
Englisch : Szczepanowski

Das große

Floppy-
Buch

Disketten-Programmierung
mit COMMODORE Computern
fur Anfanger, Fortgeschrittene

und Profis

EIN DATA BECKER BUCH

Englisch : Szczepanowski

Das große

Floppy-
Buch

Disketten-Programmierung
mit COMMODORE Computern
für Anfänger, Fortgeschrittene

und Profis

EIN DATA BECKER BUCH

Copyright {C) 1983 DATA BECKER

Merowingerstr. 30

4000 Düsseldorf

Alle Rechte vorbehalten. Kein Teil dieses Buches darf in
irgendeiner Form (Druck, Fotokopie oder einem anderen
Verfahren) ohne schriftliche Genehmigung der DATA BECKER GmbH
reproduziert oder unter Verwendung elektronischer Systeme
verarbeitet, vervielfältigt oder verbreitet werden.

Wichtiger Hinweis

Die in diesem Buch wiedergegebenen Schaltungen, Verfahren

und Programme werden ohne Rücksicht auf die Patentlage

mitgeteilt. Sie sind ausschließlich für Amateur- und Lehr-

zwecke bestimmt und dürfen nicht gewerblich genutzt werden.

Alle Schaltungen, technische Angaben und Programme in

diesem Buch wurden von den Autoren mit größter Sorgfalt

erarbeitet bzw. zusammengestellt und unter Einschaltung
wirksamer KontrollmaBnahmen reproduziert. Trotzdem sind

Fehler nicht ganz auszuschließen. DATA BECKER sieht sich

deshalb gezwungen, darauf hinzuweisen, daß weder eine

Garantie noch die juristische Verantwortung oder irgendeine
Haftung für Folgen, die auf fehlerhafte Angaben zurückgehen,

übernommen werden kann. Für die Mitteilung eventueller Fehler

sind die Autoren jederzeit dankbar.

VORWORT

Mit der Floppy VC-1541 steht dem COMMODORE Anwender für

erstaunlich wenig Geld ein sehr leistungsfähiges externes

Speichermedium zur Verfügung. Um die vielseitigen

Möglichkeiten der 1541 ausschöpfen zu können, bedarf es aber

entsprechender Informationen und Anregungen. Lothar Englisch

und Norbert Szczepanowski haben in monatelanger Kleinarbeit

alle Geheimnisse der 1541 für Sie ergründet.

Das große Floppy Buch reicht von der einfachen

Frogrammspeicherung über den anspruchsvollen Direktzugriff

bis hin zur Dverlaytechnik. Anfänger werden die zahlreichen

Beispielprogramme begrüßen, mit denen der Text anschaulich

illustriert wird. Maschinenprogrammierer werden insbesondere

das ausführlich dokumentierte Listing des

Diskettenbetriebssystems (DOS) schätzen und die exakten

technischen Beschreibungen. Ein echtes Schnäppchen wird "Das

große Floppy Buch" alleine schon durch die große Anzahl

komplett lauffertiger Frogramme, die nur noch eingetippt

werden müssen. Neben BASIC-Erweiterungenn, hilfreichen

Dienstprogrammen und nützlicher Routinen wie z.B. Spooling

zählen hierzu vor allem eine leistungsfähige Adreßverwaltung,

eine komplette Haushaltsbuchführung und ein komfortabler

DOS-Monitor zur Manipulation einzelner Sektoren.

Viel Spaß bei der Lektüre des großen Floppy Buches und bei

der Arbeit mit Ihrer Floppy VC-1541.

Dr. Achim Becker

Inhaltsverzeichnis

Kapitel is

Einführung in die Programmierung der VC 1541

1.1 Der erste Kontakt mit der VC 1541

1.1.1 Das Disketten-Betriebssystem .. 22 cea nw nn nn nn nur un nenne

1.1.2 Die Test/Demo-Diskette „....unun ce nun nu nn ween ee wee eee

1.1.3 Vorbehandlung neuer Disketten 2... eee wwe nee eee eee

1.1.4 Einige Daten der VC 1541-Diskette eee ne ese eee

1.2 Das Speichern von Programmen auf Diskette

1.2.1 SAVE —- Speichern von BASIC-Frogrammen „„uununueennun nn

1.2.2 LOAD - Laden von BÄSIC-Frogrammen0e0ceaens eesnnons

1.2.3 VERIFY — überprüfen von gespeicherten Programmen

1.2.4 überschreiben von Programmen0000en0c0 nn i a

1.2.5 Laden von Maschinenprogrammen zen un nn nun nn nun nn nen nn nn

1.2.6 Speichern von Machinenprogrammen „een un ne nun nun nun nn

1.3 Die Floppy-Systembefehle

1.3.1 Die Befehlsübermittlung zur Floppy-Station2...:.

1.3.2 NEW — Formatieren von Disketten .. 2... ee ene nen nun nn un

1.3.3 Auslesen des Fehlerkanals .. .uuun nu nun un nn ene nenn nn nn

1.3.4 Laden der Directory „0 u 0 una nn nn nn nn nn nn nenn ne

1.3.5 SCRATCH — Löschen von Files .„..nn enn nn nun nn ne

1.3.6 RENAME — Umbenennen von Files 2... nen nn ene es

1.3.7 COPY - Kopieren von Files „zen enews

1.3.8 INITIALISE — Initialisieren der Diskette ...-=-...nu0u..

1.3.9 VALIDATE — "Aufräumen" der Diskette 2.2... eee eee eee nun.

1.3.10 Der "Joker" oem nun nn nn nn nn nun nn ee .nunum .n.n.....

1.4 Sequentielle Datenspeicherung

Einfaches Sortieren der Tabellenu0u1 cee una nn nn.

Ergänzen einer sequentiellen Datei

O ADRESSENVERWALTUNG mit sequentieller Daten—-0000.
speicherung

1.4.11 Anwendungsgebiete der sequentiellen Datenspeicherung ..

1.4.1 Das Prinzip „oc nn nn nn

1.4.2 OPEN — Eröffnen einer sequentiellen Datei2-2.26.

1.4.3 PRINT/INPUT — Datenübertragung Floppy/Rechner020.

1.4.4 Anhängen von Datensätzen 2... wn nee nen nn nn nn nenne

1.4.5 CLOSE — Schließen einer sequentiellen Datei

1.4.4 "Umleiten" der Bildschirmausgabe ee

1.4.7 Sequentielle Datei als Tabelle im Rechner0cueee

1.4.8 Suchen in der Tabelle .. 2... enw eee nun nn nn nn nn nn nn u...
1.4.9

1.4.9

1.4.1

1.5 Relative Datenspeicherung

1.5.1 Das Prinzip „neuen nn ne nun ne

1.5.2 Der Vorteil gegenüber sequentieller Speicherung -

1.5.3 Das Eröffnen einer relativen Datei ... ence enn nee eee

WW

NI

RD

“
S
o

O
o
h

Ol

&

48

49

Inhaltsverzeichnis

1.5.4 Vorbereitung der Daten zur relativen Speicherung

1.5.5 Datenübertragung Floppy/Rechner4.ccceeeceue ..

1.5.6 Schließen der relativen Datei ... 2. en ewan nce nn nn.

1.5.7 Suchen eines Records nach der binären Methode ...

1.5.8 Suchen eines Records über seperate Index-Dateien

1.5.9 Andern eines Recordsc0.0.0cueencee a nnunnn.

1.5.10 Erganzen einer relativen Datei eee anaes rece

1.5.11 Beispiel einer Problemlésung mit relativer

Datenspeicherung

1.6 Die Fehlermeldungen der Floppy und ihre Ursachen

1.7 übersicht aller Befehle mit Vergleich
BASIC 2.0 -— BASIC 4.0

Kapitel 2:
Programmierung fiir Fortgeschrittene

1 Der Direktzugriff auf jeden Block der Diskette

.Z Die Direktzugriffsbefehle

2.2.1 Der Block-Read-Befehl ... eee ee te nn nenn nn

2.2.2 Der Block-Fointer-Befehl .. nun nn nn nn nun num

=.2.3 Der Block-Write-Befehl ... cee wenn ew ew ew nn

2.2.4 Der Block-Allocate—Befehl2.2.4. enn „nu...

2.2.5 Der Block-Free-Befehl ... eee we we nn nun nn nn

2.2.26 Der RBlock-Execute-Befehl nennen wenn ee

2.3 Anwendungen des Direktzugriffs

2.4 Der Zugriff auf das DOS — Die Memory-Befehle

2.4.1 Der Memory-Read-Befehl ee ee mn nun.

2.4.2 Der Memory-Write-Befehl ...-unnnuneunn eee u...

2.4.53 Der Memory-Exrecute-Befehl000. see enna eeene

2.4.4 Die User-Befehle „....... nun nun nn nn nenne

Kapitel 3:

Technik der Floppy und der Diskette

ae 1 Der Aufbau der VC 1541

wenn 07

een OF

eaeeee Gl

eee ee 3

eeeeee 64

„un... OF

„unnn. 74

„unnn. 79

„un... 85

„un... 88

.nunn.n 89

„nunnn FO

saunas FI

„nun. 92

„uunnunn FS

3.1.1 Blockschaltbild der Floppy nn nun nnen 101

3.1.2 Memory-Map des DOS — ROM, RAM, I/O wee ewe wee ee 102

3.2 Die Arbeitsweise des DOS - ein Uberblick ...ceen anew acne ewe une 106

„> Der Aufbau der Diskette

3.4.1 Die BAM der VC-1541 ee n nn n nun en nn LOB

Inhaltsverzeichnis

3.4.3 Das Directory „..n....u.nu. wee eee ewe wee eee eee ees LOD

3.4.2 Das Format deg Directory „un. en ean eee eee eneeeeee LIL

3.4 Die Organisation der relativen Dateiennenunnnnnnnnnn 117

3.5 DOS-Listing der VC 1541 1... nee een eee een eee eee eee eee ~-. 122

Kapitel 4:

Programme und Tips zur Benutzung der VC 1541

4.1 Dienstprogramme

4.1.1 Anzeige aller Fileparameter2...2.2202-00- cee wee eee 270

4.1.2 Scratch-Schutz von Files - Fileprotect nr nn.n » 275

4.1.3 Backup-Frogramm — Kopieren von Disketten00022aes 281

4.1.4 Fopieren einzelner Files auf eine andere Diskette 283

4.1.5 Einlesen des Directorys innerhalb von Frogrammen 285

4.2 Die Dienstprogramme der Test/Demo-Diskette

4.2.1 DOS 3.1: nn ee ee LEG

4.2.2 COPY/ALL een ewan anne eee eee tees wa aeennne £66

4.2.3 DISK ADDR CHANGE wee ee eee 207

4.2.4 DIR we eee eee eee wees we ae ween .. 288

4.2.5 VIEW BAM 2... wwe ne eee ees nennen nennen nun nn LOB

4.2.6 CHECK DISK22..2222. eee eee eee es = | =

4.2.7 DISPLAY T&S can wen eee wee ew wee nn ee seen en eee 2087

4.2.8 PERFORMANCE TEST22 202 nee neee ee ee ee - 289

4.2 BASIC-Erweiterungen und Programme zur komfortablen

Benutzung der VC 1541

4.3.1 Eingabe beliebig langer Strings von Diskette 290

4.3.2 Komfortables Aufbereiten von Datensätzen„.u.un.uun. 294

4.3.5 Spooling —- Direktes Drucken von Diskettec.0082022022 300

4.4 Overlaytechnik und Nachladen von Maschinenprogrammen » 303

4.5 Merge - Aneinanderhängen von BASIC-Programmen eee ee eee eee 506

4.6 Disk-Monitor für Commodore 64 und VC ZOO2.222200ees wae cee ee 508

Kapitel Ss
Die großen CBM-Floppies

EC-Bus und serieller Bus „non nn we ww nn nn nn nern un nenn OLN 3.11
3.2 Gemeinsamkeiten und Unterschiede gegenüber der VC 1541 323

Kapitel i: Einführung in die Programmierung der VC-1541

1.1 Der erste Kontakt mit der Floppy-Disk

Da steht sie nun, Ihre neue Diskettenstation. Schnell,

leistungsfähig und für Sie zunächst ein Buch mit sieben

Siegeln. Aber keine Angst. Schrittweise werden wir Sie in die

Kunst der Diskettenprogrammierung einführen. Dieses erste

Teil des Buches gibt dem Anfänger einen intensiven überblick

über den Umgang mit der Floppy VC-1541 und über Ihre

Programmierung. Jedem Befehl folgt mindestens ein Beispiel,

an dem seine Funktion erprobt und erkannt werden kann. Sie

werden überrascht sein, wie einfach doch die Handhabung Ihrer

Diskettenstation sein kann, wenn man nur im Besitz von guter,

begleitender Literatur ist.

Der Anfänger, der das Laufwerk zunächst hauptsächlich zur

Speicherung von Frogrammen nutzen wird und vieleicht beim

Kauf auch kein anderes Einsatzgebiet in Erwägung gezogen hat,

wird in diesem Buch mit den vielen anderen Möglichkeiten der

Diskettenprogrammierung vertraut gemacht. Ein Programmierer,

der vorher die Datenspeicherung auf Kassette organisierte

wird die wesentlichen Vorteile der Diskette erkennen und

einzusetzen lernen.

Auch erfahrene Frogrammierer sollten sich nicht scheuen, das

erste Kapitel intensiv zu erarbeiten, denn sie werden

sicherlich Ihre Kenntnisse erweitern. Dies betrifft besonders

die relative Dateiverwaltung.

1.1.1 Das Disketten-Betriebssystem

Die Diskettenstation besitzt neben der Laufwerksmechanik und

der Elektronik wie der VC-20 und der Commodore 54 ein eigenes
Betriebssystem zur Steuerung der internen Vorgänge und zum

Ausführen der vom Rechner übersandten Befehle. Dieses DOS

(Disk Operating System) genannte Betriebssystem ist auf dem

VC-20 und Commodore 64 abgestimmt und trägt die Bezeichnung

CBM DOS V2.6 1541. Diese Version V2.&4 enthält auch einige

zusätzliche Möglichkeiten, die sich mit dem VC-20 und dem

Commodore 64 nicht ohne weiters nutzen lassen.

Der Commodore 64 und der VC-20 enthalten das BASIC CBM 2.0.

Die VC-1541 "hingegen versteht die erweiterten

Diskettenbefehle des BASIC 4.0, die sich mit dem BASIC 2.0

simulieren lassen.

Am Ende des Kapitels folgt eine Auflistung sämtlicher Befehle

des BASIC 2.0 mit entsprechenden Befehlen des komfortableren

BASIC 4.0, wie es bei den größeren CBM-Rechnern (4000-er,

8000-er und der neuen 600-er und 700-er Serie) integriert

ıst.

Das CBM BASIC 4.0 ist auch auf dem VC 20 und dem COMMODORE 64

einsetzbar. Es ist in folgenden Produkten, die in unserem VC

INFO ausführlich beschrieben sind, intergriert:

VC 20: DATA BECKER IEC-Bus mit DISC BASIC
CBM 64: DATA BECKER IEC-Bus mit DISC BASIC

SUPERTWIN
MASTER 64

1.1.2 Die beigelegte Test/Demo-Diskette

Sicher wußten Sie mit dieser Diskette erst gar nichts

anzufangen. Das soll Sie aber nicht irritieren. Neben

Programmbeispielen enthält diese Diskette Dienstprogramme,

die Sie ohne den entsprechenden Kenntnissen des

Disketten-Betriebssystems nicht sinnvoll bedienen können.

Legen Sie diese Diskette erst einmal beiseite. Im Laufe

dieses und des folgenden Kapitels erlernen Sie alles, was das

DOS zu bieten hat und werden bald in der Lage sein, selbst

ahnliche Dienstprogramme ohne großartige Anstrengung zu

schreiben.

Die Test/Demo-Diskette wird später noch ausführlich
beschrieben.

1.1.3 Die Vorbehandlung neuer Disketten zum Einsatz

Ladenübliche, "rohe" Disketten müssen erst vorbehandelt

werden, bevor man sie zur Datenspeicherung verwenden kann.

Diesen Vorgang nennt man in der Fachsprache "Formatieren".

Was bedeutet nun "Formatieren"? Jedes typenungleiche Laufwerk

hat seine Besonderheiten. So ist die Diskette z.B. in Spuren

aufgeteilt, deren Anzahl bei vielen Laufwerken

unterschiedlich ist. Außerdem ist jede Spur in Sektoren

gegliedert, deren Anzahl ebenfalls zwischen verschiedenen

Laufwerken variieren kann. Jeder dieser Sektoren erhält

während dem Formatieren seine "Adresse", an der das DOS ihn

identifiziert. Diese Adresse besteht aus der fortlaufenden

Nummer von Spur und Sektor. Weiterhin wird jeder Sektor mit

einem Kode belegt, an dem das DOS erkennt, ob die Diskette

auch auf diesem Laufwerktyp formatiert wurde. Dieses

Formatkennzeichen besteht aus zwei Zeichen, und enthält bei

der VC 1541 "ZA". Der Rest des Sektors ("Block" genannt) kann

maximal 256 Zeichen aufnehmen.

Die letzte Aufgabe des "Formatierens" ist, das Directory

(Inhaltsverzeichnis) der Diskette anzulegen. In der Directory

sind u.a. alle Blöcke der Diskette als "belegt" oder

"freigegeben" gekennzeichnet. Sie befindet sich auf Spur 18

der Diskette.

1.1.4 Einige Daten der VC 1541-Diskette:

Diskette:

Anzahl Spuren:

Anzahl Sektoren je Spur:

Bytes (Zeichen) je Block:

Sesamtzahl der Blöcke:

Zahl der freien Blöcke:

Einträge in der Directory:

Laufwerk:

- intelligentes Feripheriegerät

eigenem Betriebssystem

33

17 bis 21 (je nach Größe

der

256

483

644

den

144

Spur)

(die Directoy belegt

Rest)

pro Diskette

mit eigenem Prozessor und

- Anschluß am seriellen IEC-Bus von CBM 64 oder VC-20, Ge-

rätenummer 4-15 (standard 8)

Diese Daten sollen vorerst genügen. Sie lernen später weitere

kennen und verstehen.

1.2 Das Speichern von Programmen auf Diskette

Die überlegenheit des Diskettenlaufwerks als externes

Speichermedium gegenüber dem Rekorder zeigt sich bereits bei

der Abspeicherung von Frogrammen. Die Speicherung von

Frogrammen ist mit einem Diskettenlaufwerk erheblich

komfortabler als mit einem Cassettenrekorder. Ein

wesentlicher Vorteil liegt in der Geschwindigkeit . der

Ubertragung von und zum Rechner. Hierzu 2 Beispiele:

Das Abspeichern eines 3 KByte großen Programms dauert:

- mit der Datasette VC-1530 75 Sekunden

- mit der Floppy VC-1541 nur 12 Sekunden

Das Laden eines 14 KByte großen Frogramms dauert:

- mit der Datasette VC-1530 330 Sekunden

- mit der Floppy VC-1541 nur 50 Sekunden

Ein weiterer Vorteil ist, daß auf der Diskette mehrere

Frogramme übersichtlich abgelegt werden können. Um ein

Programm zu laden, schaut man sich lediglich das

Inhaltsverzeichnis (Directory) der Diskette an und wählt dann

das gewünschte Programm aus. Zwar können auf einer Kassette

auch mehrere Programme gespeichert werden, jedoch ist das

Aufsuchen eines Programms sehr umständlich, da die

entsprechende Bandposition erst durch Spulen der Kassette

aufgesucht werden muß. Bevor Sie die Beispiele in den

folgenden Abschnitten ausprobieren, sollten Sie beachten, daß

vorher eine Diskette gemäß Abschnitt 1.3.2 zu formatieren

ist, um Programme auf dieser Diskette abspeichern zu können.

1.2.1 SAVE — Speichern von BASIC-Programmen

Vieleicht waren Sie vorher im Besitz einer Datasette, mit der

Sie sicher Programe abgespeichert haben. Der Befehl zur

Speicherung yon Progr ammen auf der Floppy-Station

unterscheidet sich nicht wesentlich davon. Sie müssen dem

Rechner lediglich mitteilen, daß er das Programm auf Diskette

und nicht auf Kassette zu speichern hat. Dies geschieht durch

zusätzliche Angabe der Gerätenummer 8 hinter dem Befehl SAVE.

Alle serienmäßig produzierten Laufwerke sind auf diese

Adresse hardwaremäßig vorbereitet. Schreiben Sie nun einmal

ein kleines BASIC-Frogramm und speichern es mit dem Befehl

SAVE"TEST",8

ab. Geben Sie anschließend den Befehl "NEW" ein, damit der

BASIC-Speicher gelöscht wird. Im folgende Abschnitt erfahren

Sie dann ‚wie das Frogramm wieder zurückgeholt wird.

1.2.2 LOAD - Laden von BASIC-Programmen

Wie beim vorhergehenden Abschnitt ist dieser Befehl bis auf

die zusätzliche Angabe der Gerätenummer mit dem Befehl "LOAD"

für die Datasette identisch. Laden Sie nun das im vorherigen

Abschnitt gespeicherte Programm mit

LOAD "TEST",8

ieder in den Speicher. Mit dem Befehl "LIST" können Sie den

erfolgten Ladevorgang erkennen. Ein eventuell vorher im

Speicher befindliches Programm ist aber nun gelöscht, da bei

jedem Ladevorgang das Frogramm ab der Anfangsadresse des

BASIC-Speichers abgelegt wird. Es besteht Jedoch die

Möglichkeit, das im Speicher befindliche Programm zu

erhalten, wenn dessen Endadresse als Anfangsadresse gesetzt

wird. Dieses "Zusammenfügen" zweier Frogramme nennt man

“MERGE". Eine entsprechnede Routine ist in einem späteren

Aschnitt enthalten.

1.2.3 VERIFY — überprüfen von gespeicherten Programmen

Wenn Sie ein Programm mit dem Befehl “SAVE” auf Diskette

gespeichert haben, so besteht die Möglichkeit zu überprüfen,

ob dieses Programm auch richtig abgelegt wurde. Das wird mit

dem VERIFY-Befehl realisiert. Der Befehl hat folgendes

Format:

VERIFY "filename",8

Angenommen Sie haben ein Programm mit ‘SAVE "TEST",8'

gespeichert. Dann befindet sich dieses Programm immer noch im

Speicher. Dieses im Speicher befindliche Programm wird dann

durch diesen Befehl mit dem tatsächlich abgespeichertem

verglichen. Sind beide Frogramme identisch, so meldet der

Rechner "OK".

Probieren Sie es einmal aus, indem Sie einige BASIC-Zeilen

schreiben und dann die folgende Befehlsfolge eingeben:

SAVE "TEST.1",8 Programm wird gespeichert

VERIFY “TEST.1",8 Programm wird überprüft

Sicher wird der Rechner sich mit "OK" melden, da bei der

Diskettenspeicherung sehr selten Fehler auftreten.

1.2.4 SAVE"@:..." — überschreiben von Programmen

Versuchen Sie jetzt einmal, Ihr kleines Testprogramm nochmals

auf der Diskette zu speichern. Beim zweiten Mal meldet der

Computer einen "FILE EXISTS"-Fehler und führt den Befehl

nicht aus. Das Betriebssystem der Floppy VC-1541 läßt nicht

zu, daß zwei Programme unter gleichem Namen abgespeichert

werden. Dies ist auch logisch, denn wie sollte der Computer

sonst beim Ladevorgang erkennen, welches Programm von zwei

identischen Sie haben möchten.

Nun kann es aber vorkommen, daß Sie ein bereits auf Diskette

abgelegtes Programm laden, ändern und wieder abspeichern

möchten. Um dies zu realisieren gibt es drei Mögichkeiten:

1. Sie Speichern das Programm unter einem anderen Namen ab

2. Sie Löschen zuerst das alte Programm auf der Diskette und

speichern dann das Neue unter dem alten Namen ab

3. Sie verwenden den Zusatz "as" vor dem Filenamen im

SAVE-Betfehl

Dieses Zeichen nennt man "Klammeraffe". Es wird sehr oft in

der Datenverarbeitung benutzt. Dieses Zeichen und einen

Doppelpunkt setzen Sie vor dem Filenamen. Das könnte dann

z.B. so aussehen:

SAVE "@:TEST",8

Vergessen Sie, dieses Zeichen anzugeben, so bringt das

Laufwerk die Fehlermeldung "FILE EXISTS", die Sie dann wie im

Abschnitt 1.3.3 beschrieben, auslesen können.

Das neue Programm darf den restlichen Speicherplatz der

Diskette nicht überschreiten. Wenn Sie verfolgen, wie das DOS

das überschreiben durchführt, werden Sie den Grund dafür

erkennen:

i. Einen freien Block als ersten Datenblock des neuen

Programms bestimmen und dessen Adresse im Directory-Eintrag

des alten Files speichern. -

2. Das neue Programm in einen freien Bereich der Diskette

speichern.

3. Die Adresse des neuen Files in die Adresse des alten Files

übernehmen.

4. Die vom alten File belegten Blöcke als frei kennzeichen.

Da vor dem Freigeben der vom alten File belegten Blöcke das

neue File in die freien Blöcke der Diskette gespeichert wird,

. darf das neue File nicht die freie Diskettenkapazität

überschreiten. Sollte jedoch das neue Programm den freien

Diskettenspeicher überschreiten, wird der Speichervorgang

abgebrochen.

1.2.5 Laden von Maschinenprogrammen

Maschinenprogramme bestehen aus elementaren Befehlen des

Prozessors. Sie benötigen den BASIC-Interpreter nicht und

werden auch nicht als BASIC-Frogramm geladen. Ein

Maschinenprogramm wird über die Sekundäradresse 1 zum Rechner

übertragen und "absolut" geladen, d.h. ab der in den ersten

beiden Bytes des Diskettenfiles enthaltenen Adresse. Ein

Beispiel: Der Befehl

LOAD "PROFI-MON 64",8,1

ladt den Maschinensprache-Monitor absolut. Da dieser Monitor

die dezimale Anfangsadresse 49152 hat, wird er anschließend
mit dem Befehl "SYS 49152" gestartet. Sollten Sie ein

Maschinenprogramm ohne die Sekundäradresse, d.h. wie ein

BASIC-Frogramm laden, so erscheint bei einem anschließendem

RUN die Fehlermeldung "SYNTAX ERROR IN „...". Mit dem Befehl
"LIST" erscheint dann das Maschinenprogramm als

BASIC-Listing, daß natürlich überhaupt keinen Sinn ergibt.

Ein Nachteil ist, daß ein BASIC-Programm von einem

Maschinenprogramm anhand der Directory nicht zu unterscheiden
ist. Beide werden mit dem Filetyp "PRG" gekennzeichnet. Wenn
Sie ein Programm auf der Diskette nicht spezifizieren können,

so laden Sie es zuerst mit dem Befehl "LOAD "programm",8B’.

Sollte nach einem anschließendem ‘RUN’ die Meldung "SYNTAX

ERROR IN° erscheinen und das anschließend aufgelistete

Programm nicht als BASIC-Frogramm zu identifizieren sein, so

handelt es sich um ein Maschinenprogramm. Dieses muß dann mit

"LOAD "programm" ,8,1° geladen werden. Es kann dan aber nicht

mit ‘RUN’ gestartet werden!. Sie müssen erst die

Anfangsadresse dieses Programm ermitteln. Dazu können Sie das

in diesem Buch enthaltene Programm zur Auflistung aller

Fileparameter benutzen. Diese Anfangsadresse ist dann in den

meisten Fällen die Startadresse des Programms, das Sie dann

mit ‘SYS startadresse’ aufrufen. Sie können aber auch die

Anfangsadresse mit folgender Befehlsfolge ermitteln:

10 OFEN 1,8,2,"programmname,S,R"

20 GET#1,X$: IF X$=""THEN X#=CHRS (0)

30 LB=ASC (X#)

40 GET#1,XF: IF X#=""THEN XF=CHR$ (0)

50 HB=ASC (X#)

60 CLOSE i

70 AD=HB*#2546+LB

BO PRINT" ANFANGSADRESSE: "; AD

Das Programm zeigt dann die Adresse nach Eingabe von ‘RUN’

auf dem Bildschirm an. Hier wird also das Programm als

sequentielle Eingabedatei eröffnet. Da die ersten beiden

Bytes die Anfangsadresse bilden, wird diese mit den beiden

GET-Befehlen ausgelesen und entsprechend aufbereitet. Das

erste Byte ist das High-Byte und das zweite das Low-Byte der

2-Byte Adresse. Falls Ihnen die Funktion dieser Befehlsfolge

unklar ist: Im nächsten Abschnitt wird die Behandlung von

sequentiellen Dateien eingehend erklärt.

1.2.5 Speichern von Machinenprogrammen

Maschinenprogramme werden meistens mit einem

Maschinensprache-Monitor oder einem Assembler geschrieben und

auch von diesen Programmen heraus abgespeichert.

Maschinenprogramme können aber auch mit BASIC geschrieben

werden, indem die einzelnen Bytes des Programms mit ihrem

dezimalen Wert in DATA-Zeilen abgelegt werden. Ein in BASIC

mit Hilfe von DATA-Zeilen geschriebenes Maschinenprogramm

hätte folgendes Aussehen:

10 AA = anfangsadresse

20 EA = endadresse

30 FOR I=AA TO EA

40 READ X
50 POKE I,„PEEK(X)
60 NEXT I
BO DATA nn nun un nn nn nn nn nenne man nme
FO DATA nun nun nn nn nn nn nn nn m. ene mm ewane

Es muß in diesem Beispiel noch die dezimale Anfangsadresse in

Zeile 10 und die Endadresse in Zeile 20 eingesetzt werden.

Die dezimalen Werte der einzelnen Bytes des

Maschinenprogramms werden jeweils durch Komma getrennt in den

DATA-Zeilen angegeben.

Natürlich können Sie auch als einfachsten Weg

Maschinenprogramme, wie sie z.B. auch in diesem Buch und in

den anderen DATA BECKER BUCHERN in reichlicher Form finden,

in Form des BASIC-Ladeprogramms abspeichern. Allerdings muß

dann jeweils vor der Nutzung der entsprechenden Routine diese

erst durch Lesen und Ausführen der DATA-Zeilen erzeugt

werden, ein etwas umständlicher und zeitraubender Weg.

Wesentlich eleganter und zeitsparender ist die Abspeicherung

eines in DATA-Zeilen enthaltenen Maschinenprogramms in Form

echter Maschinenbefehle, da ein solches "echtes"

Maschinenprogramm nach dem Laden ohne umständliches Umsetzen

sofort ausgeführt werden kann.

Um ein derartig gespeichertes Programm als Maschinenprogramm

auf Diskette abzulegen wird eine Befehlsfolge benutzt, die

etwa so aussieht:

10 AA = anfangsadresse

20 EA = endadresse

30 OPEN 1,8,1,"programmname"

46 HB=INT (AA/256) : LB=AA—HB#256

50 PRINT#1 ,CHR# (LB) 5s CHRS (HB) 5

60 FOR I = AA TO EA

70 PRINT#1 ,CHR# (PEEK (I)) 3

80 NEXT I

90 CLOSE 1

Diese Routine setzt voraus, daß das Maschinenprogramm bereits

im Speicher des Rechners mit der vorher beschriebenen Routine

abgelegt ist. Soll ein in DATA-Zeilen enthaltenes

Maschinenprogramm auf Diskette gespeichert werden, so muß

folgende Routine benutzt werden:

10 AA = anfangsadresse

20 EA = endadresse

30 OPEN 1,8,1,"programmname"

40 HB=INT (AA/256) : LB=AA-HB#256

50 PRINT#,CHR# (LB) 3; CHR (HB) ;

60 FOR I = AA TO EA

7O READ X

80 PRINT#1,CHR#(X);
90 NEXT I
100 CLOSE 1
110 DATA wc un un nn awe eee eee ewes u...
120 DATA „un uno nn nun en nun nn mn ee nn nneunn

Auch hier müssen noch die Adressen und die DATA-Zeilen
eingesetzt werden. Das derartig gespeicherte "echte"

Maschinenprogramm wird dann mit dem Befehl "LOAD

"programmname" ,8,1" eingesetzt, der dann das

Maschinenprogramm von der Diskette lädt. Anschließend wird

dieses Frogramm mit “SYS (anfangsadresse) ' gestartet.
Maschinenprogramme können auch von einem BASIC-Ladeprogramm

geladen und gestartet werden. So ein Ladeprogramm könnte die

folgende Form haben:

10 IF A=0 THEN A=1:LOAD"programmname",8,1

20 SYS (anfangsadresse)

Der IF-Befehl in Zeile 10 verwirrt zunächst. Er muß mit

einbezogen werden, weil nach dem Laden eines Frogrammes immer

wieder in Zeile 10 gestartet wird. Wendet man die

Befehlsfolge

10 LOAD"programmname" „8,1

29 SYS (anfangsadresse)

an, so würde immer wieder geladen und der SYS nie erreicht.

Wird aber die Variable A auf eins gesetzt, so verzweigt das

Programm nach dem erneuten Ablauf von Zeile 10 nach Zeile 20.

Dieses Ladeprogr amm wird dann zusammen mit dem

Maschinenprogramm auf der Diskette abgelegt. Zum Starten des

Maschinenprogramms geben Sie nur die Befehle

LOAD" 1 adeprogramm" ,8

RUN

ein. Dies hat den Vorteil, daß die Anfangsadresse des

Maschinenprogramms nicht zum Starten benötigt wird, weil das

Ladeprogramm den SYS beinhaltet.

1.3 Die Floppy-Systembefehle

Wie schon erwähnt, ist die Floppy VC-1541 ähnlich den

Peripheriegeräten großen CBM Floppys CBM 4040, 8050 und 8250

ein intelligentes Feripheriegerät mit einem eigenem Prozessor

und einem eigenem Betriebssystem. Dieses eigene

Betriebssystem, das DOS (Disk Operating System? belegt

keinen Platz im Speicher Ihres VC-20 oder COMMODORE 64

und bietet trotzdem eine Reihe sehr leistungsfähiger Befehle,

die den Befehlssatz Ihres COMMODORE Computers wesentlich

erweitern. Eine weitere Besonderheit neben der

Speicherplatzersparnis (bei fast allen anderen Computern wird

das DOS in den Hauptspeicher geladen und belegt dort

wertvollen Platz) ist die Tatsache, daß die Befehle des

Floppy DOS von der Floppy völlig selbstständig ausgeführt

werden, ohne daß Ihr Computer hiermit belastet wird. Da diese

Befehle aber nicht im Befehlssatz Ihres VC-20 oder COMMODORE

64 enthalten sind, müssen sie auf eine besondere Art und

Weise zur Floppy übertragen werden. Dort rufen diese Befehle

dann entsprechende Unterprogramme auf, die die gewünschte

Aufgabe durchführen.

1.3.1 Die Befehlsübermittlung zur Floppy-Station

Samtliche Befehle, die an die Floppy-Station (an das DOS)

gerichtet sind, werden über einen "Kanal" gesendet. Dieser

Kanal ist der Kanal Nummer 15. Die Datenübertragung über

diesen Kanal erfolgt folgendermaßen:

- öffnen des Kanals (OPEN)

- Datenübertragung (PRINT)

—- Schließen des Kanals (CLOSE)

Im OPEN-Befehl muß neben der Kanalnummer noch die Nummer des

Gerätes, zu dem die Daten gesendet werden sollen und die

logische Fielnummer enthalten sein. Beachten Sie nun die

Syntax des OPEN-Befehls zur Ubertragung von

Floppy-Systembefehlen:

OPEN #1fn,8,15,"befehl"

Die 8 in dem Befehl adressiert die Adresse der Floppy-Station

und der Befehlskanal ist 15. Der Parameter ‘lfn’ ist die

logische Filenummer des DPEN-Befehls, die benötigt wird, um

die übertragungsbefehle (PRINT#, INPUT#,GET$) den

DPEN-Befehlen zuzuordnen. Sie ist frei wählbar (1-127). Der

Floppy-Systembefehl kann entweder direkt dem OPEN-Befehl

folgen, oder aber mit einem FRINT-Befehl nach dem Eröffnen

übermittelt werden. Bis zum Schließen dieses Kanals kann eine

beliebige Anzahl Systembefehle übertragen werden, die sich

natürlich auf die im OPEN-Befehl angegenbene logische

Filenummer beziehen müssen.

1.5.2 NEW — Formatieren von Disketten

10

Der Befehl zum Formatieren lautet "NEW" und kann wie jeder

andere Befehl durch sein erstes Zeichen (N) abgekürzt werden.

Wie bereits erwähnt, kann der Befehl im OPEN-Befehl oder

nachfolgend in einem FRINT-Befehl angegeben werden. Der

NEW-Befehl hat folgendes Format:

NEW: diskettename,id

Der Diskettename umfasst maximal 16 Zeichen und ist im Kopf

des Directorys enthalten. Das Identifizierungsmerkmal (ID)
der Diskette besteht aus zwei beliebige Zeichen, an der das

DOS erkennt, ob eine andere Diskette eingelegt wurde. Da Sie

dieses Idenfikationsmerkmal frei wählen können, bietet es

sich gut für die Unterscheidung sonst völlig identischer

Disketten an, oder aber für eine allgemeine Klassifizierung

Ihrer Disketten. Wer nicht mehr als 99 Disketten hat, kann

seine Disketten sehr schön an Hand des

Identifikationsmerkmals ordnen.

Nun aber ein Beispiel zum Formatieren einer Diskette:

OPEN 1,8,15, "NEW: TESTDIKETTE,KL"

Geben Sie diesen Befehl nun einmal ein, nachdem Sie eine

"rohe" Diskette eingelegt haben. Sie werden feststellen, daß

das Laufwerk nun mit dem Formatieren beginnt. Dieser Vorgang

dauert ca. 80 Sekunden. Da das Laufwerk mit seinem eigenen

Frozessor formatiert und den fFrozessor des Rechners nicht

benötigt, kann während dem Vorgang weiter mit dem Rechner

gearbeitet werden. Der Befehl kann aber auch abgekürzt

werden:

OPEN 1,8,15,"N: TESTDISKETTE,KL"

Sall der Befehl mit einem PRINT übermittelt werden, so muß

folgende Befehlsfolge eingegeben werden:

OPEN 1,8,15 zum öffnen des Kanals

FRINT#1,"N: TESTDISKETTE,KL"

Die Nummer 1 des PRINT-Befehls bezieht sich auf die logische

Filenummer des DPEN-Befehls. Ist der Befehl dem ersten

Beispiel entsprechend abgesetzt worden, so können mit dem

FRINT-Befehl weitere Befehle über diesen Kanal übermittelt

werden.Sollen keine weiteren Befehle übermittelt werden, so

muß der Kanal geschlossen werden. Das geschieht mit dem

ECLOSE-Befehl. Geben Sie nun nach dem Formatieren folgenden

Befehl ein:

CLOSE 1

Nun ist der Befehlskanal geschlossen. Die 1 bezieht sich

wieder auf die logische Filenummer des entsprechenden

OPEN-Befehls.

11

1.3.3 Auslesen des Fehlerkanals

Wie Ihnen sicher bekannt ist, gibt der Rechner hei nicht

ordnungsgemäßer Programmierung Fehlermeldungen aus. Da die

Diskettenbefehle aber nicht von dem Prozessor des Rechners,

sondern von dem des Laufwerks überprüft und ausgeführt

werden, kann der Rechner die Fehlermeldungen des Laufwerks

nicht anzeigen. Fehlermeldungen werden vom Anwender an der

aufblinkenden roten Leuchtdiode am Laufwerk erkannt. Um

jedoch festzustellen, welcher Fehler aufgetreten ist, muß der

Rechner den Kanal 15, über dem die Fehler übermittelt werden,

auslesen. Dazu muß der Kanal 15 vom Rechner geöffnet werden,

falls dies nicht bereits geschehen ist. Danach wird mit dem

INPUT-Befehl die Fehlermeldung ausgelesen. Sie besteht aus 4

Feldern:

1. Feld: Nummer des Fehlers (numerisch)

2. Feld: Bezeichnung des Fehlers (alphabetisch)

3. Feld: Spur (numerisch)

4. Feld: Sektor (numerisch)

Die Spur- und Sektorangabe bezeichnet, wo der Fehler

lokalisiert wurde. Diese vier Felder der Fehlermeldung müssen

in 4 Variable eingelesen werden, wobei die 2. Variable eine

Stringvariable sein muß. Dem INPUT-Befehl müssen dannn also 4

Variablen folgen. Ein Beispiel zur Auslesung des

Fehlerkanals:

OPEN 1,8,15 (falls noch nicht erfolgt)

INPUT#1,FN,FB$,SP,SE
CLOSE 1

Da der INFUT-Befehl aber nicht direkt eingegeben werden kann,

muß der Fehler innerhalb eines Programms ausgelesen werden.

D.h. die oben genannte Befehlfolge muß mit Zeilennummern

versehen und dann mit RUN gestartet werden. Das sieht dann

z.B. so aus:

10 OPEN 1,8,15
20 INPUT#1,FN,FB$,SP,SE
30 PRINT FN; FB#;SP3SE (zur Anzeige auf dem

Bildschirm)

40 CLOSE 1

Um die Wirkungsweise dieses Programms zu erkennen,

verursachen Sie bitte folgenden Fehler:

OPEN 1,8,15,"NEW TESTDISKETTE,Ti"
CLOSE1

Wenn Sie diese Befehlsfolge eingegeben haben, blinkt die rote

Leuchtdiode an dem Floppy-Laufwerk. Haben Sie den Fehler

erkannt? Es fehlt der Doppelpunkt nach dem Befehl "NEW".

Geben Sie nun die Befehlsfolge zum Auslesen des Fehlerkanals

ein und starten mit RUN. Auf dem Bildschirm erscheint dann

die Meldung:

34 SYNTAX ERROR O0 0

Die 34 ist die Nummer des Fehlers, dessen Klartext dann

folgt. Das Feld Spur und Sektor ist 0, weil dieser Fehler

diese Angaben nicht benötigt.

Sollte ohne daß ein Fehler aufgetreten ist, der Fehlerkanal

ausgelesen werden, so wird die Meldung

oO OK O0

ausgegeben.

Falls während der Arbeit mit der Floppy-Station die rote

Leuchtdiode blinken sollte, so überprüfen Sie erst Ihren

Befehl, denn meistens ist der Fehler wie beim oa.g. Beispiel

leicht zu erkennen. Andernfalls lesen Sie einfach den

Fehlerkanal aus. Eine detailierte Beschreibung aller

Fehlermeldungen und ihrer Ursachen erfolgt im Abschnitt 1.6.

1.2.4 LOAD "#",8 — Laden des Directory

Das Directory ist das Inhaltsverzeichnis der Diskette. Hier

sind alle Files (Frogramme und Dateien} der Diskette

katalogisiert. Beachten Sie unbedingt, daß das Laden der

Directory den Verlust eines eventuell vorher im Speicher

befindlichen Programms zur Folge hat. Das Directory wird mit

LOAD "$",B

geladen und kann dann mit dem LIST-Befehl aufgelistet werden.

Probieren Sie es nun einmal mit der dem Laufwerk beigefügten

Test/Demo-Diskette aus. Legen Sie diese Diskette in das

Laufwerk und geben Sie den co.g. Befehl zum Laden der

Directory ein. Danach listen Sie mit dem Befehl LIST das

Directorry auf. Es erscheint dann wie folgt auf dem

Bildschirm: (Bitte beachten Sie, daß nicht alle VC-1541 mit

der derselben Test/Demo-Diskette geliefert werden, da

. EDMMODORE auch hier manchmal nicht angekündigte Anderungen

vornimmt).

® "154itest/demo _" zx ?al
13 "how to use" prg

2 “how part two" prg
4 "vic-20 wedge" prg
1 "c-64 wedge" prg

4 "dos 5.1" prg
11 "copy/all" prg

4 "disk addr change" prg

4 "dir" prg

& “view bam" prg
4 "check disk" prg

14 "display t&s" prg

9 “performance test" prg

3 "sequential file" prg

13 "random fial" prg

13

Diesem Directory sind viele Informationen zu entnehmen. Sehen

wir uns die 1. Zeile, den Kopf des Directory, einmal an. Das

Zeichen ‘0’ in dieser Zeile hat keine besondere Bedeutung.

Daneben ist der Name und die ID der Diskette angegeben, wie

es bei der Formatierung vereinbart wurde. Die Zeichen ‘2A’

symbolisieren das Diskettenformat. Ist dieses Format nicht

ZA’, so ist diese Diskette auch nicht auf dieser Art

Laufwerk formatiert worden und auch nicht lauffähig.

Nun folgen die einzelnen Files mit Ihrer Blocklänge am Anfang

und dem Filetyp am Ende der Zeile. Auf dieser Diskette

erkennen Sie 3 verschiedene Filetypen die im Folgenden

erklärt werden. Auf die restlichen Filetypen wird später noch

eingegangen.

PRG Dies sind PROGRAM-FILES, d.h. Programme in

BASIC oder Maschinensprache

SEQ So werden sequentielle Dateien gekennzeich—

net, die spater beschrieben werden

REL Dies ist eine andere Form der Datenspei-

cherung, die ebenfalls später beschrieben

wird.

Die Länge der Files ist in Blöcken angegeben, von denen jeder

256 Bytes umfasst.So kann man leicht die Größe eines

Programms ermitteln. Man muß lediglich von den 254 Bytes

eines jeden Blocks 2 Bytes abrechnen, die zur Verkettung der

einzelnen Blocks benötigt werden.

Am Ende des Directory ist dann noch die Anzahl der noch

freien Blöcke der Diskette ersichtlich. Wenn Sie die Länge

der Files aufaddieren und die freien Blöcke hinzuzählen, so

resultiert daraus die Gesamtzahl der belegbaren Blöcke auf

einer Diskette (664).

Wenn Sie einen Drucker besitzen, so kann dieses Directory wie

ein Programmlisting ausgedruckt werden. Dazu verwenden Sie

folgende Befehlsfolge:

DPEN 1,4 öffnen des Druckers

CMD i die Bildschirmausgabe wird auf

dem Drucker gelenkt

LIST das Directory wird auf dem

Drucker ausgegeben

PRINT#1 ein RETURN wird zum Drucker ge-

sendet

CLOSE 1 der Drucker wird wieder ge-

schlossen

Voraussetzung für den Ausdruck mit dieser Befehlsfolge ist

natürlich, daß das Directory mit ‘LOAD “€",8° geladen wurde.

Sollte sich im Speicher ein BASIC-Programm befinden, so kann

ebenfalls mit dieser Routine das Programm ausgedruckt werden.

Durch Einsatz des Jokers können Sie bewirken, daß nicht stets

das gesamte Directory geladen wird, sondern nur der Teil, der

Sie interessiert, z.B. alle Programme. Näheres hierzu in

Kapitel 1.7.10

14

1.3.5 SCRATCH — Löschen von Files

Matürlich muß die Möglichkeit bestehen, nicht mehr benötigte
Files zu löschen. Dazu ist der Befehl “SCRATCH’ vorgesehen.

Bevor dieser Befehl angewandt wird, sollte man sich stets
überzeugen, daß der im Scratch-Befehl angegebene Name auch

mit dem des zu löschenden Files übereinstimmt. Ein

unabsichtlich gelöschtes File kann die Arbeit von mehrerern

Stunden oder sogar Tagen zunichte machen.

Zum Löschen eines Files muß das folgende Format des Befehls

beachtet werden:

PRINT#1fn,"SCRATCH: filenamel, filename2,...."

Es können also auch mehrere Files mit einem Befehl gelöscht

werden. Wichtig ist die Tatsache, daß dem Floppy-Befehlskanal

innerhalb der Anführungszeichen nicht mehr als 40 Zeichen mit

einem PRINT-Befehl übermittelt werden können!

Um z.B. ein File mit dem Namen ‘TEST’ zu löschen, werden

folgende Befehle eingegeben:

OPEN 1,8,15,"S: TEST"
CLOSE 1

Sollte der Kanal 15 bereits geöffnet sein, so genitigt ein

FRINT-Befehl:

PRINT#1,"5: TEST"

Es besteht die Möglichkeit, den Inhalt der gesamten Diskette

zu löschen. Dazu wird der im Abschnitt 1.3.10 umschriebene

"JOKER" (das Zeichen ’*') verwendet:

PRINT#1,"5:%*"

Auch hier ist besondere Vorsicht geboten! überzeugen Sie

sich, ob wirklich alle Files gelöscht werden sollen. Dem

Fehlerkanal wird die Meldung

01 FILES SCRATCHED nn 00

übergeben. ‘nn’ ist die Anzahl der gelöschten Files. Diese

Meldung kann mit der im Abschnitt 1.3.3 angegebenen Routine

ausgelesen werden.

1.3.4 RENAME — Umbenennen von Files

Um Files einen anderen Namen zu geben wird der Filename im
Fileeintrag der Directory geändert. Der Befehl "RENAME’ ist

dafür zuständig. Er hat das folgende Forma:

RENAME:neuer name = alter name

Wenn z.B. das File mit dem Namen "TEST" umbenannt werden soll

15

in "TEST.O1", so verwenden Sie die Befehle

OPEN 1,8,15,"R: TEST. 01=TEST"
CLOSE i

oder

OPEN 1,8,15
PRINT#1 ,"R: TEST. 01=TEST"
CLOSE 1

Ein File, das eröffnet, aber noch nicht abgeschlossen wurde,

kann nicht umbenannt werden!

1.3.7 COPY -— Kopieren von Files

Mit diesem Befehl kann ein File innerhalb einer Diskette

kopiert werden. Aus mehreren sequentiellen Files kann ein

neues File gebildet werden. Wenn Sie z.B. jeden Monat eine

sequentielle Datei der Ausgaben in Ihrem Haushalt erstellt

haben und diese mit den Namen AUSG.O1, AUSG. 02 USW.

gekennzeichnet sind, so kann mit einem Befehl eine Datei der

Ausgaben im ersten Quartal (z.B. AUSG.@Q1) des Jahres gebildet

werden. Da der Befehl das Format

COPYz:neufile=saltfilei,altfile2.....

hat, kann die Zusammensetzung der genanten Dateien mit

folgenden Befehlen erfolgen:

OPEN! ,8,15, "Cs AUSG. Q@1=AUSG. 01, AUSG. 02, AUSG. OF"
CLOSE 1

Diese Methode des Mischens von Dateien kann bei Programmen

nicht angewendet werden. Hier kann nur ein Programm innerhalb

der Diskette kopiert werden. Der Name des neuen Files darf

nicht schon auf der Diskette enthalten sein.

Dieser COPY-Befehl findet selten Anwendung. Der Grund dafür

ist, daß das Kopieren eines Files auf dieselbe Diskette

eigentlich keinen Sinn hat. Die einzige sinnvolle Anwendung

dieses Befehls ist, mehrere sequentielle oder User-Files . zu
einem Gesamtfile zu verbinden.

Durchaus sinnvoll ist dagegen das Kopieren eines Files von

einer Diskette auf die andere. Zur optimalen Datensicherung

ist dies unerläßlich. Besitzen Sie zwei Laufwerke, so können

Sie, vorausgesetzt eine der beiden hat die Geräteadresse 7,

mit dem Programm COPY/ALL Files von dem einen auf dem anderen

Laufwerk kopieren. Dieses Programm befindet sich auf der

TEST/BEMO-Diskette.

Wir haben aber auch an diejenigen gedacht, die nur ein

Laufwerk besitzen. Dieser Kreis der Anwender kann mit den in

Kapitel 4.1 enthaltenen Dienstprogrammen einzelne Files, ja

sogar die gesamte Diskette kopieren.

16

1.3.8 INITIALIZE — Initialisieren der Diskette

Das DOS benötigt im Diskettenspeicher immer die aktuelle BAM

der im Laufwerk befindlichen Diskette. Die BAM ist der

Blockbelegungsplan einer Diskette. Sie kennzeichnet jeden

Block als frei oder belegt und wird bei jedem Befehl, der

Blöcke belegt oder freigibt aktualisiert. Wenn nun die

Diskette gewechselt wird, so erkennt das DOS diesen Vorgang

an der unterschiedlichen ID der Diskette. Sollte nun die neue

Diskette die gleiche ID haben wie die vorher im Laufwerk

befindliche Diskette, so nimmt das DOS den Diskettenwechsel

nicht war. Die noch im Speicher befindliche BAM der ersten

Diskette ist dann nicht mehr identisch mit der BAM der

nächsten Diskette. Befehle, die nicht vor Ausführung die BAM

in den Speicher lesen (z.B. alle Direktzugriffs-Befehle)?

benutzen die im Diskettenspeicher befindliche (falsche!) BAM

zur Lokalisierung der belegten bzw. nicht belegten Blöcke.

Deshalb sollte beim Formatieren der Diskette die ID immer

unterschiedlich sein. Es ist also nicht sinnvoll jeder

Diskette die gleiche ID zu geben. Mit dem Befehl ‘INITIALIZE’

kann die BAM "von Hand" in den Diskettenspeicher übertragen

werden. Dieser Befehl hat folgendes Format:

FRINT#1fn,„"INITIALIZE"

oder abgekürzt

PRINT #1fn,"1"

Beispiel:

OPEN 1,8,15, "1"
CLOSE 1

Sollten Sie also für sich selbst oder für andere Programme

erstellen, die Datenspeicherung und Diskettenwechsel

beinhalten, so empfehlen wir dringend, aus Sicherheitsgründen

in Ihrem Programm nach jedem Diskettenwechsel den

INITIALIZE-Befehl zu verwenden.

1.3.9 VALIDATE — "Aufräumen der Diskette

Der Befehl ‘VALIDATE’ gibt alle als belegt gekennzeichneten

Blöcke der Diskette, die nicht einem ordnungsgemäß

geschlossenen File zuzuordnen sind, wieder frei. Wenn Sie z.B

ein File mit ‘OPEN’ öffnen, Daten übertragen und dieses File

aber nicht wieder mit ‘CLOSE’ schließen, so wird es beim

“VALIDATE’ wieder gelöscht. Oder aber Sie arbeiteten mit

Direkt-Zugriffs-Befehlen auf der Diskette, beschreiben also

Blöcke oder kennzeichnen sie als belegt. Diese Blöcke sind

dann keinem File zugeordnet und werden durch diesen Befehl

wieder freigegeben.

Der Befehl hat auch noch eine weitere Funktion: Wenn ein File

17

mit “SCRATCH" gelöscht wird, so wird nur der Filetyp im

ersten Byte des Fileeintrags auf "0" gesetzt. Es erscheint

somit nicht mehr in der Directory. Wenn Sie nun dieses Byte

wieder gemäß dem alten Filetyp erneuern, was entweder mit dem

in diesem Buch enthaltenen DOS-Monitor, oder aber auch mit

Direkt-Zugriffs-Befehlen durchgeführt werden kann, 50

regeneriert ein anschlieBender ‘VALIDATE’ dieses File. Es ist

also wieder im alten Zustand auf der Diskette enthalten.

Der Befehl hat folgendes Format:

PRINT#1 4n, "VALIDATE"

oder in der Kurzform

PRINT#1fn,"V"

Ein Beispiel:

OPEN 1,8,15,"V"

CLOSE i

Sollte Sie einmal eine Diskette besitzen, bei der die

aufaddierten Filelängen in Blöcken nicht plus den angegebenen

freien Blöcken nicht der Gesamtblockzahl der Diskette (664)

entspricht, so stellt der VALIDATE-Befehl wieder den alten

Zustannd her.

Ein weiteres Beispiel: Wenn Sie ein Programm oder eine Datei

speichern wollen, daß den freien Diskettenspeicher

überschreitet, so meldet das DOS den Fehler "DISK FULL". Wenn

die Diskette auch vorher noch einige freie Blöcke aufwies, so

ist die Anzahl der freien Blocke nun Null. Mit dem

VALIDATE-Befehl werden nun diese, ursprünglich freien Blöcke

wieder freigegeben.

1.3.10 ? * - Der "Joker"

Es gibt zwei Jokerzeichen: Den Stern (*) und das Fragezeichen

(?}. Der Stern an einer bestimmten Stelle des Filenamens

symbolisiert, daß das erste File auf der Diskette relevant

ist, das mit den Zeichen vor dem Stern beginnt. Ein Beispiel:

LOAD "TEST#",B

Dieser Befehl lädt das erste Programm, dessen ersten vier

Buchstaben "TEST" beinhalten. Der Befehl

LOAD "*",8

lädt das erste Programm der Diskette, da kein Zeichen vor dem

Stern angegeben ist. Der Stern in einem SCRATCH-Befehl hat

eine andere Funktion. Hier wird nicht das erste File
gelöscht, sondern ALLE. Z.B. löscht der Befehl

DPEN1,8,15,"S:TEST#"

CLOSE 1

18

alle Files, die mit den Buchstaben "TEST" beginnen. Dies ist

unbedingt zu beachten! Auch das Laden der Directory kann mit

dem Stern selektiert erfolgen. Ein beispiel:

LOAD "$Ax",B

lädt nur das Directory mit den Files, die mit dem Buchstaben

"AN beginnen.

Das DOS bietet eine weitere Einsatzmöglichkeit des Sterns,

die in keiner bisherigen Anleitung zu ersehen ist: Es können

auch Filetypen selektiert werden, wenn nach dem Stern ein

Gleichheitszeichen mit anschließendem ersten Buchstaben des

gewünschten Filetyps angegeben wird. Hier eine übersicht:

*=5 selektiert nur sequentielle Files

*=P selektiert Frogrammfiles

*=R selektiert relative Files

*=U selektiert User-Files

Geben Sie z.B.

LOAD "£x=P"

ein, so werden nur die Programme auf der Diskette in das

Directory übernommen und anschließend mit ‘LIST’ ausgegeben.

Auch können mit dem SCRATCH-Befehl z.E. alle sequentiellen

Files auf der Diskette mit folgendem Befehl gelöscht werden:

OPEN 1,8,15,"S:#=5"
CLOSE 1

Natürlich kann vor diesem Stern auch noch eine Zeichenfolge

angegeben werden, sodaß dann nur die sequnetiellen Files

gelöscht werden, deren Namen mit dieser Zeichenfolge

beginnen.

Mit dem Fragezeichen können im Filenamen Buchstaben an

beliebigen Stellen als "nicht relevant" gekennzeichnet

werden. Um die Funktion des Fragezeichens zu erläutern,

folgen nun zwei Beispiele von abgekürzten Filenamen und ihren

Auswirkungen:

ATFFT? - fünfstellige Filenamen, deren erster Buch-

stabe "A" ist, sind angesprochen

????TEST - achtstellige Filenamen, deren letzen vier

Buchstaben "TEST" beinhalten, sind ange-

sprochen

Eine Kombination von Stern und Fragezeichen ist erlaubt.

Jedoch sollte beachtet werden, daß nach dem Stern weder

Buchstaben, noch Fragezeichen folgen, da diese Kombinationen

keinen Sinn ergeben. Zwei Beispiele zur Kombination von Stern

und Fragezeichen: |

7777,% - alle Filenamen, die vor dem Punkt vier Buch-

staben besitzen, sind angesprochen

19

TEST. ??%*

TEST-??01*=5

alle mindestens 7-stellige Filenamen, deren

ersten fünf Zeichen "TEST." beinhalten, sind

angesprochen.

alle mindestens 9-stelligen, sequentiellen

Files, deren Namen in den ersten 5 Stellen

"TEST-" und in den Stellen 6 bis 7 "61" ent-

halten, sind angesprochen

20

1.4 Sequentielle Datenspeicherung

Ein Diskettenlaufwerk sollte nicht ausschließlich zur

Frogrammspeicherung genutzt werden. Spätestens dann, wenn Sie

eigene Programme schreiben, die eine große Datenmenge zu

verwalten haben, werden Sie eine schnelle Datenorganisation

benötigen. Die sequentielle Datenspeicherung ist zwar nicht

die schnellste, aber die einfachste Methode, Daten zu

verwalten, was gerade für Anfänger wichtig sein dürfte. Diese

Datenorganisation ist vergleichbar mit der sequentiellen

Datenspeicherung auf Kassette, die ebenfalls in dieser

logischen Reihenfolge in ein Programm integriert wird:

1. Laden des Programms

2. Laden der kompletten Daten in den Speicher des Rechners

3. Verwalten der Daten im Speicher (ändern, löschen, hinzu-

fügen? |

4. Speichern der aktuellen Daten auf einem externen Spei-

chermedium (Kassette, Diskette)

3. Verlassen des Frogramms

Es ist selbstverständlich, daß die maximale Datenmenge von

der Größe des Speichers im Rechner abhängig ist, da ein

Datensatz in einer sequentiellen Datei nicht direkt auf der

Diskette oder Kassette geändert oder gelöscht werden kann.

Dazu muß die gesamte Datei eingelesen, geändert und wieder

abgespeichert werden. Das Laden und Speichern der Datei

geschieht bei Einsatz eines Diskettenlaufwerkes wesentlich

schneller als bei einem Kassettenlaufwerk. Dies ist der erste

Vorteil der Datenspeicherung mit Diskette.

Der zweite Vorteil ist, daß zum Anfiigen eines Datesatzes an

eine sequentiellen Diskettendatei nicht die gesamte Datei

eingelesen werden muß. Hierzu wird die Datei zum Anfiigen

(APPEND) geöffnet. Dies ist bei der Speicherung auf Kassette

nicht möglich.

Erwähnenswert ist noch, daß Programme, die bisher Daten

sequentiell auf Kassette verwalteten, auf einfache Art und

Weise an Diskettenspeicherung angepasst werden können. Hierzu

müssen nur die entsprechenden OPEN-Befehle geändert werden.

1.4.1 Das Prinzip

Eine sequentielle Datei besteht aus mehreren Datensätzen, die

wiederum in Felder aufgeteilt sind. Am Beispiel einer

Adressen-Datei ist dies leicht zu verdeutlichen: Die

einzelnen Adressen stellen die Datensätze dieser Datei dar.

Ein Adressen-Satz besteht aus mehreren Felder (Name, Vorname,

21

usw). Die Struktur einer Datei läßt sich etwa so darstellen:

FELD 1 = FELD 2 : FELD 3 : FELD 1 = FELD 2 : FELD 3 =:

DATENSATZ 1 : DATENSATZ 2 Sows

DATEI

Die Datensätze einer Datei sind wie die Felder innerhalb

dieses Datensatzes hintereinander (sequentiell) angeordnet.

Die Felder und somit auch die Datensätze dürfen

unterschiedlich lang sein. So kann z.B. das Feld i des
Datensatzes 1 länger sein als das Feld i des Datensatzes 2.

Dies ist möglich, da die Felder voneinander durch ein Zeichen

(RETURN) getrennt werden, die von dem FRINT-Befehl erzeugt

und von dem INPUT-Befehl erkannt werden. Jedem Feld ist eine

Variable zugeordnet, die mit einem FRINT-Befehl geschrieben

und mit einem INPUT-Befehl eingelesen wird. Es besteht aber

auch die Möglichkeit mit einem Befehl einen ganzen Datensatz

zu lesen oder schreiben. Da setzt aber voraus, das alle

Datensätze die gleiche Länge haben, da innerhalb des

Programms diese Datensätze mit Hilfe von speziellen Befehlen

in Felder zerlegt werden müssen. Dazu muß dem Programm die

genaue Position jedes Feldes im Datensatz bekannt sein.

Doch wie erkennt der Rechner beim Einlesen der Daten, wann

ein Feld bzw. Datensatz beendet ist? Dazu wird hinter jedem

Feld der Datei ein ’RETURN’ gesetzt, das die einzelnen Felder

voneinander trennt. Dieses “RETURN hat im ASCII-Code den

dezimalen Wert 13. Am Beispiel einer Telefon-Datei wird dies

sichtbar: Unsere Telefon-Datei soll aus 3 Feldern bestehen:

FELD 1 : NAME

FELD 2 : VORNAME

FELD 3 : TELEFONNUMMER

Schauen wir uns einen Ausschnitt aus dieser bereits

beschriebenen Datei nun an (das Zeichen ‘+’ symbolisiert ein

“RETURN ’) s

Zeichen: 1111111111222222222233323337 3344444444445
123456786901 2345678901 2345678901 2345678901234567890

Datei: KUNZE+HANS+236+KURZ+TIM+1213+SCHULZE+UTE+65432+....

Es ist zu erkennen, daß die Felder ungleich lang sind und

jeweils durch ein ‘RETURN’ getrennt sind. Dieses ‘RETURN’

wird bei der Übertragung mit einem PRINT-Befehl jeweils

hinter den Daten gesetzt, sofern diesem FRINT-Befehl kein

Semikolon, das ein ‘RETURN’ unterdrückt, folgt. Mit einem

INPUT-Befehl werden diese Daten dann in eine Variable

übernommen und zwar bis zum ‘RETURN’. Danach muß ein weiterer

INPUT-Befehl folgen, um das nächste Feld zu lesen, usw. Die
folgenden Abschnitte erläutern alles, was zur Erstellung von

22

Frogrammen mit sequentieller Datenspeicherung erforderlich

ist.

1.4.2 Das Eröffnen einer sequentiellen Datei

Um eine Datei zu erstellen, muß sie vorher geöffnet werden.

Beim öffnen zum Beschreiben wird Folgendes durchgeführt:

1. Es wird geprüft, ob auf der Diskette bereits ein File mit

diesem Namen existiert. Wenn ja, wird die Fehlermeldung

"FILE EXISTS" ausgegegeben.

bd

- Der entsprechende Fileeintrag in der Directory wird

angelegt. Dabei wird im Filetyp gekennzeichnet, daß dieses

File noch nicht geschlossen ist, was dann in der

aufgelisteten Directory durch einen Stern vor dem Filetyp

ersichtlich ist.

3. Es wird ein ein freier Block gesucht, auf dem die ersten

Daten gespeichert werden. Die Adresse (Spur und Sektor)

wird im Fileeintrag gespeichert.

4. Die Anzahl der Blocks im File wird auf O gesetzt, da nach

kein Block dieses Files beschrieben ist.

Nach dem Erstellen der Datei kann diese dann geändert oder

erweitert werden. Im OPEN-Befehl wird festgelegt, zu welchem

Zweck die Datei geöffnet werden soll. Das Format des

OPEN-Befehls sieht folgendermaßen aus:

OPEN 1fn,8,sa,"filename,filetyp,modus"

Die logische Filenummer liegt zwischen 1 und 127, wenn nach

einem PRINT-Befehl auf dieses File nur ‘RETURN’ gesendet

werden soll. Dies wird in der Regel der Fall sein. Ist die

logische Filenummer größer als 127 (128-255), so sendet der

PRINT-Befehl nach jedem ‘RETURN’ noch einen ‘LINE-FEED’

(Zeilenvorschub). Dies ist zum Beispiel bei Druckern

notwendig, die nach einem ‘RETURN’ keinen automatischen

Zeilenvorschub geben.

Die Sekundäradresse kann einen Wert zwischen 2 und 14

annehmen und für Ein- und Ausgaben verwendet werden. Sie

bezeichnet den Kanal des Floppy-Laufwerkes, über den die

Daten übertragen werden sollen. Die Sekundäradresse 90 und 1

ist vom Betriebssystem zum. Speichern und Laden von

Programmmen reserviert. Sekundäradresse 15 ist für den

Befehls-und Fehlerkanal bestimmt. Sollten mehrere Dateien

gleichzeitig geöffnet sein, so muß neben der logischen

Filenummer unbedingt die Sekundäradresse unterschiedlich

sein, da immer nur ein Kanal für eine Datei zuständig sein

kann. Wird jedoch eine Datei mit der Sekundäradresse

geöffnet, mit der vorher bereits eine Datei geöffnet wurde,

so wird die erste Datei geschlossen.

Was oft mißachtet wird, ist die Tatsache, daß maximal 3

IN

tA

Kanäle mit jeweils einer Datei geöffnet werden können. Zu

Verwaltung von relativen Dateien benötigt das DOS jedoch 2

Kanäle gleichzeitig. Demnach sind folgende

Maximalkombinationen möglich:

- 1 relative und 1 sequentielle Datei

- 3 sequentielle Dateien

Bei der Angabe des Filenamens ist darauf zu achten, daß

dieser Filename nicht bereits auf der Diskette existiert.

Soll eine Datei zum Schreiben geöffnet werden, die bereits

auf der Diskette existiert, so muß wie bei dem Befehl "SAVE ’

dem Filenamen der Klammeraffe mit dem anschließendemm

Doppelpunkte vorangestellt werden!. Z.B.

OPEN 1,8,2, "3: ADRESSEN,S,W"

Bei der Eröffnung der Datei muß der Filetyp angegeben werden.

Diese Filetypen werden im OPEN-Befehl wie folgt angekürzt:

S - sequentielles File

U - User-File

F- Programmfile

R - relatives File

User-Files sind sequentielle Files, die jedoch in der

Directory als USR-File ausgewiesen werden. Es sind keine

Dateien im eigentlichen Sinne. Dieser Filetyp wird gerne

benutzt, wenn Ausgaben, die normalerweise auf dem Bildschirm

erfolgen (BASIC-Listing, Directory) zur Floppy "umgeleitet"

werden. Im Kapitel 1.4.6 finden Sie eine Beschreibung dieser

Methode.

Der letzte Parameter (modus) legt fest, wie der Datenkanal

genutzt werden soll. Es gibt vier Möglichkeiten:

W- Schreiben einer Datei (WRITE —- Kapitel 1.4.3}
R - Lesen einer Datei (READ - Kapitel 1.4.4)

A - verlängern einer sequentiellen Datei

(APPEND — Kapitel 1.4.4)

M — Lesen einer nicht geschlossenen Datei

(wurde von uns im DOS-Listing "entdeckt" und

wird im Kapitel 1.4.5 erläutert)

öffnen Sie nun einmal eine sequentielle Datei mit dem Namen

"SEQU.TEST" zum Schreiben:

OFEN 1,8,2,"SEQU.TEST,S,W"

Wenn Sie anschließend mit ‘LOAD "#",8° das Directory laden

und mit ‘LIST’ ausgeben, werden Sie feststellen, daß dieses

File mit einem Stern vor dem Filetypen als geöffnet

gekennzeichnet ist:

0 SEQU. TEST *#SEQ

24

Diese Datei läßt sich nun aber nicht mehr schließen! Bevor

also nach dem Eröffnen und Beschreiben einer Datei das

Directory geladen wird, muß unbedingt das File geaschlossen

werden!

während eine Datei geöffnet ist, darf zwar der

Befehis/Fehlerkanal 15 geöffnet werden, jedoch hat das

Schließen des Kanals 15 zur Folge, daß alle anderen Files

auch geschlossen werden. Dies sollten Sie unbedingt
beachten.

Nun einige Beispiele zum OPEN-Befehl:

OPEN 1,8,2,"SEQU.TEST,S,R" - ein sequentielles File wird

zum Lesen geöffnet

OPEN 2,8,3,"SEQU. TEST,U,W" - ein User-File wird zum

schreiben geöffnet

OPEN 3,8,4,"TEST,P,R" - ein Program-File wird zum

lesen geöffnet

OPEN 4,8,5,"SEQU.TEST,S,A" - ein sequentielles File wird

zum Anfügen von Daten ge-

öffnet

OPEN 5,„8,6, "KUNDEN. 1983,5,M" - Die Kundendatei wurde nicht

ordnungsgemäß geschlossen

und soll gelesen werden.

1.4.3 Datenübertragung Floppy/Rechner

Nach dem Eröffnen eines Files zum Schreiben können die darin

zu speichernden Daten an die Floppy mit dem PRINT-Befehl

übermittelt werden. Dieser Befehl überträgt zusätzlich ein

‘RETURN’, das zum Trennen der Daten benötigt wird. Im
folgenden Beispiel wird eine Datei eröffnet, beschrieben und

wieder geschlossen. Da der PRINT-Befehl auch direkt, d.h.

außerhalb eines Frogramms eingegeben werden kann, lassen sich

die entsprechenden Befehle hintereinander absetzen und

ausführen. Eröffnen Sie nun ein File mit dem Namen "TEST.1":

OPEN 1,8,2,"TEST.1,5,W"

Sie werden bemerkt haben, daß die rote Leuchtdiode an dem

Floppy-Laufwerk aufleuchtet. Sie signalisiert, daß ein File

geöffnet ist. Die Datei kann nun beschrieben werden. Hier

wird z.B. ein Datensatz einer Adressendatei, bestehend aus 4

Feldern erstellt:

PRINT#1, "HANS"
PRINT#1 , "SCHULTZ"
PRINT#1,"KASTANIENSTR. 7"
PRINT#1,"4000 DUSSELDORF"

Nun sind diese Daten in die Datei aufgenommen worden, und das

File kann wieder mit ‘CLOSE 1° geschlossen werden. Die rote

Leuchtdiode ist gleichzeitig erloschen. Um diese Daten nun

wieder zu lesen, muß die Datei im Lese-Modus (R) eröffnet

werden. Da der INPUT-Befehl zum Einlesen der Daten nicht

direkt eingegeben werden kann, muß ein kleines Programm

geschrieben werden:

10 OPEN 1,8,2,"TEST.1,5,R"
20 INPUT#1,VN¢
30 INPUT#1,NN$
40 INPUT#1,ST$
SO INPUT#1,OR$
60 CLOSE 1
70 PRINT"VORNAME: "3 VN¢
G0 PRINT"NAME: "> NN¢
90 PRINT"STRASSE: “;ST#
100 PRINT"PLZ/ORT: ";OR$

Das Programm ist einfach zu erklären:

Zeile 10 Die Datei "TEST.1" wird zum Lesen geöffnet

Zeile 20-50 Die Daten werden in der selben Reihenfolge

eingelesen, in der sie vorher geschrieben

wurden. Es werden dazu Variablen genutzt, die

nachher zum Ausgeben der Daten benötigt wer-

den.

Zeile 40 Die Datei wird wieder geschlossen.

Zeile 70-100 Die Daten werden mit entsprechendem Begleit-

text auf dem Bildschirm ausgegeben.

Wenn Sie diese Befehlsfolge eingegeben und mit "RUN’

gestartet haben, erscheinen die Daten, die vorher in die

Datei geschrieben wurden, nun auf dem Bildschirm:

VORNAME: HANS
NAME: SCHULTZ
STRASSE: KASTANIENSTR. 7
PLZ/ORT: 4000 DÜSSELDORF

Zum Einlesen der Daten wurden 4 INPUT-Befehle eingesetzt, da

eine Adresse aus 4 Feldern besteht. Wenn aber z.B. eine Datei

gespeichert werden soll, deren Datensätze aus ca. 20 Feldern

bestehen, so ist es sehr aufwendig, zum Einlesen 20

INPUT-Befehle ins Program aufzunehmen. Durch Programmieren

einer Schleife kann dies wesentlich vereinfacht werden. Am

Beispiel unseres kleinen Programms ist dies ersichtlich:

10 OPEN 1,8,2,"TEST.1,5,R"
20 FOR I=1 TO 4
30 INPUT#1,D$(I)
40 NEXT I
0 CLOSE 1
&0 PRINT"VORNAME: ";D#(1)
70 PRINT"NAME: "3; DS (2)
80 PRINT"STRASSE: ";D#(3)
90 PRINT"PLZ/ORT: ";D#(4)

26

Hier wurden nicht 4 Stringvariablen, sondern eine indizierte

Variable mit dem Index 1-4 benutzt. Es ist zu beachten, daß

der Index beim BASIC 2.0 höchstens 10 betragen darf, wenn er

nicht mit einer DIM-Anweisung höher definiert wurde. Soll in

unserem Beispiel ein Datensatz mit 20 Felder eingelesen

werden, so muß vorher die Anweisung ’DIM D#(20)"° gegeben

werden.

Es gibt noch eine weitere Möglichkeit der verkürzten Ein- und

Ausgabe von Daten: Mit dem INPUT-Befehl zur Dateneingabe von
Tastatur können mehrere Variablen, die durch ein Komma

getrennt sind, eingegeben werden. Z.B:

INPUT VN$,NNF,TE

Bei diesem Befehl müssen drei Variablen z.B. folgendermaßen

eingegeben werden:

NORBERT „MüLLER, 7445

Die eingelesenen Daten werden dann mit

PRINT VN#,NN#, TE

wieder auf dem Bildschirm ausgegeben werden. Auf diese Weise

können auch Daten in eine sequentielle Datei geschrieben und

auch wieder eingelesen werden. Der einzige Unterschied ist,

caf beim Schreiben in eine Datei Stringvariablen durch ein in

Hochkomma eingeschlossenes Komma getrennt werden müssen. Wenn

z.B. die o.g. Variablen in eine Datei geschrieben werden

sollen, muß der FRINT-Befehl folgendermaßen geändert werden:

PRINT#1 , VN@" , "NN#", "TE

Numerische Varialen werden nur mit dem Komma von anderen

Variablen getrennt. Zum Einlesen der Daten wird dann der

Befehl

INPUT#1,VN$,NN$, TE

eingesetzt. Da die maximal einzugebene Zeichenzahl mit einem

INPUT-Befehl 88 nicht überschreiten darf, ist diese

Schreibweise nur begrenzt einsatzfähig. Sollte ein Feld in

einem Datensatz länger als 88 Zeichen sein, so muß ein

anderer Eefehl zum Einlesen benutzt werden. Dies ist der

GET-Befehl, der jedes Zeichen einzeln einliest. Angenommen

Sie möchten einen Datensatz lesen, der aus einem Feld mit der

Länge von 100 Zeichen besteht. Dieser Satz kann dann mit

folgender Routine in eine Stringvariable übernommen werden:

10 OPEN 1,8,-.... eee ween eee
20 Dg=""
30 FOR I=1 TO 100
40 GET#1,X#
50 D$=D$+X$
&0 NEXT I

27

70 GET#1,X$
80 CLOSE 1

Nach Ablauf dieser Befehlsfolge enthält die Stringvariable

den 100 Zeichen umfassenden Datensatz. Nach dem öffnen einer

sequentiellen Datei wird vom DOS ein Zeiger eingerichtet, der

immer auf das Zeichen zeigt, das hinter den bisher gelesenen
Daten liegt. Da wir annehmen, daß der 100-Zeichen umfassende
Datensatz mit einem PRINT-Befehl ohne abschließendes

Semikolon in die Datei geschrieben wurde, wurde der Datensatz
mit einem RETURN abgeschlossen. Nach dem Lesen des 100.
Zeichens weist der Zeiger auf dieses RETURN. Der nächste
GET-Befehl in Zeile 70 ist also notwendig, um das ‘RETURN’,

das sich hinter dem Datensatz befindet, zu lesen. Dadurch

erhält der erste GET-Befehl zum Lesen des nächsten Satzes

wieder das erste Zeichen und nicht das ’RETURN’.

In diesem Beispiel sind wir von einer konstanten

Datensatzlänge von 100 Zeichen ausgegangen. In der Regel ist

die Datensatzlänge einer sequentiellen Datei aber nicht

konstant. Derartge Dateien müssen also, falls die maximale

Datensatzlänge die INPUT-Grenze von 88 Zeichen überschreitet,

mit einer GET-Schleife gelesen werden, die das trennende

RETURN als Satzende erkennt. Eine derartige Routine sieht

dann so aus:

10 OPEN 1,Byauunnnnnunanunn unun
20 St= un

30 GET#1,X$
40 IF X#=CHR$(13) THEN 80
50 S#=S4+Xx¢
60 IF ST<>464 THEN 30
70 CLOSE1:END
80 PRINT S¥
90 GOTO 20

Hier wird eine Datei mit variabler Satzlänge gelesen und auf

dem Bildschirm ausgegeben. Anstatt der Ausgabe auf Bildschirm

können diese Datensätze natürlich auch anders verarbeitet

werden.

Wenn Sie diese Frobleme, die bei einer Datensatzlänge von

über 88 Zeichen auftreten, vermeiden wollen, so teilen Sie

den Datensatz in mehrere Teile auf, die Sie dann nach dem

Einlesen wieder zusammenfügen.

1.4.4 Anhängen von Datensätzen

Stellen Sie sich vor, Sie müßten zum Erweitern einer

sequentiellen Datei diese komplett in den Hauptspeicher

28

laden, erweitern und wieder in der erweiterten Form

abspeichern. Es wäre sicher sehr zeitraubend. Aus diesen

Grunde bietet das DOS eine komfortable Möglichkeit, einer

sequentieller Datei Daten anzuhängen, ohne die Datei vorher

einzulesen. Dies ermöglicht der Eröffnungsmodus ‘A’ (CAPPEND).

Wenn Sie also eine sequentielle Datei erstellt haben, wie

z.B. im vorherigem Abschnitt, so können Sie immer wieder

Daten anhängen, indem Sie im OPEN-Befehl den Modus ‘A’

angeben. Ein Beispiel:

Geben Sie folgende Befehlsfolge ein:

OPEN 1,8,2,"TEST.2,5,W"
PRINT#1,"1. DATENSATZ"
CLOSE1

Sie haben nun eine sequentielle Datei mit einem Datensatz

erstellt. Diese Datei soll nun mit folgender Befehlsfolge um

= Datensätze erweitert werden:

OPEN 1,8,2,"TEST.2,5,A"
PRINT#1,"2. DATENSATZ"
PRINT#1,"%. DATENSATZ"
CLOSE1

Nun enthält die Datei “TEST.2° 3 Datensätze. Mit dem

folgenden Programm können Sie dies überprüfen:

100 OPEN 1,8,2,"TEST.2,5,R"
110 FOR I=1 TO 3
120 INPUT#1,DS#
130 PRINTDS#$
140 CLOSE 1

Nach dem Starten dieses Programms werden die Datensätze

ausgelsen und auf dem Bildschirm angezeigt.

Sie haben erkannt, daß der Modus ‘A’ bei sequentieller

Datenorganisation eine schnelle Erweiterung der Datei

ermöglicht.

1.4.5 Schließen einer sequentiellen Datei

Mit dem CLOSE-Befehl werden geöffnete Dateien wieder

geschlossen. Dieser Befehl hat das Format

CLOSE 1fn

Der Farameter ‘lfn’ bezieht sich auf die logische Filenummer

der Datei, die bei dem entprechendem OPEN-Befehl angegeben

wurde. Sollen mehrere Dateien abgeschlosssn werden, so muß

für jede Datei ein CLOSE-Befehl abgesetzt werden. Mit dem

Schließen der letzten Datei erlischt die rote Leuchtdiode am

Laufwerk wieder.

Wie Ihnen bereits bekannt ist, werden die Daten über einen

Kanal zur Floppy gesendet. Dieser Kanal ist ein

29

floppyinterner Speicher (Puffer genannt), in dem die vom

Rechner übermittelten Daten zunächst zwischengespeichert

werden. Erst wenn dieser Puffer gefüllt ist, werden die darin

befindlichen Daten auf die Diskette geschrieben.

Beim Schließen der Datei werden die noch im Puffer

befindlichen Daten auf die Diskette geschrieben. Eine nicht

geschlossene Datei ist also nicht vollständig, und wird auch

vom Disketten-Betriebssystem als nicht ordnungsgemäß

geschlossenees File gekennzeichnet. Das DOS erlaubt nun im

Modus ’R’ (READ?) auf diese Datei keinen Lesezugriff mehr und

meldet "WRITE FILE OPEN".

Nun wäre es aber sehr ärgerlich, wenn das DOS keinen

Lesezugriff auf diese Datei zulassen würde. Aus diesem Grunde

bietet das DOS den Modus ’M'’. Eine in diesem Modus geöffnete

Datei, die als nicht oardnungsgemäß geschlossene Datei

gekennzeichnet ist, kann so gelesen werden. Sinnvoll ist es,

die gelesenen Datesätze in eine zweite Datei zu schreiben und

diese dann natürlich ordnungsgemäß zu schließen. Auf diese

Weise kann man Dateien "retten".

Das folgende Programm bietet die Möglichkeit, eine nicht

geschlossene Datei (Ursprungsdatei) in eine korrekt

geschlossene Datei (Zieldatei) zu übertragen:

100 INPUT"URSPRUNGSDATEI"; Ut
110 INPUT"ZIELDATEI";Z$
120 OPEN 1,8,2,U#+",S,M"
130 OPEN 2,8,3,Z#+",S,W"
140 INPUT#1, X*
150 PRINT#2,X$
160 IF ST<>64 THEN 140
170 CLOSE 1:CLOSE 2
180 OPEN 1,8,15,"S:"+u¢
170 CLOSE 1

Am Ende des Programms wird dann die nicht mehr benötigte

Ursprungsdatei gelöscht.

1.4.6 "Umleiten" der Bildschirmausgabe

Jede Ausgabe, die auf dem Bildschirm erfolgt (PRINT,LIST

usw.) kann als sequentielle Datei auf die Diskette umleitet

werden. Dies wird mit dem CMD-Befehl erreicht, der folgendes

Format hat:

CMD lfn

Dazu muß zuerst ein File eröffnet werden, das zur

Unterscheidung von sequentiellen Dateien den Filetyp "USR"

erhält. Soll z.B. das Listing eines BASIC-Programms als

sequentielles File auf Diskette gespeichert werden, so dient

dazu die folgende Befehlsfolge:

OPEN 1,8,2,"TEST.LIST,U,W"
CMD 1 |

30

LIST

CLOSE i

Der Befehl ‘CLOSE 1’ bewirkt gleichzeitig, daß die weitere

Ausgabe wieder auf dem Bildschirm erfolgt.

Das Speichern von Programmen als sequentielle Dateien auf

Diskette ist z.B. sehr nützlich, wenn man ein Programmlisting

mit einer Textverarbeitung lesen möchte, um es in Text mit
einzubauen. Voraussetzung ist, dafß die entsprechende
Textverarbeitung in der Lage ist, in ASCII-Code gespeicherte
Dateien zu lesen.

So sind übrigens die Listings in diesem Buch vom Commodore 64

der Textverarbeitung SUPERSCRIPT auf einem Commodore 80532

übergeben worden.

lim dieses File nun wieder auf dem Bildschirm auszugeben,

benötigen Sie die folgende Routine:

10 OPEN 1,8,2,"TEST.LIST,U,R"
20 GET$1,X$
30 PRINT X$;
40 IF ST<>64 THEN 20
50 CLOSE 1

Diese Routine ist eine Schleife, die jedes Zeichen (Byte) des

Files liest und auf dem Bildschirm ausgibt. Das Ende des File

wird an der Statusvariablen ST erkannt, die bei Fileende auf

64 gesetzt wird. Zur Ausgabe des sequentiellen Files ist

folgende Befehlsfolge erforderlich:

10 OPEN 1,8,2,"TEST.LIST,U,R"
20 OPEN 2,4
30 GET#1,X$
40 PRINT#2, X#
SO IF ST<>44 THEN 30
40 CLOSE 1

Hier wurde zusätzlich der Drucker geöffnet, der die

Geräteadresse 4 besitzt.

1.4.7 Sequentielle Datei als Tabelle im Rechner

Sequentielle Dateien müssen zur Datenverwaltung komplett im

Rechner vorhanden sein. Dazu wird meist eine zweidimensionale

Tabelle benutzt. Diese Tabelle nennt man auch Matrix, da

durch Angabe von zwei Koordinaten jedes beliebige Feld eines

Datensatzes adressiert werden kann. Dazu verwendet man eine

zweifach indizierte Variable, die mit einer DIM-Anweisung

reserviert werden muß. Der erste Index bezeichnet den

Datensatz, der zweite Index das Feld innerhalb dieses

Datensatzes. Das folgende Schaubild zeigt das Beispiel einer

Tabelle:

31

Feld 1 Feld 2 Feld 3

Datensatz 1 D#(1,1) D#(1,2) D£(1,3)

Datensatz 2 DE (2,1) D#(2,2) D# (2,3)

Datensatz 3 D#(3,1) D+(3,2) D¢ (3,3)

Datensatz 4 DF (4,1) D# (4,2) D# (4,3)

Datensatz 5 D#(5,1) DE(5,2) DE(5,3)

Datensatz 6 DE (6,1) DF (4,2) DS (6,3)

Diese Tabelle ist eine Datei, die aus 6 Datensatzen mit je 3

Feldern besteht. Als Variable wurde D#$ benutzt, die mit ‘DIM

D#(4&,3)° reseviert wird. Um eine sequentielle Datei als

Tabelle in den Rechner einzulesen, ist es erforderlich, eine

solche Datei mit z.B. & Datensätzen a’ 3 Feldern zu erzeugen.

Dazu benutzen Sie das folgende Frogramm:

100 OPEN 1,8,2,"TESTFILE.SEQ,S,W"
110 FOR X=1 TO &
120 PRINT CHR$ (147);
130 PRINT"DATENSATZ "5X
140 PRINT" "
150 FOR Y=1 TO 3
160 PRINT"FELD “sYs": "5
170 INPUT x¢
180 PRINT#1,X$
190 NEXT Y
200 NEXT X
210 CLOSE 1

Hier wird eine zweifach veschachtelte Schleife verwendet, mit

deren Variablen die Datensätze und -felder numeriert werden.

Geben Sie nun die 6 Datensätze ein. Nach Beendigung dieses

Programms befinden sich diese 6 Datensätze als sequentielle

Datei auf der Diskette. Ein Tip: Speichern Sie dieses

Programm mit ’SAVE"TEST.INP",8 ab, damit Sie es jedezeit
wieder laden können.

Diese Datei soll nun als Tabelle in den Rechner eingelesen

werden. Dazu dient ebenfalls eine zweifach veerschachtelte

Schleife, deren Variablen nun zur Indizierung der

Tabellenplätze benötigt werden:

100 OPEN 1,8,2,"TESTFILE.SEQ,S,R"
110 DIM D$(6,3)
120 FOR X=1 TO 4
130 FOR Y=1 TO 3
140 INPUT#1,D#(X,Y)
150 NEXT Y
160 NEXT X
180 CLOSE 1

32

Nach dieser Befehlsfolge befinden sich die Daten in der mit

Dt bezeichneten Tabelle. Mit einem FRINT-Befehl können Sie

nun überprüfen, ob die Daten an richtiger Stelle gespeichert

wurden. Da jedes Feld mit den Indizes adressierbar ist, geben

Sie z.B. "PRINT D#(1,2)° ein, um das 2. Feld des il.

Datensatzes auf dem Bildschirm anzuzeigen. Sinnvoll ist es

nun, die Felder eines ausgewählten Datensatzes anzeigen zu

lassen. Benutzen Sie dazu die folgende Routine, nachdem Sie

das vorherige Programm abgespeichert haben:

100 INPUT"NUMMER DES DATENSATZES: "5X

120 PRINT" "

120 PRINT"FELD 1: "sD#(X,1>

140 PRINT"FELD 2: ";D$(X,2)

150 PRINT"FELD 3: "3;D#(X,3)

Sie haben sicher erkannt, daß der erste Index (die

Satznummer) nach der Abfrage als Variable in jeder
Feldausgabe verwendet wird. Der zweite Index (die Feldnummer)

ist dann jeweils konstant.

Diese Tabelle kann nun beliebig geändert werden. Fügen Sie

dem 0.9. Programm die folgenden Zeilen an:

 160 PRINT" "
170 INPUT"ZU ANDERNDES FELD: "s¥
180 INPUT"NEUER INHALT: "3DE(X,Y)
190 PRINT"O.K."
200 PRINT"WEITERE ANDERUNGEN (J/N)?"
210 GET X$:IF X#=""THEN 210
220 IF X#="J"THEN 100
250 IF X#="N"THEN END
240 GOTO 210

Hier wird die Nummer des zu ändernden Feldes als zweiter

Index benutzt, der dann neben dem bereits ausgewählten Index

des Datensatzes zur Eingabe des neuen Tabellenplatzes

eingesetzt wird.

Diese geänderte Tabelle muß nun wieder auf die Diskette

gespeichert werden. Benutzen Sie dazu die folgende Routine.

Speichern Sie aber vorher die Anderungsroutine ab!

100 OPEN 1,8,2,"a: TESTFILE.SEQ,S,W"
110 FOR X=1 TO &
120 FOR Y=1 TO 3
130 PRINT#1,D$(X,Y)
140 NEXT Y

150 NEXT X

160 CLOSE 1

Auch diese Routine ist durch Anwendung einer zweifach

verschachtelten Schleife relativ kurz. Der sogenannte

Klammeraffe vor dem Filenamen ist notwendig, da das bereits

existierende, alte File überschrieben „werden soll.

Der Datenzugriff ist bei dieser Tabelle sehr schnell. Die

Zugriffszeit ist von der Tabellengröße unabhängig. Jedoch ist

die Größe der Tabelle und somit die Datenmenge abhängig von

33

der Speicherkapazität. Der große Speicher des Commodore 64

wird mit der Tabellenverarbeitung bestens ausgenutzt.

Angenommen, Sie haben ein Programm zur Verwaltung von

Adressen geschrieben, das vieleicht um die B KByte umfasst,

so verbleiben noch 30 Kbyte zur Speicherung der Adressen.

Wenn man bedenkt, daß zur Speicherung einer Adresse ca. £&0

Zeichen notwendig sind, so können Sie immerhin 384 Adressen

ständig im Speicher verwalten! Und das mit einer

Zugriffszeit, die selbst bei der raffiniertesten

Dateiorganisation Cindexsequentiell, relativ) nicht zu

übertreffen ist. Bei großen Datenmengen ist die sequentielle

Speicherung jedoch nicht mehr anwendbar.

1.4.8 Suchen in der Tabelle

Wie bei der Tabellenverarbeitung erwähnt, kann jeder

Datensatz einer Tabelle indiziert werden. Da die Tabelle

zweidimensional ist, stellt der erste Index die Nummer des

Datensatzes dar, nit der jeder beliebige Satz adressiert und

ausgegeben werden kann. Wenn in einer als Tabelle im

Hauptspeicher geladenen Datei ein Satz manipuliert werden

soll, so setzt das voraus, daß der Anwender die Nummer dieses

Satzes kennt. Diese Nummer kann im einfachsten Fall z.B. die

Artikel- oder Kundennummer sein. Es gibt aber auch Dateien,

die kein geeignetes Feld zur Durchnumerierung der Daten

enthalten. In derartigen Dateien muß der gewünschte Datensatz

in der Tabelle gesucht werden. Dazu müssen alle Datensätze

der Tabelle durchsucht, und mit dem als Suchbegriff

eingegebenen Feld verglichen werden. Ein praktisches Beispiel

dazu:

Erstellen Sie zuerst mit folgendem Programm eine Datei, die

zum Beispiel Namen und Telefonnummern speichert:

100 OPEN 1,8,2,"TELEDAT,S,W"
110 PRINT CHR$(147)
120 INPUT "NAME :"sNN€
130 INPUT "VORNAME :"3;VN¢
140 INPUT "VORWAHL :"sVW¢
150 INFUT "NUMMER = :"sNU¢
160 PRINT "EINGABE KORREKT (J/N}?"
170 GET X$: IF X#=""OR X# <>"J" AND X$<>"N" THEN 170
180 IF X#="N"THEN110
190 PRINT"WEITERE EINGABEN (J/N)?"
200 GET X$: IF X#=""OR X#<>"J" AND X$ <>"N" THEN 200
210 IF X#="N"THEN 240
220 PRINT#1,NN$" "UNE" "UWE" NUS
230 GOTO 110
240 CLOSE 1

Die Dokumentation des Programms:

Zeile 100 Die sequentielle Datei "TELEDAT" wird zum

54

Schreiben geöffnet

Zeile 110 Der Bildschirm wird gelöscht

Zeile 120-150 Die 4 Felder der Datei werden von Tastatur

eingegeben

Zeile 140-180 Falls die Daten nicht korrekt eingegeben
wurden, kann die Eingabe wiederholt werden

Zeile 190-210 Hier kann die Eingabe und das Programm

beendet werden

Zeile 220 Die 4 Felder des Datensatzes werden hin-

tereinander in die Datei geschrieben

Zeile 230 Die Eingabe wird fortgesetzt

Zeile 240 Die in Zeile 100 geöffnete Datei wird ge-

schlossen

Geben Sie nun dieses Programm ein, starten es und erfassen

einige Daten. Speichern Sie dieses Testprogramm auf Diskette,

wenn Sie es später einmal zusammen mit den folgenden

Beispielen zu einem Programm zusammenfassen möchten. Im

letzten Abscchnitt dieses Kapitels finden Sie jedoch das

komplette Programm zur Verwaltung Ihres Telefonregisters.

Wenn Sie nun einige Daten erfasst haben, möchten Sie

vieleicht die ein oder andere Telefonnummer ausfindig machen.

Dazu können Sie u.U. die gesamte Datei auf Bildschirm oder

Drucker ausgeben und die entsprechende Telefonnummer

heraussuchen. Dies ist jedoch eine aufwendige Methode,

besonders dann, wenn die Datei viele Datensätze umfasst.

Die Suche nach der Telefonnummer eines bestimmten Namens kann

man dem Rechner überlassen. Er durchläuft in einer Schleife

die Datensätze und vergleicht sie mit dem gewünschten Namen.

Danach gibt er dann den gesamten Datensatz, in dem dieser

Name enthalten ist, aus. Die folgende Routine arbeitet

dementsprechend:

100 OPEN 1,8,2,"TELEDAT,S,R"
110 DIM D$(100,4) :X=1
120 INPUT#1,D#(X,1) ,D#(X,2) ,D€(X,3) ,D#(X,4)
130 IF ST<>64 THEN X=X+1:GOTO 120
140 CLOSE 1
150 PRINT CHR*#(147)
160 PRINT"GESUCHTER NAME: ";S¢
170 FOR I=1 TO x
180 IF D$(I,1)=S$ THEN 210
190 NEXT I
200 PRINT "NAME NICHT GEFUNDEN! ":GOTO 280
210 PRINT "NAME GEFUNDEN: "
 220 PRINT "

230 PRINT "NAME: "sDE(I,1)
240 PRINT "VORNAME: "sDE(I,2)
250 PRINT "VORWAHL: ";DE(1,3)

35

260 PRINT "NUMMER: "3D#(1I,4)
270 PRINT " “
280 PRINT "WEITER (J/N)>?"
290 GET X$: IFX$=""OR X#< >"J"AND X$<>"N" THEN 290
300 IF X#="J"THEN 150
310 PRINT"PROGRAMM BEENDET":END

Die Dokumentation zu dem Programm:

Zeile 100 Die sequentielle Datei "TELEDAT" wird zum

Lesen geöffnet

Zeile 110 Die Tabelle wird für 100 Datensätze dimen-

sioniert und der Index auf 1 gesetzt

Zeile 120 Die Datensätze werden in die Tabelle ein-

gelesen

Zeile 130 Die Statusvariable ST, die bei Dateiende

64 enthält wird geprüft. Liegt kein Datei-

ende vor, so wird der Index um 1 erhöht

und erneut eingelesen

Zeile 140 Die in Zeile 100 geöffnete Datei wird ge-

schlossen

Zeile 150 Der Bildschirm wird gelöscht

Zeile 140 Der zu suchende Name wird von Tastatur

eingelesen und in die Variable S# gespei-

chert

Zeile 170-190 Die Schleife sucht in der Tabelle den Da-

tensatz, dessen Namensfeld mit dem gesuch-

ten Namen übereinstimmt. Ist der Satz ge-

funden, so wird zur Ausgaberoutine ver-

zweigt.

Zeile Z00 Der Name wurde nicht gefunden.

Zeile 210-270 Der Satz, der den gesuchten Namen enthält,

wird komplett ausgegeben

Zeile 280-310 Es wird die Möglichkeit eingeräumt, erneut

einen Namen zu suchen

Sie werden feststellen, daß dieser Suchvorgang selbst bei

einer größeren datenmenge recht schnell ist, da die Datei vor

dem Suchen als Tabelle in den Rechner geladen wurde. Das

Suchen innerhalb des Speichers im Rechner ist schneller, als

die Suche auf der Diskette, wenn die Datei sich im Speicher

befindet. Das Programm 1a8t sich leicht derartig abändern,

daß nicht nur nach dem Namen, sondern nach einem beliebigen

anderen Feld gesucht wird. Vieleicht versuchen Sie es einmal,

eine Telefonnummer zu suchen.

Das eben behandelte Frogramm bricht die Suche nach dem ersten

Datensatz, der dem Suchbegriff entspricht, ab. Das ist aber

nicht immer sinnvoll. Wenn z.E. in der erstellten

Telefondatei alle Datensätze gesucht und ausgegeben werden

sollen, die einer bestimmten Vorwahl entsprechen, so ist eine

andere Routine notwendig. Diese Routine muß nach dem

Auffinden eines Datensatzes diesen ausgeben und die Suche

fortsetzen. Das folgende Programm erfüllt diese

Anforderungen:

100 OPEN 1,8,2,"TELEDAT,S,R"
110 DIM D$(100,4) :X=1
120 INPUT#1,D€(X,1) ,D#(X,2) ,D#(X, 7) „DE (X,4)
130 IF ST<>64 THEN X=X+1:60T0 120
140 CLOSE 1
150 PRINT CHR$(147)
160 PRINT"GESUCHTE VORWAHL: "55%
170 FOR I=1 TO X
180 IF D$(I,3)=S$THEN 210

190 NEXT I
200 PRINT"DATEIENDE!":GOTO 270
210 PRINT" u
220 PRINT"NAME: "»D$(I,1)
230 PRINT"VORNAME: "»D$(1,2)
240 PRINT"VORWAHL: "sD$(1,3)
250 PRINT "NUMMER: "»D£(1,4)
260 PRINT" u
270 PRINT"WEITER {J/N}I”?"
280 GETX#: IFX#=""OR X#<>"I"AND X#<>"N"° THEN 280
290 IF X#="J"THEN 190
300 PRINT"SUCHE ABGEBROCHEN! ":END

Hier wird die Suche fortgesetzt, wenn ein Datensatz mit der

entsprechenden Vorwahl gefunden wurde. Dies bewirkt die Zeile

290, die das Programm nicht beendet, sondern die Schleife

fortsetzt. Erst nach Durchsuchen aller Datensätze meldet das

Programm "Dateiende". Wenn Sie den Ablauf dieses Programms

vestanden haben, so entwickeln Sie vieleicht einmal eine

Suche nach dem Vornamen! Sicher wird es Ihnen mit

Zuhilfenahme der o.g. Befehlsfolge keine Schwierigkeiten

bereiten.

1.4.9 Einfaches Sortieren der Tabelle

In der Datenverarbeitung ist es oft erforderlich Daten sowohl

in numerischer als auch in alphanumerischer Form zu

sortieren. Dies war schon immer ein rechenzeitintensiver

Vorgang, den Frogrammierer durch immer wieder vebesserten

Sortiermethoden zu verkürzen nußten. Doch gerade in

Verbindung mit der Programmiersprache BASIC, die in der Form

eines Interpreters doch relativ langsan ist, ist das

Sortieren sehr zeitaufwendig.

Warum werden Daten eigentlich sortiert”? Stellen Sie sich ein

Telefonbuch vor, in dem die Namen völlig ungeordnet enthalten

37

sind. Sie müßten dann von Anfang bis Ende das Telefonbuch

durchsuchen, um einen bestimmten Namen zu finden. Die

Sortierung bietet also Vorteile beim Aufsuchen von Daten

innerhalb einer Datenmenge. Auch der Computer kann wesentlich

schneller in einer sortierten Datei suchen.

Es gibt mehrere Sortiermethoden, die sich hauptsächlich in

der Geschwindigkeit unterscheiden. Die einfachste

Sortiermethode ist die Methode des Vergleichens eines

Tabellenplatzes mit jedem anderen. Soll eine Tabelle

aufsteigend sortiert werden, so wird der erste Tabellenplatz

mit dem zweiten verglichen. Ist der erste größer, so wird er

mit dem zweiten vertauscht. Danach wird der erste

Tabellenplatz mit dem dritten verglichen, usw., bis der

letzte Platz erreicht ist. Danach befindet sich der kleinste

Tabellenplatz am Anfang, also auf dem richtigen Platz. Der

nächste Durchlauf berücksichtigt den ersten Tabellenplatz

also nicht mehr. An einem Programmablaufplan läßt sich diese

Logik verdeutlichen:

C ari)
I

| X=I+1

Jd ITACOI?=TA(D

TACI) =TACX}

TACX) =TA(O)

N

38

Dieses Sortierprogramm geht vom Index 1 aus, der als

Anfangsindex in die Variable I gespeichert wird. Der zweite

Index ist die Variable X, die den um eins erhöhten

Anfangsindex I enthält. Dann wird der erste Tabellenplatz mit

dem zweiten verglichen. Ist der Inhalt von TA(I) größer als

der von TAX), muß das Programm deren Inhalt über das

Hilfsfeld TA(O) vertauschen. Dieser Ringtausch verhindert,

daß die Inhalte der beiden Felder verlorengehen. Danach wird

der Index X um eins erhöht, also auf den Wert 2 gebracht,

wonach dann der erste Tabellenplatz TA(I mit dem dritten

TACX) verglichen wird, usw. Wenn der letzte Tabellenlatz

erreicht ist (X > letzter Index), befindet sich im ersten

Tabellenplatz TACI) der kleinste Tabellenplatz und der Index

Iwird um eins erhöht. Nun wird der zweite Tabellenplatz mit

allen weiteren verglichen, usw.

Diese Sortiermethode erscheint auf den ersten Blick recht

umständlich. Die Vergleiche laufen im Hauptspeicher aber

relativ schnell ab. Für kleinere Sortiermengen reicht diese

Methode aus.

Um dieses Programm laufen zu lassen, muß erst eine Tabelle

aufgebaut werden. Wir benutzen eine Tabelle mit 12 Plätzen,

die alphanumerische Daten (Strings) enthält. Diese Tabelle

wird mit folgender Routine gefüllt:

100 DIM TAF(12)
110 FOR I=1 TO 12
120 INPUT TAF(I)
130 NEXT I

Nach Starten dieser Befehlsfolge geben Sie 12 beliebige

Strings ein, die dann mit dem folgendem Programm aufsteigend

sortiert werden:

140 I=1
150 X=I+1
1460 IF TA#(I) < TAFCX) THEN 180
170 TAS (0) =TA (1) : TAS (CI) =TAS (CX) s TAS (CX) = TAS (CO)
180 X=X+i
190 IF X <= THEN 160

210 IF I <> 12 THEN 150
220 FOR I=1 TO 12
230 PRINT TAF(D)
240 NEXT I

Die Tabelle wird nun sortiert und auf dem Bildschirm

ausgegeben. Soll anstatt dieser eindimensionalen Tabelle eine

zweidimensionale Tabelle wie unsere im Speicher befindliche

Telefondatei sortiert werden, so müssen alle Felder eines

Satzes vertauscht werden. Die Zeilen 160 - 170 werden zum

Sortieren nach Namen folgendermaßen abgeändert:

160 IF D#(I,1) < D€(X,1) THEN 180
170 D$(0,1)=D$(I,1):D$(I,1)=D$(X,1):D$(X,1)=D$ (0,1)
171 D$(0,2)=D$(1I,2):D$(1,2)=D$(X,2):D$(X,2)=D$ (0,2)
172 D$(0,3)=D$(1I,3):D$(1,3)=D$ (X,3):D$(X,3)=D$ (0,3)

39

173 D$(0,4)=D$(I,4):D$(1,4)=D$ (X,4) :D#(X, 4) =D# (0,4)

Einen größeren Datenbestand dieserart zu sortieren ist sehr

zeitaufwendig. Wenn Sie auch bei größeren Datenmengen auf

eine schnelle Sotierung angewiesen sind, so empfehlen wir

Ihnen die sehr schnelle Maschinensprache-Sortierroutine aus

unserem Buch "&4 TIPS UND TRICKS"

1.4.10 ADRESSENVERWALTUNG mit sequentieller Datenspeicherung

Zum Ende dieses Kapitels bieten wir Ihnen eine komfortable

Adressenverwaltung, die wahrscheinlich jeder Anwender

sinnvoll einzusetzen weiß. Dieses Pogramms ist gleichzeitig

eine Anregung zur Erstellung vieler Dateiverwaltungen.

Eine Adressensatz dieses Programms besteht aus folgenden

Feldern:

- ANREDE

- NAME 1

- NAME 2

- STRASSE/NR.

- PLZ/ORT

- TELEFON

—- BEMERKUNG

Die Anwendung der Felder ’NAME 1° und ‘NAME 2° bleibt dem
Anwender überlassen. So kann z.B. in ‘NAME 1° der Vorname und

in “NAME 2° der Zuname gespeichert werden. Oder aber in ’NAME
1’ die Firma und in ‘NAME 2° "zu Händen...". Das Feld

"BEMEREUNG” kann z.B. die Adressen gruppieren (Familie,

Beruf, Freunde usw.).

Das Programm bietet nach dem Starten folgende

Auswahl moglichkeiten:

-1- DATEI LADEN
-2- DATEI SICHERN
-3- DATEN EINGEBEN
-4- DATEN AENDERN
-5- DATEN SELEKTIEREN/AUSGEBEN
-&- DATEN LOESCHEN
-0- PROGRAMM BEENDEN

-i- DATEI LADEN

Nach Auswahl dieses Unterprogramms muß der Dateiname der zu

ladenen Datei eingegeben werden. Falls die Datei auf der

Diskette existiert wird diese geladen. Dann wird auf dem

Bildschirm die Anzahl der Datensätze, die die Datei enthält,

ausgegeben. Sollte während dem Laden ein Fehler auftreten,

oder die Datei gar nicht existieren, so wird die Meldung

"DISKETTENFEHLER!" ausgegeben. Nach Abschluß des

Unterprogramms mit ‘RETURN’ erscheint wieder das Auswahlmenü.

40

-2- DATEI SICHERN

Falls Sie eine Datei nach dem Laden geändert oder erweitert

haben, so müssen Sie vor Beendigung des Frogramms die Datei

mit diesem Unterprogramm auf Diskette sichern. Als Dateiname

wird hier entweder der Name, der bei der erstmaligen

Datenerfassung festgelegt wurde oder der Name der geladenen

Datei verwendet. Eine evti. unter gleichen Namen

existierendes File wird überschrieben.

Während der Arbeit mit diesem Frogramm sollten die Daten

zwischendurch immer wieder gesichert werden, da ein

Stromausfall die Daten im Rechner löscht. Nach dem Sichern

der Daten kann mit dieser Datei wieder weiter gearbeitet

werden. Sie muß also nicht erst wieder geladen werden.

-3- DATEN EINGEBEN

Dieses Unterprogramm hat zwei Funktionen:

1. Es wurde noch keine Datei geladen. Bevor die Daten ertasst

werden können muß vorher ein Dateiname festgelegt werden. Die

nachfolgenden Daten werden dann unter diesem Namen gesichert.

Es sollte ein Name angegeben werden, der bisher noch nicht

auf der Diskette existiert, da sonst die alte Datei

überschrieben wird.

2. Es befinden sich schon Daten im Rechner. Die im Rechner

befindliche Datei wird nun erweitert.

Nach der Erfassung einer Adresse erscheint die Meldung

"RICHTIG (J/N)?". Hier wird die Möglicheit gegeben, die

eingegebenen Daten zu korrigieren. Dazu drücken Sie die Taste

"N’. Sind alle Daten korrekt eingegeben worden, so drücken

Sie ‘J’. Nun erscheint die Meldung "WEITERE EINGBABEN

(J/N)?". Soll die Erfassung fortgesetzt werden, so drücken

Sie die Taste ‘J’. Wird die Taste ‘N’ gedrückt, so erscheint

wieder das Auswahlmenü.

-4- DATEN AENDERN

Nach Auswahl dieses Unterprogramms muß die zu andernde

Adresse bestimmt werden. Hierzu muß sowohl der Name 1, als

auch der Name 2 eingegeben werden. Sind diese beiden Angaben

nicht bekannt, so können in dem Unterprogramm "DATEN

SUCHEN/SELEKTIEREN" beide Namen aufgesucht werden. Nach

Eingabe dieser Namen wird die Adresse in der Datei gesucht.

Wird sie gefunden, so erscheint die komplette Adresse mit den

numerierten Feldern ausgegeben. Nun muß die dem zu ändernen

Feld entsprechende Nummer eingegeben werden. Nun wird der

neue Inhalt bestimmt. Die Adresse wird noch einmal im neuen

Zustand angezeigt. Sind keine weiteren Änderungen in diesem

Satz erforderlich, so wird die Taste “9° gedrückt.

Anschließend fragt das Programm, ob eine weitere Adresse

41

geändert werden soll. Diese Frage wird dann mit den Tasten

"J’ und ‘N’ beantwortet.

-5- DATEN SELEKTIEREN/AUSGEBEN

Dies ist ein sehr komplexes und vielseitiges Unterprogramm.

Zuerst bestimmen Sie, ob die selektierten Adressen auf dem

Bildschirm (Taste ‘°B’) oder Drucker (Taste ’D’) ausgegeben

werden sollen. Haben Sie sich für die Ausgabe auf dem Drucker

entschieden, so müssen Sie nochmals auswählen, ob die

Adressen mit allen Feldern auf normales Druckerpapier (Taste

"F’) oder die Felder 1-5 auf Aufklebern (Taste ’A’) gedruckt

werden sollen. Die Adreßaufkleber müssen einreihig sein und

das Format 89 * 346 mm haben.

Zum Selektieren der Daten füllen Sie eine Suchmaske. Bei

Feldern, die nicht relevant sind, geben Sie nur "RETURN’.

Wollen Sie z.B. alle Adressen ausgeben, die dem

Postleitzahlengebiet 4 entsprechen, so geben Sie in den

ersten 4 Felder nur ’RETURN’. Im Feld ’PLZ/Ort’ geben Sie die

Zahl 4 mit anschließendem ‘RETURN’ ein. Die restlichen 2

Felder werden ebenfalls mit ’RETURN’ übergangen.

Einige Beispiele selektierter Daten:

ANREDE : FIRMA
NAME 1 : ‘RETURN’
NAME 2 : “RETURN’
STRASSE/NR. : ’RETURN’
PLZ/ORT = 4000
TELEFON : “RETURN
BEMERKUNG : RETURN’

Hier werden alle Firmen ausgegeben, die ihren Sitz in

Düsseldorf haben.

ANREDE : "RETURN
NAME 1 : M
NAME 2 : RETURN’
STRASSE/NR. : ‘RETURN’
PLZ/ORT : RETURN’
TELEFON : ‘RETURN’
BEMERKUNG : FAMILIE

Alle Familienmitglieder, deren Name i mit ‘M’ anfängt, werden

ausgegeben.

Sie sehen, wie vielseitig dieses Selektieren ist. Probieren

Sie es selbst einmal aus.

-&6- DATEN LOESCHEN

Nach Eingabe des 1. und 2. Namens der Adresse wird diese noch

42

einmal angezeigt. Das Programm fragt, ob diese Adresse

wirklich gelöscht werden soll. Esrt nach Betätigung der Taste

"J’ wird dann gelöscht.

-0- PROGRAMM BEENDEN

Bevor das Programm beendet wird, wird darauf hingewiesen, daß

das Frogramm mit ‘GOTO 110° ohne Datenverlust wieder

gestartet werden kann. Das ist wichtig, falls Sie einmal

vergessen, die Daten vor Beendigung des Programms zu sichern.

Doch nun das Programm-Listing:

100 POKE 535280,5:POKES3281 ,2:PRINTCHRS (158) 5; :DIMD# (100,7)
110 GOSUB2030
120 PRINT"“WAEHLEN SIE DIE GEWUENSCHTE FUNKTION: "
 120 PRINT" "sPRINT

140 PRINT" -1- DATEI LADEN"
150 PRINT" -2- DATEI SICHERN"
140 PRINT" -3- DATEN EINGEBEN"
170 PRINT" -4- DATEN AENDERN"
180 PRINT" -5- DATEN SELEKTIEREN/AUSGEBEN"
170 PRINT" -6- DATEN LOESCHEN": PRINT
200 PRINT" -0- PROGRAMM BEENDEN"
210 PRINT
220 FRINT" AUSWAHL (0-6) 7"
230 GETX$: IFX$< "O"ORX$>"&"THEN23O
240 IFX$< >"0" THENS40
250 PRINT:=PRINT" SICHER (J/N)?"
240 GETX#$: IFXS<>"N"ANDXF<>"J" THEN240
270 IFX$="N"THEN110
280 GSOSUB2030
290 PRINTTAB(9); "DAS PROGRAMM KANN MIT"=PRINT
300 PRINTTAB(15)3"‘GOTO 110°":PRINT
310 PRINTTAB (8); "WIEDER GESTARTET WERDEN, ":PRINT
320 PRINTTAB (4); "OHNE DASS DATEN VERLOREN GEHEN!"
330 END
340 ONVAL (X#) GOSUB340 ,540, 680,880, 1190,1770
350 60T0110
360 REM #438

370 REM DATEI LADEN
380 REM #3 R#%+

390 GOSUB2030
400 INPUT"NAME DER DATEI :";DN$
410 OPEN15,8,15
420 OPEN1 ,8,2,DN$+",5,R"
430 INPUT#15,FE:IF FE=OTHEN440
440 PRINT "DISKETTENFEHLER! ! !"
450 GOTOS10
460 X=1
470 INPUT#1,D$(X,1),D$(X,2),D$(X,3) ,D#(X,4) ,D$(X,5),D$(X,6),

43

D#(X,7)
480 IF ST<>64 THEN X=X+1:G0TO 470
490 PRINT"DATEI IST GELADEN UND BEINHALTET ";X
500 PRINT"DATENSAETZE":PRINT
510 CLOSE1:CLOSE15
520 PRINT"WEITER MIT RETURN"
520 INPUTX$: RETURN
S40 REM 423446

550 REM DATEI SICHERN
SAU REM 456 REE EEE

570 IF X>OTHENS9O
580 GOSUB2230: RETURN
590 GOSUBZ030
400 OPENI,8,2,": "+DN#+",S Ww"
610 FORI=1TOX
620 PRINT#1,D$(I,1)","D$(1,2)","D$(1,3)",";
630 PRINT#1,D#$(1,4)","D#(1,5)","D#(I,6)","DS(1,7)
640 NEXT
450 PRINT"DATEI IST GESICHERT":CLOSE1:PRINT
660 PRINT"WEITER MIT RETURN"
&70 INPUTX#: RETURN
ABO REM RFRERERRERIRRH

690 REM DATEN EINGEBEN
FOO REM X 3 HR 3%

710 IFX>OTHENGOTO730
720 GOSUB2030: INPUT"DATEINAME ";DN$
730 X=X+1
740 GOSUB2030
750 PRINT "DATENEINGABE: "
740 PRINT" "PRINT
770 1=X:GOSUB2110
780 FORI=1T07:PRINTCHR$ (145) 3: NEXT
790 FORI=1T07:PRINTTAB(12)5:INPUTD$(X,I):NEXT
800 PRINT:PRINT"RICHTIG (J/N)?"
810 GETX#: IFX$< >"N"ANDX$< >"J"THENBLO
820 IFX$="J"THENS40
830 GOTO740
840 PRINT"WEITERER EINGABEN (J/N)?"
850 GETX$: IFX$< >" J"ANDX$< >"N" THEN8SO
840 IFX$="J"THEN730O
870 RETURN
BB80 REM FERN RR

890 REM DATEN AENDERN
FOO REM FRA HRRNRRRERH

910 IFX>OTHEN93O
920 GOSUB2230: RETURN
930 GOSUB2030
940 INPUT"NAME 1: ";Ni1$
950 INPUT"NAME 2: ":N2¢
960 FORI=1TOX
370 IFD$(1,2)=Ni$ANDD$ (1,2) =N2¢THEN1010
980 NEXTI
990 PRINT"NAME NICHT GEFUNDEN!"
1000 PRINT"WEITER MIT RETURN": INPUTX$: RETURN
1010 GOSUB2030
1020 PRINT"-1- ANREDE :"sD¢(1,1)

44

PRINT"-2- NAME 1 :"sD# (1,2)
PRINT"-3- NAME 2 2": DECI,3)
PRINT"-4- STRASSE/NR.:";D$(I,4)
PRINT"-S- PLZ/ORT "sDE(1,5)

PRINT"-&4- TELEFON ı";DE(I,Ö)

PRINT"-7- BEMERKUNG :"“3D#(1I,7):2:PRINT:PRINT

PRINT"NR. DES ZU AENDERNDEN FELDES: ":PRINT" (9=KEINE

AENDERUNG) "3 : PRINT

GETX#: IFVAL (X#)<1 OR VAL (XS) >7ANDVAL (X#) < >9THENL100

IFVAL (X#) =9THEN1 150

Y=VAL (X#)

INPUT"NEUER INHALT"; D#(1,Y) sPRINT

GOTG1010

PRINT"WEITER AENDERUNGEN (J/N)?"

GETX#: IFX#< >" J"ANDX$< >"N" THEN1 140

IFX#="J" THENS80

RETURN

REM 4H HHH HEHE EHR HEE

REM DATEN SELEKTIEREN/AUSGEBEN
REM HHA EERE EEE EERE EERE

IFX >OTHEN1 240

GOSUB2230: RETURN

GOSUB2030: PRINT"AUSGABE AUF DRUCKER (D) ODER BILDSCHIRM
(B)?"
GETX#: IFX$< >"D"ANDX$< >"B" THEN1 250
O$=X$: IFO$S="B"THEN1 300
PRINT:PRINT"PAPIER (P) ODER AUFKLEBERN (A}?"
GETX$: IFX#< >"P"ANDX#< >"A" THEN1 280
D$=X
GOSUB2030
PRINT"GEBEN SIE DIE SUCHBEGRIFFE EIN: "
PRINT"BEI NICHT RELEVANTEN FELDERN NUR RETURN! ";
PRINT" “PRINT
I=0: GOSUBZ110
FORI =1T07: PRINTCHR$ (145) 5 25$ (I)=""zNEXT
FORI=1T07: PRINTTAB (12) 35: INPUTS$ (1) NEXT
IFOF="B" OR D#="A"THEN1450
GOSUB2030: PRINT"DRUCKER EINGESCHALTET (J)?"
GETX$: IFX$< >"J"THEN1390
OPEN1,4
PRINT#1, "ANREDE";SPC (4); "NAME 1"sSPC(14); "NAME 2";
SPC (14); "STRASSE"
PRINT#1,SPC (3) 5 "PLZ/ORT"3SPC (18) 5 "TELEFON" ;SPC (8) s
"BEMERKUNG"
FORI=1T079:PRINT#1,"=";:NEXT:PRINT#1
CLOSE1
FORI=1TOX
FORY=1T07
IFS# (Y) =LEFT#(D#(1I,¥) ,LEN(S#(Y)) } THENZ=Z+1:GOTO1480
NEXTY
IFZ=7THEN GOSUB 1550

Z=0: NEXTI

PRINT: PRINT"DATEIENDE !'":PRINT

PRINT"WEITER MIT RETURN":PRINT

INPUTX?

RETURN

45

IFO#="B" THEN1 730
IFD#="A" THEN14&70
OPEN1 ,4
PRINT#1,D#(1I,1):SPC (10-LEN(D$(I,1)));
PRINT#1 ,D# (1,2) ; SPC (20-LEN (D#(1,2)))3
PRINT#1,D$(1,3) 3 SPC (20-LEN (D$ (1,3)))3
PRINT#1,D$(1,4)
PRINT#1,SPC (3)5D$ (1,5) 3SPC (25-LEN(D$ (1,5395
PRINT#1,D$ (1,6) 3SPC(15-LEN(D$(I,6)));
PRINT#1,D$(I,7)
PRINT#1:CLOSE1
RETURN
OPEN2,4
PRINT#2
FORJ=1TOS: PRINT#2 , DS (I,J) NEXT

FRINT#2: PRINT#2: PRINT#2

CLOSE?
RETURN
GOSUB2Z030: GOSUB2110
PRINT:PRINT"WEITER (J) 7"
GETX$: IFX#< >" J" THENL 750
RETURN
REM 9 4366-9636 366 IEE

REM DATEN LOESCHEN

REM X EHRE

IFX>OTHEN1820
GOSUB 2230: RETURN
GOSUB2Z030
INPUT"NAME 1
INPUT"NAME 2
FORI=1TOX
IFD# (1,2) =Ni*#ANDD$ (1,3) =N2¢THEN1L 900
NEXTI
PRINT"NAME NICHT GEFUNDEN! ":PRINT
PRINT"WEITER MIT RETURN": INPUTX#: RETURN

"sN1¢
"3N2¢

GOSUBZO30: GOSUB2110
PRINT: PRINT"ADRESSE LOESCHEN (J/N)?"
GETX#: IFX$< >" J" ANDXS< >"N" THENL920
IFX$="N" THENRETURN
FORY=ITOX-1
FORJ=1T06
DEtY,J)=D#(Y+1,J)

NEXTJI,Y
FORJ=1TO06: DF (X, J) =""sNEXTJ
x=X-1

PRINT"SATZ IST GELDESCHT!"
PRINT"WEITER MIT RETURN!"
INPUTX#: RETURN
REM KUN

REM PROGRAMM-KOPF

REM 3636 3646-96-96 36-26-96 0-90

PRINTCHR# (147) ;
PRINTTAB (8) 5"
PRINTTAB(B)s"A DRESSENDATET
PRINTTAB (8) ; “

RETURN

46

“:PRINT: PRINT

PLLG REM FH RER

2120 REM SATZAUSGABE
Z130 REM KUREN

2140 PRINT"ANREDE : "sDE(I,2)
2150 PRINT"NAME 1 = “3D (1,2)
21460 PRINT"NAME 2 2: "sDS(1I,3)
2170 PRINT"STRASSE/NR. =: ";D#(1,4)
2180 PRINT"PLZ/ORT = "sD#(1,5)
2200 PRINT" TELEFON ı "3D¢(1T,6)
2210 PRINT" BEMERKUNG : "3DS(1I,7)
2220 RETURN
2230 REM 4H EH

2240 REM KEINE DATEL!
2750 REM 4H HERE EEE

2260 GOSUB2030

2270 FRINT"KEINE DATEI IM RECHNER! ":PRINT

2280 PRINT"WEITER MIT RETURN"

2290 INPUTX$: RETURN

1.4.11 Anwendungsgebiete der sequentiellen Datenspeicheurng

Der große Vorteil der sequentiellen Datei gegenüber den in

den nächsten Kapiteln beschriebenen relativen und

Direktzugriffsdateien besteht vor allem im sehr sparsamen

Umgang mit Speicherrlatz. Daten der unterschiedlichsten Länge

können fortlaufend hintereinander gespeichert werden, ohne

daß Datensätze eine bestimmte definierte Lange haben müssen

und jeweils nicht ausgenutzter Speicherplatz nutzlos

vergeudet wird. Sinnvoll ausnutzen läßt sich dieser Vorteil

überall dort, wo nicht ständig Teile der Datei geändert

werden müssen, wo nicht laufend auf auf bestimmte Datensätze
gezielt zugegriffen werden muß. Beispiele sind

* Protokolldateien

In einem Buchungs journal werden fortlaufend alle

Buchungsvorgänge protokolliert. Änderungen sollen und

dürft en nicht vorgenommen werden.

* Auswertungsdateien

Sie werten eine Direktzugriffsdatei aus, z.B. alle

Kunden mit mehr als DM 3000 ,- Umsatz aus dem

Postleitzahlengebiet 4, und schreiben die gefundenen

Datensätze für den späteren Ausdruck in eine

sequentielle Datei.

Natürlich bieten sich die sequentiellen Dateien auch, wie in

den vorherigen Kapiteln beschrieben, als Ersatz für

Direktzugriffsdateien an, wenn beim Anwender weiterreichende

Programmierkenntnisse nicht vorhanden sind. Allerdings würden

wir Ihnen empfehlen, auch die anderen Arten der

Datenspeicherung durchzuarbeiten, da sie zum Teil gravierende

Vorteile bieten.

47

1.5 Relative Datenspeicherung

Die relative Datenspeicherung und ihre Frogrammierung werden

im Handbuch der VC-1541 nicht beschrieben. Der Grund dürfte

darin liegen, daß der COMMODORE 64 und der VC-20 in ihrem
BASIC 2.0 keine Befehle zur Verwaltung von relativen Dateien

enthalten. Damit ist im Prinzip eine relative

Datenspeicherung mit dem CBM 64 und dem VC-20 nicht möglich —

aber nur im Prinzip. Wir haben einige Kunstgriffe entwickelt,
mit denen Sie die Beschränkung des BASIC 2.0 umgehen und die

relative Datenspeicherung auch mit dem VC-20 und dem 64-er
nutzen können. Im einzelnen mag dies zwar manchmal etwas

kompliziert erscheinen — so werden z.B. Angaben über die

Recordlänge an die Floppy mit CHRF(x})-Codes übermittelt -
‚doch erschließen Sie sich so eine sehr komfortable Methode

der Datenspeicherung.

1.5.1 Das Prinzip

Bei der relativen Dateiverwaltung werden die Datensätze (auch

Records genannt) durchnumeriert. Mit der Voraussetzung, daß

alle Datensätze einer relativen Datei die gleiche Länge

haben, kann anhand der Recordnummer jeder Datensatz direkt

adressiert werden. Zum Auffinden eines Records ist es nicht

erforderlich, die gesamte Datei zu durchsuchen. Es wird

lediglich die Nummer des Records relativ zum Dateianfang

angegeben und der Record kann ausgelesen werden. Anhand der

Satznummer kann das DOS erkennen, wo sich der Datensatz

"relativ" zum Anfang der Datei auf Diskette befindet und so

direkt auf diesen Datensatz zugreifen. Damit müssen nicht

mehr komplette Dateien oder Indextabellen in den Rechner

eingelesen werden, sondern nur nuch die gerade benötigten

Datensätze.

Die Verwaltung einer relativen Datei läuft nach folgendem

Muster ab:

Einrichten einer relativen Datei:

1. Die Datei wird geöffnet. Dabei wird die Länge eines Re-

cords festgelegt.

2. Der letzte Record wird gekennzeichnet.

3. Die Datei wird wieder geschlossen.

Schreiben eines Records:

1. Die Datei wird geöffnet.

2. Es wird auf den zu schreibenden Record positioniert.

3. Der Record wird geschrieben.

4. Die Datei wird geschlossen.

48

Lesen eines Records:

. Die Datei wird geöffnet.

. Es wird auf den zu lesenden Record positioniert.

3. Der Record wird gelesen.

4. Die Datei wird geschlossen.

Ah
)

Dies war nur eine grobe übersicht. In den folgenden

Abschnitten werden diese Vorgänge noch ausführlich

beschrieben.

1.5.2 Der Vorteil gegenüber sequentieller Speicherung

Die wesentlichen Vorteile der relativen Speicherung sind:

* schneller Zugriff auf jeden Record

* relative Dateien entlasten den Speicher des Rechners

Bei der Behandlung der sequentiellen Dateien wurde bereits

erwähnt, daß die sequentielle Datei zu deren Verwaltung

vollständig im Speicher des Rechners enthalten sein muff. Ist

dies nicht der Fall, so ist es beim Aufsuchen eines

Datensatzes notwendig, die gesamte Datei zu durchsuchen. D.h.

jeder Datensatz muß gelesen und mit dem Suchbegriff

verglichen werden. Sollte eine sequentielle Datei nicht

vollständig im Speicher unterzubringen sein, so ist diese

Methode des Suchens unumgänglich.

Bei relativen Dateien ist das wesentlich einfacher. Mit Hilfe

der Recordnummer kann auf jeden Satz direkt zugegriffen

werden. Die Datei ist also vom Speicher des Rechners

unabhängig. So kann z.B. mit einem Programm, das die 3,5

KByte des VC 20 vollständig belegt, eine Datei mit bis zu 163

KByte verwaltet werden!

Die Vorteile der relativen gegenüber der sequentiellen

Dateiverwaltung sind derart groß, daß jeder, der einmal mit

relativen Dateien vertraut ist, die Form der relativen

Dateien vorziehen wird.

1.5.3 Das öffnen einer relativen Datei

Auch relative Dateien werden mit einem OFEN-Befehl geöffnet.

Dieser Befehl unterscheidet sich nur gering von dem der

sequentiellen Dateien. Schauen Sie sich nun das Format des

DPEN-Befehls einmal an:

OPEN l1fn,ga,kanal,"filename,L,"+CHR# (record! ange)

Die ersten 4 Parameter sind mit denen des OPEN-Befehls für

sequentielle Dateien identisch. Also logische Filenummer ,

Geräteadresse (im Normalfall 8), Kanal (2-14), Name der

49

Datei.

Nun folgt ein ‘L’, das dem DOS mitteilt, daß nun eine

relative Datei geöffnet werden soll, deren Recaordlänge folgt.

Diese Recorlänge wird mit einem CHRF-Code übermittelt. Die

Länge liegt zwischen 1 und 254. Ein Record darf also maximal

254 Zeichen umfassen.

Ist die Recordlänge kleiner als 88, so kann der Record mit

einem INPUT-Befehl gelesen werden. Dazu ist es aber

erforderlich, daß der PRINT-Befehl den Record mit einem

abschließenden RETURN übermittelt hat. In der Regel sendet

der PRINT-Befehl dieses RETURN, wenn er nicht mit einem

Semikolon abgeschlossen wurde. Dieses RETURN ist nun

Bestandteil des Records. Wollen Sie also Records mit INPUT

einlesen, so muß die Recordlänge im OPEN-Befehl immer um eins

erhöht werden.

Eine Datei, deren 80-Zeichen umfassende Records mit INPUT

eingelesen werden sollen „ürde demnach folgendermaßen

geöffnet:

OPEN 1,8,2,"FILE.REL,L,"+CHR$ (81)

Hier wird ein relatives File mit dem Namen "FILE.REL" über

Kanal 2 geöffnet. Die Recordlänge soll 81 Zeichen betragen.

Es sollen also 80 Zeichen umfassende Records mit einem

PRINT-Befehl gesendet werden, dem kein Semikolon folgt.

Wichtig ist, daß immer nur eine relative Datei geöffnet sein

kann. Wollen Sie mit zwei relativen Dateien arbeiten, so muß

immer die erste geschlossen werden, bevor die zweite geöffnet

wird. Zusätzlich zu der relativen Datei kann eine

sequentielle Datei geöffnet werden.

Zum erstmaligen Einrichten einer relativen Datei ist es

sinnvoll, den letzten Record freizugeben, da dann sämtliche

vor diesem Record liegende Datensätze auch freigegeben

werden. Freigeben bedeutet, den Record mit dem Byte CHR# (2755)

zu beschreiben. Versucht man, einen Reocrd zu lesen, dessen

Nummer über die des letzten Records der Datei liegt, so

verursacht dies den Fehler "RECORD NOT PRESENT". Beschreibt

man jedoch einen Record, der über dem bisher höchsten Record

liegt, so werden gleichzeitig alle Records, die unterhalb

dieses neuen Records liegen, mit CHR#(255) beschrieben. Ein

späterer Lesezugriff auf einen Record dieses Bereichs erfolgt

dann fehlerlos. Das Beschreiben dieser "freigegebenen"

Records erfolgt dann wesentlich schneller, weil alle Records,

die unter diesem liegen, nicht mehr freigegeben werden

müssen. Ein Beispiel:

Sie errichten eine relative Datei mit 100 Records. Sie geben

aber den letzten (100.) Record nicht frei. Wenn Sie nun einen

Record beschreiben, der über dem letzten beschriebenen Record

dieser Datei angeordnet ist, werden gleichzeitig alle

Records, die zwischen dem letzen und dem gerade beschriebenen

Record liegen, freigegeben. Um diese Prozedur zu vermeiden,

wird nach dem erstmaligem öffnen der letzte Record, und somit

auch alle anderen Records freigegeben. Das spätere

Beschreiben dieses freigegebenen Records läuft dann

so

wesentlich schneller ab.

Zum Freigeben des letzten Records wird dieser also lediglich
mit dem ASCII-Wert FF -CHR$ (255) —- beschrieben. Zum

Beschreiben eines Records muß aber vorher auf diesen
positioniert werden. Dazu wird über dem Befehlskanal der
Floppy (15) ein Positionier-Befehl gesendet werden, der wie
folgt aufgebaut ist:

PRINT#1£n, "P"“+CHR# (kanal }+CHR# (low) +CHR# (high) +CHR$ (byte)

Wenn zum Freigeben von Records auf einem Record positioniert

wird, der über das bisherige Dateiende hinausgeht, so

erscheint im Floppy-Fehlerkanal die Meldung "RECORD NOT

PRESENT". Da dieser positionierte Record aber nicht gelesen,

sondern nur beschrieben (freigegeben) werden soll, kann die

Meldung ignoriert werden. Der folgende PRINT auf diesen, noch

nicht freigegebenen Record wird trotz der Fehlermeldung

durchgeführt.

Die Parameter ‘low’ und ‘high’ im P-Befehl geben die

Recordnummer an. Da mit einem Byte maximal der Wert 254

angegeben werden kann, eine relative Datei aber bis zu 65535

Records beinhaltet, muß die Recordnummer in zwei Bytes

übermittelt werden. Diese zwei Bytes berechnet man mit

folgender Formel:

HB=INT (RN/254)

i B=RN-HB#254

HB = High Byte (Parameter ‘high’?

LB = Low Byte (Parameter ‘low’)

RN = Recordnummer

Der letzte Parameter dient der Positionierung auf eine

bestimmte Stelle innerhalb des angegebenen Records. Ein

Beispiel:

PRINT#2, "P"+CHRS (2) +CHRE$ (10) +CHR# (1) +CHR# (5)

Hier wird auf das 5. Byte des 2644. Records positioniert.

Diese 266 wird als Lowbyte 10 und Highbyte 1 codiert

(Highbyte * 256 + Lowbyte = Recordnummer)

Zum Lesen oder Schreiben eines kompletten Records muß

unbedingt auf das 1. Byte positioniert werden. Wird der

letzte Parameter nicht angegeben, so wird das abschließende

“RETURN’ -CHR$(15)- als Bytepositionierung angenommen.

Der entsprechende BASIC-Ausschnitt zum Einrichten einer Datei

mit 1000 Records und jeweils 80 Zeichen sieht dann

folgendermaßen aus:

100 RN=1000
110 HB=INT (RN/256)
120 LB=RN-HB*25&
130 OPEN1,8,2,"FILE.REL,L, "+CHR$ (80)
140 OPEN?,8,15

Si

150 PRINT#2, "P"+CHR$ (2) +CHRS$ (LB) +CHR$ (HB) +CHR$ (1)
160 PRINT#1 , CHR# (255)
170 CLOSE 1:CLOSE 15

Das Freigeben der 1000 Records nimmt einige Zeit in Anspruch.

So kann das Einrichten dieser Datei ca. 10 Minuten dauern.

Beachten Sie aber, daß in diesen 80-Zeichen-Records nur 79

Zeichen Daten untergebracht werden kann, wenn die Daten mit

einem PRINT-Befehl mit abschließendem RETURN übertragen
werden!

1.5.4 Vorbereitung der Daten zur relativen Speicherung

Wie bereits erwähnt, sind Sie bei der relativen Speicherung

an eine feste Satzlänge gebunden. Besteht ein Record aus

mehrerern Feldern, so müssen diese Felder zusammengefügt

werden. Wichtig ist hierbei, daß sich die Felder in der

gesamten Datei in jedem Datensatz immer an derselben Position

befinden müssen. Spielen wir dieses Problem einmal durch:

Es soll ein Artikelstamm relativ verwaltet werden. Dazu sind
folgende Felder notwendig:

ARTIKELNUMMER 4-stellig

BEZEICHNUNG 15-stellig

LAGERNUMMER S-stellig

EINK. —-PREIS 6-stellig

VERK.-PREIS &-stellig

Recordlänge 56 Bytes
Lee hEn: Oma euilen aBAR: wiE aiEEs (ui GES Anistp an.
es dass OSE SS SE ED GEN OES SR ES Ma

Der Artikelstamm umfasst ca. 200 Artikel mit einer Satzlange

von 36 Bytes. Diese Artikeldatei soll nun eingerichtet
werden:

100 RN=200:REM ANZAHL DER ARTIKELSATZE
110 RL=346 :REM RECORDLANGE
120 OPEN 1,8,2,"ARTIKEL,L, "+CHR# (36)
130 OPEN 2,8,15
140 PRINT#2, "P"+CHR# (2) +CHR$¢ (200) +CHR# (0) +CHRS$ (1)
150 PRINT#1 „CHR$ (255)
160 CLOSE 1:CLOSE 2

Nun ist die Datei eingerichtet und alle Records können

beschrieben werden. Nehmen wir nun einmal an, daß die

Artikeldatei sequentiell vorliegt. Sie besteht aus 200

Datensätzen deren Felder hintereinander angeordnet sind.

Diese Felder müssen zu einzelnen Records zusammengebunden und

in die relative Datei übertragen werden. Das ist aber nicht
einfach, da z.B. die Artikelbezeichnung nicht immer die volle

Länge von 15 Zeichen haben wird. Die Struktur der relativen
Datei soll wie folgt aussehen;

32

111111111122222222223333333
Position §123456789012345678901234567890123456

Feld AN#—BE+ ILN$--EP$-—-VP$-—-—

Inhalt 1 BLECH ZMM 1344 23.40 42.30

2 SCHRAUBE 3MM 1231 9.00 14.00

3 VENTIL A3A4 243 23.45 29.90

200 SCHLAUCH 12MM 2321 6.70 9.80

Aus der sequentiellen Datei werden die Felder in folgende

Variablen eingelesen:

Artikelnummer nach ANS

Artikelbezeichnung nach BES

Lagernummer nach LNF

Einkaufspreis nach EPS

Verkaufspreis nach VPS

Der folgende Befehl verkettet zwar diese Felder, aber wie

sich noch herausstellen wird, nicht mit dem erwünschten

Erfolg:

RC# = ANS + BEF + LN$ + EPS + VPS

Dieser Record RC# entspricht nicht der gewünschten Struktur

der Datei. Der Grund dafür ist, daß der Artikelbezeichnug

dann unmittelbar die Lagernummer folgt. Da die Lagernummer

aber unbedingt ab Stelle 20 beginnen mus und die

Artikelbezeichnug nicht konstant 15 Zeichen umfasst, ergeben

sich dabei Probleme. Um die Records nach dem Lesen aus der
relativen Datei wieder richtig aufbereiten zu können, muß die

Struktur unbedingt eingehalten werden. Dazu müssen alle

Felder, falls sie kürzer als die eingeplante Länge sind, mit

Leerzeichen aufgefüllt werden. Wenn man dies berücksichtigt,

sieht die Verkettung folgendermaßen aus:

BL+= “ s

RC#=ANS+LEF TS (BLE , 4—-LEN CANS))

RC#+=RC4#+BE4#+LEF TS (BL*,15—-LEN (BE) >

RC#=RC#+LNS+LEF TS (BLY ,„S-LEN ({LN#))

RC4+=RC#+EP#+LEF TS (BL ,46—-LENCEPS))

RC#=RC#+VP$+LEF TS (BLE, 6—-LEN (EPS))

Diese Verkettung sieht komplizierter aus, als sie es wirklich

ist. Jedes Feld muß mit der Anzahl von Leerzeichen ergänzt

werden, die sich aus Max « Länge des Feldes minus

tatsächlicher Länge des Feldes ergibt. Diese Leerzeichen

werden dem anfangs definierten String BL$ entnommen. Dieser

String ist so lang wie das längste Feld des Records, in

diesem Fall 15 Zeichen.

33

Spielen wir einmal ein Beispiel durch: Angenommen die erste

Artikelnummer ist 8. Die Länge dieses Strings ,LEN(CAN#), ist

also 1. Die max. Lange des Feldes (4) minus der tatsachlichen

Länge (1) ergibt also 3. Der String AN$ muß also mit 3

Leerzeichen ,LEFT#(BL#,3), aufgefüllt werden.

Jeder Datensatz der bisherigen, sequentiellen Datei muß

derartig aufbereitet werden, bevor man ihn in die relative

Datei übernehmen kann.

Natürlich gilt das oben gesagte für alle Eingabewerte, die in

die relative Datei übernommen werden sollen. Denken Sie

deshalb bei der Frogrammierung der relativen Dateiverwaltung

immer an die Benutzung einer Routine zum Auffüllen der

einzelnen Felder bis zur Sollänge mit Leerzeichen.

1.5.5 Datenübertragung Floppy / Rechner

Im Prinzip unterscheidet sich die Datenübertragung nicht von

der bei der sequentiellen Speicherung. Sätze werden mit PRINT

geschrieben und mit INPUT bzw. GET wieder gelesen. Der

einzige Unterschied ist, daß vor Lesen oder Schreiben eines

Records auf diesen positioniert werden muß. Dies geschieht

mit dem F-Befehl. Erstellen wir nun einmal mit folgendem

Programm eine relative Datei im Dialog:

100 BL$=" "
105 OPEN 1,8,2,"TEST.REL,L,"+CHR$(41)
110 OPEN 2,8,15
120 PRINT#2, "P"+CHRS (2) +CHRE (100) +CHR$ (0) +CHR$ (1)
130 PRINT#1,CHR* (255)
140 PRINT CHR$(147)
150 PRINT"DATENSATZEINGABE: "
160 PRINT" "
170 INPUT"RECORDNUMMER (1-100) : "3;RN
180 IF RN{1 OR RN>100 THEN PRINT CHR#(145)3:GOTO160
190 INPUT"FELD 1 (MAX.10 ZEICHEN): "zFi$
200 IF LEN(F1#)>10 THEN PRINT CHR#(145);:GOTO190
210 INPUT"FELD 2 (MAX. 5 ZEICHEN): "3F2%
220 IF LEN(F2$)>5 THEN PRINT CHR#(145);:GOTO210
230 INPUT"FELD 3 (MAX.10 ZEICHEN): ";F3$
240 IF LEN(F3$) >10 THEN PRINT CHR$(145)5:50T0230
250 INPUT"FELD 4 (MAX.15 ZEICHEN): "sF4¢
260 IF LEN(F4$) >15 THEN PRINT CHR$ (145) 5 :60T0250
270 PRINT"RICHTIG (J/N)?"
280 GET X$:15 X$<>"J" AND X$<>"N"THEN280
290 IF X$="N"THEN 140
300 RL$=F1$+LEFT$ (BL$,10-LEN(F1$))
310 RC$=RC$+F2$+LEFT$ (BL$,5-LEN (F2$#))
320 RC$=RC$+F3$+LEFTS (BL$, 10-LEN(F3$))
330 RC#=RC$+F4$+LEFTS (BL$,15-LEN (F4$))
340 PRINT#2, "P"+CHR$ (2) +CHR# (RN) +CHR$ (0) +CHR# (1)
350 PRINT#1,RC$
360 PRINT#"WEITERE EINGABEN (J/N)?"
370 GET X$:IF X$<>"J"AND X$<¢>"N"THEN 370
380 IF X#="J"THEN 140

24

390 CLOSE 1:CLOSE 2:END

Die folgende, zeilenorientierte Dokumentation verdeutlicht

die Arbeitsweise dieses Programms:

100 Es wird ein Leerzeichen-String mit der Länge 15
definiert.

105 Die relative Datei mit der Länge 41 wird geöffnet.

110 Der Befehlskanal 15 wird geöffnet.

120 Zum Initialisieren der relativen Datei wird auf das

1. Byte des letzten (100.) Satzes positioniert.

136 Der letzte Satz wird freigegeben und die Initiali-

sierung beginnt.

140 Der Bildschirm wird gelöscht.

150-260 Die Recordnummer und die Felder 1-4 werden eingege-

ben und auf korrekte Länge geprüft.

270-290 Die eingegebenen Daten können noch einmal korri-

giert werden.

506-330 Der Record wird aufbereitet.

340 Es wird auf das 1. Byte des angegebenen Records

positioniert.

3350 Der Record wird auf Diskette geschrieben.

360-380 Es können erneut Daten eingegeben werden.

390 Das Programm wird beendet

Erfassen Sie nun mit diesem Programm elnige Records.

Vergessen Sie aber nicht, dieses Programm abzuspeichern,

falls Sie es später noch benötigen.

Sicherlich ist es auch notwendig, erfasste Daten zu lesen und

verändern. Dazu wird die relative Datei geöffnet, auf den

gewünschten Record positioniert und eingelesen. Dieser Record

muß dann wieder in seinen Feldern zerlegt werden. Lesen wir

nun einmal gezielt einen Record, der mit der 0.9. Routine

erfasst wurde. Die folgende Routine liest diesen Record:

100 OPEN 1,8,2,"TEST.REL,L,"+CHR$ (41)
110 OPEN 2,8,15
115 PRINT CHR$ (147)
120 INPUT"RECORNUMMER ="; RN
150 PRINT#2, "P"+CHR# (2) +CHR$ (RN) +CHRS$ (0) +CHRS$ (1)
140 INPUT#1,RC$
160 IF ASC(RC#)<>255 THEN PRINT"RECORD NICHT

BELEGT!":GOTO 250
170 PRINT RC#
250 CLOSE 1:CLOSE 2

Diese Routine liest einen bestimmten Record. Ist dieser

Record nicht belegt, so wid dies an den Wert 255 erkannt, mit

dem beim Einrichten der Datei jeder freie Record

gekennzeichnet wird.

Ein beschriebener Record wird angezeigt. Sie erkennen dabei,

daß die Felder 1-4 immer an derselben Stelle enthalten sind.

Wollen Sie den Record wieder in seine einzelnen Felder

aufteilen, so müssen diese mit dem Befehl MID dem Record

entnommen werden. Um z.B. das Feld 1 dem Record zu entnehmen,

33

geben Sie nach Auffinden eines Records im Direkt-Modus

folgende Befehle ein:

Fi$=MID$ (RC#,1,10)
PRINT Fit

Nun befindet sich in der Variablen Fit das 1. Feld, wie es im

Erfassungsprogramm eingegeben wurde. Dieses “Zerpflucken" des

Records können Sie in die o.g. Routine einbauen. Geben Sie

dazu folgende Zeile zusätzlich ein:

170 F1$=MID$ (RC$,1,10)
180 F2$=MID$(RC$,11,5)
190 F3$=MID$ (RC$,16,10)
200 F4$=MID$ (RC#, 26,15)
210 PRINT"FELD 1: ";Fi$
220 PRINT"FELD 2: ";F2$
230 PRINT"FELD 3: ":F3¢
240 PRINT"FELD 4: ":F4¢
250 PRINT"WEITERER ZUGRIFF (J/N)?"
260 GETX£:IF X#<>"J"AND X$<>"N"THEN 260
270 IF X$="J"THEN 115
280 CLOSE 1:CLOSE 2

Hier wird der Record aufbereitet und die Felder angezeigt.

Wichtig hierbei ist, daß die Angaben im MID#-Befehl der

genauen Position des Feldes innerhalb des Records entsprechen

müssen. Die erste Angabe innerhalb der Klammer ist die

Stringvariable, aus der ein Ausschnitt entnommen werden soll.

Die zweite Angabe ist die Position, ab der die Anzahl Zeichen

entnommen werden soll, die in der dritten Angabe bestimmt

ist.

Mit den selektierten Feldern kann nun innerhalb des Programms
weiter gearbeitet werden.

Eisher haben wir die Records mit dem INPUT-Befehl eingelesen.

Ist der Record aber länger als 88 Zeichen, so kann er mit dem

INPUT-Befehl nicht mehr eingelesen werden. Der Grund dafür

ist, das ein INPUT-Befehl grundsätzlich nicht mehr als 988

Zeichen einlesen kann. Die Ausweichmöglichkeit zu dem nur

beschränkt einsetzbaren INPUT-EBefehl ist der GET-Befehl. Mit

diesem Befehl werden die Bytes des Records einzeln gelesen

und zu einem String verkettet. Nehmen wir einmal an, Sie

haben eine relative Datei mit 128 Zeichen eingerichtet und

diese auch beschrieben. Nun wollen Sie den 10. Record dieser

Datei lesen und in die Variable RC# übernehmen. Das Beispiel

der folgenden Routine verdeutlicht dieses Einlesen mit GET:

100 OPEN 1,8,2,"TEST.GET,L,"+CHR$ (128)
110 OPEN 2,8,15
120 PRINT#2, "P"+CHR$ (2) +CHR$ (10) +CHRS$ (0) +CHRS$ (1)
130 RC$=""
140 FOR I=1 TO 128
150 GET#1,X$
160 RCE$=RÜS+X$
170 NEXT I

36

Nach Ablauf dieser Routine steht der Record in der Variablen

RC$ zur Verfügung. Ist dieser Record mit einem PRINT-Befehl

ohne anschließendes Semikolon übertragen worden, das ein

RETURN unterdrückt, sa ist das letzte Zeichen in dem String
RC# ein RETURN. Um dieses RETURN zu ignorieren, läßt man die

Schleife in Zeile 140 nur bis 127 laufen. das letzte Zeichen

des Records (das RETURN) wird nun nicht gelesen.

Wie bereits erwähnt, gibt der letzte Parameter des P-Befehls

an, ab welchem Zeichen des Records gelesen werden soll. Wenn

Sie z.B in dem 127-Zeichen-Record des vorherigen Beispiels

ein an der Position 40-40 befindliches Feld lesen möchten, so

wird auf das 40. Zeichen positioniert und die folgenden 721

Zeichen eingelesen. Die folgende Routine verdeutlicht dies:

100 OPEN 1,8,2,"TEST.GET,L,"+CHR$ (128)
110 OPEN 2,8,15 Ä
120 PRINT#2, "P"+CHR# (2) +CHR$ (10) +CHR$ (0) +CHRS$ (40)
130 F$=""
140 FOR I= 1 TO 21
150 GET#1,X$
160 F$=F$+X%
170 NEXT I

Da in der Zeile 120 auf das 40. Byte des 10. Records

positioniert wird und die Schleife in den Zeilen 140-170 die

folgenden 21 Bytes (Bytes 40-40 des Records) in F$ einliest,

befindet sich das dort enthaltene Feld nach Ablauf dieser

Routine in F#.

Sie sehen also, daß zum Arbeiten mit einem Teil des Records

nicht der gesamte Record eingelesen werden muß. Der

Positionier-Befehl ermöglicht dies.

1.5.6 Schließen einer relativen Datei

Beim Schließen einer relativen Datei gibt es keine

Unterschiede zur sequentiellen Speicherung. Da aber zur

Verwaltung einer relativen Datei immer der Befehlskanal 15

zum Senden des Positionierbefehls offen gehalten werden muß,

muß auch dieser geschlossen werden. Selbstverständlich muß

die Filenummer, die beim OPEN-Befehl gewählt wurde, auch beim

SchlieBen dem File bzw. dem Befehlskanal entsprechen.

1.5.7 Suchen eines Records nach der binären Methode

27

Im Normalfall wird auf jedem Record mit der Recordnummer

zugegriffen. Nun kann es aber z.B. vorkommen, daß in einer

relativen Adressendatei der Herr Müller gesucht wird, die

entsprechende Recordnummer aber nicht bekannt ist. Nun muß

der Herr Müller gesucht werden. Eine Möglichkeit ist, jeden

Record zu lesen, mit dem Namen Müller zu vergleichen, usw.

Das kann bei einer Datei, die vieleicht 1000 Adressen

enthält, sehr zeitaufwendig sein. Liegt die Datei in

sortierter Form vor, so kann dieser Record mit einer anderen

Methode gesucht werden. Diese Methode nennt man "binäres

Suchen". Hierbei ist es aber unbedingt notwendig, die Datei

sortiert aufrechtzuhalten. Wird z.B. ein Record hinzugefügt,

so muß dieser entsprechend eingeordnet werden.

Das binäre Suchen kann man an einem einfachen Beispiel

verdeutlichen: Wenn Sie z.B. in einem Telefonbuch nach einer

Telefonnummer suchen, so gehen Sie sicher nicht sequentiell

vor. Sie schlagen die Mitte des Buches auf und vergleichen,

ob der erste Buchstabe des gesuchten Namens dem

aufgeschlagenen Teil entspricht. Ist der gesuchte Name

kleiner, so schlagen Sie die Hälfte des 1. Teils auf, usw.

Sie gehen also systematisch vor.

Beim binären Suchen wird nicht sequentiell weitergesucht,

wenn ein Record gefunden ist, der nicht dem gesuchten Record

entspricht. Es wird anschließend auf den Record zugegriffen,

der jeweils durch Zweiteilung der restlichen Anzahl der

Datensätze ermittlelt wird. Daa folgende Beispiel

verdeutlicht dies:

Es existiert folgende, aufwärts sortierte, relative Datei:

Recor dnummer Inhalt

1 1785

2 199797

3 2005

4 2230

5 2465

& 2897

7 3490

8 3539

9 4123

10 5000

11 3210

12 6450

13 6500

14 6550

15 5999
Von diesen aufgeführten 15 Records wird der Record mit dem

Inhalt 3490 gesucht. Es ist nicht bekannt, auf welchem Platz

er gespeichert ist.

Zunächst ist festzustellen, aus wieviel Records die Datei

besteht. Im vorliegenden Fall aus 15. Die festgestellte Zahl

ist durch zwei zu teilen. Diese Mitte der Datei stellt den 8.

Record mit dem Inhalt 3539 dar. Es ist nun festzustellen, ab

dieser Record den Suchbegriff 3490 enthält und falls nicht,

38

ob der Suchbegriff größer oder kleiner als der vorgefundene

Inhalt, in diesem Fall 3539 ist. Das Vergleichsergebnis zeigt

kleiner an. Somit befindet sich der gesuchte Record in der

Menge der Records, die kleiner als der Vorgefundene ist. Es

ist also auf die Mitte dieser Restes zuzugreifen. Wir

erhalten den Record 4 mit dem Inhalt 2230. Das
Vergleichsergebnis zeigt an, daß der Suchbegriff 3490 größer

als der bei Record 4 vorgefundene Inhalt 2230 ist. Der dritte

Zugriff geht auf die Mitte zwischen dem 4. und dem 8. Record,

also auf den &. Record mit dem Inhalt 2897. Das

Vergleichsergebnis zeigt abermals kleiner an; das bedeutet,

es ist die Mitte zwischen den Records & und 8 zu bilden.

Somit ist der Suchbegriff unter Record 7 zu finden.

Das Prinzip des binaren Suchens besteht darin, das jeweils,

je nach Vergleichsergebnis, aufwärts oder abwärts die Mitte

zu suchen ist, bis der Suchbegriff gefunden wurde. Die

maximale Anzahl der Suchvorgänge errechnet sich nach

folgender Formel:

S=INT (LOG (N) /LOG (2) +1)

Hierbei ist S die Anzahl der Zugriffe und N die Anzahl der

Records der Datei. In einer sortierten, relativen Datei mit

z.B. 1000 Records werden maximal 10 Zugriffe zum Aufsuchen

eines beliebigen Records benötigt!

Erstellen wir die relative Datei mit 15 Datensätze, um

anschließend innerhalb dieser Datei binär zu suchen:

100 OPEN1,8,2,"BINAER.REL,L,"+CHR$ (5)
110 FORI=1T015
120 READ RC$
130 PRINT#1,RC$
140 NEXT I
150 CLOSE 1:CLOSE 2:END
160 DATA 1985,1999, 2005, 2230, 2465, 2897, 3490, 3539
170 DATA 4123,5000,5210, 6450, 6500, 6550, 4999

Dieses Programm erstellt die 15 Records umfassende Datei

"BINAER.REL" mit den in Zeile i160 bis 170 angegebenen Werten.

Hier wird der Positionier-Befehl nicht benätigt, da die Datei

vom ersten bis zum letzten Satz komplett beschrieben wird.

Der Zeiger steht also nach Eröffnen der relativen Datei auf

dem ersten Record. In dieser Datei sollen nun Records binär

gesucht werden. Das folgende Programm ist nach der Logik des

binären Suchens aufgebaut:

100 OPEN1,8,2,"BINAER.REL,L,"+CHR$ (5)
110 OPEN2,8,15
120 PRINTCHR$ (147)
140 N=15: REM ANZAHL RECORDS
150 I=LOG (N) /LOG (2)
140 IFI-INT(II<>OTHENI=INT (I) +1
170 M=I-1
180 I=2*1
190 X=1/2
210 INPUT"SUCHBEGRIFF (* FUER ENDE): ";SB$

397

220 IFSBS="*#" THEN 320
230 IF M<O THEN PRINT“RECORD NICHT GEFUNNDEN":

250 PRINT#2, "P"+CHRS (2) +CHRS (X) +CHRS (0) +CHRS (1)
260 INPUT#1 , RCS
270 IF SB&=RC# THEN 340
280 IF SB$<RC#$ THEN X=X-2”M: GOTO2Z30
290 X=X+2”M
300 IF X>I THEN PRINT"DATEI UEBERSCHRITTEN":GOTO140
310 GOTO 230
320 CLOSE 1:CLOSE 2
330 END
340 PRINT"RECORD GEFUNDEN! "
350 PRINT“ INHALT :"RCF
360 GOTO140

Die Dokumentation des Programms:

100 Die relative Datei "BINAER.REL" wird geöffnet.

110 Der Befehlskanal wird geöffnet.
120 Der Bildschirm wird gelöscht.

140 Die Anzahl der Records wird in der Variablen N ge-

speichert.

150-190 Sofern die maximale Anzahl der Records keine

Zweierpotenz darstellt, wird die nächsthöherer

Zweierpotenz gebildet. Dabei wird der Dateibe-

reich zwar nach oben erweitert, aber es gehen auch

keine Records verloren. Der Exponent dieser Zweier-

potenz wird als Index benutzt. X wird der Wert

1/2 zugeordnet. I/2 bezeichnet die genau die Mitte

der (erweiterten) Datei. Außerdem wird wird die Va-

riable M angelegt, die den Anfangswert I-i1 enthält.

210-220 Der Suchbegriff wird eingelesen. Soll das Programm

beendet werden, so wird '*'’ eingegeben.

230 Wenn MO „ dann ist der Suchbegriff nicht gefunden

worden.

240 M wird um eins vermindert. Die nächste Potenzierung

mit M ergibt also die Hälfte des Restes der Datei.

250-250 Es wird auf den Record positioniert, dessen Nummer

in der Variablen X enthalten ist.

270 Entspricht der eingelesene Record dem Suchbegriff,
dann wird die Suche abgebrochen und der Record aus-

| gegeben.

280-310 Es wird festgestellt, ob der Suchbegriff kleiner

oder größer als der gelesene Record ist. Dement-

sprechend wird die Mitte des oberen oder unteren

Restes in die Variable X gespeichert und erneut ein-

gelesen.

220-330 Die Dateien werden geschlossen und das Programm be-

endet.

340-360 Der gefundene Record wird ausgegeben.

Dieses, in BASIC codierte, binäre Suchen ist universell

einsetzbar. Es müssen nur die Anzahl der Records und die

Vergleiche Suchbegriff/Record entsprechend angepasst werden.

60

Benutzen Sie also diese Suchroutine zum Auffinden von Records

in Ihren sortierten, relativen Dateien.

1.5.8 Suchen eines Records über seperate Index-Dateien

Wenn Sie häufig auf einzelne Datensätze gezielt und schnell

mit alphanumerischen Schlüsseln zugreifen wollen, die nicht

der logischen Satznummer entsprechen, und Sie Ihre Datei

nicht in entsprechend sortierter Form halten wollen, so

empfiehlt sich eine andere Methode.

Bilden Sie für jeden gewünschten Schlüssel-Begriff bzw. Index

eine eigene Index-Datei, in der pro Datensatz abgelegt sind

- jeweiliger Index

- zugehörige Satznummer

Diese Datei laden Sie bei Bedarf und zur Pflege ganz in den

Speicher. Ein Beispiel:

Die haben als relative Datei Ihre Adressverwaltung angelegt,

bestehend aus

—- Vorname

- Name

—- Straße

- PLZ

- Wohnort

- Telefonnummer

Sowohl nach dem Vornamen, als auch nach dem Namen möchten Sie
gezielt suchen können. Also bilden Sie zwei zusätzliche

relative Dateien, die als Felder nur den gewünschten

Schlüsselbgriff, z.B. den Vornamen, und die Satznummer des

entsprechenden Datensatzes in der Hauptdatei enthalten.

Die gewiinschten Indexdateien sollten Sie jeweils komplett im

Speicher halten, da dort schnellstmögliche Indexsuche

erfolgen kann. Wollen Sie z.B. auf den Datensatz zugreifen,

der als Vornamen "OTTO" hat, so durchsuchen Sie im Speicher

die entsprechende Indexdatei und greifen anschließend mit der
gefundenen Satznummer direkt auf den gewünschten Satz Ihrer

Adressdatei zu.

Verfolgen Sie nun ein Beispiel:

Wir nehmen an, es existiert eine Hauptdatei und eine

Indexdatei für den Namen:

Hauptdatei: Indexdatei:

Name Vorname weitere Felder Index Satznr.

(Name) LB HB

Walter Karl we mee mew eae Walter 01 00

Berger Rainer nn i ee nn Berger 02 00

61

Tietz Klaus see e eee eee Tietz 05 00

Schacht Rolf eeu een eee Schacht 04 00

Horstner Gustav eee a nan nec ans Horstner 93 00

Die Datei beinhaltet also 979 Datensätze. Bevor mit dem

Frogramm gearbeitet werden kann, muß die Indextabelle

eingelesen werden. Dies kann z.B. eine sequentielle Datei

sein, die in der mit DIM IT#(99) reservierten Speichertabelle

eingelesen wird. Die ersten 20 Zeichen eines jeden

Indextabellen-Platzes stellt den Vornamen dar. Das vorletzte

Byte (Nr.21)} ist das Lowbyte und das letzte Byte (Nr.22) das

Highbyte der Satznummer. Unter dieses Voraussetzungen kann

mit folgender Routine ein beliebiger Datensatz aufgesucht

werden:

100 INPUT "NAME"; Ns
110 FOR 1I=1T099
120 IF LEFT$(IT$,20)=N$THEN 150
130 NEXT I
140 PRINT "NAME NICHT GEFUNDEN! ":END
150 PRINT"DATENSATZ GEFUNDEN!"
160 OPEN1,8,2, "ADRESSEN,L, "+CHR$ (81)
170 OPEN 2,8,15
180 PRINT#2, "P"+CHR$ (2) +MIDS (IT#,21, 1) +CHRE(O)

+CHR& (1)
170 INPUT#1,RC$

Die Schleife in Zeile 110-130 durchläuft sequentiell die

Indextabelle nach dem gesuchten Namen, der sich in den linken

20 Zeichen befindet. Wird der Name nicht gefunden, so wird

die Schleife verlassen und in Zeile 140 eine entsprechende

Meldung ausgegeben, bevor das Programm beendet wird.

Wird in Zeile 120 eine übereinstimmung zwischen Index und

gesuchtem Namen festgestellt, so wird nach Zeile 150

verzweigt. Nach Ausgabe der Meldung wird die Adressendatei

geöffnet (falls sie nicht vorher geöffnet wurde). Näch dem

öffnen des Befehlskanals wird der Positionierbefehl zur

Floppy gesendet. Da im vorletzten Byte eines Indexeintrages

das Lowbyte der Satznummer enthalten ist, braucht dies

lediglich als MID$-Befehl eingebaut werden. Das Highbyte ist

bekanntlich null, wenn die Satznummer 200 nicht

überschreitet.

In Zeile 190 wird der Datensatz dann eingelesen und steht zur

Verfügung.

Der Zugriff über Indexdateien stellt ebenfalls eine sehr

62

schnelle und ungemein flexible Form der Dateiorganisation

dar. Theoretisch können Sie beliebig viele Indexdateien pro

Hauptdatei anlegen. Allerdings müssen Sie zwei wichtige

Einschränkungen beachten:

1. Bei Änderungen in der Hauptdatei, die Schlüsselfelder

betreffen, müssen auch die entsprechenden Indexdateien

gepflegt werden. Dies kann, besonders bei mehreren

Indexdateien, sehr aufwendig sein.

2. Zahl und Größe der Indexdateien, die Sie zum Zweck des

schnellen Zugriffs im Speicher Ihres Computers halten,

werden durch den verfügbaren Speicherplatz begrenzt.

1.5.9 Andern von Records

Der logische Ablauf zum Andern eines Records ist folgender:

1. Einlesen des Records

» “Splitten" des Records in seine Felder

3. Ändern der entsprechenden Felder

4. Zusammenfügen der Felder zu einem Record

3. Zurückschreiben des Records

Im Abschnitt 1.5.5 haben Sie einige Records in die Datei

"TEST.REL" geschrieben. Diese Datei hat folgende

Eigenschaften:

Recordlänge: 41 Bytes

Anzahl Records: 100

Anzahl Felder: 4

Lange, Position Feld i: 10, 1-10

" , " Feld 2: 5, 11-15

" Fun Feld 3: 10, 16-15

" > Feld 4: 15, 26-40

abschließendes RETURN?: ja, Position 41

Eine derartige Dateibeschreibung sollten Sie für jede Ihrer

Dateien anlegen. Dies ist z.B. sehr wichtig, wenn andere

Programme auf diese Daten zugreifen sollen.

In dieser Datei sollen nun Records geändert werden. Das

folgende Frogramm erfüllt diese Aufgabe:

 100 REM
110 REM VORBEREITUNGEN
120 REM
130 BL¢=" “
140 OPEN 1,8,2,"TEST.REL,L,"+CHR$ (41)
150 OPEN 2,8,15
1460 REM
170 REM RECORD EINLESEN
180 REM

63

190 PRINT CHR# (147)
200 INPUT"RECORDNUMMER (1-100): ";RN
205 IF RN<1 OR RN>100 THEN PRINT CHR# (145) 3 :GOTO200
210 PRINT" "
220 PRINT#2, "P"+CHRS (2) +CHRS (RN) +CHRS (0) +CHR# (1)
230 INPUT#1 ,RCS
240 IF ASC (RC#)<>255 THEN 270
200 PRINT “RECORD UNBESCHRIEBEN"
260 GOTO &30

280 REM RECORD AUFBEREITEN
290 REM
300 F#(1)=MID$(RC$,1,10)
310 F£(2)=MID$(RC$,11,5)
320 F£(3)=MID$(RC$,16,10)
330 F$(4)=MID$ (RC$,24,15)

350 REM FELDER ANZEIGEN

370 PRINT CHR# (147)
380 FOR [=1 TO 4
390 PRINT"FELD"sI3": "sF#C1)
400 NEXT I

430 REM FELDER ANDERN

450 PRINT"WELCHES FELD SOLL GEÄNDERT WERDEN (1-4)?"
460 GET X#: IF X$<"1" OR X$>"4" THEN 440
470 INPUT"NEUER INHALT =: “sF2 (VAL (X#))
480 PRINT"RECORD IST GEANDERT"
490 PRINT"NOCH ANDERUNGEN IN DIESEM RECORD (J/N)7?"
500 GET X#:IF X$<>"J" AND X#$<>"N" THEN 500
310 IF X#="J"THEN 340

330 REM FELDER VERKETTEN
340 REM
250 RCS=F4$(1)+LEF TS (BL, 10-LEN(F2(1)))
360 RCS=RC#+F$ (2) +LEF TS (BLE, 5-LEN (FS (2)))
970 RCS=RCS$+F 4 (3) +LEFTS (BLS, 1O-LEN (FS (3)))
380 RC#=RCS+F S$ (4) +LEFT# (BLS, 15—-LEN(FS(4)))
590 REM
600 REM RECORD ZURUCKSCHREIBEN
610 REM
620 PRINT#1 ,RC#
630 REM
640 REM PROGRAMM ENDE”?

6640 FRINT"NOCH ÄNDERUNGEN IN DER DATEI (J/N)?"
670 GET X#: IF X#<>"J" AND X#<>"N" THEN 670
680 IF X$="J" THEN 160
690 CLOSE 1: CLOSE 2: END

Nachdem Sie dieses Programm eingegeben und gestartet haben,

können Sie nun beliebige Records ändern. Diese Records müssen

allerdings mit dem im Abschnitt 1.5.5 enthaltenen Programm

64

erfasst worden sein!

Dieses Anderungsprogramm prüft die neuen Feldeingaben nicht

auf korrekte Lange, sondern schneidet die Üüberlänge ab.

Die wesentlichen Befehlsfolgen in diesem Frogramm sind in den

entsprechenden Abschnitten bereits ausführlich beschrieben

worden.

1.5.10 Ergänzen einer relativen Datei

Jede relative Datei hat eine vom Anwender festgelegte.

Recordzahl. Diese kann beim Einrichten der Datei festgelegt

werden, indem der letzte Record mit dem Wert CHR#$ (255)

beschrieben wird. Dieses Beschreiben des letzten Records hat

zu Folge, daß jeder Record unterhalb dieser Höchstgrenze

ebenfalls mit CHR#(255) beschrieben, also zum Beschreiben

freigegeben wird.

Die zweite Möglichkeit ist, daß die Datei beim Einrichten

nicht in Ihrem vollen Umfang freigegeben wird. Wird z.B. der

Record mit der Nummer 2 in die neue Datei geschrieben, so

wird gleichzeitig der Record 1 und 2 freigegeben, also mit

CHR£ (255? beschrieben. Ein weiteres Beschreiben des 90.

Records hat dann zur Folge, daß gleichzeitig die Records 4

bis 89 freigegeben werden, usw. Legen Sie also beim

Einrichten der Datei nicht den letzten Record fest, so ist

beim anschließendem Beschreiben der Datei mit einer

wesentlich längeren Verarbeitungszeit zu rechnen. Es ist also

sinnvoll, die Datei zu Anfang in Ihrem vollen Umfang

freizugeben.

Eine eingerichtete, relative Datei kann jederzeit, sofern es

die Diskettenkapazität erlaubt, vergrößert werden. Dazu wird

der neu ermittelte, letzte Record mit CHR$(255) beschrieben.

Gleichzeitig werden dann alle Records zwischen dem alten und

dem neuen Dateiende freigegeben.

Ein Schreibzugriff auf eine relative Datei, der über das

Dateiende hinausgeht, hat also keinen Fehler zur Folge. Wenn

die Diskette diese Erweiterung ermöglicht, wird die Datei

lediglich vergrößert. Ist ein Erweitern der Datei aufgrund

mangelner Diskettenkapazität nicht möglich, so wird der

Fehler "FILE TO LARGE" dem Fehlerkanal der Floppy übergeben.

Ein das Dateiende überschreitender Lesezugriff jedoch

verursacht den Fehler "RECORD NOT PRESENT" im

Floppy-Fehlerkanal.

1.5.12 “HAUSHALTSBUCH" mit relativer Datenspeicherung

Ein Beispiel einer kompletten Problemlösung mit relativer

Datenspeicherung bietet Ihnen einen quten Einblick in die

Organisation von relativen Dateien. Es soll Ihnen

verdeutlichen, wie man die Idee zu einem Programm realisiert.

Gleichzeitig dieses Programm für fast Besitzer dieses Buches

einsetzbar ist. °

45

Die Idee, ein Computer-Haushaltsbuch zu führen ist nicht

gerade neu. Viele Programmierer haben sich mit diesem Problem

beschäftigt. Doch die wenigsten lösten dieses mit Hilfe der

relativen Speicherung. Da die einzelnen Konten eines

Haushaltsbuches numeriert werden, eignen sich diese Nummern

sehr gut als Schlüssel zu dem entsprechenden Record. Die

Kontonummer stellt also gleichzeitig die Recordnummer dar.

Die nächste überlegung war, wie ein Record eines Kontos

aufgebaut sein muß. Um die Konten nicht nur mit Nummern,

sondern auch mit Klartext-Bezeichnung zu versehen, ist das

erste Feld des Records der Kontenname. Wir haben diesen Namen
auf 20 Zeichen festgelegt.
Da für jedes Jahr eine Datei geführt werden soll, sind 12

Felder notwendig, um die Kontensummen im Record

unterzubringen. Diese Summenfelder sind jeweils 10 Zeichen

groß. Diese Kontensummen werden als Strings abgelegt, die mit

Hilfe des VAL-Befehls in numerische Variablen umgesetzt

werden, um sie zu aktualisieren. Der Record umfaßt somit 141

Zeichen (20 für Name, 12%*10 für Monatssummen und 1 für

RETURN)

Der Aufbau des Records:

Feld Länge Position

Kontenname 20 1-20

Summe Januar 10 21-30

Summe Februar 10 31-40

Summe November 10 121-130

Summe Dezember 10 131-140
y a

Wir haben die maximale Anzahl der Konten auf 20 begrenzt.

Somit umfaßt eine Jahresdatei 20 Records mit je 141 Bytes.

Diese Dateistruktur war Grundlage jeder weiteren

überlegungen.

Die nächste Uberlegung war, welche Funktionen dieses Programm
bieten sollte. Dabei legten wir uns auf folgende

Programmteile fest:

* Konten anlegen

* Buchen

* Kontenübersicht

* Kontennamen ausgeben

* Monatsübersicht

* Jahresübersicht

66

Konten anlegen:

Dieses Unterprogramm errichtet die Datei für ein Jahr. Es
wird die Anzahl der Konten und deren Namen abgefragt. Die

jeweiligen Records werden dann mit den Kontennamen und den

auf 0 gesetzten Summenfeldern angelegt. Sollte eine Datei

bereits unter dem zu Anfang bestimmten Namen existieren, kann

diese gelöscht und neu eingerichtet werden.

Buchen:

Nach Eingabe der Nummer des zu buchenden kontos wird

bestimmt, ob es sich um ein Einnahme oder Ausgabekonto

handelt. Das Konto "GEHALT" z.B. ist ein Einnahmekonto und

das Konto "MIETE" ein Ausgabekonto.

Danach wird der alte Stand des Kontos ausgegeben. Nun buchen

Sie den entsprechenden Betrag der immer positiv ist. Sollte
es sich um eine Korrekturbuchung handeln, so geben Sie einen

negativen Betrag an. |
Nun wird der neue Stand ausgegeben und eine erneute Buchung

ermöglicht.

Kontenübersicht

Nach Eingabe der Kontonummer werden die Summen der 12 Monate

somwie die Gesamtsumme des Jahres ausgegeben. Somit erhalten

sie einen überblick über die Ausgaben bzw. Einnahmen eines

Kontos in einem Jahr.

Kontennamen ausgeben

Jedes Konto wird mit seiner Nummer bestimmt. Sollte einmal

eine Nummer in Vergessenheit geraten, so besteht die

Möglichkeit, in diesem Unterprogramm alle Konten mit Nummer

und entsprechendem Namen auszugeben.

Monatsübersicht:

Hier werden die Einnahmen bzw. Ausgaben aller Konten in einem

Monat ausgegeben. Der Monatssaldo aller Konten schließen
dieses Unterprogramm ab

Jahresübersicht:

Dieses Unterprogramm zeigt Ihnen die Jahressummen aller

Konten und den Jahressaldo. Dieses Auflisten nimmt etwas Zeit

in Anspruch, da alle Monatsfelder jedes Records gelesen und

aussummiert werden muß. Es wird also auf die gesamte Datei

zugegriffen.

67

Wir glauben, alle wesentlichen Anforderungen an ein

derartiges Programm erfüllt zu haben. Sollten Sie aber die

ein oder andere Idee einer Erweiterung haben, so studieren

Sie das Frogramm mit der anschließenden Dokumentation. Dann

werden Ihnen Eingriffe in das Programm zur individuellen

Anpassung keine Probleme bereiten.

Das Listing des Programms:

100 POKES3Z2B0 , 2: POKES3261 ,2:PRINTCHR$ (158) 5:
BL+=" "=DIMS (12)

110 GOSUB2Z050
120 INPUT"AKTUELLES JAHR =: "5J$
130 IFJ#< "1983 "ORJ$>"1999" THENPRINTCHR# (145) 35 = GOTO120
140 GOSUB2050
150 PRINT"FUNKTIONSAUSWAHL : "
 160 PRINT" "sPRINT

170 PRINT" -1- KONTEN ANLEGEN"
180 PRINT" -2- BUCHEN"
190 PRINT" -3- KONTENUEBERSICHT"
200 PRINT" -4- KONTENNAMEN AUSGEBEN"
210 PRINT" -5- MONATSUEBERSICHT"
220 PRINT" -&- JAHRESUEBERSICHT":PRINT
230 PRINT" -0—- PROGRAMMENDE"
240 GET X$:IF X#<"O" OR X$>"6" THEN 240
250 IF X#<>"O"THEN270
240 END
270 ON VAL (X#)GOSUB 290,560,920,1160,1370,1720
280 GOTO140

300 REM KONTEN ANLEGEN

320 GOSUB2050
330 PRINT"ACHTUNG! EINE EVTL. DATEI DIESES JAHRES"
340 PRINT"WIRD GELDESCHT ! "PRINT
350 PRINT"SICHER (J/N)?"
360 GETX#: IFX$<>"J"AND X#<>"N"THEN 340
370 IF X#="J"THENS9O
380 CLOSE1:CLOSE2: RETURN
390 DPEN2,8,15,"S:KONTEN"+J$
400 OPENi,8,2,"KONTEN"+J$+" ,L, "+CHR$ (141)
410 GOSUB2050
420 INPUT"WIEVIELE KONTEN (1-20): "3KZ
430 PRINT
440 IFKZ<10RKZ>ZOTHENPRINTCHRE (145) 5 :5DT0420
450 FORI=1TOKZ
440 PRINT"NAME KONTO NR.";1I;": "3
470 INPUTKN$
480 IFLEN (KN$) >2OTHENPRINTCHRS$ (145) ; :60TO440
490 RCS=KN¢+LEFTS# (BLS, 20—LEN (KN#))
500 FORX=1T012
510 RCS=RC$+STRS (0) +LEFTS (BL#,8)
520 NEXTX
S30 PRINT#1,RC$
540 NEXT I

68

CLOSE 1: CLOSE2: RETURN
REM
REM BUCHEN
REM
GOSUB2050
INPUT “KONTONUMMER";KN
IFKN< 1ORKN>20THENPRINTCHRS (145) 5 = GOTOQ600
GOSUB2140
PRINT“ "
PRINT"NR."5KN5" — “SKN
PRINT" “
PRINT"EINNAHME ODER AUSGABE (E/A)?"
PRINT" "
GETX#: IFX$< >"E"ANDX$< > "A" THENSSO
INPUT "MONAT (1-12) 2 "3M
IFM< LORM>12THENPRINTCHR$ (145) 5 = GOTO4&90

PRINT"
PRINT"ALTER STAND = "3S (M)
PRINT" "
INPUT "BUCHUNGSBETRAG : ";BB
PRINT" "
IFX$="E"THEN S(M)=S(M)+BB: GOTO780
5 (M) =S (M) -BB

PRINT"NEUER STAND 2 "3S (M)
PRINT"
RC#=KN$+LEFT£ (BL$,20-LEN (KN))
FORI=1T012
SF=STRF(S(I))
RC$=RC#+S$+LEF TS (BLS, 10—-LEN(S#))
NEXTI
PRINT#2, "P"+CHR# (2) +CHRS (KN) +CHR$ (0) +CHRE (1)
PRINT#1,RC$
CLOSE1:CLOSE2
PRINT"WEITERE BUCHUNGEN (J/N)?"
GETX$= IFX#< >"J"ANDX$< >" N" THENBFO
IFX$="J" THENGOSUB2050: GOTO400
RETURN
REM
REM KONTENUEBERSICHT
REM
GOSUB2050
INPUT "KONTONUMMER : "3KN
IFKN< LORKN>2OTHENPRINTCHR$ (145) ; : GOTO960
GOSUB2140
GOSUB2050: PRINTCHR$ (145) 5 CHR$ (145) 5
PRINT" "
PRINT"NR. "5KN5" — “sKN¢
PRINT" "
PRINT"MONAT SALDO"
PRINT" "
GS=0
FORI=1T012
PRINTI; TAB (8) 3S(1)
GS=GS+S (1)
NEXTI
PRINT" "

69

PRINT"GESAMT"; TAB (8) ;GS
PRINTTAB (8) ; "======="
PRINT"WEITER MIT RETURN"
INPUTX$
CLOSE1:CLOSE2: RETURN
REM
REM KONTENNAMEN AUSGEBEN
REM
GOSUB2050

OPEN1 ,8,2, "KONTEN"+J$+" ,L,"+CHR$ (141)
OPEN?,8,15
I=1
PRINT#2, "P"+CHR# (2) +CHR¢ (1) +CHRS (0) +CHR$ (1)
RC$= iim]

FORX=1T020
GET#1,X#
RC#=RC#+X$
NEXTX
INPUT#2,X
IFX=SOTHEN 1340
PRINTI;" - "sRC#
I=I+1:G0TO1230
PRINT"WEITER MIT RETURN"
INPUTX$
CLOSE1:CLOSE2: RETURN
REM
REM MONATSUEBERSICHT
REM
GOSUB2050
INPUT"MONAT : "3M
GOSUB2050
PRINT"

PRINT"NR. NAME
PRINT"

BETRAG"

DOPEN1,8,2,"KONTEN"+J$+",L,"+CHR# (141)
DPEN2,8,15

GS=0

FOR KN=1T020
KNS="".S¢=""

PRINT#2, "P"+CHR (2) +CHR (KN) +CHRS (0) +CHR# (1)
FOR I=1T020
GET#i,X¢
KNS=KN#+X$
NEXTI
INPUT#2,F
IFF<>SOTHEN 1590
GOTO1470
PRINT#2, "P"+CHR# (2) +CHRS (KN) +CHR# (0) +CHR# (20+ (M—1) #10)
FOR I=1T010
GET#1,X$
S$=S$+X$
NEXT I
GS=GS+VAL (S#)
PRINT KN; TAB(S) sKN#3 TAB (246) ,5#
NEXT KN
 PRINT"

70

PRINT"GESAMTSALDO" ; TAB (26) 5 STR# (GS)
PRINTTAB (26) ; "======="
FRINT"WEITER MIT RETURN";
INPUTX#: CLOSE1: CLOSE2: RETURN

REM
REM JAHRESUEBERSICHT
REM
GOSUB2050
OPEN1 ,8,2, "KONTEN"+J#+",L,"+CHR# (141)
OPEN?,8,15
PRINT" "
PRINT"NR. NAME JAHRESALDO"
PRINT" "
GS=0
FOR KN=1T020

PRINT#2, "P"+CHR$ (2) +CHR$# (KN) +CHR# (0) +CHR# (1)
RC#= va 88

FORI=1T0140
GET#1,X$
RC#=RCOS+X$
NEXTI
INPUT#2,F: IFF=SOTHENI980
KN$=LEFT$ (RC#, 20)
JIS=0
FORI=1T010
JS=JS+VAL (MID¢ (RC$,20+ (1-1) #10,10))
NEXTI
GS=G6S+IS
PRINTEN; TAB (4) sKN$3 TAB (24) 5 IS
NEXTKN
PRINT" "
CLOSE1:CLOSE?
PRINT"GESAMTSALDO"; TAB (24) 368
PRINTTAB (24) ; "======="
PRINT"WEITER MIT RETURN"

REM PROGRAMMMKOFF
REM
PRINTCHR# (147);

 PRINTTAB (4) 5"
PRINTTAB(4)5;"H AUS HALTS BUCH "+J$
PRINTTAB (4) 5"

PRINT: PRINT
RETURN
REM
REM KONTO EINLESEN
REM
OPEN! ,8,2, "KONTEN"+J#+" ,L, "+CHR# (141)
OPENZ,8,15

PRINT#2, "P"+CHR$ (2) +CHRS (KN) +CHR# (0) +CHR$ (1)
RC+= ua

FORI=1T0140
GET#1,X$
RC$=RO$+X$

71

2240 NEXT I
2250 INPUT#2,F
2260 IFF<>SOTHEN 2300
2270 PRINT"JAHRESDATEI ODER KONTO NICHT GEFUNDEN! "= PRINT
2280 PRINT"WEITER MIT RETURN"
2290 CLOSE1:CLOSE2: RETURN
2300 KNS=LEFT# (RC$,20)
2310 GS=0
2320 FORI=1T012
2330 S(1)=VAL (MID¢ (RC#, 20+ (1-1) #10,10))
2340 GS=GS+S(1)
2350 NEXT I
2340 RETURN

Die Dokumentation des Programms:

Vorspann:

100 Bildschirm- und Zeichenfarbe setzen; Leerzeichen-

string definieren; Variable für Kontensummen

dimensionieren.

110-130 Programmkopf anzeigen und aktuelles Jahr einlesen.

140-280 Programmfunktionen anzeigen und Auswahl einlesen;

entsprechendes Unterprogramm aufrufen.

Konten anlegen:

390-400 Evtl. vorhandene Datei dieses Jahres löschen und

neue Datei eröffnen.

480 Eingebenen Kontennamen in der Position 1-20 des

Records RC# bereitstellen.

300-540 Monatssummen auf Null setzen und als

Stringvariablen im Record bereitstellen.

530 Record mit abschließendem RETURN übertragen. RETURN

wird standardmäßig von PRINT gesendet.

Buchen:

370 Routine "Konto einlesen" aufrufen. Diese Routine

stellt die Monatssummen des Kontos in den Variablen

§(1) bis S(12) zur Verfügung.

800 Kontenname in Record übertragen.

810-840 Kontosummen in Record übertragen.

850-840 Record übertragen.

Kontentibersicht:

2780 Gewünschtes Konto einlesen und Monatssummen in den

Variablen S(1) bis S(12) bereitstellen.

1050-1090 Monatssummen anzeigen und in Gesamtsumme (69)

aufaddieren.

1110 Gesamtsumme anzeigen.

72

Kontennamen ausgeben:

1220 Kontonummer auf Anfangswert setzen.

1230 Auf Record des entsprechenden Kontos positionieren.

1240-1280 Kontoname aus Record in RC$ einlesen.
1290-1300 Wenn RECORD NOT PRESENT im Fehlerkanal (Fehler 50),

dann Routine abbrechen.

1320 Kontonummer und Name ausgeben.

Monatsübersicht:

1490-1560 Schleife zum Einlesen aller Konten.

1510 Auf Record positionieren.

1520-1550 Kontenname einlesen.

1540-1580 Feststellen, ob Konto vorhanden; Abbruch wenn nicht

alle 20 Konte definiert wurden.

1590 Positionieren auf Summenfeld des gewunschten

Monats.

1600-1630 Einlesen der Monatssumme.

1640 Monatssumme in Gesamtsumme aufaddieren.

1450 Kontonummer, Kontoname und Monatssumme ausgeben.

1680 Gesamtsaldo (Gesamtsumme? ausgeben.

Jahresübersicht:

1820-1970 Schleife zum Einlesen aller Konten.

1830 Auf Record positionieren.

1850-1880 Gesamten Record in RC$ einlesen.

1890 Testen, ob RECORD NOT FRESENT.

1700 Kontoname aus Record holen.

1720-1740 Monatssummen lesen, in numerischer Form umwandeln

und in Jahressumme (JS) aufaddieren.

1750 Jahressumme (JS) in Gesamtsumme (65) aufaddieren.

1780 Kontonummer, Kontoname und Jahressumme ausgeben.

2000 Gesamtsaldo (Monatssaldo) ausgeben.

Konto einlesen:

2190 Auf in KN übergebenen Record positionieren.

2210-2240 Record in RC# einlesen.

2250-22460 Testen, ob RECORD NOT PRESENT.

2200 Kontoname aus Record lesen.

2320-2350 Monatssummen aus Record lesen, in numerischer Form

umwandeln und der Tabelle S(1) bis S(12) übergeben.

73

1.6 Die Fehlermeldungen der Floppy und ihre Ursachen

Machen Sie bei der Bedienung der Floppy einen Fehler oder

tritt ein Disketten- oder sonstiger Fehler auf, so

signalisiert dies die Floppy durch Blinken der roten
Leuchtdiode (LED) am Laufwerk. Die LED blinkt solange, bis

Sie die Fehlermeldung der Floppy gelesen haben oder bis Sie

einen neuen Befehl zur Floppy geschickt haben. Als erstes

wollen wir sehen, wie man die Fehlermeldung der Floppy

einlesen kann.

Dazu muß der Fehler— bzw. Kommandokanal unter der

Sekundäradresse 15 geöffnet sein:

100 OPEN 15,8,15
110 INPUTS15, A,B£,C,D
120 PRINT A,B#,C,D

War keine Fehlerbedingung aufgetreten, so führt dies zur
Ausgabe von

OÖ OK 0 OÖ

Dabei bedeutet die erste Zahl. (A) die Fehlernummer, in
unserem Falle 0; kein Fehler. Als nächstes folgt die
Fehlermeldung im Klartext (Variable B$). Die Variablen C und

D enthalten die Track- und Sektornummer, bei denen der Fehler

aufgetreten ist, sofern dies von der Fehlerart her möglich

ist (hauptsächlich bei Hardware-Fehlern und blockorientierten

Befehlen).

Eine analoge Routine gibt die Fehlermeldung zusammenhängend

wieder:

100 OPEN 15,8,15
110 GETS15,A$: PRINT A$; : IF ST<>64 THEN 110

00, OK,00,00

Hier werden solange Zeichen vom Fehlerkanal geholt und

ausgegeben, bis das Ende erkannt wird (Status = 64). Dies

gibt die Fehlermeldung genauso wieder, wie dies mit dem BASIC

4.0 Befehl

PRINT DS#

möglich ist. Hier sind DS# und DS reservierte Variablen, die

die komplette Fehlermeldung bzw. die Fehlernummer enthalten.

Jeder Bezug auf diese Variablen gibt den Fehlerstatus der

letzten Diskettenoperation wieder.

Auf den nächsten Seiten sind nun alle möglichen Fehler-

meldungen in Detail beschrieben.

74

00, OK ,00,00

Diese Meldung tritt dann auf, wenn die letzte Disketten-

operation fehlerfrei verlaufen ist oder falls nach dem

Lesen der letzten Fehlermeldung keine Daten oder kein

Befehl zur Floppy geschickt wurden.

O1,FILES SCRATCHED,XX,00

Dies ist die Rückmeldung nach einem SCRATCH-Befehl. Die

Zahl XX gibt dabei an, wieviel Dateien gelöscht wurden, da

z.B. durch die Verwendung des Jokers mit einem Befehl mehr

als eine Datei gelöscht werden kann. Da dies keine

eigentliche Fehlermeldung ist, blinkt dabei auch nicht die

LED. Arbeiten Sie mit dem BASIC 4.0 Befehl "SCRATCH’, so

wird die Rückmeldung automatisch geholt und angezeigt.

20,READ ERROR,TT,SS

Dieser Fehler bedeutet, daß der ‘Header’ {Kopf} eines

Blocks nicht gefunden wurde. Dabei handelt es sich meist

um eine defekte Diskette. TT und SS bezeichnen hier Track

und Sektor, bei dem der Fehler aufgetreten ist. Maßnahmen:

Defekte Diskette auswechseln.

21,READ ERROR,TT,SS

Auch dies ist ein Lesefehler. Hier wurde zu einem Block

die entsprechende SYNC (Synchron-) Markierung nicht

gefunden. Als Ursache hier kann keine oder eine nicht

formatierte Diskette sein. Dieser Fehler kann auch auf

einen dejustierten Schreib/Lesekopf hindeuten. Maßnahmen:

Entweder Diskette austauschen, formatieren oder

Schrieb/Lesekopf justieren lassen.

22,READ ERROR,TT,SS

Diese Fehlermeldung bedeutet einen Früfsummenfehler im

Header eines Datenblocks, der durch fehlerhaftes Schreiben

eines Blocks verursacht sein kann.

23,READ ERROR,TT,SS

Bei diesem Lesefehler konnte ein Datenblock zwar in den

DOS-Puffer gelesen werden, es wurde jedoch ein Prüf-

summenfehler festgestellt. Ein oder mehrere Datenbytes

sind fehlerhaft. Maßnahmen: Files so weit wie möglich auf

eine andere Diskette "retten".

24,READ ERROR,TT,SS

Auch bei dieser Fehlermeldung handelt es sich um einen

Prüfsummenfehler entweder im Datenblock oder im voraus-

gehenden Datenheader. Es wurden fehlerhafte Bytes ein-

gelesen. Maßnahmen: wie Fehler 23.

Z5,WRITE ERROR,TT,SS

Dieser Fehler ist eigentlich ein VERIFY ERROR. Nach jedem

Schreiben eines Datenblocks werden die Daten noch einmal

gelesen und mit den Daten im Puffer verglichen. Bei

fehlender übereinstimmung wird dieser Fehler gemeldet.

Maßnahmen: Befehl, der den Fehler verursachte wiederholen.

Falls kein Erfolg, dann entsprechenden Datenblock mit

753

BLock-Allocate für weitere Bewtzung sperren.

Z&, WRITE PROTECT ON,TT,SS

Es wurde der Versuch unternommen, auf eine Diskette zu

schreiben, die einen Schreibschutzaufkleber enthält.

Maßnahmen: Schreibschutz entfernen.

27,READ ERROR,TT,SS

Hier handelt es sich um einen Früfsummenfehler im Header

eines Datenblocks. Maßnahmen: Befehl wiederholen oder

Block sperren.

28,WRITE ERROR,TT,SS
Nach dem Schreiben eines Datenblocks wird die SYNC

(Synchron-) Zeichenfolge des nächsten Datenblocks nicht

gefunden. Maßnahmen: Diskette neu formatieren oder

austauschen.

29,DISK ID MISMATCH,TT,SS

Die ID (zweistellige Diskettenidentifikation) im

DOS-Speicher stimmt nicht mit der ID auf der Diskette

überein. Die Diskette wurde entweder nicht initialisiert

oder es liegt ein Fehler im Header eines Datenblocks vor.

Maßnahmen: Diskette initialisieren.

30 ,5YNTAX ERROR,00,00
Ein Befehl, der über den Kommandokanal geschickt wurde,

kann vom DOS nicht interpertiert werden. Maßnahmen: Befehl

überprüfen und korrigieren.

31,5YNTAX ERROR,00,00

Ein Befehl wird vom DOS nicht erkannt, z.B. BACKUP-Befehl

(Duplicate) auf der 1541. Maßnahmen:

Ausweichbefehl/programm verwenden.

32,5YNTAX ERROR,00,00

Der über den Kommandokanal gesandte Befehl ist länger als

40 Zeichen. Maßnahmen: Befehl verkürzen.

33,5YNTAX ERROR,00,00

Beim OPEN- oder SAVE-Befehl wurde der Joker ('’#’, “?"}

unzulässig verwendet. Maßnahmen: Joker entfernen.

34,5YNTAX ERROR,00,00
Das DOS kann den Filenamen in einem Befehl nicht finden,

weil z.B. der Doppelpunkt ‘:° nach dem Befehlswort

vergessen wurde. Maßnahmen: Befehl überprüfen.

39,FILE NOT FOUND,O0,00
Benutzerprogramm vom Typ ’USR’ zum automatischen Ausführen

wurde nicht gefunden. Maßnahmen: Filenamen überprüfen.

SO „RECORD NOT PRESENT,O00,00
Bei einer relativen Datei wurde ein Datensatz ange-

sprochen, der nocht nicht geschrieben wurde. Beim

Schreiben eines Datensatzes ist dies kein eigentlicher

76

Fehler, sondern weist nur darauf hin, daß ein neuer

Datensatz angelegt wird. Sie können diese Fehlermeldunge

vermeiden, wenn Sie beim Anlegen einer relativen Datei

direkt in den Datensatz mit der höchsten Nummer CHR$ (255)

schreiben. Bei weiteren Zugriffen kommt dieser Fehler dann

nicht mehr vor.

31,OVERFLOW IN RECORD,00,00

Beim Schreiben eines Datensatzes in eine relative Datei

ist die Anzahl der Zeichen (einschließlich des Carriage

Return) größer als die Datensatzlänge der Datei. Die

uberzahligen Zeichen werden ignoriert.

s2,FILE TOO LARGE ,OO,00
Die Datensatznummer einer relativen Datei ist zu groß; für

das Anlegen dieses Datensatzes reicht die freie Dis-

kettenkapazität nicht mehr aus. Maßnahmen: Andere Diskette

verwenden oder Recordanzahl veringern.

60,WRITE FILE OPEN,O0,00
Es wurde versucht, eine Datei zum Lesen zu öffnen, die

beim Schreiben nicht geschlossen wurde, weil z.B. die
Diskette aus dem Laufwerk genommen wurde, ehe die geöff-

nete Datei geschlossen wurde. Maßnahmen: Modus ‘“M° im

DPEN-Befehl zum Auslesen dieser Datei verwenden.

61,FILE NOT OPEN,00,00

Es wurde eine Datei angesprochen, die nicht geöffnet war.

Maßnahmen: Datei öffnen oder Dateiname überprüfen.

62,FILE NOT FOUND,00,00
Es wurde versucht, ein Programm zu laden oder eine Datei

zu öffnen, die nicht auf der Diskette existiert.

Maßnahmen: Filename überprüfen.

63,FILE EXISTS,00,00

Der Versuch, eine neue Datei mit einem Namen anzulegen,

der schon auf der Diskette existiert, führt zu dieser

Fehlermeldung. Maßnahmen: Anderen Filenamen oder

Klammeraffe verwenden.

64,FILE TYPE MISMATCH,00,00

Der Dateityp beim öffnen einer Datei stimmt nicht mit dem

Dateityp im Directory überein. Maßnahmen: Filetyp

korrigieren.

65,NO BLOCK,TT,SS

Diese Fehlermeldung wird beim BLOCK-ALLODCATE Befehl

ausgegeben, „nenn der zu belegende Block nicht mehr frei

war. Das DOS sucht in diesem Falle selbsttätig einen

freien Block mit höherer Sektor- und/oder Tracknummer und

gibt diese Werte als Track- und Sektornummer der

Fehlermeldung aus. Ist kein Block mit größerer Nummer mehr

frei, wird zweimal O ausgegeben.

6, ILLEGAL TRACK OR SECTOR,TT,SS

77

Wenn man bei den Blockbefehlen sich auf nicht existierende

Blocks bezieht, wird diese Fehlermeldung ausgegeben.

47, ILLEGAL TRACK OR SECTOR,TT,SS

Die Track-Sektor-Verkettung einer Datei zeigt auf einen

nicht existierenden Track oder Sektor.

70,ND CHANNEL „00,00

Es wurde versucht, mehr Dateien zu öffnen als Kanäle

vorhanden sind oder ein Direktzugriffskanal ist schon

belegt.

71,DIR ERROR,TT,SS

Die Anzahl der freien Blocks im DOS-Speicher stimmt mit

dem Bitmuster der BAM nicht überein. Evtl. wurde die

Diskette nicht initialisiert.

72,DISK FULL,00,00

Auf der Diskette sind nur noch weniger als 3 Blocks frei

oder die maximale Anzahl an Directoryeinträgen wurde

erreicht (144 auf der VC 1541).

73,CBM DOS V2.6 1541,00,00
Diese Meldung erscheint als Einschaltmeldung der VC 1541.

Als Fehlermeldung tritt sie auf, wenn versucht wird, auf

eine Diskette zu schreiben, die nicht mit der gleichen

DOS-Version formatiert wurde, z.B. mit dem Vorläufer der

CBM 4040, der CBM 3040 (DOS Version 1.0).

74,DRIVE NOT READY ,00O,00
Wenn man versucht, die Floppy anzusprechen, ohne daß eine

Diskette im Laufwerk liegt, erhält man diese Fehler-

meldung.

75, FORMAT SPEED ERROR,O00,00

Diese Fehlermeldung gibt es nur auf der CBM 8250. Sie

zeigt Abweichungen von der Normdrehzahl während der

Formatierung an.

78

1.7 übersicht aller Befehle mit Vergleich BASIC 2.0 -
BASIC 4.0 - DOS 5.1

BASIC 2.0 BASIC 4.0 (Abk.) DOS 5.1

OPEN — Modus ‘A’ APPEND (aP)

BACKUP (bA)

LOAD"#",8 & LIST CATALOG (cA) 8+ oder >+

Vialidate) COLLECT (col) @V oder >V

CONCAT (cant)

Ctopy?) COPY {coP) @c:.. oder >C:..
CLOSE ... DCLOSE (dC)

LOAD"...",8 DLOAD (db?) #file oder /file

OPEN ...,8,... DOPEN (dQ)

OPEN 1,8,15 DS#, DS @ oder >
SAVE"...",8 DSAVE (dS)

N (ew? HEADER (hE) @N:.. oder >N:..
I(nitialise) I(nitialise) 91 oder >I

P RECORD (re)

Rtename) RENAME (reN) @R:.. oder >R..

S(cratch) SCRATCH (sC) @S:.. oder >S..

Diese Tabelle stellt die verschiedenen BASIC-Versionen

gegenüber. Das DOS 3.1 befindet sich auf der

TEST/DEMO-Diskette und wird im Kaptitel 4.2.1 beschrieben.

Der wesentliche Unterschied zwischen BASIC 2.0 und BASIC 4.0

ist, daf mit BASIC 2.0 jeder Befehl, der vom

Disketten-Betriebssystem (DOS) ausgeführt wird, über den

Kanal 15 gesendet werden muß. Die Disketten-Befehle des BASIC

4.0 jedoch verwalten diesen Kanal selbstständig (mit Ausnahme

von INITIALISE). So erzei'gt dieses BASIC z.B. aus dem Befehl

HEADER DO,"DISK1",IHJ die „leiche Befehlsfolge, die vom BASIC

2.0 dazu angegeben werden muß, nämlich:

OPEN 1,8,15, "N: DISK1,HJ"
CLOSE 1

Doch nun die Erklärung der BASIC 4.0-Befehle:

Beachten Sie die folgenden Parameter:

lfn = logische Filenummer

dn = Drivenummer — bei Doppellaufwerken gibt es ein

Drive O (DO) und ein Drive 1 (Di); Singlelauf-

werke werden mit DO adressiert.

ga = Geräteadresse der Diskettenstation (U4 bis U31)

Angaben in Klammern brauchen nicht angegeben werden. Dann

werden die Standardparameter DO und US eingesetzt.

APPEND:

79

Dieser Befehl ermöglich. das Anhängen von Datensätzen an eine

sequentielle Datei, wie es in BASIC 2.0 mit dem DPEN-Modus

"A’ realisiert wird.

Dieser Befehl hat das folgende Format:

APPEND#1 fn, "dateiname" (,Ddn,Uga)

Soll z.B die sequentielle Datei "SEQU.1", die sich auf Drive

OÖ befindet, um einen Datensatz erweitert werden, so ist dazu

die folgende Befehlsfolge notwendig:

100 APPEND#1,"SEQU.1",DO
110 PRINT#1,X$
120 CLOSE 1

BACKUP:

Mit diesem Befehl kann eine gesamte Diskette kopiert werden.

Der BACKUP-Befehl ist jedoch nur bei Doppel l aufwerken

einsetzbar. Beachten Sie das Format dieses Befehls:

BACKUP Ddn TO Ddn(,Uga)

Wichtig ist, daß entweder DO TO Di oder Di TO DO angegeben

werden muß. Ein Beispiel:

Es soll eine kopie der Diskette in Drive 1 auf die Diskette

in Drive © erstellt werden. Dazu wird folgender Befehl

eingegeben:1ni

BACKUP Di TO DO

CATALOG:

Der CATALOG-Befehl des BASIC 4.0 hat den Vorteil, daß das

Anzeigen des Disketteninhaltes nicht den BASIC-Speicher

löscht, wie es beim BASIC 2.0 der Fall ist. Das Format des

Befehls:

CATALOG (Ddn,Uga)

Wird bei Doppellaufwerken keine Drivenummer angegeben, so

werden die Inhalte beider Disketten ausgegeben. Bei

Singlelaufwerken wird CATALOG DO erzeugt. Ein Beispiel:

CATALOG DO

Es wird das Inhaltsverzeichnis der Diskette in Drive 0

ausgegeben.

COLLECT:

BO

Dieser Befehl entspricht dem VALIDATE-Befehl des BASIC 2.0.

Die Syntax des Befehls sieht so aus:

COLLECT (Din)

CONCAT:

CONCAT verkettet sequentielle Files, indem einem File die

Daten eines zweiten Files angehängt werden. Das Format:

CONCAT (Ddn,)}"fileit" to (Ddn,)"file2" (ON Uga)

Angenommen Sie wollen die Daten der Datei "SEQU.2" in Drive OÖ

an die Datei "SEQU.1" in Di anhängen. Um dies zu erreichen

geben Sie folgenden Befehl ein:

CONCAT DO,"SEQU.2" TO Di,"SEQU.1"

nn eee nn wees m

Mit diesem Befehl können Files (ausgenommen relative Files)

von einem Drive auf das andere kopiert werden. Somit findet

der Befehl bei Singlelaufwerken keine Anwendung. Die Syntax

des Befehls sieht folgendermaßen aus:

COPY (Ddn,)("filei") TO (Ddn,> ("file2">

Sollen alle Files übernommen werden (z.E. von Drive 0 auf

Drive 13, so reicht die die folgende Befehlsform aus:

COPY DO TO Di

DCLOSE:

Der Befehl DCLOSE hat dieselbe Funktion wie der einfache

CLOSE-Befehl, mit folgenden Ausnahmen:

DCLOSE schließt alle Files

DCLOSE#i schließt das File mit der Nummer 1

DCLOSE#1 ON U9 schließt das logische File #1 der Geräte-

adresse 9

DCLOSE U8 schließt alle Files der Geräteadresse 8

Der Befehl hat die folgende Syntax:

DCLOSE (#1fn) (ON Uga)

Der Befehl DLOAD hat den Vorteil, daß standardmäßig von

81

Geräteadresse 8 geladen wird. Das Format:

DLOAD "programm" („Ddn) („Uga)

Wollen Sie z.B. das Programm "PRG.2" von Drive OÖ laden oder

von einem Einzellaufwerk laden, so geben Sie den Befehl

DLOAD “PRG.2"

ein. Drive OO (DO) wird standardmäßig eingesetzt.

Dieser Befehl des BASIC 4.0 ist sehr umfangreich. Das

folgende Format bestätigt es:

DOPEN#1fn,"file"(,Ddn} („Uga) („fileparamter)

Das Besondere an dieser Art des öffnens ist der Fileparamter.

Es gibt zwei Fileparameter, die folgende Funktion haben:

"L'’-Farameter| 'W’-Farameter Wirkungsweise

JA NEIN Eine relative Datei wird zum

Schreiben geöffnet.

NEIN JA Ein sequentielles File wird

zum Schreiben geöffnet.

NEIN NEIN Ein File wird zum lesen ge-

öffnet. (REL,SEQ,PRG,USR)
Zusätzlich zum ’L’-Parameter muß die Recordlänge angegeben

werden (z.B. LB8O). Ein derartiger DOPEN-Befehl sieht dann so

aus:

DOPEN#1,"FILE.REL".DO,LBO

Hier wird ein relatives File mit einer Recordlänge von 80

Bytes zum Schreiben geöffnet.

Wird kein Fileparameter angeueben, so vird das argegebene

File zum Lesen geöffnet.

DS# & DS:

Nach Auftreten eines Diskettenfehlers kann entweder die

gesamte Fehlermeldung mit PRINT DS# oder nur die Fehlernummer

mit PRINT DS angezeigt werden. Selbstverständlich kann auch

innerhalb eines Programms der Fehler abgefragt und

dementsprechend verzweigt werden. Z.B.:

100 IF DS = 19 THEN GOTO.....

82

Mit diesem Befehl können Programme auf Diskette gespeichert

werden. Das folgende Format ist zu beachten:

DSAVE (Dadn,)"programmname" („Uga)

HEADER:

"Mit dem HEADER-Befehl werden im BASIC 4.0 Disketten

formatiert. Er entsprricht dem NEW-Befehl im BASIC 2.0. Die

Syntax des Befehls:

HEADER "diskettenname",DO,Iid(,„Uga)

oder HEADER Dan,"diskettenname",Iid

Hier gibt es zwei Möglichkeiten, das Laufwerk zu bestimmen.

Die Angabe id ist die Disketten-Identifikation. Wird sie

nicht angegeben, so wird der Disketten, vorausgesetzt sie ist

formatiert, lediglich ein neuer Name zugewiesen und alle

darauf befindlichen Files gelöscht.

RECORD:

Dieser Befehl entspricht dem Positionier-Befehl des BASIC

2.0, bzw. des DOS 2.4. Mit dem RECORD-Befehl kann also auf

einen Record in einer relativen Datei positioniert werden,

ohne daß diese Positionierung über Kanal 15 gesendet werden

muß. Die Syntax dieses Befehls verdeutlicht, wie komfortabel

diese Positionierung ist:

RECORD#1fn,rn(,bp)

Die logische Filenummer bezieht sich auf das geöffnete,

relative File. Für ‘rn’ wird die Recordnummer 3 (1-65535) und

für ‘bp’ evtl. die Position innerhalb dieses Records (1-254)

angegeben.

Ein Beispiel: Sie wollen auf das 12. Byte des 128. Records

einer mit der logischen Filenummer 2 geöffneten, relativen

Files positionieren. Der folgende Befehl ermöglicht dies:

RECORD#2,128,12

RENAME =

Dieses RENAME ist ähnlich dem RENAME des BASIC 2.0. Das

Format dieses Befehls:

83

.

RENAME (Ddin,„)"alter name" TO "neuer name" (,„Uga)

SCRATCH:

Diese Methode des Löschens von Files ist wesentlich

komfortabler, denn es kann mit einem Befehl gelöscht werden.

Das Format dieses Befehls:

SCRATCH (Ddn,)"“file"(,Uga)

Nach Eingabe eines SCRATCH-Befehls wird mit der Meldung "ARE

YOU SURE?" noch einmal eine Annulierung des Befehls

ermöglicht. Soll das File wirklich gelöscht werden, so geben

Sie 'Y’,„, ansonsten ‘N’ ein. Nach dem Löschen des Files

erscheint die Meldung "FILES SCRATCHED" auf dem Bildschirm.

84

Kapitel 2: Programmierung fiir Fortgeschrittene

2.1 Der Direktzugriff auf jeden Block der Diskette

Bei der Handhabung von Dateien und Programmen auf der Floppy,

wie sie in Kapitel 1 beschrieben ist, brauchen wir uns um die

Organisation auf der Diskette nicht zu kümmern, das Floppy-

betriebssystem (DOS) erledigt dies automatisch für uns.

Das DOS bietet jedoch auch die Möglichkeit, jeden Block auf

der Diskette, der durch Track (Spur) und Sektor bestimmt ist,

einzeln anzusprechen. Damit stehen uns jetzt weitreichende

Möglichkeiten zur Verfügung, von der Manipulation einzelner

Files bis zur Realisierung eigener neuer Dateistrukturen.

Um auf einen Block direkt zugreifen zu können, muß vom DOS
ein Datenkanal und ein Datenpuffer zugeordnet werden, über

den die Daten übermittelt werden. Der Datenpuffer dient zur

Zwischenspeicherung der Daten, ehe sie auf Diskette geschrie-

ben werden, bzw. in den sie von der Diskette gelesen werden.

Um dem DOS mitzuteilen, daß wir im Direktzugriff arbeiten

wollen, wird ein spezieller Filename im OFEN-Befehl benutzt:

OPEN 1,8,2, "#"

Mit diesem Befehl wird der logischen Filenummer 1 auf dem

Gerät 8, der Floppy, eine Direktzugriffsdatei zugeordnet. Zur

Datenübermittlung dient der Kanal 2 der Floppy. An Kanal-

nummern (Sekundäradresse beim OPEN-Befehl) stehen Ihnen 2 bis

14 zur Verfügung. O und 1 sind für LOAD und SAVE reserviert,

15 ist der Kommandokanal. Welche Sekundäradresse Sie wählen,

hat keine weitere Bedeutung. Natürlich dürfen Sie eine

Sekundäradresse nicht mehrmals verwenden, da das DOS beim

zweiten OPEN-Befehl mit gleicher Sekundäradresse die

vorherige Datei mit dieser Kanalnummer schließt. Das gilt

natürlich auch beim Arbeiten mit normalen Dateien.

Bei dieser Form des OPEN-Befehls sucht die Floppy selbst

einen freien Datenpuffer und weist ihn dem angesprochenen

Kanal zu. Wir können die Puffernummer lesen, wenn wir

unmittelbar nach dem OPEN-Befehl mit GET ein Zeichen abholen.

Dieser Wert enthält die Puffernummer.

100 OPEN 1,8,2, "#"
110 GET#1, A$
120 PRINT ASC (A$+CHR$ (0))
RUN

3

85

In unserem Falle wurde also Puffer 3 belegt. Die Numerierung

der Puffer geht von O bis 4. Die Puffer belegen jeweils 254

Byte (wie jeder Block auf der Diskette) und liegen bei der VC

1541 in folgenden Speicherbereichen:

Puffernummer Speicherbereich

0 3300 — $3FF, 768 - 1023

i #400 — S4FF, 1024 — 1279

2 #500 - S3FF, 1280 — 1535

3 $600 — S6FF, 1536 — 1791

4 $700 - $7FF, 1792 — 2047

Puffer 4 steht normalerweise nicht zur Verfügung, da dort die

BAM gespeichert ist. Arbeiten wir gleichzeitig noch mit

normalen Dateien, kann auch Puffer 3 nicht benutzt werden, da

er dann fürs Directory benutzt wird. Wollen wir beim

Direktzugriff einen bestimmten Pufferspeicher zuordnen, so

können wir dies beim OPEN-Befehl mit angeben.

OPEN 1,8,2, "#3"

Hiermit wird dem Kanal 2 der Puffer 3 (#600 - #4FF)

zugeordnet, sofern er noch frei ist. Falls nicht aus

besonderen Gründen ein bestimmter Puffer erforderlich ist

(z.B. wenn ein ausführbares Maschinenprogramm dort stehen

soll), so sollte man dem DOS die Wahl des Puffers überlassen,
da bei der Auswahl eines festen Fuffers die Möglichkeit, daß

er belegt ist, größer ist.

Sie sollten daher nach dem öffnen des Kanal in jedem Falle

den Fehlerkanal abfragen.

130 OPEN 15,8,15
140 GET#15, AS =: PRINT A$; : IF ST <> 464 THEN 140

Ist der Puffer bereits belegt, so bekommen Sie die Fehler-

meldung

70,NO CHANNEL ,00,00

Haben Sie keine anderen Dateien offen, so können Sie bis zu 4

Kanäle für den Direktzugriff öffnen. Es werden dann in der

Reihenfolge des öffnens die Puffer 3 bis 0 zugeordnet, wie

Sie folgendem Beispiel entnehmen können.

10 OPEN 1,8,15,"10" : I=2 : REM FEHLERKANAL
20 OPEN 2,8,2, "#" : GOSUB 100
30 OPEN 3,8,3, "#" : GOSUB 100
40 OPEN 4,8,4, "#" : GOSUB 100
S50 OPEN 5,8,5, "#" : GOSUB 100
60 OPEN 4,8,6, "#" : GOSUB 100
70 END

100 GET#I, Ast: PRINT ASC (A$+CHR$ (0)) ‘
110 I=I+1 : REM PUFFERNUMMER
120 GET#1, AS =: PRINT A$; : IF ST <> 64 THEN 120
130 RETURN

86

00, OK,00,00

00, OK,00,00

00, OK,00,00

00, OK,00,00
199

70,NO CHANNEL, 00

Wie Sie sehen, scheiterte der Versuch, einen 5. Kanal für den

Direktzugriff zu öffnen.

Die Datenübertragung von und zu den Pufferspeichern geschieht

wie üblich mit GET# bzw. INPUT# und PRINT#-Befehlen.

Hier noch eine Bemerkung zum Einlesen von Daten in den

Rechner.

Hanri="t es sich im Puffer um reine alphanumerische Daten,

z.B. Texte, die nicht länger als 88 Zeichen sind und die mit

CR (Carriage Return, CHR#(13)) von einander getrennt sind, so

können sie ohne weiteres mit INFUT# gelesen werden. Sind

jedoch auch Steuerzeichen enthalten oder sind die mit Texte

Komma oder Doppelpunkt getrennt, so versagt der

INPUT#—Befehl. Hier müssen wir auf den GET#—Befehl

ausweichen, der immer nur ein Zeichen holt. Hier müssen wir

jedoch beachten, daß mit GET# kein Nullbyte CHR£(0) gelesen

werden kann. In diesem Falle erhalten Sie den Leerstring

zurück, so daß dies extra abgefragt werden muß, z.B.

100 GET#2, At : IF At="" THEN AS = CHR$(O)

Eine andere und meist einfachere Alternative ist die

Benutzung des Befehls ’INPUT*’, wie er in Kapitel 4.3.1

beschrieben ist. Hier können Sie angeben, wieviel Zeichen in

einen String eingelesen werden sollen. Auch gibt es hier

keine Probleme mit Nullbytes (CHR#(0)). Hier können wir auch

fast den ganzen Fuffer (255 Zeichen sind möglich, d.h. bis

auf ein Zeichen} mit einem Befehl lesen.

In den nächsten Abschnitten sind nun alle Befehle im

Zusammenhang mit dem Direktzugriff ausführlich beschrieben.

Haben Sie sich mit den Block-Befehlen bereits näher befaßt

und wollen Sie sich einzelne Block komplett auf dem

Bildschirm ansehen oder ändern, so können Sie dafür den

Disk-Monitor aus Kapitel 4.5 benutzen, der dies aus einfache

und komfortable Weise ermöglicht.

87

2.2 Die Direktzugriffsbefehle

2.2.1 Der Block-Read-Befehl B-R

Der Block-Read-Befehl dient zum Lesen eines Block von

Diskette in den Puffer einer zuvor geöffneten Direktzu-

griffsdatei. Sämtliche Block-Befehle werden über den Komman-

dokanal (Sekundäradresse 15) an die Floppy geschickt. Der

Befehl zum Lesen eines Blocks lautet ‘’B-R’. Da mit diesem

Befehl jedoch das erste Byte eines Block nicht gelesen wird,

benutzt man zum Lesen eines Blocks nur den Befehl ‘ui’. Der

Befehl hat folgende Syntax:

ul Kanalnummer Drive Track Sektor

Dabei müssen Sie die Kanalnummer angeben, die Sie beim öffnen

der Direktzugriffsdatei verwendet haben. Als nächstes folgt

die Drivenummer; bei der VC 1541 immer Null und dann die

Nummern des Tracks und Sektors, den Sie lesen wollen.

10 OPEN 1,8,15
20 OPEN 2,8,2, "#"
30 PRINT#1, "U1 2 0 18 0"

Damit haben Sie den Inhalt von Track 18 Sektor 0 in den zu

Kanal 2 gehörenden Puffer gelesen. Nun können Sie mit GET#2

Daten aus diesem Puffer lesen.

40 GET#2, AF,B$
30 PRINT ASC(AF), ASC (BF)

18 1

Damit haben wir die beiden ersten Byte aus dem Puffer gelesen

und angezeigt. Der Track 18, Sektor 0 enthält die BAM der

1541; die beiden gelesenen Werte bezeichnen den Track und den

Sektor des ersten Directory-Blocks.

Im Demo-Programm ‘DISPLAY T&S’ auf der Testdiskette (Kapitel

4.2.7) wurde dieser Befehl benutzt, um die BAM von Diskette

zu lesen und die Belegung der einzelnen Sektoren auf dem

Bildschirm grafisch darzustellen.

Mit dem GET#-Befehl können wir so alle 256 Byte des Blocks

aus dem Puffer lesen; in unserem Beispiel lesen wir ab

Position 144 den Diskettenamen und die ID.

Da die einzelnen Blocks einer Datei so verkettet sind, daß

die ersten beiden Bytes auf einem Block jeweils die Track-

und Sektornummer des nachfolgenden Blocks enthalten, kann man

so den Verlauf einer Datei über die Diskette verfolgen. Die

Datei ist dann zuende, wenn man als Folgetrack den Wert Null

erhält; das zweite Byte gibt dann an, wieviel Bytes auf

88

diesem Sektor noch zur Datei gehören. Den ersten Sektor einer

Datei kann man mit unserem Frogramm aus Kapitel 4.1.1

erfahren. Dann kann folgendes kleine Programm alle weiteren

Tracks und Sektoren anzeigen, die durch eine Datei belegt

sind.

100 OPEN 1,8,15
110 OPEN 2,8,2, "#"
120 INPUT "TRACK UND SEKTOR ";T,S
130 PRINT# 1, "Ul 2 0"5 158
140 GET# 2, T$, 5$
150 T = ASC(T$+CHR#(0)): S = ASC (S#4+CHRE(0))
160 IF T = O THEN CLOSE 2 : CLOSE 1 :END
170 PRINT "TRACK";T ,"SEKTOR";S
180 GOTO 130

Geben Sie 18 und © als Track und Sektor an, so vorfolgen Sie

die Blöcke für BAM und Directory.

2.2.2 Der Buffer-Pointer-Befehl B-P

Benötigen wir in unseren obigen Beispiel nur den

Diskettennamen, der in Track 18 Sektor 0 ab Position 144

steht, so mußten wir nach obiger Methode die ersten 143 Byte

überlesen, ehe wir den Namen erhielten. Um den Zugriff auf

Jedes beliebige Byte zu erleichtern hat man den

Block-FPointer-Befehl eingeführt. Damit läßt sich der Zeiger,

der die augenblickliche Lese- oder Schreibposition im Fuffer

angibt, auf jedes beliebige Byte im Puffer setzen. Die Syntax

ist folgende:

B-F Kanalnummer Position

Jetzt kann man den Diskettennamen direkt lesen:

100 OPEN 1,8,15
110 OPEN 2,8,2, "#"
120 PRINT# 1, "U1 2 0 18 0"
130 PRINT# 1, "B-P 2 144"
140 FOR I = 1 TO 16 :REM MAXIMALE LAENGE
150 GET# 2, A$: IF A®=CHR$(160) THEN 170
140 PRINT A$; : NEXT
170 CLOSE 2 : CLOSE 1

Hier haben wir nach dem Einlesen des Blocks den Pufferzeiger

auf 144 gesetzt und lesen dann 14 Bytes, falls vorher nicht

CHR (160) (‘Shift Space’) gefunden wurde, welches das Ende

des Namens anzeigt.

Die Bytes im Puffer sind von O bis 255 nummeriert, das erste

Byte hat also die Nummer 0. Beim Lesen eines Blocks mit Ul

wird der Pufferzeiger automatisch auf das Byte Nummer null

gesetzt. Beim Bewegen des Pufferzeigers ist man völlig frei.

Man kann z.B. in unserem obigen Beispiel nach dem Lesen des

Namens das Byte Nummer 2 lesen, kann dies einfach durch

89

Setzen des Pufferzeigers auf dieses Byte geschehen.

FRINT# 1, "B-P 2 2"

2.2.53 Der Block-Write-Befehl B-W

Der Block-Write-Befehl ermöglicht es uns, den Inhalt des

Pufferspeichers in einen beliebigen Block auf Diskette zu

schreiben. Man kann damit Daten, die man in den Puffer

geschrieben hat, auf einen Block der Diskette schreiben.

Ebenso ist es möglich, mit dem Block-Read-Befehl einen Block

in den Puffer zu lesen, dann einige Bytes zu verändern und

den Block dann wieder zurück zu schreiben. Der Block-Write-

Befehl wird mit B-W abgekürzt. Da dieser ‘B-W‘-Befehl jedoch

in das erste Byte des Puffers den augenblicklichen Inhalt des

Pufferzeigers schreibt, benutzt man hier meist den 'U2’-

Befehl. Die Syntax des Befehls ist analog zum B-R Befehl

U2 Kanalnummer Drive Track Sektor

100 OPEN 1,8,15
110 OPEN 2,8,2, "#"
120 PRINT# 2, "TESTDATEN"
130 PRINT# i, "U2 2 01 0"
140 CLOSE 2 :CLOSE 1

Hier wird der Text "TESTDATEN" in den zu Kanal zwei

gehörenden Puffer geschrieben und dieser dann auf Track i

Sektor O der Diskette. Durch den ‘U1’-Befehl werden der

Inhalt des Puffers sowie der Pufferzeiger nicht verändert.

Wir wollen jetzt den Block-Write-Befehl dazu benutzen, den

Namen der Diskette, den wir im letzten Abschnitt gelesen

haben, zu ändern. Dazu müssen wir den neuen Namen bis auf

eine Länge von 1& Zeichen mit "shift Space’ CHR#(140)

auffüllen, ehe wir ihn auf Diskette schreiben können. Wir

benutzen wieder den RBuffer-Pointer-Befehl, um den Zeiger

direkt auf die gewünschte Position innerhalb des Puffers zu

setzen.

100 OPEN 1,8,15
110 OPEN 2,8,2, "#"
120 PRINT# 1, "Ui 2 0 18 0"
130 PRINT# 1, "B-P 2 144"
140 A$ = "DIREKTZUGRIFF"
150 IF LEN(A$) < 16 THEN A$ = AS+CHRS$(160) : GOTO 150
160 PRINT# 2, A$;
170 PRINT# 1, "U2 2 0 18 0"
180 CLOSE 2
190 PRINT# 1, "IO" : CLOSE 1

Wir lesen also erst Track 18 Sektor 0 in den Puffer, setzen

den Pufferzeiger auf die Position des Diskettennamens und

schreiben den auf 16 Zeichen aufgefüllten Namen in den

Puffer. Jetzt wird in Zeile 170 der Pufferinhalt wieder in

70

den ursprünglichen Block geschrieben und der Kanal 2

geschlossen. Dann wird die Diskette neu initialisiert, damit
BAM und Name in den DOS-Speicher übernommen werden. Holen Sie

jetzt das Inhaltsverzeichnis mit

LOAD "#",8
LIST

auf den Bildschirm, so sehen Sie, daß unsere Diskette einen

neuen Namen bekommen hat.

2.2.4 Der Block-Allocate-Befehl B-A

Der Block-Allocate-Befehl hat die Aufgabe, einen Block in der
BAM (Block Availability Map, Verzeichnis der zur Verfügung

stehenden Blöcke) als belegt zu kennzeichnen. Dies ist dann
erforderlich, wenn wir im Direktzugriff Blöcke auf der

Diskette beschrieben haben, die nicht Teil einer Datei sind
und deshalb nicht automatisch als belegt gekennzeichnet sind.

Werden dermaßen benutzte Blöcke nicht als belegt qgekenn-

zeichnt, können sie beim nächsten Schreiben in eine reguläre

Datei überschrieben werden. Der Block-Allocate-Befehl hat
folgende Syntax:

B-A Drive Track Sektor

Damit wird der entsprechende Block in der BAM als belegt

gekennzeichnet und ist so vor dem überschreiben durch andere

Dateien geschützt. War der zu belegende Block bereits belegt

so erhält man die Fehlermeldung 45, 'ND BLOCK’.

100 OPEN 1,8,15
110.INPUT "TRACK, SEKTOR ";T,S
120 FRINT# 1, "B-A O";T:S
130 INPUT# 1, A¢%,B¢,C#,D$
140 PRINT AS", "BS", "C#", "D4

In dem kleinen Programm kann man Track und Sektor angeben,

die am als belegt kennzeichnen will. War der Block noch frei,

wir er belsgt und die Meldung ‘00, 0k,00,00° wird ausgegeben.

War der Block jedoch bereits belegt, erscheint die Meldung

"&5,NDO BLOCK,TT,SS’. Die Track und Sektornummer TT und 585

geben jetzt den nächsten freien Block mit höherer Sektor und/

oder Tracknummer an. Erhalt man diese Fehlermeldung, so weiff

man, daß dieser Block belegt ist kann den nächsten freien

Block benutzen. Erhält bei der Fehlermeldung 45 jedoch als

Track und Sektornummer jeweils eine Null zurück, so ist kein

Block mit höherer Track und/ oder Sektornummer mehr frei. Das

folgende Programm belegt automatisch den nächsten freien

Sektor.

100 OPEN 1,8,15
110 INPUT "TRACK, SEKTOR ":T,S
120 PRINT# 1, "B-A 0"; T58

71

130 INPUT# 1, A%,B%,TT,SS
140 IF Af = "00" THEN 190
150 IF A$<>"45" THEN PRINT A$","B$","TT","SS : END
160 IF TT=0 THEN PRINT "KEIN FREIER BLOCK MEHR" = END
170 IF TT=18 THEN TT=19 : SS=0
180 T=TT : S=SS : GOTO 120
190 PRINT "TRACK" TT "SEKTOR" SS "WURDE BELEGT"

Die Abfrage auf Track 18 in Zeile 170 verhindert, daß ein

Block des Directorys belegt wird. Eine weitere Fehlermeldung

in diesem Zusammenhang mit dem ‘B-A’-Befehl ist noch

interresant. Versucht man einen Block zu belegen, der gar

nicht existitiert, z.B. Track 20 Sektor 21, so erhält man die

Fehlermeldung

46, ILLEGAL TRACK OR SEKTOR,20,21

Die Kennzeichnung eines Blocks in der BAM als belegt

verhindert das überschreiben des Blocks durch andere Dateien.

Der Block bleibt solange als belegt gekennzeichnet, bis der

Befehl ‘VALIDATE’ (’COLLECT’ in BASIC 4.0) auf die Diskette

angewandt wird. Dieser Befehl konstruiert eine neue BAM. Dies

geschieht folgendermaßen. Da sämtliche Blocks einer Datei mit

einander verkettet sind, kann man so eine Datei über die

Diskette verfolgen. Dies macht dem Validate-Befehl und

markiert jeden Block, der zu einer Datei gehört, als belegt.

Nicht geschlossene Dateien, im Directory mit ‘*° gekenn-

zeichnet, werden dabei gelöscht. Dabei werden dann auch alle

Blöcke, die mit ‘B-A’ belegt wurden und zu keiner regulären

Datei gehören, wieder freigegeben. Hat man also im

Direktzugriff Blöcke belegt, die nicht zu Dateien gehören,

die im Directory erscheinen, so darf man den Validate-Befehl

nicht anwenden, da sonst sämtliche Blöcke wieder freigegeben

werden.

2.2.5 Der Block-Free-Befehl B-F

Der Block-Free-Befehl ist das Gegenstück zum Block-Allo-

cate-Befehl und gibt einen Block in der BAM wieder frei. Die

Syntax ist analog zum Block-Allocate-Befehl:

B-F Drive Track Sektor

100 OPEN 1,8,15
110 PRINT# 1, "B-F 0 20 9"

Mit diesem Befehl wird der Block in Track 20 Sektor 9 wieder

in der BAM freigegeben. War der Block bereits freigegeben, so

gibt es hier keine Fehlermeldung.

Das Belegen und Freigeben von Blocks haben nur Effekt auf das

überschreiben des Blocks mit regulären Dateien durch das DOS.

Die Block-Write- und Block-Read-Befehle bleiben davon unbe-

einträchtigt. Sie können mit diesen Befehlen sowohl belegte

72

Blocks beschreiben, noch wird ein Block durch Beschreiben mit

Block-Write in der BAM belegt. Haben Sie z.B. auf einer

Diskette nur Direktzugriffsdateien, so ist es im Prinzip

nicht nötig, beschriebene Blöcke als belegt zu kennzeichnen,

da keine anderen Dateien auf Diskette geschrieben werden. In

diesem Falle können Sie sogar die Directoryblöcke in Track 18

mit benutzen, Sie können so 472 Blöcke auf der VC 1541

Diskette benutzen.

2.2.6 Der Block-Execute-Befehl B-E

Der Block-Execute-Befehl dient dazu, einen Block von Diskette

in den Puffer zu lesen und den Fufferinhalt als Maschinen-

programm im DOS auszuführen. Man kann also Routinen, die das

DOS ausführen soll, mit dem ‘B-W’- bzw. ’U2’-Befehl auf einen

Sektor auf Diskette schreiben und spater mit dem

Block-Execute-Befehl in einen Puffer holen und dort als

Maschinenprogramm ausführen. Das setzt natürlich eine gute

Kenntnis der Interna des DOS voraus. Will man den ‘B-E’-

Befehl benutzen, wird man beim öffnen des Direktzugriffs-

kanal meist die Puffernummer mit angeben, falls das

Maschinenprogramm nicht verschiebbar und für einen bestimmten

Puffer geschrieben ist. Der Block-Execute-Befehl hat folgende

Syntax:

B-E Kanalnummer Drive Track Sektor

100 OPEN 1,8,15
110 OPEN ?2,8,2, "#3"
120 PRINT# 1, "B-E 2 0 17 12"

Hier wird der Puffer = (#600 - $4FF) dem Kanal zwei

zugeordnet. Anschließend wird der Inhalt von Track 17, Sektor

12 in diesen Puffer geladen und dort als Maschinenprogramm

ausgeführt.

Der Block-Execute-Befehl 1äßt sich durch Block-Read und

Memory-Execute-Befehl ersetzen. Beispiele für die Ausführung

von Maschinenprogrammen im DOS finden Sie im Kapitel 2.4 bei

den Memary-Befehlen.

2.3 Anwendungen des Direktzugriffs

Was 1äßt sich nun mit den Direktzugriffsbefehlen anfangen ?

Dazu kann man sich mehrere Anwendungen vorstellen. Die erste

Möglichkeit besteht in der Manipulation einzelner Sektoren.

Damit kann man eine Vielfalt von Aufgaben erfüllen. Es fängt

an mit Manipulationen im BAM-Sektor, wo wir die Möglichkeit

haben, den Diskettennamen oder die ID zu ändern. Dann bietet

sich das Directory an. Dort könnten wir die ungenutzten Bytes

für zusätzliche Informationen nutzen. Wir können Dateien

einen anderen Namen geben und können die Verkettung der

einzelnen Blocks einer Datei verfolgen und gegebenenfalls

nach eigenen Vorstellungen ändern. Eine ganze Palette an

Möglichkeiten tut sich auf, wenn es um den Filetyp der Datei

geht. Wir können z.B. aus einer sequentiellen Datei eine

Programmdatei machen, indem wir aus Filetyp 1 eine 2 machen.

Wir können wir eine nichtgeschlossene Datei in Directory

durch Setzen des Bit 7 schließen, aus #02 wird dann #82.

Solche Dateien sind im Directory durch einen Stern

gekennzeichnet; nach der obigen Änderung verschwindet der

Stern. Eine vom DOS zwar berücksichtigte, per Befehl jedoch

nicht erreichbare Eigenschaft einer Datei ist der Schutz vor

dem Löschen. Dazu brauchen wir lediglich das Bit & des

Filetyps setzen, z.B wird aus $82 dann $C2. Im Directory

erscheint jetzt ein ’{’° hinter der Typbezeichnung. Die Datei

ist nun gegen Scratchen immun. Damit können Sie z.B. wichtige

Systemprogramme auf Ihrer Diskette gegen unbeabsichtigtes

Löschen schützen. Diese und andere Möglichkeiten finden Sie

in Kapitel 4.1.

Haben Sie derartige Manipulationen vor, so wäre es am

komfortabelsten, wenn man sich einen kompletten Sektor von

Diskette lesen könnte, ihn auf dem Bildschirm anzeigen,

ändern und wieder auf Diskette schreiben könnte. Ein solches

Programm, ein Disk-Monitor, ist in Kapitel 4.& beschrieben.

Ehe Sie jedoch mit solchen Experimenten beginnen, sollten Sie

sich auf jeden Fall eine Kopie von Ihrer Diskette machen.

Machen Sie nämlich gerade bei Directory und BAM Fehler, kann

unter Umständen der ganze Disketteninhalt für Sie verloren

sein.

Haben Sie schon mal aus Versehen eine Datei oder ein Programm

auf Diskette gelöscht und sich dann darüber geärgert, daß Sie

das komplette Programm, neu Eingeben mußten 7 Falls Sie

danach noch nicht auf die Diskette geschrieben haben, können

Sie die Datei einfach zurückholen. Beim Löschen einer Datei

wird nämlich lediglich im Directory der Filetyp auf O gesetzt

und die belegten Blöcke in der BAM freigegeben. Sie brauchen

Jetzt nur der Directoryeintrag der Datei zu suchen und den

Filetyp wieder einzusetzen: #81 für SEQ, #82 für PRG, #82 für

USR und #84 für REL. Danach müssen Sie nach ein Validate

machen, damit die Blöcke der Datei wieder als belegt

94

gekennzeichnet werden, z.B. mit OPEN 1,8,15 : FRINT# 1, "vo",

Andere Anwendungen des Direktzugriff können z.B. dazu dienen,

eigene Dateistrukturen zu erzeugen, die das DOS nicht kennt.
Sie müssen dann die Verwaltung der neuen Datei selbst

übernehmen und benutzen zum Lesen und Schreiben die

Direktzugriffsdatei. Eine solche Dateiform ist z.B. die

ISAM-Datei. ISAM ist die Abkürzung für Index Sequentiell

Acces Method, zu deutsch Index-sequentielle Zugrfiffsmethode

heißt. Bei einer ISAM-Datei können Sie auf jeden Dateisatz

direkt zugreifen, ähnlich wie bei einer realtiven Datei.
Hierbei wird jedoch nicht über die Satznummer, sondern über
einen sogenannten Zugriffsschlüssel oder Index zugegriffen.

Dieser Index ist ein Feld des Datensatzes. Besteht ein
Datensatz z.B. aus 5 Feldern, die Namen, Vornamen, Straße,

Postleitzahl und Ort enthalten, so könnten wir den Namen als

Zugriffsschlüssel definieren. Wollen wir nun den Datensatz

des Kunden Müller lesen, so heißt der Befehl dazu einfach

"Lese Datensatz "Müller"’. Wir brauchen uns also nicht um

irgentwelche Satznummer oder sonstige Ordnungskriterien

kümmern und können im Klartext angeben, welchen Datensatz wir

Lesen, Ändern, Schreiben oder Löschen wollen. In solchen

ISAM-Dal=eisystemen ist meist der Index noch einmal separat

abgespeichert zusammen mit den Informationen, Wo der

Datensatz auf Diskette zu finden ist. Eine solche

ISAM-Datei-Verwaltung mit noch weitgehenderen Möglichkeiten,

als sie hier beschrieben ist, finden Sie z.B. neben anderen

Dingen im Frogrammentwicklungssystem MASTER, das auch für den

Commodore &4 arhältlich ist.

75

2.4 Der Zugriff auf das DOS - Die Memory-Befahle

In Kapitel 2.2.46 haben wir bereits die Möglichkeit kennen-

gelernt, Programme in den DOS-Speicher zu laden und dort

auszuführen. Mit den Memory-Befehlen können wir nun auf jedes

Byte des DOS zugreifen und Programm in RAM und ROM ausführen.

Wir können z.B. auf den Arbeitsspeicher des DOS zugreifen und

z.B. die Anzahl der freien Blücke auf der Diskette lesen oder

den Diskettenname aus dem BAM-Puffer holen. Durch Schreiben

in das DOS-RAM können wir Konstanten ändern, z.B. die Geräte-

nummer der Floppy oder die Anzahl der Leseversuche für einen

Block, ehe eine Fehlermeldung gebracht wird. Weiterhin

besteht die Möglichkeit, Routinen innerhalb des DOS-Speichers

ausführen zu lassen. Das können sowohl Routinen des DOS als

auch eigene Routinen sein, die in einem Pufferspeicher

abgelegt und dort ausgeführt werden können, wie beim

Block-Execute-Befehl. Voraussetzung für die erfolgreiche

Nutzung dieser Befehle sind natürlich Kenntnise in 4502

Maschinensprache und in Arbeitsweise und Speicherbelegung des

DOS; bei letzterem, so hoffen wir, kann Ihnen dieses Buch

eine Hilfe sein. Es folgt nun eine Beschreibung der Befehle

sowie Beispiele zu ihrer Anwendung.

2.4.1 Der Memory-Read-Befehl M-R

Mit diesem Befehl kann man jedes Byte des DOS lesen. Der

Befehl wird über den Kommamdokanal übermittelt und stellt das

gelesene Byte dann ebenfalls auf dem Kommamdokanal zur

Verfügung, wo es mit GET# abgeholt werden kann. Die Syntax

des Befehls sieht so aus:

M-R CHR$ (LO) CHRS (CHI)

Dabei bedeuten LO und HI das Low- und Highbyte der Adresse im

DOS, die gelesen werden soll. Das folgende Programm fragt

nach einer Adresse und liest den Inhalt dieser Adresse aus

dem DOS.

100 INPUT "ADRESSE "zA
110 HI = INT (A/256)
120 LO = A-256*HI
130 OPEN 1,8,15
140 PRINT# 1, "M-R"; CHR#(LO); CHR$(HI)
150 GET# 1, At
140 PRINT ASC (A$+CHR$ (0))

Wollen wir z.B. die Anzahl der freien Blocks auf einer

Diskette wissen, so brauchen wir nicht das komplette

Inhaltsverzeichnis zu lesen, sondern können direkt die

entsprechenden Bytes aus dem DOS-Speicher lesen. Dies kann

z.B. dann nützlich sein, wenn man vom Programm aus Dateien

96

anlegt und sich so vergewissern kann, ob noch genügend Platz

auf der Diskette ist.

100 OPEN 1,8,15 ,„"Io"
110 PRINT# 1, "M-R" CHR#(250) CHR$(2)
120 GET# 1, A$: IF A$="" THEN A$=CHRS$ (0)
130 PRINT# 1, "M-R" CHR$(252) CHR€(2)
140 GET# 1, B$: IF B$="" THEN B$=CHR$ (0)
150 PRINT ASC(A$) + 256 * ASC (BS) "BLOCKS FREI"
160 CLOSE 1

Mit der angegebenen Syntax muß für jedes Byte, was gelesen

werden soll, ein eigener ‘M-R’-Befehl benutzt. Wie sich

jedoch aus dem DOS-Listing entnehmen und durch überprüfen
bestätigen läßt, kann man auch mehrere aufeinander folgende

Bytes mit einem ’M-R’-Befehl lesen. Man braucht nur die

Anzahl der zu lesenden Bytes als dritten Parameter angeben:

M-R CHR#(LO) CHR# CHI? CHR# (ANZAHL)

Benutzen können wir dies z.B. dazu, um den Namen der Diskette

aus dem BAM-pufferspeicher zu lesen. Dazu muß man wissen, daß

die BAM beim Initialisieren oder sonst vor einem Dateizugriff

in den Puffer ab Adresse #700 geladen wird, aus dem wir mit

einem 'M-R’-Befehl den Namen der Diskette lesen können.

100 OPEN 1,8,15, "Io"
110 PRINT# 1, "M-R" CHR$(144) CHR#(7) CHR$(16)
120 INPUT# 1, At
130 PRINT A$

Wir erhalten so auf einfache Weise den Namen der Diskette (164

Zeichen, aufgefüllt mit ‘Shift Space’). Damit kann man vom

Programm her überprüfen, ob die richtige Diskette eingelegt
ist.

Auf diese Weise können auch die Diskettenpuffer gelesen

werden, wenn man dem DOS auf die Spur kommen will. Ebenso

besteht die Méglichkeit, Teile des DOS, die man nach eigenen

Wünschen manipulieren will, vom ROM in einen Pufferspeicher

zu kopieren, dort entsprechend zu Ändern und dann zur

Ausführung zu bringen. Doch dies gehört bereits in die beiden

nächsten Abschnitte.

2.4.2 Der Memory-Write-Befehl M-W

Der gegensätzliche Befehl zum Memory-Read ist der Befehl zum

Schreiben von Daten in den DOS-Speicher, Memory—Write, ‘M-W’.

Beschreiben läßt sich natürlich nur das DOS-RAM - Zeropage,

Stack und Pufferspeicher sowie evtl. die Ein/Ausgabe-Bau-

steine. Hier ist von vorneherein an die Möglichkeit gedacht

worden, mehrere aufeinder folgende Bytes mit einem Befehl zu

schreiben. Die Syntax sieht so aus:

97

M-W CHR$ (LO) CHRE (HTD CHRF (ANZAHL) CHR#(DATA1) CHR# (DATA2)

Dabei können soviele Daten übergeben werden, wie in Anzahl

spezifiziert ist, theoretisch also 255, da der Eingabepuffer

Jedoch nur 40 Zeichen faßt, ist die Anzahl auf 34 Bytes pro

Befehl beschränkt. Eine mögliche Anwendung des Befehls dient

zum Ändern der Gerätenummer der Floppy (siehe Programm ‘DISK

ADDR CHANGE’, Kapitel 4.2.3). Die Adresse steht in zwei
Speicherstellen in der Zeropage. In Adresse #77 gleich 119

steht die Gerätenummer plus #20 gleich 32 für LISTEN, also

für den Empfang von Daten vom Computer. In der darauf-

folgenden Adresse steht die Gerätenummer plus #40 gleich 4&4

für TALK, also fürs Senden von Daten zum Computer. Da die

Adressen separat gespeichert sind besteht also die

Möglichkeit, für Senden und Empfangen verschiedene Adressen

zu verwenden. Im folgenden Beispiel wird die Empfangsadresse

auf ? und die Sendeadresse auf 10 gesetzt.

100 OPEN 1,8,15 |
110 PRINT# 1, "M-W" CHR#(119) CHR$(0) CHR#(2)

CHR$ (9+32) CHR$(10+64)
120 CLOSE 1
140 OPEN 1,9,15
150 OPEN 2,10,15
140 PRINT# 1,"Io"
170 INPUT# 2, A$,B$,C$,D$
180 PRINT At "," BS "," CH "," DE

00, OK,00,00

Programme konnen Sie so jedoch nicht laden, hier bei ja der

Dateinamen gesandt wird und unter der selben Adresse versucht

wird, das Programm zu laden.

Das Ändern der Geräteadresse ist dann erforderlich, wenn Sie

mehr als eine Floppy gemeinsam an einem Rechner betreiben

wollen. Dazu ändert man die Geräteadressse der zweiten Floppy

auf 9 Diese softwaremäßige Änderung bleibt jedoch nur

solange erhalten, bis ein Reset (z.B. durch Ausschalten

erfolgt}. Soll die Änderung dauerhaft sein, kann dies im

Gerät durch öffnen von Drahtbrücken geschehen.

Da viele Parameter des DOS im RAM stehen, können wir

weitgehend die Funktion des DOS abändern, z.B. die

Schrittweite, mit der die Sektoren in einem Track belegt

werden (Adresse #49 gleich 105, enthält normalerweise 10).

Ebenso können wir die Anzahl der Leseversuche bestimmen, ehe

eine Fehlermeldung erzeugt wird (Adresse #&6A gleich 104,

Inhalt ist 5). Weitere Adressen von Farametern finden Sie in

Kapitel 3.1.2.

2.4.3 Der Memory-Execute-Befehl M-E

Mit diesem Befehl nun können wir Maschinenprogramm im

98

DOS-Speicher aufrufen und ausführen. Die Programme müssen mit

RTS (Return from Subroutine, #60) abgeschlossen sein. Die

Syntax des Befehls lautet

M-E CHR#(LO) CHR# (HI)

Dabei sind LO und HI wieder Low- und Highbyte der

Startadresse der Maschinenroutine. Es besteht sowohl die

Möglichkeit, Routinen des DOS-ROMs aufzurufen als auch eigene

Routinen mit 'M-W’ in einen Pufferspeicher zu schreiben und

dort auszuführen. Als Beispiel dazu sehen wir einmal, wie man

eine Routine aufrufen kann, die eine Fehlermeldung erzeugt.

In Adresse EFC? steht z.B. der Aufruf zur Meldung 72, "disk

full’. Der Befehl sieht dann so aus:

100 OPEN 1,8,15
110 PRINT# 1, "M-E" CHR$(201) CHR#(239)
120 INPUT# 1, A$,B$,C$,D$
130 PRINT AS "," BS "," ce "," D$

In Zeile 110 wird die Adresse $EFCF in Lo-Byte #C7 gleich 201

und Hi-Byte £EF gleich 239 zerlegt und als Parameter des

"M-E’-Befehls gesandt. Dann wird der Fehlerkanal abgefragt

und die Meldung ausgegeben.

72, DISK FULL,00,00

Will man eigene Programme in der Floppy ablaufen lassen, so

wird man Sie in einen der Pufferspeicher schreiben und dort

mit ‘“M-E’ aufrufen. Soll dieses Programm öfter benutzt

werden, so kann man den Inhalt des Puffers auf einem Block

der Diskette speichern. Er kann dann später mit dem

"B-E’-Befehl ausgeführt werden, der den Inhalt des Blocks in

den Puffer liest und dann die Routine autın.stisch startet.

Als Anregung für eigene Frogramme im DOS können Sie ja einmal

versuchen, das Directory in einer anderen Form auszugeben,

die zusätzliche Parameter ähnlich wie im Programm in Kapitel
4.1.1. Zusätzlich könnte man noch die Anzahl der Dateien auf

der Diskette zählen und mit ausgeben. Bei der Realisierung

solch einer Routine können Sie sich am DOS-Listing

orientieren, wie dort das Directory erzeugt wird. Ist man

sich über das neue Format des Directorys im klaren, dürfte es

keine Schwierigkeit mehr sein, die zusätzlichen Parameter,

evtl. mit einer überschrift, aus den Directoryeinträgen zu

entnehmen und im gewünschten Format bereitzustellen.

2.4.4 Die User-Befehle U

Mit den User-Befehlen haben wir die zweite Möglichkeit,

Programme in der Floppy auszuführen. Die User-Befehle haben

folgende Syntax:

UX

99

Dabei kann X für einen Buchstaben von A bis J oder wahlweise

eine Ziffer von 1 bis 9 und ’:’ (anstelle von 10) stehen.

Beim Aufruf des Befehls wird zu folgenden Adressen im DOS

gesprungen:

UA U1 #CDSF Ersatz für ’Block-Read’

UB u2 #DC97 Ersatz für ‘Block-Write’

UVC US $0500

UD U4 #0503

UE US 0506

UF US £0509

UG U7 $050C

UH U8 $050F

UT 197 $FFOL

UT : $EAAO Einschalt-Reset

Die Befehle Ui und U2 bzw. UA und UB kennen wir bereits; sie

dienen als Ersatz fiir ‘Block-Read’ und ‘Block-Write’. Die

Befehle US bis UB bzw. UC bis UH springen in den Puffer 2 ab

Adresse #500 gleich 1280 (siehe Kapitel 2.1). Will man

mehrere Befehle benutzen, kann dort eine Sprungtabelle auf

die einzelnen Routinen stehen; wird bloß ein User-Befehl (US)

benutzt, kann das Programm direkt bei #500 beginnen.

Der User-Befehl UJ springt zum Resetvektor; damit wird die

Floppy in den Einschaltzustand versetzt.

100 OPEN 1,8,15

110 PRINT# 1, "UJ"

120 FOR I=1 TO 1000 : NEXT

130 GET# 1, A# : PRINT A; :IF ST <> 84 THEN 130

73,CBM DOS V2.6 1514,00,00

Zeile 120 wartet den Reset der Floppy ab. Dann wird in Zeile

130 die Einschaltmeldung der Floppy abgeholt.

Bei der Benutzung der User-Befehle können noch Parameter an

die Routinen mit übergeben werden. Der komplette

Befehlsstring wird im Eingabepuffer ab Adresse #200 gleich

512 abgelegt. Als Parameter wären z.B. Adressen, Befehlskodes

und Dateinamen denkbar. Dadurch können die User-Befehle

benutzt werden, um den Befehlsatz der Floppy zu erweitern

oder um eigene Dateistrukturen zu verwirklichen. Sämtliche

User-Befehle lassen sich durch "M-E’-Befehle mit den

entsprechenden Adressen ersetzen; der User-Aufruf ist doch

kürzer und übersichtlicher.

100

Kapitel 3: Technik der Floppy und der Diskette

3.1 Der Aufbau der der VC 1541
3.1.1 Blockschaltbild der Floppy

03
1

<

< ©
Oo m

1 © o
m CC) a ©
ws Ss a
> 0 u N <
[EBEN — 2

—

=

77 im

=
w [=]

7»

D mn <
m Ul |

“OS un» = 7 | N) =D ©

| a D
w m —
Cc nm m wn an

=

OB oO

oo wn

S _ ts

z |

OL KOPF-SCHRITTAOTOR | | 3 D on <
Ol SCHREIB~ LESEKOPF 1 at
= ND z en N SG |_WRITE-PROTECT nN |

Ld >

3.1.2 Memory-Map des DOS - ROM, RAM, 1/0

Die Speicherbelegung der Floppy VC 1541

65535 #FFFF

16 K

Betriebssystem

49152 #0000

7i8= $iCoOF

| via Disk Control |

71468 #1iCo0o

6159 £180F

| via serieller Bus |

6144 £1800

2047 : $O7FF

2«K

RAM

oO $0000

102

Die Belegung der 1/0-Forts (VIA 6522)

VIA 6522 1, Port für seriellen Bus

#1800 Fort BE

1800 Fort A

+1802 Datenrichtung Fort B

1805 Datenrichtung Fort A

FB 0: DATA IN
FR i: DATA OUT
FB 2: CLOCK IN
FR S: CLOCK OUT
FB 4: ATN A
FB 3,4: Geräteadresse

CHR 2: ATN IN

VIA 6522 2, Fort fiir Motor-_ und Schreib/ Lesekopfsteuerung

#1C00 Fort B, Steuerport

#1001 Port A, Daten vom und zum Schreib/ Lesekopf

¥1C02 Datenrichtung Port B

1003 Datenrichtung Port A

FB 0: STP I

FR i: STF O Schrittmotor für Kopfbewegung

FB 2: MTR Laufwerksmotor

FB =: ACT LED am Laufwerk

FB 4: WES Write Protect Switch

FB 7: SYNC

CA 1: Byte Ready

CA 2: SOE

103

Die Belegung der wichtigsten Speicherstellen

0 300 Befehlskode für Puffer 0

i $01 Befehlskode für Puffer 1

2 $02 Befehlskode für Puffer 2

3 $03 Befehiskode für Puffer 3

4 $04 Befehlskode für Puffer 4

6 $04 - $07 Track und Sektor für Puffer 0

8 $08 - £09 Track und Sektor für Puffer I

10 $0A - $08 Track und Sektor fiir Puffer 2

12 $00 - OD Track und Sektor für Puffer 3

14 $0E - $0F Track und Sektor fiir Puffer 4

18 $12 - $13 ID für Laufwerk 0

20 $14 - $15 ID für Laufwerk i

22 $1& - #17 ID

32 $20 - $21 Flag fiir Kopftransport

48 $20 - #31 Pufferzeiger fur Disk-Controller

a7 $39 Konstante 8, Kennzeichen für Beginn Datenblockheader

38 $3 Parity für Datenpuffer

bi $3D Drivenummer fiir Disk Controller

63 ER Puffernummer für Disk Controller

&7 $43 Anzahl der Sektoren pro Track bei der Formatierung

71 $47 Konstante 7, Kennzeichen für Beginn Datenblock

73 $49 Stackpointer

74 £4A Schrittzahler fir Kopftransport

Bi $51 aktuelle Tracknummer bei der Formatierung

10 $49 Anzahl der Leseversuche (5)

106 $6A Schrittweite bei Sektorzuteilung (10)

iil $F - $70 Zeiger auf Adresse z.B fiir M- und B-Befehle

119 $77 Geratenummer + #20 für Listen

120 $78 Gerdtenummer + $40 fiir Talk

121 $79 Flag für Listen (1/0)

122 $7A Flag für Talk (1/0)

124 $7C Flag für ATN vom seriellen Bus empfangen

125 $7D Flag für EOI vom seriellen Bus

127 $7F Drivenummer

128 $80 Tracknummer

129 $31 Sektornummer

120 $82 Kanalnummer

131 $83 Sekundäradresse

132 $84 Sekundäradresse

133 85 Datenbyte

139 $8B - £BD Arbeitsspeicher für Division

148 $94 - $95 aktueller Pufferzeiger

133 $99 - $9A Adresse Puffer 0 $200

155 $9B - $9C Adresse Puffer i $400

157 $9D - $9E Adresse Fuffer 2 $500

159 $9F - $A0Q Adresse Puffer 3 $400

161 $Al - $A2 Adresse Fuffer 4 $700

143 $A3 - $A4 Zeiger auf Eingabepuffer $200

145 $A5 - Ab Zeiger auf Puffer für Fehlermeldung #2D5

181 $B5 - #BA Record # lo, Blockzahl lo

187 $BB - CÜ Record # hi, Blockzahl hi

193 $C1 - $C6 Schreibzeiger für Rel-Datei

104

2

fe

fe
d

Re

be

ur
 e

e

O
r

OC

de

te
l

Po

~o

Ht
P
P
O

P
d

P
o

p
p

P
a
o

$400

$590

£600

$760

£145
$228

$284

$289

- $2F9
/ $2FC

£300 - $3FF
$4FF
$SFF
$6FF
$6FF

$07 - #CC

$F9
256-325
s12-952

663

bAu-644

645-649

725-741

762/764

768-1023

1024-1279

1280-1525

336-1791

1792-2047

Recordlänge für 'REL’-Dateien

Zeiger in Datensatz bei REL-Datei

Side Sektor Nummer

Zeiger auf Datenblock im Side-Sektor

Zeiger auf Datensatz in REL-Datei

Filetyp

Puffernummer

Stack

Puffer fur Befehisstring

Filetyp

Recordlange

Track Side-Sektor

Sektor Side-Sektor

Lange der Eingabezeile

Zahl der Dateinamen

Filebetriebsart

Track eines Files

Sektor eines Files

Fuffer fiir Fehlermeldung

Anzahl freie Blocks

Fuffer 9

Puffer 1

Fuffer

Puffer

Puffer fe

te
d

2

105

3.2 Die Arbeitsweise des DOS — ein überblick

Die VC 1541 ist ein intelligentes Diskettenlaufwerk mit

eigenem Mikroprozessor und Betriebssystem (Disk Operating

System, DOS). Dadurch wird kein Speicherplatz und keine

Rechenzeit des angeschlossenen Rechners benötigt. Der Rechner

braucht der Floppy lediglich Befehle zu übermitteln, die

diese dann selbsttätig ausführt.

Die Floppy hat damit drei Aufgaben gleichzeitig zu erledigen:

Zum Ersten muß sie den Datenverkehr vom und zum Rechner

durchführen. Die zweite Aufgabe ist die Interpretation der

Befehle und die Verwaltung von Dateien und den zugeordneten

übertragungskanälen und der Blockpuffer. Die dritte Aufgabe

ist die hardwaremäßige Bedienung der Diskette; dazu gehört

das Schreiben und Lesen einzelner Blocks auf der Diskette

sowie das Formatieren von Disketten.

Diese Aufgaben muß bei der VC 1541 ein 6502-Mikroprozessor

gleichzeitig durchführen. Dies ist nur mit Hilfe der Inter-

rupttechnik möglich. Nur so können drei Programme quasi

gleichzeitig ablaufen.

Das Hauptprogramm kümmert sich um die Interpretation und

Ausführung der übermittelten Befehle. Das Empfangen von Daten

und Befehlen vom Rechner wird nun per Interrupt erledigt.

Will der Rechner ein Feripheriegerät ansprechen, so sendet er

einen Impuls über die Leitung ATN (Attention, Achtung, siehe

auch Kapitel 5.1). Damit löst er bei der Floppy einen Inter-

rupt aus. Die Floppy unterbricht nun ihr laufendes Programm

und merkt sich, daß der Rechner Daten senden wollte. Jetzt

wird erst der ursprüngliche Befehl abgearbeitet. Danach kann

die Floppy nun weitere Daten und Befehle vom Rechner annehmen

und verarbeiten. Ist der Befehl abgearbeitet, so steht die

Floppy in einer Warteschleife, bis neue Befehle vom Rechner

kommen.

Das Abarbeiten der Befehle in dieser Ebene beschränkt sich

Jedoch auf die logische Verarbeitung der Befehle, die

Verwaltung der übertragungskanäle vom und zum Rechner sowie

die Bereitstellung und Abholung der zu schreibenden bzw. zu

lesenden Daten in die dafür vorgesehenen Pufferspeicher. Die

Aufgaben eines ‘Disk Controllers’, das Formatieren von Dis-

ketten sowie das Schreiben und Lesen einzelner Blocks, müssen

ebenfalls vom Frozessor ausgeführt werden.

Diese Aufgaben werden wieder interruptgesteuert durchgeführt.

Durch einen eingebauten Zeitgeber (’Timer’) wird ca. alle 14

Millisekunden das reguläre Frogramm der Floppy unterbrochen

und in ein Frogramm verzweigt, das die Aufgaben eines

Disk-Controllers erfullt. Die Kommunikation zwischen den

beiden eigenständigen Frogrammen geschickt über gemeinsam

benutzte Speicherstellen, in die das Hauptprogramm Befehls-

kodes für das Disk-Controller-Frogramm ablegt. Wird nun das

106

Interruptprogramm aktiv, so schaut es in diesen Speicher-

stellen nach, ob irgendwelche Aktivitäten verlangt werden.

z.B. eine Diskette formatieren. Ist dies der Fall, so werden

z.B. Laufwerks- und Kopfmotoren in Bewegung gesetzt. Nach

Beenden der Interruptroutine schaut das Hauptprogramm wieder

in bestimmten Speicherstellen nach, ob die Aufgabe vom

Disk-Controller schon erledigt wurde oder ob noch weiter

gewartet werden muß. Ebenso wird auf diese Weise dem

Hauptprogramm mitgeteilt, ob irgendwelche Fehlerbedingungen,

z.B. ein Read Error aufgetreten sind oder ob die

Schreibschutzmarke geklebt war. Das Hauptprogramm kann dann

entsprechend reagieren und z.B. eine Fehlermeldung bereit-

stellen.

Bei den großen CBM-Floppys wird als Disk-Controller ein

eigener, zweiter Mikroprozessor von Typ 6504 eingesetzt. Die

Kommunikation geschieht wieder über gemeinsame Speicher-

stellen.

Eine übersicht über die Speicherbelegung des DOS sowie der

Ein-Ausgabe Bausteine zur Bedienung von Diskette und

seriellem Bus finden Sie im vorhergehenden Kapitel.

Diese übersicht über die Arbeit des DOS kann natürlich nur

einen groben überblick geben. Wollen Sie sich genauer

informieren, so können Sie das DOS-Listing der VC 1541 in

Kapitel 3.5 zu Rate ziehen, in dem das komplette

1ék-Betriebssystem ausführlich dokumentiert ist.

107

3.4 Der Aufbau der VC 1541-Diskette

Die Diskette der VC 1541 ist in 35 Spuren mit je 17 bis 21

Sektoren aufgeteilt. Die Gesamtzahl der Sektoren beträgt 482.

Da das Directory die gesamte Spur 18 belegt, stehen 464

Datenblöcke zur Verfügung, die jeweils 2546 Bytes aufnehmen

können. Die Spuren sind wie folgt belegt:

SPUR I ANZAHL DER SEKTOREN

i BIS 17 21
18 BIS 24 19
25 BIS 30 18
31 BIS 35 17

Die unterschiedliche Anzahl der Sektoren je Spur ist bedingt

durch die Verkürzung der Spuren zum Mittelpunkt hin.

3.4.1 Die BAM der VC 1541

BAM ist die Abkürzung für Block-Availability-Map. Sie hat die

Aufgabe, die Blöcke als belegt oder frei zu kennzeichnen.

Nach jeder Manipulation der Blöcke (speichern, löschen, usw)

wird die BAM aktualisiert. Wenn anhand der BAM festgestellt

wird, daß ein zu speicherndes File mehr Blöcke benötigt, als

verfügbar sind, so wird eine Fehlermeldung ausgegeben. Beim

Eröffnen eines Files wird die BAM in den DOS-Speicher

übernommen, parallel mit den Ubertragungsbefehlen

aktualisiert und beim Schließen der Datei zurück auf die

Diskette geschrieben. Befehle, die Schreib- oder

Löschfunktion haben, lesen die BAM, aktualisieren und

schreiben sie wieder zurück. Die BAM ist auf Spur 18, Sektor

0 folgendermaßen organisiert:

Spur 18, Sektor oO

BYTE INHALT BEDEUTUNG

O,1 (400-4£01)] £12,401 Spur und Sektor des ersten

Blocks der Directory

2 (#02) $41 ASCII-Zeichen "A"; zeigt

1541-Format an

3 (#03) #00 Null-Flag für zukünftige

Benutzung

4-143 (#04-48F > Bitmuster der belegten bzw.

nicht belegten Blocke *
*) 1 = Block nicht belegt ; O = Block belegt

108

Das Bitmuster der Blöcke ist so organisiert, daß jeweils 4
Bytes eine Spur kennzeichnen. Wie es der folgenden Tabelle zu
entnehmen ist, enthält das erste der 4 Bytes die Anzahl der
freien Blöcke dieses Spur. Die restlichen 3 Bytes (24 Bits)
kennzeichnen die freien oder belegten Blöcke dieser Spur.

Struktur des BAM-Eintrags einer Spur:

BYTE INHALT

OÖ Zahl der verfügbaren Elöcke der Spur

1 Bitmuster der Sektoren 0-7

2 Bitmuster der Sektoren 8-15

3 Bitmuster der Sektoren 16-23
4 Bytes einer Spurkennzeichnung in der BAM:

Spur 18, Sektor 0, Byte 4-7 (Spur 1)

00001010 00000000 00000011 11111111

(0A) (#00) ($00) ($3F)

nicht belegt

belegt Blöcke 10 freie 1

oO

Durch Programmierung einer Schleife, die das jeweils 1. Byte

liest und aufaddiert, ist es möglich, die freien Blécke der

gesamten Diskette zu ermitteln.

2.24.2 Das Directory

Das Directory ist das "Inhaltsverzeichns" der Diskette. Sie

enthält folgende Informationen:

- Diskettenname

- ID der Diskette

- Nummer der DOS-Version

- Filenamen

- Filetypen

- Blocks pro File

- freie Blöcke

Dieses Directory wird mit dem Befehl "LOAD "#+",8’° in den

Speicher geladen. Dabei wird ein evtl. gespeichertes Programm

zerstort! Mit dem Befehl ‘LIST’ kann sie dann auf dem

Bildschirm ausgegeben werden.

Das Directory belegt die gesamte Spur 18 der Diskette. Dem

Vorspann der Directory folgen die Fileeinträge. Jeder Block

nimmt maximal 8 Fileeinträge auf. Da die BAM und der Vorspann

der Directory 1 Block belegen, stehen auf dieser Spur noch 18

109

Blöcke für Fileeinträge zur Verfügung. Es können demnach auf

einer Diskette maximal 144 Files (18 Biöcke mit je 8

Einträge) verwaltet werden.

Format des Vorspanns der Directory:

Spur 18, Sektor 0

BYTE INHALT BEDEUTUNG :

144-161 (#90-#A1) Name der Diskette (ergänzt

mit "SHIFT SPACE")

162,163 (#A2,#AZ) ID-Kennzeichnung der Disk

164 (#A4) #A0 "SHIFT SPACE"

165,166 (#A5,#AG)] $32,441 ASCII-Zeichen "2A" (Format)

167-170 (#A7-#AA)| #A0 "SHIFT SPACE"

171-255 (#AB-4FF)— £00 wird nicht benutzt, ist mit

Nullen ausgefüllt +

* Die Bytes 180 bis 191 können auf manchen Disketten den

Inhalt "BLOCKS FREE" haben

Der Name der Diskette

Bei der Formatierung wird der Diskettenname, der aus maximal

1& Zeichen besteht, festgelegt. Werden weniger als 14 Zeichen

angegeben, so wird der Rest mit "SHIFT SPACE" (AO)

ausgefüllt. Die folgende BASIC-Rautine liest den Namen und

speichert ihn in eine String-Variable:

100 OPEN 15,8,15,"I10" :REM BEFEHLSKANAL 15 öFFNEN UND
NEU INITIALISIEREN |

110 OPEN 2,8,2,"#" :REM DATENKANAL 2 OFFNEN
120 PRINT#15,"B-R";2;0;18;0:REM SPUR 18, BLOCK O LESEN

UND IN KANAL 2 ABLEGEN
150 FRINT#15,"B-P"525144 :REM BUFFER-POINTER AUF BYTE 144
140 DN$="" :REM STRING DN$ LÖSCHEN
150 REM SCHLEIFE ZUM EINLESEN DER 1& BYTES DES NAMENS
140 ::FOR I=1 TO 16
170 ::GET#2,X# :REM LESEN EINES BYTES

180 :: IF ASC(X#)=146CTHEN2Z00:REM SHIFT-SFACE NICHT ÜBERNEHMEN

190 ::DN#=-DN#+Xs :REM BYTE AN DN¢ ANHÄNGEN

200 NEXT I

210 CLOSE 2:CLOSE 15 REM KANALE SCHLIESSEN

Nach Ablauf dieser Routine steht der Diskettenname in dem

String DNF zur Verfügung. Diese Routine kann z.B. in

Anwendungsprogrammen sinnvoll sein, um festzustellen, ob die

richtige Diskette eingelegt ist.

ID-Kennzeichnung der Diskette

Die Disketten-ID besteht aus 2 Zeichen und wird beim

Formatieren der Diskette bestimmt. Anhand dieser

Kennzeichnung stellt das DOS den Wechsel der Diskette fest,

was zum Initialisieren der neuen Diskette notwendig ist. Als

Initialisieren bezeichnet das Einlesen der BAM in den

Speicher des Laufwerkes. Damit das DOS stets die aktuelle BAM

im Speicher vorfindet, sollte die ID beim Formatieren immer

unterschiedlich sein. Sollte dies nicht der Fall sein, so muß

nach einem Diskettenwechsel mit dem Befehl INITIALIZE "von

Hand" initialisiert werden.

5.4.3 Das Format deg Directory

Die Blöcke 1 bis 19 der Spur 18 beinhalten die Einträge der

Files. Die ersten beiden Bytes eines Blocks zeigen auf den

Block mit den nächsten Fileeinträgen. Sollte kein weiterer

Block folgen, so beinhalten diese beiden Bytes #00 und #FF.

Spur 18, Sektor 1

Byte Inhalt

O,1 (50,01) Spur und Sektor des nächsten Blocks

der Directory

2-31 (402-F1F) Eintrag des i. Files

24-63 (£22-3F) Eintrag des 2. Files

66-95 (#$42-$5F) Eintrag des 2. Files

78-127 (62-#7F) Eintrag des 4. Files

130-157 (#82-4¢9F) Eintrag des 5. Files

162-191 (tA2-FEF) Eintrag des &. Files

194-223 (#C2-#£DF) Eintrag des 7. Files

226-255 (#E2-FFF} Eintrag des 8. Files
Format eines Directory-Eintrags

Jeder Fileeintrag besteht aus 30 Bytes, deren Funktion im

Folgendem beschrieben sind:

BYTE INHALT

te) ($00) — Filetyp
1,2 ($01 ,#02) Spur und Sektor des ersten Datenblocks

3-18 (#03-#12) Filename (ergänzt mit “SHIFT SPACE")

19,20 (#13,#14) Nur bei relativen Files benutzt

(Spur und Sektor des ersten Side-.
Sector-Blocks)

21 (#15) Nur bei relativen Files benutzt

(Recordlänge)

22-25 (#16-$19) Nicht benutzt

26,27 (#1A-#1B) Spur und Sektor des neuen Files beim

überschreiben mit dem Klammeraffen

298,27 (#£1C-#1D) Anzahl der Blocks im File (Low-Byte,

High-Byte)

Kennzeichnung des Filetyps

Das Byte O des Fileeintrags kennzeichnet den Filetyp. Zur

Kodierung der 5 Filetypen werden die Bits 0-2 benutzt. Das

Bit 7 kennzeichnet, ob das File ordnungsgemäß geschlossen

ist. Wird ein File geöffnet, so wird der entsprechende

Filetyp gesetzt. Beim Schließen dieses Files wird dann das

Bit 7 gesetzt. Ein nicht geschlossenes File wird im

aufgelisteten Directory mit einem Stern vor dem Filetyp

gekennzeichnet. Wird z.B. Ein sequentielles File "TEST"

geöffnet und anschließend das Directory aufgelistet, so wird

dieses File so im Directory dargestellt:

12 "TEST" *SEQ

Wird das File wieder geschlossen, so erscheint der Stern bei

nochmaligem Auflisten des Directorys nicht mehr. Wird dieses

File nicht geschlossen und später nochmals eröffnet, so

erschient die Fehlermeldung "WRITE FILE OPEN".

Der Filetyp

Um die Funktion des Byte 0 im Fileeintrag, also den Filetyp,

richtig zu verstehen, folgt nun eine Tabelle aller Filetypen:

112

Filetyp Bitmaske geöffnet Bitmaske geschlossen

7654 3210 HEX 7454 3210 HE X

DELeted 0060 0000 +00 1000 0000 #80

SEQuential 0000 0001 301 1000 0001 $81

PRoGr am 0000 0010 +02 1000 0010 +92

USeaR GB000 OO11 FOS 1000 0011 +83

RELative 0000 0100 $04 1000 0100 +94
Vieleicht haben Sie erkannt, daß die Bits 3 bis %& ohne

Funktion sind. Als wir dies mit Hilfe des DOS-Listings

nachprüften, stellten wir fest, daß das Bit 6 doch eine
Funktion hat:

DAS BIT & DES FILETYPS KENNZEICHNET EIN GESCHUTZTES FILE !

Setzt man dieses Bit auf 1, so kann das entsprechende File

nicht mehr gelöscht werden. Dies wird im aufgelisteten

Directory mit dem Zeichen . hinter dem Filetypen

gekennzeichnet.

Da das Setzen dieses Bits eine Folge von komplizierten

Befehlen erfordert, finden Sie in Kapitel 4 dieses Buches ein

Frogramm, mit dem Sie Files schützen, freigeben und löschen

können.

Spur und Sektor des ersten Datenblocks

Die Bytes 1 und 2 des Fileeintrags weisen auf den ersten

Datenblock des Files. Dabei ist im Byte 1 die Spur und in

Eyte 2 der Sektor dieses Blocks enthalten. Dieser erste

Datenblock enthält dann in den ersten beiden Bytes die

Adresse des zweiten Datenblocks, usw. Um den letzten

Datenblock zu identifizieren, enthält dieser den Wert $00 im

ersten Byte. Das zweite Byte enthält die Anzahl der Bytes,

die in diesem Block vom File belegt sind.

Diese Verkettung läßt sich mit Hilfe des DOS-MONITORS, der in

diesem Buch enthalten ist, gut verdeutlichen.:

>ıBO AO AO AO AO AO 00 00 00 ...
>:BB 00 00 00 00 00 00 OB OO
>:C0 00 00 B1 13 09 54 31 32Ti12
>:C8 2F 53 30 31 AO AO AO AO 7501
>:DQ AO AO AO AO AD 00 00 00 un:
>:D8 00 00 ogfog Or Filetyp
>»:EO 00 00 [aatrelaoLan 49 535DIS ‘Spur 1. Block
>:EB 4B 20 41 44 44 52 20 Sektor 1. Block
>:FO 48 41 4E 47 45 00 00 00 HANGE... |
>iFB 00 00 00 00 00 00 KARO Anzahl Blöcke

Dies ist ein Auszug aus dem Directory (Spur 18, Sektor 1) der

TEST/DEMO-Diskette. Verfolgen wir nun die Organisation des

Files DISK ADDR CHANGE. Der Eintrag dieses Files beginnt bei

Byte $E2 und endet mit Byte $FF. Dies ist ein PRG-File, was

an dem Filetyp #82 in Byte #E2 zu erkennen ist. Dieses File

umfasst 4 Blöcke auf der Diskette. Dies ist an den Bytes #FE

und #FF ersichtlich. Die Bytes #E3 und $64 des Eintrags

adressieren den ersten Datenblock des Files (#10, #00,

entspricht Spur 16, Sektor ©).

Schauen wir uns nun den Ausschnitt dieses Blocks einmal an:

>:00 fID_oAl01 04 OF 04 64 00_......#.
>:08 97 35 39 34 36 38 26 31 .59448,1 “Adresse 2. Block
510 32 00 39 04 6E 00 99 22 2.9...."
118 93 13 11 11 11 11 44 52DR
>:20 49 56 45 20 41 44 44 52 IVE ADDR
2278 45 53 55 20 43 48 41 4E ESS CHAN
>:30 47 45 20 50 52 4F 47 52 GE PROGR
2338 41 AD 22 00 59 04 4F 00 AM".Y./.
>:40 99 22 11 54 55 52 4E 20 .". TURN
>:48 4F 46 46 20 41 4C 4C 20 OFF ALL

Dieser Block enthält den ersten Teil des Frogramms, das in

der linken Charakter-Darstellung schwer zu lesen ist. Das

liegt daran, daß BASIC-Frogramme auf Diskette genauso

abgelegt werden, wie im Speicher des Rechners. Die

BRASIC-Befehle werden in Form eines Ein-Byte-Codes (Tokens

genannt) abgekürzt. Somit ist nur der Text zu erkennen. Die

ersten beiden Bytes dieses Datenblocks weisen nun auf den

zweiten Datenblock (#10 und OA, also Spur 16, Sektor 10),

dessen Auschnitt nun folgt:

7300 fio 14] 34 20 00 1D 05 AO ..40...

„08 OO BD 20 33 20 30 FA 20 .. 200: Adresse 3. Block

„10 BF 20 46 49 4E 44 20 44 . FIND D

P218B S32 49 346 45 20 54 57 50 RIVE TYP

2320 45 00 39 05 AA OO BD 20 €£.9. ..

zB 36 30 30 AA 20 SF 20 43 600: .C

r:30 48 41 4E 47 45 20 41 44 HANGE AD

28 44 52 45 53 52 00 58 OF DRESS. (.

‚40 B4 00 99 ZZ 11 54 48 45 ..".THE

AB 20 53 45 A4C 45 43 54 45 SELECTE

Das Programm wird in diesem Block fortgesetzt. Die Bytes #00

und #01 zeigen nun auf den 3. Datenblock des Files (#10, #14,

Spur 16, Sektor 20): ‘

>00 [10_o8] 31 30 30 30 00 23 ..1000.#
2:08 06 54 01 BB 20 43 Be 32 .„T.. C2 Adresse 4. Block
2210 35 34 20 A7 20 AD 54 B2 54 MT
>:18 31 31 39 3A 20 BF 3A 20 119: .:
>:20 32 30 33 31 20 56 32 2E 2031 v2.
>:28 36 00 45 06 SE 01 BB 20 &.E. ..
>:30 43 B2 32 32 36 20 A7 20 C 226
>:38 4D 54 B2 35 30 3A 20 8F MT 50: .
»:40 3A 20 32 30 34 30 20 56 : 2040 V
>48 31 2E 32 00 47 06 68 01 1.2. «6.

Dies ist der vorletzte Block des Frogramms. Sie haben sicher

erkannt, daß die Datenbläcke zwar in der gleichen Spur,

jedoch nicht nacheinander angeordnet sind. Das heißt aber

nicht, daß die Belegung der Elöcke ohne Sytem erfolgt. Der

erste Datenblock ist der Black ©. Der nächste ist der Black

10, also 10 Elöcke weiter. Es werden immer 9 Blöcke

übersprungen, was sich im weiteren Verlauf bewahrheitet. Der

=. Datenblock ist der Block 20. Das DOS fängt wieder beim

ersten Block an, wenn der errechnete Block den höchsten Block

überschreitet. Weil sich die Spur 16 über zai Blöcke

erstreckt, ist der letzte Datenblock der Block &8.Die ersten

beiden Bytes dieses 3. Blocks adressieren Ihn:

>00 sa 42 B2 31 270A7 . ZB 1 N
>08 Z0 39834 30 00 14 OF AE 440... Zeichen letzter

>10 01 sel 20 53 54 20 A7 20 .. ST Block
>18 31 30 =O 30 00 45 07 BB 1000.E. \
>20 01 98 31 35 20 22 4D 2D ..15,"M- Anzahl belegter
7228 52 22 C7 28 31 37 32 29 R" (172) Bytes dieses
>:30 C7 28 31 36 29 3A Al 25 (16): # Blocks
7238 31 35 2C 5A 43 24 3A 5A 15,ZC#:Z
240 42 B2 Ch 28 SA AZ 24 AA C £(ZC#
7:48 C7 28 30 29 29 00 66 07 gfO)).&.

Hier ist das Ende des Programms durch den Wert #00 im Byte

£00 gekennzeichnet. Das Byte #01 gibt die Anzahl der Bytes

an, die von dem Programm in diesem letzten Block belegt sind

(#F8 enstpricht 248 Bytes). Nun läßt sich leicht die Größe

des Frogramms ermitteln:

> Blöcke mit je 254 Bytes = 762 Bytes

letzter Block = 248 Bytes

Größe des Programms: 1100 Bytes

Der Filename

Der Filename ist in den Bytes 3-18 des Fileeintrags

‘enthalten. Er umfasst maximal 16 Zeichen. Sollte der Name

kleiner als 146 Zeichen sein, so wird der Rest wie beim

Diskettenname mit "SHIFT SPACE" (#A0) ausgefüllt.

Spur und Sektor des neuen Files beim "überschreiben"

Wird ein File durch Angabe des Klammeraffens vor dem

Filenamen überschrieben, so wird das neue File zuerst

komplett abgespeichert. Es wird aber für dieses File kein

Eintrag erstellt, weil das File ja bereits unter diesem Namen

existiert. Die Adresse des ersten Blocks des neuen Files wird

in den Bytes 26 und 27 des Eintrags gespeichert. Ist das neue

Frogramm abgelegt, wird das alte gelöscht, indem lediglich

die bisher von diesem File belegten Blöcke in der BAM als

115

frei gekennzeichnet werden. Nun wird die Adresse des ersten

Datenblocks des neuen Files in die Bytes 1 und 2, Adresse des

ersten Datenblocks des Files, gebracht und das File ist
"überschrieben"

Anzahl der Blöcke im File

In den beiden Bytes Z8 und 29 des Fileeintrags ist die Länge

des Files in Blöcken angegeben. Eine Datei umfaßt mindestens

einen und höchstens 644 Blöcke. Das erste Byte ist das

Low-Byte, d.h. der rechte Teil der 2-Byte-Zahl. Das zweite

Byte ist das High-Eyte. Haben Sie z.B. mit dem DISK-MONITOR

die Filelänge #1F,#00 ermittelt, so umfasst das File 31

Blöcke.

116

3.4 Die Organisation von relativen Dateien

Relative Dateien unterscheiden sich von gewöhnlichen se-
quentiellen Dateien dadurch, daß hier auf jeden Datensatz

direkt zugegriffen werden kann. Deshalb muß hier außer den

Daten selbst noch zusätzlich eine Datei abgespeichert werden,
in der steht, wo jeder Datensatz zu finden ist.

Diese Aufgabe wird von der Floppy automatisch ohne Ihr Zutun

erledigt. Sehen wir uns die Organisation der relativen Datei

nun einmal etwas näher an.

Dazu öffnen wir eine relative Datei mit einer Datensatzlänge

von 100:

OPEN 2,8,2, "REL-DATEI,L,"+CHRE& (100)

und legen den Datensatz Nr. 70 an.

OPEN 1,8,15

FRINT#1, “P"+CHR (2) +CHR (70) +CHRS (0) +CHR# (1)

PRINT#2, “DATENSATZ 70"

CLOSE 2 : CLOSE 1

Der Directoryeintrag sieht dann so aus:

>200 84 11 00 52 45 4C „.„„REL

7:08 2D 44 41 54 45 49 AO AO -DATEI

>210 AO AO AO AO AO 11 OA 64 „.*

2318 00 00 00 00 00 00 1D 00 „..enur.

Das erste Byte #84 kennzeichnet eine relative Datei. Die

nächsten beiden Byte kennzeichnen den ersten Track und Sektor

der eigentlichen Daten (#11, #00; Track 17 Sektor 0); genau

wie bei einer sequentiellen Datei. Es folgt wieder wie üblich

der Name der Datei (16 Zeichen, aufgefüllt mit ‘Shift Space’,

#A0). Jetzt folgen drei Einträge, die wir bei sequentiellen

Dateien nicht kennen. Die ersten beiden Byte weisen auf Track

und Sektor des ersten sogenannten Side-Sektor-Blocks, der die

Zeiger auf jeden Datensatz enthält und den wir gleich näher

kennenlernen werden (#11, 0A; Track 17 Sektor 11). Das

nächste Byte enthält die Datensatzlänge, ein Wert zwischen 1

und 254, in unserem Falle #64 gleich 100. Die Ännehmlichkeit,

auf jeden Datensatz direkt zugreifen zu können, erfordert

eine feste Länge für jeden Datensatz, die wir beim Anlegen

der relativen Datei definieren müssen. Die restlichen Bytes

im Directoryeintrag haben wieder die übliche Bedeutung; so

enthalten die beiden letzten Bytes wieder die Anzahl der

Blocks, die durch die Datei belegt werden (lo- und hi-Byte,

#1D und #00 gleich 29).

Wie sieht nun so ein Side-Sektor-Block aus und welche Aufgabe

hat er *?

Die Side-Sektor-Blocks enthalten die Track- und Sektor-Zeiger

auf die einzelnen Datenblocks. Wollen wir zum Beispiel den

70. Datensatz aus unserer relativen Datei lesen, so schaut

die Floppy im Side-Sektor-Block nach, auf welchem Track und

Sektor der Datensatz steht und kann dann direkt diesen Block

lesen. Dadurch wird verhindert, daß die gesamte Datei bis zum

70. Satz gelesen werden muß. Es müssen also nur zwei Blocks

gelesen werden, um den Datensatz zu erhalten. Nach dieser

etwas vereinfachten Darstellung sehen wir und jetzt den

genauen Aufbau eines Side-Sektor-Blocks an. Wir beziehen uns

wieder auf die oben geöffnete Datei.

2200 OO 47 00 64 11 OA OO OO .G.F....

>:08 00 00 00 00 00 00 00 0045-

7210 11 00 11 OB 11 01 11 OC

>18 11 02 11 OD 11 O3 11 OF

>:20 11 04 11 OF 11 05 11 10

>28 11 06 11 11 11 07 11 12

2:50 11 08 11 13 11 09 11 14

7338 10 08 10 12 10 046 10 10

7:40 10 04 10 OF 10 02 10 OC

>:48 00 00 00 00 00 00 00 00: .

7350 00 00 00 00 00 00 00 00

22:58 00 00 00 00 00 00 00 OO

>360 00 00 00 00 00 00 00 OO

22:68 00 00 00 00 00 00 00 OO „.z.urun.

>70 00 00 00 00 00 00 00 00-.-

>78 00 00 00 00 00 00 00 00

>:80 00 00 00 00 00 00 00 00

>:88 00 00 00 00 00 00 00 00

73970 00 00 00 00 00 00 00 00

7398 00 00 00 00 00 00 00 00 -

7sAO 00 00 00 00 00 00 00 00--.-.
>sAB 00 00 00 00 00 00 00 OO
»:BO 00 00 00 00 00 00 00 00 „zuuuene
>2BB 00 00 00 00 00 00 00 OO-
>:C0 00 00 00 00 00 00 00 OO
>sC8 00 00 00 00 00 00 00 00-
>»:DO 00 00 00 00 00 00 00 00
>:D8 00 00 00 00 00 00 00 004.2-
>sEO 00 00 00 00 00 00 00 00
>sE8 00 00 00 00 00 00 00 00 „„eunerne
>»:FO 00 00 00 00 00 00 00 OO
>sFB 00 00 00 00 00 00 00 00-.

Die ersten beiden Byte zeigen wie üblich auf Track und Sektor

des nächsten Side-Sektor-Blocks. (In unserem Beispiel

existiert kein weiterer Side-Sektor-Block und es werden nur

$47 = 71 Bytes genutzt.) Byte 2 enthält die Nummer des

Side-Sektor-Blocks, O. Dazu muß man wissen, daß eine relative

Datei maximal 6 solcher Blocks enthalten kann; die
Nummerierung geht von oO bis 5. In Byte 5 steht die

Datensatzlänge #64 = 100. Die nächsten zwölf Byte (Nummer 4

bis 15) enthalten jeweils Track- und Sektor-Zeiger auf die &

Side-Sektor-Blocks (0,0 falls der Block noch nicht angelegt

ist). Ab Byte 15 stehen die eigentlichen Zeiger auf die

Daten, und zwar die Track- und Sektor-Zeiger auf die ersten

120 Datenblöcke (in unserem Falle nur 28 Zeiger). Soll nun

ein bestimmter Datensatz gesucht werden, so kann das DOS aus

der Datensatznummer und der Datensatzlänge genau berechnen,

auf welchem Block die Daten stehen und ab welcher Position

innerhalb des Blocks der Datensatz beginnt. Nehmen wir dazu

folgendes Beispiel:

Wir wollen den 70. Datensatz aus unserer Datei mit einer

Datensatzlänge mit 100 Zeichen lesen. Wir haben dann folgende

Rechnung durchzuführen:

(70-1) * 100 / 254

Wir erhalten als Ergebnis 27 und einen Rest von 42. Das DOS

weiß nun, daß der Datensatz im 27. Datenblock ab der Position

42+2 gleich 44 zu finden ist. Die Rechnung erklärt sich

folgendermaßen: Jeder Block enthält 256 Byte, von denen die

ersten beiden Bytes als Zeiger auf den nächsten Block

gebraucht werden, es bleiben also 254 Bytes zur Daten-

speicherung übrig. Aus Datensatznummer und Datensatzlänge

haben wir die Bytenummer innerhalb der Datei berechnet. Wenn

wir diesen Wert durch die Anzahl der Bytes pro Block

dividieren, erhalten wir die Nummer des Blocks, in dem der

Datensatz steht, während der Rest der Division die Position

innerhalb des Blocks ergibt (plus 2, da die ersten beiden

Byte als Zeiger dienen). Geht der Datensatz über das

Blockende hinaus, so muß auch der nächste Datensatz gelesen

werden.

In unserem Beispiel steht der 27. Datenblock in Track #10 =

16 und Sektor #0C = 12. Wenn wir diesen Block lesen, erhalten

wir folgendes Bild:

27:06 OO F3 00 00 00 00 00 00-..--.
>:08 OO 00 00 00 00 00 00 00 „.„....n..
27210 00 00 00 00 00 00 00 00 „.za«une..
2218 00 00 00 00 00 00 00 0044-.
7220 00 00 00 00 00 00 00 0046.-s
7228 00 00 00 00 44 41 54 45DATE
7230 4E 33 41 54 SA 20 37 30 NSATZ 70
>58 OD 00 00 00 00 00 00 00 ...245-5
>40 OO 00 00 00 00 00 00 00 „..uen..
2:48 OO 00 00 00 00 00 00 00eaee
7250 00 00 00 00 00 00 00 00 „zunune..
>58 00 00 00 00 00 00 00 00-.-.
7240 00 00 00 00 00 00 00 00+.-..
>368 OO 00 00 00 00 00 00 OO-..-.
»:70 00 00 00 00 00 00 00 00 „..u.ne.n
>27B 00 00 00 00 00 00 00 00 „„.u.un..
7:80 00 00 00 00 00 00 00 00 „.usen.n
>88 00 00 00 00 00 00 00 00 „„.nenen
»:90 FF 00 00 00 00 00 00 00 „...en.n
>78 00 00 00 00 00 00 00 00 „.....n.
>sAQ 00 00 00 00 00 00 00 004..-
>3AB 00 00 00 00 00 00 00 00 „.„.urnnn

119

>:BO 00 00 00 00 00 00 00 00 „..uuun«

>:BB 00 00 00 00 00 00 00 OO-.

>:CO 00 00 00 00 00 00 00 00-..

>:C8 00 00 00 00 00 00 00 00 „unse.

»Do 00 00 00 00 00 00 00 00

»DBS OO 00 00 00 00 00 00 00 „.uuunen

»„EO 00 00 00 00 00 00 00 00-...

»:EB 00 00 00 00 00 00 00 00 „..unun.

»FQO 00 00 00 00 FF O0 00 00 „..u.n.n.

>:FB 00 00 00 00 00 00 00 00 „.... ...

Erhalten wir bei der Berechnung eine Blocknummer über 120, so

befindet sich der Zeiger auf den Datensatz nicht mehr im

ersten Side-Sektor-Block, sondern in einem der nächsten

Blöcke. Hier können Sie wieder die Blockzahl durch 120

dividieren und Sie erhalten die Nummer des Side-Sektor-

Blocks. Der Rest gibt dann wieder die Nummer des Datenzeigers

innerhalb dieses Blocks an. Haben wir als Blocknummer z.B.

425 erhalten, so erhalten wir 3 Rest 45. Wir müssen also

Side-Sektorblock 3 lesen und dort den Zeiger auf den 65.

Datenblock holen. Da jeder Side-Sektor-Block die Track- und

Sektornummern der anderen Side-Sektor-Blocks enthält, ist

wiederum nur ein weiterer Lesezugriff erforderlich. Für den

Zugriff auf einen Datensatz einer relativen Datei sind also

zwischen 2 und 4 Blockgriffe erforderlich. Da die eigent-

lichen Datensätze einer relativen Datei genau wie bei einer

sequentiellen Datei mit einander verkettet sind, ist auch ein

sequentielles Lesen oder Schreiben ohne Angabe einer

Datensatznummer möglich. Dabei wird nach jedem Schreiben oder

Lesen der Zeiger auf den jeweils nächsten Datensatz gesetzt.

Beim Anlegen und Erweitern einer relativen Datei geschieht

folgendes:

Zuerst wird ein Directoryeintrag für die relative Datei

erzeugt, der den Eintrag über die beim öffnen angegebene

Länge enthält. Gleichzeitig werden zwei Datenkanäle für die

relative Datei reserviert (einer für die Daten selbst, der

andere für die Side-Sektor-Blöcke). wird jetzt der

Recordzeiger auf einen bestimmten Datensatz gesetzt, wird

erst geprüft, ob dieser Datensatz schon existiert. Ist dies

der Fall, werden die entsprechenden Blocks gelesen und die

Zeiger auf diesen Datensatz gesetzt, der nun gelesen oder

geschrieben werden kann. Existierte dieser Datensatz noch

nicht, so wird er angelegt. Dabei werden auch alle evtl. noch

nicht existierende Datensätze mit kleinerer Datensatznummer

angelegt. Das erste Byte des neuen Datensatzes enthält $FF

(255), der Rest des Datensatzes wird mit #00 aufgefüllt.

Steht der angesprochene Datensatz an Anfang eines Blocks,

wird der Rest des Blocks ebenfalls mit leeren Datensätzen

gefüllt. Jedesmal wenn ein nicht existierender Datensatz

angesprochen wird, wird die Fehlermeldung ‘S50, record not

present’ ausgegeben. Beim Schreiben eines neuen Datensatzes

ist dies kein eigentlicher Fehler, sondern weist nur darauf

hin, daß ein neuer Datensatz erzeugt wird. Diese Methode

sollte man auch beim Anlegen einer neuen Datei benutzen, wenn

man die maximale Zahl von Datensätzen kennt. Man setzt

einfach den Recordzeiger auf diesen Datensatz und schreibt

120

£&£FF (CHR#(255)) in diesen Datensatz. Damit werden alle

Datensätze bis zu dieser Nummer angelegt und die Fehler-

meldung SO tritt nicht mehr auf. Gleichzeitig weiß man auch,

ob noch genügend Platz auf der Diskette ist. Ist dies nicht
der Fall, erhält man die Fehlermeldung ‘52, file too large’.

Bei diesem Verfahren mit 6& Side-Sektoren kann eine relative

Datei maximal 6 * 120 * 254 = 182 880 Bytes enthalten. Im

Falle der VC 1541 ist dies mehr als die Kapazität der ganzen

Diskette. Bei der größeren Floppy 8050, die pro Laufwerk mehr

als 500 K abspeichern kann, bedeutet dies eine Einschränkung.

Deshalb hat man ab der DOS-Version 2.7 eine Erweiterung des
Side-Sektor-Verfahrens vorgenommen (’Super-Side-Sektor ’), bei

dem eine relative Datei maximal 23 MB an Daten enthalten

kann. Dies ist bei der CBM 8250 und den Commodore-Festplatten

sowie bei den neueren 8050-Floppies der Fall (siehe dazu auch

Kapitel 5.2).

Da wie gesagt eine relative Datei zwei Datenkanäle erfordert,

die VC 1541 jedoch nur drei Kanäle zur freien Verfügung hat,

kann immer nur eine relative Datei Datei offen sein. Der

dritte Kanal könnte noch für eine gleichzeitig offene

sequentielle Datei genutzt werden. Bei den großen CBM

Floppies stehen Ihnen ebenfalls mehr Kanäle zur Verfiiqung

(gleichzeitig 3 offene relative Dateien, siehe auch Kapitel

3.2).

121

VC 1541 DOS 2.4

EIS LZZZLZEZZZZSLZI LEI KLEE

C100 78 SEI
c101 AY F7 LDA #$F7
C103 2D 00 IC AND $1C00
C106 48 PHA
C107 AS 7F LDA $7F
C109 FO 05 BEQ $C110
C10B 68 PLA
Ci0c 09 00 ORA #$00
Ci0E DO 03 BNE $C113
Ci10 68 PLA
Citt 09 08 DRA #$08
Cits 8d 00 IC STA $1000
Ci16 38 CLI
6117 60 RTS

a2 222 E27 1 7 7 7 2 2 2 7 2 2 2 2 2 2 22
c118 78 SEI
C119 AI 08 LDA #$08
CitB 0D 00 IC ORA $1C00
CilE BD 00 IC STA $1C00
Ci21 38 CLI
Ci22 60 RTS

La 22
Ci23 AG 00 LDA #$00
C125 8D 66 02 STA $026C
C128 BD 6D 02 STA $026D
C12B 60 RTS

EHEERELEREREEREREREREREREEREREE

Ci2c 78 SEI
Ci2D 8A TXA
Ci2zE 48 PHA
Ci2F Ag 50 LDA #$50
C131 8D &C 02 STA $026C
C134 A2 00 LDX #$00
Ci36 BD CA FE LDA $FECA,X
C139 8D 46D 02 STA $026D
Cise OD 00 1C ORA $1000
CiSF BD 00 IC STA $1000
C142 68 PLA
Ci43 AA TAX
Ci44 SB CLI
[145 60 RTS

HEKHREREREREEREREREEREREREEERE
C146 A9 00 LDA #$00
Ci48 8D FI 02 STA $02F9
Ci4B AD BE 02 LDA $028E
Ci4E 85 7F STA $7F

LED am Laufwerk einschalten

LED-Bit löschen

Drivenummer

0 ?

nicht Laufwerk 0, dann LED aus

LED einschalten

LED einschalten

LED ein

Fehlerflags löschen

X-Register retten

LED einschalten

X-Register zurückholen

Befehle vom Rechner auswerten

letzte Drivenumner

Drivenuamer

122

C150 20 BC E& JSR $E4BC
[153 AS 84 LDA $84
C155 10 09 BPL $C160
C157 29 OF AND #$0F
Cis? C9 OF CMP &$0F
C15B FO 03 BEQ $C160
C15D &C B4 D7 JMP $D7B4
C160 20 B3 C2 JSR $C2B3
0163 Bi AS LDA ($A3),Y
C165 8D 7502 STA $0275
[168 A2 OB LDX #$0B
CiéA BD 89 FE LDA $FE89,X
Ci6éD CD 75 02 CMP $0275
(170 FO 08 BEQ $C17A
(172 CA DEX
C173 10 FS BPL $C16A
[175 AI 31 LDA #$31
C177 ac CB Ci JMP $C1C8
Ci7A BE 2A 02 = STX $022A
Ci7D EO 09 CPX #$09
Ci7F 90 03 BCC $Ci84
C181 20 EE Ci JSR $C1EE
C184 AE 2A 02 LDX $0228
C187 BD 95 FE LDA $FE95,X
CisA 85 4F STA $6F
Ci8C BDA! FE LDA $FEAI,X
C18F 85 70 STA $70
C191 6C 6F 00 JMP ($006F)

LE E22 2 EZ 22 2 2 2 2 2 3 2 22 2 EER 2 2 2 2 22
C194 AI 00 LDA #$00
Ci96 8D FI 02 STA $02F9
C199 AD 6€ 02 LDA $0246C
t19C DO 2A BNE $CiC8
Ci9E AD 00 LDY #$00
tCiAO 98 TYA
CiAl 84 80 STY $80
CiA3 84 81 STY $81
CiaS 84 A3 STY $A3
C1A?7 20 C7 E& JSR $E4C7
CLARA 20 23 Ci JSR $C123
ciAD AS 7F LDA $7F
CLAF BD BE 02 STA $028E
CiB2 AA TAX
CiBS Ag 00 LDA #00
CiBS 95 FF STA $FF,X
CiB7 20 BD Ci JSR $CiBD
CiBA 4C DA D& JMP $D4DA

SEERA 2 2 2 2 2 7 7 2 2 2 2 2 2 2 2 22 0 2 2 2 2 0202

CiBD AO 28 LDY #$28
CiBF AI 00 LDA #$00
Cici 99 00 02 STA $0200,Y
Cic4 988 DEY
Cics 10 FA BPL $C1Ci
Cic7 60 RTS

“ok’-Meldung bereitstellen

Sekundäradresse

15, Kommandokanal

ja

zum OPEN-Befehl

Zeilenlänge ermitteln und Flags löschen

erstes Zeichen holen

und merken

11

Kommandos

mit erstem Zeichen vergleichen

gefunden ?

nicht gefunden

31, ‘syntax error’

Nummer des Befehlsworts

Befehlsnummer { 9 ?

Test für 'R’, ‘S’ und ‘N°
Befehlsnummer

Sprungadresse lo

Sprungadresse hi

Sprung auf Befehl

Fehlermeldung nach Befehlsausführung bereitstellen

Flag gesetzt ?

ja, dann Fehlermeldung setzen

Fehlernummer 0

Tracknummer 0

Sektornummer 0

“ok'-Meldung bereitstellen

Fehlerflags löschen

Drivenummer

als letzte Drivenummer merken

Eingabepuffer löschen

interne Kanäle schließen

Eingabepuffer löschen

41 Zeichen löschen

$200 bis $228

123

KERNE Fehlermeldung ausgeben (Track + Sektor 0)

tice Ad 00 LDY #$00
CicA 84 80 STY $80 Track = 0

Cice 84 81 STY $81 Sektor = 0

CICE 4C 45 Ed JMP $E645 Fehlernummer im Akku, Meldung generieren

BEER o Eingabezeile prüfen

ciDi A2 00 LDX #300

C1D3 BE 7A 02 STX $027A Zeiger auf Laufwerknummer

C1D& AI 3A LDA ##3A "3!

CiDs 20 68 C2 JSR $€268 Test der Zeile bis ‘:’ oder bis zum Ende

CiDB FO 05 BEG $C1E2 kein Doppelpunkt gefunden ? ©

C1DD 88 DEY

CiDE 88 DEY

CiDF 8C 7A 02 STY $027A zeigt auf Laufwerknummer (vor Doppelpunkt)

CLE2 4C 68 C3 JMP $C368 Laufwerknummer holen und LED einschalten

HEERHKRHERRHELRHHRERERERERREHE | « Eingabezeile prüfen
C1ES AO 00 LDY #$00 Zeiger in Eingabepuffer

CiE7? A2 00 LDX #$00 Zähler für Kommas

C1E9 AI 3A LDA #$3A rn

LIEB 4C 68 C2 JMP $C268 testet Zeile bis zum Doppelpunkt oder zum Ende

HEEHHELERHEEEEREREREEREEEREREHD Eingabezeile prüfen

CiEE 20 ES Ci JSR $CIES Zeilentest bis ’:’ oder Ende

CiFi DO 05 BNE $C1F8 Doppelpunkt gefunden ?

CLFS AI 34 LDA #$34

CiFS ac C8 Cl JMP $CiC8 34, ‘syntax error’

CiF8 88 DEY

CiF9 88 DEY Zeiger vor den Doppelpunkt setzen

CiFA 8C 7A 02 STY $027A als Position der Laufwerksnummer

CiFD BA TXA Komma vor dem Doppelpunkt

CIFE DO F3 BNE $C1F3 ja, dann ‘syntax error’

C200 AQ 3D LDA #$3D '='

C202 20 68 C2 JSR $C268 Eingabe bis zum ‘=’ prüfen

£205 8A TXA Komma gefunden ?

C206 FO 02 BEQ $C20A nein

C208 A 40 LDA #$40 Bit 6

C20A 09 21 ORA #$21 und Bit 0 und 5 setzen

C20C 8D 8B 02 STA $0288 Flag für Syntaxprüfung

C20F E8 INX

C216 AD 8A 02 LDA $028A Joker gefunden ?

C219 FO OD BEQ $C228 nein

C21B A9 80 LDA #$80

C21D OD 8B 02 ORA $0288 Bit 7 setzen

C220 8D 8B 02 STA $028B

C223 AI 00 LDA #$00

C225 8D 8A 02 STA $028A und Jokerflag rücksetzen

C228 98 TYA ‘=’ gefunden ?

C229 FO 29 BEQ $€254 nein

C22B 9D 7A 02 STA $027A,X

C22E AD 77 02 LDA $0277 Anzahl Kommas vor Gleichheitszeichen

C231 8D 79 02 STA $0279

C234 A? 8D LDA #$8D Shift CR

C236 20 68 C2 JSR $C€248
C239 EB INX
C23A BE 7802 STX $0278
C23D CA DEX
C23—E AD BA 02 LDA $02B8A
C241 FO 02 BEG $0245
C243 Ag 08 LDA #$08
C245 EC 77 02 CPX $0277
C248 FO 02 BEQ $C24C
C24A 0904 DRA #$04
C24C 09 03 ORA #$03
C24E 4D 8B 02 EOR $028B
C251 8D 8B 02 STA $028B
C254 AD 8B 02 LDA $0288
C257 AE 2A 02 LDX $022A
C258 3D AS FE AND $FEAS,X
{25D DO 01 BNE $C260
C25F 60 RTS
C260 8D 6C 02 STA $026C
C263 AX 30 LDA ##30
(265 4€ C8 Ci JMP $C1C8

La 2 7

C268 8D 7502 STA $0275
C26B CC 74 02 CPY $0274
C26E BO 2E BCS $C29E
C270 Bi AS LDA ($A3),Y
[272 C8 INY
C273 CD 7502 CMP $0275
C276 FO 28 BED $C2A0
C278 C9 2A CMP #$2A
C27A FO 04 BEQ $C280
C27€ C9 3F CMP #$3F
C27E DO 03 BNE $C€283
C280 EE BA 02 INC $028A
C283 C9 2C CMP #$2C
C285 DO EA BNE $C26B
C287 98 TYA
C288 9D 7B 02 STA $027B,X
C2BB AD 8A 02 LDA $028A
C28E 29 7F AND #$7F
C290 FO 07 BEQ $€299
C292 #9 80 LDA #$80
C294 95 E7 STA $E7,X
C276 8D 8A 02 STA $028A
C299 EB INX
C298 EO 04 CPX #304
C29C 90 CD BCC $C€26B
C29E AO 00 LDY #$00
C2A0 AD 74 02 LDA $0274
C2A3 9D 7B 02 STA $027B,X
C2A6 AD BA 02 LDA $028A
C2A9 29 7F AND #$7F
C2AB FO 04 BEG $C2Bi
C2AD AD 80 LDA #$80
C2AF 95 E7 STA $E7,X

Zeile bis zum Ende prüfen
Kommazähler erhöhen

Anzahl Kommas merken

Joker getunden ?

nein

Bit 3 setzen

Komma nach dem Gleichheitszeichen ?

nein

Bit 2 setzen

Bit 0 und 1 setzen

als Flag für Syntax-Prüfung

Syntaxflag

Befehlsnummer

mit Prüfbyte verknüpfen

fehlerhafte Syntax ?

Fehlerflag setzen

30, ‘syntax error’

Zeichen im Eingabepuffer suchen

Zeichen merken

Zeile schon zu Ende ?

ja

Zeichen aus Puffer holen

mit gesuchtem Zeichen vergleichen

gefunden
x’

‘9?

Jokerflag setzen
‘S7

Kommaposition merken

Jokerflag

kein Joker

Flag merken

und als Jokerflag merken

Kommazähler erhöhen

schon 4 Koamas ?

nein, weitermachen

Flag für Zeilenende setzen

Jokerflag

kein Joker

Flag setzen

125

C2Bi 98 TYA
C2B2 60 RTS

LEI IE 22 22 2 2 2 2 2 2 272 2 2 2 2 2 2 2 2 2 2 2 2
C2B3 A4 AS LDY $A3
C2B5 FO 14 BEQ $C2CB
C2B7 88 DEY
C2B8 FO 10 BEQ $C2CA
C2BA B9 00 02 LDA $0200,Y
C2BD C9 OD CMP #$0D
C2BF FO OA BEQ $C2CB
C2C1 88 DEY
C202 B? 00 02 LDA $0200,Y
C2C5 c9 OD CMP #$0D
C2C7 FO 02 BEQ $C2CB
C2C9 C8 INY
C2CA C8 INY
C2CB BC 74 02 STY $0274
C2CE CO 2A CPY #$2A
C2D0 AO FF LDY #$FF
C2D2 90 08 BCC $C2DC
C2D4 BC 2A 02 STY $022A
C2D7 AG 32 LDA #$32
C2D9 4c C8 Ci JMP $CiC8

L& 2 2 2 2 2 2 2 2 2 2 2 2 & 2 & 2 2 2 2 2 & & & 2 2 2 2 2 7

C2DC AO 00 LDY #$00
C2DE 98 TYA
C2DF 85 AS STA $A3
C2E1 8D 58 02 STA $0258
C2E4 BD AA 02 STA $024A
C2E7 8D 96 02 STA $0296

C3000 95D7 STA $D7,X
(302 95 DE STA $DC,X
C304 95 Ei STA $E1,X
C306 95 E& STA $E4,X
C308 9D 7F 02 STA $027F,X
C3OB 9D 84 02 STA $0284,X
CIOE CA DEX
C30F DO EC BNE $C2FD
C3il 60 RTS

LEI 2227 2 227 2 22 2 7 2 7 2 2 2 7 2 2 2 2 2 EES

C3i2 AD 78 02 LDA $0278
C315 80 77 02 STA $0277
C3i8 AI O1 LDA #$01
C3iA 8D 7802 STA $0278
C31iD 8D 7902 STA $0279

Zeilenlänge prüfen

Zeiger in Befehlseingabepuffer

null ?

eins ?

Zeichen aus Eingabepuffer
‘CR’

ja, Zeilenende

davorstehendes Zeichen
CR’

ja

Zeiger wieder auf alten Wert

gleich Zeilenlänge

mit 42 Zeichen vergleichen

kleiner, dann ok

32, ‘syntax error‘ Zeile zu lang

Flags für Befehlseingabe löschen

Zeiger auf Eingabepuffer Lo

Recordlänge

Dateityp

Kommazähler

Jokerflag

Fehlerflag

Flags fiir Zeilenanalyse

Directory-Sektoren

Pufferzeiger

Drivenumaern

Jokerflags

Tracknummern

Sektornummern

Drivenummer übernehaen

Anzahl Kommas

nerken

Anzahl der Drivenunaern

126

C320 AC BE 02 LDY $028E letzte Laufwerknummer

C323 A2 00 LDX #$00

C325 86 DS STX $D3

C327 BD 7A 02 LDA. $027A,X Position des Doppelpunkts

C32A 20 3C C3 JSR $C33C Drivenummer vor Doppelpunkt holen

C32D Aé DS LDX $D3

C32F 9D 7A 02 STA $027A,X evtl. exakte Position abspeichern

C332 98 TYA
C333 95 E2 STA $E2,X Drivenummer in Tabelle

C335 E8 INX
C3364 EC 78 02 CPX $0278 schon alle Drivenummern geholt ?

C339 90 EA BCC $C325 nein, weiter machen
C33B 60 RTS

ELERERERE RAE KLERKHERHEREEEESLER Dri venummer suchen
C33C AA TAX Position merken

C33D AO 00 LDY #$00
C33F AQ 3A LDA #$3A “3”
C341 DD 01 02 CMP $0201,X Doppelpunkt dahinter ?
C344 FO OC BEQ $C352 ja
C346 DD 00 02 CMP $0200,X Doppelpunkt an dieser Stelle ?

C349 DO 16 BNE $C361 nein
C34B E8 INX
C34C 98 TYA
C34D 29 01 AND #$01 Drivenumser

C34F AB TAY
C350 BA TXA
C351 60 RTS

C352 BD 00 02 LDA $0200,X Drivenummer holen

C355 E8 INX

C356 E8 INX

C357 CF? 30 CMP #$30 ‘9’ ?

C359 FO F2 BE@ $C34D ja

C35B C9 31 CMP #$31 ‘1° ?

C35D FO EE BEQ $C34D ja

C35F DO EB BNE $C34C nein, letzte Drivenummer benutzen

C341 98 TYA letzte Drivenummer

C362 09 80 ORA #$80 Bit 7 setzen, unsichere Drivenummer

C364 29 81 AND #$Bi restliche Bits löschen

C366 DO £7 BNE $C34F Drivenummer zur Verfügung stellen

HEKHKELERE RAE REREREEEERERESEELEER = Dri venummer holen

C368 A? 00 LDA #$00

C36A BD BB 02 STA $0268 Syntaxflag löschen

C346D AC 7A 02 LDY $027A Position in Befehlszeile

C370 Bi A3 LDA ($A3),Y Zeichen auf Befehslpuffer holen

C372 20 BD C3 JSR $C3BD Laufwerknummer holen

C375 10 11 BPL $C388 sichere Nummer ?

C377 C8 INY Zeiger erhöhen

C378 CC 74 02 CPY $0274 Zeilenende ?

C37B BO 06 BCS $C383 ja

C37D AC 74 02 LDY $0274

C380 88 DEY

C381 DO ED BNE $C€370 Zeile nach Drivenuamer absuchen
C383 CE 8B 02 DEC $0288

127

C384 AI 00 LDA #$00
C388 29 01 AND #$01
C38A 85 7F STA $7F
C38c ac 00 Ci JMP $C100

La 2 2 2 2 2 & £ 2 2 & 2 2 2 2 2 2 & £ & £ 2 2 2 2 2 2 2 2;

C38F AS 7F LDA $7F
C391 49 01 EOR #$01
C393 29 01 AND #$01
C395 85 7F STA $7F
C397 60 RTS

KRKAEHEEEEKAHHRKREEEKKKKEREKKEREE

C398 AO 00 LDY #$00
C39A AD 77 02 LDA $0277
C39D CD 78 02 CMP $0278
C3A0 FO 16 BEG $C3B8
C3A2 CE 78 02 DEC $0278
C3AS AC 78 02 LDY $0278
C3A8 B? 7A 02 LDA $027A,Y
C3AB AB TAY
C3AC Bi AS LDA ($A3),Y
CAE AO 04 LDY #$04
C3BO D? BB FE CMP $FEBB,Y
C3B3 FO 03 BEQ $C3BB
C3B5 88 DEY
C3B4 DO F8 BNE $C3BO
C3B8 98 TYA
C3B9 8D 94 02 STA $0296
C3BC 60 RTS

LES 2 222 2222 22 7 27 7 7 7 2 2 2 2 2 222
C3BD C9 30 CMP #$30
C3BF FO 06 BEQ $C3C7
C3C1i C9 31 CMP #$31
C3C3 FO 02 BEG $C3C7
C3C5 07 80 ORA #$80
C3C7 29 81 AND #$81
C3C9 60 RTS

HEHEHE 22 27 2 7 7 2 7 2 ELE ER EERE

C3CA A? 00 LDA #$00
C3Cc 85 4F STA $4F
CSCE 8D 8D 02 STA $028D
C3D1 48 PHA
C3D2 AE 78 02 LDX $0278
C3D5 68 PLA
C3D6 05 4F ORA $6F
C3D8 48 PHA
C3D9 A? O1 LDA #$01
C3DB 85 6F STA $6F
C3DD CA DEX
C3DE 30 OF BMI $CSEF
C3EO BS E2 LDA $E2,X
C3E2 10 04 BPL $C3E8
C3E4 06 OF ASL $6F

Drivenummer

LED einschalten

Drivenuamer umschalten

Drivenummer

Bit 0 umdrehen

Dateityp feststellen

Gleichheitszeichen gefunden ?

nein

Zeiger holen

Zeiger auf Zeichen hinter '=' setzen

Zeichen aus Puffer

mit Kennzeichen für Filetyp vergleichen
‘Ss’, "P’, u’, "R'

Ubereinstimmung ?

Dateityp (1 bis 4) merken

Drivenummer prüfen
‘9’

a a

keine null oder eins, dann Bit 7 setzen

Drivenummern überprüfen

Anzahl der Drivenunaern

128

C3E8 4A LSR A
C3E9 90 EA BCC $C3D5
C3EB 06 6F ASL $6F
C3ED DO E4 BNE $C3D5
CSEF 48 PLA
C3FO AA TAX
C3F1 BD SF C4 LDA $C43F,X Syntax-Flag holen

C3F5 29 03 AND #$03

C3F7 8D 8C 02 STA $028C

C3FA 68 PLA

C3FB OA ASL A

C3FC 10 3E BPL $C43C

C3FE AS E2 LDA $E2

C400 29 01 AND #$01 Drivenummer isolieren

C402 85 7F STA $7F

C404 AD BC 02 LDA $028C

C407 FO 2B BEQ $C434

C409 20 3D Cé JSR $C63D Drive initialisieren

C40C FO 12 BEQ $C420 kein Fehler ?

C40E 20 BF C3 JSR $C38F auf anderes Drive umschalten

call AI 00 LDA #$00

C413 8D 8C 02 STA $028C

C414 20 3D Ch JSR $C63D Drive initialisieren

C419 FO 1E BEQ $C439 kein Fehler ?

C41B AI 74 LDA #$74

C4ibD 20 CB Ci JSR $C1C8 74, ‘drive not ready’

C420 20 SF C3 JSR $C38F

C423 20 3D C4 JSR $C63D Drive initialisieren

C426 08 PHP

C427 20 8F C3 JSR $C3SF auf anderes Drive umschalten

C42A 28 PLP

C42B FO OC BEQ $C439 kein Fehler ?

C42D AI 00 LDA #$00

C42F 8D 8C 02 STA $028C Anzahl der Dives

C432 FO 05 BEQ $C439

C434 20 3D C& JSR $C63D Drive initialisieren

C437 DO E2 BNE $C41B Fehler ?

C439 4C 00 Ci JMP $C100 LED einschalten

C43c 2A ROL A Drivenummer vom Carry nach Bit 0

C43D 4C 00 C4 JMP $€400

EEREEERERERREREREEEERREREREEEE Flags für Drive-Prüfung

C440 00 80 41 01 01 01 01 Bi

C448 Bi 81 B81 42 42 42 42

EHREELEAREAEHREEHKEREHRELERSRESREH Datei i Directory suchen

C44F 20 CA C3 JSR $C3CA Drive initialisieren

C452 AG 00 LDA #$00

C454 8D 92 02 STA $0292 Zeiger

C457 20 AC C5 JSR $C5AC ersten Directoryblock lesen

C45A DO 19 BNE $C475 Eintrag vorhanden ?

C45C CE 8C 02 DEC $028C Drivenummer klar ?
C45F 10 01 BPL $C462 nein

129

02
C3
C1
c4

Cb

C4
02

02

02

Cé

02
C3
C1

02
cS

02
02

02

Cé

c4
02

02

02

02

#501
$028D
$C38F
$C€100
$452

$0617
$C485
$C4D8
$028F
$C47E

$0253
$0470
$C475
$028F
$C45C

$C404
$C4AA
$C4BA

#$01
$028D
$C38F
$0100
#$00
$0292
$CSAC
$C4BA
$028F
$028F
$C4D7
$028C
$C492

$C617
$C4AA
$C4D8
$0253
$C4C9
$028F
$C4B5
$C4D7

$0296
$C4D7
$E7,X
#507
$0296
$C4B5

Drive wechseln

LED einschalten

und suchen

nachste Datei im Directory suchen

nicht gefunden ?

Eintrag im Directory überprüfen

weitere Dateien ?

Datei nicht gefunden ?

ja

nächsten Directoryblock suchen

nicht gefunden ?

Drive wechseln

LED einschalten

Directoryblock lesen

gefunden ?

nächster Eintrag ia Directory

nicht gefunden ?

Eintrag überprüfen

Datei gefunden ?

ja

nein, dann fertig

Dateityp

gleich gesuchter Dateityp ?

nein

130

02

C5

02

02

02
02

02
02

#$FF
$0253

$028A
$C587
$C4EC

$594
$C4E6
$7F
$E2,X

A
$C4FE
#$40
$C4E7
#$02
$028C
$C4E7
$027A,X

$0200,X
($94) ,Y
$C51B
#$3F
$C4E7
($94) ,Y
#$A0
$C4E7

$0276
$C52B
$0200,X
#$2A
$0535
$C50A

#$13
$C535
($94) ,Y
#$A0
$C4E7
$0279
$0253
$E7,X
#$80
$028A
$0294
$DD,X

Flag für Datei gefunden

Zeiger auf Datei setzen

Zeiger auf nächste Datei

Ende, dann fertig

Drivenumaer

Suche auf beiden Drives

ja

Länge des Dateinamens holen

Zeichen aus Befehlszeile holen

gleich Zeichen im Directory ?

ja
9°

nein

Shift Blank, Ende des Namens ?
ja

Zeiger erhöhen

Ende des Namens ia Befehl ?

ja

nächstes Zeichen
"y’

ja, Datei gefunden

sonst weitersuchen

19

Ende des Namens erreicht

Shift Blank, Ende des Namens

nicht gefunden

02

02

02

02

02
02
02
02

02

02

02

02

02

FE

$81
$D8,X
#$00
($94) ,Y

#$40
$6F

#$DF
$C55C
#$20
#$27
$4F
$4F
#$80
$E7,X
$6F
$E7,X
$E2,X
#$80
$7F
$E2,X
(594) ‚Y
$0280,X

($94) ‚Y
$0285,X
$0258
$0589
#$15
($94) ,Y
$0258
#$FF
$028F
$0278
$0279
$0279
$C59A

Sektornummer des Directorys

in Tabelle eintragen

Filetyp

Scratchschutzbit (46) isolieren

und merken

Bit 7 löschen

Bit 5 setzen

Bit 3 und 4 löschen

Bit & wiederholen

Flag für Joker isolieren

in Tabelle schreiben

Drivenummer

erstes Track der Datei

und Sektor aus Directory holen
Recordlänge

schon erfaßt ?

Recordlänge

aus Directory holen

Flag für Joker gesetzt ?

ja

Tracknummer schon gesetzt ?

ja

18, Directorytrack

132

02
D4

02

02
DE

Sektor 1

Sektor lesen

Anzahl der Directoryeintrage (-1)

Zeichen aus Puffer holen

als Tracknummer merken

Pufferzeiger setzen

Zähler vermindern

erstes Byte aus Directory

Track und Sektornummer holen

Sektornummer

Pufferzeiger

Pufferzeiger auf eins ?

18, Tracknummer der BAM

Tracknumaer

Sektornummer

Block lesen

Pufferzeiger setzen

Flag für Datei gefunden löschen

schon alle Directoryeinträge geprüft ?

Pufferzeiger um 32 erhöhen, nächster Eintrag

und weitersuchen

Pufferzeiger setzen

nächsten Block lesen

Track und Sektornummer aus Puffer holen

133

0637 8D 90 02 STA
C6é3C 40 RTS

LEI ZI E22 222 7 27 7 7 2 2 7 27 22 2m
C63D AS 68 LDA
C6é3F DO 28 BNE
C641 A& 7F LDX
C643 56 IC LSR
C645 90 22 BCC
C647 AD FF LDA
C649 8D 98 02 STA
C64C 20 0E DO JSR
C64F AO FF LDY
C651 C9 02 CMP
06853 FO OA BEQ
C455 C9 03 CMP
C657 FO 06 BEQ
C659 C9 OF CMP
C65B FO 02 BEG
C4é5D AO 00 LDY
C65F Ab 7F LDX
C661 98 TYA
C662 95 FF STA
C664 DO 03 BNE
C666 20 42 DO JSR
C669 Ab TF LDX
C6é6B BS FF LDA
Cö6D 8 40 RTS

LIST EI 222 E27 7 22 7 7 7 2 72 22 22
C66E 48 PHA
C66F 20 Ab C& ~ JSR
C4672 2088 C6 JSR
C4675 68 PLA
C676 38 SEC
6677 ED 4B 02 SBC
C67A AA TAX
C4é7B FO OA BEG
Cé7D 90 08 BCC
Cé7F A? AD LDA
[681 . 91 94 STA
C683 cC8 INY
C684 CA DEX
C4685 DO FA BNE
C687 840 RTS

LEI 222 222 222 27 7 2 2 2 2 2 2 2 2 2 LEE ES
C688 98 TYA
06897 0A ASL
C68A AB TAY
C68B BI 9900 LDA
C6BE 85 94 STA
C690 BY 9A 00 LDA
0693 85 95 STA
C695 AO 00 LDY
0697 BD 00 62 LDA

$0290

$68
$0669
$7F
$10,X
$C669
#$FF
$0298
$DO0E
&$FF
#802

$C&AG6
$C688

$024B

$C687
$C687
#SA0
($94),Y

$C6B1

2800
$0200,X

Sektornummer merken

Drive testen und initialisieren

Drivenummer

wurde Diskette gewechselt ?

nein, dann fertig

Fehlerflag setzen

Directorytrack lesen

20, ‘read error’ ?

21, ‘read error’ ?

74, ‘drive not ready’ ?

ja

Drivenummer

Fehlerflag merken

Fehler ?

BAM laden

Drivenumaer

Fehlerkode übergeben

Name der Datei in Directorypuffer

Ende des Namens holen

Filenamen in Puffer schreiben

Länge mit maximaler Länge vergleichen

mit ‘Shift Blank’ auffüllen

Puffernumaer

mal 2 als Zeiger

Pufferzeiger nach $94/$95

Zeichen in Puffer übertragen

134

CEIA 91 94 STA ($94),Y

C469C C8 INY
Cé9D FO 06 BEQ $C&AS5 Puffer bereits voll ?
C&9F EB INX
C6AO EC 76 02 CPX $0276
CAS 90 F2 BCC $C697 of
C6A5 60 RTS

HHEEEKEKKEHEKRREKHKAKHEERHEREESE Ende des Namens im Befehl suchen

CbA6 AI 00 LDA #$00

C6AB BD AB 02 STA $024B Vorbesetzung für Länge
CbAB BA TXA
C46AC 48 PHA
CéAD BD 00 02 LDA $0200,X Zeichen aus Puffer holen

C46B0 C9 2C CMP #$2C .
C6B2 FO 14 BEQ $CéCB
C6B4 C9 3D CMP #$3D ‘=!
C46BG6 FO 10 BEQ $CéCa
C4B8 EE 4B 02 INC $0248 Länge des Namens erhöhen \

C6BB EB INX
C6BC AI OF LDA #$0F 15
C6OBE CD AB 02 CMP $0248
Céci 90 05 BCC $CéC8 größer ?
C403 EC 74 02 CPX $0274 Eingabezeile zu Ende ?
C6C& 90 ES BCC $CéAD
C6C8 BE 76 02 STX $0276
C4CB 48 PLA
Cé6cc AA TAX Zeiger auf Ende des Namens

C6éCD 40 RTS

HEEKELEELEREREKEERERE ES EREER ES
C6éCE AS 83 LDA $83
C6D0 48 PHA Sekundäradresse und Kanalnuamer

C4éD1 AS 82 LDA $82
C4D3 48 PHA
C6D4 20 DE Cé JSR $C4DE Dateieintrag für Directory erzeugen

C4éD7 68 PLA
C608 85 82 STA $82
C6DA 68 PLA Daten zurückholen

C6DB 85 83 STA $83
C4DD 40 RTS

EHEKHKEEREEEERAEREEEREREEEEEES
C6DE A il LDA #$11 17
C6E0 85 83 STA $83 Sekundäradresse

C6E2 20 EB DO JSR $DOEB Kanal zum Lesen öffnen

C6E5 20 EB DA JSR $D4E8 Pufferzeiger setzen

C6EB AD 53 02 ~ LDA $0253
C6EB 10 OA BPL $C&F7 noch nicht letzter Eintrag ?
C6ED AD 8D 02 LDA $028D
C6FO DO OR BNE $Cé4FC
C6F2 20 06 CB JSR $C806 ‘blocks free.’ schreiben
C4FS 18 CLC
COFFS 60 RTS
CéF7 AD 8D 02 LDA $028D
CFA FO LF BE@ $C71B

135

02

02

C7

02

FE
02

FE
02

FE
02

02

($94) ,Y
$0272
#$16
$C73C
#$0A
$C73C

4564
$C73C

$C7AC
($94) ,Y

A
$C74A
#$3C
$02B2,X

#$0F

$FEC5S,Y
$02B1,X

$FECO,Y
$02B1,X

$FEBB,Y
$02B1,X

$C76B
#824
$02B2,X
#$A0

Drive wechseln

‘blocks free.’ schreiben

Drive wechseln

Drivenummer für überschrift, Hi-Byte

überschrift schreiben

Anzahl Blocks hi

in Puffer

null ?

Anzahl Blocks lo

in Puffer

10

100

Puffer löschen

Filetyp

Bit 7 ins Carry

Bit 6 nicht gesetzt ?

‘<’ für geschütztes File

hinter Filetyp schreiben

Bit 0 bis 3 isolieren

als Index als Filetypbezeichnungen

3. Buchstabe des Filetyps

in Puffer

2. Buchstabe des Filetyps

in Puffer

1. Buchstabe des Filetyps

in Puffer

File nicht geschlossen ?
2’

vor Filetyp in Puffer

mit ‘shift blank’ auffüllen

134

C76D 9D BL 02 STA
C770 CA DEX
C771 AO 12 LDY
C773 Bi 94 LDA
C775 9D Bi 02 STA
C778 CA DEX
C779 88 DEY
C77A CO 03 CPY
C77C BO FS BCS
C77E AY 22 LDA
C780 9D Bi 02 ~~ STA
C783 EB INX
C784 EO 20 CPX
C786 BO OB BCS
C788 BD Bi 02 LDA
C78B C9 22 CMP
C78D FO 04 BEG
C78F C9? AO CMP
C791 DO FO BNE
C793 AY 22 LDA
C795 9D Bi 02 STA
C798 E8 INX
C799 EO 20 CPX
C79B BO OA BCS
C79D AQ 7F LDA
C79F 3D Bi 02 AND
C7A2 9D Bi 02 STA
C7AS 10 Fi BPL
C7A7 20 BS C4 JSR
C7AA 38 SEC
C7AB 60 RTS

LE 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 272 2 2 2 2 2 2 2 2
C7AC AO 1B LDY
C7AE AY 20 LDA
C7B0 99 BO 02 STA
C7B3 88 DEY
C7B4 DO FA BNE
C7B6 60 RTS

LESS 22 22222 22 2 222 2 2 22 22 22 2 2 22 2

C7B7 20 19 Fi JSR
C7BA 20 DF FO JSR
C7BD 20 AC C7 JSR
C7CO0 AY FF LDA
C7C2 85 6F STA
C7C4 A& 7F LDX
C7C6é BE 7202 # STX
C7C9 AY 00 LDA
C7CB 8D 7302 STA
C7CE Ab FI LDX
C7D0 BD EO FE LDA
C7D3 85 95 STA
C7D5 AD 88 FE LDA
C7D8 85 94 STA
C7DA AO 16 LDY

$02B1,X

#412
($94) ,Y
$02B1,X

#$03
$0773
#$22
$02B1,X

#$20
$0793
$02B1,X
#$22
$0793
#$A0
$C783
#522
$02B1,X

#820
$C7A7
#$7F
$02B1,X
$02B1,X
$0798
$C4B5

#$1B
#$20
$02B0,Y

$C7B0

$F119
$F ODF
$C7AC
RSFF
$bF
$7F
$0272
#800
$0273
$F9
$FEEO,X
$95
$FEBB
$94
#$14

in Puffer

Filenamen

in Puffer schreiben

noe

vor Filenamen schreiben

Zeichen aus Puffer
ue 7

"Shift Blank’ am Ende des Namens

durch '"' ersetzen

Bit 7

in den restlichen Zeichen löschen

nächsten Directoryeintrag suchen

Puffer für Directory löschen

" Blank

in Puffer schreiben.

überschrift mit Diskettenname erzeugen

bei Bedarf initialisieren

Diskname lesen

Puffer löschen

Drivenumaer

als Blockzahl lo in Puffer

Blockzahl lo

Puffernuamer

Hi-Byte der Pufferadresse

$90, Position des Diskettennames

aerken

137

C7DC Bi 94 LDA ($94),Y Puffer mit “Shift blank’ füllen
C7DE C9 AO CMP #$A0
C7EO DO OB BNE $C7ED
C7E2 AG 31 LDA #$31 "1!
C7E4 2C .BYTE $2C
C7ES Bi 94 LDA ($94) ,Y Zeichen aus Puffer

C7E7 C9 AO CMP #$A0 mit ‘Shift blank’ vergleichen
C7E9 DO 02 BNE $C7ED
C7EB AI 20 LDA #$20 “Blank
C7ED 99 B3 02 STA $02B3,Y in Puffer
C7FO 88 DEY
C7Fi 10 F2 BPL $C7ES
C7F3 A912 LDA #$12 "RVS ON’
C7FS aD BI 02 STA $02Bi in Puffer
C7F8 AY 22 LDA #$22 cae
C7FA aD B2 02 STA $02B2 vor und
C7FD 8D C3 02 STA $02C3 hinter Diskname schreiben

C800 AF 20 LDA #$20 “ * Blank
C802 8D C4 02 STA $02C4 dahinter
C805 40 RTS

EEK Svhlußzeile erzeugen
C804 20 AC C7 JSR $C7AC Puffer löschen
C809 AO OB LDY #$0B 12 Zeichen
CBOB B9 17 C8 LDA $C817,Y “blocks free.’
CBOE 99 Bi 02 STA $02B1,Y in Puffer schreiben
CBil 88 DEY

C812 10 F7 BPL $CBOB

C8i4 4C 4D EF JMP $EF4D Zahl der freien Blöcke davor

EEK EEE ER EE

CBi7 A2 4C 4F 43 4B 53 20 46 ‘blocks f’
CB8iF 32 45 45 2E ‘ree.’

HEKHEERERERERERHEREREREREREEHEE «= S-Befeh] ‘Scratch’
C823 20 98 C3 JSR $C398 Dateityp ermitteln

C824 20 20 C3 JSR $C320 Drivenummer holen

C829 20 CA C3 JSR $C3CA Drive bei Bedarf initialisieren

C82Cc A? 00 LDA #$00
C82E 85 864 STA $84 Zähler für gelöschte Dateien
C830 20 9D C4 JSR $C49D Datei im Directory suchen

C833 30 3D BMI $C872 nicht gefunden ?
C835 20 B7 DD JSR $DDB7 ist Datei offen ?
C838 90 33 BCC $CB6D ja
C83A AD 00 LDY #$00
C83c Bi 94 LDA ($94),Y Filetyp
C83E 29 40 AND #$40 Scratch-Schutz ?
C840 DO 2B BNE $C86D ja
C842 20 B& C8 JSR $C8B4 Datei löschen und in Directory vermerken
C845 AO 13 LDY &#$13
C847 BL 94 LDA ($94),Y Tracknummer des ersten Side-Sektors

C849 FO OA BEQ $C855 keiner vorhanden ?

C84B 85 80 STA $80 Tracknuamer merken
ce4pD CB INY
C84E Bl 94 LDA ($94),Y und Sektornummer

C850 85 Bi STA $81

C852 20 7D C8 JSR $C87D Side-Sektoren löschen
6855 AE 53 02 LDX $0253 Dateinummer

C858 AI 20 LDA #$20

C85A 35 E7 AND $E7,X Bit 5 gesetzt ?

cesc DO OD BNE $CB84B ja, Datei nicht geschlossen
CBSE BD 80 02 LDA $0280,X Track

C841 85 80 STA $80

C863 BD 85 02 LDA $0285,X und Sektor holen

C864 85 81 STA $81

C848 20 7D CB JSR $C87D Datei löschen

C86B Eb 86 INC $864 Anzahl der gelöschten Dateien erhöhen

C84D 20 8B C4 JSR $C48B nächste Datei suchen

C870 10 C3 BPL $C835 falls vorhanden löschen

C872 AS 86 LDA $84 Anzahl der gelöschten Files

C874 85 80 STA $80 als ‘Track’ speichern

C876 AI O1 LDA #$01 1 als Disk-Status

C878 AO 00 LDY #$00 0 als ‘Sektor’

C87A ac AS Ci JMP $C1A3 Meldung ‘files scratched’ bereit stellen

HEKHEKELEREEREERELERERHEHEREEESRE Datei Löschen

C87D 20 SF EF JSR $EFSF Block in BAM freigeben

C880 20 75 D4 JSR $D475

C883 20 19 Fi JSR $F119 Puffernummer der BAM holen

C88& BS A7 LDA $A7,X

C888 C9 FF CMP #$FF

C88A FO 08 BER $C894

csec AD F9 02 LDA $02F9

C88F 09 40 ORA #$40

C891 8D F9 02 STA $02F9

C894 A 00 LDA #$00

C8946 20 CB D4 JSR $D4C8 Pufferzeiger auf Null

C899 20 56 Di JSR $D156 Track holen

C89c 85 80 STA $80

C89E 20 546 Di JSR $D156 Sektor holen

CBA1 85 81 STA $81

CBAZ AS 80 LDA $80 Tracknuamer

CBAS DO 06 BNe $CBAD ungleich Null ?

C8A7 20 F4 EE JSR #£Er4 BAM schreiben

CBAA 4AC 27 D2 JMP $D227 Kanal schließen

CBAD 20 SF EF JSR $EFSF Block in BAM freigeben

C8BO 20 4D D4 JSR $D44D nächsten Block lesen

C8B3 4C 94 C8 JMP $C894 und weiter machen

HRRHELHRERERERHHERE ARR EREEREH Directoryeintrag löschen

CBBB „98 TYA
CBB9 91 94 STA ($94),Y Filetyp auf Null setzen

C8BB 20 SE DE JSR $DESE Block schreiben
CBBE AC 99 D5 JMP $D599 und prifen

EHRE 5 D-Befehl, ‘Backup’
Ceci AP 31 LDA #$31
cec3) 4C C8 Ci JMP $CiCs S31, ‘Syntax error’

ERRHERAHKEKKAERKEKRERKRERHERHEEEEH Diskette formatieren

139

C8C& AI 4C LDA
C8cB 8D 00 06 STA
C8CB AG C7 LDA
cecD BD 01 046 STA
C8D0 AI FA LDA
C8D2 BD 02 06 STA
C8D5 AF 03 LDA
C8D7 20 DS D& JSR
C8DA AS 7F LDA
Cape 09 EO ORA
C8DE 85 03 STA
CBEO AS 03 LDA
C8E2 30 FC BMI
C8E4 C9 02 CMP
CB8E4 90 07 BCC
C8E8 A? 03 LDA
CBEA A2 00 LDX
C8EC 4C 0A E&~ JMP
C8EF 60 RTS

LE 2 2 2 2 2 22 2 2 2/2 2 2 2 2 2 2 2 2 2/2 2 2 2 2 2 22
CBFO AI EO LDA
C8F2 BD 4F 02 # STA
C8FS 20 Di FO JSR
CSFB 20 19 Fi JSR
CSFB AI FF LDA
C8FD 95 A7 STA
C8FF AI OF LDA
C901 BD 54 02 STA
C904 20 ES Ci JSR
C907 DO 03 BNE
C909 4C Ci c8 JMP

C90C 20 FB Ci JSR
C9OF 20 20 C3 JSR
C912 AD 8B 02 LDA
C915 29 55 AND
C917 DO OF BNE
C919 AE 7A 02 LDX
C91iC BD 00 02 LDA
C9LF C9 2A CMP
C921 DO 05 BNE
C923 Ag 30 LDA
C925 ac ca Ci JMP

C928 AD 8B 02 LDA
C92B 29 D9 AND
C92D DO F4 BNE
C92F 4C 52 C9 JMP

C932 AD 00 LDA
C934 8D 58 02 STA
C937 8D 8C 02 STA
CISA 8D 80 02 STA
C93D 8D 81 02 STA
C940 AS E3 LDA

#$E0
$024F
$FOD1
$F119
#SFF
$A7,X
#$0F
$0256
$C1E5
$C90C
$C8Ci

$CiF8
$0320
$028B
#$55
$0928
$0274
$0200,X
#$2A
$0928
#$30
$C1C8

$028B
#$D9
$€923
$0952

#$00

$0258

$028C

$0280

$0281

$E3

JMP-Befehl

JMP $FAC7 nach $600 bis $602

Track und Sektornunmer setzen

Drivenummer

Befehlskode für Formatieren

übergeben

warten auf Ende der Formatierung

Rückmeldung prüfen

kleiner 2, dann ok

21, ‘read error’

C-Befehl, ‘Copy’

Puffernummer der BAM holen

Eingabezeile prüfen

31, ‘syntax error’

Eingabezeile prüfen

Drivenummern testen

Flag fiir Syntaxpriifung

Zeichen des Befehls
2x’

30, ‘syntax error’

Syntaxflag

30, ‘syntax error’

Anzahl der Laufwerke

Tracknumaer im Directory

Drivenummer

Datei im Directory suchen

Anzahl der Dateinamen im Befehl

kleiner als drei ?

ja

erste Drivenummer

zweite Drivenummer

nicht auf gleichem Laufwerk ?

Directoryblock der ersten Datei

gleich Directoryblock der zweiten Datei ?

nein

Directorysektor der ersten Datei

gleich Directorysektor der zweiten Datei ?
nein

ist Datei vorhanden ?

Dateityp holen

Rel-Datei ?

Prg-Datei

nein

64, ‘file type mismatch’

18

Sekundaradresse

Append vorbereiten

Dateien kopieren

fertig

Dateien kopieren

fertig

Drivenummer des ersten Files

Drivenummer
Block anlegen

Datei in Directory eintragen

17

141

DB

02

FE

D4
02

D4
02

02

02
D9

D1

D4

D3

Dateityp holen

keine Rel-Datei ?

Byte in Puffer schreiben

und Byte holen

Bit 7 testen

nicht gesetzt ?

Dateityp prüfen

Rel-Datei ?

Datenbyte in Puffer holen

18

Kanal schließen

Drivenummer

aerken

18, Directorytrack

merken

Directorysektor

Block lesen

Zeiger in Block

Pufferzeiger setzen

Dateityp

isolieren

und aerken

Parameter fiir Rel-Datei holen

Dateityp holen

Rel-Datei ?

Pufferzeiger setzen

17

Kanal öffnen und Byte holen

Kanalnuaner

142

a0 2 5 2

CAB8
CA8B
CABD
CABF
CAF1
CAS
CAGS

20
AS

Dé
3B

Di

DD

Di
Ei

E3

C4
CA

JSR
LDA
AND
STA
CMP
BEG
ORA
STA
JSR

$D5

$Dé

$E33B

$C320
$E3
#$01
$E3
$E2
$CA97
#480
$E2
$C44F
$CAE7
$E3
#$01
$7F
$D9
$81
$DES7
$D599
$DE

#503

Endekennzeichen isolieren

nicht gesetzt ?

Dateityp holen

Rel-Datei ?

Bit 7 setzen

Drivenummer setzen

18

Schreibkanal öffnen

Drivenummer setzen

R-Befehl, "Rename’

Drivenummer aus Befehlszeile holen

2. Laufwerknummer

mit erster Laufwerknummer vergleichen

gleich ?

Datei im Directory suchen

existieren die Namen ?

Drivenummer

Sektornuaner

liest Block aus Directory

ok ?

Zeiger auf Directoryeintrag

plus 3 gleich Zeiger auf Dateinanen

143

CABA AB
CABB AE 7A 02
CABE A 10

FEKKKEKEKHEKHKKEHKEKKSKEHKRKHEKHEKE

CACC AS EB
CACE 29 07
CADO BD AA 02

CAD& CA
CAD7 EC 77 02
CADA 90 OA
CADC BD 80 02
CADF DO FS
CAEL AG 62
CAES ac CB Ci
CAE& 60

CAED FO 05
CAEF AY 63
CAF 1 ac C8 Ci
CAF4 CA
CAFS 10 F3
CAF7 60

Se RE SESSES EEL E SELES ELLE IRRE

CAFB C9 2D
CAFD DO 4C
CAFF AD 03 02
CBO2 85 6F
CBO4 AD 04 02
CBO7 85 70
CB09 AO 00
CBOB AD 02 02
CBOE C9 52
CB10 FO 0E
CBi2 20 58 F2
CBiS C9 57
CB17 FO 37
CB19 C9 45
CBiB DO 2E

HEKEHEEREHEEELEEKEEEREREERREEES

CB20 Bi öF
CB22 85 85
CB24 AD 74 02

BPL
RTS

LDA

LDA
STA
LDA

$E8
#$07
$024A
$0278

$0277
$CAE&
$0280,X
$CAD4
#$62
$C 108

$CACC
$0280,X
$CAF4
#$43
$C1C8

$CAEA

$CB4B
($006F)

($4F) ,Y
$85
$0274

Pufferzeiger setzen

Nummer des Puffers holen

16 Zeichen

Namen in Puffer schreiben

Block auf Diskette schreiben

ok ?

fertig, Diskstatus bereitstellen

pruft ob Datei vorhanden

Dateityp

merken

Tracknummer

ungleich null ?

62, ‘file not found’

Datei mit altem Namen vorhanden ?

Tracknummer der neuen Datei

Datei gelöscht ?

63, ‘file exists’

M-Befehle, ‘Memory’
zweites Zeichen aus Puffer

' a

Adresse nach $4F/$70

3. Zeichen aus Puffer
"R’

zum Memory-Read

(RTS)
W’

zum Memory-Write
‘E’

Memory-Execute, Routine ausführen

M-R, ‘Memory-Read’

Byte lesen

Lange der Befehlszeile

144

CB27 C9 06 CMP #$06
CB29 90 1A BCC $CB45
CB2B AE 05 02 LDX $0205
CB2E CA DEX
CB2F FO 14 BEQ $CB45
CB31 BA TXA
CB32 18 CLC
CB33 65 4F ADC $6F
CB35 E& &F INC $6F
CB37 BD 49 02 STA $0249
CB3A AS dr LDA $6F
CB3C 85 AS STA $A5
CBSE AS 70 LDA $70
CB40 85 Ab STA $A6
CB42 40 43 D4 = JMP $D443

CB45 20 EB DO JSR $DOEB
CB48 AC 3A D4 IMP $D43A

CB4B AY 31 LDA #$31
CB4D ac C8 Ct JMP $C1C8

HERE 2 2 2 2 2 2 2 2 2 2 2 22 22 2 2 2 2 2 22 22 2
CBSO BY 06 02 LDA $0206,Y
CB53 91 OF STA ($6F),Y
CBS5 C8 INY
CB56 CC 05 02 CPY $0205
CB59 90 FS BCC $CB50
CBSB 60 RTS

LES 2222 222 22 2 7 2 7 RHEE ERE EERE

CBSC AC 01 02 LDY $0201
CBSF CO 30 CPY #$30
CBéi DO 09 BNE $CBéC
CB43 A? EA LDA #$EA
CB45 85 6B STA $6B
CBé&7 AD FF LDA #$FF
CB49 B5 4C STA $6C
CBöB 60 RTS

CBéC 20 72 CB JSR $CB72
CB6F 4C 94 Ci UMP $0194

CB72 88 DEY
CB73 98 TYA
CB74 29 OF AND #$0F
CB76 OA ASL A
CB77 AB TAY
CB78 Bi &B LDA ($6B),Y
CB7A 85 75 STA $75
CB7C CB INY
CB7D Bi 6B LDA ($6B),Y
CB7F 85 76 STA $764
CBB1 6C 75 00 JMP ($0075)

FERRER KEAREKERKEAERERERERERES

kleiner 6 ?

ja

Anzahl

nur ein Byte ?

Anzahl der Bytes

plus Startadresse

Endezeiger

Pufferzeiger für Fehlermeldung

auf Startadresse für M-R setzen

Byte ausgeben

Lesekanal öffnen

Bytes ausgeben

31, ‘syntax error’

M-W, "memory-write’

Zeichen lesen

und speichern

Anzahl der Zeichen

schon alle Zeichen ?

U-Befehl, ‘User’

zweites Zeichen
‘9’

nein

Zeiger auf Tabelle der User-Adressen

$FFEA

fertig, Fehlermeldung bereit stellen

Nummer

mal 2

als Zeiger in Tabelle

Adresse nach $75/$74

Funktion ausführen

Direktzugriffskanal öffnen, °’#'‘

145

02

Cé

02

Di
CB

C1

CC
02

02

02

letzte Drivenummer

Drivenumaer

Kanalnumamer

Laufwerk prüfen und evtl. initialisieren

Länge des Filenamens

größer eins ?

Kanal und Puffer belegen

Flags setzen, fertig

70, ‘no channel’

Puffernuamer holen

Puffernumaer

größer gleich 5 ?

70,’no channel’

Puffer in Belegungsregister suchen

Puffer belegt ?

Puffer belegt ?

Puffer belegen

Kanal suchen und belegen

Kanalnunmer

Puffernummer

Drivenunaner

Sekundäradresse

READ und WRITE-Flag setzen

Kanalnuamer

CBFF 99 44 02 STA $0244,Y
CCO2 AG 89 LDA #$89
cc04 99 F2 00 STA $00F2,Y
CCO07 BI A7 00 LDA $00A7,Y
CCOA 99 3E 02 STA $023E,Y
CCOD 0A ASL A
CCOE AA TAX
CCOF A? 01 LDA #$01
CCi1 95 99 STA $979,X
CC13 AQ OE LDA #$0E
CC15 99 EC 00 STA $O0EC,Y
CCiB ac 94 Ci JMP $C194

REKEELEEEEEKREEREEEEEREREEEEEE
CCiB AO 00 LDY #$00
CCiD A2 00 LDX #$00
CCF AY 2D LDA #$2D
CC21 20 68 C2 JSR $€268
CC24 DO OA BNE $CC30
CC26 AQ 31 LDA #$31
CC28 4C C8 Ci JMP $CiC8

CC2B AI 30 LDA #$30
CC2D ac C8 Ci JMP $CiC8

CC30 BA TXA
CC31 DO FB BNE $CC2B
CC33 A2 05 LDX #$05
C35 B9 00 02 LDA $0200,Y
CC38 DD SD CC CMP $CC5D,Xx
CC3B FO 05 BEQ $CC42
CC3D CA DEX
CCE 10 F& BPL $CC38
CC40 30 E4 BMI $CC26
CC42 BA TXA
CC43 09 80 DRA #$80
CC45 8D 2A 02 STA $022A
CC48 20 6F CC JSR $CC4F
CC4B AD 24 02 LDA $022A
CC4E 0A ASL A
CC4F AA TAX
CC50 BD 64 CC LDA $C€C64,X
C653 85 70 STA $70
CCss BD 63 CC LDA $C€C43,x
CCSB 85 4F STA $6F
CCSA 6C 6F 00 JMP ($006F)

La 5 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 2 2 2 2 7 2 2 2 7 2 2

CCSD

Lu a 2 4 2 & 2 2 2 2 2 2 2 2 & 2 2 2 2 2 2 2 2 2 = 2 2 2 207

CC4$
CC45
CC67
CC69
CC6B

41 46 52 57 45 50

03 CD
FS cc
36 CD
73 CD
A3 CD

Endezeiger

READ und WRITE-Flag setzen

Puffernummer

mal 2

Pufferzeiger auf eins

Flag fir Direktzugriff
fertig

B-Befehle, "Block

sucht Minuszeichen

gefunden ?

31, ‘syntax error’

30, ‘syntax error’

Komma, dann Fehler

Zeichen aus Puffer

mit ‘AFRWEP’ vergleichen

gefunden ?

mit allen Zeichen vergleichen

nicht gefunden, Fehler

Befehlsnummer, Bit 7 setzen

Parameter holen

Nummer mal 2

als Index

Adresse des Befehls Hi

Adresse lo

sprung auf Befehl

Namen der verschiedenen Blockbefehle

"AFRWEP’

Adressen der Blockbefehle

$CD03, B-A

$CCFS, B-F

$CD56, B-R

$CD73, B-W

$CDA3, B-E

147

CCéD BD CD $CDBD, B-P

KRERRKERREREKRRRRRERKERK RR RR RN Parameter für Black-Befehle holen

CC&F AO 00 LDY #$00

CC71 A2 00 LDX #800
CC73 AI 3A LDA #$3A "3°
Cc75 20 68 C2 JSR $C268 Zeile bis Doppelpunkt testen
CC78 DO 02 BNE $CC7C gefunden ?
CC7A AO 03 LDY #$03 nein, ab 4. Zeichen beginnen

CC7C B9 00 02 LDA $0200,Y Trennzeichen suchen

CC7F C9 20 CMP #$20 ‘ " Blank
ccei FO 08 BEQ $CCBB
CC83 C9 1D CMP #$1D Cursor right
CC85 FO 04 BEG $CC8B
CC87 C9 2C CMP #$2C ‘,'’ Komma
cce9 DO 07 BNE $CC92
CC8B ce INY
ccec CC 74 02 CPY $0274 Zeilenende ?
CC8F 90 EB BCC $CC7C
ccm 60 RTS

CC92 20 Al CC JSR $CCA1 nächsten Parameter iibernehmen

CC695 EE 77 02 INC $0277 Parameterzähler erhöhen

CC9B8 AC 79 02 LDY $0279
CC9B EO 04 CPX #$04 mit Maximalzahl vergleichen

CC9D 90 EC BCC $CC8B noch nicht überschritten ?

CC9F BO 8A BCS $CC2B 30, ‘syntax error’

CCA1 A9 00 LDA #$00
CCAS 85 4F STA $6F
CCAS 85 70 STA $70 Speicherbereich für Dezimalziffern löschen

CCA7 85 72 STA $72
CCA9 A2 FF LDX #$FF
CCAB BF 00 02 LDA $0200,Y Zeichen aus Eingabepuffer holen

CCBO BO 18 BCS $CCCA keine Ziffer ?

CCB2 C9 30 CMP #$30 ‘O°’

CCB4 90 14 BCC $CCCA keine Ziffer ?

CCB4 29 OF AND #$0F ASCII-Ziffer nach Hex wandeln

CCBS 48 PHA und merken

CCB9 AS 70 LDA $70

CCBB 85 71 STA $71 Ziffern eins weiter schieben

CCBD AS 6F LDA $6F

CCBF 85 70 STA $70

CCCi 48 PLA

CCC2 B85 6F STA $6F gelesene Zahl merken

ccc4 C8 INY Zeiger in Eingabepuffer erhähen

CCC5 CC 74 02 CPY $0274 Zeilenende erreicht ?

CCC7 90 Ei BCC $CCAB nein

CCCA BC 79 02 STY $0279 Zeiger merken

CCCD 18 CLC

CCCE A? 00 LDA #$00

CCDO EB INX

CCD1 EO 03 CPX #$03

CCD3 BO OF BCS $CCE4 Uarechnung der Hexziffern in ein Byte

CCDS B4 &F LDY $6F,X

CCD7 88 DEY

148

tCcDd8 30 Fé BMI $CCDO
CODA 7D F2 CC ADC $CCF2,X
CCDD 90 FB BCC $CCD7
CCDF i8 CLC
CCEO Es 72 INC $72
CCE2 DO F3 BNE $CCD7
CCE4 48 PHA
CCES AE 7702 LDX $0277
CCE8 AS 72 LDA $72
CCEA 90D 80 02 STA $0280,X
CCED 68 PLA
CCEE 9D 85 02 STA $0285,X
CCFi 60 RTS

EREKEEEE EERE EER ERE EERER ERE REE

CCF2 01 OA 64

HELHKEKREKKERLEREKEKKRAKSEERE SHE

CCFS 20 F5 CD JSR $CDFS
CCFB8 20 SF EF JSR $EFSF
CCFB AC 94 Ci JMP $C194

LAI2 ZZ 2 22 22 2 2 2 2 2 2 2 2 EER ERE EERE
CCFE AI Ol LDA #$01
CDOO BD FF 02 _ 5STA $02F9

EKRRERERERURKRKEEERKKRERERERERENR

CD03 20 FS CD JSR $CDFS
CD06 AS 81 LDA $81
CDOB 48 PHA
CD09 20 FA Fi JSR $FiFA
CDOC FO OB BE@ $CDi9
CDOE 68 PLA
CDOF CS Bi CMP $81
CDil DO 19 BNE $CD2C
CDis 2090 EF JSR $EFIO
CDi6é 4C 94 Ci UMP $C194

CDBiI9 68 PLA
CDIA AV 00 LDA #$00
CDiC 85 81 STA $81

-CDIE E6 80 INC $80
CD20 AS 80 LDA $80
CD22 CD D7 FE CMP $FED7
CD25 BO OA BCS $CD3t
CD27 20 FA Fi JSR $FiFA
CD2A FO EE BEQ $CDIA
CD20 AI 65 LDA #$65
CD2E 20 45 E&6 JSR $E645
CD31 AY 65 LDA #$65
CD33 20 C8 Ci JSR $Cics

EEEEEEEE SEERA 2 7 2 2 2 22 2 7 2 2 EE ER
CD36 20 F2 CD JSR $CDF2
CD39 ACC 60 D4 UMP $D460

dezimale Wertigkeit addieren

Zähler für Parameter

Hi-Byte

Lo-Byte

Dezimalwerte

1, 10, 100

B-F Befehl, ‘Block free’

Track, Sektor und Drivenummer holen

Block freigeben
fertig, Fehlermeldung bereit stelllen

B-A Befehl, "Block allocate’

Track, Sektor und Drivenummer holen

Sektor

merken

sucht Block in BAM

Block schon belegt ?

gewiinschter Sektor

gleich nächster freier Sektor ?

nein

Block in BAM belegen

fertig

Sektor 0

nächster Track

Tracknumaer

36, letzte Tracknummer + 1

größer oder gleich, dann ‘no block’

freien Block im nachsten Track suchen

nicht gefunden, nächsten Track prüfen

65, Block "no block’ nächster freier

65, ‘no block’ kein Block mehr frei

Kanal öffnen, Parameter setzen

Block von Diskette lesen

149

KEERHEEHERELERERHESERHEHEREREEEER Byte aus Puffer holen

ED3C 20 2F Di JSR $DI2F Zeiger auf Puffer setzen

CD3F Ai 99 LDA ($99,X) Byte holen

CD41 60 RTS

EHH ERERELERH EERE EERE EEHREREEE Block von Diskette lesen

CD42 20 36 CD JSR $CD36 Kanal öffnen, Block lesen

CD45 A? 00 LDA #$00

CD47 20 CB D4 JSR $D4C8 Pufferzeiger auf Null setzen

CD4A 20 3C CD JSR $CD3C ein Byte aus Puffer holen

CD4D 99 44 02 STA $0244,Y

CD50 AI 89 LDA #$89 Schreib- und Leseflag setzen

CDS2 99 F2 00 STA $00F2,Y

CD55 60 RTS

BR DB-R Befehl, ‘Block Read’

CD56 20 42 CD JSR $CD42 Block von Diskette lesen

CD59 20 EC D3 JSR $D3EC Byte aus Puffer bereitstellen

CDSC 4C 94 Ci JMP $C194 Fehlermeldung bereitstellen

HHEKHKERELERER ERLE EHREREREREES UL Befehl, Ersatz für ‘Block-Read’

CDSF 20 6F CC JSR $CC4F Parameter des Befehls holen

CD42 20 42 CD JSR $CD42 Block von Diskette lesen

CD45 BI 44 02 LDA $0244,Y Endezeiger

CD48 99 3E 02 STA $023E,Y als Datenbyte speichern

CD4&B AQ FF LDA #$FF

CD&D 99 44 02 STA $0244,Y Endezeiger auf $FF

CD70 4C 94 Ci JMP $C194 fertig, Fehlermeldung bereit stellen

KEEREee B-W Befehl, "Block Write’
CD73 20 F2 CD JSR $CDF2 Kanal öffnen

CD76 20 E@ D4 JSR $D4E8 Pufferzeiger setzen

CD79 AB TAY

CD7A 88 DEY

CD7B C9 02 CMP #$02 Pufferzeiger lo kleiner 2

CD7D BO 02 BCS $CD81 nein

CD7F AO O1 LDY #$01

Copel A? 00 LDA ##00

CD83 20 C8 D4 JSR $DACB Pufferzeiger auf null

CD8& 98 TYA

CD87 20 Fi CF JSR $CFFi Byte in Puffer schreiben

CDSA BA TXA

CD8B 48 PHA

CDec 20 64 D4 JSR $D464 Block auf Diskette schreiben

CD8F 68 PLA

CD90 AA TAX

CD91 20 EE DS JSR $D3EE Byte aus Puffer holen

CD94 4C 94 Ci JMP $€194 fertig, Fehlermeldung

EREKEREREREHRARERERRRHEERERERE U2, Ersatz für ‘Block write’

CD97 20 6F CC JSR $CC4F Parameter des Befehls holen

CD9A 20 F2 CD JSR $CDF2 Kanal öffnen

CD9D 20 64 D4 JSR $D464 und Block auf Diskette schreiben

CDAO 4C 94 Ci JMP $0194 fertig

ek °'B-E' Befehl, ‘Block execute’

150

CDA 20 58 F2 JSR $F258 (RTS)

CDA4 20 36 CD JSR $CDI6 Kanal öffnen und Block einlesen

CDA AI 00 LDA #£00

CDAB 85 6F STA $4F Adresse law

CDAD A& FI LDX $F9 Puffernummer

CDAF BD EO FE LDA $FEEO,X Pufferadresse high

CDB2 85 70 STA $70

CDB4 20 BA CD JSR $CDBA Routine ausführen

CDB7 4C 94 Ci JMP $0194 fertig

CDBA 6C 46F 00 JMP ($004F) Sprung auf Routine

HHEEEEEREREEREEEEREEEREREEEEEH © ©6CB-P' Befehl, “Block pointer’

CDBD 20 D2 CD JSR $CDD2 Kanal öffnen, Puffernummer holen

EDCO AS F9 LDA $F9 Puffernummer

COC? OA ASL A * 2

CDtC3 AA TAX als Index

Cpoc4 AD 86 02 LDA $0286 Pointerwert

CDC7 935 99 STA $99,X als Pufferzeiger abspeichern

CDC? 20 2F Di JSR $Di2F ein Byte aus Puffer

CDCC 20 EE D3 JSR $D3EE zur Ausgabe bereitstellen

CDCF ac 94 Ci JMP $C194 tertig

BERKER TREE Kanal öffnen

£EDD2 Aé D3 LDX $D3

CDD4 ES D3 INC €D2

CDD6 BD 85 02 LDA $0285, xX Puffernummer

CDBY A8 TAY

CDDA 88 DEY

CDDB 88 DEY

CDDC Co oc CPY #$0C Puffernummer kleiner 14 ?

CDDE 90 05 BCC $CDES ja

CDEG AQ 70 LDA #870

CDE2 406 C8 Ci JMP $CiC®é 70, ‘no channel’

CDES 85 83 STA $83 Sekundäradresse

CDE7 20 EB BO JSR $DOEB Kanal öffnen

CDEA BO F4 BCS $CDEO schon belegt, dann 70, ‘no channel’

CDEC 20 93 DF JSR $DF93 Puffernummer

CDEF 85 F9 STA $F9 setzen

COFI 50 RTS

HER KE KKH EEK E REE KEKE EKER HEHE REESE

CDF2 20 D2 CD JSR $CDD2 Puffernummer prüfen und Kanal öffnen

CDFS A& D3 LDX $D3 Kanalnummer

CDF7 BD 85 02 LDA $0285, xX Pufferadresse

CDFA 29 01 AND #£01

CDFC 85 7F STA $7F Drivenummer

CDFE BD 87 02 LDA $0287,X

CEO1 85 81 STA $81 Sektor

CEOS BD 846 02 LDA #0284, xX

CE06 85 80 STA $80 Track

CEOB 20 SF DS JSR $DSSF Track und Sektor ok ?

CEOB 4C 00 Ci JMP $C100 LED einschalten

HHHEEEEEAEEERELERELEERERESEEEH Pointer für REL-Datei setzen
CEOE 20 2C CE JSR $CE2C Recordnummer * Recordlänge

CEL 20 6E CE JSR $CE4E
CE14 AS 90 LDA $90
CE16 85 D7 STA $D7
CE18 20 71 CE JSR $CE71
CEiB E& D7 INC $D7
CE1D E6 D7 INC $D7
CEIF AS 8B LDA $8B
CE21 85 D5 STA $D5
CE23 AS 90 LDA $90
CE25 OA ASL A
CE26 18 CLC
CE27 69 10 ADC #$10
CE29 85 Dé STA $Dé
CE2B 60 RTS

EEERHLELELEREREEREREE REE EEE ES
CE2C 20 D9 CE JSR $CED9
CE2F 85 92 STA $92
CESI Ab 82 LDX $82
E33 BS BS LDA $B5,X
CESS 85 90 STA $90
CE37 BS BB LDA $BB,X
CES9 85 91 STA $91
CE3B DO 04 BNE $CE41
CESD AS 90 LDA $90
CESF FO OB BEQ $CE4C
CE4L AS 90 LDA $90
CE4S 38 SEC
CE44 EI 01 SBC #$01
CE46 85 90 STA $90
CE48 BO 02 BCS $CE4C
CE4A Ca 91 DEC $91
CE4C BS C7 LDA $C7,X
CE4E 85 OF STA $6F
CE50 46 OF LSR $6F
CES2 90 03 BCC $CES7
CES4 20 ED CE JSR $CEED
CES7 20 ES CE JSR $CEES
CESA AS 4F LDA $6F
CESC DO F2 BNE $CE50
CESE AS D4 LDA $D4
CE&0 i8 CLC
CEé1 65 8B ADC $8B
CE63 85 8B STA $8B
CE65 90 06 BCC $CeEéD
CE67 E46 8C INC $8C
CE4&9 DO 02 BNE $CE&D
CE6B E6 BD INC $8D
CE6D 60 RTS

HERERELE EAE EERERREESEREREHERS

CE6E AI FE LDA #$FE
CE7O 8=2C ‚BYTE $2C
HEREEREKEAELEREERERELERREREEEE
CE71 A9 78 LDA #$78
CE73 85 OF STA $6F

durch 254 gleich Datenblocknumaer
Rest der Division gleich Zeiger in Datenblock

Datenzeiger |
durch 120 gleich Side Sektornuaaer

Datenzeiger plus 2 (Track/Sektor-Zeiger')

Ergebnis der Division

gleich Side Sektornuasaer

Rest der Division

mal 2

plus 14

gleich Zeiger in Side-Sektor auf Datenblock

Arbeitsspeicher löschen

Kanalnunaer

Recordnumaer lo

Recordnummer hi

Recordnuamer ungleich 0 ?

dann eins abziehen

Recordlänge

Recordnummer * Recordlänge

Register linksverschieben

Ergebnis in $8B/$8C/$8D

~ Division durch 254, Datenblocknummer berechnen

254

Divison durch 120, Side Sektornummer berechnen

120

Divisor

152

CE77 BS BF LDA $BF,X

CE79 48 PHA

CE7A BS 8A LDA $8A,X

CE7C 95 8F STA $8F,X

CE7E 68 PLA

CE7F 95 BA STA $8A,X

CEBi CA DEX

CE82 DO F3 BNE $CE77

CE84 20 DI CE JSR $CED9 Arbeitsspeicher löschen

CE87 A2 00 LDX #400

CE89 BS 90 LDA $90,X

CESB 95 8F STA $8F ,X

CE8D EB INX

CEBE EO 04 CPX #504

CE90 90 F7 BCC $CE89

CE92 AI 00 LDA #$00

CE94 85 92 STA $92

CE96 24 OF BIT $6F

CE98 30 09 BMI $CEA3

CEPA 06 BF ASL $8F

CE9C 08 PHP

CE9D ab BF LSR $8F

CE9F 28 PLP

CEAO 20 E& CE JSR $CEE4 Register 1 linksverschieben

CEA3 20 ED CE JSR $CEED Register 0 zu Register 1 addieren

CEA& 20 ES CE JSR $CEES Register 1 linksverschieben

CEA9 24 &F BIT $6F

CEAB 30 03 BMI $CEBO

CEAD 20 E2 CE JSR $CEE2 Register 1 zweimal linksverschieben

CEBO AS BF LDA $8F

CEB2 18 CLC

CEB3 65 90 ADC $90

CEBS 85 90 STA $90

CEB? 90 06 BCC $CEBF

CEB9 EL 91 INC $91

CEBB DO 02 BNE $CEBF

CEBD E6 92 INC $92

CEBF AS 92 LDA $92

CECI 05 91 DRA $91

CEC3 DO C2 BNE $CE87

CEC5S AS 90 LDA $90

CEC7 38 SEC

CECB ES HF SBC $6F Quotient in $8B/$8C/$8D

CECA 90 OC BCC $CED8

CECC E6 8B INC $8B

CECE DO 04 BNE $CED6

CEDO E46 8C INC $8C

CED2 DO 02 BNE $CED6

CED4 6 8D ' INC $8D

CED6 85 90 STA $90 Rest in $90

CEDB 40 RTS

HHAREELEEEAEHKRHREERHREREREEER Arbeitsspeicher löschen

CED9 A? 00 LDA #$00

CEDB 85 8B STA $8B

153

CEDD
CEDF

CEEI

85

85

60

BC
8D

STA $8C

STA $8D

RTS

KERERKERKERTERTR RER RENT N KR ER RR

CEE2 20 ES CE JSR $CEES

La 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 22 2 2 22 2 22 2 0

CEES 18 CLC

CEE& 26 90 ROL $90

CEES 26 F1 ROL #71

CEEA 26 92 ROL $92

CEEC 60 RTS

LHEREEE EE HEHE EERE EEE REE EEE REERE

CEED 18 CLC

CEEE A2 FD LDX #$FD

CEFO BS 8E LDA $BE,X

CEF2 73 95 ADC $93,X

CEF4 95 BE STA $8E,X

LEF& EB INX

CEF7 DO F7 BNE $CEFO

CEF9 60 RTS

CEFA A2 00 LDX #$00

CEFC BA TXA

CEFD 95 FA STA $FA,X

CEFF EB INX

CFOO EO 04 CPX #$04

CFO2 DO FB BNE $CEFC

CFO4 AF 06 LDA #$05

CF06 95 FA STA $FA,X

CFOB 60 RTS

CFO9 Ad 04 LDY #$04

CFOB Aé 82 LDX $82

CFOD BF FA 00 LDA $00FA,Y

CF10 96 FA STX $FA,Y

CFi2 [5 82 CMP $82

CF14 FO 07 BEQ $CFiD

CF16 88 DEY

CF17 30 El BMI $CEFA

CF19 AA TAX

CFIA 4C OD CF UMP $CFOD

CF1D 60 RTS

CFIE 20 09 CF JSR $CF09

CF 21 20 B7 DF JSR $DFB7

CF24 DO 46 BNE $CF6C

CF26 20 D3 DI JSR $D1D3

CF29 20 BE D2 JSR $D28E

CF2C 30 48 BMI $CF76

CF2E 20 C2 DF JSR $DFC2

CF31 AS 80 LDA $80

CF33 48 PHA

CF34 AS 81 LDA $81

3-Byte-Register zweimal linksverschieben

3-Byte-Register einmal linksverschieben

Register $90/$91/$92

zu Register $8B/$8C/$BD addieren

Kanalnummer

Kanalnummer

Drivenummer setzen

Track

Sektor

CF39 20 Fé

CF3C 65 81

CF3E A? 00

CF40 20 Fé

CF43 85 80

CF45 FO 1F

CF47 29 25

CF4A FO OB

CFAC 20 AB

CF4F DO 06

EFS1 20 8C

EFS4 4C 5D

CFS7 29 8C

CFSA 20 57

CFSD 68

CFSE 85 81

CF&0 68

CFél 85 80

CF43 At Ar

CF44 68

CF67 85 81

CF49 68

CF6A 85 80

CF4C 29 8C

CF OF 20 93

CF72 AA

CF73 4C 99

CF74 A? 70

CF78 4C C8

CF7B 20 09

CF7E 20 B7

CFB1 DO 08

CF83 20 BE

CFB6 30 EE
CF8B8 290 C2

CF8B 50

CF8C A& 82 LDX

CFSE BS A7 LDA

CF90 49 80 EOR

CF92 95 7 STA

CF94 BS AE LDA

CF96 49 BO EOR

CF98 93 AE STA

CFIA 60 RTS

Le 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 222 2 22 2 2 22

EF9B A2 12 LDX

CF9D B& 83 STX

D4

D4

Di

DD

CF

CF

CF
DE

CF

CF

DF

$CFOD

$CF8C
$DES7

$81

$890

$CF OF

$81

$80

$CF8C

$DF93

$D599

#$70

$Cics

$CFO9
$DFB7
$CFSB
$D28E
$CF76
$DFC2

$82
$A7,X
#480
$AT,X
$AE,X
#$80
$AE , xX

#$12

$83

Byte 1 aus Puffer holen

Sektor

Byte 0 aus Puffer holen

Track

Dateityp prüfen

Rel-Datei ?

Sektor -

und Tracknummer zurückholen

Sektor-

und Tracknummer zurückholen

und prüfen

70, 'no channel’

Puffer wechseln

Kanalnummer

Bit 7 in Tabelle umdrehen

Datenbyte in Puffer schreiben

Kanal 18

155

CF9F 20 07 Di JSR
CFA2 20 00 Ci JSR
CFAS 20 25 Di JSR
CFAB 90 05 BCC
CFAA AI 20 LDA
CFAC 20 9D DD JSR
CFAF AS 83 LDA
EFBi C9 OF CMP
CFB3 FO 23 BEQ
CFBS DO 08 BNE

CFB7 AS 84 LDA
CFB9 29 BF AND
CFBB C9 OF CMP
CFBD BO 19 BCS
CFBF 20 25 Di JSR
CFC2 BO 05 BCS
CFC4 AS 85 LDA
CFC& ac 9D Di JMP

CFC9 DO 03 BNE
CFCB 4C AB EO JMP

CFCE AS 85 LDA
CFDO 20 Fil CF JSR
CFDS A4 82 LDY
CFDS 4C EE D3 JMP

CFDS AQ 04 LDA
CFDA 85 82 STA
CFDC 20 EB D4 JSR
CFDF C9 2A CMP
CFEI FO 05 BEQ
CFES AS 85 LDA
CFES 20 Fi CF JSR
CFEB AS FB LDA
CFEA FO 01 BEQ
CFEC 60 RTS

CFED EE 35 02 INC
CFFO 60 RTS

LEI I 22 22 72 22 7 7 2 7 2 2 2 7 ER ERERE

CFFi 48 PHA
CFF2 20 93 DF JSR
CFFS 10 06 BPL
CFF7 68 PLA
CFFS A? G1 LDA
CFFA 4C C8 Ci JMP
CFFD OA ASL
CFFE AA TAX
CFFF 68 PLA
D000 Bi 99 STA
D002 Fe 99 INC
D004 60 RTS

$D107
$0100
$D125
$CFAF
#$20
$DD9D
$83
#$0F
$CFDS
$CFBF

$84
#$0F

$D19D

$CFCE

$EOAB

$85
$CFFI
$82
$D3EE

$DF93
$CFFD

#$61

$CiCB8

A

($99,X)
$99,X

Schreibkanal öffnen

LED einschalten

Dateityp prüfen

keine Rel-Datei

Puffer wechseln

Sekundäradresse

15 ?

ja

nein

Sekundäradresse

größer gleich 15 ?

dann Eingabepuffer

Dateityp prüfen

Rel-Datei oder Direktzugriff ?

Datenbyte

in Puffer schreiben

Direktzugriffsdatei ?

Datenbyte in Rel-Datei schreiben

Datenbyte in Puffer schreiben

Kanalnummer

nächstes Byte zur Ausgabe bereitstellen

Kanal 4

entspricht Eingabepuffer

Pufferzeiger setzen

40

Pufferende ?

Datenbyte in Puffer schreiben

Endflag gesetzt ?

ja

Kommandoflag setzen

Datenbyte in Puffer schreiben

Datenbyte merken

Puffernummer holen

Puffer zugeordnet ?

61, ‘file not open’

Puffernummer mal 2

als Index

Datenbyte

in Puffer schreiben

Pufferzeiger erhöhen

156

EEEELKEEHREEAREEEAEREEE RRA ERKE

D005) 20 Di Ci JSR $C1Di
DOOB 20 42 DO JSR $D042
DOOB AC 94 Ci JMP $C194

 & X £ Z 2 2 2 2 2 2 2 Z 2 2 & 2 2 2 2 2 2 2 2 2 2 2 2 202°

DOOE 20 OF Fi JSR $F10F
DOL1 AB TAY
DO12 B& A7 LDX $A7,Y
DO14 £0 FF CPX #$FF
DOL6 DO 14 BNE $DO2C
D018 48 PHA
D019 20 BE D2 JSR ~$D28E
DOIC AA TAX
DOID 10 05 BPL $D024
DOLF AI 70 LDA #$70
D021 20 48 E4 JSR $E648
D024 48 PLA
D025 AB TAY
D026 8A TXA
0027 _ 09 80 ORA #$80
0029 99 AT 00 STA $00A7,Y
DO2C BA TXA
DO2D 29 OF AND #$0F
DO2F 85 F9 STA $F9
DO3L A2 00 LDX #$00
0033 86 Bi STX $81
D035 AE 85 FE LDX $FEBS
DO3B8 86 80 STX $80
DO3A 20 D3 DS JSR $D4D3
DO3D AI BO LDA #$B0
DO3F AC 8C DS JMP $D58C

HEEEKEKKEREKKKKEKRERERERKERERERE

D042 20 Di FO JSR $FODi
D045 20 13 DS JSR $D313
DO48 20 OF DO JSR $DOOE
DO4B Ab 7F LDX $7F
DO4D AI 00 LDA #$00
DO4F 9D 51 02 STA $0251,X
D052 BA TXA
0053 OA ASL A
D054 AA TAX
DOSS AS 16 LDA $14
D057 95 12 STA $12,X
0059 AS 17 LDA $17
DOSB 95 13 STA $13,X
DOSD 20 B46 DS JSR $D586
D060 AS FI LDA $F9
D082 0A ASL A
D043 AA TAX
D044 AG 02 LDA #$02
D066 95 99 STA $99,X
D068 Al 99 LDA ($99,X)
DO6A AG TF LDX $7F
DOSE 9D 01 01 STA $0101,X

I-Befehl, Initialisieren

Drivenummer suchen

BAM laden

Diskstatus bereitstellen

70, ‘no channel’

Sektor 0

18

Track 18

Parameter an Disk-Controller übergeben

Befehlskode ‘Black Header lesen’

an Disk-Controller übergeben

BAM laden

Block lesen

Drivenummer

Flag fir "BAM geändert’ rücksetzen

ID speichern

Puffernummer

Pufferzeiger auf $200

Zeichen aus Puffer holen

Drivenummer

157

DO&F AY 00 LDA #$00
D071 95 1C STA $1C,X Flag fiir Write Protect

DO73 95 FF STA $FF,X Flag für Lesefehler

KRERKERKTERERTRTERREREERTRRUREHER Blocks free berechnen

D075 20 3A EF JSR $EF3A Pufferadresse nach $5D/$6E

0078 Ad 04 LDY #$04 bei Position 4 beginnen

DO7A AY 00 LDA #$00

DO7C AA TAX

DO7D 19 CLC

DO7E 71 4D ADC ($6D),Y Anzahl freie Blocks pro Track addieren

DOBO 90 O1 BCC #D083

D082 EB INX X als Hi-Byte

0083 c8 INY

0084 c8 INY plus 4

Doss C8 INY

DOB4 CB INY

D087 CO 48 CPY #$48 Track 18 ?

D089 FO FB BEQ $DOB3 dann übergehen

DO8B CO 90 CPY ##90 letzte Tracknummer ?

DOBD DO EE BNE $D07D nein

DOBF 48 PHA Lo-Byte

D090 BA TXA Hi-Byte

DOF1 A& 7F LDX $7F Drivenummer

0093 9D FC 02 STA $02FC,X Hi-Byte nach $2FC

0096 68 PLA Lo-Byte

0097 9D FA 02 STA $02FA,X nach $2FA

DO9A 40 RTS

HRHEKREEEREK EEE EE EERE KRHEEEE EE EEE

DO9B 20 DO Dé JSR $D&DO Parameter an Disk-Controller

DO9IE 20 C3 DO JSR $DOC3 Plock lesen

DOAL 20 99 DS JSR $D599 ok ?

DOA4 20 37 Di JSR $D137 Byte aus Puffer holen

DOA7 85 80 STA $80 Track

DOA 20 37 Di JSR $D137 nachstes Byte aus Puffer

DOAC 85 81 STA $81 Sektor

DOAE 60 RTS

DOAF 20 9B DO JSR #D09B

DOB2 AS 80 LDA $80 Track
DOB4 DO 01 BNE $DOB7

DOBS 60 RTS

DOB7 20 1E CF JSR $CFIE Puffer wechseln

DOBA 20 DO D4 JSR $D&DO Parameter an Disk-Controller

DOBD 20 C3 DO JSR $DOC3 Block lesen

DOCO 4C 1€ CF JMP $CFIE Puffer wechseln

EEEEHEEER EER ERE EREEREREERERESRE Block lesen

Docs AY 80 LDA #$80 Kode für ‘Lesen’

DOCS DO 02 BNE $DO0C9

KEEKKRRERERTEREKKEERERKER KEN R Block schreiben

DOC7 AY 90 LDA #$90 Kode für ‘Schreiben’

DOC9 8D 4D 02 STA $024D merken

DOCC 20 93 DF JSR $DF93 Puffernummer holen

158

La 2 z 2 2 22 2 207

HEEKKEEKREEEL RK NIT TR FE RR R

DOEB as

DOED cg

DOEF 90

DOF 1 29

DOF3 c9

DOFS DO

DOF7 A9

DOF9 AA

DOFA 38

DOFB BD

DOFE 30

D100 29

D102 85

D104 AA

D105 18

D106 60

D107 AS

D109 C9

DIOR 90

DIiöD 29

DLOF AA

D110 BD

Di13 AB

D114 oA

D115 90

D117 30

D119 98

DiiA 29

D11C 85

DI1E AA

DL1F 18

Di20 40

Di21 30

D123 38

06

OF

B2

Fb

DS

Di

02

02

TAX

RTS

LDA

LDA

CMP

$83

#413

$DOF3

#$0F

#$0F

$DOF9

#$10

$022B,X
$D106
#$0F
$82

$83

#$13

$D10F

HOF

$022B,X

A
$D121
$0123

#$0F

$82

$D119

Track/Sektor holen, Block lesen/schreiben

Pufferzeiger mal 2

Zeiger in Puffer auf null

Dateityp holen

Rel-Datei oder Direktzugriff ?
ja

Blockzähler erhöhen

Kanal zum Lesen öffnen

Sekundäradresse

19

kleiner ?

16

Flag fiir ok

Kanal zum Schreiben 6ffnen

Sekundäradresse

19

kleiner ?

Kanalnummer

Flag für ok

Flag für Kanal belegt

159

D124 60 RTS

LE 2 2 2 2 2 2 272 22 2 2 2 2 22 22 2 22 22 22 222
D125 Ab 82 LDX
Di27 BS EC LDA
D129 4A LSR
D12A 29 07 AND
DI2C CF 04 CMP
DI2E 60 RTS

Le 02 2 2 2 2 22
Di2F 20 93 DF JSR
D132 OA ASL
D133 AA TAX
D134 A4 82 LDY
D136 40 RTS

EREHEKEREEEREEEERER ESE ERE EEEE

D137 20 2F Di JSR
DISA B9 44 02 LDA
D13D FO 12 BEQ
DISF Al 99 LBA
D141 48 PHA
D142 BS 99 LDA
D144 D9 44 02 CMP
D147 DO 04 BNE
D149 AI FF LDA
D14B 95 99 STA
Di4D 68 PLA
DI4E F& 99 INC
D150 60 RTS
Didi Al 99 LDA
D153 F& 99 INC
0155 60 RTS

KEEHEETEREREHRKELAKE REEL HKKKEKE

D156 20 37 Di JSR
D159 DO 36 BNE
D1SB 85 85 STA
Di5D BY 44 02 LDA
D140 FO 08 BEQ
D162 AF 80 LDA
D164 99 F2 00 STA
D167 AS 85 LDA
D169 60 RTS

DI6A 20 IE CF JSR
DI6ED AI 00 LDA
Dior 20 C8 D4 JSR
D172 20 37 Di JSR
D175 C9 00 CMP
D177 FO 19 BEQ
D179 BS 80 STA
Di7B 20 37 Dl JSR
DI7E 85 81 STA
D180 20 1E CF JSR

$82
$EC,X

A
#$07
#$04

$DF93
A

$82

$D12F
$0244,
$D151
($99,X)

$99,X
$0244,
$D14D
#$FF
$99,X

$99,X

(499,0
$99,X

$D137
$D191
$85
$0244,
$D16A
#$80
$00F2,Y
$85

$CFIE

Auf Filtyp ‘REL’ prüfen

"REL’ ?

Puffer- und Kanalnummer holen

Puffernummer holen

ein Byte aus Puffer holen

Puffer- und Kanalnummer holen

Endezeiger

Byte aus Puffer holen

Pufferzeiger

gleich Endezeiger ?

nein

Pufferzeiger auf -1
Datenbyte

Pufferzeiger erhöhen

Zeichen aus Puffer holen

Pufferzeiger erhöhen

Byte holen und evtl. nächstes Block lesen

Byte aus Puffer holen

nicht das letzte Zeichen ?

Datenbyte merken

Endezeiger

ja

READ-Flag

Datenbyte

Puffer wechseln und nächsten Block lesen

Puffezeiger auf null setzen

erstes Byte aus Puffer holen

Tracknummer Null ?

ja, dann letzter Block

Tracknuamer merken

nachstes Byte holen

als Folgesektor merken

Puffer wechseln und nächsten Block lesen

160

D183 20 DS DI JSR $D1D3
Dieb 20 DO D& JSR $DéD0
D189 20 C3 DO JSR $DOC3
D1iac 20 1E CF JSR $CFIE
D1 SF AS 85 LDA $85
D191 60 RTS

0192 20 37 Di JSR $D137
D195 A4 82 LDY $82
D197 99 44 02 STA $0244,Y
DiI9A AS 85 LDA $85
D19C 60 RTS

LE 272 2 2 22 2 72 2 2 2 2 2 22 2 22 7 2 222 22
D19D 20 Fl CF JSR $CFFi
D1AO FO 01 BEQ $DiA3
DIA2 60 RTS

DIAS 20 DS Di JSR $D1D3
DIAS 20 IE Fi JSR $FILE
D1A9 A? 00 LDA #$00
DIAB 20 C8 D4 JSR $DACB
DIAE AS 80 LDA $80
D1 BO 20 Fi CF JSR $CFFi
DiBS AS Bi LDA $81
DIBS 20 Fi CF JSR $CFFi
DiBs 20 C7 DO JSR $DOC7
DiBB 20 1E CF JSR $CFIE
DIBE 20 DO D& JSR $D&DO
Dict AY 02 LDA #$02
DiCcsS 4C C8 D4 MP $D4C8

La 22 2 222 22
DICE 85 OF STA $6F
D1C8 20 EB D4 JSR $D4E8
DICB 18 CLC
DiICC 65 6F ADC $6F
DICE 95 99 STA $99,X
D1D0 B5 94 STA $94
DiD2 60 RTS

LE 2 HAE EES

DIDS 20 93 DF JSR $DF93
DiDé AA TAX
D1D7 BD 5B 02 LDA $025B,X
DiDA 29 01 AND #$01
DIDE 85 7F STA $7F
DIDE 40 RTS

LEE 22 2 2 227 22 7 2 227 2 2 2 2 2 EER ERE ESE
DIDF 38 SEC
DIEO BO 01 BCS $D1E3

EEREEEERERELEREEREE EE ERE REREES

DIE2 18 CLE
DIES 08 PHP

Drivenummer merken

Parameter an Disk-Controller

Lesebefehl übergeben

Puffer wechseln und nächstea Block lesen
Datenbyte zurückholen

nächstes Byte aus Puffer holen

als Endezeiger merken

Datenbyte zurückholen

Byte in Puffer und Block schreiben

Byte in Puffer

Puffer voll ?

Drivenumaer holen

freien Block in BAM suchen

Pufferzeiger auf Null

Tracknummer als erstes Byte

Sektornumner als zweites Byte

Block schreiben

Puffer wechseln

Parameter an Disk-Controller

Pufferzeiger auf 2

Pufferzeiger erhöhen

Pufferzeiger holen

und erhöhen

Drivenummer holen
Puffernummer holen

Drivenummer isolieren
und merken

Schreibkanal und Puffer suchen

Flag für Schreiben

Lesekanal und Puffer suchen

Flag für Lesen

merken

161

DIE4 85 OF STA $6F

DIE& 20 27 D2 JSR $D227

DIE9 20 7F D3 JSR $D37F

DIEC 85 82 STA $82

DIEE A& 83 LDX $83

DIFO 28 PLP

DiFi 90 02 BCC $DIFS

DIFS 09 80 ORA #$80

DIFS 9D 2B 02 STA $022B,X

DIFS 29 SF AND #$3F

DIFA AB TAY

DIFB AQ FF LDA #$FF

DIFD 99 A7 00 STA $00A7,Y

DEC $6F

D208 30 1C BMI $D226

D20A 20 BE D2 JSR $D2BE

D20D 10 08 BPL $D217

D20F 20 SA D2 JSR $D25A

D212 AQ 70 LDA #$70

D214 40 C8 Ci JMP $C1C8

D217 99 AT 00 STA $00A7,Y

D21A C& 6F DEC $4F

D21C 30 08 BMI $D226

D21E 20 BE D2 JSR $D2BE

D221 30 EC BMI $D20F

D223 99 AE 00 STA $O0AE,Y

D224 40 RTS

EREEKEREKEKE REE EE KK RN TREE RT RN

D227 AS 83 LDA $83

D229 C9 OF CMP #$0F

D228 DO 01 BNE $D22E

D22D 60 RTS

D22E Ab 83 LDX $83

D230 BD 2B 02 LDA $022B,X

D233 C9 FF CMP #$FF

D235 FO 22 BEQ $D259

D237 29 SF AND #4$3F

D239 85 82 STA $82

D23B A9 FF LDA #$FF

n253D 9D 2B 02 STA $022B,X

D240 Aé B2 LDX $82

D242 AY 00 LDA #$00

D244 95 F2 STA $F2,X

D246 20 SA D2 JSR $D25A

D249 Ab 82 LDX $82

D24B AG 01 LDA #801

D24D CA DEX

D24E 30 03 BMI $D253

D250 OR ASL A

0251 DO FA BNE $D24D

D253 OD 54 02 ORA $0256

D256 8D 56 02 STA $0256

Anzahl der Puffer

Kanal schließen

freien Kanal belegen

Kanalnummer

Sekundäradresse

Lesekanal ?

Flag für Schreiben

setzen

Defaultwert

in Zuordungstabellen schreiben

Zahl der Puffer erniedrigen

schon fertig ?

Puffer suchen

gefunden ?

Flags in Tabelle löschen

70, ‘no channel’

Puffernummer in Tabelle

Pufferanzahl

schon fertig ?

Puffer suchen

nicht gefunden ?

Puffernummer in Tabelle

Kanal schließen

Sekundäradresse

15?

nein

sonst schon fertig

Kanalnummer

nicht zugeordnet ?

dann fertig

Kanalnummer

Zuodrnung in Tabelle löschen

READ und WRITE-Flag löschen
Puffer freigeben

Kanalnummer

Bit 0 setzen

auf richtige Position schieben

und im Belegungsregister freigeben

D259 60 RTS

EEKERRERKERERTRT RENTE REITER ER R Puffer frei geben

D25A A& 82 LDX $82 Kanalnummer

D25C BS A? LDA $A7,X Puffernummer

D25E C9 FF CMP #$FF

D260 Fo 09 BEQ $D26B nicht zugeordnet ?

D262 48 PHA

D263 AQ FF LDA #$FF

D265 95 A7 STA $A7,X Pufferzuordnung löschen

D267 68 PLA

D268 20 F3 D2 JSR #D2F3 Puffer im Belegungsregister löschen

D26B A& 82 LDX $82 Kanalnummer

D246D BS AE LDA $AE,X

D26F C9 FF CMP #$FF in zweiter Tabelle zugeordnet ?

D271 FO 09 BEQ $D27C nein

0273 48 PHA

D274 A? FF LDA #$FF

D276 95 AE STA $AE,X Zuordung löschen

D278 68 PLA

D279 20 F3 D2 JSR $D2F3 Puffer im Belegungsregister löschen

D27C Ab 82 LDX $82 Kanalnummer

D27E BS CD LDA $CD,X

D280 C9 FF CMP #$FF in dritter Tabelle zugeordnet ?

D282 FO 09 BEQ $D28D nein

D284 48 PHA

D285 A9 FF LDA #$FF

D287 95 CD STA $CD,X Zuordung läschen

D289 68 PLA

D28A 20 F3 D2 JSR $D2F3 Puffer im Belegungsregister löschen

D28D 60 RTS

EREKHEEEREEEREHERERREKEEKEREEERE Puffer suchen

DZBE 98 TYA

D28F 48 PHA

D290 AO O1 LDY #$01

D292 20 BA D2 JSR $D2BA

D295 10 OC BPL $D2A3

D297 88 DEY

D298 20 BA D2 JSR $D2BA

D29B 10 06 BPL $D2A3

D29D 20 39 D3 JSR $D339

D2A0 AA TAX

D2AI 30 13 BMI $D2B4

D2A3 BS 00 LDA $00,X

D2A5 30 FC BMI $D2A3

D2A7 AS 7F LDA $7F

D2A9 95 00 STA $00,X

D2ZAB 9D SB 02 STA $025B,X

D2AE BA TXA

D2AF oA ASL A

D2BO A8 TAY

D2Bi A? 02 LDA ##02

D2B3 99 99 00 STA $0099,Y

D2B6 68 PLA

D2B7 AB TAY

163

D2BA A207 LDX #$07
D2BC BI 4F 02 LDA $024F,Y
D2BF 3D EI EF AND $EFE9,X Bit löschen
D2c2 FO 04 BE@ $D2C8
D204 CA DEX
D2C5 10 FS BPL $D2BC
D2C7 60 RTS

D2CB B9 AF 02 LDA $024F,Y
D2CB 5D EI EF EOR $EFE9,X Bit umdrehen
D2CE 99 4F 02 STA $024F,Y
D2D1 8A TXA Puffernummer

D202 88 DEY

D2D3 30 03 BMI $D2D8

D2D5 18 CLC

D2D4 69 08 ADC #$08

D2D8 AA TAX Puffernummer

D2D9 60 RTS

D2DA Ab 82 LDX $82

D2DC BS A7 LDA $A7,X

D2DE 30 09 BMI $D2E9

D2EO 8A TXA

D2E1 18 CLC

D2E2 69 07 ADC #$07

D2E4 AA TAX

D2ES BS A7 LDA $A7,X

D2E7 10 FO BPL $D2D9

D2E9 C9 FF CMP #$FF

D2EB FO EC BEQ $D2D9

D2ED 48 PHA

D2EE AQ FF LDA #$FF

D2FO 9597 STA $A7,X

D2F2 68 PLA

D2F3 29 OF AND #$0F

D2FS AB TAY Puffernummer

D2F& cs INY

D2F7 A2 10 LDX #$10 14

D2F9 &E 50 02 ROR $0250

D2FC 6E 4F 02 ROR $024F 16-Bit Belegungsregister rotieren

D2FF 88 DEY

D300 DO O1 BNE $D303

D302 i8 CLe Bit für Puffer löschen

D303 CA DEX

D304 10 F3 BPL $D2F9

D306 60 RTS

FERRE HERKERKESHREELHEREEREHEHH alle Kanäle schließen

D307 A? OE LDA #$0E 14

D309 85 83 STA $83 Sekundäradresse

D30B 20 27 D2 JSR $D227 Kanal schließen

DIOE C& 83 DEC $83 nächste Sekundäradresse

D310 DO F9 BNE $D30B

D312 60 RTS

164

HEEEEEKKERELEKEAAKEREREERE REESE

D5313 AY OE LDA
D315 685 83 STA
D317 A6& 83 LDX
D319 BD 2B 02 LDA
D3iC CI FF CMP
DSIE FO 14 BEG
D320 29 SF AND
D322 085 82 5TA
D324 20 93 DF JSR
D327 AA TAX
D328 BD SB O02 LDA
D32B 29 01 AND
D32D . C3 7F CMP
DS2F DO 03 BNE
D331 20 27 D2 JSR
D334 C6 83 DEC
D336 10 DF BPL
D338 60 RTS

EREREEREE HERRERA REE RE RER ERE EERE
D339 AS OF LDA
D33B 48 PHA
DS3C AO 00 LDY
DSSE B& FA LDX
D340 B5A7 LDA
D342 10 04 BPL
D344 C9 FF CMP
0346 DO 16 BNE
D348 BA TXA
D349 18 CLC
D34A 69 07 ADC
D34C AA TAX
D54D B5S AT LDA
D34F 10 04 BPL
D351 C9 FF CMP
D353 DO 09 BNE
0355 cC8 INY
D356 CO 05 CPY
D358 90 E4 BCC
DSSA A2 FF LDX
DSSC€ DO IC BNE
DSSE 84 6F STX
D360 29 SF AND
D362 AA TAX
D363 B5 00 LDA
D365 30 FC BMI
D367 C9 02 CMP
D369 90 08 BCC
D36B Ab SF LDX
D34D EO 07 CPX
DS6F 90 D7 BCC
D371 BO E2 BCS

D373 A4 OF LDY
D375 AG FF LDA

#$0E
$83

$025B,X
#$01
$7F
$D334
$0227
$83
$D317

$6F

#$00
$FA,Y
$A7,X
$D348
aSFF
$D35E

#$07

$A7,X
$D355
#$FF
$D35E

$D348
$D355

$6F
#$FF

alle Kanäle des anderen Drives schließen

14

Sekundäradresse

Zuordnungtabelle

Kanal zugeordnet ?

nein

Kanalnunmner

Puffernumner holen

Drivenuaner

isolieren

gleich aktuelle Drivenummer ?

nein

Kanal schließen

nächsten Kanal

165

D377 99 A7 00 STA $00A7,Y

DS7A 68 PLA
D37B 85 4F STA $6F
D37D BA TXA
D37E 60 RTS

FREER E REE EREEE ERA ERHHHHEHERERE Kanal suchen und belegen

D37F AO 00 LDY #00
D381 AQ 01 LDA #$01 Bit 0 setzen

D383 2C 54 02 BIT $0254

D386 DO 09 BNE $D391 Kanal frei ?

D388 cs. INY

D389 0A ASL A Bit nach links schieben

D3BA DO F7 BNE $D383 alle Kanäle geprüft ?

D38C A? 70 LDA #$70

D38E 4C C8 Cl JMP $C1C8 70,‘'no channel’

D391 49 FF EOR #$FF Bitmuster umdrehen

D393 2D 56 02 AND £0254 Bit löschen

D396 8D 56 02 STA $0256 Kanal belegen

D399 98 TYA

D39A 60 RTS

Be Byte zur Ausgabe holen
D39B 20 EB DO JSR $DOEB Kanal zum Lesen öffnen

D39E 20 00 Cl JSR $C100 LED einschalten

DAL 20 AA D3 JSR $D3AA Byte ins Ausgaberegister holen

D3A4 Ab 82 LDX $82 Kanalnuamer

D3A& BD 3E 02 LDA #023E,X Byte holen

D3A9 40 RTS

D3AA Ab 82 LDX $82 Kanalnummer

D3AC 20 25 Di JSR $D125 Dateityp prüfen

DIAF DO 03 BNE $D3B4 keine Rel-Datei ?

D3B1 4C 20 Ei JMP $E120 Byte aus Rel-Datei holen

D3B4 AS 83 LDA $83 Sekunddradresse

D3B& C9 OF CMP #$0F i5

D3B8 FO SA BEQ $D414 ja, Fehlerkanal lesen

D3BA BS F2 LDA $F2,X

D3BC 29 08 AND #08 Endeflag gesetzt ?

D3BE DO 13 BNE $D3D3 nein

D3CO 20 25 Di JSR $D125 Dateityp priifen

D3C3 C9 07 CMP #$07 Direktzugriffsdatei ?

D3C5 DO 07 BNE #D3CE nein

D3C7 A9 89 LDA #$89 READ und WRITE-Flag setzen

D3C9 95 F2 STA $F2,X

D3CB 4C DE D3 JMP $D3DE

D3CE A? 00 LDA #$00

DIDO 95 F2 STA $F2,X READ und WRITE-Flag löschen

D3D2 60 RTS

D3D3 AS 83 LDA $83 Sekundäradresse

DSDS FO 32 BEQ $D409 Null, LOAD ?

D3D7 20 25 Di JSR $D125 Dateityp prüfen

166

Di

02

02

00

Di

02

02

ED
D4

D4

C1

E6

D4

02

$023E,X

$0254

$D400

$ED&67

$D403

Rel-Datei oder Direktzugriff ?

nein

Puffer- und Kanalnummer halen

Pufferzeiger

gleich Endezeiger ?

nein

Pufferzeiger auf null

Pufferzeiger erhöhen

Byte aus Puffer holen

ins Ausgaberegister

Pufferzeiger

gleich Endezeiger ?

nein

Flags setzen

Byte aus Puffer holen

Kanalnummer
Byte in Ausgaberegister

Flag für Directory ?

nein

Directoryzeile erzeugen

Pufferzeiger setzen

zeigt er vor Puffer für Fehlermeldung ?

nein

ER
in Ausgaberegister

Fehlerflags löschen

"ok’ Meldung erzeugen

Pufferzeiger zurücksetzen

READ-Flag setzen

Byte aus Puffer holen

ins Ausgaberegister

Pufferzeiger vor Fehlerpuffer setzen

Hi-Adresse

READ-Flag setzen

Datenbyte

ins Ausgaberegister

167

EFREHEEESFEESHEFESEEREAELEAKERE

D44D 20 93 DF JSR $DF93
D450 OA ASL A
DaS1 AA TAX
D452 AD 00 LDA #$00
D454 95 99 STA $99,X
D454 Ail 99 LDA ($99,X)
D458 FO 05 BEQ $D45F
Da5A Ds 99 DEC $99,X
D45C 4C 56 Di JMP $D156
DASF 60 RTS

ELEEEKEEELERER ER EERERREREREEES
D460 A9 80 LDA #$80
D462 DO 02 BNE $D466

EEE ETIKETTE

D464 A? 90 LDA #$90
D466 05 7F ORA $7F
D448 BD 4D 02 STA $024D
D46B AS F9 LDA $F9
D46D 20 D3 D& JSR $D4D3
D470 =A FF LDX $F9
D472 40 93 DS JUMP $D593

EEE TESTSEITE ISIS ET IT II II 23

D475 Ag O1 LDA #$01
D477 8D 4A 02 STA $024A
D47A AG 11 LDA #$11
D47C 85 83 STA $83
D47E 20 446 DC JSR $DC44
D481 AY 02 LDA #$02
D483 ac ce D4 JMP $D4C8

EURER TEE
D486 AY 12 LDA #$12
D488 85 83 STA $83
D48A 4C DA DC JMP $DCDA

LEITET SIE EI SIE SEITE I EI EI

D48D 20 3B DE JSR $DESB
D490 AI O01 LDA #$01
D492 85 6F STA $6F
D494 AS 69 LDA $49
D496 48 PHA
D497 AY 03 LDA #$03
D499 85 69 STA $69
D49B 20 2D Fi JSR $F 12D
DA9IE 68 PLA
D49F 85 69 STA $69
DARAI A9 00 LDA #$00
D4As 20 CB D4 JSR $D4C8
D4A6 AS 80 LDA $80
DaAB 20 Fil CF JSR $CFFi
D4AB AS 81 LDA $81
DAAD 20 Fi CF JSR $CFF1

nachsten Block lesen

Puffernummer holen

mal 2

Pufferzeiger auf Null

erstes Byte aus Puffer holen

kein Folgeblock ?

Pufferzeiger auf -1

nächsten Block lesen

Block lesen

Befehlskode für Lesen

Block schreiben

Befehlskode für schreiben

Drivenummer

Kode nerken

Parameter an Disk-Controller

Befehl ausführen

Puffer belegen und Block lesen

Dateityp auf sequentiell

17

Sekundäradresse

Puffer belegen und Block lesen

Pufferzeiger auf 2

neuen Block anlegen

18

Sekundäradresse

neuen Block anlegen

Directoryblock schreiben

Track und Sektornuamer holen

ein Block

Schrittweite 10 bei Blockbelegung merken

durch 3 bei Directory ersetzen

freien Block in BAM suchen

Schrittweite zurückholen

Pufferzeiger auf Null

Tracknummer in Puffer

Sektornummer in Puffer

168

D4BO 20 C7 DO JSR $DOC7 Block auf Diskette schreiben
D4B3 20 99 DS JSR $D599 und prüfen

D4Bé AD 00 LDA #$00

D4B8 20 CB D4 JSR $D4C8 Pufferzeiger auf Null

D4BB 20 Fi CF JSR $CFFi Puffer mit Nullen füllen

DABE DO FB BNE $D4BB

D4Co 20 Fi CF JSR $CFFi Null als Folgetrack

D4C3 AI FF LDA #$FF

D4cs ac Fi CF JMP $CFFi $FF als Anzahl der Bytes

EEE RER Pufferzeiger setzen

D4C8 85 6F STA $6F Zeiger merken

D4CA 20 93 DF JSR $DF93 Puffernummer holen

D4CD 0A ASL A mal 2

D4CE AA TAX

DACF BS 9A LDA $9A,X Pufferzeiger hi

D4D1 85 95 STA $95

D4D3 AS 4F LDA $4F

D4D5 95 99 STA $99,X Pufferzeiger lo, neuer Wert

D4D7 85 94 STA $94

D4D9 40 RTS

SHEKERHELESEREAKRERKEEHERRSHEHEE Interne Kanäle schließen

D4DA AQ il LDA #$11 17

D4DC 85 83 STA $83

D4DE 20 27 D2 JSR $D227 Kanal schliefien

D4Ei AY 12 LDA #$12 18

D4E3 85 83 STA $83

D4E5 4C 27 D2 UMP $D227 Kanal schließen

Ex £ 2 = 2 2 Z 2 2 2 2 £ 2 2 2 2 2 2 x 2 2 2 2 2 2 2 2 20x07 Pufferzeiger setzen

D4E8 20 93 DF JSR $DF93 Puffernummer holen

D4EB oA ASL A

D4EC AA TAX

DAED BS 9A LDA $9A,X Pufferzeiger hi

D4EF B5 95 STA $95

D4Fi BS 99 LDA $99,X Pufferzeiger lo

D4F3 85 94 STA $94

D4F5 40 RTS

HHRHREAEEHLEKKELEKEHAELEKELERE Byte aus Puffer holen

DAF& 85 71 STA $71 Zeiger lo

D4F8 20 93 DF JSR $DF93 Puffernummer holen

D4FB AA TAX .

DAFC. BD EO FE LDA $FEEO,X Hi-Byte Pufferadresse

DAFF 85 72 STA $72 Zeiger hi

D501 AO 00 LDY #$00

D503 Bi 7i =. LDA ($71),Y Byte aus Puffer holen

D505 40 RTS

HHRKEEREERERELERREERSREEREEERE Track und Sektornummer überprüfen

D506 BD SB 02 LDA $025B,X Befehlskode für Disk-Controller

D509 29 01 AND #$01 Drivenummer

D50B OD 4D 02 ORA $024D plus Befehlskode

DSOE 48 PHA merken

DSOF 84 F9 STX $F9 Puffernummer

DS1i BA TXA
D512 OA ASL A
0513 AA TAX
D514 BS 07 LDA $07,X
D516 8D 4D 02 STA $024D
0519 BS 06 LDA $06,X
DS1B FO 2D BEQ $D54A
D51D CD D7 FE CMP $FED7
0520 BO 28 BCS $DS4A
0522 AA TAX
0523 68 PLA
0524 48 PHA
1525 29 FO AND #$FO
0527 C9 90 CMP #$90
0529 BO Ar BNE $D57A
D52B 68 PLA
D52C 48 PHA
D520 an LSR A
DS2E BO 05 BCS $D535
D530 AD 01 01 LDA $0101
0533 90 03 BCC $0538
D535 AD 02 01 LDA $0102
D538 FO 05 BEQ $D53F
DS3A CD DS FE CMP $FEDS
DS3D DO 33 BNE $D572
DSSF BA TXA
D540 20 4B F2 JSR $F24B
D543 CD 4D 02 CMP $024D
D546 FO 02 BEQ $D54A
D548 BO 30 BCS $D57A
DS4A 20 52 05 JSR $D552
D54D A? 64 LDA #$66
DS4F 4C 45 E6 JUMP $E645

LESS SS SZ 222 2 22 EEE EEE EERE 2 2 2

0552 AS F9 LDA $F9
D554 OA ASL A
D555 AA TAX
D556 B5 06 LDA $06,X
D558 85 80 STA $80
DSSA BS 07 LDA $07,X
BSSC 85 Bi STA $81
DSSE 60 RTS

DSSF AS 80 LDA $80
D561 FO EA BEG $D54D
D543 CD D7 FE CMP $FED7
D566 BO ES BCS $D54D
D548 20 4B F2 JSR $F24B
D56B C5 81 CMP $81
D56D FO DE BEQ $D54D
DS6F 90 DC BCC $D54D
D571 60 RTS

D572 20 52 DS JSR $D552
0575 49 73 LDA #$73

mal 2

Sektor

merken

Track

66, ‘illegal track or sector’

36, höchste Tracknummer + 1

66, ‘illegal track or sector’

Befehlskode

Kode fiir Schreiben ?

nein

‘A’, Formatkennzeichen

73, 'cbm dos v2.6 1541’

Tracknummer

maximale Sektornummer holen

mit Sektornummer vergleichen

gleich, dann Fehler

kleiner ?

Track und Sektornummer holen

66, ‘illegal track or sector’

Track und Sektornummer holen

Puffernummer

#2

als Index

Track

Sektor

Track

null, dann Fehler

346, maximale Tracknummer + 1

66, ‘illegal track or sector’

maximale Sektornummer holen

Sektor

Fehler

Track und Sektornummer holen

170

DS77 AC 45 Eb JMP $E645

D57A A&G F9 LDX $F9

DS7C 68 PLA

D57D BD 4D 02 STA $024D

D580 95 00 STA $00,X

D582 9D SB 02 STA $025B,X

D385 60 RTS

LE IE 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 22 22 2 2 2 2

D584 AQ 80 LDA #$#80

D588 DO 02 BNE $D58C

EHEEHA EEE AE REE EERE ELE EER EEE ERE

058A AF FO LDA #$90

DS8c 05 7F ORA $7F

DSBE Aé FI LDX $F9

D590 BD 4D 02 STA $024D

0593 AD 4D 02 LDA $024)

D594 20 OE DS JSR $D50E

KELHERHERKH 22 2 2 2 22 22 22 ER EE EE ES

D599 20 Ab DS JSR #D5A6

DS9C BO FB BCS $D599

DS9IE 48 PHA

DS9IF AI 00 LDA #$00

DSA1 8D 98 02 STA $0298

D5A4 68 PLA

DSAS 60 RTS

DSAG BS 00 LDA $00,X

DSAB 30 1A BMI $D5C4

DSAA [9 02 CMP #$02

DSAC 90 14 BCC $D5C2

DSAE C9 08 CMP #$08

DSBO FO 08 BEG $DSBA

DSB2 C9 OB CMP #$0B

DSB4 FO 04 BEQ $DSBA

DSB6 CF OF CMP #$0F

DSBS DO OC BNE $D5C6

DSBA 2C 98 02 BIT $0298

DSBD 30 03 BMI $D5C2

DSBF 4C 3F Dé JMP $D63F

DSC2 18 CLC

DSC3 60 RTS

D5C4 3B SEC

DSCS 60 RTS

D5C6 96 TYA

DSC7 48 PHA

DS5C8 AS 7F LDA $7F

DCA 48 PHA

DSCB BD SB 02 LDA $025B,X

DSCE 29 01 AND #$01

D5DO 85 7F STA $7F

73, 'cbm dos v2.6 1541’

Puffernummer

Befehlskode für Disk-Controller

in Befehlsregister

und in Tabelle schreiben

Block lesen

Kode für Lesen

Block schreiben

Kode für schreiben

Drivenummer

Puffernummer

Befehlskode

Track und Sektor prüfen und an Disk-Controller

Ausführung prüfen

Ausführung prüfen

Ende abwarten
Rickmeldungskode

Fehlerflag löschen

Befehlskode (Bit 7) noch im Register ?
ja

Rückmeldung kleiner 2

dann fehlerfreie Durchführung

8
dann Write Protect

11
dann ID mismatch

15

Fehlermeldung erzeugen

Ausführung beendet

Ausführung noch nicht beendet

Drivenumaer

Drivenummer

171

02

02

D&

02

E6

02

$FECA,Y
$026D
$D4A6
#$02
$D5E3
$D64D
$025B, x
#$F0

$FEDB,Y
$029A
$FEDB,Y
$D676
$0299
$D4A6
#502
$D625
$0299
$FEDB,Y
$D600

Bitauster für Drive

Leseversuch

Rückmeldung

nicht ok ?

‚fertig

Befehlskode
isolieren

Kode für Schreiben

nein

Drivenumner

Zähler für Suche neben dea Track

Zähler

Konstanten für Leseversuche neben dem Track

Kopf neben dem Track positionieren

Zähler erhöhen

Leseversuch

Rückmeldung

kleiner 2, ok ?

Zähler laden

Konstanten holen

noch nicht Null (Tabellenende) ?

Kopf positionieren

Rückmeldung

ok ?

Befehlskode

tür Schreiben ?

nein

Drivenummer

Befehlskode in Tabelle

Riickmeldung

Fehlermeldung setzen

Befehlskode für Kopfpositionierung

Drivenummer

in Befehlsregister

172

Dé

02
Dé

Dé

02
02

02

02
iC
1C
02

$7F
$02FE,Y
$02FE,Y
$D69A
#$00
$02FE,Y

$44

#$3F

$026D
$1000
$1000
$025B,X
$00,X

Ausführung abwarten

Befehlsausführung nochmal versuchen

Rückmeldung

fehlerhaft ?

Befehlskode für Schreiben

nein

Drivenummer

in Tabelle

Ausführung nochmal versuchen
Rückmeldung

Fehler ?

Drivenummer zurückholen

Fehlerkode

Flag für Ausführung beendet

Daten für Kopfpositionierung übergeben

Daten für Kopfpositionierung übergeben

Drivenummer

Rückmeldung des Disk-Controllers abwarten

Maximalzahl der Wiederholungen

Bit für LED

LED umschalten

Befehl

an Disk-Controller übergeben

$00,X
$D6B9
#$02
$D4C4

$D6AB

$026D

$1000

$1000

$DF93

A

$80
$0006,Y

$83

$82

$81

$80

#$11

$83

$DE3B

$024A

$E2
#$01
$7F
$F9
$025B,X

A
$0715
#$01
$0292
$C5AC
$1730
$D73D

$0291

$D726

$81

D6B9 = BS 00 LDA
D6BB 30 FC BMI
D6BD C9 02 CMP
D6BF 90 03 BCC
D6ci 88 DEY
D6C2 DO E7 BNE
D6C4 48 PHA
D605 AD 6D 02 LDA
D6C8 OD 00 IC ORA
D6CB BD 00 1C STA
D6CE 48 PLA
D6CF 40 RTS

KREKKKEEKRKKKKAKKREKKEREKREKAHKEKKERSE

D6D0 2093 DF JSR
D6D3 OA ASL
D6D4 AB TAY
D6D5 AS BO LDA
D6D7 99 06 00 ‘STA
D6DA AS B1 LDA
D6DC 99 0700 STA
DO6DF AS 7F LDA
D6E1 OA ASL
D6E2 AA TAX
D6E3 40 RTS

KEKE KRKEEEKEKAAKKEREKHREREKKKEKE

D6E4 AS 83 LDA
DES 48 PHA
DOE7 AS 82 LDA
D6E9 48 PHA
D6EA AS B81 LDA
D6EC 48 ‘PHA
D6ED AS 80 LDA
DO6EF 48 PHA
D6FO AF 11 LDA
D6F2 85 83 STA
D6F4 20 3B DE JSR
DO6F7 AD 4A 02 LDA
D6FA 48 PHA
D6FB AS E2 LDA
D6FD 29 O1 AND
DOFF 85 7F STA
D701 Ab F9 LDX
D703 5D 5B 02 EOR
D706 4A LSR
0707 +90 0C BCC
D709 = A2 O1 LDX
D70B BE 92 02 STX
D70E 20 AC C5 JSR
D711 FO 1D BEQ
D713 DO 28 BNE

D715 AD ?102 LDA
D718 FO OC BEG
D7iA C5 Bi CMP

und Rückmeldung

abwarten

ok ?

ja

Zahler erniedrigen

nochmal versuchen

LED aus

Parameter an Disk-Controller übergeben

Puffernummer holen

Tracknummer

übergeben

Sektornummer

übergeben

Drivenummer

mal 2

nach X

Datei in Directory eintragen

Sekundäradresse

Kanalnummer

Sektornummer

Tracknummer

merken

Sekundäradresse 17 -

Track und Sektornummer holen

Dateityp

merken

Drivenummer

setzen

Puffernummer

gleiche Drivenummer ?

Zeiger in Directory

Directory laden und ersten Eintrag suchen

nicht gefunden ?

gefunden ?

‚sektornummer im Directory
gleich null

gleiche Sektornummer ?

174

D4

D7

02

02

02

02

D4

$D73D

$81

$D460

$D73D

($94) ,Y

$025A
($94) ,Y

$0258
($94) ,Y
$D464

$82

ja

Sektornummer merken

Block lesen

Zeiger auf eins

nächsten Eintrag ie Directory suchen

gefunden ?

Directoryblock schreiben

Sektornummer

Zeiger auf 2

Pufferzeiger setzen

Dateityp

Rel-Datei ?

nein

Bit 7 setzen

und in Puffer schreiben

Folgetrack

in Puffer

Folgesektor

in Puffer

Puffernummer holen

Zeiger auf Drivenummer

16, Lange des Filenamens

Filenamen in Puffer schreiben

ab Position 14 mit Nullen fiillen

schon Position 27 ?

nein

Dateityp

Rel-Datei

nein

Track

und Sektor

der Side-Sektoren in Directaryeintrag

Recordl ange

in Directory

Block schreiben

Kanalnummer

175

$83
$024C
$C2B3
$022A

D797 68 PLA
D798 85 83 STA
D79A AD 91 02 LDAÄ
D79D 85 DB 5TA
D79F 9D 60 02 STA
D7A2 AD 92 02 LDA
D7AS 85 DD STA
D7A7 9D 66 02 = STA
D7AA AD 4A 02 LDA
D7AD 85 E7 STA
D7AF AS 7F LDA
D7B1 85 E2 5TA
D7B3 60 RTS

KEKEREREREEEERERREREREEEEERES
D7B4 AS 83 LDA
D7BG6 8D AC 02 STA
D7B9 20 BS C2 JSR
D7BC BE 2A 02 STX
D7BF AE 00 02 LDX
D7C2 ADAC 02 LDA
D7C5 DO 2C BNE
D7C7 EO 2A CPX
D7C9 DO 28 BNE
D7CB AS 7E LDA
D7CD FO 4D BEG
D7CF 85 80 STA
D7Di AD 6E 02 #4LDA
D7D4 85 7F STA
D7D6é 85 E2 STA
D7D8 AX 02 LDA
D7DA 85 E7 STA
D7DC AD &F O2 LDA
D7DF 85 81 STA
D7E1 20 00 Ci JSR
D7E4 20 46 DC JSR
D7E7 AI 04 LDA
D7E9 05 7F ORA
D’EB As 82 LDX
D7ED 99 EC 00 STA
D7FO AC 94 Ci JMP

D’FS EO 24 CPX
D7FS DO 1E BNE
D7F7 AD 4€ 02 LDA
D7FA DO 03 BNE
D7FC a6 55 DA JMP

D7FF 20 Di Ci JSR
D802 AD 85 FE LDA
D805 85 80 STA
0807 A? 00 LDA
D809 85 81 STA
DBOB 20 46 DC JSR
DBOE AS 7F LDA
D810 0902 ORA

Sekundäradresse

Dateityp

Drivenumaer

OPEN-Befehl, Sekundäradresse <> 15

Sekundäradresse

Zeilenlänge holen, Flags löschen

erstes Zeichen aus Puffer

Sekundäradresse

ungleich 0 (LOAD) ?
a

letzte Tracknuamer

Tracknummer

letzte Drivenuamer
Drivenumaer

Dateityp auf Programa

letzte Sektornumaer

Sektor

LED einschalten

Puffer belegen, Block lesen

Dateityp

Drivenummer

Kanalnummer

Flag setzen

fertig

g?

nein

Sekundar adresse

ungleich null ?

OPEN $

Zeile bis zu Ende analysieren

18, Directorytrack

Track

Sektor 0

Puffer belegen, Block lesen

Drivenummer

176

D7

CB

02

ci

02

02
02

$D7EB

#$23
$DB2B
$CB84

#502
$0296
#$00
$7F
$02BE
$D042
$C1ES
$D834
#$00
$D840

$D83C
#$30
$C1C8

$0840

$027A
#$8D
$C268

$0278
$0312
$CSCA
$C49D
#$00
$0258
$0297
$024A

$0277
$D876
$DA09

$0277
$D876
#504
$D8Bi
$DA09
$024C
$83
#$02
$D891
$0297
#$40
$02F9
$024A
$D8A7
#$02

weiter wie oben

= 2

Direktzugriffsdatei öffnen

Dateityp Programm

Drive 0

BAM laden
leile analysieren

Doppelpunkt gefunden ?

Komma gefunden ?

nein

30, ‘syntax error’

Zeiger auf Drivenummer

Shift CR
Zeile bis Ende untersuchen

Kommazahler

Drivenummer holen

Drivenumaer prüfen

Dateieintrag im Directory suchen

Defaultwerte

Recordlänge

Dateityp

Komma vor Gleichheitszeichen ?

nein

holt Filetyp und Betriebsart

weiteres Konna ?

nein

holt Filetyp und Betriebsart

Sekundäradresse

größer gleich 2 ?

ja

0 oder 1 (LOAD oder SAVE)

Dateityp

nicht deleted

Prg

177

DSBE BD 4A 02 STA #024A

DB91 AD 4A 02 LDA $024A

D874 DO 11 BNE $D8A7

D894 AS E7 LDA $E7

D898 29 07 AND #$07

DBIA BD 4A 02 STA $024A

DB9D AD 80 02 LDA $0280

DBAO DO 05 BNE $D8A7

D8A2 AG 01 LDA #$01

DBA4 BD 4A 02 STA $024A

DBA7 AD 97 02 LDA $0297

DBAA C9 Ol CMP #$01

DBAC FO 18 BEQ $D8C4

DBAE 4C 40 D9 JMP $D940

DSBt BC 7A Q2 LDY $027A,X

DBB4 BF 00 02 LDA $0200,Y

DSB7 8D 38 02 STA $0258

D8BA AD 80 02 LDA $0280

D8BD DO B7 BNE $D876

D8BF AF 01 LDA #$01

peci BD 97 02 STA $0297

D8c4 DO BO BNE #D876

Dec AS E7 LDA $E7

DSCs 29 80 AND #$80

DBCA AA TAX

D8CB DO 14 BNE $DBEI

DSCD A? 20 LDA #$20

D&CF 24 E7 BIT $E7

DBD1 FO 06 BEQ $D8D9

D8D3 20 B& C8 JSR $C8B&

D8D& 4C E3 D9 JMP $D9E3

DBD? AD 80 02 LDA $0280

DEBDC DO 03 BNE $D8E1

DBDE 4C E3 D9 UMP $DIE3

DBEI AD 00 02 LDA $0200

DBE4 C9 40 CMP #$40

DBE& FO OD BEQ $D8F5

DBEB BA TXA

DBE? DO 05 BNE $D8FO

DBEB AD 63 LDA #$63

DBED 4C CB Ci JMP $C1C8

DBFO AG 33 LDA #$33

DaF2 4C C8 Ci JMP $CiC8

EEE ET EERE ERERE RE

DBFS AS £7 LDA $E7

DBF7 29 07 AND #$07

DBF9 CD 4A 02 CMP $0248

D8FC DO 67 BNE $D945

DBFE C9 04 CMP #404

D700 FO 63 BEQ $D965

D702 20 DA DC JSR $DCDA

D905 AS 82 LDA $82

als Dateityp

Dateityp aus Befehlszeile holen

Tracknummer

ungleich null ?

Dateityp sequentiell

Betriebsart
W’

Ja

Zeiger hinter zweites Komma

Wert holen

Recardlänge

Tracknummer

W’

als Betriebsart

Dateityp

Jokerflag isolieren

Joker im Namen

war Datei geschlossen ?

ja

Byte 0 in Puffer und Block schreiben

Side-Sektor anlegen, fertig

Tracknummer des ersten Blocks

schon vorhanden

Side-Sektor Block anlegen

erstes Zeichen aus Eingabepuffer

" Klammeraffe ?

ja

Joker gesetzt ?

63, ‘file exists’

33, ‘syntax error’

öffnen eines Files mit überschreiben

Filetyp

isolieren

Filetypen unterschiedlich ?

Rel-File ?

64, ‘file type mismatch’

neuen Sektor anlegen

178

02

02

ci

02

C1

02

02

$0270 |
#$11
$83
$DOEB
$0294
$D4C8
#$00
($94) ,Y
#$20
($94) ,Y
#18
$80
($94) ,Y

$81
($94) ,Y
$0270
$08
$0260, X
$DD
$0266, X
$DE3B
$D464
$D9EF

Kanalnummer merken

Kanal 17

Lesekanal eröffnen

Pufferzeiger für Directory setzen

Filetyp

Bit 5 setzen, Datei offen

Track

und Sektor

beim öffnen mit ‘Klammeraffe’

Kanalnummer

Zeiger in Directoryblock

Track und Sektornummer holen

Block schreiben

Track-, Sektor- und Drivenumme bereitstellen

erste Tracknummer

Datei nicht gelöscht ?

62, ‘file not found’

Betriebsart
"M’

ja, dann kein Test auf nicht geschlossene Datei

Bit 5

in Dateityp testen

nicht gesetzt, ok

60, ‘write file open’

Dateityp isolieren

übereinstimmung mit Typ aus Befehl ?

ja

64, ‘file type mismatch’

Betriebsart

"A’, Append

nein

Rel-Datei ?

ja, dann Fehler

Bit 4,5 und 7 löschen,

als offen markieren

Kanalnummer merken

179

DE

D4

DY
02

DA
C1

02

02

DC
Dé

($94) ,Y
$025A

($94),
$0258
$0258

$D9C3
$0258
$D9C3

Kanal 17

Track- Sektornuaaer holen

Block schreiben

Kanalnuamer zurückholen

Side-Sektor-Parameter übernehmen

Betriebsart

"A’ Append

nein

Append vorbereiten

fertig, Diskstatus bereitstellen

Track

und Sektor des ersten Side Sector Blocks

Recordlänge

letzte Recordlänge

letzte Recordlänge null

Recordlänge gleich ?
ja

50, ‘record not present’

Track

Sektor

Drivenuamer

isolieren

Drivenuaner

Block anlegen

Datei im Directory eintragen

Kanalnummer

größer gleich 2 ?
Track und Sektornuamer holen

Drivenuamer

Sektor

180

DAS 8D 6F 02 STA $0246F
DAO& ac 99 Ci JMP $Ci99

EHRRAARAEREEERERERLERKEREREEEE Filetyp und Betriebsarten prüfen

DA09 BC 7A 02 LDY $027A,X Zeiger in Befehlszeile
DAOC BI 00 02 LDA $0200,Y Zeichen aus Zeile holen
DAOF AO 04 LDY #804

DAI2 30 08 BMI $DAIC

DAL4 D9 B2 FE CMP $FEB2,Y Betriebsarten ‘R’, ‘W', ‘A’

DA17 DO FB BNE $DA11

' M'

DA19 BC 97 02 STY $0297 merken

DAIC AO 05 LDY #$05

DALE B8 DEY

DALF 30 08 BMI $DA29

DA21 D9 B& FE CMP $FEBG,Y Filetypen ‘D’, ‘S’, ‘P’, ‘U’, ‘L’
DA24 DO F8 BNE $DALE
DA26 BC 4A 02 STY $024A merken

DA29 60 RTS

FERKHERK EERE RE KAEEAEEHHEEEERE Vorbereitung fiir Append

DAZA 20 39 CA JSR $CA39 Kanal zum Lesen öffnen, Byte holen

DA2D RI 80 LDA #$80

DA2F 20 Aé DD JSR $DDA& letztes Byte ?

DA32 FO Fé BEQ $DA2A nein

DA34 20 95 DE JSR $DE9IS Track und Sektornummer holen

DA37 Aé Bi LDX $81 Sektornummer

DA39 E8 INX

DASA BA TXA

DASB DO 05 BNE $DA42 nicht $FF ?

DASD 20 AS Di JSR $D1iA3 Puffer schlieBen, Block schreiben

DA40 AY 02 LDA #$02

DA42 20 C8 D4 JSR $D4C8 Pufferzeiger auf 2

DA45 A& 82 LDX $82 Kanalnummer

DA47 AY 01 LDA #$01

DA4I 95 F2 STA $F2,X Flag für WRITE setzen

DA4B AG 80 LDA #$80

DA4D 05 82 DORA $82

DA4F Ab 83 LDX $83

DASI 9D 2B 02 STA #022B,X Kanalnummer in Tabelle

DAS4 60 RTS

HERREHREREEHHREREKRREEHRHERHEEREEHE OREN "8"

DASS A9 OC LDA #$0C Befehlsnummer 12

DAS7 8D 2A 02 STA $022A

DASA AY 00 LDA #$00

DASC AE 74 02 LDX $0274

DASF CA DEX

DA&O FO OB BEQ $DA&D

DAB2 CA DEX

DA&3 DO 21 BNE $DAB&

DA6S AD 01 02 LDA $0201 zweites Zeichen

DA&B 20 BD C3 JSR $C3BD Drivenummer holen

DAGB 30 19 BMI $DAB& keine eindeutige Nummer ?

DA&D 85 E2 STA $E2

DAGF EE 77 02 INC $0277

DA72 EE 78 02 INC $0278
DA7S5 EE 7A 02 INC $027A
DA78 AQ 80 LDA #$80
DA7A 85 E7 STA $E7
DA7C AQ 2A LDA #$2A
DATE BD 00 02 STA $0200
DA81 BD 01 02 STA $0201
DAB DO 18 BNE $DA9E
DAB& 20 ES Cl JSR $C1ES
DAS? DO 05 BNE $DA90
DABB 20 DC C2 JSR $C20C
DABE AO 03 LDY #$03
DAIO 88 DEY
DAGI 88 DEY
DA92 BC 7A 02 STY $027A
BAIS 20 00 C2 JSR $C200
DAIS 20 98 C3 JSR $C398
DAIB 20 20 C3 JSR $C320
DAIE 20 CA C3 JSR $C3CA
DAAI 20 B7 C7 JSR $C7B7
DAN 20 90D C4 JSR $C49D
DAAT 20 9E EC JSR $ECIE
DAAA 20 37 D1 JSR $D137
DAAD A& 82 LDX $82
DAAF 9D 3E 02 STA $023E
DAB2 AS 7F LDA $7F
DAB4 BD BE 02 STA $028E
DAB7 09 04 DRA #$04
DABI 95 EC STA $EC,X
DABB AI 00 LDA #$00
DABD 85 A3 STA $A3
DABF 60 RTS

LES 22 22272 2777 2 77 27 22 7 2 22 REL ES
DACO AI 00 LDA #00
DAC2 BD FF 02 STA $02F9
DACS AS 83 LDA $83
DAC7 DO OB BNE $DAD4
DACI A? 00 LDA #$00
DACB 8D 54 02 STA $0254
DACE 20 27 D2 JSR $D227
DAD! 4C DA D4 JMP $D4DA

DAD4 C9 OF CMP &$0F
DAD& FO 14 BEQ $DAEC
DADS 20 02 DB JSR $DBO2
DADB AS 83 LDA $83
DADD C9 02 CMP #$02
DADF 90 FO BCC $DAD1
DAEI AD 6C 02 LDA $024C
DAE4 DO 03 BNE $DAE9
DAES 4C 94 C1 JMP $C194

DAE? 4C AD Ci JMP $C1AD
DAEC AI OE LDA #$0E
DAEE 85 83 STA $83

Jokertlag setzen
‘yy!

als Dateiname in Befehlspuffer

unbedingter Sprung

Eingabezeile bis zum ‘:’ testen

gefunden ?

Flags léschen

Zeiger auf Drivenumaer im Befehl

Zeile analysieren

Typ der Datei emitteln

Drivenummer holen

Drive bei Bedarf initialisieren

Disketten-Titel bereitstellen

Directory laden

Directory erzeugen und bereitstellen

Byte aus Puffer holen

Kanalnummer

Byte in Ausgaberegister

Drivenuammer

als letzte Drievnummer merken

PR6-Flag

Zeiger in Eingabepuffer rücksetzen

CLOSE-Routine

Sekundäradresse

ungleich null ?

Sekundäradresse 0, LOAD

Kanal schließen

interne Kanäle 17 und 18 schließen

15

ja, alle Kanäle schließen

Datei schließen

Sekundäradresse

kleiner 2 ?

Abschluß

14

Sekundäradresse

182

DAFO 20 02 DB JSR $DBO2
DAFS3 Ch 83 DEC $83
DAFS 10 F9 BPL $DAFO
DAF7 AD 6C 02 LDA $026C
DAFA DO 03 BNE $DAFF
DAFC ac 94 Cl JUMP $C194
DAFF 4C AD Ci JMP $C1iAD

LESE ZZ 22 22 7 EERE EERE RERER EE

DBO2 Ab 83 LDX $83
DBO4 BD 2B 02 LDA $022B,X
DBO7 C9 FF CMP #$FF
DBO? DO 01 BNE $DBOC
DBOB 60 RTS

DBOC 29 OF AND #$0F
DBOE 85 82 STA $82
DB10 20 25 Di JSR $D125
DELS C9 07 CMP #407
DB15 FO OF BEQ $DB26
DB17 C9 04 CMP #504
DB19 FO 11 BEQ $DB2C
DB1B 20 07 DI JSR $D107
DBIE BO 09 BCS $DB29
DB20 20 62 DB JSR $DB42
DB23 20 AS DB JSR $DBAS5
DR26 20 F4 EE JSR $EEF4
DB29 4C 27 D2 =JMP $D227

DB2C 20 Fi DD JSR $DDFi
DB2F 20 1E CF JSR $CFIE
DB32 20 CB El JSR $E1CB
DB35 Aé DS LDX $D5
DB37 B6 73 STX $73
DB39 E& 73 INC $73
DBSB AF 00 LDA #$00
DB3D 85 70 STA $70
DB3F 85 71 STA $71
DB41 AS Dé LDA $Dé
DB43 38 SEC
DB44 EI OE SBC #$0E
DB4& 85 72 STA $72
DB48 20 51 DF JSR $DFSi
DB4B A& B2 LOX $82
DB4D AS 70 LDA $70
DBAF 95 BS STA $B5,X
DBSi AS 71 LDA $71
DBS3 95 BB STA $BB,X
DB55 AQ 40 LDA #$40
DBS7 20 AG DD JSR $DDAG
DBSA FO 03 BEQ $DBSF
BBSC 20 AS DB JSR $DBAS
DBSF 4C 27 D2 JMP $D227

EREREELE EERE ERE EEEEEEEEEER EERE
DB42 AG 82 LDX $82

Datei schließen

nachste Sekunddradresse

AbschluB

Datei schließen

Sekundäradresse

Kanalnuanmer holen

kein Kanal zugeordnet ?

nein, dann fertig

Kanalnummer isolieren

Dateityp prüfen

Direktzugriff ?

ja

Rel-Datei ?

ja

Kanal zum Schreiben öffnen

keine Datei zum Schreiben ?

letzten Block schreiben

Eintrag im Directory und Block schreiben

BAM schreiben

Kanal schließen

Puffernummer holen, Block schreiben

Puffer wechseln

letzten Side-Sektor holen

Side-Sektor-Nummer

minus 14 für Zeiger

Blockzahl der Datei berechnen
Kanalnumaer

Recordnummer lo

Recordnummer hi

Bit 6 gesetzt ?

nein

in Directory eintragen

Kanal schließen

letzten Block schreiben

Kanal nummer

183

DB&4 BS BS LDA $B5,X
DB46 15 BB ORA $BB,X
DB48 DO OC BNE $DB74
DB&A 20 EB D4 JSR $D4E8
DB&D C9 02 CMP #$02
DBAF DO 05 BNE $DB76
DB71 AI OD LDA #$0D
DB73 20 Fil CF JSR $CFFi
DB7& 20 E8 D&4 JSR $D4E8
DB79 C9 02 CMP #$02
DB7B DO OF BNE $DB8C
DB7D 20 1E CF JSR $CFiE
DBBO Ab 82 LDX $82
DBS82 BS BS LDA $B5,X
DBBA DO 02 BNE $DB88
DBB& Dé BB DEC $BB,X
DB88 D6 BS DEC $B5,X
DBBA A? 00 LDA #$00
DBSC 38 SEC
DBSD E9 01 SBC #$01
DBSF 46 PHA
DBIO A? 00 LDA #$00
DB?2 20 C8 D4 JSR $D4C8
DB95 20 Fi CF JSR $CFFi
DB98 68 PLA
DB99 20 Fl CF JSR $CFFi
DBIC 20 C7 DO JSR $DOC7
DBF 20 99 DS JSR $D599
DBA2 4C 1E CF JMP $CFIE

HEHE E22 222 2 2 EERE EER ERE LER ERER
DBAS A& 82 LDX $82
DBA7 BE 70 02 STX $0270
DBAA AS 83 LDA $83
DBAC 48 PHA
DBAD BD 60 02 LDA $0260,X
DBBO 85 B81 STA $81
DBB2 BD 66 02 LDA $0264,X
DBBS 8) 94 02 STA $0294
DBBB BS EC LDA $EC,X
DBBA 29 01 AND #$01
DBBC 85 7F STA $7F
DBBE AD 85 FE LDA $FEBS
DBC1 85 80 STA $80
DBCS 20 93 DF JSR $DF93
DBCS 48 PHA
DBC7 85 F9 STA $F9
DBC9 20 60 D& JSR $D460
DBCC AO 00 LDY #$00
DBCE BD EO FE LDA $FEEO,X
DBDi 85 87 STA $87
DBDS AD 94 02 LDA $0294
DBD 85 86 STA $84
DBD8 Bi 86 LDA ($84),Y
DBDA 29 20 AND #$20
DBDC FO 43 BEQ $DC21

Recordnuamer lo

Recordnummer hi

ungleich null ?

Pufferzeiger setzen

ungleich 2

CR

in Puffer

Pufferzeiger setzen

jetzt gleich 2 ?

nein

Puffer wechseln

Kanalnumaer

Recordnummer lo

Blockzahl hi

und Blockzahl lo vermindern

Zeiger auf Ende setzen

Pufferzeiger auf Null

Null in Puffer schreiben

zweites Byte gleich Zeiger auf Ende

in Puffer schreiben

Block auf Diskette schreiben

und überprüfen

Puffer wechseln

Directoryeintrag

Kanalnummer

merken

Sekundäradresse

merken

Sektornummer im Directory

setzen

Zeiger in Directory

Drivenummer

18, Directory Track

setzen

Puffernummer erhöhen

Directoryblock lesen

Pufferadresse

Pufferzeiger

Dateityp

Datei geschlossen ?

ja

184

45 Eé

7D C8
29 DC

70 02

$D125
#504
$0029
($86) ,Y
#$8F
($84) ,Y

($84) ,Y
$80
$71
#$1B
($B6) ,Y

($86) ,Y
$DC04
$80

$81
#$67
$E645

#500
($86) ,Y

($86),

$71
($84) ,Y

($846) ,Y
$81

($86) ,Y
$C87D
$DC29

($86),
#$0F
#480
($86) ,Y
$0270
#$1C
$B5, x
($86) ,Y

$BB, Xx
($86) ,Y

#$90
$7F
$D590

$83
$D107

Dateityp priifen

Rel-Datei ?

ja

Bit 4, 5 und & löschen

im Dateityp

Tracknummer

Sektornummer der Datei beim überschreiben

merken

Tracknummer beim überschreiben

gesetzt ?

Tracknummer setzen

Sektornummer

67, ‘illegal track or sector’

Tracknummer

und Sektornummer der Ersatzdatei löschen

Track- und Sektornummer der neuen Datei setzen

alte Datei löschen

Dateityp holen

Bit 0 bis 3 isolieren

Bit 7 für geschlossene Datei setzen

Kanalnumaer

Blockzahl lo

in Directoryeintrag

und Blockzahl hi

schreiben

Puffernummer

Kode für ‘Schreiben’

Drivenummer

Block schreiben

Sekundäradresse

Kanal zum Schreiben öffnen

185

EELEHEEEREEREREHEREREREEREEEER Block lesen, Puffer belegen

DC46 AG O1 LDA #$01

DC48 20 E2 Di JSR $DIE2 Kanal und Puffer zum Lesen suchen

DC4B 20 B& DC JSR $DCB6 Zeiger setzen

DC4E AD 4A 02 LDA $024A Dateityp

DCS1 48 PHA merken

DC52 OA ASL A

DCS3 05 7F ORA $7F Drivenummer

DC55 95 EC STA $EC,X

DC57 20 9B DO JSR $DO9B Block in Puffer lesen

DCSA Ab 82 LDX $82 Kanalnummer

DCSC AS 80 LDA $80 Track

DCSE DO 05 BNE $DC65 Folgetrack ?
DC&O aS 81 LDA $81 Sektor

DC&2 9D 44 02 STA $0244,X als Endezeiger

DC65 68 PLA Dateityp

DC44 C9 04 CMP #$04 Rel-Datei ?

DC4&8 DO 3F BNE $DCA9 nein

DCéA A4 83 LDY $83 Sekundäradresse

DESC BI 2B 02 LDA $022B,Y Kanalnummer

DC4F 09 40 ORA #$40

DC71 99 2B 02 STA $022B,Y Flag fiir READ und WRITE setzen

DC74 AD 58 02 LDA $0258 Recordlänge

DC77 95 C7 STA $C7,X

DC79 20 8E D2 JSR $D2BE Puffer für Side Sektor suchen

DC7C 10 03 BPL $DC81 gefunden ?

DC7E 4C OF D2 JMP $D20F 70, ‘no channel’

DC8i Ab 82 LDX $82 Kanalnummer

DC83 95 CD STA $CD,X

DC85 AC 59 02 LDY $0259

DC8B 84 80 STY $80 Track fiir Side Sektor

DCBA AC SA 02 LDY $025A

DcaD 84 81 STY $81 Sektor fiir Side Sektor

DC8F 20 DS Dé JSR $D6D3 Paramater an Disk-Controller übergeben

DC92 20 73 DE JSR $DE73 Block lesen

DC95 20 99 DS JSR $D599 und prüfen

DC98 Ab 82 LDX $82 Kanalnummer

DCIA A? 02 LDA #$02

DCIC 95 Ci STA $C1,X Zeiger fiir Schreiben

DCIE AI 00 LDA #$00

DCAO 20 CB D4 JSR $D4C8 Pufferzeiger auf Null

DCA3 20 53 Ei JSR $E153 nächsten Record suchen

DCAG 4C 3E DE JMP $DE3E Track und Sektornummer holen

DCAY 20 56 Di JSR $D156 Byte aus Puffer holen

DCAC Ab 82 LDX $82 Kanalnuamer

DCAE 9D 3E 02 STA $023E,X Byte ins Ausgaberegister

DCB1 A9 88 LDA #$88 Flag fiir READ setzen

DCB 95 F2 STA $F2,X

DCBS 60 RTS

HHEHKHEERHERERHRERHERERHELERELERE Zeiger rücksetzen

DEB& Ab 82 LDX $82 Kanalnummer

DCB8 BS A? LDA $A7,X Puffernummer

DCBA OA ASL A mal 2

186

DCBB AB TAY
DCBC AP 02 LDA
DCBE 999900 STA
DCC1 BS AE LDA
DCCS 09 80 ORA
DCCS 95 AE STA
DCC7 OA ASL
DCCB AB TAY
DCC9 AI 02 LDA
DCCB 99 99 00 STA
DCCE AF 00 LDA
DCDO 95 BS STA
DCD2 95 BB STA
DCD4 Ag 00 LDA
DCDS 9D 44 02 STA
DCD9 60 RTS

EREEEKEE HERE RE ERE EE ERE EERE EERE

DCDA 20 AI Fi JSR
DCDD AD O1 LDA
DCDF 20 DF Di JSR
DCE2 20 DO Dé JSR
DCES 20 B& DC JSR
DCEB Aé 82 LDX
DCEA AD 4A 02 LDA
DCED 48 PHA
DCEE 0A ASL
DCEF 05 7F ORA
DCF 1 95 EC STA
DCF3 68 PLA
DCF4 C9 04 CMP
DCFH FO 05 BEQ
DEFB AG O1 LDA
DCFA 95 F2 STA
DCFC 60 RTS

DCFD A4 83 LDY
DCFF B9 2B 02 LDA
DD02 29 3F AND
DD04 09 40 ORA
DD0&6 99 2B 02 ~~ STA
DDO? “4 AD 58 02 LDA
DDOC 95 C7 STA
DDOE 20 BE D2 JSR
DD11 10 03 BPL
DD13 AC OF D2 JMP

DD16 Ab 82 LDX
DDi8 95 CD STA
DDIA 20 CI DE JSR
DDiD 20 1E Fi JSR
DD20 AS 80 LDA
DD22 8D 59 02 ~~ STA
DD25 AS Bi LDA
DD27 8D 5A 02 STA
DD2A AG 82 LDX

#$02
$0099,Y
$AE , x
#$80
$AE,X

A

4802
$0099,Y
#$00
$B5,X
$BB,X
#800
$0244,X

Pufferzeiger lo

Bit 7 setzen , Puffer nicht belegt

Pufferzeiger lo

Blockzahl lo

Blockzahl hi

Endezeiger

neuen Block anlegen

freien Sektor in BAM suchen

Kanal öffnen und Puffer belegen

Parameter an Disk-Controller übergeben

Zeiger rücksetzen

Kanalnummer

Dateityp

Drivenumaer

als Flag merken

Rel-Datei ?

ja

WRITE-Flag setzen

Sekundäradresse

Kanalnummer in Tabelle

die obersten 2 Bit löschen

Bit 6 setzen,

READ und WRITE Flag

Recordlänge

in Tabelle

Puffer suchen und belegen

gefunden ?

70, 'no channel’

Kanalnumaer

Puffernummer für Side-Sektor

Puffer löschen

freien Block in BAM suchen

Track

für ersten Side-Sektor

Sektor

für Side-Sektor
Kanalnummer

187

DDZC BS CD LDA $CD,X Puffernummer

DD2E 20 D3 Dé JSR $D6D3 Parameter an Disk-Controller übergeben

DD31 AG 00 LDA #$00

DD33 20 EI DE JSR $DEE9 Pufferzeiger auf Null

DD34 A 00 LDA #$00

DD38 20 8D DD JSR $DD8BD Null als Trackzeiger in Puffer

DD3B AQ il LDA #$11 17

DDSD 20 8D DD JSR $DD8D als Endezeiger in Puffer

DD40 A? 00 LDA #$00 Null

DD42 20 8D DD JSR $DDED als Side-Sektor Nummer in Puffer

DD45 AD 58 02 LDA $0258 Recordlange

DD48 20 8D DD JSR $DDED in Puffer

DD4B AS 80 LDA $80 Tracknummer dieses Blocks

DD4D 20 8D DD JSR $DD8D in Puffer

DDSO AS 81 LDA $81 Sektornummer

DD52 20 8D DD JSR $DD8D in Puffer

DDSS A? 10 LDA #$10 16

DD57 20 E9 DE JSR $DEE9 Pufferzeiger auf 14

DDSA 20 3E DE JSR $DESE Track und Sektornumaer holen

DDSD AS 80 LDA $80 Tracknummer des ersten Datenblocks

DDSF 20 8D DD JSR $DD8D in Puffer

DD42 AS 81 LDA $81 Sektornummer des ersten Datenblocks

DD&4 29 8D DD JSR $DD8D in Puffer

DD67 20 6C DE JSR $DE4C Block auf Diskette schreiben

DDEA 29 99 DS JSR $0599 und prüfen

DD4D A 02 LDA #$02

DDöF 20 C8 D4 JSR $DACB Pufferzeiger auf 2

DD72 Ab 82 LDX $82 Kanalnunner

DD74 38 SEC

DD75 AY 00 LDA #300

DD77 FSC7 SBC $C7,X Recordlänge
DD79 95 Ci STA $C1,X Zeiger für Schreiben

DD7B 20 E2 E2 JSR $E2E2 Puffer löschen

DD7E 20 19 DE JSR $DE19 Linkbytes in Puffer schreiben

DDSi 20 SE DE JSR $DESE Block auf Diskette schreiben

Dpe4 20 99 DS JSR $D599 und prüfen

DD87 20 F4 EE JSR $EEF4 BAM schreiben

DDB8A 4C 98 DC JMP $DC98 und fertig

HEREHEHEEREEEERELEEEEREREERESRE «Byte in Side-Sektor Block schreiben
DDED 48 PHA Byte merken

DDBE Aé B2 LDX $82 Kanalnuamer

DD90 BS CD LDA $CD,X Puffernummer des Side-Sektors

DD92 4C FD CF JMP $CFFD Byte in Puffer schreiben

RER TEE Flags manipulieren

DD95 90 06 BCC $DD9D

DD97 Ab 82 LDX $82 Kanalnummer

DD99 15 EC ORA $EC,X Flag setzen
DDB DO 06 BNE $DDA3

DD9D Ab 82 LDX $82 Kanalnummer

DDIF 49 FF EOR #$FF

DDAI 35 EC AND $EC,X Flag löschen

DDA3 95 EC STA $EC,X

DDAS 60 RTS

188

DDA& Ab 82 LDX $82 Kanalnummer

DDAB 35 EC AND $EC,X Flag testen

DDAA 60 RTS

HHKKKAEHKEREELAHHLRHKREREREREE Befehlskode für Schreiben prüfen

DDAB 20 93 DF JSR $DF93 Puffernummer holen

DDAE AA TAX

DDAF BD SB 02 LDA $025B,X

DDB2 29 FO AND #$FO Befehlskode isolieren

DDB4 [9 90 CMP #$90 Kode fiir schreiben ?

DDB 60 RTS

a2 2 22 22 2 22 22 22 22 2 22 2 22 2 202 202 22

DDB7 A2 00 LDX #$00

DDB9 84 71 STX $71 Zähler für Sekundäradressen

DDBB BD 2B 02 LDA $022B,X Kanalnummer aus Tabelle holen

DDBE C9 FF CMP #$FF

DDCO DO 08 BNE #DDCA Datei offen ?

DDC2 Aé 71 LDX $71

DDC4 EB INX Zähler erhöhen

DDCS EO 10 CPX #$10 noch kleiner als 14 ?

DDC7 90 FO BCC $DDB9

DDC? 60 RTS

DDCA 84 71 STX $71

DDCC 29 3F AND #$3F Kanalnummer isolieren

DDCE A8 TAY

DDCF B9 EC 00 LDA $00EC,Y

DDD2 29 O1 AND #401 Drivenummer isolieren

DDD4 85 70 STA $70

DODDS AE 53 02 LDX $0253

DDDY BS E2 LDA $E2,X

DDDB 29 O1 AND #$01 Drivenummer isolieren

DDDD C5 70 CMP $70 gleiches Drive ?

DDDF DO Ei BNE $DDC2 nein

DDE1 BI 60 02 LDA $0260,Y Sektornummer im Directory

DDEA DS D8 CMP $D8,X gleiche wie Datei ?
DDE& DO DA BNE $DDC2 nein

DDEB BI 66 02 LDA $0266,Y

DDEB DS DD CMP $DD,X Zeiger gleich ?

DDED DO D3 BNE $DDC2 nein

DDEF 18 CLC

DDFO 40 RTS

EEEEREEEKKEEREEE KEES ES ERESERERS Block einer Rel-Datei schreiben

DDFi 20 9E DF JSR $DFIE Puffernummer holen

DDF4 50 06 BVC $DDFC keine Rel-Datei ?

DDF& 20 SE DE JSR $DESE Block schreiben

DDF9Y 20 99 D5 JSR $D599 und prüfen

DDFC 60 - RTS

HHELKEE HEHEHE EREREERERHERERER Bytes fiir Folgetrack schreiben

DDFD 20 2B DE JSR $DE2B Pufferzeiger setzen

DEOO AS 80 LDA $80 Tracknummer

DEO2 91 94 STA ($94),Y in Puffer

DEO4 C8 INY

189

DEOS AS 81 LDA $81 Sektornummer

DEO7 91 94 STA ($94),Y in Puffer

DEO? 4C 05 Ei UMP $E105 Rel-Flag setzen

HHRKEEAHEKEERREREEEREERSRHKEREHR Fol getarck und Sektornummer holen

DEOC 20 2B DE JSR $DE2B Pufferzeiger setzen

DEOF Bi 94 LDA ($94),Y Folgetracknummer

DEI 85 80 STA $80

DE13 C8 INY

DE14 Bi 94 LDA ($94),Y und Sektornummer holen

DE 14 85 Bi STA $81

DEIB 40 RTS

HERKERHKELEREERERHEKERHEREREXE Fol getrack bei letztem Block

DE19 20 2B DE JSR $DE2B Pufferzeiger setzen

DEIC AF 00 LDA #$00 null

DEIE 91 94 STA ($94),Y als Tracknummer

DE20 C8 INY

DE21 Ad 82 LDX $82 Kanalnummer

DE2S BS Ci LDA $Ci,X Zeiger in Block

DE25 AA TAX

DE26 CA DEX minus 1

DE27 BA TXA

DE28 9194 STA ($94),Y als Zeiger in Block

DE2A 60 RTS

EEKKKHEHEEEKKHEEEEEKEERE EERE REE Pufferzeiger auf Null

DE2B 20 93 DF JSR $DF93 Puffernummer holen

DEZE OA ASL A mal 2

DE2F AA TAX

DESO BS 9A LDA $9A,X Pufferzeiger hi

DE32 85 95 STA $95

DE34 AI 00 LDA #$00

DE34 85 94 STA $94 Pufferzeiger lo

DE38 AO 00 LDY #$00

DESA 60 RTS

LEHERERKELEREKELERESREEREREEEE Track und Sektor holen

DE3B 20 EB DO JSR $DOEB Kanalnummer holen

DESE 20 93 DF JSR $DF93 Puffernummer holen

DE41 85 F9 STA $F9 merken

DE43 OA ASL A mal 2

DE44 AB TAY

DE45 BI 06 00 LDA $0006,Y Track

DE 48 85 80 STA $80

DE4A B? 07 00 LDA $0007,Y und Sektor vom Disk-Controller holen

DEAD 85 81 STA $81
DEAF 60 RTS

EETTTT EEE ET ET ET ETT

DESO AI 90 LDA #$90 Befehlskode fiir Schreiben

DES2 8D AD 02 STA $024D

DESS DO 28 BNE $DE7F

DES7 AY 80 LDA #$80 Befehlskode für Lesen

DES9 8D 4D 02 STA $024D

DESC DO 21 BNE $DE7F

190

DESE AI 90 LDA #490
DE60 BD 4D 02 STA $024D
DE63 DO 26 BNE $DE8B

DE45 A? 80 LDA #$80
DE67 8D AD 02 STA $024D
DE6A DO IF BNE $DEBB

DE6C AI 90 LDA #$90
DEGE BD AD 02 STA $0240
DE71 DO 02 BNE $DE75

DE73 A9 80 LDA #$80
DE75 8D 4D 02 STA $024D
DE78 Ab 82 LDX $92
DE7A BS CD LDA $CD,X
DE7C AA TAX
DE7D 10 13 BPL $DE92
DE7F 20 DO D& JSR $D4D0
DEB2 20 93 DF JSR $DF93
DEBS AA TAX
DEB& AS 7F LDA $7F
DEBB 9D 5B 02 STA $025B,X
DESB 20 15 E1 JSR $€115
DESE 20 93 DF JSR $DF93
DE9i AA TAX
DEI2 4C 06 DS IMP $0506

KHEKKKEKKEREKAKHEHKRKKKHEEKKRHKREKEE

DE95 AP 00 LDA #$00
DE97 20 CB D4 JSR $DACB
DE9A 20 37 Di JSR $D137
DEID 85 80 STA $80
DEIF 20 37 DI JSR $D137
DEA2 85 81 STA $81
DEAS 60 RTS

LHEKKEKEKREKHREHKEREKKKEKKKKREKHRHKLEE

DEAS 48 PHA
DEAS AP 00 LDA #$00
DEAS 85 4F STA $6F
DEAA 85 71 STA $71
DEAC B9 EO FE LDA $FEEO,Y
DEAF 85 70 STA $70
DEB! BD EO FE LDA $FEEO,X
DEB4 85 72 STA $72
DEBG 68 PLA
DEB7 AB TAY
DEBS 88 DEY
DEB9 Bi 6F LDA ($6F),Y
DEBB 91 71 STA ($71),
DEBD 88 DEY
DEBE 10 F9 BPL $DEB9
DECO 40 RTS

KREEKEKEE KEELE KKEEERERAAKE RE NER

Befehlskode fiir Schreiben

Befehlskode für Lesen

Befehlskode für Schreiben

Befehlskode für Lesen

Kanalnummer

Puffernummer Side-Sektor

Puffer zugeordnet ?

Header für Disk-Controller generieren
Puffernummer holen

Drivenummer

Puffernumaer

Puffernummer holen

Block schreiben

Folgetrack und Sektor aus Puffer holen

Pufferzeiger auf Null

Byte holen

als Track merken

Byte holen

als Sektor

Pufferinhalte kopieren

Pufferadresse Y, Hi

Pufferadresse X, Hi

Inhalt Puffer Y

nach Puffer X kopieren

Puffer Y löschen

191

DECI AB TAY
DEC2 BF EQ FE
DECS 85 70 STA
DEC? AF 00 LDA
DEC9 85 OF STA
DECB AB TAY
DECC 91 GF
DECE C8 INY
DECF DO FB BNE
DEDI 60 RTS

KERENKKKRERKERRRERK KERNE HR NUN

DED2 A? 00 LDA
DED4 20 DC DE JSR
DED? AO 02 LDY
DED? Bi 94
DEDB 60 RTS

La 22
DEDC 85 94 STA
DEDE A& 82 LDX
DEEO BS CD LDA
DEE2 AA TAX
DEES BD EO FE
DEES 85 95 STA
DEES 60 RTS

EELHEEKEEEEHKEEERERERKEKEEKKEREE

DEE? 48 PHA
DEEA 20 DC DE JSR
DEED 48 PHA
DEEE BA TXA
DEEF OA ASL
DEFO AA TAX
DEF I 68 PLA
DEF2 95 9A STA
DEF 4 68 PLA
DEFS 9599 STA
DEF7 60 RTS

LE 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 22 22 2 2 2 2 22,
DEFB 20 66 DF JSR
DEFB 30 OE BMI
DEFD 90 13 BVC
DEFF A& 82 LDX
DFOL BS CD LDA
DFOS 20 1B DF JSR
DFO& 20 66 DF JSR
DFO9 10 07 BPL
DFOB 20 CB El JSR
DFOE 2C CE FE BIT
DF11 60 RTS
DFi2 AS Dé LDA
DF14 20 E9 DE JSR
DFi7 2C CD FE BIT
DFLA 60 RTS

LDA $FEEO,Y

STA ($6F),Y

LDA ($94),Y

LDA $FEEO,X

$70

#$00

$bF

$DECC

#500
$DEDC
#$02

$94
$92
$CD, Xx

$95

$DEDC

$9A,X

$99,X

$DF 46
$DFOB
$DF12
$82
$CD,X
$DFLB
$DF 64
$DF12
$E1CB
$FECE

$Dé
$DEE9
$FECD

Puffernummer

Hi-Adresse holen

Lo-Adresse

Puffer löschen

Side-Sektor Nummer holen

Pufferzeiger auf null

Byte 2 enthalt Side-Sektor Nummer

Pufferzeiger auf Side-Sektor setzen

Zeiger lo

Kanal nummer

Puffernummer

Pufferadresse Hi

setzen

Pufferzeiger für Side-Sektor

Zeiger in Side-Sektor

Pufferzeiger setzen

Puffernummer

mal 2

Pufferzeiger hi

Pufferzeiger lo

Side-Sektor und Pufferzeiger holen

ist Side-Sektor im Puffer ?

nein

ok

Kanalnummer

Puffernummer

Side-Sektor lesen

und prüfen ob im Puffer

ja ?

letzten Side-Sektor holen

V-Bit setzen

Side-Sektor Endezeiger

Zeiger in Side-Sektor setzen

V-Bit löschen

192

La 2 & 2 2 7

DF1B 85 F9 STA $F9
DF1D AF 80 LDA #$80
DF iF DO 04 BNE $DF25

LE 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ER EE ER ERED

DF21 85 F9 STA $F9
DF23 A? 90 LDA #$#90
DF25 48 PHA
DF 26 BS EC LDA $EC,X
DF 28 29 01 AND #$01
DF2A 85 7F STA $7F
DF2C 68 PLA
DF.2D 05 7F ORA $7F
DF 2F 8D aD 02 STA $024D
DF 32 Bi 94 LDA ($94),Y
DF 34 85 80 STA $80
DF 36 C8 INY
DF 37 Bi 94 LDA ($94),Y
DF39 85 Bi STA $81
DF 3B AS F9 LDA $F9
DF 3D 20 D3 Dé JSR $D4D3
DF 40 A& F9 LDX $F9
DF 42 4C 93 DS JMP $D593

HHEEEREEEEREREREREREEREREEREEEE

DF45 Aé 82 LDX $82
DF47 BS CD LDA $CD,X
DF49 4C EB D4 JMP $D4EB

HEEKEEEEKEEREEEEREKEEE KE III DZ

DF4Cc A? 78 LDA #$78
DFAE 20 SC DF JSR $DFSC
DFS1 CA DEX
DFS2 10 FB BPL $DF4C
DF54 AS 72 LDA $72
DFS6 4A LSR A
DFS7 20 SC DF JSR $DFSC
DFSA AS 73 LDA $73
DFSC 18 CLC
DFSD 65 70 ADC $70
DF OF 85 70 STA $70
DFél 90 02 BCC $DF45
DF 63 EG 71 INC $71
DF65 60 RTS

FKERRERRERERKKERERTERRENN ER IRTERTR

DF6b 20 D2 DE JSR $DED2
DF69 C5 D5 CMP $D5
DF 6B DO OE ‘BNE $DF7B
DF 4D A4 Dé LDY $D&
DF6F Bi 94 LDA ($94),Y
DF71 FO 04 BEG $DF77
DF73 2C CD FE BIT $FECD
DF76 60 RTS

Side-Sektor lesen

Puffernummer

Befehlskode für lesen

Side-Sektor schreiben

Puffernummer

Befehlskode fiir schreiben

Drivenummer isolieren

Befehlskode plus Drivenummer

merken

Tracknummer

Sektornummer

Puffernummer

Parameter an Disk-Controller übergeben

Puf fernummer

Befehl an Disk-Controller übergeben

Pufferzeiger in Side-Sektor setzen

Kanalnummer

Puffernummer

Pufferzeiger setzen

Blockzahl einer Rel-Datei berechnen

120 Blockzeiger pro Sidesektor

zu $70/$71 addieren

Side-Sektornuamer

nächster Side-Sektor ?

Anzahl der Zeiger im letzten Block

durch 2

zu bisheriger Summe addieren

Zahl der belegten Side-Sektor Blöcke

addieren

Side-Sektor im Puffer prüfen

Side-Sektor Nummer holen

gleich Nummer des erforderlichen Blocks ?

nein

Zeiger in Side-Sektor

Tracknummer

‚noch nicht angelegt ?

Bits löschen

193

DF77 2C CF FE BIT $FECF N-Bit setzen
DF7A 60 RTS

DF7B AS DS LDA $D5 Side-Sektornuaner

DF7D C9 06 CMP #$06 6 oder größer ?

DF7F BO OA ' BCS $DF8B ja

DFS t OA ASL A

DF82 AB TAY

DF83 AF 04 LDA #$04

DF85 85 94 STA $94

DF87 Bi 94 LDA ($94),Y Tracknuamer

DF89 DO 04 BNE $DFBF bereits angelegt ?

DF8B 2C DO FE BIT $FEDO N- und V-Bit setzen

DFBE 60 RTS

DFSF 2C CE FE BIT $FECE V-Bit setzen

DF92 60 RTS

ERK ARERELERREERAEEERESEHEEEESES Puffernunmer holen

DF93 A& 82 LDX $82 Kanalnuamer

DF95 BS A7 LDA $A7,X Puffernumaer

DF97 10 02 BPL $DF9B belegt ?

DF99 BS AE LDA $AE,X Puffernummer aus zweiter Tabelle

DF9B 29 BF AND #$BF V-Bit löschen

DF9D 60 RTS

DFIE Ab 82 LDX $82 Kanalnuamer

DFAO BE 57 02 STX $0257 aerken

DFAS BS A7 LDA $A7,X Puffernummer holen

DFAS 10 09 BPL $DFBO Puffer belegt ?

DFA7 BA TXA

DFAS 18 CLC

DFAY 69 07 ADC #$07 Nummer um sieben erhöhen

DFAB 8D 57 02 STA $0257 und merken

DFAE BS AE LDA $AE,X Puffernummer aus Tabelle 2

DF BO 85 70 STA $70

DFB2 29 IF AND #$1F die obersten 3 Bit löschen
DFB4 24 70 BIT $70

DFB6é 60 RTS

DFB7 Ab 82 LDX $82 Kanalnummer

DFB9 BS A7 LDA $A7,X Puffernumaer

DFBB 30 02 BMI $DFBF Puffer frei ?

DFBD BS AE LDA $AE,X Puffernummer aus Tabelle 2

DF BF C9 FF CMP #$FF frei ?

DFC1i 60 RTS

DFC2 Ab 82 LDX $82

DFC4 09 80 ORA #$80

DFC& B4 A7 LDY $A7,X

DFCB 10 03 BPL $DFCD

DFCA 95 A7 STA $A7,X

DFCC 60 RTS

DFCD 95 AE STA $AE,X

DFCF 40 RTS

HHEEEEREEEEEREESHEREEREEEEESES nächsten Record in Rel-Datei holen

DFDO A9 20 LDA #$20

DFD2 20 SD DD JSR $DD9D Bit 5 löschen
DFD5S AI 80 LDA #$80
DFD? 20 A& DD JSR $DDAS Bit 7 testen
DFDA DO ai BNE $EO1D gesetzt ?
DFDC A& 82 LDX $82 Kanalnuamer

DFDE Fé B5 INC $B5,X Recordnummer erhöhen
DFEO DO 02 BNE $DFE4
DFE2 Fé BB INC $BB,X Recordnumaer hi

DFE4 A& 82 LDX $82 Kanalnuamer

DFE& BS Cl LDA $C1,X Schreibzeiger

DFEB FO 2E BEQ $E018 null ?
DFEA 20 EB D4 JSR $D4E8 Pufferzeiger setzen

DFED A& 82 LDX $82 Kanalnumner

DFEF DS Ci CMP $C1,X Pufferzeiger kleiner Schreibzeiger ?
DFF1 90 03 BCC $DFF6 ja
DFFS 20 3C EO JSR $EOSC Block schreiben, nächsten Block lesen

DFF& A& 82 LDX $82 Kanal nuamer

DFFS8 BS Ci LDA $C1i,X Schreibzeiger

DFFA 20 C8 D4 JSR $D4C8 Pufferzeiger gleich Schreibzeiger setzen

DFFD Al 99 LDA ($99,X) Byte aus Puffer

DFFF BS 85 STA $85 in Ausgaberegister holen

E001 A? 20 LDA #$20
E003 20 9D DD JSR $DD9D Bit 5 löschen
E004 20 04 E3 JSR $E304 Recordlänge zu Schreibzeiger addieren

E009 48 PHA und merken

EOOA 90 28 BCC $E034 noch nicht im nächsten Block ?
EOOC AI 00 LDA #$00
EQOE 20 Fé D4 JSR $D4F6 Tracknumser holen
E011 DO 21 BNE $E034 Block vorhanden ?
E013 68 PLA Zeiger

E014 C9? 02 CMP #$02 gleich 2
E014 FO 12 BEQ $E02A ja
E018 A? 80 LDA #$80
EOIA 20 97 DD JSR $DD97 Bit 7 setzen
E01D 20 2F Di JSR $D12F Byte aus Puffer holen

E020 BS 99 LDA $99,X Pufferzeiger
E022 99 44 02 STA $0244,Y als Endezeiger
E025 A? OD LDA #$0D CR
E027 85 85 STA $85 in Ausgaberegister

E029 60 RTS

EO2A 20 35 EO JSR $E035
E02D A& 82 LDX $82 Kanalnuaner

E02F A? 00 LDA #$00
E031 95 C1 STA $C1,X Schreibzeiger auf null

E033 60 RTS

E034 48 PLA
E035 Ab 82 LDX $82 Kanalnumner

E037 95 Cl STA $C1,X Schreibzeiger setzen
E039 4C 6E Ei UMP $E16E

KRERKKERERRERKKERKRERKRRERERERE Block schreiben und nächsten Block lesen

EOSC 20 DS Di JSR $D1D3 Drivenumaer holen

195

EOSF 20 95 DE JSR $DE9S
E042 20 9E DF JSR $DFIE
E045 50 16 BVC $EOSD
E047 20 SE DE JSR $DESE
EO4A 20 IE CF JSR $CFiE
EQ4D AF 02 LDA #$02
EQ4F 20 CB D4 JSR $D4C8
E052 20 AB DD JSR $DDAB
E055 DO 24 BNE $E07B
E057 20 57 DE JSR $DE57
EOSA 4C 99 DS JMP $D599

EOSD 20 1E CF JSR $CFiE
E040 20 AB DD JSR $DDAB
E043 DO 06 BNE $E064B
E045 20 57 DE JSR $DES7
E048 20 99 DS JSR $D599
E04B 20 95 DE JSR $DE95
E06E AS 80 LDA $80
E070 FO 09 BEQ $E07B
E072 20 1E CF JSR $CFIE
E075 20 57 DE JSR $DES7?
E078 20 1E CF JSR $CFIE
EO7B 60 RTS

a2 E22 2 2 2 22 2 2 2 22 22 2 2 2 25 22 22 2 22

EQ7C 20 05 El JSR $E105
EO7F 20 93 DF JSR $DF93
E082 oA ASL A
E083 AA TAX
E084 AS 85 LDA $85
E086 Bi 99 STA ($99,X)
E088 BA 99 LDY $99,%
EOBA C8 INY
EOBB BO 09 BNE $E096
EO8D A4 82 LDY $82
EOBF B9 Ci 00 LDA $00C1,Y
E092 FO OA BEQ $EO9IE
E094 AO 02 LDY #$02
E096 98 TYA
E097 A4 82 LDY $82
E099 D9 Ci 00 CMP $00C1,Y
EO9C DO 05 BNE $E0A3
EOE AI 20 LDA #$20
EOAO 4C 97 DD UMP $DD97

EQAS Fo 99 INC $99,X
EOAS DO 03 BNE $EOAA
EQA7 20 5C EO JSR $EOSC
EOAA 60 RTS

EEE EEE EEE EEE
EOAB AY AO LDA #$A0
EOAD 20 A& DD JSR $DDA&
EOBO DO 27 BNE $E0D9
EQB2 AS 85 LDA $85

Track und Sektornummer holen

Puffernummer holen

keine Rel-Datei ?

Block schreiben

Puffer wechseln

Pufferzeiger auf zwei

Befehlskode für Schreiben ?

nein

Block lesen

und prüfen

Puffer wechseln

Befehlskode für Schreiben ?

nein

Block lesen

und prüfen

Track und Sektornummer holen

Track

kein Folgetrack ?
Puffer wechseln

Block lesen

Puffer wechseln

ein Byte in Record schreiben

Puffernummer holen

mal 2

Datenbyte

in Puffer schreiben

Pufferzeiger

erhöhen

ungleich null ?

Kanalnuamer

Schreibzeiger

gleich null ?

Pufferzeiger auf 2

Kanalnummer

Pufferzeiger gleich Schreibzeiger ?

nein

Bit 5 setzen

Pufferzeiger erhöhen

ungleich null ?

sonst Block schreiben, nächsten Block lesen

Byte in Rel-Datei schreiben

Bit 6 und 7 testen

gesetzt ?

Datenbyte

196

EOB4 20 70 EO JSR $E07C
EOB7 AS FB LDA $FB
EOB? FO OD BEQ $EOCB
EOBB 60 RTS

EOBC AI 20 LDA #$20
EOBE 20 A& DD JSR $DDA4
E0C1 FO 05 BEQ $E0C8
EOCS A9 51 LDA #$51
E0CS 8D 6C 02 STA $026C
EOC8 20 F3 EO JSR $EOF3
EOCB 20 53 Ei JSR $E153
EOCE AD 6C 02 LDA $026C
EODL FO 03 BEG $EOD&
EOD3 4c C8 C1 JMP $C1C8

EODS 4C BC E& JMP $E6BC

EOD? 29 80 AND #$80
EODB DO 05 BNE $EOE2
EODD AS FB LDA $FB
EODF FO DB BEQ $EOBC
EOE! 60 RTS

EQE2 AS 85 LDA $85
EQE4 48 PHA
EOES 20 if E3 JSR $ESIC
EOQES8 48 PLA
EOQE9 85 85 STA $85
EOEB AQ 80 LDA #$80
EOED 20 9D DD JSR $DD9D
EOFO 4C B2 EO JMP $EOB2

LE 2 2 2 2 2 2 2 2 2 2 2 2 22 22 22 2 2 2 2 22 2 2 22
EOF3 AQ 20 LDA #$20
EOFS 20 A& DD JSR $DDAG
EOFB DO OA BNE $E104
EOFA A? 00 LDA #$00
EOFC 85 85 STA $85
EOFE 20 70 EO JSR $EO7C
E101 4C F3 EO JMP $E0F3

E104 60 RTS

a 2 2 2 2 2 2 2 2 2 2 2 2 ELE 2 2 2 2 SEE 2 2 2 2 2 2;

E105 AI 40 LDA #$40
E107 20 97 DD JSR $DD97
E10A 20 9E DF JSR $DF9E
E10D 09 40 ORA #$40
EL0F AE 57 02 LDX $0257
E112 9597 STA $A7,X
Ei14 60 RTS

E115 20 9E DF JSR $DF9E
E118 29 BF AND #$BF
ELLA AE 57 02 LDX $0257

in Record schreiben

Ende ?

ja

Bit 5 testen

nicht gesetzt

Si, ‘overflow in record’

Fehlerflag setzen

Rest des Records mit Nullen füllen

Fehlerflag gesetzt ?

nein

Fehlermeldung setzen

fehlerfreie Ausführung

Bit 7 gesetzt ?

ja

Ende ?

Datenbyte

Side-Sektoren erweitern

Bit 7 löschen

Byte in Datei schreiben

Record mit Nullen auffüllen

Bit 5 testen

gesetzt ?

null als Datenbyte

in Record schreiben

bis Record voll

Puffernummer in Tabelle schreiben

Bit &4 setzen

Puffernummer holen

Bit & setzen

Kanalnummer + 7

in Tabelle schreiben

Puffernummer holen

Bit & löschen

Kanalnummer + 7

197

E1iD 9597 STA
E11F 60 RTS

SERAELERRERERER AREER ERR ERE REESE
E120 A 80 LDA
E122 20 A& DD JSR
E125 DO 37 BNE
E127 20 2F Di JSR
E12A BS 99 LDA
Ei2C D9 44 02 CMP
EL2F FO 22 BEQ
E131 FG 99 INC
E133 DO 06 BNE
E135 20 3C EO JSR
E138 20 2F Di JSR
E13B AL 99 LDA
ELSD 99 3E 02 = # STA
E140 AY 89 LDA
Ei42 99 F2 00 STA
E145 BS 99 LDA
E147 D9 44 02 CMP
Ei4A FO O1 BEQ
E14C 60 RTS

E14D #9 Bi LDA
E14F 99 F2 00 STA
E152 60 RTS

E153 20 DO DF JSR
E1S56& 20 2F Di JSR
E159 A5 85 LDA
EiISB 4C 3D Ei JMP

E1SE Ab B2 LDX
E1460 Ad OD LDA
E162 9D SE 02 ~~ STA
El65 Ag Bl LDA
E167) 895 F2 STA
E169 AP 50 LDA
Ei6B 20 CB Ci JSR

E16E Ab 82 LOX
E170 BS Cl LDA
E172 985 87 STA
E174 Cé 87 DEC
E176 C9 02 CMP
E178 DO 04 BNE
EL7A AD FF LDA
E17C 85 87 STA
E17E BS C7 LDA
E180 85 88 STA
£182 20 EB D4 JSR
E185 Aé 82 LDX
E187 CS 87 CMP
E189 90 19 BCC
E18B FO 17 BEQ

$A7,X

#580
$DDAG
SELSE
$D12F
$99,X
$0244,Y
$E153
$99,X
$E13B
$E03C
$D12F
($99,X)
$023E,Y
#$89
$00F2,Y
$99,X
$0244 ,Y
$E14D

#$81
$00F2,Y

$DFDO
$Di2F
$85
$E13D

$82
#$0D
$023E,X
#581
$F2,X
#$50
$C1C8

in Tabelle schreiben

Byte aus Rel-Datei holen

Bit 7 testen

gesetzt ?

Byte aus Puffer holen

Pufferzeiger

mit Endezeiger vergleichen

gleich ?

Pufferzeiger erhöhen

ungleich null ?

Block schreiben, nächsten Block lesen

Byte aus Puffer holen

ins Ausgaberegister

READ und WRITE Flag setzen

Pufferzeiger

mit Endezeiger vergleichen

gleich ?

Flag für Ende setzen

nächsten Record suchen

Puffernummer und Kanalnummer holen

Datenbyte

ins Ausgaberegister

Kanalnumaer

CR

ins Ausgaberegister

Flag fiir Ende setzen

50, ‘record not present’

Kanalnummer

Schreibzeiger

merken

gleich 2 ?

nein

Recordlänge

Pufferzeiger setzen

Kanalnunmer

Pufferzeiger größer als Schreibzeiger ?

nein

198

Ei8D 20 IE CF JSR $CFIE
E190 20 B2 Ei JSR $E1B2
E193 90 08 BCC $E19D
E195 Ab 82 LDX $82
E197 9D 44 02 STA $0244,X
E19A 4C 1E CF JMP $CFI1E

E19D 20 IE CF JSR $CFIE
E1AG AI FF LDA #$FF
EiA2 85 87 STA $87
E1A4 20 B2 Ei JSR $E1B2
ELA7 BO 03 BCS $E1AC
E1A9 20 EB D4 JSR $D4E8
EIAC 8=Ab 82 LDX $82
EiAE 9D 44 02 STA $0244,X
EiBi 60 RTS

E1B2 20 2B DE JSR $DE2B
E1BS A4 87 LDY $87
E1B7 Bi 94 LDA ($94) ,Y
ELB9 DO OD BNE $E1C8
EiBB 88 DEY
E1BC CO 02 CPY #$02
E1BE 90 04 BCC $EICA
EICO C6& 88 DEC $88
EiC2 DO F3 BNE $E1B7
Eit4 Cé 88 DEC $88
EiC& 18 CLC
Eic7 60 RTS

Eic8 98 TYA
EIC9 38 SEC
EiCA 60 RTS

EXEKERERERER TREE EERE EERRE
EiCB 20 D2 DE JSR $DED2
E1CE 85 DS STA $D5
EiDO AI 04 LDA #$04
EiD2 85 94 STA $94
EiD4 Ad OA LDY #$0A
E1iDé DO 04 BNE $E1DC

E1D8 88 DEY
EiD9 88 DEY
EiDA 30 26 BMI $E202
E1DC Bi 94 LDA ($94),Y
E1DE FO FB BEQ $E1D8
EiEO 98 TYA
EiEI 4A LSR A
E1E2 C5 DS CMP $D5
E1E4 FO Q9 BEQ $EIEF
EiE& 85 DS STA $D5
EIER Ab 82 LDX $82
ElEA BS CD LDA $CD,X
ELEC 20 1B DF JSR $DFiB
ELEF AO 00 LDY #$00

Puffer wechseln

Kanalnuaner

Puffer wechseln

Puffer wechseln

Pufferzeiger setzen

Kanalnummer

Endezeiger

Pufferzeiger auf null

Byte aus Puffer

ungleich null ?

letzten Side-Sektor holen

Nuamer des Side-Sektors holen

merken

Zeiger auf Side-Sektoren

Tracknumaer der vorhergehende Blocks

noch nicht angelegt ?

durch 2 ergibt Nummer

gleich Nuamer des aktuellen Blocks ?

ja

sonst als Nummer merken

Kanalnumaer

Puffernummer

Block lesen

EiFi B4 94 STY $94
EiFS Bi 94 LDA ($94) ,Y
E1FS DO OB BNE $E202
E1F7 CB INY
EiF8 Bi 94 LDA ($94) ,Y
EiFA AB TAY
EiFB 88 DEY
E1FC 84 Dé STY $Dé
E1FE 98 TYA
E1FF ac EI DE JMP $DEE?

E202 A? 67 LDA #$67
E204 20 45 E6 JSR $E645

LE 2 22 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22
E207 20 B3 C2 JSR $C2B3
E20A AD 01 02 LDA $0201
E20D 85 83 STA $83
E20F 20 EB DO JSR $DOEB
E212 90 05 BCC $E219
E214 AY 70 LDA #$70
E216 20 C8 C1 JSR $Cice

E219 AY AO LDA #$A0
E21B 20 9D DD JSR $DD9D
E21E 20 25 Di JSR $D125
E221 FO 05 BEQ $E22B
E223 AI 64 LDA #$64
£225 20 CB Ci JSR $CiCé

E228 BS EC LDA $EC,X
E22A 29 01 AND #$01
E22C 85 7F STA $7F
E22E AD 02 02 LDA $0202
E231 95 BS STA $B5,X
E233 AD 03 02 LDA $0203
E236 95 BB STA $BB,X
E238 A& 82 LDX $82
E23A AI 89 LDA #$89
E23C 95 F2 STA $F2,X
E23E AD 04 02 LDA $0204
E241 FO 10 BEQ $E253
E243 38 SEC
E244 EI O1 SBC #$01
E2464 FO OB BEQ $E253
E248 DS C7 CMP $C7,X
E24A 90 07 BCC $E253
E24C Ag Si LDA #$51
E24E 8D &C 02 STA $026C
E251 AY 00 LDA #$00
E253 85 D4 STA $D4
E255 20 OE CE JSR $CEOE
E258 20 F8 DE JSR $DEFB
E25B 50 08 BVC $E265
E25D AF 80 LDA #$80
E25F 20 97 DD JSR $DD97

Pufferzeiger

Tracknummer

folgt weiterer Block ?

Sektornummer gleich Endezeiger

Endezeiger merken

Pufferzeiger setzen

67, ‘illegal track or sector’

P-Befehl, ‘Record’

Zeile prüfen

Sekundäradresse

sucht Kanalnummer .

gefunden ?

70, ‘no block’

Bit 46 und 7 löschen

prüft auf ‘REL’-File

ja

64, ‘file type mismatch’

Drivenummer

Recordnummer lo

Recordnummer hi

Kanalnummer

READ und WRITE-Flag

Byte-Pointer

null ?

mit Recordlänge des Files vergleichen

Si, ‘overflow in record’

Zeiger in Rel-Datei berechnen

und entsprechenden Side-Sektor-Block lesen

Block vorhanden ?

Bit 7 setzen

Ei

E2

DD

Ei
ei

E2

D4

EZ

EO

Ci

E2

DO

DE

$E1SE

$E275
#$80
$DDAG
$E272
$E15E
$0194

$E29C
$D7
$D4C8
$82
$07,X

$D4
$E289
$E202

$D7

$E291

#$01

$E009
$E138

#$51
$L1C8B

$94

$89

$95

$BA

$E2D0

$E2AA

$DDF 1
$DEOC
$80
$E2C2
$E2D3
$E2BF
$CFLE
$D2DA
$D2DA
#$00
($89) ,Y
$80

($89) ,Y
$81
$DOAF

$DESE

und 50, ‘record not present’

Bit 7 testen

nicht gesetzt

50, ‘record not present’

fertig

Zeiger in Rel-Datei

Pufferzeiger setzen

Kanalnummer

Recordlänge

minus Position

positiv ?

67, ‘illegal track or sector’

Zeiger in Datenblock addieren

kein überlauf

plus 2

Zeiger setzen

und Byte aus Puffer holen

si, ‘overflow in record’

Pufferzeiger lo

Pufferzeiger hi

Track und Sektor vergleichen

ungleich ?

Track

kein Folgeblock ?

Track und Sektornummer vergleichen

ungleich ?

Puffer wechseln

Track

und Sektor des nächsten Blocks

Block lesen

E2D3 AO 00 LDY
E2D5 Bi 89 LDA
E2D7 C5 80 CMP
E2D9 FO 01 BEG
E2DB 40 RTS
E2DC C8 INY
E2DD Bi 89 LDA
E2DF CS 81 CMP
E2E1 60 RTS

LE 2 7 2 2 2 22 2 2

E2E2 20 2B DE JSR
E2ES AO 02 LDY
E2E7 Ag 00 LDA
EZE9 91 94 STA
E2EB C8 INY
E2EC DO FB BNE
E2EE 20 04 E3 JSR
E2F ti 95 Cl STA
E2F3 AB TAY
E2F4 AP FF LDA
E2F6 91 94 STA
E2F8 2004 E3 JSR
E2FB 90 F4 BCC
E2FD DO 04 BNE
E2FF AF 00 LDA
E301 95 C1 STA
E303 40 RTS

KEREEEEEREERERE ERE TRETEN

E304 Ad 82 LDX
E306 BS Ci LDA
E308 38 SEC
E309 FO OD BEG
ES0B 18 CLE
E30C 75 07 ADC
ESOE 90 OB BCC
E310 DO 04 BNE
ESi2 A O02 LDA
E314 20 CC FE BIT
E317 60 RTS

E318 69 O1 ADC
ESLA 38 SEC
E3iB 60 RTS

REEEEEREEREREELERERERE RE REL ERE
ES1C 20 D3 Di JSR
ESIF 20 CB Ei JSR
E322 20 9€ E2 JSR
E325 20 7B CF JSR
E328 AS Dé LDA
E32A 85 87 STA
E32C AS DS LDA
E32E 85 84 STA
E330 A9 00 LDA

#$00
($89),
$80
$E2DC

($89) ,Y
$81

($94) ,Y

$E2E9
$E304
$C1,X

#$FF
($94) ,¥
$E304
$E2F1
$E303
#800
$C1,X

$82
$C1,X

$D1D3

Tracknummer

vergleichen

Sektornummer

vergleichen

Datenblock in Records unterteilen

Pufferzeiger setzen

Puffer löschen

Zeiger auf nächsten Record setzen

$FF als erstes Zeichen des Records

Zeiger auf nächsten Record setzen

noch komplett in diesem Block ?

Block voll ?

Schreibzeiger auf Null

Zeiger auf nächsten Record setzen

Kanalnummer

Schreibzeiger

gleich null ?

Recordlänge addieren

kleiner als 256 ?

gleich 256 ?

zwei addieren

Side-Sektoren erweitern

Drivenummer holen

letzten Side-Sektor holen

Side-Sektor Nummer

CE
EF

Ci

DF

02

Side-Sektor Nummer und Zeiger berechnen

Zahl der freien Blöcke

Kanalnummer

Recordlange

plus Zeiger in Datenblock

Zeiger auf Ende um zwei erhöhen (Track/Sektor)

kein übertrag ?

Side-Sektor Nummer erhöhen

Zeiger auf 14 setzen

Pufferzeiger für Side-Sektor setzen

Side-Sektor Nummer

kleiner als 6 ?

32, ‘file too large’

Endezeiger

minus letzter Endezeiger

minus 16

Side-Sektor Nummer

minus letzte Side-Sektor Nummer

merken

Summe für Brechnung löschen

Blockzahl der Rel-Datei berechnen

Blockzahl der Rel-Datei

größer als freie Blocks auf Diskette ?

52, ‘file too large’

32, ‘file too large’

Byte aus Puffer holen

203

DE

DF

E4

DE

DD

DD

DF

DF

$E3D4

$CFIE
$D4D0
$E2E2
$DE19
$DESE
$DEOC
$80

$81

$DESE
$81

$80

$DF45

$E3F9

$E44E

#$10

$DEE9

$86

$DD8D

$DD8aD

$81

$80

$E418

$86

$D5

$E3B6

$DF45

$D6

$E3BG

$E3C8

$DF45

plus 1

als Schreibzeiger

freien Block in BAM suchen

Track und Sektor in Puffer

nur ein Block erforderlich ?

Block schreiben

Puffer wechseln

Parameter an Disk-Controller übergeben

freien Block in BAM suchen

Track und Sektor in Puffer

Puffer löschen

Puffer wechseln

Parameter an Disk-Controller übergeben

Puffer löschen

Nullbyte und Endezeiger in Puffer

Block schreiben

Track und Sektor holen

Track

und Sektor

merken

Track und Sektor vom Disk-Controller holen

Sektor

und Track merken

Pufferzeiger für Side-Sektor setzen

Zeiger ungleich null ?

Side-Sektor schreiben, nächsten anlegen

Pufferzeiger auf 164

Side-Sektor Nummer erhöhen

Track in Side-Sektor

Sektor in Side-Sektor

Sektor

und Track zurückholen

kein weiterer Block ?

Side-Sektor Nummer

geändert ?

ja

Pufferzeiger in Side-Sektor setzen

Endezeiger

kleiner ?

gleich

Pufferzeiger in Side-Sektor setzen

204

E4ic A? 00 LDA #£00

E41E 20 DE DE JSR $DEDC

E421 AG O0 LDA #$00

E423 AB TAY

E424 91 94 STA ($94) ,Y

E4264 C8 INY

E427 68 PLA

E428 38 SEC

E429 E9 O1 SBC #$01

E42B 9194 STA ($94),Y

E42D 20 6C DE JSR $DE6C

E430 20 99 DS JSR $D599

E433 20 F4 EE JSR $EEF4

E434 20 OF CE JSR $CEOE

E439 20 1E CF JSR $CFiE

E43C 20 FB DE JSR $DEFB

E43F 70 03 BVS $E444

E441 4C 75 E2 JMP $E275

E444 A? 80 LDA #$80

E446 20 97 DD JSR $DD97

E449 AG 50 LDA #$50

E445 20 C8 Ci JSR $Cics

LE 22 2

E4A4E 20 1E Fi JSR $FilE

E451 20 1E CF JSR $CFIE

£454 20 Fi DD JSR $DDFi

E457 20 93 DF JSR $DF93

EASA 48 PHA

E45B 20 Ci DE JSR $DECI

EASE A& 82 LDX $82

E460 BS CD LDA $CD,X

E462 AB TAY

E463 68 PLA

E464 AA TAX

E465 AG 10 LDA #$10

E467 20 AS DE JSR $DEAS

E46A A? 00 LDA #$00

E46C 20 DC DE JSR $DEDC

E46F AO 02 LDY #$02

E471 Bi 94 LDA ($94),Y

E473 48 PHA

E474 A? 00 LDA #$00

E476 20 CB D4 JSR $D4CB8

E479 6B PLA

E47A 18 CLC

E47B 69 O1 ADC #$01

E47D 91 94 STA ($94) ,Y
E47F OA ASL A

E480 69 04 ADC #$04

E482 85 89 STA $89

E484 AB TAY

E485 36 SEC

E486 £9 02 SBC #$02

E488 BS 8A STA $8A

Pufferzeiger auf null

Null als Tracknummer

Endezeiger

minus eins

als Sektor

Block schreiben

und prüfen

BAM updaten

Zeiger für Rel-Datei updaten

Puffer wechseln

richtiger Side-Sektor 7?

nein

Bit 7 setzen

50, ‘record not present’

Side-Sektor schreiben und neuen anlegen

freien Block in BAM suchen

Puffer wechseln

Black schreiben

Puffernummer holen

Puffer löschen

Kanalnummer

Puffernummer

14 Bytes des Side-Sektors

in Puffer kopieren

Pufferzeiger auf null, alter Side-Sektor

Side-Sektor Nummer

Pufferzeiger auf null, neuer Side-Sektor

Side-Sektor Nummer erhöhen

und in Puffer

mal 2

plus 4

gleich Zeiger auf Track/Sektor

minus 2

gleich Zeiger auf alten Side-Sektor

205

DF

02

D4

DF

D4

DE
DS

$80
$87
($94) ,Y

$81
$88
($94) ,Y
#$00

($94) ,Y

($94) ,Y

$81
($94) ,Y
$E4DE

Track

in Puffer

Sektor

in Puffer

Null in Puffer

17

Anzahl der Bytes im Block

14

Pufferzeiger auf 16

Block schreiben

und prüfen

Kanalnunmner

Puffernummer des Side-Sektors

Puffernummer holen

Kanalnummer

in Tabelle schreiben

Kanalnummer + 7

in Tabelle

Pufferzeiger auf null

Track

in Puffer

Sektor

in Puffer

Puffernummer holen

Kanalnuamer

Block lesen

Pufferzeiger auf Null

Zähler für Side-Sektor Blocks

Tracknummer

in Puffer

Sektornuamer

in Puffer

Block schreiben

und prüfen

Zähler für Side-Sektor Blocks

größer oder gleich 3 ?

Puffer wechseln

206

HHEKKEEHKE HERE TER RI HR Tabelle der Fehlermeldungen

E4FC 00 00
E4FD AO 4F CB " oK'
E500 20 21 22 23 24 27 Fehlernummern der ‘read error’

E506 D2 45 41 44 "Read’
ESOA 89 Zeiger auf ‘error’

ESOB 52 32
ESOC 83 - Zeiger auf ‘file’
ESOD 20 54 4F 4F 20 4C 41 52 47 C5 "too largE’
E517 50 50
ESiB 8B 04 | Zeiger auf ‘record ° und ‘not °
ESiA 20 50 52 45 53 45 4E D4 " present’
E522 Si Si
E523 CF 56 45 52 46 AC AF 57 20 ‘Overflow in’
ES2E 88 Zeiger auf ‘record’

ES2F 25 28 Fehlernummern der ‘write error’

ES31 8A 89 Zeiger auf ‘write’ und ° error’

E533 26 26
ES34 8A Zeiger auf ‘write’

E535 20 50 52 4F 54 45 43 54 20 4F CE ° protect oN’
E540 29 29
E541 88 Zeiger auf ‘disk’

ES42 20 49 85 ‘ id’
E545 85 Zeiger auf ° mismatch’

E546 30 31 32 33 34 Fehlernummern fiir ‘Syntax error’

ES4B D3 59 4E 54 41 58 ‘Syntax’
E551 89 Zeiger auf ° error’

E552 60 60
ESS3 BA 03 84 Zeiger auf ‘write’, ‘file’ und ‘open’
E554 63 63
E557 83 Zeiger auf ‘file’
E558 20 45 58 49 53 54 D3 " exists’
ESSF 64 64
E560 83 Zeiger auf ‘file’
ES6i 20 54 59 50 45 " type’
E566 85 Zeiger auf ‘mismatch’

E5467 65 65
E568 CE 4F 20 42 4C 4F 43 CB "No block’
E570 66 67 Fehlernummern für ‘illegal track or sector’

E572 C9 4C AC 45 47 41 AC 20 ‘Illegal
ES7A 54 52 41 43 4B 20 4F 52 "track or’
E582 20 53 45 43 54 4F D2 " sector‘
E589 61 61
ESBA 83 06 84 Zeiger auf ‘file’, ‘not’ und ‘open’

ES8D 39 62 Fehlernummern für ‘file not found’

E590 83 06 87 Zeiger auf ‘file’, ‘not’ und ‘found’

E593 01 01
E594 83 Zeiger auf ‘file’

E594 53 20 53 43 52 41 54 43 48 45 C4 ‘s scratcheD’
ES9F 70 70
ESAO CE 4F 20 43 48 41 4E 4E 45 CC ‘No channel’
ESAA 71 71
ESAB C4 49 52 ‘Dir’
ESAE 89 Zeiger auf ‘error’

ESAF 72 72
ESBO 88 Zeiger auf ‘disk’

207

ESB1 20 46 55 4€ CC * full’
ESB& 73 73

ESB7 C3 42 4D 20 44 4F 53 20 ‘Cha dos

ESBF 34 32 2E 34 20 31 35 34 Bl ‘v2.6 1541’

ESCA 74 74

ESCS C4 52 49 56 45 ‘Drive’

ESCA 06 Zeiger auf ‘not’

ESCB 20 52 45 41 44 D9 ' ready’

ESDS 09

ESD& C5 52 52 4F D2 ‘Error’

ESDB 0A

ESDC D7 52 49 54 C5 ‘Write’

ESE1 03

ESE2 C& 49 AC C5 "FilE’

ESE& 04

E6E7 CF 50 45 CE ‘Open’

ESEB 05

ESEC CD 49 53 4D 41 54 43 C8 ‘MismatcH’

ESF4 06

ESFS CE 4F D4 "NoT'

ESF8 07

ESF9 Ca 4F 55 4E C4 "FounD’

ESFE 08

ESFF C4 49 53 CB "DisK’

E403 OB

E604 D2 45 43 4F 52 C4 "RecorDD'‘

KERNE EEE Fehlernummer und -Meldung bereitstellen

E&0A 48 PHA Fehlerkode merken

E460B 84 F9 STX $F9 Drivenummer

E40D BA TXA

E60E oA ASL A mal 2

E60F AA TAX als Zeiger

E410 BS 06 LDA $06,X

E612 85 80 STA $80 Track

E614 BS 07 LDA $07,X

E4614 85 81 STA $81 und Sektornummer holen

E4618 68 PLA Fehlerkode zurückholen

£419 29 OF AND #$0F Bits 0 bis 3 isolieren

E618 FO 08 BED $E£625 null, dann 24, ‘read error’

EsiD C9 OF CMP #$0F 15 ?

E6iF DO 06 BNE $E627

E621 AY 74 LDA #$74

E623 DO 08 BNE $E62D 74, ‘drive not ready’

E625 AY 04 LDA #$06 6

E4627 09 20 ORA #$20 $20 addieren

E629 AA TAX

E42A CA DEX

E&2B CA DEX zwei abziehen

E&2C BA TXA

E42D 48 PHA Fehlernummer merken

E42E AD 2A 062 LDA $022A Nummer des Diskettenkommandos

E4631 C9 00 CMP #$00 OPEN oder VALIDATE ?

E433 DO OF BNE $E644 nein

E635 AY FF LDA #$FF

E637 8D 2A 02 STA $022A

208

E&3A 68 PLA Fehlernummer zurückholen

E463B 20 C7 E& JSR $E6C7 Fehlermeldung generieren

E63E 20 42 DO JSR $D042 BAM laden
E641 4C 48 Ed JMP $E648 Fehlermeldung setzen

E644 68 PLA
E645 20 C7 E& JSR $E6C7 Fehlermeldung setzen

E648 20 BD Ci JSR $C1BD Eingabepuffer lüschen

E64B A? 00 LDA #$00
E64D 8D F9 02 STA $02F9 Fehlerflag loschen

E650 20 2C Ci JSR $C12C LED ausschalten

E653 20 DA D4 JSR $D4DA Kanäle 17 und 18 schließen

E456 A? 00 LDA #$00
E4656 85 AZ STA $A3 Zeiger Eingabepuffer auf Null

E65A A2 45 LDX #$45
E65C 9A TXS Stackpointer initialisieren

E465D AS 84 LDA $84 Sekundäradresse
E&ASF 29 OF AND #$0F
E66dil 85 83 STA $83
E4663 C9 OF CMP #$0F 15 ?
E645 FO 31 BEQ $E698 ja, Kommandokanal

E667 78 SEI
E668 AS 79 LDA $79 LISTEN aktiv ?
E66A Do 1C BNE $E&B8 ja
E66C AS 7A LDA $7A TALK aktiv ?
EöbE DO 10 BNE $E680 ja
E670 A& 83 LDX $83 Kanalnummer

E4672 BD 2B 02 LDA $022B,X Kanal zu dieser Sekundäradresse offen ?

E477 FO 1F BE@ $E698 nein

E479 29 OF AND #$0F

E&7B 85 82 STA $82 Kanalnummer

EREKKKHEKHEARKKRAKEKEKKEREREHEHH TALK

E680 20 EB DO JSR $DOEB Kanal zum Lesen öffnen

E683 20 4E EA JSR $EA4E Byte annehmen

E484 DO 06 BNE $E68E

EHREKHEHKHE RE REEREREREREREEEEEESR LISTEN

E488 20 07 Di JSR $D107 Kanal zum Schreiben öffnen

. E68B 20 4E EA JSR $EA4E Byte annehmen

E68E 20 25 Di JSR $D125 Dateityp prifen

Eé9i C9 04 CMP #$04 Dateityp REL ?

E693 BO 03 BCS $E698 ja

E695 20 27 D2 JSR $0227 Kanal schließen

E4698 4C E7 EB JMP $EBE7

HHKKAKAKERERKKRRARHRRERESHERESR Hexzahl in Dezimalzahl wandlen (2 Bytes)

E69B AA TAX

E69C A? 00 LDA #$00

E69E FB SED

E69F EO 00 CPX #$00

E6Al FO 07 BEQ $E6AA Hexzahl in BCD-Zahl wandlen

E6A3 18 CLC

EbAA 69 01 ADC #$01

209

E6AG CA DEX
E6A7 4C 9F E& IMP $EAIF
ESAAR DB CLD

FEREEEERHRSREREERERRARREEEREEH BCD-Zahl in zwei Bytes zerlegen
E6AB AA TAX
E6AC aA LSR A

E6&AD 4A LSR A Hi-Nibble nach unten verschieben

E6AE 4A LSR A

EGAF 4A LSR A

E&BO 20 B4 E6é JSR $E6B4 nach ASCII wandeln

E6B3 BA TXA

E6B4 29 OF AND #$0F oberste 4 Bit löschen

ESBé 09 30 DRA #$30 "0° addieren

E6BR 91 AS STA ($A5),Y in Puffer schreiben

ESBA C8 INY Pufferzeiger erhöhen

E6BB 60 RTS

SEAHHSHAA REAR RE AEE ERREREERERESR ok’ in Puffer schreiben

E4SBC 20 23 Ci JSR $C123 Fehlerflags löschen

ESBF AI 00 LDA #$00 Fehlernummer 0

E46C1 AO 00 LDY #$00

E6C3 84 80 STY $80 Track 0

E4C5 84 Bi STY $81 Sektor 0

SHAHHAAAKESAESAERERKEREESRESHE Fehlermeldung in Puffer (Nummer im Akku)

E6C7 AD 00 LDY #$00 Pufferzeiger

E6C9 A2 DS LDX #$D5

E46CB B& AS STX $A5 Zeiger $AS/$A& auf $2D5

E6cD A2 02 LDX #$02

E46CF B& Ab STX $Ab

E6Di 20 AB E& JSR $E4AB Fehlernummer nach ASCII und in Puffer

E46D4 AI 2C LDA #$2C "," Komma

E6D4 91 AS STA ($A5),Y in Puffer schreiben

E46D8 CB INY Pufferzeiger erhöhen

E&D? AD DS 02 LDA $02D5 erste Ziffer des Diskettenstatus

E6DC 8D 43 02 STA $0243 ins Ausgaberegister

E6DF BA TXA Fehlernummer in Akku

EsEO 20 06 E7 JSR $E7046 Fehlermeldung in Puffer

E6E3 AY 2C LDA #$2C ‘,’ Komma

E6ES 91 AS STA ($A5),Y in Puffer schreiben

E6E7 c8 INY und Pufferzeiger erhöhen

EbEB A5 80 LDA $80 Tracknummer

ESEA 20 9B E46 JSR $E469B nach ASCII und in Puffer

ESED A9 2C LDA #$2C "," Komma

EdEF 91 AS STA ($A5),Y in Puffer schreiben

E6Fi C8 INY Pufferzeiger erhöhen

EöF2 AS Bi LDA $81 Sektor

EGF 4 20 9B Ebd JSR $E69B nach ASCII wandeln und in Puffer

E6F7 88 DEY

E46F8 98 TYA

E6F9 18 CLC

E6bFA 69 DS ADC #$D5

EöFC AD 49 02 STA $0249 Endezeiger

EFF E4 AS INC $A5

E701 A? 88 LDA #$88 READ-Fiag setzen

210

E703 85 F7 STA $F7
E705 60 - RTS

EEK EEE ERE EERE
E704 AA TAX
E707 AS 86 LDA $84
E709 48 PHA
E70A AS 87 LDA $87
E70C 48 PHA
E70D A? FC LDA #$FC
E7OF 85 85 STA $86
E7il A9 EA LDA #$E4
E7i3 8587 STA $87
E715 8A TXA
E716 A2 00 LDX #$00
E718 Ci 86 CMP ($86,X)
E71A FO 21 BEQ $E73D
E7iC 48 PHA
E7iD 2075 E7 JSR $E775
E720 90 05 BCC $E727
E722 20 75 E7 JSR $E775
E725 90 FB BCC $E722
E727 AS 87 LDA $87
E729 C9 ES CMP #$E6
E72B 90 08 BCC $E755
E72D DO OA BNE $E739
E72F AF OA LDA #$0A
E731 C5 86 CMP $86
E733 90 04 BCC $E739
E735 68 PLA
E736 4€ 18 E7 JMP $E718
E739 68 PLA
E73A 4C AD E7 JMP $E74D

E73D 20 67 E7 JSR $E767
E740 90 FB BCC $E7S3D
E742 20 54 E7 JSR $E754
E745 20 67 E7 JSR $E767
E748 90 FS BCC $E742
E74A 20 54 E7 JSR $E754
E74D 48 PLA
E74E 8587 STA $87
E750 68 PLA
E751 85 86 STA $86
E753 60 RTS

LE Z E22 22 E22 EI EI ES IE REE ER ERE
E754 C9 20 CMP #$20
E756 BO OB BCS $£763
E758 AA TAX
E759 A 20 LDA #$20
E7SB 9 AS STA ($AS),Y
E75D CB INY
E7SE 8A TXA
E7SF 20 06 E7 JSR $E706
E762 60 RTS

Text der Fehlermeldung in Puffer schreiben

Fehlercode nach X

Zeiger $86/$87 retten

Zeiger $86/$87 auf SE4FC
Beginn der Fehlermeldungen

Fehlernummer in Akku

mit Fehlernuamer in Tabelle vergleichen

Bit 7 ins Carry und löschen

nicht gesetzt ?

Bit 7 ins Carry

warten auf Zeichen ait gesetzten Bit 7

$E60A, auf Ende der Tabelle prüfen

nein, weitersachen

fertig

ein Zeichen holen, Bit 7 ins Carry
warten auf Zeichen mit Bit 7 gesetzt
und in Puffer schreiben

nächstes Zeichen holen

warten auf Zeichen mit gesetzea Bit 7

Zeichen in Puffer

Zeiger $86/$87 zurückholen

Zeichen holen und in Puffer

’ Leerzeichen

größer, dann in Puffer schreiben

Kode merken

Leerzeichen .

in Puffer schreiben

Pufferzeiger erhöhen

Kode in Akku

zugehörigen Text ausgeben

E763 91 AS STA ($AS),Y
E765 C8 INY
E766 60 RTS

KHEKREEKRKEEKRRKEREKEKKKEERERKEE

E767 E46 86 INC $864

E769 DO 02 BNE $£74D

E76B E& 87 INC $87

E76D Al 864 LDA ($86,X)

E76F OA ASL A

E770 Al 86 LDA ($86,X)

E772 29 7F AND #$7F

E774 60 RTS

LES 2 22 22 22 27 22 22 22 2 2 2 2 2 2 2 2 2 2 2

E775 20 6D E7 JSR $E7&D

E778 E6& 86 INC $864

E77A DO 02 BNE $E77E

E77C E& 87 INC $87

E77E 60 RTS

222 22 2 2 EERE EERE ER EERE EEE
E77F 60 RTS

HKFEKEREKEKREHRKLEKKREKEKRKRERKEREKSE

E780 AD 00 18 LDA $1800
E783 AA TAX
E784 29 04 AND #$04
E786 FO F7 BEQ $E77F
E788 BA TXA
E789 29 01 AND #$01
E78B FO F2 BEQ $E77F
E78D 38 CLI
E78E AD 00 18 LDA $1800
E791 29 05 AND #$05
E793 DO F9 BNE $E7BE
E795 EE 78 02 INC $0278
E798 EE 74 02 INC $0274
E79B A? 2A LDA #$2A
E79D BD 00 02 STA $0200
E7AO 4C AB E7 JMP $E7A8

E7AS A? 8D LDA #$8D
E7AS 20 68 C2 JSR $C268
E7AB 20 58 F2 JSR $F258
E7AB AD 78 02 LDA $0278
E7AE 48 PHA
E7AF A? O1 LDA #$01
E7Bi 8D 78 02 STA $0278
E7B4 AY FF LDA #$FF
E7B& 85 86 STA $86
E7B8 20 4F C4 JSR $C44F
E7BB AD 80 02 LDA $0280
E7BE DO 05 BNE $E7C5
E7CO AY 39 LDA #$39

Zeichen in Puffer schreiben

und Zeiger erhöhen

ein Zeichen der Fehlermeldung holen

Zeiger erhöhen

Zeichen holen

Bit 7 ins Carry

Zeichen holen

Bit 7 löschen

Zeiger erhöhen

Bit 7 ins Carry

Zeiger erhöhen

prüft auf AUTO-Start

IEC-Port lesen

"CLOCK IN’-Bit isolieren

nicht gesetzt, dann fertig

"DATA IN’-Bit isolieren
nicht gesetzt, dann ferig

IEC-Port laden

"DATA IN’ und ‘CLOCK IN’ testen

warten bis beide gesetzt sind

ein Dateinamen

ein Zeichen in der Eingabezeile

'*' als Filename

in Puffer schreiben

‘&’ - Befehl

Befehlszeile bis zum Ende prüfen

(RTS)
Zahl der Dateinamen

merken

ein Dateiname

Datei suchen

gefunden ?

212

ei

02

02

02

D4

E8

EB
E8

E8

E8

E8
E8

E8

CA

DE

E&

00
CA

$c1C8 39, ‘file not found’

Zahl der Dateinamen zurückholen

Track

und Sektor

Dateityp ‘USR‘

Puffer belegen, ersten Block lesen

Prüfsumme löschen

Byte aus Datei holen

als Startadresse lo merken

Prüfsumme bilden

Byte aus Datei holen

als Startadresse hi

Prüfsumme bilden

Programmstartadresse merken

Byte aus Datei holen

als Zähler merken

Früfsumme bilden

Byte aus Datei holen

als Programmbytes abspeichern

Prüfsumme bilden

Zeiger $88/$89 erhöhen

Zähler erniedrigen

nächstes Byte holen

Datenbyte

gleich Prüfsumme ?

ja

Parameter an Disk-Controller übergeben

90, ‘record not present’

Ende ?

nein, nachster Datenblock

Programastartadresse zurückholen

und Programm ausfihren

Byte aus Datei holen

Ende ?

ESSE DO 08 BNE
E840 20 3E DE JSR
E843 AI 51 LDA
F845 20 45 EA JSR
E848 AS 85 LDA
EBAA 60 RTS

a2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 22 2 2 2 2 22 22 2;

EBAB 18 CLC
EBAC 65 87 ADC
EB4E 49 00 ADC
E850 85 87 STA
E852 60 RTS

FHHEKRERKKEREEKRKEKRERAKRKEHERKREKEREE

E853 AD O1 18 LDA
F856 A? O1 LDA
E858 85 7C STA
EBSA 60 RTS

ERKRERRERERKTERKKET ETF N FE RK IT KH RR KR NR

E8SB 78 SEI
E85C AX 00 LDA
EBSE 85 7C STA
E860 85 79 STA
E862 85 7A STA
F844 A2 45 LDX
E846 9A TXS
E847 A? 80 LDA
£869 685 FB STA
E84B 85 7D STA
—E86D 20 B7 E9 JSR
E870 20 AS EI JSR
E873 AD 00 18 LDA
E876 09 10 ORA
E878 BD 00 18 STA
E87B AD 00 18 LDA
EBTE 10 57 BPL
E880 29 04 AND
E882 DO F7 BNE
£864 2009 E9 JSR
€887 C9 3F CMP
E889 DO 06 BNE
E88B AI 00 LDA
E80 85 79 STA
EBBF FO 71 BEQ
E891 C9 SF CMP
E893 DO 06 BNE
E895 Ax 00 LDA
E897. 85 7A STA
E899 FO 67 BER
E89B C5 78 CMP
E89D DO OA BNE
EBIF AI 01 LDA
EBAl 85 7A STA
EBA3S AI 00 LDA

$EB48
$DESE
#$51
$E645
$85

$87
#$00
$87

$1801
#$01
$7C

nein

Parameter an Disk-Controller übergeben

J1, ‘overflow in record’

Datenbyte

Priifsumme bilden

IRB-Routine für seriellen Bus

Port A lesen, IRQ-Flag löschen

Flag für 'ATN empfangen’ setzen

Bedienung des seriellen Bus

Flag für ‘ATN empfangen’ löschen

Flag für LISTEN löschen

Flag für TALK löschen

Stackpointer initialisieren

Endeflag löschen

EQI-Flag löschen

CLOCK OUT lo
DATA OUT, Bit ‘0’, hi

Datenleitungen auf Eingabe schalten

IEC-Port lesen

EQI ?
CLOCK IN ?
nein

Byte vom Bus holen

Unlisten ?

nein

Flag für LISTEN rücksetzen

Untalk ?

nein

Flag für TALK rücksetzen

TALK-Adresse ?

nein

Flag für TALK setzen

214

ESAS 85 79 STA $79
ESA7 FO 29 BEQ $EBD2
E8A? CS 77 CMP $77
EBAB DO OA BNE $E8B7
EBAD AP 01 LDA #$01
EBAF 85 79 STA $79
ESBi A? 00 LDA #$00
EBB3 85 7A STA $7A
E8B5 FO 1B BEQ $E8D2
E8B7 AA TAX
EBBB 29 60 AND #$60
EBBA C9 40 CMP #$60
EBBC DO 3F BNE $E8FD
EBBE 8A TXA
EBBF 85 84 STA $84
E8cl 29 OF AND #$0F
EBCS3 85 83 STA $83
EBCS AS 84 LDA $84
E8C7 29 FO AND #$F0
E8C9 C9 EO CMP #$E0
EBCB DO 35 BNE $E902
E8CD SB CLI
EBCE 20 CO DA JSR $DACO
E8D1 78 SEI
EBD2 2€ 00 18 BIT $1800
EBDS 30 AD BMI $E884
E8D7 A? 00 LDA #$00
E8D9 85 7D STA $7D
E8DB AD 00 18 LDA $1800
ESDE 29 EF AND #$EF
EBEO 8D 00 18 STA $1800
EBES AS 79 LDA $79
EBES FO 06 BEQ $EBED
EBE7 20 2E EA JSR $EAZE
EBEA 4C E7 EB JMP $EBE7

EBED AS 7A LDA $7A
EEF FO 09 BEQ $EBFA
ESF1 20 90 EG JSR $E99C
20 AE EG JSR $E9AE
EBF7 20 09 EG JSR $E909
EBFA 4C 4E ER JMP SEA4E

EBFD A? 10 LDA #$10
ESFF 8D 00 18 STA $1800
E902 2C 00 18 BIT $1800
E905 10 DO BPL $E8D7
E907 30 F9 BMI $E902

IE 2 E22 2 2 2 7 22 22 7 7 7 2 7 7 7 2 2 2 25
E909 78 SEI
EIOA 20 EB DO JSR $DOEB
E90D BO 06 BCS $E915
EOF Ab 82 LDX $82
E911 BS F2 LDA $F2,X
E913 30 01 BMI $E914

Flag für LISTEN rücksetzen

LISTEN-Adresse ?

nein

Flag fiir LISTEN setzen

Flag für TALK rücksetzen

Bit 5 und & gesetzt ?

nein

Byte ist Sekundäradresse

Kanalnummer

CLOSE ?

CLOSE-Routine

EOI setzen

IEC-Port
Datenleitungen auf Ausgabe schalten

LISTEN aktiv ?

nein

Daten empfangen

zur Warteschleife

TALK aktiv ?

nein

DATA OUT, Bit ‘1°, lo

CLOCK OUT hi
Daten senden

zur Warteschleife

weder TALK noch LISTEN, Byte ignorieren

Datenleitungen auf Eingabe schalten

Handshake abwarten

Daten senden

Kanal zum Lesen öffnen

Kanal aktiv ?

Kanalnummer

READ-Flag gesetzt ?

ja

215

ESF 4

EA
EI

Eq

EA
E9

EA
EI

EI

02

02

EI

E93
EI

FE
FE

EA
EI

DS

auf EOI prüfen

IEC-Port lesen

Datenbit isolieren

und merken

CLOCK OUT lo

auf EOI prüfen

IEC-Port lesen

Datenbit isolieren

Kanalnummer

auf EOI prüfen

IEC-Port lesen

Datenbit isolieren

auf EOI prüfen

IEC-Port lesen

Datenbit isolieren

CLOCK OUT hi

auf EOI prüfen

IEC-Port lesen

Datenbit isolieren

Zähler auf 8 Bits für serielle übertragung

IEC-Port lesen

Datenbit isolieren

unterstes Bit ins Carry

Bit gesetzt

DATA OUT, Bit '0'
unbedingter Sprung
DATA OUT, Bit ‘1° ausgeben

CLOCK OUT setzen

Verzögerung für seriellen Bus

DATA OUT und CLOCK OUT setzen

schon alle Bits ausgegeben ?

nein

auf EOI priifen

IEC-Port lesen

Datenbit isolieren

nachstes Datenbyte holen

216

E996 4C OF E9 JUMP $E90F

E999 AC 4E EA IMP SEA4E

SHEKEL I zz & 2 2 & & & 2 2 2 2 2 2 2 2 2 2 2 2 2 02

E99C AD 00 18 LDA $1800
E99F 29 FD AND #$FD
E9A1 BD 00 18 STA $1800
E9A4 40 RTS

KHEEKHEEKHEKHRKREHREKRERRKREKRALHEKRKRE RE

E9AS AD 00 18 LDA $1800
E9AB 09 02 ORA #$02
E9AA 8D 00 18 STA $1800
EQAD 60 RTS

KEREKHKERRURRIRURET THEIR RI NR ER R

EIAE AD 00 18 LDA $1800
E9BL 09 08 ORA #$08
E9B3 BD 00 18 STA $1800
E9BG 60 RTS

KLHKEERERHEKFKRAKRKRKKRRKFARRKKHKKRRKREKE

E9B7 AD 00 18 LDA $1800
E9BA 29 F7 AND #$F7
E9BC BD 00 18 STA $1800
E9BF 60 RTS

KREEHREEHEKRHEEREEHREAEREEDEREREER

EICO AD 00 18 LDA $1800
EIC3 CD 00 18 CMP $1800
E9C& DO FB BNE $E9CO
E9CB 60 RTS

EREKKEEEEEEREEEEEEREREEEEEEERSE

E9C9 AI 08 LDA #$08
E9CB 85 98 STA $98
E9CD 2059 EA JSR $EA59
E9DO 20 CO EI JSR $E9CO
E9D3 29 04 AND #$04
E9DS DO Fé BNE $€9CD
E9D7 20 9C £9 JSR $E99C
E9DA AD 01 LDA #$01
E9DC BD 05 18 STA $1805
E9DF 2059 EA JSR $EASI
E9E2 AD OD 18 LDA $180D
EIES 29 40 AND #$40
EIET DO 09 BNE $E9F2
E9E9 20 CO E9 JSR $EICO
EIEC 29 04 AND #404
E9EE FO EF BEQ $E9DF
E9FO DO 19 BNE $EAOB

E9F2 20 AS E9 JSR $E9A5
EIFS A2 OA LDX &S0A
EIFT CA DEX

und ausgeben

zur Warteschleife

DATA OUT lo

Bit ‘1° ausgeben

DATA OUT hi

Bit ‘0° ausgeben

CLOCK OUT hi

Bit 3 setzen

CLOCK OUT lo

Bit 3 löschen

IEC-Port lesen

Port lesen

konstanten Wert abwarten

Bitzähler serielle Ausgabe

auf EO! prüfen

IEC-Port lesen

ELOCK IN ?

nein, warten

DATA OUT, Bit ‘1°

Timer setzen

auf EOI prüfen

Timer abgelaufen ?

ja, EOI

IEC-Port lesen

CLOCK IN ?

nein, warten

DATA OUT Bit
10

0°, hi

Verzögerungsschleife, ca. 50 Mikrosekunden

217

EIFB DO FD BNE $E9F7
EDFA 20 9C EY JSR $E99C DATA OUT, Bit ‘1’, lo

E9FD 20 59 EA JSR $EAS9 auf EOI prüfen

EA0O 20 CO EI JSR $E9CO IEC-Port lesen

EA03 29 04 AND #$04 CLOCK IN ?

EA0S FO Fé BEG $E9FD nein, warten

EA07 AQ 00 LDA #$00

EA09 85 FB STA $F8 EQI-Flag setzen

EAOB AD 00 18 LDA $1800 IEC-Port

EADE 49 01 EGR #$01 Datenbit invertieren

EALO 4A LSR A

EAL 29 02 AND #$02

EALS DO Fé BNE $EAOB CLOCK IN ?

EAiS EA NOP

EAl& EA NOP

EAI7 EA NOP

EAI8 66 85 ROR $85 nächstes Bit bereitstellen

EALA 20 59 EA JSR $EAS9 auf EOI prüfen

EALD 20 CO EY JSR $EICO IEC-Port lesen

EA20 29 04 AND ##04 CLOCK IN ?

EA22 FO Fé BEQ $EAIA nein

EFA24 Cé 98 DEC $98 Bitzahler erniedrigen

EA26 DO E3 BNE $EAOB alle Bits schon ausgegeben ?

EA28 20 AS EI JSR $E9IAS DATA OUT Bit ‘0’, hi

EA2B AS 85 LDA $85 Datenbyte wieder laden

EA2D 60 RTS

ERHEKHEHSELHKKRASKEKEKELESHHESE Datenannahme vom seriellen Bus

EA2F 20 07 DI JSR $D107 Kanal zum Schreiben äffnen

EA32 BO 05 BCS $EA39 Kanal nicht aktiv ?

EA34 BS F2 LDA $F2,X WRITE-Flag

EA36 6A ROR A

EA37 BO OB BCS $EA44 nicht gesetzt ?

EA39 AS 84 LDA $84 Sekundäradresse

EA3B 29 FO AND #$FO

EA3D C9 FO CMP #$FO OPEN-Befehl ?

EASF FO 03 BEQ $EA44 ja

EA41 4C 4E EA JMP $EA4E zur Warteschleife

EA44 20 C9 EI JSR $E9C9 Datenbyte vom Bus holen

EA47 58 CLI

EA48 20 B7 CF JSR $CFB7 und in Puffer schreiben

EA4B 4C 2E EA JMP $EA2E zum Schleifenanfang

EA4E AI 00 LDA #$00

EASO BD 00 18 STA $1800 IEC-Port rücksetzen

EAS3 4C E7 EB JMP $EBE7 zur Warteschleife

EAS& 4C SB E8 JMP $E85B zur Hauptschleife serieller Bus

HEE KKEREREER ERE RE EE EER ER EREEES

EAS? AS 7D LDA $7D EOI empfangen ?

EASB FO 06 BEQ $EA43 ja

EASD AD 00 18 LDA $1800 IEC-Port

EA60 10 09 BPL $EA6B

218

EA62 60 RTS

ER6S AD 00 18 LDA $1800
EA6& 10 FA BPL $EA62
EA&8 4C 5B EB JMP $EBSB

EASB 4C D7 EB UMP $E8D7

EHEE KER 2 22 2 22 2 2 2 2 22 2 22 22 EEE RES

EASE A2 00 LDX #$00
EA7O 2C «BYTE $2C
EATi Ab 6F LDX $6F
EA73 9A TXS
EA74 BA TSX
EA7S A? 08 LDA #$08
EA77 OD 00 IC ORA $1C00
EA7A 4C EA FE JMP $FEEA
EA7D 98 TYA
EA7E 18 CLC
EATF 69 O1 ADC #$01
EAS1 DO FC BNE $EA7F
EA83 88 DEY
EAB4 DO FS BNE $EA7E
EAB& AD 00 IC =LDA $1000
EAB? 29 F7 AND #$F7
EABB 8D 00 IC STA $1C00
EABE 98 TYA
EABF 18 CLC
EA90 69 01 ADC #$01
EA92 DO FC BNE $EA90
EA94 88 DEY
EA9S DO FB BNE $EA8F
EA97 CA DEX
EA98 10 DB BPL $EA7S
EAGA EO FC CPX #$FC
EAIC DO FO BNE $EABE
EASE FO D4 BEQ $EA74

HHREHREREKREKRKREHKEHKELE RHEE THE

EAAO 78 SEI
EAAI D8 CLD
EAA2 A2 FF LDX #$FF
EAA4 BE 03 18 STX $1803
EAA7 EB INX
EAAB AO 00 LDY #800
EAAA A2 00 LDX #$00
EAAC BA TXA
EAAD 95 00 STA $00,X
EAAF EB INX
EABO DO FA BNE $EAAC
EAB2 BA TXA
EAB3 D5 00 CMP $00,X
EABS DO B7 BNE $EAGE
EAB7 F& 00 INC $00,X
EAB9 C8 INY
EABA DO FB BNE $EAB7

IEC-Port

zur Hauptschleife serieller Bus

E0I setzen, seriellen Bus bedienen

LED-Blinken bei Hardwaredefekten, Selbsttest

1 mal blinken, Zeropage

X+1 mal blinken für RAM/ROM-Fehler

LED-Bit im Port auswählen

LED einschalten, zurück nach $EA7D

LED ausschalten

Verzögerungsschleife

Verzögerung abwarten

LED wieder einschalten

RESET-Routine

Port A auf Ausgabe

Zeropage löschen

ist Byte gelöscht ?

nein, dann zur Fehleranzeige (blinken)

219

$00,X
$EAGE
$00,X
$00,X
$EAbE

$EAB2
$6F
$76
#400
$75

#$20

$76
(875) ,Y

$EAD7

$EADS
#$00

$76
($75) ,Y

$EAF2
$76

$EAF2
#$07
$76

$76
($75) ,Y
$EBIF
#$FF
($75) ,Y
($75) ,Y
($75) ,Y
$EBIF

$EBO4

$EBO2

Fehler

Fehler

32 Pages testen

ROM Testen

ROM-Fehler

RAM testen, beginnend bei Page 7

RAM-Fehler

RAM-Fehler

weiter testen

220

EA

FE

02

$FEEO,Y
499 ,X

#$05
$EBAF
#500
$99,X

#$02
$99, X

#805
$99,X

#$02
$99,X
#$FF
#$12
$0228, x

$EB76
#$05
$A7,X
$AE,X
$CD,X

$EB7E

ok

zur Fehleranzeige

Stackpointer initialisieren

LED ausschalten

CAi (ATN IN) auf positive Flanke triggern

Interrupt durch ATN IN ermöglichen

Port B lesen

Bit 5 und 6 isolieren (Gerätenumnmer)

nach Bitposition 0 und 1 schieben

Offset von 8 plus $40 für Talk addieren

Gerätenummer für TALK (senden)

Bit & löschen, Bit 5 setzen

Gerätenummer plus $20 für LISTEN (empfangen)

Low-Byte der Pufferadressen

High-Byte der Adresse aus Tabelle

speichern

5 Pufferspeicher

Zeiger $A3/$A4 aut $200, Eingabepuffer

Zeiger $A5/$A6 auf $2D5, Puffer Fehlermeldung

Kanaltabelle mit $FF füllen ('nicht belegt’)

Puffertabellen löschen

Side-Sektor Tabelle löschen

221,

02

CB

F2

02

Ci

La & 2 2 2 2 & 2 2 2 2 2 2 2 2 2 2 2 2 X 2 2 & 2 2 & 2 2 2;

Puffer 5

Kanal 4 zuordnen

Puffer &

Kanal 5 zuordnen

Kanal 5 WRITE-Flag gelöscht

Kanal 4 WRITE-Flag gesetzt

Kanalbelegungsregister initialisieren

Bit ‘1° gleich Kanal frei

WRITE-Flag

READ-Flag

s Puffer frei

Pufferbelegungsregister initialisieren

$24F/$250, 16 Bit, ‘1’ gleich Puffer belegt

Flags für Write Protect

Vektor fir UO setzen
Kanaltabelle initialisieren

Initialisierung fiir Disk-Controller

Zeiger $65/$64 auf $EB22

Schrittweite 10 bei Sektorzuweisung

5 Leseversuche

Einschaltmeldung bereitstellen

73, ‘chm dos v2.6 1541

Bit 1, 3 und 4 auf Ausgang

Datenrichtung Port B

Datenregister löschen

prüft auf Auto-Start

seriellen Port rücksetzen

Kommandoflag gesetzt ?

nein

Kommandoflag rücksetzen

Befehl analysieren und ausführen

Warteschleife

ATN-Signal entdeckt ?

222

E8

DF

02

D3

D3

$1C Write Protect fiir Drive 0 ?

$1D Write Protect für Drive 1 ?

$EC07 nein

$E85B zur IEC-Routine

#$0E 14

$72 als Sekundäradresse

#$00

$6F Job-Zahler

$70

$72

$0228 ,X Sekundäradresse

#$FF Kanal zugeordnet ?

$EC2B nein

#$3F

$82 Kanalnummer

$DF93 Puffernummer holen

$025B,X Drivenummer

#401

$6F ,X Jobzähler erhöhen

$72 Lo-Adresse

$ECi2 weiter suchen

#$04 Pufferzahler

$0000,Y Disk

$EC3B nein

#$01 Drivenummer isolieren

$F ,X Jobzähler erhöhen

$EC31 nachster Puffer

$1000

#$F7 LED-Bit löschen

$7F Drivenummer

$B4

#$00

$7F Drive 0

$6F Job für Drive 0 ?

$ECSC nein

$EC58 nein

$D313 alle

#$08 LED-Bit setzen

$7F Drivenummer erhöhen

$70 Job für Drive 1 ?

$EC6D nein

$EC49 nein

$D313

#$00

$86

-Controller in Aktion ?

Kanäle zu Drive 0 schließen

alle Kanäle zu Drive 1 schließen

223

EC4F 85 7F STA $7F
EC71 68 PLA
EC72 AE 66 02 LDX $024C
EC75 FO 21 BEQ $EC9B
EC77 AD 00 1C LDA $1C00
EC7A EO 80 CPX #$80
EC7C DO 03 BNE $ECB1
EC7E 4C 8B EC JMP $ECAB
FC8i AE 05 18 LDX $1805
EC84 30 12 BMI $EC9@
ECB846 A2 AO LDX #$A0
EC88 BE 05 18 STX $1805
ECBB CE 6C 02 DEC $024C
ECBE DO 08 BNE $EC9B
EC9O AD 4D 02 EOR $024D
EC93 A2 10 LDX #$10
EC95 BE 6C 02 STX $0246C
EC98 BD 00 iC STA $1C00
EC9B ACFF EB JMP $EBFF

LRHEHEHREKHEKRKHKREKRKEAEHKKHKRKKKEKKKE

EC9E Ag 00 LDA #$00
ECAO 85 83 STA $83
ECA2 Ad O1 LDA #$01
ECA4 20 E2 Di JSR $DIE2
ECA7 Ad 00 LDA #$00
ECA9 20 C8 D4 JSR $D4C8
ECAC Ab 82 LDX $82
ECAE A 00 LDA #$00
ECBO 9D 44 02 STA $0244,X
ECB3 2093 DF JSR $DF93
ECBb AA TAX
ECB7 AS 7F LDA $7F
ECB? 9D 5B 02 STA $025B,X
ECBC A9 Ol LDA #$01
ECBE 20 Fi CF JSR $CFFi
ECCL Ad 04 LDA #$04
ECCS 20 Fi CF JSR $CFFi
ECC& Ad 01 LDA #$01
ECC8 20 Fi CF JSR $CFFi
ECCB 20 Fi CF JSR $CFF1
ECCE AD 72 02 LDA $0272
ECDi 20 Fi CF JSR $CFF1
ECD4 A9 00 LDA #$00
ECD6 20 FICF JSR $CFFi
ECD9 2059 ED JSR $ED59
ECDC 2093 DF JSR $DF93
ECDF OA ASL A
ECEO AA TAX
ECE1 Dé 99 DEC $99,X
ECEI De 99 DEC $99,X
ECES A? 00 LDA #$00
ECE7 20 Fi CF JSR $CFF1
ECEA A? 01 LDA #801
ECEC 20 Fi CF JSR $CFFi
ECEF 20 Fi CF JSR $CFFi

Drivenummer zurückholen

Bit fiir LED

Interruptzähler

auf null ?

Timerinterrupt löschen

Timer setzen

Zähler erniedrigen
noch nicht null ?

Zähler neu setzen

LED ein/ausschalten

zurück zur Warteschleife

LOAD "$"

Sekundäradresse Null

Kanal und Puffer suchen

Pufferzeiger initialisieren

Kanalnummer

Zeiger auf Ende gleich Null

Puffernummer holen

Drivenummer

in Tabelle bringen

i

in Puffer schreiben

4, Startadresse $0401

in Puffer schreiben

2 mal I

als Linkadresse in Puffer schreiben

Drivenuamer

als Zeilennummer in Puffer schreiben

Zeilennummer hi

in Puffer

Directoryeintrag in Puffer

Puffernummer holen

Pufferzeiger erniedrigen

0 als Zeilenende in Puffer

2 mal i als Linkadresse

ECF2 20 CE C& JSR $CöCE Directoryeintrag in Puffer
ECFS5 90 2C BCC $ED23 weiterer Eintrag ?

ECF7 AD 72 02 LDA $0272 Blockzahl lo

ECFA 20 Fi CF JSR $CFFi in Puffer

ECFD AD 73 02 LDA $0273 Blockzahl hi

EDOO 20 Fi CF JSR $CFFi in Puffer

EDOS 20 59 ED JSR $EDS9I Directoryeintrag in Puffer

EDO6 A9 00 LDA #$00

EDOS 20 Fil CF JSR $CFFi Null als Endekennzeichen in Puffer

EDOB DO DD BNE $ECEA Puffer voll ? nein |

EDOD 20 93 DF JSR $DF93 Puffernummer holen

ED10 OA ASL A

EDii AA TAX

ED12 AY 00 LDA #$00

EDiA 95 99 STA $99,X Pufferzeiger auf Null

ED1& A9 88 LDA #$88 READ-Flag setzen

EDi8 A4 82 LDY $82 Kanalnummer

EDiA 8D 54 02 STA $0254
EDiD 99 F2 00 STA $00F2,Y Flag für Kanal
ED20 AS 85 LDA $85 Datenbyte

ED22 60 RTS

HHEREEREREE ARERR REEE REE EE REESE

ED23 AD 72 02 LDA $0272 Blockzahl lo

ED2& 20 FI CF JSR $CFFi in Puffer schreiben

ED29 AD 73 02 LDA $0273 Blockzahl hi

ED2C 20 Fi CF JSR $CFFi in Puffer

ED2F 20 59 ED JSR $EDS9I "Blocks free.’ in Puffer

ED32 20 93 DF JSR $DF93 Puffernummer holen

ED35 OA ASL A mal 2

ED346 AA TAX

ED37 D6 99 DEC $99,X

ED39 Dd 99 DEC $99,X Pufferzeiger minus 2

ED3B A? 00 LDA #$00

ED3D 20 Fi CF JSR $CFFi

ED40 20 Fi CF JSR $CFF1 dreimal Null als Programmende

ED43 20 Fi CF JSR $CFFi

ED4& 20 93 DF JSR $DF93 Puffernummer holen

ED49 OA ASL A mal 2

ED4A AB TAY

ED4B BI 99 00 LDA $0099,Y Pufferzeiger

ED4E Ab 82 LDX $82

ED50 9D 44 02 STA $0244,X als Endekennzeichen

KERNE HKRREREHEREX Direcectoryzeile übertragen

EDS? Ad 00 LDY #$00
EDSB B9 Bi 02 LDA $02B1,Y Zeichen aus Puffer
EDSE 20 Fi CF JSR $CFFi in Ausgabepuffer schreiben

ED41 ce INY
ED62 CO 1B CPY #$1B schon 27 Zeichen ?

ED&4 DO F5 BNE $EDSB
ED6& 60 RTS

HFHAKERERKRKEAHEEKEKERERKEREKRERHRHE Byte aus Puffer holen

225

ED67 20 37 Di JSR
ED6A FO 01 BEQ
ED6C 40 RTS

ED46D 85 85 STA
ED6F AA 82 LDY
ED71 B9 44 02 LDA
ED74 FO 08 BEQ
ED76 A? 80 LDA
ED78 99 F2 00 STA
ED7B AS 85 LDA
ED7D 40 RTS

ED7E 48 PHA
ED7F 20 EA EC JSR
ED82 48 PLA
ED8S 60 RTS

EEREEKEESEREREEREEERERERELE EEE
ED84 20 Di Ci JSR
ED87 20 42 DO JSR
EDBA AI 40 LDA
ED8C BD FI 02 STA
EDSF 20 B7 EE JSR
ED92 AI 00 LDA
ED94 8D 92 02 ~~ STA
E597 20 AC CS JSR
ED?A DO 3D BNE
EDIT AI 00 LDA
EDIE 85 81 STA
EDAO AD 85 FE LDA
EDAS 85 80 STA
EDAS 20 E5 ED JSR
EDAS AI 00 LDA
EDAA BD FI O2 STA
EDAD 20 FF EE JSR
EDBO 4C 94 Ci JMP

HERHREERERERERERREREER EERE EE ES
EDBS C8 INY
EDB4 Bi 94 LDA
EDB& 48 PHA
EDB7 C8 INY
EDBS Bi 94 LDA
EDBA 48 PHA
EDBB AO 13 LDY
EDBD Bi 94 LDA
EDBF FO 0A BEQ
EDC1 85 80 STA
EDC3 C8 INY
EDC4 Bi 94 LDA
EDC& 85 81 STA
EDC8 20 ES ED JSR
EDCB 68 PLA
EDCC 85 81 STA
EDCE 68 PLA

$D137
$ED&D

$85
$82
$0244,
$ED7E
#480
$00F2,Y
$85

$ECEA

$CiD1
$D042
#$40
$02F9
$EEB7
#300
$0292

(894) ,Y

($94) ,Y

#$13
($94) ,Y
$EDCB
$80

(894) ,Y
$81
$EDES

$81

Byte aus Puffer holen

Pufferzeiger null ?

Datenbyte merken

Kanal nummer

Endekennzeichen setzen

Null (LOAD $) ?

READ-Flag setzen

Datenbyte

Directoryzeile im Puffer erzeugen

V-Befehl, ‘Collect’

Eingabezeile auf Laufwerknumaer durchsuchen

BAM laden

neue BAM im Puffer erzeugen

Directory laden, ersten Eintrag suchen

gefunden ?

Sektor 0

18

Track 18 für BAM

Directoryblöcke als belegt kennzeichnen

BAM auf Diskette zurückschreiben
fertig, Diskstatus bereitstellen

Track und

Sektor merken

Zeiger auf Side-Sektor-Block

kein Folgeblock ?

Track

und Sektor des ersten Side-Sektor-Blocks
Side-Sektor Blöcke als belegt kennzeichnen

Track und Sektor zurückholen

226

EDCF 85 80 STA $80
EDD1 20 ES ED JSR $EDES | Blöcke der Datei als belegt kennzeichnen
EDD4 20 04 C& JSR $C604 nächsten Eintrag im Directory lesen

EDD? FO C3 BEG $EDIC Ende des Directorys ?

EDD9 Ad 00 LDY #$00
EDDB Bi 94 LDA ($94),Y Filetyp
EDDD 30 D4 BMI $EDB3 Bit 7 gesetzt, File geschlossen ?
EDDF 20 B& CB JSR $CBB6 Dateityp auf Null und BAM schreiben
EDE2 4C D4 ED JMP $EDD4

HEKERELLHAAEHKHRAEKAREAERRHRERE = Dateiblécke in BAM belegen

EDES 20 SF DS JSR $D55SF Track und Sektornummer prifen

EDEB 20 90 EF JSR $EF90 Block in BAM belegen

EDEB 20 75 D4 JSR $D475 nachsten Block lesen

EDEE AG 00 LDA #$00

EDFO 20 C8 D4 JSR $D4C8 Pufferzeiger auf Null

EDFS 20 37 Di JSR $D137 Byte aus Puffer holen

EDF& 85 80 STA $80 Track

EDFS 20 37 Di JSR $D137 Byte aus Puffer holen

EDFB 85 81 STA $81 Sektor

EDFD AS 80 LDA $80 folgt weiterer Block ?

EDFF DO 03 BNE $EE04 ja

EEO1 4C 27 D2 JMP $D227 Kanal schließen

EEO4 20 90 EF JSR $EF90 Block in BAM belegen

EE07 20 4D D4 JSR $D44D nachsten Block lesen

EEOA 4C EE ED JMP $EDEE weiter

KERNE RK N-Befehl, ‘Header '

EEOD 20 12 C3 JSR $C312 Drivenummer holen

EE10 AS E2 LDA $E2 Drivenuamer

EE12 10 05 BPL $EE19 nicht eindeutig ?

EEi4 AQ 33 LDA #$33

EE16 4C C8 Ci JMP $CiC8 33, ‘syntax error’

EE19 29 O1 AND #$01

EE1B 85 7F STA $7F Drivenumaer

EE1D 20 00 Ci JSR $C100 LED einschalten

EE20 AS 7F LDA $7F Drivenummer

EE22 OA ASL A mal 2

EE23 AA TAX

EE24 AC 7B 02 LDY $0278 Kommaposition

EE27 CC 74 02 CPY $0274 mit Ende Name vergleichen

EE2A FO 1A BEG $EE4& Formatieren ohne ID

EE2C B? 00 02. LDA $0200,Y erstes Zeichen der ID

EE2F 95 12 STA $12,X speichern

EE31 BF 01 02 LDA $0201,Y zweites Zeichen

EE34 95 13 STA $13,X

EE36 20 07 D3 JSR $D307 alle Kanäle schließen

EE39 AG 01 LDA #$01

EE3B 85 80° STA $80 Track 1

EE3D 20 C4 C8 JSR $C8C6 Diskette formatieren

EE40 20 05 FO JSR $F005 Puffer löschen

EE43 4C 56 EE JMP SEE56 weiter wie unten

EE46 20 42 DO JSR $D042 BAM laden

EE49 Ab 7F LDX $7F Drivenummer

227

01
FE

DS

EE

FE

02

C6

FE
01

FE

D4

D4
Ci

$0101,X
$FEDS
$EES6
$0572

$EEB7
$F9

$0101,X

A

$12,X
($94) ,Y

$13,X
($94) ,Y

EELEREREREEEREEEELER EERE EEE ERE
20 Di FO $FOD1

LDY #$00

LDA #$12

"A’, Kennzeichen für 1541-Format

ok

73, ‘chm dos v2.6 1541’

BAM erzeugen

Puf fernummer

$90, Beginn Diskname

Pufferzeiger auf Name

27

Filenamen in Puffer schreiben

Position 18

Drivenummer

"A’, 1541-Format

mal 2

ID, erstes Zeichen

in Puffer

und zweites Zeichen

in Puffer

‘2°

in Puffer

A’ 1541-Format

in Puffer

und an Position 2

18
Tracknuamer

Block als belegt kennzeichnen

1
Sektornummer

Block als belegt kennzeichnen

BAM schreiben

Zeiger $46D/$4E auf Puffer, Puffer löschen

Folgetrack 0, $FF gleich Anzahl gültige Bytes

Block schreiben

Sektornummer erniedrigen, 0

Block lesen

Diskstatus bereit stellen

BAM erzeugen

18

228

EEBE 91 6D STA ($6D),Y
EECO ca INY
EECi 98 TYA
EEC2 91 6D STA (#4D),Y
EEC4 CB INY
EECS C8 INY
EEC6 CB INY
EEC?7 AF 00 LDA #$00
EEC? BS OF STA $6F
EECB 85 70 STA $70
EECD 85 71 STA $71
EECF 98 TYA
EEDO ar LSR A
EEDI 4A LSR A
EED2 20 4B F2 JSR $F24B
EEDS 91 4D STA ($6D),Y
EED7 C8 INY
EEDB AR TAX
EED9 38 SEC
EEDA 26 6F ROL $6F
EEDC 26 70 ROL $70
EEDE 26 71 ROL $71
EEEO CA DEX
EEEi DO F& BNE $EED?
EEES BS 6F LDA $6F,X
EEES 91 4D STA ($4D),Y
EEE7 C8 INY
EEE8 E8 INX
EEE? EO 03 CPX #$03
EEEB 90 Fé BCC $EEE3
EEED CO 90 CPY #$90
EEEF 90 Dé BCC $EEC7
EEF 1 4C 75 DO JMP $D075

LE 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 22 2 20

EEF4 20 93 DF JSR $DF93
EEF7 AA TAX
EEFB BD SB 02 LDA $025B,X
EEFB 29 01 AND #$01
EEFD 85 7F STA $7F
EEFF A4 7F LDY $7F
EF OL BY 51 02 LDA $0251,Y
EFO4 DO 01 BNE $EFO7
EFQ6 40 RTS

EFO7 A? 00 LDA #$00
EFO9 99 51 02 STA $0251,Y
EFOC 20 3A EF JSR $EFSA
EFOF AS 7F LDA $7F
EFil OA ASL A
EF12 48 PHA
EF13 20 AS FO JSR $FOAS
EF16 68 PLA
EF17 18 CLC
EF18 69 01 ADC #801
EFIA 20 AS FO JSR $FOAS

Zeiger auf Directory-Track

1
Zeiger auf Directory-Sektor

3 Bytes gleich 24 Bits für Sektoren

Byteposition

durch 4 ergibt Tracknummer

Anzahl Sektoren holen

und in BAM

Bitmuster erzeugen

3 Bytes

der BAM in Puffer

schon Position 144 ?

nein, nächsten Track

Anzahl freie Blocks berechnen

BAM bei Bedarf schreiben

Puffernummer holen

Befehl für Disk-Controller

Drivenummer isolieren

BAM-Änderungsflag gesetzt ?

ja

BAM-Anderungsflag rücksetzen

Pufferzeiger für BAM setzen

Drivenummer

mal 2

BAM-Eintrag überprüfen

Tracknummer erhöhen

BAM-Eintrag überprüfen

EFiD AS 80 LDA $80 Track
EF iF 48 PHA
EF20 AI Ot LDA #$01
EF 22 85 80 STA $80 Track 1
EF 24 0A ASL A
EF25 0A ASL A mal 4
EF26 85 6D STA $6D
EF 28 20 20 F2 JSR $F220 überprüft BAM
EF 2B E& 80 INC $80 Tracknummer erhöhen

EF2D AS 80 LDA $80
EF 2F CD D7 FE CMP $FED7 und mit Maximalwert plus 1 = 36 vergleichen

EF32 90 FO BCC $EF24 ok, nachster Track
EF34 68 PLA
EF 35 85 80 STA $80 Tracknummer zurückholen

EF37 4C BA DS JIMP $D5BA BAM auf Diskette schreiben

BEER EEE Pufferzeiger fiir BAM setzen
EFSA 20 OF Fi JSR $FLOF 6 für Drive 0 holen
EF 3D AA TAX
EF SE 20 DF FO JSR $FODF Puffer belegen

EF41 A& F9 LDX $F9 Puffernuaner

EF43 BD EO FE LDA $FEEO,X Pufferadresse, hi Byte

EF 464 85 6E STA $6E
EF 48 A? 00 LDA #800 lo Byte
EF 4A 85 4D STA $4D Zeiger nach $6D/$4E
EF4C 60 RTS

EHEELAERERAAKELHKRLERELEREREEE Anzahl freie Blocks für Directory holen

EF4D Ab 7F LDX $7F Drivenuaner

EF 4F BD FA 02 LDA $02FA,X Anzahl Blocks lo

EFS2 BD 72 02 STA $0272

EFSS BD FC 02 LDA $02FC,X Anzahl Blocks hi

EFS8 8D 73 02 STA $0273 in Puffer fir Directory

EFS5B 60 RTS

RERELELEELERLELEREEERELEREEES Block als frei kennzeichnen

EFSC 20 Fi EF JSR $EFFI Pufferzeiger setzen
EFSF 20 CF EF JSR $EFCF Bit für Sektor in BAM löschen
EF62 38 SEC

EF 43 DO 22 BNE $EF87 Block bereits frei, dann fertig

EF 465 Bi 4D LDA ($6D),Y Bitmuster der BAM
EF 67 iD EI EF ORA S$EFE9,X Bit X setzen, Kennzeichen für frei

EF6A 91 6D STA ($6D),Y
EF 4C 20 88 EF JSR $EFBB Flag für BAM geändert setzen

EF OF A4 &F LDY $6F
EF71 18 CLC
EF72 Bi 4D LDA ($6D),Y
EF74 69 01 ADC #$01 Anzahl der freien Blocks pro Track erhöhen

EF 76 91 4D STA ($6D),Y
EF78 AS 80 LDA $80 Track
EF7A CD 85 FE CMP $FEBS gleich 18 ?
EF7D FO 3B BEQ $EFBA dann übergehen

EF 7F FE FA 02 INC $02FA,X Anzahl der freien Blocks der Diskette erhöhen

EF82 DO 03 BNE $EF87

EF84 FE FC 02 INC $O2FC,X Anzahl Blocks hi erhöhen

EF87 60 RTS

ae Flag für “BAM geändert’ setzen
EF88 Aé 7F LDX $7F Drivenumser

EFBA AI 01 LDA #$01

EFS8C 9D 51 02 STA $0251,X Flag gleich eins

EFSF 60 RTS

HHERHEE AHH ERHRHREREKEHEREREREEEH Block als belegt kennzeichnen

EF90 20 Fi EF JSR $EFF1 Pufferzeiger setzen

EF93 20 CF EF JSR $EFCF Bit fiir Sektor in BAM léschen

EF96 FO 36 BEQ $EFCE bereits belegt, dann fertig

EF98 Bi 4D LDA ($6D),Y

EF9A 3D E9 EF EOR $EFE9,X Bit des Blocks umkehren (löschen)

EF®D 91 4D STA ($6D),Y

EF QF 20 88 EF JSR $EFBB Flag fiir BAM geändert setzen

EFA2 A4 6F LDY $éF

EFA4 Bi 4D LDA ($6D) ,Y

EFAS 38 SEC

EFA7 EI 01 SBC #801 Anzahl der Blocks pro Track erniedrigen

EFA? 91 4D — STA ($4D),Y

EFAB AS 80 LDA $80 Track

EFAD CD 85 FE CMP $FEBS i8 ?

EFBO FO OB BEQ $EFBD Directorytrack aussparen

EFB2 BD FA 02 LDA $02FA,xX Anzahl freie Blocks lo

EFBS DO 03 BNE $EFBA

EFB7 DE FC 02 DEC $O2FC,X Anzahl der freien Blocks erniedrigen

EFBA DE FA 02 DEC $02FA,X
EFBD BD FC 02 LDA $02FC,X Anzahl freie Blocks hi

EFCO DO OC BNE $EFCE mehr als 255 Blocks frei ?

EFC2 BD FA 02 LDA $02FA,X freie Blocks lo
EFCS C9 03 CMP #$03
EFC7 BO 05 BCS $EFCE weniger als 3 ?

EFC9 AQ 72 LDA #$72
EFCB 20 C7 E6& JSR $E6C7 72, ‘disk full’
EFCE 60 RTS

ERKREERER RE REEEEE EERE LEE RHE RES Bit für Sektor in BAM-Eintrag löschen

EFCF 20 11 FO JSR $FO11 sucht BAM-Feld fiir diesen Track
EFD2 98 TYA
EFDS 85 OF STA $6F
EFDS AS 81 LDA $81 Sektor

EFD7 4A LSR A
EFDS 4A LSR A durch 8 teilen
EFD9 4A LSR A
EFDA 38 SEC
EFDB 65 6F ADC $6F
EFDD A8 TAY Bytenummer in BAM-Eintrag
EFDE AS 81 LDA $81 Sektornumaer

EFEO 29 07 AND #$07
EFE2 AA TAX Bitnummer in BAM-Eintrag

EFE3 Bi 4D LDA ($6D),Y Byte in BAM
EFES 3D EI EF AND $EFE9,X Bit fiir Sektor löschen entspricht belegt

Br Zmeierpotenzen
EFE9 Q1 02 04 08 10 20 40 80

KEREEERERERKKKERRERTT TEN RNER

EFFi AI FF LDA #$FF
EFF3 2C FF 02 BIT $02F9
EFF& FO OC BEQ $F004
EFFB 10 OA BPL $F004
EFFA 70 08 BVS $F004
EFFC AF 00 LDA #$00
EFFE 8D F9 02 STA $02F9
FOOL 4C BA DS = JMP $D58A
FOO4 60 RTS
EERRELAREREREE EER ER EER EREREEES
FOOS 20 SA EF JSR $EFSA
FOO8 AO 00 LDY #$00
FOOA 98 TYA
FOOB 91 4D STA ($4D),Y
FOOD c8 INY .
FOOE DO FB BNE $FOOB
FO10 60 RTS

LEI TI EEE 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2)

FOil AS 6F LDA $6F
FO13 48 PHA
FO14 AS 70 LDA $70
FO16 48 PHA
FO17 AG 7F LDX $7F
FO19 BS FF LDA $FF,X
FOIB FO 05 BEQ $F022
FOiD AI 74 LDA #$74
FOIF 20 48 E64 JSR $E648
FO22 20 OF Fi JSR $Fi0F
FO2S 85 6F STA $6F
F027 BA TXA
FO28 OA ASL A
F029 85 70 STA $70
FO2B AA TAX
FO2C AS 80 LDA $80
FOZE DD 9D 02 CMP $029D,X
FO31 FO OB BEQ $FOSE
F033 EB INX
FO34 86 70 STX $70
FO36 DD 9D 02 CMP $029D,X
F039 FO 03 BEQ $FOSE
FO3B 20 SB FO JSR $FOSB
FOSE AS 70 LDA $70
F040 Ab 7F LDX $7F
FO42 9D 9B 02 STA $029B,X
FO45 OA ASL A
FO46 OA ASL A
FO47 18 CLC
FO48 69 Al ADC #$Ai
FO4A 85 46D STA $6D
FO4C AP 02 LDA #$02
FO4E 69 00 ADC #$00
FO50 BS 6E STA $6E
F052 AO 00 LDY #$00
F054 68 PLA

BAM nach Änderung schreiben

Flag rücksetzen

Block schreiben

BAM-Puffer löschen

Zeiger $6D/$6E auf BAM-Puffer

BAM-Puffer löschen

Drivenummer

Drive Null ?

‘drive not ready’

Puffernummer fiir BAM holen

Track

Drivenummer

mal 4

232

FOSS 85 70 STA $70
F057 68 PLA
FOSB 85 4F STA $6F
FOSA 40 RTS

BEER TER ER

FOSB Ab 6F LDX $4F
FOSD 20 DF FO JSR $FODF
FO60 AS 7F LDA $7F Drivenummer

FO42 AA TAX
F063 OA ASL A
F064 1D 9B 02 DORA $029B,X
F067 49 01 EOR #$01
F069 29 03 AND #$03
FOSB BS 70 STA $70
FO&D 20 AS FO JSR $FOAS
FO70 AS FQ LDA $F9 Puffernummer

FO72 OA ASL A
F073 AA TAX
FO74 AS 80 LDA $80 Track
FO76 OA ASL A
FO77 OA ASL A mal 4
F078 95 99 STA $99,X gleich Zeiger in BAM-Feld

FO7A AS 70 LDA $70
FO7C 0A ASL A
FO7D OA ASL A
FO7E AB TAY
FO7F Al 99 LDA ($99,X)
FOBi 99 Al 02 STA $02A1,Y
F084 A9 00 LDA #$00
FOB4 81 99 STA ($99,X) Null in Puffer
FOBB Fé 99 INC $99,X Pufferzeiger erhöhen

FOBA CB INY
FO8B 98 TYA
FOBC 29 03 AND #$03
FOBE DO EF BNE $FO7F
F090 =Ab 70 LDX $70
F092 AS 80 LDA $80 Track
FO94 9D 9D 02 STA $029D,X
F097 AD FI 02 LDA $02F9
FO9A DO 03 BNE $FO9F

FO9C 4C 8A DS JMP $DSB8A Block schreiben

FO9F 09 80 ORA #$80

FOAL 8D F9 02 STA $02F9

FOA4 60 RTS

FOAS AB TAY

FOA& BY 9D 02 LDA $029D,Y

FOA9 FO 25 BEQ $FODO

FOAB 48 PHA

FOAC AI 00 . LDA #800

FOAE 99 9D 02 STA $029D,Y

FOBL AS F9 LDA $F9 Puffernumar

FOBS OA ASL A mal 2

FOB4 AA TAX

rh

ti

te
d

99

02

D2

Ct

00

FE

DS

$99,X

>

PD

$02A1,Y

#$00
$029D,X

$029D,X

$A7,X
#$FF
$FLOA

$D28E

$FOF2
#$70
$C1CB
$F9

#$80
$00A7,Y

A

$FEBS
$06,X
#800
$07,X
$0586

#$0F
$F9

in Puffer schreiben

Pufferzeiger erhöhen

Drivenummer

70, ‘no channel’

18, Directorytrack

merken

0

als Sektor

Block schreiben

Puffernummer

HEEKEREHERRELEEEEEEEERREEEREEH Puffernummer fiir BAM holen

FiOF A? 06 LDA #$06

Fill A& 7F LDX $7F Drivenummer

F113 DO 03 BNE $F118

Fi15 18 CLC

Fiié 69 07 ADC #$07 gibt 13 fiir Drive 0

Fils 60 RTS

EELKEEHEKAHAEREEREREEREERERERE Puffernummer für BAM nach X

F119 20 OF Fi JSR $FIOF Puffernummer holen

Fiic AA TAX

FLid 60 RTS

EHKEREEEEE HERE EEK freien Block in BAM suchen und belegen

Fi1E 20 3E DE JSR $DESE Track und Sektornummer holen

F121 A9 03 LDA #$03

F123 B85 OF STA $6F Zahler

Fi25 A9 O1 LDA #$01

Fi27 OD FI 02 DRA $02F9
Fi2A 8D F9 02 STA $02F9
Fi2D AS 6F LDA $6F Zahler merken

F12F 48 PHA

F130 20 11 FO JSR $FO1i BAM-Feld zu diesem Track suchen

F133 68 PLA

F134 85 4F STA $6F Zähler zurückholen

F136 Bi 4D LDA ($6D),Y Anzahl der freien Bytes des Tracks

F138 DO 39 BNE $F173 noch Blocks frei ?

F13A AS 80 LDA $80 Track

F13C CD 85 FE CMP $FEBS 18, Directorytrack ?

F13F FO 19 BEQ $F1SA ja, ‘disk full’

Fi4i 90 1C BCC $FiSF kleiner, dann nächst niedrigerer Track

F143 Eé 80 INC $80 Tracknummer erhöhen

F145 AS 80 LDA $80

F147 CD D7 FE CMP $FED7 36, höchste Tracknummer plus eins

Fi4A DO Ei BNE $F12D nein, auf diesem Track weitersuchen

Fi4C AE 85 FE LDX $FE85 18, Directorytrack

Fi4F CA DEX erniedrigen

F150 86 B80 STX $80 als Tracknummer merken

Fi52 A9 00 LDA #$00

F154 85 Bi STA $81 mit Sektornummer null beginnen

F156 C& oF DEC $6F Zähler erniedrigen

F158 DO D3 BNE $F12D noch nicht null, dann weitersuchen

FISA AY 72 LDA #$72

F1i5c 20 C8 Ci JSR $Cics 72, ‘disk full’

FiSF [6 80 DEC $80 Tracknummer erniedrigen

Fidtl DO CA BNE $F1i2D noch nicht null, in diesem Track weitersuchen

F163 AE 85 FE LDX $FE85 18, Directorytrack

Fi646 E8 INX erhöhen

F1657 84 80 STX $80 als Tracknummer merken

F149 A? 00 LDA #$00

Fi6B 85 81 STA $81 mit Sektor null beginnen

FiéD C& 6F DEC $4F Zahler erniedrigen

F16F DO BC BNE $F12D noch nicht null, dann weiter suchen

F171 FO E7 BEQ $F15A sonst ‘disk full’

F173 AS 81 LDA $81 Sektornummer

235

F176 65 69 ADC $49 plus Schrittweite (10)

F178 85 81 STA $81 als neue Nummer

Fi7A AS 80 LDA $80 Tracknumaer

F17C 20 4B F2 JSR $F24B maximale Sektornummer holen

Fi7F BD 4E 02 STA $024E

F182 8D 4D 02 STA $024D und merken

F185 C5 8i CMP $81 größer als gewählte Sektornummer ?

F187 BO OC BCS $F195 ja

F189 38 SEC sonst

F18A AS 81 LDA $81 Sektornummer

FiBC ED 4E 02 SBC $024E minus maximale Sektornummer

FiBF 85 81 STA $81 als neve Sektornummer merken

F191 FO 02 BEQ $F195 null ?

F193 Cé 81 DEC $81 sonst Sektornummer um eins erniedrigen

F195 20 FA Fi JSR $FiFA BAM prüfen, freien Sektor suchen

Fi98 FO 03 BEQ $Fi9D nicht gefunden ?

F19A 4C 90 EF JMP $EF9O Block in der BAM belegen

Fi9D AY 00 LDA #$00

Fi9F B85 8i STA $81 Sektor Null

FiAI 20 FA Fi JSR $FiFA freien Sektor ab Nummer 0 suchen

FiA4 DO F4 BNE $F19A gefunden ?

FiAdé 4C FS Fl JMP $F1FS nein, ‘dir error’

HRKEKKHEEEEKRHKKEAHRERKEERERRREEE Freien Sektor suchen und belegen

FLA9 AY 01 LDA #$01

FiAB OD FF 02 ORA $02F9

FiAE 8D F9 02 STA $02F9

FiBi AS 84 LDA $84

F1B3 48 PHA

F1B4 AG 01 LDA #$01 Trackzahler

FiBé 85 86 STA $86

F1B8 AD 85 FE LDA $FE85 18, Directorytrack

FiBB 38 SEC

FiBC ES 86 SBC $86 minus Zahler

FiBE 85 80 STA $80 als Tracknummer merken

Fico 90 09 BCC $FiCB Ergebnis kleiner gleich Null ?

FIC2 FO 07 BEQ $FiCB dann oberhalb Directory versuchen

FiC4 20 11 FO JSR $FOil BAM-Feld zu diesem Track suchen

F1C7 Bi 6D LDA ($6D),Y Anzahl der freien Blocks in diesem Track

FiC9 DO 1B BNE $FiEé freie Blocks vorhanden

FiCB AD 85 FE LDA $FEBS 18, Directorytrack

FICE 18 CLC

F1iCF 65 84 ADC $84 plus Zahler

FiDi B5 80 STA. $80 als Tracknummer merken

FiD3 E4 86 INC $86 Zähler erhöhen

FiDS CD D7 FE CMP $FED7 36, maximale Tracknummer plus eins

F1D8 90 05 BCC $FiDF kleiner, dann ok

FiDA AQ 67 LDA #$67 .

F1DC 20 45 E& JSR $E645 67, ‘illegal track or sector’

FiDF 20 11 FO JSR $FOli BAM-Feld zu diesem Track suchen

FiE2 Bi &D LDA ($6D),Y Anzahl der freien Blocks in diesem Track

FiE4 FO D2 BEQ $F1B8 kein Block mehr frei ?

F1E6 68 PLA

F1E7 BS 86 STA $84

F1E9 A9 00 LDA #$00

FIEB 85 81 STA $81
FIED 20 FA Fi JSR $FIFA
FIFO FO 03 BEQ $FiFS
FiF2 4€ 90 EF JMP $EF90

FIFS A971 LDA #$71
FIFT 20 45 E& JSR $6645

TE SSSSELSESASLE SESS SELES LEE SS ES

FIFA 20 11 FO JSR $FO1t
FIFD 98 TYA
FIFE 48 PHA
FIFF 20 20 F2 JSR $F220
F202 AS BO LDA $80
F204 20 48 F2 JSR $F24B
F207 BD 4E 02 STA $024E
F20A 68 PLA
F20B 85 4F STA $éF
F20D AS 81 LDA $81
F20F CD 4E 02 CMP $024E
F212 BO 09 BCS $F21D
F214 20 DS EF JSR $EFDS
F217 DO 06 BNE $F21F
F219 £6 Bl INC $81
F21B DO FO BNE $F20D
F21D Ag 00 LDA #$00
F21F 60 RTS

HEKLEKEHEERE KKHEKREKRERHEKKEKREKRKEHKE

F220 AS 4F LDA $4F
F222 48 PHA
F223 a9 00 LDA #$00
F225 85 6F STA $6F
F227 AC 86 FE LDY $FE84
F22A 88 DEY
F22B A2 07 LDX #$07
F22D Bi 4D LDA ($6D) ,Y
F22F 3D E9 EF AND $EFE9,X
F232 FO 02 BEQ $F236
F234 £6 OF INC $4F
F236 CA DEX
F237 10 F4 BPL $F22D
F239 88 DEY
F23A DO EF BNE $F22B
F23C Bi 4D LDA ($6D),Y
F23E C5 6F CMP $6F
F240 DO 04 BNE $F244
F242 48 PLA
F243 85 4F STA $6F
F245 40 RTS
F246 49 71 LDA #$71
F248 20 45 £6 JSR $E645

FHRKEERKEKEKRKREKTEKERKHKEHEKKHEKHS

F24B AE DS FE LDX $FED6
F24E DD DS FE CMP $FED6,X

Sektor 0

freien Sektor suchen

nicht gefunden ?

Block in BAM belegen

71, ‘dir error’

freien Sektor auf aktuellem Track suchen

BAM-Feld zu diesem Track suchen

zeigt auf Anzahl der freien Blocks

BAM überprüfen

Track

maximale Sektornummer des Tracks holen

merken

Zeiger merken

Sektor

mit Maximalzahl vergleichen

größer oder gleich ?

Bitnummer des Sektors holen

Sektor frei ?

Sektornummer erhöhen

und priifen ob frei

kein Sektor frei

Sn

Anzahl freie Blocks in BAM überprüfen

Zähler auf null

4, Anzahl Bytes pro Track in der BAM

Bit isolieren

bei freiem Sektor Zähler erhöhen

mit Anzahl auf Diskette vergleichen

ungleich, dann Fehler

71, ‘dir error’

Anzahl Sektoren pro Track bestimmen

4 verschiedene Werte

Tracknummer

237

F251 CA DEX
F252 BO FA BCS $F24E
F254 BD Di FE LDA $FED1,X
F257 40 RTS

F258 40 RTS

Lu 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 22 220

F259 AI OF LDA %$6F
F25B 8D 02 IC STA $1C02
F25E 29 FO AND #$FO
F260 8D 00 1C STA $1000
F263 AD OC 1C LDA $1COC
F266 29 FE AND #$FE
F268 09 OE DORA #$0E
F26A 09 EO ORA #$E0
F26C 8D OC 1C STA $1COC
F26F AD 41 LDA #$41
F271 BD OB 1€ STA $iCOB
F274 AG 00 LDA #$00
F276 BD 06 1C STA $1006
F279 AG 3A LDA #$3A
F27B 8D 07 1C STA $1C07
F27E 8D 05 1C STA $1C05
F281 AQ 7F LDA #$7F
F283 8D OE IC STA $1C0E
F286 A? CO LDA #$C0
F288 8D OD IC STA $1COD
F28B BD OE IC STA $1C0E
F2BE AD FF LDA #$SFF
F290 85 3E STA $3E
F292 8551 STA $51
F294 AY 08 LDA #$08
F296 85 39 STA $39
F298 AY 07 LDA #$97
F29AR BS 47 STA $47
F29C A? 05 LDA #$05
F29E 85 42 STA $62 ©
F2ZA0 AI FA LDA #$FA
F2A2 85 63 STA $43
F2A4 AI CB LDA #$C8
F2ZA6 85 64 STA $64
F2A8 AD 04 LDA #$04
FZAA 85 SE STA $5E
F2AC AD 04 LDA #$04
F2AE 85 SF STA $5F

ERERERELERRERERELEERERERERERES

F2BO BA TSX
F2B1 86 49 STX $49
F2B3 AD 04 IC LDA $1004
F2B6 AD OC Ic LDA $1COC
F2B9 09 OE DRA #$0E
F2BB BD OC IC STA $1COC
F2BE AO 05 LDY #$05
F2CO BI 00 00 LDA $0000,Y

noch größer ?

Anzahl der Sektoren holen

Initialisierung für Disk Controller

Bit 4 (Write Protect) und 7 (SYNC) Eingang

Datenrichtungsregister Port B

Port B, Steuerport

PCR, Kontrollregister

Timer 1 free running, Port A Latch enable

Timer 1 lo Latch

Timer 1 Hi Latch

Timer 1 Hi

IRQs löschen

IER, Interrupts erlauben

Trackzahler fiir Formatierung

8

Konstante fiir Blockheader

7

Konstante fiir Datenblock

Zeiger $62/$63 auf $FA05

200

IRB-Routine fiir Disk-Controller

Stackpointer merken

Interruptflag vom Timer löschen

Auftrag fiir Puffer Y ?

%

238

F3

F9

F9

FQ

F9

F3

nein

Kode für Programm im Puffer ausführen ?

nein

Programm im Puffer ausführen

Drivenummer isolieren

Drive null ?

sanst

74, ‘drive not ready’

lauft Motor ?

ja
Laufwerksmotor einschalten

Flag setzen

zur Jobschleife

Kopftransport schon programmiert ?

zur Jobschleife

nächsten Puffer prüfen

zur Jobschleife

Kopftransport programmieren

Pufferzähler initialisieren

Zeiger in Puffer setzen

liegt Auftrag für Puffer vor ?

Zähler erniedrigen

nächsten Puffer prüfen

Puffernummer

Zeiger in Puffer setzen

Trackdifferenz zu letztem Job

als Zähler für Kopftransport

Flag für Kopftransport setzen

Tracknummer aus Puffer holen

zur Jobschleife

Drivenummer isolieren

gleich Drivenummer des letzten Jobs ?

nein

letzte Tracknuamer

gleich null ?

239

F32B Fi 32 SBC ($32),Y gleich der Tracknummer dieses Jobs ?

F32D FO OD BEQ $F33C ja

F32F 49 FF EOR #$FF

F331 B5 42 STA $42

F333 E& 42 INC $42

F335 AS SF LDA $3F Drivenuamer

F337 85 41 STA $41

F339 4C 06 F3 JMP $F306 weiter prüfen

F33C A2 04 LDX #$04

F33E Bi 32 LDA ($32),Y Tracknummer des Jobs

F340 85 40 STA $40 merken

F242 DD Ds FE CMP $FED6,X mit maximaler Tracknummer vergleichen

F346 BO FA BCS $F342 größer ?
F348 BD Dl FE LDA $FEDL,X Sektorzahl pro Track holen

F34B 85 43 STA $43 und merken

F34D BA TXA
F34E OA ASL A
F34F oA ASL A
F350 OA ASL A Nummer des Spurbereichs mal 32

F351 OA ASL A
F352 0A ASL A
F353 85 44 STA $44 gibt 0, 32, 64, 94
F355 AD 00 1C =6°LDA $1000
F358 29 OF AND #$9F
FSSA 05 44 ORA $44 Steuerbyte fiir Motor generieren

F35C BD 00 IC STA $1000
F35F Aé 3D LDX $3D
F341 AS 45 LDA $45 Befehlskode

F363 C9 40 CMP #$40 Kopf positionieren ?

F365 FO 15 BEG $F37C #8 ja
F347 C9 40 CMP #$60 Befehlskode für Programa im Puffer ausführen ?

F369 FO 03 BEQ $F36E ja
F36B ac Bi F3 JMP $F3B1 Blockheader lesen

BEE Programm im Puffer ausführen
F36E AS 3F LDA $3F Puffernumaer

F370 18 CLC
F371 69 03 ADC #$03 plus 3
F373 85 31 STA $31
F375 A9 00 LDA #$00 gleich Adresse des Puffers

F377 85 30 STA $30
F379 6C 30 00 JMP ($0030) Programm im Puffer ausführen

ERKEKEAEHEEREEEREEEEEREEEEEEEY Kopf positionieren

F37C AY 60 LDA #$60
F37E 85 20 STA $20 Flag fiir Kopftransport setzen

F380 AD 00 IC LDA $1000
F383 29 FC AND #$FC Steppermotoren einschalten

F385 BD 00 iC STA $1000
F388 AI A4 LDA #$A4 164
F38A 85 4A STA $4A Schrittzähler fiir Kopftransport

F38C AY 01 LDA #$01
F38E 85 22 STA $22 Tracknuamer

F390 4C 69 F9 JMP $F969 ok

240

Aero Zeiger in Puffer initialisieren

F393 A4 3F LDY $3F Puffernummer

F395 BI 00 00 LDA $0000,Y Befehlskode

F398 48 PHA aerken

F399 10 10 BPL $F3AB

F39B 29 78 AND #$78 Bit 0,1,2 und 7 löschen

F39D 85 45 STA $45

F39F 98 TYA Puffernummer

F3A0 OA ASL A mal 2

FSAI 69 06 ADC #$06 plus 6

FSA3 85 32 STA $32 gleich Zeiger auf aktuellen Puffer
F3AS 98 TYA Puf fernummer

F3AG6 18 CLC

F3A7 69? 03 ADC #03 plus 3

F3A9 «85 31 STA $31 gleich Pufferadresse hi
F3AB AO 00 LDY #$00

F3AD 84 30 STY $30 Pufferadresse lo

FSAF 68 PLA Befehlskode zurückholen

F3BO 60 RTS

er Blockheader lesen, ID überprüfen

FSB1 A2 SA LDX #$5A 90

F3B3 84 4B STX $4B Zähler

F3BS A2 00 LDX #00

F3B7 AY 52 LDA #$52 82

F3B9 85 24 STA $24

F3BB 20 56 FS JSR $F556 SYNC abwarten

F3BE 50 FE BVC $F3BE Byte Ready ?

F3CO B8 CLV

F3C1i AD 01 IC LDA $i1COl Daten vom Lesekopf

F3C4 C5 24 CMP $24

F3C6 DO 3F BNE $F 407 20, ‘read error’

F3C8 30 FE BVC $F3C8 Byte Ready ?

F3CA B8 CLV

F3CB AD 01 IC LDA $1C01 Datenbyte von Diskette (Blockheader)

F3CE 95 25 STA $25,X 7 Bytes speichern

F3DO EB INX

F3D1 EO 07 CPX #$07

F3D3 DO F3 BNE $F3C8 weiter einlesen

F3D5 20 97 F4 JSR $F497

F3D8 AO 04 LDY #$04 4 Byte plus Parity

F3DA A? 00 LDA #$00

F3DC s7 16 00 EOR $0016,Y Prüfsumae über Header bilden

F3EO 10 FA BPL $F3DC
F3E2 C9 00 CMP #$00 Parity in Ordnung ?

F3E4 DO 38 BNE $F41E 27, write error’

F3E6 A& 3E LDX $3E Drivenummer

FIE8 AS 18 LDA $18 Tracknummer des Headers

F3EA 95 22 STA $22,X als aktuelle Tracknummer übernehmen

FSEC AS 45 LDA $45

F3EE C9 30 CMP #$30 Kode für ‘Header übernehmen’

F3FO FO IE BEQ $F 410 Header übernehmen

F3F2 AS 3E LDA $3E

F3F4 0A ASL A

F3F5 AB TAY

241

F3F6 BI 12 00 LDA $0012,Y

F3F9 C5 14 CMP $16 ID1 vergleichen

F3FB DO 1E BNE $FAiB

F3FD BI 13 00 LDA $0013,Y

F400 C5 17 CMP $17 ID2 vergleichen

F402 DO 17 BNE $F41B ungleich, dann 29, ‘disk id mismatch’

F404 4C 23 F4 JMP $F423

F407 Cé& 4B DEC $4B Zähler für Versuche erniedrigen

F409 DO BO BNE $F3BB und nochmal probieren

F40B Ad 02 LDA #$02 ansonsten

F40D 20 69 F9 JSR $F969 20, ‘read error’

HHKKERERESERREREKEERHEEESEESER Blockheader übernehmen

F410 AS 14 LDA $16 IDi

F412 85 12 STA $12

F414 AS 17 LDA $17 und ID2

F414 85 13 STA $13 übernehmen

F418 AI O1 LDA #$01 ok

F41A 2C ~BYTE $2C

F41B AI OB LDA #$0B 29, ‘disk id mismatch’

F41D 2C .BYTE $2C

F4&l1eE AI 09 LDA #$09 27, ‘write error’

F420 4C 69 F9 JMP $F969 Abschluß

HHEREHEEAEEELEREE ERE REE REREEES

F423 AQ 7F LDA #$7F

F425 85 4C STA $4C

F427 A5 19 LDA $19

F429 18 CLC

F42A 69 02 ADC #$02

F42C CS 43 CMP $43

F42E 90 02 BCC $F 432

F430 ES 43 SBC $43

F432 B5 4D STA $4D

F434 A2 05 LDX #$05

F436 B46 3F STX $3F

F438 A2 FF LDX #$FF

F4sA 20 93 FS JSR $F393 Pufferzeiger fiir Disk-Controller setzen

F43D 10 44 BPL $F 483

FASF 85 44 STA $44

F441 29 01 AND #$01

F443 C5 3E CMP $3E

F445 DO 3C BNE $F 483

F447 AO 00 LDY #$00

F449 Bi 32 LDA ($32),Y

F44B C5 40 CMP $40

F44D DO 34 BNE $F483

F44F AS 45 LDA $45 Befehlskode

F451 C9 60 CMP #$60

F453 FO OC BEQ $F46i

F455 AO O1 LDY #$01

F457 38 SEC

F458 Bi 32 LDA ($32),Y

F45A ES 4D SBC $4D

F4SC 10 03 BPL $F4él

242

F9

FS

F4

F7

F7

zur Jobschleife

Puffernummer holen

Befehlskode

weiter prüfen

Zeiger $30/$31 retten

Zeiger $30/$31 auf $24

243

F4C6 68 PLA Zeiger $30/$31 zurückholen

F4C7 85 30 STA $30

F4C9 60 RTS

FERERERKEKETTEK KHK KET ERE EHH HN N

F4CA CC? 00 CMP #$00 Befehlskode fiir ‘Lesen’ ?

F4CC FO 03 BEQ $F4D1 ja

FACE 46 6E FS JMP $FS6E Befehlskode weiter prifen

F4D1 20 OA FS JSR $F50A Datenblockanfang suchen

F4D4 50 FE BVC $F4D4 Byte Ready ?

F4Dé BS CLV

F4D7 AD 01 1C LDA $1C01 Datenbyte holen

F4DA 91 30 STA ($30),Y und in Puffer schreiben

F4DC C8 INY 256 mal

F4DD DO FS BNE $F4D4

F4DF AO BA LDY #$BA

F4Ei 30 FE BVC $FAEI Byte Ready ?

F4E3 B8 CLV

F4E4 AD 01 Ic LDA $1C01 Bytes lesen

F4E7 99 00 01 STA $0100,Y nach $1BA bis $IFF

F4EB DO F4 BNE $F4E1

F4ED 20 EO FB JSR $FBEO

F4AFO AS 38 LDA $38

F4AF2 C5 47 CMP $47 gleich 7, Beginn Datenblock ?

FaF4 FO 05 BEQ $F4FB ja

F4F& AG 04 LDA #$04 22, ‘read error’

FAFB 4C 69 FY JMP $F949 Fehlerabschluß

FAFB 20 EI FS JSR $FSE9 Parity des Datenblock berechnen

F4FE C5 3A CMP $3A Ubereinstimmung ?

F500 FO 03 BE@ $F505 ja

F502 A? O05 LDA #$£05 23, ‘read error’

F504 2C ‚BYTE $2C

FS05 AI 01 LDA #$01 ok

F507 AC 69 FQ JMP $F969 Fehlermeldung bereitstellen

HHHHELERRELERERELEREREEEREELER Datenblockanfang suchen

FSOA 20 10 FS JSR $F510 Blockheader lesen

F50D 4C 56 FS UMP $F554 SYNC abwarten

KEKKKERKHEKERKEREHRERSHEEREESESS = Blockheader lesen

F510 AS 3D LDA $3D Drivenummer

FS12 oA ASL A

F513 AA TAX

FS14 BS 12 LDA $12,X ID1i

F516 85 16 STA $16 merken

F518 BS 13 LDA $13,X ID2

FSLA 85 17 STA $17 merken

FSic AQ 00 LDY #$00

FSIE Bi 32 LDA ($32),Y Track

F520 85 18 STA $18

F522 CB INY

F523 Bi 32 LDA (#32),Y und Sektornummer aus Puffer holen

FS25 85 19 STA $19

244

FS27 AI 00 LDA ##00

F529 45 16 EOR $164

FS2B 45 17 EOR $17

FS2ZD 45 18 EOR #18

FO2F 45 19 EOR $19

FS31 BS 1A STA $1A

F333 20 34 F9 JSR $F934

F536 A2 SA LDX #458

F538 20 56 FS JSR $F556

FS3B AO 00 LDY #800

FS5D s0 FE BVC $F53D

FSSF BB CLV

F540 AD 01 1C LDA $1C01

F543 D9 24 00 CMP $0024,Y

F546 DO 04 BNE $FS4E

F548 C8 INY

F549 CO 08 CPY #$08

FS4B DO FO BNE $F53D

F54D 60 RTS

FO4E CA DEX

FS4F DO E7 BNE $F538

FSi A? 02 LDA #$02

FS53 4C 69 F9 UMP $F949

LE 2 2 2 2 22 22 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 EE

F556 AI DO LDA #$D0

F558 8D 05 18 STA $1805

FSB A? 03 LDA #$03

FSD 2C 05 18 BIT $1805

F560 10 Fi BPL $F553

F562 2C 00 IC BIT $1C00

F565 30 Fé BMI $F55D

F567 AD O1 1C LDA $#1C01

FSAA BS CLV

FS6B AQ 00 LDY #$00

F54D 60 RTS

HER 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

FS6E C9 10 CMP #$10

F570 FO 03 BEQ $F575

F572 4C 91 Fé JMP $F491

HEEL 2 EE EE

FS75 20 E9 FS JSR $FSE9

FS78 BS 3A STA #3A

FS7A AD 00 1C LDA $1000

FS7D 29 10 AND #$10

FS7F DO 05 BNE $F586

FSBi A? 08 LDA #$08

F583 4C 69 F9 JMP $F969

F586 20 8F F7 JSR $F78F

F589 20 10 FS JSR $F510

FS8C A2 09 LDX #$09

FOSE 30 FE BVC $FSBE

Parity für Blockheader berechnen

und merken

90 Versuche

SYNC abwarten

Byte Ready ?

Daten vom Blockheader lesen

mit gespeicherten Daten vergleichen

ungleich, dann nochmal versuchen

schon 8 Bytes gelesen ?

nein

Zähler erniedrigen

noch nicht null ?

20, ‘read error’

SYNC abwarten

208

Timer starten

Fehlerkode

Timer abgelaufen, dann 2

SYNC-Signal

nocht nicht gefunden ?

Byte lesen

1 , ‘read error’

Befehlskode für ‘Schreiben’

ja

Befehlskode weiter prüfen

Datenblock auf Diskette schreiben

Parity für Puffer berechnen

und speichern

Port B lesen

Bit für ‘Write Protect’

nicht gesetzt, ok

26, ‘write protect on’

Blockheader suchen

Byte Ready ?

245

isolieren

F590 BB CLY

FS91 CA DEX

FS92 DO FA BNE

F594 A? FF LDA

F396 8D 03 IC STA

F599 AD oc IC LDA

F59C 29 1F AND

FS9E 09 CO ORA

FSAO BD oC iC STA

FSAS3 AI FF LDA

FSAS A2 05 LDX

FSA7 8D 01 ic STA

FSAA BB CLV

FSAB 30 FE BVC

FSAD BB CLY

FSAE CA DEX

FSAF DO FA BNE

FSBi AO BB LDY

FSB3 BI 00 01 LDA

FSBö 50 FE BYC

FSB8 BB CLV

FSB9 BD 01 IC STA

FSBC C8 INY

FSBD DO F4 BNE

FSBF Bi 30 LDA

FSCt 50 FE BVC

FSC3 BB CLY

FSC4 BD 01 IC STA

F5C7 C8 INY

FSC8 DO FS BNE

FSCA 30 FE BYE

FSCC AD OC IC LDA

FOCF 09 EO ORA

FSD1 8D OC IC STA

FSD4 AF 00 LDA

FSD& 8D 03 1C STA

FSD9 20 F2 FS JSR

FSDC A4 3F LDY

FSDE BI 00 00 LDA

FSE1 49 30 EOR

FSE3 99 00 00 5TA

FSES6 4C Bi F3 JMP

EEE E

FSE9 AF 00 LDA

FSEB AB TAY

FSEC 51 30 EOR

FSEE c8 INY

FSEF DO FB BNE

FSF1 60 RTS

FSF2 AF 00 LDA

FSF4 85 2E STA

FSF64 85 30 5TA

FSFB 85 4F STA

FOFA AS 31 LDA

$F SAB
#$BB
$0100,Y
$F5B4

$1001

$F 5B3
($30) ,Y
$FSCi

s1C01

$0000,Y
$F3B1

#$00

($30) ,Y

$F SEC

#400
$2E
$30
$4F
$31

9 Bytes nach Blockheader überlesen

Port A (Schreib/Lesekopf) auf Ausgang

PCR auf Ausgabe umschalten

5 mal $FF auf Diskette schreiben

als SYNC-Zeichen

Bytes $1BB bis $1FF auf Diskette

Datenpuffer (25& Bytes) auf Diskette schreiben

Byte Ready ?

PER wieder auf Eingabe

Port A (Schreib/Lesekopf) auf Eingang

Befehlskode ‘Schreiben’ in ‘Verify’ umwandeln

Parity für Datenpuffer berechnen

246

F7

F7

F7

$53
($2E) ,Y

$54
($2E) ,Y

$55
($2E) ,Y

$36
$F7E6
$36
$52
($2E) ,Y

$53
($2E),Y

($2E),Y

$55
($2E) ,Y

$36
$F 424
$54
($30) ,Y

$55
($30) ,Y

$34
$F7E6
$34
$52
(830) ,Y

$53
($30) ,Y

$54
($30) ,Y

247

F663 AS 55 LDA $55
F665 91 30 STA (#30) ,Y
F667 CB INY
F668 84 36 STY $36
FobA CO BB CPY #$BB
FeoC 90 Ei BCC $F44F
FE AD 45 LDA #$45
F670 85 2E STA $2E
F672 AS 31 LDA $31
F674 85 2F STA $2F
F67& AO BA LDY #$BA
F678 Bi 30 LDA ($30),
F67A 91 2E STA ($2E),Y
F67C 88 DEY
F67D DO F9 BNE $F478
F47F Bi 30 LDA ($30),Y
F68i 91 2E STA ($2E),Y
F683 A2 BB LDX #$BB
F685 BD 00 OL LDA $0100,X
F688 91 30 STA ($30) ,Y
F68ßA CA INY
F68B EB INX
F68C DO F7 BNE $F685
F68E 84 50 STX $50
F490 60 RTS
ERKEKKLEKRE KEKE KEEKKKEEEKERERKEKEKEE

F691 C9 20 CMP #$20
F693 FO 03 BEQ $F498
F695 4C CA Fb JUMP $F4CA

F698 20 £9 F5 JSR $F5E9
F69B 85 3A STA $3A
F69D 20 8F F7 JSR $F7BF
FhAO 20 OA FS JSR $F50RA
F6A3 AO BB LDY #$BB
FAAS B9 00 01 LDA $0100,Y
FAB 50 FE BVC $F4A8
F6AA BB CLV
FOAB «6 4D 01 1C EOR $1C01
FAAE DO 15 BNE $F4C5
F6BO CB INY
F&Bi DO F2 BNE $F4A5
F6B3 Bi 30 LDA ($30) ,Y
F6BS 50 FE BVC $F6B5
F6B7 BB CLV
F6B8 AD OL IC EOR $1001
F6BB DO 08 BNE $F6C5
F£BD Ce INY
F6BE CO FD CPY #$FD
F6CO DO Fi BNE $F4B3
F6C2 AC 18 F4 IMP $F418

F605 A 07 LDA #$07
F6C7 4C 69 F9 IMP $F969

KKEEKHAKEKKKKHEREKREKEEKEKKKRKKEES

Befehlskode für ‘Verify’ ?

ja

Befehlskode weiter prüfen

Parity für Datenpuffer berechnen

und merken

Datenblockanfang suchen

Daten aus Puffer

Byte Ready ?

mit Daten von Diskette vergleichen

ungleich, dann Fehler

Daten aus Puffer

mit Daten von Diskette vergleichen

ungleich, dann Fehler

fehlerfreier Abschluß

25,

248

"write error’

F6CA 20 10 FS JSR $F510
F6CD AC 18 F4 JMP $F418

HEKKKERKRREEE 2 2 & 2 2 £ 2 2 2 2 2 & 2 2 2 2 2 0

F6DO A 00 LDA ##00
FeD2 85 57 STA $57
FoD4 85 5A STA $5A
FoDb A4 34 LDY $34
FoD8 AS 52 LDA $52
FDA 29 FO AND #$FO
F6DC 4A LSR A
FoDD 4A LSR A
F6DE 4A LSR A
FoDF 4A LSR A
FEO AA TAX
FeE1 BD 7F F7 LDA $F77F,X
F6EA 0A ASL A
FOES 0A ASL A
FSES OA ASL A
FoE7 85 56 STA $56
F6E9 AS 52 LDA #52
F6EB 29 OF AND #$0F
F6ED AA TAX
F6EE BD 7F F7 LDA $F77F,X
FOFL 6A ROR A
FoF2 66 57 ROR $57
FOF4 6A ROR A
F6FS 66 57 ROR $57
F6F7 29 07 AND #$07
F6F9 05 56 ORA $54
FOFB 91 30 STA (830) ,Y
F6FD CB INY
F6FE AS 53 LDA $53
F700 29 FO AND #$FO
F702 4A LSR A
F703 4A LSR A
F704 4A LSR A
F705 4A LSR A
F706 AA TAX
F707 BD 7F F7 LDA $F77F,X
F70A OA ASL A
F70B 05 57 ORA $57
F70D 85 57 STA $57
F70F AS 53 LDA $53
F711 29 OF AND #$0F
F713 AA TAX
F714 BD 7F F7 LDA $F77F,X
F717 24 ROL A
F718 2A ROL A
F719 2A ROL A
FTIR 2A ROL A
F7iB 85 58 STA $58
F7iD 2A ROL A
F7iE 29 01 AND #$01
F720 05 57 ORA $57
F722 91 30 STA ($30) ,Y

Blockheader lesen

fertig

Hi-Nibble isolieren

und in unteres Nibble schieben

als Index in Tabelle

mal 8

unteres Nibble isolieren

als Index in Tabelle

in Puffer

Pufferzeiger erhöhen

oberes Nibble isolieren

in unteres Nibble schieben

als Index in Tabelle

unteres Nibble

als Index

in Puffer

249

4

FQ

F7

F7

F7

A
A
A

$FI7F,X

A
$58
(830) ,Y

$F77F,X
A
A

#$7C
$59
$59
$55
#$F0

A
A

A

A

$F 77F,X
A

$5A
A

$5A
A

$50
4$03
$59
($30) ,Y

$F77F,X
$54
($30) ,Y

$34

Pufferzeiger erhöhen

Hi-Nibble isolieren

in Puffer

Pufferzeiger erhöhen

unteres Nibble

als Index

Hi-Nibble isolieren

in unteres Nibble schieben

als Index in Tabelle

in Puffer

Pufferzeiger erhöhen

unteres Nibble

als Index

in Puffer

Pufferzeiger erhöhen

und merken

30

EERE EE 2 2 2 2 2 2 2 22 2 22 22 272 22 2 2 220
12 13 0E OF 16 17

F787 09 19 1A 1B OD 1D 1E 15
F77F OA OB

EX 2 2 2 2 2 2 KE RKKERKEKKEKRERKEKRKKES

Fé

Fé

($2E) ,Y
$54

($2E),Y
$54

($2E) ,Y
$55

30

FO

$59

(830) ,Y
#$ Fo

A
A
A
A

$59
$59
($30) ,Y
#$0F

A
$5A

(830) ,Y
#$80

F845 4A LSR
F846 85 5B STA
F848 Bi 30 LDA
FBAA 29 03 AND
Fe4c OA ASL
F84D OA ASL
FB4E OA ASL
Fa4F 85 SC STA
Fesi CB INY
F852 DO 04 BNE
F854 AS 4E LDA
F856 85 31 STA
F858 A4 4F LDY
FB5A Bi 30 LDA
Fasc 29 EO AND
FBSE 2A ROL
F85F 2A ROL
F860 2A ROL
F861 2A ROL
F862 05 5C ORA
F864 85 SC STA
F866 Bi 30 LDA
F868 29 IF AND
F86A 85 SD STA
Feoc CB INY
F86D 84 34 STY
FBOF Ab 56 LDX
F871 BD AO FB LDA
F874 Ab 57 LDX
F876 1D CO FB ORA
F879 85 32 STA
FB7B Ab 58 LDX
F87D BD AO F8 LDA
FBBO Ab 59 LDX
F882 1D CO FB ORA
F885 85 53 STA
F887 Ab SA LDX
F889? BD AO FB LDA
F88C Ab SB LDX
F88E 1D CO FB ORA
F891 85 54 STA
FB93 Ab SC LDX
F895 BD AO FB LDA
F898 =A SD LDX
F89A 1D CO FB ORA
Fa9D 85 55 STA
FB9F 40 RTS

HEREKEKKE KEE RHE KKKAHKHKHREKEKS

F8A0 FF FF FF FF FF FF
FBAS FF 80 00 10 FF CO
F8BO FF FF 20 30 FF FO
F8BB FF 90 AO BO FF DO

F8CO FF FF FF FF FF FF
F8CB8 FF 08 00 01 FF OC

F8DO FF FF 02 03 FF OF 06 07

FeDB FF 09 OA OB FF OD OE FF

KEKE 2.

FBEO

F8E2

FBEA

FBE&

FEB

FSEA

F7

F7

LDA

($2E) ,Y

$54
($2E) ,Y

$55
($2E) ,Y

$36
$F7E4
$36
$52
($2E) ,Y

$F92B
$53
($2E) ,Y

$54
($2E) ,Y

$55
($2E) ,Y

$F90C
$53

FG

Fé

$3F
$0000,
$50
$F975
$FSF2
$F OOF
$49

$F2BE

#$A0

$20

$1C00

#504

$1C00

#$3C

$48

$3E

$20

#$10

$20

#$FF

$48

$1007

$1005

$1C00

#$10

$1E

$1E

£F9Bi

#401

Stackpointer zurückholen

Laufwerkmotor ausschalten

"Write Protect’

255

9

02

02

FA

FA

ic

FA

00

Laufwerkmotor ein

Zeiger $52/$63 auf $FA3B

FALC

FALE

FA20

FA22

FA24

FA26

FA2B

FAZA

FA2C

FAZE

FA3O

FA32

FA34

FA37

FA38

EREKEEHKEKELKE EE REEKREKREEREKREKE

FA3B AS 44 LDA $4A

FASD DO EF BNE $FA2E

FASE AG 4E LDA #$4E

FA4i 85 42 STA $62

FA43 AG FA LDA #$FA

FAAS B5 63 STA $43

FA47 AQ 05 LDA #$05

FA49 85 60 STA $40

FA4B 4C BE FA JMP $FABE

LE 2 2 3 2 2 2 22 2 2 2/2 2 2 2 2 2 22 2 2 2 2 2 22 2 2

FA4E C& 40 DEC $40

FASO DO 4C BNE $FABE

FAS2 AS 20 LDA $20

FAS4 29 BF AND #$BF

FAS6 85 20 STA $20

FASS AG 05 LDA #$05

FASA 85 42 STA $62

FASC AI FA LDA #$FA

FASE BS 63 STA $43

FA&O 4C BE FA JMP $FABE

LE 2 2 2 2 2 2 2/2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2

FA63 Cé& 4A DEC $4A

FA&S AE 00 IE LDX $1000

FA&B EB INX

FAG BA TXA

FAGA 29 03 AND #$03

FA&C 85 4B STA $4B

FAGE AD 00 iC LDA $1000

FA71 29 FC AND #$FC

FA73 05 4B ORA $48

FA7S BD 00 Ic STA $1000

FA78 4C BE FA JMP $FABE

LEEKERE 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2

FA7B 38 SEC

FA7C AD 07 IC LDA $1007

FA7F ES SF SBC $5F

gan

+1C00

$FAS9

Zeiger $62/$63 auf $FA7B

Schrittzahler fiir Kopftransport

erhohen

Schrittzahler fiir Kopftransport

noch nicht null ?

Zeiger $62/%63 auf $FA4E

Zahler auf 5

Zähler erniedrigen

noch nicht null ?

Bit & löschen

Zeiger $62/$63 auf $FA05

Schrittzähler für Kopftransport erniedrigen

Steppermotor aus

FABi BD 05 IC STA $1C05

FAB4 Ch 60 DEC $60

FAB6 DO OC BNE $FA94

FASS AS SE LDA $5E

FABA 85 40 STA #60

FABC AF 97 LDA #$97

FASE 85 42 STA #42

FA9O AI FA LDA #$FA

FAI2 85 63 STA $43

FA94 ac 2E FA JMP $FAZE

LE 22 2 22 2 2 22

FA97 C6 61 DEC $41

FA99 DO F9 BNE $FA94

FAIB AQ AS LDA #$A5

FA9D 85 62 STA $62

FAQF AI FA LDA #$FA

FAAL 85 63 STA $63

FAAS DO EF BNE $FA94

EEEHEREEEREER 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2

FAAS AD 07 1C LDA $1007

FAAB 18 CLC

FAA 65 OF ADC $5F

FAAB BD 05 1C STA $1005

FAAE C4 60 DEC $40

FABO DO E2 BNE $FA94

FAB2 AG AE LDA #$4E

FAB4 85 62 STA $42

FAB& AI FA LDA #$FA

FABS8 B5 63 STA $63

FABA A9 05 LDA #$05

FABC B5 60 STA $60

FABE AD OC IC LDA $1C0C

FACIL 29 FD AND #$FD

FACS BD OC iC STA $1C0C

FACS 60 RTS

EEE 2 2 KEELE REE EEE EERE EEE EE EEE

FAC7 AS Si LDA $51

FAC 10 2A BPL $FAFS

FACB Ab 3D LDX $5D

FACD A? 60 LDA #360

FACF 95 20 STA $20,X

FADI A? 01 LDA #$01

FADS 95 22 STA $22,X

FADS 85 Si STA $51

FAD7 A A4 LDA #$A4

FAD? 85 4A STA $4A

FADB AD 00 IC LDA $1C00

FADE 29 FC AND #$FC

FAEO BD 00 IC STA $1000

FAES AQ OA LDA #$0A

FAES BD 20 06 STA $0620

FAEB A? AO LDA #$A0

FAEA BD 21 06 STA £0621

Zahler erniedrigen

noch nicht null ?

Zahler neu setzen

Zeiger $62/$63 auf $FA97

Zeiger $62/$63 auf $FAAS

Zahler erniedrigen

noch nicht null ?

Zeiger $62/$63 auf $FA4E

Zahler auf 3

Bit 1 löschen

Formatierung

Tracknummer

Formatierung bereits im Gange ?

Drivenummer

Flag fir Kopftransport

setzen

Zieltrack setzen

laufende Tracknummer bei der Formatierung

164

Schrittzahler fiir Kopftransport

Steppermotor ein

10

Fehlerzahler

$621/#622 = 4000

zur Bestimmung der Trackkapazitat initialisieren

258

06

F9

FD

18
iC

#FOF

$0622

gFIIC

#00
(832) ,Y
$FBOO
(832) ,Y
$F99C

$1000

#$10

$F BOC

#408

$FDD3

$FDAS

$FDC3

#$55

$1C01

$FDE3

#FEOO

$F556

#$40

$180B

$180B

#$62

$1806

#300

$1807

$1805

#200

#300

$1000

$F B39

$1000

$FBSE

$1804

$1C00

$FBSC

$180D

A

$FB46

$FB43

$FBA3

##02

$FDD3

$71

$72

#$00

#300

$1804

$1000

4000 < Kapazität < 2#4000 Bytes

zurück in Jobschleife

zur Jobschleife

"Write Protect’ ?

nein

26, ‘write protect on’

10240 mal Kode #FF auf Diskette schreiben

($621/%422) mal Kode $FF auf Diskette

$55

zum Schreibkopf

und ($521/$622) mal auf Diskette

auf Lesen umschalten

Timer setzen, $FF (SYNC) suchen

Timer 1 free running

98 Taktzyklen, ca. O.1 ms

Timer starten

Zahler auf Null

SYNC gefunden ?

nein, warten

SYNC gefunden ?

warten bis SYNC-Bereich zu Ende

Interruptflag Timer zurücksetzen

SYNC gefunden ?

nicht SYNC-Bereich ($55) zu Ende ?

Interrupt-Flag-Register

Timerflag nach Bit sieben

Timer noch nicht abgelaufen ?

Zähler erhöhen

Hi-Byte des Zählers erhöhen

überlauf, dann Fehler

20, 'read error’

Zählerstand gleich Dauer des $55-Bereichs

merken

Zähler wieder auf null

Timer 1 Interruptflag rücksetzen

SYNC gefunden ?

259

Li

OD

D3

F2

03

FD

ja

Interrupt-Flag-Register

Timerflag nach Bit 7

nein, warten bis Timer abgelaufen

Zähler erhöhen

überlauf, dann Fehler

20, 'read error’

Differenz zwischen Zählerstand ($55)

und Wert für $FF-Bereich

nach $70/$71 bringen

Differenz positiv ?

Absolutwert der Differenz berechnen

Differenz kleiner 4 * 0.1 ms ?

ja

Differenz verdoppeln

zu Ausgangswert 4000 addieren

wiederholen, bis Differenz kleiner 0.4 as

Zähler wieder auf null

SYNC ?
nein

Byte Ready ?

Zähler erhöhen

überlauf, dann Fehler

260

D3 FD

06

06

18

18

06

06

06

06

FD

21, read error

Zähler verdoppeln

und nach $624/$625 als Spurkapazität

102

Anzahl der Sektoren in diesem Track

Berechnung der Anzahl aller Bytes

in den Blockzwischenräumen

Ergebnis in A/X

22, ‘read error’

Die Gesamtzahl wird durch die Anzahl

der Sektoren (#43) dividiert

Zahl der Bytes pro Zwischenraum

mit Minimalwert vergleichen

ok

23, ‘read error’

06

06

03

06

03

03

03

05

FE

FD

FD

FS

$0300,

$0628
$0300,Y

$51
$0300,Y

$13,X
$0300,

$12,X
$0300,Y

#$0F
$0300,Y

$0300,Y

#300
$02FA,Y
$02FB,Y
$02FC,Y
$02FD,Y
$02F9,Y
$0628
$0628
$43
$FC3F

cd

Rest der Division

plus Anzahl der Sektoren

merken

Zahler fiir Sektoren

Zahler lo

Drivenummer

Konstante 8, Kennzeichen für Headeranfang

in Puffer

Sektornummer

in Puffer

Tracknummer

in Puffer

ID 2

in Puffer

ID 1

in Puffer

15

in Puffer

15 in Puffer

Prüfsumme bilden

Zähler erhöhen

Zähler

mit Anzahl der Sektoren vergleichen

kleiner, dann weiter machen

Pufferzeiger auf $300

Pufferdaten kopieren

Daten in Puffer kopieren

Pufferzeiger auf $500

Parity für Datenpuffer berechnen

262

F7

FE

> 01
1C

$0300,Y
$1001

$FCC2

#$09

$FCDi

#55

$iCol

$FCD1

#$FF

#$05

$FCEO

$1001

$FCEO

#$BB

$FLEB

$0100,%
$1001

$FCEB

#$00

$FCF9

($30) ,Y
$1001

$FCF9

#$55

$0626

$FDO9

$iC0l

$FDO9

und merken

Umschalten auf Schreiben 10240 mal $55 schreiben

zum Schreibkopf

3 mal FF schreiben

Byte Ready ?

10 mal

Pufferzeiger

Byte Ready ?

Daten aus Puffer

schreiben

schon 10 Daten geschrieben ?

9 mal

Byte Ready ?

$55

schreiben

schon 9 mal ?

$FF

3 mal

Byte Ready ?

zum Schreibkopf

Bereich $1BB bis $1FF

schreiben

Byte Ready ?

256 Byte Daten

auf Diskette schreiben

$55

($626) mal

schreiben

263

06

FE

06

ic

FD

06

FD

FS

tC
01

1C

05

$FCBi

$FDIE

$FD21

$FEOO

#$C8

#$00

$FD40

$1001
($30) ,Y
$FD58

$FD40

$30

#E0A

$30

$FD62

$0623

$FD2C

#$06

$FDDS

$F556

#$BB

$FD67

$1C01
$0100,Y
$FD58

$FD67

#$FC

$FD77

$1C01
$0500,Y
$FD58

plus 10

Sektornummer erniedrigen

Byte Ready ?

Byte Ready ?

Umschalten auf Lesen

200

Pufferzeiger auf $300

Anzahl der Sektoren pro Track

SYNC abwarten

10 Daten

Byte Ready ?

Byte lesen

mit Daten im Puffer vergleichen

ungleich, Fehler

Zeiger um 10 erhöhen

Zähler für Versuche erniedrigen

noch nicht null ?

sonst Fehler

24, ‘read error’

SYNC abwarten

Byte Ready ?

Byte lesen

und mit Pufferinhalt vergleichen

ungleich, Fehler

nachstes Byte

Byte Ready ?

Byte lesen

mit Pufferinhalt vergleichen

ungleich, dann Fehler

FDB?2 CB INY
FDB3 CA DEX
FDB4 DO Fi BNE $FD77
FD86 CE 28 06 DEC $0428
FDB9 DO AE BNE $FD39
FDBR £4 51 INC $51
FDBD AS 51 LDA $51
FDBF C9 24 CMP #$24
FD91 BO 03 BCS $FD94
FD93 AC 9C FF JMP $F99C

FD96 AQ FF LDA #$FF
FDIB 85 51 STA $51
FD9A AI 00 LDA #$00
FD9C 85 50 STA $50
FDIE AI 01 LDA #$01
FDAO 4C 69 F9 IMP $F969

EKKHEKEKEEKHLEKEKREHREKRKRKREREKHEKHE

FDA3 ADOC 1C LDA $ICcoc
FDAG 29 iF AND #$1F
FDAB 09 CO ORA #$C0
FDAA BD OC 1C STA $1C0C
FDAD A9 FF LDA #$FF
FDAF 8D 03 1C STA $1C03
FDB2 8D O1 1C STA $iCol
FDBS A2 28 LDX #$28
FDB7 AO 00 LDY #$00
FDB9 50 FE BVC $FDB9
FDBB BE CLV
FDBC 88 DEY
FDBD DO FA BNE $FDB9
FDBF CA DEX
FDCO DO F7 BNE $FDB9
FDC2 40 RTS

HKEHEHKEKERERHRAKREEREKKHRHEKEREKREKESE

FDC3 AE 21 06 LDX #0421
FDC6 AC 22 06 LDY $0622
FDC9 50 FE BVC $FDC9
FDCB BB CLV
FDCC CA DEX
FDCD DO FA BNE $FDC9
FDCF 988 DEY
FDDO 10 F7 BPL $FDC9
FDD2 40 RTS

a 2 2 2 2 2 2 2 2 2 X 2 2 & 2 2 2 £ 2 z 2 2 2 2 2 2 2 2 2 2

FDD3 CE 20 06 DEC $0620
FDDS FO 03 BEG $FDDB
FDDB 4C 9C F9 JMP $F99C

FDDB AO FF LDY #$FF
FDDD 84 51 STY $51
FDDF C8 INY
FDEO 84 50 STY $50

nachstes Byte

Sektorzahler erniedrigen

noch nicht null ?

Tracknummer erhöhen

mit 36, höchster Tracknummer +1 vergleichen

größer, dann Formatierung fertig

weiter machen

Tracknummer auf $FF

ok

10240 mal $FF schreiben

PCR auf Schreiben umschalten

Port A (Schreib/Lesekopf) auf Ausgabe

$FF auf Diskette schreiben

40

Byte Ready ?

($621/$622) mal schreiben/lesen

Byte Ready ?

Versuchezahler beim Formatieren

Anzahl der Versuche erniedrigen

null, dann Fehler melden

weiter machen

Flag für Formatierung beendet

FDE2 4C 69 F9 UMP $F969

EKHEKER KHER HEEL RHEE ERE EER EERE

FDES BY 00 03 LDA $0300,Y

FDEB 97 45 03 STA $0345,Y

FDEB 88 DEY

FDEC DO F7 BNE $FDES

FDEE AD 00 03 LDA $0300

FDFi 8D 45 03 STA $0345

FDF4 60 RTS

KHHKKHEHE ELH EERE EERE EE EERE RES

FDFS Ad 44 LDY #$44

FDF7 B? BB Öl LDA $01BB,Y

FDFA 91 30 STA ($30),Y

FDFC 88 DEY

FDFD 10 FB BPL $FDF7

FDFF 60 RTS

SPTTETTTTTITTITITTTTTTT TT TTT TTT

FEOO AD OC 1C LDA $1C0C

FEQ3 09 EO ORA #$E0

FEOS 8D oc iC STA $iCOC

FEO8 A? 00 LDA #400

FEOA BD 03 IC STA $1003

FEOD 60 RTS

EEEKKEEKEH EE REE EEE EERE RE REHEES

FEOE AD oC IC LDA #1C0C

FE11 29 1F AND #$1F

FE13 09 CO ORA #$C0

FELS BD OC iC STA $1COC

FE18 AI FF LDA #$FF

FEIA 8D 03 IC STA $1003

FELD AQ 35 LDA #$55

FEIF 8D O1 1C STA $1C01

FEZ2 AZ 28 LDX #$28

FE24 AO 00 LDY #$00

FE26 30 FE BVC $rE26

FE28 B8 CLV

FE29 88 DEY

FE2A DO FA BNE $FE26

FE2C CA DEX

FE2D DO F7 BNE $FE26

FE2F 60 RTS

KEEL EREEEEELEEERERERE REE EER ERE

FE3O A? 00 LDA #$00

FE32 85 30 STA $30

FE34 85 2E STA $2E

FE364 85 36 STA $36

FE38 AF BB LDA #$BB

FESA 85 34 STA $34

FESC AS 31 LDA $31

FESE 85 2F STA $2F

FE4O A? 01 LDA #$01

Fehlerabschluß

Pufferinhalt kopieren

$1BB bis $IFF

in Puffer $30/#31 schreiben

Umschalten auf Lesen

PCR auf Lesen umschalten

Port A auf Eingang

10240 mal $55 schreiben

PCR auf Schreiben umschalten

Fort A auf Ausgabe zum Schreibkopf

01010101

auf Port A zum Schreibkopf

Byte Ready von Schreibelektronik ?

10240 mal

266

EREEEREKEREEEAHEEEKEKREEE EUR TE

FE67

FE&8

FE69

FEGA

FEGB

FE&C

FEOF

FE71

FE7S

FE76

FE79

FE7A

FE7C

FE7F

FE80

FEBI

FE82

FEBS

FEB4

EEKEREKEKRKEREKEEKEKRELEKKRERKRE KLEE

FE8S 12

FE8& 04

FEB7 04
FEBB 90

85 Sl STA

A4 36 LDY

Bi 2E LDA

85 32 STA

C8 INY

Bi 2E LDA

85 33 STA

C8 INY

Bi ZE LDA

85 54 STA

C8 INY

Bi 2E LDA

B5 55 STA

C8 INY

FO 08 BEQ

B4 36 5TY

20 DO F& JSR

4C 44 FE JMP

4C DO Fé JMP

4B PHA

BA TXA

48 PHA

98 TYA

48 PHA

AD OD 18 LDA

29 02 AND

FO 03 BEQ

20 53 E8 JSR

AD OD it LDA

OA ASL

10 03 BPL

20 BO F2 JSR

68 PLA

AB TAY

4B PLA

AA TAX

68 PLA

40 RTI

$31
$36
($2E) ,Y
$52

($2E) ,Y
$53

($2E),Y
$54

Interrupt-Routine

Register retten

Interrupt vom seriellen Bus (ATN IN) ?

nein

seriellen Bus bedienen

Interrupt von Timer 1 ?

nein

IR@-Routine für Disk-Controller

Register zurückholen

Konstanten für Diskettenformat

18, Track für BAM und Directory

Start der BAM ab Position 4

4 Bytes in BAM für jeden Track

$90 = 144, Ende BAM, Start Diskname

EREKEKEEEEKEEEKERHEEEREEEEEEEESHRE Tabelle der Kommandoworte

FE89 56 49 44 4D 42 55
FEBF 50 26 43 52 53 4E

"D’, 'M’, B', WU vr,
ERS, N 'P’, u’

HEHKHLERKAKEEKERH LE LE ERELEREESE Lo-Byte der Adressen der Befehle

FE9S 84 05 Ci F8 1B SC

FEIF 07 A3 FO 88 23 OD

rer Hi-Byte der Adressen der Befehle
FEA1 ED DO CB CA CC CB
FEA7 E2 E7 C8 CA C8 EE

HEKKEKEREKELKHKEREKRERKHEKEREERES

FEAD 51 DD 1C 9E iC Bytes fiir Syntaxprüfung

PELLETS TER ERERE REX File-Betriebsarten

FEB2 S2 57 41 4D "Roy WW, A, OM’

EEEKKERE RHEE EERE EEE EEE EE EEEEEEE Filetypen

FEBS 44 53 50 55 4C 'D’, “S’, ‘RP’, “U', LU

RERKKH HERE EERE RA RERER KER EEEEEH Namen der Filetypen

FEBB 44 53 50 55 52 1. Buchstabe des Filetyps ‘D’, ‘S’, ‘PRP’, ‘U’, ‘R’

FECO 45 45 52 53 45 2. Buchstabe " ‘E’, “E’, ‘R’, 5, ‘E’

FECS AC 51 47 52 4C 3. Buchstabe " L’,0, 6%, “R', UL

HEHE KEK KEK KEKE KEKE EKER EE KREEEES

FECA 08 00 00

EEEHHEEKEKEEEEEEEEEEE RE EERE EEEESE

FECD 3F 7F BF FF Masken für Bit-Befehl

ee Anzahl der Sektoren pro Track

FEDI 11 12 13 15 17, 18, 19, 21

ERERERERRERERERRTRTR INTER INNERE Konstanten für Diskettenformat

FEDS 41 ‘A’ Kennzeichen für 1541-Format

FED& 04 4 Tracknummern

FED7 24 36, höchste Tracknummer + 1
FEDS iF 19 12 31, 25, 18 Tracks mit Wechsel Anzahl Sektoren

KR

FEDB 01 FF FF 01 00 Steuerbytes fiir Kopfpositionierung

er Adressen der Pufferspeicher
FEEO 03 04 05 04 07 High-Bytes

E22 2 2 2 2 2 2 7 7 ERE RE I 2 25

FEES 07 OE

HEREEEEREREEEEEREREREREREESEER Vom UI-Befehl
FEE7 &C 65 00 JMP ($0065)

KEELER EEE EERE REL ERE REHERERHRERE von der Diagnose-Routine
FEEA BD 00 IC STA $1000 LED einschalten

FEED 8D 02 ic STA $1C02 Port auf Ausgabe

FEFO 4C 7D EA JMP $EA7D zurück zur Diagnose-Routine

KERRREEREERERERRERE Verzögerungsschleife für seriellen Bus
FEFS 8A TXA
FEF4 A2 05 LDX #405

FEF4 CA DEX ca. 40 Mikrosekunden

FEF7 DO FD BNE $FEF4

FEF9 AA TAX

FEFA 60 RTS

EEREREKRREERERKERERKKEKK RETTEN

FEFB 20 AE E9 JSR $E9AE

FEFE 4C 9C E9 JMP $E99C

EEEEEEEEEE EERE R EEE EER ER EEE ERED

FFO1 AD 02 02 LDA $0202

FFO4 C9 2D CMP #$2D

FFO6 FO 05 BEQ $FFOD

FFOB 38 SEC

FFO9 EI 2B SBC #$2B

FFOB DO DA BNE $FEE7

FFOD B5 23 STA $23

FFOF 60 RTS

EREEHEREEK LH EEE KERR ERE ERERE RES

FFiO AA...
FFEL ... AA

LEE 222 2 22 2 272 2 2 2 2 2 2 2 2 22 2 2 22 2 2 22
FFE2 52 53 52 AA
FFE6 Cé CB BF FI

Lu 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 X

FFEA SF CD UA, Ul,
FFEC 97 CD UB, U2,
FFEE 00 05 uc, U3,
FFFO 03 05 UD, U4,
FFF2 04 05 UE, US,
FFF4 09 05 UF, Ud,
FFF& OC 05 UG, U7,
FFFB8 OF 05 UH, U8,
FFFA 01 FF UI, U9,

a 2 & 2 2 2 2 2 2 2 2 £ 7 2 2 2 7 2 2 2}

FFFC AO EA $EAAO
FFFE 67 FE $FE67

Datenausgabe auf seriellen Bus

CLOCK OUT hi
DATA OUT lo

UI-Vektor

a

indirekter Sprung über ($65)

USER-Vektoren

$CDSF

$CD97

$0500

$0503

$0506

$0509

$050C

$050F

$FFO1

und UJ- bzw.

(NMI-Vektor wird nicht benutzt)

Hardware-Vektoren

RESET- U:- Vektor

IRQ-Vektor

269

4.1.1 Anzeige samtlicher Fileparameter

Dem Directory sind nicht alle Informationen eines Files zu

entnehmen. Vieleicht standen Sie auch einmal vor dem Problem,

daß Sie z.B. die Anfangsadresse eines auf Diskette abgelegten

Frogramms benötigen. Dann kennen Sie sicher auch die

Umstände, die mit der Ermittlung dieser Anfangsadresse

verbunden sind.

Ein weiteres Beispiel ist die Recordlänge eines relativen

Files. Sie kann nur mit großem Programmieraufwand ermittelt

werden, wenn sie in Vergessenheit geraten ist.

Dies sind nur zwei der vielen Fileparameter, die mit dem

folgendem Programm äußerst einfach ermittelt und angezeigt

werden können. Die Fileparameter sind natürlich auch vom

Filetyp abhängig. So kann z.B. einem relativen File keine

Anfangsadresse zugeordnet werden. Die folgende Tabelle stellt

die mit diesem Frogramm ermittelbaren Parameter der einzelnen

Filetypen dar:

PARAMETER FILETYP

DEL SEQ PRG USR REL

File geschlossen”? X X x X X

File geschützt”? x X x x x

belegte Blöcke X X x X x

Recordlänge X

Side-Sector-Blöcke X

Datenblöcke x
Records x

Anfangsadresse x

freie Blöcke Disk x X x x x

belegte Bl. Disk x x x x x

Um einen guten überblick über die Arbeitsweise dieses

Programms zu erhalten, was wohl im Interesse jedes

ernsthaften Programmierers liegt, ist es bis ins letzte

Detail dokumentiert. Einer übersicht der im Programm

verwendeten Variablen folgt eine zeilenorientierte

Dokumentation:lIni

Im Frogramm verwendete Variablen:

numerische Variablen

T - Track (Spur) des aktuellen Blocks der Fileeinträge im
Directory

S - Sektor des aktuellen Blocks der Fileeinträge im

Directory

FL - Flag, das gesetzt wird, wenn die von der Diskette ge-

lesenen Filenamen zum Auflisten, nicht zum Vergleichen

mit dem gesuchten File benutzt werden

TY - Filetyp des angegebenen Files (Byte O des Eintrags)

Halbbyte des Filetyps (Bit O bis 3), enthält den ei-

gentlichen Filetyp

Low-Byte einer von der Diskette gelesenen Anfangs—

adresse

High-Byte einer von der Diskette gelesenen Anfangs—

adresse

Anzahl der vom File belegten Blöcke

Recordlänge eines realtiven Files

Track (Spur) des ersten Datenblocks eines Program—

Files, der die Anfangsadresse enthält

Sektor des ersten Datenblocks eines Program-Files

Anfangsadresse eines Frogram-Files

Anzahl der freien Blöcke auf der Diskette

Anzahl der belegten Elöcke auf der Diskette

Anzahl der Side-Sector-Blöcke in einem relativen File

Anzahl der Records in einem relativen File

Stringvariablen

F$
FFS
FT$
GE$

SAS

REF

RAS

Name des gesuchten Files

Enthält den aktuellen Filenamen aus der Directory

Filetyp (Klartext)

Konstante, die angibt, ob das File geschlosssen ist

{enthält "JA" oder "NEIN"”)

Konstante, die bestimmt, ob das File geschützt ist

(enthält "JA" oder "NEIN")

enthält CHR#(18), REVERSE ON

enthält CHR#(146), REVERSE OFF

Dokumentation des Frogramms:

110

120

210

250

280

Setzt Farbcode des Bildschirms

200 Frogrammkopf

230 Abfrage, ob Namen aufgelistet werden sollen.

Setzt Flag FL auf 1 und führt Routine 280 — 490

aus.

270 Eingabe des Filenamens. Fordert erneute Eingabe,

wenn Filename größer als 16 Zeichen

470 ließt die Filenamen aus der Directory und gibt

Sie entwerder aus (FL=1) oder vergleicht sie mit

dem gesuchten Filenamen

330 ließt das Byte O (Filetyp) des Fileeintrags des

gesuchten Files und speichert es in TY. Zusätz-

lich wird das rechte Halbbyte in FT gespeichert

390 prüft den Filetyp und speichert dessen Klartext

in FT$, prüft auf ungültigem Filetyp

610 prüft das Bit 7 des Filetyp-Bytes (File ge-

schlossen?) und speichert das Resultat in GE#

650 prüft das Bit & des Filetyp-Bytes (File ge-

schützt”) und speichert das Resultat in SA

690 lieBt die Anzahl der vom File belegten Blöcke

aus den Bytes 28 und 29 des Eintrags und spei-

chert sie in BL

700 — 730 falls ein relatives File vorliegt, wird hier die

Recordlange aus Byte 21 des Eintrags gelesen und

nach RL gebracht

740 — 880 falls ein Program-File vorliegt, wird die An-

fangsadresse des Files aus seinem ersten Daten-

block ermittelt und in AA abgelegt

B90 — 980 berechnet die freien Blöcke der Diskette, indem

das jeweils erste Byte des spurkennzeichnenden

BAM-Ausschnittes gelesen und in BF aufaddiert

wird. Die belegten Blöcke werden dann mit

BB = 644 - BF ermittelt

990 - 1020 hier wird bei relativen Files mit Hilfe der Re-

cordlange (RL) und der vom vom File belegten

Blöcke die Anzahl der Side-Sector-Blöcke (BS)

und die Anzahl der Records (RC) errechnet. Da

für jeweils 120 Blöcke eines relativen Files ein

Side-Sector-Block gebildet wird, wird die Anzahl

der Side-Sector-Blöcke mit ES = BL / 121 und der

Aufrundung auf die nächste ganze Zahl berechnet.

Die restlichen Blöcke multipliziert mit 254 und

dividiert mit der Recordlänge ergeben die Anzahl
der Records im File.

1040 — 1230 hier werden die ermittelten Daten wahlweise auf

dem Bildschirm oder auf dem Drucker ausgegeben.

Die Fileparameter werden REVERSE angezeigt.

1240 — 1280 ermöglicht die Farameterausgabe eines weiteren

Files

Das Programm wurde auf einem CBM 64 erstellt. Trotzdem ist es

ohne großartige Änderungen auf dem VC 20 lauffähig. Lediglich

die Zeile 110, wo die Bildschirmfarbe gesetzt wird, muß dem

VC 20 angepasst werden.

BASIC-Listing des Programms:

100 CLR
110 POKES3280 ‚2: POKES3281 , 2: PRINTCHR# (158) 5; CHR$ (147) ;
120 PRINTTAB(4);" "
130 FRINTTAB (6); "ANZEIGE ALLER FILEPARAMETER"
140 PRINTTAB (6) 3"
150 PRINT:PRINT
160 PRINT"MIT DIESEM PROGRAMM KOENNEN SAEMTLICHE"
170 PRINT"PARAMETER EINES FILES WAHLWEISE AUF"
180 PRINT"BILDSCHIRM ODER DRUCKER AUSGEGEBEN WER-"
190 PRINT"DEN. "
200 PRINT:PRINT
210 PRINT"FILENAMEN AUFLISTEN (J/N) ?"
220 GETX$: IFX$=" "ORX$< >" J"ANDX#< > "N" THEN220
230 IFX$="J"THENFL=1:GOSUB280
240 FL=0
250 INPUT"NAME DES FILES: ":F$
260 IFLEN(F#)<=14THENZ80
270 PRINT"FILENAME ZU LANG! ":60T0250
280 OPEN15,8,15,"10":0PEN2,8,2, "#"
290 T=18:S=1

272

PRINT#i5,"B-R":2:0:T:S
PRINT#15,"B-P";250
GET#2 „X$: IFX$="" THENX#=CHR$ (0)
T=ASC (X$)
GET#2 ,X#: [FX$=""THENX#=CHRE (0)
S=ASC (X#)
FORX=0T07
PRINT#15, “B-P"s 2s X*324+5
FF$=""
FORY=0T015
GET#2 „X$: IFX$="" THENX$=CHRE (0)
IFASC (X#) =1460THEN430
FFS=FFS+X#
NEXT Y
IFF#=FF#THEN490
IFFLTHENPRINT FFS
NEXT X
IF T=0 THEN480
GOTO300
CLOSE2: CLOSE15
IFFL=OTHENPRINT"FILENAME NICHT GEFUNDEN! ":GOTO210
IFFL THEN RETURN
FRINT#15,"B-P"32: X#32+2
GET#2 „X$: IFX#=""THENX#=CHR# (0)
TY=ASC (X#)
FT=TYAND1S

IFFT=OTHENF T#="DELETED"

IFFT=1 THENF T$="SEQUENTIAL”

IFFT=ZTHENFT$="PROGRAM"

IFFT=3THENF T$="USER"

IFFT=4THENFT$="RELATIVE"

IFFT>4THENFPRINT"UNGUELTIGER FILETYF!":GOTO200

IF TYAND1 28THENGES="JA":GOTO620

GEF="NEIN"

IF TYAND64 THENSAS=" JA": GOTO0640

SAS="NEIN"

PRINT#15,"B-P"2,X*32+30

GET#2 „X$: IFX$=""THENX#=CHR# (0)
LB=ASC (X#)
GET#2 ,X#: IFX$=" " THENX#=CHRS$ (0)
HB=ASC (X#) #256
BL=LB+HB
IFFT< >4THEN740
PRINT#15, "B-P" 325 X#32+23
GET#2 „X$: IFX$=""THENX$=CHR$ (0)
RL=ASC (X$)
IFFT£ >2THENS9O
PRINT#15, "BP": 2: X#3243
GET#2 , X#: IFX$="" THENX#=CHRS$ (0)
DT=ASC (X#)
GET#? , X#: IFX#=""THENX#=CHR# (0)
DS=ASC (X#)
OPENS 8,3, "#"
FRINT#15,"B-R";350;DT;DS
PRINT#15,"B-P"33;2
GET#3 „X$: IFX$=""THENX#=CHR# (0)

273

1200

RE

1210

1220

1230

1240

250

1260

1270

1280

LB=ASC (X$)
GET#3 ,X$: IFX$=" " THENX$=CHR$ (0)
HB=ASC (X$) #256
AA=LB+HB
CLOSES
PRINT#15,"B-R";2;0;18;0
BF=0
FORI=4TO140STEP4
IF 1=72THEN940
PRINT#i5,"B-P":231
GET#2, X#: IFX$="" THENX$=CHRS$ (0)
BF=ASC (X#) +BF
NEXT
BB=444-BF
IFFT< >4THEN1040
BS=BL/121: IFBS< >INT (BS) THENBS=INT (BS+1)
RC=INT (((BL-BS) #254) /RL)
PRINTCHR# (147) 5; "BILDSCHIRM ODER DRUCKER (B/D) ?"
GETX$: IFX$=" "ORX$< >" B"ANDX$< >"D" THENIOSO
RE#=CHR# (18) : RA$=CHRS$ (146)
IFX$="B"THENOPEN! , 3: PRINT#1 , CHR# (147)

IFX#="D"THENOPEN1 , 4
PRINT#1, "PARAMETER DES FILES "s RES: FS: ROS
PRINT#1," "
PRINT#1,"FILETYF: "> RES: FT#; RAS: PRINT#1
PRINT#1,"FILE GESCHLOSSEN: "s RES: GES; RAS: PRINT#1
PRINT#1,"FILE GESCHUETZT: “sRES; SAS: RAS: PRINT#1
PRINT#1,"BELEGTE BLOECKE: "+ RES: BL; RAS: PRINT#1
IFFT< >4THEN1 200
PRINT#1, "RECORDLAENGE: "s RES: RL; RAS: PRINT#1
PRINT#1,"SIDE-SECTOR BLOECKE: “:RE$:BS:RA$:PRINT#1
PRINT#1 , "DATENBLOECKE: "SRE$;BL-BS;RA$: PRINT#1
PRINT#1, "RECORDS: "sRES:RCs RAS: PRINT#1

IFFT=2THEN PRINT#1, "ANFANGSADRESSE:
$; AA; RA$: PRINT#1
PRINT#1,"FREIE BLOECKE (DISK): "!:RE#:BF;RA#:PRINT#1
PRINT#1,"BELEGTE BLOECKE (DISK): ";RE$; BB; RA$: PRINT#1
CLOSE1
FRINT"WEITER (J/N)?"
CLOSE?2: CLOSE1S
GETX#: IFX$=" "ORX$Z>"J "AND X#<>"N"THEN1 260
IF X$="J"THEN100
END

274

4.1.2 Scratch-Schutz von Files — Fileprotect

Wie bereits erwähnt, besteht die Möglichkeit Files auf der VC

1541-Diskette zu schützen und sie auch im Directory als

geschützt auszuweisen. Im Byte O0 des Fileeintrags ist der

Filetyp enthalten. Das Bit 6, also das Bit mit der dezimalen

Wertigkeit 54 kennzeichnet ein geschütztes File. Ist dieses

Bit 1, so kann das File nicht mehr mit dem Befehl “SCRATCH °

gelöscht werden. Da das DOS aber keinen Befehl zum Setzen

dieses Bits beinhaltet, ist dazu eine BASIC-Befehlsfolge

erforderlich.

Mit dem folgenden Programm können Sie:

* alle Files der eingelegten Diskette auf dem Bildschirm

anzeigen,

* Files schützen

* Files freigeben

* Files löschen

Es können sowohl ungeschützte als auch geschützte Files

gelöscht werden. Bei geschützten Files muß der Wunsch des

Löschens zusätzlich bestätigt werden.

Auch dieses Programm ist mit einer Variablentabelle und einer

zeilenorientierten Beschreibung ausreichend dokumentiert,

sodaß Sie die eine oder andere Befehlsfolge auch in Ihren

eigenen Frogrammen verwenden können.

Liste der Variablen:

GF - Flag, daß in der Routine "lesen/suchen von Files"

gesetzt wird, falls der gesuchte Filename gefunden

wird

FL - wird gesetzt, wenn die Routine "lesen/suchen von

Files nur zum auflisten aller Files benutzt wird

FT - Variable zur Speicherung des Filetyps

T - Track (Spur) des aktuellen Blocks der Fileeinträge

5 - Sektor des aktuellen Blocks der Fileeinträge

TT - Track, in dem sich der Fileeintragsblock des ge-

suchten Files befindet

SS - Sektor, in dem sich der Fileeintragsblock des gesuch-

ten Files befindet

FFF —- zuletzt gelesener Filename aus der Directory

FS - eingegebener, gesuchter Filename

Dokumentation des Programms:

100 Setzen der Bildschirmfarbe

110 -— 230 Programmkopf und Auswahlmenü

240 — 260 Lesen der Menüauswahl und Aufruf des ent-

sprechenden Unterprogramms

279 Zurück zum Auswahl menu

280 — 350 Unterprogramm "auflisten aller Files"

310 Bildschirm löschen

275

400

410-450

460-480

4709-500

Ss10

320-550

540

370-600

610 — 850

640

650

660-700

710-730

740-750

760

770-800

B10

820-850

860 — 1170

890

700

910-950
940-980
990
1000-1030

1040-1060

1070

1080-1110

1120

1130

1140-1170

1190 -15&80

1220

1230-1240

1250-1320

setzen Flag FL zum Auflisten der Files im

Unterprogramm "lesen/suchen von Files"

Zurücksetzen des Flags und Rücksprung

Unterprogramm "schützen von Files"

Aufrufen Unterprogramm "Eingabe des Filena-

mens

Aufrufen des Unterprogramms "lesen/suchen
von Files"

Mit Hilfe von Flag GF testen, ob Filename

gefunden wurde

lesen Filetyp und speichern in FT

Testen, ob Files bereits geschützt ist

File schützen (Bit 6 auf 1)

übertragen des Filetyps in den Buffer und

schreiben des Blocks auf Diskette

Schließen der Kanäle

Meldung "File geschützt" und Rücksprung

Unterprogramm "Freigeben von Files"

Aufrufen Unterprogramm "Eingabe des Filena-
mens

Aufrufen Unterprogramm "lesen /suchen von

Files"

Testen, ob Filename gefunden wurde

Filetyp lesen und in FT speichern

Testen, ob File bereits freigegeben ist

Freigeben des Files (Bit &4 auf OQ)

übertragen des Filetyps in den Buffer und

schreiben des Blocks auf Diskette

Schließen der Files

Beenden des Unterprogramms

Unterprogramm "löschen eines Files"

Aufrufen Unterprogramm "Eingabe des Filena-

mens

Aufrufen des Unterprogramms "lesen/suchen
von Files"

Testen, ob Filename gefunden wurde

Lesen des Filetyps und speichern in FT

Testen, ob File geschützt

Hinweis, daß File geschützt ist, mit der

Möglichkeit, trotzdem zu löschen

Frage, ob File wirklich gelöscht werden soll

Bit 6 zurücksetzen, wenn geschützt ©
übertragen des Filetyps in den Buffer und

schreiben des Blocks auf Diskette

Initialisieren der Diskette

Löschen des Files

Beenden des Unterprogramms

Unterprogramm "lesen/suchen von Files"

öffnen des Befehls- und Datenkanals

Directory lesen und Bufferpointer setzen

Testen, ob die Diskette einen Schreibschutz

enthält. Dazu wird die Directory wieder un-

verändert zurückgeschrieben (Zeile 1250).

Befindet sich ein Schreibschutz auf der

Diskette, so wird die Fehlermeldung 26,WRITE

PROTECT ON gesetzt.

276

1330

1340-1350

1360-1390

1400-1530

1540-1560

Anfangswerte der Variablen für Spur und Sek-

tor setzen

Lesen des Fileeintrag-Blocks und Positionie—

ren des Buffer-Fointers auf das erste Byte

Lesen der Adresse des nächsten Fileeintrag-

blocks

Schleife zum Lesen der Filenamen. Die Namen

werden dann, je nach Inhalt von Flag FL,

entweder auf dem Bildschirm aufgelistet,

oder mit dem gesuchten Filenamen verglichen

Wenn die Variable T (Track) eine Null ent-

halt, so folgt kein weiterer Fileeintrag-

Block und das Unterprogramm wird beendet

BASIC-Listing des Programms:

100

110

POKES3280,2:

PRINTTAB(4) 3"

POKES3281,2:PRINTCHR# (158) ; CHR (147) §

PRINTTAB (4) 3 "LOESCHEN UND SCHUETZEN VON FILES"
PRINTTAB (4); "

PRINT: PRINT

FRINT"MIT DIESEM PROGRAMM KOENNEN FILES GE-"

PRINT"SCHUETZT, GELOESCHT UND FREIGEGEBEN "

FRINT"WERDEN. "

PRINT: PRINT

PRINTTAB(6)3" -1- AUFLISTEN ALLER FILES":PRINT

PRINTTAB(6)5" -2- SCHUETZEN EINES FILES":PRINT

PRINTTAB(4)3;" -3- FREIGEBEN EINES FILES":PRINT

PRINTTAB(&)," -4- LOESCHEN EINES FILES":PRINT

PRINTTAB(6)3;" -5- BEENDEN DES PROGRAMMS" :PRINT

GETXF: IFXF+= ""ORVAL (X$) < LORVAL (X#) >5THENZ240

IFVAL (X$) =STHENEND

ONVAL (X$) GOSUBZ80 , 360,610,860

GOTO100
 REM

REM AUFLISTEN ALLER FILES

REM
PRINTCHRS (147)

FL=1:G60S5UB1190

PRINT: PRINT"WEITER MIT RETURN"

. INPUTXS

FL=0: RETURN

REM
REM SCHUETZEN EINES FILES

REM

GOSUB1580

GOSUB1190

IFGF= 1 THEN460

PRINT"FILE NICHT GEFUNDEN! ":PRINT

FRINT"WEITER MIT RETURN!"

INPUTX#: CLOSE2:CLOSE15

RETURN

PRINT#15, "B- PY 525 X*52+2

GET#2 , X#: IFX$="" THENX#=CHRS (0)

FT=ASC (X#)

IF CFT AND 64)=OTHENS10

277

500 PRINT"FILE IST BEREITS GESCHUETZT!":PRINT:GOTO430
510 FT=(FT OR 64)
520 PRINT#15,"B-P"323X*32+2
530 PRINT#2,CHR$(FT)3
540 PRINT#15, "B-P":2:0
550 PRINT#I5, "U2"; 2:0;TT:SS
540 CLOSE2:CLOSE1S
570 PRINT"FILE GESCHUETZT!"
580 PRINT"WEITER MIT RETURN!"
590 INPUTX$
600 CLOSE2:CLOSE15: RETURN
610 REM
620 REM FREIGEBEN EINES FILES
630 REM
640 GOSUB1580
650 GOSUB1190
460 IFGF= 1 THEN710
670 PRINT"FILE NICHT GEFUNDEN! "":PRINT
680 PRINT"WEITER MIT RETURN!"
690 INPUTX$:CLOSE?:CLOSE1S
700 RETURN
710 PRINT#15,"B-P"32:X*32+2
720 GET#2,X#: IFX$="" THENX$=CHRS$ (0)
730 FT=ASC(X#)
740 IF(FT AND 64)=64 THEN760
750 FRINT"FILE IST BEREITS FREIGEGEBEN! ": PRINT: GOTO680
760 FT=(FT AND 255-64)
770 PRINT#15, "B-P": 2: X*32+2
780 PRINT#2,CHR#(FT) :
790 PRINT#15,"B-P":2:0
800 PRINT#15,"U2":2:0;TT:SS
B10 CLOSE2?:CLOSE15
820 PRINT"FILE FREIGEGEBEN!"
830 FRINT"WEITER MIT RETURN!"
840 INFUTX$
850 RETURN
860 REM
870 REM LOESCHEN EINES FILES
880 REM
890 GOSUB1580
900 GOSUB1190
910 IFGF= 1 THEN960
920 PRINT"FILE NICHT GEFUNDEN! ":PRINT
930 PRINT"WEITER MIT RETURN!"
940 INPUTX#:CLOSE?:CLOSE15
950 RETURN
960 PRINT#15, "B-P": 2: X#32+2
970 GET#2,X#: IFX#=""THENX#=CHRS (0)
980 FT=ASC (X#)
990 IF (FT AND 64)=OTHEN1040
1000 PRINT"ACHTUNG! FILE IST GESCHUETZT!"
1010 PRINT"FREIGEBEN UND LOESCHEN (J/N)?"
1020 GETX$: IFX$=" "ORX$< >"N"ANDX#< >" J" THEN1020
1030 IFX$="N"THEN1170
1040 PRINT"SICHER (J/N)?"
1050 GETX#: IFX#="""ORX#< >"N"ANDX#< >" I" THEN105O

278

1960 IFX#="N"THEN1170

1070 FT=(FT AND 255-64)

1080 FRINT#1I5,"B-F"3 23 X*32+2

1090 FRINT#2,CHREC(FT);

1100 PRINT#15,"B-F"32;0

1110 PRINT#15, "U2"52:0:;TT;SS

1120 PRINT#I5, "Io"

1130 PRINT#1i5,"S: "+Fs

1140 FRINT"FILE GELOESCHT'"

1150 PRINT"WEITER MIT RETURN!"

1160 INPUTXS

1170 CLOSE?: CLOSE15: RETURN

1180 REM

1190 REM

1700 REM LESEN / SUCHEN VON FILES

1210 REM

1220 DFEN15,8,15,"IO":OFENZ,8,2,"#"

1230 PRINT#15, "B-R"3230;1830

1240 FRINT#i5, "B-P":230

1250 FRINT#15,"U2",2;0:18;0

1260 INFUT#15,X1%#

1270 IFVAL (X1#)< >26THEN1330

1280 FRINT"BITTE VOR BENUTZUNG DIESES PROGRAMMS DEN";

1290 FRINT"SCHREIBSCHUTZ ENTFERNEN!" .

1300 FRINT"WEITER MIT RETURN!"

1310 INPUTX#$

1320 CLOSE2:CLOSE15: RETURN

1330 T=18:S=1:TT=18:S5=1

1340 PRINT#15,"B-R"32303T:S

1350 PRINT#1I5,"B-F"32;0

1360 GET#2,X#: IFX$=""THENX#=CHRS (0)

1370 T=ASC (X#):1IF T< >OTHENTT=T

1380 GET#2,X#: IFX#$=""THENX#=CHR# (0)

1390 S=ASC (X#): IFS< >255THENSS=S

1400 FORX=0TO7

1410 PRINT#15, "B-F"3 23 X#32+2

1420 GET#2,X#: IFX$=""THENX#=CHRS (0)

1430 IFASC (X#) =OTHEN1I530

1440 PRINT#1I5S, “"B-P"3 23; X#32+5

1450 FF$=""

1460 FORY=OTO15

1470 GET#2, X#: IFX$="" THENX#=CHRS$ (0)

1480 IFASC (X#)=160THEN 1500

1490 FFS=FFS+Xs

1500 NEXTY

1510 IFFLTHENFRINTFF#:GOT01530

1520 IFFS=FFSTHENGF=1:GOTO1570

1530 NEXTX

1540 IFT< >OTHENI340

1550 CLOSE2:CLOSE1S

1560 IF FL=OTHENPRINT"FILENAME NICHT GEFUNDEN!"

:FORI=1T02000: NEXT

1570 RETURN

1580 REM

1590 REM EINGABE DES FILENAMENS

1400 REM

279

1610 PRINT:PRINT

1620 INFUT"NAME DES FILES: "3;F+

1630 IFLEN(F#)<=1L6THENI 4650

1440 FRINT"FILENAME ZU LANG! ":GOTO1620

1650 GF=0:FL=0

1460 RETURN

Dieses Dienstprogramm wurde auf einem CBM 64 erstellt. Es ist

jedoch in dieser Version auch auf dem VC 20 lauffähig. Dazu

muß lediglich die Zeile 100, die beim CRM 64 die

Bildschirmfarben setzt, entsprechend angepasst oder ignoriert

werden. Wenn Sie Wert auf eine optisch einwandfreie

Bildschirmausgabe legen, können Sie die Zeilen 110-230 der VC

20-Eildschirmdarstellung anpassen.

280

4.1.3 Backup-Frogramm — Kopieren von Disketten

Die Floppy VC 1541 hat als Einzellaufwerk nicht die

Möglichkeit, selbstständig Disketten zu duplizieren, wie dies

die Doppellaufwerke mit dem Befehl ‘Duplicate’ bzw. "BACKUP *

in BASIC 4.0 bieten. Bei der 1541 muß dies per Frogramm über

den Rechner gemacht werden.

Das Frinzip sieht so aus:

Zuerst werden die BAM sowie Namen und ID der zu kopierenden

Diskette gelesen. Aus der BAM ermittelt man nun, welche

Blocks auf der Originaldiskette belegt sind. Aus Gründen der

Zeitersparnis sollen nur die belegten Blocks kopiert werden.

Dann wird eine Direktzugriffsdatei eröffnet von der von den

ersten 169 Sektoren (soviel wie in etwa in den Speicher des

Commodore 64 passen) die belegten gelesen. Dann wird der

Benutzer aufgefordert, eine neue Diskette ins Laufwerk zu

legen. Diese wird nun mit dem Namen und der ID der

Originaldiskette formatiert. Jetzt werden die zuvor gelesenen

Blocks aus dem Speicher auf die neue Diskette geschrieben.

Nun können die nächsten 169 Blocks der Originaldistette

geprüft und bei Bedarf in den Speicher gelesen und

anschließend auf die Zieldiskette geschrieben werden. Dies

läuft insgesamt viermal ab, bis die komplette Diskette

kopiert ist.

Das Frogramm ist bis auf das Lesen und Schreiben der

Direktzugriffsdatei in BASIC geschrieben. Die dafür

enthaltenen Maschinenprogramme sind bedeutend schneller als

eine GETS-Schleife über 254 Bytes in BASIC. Da die

Effektivität des Programms, die Anzahl der Diskettenwechsel,

vom zur Verfügung stehenden freien Speicher des Rechners

abhängt, ist es nur für den Commodore 64 gedacht. Selbst bei

einem VC 20 mit 16 K Erweiterung wären je elfmaliger Wechsel

von Original- und Zieldiskette erforderlich.

Hier noch ein ungefährer Zeitvergleich zwischen diesem

Frogramm und dem Duplizieren auf einem Doppellaufwerk mit der

gleichen Kapazität. Unser Frogr amm braucht je nach

Diskettenbelegung ca. 20 Minuten, die CBM 4040 schaffts in

ca. 3 Minuten.

Die Duplizieren von Disketten mit diesem Programm verläuft

denkbar einfach: Sie brauchen nach dem Starten lediglich nach

den Anweisungen auf dem Bildschirm jeweils die Driginal- oder

die Zieldiskette einzulegen, den Rest erledigt das Frogramm

für Sie. “

100 REM BACKUP-PROGRAMM C64 — VC 1541

110 REM

120 POKES6,23:CLR:GOSUB640

130 OFEN1,8,15

140 DIM B4(35,23) ,S4(35) ,Z(7,AF(1)

150 AS(O)="ZIEL":AS(1)="ORIGINAL":R=1

160 AD=23#256: GOSUBS9O

170 FOKE2S0 ,O:POKE251 ,AD/256

GOSUBS30: GOSUBZ90

PRINTNS"BLOCKS ZU KOPIEREN": PRINT

T=1:5=0

FORI=1T04: TT=T:55=5:R=1: IFI=1THENZ40

IFR=OANDI=1 THENGOSUB450: GOTO240

GOSUBS590

FOKRE2?S1 ,AD/256: FORJ=1T0169

IFBZ(T,S) =QTHENGOSUBS70

5=-5+1: IF5=5% (T) THENT=T+1:5=0: IFT=346THENJ=169

NEXT: IFRTHENR=O: T=TT:5=SS: GOTO220

NEXT: GOTOS10

T=18: S=0: GOSUBS70

NS=0: FOR T=1TO35 : S=0

NS=NS+SZ (T) -PEEK (AD+4#T)

FORJ=1TOS

B=PEEK (AD+4#T+J)

FORI=0T07

BY(T,5)=B AND Z(1I):S=Sti

NEXT I,J

FOR S=S2(T) TO23

BZ(T,S)=-1 : NEXT S,T
FOR I=0TOIS

A=PEEK (AD+144+1)

IFA{ >160THENNS=N#+CHRS (A)

NEXT

I£=CHR$ (PEEK (AD+162))+CHRS (PEEK (AbD+163))

PRINTNS , IF: RETURN

FRINT"BITTE NEUE DISKETTE EINLEGEN"

FRINT"UND RETURN DRUECKEN '":FRINT:FOKE178,0:CLOSE2Z

GETAF: IFÄAF< >CHRE (13) THEN470

PRINTS1,"NO: "N#","I#

INPUTS1,A,B$,C,D: IFATHENFRINTA", "BS", "C","D:END

GOTO4S30
CLOSE2?: CLOSE1:END

REM SEKTOREN PRO TRACK

FORT=1T035

SZ T)=21:1IFT>17THENS%A (7) =19: IFT>Z4THENSA (TI =18:

IFT >SOTHENSZ (T) =17

NEXT
FORI=0T07: Z (I) =271:2:NEXT:RETURN

IFRTHENPRINTS1,"U1 2 O'T3S:SYSIN: RETURN

FRINTS1,"B-F 2 O":sSYSOUT:PRINTS81,"U2 2 O"T;3S:RETURN

CLOSE2:PRINT"BITTE “A(R “DISKETTE EINLEGEN"

PRINT"UND RETURN DRUECKEN !":PRINT:FOKE198,0

GETA#: IFAS< >CHRS (13) THENG10

PRINTS1,"IO

OPEN? ,8,2,"8":RETURN

FOR I = 828 TO 875 : REM MASCHINENPROGRAMM LESEN

READ X =: POKE I,X : S=S+X : NEXT

DATA 162, 2, 32,198,255,160, 0, 32,207 ,255,145,250

DATA 200, 208,248,230,251, 32,204,255, 96,198, 1,142

DATA 2, 32,201,255,160, 0,177,250, 32,210,255, 200

DATA 208,248,230,251, 32,204,255 ,230, 1, 76

IF 5 <> 7312 THEN PRINT "FEHLER IN DATAS !!" 2: END

IN=828: OUT=849: RETURN

hJ

& N)

4.1.4 Kopieren einzelner Files auf eine andere Diskette

Das nachfolgende Frogramm erlaubt es Ihnen, einzelne Dateien

von einer Diskette auf eine andere Diskette zu kopieren. Bei

den Dateien kann es sich um Programme (PRG), sequentielle

Dateien (SEQ) oder Userdateien (USR) handeln. Relative

Dateien lassen sich mit diesem Programm nicht kopieren;

können jedach mit einem BASIC-Frogramm, daß alle Datensätze

in ein Stringarray liest und von dort wieder in eine neue

Datei schreibt, kopiert werden.

Das Frogramm liest im ersten Gang die komplette Datei in den

Speicher des Commodore 64. Dann wird die Zieldiskette

eingelegt und dort eine Datei mit gleichem Namen eröffnet.

Dann werden die kompletten Daten auf die zweite Diskette

geschrieben. Zum Datenspeichern stehen im Rechner 49 KByte

zur Verfügung; Sie können deshalb Dateien mit bis zu 196

Blocks auf Diskette verarbeiten.

Aus Geschwindigkeitsgründen wurde das Einlesen und Zurück-

schreiben der Daten mit einem kleinen Maschinenprogramm

erledigt, das in DATA-Statements abgelegt ist.

Das Frogramm eignet sich außer zum Kopieren von sequentiellen

Dateien wie gesagt auch zum Kopieren von Programmen aller

Art; die Startadresse (bei Maschinenprogrammen) ist dabei

nicht relevant.

Bei der Bedienung des Frogramms brauchen Sie sich nur an die

Anweisungen zu halten und die entsprechenden Disketten

einlegen.

100 REM FILE-KOPIERFROGRAMM C64
110 REM
120 POKE 56,12 : CLR
130 GOSUB 1000
140 INFUT "DATEINAME ":N#
150 PRINT "DATEITYP ";
150 GETT#: IFT$< >"S"ANDTS< >"P"ANDT$< >"U"THEN160
170 PRINTT$: PRINT
180 PRINT"BITTE ORIGINALDISKETTE EINLEGEN"
190 FRINT"UND TASTE DRUECKEN !":PRINT
200 GETA$: IFA$=" "THEN200
210 OPEN 2,8,2,N$+","+T$
220 POKES,0:POKE4,12:SYS866
230 CLOSE?
240 PRINT"BITTE ZIELDISKETTE EINLEGEN "
250 PRINT"UND TASTE DRUECKEN !": PRINT
260 GETAS: IFA$=""THEN260
270 OPEN 2,8,2,N$+" "+T$+" Ww"
280 POKES,0:POKE4,12:SYS828
290 CLOSE 2 :END

283

1000 FOR I = 828 TO 898
1010 READ X : POKE 1,X : S=S+X : NEXT
1020 DATA 162, 2, 32,201,255,198, 1,160, 0, 56,165, 3
1030 DATA 229, 5,165, 4,229, 6,176, 13,177, 3, 32,210
1040 DATA 255,230, 3,208,2364,230, 4,208,232,230, 1, 76
1050 DATA 204,255,162, 2, 32,198,255,160, 0, 32,207,255
1060 DATA 145, 3,230, 3,208, 2,230, 4, 36,144, 80,241
1070 DATA 165, 3,133, 5,165, 4,133, 46, 746,204,255
1080 IF 8 <> 8634 THEN PRINT "FEHLER IN DATAS !!" : END
1090 RETURN

284

4.1.5 Einlesen des Directorys innerhalb von Frogrammen

Es gibt Anwendungsprogramme, die benutzereigene Dateien unter

einem beliebigen Namen abspeichern. Wenn Sie zum Arbeiten mit

dieser Datei deren Namen angeben müssen, der Name Ihnen aber

entfallen ist, so ergibt sich ein Problem: Zum Auffinden

dieses Namens müssen Sie das Frogramm verlassen, den Namen im

Directory suchen und das Frogramm neu laden und starten.

Diese Frozedur lait sich durch Integrieierung einer

Directory-Auflistroutine in das Programm vermeiden. Ist Ihnen

dann ein Dateiname entfallen, so können Sie, z.B. mit einer

Funktinstaste, das Directory auf dem Bildschirm ausgeben,

ohne daß das Frogramm verlassen werden muß. Wir haben eine

dementsprechende Routine entwickelt, dessen Listing nun

folgt:

100 PRINTCHR$ (147);
110 OPEN15,8,15,"I0":0PEN2,8,2,"#"
120 T=18:S=1
130 PRINT#15,"B-R"3;2:0;T:S
140 PRINT#15,"B-P"3250
150 GET#2,X#: IFX$=""THENX#=CHRS (0)
160 T=ASC(X#)
170 GET#2,X$: IFX$=""THENX$=CHRS$ (0)
180 S=ASC(X#)
190 FORX=0T07
200 FRINT#15, "B-P" 325 X#324+5
210 FF$=""
220 FORY=0T015
230 GET#2,X$: IFX$=""THENX$=CHRS$ (0)
240 IFASC(X$)=160THEN 270
250 FF$=FF$+X$
260 NEXTY
270 IFA=OTHENA=1:PRINTFF$; : GOTO290
280 A=0: PRINTTAB (20); FF$
290 NEXTX
300 IFT< »OTHEN130
310 ELOSE1:CLOSE?2
320 FRINT"WEITER MIT RETURN!"
330 BETX$
340 END:REM WENN UNTERPROGRAMM, DANN RETURN

Nach Selektieren der Filenamen aus dem Directory werden diese

auf dem Bildschirm ausgegeben. Soll dieses Programm als

Unerprogramm benutzt werden, daß mit GOSUB aufgerufen wird,

so muß in Zeile 340 anstatt des Befehls END der Befehl RETURN

eingesetzt werden.

Diese Routine haben wir auch in den Dienstprogrammen in den

Kapiteln 4.1.1 und 4.1.2 verwendet.

4.2 Die Dienstprogramme der Test/Demo-Diskette

Es gibt viele VC-5141 Besitzer, die mit den auf der

Test/Demo-Diskette enthaltenen Programmen wenig anzufangen

wissen. Der Grund dafür ist, daß diese Frogramme entweder in

englischer Sprache selbstdokumentierend oder aber sogar

gänzlich undokumentiert sind. Die folgenden Beschreibungen

dieser Frogramme soll Ihnen weiterhelfen:

4.2.1 DOS 5.1

Das DOS 5.1 vereinfacht die Handhabung des VC-1541 DOS. Es

ist auf den Rechnern VC-20 und COMMODORE 64 einsetzbar. Zum

Laden des DOS 5.1 mit dem VC-ZO geben Sie die Befehle

LOAD"VIC-20 WEDGE" ,&

RUN

ein. Dies ist das Ladeprogramm des DOS 5.1 für den VC-20.

Wollen Sie das DOS 5.1 auf dem COMMODORE 64 betreiben, so

geben Sie die Befehle

LOAD"C-64 WEDGE" ,8

RUN

ein. Hiermit wird das DOS 5.1 in den CBM 64 geladen.

Doch was bietet nun dieses DOS 5.17 Sie können die am meisten

benötigten Befehle mit Symbolen fbkürzen. Wollen Sie z.B. das

Directoy auf dem Bildschirm anzeigen, so geben Sie den DOS

5.1-Befehl 'äd#° oder '>#'° ein. Hier wird auch nicht das im

Speicher befindliche Frogramm gelöscht.

Die einzelnen Befehle des DOS 5.1:

Schreibweise Funktion

at oder ># Das Directory wird angezeigt

3V oder >V Selbe Funktion wie "VALIDATE"
2... oder ;C:.. Kopieren von Files (COPY)

ftile oder /file Laden von Frogrammen .

oder > Fehlerkanal abfragen und anzeigen

aN:... oder >N:... Formatieren einer Diskette

aI oder >I Initialisieren der Diskette

:... oder >R:... Umbenennen eines File (RENAME)

as:... oder >S:.... Löschen eines Files (SCRATCH)

4.2.2 COPY/ALL

Mt dem Programm "COPY/ALL" können Files zwischen zwei

Laufwerken verschiedener Adressen ausgetauscht werden. Dazu

muß ein Laufwerk z.B. mit dem Frogramm "DISK ADDR CHANGE" auf

eine andere Geräteadresse als 8 umgestellt werden. Nach dem

Starten des Frogramms erscheint die Meldung:

disk copy all jim butterfield

from unit? 8

auf dem Bildschirm. Hier geben Sie die bGeräteadresse der

Diskettenstation an, von dem Sie die Files herunterholen

möchten. Ist dies die Adresse 8, so drücken Sie nur RETURN.

Anschließend geben Sie das entsprechende Laufwerk dieser

Diskettenstion an (bei Einzellaufwerken immer 0). Auf diese

Wiese stellen Sie auch die Geräteadresse des Ziellaufwerkes

ein. Ist dies geschehen, so fragt das Frogramm

want to new the output disk
Le |
rn

Es wird gefragt, ob die Zieldiskette noch formatiert werden

soll. Sie antworten hier mit ‘y’ (ja) oder ’n’ (nein).

Dann können Sie die zu kopierende Files mit dem Joker (#)

auswählen. Sollen alle Files kopiert werden, so geben Sie

nurt den Stern ein.

Nun gibt das Frogramm die Anweisung

hold down ‘y’ or ‘n’ key to select

Das Programm zeigt nun die Files der Oriqinaldiskette an, die
’ ’

Sie dann mit der Taste ‘y’ (ja) oder n (nein) auswählen

können. Die Files, bei der Sie ‘y’ gedrückt haben, werden

kopiert.

Erscheinen während dem Kopiervorgang Sterne (#*#*) hinter den

Files, so bedeutet das, daß dieser HKopiervorgang nicht

fehlerfrei verlief.

Können nicht alle Files auf die Zieldiskette untergebracht

werden, so wird "#** output disk full" und "do you have a new

one" gemeldet. Die restlichen Files können auf eine andere,

formatierte Diskette untergrbracht werden, in dem Sie nach

der Frage 'y’ eingeben.

Nach Abschluß des Kopiervorgangs wird die Anzahl der freien

Blocks der Zieldiskette angezeigt.

4.1.3 DISK ADRR CHANGE

Mit diesem Programm können Laufwerke softwaremäßig auf eine

andere Geräteadresse eingestellt werden (4-15). Nach Starten

des Frogramms schalten Sie alle angeschlossenen Laufwerke,

außer dem zu ändernden Laufwerk aus. Nun geben Sie die alte

und anschließend die neu Geräteadresse ein.

Danach wird die Adresse umgestellt und alle anderen Laufwerke

können wieder eingeschaltet werden.

Folgende Laufwerke von diesem Programm umgestellt werden:

2031 DOS V2.6

2040 DOS Vi.1

4040 DOS V2.1

4040 DOS V2.7

8050 DOS V2.5

8050 DOS V2.7

8250 DOS V2.7

4.2.4 DIR

Dies ist ein kleines Hilfsprogramm mit folgenden

Möglsichkeiten:

d - Zeigt das Directory auf dem Bildschirm an

> - Mit diesem Zeichen kann ein Diskettenbefehl in ver-

kürzter Form eingegeben werden (z.B >N:TEST,KN) zum

formatieren einer Diskette

q - Verlassen des Frogramms

5 -— Fehlerkanal anzeigen

Diese Möglichkeiten haben Sie auch mit dem DOS 5.1, außerdem
noch weitere Befehle beinhaltet.

4.2.5 VIEW BAM

Moit diesem Dienstprogramm können Sie die Belegung der Blocks

auf der Diskette auf dem Bildschirm anzeigen lassen. Diese

Tabelle zeigt in vertikaler Richtung die Sektoren und in

horizontaler Richtung die Spuren an. Normale Kreuze

kennzeichnen freie und reverse Kreuze die belegten Blöcke.

Die Bezeichnung "n/a" bedeutet, daß diese Blöcke nicht auf

der Spur existieren.

Nach Ausgabe der Tabelle wird der Diskettenname und die

Anzahl der freien Blücke angezeigt.

4.2.6 CHECK DISK

Das Dienstprogramm "CHECK DISK" testet jeden Block der

Diskette, indem er beschrieben und gelesen wird. Der momentan

bearbeitete Block und die Gesamtzahl der getesteten Blicke

wird am Bildschirm angezeigt.

4.2.7 DISPLAY T2S

Wenn Sie an dem Aufbau der einzelnen Blocks der Diskette

interessiert sind und diese auf dem Bildschirm oder Drucker

288

ausgeben wollen, hilft Ihnen dieses Dienstprogramm weiter.

Nach Starten des Frogramms geben Sie die gewünschte Spur

(TRACK) und den Block (SECTOR) ein. Dieser wird dann entweder

auf dem Drucker ider auf dem Bildschirm ausgegeben. Der in

diesem Buch enthaltene DISK-MONITOR ist aber wesentlich

komfortabler als dieses Programm, da mit Ihm auch Blöcke

geändert und wieder zurückgeschrieben werden können.

4.2.8 PERFORMACE TEST

Dieses Programm ermöglicht es, die Mechanik des Laufwerkes

VC-1541 zu testen. Dazu werden alle Zugriffsbefehle auf die

Diskette in folgender Reihenfolge ausgeführt:

1. Diskette wird formatiert

2. Ein File wird zum Schreibn geöffnet

3. Daten werden in dieses File geschrieben

4. Das File wird wieder geschlosssen

5. Dieses File wird zum Lesen geöffnet

6. Die Daten werden gelesen

7. Das File wird wieder geschlossen

8. Das File wird gelöscht

9. Die Spur 35 wird beschrieben

10. Die Spur 1 wird beschrieben

1i. Die Spur 35 wird gelesen

12. Die Spur 1 wird gelesen

Nach jedem Zugriff auf die Diskette wird der Fehlerkanal

angezeigt. Auf diese Weise kann festgestellt werden, welcher

Zugriff auf die Diskette nicht fehlerfrei verläuft.

Benutzen Sie für dieses Test nur Disketten, die keine

wichtigen Daten enthält, da diese verloren gehen.

4.3 BASIC-Erweiterungen und Programme zur komfortablen

Nutzung der VC 1541

4.3.1 Eingabe beliebig langer Strings von Diskette

Das Einlesen von Daten von der Floppy mit Hilfe des INFPUT#-

Befehls hat leider einen großen Nachteil: Mit Commodore 64

und VC 20 können keine Daten eingelesen werden, die mehr als

88 Zeichen haben. Dies liegt am Eingabepuffer des Rechners,

der nicht länger ist. Außerdem können nicht alle Zeichen mit

INPUT# gelesen werden. Steht innerhalb eines Datensatzes ein

Komma oder ein Doppelpunkt, so sieht der Rechners dies als

Trennzeichen an, und der Rest der Eingabe wird der nächsten

Variable zugewiesen. Enhalt der INFUT#-Befehl nur eine

Variable, so wird der Rest ganz ignoriert und beim nächsten

INFUT# wird erst hinter dem nächsten Carriage Return

(CHR#(13)) weitergelesen. Die Alternative, die Eingabe mit

dem GET#-Befehl erfordert eine langsame Schleife in BASIC,

die wir vermeiden wollen.

Hier kann eine kleine Maschinenroutine Abhilfe schaffen.

Wir ändern hier den INFUT#-Befehl ab, indem wir als zusätz-

lichen Farameter die Anzahl der zu lesenden Zeichen mit

angeben. Zur Unterscheidung vom normalen INFUT#-Befehl nennen

wir unseren Befehl INFUT*. Die Syntax sieht dann folgender-

maßen aus:

INPUT* 14, len, var

Dabei ist If die logische Filenummer der zuvor geöffneten

Datei, len ist die Anzahl der Zeichen „ die eingelesen werden

sollen und var ist die Stringvariable, in die die Zeichen

eingelesen werden sollen. Ein Programmausschnitt könnte dann

z.B. so aussehen:

100 OPEN 2,8,2, "DATEI"
110 INPUT* 2,100,A¢

Damit wird ein String von 100 Zeichen Länge aus der

geöffneten Datei nach At gelesen. Dieses Verfahren ist

besonders für relative Dateien geeignet, da hierbei nach der

Positionierung der Record-Zeigers mit einem Befehl der kom-

plette Datensatz gelesen werden kann. Die Aufteilung des

Datensatzes in die einzelnen Datenfelder kann dann mit dem

MID$-Befehl geschehen. Wie man Datensätze auf elegante Weise
erzeugt, wird im nächsten Kapitel beschrieben.

Bei diesem Verfahren ist es auch nicht mehr nötig, einen

Datensatz mit einem Carriage Return abzuschließen. Sie können

also besonders bei relativen Dateien die maximale Datensatz-

länge ausnutzen:

290

100 OPEN 1,8,15
110 OPEN 2,8,2, "REL-DATEI ,L, "+CHR$ (20)
120 PRINT#1, "P"+CHR$ (10) +CHRS (0) +CHRS (1)
130 PRINT#2, "12345678901234567890" ;
140 PRINT#1, "P"+CHR# (10) +CHR# (0) +CHR# (1)
150 INPUT* 2,20,A$
140 PRINT A$

123454678901234567890

Anschießend finden Sie das Assemblerlisting des Maschinen-

programms, das im Kassettenpuffer abgelegt wurde sowie je ein

Ladeprogramm in BASIC für Commodore 64 und VC 20.

110: O33C ‚OFT Pi
‚ INPUT# LF,LEN,A$

INFUT 150 O33C = $85
160: 033C STERN = $AC
170: o33C BASVEC = £308
180: 033€ CHRGET = $73
190: 033C CHRGOT = CHRGET + &

$

210: O33 ; C64 - VERSION
210: O33C
380: O33C CHKIN = $ELIE
390: O33C BASIN = $E112
400: O33C CHKCOM = $AEFD
410: O33C INTER = $ATAE
420: 033C EXECOLD = $A7E7
430: 033 INPUTOLD = $ABBF
440: 033C FINDVAR = $BOBB
450: 033€ STRRES = $B475
460: O33C FRESTR = $B6A3
470: O33C GETBYT = $B79E

; 20ER VERSION

240: O33C CHEIN = $E11B
250: O33C BASIN - $E10F
260: O33C CHECOM = $CEFD
270: 033€ INTER = $C7AE
280: O33C EXECOLD = $C7E7
290: O33C INPUTOLD = $CRBF
300: O33C FINDVAR = $DOBB
310: O33C STRRES = $D475
320: O33C FRESTR = $D6A3
330: O33 GETBYT = €D79E

; GEMEINSAME LABELS
5

490: O33C VARADR = £49
500: o33C | CLRCH = $F FCC
510: O33C PARA = $61

s
§

gad: 0330 *= 828

340: O323C0 AG 47 INIT LDA #<TEST

550: O33E AO 03 LDY #>TEST

360: 9340 BD 08 03 STA BASVEC

a7Os 0343 8C 09 03 STY BASVECH+H

S80: 0346 40 RTS

600: 0347 20 73 00 TEST JSR CHRGET

S10: 034A C9 85 CMP #INFUT

62th: O34C Fo 06 BEQ FOUND

&30: OS4E 20 79 00 JSR CHRGOT

640; 0351 4C E7 A? JMF EXECOLD ; ZUR ALTEN ROUTINE

6503 0354 20 73 00 FOUND JSR CHRGET

660: 0357 C9 AC CMP #5TERN ; NEUE INPUT ROUTINE

670: 0357 FO 06 BE@Q DOKSTERN

680: O35B 20 BF AB JSR INFUTOLD

680: O25E 40 AE A7 JMP INTER

6970: 0361 20 9B B7 OKSTERN JSR GETBYT-3 ; FILENUMMER HOLEN

700: 0364 20 1E El JSR CHEIN

710: 0367 20 FD AE JSR CHECOM

720: O36A 20 FE B7 JSR GETBYT + LAENGE

730: 056D BA TXA

730: O36E 48 FHA ; MERKEN

740: ÖS6F 20 FD AE JSR CHKCOM

750: 0372 20 8E BO JSR FINDVAR ; VARIABLE SUCHEN

760: 0375 85 49 STA VARADR

760: 0377 84 4A STY VARADR+1

77Qs 0379 20 A3 Bé JSR FRESTR

780: 037C 6 PLA ; LAENGE

790: 037D 20 75 B4 JSR STRRES ¢: FLATZ FUR STRING RESERVIEREN

800: 0380 AO 02 LDY #2

Bids O382 BF 461 00 STORE LDA PARA,Y

B20: 0385 91 49 STA (VARADR),Y

830: 0287 88 DEY

B40: 0388 10 F8 BFL STORE

850: 038A C8 INY ; Y=

B&O: O38B 20 12 El FETCH JSR BASIN

870: O38E 91 42 STA (FARAtI),Y

BEQ: 0390 C8 INY

BS0: 0391 C4 41 CPY PARA

300: 0393 DO Fé BNE FETCH

910: 0395 20 CC FF JSR CLRCH

910: 0298 AC AE A7 UMP INTER ı ZUR INTERFRETERSCHLEIFE

Hier sind nun die BASIC-Frogramme zur Eingabe der

Maschinenprogramme für den INFUT* — Befehl.

INPUT* „ 64er Version

100 FOR I = 828 To 922
110 READ X = POKE I,X : S=S+X : NEXT
120 DATA 169, 71,160, 3,141, 8, 3,140, 9, 3, 96, 32
130 DATA 115, 0,201,133,240, 6, 32,121, 0, 76,231,147

DATA

DATA

DATA

DATA

DATA

DATA

IF §&

32,115, 0,201,172,240, 6, 32,191,171, 76,174
167, 32,155,183, 32, 30,225, 32,253,174, 32,158
183,138, 72, 32,253,174, 32,139,176,133, 73,132
74, 32,163,182,104, 32,117,180,160, 2,185, 97
0,145, 73,136, 16,248,200, 32, 18,225,145, 98

200,196, 97,208,246, 32,204,255, 76,174,167
<> 11096 THEN PRINT "FEHLER IN DATAS !!" =: END

SYS 828 : PRINT "OK !"

INPUT# „ 20er Version

100

110

120

130

140

150

140

170

180
190

200

210

FOR I

READ

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

IF §

= 828 TO 922
X = POKE I,X : S=S+X : NEXT
169, 71,160, 3,141, 8, 3,140, 9, 3, 96, 32
115, 0,201,133,240, 6, 32,121, 0, 76,231,199
32,115, 0,201,172,240, 4, 32,191,203, 76,174

199, 32,155,215, 32, 27,225, 32,253,206, 32,158
215,138, 72, 32,253,206, 32,139,208,133, 73,132
74, 32,163,214,104, 32,117,212,160, 2,185, 97
0,145, 73,136, 16,248,200, 32, 15,225,145, 98

200,196, 97,208,246, 32,204,255, 76,174,199
<> 11442 THEN PRINT "FEHLER IN DATAS !ı" =: END

SYS 828 : PRINT "OK !"

4.3.2 Komfortables Aufbereiten von Datensätzen

Haben Sie schon einmal mit relativen Dateien gearbeitet, so

wissen Sie, daß dort eine feste Datensatzlänge vorgegeben

ist. Dieser Datensatz ist meist in mehrere Felder unterteilt,

die ebenfalls an festen Positionen innerhalb des Datensatzes

beginnen und eine definierte Länge haben.

Geben Sie z.E. in einem Programm einen neuen Datensatz ein,

so wird meistens für jedes Feld ein separater INFUT-Befehl

verwendet. Bevor nun der komplette Datensatz geschrieben

wird, muß er erst richtig zusammengesetzt werden. Jedes Feld

muß auf seine Länge geprüft werden. Ist es länger als die

vorgesehene Länge des entsprechenden Datenfeldes, muß der

Rest abgeschnitten werden. Bei kürzeren Feldern wird man im

allgemeinen mit Leerzeichen auf die geforderte Länge

auffüllen. Im folgenden werden Ihnen nun zwei neuen

BASIC-Befehle vorgestellt, die sich für diese Aufgabe

hervoragend eignen. Diese neuen Befehle sind in

Maschinensprache geschrieben und werden einmal mit einem

SYS-Befehl initialisiert. Ab sofort sind sie dann wie alle

anderen BASIC-Befehle über Befehlsworte aufzurufen.

Der erste Befehl bekommt den Namen 'S5TR$ und dient zum

Erzeugen eines Strings mit der Länge des Datensatzes.

At = 'STR#(100," ")

erzeugt einen String mit 100 Leerzeichen und legt ihn in der

Variablen A ab.

Der nächste Befehl dient nun zum Einsetzen unserer

Datenfelder in den oben erzeugten String. Wollen Sie z.B. die

Variable N#, die den Nachnamen enthält, als Datenfeld von 25

Zeichen Länge ab Fosition 1 in den String AF einsetzen, so

sieht unser neuer Befehl so aus:

MID# (A$,1,25) = N$

Hier wird der MID#-Befehl als sogenannte Fseudo-Variable auf
der linken Seite des Gleichheitszeichens verwendet. Was dabei

passiert ist folgendes:

Die Variable N# ersetzt die ersten 25 Zeichen der Variable

At. Ist die Variable N# länger als 25 Zeichen, so ist

sichergestellt, daß nur 25 Zeichen ersetzt werden und der

Rest der Variablen nicht berücksichtigt wird. Ist N# jedoch

kürzer, werden nur so viele Zeichen ersetzt, wie die N#

beinhaltet. Dort bleiben die ursprünglichen Zeichen in At (in

unserem Falle die Leerzeichen) erhalten. Das ist ganau das,

was wir haben wollen. Jetzt können Sie folgendermaßen

programmieren:

200 INPUT "NACHNAME "3 N$
210 INPUT "VORNAME ":z V&$
220 INPUT "STRASSE ": S#
230 INFUT "NUMMER "= NRE
240 INPUT "ORT ". OF
250 INPUT "PLZ Hs Pg
260 A$ = 'STR# (94, " ")
270 MIDS (A$,1,25) = NF
280 MIDS (A#,26,20) = Vs
290 MID$ (A$,46,20) = 5$
300 MID# (A$,66,5) = NRF
310 MID# (A#,71,20) = OF
320 MID® (A$,91,4) = FS
330 PRINT#2, At

Hier nun das Maschinenprogramm fiir den Commodore

133: C800

140: CBOO

150 CB800

1406 LBOO

170 C800

180 LBOO

190: EBOO

200 EB00

205: C800

210: CB00

220: C800

226: 800

229: C800

230: CBO0

231: C800

232: Ce8og

233: C800

234: [800

2393: C800

236: CBOO

237: C800

238: CBOO

240: C800

241: C800

242: C800

243: Ceo0

245; C800

248: CB00

248: [802

248: [804
248: C807

248: CBOA

25 CBOD

250; CBOF

30 cBil

251: c814

25 CBié

CHEAUF

CHEZU

CHECOM

FRMEVL

CHKSTR

FRESTR

YFAC

CHRGET

CHRGOT

GETBYT

INTEGER

DESCRPT

STRADR

ADR2

ADRI

LENI

LENZ

ANZAHL

START

TYPFLAG

STRCODE

ILLQUAN

SYNTAX

POSCODE

VECTOR

TEMP

03

03

CB

TESTIN

> 00

a
Te

||
h
o
n

on
H
o
p

Wo
on

on
on

u

6800

$AEFA

$AEF7

€AEFD

$AD9E

$ADS8F

$B6A3

$B3A2

$73

CHRGET+4

$B79B

$B1AA

$64

LENI

#<TESTIN

#:TESTIN

VECTOR

VECTOR+L

MIDSTR

#0

TYPFLAG

CHRGET
yrıı

TEST2

tJ

a

cn

64.

251; C818 20 79 00 JSR CHRGOT

Zoi: CBiB AC SD AE UMP $AEBD

252: CBLE 20 73 00 TESTZ JSR CHRGET

252: [821 CF C4 CMF #S5TRCODE

232 C823 FO 03 BEQ@ STRING

233: C825 AC 08 AF JMP SYNTAX

» STRINGS-FUNKTION

700: C828 20 73 00 STRING JSR CHRGET

700: CBZB 20 FA AE JSR CHEAUF |; ELAMMER AUF

910: CBZE 20 9E B7 USK GETBYT+3

920: C821 8A TXA

920: C832 48 FHA ; LANGE MERKEN

920: C833 20 FD AE JSR CHECOM

940: L836 20 9E AD JSR FRMEVL

50: C839 24 OD BIT TYFFLAG

9605 CIB 30 OC BMI STR ; STRING

970: C62D 20 AA Bl JSR INTEGER

780; C840 AS 64 LDA DESCRPT ; HIGHBYTE

990: C842 DO 24 BNE ILL + 5 255

1000; C844 AS 45 LDA DESCRPT+1 + LOW-BYTE, LANGE

1010: C846 46 52 Ca JMP STR2

1020; C849 20 82 B7 STR JSR #8782 ı SETSTR, TYFFLAG AUF NUMERISCH

1020: C840 FO IA BE@ ILL ; LANGE NULL

1040: CB4E Ad 00 LDY #0

1050: CBS0 Bi 22 LDA ($22),Y 3 ERSTES ZEICHEN

1060: C8B52 85 03 STR2 STA TEMF

1970: C854 68 FLA ; LANGE

1080: C855 20 7D B4 JSR #$B47D ı FRESTR

1090: C858B AB TAY

1100: C839 FO 07 BEQ STR3

Lito: C835 3 03 LDA TEMP

1120: C8SD 88 LOOP DEY

i120: CBSE 91 62 STA (STRADR),Y +: STRING ERZEUGEN

1130: C860 DO FB BNE LOOP

1140: CB62 20 CA B4 STR JSR #B4CA ; STRING IN DESCRIPTORSTACK BRINGEN

1150: C865 4€ F7 AE UMP CHEZU |

1160: C868 4C 48 BZ ILL JMP ILLQUAN

; MIDS (STRINGVARIABLE ,POSITION,LANGE) = STRINGAUSDRUCE

; MID${STRINGVARIABLE,FOSITION! = STRINGAUSDRUCK

200: CB4B MIDCODE = CA

2103 EB&R EXECUT = $308 ; VECTOR FüR STATEMENT AUSFÜHREN

240; CB6B EXECOLD = $A7E7

250: CB6R VARNAM = $45

230: CB6R VARADR = $49

260: C8éB DESCRPT = $64

270 EB6R TESTSTR = $ADQF

280: L86B GETVAR = $B08B

290 C8458 SETSTR $AAS2

323: EB6R TEST = $AEFF

330: CB6R GETRYT = $B79E

339: 0003 *= 3

360: 0004 LAENGE *= *+l

296

[
n
e
n

Cn

u
e

a
n

s

bP

P
o
p

p
i

cd

le
d

ob.

a
n

o
n

a
n

o
s

L
a
o

on

OF

on

en

oo
n

Cf

oo

m
on

>

cn

(
o
S

on

0005

0007

0007

0007

CB4B

C8éd

CE6F

C872

C875

C876

0879

C878

C87D

[889
on

AE

BG

AA

AE

B?

AE

B7

POSITION #=

VARSTR

GLEICH

ZEIG2

MIDSTR

MIDTEST

MID

NEXT

=

¥+/{

¥+2

$B2

$50

#OMIDTEST

#>MIDTEST

EXECUT

EXECUT+1

CHRGET .
#MIDCODE ; CODE FUR MIDS ?
MID : JA
CHRGOT
EXECOLD ; NORMALES STATEMENT AUSFÜHREN

CHRGET ; NACHSTES ZEICHEN
CHKAUF ; KLAMMER AUF
GETVAR ; VARIABLE HOLEN
DESERFT
DESCRPT+1
VARADR
VARADK+1
FRESTR
#0
(DESCRPT) ,Y

; LANGE
ILL
SETSTR 5; STRING IN RAM ÜBERTRAGEN

#1

(VARADRI „Y

VARSTR ; VARIABLENADRESSE MERKEN

(VARADR) „Y

VARSTR+I
CHKCOM

GETBYT ; FOSITION HOLEN

ILL

FOSITION

CHRGOT

#")" ; AUSDRUCK ZU ENDE ?

NEXT

#4FF ; MAX. LANGE

STORE

CHECOM

GETBYT ; LANGE HOLEN

#45

ILLBUAN

LAENGE

POSITION

LAENGE

OK

717: CBD? 85 03 STA LAENGE

720: CDR 20 F7 AE OF JSR CHEZU ; KLAMMER ZU

730: CBDE A? B2 LDA #GLEICH

770: CREO 20 FF AE JSR TEST

780: C8ES 20 9E AD JSR FRMEVL +; AUSDRUCK HOLEN

790: CBEG 20 AS Bé JSR FRESTR

BOO: CBE? AD 02 LDY #2

BOO: CBER Bl 64 LDA (DESCRFT),Y

BOO: CBED 85 5 STA ZETG2+1

BOOS CBEF 88 DEY

BOO: C8FO Bi 44 LDA (DESCRFT),Y

BOO: C8F2 85 50 STA ZEIG2

810: CSF4 88 DEY

810; CBFS Bi 44 LDA {DESCRFT),Y

820: CB8F7 FO DS BE® ILL ; NULL DANN FEHLER

840: CBF? CS 03 CMP LAENGE

850; CAFR BO 02 BCS DEI

B60: CB8FD 85 03 STA LAENGE

870: CBFF AS 05 Okt LDA VARSTR

BBO: C901 18 CLE

B80: C902 65 04 ADC POSITION

910: C904 85 05 STA VARSTR

910: C906 90 02 BCC #+4

920: C708 Ed 06 INC VARSTR+1

940: CIOA A4 03 LDY LAENGE

950: Cec 88 LOOF DEY

950: C90D Bl 50 LDA (ZEIG2),¥ » ZEICHEN AUS STRINGAUSDRUCK

960: C9OF 91 O5 STA (VARSTR),Y 3 IN STRINGSVARIABLE ÜBERTRAGEN

970: C911 CO 00 CPY #0

970: C913 DO F? BNE LOOF

980: C915 AC AE A7 JMP $A7AE ; ZUR INTERPRETERSCHLEIFE

Für diejenigen, die über keinen Monitor oder Assembler für

den Commodore 64 verfügen, haben wir ein Ladeprogramm in

BASIC abgedruckt.

100 FOR I = 51200 TO 51479
110 READ X : POKE I,X : S=S+X : NEXT
120 DATA 169, 13,160,200,141, 10, 3,140, 11, 3, 76,107
130 DATA 200,169, 0,133, 13, 32,115, 0,201, 33,240, &
140 DATA 32,121, 0, 76,141,174, 32,115, 0,201,196,240
150 DATA 3, 76, 8,175, 32,115, 0, 32,250,174, 32,158
140 DATA 183,138, 72, 32,253,174, 32,158,173, 36, 13, 48
170 DATA 12, 32,170,177,165,100,208, 36,165,101, 76, 82
180 DATA 200, 32,130,183,240, 26,160, 0,177, 34,133, 3
190 DATA 104, 32,125,180,168,240, 7,165, 3,134,145, 98
200 DATA 208,251, 32,202,180, 76,247,174, 76, 72,178,169
210 DATA 118,160,200,141, 8, 3,140, 9, 3, 94, 32,115
220 DATA 0,201,202,240, 6, 32,121, 0, 76,231,167, 32
230 DATA 115, 0, 32,250,174, 32,139,176,133,100,132,101
240 DATA 133, 73,132, 74, 32,163,182,160, 0,177,100, 72
250 DATA 240, 44, 32, 82,170,160, 1,177, 73,133, 5,200
260 DATA 177, 73,133, 6, 32,253,174, 32,158,183,138,240
270 DATA 23,202,134, 4, 32,121, 0,201, 41,208, 4,169
280 DATA 255,208, 12, 32,253,174, 32,158,183,138,208, 3

290

300

310

320

330

340

330

360

379

DATA

DATA

DATA

DATA

DATA

DATA

DATA

IF §S

76, 72,178,133, 3,104, 56,229, 4,197, 3,176
2,133, 3, 32,247,174,169,178, 32,255,174, 32

158,173, 32,163,182,160, 2,177,100,133, 81,136
177,100,133, 80,136,177,100,240,211,197, 3,176

2,133, 3,165, 5, 24,101, 4,133, 5,144, 2
230, 6,164, 3,136,177, 80,145, 5,192, 0,208
247, 76,174,147
<> 31128 THEN PRINT "FEHLER IN DATAS !!" =: END

SYS 51200 : PRINT "OK !"

4.3.2 Spooling — Direktes Drucken von Diskette

Haben Sie an Ihrem Rechner außer der Floppy noch einen

Drucker angeschlossen, können Sie eine spezielle Eigenschaft

des seriellen Bus ausnutzen.

Es besteht nämlich die Möglichkeit, Dateien von der Floppy

direkt zum Drucker zu schicken, ohne daß dies Eyte für Byte

über den Rechner geschehen muß. Hat man z.B. einen beliebigen

Text als sequentielle Datei auf Diskette gespeichert und will

man diesen auf dem Drucker ausgeben, wäre folgende PFrogram-

nierung möglich:

100 OPEN 1,4 : REM DRUCKER
110 OPEN 2,8,2, "O:TEXT" z REM TEXTDATEI
120 GET#2, Af : IF ST = 64 THEN 140
130 FRINT#1, A$; : GOTO 120
140 CLOSE 1 : CLOSE 2
150 END

Es werden solange Zeichen von der Floppy geholt und zum

Drucker geschickt, bis das Dateiende erkannt wird. Dann

werden beide Dateien geschlossen und das Programm beendet.

Beim Spooling wird nun folgendes gemacht: ‘

Zuerst werden wieder beide Dateien geöffnet. Jetzt wird an

den Drucker ein Befehl zum Daten empfangen (Listen) gesandt,

während die Floppy den Befehl zum Daten senden (Talk) erhält.

Ab sofort schickt die Floppy solange Daten selbsttätig an den

Drucker, bis das Dateiende errreicht ist. Während dieser Zeit

können Sie Ihren Rechner weiter benutzen, ohne daß die

übertragung davon beeinträchtigt wird. Lediglich die

Benutzung von Feripheriegeräten über den seriellen Bus ist

während dieser Zeit nicht möglich.

In der Fraxis wird dies mit einem kleinen Maschinenprogr amm

gemacht. Will man das Spooling starten, ruft man das Programm

auf und übergibt dabei den Namen der Datei, die man senden

will.

SYS 828, "TEXT"

öffnet die Datei "TEXT" auf der Diskette und schickt sie zum

Drucker. Sobald die Ubertragung startet, meldet sich der

Rechner mit READY.’ wieder und Sie können ihn weiter

benutzen, solange nicht auf den seriellen Bus zugegriffen

wird. Sie können zum Beweis, daß der Rechner nicht mehr zur

übertragung gebraucht wird, das Buskabel zur Floppy

herausziehen, so daß die Floppy nur noch mit dem Drucker

verbunden ist. Ist das Spooling beendet, so bleibt die Datei

in der Floppy noch geöffnet (die rote LED leuchtet weiter).

Sie können die Datei schließen, indem Sie den SYS-Befehl ohne

Dateinamen eingeben (natürlich muß das Kabel zur Floppy

wieder eingesteckt sein).

SYS 828

Mit dem gleichen Befehl können Sie auch eine laufende

übertragung beenden. Das Maschinenprogramm sowie je ein

Ladeprogramm für Commodore 64 und VC 20 finden Sie im

Anschluß.

; 1541- 64 SPOOL

140: 0330 CHRGEOT = $79

COO: O33C SERPORT = $DD00 ; PORT FUR SERIELLEN BUS

169: N33C LISTEN = $FFRi

170: O33C ATNRES = $EDBE ı ATN RUCKSETZEN

180: 033€ ELRCH = $FFCC

190: 0330 CLOSE = $FFC3

2003 O33C CLALL = $F 32

210: O33C GETNAME = $E254 ; FILENAME HOLEN

220: O33C OPEN = $F FCO

230: O33C CHEIN = $FFC4

240: 033 FA = $BA ı GERATEADRESSE

250: O33C SA = $B9 ı SEEUNDARADRESSE

260: D33C FNLEN = £B7 ı LÄNGE DES FILENAMENS

270: 0350 TEMP = $FR

280: O33C INDEV = $99 ; EINGABEGERAT

290: 033C NMBFLS = $98 ; ANZAHL DER FILES

200: 033C OUTDEYV = £98 ; AUSGABEGERAT

310: 033C SETFIL = $FFBA ; FILEPARAMETER SETZEN

320: O33C READY = $E37B

330: O33C ERROR = $AF OB ; SYNTAX ERROR

400: 033 t= 828

410: O33C 20 79 00 JSR CHRGOT 3; FOLGEN WEITERE ZEICHEN ?

420: O33F FO 4F BEQ OFF ; NEIN, DANN SPOOLING BEENDEN

430: 341 20 2F F3 JSR CLALL

440: 05344 20 54 EZ JSR GETNAME ; FILENAME HOLEN

450: 0347 A& B7 LDX FNLEN

460: 0349 FO 5 BER SYNTAX

470: 054B 86 FB STX TEMP

480: O34D A? Ol. LDA #1 ; LOGISCHE FILENUMMER

AGU: QO24F A2 08 LDX #8 ; GERATENUMMER

00: 0351 AQ OF LDY #15 ı SEKUNDARADRESSE

S10: 0353 20 BA FF JSR SETFIL

320: 0354 A? 00 LDA #0

330: 0358 85 B7 STA FNLEN

340: O35 20 CO FF JSR OPEN

390: 035D 20 CC FF JSR CLRCH

760: 0360 AS FB LDA TEMP

370: 0362 85 B7 5TA FNLEN

380: 0564 A9 02 LDA #2

370: 0366 A2 08 LDX #8

600: 0368 AO 02 LDY #2

610: 036A 20 BA FF JSR SETFIL

620; 036D 20 CO FF JSR OPEN

630: 0370 A2 02 LDX #2

640: 0372 20 C& FF JSR CHEIN

650: 0375 AD 00 DD LDA SERPORT

640:

670:

680:

690:
700:

710:

720:

730:

740:

750:

760:

770:

780:

790:

800:

Bids

820:

830:

840:

850:

860:

B70:

0378 09 08 ORA ##8 ; ATN

037A 8D 60 DD STA SERPORT

037D AP 04 LDA #4

O37F 85 BA STA FA ; DRUCKER

0381 20 Bi FF JSR LISTEN

0384 20 BE ED JSR ATNRES

0387 AI 00 LDA #9

0389 85 99 STA INDEV

QO38B 85 98 STA NMBFLS

038D 4C 7B ES JMF READY

0390 49 02 OFF LDA #2

0392 85 98 STA NMBFLS

9394 A? 04 LDA #4

0394 85 9A STA OQUTDEYV

0378 Ag 08 LDA #8

039A 85 99 STA INDEV

039C 20 CC FF JSR CLRCH ; KANÄLE RUCKSETZEN

O39F AG Ol LDA #1

O3A1 20 C3 FF JSR CLOSE ; DATEIEN SCHLIESSEN

O3A4 AI 02 LDA 2

O3A4 4C C3 FF JMP CLOSE

O3A9 AC 08 AF SYNTAX JMP ERROR ı SYNTAX ERROR

Nun das BASIC-Ladeprogramm für den Commodore 64.

FOR I = 828 TO 939
READ X = POKE 1,X : S=S+X : NEXT
DATA 32,121, 0,240, 79, 32,231,255, 32, 84,226,166
DATA 183,240, 94,134,251,169, 1,162, 98,1460, 15, 32
DATA 186,255,169, 0,133,183, 32,192,255, 32,204,255
DATA 165,251,133,183,169, 2,162, 8,160, 2, 32,1864
DATA 255, 32,192,255,162, 2, 32,198,255,173, 0,221
DATA 9, 8,141, 0,221,169, 4,133,186, 32,177,255
DATA 32,190,237,169, 0,133,153,133,152, 76,123,227
DATA 169, 2,133,152,169, 4,133,154,169, 98,133,152
DATA 32,204,255,169, 1, 32,195,255,169, 2, 76,195
DATA 255, 76, 8,175
IF S <> 14511 THEN PRINT "FEHLER IN DATAS !!" =: END
PRINT "OK !"

ist das Ladeprogramm für den VC 20.

FOR I = 828 TO 939
READ X : POKE I,X : S=S+X : NEXT
DATA 32,121, 0,240, 79, 32,231,255, 32, 81,226,166
DATA 183,240, 94,134,251,169, 1,162, 8,160, 15, 32
DATA 186,255,149, 0,133,183, 32,192,255, 32,204,255
DATA 165,251,133,183,169, 2,162, 8,160, 2, 32,186
DATA 255, 32,192,255,162, 2, 32,198,255,175, 31,145
DATA 9,128,141, 31,145,169, 4,133,186, 32,177,255
DATA 32,197,238,169, 0,133,153,133,152, 74,103,228
DATA 169, 2,133,152,169, 4,133,154,169, 8,133,153
DATA 32,204,255,169, 1, 32,195,255,169, 2, 76,195
DATA 255, 76, 8,207
IF S <> 14559 THEN PRINT "FEHLER IN DATAS !!" = END
PRINT "OK !"

4.4 Overlaytechnik und Nachladen von Maschinenprogr ammen

Eine bewährte Programmiertechnik besteht darin, für eine

Froblemlösung ein sogenanntes Menue- oder Auswahlprogramm zu

schreiben, von dem aus für die einzelnen Teilprobleme jeweils

ein eigenes Frogramm geladen und ausgeführt wird. Dabei gibt

es zwei grundsätzliche Möglichkeiten: Übernahme oder keine

übernahme der Variablen in das nachgeladene Frogramm. Eine

übernahme der Variablen ist nur dann möglich, wenn das auf-

rufende Frogramm mindestens so groß oder größer als das nach-

geladene ist. Wird von einem Frogramm aus ein anderes

Frogramm nachgeladen, so bleiben die Zeiger auf das Programm-

ende erhalten und das neue Frogramm wird vom Beginn an

abgearbeitet. In unserem Beispiel würden wir folgendes

Ergebnis erhalten:

100 REM FROGRAMM 1

110 REM DIESES PROGRAMM IST GROSSER ALS DAS ZWEITE

120 A = 1000

130 LOAD "PROGRAMM 2" ,8

100 REM PROGRAMM 2

110 PRINT A

1000

Ist das nachgeladene Programm jedoch größer als das ur-

sprungliche Programm, so würde ein Teil der Variablen über-

schrieben und wir erhielten undefinierte Werte. Außerdem

würde bei Wertzuweisungen an Variablen der Teil des Frogramms

zerstört, der über die Länge des ersten Frogramms hinaus

geht.

Beim übernehmen vom Variablen gibt jedoch noch zwei Beson-

derheiten zu beachten: Handelt es sich um Stringvariablen,

die im ersten Frogramm als Konstanten in Anführungszeichen

definiert worden sind, so gibt es Frobleme. Bei String-

variablen wird ein Zeiger verwendet, der auf den eigentlichen

Text der Variablen zeigt. Wird eine Stringvaribable nun z.B.

mit folgender Anweisung im ersten Frogramm definiert

100 At = "TEXT"

so zeigt der Variablenzeiger in den Programmtext. Beim

Nachladen des nächsten Frogramms wird nun dieser Zeiger nicht

verändert. An der ursprünglichen Stelle steht jetzt jedoch

der neue Frogrammtext, so daß die Variable nun einen un-

definierten Inhalt hat. Dies können wir jedoch leicht

umgehen. Wir brauchen bloß dafür zu sorgen, daß der Text aus

dem Frogramm in den oberen RAM-Bereich kopiert wird, in dem

die Textvariablen normalerweise stehen. Dies erreichen wird

z.B. durch folgende Frogrammzeile:

100 AS = "TEXT + ""

303

Durch die Addition des Leerstrings wird das kopieren des

Variableninhalts in den Stringbereich erzwungen. Ahnliche

überlegungen gelten auch bei Funktionsdefinitionen, da auch

hier der Zeiger auf die Definition im Frogramm zeigt. Hier

müssen wir die Funktion in zweiten Programm noch einmal

definieren, z.B.

100 DEF FN AtX) = 0.5 * EXP (-XxX)

Halten wir noch einmal fest:

Wollen wir ein Programm nachladen, so können wir die

Variablen nur dann weiter benutzen, wenn das zweite Programm

kleiner als das erste Frogramm ist. Ist das nachgeladene

Programm größer und sollen keine Variablen übernommen werden,

können wir uns mit einem Trick aus der Affäre ziehen:

Wir brauchen lediglich unmittelbar nach dem Laden den Zeiger

auf das Ende des BASIC-Programms auf den Wert des neuen

Frogramms setzen. Dies ist mit zwei FOKE-Befehlen möglich, da

die Endadresse nach dem Laden zur Verfügung steht:

PORE 45, FEEE(174) : FOKE 46, FEEK(175) : CLR

Der CLR-Befehl ist unbedingt erforderlich. Diese Zeile sollte

als erste im nachgeladenen Programm stehen. Damit haben wir

also die Möglichkeit geschaffen, beliebig große Programme

ohne Variablenübergabe nachzuladen. Eine andere nicht so

elegante Möglichkeit besteht darin, den Ladebefehl in den

Tastaturpuffer zu schreiben und das Programm dann im

Direktmodus automatisch nachladen zu können. Dazu schreiben

wir vor dem Laden den LOAD- und RUN-Befehl auf den Bildschirm

und füllen den Tastaturpuffer mit ‘HOME’ und Carriage Return.

Im Programm muß danach eine END-Anweisung stehen. Das

Betriebssystem holt dann im Direktmodus den Inhalt des

Tastaturpuffers und liest damit den LOAD- und RUN-Befehl, der

zum Laden und Ausführen des Programms führt. Da dies im

Direktmodus geschieht, werden automatisch die Endadresse des

Programms gesetzt, die Variablen gelöscht und mit dem

nachfolgenden RUN das Frogramm gestartet. Der Nachteil

hierbei ist jedoch, daß der Ladebefehl auf den Bildschirm

geschrieben und eine evtl. Bildschirmmaske dabei zerstört

wird. In der Fraxis sähe das so aus:

1000 PRINT CHR# (147) "LOAD"CHR# (34) "FROGRAMM 2"CHR#(34)",8"

1010 PRINT = PRINT : PRINT : PRINT

1020 PRINT “RUN"

1030 POKE 631,19

1040 POKE 634,13

1050 POKE 198,6

POKE 632,13
POKE 635,13
END

POKE 633,13

POKE 636,13

Sie sehen schon, daß dieses Verfahren umständlicher als das

oben geschilderte Verfahren ist; es ist nur der Vollständig-

keit halber erwähnt. Beim ersten Verfahren wäre nur in Zeile

1000 der programmierte LOAD-Befehl erforderlich:

1000 LOAD "PROGRAMM 2" ,8

Beim Nachladen von Maschinenprogrammen hat sich eine andere
Technik bewährt.

Werden von einem BASIC-Frogramm Maschinenprogramme benutzt,

so werden diese meist zu Beginn des BASIC-Frogramms geladen.

Dabei müssen wir jedoch zweierlei beachten:

Zum einen muß dafür gesorgt werden, daß die Maschinenpra—

gramme absolut, d.h. in einen bestimmten Speicherbereich

geladen werden. Gibt man beim Laden eines Frogramms keine

zusätzlichen Farameter an, so geht das Betriebssytem davon

aus, daß es sich um BASIC-Frogramme handelt und lädt sie

immer ab der Startadresse des BASIC-RAMs, im allgemeinen also
ab Adresse 2049 (beim Commodore 64). Maschinenprogramme sind

jedoch nur lauffähig, wenn sie an die Adresse geladen werden,

für die sie auch geschrieben wurden. Dieses absolute Laden

kann man durch Anhängen der Sekundäradresse 1 erreichen:

LOAD "MASCH-FRG"” „8,1

Desweiteren erinnern wir uns, daß beim . Laden im Programm-

modus das Programm wieder von Anfang an gestartet wird. Das

würde beim Laden von Maschinenprogrammen jedoch zu einer

Endlosschleife führen, da das Betriebssystem davon ausgeht,

daß ein neues BASIC-Frogramm nachgeladen wurde:

100 LOAD "MASCH-FRE" ‚8,1

Hier können wir nun ausnutzen, daß die Variablen beim

Nachladen erhalten bleiben. Wenn wir folgendermaßen

programmieren, haben wir unser Ziel erreicht:

100 IF A=0 THEN A=1 : LOAD "MASCH-FRG" „8,1

110 ...

Wenn wir das Programm mit RUN starten, hat A noch den Wert

Null und die Anweisungen hinter THEN werden ausgeführt: A

erhält den Wert 1 und das Maschinenprogramm wird geladen.

Wenn nach dem Laden das Frogramm wieder von Angang an

abgearbeitet wird, hat A den Wert 1 und es wird direkt in die

nächste Zeile gesprungen, wir haben unser Ziel erreicht.

Ganz ähnlich kann man vorgehen, wenn man mehrere Maschinen-

programme zu laden hat.

100 IF A=0 THEN A=1 : LOAD "FROG 1",8,1

110 IF A=1 THEN A=2 : LOAD "PROG 2",8,1

120 IF A=2 THEN A=3 : LOAD "PROG 3",8,1

130

Hier wird im ersten Durchlauf PROG 1 geladen, im nächsten

PROG 2 usw. Sind alle Programme geladen, wird der Rest des

BASIC-Frogramms ausfgeführt.

I je)

ch

4.5 Merge — Aneinanderhangen von BASIC-Frogrammen

Sicher haben Sie schon einmal an die Möglichkeit gedacht,

BASIC-Frogramme, die Sie einzeln auf Diskette abgespeichert

haben, zu einem Programm zusammen zu fügen. Ohne weiteres ist

dies nicht möglich, da bei Laden eines Frogramms das im

Speicher stehende Frogramm überschrieben wird. Mit der Kennt-

nis, wie BASIC-Frogramme im Speicher abgelegt und auf Dis-

kette abgespeichert werden, können wir jedoch ein einfaches

Verfahren entwickeln, das diese Aufgabe bewerkstelligt.

BASIC-Frogramme stehen folgendermaßen in Speicher:

NL NH Zeiger auf die nächste Frogrammzeile, lo hi

ZL ZH Zeilennummer, 10 hi
XX YY ZZ .„..... Zeileninhalt

00 Kennzeichen für Zeilenende

NL NH Zeiger auf die nächste Frogrammzeile, lo hi

ZL ZH Zeilennummer, lo hi

XX YY ZZ-. Zeileninhalt

00 Kennzeichen für Zeilenende

Am Ende des Frogramms stehen zusätzlich noch 2 Nullbytes:

00 00 „ insgesamt also 3 Nullbytes

In diesem Format werden Programme nun auch abgespeichert. Wo

Programmstart und Frogrammende liegen, steht in zwei Zeigern

in der Zeropage:

PRINT PEEK(43) + 256 * PEEK(44)

ergibt den BASIC-Start, 2049 beim Commodore &4,

PRINT PEEK (45) + 2564 * PEEK (46)

zeigt auf das Eyte hinter den drei Nullbytes.

Da ein Programm immer an den BASIC-Start geladen wird, der

durch den Zeiger 45/44 bestimmt ist, kann man also erreichen,

daß ein zweites Programm ans Ende des ersten Programms

geladen wird. In der Praxis müssen wir also wie folgt
vorgehen:

Zuerst laden wir das erste Frogramm in den Speicher. Jetzt

holen wir uns den Wert des Programmendes.

A = FEEKt45) + 256 * FEEK(46)

Dieser Wert wird um 2 vermindert, damit nachher die beiden

Nullbytes am Frogrammende mit überschrieben werden.

A=A-2

Nun merken wir uns den ursprünglichen Wert des BASIC-Starts.

PRINT PEEK (43), PEEK (44)

Jetzt setzen wir diesen Wert als BASIC-Start.

POKE 43, A AND 255 : POKE 44, A / 256

Nun kénnen wir das zweite Programm nachladen.

LOAD “PROGRAMM 2",8

Wenn wir nun die alten Werte für den BASIC-Start wieder

setzen, z.B. 1 und 8 beim Commodore 64 (wie oben mit dem

PRINT-Befehl erhalten), haben wir das komplette Programm im

Speicher und können es uns mit LIST ansehen oder mit SAVE

komplett abspeichern.

POKE 43,1 : FOKE 44,8

Bei dieser Methode ist jedoch folgendes zu beachten:

Das angehangene Programm darf nur Zeilennummern enthalten,

die größer sind als die größte Zeilennummer des ersten

Frogramm, da andernfalls diese Zeilennummer nie mit GOTO oder

GOSUB erreicht werden könnten und die geordnete Reihenfolge

nicht gewährleistet wäre.

Dieses Verfahren eignet sich vor allem zum Anlegen einer

Unterprogrammbibliothek für öfter gebrauchte Routinen, die

dann nicht jedesmal neu programmiert werden müssen. Gehen Sie

beim Anlegen Ihrer Frogrammbibliothek am besten so vor, daß

Sie für jedes Programm einen bestimmten Zeilennummernbereich

reservieren, z. B. 20000 - 25000, 25000 - 30000 usw. Wollen

Sie mehrere Programme in der oben beschriebenen Weise

nachladen, müssen Sie zuerst die Frogramme mit den kleinsten

Zeilennummer laden und danach das Programm mit den nächst

höheren Nummern.

307

4.6 Disk-Monitor für Commodore 64 und VC 20

In diesem Kapitel stellen wir Ihnen ein sehr nützliches

Werkzeug für den Umgang mit Ihrer Floppy vor, das Sie in die

Lage versetzt, jeden beliebigen Black von Diskette zu laden,

auf dem Bildschirm anzuzeigen, zu ändern und wieder auf

Diskette zurück zu schreiben.

Das Programm ist aus Geschwindigkeitsgriinden— vollkommen in

Maschinensprache geschrieben. Folgende Befehle werden Ihnen

zur Verfügung gestellt:

Lesen eines Blocks von Diskette

Schreiben eines Blocks auf Diskette

Anzeige eines Blocks auf dem Bildschirm

Andern eines Blocks auf dem Bildschirm

Senden von Diskettenbefehlen

Anzeigen der Fehlermeldung der Diskette

Rückkehr zu BASIC *
*

K
K
K

K
K

Das Programm meldet sich nach dem Starten (automatisch durch

das BASIC-Ladeprogramm) mit

DISK-MONITOR V1.0

>

und erwartet Ihre Eingabe. Geben Sie jetzt "(Kl ammer af fe)

ein, So wird die Fehlermeldung von Diskette geholt und auf

dem Bildschirm angezeigt, z.B.

00, 0k,00,00

Wollen Sie einen Befehl an die Diskette senden, so geben Sie

‘8° gefolgt von dem Befehl ein. Initialisieren können Sie die

Diskette dann mit

>91

Sie können so sämtliche Diskettenbefehle senden, die Sie

sonst über die Befehlsfolge

OPEN 15,8,15
PRINT# 15, "Befehl"
CLOSE 15

senden würden. Sie können z.B. Dateien löschen, Disketten

formatieren usw.

Die wichtigste Funktion des Diskettenmonitors ist jedoch der

Direktzugriff auf jeden Block der Diskette. Dazu dienen die

Befehle ‘“R’ und ‘W’. ‘R’ steht für READ und liest einen

gewünschten Block, ‘W° bedeutet WRITE und schreibt einen

308

Block auf Diskette. Sie brauchen lediglich anzugeben, welchen

Track und Sektor Sie lesen wollen. Diese Angaben müssen in

hexadezimaler Form erfolgen, genauso wie auch die Ausgabe auf

dem Bildschirm erfolgt. Wenn Sie z.B. Track 18, Sektor 1

lesen wollen (den ersten Directoryblock), geben Sie folgenden

Befehl ein:

eR 12 01

Sämtliche Eingabe müssen also als zweistellige Hexzahlen

erfolgen, die durch ein Leerzeichen von einander getrennt

sind.

Um sich den Block jetzt auf dem Bildschirm anzusehen, dient

der Befehl ‘°M’. Wir erhalten z.B. folgende Ausgabe:

DISK-MONITOR V1.0

7200 12 04 82 11 01 47 52 41GRA

7:08 46 49 AB 20 41 49 44 2E FIK AID.

2210 53 52 43 AO AO 00 00 00 SRC...

7218 00 00 00 00 00 00 15 00 nee

>:20 00 00 82 13 00 48 50 4CHPL

2:28 AF 54 2E 53 52 43 AO AO OT.SRC

27230 AO AO AO AO AO OO 00 00 eae

22:38 00 00 00 00 00 00 05 OO20e

27240 00 00 82 13 03 56 50 4CVPL
7:48 AF 54 2E 53 52 43 AO AO OT.SRC
»:50 AO AO AO AO AO OO 00 00 was
72:58 00 00 00 00 00 00 09 00 „une.
72:60 00 OO 82 13 09 4D 45 4DMEM
2:48 2E 53 52 43 AD AO AO AO „SRC
72:70 AO AO AD AO AO 00 00 00 wee
>:78 00 00 00 00 00 00 06 OO ...2.-0e
7280 OO 00 82 13 08 4D 45 4DMEM
>:88 ZE 4F 42 AA AO AO AO AO .OBI
7290 AO AD AD AO AO OO OO 00 aoe
7298 00 00 00 00 00 00 01 OO
72AO 00 OO 82 10 00 53 37 41 SWA
„Ag 50 2E 53 52 43 AO AO AO P.SRC
»:BO AO AO AO AO AD 00 00 00 eas
>:BSB 00 00 00 00 00 00 04 00
»:C0O 00 00 82 10 01 4D 41 54MAT
>:CB8 52 49 58 2E 53 52 43 AO RIX.SRC
>»:DO AO AO AO AO AO OO 00 00 aes
>:DB 00 00 00 00 00 00 OD OO-.
»:EO OO 00 82 13 OC 47 41 55GAU

»EB 53 535 2E 54 45 53 54 Ao SS.TEST

>:F0O AO AO AO AO AO 00 00 00 ses

»:FB 00 00 00 00 00 00 O1 OO

Sehen wir uns die Ausgabe mal etwas genauer an. Die erste

Hexzahl nach dem Doppelpunkt gibt die Adresse der folgenden 8

Bytes im Block an, OO bedeutet das erste Byte innerhalb des

Blocks (Die Nummerierung läuft von OO bis FF bzw. O bis 255).

309

Nach der Adresse folgen 8 Bytes (4 auf dem VC 20). In der

rechten Halfte steht die entsprechenden ASCII-Zeichen.

Handelt es sich um nichtdruckende Zeichen (ASCII-Kode #00 bis

$1F und #80 bis £9F), so steht dort ein Punkt. Geben Sie wie

oben den Befehl ‘M’ ein, so wird der ganze Block angezeigt.

Da der Block nicht komplett auf den Bildschirm passt, besteht

auch die Möglichkeit, sich nur einen Teil anzusehen. Geben

Sie dazu den Adressbereich an den Sie anzeigen möchten.

Wollen Sie nur die Hälfte sehen, schreiben Sie:

>M 00 7F

Die zweite Hälfte entsprechend mit:

>M 80 FF

Beim VC 20 können Sie entsprechend sich jeweils ein Viertel

eines Block ansehen. Wollen Sie nun irgendwelche Daten

andern, so gehen Sie einfach mit dem Cursor an die

entsprechende Stelle und überschreiben das entsprechende Byte

und drücken Return. Der neue Wert wird jetzt übernommen und

gleichzeitig das ASCII-Zeichen in der rechten Hälfte mit

geändert.

Wollen Sie nun den veränderten Block wieder auf Diskette
zurückschreiben, so benutzen Sie dazu den Befehl "W’. Auch

hierbei müssen Sie wieder hexadezimal angeben, welchen Track

und Sektor Sie schreiben wollen.

PW 12 01

schreibt den Block wieder nach Track 18, Sektor 1, von wo wir

den Block vorher gelesen hatten.

Wollen Sie wieder ins BASIC zurück, so geben Sie ‘X’ ein und

der Rechner meldet sich wieder mit ‘READY.’. Wollen Sie den

Disk-Monitor danach noch einmal benutzen, brauchen Sie ihn

nicht mehr neu zu laden, sondern können mit SYS 49152 beim

64er bzw. mit SYS 64690 beim VC 20 wieder in den Monitor

springen.

Hier für den Anfang noch eine Warnung:

Machen Sie unbedingt von Ihrer Diskette, die Sie so behandeln

wollen, eine Kopie, mit der Sie dann arbeiten. Machen Sie

nämlich beim Andern oder Schreiben eines Blocks einen Fehler,

können Sie wichtige Informationen auf der Diskette zerstören

und die Diskette ist unter Umständen auf normalem Wege nicht

mehr zu lesen. Sie sollten sich es daher zur Regel machen,

bei derartigen Manipulation immer mit einer Kopie zu

arbeiten.

Nachfolgend finden Sie das Assemblerlisting dieses (etwas

längeren) Maschinenprogramms, im Anschluß daran wieder

Ladeprogramme in BASIC für den Commodore 64 und den VC 20.

3; disk monitor vc20 / cbm 64

190: c000 prompt = ">"

200: c000 ncmds = 6 ; anzahl der befehle

210: c000 input = $ffcf

220: c000 talk = $ffb4

230: c000 sectalk = $FF96

240: c000 iecin = $ffa5

250: c000 untalk = $ffab

260: c000 listen = $ffbi
270: c000 seclist = $#+953

280: c000 iecout = $ffa8

290: c000 unlist = $ffae
300: c000 write = $ffd2
310: c000 open = $ffcO

3205 c000 close = $ffc3

330: cQ00 setpar = $ffba

340: £900 setnam = $ffbd

350: c000 chkin = $tfc6

360: c000 ckout = $ffc9

370: c000 clrch = $ffcc

380: c000 cr = 13

390: c000 quote = $22

400: c000 quotflg = $d4

410: 0200 *= $200 ; basic eingabepuffer

420: 0201 Savx #= *+1

430: 0202 wrap #= e+}

440: 0203 bad *= #+1

450: 0204 von *= #+1

460: 0205 bis #= *+1

470: 0205 status = $90

480: 0205 Sa = $b9 ; sekundär adresse

490: 0205 fa = $ba ı geratenummer

300: 0205 fnadr = $bb ; adresse des filenamens

310: 0205 fnien = $b7 3; länge des filenamens

320: 0205 tapc = $97

610: c900 count = B ; anzahl der bytes pro zeile

; 4 beim vc20

620: c000 ready = $e37b ; $e467 beim vc20

630: c000 a2 00 init ldx #0

640: c002 bd 85 c2 msgout lda message,x

650: c005 20 d2 ff jsr write

660: c00B eB inx ; einschaltmeldung ausgeben

670: c009 ef 12 cpx #ascdmp-message

680: c0öb dO #5 bne msgout

690: c00d a2 Od start Idx cr

700: cOOf a9 Se lda #prompt

710: c011 20 eb co jsr wrtwo

710: c014 a9 00 lda #0

710: cO16 8d 01 02 sta wrap

720: c019 20 33 cl stl jsr rdoc ; eingabezeile lesen

730: cOic c9 3e cap #prompt

740: cOle £0 £9 beq stl

750: c020 c9 20 cap #" " ; leerzeichen überlesen

co

02

co

co

co

c2

cd

co

c2

co

ff

50

sl

beg

ldx

cmp

bne

stx

Ilda

pha

lda

pha

rts

dex

bpl

jmp

stl

#nemds-1 s mit befehlstabelle vergleichen

cmds,x

52

Savx ı nummer des befehls in der tabelle

adrh,x

3; rücksprungadresse auf stack

adrl,x

si ; schleife über alle befehle

+

ı unterprogramm zur anzeige

; des disketteninhalts

dm2

spac2

space

crlf

3

cmds

adrh

adrl

sta

jsr

lda

jsr

iny

bne

inc

dec

bne

rts

tmpc

space

buffer,y ; byte aus puffer holen

wrob

dm2

wrap

tmpc

dmi

lesen und in speicher schreiben

jsr

bec

sta

iny

dec

rts

jsr

lda

rdob

by3 ı leerzeichen ?

buffer,y 3; byte in puffer schreiben

tmpc

Space
u Li

‚byte $2c

lda

jmp

#cr

write

befehls- und adresstabelle

speicherinhalt ändern
block schreiben

block lesen

bytes anzeigen

disketten befehl

exit

= =

u
| =

E
E
E

A
e

zaltm-1

rdirekt-1l

zdirekt-1

dsplym-i

>disk-1

>ready-1i

Caltm-1

<direkt-1

‘direkt-i

c079

c07a

c07b

c07c

c07e

cosi

c082

c085

c088

c08a

cö8c

cOBf

c091

c094

c097

c099

cO9b

c09e

cOad

c0a3

cOaé&

c0a?9

cOac

cOad

c0bO

c0b3

c0bS

c0b8

cObb

cObe

cOcl

coc4

cOcé

c0c7

c0c9

cöch

cOce

codl

c0d4

cOdé

cod?

cOdc

cOdd

cöde

cOdf

c0ed

cOel

cöe4

c0es

c0e6&

c0e8

4

Of

co

co

byt <dsplym-1

byt <disk-i

-byt <ready-i
dsplym ldy #0

sty von

dey

sty bis

jsr input

cap #€cr

beq dspi

jsr rdob ; startadresse lesen

bee dspi

sta von

jsr input

cmp #cr

beq dspl

jsr rdob ; endadresse lesen

bec dspl

sta bis

dspi ldy von

dsp2 jsr testend

jisr altrit

tya

jsr wrob ; adresse

jsr space ; beim vc 20 weglassen

Ida #count ; 8 oder 4

jsr dm ; anzeigen

jsr ascdmap ; ascii-dump

jap dsp2 3 unbedingter sprung

beqsi jap start

‚speicher ändern ; adresse und daten lesen

altm jsr rdob 3; adresse lesen

bec begsi ;

tay

Ida #count 3 anzahl der bytes

sta tapc

jsr rdoc ı beim vc20 weglassen

ag jsr rdoc

jsr byt

bne a5

jsr ascdmp

jap start

:

; byte als hexzahl schreiben

wrob pha

lsr a

Isr a

lsr a

lsr a

jsr ascii $ nach ascii convertieren

tax

pla

and #2Z1111

jsr ascii

$ zeichen in x und a schreiben

cOeb

cOec

cOed

c0fd

cofi

cöf4

c0f5

c0#7

c0f9

cOfb

cOfd

cOfe

c100

c103

c106

c108

cida

cidd

cidf

ciil

c112

c11l3

ciié

c117

ci18

c119

cila

ciid

c120

c123

c126

c127

c128

c12a

ci12b

c12d

ci2e

£130

c132

c133

c136

c138

c13a

c15b

cel3c

cist

c142

c144

c1i4é

c14B

ci4a

ci4d

02

cl

ci

cl

02

cl

cl

02

co

wrtwo

ascii

ascl

pha

txa

jsr

pla

jap
cle

adc

bcc

adc

adc

rts

; hexbyte lesen und nach a bringen

rdob

rdobi

rdob2

rdob3

hexit

hex09

rdoc

lda

sta

jsr

cmp

bne

jsr

cmp

bne

cle

rts

jsr

asl

asl

as]

asl

sta

jsr

jsr

ora

sec

rts

cmp

php
and

plp
bec

adc

rts

jsr

cap

bne

pla

pla

jmp
3
; dos support

i jsr

cmp

bne

Ilda

sta

jsr

lda

#$3a

#41111

hex09

#8

input

#cr

hex09

start

314

w
e
a

0
8

.

nächstes zeichen lesen

nächstes zeichen lesen

cy=0

nach hex wandeln

cy=l

0-9

plus 9 (c-1)

zeichen lesen

cr ?

nein, return

ja, zum start

disk command

status löschen

ceiäf

c15i

c154

c156

c158

c15b

cide

cié0

e162.

c165

c167

ciéa

ciéd

cléf

ci7l

c172

c174

ci7é

c179

ci7b

c17d

c180

cisi

c184

c187

c189

ci8b

cige

ci

c194

c197

c199

c19c

c19f

cla2

cia4

cla7

claa

clad

claf

cibi

cib3

cibé

cib8

cibb

cibd

cicd

cic3

cic4

cicé

cic?

elcc

cicf

cid2

cid4

ff

c2

ff

errin

enddsk

dskend

cmdout

erri

direkt

dirin

enddir

dirwrite

sta

jsr

lda

sta

jsr

jsr

bit

bvs

jsr

bne

jsr

jap
cap

beq

pha

lda

sta

jsr

ida

sta

jsr

pla

jsr

jsr

cmp

bne

jsr

jap
jsr

jsr

bec

sta

jsr

jsr

bec

sta

jsr

lda

cap

beq

lda

jsr

ldx

jsr

ldx

jsr

sta

inx

bne

jsr

jsr

jap
jsr

ldx

jsr

fa

talk

#15+$40

Sa

sectalk

iecin

status

enddsk

write

errin

untalk

start
e"$"

erri

#15+$60

sa

seclist

iecout

input

#cr

cadout

unlist

start

rdoc

rdob

erri

track

rdoc

rdob

erri

sector

opndir

Savx

#1

dirwrite

"1"

sendcad

bufpnt

#13

ckout

315

$

floppyadresse

sa 15

sekadr

catalog

track lesen

block-read befehl senden

bufferpointer setzen

cid7

cid?

cldc

cidf

cled

cle2

cleS

cle7

clea

cled

cifo

cif2

cifs

cifd

cifb

cife

c201

£204

c207

c20a

c20c

c20f

cezil

c214

c217

c218

c2la

c2ic

c21f

c227

c22a

c22c

c22e

c231

c233

c236

c239

c23a

c23c

c23e

c241

c249

c24b

c24c

c24e

c251

c253

c256

c259

c25b

c25c

c25e

c261

c263

c265

c2

ff

ff

ff

ff

dirout

sendcmd

comdout

cmdstr

track

sector

bufpnt

pntout

buftxt

opndir

ldx

lda

jsr

inx

bne

jsr

lda

jsr

jap
sta

ldx

lda

jsr

stx

sta

Ilda

jsr

stx

sta

ldx

jsr

ldx

lda

jsr

inx

Cpx

bne

jmp
2asc

ebyt

ebyt

ldx

jsr

ldx

lda

jsr

inx

cpx

bne

jmp
»asc

ida

tay

ldx

jsr

lda

jsr

jsr

lda

tay

ldx

jsr

lda

ldx

ldy

#0

buffer ,x

write

dirout

circh
y"2"

sendcad

enddir

cadstrt+l

#15

track

numbasc

track

track+tl

sector

numbasc

sector

sector+i

#15

; block-write befehl senden

#bufpnt-cmdstr

comdout

buftxt,x

write

#opndir-buftxt

pntout

circh

"b-p 13 0"
#15

#8

setpar

#0

setnam

#< dadr

#> dadr

316

ff jisr setnam

ff jap open

dadr »byt "#"

clsdir lda #13

ff jsr close

Ida #15

ff jmp close

numbasc Idx &#"0" 3 hexzahl nach ascii

sec

numbi sbc #10

bec numb2

inx

bes numbi

numb? adc #"9"+1

rts

message .byt cr

a3 .asc "disk-monitor vi.0"

ascdmp tya

sec

sbc #count

tay

co jsr space

lda #18 ı rvs on

ff jsr write

ldx #count

c2 ac2 Ida buffer,y

and ##7f
cmp #" a

bes acd

Ida #"."

bne ac4

c2 ac3 lda buffer,y

ff ac4 jsr write

lda #0

sta quotflg

iny

dex

bne ac2

Ilda #145 ; rvs off

+f jmp write

02 testend Ilda wrap

bne endend

02 cpy bis

bcs endend

rts

endend pla

pla

cQ jap start

cO altrit jsr crlt

Ida #":"

Idx #prompt

ch jmp wrtwo

buffer = * ; 256 bytes buffer für block

317

Nachfolgend finden Sie wieder das BASIC-Programm zur

des Disk-Monitors.

Disk-Monitor,

for i

read

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

64er Version

49152 to 49897

x = poke i,x : s=s+tx

162, 0,189,1535,194,

245,162, 15,169, &2,

ı next

52,210,255,232,224,

32,235,192,169,

18,
0,141,

Eingabe

208
1

2, 32, 51,193,201, 62,240,249,201, 32,240,245
162,
192, 72,189,118,192,
192,133,151, 32,
200,208, 3,238,
254,192,144,
98,192,169, 32,

1,

5,221,106,192,208, 12,142,
72, 96,202,

0, 2,189,
16,236, 76,

2,198,151,208,237, 96,

13, 76,210,255, 58,

112
13

98,192,185,224,194, 32,220,192
32

3,153,224,194,200,198,151, 96, 32
44,149, 87

82, 77, 64, 88,192,193,193,192, 193, 227,192,144
144,123, 62,122,140,

2, 32,207,255,201,
18,141, 3,

254,192,144,
194,

3,141,
2, 32,207,255,201,

0,140, 3,
13,240, 23,

2,136,140,
32,254,192,
13,240, 8,
3, 2, 32, 4, 2 ‚172,

8, 32, 41, 192, 32,151,194, 76,166, 192, 76,
192, 32,254,192,144,248,168,169, 8,133,151.

4

144
32

198
52,214,194,152, 32,220,192, 32, 98,192,149

13
32

51,193, 32, 51,193, 32, 83,192,208,248, 32,151
194, 76,
170,104, 41,
104, 76,210,255, 24,105,246,144,
58, 76,169,

208,248,104,104, 76,

13,192,

51,193,201,

72, 74, 74, 74, 74, 32,244,192
15, 32,244,192, 72,138, 32,210,255

2,105, 6,103
51,193,201, 32

32,208, 15, 24, 94, 32
10,141, 2, 2, 32, 51,193
2, 56, 96,201, 58, 8, 41
8, 96, 32,207,255,201, 13

13,192, 32,207,255,201, 13

0,141, 2, 2, 32,

10, 10,

2,105,

208, 39,169, 0,133,144, 32,101,192,169, 8,133
186, 32,180,255,169,111,133,185, 32,150,255, 32
165,255, 36,144,112, 5, 32,210,255,208,244, 32
171,255, 76, 13,192,201, 36,240, 29, 72,169, 8
133,186, 32,177, 255,169,111,133,185, 32,147,255
104, 32,168,255, 32,207,255,201, 13,208,244, 32
174,255, 76, 13,192, 32, 51,193, 32,254,192,144
245,141, 39,194, 32, 51,193, 32,254,192,144,234
141, 42,194, 32, 73,194,173, 0, 2,201, 1,240
30,169, 49, 32,237,193,162, 13, 32,198,255,162
0, 32,207,255,157,224,194,232,208,247, 32,204

255, 32,110,194, 76, 13,192, 32, 44,194,162, 13
32,201,255,162, 0,189,224,194, 32,210,255,232

208,247, 32,204,255,169, 50, 32,237,193, 76,201
193,141, 32,194,162, 15,173, 39,194, 32,120,194
142, 39,194,141, 40,194,173, 42,194, 32,120,194
142, 42,194,141, 43,194,162, 15, 32,201,255,162

0,189, 31,194, 32,210,255,232,224, 13,208,245
76,204,255, 85, 49, 58, 49, 51, 32, 48, 32, 0

318

380 data 0, 32, 0, 0,162, 15, 32,201,255,162, 0,189

590 data 65,194, 32,210,255,232,224, 8,208,245, 76,204

600 data 255, 66, 45, 80, 32, 49, Si, 32, 48,169, 15,168

610 data 162, 8, 32,186,255,169, 0, 32,189,255, 32,192

620 data 255,169, 13,168,162, 8, 32,186,255,169, 1,162

630 data 109,160,194, 32,189,255, 746,192,255, 35,169, 13

640 data 32,195,255,169, 15, 76,195,255,162, 48, 56,233

650 data 10,144, 3,232,176,249,105, 58, 946, 13, 68, 73

660 data 9&3, 75, 45, 77, 79, 78, 73, 84, 79, 82, 32, 86

670 data 49, 46, 48,152, 56,233, 8,168, 32, 98,192,149

680 data 18, 32,210,255,162, 8,185,224,194, 41,127,201

690 data 32,176, 4,169, 46,208, 3,185,224,194, 32,210

700 data 255,169, 0,133,212,200,202,208,229,169,1446, 76

710 data 210,255,173, 1, 2,208, 6,204, 4, 2,176, 1

720 data 96,104,104, 74, 13,192, 32,101,192,169, 58,162

730 data 62, 76,235,192

740 if s <> 90444 then print "fehler in datas ''" : end

730 sys 49152

Disk-Monitor, 20er Version

Damit das Programm auch auf dem VC 20 in der Grundversion

läuft, wurde das Ladeprogramm in zwei Teile zerlegt. Geben

Sie beide Programm ein und speichern Sie sie jeweils unter

dem Namen "dos lader.1" bzw. "dos lader.2" auf Diskette ab.

Um den DOS-Monitor zu laden, laden Sie bitte das erste

Programm (‘dos lader.1’) von Diskette und starten Sie es mit

‘run’. Wenn alle data’s in Ordnung sind, wird automatisch der

zweite Teil des Laderprogramms nachgeladen und anschließend

der DDOS-Monitor gestartet, sofern auch hier keine Fehler in

den data-Statements sind.

100 poke 55, 64690 and 255 : poke 56, 6690 / 256 +: clr
105 for i = 6690 to 7056 :rem dos lader.i

110 read x : poke i,x : s=s+tx : next

120 data 162, 0,189,164, 28, 32,210,255,232,224, 18,208
130 data 245,162, 13,1469, 62, 32, 7, 27,169, 0,141, 1
140 data 2, 32, 79, 27,201, 62,240,249,201, 32,240,245
150 data 162, 5,221,140, 26,208, 12,142, 0, 2,189,146
160 data 26, 72,189,152, 26, 72, 96,202, 16,236, 76, 47
170 data 26,133,151, 32,132, 26,185, 0, 29, 32,248, 26
180 data 200,208, 3,238, 1, 2,198,151,208,237, 94, 32
190 data 26, 27,144, 3,153, 0, 29,200,198,151, 96, 32
200 data 132, 26,169, 32, 44,169, 13, 76,210,255, 58, 87
210 data 82, 77, 64, 88, 26, 27, 27, 26, 27,228,223,175
220 data 175,157, 90,102,160, 0,140, 3, 2,136,140, 4
230 data 2, 32,207,255,201, 13,240, 23, 32, 26, 27,144
240 data 18,141, 3, 2, 32,207,255,201, 13,240, 8, 32
250 data 26, 27,144, 3,141, 4, 2,172, 3, 2, 32,229
260 data 28, 32,245, 28,152, 32,248, 26,169, 4, 32, 95
270 data 26, 32,182, 28, 76,200, 26, 74, 47, 26, 32, 26
280 data 27,144,248,168,169, 4,133,151, 32, 79, 27, 32
290 data 117, 26,208,248, 32,182, 28, 76, 47, 26, 72, 74

319

data 74, 74, 74, 32, 16, 27,170,104, 41, 15, 32, 16
data 27, 72,138, 32,210,255,104, 76,210,255, 24,105
data 246,144, 2,105, 6,105, 58, 946,169, 0,141, 2
data 2, 32, 79, 27,201, 32,208, 9, 32, 79, 27,201
data 32,208, 15, 24, 94, 32, 68, 27, 10, 10, 10, 10
data 141, 2, 2, 32, 79, 27, 32, 68, 27, 13, 2, 2.
data 56, 976,201, 58, 8, 41, 15, 40,144, 2,105, 8
data 96, 32,207,255,201, 13,208,248,104,104, 76, 47
data 246, 32,207,255,201, 13,208, 39, 169, 0, 133,144
data 32,135, 24,169, 8,133,186, 32,180,255,169,111
data 133,185, 32,150,255, 32,165,255, 36,144,112, 5
data 32,210,255,208,244, 32,171,255, 76, 47, 26,201
data 36,240, 29, 72,169, 8,133
if s <> 35614 then print "fehler in datas ''" : end

load "dos lader.2",8

clr : for i = 7057 to 7422 :rem dos lader.2

read x =: poke i,x : s=s+tx : next

data 186, 32,177,255,169,111,133,185, 32,147,255,104

data 32,168,255, 32,207,255,201, 13,208,246, 32,174

data 255, 76, 47, 26, 76, 47, 26, 32, 79, 27, 32, 24

data 27,144,245,141, 70, 28, 32, 79, 27, 32, 26, 27

data 144,234,141, 73, 28, 32,104, 28,173, 0, 2,201

data 1,240, 30,149, 49, 32, 12, 28,162, 13, 32,198

data 255,162, 0, 32,207,255,157, 0, 29,232,208,247

data 32,204,255, 32,141, 28, 76, 47, 26, 32, 75, 28

data 162, 13, 32,201,255,162, 0,189, 0, 29, 32,210

data 255,232,208,247, 32,204,255,149, 50, 32, 12, 28

data 76,232, 27,141, 63, 28,162, 15,173, 70, 28, 32

data 151, 28,142, 70, 28,141, 71, 28,173, 73, 28, 32

data 151, 28,142, 73, 28,141, 74, 28,162, 15, 32,201

data 255,162, 0,189, 62, 28, 32,210,255,232,224, 13

data 208,245, 76,204,255, 85, 49, 58, 49, Si, 32, 48

data 32, 0, 0, 32, 0, 9,162, 15, 32,201,255,162

data 0,189, 76, 28, 32,210,255, 232,224, 8,208,245

data 76,204,255, 66, 45, 80, 32, 49, Si, 32, 48,169

data 15,168,162, 8, 32,186,255,169, 0, 32,189,255

data 32,192,255, 149, 13,168,162, 8, 32,186,255,149

data 1,162,140,160, 28, 32,189,255, 76,192,255, 35

data 169, 13, 32,195.255.169, 15, 76,195,255,162, 48

data 56,233, 10,144, 3,232,176,249,105, 58, 96, 13

data 68, 73, 85, 75, 45, 77, 79, 78, 73, 84, 79, 82

data 32, 86, 49, 46, 48,152, 56,233, 4,168, 32,132

data 26,169, 18, 32,210,255,162, 4,185, 0, 29, 41

data 127,201, 32,176, 4,149, 46,208, 3,185, 0, 29

data 32,210,255,169, 0,133,212,200, 202,208 ,229,169

data 146, 76,210,255,173, 1, 2,208, 6,204, 4, 2

data 176, 1, 96,104,104, 76, 47, 26, 32,135, 26,149

data 58,162, 62, 76, 7, 27

if s <> 39496 then print "fehler in datas ''" : end
sys 6690

Ss Die großen CBM-Floppys

ae 1 IEC-Bus und serieller Bus

Commodore 64 und VC 20 haben serienmäßig einen seriellen Bus,

über den Peripheriegeräte angeschlossen werden können, z.B.

die Floppy VC 1541 sowie Drucker und Plotter.

Das Busprinzip ermöglicht es, die Geräte gleichzeitig

anzuschließen. Damit die Gräte unterschieden werden können,

wird jedem Gerät eine Geräteadresse zugewiesen, unter der man

das Gerät ansprechen kann. Die Standardadresse der Floppy ist

8, ein Drucker wird meist mit Adresse 4 angesprochen. Die

beräteadresse ist identisch mit der Primaradresse im

DFEN-Befehl, so öffnet z.B.

OPEN 1,4

einen Kanal zum Drucker. Um bei der Floppy nun mehrere

Dateien gleichzeitig öffnen zu können, dient eine weitere

Adresse, die Sekundäradresse, zur Unterscheidung. Die Floppy

verfügt über 16 Sekundäradressen von 0 bis is. Drei

Sekundäradressen dienen festen Zwecken, während die übrigen

13 frei benutzt werden können:

Sekundaradresse 0 dient zum Laden von Frogrammen.

Sekundäradresse 1 dient zum Abspeichern von Frogrammen.

Sekundäradresse 15 ist der Kommando- und Fehlerkanal.

Die übrigen Sekundäradressen 2 bis 14 können frei zum öffnen

von Dateien benutzt werden.

Die übertragung zwischen Commodore 64 und VC 1541 geschieht

seriell über diesen Bus. Dabei bedeutet seriell, daß die

Daten bitweise über nur eine Leitung übertragen werden.

Intern werden die Daten im Rechner und Floppy jeweils zu 8

Bit gleich ein Bit gleichzeitig gespeichert und verarbeitet.

Soll ein Eyte nun seriell übertragen werden, so wird jedes

Bit einzeln über eine Datenleitung gesandt. Damit Sender und

Empfänger sich bei der Ubertragung auf einander abstimmen

können, werden noch sogenannte “Handshake ’—Lei tungen

benötigt. Sehen wir uns den Änschluf des seriellen Bus einmal

genauer an, so finden wir 6 Leitungen:

PR a Belegung

SRO IN

Masse

ATN

ELCH

DATA

RESET O
Ch

f&

Gt

bh)

R
e
e

Aili der Rechner Daten zur Floppy übertragen, so wird die

Leitung ATN (Attention, Achtung) gesetzt. Ist dieses Signal

gesetzt, unterbrechen alle Geräte am Bus ihre augenblickliche

Arbeit und übernehmen das nachfolgend übertragene Byte. Die

Daten kommen bitweise über die Leitung DATA. Damit die

Empfänger wissen, wann das nächste Bit kommt, wird bei jeden

Bit die Leitung CLCK (Clock, Takt) invertiert. Dieses

übertragene Byte ist die Geräteadresse. Stimmt dieser Wert

nicht mit der Geräteadresse der empfangenden Geräts überein,

werden die weiteren Daten ignoriert. Ist das Gerät jedoch

adressiert, so kann eine evtl. Sekundäradresse übertragen

werden. Gleichzeitig mit der Gerateadresse (0 bis 31) wurde

mittels der restlichen drei Bit dem Gerät noch mitgeteilt, ob

es Daten empfangen (LISTEN) oder selbst Daten senden (TALE)

soll. Abhängig davon werden jetzt Daten vom Rechner oder von

adressierten Gerät gesandt.

Die Leitung RESET versetzt beim Einschalten des Computers

alle angschlossenen Geräte in den Grundzustand. über die

Leitung SRG IN (Service Request, Bedienungsanforderung)

können Feripheriegeräte dem Buscontroller (in unserem Falle

immmer dem Computer) melden, wenn z.B. Daten bereit stehen.

Diese Leitung wird jedoch vom Betriebssystem der

Commodorerechner nicht abgefragt.

will man mehrere Floppys gleichzeitig anschließen, so müssen

die Geräte unterschiedliche Adressen haben. Soll dies nur

gelegentlich geschehen, kann dies mit dem Programm ‘DISK ADR

CHANGE’ geschehen, das in Abschnitt 4.2.3 beschrieben ist.

Die neue Adresse, z.B. 7, bleibt jedoch nur solange erhalten,

bis das Gerät wieder ausgeschaltet wird. Soll die Anderung

dauerhaft sein, kann dies durch Trennen einer Brücke im Gerät

erfolgen.

Analog zu Frinzip des seriellen Bus funktioniert auch die

Datenübertragung über den IEC- oder IEEE 488 Bus. Der

wichtigste Unterschied besteht jedoch darin, daß die Daten

richt seriell, sondern parallel über 8 Datenleitungen

gleichzeitig übertragen werden. Außerdem sind noch

zusätzliche Handshakeleitungen vorhanden, so daß der

parallele IlEC-Bus ein 4adriges Kabel benötigt. Der

Hauptvorteil des IEEE 488 Bus besteht aufgrund der

gleichzeitigen Ubertragung eines kompletten Bytes in dem

damit erreichten Geschwindigkeitsvorteil. Durch Messungen

ergibt sich, daß der IEC-Bus etwa 5 mal schneller als der

serielle Rus ist: 1,8 KB/s gegenüber 0.4 KB/s. Damit dauert

das Laden eines Frogramms von 10 KByte mit der VC 1541 ca. 25

Sekunden; auf der sonst identischen CBM 2031 jedoch weniger

als 6 Sekunden. Allein aus diesem Grunde kann es sich also

schon lohnen, seinen Rechner mit einem IEC-Bus auszurüsten.

Gleichzeitig besteht damit die Möglichkeit, auf alle anderen

Feripheriegeräte der großen CBM-Computer zugreifen zu können.

3.2 Gegenüberstellung aller CBM-Floppy

In der folgenden Tabelle finden Sie die technischen Daten

aller CBM-Floppys zum Vergleich gegenübergestellt.

Die technischen Daten aller Commodore-Floppy-Laufwerke

Modell 1541 2031 4040 8050 8250

DOS-Version (en) 2.6 2.6 2.1/ 2.5/ 2.7

2.7 2.7

Laufwerke i 1 2 2 2

Köpfe pro Laufwerk i 1 1 1 2

Speicherkapazitat " 170 K 170 K 340 K 1.05 M 2.12 M

Sequentielle Datei 168 K 168 KF 168 K S21 kK 1.05 M

Relative Datei 167 K ‘167 K 167 K 183 K/ 1.04 M

o1iB K

Pufferspeicher (KB) 2 2 4 4 4

Tracks 35 35 35 77 77

Sektoren pro Track 17-21 17-21 17-21 23-29 23-29

Bytes pro Block 256 256 256 256 256

freie Blocks 664 644 1328 4104 8266

Directory und BAM (Track) 18 18 18 38/39 38/39

Directoryeinträge 144 144 144 224 224

übertragungsrate (KB/s)

intern | 40 40 40 40 40

über ser. /IEC-Bus 0.4 1.8 1.8 1.8 1.8

Zugriffszeiten (ms)

Track zu Track 30 30 30 3 3

mittlere Zeit 340 340 360 125 125

Umdrehungen pro Minute 300 300 300 300 300

überblick über die "großen" CRM-Floppys

Die VC-1541 Floppy ist von der Speicherkapazität her die

kleinste CBM-Floppy, bis jetzt jedoch auch die einzige Floppy

mit seriellem Bus zum direkten Anschluß an Commodore 64 und
VC 20.

Von den Funktionen, dem Aufbau und der Arbeitsweise her

identisch ist die Floppy CBM 2031. Der einzige Unterschied

zur VE 1541 ist die Ausrüstung mit dem parallelen IEEE 488

Bus im Gegensatz zum seriellen Bus. Dies bringt eine

bedeutende Erhöhung der übertragungsgeschwindigkeit zum

323

Rechner etwa um den Faktor 5 mit sich. Zum Anschluß an

Commodore 64 oder VC 20 benötigt man ein TIEC-Bus-Modul,

ebenso wie bei allen weiteren CBM-Floppys. Vom Speicherformat

ist die CBM 2031 voll kompatibel zur VC 1541; beide haben 170

EB pro Diskette. Disketten die auf einem Gerät beschrieben

wurden, können vom jeweils anderen Gerät gelesen und

gschrieben werden. Dies gilt auch für die nächste Floppy in

dieser Reihe, die CEM 4040. Die 4040 ist ein Doppellaufwerk

mit zweimal 170 KB.

Der Vorteil eines Doppellaufwerks liegt nicht allein in der

doppelten Speicherkapazität, sondern vor allem in der Mög-

lichkeit, Daten von einem Laufwerk zum anderen zu über-

a tragen. Dies ist einmal mit kompletten Programmen und Dateien

mit dem auch bei der 1541 vorhandenen Befehl ‘copy’ möglich,

z.B. kopiert

OFEN 1,8,15, "C1:TEST=0: TEST" bzw.

COPY "TEST",DO TO "TEST",Di

die Datei ‘TEST’ von Laufwerk O unter dem gleichen Namen auf

Laufwerk 1. Ebenso kann man mehrere Dateien von unter-

schiedlichen Laufwerken zusammenfügen (‘concat’). Die wich--

tigste Möglichkeit des Doppellaufwerks ist jedoch das

Duplizieren von kompletten Disketten. Dies geschieht eben-

falls mit einem Befehl vom Rechner; das Laufwerk formatiert

dann automatisch die neue Diskette und kopiert dann Track für

Track von einem Laufwerk auf das andere. Der Befehl dazu

lautet:

OPEN 1,8,15, "Di=0" bzw.

BACKUP DO TO Di

Das ganze dauert auf der 4040 keine 3 Minuten; der Rechner

kann während dieser Zeit weiterarbeiten, da die Floppy diese
Arbeit komplett übernimmt.

Die beiden anderen CEM-Floppys CBM 8050 und 8250 beschreiben

die Disketten mit doppelter Dichte (‘double density’, 77

Tracks). Auf der 1541 bzw. 4040 beschriebene Disketten sind

dem zufolge nicht mit 8050/8250-Disketten kompatibel.

Frogramme und Daten lassen sich jedoch, z.B. mit dem Programm

"COFY/ALL’, von einem Format auf ein anderes übertragen.

Dafür treten diese Flopppies durch die bedeutend höhere

Speicherkapazität hervor: 1 MB bei der 8050 und 2 MB bei der

8250. Die doppelte Kapazität der 8250 wird durch Ausnutzen

beider Diskettenseiten von der Floppy erreicht ("double

Sided’), sie hat 2 Schreib/Leseköpfe pro Laufwerk. Um die

gesamte Kapazität auch für relative Files ausnutzen zu können

{siehe Kapitel 3.4) wurde hierbei ein sogenannter

“Super-Side-Sektor’ eingeführt, der die Zeiger auf 127

Gruppen von je 6 Side-Sektor-Bléicken enthält. Dadurch kann

hier eine relative Datei (theoretisch) 23 MB umfassen (bei

der 8050 ab DOS-Version 2.7). über IEC-Bus lassen sich die

Floppys problemlos an Commodore 64 und VC 20 anschließen, so

daß auch diese Computer on line’ auf mehrere Megabyte

zugreifen können.

Ein weiterer Vorteil der großen CBM-Floppys ist ihr doppelt

so großer Pufferspeicher. Dadurch sind Sie in der Lage, mehr

Dateien gleichzeitig offen zu halten als dies mit der VC 1541

möglich ist. Hier können Sie gleichzeitig bis zu pa

sequentielle Dateien oder bis zu 3 relative Dateien offen

halten, natürlich auch eine Kombination daraus, z.B. 2

relative und 2 sequentielle.

Im folgenden werden die unterschiedliche Lage und Aufbau von

BAM und Directory beim 1541/4040 Format mit dem 8050/

8250-Format verglichen.

Beim 8050/8250-Format werden die Tracks 38 und 39 für BAM und

Directory benutzt. In Track 39 Sektor oO stehen der

Diskettenname und das Formatkennzeichen.

72:00 26 00 43 00 00 00 43 42 &.C...CE

>:08 4E 20 38 30 35 30 AO AO M 8050

»:10 AQ AO AD AO AD AD AO AD

27218 30 31 AO 32 43 AO AO AO 01 2C.

In Byte 0 und 1 steht der Track/Sektor-Zeiger auf den ersten

BAM Block (Track 38 Sektor 0). Byte 2 enthält das

Formatkennzeichen °C’. Byte drei bis 5 sind ungenutzt. Von

Byte 6 bis 21 steht der Diskettenname, aufgefüllt mit "Shift

Space’, in unserem Falle ‘CBM 8050’. Byte 24 und 25 enthalten

die ID '01’, während in Byte 27 und ?8 das DOS-Format "ZC’

steht. Der Rest des Blocks ist unbenutzt...

Die BAM passt hier nicht mehr in einen Block und wird daher

über Track 38 verteilt; bei der 8050 werden Sektor 060 und 3

benutzt, bei der 8250 zusätzlich noch Sektor 6 und ?. Da hier

auch mehr Sektoren pro Track benutzt werden, mußte der

BAM-Eintrag für jede Spur vergrößert werden und belegt jetzt

3 Byte. Dabei enthält das jeweils erste Byte wieder die

Anzahl der freien Sektoren pro Track und die nachfolgenden

Bytes enthalten das Bitmuster der freien und belegten

Sektoren (0 = Sektor belegt, 1 = Sektor frei). Hier haben wir

den Inhalt von Track 38 Sektor 0.

>:00 26 03 43 00 01 33 1D FF
>:08 FF FF 1F 1D FF FF FF 1F
>:10 1D FF FF FF 1F 1D FF FF
>:18 FF 1F 1D FF FF FF 1F 1D
>220 FF FF FF 1F 1D FF FF FF
>:28 1F 1D FF FF FF 1F 1D FF
>:30 FF FF 1F 1D FF FF FF 1F
>:38 1D FF FF FF iF 1D FF FF
>:40 FF 1F 1D FF FF FF iF 1D
>:48 FF FF FF 1F 1D FF FF FF
>:50 iF 1D FF FF FF iF 1D FF
>:58 FF FF iF 1D FF FF FF 1F
>:60 1D FF FF FF 1F 1D FF FF

Die Bytes OÖ und 1 zeigen wieder auf den nächsten BAM-Block,

hier Track 38 Sektor 3. Byte 2 enthalt wieder das

Formatkennzeichen ‘°C’. In Byte 4 stehen die Tracknummern, für

die dieser BAM-Teil zuständig ist; hier Track 1 bis S1. Ab

Position 6 finden wir die S-Byte-Eintrage für jede Spur. Der

nächste BAM-Block ist analog aufgebaut, ist bei der 8050 für

die Tracks S2 bis 77 zustandig und belegt die Bytes bis 140.

Der letzte BAM-Block zeigt immer auf den ersten

Directory-Block: Track 39, Sektor 1.

Bei der 8250 sind 4 Blocks für die BAM erforderlich, Track 38

Sektor OÖ enthält die Tracks 1 bis Si, Track 38 Sektor 3

enthält 52 bis 100, Track 38 Sektor 6 enthält Track 101 bis

150 und Track 38 Sektor 9 schließlich ist für die Tracks 151
bis 154 zuständig.

Die Directoryspur, Track 39, enthält noch 28 freie Blocks; es

sind deshalb 28*8 = 224 Directoryeinträge möglich im Gegen-

satz zu 144 bei 1541/4040. Der Aufbau der Directory ist bei

allen Formaten gleich. Im folgenden die Track-Sektor-Belegung

noch einmal tabellarisch:

 1541 / 4040 8050 / 8250

Tracks i- 17:0 - 20 1- 39 : 0 - 28 Sektoren

18- 274 : 0- 18 40 - 533 : 0 - 26

25- 30 : O - 17 54 —-— 64 : 0 - 24

31- 35 : 0 - 16 65 - 77 : 0 - 22

nur 8250

78 -116 : O —- 28

117 -130 : 0 — 26

131 -141 : O - 24

142 -154 : 0 — 22

Blocks 6853 2083 / 4186

freie Blocks 664 2052 / 4133

326

Mit DATAMAT haben wir das erste Programm in der neuen Reihe der
DATA BECKER PROGRAMME

vorgestellt. Ziel dieser neuen Reihe ist es, den Anwendern des COMMODORE 64
für wenig Geld professionelle Programme zugänglich zu machen. Nur in einem
Punkt haben wir Kompromisse gemacht: beim Preis. Jedes der Programme
kostet trotz der außergewöhnlichen Leistungsmerkmale nur

DM 99,- (unverbindl. Preisempfehlung incl. 14% MwSt.)

Ab Oktober/November '83 sind auch die folgenden Programme erhältlich:

PROFIMAT
Ein Spitzenpaket für Maschinenspracheprogrammierer. PROFIMAT enthält
nicht nur unseren komfortablen Maschinensprache-Monitor PROFI-MON,

sondern auch PROFI-ASS, einen sehr leistungsfähigen Assembler für den
COMMODORE 64. PROFI-ASS bietet unter anderem formatfreie Eingabe,
komplette Assemblerlistings, ladbare Symboltabellen (Labels), verschiedene
Möglichkeiten zur Speicherung des erzeugten Maschinencodes, redefinierbare
Symbole, eine Reihe von Pseudo-Codes (Assembleranweisungen), bedingte
Assemblierung und die Möglichkeit zur Erzeugung von Assemblerschleifen.
PROFIMAT kostet komplett nur DM 99.-.

BASIC 64
Dieser neue 1-Pass-BASIC-Compiler macht Ihre Programme bis zu 10mal
schneller. Er erzeugt direkten Maschinencode, der beliebig im Speicher
plazierbar ist. BASIC 64 unterstützt Fließkommaarithmetik, Stringverwaltung
und den gesamten 64er Befehissatz bis auf FRE, TAB, SPC, ON X GOTO/
GOSUB, mehrdimensionale Felder und Klammerrechnung. Ein Superknüller für
nur DM 99.-.

PASCAL 64
Endlich ein PASCAL für den 64er. PASCAL 64 hat einen großen Befehlssatz mit
allen wesentlichen Standardbefehlen und enthalt auch Dateiverwaltungsbefehle.
AOS-Arithmetik real und integer. Kein eigener Editor erforderlich, da im
Commodore Editor-Modus eingegeben werden kann. PASCAL 64 ist sehr.schnell,
da echter Maschinencode erzeugt wird, und kostet komplett mit ausführlichem
Handbuch nur DM 99.-.

SUPERGRAPHIK 64
Die neueste Version unserer beliebten SUPERGRAPHIK enthält jetzt über 30(!)
Befehle zur Ausnutzung der fantastischen Möglichkeiten, die der 64 mit
hochauflösender Graphik und Farbe bietet. Mit SUPERGRAPHIK 64 können Sie
Punkte, Linien und Kreise ziehen, SPRITES definieren und manipulieren, Farben
setzen, komplette Graphikbildschirme auf Diskette abspeichern bzw. laden und
vieles andere mehr. Ergänzt wurde die SUPERGRAPHIK 64 zusätzlich um
SUPERSOUND, eine neue Befehlserweiterung zur Nutzung der hervorragenden
Soundmöglichkeiten des 64. Mit SUPERGRAPHIK 64 machen Sie mehr aus
Ihrem 64er, und das für nur DM 99.-.

TEXTOMAT
Ein außergewöhnliches Textverarbeitungsprogramm. Bis zu 255 Zeichen pro
Zeile mit horizontalem Scrolling, Texte bis zu 24000,-Zeichen, Textbaustein-
Verarbeitung, umfangreiche Formatierungsmöglichkeiten, Schnittstelle zu
DATAMAT für Rundschreiben und Serienbriefe und vieles andere mehr.
TEXTOMAT ist komplett in Assembler geschrieben und sehr schnell.
TEXTOMAT ist natürlich in deutsch, mit deutscher Bedienerführung und kostet
mit ausführlichem Handbuch nur DM 99,-.

DATAMAT
Eine universelle Dateiverwaltung, die Sie von der Adressverwaltung über die
Mitgliederverwaltung bis zur Lagerbuchführung auf vielfältigste Weise nutzen
können. Die frei gestaltbare Eingabemaske kann bis zu 50 Felder, max. 40
Zeichen pro Feld und max. 253 Zeichen pro Datensatz enthalten. Bis zu 2000
Datensätze pro Diskettesind möglich. Nach allen Feldern kann sortiert und selek-
tiert werden, sogar nach mehreren gleichzeitig. Auswertungen können alsListen
und als Etiketten gedruckt werden. Ein Superprogramm, das zu jedem 64er
gehören sollte. Komplett mit ausführlichem Handbuch nur DM 99,-.

KONTOMAT
Ein Einnahme-Überschußprogramm nach § 4 (3) EStG mit Kassenbuch,
Bankkontenüberwachung, automatischer Steuerbuchung (Brutto u. Netto), AfA
Tabellenerstellung, Kontenblättern & Journal, Ermittlung der USt.-Voranmel-
dungswerte und Monats- und Jahresrechnung. KONTOMAT ist voll para-
meterisiert (Firmendaten, Steuersätze, Konten, Buchungstexte) und läßt sich

damit an Ihre Bedürfnisse anpassen. KONTOMAT ist geeignet für alle
Selbständigen und Gewerbetreibenden, die nicht laut HGB zur Buchführung
verpflichtet sind. Komplett mit ausführlichem Handbuch nur 99.-.

FAKTUMAT

Eine Sofortfakturierung mit integrierter Lagerbuchführung. Die Kunden- und
Artikelstammdatei ist voll pflegbar. Steuersätze, Maßeinheiten und Firmendaten
sind individuell anpaßbar. Schneller Diskettenzugriff auf Kunden- und
Artikeldaten. Schnittstelle zur Textverarbeitung. Komplett mit ausführlichem
Handbuch nur DM 99.-.

SYNTHIMAT

Mit diesem Superprogramm verwandeln Sie Ihren 64er in einen professionellen,
polyphonen, dreistimmigen Synthesizer, mit dem Sie über die Tastatur ganze
Akkorde spielen können. Zu den unglaublich vielen Möglichkeiten dieses
Programms gehört auch die „Bandaufnahme-/Wiedergabe“ direkt auf bzw. von
Diskette. Verwandeln Sie Ihren 64er für wenig Geld in eine Super-Musik-

maschine mit SYNTHIMAT. Komplett mit ausführlichem Handbuch nur. DM 99,-.

DATA BECKER PROGRAMME erhalten Sie dort, wo Sie auch DATA BECKER
BUCHER bekommen:

@ im COMMODORE-Fachhandel
®@ in großen Kauf- und Warenhausern

@ in Fachbuchhandlungen

oder direkt von DATA BECKER. Vertrieb in der Schweiz über THALI AG und in
Österreich über Fachbuchcenter ERB.

VC-20 COMMODORE 64 EXECUTIVE

DA STEHT ALLES DRIN!

VC-INFO
Der neue, 80(!)seitige Katalog rund um den

VC-20, COMMODORE 64 und den neuen

COMMODORE EXECUTIVE, mit den
neuesten Software-Hits aus aller Welt,

- interessantem Zubehör, vielseitigen
Peripheriegeräten, neuen Superbiichern,

Programmiertips & Tricks und der

großen Ubersichtstabelle »Was läuft womit«.
Das VC-INFO 3/83 erhalten Sie gegen

DM 3,- in Briefmarken.

IHR GROSSER PARTNER
FÜR KLEINE COMPUTER

DATA BECKER
Merowingerstraße 30 - 4000 Düsseldorf 1

im Hause AUTO BECKER - Telefon 02 11/31 0010 V
C
-
2
0

C
O
M
M
O
D
O
R
E

64

-
E
X
E
C
U
T
I
V
E

F
A
I
L
N
D
O
A
X
S
-

v9

S
H
O
G
O
W
W
O
D

.
O
Z
-
D
A

EXECUTIVE -COMMODORE 64 -VC-20

DATA BECKER BÜCHER
Jetzt in überarbeiteter und erweiter-
ter 3. Auflage: 64 INTERN erklärt
detailliert Architektur und tech-
nische Möglichkeiten des C-64, zer-
legt mit einem ausführlich doku-
mentierten ROM-Listing Betriebs-
system und BASIC-Interpreter,

Angerhausen Brückmann
Englisch : Gerits

bringt mehr über Funktion und
Programmierung des neuen
Synthesizer Sound Chip und der
hochauflösenden Graphik, zeigt die

= Unterschiede zwischen VC-20,

intern C-64 und CBM 8000 und gibt Hin-

weise zur Umsetzung von Pro-
| grammen. Zahlreiche lauffertige

Das große Buch zum Beispielprogramme, Schaltbilder
COMMODORE 64 | und als Clou: zwei ausführlich

mit dokumentierte Original
dokumentiertem Schaltplan COMMODORE Schaltpläne zum Ausklappen. Dieses Buch

sollte jeder 64-Anwender und Inte-
ressent haben.

EIN DATA BECKER BUCH 64 INTERN, 3. Auflage 1983,

ca. 320 Seiten, DM 69,-

 Die überarbeitete und erweiterte
2. Auflage von 64 TIPS & TRICKS
enthält eine umfangreiche Samm-
lung von POKE’s und anderen nütz-
lichen Routinen, Multitasking mit
dem C-64, hochauflösende Graphik
und Farbe für Fortgeschrittene,
mehr über CP/M auf dem C-64, mehr
über Anschluß- und Erweiterungs-
möglichkeiten durch USER PORT
und EXPANSION PORT, sowie
zahlreiche ausführlich dokumen-

Tips & Tricks tierte Programme von der SORT-
em — Routine über zahlreiche BASIC-

Erweiterungen bis hin zur
3D-Graphik (alle Maschinenpro-

| gramme jetzt mit BASIC-Ladepro-
Eine Fundgrube für den gramm!). 64 TIPS UND TRICKS ist

COMMODORE 64 Anwender eine echte Fundgrube für jeden
COMMODORE 64 Anwender.
64 TIPS & TRICKS, 2. Auflage 1983,
ca. 280 Seiten, DM 49,-

Angerhausen - Englisch
Gerits

EIN DATA BECKER BUCH

|

DATA BECKER BUCHER
Ä Die überarbeitete und erweiterte

anderer wichtiger Bereiche, über-

Technik des VC-20 und als Clou

möchte.

2. Auflage von VC-20 INTERN
Angerhausen - Briickmann beschaftigt sich detailliert mit

sichtliche Zusammenfassungen der
Routinen des BASIC-Interpreters

drei Original COMMODORE
Schaltpläne zum Ausklappen! Damit

EIN DATA BECKER BUCH VC-20 INTERN, 2. Auflage 1983,
ca. 230 Seiten, DM 49,-

Technik und Betriebssystem des
Englisch VC-20 und enthält ein ausführlich

dokumentiertes ROM-Listing, die
Belegung der ZEROPAGE und

VC-20 und des VC-20 Betriebssystems,
- eine Einführung in die Programmie-
intern rung in Maschinensprache, eine

— detaillierte Beschreibung der

Betriebssystem und Technik ist VC-20 INTERN für jeden interes-
des VC-20 sant, der sich näher mit Technik

und Maschinenprogrammierung
des VC-20 auseinandersetzen

 Die überarbeitete und erweiterte
2. Auflage von VC-20 TIPS & TRICKS

Angerhausen - Riedner enthält eine detaillierte Beschrei-
Schellenberger bung der Programmierung von

Sound und Graphik des VC-20,
mehr über Speicherbelegung,
Speichererweiterung und die
optimale Nutzung der einzelnen

VC 20 Speichermodule, BASIC-Erweite-

=
reiche Sammlung von Poke’s und

N = anderen nützlichen Routinen, zahl-
Tips & Tricks reiche interessante Beispiel- und
a Anwendungsprogramme, komplett

dokumentiert und fertig zum Ein-
tippen (z.B. Spiele, Funktionen-

rungen zum Eintippen, umfang-

plotter, Graphik Editor, Sound

Eine Fundgrube fur den Editor) und vieles andere mehr.
VC-20 Anwender VC-20 TIPS & TRICKS ist eine echte

Fundgrube für jeden VC-20
Anwender.
VC-20 TIPS & TRICKS, 2. Auflage

EIN DATA BECKER BUCH 1983, ca. 230 Seiten, DM 49,-

DATA BECKER BUCHER

Englisch - Szczepanowski

Das groBe

Floppy-
Buch

Disketten-Programmierung
mit COMMODORE Computern
fiir Anfanger, Fortgeschrittene

und Profis

EIN DATA BECKER BUCH

| Angerhausen : Schellenberger

64
für Profis

Anwendungsprogrammierung
in BASIC

für Fortgeschrittene

EIN DATA BECKER BUCH
|

r
s

Darauf haben Sie gewartet: Endlich
ein Buch, das Ihnen ausfuhrlich
und verstandlich die Arbeit mit der
Floppy VC-1541 erklärt. DAS
GROSSE FLOPPY BUCH ist fur An-
fanger, Fortgeschrittene und Profis

_ gleichermaßen interessant. Sein In-
halt reicht von der Programmspei-
cherung bis zum DOS-Zugriff, von
der sequentiellen Datenspeiche-
rung bis zum Direktzugriff, von der
technischen Beschreibung bis zum
ausführlich dokumentierten DOS
Listing, von den Systembefehlen
bis zur detaillierten Beschreibung
der Programme der Test/Demodis-
kette. Exakt beschriebene Beispiel-
und Hilfsprogramme ergänzen die-
ses neue Superbuch. Mit dem
GROSSEN FLOPPY-BUCH
meistern Sie auch Ihre Floppy.
DAS GROSSE FLOPPY BUCH,
1983, ca. 320 Seiten, DM 49,-

Wer besser und leichter in BASIC
programmieren möchte, der
braucht dieses neue Buch.
64 FÜR PROFIS zeigt, wie man er-
folgreich Anwendungsprobleme in
BASIC löst und verrät Erfolgsge-
heimnisse der Programmierprofis.
Vom Programmentwurf über Menü-
steuerung, Maskenaufbau, Para-
meterisierung, Datenzugriff und
Druckausgabe bis hin zur Doku-
mentation wird anschaulich mit
Beispielen dargelegt, wie gute
BASIC-Programmierung vor sich
geht. Fünf komplett beschriebene,
lauffertige Anwendungspro-
gramme für den C-64 illustrieren
den Inhalt der einzelnen Kapitel
beispielhaft. Mit 64 FÜR PROFIS
lernen Sie gute und erfolgreiche
BASIC-Programmierung.
64 FUR PROFIS,
1983, 220 Seiten, DM 49,-
Lieferbar ca. Nov. '83

e
e
u

e
r
e

e
n
 ze 5

o
z

e
r

i
\

:
pat

V
a

a
e

e
n
"

ns
S
E

w
r
e

o
a

Set
itn

e
e

o
m
e

=
.

x
x

=
e
e
n

En
e
r

.
.

Br

G
e
ö
r
t
e
n
e
l
;

r
e

Per
w
e
n
n

ree

w
e
a
r
:

rae
e
e

}
‘ as

2

o
s

4
B
r
u
n
n
e
r

=

B
e
e

:
:

:
:

isa
r
e
r
.

e
e

r
Ban

Fe
S
e
s

R
E

A
P
N
E

N

un

cs
;

E
=

>
sam

ries
e
t

a
n

E
n
e
r

a

e
r
 e
n

a
s

