividieren. Wenn Sie dieses Programm mit RUN starten, erscheint zuerst ein
Fragezeichen. Damit zeigt der Computer, daR er auf eine Eingabe wartet.
Wenn Sie jetzt eine Zahl — na, nehmen wir zur Abwechslung mal 12 —
eingeben, erscheint ein zweites Fragezeichen. Da geben Sie zum Beispiel 2
ein. Als Ergebnis erscheint sechs. (Irgendwoher kommt uns das so bekannt
vor...)

Sie sehen: lhr Computer nimmt jetzt Zahlen an und teilt sie. Damit Sie
sehen, wie schlau er ist, geben Sie bitte als erste Zahl 120 und als zweite Zahl
0 ein. Bei dem einen oder anderen geht jetzt vielleicht eine in jahrelangen
Mathematikstunden eingebaute Warnlampe an. Durch Null dividieren?

24 Eine kleine Einfiihrung ins Commodore-BASIC

Wenn Sie es ausprobieren, merken Sie sehr schnell, daB das auch der
Computer gelernt hat. Er sagt thnen ndamlich, daB man nicht durch Null
dividieren darf.

Bevor Sie nun voller Stolz Ihr neues Divisionsprogramm herzeigen, wollen
wir lhnen noch einen Tip wegen der Platzhalter geben. Da gibt es einige
Unterschiede zwischen:

A, A$, AA, AAS

Es ware doch auch ganz schén, wenn der Benutzer seinen Namen eingeben
kénnte. Wenn Sie das aber mit dem Platzhalter A versuchen, wird das nicht
funktionieren. Wie in der Mathematik konnen diese Platzhalter nur fiir Zahlen
stehen. Wenn Sie Zeichenketten zuweisen wollen, miissen Sie die Platzhalter
fiir Zahlen und die fiir Buchstaben voneinander trennen. Aber das ist nicht
weiter schwer. Damit der Computer weiB, daR der Platzhalter fiir eine
Zeichenkette stehen soll, hdngen Sie einfach ein $-Zeichen dran. Dieses
Zeichen erinnert zwar extrem an die US-amerikanische Wéhrung, wird aber
tiblicherweise nicht A-Dollar, sondern A-String ausgesprochen. Solche Strings
kénnen dann sowohl Buchstaben als auch Zahlen als Inhalt haben. Einfache
Buchstaben kdnnen nur als Platzhalter fiir Zahlenwerte stehen. Ergebnis
unserer Recherchen ist also: A nimmt nur Zahlen an und A$ Buchstaben und
Zahlen.

Damit Ihnen auch ganz sicher nicht die Variablen ausgehen, obwohl man
selten so viele braucht, kann der Computer sogar noch den Platzhalter A vom
Platzhalter AA unterscheiden. Sie kdnnen also A einen anderen Wert zuwei-
sen als AA, und IThr Commodore weil, daB A nicht gleich AA ist. Genauso ist
es bei den Platzhaltern fiir Buchstaben. Sie haben so fast unendlich viele
Platzhalter zur Verfiigung. Wenn wir jetzt den Namen des augenblicklichen
Benutzers abfragen und wieder ausgeben wollen, machen wir am besten
folgendes:

5 PRINT "DIVISIONSPROGRAMM VON OSKAR MUELLER"
10 INPUT N$

20 INPUT X

30 INPUT Y

100 PRINT X/Y

Die Variable N$ haben wir librigens nur deshalb benutzt, weil man sich dann
leichter daran erinnern kann, daB N$ fiir NAME steht. Jetzt konnten Sie am
SchluB des Programms den Namen mit einem kleinen Dankeschon fiirs

Eine kleine Einfiihrung ins Commodore-BASIC 25

Benutzen von lhrem Commodore ausdrucken (gemeint ist auf den Bildschirm
bringen) lassen. Zum Beispiel:

5 PRINT "DIVISIONSPROGRAMM VON OSKAR MUELLER"

10 INPUT N$

20 INPUT X

30 INPUT Y

100 PRINT X/Y

110 PRINT "VIELEN DANK FUERS RECHNEN MIT MIR, LIEBER "N$

Wenn Sie das Programm jetzt laufen lassen, werden Sie feststellen, daB sich
der Computer héflich von seinem Benutzer verabschiedet. Das Leerzeichen in
der PRINT-Zeile hat den Sinn, daB zwischen dem Namen und dem "
LIEBER" noch etwas Platz ist.

Um Text zu formatieren und dergleichen, gibt es zusédtzlich einige beson-
dere Zeichen, zum Beispiel *," oder ';". Wenn Sie diese Zeichen vor das N$ in
Zeile 110 setzen, hat das interessante Effekte. Ubrigens: Woher weiB eigent-
lich ein fremder Benutzer, daB er da seinen Namen und dort Zahlen eingeben
soll? Nun, entweder findet er es heraus, weil der Computer nicht richtig
reagiert, oder Sie geben ihm (dem Benutzer) Anweisungen. Nachdem Sie
jetzt wissen, wie man mit PRINT umgehen muB, ist das kein Problem mehr.

Um das Stichwort Dialog zu rechtfertigen, fehlt aber noch ein Befehl.

GET

Mit GET werden immer nur einzelne Zeichen eingelesen. Sie miissen danach
kein RETURN eingeben. Allerdings muB eins beachtet werden, wenn Sie mit
GET einen Buchstaben oder eine Zahl abfragen wollen. Der Commodore hat
einen Zeichenpuffer, der bis zu 10 Zeichen behalten kann. Genaueres dazu
spater. Weil aber dieser Zeichenpuffer immer aktiv ist und der GET-Befehl,
sobald er ein Zeichen bekommen hat, weitermacht, mu3 man sicherstellen,
daR der Computer nicht einfach weiterlauft, weil er vom Puffer einen
Leerstring erhélt. Deshalb muf eine GET-Abfrage folgendermaRen aussehen:

10 GET A$:IF A$="" THEN 10

Ab Zeile 20 kann dann in diesem Fall das kommen, was passieren soll, wenn
die Eingabe stattgefunden hat.
Ubrigens: Nur noch ein paar Minuten, dann haben wir unsere Reiseflug-

26 Eine kleine Einfiihrung ins Commodore-BASIC

hohe erreicht. Die Zeit bis dahin benutzen wir am besten, noch den Befehl zu
erkldren, den Sie jetzt schon zweimal gehort oder gelesen haben.

IF...THEN

Ubersetzt bedeutet er etwa WENN ... DANN. Um ein Beispiel aus dem Leben
zu nehmen, das zeigt, wann wir solche Entscheidungen gebrauchen, méch-
ten wir gern auf Christians Schwester zuriickgreifen. Wenn sie keine Lust zum
Abwaschen hatte, sollte er das tun. In jedem Fall war ihr Standardsatz, wenn
Christian und Geschirr zusammenkamen, immer: «WENN du irgend etwas
runterschmeit, DANN kannst du was erleben.»

Christian war sich immer sicher, daf sie das ernst meinte — das heiflt, wenn
diese Bemerkung erst einmal gefallen war, wuBte er, daB sich Konsequenzen
ergeben wiirden. Voraussetzung war, daR ein Teller oder irgendwelches
Geschirr die Prozedur nicht iiberlebte.

Und genauso ist es mit dem Computer. Wenn Sie eine IF... THEN-Klausel
einbauen, wird er sie ungeriihrt abfragen. Ist die Bedingung erfiillt, dann
reagiert er so, wie es abgemacht war.

Wenn wir zum Beispiel unser kleines Rechenprogramm von vorhin nicht
immer neu starten wollen, aber andererseits die Méglichkeit zum Abbruch
nicht ganz ausschlieBen wollen, konnte man das so I6sen:

5 PRINT "DIVISIONSPROGRAMM VON OSKAR MUELLER"
10 INPUT N$
20 INPUT X
30 INPUT Y
100 PRINT X/Y
102 PRINT "WOLLEN SIE JETZT WEITERMACHEN? (J/N)"
104 GET A$:IF A$="" THEN GOTO 104
106 IF A$="J" THEN RUN
108 IF A$="N" THEN GOTO 110
. 110 PRINT "VIELEN DANK FUERS RECHNEN MIT MIR, LIEBER "N$

Was passiert, ist wohl ziemlich klar. Zeile 102 schreibt dem Benutzer eine
Anweisung auf den Schirm, die ihm sagt, wie er antworten soll, namlich mit.
oder N.

Zeile 104 wartet, bis eine Taste gedriickt wird. Solange das nicht geschieht
bleibt das Programm bei dieser Abfrageroutine. Wenn dann die Taste
gedrickt wurde, tberpriift Zeile 106, ob es die Taste J war. War es J, danr

Eine kleine Einfiihrung ins Commodore-BASIC 27

gibt sich das Programm selbst den Befehl RUN, fingt also wieder von vorn
an. Zur Zeile 108 oder 110 kommt es dann gar nicht erst, weil die erste
Bedingung erfiillt war. Ist die gedriickte Taste aber N, geht das Programm zu
Zeile 110 und verabschiedet sich. Wenn Sie genau hinschauen, merken Sie
zwei Dinge. Zum einen, warum es immer gut ist, in Zehnerabstanden zu
numerieren, und zum anderen, daB die Zeile 108 auch weggelassen werden
kénnte. Denn wenn die Bedingung in Zeile 106 nicht erfiillt wird, arbeitet der
Computer sowieso die ndchste Zeile ab. Und die ist ja die letzte Programm-
zeile. Sie sehen, |hr Commodore ist in solchen Dingen genauso konsequent
wie Christians Schwester.

10000 Meter

Wir haben inzwischen die vorgesehene Reisehche erreicht und schon die
BASIC-Befehle besprochen, die bereits ein paarmal im Verlauf des Textes
aufgetaucht sind. Weil damit die drdngendsten Fragen Ihrerseits wohl erle-
digt wéren, gehen wir jetzt dazu iiber, die Befehle in alphabetischer Reihen-
folge zu erkldren, denn man kann nicht sagen, daR einer wichtiger sei als der
andere. Man braucht sie alle. Wo es nétig ist, finden Sie im Text auch noch
Hinweise auf die Aussprache — damit Sie das ndchstemal im Computerladen
auch mitreden konnen oder zumindest verstehen, was die da iiberhaupt
reden.

ASC

Oft wiiBte man gern, was fiir einen ASCII-Wert eine bestimmte Taste hat.
Man kann natirlich das Programmierhandbuch aufschlagen und diese Werte
suchen, aber weil das Buch nicht selten ganz zuunterst in einem Riesenhaufen
von Papieren liegt, erweist sich dieses Vorgehen als unpraktikabel. Zumal
man dieses Buch, sobald man danach sucht, sowieso nicht findet, selbst wenn
man schworen konnte, daB es irgendwo in dem Stapel rechts von der Tiir sein
muB. Deshalb hat Commodore einen Befehl eingebaut, der es moglich
macht, diesen Wert abzufragen. Der Befehl lautet ASC ($) (sprich Aski von
einem String .. .). Wollen Sie den ASCII-Wert von X erfahren, geben Sie ein:

PRINT ASC ("X")
Als Antwort erhalten Sie genau die Zahl, die Sie gesucht haben.

28 Eine kleine Einfiihrung ins Commodore-BASIC

CHR$

Wenn Sie erst einmal den ASClI-Code eines Zeichens haben, kdnnen Sie den
sehr einfach wieder in ein Zeichen zuriickverwandeln. Der Befehl CHR$ (N)
(sprich Tscharstring von N) liefert Ihnen das Zeichen, das der Zahl N, die in
Klammern steht, entspricht. Wenn Sie also gerade den ASClI-Wert von X
herausgefunden haben, kénnen Sie das gleich mal ausprobieren. Der Wert,
den Sie bei X erhalten haben sollten, ist 88. Geben Sie jetzt ein:

PRINT CHR$ (88)

Der Lohn fiir lhre Miihe wird ein X sein, das pl6tzlich auf dem Bildschirm
auftaucht. Was Sie davon haben, daB Sie diese CHR$ kennen und benutzen
konnen, werden wir im Kapitel Input/Output noch erkldren.

CLOSE

Sie werden bald merken (spétestens im Kapitel tber die Peripheriegerite)
daB der Commodore, wenn er mit angeschlossenen Gerdten ein kleine:
Schwiétzchen halten will, einen Kommandokanal eréffnen mufl. Weil all¢
Gerite hintereinander an ihm hédngen, hat jedes Gerdt seine Nummer. Went
der Commodore ein Gerdt mit einer bestimmten Nummer sprechen will, ruf
er laut und deutlich die Gerdtenummer. Dann wissen alle anderen Gerdte
daB sie jetzt weghoren sollen. (Ob sie es tun, ist die andere Frage.) Weil in
Alphabet der Buchstabe O (wie OPEN) nach dem Buchstaben C (wie CLOSE
kommt, ist CLOSE zwar von der Logik her der Befehl, den man erst spéte
braucht, aber wir haben schlieBlich gesagt, wir machen es in alphabetische
Reihenfolge. Ist also irgendwo ein Kommandokanal mit OPEN er&ffne
worden, wird er mit
CLOSE N

‘wieder geschlossen. Ist das passiert — sind also alle Kommandokanil
geschlossen —, dann briitet unser Commodore wieder in dumpfer Einsamke
tber seinen Rechenaufgaben. N steht hier wieder firr eine Zahl.

CMD

CMD (sprich Command, wofiir es auch die Abkiirzung ist) ist dhnlich der
CLOSE ein Peripheriebefehl, das heifit, dieser Befehl hat Auswirkungen at
die umliegenden (angeschlossenen!) Geréte. Der Fachmann umschreibt so

Eine kleine Einfiihrung ins Commodore-BASIC 29

che Befehle auch gern mit dem Ausdruck «I/O-Befehle». Immer wenn Sie
einen Fachmann auf freier Flur treffen — zum Beispiel in Computerldden oder
Fachabteilungen der Kaufhduser —, werden Sie bemerken, wie ein stolzes
Lacheln um seine Lippen zuckt, wenn er sagt: «Nun, wahrscheinlich ist es ein
1/0-Problem.» Nach diesem Satz fliegen dann oft noch Ausdriicke wie
«Device» (sprich Diweis) oder «Floppy» durch die Gegend. Und wenn alle
diese Worter auch nach einer Stunde noch nicht geholfen haben, ein
bestimmtes Problem zu l8sen, fliegen meist nur noch relativ wenig fachliche
Kraftausdriicke herum. Sie sehen, daB an dem Ausdruck «I/O» nichts Magi-
sches hadngt. Er ist nur eine Abkiirzung fir Input/Output, und das ist
seinerseits wieder nur die englische Version der Worter Eingabe/Ausgabe.
Gemeint ist damit alles, was beim Computer mit der Ein- oder Ausgabe von
Daten zu tun hat. So schnell verliert der Computer und die Sprache um ihn
herum an Schrecken.

Der Vorteil von Abkiirzungen ist aber unbestritten. Deshalb wollen wir ab
jetzt auch 1/0-Befehl sagen, wenn wir solche Dinge meinen. Wenn Sie also
einen Kommandokanal zum Drucker aufgemacht haben, kénnen Sie auch
Kommandos zu ihm schicken, die er ausfiihren soll. Der Befehl miiRte dann

lauten:
CMD N: Befehl

N steht fiir das entsprechende Gerét, und statt Befehl miiBten Sie eben einen
BASIC-Befehl einsetzen — zum Beispiel LIST, um ein Programm vom Drucker
listen zu lassen. Das geht jedoch erst, nachdem Sie einen Kommandokanal
eroffnet haben.

CONT

CONT gehort ins normale BASIC-Repertoire. Natiirlich ist es eine Abkiirzung,
die fiir Continue steht, was soviel heiflt wie Weitermachen. Der Befehl wird
immer dann verwendet, wenn ein Programm zum Beispiel mit {RUN/STOP)
abgebrochen wurde, oder auch, wenn im Programm der Befehl STOP oder
END angetroffen wurde. Natirlich ergibt CONT nur dann einen Sinn, wenn
das Programm noch weitergeht. Wenn Sie aber wihrend eines so erzwunge-
nen Programmstopps eine Zeile listen und verdndern oder ein SYNTAX
ERROR auftritt, dann gibt Ihr Commodore ganz bescheiden zu, daR er leider
gar nicht weitermachen kann. Der Befehl lautet einfach nur

CONT

30 Eine kleine Einfiihrung ins Commodore-BASIC

Die Antwort kann entweder sein, daB er das Programm weiter ausfiihrt oder

aber auch ein
CAN'T CONTINUE ERROR

Mit CONT kénnen Sie schon allerhand anfangen, zum Beispiel abfragen, ob
das Ergebnis einer bestimmten Rechnung auch das richtige ist, und nur dann
weiterrechnen lassen. Ihnen féllt bestimmt noch mehr ein.

DATA

DATA erinnert schon so deutlich an den Ausdruck «Daten». Das soll es auch.
Die eigentliche Aufgabe fiir Computer ist ja sowieso, bestimmte Daten zt
suchen, auszuwerten oder was immer damit zu machen. (Die Zeitungsschlag-
zeilen des letzten Jahres beweisen, daB den Leuten die unmoglichsten Dinge
einfallen, die man mit Daten machen kann oder wofiir man sie braucher
konnte ...) Wofiir also ein eigener Befehl fiir Daten? Wir miissen beirr
Programmieren verschiedene Datenarten unterscheiden: die Programmdater
(das eigentliche Programm) oder die Daten der Variablen oder die Daten, di¢
in DATA-Zeilen abgelegt werden.

DATA-Zeilen konnen tberall im Programm stehen. Egal wo, der Compute
wird sie immer der Reihe nach lesen, wenn man ihm sagt, daB er das tun soll
Eine DATA-Zeile in einem Programm kann ungeféhr so aussehen:

DATA TARZAN,JANE,CHEETAH,3

Wie man so eine Datenzeile im Programm verwendet, folgt erst beim Befel
READ. Gedulden Sie sich noch ein wenig. Dann werden Sie auch versteher
was diese komischen Ausdriicke sollen.

DIM

Das ist ein Befehl, der es mdglich macht, sogenannte Felder zu DIMensionie
ren. Daher auch der Ausdruck. Sie kdnnen zum Beispiel sagen:

DIM A (100)

Dann kénnen Sie der Variablen A bis zu hundert verschiedene Zahle
zuweisen. Jede Zahl bekommt einen sogenannten Index. Um dann di
einzelnen Zahlen wieder hervorzuholen, geben Sie

PRINT A(0)

Eine kleine Einfiihrung ins Commodore-BASIC 31

ein und erhalten dann den ersten Wert, den Sie A zugewiesen haben. O ist
deshalb der erste Wert, weil der Computer fast immer bei Null zu zdhlen
beginnt. Das ist eine seiner spleenigen Eigenarten. Im Grunde sorgt die DIM-
Anweisung nur dafiir, daf geniigend Speicherplatz fiir Daten reserviert wird.
Vergleichen kénnte man das mit einem Restaurant. DIM A(5) wére, wenn Sie
dort anrufen und sagen: «Ich méchte bitte einen Tisch fiir fiinf Personen.»
Der Kellner reserviert fiir Sie den Tisch A mit fiinf Pldtzen. Es konnten sich
aber Probleme ergeben. Wenn Sie zum Beispiel nochmals anrufen, um zu
sagen, daB jetzt doch nur drei Leute kommen wiirden, wird der Kellner etwas
unwirsch reagieren. Unser Commodore auch. Er wird lhnen sagen:

REDIM' D ARRAY

was heiflen soll, daR Sie einen bereits dimensionierten Raum noch einmal
dimensionieren. (Das sollen Sie aber nicht.)

Zum Restaurant zuriick. Wenn Sie dem Telefongesprdch aus dem Weg
gehen wollen und mit nur drei Leuten auftauchen, wird das dem Kellner zwar
auch nicht recht sein, aber er kommt wenigstens nicht auf die Idee, Sie an
einen kleineren Tisch zu setzen. Damit ist in manchen Gaststitten erst
gewdhrleistet, daf jeder ausreichend Platz zum Essen hat. Wenn Sie dasselbe’
beim Commodore tun, ist ihm das ziemlich egal. Der Platz bleibt reserviert,
und wenn Sie ihn nicht ausnutzen, verschenken Sie eben Speicher. So einfach
ist das.

Wenn Sie — wieder im Restaurant — dem Ganzen aus dem Weg gehen
wollen und erst gar nicht hingehen, obwohl Sie reserviert haben, wird sich der
Kellner zwar drgern, tun kann er aber gar nichts. Die Reaktion des Compu-
ters? Siehe oben.

Das zum Thema Reser ... — pardon, wir meinen natiirlich Dimensionie-
rungen.

END

Diesen Befehl hatten wir schon einmal kurz angesprochen. Damit kann man
ein Programm (zum Beispiel bei einem bestimmten Ergebnis) abbrechen
lassen. Um ehrlich zu sein, zu diesem Befehl gibt es nichts weiter zu sagen, so
sehr wir uns auch anstrengen, es fallt uns nichts Lustiges dazu ein. Der Befehl

ist eben wirklich nur
END

32 Eine kleine Einfiihrung ins Commodore-BASIC

Es geht natiirlich weiter.

FOR...NEXT

FOR...NEXT ist ein Befehl, der oft fiir einen anderen eingesetzt wird:
X=X+1. Wenn Sie diesen Befehl in ein Programm bringen, weil aus irgend-
welchen Griinden gezidhlt werden soll, wiirde das Programm so aussehen:

10 X=X+1

20 PRINT X

30 IF X=10 THEN END
40 GOTO 10

Der neue Befehl GOTO in diesem Programm wird Sie wohl nicht verwirren. Er
heiflt einfach nur GEHE ZU. (Erkldrung folgt noch.)

Das Programm zdhlt von 1 bis 10. X ist, solange ihm kein Wert zugewiesen
wird — genauso wie alle Platzhalter im Computer — eine Null. Dann wird dem
Computer in Zeile 10 gesagt, daB er zu X eine 1 addieren soll. Somit ist X beim
ersten Lauf eine 1. In Zeile 20 wird der augenblickliche X-Wert auf den
Bildschirm gebracht. Dann wird festgestellt, ob X mittlerweile den Wert 10
hat. Der schlaue Commodore merkt, da dem nicht so ist, und geht zur Zeile
40. Die macht ihm klar, daB er wieder zur Zeile 10 soll. Dort addiert er dann
zum momentanen X-Wert eine 1 und ...

Den Rest konnen wir uns wohl schenken. Nun ist es etwas umstédndlich,
vier Zeilen Programm zu brauchen, um die Leistung eines ErstkldBlers zu
erreichen.

Mit FOR...NEXT geht es einfacher. Dasselbe Programm wiirde hiel

lauten: 10 FOR X=1TO10
20 PRINT X
30 NEXT X

Wenn X den Wert 10 erreicht hat, hért der Computer ganz von selbst auf zt
zdhlen. Das Ganze kann man brigens auch in einer Zeile zusammenfassen
Das wiirde dann folgendermafen aussehen:

10 FOR X=1TO10:PRINT X:NEXT X

Ein Dbppelpunkt trennt immer mehrere Anweisungen voneinander. Das ha
allerdings den Nachteil, daB alles etwas uniibersichtlicher wird und daB mar
natiirlich das Programm immer nur zu einer bestimmten Zeilennummer unc

Eine kleine Einfiihrung ins Commodore-BASIC 33

nie nur zu einem Teil dieser Zeile schicken kann. Zuriick zu unserer FOR-
...NEXT-Anweisung. Die meisten Leute verwenden fiir diese Anweisung
auch den Ausdruck «FOR...NEXT-Schleife», was aber nichts mit hiibsch
verpackten Geschenken zu tun hat. Nun hétte — denkt vielleicht der scharfe
Beobachter — die andere Version gegeniiber der FOR...NEXT-Schleife einen
Vorteil, wenn man zum Beispiel nicht in Einer-, sondern in Zweierschritten
zéhlen lassen will. Mit dem erwédhnten Programm wiirde das ja kein Problem

sein: 10 X=X+2
20 PRINT X
30 IF X=10 THEN END
40 GOTO 10

Man muB nur die erste Zeile verindern. Aber diesen Luxus kann man mit der
FOR...NEXT-Schleife genauso einfach haben. Man muB nur die Schrittweite
des Zihlens angeben. Dazu dient der Befehl STEP (Schritt):

10 FOR X=1TO10 STEP 2
20 PRINT X
30 NEXT X

So einfach ist das!

FRE

Eine nicht ganz uninteressante Frage, die beim Programmieren auftaucht, ist
die nach dem freien Speicherplatz. Auch hier kann der Computer mit Rat und
Tat zur Seite stehen. Weil er den Speicher sowieso stindig im Uberblick
haben muB, war das Einbauen einer solchen Funktion nicht schwierig. Der
Befehl FRE(O) (sprich Frie von Null) hilft weiter. Wenn Sie einem frisch
eingeschalteten Commodore

PRINT FRE(0)

eingeben, gibt er lhnen gern Auskunft. Sollte die Zahl, die er ausgibt, negativ
sein, dann liegt das nicht etwa daran, daB er Sie auf den Arm nehmen will,
sondern an internen Abldufen. Um die tatsdchliche Zahl herauszufinden,
miissen Sie noch 65536 dazuzdhlen. Also schreiben Sie in diesem Fall am

besten:
PRINT FRE(0)+65536

34 Eine kleine Einfiihrung ins Commodore-BASIC

Dann erhalten Sie den freien Speicherplatz. Zwei Dinge noch dazu: Wenn Sie
glauben, daR Sie sich diese Zahl nicht merken konnen, warten Sie ab.
Spétestens wenn Sie das Kapitel «Speicheraufteilung» gelesen haben, werden
Sie von solchen Zahlen trdumen.

Und: FRE(O) ist eine Funktion, die an praktisch jedem Computer funktio-
niert. Wenn Sie also Bekannte haben, die wenig iber Computer wissen, kann
man damit Eindruck machen. Eine kleine Anleitung dazu:

1. Man nehme einen oder mehrere Bekannte und fiihre sie wie zufallig in
die Computerabteilung eines Kaufhauses.

2. Wenn man dann — genauso zuféllig — an den kleinen geheimnisvollen
Késten entlangstreicht, iiber sie plaudert, bleibe man plotzlich an einem
stehen.

3. Wihrend sich alle — durch das plétzliche Stehenbleiben noch etwas
verwirrt — erst einmal wieder fangen miissen, lesen Sie schnell den
Namen des betreffenden Gerits.

4. Wenn lhnen die ungeteilte Aufmerksamkeit wieder sicher ist, murmeln
Sie halblaut: «Ach schau an, der neue XYZ.» (Fiir XYZ setzen Sie bitte
den abgelesenen Namen ein.)

5. Dann gehen Sie zur Tastatur und tippen unser bekanntes PRINT FRE(0)
ein. Dabei ist es egal, ob mit oder ohne der Addition von 65 536.

6. Wahrend alle vor Staunen erstarren, erhalten Sie als Ergebnis irgendeine
Zahl.

7. Ab jetzt reichen halblaut hingeworfene Bemerkungen wie «Soso» oder

«Dachte ich es mir doch» und &hnliches aus.

Sie gehen kommentarlos weiter.

9. Irgendwann wird einer lhrer Begleiter (oft erst nach Minuten) fragen:
«Was hast Du denn da gemacht?»

10. Und jetzt kommt das Beste. Als Antwort reicht hier véllig aus: «Oh, ich
wollte nur mal feststellen, wie es so im System ausschaut.»

11. Sollten wider Erwarten doch noch Fragen kommen, sagen Sie einfach:
«Das ist jetzt zu kompliziert zu erkldren. Und ich will Euch damit nichi
langweilen. Ach, dabei féllt mir ein ...»

12. Achtung! Probieren Sie diesen Trick nie, wenn Kinder in der Ndhe sind
Das konnte schreckliche Folgen haben (von verhaltenem Grinsen bis zt
lautem Lachen). Und achten Sie darauf, daB keiner Ihrer Bekannten diese
Geschichte je erfahrt ...

©

Eine kleine Einfiihrung ins Commodore-BASIC 35

GOSsuUB

Dieser Befehl ist eine besondere Form des GOTO, das wir schon kennenge-
lernt haben, aber es funktioniert etwas anders. Zuerst zur Namenskldrung.
GOSUB steht fiir GO SUBroutine, was (frei) Ubersetzt heifit: «Gehe zu einer
Unterroutine.»

Unterroutine klingt zwar groRartig, aber als solche bezeichnen Program-
mierer fast alle Programmteile, die mehr als einmal verwendet werden und
bestimmte Dinge ausfiihren. Wenn Sie zum Beispiel oft in einem Programm
eine Entscheidung des Programmbenutzers mit J oder N (fiir Ja oder Nein)
anfordern, kénnen Sie natiirlich jedesmal diesen Programmteil schreiben, in
dem diese Abfrage gemacht wird. Es reicht aber auch, wenn Sie das nur
einmal machen. Das Programm wiirde dann zum Beispiel so aussehen:

10 PRINT "WOLLEN SIE ANFANGEN? (J/N)"

20 GOSUB 300

30 (Ab hier beginnt lhr Programm)

100 PRINT "WOLLEN SIE WEITERMACHEN? (J/N)"

110 GOSUB 300

120 (Hier geht lhr Programm weiter)

290 END

300 (Ab hier muB thre Abfrageroutine stehen)

350 (Wenn lhre Unterroutine fertig ist, heit der letzte Befehl:)
360 RETURN

Was passiert hier? Zuerst wird Ihre Anwenderinformation auf den Bildschirm
gebracht, denn irgendwoher muB der ja wissen, was er tun soll. Dann geht
das Programm ganz normal weiter zur ndchsten Zeile. Hier trifft es dann die
Anweisung GOSUB 300. Aha, denkt das Programm, ich soll zur Zeile 300.
Aber weil da nicht GOTO, sondern GOSUB steht, merkt es sich im Vorbeihu-
schen noch schnell die Zeile, in der dieser Befehl steht. Bei 300 angelangt,
fiihrt es die Anweisungen dort so lange aus, bis es zum Riicksprungbefehl
RETURN kommt. Der heifit zwar genauso wie die Taste auf dem Keyboard,
hat aber damit nichts zu tun. Jetzt wird auch klar, warum die Zeilennummer
mit der Sprungadresse so wichtig war. Ganz von selbst kehrt namlich 1hr
Programm jetzt wieder zu dem Befehl bzw. der Zeile zuriick, die als ndchste
hdtte ausgefithrt werden sollen, wenn nicht das GOSUB dagewesen wire.
Dieses Spielchen laft sich beliebig oft durchfiihren und so manche Tipperei
einsparen. Noch ein Tip dazu: Vielleicht ist Ihnen aufgefallen, daB wir genau

36 Eine kleine Einfiihrung ins Commodore-BASIC

eine Zeile vor der Unterroutine den Befehl END gesetzt haben. Der Grund
dafiir ist klar. Unterroutinen stehen immer ziemlich am Ende eines Pro-
gramms. Wenn dann das Programm zu Ende ist, steht ja die Unterroutine
immer noch da. Wirden wir das Programm nicht aufhalten, wiirde es
unsinnigerweise unsere Unterroutine ausfiihren.

GOTO

Zum Thema GOTO brauchen wir wohl nach obigen Erklarungen nicht mehr
viel zu sagen. Damit wird das Programm verzweigt, wenn Sie beispielsweise
ein sogenanntes Menii in lhr Programm einbauen. Das hort sich zwar
appetitlich an, ist es aber nicht unbedingt. Menii hat mit der Speisekarte eines
Lokals nur eins gemeinsam: die Moglichkeit der Auswahl. Ein Computermenti
koénnte zum Beispiel so aussehen:

AUSWAHL:
SPIELEN.. .1
LERNEN...2
ENDE.... .3

BITTE DRUECKEN SIE DIE ENTSPRECHENDE ZAHLENTASTE:?

Je nachdem, ob 1, 2 oder 3 gewdhlt wird, kann das Programm an eine
bestimmte Stelle verzweigen, die das Gewiinschte bereitstellt. Weil Sie aber ir
dieses Menli selten zuriickmiissen, wird hier meist ein GOTO verwendet. Eir
GOTO kann thnen aber auch aus der Patsche helfen, wenn zum Beispiel ein
bis dahin benétigte Unterroutine plétzlich beim Programmieren im Weg ist
weil diese Routine bei 300 anfédngt, aber lhre Programmzeilen bereits bis 29
fortgeschritten sind. Am elegantesten ist es in dem Fall, das Programm mi
einem
GOTO 400

dariiber hinwegzuheben, wenn die Unterroutine beispielsweise bis 390 ode

so geht.
IF...GOTO

Wir hatten schon iiber IF... THEN gesprochen. Eine Abart davon ist de
IF...GOTO. Was es tut, konnen Sie sich sicherlich erschlieBen. Man kann at

Eine kleine Einfiihrung ins Commodore-BASIC 37

das Tippen von THEN verzichten und gleich eine Programmverzweigung
veranlassen.

LET

LET ist natdrlich auch englisch. Es kommt von to let, was auf deutsch einfach
«lassen» heiBt. LET allein ist der Imperativ, also die Befehlsform. Wenn man
es Ubersetzt, heiBt es schlicht «laB». Im Computer wird LET fiir Wertzuwei-
sungen benutzt. Das sieht im Programm so aus:

LET D=5

- Damit wird der Variablen D der Wert 5 zugewiesen. Ganz unter uns: Das LET
kann man ruhig weglassen. Ein einfaches

D=5

reicht vollauf.

LIST

LIST ist ein Kommando, das Sie sehr oft brauchen werden — zwar selten in
Programmen, aber um so ofter beim Programmieren.

Wenn Sie ndmlich programmieren, wird Ihnen schnell auffallen, daB die
Programmzeilen, die Sie eingeben, langsam, aber sicher dem oberen Bild-
schirmrand zustreben. Man nennt das auch Scrolling.

Wahrscheinlich haben Sie Vertrauen zur Firma Commodore und denken
sich, daB man all das, was da oben verschwindet, sicherlich irgendwie wieder
herkriegt. Das stimmt auch, und zwar eben mit dem Befehl LIST. Wenn Sie
zum Beispiel lhr Programm wiedersehen wollen, tippen Sie einfach

LIST

ein. Sogleich fangt der Commodore an, wie wild Ihre Programmzeilen
aufzulisten. Damit Sie nicht denken, er hdtte was verloren, tut er das sogar
ganz hiibsch schnell — meist etwas zu schnell zum Mitlesen. Deshalb driicken
Sie, wahrend er listet, einfach die {(CTRL)-Taste. Dann weiB er, daR Sie ihm
vertrauen, und geht die Sache etwas beschaulicher an. Wenn Sie mal wollen,
daB er ganz zu listen aufhort, weil Sie irgend etwas verbessern wollen,
driicken Sie einfach (RUN/STOP). Weil aber niemand von Ihnen verlangen
kann, daB Sie sich ein 2000 Zeilen langes Programm vom Anfang bis zum

38 Eine kleine Einfiihrung ins Commodore-BASIC

augenblicklichen Ende anschauen, nur um an die 1979. Zeile heranzukom-
men, kdnnen Sie auch nur bestimmte Teile listen lassen:

LIST 1979
zeigt lhnen zum Beispiel nur diese eine Zeile.
LIST 1979—
zeigt lhnen alles ab 1979.
LIST —1979
zeigt lhnen alles bis zur Zeile 1979.
LIST 1900—-1980

zeigt lhnen alles zwischen den Zeilen 1900 und 1980.

LIST kann natiirlich auch innerhalb eines Programms verwendet werden
Allerdings befindet sich der Computer danach automatisch im Direktmodus
Das Programm muR dann neu gestartet werden.

LOAD
Dieser Befehl ist nur flir Peripheriebesitzer interessant. Mit
LOAD
lassen sich Programme vom Kassettenrecorder laden. Mit
LOAD "NAME",8

kann man ein bestimmtes (NAME) Programm von der Diskettenstation lade|
lassen. Ndheres zu diesem Thema im Kapitel liber Peripheriegerite.

NEW

Mit diesem Befehl sollten Sie sehr vorsichtig umgehen. Er 16scht ndmlich de
momentan im Speicher befindliche Programm. Was weg ist, ist weg und fi
den unbedarften Programmierer nicht mehr wiederzukriegen.

Viele Leute verwenden das NEW auch im Programm — zum Beispiel, wen
es darum geht, ein laufendes Programm zu beenden. Dann hat namlich di
Programmierer, der damit gearbeitet hat, sofort einen freien Speicher. Dies
Absicht ist I6blich und sicherlich eine saubere Losung. Wenn Sie es auch ¢

Eine kleine Einfiihrung ins Commodore-BASIC 39

machen wollen, dann soliten Sie allerdings folgenden kieinen Ratschlag
beherzigen:

Nehmen wir an, in Zeile 2350 lhres Programms wurde der Anwender
gefragt, ob er jetzt aufhéren méchte. Nehmen wir weiter an, er hat das auch
getan, und vermuten wir nun, Sie haben fiir diesen Fall ein NEW in Zeile 2360
vorgesehen. Bisher war alles prima. Doch gehen wir ein paar Tage in die
Vergangenheit zuriick. Es ist wieder 22.30 Uhr, und Sie sind gerade beim
letzten Programmtest. Soeben haben Sie nach langen Miihen lhr Programm
um einen tollen Toneffekt und eine schéne Grafik bereichert. Jetzt wollen Sie
nur noch schnell ausprobieren, ob sich das alles mit dem Programm vertragt.
Sie geben lhr RUN ein, alles lduft wunderbar. In ihrer grenzenlosen Freude
iiber das gelungene Programm geben Sie auf die freundliche Frage: «<Wollen
Sie, lieber Hans-Peter, jetzt wirklich schon aufhéren?» tatsachlich das Ja-
Wort. Es folgt der tolle Ton, auf dem Bildschirm blinkt noch einmal ein kurzes
«Tschiis, Hans-Peter», der Bildschirm wird plétzlich leer, und es ist vorbei.

«Ja», denken Sie noch, «so sieht das aus, so muB das sein.» Zufrieden
legen Sie noch einmal lhre Hande auf die Tastatur und tippen ein letztes Mal
LIST ein.

Jedoch alles, was erscheint, ist die READY-Meldung. Sonst nichts. Aus.
Keine Zeile des Zinseszinsprogramms ist mehr zu sehen. Sollte der Apparat,
aber nein — natirlich —, das NEW. Was jetzt?

Meist setzt in solchen Fallen noch bis Mitternacht hektische Betriebsamkeit
ein. Noch zwei, drei LIST-Versuche. Dann das Durchkramen von den abge-
speicherten alten Versionen. Aber nein. Es ist vorbei. Nach einer halben
Stunde wird dann der EntschluB immer stérker, jetzt den Computer auszu-
schalten. Man schaut noch einmal 15 Sekunden auf den Bildschirm, wo es
gerade noch war, aber es ist zu spét. Kein Wunder geschieht. Das Programm
ist weg.

Programmierers Freud und Programmierers Leid — wie nah liegen sie
beisammen. Das Bild wird dunkel. Die Arbeit ist weg. Nur noch die alte
Version — ohne Ton, ohne Grafik — ist da. Und die ist natirlich viel, viel
langweiliger, als es die andere war.

Deshalb unser Tip: So rabiate, schicksalsschwangere Befehle wie NEW
sollten wirklich erst ganz zum SchluB, wenn das Programm abgespeichert ist,
eingefiigt und ausprobiert werden. Wenn Sie es ausprobieren wollen, schrei-
ben Sie statt dessen lieber eine Zeile wie:

2360 PRINT "HIER WUERDE EIGENTLICH EIN NEW STEHEN.
GOTT SEI DANK IST ES NOCH NICHT DA!"

40 Eine kleine Einfiihrung ins Commodore-BASIC

Diese kleine Geschichte und das Beherzigen unseres einfachen Tips kdnnen
Sie vor VerdruB bewahren. Selbst erfahrenen Programmierern ist so etwas
schon passiert, auch wir beide kénnen Lieder von dieser Problematik singen.

OPEN

Den Befehl OPEN (das ist ebenfalls einer der I/0O-Befehle) haben wir ja schon
kurz erwdhnt. Er dient zum Offnen eines Kommandokanals. Der Befehl muf

heien: OPEN N,N,N

Die drei N stehen fiir Zahlen. Wann alle drei gebraucht werden und’wann
nicht, entnehmen Sie bitte dem spéteren Kapitel «Peripheriegerdte».

PEEK

PEEK ist ein duBerst niitzlicher Befehl. Er liest den Inhalt einer Speicherzelle
aus. Man braucht ihn zum Beispiel bei Sprites oder zum Definieren eigener
Grafikzeichen. Wie das genau geht, erfahren Sie in den folgenden Kapiteln.
PEEKen konnen Sie in jede Speicherzelle zwischen 0 und 65 535. Sie bekom-
men dabei immer einen Wert zwischen 0 und 255 geliefert. Fiir beide Zahlen,
die wir lhnen hier genannt haben, kommen ebenfalls in den folgenden
Kapiteln die Erklarungen. Ein Beispiel fiir das HerausPEEKen eines Wertes ist:

?PEEK(53280)

Damit erhalten Sie den Wert, der in der Speicherzelle 53280 steht. Bei einem
frisch eingeschalteten Commodore miifite das Ergebnis 254 sein. Warum wir
diese Speicherzelle genommen haben, wird lhnen der nachste Befehl zeigen.

POKE

POKE ist das genaue Gegenteil von PEEK. Wenn Sie etwas POKEn, dann
heiBt das, daR Sie einen Wert in eine Speicherzelle schreiben. Das kann
manchmal sehr erstaunliche Effekte haben. Probieren Sie folgendes:

10 POKE 53280,0: POKE 53281,0:POKE 646,0
20 FOR X=1TO 1000

30 PRINT "X";

40 NEXT

50 POKE 646,1

Eine kleine Einfiihrung ins Commodore-BASIC 41

Zuerst sehen Sie, daB lhr Bildschirm plétzlich schwarz wird, und zwar der
ganze Bildschirm. Gleichzeitig verschwindet der eingegebene Text wie von
Geisterhand nach oben. Obwohl Sie eine Zeile 30 haben, in der ausdriicklich
steht, daB der Buchstabe X auf den Bildschirm gebracht werden soll, passiert
nichts — zumindest scheinbar. Doch nach einiger Zeit steht ganz unten auf
dem Bildschirm ein helles READY, obwohl der Bildschirm (wenn Sie sich an
das erinnern, was wir bei der FOR ... NEXT-Schleife gesagt haben) eigentlich
voll mit lauter X sein miiBte. An diesem kleinen Beispiel kdnnen Sie erkennen,
was fiir seltsame Dinge POKEs auslosen kénnen. Zum besseren Verstandnis
andern Sie erst einmal die Zeile 10 ab, am besten so, daB sie dann lautet:

10 POKE 53280,0: POKE 53281,0:POKE 646,1

Den Rest des Programms lassen Sie so, wie er ist. Das Abdndern ist ziemlich
einfach. Sie miissen nur LIST 10 eingeben. Dann haben Sie die Zeile 10 vor
sich. Mit den Cursor-Tasten — ganz rechts unten auf dem Keyboard — gehen
Sie so lange nach oben, bis Sie auf der Hohe der gelisteten Zeile sind. Dann
fahren Sie mit der anderen (duBersten) Cursortaste einfach tber die Zeile
hinweg. Erst bei der letzten O des POKE 646 halten Sie an. Wenn lhr
blinkender Cursor genau dariiber ist, tippen Sie eine 1. Die O darunter
verschwindet von selbst. Wenn Sie das gemacht haben, driicken Sie auf
(RETURN). Dann kénnen Sie wieder RUN eingeben. Jetzt kénnen Sie sehen,
wie lauter weie X den Bildschirm auffiillen.

Zur Erkldarung: Die Speicherzelle 646 ist fir die Farbe der ausgegebenen
Zeichen zustindig, Speicherzelle 53280 fiir die Rahmenfarbe und 53281 fiir
die Hintergrundfarbe. Weil wir in die beiden O gePOKEd haben, wurde
scheinbar der ganze Bildschirm schwarz. Beim ersten Programmlauf haben
wir auch die Zeichenfarbe (Speicherzelle 646) auf Schwarz geschaltet. Des-
halb haben wir nicht gesehen, daB unser Text von einem anderen (schwar-
zen) Text nach oben geschoben wurde. Erst die letzte Zeile hat wieder die
Zeichenfarbe Weil} ausgeldst. Deshalb konnten wir das READY wieder sehen.
Ganz einfach, oder? Wenn Sie jetzt lhr Wissen von vorhin nutzen, kénnen Sie
sogar die Rahmenfarbe wieder auf Normal zuriicksetzen. Wir haben ja vorhin
den Wert herausgePEEKed, der nach dem Einschalten in dieser Speicherzelle
steht. :

Experimentieren Sie mit all diesen Zahlen ruhig ein biBchen herum. Es kann
Ilhrem Commodore 64 keinen dauerhaften Schaden zufiigen. Das Schlimm-
ste, was passieren kann, ist, daB der Rechner abstiirzt. Und selbst, wenn das
passiert, missen Sie sich nicht biicken. Abstiirzen heiBt nur, daB er pl6tzlich

42 Eine kleine Einfiihrung ins Commodore-BASIC

nicht mehr reagiert und nur noch durch Aus- und Wiedereinschalten zu
erlésen ist. Deshalb sollten Sie, wenn Sie das POKEn ausprobieren, auch
moglichst kein wichtiges, noch nicht auf Diskette oder Kassette abgespeicher-
tes Programm im Speicher haben. Denn das hitte sich dann natiirlich in
Wohlgefallen aufgeldst.

READ

Jetzt sind wir endlich bei dem Befehl, von dem wir schon ziemlich am Anfang
unseres Fluges gesprochen haben. READ ist der Befehl, der die DATA-Zeilen
lesen kann. Wir zeigen lhnen jetzt, was READ tut und wie dieser Befehl mit
den DATAs in Programmen umgeht. Dazu geben Sie zundchst bitte folgendes
Programm ein:

10 READ A$,B$,C$,D$

15 READ A

20 PRINT A$” UND "B$" LEBEN ZUSAMMEN IM WALD UND HABEN
EINEN RIESEN"C$", DER "A;

30 PRINT " JAHRE ALT IST UND "D$" HEISST.”

40 DATA TARZAN,JANE,AFFEN, CHEETAH,3

An diese DATA-Zeile kénnen Sie sich vielleicht noch erinnern. Wenn Sie das
Programm jetzt laufen lassen, bekommt auch der merkwiirdige Satz, den Sie
abgeschrieben haben, einen Sinn. Die Reihenfolge, in der der Computer die
DATAEs liest, hdngt von der Reihenfolge ab, in der sie in der DATA-Zeile
stehen. Also missen DATAs immer in der Reihenfolge ihres Abrufs stehen
Egal ist allerdings, wo die DATA-Zeile steht. Wenn Sie ihr zum Beispie! die
Zeilennummer 5 geben (sie also vor die READ-Anweisung legen), dndert:da:
auch nichts. Die DATA-Zeile sucht sich der Computer von selbst, genauso wit
er von selbst wei3, an welchem DATA er zu lesen aufgehort hat. Denn wenr
er das ndchste READ trifft, liest er genau da weiter, wo er zuletzt aufgehor
hat — also auch mitten in einer DATA-Zeile.

REM

REM kommt natiirlich auch aus dem Englischen. Es ist eine Abkiirzung fii
REMark, was dem deutschen Wort Anmerkung sehr nahekommt. Ein REM i
einem BASIC-Programm hat meistens den Sinn, ein Programm besser durch

Eine kleine Einfiihrung ins Commodore-BASIC 43

schaubar zu machen. Aber bevor Sie sich jetzt falsche Hoffnungen machen,
daB damit plétzlich alles viel leichter wird, wollen wir Sie besser gleich
aufkldren. Am besten zeigt lhnen ein Beispiel, was wir meinen:

10 POKE 53280,1:REM RAHMENFARBE WEISS
20 POKE 53281,0:REM BILDSCHIRMFARBE SCHWARZ

Wie Sie sehen, ist bei diesem Programm auch noch nach drei Monaten
gewdbhrleistet, daB Sie wissen, was in den ersten beiden Zeilen passiert. Der
REMark, die Anmerkung, erinnert Sie daran, daB die erste Zeile die Rahmen-
farbe Weill macht und die zweite Zeile die Bildschirmfarbe Schwarz.

Wenn aber vor diesen beiden Hinweisen nicht REM stiinde, wiirde der
Computer — genauer gesagt der BASIC-Interpreter — versuchen, die Aus-
driicke Rahmenfarbe Weil und Bildschirmfarbe Schwarz zu verstehen oder
gar aus ihnen Befehle zu machen. DaR das in einem heillosen Durcheinander
endet, merken Sie immer daran, daB der Computer ein hilfloses SYNTAX
ERROR ausgibt. Sie kdnnen das gern mal ausprobieren, indem Sie einfach die
beiden REMs in den Zeilen 10 und 20 herausnehmen, aber den Rest lassen,
wie er ist.

REM bedeutet also fiir den Computer, daB er den Rest, der dahinter
kommt, nicht mehr zu beachten braucht.

REM-Statements machen es also leichter, sich selbst nach ldngerer Zeit
wieder in einem Programm zurechtzufinden. Allerdings haben sie zwei Nach-
teile.

Zum einen braucht natiirlich jedes REM Speicherplatz. Deshalb sollte man
doch etwas sparsam damit umgehen.

Zum anderen kostet es fiir den Computer jedesmal Zeit, ein REM zu
erkennen, es zu Ubersetzen und zu verarbeiten.

Die Kunst bei REMs ist einfach in einen Satz zu bringen: Genug zum
Zurechtfinden miissen es sein, aber wenig genug zum effektiven Program-
mieren sollen es sein.

Das ist sicher leichter gesagt als getan. Aber wir raten lhnen, lieber ein paar
REMs mehr zu benutzen. Wenn es béi einem Programm auf Schnelligkeit
ankommt, machen Sie einfach eine Version, in der Sie alle REMs rausschmei-
Ren. Die ist dann die Laufversion. Die andere benutzen Sie, um Anderungen
zu machen. Dann kommen wieder alle REMs raus. Das ist zwar ziemlich
zeitaufwendig, aber ein passabler Kompromif.

44 Eine kleine Einfiihrung ins Commodore-BASIC

RESTORE

Noch einmal kurz zu den DATA-Zeilen. Wie schon gesagt, weif das laufende
Programm immer genau, bei welchem DATA es aufgehort hat. Um nun ein
Programm dazu zu bringen, wieder beim allerersten DATA zu lesen anzufan-
gen, gibt es nur zwei Méglichkeiten. Entweder mit RUN das Programm neu
zu starten oder eben den Befehl RESTORE. Das neuerliche Starten des
Programms bringt ja nicht viel, deshalb ist tatsdchlich RESTORE die einzige
Moglichkeit, bei den DATAs wieder ganz von vorne anzufangen. Mittlerweile
haben Sie sicherlich genug BASIC-Erfahrung, um sich selbst zu denken, wie
die Befehlsform sein muR:
RESTORE

Nicht gerade schwierig oder?

RETURN

Das haben wir vorhin schon mal gehabt. RETURN ist eine Anweisung, die sein
muB, um aus einer BASIC-Unterroutine zuriick zum eigentlichen Programm
zu springen. Wenn irgendwo im Programm ein GOSUB vorkommt, dann
muB es auch ein dazugehériges RETURN geben. RETURN steht immer am
Ende der Unterroutine. Wenn der Computer auf ein RETURN trifft, ohne daf
vorher mit einem GOSUB eine Unterroutine angesprungen wurde (wie der
Fachmann sich das bildlich vorstellt, wissen wir zwar nicht, aber auf jeden Fall
sagt er «anspringen» dazu), gibt das die Fehlermeldung

RETURN WITHOUT GOSUB ERROR

Nur damit Sie Bescheid wissen, falls das einmal auftritt.

RUN

Dieser Befehl miifite thnen mittlerweile hinlanglich bekannt sein. Wenn man
ein Programm starten will, muf der Befehl

RUN

eingegeben werden. Sie konnen aber ein Programm auch erst von einer
bestimmten Zeilennummer ab starten lassen. Dazu miiBten Sie dann ein-
geben:

RUN N

Eine kleine Einfiihrung ins Commodore-BASIC 45

wobei N irgendeine Zeile sein kann. Wenn die Zeile nicht im Programm
vorkommt, bekommen Sie natiirlich als Dankeschon eine kleine Fehlermel-
dung. Diesmal heiflt sie zur Abwechslung

UNDEF' D STATEMENT

Um wieder ein Beispiel aus dem Leben zu bringen: Stellen Sie sich einen
riesigen Wohnblock vor. Sie suchen einen alten Bekannten, der wahrschein-
lich hier wohnt. Alles, was Sie an Lebendigem hier sehen, ist jemand, der das
Treppenhaus bohnert. Es ist ein Mann, wahrscheinlich der Hausmeister.
«Gut», denken Sie, «der sollte es ja wissen.» Sie gehen hin und fragen
hoflich: «Entschuldigung, ich suche die Familie Mller .. .»

Der Mann schaut Sie kurz an und meint dann: «Die gibt's hier nicht.» Das
Haus ist Ihr Programm, die Rolle des Hausmeisters tibernimmt in diesem Fall
der BASIC-Interpreter, der zwar den Namen versteht, aber sofort zuriickgibt,
daB es den hier nicht gibt. So ungefahr ist die Bedeutung dieser Fehlermel-
dung.

SAVE

Dieses ist eines der groBartigen I/O-Kommandos. Mit SAVE kénnen Sie ein
Programm abspeichern, zum Beispiel auf Kassette oder Diskette. Das ist
ubrigens auch die einzige Art, mit der Sie lhre Programme dauerhaft schiitzen
kénnen, denn ein BASIC-Programm, das Sie geschrieben haben, wird das
Abschalten des Computers nicht iiberleben. Deshalb sollte man auch wah-
rend des Programmierens immer wieder zwischenspeichern — einfach um fiir
den Fall eines Stromausfalls oder anderer ungliicklicher Umstande geriistet zu
sein. Denken Sie nur an kleine Kinder («Schau mal Papa, der Stecker da .. .»)
oder groBe Eltern («Jetzt reicht's aber mit der Rumspielerei. Das Essen ist
fertig.»), die in beiden Fallen zur Unterstiitzung ihrer Worte den Stecker aus
der Dose ziehen.
Der Befehl selbst hdngt in erster Linie vom Speichermedium ab:

SAVE "XXX"

speichert das Programm XXX auf Kassette — allerdings nur, wenn die beiden
Tasten RECORD und PLAY gedriickt sind und der Recorder deutliche Anzei-
chen — sowohl akustische wie auch optische — von Bewegung von sich gibt.
Ubrigens kann lhr Commodore nicht unterscheiden, ob am Recorder die
richtigen Tasten gedriickt sind. Es kann lhnen also durchaus passieren, daf

46 Eine kleine Einfiihrung ins Commodore-BASIC

Sie, statt zu laden, aus Versehen I6schen oder hin- und herspulen. Deshalb
sollten Sie nach dem Recordergebrauch immer die (STOP)-Taste driicken.

SAVE "XXX",8

speichert das Programm XXX auf der Diskette. Dazu muR die Diskettenstation
allerdings eingeschaltet sein. Sonst gibt es einen

DEVICE NOT PRESENT ERROR

was soviel heilt wie: «Ist nicht da. Geht nicht.»

Bitte schnallen Sie sich wieder an ...

Merken Sie was? Wir sind jetzt iiber das Meer der Programmiersprachen
hinweg. Vor uns taucht langsam die Insel Commodore-BASIC auf. Das
langersehnte Ziel ist zum Greifen nahe. Schnallen Sie sich also wieder an.
Waéhrend der Pilot langsam zum Landen ansetzt, sollten wir uns noch liber ein
paar kleine Befehle unterhalten.

STOP

Das hatten wir ja auch schon mal. Mit STOP kénnen Sie ein Programm an
praktisch jeder Stelle unterbrechen. Beim Programmieren ist das manchmal
ganz niitzlich, um kurz vor der Zeile, in der stindig ein Fehler auftritt, das
Programm abzubrechen und zum Beispiel die Variablen zu iiberpriifen. Dann
konnen Sie mit CONT weitermachen. Die Syntax fiir den Befehl STOP ist
denkbar einfach. Irgendwo steht eine Zeile, die einfach den Befehl

STOP

hat. Der Ausdruck Syntax, den wir gerade verwendet haben, ist sicherlich
dem einen oder anderen aus irgendwelchen Grammatikibungen noch
bekannt. Die richtige Syntax heit: der richtige Satzbau.

Beim Computer ist es genauso. Ein SYNTAX ERROR ist eine fehlerhafte,
unverstdndliche Eingabe. Deshalb nennt man auch die richtige Befehlsform
fiir eine bestimmte Aufgabe, die der Computer bearbeiten soll, die Syntax.

Sehen Sie, je weiter wir kommen, um so mehr kénnen wir uns schon wie
ausgefuchste Programmierer unterhalten.

Eine kleine Einfiihrung ins Commodore-BASIC 47

SYS

Der Befehl SYS hat eine ganz besondere Aufgabe. Auch er greift (wie PEEK
und POKE) direkt auf den interen Speicher des Commodore zuriick. Er ruft
zum- Beispiel bestimmte Maschinenunterroutinen auf. So kdnnen Sie den

Computer mit
SYS 64738

neu starten, ohne daB Sie ihn dazu ausschalten miissen. Wie Sie diesen Befehl
nutzen kénnen, was Sie davon haben und wo der Unterschied zwischen einer
Maschinenunterroutine und einer BASIC-Unterroutine liegt, werden Sie am
Ziel unserer Reise erfahren.

TAB

Mit diesem Befehl kdnnen Sie — wie bei einer Schreibmaschine — Tabulatoren
setzen. Daher auch der Befehlsname. Ein TAB-Befehl wire etwa:

10 PRINT TAB(20)"HALLO"

Wenn Sie das eingeben und starten, werden Sie gleich merken, was der Effekt
ist. Das Hallo steht nicht mehr in der ersten Spalte, sondern beginnt in der
zwanzigsten. Damit kénnen Sie zum Beispiel Textausgaben immer genau
untereinander setzen.

Langsam wird es jetzt Zeit, sich auf die Landung vorzubereiten. Apropos
Zeit. ’

TIME

Geben Sie doch mal ein:
PRINT TI/60

Die Zahl, die Sie dann erhalten, sind die Sekunden, seit denen |hr Commo-
dore schon lauft. Sobald Sie ihn einschalten, wird auch eine innere Uhr
angeschaltet, die alle sechzigstel Sekunde weiterzahlt. Und weil wir gerade
bei der Uhrzeit sind: Sie haben auch eine richtige Uhr in Ihrem Commodore.
Wenn Sie eingeben:

PRINT TI$

erhalten Sie eine sechsstellige Zahl, die fir Stunden, Minuten und Sekunden
steht. Mit dem Befehl oben konnen Sie sehen, seit wie vielen Stunden,

48 Eine kleine Einfiihrung ins Commodore-BASIC

Minuten und Sekunden Ihr Commodore jetzt schon lduft. Sie konnen die Uhr
auch stellen, wenn Sie wollen. Zum Beispiel, wenn Sie eingeben:

TI$="224600"
und dann eine Minute spater wieder fragen:
PRINT Ti$

dann werden Sie als Antwort
224700

erhalten — zumindest dann, wenn Sie wirklich genau eine Minute s‘béter
gefragt haben.

Es ist soweit: Bitte stellen Sie jetzt das Rauchen ein. Wir setzen in wenigen
Minuten zur Landung an.

Sie miissen nur noch ein paar Minuten warten. Oh — warten. Stimmt ja.
Das ist auch ein BASIC-Befehl ...

WAIT

Mit dem Befehl WAIT bringen Sie den Computer dazu, so lange zu warten,
bis ein bestimmter interner Speicherzustand eintritt. Was das genau bedeutet,
erfahren Sie noch. Nur ein Beispiel. Wenn Sie wollen, daB der Compute:
wartet, bis irgendeine Taste gedriickt wird, geben Sie ein

WAIT 198,1

Damit kommt man ganz elegant um ein GET- oder INPUT-Kommandc
herum, wenn es nur darum geht, irgendeine Taste zum Weitermachen zi
driicken — zum Beispiel, wenn der Anwender Ihres Programms einen Tex
lesen und dann mit dem Driicken irgendeiner Taste dem Programm Bescheic
geben sollte, daB er jetzt alles gelesen hat und weitermachen kann.

In genau dieser Situation sind jetzt auch Sie. Sie haben lhr erstes Kapite
hinter sich. Die Maschine ist gelandet. Kapitan BASIC und seine Mannschaf
verabschieden sich. Wir hoffen, der Flug hat lhnen gefallen. ‘

Nun ist es an lhnen, mit uns weiter ins Landesinnere vorzudringen und da
Innenleben Ihres Commodore zu erforschen. Die wichtigsten Grundlager
haben Sie wédhrend unseres gemeinsamen kurzen «Fluges» erhalten.

In diesem Sinne: Auf zu neuen Taten!

2
Die Commodore-64-Grafikzeichen

«Das steht halt so im Betriebssystem»

Der Commodore 64 gehort zu den wenigen Computern, mit denen man
relativ schnell recht ansehnliche Grafiken aufbauen kann.

Das ganze Geheimnis liegt in den Tasten mit den Grafikzeichen. DaB
Commodore bei diesen Zeichen nicht gerade das Seelenheil von Geschéfts-
leuten, also Verkaufsstatistiken oder Umsatzentwicklungen, im Kopf hatte,
148t sich recht schnell an den vorkommenden Zeichen erkennen, wenn auch
Umsatzstatistiken durch Herzchen dargestellt sicherlich sympathischer wéren.
Die Grafiksymbole verfiihren eher zum Spielen als zur Statistik.

Um komplexere Dinge zumeist schematisch darstellen zu kénnen, reicht
ein Symbol allein nicht aus. Erst die Kombination von verschiedenen Zeichen
1Rt ein Bild dhnlich einem Mosaik entstehen. Dazu stehen allerhand Striche,
Kreisstiicke, Schraglinien und Dreiecke zur Verfiigung. Probieren Sie es doch
mal aus.

Ehe wir zu den Moglichkeiten kommen, die sich damit bieten, ein paar
Vorbemerkungen:

Die Grafik- oder Sonderzeichen, die in ihrer ganzen Pracht auf den
Tastenvorderseiten abgebildet sind, kénnen mit der (SHIFT)- oder der
(C=)-Taste erreicht werden: mit (SHIFT) die rechten, mit (C=) die linken.

Wenn Sie jetzt versucht haben, eine kleine Grafik zu erstellen, aber statt
eines Mannchens nur einen Buchstabensalat auf dem Bildschirm haben, hat
das einen einfachen Grund: Um diese Grafikzeichen benutzen zu koénnen,
muB der Computer im «GroBschrift-Modus» sein, also beim Schreiben nur
GroBbuchstaben zeigen. ‘

Warum das so ist, wollen wir kurz erkldren. Diese Erkldrung ist weder

50 Die Commodore-64-Grafikzeichen

fundamental noch liberméaBig wichtig. Es bleibt lhnen iiberlassen, sie zu lesen
oder nicht. ‘

Dem Computer féllt es ja meist nicht ganz leicht, uns Menschen geistig zu
folgen. Das heifit, egal ob Sie «Du Trottel» oder «Hallo» eintippen, der
Computer antwortet immer nur lakonisch mit «SYNTAX ERROR».

Was lernen wir daraus? Er kann willkiirliche Buchstabenkombinationen
nicht verstehen.

Wer das nicht glaubt, sollte mal in die Computerabteilungen der Kaufhdu-
ser gehen. Wenn der Abteilungsleiter — absichtlich oder unabsichtlich -
vergessen hat, in einen der Computer ein Programm zu laden (oder mil
anderen Worten: Ist es auf einem der Gerdte nicht moglich, AuBerirdische
abzuknallen oder Bonbons zu futtern oder Frosche sicher iiber die StraRe zu
bringen), findet man dafiirimmer wieder Bildschirme mit seltsamen Nachrich-
ten, zum Beispiel «MMMMMMM>» oder «ZXZXZXZX 81» oder andere
unsinnige Buchstabenkombinationen. Hat derjenige, der hier die Tastatu
bzw. den Computer ausprobieren wollte, zuféllig auch ein (RETURN) einge-
geben, steht darunter noch ein «<SYNTAX ERROR» und ein hilflos blinkende:
Cursor.

Irgendwann betritt dann ein Jiingling die Szene, lachelt breit ob de
Dummbheit seiner Mitmenschen, legt sein Kindergartentdschchen neben der
Computer und zaubert ein kleines Programm auf den Bildschirm.

Entsprechend seiner Erfahrung ist das Programm. Meistens bleibt es be
einem Zweizeiler. Sehr beliebt ist zum Beispiel:

10 PRINT "WER DAS LIEST IST DOOF!"
20 GOTO 10

Trotz der offensichtlichen Frechheit filhrt der Computer dieses Programn
klaglos aus.

Soweit unser kleiner Exkurs. Der Computer tut also nichts weiter, al:
bestimmte Buchstabenkombinationen irgendwo im Speicher abzulegen unc
bei Gelegenheit wieder hervorzukramen. Nur legt er eigentlich nicht Buchsta
ben ab, sondern Zahlen. Warum, erkldren wir spdter. Diese Zahlen heiRer
ASClI-Codes. Jede Taste hat ihre eigene Zahl. Entsprechend dieser Zahl gib
der Computer das passende Zeichen aus. Er priift es nicht auf Sinn und Gehal
(zumindest nicht, wie wir das tun wiirden), sondern er priift es eigentlich ga
nicht.

Und jetzt wird's spannend: Gibt der Computer ndmlich, wenn Sie di
(SHIFT)-Taste und die (S)-Taste gleichzeitig driicken, kein S aus, sonden

Die Commodore-64-Grafikzeichen 51

ein Herzchen, dann folgt daraus: Die Taste (S) hat zusammen mit (SHIFT)
einen anderen Zahlenwert oder ASCli-Code. Und wenn Sie die (C=)-Taste
und (S) gleichzeitig driicken? Richtig. Genau dasselbe Spielchen. Damit sind
wir wieder beim GroBschreibmodus. Bei der Textverarbeitung, also wenn
GroB- und Kleinschreibung benétigt werden, braucht man (SHIFT) wie bei
der Schreibmaschine fiir die GroBbuchstaben. Damit geht in diesem Modus
eine Hélfte unserer Grafikzeichen verloren, weil die ASCII-Codes zum Unter-
scheiden von GroB- und Kleinbuchstaben gebraucht werden. Was bleibt, sind
nur die Grafiksymbole, die zusammen mit der (C=)-Taste zur Verfiigung
stehen. Wie gesagt: Das war alles nicht fundamental wichtig, hilft aber
hoffentlich dabei, den Computer etwas besser zu verstehen. Also, Sonderzei-
chengrafik am besten nur im GroBschriftmodus. Andernfalls geht ein Grofteil
der tatsdchlichen Méglichkeiten verloren.

Zwei Moglichkeiten, thre Grafiken zu schiitzen

Sie kdnnen sich natirlich mit einer Keule neben Ihren Computer stellen, denn
wenn Sie mittlerweile mit viel FleiB und Miihe eine schéne Grafik gebastelt
haben, wollen Sie selbstverstandlich nicht, daB der groRartige Eindruck nur
deshalb Schaden nimmt, weil irgendeiner aus Versehen die falschen Tasten
gedriickt hat (ndmlich (C=) und (SHIFT) gleichzeitig). Sie kénnen es zwar
selbst gern einmal ausprobieren, aber wie gesagt: Der Eindruck leidet. Um
dieses imagezerstorende Problem zu l6sen, gibt es eine einfache Methode,
ndmlich den Befehl

PRINT CHR$(8)

Dadurch wird die Umschaltung blockiert. Damit Sie den Computer nicht
ausschalten miissen, gibt es zwei Mdglichkeiten, in den Normalzustand
zuriickzukommen:

Entweder (RUN STOP) und gleichzeitig (RESTORE) driicken, was aller-
dings sdmtliche Sonderfunktionen, wie gednderte Farben und dergleichen,
ebenfalls ausschaltet. Weil dabei aber auch dummerweise unsere Grafik
geldscht wird, gibt es, um die Blockade allein wieder aufzuheben, den Befehl

PRINT CHR$(9)
Bei der Gelegenheit noch zwei Tips: Derselbe Befehl mit CHR$(14) schaltet

52 Die Commodore-64-Grafikzeichen

den Computer z. B. innerhalb eines Programms von GroB- auf Kleinschrei-
bung um. CHR$(142) tut das Gegenteil.

Fragen Sie aber bitte nicht, warum es ausgerechnet diese Zahlen sein
miissen. Es gibt dafiir wohl keinen besonderen Grund. Hannes' Standardant-
wort darauf war: «Das steht halt so im Betriebssystem.» Also nehmen Sie es
hin.

Noch ein kleiner Tip am Rande: Einen ganzen, vollen Block erreicht man,
indem man eine invertierte Leerstelle druckt. Klingt toll, was? HeiBt aber nur,
die Funktion RVS ON einschalten ((CTRL) und (9)), die Leertaste driicken
und Reverse mit {RVS OFF) wieder ausschalten. Hier ein paar Belsplele was
mit Sonderzeichen alles moglich ist. ‘

Bild 2.1 Beispiele fiir Grafikzeichen

Wie die Grafik laufen lernte

Jetzt kommen wir langsam zur Kernfrage: «Was soll ich damit und was hat
das alles mit Spielen zu tun?» Ganz einfach. Alles, was wir jetzt die ganze Zeit
direkt ausgefiihrt haben, 1aBt sich auch innerhalb eines Programms tun. Wie
man das macht, wollen wir jetzt erkldren.

Machen Sie doch mal spaBeshalber Anfithrungszeichen auf ((SHIFT) unc
(2)). Okay? Gut. Jetzt versuchen Sie bitte, lhren Cursor mit den Steuertaster
zu bewegen. Solange Sie ihn nach rechts steuern, scheint ja alles in Ordnung
auch wenn er so komische invertierte Zeichen hinterldBt. Aber wenn Sie ihr
nach oben, unten oder links bewegen wollen . :

Keine Sorge. lhrem Commodore geht's gut. Bevor wir sagen, was das alle:
soll, driicken Sie doch bitte (RETURN). Den folgenden SYNTAX ERROF
ignorieren Sie am besten. Das sagen Computer immer, wenn sie nich
weiterwissen.

Das (RETURN) sollten Sie eigentlich auch nur eingeben, um wieder au
diesem Modus herauszukommen. Sie miiiten jetzt auf Ihrem Bildschirn
allerhand invertierte Zeichen sehen.

Die Commodore-64-Grafikzeichen 53

Frage an Radio Eriwan: «Haben diese Zeichen irgendeinen Sinn?» Ant-
wort: «Im Prinzip ja.» Nur, damit sie diesen Sinn auch erfiillen, fehlt noch eine
Kleinigkeit, und zwar der BASIC-Befehl PRINT.

Probieren Sie es mal. Schreiben Sie PRINT, machen Sie Anfiihrungszeichen
auf, und versuchen Sie jetzt, den Bildschirm zu 18schen (also: (SHIFT) +
{CLR HOME)). Das erste, was lhnen auffallen wird, ist, daB jetzt genauso-
wenig passiert wie vorhin bei der Cursorsteuerung. Bis auf eines: Gleich nach
dem Anfiihrungszeichen erscheint ein invertiertes Herzchen. Jetzt versuchen
Sie wieder, den Cursor zu steuern. Am besten ein paarmal nach unten, ein
biBchen nach rechts usw.

Stiick fiir Stiick fullt sich die Zeile mit immer mehr von diesen komischen
Zeichen. Wenn Sie keine Lust mehr haben, kdnnen Sie jetzt aufhéren. Mehr
als zwei Zeilen sollten Sie aber auf keinen Fall auffiillen, denn langer darf eine
BASIC-Eingabe nicht sein. Machen Sie dann die Anfiihrungszeichen zu.
Ubrigens, Ihre Cursorsteuerung funktioniert wieder normal, aber probieren
Sie es bitte noch nicht aus.

Bevor Sie (RETURN) driicken, wollen wir Ihnen sagen, was passiert ist. Sie
wissen ja, daR der Computer bestimmte Befehle verstehen und ausfiihren
kann. Und daB man diese Befehle in Programmen abspeichern und spater
ausfiihren lassen kann. Genau das haben wir getan — auBer, daB wir vor
unsere Programmzeile keine Zeilennummer geschrieben haben und der Com-
puter sie in dem Moment ausfiihrt, in dem wir (RETURN) driicken. Moment!

Schauen Sie sich lhre Zeile noch einmal an: Zuerst steht da PRINT, also ein
Befehl, der den Computer anweist, etwas auf dem Bildschirm darzustellen.
Nur folgen diesmal dem Anfiihrungszeichen keine Worter oder Buchstaben,
sondern unsere Zeichen. Und diese Zeichen kamen ja dadurch zustande, da8
wir versucht haben, den Bildschirm zu I6schen und den Cursor zu bewegen.

Wenn diese Zeichen jetzt auch noch Steuerzeichen heifen, dann kann man
sich an fiinf Fingern abzdhlen, was passieren wird. Der Computer wird alle
diese Zeichen als Befehle interpretieren.

Das heift, zuerst den Bildschirm I6schen und dann den Cursor an die Stelle
bewegen, die wir mit unseren Steuerzeichen angesteuert hatten. Driicken Sie
also jetzt (RETURN). Wenn Sie alles richtig gemacht haben, miiBte lhr
Bildschirm jetzt leer sein, irgendwo READY stehen und darunter der Cursor
blinken.

Ein Nebeneffekt dabei, den man leicht tibersieht, weil man ihn eben nicht
sieht, ist, daB der Cursor nicht langsam dahin wandert, wo wir ihn haben
wollten, sondern scheinbar sofort dort auftaucht. Aber eben nur scheinbar.

54 Die Commodore-64-Grafikzeichen

Denn tatsachlich fiihrt der Computer alle Steuerzeichen eins nach dem
anderen aus. Nur unglaublich schnell. Dieser Nebeneffekt fiihrt uns zum
zweiten Teil der Frage: Was hat das Ganze mit Spielen zu tun?

Spiele sind Animation. Computeranimation aber, also die scheinbare Bewe-
gung von Figuren auf dem Bildschirm, wird ja nur dadurch erreicht, daR
stindig Punkte gezeichnet und wieder geléscht werden. So schnell, daB das
menschliche Auge diesem Vorgang gar nicht folgen kann. Es Rt sich
tduschen.

Mit den Steuerzeichen in einer Programmzeile kdénnen wir den Cursor
genau an einer bestimmten Stelle zeichnen lassen. Wir konnen Reverse an-
und ausschalten, den Bildschirm l6schen usw.’

Bevor wir Sie jetzt mit noch mehr Theorie quélen, ein biBchen Denksport:
Wenn Sie also wissen, wie man Grafikzeichen auf den Bildschirm bringt, wie
man diese Zeichen an die beabsichtigten Stellen bekommt, daR das alles
extrem schnell geht und daR Computeranimation eigentlich nur das schnelle
Zeichnen und Loschen von Grafiken an bestimmten Stellen ist, dann miite
Ihnen jetzt auch ansatzweise klar sein, was das Ganze mit Spielen zu tun hat.
Denn mit unseren Grafiksymbolen und Steuerzeichen mifte sich doch
eigentlich auch einfache Animation machen lassen. Sie miissen ja nichts
weiter tun, als an derselben Stelle ein Grafikzeichen durch ein anderes zu
ersetzen. Am besten versuchen Sie es erst einmal selbst. Sie kénnen aber auch
unser dreizeiliges (!) Programm «HUGO» benutzen, das im Listinganhang
steht. Spdtestens damit konnen Sie schon bei allerhand Leuten Eindruck
schinden. Bei «<HUGO» finden Sie iibrigens noch einmal eine Erklarung det
einzelnen Programmzeilen.

Wundern Sie sich nicht, wenn wir fiir das Hauptprogramm die etwas
eigenwilligen Zeilen 1000 bis 1020 benutzt haben: Der Grund dafiir liegl
darin, daR wir Ihnen vorher und nachher genug Platz lassen wollten, Hugc
zum Beispiel in einer hiibschen Wohnung turnen oder sich andere zusatzliche
Dinge einfallen zu lassen.

Wir schlagen vor, daB Sie sich jetzt erst einmal mit diesen ganzen-Sonder-
und Steuerzeichen ausgiebig beschiftigen, bevor Sie das nichste Kapite
lesen. Denn wenn wir davon ausgehen, daB Sie das Buch gegen 10 Uhi
morgens gekauft haben, dann reicht die Zeit gerade noch so, bevor Sie zt
Mittag essen sollten. Wenn Sie das Buch nachmittags gekauft haben, dann ist
es auch nicht mehr weit zum Abendessen. In diesem Sinne viel SpaB. Unc
guten Appetit.

3
Der Speicheraufbau des Commodore 64

Also, mit SYS 61320 bin ich eigentlich deutlich im
Betriebssystem ... Oh!!

Na, lieber Leser? Alles gut verdaut? Alle Informationen und das Essen? (Egal,
ob Mittag oder Abend ...)

Fein.

Wenn Sie bisher das Gefiihl hatten, ein wenig unterfordert zu sein («Tasten
driicken kann doch jeder!»), dann ist das folgende Kapitel sicherlich etwas fiir
Sie. Denn jetzt wird es ein biBchen schwieriger. Vom technischen Verstandnis
her ist dieses dritte Kapitel sicherlich eins der anspruchsvollsten.

Es beschaftigt sich mit den komischen Dingern, von denen Programmierer
standig reden — egal, ob sie einer darum gebeten hat oder nicht: den Bits und
Bytes.

Der Sinn dieses Kapitels soll sein, lhr Verstdndnis fiir die Vorgidnge im
Computer zu schulen und Sie vor allerlei Uberraschungen zu schiitzen, die vor
allem beim POKEn und bei SYS-Aufrufen auf Sie warten. Das Zitat in der
Uberschrift beispielsweise enthilt einen wichtigen Begriff. Das ist nicht etwa
die Zahl 61320 oder der Ausdruck «Betriebssystem». Nein, es ist das «Oh!l!»
am SchluB.

Es zeugt davon, welch erstaunliche Wirkung bestimmte Speicherzellen
haben konnen. Beim zitierten «Oh» handelt es sich um den Ausdruck
ungldubigen Erstaunens, als der Computer sich, ganz gegen Hannes' Absicht,
sang- und klanglos von uns verabschiedete. Nicht einmal seinen iiblichen
«SYNTAX ERROR» brachte er noch heraus. Er war abgestiirzt. Abstiirzen
heiBt nichts anderes, als daB das System sich irgendwo verrennt und nicht
mehr herauskommt. Ubrigens, wenn Sie unseren SYS 61320 vorhin auspro-
biert haben, sollten Sie jetzt Ihren armen Commodore durch gnédiges
Ausschalten erlosen.

56 Der Speicheraufbau des Commodore 64

Ein falscher POKE oder SYS kann den Computer wirklich «sprachlos»
machen.

Dies ist zwar manchmal ganz lustig, aber wenn man gerade allerhand
Programmzeilen eingegeben und beim Probelauf die falsche Speicherzelle
angesprochen hat, kann das schon drgerlich sein. Vor allem, wenn die einzige
Méglichkeit, den Computer wieder hinzukriegen, der kleine Knopf auf der
rechten Seite ist — ja, der zum Ein- und Ausschalten. Wenn Sie zumindest
ungefdhr wissen, wo Sie herumwerkeln, lassen sich damit schon allerhand
Gefahren rechtzeitig abschatzen. Das Wissen um die Speicheraufteilung hat
noch einen anderen Effekt. Vor allem Benutzer von Kassettenrecordern als
Massenspeicher werden das zu schitzen wissen: Es ist nimlich moglich,
mehrere Programme gleichzeitig im Speicher zu haben. Das erspart Wartezei-
ten. Auch fiir Floppy-Besitzer ist das praktisch:

Umrechnungsprogramme oder andere Utilities konnen abgelegt und
abwechselnd aufgerufen werden.

Von Prozessoren, RAM, ROM und anderen Chips
!
Bevor wir uns solchen Programmiertechniken zuwenden, miissen wir uns ein
etwas umfassenderes Wissen Uber den Speicher aneignen. In diesem Sinne:
Stlirzen wir uns in die Chips.

Apropos Chips. Das ist bereits der erste Begriff, liber den man sich klar
werden muB. AuBer mit Paprika, gesalzen, ungarisch oder in der schlichten
Kartoffelausfiihrung gibt es diese Dinger auch im Computer. Prinzipiell lassen
sich diese elektronischen Bauteile, die a la Lego auf eine Platine gesteckt
werden, in drei Hauptgruppen unterteilen: Die drei Kategorien sind: Prozes-
soren, Speicherbausteine und Chips, die besondere Aufgaben haben und
speziell dafiir konstruiert wurden, wie zum Beispiel der Videochip oder der
Soundchip des Commodore 64. Zuerst zu den Prozessoren. In diesem Bau-
stein finden die Schaltvorgidnge statt, die den Computer dazu bringen, auf
jede (fiir ihn mehr oder weniger sinnvolle) Eingabe eine fiir uns (ebenso mehr
oder weniger sinnvolle) Ausgabe folgen zu lassen. Er ist die sogenannte
«Zentraleinheit».

Im Fall unseres Commodore 64 heift dieser Chip 6510. Hinter diesem
fantasievollen Namen stecken auBer zahlreichen Transistorfunktionen auch
40 metallene Fiichen, die in etwas selbstherrlicher Weise den Computer
despotisch beherrschen — frei nach Ludwig XIV.: «Der Schaltkreis bin ich.»

Der Speicheraufbau des Commodore 64 57

Na ja, zumindest glaubt dieser kleine Mikroprotz daran. Und ganz unrecht
hat er ja nicht, da er in seiner Klasse sicherlich zu den Fahigsten gehort.
Allerdings — ganz so allein, wie man meist annimmt, beherrscht er sein
Mikroreich nicht.

Es gibt da noch andere Bausteine, die ihre eigenen und ganz speziellen
Aufgaben haben, zum Beispiel den VIC, den Video-Interface-Chip, der die
gesamte Bildschirmausgabe kontrolliert. Er ist kein Prozessor, davon gibt es
namlich nur einen in unserem Computer. Da aber im Ernstfall die Videoinfor-
mationen, also die Bildschirmdarstellung, vorgehen, ist der VIC sogar in der
Lage, den Prozessor «warten» zu lassen.

Das also sind Konig und Kardinal.

Jetzt kommen wir zu den Untertanen: den Speicherbausteinen. lhre Auf-
gabe besteht nur darin, Informationen zu speichern. Sie unterteilen sich in
zwei Gruppen: die loschbaren und die nichtléschbaren. Wihrend man die
einen mit Musikkassetten vergleichen kann, weil auf der Kassette die Infor-
mationen (Musik) geléscht werden kdénnen, wenn man sie nicht mehr
braucht, sind die anderen wie Schallplatten. Sie kdnnen nicht mehr gel6scht
werden und spielen immer dasselbe Lied.

Weil Computer-Freaks ein Faible fiirs Englische haben, heift der erste
Speichertyp «RAM» (Random Access Memory, was freier Zugriffspeicher
bedeutet, besser aber mit Schreib-/Lese-Speicher umschrieben wird). Der
RAM-Bereich wird bei jedem Ausschalten des Computers geloscht. Der
andere Typ ist das «<ROM». Das hat nichts mit der gleichnamigen Stadt zu tun
und wird auch kiirzer gesprochen. Ausgeschrieben heilt <cROM» Read Only
Memory oder Nur-Lese-Speicher. Im Gegensatz zum RAM wird das ROM
beim Ausschalten nicht geloscht, kann aber auch nicht beschrieben werden.
Das heil8t, daB alle Werte darin absolut feststehen, wenn sie erst einmal
festgelegt wurden.

Strom oder nicht Strom, das ist hier die Frage

Aber egal ob ROM, RAM oder Prozessoren — alle diese /Cs kénnen nur zwei
Zustinde unterscheiden: Strom oder kein Strom. Und nur in dieser Art
kénnen sie Informationen verarbeiten und speichern. Natiirlich stellt sich die
Frage, wie es der Computer fertigbringt, sich beispielsweise den Namen
Brigitte zu merken, und das mit seiner Strom-an-/Strom-aus-Methode.

58 Der Speicheraufbau des Commodore 64

Erinnern Sie sich noch an unsere ASCII-Codes vom letzten Kapitel — die
Zahlenwerte fiir Buchstaben?

Na prima. Da hatten wir schon gesagt, daB der Computer sich keine
Buchstaben merkt, sondern alle Zeichen als Zahlen abspeichert. So hat zum
Beispiel der Buchstabe A den Wert 65.

Wenn Sie es nicht glauben, probieren Sie es aus. Geben Sie folgende Zeile

en: PRINT ASC("A")

Als Ergebnis werden Sie 65 bekommen. Das heiRt, der Computer hat
nirgends in seinem Speicher ein A rumliegen, sondern nur die Zahl 65. Wenn
er die an geeigneter Stelle antrifft, dann fangt er an, so lange rumzuwerkeln,
bis ganz zum SchluB ein A auf dem Bildschirm steht. Aber wahrscheinlich
qudlt Sie schon seit Anfang dieses Absatzes die Frage, wie der Computer nun
die Zahl 65 in Strom an/aus umsetzt. Also: Irgendwann kam ein schlauer
Mensch darauf, wie man sich die Denkvorgdnge im Innern eines Computers
am besten vorstellen kann. Die Losung bestand aus zwei Zahlen: 1 und 0.

Merken Sie was? 1 und 0, an und aus, Strom und kein Strom.

Man kann alle unsere Dezimalzahlen in dieses System umrechnen. Das
Problem bei dieser Rechnerei sind bloR wir Menschen. Denn offensichtlich
hat man bei unserer Konstruktion, zumindest bei den Handen, den techni-
schen Fortschritt vollig auBer acht gelassen. Wir haben nun mal an jeder
Hand fiinf Finger. Und weil wir zum Rechnen schon immer Hilfsmittel
gebraucht haben . .. Sie sehen also, widrige Umstdnde sind daran schuld, daB
die meisten Menschen mit diesem Dualsystem nicht so zurechtkommen.
Denn dank unserer zehn Finger wurde die Zehn fiir uns zu einer erhabenen
Zahl.

Wenn man sich aber einmal wirklich mit diesem Dualsystem beschaftigt,
stellt man fest, daR es zwar umstédndlicher als unser Dezimalsystem ist, aber
keineswegs schwieriger.

Der Speicheraufbau des Commodore 64 59

Wie rechnet man mit einem Computer,
der nicht bis 2 zahlen kann?

Eine Stelle kann bei uns mit den Ziffern O bis 9 besetzt werden — egal, ob
Einer, Zehner oder Hunderter. Wir machen schlicht und einfach bei allen
Zehnerpotenzen eine neue Stelle auf. Also 1, 10, 100, 1000, was 10°, 10",
10%, 10° entspricht.

Der Computer behauptet aber, aus seiner Sicht mit Fug und Recht, da 1 +
1 nicht 2, sondern 10 sei.

Sein Problem ist, daB er nicht bis zwei zdhlen kann. Oder besser gesagt, er
kennt diese Zahl gar nicht.

Hatte der Mensch seit jeher nur zwei Finger, wire dieses System fiir uns
das Natiirlichste der Welt. Zum Gliick fir alle Schreibmaschinenschulen ist es
anders. Trotzdem, dank unseres Gehirns konnen wir uns mit dem Computer
in seinem etwas eintdnigen Ein/Aus-Dialekt unterhalten. Dazu rechnen wir in
seinem System. Statt bei jeder Zehnerpotenz machen wir jetzt also bei jeder
Zweierpotenz eine neue Stelle auf. 2° (= 1) ist also 1; 2" (= 2) ist 10; 2% (=
16) ist 10000 usw.

Womit auch unser kleines Rechenbeispiel von vorhin klar wire. Wihrend
1 + 1 fiir uns 2 ist, muB der Computer daraus 10 machen. Wir sollten zum
besseren Verstandnis nur nicht zehn, sondern eins-null sagen. Was ist dann
also 3 im Dualsystem? Richtig, 11 (eins-eins). Denn wir haben ja bei 3 im
Dualsystem noch eine Stelle frei und miissen auch keine neue aufmachen.
Zwei ist 10 (eins-null). Eins ist auch dual 1. Also zusammen 11 (eins-eins).
Voila.

Wenn Sie das alles verstanden haben: groRartig. Zur Belohnung noch eine
kleine Aufgabe. Rechnen Sie doch mal schnell 101101101001101010101 ins
Dezimalsystem um. Wenn Sie aber bis morgen friih etwas Konstruktiveres
tun wollen, kénnen Sie sich dazu auch ein Programm tberlegen. Wenn Sie im
Gedachtnis behalten, dal der Wert der ersten Stelle eins, der zweiten zwei,
der dritten vier usw. ist, dann ist das gar nicht so schwer. Allerdings finden Sie
im Anhang ein Listing fiir ein entsprechendes Programm. In jedem Fall
wiirden wir Ihnen raten, sich noch etwas mit diesen Zahlen zu beschéftigen.
Sie werden Ihnen bald sehr hilfreich sein. Haben Sie das Bindrsystem erst
einmal verstanden, ist die groRte Hiirde bei Bits und Bytes genommen. Jetzt
machen Sie ruhig einmal Pause.

Dazu hier Tabelle 3.1

60 Der Speicheraufbau des Commodore 64

dezimal dual
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
1 1011
12 1100
13 1101
14 1110
15 111

Tabelle 3.1 Gegenuberstellung dezimal/dual

Uber das Gliick, einen 8-Bit-Prozessor zu besitzen,
und vom Pech, 16 Bit zu brauchen

Schén, daR Sie wieder da sind. Startbereit zum ndchsten groen Abschnitt?
Wenn nicht, lesen Sie lieber den ersten Teil noch einmal. Das Buch nimmt
Ihnen ja keiner mehr weg. (Oder stehen Sie etwa immer noch bei lhrem
Buchhéndler?!) Im folgenden Abschnitt gehen wir in die Tiefe des Speichers.

Die Nullen und Einsen, von denen wir die ganze Zeit gesprochen haben,
sind die beriihmten Bits, die kleinste Informationseinheit, die ein Computer
verarbeiten kann. Bit ist die Kurzform von binary digit. Und jetzt geht's los.

Wir haben in unserem Commodore némlich einen 8-Bit-Prozessor. Das ist
der kleine Despot von vorhin, der 6510. 8-Bit-Prozessor heit aber nichts
weiter, als daR er acht dieser kleinsten Informationen gleichzeitig verarbeiten
kann. Das Kuriose dabei ist, daR unser Chip aber auch mit einer 16-Bit-

Der Speicheraufbau des Commodore 64 61

Leitung gekoppelt ist. Durch einen technischen Trick kann unser 6510 diese
16 Bit sogar ausnutzen. Aber wozu das Ganze? Diese Leitung, von der wir
sprechen, heifit AdreBbus. Und genau dazu dient der ganze Aufwand auch:
zu einer Art Adressenverwaltung. Gemeint sind die Adressen, um das Bild von
vorhin wieder aufzugreifen, des gesamten Konigreichs Computer. Der Pro-
zessor als Quasi-Konig muB ja die Moglichkeit haben, mit jedem seiner
Untertanen, also den RAMs und ROMs, Verbindung aufzunehmen. Immer,
wenn Konige bisher auf diese Moglichkeit verzichteten, ging die Sache ins
Auge. Die Geschichte beweist das. Sollte lhnen das Bild von K6nig und Reich
zu infantil sein, der Fachmann sagt dazu: «Der Prozessor muB in der Lage
sein, jedes Byte zu adressieren.»

Wenn Sie lhren Commodore einschalten, erfahren Sie, daB8 er ein 64-
KByte-RAM-System hat. 8 Bit entsprechen einem Byte. Damit 4Rt sich jetzt
auch ausrechnen, wie viele Bytes Sie zur Verfiigung haben sollten. Ein KByte
heiBt eigentlich ein Kilobyte. Das hat nichts damit zu tun, daB Speicherkapazi-
tdt etwa pfundweise verkauft wird. Kilo ist nur ein traditioneller Ausdruck fiir
1000. Hier treffen allerdings moderne Technik und Tradition aufeinander.
Der Computer ist ja, wie wir erfahren haben, ein absoluter Zweierfetischist.
Tradition hin — Tradition her. 20 ist halt nicht 1000, sondern 1024, und damit
SchluB. Und weil er so dickkopfig ist, stimmt auch die Sache mit dem 64K-
System nicht ganz. Denn 64mal ein Kilobyte (also 64 % 1024 Bytes) ist
65535. (Eigentlich 65536. Die Zahlung der Speicherzellen beginnt aber mit
der Zelle 0.) Damit haben wir auch die gesuchte Zahl. Was diese Zahl so
wichtig macht? Eigentlich gar nichts, bis auf die Tatsache, daB der Prozessor
sie gar nicht versteht. Und das stellt ihn eigentlich vor eine unlésbare
Aufgabe. Sie erinnern sich: Ein Byte sind 8 Bit. Damit ist der hochste Wert,
den ein Byte darstellen kann, logischerweise 11111111, und das ist 255.
Rechnen Sie ruhig nach, wenn Sie es nicht glauben. Sie kdnnen es aber auch
ausprobieren. Der hochste Wert, den man mit dem Befehl POKE in eine
Speicherzelle schreiben kann, ist 255. Alles, was dariiber liegt, quittiert der
Computer mit einem kiihlen "ILLEGAL QUANTITY ERROR".

Na, stimmt's?

Weil wir aber einen 8-Bit-Prozessor haben, ergibt sich hier das gleiche
Problem. Die héchste Zahl, die er aufrufen kann, ist 255. Und genau deshalb
kommt er in Schwierigkeiten. Wie soll er einen Wert aufrufen, der in der
Speicherzelle 65535 steht? Wo er doch diese Zahl gar nicht kennt. Aber
genau deshalb gibt es den 16-Bit-AdreRbus. Denn die hdchste Zahl, die man
mit 16 Bit darstellen kann, ist 65535. Was fiir ein Zufall ...

62 Der Speicheraufbau des Commodore 64

Damit lassen wir fiirs erste diese ganze Ar-byte auf sich beruhen. Wir
geben uns mit der Tatsache zufrieden, daB unser Prozessor die 16-Bit-Leitung
benutzen und somit jeder Speicherzelle Bescheid sagen kann, daB sie ihren
Inhalt vorbeischicken soll. Dieser Wert kommt dann — ganz legal — iiber eine
andere, reguldre 8-Bit-Leitung zum Prozessor. Die 8-Bit-Leitung heift (ibri-
gens Datenbus. Und weil jetzt alles so schén klar zu sein scheint, werden wir
gleich wieder ein bifchen Unordnung reinbringen.

Wie einem ohne groBe Schwierigkeiten iiber
3000 Byte verlustig gehen

Die erste Meldung beim Einschalten lhres Commodore 64 besagt, da8 Sie
stolzer Besitzer eines 64K-RAM-Systems sind. Schon, nicht? Nur ... Es stimmt
leider nicht ganz. Aber nur die Ruhe! Was wir damit meinen, ist: Es ist zwar
faktisch richtig, aber Sie haben keinen direkten Nutzen davon.

Zuerst muB zum besseren Verstdndnis gesagt werden, daf alle Pro-
gramme, die den Computer zum Arbeiten bringen, unausléschlich in ROM
stehen. Auch diese Programme brauchen jedoch immer wieder Zwischenspei-
cher, wo sie Daten ablegen und aktualisieren kénnen. Nehmen wir beispiels-
weise den Wert des BASIC-Anfangs (2048). Zwei Dinge miissen fiir diesen
Wert moglich sein, damit der Computer damit arbeiten kann. Zuerst muB er
das Ausschalten liberleben. Wie wir wissen, geht das nur im ROM-Speicher.
Andererseits soll er verinderbar bleiben. Aber das Andern geht halt wieder
nur im RAM. Einfachste Losung dazu: den Wert, der an sich im ROM steht,
beim Einschalten ins RAM zu kopieren. Fertig: damit hat man die beriihmten
zwei Fliegen mit der einen Klappe. :

Natiirlich braucht das Festlegen des BASIC-Anfangs nicht allein den halben
Speicher. Es gibt noch einige andere, dhnlich gehandhabte Werte von der
Cursorfarbe bis zur Ldnge des Kassettenpuffers. Das sind alles Dinge, die der
Computer beim Einschalten von selbst erledigt, um sich héuslich einzurichten.
Deshalb dauert es beim Initialisieren auch immer einige Sekunden, bis der
Computer soweit ist. Ein anderer Speicherplatzbenutzer — auBer dem Pro-
grammierer — ist der Bildschirm. In einem bestimmten Bereich des Speichers
liegt eine «Kopie» lhres Bildschirms. Also jeder Buchstabe, der bei lhnen auf
dem Fernseher erscheint, ist in einer Speicherzelle als Bildschirmcode abge-
legt. Wenn Sie (CLR HOME) driicken, wird fiir Sie der Bildschirm geléscht.

Der Speicheraufbau des Commodore 64 63

Tatsachlich wird aber dieser fast 1K groBe Bereich ausgeraumt. 1K deshalb,
weil 1000 Zeichen auf dem Bildschirm dargestellt werden konnen, also
missen dafiir 1000 Bytes herhalten. Und weil man gerade beim Speicher-
platzklauen ist, werden gleich noch einmal so viele mitgenommen, um die
Farbe jedes Zeichens anzugeben, da diese ja unterschiedlich sein konnte.
Womit zusammengenommen weitere 2K futsch waren.

Weiterhin gibt es noch die sogenannte Zeropage. Diese «0-Seite» ist eine
von 256, in die der ganze Speicher unterteilt werden kann. Jede Seite enthélt
dabei 256 Bytes. Unsere erste Seite geht also von O bis 255.

Wie das Inhaltsverzeichnis eines Buches ist diese Seite am schnellsten vom
Computer zu erreichen. Das hat, zumindest in BASIC, zwei Griinde: Zum
einen reicht bei 255 ohne grofe Tricks und Umwege die 8-Bit-Kapazitit des
Prozessors zum Adressieren aus. (Sie erinnern sich: Die hochste Zahl, die mit 8
Bits dargestellt werden kann, ist 255.) Der andere Grund ist, daB der
Computer auf diese Seite zuerst stoBt, wenn er sein internes «Speicherbuch»
aufschldgt. Auf dieser Seite wird deshalb alles mogliche zwischengespeichert,
was besonders oft und schnell gebraucht wird. Was hier so alles rumliegt,
verrdt lhnen lhr C-64-Handbuch ab Seite 160. In unserem PEEK &POKE-
Anhang finden Sie dazu einige Tips fiir interessante Anwendungen.

Die Seiten 1, 2 und 3 (also 256 bis 1023) enthalten ebenfalls allerhand
wichtige Informationen.

Aber trotz all unserer Erklarungen — bisher sind wir erst 3072 Bytes armer.
Wo ist der ganze Rest geblieben?

Sag mir, wo die Bytes sind, wo sind sie geblieben?

Lassen Sie uns rekapitulieren: 38911 Bytes sind fiir BASIC frei — behauptet
zumindest lhr Commodore beim Einschalten. Von 3072 Bytes, also von satten
3K, haben wir uns im Verlauf der letzten Seiten trennen miissen. Daraus folgt,
wir sind auf der Suche nach rund 23K, die dem Computer scheinbar irgendwo
abhanden gekommen sind. Die erste wichtige Voraussetzung, um zu verste-
hen, wo das ganze Zeug geblieben ist, ist die Tatsache, daB der Prozessor des
Commodore nur 65535 Bytes adressieren kann. Diese Zahl entspricht auch
genau dem freien RAM-Bereich des Computers, und aus verschiedenen
Griinden wollte Commodore auch keinesfalls auf diese 64K-RAM verzichten.
Bis hierher ist das auch alles kein Problem — weder fiir uns beim Verstehen
noch fiir den Prozessor beim Adressieren. Allerdings kann unser kleiner 6510

64 Der Speicheraufbau des Commodore 64

nun mal kein BASIC verstehen. Kunststiick! Denn wenn er nur Strom oder
kein Strom unterscheiden kann, ist klar, daB8 der Befehl PRINT einfach so fiir
ihn ein béhmisches Dorf ist. Irgend etwas muB also unsere Befehle dem
Computer iibersetzen bzw. das PRINT interpretieren. Dafiir gibt es ein
eigenes Programm. Sein Name ist «BASIC-Interpreter». Dieses Programm
steht unausloschlich im ROM. Seine Aufgabe ist, kurz geschildert, BASIC-
Befehle in Codezahlen, sogenannte Tokens, umzuwandeln. Damit kann der
Computer den Befehl verstehen, ihn bindr speichern und braucht so statt fiinf
Bytes fiir PRINT sogar nur ein Byte fiir das Token. Soweit ist alles klar, bis auf
eins. Natiirlich muB auch dieser ROM-Bereich irgendwie adressiert werden
konnen. Denn wenn der BASIC-Interpreter gebraucht wird, muf8 der Prozes-
sor ihn ja aufrufen kdnnen. Also muB er eine Adresse haben. Diese Adresse
kann bekannterweise nicht hoéher als 65535 sein. Denn das konnte der
Prozessor selbst mit der 16-Bit-Leitung nicht darstellen. Die einzige Méglich-
keit, beide Dinge (RAM- und ROM-Bereich) unter einen Hut zu bringen, ist,
beiden dieselbe Adresse zu geben. Weil der Computer aber nicht unterschei-
den kann, fiir wen ein Aufruf z. B. mit der Adresse 41 350 bestimmt ist, wird
eine Entscheidung auf unsere Kosten getroffen. Ein 8K-RAM-Baustein wird
abgeschaltet, das heiBt, eigentlich ausgeblendet. Er ist zwar theoretisch
funktionstiichtig, kann aber nicht eingesetzt werden, weil der Prozessor nur
entweder RAM oder ROM adressieren, also aufrufen kann.

Nun gibt es auBer dem BASIC-Interpreter noch das eine oder andere
wichtige ROM-Programm.

Alles in allem hat der Commodore etwa 20K-ROM, zu denen auch der SID
(der Tonchip) und der VIC (der Videochip) gehéren, die auf diese Art und
Weise mitverwaltet werden miissen. Entsprechend dieser ROM-GréRe nimmt
unser freier RAM-Bereich ab. Der Rest wird dann noch von einem 4K-RAM-
Spezialspeicher benétigt, der zwischen BASIC und //O-Registern liegt.

DalB es zwecks Speichererweiterung duerst unpraktisch ware, das BASIC-
ROM und damit den Interpreter oder das Betriebssystem auszublenden, ist
klar. Denn dann hatten Sie zwar mehr Speicher, aber leider sonst nichts mehr.
Ohne BASIC und Betriebssystem ist es ndmlich nichts mehr mit Programmie-
ren. Der Computer stiirzt ab und kann nicht einmal mehr mit (RUN/STOP)
und (RESTORE) wieder in Ordnung gebracht werden. Wenn Sie das Ganze
mal probieren wollen, die ROMs lassen sich mit

POKE 1,53
ausblenden. Das Ergebnis ist, daR Sie ohne Cursor und BASIC dastehen.

Der Speicheraufbau des Commodore 64 65

Noch einen letzten Satz zu den 64K-RAM. In Maschinensprache wére es
moglich, fast diesen ganzen RAM-Bereich zu benutzen. In BASIC miissen wir
uns damit abfinden, daR ein gewisser Teil anderweitig gebraucht wird.

Aber keine Sorge. Bis Sie allein die restlichen 38911 Bytes aufgebraucht
haben, diirften Sie schon allerhand zu tun haben. Zum besseren Verstiandnis
des Ganzen dienen die folgenden Skizzen.

1. Normale BASIC-Konfiguration:

- RAM | Betriebssystem-ROM
RAM ; I/0O-Register
RAM
49152
RAM BASICROM |
40960

38 911-Bytes
BASIC-RAM

2048
Bildschirmspeicher
1024
Zeropage
0

2. Mégliche Maschinensprachekonfiguration:

RAM Betriebssystem-ROM
RAM 1/0-Register
RAM
49152
RAM BASIC-ROM |
40960
RAM

@ Das Zeichensatz ROM

Bildschirmspeicher 2048 [iii] wird nur von VIC adressiert
1024 -
Zeropage D = ausgeblendet
0

Bild 3.1 Speicherkonfigurationen

66 Der Speicheraufbau des Commodore 64

Wenn Bytes halbe-halbe machen

Bei normalen BASIC-Programmen kommt es nicht oft vor, daB man die
ganzen 38911 Bytes dafiir braucht. Mit einigen Tricks ist es aber méglich,
genau diesen freien Speicherbereich auszunutzen — zum Beispiel, indem man
mehrere Programme gleichzeitig im Speicher hat, aber immer nur eins
arbeiten 14aRt.)

Wie wir vorher gehort haben, beginnt der BASIC-Speicher bei 2048. Ab
hier werden die bereits erwédhnten Tokens abgespeichert.

Wenn lhr Programm beispielsweise 2K lang ist, geht es von Adresse 2048
bis 4095 (BASIC-Anfang + 2mal 1024 Bytes). Ab 4096 legt der Interpreter
dann die Inhalte der Variablen, wie A, A$ usw., ab. Damit sich der Computer
das auch merkt, gibt es einige Adressen in der Zeropage, zum Beispiel von 43
bis 46. Dabei gilt, daB die Adressen 43 und 44 fiir den Anfang, 45 und 46 fiir
das Ende des BASIC-Programms zustédndig sind.

Warum jeweils zwei Adressen? Nach alledem, was wir in harter Arbeit tiber
die Speicheraufteilung gelernt haben, kénnen BASIC-Programme normaler-
weise nur innerhalb des Speicherbereichs von 2048 bis 40960 stehen.
(Vergleichen Sie dazu auch die Skizze aus dem letzten Abschnitt.)

Damit sind wir wieder bei unserem alten Problem. Konnen Sie es sich
denken? Genau. Es geht wieder mal ums Adressieren. 8 Bit sind maximal 255.
Nichts ist's also mit 2048 bis 40 960.

Aber wir haben ja zwei Speicherzellen. Nun, selbst damit erreichen wir
nichts, denn die hochste Summe wdre dann 510, und das ist so gut wie
nichts. Man konnte jetzt natiirlich immer so viele Speicherzellen, wie nétig
sind, addieren. Nur wiirde das einen wesentlich héheren Speicheraufwand
bedeuten. DaB unser 6510, als die Adressierkapazitdt verteilt wurde, nicht
gerade in der ersten Reihe stand, haben wir ja schon gemerkt.

Gliicklicherweise ist auch hier wieder jemandem etwas eingefallen. Wie
wdére es denn, wenn man 2 Bytes zur Darstellung benutzt, diese Bytes
irgendwie unterscheidet und eins dann aber nicht mit den normalen 2°
anfangen laRt, sondern mit 28 als erstem Wert? Das wiirde bedeuten, daR die
erste Stelle des niedrigeren Bytes ganz normal den Wert 1 hat, die erste Stelle
des hoherwertigen Bytes aber bereits den Wert 256 darstellt. Damit kriegen
wir wieder unsere magische Zahl 65535 zusammen. Da staunt der Fach-
mann, und der Laie wundert sich. Um jetzt in die ganze Konfusion wenigstens
etwas System zu bringen, heiBen die beiden Bytes schlicht und ergreifend
Low Byte und High Byte.

Der Speicheraufbau des Commodore 64 67

Das alles schauen wir uns noch an einem Beispiel an.
Wie wir wissen, macht schon die Startadresse 2049 Schwierigkeiten. Bindr
sieht sie folgendermafen aus:

100000000001

Dieser Wert wird nun in zwei 8-Bit-Werte geteilt. Weil unsere Bindrzahl aber
nicht aus 16, sondern nur aus 12 Stellen besteht, werden die fehlenden
vorderen Stellen einfach mit Nullen besetzt. Damit ergibt sich

00001000 / 00000001

Das Low Byte, also der Wert, dessen erste Stelle 2° entspricht, kommt in die
Speicherzelle 43.
Das High Byte, dessen erste Stelle 28 entspricht, kommt in die Speicher-

zelle 44.
Und jetzt noch mal dieses ganze Prinzip im Schema.

High-Byte Low-Byte

[o[o[o]o[1]o[o]o] + [o]o[o[o]o[o]o]1]
21521421321221121029 28 27 26 25 24 23 22 21 20

| l
2048 + 1
|
2049

Bild 3.2 High-Byte-/Low-Byte-Prinzip

Sie kbnnen das ja mal ausprobieren: Mit

? PEEK (43)
? PEEK (44)

miiBten Sie im ersten Fall 1, im zweiten Fall 8 als Ergebnis erhalten. Natiirlich
ergibt das nach einer Addition noch nicht die gesuchte Zahl 2049. Das liegt
daran, daB Sie noch beide Bytes gleich behandelt haben. Das High Byte muB
aber immer mit 256 multipliziert werden. Aus alledem ergibt sich die Formel

STARTADRESSE = 256 PEEK (44) + PEEK (43)
ENDADRESSE = 256 * PEEK (46) + PEEK (45)

68 Der Speicheraufbau des Commodore 64

Ein Tip: Fast immer ist die groBte Speicherzelle (hier 44 bzw. 46) das High
Byte. Wenn nicht, miifte es eigentlich angegeben sein.

Und noch etwas: In der «eigentlichen» Startadresse von BASIC muB immer
0 stehen. (Das ist eine Art Bestdtigung, dal der Speicher wirklich frei ist.) Die
BASIC-Tokens gehen dann eigentlich erst in der ndchsthéheren Speicherzelle
los.: Obwohl wir 2048 gemeinhin als «Start des BASIC-RAMs» bezeichnen,
steht in dieser Zelle eine O (PEEKen Sie es doch einmal nach!). Der Zeiger in
43/44 zeigt tatsdchlich erst auf 2049 (s. 0.).

Im selben High-Byte/Low-Byte-Schema steht in den Speicherzellen 45/46
die Endadresse von BASIC. Sie muB iibrigens immer mindestens 2 Bytes hoher
als der Anfang sein, selbst wenn kein Programm im Speicher ist. Das heiBt, sie
muf momentan als Grundwert 2051 enthalten.

Speicherzauberei

So, bis jetzt haben Sie nur gelesen. Jetzt geht's aber in die vollen! Wir wollen
zwei BASIC-Programme gleichzeitig im Speicher haben. Zuerst setzen wir mit
POKE 44,16 den BASIC-Anfang um 2K nach oben. Damit ist die BASIC-
Startadresse 4097. Den Wert in 43 lassen wir unverandert 1.

Wir sollten aber unbedingt auch das Ende von BASIC nach oben setzen.
Denn im Augenblick zeigt das Ende auf 2051, wéahrend der Anfang bei 4097
liegt. Diese Situation ist selbst fiir einen Computer etwas schwer durchschau-

bar. Also POKE 45,3:POKE 46,16

Damit ware dieses Problem gelost. Wie bereits erwdhnt, muB das BASIC-
Speicherende 2 Bytes iiber dem Anfang liegen. Das ware hiermit erledigt. Das
Ende liegt jetzt ndmlich bei 4099 (vgl. Formel fiir Endadresse!). Sie missen
aber hier auch die Zelle 43 verdndern, denn der bereits erwahnte Interpreter
verschiebt bei der Eingabe einer BASIC-Zeile das Ende des Programms
automatisch nach oben.

Erinnern Sie sich noch an den kleinen Tip von vorhin?

Wenn Sie jetzt NEW eingeben oder LIST oder RUN, wird der Commodore
diese Aktion deshalb mit einem SYNTAX ERROR quittieren, weil wir noch
nicht in seinem neuen Zuhause (BASIC-Speicher) aufgerdumt haben. Ein

POKE 4096,0

kdme hier einem Friihjahrsputz gleich.

Der Speicheraufbau des Commodore 64 69

Um wirklich absolut sicherzugehen, sollten Sie jetzt noch einmal NEW
eingeben. Dieser Befehl hat die Eigenschaft, beide BASIC-Zeiger ins richtige
Verhdltnis zueinander zu bringen fiir den Fall, daR Sie sich doch verrechnet
haben.

Jetzt konnen Sie endlich loslegen ... Schreiben Sie ein kleines Programm in
den neuen Speicher, z. B.

10 PRINT"DIES IST DAS ZWEITE PROGRAMM!™

Nach dem Befehl RUN wird dieses Programm — wie tiblich — ausgefihrt. Jetzt
aber setzen wir mit POKE 44,8 den Zeiger zuriick auf 2048. Damit sind wir
wieder im urspriinglichen BASIC-Bereich. Auch hier sollten Sie sicherheitshal-
ber NEW eingeben. (Aufgerdumt hat der Computer beim Einschalten schon
selbst.) Damit ist der Speicher bereit zur Eingabe eines neuen, anderen
BASIC-Programmes, weil der BASIC-Ende-Zeiger (in 45/46) automatisch rich-
tig auf 2051 gesetzt wurde.

10 PRINT"DIES IST DAS ERSTE PROGRAMM!"

Was nach RUN passiert, brauchen wir Ihnen sicher nicht zu erkldren. Doch
jetzt kommt der praktische Nutzen der ganzen Mihe: Tippen Sie

POKE 44,16:RUN
Folge: Es lauft das zweite Programm
POKE 44,8:RUN

Und das ware wieder Nummer eins.

Mit diesem POKE kdnnen Sie beliebig hin- und herschalten und das
Programm aufrufen, das Sie gerade bendtigen.

Aber gleich eine kleine Warnung: Programme, die Sie in dieser Art im
Speicher haben, sollten Sie nicht mehr dndern oder abspeichern. Durch die
Umschaltung kommen die Zeiger etwas durcheinander, und es kann zu recht
seltsamen Reaktionen von seiten unseres 64ers kommen.

Nur wenn Sie diese Technik des Verschiebens und Umschaltens absolut
sicher beherrschen, kénnen Sie auch wahrend des Programmierens gleichzei-
tig noch verschiedene Utilities im Speicher haben. Aber selbst dann sollten Sie
etwas hdufiger als sonst das Programm, an dem Sie gerade arbeiten, abspei-
chern, denn das Risiko, sich doch mal zu vertun, ist erheblich. Und das kann
Sie Ihr Programm kosten.

Nach dem gezeigten Prinzip konnen Sie theoretisch beliebig viele Pro-

70 Der Speicheraufbau des Commodore 64

gramme gleichzeitig im Speicher halten. Lassen Sie aber immer genug
«Abstand» zum ndchsten Programm, und bereiten Sie die neuen Adressen
erst mit den gezeigten POKEs und einem NEW vor.

Wenn Sie wissen, an welche Startadresse Sie z. B. |hr zweites Programm
legen wollen, kdnnen Sie unsere Formel genau umgekehrt anwenden: Teilen
Sie die Adresse durch 256, und Sie haben den Wert, der in die Zellen 44 und
46 gePOKEd werden muB.

Vergessen Sie nicht, die mittlerweile bekannte O in die neue Startadresse zu
POKER.

Noch ein letztes Beispiel dazu: Sie wollen lhr Programm ab der Zelle 10 240
im Speicher haben:

Sie teilen 10240/256 = 40
Also wird gePOKEd:
POKE 43,1: POKE 44,40: POKE 45,3: POKE 46,40: POKE 10240,0: NEW

Auch bei diesem Thema heift es natirlich zuerst probieren. Allerdings sollten
Sie dabei ein biRchen Vorsicht walten lassen, da — wie gesagt — so verwaltete
Programme nicht abgespeichert werden sollen. Arbeiten Sie also nur mit auf
Diskette oder Kassette gesicherten Programmen. Griindliches Kennenlernen
dieser Technik schiitzt Sie vor unangenehmen Uberraschungen.

Das war's. Damit haben wir lhnen so ziemlich alles tiber den Speicher
verraten, was fir Sie irgendwie wichtig ist.

Und damit kommen wir jetzt zu einem wesentlich amiisanteren Teil — zur
eigenen Definition von Sonderzeichen.

4
Selbstdefinierte Zeichen

Warum der Computer Analphabet ist und
was wir davon haben

Erst einmal mochten wir Ihnen gratulieren. Immerhin haben Sie sich durch die
Wirrnisse und stdndigen Adressierungsprobleme des Commodore-Speichers
bis hierher durchgekdmpft. Eine durchaus anerkennenswerte Leistung. Der
Erfolg, den Sie davon haben, ist ein mittlerweile doch ganz ansehnliches
Wissen liber die internen Abldufe im Computer. Alles, was Sie so auf [hrem
Speicherrundgang gelernt haben, werden Sie in den folgenden Kapiteln und
auch spdter bei Programmierproblemen immer wieder anwenden und
gebrauchen konnen. Deshalb haben wir dieses Thema auch so ausfiihrlich
behandelt. Doch zuriick zu den etwas erfreulicheren Dingen. Bevor wir Ihnen
den Speicher erklarten, hatten wir uns mit Grafiken beschéftigt. Ja, sogar
schon ein biBchen mit Animation. Dazu benutzten wir die fertigen Commo-
dore-Grafikzeichen. Der Vorteil all dieser Zeichen ist, daf sie sich wie Text
ganz einfach mit PRINT, Steuer- und TAB-Anweisungen iiber den Bildschirm
bewegen lassen. Der einzige Nachteil bisher war, daB das Zeichen, das wir
gerade brauchen konnten, leider nicht existiert. Wenn Sie dieses Kapitel
gelesen und verstanden haben, sind Sie dieses Problem los. Ab dann kénnen
Sie sich alles, was Sie brauchen, selbst definieren.

Um dabei allerdings auch bald mit entsprechenden Erfolgen glanzen zu
kénnen, miissen wir noch schnell ein oder zwei Dinge besprechen, die hinter
der Zeichendarstellung des Commodore 64 stecken.

Am wichtigsten ist zuerst einmal die Tatsache, daB alles, was mit Grafik zu
tun hat — oder besser gesagt, alles, was mit Darstellungen auf dem Bildschirm
verbunden ist — von einem Chip gesteuert wird: dem VIC-II-Videochip. VIC

72 Selbstdefinierte Zeichen

ist dabei nicht die Abkiirzung fiir den Namen Victor (das ist der Steward vom
Traumschiff, also bitte nicht verwechseln ...), sondern fiir die Bezeichnung
Video Interface Chip. Von diesem Baustein, im folgenden nennen wir ihn
einfach VIC, haben wir schon im Speicheraufteilungskapitel gehort. Seine
einzige Aufgabe besteht im Management der Bildschirmdarstellung. Damit
hat er genug zu tun. Er ist nicht nur dafiir verantwortlich, wann welches
Zeichen wo auf lhrem Fernsehschirm erscheint, sondern auch fiir die Farben
des Hintergrundes, des Rahmens und der Zeichen. Damit er das alles tun
kann, muB er sich allerhand Informationen holen, zum Beispiel aus dem
Bildschirm-RAM. Dieser Bereich ist das Abbild dessen, was Sie auf dem
Schirm sehen. Aus dem RAM kann VIC erkennen, welche Zeichen auf dem
Schirm stehen sollen, und ein entsprechendes Fernsehbild aufbauen. Alles,
was auf dem Bildschirm erscheint, ist hier in speziellen Codes abgelegt. Diese
Codes sind iibrigens nicht identisch mit den ASCIi-Werten. Sie finden diese
Bildschirm-Codes auf Seite 133 in lhrem Commodore-Handbuch.

Ein anderer Informant fiir VIC ist das Farb-RAM. Hier kann er erkennen, in
welchen Farben er jedes Zeichen ausgeben muf.

Die wichtigste Informationsquelle fiir unseren Chip ist aber sicherlich das
Zeichen-ROM. Wie dieser Name schon sagt, ist hier der Zeichensatz des
Commodore sicher aufbewahrt. Denn VIC, unser Kommunikationskiinstler,
hat ein kleines Problem. Er selbst ist Analphabet. Das Zeichensatz-ROM
merkt sich wie ein guter Schiiler auf ewig das Aussehen aller Zeichen. Dafiir
vergiBt VIC mit schoner RegelmaBigkeit — wie ein schlechter Schiiler — jedes
Zeichen sofort wieder. Und deshalb braucht er — wie jeder normale Schiiler —
einen Spickzettel. Jedesmal, bevor er ein Zeichen ausgibt, schaut er deshalb
im ROM nach.

Leider hat der ROM-Baustein fiir unsere Pldne, die Zeichensétze zu veran-
dern, zwei Nachteile. Zum einen ist er so einfach zu erreichen wie der einzige
Hundertmarkschein in einem Sparschwein. Er ist vollig zugebaut. Auf der
gleichen Adresse liegen noch die Input/Output-Register und ein RAM-
Baustein herum. Diese Speichersymbiosen sind uns ja mittlerweile bekannt.

Das andere Problem ist, daB ROM-Bausteine sowieso nicht beschrieben
werden konnen. Deshalb miissen wir ihn also irgendwie ins RAM bekommen.
Aber das macht uns seine ungiinstige Lage im Speicher nicht ganz einfach.

Auf jeden Fall kdnnen wir von der VergeRlichkeit VICs profitieren. Da er
vor jeder Zeichenausgabe erst nachschaut, liegt die Vermutung nahe, daB es
irgendeine Adresse geben muB, die ihm sagt, wo.

Und noch ein Vorteil, den VIC fiir uns bietet: Weil er sich gar nicht darum

Selbstdefinierte Zeichen 73

kiimmert, wie das Zeichen, das er ausgibt, eigentlich ausschaut, wiirde er es
noch nicht einmal merken, ob er seine Zeichen aus dem ROM oder von
sonstwoher liest. Ihm wiirde nicht auffallen, daB irgend etwas nicht stimmt,
sondern er wiirde brav alles auf den Bildschirm bringen. Der Grund dafiir, daf
er alle Zeichen anerkennt, liegt darin, wie er seine Zeichen aus dem richtigen
Speicher liest. Er sucht sich die Zeichen ndmlich nicht nach festen Adressen
zusammen.

Wird zum Beispiel der Buchstabe B gebraucht, so findet VIC im Bildschirm-
RAM den Wert 2. Dann beginnt er einfach von vorne, seine Speichereinhei-
ten (jeweils 8 Bytes) abzuzéhlen. Er liest einfach das entsprechende Bitmuster
aus dem angegebenen Speicher. In unserem Beispiel wirde er bis zur
Speichereinheit 2 zdhlen (0 = @; 1 = A; 2 = B) und dieses Muster auf den
Schirm bringen.

Weil wir aber genau die Adresse, ab der VIC mit dieser Zahlerei beginnt,
andern koénnen, bringen wir ihn relativ einfach dazu, fast jeden Bereich zu
lesen. Zum Beispiel aus dem RAM, wo wir ja bequem Zeichensatze hinlegen
koénnten.

Bevor wir damit anfangen, sollten wir erst noch ein bichen in die Lehre
gehen. Am besten bei dem ROM-Chip, den VIC normalerweise benutzt. Dort
kénnen wir am besten sehen, wie Buchstaben eigentlich abgespeichert sind
und wie sie entstehen.

Natiirlich miissen beim Commodore auch die Zeichen mit Strom an und
Strom aus dargestellt werden.

Das Ganze geschieht in einer 8 * 8-Matrix. So bilden viele kleine Punkte ein
Ganzes, vergleichbar einem Foto in der Zeitung.

Byte 1 = (00011000 = 24

Byte 2 = 00111100 = 60

Byte 3 = 01100110 =102

Byte 4 = 01111110 =126

Byte 5 = 01100110 =102

Byte 6 = 01100110 =102

Byte 7 = 01100110 =102

Byte 8 = |00000000| = O
So sehen Sie So steht's im Das sind die
das A auf dem Speicher Dezimalwerte
Schirm der Bytes

Bild 4.1 Buchstabenmatrix A

74 Selbstdefinierte Zeichen

Allein der Ausdruck 8 = 8 miiSte Sie aber aufhorchen lassen, nachdem wir
uns im letzten Kapitel ziemlich ausgiebig mit dieser Zahl beschaftigt haben.

Die Zeichen werden also in acht Zeilen zu jeweils acht Punkten abgelegt.
Das bedeutet, da man fiir jedes Zeichen achtmal acht Bits bzw. acht Bytes
benétigt. Diese acht Bytes stellen fiir VIC eine Speichereinheit dar. Das war
schon die ganze Kunst. Das kleine Schaubild soll das verdeutlichen.

Eine Umleitungsempfehlung fiir den VIC

Wie wir vermutet haben, gibt es tatsdchlich einen Zeiger, der dem VIC
klarmacht, wo er anfangen soll, die einzelnen Speichereinheiten abzuzéhlen
und das richtige Bitmuster hervorzuholen. Normalerweise zeigt er auf das
Zeichen-ROM. Normalerweise schon — aber wenn wir erst einmal da wa-
ren ... Wir kdnnen diesen Zeiger hinsetzen, wohin wir wollen. Und damit
lassen sich einige duBerst kuriose Effekte erzielen. Die Adresse , die gedndert
werden muB, ist 53272. Je nach Wert versucht VIC jetzt, seine Zeichen zu
lesen. Nur zur Demonstration ein kleiner Exkurs. Im Rahmen der Speicherauf-
teilung haben wir erkldrt, daB in der Zeropage stdndig Betrieb herrscht. Daten
werden aktualisiert, Werte werden zwischengespeichert und so weiter. Das
heift, viele Bitmuster in den Speicherzellen O bis 255, eben der Zeropage,
dndern sich standig.
Probieren geht tiber Studieren.

POKE 53272, 16

Lustig, was? Je mehr «Zeichen» Sie auf dem Bildschirm haben, um so mehr ist
los. Driicken Sie mal die Taste (T). Der kleine Block auf dem Bildschirm, der
statt des Zeichens «T» erschienen ist, hat wohl mehr Ahnlichkeit mit einer
lebenden Flohsammlung. Zur Erklarung: Wir sehen die Speicherzellen 200 bis
207. Unter anderem liegt hier der Zahler fiir den blinkenden Cursor. Wenn
man bedenkt, daB der Cursor in zwei Sekunden sechsmal blinkt, wird klar,
warum die da soviel zu tun haben.

Ubrigens, es funktioniert noch alles wie gehabt — die Cursorsteuerung und
Befehle. Denn wir diirfen nicht vergessen, daB die Zeichenwerte — sowohl die
ASCIl- als auch die Bildschirmcodes — noch immer dieselben sind. Nur die
Darstellung 1aBt zu wiinschen (brig.

Probieren Sie's ruhig aus.

Obwohl Sie beim Eintippen nichts erkennen kdnnen, sehen Sie, daR8 der
Commodore schreibt.

Selbstdefinierte Zeichen 75

POKE 53272, 21

Wenn Sie sich nicht vertippt haben, dann sind nach (RETURN) all die
dubiosen Zeichen wieder ganz normal. Sie kénnen das nattirlich auch mit
(RUN/STOP) (RESTORE) tun.

Wenn wir jetzt einen Zeichensatz irgendwo ablegen wollen, wére die
Zeropage aus naheliegenden Griinden nicht zu empfehlen. Natiirlich bietet
sich statt dessen freier RAM-Bereich an, allerdings nur bedingt. Das hat zwei
Griinde. VIC kann maximal 16K verwalten. Das tut er tiblicherweise von 0 bis
16384. In diesem Bereich miissen also alle Informationen erreichbar sein, die
er zur Bildschirmdarstellung braucht — also die Zeichenfarben, das Aussehen
der Zeichen und natiirlich das Bildschirm-RAM.

Hier noch eine kleine Information am Rande: Der kleine VIC wird méachtig
aufs Kreuz gelegt. Das Zeichen-ROM liegt tatsachlich ab 53248, das Farb-
RAM ab 55296. Und das geht ja wohl sehr deutlich iiber die 16K, die der
Arme tatsichlich kennt. Deshalb spricht er in Wirklichkeit immer nur mit
einem Botschafter, der VICs Adressierung abfingt und so umwandelt, daB
VIC die tatsdchlich nétigen Bausteine erwischt. Warum das so kompliziert
sein muR? Das l4Bt sich wohl nur mit der etwas eigenwilligen Systemarchitek-
tur des Commodore 64 erklaren ... ’

Doch zuriick zum Thema: Weil VIC nur die 16K verwalten kann, ist es nicht
méglich, den Zeichensatz einfach ans BASIC-Ende zu hdngen. Denn da kann

0 Die Zeropage lassen Sie besser in Ruhe.

2048 Sofern Sie kein BASIC-Programm hier
haben, okay. Sie kdnnten andernfalls den
BASIC-Anfang auch nach oben setzen.

4096 Nicht verfiigbar.

6144 VIC vermutet hier ROM (vgl. Text oben).
8192 Wenn Sie hier hinter dem

10240 BASIC-Programm den Zeichensatz
12288 ablegen, dann darf das Programm
14336 nicht zu lang sein.

Tabelle 4.1 Mégliche Startadressen und was Sie davon halten sollten

76 Selbstdefinierte Zeichen

VIC nicht suchen. Der andere Grund sind die BASIC-Programme selbst. Denn
wenn Sie ein solches im Speicher haben und dann den Zeichensatz an Adresse
2048 ins RAM kopieren, wiirde das nicht gerade zur Verbesserung lhres
Programms beitragen. Bevor wir sagen, wo liberhaupt und unter welchen
Umstidnden am besten ein Zeichensatz im RAM sein kdnnte, in Tabelle 4.1
eine kleine Ubersicht zu den moglichen Startadressen.

Wir schlagen folgende L&sung vor, weil sie den Programmierer nicht ein-
schriankt wie die Losungen, die den Zeichensatz hinter das BASIC setzen. Als
erstes sollten Sie den BASIC-Anfang um 2K nach oben verschieben. Das
haben wir ja bereits im Speicherkapitel gemacht. Damit Sie nicht zuriickblat-
tern miissen, hier noch einmal:

POKE44,16:POKE4096,0:NEW

Damit legen Sie den nétigen Speicher an und machen ihn sauber. Dann
konnen Sie den Zeichensatz in diesen Bereich kopieren und «dahinter» ein
ganz normales BASIC-Programm schreiben.

Wir werden jetzt bei den restlichen Erkldrungen davon ausgehen, daB Sie
diese Speicheraufteilung benutzen. Sollte es aber nétig sein, anders aufzutei-
len, sehen Sie hier in Tabelle 4.2, wie Sie den entsprechenden Zeiger fiir
Sonderzeichen auf andere Bereiche legen kdnnen.

Startadresse des Zeichensatzes Zu POKEnder Wert in 53 272:

0 16
2048 18

4096 20 (nicht verfiigbar — ROM)

6144 22 (nicht verfiigbar — ROM)
8192 24
10240 26
12288 28
14336 30

Tabelle 4.2 Startadressen des Zeichensatzes

Selbstdefinierte Zeichen 77

Mit POKE 53272, 18 sagen Sie VIC, daf er ab 2048 seinen Zeichensatz lesen
soll. Wenn Sie das getan haben, werden Sie sehr schnell merken, daB hnen
ab jetzt die Verstdndigung mit dem Computer etwas schwerféllt. Sie kénnen
ndmlich plétzlich nichts mehr lesen. Was ja logisch ist, weil die «Zeichen», die
VIC verwendet, zufillige Bitmuster sind. Ohne Hilfsmittel wére es jetzt nicht
gut moglich, neue Zeichen zu kreieren.

Warum aber nicht ausnutzen, was andere schon vorher erarbeitet haben?

Wie man Zeichen ein bitchen verindern kann

Nachdem Sie fiir lhren Computer bezahlt haben, diirfen Sie auch kopieren —
zumindest den Zeichensatz von ROM ins RAM. Allerdings ist das nicht ganz
einfach. Denn wie bereits erwédhnt, erweist es sich als etwas problematisch,
gerade dieses ROM zu erreichen. Wenn Sie sich die Speicherskizze noch
einmal ansehen, werden Sie bemerken, daB auf diesem AdreBbereich drei (1)
verschiedene Chips liegen. Die I/O-Register, die ausgerechnet hier rumliegen
miissen, machen natiirlich Schwierigkeiten, und zwar deshalb, weil diese
Register eine besondere Aufgabe haben. Sie werden fiir einen computerinter-
nen Vorgang gebraucht, den sogenannten Interrupt. Dieser wird unabhédngig
vom laufenden Programm automatisch alle %o Sekunde ausgefiihrt, um
bestimmte Dinge zu erledigen. Alles weitere dariiber finden Sie im Stichwort-
verzeichnis.

Damit wir aber nicht diese 1/O-Register kopieren, weil sie ja dieselbe
Adresse haben, sondern das Zeichen-ROM, miissen wir sie ausblenden. Wird
aber dann ein Interrupt ausgefiihrt — und der kommt so sicher wie das Amen
in der Kirche, nur schneller —, wiirde der Computer abstiirzen, weil er sich
statt auf die 1/0O-Register auf falsche Daten bezieht. Nun kénnen diese
Interrupts abgeschaltet werden, ohne daR der Computer dadurch in Schwie-
rigkeiten kommt. Allerdings wird damit auch die Tastatur nicht mehr gelesen.
Das heiBt, der Computer nimmt keine Zeichen mehr an. Deshalb geht das
Kopieren nur im Programmodus. Schreiben Sie also unbedingt vor jeden jetzt
folgenden Befehl eine Zeilennummer. Programme, die den Interrupt abschal-
ten, nutzen eigentlich bereits sehr fortgeschrittene Techniken und gehen dem
Computer dabei doch sehr in die Eingeweide. Deshalb diese VorsichtsmaR-
nahmen. Erster Programmschritt ware es, die Interrupts zu unterbinden.

10 POKE 56334, 0

78 Selbstdefinierte Zeichen

Danach konnen wir jetzt beruhigt das Zeichen-ROM ein- und die 1/O-
Register ausblenden. Dazu brauchen wir folgende Zeile:

20 POKE 1, 51

Jetzt wollen wir den Zeichensatz ins RAM kopieren. Dazu lesen wir die Werte
mit PEEK aus dem Speicher und POKEn in die neue Adresse.

30 FORX=0T0O2048:POKE2048+X,PEEK(53248+X):NEXTX

Das ist die eigentliche Kopierroutine. Die Variable X wird mit jedem Durchlauf
auf einen Wert von 0 bis 2048 erh6ht und deckt damit genau 2K Speicher ab.
Dann wird in die gewiinschte Adresse unseres RAMs der Inhalt der entspre-
chenden ROM-Zelle geschrieben. Um die Zeile besser zu verstehen, sollten
Sie fiir zwei oder drei Werte das X selbst einsetzen. Damit wére die Kopiererei
erledigt.

Jetzt sollten wir freundlicherweise dem Computer seine 1/0O-Register zu-

riickgeben.
40 POKE 1, 55

Weil er jetzt wieder in der gliicklichen Lage ist, Interrupts durchfiihren zu
konnen, kriegt er sie auch wieder.

50 POKE56334,1

Setzen Sie jetzt noch einmal den Zeichensatzzeiger auf 18 (also Zeichen lesen
ab 2048).
POKE 53272, 18

Jetzt tippen Sie moglichst viele Zeichen auf lhren Bildschirm, und driicken Sie
danach (RETURN). Dann kénnen Sie unser Programm mit RUN starten.
Ganz eindrucksvoll, nicht wahr?
Dabei konnen Sie, wenn Sie genau hinsehen, auch erkennen, wie sich die
Buchstaben von oben nach unten byte- bzw. zeilenweise aufbauen. Jetzt
geben Sie gleich mal wieder direkt ein

POKE 2056,153

Na, fallt Ihnen nichts auf? Schauen Sie doch mal genau hin. Noch genauer. Ja,
richtig: Aus allen A sind A geworden. Sie haben das Zeichen A gedndert
Warum ausgerechnet der Wert 153 gePOKEd wurde? Vergleichen Sie dazt
noch einmal die Buchstabenmatrix im ersten Abschnitt. Dort hatte die erste
Zeile, also das erste Byte, bisher den Wert 24. Wir haben aber den Links- unc

Selbstdefinierte Zeichen 79

Byte 1 = [00000000| = O
Byte 2 = (00000000 = O
Byte 3 - = 00111000 = 56
Byte 4 = 01110100 =116
Byte 5 = 11111110 =254
Byte 6 = (11111110 =254
Byte 7 = |01000100| = 68
Byte 8 = 00000000 = O

Bild 4.2 Zeichenmatrix «Kleines Auto»

den RechtsauBen unserer Bit-Mannschaft angeschaltet. Damit ergibt sich
nach dem beriihmten Umrechnungsprinzip vom Dual- ins Dezimalsystem der
Wert 153. Wenn Sie jetzt eigene Zeichen entwickeln wollen, gehen Sie am
besten so vor.

Nehmen Sie ein kariertes Blatt, und entwerfen Sie das Muster auf einer
«8 % 8-Matrix». Als ndchstes stellen Sie dieses Muster in Binadrzahlen dar.
Jeder angeschaltete Punkt ist 1, jeder ausgeschaltete 0. Jetzt miissen Sie diese
Bindrzahl umrechnen (dazu konnen Sie ja das Umrechnungsprogramm
benutzen) und die gewonnenen Dezimalzahlen an die entsprechende Zei-
chenadresse, die Sie dndern wollen, POKEN.

Die Zeichenadresse ist die Adresse im RAM, ab der die entsprechende
Speichereinheit steht. Um ein bestimmtes Zeichen zu dndern, miissen Sie
seinen Bildschirmcode kennen. Sie finden diese Codes (nicht die ASCII-
Codes!) auf Seite 133 im Commodore-Handbuch.

Es gilt die folgende Formel:

Zeichenadresse = Startadresse des Zeichensatzes + Bildschirmcode % 8

Wenn wir unser kleines Auto also zum Beispiel anstelle des Zeichens C
einsetzen wollen, wére das Programm

10 FORX=0TO7:READA:POKE2048+3 % 8+X, A:NEXT
20 DATA 0,0,56,116,254,254,68,0

Wir lassen also den Computer bei O anfangen zu zédhlen, dann den ersten
DATA-Wert lesen und POKEn diesen in die Zeichenadresse. A ist beim ersten
Durchlauf also 0, beim zweiten auch 0, beim dritten 56 usw. bis zum achten
Wert. Ganz zum SchluB haben wir dann ein neues Bitmuster in unserer 8-
Byte-Speichereinheit.

80 Selbstdefinierte Zeichen

Somit haben wir also unser erstes eigenes Sonderzeichen definiert. Ganz
nebenbei: Haben Sie auch wirklich mitgetippt?

Gut. Wenn Sie jetzt das Prinzip verstanden haben, konnen Sie eigentlich
loslegen.

Auf jeden Fall kdnnen Sie eine ganze Autobahn damit darstellen, auf der
sich die Autos sogar bewegen — womit wieder bewiesen wére, daR Compu-
tergrafik lllusion ist, denn von unseren Autobahnen kann man das ja nicht
immer sagen ...

Selbstdefinierte Zeichen 81

Zwischenspiel 2

Bevor wir an unser erstes gemeinsames Spiel gehen, erst noch ein paar Worte
der Aufkldrung: Unser Ziel bei allen Listings war, sie so kurz wie méglich zu
halten. Die Griinde dafiir haben wir ja schon anfangs erwédhnt. Das gilt
natiirlich auch fiir die Spiele. So ergaben sich konsequenterweise keine neuen
Softwarehits. Das war auch gar nicht unsere Absicht. Wir wollten lhnen
vielmehr die Mdglichkeit bieten, ein Spiel Stiick fiir Stiick zu programmieren
und damit Erfahrungen fiir Ihre eigenen zukiinftigen Spiele zu sammelin. Wir
hoffen, daB lhnen das Ergebnis zum Schluf aber doch ein biRchen Freude
macht.

Das andere, was wir gern noch losgeworden wéren, ist eine Erklarung zu
den Spielideen. Hier ging es uns darum, Ihner zu zeigen, wie wichtig die
Geschichte um ein Spiel herum ist, und Ihre Fantasie fiir eigene Verbesserun-
gen an den besprochenen Spielen anzuregen. AuBerdem konnten Sie so auch
sehen, aus welchen unmdglichen Geschichten man Spielideen entwickeln
kann. Und natiirlich hoffen wir auch, daR diese Hintergrundgeschichten
lhnen ein biBchen Spal beim Lesen bereiten. Zu beiden Texten sei hier noch
erwdhnt, daR samtliche Ahnlichkeiten mit tatsichlich lebenden Personen
duBerst zufillig sind.

5
Ein Spiel mit Sonderzeichengrafik

Rapunzel

Die Geschichte des Marchenreiches muB vollig neu geschrieben werden.
Unser Reporter Gerd Heinzelmann hat die geheimen Tagebiicher des Frosch-
konigs entdeckt. Nachdem sie gesdubert waren, stellte er fest, daB er einen
Fund von unschdtzbarem Wert gemacht hatte: Was niemand fiir moglich
gehalten hatte, aufgrund der Freundschaft mit einem Tintenfisch hat der
Froschkonig doch angefangen, Tagebuch zu fithren. Lange Zeit waren die
geheimen Tagebiicher in einem Brunnen in der Ndhe eines Konigsschlosses
vor den Augen der engagierten Marchenerzéhler verborgen. Heinzelmann,
der schon lange Zeit enge Kontakte zur Marchenwelt hatte («Schon als ich
drei war, hat mir GroBmutter vor dem Einschlafen immer vorgelesen ...»),
fand die Tagebiicher zuféllig hinter einem Berg von goldenen Ballen und drei
Lippenstiften. Und damit muRten viele Teile der Marchengeschichte, die als
historisch gesichert galten, neu liberdacht werden. Heinzelmann betrachtete
das als seine Lebensaufgabe und verdffentlichte das Ergebnis seiner Arbeiten
in einem bekannten deutschen Magazin. Mit freundlicher Genehmigung des
Verlages benutzten wir diese Serie (die leider sehr friih wieder eingestellt
werden mufBte, weil man Heinzelmanns geheime Tagebiicher entdeckt hatte)
als Grundlage fiir unsere Spiele.

Eine der ersten verdffentlichten Arbeiten war die Richtigstellung des Mar-
chenmotivs Rapunzel.

Im Gegensatz zur Lehrmeinung, spielte sich die Geschichte tatsédchlich so
ab: Konigssohne, die zwar im allgemeinen reich, aber dafiir meistens dumm
waren, sind aufgrund ihrer Eitelkeit oft der Grund fiir falsche Uberlieferun-
gen. Der Prinz bei Rapunzel, der sie regelmadBig zu besuchen pflegte, traf

84 Ein Spiel mit Sonderzeichengrafik

namlich eines Tages auf seinem Weg zum Turm eine bose Fee. Nun haben
bose Feen die Angewohnheit, immer und iiberall zu beweisen, daf sie auch
wirklich bose sind. Meistens tun sie das in Form von Verwandlungen. Nun
traf unser Prinz eine Fee, die normalerweise im Marchenarbeitsamt beschif-
tigt ist und deshalb die Situation auf dem Arbeitsmarkt fiir Verwandelte sehr
gut kannte. Um dem Prinzen eine langwierige Umschulung zu ersparen
(Verwandlungen in Frosche, Esel oder Raben sind total iiberlaufen und
werden nur noch im Losungsverfahren vergeben), beschloR die Fee, ihn in
einen Floh zu verzaubern, und zog ihrer Wege.

Miithsam den Kolonnen arbeitsloser Frosche, Esel und Raben ausweichend,
aber dennoch undankbar mit seinem Schicksal hadernd, machte sich unser
Flohprinz auf den Weg in Richtung Turm.

Kaum dort angekommen, sah er sich einem mehrere Meter langen gold-
blonden Problem gegentibergestellt. Rapunzel hatte in Erwartung des Prinzen
bereits ihr giilden Haar aus dem Fenster geworfen und haarte (pardon:
harrte) der Dinge, die da kommen mochten. Gliicklicherweise ist ein Floh ja
auch Fachmann in bezug auf Haare und sehr begabt im Klettern. Wenngleich
er noch nicht wuBte, wie er Rapunzel seine Situation erkldren sollte, machte
er sich an den Aufstieg. Doch was er vorher als Prinz nie gemerkt hatte,
konnte jetzt sein Verhdngnis werden. Durch die stindigen Strapazen, die
Rapunzels Haar im Lauf der Zeit mitgemacht hatte, war Haarspli entstan-
den. Und so bestand nun die Aufgabe unseres ungliicklichen Flohs darin, sich
durch dieses Gewirr nach oben hin durchzuarbeiten. Das hatte zwei Konse-
quenzen: Zum einen, daB unser Floh immer mehr und mehr tiber Haarkuren
nachzudenken begann, zum anderen, daR wir daraus ein Spiel gemachf
haben. Ihre Aufgabe ist es nun, durch ein Labyrinth bis zu Rapunzel zt
kommen und vor allem den Spielaufbau zu verstehen. Dazu wollen wir jetz
die einzelnen Programmschritte gemeinsam durchgehen.

Zeile 10: Bildschirmrahmen und Hintergrund werden schwarz. In dit
beiden Adressen 53280 und 53281 wird O gePOKEd.
Zeile 20: Da wir selbstdefinierte Sonderzeichen verwenden wollen, miis

sen wir den Zeichensatz ins RAM ab Adresse 10240 legen. POKE 53272,2
erledigt das fiir uns.

Zeile 30: Diese FOR. .. NEXT-Schleife liest die dort abgelegten Bytes ei
und POKEd sie fiir das Zeichen 0 (Klammeraffe @) ins RAM.

Zeile 40: Was wir noch brauchen, ist ein voller Cursorblock. Also POKE
wir fiir den Code 1 ("A") lauter «volle» Bytes 255 ins RAM.

Ein Spiel mit Sonderzeichengrafik 85

Zeile 50: Genauso bendtigen wir eine Leerstelle. Damit Sie's nachher
beim Eintippen des Labyrinths etwas einfacher haben, haben wir den Punkt
(Bildschirmcode 46) dazu hergenommen. Da unser Programm ja wéhrend des
Spiels keine normalen Buchstaben benétigt, brauchen wir sie auch nicht aus
dem ROM zu kopieren. AuBerdem kdnnen wir frei nach Belieben die ehema-
ligen Zeichen &dndern. Um dem Punkt das Aussehen einer Leerstelle
((SPACE)) zu geben, miissen wir in seine Adressen im neuen Zeichensatz
lauter 0 POKEn. Die Bytes, die dabei gedndert werden sollen, sind (vom
Anfang des Zeichenspeichers aus gesehen) die Bytes 46 * 8 (= 368) bis 46 *
8 + 7 (= 375). Die Schleife in dieser Zeile erledigt das fiir uns.

Zeile 60: In dieser DATA-Zeile ist unser kleiner Floh als Sonderzeichen
abgelegt. Und so sieht er dann aus.

Bild 5.1 Zeichenmatrix «Floh»

Zeile 70: Mit GOSUB 350 wird das Unterprogramm aufgerufen, das den
Bildschirmaufbau ausfiihrt.

Zeile 80: Die nidchsten Zeilen wihlen eine zufillige Startposition fiir
unseren Floh aus. Dafiir kommen fiinf Punkte in Frage. Also wird eine
Zufallszahl zwischen 1 und 5 ermittelt: | = INT (5 * RND(1)) +1

Zeilen 90 bis 130: Je nachdem, welchen Wert | jetzt zufillig erhalten hat,
wird die X-Position unseres Flohs festgelegt. Die X- und Y-Positionen ent-
sprechen hier ganzen Zeichen. So kann X also von 0 bis 39 und Y von 0 bis 24
gehen. Die Startpositionen stimmen genau mit den untersten Punkten des
Labyrinths {iberein.

Zeile 140: Die Zeitvariable TI$ wird auf ihren Grundwert zuriickgesetzt.
So kann die Zeit gemessen werden, die ein Spieler braucht, um durch das
Labyrinth zu finden.

Zeile 150: Der Y-Wert unseres Flohs wird auf den tiefsten Punkt gesetzt:

86 Ein Spiel mit Sonderzeichengrafik

24. Damit wdren die Startkoordinaten also klar. Unser Floh sitzt irgendwo auf
einem der funf untersten Punkte im Labyrinth. Die Variablen X1 und Y1
werden jetzt erst einmal mit den «eigentlichen» Koordinaten gleichgesetzt.
Zeile 160: Mit diesem POKE, der zur Startadresse des Bildschirm-RAMs
die Y-Koordinate * 40 (40 einzelne Zeichen hat ja eine Zeile) und die X-
Koordinate addiert, wird der Floh jetzt endgiiltig auf den Schirm gebracht. Er
ist hellblau (Farbcode 3) — weniger, weil das die bevorzugte Farbe der bsen
Fee war, sondern mehr, weil sich diese Farbe gegen das Gelb der Haare sehr
gut abhebt. Also wird der Farbcode in die entsprechende Adresse des Farb-
RAMs gePOKEd.

Zeile 170: Hier findet die Tastaturabfrage statt. Das Programm wartet so
lange, bis eine Taste gedriickt wird.

Zeile 180: Nun wird der Reihe nach abgefragt, ob eine bestimmte Taste
gedriickt wurde. In dieser Zeile wére die (CRSR UP) dran. Das Steuerzeichen
kénnen Sie eingeben, indem Sie (SHIFT)-(CRSR UP/DOWN) driicken.
Wenn diese Taste wirklich die gedriickte sein sollte, wird Y1 der Wert von
Y — 1 zugewiesen. X1 bleibt X. Welchen Sinn haben diese beiden Variablen?
Nun, damit X und Y vorerst nicht verdndert werden miissen (sie werden
spater noch gebraucht), dienen die beiden X1 und Y1 als Ersatz.

Zeile 190: Sollte {CRSR DOWN) gedriickt worden sein, wird die Y-
Koordinate um 1 erhoht. Die X-Koordinate verdandert sich nicht.

Zeile 200: Dasselbe Spielchen fiir (CRSR LEFT). Diesmal wird der X-Wert
um 1 erniedrigt, und Y, also die Zeile, bleibt unverandert.

Zeile 210: Der ganze SpaB fiir (CRSR RIGHT).

Zeile 220: Der Variablen P (das deutet schon an, was mit ihr geschehen
soll; der Inhalt von P wird gePEEKed werden) wird die nach dieser Eingabe
errechnete Position im Bildschirm-RAM zugewiesen.

Zeile 230: Wenn dort irgendein anderes Zeichen als das "A", das wir ja
zum Haar umdefiniert haben, steht, geht die Post gleich wieder zur Tastatur-
abfrage zuriick, und nichts dndert sich. Der Floh darf das Haar ja schlieBlich
nicht verlassen ...

Zeile 240: Nachdem hier offensichtlich Platz fiir unseren kleinen Floh ist,
POKEN wir ihn halt mal dahin, wohin die Variable P zeigt. Auch die Farbe wird
verandert. Das funktioniert mit folgendem kleinen Trick: Eine Adresse im
Farb-RAM ist genau 54272 Bytes von der dazugehdrigen Adresse im Bild-
schirm-RAM entfernt. Wenn man also P + 54272 ausrechnet, kommt man
genau auf die gewiinschte Adresse.

Ein Spiel mit Sonderzeichengrafik 87

Zeile 250: Jetzt haben wir auch den Nutzen davon, daB wir die «alten»
Koordinaten X und Y noch nicht verdndert haben. Denn mit ihrer Hilfe
kénnen wir den alten Floh (gerade hatten wir ja fiir ganz kurze Zeit zwei
davon auf dem Bildschirm. Haben Sie's gemerkt?) jetzt I6schen bzw. durch
ein «Stiick Haar», einen Bildschirmcode 1, ersetzen. Die Farbe wird auch
wieder hergerichtet, ndmlich 7 (= gelb) fiirs glilden Haar. Jetzt, wo es keinen
«alten» Floh mehr gibt, kdnnen wir auch dessen Koordinaten X und Y l6schen
und durch die aktuellen X1 und Y1 ersetzen. Merken Sie schon, worauf das
hinauslduft? Beim ndchsten Durchlauf haben wir wieder eine neue Position,
und das hier ist die alte. So wird der neue immer an seinen Platz gePOKEd
und der alte geldscht. Das Ganze ergibt dann ein biRchen den Effekt einer
Animation.

Zeile 260: Hier wird nochmal schnell abgecheckt, ob der Spieler nicht
schon lange gewonnen hat. Das Labyrinth ist ndmlich so konstruiert, daB die
Ausgdnge (die iibrigens zuféllig genau gegeniiber den entsprechenden Start-
positionen liegen) allein in der ersten Bildschirmzeile liegen. Hat also ein Floh
irgendwie die erste Zeile erreicht, hat er diese Runde gewonnen. Auf geht's
dann zur ndchsten Runde, der Floh ist ein Stiick vorangekommen, aber oben
ist er noch lange nicht. R steht fiir «Runde». Die ndchste Runde ist also
eingeldutet. Wenn Sie noch nicht die Nummer 3 ist, springt das Programm ins
Unterprogramm und I4Rt sich dort einen Irrgarten zurechtzimmern. Wenn
das soweit ist, springt das Programm in Zeile 150, wo die ganze Geschichte
von vorn losgeht.

Zeile 270: Sollte aber die oberste Position erreicht worden sein und R =
3, die dritte Runde also erfolgreich bespielt wurde, dann hat der Floh ja wohl
gewonnen. Das wird dann im einzelnen ab Zeile 290 gefeiert, resultiert hier
aber erstmal in einem Bildschirmloschen.

Zeile 280: Wenn der Floh natiirlich noch nicht gewonnen hat, geht's
zurlick zur Tastaturabfrage in Zeile 170.

Zeile 290: Um dem Spieler mit wieder lesbaren Worten mitteilen zu
koénnen, daB er gewonnen hat, miissen wir den Zeichensatz wieder zuriick-
schalten. POKE 53272,23 beschert uns Kleinbuchstaben.

Zeile 300: Da das Listing aber im Grafikmodus ausgedruckt wurde, was
wegen der Steuerzeichen gewisse Vorteile hat, werden die GroBbuchstaben
in diesem Text als Grafikzeichen dargestellt. Das Steuerzeichen davor steht
fiir Hellgriin. Sie tippen also PRINT "(CTRL)-(6) Wieder ein gliicklicher
Floh!"

88 Ein Spiel mit Sonderzeichengrafik

Zeile 310: «Sie haben in» (und jetzt werden aus dem bis jetzt immer
weitergelaufenen TI$ die Minuten und Sekunden herausoperiert)” min:
"(hier stehen die Sekunden)” s zu lhrer”

Zeile 320: "Rapunzel gefunden!”

Zeile 330: Jetzt wird der Spieler aufgefordert, eine Taste zu driicken. Das
tippen Sie dann mal so: PRINT"(3% CRSR DOWN) (RVS ON) Driicken Sie
eine Taste! (RVS OFF)"

Zeile 340: Diese Zeile wartet, bis Sie eine Taste gedriickt haben. Wir
werden |hnen spater im Input/Output-Kapitel erkldren, was da im einzelnen
vor sich geht. Wenn eine Taste gedriickt wurde, startet sich das Programm
selbst mit RUN.

Zeile 350: Hier geht es jetzt also los, unser Labyrinth-Unterprogramm.

Dazu gibt es jetzt einiges zu sagen. Wir haben uns lange iiberlegt, was wir
am geschicktesten mit dem Labyrinth anstellen. Natiirlich sind Computer
hervorrgend dazu geeignet, Labyrinthe zu berechnen und zu entwerfen. Aber
als wir anfingen, selbst Experimente damit zu machen, und uns ansahen, wie
andere Leute das gelost hatten, wurden wir das Gefiihl nicht los, daB die
ganze Angelegenheit mit dem Spiel ins Uferlose wachst. Ein Labyrinth-
Programm zieht sich meist {iber mehrere Seiten hin und ist gespickt von
mathematischen Finessen. Das hatte nicht nur den Rahmen dieses Kapitels
gesprengt, sondern auch in keinem Verhéltnis zu dem Programm gestanden,
das das Labyrinth dann benutzt. Kurz und gut, wir haben uns schlieBlich
entschieden, ein «Fertig-Labyrinth» zu verwenden. Dabei handelt es sich um
ein Labyrinth, das vollstindig in PRINT-Zeilen abgelegt ist, in dem sich
allerdings Lécher befinden, und zwar so, daB, wenn nur ein Loch geflickt
wird, auch nur ein Weg frei wird.

Ein solches Labyrinth befindet sich in den Zeilen 350 bis 590. Wenn Sie
aber schon mal ein solches «Fertig-Labyrinth» als Listing gesehen haben,
waren Sie vielleicht von der Masse an Steuerzeichen schockiert, die da
verwendet wurden. Revers an, ein Space, Revers aus, zwei rechts, ein Space
usw.

Um das zu vermeiden, haben wir uns gedacht, wenn wir fiir den Floh eh’
schon ein Sonderzeichen verwenden, kénnen wir zwei bekannte Zeichen, wie
"A" und "." auch noch umdefinieren.

So haben Sie jetzt den Vorteil, relativ leicht (so hoffen wir doch) unser
Labyrinth in lhren Commodore eingeben zu kénnen. Die Steuerzeichen
bedeuten iibrigens: Invertiertes Herzchen fiir (CLR/HOME); invertiertes Pi

Ein Spiel mit Sonderzeichengrafik 89

fiir Gelb ((CTRL)-(8)) und am Schluf der ganzen Reihe (HOME) fiir das
invertierte S. Ubersehen Sie auch nicht den Strichpunkt am Schluf der letzten
Zeile. Der ist da, um das Scrolling zu verhindern, das stattfinden wiirde, wenn
der Cursor beim PRINTen in die letzte Zeile rutscht.

Zeile 600: Hier ist jetzt der Teil, der ein Loch im Labyrinth auf Zufallsbasis
flickt. In Zeile 600 wird eine Zufallszahl zwischen 1 und 5 ermittelt (verglei-
chen Sie bitte Zeile 80).

Zeilen 610 bis 650: In diesen Zeilen wird abgefragt, welche Zufallszahl
jetzt herausgekommen ist, und aufgrund dieser dann eine der Positionen der
Locher ausgewdhit.

Zeile 660: Hier wird das Loch mit einem Haarcode, also einem umdefi-
nierten "A" (BS-Code = 1) zugebaut und im Farb-RAM mit der entsprechen-
den Farbe versehen.

Zeile 670: Dieses RETURN [aBt das Programm dann wieder in den
Hauptteil zuriickkehren.

So, das war's. Wenn Sie jetzt mitgetippt haben oder irgendwann spéter
unser Listing eintippen wollen, hier ein paar gute Tips dazu: Machen Sie auch
schon wéhrend des Tippens Sicherungskopien. Es wdére wirklich schade, wenn
ausgerechnet beim Eintippen der letzten Zeile irgendein Familienmitglied
liber das Stromkabel stolpert oder sonst eine Widrigkeit passiert.

Bevor Sie ein Programm wie das oben erklarte mit RUN starten, sollten Sie
auf jeden Fall eine Version davon abSAVEn; auf Diskette oder Kassette, das
ist dabei erst mal egal. ,

Wenn Sie ndmlich das Programm starten, sind mit ziemlicher Sicherheit
noch Fehler drin. Das ist auch ganz normal. Das Gegenteil wére eher die
Ausnahme. Aber wenn Sie sich ausgerechnet bei einem POKE vertippt haben
oder dieser von einer falschen Adresse ausgeht, kann das bdse Folgen haben.

Wenn |hr Programm lduft, aber irgend etwas kommt Ihnen spanisch vor,
weil's einfach komisch aussieht oder was auch immer, sollten Sie sich die Zeit
nehmen, lhr Programm noch mal mit unserem Listing zu vergleichen.

Wenn Sie das alles beherzigen, ist es wirklich nicht schwer, dieses Spiel zu
spielen. lhren Floh steuern Sie, wie gewohnt, mit den Cursortasten. Mehr gibt
es eigentlich an Anleitung gar nicht zu sagen.

Also wiinschen wir Ihnen viel Spal mit unserem Spiel. Und experimentie-
ren Sie auch mal selber damit! Denn dazu ist es ja in erster Linie da.

90 Ein Spiel mit Sonderzeichengrafik

1ﬁr4+ww4m+ . ERR R G]

HFTH$ TFAE=""TH
- -—":;"THEH';‘]—" -1t

= T HEMY 1

! THE RS

A.MIIEIH'THE:I.

B i]
Pt]

I'"-il' T SE

THFHFHLHT"?" GO

SIH GLUECELTCHER
: HI"W[L Hr IM "MIDECTIE.D
MIM: "RIGHTECTLE SEC "H “HRER"

1 |H

H.........I*l.......H"

FFIF W 0w oo o o e o FIFIFIF . W FIRY
w o P S5 1 = e
FFFFF . DFGFIFIF . v e e e e e F W FIFFRFEAA

Flu v v w oo oL SFIFF WAL ARARA LGP o WA

..HH FIFIFIF w0 ww o o F a0 o FLGF L W W FY

[+ FIFIFEF L FIFF O FFF . ARE L ARRD

N T Y FluwFLA"Y

HT" v W n P w W FIFIFL G FIFL G FIFIFIFIFIFL S FIFIFFA R

LT o WFIFFFFFFFFF OAFF e s 0 aFle s w v o w e ww oA

FRIHTY v s v n v wwwn Fluw o Fw w o FFFIFIAFA FIFA . W FFRAAEE

"

=

"

« FIFIAFE .
WP e e Flaww P PR FFIFIFIFF DA s e 0 e e aFte o w w0 oA
W WP e WP P G F G F G F G FIFIFIFIFR . FFEE R
WFIFF w0 ww e o o FLFIFIFLFIFIFIF AR DA 0 0w w0 o F

P T e 1 1 I

enaflewan

Ein Spiel mit Sonderzeichengrafik 91

FIFIFLLFIFF . o o sl w wFle s ww o w oA"Y
wafl o w e oFla o SARAFFARAR . A"

« FIFFIFFEF
1S PR
I S
W

W TaFlu o wnwwnwe o FIFIFGF w0 o oF e FLGFIRFFAAY
caw el w v w v wn e WPl o FIFIFIF G . G FGAY

oo W FLFIFIFIFIFIFIFF o oF e w w w WFGFIFIFIF A . G AIRARY
Flowaawws oFaw o FIFIFIFIFIFL AL . 0 0 0 WP WFEGAY
Toww o FIFIF WPl 0 0 e v u 5

“omou

« FIFIFIFFFFAAAA A

T

Mo FFFT
FF

paaflen s nwnn oFluwowwn e wlflae. o FE"S

N

92 Ein Spiel mit Sonderzeichengrafik

Zwischenspiel 3

Wir glauben, daB wir Ihnen noch eine Erkldrung schuldig sind, auf die wir
spater immer wieder zurlickgreifen werden. Und wenn Sie die erst einmal
verstanden haben, wird lhnen das — wie das Verstandnis fiir Bindrzahlen —
den Umgang mit Bits und Bytes etwas vereinfachen. Was wir meinen, sind die
Booleschen Operationen.

Aber keine Sorge, dazu ist weder Vollnarkose noch ein Skalpell nétig,
sondern einfach nur ein biBchen Verstandnis.

Der geistige Vater dieser Operationen ist ein gewisser George Boole, derim
19. Jahrhundert gelebt hat, also mit Computern nicht allzuviel zu schaffen
gehabt haben konnte. Aber er war Mathematiker und hat ein ziemlich
kompliziertes Modell entworfen, wie man mit Aussagen, Ereignissen und dgl.
rechnen kann.

Vieles von dem, was er sich so ausgedacht hat, ist in erster Linie dazu
geeignet, Schiiler zu verwirren. Insofern unterscheidet ihn nichts von anderen
Mathematikern. Doch einige Uberbleibsel seiner Theorien leben noch immer
in lhrem Commodore fort, und zwar die BASIC-Befehle AND, OR und NOT.

Vielleicht sind sie Ihnen schon einmal aufgefallen, und Sie haben sie sogar
schon ausprobiert. Die Ergebnisse kommen einem aber meist alles andere als
logisch vor. Oder wieso bitteschén soll 1 und 2 gleich O sein? Sie glauben das
nicht? Probieren Sie es selbst:

PRINT 1 AND 2
Naaaaa ...
Unser Computer scheint auch besondere Vorlieben fiir bestimmte Zahlen
zu haben. Wenn Sie ihn (wie die Kinder bei Michael Schanze) vor die
Entscheidung 1, 2 oder 3 stellen:

Ein Spiel mit Sonderzeichengrafik 93

PRINT 1 OR2 OR 3

entscheidet er sich prompt und stur fiir die 3. Nichts mit Plopp und Stop ...
Immerhin, wenn Sie ihm auftragen, nicht die 4 zu drucken, tut er es auch

nicht: PRINT NOT 4

Statt dessen druckt er —5. Da soll noch mal einer behaupten, Computer
wadren nicht folgsam.

Oder sollte hinter diesen Ereignissen nicht doch irgendein logisches System
stecken? :

Natirlich — die Losung liegt, wie kénnte es anders sein, in den Bits. Wir
wollen Ihnen mal ein biBchen auf die Spur helfen.

Stellen Sie sich die Zahlen von oben mal als Bits vor, und schreiben Sie diese
untereinander.

1 AND 2 wire dann:

01
AND 10

00

Oder die andere Aufgabe.
1 OR 2 OR 3 wiirde ergeben:

01
OR 10
OR 11

11

Nachdem Sie jetzt sicher schon voller Spannung und Vorfreude sind, wollen
wir das Geheimnis liiften. Mit solchen Operationen kdnnen Sie Bits nach ganz
bestimmten Regeln vergleichen oder verkniipfen.

94 Ein Spiel mit Sonderzeichengrafik

Der AND-Befehl

Wenn Sie zwei (Bindr-)Zahlen mit AND verbinden, werden nur die Bits ins
Ergebnis iibernommen, die in beiden Zahlen «an» (= 1) sind.

BITNR: 7 6 5 43 2 10
1100 1 0 1 0(=202)

AND 170111 0 0 0(=184)

erggben 1 0 0 0 1 0O O O(=136)

Zur Erkldrung:
Wenn Sie
PRINT 202 AND 184

eingeben, erhalten Sie als Ergebnis 136. Denn es werden dann nur die
gleichwertigen Bits (also Bit Nummer 3 der ersten Zahl und Bit Nummer 3 der
zweiten Zahl oder Bit Nummer 7 der ersten und Bit Nummer 7 der zweiten
Zahl) verglichen. Nur wenn beide Bits gesetzt oder «an» sind (also das der
ersten Zahl UND (= AND) das der zweiten Zahl), wird das Bit auch im
Ergebnis gesetzt, zum Beispiel bei den Bits Nr. 7.

Bei den Bits Nr. 6 ist es anders: Das erste ist zwar gesetzt, das zweite aber
nicht. Deshalb ist Bit Nr. 6 im Ergebnis auch 0. Und so geht das weiter, bis alle
Bits verglichen sind.

Wenn Sie also zwei Werte mit AND verbinden, ergibt sich folgendes Bild:

OANDO =0
OAND 1 =0
1TANDO =0
1TAND 1 =1

Der OR-Befehl

Bei OR geht das Ganze etwas anders. Hier geniigt es, wenn eines der beiden
Bits gesetzt ist.

BITNR: 7 6 5 4 3 2 1 0

171 0 0 1 0 1 0(=202)
OR 101 11 0 0 0(=184
ergibt 1711 1 1 0 1 0(=250)

Ein Spiel mit Sonderzeichengrafik 95

Wieder Beispiele zur Erkldrung. In Bit Nr. 7 sind beide Bits gesetzt. Weil schon
eines reichen wiirde, ist das entsprechende Ergebnisbit natiirlich auch an. Bei
Bit Nummer 6 ist das erste an, das zweite aus. Aber das Ergebnisbit bei OR ist
natiirlich 1. Denn wir sagten ja, es reicht, wenn eines der beiden «an» ist (also
das erste ODER [= OR] das zweite Bit gesetzt ist). Entsprechend lduft das
alles bei Bit Nr. 5 — nur, daR diesmal erst das zweite Bit gesetzt ist. Aber das
macht ja nichts.
Zusammengefafit ergibt das OR folgende Moglichkeiten:

OORO=0
OOR1 =1
1TORO0=1
1T0R1 =1

So einfach ist das.

Der NOT-Befehl

Der NOT-Befehl ist nur sehr schwer mit Bitoperationen zu erkldren und fir
uns eigentlich auch uninteressant. Beim Programmieren braucht man ihn
nicht sehr oft.

Aber wahrscheinlich hatten Sie jetzt gerne gewuft, was Sie davon haben,
daB Sie sich das alles angehért haben.

Und genau der Beantwortung dieser Frage soll dieses Zwischenspiel
dienen.

Boolesche Operationen sind immer dann notwendig und nitzlich, wenn
Sie einzelne Bits in einem Byte verdndern wollen. Und da Sie beim Computer
ja letztlich immer mit diesen kleinen Dingern zu tun haben, kann die
Notwendigkeit dazu relativ hdufig vorkommen. So gibt es speziell bei den
Adressen von VIC einige Bits, die «allein» eine ganz besondere Aufgabe
haben. Nehmen wir als Beispiel mal die uns ja gut bekannte Adresse 53 272.
Bei ihr haben die verschiedenen Bits folgende Aufgaben:

53272:
Bt 7 6 543 210

Bildschirm Zeichen- nicht
RAM satz belegt
Adresse

96 Ein Spiel mit Sonderzeichengrafik

Das bedeutet, Sie konnen durch die Bits 7 bis 4 festlegen, wo lhr Bildschirm
RAM losgeht. Den Wert dieser 4 Speicherzellen muf8 man dabei mit 102
multiplizieren. (Sie erinnern sich doch sicher noch: Mit 4 Bits kann man di
Zahlen 0O bis 15 darstellen. 15 * 1024 = 15360. Das wadre also die hdchst
Startadresse fiir das Bildschirm-RAM. Und VIC kann ja auch bekanntlicl
hochstens 16K adressieren.) Normalerweise ist also das Bit 4 an, die Bits 5 bi
7 sind aus. (Denn die normale Startadresse des Bildschirm-RAMs ist 1024 [=
1 % 1024].) Das ist auch der Grund, weshalb der niedrigste Wert, den wir be
den Sonderzeichen in diese Adresse gePOKEd haben, 16 war. Also ist Bit «
immer an. Die Adresse des Zeichensatzes wird durch die Bits 1 bis 3 bestimmt
Wiirden Sie POKE 53 272,4 eingeben, wére zwar das normale Zeichensatz
ROM eingeschaltet, aber das Bildschirm-RAM ldge jetzt in der Zeropage
Probieren Sie es ruhig mal aus, der Effekt ist ganz lustig.

Ublicherweise benutzt man nach diesem Versuch (RUN/STOP) und (RE
STORE).

Falls Sie tibrigens ernste Absichten mit dem Bildschirm-RAM (beziiglicl
Verschieben!) haben, dann finden Sie dazu Ndheres im POKE-Anhang. Jetz
haben wir also einen Fall, wo ein einfaches POKE 53 272,18 nicht meh
ausreicht, um den Zeichensatz zu verandern. Denn damit wiirden Sie ja aucl
gleichzeitig den Bildschirm wieder auf seinen urspriinglichen Platz zuriick
schieben. Sie konnten jetzt natirlich die Bytes ausrechnen, die diesem neuel
Zustand entsprechen. Auf die Dauer einfacher ist aber folgendes Prinzip: Wi
wollen die Bits 4 bis 7 so schiitzen, daB sie nicht verindert werden kdnnen
Die Bits 1 bis 3 sollen aber dafiir einen bestimmten, neuen Wert erhalten.

Und jetzt kdnnen wir einsetzen, was wir gelernt haben. Um die oberen «
Bits quasi zu «konservieren», fiihren wir ein AND mit 1111 0000 (also 240
durch:

00010100
AND 11110000
00010000

Sie sehen: Nur die Bits, die innerhalb der obersten vier Stellen gesetzt sind
werden in das Ergebnis ibernommen. Um nun den neuen Wert fiir dei
Zeichensatz (in unserem Fall 2) in unser Byte mit hineinzubekommen, setzei
wir die entsprechenden Bits einfach dazu: "OR" mit 00000010

00010000
OR 00000010
00010010

Ein Spiel mit Sonderzeichengrafik 97

Und damit hitten wir unseren Wert, den wir in die Adresse 53 272 POKEn
konnen.
In BASIC sieht das dann folgendermaBen aus:

POKE 53272,(PEEK(53272)AND 240)OR2

Den Wert, den wir am Anfang bearbeiten wollen, miissen wir mit
PEEK(53272) aus der entsprechenden Speicherzelle lesen. Dann wird er
verdndert und zuriickgePOKEd.

Derartige Formeln werden Sie oft finden, da sie den Vorteil haben, wirklich
nur die Bits zu verdndern, die nétig sind. Zu guter Letzt noch zwei Tips. Wenn
Sie einzelne Bits einschalten wollen, geht das folgendermaRen:

POKE (Adresse),PEEK(Adresse) OR 2 A Bitnummer

Wenn lhnen nicht ganz klar ist, was da passiert, nehmen Sie sich ein Blatt und
schreiben Sie die zwei Werte untereinander . ..
Fiir das Ausschalten eines Bits verwenden Sie folgenden Befehl:

POKE (Adresse),PEEK(Adresse) AND 255 — 2 A Bitnummer

Auch das sieht komplizierter aus, als es eigentlich ist. Der Ausdruck (255 — 2
A Bitnummer) ergibt ein Byte, in dem deshalb alle Bits (= 255) gesetzt sind,
auBer dem einen gewiinschten (2 A Bitnummer). AND bewirkt dann fol-
gendes:

Das vierte Bit soll geléscht werden

11011011
AND 11101111
11001011

Was hiermit auch gelungen wdére. Und das war es auch schon zum Thema
Boole. Die AND- und OR-Operationen sind, wie Sie vielleicht gesehen haben,
oft unumganglich. Wann man sie braucht, werden Sie noch im POKE-
Anhang sehen.

Sollte noch irgend etwas nicht klar sein, lesen Sie dieses Zwischenspiel am
besten noch einmal in Ruhe durch, und probieren Sie die verschiedenen
Dinge auch aus. Dann werden Sie sehr schnell-ausreichend Erfahrungen mit
Herrn Boole und seinen Operationen haben.

6
Die hochauflosende Grafik des
Commodore 64

Ein vollig neues Grafikgefiihl

Hallo. Da sind Sie ja wieder. Naja, das Buch ist klein. Da trifft man sich schon
ab und an, nicht?

Wir hoffen, Sie haben sich in bezug auf Sonderzeichen jetzt etwas ausge-
tobt.

Ach so, haben Sie eigentlich unser kleines Spiel von vorhin auch mal selbst
so ein biBchen verdndert? Wenn nicht, sollten Sie das ndmlich jetzt tun.
Damit erweitern Sie ja auch lhre eigenen Programmierkenntnisse. Und auler-
dem: Wenn man erst mal das Grundprogramm hat, kénnen schon kleine
Anderungen ganz witzige Effekte haben. In jedem Fall kénnten Sie ja mal die
Hintergrundfarbe oder so @ndern. Wenn Sie also in dieser Richtung bisher
noch nichts gemacht haben, ware jetzt die rechte Zeit dazu.

Die anderen Herrschaften diirften wir derweil in den nichsten Saal bitten.
Die ausgestellten Stiicke gehoren zur Abteilung «Hochauflésende Grafik oder
von der Schwierigkeit, einfache Bilder ohne BASIC-Befehle zu machen».

Oh, Moment noch. '

He, Sie da. Ja, Sie meine ich. Haben Sie auch wirklich vorher mit dem
Spielprogramm herumexperimentiert, oder schmuggeln Sie sich hier nur
einfach so dazu?

100 Hochauflosende Grafik

Ein paar gutgemeinte bése Worte zur Einfiihrung

Dann kénnen wir jetzt also anfangen. Wir wollen uns iiber eine Sache
unterhalten, die bei Einsteigern entweder véllig unbekannt ist oder nach den
ersten Versuchen sehr schnell zu einem privaten Waterloo fiir die meisten
Neulinge wurde. (Sie wissen ja: In Waterloo war die Geschichte mit diesem
Franzosen, der offensichtlich auch schon bessere Schlachten gesehen hatte.)

Fiir jeden Commodore-Besitzer, der keine BASIC-Erweiterung hat, scheint
der sogenannte Hires-Modus erst mal in etwa so ergiebig wie ein Fingerhut
voll Waschmitte! fiir die Wésche einer Bundeswehrtruppe nach einer Feld-
ibung im Regen. Man hat das Gefiihl, es ist entweder véllig unsinnig,
Uiberhaupt erst anzufangen, oder der Aufwand lohnt die Miihe ja eh nicht.
Dieser Eindruck ist leider nicht ganz unrichtig. Es spricht schon Bande, daB der
C 64 nahezu das gleiche Betriebssystem hat wie der VC 20. Nur — der VC 20
hatte wenigstens auch einen wesentlich primitiveren Videochip, der nicht
solche Moglichkeiten bot ...

Aber man kann trotzdem allerhand mit dieser Grafik tun. Um Ihnen dieses
Unterfangen etwas zu erleichtern, haben wir auch einige Programme zusam-
mengestellt, die einfache Dinge wie Kreise, Dreiecke oder Vierecke ermogli-
chen.

Alles in allem ist dieses Manko an lhrem Computer trotzdem ertréglich,
weil man das meiste ja doch relativ einfach mit den Grafik- und Sonderzei-
chen hinkriegt. Aber wir finden: Wenn man schon eine Hires-Moglichkeit
einbaut, hitte man zumindest einen Befehl zum Ziehen von Linien dazuma-
chen konnen.

Der Bit(-tere) Weg zur Grafik

Es gibt nur eine Méglichkeit beim Commodore (ohne BASIC-Erweiterung), im
Hires-Modus zu arbeiten: jeden gewiinschten Punkt ein- bzw. ausschalten.
Einzige Art, dies zu tun, ist der POKE-Befehl. Im Fall von Hires kann dieser
Befehl fiir zwei verschiedene Dinge zustdndig sein.

Entweder verdndert er RAM-Speicher oder greift direkt auf VIC zu, um
bestimmte Betriebszustinde an- und abzuschalten. Um eine Grafik zu erstel-
len, muB man sich also der Methode des Bitmappings bedienen.

Bitmapping bedeutet eigentlich, daR ein bestimmter Speicherbereich (8K)
als Hires-Seite von VIC gelesen wird. VIC geht diesen Speicherbereich Byte

Hochauflésende Grafik 101

fiir Byte durch. Jedes gesetzte Bit in diesem Speicher entspricht dabei einem
Punkt auf dem Bildschirm. Dabei erreicht Ihr Commodore eine Aufldsung von
320 Punkten horizontal und 200 Punkten vertikal.

Um das alles auf einen einfachen Nenner zu bringen: Beim Bitmapping
sehen Sie immer 8K-Speicher auf dem Bildschirm. Ahnlich wie bei den
selbstdefinierten Zeichen miissen die Werte, die dem gewiinschten Bild
entsprechen, in diesen Speicher gePOKEd werden. Bevor wir uns aber noch
mehr in Theorie verstricken, schalten wir den Hires-Modus erst mal ein.

POKE 53265,59

Wenn Sie diesen Befehl direkt eingegeben haben, wird Ihr Bildschirm jetzt —
na, sagen wir mal, etwas chaotisch aussehen.

Aber keine Sorge. Dieses Chaos ist logisch. Und zwar aus zwei Griinden.
Zum ersten ist alles, was der Computer tut, logisch. Auch wenn es zugegebe-
nermafen nicht immer so aussieht. Der zweite Grund, das ist der ernstzuneh-
mendere, ist folgender. In dem freien RAM-Bereich, den VIC ab jetzt als
Parkplatz fiir Hires-Daten betrachtet, sind ja momentan lauter zufillige
Werte. Daher sehen Sie auch lauter zufillige Bitmuster auf dem Schirm.
Logisch, oder?

Weil wir uns vorstellen kénnten, daB lhnen dieses Bild auf die Dauer etwas
langweilig wird, sagen wir Ihnen besser gleich, wie man aus der ganzen Story
wieder rauskommt. (Bevor Sie auf das bewufte Knépfchen an lhrem Fernse-
her driicken, das es moglich macht, diese freundliche Familie da unten in
Texas zu beobachten. Sie wissen schon, die mit dem Ol und dem blonden
Gift.)

Zum Abschalten (des Hires-Modus, nicht des Fernsehers) kénnen Sie
wahlweise (RUN/STOP) + (RESTORE) driicken oder

POKE 53265,27

eingeben. Nachdem das gekldrt waére, kdnnen wir erst mal weitermachen.
Wir haben ja schon einmal erwdhnt, daB der gute VIC gleichzeitig nur
maximal 16K-Speicher adressieren kann. Das heilt, seine Moglichkeiten bei
Hofe (Sie erinnern sich doch noch an unser Bild vom Koénigreich?) sind
begrenzt. Damit er lberhaupt was auf die Matte (pardon: Mattscheibe)
bringen kann, missen seine wichtigsten Informanten innerhalb seines Ein-
fluBbereiches sein. Diese Informanten waren das Bildschirm-RAM (welche
Zeichen sind gerade wo?), das Farb-RAM (was haben die da drauBen
eigentlich fiir eine Farbe ...) und der Zeichensatz (... und wie schauen sie
Uberhaupt aus?)

102 Hochauflésende Grafik

AuBerdem sind da noch eventuell vorhandene Sprite-Daten. Aber zu
denen kommen wir erst im ndchsten Kapitel. Unter den geschilderten Bedin-
gungen gibt es eigentlich gar nicht mehr so viele Méglichkeiten, wo so ein
Hires-Speicher liegen kénnte.

Wir haben ja sicherlich auch schon mal erzéhit, daB unser kleiner VIC von
Commodore so richtig klassisch reingelegt wird. Das Zeichensatz-ROM hat
die Startadresse 53 248. Weil diese Zahl aber zu hoch fiir VICs Adressierkapa-
zitat ist, hat man ihm bei Commodore einen anderen Chip vor die Nase (bzw.
vor den Schaltkreis) gesetzt. Und dieser Chip manipuliert den AdreBbus von
VIC so, daB VIC zwar die fiir ihn darstellbare Zahl 4096 aufruft, aber dabeiin
Wirklichkeit die Speicherzelle 53 248 anspricht.

Deshalb sind fiir VIC also offiziell die Adressen 4096 bis 8191 belegt. (Vgl.
Sie dazu auch die Tabelle 4.2.)

Alles in allem bleibt zu guter Letzt nur noch eine Mdglichkeit, diesen Hires-
Speicher anzulegen: ab der freien RAM-Adresse 8192.

Noch eine Bemerkung hierzu. Natirlich gibt es doch noch eine andere
Méglichkeit. Und zwar, indem man den AdreB8bereich von VIC verschiebt.
Das heift im Grunde, VIC so zu manipulieren, daB er den Hires-Speicher nicht
mehr von O bis 16384 (also die ersten 8K), sondern von 16384 bis 32767
(also die zweiten 8K) liest. Uber die finsteren Intrigen, die dazu bei Hofe nétig
sind, kldren wir Sie im POKE-Anhang auf.

Denn nach dem Motto «Ehrlich wahrt am ldngsten» gehen wir erst mal nur
den legalen Weg. (Na, Sie werden doch nicht etwa zum POKE-Anhang
weiterblattern wollen?!)

An dieser Stelle kdnnen wir iibrigens auf Bekanntes zuriickgreifen. Gemeint
ist die Adresse, ab der VIC unsere Bitmap lesen soll. Wir kennen sie bereits
von der Sonderzeichendefinition: 53 272. Wenn Sie eingeben

POKE 53265,59 : POKE53272,24

schalten Sie VIC in den Grafikmodus (erster POKE) und legen die Bitmap an
die Stelle, die wir vorhin zusammen ausklamiisert haben: 8192. Wenn Sie sich
gerade wundern, warum Sie beim zweiten POKE als Wert 24 eingeben
sollten, bitten wir Sie, sich nochmals mit der Tabelle bei der Sonderzeichen-
definition zu beschaftigen.

Hochauflésende Grafik 103

Vom Chaos zum Nichts

Was Sie jetzt auf dem Bildschirm sehen, entspricht wahrscheinlich immer
noch nicht lhren Vorstellungen von einer Hires-Grafik. Trosten Sie sich:
unseren auch nicht. Je nachdem, welche Art von RAM-Chips Sie eingebaut
haben, erscheinen auf lhrem Bildschirm wieder mehr oder weniger regelma-
Bige Muster. Der Inhalt der jetzt bereitgestellten 8K-RAM, die bisher zuféllige
Werte oder auch ein BASIC-Programm enthielten, muB erst so verdndert
werden, daB er schlieBlich eine Grafik auf dem Bildschirm bilden kann.

Wenden wir doch am besten wieder dieselbe Methode an wie bei den
Sonderzeichen. Lassen Sie uns zuerst einmal nachschauen, wie diese Grafikin-
formationen liberhaupt gespeichert werden. Sie sollten dazu bitte zuerst den
Grafikmodus verlassen. Am besten mit (RUN/STOP) + (RESTORE). Und
dann l6schen Sie bitte den Bildschirm. Wenn Sie das getan haben, wird uns
folgendes kleines Programm weiterhelfen:

10 POKE 53265,59: POKE 53272,24
20 FOR X=8192 TO 16192: POKEX,0
30 FOR Y=1TO100: NEXT Y

40 NEXT X

Wenn Sie dieses Programm mit RUN starten, bemerken Sie zuerst, daB die
Bitmap (also 8K-RAM) Stiick fiir Stiick geloscht wird. Aber achten Sie doch
mal darauf, wie das geschieht!

(Wiéhrend Sie diese Erkldrung lesen, konnen Sie das Programm ruhig
weiterlaufen lassen.)

VIC ist es gewohnt, 8 Bytes als eine «Speichereinheit» zu lesen. Mit der
Uberlegung, daB auf den Bildschirm 1000 Zeichen passen (sieche Sonderzei-
chendefinition), kommen Sie nach einigem Rechnen auf runde 8000 Bytes.
Stellen Sie sich die hochauflésende Grafik also in etwa als einen Bildschirm
voll mit 1000 ganz verschiedenen Sonderzeichen vor.

(Genauso, wie diese 1000 Sonderzeichen auf dem Schirm ein Muster
ergeben wiirden, ergibt auch der Hires-Speicher eines. 1000 Sonderzeichen
gehen natiirlich in Wirklichkeit nicht, weil hochstens 256 verschiedene Son-
derzeichen gleichzeitig dargestellt werden kdénnen.)

Wenn Sie sich jetzt also an dieses Bild gewdhnt haben, dann ist der Rest
eigentlich ganz simpel. Genauso, wie VIC 1000 Sonderzeichen aus dem
Speicher lesen wiirde, also jedes als 8 x 8-Matrix, so liest er auch die Hires-
Seite. Sollten Sie das alles noch nicht so ganz verstanden haben, dann

104 ’ Hochauflésende Grafik

schauen Sie sich jetzt noch mal lhren Bildschirm an. Wenn Sie genau
beobachten, dann erkennen Sie, daR beim Léschen immer eine Art Block von
oben nach unten gel6scht wird. Sollten Sie das nicht erkennen, kénnte es
daran liegen, daB Sie das Programm von vorhin unterbrochen haben oder es
— wir wagen gar nicht, es auszusprechen — womdglich noch liberhaupt nicht
eingegeben haben.

Wenn wir jetzt also lhre Kombinationsgabe und unsere Hinweise in einen
Topf werfen, dann ergibt sich folgende SchluBfolgerung: VIC liest, wenn er
Hires-Grafiken darstellt, immer einen Speicherbereich von je 8 Bytes und stellt
diese, wie Sonderzeichen, untereinander dar. Hat er die erste Speichereinheit
auf diese Weise erledigt, kommt die zweite, die auf dem Bildschirm neben der
ersten angesetzt wird, und so weiter und so fort. Und weil er es beim Léschen
genauso macht, konnen Sie das bei Ihrem laufenden Programm auch sehr
schon beobachten.

So, jetzt haben wir hoffentlich alle Klarheiten beseitigt. Mittlerweile miiBte
Ihr Commodore in etwa ungefdhr ein Viertel bis die Halfte des Bildschirms
geloscht haben. Bevor er sich bei dieser atemberaubenden Geschwindigkeit
eine Erkédltung vom Zugwind holt, unterbrechen Sie das Programm am besten
mit (RUN/STOP) + (RESTORE). Dann kénnen Sie die Zeile 30 — von der Sie
ja sicher gemerkt haben, daB Sie nur eine Warteschleife ist — rauswerfen. Und
den Rest des Programms speichern Sie am besten ab. Das ist ndmlich die
Routine zum Loschen des Hires-Bildschirms. Sehr viel schneller geht das
allerdings auch nicht. Aber ohne Maschinensprache oder BASIC-Erweiterung
ist das die schnellste Moglichkeit.

(Wenn Sie den Hires-Modus schon eingeschaltet haben, falit natiirlich auch
die Zeile 10 des Programms weg. Die Ldschroutine ist nur die Zeile 20.)

Am besten, Sie starten das Programm jetzt nochmals, damit es, wahrend
wir noch beim Erkldren sind, schon mal den Bildschirm frei macht. Ist das
Programm erst mal fertig, dann werden Ihnen einige farbige Kastchen
auffallen, die von GréRBe und Umfang her eine erstaunliche Ahnlichkeit mit
dem Cursor haben.

Um jetzt sich eventuell anbahnende Theorien auch sofort zu untermauern:
Tippen Sie ruhig mal ein bichen auf der Tastatur herum. \

Das geht selbstverstidndlich erst, wenn lhr kleines Programm von vorhin
fertig ist. Wenn nicht, gedulden Sie sich noch ein biBchen. Am besten, Sie
entspannen sich jetzt mal etwas. Lehnen Sie sich zuriick und genieen Sie das
Gefiihl, schneller als der Computer fertig gewesen zu sein.

Wenn lhr Computer jetzt soweit ist, dann tippen Sie mal. Vielleicht fallt

Hochauflésende Grafik 105

lhnen auf, daBB immer, wenn Sie dieselbe Taste driicken, auch dieselbe Farbe
auf dem Bildschirm erscheint. Auch hier riickt wieder eine krimimaRige
SchluBfolgerung in greifbare Ndhe. Die richtige Losung wére: Im Grafikmo-
dus bedeuten Buchstaben offensichtlich Farben. Und das liegt daran, daf das
normale Bildschirm-RAM (Sie erinnern sich vielleicht an die Speicherauftei-
lung, wo dieser Bereich erkldrt wurde) jetzt zum Farbspeicher fiir Hires
gemacht wird. Das Bildschirm-RAM wurde aus der einfachen Tatsache heraus
verwendet, daB es ansonsten in Hires ziemlich unnitz im Speicher herum-
liegt. Nun keimt vielleicht im UnterbewuBtsein die Frage heran, die da heift:
«Ein Farbspeicher? Wofiir?» Ganz einfach. Die Punkte der Hires-Grafik
kénnen 16 verschiedene Farben annehmen. Dasselbe gilt auch fir die
Hintergrundfarbe.

Und jetzt kommt die groBe Stunde unseres kleinen Freundes VIC. Er bastelt
ndmlich vollig eigenmdchtig an einer Art High-Byte/Low-Byte-Prinzip herum.
Was der Prozessor davon denkt, interessiert unseren guten VIC dabei unge-
fahr so stark, wie wenn in der Madison Avenue in New York ein Fahrrad
umfallen wiirde. VIC wendet einen simplen Trick an. Er nutzt die oberen vier
Bits einer Speicherzelle (also sein selbst gedrechseltes «High Byte») als
eigenen Speicher fiir die Zeichenfarbe und die unteren vier (also das genauso
im Do-it-yourself-Verfahren entstandene «Low Byte») fiir die Hintergrund-
farbe. Damit kann er sich wenigstens ein bifchen fiir die stdndigen Intrigen
gegen ihn réachen.

Sollte Sie also jetzt plotzlich der drangende Wunsch iiberkommen, eine
Grafik in Dunkelblau auf hellblauem Hintergrund darzustellen, miiBten Sie in
jede Speicherzelle von 1024 bis 2024 den Wert 6 * 16 + 3 POKEn. Wie diese
Zahlen zustandekommen? Das ist eigentlich recht einfach: 6 steht fiir das
Dunkelblau und 3 fiir das Hellblau. Bliebe nur noch die Zahl 16 zu erklaren.
Wie gesagt, muB VIC jetzt eine Speicherzelle in zwei Werte unterteilen. Um
dabei das eine halbe Byte vom andern halben Byte zu unterscheiden,
multipliziert er den ersten Wert (also so dhnlich wie ein richtiges High Byte mit
256) mit 16. Wenn Sie das nicht verstehen, dann kénnen Sie noch mal in der
Speicheraufteilung unter der Uberschrift «Wenn Bytes halbe-halbe machen»
nachschauen. So dhnlich, wie es die Skizze dort zeigt, lduft das auch hier.
Andererseits ist es nicht so wichtig. Sie kdnnen die ganze Sache einfach
hinnehmen — aber nicht vergessen. Sollte Sie ibrigens nicht der Wunsch nach
ausgerechnet dieser erwahnten Farbkombination iiberfallen haben, so ver-
weisen wir auf Seite 61 lhres Commodore-Handbuchs, wo Sie eine Farb-
tabelle finden. Die ganze POKErei machen Sie mit einer kleinen Routine.

106 Hochauflosende Grafik

FOR X=1024 TO 2024: POKE X,99: NEXT

Es empfiehlt sich, diese und alle anderen Anweisungen, die die Grafik
betreffen, in einem Programm abzuarbeiten. Dafiir sprechen verschiedene
Griinde.

Im Falle der Hintergrundfarbe zum Beispiel der, da8 der Computer durch
jedes «<SYNTAX ERROR» oder «READY» die Farbeinstellung wieder kaputt-
macht, weil er die Buchstaben ja als Signale fiir die Hintergrundfarbe ansieht.
Zweitens ist es ja so, daB Sie das, was Sie schreiben, gar nicht sehen, wenn Sie
im Grafikmodus sind und sich deshalb sehr leicht vertippen. Drittens werden
Sie bei der Arbeit mit der hochauflésenden Grafik bestimmte Operationen
immer wieder brauchen. Die kénnen Sie dann als Unterprogramme ablegen.

Damit wdren wir der ganzen Angelegenheit doch schon ein ganzes Stiick
auf das Bit gekommen. Das heiBt, wir haben eigentlich alle Vorbereitungen
getroffen, die notig waren. Bliebe also nur noch eine Kleinigkeit, die wir
vielleicht noch erklaren sollten: Wie mache ich jetzt eigentlich eine Hires-
Grafik?

Lehrer in der Schule haben auf solch fundamentale Sitze, vor allem, wenn
Sie von Schiilern einfach mitten ins Unterrichtsgeschehen geworfen werden,
meist als erste Antwort: «Eine sehr gute Frage».

Wir mochten die Gelegenheit nutzen und uns hier an dieser Stelle zum
erstenmal auf die Seite des Lehrkorpers stellen und mit ihm diese Formulie-
rung teilen.

(Diesen kurzen Absatz widmen wir hiermit all denen, die sich in langen
Schuljahren mit uns herumplagen muBten, beziehungsweise noch immer
missen. lhre Arbeit war nicht umsonst!)

Von Autos, Bits und Sinuskurven

Bisher haben uns die Grafikbefehle, die der Commodore nicht hat, noch nicht
sehr gefehlt. Aber jetzt wird's schon etwas schwieriger, so ganz ohne.

Nichtsdestotrotz wollen wir mutig (wie Orpheus in die Unterwelt) in die
Hires-Page einsteigen.

Mittlerweile wissen wir, daB im Hires-Speicher ein Bit einem Punkt auf dem
Bildschirm entspricht. Deshalb miissen wir uns jetzt eine gewisse Virtuositét
im Jonglieren mit diesen kleinen Kerlchen aneignen.

Zuletzt haben wir bei den Sonderzeichen mit Bits gearbeitet. Im Grunde
entspricht der Aufbau einer Hires-Grafik dem Basteln eines Sonderzeichens.

Hochauflsende Grafik 107

Um Ihnen das Gefiihl zu geben, etwas bekanntes Terrain zu betreten, wollen
wir unser kleines Auto aus dem Sonderzeichenkapitel noch einmal her-
nehmen.

Zuerst einmal sollten wir uns einen Parkplatz dafiir aussuchen, auf dem wir
keinen Strafzettel bekommen. Nehmen wir also mal die Adresse 12 184. Die
liegt so ziemlich in der Mitte unseres Bildschirms. Wieder einmal folgt ein
kleines Programm, das unser Auto dort einparkt.

10 POKE 53265,59:POKE53272,24

20 FOR X=0TO7:READ A:POKE12184 + X ,A:NEXT
30 FOR Y=1024 TO 2024:POKEY,99:NEXT

40 DATA 0,0,56,116,254,254,68,0

Ist doch ganz hiibsch, oder?

Natiirlich hatten wir das gleiche mit Sonderzeichen auch haben kénnen.
Der Vorteil der hochauflésenden Grafik ist aber, daR Sie volle Kontrolle Giber
320 % 200, also iiber 64 000 einzelne Punkte haben. Und damit wird auch die
Anwendung der Hires-Grafik deutlich: Uberall da, wo groRe detaillierte
Figuren und Bilder gebraucht werden, wo viele einzelne Daten dargestellt
werden sollen oder um Funktionsgraphen auf dem Computer darstellen zu
koénnen.

Will man aber zum Beispiel ein moglichst naturgetreues Gesicht auf den
Schirm bringen, gelingt das am besten nur mit aufwendigen Tools oder gar
mit Hardware-Hilfen wie einem sogenannten Scanner. Was kann man aber
ohne solche Hilfsmittel machen?

Um das zu kldren und auch zu zeigen, ist wieder mal ein kurzer Abstecher
in die Bindrrechnung nétig. Sie sehen schon: Diese Rechenart treffen wir so
sicher immer wieder wie bestimmte Gallier bestimmte Piraten.

Wir wollen aber keine Seeschlacht, sondern eine Formel finden, der wir
eine X- und eine Y-Koordinate libergeben und die uns dafiir die entspre-
chende Adresse in der Bitmap liefert. Und da alle, denen Mathematik nichts
gibt, die ndchsten Seiten sowieso iiberschlagen werden, so sei es ihnen
hiermit (seufz ...) auch erlaubt.

Aha! Da es keinen besonderen Mathematikergruf® gibt, begliickwiinschen
wir Sie hiermit zu lhrem Mut. ‘

Allen, die sich, obwohl Sie nicht gut in Mathe sind, trotzdem hierher
vorgewagt haben, sei noch einmal besonders Trost zugesprochen. Sie sind
nicht allein! Nehmen wir uns also bei der Hand, gehen wir gemeinsam in das
Reich der Zahlen ein.

108 Hochauflésende Grafik

Nach alledem, was wir jetzt iiber den Bildschirm und den Hires-Speicher
wissen, kann die Y-Koordinate unseres Punktes nur zwischen O und 199
liegen. Alles, was dariiber und darunter liegt, ware nur noch auf der Tastatur,
dem Zimmerboden oder der Decke zu lokalisieren. Die X-Koordinate unseres
Punktes muf zwischen 0 und 319 liegen, sonst wiirde sie die Zimmerwénde
zieren.

Als erstes Etappenziel wahrend unseres Marathons zur Grafik setzen wir
uns am besten, zuerst mal die Spalte und die Speichereinheit (also den 8-
Byte-Block) zu lokalisieren. Das ist noch verhaltnismaBig einfach. Da sowohl
horizontal wie auch vertikal ein Zeichen (also eine Speichereinheit) 8 Punkte
hat, miissen wir unsere X- und Y-Werte nur in 8er-Schritten runden. Warum
ausgerechnet 8er-Schritte? Ganz einfach: Eine Speichereinheit, also einer der
Blocks, aus der Hires aufgebaut wird, besteht aus 8 * 8 Punkten. Will man
einem Block eine Nummer geben, damit man ihn lokalisieren kann, muf8 man
eben in 8er-Schritten zdhlen. Und damit es genaue 8er-Schritte werden und
der Computer nicht rundet, muB der BASIC-Befehl INT dazu angegeben
werden (siehe auch BASIC-Kapitel).

Zeile=INT(Y/8): Spalte=INT(X/8)

Wenn Sie also den 64. Punkt in der 1. Zeile suchen, liegt der im 8. Zeichen
bzw. in der 8. Speichereinheit. Um auf die richtige Einheit zu kommen,
miissen Sie allerdings in Computermanier bei Null anfangen zu zéhlen. Es ist
also eigentlich das 9. Zeichen gemeint. Der 65. Punkt liegt immer noch im 8.
Zeichen. Weil aber die Speichereinheiten, wie wir vorhin gesehen haben, von
oben nach unten aufgebaut werden, also reihenweise, fehlt noch eine
Information zur genauen Lokalisierung. Wir miiBten noch rauskriegen, in
welcher Reihe der Speichereinheit, d. h. in welchem Byte genau unser Y-Wert
liegt. Dazu brauchen wir den Restwert der Rundung. Um den zu erhalten,
schlieBt sich eine etwas kompliziertere Formel an.

REIHE=((X/8)—(INT(X/8))) %8

Wir ziehen also den gerundeten Wert vom Ganzen ab. Schreibfaulen und
Binédrfreunden (z. B. Computern) sei hier verraten, daf

REIHE=Y AND 7

genau denselben Effekt hat. Uber diese Art der Bindrrechnung und der
Booleschen Algebra unterhielten wir uns im Zwischenspiel 3.
Ganz fertig sind wir aber immer noch nicht. Bleibt ndmlich noch, das

Hochauflésende Grafik 109

richtige Bit zu treffen. Sollte lhnen das alles etwas Schwierigkeiten machen,
dann empfehlen wir, noch einmal die Grafik iiber die Darstellung der Zeichen
im Sonderzeichenkapitel nachzuschlagen. Da 4Bt sich das auch mitverfolgen.
In hartnédckigen Fallen von Nichtverstehen helfen am besten 2 Aspirin und
etwas Ruhe.

Um unser Bit rauszupuzzeln, brauchen wir ebenfalls zunédchst wieder den
Rest der Rundung.

Bit=7—((X/8)—(INT(X/8)) 8

Das Ergebnis dieses Ausdruckes (die «iiberzahligen» Bits) miissen wir von 7
abziehen. Denn der Computer hat nicht nur seine eigene Art, Bits zu zéhlen —
natiirlich nicht von 1 bis 8, sondern von O bis 7 —, nein, er muB sie auch noch
riickwdrts zdhlen. 1 Byte ist daher

1Byte=7 6 5 4 3 2 1 0

Wenn jetzt also das 4. Bit gesucht ist (Sie wissen schon: 0, 1, 2, 3, 4 — gemeint
ist natiirlich das 5. Bit ...), dann bringt uns die Formel 7 — 4 auf die L&sung.
Das ergibt ndmlich 3. Und das ist auch das richtige Bit.

Auch hier ist der einfachere Weg die Boolesche Algebra. Die Losung wiirde

lauten
Bit=7—(X AND 7)

Bevor Sie jetzt schluchzend zusammenbrechen, keine Sorge: Wir haben es
gleich geschafft. Jetzt brauchen wir nur noch die Formel:

Byte=8192+(Y AND 7)+(8%INT(X/8))+320* (INT(Y/8))

Das also ist die kiirzeste Formel zur Berechnung eines Punktes in Hires.
Vielleicht verstehen Sie jetzt, was wir mit unkomfortabler Handhabung der
Hires-Page meinten ...

Um jetzt ein Bit in diesem Byte zu setzen, brauchen wir nur noch den Befehl

POKE(BY),PEEK(BY) OR 2A(7—(X AND 7))

Das OR in diesem Befehl ist ebenfalls eine Boolesche Verkniipfung. Wir
begriiRen tibrigens auch die Leser aus nichtmathematischen Landen wieder
unter uns. Fiir alle Abtriinnigen also ein kurzes Resiimee: Das Ergebnis
unserer Bemiihungen ist die POKE-Zeile oben. Nicht erschrecken. Es sieht
schlimmer aus, als es ist. Alles, was Sie auBerdem noch brauchen, ist die
Formel unmittelbar dariiber, die die Adressen fiir die Bytes, also fiir den

110 Hochauflésende Grafik

Platzhalter «BY» in der POKE-Zeile errechnet. Wenn Sie diese beiden letzten
Zeilen miteinander verbinden, kénnen Sie ein kleines Programm schreiben,
das fiir Sie immer die nétigen POKE-Werte errechnet. Andererseits steht
dieser Programm-Selbstentwicklung natiirlich wieder die Verlockung eines
fertigen Listings im Anhang gegeniiber. Was Sie jetzt tun, abschreiben oder
selbermachen, das iiberlassen wir lhnen.

Noch ein Hinweis fiir alle, die wacker mitgekdmpft haben. Sollten Sie das
alles nicht so recht verstanden haben, gibt es auch hier wieder eine einfache
Methode, sich aus der Affare zu ziehen: Nehmen Sie das alles erst einmal hin.
Irgendwann spéter kénnen Sie diesen Teil ja noch einmal lesen. Und dann
verstehen Sie es bestimmt.

Und jetzt ist der groRe Augenblick gekommen. Wir wollen unsere Kennt-
nisse zum erstenmal anwenden, und zwar, indem wir eine Sinuskurve plot-
ten. Wer sich das schon ohne Unterstiitzung zutraut, der sollte das jetzt tun.
Alle anderen diirfen wir in den Listinganhang bitten. Hier finden Sie das
notwendige Programm dazu. Da der Commodore eben keine Grafikunter-
stiitzung bietet, weichen wir hier ausnahmsweise etwas von unserem Kon-
zept, kein Tippbuch zu sein, ab und bieten lhnen im Listinganhang eine Reihe
von Programmen, die die notwendigsten Grafikmdglichkeiten abdecken.

Wenn's Speicherprobleme gibt ...

Es konnte sein, dal die Bitmap manchmal ein BASIC-Programm stért oder
umgekehrt, weil zufdllig beide denselben Speicherbereich brauchen. In die-
sem Falle helfen uns die Kenntnisse lber die Speicheraufteilung aus der
Patsche.

Wir machen einfach auch hier das gelernte Spielchen. Gemeint ist, daR wir
den BASIC-Anfang hochsetzen — am besten hinter die Bitmap, also auf die
Adresse 16 348. Eigentlich miiBten Sie das ja schon selbst kénnen. Aber fiir
alle, die zumindest den Willen hatten, unserem Mathe-Exkurs zu folgen,
wollen wir hier noch einmal einen kleinen Service bieten. In diesem Sinne:

POKE 44,64:POKE16348,0:NEW ’

Damit bleiben immer noch 24K fiir Ihr BASIC-Programm. Den Bereich von
2048 bis 8192 (also ca. 6K) konnten Sie anderweitig nutzen, beispielsweise
fiir Sprites, dazu mehr im ndchsten Kapitel, oder fiir kleinere BASIC-Pro-
gramme (siehe Speicheraufteilung).

Hochauflosende Grafik 111

Noch ein Tip. Durch das Setzen des Anfangszeigers auf 8192 und des
Endzeigers auf 16348 konnen Sie die ganze Bitmap auf Diskette oder
Kassette speichern.

Wenn Sie gerade verzweifelt versuchen, POKE 44,8192 einzugeben, mis-
sen wir Sie leider noch einmal auf das Kapitel Speicheraufteilung verweisen,
wo Sie den richtigen POKE fiir diese Adresse finden.

Sie geben einfach ein

POKE 44,32

Ein NEW ertibrigt sich in diesem Fall, da es die Bitmap verdndern konnte. Jetzt
geben Sie wie gewohnt ein SAVE ein. Dabei miissen die BASIC-Endzeiger auf
ein BASIC-Programm (ber der Bitmap zeigen. Wollen Sie nur die Bitmap
abspeichern, setzen Sie das Ende auf 16348 mit

POKE 46,64

Diese Art stellt sicherlich den schnellsten und elegantesten Weg dar, Hires-
Grafiken abzuspeichern. Sie koénnen dann auch wieder ganz normal mit
LOAD geladen werden.

Commodore macht's so bunt, bunter geht's nicht

Also, das muB man ja sagen: Mit Farbmoglichkeiten hat Commodore wirklich
nicht gegeizt. Zwei besondere Farbmodi gibt es noch im Zusammenhang mit
der Hires-Grafik. '

Da wire zuerst einmal der Hintergrundfarbmodus (das ist eine freie
Ubersetzung — das englische Original heiRt Extended Background Color). Der
Zusammenhang dieses Modus mit der Hires-Grafik ist der, daf sich die
beiden nicht riechen kénnen. Das heift, Hires und er, das geht nicht. Oder
besser gesagt, er bringt im Hires-Modus soviel wie ein Blatt Zeitungspapier
vor dem Druck.

Dafiir erweist er sich im normalen Textmodus als hiibsche Erweiterung.
Eingeschaltet wird diese Hintergrundfarbe mit

POKE 53265,91

Haben Sie ihn erst mal an, heift das auch Selbstbeschrankung. Denn dann
gibt es nur noch die Zeichen mit den Bildschirmcodes von 0 bis 63. Verglei-
chen Sie dazu auch Ihr Commodore-Handbuch auf Seite 133.

112 Hochauflésende Grafik

Aber dafiir kénnen jetzt alle diese Zeichen vier verschiedene Hintergrund-
farben haben, die gleichzeitig auf dem Bildschirm dargestellt werden kdnnen.
Welche Farben das sind, kénnen Sie frei von O bis 15 wéhlen. Bevor Sie jetzt
anfangen, das alles zu verstehen, schauen Sie sich Tabelle 6.1 an.

Bildschirmcode Farbadresse
0 bis 63 = (normale Hintergrundfarbe) 53281
64 bis 127 = (SHIFT) 53282
128 bis 191 = (REVERSE) 53283
192 bis 255 = (SHIFT & REVERSE) 53284

Tabelle 6.1 Hintergrundfarbmodus

Wahrscheinlich stellt sich jetzt bei Ihnen mehr und mehr die Frage: Was soll
das alles? Keine Sorge — es ist alles gar nicht so kompliziert, wie es ausschaut.
Erst einmal kldren wir zum besseren Verstindnis, was liberhaupt passiert.
Normalerweise kénnen Sie beim Commodore ja vier verschiedene Schriftar-
ten darstellen, als da sind: NORMAL, SHIFT, REVERSE und zu guter Letzt
SHIFT & REVERSE gleichzeitig. Erinnern Sie sich noch ganz an den Anfang
dieses Buches? Da haben wir eine eigentlich ganz simple Sache erklart: die
ASCII-Codes. Wenn Sie sich nicht mehr daran erinnern, bldttern Sie noch mal
in der Vergangenheit. In unserer Buchgeschichte wére das die TASTATUR-
ZEIT, auch PRATASTIAR genannt, so in der Gegend um 4. n. V. (das heift
vier nach Vorwort und heiBt nach neuerer Kapitelrechnung 2).

Fein, wenn Sie jetzt also wieder wissen, was ASCII-Codes sind und wozu
der Computer sie braucht, dann diirfte der Rest nicht mehr schwerfallen. Um
die verschiedenen Schreibmodi voneinander zu unterscheiden, benutzt der
Computer natiirlich wieder nur Zahlen, und zwar genau jene ASCIl-Codes,
von denen wir gerade sprachen. Aber damit es nicht zu einfach wird, ist ein
kleiner Stolperstein eingebaut. Es wdre ja jetzt wirklich zu einfach, wenn die
ASClI-Codes den Zahlen entsprechen wiirden, die wir oben als erste-Rubrik in
unserer Tabelle haben. Dem ist nicht ganz so: Die Zahlen der Tabelle sind
Bildschirmcodes. Diese Codes ergeben sich fiir den Computer aus den
gedriickten Tasten bzw. aus den ASCII-Codes, die die Tasten zuriickwerfen.
Die ASCII-Codes werden umgewandelt und schlieBlich im Bildschirmspeicher
abgelegt. Findet der Computer jetzt in diesem Bildschirmspeicher den Wert O,

Hochauflésende Grafik 113

so stellt er ein bestimmtes Zeichen im Modus NORMAL dar. Findet er den
Wert 64, so stellt er zwar dasselbe Zeichen dar, aber im SHIFT-Modus. Bei
128 ist's REVERSE und bei 192 SHIFT und REVERSE gleichzeitig. Ubrigens
sind zur Freude aller Beteiligten alle genannten Zahlen selbstverstandlich im
Speicher bindr abgelegt.

Mittlerweile werden Sie — mit Recht — feststellen, daB das herzlich wenig
mit Farben zu tun hat. Der Trick dabei ist aber folgender.

Anstatt diese Bildschirmcodes wie bisher zum Unterscheiden der Darstel-
lungsarten zu benutzen, macht VIC daraus eben eine Art Farbspeicher. Er
stellt die Buchstaben statt REVERSE mit einer anderen Hintergrundfarbe dar,
die er in der Speicherzelle 53283 als Wert (von 0 bis 15) findet. Allerdings
kann er ab jetzt nur noch GroBbuchstaben darstellen.

Nachdem wir jetzt offensichtlich klargemacht haben, was passiert, wollen
wir doch gleich mal diese positive Erfolgsstimmung ausnutzen, um zu erkla-
ren, was Sie machen miissen, damit Sie was davon haben. Sie kénnten aber
auch selbst darauf kommen und so lhren eigenen Wissensstand ein bifchen
Uberpriifen. Lesen Sie also nicht gleich weiter, sondern knobeln Sie erst mal
etwas.

Gut, jetzt wollen wir es aber erkldren. Hier folgt also die Auflésung: Sie
konnen vier Farben gleichzeitig auf dem Bildschirm haben, weil es nur
maximal vier verschiedene Arten gibt, das gleiche Zeichen darzustellen.
Welche vier Farben das sind, kénnen Sie aus 16 verschiedenen Angeboten
aussuchen. Wenn Ihre Wahl getroffen ist, speichern Sie die Werte der Farben
in vier Speicherzellen, und zwar in 53281, 53282, 53283 und 53284. Um
dann die entsprechende Texthintergrundfarbe zu bekommen, driicken Sie
einfach die (SHIFT)-, die (REVERSE ON)- oder die (SHIFT/LOCK)- +
(REVERSE ON)-Tasten. Je nachdem, welchen Wert Sie in die einzelnen
Speicherzellen gePOKEd haben, dndert sich dann auch die Hintergrundfarbe
Ihres Textes. Aber bitte: Lesen Sie das nicht einfach alles durch. Probieren Sie
es aus. Dann wird es am schnellsten klar.

Und jetzt noch zwei Tips dazu.

Erstens: Immer, wenn Sie den Wert einer dieser «Farbspeicherzellen»
andern, dndert sich auch alles auf dem Bildschirm, was in der alten Farbe
dastand, in die neue Farbe. Damit lassen sich ganz hiibsche Effekte erzielen,
wenn man zum Beispiel den Text farbig blinken ldRt. Wen es interessiert: Das
liegt daran, daB der Bildschirm stindig neu aufgebaut wird, also das Bild-
schirm-RAM neu gelesen und eine aktuelle Version auf den Schirm gebracht
wird.

114 Hochauflésende Grafik

Der zweite Tip: In Verbindung mit selbstdefinierbaren Zeichen ist dieser
ganze Farbmodus deshalb manchmal ganz vorteilhaft, weil Sie dann automa-
tisch nur die Codes O bis 63 kopieren und definieren missen. Das geht
schneller und spart allerhand Speicherplatz, der sonst fiir die zwar normaler-
weise mitkopierten, aber nicht gebrauchten Zeichen benétigt wiirde. Sie
brauchen statt dessen fiir den Zeichensatz nur 504 Speicherzellen und
konnen ab 2560 (also mit POKE 44,10) wieder BASIC-Speicher anlegen.

Der wichtigere Vorteil ist aber, dal, wenn Sie die SHIFT-Funktion oder
REVERSE benutzen, trotzdem nicht zuféllige Bitmuster auf den Schirm kom-
men, obwohl Sie diesen Teil der Zeichen nicht mitkopiert haben. Das wiirde ja
normalerweise passieren, wenn Sie den Zeichensatz nur teilweise kopieren
und VIC eine Lese-Start-Adresse im RAM angeben. Aber nicht vergessen:
Das alles geht nur im Textmodus. In Hires haben Sie leider nichts davon.
Deshalb gibt es auch (auBer (RUN/STOP) + (RESTORE)) zwei Méglichkei-
ten, den Extended-Background-Color-Modus auszuschalten. Entweder nor-
mal mit

POKE 53265,27

oder durch das Einschalten der Hires-Seite. Die beiden sind wirklich wie ein
verkrachtes Ehepaar: «Kommst Du, dann geh' halt ich!»

Fiir Hires wesentlich interessanter ist da schon der Mehrfarbmodus — vor
allem, weil er in gleicher Weise auf Zeichen, Hires und Sprites wirkt. Auch hier
wollen wir zuerst verraten, wie man ihn einschaltet.

POKE 53270,216

Sollten Sie gerade damit beschéftigt sein, diesen POKE im Textmodus auszu-
probieren, konnte es sein, daB Sie pl6tzlich Schwierigkeiten haben, den Text,
der da steht, noch lesen zu konnen. Aber keine Panik. Bevor Sie den
Augenarzt aufsuchen, schauen Sie noch mal genau hin. Mit einiger Miihe I4R1
sich doch Textdhnliches erkennen. (Wenn Sie nichts erkennen, wire das mit
dem Augenarzt andererseits vielleicht doch nicht so schlecht :..)

Sollte iiberhaupt nichts passieren, so ist das andererseits kein Grund, lhren
Commodore in Reparatur zu geben. Wahlen Sie statt dessen einfach eine
Zeichenfarbe liber 7 — also alle Farben, die mit der (C=)-Taste gewahl
werden.

So, jetzt ist aber hoffentlich bei allen der Text nur noch schwer zu
entziffern. Was ist also passiert?

Na, vielleicht fangen wir mit dem Unangenehmen zuerst an. Sie haben Jetzi

Hochauflésende Grafik 115

nur noch die halbe Auflésung. Das heift, im Text nur mehr 4 * 8 Punkte pro
Schreibstelle. Damit erkldren sich auch lhre Leseprobleme. In der Grafik
haben Sie jetzt nur noch 160 * 200 Punkte zur Verfiigung.

Jetzt das Angenehme. Sie kdnnen jetzt jedem einzelnen Punkt der Hires-
Grafik oder auch der Sonderzeichen eine von drei verschiedenen Farben
geben. Am besten erklaren wir lhnen gleich, wie das zustande kommt.

Normalerweise ist die niedrigste Auflésung immer ein Bit oder ein Punkt
gewesen. Weil jetzt aber auch noch die Information mit rein muB, in welcher
Farbe jeder Punkt dargestellt werden soll, und ein Bit nunmal nur 1 oder O
sein kann und damit unméglich alle Informationen aufnehmen kann, wurde
auf die hochste Auflosungsstufe verzichtet. Damit besteht jetzt jeder «Punkt»
dieser Grafik tatsdchlich aus zwei Punkten. Dadurch kénnen die Bits, wie in
Tabelle 6.2 dargestellt, aussehen. Die Adressen, deren Inhalte gedndert
werden missen, sehen Sie in Tabelle 6.3.

Punkt Farbnummer
1, 00 0
2,01 1
3,10 2
4,11 3

Tabelle 6.2 Bitmuster im Multicolormodus

Im Lores/Text-Modus ist zu dndern:
1, 53281

2, 53282

3, 53283

4, Farb-RAM ab 55296

und im Hires-Modus:

1, 53281

2, die Bits 7 bis 4 im Bildschirm-RAM
3, die Bits 3 bis 0 im Bildschirm-RAM
4, das Farb-RAM ab 55296

Tabelle 6.3 Farbadressen im Multicolormodus

116 Hochauflésende Grafik

Wenn lhnen diese Zahlenkolonnen noch etwas dubios erscheinen, keine
Sorge. Wir wollen uns die ganze Geschichte zunéchst einmal im Textmodus
ansehen. Zuerst geben Sie bitte ein

POKE53265,27: POKE53270,216

Im Textmodus — und das ist auch die Erklarung dafiir, warum vielleicht be
thnen zunichst gar nichts passierte — ist der Mehrfarbmodus nur dann aktiv,
wenn die Schriftfarben, die verwendet werden, groRer als 7 sind — also, wie
schon gesagt, alle Farbtasten, die mit der (C=)-Taste erreicht werder
konnen. Wenn Sie einige Buchstaben schreiben, am besten auch ein paar ir
REVERSE, werden Sie am schnellsten erkennen, worum es eigentlich geht. Fiii
die Schriftfarbe gibt es jetzt sowieso nur noch 8 Moglichkeiten: Wenn Sie
Farben mit der (CTRL)-Taste anwdhlen, scheinen sie normal. Wenn Sie
{(C=) + eine Farbtaste driicken, sind Sie im Mehrfarbmodus. Die weiterer
Kombinationen probieren Sie am besten durch POKEs in die Adressen 53 281
bis 53283 aus. Bei der Verwendung von selbstdefinierten Sonderzeicher
lassen sich so tolle Effekte erzielen. Was wir darunter verstehen, probieren Sie
am besten mit einem Listing im Anhang aus. Bedenken Sie aber bei Ihrer
eigenen Entwiirfen die vier méglichen Bit-Kombinationen.

Und jetzt zur Hires-Grafik. Wie Sie an der Tabelle erkennen kénnen, lduf
es hier etwas anders. Geben Sie bitte folgendes kleine Beispielprogramm ein

10 POKE 53265,59: POKE 53272,24: POKE 53270,216

15 POKE 53281,6

20 FOR X=8192 TO 12352 STEP 8

30 FOR Y=0 TO 3: POKE X+Y,250:NEXT

40 FOR Y=4 TO 7: POKE X+Y,80:NEXT

50 NEXT X

60 FOR X=0 TO 511: POKE 1024+X,5: POKE 55296+X,7
70 NEXT

Das Programm schaltet zuerst in Hires- und Multicolormodus. Dann stellt e
einen halben Bildschirm voll Zeichen dar.

Als nichstes werden die Farben O (= Schwarz) und 5 (= Grun) nact
folgender Formel in das Bildschirm-RAM gePOKEd:

0x16+5=5

Also 0 in die obere Hélfte (damit der Computer das auch weif, wird die Null j;
mit 16 multipliziert) und 5 in die untere Hélfte. Die 7 (= gelb) kommt dani

Hochauflésende Grafik 117

76543210

(250)

(80

Bild 6.1 Zeichenmatrix Multicolor-Beispiel

ins Farb-RAM. Der Bildschirm ist bei alledem blau. Sie sehen jetzt auf einer
Schreibstelle vier Farben: Schwarz, Griin, Gelb, Blau. Benutzen Sie das
Programm zum Testen anderer Farbkombinationen. Die Zeilen 20 bis 50
konnen Sie, um Zeit zu sparen, I6schen. Aber speichern Sie das Programm
zuerst! Noch ein Beispiel: Wenn Sie die Farben Blau, Rot, Weil und Orange
gleichzeitig auf einer Schreibstelle haben wollen, miissen Sie ins Bildschirm-
RAM 6 % 16 + 2 (Blau + Rot) = 98, ins Farb-RAM 1 (= WeiR) und in die
Adresse 53281 den Wert 8 (= Orange) POKEn. Selbst auf die Gefahr hin,
daR wir Sie damit nerven: Auch hier gilt, nur lesen hat keinen Sinn. Probieren
Sie es aus!

Und noch einmal zur Erinnerung: Wenn Sie eigene, hochauflésende Mehr-
farbgrafiken probieren wollen, denken Sie an die vier méglichen Bitkombina-
tionen.

Das war's dann auch erst mal von unserer Seite zum Thema Hires-Grafik.
Natiirlich sind da jetzt ganze Berge von POKEs und Informationen auf Sie
eingestiirzt. Also lassen Sie sich jetzt mal ruhig etwas Zeit mit dem néchsten
Kapitel. Ausprobieren und lben ist der beste und sicherste Weg, schnell zu
lernen. Benutzen Sie auch die Programme zum Erstellen von Formen und
Figuren in Hires. Spielen Sie einfach ein biBchen. Hier gilt — wie {iberall im
Buch — das, was wir schon ganz am Anfang sagten. Eines kann lhnen kein
Buch ersetzen: Die Erfahrung mit lhrem System.

Und nach diesem ehernen SchluBwort vielleicht noch ein kleiner Tip.
Soliten Ihnen die Farbmoglichkeiten des Commodore nicht so viel Spal
machen, denken Sie doch mal iiber die Anschaffung eines Farbfernsehers
nach ...

Vergessen Sie trotz allem nicht, in ein paar Wochen lhr Buch wieder
rauszuholen und weiterzulesen.

118 Hochauflésende Grafik

Zwischenspiel 4

Da die letzten Kapitel doch ziemlich anstrengend waren, mdchten wir Sie hier
zu einem kleinen Abenteuerurlaub einladen. Es bietet sich jetzt namlich die
Gelegenheit, mit dem bisherigen Wissen und einer kleinen Portion Forscher-
geist an einer recht interessanten Sache teilzunehmen: Exklusiv — eine
Expedition durch den Dschungel des Commodore-Speichers.

Worum geht's?

In diesem Zwischenspiel sollen zwei Themen, die wir bisher behandelt
haben, zusammengebracht werden: Die Speicheraufteilung und die hochauf-
|6sende Grafik.

Im letzten Kapitel haben Sie gelernt, wo und wie man die Bitmap der Hires-
Grafik anlegen kann. Eine Moglichkeit haben wir dabei gleich wieder verwor-
fen, und zwar die, die Bitmap auf die Zeropage und den daran angrenzenden
Speicherbereich zu legen. Aus gutem Grund — denn es gibt Dinge zwischen
Tastatur und Platine, die man besser nicht versuchen sollte. Und dazu gehort
eben auch das Uberschreiben der Zeropage. Da hier auerdem der Bild-
schirmspeicher und — normalerweise — [hr BASIC-Programm liegt, ist der
Bereich von O bis 8192 fiir eine Hires-Bitmap tabu.

Andererseits hindert uns niemand daran, sich in diesem scheinbaren
Dschungel etwas umzusehen. Solange wir keine Rodungen hier veranstalten,
kann uns auch gar nichts passieren. Was also durchaus méglich ist, wére, die
Hires-Grafik einzuschalten und die Bitmap von O bis 8000 anzulegen.-Denn
solange wir uns nach der Museumstaktik verhalten (Anschauen erlaubt —
Anfassen nicht), ist damit plétzlich die Moglichkeit eines Fensters in den
Commodore-Speicher da.

Mit

POKE 53265,59:POKE 53272,16

Hochauflsende Grafik 119

1Bt sich das alles bewerkstelligen. Und dann bringt uns unser guter Geist VIC
den Speicher als Hires-Grafik auf den Bildschirm. Jedes Bit im Speicher
entspricht dann einem Punkt dieser Grafik. Und schon haben wir die M6g-
lichkeit, unsere an und fiir sich sehr scheuen Freunde, die Bits, einmal auf
freier Wildbahn zu beobachten. Und das, ohne — wie die meisten Forster —
schon morgens um 3 Uhr aufstehen zu miissen. Aber vergessen Sie nicht: Wir
befinden uns in einem Wildbit-Park. Ehrensache, daf es bei einer Fotosafari
bleibt? Okay, dann alles einsteigen und ab in Richtung Urwaldexpedition.
Was einem zuerst auffillt, ist wohl, daR hier gerade Herbst zu sein scheint.
Obwohl das eigentlich gegen die Gewohnheit von Urwéldern ist. Der Grund
dafiir ist recht einfach: Wie Sie ja wissen, wird im Hires-Modus der Bild-
schirmspeicher zum Farbspeicher umfunktioniert. Dabei dienen die oberen
vier Bits als Speicher fiir Vordergrund-, die unteren vier fiir die Hintergrund-
farbe. Da momentan unser Bildschirm-RAM leer ist, also mit lauter Leerstellen
(= Spaces) gefiillt ist, und diese Leerstellen den Code 32 haben, sieht eine
solche Zeile folgendermaRen aus:

BITNR.7 6 56 4 3 2 1 0
001 0O0O0OOTGO

Damit sind die ersten vier Bits gleich dezimal 2 und die hinteren vier Bits gleich
dezimal 0. Daraus folgt, daB die Hintergrundfarbe Schwarz ist (es wird Nacht
tiber unserem Speicher ...) und der Vordergrund Rot. Falls Sie eine andere
Farbe entdecken, haben Sie irgendeinen Text auf dem Bildschirm. Wenn Sie
gar keine Farbe entdecken, haben Sie wahrscheinlich einen Schwarzweifern-
seher.

Die Tastenkombination (SHIFT) + (CLR) macht dann alles wieder gut
(bei Farbfernsehern natiirlich nurl).

Sie konnen den Bildschirmspeicher tibrigens beobachten. Er liegt ungefahr
im zweiten Achtel lhrer Hires-Grafik und besteht aus senkrechten Strichen.
(Das sind die 32er-Bits von vorhin, die immer an diese Stelle kommen, wenn
der Text-Bildschirm leer ist ...) Wenn Sie einige Tasten driicken, sehen Sie,
wie die Bitmuster sich dndern. Aber danach wieder aufraumen!

Unmittelbar vor diesem Speicherbereich liegt die Schlucht namens Kasset-
tenpuffer. Dieser Teil des Schirms ist gewdhnlich gdhnend leer, also schwarz.
Es sei denn, Sie haben unmittelbar vorher mit der Datasette gearbeitet.

Jetzt wollen wir einen kleinen Abstecher in die linke obere Ecke machen.

Auf dem Weg dorthin kénnen wir lbrigens -einige Eingeborene beob-
achten.

120 Hochauflésende Grafik

Es sind die Bits von den -Stimmen «Zeitvariable» und «Cursorsteuerung»,
die hier eine Art Tanz auffiihren. lhre Gétter sind der Timestring oder der
Blinkzédhler des Cursors. Und um diese bei guter Laune (bzw. beim aktuellen
Wert) zu halten, sind diese kleinen Bitianer stindig am Rumwuseln.

Ganz links oben aber, da blitzt und funkelt es nur so. Das sind die Schitze
des Konigs 6510. Aber Vorsicht, wenn Sie nur etwas davon wegnehmen,
bricht das Reich zusammen. Dann vergeht lange Zeit, bis die Erlésung in Form
des «GroRen Stromaus» kommt. (Bevor wir uns aber endgiiltig in das Reich
der Fantasy-Literatur verlieren: Technisch gesprochen sehen Sie hier die
Speicherzelle 1, die fiir die Verteilung von RAM- und ROM-Bausteinen unter
der gleichen Adresse zusténdig ist. Weil VIC alle paar Millisekunden Zugriff
auf das Charakter-ROM und dergleichen haben muB, ist hier stindig Be-
trieb.)

Im ersten Viertel lagen also Zeropage und Bildschirmspeicher. Fiir die, die
keinen KompaR haben, sei an dieser Stelle vermerkt, daB wir uns etwa bei der
Adresse 2048 befinden.

Danach entdecken Sie jetzt die Wiiste RAMI. Eine riesige Landschaft, die
von Touristen auch BASIC-Speicher genannt wird. Erkennen kann man diese
Landschaft immer an relativ gleichmaBigen Mustern im zweiten Viertel des
Schirms. Beim Einschalten haben ndmlich alle RAM-Chips mehr oder weniger
gleiche Bit-Muster. Es kann natiirlich auch sein, da ein Bautrupp der
Zivilisation in Form eines BASIC-Programms mittlerweile da war. Dann kann
diese Gegend natiirlich ziemlich anders ausschauen. Auf jeden Fall wird es
erst mal chaotisch wirken, wie alle moderen Bauten in einer altehrwiirdigen
Umgebung das halt tun.

In der zweiten Hélfte des Bildschirms steht — der Zeichensatz? Also ab
Adresse 4096. Aber das wurde doch vorhin anders erklart, oder?

Richtig. Der tatsdchliche Zeichensatz liegt noch runde 50 KB entfernt. Aber
was Sie hier sehen, sehen Sie ja mit den Augen von VIC. Und wir haben ja
schon mehrmals darauf hingewiesen, mit welchen Methoden er reingelegt
wird. Statt eines Blicks in die freie Natur, muB VIC hier auf den Zeichensatz
schauen. Dank des Botschafters glaubt VIC namlich, hier — ab 4096 — liegt
sein Zeichen-ROM. Nutzen Sie die Chance und sehen Sie sich die verschiede-
nen Zeichen an. Vielleicht entdecken Sie dabei ja einige Anregungen fiir Ihre
selbstdefinierten. Wenn Sie diesen Anblick genossen haben, bitten wir Sie,
wieder in den Bus einzusteigen. Durch Driicken von (RUN/STOP) &
(RESTORE) treten wir wieder die Heimfahrt an.

7
Sprites auf dem Commodore 64

Die Riesen-Super-Sonderzeichen

Es wére mal wieder soweit: ein neues Kapitel, ein neues Gliick. Mittlerweile
haben wir ja zusammen schon eine ganze Menge gemacht. Sie kennen sich
inzwischen ganz gut mit der Tastatur lhres Commodore aus, alle, die es
vorher noch nicht konnten, haben noch ein Stiick BASIC dazugelernt. Sie
wissen, wo was im Commodore-Speicher ist und was man damit alles
anfangen kann. Sie konnen eigene Sonderzeichen definieren und so bereits
bewegte Grafik machen. Wir haben zusammen ein Spiel mit eigenen Sonder-
zeichen programmiert, und auch die Hires-Mdglichkeiten des Commodore 64
sind Ihnen mittlerweile kein Geheimnis mehr. Das ist doch insgesamt gesehen
ein ganzes Stiick Arbeit, das wir da geschafft haben, nicht wahr?

Halt, halt, es hat keiner was von gemiitlich zuriicklehnen gesagt. Vor uns
liegen noch die Sprites, ein hiibsches Spiel, Musik und Gerdusche, Antworten
zu allen Fragen in bezug auf die Steuerung von Figuren mittels Joystick,
Paddles und Tastatur und die Handhabung von Diskettenstationen oder
anderer Peripherie.

Gehen wir also zuerst ans Néchstliegende. Das wéren in unserem Fall die
Sprites. Als der Commodore auf den Markt kam, bot diese Méglichkeit keiner
der anderen giinstigen Home-Computer. Erst jetzt kommen die Dinger in
Mode.

Normalerweise ist es bei Computern, die keine Sprites haben, gar nicht
einfach, bewegte Grafiken zu machen, die groBer sind als ein Zeichen.
Entweder wurde das mit verschiedenen, kombinierten Sonderzeichen (und
gleichzeitig eindeutigen Zugestandnissen an die Erkennbarkeit) erreicht oder
es wurden munter drauflos Sonderzeichen definiert, die mittels standigem

122 Sprites auf dem Commodore 64

Léschen und Neudrucken «bewegt» wurden. Und wenn keine dieser Mog-
lichkeiten funktionierte — nicht jeder Computer hat Grafikzeichen, und schon
gar nicht bei jedem Computer kann man sie so einfach verdndern —, dann
blieb nur noch eins: Ein Objekt in Hires-Grafik zu entwerfen und dann
ebenfalls durch Léschen, Neuzeichnen, Léschen, Neuzeichnen usw. zu bewe-
gen — also eigentlich eine kleine Hires-Grafik in einer groBen Hires-Grafik zu
bewegen. Mal abgesehen von einer nicht ganz unkomplizierten Handhabung
der genannten Methoden, kommen noch einige ganz handfeste Nachteile
dazu. Erstens haben alle drei Arten die Eigenschaft, beim Ldschen der
Sonderzeichen oder Grafiken auch gleich den Hintergrund mitzuléschen. Sie
lassen es nicht zu, auf zwei Ebenen zu arbeiten. Also geht es nicht, eine
Hintergrundebene und eine Spielfigurebene zu definieren und dann die Figur
unabhéngig davon zu bewegen. ‘

Nur verliert nun mal jeder Spielhintergrund an Wirkung, wenn der Spieler
bei seiner Wanderung ein Riesenloch hinterldBt. Um etwas gegen diese
schwarzen Locher zu unternehmen, braucht man also eine geeignete
Methode, die dann auch noch richtig ausgefiihrt werden muR. Die Losung
kann eigentlich nur darin bestehen, den Hintergrund wieder neu zu zeichnen.
Aber das kostet wieder Zeit — genauso, wie das Zeichnen der Grafik, je
komplizierter sie ist, entsprechend mehr Zeit kostet. Und je mehr Zeit das
kostet, um so schwieriger ist es, die lllusion, die hinter aller Computeranima-
tion steht, aufrechtzuerhalten. Denn, wenn der Spieler sieht, wie sich ein
Zeichen nach dem anderen erst aufbaut, wird es verstdndlicherweise etwas
schwieriger fiir ihn, sich als Kommandant eines Raumschiffes zu{‘ﬁjhlen, von
dessen geschickter Verteidigung es abhéngt, ob die gute alte Mutter Erde
noch ein paar Drehungen vor sich hat oder nicht. Vor allem ist es natiirlich so,
daB jede auBerirdische Invasion entschieden an Schrecken verliert, wenn sich
die feindlichen Raumschiffe mit der Geschwindigkeit einer gut ausgebildeten,
besonders talentierten Rennschnecke iiber den Bildschirm bewegen.

Damit wiren die meisten, die «nur» BASIC kdnnen, auch schon wieder aus
dem Rennen, wenn es um tolle Spielideen geht. Einfach weil diese Sprache
unter normalen Umstdnden zu langsam fiir ein richtig fixes Spiel ist. Und
genau in diesem Problembereich setzen die Sprites an. Mit ihnen wird das
alles ndmlich plotzlich wunderschon leicht. Vorausgesetzt, man versteht, wie
die Sprites funktionieren. Genau das sollen lhnen unsere nédchsten Abschnitte
vermitteln.

Sprites auf dem Commodore 64 123

Ab hier kénnen lhnen bis zu 8 Steine vom Herzen fallen

Warum ausgerechnet 8 Steine? Nun, das liegt daran, daR Sie mit lhrem
Commodore achtmal um so aufwendige Methoden zum Entwickeln eines
Computerspiels herumkommen, weil Thnen ndmlich 8 Sprites zur Verfiigung
stehen, die gleichzeitig auf dem Bildschirm sein kdnnen. Und mit einer
Kombination aus Sprites, Grafik- und Sonderzeichen miBten Sie eigentlich
jede Spielidee verwirklichen kénnen. Wofiir sind sie nun aber da, diese
freidefinierbaren Figuren, wie schauen sie aus und wie sind sie aufgebaut?
Also gut — Sie wollten es ja wissen: Vorhang auf. Die Charaktere sollen
vorgestellt werden. Hauptdarsteller und Held dieses Stiickes ist: der Sprite.
Er sieht nicht gerade aus wie Clark Gable (sollten Sie ein mannlicher Leser
sein, setzen Sie statt Clark Gable bitte Marylin Monroe oder so ein), die Figur
ist eher etwas untersetzt und besteht aus 24 * 21 Punkten. Eigentlich ist er
ein kleiner Hires-Bildschirm, den Sie auf dem Bildschirm bewegen konnen.
Natiirlich konnen Sie auch den groRen Bildschirm bewegen. Vorausgesetzt,
Sie sind kréftig genug und lassen ihn nicht fallen. Vergessen Sie aber nicht das
Wortchen «frei definierbar», darin liegt's ndmlich. Solange Sie ihm kein Leben
eingehaucht haben, ist er im wahrsten Sinne des Wortes ein etwas farbloser
Geselle. Und wenn Sie ihn auf die Rohre, die fiir ihn die Welt bedeutet (sprich
lhren Bildschirm), holen, ohne ihn vorher geformt zu haben, dann sehen Sie
folglich auch nichts. Deshalb kénnen Sie so ziemlich alles aus ihm machen,
was in die 24 * 21 Punkte paBt. Der Sprite ist eine kleine Hires-Grafik, die Sie
einfach bewegen kdnnen. Bevor wir uns aber jetzt unserem geplanten Drama
zuwenden, sollten wir vielleicht noch kurz sagen, wie er auf dem Bildschirm
dargestellt wird. Unser kleiner Star besteht aus 63 Bytes. Am besten stellen
Sie sich das so vor, wie auf Bild 7.1 zu sehen.
Eine solche Skizze sollten Sie immer in ausreichender Menge greifbar haben,
wenn Sie mit Sprites arbeiten. Da kann man sie ndmlich am besten entwerfen.
Um lhnen das etwas zu erleichtern, finden Sie im Listinganhang eine Seite,
auf der diese Skizze leer dargestellt ist. Am besten, Sie kopieren sich diese
Seite entsprechend dem Bedarf. (Ubrigens wéren wir lhnen dankbar, wenn
das alles bliebe, was Sie kopieren. Alles andere ist geschiitzt und darf, selbst
auszugsweise, nur mit der schriftlichen Genehmigung des Verlages vervielfal-
tigt werden. Ganz egal, wofiir. Okay? Na prima.) Wie Sie dann mit dieser
Skizze arbeiten sollen, ist wahrscheinlich klar: Jeder Punkt, der erscheint bzw.
an ist, sollte hier eingetragen werden. Daraus ergeben sich dann die (wer
hitte das gedacht?) zu POKEnden Werte fiir den Sprite.

124 Sprites auf dem Commodore 64

Byte 1 Byte 2 Byte 3

7654 321076543210 76543210

WoONOANUVUIHA WN =

11 21 Ze

Byte 61 Byte 62 Byte 63

Bild 7.1 Leere Spritematrix

Iard

Haben wir erst mal einen Sprite definiert, iibernimmt der gute VIC fiir
all die lastigen Arbeiten des Zeichnens und Loschens. Scheint doch ge
brauchbar zu sein, oder?

Natiirlich ist klar, daB die 63 Bytes, aus denen ein Sprite besteht, a.
irgendwo ein Zuhause haben miissen. Denn auBer in Frankreich ist es wi
nirgends romantisch, ein Obdachloser zu sein. Und weil wir ja die geistig
Eltern der Dinge sind, die wir im Speicher unseres Computers aufbau
haben wir uns gefilligst auch um geeignete Ubernachtungsméglichkeiten
kiimmern.

Aber das war jetzt genug an Vorwissen. Das Spiel moge beginnen.

Sprites auf dem Commodore 64 125

1. Akt: Wie macht man einen Star

Mit Star meinen wir natiirlich unseren Sprite. Anhand der Skizze von vorhin
und der Punkt-an-/Punkt-aus-Erkldrung haben Sie bestimmt schon selbst
gemerkt, daB ein Sprite durchaus mit den selbstdefinierten Zeichen zu
vergleichen ist. Einer der groBen Unterschiede ist allerdings: Wir haben nicht
mehr nur 8 % 8, sondern 24 % 21 Punkte zur Definition.

Haben wir einst bei den Sonderzeichen ein kleines Auto (im Zeichen der
Zeit wahrscheinlich einen Kleinwagen aus Turin) zusammengebaut, kénnten
wir ja jetzt die Fertigung auf ein groReres Modell umstellen — vielleicht eines
der Prachtstiicke aus Stuttgart, Untertiirkheim. In jedem Fall soll es ein
mustergiiltiger Luxuswagen werden, wie ihn die Bosse der groRen Werbe-
agenturen immer fahren. Es konnte beispielsweise so aussehen, wie auf Bild
7.2.

Auch hier sind wir, wie im Frankfurter Westend, natiirlich erst mal dazu
gezwungen, einen geeigneten Parkplatz zu finden. Und da wie dort sind die
meisten Pldtze schon besetzt. Steht der Platz einmal fest, ist klar, wie wir

765 432107654321076543210

WOoONOULA WN =

-
o

N
N

-
N

-
S~ W

N
()]

-
o)

-
~

-
o]

-
o

N
o

N
-

Bild 7.2 Spritematrix «Grofles Auto»

126 Sprites auf dem Commodore 64

dahin kommen: Sie miissen die Bitmuster ausrechnen und byteweise in den
Speicher POKEn. Wir raten hier, am besten das Umrechnungsprogramm zu
benutzen, das Sie im Listinganhang schon beim Thema Speicheraufteilung
fanden. Aber bevor wir einparken, brauchen wir einen Parkplatz.

Wir haben im Laufe des Buches immer wieder darauf hingewiesen, daB VIC
nur 16K-Speicher gleichzeitig adressieren kann. Wohin also innerhalb dieses
Bereiches mit den Daten fiir die Sprites? Die Zeropage zu benutzen, ware
ungefahr so, als ob Sie mitten im Halteverbot vor der Polizeiwache parken
wiirden. Ehe Sie sich’s richtig versehen, sind Sie schon abgeschleppt worden,
und es gibt hinterher Riesendrger. Denn genauso wie die Polizei wiirde es uns
der 6510 sehr iibelnehmen, wenn wir seine Autoritdt nicht beriicksichtigen
wiirden.

Aber in der Ndhe der Zeropage gibt es tatsachlich ein paar frgié Adressen,
die wir nutzen konnten. Da fiir einen Sprite immer 63 Byte gebrauchi
werden, bieten sich die Unterkunftsméglichkeiten an, die Sie aus Tabelle 7.1
ersehen konnen.

Speicherbereich Spritenummer Anmerkung
704 bis 766 1 Freie Bytes
832'bis 894 13 Kassettenpuffer
896 bis 958 14 (ist frei, wenn
960 bis 1022 15 Datasette nicht
benutzt wird)
2048 bis 4095 32 bis 63 BASIC-RAM
8182 bis 16383 126 bis 255 (Sie kdnnen BASIC
ja verschieben!)

Tabelle 7.1 Speicherbereich fiir Sprites

Womit auch unsere Parkplatzsuche gelost ware, als ob wir eben ein véllig net
erbautes Parkhaus entdeckt hatten. Die Speicherzellen 4096 bis 8191 sinc
nicht fiir Sprites verfiigbar. Das hdngt wieder einmal damit zusammen, dal
unser kleiner VIC belogen und betrogen wird und deshalb denkt, hier se
etwas ganz anderes im Speicher.

Wahrscheinlich werden Sie gerade verwundert die Tabelle oben anschauel
und sich fragen, warum wir die ganze Zeit von 8 Sprites reden, abe

Sprites auf dem Commodore 64 127

Spritenummern von O bis 255 angeben. Nein, wir miissen Sie leider enttdu-
schen. Es bleibt bei den acht Sprites — zumindest bei den acht Sprites, die
gleichzeitig auf dem Bildschirm sichtbar sind. Allerdings hindert Sie niemand
(nicht einmal der 6510, der sonst eifrigst darauf bedacht ist, kein bifchen
Boden an VIC zu verlieren) daran, bis zu 255 Sprites im Speicher zu haben. Sie
kénnen jeden Sprite, den Sie im Rahmen des Spieles nicht mehr (oder auch
gerade nicht) brauchen, durch einen anderen ersetzen und dann den anderen
wieder zuriickholen oder ihn wieder durch einen neuen ersetzen — so lange,
bis Sie alle 255 durchhaben.

Die nichste Frage, die wir beantworten sollten, ist wahrscheinlich die nach
dem Sinn der angegebenen Spritenummern. Die Antwort ist ganz einfach: Ein
Sprite braucht eigentlich nur 63 Bytes. Nun hat der Computer ja die Ange-
wohnbheit, notgedrungen, alles in Zweierpotenzen darzustellen. 63 ist zwar
eine rundum schéne Zahl, aber leider keine Zweierpotenz. Weil unser Com-
modore aber in dieser Hinsicht kein Pardon kennt, macht er kurzerhand 64
daraus und schenkt sich dann das eine Byte. Schon ist die Welt wieder in
Ordnung. (Ein System, das sich auch in der Politik groBer Beliebtheit erfreut.)

Aus dieser Rechnerei ergibt sich dann, daB Sprite O von O bis 62 liegen
wiirde, Nummer 1 von 64 bis 126, Nummer 3 von 128 bis 190 usw. Sprite
Nummer 255 liegt demnach von Speicherzelle 16320 bis 16382. Wenn Sie
mal die Startadresse eines Sprites suchen (und wir kdnnten uns vorstellen,
daB das nach Ende dieses Kapitels des 6fteren der Fall sein wird), dann gilt
folgende kleine Formel:

Startadresse = Spritenummer % 64

Womit wir Sie auch lber den Sinn der Spritenummern aufgekldrt hatten.
(Merken Sie was? Wir kommen ganz schon voran.)

So, wenn wir also unser Auto unter der Spritenummer 13 einparken wollen,
steht dem jetzt nichts mehr im Wege. Nach der Formel liegt die Adresse ab
832. Da sich hier der Kassettenpuffer befindet, ist unser Auto auch einiger-
maRen sicher. Das heit, es wird nicht mit BASIC zusammenstofen und
ziemlich sicher ohne groBere Dellen wieder auf dem Bildschirm erscheinen.
Das folgende BASIC-Programm baut unser Auto zusammen:

10 FOR X=1TO62:READA:POKE 832+X,A:NEXT X
20 DATA 0,0,0

30 DATA 0,0,16

40 DATA 0,0,16

128 Sprites auf dem Commodore 64

50 DATA 0,0,8

60 DATA 0,254,8

70 DATA 1,147,8

80 DATA 2,146,136

90 DATA 4,146,72

100 DATA 127,255,252
110 DATA 194,16,66
120 DATA 194,22,78
130 DATA 159,16,78
140 DATA 224,144,178
150 DATA 127,255,252
160 DATA 31,0,124
170 DATA 14,0,56

180 DATA 0,0,0

190 DATA 0,0,0

200 DATA 0,0,0

210 DATA 0,0,0

220 DATA 0,0,0

Na, geschafft? Prima. Ganz hiibsche Tipperei, was? Aber das Programm sieht
umfangreicher aus, als es ist. Das liegt aber nur daran, daB wir fiir jede Zeile
des Sprites eine neue DATA-Zeile aufgemacht haben. So erschien es uns ein
biBchen tibersichtlicher. Sie kénnen dann die einzelnen DATA-Werte nach-
rechnen und Uberpriifen. Dabei merken Sie auch gleich, wie sich€r Sie noch
beim Umrechnen von Binar in Dezimal sind. Wenn also fiir lhren Geschmack
zu viele Zeilen im Programm sind, dann kénnen Sie ruhig immer so viele
DATAs zusammennehmen, wie in eine Programmzeile passen.

Jetzt ist der groBe Moment gekommen: Unser miihsam erarbeiteter Star
soll die Biihne betreten. Wir haben ihn gemacht, ihn zu seiner Vollendung
gefiihrt.

Wir starten also das Programm mit RUN.

Wir sehen, daB wir nichts sehen. Geht auch nicht. Denn jetzt folgt erst der
zweite Akt. Unser Star ist zwar jetzt da (das hat das RUN bewirkt), aber er
kann noch nicht die Biihne betreten. Es fehlt noch etwas Entscheidendes.

Sprites auf dem Commodore 64 129

2. Akt: Wie bringt man einen Star auf die Biihne?

Wenn Sie vorhin RUN eingegeben haben, ist Ihnen vielleicht aufgefallen, daB
3s einen kurzen Augenblick dauerte, bevor die READY-Meldung erschien.
Daraus ergibt sich natirlich die naheliegende Vermutung, daB unser Commo-
Jore in dieser Zeit nicht etwa dasaB und Ddumchen drehte, sondern offen-
sichtlich mit irgend etwas Ernsthafterem beschaftigt war — womit, kénnen Sie
iich eigentlich denken: Er hat unseren Star zusammengebastelt und dann
rgendwo hinter dem Vorhang abgestellt. Und das ist auch der Grund, warum
wvir ihn noch nicht sehen konnten. Denn in diesem Speicherbereich, wo er
etzt ist, wiirde er bis in die Puppen bleiben, wenn wir ihm nicht beibringen,
wie so ein richtiger Star wie ein Sprite auf die Biihne zu kommen hat. Dazu
rereitet man am besten zuerst die Biihne vor. Das heif3t fiir uns, wir setzen die
Register von VIC. Da ist zundchst einmal die Adresse 53269. Sie ist dafiir
wustdndig, welche Sprites gerade an- und welche gerade ausgeschaltet sind.
/IC kann bis zu 8 Sprites gleichzeitig darstellen. Also entspricht jedes Bit in
ler Speicherzelle 53269 genau einem Sprite.

53269 = Sprite7 -6 5 4 3 2 1 O

Venn ein Bit gesetzt ist, ist der entsprechende Sprite eingeschaltet. Das heifit,
inser Star kriegt in der Garderobe die Meldung: «Sprite Nummer 5 fertig zum
\uftritt.» Mit folgendem Befehl konnen Sie Sprites einschalten:

POKE 53269,PEEK (53269) OR2 ASPRITE

Vobei SPRITE eine Zahl von 0 bis 7 ist. Um unser Auto einzuschalten, reicht —
veil noch kein anderer Sprite eingeschaltet ist, der sonst aus Versehen
‘eléscht werden konnte — eine etwas einfachere Version:

POKE 53269,1

)amit wird Sprite 1 eingeschaltet. Warum das untere leichter als das obere
usschaut, liegt groBtenteils an einem Herrn mit Namen Boole. Sollte Ihnen
as kein Begriff sein, haben Sie wahrscheinlich unser Zwischenspiel 3 tiber-
chlagen, wo wir den Versuch unternommen haben, die mathematischen
{lnste von Herrn Boole dem Publikum etwas ndherzubringen. Sie kénnen
ern noch mal zuriickbldttern! Ausschalten kénnen Sie das Ganze iibrigens
slgendermaflen:

POKE 53269,PEEK(53269) AND (255—2 ASPRITE)

130 Sprites auf dem Commodore 64

Auch hier ist SPRITE wieder ein Wert zwischen 0 und 7.

Sie sollten das aber nicht unbedingt gleich ausprobieren!

Wir gehen also weiterhin davon aus, daB Sie lhren Sprite eingeschaltet
haben und daR Sie immer noch nichts von ihm sehen kénnen. Das ist auch
ganz richtig so. Als nachstes will VIC ndamlich wissen, ab wo er lhren Sprite
lesen soll. Die Zeiger, die ihm das sagen, liegen recht raffiniert. Sie erinnern
sich ja vielleicht daran, daB8 das Bildschirm-RAM genau 1K groB ist. 1K ist
gleich 1024 Zeichen. Aber ein voller Bildschirm faft nur 1000 Zeichen. Womit
24 Bytes librigbleiben, die geschickterweise auch noch genau in diesem von
VIC adressierbaren Bereich liegen. Ab Adresse 2040 liegen also die Kiinstler-
garderoben. Ab hier kann VIC die einzelnen Sprites aufrufen. Der Zeiger fiir
einen ganz bestimmten Sprite kann mit der Formel:

Zeiger = 2040 + Sprite

errechnet werden. Fiir unser Auto brauchen wir die erste Adresse, also 2040.
Unser Sprite hatte die Nummer 13, liegt also im Speicher ab Adresse 832.
(Beachten Sie dazu auch die Tabelle 7.1.) Deshalb ist unsere Eingabe:

POKE 2040,13

Womit der Zeiger auf die richtige Adresse gesetzt wdre.

So, jetzt haben wir es aber bald geschafft. Wir sind ndmlich bei der letzten
Information angelangt, die VIC braucht, um unseren Star auf seinen Auftritt
vorzubereiten. Und zwar ist das die Stelle, an der er erscheinen soll. Probieren
Sie am besten mal die Gegend von 100 bis 150 auf dem Bildschirm:

POKE 53248,100:POKE 53249,150

Und jetzt ist es soweit.

3. Akt: A Star is born

Jetzt miiBten Sie ein weiles Auto auf dem Schirm sehen. Wenn nicht, priifen
Sie noch einmal genau nach, ob Sie auch alles so gemacht haben, wie Sie es
gelesen haben. Wenn das alles stimmt, aber Sie trotzdem nichts erkennen
kénnen, dann sollten Sie ernsthaft anfangen, sich Gedanken Uber lhren
Commodore oder lhren Optiker zu machen — allerdings nur unter der
Voraussetzung, da lhr Monitor eingeschaltet war ...

Sprites auf dem Commodore 64 131

Wenn jetzt alles stimmt, kénnen wir uns dem nachsten Teil zuwenden: der
biihnengerechten Bewegung unseres Stars. Stellen wir uns mal vor, wir
mochten gern, daB unser Star (momentan ist er ja ein Auto) in irgendeine
Richtung losfahrt.

Sollten Sie sich iibrigens nicht daran gewdhnen kénnen, daf wir die ganze
Zeit von Star reden, aber eigentlich ein Auto meinen, dann denken Sie mal an
Walt Disney's verriickten Kéfer Herbie. Der war ja auch ein Star unter den
Autos.

Und bei Sprites ist noch etwas zu bemerken. Es gibt nur wenige wirklich
gute Stars, bei uns genau 8 Stiick. Und diese Stars werden immer so
geschminkt, daB sie praktisch jede Rolle spielen konnen. Was wir damit
meinen, ist einfach, daR der Sprite in Ihrem Computer tatsiachlich immer einer
der acht vorhandenen ist. Er transportiert nur eben mal das eine, dann das
andere Bitmuster iiber lhren Schirm. Gut. Zuriick zum Thema. Folgende
kleine Zeile macht unser Auto mobil:

10 FOR X=1T0O255:POKE53248,X:NEXT

Wenn Sie das Programm starten, werden Sie auch schnell sehen, mit welchen
einfachen Mitteln man durch Sprites bereits sehr eindrucksvolle Effekte
erzielen kann. Und was lernen wir aus der letzten Programmzeile? Richtig, die
Speicherzelle 53248 scheint fiir die horizontale Bewegung zustdndig zu sein.
Wenn Sie diese Zahl in lhrem Programm durch die nédchsthohere ersetzen
(also 53249), sehen Sie, daB sich die Sache sofort dndert. Plotzlich geht es
nicht mehr von links nach rechts, sondern von oben nach unten.

Sollte lhr Auto plétzlich vom Schirm verschwunden sein, dann ist das ganz

normal. Mit POKE 53249,150

holen Sie es wieder zuriick.

Noch etwas: Sobald Sie ({RUN/STOP) + (RESTORE) driicken, schicken
Sie lhren Sprite wieder in die Kiinstlergarderobe. Das heift, er wird dadurch
ausgeschaltet.

Um ihn dann wieder herzuholen, miissen Sie die Register von VIC wie
gerade beschrieben neu setzen.

Jetzt sollten wir Ihnen aber vielleicht die Biihne noch ein bichen besser
erkldaren. Wie ist das jetzt ganz genau mit diesen Bewegungskoordinaten?

Sollten wir es noch nicht erwédhnt haben: Ihr Sprite ist eine kieine Hires-
Grafik aus 24 % 21 Punkten. Unser ganzer Hires-Schirm besteht aber aus
320 * 200 Punkten. Mit den POKEs 53248 fiir die X- und 53249 fir die Y-

132 Sprites auf dem Commodore 64

Koordinaten konnen Sie den Sprite auf thren Bildschirm bringen, und zwar
aufs i-Punktchen genau. Allerdings entsprechen die Werte, die gePOKEd
werden, nicht genau den Bildschirmkoordinaten. Das wére ja auch wirklich zu
einfach gewesen.

Das heilt also, daB 0,0 nicht genau die linke obere Ecke ist, sondern fiir den
Sprite bereits «auBerhalb» des Bildschirms. Tatsdchlich entsprechen die Werte
24 und 50 der Grundposition. Mit kleineren Zahlen kénnen Sie Sprites auch
Uber den Rand hinaus darstellen. Und damit lhr Fernseher von diesen
Versuchen keine Dellen kriegt, ist man bei Commodore dazu iibergegangen,
den Sprite dann einfach «verschwinden» zu lassen. Das heif}t, Sie sehen nur
noch so viel von ihm, wie die Koordinaten, seine GroRe und der Bildschirm-
rand es zulassen.

Der untere Rand entspricht bei alledem {brigens einem Y-Wert von 229.
Aber wie auch immer Sie lhren Sprite setzen wollen, ein kleines Problem
bleibt.

Vielleicht konnen Sie es sich schon denken. Wenn der Bildschirm eine
horizontale Auflésung von 320 Punkten hat und eine Speicherzelle fiir diese
Position zustdndig sein soll, dann werden Sie auf Schwierigkeiten bei der
Koordinatenangabe stofRen. Na, wissen Sie jetzt, was wir meinen?

Die grofte Zahl, dig ein Byte darstellen kann, ist ja bekanntlich 255, weil
ndamlich 8 Bits «an» (also maximal 8mal eine 1 in einem Byte) umgerechnet
nur 255 ergeben kann, nicht mehr und nicht weniger. Was aber ist mit den
Koordinaten, die dariiber liegen?

Auch hier gibt es einen Trick. Allerdings gilt fiirihn genau das, was auch fiir
die meisten anderen Tricks zutrifft: Er macht alles etwas komplizierter.

Na, wir wollen mal versuchen, es zu erklaren.

Im Grunde bleibt alles beim alten. Maximum fiir ein Byte sind 8 Bit.
Deshalb muB das 9. Bit ja auch in eine eigene Speicherzelle. Und wenn das 9.
Bit unserer Speicherzelle, die fiir einen bestimmten Sprite verantwortlich ist,
«an» ist, dann weif der Computer: «Aha, ich muB nicht ganz vorne, sondern
bei 255 zu zdhlen anfangen.»

Das 9. Bit wirkt also so &hnlich wie die (SHIFT)-Taste an der Tastatur.
Wenn Sie (SHIFT) und (A) gleichzeitig driicken, dann ergibt sich daraus ein
anderer ASClI-Wert, als wenn Sie nur (A) dgiicken. Sie kénnen es aber auch
mit dem High-Byte/Low-Byte-Prinzip vergleichen, das wir thnen an anderer
Stelle erklart haben. Jetzt ist natirlich noch interessant, wo dieses 9. Bit
eigentlich ist. Die Speicherzelle ist 53264.

Sprites auf dem Commodore 64 133

Adresse X-Koordinate Sprite-Nr.
53248 X-Koordinate 0

53250 X-Koordinate 1

53252 X-Koordinate 2

53254 X-Koordinate 3

53256 X-Koordinate 4

53258 X-Koordinate 5

53260 X-Koordinate 6

53262 X-Koordinate 7

53264 9. Bit der X-Werte

fiir alle Sprites

Adresse Y-Koordinate Sprite-Nr.
53249 Y-Koordinate 0

53251 Y-Koordinate 1

53253 Y-Koordinate 2

53255 Y-Koordinate 3

53257 Y-Koordinate 4

53259 Y-Koordinate 5

53261 Y-Koordinate 6

53263 Y-Koordinate 7

Tabelle 7.2 Spritekoordinaten

Mit
POKE 53264,1

verschieben Sie deshalb die X-Koordinaten um 255 Positionen nach rechts.
Und nun kénnen Sie ab dieser Stelle normale X-Werte POKEn. Um aber bei
dieser ganzen Operation auch noch Platz zu sparen, wurden alle 9er-Bits aller
Sprites in einem Byte zusammengefafit. Das spricht mal wieder fiir die
Findigkeit der Commodore-Leute.

Speicherzelle 53264:

9. Bit der X-Koordinaten von Sprite7 6 5 4 3 2 1 0

Um unser Auto also tber den ganzen Bildschirm zu bewegen, wére folgendes
Programm nétig:

134 Sprites auf dem Commodore 64

5 POKE 53269,1:POKE 53249,100

10 POKE 53264,0

20 FOR 1=0 TO 350

30 X=I

40 IF 1)255 THEN X=1-255:POKE 532641
50 POKE 53248,X

60 NEXT |

Die Koordinaten der anderen 7 Sprites liegen hinter denen des 1. Sprites. In
Tabelle 7.2 noch einmal eine kleine Ubersicht iiber die Speicherzellen, die fiir
unsere Sprites wichtig sind.

So, jetzt diirften Sie eigentlich keine Probleme mehr haben, mit Sprites auf
dem Bildschirm zu spielen. Und weil das jetzt so schon war, schauen wir uns
die anderen Funktionen auch gleich an. Das gehort jetzt aber schon zum
niachsten Akt unter das Thema Kosmetik und Maske.

4. Akt: Der Star und sein Kostiim

Jeder Sprite hat beispielsweise eine eigene Farbadresse. So ist es kein Pro-
blem, zum Beispiel aus zwei erst mal duRerlich vollig gleichen Sprites bei
einem Spiel ein griines (gutes) Waldméannchen und ein rotes (boses) Feuer-
mannchen zu machen. Diese Farbadressen finden Sie tibrigens ab der Adresse
53287. Damit Sie wissen, wohin Sie lhre Farbpost schicken sollen: Mit einem

POKE53287 + (Sprite 0—7),Farbnummer

kdénnen Sie sich alles farblich so zusammenstellen, wie es lhnen geféllt.
Wenn wir beispielsweise unseren StraBenkreuzer geklaut hétten, taten wir
gut daran, ihn méglichst bald umzulackieren. War er vorher weif}, so macht
ein
POKE 53287,10

ihn rot. (Aber nicht etwa vor Scham, wegen der Klauerei .. .)
Ubrigens: Da wir gerade beim Auto-Tuning sind, versuchen Sie doch
gerade mal

POKE 53271,1

Wie Sie sehen, kénnen Sprites horizontal vergroBert werden. Sollten Sie

Sprites auf dem Commodore 64 135

nichts sehen, konnte es daran liegen, daR lhr Commodore defekt ist — oder
daR Sie vielleicht gar nicht mittippen?
Mit einem
POKE 53277,1

geht dasselbe in vertikaler Richtung.

Sprites konnen also in einer oder zwei Richtungen gleichzeitig vergroBert
werden.)

Diese Geschichte funktioniert natiirlich auch bei dem Rest der Bande. Nur
weil diesmal die zustdndigen Bits etwas weiter hinten im Byte liegen, miissen
wir wieder einmal unseren Meister Boole mit ins Boot ziehen:

POKE 53271,PEEK(53271) OR 2 A (Sprite)
POKE 53277,PEEK(53277) OR 2 A (Sprite)

Nur noch mal zur Erinnerung: Der erste POKE vergroBert horizontal, der
zweite vertikal.

Und diese beiden Funktionen lassen sich auch fiir jeden Sprite getrennt
wieder ausschalten:

POKE53271,PEEK(53271) AND (255—2 ASprite)
POKE53277,PEEK(53277) AND (255—2 ASprite)

Auch hier wieder: POKE eins fiir das Ausschalten der horizontalen VergroRe-
rung, zwei fiir die vertikale.

Langsam ndhern wir uns dem Hohepunkt unseres Dramas.

Wie Ihnen wahrscheinlich beim bisherigen Experimentieren mit den Sprites
aufgefallen sein diirfte, werden die Sprites liber dem Text auf dem Bildschirm
dargestellt. Und wie das bei echten Stars so iblich ist, scheren sie sich auch
keinen Deut darum, was um sie herum passiert.

So erklart sich auch, daB ein Sprite auf dem Bildschirm nicht vom Scrolling,
also vom Rollen des Textes auf dem Bildschirm, betroffen wird. Diese stoische
Ruhe eines oder mehrerer Sprites ist bei allerhand Spielen sicherlich sehr
praktisch.

Aber wenn es Ihnen SpaB macht (oder lhre Spielidee es verlangt), kann
unser Star auch mal ein biBchen zuriickstecken. Mit

POKE 53275,1

bringen Sie ihn dazu, daB er auch mal mit einer Rolle als Statist hinter dem
Text oder irgendwelchen Grafik- und Sonderzeichen zufrieden ist.

136 Sprites auf dem Commodore 64

Da dies fiir jeden Sprite einzeln einstellbar ist, sind sogar mit einiger
Experimentierfreude dreidimensionale Darstellungen médglich. Einschalten
kann man mit

POKE 53275,PEEK(53275) OR 2 A(Sprite)

Ausschalten 1aBt sich’'s mit
POKE 53275,PEEK(53275) AND (255—2 A Sprite)

Soliten Sie jetzt mehrere Sprites auf dem Bildschirm haben, wére es vielleicht
nicht schlecht, wenn Sie etwas mehr Uberblick hitten. Zumindest sollten Sie
merken, wenn es irgendwo kracht — also, wenn zum Beispiel ein Sprite in die
Kulissen rennt, weil er blind wie ein Maulwurf ist (oder der Spieler zu langsam
reagiert?), oder ob zwei Sprites ineinanderdonnern. VIC agiert in solchen
Féllen wie ein guter Polizist. Er geht davon aus, das Sie als Vater Staat die
Augen nicht iiberall haben kénnen, und deshalb paflt er auf.

Mittels eines sogenannten Kollisionsdetektors kann VIC feststellen, ob sich
da Sprites zueinander oder auch zum Hintergrund besonders hingezogen
fiihlen.

Das ist natiirlich bei selbstprogrammierten Spielen sehr niitzlich. Hier gilt
dann fir alle Mitspieler die Devise: Achtung! Big VIC is watching you.

Dieser Kollisionsdetektor liegt auf der Adresse 53278. Und je nachdem,
wer da mit wem, dndert sich der Wert dieser Speicherzelle bzw. wieder die
einzelnen Bits der Zelle. Das heit mit anderen Worten, daf nach einer
Kollision alle die Bits in 53278 gesetzt (bzw. an) sind, die den zusammenge-
stoBenen Sprites entsprechen. Und diese Bits bleiben auch so lange gesetzt,
bis sie vom richtigen Mann ausgelesen wurden, also die Zelle mit

PRINT PEEK (53278)

aufgerufen und kontrolliert wurde. (Erinnert doch irgendwie an das Vorgehen
dieser Punktesammlung in Flensburg, oder?)
Man kann sie aber auch einfach durch

POKE 53278,0

zuriicksetzen.

Das sollte man am Anfang eines Programms, das diesen Detektor benutzt,
iibrigens sowieso tun, um sicherzugehen, dafl alles mit rechten Dingen
zugeht. Sonst kriegen Sie woméglich die Punkte vom Mitspieler ab. Ubrigens:
Denken Sie daran, dal unsere kleinen Stars natiirlich auch hinter der Biihne

Sprites auf dem Commodore 64 137

zusammenstoBen kdnnen. (Die Gdnge zu den Garderoben sind aber auch
wirklich schlecht beleuchtet ...)

Die Adresse 53279 ist fiir die Kollision mit Zeichen bzw. einer Hires-Grafik
zustdndig. Sie wird ebenfalls mit dem Befehl PEEK ausgelesen und kann
genauso mit

POKE 53279,0
zuriickgesetzt werden.

Hier bedeutet ein bestimmtes gesetztes Bit, daB der dazugehdrige Sprite
irgendwo einen Unfall mit dem Hintergrund hatte.

Hier ein kleines Programm zur Verdeutlichung.

10 POKE2040,13: POKE2041,13: POKE53269,3: POKE 53277,3: POKE
53281,0

20 X0=30:X1=120

30 POKE 53248,X0: POKE 53250,X1: POKE53249,150: POKE 53251,150:
POKE53278,0

40 FOR 1=0TO200

50 X0=X0+1.4:X1=X1+1

60 POKE 53248,X0:POKE 53250,X1

70 IF PEEK(53278)()0 THEN FOR X=0TO34:POKE 53288,X:NEXT:END

80 NEXT |

Zuerst wird dieses Programm unsere beiden Autos auf den Schirm bringen.
Dann fahren beide los. Nur das eine ist etwas schneller (siehe Zeile 50), und
so kommt, was kommen muB. Es fahrt auf seinen Vordermann auf. Beson-
ders aufmerksam machen wollen wir Sie nur auf die Zeilen 30 und 70. In der
ersteren wird das Kollisionsregister zurlickgesetzt, in Zeile 70 wird das Regi-
ster abgefragt. Wenn es einen Wert enthalt, der nicht O ist, dann reagiert der
Computer. Was all die anderen Zeilen tun, diese Frage geben wir galant an
Sie zuriick. Es sind alles Ihnen mittlerweile bekannte POKEs. Sie miissen sich
das Programm nur einmal aufmerksam durchlesen. Das ist eine gute Ubung.
Jetzt ganz zum SchluB wollen wir noch etwas mehr Farbe in die ganze Sache
bringen. Wir haben ja bereits, als wir im Hires-Kapitel iiber Farbe sprachen,
vom Multicolormodus gesprochen. Da wurde ja unter anderem gesagt, daB
dieser Modus auch bei den Sprites funktioniert. Und weil wir nie vergessen,
was wir einmal gesagt haben, wollen wir das jetzt auch erkléren.

Was wollten wir doch gleich erkldren?

Ach ja. Der Multicolormodus bietet die Mdglichkeit, bis zu 3 Farben in

138 Sprites auf dem Commodore 64

einem Sprite darzustellen. Dafiir bleibt aber nur die halbe Auflosung. Wenn
Sie das schon bei der Konzeption Ihres Sprites berticksichtigen, lassen sich
damit auch sehr hiibsche Effekte erzielen. Wenn Sie sich daran nicht mehr so
recht erinnern kénnen, sollten Sie noch mal das Hires-Kapitel aufschlagen.

Bei der Frage, welche Farbe dargestellt wird, liefern wieder einmal Bitkom-
binationen die Antwort (Tabelle 7.3).

Bitkombination Farbe Adresse

00 Hintergrund 53281

01 Sprite Multic. Nr. 0 53285

10 Sprité Farbe 53287 + (Sprite)
11 Sprite Multic. Nr. 1 53286

Tabelle 7.3 Farbadressen fiir Multicolorsprites

Der Ausdruck «(Sprite)» in der Tabelle steht natirlich wieder fiir eine Zahl
von O bis 7.

Wie Sie sehen, missen die Multicolorfarben fiir alle Sprites zusammen
festgelegt werden. Dazu dienen die Register 53285 und 53286.

Die Spritefarbe selbst bleibt, wie gehabt, individuell.

Der Multicolormodus kann aber gezielt fiir einzelne Sprites eingeschaltet
werden. Und zwar mit :

POKE53276,PEEK(53276) OR 2 A(Sprite)

Ausschalten kdnnen Sie genauso mit

POKE5327,PEEK(53276) AND (255—2 A Sprite)

Tja, das war dann auch schon unser kleines Star-Lexikon auf dem Commo-
dore 64.

Alles weitere, was es hier noch zu zeigen gébe, kdnnen wir jetzt getrost
Ihrer Fantasie tiberlassen. Probieren Sie also ruhig erst mal ein biBchen, bevor
Sie das néchste Kapitel aufschlagen. Da geht es dann um Téne und Geriu-
sche auf dem Commodore 64. Danach kommt ein Spiel mit Sprites und
vielem mehr.

Sprites auf dem Commodore 64 139

Wie immer beim Commodore 64, wird auch die Freude an den Sprites
durch die Unmengen an POKEs etwas getriibt. Aber tragen Sie -es mit
Fassung. Sollten Sie noch etwas Ubung brauchen, um sich Zahlen zu merken,
dann Gben Sie ruhig das erst noch ein bifichen, zum Beispiel, indem Sie das
Frankfurter Telefonbuch auswendig lernen. Na ja, wenn Sie wollen, kénnen
Sie auch das lhres eigenen Ortes nehmen — aber nur, wenn Sie mindestens
150 Anschliisse haben. Und denken Sie zum Trost auch daran, daB es einen
Anhang gibt, wo die wichtigsten PEEKs und POKEs zusammengefaft sind.
Also nicht verzweifeln. Wir lassen Sie jetzt erst mal mit lhren neuerworbenen
Kenntnissen etwas allein. Wir haben ndmlich noch zu tun. Das Frankfurter
Telefonbuch ist dick, und wir sind gerade erst beim zweiten Drittel «Miiller»
angelangt.

Bis spdter also. Und viel Spaf!

Ende der Vorstellung. Der Vorhang féllt. Applaus?

8
Tone und Gerdusche auf dem
Commodore 64

Der Ton macht die Musik

Wenn man sein erstes selbstgeschriebenes Spielchen auf dem Commodore
laufen hat, tberflutet einen schon schnell der Vaterstolz. Trotzdem, wenn
man dann zwecks Information mal so einen dieser Spielautomaten bewun-
dert, vielleicht sogar eine Studienreise in die nichstgelegene Spielhalle unter-
nimmt, stellt man doch fest, daR dem eigenen Spiel noch irgend etwas an
Faszination fehlt. Die Raumschiffe konnen es nicht sein. Die hat man ja auch.
Die Farbe? Nein, die ist auch da. Was aber macht Donkey Kong oder
Pac-Man oder Frogger oder ... egal, was macht sie alle so stark? Bevor Sie
jetzt der Idee verfallen, an die Seite lhres Commodore einen kleinen Kasten zu
bauen, der immer dann Strom gibt, wenn einer eine Mark hineinwirft, und
sich damit heillos in die Welt der Hardware verrennen, lesen Sie dieses
Kapitel. Wir kénnen Ihnen versichern, daR der Vorteil der anderen Spiele
nicht etwa das Geldhineinwerfen ist, sondern das, was Sie vielleicht bei lhrem
ersten Spielhéllenbesuch eher als ldstig empfunden haben: der Krach, den sie
verursachen. Denn jede Invasion wird erst schén, wenn der Feind auch so
richtig schone Invasionsgerdusche von sich gibt. Und da die Leute, die an
solchen Apparaten stehen, meist noch keine Invasion mitgemacht haben —
weder eine irdische, geschweige: denn eine auBerirdische —, féllt ihnen
zumeist auch nicht auf, ob die Gerdusche sehr lebensecht klingen. Und wenn
die Gerduschexperten der groBen Spielehersteller gar nicht mehr weiterwis-
sen, dann versuchen sie es mit Musik.

Mit welchen Gerduschen sollte man auch um Himmels willen Frogger
unterlegen? Dieses Spiel vollzieht in erster Linie das Leben eines Frosches in
der Nahe der B 27 nach. Diese StraRe hat fiir das Leben eines Frosches einen

142 Téne und Gerdusche

entscheidenden Nachteil: ndmlich den, daB Autos darauf fahren. Und weil
nun unser Frosch ausgerechnet hier sein Quartier aufschlagen mufte, steht er
bei seinem tdglichen Wunsch nach einem Bad vor einem rund 8 Meter breiten
Problem. Denn geschickterweise fiel den Spielstrategen gerade noch rechtzei-
tig ein, daB unser Frosch sozusagen «driiben» wohnt. Will er also auf die
andere Seite (zum FluB), dann muB er iiber die StraBe. So weit, so gut. Nur
stellen Sie sich mal vor, Sie miBten jeden Morgen auf dem Weg in lhr
Badezimmer eine BundesstraBe iiberqueren — fiir jeden, der morgens noch
halb schlafend ins Bad tappt, eine groBRartige Chance, seine Lebensversiche-
rung bereits sehr friih an Verwandte verteilen zu kdnnen. Unserem Frosch
ergeht es nicht besser. Wenn er flink genug ist — prima. Nur, wenn nicht,
ereilt ihn ein schnelles Schicksal in Form von mit wohlklingenden Namen
bedachten Reifenfabrikaten. Wie aber driickt man das in Gerduschen aus?
Man entschied sich in erster Linie fiir Musik und ein neutrales Troten, wenn
ein Frosch die ganze Sache nicht so hinkriegt. Nachdem diese Wohnungen
neben der B 27 offensichtlich sehr giinstig, nicht spekulationsgefdhrdet sind
und vielleicht sogar von der Bundesregierung subventioniert werden, kom-
men immer neue Frosche. Und so gibt es jeden Abend in Deutschlands
Wohnzimmern eine frohliche Froschhatz. Wohlgemerkt: Es ist die Computer-
industrie, die zum Halali blast. Denn Deutschlands Kinder, Viter und manch-
mal auch Miitter sind der arme kleine Frosch. Womit man deutlich sieht, da
auch auf dem Videoschirm der Kampf der Griinen gegen die Industrie
andauert.

Soweit zum Geleit. Gerdusche kdnnen in jedem Fall, wenn sie etwas
fantasievoll eingesetzt werden, aus einem mittleren Spiel ein passables
machen, und bei einem sehr guten Spiel sind sie das Tiipfelchen auf dem i —
deshalb auch dieses Kapitel. Die lange Vorrede war eigentlich nur dazu da,
lhnen klarzumachen, daB Gerdusche — genauso wie manche Spiele an sich —
sehr vom Geschmack abhdngig sind. Vielleicht hdtten Sie Frogger ganz
anders vertont. Vielleicht hatten Sie Frogger auch nie geschrieben — zum
Beispiel, weil Sie Mitglied im ortlichen Tierschutzverein sind. Wie auch immer:
Der eine findet jenes Gerdusch gut, der andere sagt, es sei schlicht und
ergreifend schwachsinnig. Weil wir uns aus dieser ganzen Streiterei etwas
raushalten wollten, beschlossen wir, uns gerade in diesem Kapitel auf unsere
hauptséchliche Aufgabe zu besinnen und thnen in erster Linie zu erkldren, wie
man es anstellt, dem Commodore mehr als ein diinnes Piepsen zu entlocken.
Was Sie dann mit lhrem Wissen wiederum anstellen, Giberlassen wir lhnen.
Aus alledem resultieren zwei Dinge: Zum einen, daB in diesem Kapitel in

Téne und Gerdusche 143

erster Linie von bestimmten Speicherzellen die Rede sein wird, die wir
erkldren. Das heift im Grunde, daf das ganze Kapitel lhnen im Vergleich zu
den anderen eher etwas theoretisch vorkommen wird. Das ist leider auch so.
Nur haben wir keinen anderen Weg gefunden, um Toéne und Gerédusche zu
erkldren.

Natiirlich werden wir lhnen sagen, wie man das alles im Computer am
besten zum Arbeiten bringt. Aber praktische Beispiele werden aus den
dargestellten Griinden etwas sparlich sein.

Zum anderen heilt das aber fiir Sie, daR Sie gerade hier noch mehr auf das
Selbstprobieren angewiesen sind. Und das wiederum ist durchaus nicht
schlecht. Insgesamt empfehlen der Herr Doktor, dieses Kapitel erst einmal
durchzulesen. Wenn dann die Verstdndniskurve etwas angestiegen ist, konn-
ten Sie Ihren Commodore konsultieren. Bliebe nur noch eines: anzufangen.

Der kleine Schwarze mit dem lauten Ton

Mittlerweile kennen wir so ziemlich den ganzen Hofkliingel, der sich so um
unseren 6510 herumschart. Der 6510 selbst, die RAMs und ROMs, den
guten VIC. Jetzt wollen wir einen neuen Vertreter kennenlernen. Wahrend
die RAMs und ROMs héchstens von sich behaupten kdnnten, sie seien
Hoflieferanten, ist unser Neuer so eine Art Pressesprecher der Regierung.
Deshalb hat er auch eine besonders laute, fein zu nuancierende Stimme, die
kraftvoll den Raum durchdringt. Meist so kraftvoll, daR bei den ersten
Versuchen mit dem Tonchip des Commodore das ganze Haus zusammenge-
laufen kommt, um die vermeintliche Katze aus lhren ebenso vermeintlich
brutalen Handen zu entreifen oder um sich ein Arbeitszimmer nach einer
Explosion anzusehen oder zu welchen Vermutungen auch immer das verur-
sachte Gerdusch Grund gab. Diesen Effekt kdnnen Sie tbrigens verstarken,
indem Sie lhren Commodore an die Stereoanlage anschlieBen. Das geht mit
einem flinfpoligen DIN-Stecker. Naheres dazu finden Sie in lhrem Commo-
dore-Handbuch. Wenn Sie das gemacht haben, kénnen Sie damit auch prima
die zu verwendenden Gerdusche ausprobieren. Wenn Sie beispielsweise an
einer Gasexplosion herumbasteln, den Ton entsprechend laut gedreht haben
und das Testprogramm laufen lassen, kdnnen Sie leicht an der Reaktion der
Umwelt erkennen, ob Sie das Gerdusch halbwegs authentisch hinbekommen
haben — je nachdem, ob die Mitbewohner mit Beilen, Feuerléschern oder
einem Krankenpfleger vor der Tiir stehen ...

144 Téne und Gerdusche

Aber wenn Sie das alles nicht wollen, dann sollten Sie Ihren Fernseher doch
besser wihrend des Probierens leiser stellen, vielleicht sogar noch die Tiir
zumachen.

Noch einmal kurz zu unserem Pressesprecher. Sein Name ist SID. Und weil
es so schon romantisch ist, hat er auch eine Nummer gekriegt: SID 6581. Da
wir aber gute Bekannte werden wollen, wollen wir uns beim Vornamen
nennen. Deshalb sagen wir einfach SID. Das steht fiir «Sound Interface
Device». Wenn man das so hort, staunt man doch immer wieder Gber die
fantasievollen Ausdriicke, die die Computerindustrie so geprdgt hat. Unser
Synthesizer-Chip ist nun tatsdchlich sehr leistungsféhig. Er hat drei voneinan-
der unabhéngige Stimmen. Und fiir jede dieser Stimmen ldBt sich eine eigene
ADSR-Hiillkurve programmieren. Was das genau heift, kommt noch. Grund-
sdtzlich unterscheidet man bei diesen Schwingungen vier verschiedene Arten:
Dreieck, Rechteck, Sdgezahn und Rauschen. Diese Ausdriicke kommen in
erster Linie vom Aussehen der zugehorigen Tone in einem Diagramm. Dazu
gibt es noch allerhand Filter und natiirlich einen softwaremaRigen Lautstérke-
regler.

Und was muB man tun, um diesem scheinbar so ausgekliigelten System
einen Ton zu entlocken? Nun, dasselbe, was man so oft bei Commodore
muf: POKEn. Und das heifit wieder einmal, sich Adressen und die richtigen
Werte dazu zu merken. Deshalb wollen wir gleich wieder ganz sachlich
werden.

Die Startadresse unseres Soundchips liegt bei 54272. Das erinnert Sie
vielleicht irgendwie an die Kapitel iiber Speicheraufteilung und Sonderzei-
chendefinition. Stimmt. Diese Adresse liegt in den 1/0-Registern. Wenn Sie
die Kenntnisse von damals noch mal auffrischen wollen, dann kdnnen Sie das
jetzt tun. Wenn nicht, machen wir einfach weiter.

Unser SID hat verschiedene Register — so dhnlich, wie das auch bei VIC der
Fall war. Diese Register sind verantwortlich fiir alle seine Funktionen und
Fahigkeiten, die er ausfiihrt. Bevor wir auf sie im einzelnen eingehen, sollten
Sie folgendes wissen: Die Téne und Gerdusche, die wir horen, sind lediglich
Schwingungen in der Luft, die in unserem Ohr zu verstdndlichen Signalen
umgewandelt werden. (Wenn sie unverstandlich sind, kann es daran liegen,
daB jemand eine andere Sprache spricht, daB er undeutlich spricht, daf er
beides zusammen tut oder daB er Politiker ist.)

Fiir diese Schwingungen in der Luft gibt es bestimmte charakteristische
Bezeichnungen. Wir meinen hier aber.nicht so landldufige Ausdriicke wie
Geschwafel, sondern wir meinen mit Toncharakter eigentlich eher, wie

Téne und Gerdusche 145

jemand diese oder jene Eigenschaft eines Tones hort. Deshalb nochmals
unsere Bitte, mitzuprobieren. Nur so kénnen Sie héren, was sich an einem
Ton dndert oder welchen Charakter er im Laufe der Anderungen annimmt.
Denn wir miissen zu unserer Schande gestehen, daB es uns sehr schwerfillt,
einen Ton zu beschreiben.

Die Art der Wellen, die unser Ohr aufnimmt, kann sich stark unterscheiden.
Ihr Soundchip kann vier verschiedene Wellenformen erzeugen; zum ersten
die Sdgezahnschwingung, die steigt und dann sofort wieder abfillt. Ein
Diagramm einer solchen Schwingung wiirde etwa so aussehen.

Siigézah n: Rechteck:

NN AN
V771 L |

a) <) Pulsweite
Dreieck: Zufallsschwingung (Gerausch):

VAN AN 4
NN

b) d)

Bild 8.1 Schwingungsdiagramme

Etwas fliissiger im Verhéltnis von Anstieg zu Abstieg und nicht so abrupt ist
die Dreieckschwingung.

Dann gibt es noch die Rechteckschwingung. Bei ihr 148t sich die «Breite» des
Rechtecks sehr gut programmieren.

Bleibt zum SchluB eine Art Zufallsschwingung, durch die das Rauschen
entsteht. Bei diesem Diagramm miissen wir ehrlich zugeben, daf es sich nicht
um authentisches Material, sondern eher um das zufllige Auf und Ab von
Hannes' Hand handelt.

Diese ganzen Wellenformen lassen sich nun, wie schon erwéhnt, fiir jede
Stimme einzeln einstellen. Dazu dienen die Adressen in Tabelle 8.1. _
In diese Speicherzellen kénnen folgende Werte gePOKEd werden: 17 fiir
Dreieckswellen, 33 fiir Sdgezahn, 65 fiir Rechteck und 129 fiir Rauschen.

Zur Demonstration ein kleines Beispiel:

POKE 54276,17

146 Téne und Gerdusche

Stimme Adresse

1 54276
54283

3 54290

Tabelle 8.1 Wellenformen fiir die Stimmen 1 bis 3

schaltet fiir die erste Stimme die Wellenform Dreieck ein. Wenn Sie sich
wundern, daR Sie noch nichts horen, keine Sorge: kénnen Sie auch noch gar
nicht. Vorher sind noch einige andere Parameter notwendig. Aber zuerst
noch etwas zur Rechteckschwingung. Hier miissen Sie zusétzlich noch die
Breite des Rechtecks angeben. Der Ausdruck Breite ist zwar technisch nicht
ganz richtig, trifft aber am besten das Gemeinte. (Wir hoffen, die Techniker
unter. [hnen verzeihen uns das.) Fiir diesen Breitenwert kann eine Zahl
zwischen 0 und 4095 angegeben werden. Weil diese Zahl natiirlich nicht in
eine Speicherzelle palt (Sie erinnern sich doch hoffentlich noch an das, was
wir Giber das Fassungsvermogen einzelner Speicherzellen gelernt haben?),
wird sie nach dem bekannten High-Byte/Low-Byte-Prinzip umgewandelt.
Dadurch werden insgesamt sechs Speicherzellen benétigt, fiir jede Stimme
zwei (Tabelle 8.2).
Hier sind iibrigens immer die ersten Speicherzellen, also die mit der niedrige-
ren Nummer, diejenigen, in denen sich das Low Byte wiederfindet.

Wieder ein Beispiel:

Sie wollen die Rechteckschwingung auf der Stimme 1 auf eine Lange von
2049 programmieren.

POKE 54274,1:POKE 54275,8

Stimme Speicherzellen

1 54274 & 54275
54281 & 54282

3 54288 & 54289

Tabelle 8.2 Breitenwert fiir die Stimmen 1 bis 3

Téne und Gerdusche 147

Wie sich solche Anderungen der Pulslinge (das ist der technisch treffendere
Ausdruck) akustisch auswirken, Giberlassen wir wieder lhnen. Probieren Sie es
spater mit den ersten Tonen aus. Generell 1Bt sich sagen, daR ein Ton mit
abnehmender Pulslange immer dumpfer klingt.

Und gleich noch etwas zu den Wellenformen: In diesen Speicherzellen
legte Commodore etwas Westernmentalitdt an den Tag: In den drei Wellen-
formregistern gibt es ein sogenanntes Key-Bit, das wie der Abzug von John
Waynes Revolver funktioniert: Wenn es gesetzt wird, klingt der Ton an,
schwillt dann ab und wird auf dem Sustain-Wert gehalten. Um den Ton
ausklingen zu lassen, 16schen Sie das Bit wieder. Die Wellenform mufB aber
erhalten werden: POKEn Sie zum Ausklingen des Tons einen der Werte 16,
32, 64 oder 128 — je nach Wellenform. Wenn Sie das beherzigen, kénnen Sie
auch ein flottes Knallen programmieren.

Und jetzt wédren wir bei der Lautstdrke angelangt. Sie gilt fir alle drei
Stimmen gleichzeitig. Die Adresse 54296 wird dafiir benutzt. In diese Spei-
cherzelle POKEn Sie am besten nur Werte von O (kein Ton) bis 15 (viel Ton).

Aber freuen Sie sich: Das ist natiirlich noch nicht alles, um unseren SID zum
Sprechen zu bringen. (Sie sehen, auch hier ist er wie ein Regierungssprecher.
Obwohl das vollig gegen seinen Namen spricht, ist es nicht ganz einfach, ihn
zum Reden zu bringen. Aber Sie werden lachen, genau das gekonnte
Schweigen macht einen Regierungssprecher erst richtig gut. Paradox, nicht?)

Die letzte Formalitit, die wir noch brauchen, ist das Wissen um die
sogenannten Hiillkurven. Denn genau solche Hiillkurven miissen wir pro-
grammieren. Aber keine Angst, das hort sich nur so schlimm an. In Wirklich-
keit geht es mit einiger Ubung ganz fix.

Bei einer Hiillkurve geht man von folgender Uberlegung aus: Ein Ton

dndert in der Zeitspanne seines kurzen, bescheidenen Lebens stdndig seine
Lautstdarke bzw. seine Intensitdt. Bei einer ADSR-Hiillkurve versucht man
diesen Tonverlauf in vier Abschnitte zu unterteilen. ADSR ist die Abkiirzung
fur Attack/Decay/Sustain/Release, was iibersetzt etwa heiBen wiirde:
Anschlag/Abschwellen/Halten/Ausklingen. Bildlich vorstellen kann man sich
das in etwa folgendermaRen (Bild 8.2).
Um diesen Kurvenverlauf in den Computer zu bringen, bedient man sich bei
Commodore natiirlich wieder des POKE-Befehls. Fiir jeden Abschnitt kénnen
Werte von O bis 15 eingegeben werden. Um lhnen ein ungeféhres Gefiihl
davon zu geben, was die Werte in den einzelnen Abschnitten bewirken,
haben wir eine kleine Liste zusammengestellt, die zeigt, was der jeweils
niedrigste und der jeweils h6chste Wert bedeuten.

148 Téne und Gerdusche

Attack | Decay Sustain Release

Bild 8.2 ADSR-Hiillkurve

Beim Anschlag stehen die Werte fiir die Intensitat, das heift dafiir, wie hart
bzw. stark man den Ton anschldgt. Der hochste Anschlagwert ist O (also
hart), der niedrigste deshalb 15 (also weich).

Das Abschwellen der Téne kann ebenfalls stark oder schwach sein. Zum
Beispiel beim Klavier. Hier schwillt der Ton langsamer ab, wenn der Spieler
kein Pedal betitigt. Wenn er es aber tut, schwillt der Ton sehr schnell ab.
Auch hier geht es also um eine Intensitat. O wére hartes, abruptes Abschwel-
len, 15 ein weiches, langsames Abschwellen.

Ein Ton kann bei einer bestimmten Lautstdrke linger oder kiirzer gehalten
werden. Das ist auch der nichste wichtige Wert. O heiBt hier, daR er dann
gehalten wird, wenn er leise ist, 15 heiBt, daf er bereits gehalten wird, wenn
er noch laut ist.

Bliebe noch das Ausklingen. Das Ausklingen eines Tones kann sehr schnell
gehen oder auch sehr langsam. Und genau dafiir stehen auch die Werte: 0
bedeutet schnelles Ausklingen, 15 langsames Ausklingen.

Was bedeutet das alles? Nun, ein Ton kann mehr oder weniger intensiv
angeschlagen werden, dann mehr oder weniger intensiv auf seine Normal-
oder Grundlautstédrke abschwellen, auf diesem Grundwert mehr oder weniger
laut gehalten werden und dann mehr oder weniger schnell ausklingen. Das
Kreuz mit diesen ganzen Daten ist, daB man sie schlecht in Worte fassen
kann. Wenn Ihnen jetzt alle diese komischen Werte mehr oder weniger gleich
vorkommen, dann gedulden Sie sich noch einen Augenblick, bis wir den
ersten Ton ausprobieren. Dann wird das alles etwas klarer.

Vielleicht fragen Sie sich gerade, warum wir nicht, wie sonst auch, die
Speicherzellen bereits genannt haben. Nun, das liegt daran, daB es sich auch
mit denen etwas komplizierter verhdlt. Haben Sie schon mal was von einem
Nibble gehort? Nein, auch wenn es sich so dhnlich anhért, das hat nichts mit

Téne und Gerdusche 149

dem Nippel zu tun, den man durch die Lasche ziehen muR. Ein Nibble ist in
der Sprache der Computerleute ein Halbbyte. Wenn Ihnen jetzt in Erinnerung
an Karl May der Ausdruck Halbblut einféllt, dann ist das gar nicht so weit weg
von dem, was wir meinen. Halbbyte ist ein 4-Bit-Wert, also ein halbes Byte.
(Genauso, wie ein Halbblut nur ein halber Indianer ist.) Und weil unsere
Werte , die wir POKEn wollen, immer nur von O bis 15 gehen, reicht ein Byte
auch fiir zwei Werte — oder ein halbes Byte fiir einen Wert oder ein Halbbyte
fiir einen Wert oder, um es fachménnisch auszudriicken, ein Nibble fiir einen
Wert. Und deshalb wurden immer zwei Einstellungen in einem Byte zusam-
mengefat. Auf diese Art und Weise wurde wieder einmal Speicherplatz
gespart.

Sicherlich kommt es lhnen mehr und mehr so vor, als sei das Bauen eines
Computers eine Sache, bei der stdndig in die Trickkiste gegriffen werden
muf. Mit dieser Vermutung kommen Sie der Wahrheit sehr nahe. Und im
Grunde ist es sogar so, daB sich oft die Ingenieure selbst wundern, daf so ein
Kasten schlieBlich doch lduft.

Aber jetzt ist es mal wieder soweit. Eine Liste der Speicherzellen, in die
gePOKEd wird, finden Sie in Tabelle 8.3.

Fein, werden Sie jetzt sagen, und wie bringe ich das jetzt in den. Computer,
damit er auch weif, was wohin gehort? Eine kleine Formel soll lhnen hier
helfen.

Im ersten Fall, also flir Attack und Decay, wiirde die Formel lauten:

Byte Wert = 16 * Attack + Decay

Attack/Decay in Stimme
54277 1
54284 2
54291 3

Sustain/Release in Stimme

54278 1
54285
54292 3

Tabelle 8.3 Adressen fiir ADSR-Hiillkurven

150 Téne und Gerdusche

Im zweiten Fall, also fiir Sustain und Release:
Byte Wert = 16 % Sustain + Release

Eigentlich gar nicht so schwer, oder?

Noch ein Beispiel dazu: Fiir einen Ton sollen in Stimme 2 die Werte Attack
gleich 15, Decay gleich 12, Sustain gleich 10 und Release gleich 3 sein.
Uberlegen Sie ruhig erst mal selbst, am besten auf einem Blatt Papier.

Die Lésung ware:

POKE 54284, 16 % 15 + 12
POKE 54285, 16 = 10 + 3

Ubrigens kénnen Sie beim Experimentieren mit den Gerduschen die Hiillkur-
ven ruhig zuerst einmal unberiicksichtigt lassen. Man hat zwar die Moglich-
keit, mit lhnen sogar die Schwingungscharakteristik bestimmter Instrumente
oder Gerdusche relativ genau zu simulieren, aber der Anfdnger sollte erst
einmal ein Gefiihl fiir die richtige Wellenform, die Lautstarke (auch die kann
man ja wahrend des Gerdusches verdndern) und die Frequenz bekommen.

Die Frequenz ist librigens auch der letzte Wert, den Sie noch kennenlernen
miissen.

Ein Ton oder Gerdusch — also eine Schwingung — ist ndmlich auRer durch
die Wellenform auch sehr stark durch die Frequenz bestimmt, mit der diese
Welle schwingt. Und diese Frequenz kann man dem Commodore natiirlich
angeben und damit die Hohe des Tones, der herauskommen soll, bestimmen.

Die Frequenz geht bis etwa 4000 Hz (sprich 4000 Hertz). Der hochste Ton
entspricht einem Wert von 65535. Und weil das wieder eine Zahl ist, die
nicht in eine Speicherzelle paBt, wird das High-Byte/Low-Byte-Prinzip ver-
wendet. Wie das funktioniert, miiRte mittlerweile ziemlich klar sein. Es geht
nur noch darum, welche Speicherzellen angePOKEd werden miissen (Tabelle
8.4).

Stimme High Low

1 54272 54273
54279 54280
3 54286 54287

Tabelle 8.4 Frequenzadressen fiir Stimmen 1 bis 3

Téne und Gerdusche 151

Soliten lhnen die nétigen Werte dazu nicht mehr so klar sein, wiirden wir Sie
bitten, das Errechnen von High-Byte- und Low-Byte-Werten im Abschnitt
Speicheraufteilung unter der Uberschrift «Wenn Bytes halbe-halbe machen»
nachzuschlagen.

Wir wagen es: Ein Beispiel

Grundsétzlich ist es egal, in welcher Reihenfolge Sie die einzelnen POKEs
eingeben. Sie missen sich nur angewdhnen, die Wellenform als letztes zu
POKEN. Denn wenn in diesen Zellen ein Wert steht, ist das fiir den Computer
sozusagen der StartschuB. Ein Beispiel dafiir wire der Start einer Raumféhre.
Egal, welcher Astronaut zuerst einsteigt — wichtig ist nur, daf alle drinnen
sind, sobald der Countdown bei 0 angelangt ist. (Wie allerdings die Erfahrung
aus der ersten Mondlandung zeigt, ist es wiederum keineswegs so egal, wer
zuerst aussteigt .. .)

Ist erst einmal die Wellenform gePOKEd, dann wird automatisch auch der
Startvorgang ausgelost, also das «Key-Bit» gesetzt.

Nun zu unserem Beispiel. Zuerst stellen wir die Lautstédrke relativ laut ein.
Damit ist natiirlich die softwaremaRige Lautstdrke gemeint. lhren Fernseher
sollten Sie hochstens auf Dallas-Lautstdrke einstellen. Wenn Sie Dallas nicht
mogen, darf es auch Denver-Clan-Lautstdrke sein.

POKE 54296,12
Um eine halbwegs gutklingende Frequenz zu erhalten, geben Sie
POKE 54273,20

ein. Hier benutzen wir librigens nur das High-Byte, weil es in unserem Fall voll
ausreicht.
Jetzt versuchen wir noch, eine moglichst «flache» (sprich ausgewogene)
Hiillkurve zu erreichen:
POKE 54277,140
POKE 54278,140

und jetzt kommt's:5...4...3...2...1...0
POKE 54276,17

schaltet unseren Ton ein — natiirlich erst, wenn sie (RETURN) dazu eingege-
ben haben. Sodann héren Sie die «Dreieckige» des beriihmten Tonkomponi-
sten Grinaldo Spagati.

152 Téne und Gerdusche

Und jetzt?

Nun kénnen wir Sie nur noch einmal bitten, zu experimentieren. Mit all threm
Wissen sollte es lhnen auch durchaus moglich sein, ein kleines Tontestpro-
gramm zu schreiben, mit dem Sie die verschiedensten Tone ausprobieren
kénnen. Im Listinganhang finden Sie auch ein entsprechendes Programm
dazu. Aber Sie wissen ja: Selbst ist der Programmierer. Nur noch ein kleiner
Tip: Andern Sie mal die Wellenform oder mit FOR...NEXT-Schleifen die
Lautstdrke oder die Frequenz.

Sie werden schnell merken, was fiir erstaunliche Effekte kleine Anderungen
haben kénnen. Und noch etwas, versuchen Sie mal, unser Programm mit den
beiden aufeinanderfahrenden Autos zu vertonen, wenn Sie sich ein bichen
zurechtgefunden haben. Das ist eine gute Ubung. Viel SpaB. Und vielleicht
sollten Sie demnéchst, zumindest fiir die ersten paar Tage Gerduschtest, den
restlichen Familienmitgliedern eine GroBpackung Oropax kaufen.

Warnung: Sdmtliche Schaden, die sich im Zusammenhang mit diesem
Kapitel und seinem Ausprobieren nach und vor 22 Uhr ereignen (zum Beispiel
Fliegeralarm oder 100maliges Schreiben des Satzes «Ich darf nicht nachts
meine Eltern mit meinem Computer beldstigen»), entziehen sich der Haftung
durch die Autoren oder des Verlages.

9
Ein Spiel mit Sprites

Schneewittchen und die sieben Zwerge

Und wieder ein Stiick Madrchengeschichte. Eine der ndchsten Veroffentlichun-
gen von Gerd Heinzelmann war die Enthiillung der tatsachlichen Vorgénge
um ein junges Mddchen namens Schneewittchen. Wie so oft, war auch hier
die Realitit ganz anders, als die Uberlieferung uns glauben machen will. Und
auch diesmal ist es ein Prinz, der fiir die gednderte Méarchenschreibung
verantwortlich zu machen ist. Nachdem einer dieser Kénigsséhne am Sonn-
tagmorgen bei der Lektiire eines bekannten Massenblattes erfahren hatte,
daB eben jenes bewuBte Madchen hinter den sieben Bergen an Lebensmittel-
vergiftung litt (sie hatte von ihrer Stiefmutter einen vergifteten Apfel bekom-
men), machte er sich auf den Weg, sie zu retten. Da er sowieso gerade Krach
mit seinem Vater und einen Erste-Hilfe-Kurs bestanden hatte, erschien dies
auch nur angebracht. (Ubrigens waren auch die Umstéinde seines Bestehens
ein Zeichen fiir den mangelnden Intellekt seiner Zunft. Denn er bestand erst
nach dem vierten Versuch, obwohl damals alles, was er konnen mufite,
erfolgreiches Wachkiissen war.) Wahrend der Prinz sich auf den Weg
machte, las Schneewittchens bose Stiefmutter die Geschichte in der Zeitung
und fand, daB der Apfeltrick gar keine schlechte Idee war. Die Zeitung hatte
die Story ndamlich eigentlich nur erfunden, um ein hiibsches Madchen auf
dem Titelblatt zu haben. Nachdem die Stiefmutter aber viel ndher bei
Schneewittchen wohnte, war sie auch schneller da als der Prinz, womit
bewiesen ware, daB Zeitungen nicht liigen. Wahrend die Stiefmutter ihr Ziel
erreichte, kann man das vom Prinzen nicht gerade behaupten. Als er ndmlich
so seines Weges wandelte, kam er an einem Knusperhduschen vorbei, vor
dem auch ein Junge und ein Méddchen standen. Die beiden sprachen ihn an,

154 Ein Spiel mit Sprites

ob er nicht etwas Kleingeld hétte. Um seine edle Abstammung zu dokumen-
tieren, zog der Prinz einen Beutel Silbermiinzen heraus. Damit war sein
Schicksal besiegelt. In dem Knusperhduschen befanden sich ndmlich Video-
spielautomaten. Anstatt sich selbst einen Heimcomputer zu kaufen, gab der
Prinz sein ganzes Geld beim Videospielen aus. Die Geschichte mit Schnee-
wittchen beschloR er auf spéter zu verschieben. Als er aber tatsachlich keinen
Groschen mehr besaR, kam ein junger gutaussehener Mann auf ihn zu und
offenbarte ihm, daB er auf Modellsuche fiir eine Werbeagentur sei. Was man
dort brduchte, sei ein junger Prinz fiir eine gewisse Keksrolle. Weil auch das
Gehalt nicht schlecht war, sagte der Prinz freudig zu, was die Rettung von
Schneewittchen wieder deutlich verzdgerte.

Was aber war in der Zwischenzeit hinter den sieben Bergen geschehen?
Schneewittchen, die von all dem in der Zeitung gelesen und in der Hoffnung
auf die Rettung durch den Prinzen den Apfel gegessen hatte, wurde des
Wartens langsam Uberdriissig. Als sie dann auch noch eine Keksrolle mit
seinem Bild geschenkt bekam (unvergiftet!), beschlossen sie und die Zwerge,
ihr Schicksal selbst in die Hinde zu nehmen. Die Zwerge erzdhlten ihr von
dem Zauberkristall, nach dem sie schon seit Jahren buddelten. Aus bisher
ungekldrten Griinden sahen die Zwerge plétzlich eine Moglichkeit, das, was
sie seit Jahren nicht geschafft hatten, in wenigen Minuten zu vollbringen.
Allerdings nur unter der Voraussetzung, daR Schneewittchen sie begleitete
und ihnen stdndig aus einem der wenigen nicht von arbeitslosen Froschen
bewohnten Brunnen in der Ndhe Wasser schopfte und sie so schneller
arbeiten konnten. '

Und genau das ist jetzt auch lhre Aufgabe. Aber erst, nachdem Sie das Spiel
eingegeben haben, iiber das wir uns jetzt noch ein bifchen unterhalten
wollen.

Zeile 10: Hier werden zunéchst mit POKE 53280,11 und POKE 53281,11
die Hintergrund- und Rahmenfarbe auf Hellgrau (Farbnr. 11) gesetzt. Durch
POKE 53265,91 wird der Hintergrundfarbmodus aktiviert. Das hat zur Folge,
daB der Titel, der gleich gedruckt werden soll, mit gelber Schrift auf einem
roten Balken dargestellt wird, was gleich viel besser aussieht als normale
Schrift. Mit dem POKE 53283,2 (2 ist ja Rot) wird die Farbe dieses Balkens
festgelegt. Der letzte POKE 53272,21 setzt schlieBlich den Zeichensatz auf
die normale Adresse zuriick, was notig ist, da das Spiel mit umdefinierten
Zeichen arbeitet, sich aber spdter von selbst wieder startet und dann fiir den
Titel die normalen Buchstaben verwendet.

Ein Spiel mit Sprites 155

Zeile 20: Durch PRINT CHR$(8) wird die Umschaltung zwischen GroR-
und Kleinbuchstaben blockiert, was empfehlenswert ist, da wir mit selbstdefi-
nierten Zeichen arbeiten werden, aber keine Kleinbuchstaben definiert ha-
ben ..

Zeile 30: Jetzt wird endlich der Titel * SCHNEEWITTCHEN UND DIE
SIEBEN ZWERGE " gedruckt. Die Steuerzeichen bedeuten im einzelnen
folgendes: Das invertierte Herzchen steht fiir (SHIFT)-(CLR/HOME), also
Bildschirm léschen. Mit den zehn folgenden invertierten Q's wird der Cursor
von der HOME-Position aus zehn Zeilen nach unten bewegt. Sie tippen
zehnmal {CRSR DOWN). Das invertierte Pi steht fiir gelbe Farbe ((CTRL)-
(8)). Wir wollen unseren Titel ja gelb auf rot schreiben. Damit wir bei den
Leerstellen auch einen Balken bekommen, drucken wir noch (RVS ON). Das

invertierte R steht dafiir. ’

Zeilen 40 bis 70: Hier werden die Sprites aus den DATA-Zeilen gelesen
und in den Speicher gePOKEd. Dabei werden die Speicherzellen ab 704
(Spriteadresse 11), 832 (= 13), 896 (= 14) und 960 (= 15) belegt. Fiir jeden
Sprite werden 63 Bytes benétigt. Deshalb FOR X=0 TO 62...

Zeile 80: Mit POKE 53269,255 werden alle 8 Sprites aktiviert. Sprite Nr. 1
(Schneewittchen) wird in Y-Richtung vergroRert. Deshalb POKE 53271,1.
Mit POKE 53276,255 werden alle Sprites in den Multicolormodus geschaltet.
Als Multicolorfarben dienen 8 (Orange, als Hautfarbe) und O (Schwarz,
beispielsweise fiir Schuhe und Haare...). GePOKEd werden diese Farben in
die Adressen 53285 und 53286.

Zeile 90: Schneewittchens Kleid wird mit POKE 53287,3 hellblau
gemacht (das ist ja die Farbadresse fiir Sprite 0). Diese Farbe kann auch in
Multicolor fiir jeden Sprite einzeln angegeben werden. Daher bekommen die
Zwerge mit der dann folgenden Schleife auch rote (Farbnr. 2) Méntel.

Zeile 100: Den einzelnen Sprites werden die Bitmuster zugeteilt. Sprite O
(Schneewittchen) hat die Spritenummer 13, also POKE 2040,13. Die sieben
Zwerge bekommen zunichst die Nummer 14.

Zeilen 110 bis 130: Hier sind nun die Bitmuster der Sprites. Geben Sie
beim Eintippen ganz besonders acht, daB die Zahlen stimmen. Nachher
zeigen wir lhnen noch, wie Sie lhre Eingaben iiberpriifen kdnnen. Von Zeile
110 bis 130 (spéter hat dieses Muster die Spritenummer 11) stehen die Daten
eines Zwerges, der etwas erschopft in der Gegend sitzt, weil er kein Wasser
bekommen hat. Das sieht dann so aus (Bild 9.1).

156

Ein Spiel mit Sprites

Bild 9.1 Sitzender Zwerg

Bild 9.2 Schneewittchen

Ein Spiel mit Sprites 157

Zeilen 140 bis 170: Das ist unser Schneewittchen. Es wird die Spritenum-
mer 13 haben (Bild 9.2).

Zeilen 180 bis 210: Das ist ein Zwerg in der ersten Bewegungsphase. Um
das «Laufen» der Zwerge besser aussehen zu lassen, haben wir es in zwei
verschiedenen Phasen abgespeichert. Wie bei einem Zeichentrickfilm ent-
steht dann durch das rasche Abwechseln der beiden «Teilbilder» die lllusion
einer Bewegung. Diese Phase wird als Spritenummer 14 abgelegt (Bild 9.3).

Zeilen 220 bis 250: Das ist jetzt die andere Bewegungsphase. Sie wird in
Nummer 15 gespeichert (Bild 9.4).

Zeile 260: Hier werden die verschiedenen Sonderzeichen gelesen und in
den Speicher gePOKEd, die wir verwendet haben. Dabei belegen wir die
Buchstaben «A» bis «I» (Bildschirmcodes 1 bis 9) neu. Die Buchstaben «A»
bis «C» sind Teilstiicke, aus denen wir in Lego-Art unser Gebirge aufbauen,
aus den umdefinierten Buchstaben «D» bis «I» entsteht der Brunnen. Unse-
ren selbstdefinierten Zeichensatz legen wir ab der Adresse 14336 im Speicher
ab. Das ist die groBtmdgliche Adresse fiir einen eigenen Zeichensatz. Da wir
die Zeichen 1 bis 9 verdndern, miissen wir deren neue Bitmuster ab dem 8.
Byte (erstes Byte des Zeichens «A» [1 % 8]) bis zum 79. Byte (letztes Byte des
Zeichens «I» [9 % 8 + 7]) POKEn. Das tut unsere Schleife FOR X=8TO 79...

Zeile 270: Da wir die Zeit und die Stirke von Schneewittchen darstellen
wollen, brauchen wir einige Zeichen aus dem Charakter-ROM. Um diese
kopieren zu konnen, schalten wir mit POKE 56334,0 die Interrupts ab und
blenden mit POKE 1,51 das Charakter-ROM in den AdreBbereich des 6510.
Nun {ibernehmen wir die Zeichen «O» (Bildschirmcode 48) bis «9» (Bild-
schirmcode 57) sowie ":" (BS-Code 58). Also kopieren wir die Bytes (vom
Anfang des Zeichensatzes aus gesehen) 384 (48 x 8) bis 471 (58 % 8 + 7).

Genau das tut unsere Schleife FOR X=384 TO 471..

Zeile 280: Hier kopieren wir den Buchstaben «S» (BS-Code 19), der uns
spater als Abkiirzung fiir «Starke» dienen soll. Kopiert werden die Bytes 152
(19 % 8) bis 159 (19 % 8 + 7). ’
Zeile 290: Dasselbe geschieht mit dem «Z», das wir fir «Zeit» brauchen.
Es hat den Bildschirmcode 26, also kopieren wir die Bytes 208 (26 % 8) bis
215 (26 * 8 + 7).

Zeile 300: Das Zeichen «%» brauchen wir fiir die Angabe der Stirke
Schneewittchens in Prozent. Es hat den BS-Code 37. Also werden die Bytes
296 (37 * 8) bis 303 (37 % 8 + 7) kopiert.

158

Ein Spiel mit Sprites

Bild 9.3 Gehender Zwerg (Teilbild 1)

Bild 9.4 Gehender Zwerg (Teilbild 2)

Ein Spiel mit Sprites 159

Zeile 310: Da wir einen leeren Hintergrund brauchen, missen wir auch
das Zeichen " " (Leertaste oder engl. (SPACE)) iibernehmen. Es hat den
Bildschirmcode 32. Dieses Zeichen zu kopieren wird gern vergessen, ist aber
unbedingt notig. Denn an der Stelle, wo im Charakter-ROM lauter 0-Bits
stehen, befinden sich im RAM ja zuféllige Werte. Nun besteht das Zeichen " "
aber wirklich nur aus leeren Bytes. Daher brauchen wir nicht das Charakter-
ROM zu lesen, sondern kénnen direkt sieben Nullen in die Bytes 224 (32 * 8)
bis 231 (32 % 8 + 7) POKEN.

Zeile 320: Wir sind fertig mit dem Kopieren. Also blenden wir die I/0O-
Register mit POKE 1,55 wieder ein und schalten die Interrupts mit POKE
56334,1 wieder an. Bild 9.5 zeigt die Muster umdefinierter Zeichen.

Bild 9.5 Muster umdefinierter Zeichen

160 Ein Spiel mit Sprites

Wenn Sie das Programm jetzt bis zu dieser Stelle eingegeben haben, kommen
lhnen vielleicht Zweifel, ob Ihre DATA-Zeilen auch mit unseren iibereinstim-
men. Das konnen Sie aber ziemlich einfach nachpriifen. Geben Sie mal
folgende Zeile ein:

500 FOR X=1 TO 324: READA: W=W+A: NEXT X: IF W()21465 THEN
PRINT "FEHLERH!"

und starten Sie sie mit RUN 500. Diese Zeile zahlt alle DATA-Werte zusam-
men und vergleicht sie mit unserer Summe (auch «Priifsumme» genannt).
Wenn alles stimmt, meldet sich der Computer wieder mit «READY». Wenn
aber nicht, druckt er «<FEHLER!!!». Dann sollten Sie lhre Eingaben noch mal
mit dem Listing vergleichen und Fehler ausbessern. Wenn schlieBlich kein
«FEHLER!!!» mehr auftritt, kdnnen Sie ziemlich sicher sein, daB lhre DATAs
und somit lhre Sprites und Sonderzeichen stimmen. Bevor Sie dann weiterma-
chen, sollten Sie die Zeile 500 16schen. Dazu tippen Sie einfach 500 ein und
driicken (RETURN).

Zeile 420: Nachdem wir jetzt so fleiRig alle Zeichen umdefiniert haben,
wollen wir doch auf unseren neuen Zeichensatz ab 14336 umschalten: POKE
53272,27

Zeile 430: Jetzt sehen Sie auch den tieferen Sinn, warum wir ausgerech-
net die Zeichen «A», «B» und «C» umdefiniert haben. In dieser Zeile wird der
obere Teil des Berges auf den Bildschirm gedruckt. Bei vielen Programm-
listings mussen Sie sich bei solchen Gelegenheiten durch einen uniibersichtli-
chen Dschungel von Steuer- und Grafikzeichen kdmpfen und nach dem
System «Dieses Zeichen konnte gemeint sein» vorgehen. Wir haben [hnen
aber das Abtippen einfacher gemacht, indem wir normale Buchstaben ver-
wendet haben, die wir vorher umdefinierten. So konnen Sie ganz einfach
(«einmal C, finfmal A...») diese Zeilen eintippen. Die Steuerzeichen vorn
bedeuten: invertiertes Herzchen fiir .Bildschirm loschen ({SHIFT)-{CLR/
HOME)) und das invertierte Kreuz fiir Dunkelgrau ((C=)-(5)). Vergessen
Sie den Strichpunkt nicht, damit kein Zeilenvorschub erfolgt.

Zeile 440: Die sieben Gédnge, in denen die Zwerge arbeiten, werden jetzt
gedruckt. Dazu verwenden wir dasselbe Muster 16 Zeilen lang. Also kommt
die Schleife FOR X= 1 TO 16

Zeile 450: Dieses Muster aus unseren Sonderzeichen «A», «B» und «C»
stellt wieder ein Stiick Berg dar, diesmal von sieben Gangen unterbrochen.

Ein Spiel mit Sprites 161

Zeile 460: NEXT X zu der Schleife von Zeile 440

Zeile 470: Hier drucken wir den Brunnen auf den Schirm. Dazu verwen-
den wir Steuerzeichen. Ab der aktuellen Cursorposition (sozusagen am Fufl
des Berges) gehen wir drei Zeilen runter (also drei invertierte Q's, was fiir Sie
dreimaliges Driicken von (CRSR DOWN) bedeutet), eine Spalte nach rechts
(wofiir die invertierte Klammer steht — (CRSR RIGHT)) und drucken dort den
ersten Teil unseres Brunnens, bestehend aus den Zeichen «D» und «E».
Alsdann gehen wir mit dem Cursor eine Zeile tiefer (inv. Q — (CRSR
DOWN)) und zwei Positionen zuriick. Das ergibt ein Steuerzeichen, das
aussieht wie ein invertierter Strich. Driicken Sie zweimal { CRSR LEFT). Dann
kommen die Zeichen «F» und «G», die die zweite Zeile unseres Brunnens
darstellen. Die Prozedur von oben wiederholt sich ((CRSR DOWN) (2 =
CRSR LEFT)), und wir kdénnen den letzten Teil des Brunnens drucken. «H»
und «I».

Zeile 480: Die Y-Koordinaten der sieben Zwerge (Sprites 1 bis 7) werden
allesamt auf 54 gesetzt.

Zeile 490: Die X-Koordinaten der Zwerge muften wir beim Programmie-
ren mehr oder weniger von Hand austarieren. Daher haben wir die Werte, die
die Sprites genau so positionieren, daB sie jeweils in der Mitte ihres Ganges
sind, in der DATA-Zeile 500 abgelegt. Sie werden mit READ einzeln eingele-
sen und dann in die entsprechenden Register gePOKEd. Beachten Sie, da3
wir fiir die Sprites 6 und 7 noch ein zusatzliches 9. Bit im Register 53264
setzen missen, da deren tatsachliche X-Koordinaten gréBer als 255 sind. Der
POKE 53264,192 (2° + 27 = 128 + 64 = 192) erledigt das.

Zeile 500: In dieser DATA-Zeile sind die X-Koordinaten abgelegt, die wir
austariert haben.

Zeile 510: SchlieBlich bekommt auch noch Schneewittchen eine Position.
lhre X-Koordinate ist 30, Y ist 200.

Zeile 520: Die Variable S steht ab jetzt fiir «Stdrke». Hier ist der prozen-
tuale Wert ihrer Kraft abgelegt. Momentan betrdgt er 100%, also ist S = 1.
Der Detektor fiir Sprite-Sprite-Kollisionen wird mit POKE 53278,0 zuriickge-
setzt. Das sollte man am Anfang eines Programms immer tun, da die Sprites
beim Aufbau ja schon zusammengestofRen sein kdnnten. Die Variable Z steht
ab jetzt fiir die Anzahl der noch arbeitsfahigen Zwerge. Momentan ist sie 7.
Die Zeitvariable TI$, die wir spater zur Zeitmessung bendtigen, wird mit
TI$="000000" zuriickgesetzt. R ist die Spielzeit in Sekunden. Da wir 4
Minuten spielen wollen, bekommt sie den Wert 240.

162 Ein Spiel mit Sprites

Zeile 530: Hier werden die Werte fiir den Ton gesetzt, den die Zwerge
beim Arbeiten machen. Vergleichen Sie sie damit, was Sie in unserem Kapitel
«Musik und Gerdusche» gelesen haben. Die Gesamtlautstirke wird auf 9
gesetzt (POKE 54296,9). Die folgenden Einstellungen gelten fiir Stimme #1:
Die Frequenz des Gerdusches hat den Dezimalwert 2209. Das sind rund 125
Hertz. Diese wird nach High Byte/Low Byte in die Register 53272 und 53273
gePOKEd. Die ndchsten beiden POKEs legen die ADSR-Hiillkurve fest: Attack
=1, Decay = 0, Sustain = 3, Release = 7. So entsteht ein Ton, der sehr hart
angeschlagen wird, sofort auf seine Normallautstadrke zurlickfallt und mittel-
maBig schnell ausklingt. Das Ganze soll das Hacken der Zwerge auf Stein
untermalen.

Zeile 540: Da wir gerade beim Musikmachen sind, legen wir gleich die
Hllkurve fir die Stimme #2 fest. Diese Stimme werden wir immer dann
gebrauchen, wenn ein Zwerg erfolgreich Wasser bekommen hat (freudiges
Gerdusch) oder vor Erschopfung umfillt (weniger freudiges Gerédusch ...).
Die Hiillkurve sieht folgendermalen aus: A =5,D =10, S = 14, R = 12.
Alles in allem ist dies ein relativ trdger Ton, der nicht besonders intensiv
anklingt, langsam auf sein Grundniveau zuriickfallt und ebenfalls langsam
ausklingt.

Zeile 550: Hier beginnt das eigentliche Steuerprogramm. Der Variablen T
wird der Inhalt der Adresse 203 zugewiesen. In dieser Adresse steht der Code
der gerade gedriickten Taste. Vergleichen Sie dazu auch Bild 10.1.

Zeile 560: A =1 — A. Diese kleine Formel ist ziemlich praktisch. Sie liefert
als Ergebnis abwechselnd die Werte O und 1. Schauen wir uns das mal
genauer an. Zuerst ist A = 0. Also wird durch diese Formel A auf 1 gesetzt.
Denn 1 — 0 = 1 und dieser Wert wird der Variablen A zugewiesen. Das
ndchstemal, wenn das Programm an dieser Stelle vorbeikommt, ist A = 1. Die
Formel macht daraus 1 — 1 = 0. A ist wieder 0. Beim nédchstenmal wird aus
der O wieder 1 usw. Was hat das aber nun fiir einen Zweck? Unsere Zwerge
sollen médchtig aktiv, also stindig in Bewegung sein. Um das zu erreichen,
haben wir ja oben zwei Bewegungsphasen programmiert. Doch dazu gleich.
AuBerdem sollen sie aber auch kriftig Ldrm machen. Also spielen wir
jedesmal, wenn das Programm hier ankommt, das Gerdusch an, das die
Zwerge beim Arbeiten von sich geben. Der POKE 54276 dient dazu, den Ton
auf Stimme #1 einzuschalten. Aber jetzt zu unseren Bewegungen. Alle
Zwerge bewegen sich im Gleichschritt. Das féllt im Spiel gar nicht weiter auf.

Ein Spiel mit Sprites 163

Die Schleife FOR X=1TO 7 ... sorgt fiir diese Bewegung, indem sie fiir jeden
der Sprites 1 bis 7 abwechselnd (abhéngig von A) den zugehérigen Zeiger auf
Spritenummer 14 oder 15 setzt. Jetzt kdnnte es aber sein, daB einige Zwerge
schon auBer Gefecht sind. Die dirfen sich natiirlich nicht bewegen. Um das
zu erreichen, gibt es das Feld Z(l), also eine Variable fiir Z(1), eine fiir Z(2)
usw. bis Z(7). So ist jedem Zwerg — wie kdnnte es auch anders sein? — ein
Platz in diesem Feld zugeordnet. Dabei gilt, was zugegebenermalen etwas
uniiblich, aber einfacher ist, folgende Belegung: Wenn A(l) = 0, dann ist der
Zwerg Nr. | noch im Rennen. Ist aber Z(l) = 1, dann ist der Zwerg umgefallen.
Abhéngig von dieser Eintragung wird der entsprechende Zwerg dann bewegt
oder eben nicht.

Zeile 570: Da der letzte Befehl der Zeile 560 ein IF. .. war, wird er nicht
immer ausgefiihrt. Deshalb muB das NEXT unserer «Zwergenbewegungs-
schleife» in der ndchsten Zeile stehen. So trifft es der Computer — egal, ob die
Bedingung erfiillt war oder nicht. Was jetzt kommt, ist sozusagen das Giftim
Programm. Die Variable S, die ja fiir Schneewittchens Stirke steht, wird
(wenig, aber immerhin ...) verkleinert. Der Wert 0.0013 hat sich als ganz
verniinftig erwiesen. Wenn Sie das Spiel einfacher machen wollen, setzen Sie
einen kleineren Wert ein, wenn Sie es schwieriger haben wollen, einen
hoheren. B ist eine Variable, die fiir «<Bewegung» steht. Sie wird gleich fiir die
Fortbewegung von Schneewittchen gebraucht. Damit Schneewittchen nicht
von allein weiterlduft, wenn der Spieler keine Taste driickt, wird dieser
Bewegungsfaktor jedesmal wieder geldscht, wenn das Programm hier vorbei-
kommt. Nachdem diese ganzen Aktualisierungen erledigt sind (der Computer
braucht weniger als eine Sekunde dazu), kénnen wir auch den Ton mit POKE
54276,0 wieder abschalten. So ergibt sich ein typisches «Hack»-Gerdusch.
Das letzte in dieser Zeile ist noch eine kleine Aufraumarbeit: Wenn die Stéarke
S, nach der Verminderung von gerade eben, kleiner als O ist (was ja keinen
Sinn haben wiirde, was soll eine «negative Starke» sein?), soll sie doch gleich
0 bleiben.

Zeile 580: Das ist der eigentliche Steuerungsteil in diesem Programm.
Wenn die {(CRSR UP/DOWN)-Taste gedriickt worden ist (sie hat den Code
7, die Variable T gibt dariiber AufschluR), dann soll sich Schneewittchen nach
hinten, also in Richtung Brunnen bewegen. Dazu wird B entsprechend
negativ. S ist ja die Starke Schneewittchens. Wenn diese 100% betrégt, ist S
= 1. Das bedeutet also, daB im Bestfall ein Schritt von Schneewittchen 7
Bildschirmpunkte betrdgt. Wenn sie schwécher wird, verkleinern sich ihre

164 Ein Spiel mit Sprites

Schritte entsprechend. Ist ihre Stdrke O, dann kann sie sich tiberhaupt nicht
mehr bewegen.

Zeile 590: Hier wird dasselbe fiir die Taste (CRSR LEFT/RIGHT) (der
Code ist 2) gemacht. Nach vorn bewegt sich Schneewittchen etwas schneller.
Ein Schritt in diese Richtung betragt im Bestfall 8 Bildschirmpunkte.

Zeile 600: Diese Zeile stellt den neuen X-Wert fiir Sprite O fest. Dafiir
wird die augenblickliche X-Koordinate mit PEEK (53248) ausgelesen. Dazu
kommt B, also die Bewegung, die oben definiert worden ist. Wenn PEEK
(53264) = 193, dann bedeutet das, daB Schneewittchen sich rechts von der
Koordinate 255 befindet. Sie wissen ja, fiir die X-Richtung gibt es ein Bit Nr.
8. Allerdings sind diese Bits fiir die Zwerge 7 und 6 schon gesetzt (siehe Zeile
490). Demnach ist der Wert von vornherein 192. Wenn jetzt Sprite O
(Schneewittchen) dazukommt, ist der Wert 128 + 64 + 1 = 193. Und dann —
lange Zeile, kurzer Sinn — muRB die X-Koordinate um 256 erh6ht werden.

Zeile 610: In dieser Zeile wird abgefragt, ob Schneewittchen etwa
abhauen, also hinter dem Bildschirmrand verschwinden will. Das wére der
Fall, wenn die X-Koordinate kleiner als 22 wiirde. Ist das der Fall, soll sie
schon bei 22 bleiben.

Zeile 620: Anhand der neuen X-Koordinate wird erst einmal festgestellt,
ob das 9. Bit fiir Schneewittchen gesetzt werden muf8. Wenn dem nicht so ist,
weil die Koordinate kleiner als 256 ist, dann wird in das entsprechende
Register der «Normalwert» 192 gePOKEd. (Sie wissen ja: die beiden Rechts-
auBen unter den Zwergen.) Die Variable V, die nachher in das X-Register des
Schneewittchen-Sprites gePOKEd wird, kann also bedenkenlos den X-Wert
Gbernehmen.

Zeile 630: Sollte X aber grofRer oder gleich 256 sein (und dafiir kann man
schreiben: IF X)255...), dann wird unser 9. Bit gesetzt und die Variable V,
die ja gePOKEd werden soll, also gar nicht groBer als 255 sein darf, entspre-
chend verringert. Sollte V jetzt noch groBer als 70 sein (also der X-Wert
groRer als 256 + 70 und damit groRer als 326), muB Schneewittchens Flucht
nach vorn auch entsprechend verhindert werden. Also wird V in diesem Fall
zuriick auf 70 gesetzt.

Zeile 640: Jetzt kommt der Lohn fiir alle unsere Miihe. Der Wert V,
unsere entsprechend behandelte X-Koordinate, kommt ins X-Register von
Sprite O (Schneewittchen).

Zeile 650: In dieser Zeile wird abgefragt, ob Schneewittchen den Brunnen
beriihrt. Sobald eine Kollision zwischen dem Schneewittchen-Sprite und dem

Ein Spiel mit Sprites 165

Hintergrund festgestellt wird (und das einzige Objekt im Hintergrund, mit
dem der Sprite O kollidieren koénnte, ist der Brunnen), hat Schneewittchen
wieder Wasser. Zuerst wird das Kollisionsregister geléscht. Dann wird es
abgefragt. Wenn sich Sprite O gerade iiber dem Brunnen befindet, ist der
Inhalt dieser Adresse gleich 1 und somit die IF... THEN-Bedingung erfiillt.
Also wird die Variable WA, die natiirlich fiir Wasser steht, auf 1 gesetzt.
Solange sie das ist, hat Schneewittchen Wasser, das sie einem Zwerg zu
trinken geben kann. Damit der Spieler irgendwie die beiden Zustdnde «Was-
ser» und «kein Wasser» unterscheiden kann, wird der Rahmen blau ge-
POKEd.

Zeile 660: Hier wird die Kollision zweier Sprites liberpriift. Da die Zwerge
voneinander durch den Felsen getrennt sind, kann eine Kollision nur mit
Schneewittchen stattfinden. Wieder wird zunéchst das Kollisionsregister
gel6scht. Wenn sich dann der PEEK(53278) von O unterscheidet (was bedeu-
tet, daB eine Kollision stattgefunden hat) und gleichzeitig die Wasser-
Variable WA = 1 ist (was bedeutet, Schneewittchen hat Wasser), dann
passiert der Reihe nach folgendes: WA = 0, also Schneewittchen hat kein
Wasser mehr und muB8 neues holen. POKE53281,11 — der Rahmen wird
wieder grau, so daB auch der Spieler merkt, daB das Wasser futsch ist. OK =
1. Diese OK-Variable ist immer dann 1, wenn der Zwerg, der gerade
unterwegs ist (da kommen wir gleich drauf), sein Wasser erhalten hat, also
weiterarbeiten kann. Mit GOSUB 1000 wird in ein Tonunterprogramm
gesprungen, das diese erfreuliche Begebenheit durch ein entsprechendes
Gerdusch dokumentiert.

Zeile 670: Die Variable ZW stellt auch kein Ratsel mehr fiir uns dar. Sie
steht fiir «<Zwerg». Aber man sollte das schon noch etwas genauer festlegen:
ZW ist immer dann 1, wenn gerade ein Zwerg unterwegs zu Schneewittchen
ist, um Wasser zu holen. Solange diese Variable 1 ist, wird der Rest dieser
Programmzeile nicht ausgefiihrt. Ist ZW aber 0, was bedeutet, daB kein
Zwerg unterwegs ist, dann passiert folgendes: Mit INT(7*RND(1))+1 wird
eine Zufallszahl zwischen 1 und 7 ausgewdhlt. Diese Zahl heifit ab jetzt ZN,
was als Abkiirzung fiir Zwergennummer gedacht ist. Wozu diese Zwergen-
nummer? Sie ist die Nummer des Zwerges (wir haben die Zwerge natiirlich
ganz lapidar von 1 bis 7 durchnumeriert), der gerade unterwegs ist. Die
Variable W ist die Bewegungsrichtung dieses Zwerges. Sie ist momentan +5,
das bedeutet, der Zwerg bewegt sich mit steigenden Y-Werten, also nach
unten. Die Variable OK wird geléscht, denn der Zwerg, der da jetzt losmar-
schiert, hat ja noch Durst. Sollte jedoch der Zwerg, der auf Zufallsbasis

166 Ein Spiel mit Sprites

ausgewdhlt wurde, iberhaupt nicht mehr verfiigbar sein (also vor Ermattung
irgendwo im Bergwerk sitzen und ausruhen), dann war die ganze Aktion fir
diesmal umsonst. ZW, die Variable, die anzeigt, ob einer unterwegs ist, wird
wieder 0, und mit einem GOTO 550 springt das Programm wieder zur
Tastaturabfrage, denn die Zeilen, die jetzt noch kommen, dienen lediglich der
Bewegung des Zwerges.

Zeile 680: Und genau das tun wir dann auch gleich. Die Y-Koordinate des
auserwdhlten Zwerges ZN wird um den Wert W vergroRert. Sollte W spéter
einmal negativ sein, bewegt sich der Sprite wieder nach oben, da die
Koordinate dann in Wirklichkeit immer kleiner wird. Der aktuelle Stand des
Zwerges wird mit PEEK aus dem zustdndigen Register gelesen und, nachdem
er aktualisiert wurde, mit POKE dorthin zuriickgebracht.

Zeile 690: Sollte die Y-Koordinate unseres Zwerges ZN grofer als 200
sein (dann ist er ndmlich auf der Hohe von Schneewittchen, wo er ja mit ihr
zusammenstoBen und somit Wasser erhalten kann), darf unser kleiner Freund
umkehren. Seine Bewegung wird also negativ (W = —5), und gleichzeitig
wird die Variable D auf 1 gesetzt. D steht ungeféhr fiir «Riickzug». Sie sehen,
daB uns langsam die symboltrachtigen Buchstaben ausgingen ...

Zeile 700: Ist unser kleiner ZN wirklich auf dem Riickzug (D = 1) und
seine Y-Koordinate kleiner als 55, dann ist er wieder im Bergwerk. Sein
Riickzug ist also beendet (D = 0). Mit ZW = 0 wird gleich festgehalten, daR
keiner mehr unterwegs ist. Aber jetzt kommt's drauf an. Wenn der Arme
ndmlich kein Wasser bekommen hat, dann ist wieder ein Zwerg weniger im
Rennen. Im Feld Z(ZN) wird er geldscht, das heifit, in diesem Fall auf 1
gesetzt. Vergleichen Sie dazu die Zeile 560.

Zeile 710: Sollte die Anzah! der «gesunden» Zwerge = O sein, ist also
kein Zwerg mehr in der Lage, seine Arbeit zu verrichten, dann ist das Spiel zu
Ende. Schneewittchen hat verloren. Das Programm springt zu Zeile 900.

Zeile 720: Hier wird festgestellt, wie lange Schneewittchen noch spielen
muB. Die Zeitvariable TI$ haben wir ja am Anfang zuriickgesetzt. Also war
auch Tl (das ist die Variable, die in 60stel-Sekunden zdhlt) = 0. Nun wird
abgefragt, wie viele Sekunden seit Anfang vergangen sind. Ist die Differenz
zwischen R (der Zeit, die gespielt werden muB) und der Spielzeit kleiner als 1
Sekunde, dann ist SchluB. Da noch mindestens ein Zwerg Ubrig sein mufl
(sonst wére das Programm in Zeile 710 zum «Ende-Programm» ab Zeile 900
gesprungen), hat Schneewittchen gewonnen — also auf zur Zeile 800, wo der
Sieg dann auch gebiihrend gefeiert wird.

Ein Spiel mit Sprites 167

Zeile 730: Hier wird ein Maschinenunterprogramm des Betriebssystems
benutzt. Das heiBt, wir nutzen die Arbeit, die Commodore schon geleistet
hat, um den Computer etwas machen zu lassen, was wir sonst selbst
programmieren miiBten. Dieses Maschinenprogramm setzt den Cursor an die
Position, die wir in den Adressen 211 und 214 angegeben haben. Mit SYS
58732 wird es aufgerufen. Wenn es fertig ist, springt es — wie ein gutes
Unterprogramm — dahin, wo es herkam. So ersparen wir uns komplizierte
Steuerzeichen und kdnnen direkt im rechten unteren Eck hinPRINTen, was
wir dort hinschreiben wollen. Das wdre zundchst einmal die noch verblei-
bende Spielzeit P und Schneewittchens Stdrke S. Damit das alles einigerma-
Ben gut aussieht, verwenden wir folgende Steuerzeichen: Der invertierte Pfeil
nach oben steht fiir (CTRL)-(6), also Griin. Es folgt der Buchstabe «Z:» fiir
«Zeit». Die eigentliche Zeitvariable muR auBerhalb der Anfiihrungszeichen
stehen, damit auch ihr Wert gedruckt wird und nicht bloR ein zweiter
Buchstabe «Z». Die dann folgenden Steuerzeichen fiir Gelb (inv. Pi, (CTRL)-
(8)) und Cursor nach links (inv. Strich, (CRSR LEFT)) miissen aber wieder
innerhalb der Anfiihrungszeichen stehen. Der Cursor kommt wieder eine
Position nach links, weil der Commodore nach einer Zahl (wie z. B. dem Wert
von P) grundsétzlich eine Position frei ldBt. Sodann folgt der Buchstabe «S:»
fiir «Stdrke» und die Angabe dieser Starke (die Variable hieB ja auch S) in
Prozent. Dazu muf der Wert von S, der ja irgendwo zwischen 0 und 1 liegt,
mit 100 multipliziert werden. SchlieBlich kommt noch ein (CRSR LEFT)
wegen der Leerstelle, die nach der Zahl gedruckt wird, und das % -Zeichen.
Um den Cursor von dem kritischen Bildschirmeck wegzubekommen, wo er
bei ungiinstigen Féllen ein Scrolling, also ein Hochschieben unserer Grafik,
bewirken kénnte, kommt er mit (HOME) (Steuerzeichen dafiir ist das
invertierte S) wieder in die HOME-Position — bis zum nédchstenmal.

Zeile 740: Nachdem wir jetzt endlich alles erledigt haben, springen wir
zurlick zur Tastaturabfrage in Zeile 550, auf daB alles, was Sie jetzt eingege-
ben oder zumindest gelesen haben, noch mal passiert. Und noch mal. Und
noch mal. Und ...

Zeile 800: Hier gehen jetzt unsere Unterprogramme los, die wir so
anspringen kénnen. In dieser Zeile ist quasi die Siegesfeier festgelegt. Hier
springt das Programm ndmlich hin, wenn Schneewittchen gewonnen hat.
Diese gute Nachricht und die Wirkung des eben freigelegten Zauberkristalls
wirken wahre Wunder: Alle Zwerge erwachen zu neuen Kréften und rennen
zu Schneewittchen. Ihre Y-Koordinate wird also in einer Schleife von 54 auf

168 Ein Spiel mit Sprites

200 hochgezihit. Ein Schritt entspricht dabei fiinf Bildpunkten. Abwechselnd
(das A=1—A kennen Sie ja schon ...) wird eine von zwei Bewegungsphasen
gedruckt. Das Prinzip ist dasselbe wie in Zeile 560.

Zeile 810: Das Ganze wird mit einem entsprechenden Ton versehen. Er
lduft Giber Stimme #2, die wir ja fiir solche Anldsse schon in Zeile 540
vorbereitet haben. Seine Wellenform ist Dreieck, und so wird 33 in die
Adresse 54283 gePOKEd, womit der Ton auch gleichzeitig eingeschaltet
wird. Nun lassen wir die Zwerge vor Freude springen. Acht Spriinge sind
angesagt. Die J-Schleife («J» fiir engl. jump) wird sie zdhlen. Die X-Schleife
wird vier Téne mit den Frequenzwerten 24 % 256 (= 6144; ca. 350 Hertz),
27 % 256 (= 6912; ca. 400 Hertz), 30 % 256 (= 7680; ca. 450 Hertz) und 33
* 256 (= 8448; ca. 500 Hertz) erzeugen. Musikfreunde mégen uns beim -
Blick auf die Frequenzen verzeihen. Diese Freudenhiipfer erheben keinen
Anspruch auf Perfektion im Sinne eines Dreiklangs in Dur. Wir haben
ubrigens bloB die High Bytes gePOKEd, die Low Bytes setzen wir auf O und
kdénnen sie so vernachldssigen.

Zeile 820: In der Z-Schleife wird den sieben Zwergen je eine neue Y-
Koordinate zugewiesen. So entsteht ein Sprung nach oben. Ndchster Zwerg:
ndchste Koordinate: nachster Sprung — oder auf BASIC: NEXT Z: NEXT X:
NEXT J. Ton aus. Zwerge ab von der Biihne (POKE 54283,0: POKE 53269,0).
Zeile 830: Um den Spieler auch textlich entsprechend belohnen zu
kénnen, brauchen wir mit POKE 53272,23 unseren Text-Zeichensatz aus
dem ROM. Die Steuerzeichen, die nun gedruckt werden, stehen fiir (SHIFT)-
(CLR/HOME), (C=)-(6) (Hellgriin) und dreimal {CRSR DOWN). Der nun
folgende Text ist im Listing im Grafikmodus abgedruckt, so daB GroBbuchsta-
ben als Grafikzeichen dargestellt werden. Das schien uns dennoch verniinfti-
ger, als das ganze Listing in Kleinschrift zu drucken, wobei z. B. vollig andere
Steuerzeichen rausgekommen wadren. Der Text hier heift: «Bravo! Es ist
thnen gelungen,»

Zeile 840: «Schneewittchen zu retten!!l»

Zeile 850: «{CRSR DOWN) Neues Spiel gefaellig?»

Zeile 860: «(2 % CRSR DOWN) (RVS ON) (CTRL)-(4) (Hellblau).
Druecken Sie eine Taste! (RVS OFF)»

Zeile 870: Diese Zeile wartet, bis eine Taste gedriickt wird. Die Funktion
der Adresse 198 finden Sie ausfihrlich im Input/Output-Kapitel. Wenn eine
Taste gedriickt wurde, fangt das Spiel mit RUN neu an.

Ein Spiel mit Sprites 169

Zeile 900: Wenn das Programm allerdings hierher kommt, gibt es weni-
ger zu feiern. Schneewittchen hat verloren. Das wird zunéchst mit einer zum
traurigen AnlaB passenden Bildschirmfarbe unterstrichen (POKE53280,0:
POKE 53281,0 = Schwarz). Der Bildschirm wird geldscht (invertiertes Herz-
chen), alle Sprites auBer dem todkranken Schneewittchen verschwinden vom
Schirm, und Schneewittchen wird mit den Koordinaten 235 und 150 auf den
Schirm gesetzt. Mit ihren schwarzen Haaren auf schwarzem Grund sieht sie
schon gespenstisch aus ...

Zeile 910: Fir einen Trauermarsch war hier leider kein Platz, aber einen
Ton des Beileids kann sich SID einfach nicht verkneifen. Dazu wird die
Wellenform der Stimme #2 auf Dreieck geschaltet, der Ton aktiviert und mit
einer FOR...NEXT-Schleife die Frequenzen von 8192 bis 4096 (entspricht
ca. 500 bis 250 Hertz) abwarts durchlaufen. Das Low Byte schenken wir uns
wieder. Danach wird mit POKE 54283,0 der Ton abgeschaltet, und mit POKE
53272,23 wird der Commodore in den Textmodus zuriickgesetzt.

Zeile 920: Auch diesmal erhalten wir eine Mitteilung Uber unser Kénnen.
Wie ab Zeile 800 gibt es hier verschiedene Steuerzeichen. Der Text im Listing
ist im Grafikmodus gedruckt. Sie geben einfach ein: PRINT «(CTRL)-(6) Es
ist lhnen leider auch nicht gelungen,»

Zeile 930: «Schneewittchen zu retten.»

Zeile 940: «(CRSR DOWN) Jetzt koennen wir nur noch auf den»

Zeile 950: «(CRSR DOWN) Prinzen hoffen ...»

Zeile 960: «{3 % CRSR DOWN) Wollen Sie's nochmal versuchen?»

Zeile 970: «(3 * CRSR DOWN) (RVS ON) (CTRL)-(3) (Hellblau)
Druecken Sie eine Taste!»

Zeile 980: Auch diese Zeile wartet, wie Zeile 870, auf einen Tastendruck
und startet dann mit RUN das Programm neu.
Zeile 1000: Dies ist das erfreulichere Ton-Unterprogramm. Wenn eine

«Wasseriibergabe» erfolgreich verlaufen ist, springt das Programm hierher
(aus Zeile 660 ...). Stimme #1 wird abgeschaltet, Stimme #2 auf Dreiecks-
schwingung und auf «Ein». Dann wird in der Schleife die Frequenz von 23 «
256 (= 5888; ca. 350 Hertz) bis 32 % 256 (= 8192; ca. 500 Hertz)
durchlaufen. Danach wird Stimme #2 wieder abgeschaltet.

Zeile 1010: Das RETURN veranlaft den Computer, aus diesem Unterpro-
gramm zurlickzuspringen.

170 Ein Spiel mit Sprites

Zeile 1100: Dieses andere Unterprogramm ist weniger erfreulich. Es wird
angesprungen, wenn ein Zwerg erschdpft zusammenbricht. Man kann hier
nicht von einem reinen Ton-Unterprogramm reden, da hier auch-noch einige
Anderungen vorgenommen werden, die fiir die Steuerung wichtig sind.
Erinnern Sie sich noch? Der Zwerg ZN war derjenige, der unterwegs war.
Wenn er kein Wasser bekommen hat, fallt er jetzt um. Dazu sind folgende
Schritte nétig: Der Spritezeiger des entsprechenden Sprites zeigt auf Sprite-
nummer 11. Da liegt unser Bitmuster fiir einen erschopften Zwerg. Die
Anzahl der aktiven Zwerge Z wird um 1 vermindert. Da die anderen nun
langer schuften miissen, erhoht sich die Zeit, die Schneewittchen durchhalten
muB. R wird proportional zur Anzahl der erschopften Sprites vermehrt.

Zeile 1110: Hier gibt nun noch SID seinen Kommentar zum Geschehen.
Er schaltet Stimme #1 aus und #2 mit einer Dreiecksschwingung an. Die
Frequenz wird abwadrts durchlaufen, von 32 % 256 (= 81921; ca. 500 Hertz)
bis 16 % 256 (= 4096; ca. 250 Hertz). So entsteht ein entsprechend
mitleidiger Ton. SchlieBlich wird Stimme #2 abgeschaltet, und in ...

Zeile 1120: erfolgt der Ricksprung ins Hauptprogramm.

Damit hatten wir auch dieses Spiel geschafft. Fiirs Eintippen gilt dasselbe, was
wir auch schon beim ersten Spiel gesagt haben. Da dieses Programm beson-
ders viele POKEs verwendet, ist hier beim Testen ganz besondere Vorsicht
geboten.

Ansonsten ist auch hier die Anleitung zum Spielen nicht sonderlich schwer:
Schneewittchen wird mit den beiden (CRSR)-Tasten bewegt. Sie bekommt
Wasser, wenn sie den Brunnen beriihrt, man erkennt das an der blauen
Rahmenfarbe. Ein Zwerg bekommt Wasser, indem er Schneewittchen
beriihrt. Das Ganze mul durchgestanden werden, bis die Zeit, unten rechts
angezeigt, abgelaufen ist.

Viel Spal beim Spielen!

Ein Spiel mit Sprites 171

*1

b -
-)
H b}

o
ek

GE

LR
FORE

o .. -
o) i

- - h - [

Ll e —t

]] -

il 0 k3

i by i

by iyl -

E
B

i s Al S
o ot I e e L R
i = FE o ol oy B B B ol 0 X
. R 1 I T B - i Ty)
. = N = X - T4 et el -
- = g iy gy owovo
i = [xH koo e I I B R ¥
N d L) L T L o
i - &=t -
e - i
= o =
- A 1 DR R -]
i id il i B B B x B> B i B
i = = i

w
=

]
-
7
=

,
=

T

sl

Aol T HE
E

=
5}
1.1

P
P

+ b

1k
HHEEMITTOHER

B

e

=
(=3

1.11

F
b

2]
B
e

3

CET
E

ELFTH - PO
EFI

1}
I
1k

P
Fi
P

i

(15

< FH
5P

Dot

T

=
=
F

e I
11

E L E

b
R
-t
i
[xx]

M e

[B IR IR Y o I o R B A I -

OOAG L0 L0 Ty L TN X B T 1 B Iy

b o 0w e BT v R Yy B o Bt Wl

i ol el el N BN I R (o B B L S X Sy B X B S S L i

()] PR g =i ot T e i

i3 i TTTCTTCTCTTETTT =
w i [ko b= b e b o
E g IR X A A S I S T N i
(e i e R g BEaa [N TH T

FF

5]
5}
5]
&)
5]

BB I Bk B xR Y B n

£
i
5

e e, -~ s L g
B B] EX B o T B O S 4 3 B O X B A I B I S o~
- 04 0o i e el i wed vt ot D 0]) 4 D I R]

Ein Spiel mit Sprites

172

=EE L
KR E A A L

bdted T L

JeD

D R R e e T e e b T R e e R

AET EEET BT @8 E
[} I Dy v
LETETT R BTT e
HTET A
1
HEEC LEE

O 0 T

¢ T O
CEbET @

.L G

v =
Y ESE

T _éﬁuaﬁ% oL M T

:MZ

4k
.?L::;
,EmaﬁquIm
ST LT
.:?.mmzkia
E T TR LT
j.mimmr.amkzﬁ
TETTOETT Bk
T T T Tkl Lk
ﬁ e ?.J;J. B Ekd L
ﬁawMHEpIm

T T EHDA

R

{7y
il

Snorm oy T T
]
=

o
Ty 4

{
g
H

]

=
had

[B

=
fex)

173

AT RE 3_ :Hnﬁﬁ_.:t,
& LH
e B LH

wMHENT HMr I I:: ;
ELLEM NE HEHILLTMES

HAEATIET

* HEL __:_Jn.f !

ARMIE AT HEHDE -
DITTTIAHAZD 1T e .u“ﬂ_x_m....wl__._.z.
wi i PHALLEY NME MAHILLIMEEH
Il :1%%55 wlHI ¢l

o CHESHOTTED HEMH
PG U LEEN L

bexi

Ein Spiel mit Sprites

B .IMIP:!fn:
ARATHE ﬁ =111

I+. |*If,.+1
AD G T=PE s T
§_u_: .“H_I_ TP R
GO s Tk AL ._.H A

H ﬁ wmlv: ‘ Ihn,.x m.u

G HEAEAAT m =

= HEH LE

(xR
3D
b

BT
5
£

i

X}

o
Ll

{

i o B

o
- e]

O A0 e 00T E e
RRsEn g

[B R ot e B SR B Y B Iy o B o
[EA IR BRE IR Y a B

174 Ein Spiel mit Sprites

i
AT

11

10
Input/Output beim Commodore 64

Rein in die Kartoffeln, raus aus den Kartoffeln

Stellen wir uns vor, wir haben unser Spiel fertiggeschrieben. Stellen wir uns
weiterhin vor, wir hétten alles vorbereitet, um daraus einen groBartigen
Familienabend zu machen. Es ist jetzt all das da, was ein tolles Spiel so haben
mufB. Und schlieBlich hat man alle, die wollen (oder auch nicht), zusammen-
getrommelt, um eine richtige Spielorgie abhalten zu kénnen und dabei die
bewundernden Worte der bisherigen Kritiker («<Was denn, Du sitzt ja immer
noch an diesem Kasten ...» oder «Wir wollten nur héflich darauf aufmerk-
sam machen, daR es halb zw6lf ist und Du morgen in die Schule solltest») zu
geniefen.

Obwohl Ihre Bemiihungen bereits so weit fortgeschritten sind, konnte es
sein, daR Sie einen wichtigen Umstand vergessen haben. So etwas passiert
meistens dann, wenn man sieht, daB alles lduft, und in dieser ersten Euphorie
nicht bemerkt, daR man es eben nur sieht. Das Schone an Spielen ist ja, daB
man damit spielen kann. Spielen ist aber, das lernt man schon in der
Grundschule, ein Tunwort. Ja, es gehort sogar in die Klasse der Verben. Das
lernt man allerdings meist spdter. Der erste Ausdruck, der wahrscheinlich
jedem Gymnasiallehrer oder auch Buchlektor die Haare zu Berge stehen
lassen wird, hat einen Vorteil. Er beinhaltet genau das Wort, auf das es
ankommt. Spielen ist etwas, das man tut. Deshalb fehlte bisher fiir unser
Spiel, aber auch fiir andere Anwendungen wie Dateien oder Textverarbei-
tung, dieses Kapitel, das 1/O-Kapitel. 1/O, dariiber haben wir uns schon
einmal unterhalten, als wir iber BASIC sprachen, ist die englische Abkiirzung,
die fiir die deutsche Abkiirzung E/A steht, und das ist die Abkirzung fiir
Eingabe/Ausgabe. Weil wir aber schon erfahrene Programmieranfénger sind

176 Input/Output

(und weil es so schon klingt), einigen wir uns auf I/O oder bestenfalls auf
Input/Output.

Was aber heifit das eigentlich genau? Nun, fiir Sie war es bisher immer die
selbstverstdndlichste Sache der Welt, daB Sie irgend etwas eingegeben haben
und der Commodore dafiir irgend etwas ausgab. Wir sind ja schon mal in
einem fritheren Kapitel darauf eingegangen, daf dazu einige Programme
standig im Computer parat stehen, die dafiir sorgen, daB es so ist. Gut, sagen
Sie jetzt, das weiB ich ja.

Schon, aber wenn Sie schon mal ein Spiel auf lhrem Commodore haben
laufen lassen, dann haben Sie ja vielleicht gemerkt, daR die Eingabe nicht
immer nur {iber die Tastatur kommt.

Na klar, werden Sie jetzt forsch antworten, weil ich auch schon. Richtig,
aber haben Sie bei diesen Spielen dann schon mal auf die Ausgabe, den
Output geachtet?

Wabhrscheinlich erreicht die Diskussion dann einen Punkt, an dem Sie etwas
unsicher werden.

Ausgabe, nee. Warum Ausgabe?)

Sehen Sie, das dachten wir uns. Aber wer, glauben Sie, bewegt das
Raumschiff, mit dem Sie Feinde abschieRen?

Ich, oder?

Nein, eigentlich nicht. Sie bewegen nur ein Eingabegerat, auch Input-
Device genannt. Die Ausgabe, das ist Ubrigens das sich bewegende Raum-
schiff, macht der Computer.

Was wir mit dieser kleinen Verunsicherung bezwecken wollten, war eigent-
lich nur, thnen klarzumachen, daB Input/Output sich keineswegs nur auf Text
beschrankt und genausowenig nur lber die Tastatur stattfinden muB. Auch
der Output muB nicht immer liber den Bildschirm erfolgen. Es kann ja auch
der Drucker sein oder der Kassettenrecorder und natiirlich auch das Disket-
tenlaufwerk. Diese Gerdte werden dann auch als Output-Device bezeichnet.

Deshalb auch das eventuelle Problem mit Ihrem geplanten Spieltestabend.
Das Spielen wird allen Beteiligten mehr SpaB machen, wenn sie auch was
damit zu tun haben. Deshalb sollten Sie sich mit diesem Kapitel ausgiebig
beschéftigen. Eine gute 1/0-Routine in einem Spiel macht schon den halben
Erfolg. Wenn sie ndmlich sehr langsam ist, diese Routine, dann hat das den
Nachteil, daB auch das Spiel sehr langsam wird. Wir werden uns also im
folgenden mit mehreren Input-Gerétschaften befassen, zuerst mit dem Key-
board. Mit ihm sind sie ja (hoffentlich) im Verlauf des Buches schon sehr oft
umgegangen. Weiterhin erwarten Sie in diesem Kapitel noch Geréte, die man

Input/Output 177

meist mit Hinden und FiiRen traktieren kann, um dem Computer klarzuma-
chen, was Sie von ihm wollen. Nur damit Sie die Namen schon mal gehért
haben, hier ein kurzer Uberblick mit ein biRchen Information zum Kauf von
solchen Dingen.

Ein kleiner Leitfaden zum Einkauf

Da waéren mal die Joysticks. Wie der Name schon sagt, sollen sie Freude
= engl. joy) bereiten. Die Menge dieser Freude ist direkt abhadngig von der
Leichtigkeit, mit der man diese Steuerkniippel handhaben kann. Deshalb
sollten Sie sie grundsatzlich, bevor Sie sich zum Kauf eines solchen entschlie-
Ren, ein biBchen testen. Am besten wire es, einen neuen und einen bereits
im Gebrauch befindlichen zu testen. Daran laBt sich ndmlich zum Beispiel sehr
gut erkennen, wie es um die Qualitét eines Joysticks steht. Ist der gebrauchte
schon ziemlich ausgeleiert, sollte man lieber noch einen anderen testen. Denn
in den Geschaften, wo meist ein Computer zum Spielen herumsteht, kann
man davon ausgehen, daR der Joystick wirklich hart getestet wird. Anderer-
seits sollte der Joystick auch nicht zu hart sein, sonst ermiidet die Hand sehr
schnell. Das Spiel macht keinen SpaB mehr, weil man sich mehr auf den
Joystick als auf den Feind im Weltraum konzentrieren muB. Wichtig ist auch,
wie die Druckknopfe reagieren. Arbeiten sie zuverldssig? Kann man gut
spliren, daB der Kontakt da war? (Das heift: Merkt man an irgend etwas, dal
der Knopf auch tief genug gedriickt wurde?)

Am besten nehmen Sie sich eines lhrer Lieblingsspiele mit, wenn Sie einen
Joystick kaufen, und testen ihn damit. Natirlich ist klar, daB Sie sich zuerst an
die neue Form gewohnen miissen. Deshalb werden Sie nicht sofort einen
neuen Rekord aufstellen, aber Sie werden schnell merken, ob lhnen der neue
im wahrsten Sinne des Wortes liegt. Sollte lhnen das alles ein bifchen
Ubertrieben vorkommen: mag sein. Aber ein passabler Joystick kostet minde-
stens 35 DM. Und das ist auch Geld. Deshalb ruhig testen. Ein guter
Computerladen wird lhnen sogar selbst dazu raten. Denn ein verdrgerter
Kunde bringt auch nicht viel.

Das zweite Gerdt, das wir besprechen wollen, sind die sogenannten
Paddles. Diese «Steuerrader» haben bei manchen Spielen oder auch anderen
Anwendungen gegeniiber Joysticks doch einige Vorteile. Auch bei den
Paddles sollten Sie iibrigens vor einem Test nicht zuriickschrecken. Hier
kommt es in erster Linie darauf an, dall Sie den héchsten Wert, in den der

178 Input/Output

Computer ihre Stromspannung umwandeln kann (das wdre die Zahl 255),
auch miihelos erreichen. Wenn Sie dieses Kapitel gelesen haben, werden Sie
sich sehr einfach ein kleines Programm schreiben kénnen, das lhnen die
ausgelesenen Werte anzeigt. Achten sollten Sie auch auf die Druckknopfe.
Sie sollten nicht zu groB und nicht zu klein (meist fiir den Daumen) sein, und
sie miissen, wie die Feuerknopfe der Joysticks, sauber reagieren. Soviel zum
Thema. Zuerst wollen wir uns aber mit der Tastatur, auch Keyboard genannt,
beschiftigen. Und wenn Sie jetzt sagen, was kann da schon noch kommen,
dann werden Sie aber ganz schon staunen.

Tipp-tipp hurra

«Wir wollen uns jetzt mal mit dem Keyboard beschéftigen ...» Die erste
Reaktion bei diesem Satz wéhrend unserer Kurse iiber den Commodore war
eigentlich immer die Antwort, daB man ja sehr wohl wisse, wie man mit
diesen Tasten umzugehen hdtte. Warum also dann eine eigene Unterwei-
sung? Die Antwort ist, da8 es schon den einen oder anderen Trick gibt, der
lhnen allerhand Arbeit ersparen kann. Die BASIC-Befehle INPUT und GET
sollten Sie bereits kennen. Wenn nicht, hier noch einmal kurz: Mit INPUT
lassen sich ganze Zeichenketten (Namen, Telefonnummern u. 4.) abfragen,
mit GET dagegen nur einzelne Tasten. Allerdings schert sich das GET einen
feuchten Kehricht darum, ob Sie eine Taste gedriickt haben oder nicht.
Deshalb muf eine typische GET-Abfrage bisher meist so aussehen:

10 PRINT "DRUECKEN SIE EINE TASTE!"
20 GET A$:IF A$="" THEN 20

In Zeile 20 lassen Sie also lhr Programm priifen, ob sich GET bereits
zuriickziehen kann oder ob es gefilligst noch warten soll, weil noch gar keine
Eingabe stattgefunden hat. Wenn dann eine Taste gedriickt wiirde, dann erst
macht lhr Programm weiter.

Nach dem Motto «Gefahr erkannt, Gefahr gebannt» machen wir uns erst
mal daran, das Problem auszubaldowern.

Schwierigkeit, dein Name ist Tastaturpuffer.

Die Tastaturabfrage wird ja bekanntlich alle % Sekunde wihrend des
Interrupts durchgefiihrt. Bis allerdings das Zeichen oder die Funktion, die zur
entsprechenden Taste gehort, ausgefiihrt wird, vergeht einiges an Zeit, in der
unser Commodore rechnet, vergleicht, nachschaut usw. Natiirlich geht das

Input/Output 179

alles verhdltnismafig schnell, aber bei der Konzeption seiner Computer hat
Commodore wohl einen Test mit einer ausgebildeten Sekretédrin gemacht und
festgestellt, daB diese Dame mit dem Tippen ziemlich fix war, der Commo-
dore mit der Zeichendarstellung allerdings ein paar Hundertstel hinterher-
hinkte.

Ergebnis dieses Vorgangs (von dem wir leider nicht priifen konnten, ob er
so stattfand) war offensichtlich das, was wir jetzt unter dem Namen Tastatur-
puffer besprechen. Dort werden bis zu 10 Zeichen, die schneller eingetippt
werden, als der Computer schreiben kann, zwischengespeichert. So gehen
sicher keine Buchstaben verloren. Nun ist dieser Tastaturpuffer aber nicht
etwa nur dann in Betrieb, wenn der Commodore um Hilfe briillt, sondern
stiandig bereit, alles, was auf der Tastatur passiert, zwischenzuspeichern, und
wenn es soweit ist, dem Prozessor Bescheid zu stoBen, daR da wohl Post fiir
ihn ware. Die Geschehnisse eines Tastendrucks lassen sich also in etwa
folgendermaRen rekonstruieren: Wéhrend des Interrupts stellt der Computer
fest, daB eine Taste gedriickt wurde. Den Code dieser Taste legt er im
Tastaturpuffer ab. Aber eine Taste kommt selten allein, also wird alles, was
sonst noch anfillt, ebenfalls im Tastaturpuffer abgelegt. Solange genug Zeit
ist, kann sich das Betriebssystem darum kiimmern, was mit dem nichsten
Zeichen geschehen soll. Deshalb liest es zunidchst den ersten Wert des
Tastaturpuffers. Und das ist ja auch die Taste, die zuerst gedriickt wurde. Die
Taste wird libersetzt und entsprechend der Bedeutung weitergeleitet. Hier
verlieren sich unsere Beobachtungen der Taste erst mal in den Tiefen des
Speichers.

Nun kann man, um nachzupriifen, ob das alles auch wirklich so vor sich
geht, folgende kleine Zeile im Direktmodus (also keine Zeilennummer davor)

eingeben: FOR X=1TO5000:NEXT

Diese Zeile ist nichts weiter als eine ordindre Warteschleife. Aber sie hat einen
Sinn. Sie beschéftigt unseren Commodore genauso wie uns ein spannendes
Buch. Das liegt daran, daf der Computer sowieso nur Spannung im Strom
finden kann. Wenn Sie jetzt ein READY auf dem Bildschirm sehen, dann ist
der Computer bereits fertig — wéahrend Sie diese Zeilen gelesen haben. Sollte
das so sein, geben Sie die Schleife bitte noch mal ein. Und gleich, nachdem
Sie (RETURN) getippt haben, geben Sie noch irgend etwas ein, z. B. lhren
Namen. Sie haben rund 5 Sekunden Zeit. Dalli — Dalli ...

Wenn der Computer jetzt sein READY von sich gegeben hat, miiRten Sie
noch einige andere Zeichen darunter sehen, die — mehr oder weniger

180 Input/Output

verstimmelt — lhren Text, den Sie tippten, widerspiegeln sollten. Wenn Sie
uns geglaubt haben, was wir thnen erzéhlten, ist das auch nur logisch. Wenn
er sie auch nicht sofort ausgeben konnte — er war ja beschiftigt —, lhr
Commodore hat das Driicken der Tasten sehr wohl bemerkt. Und kaum hat
er seine stupide Zahlerei fertig gehabt, hat er das Versdaumte schleunigst
nachgeholt.)

Und von diesem Wissen kdnnen wir jetzt profitieren. Dazu erst einmal
wieder ein paar POKE-Adressen. (Wenn Sie in letzter Zeit mit dem Gedanken
spielten, sich ein AdreBbuch fiir lhren Computer zu kaufen, dann lassen Sie es
bleiben und denken Sie getrost an unseren PEEK & POKE-Anhang. Er enthdlt
noch einmal alle wichtigen Adressen.)

Im PEEK (649) steht die Anzahl der Zeichen, die der Tastaturpuffer maximal
fassen kann. Ein

PRINT PEEK (649)

ergibt konsequenterweise die Zahl 10. Diesen Wert kdnnen Sie verdndern.
Bevor Sie jetzt aber gleich POKE-Werte um 255 herum eingeben und
versuchen, eine Adressensammlung im Tastaturpuffer anzulegen, lassen Sie
sich gewarnt sein. Der Puffer liegt ndmlich noch sehr nahe an der Zeropage.
Und die vorhergehenden Kapitel miiften lhnen klargemacht haben, was
passiert, wenn Sie hier wichtige Speicherzellen mit Tastaturcodes tiberschrei-
ben. Sie konnen jetzt, am besten unter der Verwendung der Warteschleife
von vorhin, mit diesen Werten etwas herumexperimentieren.
Wenn Sie aber
POKE 649,0

eingeben, dann gibt es gar keinen Tastaturpuffer mehr. Das Ergebnis kénnen
Sie sich wahrscheinlich vorstellen. Wenn Sie es trotzdem ausprobieren: Die
Kombination (RUN/STOP) + (RESTORE) befreit Sie und lhren Commodore
aus dieser miBlichen Lage. o

Wollen Sie also zum Beispiel im Rahmen eines Spiels die moéglichen Tasten,
die zwischengespeichert werden kénnen, auf eine bestimmte Zahl begrenzen
— jetzt wissen Sie ja, wie es geht.

Aber noch viel interessanter ist die ndchste Adresse: PEEK(198) enthilt die
Anzahl der Tasten, die tatsdchlich gerade im Tastaturpuffer stehen. Wenn Sie,
wahrend das kleine Programm

FOR X=1TO2000:PRINT PEEK(198):NEXT

lauft, einige Tasten driicken, werden Sie sehen, wie dieser Wert ansteigt

Input/Output 181

Natiirlich konnen Sie diesen Wert auch jederzeit auf O zuriicksetzen. Dann
wird der Tastaturpuffer geléscht:

FOR X=1TO5000:NEXT:POKE198,0

Versuchen Sie jetzt mal nach der Methode von vorhin, Text in den Computer
zu kriegen ... Unsere GET-Abfrage von vorhin lieBe sich damit auch etwas
eleganter programmieren:

10 PRINT "DRUECKEN SIE EINE TASTE!":POKE198,0
20 IF PEEK(198)=0 THEN 20

Solange der Tastaturpuffer leer ist, bleibt das Programm in der Zeile 20.
Wenn Sie jedoch irgendeine Taste driicken, geht das Programm iiber zum
nachsten Schritt. In diesem Fall wiirde es sich mit READY melden. Die Taste,
die Sie gedriickt haben, steht aber dennoch im Tastaturpuffer. Es hat sie ja
bisher noch keiner dort rausgeholt, und sie erscheint schlieBlich auf dem
Schirm.

Soll also beispielsweise eine ganz bestimmte Taste gedriickt werden, so laBt
sich das mit Hilfe des WAIT-Befehls besonders schén machen:

10 POKE 198,0:WAIT 198,1:GET A$
20 IF A$()"A" THEN 10

Das Programm fahrt nur dann fort, wenn Sie die Taste {A) driicken. Zuerst
einmal wartet es allerdings in Zeile 10 so lange, bis eine Taste gedriickt wird —
also bis in der Speicherzelle 198 der Wert 1 auftaucht. Durch den Befehl GET
bekommt dann die Variable A$ das Zeichen der entsprechenden Taste
zugewiesen. Zeile 20 iberpriift dann, ob die gedriickte Taste ein A war.
Wenn nicht, dann geht das Programm wieder zur Zeile 10 und wartet. Sie
konnen das gern ausprobieren — vielleicht, indem Sie in der Zwischenzeit
einen Kaffee trinken gehen. Natirlich, werden nun die kritischen Leute
sagen, das kann man mit GET allein aber auch machen. Stimmt. Zwar nicht so
elegant, aber es stimmt. Doch abwarten. Der Tastaturpuffer hat noch mehr
Uberraschungen auf Lager.

Um die kennenzulernen, miissen wir lhnen zuerst verraten, wo der Puffer
eigentlich liegt. Er befindet sich sehr nahe an der Zeropage. Das hat den
Vorteil, daR das Betriebssystem sehr schnell an ihn rankommt. Und das ist ja
wichtig. Die Speicherzellen gehen von 631 bis 640. Aber da es sich hierbei um
ganz normalen RAM-Bereich handelt, hindert Sie niemand daran, hier auch
Werte hineinzuPOKEn. Probieren Sie es aus.

182 Input/Output

10 FOR X=0TO9:POKE631+X,211:NEXT
20 POKE 198,10

In Zeile 10 schreiben wir den Code 211 in den Tastaturpuffer. Welches
Zeichen das ist, werden Sie sehr bald merken, wenn Sie unser Beispiel
ausprobieren. Zeile 20 teilt Ihrem Computer dann mit, wie viele Zeichen im
Puffer stehen. Da wir ihn ganz aufgefillt haben, POKEn wir 10.

Diese kleine Spielerei hat lhnen gezeigt, wie man den Computer 10
Zeichen «vorprogrammieren» kann, wahrend er beschaftigt ist. Alles, was wir
ihm auf diese Art und Weise vorher eingeben, fiihrt er dann im Direktmodus
aus. So kann man ganze neue Programmzeilen von einem Programm selbst
einfligen lassen.

2m LET ZETLE 28v
S CPRIMT Ems

REALY

Zeile 20 wird gedruckt und durch den Code 13 (das entspricht der Taste
(RETURN)) dann auch wirklich eingegeben. Die Codes, die Sie POKEn
miissen, um solche oder dhnliche Effekte zu erzielen, finden Sie wieder in
lhrem Commodore-Handbuch auf der Seite 135. Es handelt sich um die
ASClI-Codes.

Passen Sie iibrigens bei dem oberen Beispiel auf, daB die Cursorzeichen
(= Steuerzeichen) genau stimmen: sie sorgen dafiir, daB der Cursor auf der
Zeile 20 steht, wenn das (RETURN) durchgefiihrt wird. Das wird erreicht
durch die Zeichen «<HOME» und «CURSOR DOWNS» (invertiertes S und
invertiertes Q).

Auf dieselbe Art kénnen Sie auch mehrere Zeilen eingeben und/oder dann
im Programm weitermachen, indem Sie zum Beispiel ein RUN oder GOTO
drucken und durch ein (RETURN) im Puffer ausfiihren lassen. Jetzt sollten
Sie erst mal ein biBchen mit diesen neuerworbenen Kenntnissen experimen-
tieren, bevor Sie weiterlesen. Dann fillt meist auch das Verstehen leichter.

Manchmal kénnte es ja sein, daB Sie genau das Gegenteil von dem wollen,
was wir jetzt besprochen haben: Eine Taste soll nicht zwischengespeichert
werden, sondern es soll sofort gepriift werden, welche es war. Auch dafiir
gibt es eine Speicherzelle — nein, sogar zwei Speicherzellen. Sowohl in der
Adresse 197 wie auch in der Adresse 203 steht genau dasselbe.

Input/Output 183

Lassen Sie zu Demonstrationszwecken das folgende Miniprogramm (iber
langere Zeit laufen, und driicken Sie dabei einige Tasten. Sie werden sehen,
wie sich die Werte dndern.

10 PRINT PEEK(197):RUN

Sie werden andauernd neue Zahlenwerte auf den Bildschirmi bekommen.
Solange Sie als Wert 64 erhalten, heifit das, dafB Sie gar keine Taste driicken
(obwohl wir doch sagten, daR Sie das sollen!!). Alle anderen Tasten, aufer
(SHIFT), (C=) und (CTRL), haben offensichtlich einen ganz bestimmten
Wert. Diese Werte kdnnen Sie zum Beispiel durch Ausprobieren herausbe-
kommen, wir haben lhnen aber eine Zeichnung der Tastatur angefertigt, auf
der alle Werte stehen.

Wenn Sie diese Speicherzelle tberpriifen, konnen Sie jederzeit feststellen,
welche Taste gedriickt wurde, unabhédngig vom Tastataturpuffer. Und jetzt
kommen wir langsam zu den Spielen: Sie kénnen zum Beispiel eine Spielfigur
mit den Tasten Z und C steuern lassen. Und die Abfrageroutine dazu kann
den BASIC-Befehl GET umgehen, ist sehr schnell und einfach zu programmie-
ren. Wenn der PEEK(197) = 12 ist, dann bewegen Sie die Figur nach links. Ist
der PEEK(197) = 20, dann eben nach rechts. Sie kbnnen also einzelnen
Tasten, wie beim Joystick bestimmte Stellungen, ganz bestimmte Richtungen
zuweisen. Wie das beim Joystick geht, kommt noch.

Kommen wir schlieBlich zum letzten Punkt. Und weil bekanntlich das, was
nicht so auf Anhieb geht, das Interessanteste ist, wollen wir lhnen zeigen, wie
man (CTRL), (SHIFT) oder {C=) doch abfragen kann. Diese drei Tasten
haben nédmlich, aufgrund ihrer Sonderfunktion, eine eigene Speicherzelle
bekommen, und zwar die Nummer 653. Dabei entsprechen folgende Werte
in dieser Zelle folgenden Tasten (Tabelle 10.1).

Tastenkombinationen ergeben dann die Summen der Einzelwerte, (SHIFT) &
(C=) zum Beispiel 3 oder alle zusammen 7. (Wer diese Zahl erreicht, muR
aber schon sehr aufpassen, daB er sich nicht die Finger verrenkt.)

Wert Taste
1 (SHIFT)
2 (C=)
4 (CTRL)

Tabelle 10.1 Werte in Speicherzelle 653

(£61) M33d Ui sepoD pun unjeisel L°OL Plig

09
IDVdS
@@ _
© @4 @ | on |uw | oo | e 60| w0 00| @ | - | -
4 \mmw_vu Mm,WU 14IHS é < > W N ! A o] X z 14IHS =D
© W €9 |09 | G| @ | wo| 0|6 | 00| 6| 6| €| 0 |ymn| o
S _ . .
} NINL3Y . : T A f H 5] 4 a . S \4 14IHS | NNy
© - oo @ | on|an | | 0o || @ w|oew| e || -
& EL[OXREL] e * o d (0] | n A 1 o 3 M 0] T4LD
® O w8 en | e | on | 6o |@ | @ |60 |6 o0 | | @ | | 09 |
3
3 1SN | ¥d ¥ - + 0 6 8 L 9 S 14 € 4 l -

Input/Output 185

Wenn Sie also alles, was Sie bis jetzt gelernt haben, beriicksichtigen und eine
Programmzeile schreiben, die wartet, bis jemand (CTRL) & (SPACE) gleich-
zeitig driickt, sollte das etwa so aussehen:

10 IF PEEK(653)()4 OR PEEK(197)()60 THEN 10
oder auch kiirzer
10 WAIT 653,4:WAIT 197,60

So, damit hatten wir so im groBen und ganzen alles, was man mit der Tastatur
(legal!!l) machen kann. Bedenken Sie aber beim Programmieren, daR nicht
alles, was machbar ist, auch unbedingt sein muf8. Wenn Sie zum Beispiel ein
Textverarbeitungsprogramm schreiben, gereicht lhnen eine Tastenkombina-
tion (CTRL) & (SHIFT) & (S) & (RETURN) als «Abkiirzung» fiir den Befehl
«Text schreiben» sicherlich nicht zur Ehre.

Jetzt kommt es kniippeldick

C
Irgendwann kamen einige schlaue Leute darauf, daB es auf die Dauer
reichlich miihselig ist, immer «E» fiir Raumschiff hoch und «X» fiir Raum-
schiff runter zu driicken. Dann setzten sich diese Leute in ein kleines
Hinterzimmer und bastelten und werkelten, bis sie voller Stolz den ersten
Joystick gebaut hatten. Diese Leute wurden zwar nicht beriihmt (es gibt
niemanden, der Herr Joystick heift und nach dem diese Dinger benannt
worden sind), aber dafiir konnten sie sich bald ein schones, groBes Auto
kaufen, weil so ein Steuerknlppel auch anderen Leuten, die nicht so
geschickt im Basteln waren, gefiel und sie sich deshalb einen bauen lieBen.
Bald erkannten viele Leute, die im Basteln geschickt waren, daf sich mit der
Herstellung von Joysticks eine Familie ganz gut erndhren IdRt. Das Ergebnis
waren Joystickfabriken. Damit aber auch jeder genau den Joystick kaufte, den
man selbst verkaufen wollte, machte man furchtbar viele Formen, bei denen
jeder behaupten konnte, seine sei die beste. Kurz und gut: Es gibt heute
unheimlich viele Arten von Joysticks. Und an dem Gerede von der besseren
Form ist auch sicher was dran. Warum aber alle nur iiber die Form reden, liegt
daran, daB praktisch alle Joysticks nach demselben Prinzip funktionieren. Und
weil man in der Werbung schlecht iiber das reden kann, was der andere auch
hat, macht man eine neue Form, und schwups hat man etwas, woriiber man
reden kann.

186 Input/Output

Ehrlicherweise mufl man aber tatsdchlich zugeben, daf von der Form dieser
Gerite schon allerhand abhédngt. Fiir das allgemeine Hobbyabend-Telespiel
reichen die relativ einfachen Joysticks aus. Sie kosten zwischen 30 und 50
DM. Das ist zwar auch nicht sooo wenig, aber immer noch billiger, als die
Tastatur nach ein paar Stunden Pac-Man zu ersetzen.

Bei Ihrem Commodore 64 kann man gleichzeitig zwei davon anschlieRen
(Joysticks, nicht Pac-Man). Dazu befinden sich an der rechten Seite zwei
Stecker, die den hilbschen Namen «Control Port 1» und «Control Port 2»
tragen. Wie zwei eineiige Zwillinge gldnzen die beiden da an der Seite. Der
Vorteil ist nattirlich, daB man zwei Joysticks anschlieBen kann. Der Nachteil ist
allerdings, daB man zwei Joysticks anschlieBen kann. Das heiBt eigentlich,
daB man denselben Joystick an jeden der beiden Control Ports anschlieBen
kann. Leider haben sich weder die Hobbyprogrammierer noch die Soft-
warehduser fiir einen der beiden entschlieRen kénnen. Die einzige allgemein-
giiltige Regel, die man aufstellen kann, ist die: SchlieBt man einen Joystick an
einen Port an und startet das Spiel, so ware mit 90prozentiger Sicherheit der
andere Port der richtige gewesen.

Deshalb wollen wir die giinstige Gelegenheit nutzen und hier zu zweit an
die Programmierer der Welt plddieren: Einigt euch, im Namen der Single-
Joystick-Besitzer, auf einen Port.

Und nach diesem Aufruf konnen wir zum eigentlichen Thema kommen:
Wenn man selbst programmiert, wie nutzt man dann die Joysticks? Erst
einmal gibt es (selbstverstdndlich) eine Adresse, aus der man den Wert, den
ein Joystick gerade durch seine Position in den Computer einspeist, heraus-
lesen kann. Es sind die Adressen 56320 flir den Port 2 und 56321 fiir den
Port 1.

Wenn Sie einen Joystick haben, geben Sie bitte folgendes Programm ein:

10 PRINT PEEK(56321):RUN

Wenn Sie jetzt verschiedene Joystickstellungen durchprobieren, werden Sie
sehen, wie sich die Werte auf dem Bildschirm dndern. Dazu gleich eine
Anmerkung: Wenn Sie thren Joystick nach links driicken, werden Sie die Zahl
251 sehen, gleichzeitig werden die Zahlen langsamer {iber den Bildschirm
rollen (man nennt diesen Vorgang des Rollens auch Scrolling). Wenn Sie sich
erinnern kénnen, haben wir einmal erwdhnt, dal derselbe Effekt auch dann
auftritt, wenn man die (CTRL)-Taste gedriickt hélt.

Probieren Sie doch auch das jetzt einmal aus. Sie werden sehen, daB sich
die Zahl wieder dndert, auch wenn Sie den Joystick in seine Ruhestellung

Input/Output 187

zuriickkehren lassen. Wir wollen Ihnen kurz erklaren, warum das so ist: Der
Joystick in Port 1 lauft iiber den gleichen 1/0-Baustein, an dem auch die
Tastatur angeschlossen ist. Deshalb gibt es einige Tasten, die den gleichen
Effekt haben wie ein angeschlossener Joystick. Umgekehrt ist es deshalb auch
nicht zu empfehlen, den Joystick 1 wahrend des Programmierens zu betiti-
gen. In Programmen, die Sie schreiben und die sowohl den Joystick 1 als auch
die Tastatur benutzen, empfiehlt es sich, vor jedem INPUT oder GET mit
POKE 198,0 den Tastaturpuffer zu l6schen.

Beim Joystick 2 gibt es dieses Problem nicht. Ndheres zu der ganzen Sache
werden Sie dann noch erfahren, wenn wir uns liber die Paddles unterhalten.

Wie sind jetzt aber die PEEK-Werte, die Sie wahrscheinlich immer noch auf
lhrem Bildschirm sehen, zu verstehen?

Wenn Sie lhrem Joystick eine Ruhepause gonnen und ihn vollig loslassen
(was natirlich nicht meint, daB Sie den Armen auf den Boden fallen lassen
sollen!!), erscheint die Zahl 255. Und die kennen wir ja mittlerweile zur
Genlige. Sie bedeutet, daB alle Bits in der Speicherzelle an sind.

Sollten Sie wider Erwarten doch noch ein gestortes Verhdltnis zu unserer
255 haben, schauen Sie noch mal in der Speicheraufteilung nach. Ergebnis
unserer bisherigen Nachforschungen ist also, daB, wenn nichts gedriickt,
geschoben oder sonstwie verdndert wird, alle Bits an sind. Driicken Sie jetzt
den Joystick nach vorne (bzw. nach oben, das kommt ganz darauf an, wie Sie
das sehen). Sie sehen, die Zahl dndert sich in 254. Aus der Sicht unseres
Commodore heiit das, daB ein einzelnes Bit (ndmlich Nummer 0) gelscht
oder «aus» ist.

Wenn Sie jetzt den Kniippel selbst wieder zuriick in die Ruheposition
lassen, aber dafiir den Feuerknopf driicken, erscheint 239. Das heiBt fiir den
Computer, daB Bit Nummer 4 (= 16) geloscht ist.

Und wenn Sie jetzt gleichzeitig noch den Kniippel wieder nach vorne
driicken (oder nach oben — ganz wie Sie meinen), erscheint aufs neue eine
andere Zahl: 238. Das heifit die Bits 4 und 1 sind soeben geléscht worden
(255 — 16 — 1).

Ganz schon informativ, so eine Kniippelei mit dem eigenen Computer,
nicht wahr?

Und damit haben Sie das Prinzip der Joystickabfrage eigentlich schon
verstanden. In bestimmten Positionen des Joysticks oder wenn der Feuer-
knopf gedriickt wird, werden ganz bestimmte Bits geloscht. Dadurch ergeben
sich auch ganz bestimmte Werte in unseren Speicherzellen. Um es anders zu
sagen, den einzelnen Bits in der entsprechenden Speicheradresse ist jeweils

188 Input/Output

PEEK (56321):
6 5 4

l12§|64l32|16, 8‘4‘, 21 1—’

t hoch
runter

links
rechts
Feuer

Bit

Das entsprechende Bit ist jeweils aus!

Joystick 1 (PEEK (56321)):

254 238
250 T 246 234 T 230
251 4——@—> 247 235 4———-—> 231
249 l 245 " 233 l 229
253 237

ohne Feuerknopf mit gedriicktem Feuerknopf

Bild 10.2 Joystick 1, Bitbelegung in (56321)

ein «Schalter» im Joystick fiir vor, zuriick, links, rechts und Feuerknopf
zugeordnet. Und aus nichts anderem als aus fiinf Schaltern besteht ein
Joystick. (Verstehen Sie jetzt, warum die immer von der Form sprechen?)

Zwei kleine Skizzen sollen Ihnen helfen, das besser zu verstehen und
gleichzeitig eine Wertetabelle fiir bestimmte Joystickpositionen darstellen.
Diese Werte erhalten Sie mit PEEK(56321). Nebenbei, in PEEK(145) steht
noch mal dasselbe.

Zur Demonstration noch einmal ein Blick in Byte 56321 (Bild 10.2).

Input/Output 189

PEEK (56320):
Bt 7 6 5 4 3 2 1 0

|128|64l32|16| 8;] 4|2 | 11

T 4 t— hoch
aus runter

links
rechts
Feuer
Das entsprechende Bit ist jeweils aus!
Joystick 2 (PEEK (56320))
126 110

122 118 106 102

L 1

123 4———@——-» 119 107 €4——(111)—> 103
l 105 l 101
109

125

121 117

ohne Feuerknopf mit gedriicktem Feuerknopf

Bild 10.3 Joystick 2, Bitbelegung in (56320)

Fein, denken Sie jetzt, Ende der Fahnenstange, das war es zum Thema
Joystick. Der zweite geht ja wohl genauso.

Aber erstens kommt es anders, zweitens als man denkt. So einfach hat es
uns Commaodore nicht gemacht. Sehen Sie selbst.

10 PRINT PEEK(56320):RUN

Der Wert fiir die Grundstellung ist hier 127. Aber keine Angst, im Prinzip ist
alles geblieben wie vorher. Der einzige Unterschied ist, daR Bit Nummer 7

190 Input/Output

(= 128) von vornherein ausgeschaltet bleibt. Und damit kann der hochste
Wert in dieser Speicherzelle nicht 255 (wie bei der anderen) sein, sondern 255
— Bit 7. Das heiBt 255 — 128. Und das ergibt genau 127. Toll, oder? Unse:
Joystickmodell sieht hier also folgendermaBen aus (Bild 10.3).
Ubrigens, gestatten Sie uns erneut den Hinweis: Wer mit all diesen Bits noct
nicht so recht klarkommt, sollte noch einmal das Kapitel Speicheraufteilung
auf diesen Teil hin durchlesen.

Stellt sich nur noch die Frage, wie man all das beim Programmieren gu
ausniitzen kann.

Quo vadis, Joystick?

Quo vadis ist zweierlei. Zum einen eine der bekannten Hollywood-Mammut-
produktion, und zum anderen lateinisch. An das erstere erinnert man sict
eigentlich ganz gern, an das zweite — na ja. Hier schweigt des Sénger:
Hoflichkeit . ..

Trotzdem reicht unser Latein gerade noch so, um diesen Ausdruck zi
verwenden. Quo vadis heiit ndmlich «Wohin gehst Du». Jeder, der Asteri
liest, kann sich vielleicht daran erinnern, daB es da auch vorkommt -
allerdings nicht so hdufig wie das beriihmte «Alea jacta est», was soviel heit
wie «Verdammt, jetzt isses aber zu spét ...». Und genau diese Frage, jetz
reden wir wieder von Quo vadis, stellt natiirlich unser Commodore denr
Joystick. SchlieBlich muB er — zwecks Bildschirmdarstellung — wissen, wohir
die Reise gehen soll. Um diese Frage a) von einem BASIC-Programm au:
stellen zu konnen und b) auch noch zu beantworten, miissen wir uns wiede
der Mithilfe von Herrn Boole versichern (Zwischenspiel 3).

WERT SCHALTER

HOCH
RUNTER
LINKS
RECHTS
FEUER

N BN -

Tabelle 10.2 Joystickwerte

Input/Output 191

Die Abfrage (dieses Wort erinnert auch immer so extrem an Latein ...)
muB im Programm

IF NOT PEEK (Joystick) AND WERT THEN entsprechender Schalter an

heiBen. Wir wiirden Ihnen natiirlich nicht raten, das so einzutippen. Sie
sollten es eher interpretieren. Das heift: Fiir JOYSTICK setzen Sie bitte 56320
oder 56321 (je nachdem ...) ein.

WERT sollte aus Tabelle 10.2 stammen.
Hinter dem THEN sollte der Teil des Programms stehen, der ausgefiihrt
werden soll, wenn der Joystick entsprechend bewegt wurde. Also beispiels-
weise:

10 IF NOT PEEK(56321) AND 16 THEN PRINT "FEUERKNOPF AM
JOYSTICK 1"
20 RUN

Natiirlich muB nicht alles, was bei einer bestimmten Position zu machen ist,
direkt hinter dem THEN stehen. Hier kann genausogut ein GOTO oder
GOSUB stehen. Und wenn wir schon beim Programmieren sind, noch ein
kleiner Tip: Angenommen, Sie wollen einen Sprite oder irgendein Zeichen mit
dem Joystick steuern. Natiirlich sollte das Objekt auch nach oben, wenn Sie
den Joystick nach oben bewegen. Um solche oder &dhnliche Aufgaben zu
bewdltigen, benutzen Sie am besten ein Koordinatensystem. Bei den Sprites
miissen Sie das ja sowieso. Also legen Sie einen X- und einen Y-Wert fest, den
Sie je nach Position des Joysticks erhéhen oder verringern. Weil das alles sehr
theoretisch klingt, haben wir ein kleines Beispielprogramm gemacht. Es geht
davon aus, da Sie ab Adresse 832 einen Sprite im Speicher haben. Beispiels-
weise unser Auto aus dem Sprite-Kapitel:

10 POKE2040,13: POKE53269,1: X=174: Y=135: POKE53284,X:
POKE53249,Y 5

20 IF NOT PEEK(56321) AND 1 THEN Y=Y -1

30 IF NOT PEEK(56321) AND 2 THEN Y=Y +1

40 IF NOT PEEK(56321) AND 4 THEN X=X-1

50 IF NOT PEEK(56321) AND 8 THEN X=X+1

60 POKE 53248 X:POKE 53249,Y

70 GOTO 20

Ist doch gar nicht so schwer, oder? Wenn lhnen die Bewegung zu langsam
ist, ersetzen Sie die Zahl 1 in den Zeilen 20 bis 50 einfach durch eine hoéhere.
Sie kénnten aber auch den Feuerknopf als Gaspedal einsetzen ...

Sie sehen, schon wieder hat sich Ihrer Experimentierfreude ein weites Feld
erschlossen. ..

192 Input/Output

Die Widerstandsbewegung beim Commodore 64

Paddles sind nicht ganz so verbreitet wie Joysticks. Ein biBchen zu Unrecht
allerdings, wie wir meinen. Denn Sie kénnen einiges, von dem Joysticks noch
nicht einmal trdumen.

Der Hauptunterschied zwischen beiden ist der, daB bei den einen das
Signal, das sie geben, in guter alter Computermanier einfach nur aus Schalter
an oder Schalter aus (dem beriihmten 1 und 0) besteht.

Die Paddles dagegen haben ihre eigene Ansicht dariiber. Sie kommen
sozusagen schon zur Widerstandsbewegung geboren auf die Welt — natiirlich
nur theoretisch.

Das heiBt, sie haben einen Widerstand eingebaut, der jeden Wert von 0 bis
255 zuriickgeben kann. Das klingt jetzt zwar véllig unproblematisch, weil 255
ja nun eine alte Bekannte ist, hat aber trotzdem seine Haken und Osen.

Die Paddles geben natiirlich keine Zahlen ins Chipgehirn, sondern verschie-
dene Stromstérken.

Um aber jetzt diese Stromstarken in computergerechte 0- und 1-Snacks zu
zerteilen, bedarf es einiger Hilfsmittel.

Ein solches Hilfsmittel ist ein A/D-Wandler. Diese Abkiirzung steht selbst-
verstdndlich wieder fiir einen der sinnigen Computerfachausdriicke, und zwar
fiir Analog/Digital-Wandler. Wie der Name schon sagt, wandelt der Wandler
Analoges in Digitales. Vereinfacht ausgedriickt, heift das: Er bekommt
freundlicherweise auf einer Seite Strom, der durch den Widerstand im Paddle
mehr oder weniger geschwacht wurde, und gibt diesen Strom, weil er ja kein
Egoist ist, auf der anderen Seite schon mundgerecht an eine 8-Bit-Leitung
weiter. Der Witz dabei ist, da die Stromstirke auf der einen Seite einem
Bitwert auf der anderen entspricht. So kann der Computer mit den Paddlein-
formationen arbeiten.

Wie wurde das jetzt technisch gelost?

Also: Ein Paddle hat einen drehbaren Knopf auf der Oberseite. Der ist mit
einem Schiebewiderstand verbunden, und je nachdem, wie weit rechts der
Knopf oben gedreht ist, um so groRer wird dieser Widerstand. So kann man
den durchflieBenden Strom schwéchen. Der Vorteil von Paddles ist klar:
Anstatt irgendwelche Koordinaten zu vergrofern oder zu verringern, kann
man hier die Stellung einer Figur direkt vom Ausschlag des Paddles abhéngig
machen.

Paddles werden immer als Paar geliefert, also eines fiir die X-, eines fiir die
Y-Richtung bzw. eines fiir den ersten, eines fiir den zweiten Spieler. So

Input/Output 193

konnen Sie also vier Paddles an Thren Commodore anschlieBen — zwei an Port
1 und zwei an Port 2.

Aber gleich ein Wermutstropfen. A/D-Wandler sind ziemlich teuer, und da
Sparen groRgeschrieben wird, haben die Commodore-Leute in die Trickkiste
gegriffen. Unser kleiner SID, von dem wir gerade im vorigen Kapitel gehort
haben, hat — Pech fiir ihn — bereits zwei solcher A/D-Wandler eingebaut. Also
werden die Paddles von einem CIA-Baustein auf diese A/D-Wandler umge-
leitet. (CIA hat in diesem Fall ausnahmsweise nichts mit dem gleichnamigen
amerikanischen Geheimdienst zu tun, obwohl die Vermutung gar nicht so
weit hergeholt wire, sondern heifit einfach Complex Interface Adapter.)

Solche falschen Botschafter wie der CIA (Baustein!!) sind uns ja schon
bekannt. Man vergleiche es nur mit dem Schicksal von VIC. Aber so ist das
halt in diesen Konigreichen. Doch mit den nétigen Bestechungs-POKEs kann
man trotzdem 4 Paddles gleichzeitig auslesen. Wie, zeigen wir gleich.
Zunichst erst mal die beiden SID-Adressen:

PEEK(54297) = Paddle 1
PEEK(54298) = Paddle 2

Die Paddles miissen zundchst an Port 1 angeschlossen werden. Sollten Sie die
Adressen gleich ausprobieren wollen, noch einige kurze Bemerkungen: Wir
sagten, die Werte kdnnen von 0 bis 255 liegen, sie missen aber nicht ...

Viele Paddles kommen selbst bei Vollausschlag nicht so weit. Deshalb auch
unsere Einkaufstips.

Zweitens werden die Werte selten ganz ruhig stehen wegen der hohen
Auflésung des Stroms. Sie miissen bedenken, daR jeder Strom, der in den
A/D-Wandler kommt, in 256 Einzelstufen zerlegt wird. Deshalb werden die
digitalen Werte des urspriinglich analogen Stromflusses um einige Stufen
nach oben und unten differieren. Ansonsten steht allerdings einem Pro-
gramm N

10 PRINT PEEK(54297);PEEK(54298):RUN

nichts mehr im Wege.

Wenn Sie die Paddles angeschlossen haben, wird Ihnen auffallen, daB sie
an der Seite je einen Feuerknopf haben. Den muf man natirlich auch
abfragen konnen. Die Adresse, mit der man das bewerkstelligen kann,
kennen wir schon: 56321.

Allerdings haben die Bits diesmal eine andere Belegung.

194 Input/Output

PEEK (56321):
Bt 7 6 5 4 3 2 1 0

8|4

t— Feuer Paddle # 1
Feuer Paddle # 2

Bild 10.4 Paddles Port 1, Bitbelegung in (56321)

Abfragen lassen sich die Paddle-Feuerkndpfe folgendermaBen:

PORT 1
IF NOT PEEK(56321) AND 4 THEN 1. PADDLE
IF NOT PEEK(56321) AND 8 THEN 2. PADDLE

Uber die sinnvolle Anwendung eines zweiten Feuerknopfes machen Sie sich
am besten Ihre eigenen Gedanken.

Oh, beinahe hitten wir es vergessen. Da war ja noch eine Intrige zu
bereinigen. Wie ist es moglich, gegen den CIA die Paddles zu lesen, die am
Port 2 hdngen? Nun, die beste Art, den Feind zu schlagen, ist manchmal, sich
mit ihm zu verbiinden. Also nehmen wir erst mal mit dem CIA-Typen Kontakt
auf. Er liegt gerade so ab der Adresse 56320 herum. (Schau an ...)

Hier erfiillt er verschiedene Aufgaben. Zum Beispiel lauft tiber ihn die ganze
Tastaturabfrage. Und er ist auch fiir die beiden Game Ports zustdndig. Sie
sehen, er ist Giberall da, wo Informationen flieBen. Und deshalb ist es auch er,
der die Signale an den SID weiterleitet. Die obersten beiden Bits der Speicher-
zelle 56320 (Sie erinnern sich vielleicht noch: auch Joystick 2 hangt hier
daran. Dieser beeinfluBt aber nur die unteren Bits); diese obersten beiden Bits
also sind dafiir verantwortlich, welcher Port weitergeleitet wird.

Wenn wir nun dem CIA-Typen auf diese Weise eine fingierte Botschaft
tUberbringen, daR statt Port 1 der andere gelesen werden soll — schon haben
wir, was wir wollen. Allerdings miissen wir vorher noch die Tastaturabfrage
abschalten, denn wihrend des Lesens von Paddle 2 darf sie nicht stattfinden.
Sonst merkt unser kleiner Agent, was hier gespielt wird. Und man kennt diese
Typen ja ...

Eine kurze Zwischenbemerkung, solange wir uns moralisch auf unseren
kleinen Anschlag vorbereiten: Wenn Sie sowieso nur ein Paddlepaar haben,
schlieBen Sie es der Einfachheit halber gleich an Port 1 an. Okay, aber jetzt

Input/Output 195

geht's los. Wir schalten zuerst die Interrupts ab (wie bei der Sonderzeichen-
definition mit POKE 56334,0). Arbeiten Sie dabei, wie gehabt, mit dem
notigen Respekt. Wenn das geschehen ist, kdnnen Sie die Bits in 56320 ohne
Skrupel dndern. Dabei gilt:

POKE Paddlesatz
56320,64 |
56320,128 Il

Jetzt konnen wir uns die Werte der beiden Paddles beim SID abholen. Danach
soliten Sie den Interrupt wieder einschalten, damit die Tastatur wieder
gelesen werden kann (POKE 56334,1).

Und da 56320 im allgemeinen eine sehr vielseitige Adresse ist, kann man
hier auch die Feuerknopfe der Paddles von Port 2 lesen.

PEEK (56320)
Bt 7 6 5 4 3 2 1 0

pasfes] | Jsfa] [|

T— Feuer Paddle # 1
Feuer Paddle # 2
Port 1

Port 2
Bild 10.5 Paddles Port 2, Bitbelegung in (56320)

Wie beim Port 1 sind die Bits Nummer 2 und 3 dafiir zustandig.

PORT 2
IF NOT PEEK(56320)-AND 4 THEN 1. PADDLE
IF NOT PEEK(56320) AND 8 THEN 2. PADDLE

Zur Abfrage der Feuerkndpfe wie auch der Joysticks diirfen die Interrupts
nicht ausgeschaltet sein. Ein Unterprogramm, das alle Paddleabfragen durch-
fiihrt, sieht ungefahr so aus:

10 POKE56334,0
20 POKE56320,128 .
30 X2=PEEK(54297):Y2=PEEK(54298)

196 Input/Output

40 POKE 56320,64
50 X1=PEEK(54297):Y1=PEEK(54298)
60 POKE 563341

Dabei entsprechen die Variablen folgenden Werten:

X1 = WERT PADDLE 1, PORT 1
Y1 = WERT PADDLE 2, PORT 1
X2 = WERT PADDLE 1, PORT 2
Y2 = WERT PADDLE 2, PORT 2

Das war es dann fiir heute. Bleibt lhnen nur noch die Kleinigkeit, ein
wahnsinnig tolles Softwarepaket um 2 oder 4 Paddles herum zu schreiben —
vielleicht eines, in dem es um Agenten vom CIA geht ...

1
Peripheriegerate

Der,Commodore bekommt Gesellschaft

Irgendwann kommt der Tag, an dem reicht der kleine Kassettenrecorder am
Commodore einfach nicht mehr aus. Das kann sein, weil man es satt hat,
standig hin- und herzuspulen, oder weil man ein Programm, das man gern
mochte, nur auf Diskette bekommt, oder auch, weil man selbst ein Programm
schreiben will, das nur mit Diskette funktioniert.

Warum auch immer, der Tag kommt so gut wie sicher, an dem man sich zu
der Entscheidung gedrdngt sieht, ob man eine Diskettenstation anschaffen
sollte oder nicht.

Dieses Kapitel ist natiirlich in erster Linie fiir diejenigen geschrieben, die
schon eine Floppy (oder einen Drucker, iiber den wir auch kurz sprechen
wollen) besitzen. Aber auch die anderen soliten es lesen. Zum einen, um
informiert zu sein, was solche Erweiterungen bringen und ob sich ihre
Anschaffung zum gegenwadrtigen Zeitpunkt lohnt. Zum anderen, um eine
solche Erweiterung schon jetzt beim Programmieren beriicksichtigen zu
konnen. Schon manch einer, der seine Datenverwaltung vorher mit Kassette
erledigt hat, war nach dem Kauf einer Floppy wochenlang damit beschiftigt,
seine Programme umzuschreiben. Dabei hdtte es bei entsprechender Pro-
grammierung schon gereicht, einige Adressen zu dndern (nicht die in der
Datei, sondern die im Programm!)

Jetzt aber genug der Vorrede. Wir wollen uns zundchst um diese runden
schwarzen Scheiben kiimmern. Nein, gemeint sind nicht angebrannte Pfann-
kuchen, sondern die Disketten selbst.

198 Peripheriegeréte

Eine Scheibe mit Format

Meist das erste Zusatzgerdt, das nach dem Commodore nebst Kassettenre-
corder gekauft wird, ist die Diskettenstation, abgekiirzt auch gern Floppy
genannt. Schon dieser Spitzname klingt sehr lebendig, im Sinne von schnell.
Und so sind dann auch meist folgende Vorteile gegeniiber dem Kassettenre-
corder ausschlaggebend fiir die Anschaffung: Die Floppy speichert und ladt
Daten schneller als der Recorder. Sie tut das aber auch sicherer. Ein LOAD
ERROR kommt bei Kassetten schon 6fter mal vor, bei einer Floppy fast nie.
Und die Floppy ist komfortabler zu bedienen. AuRerdem gibt es, wie schon
oben erwédhnt — hauptséchlich fiir professionelle Anwendungen wie Textver-
arbeitung —, Programme, die man eh nur auf Diskette bekommt. Meist
machen sie auch nur da Sinn.

Vielleicht liberlegen Sie sich jetzt, warum das so ist. Denn schlieBlich
speichern doch beide Geréte einfach nur magnetische Signale.

Zur Kldrung schauen wir uns am besten mal kurz an, wie die Geschichte des
Speicherns ablief.

Bekannt ist ja, daR ein Programm zumeist im RAM steht. Da steht es auch
gut, solange Strom durchflieBt. Doch wird der Computer ausgeschaltet, dann
verschwindet das Programm. Nun kénnte man den Computer auch die ganze
Nacht anlassen oder so eine Art Notstromspeicher in Form einer Batterie
einbauen. Gut, sicher ein Weg. Aber dann brauchten Sie fir jede Anwendung
einen eigenen Computer. Oder Sie tippen jedesmal, nachdem Sie was
anderes gemacht haben, das gewiinschte Programm wieder ab. Unpraktisch,
nicht? Ein Programm muB also irgendwie, moglichst unabhéngig vom Strom,
konserviert werden kénnen und zwar so, daB der Computer es spéter auch
wieder einlesen kann. Zu diesem Zwecke muften wieder unsere kleinen
Freunde, die Bits, herhalten. Denn sie kann man am einfachsten haltbar
machen. Aber bis zur Speicherung auf Floppy-Disks war es auch nach dieser
Erkenntnis noch ein weiter Weg.

Lange Zeit wurden Lochkarten zum Speichern verwendet. Sie kdnnen sich
es wohl schon denken. Loch = Strom an; kein Loch = Strom aus. Allerdings
hatte dieses System einige entscheidende Nachteile. Komplexere Programme
nahmen auf diese Weise sehr schnell das AusmaR von ganzen Karteikédsten
an. Dem stand natirlich wieder der Vorteil gegeniiber, daf8 die Programmie-
rer zu Fasching mit geniigend Konfetti versorgt waren ...

Spétestens mit der Verbreitung des Magnetbands wurde das Speichern
aber schon wesentlich vereinfacht. Die Bits wurden zu Impulsen auf Band

Peripheriegerite 199

umgewandelt und genau wie Tone der Nachwelt erhalten. Und damit sind
wir der Entwicklung immerhin schon bis zum Kassettenrecorder nachgeeilt,
den man auch an lhren Commodore hangen kann.

Doch ein entscheidender Nachteil blieb. Suchte man ein Programm, das am
anderen Ende des Bandes gespeichert wurde, mufte man eben spulen. Und
das dauerte natiirlich. Kurz und gut: Ein schneller Datenzugriff war immer
noch nicht moglich.

Also besannen sich die Techniker auf die (dltere) Technik der Schallplatte.
Hier kann der Tonarm ja auch, durch Hin- und Herfahren, ziemlich jede
Position blitzschnell erreichen. Zu empfehlen ist allerdings, ihn vorher von der
Platte zu heben.

Und somit stand der Floppy-Disk eigentlich nichts mehr im Wege — auBer
vielleicht die Kleinigkeit der technischen Entwicklung ...

In der Tat ist eine Diskette einer Schallplatte gar nicht so undhnlich. Nur,
daB es bei der Diskette keine Rillen mehr gibt, sondern Spuren, und daR die
auch nicht einfach «gekratzt», sondern rein magnetisch aufgezeichnet
werden.

Heute gibt es im groBen und ganzen zwei Arten von Disketten: Die
grofRen, etwas klobigen 8-Zoll-Disketten, die hauptséchlich bei GroBcompu-
tern eingesetzt werden, und die Fiinfeinviertel-Zoll-Disketten, wie sie auch
die VC-1541-Floppy fiir hren Commodore verwendet. Womit das Kind auch
seinen Namen hdtte. Und genau diese Diskettenart wollen wir uns jetzt ndher
ansehen.

Wenn wir beschreiben, wie die Diskette aussieht, wollen wir uns nicht bei
AuBerlichkeiten aufhalten. Wahrscheinlich hat jeder von lhnen schon einmal
so eine Scheibe gesehen. Viel interessanter ist, wie so oft, was man nicht
sehen kann.

Damit hier keine Probleme aufkommen, die eigentliche Diskettenscheibe
ist natiirlich rund, nicht eckig. Sie kann sich in der eckigen Hiille frei drehen.
Allerdings sollten Sie das nicht mit den Hénden ausprobieren. Denn die
Oberfliche der Diskette, die aus mikrofeinen Partikeln besteht, ist sehr
empfindlich gegen Hautfett und SchweiB. Die Diskette fassen Sie am besten
immer nur an der Schutzhiille an — da, wo zum Beispiel auch der Markenauf-
kleber ist.

Wie gesagt, die Informationen befinden sich in Form magnetischer Signale
auf der Oberflache der Diskette. Dazu werden auf der Diskette konzentrische
Spuren angelegt. Die Anzahl, Breite und Lage dieser Spuren ist von Firma zu
Firma verschieden. Wohigemerkt: nicht von Diskettenfirma zu Disketten-

200 Peripheriegeréte

firma, sondern von Computerfirma zu Computerfirma. Wenn Sie Disketten
kaufen, dann sind sie sozusagen erst mal frei von jeglichen Regeln. Das
Format wird beim ersten Einsatz aufgezeichnet. Man nennt das auch Forma-
tieren. Wie das in unserem Fall geht, zeigen wir lhnen noch. Wahrend des
Formatierens werden in jedem Fall konzentrische, ineinanderliegende Kreise
magnetisch vorgezeichnet. Zum SchluB sieht die Diskette dann, natirlich nur
magnetisch betrachtet, aus wie eine SchieBscheibe beim Schiitzenverein. Bei
der 1541 werden 35 solcher Spuren gezogen.

Eine Spur wird dann ihrerseits wieder in mehrere Sektoren unterteilt. Ein
Sektor ist also ein Ausschnitt aus einer Spur. In einem solchen Sektor kénnen
256 Bytes Informationen gespeichert werden. Wenn Sie sich noch an die
Speicheraufteilung erinnern: 256 Bytes sind fiir den Computer genau eine
Speicherseite. Insgesamt befinden sich auf lhrer Diskette 683 solcher Sekto-
ren. Damit die Floppy aber bei dieser Menge von Sektoren (auch Blocks
genannt) auch immer wei3, wo sich welche Informationen befinden, gibt es
ziemlich in der Mitte der Diskette, ndmlich auf der Spur 18, ein Inhaltsver-
zeichnis — die sogenannte Directory. Auf dieser Spur sind Informationen wie
der Name und die Nummer der Diskette gespeichert, auBerdem die Namen
der Programme und der Datensitze, die sich auf ihr befinden, und auch ein
Zeiger, das ist so eine Art interner Wegweiser, der angibt, auf welcher Spur
und in welchem Sektor der Anfang dieser Aufzeichnung zu suchen ist.
Natiirlich belegt die Directory die Spur 18 fiir sich, und so kénnen hier keine
anderen Daten mehr gespeichert werden. Damit bleiben zum SchluB nur
noch 664 Blocks frei. Und das entspricht nun runden 170K Speicher.

Wenn lhnen das jetzt alles etwas verwirrend vorkam, hier noch einmal eine
kleine Skizze und eine Ubersicht iiber die wichtigsten Daten lhrer Disketten.
Da zur Speicherung von 256 Bytes ein gewisser Platz notig ist, der Platz auf
jeder Spur aber, wie die Skizze zeigt, zur Mitte hin abnimmt, ist auch
einsichtig, daR sich auf den duBeren Spuren mehr Sektoren befinden als auf
den inneren. Im einzelnen sieht das dann so, wie in Tabelle 11.1 dargestellt,
aus.

Jetzt wissen wir doch schon allerhand iiber das Format der Disketten. Nur
noch eine kleine Anmerkung: Sie wundern sich vielleicht tiber das kleine Loch
in der Diskette. Nein, das ist nicht das Versehen eines Programmierers, der
noch Lochkarten gewohnt ist. Aber ein Relikt aus vergangenen Tagen ist es
trotzdem. Wie Sie sich vorstellen kénnen, ist es unbedingt notwendig, daR
sich die Diskette mit der absolut gleichen Geschwindigkeit dreht. Sonst wiirde
der Schreib-/Lese-Kopf des Laufwerks die Daten nicht mehr erkennen kén-

Directory (Spur 18)

Spur 35

Peripheriegeréte

Bild 11.1 Diskette

Anzahl der Sektoren

21
19
18
17

Spuren: 35
Sektoren: 683
Bytes je Sektor: 256
Directory: Spur 18
freie Sektoren: 664
Kapazitat: ~ 170K
Spur
1 bis 17
18 bis 24
25 bis 30
31 bis 35
Tabelle 11.1

Anzahl der Sektoren pro Spur

201

202 Peripheriegeréte

nen. Stellen Sie sich nur mal vor, irgend jemand wiirde eine lhrer Lieblings-
platten zu schnell oder zu langsam spielen. Dann wiirden Sie auch Probleme
haben, den Sdnger wiederzuerkennen. Selbst Langspielplatten mit Wagners
«Ring der Nibelungen» wiirden an Ausdruckskraft verlieren, wenn sie in
45er-Geschwindigkeit abliefen.

Deshalb verwendete man friiher dieses kleine Loch in der Hiille und in der
Magnetscheibe. Einmal pro Umdrehung sind die beiden Locher ja deckungs-
gleich, und Licht kann hindurchscheinen. Eine Fotozelle auf der anderen Seite
zdhlte dann die LichtstoRe je Sekunde und regelte auf dieser Basis die
Geschwindigkeit. Bei moderneren Floppys geschieht dies durch eine magneti-
sche Synchronmarkierung, die vom Schreib-/Lese-Kopf erkannt wird.

Und noch ein Tip zur Diskettenpflege: Die Seite, auf der aufgezeichnet
wird, ist entgegen der allgemeinen Vermutung nicht oben, wo das Etikett ist,
sondern unten. Deshalb ist es nicht zu empfehlen, die Disketten nur von oben
gegen Staub zu schiitzen und sie mit der Unterseite irgendwo herumliegen zu
lassen. Der beste Platz fiir Disketten ist die Schutzhiille. Und der beste Platz
fir Disketten in der Schutzhiille ist ein Diskettenkasten.

Nach all diesen theoretischen Vorbemerkungen ist es nun soweit. Wir
nehmen Kontakt mit der Floppy-Disk auf.

Das Konigreich von nebenan — die VC 1541

Sie erinnern sich vielleicht noch an unser Bild vom 6510, dem Prozessor Ihres
Commodore 64. Nun, dieses Bild wollen wir hier fortsetzen. Damit lassen sich
ndmlich viele Dinge ganz anschaulich erkldren.

Wenn man also die Floppy als ein eigenes Reich betrachtet, und das kann
man durchaus, dann zeigt dieses Reich zuerst die typischen Eigenschaften
eines Agrarstaates, denn schlieBlich sind die dort alle damit beschiftigt,
irgendwelche Furchen auf der Diskette anzulegen und dort massenweise Bits
anzupflanzen.

Auf der anderen Seite sind auch deutliche Merkmale eines Industriestaates
zu erkennen: Die Floppy ist in hohem MaBe von Import und Export abhdngig.
Uber dieses komplizierte Staatsgefiige herrscht ein etwas élterer, aber weiser
und gemiitlicher Konig: Sein Name ist 6502 (auf das Beiwerk «der Erste»
verzichtete man, weil auch so schon genug Zahlen im Namen vorkommen).
Er ist tibrigens der Vorldufer des jungen 6510. Der 6502 ist zwar etwas
langsamer als der 6510, aber dafiir hat er seine Ruhe. Er ist absoluter

Peripheriegerite 203

Herrscher in seinem Reich. Allerdings finden wir als Besucher einige alte
Bekannte hier in der Floppy wieder: RAMs und ROMs zum Beispiel. In den
ROMs steht das Betriebssystem der Diskette, DOS (Diskette Operating
System) genannt. Auch 2K-RAM finden wir hier. Teils dienen sie als Zeropage
fiir das DOS und teils als Pufferspeicher. Was das genau ist, erkldren wir
spater noch.

SchlieRlich gibt es auch ein paar 1/0-Bausteine zur Kontrolle der Motorge-
schwindigkeit, des Schreib-/Lese-Kopfes und zur Kommunikation mit dem
Computer. Und damit wére auch eine wichtige Sache von vornherein geklart:
Die Floppy ist ein eigener, autonomer Computer, allerdings mit anderen
Aufgaben, als sie der Commodore hat. Das ist iibrigens keineswegs bei allen
Computern so.

Die Floppy braucht zum Beispiel keinen Bildschirm, dafiir aber verschiedene
Elektromotoren zur Bewegung der Diskette und des Schreib-/Lese-Kopfes.
Dieser Name ist jetzt schon einige Male gefallen. Was ist eigentlich ein
Schreib-/Lese-Kopf? Nun, er ist in erster Linie fiir die Datenspeicherung
verantwortlich. Im Prinzip ist er nichts weiter als ein Elektromagnet. Wenn er
schreibt, wandelt er elektrische Impulse in ein Magnetfeld um, das die Partikel-
auf der Diskettenoberfliche eben magnetisiert — oder nicht (nach dem
bekannten Prinzip: Strom oder kein Strom). Wenn er liest, dann wandelt er
die magnetischen Impulse auf der Diskettenoberfliche wieder um: In Strom
an/Strom aus. Allerdings denkt er sich nicht viel dabei. Den Rest iiberlaBt er
der Regierung — wie ein braver Biirger eben.

Wenn wir also von der Floppy irgend etwas wollen, miissen wir schon
sozusagen beim Konig vorsprechen. Aber das funktioniert nur, wie das halt so
ist bei Monarchen, tiber ein sehr strenges Protokoll. Wenn Sie das noch nicht
getan haben, dann schalten Sie Ihre Floppy jetzt ein.

Voraussetzung dafiir, daB das Kommando funktioniert, ist natirlich, daB
die Floppy ordnungsgemaB an lhren Commodore angeschlossen ist.-Sonst
tritt derselbe Effekt ein, wie bei den Western, wo die Banditen genauki)n dem
Moment die Telegrafenleitung kappen, in dem Old Shatterhand den Gouver-
neur in Santa Fé alarmieren will.

Wenn das gekldrt ist, sprechen wir doch mal beim Haushofmeister vor:
Dazu missen wir einen Kommandokanal zur Floppy er6ffnen.

OPEN 1,8,15

erledigt das fiir uns.
Die Zahlen bedeuten im einzelnen folgendes:

204 Peripheriegeréte

1 ist die Kanalnummer. Sie kann véllig frei von O bis 255 gewdhlt werden.
Wir leben ja in einer Monarchie, also fast vollig frei: Erstens empfiehlt es sich,
tiblicherweise nur Nummern unter 127 zu verwenden. Der Sinn dieser
Vorschrift wird allerdings erst beim Drucker erkldrt. AuBerdem sollte man
moglichst dieselbe Kanalnummer verwenden wie die Gerdtenummer. Das hat
den Vorteil, daB, wenn man mehrere Gerdte angeschlossen hat, immer eine
ganz gute Ubersicht behalten werden kann.

8 st die zweite Zahl. Sie ist die Gerdtenummer der Floppy. Man sollte sie

einfach hinnehmen. Man kann sie zwar softwaremaRig (bis zum néchsten
Ausschalten) oder auch hardwaremaRig (also fiir die fernere Zukunft) &ndern.
Das empfiehlt sich jedoch nur, wenn man mehrere Floppys gleichzeitig
verwenden will. Denn die meisten Programme, die sich auf das Diskettenlauf-
werk beziehen, gehen davon aus, daB die Gerdtenummer 8 ist.
15, als letzte Zahl, stellt schlieBlich die Sekunddradresse dar. Sie spricht
verschiedene Betriebsmodi an, liber die wir uns spater noch unterhalten
wollen. In unserem Fall steht die 15 auf jeden Fall fiir den Modus: «Uber
diesen Kanal werden Befehle und Meldungen hin- und hergeleitet.» Férmlich
ausgedriickt, entspricht das bei Hof: «Wir bitten untertdnigst um die Gnade
einer Audienz. Wenn Sire 6502, hochwohlprogrammiert, bitte anhéren wiir-
den, was wir vorzubringen gedenken.»

Falls unser Ersuchen nicht abgelehnt wurde, zum Beispiel durch einen
SYNTAX ERROR oder einen ILLEGAL QUANTITY ERROR oder andere diplo-
matische Verwicklungen, dann steht die Verbindung. So, spétestens jetzt
sollten wir uns berlegen, was wir eigentlich vorzubringen gedenken. Denn
Majestéten sind ja nun sehr beschiftigte Leute.

Bevor die Floppy allerdings irgend etwas tun kann, braucht sie erst mal
Futter. Schieben Sie ihr also am besten die dem Gerdt beigefiigte «TEST/
DEMOn»-Diskette in den Schlund. Dann machen Sie die Klappe zu. Achten Sie
darauf, daB das Etikett beim Einschieben immer oben ist und auf Sie zuzeigt —
oder andersrum, daB die ovale Aussparung an der Diskette in Richtung des
Laufwerks zeigt, wenn Sie sie einschieben. Denn nur iiber diese Offnung
kann der Schreib-/Lese-Kopf direkt auf die magnetische Oberflache zugrei-
fen. Nachdem nun wirklich alle Vorbereitungen getroffen waren, wollen wir
frisch heraus unsere Forderungen stellen: «Sire, leset die Identity in Ihro
Arbeitsspeicher». Oder, etwas moderner ausgedriickt:

PRINTH#1,"1"

Wenn jetzt das Laufwerk zu surren anféngt und die rote LED-Anzeige kurz

Peripheriegerite 205

aufleuchtet, zeigt uns der Hof sein Verstdndnis. Aber ... was haben wir ihm
eigentlich gesagt?

Nun, nachdem Sie ja den Ausdruck Identity gelesen haben, miissen wir Sie
erst einmal von einer unter Umstdnden falschen Spur abbringen. Dieser
Ausdruck hat keineswegs damit zu tun, daB unser kleines Reich unter einer
Identitétskrise leidet. Eigentlich war der Befehl, den wir gegeben haben, sogar
etwas unnétig, und zwar aus folgendem Grund: Beim Formatieren, wir
werden das nachher noch zusammen ausprobieren, wird jeder Diskette ein
zweistelliger Identifikations-Code («ldentity») zugeordnet. Anhand dieses
Codes erkennt die Floppy, um welche Diskette es sich handelt. Oder einfa-
cher gesagt, wenn sich dieser Code von dem der vorhergehenden Diskette
unterscheidet, ist alles in Butter. Dann wird ndmlich alles, was der «I»-Befehl
(von Initialize) bewirkt, automatisch erledigt. Wenn aber nicht — und diese
Méglichkeit besteht, falls Sie nicht wirklich fir jede Diskette eine andere
Nummer verwendet haben —, dann gibt es Probleme. Und genau deshalb
mull der Floppy dann mitgeteilt werden, daB jetzt eine neue Diskette
eingelegt wurde. Das tut der «I»-Befehl. Deshalb ist er auch eher als eine
erste schiichterne Kontaktaufnahme als ein richtiger Befehl zu sehen. Warum
interessiert die Floppy, welche Diskette eingelegt wurde? Um das zu verste-
hen, muB man sich etwas genauer iiber die Vorginge bei Hofe informieren.

Das Land, das dort stindig bebaut wird (die Diskettenoberfldache), stellt mit
seinen 683 Blocks ja schon ein relativ groRes Terrain dar. Und damit keine
Querelen entstehen, wem nun welches Stiick Land gehort, ist beim Koénig
eine Landkarte hinterlegt, auf der genau verzeichnet ist, ob ein Block schon
belegt ist. Das ist in erster Linie wichtig, wenn Programme oder Daten
geschrieben werden sollen. Dann muB die Floppy namlich wissen, in welchem
Block schon Daten stehen. Dazu wird ein solcher Block auf der Karte (sie heifit
BAM = Block Availability Map) als «belegt» gekennzeichnet. Diese BAM
wird zwar auf die Diskette draufgeschrieben, aber um schneller damit arbei-
ten zu koénnen, wird sie ins RAM kopiert. Wiirde man jetzt die Diskette
wechseln, ohne daR es die Floppy weifl, dann wiirde sie sich auf die flache
BAM in RAM beziehen. So schon sich das auch reimt, so katastrophale Folgen
kann es jedoch haben. Denn hier sind ja ganz andere Blocks frei und belegt als
auf der Diskette. Die Auswirkungen wéren wohl eine Art Flurbereinigung,
gegen lhren Willen. Und das wiirde lhren Programmen gar nicht guttun, weil
belegte Blocks eben iiberschrieben werden. Um genau solche Hausrevolutio-
nen zu verhindern, ist die ID-Nummer da. Denn vor jeder Schreiboperation
liberpriift die Floppy diesen Code. Hat er sich gedndert, wird die neue BAM

206 Peripheriegerate

eingelesen — kein Problem. Wenn nicht, geht die Floppy, nicht ganz zu
Unrecht, davon aus, daB alles beim alten geblieben ist, und schreibt deshalb
munter drauflos — mit allen Konsequenzen, die'wir oben beschrieben haben.

Fiir Sie sollte das jetzt konsequenterweise heifen: unterschiedliche 1D-
Codes verwenden! Oder nach jedem Diskettenwechsel einen «I»-Befehl zur
Floppy schicken. Die Losung mit der ID-Nummer ist wohl die bessere. Im
tibrigen sollten Sie sich dazu ein eigenes System zurechtlegen, damit Num-
mernwiederholungen ausgeschlossen werden. Bevor wir jetzt aber anfangen,
unsere erste eigene Diskette anzulegen, wollen wir uns ein paar Dinge von
der «TEST/DEMOn»-Diskette anschauen. Dazu bitten wir zundchst unseren
kleinen Konig, die Audienz zu beenden:

CLOSE 1

Dafiir wollen wir uns jetzt das Inhaltsverzeichnis der «TEST/DEMO»-Diskette
mal genauer ansehen. Da taucht aber auch gleich wieder ein Problem auf:
Das Commodore-64-BASIC V2 ist auf Diskettenbefehle etwa so groRartig
vorbereitet wie der Durchschnittsschiiler auf eine Latein-Kurzarbeit, das heif3t
also wenig bis gar nicht. Bei den meisten Computern gibt es einen bestimm-
ten Befehl, um sich dieses Inhaltsverzeichnis anzuschauen. SchlieBlich ist es ja
nicht uninteressant, zu wissen, was auf einer Diskette abgespeichert wurde.
Beim Commodore gibt es leider erst mal nur einen kleinen Umweg: Die
Directory wird als Pseudo-BASIC-Programm geladen und kann dann mit LIST
angesehen werden. Der Befehl zum Laden ist:

LOAD "$",8

Wenn Sie diesen Befehl mit dem BASIC-Kapitel vergleichen, wird lhnen
auffallen, daB hier eigentlich ein Programm ganz normal von der Diskette
geladen wird. Nur, daB es den omindsen Namen «$» trdgt. Dieser Name ist
fiir ein Programm nun tatséchlich etwas ungewdhnlich. Das merkt auch unser
DOS und gibt dem Computer statt dessen das Inhaltsverzeichnis. Mit einem
einfachen

LIST

sehen Sie dann das Gewlinschte. Jetzt wollen wir kurz erkldren, was Sie nun
noch auBer Programmnamen auf dem Bildschirm sehen.

In der ersten Zeile steht in invertierter Darstellung (also dunkle Buchstaben
auf hellem Grund) der Name der Diskette. In diesem Fall: «1541 TEST/
DEMO», gefolgt von der Identity, die hier «ZX» heiBt. Nun haben Sie diesen

Peripheriegerte 207

Namen vielleicht schon einmal gehort, es ist einer der Commodore-Konkur-
renten auf dem Markt der Home-Computer. Aber wir gehen von der
Vermutung aus, daf es sich hier nur um einen Zufall handelt. Ahnlichkeiten
mit tatsdchlich existierenden oder noch zu erfindenden Computern waren
rein zuféllig und vollig unbeabsichtigt. Als letzte Information in dieser Zeile
findet sich das Kiirzel «2A». Es steht fiir die DOS-Version, unter der die
Diskette formatiert wurde.

Aber die interessiert uns momentan weniger.

In den ndchsten Zeilen stehen die Namen der Programme, die auf dieser
Diskette gespeichert sind. Vor ihnen finden Sie jeweils eine Zahl. Das ist die
Zahl der Blocks oder Sektoren, die das jeweilige Programm dahinter belegt.
Daraus 4Bt sich auch in etwa die GroRe eines Programms errechnen. Als
Faustregel gilt

Zahl der Blocks/4 = Lange des Programms in KByte.

Hinter den Namen koénnen Sie an einem Kiirzel noch erkennen, um welche
Art von Aufzeichnung es sich handelt.

PRG steht fiir Programm und ist meist das dbliche.

SEQ steht fiir sequentielle Datei.

REL steht fiir relative Datei.

Ganz am Ende steht noch die Anzahl der freien Blocks, also der Blocks, die
noch nicht belegt sind. In unserem Fall miiBten das rund 558 sein. Wenn Sie
jetzt feststellen, da diese Werte und Namen relativ wenig mit lhrer «TEST/
DEMO»-Diskette zu tun haben, dann machen Sie sich keine Sorgen. Genauso
wie manche Leute alle paar Monate einen Rappel bekommen und ihre
gesamten Mobel in der Wohnung hin- und herschieben, so scheint es auch
Commodore zu gehen. Immer mal wieder iberraschen sie Kaufer mit neuen
«TEST/DEMO»-Versionen. Ubrigens geht das Geriicht um, daB #hnliches
auch mit dem Betriebssystem der Fall sein soll. Nur nicht so oft ...

Bisher erschien lhnen das aber alles wohl recht unproblematisch. Das liegt
zum einen sicherlich daran, daf Sie gar nichts anderes gewohnt sind. Es gibt
zum Beispiel einen mit einer Fruchtsorte verwandten Computer, der dasselbe
einfach mit dem Befehl CATALOG erledigt. Und da ist er beileibe nicht der
einzige. Zum anderen ist Ihnen sicherlich auch noch die Konsequenz des
Ladens eines BASIC-Programms nicht ganz klar. Wenn man das namlich tut,
dann I6scht man damit immer das bereits im Speicher Befindliche. Das ist nun
an und fiir sich eine sehr gute Einrichtung, um ein heilloses Durcheinander
von Programmen zu verhindern. Aber stellen Sie sich jetzt mal vor, Sie haben

208 Peripheriegeréite

gerade ein ziemlich langes BASIC-Programm eingegeben und wollen nun,
nach getaner Miih', dieses Programm auf Diskette speichern. Da Sie aber
nicht genau wissen, ob noch genug Platz auf der Diskette librig ist, wollen Sie
eben nachschauen. Aber wir wiirden lhnen davon sehr abraten. Denn in dem
Augenblick, da Sie das Directory als Quasi-BASIC-Programm laden, k&nnen
Sie Ihr eigentliches BASIC-Programm nur noch als freudige Erinnerung im
Gedachtnis behalten. Denn jedes neue Programm loscht das vorhergehende.
Also heiBt es nur: entweder Programm abspeichern oder auf der Diskette
nachschauen. '

Aber bevor Sie sich jetzt dariiber stdndig den Kopf zerbrechen, sei lhnen
hier schon verraten, daR Commodore dafiir gliicklicherweise eine Losung hat.
Nur weil alles schon der Reihe nach gehen soll, dachten wir uns, wir
formatieren erst mal eine Diskette zusammen.

Mit all unserem Wissen wollen wir jetzt mutig Neuland betreten — so, wie
die Siedler mit ihren Trecks in den rauhen Westen zogen und dort die Prédrie
urbar machten. Unsere Prérie besteht aus einer unformatierten, leeren Dis-
kette. Wenn Sie eine solche momentan nicht besitzen, sollten Sie sich schnell
welche kaufen. Auf keinen Fall sollten Sie auf die Idee verfallen, lhre «TEST/
DEMOn»-Diskette neu zu formatieren. Denn das bedeutet auch den Verlust
samtlicher bereits sowieso nur spérlich vorhandener Programme. Normaler-
weise diirfte aber der Formatierungsbefehl mit Ihrer « TEST/DEMO»-Diskette
gar nicht funktionieren. Aber man wei ja nie.

Warum er nicht funktionieren wiirde? Nun schauen Sie sich diese Diskette
doch mal genau an. An der rechten Seite, wo bei anderen Disketten meist ein
kleiner viereckiger Ausschnitt zu sehen ist, befindet sich in lhrem Fall ein
silberner Aufkleber. (Die Farbe kann differieren, die Funktion bleibt aber die
gleiche.) Dieses Stiick undurchsichtiges Klebeband, um nichts anderes han-
delt es sich im Grunde, wird auch als «Schreibschutzaufkleber» bezeichnet.
Solange der kleine, viereckige Ausschnitt damit zugeklebt ist, kann auf die
Diskette nichts geschrieben werden. Solche Aufkleber befinden sich meist in
den Diskettenpackungen, so daR Sie auch selbst Ihre Disketten vor dem
Beschreiben schiitzen konnen. Ist der Aufkleber allerdings weg, ist lhre
Diskette allen Schreibangriffen schutzlos ausgesetzt. Und weil Formatieren
wirklich ein sehr drastischer Vorgang ist, sollten Sie ihn eigentlich nur bei
frisch gekauften Disketten anwenden oder bei Disketten, bei denen Sie sicher
sind, daB entweder alle Programme irgendwo anders nochmals abgespeichert
sind oder sowieso nichts taugen und deshalb ruhig geléscht werden konnen.

Neue Disketten aber missen erst mal, wie schon erwihnt, formatiert
werden. Was passiert dabei?

Peripheriegeréte 209

Ganz einfach. Thre Commodore-Floppy wird sich Spuren und Sektoren, die
sie als passend empfindet, und die Directory anlegen. Ubrigens liegt die
Betonung hier auf «lhre Floppy». Es kann manchmal schwierig sein, wenn
zwei Leute Programme austauschen. Wenn namlich der Schreib-/Lese-Kopf
einer Floppy nur ein bifchen falsch justiert ist, dann kann es sein, daR die
andere Floppy die Diskette nicht lesen kann, obwohl sie auf der ersten
einwandfrei gelaufen ist. In so einem Fall sollte der Schreib-/Lese-Kopf vom
Fachhédndler nachjustiert werden.

Jetzt aber zum Formatieren: Wenn Sie lhre neue Diskette erst mal eingelegt
haben, besteht das einzige Problem noch darin, dem Koénig mitzuteilen, da
sich seine Arbeiter um das Neuland kiimmern sollen. Also fangen wir wieder
mit einem hoflichen Tirklopfen an:

OPEN 1,8,15

Wenn Sie das getan haben, miissen Sie sich iiber zwei Punkte klarwerden:
Wie soll die Diskette heiBen und welche ID-Nummer bekommt sie? Letzteres
diirfte fiir Sie kein Problem sein. Um lhren (hoffentlich) guten Vorsétzen treu
zu bleiben, diirfen Sie jede zweistellige Kombination wahlen, auBer «ZX»,
denn das ist ja schon auf der «TEST/DEMO»-Disk verbraucht worden. Wie
gesagt, am besten legen Sie sich fiir diesen ganzen ID-Kram ein bestimmtes
System zurecht. Das hilft lhnen, gleiche IDs zu vermeiden.

Zum ersten Punkt: Sie konnen jeder Diskette einen Namen geben. Dieser
Name kann bis zu 16 Zeichen lang sein und sollte natiirlich irgendeinen Bezug
zum Inhalt der Diskette haben. Diskettennamen wie «SPIELE 1» oder «UTILI-
TIES» sind sicher besser zum spateren Wiedererkennen geeignet als Namen
wie «FRITZ» oder «C-64 DISK». Diese ganzen personlichen Wiinsche teilen
Sie am besten lhrer Majestét selbst mit.

PRINTH#1,"N: TEST,01"

Wir haben uns also fiir den Namen TEST und die ID-Nummer 01 entschieden.
Es steht lhnen natirlich vollig frei, hier einzusetzen, was auch immer Ihnen
SpaB oder Sinn zu machen scheint — mit einer Einschrankung. Es diirfen nicht
die beiden Zeichen «?» und «%» vorkommen. Die werden namhch noch
anderweitig gebraucht. StoBt ansonsten unser Ansuchen bei Hofe auf Ver-
stdndnis, dann kénnen wir gleich nach dem (RETURN) mit einer Antwort
rechnen. Sie miifte sich in einigem Rumoren und dem Leuchten der roten
LED duBern. Wéhrend das alles passiert, wird die Diskette neu formatiert.
Etwa 80 Sekunden herrscht in der Floppy derweil Hochbetrieb. Und nun

210 Peripheriegeréte

kommt ein Vorteil zum Tragen, den wir vorhin schon kurz erwahnten:
Nédmlich der, daB die Floppy ein eigener Computer ist. lhr Commodore ist
ndmlich wihrend der ganzen Zeit verfiigbar. Sie konnen damit fast alles
machen wie bisher, nur nicht auf die Floppy zugreifen. Die hat ja zu tun.
Wenn die rote LED wahrend des Formatierens zu blinken anfangt, dann ist
irgendein Fehler aufgetreten. Priifen Sie lhre Eingabe zuerst einmal auf
Tippfehler. In jedem Fall sollten Sie aber einen zweiten Anlauf nehmen. Wenn
es dann immer noch nichts ist, sollten Sie das Ganze noch einmal mit einer
anderen Diskette probieren. Erst wenn das alles nichts fruchtet, bringen Sie
Ihre Floppy oder auch die verwendeten Disketten zum Fachhéndler.

Ist aber alles richtig gelaufen, hort die rote LED auf zu leuchten. Wir haben
jetzt eine leere formatierte Diskette.

Das kénnen Sie auch gleich mit

LOAD"$",8

nachpriifen. Ein nachfolgendes LIST miiBte in etwa folgendes Bild ergeben.

READY .

In der ersten Zeile steht, wieder invertiert, TEST oder wie auch immer Sie lhre
Diskette genannt haben. Dann kommt die ID-Nummer, bei uns die 01, und
natiirlich die obligatorische DOS-Version-Angabe 2A.

Darunter sollte stehen: 664 BLOCKS FREE

Sollte sich Ihr Ergebnis von unserem unterscheiden, das heift im Klartext,
wenn Sie irgendwelche omindsen Zeichen, Symbole und ungeordnete Buch-
staben anstatt der aufgezdhlten Zeilen vorfinden, ist ein Fehler beim Forma-
tieren aufgetreten. Das kann verschiedene Griinde haben: Oft liegt es an den
verwendeten Disketten. Die Commodore-Floppys sind in bezug auf ihr Futter
wirklich sehr wéhlerisch. Es kann aber auch sein, dal die Disketten wirklich
einfach schlecht gemacht sind. Auch die besten Landarbeiter kdnnen einem
ausgelaugten Boden nichts entlocken. Versuchen Sie es auch hier im Zwei-
felsfall noch einmal. Ansonsten wére wieder der Gang zum Héndler not-
wendig.

Ein Tip am Rande: Fragen Sie den Héndler, ob er eine bestimmte Diskette
empfehlen wiirde. Das ist meist ein brauchbarer Rat. Und versichern Sie sich,
dal} Sie umtauschen kénnen, wenn Sie das erste Mal Disketten kaufen. Dann

Peripheriegeréite 211

koénnen Sie gut probieren, ob Diskette und Floppy sich verstehen. Und
scheuen Sie sich auch nicht davor, mangelhafte Disketten, die ohne lhr
Verschulden einfach schlecht sind (wellig oder dergleichen), zuriickzubringen
und umzutauschen.

Wenn aber alles reibungslos geklappt hat, dann hat soeben eine neue
Diskette das Licht der elektronischen Welt erblickt. (Allerdings wird kleinen
Disketten auch gern die Geschichte vom Klapperbit erzahlt, das sie gebracht
haben soll ...)

Und weil wir jetzt eine schone, freie Diskette haben, wollen wir doch gleich
mal ausprobieren, wie das mit dem Laden und Speichern vor sich geht.

Geben Sie also ein kleines BASIC-Programm ein. Vorher sollten Sie.aber mit

NEW

den Speicher ldschen.

Dann konnen Sie lhrer Fantasie freien Lauf lassen. Wie gesagt, es mufd
nichts GroBartiges sein, vielleicht ein Spiel oder ein Textverarbeitungspro-
gramm. Im Notfall tut es auch ein BASIC-Zweizeiler.

Jetzt wollen wir dieses neue Programm auf unserer Diskette speichern.
Dazu geben Sie einfach ein:

SAVE"PROGRAMM",8

Wie Sie sehen, haben wir unser Programm sinnigerweise PROGRAMM
genannt. (Gut, gut, wir geben’s ja zu, daB das nicht gerade ein Geniestreich
ist. Sie konnen es ja gerne anders machen.) Nach dieser Eingabe sollte die
Floppy aktiv werden. Wie iiblich, erkennt man das am Gerdusch und der
roten LED.

Wenn die LED erlischt und auf lhrem Bildschirm die Meldung «READY»
erscheint, ist das Programm abgespeichert. Alle, die vorher nur den Kasset-
tenrecorder kannten, diirften von dieser Geschwindigkeit schon etwas beein-
druckt sein.

Nun, wir wollen mal kontrollieren: «Die Programmausweise, Dbitte
schoén ...»

LOAD "$",8
und
LIST

Aha, jetzt steht in der Directory der Programmname, den Sie vorhin beim
Abspeichern benutzt haben. Davor miiBte je nach Programmldnge die Anzahl

212 Peripheriegerite

der Blocks stehen, die davon belegt wurden. Gut, spielen wir also mit diesem
soeben angelegten Programm. L&schen wir zunéchst den Speicher mit einem
resoluten

NEW

Ubrigens haben wir gerade eben nicht etwa unser Programm geléscht,
sondern die mittlerweile nachgeladene Directory — nur zur Erinnerung. Jetzt
holen wir unser kleines Programm wieder von der Diskette herunter.

LOAD "PROGRAMM",8

Natiirlich missen Sie lhren Programmnamen verwenden. Das hat man halt
davon, wenn man so eigenwillig ist.

LIST

zeigt Ihnen, daB das Beispielprogramm immer noch da ist. Sie kdnnen es also
so oft von der Diskette in den Speicher holen, wie Sie wollen. Es ist nicht
notig, es wieder zuriickzuschreiben — so, wie man zum Beispiel etwas aus
einem Regal im Kaufhaus nimmt und es wieder zuriicklegt, um dann doch
etwas anderes zu kaufen. Hatten Sie es aber doch mitgenommen, wére es
jetzt halt weg. Wenn Sie aber von der Diskette etwas nehmen, dann haben
Sie eigentlich nur eine Kopie des Programms in lhrem Speicher. Das Pro-
gramm bleibt auf der Diskette.

Dieses ‘kleine Beispiel zeigt auch den Vorteil einer Floppy: Sie kdnnen
Programme direkt aufrufen, ohne zu spulen oder zu suchen.

Was aber, wenn Sie einige Programme auf der Diskette haben, aber nicht
mehr genau wissen, wie ein bestimmtes hieB, sich vielleicht nur noch an den
Anfang erinnern kénnen? Oder wenn Sie einfach keine Lust haben, beim
Laden jedesmal den ganzen Namen einzugeben? Dann geniigt auch ein

LOAD"PROx",8

Dieses Symbol wird auch als Joker bezeichnet — so eine Art Hofnarr, der alles
mit sich machen laRt. Allerdings kann es natiirlich sein, daB hier Namens-
gleichheiten entstehen, wenn zum Beispiel auf der gleichen Diskette ein
. Programm namens «PROFIT» ist. In diesen Féllen gilt folgende Regelung:
Geladen wird grundsétzlich das Programm, das am weitesten vorne in det
Directory steht. Das ist auch der Grund dafiir, warum man mit dem Befehl

LOAD"+",8

Peripheriegerite 213

direkt nach dem Einschalten immer das erste Programm auf der Diskette
laden kann. Warum nur direkt nach dem Einschalten? Ganz einfach: Wenn
Sie erst einmal irgendein Programm geladen haben, dann ruft « x » allein
immer dieses Programm auf. Das heift, mit

LOAD" x",8

wird normalerweise immer das zuletzt geladene oder gespeicherte Programm
noch einmal geladen. Wichtig ist allerdings in diesem Zusammenhang, daf
mit jedem Ein- und Ausschalten des Commodore auch die Floppy neu
anfingt. Man nennt diesen Vorgang Initialisieren. Sie merken das — wie
immer — an der aufleuchtenden LED und am Gerdusch. Nun haben wir aber
noch ein Jokersymbol, nimlich das «?» (sprich Fragezeichen).

Das Fragezeichen steht nun seit Donald Duck fiir Nichtwissen. Und so auch
hier. Ein Beispiel:

LOAD "P?STE",8

wiirde Programme wie «PUSTE», «PASTE», «PISTE» und dergleichen laden.

Wenn wieder viele Programme zur Auswahl stehen, gilt: Das erste Pro-
gramm, das dem gesuchten Code entspricht, wird geladen. Sie kénnen also
den Joker Uberall da hinsetzen, wo lhnen bestimmte Buchstaben nicht
einfallen.

Beim Abspeichern funktioniert das natiirlich nicht. Denn wie soll denn die
Floppy wissen, welches Programm Sie abspeichern wollen, wenn Sie es selbst
nicht wissen? Und auch im Diskettennamen und in der ID haben die Joker
nichts verloren. Grundsatzlich gilt fiir die drei letztgenannten Anwendungen:

«Fiir Hofnarren und Bedienstete verboten!»

Sollten Sie versuchen, dieses Verbot zu umgehen, dann wird das die konigli-
che Syntaxwache sofort merken und Alarm schlagen. Vielleicht ist hnen das
auch schon passiert: Wenn ein fehlerhafter Befehl zur Floppy geschickt wird,
fangt die rote LED an, ganz aufgeregt zu blinken. Wie soll man sich bei
solchem Rot-Alarm nun verhalten? Am besten, wir fragen den Konig, was
ihm nicht gefallt.

Das Problem ist einfach folgendes: Nachdem die Floppy ein eigener
Computer ist, hat sie auch ihre eigenen Fehlermeldungen. Das heifit, ein
Floppyfehler wird nicht wie unser bekannter «SYNTAX ERROR» (den haben
Sie sicherlich im Laufe der Zeit sehr gut kennengelernt . ..) auf dem Bildschirm
ausgegeben. (Der gehort ja zum Commodore, und so gut sind die nachbar-

214 Peripheriegeréte

schaftlichen Beziehungen nun auch wieder nicht.) Wie erfdhrt man aber
dann, was man falsch gemacht hat? Nun, das Protokoll kennen Sie ja.
Diesmal miissen wir nur ein kleines Programm daraus machen. Denn um
einen Fehler von der Floppy einzulesen, brauchen wir eine spezielle Art des
INPUT-Befehls. Und der kann ja nun nicht direkt ausgefiihrt werden. Unser
Befehl lautet INPUTH (dieses Zeichen # wird meist File ausgesprochen und
zeigt hier an, daB eine Eingabe von einem bestimmten Peripheriegerat
kommen soll).

Um also den Fehlerkanal der Floppy abzufragen, brauchen Sie folgendes
kleine Programm:

10 OPEN 1,8,15

20 INPUT#1,A,A$,B,C
30 PRINT A;A$;B;C
40 CLOSE 1

Was tut dieses Programm nun im einzelnen?

Immer, wenn die Floppy einen Fehler erkennt, blinkt die rote LED, und auf
dem Fehlerkanal werden folgende Meldungen zum besseren Verstandnis des
Fehlers ausgegeben: seine Nummer, der Fehlertext, die Spur und der Sektor,
wo der Fehler aufgetaucht ist. Diese vier Meldungen sind wie Eisenbahnwag-
gons, die bereitstehen, um abgeholt zu werden. Das oben gezeigte Beispiel-
programm weist nun jeder dieser Fehlerinformationen eine Variable zu: A ist
die Fehlernummer, A$ der Fehlertext, B die Spur und C der Sektor. Wenn Sie
das jetzt ausprobieren, werden Sie wahrscheinlich durch Zeile 30 folgende
Nachricht ausgedruckt bekommen:

00KO0O

Das bedeutet, seine Hoheit sind mit uns zufrieden.
Wenn Sie die Floppy gerade erst eingeschaltet haben, kann der Text auch
so aussehen:

73 CBM DOS V2.6 1541 0 0

Das ist eine Art konigliches «Guten Morgen», dhnlich der Einschaltmeldung
lhres Commodore 64. Sollte irgendeine andere Fehlermeldung kommen, so
liegt noch ein Fehler von vorhin auf dem Kanal. Was die einzelnen Fehlerco-
des genau bedeuten, entnehmen Sie bitte lhrem Floppy-Handbuch.

Nun stellt sich aber wieder das bereits bekannte Problem ein. Sie haben
noch immer thr Superprogramm (Sie wissen schon: das, was Sie vorhin

Peripheriegeréte 215

geschrieben haben) im Speicher, und beim Abspeichern desselben meldet die
Floppy einen Fehler. Um den aber auslesen zu kdnnen, brauchen Sie das
kleine Programm von vorhin. Um das aber mit lhrem bereits vorhandenen
Programm unter einen Hut zu bringen, muf lhnen schon was Schlaues
einfallen. Eine beliebte Verzweiflungstat war beispielsweise der Versuch, das
Fehlerprogramm noch an den Anfang oder das Ende des vorhandenen
Programms zu quetschen und dann gezielt aufzurufen.

Aber Sie sehen schon, allmédhlich wachsen die fehlenden Diskettenbefehle
sich zu einem ernsthaften Problem aus. Und weil das jetzt so wirklich nicht
mehr weitergehen kann, schaffen wir jetzt endgiiltig Abhilfe.

Commodore hat ndmlich, offensichtlich im BewuBtsein dieser Schwierig-
keiten, ein Programm auf die «TEST/DEMO»-Diskette gepackt, das sich als
sehr hilfreich erweisen wird: das DOS 5.1.

Wir wollen es jetzt laden und fortan davon profitieren. Aber weiterhin gilt
natiirlich, daB alle Befehle auch nach der alten Zeremonie (also OPEN
1,8,15:PRINTH#1," usw.) an die Floppy geschickt werden konnen. Aber
wabhrscheinlich werden Sie sich so an das DOS 5.1 gewdhnen, daB Sie es
wahrend des Programmierens stindig im Speicher haben werden. Dieses
Programm ist sozusagen eine stdndige Vertretung des FFS (Freien Floppy
Staates), der uns so ziemlich alle Audienzen beim Konig abnimmt. Und weil es
mit den dortigen Gepflogenheiten wesentlich besser vertraut ist und als
Maschinenprogramm auch ein enger Vertrauter des 6502 ist, beschleunigt es
die ganze Sache natiirlich ungemein.

Und nun zum Bau des Botschaftsgebdudes: Auf lhrer « TEST/DEMO»-
Diskette miiBte sich eigentlich ein Programm befinden, das «C-64 WEDGE»
heiit. Das soll nur heiRen, daB das Programm dem Commodore 64 angepaft
wird. Wenn Sie dieses Programm laufen lassen, dann lddt und startet es das
DOS 1.5 ganz von alleine. Sie brauchen nur

LOAD"C-64 WEDGE",8

und danach RUN einzugeben. Damit Sie spdter auch eigene Programme
schreiben kénnen, die das DOS 5.1 automatisch nachladen, wollen wir uns
dieses WEDGE-Programm mal genauer ansehen.

10 IF A=0THENA=1:LOAD"DOS 5.1",8,1
20 IF A=1THEN SYS12%4096+12 %256
30 NEW

Grob erklart, passiert folgendes. In Zeile 10 wird das eigentliche DOS 5.1

216 Peripheriegeréte

geladen. Wenn Sie es auf lhrer Diskette suchen, es ist 4 Blocks lang. Da es sich
um ein Maschinenprogramm handelt, das nicht am BASIC-Anfang liegt, muB
es mit «8,1» absolut geladen werden. In Zeile 20 wird es dann gestartet. Die
Startadresse ist 12 % 4096 + 12 % 256, also 52224. Damit liegt es genau in
dem 4K-RAM-Block, der von 49152 bis 53248 reicht. Somit wurde also auch
fiir diesen Speicherbereich noch eine sinnvolle Anwendung gefunden. (Ver-
gleichen Sie dazu auch das Speicherkapitel.)

In Zeile 30 wird dann der BASIC-Speicher durch des NEW wieder geldscht,
das heiBt, das Programm rdaumt sich sozusagen selbst auf. Ab hier konnte
aber genausogut ein normales BASIC-Programm stehen, beispielsweise eine
Auswahltabelle fir alle Programme, die sich auf dieser Diskette befinden.
Was Sie jetzt noch beschiftigen diirfte, ist der tiefere Sinn der Variablen A.
Dazu muB man folgendes wissen: Wenn ein LOAD-Befehl innerhalb eines
Programms auftaucht, geht der Computer davon aus, daf ein neues BASIC-
Programm geladen wird. Also springt er nach dem Laden an den Anfang des
— vermeintlich neuen — Programms und fiihrt es aus. Wenn nun aber, wie in
unserem Fall, ein Maschinenprogramm geladen wird, dndert sich ja nichts an
dem BASIC-Programm, das heifit, es bleibt im Speicher, wie es war. (In
diesem Fall spricht man von einem LOADER-Programm — es lddt ein anderes
Programm.) Danach springt der Computer an den Anfang des Programms
und startet es wieder in dem sicheren Glauben, es handelte sich um ein neues
Programm. Also wiirde noch mal geladen werden und noch mal und noch
mal und immer so weiter, bis zum Tag des jiingsten Stromausfalls.

Durch den Trick mit der Variablen ldRt sich das vermeiden. Denn die
Variablen werden bei diesem Vorgang nicht geldscht. Man spricht dabei
tibrigens von einem Warmstart.

Deshalb ist A am Anfang O. Die IF...THEN-Bedingung ist erfiillt, also wird
A auf 1 gesetzt und dann der LOAD-Befehl ausgefihrt. Treuherzig wie er ist,
springt der Computer wieder zum Anfang des Programms zuriick (bildlich
natiirlich nur!) und will wieder anfangen. Aber ... aha oder besser gesagt
A(aah). Er merkt ndmlich plétzlich, daB A nicht mehr O ist. Also gilt die
Bedingung in Zeile 10 nicht mehr, und in seiner Not blickt sich der Commo-
dore suchend nach Hilfe um. Die findet er dann auch in Form der Zeile 20, die
ihm sagt, daB er einen SYS-Aufruf machen soll (also ein im Speicher befindli-
ches Maschinenprogramm aufrufen soll). Und mit diesem Aufruf wird das
DOS 5.1 gestartet. Wéhrend sich unser Commodore noch ganz verwundert
umblickt und die Betriebsamkeit, die hinter ihm ausgebrochen ist, anstarrt,
rennt er vorne in Zeile 30 in das NEW. Und damit vergiBt er schlagartig, daR

Peripheriegeréte 217

er sich eben noch gewundert hat, und 4Bt dafiir das DOS 5.1 laufen. Gar
nicht so dumm, das alles, was?

Wenn Sie jetzt also das RUN eingegeben haben und damit Thren Computer
durch die Hohen und Tiefen seines Daseins geschickt haben, werden Sie
einen entsprechenden Text finden, der lhnen mitteilt, wer der Autor ist und
wer infolgedessen auch Copyright auf dieses Programm hat. Wir sollten jetzt
wirklich eine Schweigeminute fiir diesen Mr. Fairbairn halten und ihm fir
dieses Programm danken.

Geben Sie am besten gleich mal ein

)$

Also ein «GroBer als»- und ein Dollarzeichen, dann das obligatorische {RE-
TURN).

Wie Sie jetzt sehen, zeigt uns der Computer nun den Inhalt der Diskette,
und zwar, ohne sich weiter um das Programm im Speicher zu kiimmern. Das
ist doch schon ganz vorteilhaft.

Aber es geht noch weiter.

Durch alleinige Eingabe von

)

und (RETURN) konnen Sie jederzeit den Fehlerkanal abfragen. Auch fiir die
Lade- und Speicheroperationen gibt es jetzt Kiirzel. Ein Schréagstrich, gefolgt
von einem Programmnamen, wirkt wie unser bisheriges LOAD "PRO-
GRAMMNAME",8.

Wenn Sie statt dessen das Prozentzeichen (%) voranstellen, wirkt dies wie
LOAD"PROGRAMMNAME",8,1. Das brauchen Sie immer dann, wenn Sie
ein Maschinenprogramm laden wollen.

Mit einem Pfeil nach oben (1) als erstem Zeichen, gefolgt von dem
Programmnamen, wird das Programm nicht nur geladen, sondern auch
automatisch gestartet.

Ein Pfeil nach links («<-) steht fiir das SAVE-Kommando.

Aber jetzt kommt das Beste: Nach einem ")" (GroRer-als-Zeichen) kann
ein beliebiger Floppy-Befehl stehen. Wenn Sie jetzt also sagen wollen: «Herr
Botschafter, teilen Sie lhrem Konig bitte mit, daR die eingelegte Diskette
formatiert werden soll», so geht das einfach so:

YN:TEST,01

Sie erinnern sich, die ausfiihrlichere Version von frither war:

218 Peripheriegeréte

OPEN 1,8,15:PRINT41,"N:TEST,01":CLOSE15

Sie werden uns jetzt wahrscheinlich zustimmen, wenn wir sagen, daf das
DOS 5.1 die ganze Sache schon etwas einfacher und komfortabler macht.

Mit diesem starken Verbiindeten wollen wir uns jetzt auch noch an die
restlichen Befehle fiir die Floppy machen.

Legen Sie wieder die Diskette ein, die wir ganz zu Anfang formatiert haben.
Ein

)$

wird lhnen zeigen, daB sich bisher nur ein Programm auf dieser Diskette
befindet, und zwar das, das wir vorhin abgespeichert haben. Dem kann
abgeholfen werden. Der COPY-Befehl kopiert Programme oder Dateien
(allgemeiner Ausdruck dafiir ist Files) innerhalb einer Diskette. Dazu miissen
sie nur einen neuen Namen angeben.

)C:KOPIE=PROGRAMM

Nun wird ein zweites Programm auf die Diskette geschrieben, das sich in
nichts von dem ersten PROGRAMM unterscheidet. Das sehen Sie zum
Beispiel an der exakt gleichen Anzahl der belegten Blocks in der Directory.
Der Konig hat also seine Untertanen angewiesen, zwei vollig identische
Felder anzulegen. Und die — gewohnt, zu gehorchen — fragen nicht lange,
sondern tun es. Bevor wir uns aber jetzt auf den Weg zur Monokultur
begeben, wollen wir noch ein biBchen was dndern. Es kdnnte ja sein, daB uns
plétzlich einféllt, daB KOPIE doch kein angemessener Name fiir den neuen
Z6gling ist. Wir wollen ihn umtaufen. Kein Problem. Dafiir gibt es den
RENAME-Befehl. Wenn das Programm KOPIE ab sofort PROGRAMM 2
heiBen soll, wenden wir uns mit unserem Anliegen einfach an die Floppysche
Botschaft.

YR:PROGRAMM 2=KOPIE
Wenn die Floppy mit dieser kurzen Aktion fertig ist und Sie sich mit
)$

das Inhaltsverzeichnis ansehen, werden Sie feststellen, daB das Programm
KOPIE verschwunden ist. Dafiir gibt es jetzt ein PROGRAMM 2. Wenn Sie
sich darliber wundern, wie schnell das gegangen ist, hier noch ein kurzes
Wort zur Kldrung. Bei dem letzten Befehl wird nicht etwa KOPIE in den
Speicher gelesen und dann als PROGRAMM 2 wieder auf die Diskette

Peripheriegerite 219

geschrieben. Alles, was die Floppy tut, ist, den neuen Namen iiber den alten
im Directory (also auf der Spur 18) zu schreiben. Das Programm selbst bleibt
davon unberiihrt.

Weil wir jetzt aber zweimal dasselbe Programm auf der Diskette haben,
was ja wirklich nicht sein muB, kénnen wir auch das alte PROGRAMM wieder
l6schen. '

Dazu gibt es den SCRATCH-Befehl. Aber Vorsicht. Zum einen ist dieser
Befehl sehr endgiiltig und zum anderen: Verwenden Sie hier keine Jokersym-
bole. Sie wiirden namlich nicht nur das erste der in Frage kommenden Files,
sondern alle in Frage kommenden Files 16schen. Aber zuriick zum Ldschen:
Der Befehl heiBt

)S:PROGRAMM

Damit wird das Programm geldscht. Das heilt, die Blocks, die es urspriinglich
belegte, werden wieder als frei gekennzeichnet und konnen beim ndchsten
SAVE wieder neu beschrieben werden. :

In jedem Fall sollte man diesen Befehl nur nach zweimaligem Nachdenken
anwenden.

Jetzt fehlt uns nur noch ein wichtiger Floppy-Befehl: VALIDATE. Wir haben
lhnen ja schon von der BAM erzéhlt, der Karte, auf der alle belegten Blocks
gekennzeichnet sind. Leider ist ja nun unser Monarch nicht mehr der aller-
jungste. Und auch seine Berater und Bediensteten nehmen es nicht immer
allzu genau. Deshalb kommt es vor, daB hie und da mal ein Block als belegt
dazugeschmuggelt wird, der es gar nicht ist. Deshalb sollte man von Zeit zu
Zeit mal eine Kontrolle durchfiihren.

Ahnlich, wie das der Bundesrechnungshof macht, geschieht das auch durch
den VALIDATE-Befehl.

W

ist alles, was man dabei eingeben muR. Der Rest wird von ganz allein
durchgefiihrt. Wenn man das alle paar Wochen macht, dann kommt schon
der eine oder andere Block dabei heraus.

Damit ware unser kleiner Kurs im Vokabular der Floppy eigentlich beendet.
Es gibt zwar noch einige andere Befehle. Aber die wiirden wirklich den
Rahmen dieses Kapitels sprengen. AuBerdem braucht man die selten schon
am Anfang. Wenn es soweit ist, sollten Sie sich alles dazu Né&tige im Floppy-
Handbuch durchlesen.

Bleibt nur noch eine Kleinigkeit: der Klammeraffe. Den finden Sie hier

220 Peripheriegeréte

ausnahmsweise nicht im Zoo, sondern auf der Tastatur. Gemeint ist damit
eine Art Kringel. Darstellen tut er aber ein a im Kringel. Das Ganze sieht dann
SO aus: @.

Urspriinglich ist er ein amerikanisches Symbol fiir «at». Aber daflir haben
sich Programmierer nie sonderlich interessiert. Nur damit das Kind — pardon,
der Affe — einen Namen hat, kam man eben auf Klammeraffe. Nachdem wir
beide noch nie einen echten Klammeraffen gesehen haben, kdnnen wir leider
nicht feststellen, ob er tatsichlich so aussieht. Wenn aber doch, dann téte es
uns leid fiir ihn.

Von der freien Wildbahn wieder zuriick ins traute Wohnzimmer. Hier kann
uns der Klammeraffe zwei gute Dienste leisten. Er kann zum Beispiel beim
DOS 5.1 als Ersatz fiir das ")" verwendet werden.

Wichtiger aber ist, daB er dafiir sorgt, daR ein File unter seinem eigenen
Namen (iberschrieben werden kann.

Probieren Sie doch mal, irgendein Programm unter dem Namen «PRO-
GRAMM 2» auf die Diskette von vorhin zu schreiben. Man wird lhnen sehr
bald mitteilen, daf ...

63, FILE EXISTS, 00, 00

daB also ein Programm mit diesem Namen bereits auf der Diskette steht. Der
Vorteil des Ganzen ist eigentlich klar: So kann man verhindern, daB man ein
Programm aus Versehen {iberschreibt.

Bei Dateien kann das aber duBerst unangenehm sein. Denn wenn eine
Datei aktualisiert wird oder auch ein Programm verbessert wurde und deshalb
neu auf Diskette geschrieben werden soll, muf ja erst das alte Programm
geldscht werden. Damit man das nicht immer vorher machen muB, kann der
Klammeraffe angewendet werden, und zwar, indem man ihn folgenderma-
Ben einsetzt:

SAVE "@:PROGRAMM 2" 8

oder
<«—(@:PROGRAMM 2

Aus verschiedenen Griinden, die durch die Arbeitsweise des DOS bedingt
sind, kann es bei diesem Modus aber zu Fehlern kommen. Die sicherere
Methode ist die, das alte File mit SCRATCH zu I6schen, und dann das neue
normal abzuspeichern. Durch den dann frei gewordenen Platz wird das DOS
dieses Programm auch «iiber» das alté schreiben.

Peripheriegerite 221

Nachdem Sie jetzt das DOS 5.1 als freundlichen Helfer kennengelernt
haben, kann es sein, daB Sie es gern auch auf lhren anderen Disketten hitten,
um nicht immer von der «TEST/DEMO»-Diskette abhdngig zu sein. Wenn
das so ist, miissen Sie es kopieren. Nun haben Sie vielleicht entdeckt, daB sich
auf der «TEST/DEMO»-Diskette auch ein Kopierprogramm mit Namen
COPY ALL befindet. Und tatséchlich, dieses Programm wiirde unser DOS 5.1
auch kopieren — vorausgesetzt, wir haben zwei Floppylaufwerke. Wenn Sie es
ndmlich starten, stellen Sie fest, daB das Programm mit einem gar nicht
funktioniert. Nun bringt das vielleicht fiir Commodore ein Umsatzplus, uns
aber erst mal nur VerdruB. Weil das DOS 5.1 ein Maschinenprogramm ist,
1aRt es sich nicht einfach mit einer LOAD & SAVE-Kombination kopieren.

Aber es geht auch anders. Wir wollen Ihnen hier kurz zeigen, wie man nun
das DOS 5.1 doch dahin kriegt, wo man es haben will. Voraussetzung fiir
diese Methode ist allerdings, daB sich DOS 5.1 schon im Speicher befindet.

.10 OPEN 1,8,2,"DOS 5.1,P,W"
20 PRINTH#1,CHR$(0);
30 PRINTH#1,CHR$(204);
40 FOR X=0TO870
50 PRINT31,CHR$(PEEK(52224+X));
60 NEXT X:CLOSE1

An diesem Programm 4Bt sich auch sehr schon erkennen, wie Programme
auf der Floppy aufgezeichnet werden.

In Zeile 10 wird ein File zum Schreiben geo6ffnet. P steht fiir Programm, W
fiir WRITE (= schreiben). Dariiber werden wir uns etwas spdter noch mal
genauer unterhalten.

In Zeile 20 und 30 wird der Floppy die Anfangsadresse des Programms
mitgeteilt, und zwar in Low Byte (0) und High Byte (204). Denn 204 % 256 ist
ja 52224.

Wozu das? Wenn ein Programm absolut, also mit "...,8,1" geladen wird,
muB der Computer ja erfahren, wo er das Programm hinpacken soll. Diese
beiden Bytes entsprechen etwa dem Schild «Ich will nach Miinchen», das
man einem kleineren Kind in der Eisenbahn um den Hals hdngt, damit es auch
dort ankommt. Oder auch dem Schild «Ich will nach Miinchen», das man bei
groReren Kindern in der Ndhe der Autobahnausfahrt éfter antrifft.

Zeile 40 zéhlt dann von 0 bis 870, denn so lang ist unser Programm (das
DOS 5.1) eben: 870 Bytes.

In Zeile 50 werden die Bytes, die in den Zellen 52224 bis 53094 stehen,

222 Peripheriegeréte

hintereinander auf Diskette geschrieben. In Zeile 60 schlieRlich wird das File
ordnungsgemaf geschlossen. Das ist absolut wichtig, denn erst nach diesem
Befehl werden alle wichtigen Informationen in die Directory und die BAM
ibernommen. Also immer daran denken!

Wie lhnen vielleicht aufgefallen ist, werden alle Bytes als CHR$ (sprich
Charstrings) zur Floppy geschickt. Das ist bei der Ubergabe von Daten an
Peripheriegerate allgemein so liblich und auch zweckméRig, denn'so kénnen
die Bits gleichzeitig iibergeben werden und nicht erst die 2, dann die O und
schlieBlich die 4 fiir den Wert 204.

Im Grunde genommen haben die CHR$ auf Peripheriegerdte genau die-
selbe Funktion wie die CHR$ auf dem Bildschirm. Sie stehen nur fiir den
entsprechenden Code. (Bei der Bildschirmausgabe macht erst VIC ein lesbares
Zeichen daraus.)

Und damit die Werte schon hintereinander reinkommen, steht der ";"
hinter jedem Wert. Wenn Sie das Programm mit

RUN

starten, wird das DOS 5.1 auf die Diskette geschrieben, die sich gerade im
Laufwerk befindet. Von dort kann es dann, wie vorhin gezeigt, geladen
werden. Zum DOS 5.1 noch zum AbschluR zwei Bemerkungen. Es ist so
programmiert, daB es sich stdndig auf die Gerdtenummer 8 bezieht. Sollten
Sie jedoch mehrere Floppys einsetzen wollen, kénnen Sie mit

Y# Gerdtenummer

dem Botschafter ein anderes Konigreich (sprich Ihre zweite Floppy) unterju-
beln.

)9
schaltet DOS 5.1 auf Gerdteadresse Nummer 9.

Y#8
schaltet wieder zurtick.

Sie kénnen DOS-5.1-Befehle auch innerhalb lhrer Programme verwenden.
Allerdings mit einer kleinen Anderung: Hinter dem ")" miissen die Befehle
nun in Anfiihrungszeichen stehen, um Verwechslungen, denen der BASIC-
Interpreter sonst erliegen konnte, zu vermeiden. Beispiele hierzu:

10)"$"

zeigt die Directory wéhrend eines Programms an.

Peripheriegerite 223

10)
fragt den Fehlerkanal ab
1 o >] I "

liest die BAM iiber den Befehl «Initialize» ein.

Und noch ein letzter Tip: Sie kénnen, wann immer Sie diplomatische
Verwicklungen mit anderen Maschinenprogrammen befiirchten, die Kon-
trolle liber die Botschaft abbrechen.

)Q

fur Quit (= verlassen) ist dann der notwendige Befehl. Das heift aber noch
lange nicht, daR Sie damit den Botschafter des Landes verweisen. Genauso
wie in Camp David kénnen Sie die Verhandlungen immer wieder aufnehmen.
Mit

SYS 52224

Schén, oder?

Ein Umsteigebahnhof fiir Bits

Im nun folgenden erfahren Sie so ziemlich das Letzte ...

Wir haben im Verlauf des letzten Abschnittes mehrmals den OPEN-Befehl
mit verschiedenen Sekunddradressen verwendet und Sie dabei immer auf
spater vertrostet oder uns mit dem Ausdruck «Einstellen von verschiedenen
Betriebsmodi» vor einer Erkldrung gedriickt. Das wollen wir jetzt nachholen.

Zundchst einmal grundsétzlich: Mit OPEN wird ein sogenannter Kanal
eroffnet. Das hat nichts mit Rhein-Main-Donau oder so zu tun, sondern
meint eine Art Standleitung von und/oder zur Floppy. Eine bestimmte
Leitung benutzen Sie zum Beispiel stdndig: den Fehlerkanal. Aber es gibt
noch andere. Einen solchen haben wir zum Beispiel bei unserem DOS-
Kopierprogramm verwendet. Aber die Anzahl der mdglichen Kanile ist
begrenzt. Denn jeder Kanal wird mit einem sogenannten Pufferspeicher
verbunden. Der Name sagt eigentlich schon, was diese Dinger tun. Dasselbe,
was auch Puffer bei der Eisenbahn tun. Sie fangen auf — in unserem Fall Bits,
bei der Bundesbahn St6Be. Das hat einen einfachen Grund: Bei der Bundes-
bahn verhindert das, daB regelmdRig Waggons zu Schrott gefahren werden,
und bei uns dient es der Schnelligkeit. Das Kabel, mit dem die Floppy an den

224 Peripheriegeréte

Commodore angeschlossen ist, hat zwar 6 Leitungen, aber nur eine davon
dient tatsdchlich der Dateniibertragung. Die anderen fiihren irgendwelche
Strom- und Masseleitungen oder die «Aufgepalit, es kommen Daten!»-
Leitungen. Da wir also nur eine Leitung zur Dateniibertragung haben,
miissen die Bits seriell, soll heiBen hintereinander, iibertragen werden. Die
Strafen in Richtung Floppy sind also so eng, daB sich Reiter und FuBvolk nur
hintereinander fortbewegen kénnen. Das ist auch der Grund, warum die VC-
Floppys im Vergleich zu vielen anderen Laufwerken so langsam sind. Die
anderen arbeiten ndmlich mit einer breiten achtspurigen Autobahn, auch
Parallelbus genannt.

Da die Bits also eher tropfchenweise eintrudeln, wére es viel zu aufwendig,
jedes einzelne zum Schreib-/Lese-Kopf zu schicken. Statt dessen warten sie
im Pufferspeicher sozusagen auf ihren AnschluBzug in Richtung Diskette —
wie in einem Umsteigebahnhof.

Die Floppy hat aber nun mal nur eine begrenzte Anzahl solcher Pufferspei-
cher. Es sind genau fiinf. Davon werden 2 vom DOS stindig reserviert: einer
fiir Programme lesen, einer fiir Programme schreiben. So bleiben nur noch
drei fiir den Programmierer iibrig. Und die dritte Zahl beim OPEN-Befehl gibt
eben an, welcher Puffer verwendet werden soll.

OPEN 1,8,X,. ..

Wie gesagt, zwei Puffer sind reserviert: namlich O und 1. Die Puffer 2 bis 4
sind frei. Man kann zwar fir das X von oben auch die Zahlen 5 bis 14
einsetzen, dann werden die Puffer von der Floppy der Reihenfolge nach
angelegt. Solche Zahlen sind aber unpraktisch, weil man so schneller die
Ubersicht verliert, welcher Puffer zu welchem Kanal gehort und wie viele
Puffer noch frei sind. Die Anzahl ist ndmlich immer auf drei begrenzt.

Hinter dem Puffer wird in den Anfiihrungszeichen noch angegeben, um
welchen Dateityp es sich handelt und ob gelesen oder geschrieben werden
soll.

Fiir den Dateityp gibt es verschiedene Mdéglichkeiten:

P fiir Programm

S fiir sequentielle Datei
R fiir relative Datei

U fiir User-File

Darauf konnen wir aber an dieser Stelle nicht weiter eingehen. Diese Kiirzel
entsprechen dann den in der Directory angegebenen Dateitypen, also

Peripheriegeriite 225

PRG
SEQ
REL
USR

Wir teilen dem Konig mit, welche speziellen Arten an Daten wir anbauen

lassen mochten und welche Datenfelder deshalb aufgemacht werden miis-

sen. Es muB auch bekannt sein, ob gesit oder geerntet werden soll bzw.

geschrieben oder gelesen. Deshalb steht R fiir READ und W fiir WRITE.
Am besten, wir sehen uns einige Beispiele an:

OPEN 1,8,2,"HALLO,P,R"

Das Programm (dafiir steht P) mit Namen «HALLO» wird iiber Puffer 2 (siehe
letzte Zahl) zum Lesen (dafiir steht R) gedffnet.

OPEN 1,8,3,"@:DOS 5.1,P,W*"

Ein (evtl. schon existierendes) Programm «DQOS 5.1» wird tber Puffer 3 zum
Schreiben (W) gedffnet. Man kann also, wie beim DOS, ein Programmfile
auch kiinstlich zum Lesen oder Schreiben er6ffnen, es muf nicht immer tiber
LOAD oder SAVE gehen. Wie das geht, haben wir ja schon im DOS-
Kopierprogramm erkldrt.

OPEN 2,8,4," ADRESSEN,S,R"

Die sequentielle Datei «<ADRESSEN» wird iber Puffer 4 zum Lesen geé6ffnet.

Was wir jetzt noch kurz zeigen wollen, ist, wie man eine sequentielle Datei
verwenden kann.

Wie Sie sicher schon einmal gehort haben, kann man bei einem Computer
nicht nur Programme abspeichern, sondern auch Daten, zum Beispiel Adres-
sen, Titel von Bichern und Schallplatten und so weiter. Eine Ansammliung
solcher Daten nennt man Datei. Nun gibt es natiirlich verschiedene Moglich-
keiten, solche Daten abzuspeichern. Die einfachste und damit am weitesten
verbreitete Art ist die sequentielle Datei. Bei ihr werden alle Daten einfach
hintereinander auf die Diskette geschrieben — &hnlich einer Génsefamilie,
kommt eines nach dem anderen.

Man kann diese Art der Datenspeicherung auch mit einem Telegramm
vergleichen:

Vorname — stop — Nachname — stop — StraBe — stop — usw.

226 Peripheriegeréte

Die Funktion des Stop, also das Trennen einzelner Daten, ibernimmt in
diesem Fall der Code fiir (RETURN), das heiit CHR$ (13).

Das ist noch ein Uberbleibsel aus der Zeit, wo hauptsichlich Drucker
angesprochen wurden: Da war CHR$ (13) das Zeichen fiir «Line Feed».
Wenn der Drucker diesen Code entdeckte, wuBte er, daR jetzt die Zeile zu
Ende ist.

Genauso weif8 die Floppy, daB bei einem CHR$ (13) die entsprechende
Eintragung in die Datei zu Ende ist.

Es gibt nun verschiedene Mdglichkeiten, wie so ein CHR$ (13) gesendet
werden kann. Darauf wollen wir aber erst beim Drucker genauer eingehen.
Hier sei Ihnen erst einmal gesagt, daB der Befehl

PRINTH# N

"o

wenn dem Text, der danach kommt, kein ";” oder "," folgt, automatisch
einen CHR$ (13) sendet.

Nachdem wir alle mal klein angefangen haben, wollen wir jetzt auch eine
ganz kleine AdreBdatei mit einer einzigen Adresse anlegen.

10 OPEN 1,8,2," ADRESSDATEI,S,W"
20 PRINTH#1,"MUELLER"

30 PRINT#1,"HANS OTTO"

40 PRINTH#1,"ROSENWEG 27"

50 PRINTH#1,"8001 BAYERNHAUSEN"
60 PRINTH1,88811277

70 CLOSE1

Wir haben also alle Daten in unsere AdreRdatei geschrieben. Beachten Sie,
daB die (fiktive!!) Telefonnummer in Zeile 60 kein String, wie die anderen
Daten, sondern eine numerische Variable ist. Das miissen wir beim Auslesen
auch wieder beriicksichtigen. Sonst gibt es einen

FILE DATA ERROR

Ein Programm, das unsere Adresse wieder liest, konnte ungefahr so aus-
sehen:

10 OPEN 1,8,3, "ADRESSDATEI,S,R"

20 FOR X=1TO4

30 INPUT#1,A$

40 PRINT A$

Peripheriegeréte 227

50 NEXT X
60 INPUTH1,A
70 PRINT A
80 CLOSE 1

Wir eroffnen also unsere Datei zum Lesen (Zeile 10), lesen mit der
FOR. .. NEXT-Schleife von 20 bis 40 Daten ein und drucken sie dann auf den
Bildschirm. Zeilen 60 und 70 machen dasselbe mit der Telefonnummer. Ein
kleiner Tip: Einfacher geht's, wenn Sie auch Zahlen wie Strings behandeln.
Allerdings kénnen Sie dann die Stringvariablen mit Zahlen nicht zum Rechnen
verwenden.

In Zeile 80 wird die Datei wieder geschlossen.

Probieren Sie es aus. Sie konnten jetzt eigentlich ein Programm schreiben,
das mit mehreren Adressen und komfortablerer Eingabe arbeitet. Sie miissen
ja einfach nur statt des Namens aus dem ersten Listing eine Variable nehmen,
die dann vorher mittels INPUT einer Adresse zugewiesen wird.

Wenn Sie dasselbe mit dem Kassettenrecorder machen wollen, miissen Sie
nur Gerdtenummer 1 verwenden und als Sekundéradresse O fiir Lesen und 1
fiir Schreiben. Zusdtze wie «S,W» oder «S,R» entfallen. Lesen Sie zu einer
genaueren Beschreibung das Kapitel «Fortgeschrittene Kassettenoperation»
auf Seite 109 in lhrem Commodore-Handbuch.

Und damit wéren wir — zumindest, was die Floppy betrifft — so ziemlich am
Ende.

Wie immer gilt, nur Ubung macht den Meister. Und Sie haben ja hoffent-
lich gesehen, daB an SEQ-Dateien iiberhaupt nichts Geheimnisvolles ist.

Also, auf geht's. Die AdreBverwaltung wartet . ..

Der Commodore lernt schreiben

Jetzt wollen wir noch einen Blick auf ein anderes wichtiges Peripheriegerat
werfen — den Drucker. Davon gibt es ja erst mal eine ganze Menge, zum
einen die, die Commodore selbst anbietet. Dann auch andere Firmen, die
Commodore-kompatible Drucker herstellen. Und schlieBlich gibt es noch
verschiedene Interfaces, Schnittstellen, mit denen man auch noch viele
andere Fabrikate anschlieBen kann. Bei diesen Interfaces kommt es darauf an,
die sequentiellen Signale der Commodore-Schnittstelle so umzumodeln, daB
der entsprechende Drucker sie auch versteht. Die meisten Drucker haben, wie

228 Peripheriegeréte

die Floppy, eine eigene Regierung, also einen eigenen Prozessor mit eigenem
Betriebssystem, der auf ganz unterschiedliche Befehle reagiert. Fir richtige,
spezifische Informationen miissen wir Sie deshalb auch an das entsprechende
mitgelieferte Druckerhandbuch verweisen.

Wir mochten hier nur einige ganz allgemeine Anwendungen und Vor-
gédnge aufzeigen und den einen oder anderen Trick verraten.

Am héufigsten wird ein Drucker wohl dann eingesetzt, wenn es um das
Auslisten von Programmen geht. Wie geht das?

Es gibt einen Befehl, der die Ausgabe vom Bildschirm auf ein Peripheriege-
rat umlenkt. Das ist der

CMD

-Befehl. Um ihn anwenden zu kénnen, miissen wir wieder diplomatisch tatig
werden. Unser rotes Telefon geht diesmal zum Gerdt Nummer 4. Manchmal
haben Drucker aber auch die Nummern 5 oder 6. Schauen Sie im Handbuch
nach, oder fragen Sie gegebenenfalls lhren Handler.

Mit diesem Befehl leiten wir die Bildschirmausgabe um und listen das
Programm aus. Die ganze Syntax sieht dann so aus:

OPEN 4,4: CMD4: LIST

Wenn der Drucker fertig ist, miissen wir ihm natirlich mitteilen, daB er jetzt
erst mal keine Daten mehr bekommen wird. Gleichzeitig schalten wir die
Ausgabe zuriick auf den Bildschirm und schlieBen unseren Kanal wieder.

PRINT#4: CLOSE4

Das «leere» PRINT#4 lenkt die Ausgabe wieder auf den Bildschirm. Bei den
meisten Druckern dirfte das so funktioniert haben.

Vielleicht hatten Sie aber auch Pech. Dann sieht das Listing entsprechend
der Ldnge des Programms aus, als ob eine Horde wilder Ameisen auf engstem
Raum das Papier iiberquert hitte — und alle mit schmutzigen Fiien. Die
gleiche Zeile wurde immer wieder lberdruckt, bis das Listing zu Ende war.

Der Grund ist folgender: Ihrem Drucker hat der Zeilenvorschubcode
gefehlt. Deshalb druckte er das ganze Listing in eine Zeile. Das spart zwar auf
Dauer immens Papier, hilft aber nicht gerade bei der Programmdokumenta-
tion. Das alles kommt nur daher, daR einige Drucker, wenn ein Zeilenendcode
(CHR$ (13)) kommt, automatisch einen Zeilenvorschubcode (CHR$ (10))
anfiigen. Das heit, wenn diese Drucker merken, daB die Zeile zu Ende ist,
schieben sie von selbst das Papier weiter. Nur Ihr Drucker tut das scheinbar

Peripheriegerite 229

nicht. Thm muB unser Commodore sagen, was Sache ist. Und das ist auch gar
kein Problem, wenn Sie eine Kanalnummer verwenden, die hher als 127 ist.
Dann wird das am Ende jeder Zeile automatisch gemacht. Probieren Sie also
in diesem Fall:

OPEN 128,4: CMD 128: LIST

Das miBte das erhoffte Listing auf den Drucker bringen. Denken Sie aber bei
Listings auch daran, da8 Fremddrucker meist gar nicht in der Lage sind, die
Steuerzeichen richtig zu drucken, also invertierte Herzchen und dergleichen.

Wenn bei lhnen schon beim ersten Versuch alles geklappt hat, aber Sie
nicht der Versuchung widerstehen konnten, das obige dennoch auszuprobie-
ren, dann haben Sie halt jetzt doppelten Zeilenabstand. Auch nicht schiecht,
oder?

Auf jeden Fall sollten Sie nach dem Listing eingeben:

PRINT#128: CLOSE128

Die meisten Commodore-kompatiblen Drucker haben zwei Druckmodi: Den
Grafikmodus, den wir schon von den Grafikzeichen kennen (also nur GroB3-
buchstaben- und Grafikzeichendarstellung) und den Textmodus (GroR- und
Kleinbuchstaben). Je nachdem, was und wie Sie drucken wollen, miissen Sie
einen dieser beiden Modi wéhlen. Dazu dient meist die Sekundaradresse

OPEN 4,4,7

Damit waéhlen Sie den Textmodus. Ab jetzt miifte alles in GroR- und
Kleinbuchstaben gedruckt werden.

OPEN 4,4,0

wihlt dagegen den Grafikmodus mit GroRbuchstaben und Grafikzeichen.
Wenn das nicht so ist, miBte in lhrem Druckerhandbuch unter diesen
Stichworten etwas stehen.

Wenn Sie jetzt aber keine Listings, sondern Daten und Texte von einem
Programm ausdrucken wollen, missen Sie sich an eine dhnliche Zeremonie
halten wie bei den Verhandlungen mit der Floppy.

10 OPEN 4,4
20 PRINT#4,"DIES IST EIN DRUCKERTEST."

Wenn nétig, sollten Sie ab jetzt immer selbstdndig eine Kanalnummer iiber
127 wihlen.

230 Peripheriegerite

Wenn alles klappt, druckt das Programm den obenstehenden Text aus.
Wenn Sie jetzt den automatischen Zeilenende-/Zeilenvorschubcode unter-
driicken wollen, verwenden Sie einfach einen Strichpunkt als Trennungszei-
chen, wie Sie das ja schon von den PRINT-Befehlen her kennen:

10 PRINTH4,"DIES IST EIN DRUCKERTEST";
20 PRINT#4," FUER IHREN DRUCKER"

Ahnlich wie bei den Steuerzeichen fiir Farben und Cursorbewegung bei lhrem
Commodore 64, gibt es auch Steuerzeichen fiir lhren Drucker.

CHR$ (14)

steht zum Beispiel meistens fiir Breitschrift.
Solche Steuerzeichen werden folgendermaBen an den Drucker geschickt:

20 PRINTH#4, CHRS$ (14);"BREITSCHRIFT";
Zum Ausschalten konnte zum Beispiel CHR$ (15) dienen:
25 PRINT#4, CHR$ (15)

Je nachdem, welchen Drucker Sie haben, er6ffnet sich ein groes Feld fiir
neue Experimente. Dieser Abschnitt sollte Ihnen nur zeigen, was man so alles
machen kann, wie die Commodore-Syntax zur Druckersteuerung ist, und im
letzten Teil dafiir sorgen, dal Sie verstehen, was die Anleitungsbiicher mit
CHR$ und dergleichen meinen. Wer weiB, vielleicht schreiben Sie ja schon in
den néchsten Tagen an lhrem ganz personlichen Textverarbeitungspro-
gramm. Wir driicken lhnen in jedem Fall alle vier Daumen dazu und hoffen,
daB Sie viel SpaB dabei haben werden.

12
Anhang

Kapitelzusammenfassungen

«In der Kiirze liegt die Wiirze». Diese Zusammenfassungen sollen noch mal
stark in geraffter Form zeigen, was an einem Kapitel besonders wichtig war.
So finden Sie spater schnell die Informationen, die Sie brauchen. AuBerdem
-richten sich diese Kapitel in Sprache und Aufbau mehr nach Fachbiichern und
Fachzeitschriften. Dadurch werden Sie schon ein biBchen auf die Lektiire
solcher Werke vorbereitet.

Die Grafikzeichen

Der Commodore 64 hat zwei alternative Zeichensétze fest eingebaut: Im
sogenannten Grafikmodus stehen GroBbuchstaben und die Grafikzeichen zur
Verfiigung. Im Textmodus gibt es GroB- und Kleinbuchstaben. Mit den
Tasten (C=) und (SHIFT) kénnen Sie zwischen diesen Modis wechseln.

Wenn innerhalb eines Programms zwischen den Zeichensatzen umgeschal-
tet werden soll, dienen dazu die folgenden Befehle:

PRINT CHR$(14)
schaltet den Textmodus ein.
PRINT CHR$(142)

schaltet den Grafikmodus ein.
Es kann aber nur immer ein Modus aktiv sein. Auf dem Bildschirm kénnen
sich also nicht gleichzeitig Zeichen befinden, die in den beiden Modis

232 Anhang

unterschiedlich belegt sind (zum Beispiel Grafikzeichen und Kleinbuch-
staben ...).

Die verwendbaren Grafikzeichen sind auf den Vorderseiten der Tasten
dargestellt. Um sie zu erreichen, muB die (SHIFT)- oder die (C=)-Taste
gedriickt werden. Dabei gilt: Die Symbole rechts werden mit (SHIFT)
erreicht, die Symbole links mit (C=).

Im Textmodus muB fiir GroBbuchstaben (SHIFT) gedriickt werden. Die
Symbole, die mit {(C=) angesprochen werden, sind auch im Textmodus
verwendbar. Es handelt sich dabei vor allem um Symbole, die fiir die
Darstellung von Tabellen usw. interessant sind.

Um die Umschaltung zu blockieren, kénnen Sie den Befehl

PRINT CHR$(8)
verwenden. Zur Aufhebung der Blockierung dient
PRINT CHR$(9)

Welche Symbole in welchem Modus erreichbar sind, 1a8t sich auch im
Anhang E des Commodore-64-Handbuchs finden (Seite 132).

Die Steuerzeichen

Die Tasten, die zur Steuerung auf dem Bildschirm dienen (also die (CRSR)-
Tasten, die Farbtasten, (CLRZHOME) und {INST/DEL), und verschiedene
Codes, die durch (CTRL) erreicht werden), kénnen auch programmiert
werden.

Dazu wird der PRINT-Befehl verwendet. Der Steuerzeichenmodus wird
durch ein Anfithrungszeichen (") oder (INST) aktiviert. Er stellt dann fiir alle
oben aufgefiihrten Tasten ein besonderes Steuerzeichen dar. Abgeschaltet
wird er durch ein weiteres Anfiihrungszeichen oder (RETURN).

Bei der Programmausfiihrung wirkt ein solcher PRINT-Befehl dann so, als
ob die Tasten direkt gedriickt wurden.

Mit diesen Steuerzeichen kénnen durch Léschen und Uberdrucken auch
bewegte Grafiken erzeugt werden.

Anhang 233

Die Speicheraufteilung

Der Commodore 64 besitzt 64K-RAM und 20K-ROM. Auflerdem werden
noch Adressen durch andere Bausteine, wie den VIC-Il oder den SID,
benétigt.

Da der Mikroprozessor 6510 mit seinem 16-Bit-Adrefbus aber nur 64K
gleichzeitig adressieren kann, mufl er zwischen den verschiedenen Baustei-
nen, die auf einer Adresse liegen, umschalten kénnen. Dazu werden jeweils
8K zu Blocks zusammengefaBt, die der 6510 dann ein- oder ausblendet.
Zusétzlich greift der Videochip VIC auch noch auf das Charakter-ROM zu
und benutzt dabei den Datenbus. Also miissen sich 6510 und VIC den Bus
teilen. Dazu steuert VIC die Interrupts und benutzt genau dann den Daten-
bus, wenn der Prozessor ihn nicht benétigt.

Man kann aber einen Teil der ROM-Programme, ndmlich den BASIC-
Interpreter und das Betriebssystem (Kernal), in die RAM-Bausteine kopieren,
die auf der gleichen Adresse liegen, und dann die ROMs ausblenden. So
lassen sich dann im RAM Verdnderungen am Betriebssystem vornehmen.

Der AdreBbereich von 65535 Bytes wird liblicherweise in 256 «pages»
(Seiten) zu je 256 Bytes unterteilt. Die Seite Nr. O von O bis 255 heift
Zeropage. Hier legt der Rechner wichtige Informationen ab. Einige niitzliche
Adressen in diesem Speicherbereich werden im PEEK&POKE-Anhang be-
schrieben.

Auch die ndchsten 3 Pages werden fiir interne Zwecke benétigt. Insbeson-
dere wiren da der Stack, eine Art Zwischenspeicher fiir den Prozessor, der
Kassettenpuffer und das Bildschirm-RAM zu nennen.

Dann folgen 38911 Bytes RAM fiir BASIC-Programme.

Von Adresse 40960 bis 49151 ist dann normalerweise ROM eingeblendet:
Hier befindet sich der BASIC-Interpreter.

Es folgt von 49152 bis 53247 ein besonderer RAM-Bereich fiir Maschinen-
sprache-Programme, Befehlserweiterungen usw. Hier liegt beispielsweise
auch das DOS 5.1.

Der nédchste AdreBbereich ist sogar dreifach belegt: Hier liegen die 1/0O-
Register (von VIC, SID und den Interface-Bausteinen). AuBerdem befindet
sich hier das Charakter-ROM, das aber im Normalfall vom Prozessor nicht
gelesen werden muf. SchlieBlich liegen hier auch noch 4K-RAM.

In den letzten 8K von 57334 bis 65535 befindet sich das Kernal im ROM.
Mit der Speicherzelle 1 ldBt sich steuern, ob RAM oder ROM fiir einen
bestimmten Speicherbereich eingeblendet ist.

234 Anhang

535
Betriebssystem-ROM 65
oder 8K-RAM
- 57344
1/0-Register
oder Zeichensatz-ROM
oder 4K-RAM
53248
4K-RAM
BASIC-ROM 49152
oder 8K-RAM
40960
38 911-Bytes-
BASIC-RAM
2048
Bildschirm-RAM
1024
‘Interner Arbeitsspeicher
256
Zeropage
0

Bild 12.1 Speicheraufteilung

Dabei sind folgende Bits fiir die genannten Bereiche verantwortlich:.

Bit Bereich Inhalt

0 40960 bis bis 49 151 BASIC-ROM oder RAM

1 57 344 bis 65535 KERNAL(ROM) oder RAM

2 53248 bis 57 343 . 1/O-Register oder Charak-
ter-ROM

Der jeweils zweite Bereich ist eingeblendet, wenn das entsprechende Bit aus
ist. Die restlichen Bits dienen zur Steuerung des Kassettenrecorders und
sollten nicht verdndert werden.

Mit den Zeropageadressen 43 bis 46 und anderen 4Bt sich der Speicherbe-
reich fiir BASIC-Programme verschieben. Nédheres dazu finden Sie im PEEK-
&POKE-Anhang. Diese Adressen benutzen das High-Byte/Low-Byte-Prinzip,
das bei einem 8-Bit-Prozessor und einem 16-Bit-Adrefbus stdndig verwendet

Anhang 235

wird. Dazu wird eine 16-Bit-Zahl in der Mitte geteilt und so in zwei Pseudo-8-
Bit-Zahlen umgewandelt.

So wird z. B. aus 2048 (00001000 00000000) das High Byte 8 (00001000)
und das Low Byte 0 (00000000).

Ein Umrechnungsprogramm zwischen Bindr- und Dezimalzahlen befindet
sich im Listinganhang.

Selbstdefinierbare Zeichen

In der 8% 8-Matrix, in der VIC die Zeichen auf dem Bildschirm darstellt, lassen
sich auch eigene Zeichen entwickeln. ‘

Dazu mufB zuerst der Zeichensatz aus dem Charakter-ROM ins RAM, also
in den Arbeitsspeicher kopiert werden. Dies bedeutet aber, die 1/0-Register
auszublenden und dafiir das Charakter-ROM in den AdreBbereich des Pro-
zessors zu ibernehmen. Um das gefahrlos tun zu kénnen, miissen wéhrend
des Kopiervorgangs die Interrupts abgeschaltet werden.

Das folgende Programm iibernimmt alle diese Aufgaben:

10 POKE56334,0

20 POKE1,51

30 FORX=0TO2048: POKE (Startadresse) + X,PEEK (53248 + X) :NEXT
40 POKE1,55

50 POKE56334,1

Der Zeichensatz befindet sich nun im RAM ab der angegebenen Startadresse.
Um Verwicklungen mit einem BASIC-Programm zu vermeiden, sollte BASIC
entsprechend verschoben werden (vgl. auch PEEK & POKE-Anhang ...)

Um auf den neuen Zeichensatz umschalten zu kénnen, muf} die Adresse
53272 entsprechend verdndert werden:

POKE 53272, (PEEK(53272) AND 240))) OR (Zeiger)

Die moglichen Startadressen und die Zeiger dorthin entnehmen Sie bitte
Tabelle 12.1.

VIC kann gleichzeitig nur 16K verwalten. Wenn Sie (wie im PEEK & POKE-
Anhang erklart) seinen AdreBbereich verschieben, miissen Sie die Start-
adresse dieser Speicherbank zu den oben aufgefiihrten Adressen addieren.
Die Zeiger bleiben. Beachten Sie dabei aber, daR sich die Adresse des
Bildschirm-RAMs evtl. auch verdndert.

236 Anhang

Startadresse Zeiger
2048 2
8192 8

10240 10

12288 12

14336 14

Tabelle 12.1 Startadresse fiir Zeichensatz

In dem RAM-Bereich, wo sich der Zeichensatz nun befindet, kann er
beliebig abgedndert werden. Ein Hilfsprogramm dazu befindet sich im Li-
stinganhang.

Die Hires-Grafik

Im Hires-Modus benutzt VIC einen Speicherbereich von 8K als Bitmap. So
erreicht er eine Auflosung von 320 * 200 Punkten.

Dabei wird das Bildschirm-RAM als Farbspeicher benutzt. Sie kénnen
natiirlich diese Speicherbereiche wieder verschieben, aber der Normalfall
diirfte folgende Aufteilung sein:

Farbspeicher (Bildschirm-RAM) 1024 bis 2024
Bitmap (Arbeitsspeicher) 8192 bis 16192

Diese Aufteilung und das Einschalten des Hires-Modus wird durch folgende
Befehle erreicht:

POKE53272,24: POKE53265,59

Bei anderer Aufteilung muf der Inhalt der Adresse 53272 entsprechend
geandert werden. Nahere Informationen hierzu finden Sie im PEEK & POKE-
Anhang.

Zum Abschalten geben Sie ein:

POKE53272,21: POKE53265,27

Die Hires-Grafik muB jetzt in die Bitmap gePOKEd werden. Einige Hilfsrouti-
nen dazu finden Sie im Listinganhang.

Anhang 237

Im Normalmodus kann fiir einen Block von 8 x 8 Punkten (entsprechend
den normalen Zeichen) jeweils eine Vorder- und eine Hintergrundfarbe
angegeben werden. Dazu POKEn Sie die beiden Farben nach folgender
Formel in die entsprechende Adresse im Farb-RAM:

POKE (Adresse), (Vordergrundfarbe) % 16 + (Hintergrundfarbe)

Es gibt auch einen Mehrfarbmodus (Multicolormodus). Er wird eingeschaltet
durch:
POKE53270,216

Wenn er aktiv ist, verringert sich die horizontale Auflésung auf 160 Punkte.
Je zwei Bits wird nun eine Farbe zugeordnet, abhangig von der Kombina-

tion der beiden: (Tabelle 12.2).

Der Multicolormodus 1Rt sich auch im Textmodus anwenden. Insbesondere

wird dies interessant in Verbindung mit selbstdefinierten Zeichen. Die ent-

sprechenden Adressen sind in Tabelle 12.3 zu ersehen.

Bitmuster Farbadresse

00 53281

01 Bits 7 bis 4 im Bildschirm-RAM

10 Bits 3 bis O im Bildschirm-RAM

11 Bits 3 bis 0 im Farb-RAM (55296 bis 56296)

Tabelle 12.2 Bitmuster fiir Multicolormodus

Bitmuster Farbadresse

00 53281

01 53282

10 53283

11 Bits 3 bis 0 im Farb-RAM (55296 bis 56296)

Tabelle 12.3 Adressen fiir Multicolortexte

238 Anhang

Sie kénnen mit
POKE 53270,200

‘den Multicolormodus abschalten.
Im Textmodus laRt sich auBerdem noch der Hintergrundfarbmodus (Exten-
ded Background Color Mode) anwenden: Er wird mit

POKE 53265,91

eingeschaltet. In diesem Modus kénnen Sie die Hintergrundfarbe eines
einzelnen Zeichens bestimmen. Es bestehen insgesamt vier verschiedene
Moglichkeiten fiir den Hintergrund.

Um diese Hintergrundfarben zu unterscheiden, werden die Bits 7 und 6 des
Bildschirmcodes herangezogen. Es existieren also nur noch die Zeichen 0 bis
63, diese dafiir aber mit vier verschiedenen Hintergriinden.

Der Zusammenhang zwischen Bildschirmcode und Tastatur ist wie folgt
(Tabelle 12.4). ~
In folgende Adressen konnen Sie die Hintergrundfarben POKEn (Tabelle
12.5).

BS-Code Zeichen
0 bis .63 «normale» Zeichen
64 bis 127 (SHIFT) + Zeichen
128 bis 191 (RVS ON), Zeichen
192 bis 255 (RVS ON), (SHIFT) + Zeichen

Tabelle 12.4 Hintergrundfarben

BS-Code Farbadresse
Obis 63 53281
64 bis 127 53282
128 bis 191 53283
192 bis 255 53284

Tabelle 12.5 Adressen fiir Hintergrundfarben

Anhang 239

Um diesen Modus abzuschalten, verwenden Sie folgenden POKE:
POKE53265,27

Der Hintergrundfarbmodus ist im Hires-Modus sinnlos und kann daher dort
nicht angewendet werden.

Sprites

Sprites sind kleine Grafikblocks, die unabhdngig vom Hintergrund bewegt
werden konnen. Sie sind 24 % 21 Punkte groB, und maximal acht von ihnen
konnen gleichzeitig auf dem Bildschirm dargestellt werden. Ein Sprite wird als
Bitmuster in einem Speicherbereich von 63 Bytes abgespeichert. Diese Sprites
konnen dann mit Hilfe von X- und Y-Koordinaten auf dem Bildschirm bewegt
werden. Da sie unabhidngig vom Bildschirmhintergrund sind, kann dieser
sowohl der normale Textbildschirm sein als auch eine Hires-Grafik. Ein
weiterer Vorteil ist, daB sie den Hintergrund in keiner Weise beeinflussen, also
nicht verdndern oder 16schen. Weitere Moglichkeiten sind: VergréRerung,
Kollisionsabfrage, Wechsel der Hintergrund-Prioritdit und Mehrfarbdarstel-
lung.

Alle diese Funktionen werden vom VIC-Videochip durch einzelne Register
gesteuert.

Zundchst muB ihm mitgeteilt werden, wo im Speicher sich das Bitmuster fiir
einen bestimmten Sprite befindet. Dazu werden acht bisher freie Adressen
am Ende des Bildschirm-RAMs verwendet: Die Zeiger auf die Startadresse
eines Sprites liegen in den Speicherzellen 2040 bis 2047. Dieser Zeiger gibt
jeweils den 64-Byte-Block an, um den es sich handelt. Wenn hier beispiels-
weise 13 steht, ist die Startadresse 13 * 64, also 832.

Allerdings sind einige Speicherbereiche fiir Spritemuster ungeeignet, bei-
spielsweise die Zeropage, das Bildschirm-RAM und der BASIC-Speicher.
Welche Adressen frei sind, erkennen Sie in der Tabelle 7.1

Wenn nun die Zeiger auf die entsprechenden Speicherbereiche gesetzt sind
und die Bitmuster der Sprites dorthin gePOKEd wurden, erfolgen alle weite-
ren Steuerungen iiber Register von VIC.

Im einzelnen wdren das:

Sprite einschalten: 53269

Diese Speicherzelle ist dafiir verantwortlich, welcher Sprite gerade aktiv ist,

240 Anhang

also auf dem Bildschirm erscheint. Jedem der acht Sprites ist ein Bit in dieser
Speicherzelle zugeordnet, so daB ein Sprite mit folgendem Befehl eingeschal-
tet werden kann:

POKE 53269, PEEK (53269) OR 2 A Spritenummer

Die Spritenummern reichen entsprechend den Bits von O bis 7. Um einen
Sprite auszuschalten, verwenden Sie

POKE 53269, PEEK (53269) AND (255—2 A Spritenummer)

Die X- und Y-Koordinaten fiir die verschiedenen Sprites stehen in den
Adressen 53248 bis 53263 also (Tabelle 12.6).

Diese Koordinaten reichen in den Rahmen hinein, so daB sich fir die echte
Startposition (linkes oberes Bildschirmeck) die Koordinaten (X = 24; Y = 50)
ergeben.

Da die Bildschirmbreite groRer als 255 ist, muB fiir die X-Koordinaten noch
ein 9. Bit bereitgestellt werden. So kann also fiir X ein Wert bis 511
angegeben werden, was in jedem Fall ausreicht.

Diese 9. Bits sind fiir alle Sprites in einem Register zusammengefaft:

53264: 9. Bits der Sprites7 6 5 4 3 2 1 0
Um Sprites zu vergrofern, gibt es zwei Register:

53271 fiir VergroRerung in Y-Richtung,
53277 fir VergroBerung in X-Richtung.

Wenn ein Bit in einer oder beiden Speicherzellen gesetzt ist, wird der
zugehorige Sprite in der jeweiligen Richtung auf die doppelte GroBe ge-
streckt.

Die Register, in denen die Farben fiir die Sprites angegeben werden, liegen

von 53287 bis 53294. Fiir jeden Sprite kann eine Farbe von O bis 15
angegeben werden (Tabelle 12.7).
Ein Sprite kann auch im Multicolormodus dargestellt werden. Dieser wird fiir
jeden Sprite einzeln gewdhit. Die zustdndige Speicherzelle ist 53276. Wenn
hier ein Bit gesetzt ist, wird der zugehorige Spnte als Multicolorgrafik
dargestellt.

Die Farbadressen fiir die vier méglichen Bltkomblnatlonen sind (Tabelle
12.8).

Weiterhin kann die sogenannte Sprite-Hintergrund-Prioritdt angegeben wer-
den. Das bedeutet, es kann fiir jeden Sprite einzeln festgelegt werden, ob er

Anhang 241

X-Koordinate von Sprite #0 53248
Y-Koordinate von Sprite #0 53249
X-Koordinate von Sprite #1 53250
Y-Koordinate von Sprite #1 53251
X-Koordinate von Sprite #7 53262
Y-Koordinate von Sprite #7 53263

Tabelle 12.6 Spritekoordinaten

Farbe von Sprite #0 53287
Farbe von Sprite 41 53288
Farbe von Sprite 47 53294

Tabelle 12.7 Farbadressen fiir Sprites

. Bits Adresse
00 53281
01 53285
10 Farbregister des jeweiligen Sprites
11 53286

Tabelle 12.8 Farbadressen fiir Multicolorsprites

vor oder hinter dem Hintergrund dargestellt wird, also vor oder hinter dem
Text bzw. vor oder hinter den Punkten der Hires-Grafik. Das geschieht mit
Adresse 53275. Ein gesetztes Bit bedeutet, der zugehdrige Sprite wird hinter
dem Hintergrund dargestellt.

SchlieBlich gibt es noch zwei Kollisionsdetektoren: Hier kann festgestellt
werden, ob die Sprites untereinander oder mit dem Hintergrund zusammen-
gestofRen sind.

Das Register 53278 ist fiir die Kollisionen untereinander zustdndig: Die Bits

242 Anhang

der beteiligten Sprites sind gesetzt und bleiben gesetzt, bis sie mit PEEK
(53278) ausgelesen wurden. Da dieses System nicht hundertprozentig funk-
tioniert, sollte nach einer Abfrage der Inhalt durch POKE 53278,0 geldscht
werden.

Nach genau demselben Prinzip arbeitet die Adresse 53 279. Sie ist fiir die
Kollisionen mit dem Hintergrund verantwortlich.

Musik und Gerdusche

Der SID 6581 hat drei voneinander unabhdngige Stimmen. Fiir jede dieser
Stimmen miissen verschiedene Parameter programmiert werden, die die
Charakteristik, Dauer und Lautstdrke des zu erzeugenden Tons beschreiben.

Zur Einstellung dieser Werte dienen wieder Register, diesmal die des SID.

Sie liegen ab der Adresse 54272.

Der erste Parameter ist die sogenannte Wellenform. Je nachdem, wie die
Schwingungen, die vom menschlichen Ohr als Téne wahrgenommen wer-
den, gebaut sind, klingt der Ton.

Beim SID konnen Sie zwischen vier verschiedenen Wellenformen wahlen:

Sdgezahn (17)
Dreieck (33)
Rechteck (65)
Rauschen (129)

Eine dieser Wellenformen muB nun fiir jede Stimme angegeben werden.
Dazu POKEN Sie die entsprechende Zahl (oben angegeben) in das Wellen-
form-Register der jeweiligen Stimme (Tabelle 12.9).

Stimme 1 54276
Stimme 2 54283
Stimme 3 54290

Tabelle 12.9 Wellenformen fiir Stimmen 1 bis 3

Bei der Programmierung eines Tons sollte diese Aufgabe als letzte erfolgen,
da die Wellenform-Register das sogenannte «Key-Bit» enthalten (ndmlich Bit

Anhang 243

#0), das den Ton letztlich einschaltet (bzw. ausschaltet. Deshalb kénnen Sie
auch durch Léschen von Bit#0 im jeweiligen Wellenform-Register den
gesamten Ton beenden).

Genausogut kénnen Sie natiirlich zuerst die Wellenform angeben und
dann am SchluB durch

POKE (Adresse), PEEK (Adresse) OR 1

den Ton starten.

Wenn Sie die Wellenform «Rechteck» wéahlen, muB zusitzlich noch das
«Tastverhdltnis» (bzw. die «Pulsbreite») angegeben werden. Dies ist eine
Zahl, die die Breite des Rechtecks beschreibt. Sie wird als 12-Bit-Wert
dargestellt, kann also von O bis 4095 reichen. Dieser Wert wird fiir jede
Stimme in zwei aufeinanderfolgenden Registern nach dem High-Byte/Low-
Byte-Prinzip abgelegt (Tabelle 12.10).

Stimme 1 54274 und 54275
Stimme 2 54281 und 54282
Stimme 3 54288 und 54289

Tabelle 12.10 Pulsbreiten fiir Stimmen 1 bis 3

Der Verlauf des Tons wird beim SID nach dem ADSR-Prinzip beschrieben.
Das bedeutet, durch die vier Parameter Attack, Decay, Sustain und Release
kénnen Anderungen der Intensitit programmiert werden. Jeder Parameter
wird als 4-Bit-Wert (also O bis 15) dargestellt. Dabei kdnnen diese Parameter
folgendermafen umschrieben werden: Attack (Anschlag) ist die Intensitat,
mit der ein Ton anklingt. Decay (abschwellen) ist das MaB, di¢ Geschwindig-
keit, mit der ein Ton auf seine Grundlautstarke zuriickfallt. Sustain (aushalten)
ist diese Grundlautstdrke. Release (ausklingen) ist die Geschwindigkeit, mit
der der Ton verklingt.

Da jeweils vier Bit fiir eine dieser Einstellungen zustdndig sind, kdnnen zwei
Parameter (als Nibble) in einem Byte untergebracht werden (Tabelle 12.11).
Die wichtigste Einstellung schlieBlich ist die Frequenz. Sie kann von O bis
65535 gehen, bendtigt also zu ihrer Darstellung 16 Bit. So wird auch sie
wieder in High Byte/Low Byte zerlegt (Tabelle 12.12).

244 Anhang

Stimme Attack/Decay Sustain/Release
1 54277 54278
2 54284 54285
3 54292 54293

Tabelle 12.11 Adressen fiir ADSR-Hiillkurven

Stimme High Byte Low Byte

1 54272 54273
2 54279 54280
3 54286 54287

Tabelle 12.12 Frequenzadressen fiir Stimmen 1 bis 3

Damit der Ton nun auch erklingt, muB nur noch die Lautstirke angegeben
werden. Sie ist fiir alle Stimmen einheitlich und liegt in der Adresse 54296.

Vergessen Sie nicht, bei Ihren Angaben die Wellenform als letztes zu
POKER!

Input/Output
1. Tastatur

Gedriickte Tasten werden in einem sogenannten «Tastaturpuffer» zwischen-
gespeichert, unabhdngig davon, wann sie ausgelesen werden. Im Normalfall
wird das sofort sein (also Tippen eines Programms oder einer Eingabe). Wenn
wiéhrend eines Programmlaufs oder wéhrend einer Warteschleife Tasten
gedriickt werden, warten diese im Tastaturpuffer so lange, bis sie aufgrund
eines INPUT- oder GET-Befehls abgefragt werden oder bis das Programm zu
Ende ist und der Inhalt des Tastaturpuffers auf den Bildschirm geschrieben
werden kann.

Die maximale GroRe des Tastaturpuffers steht in der Adresse 649. Der
normale Wert ist 10. Er sollte nicht erh6ht werden. Man kann aber die Anzahl
der erlaubten gedriickten Tasten so auf eine Zahl, die kleiner als 10 ist,
beschranken. Wenn der Inhalt dieser Adresse O ist, ist die Tastatur blockiert.

Anhang 245

In der Zelle 198 dagegen steht die Anzahl der Tasten, die sich tatséchlich im
Tastaturpuffer befinden. Diese 1dRt sich mit PEEK (198) abfragen, um bei-
spielsweise die Anzahl der bisher gedriickten Tasten zu priifen. Sie kann auch
auf O gesetzt werden, um bisher gedriickte Tasten zu unterdriicken. Oder sie
kann im Zusammenhang mit der simulierten Tastatur verwendet werden.

Dabei werden in den Tastaturpuffer (631 bis 640) die Codes der Tasten
gePOKEd, die ausgefiihrt werden sollen. Dann wird der Adresse 198 die
Anzahl dieser Tasten libergeben. Damit wurde der Tastaturpuffer kiinstlich
gefiillt und wird nun bei der ndchsten Abfrage (meist durch Riickkehr in den
Direktmodus) die vorprogrammierten Tasten ausgeben. In den Zellen 197
bzw. 204 steht der Tastaturcode der Taste, die gerade gedriickt wird. Die
Werte, die sich in dieser Zelle befinden, sind auf Bild 10.1 zu sehen.

Ob eine der Tasten (SHIFT), (C=) oder (CTRL) gedriickt wurde, 148t sich
mit PEEK (653) feststellen. Dabei erhalten Sie folgende Werte:

1 fir (SHIFT)
2 fiir (C=)
4 fiir (CTRL)

Wenn mehrere dieser Tasten gehalten werden, befindet sich in der genann-
ten Speicherzelle die Summe der oben aufgelisteten Werte.

2. Joysticks

Die Joysticks werden an die beiden Control-Ports an der rechten Geréteseite
angeschlossen. Sie kénnen mit PEEK (56321) und PEEK (56 320) abgefragt
werden.

Vergleichen Sie die Bedeutung einzelner Bits im PEEK & POKE-Anhang.

3. Paddles

Zum Auslesen von Paddles benétigt man A/D-Wandler. Zwei solche Wandler
sind bereits im SID eingebaut, so daB diese zum Auslesen der Paddles
verwendet werden.

Den aktuellen Wert der Paddles kann man also durch

PEEK (54297) fiir Paddle 1
PEEK (54298) fiir Paddle 2

feststellen. Das gilt zundchst fiir die Paddles, die an Port 1 angeschlossen sind.

246 Anhang

Ob die Feuerknopfe der Paddles gedriickt werden, erkennt man an den Bits
2 und 3 in der Adresse 56321.
Sie konnen folgendermaBen abgefragt werden:

IF NOT PEEK(56321) AND 4 THEN 1. Paddle
IF NOT PEEK(56321) AND 8 THEN 2. Paddle

Wenn Paddles am 2. Port betrieben werden sollen, erfordert dies eine etwas
andere Programmierung: Da iiber den gleichen Baustein auch die Tastaturab-
frage stattfindet, missen zuerst die Interrupts abgeschaltet werden. Dazu
dient POKE 56334,0 (nur innerhalb eines Programms verwenden und danach
wieder einschalten!).

Dann muB dem Interfacebaustein (CIA) iiber einen entsprechenden POKE
mitgeteilt werden, welche Paddlesignale an den SID weitergegeben werden
sollen:

POKE 56320,64 fiir Port 1
POKE 56320,128 fiir Port 2

Die Feuerknopfe des zweiten Paddlesatzes konnen in den Bits 2 und 3 der
Adresse 56320 abgefragt werden:

IF NOT PEEK(56320) AND 4 THEN 1. Paddle
IF NOT PEEK(56320) AND 8 THEN 2. Paddle

Noch mal: Vergessen Sie nicht, nach der Paddleabfrage die Interrupts und
somit die Tastatur wieder zu aktivieren!

Peripheriegerate
Die Floppy VC 1541

Die Floppy zum Commodore 64 verwendet 5Y-Zoll-Disketten. Die Daten
einer Diskette sind in Tabelle 12.13 dargestellt.
Vor dem ersten Verwenden muB eine frisch gekaufte Diskette «formatiert»
werden. Dabei werden die Spuren und Sektoren magnetisch vorgezeichnet.
Die Spuren auf einer Diskette sind konzentrisch um das Loch in der Mitte
angeordnet.

Die Anzahl der Blocks je Spur ist unterschiedlich (Tabelle 12.14).
Die Floppy ist ein «intelligentes» Peripheriegerdt: Sie hat einen eigenen
Prozessor und ihr eigenes Betriebssystem (DOS) in ROMs eingebaut. ’

Anhang 247

Spuren (Tracks): 35

Sektoren (Blocks): 683

Bytes je Block: 256

Directory: Spur 18

freie Sektoren: 664
Speicherkapazitat: 170 KByte

Tabelle 12.13 Daten einer Diskette

Spur: Sektoren:
1-17 21

18-24 19

25-30 18

31-35 17

Tabelle 12.14 Sektoren je Spur

Um Floppy-Funktionen auszufiihren, muB deshalb ein entsprechender
Befehl an die Diskettenstation geschickt werden.

Zum LOADen und SAVEn (also zum Laden und Abspeichern) von Pro-
grammen muB eine Gerdtenummer angegeben werden:

LOAD"Programmname",8
SAVE"Programmname",8

Normalerweise hat die Floppy die Gerdtenummer 8. Wenn gleichzeitig
mehrere Floppys verwendet werden sollen, kann diese Gerdtenummer geén-
dert werden.

Um das Inhaltsverzeichnis einer Diskette (Directory) zu lesen, muB dieses
im normalen BASIC als Programm geladen werden:

LOAD"$",8

Das hat allerdings zur Folge, daB das Programm, das sich gerade im Speicher
befindet, geldscht wird.
Um diesen Nachteil zu umgehen, sollte man das Programm DOS 5.1

248 Anhang

verwenden, das sich auf der mitgelieferten «TEST/DEMO»-Diskette befindet.
Es wird mit LOAD"DOS 5.1",8,1 geladen. Aufgerufen wird es mit-SYS
52224:NEW.

Nun kénnen Sie fiir die Anzeige des Directory den Befehl

)$

verwenden.
Zur Abfrage des Fehlerkanals verwenden Sie in BASIC normalerweise:

10 OPEN 1,8,15 : INPUTH#1, A,A$,B,C : PRINT A;A$;B;C : CLOSE 1
Diese ganze Prozedur laRt sich beim DOS 5.1 durch

)

ersetzen.
Zur Ubermittlung eines Befehls an die Floppy benétigen Sie in BASIC
folgende Syntax:

OPEN1,8,15: PRINT#1,Befehl: CLOSE1
Das DOS 5.1 stellt Ihnen folgende Kurzform zur Verfiigung:
YBefehl

Anstelle von ")" kann bei DOS-5.1-Befehlen auch "@" verwendet werden.
Eine Gegeniiberstellung weiterer Befehle:

DOS 5.1 BASIC V.2

/Programm LOAD "Programm",8

1 Programm LOAD "Programm”,8
RUN

% Programm LOAD "Programm",8,1

<Programm SAVE "Programm”,8

AuBer diesen Befehlen gibt es Befehle, die direkt an das DOS in der Floppy
Ubermittelt werden. Dabei ist es im Prinzip egal, ob das mit Hilfe des DOS 5.1
oder iiber Standard-BASIC geschieht. Es geniigt generell, wenn der erste
Buchstabe eines solchen Befehls gesendet wird. Also zum Beispiel «I» anstelle
von «INITIALIZE». Die wichtigsten Befehle an die Floppy sind:

Anhang 249

INITIALIZE

Dieser Befehl weist das DOS an, die BAM (Block Availability Map) in den
Arbeitsspeicher der Floppy einzulesen.

NEW

Dieser NEW-Befehl an die Floppy (nicht zu verwechseln mit dem BASIC-
Befehl NEW) formatiert eine Diskette neu. Dazu miissen der Diskettenname
und die ldentity-Nummer angegeben werden:

N:Diskname,Id

CorPY

Dieser Befehl kopiert ein File innerhalb einer Diskette. Das kopierte Programm
muB einen anderen Namen als den des Originalprogramms erhalten.

C:Name der Kopie = Name des Originals

RENAME

Mit diesem Befehl kann ein File auf Diskette umbenannt werden:

R:Neuer Name = Alter Name

SCRATCH
Damit werden Files auf einer Diskette geldscht.

S:Programmname

VALIDATE

‘Dieser Befehl vergleicht die belegten Blocks in der BAM mit der aktuellen
Belegung und korrigiert gegebenenfalls Falscheintrdge. Die Jokersymbole:

% und ? kénnen als Jokersymbole verwendet werden.
? ersetzt einen unbekannten Buchstaben in einem Programmnamen. So
steht H?LLO genauso fiir HALLO wie fiir HELLO.

250 Anhang

% beendet den Namen vorzeitig. EINK« kann fiir EINKAUF, EINKUENFTE
oder EINKOMMENSTEUERERKLAERUNG stehen.

Wird bei einem LOAD-Befehl ein Joker verwendet, wird grundsdtzlich das
erste Programm geladen, auf das das Muster paft. ,

Bei den Floppy-Befehlen werden alle Programme betroffen, die passen. Ein
«S:PRO*» l6scht also alle Programme, die mit «<PRO» anfangen. Bei SAVE
darf kein Joker verwendet werden. Das erzeugt einen SYNTAX ERROR,
ebenso bei Diskettennamen und dhnlichem.

Druckerhandhabung
Um ein Listing auf einem Drucker auszugeben, dient folgende Syntax:

OPEN 4,4: CMD 4: LIST
PRINTH# 4: CLOSE 4

Wenn ein Fremddrucker verwendet wird, der dem Carriage Return-Code
(CHR$(13)) keinen automatischen Line Feed (CHR$(10)) beifiigt, muB eine
Kanalnummer groBer als 127 verwendet werden.

Zur Ausgabe von Daten auf den Drucker dient der PRINT#-Befehl:

OPEN4,4: PRINTH# 4,"DIES IST EIN TEST"

Die Trennzeichen ":" und "," wirken wie beim normalen PRINT-Befehl. Bei
jedem Drucker konnen durch Steuercodes oder Sekundaradressen bestimmte
Betriebsmodi gewdahlt werden. Vergleichen Sie dazu aber bitte Ihr Drucker-
handbuch.

Listings

In diesem Anhang finden Sie die Programmlistings, die wir [hnen im Lauf des
Textes immer wieder versprochen haben. Vorher aber noch einige Anmer-
kungen: Erklartes Ziel dieser Listings ist es, lhnen DenkanstoBe zu vermitteln.
Das gilt speziell fiir die verschiedenen Utilities. Wir haben lhnen zwar
lauffdhige Programme abgedruckt, verstehen diese aber nicht als fertige
Losungen. Jedes der abgedruckten Programme sollte komfortabler sein. Das
zu programmieren, liegt an lhnen.

Die abgedruckten Programme sind auch nicht gegen Fehlbedienung
geschiitzt. Wenn Sie eine sinnlose oder fehlerhafte Eingabe machen, wird

Anhang 251

friiher oder spéter ein ERROR oder (bei POKEs!!!) ein Programmabsturz
eintreten.

Dennoch sollten Sie diese Programme abtippen und als Hilfe benutzen.
Speziell das Grafikutility und die Zeichen- bzw. Spriteeditoren werden lhnen
wohl gute Dienste erweisen kdnnen.

Wir haben uns entschieden, diese Programme nicht so ausfiihrlich zu
dokumentieren, wie Sié es von unseren beiden Spielen gewohnt sind. Das hat
zwei Griinde: Erstens wiirde es sich bei den meisten kurzen Programmen
sowieso nicht lohnen, und zweitens sollen Sie durch Experimente und Beob-
achtungen selbst aus diesen Programmen lernen. Die Beschreibungen zu den
einzelnen Programmen wollen nur kurz aufzeigen, welche Ideen hinter den
einzelnen Beispielen stecken.

Hugo

Dieses vierzeilige Programm zeigt, mit welch einfachen Mitteln schon ein
biBchen Animation méglich ist. In den Zeilen 20 und 30 befinden sich genau
dieselben Steuerzeichen (aus der (HOME)-Position, zweimal (CRSR
DOWN), zweimal (CRSR RIGHT), Kopf zeichnen (CRSR DOWN), zweimal
(CRSR LEFT), Arm, (RVS ON) fiir den Rumpf, Leerstelle, {(RVS OFF),
anderer Arm, {CRSR DOWN), dreimal (CRSR LEFT), Bein, Bauch, Bein. Die
beiden Bewegungsphasen missen sich aber in den Zeichen fiir Arme und
Beine unterscheiden. Der Trick dabei ist, beim PRINTen immer in der HOME-
Position anzufangen, damit die Zeichen auch richtig tiberdruckt werden. Mit
GOTO 20 erreicht man eine Endlosschleife und somit einen stindigen
Wechsel der beiden Phasen. Zeile 10 I6scht einmal zum Anfang den Bild-
schirm, um stérende Texte zu entfernen.

HLIGE

FEFIN

252 Anhang

Zeicheneditor

Dieses Programm braucht am Anfang ein wenig Zeit, um den Zeichensatz
von ROM ins RAM zu kopieren. Dann wird ein Feld aus 8 * 8 Punkten
aufgebaut, in dem man sich mit dem Cursor frei bewegen kann. Ein Druck auf
die Taste "." setzt einen Punkt, (SPACE)(also die Leertaste) lscht ihn
wieder. In der Matrix wird auf diese Weise ein Zeichen aufgebaut. Nach
Eingabe von (RETURN) fragt der Computer, «welches Zeichen» so umdefi-
niert werden soll. Driicken Sie einfach die entsprechende Taste. Das Zeichen
wird umdefiniert, und der Computer druckt unter der Bezeichnung DATA die
Dezimalwerte aus, die fiir das entwickelte Zeichen in den Speicher gePOKEd
werden miissen. Die Punkte sind in einem Datenfeld von 8 % 8 Positionen
gespeichert (A% (X,Y)). Zur Errechnung der POKE-Werte dient ab Zeile 290
eine einfache Umrechnungsroutine von Dual in Dezimal. Wenn Sie (CLR
HOME) driicken, kénnen Sie jederzeit neu anfangen, wobei Sie allerdings
auch die Matrix I6schen.

253

IR SN s

Sinus

Dieses Programm erkldrt sich weitgehend aus dem Hires-Kapitel. Um
genauere oder weniger genaue Plots zu erhalten, kdnnen Sie den STEP-Wert
in Zeile 40 beliebig abandern. Anmerkung: Im Gegensatz zu einem mathe-
matischen Koordinatensystem ist beim Computer der Punkt (0,0) oben links.
Dadurch ist die dargestellte Kurve eigentlich «spiegelverkehrt».

ML

o TR

Dual) Dezimal

Dieses Programm fragt Sie nach einer Dualzahl. Wenn Sie andere Zeichen als
0 oder 1 eingeben, wird das in Zeile 30 erkannt, und das Programm springt
erneut zur Abfrage. Nach der Umrechung konnen Sie eine beliebige Taste
driicken. Mit (E) kénnen Sie abbrechen.

254 Anhang

DAL > DEZ AL

1e

THFLT " T

EUTHERFRETHT

FEFATN W

Dezimal) Dual

Sie kdnnen eine beliebige ganzzahlige Dezimalzahl eingeben. In Zeile 20 wird
die hochste Zweierpotenz gesucht, von Zeile 40 bis 70 liegt die eigentliche
Umrechnungsroutine. Driicken Sie irgendeine Taste, um weiterzumachen,
(E) fiir Ende.

THAL 0 DAL

Anhang 255

Grafikutility

Dieses Programm haben wir fiir all diejenigen geschrieben, die noch keine
BASIC-Erweiterung haben oder die sich selbst mit Grafikprogrammierung
beschiftigen wollen. Dieses «Utility» besteht aus vier Unterprogrammen, die
Sie mit GOSUB aufrufen. Laden Sie die abgedruckten Programmzeilen, und
schreiben Sie dann Ihr Grafikprogramm in den Zeilen O bis 59998. Folgende
Funktionen stehen lhnen zur Verfiigung.

GOSUB 60000

Dieses Unterprogramm schaltet die Grafik ein und I6scht die Bitmap. Sie
kénnen diesem Programm in den Variablen ZF (Zeichenfarbe) und HF
(Hintergrundfarbe) Zahlen zwischen 0 und 15 iibergeben, die dann fiir die
entsprechenden Farben verwendet werden.

GOSUB 61000

Diesem Unterprogramm Ubergeben Sie die X- und Y-Koordinate eines Punk-
tes, der gesetzt werden soll.

GOSUB 62000

Mit diesem Unterprogramm kénnen Sie eine Linie zwischen zwei Punkten
ziehen. Sie (ibergeben ihm die Anfangs- und Endpunkte (X1,Y1) und (X2,Y2).
Die Genauigkeit (die bei-steilen Linien sehr viel héher sein muf als bei
flachen) kénnen Sie in den Zeilen 62030 und 62040 angeben. Anstelle des
Wertes 320 kdnnen Sie Jeden Wert zwischen 1 und 320 verwenden.

GOSUB 63000

Diesem Programm iibergeben Sie den Mittelpunkt eines Kreises (X,Y) und
den Radius R. Das Programm zieht dann einen Kreis um diesen Punkt, wobei
an den duBersten Stellen Locher auftreten, weil eine héhere Genauigkeit
auBen bei den anderen Punkten zu viel Zeit kosten wiirde.

Beispiele, die Sie ausprQBieren sollten:

10 HF=6: ZF=1: GOSUB 60000
20 X=159: Y=99: FOR R= 90 TO 10 STEP —10: GOSUB 63000: NEXT

10 HF=2: ZF=0: GOSUB 60000
20 X1=159: Y1= 99: Y2=180: FOR X2=10 TO 310 STEP 5: GOSUB
62000: NEXT

FHENLE

it LT BT+ TR T4 o+ 5 T

T LM T

B B T B
L

Anhang

s EH LS =
T HHIT bz
HEmL

Al D T |
LT O W
(R B e B

AS A T

JeFRe T

LsEM
.HZ”¢I+£ﬁ*

Hdﬁﬁinﬁﬁﬁaﬁ

L

B

A & o R FHIHLHLILS b
T

"

i

CIEH ATHIHSHALH I H= M STk AN A T3

256

tLLn

TR e

T
SER SRR
EREEER

s]
i

i

-

ol
o
o
ik

-
i

%X
ol
L

3

]

L]
A

R
G
B
S
5 R

o
G O
T e

()

I
i

i

i
i

i
LRI X

o
fax]

T AR

Anhang 257

Vermeiden Sie folgende Variablennamen, wenn Sie eigene Programme
schreiben, die auf diese Unterprogramme zuriickgreifen:

X, Y, X1, Y1, X2, Y2, R, ZF, HF, |, J

Soundmonitor

Dieses Programm bietet lhnen die Moglichkeit, Téne auszuprobieren. Beach-
ten Sie beim Eintippen die Steuerzeichen ab Zeile 160. Diese werden von den
Funktionstasten erzeugt. Halten Sie sich bei thren Eingaben an die Werte in
Klammern! Bei der Wellenform Rechteck, die Sie durch (f5) erreichen,
miissen Sie zusatzlich noch eine Pulsweite eingeben.

ST PO T TR

FRIMT

258 Anhang

Spriteeditor

Er ist eine Weiterentwicklung des Zeicheneditors. Die Eingabe ist dieselbe. Die
Angabe von DATA-Werten ist aber diesmal nur auf direkten Wunsch még-
lich; danach ist der Sprite in der Matrix gel6scht. Die DATAs miissen Sie
wabhrscheinlich abschreiben, um sie in lhren eigenen Programmen verwenden
zu koénnen. Im Datenfeld A%(XY) werden die Bits abgespeichert, in
W% (X,Y) die entsprechenden Dezimalwerte.

T HEMY -] T

BT HEMEE

LSS | A

DO B VR

259

Kleines Fachwortlexikon

Viele der im Text enthaltenen Fachausdriicke sind bei ihrem ersten Auftreten
in Kursivschrift gedruckt. Hier werden sie kurz erkldrt. Zusatzlich wurden in
diese Liste noch andere haufig vorkommende Begriffe aufgenommen. So
kénnen Sie dieses kleine Fachwortlexikon auch als Nachschlagewerk be-

nutzen.

A/D-Wandler. Ein Analog-Digital-Wand-
ler ist ein Baustein oder eine Schaltung,
die’ ein analoges Eingangssignal (z. B.
Stromstdrke) in ein digitales Ausgangssi-
gnal (z. B. 1-Byte-Wert) umwandeln
kann.

Absolutes Laden. Die ersten zwei Bytes
eines Programms auf Diskette sind das
Low Byte und das High Byte der Start-
adresse des Programms. Wenn absolut
geladen wird (das heifit LOAD"..." ,8,1),
dann wird das Programm ab dieser Start-
adresse in den Speicher geladen. Anson-
sten (LOAD"...",8) kommt es an den
Anfang des BASIC-Speichers (normaler-
weise 2048).

AdreBbereich. Der Umfang an Speicher-
platz, den ein Prozessor adressieren kann.
Er hdngt ab von der Anzahl der Leitungen
im Adrebus. Beim 6510 sind das 16
Leitungen, also ist der AdreBbereich 2'°
(65536 = 64 K).

Adressierung. Um ein Byte in einem Spei-
cherbaustein lesen oder schreiben zu
kénnen, muB der Prozessor dieses Byte
adressieren; das heiBt, er legt die Adresse
als 16-Bit-Zahl auf den AdreBbus und
kann dann auf den Datenbus das ent-
sprechende Byte schreiben bzw. es von
ihm lesen.

ADSR-Hiillkurve, engl. Attack/Decay/
Sustain/Release. Nach diesem Konzept
arbeitet der SID. Der Verlauf eines Tons
wird in vier einzelne charakteristische
Merkmale zerlegt. Attack ist die Stdrke,
mit der der Ton angeschlagen wird. De-
cay ist das MaR, in dem er auf die Grund-
lautstdrke abfallt. Sustain ist die Lange, in
der er auf dieser Lautstirke gehalten
wird, Release ist das MaB, in dem er
ausklingt.

Alphanumerische Variable. Ein String,
z. B. A$, ist eine Variable, die sowohl
alphabetische (also Buchstaben) als auch

Anhang

numerische Informationen (also Zahlen)
.aufnehmen kann.

ASClI-Code, engl. American Standard
Code for Information Interchange. Ein
standardisierter Code, in dem den Buch-
staben, Zahlen und Steuerzeichen eine
Zahl zwischen 0 und 255 (also 1 Byte)
zugeordnet wird. Eine Tabelle befindet
sich im Commodore-Handbuch auf Seite
135.

Assembler. 1. Die Maschinensprache des
6510. Die Maschinenbefehle lassen sich
als symbolische «Opcodes» darstellen. 2.
Hilfsprogramm zur Eingabe eines Maschi-
nenspracheprogramms.

BAM, engl. Block Availability Map — ein
Verzeichnis der belegten Blocks einer Dis-
kette. Es befindet sich auf jeder Diskette
in Spur 18 Block 0.

BASIC-Anfang. Die Adresse im RAM, ab
der das BASIC-Programm abgelegt und
abgearbeitet wird. Sie kann verschoben
werden. Siehe dazu PEEK&POKE-An-
hang bei den Adressen 43/44.

BASIC-Erweiterung. Ein (Maschinen)-
Programm auf Modul oder Diskette, das
weitere, neue BASIC-Befehle bereitstellt,
beispielsweise fiir die Grafik- oder Disket-
tenprogrammierung.

BASIC-Interpreter. Wie das Betriebssy-
stem (Kernal) ein Maschinenprogramm,
das stindig lduft. Es hat die Aufgabe,
BASIC-Befehle zu erkennen und auszu-
flihren.

Betriebssystem, auch Kernal. Das Ma-
schinenprogramm, das stdndig im Com-
puter lauft und fiir Funktionen wie Bild-
schirmausgabe, Tastaturabfrage usw.
verantwortlich ist.

261

Bindrzahlen. Zahlensystem, basierend
auf der Zahl 2. Jede neue Stelle ist eine
Zweierpotenz. Die Zahl wird iblicherwei-
se mit O und 1 dargestellt, also

0000 (0)

0001 (1)
0010 (2)
0011 (3)
0100 4)

usw.

Bit, engl. binary digit. Die kleinste Einheit
der Informationsspeicherung. Es kann
zwei Zustinde haben: an oder aus, wahr
oder falsch, 1 oder 0.

Bitmapping. Um eine hochauflésende
Grafik im Speicher verwalten zu konnen,
wird jedem Punkt auf dem Schirm ein Bit
im Speicher zugeordnet. Bei einer Auflo-
sung von 320 % 200 Punkten benétigt
man 8K-Speicher fiir die Bitmap.

Block. Ein Sektor auf einer Diskette. Er
kann 256 Bytes speichern. Eine VC-1541-
formatierte Diskette hat 683 Blocks.

Boolesche Algebra. Bindralgebra. Mit
verschiedenen Operationen kénnen ein-
zelne Bits verkniipft werden; benannt
nach dem englischen Mathematiker
Boole.

Boolesche Operation. Verkniipfung in
der Booleschen Algebra — in BASIC vor
allem AND, OR und NOT.

Byte. Eine 8-Bit-Zahl. Es kann einen
(ganzzahligen) Wert zwischen O (binar
00000000) und 255 (bindr 11111111)
annehmen. Eine Speicherzelle im Com-
modore 64 faBt genau 1 Byte.

Charakter-ROM. Der Speicherbaustein,
in dem das Aussehen der Zeichen beim
Commodore 64 abgespeichert ist.

262

Code ist in der Datenverarbeitung ein
genereller Ausdruck dafiir, wie Daten
libertragen bzw. dargestellt werden. Das
Wort hat aber auch einige spezielle Be-
deutungen: 1. Von einem Code spricht
man auch, wenn ein einzelner Befehl (ins-
besondere bei Maschinensprache, vgl.
Opcode) gemeint ist. 2. Daher wird auch
das Ergebnis einer Ubersetzung durch ei-
nen Compiler gern Code genannt. 3. Co-
de ist auch der Zahlenwert, der einem
Buchstaben, einer Taste oder etwas 4hnli-
chem zugeordnet wird, z. B. der Bild-
schirmcode, Tastaturcode usw.

Compiler. Ein Compiler ist ein Uberset-
zungsprogramm. Im Gegensatz zu einem
Interpreter wird das Programm aber nicht
jedesmal Stiick fiir Stiick tbersetzt und
abgearbeitet, sondern einmal vollstandig
in Maschinensprache Ubersetzt und dann
gestartet. Deshalb sind compilierte Pro-
gramme wesentlich schneller als BASIC-
Programme, aber immer noch deutlich
langsamer als reine Assembler-
programme.

CP/M, engl. Abkiirzung fiir: Control Pro-
gram for Microcomputers. CP/M ist ein
spezielles Betriebssystem, das schon zu
einer Art Standard geworden ist. Deshalb
gibt es fiir dieses Betriebssystem eine rie-
sige Menge an Software. Allerdings lduft
CP/M nur auf dem Prozessor Z-80. Der
kann aber auf Modul nachgeriistet wer-
den, und so ist es auch moglich, CP/M
auf dem Commodore 64 laufen zu lassen.

Cursor. Die blinkende Schreibmarke, die
anzeigt, wo auf dem Bildschirm gerade
geschrieben wird.

Datasette. Der spezielle Kassettenrecor-
der fiir den Commodore 64, mit dem
Programme auf gewdhnlichen Musikkas-
setten aufgezeichnet werden konnen.

Anhang

Dezimalzahlen. Zahlensystem, basierend
auf der Zahl 10, oder einfach: 1, 2, 3, 4,
5,6,7,8,9 10, 11,12, 13, 14, 15, 16
usw.

Directory. Das Inhaltsverzeichnis einer
Diskette. Es liegt auf der Spur 18. Hier
sind alle Programme, deren Lange und
Filetyp aufgefiihrt, die auf einer Diskette
gespeichert sind.

Disassembler. Ein Hilfsprogramm, das
Maschinenprogramme im Speicher als
«Opcodes» der Assemblersprache dar-
stellt.

DOS, engl. Diskette Operations System.
Das Betriebssystem der Floppy.

Drucker. Peripheriegerdt zum Ausdruk-
ken von Texten, Listings usw. auf Papier.

Editor. Der Teil des Betriebssystems, der
fur die Bildschirmeingabe zustdndig ist
(also Cursorbewegung, Farbwahl, Einga-
be von Befehlen usw.).

Fehlerkanal. Der Kanal zwischen Floppy
und Computer, auf dem die Fehlermel-
dungen des DOS ubertragen werden. Er
wird mit OPEN 1,8,15 geoffnet.

File, engl. «Akte». Allgemeine Bezeich-
nung fiir eine Aufzeichnung auf Diskette
— egal, ob Programm, Datei oder ahnli-
ches.

Floppy. Peripheriegerdt zum Abspeichern
von Daten und Programmen auf Dis-
ketten.

Format. Standard, nach der die Spuren
und Sektoren auf einer Diskette aufgeteilt
sind. Es ist bei Laufwerken verschiedener
Firmen meist unterschiedlich.

Anhang

Geritenummer. Da die Peripheriegeréte
hintereinandergehdngt werden und alle
an die gleiche Leitung angeschlossen
sind, muB jedes Gerat erkennen konnen,
wann die Daten auf dem Kabel fiir dieses
Gerét bestimmt sind. Dazu hat jedes Ge-
rdt eine Gerdtenummer. Bei der Floppy ist
das die 8, beim Drucker 4 und beim
Printer-Plotter 6. Bei vielen Geraten kann
diese Gerdtenummer gedndert werden.

Hardware. Hardware nennt man die Ge-
rite und ihre Bauteile, also den Compu-
ter, die Chips usw.

Hardwarehilfe, Hardwareerweiterung.
Davon spricht man, wenn besondere Ge-
rate oder Bauteile notwendig sind, um
eine bestimmte Aufgabe zu erfiillen, bei-
spielsweise Module zur 80-Zeichen-Dar-
stellung oder fiir Sprachsynthese oder
Scanner, Zeichenbretter usw.

Hexadezimalzahlen. Besonderes Zahlen-
system, das auf der Zahl 16 basiert. Ahn-
lich wie bei den Bindrzahlen werden jetzt
bei 16er-Potenzen neue Stellen aufge-
macht. Die Ziffernsind: 0,1,2...8,9, A,
B, C, D, E, F. Zur Kennzeichnung dieser
Hexadezimalzahlen wird der Zahl ein $
vorangestellt. Also: $OF = 15, $10 = 16,
$FF = 255. Dieses Zahlensystem findet
vor allen Dingen bei Monitorprogram-
men Anwendung, weil dadurch groBe
Zahlen auf relativ engem Raum darge-
stellt werden kénnen.

Hires, engl. Abkiirzung fiir High Resolu-
tion Graphics, also hochauflésende Gra-
fik. Von ihr spricht man, wenn bei einer
grafischen Darstellung direkte Kontrolle
liber jeden einzelnen Punkt des Bild-
schirms besteht.

1/0-Register, engl. Abkiirzung fir Input/
Output-Register. Das sind Adressen, die

263

nicht zu einem Speicherbaustein geho-
ren, sondern deren Ansprechen bestimm-
te Betriebszustinde bei einem
Peripheriebaustein auslost. Solche Regi-
ster sind meist einzelne Bits. Ist zum Bei-
spiel das Bit Nr. 5 im Register 53265
eingeschaltet, befindet sich VIC im Hires-
Modus. Wird es geldscht, zeigt VIC wie-
der normalen Text.

IC, engl. Abkiirzung fiir Integrated Circuit
= integrierter Baustein. Auf ihnen basiert
die gesamte Computertechnik. Ehemals
komplizierte Schaltungen, die nur mit
Rohren bzw. Transistoren und Kabeln
realisiert werden konnten, werden nun
durch Mikroelektronik auf engstem
Raum zusammengefafit (integriert).

Initialisierung. Das «Aufwachen» des
Computers: Wenn ein Computer oder ein
Peripheriegerét eingeschaltet wird, lduft
zundchst das Initialisierungsprogramm. Es
richtet den Speicher ein, aktiviert die an-
deren Bauteile usw.

Interface, engl. Schnittstelle. Um Periphe-
riegerdte mit einer anderen AnschluB-
buchse am Commodore 64 betreiben zu
konnen, braucht man ein Interface. Es
formt die Signale entsprechend um, so
daB z. B. ein Drucker mit Centronics-
Interface an den seriellen Bus des Com-
modore angeschlossen werden kann. Be-
sonders verbreitete Interfaces: Centro-
nics, IEEE-488, V 24.

Interpreter. Das (Maschinen-)Programm,
das die BASIC-Befehle interpretiert, also
fiir das Betriebssystem und damit fiir den
Prozessor iibersetzt.

Interrupt. Das Betriebssystem unterbricht
alle Yeo-Sekunde sein laufendes Pro-
gramm, priift, ob eine Taste gedriickt
wird, 148t den Cursor blinken, erhoht die

264

interne Uhr, fragt die Datasette ab usw.
Wahrend dieses Interrupts aktualisiert
VIC auch die Bildschirmausgabe. Auch
andere Bausteine sind vom Interrupt be-
troffen.

Joystick, engl. Steuerkniippel. Peripherie-
gerdt zur Steuerung von Spielen. Zwei
Joysticks kénnen gleichzeitig am Com-
modore 64 betrieben werden.

Kaltstart. Von einem Kaltstart eines Pro-
gramms spricht man, wenn quasi bei 0
angefangen wird. Die Variablen haben
noch keine Werte (vgl. Warmstart).

Kanalnummer. Auch Filenummer. Die er-
ste Zahl, die beim OPEN-Befehl angege-
ben wird. Sie kann zwischen 1 und 255
liegen. Kanalnummern lber 127 hangen
an jede Ubertragung einen zusitzlichen
CHR$(10) (Line Feed-Code). Zweckma-
Bigerweise verwendet man fiir die Kanal-
nummer dieselbe Zahl wie die Geréite-
nummer.

Kernal. Anderer Name fiir Betriebssy-
stem.

Kollisionsdetektor. Spezielle Funktion
des VIC. Er stellt fest, ob ein Sprite mit
einem anderen Objekt zusammengesto-
Ben ist. Dies ist vor allem bei der Spiele-
programmierung wichtig. Die Register
53278 und 53279 von VIC libernehmen
diese Aufgabe.

Kommandokanal. Das ist die andere
Richtung des Fehlerkanals. Uber diesen
Kanal werden Befehle (Kommandos) zur
Floppy geschickt. Er wird erdffnet mit
OPEN 1,8,15.

kompatibel. Zwei Gerdte, Programme
usw. sind kompatibel, wenn sie miteinan-
der oder einer anstelle des anderen ein-

Anhang

gesetzt werden konnen. Kompatibel sind
zum Beispiel die Drucker VC-1525 und
MPS-801 oder zwei Textprogramme, die
die gleichen Textdateien verwenden.
Nicht kompatibel sind z. B. 8-Zoll- und
5%-Zoll-Disketten oder ein Kiihlschrank
und der Commodore 64.

Lightpen. Ein Lightpen (Lichtgriffel) kann
am Joystickport angeschlossen werden.
Er besteht im wesentlichen aus einer Fo-
tozelle. Mit der nétigen softwaremaRigen
Unterstiitzung ist es dann z. B. moglich,
mit diesem stiftdhnlichen Gerat direkt auf
den Bildschirm zu zeichnen.

Maschinensprache. Dies ist, im Gegen-
satz zu BASIC, die Sprache, die der Pro-
zessor direkt versteht. Sie ist komplizier-
ter, weil sie jede Aktion des Prozessors
einzeln vorgeben muB, wegen der weg-
fallenden Ubersetzungszeit aber wesent-
lich schneller. Die Operationen in Ma-
schinensprache werden iiblicherweise
durch Assembler-Opcodes dargestellt.
Beispielsweise steht LDA #$00 fir «A-
Register des Prozessors mit der Zahl 0O
laden». Ein POKE 53280,0 sieht in Ma-
schinensprache so aus:

LDA #$00

STA $D020

Mehrfarbmodus. Multicolormodus. Spe-
zielle Betriebsart des VIC. Je zwei Punkte
werden zu einem zusammengefaBt, der
dann eine von vier moglichen Farben ha-
ben kann.

Modul. Ein Modul enthélt meist zusatzli-
che Hardware, die (ber den Erweite-
rungsanschluB mit dem Commodore 64
verbunden wird. Dabei kann es sich um
einen Koprozessor (z. B. den Z-80 fiir
CP/M) oder ROMs handeln, auf denen
Software abgespeichert ist.

Anhang

Monitor. 1. Fernsehéhnlicher Bildschirm
zur Darstellung des Computerbildes. Er
erreicht eine groBere Scharfe und Auflo-
sung als ein normaler Fernseher. 2. Spe-
zielles Programm, um Speicherzellen di-
rekt zu dndern und Maschinenprogram-
me einzugeben.

numerische Variable, z. B. A. Eine Varia-
ble, die nur einen Zahlenwert aufnehmen
kann.

Opcode. Eine besondere Darstellung fiir
Maschinenbefehle. Ein Maschinenbefehl
ist ja eigentlich nur eine Strom-an-/
Strom-aus-Kombination. Um diese fiir
den Menschen besser verstindlich zu
machen, verwendet man Opcodes, z. B.
LDA #$00 fiir «Akkumulator mit O la-
den» oder STA $01 fir «Wert im Akku-
mulator in Adresse 1 ablegen». Weiteres
dazu bei Maschinensprache.

Paddle. Spezielles Gerdt zu Steuerung
von Spielen. Im Gegensatz zu einem Joy-
stick wird nicht nur ein Richtungssignal
angegeben, sondern (iber einen verdn-
derlichen Widerstand ein analoges Signal.

Parallelbus, -interface usw. Im Gegen-
satz zur seriellen Ubertragung werden
hier mehrere Bits auf parallelen Leitungen
(meist 8) gleichzeitig Ubertragen. Eine
solche Leitung ist wesentlich schneller als
eine serielle.

Plotter. Druckerihnliches Gerit, das mit
Faserschreibern oder Kugelschreibern
schreibt und zeichnet. Besonders ist es
zur Ausgabe von Grafiken geeignet.

Pufferspeicher. Ein Speicher, der ankom-
mende Bits aufstaut («puffert») und dann
erst weitergibt (insbesondere bei der
Floppy an den Schreib-/Lese-Kopf und
bei einem Drucker an die Druckmecha-

265

nik). Dies wird hauptsichlich eingesetzt,
um Zeit zu sparen.

RAM, engl. Random Access Memory
(Schreib-/Lese-Speicher). Speicher-
baustein, der sowohl ausgelesen als auch
neu beschrieben werden kann. Er wird
nach dem Ausschalten gel6scht.

ROM, engl. Read Only Memory (Nur-
Lese-Speicher). Festwertspeicher. Er kann
nur gelesen werden, sein Inhalt bleibt
dafiir aber auch nach dem Ausschalten
erhalten.

Routine. Anderer Name fiir Unterpro-
gramm. Teil eines Programms mit einer
festen Aufgabe.

Scanner. Spezielle Videokamera, die mit
einem Computer verbunden wird, um ein
Bild direkt zu «digitalisieren», also in den
Speicher (in die Bitmap) zu libertragen.

Schnittstelle. Anderer Name fiir Interface.
Beispielsweise die serielle Schnittstelle oder
der Userport des Commodore 64.

Scrolling, engl. Kunstwort aus screen
(Bildschirm) und rolling (Rollen), wortlich
also «Bildschirmrollen». Wenn Sie am un-
teren Bildschirmrand einen Text einge-
ben, werden die Zeilen oben aus dem
Bildschirm herausgeschoben, um neuen
Platz zu schaffen. Gleichzeitig wandert
der ganze Text um eine Zeile nach oben.
Wihrend des LIST- und des PRINT-Be-
fehls kann dieses Scrolling mit {(CTRL)
verlangsamt werden.

Seite (page). Der AdreBbereich des 6510
wird in 256 Seiten (pages) zu je 256 Bytes
unterteilt. Page O (die sogenannte Zero-
page) geht demnach von 0 bis 255, Page
1 von 256 bis 511, Page 2 von 512 bis
767 usw.

266

Sektor. Ein Sektor (Block) ist ein Aus-
schnitt aus einer Spur einer Diskette. Er
kann 256 Bytes speichern.

Sekundiradresse. Sie ist die dritte Zahl,
die auBer Kanalnummer und Geréte-
adresse bei einem OPEN-Befehl angege-
ben werden kann. Die Sekundéradresse
wihlt verschiedene Modi bei einem Peri-
pheriegerdt. Bei OPEN 4,4, X ist X die
Sekundaradresse. lhre Funktion wird im
einzelnen in den Handbiichern zu den
entsprechenden Peripheriegeriten be-
schrieben.

Serieller Bus, serielles Interface. Hier
werden im Gegensatz zu einer parallelen
Ubertragung die Bits einzeln hintereinan-
der (seriell) gesendet. Diese Art der Da-
teniibertragung ist langsamer. Der Peri-
pherieanschluB des Commodore 64 ist
seriell.

SID. Sound Interface Device. Der Chip
6581 ist der Soundchip im Commodore
64.

Software. Im Gegensatz zur Hardware
spricht man von Software, wenn die Pro-
gramme gemeint sind. Erst durch ent-
sprechende Software kann die Hardware
voll ausgenutzt werden.

Sprite. Ein Sprite ist ein bewegliches Ob-
jekt, das beim VIC aus 21 * 24 einzelnen
Punkten besteht. Beim Commodore 64
konnen acht Sprites gleichzeitig auf dem
Bildschirm sein. VIC unterstiitzt unter an-
derem die Bewegung, VergréRerung und
Kollisionsabfrage der Sprites.

Spur. Eine Spur ist ein magnetisch vorge-
zeichneter Ring auf einer Diskette. Man
kann sie vergleichen mit einer Rille auf
einer Schallplatte. Eine VC-1541-forma-
tierte Diskette hat 35 Spuren.

Anhang

Synthesizer. Ein Synthesizer ist ein elek-
tronisches Gerdt zur kiinstlichen Musik-
erzeugung. Der SID des Commodore 64
hat einen solchen Synthesizer eingebaut.

Token. Wenn ein BASIC-Programm im
Speicher steht, werden die Befehle als 1-
Byte-Codes dargestellt. So wird Platz ge-
spart. Das Token von PRINT ist zum Bei-
spiel 153. =

Toolkit. Ein Toolkit ist eine spezielle
BASIC-Erweiterung, die hauptséchlich
Befehle oder Routinen zur Unterstiitzung
des Programmierers bietet (also beispiels-
weise automatische Zeilennumerierung,
Suchen und Ersetzen von Befehlen in ei-
nem Programm, Auflisten der Variablen
usw.)

Unterprogramm. Ein Unterprogramm ist
Teil eines Programms, das eine feste Auf-
gabe hat und vom Hauptprogramm auf-
gerufen wird.

Userport. Das ist die Schnittstelle ganz
rechts am Commodore (von hinten gese-
hen). Sie ist eine Parallelschnittstelle, die
frei programmiert werden kann (also jede
Leitung kann einzeln als Ein- oder Ausga-
beleitung festgesetzt werden). Mit ent-
sprechender Software . konnen so ver-
schiedene Interfaces zu Druckern oder
anderen Peripheriegerdten programmiert
werden.

Utility. Ahnlich wie Toolkit. Ein Utility ist
ein Programm, das dem Programmierer
eine bestimmte Arbeit abnimmt. Wird
auch «Dienstprogramm» genannt.

VIC. Video Interface Chip. Der VIC-II-
6567-Chip ist der Videochip im Commo-
dore 64.

Anhang 267

Warmstart. Im Gegensatz zum Kaltstart ~ Zeropage. Die Seite Nr. 0 im Commodo-
spricht man von einem Warmstart, wenn re-Speicher. Da dieser Speicherbereich
zwar das Programm neu gestartet wird, ~vom Prozessor besonders giinstig adres-
die Variablen usw. aber ihre alten Werte siert werden kann, speichert er hier wich-
beibehalten, also nicht geléscht werden. tige und stdndig gebrauchte Werte ab
(siehe auch PEEK & POKE-Anhang).

PEEK & POKE-Tabelle

In dieser Tabelle wollen wir die wichtigsten Adressen im Commodore 64 besprechen
und zeigen, was man mit ihnen anfangen kann.

Adresse Beschreibung

1: 6510 Ein-/Ausgaberegister. Mit dieser Adresse kann man die Speicheraufteilung
des 6510 einstellen. Wenn im BASIC- und Kernal-Bereich auf RAM umgestellt werden
soll, miissen diese Programme vorher ins RAM kopiert worden sein.
Bits: 0 BASIC-ROM (1) oder RAM (0)
Kernal-ROM (1) oder RAM (0)
1/O-Register (1) oder Charakter-ROM (0)
Datasette: Datenausgabe
Datasette: Taste nicht gedriickt (1)/gedriickt (0)
Datasette: Motor aus (1)/an (0)
6, 7 unbenutzt, immer O

Folgende POKEs sind besonders wichtig:

POKE 1,55 Normalzustand

POKE 1,54 fiir BASIC im RAM

POKE 1,53 fiir BASIC und Kernal im RAM (siehe unten)

POKE 1,51 fiir Charakter-ROM
Obwobhl Bit 1 nur fiir das Kernal zustindig ist, schaltet es, wenn man es von BASIC aus
16scht, auch das BASIC ins RAM. POKE 1,52 fiihrt dagegen zum Systemabsturz. Das
hat uns auch etwas gewundert, ist aber so ...

43/44: Zeiger auf BASIC-Anfang. 43 ist das Low Byte, 44 das High Byte. Mit POKE
43,1: POKE 44,16: POKE 4096,0: NEW wird der BASIC-Anfang auf 4097 verschoben.

45/46: Zeiger auf BASIC-Ende/Variablen-Anfang. Dieser Zeiger zeigt auf das Ende
des Programms. Beim Verschieben des BASIC-Bereichs sollte der Zeiger immer 2 Bytes
iber den Anfang zeigen. Im Beispiel von oben also POKE 45,3: POKE 46,16.

47/48: Zeiger auf Beginn der Datenfelder. Die Inhalte von Feldern wie A(10,10)
werden dort gespeichert. Diese Zeiger werden nach dem Verschieben von BASIC
selbstdndig gesetzt.

hWN =

268 Anhang

49/50: Zeiger auf Ende der Datenfelder. Vgl. 47/48.

51/52: Zeiger auf Strings. Die Inhalte der Strings (A$,B$ usw.) wandern von der
oberen Speichergrenze nach unten. Dieser Zeiger zeigt auf die untere Grenze. Sie mu
immer groBer sein als das Ende der Datenfelder (49/50), sonst gibt es einen OUT OF
MEMORY-ERROR. Normalerweise braucht sich der Programmierer darum nicht zu
kiimmern. Bei platzaufwendigen Programmen ladBt sich aber mit diesem Zelger der
librige Speicherplatz ausrechnen.

55/56: Zeiger auf Grenze des Arbeitsspeichers. Diese Zeiger zeigen dem Betriebs-
system das Ende von RAM (normalerweise 40 960, also PEEK(55)=0, PEEK(56)=160).
Wenn iiber dem BASIC-Speicher noch Maschinenprogramme oder dhnliches unterge-
bracht werden sollen, kann dieser Zeiger nach unten gesetzt werden.

160-162: TI. Hier ist der momentane Wert der Zeitvariablen T1 géspeichert.

198: Anzahl der Zeichen im Tastaturpuffer. Wenn bereits ‘gedriickte Tasten unter-
driickt werden sollen, kann dieser Zahler auf O gesetzt werden: POKE 198,0. Wenn mit
simulierter Tastatur gearbeitet wird, kann dieser Zeiger auf die Anzahl der Tasten
gesetzt werden (vergleiche 631 bis 640).

203: gedriickte Taste. Mit PEEK (203) 1dBt sich ermitteln, welche Taste gedriickt
wurde. 64 = keine Taste. Vergleichen Sie Bild 10.1.

204: Cursor an/aus. POKE 204,0 1aRt den Cursor wéhrend eines Programms an der
aktuellen Ausgabeposition blinken. POKE 204,1 schaltet ihn ab. Dabei kann der Cursor
jedoch in Blinkphase stehenbleiben. Vgl. 207.

207: Cursor in Blinkphase. Mit PEEK (207) 4Bt sich auslesen, ob der Cursor beim -
Blinken gerade an (1) oder aus (0) ist. Wenn der Cursor innerhalb eines Programms
verwendet wurde, empfiehlt sich, zum Ausschalten POKE 207,0: POKE 204,1 zu
verwenden. Dadurch wird sichergestellt, daB er in Aus-Position abgeschaltet wird und
nicht stehenbleibt.

211: Spalte fiir Cursor. Vgl. 214

214: Zeile fiir Cursor. Wenn der Cursor (und damit die Startposition des nachsten
PRINT-Befehls) an eine bestimmte Bildschirmposition gebracht werden soll, miissen die
Koordinaten entsprechend gePOKEd werden: POKE 211,X:POKE 214,Y. Um diese
Werte dem Betriebssystem zu libergeben, ist auRerdem ein SYS 58732 notwendig.

243/244: Farb-RAM. In Low Byte/High Byte ist hier die Adresse im Farb-RAM
gespeichert, die zur aktuellen Cursorposition gehort.

256 bis 511: Prozessor Stack. Diese Page 1 ist eine Art Zwischenspeicher fiir den
Prozessor. Wichtig ist fiir den BASIC-Programmierer in erster Linie, daB8 er diesen
Bereich schén in Ruhe lassen sollte.

631 bis 640: Tastaturpuffer. In diesem Speicherbereich werden die Codes der
Tasten abgelegt, die nicht direkt auf den Bildschirm gebracht wurden. Das passiert
praktisch nur, wenn eine Warteschleife oder ein BASIC-Programm lduft. Der Zeiger,
wie viele Buchstaben sich in diesem Speicher befinden, liegt in (198). Um die simulierte
Tastatur anzuwenden, ist folgendes zu tun: 1. Codes der gewiinschten Zeichen in den

Anhang 269

Tastaturpuffer POKEn. 2. Anzahl der Zeichen in 198 POKEn. 3. Programmausfithrung
beenden (also Computer in den Direktmodus bringen). Folgendes Programm startet
sich z. B. immer wieder selbst: 10 POKE 631, ASC("R"): POKE 632, ASC("U"): POKE
633, ASC("N"): POKE 634,13: POKE 198,4

646: aktueller Farbcode. Ein POKE 646,X ersetzt das entsprechende Farb-Steuer-
zeichen.

648: Bildschirm-RAM. Diese Adresse beinhaltet die Startadresse des Bildschirm-
RAM fiir das Betriebssystem. Um das Bildschirm-RAM zu verschieben, muB auch das
Register 53 272 von VIC entsprechend verandert werden. Um das Bildschirm-RAM auf
2048 zu legen, wiren folgende POKEs nétig: POKE648,8: POKE 53272,37. Diese Zeile
nimmt die notwendigen Anderungen vor. Vergleichen Sie auch (53 272).

649: maximale GroBe des Tastaturpuffers. Sie ist 10. Ein hdherer Wert ist nicht zu
empfehlen, denn dann werden andere Zeropage-Adressen iiberschrieben. Sie kénnen
den Wert aber verringern. Um die Tastatur kurzfristig zu blockieren, kann er auch auf 0
gesetzt werden.

650: Tastenwiederholung. Folgende Tasten konnen durch POKEs Wiederholfunk-
tion erhalten:

POKE 650,128 alle Tasten
POKE 650,64 keine Taste
POKE 650,0 normale Aufteilung ((CRSR), (SPACE) usw.)

653: Flag fiir (SHIFT), (C=) und (CTRL). Mit PEEK (653) |aBt sich erkennen, ob
eine der genannten Tasten gedriickt wird.
Bits: O (SHIFT)
1(C=)
2 (CTRL)
657: (SHIFT) + (C=) verriegeln. Mit POKE 657,128 wird die Umschaltung der

Zeichensdtze durch (SHIFT) + (C=) gesperrt. Mit POKE 657,0 wird diese Sperre
wieder aufgehoben. Entspricht CHR$(8) und CHR$(9).

704 bis 766: Dieser Bereich ist frei. Er kann fiir ein Sprite verwendet werden. Der
Spritezeiger ware dann 11.

774/775: Zeiger auf BASIC-Text bei LIST. In Low Byte/High Byte wird hier die
Adresse der Interpreterroutine abgespeichert, die die BASIC-Tokens ‘in Klartext
umwandelt. Durch Verdndern dieses Zeigers ldRt sich ein sehr wirkungsvoller LIST-
Schutz erreichen.

785/786: USR-Adresse. Low Byte und High Byte fiir die Startadresse des Maschi-
nenprogramms, das mit USR angesprungen wird. USR ist ein dhnlicher Befehl wie SYS,
nur da mit ihm noch eine Variable an das Maschinenprogramm {ibergeben wird.

828 bis 1023: Kassettenpuffer. Hier werden die Bytes zwischengespeichert, die
beim Laden von der Datasette ankommen. Solange keine Kassettenoperationen statt-
finden, kann dieser Speicherbereich fiir Sprites verwendet werden.

270 Anhang

Bereich Spritezeiger)
832 bis 894 13
896 bis 958 14
960 bis 1022 15

1024 bis 2023: Bildschirm-RAM. In diesen 1000 Bytes liegen die Bildschirmcodes
der Zeichen, die auf dem Bildschirm stehen. Bedenken Sie aber, daB das Bildschirm-
RAM verschoben werden kann (vgl. 648).

2040 bis 2047: Spritezeiger O bis 7. Hier liegen die Zeiger auf die Spelcherberelche
in denen die Sprites O bis 7 abgelegt sind. Fiir die Startadresse eines Sprltes gilt:
Startadresse = 64 % Spritezeiger.

2048 bis 40959: 38911-Bytes-Arbeitsspeicher RAM
49152 bis 53247: 4K-RAM, nicht fiir BASIC verfiigbar.
53248 bis 53263: Sprite-Koordinaten:

53248: X-Koordinate Sprite #0
53249: Y-Koordinate Sprite #0
53 250: X-Koordinate Sprite #1
53251: Y-Koordinate Sprite #1

53262: X-Koordinate Sprite #7
53263: Y-Koordinate Sprite #7

53264: Bits Nr. 8 fiir Sprites #0 bis #7. Wenn eines dieser Bits gesetzt ist, wird die
X-Koordinate des entsprechenden Sprites um 256 erhdht.

Bits: 0 9. Bit X-Koord. Sprite #0
1 9. Bit X-Koord. Sprite 41
.7 9. Bit X-Koord. Sprite #7
53 265: Grafikmodus. Die einzelnen Bits dieses Registers haben folgende Bele-
gung:
Bits: 0 bis 2 Feinjustierung des Bildschirmfensters in Y-Richtung
3 24 (0) oder 25 (1) Zeilen Text
4 Bildschirm ein (1)/aus (0)
5 Hires-Modus (1 = an)
6 Hintergrundfarbmodus (1 = an)

Folgende POKEs sind besonders wichtig:
POKE 53265,27 normaler Textmodus
POKE 53265,59 Hires-Grafik ein
POKE 53265,91 Hintergrundfarben ein

Probieren Sie Werte von 24 bis 31, um ein Gefiihl fiir die Feinjustierung zu bekommen.
53267: X-Position des Lightpen

53268: Y-Position des Lightpen. Wenn Sie einen Lightpen angeschlossen haben,
koénnen Sie mit PEEK (53267) und PEEK (53268) seine Koordinaten abfragen. Diese

Anhang 271

werden wahrscheinlich nicht exakt mit den Bildschirmpunkten bereinstimmen, so da
Sie in Ihrem Programm die Werte entsprechend umrechnen miissen, um beispielsweise
direkt auf den Bildschirm eine Hires-Grafik zeichnen zu kénnen.

53269: Sprites an/aus. Wenn ein Bit in diesem Register eingeschaltet ist, erscheint
der entsprechende Sprite auf dem Schirm.

Bits: 0 Sprite #0 an
1 Sprite #1 an
7 Sprite #7 an
53270: Multicolormodus und andere Register
Bits: 0 bis 2 Feinjustierung des Bildschirmfensters in X-Richtung
3 38 (0) oder 40 (1) Zeichen pro Zeile
4 Multicolormodus ein (1)/aus (0)

5 bis 7. unbenutzt. Nicht verdndern!
Um den Multicolormodus einzuschalten, verwenden Sie POKE 53270,216.
Probieren Sie auch die Feinjustierung in X-Richtung mit Werten zwischen 200 und 207.

53271: VergroBerung der Sprites in Y-Richtung. Wieder ist jedem Sprite ein Bit

zugeordnet.

Bits: 0 Y-VergroBerung von Sprite #0
1 Y-VergroBerung von Sprite #1
7 Y-VergroBerung von Sprite #7

53272: Zeichensatz und Bildschirm-RAM. Mit diesem Register konnen Sie die Lage
des Bildschirm-RAMs und des Zeichensatzes festlegen.

Bits: 7 bis 4 Bildschirm-RAM
Bitkombination Startadresse des Bildschirm-RAM
0000 0 (nicht zu empfehlent)
0001 1024 (Normalwert)
0010 2048
0011 3072
0100 4096
0101 5120
0110 6144
0111 7168
1000 8192
1001 9216
1010 10240
1011 11264
1100 12288
1101 13312
1110 14336

1111 15360

272 Anhang

ca.10 Leerstellen 3 bis 1 Zeichensatz
Bitkombination Startadresse des Zeichensatzes

000 0 (hier liegt immer noch die Zeropage!)
001 2048

010 4096 (siehe unten)

011 6144 (siehe unten)

100 8192

101 10240

110 12288

1M1 14336

Bit O ist unbenutzt, aber immer 1.

Wenn VIC den Zeichensatz ab 4096 sucht, liest er ihn in Wirklichkeit ab der Adresse
53 248 (Charakter-ROM, Grafikmodus). Fiir 6144 wird ihm 55 296 (Charakter-ROM,
Textmodus) untergejubelt. Dafiir ist der Interface-Baustein verantwortlich, dgr uns bei
Adresse 56 576 noch genauer interessieren wird.

Wenn Sie nun eine bestimmte Kombination erreichen wollen, miissen Sie einfach das
Byte aus den oben gezeigten Werten errechnen. Ein Beispiel: Sie wollen das Bildschirm-
RAM ab 4096 und den Zeichensatz ab 2048 anlegen.

Der Inhalt der Adresse 53 272 ist dann 0100 001 1, also: POKE 53272,67. Um diese
Konfiguration aber wirklich zum Laufen zu bringen, missen Sie auch noch die Adresse
648, wie dort beschrieben, dndern. AuBerdem sollten Sie BASIC auf 5120 verschieben.
(Die nétigen POKEs wiéren: POKE 648,16: POKE 43,1: POKE 44,20: POKE 5120,0:
NEW. Vergleichen Sie gegebenenfalls die verschiedenen Adressen.)

53275: Sprite-Hintergrund-Prioritdt. Normalerweise wird ein Sprite vor den Buch-
staben bzw. vor der Hires-Grafik dargestellt. Wenn nun ein Bit in dieser Adresse gesetzt
ist, wird der entsprechende Sprite hinter diesem Hintergrund dargestellt.

Bits: 0 Sprite #0 hinter dem Hintergrund
1 Sprite #1 hinter dem Hintergrund
.7 Sprite #7 hinter dem Hintergrund

53276: Sprites-Multicolor. Wenn ein Bit in dieser Adresse gesetzt ist, wird der
entsprechende Sprite in Multicolor dargestellt. Vergleichen Sie dazu auch die Farbregi-
ster 53285 und 53 286.

Bits: 0 Sprite #0 wird in Multicolor dargestellt.

7 Sprite #7 wird in Multicolor dargestellt.

53277: Sprites-VergroBerung in X-Richtung. Wenn ein Bit in dieser Adresse
gesetzt ist, wird der entsprechende Sprite horizontal vergroBert.
Bits: 0 Sprite 40 wird vergroRert

7 Sprite #7 wird vergroBert

53278: . Sprite-Sprite-Kollisionsdetektor. Wenn ein ZusammenstoB zwischen zwei
Sprites erfolgt, werden die Bits, die den beteiligten Sprites zugeordnet sind, gesetzt. Sie
bleiben gesetzt, bis dieser Wert mit PEEK (53278) ausgelesen wird.

Anhang 273

53279: Sprite-Hintergrund-Kollisionsdetektor. Wenn ein oder mehrere Sprites mit
dem Hintergrund (Text, Grafik) zusammenstoBen, werden die Bits, die den beteiligten
Sprites entsprechen, gesetzt. Sie bleiben gesetzt, bis dieser Wert mit PEEK (53 279)
ausgelesen wird.

53280: Rahmenfarbe. Sie kann von 0 bis 15 gehen.

53281: Hintergrundfarbe. Ebenfalls von O bis 15. Diese Farbe bekommen im
Multicolormodus auch die Punkte mit der Bitkombination 00.

53282: weiteres Hintergrundfarbregister. Dieses Register ist im Multicolormodus
interessant: Bei mehrfarbigen Textdarstellungen nehmen die Punkte mit dem Bitmuster
01 diese Farbe an. Im Hintergrundfarbmodus bekommen die Zeichen mit den BS-
Codes 64 bis 127 diese Hintergrundfarbe.

53283: noch ein Hintergrundfarbregister. Im Multicolormodus (Textdarstellungen)
nehmen die Punkte mit dem Bitmuster 10 diese Farbe an. Im Hintergrundfarbmodus
bekommen die Zeichen mit den BS-Codes 128 bis 191 diese Hintergrundfarbe.

53284: das letzte Hintergrundfarbregister. Im Hintergrundfarbmodus bekommen
die Zeichen mit den BS-Codes 191 bis 255 diese Hintergrundfarbe.

53285: Sprite-Multicolor-Register 0. Die Punkte mit der Bitkombination 01
bekommen bei Multicolor-Sprites diese Farbe.

53286: Sprite-Multicolor-Register 1. Bei Multicolor-Sprites bekommen die Punkte
mit der Bitkombination 11 diese Farbe.

53287: Sprite O Farbregister. Dies ist im Normalmodus die Farbe von Sprite #0. Im
Multicolormodus bekommen die Punkte des Sprites #0 mit der Bitkombination 10
diese Farbe.

53288: Sprite 1 Farbregister. Vgl. (53 287)
53289: Sprite 2 s. 0.

53290: - Sprite 3 s.
53291: Sprite 4 s.
53292: Sprite 5 s.
53293: Sprite 6 s.
53294: Sprite 7 s. 0.

54272: SID Stimme 1 Frequenz: Low Byte

54273: Stimme 1 Frequenz: High Byte. Die Frequenzen fiir die drei Stimmen
konnen als 16-Bit-Wert (von 0 bis 65535) angegeben werden. Welcher Frequenz in
Hertz dies entspricht, findet sich im Commodore-64-Handbuch auf Seite 158.

54274: Stimme 1 Pulsbreite: Low Byte

54 275: Stimme 1 Pulsbreite: High Byte. Wenn als Wellenform «Rechteck»
gewihlt wird, muB in diesen beiden Registern die «Pulsbreite» angegeben werden. Sie
kann von O bis 4095 reichen. Das bedeutet, daB die Bits 7 bis 4 in diesem Register nicht
benutzt werden.

©oo0o9o

274 Anhang

54276: Stimme 1 Wellenform usw. Dieses Register ist das eigentliche Kontrollregi-
ster.
Bits: 0 Ton-Start (1) Stop (0)
1 Synchronisation Stimmen 1 und 3 an (1) aus (0)
2 Ringmodulation
3 Test-Bit (sollte O sein)
4 Wellenform Dreieck
5 Wellenform Ségezahn
6 Wellenform Rechteck
7 Wellenform Rauschen
Auf Synchronisation und Ringmodulation kénnen wir an dieser Stelle nicht eingehen.
Wir empfehlen, diese Bits beim ersten Experimentieren auszuschalten. Damit ergeben
sich folgende POKEs:

POKE 54276,17 Dreieckwelle und Tonstart

POKE 54276,33 Sagezahnwelle und Tonstart

POKE 54276,65 Rechteckwelle und Tonstart

POKE 54276,127 Rauschen und Tonstart
Da mit Bit O der Ton gestartet wird, sollte die Einstellung dieses Registers als letzte
erfolgen.

54277 Stimme 1: Attack/Decay. Fiir beide Einstellungen dienen jeweils 4 Bit. Es
gibt also 16 Stufen.
Bits: 7 bis 4 Attack

3 bis 0 Decay

54278: Stimme 1: Sustain/Release. Auch hier gibt es fiir beide Einstellungen
je 4 Bits.
Bits: 7 bis 4 Sustain

3 bis 0 Release

54 279: Stimme 2: Frequenz Low Byte
54 280: Stimme 2: Frequenz High Byte
54281: Stimme 2: Pulsbreite Low Byte
54282: Stimme 2: Pulsbreite High Byte
54283: Stimme 2: Wellenform usw.
54284: Stimme 2: Attack/Decay

54 285: Stimme 2: Sustain/Release
54286: Stimme 3: Frequenz Low Byte
54287: Stimme 3: Frequenz High Byte
54 288: Stimme 3: Pulsbreite Low Byte
54289: Stimme 3: Pulsbreite High Byte
54290: Stimme 3: Wellenform usw.
54291: Stimme 3: Attack/Decay

Anhang 275

54292: Stimme 3: Sustain/Release

54296: Lautstédrke. Dieses Register regelt die Lautstarke fiir alle drei Stimmen.
Bits: 0 bis 3 Lautstarke (O bis 15)

4 bis 7 Filtermodi usw.
Auch auf die Filterprogrammierung kénnen wir hier nicht weiter eingehen. Die Bits 4
bis 7 sollten deshalb bei lhren ersten Experimenten aus sein.

54297: A/D-Converter Paddle 1. Hier liegen die Adressen der im SID eingebauten
A/D-Converter. Aus ihnen kann der Wert von Paddle 1 ausgelesen werden: ? PEEK
(54297)

54298: A/D-Converter Paddle 2 s. o.
55296 bis 56 295: Hier liegt das Farb-RAM. Es kann nicht verschoben werden.

56320: 1/0-Baustein A. Hier wird normalerweise der Joystick 2 abgefragt. Dieses
Register wird aber auch benétigt, um zwischen zwei angeschlossenen Paddlesitzen
umzuschalten, da nur ein Paar zum SID weitergeleitet werden kann.

POKE 56320, 64 wahlt Paddlesatz am Gameport 1

POKE 56320,128 wahlt Paddlesatz am Gameport 2

Fiir diese Umschaltung miissen allerdings die Interrupts abgeschaltet werden, denn die
Tastatur ist ebenfalls an diesem Baustein angeschlossen.

Die Bits 3 und 2 sind auBerdem fiir die Feuerknopfe der Paddles an Gameport 2
zustiandig.

56321: I/O-Baustein B. Hier kann Joystick 1 gelesen werden.
Beim Paddlebetrieb an Port 1 sind die Bits 3 und 2 fiir die Feuerknopfe der Paddles
zustandig.

56334: Interrupt Timer Control Register. Dieses Register hat mehrere Funktionen.
lhre wichtigste ist folgende: Da dieser Interface-Baustein alle “s0-Sekunde das Signal
an den Prozessor liefert, das den Interrupt auslost, kann man durch Abschalten dieses
Signals die Interrupts unterbinden.

POKE56334,0 schaltet die Interrupts ab

POKE56334,1 schaltet sie wieder ein.

56576: VIC Memory Control. Hier hatten wir jetzt also den oft erwdhnten
Botschafter, der die Adressen fiir VIC entsprechend umformt. Die Bits 1 und O sind
dafiir zustandig, welcher 16K-Block von VIC adressiert wird.

Dabei gilt folgende Bitbelegung:

Bits Startadresse des 16K-Blocks
00 49152

01 32768

10 16384

1 0 (Normalwert)

Normalerweise sind also beide Bits an. VIC adressiert den Bereich von 0 bis 16 383. Hier
miissen alle fiir ihn wichtigen Daten, wie Bildschirm-RAM, Zeichensatz, Spriteadressen,
Spritemuster usw., liegen.

Der gesamte 16K-Block 1aBt sich nun verschieben. Dazu muB man die beiden Bits wie
gesagt dndern. Das geht folgendermafBen:

276 Anhang

POKE 56578, PEEK(56578) OR 3

POKE 56576, (PEEK(56576)AND 252) OR A
A ist der Dezimalwert der oben gezeigten Bitkombination (also O fiir 00, 1 fiir 01, 2 fur
10 und 3 fiir 11).
Wenn Sie den 16K-Block verschieben, gibt es aber noch folgendes zu bedenken: Die
Adresse des Bildschirm-RAMs dndert sich. Sie miissen also (648) und gegebenenfalls
(53 272) entsprechend anpassen. Die Spritezeiger sind jetzt entsprechend hinter dem
neuen Bildschirm-RAM zu suchen. Also bei einem Bildschirm-RAM ab 16 384 liegen sie
jetzt bei 17 400.
In den Speicherbédnken ab 16384 und 49 152 ist das Charakter-ROM nicht verfiigbar.
Es muB also vorher auf jeden Fall in den entsprechenden RAM-Bereich kopiert werden.
Auch die Bitmap und der dafiir zustidndige Farbspeicher (das neue Bildschirm-RAM)
liegt in dieser neuen Speicherbank. Das Farb-RAM ab 55296 bleibt in jedem Fall an
seinem Platz. 4

56578: Datenrichtungsregister fiir VIC Memory Control. Es legt fest, ob die Bits in
der Adresse 56 576 beschrieben oder gelesen werden. Vor einer Umschaltung missen
also die Bits 1 und O eingeschaltet werden, wie oben im ersten POKE geschehen.

Literaturverzeichnis und Softwarehinweise

Wir wollen Ihnen abschlieBend gern einige Tips tber Biicher und Programme
geben, die uns positiv aufgefallen sind. Leider kdnnen diese Empfehlungen
nur sehr personlicher Art sein. Weil sich der den Commodore 64 umgebende
Markt stindig ausbreitet, ist eine solche Ubersicht sowieso nie représentativ,
ausgewogen oder gar vollstindig. Dennoch wollen wir versuchen, lhnen
damit die Entscheidung ein wenig zu erleichtern.

1. Biicher

64 intern. Dusseldorf: Data-Becker.

Das Interface-Age-Systemhandbuch zum Commodore 64. Miinchen: Inter-
face Age.

Das Commodore-64-AdrefSbuch — PEEK POKE (Chip Special). Wiirzburg:
Vogel-Verlag.

Commodore 64 mit Simon’s Basic. Ludwigshafen: Kiehl.

Das groBe Floppy-Buch. Diisseldorf: Data-Becker.

COMPOTE's First Book of Commodore 64 (engl.) Greensboro: COMPUTE!
Publications, Inc.

Mach mehr aus Deinem Commodore 64. Wiirzburg: Vogel-Buchverlag.
Grafik mit dem Home-Computer. Wiirzburg: Vogel-Buchverlag

Anhang 277

Alles iiber den Commodore 64. Frankfurt: Commodore

2. Software

An BASIC-Erweiterungen finden wir besonders niitzlich:
Simon's BASIC. Commodore.

EXBASIC Level II. Interface Age.

BASIC 64. Omikron.

Weitere Utilities

Supergraphik 64. Data-Becker
Diskomat. Data-Becker.

SM Kit 64. SM Software.
EXDOS. Interface Age.

Anwenderprogramme wie Text- und Dateiverwaltung und Spiele sind sehr
vom personlichen Geschmack abhéangig. Sie sollte man sich im Fachhandel
vorfiihren lassen.

SchluBwort

Ja, liebe Leser. Damit hdtten wir es geschafft. Unser Studienaufenthalt ist
vorbei. Jetzt geht es nur noch darum, die erworbenen Kenntnisse drauBen
anzuwenden. Ab jetzt sollten Sie das Buch nur noch als Reisefiihrer verstehen,
den man irgendwo mitgenommen hat. Es wird Ihnen sicherlich immer wieder
niitzlich sein, darin zu schmokern, Informationen zu suchen und dergleichen.
Und ehe Sie sich's versehen hatten, hat Sie die BASIC AIRWAYS schon wieder
nach Hause gebracht. Die Riickreise ist immer kiirzer als die Hinreise. Und
wenn es lhnen gefallen hat, dann schenken Sie doch auch einmal jemandem,
der einen Commodore hat, eine Reise mit uns. Wir glauben, daB das
genausogut Anfanger wie Fortgeschrittene sein kénnten — oder Eltern, die
auch ganz gern wiiBten, was ihr SproBling so Besonderes an diesen Kasten
findet.

Zugegeben, wir wollten Sie ein biBchen vom Computern begeistern.
Vielleicht ist aus Ihnen mittlerweile ein richtiger Freak geworden. Wenn uns
das gelungen ist, finden wir es gar nicht so schlecht. Natiirlich miiBte man
einige Dinge nicht wissen, die wir nebenbei erkldrt haben — genausowenig,
wie man liberhaupt etwas von Computern wissen muB, wenn man mit ihnen

278 Anhang

arbeiten will. Im Grunde reicht es aus, den Knopf zum Ein- und Ausschalten
zu finden und eine Diskette einzulegen. Trotzdem haben wir viele allgemeine
Dinge erklart, die erst spater interessant werden oder gar nicht sehr Commo-
dore-spezifisch sind, zum Beispiel AdreBbus und Datenbus, das High-Byte-/
Low-Byte-Prinzip. Aber das sind Dinge, die Sie irgendwann brauchen kénn-
ten, und wir wollten Sie ja méglichst umfassend in die Welt der Computer
einfiihren.

Und jetzt noch ein paar Worte iiber das Problem Computer. Wenn Sie das
nicht interessiert, iberlesen Sie es einfach. Es sind ein paar sehr persénliche,
subjektive Ansichten. Denn wir dachten, ganz ohne das kann man ein unserer
Ansicht nach sehr persénliches Buch iiber Computer eigentlich nicht
schreiben.

Vergessen Sie bei allem Eifer nie, wo er ist — der Knopf zum Ein- und
Ausschalten. Computer sind gut, aber viele andere Dinge auch. Nur weil Sie
Champion im PacMan-Spiel sind, hat das noch lange nichts mit Ihrer Kondi-
tion zu tun. Der Computer kann ein Hobby sein. Mancher will vielleicht auch
fiir den Beruf mehr dariiber wissen. Es ist auch nur natiirlich, daB man ganz
am Anfang mehr Zeit in das neue Hobby investiert als spater. Und es gehort
dazu, daB man ndchtelang an einem Problem, an einem Programm sitzt. Die
Freude, wenn es plétzlich doch lduft, wenn man etwas Neues entdeckt hat,
ist meist immens. Sie darf nur nicht die einzige sein. Der Computer ist nie ein
Kommunikationspartner, genausowenig die Menschen, die nur dariiber
reden konnen. Nehmen Sie dies als kleinen Tip mit auf den Weg. Denn wir
finden, eine gehdrige Portion kritischer Abstand gehért genauso zu einem
guten Programmierer oder Computerfreak wie das technische Wissen.
Warum wir das sagen? Aus dem Grund, aus dem Leute immer Ratschlige
geben: aus eigener Erfahrung.

Auch fiir uns war es schwer, den richtigen Weg zu finden. Aber glauben Sie
uns, wir beide sind sehr froh dariiber, daB nach fast vier Monaten stdndiger
Arbeit damit jetzt die Zeit dafiir gekommen ist, wieder einen Commodore 64
anschauen zu koénnen, ohne gleich an ein Buch zu denken, das wir noch
schreiben sollten. Und wabhrscheinlich werden unsere 64er und auch unser
Apple (zur Textverarbeitung) jetzt ein biBchen in Ruhe ihr Leben geniefen
konnen. Die Arbeit hat SpaR gemacht, aber gliicklicherweise ist sie jetzt
vorbei — die nédchsten Ferien werden wir in erster Linie zum Faulenzen
benutzen. (Na ja, vielleicht noch ein biBchen Software schreiben — aber nur
ein biBchen ...)

Anhang 279

Das war es von uns zu diesem Thema. Wir wollten Sie nur ein bichen
nachdenklich machen. Der Computer hat nichts Bbses an sich, es kommt
immer nur auf die Leute an, die davor sitzen. Und das gilt fiir Ihren
Heimcomputer genauso wie fiir die Computer, die Daten erfassen oder die in
West und Ost fiir militdrische Zwecke eingesetzt werden. Es gibt Dinge, die
sollte man nie dem Computer iiberlassen. Wir hoffen, daB die Verantwortli-
chen sich dariiber im klaren sind! Deshalb halten wir auch das Wissen tiber
Computer und ihre Arbeitsweise fiir sehr wichtig. Denn Wissen kann schiit-
zen — nicht nur niitzen!

Jetzt nur noch eine kleine Bitte: Wir haben, bevor wir mit unserer Predigt
anfingen, sehr oft die Worter «wollten» und «sollten» verwendet. Der Grund
dafiir ist, daB wir natiirlich nicht wissen, ob uns alles gegliickt ist, was wir
beabsichtigt hatten. Deshalb wiirden wir uns freuen, von lhnen zu héren!

Schreiben Sie uns, was lhnen gefallen oder nicht gefallen hat. Sollten wir
uns wieder mal ans Schreiben eines Buches heranwagen, dann gibt es nur
eines, das man nicht ersetzen kann: die Erfahrung mit unserem ersten Buch.
In diesem Sinne wiinschen wir lhnen viel Freude mit lhrem Commodore 64
und natiirlich bei allen Tatigkeiten, fiir die Sie — auRer fiir die Computerei —
noch Zeit finden ...

Frankfurt/Main Hannes Riigheimer
Christian Spanik

VOGEL-BUCHVERLAG WURZBURG

Senftleben, D.
Start mit
Commodore-
Logo

Reihe HC —

Mein Home-Computer
ca. 200 Seiten,

zahlr. Abbildungen,

. ca.30,— DM, 1984
ISBN 3-8023-0802-6

'Wenn Sie aktiv mit lhrem Commo-
dore 64 in Logo computern wollen,
ist dieses Buch die richtige Start-
hilfe fiir Sie. Mit dieser Einfiihrung
erlernen Sie in 12 Lektionen das
kleine Logo-Einmaleins, bis Sie mit
Grafik, Text und Musik spielen, ex-
perimentieren und arbeiten kdnnen.
Uber groRe Bildschirmfotos kénnen

Start mit
Commodore-
Logo

Sie lhre Erfolge kontrollieren und
schon bald neue Einsatzbereiche

erschlieen.

Der Leser dieser Einfiihrung in die
Grafik-Programmierung benétigt le-
diglich Grundkenntnisse im Pro-
grammieren mit BASIC. Der Autor
hat ein HochstmaR an Strukturie-
rung und Kommentierung der Pro-
gramme angestrebt. Sie wurden
auf dem Commodore 64 entwickelt
und getestet — sind aber so ge-
schrieben, daR sie sich leicht auf
andere grafikfahige Mikrocomputer
libertragen lassen.

(om{uterspiele und
Knobeleien iy
programmiert in BASIC “

Baumann, Riideger

Computerspiele
und Knobeleien
programmiert in
BASIC

Reihe HC —

Mein Home-Computer
304 Seiten,

zahlr. Abbildungen,
4. Auflage 1984
30,— DM

ISBN 3-8023-0786-0

Baumann, Rideger

Grafik mit dem
Home-Computer
Reihe HC —

Mein Home-Computer
328 Seiten,

zahlr. Abbildungen,
38,— DM, 1984
ISBN 3-8023-0769-0

Grafik mitdem
Home-Computer

Mit Eigeninitiative weg von der
Spielkonserve: Der Leser wird zum
aktiven und schépferischen Um-
gang mit Computerspielen aufgeru-
fen und angeleitet — aus der Spiel-
idee entwickelt sich die Spielstra-
tegie und hieraus das Programm.
Das Programmieren des Computers
selbst ist das Spiel; so lernt der Le-
ser spielend das Programmieren.
Die Programmbeispiele wurden auf
Commodore-Computern erstellt.

Qh'Computer—Biicher

i

Mein Home-Computer
7o

O Vel
o Ope, Sy
k. < e Gg G,

) Monat iiber

NN 30 Seiten

Und] oV 2 dertiam— Programme
das bringt a)

L- ‘Mein Home-Computer |,
|

jeden Monat:

% Programme fiir alle géngigen Home-Computer

*k Anwendungsbeispiele aus der Praxis

% Marktiibersicht, Tests und Kaufberatung fiir Zusatzgeréate
und Home-Computer

2k Schnellkurse fiir Einsteiger zum Sammeln

% Tips und Tricks

%k Interessantes, Aktuelles und Unterhaltsames aus der
Home-Computer-Szene

¢ News, Clubnachrichten
Holen Sie sich die neueste Ausgabe bei Inrem Zeitschriften-
héndler oder fordern Sie ein Kennenlernheft direkt beim Vogel-
Verlag, Leserservice HC, Postfach 67 40, 8700 Wiirzburg, an.

Ihr erstes Commodore-64-Buch war das Handbuch, das Sie mit
dem Gerat erhielten. Doch als Anfanger kdnnen Sie damit meist
keine allzu groBen Spriinge machen. Wenn Sie die Bedienung
und Programmierung des Commodore 64 trotzdem ohne viele
Vorkenntnisse lernen wollen, sollten Sie dieses Buch lesen. Es
will Sie aber auch unterhalten und amUisant sein, denn aller
Anfang ist schon schwer genug!

Zuvor sollten Sie auf jeden Fall das Gerate-Handbuch durchge-
lesen und das eine oder andere Beispiel ausprobiert haben.
Dann verhilft Ihnen dieses «Zweite Commodore-64-Buch» zu
den Erfahrungen, die Sie zum selbstandigen Programmieren
brauchen. SchlieBlich will dieses Buch lhr «Sprungbrett» sein zu
weiterfuhrender Computerliteratur.

&) VOGEL-BUCHVERLAG
WURZBURG

ISBN 3-8023-0793-3

