Englisch - Szczepanowski

Das groBe

Floppy-
Buch

Disketten-Programmierung
mit COMMODORE Computern
fir Anfanger, Fortgeschrittene
und Profis

EIN DATA BECKER BUCH

Englisch - Szczepanowski

Das groBe

Floppy-
Buch

Disketten-Programmierung
mit COMMODORE Computern
fur Anfanger, Fortgeschrittene
und Profis

EIN DATA BECKER BUCH

Copyright (C) 1983 DATA BECKER
Merowingerstr. 30
4000 Disseldorf

Alle Rechte vorbehalten. Kein Teil dieses Buches darf in
irgendeiner Form (Druck, Fotokopie oder einem anderen
Verfahren) ohne schriftliche Genehmigung der DATA BECKER GmbH
reproduziert oder unter Verwendung elektronischer Systeme
verarbeitet, vervielfiltigt oder verbreitet werden.

Wichtiger Hinweis

Die in diesem Buch wiedergegebenen Schaltungen, Verfahren
und Programme werden ohne Ricksicht auf die Patentlage
mitgeteilt. Sie sind ausschlieBlich fir Amateur— und Lehr—
zwecke bestimmt und diirfen nicht gewerblich genutzt werden.

Alle Schaltungen, technische Angaben und Programme in
diesem Buch wurden von den Autoren mit gréBter Sorgfalt
erarbeitet bzw. zusammengestellt und unter Einschaltung
wirksamer KontrollmaBnahmen reproduziert. Trotzdem sind
Fehler nicht ganz auszuschlieBen. DATA BECKER sieht sich
deshalb gezwungen, darauf hinzuweisen, daB weder eine
Garantie noch die juristische Verantwortung oder irgendeine
Haftung fiir Folgen, die auf fehlerhafte Angaben zuriickgehen,
ibernommen werden kann. Fiir die Mitteilung eventueller Fehler
sind die Autoren jederzeit dankbar.

VORWORT

Mit der Floppy VC-1541 steht dem COMMODORE Anwender fiur
erstaunlich wenig Geld ein sehr leistungsfahiges externes
Speichermedium zur Verfigung. Um die vielseitigen
Miglichkeiten der 1541 ausschépfen zu kénnen, bedarf es aber
entsprechender Informationen und Anregungen. Lothar Englisch
und Norbert Szczepanowski haben in monatelanger Kleinarbeit
alle Geheimnisse der 13541 fir Sie ergriindet.

Das grofBe Floppy Buch reicht van der einfachen
Programmspeicherung iiber den anspruchsvollen Direktzugriff
bis hin zur Overlaytechnik. Anfinger werden die =zahlreichen
Beispielprogramme begriBen, mit denen der Text anschaulich
illustriert wird. Maschinenprogrammierer werden insbesondere
das ausfithrlich dokumentierte Listing des
Diskettenbetriebssystems (DOS) schitzen und die exakten
technischen Beschreibungen. Ein echtes Schnappchen wird “Das
grofie Floppy Buch® alleine schon durch die groBe Anzahl
komplett lauffertiger Programme, die nur noch eingetippt
werden missen. Neben BASIC-Erwei terungenm, hilfreichen
Dienstprogrammen und ndtzlicher Routinen wie =z.B. Spooling
zdhlen hierzu vor allem eine leistungsfihige AdreBverwaltung,
eine komplette Haushaltsbuchfihrung und ein komfortabler
DOS-Monitor zur Manipulation einzelner Sektoren.

Viel SpaB bei der Lektire des groBen Floppy Buches und bei
der Arbeit mit Ihrer Floppy VC-1541.

Dr. Achim Becker

Inhaltsverzeichnis

Kapitel 1:
Einfilhrung in die Programmierung der VC 1541

1.1 Der erste Kontakt mit der VC 1541

1.1.1 Das Disketten—Betriebssystemcicciiennnnncacnanns 1
1.1.2 Die Test/Demo-Diskettecciuuiiinrnrnncnnannncanas 2
1.1.3 Vorbehandlung neuer Diskettenc.ccesccenccansnnas 2
1.1.4 Einige Daten der VC 1541-Disketteccvcennennacnnn 3
1.2 Das Speichern von Programmen auf Diskette
1.2.1 SAVE - Speichern von BASIC-Frogrammenccc.oceesss 4
1.2.2 LOAD - Laden von BASIC-Programmenc.eceececeasasansss 5
1.2.3 VERIFY - iUberprifen von gespeicherten Programmen S
1.2.4 Uberschreiben von Programmencecc-cecencscasaansnns S
1.2.5 Laden von Maschinenprogrammenceececcnasncnnnnnn &
1.2.6 Speichern von Machinenprogrammenc.c.ceessssssannes 7
1.3 Die Floppy-Systembefehle

Die Befehlsiibermittlung zur Floppy-Stationcu0... 10
NEW — Formatieren von Diskettenc.cccecnnncannnans 10
Auslesen des Fehlerkanalsc.caceccsnascnsnnsannnannna 12
Laden der Directory eeeeememaman weemaaaaan - 13
SCRATCH — Loschen von FilesS .c.ceienseencancnsnnsnnnsnns 15
RENAME — Umbenennen von FilesSivenciccnnccncnannans 15
COPY —~ Kopieren von FilesS ...cccccrccennnnnsasnncaannans 16
INITIALISE - Initialisieren der Disketteccu.c.. 17
VALIDATE -~ "Aufriumen” der Diskettecceccececa. 17
O Der "Joker"cieceecnenannnncncanannssnunsnnscnnsnns 18

N(AHSNMEAOIEMEAM
= 0NN UDAN -

I i e
.

1.4 Sequentielle Datenspeicherung

Das Prinzip ...cceeucnenccnnnnsnnscssnncsanancnnsnnannns 21
OPEN — Erdffnen einer sequentiellen Dateiccecac.. 23
PRINT/INPUT - Datenibertragung Floppy/Rechner 25
Anhidngen von Datensétzenc.icciccenncccnanncaaca. 28
CLOSE - SchlieBen einer sequentiellen Dateinu.. 29
"Umleiten" der Bildschirmausgabecc.ceccecannna. 30
Sequentielle Datei als Tabelle im Rechneru.... 31
Suchen in der Tabelleccucicincnanansnnsananannnnes 34
Einfaches Sortieren der Tabellec.eccavcecacanenanss 37
Ergidnzen einer sequentiellen Datei

O ADRESSENVERWALTUNG mit sequentieller Daten— 40
speicherung

1.4.11 Anwendungsgebiete der sequentiellen Datenspeicherung .. 47

e N e e e
.

P pLLIIAEDIS
.

= gO0ONUD WK -

1.5 Relative Datenspeicherung

1.5.1 Das Prinzip ..ceeecccnnenanans csmeemeseussemssssssenannas 48
1.5.2 Der Vorteil gegeniber sequentieller Speicherung 49
1.5.3 Das Eridffnen einer relativen Dateic.ccieancncacea. 49

S T e
U1L"IU'IUIEJ|UIU|UI
@M N B

b h
[~

Inhalts

verzeichnis

Vorbereitung der Daten zur relativen Speicherung

Dateniibertragung Flog

SchlieBen der relativen Datei

Suchen eines Records
Suchen eines Records
Andern eines Records
Erganzen einer relat

Datenspeicherung

ppy/Rechner

s E e s masseeaEE e

nach der bindren Methode

iber seperate Index-Dateien

L L I I R R R)

iven Dateiceniiinencncananns
Beispiel einer Problemlésung mit relativercceeeec.-

1.6 Die Fehlermeldungen der Floppy und ihre Ursachen
1.7 Ubersicht aller Befehle mit Vergleichcicceenannns
BASIC 2.0 - BASIC 4.0

Kapitel 2i

Programmierung fiir Fortgeschrittene

2.1 Der Direktzugriff auf jeden Block der Diskette
2.2 Die Direktzugriffsbefehle

ramr:mm
NM[\JMN
(LIRS R

2.2.6

Der Block-Read-Befeh
Der Block-FPointer—-Be

l ittt i it e n e,

= 1

Der Block-Write-Befehlc.cecencnrsnnnnannnnnnna

Der Block-Allocate-—B
Der Block-Free—-Befeh
Der Block-Execute—Be

efehl ... ieieinecisnenncnnns
1 ciecicnnnannnonccannaannnnns

= 1

2.3 Anwendungen des Direktzugriffs
2.4 Der Zugriff auf das DOS - Die Memory-Befehle

Kapitel 3:

Der Memory-Read-Befehlcccciiucancccanannnna

Der Memory-Write—-Bef

L=

Der Memory-Execute-Befehliccvcaceccancncns

Die User—-BRefehle ...

L R I I I T T I A R

Technik der Floppy und der Diskette

Z.1 Der Aufbau der VC 1541

1.
1

3.1.1
3.1.2

Blockschaltbild der FlOppy «ceeeceernnncesanannnas

Memory—Map des DOS -

ROM, RAM, I/0 .uevcvenennnnn

3.2 Die Arbeitsweise des DOS - ein Uberblickcceneen

3.3 Der Aufbau der Diskette

3.4.1

Die BAM der VC-1541

e wen

52
54
57
57
61
&3
&4
&35

74
79

83

88
20
21

92
3

101
102

106

108

Inhaltsverzeichnis

Z.4.3 Das DIirectory cee.eecescsssnsnsessnnnansscancnnsansnnss 109
3.4.2 Das Format deg Directoryeecreenncnnacncennananaaaa 111

3.4 Die Organisation der relativen Dateienc..vncucacanunnnea 117
3.5 DOS-Listing der V€ 1541ciciininecesneccnssnnscnnnanennnns 122

Kapitel 4:
Programme und Tips zur Benutzung der VC 1541

4.1 Dienstprogramme

4.1.1 Anzeige aller Fileparameterccecececrcnacvnnnana 270
4.1.2 Scratch—-Schutz von Files — Fileprotect00 275
4.1.3 Backup-Programm — Kopieren von Disketten 281
4.1.4 FKopieren einzelner Files auf eine andere Diskette 283
4.1.5 Einlesen des Directorys innerhalb von Frogrammen 285

4.2 Die Dienstprogramme der Test/Demo-Diskette

4.2.1 DOS 5.1 ... iuicuuronsnncasunanssnssasssanssannsennannsa 286
4.2.2 COPY/ALL M iesnasessessssesasesnaencansaannanc=nana 286
4.2.3 DISK ADDR CHANGEvcccrunnncnncnananasnascnasnnsanns 287
A4.2.8 DIR .. nteisecincesannsnnenananncannsnnsanunannnassnsssa=nn=~ 288
4.2.5 VIEW BAM ...t iciucnnuceassonsnnscsasasnncnncnnanannnsas 288
4.2.6 CHECK DISKiceeicuecnscncnnnnannncacsnsnnaansnannsass 288
4.2.7 DISPLAY T&S ..vcciiiencecnnsanusnscancsecnccennnansnnse 289
4.2.8 PERFORMANCE TEST wuccucrcnnncnacsnsnnnannannssansnnannas 289
4.3 BASIC—Erweiterungen und Frogramme zur komfortablen

Benutzung der VC 1541

4.3.1 Eingabe beliebig langer Strings von Diskette 290
4.%.2 Komfortables Aufbereiten von Datensitzen 294
4.3.3 Spooling - Direktes Drucken von Diskette 300

4.4 Overlaytechnik und Nachladen von Maschinenprogrammen 303
4.5 Merge - Aneinanderhadngen von BASIC-Programmenccesssssa=a. 306
4.6 Disk-Monitor fir Commodore 64 und V€ 20 ... crecennennnnceanae 308

Kapitel S5t
Die groBen CBM-Floppies

IEC-Bus und serieller BUuSccaescnasacancacscsnnassansnsnnnan 321

S.1
5.2 Gemeinsamkeiten und Unterschiede gegeniber der VC 1541 323

Kapitel 11 Einflhrung in die Programmierung der VC-1341

1.1 Der erste Kontakt mit der Floppy-Disk

Da steht sie nun, Ihre neue Diskettenstation. Schnell,
leistungsfdhig und fir Sie zundchst ein Buch mit sieben
Siegeln. Aber keine Angst. Schrittweise werden wir Sie in die
Kunst der Diskettenprogrammierung einfihren. Dieses erste
Teil des Buches gibt dem Anfanger einen intensiven iberblick
iber den Umgang mit der Floppy VC-1541 und i{ber Ihre
Programmierung. Jedem Befehl folgt mindestens ein Beispiel,
an dem seine Funktion erprobt und erkannt werden kann. Sie
werden Uberrascht sein, wie einfach doch die Handhabung Ihrer
Diskettenstation sein kann, wenn man nur im Besitz von guter,
begleitender Literatur ist.

Der Anfanger, der das Laufwerk zundchst hauptsachlich zur
Speicherung von Frogrammen nutzen wird und vieleicht beim
Kauf auch kein anderes Einsatzgebiet in Erwdgung gezogen hat,
wird in diesem Buch mit den vielen anderen Miglichkeiten der
Diskettenprogrammierung vertraut gemacht. Ein Programmierer,
der vorher die Datenspeicherung auf Kassette organisierte
wird die wesentlichen Vorteile der Diskette erkennen und
einzusetzen lernen.

Auch erfahrene Programmierer sollten sich nicht scheuen, das
erste Kapitel intensiv zu erarbeiten, denn sie werden
sicherlich Ihre Kenntnisse erweitern. Dies betrifft besonders
die relative Dateiverwaltung.

1.1.1 Das Disketten-Betriebssystem

Die Diskettenstation besitzt neben der Laufwerksmechanik und
der Elektronik wie der VC-20 und der Commodore 64 ein eigenes
Betriebssystem zur Steuerung der internen Vorgidnge und zum
Ausfihren der vom Rechner iibersandten Befehle. Dieses DOS
(Disk Operating System) genannte Betriebssystem ist auf dem
VC-20 und Commodore 64 abgestimmt und trigt die Bezeichnung
CBM DOS V2.6 1541. Diese Version V2.6 enthdlt auch einige
zusdtzliche Méglichkeiten, die sich mit dem VC-20 und dem
Commodore 64 nicht ohne weiters nutzen lassen.

Der Commodore 64 und der VC-20 enthalten das BASIC CBM 2.0.
Die VC-1541 hingegen versteht die erweiterten
Diskettenbefehle des BASIC 4.0, die sich mit dem BASIC 2.0
simulieren lassen.

Am Ende des Kapitels folgt eine Auflistung samtlicher Befehle
des BASIC 2.0 mit entsprechenden Befehlen des komfortableren
BASIC 4.0, wie es bei den griéBeren CBM-Rechnern (4000-er,
8000—-er und der neuen 600—-er und 700-er Serie) integriert
ist.

Das CBM BASIC 4.0 ist auch auf dem VC 20 und dem COMMODORE 64
einsetzbar. Es ist in folgenden Produkten, die in unserem VC
INFO ausfithrlich beschrieben sind, intergriert:

vC 20: DATA BECKER IEC-Bus mit DISC BASIC
CBM &4: DATA BECKER IEC-Bus mit DISC BASIC

SUPERTWIN
MASTER &4

1.1.2 Die beigelegte Test/Demo—-Diskette

Sicher wuBten Sie mit dieser Diskette erst gar nichts

anzufangen. Das so0ll Sie aber nicht irritieren. Neben
Programmbeispielen enthdlt diese Diskette Dienstprogramme,
die Sie ohne den entsprechenden Kenntnissen des

Disketten-Betriebssystems nicht sinnvoll bedienen kénnen.
Legen Sie diese Diskette erst einmal beiseite. Im Laufe
dieses und des folgenden Kapitels erlernen Sie alles, was das
DOS zu bieten hat und werden bald in der Lage sein, selbst
ahnliche Dienstprogramme ohne groBartige Anstrengung zu
schreiben.

Die Test/Demo-Diskette wird spater noch ausfihrlich
beschrieben.

1.1.3 Die Vorbehandlung neuer Disketten zum Einsatz

Ladenidbliche, "rohe" Disketten missen erst vorbehandel t
werden, bevor man sie zur Datenspeicherung verwenden kann.
Diesen Vorgang nennt man in der Fachsprache "Formatieren".
Was bedeutet nun "Formatieren"? Jedes typenungleiche Laufwerk
hat seine Besonderheiten. So ist die Diskette z.B. in Spuren
aufgeteilt, deren Anzahl bei vielen Laufwerken
unterschiedlich ist. AuBerdem ist jede Spur in Sektoren
gegliedert, deren Anzahl ebenfalls zwischen verschiedenen
Laufwerken variieren kann. Jeder dieser Sektoren erhalt
wahrend dem Formatieren seine "Adresse", an der das DOS ihn
identifiziert. Diese Adresse besteht aus der fortlaufenden
Nummer von Spur und Sektor. Weiterhin wird jeder Sektor mit
einem Kode belegt, an dem das DOS erkennt, ob die Diskette
auch auf diesem Laufwerktyp formatiert wurde. Dieses
Formatkennzeichen besteht aus zwei Zeichen, und enthidlt bei
der VC 1541 "2A". Der Rest des Sektors ("Block" genannt) kann
maximal 256 Zeichen aufnehmen.

Die letzte Aufgabe des “Formatierens" ist, das Directory
(Inhaltsverzeichnis) der Diskette anzulegen. In der Directory
sind w.a. alle Bliocke der Diskette als “"belegt® oder
"freigegeben" gekennzeichnet. Sie befindet sich auf Spur 18
der Diskette.

1.1.4 Einige Daten der VC 1541-Diskette:

Diskette:

Anzahl Spuren: 35

Anzahl Sektoren je Spur: 17 bis 21 (je nach GriaBe
der Spur)

Bytes (Zeichen) je Block: 256

Gesamtzahl der Blécke: &£83

Zahl der freien Blicke: 644 (die Directoy belegt
den Rest)

Eintrage in der Directory: 144 pro Diskette
Laufwerk:

- intelligentes Peripheriegerdt mit eigenem Prozessor und
eigenem Betriebssystem

— AnschluB am seriellen IEC-Bus von CBM &4 oder VC-20, Ge-
ratenummer 4-15 (standard 8)

Diese Daten sollen vorerst geniigen. Sie lernen spater weitere
kennen und verstehen.

1.2 Das Speichern von Programmen auf Diskette

Die iberlegenheit des Diskettenlaufwerks als externes
Speichermedium gegeniiber dem Rekorder zeigt sich bereits bei
der Abspeicherung von FProgrammen. Die Speicherung von
Frogrammen ist mit einem Diskettenlaufwerk erheblich
komfortabler als mit einem Cassettenrekorder. Ein
wesentlicher Vorteil liegt in der Geschwindigkeit | der
Ubertragung von und zum Rechner. Hierzu 2 Beispiele:

Das Abspeichern eines 3 KByte groBen Programms dauert:
- mit der Datasette VC-1530 75 Sekunden
- mit der Floppy VC—-1541 nur 12 Sekunden

Das Laden eines 1& KByte groBen Programms dauert:
— mit der Datasette VC-1530 330 Sekunden
- mit der Floppy VC-1541 nur S50 Sekunden

Ein weiterer Vorteil ist, daB auf der Diskette mehrere
Programme iibersichtlich abgelegt werden kénnen. Um ein
Programm zu laden, schaut man sich lediglich das
Inhaltsverzeichnis (Directory) der Diskette an und wahlt dann
das gewinschte Programm aus. Zwar konnen auf einer Kassette
auch mehrere Programme gespeichert werden, jedoch ist das
Aufsuchen eines Programms sehr umstandlich, da die
entsprechende Bandposition erst durch Spulen der Kassette
aufgesucht werden muB. Bevor Gie die Beispiele in den
folgenden Abschnitten ausprobieren, sollten Sie beachten, dafi
vorher eine Diskette gemdB Abschnitt 1.3.2 zu formatieren
ist, um Programme auf dieser Diskette abspeichern zu kénnen.

1.2.1 SAVE - Speichern von BASIC-Programmen

Vieleicht waren Sie vorher im Besitz einer Datasette, mit der
Sie sicher Programe abgespeichert haben. Der Befehl zur
Speicherung von Programmen auf der Floppy—Station
unterscheidet sich nicht wesentlich davon. S8Sie miissen dem
Rechner lediglich mitteilen, daB er das Programm auf Diskette
und nicht auf Kassette zu speichern hat. Dies geschieht durch
zusdtzliche Angabe der Geridtenummer 8 hinter dem Befehl SAVE.
Alle serienmadBig produzierten Laufwerke sind auf diese
Adresse hardwaremdfBig vorbereitet. Schreiben Sie nun einmal
ein kleines BASIC—-Frogramm und speichern es mit dem Befehl

SAVE"TEST",8
ab. Geben Sie anschliefend den Befehl "NEW" ein, damit der

BASIC-Speicher geldscht wird. Im folgende Abschnitt erfahren
Sie dann ,wie das Frogramm wieder zuriickgeholt wird.

1.2.2 LOAD - Laden von BASIC~Programmen

Wie beim vorhergehenden Abschnitt ist dieser Befehl bis auf
die zusitzliche Angabe der Geratenummer mit dem Befehl "LOAD"
fir die Datasette identisch. Laden Sie nun das im vorherigen
Abschnitt gespeicherte Programm mit

LOAD “TEST",8

ieder in den Speicher. Mit dem Befehl “LIST" kiénnen Gie den
erfolgten Ladevorgang erkennen. Ein eventuell vorher im
Speicher befindliches Programm ist aber nun geldscht, da bei
jedem Ladevorgang das Frogramm ab der Anfangsadresse des
BASIC-Speichers abgelegt wird. Es besteht jedoch die

Miglichkeit, das im Speicher befindliche Programm zu
erhalten, wenn dessen Endadresse als Anfangsadresse gesetzt
wird. Dieses "Zusammenfigen" zweier Frogramme nennt man

"MERGE". Eine entsprechnede Routine ist in einem spéteren
Aschnitt enthalten.

1.2.3 VERIFY - iUberprifen von gespeicherten Programmen

Wenn Sie ein Programm mit dem Befehl ‘SAVE’" auf Diskette
gespeichert haben, so besteht die Méglichkeit zu dberprifen,
ob dieses Programm auch richtig abgelegt wurde. Das wird mit
dem VERIFY-Befehl realisiert. Der Befehl hat folgendes
Format:

VERIFY “"filename",B8

Angenommen Sie haben ein Programm mit ‘SAVE "TEST",8"
gespeichert. Dann befindet sich dieses Programm immer noch im
Speicher. Dieses im Speicher befindliche Programm wird dann
durch diesen Befehl mit dem tatsidchlich abgespeichertem
verglichen. Sind beide Programme identisch, so meldet der
Rechner "OK".

Probieren Sie es einmal aus, indem Sie einige BASIC-Zeilen
schreiben und dann die folgende Befehlsfolge eingeben:

SAVE "TEST.1",8 Programm wird gespeichert
VERIFY "TEST.1",8 Programm wird dberpriift

Sicher wird der Rechner sich mit "OK" melden, da bei der
Diskettenspeicherung sehr selten Fehler auftreten.

1.2.4 SAVE"@:..." — iberschreiben von Programmen

Versuchen Sie jetzt einmal, Ihr kleines Testprogramm nochmals
auf der Diskette zu speichern. Beim zweiten Mal meldet der
Computer einen "FILE EXISTS"-Fehler und fihrt den Befehl
nicht aus. Das Betriebssystem der Floppy VC-1541 1&4Bt nicht

zu, daBl zwei Programme unter gleichem Namen abgespeichert
werden. Dies ist auch logisch, denn wie sollte der Computer
sonst beim Ladevorgang erkennen, welches Programm von zwei
identischen Sie haben méchten.

Nun kann es aber vorkommen, daB Sie ein bereits auf Diskette
abgelegtes Programm laden, &ndern und wieder abspeichern
mochten. Um dies zu realisieren gibt es drei Miégichkeiten:

1. Sie Speichern das Programm unter einem anderen Namen ab

2. Sie Lischen zuerst das alte Programm auf der Diskette und
speichern dann das Neue unter dem alten Namen ab

3. Bie verwenden den Zusatz "a:" vor dem Filenamen im
SAVE-Befehl

Dieses Zeichen nennt man "Klammeraffe". Es wird sehr oft in
der Datenverarbeitung benutzt. Dieses Zeichen und einen
Doppelpunkt setzen Sie vor dem Filenamen. Das konnte dann
z.B. so aussehen:

SAVE "@ TEST",B

Vergessen 6Sie, dieses Zeichen anzugeben, so bringt das
Laufwerk die Fehlermeldung "FILE EXISTS", die Sie dann wie im
Abschnitt 1.3.3 beschrieben, auslesen kinnen.

Das neue Programm darf den restlichen Speicherplatz der
Diskette nicht iberschreiten. Wenn Sie verfolgen, wie das DOS
das Uberschreiben durchfihrt, werden Sie den Grund dafiir
erkennen:

1. Einen freien Block als ersten Datenblock des neuen
Programms bestimmen und dessen Adresse im Directory-Eintrag
des alten Files speichern. .

2. Das neue Programm in einen freien Bereich der Diskette
speichern.

3. Die Adresse des neuen Files in die Adresse des alten Files
abernehmen.

4. Die vom alten File belegten Blécke als frei kennzeichen.

Da vor dem Freigeben der vom alten File belegten Blécke das
neue File in die freien Blicke der Diskette gespeichert wird,
darf das neue File nicht die freie Diskettenkapazitat
iberschreiten. Sollte jedoch das neue Programm den freien
Diskettenspeicher iberschreiten, wird der Speichervorgang
abgebrochen.

1.2.5 Laden von Maschinenprogrammen

Maschinenprogramme bestehen aus elementaren Befehlen des
Prozessors. Sie bendtigen den BASIC-Interpreter nicht und

werden auch nicht als BASIC-Programm geladen. Ein
Maschinenprogramm wird iiber die Sekundiradresse 1 zum Rechner
idbertragen und "absolut" geladen, d.h. ab der in den ersten
beiden Bytes des Diskettenfiles enthaltenen Adresse. Ein
Beispiel: Der Befehl

LOAD “"PROFI-MON &4",8,1

ladt den Maschinensprache-Monitor absolut. Da dieser Monitor
die dezimale Anfangsadresse 49132 hat, wird er anschlieBend
mit dem Befehl “SYS 49152" gestartet. Sollten Sie ein
Maschinenprogramm ohne die Sekunddradresse, d.h. wie ein
BASIC-Programm laden, so erscheint bei einem anschlieBendem
RUN die Fehlermeldung "SYNTAX ERROR IN". Mit dem Befehl

“LIST" erscheint dann das Maschinenprogramm als
BASIC-Listing, daB natirlich Gberhaupt keinen Sinn ergibt.
Ein Nachteil ist, daB ein BASIC-Programm von einem

Maschinenprogramm anhand der Directory nicht zu unterscheiden
ist. Beide werden mit dem Filetyp "PRG" gekennzeichnet. Wenn
Sie ein Programm auf der Diskette nicht spezifizieren kénnen,
s0 laden Sie es zuerst mit dem Befehl ‘LOAD "programm",8°.
Sollte nach einem anschlieBendem ‘RUN‘ die Meldung ~‘SYNTAX
ERROR IN " erscheinen und das anschliefBend aufgelistete
Programm nicht als BASIC-Programm zu identifizieren sein, so
handelt es sich um ein Maschinenprogramm. Dieses muB dann mit
‘LOAD “programm",B8,1° geladen werden. Es kann dan aber nicht
mit RUN" gestartet werden!. Sie milssen erst die
Anfangsadresse dieses Programm ermitteln. Dazu kénnen Sie das
in diesem Buch enthaltene Programm zur Auflistung aller
Fileparameter benutzen. Diese Anfangsadresse ist dann in den
meisten Fillen die Startadresse des Programms, das Sie dann
mit ‘SYS startadresse’ aufrufen. Sie kénnen aber auch die
Anfangsadresse mit folgender Befehlsfolge ermitteln:

10 OPFEN 1,8,2,"programmname,S,R"
20 GET#1,X$: IF X$=""THEN X$=CHR% (0)
30 LB=ASC(X$)

40 GETH#1,X$:IF X$=""THEN X$=CHR%$ (0)
50 HB=ASC (X%)

60 CLOSE 1

70 AD=HB*256+LB

80 PRINT"ANFANGSADRESSE: ";AD

Das Programm zeigt dann die Adresse nach Eingabe von ‘RUN’
auf dem Bildschirm an. Hier wird also das Programm als
sequentielle Eingabedatei eridffnet. Da die ersten beiden
Bytes die Anfangsadresse bilden, wird diese mit den beiden
GET-Befehlen ausgelesen und entsprechend aufbereitet. Das
erste Byte ist das High-Byte und das zweite das Low—-Byte der
2-Byte Adresse. Falls Ihnen die Funktion dieser Befehlsfolge
unklar ist: Im nachsten Abschnitt wird die Behandlung von
sequentiellen Dateien eingehend erklart.

1.2.6 Speichern von Machinenprogrammen

Maschinenprogramme werden meistens mit einem
Maschinensprache-Monitor oder einem Assembler geschrieben und
auch von diesen Programmen heraus abgespeichert.

Maschinenprogramme kénnen aber auch mit BASIC geschrieben
werden, indem die einzelnen Bytes des Programms mit ihrem
dezimalen Wert in DATA-Zeilen abgelegt werden. Ein in BASIC
mit Hilfe von DATA-Zeilen geschriebenes Maschinenprogramm
hatte folgendes Aussehen:

10 AA = anfangsadresse
20 EA = endadresse

30 FOR I=AA TO EA

40 READ X

50 POKE I,PEEK(X)

60 NEXT I

BO DATA ..ccecneccnnsaanasssannnsananansnnananans

PO DATA .ccennsnccscnsnnascanennnsnsasannnnnnsnans

Es muB in diesem Beispiel noch die dezimale Anfangsadresse in
Zeile 10 und die Endadresse in Zeile 20 eingesetzt werden.
Die dezimalen Werte der einzelnen Bytes des
Maschinenprogramms werden jeweils durch Komma getrennt in den
DATA-Zeilen angegeben.

Natirlich kénnen Sie auch als einfachsten Weg
Maschinenprogramme, wie sie z.B. auch in diesem Buch und in
den anderen DATA BECKER BUCHERN in reichlicher Form finden,
in Form des BASIC-Ladeprogramms abspeichern. Allerdings mufB
dann jeweils vor der Nutzung der entsprechenden Routine diese
erst durch Lesen und Ausfihren der DATA-Zeilen erzeugt
werden, ein etwas umstandlicher und zeitraubender Weg.
Wesentlich eleganter und zeitsparender ist die Abspeicherung
eines in DATA-Zeilen enthaltenen Maschinenprogramms in Form
echter Maschinenbefehle, da ein solches "echtes"
Maschinenprogramm nach dem Laden ohne umstandliches Umsetzen
sofort ausgefihrt werden kann.

Um ein derartig gespeichertes Programm als Maschinenprogramm
auf Diskette abzulegen wird eine Befehlsfolge benutzt, die
etwa so aussieht:

10 AA = anfangsadresse
20 EA = endadresse

30 OPEN 1,8,1,"“programmname"
40 HB=INT (AA/256) : LB=AA—HB*256
50 PRINT#1,CHR$ (LB) ;CHR$ (HB);
&0 FOR I = AA TO EA

70 PRINT#1,CHR$ (PEEK(I));

80 NEXT I

90 CLOSE 1

Diese Routine setzt voraus, daB das Maschinenprogramm bereits
im Speicher des Rechners mit der vorher beschriebenen Routine
abgelegt ist. Soll ein in DATA-Zeilen enthaltenes
Maschinenprogramm auf Diskette gespeichert werden, so muB

folgende Routine benutzt werden:

10 AA = anfangsadresse

20 EA = endadresse

30 OPEN 1,8,1,"programmname”

40 HB=INT (AA/256) : LB=AA-HB*256

SO PRINT#,CHR$ (LB) ; CHR$ (HB) ;

&0 FOR I = AA TO EA

70 READ X

80 PRINT#1,CHR$(X);

90 NEXT I

100 CLOSE 1

110 DATA siiuecieriancecnnnannannnseasanncaannsnns
120 DATA ..t vecnnrianncanassncanassanannsnsnnsnnnnns

Auch hier missen noch die Adressen und die DATA-Zeilen
eingesetzt werden. Das derartig gespeicherte “echte"
Maschinenprogramm wird dann mit dem Befehl ‘LOAD
“programmname" ,8,1" eingesetzt, der dann das
Maschinenprogramm von der Diskette 1adt. AnschlieBend wird
dieses Programm mit ‘8YS (anfangsadresse) ’ gestartet.
Maschinenprogramme kénnen auch von einem BASIC-Ladeprogramm
geladen und gestartet werden. So ein Ladeprogramm kénnte die
folgende Form haben:

10 IF A=0 THEN A=1:L0AD"programmname",8,1
20 SYS (anfangsadresse)

Der IF-Befehl in Zeile 10 verwirrt zunidchst. Er muB mit
einbezogen werden, weil nach dem Laden eines Programmes immer
wieder in Zeile 10 gestartet wird. Wendet man die
Befehlsfolge

10 LOAD"programmname” ,8,1
20 SYS (anfangsadresse)

an, sa wiirde immer wieder geladen und der SYS nie erreicht.
Wird aber die Variable A auf eins gesetzt, so verzweigt das
Programm nach dem erneuten Ablauf von Zeile 10 nach Zeile 20.
Dieses Ladeprogramm wird dann Zusammen mit dem
Maschinenprogramm auf der Diskette abgelegt. Zum Starten des
Maschinenprogramms geben Sie nur die Befehle

LOAD"1adeprogramm” ,8
RUN

ein. Dies hat den Vorteil, daB die Anfangsadresse des
Maschinenprogramms nicht zum Starten bendtigt wird, weil das
Ladeprogramm den SYS beinhaltet.

1.3 Die Floppy-Systembefehle

Wie schon erwdhnt, ist die Floppy VC-1541 4&hnlich den
Peripheriegerdten grofien CBM Floppys CBM 4040, B050 und 8250
ein intelligentes Peripheriegeridt mit einem eigenem Prozessor
und einem eigenem Betriebssystem. Dieses eigene
Betriebssystem, das DOS (Disk Operating System) belegt
keinen Platz im Speicher Ihres VC-20 oder COMMODORE 64
und bietet trotzdem eine Reihe sehr leistungsfidhiger Befehle,
die den Befehlssatz Ihres COMMODORE Computers wesentlich
erweitern. Eine weitere Besonderheit neben der
Speicherplatzersparnis (bei fast allen anderen Computern wird
das DOS in den Hauptspeicher geladen und belegt dort
wertvollen Platz) ist die Tatsache, daBl die Befehle des
Floppy DOS von der Floppy villig selbststandig ausgefiihrt
werden, ohne daB Ihr Computer hiermit belastet wird. Da diese
Befehle aber nicht im Befehlssatz Ihres VC-20 oder COMMODORE
&4 enthalten sind, missen sie auf eine besondere Art und
Weise zur Floppy iibertragen werden. Dort rufen diese Befehle
dann entsprechende Unterprogramme auf, die die gewiinschte
Aufgabe durchfihren.

1.3.1 Die Befehlsibermittlung zur Floppy-Station

Samtliche Befehle, die an die Floppy-Station (an das DOS)
gerichtet sind, werden iiber einen "Kanal" gesendet. Dieser
Kanal ist der Kanal Nummer 15. Die Dateniibertragung iiber
diesen Kanal erfolgt folgendermaBen:

- offnen des Kanals (OPEN)
— Dateniibertragung (PRINT)
— SchlieBBen des Kanals (CLOSE)

Im OPEN-Befehl muff neben der Kanalnummer noch die Nummer des
Geridtes, zu dem die Daten gesendet werden sollen und die
logische Fielnummer enthalten sein. Beachten Gie nun die
Syntax des OPEN-Befehls zur Ubertragung von
Floppy-Systembefehlen:

OPEN #1€n,8,15, "befehl”

Die 8 in dem Befehl adressiert die Adresse der Floppy-Station
und der Befehlskanal ist 15. Der Parameter ‘14n° ist die
logische Filenummer des OPEN-Befehls, die bendtigt wird, um
die Ubertragungsbefehle (PRINT#, INPUT#,GET$) den
OPEN-Befehlen zuzuordnen. Sie ist frei wadhlbar (1-127). Der
Floppy—Systembefehl kann entweder direkt dem OPEN-Befehl
folgen, oder aber mit einem PRINT-Befehl nach dem Erdffnen
dbermittelt werden. Bis zum SchlieBen dieses Kanals kann eine
beliebige Anzahl Systembefehle iibertragen werden, die sich
natiirlich auf die im OPEN-Befehl angegenbene logische
Filenummer beziehen missen.

1.3.2 NEW - Formatieren von Disketten

10

Der Befehl zum Formatieren lautet "NEW" und kann wie jeder
andere Befehl durch sein erstes Zeichen (N) abgekiirzt werden.
Wie bereits erwdhnt, kann der Befehl im OPEN-Befehl oder
nachfolgend in einem PRINT-Befehl angegeben werden. Der
NEW-Befehl hat folgendes Format:

NEW: diskettename,id

Der Diskettename umfasst maximal 16 Zeichen und ist im Kopf
des Directorys enthalten. Das Identifizierungsmerkmal (ID)
der Diskette besteht aus zwei beliebige Zeichen, an der das
DOS erkennt, ob eine andere Diskette eingelegt wurde. Da Sie
dieses Idenfikationsmerkmal frei widhlen kinnen, bietet es
sich gut fir die Unterscheidung sonst villig identischer
Disketten an, oder aber fiir eine allgemeine Klassifizierung
Ihrer Disketten. Wer nicht mehr als 99 Disketten hat, kann
seine Disketten sehr schin an Hand des
Identifikationsmerkmals ordnen.

Nun aber ein Beispiel zum Formatieren einer Diskette:

OPEN 1,8,15, "NEW: TESTDIKETTE ,KL"

Geben Sie diesen Befehl nun einmal ein, nachdem Sie eine
"rohe" Diskette eingelegt haben. Sie werden feststellen, daB
das Laufwerk nun mit dem Formatieren beginnt. Dieser Vorgang
dauert ca. 80 Sekunden. Da das Laufwerk mit seinem eigenen
Prozessor formatiert und den Prozessor des Rechners nicht
benitigt, kann wihrend dem Vorgang weiter mit dem Rechner
gearbeitet werden. Der Befehl kann aber auch abgekiirzt
werden:

OPEN 1,8,15,"N: TESTDISKETTE,KL"

Soll der Befehl mit einem PRINT ubermittelt werden, so muB
folgende Befehlsfolge eingegeben werden:

OFEN 1,8,15 zum offnen des Kanals
FRINT#1,"N: TESTDISKETTE,KL"

Die Nummer 1 des PRINT-Befehls bezieht sich auf die logische
Filenummer des OPEN-Befehls. Ist der Befehl dem ersten
Beispiel entsprechend abgesetzt worden, so kinnen mit dem
FRINT-Befehl weitere Befehle iUber diesen Kanal dbermittelt
werden.Sollen keine weiteren Befehle dbermittelt werden, so
muB der Kanal geschlossen werden. Das geschieht mit dem
CLOSE-Befehl. Geben Sie nun nach dem Formatieren folgenden
Befehl ein:

CLOSE 1
Nun ist der Befehlskanal geschlossen. Die 1 bezieht sich

wieder auf die laogische Filenummer des entsprechenden
OPEN-Befehls.

i1

1.3.3 Auslesen des Fehlerkanals

Wie Ihnen sicher bekannt ist, gibt der Rechner bei nicht
ordnungsgemiBer Programmierung Fehlermeldungen aus. Da die
Diskettenbefehle aber nicht von dem Prozessor des Rechners,
sondern von dem des Laufwerks dberprift und ausgefiihrt
werden, kann der Rechner die Fehlermeldungen des Laufwerks
nicht anzeigen. Fehlermeldungen werden vom Anwender an der
aufblinkenden roten Leuchtdiode am Laufwerk erkannt. Um
jedoch festzustellen, welcher Fehler aufgetreten ist, muB der
Rechner den Kanal 15, iiber dem die Fehler ibermittelt werden,
auslesen. Dazu muB der Kanal 15 vom Rechner gedéffnet werden,
falls dies nicht bereits geschehen ist. Danach wird mit dem
INPUT-Befehl die Fehlermeldung ausgelesen. Sie besteht aus 4
Feldern:

i. Feld: Nummer des Fehlers (numerisch)

2. Feld: Bezeichnung des Fehlers (alphabetisch)
3. Feld: Spur (numerisch)

4. Feld: Sektor (numerisch)

Die Spur- und Sektorangabe bezeichnet, wo der Fehler
lokalisiert wurde. Diese vier Felder der Fehlermeldung missen
in 4 Variable eingelesen werden, wobei die 2. Variable eine
Stringvariable sein muB. Dem INPUT-Befehl miissen dannn also 4

Variablen folgen. Ein Beispiel zur Auslesung des
Fehlerkanals:
OPEN 1,8,15 (falls noch nicht erfolgt)
INPUT#1,FN,FB$,5P,SE
CLOSE 1

Da der INPUT-Befehl aber nicht direkt eingegeben werden kann,
muB der Fehler innerhalb eines Programms ausgelesen werden.
D.h. die oben genannte Befehlfolge muB mit Zeilennummern
versehen und dann mit RUN gestartet werden. Das sieht dann
z.B. so aus:

10 OPEN 1,8,15

20 INPUT#1,FN,FB%,5P,SE

30 PRINT FN;FB#;S5P;SE (zur Anzeige auf dem
Bildschirm)

40 CLOSE 1

Um die Wirkungsweise dieses Programms zu erkennen,
verursachen Sie bitte folgenden Fehler:

DPEN 1,8,15,"NEW TESTDISKETTE,T1"
CLOSE1

Wenn Sie diese Befehlsfolge eingegeben haben, blinkt die rote
Leuchtdiode an dem Floppy-Laufwerk. Haben Sie den Fehler
erkannt? Es fehlt der Doppelpunkt nach dem Befehl “NEW".
Geben Sie nun die Befehlsfolge zum Auslesen des Fehlerkanals
ein und starten mit RUN. Auf dem Bildschirm erscheint dann
die Meldung:

12

34 SYNTAX ERROR © O

Die 34 ist die Nummer des Fehlers, dessen Klartext dann
folgt. Das Feld Spur und Sektor ist 0, weil dieser Fehler
diese Angaben nicht bendtigt.

Sollte ohne daB ein Fehler aufgetreten ist, der Fehlerkanal
ausgelesen werden, so wird die Meldung

C 0K OO0

ausgegeben.

Falls widhrend der Arbeit mit der Floppy-Station die rote
Leuchtdiode blinken sollte, so Uberprifen Sie erst Ihren
Befehl, denn meistens ist der Fehler wie beim o0.g. Beispiel
leicht =zu erkennen. Andernfalls lesen Sie einfach den
Fehlerkanal aus. Eine detailierte Beschreibung aller
Fehlermeldungen und ihrer Ursachen erfolgt im Abschnitt 1.6.

1.Z.4 LDOAD "$",8B - Laden des Directory

Das Directory ist das Inhaltsverzeichnis der Diskette. Hier
sind alle Files (Programme und Dateien) der Diskette
katalogisiert. Beachten Sie unbedingt, daB das Laden der
Directory den Verlust eines eventuell vorher im Speicher
befindlichen Programms zur Folge hat. Das Directory wird mit

LOAD "$",8

geladen und kann dann mit dem LIST-Befehl aufgelistet werden.
Probieren Sie es nun einmal mit der dem Laufwerk beigefiigten
Test/Demo-Diskette aus. Legen Sie diese Diskette in das
Laufwerk und geben Sie den o.g. Befehl zum Laden der
Directory ein. Danach listen Sie mit dem Befehl LIST das

Directorry auf. Es erscheint dann wie folgt auf dem
Bildschirm: (Bitte beachten Sie, daB nicht alle VC-1541 mit
der derselben Test/Demo-Diskette geliefert werden, da

COMMODORE auch hier manchmal nicht angekiindigte Anderungen
vornimmt).

e "1541test/demo " zx 2al

13 "how to use" prg
S "how part two" prg
4 "vic—-20 wedge" prg
1 "c—-64 wedge" prg
4 "dos S5.1" prg
11 “copy/all" prag
4 "disk addr change" prg
4 “dir® prg
& "view bam" prg
4 “check disk" prg
14 "display t&s" prg
9 "performance test" prg
S "sequential file" prg
13 "random fial" prg

13

Diesem Directory sind viele Informationen zu entnehmen. Sehen
wir uns die 1. Zeile, den Kopf des Directory, einmal an. Das
Zeichen "0’ in dieser Zeile hat keine besondere Bedeutung.
Daneben ist der Name und die ID der Diskette angegeben, wie
es bei der Formatierung vereinbart wurde. Die Zeichen ‘2A°
symbolisieren das Diskettenformat. Ist dieses Format nicht
‘24", so ist diese Diskette auch nicht auf dieser art
Laufwerk formatiert worden und auch nicht lauffihig.

Nun folgen die einzelnen Files mit Ihrer Blockldnge am Anfang
und dem Filetyp am Ende der Zeile. Auf dieser Diskette
erkennen Gie 3 verschiedene Filetypen die im Folgenden
erklart werden. Auf die restlichen Filetypen wird spiater noch
eingegangen.

PRG Dies sind PROGRAM-FILES, d.h. Programme in
BASIC oder Maschinensprache

SEQ So werden sequentielle Dateien gekennzeich-—
net, die spiter beschrieben werden

REL Dies ist eine andere Form der Datenspei-
cherung, die ebenfalls spater beschrieben
wird.

Die Lange der Files ist in Blécken angegeben, von denen jeder
256 Bytes umfasst.So kann man leicht die GriBe eines
Programms ermitteln. Man mul lediglich von den 25& Bytes
eines jeden Blocks 2 Bytes abrechnen, die zur Verkettung der
einzelnen Blocks benidtigt werden.

Am Ende des Directory ist dann noch die Anzahl der noch
freien Blicke der Diskette ersichtlich. Wenn Sie die Liange
der Files aufaddieren und die freien Blicke hinzuzihlen, so
resultiert daraus die Gesamtzahl der belegbaren Blécke auf
einer Diskette (664).

Wenn Sie einen Drucker besitzen, so kann dieses Directory wie
ein Programmlisting ausgedruckt werden. Dazu verwenden Sie
folgende Befehlsfolge:

OPEN 1,4 offnen des Druckers

CMD 1 die Bildschirmausgabe wird auf
dem Drucker gelenkt

LIST das Directory wird auf dem
Drucker ausgegeben

PRINT#1 ein RETURN wird zum Drucker ge-—
sendet

CLOSE 1 der Drucker wird wieder ge-—
schlossen

Voraussetzung fir den Ausdruck mit dieser Befehlsfolge ist
natiirlich, daB das Directory mit ‘LOAD "$",8°' geladen wurde.
Sollte sich im Speicher ein BASIC-Programm befinden, so kann
ebenfalls mit dieser Routine das Programm ausgedruckt werden.
Durch Einsatz des Jokers kidnnen Sie bewirken, daR nicht stets
das gesamte Directory geladen wird, sondern nur der Teil, der
Sie interessiert, z.B. alle Programme. Ni3heres hierzu in
Kapitel 1.3Z.10

14

1.3.5 SCRATCH - Léschen von Files

Matiirlich muB die Méglichkeit bestehen, nicht mehr benitigte
Files zu léschen. Dazu ist der Befehl "SCRATCH" vorgesehen.
Bevor dieser Befehl angewandt wird, sollte man sich stets
iiberzeugen, dafl der im Scratch—-Befehl angegebene Name auch
mit dem des zu léschenden Files ibereinstimmt. Ein
unabsichtlich geliéschtes File kann die Arbeit von mehrerern
Stunden oder sogar Tagen zunichte machen.

Zum Lbéschen eines Files muB das folgende Format des Befehls
beachtet werden:

PRINT#1¥n,"SCRATCH: filenamel, filename2,...."
Es konnen also auch mehrere Files mit einem Befehl gelédscht
werden. Wichtig ist die Tatsache, daf dem Floppy-Befehlskanal
innerhalb der Anfilhrungszeichen nicht mehr als 40 Zeichen mit
einem PRINT-Befehl ibermittelt werden kénnen!
Um z.B. ein File mit dem Namen °‘TEST® zu ldschen, werden
folgende Befehle eingegeben:

OPEN 1,8,15,"S: TEST"
CLOSE 1

Sollte der Kanal 15 bereits gedffnet sein, so genigt ein
FPRINT-Befehl:

PRINT#1,"5: TEST"
Es besteht die Miéglichkeit, den Inhalt der gesamten Diskette
zu léschen. Dazu wird der im Abschnitt 1.3.10 umschriebene
"JOKER" (das Zeichen "%*°) verwendet:

PRINT#1,"S:*"
Auch hier ist besondere Vorsicht geboten! {berzeugen Sie
sich, ob wirklich alle Files geléscht werden sollen. Dem
Fehlerkanal wird die Meldung

01 FILES SCRATCHED nn 00
ibergeben. ‘nn° ist die Anzahl der geléschten Files. Diese

Meldung kann mit der im Abschnitt 1.3.3 angegebenen Routine
ausgelesen werden.

1.3.4 RENAME - Umbenennen von Files

Um Files einen anderen Namen zu geben wird der Filename im
Fileeintrag der Directory geidndert. Der Befehl ‘RENAME © ist
dafiir zustandig. Er hat das folgende Forma:

RENAME: neuer name = alter name

Wenn z.B. das File mit dem Namen "TEST" umbenannt werden soll

15

in "TEST.O01", so verwenden Sie die Befehle

OPEN 1,8,15,"R: TEST.O1=TEST"
CLOSE 1

ader

OPEN 1,8,15
PRINT#1,"R: TEST. O1=TEST"
CLOSE 1

Ein File, das erdffnet, aber noch nicht abgeschlossen wurde,
kann nicht umbenannt werden!

1.3.7 COPY - Kopieren von Files

Mit diesem Befehl kann ein File innerhalb einer Diskette
kopiert werden. Aus mehreren sequentiellen Files kann ein
neues File gebildet werden. Wenn Sie z.B. jeden Monat eine
sequentielle Datei der Ausgaben in Ihrem Haushalt erstellt
haben und diese mit den Namen AUSG.O01, AUSG. 02 uswW.
gekennzeichnet sind, so kann mit einem Befehl eine Datei der
Ausgaben im ersten Quartal (z.B. AUSG.0Q1) des Jahres gebildet
werden. Da der Befehl das Format

COPY:neufile=altfilel,altfile2.....

hat, kann die Zusammensetzung der genanten Dateien ait
folgenden Befehlen erfolgen:

OPEN1,8,15,"C: AUSG.R1=AUSG. 01 ,AUSG. 02,AUSG. O3"
CLOSE 1

Diese Methode des Mischens von Dateien kann bei Programmen
nicht angewendet werden. Hier kann nur ein Programm innerhalb
der Diskette kopiert werden. Der Name des neuen Files darf
nicht schon auf der Diskette enthalten sein.

Dieser COPY-Befehl findet selten Anwendung. Der Grund dafiir
ist, daB das Kopieren eines Files auf dieselbe Diskette
eigentlich keinen Sinn hat. Die einzige sinnvolle Anwendung
dieses Befehls ist, mehrere sequentielle oder User—Files zu
einem Gesamtfile zu verbinden.

Durchaus sinnvoll ist dagegen das Kopieren eines Files von
einer Diskette auf die andere. Zur optimalen Datensicherung
ist dies unerlaBlich. Besitzen Sie zwei Laufwerke, so kinnen
Sie, vorausgesetzt eine der beiden hat die Geré&teadresse 9,
mit dem Programm COPY/ALL Files von dem einen auf dem anderen
Laufwerk kopieren. Dieses Programm befindet sich auf der
TEST/DEMO-Diskette.

Wir haben aber auch an diejenigen gedacht, die nur ein
Laufwerk besitzen. Dieser Kreis der Anwender kann mit den in
Kapitel 4.1 enthaltenen Dienstprogrammen einzelne Files, ja
sogar die gesamte Diskette kopieren.

16

1.3.8 INITIALIZE - Initialisieren der Diskette

Das DOS bendtigt im Diskettenspeicher immer die aktuelle BAM
der im Laufwerk befindlichen Diskette. Die BAM ist der
Blockbelegungsplan einer Diskette. Sie kennzeichnet jeden
Block als frei oder belegt und wird bei jedem Befehl, der
Blicke belegt oder freigibt aktualisiert. Wenn nun die
Diskette gewechselt wird, so erkennt das DOS diesen Vorgang
an der unterschiedlichen ID der Diskette. Sollte nun die neue
Diskette die gleiche ID haben wie die vorher im Laufwerk
befindliche Diskette, so nimmt das DOS den Diskettenwechsel
nicht war. Die noch im Speicher befindliche BAM der ersten
Diskette ist dann nicht mehr identisch mit der BAM der
nachsten Diskette. Befehle, die nicht vor Ausfiihrung die BAM
in den Speicher 1lesen (z.B. alle Direktzugriffs—Befehle)
benutzen die im Diskettenspeicher befindliche (falsche!) BAM
zur Lokalisierung der belegten bzw. nicht belegten Bliécke.

Deshalb sollte beim Formatieren der Diskette die ID immer
unterschiedlich sein. Es ist also nicht sinnvoll jeder
Diskette die gleiche ID zu geben. Mit dem Befehl “INITIALIZE-
kann die BAM "von Hand" in den Diskettenspeicher {bertragen
werden. Dieser Befehl hat folgendes Format:
FRINT#1¥fn,"INITIALIZE"
oder abgekirzt
PRINT #l1fn,"I"

Beispiel:

OPEN 1,8,15,"I"

CLOSE 1
Sollten Sie also fiir sich selbst oder fir andere Programme
erstellen, die Datenspeicherung und Diskettenwechsel
beinhalten, so empfehlen wir dringend, aus Sicherheitsgrinden
in Ihrem Programm nach Jjedem Diskettenwechsel den

INITIALIZE-Befehl zu verwenden.

1.3.9 VALIDATE - "Aufriumen der Diskette

Der Befehl °‘VALIDATE® gibt alle als belegt gekennzeichneten
Blécke der Diskette, die nicht einem ardnungsgemai
geschlossenen File zuzuordnen sind, wieder frei. Wenn Sie z.B
ein File mit "OPEN’ &6ffnen, Daten ibertragen und dieses File
aber nicht wieder mit ‘CLOSE’ schlieBen, so wird es beim
‘VALIDATE * wieder geliéscht. Oder aber Sie arbeiteten mit
Direkt—-Zugriffs—Befehlen auf der Diskette, beschreiben also
Blécke oder kennzeichnen sie als belegt. Diese Blicke sind
dann keinem File zugeordnet und werden durch diesen Befehl
wieder freigegeben.

Der Befehl hat auch noch eine weitere Funktion: Wenn ein File

17

mit "SCRATCH" geldscht wird, so wird nur der Filetyp im
ersten Byte des Fileeintrags auf "0" gesetzt. Es erscheint
somit nicht mehr in der Directory. Wenn Sie nun dieses Byte
wieder gemdB dem alten Filetyp erneuern, was entweder mit dem
in diesem Buch enthaltenen DOS-Monitor, oder aber auch wmit
Direkt-Zugriffs—Befehlen durchgefihrt werden kann, s0
regeneriert ein anschlieBender ‘VALIDATE’ dieses File. Es ist
also wieder im alten Zustand auf der Diskette enthalten.

Der Befehl hat folgendes Format:

PRINT#1+n, "VALIDATE"
oder in der Kurzform
PRINT#14n,"V"
Ein Beispiel:

OFEN 1,8,15,"v"

CLOSE 1
Sollte Sie einmal eine Diskette besitzen, bei der die
aufaddierten Fileldngen in Blécken nicht plus den angegebenen
freien Blécken nicht der Gesamtblockzahl der Diskette (664)
entspricht, so stellt der VALIDATE-Befehl wieder den alten
Zustannd her.
Ein weiteres Beispiel: Wenn Sie ein Programm oder eine Datei
speichern wollen, dai den freien Diskettenspeicher
iberschreitet, so meldet das DOS den Fehler "DISK FULL". Wenn
die Diskette auch vorher noch einige freie Blicke aufwies, so
ist die Anzahl der freien Blicke nun Null. Mit dem
VALIDATE-Befehl werden nun diese, urspringlich freien Blicke
wieder freigegeben.

1.3.10 7 % - Der "Joker"

Es gibt zwei Jokerzeichen: Den Stern (#) und das Fragezeichen
(?). Der Stern an einer bestimmten GStelle des Filenamens
symbolisiert, dall das erste File auf der Diskette relevant
ist, das mit den Zeichen vor dem Stern beginnt. Ein Beispiel:

LOAD “"TEST*",8

Dieser Befehl lddt das erste Programm, dessen ersten vier
Buchstaben "TEST" beinhalten. Der Befehl

LOAD "*",8
lidt das erste Programm der Diskette, da kein Zeichen vor dem
Stern angegeben ist. Der Stern in einem SCRATCH-Befehl hat
eine andere Funktion. Hier wird nicht das erste File
geléscht, sondern ALLE. Z.B. lidscht der Befehl

OPEN1,8,15,"S: TEST»"
CLOSE 1

i8

alle Files, die mit den Buchstaben "TEST" beginnen. Dies ist
unbedingt zu beachten! Auch das Laden der Directory kann mit
dem Stern selektiert erfolgen. Ein beispiel:

LOAD "$Ax" .8

l4dt nur das Directory mit den Files, die mit dem Buchstaben
“A" beginnen.

Das DOS bietet eine weitere Einsatzmiglichkeit des Sterns,
die in keiner bisherigen Anleitung zu ersehen ist: Es kbnnen
auch Filetypen selektiert werden, wenn nach dem Stern ein
Gleichheitszeichen mit anschlieffendem ersten Buchstaben des
gewiinschten Filetyps angegeben wird. Hier eine iUbersicht:

*=8 selektiert nur sequentielle Files
*=p selektiert Programmfiles

*=R selektiert relative Files

*=1 selektiert User-Files

Geben Sie z.B.
LOAD “$x=p"

ein, so werden nur die Programme auf der Diskette in das
Directory iibernommen und anschlieBend mit 'LIST’ ausgegeben.
Auch kinnen mit dem SCRATCH-Befehl z.B. alle sequentiellen
Files auf der Diskette mit folgendem Befehl geliéscht werden:

OPEN 1,8,15,"S:*=5"
CLOSE 1

Natiirlich kann vor diesem Stern auch noch eine Zeichenfolge
angegeben werden, sodaB dann nur die sequnetiellen Files
gelischt werden, deren Namen mit dieser Zeichenfolge
beginnen.

Mit dem Fragezeichen kénnen im Filenamen Buchstaben an
beliebigen Stellen als "nicht relevant" gekennzeichnet
werden. Um die Funktion des Fragezeichens zu erliutern,
folgen nun zwei Beispiele von abgekiirzten Filenamen und ihren
Auswirkungen:

[AXarararars - fiinfstellige Filenamen, deren erster Buch-
stabe "A" ist, sind angesprochen

PP??TEST - achtstellige Filenamen, deren letzen vier
Buchstaben "TEST" beinhalten, sind ange—
sprochen

Eine Kombination von Stern und Fragezeichen ist erlaubt.
Jedoch sollte beachtet werden, daB nach dem Stern weder
Buchstaben, noch Fragezeichen folgen, da diese Kombinationen
keinen Sinn ergeben. Zwei Beispiele zur Kombination von Stern
und Fragezeichen:

EArararan - alle Filenamen, die vor dem Punkt vier Buch-
staben besitzen, sind angesprochen

i9

TEST. ??7%

TEST-??01%=5

alle mindestens 7-stellige Filenamen, deren
ersten fiinf Zeichen "TEST." beinhalten, sind
angesprachen.

alle mindestens ?-stelligen, sequentiellen
Files, deren Namen in den ersten 5 Stellen
"TEST-" und in den Stellen & bis 7 "01" ent-
halten, sind angesprochen

20

1.4 Sequentielle Datenspeicherung

Ein Diskettenlaufwerk sollte nicht ausschlieflich zZur
Programmspeicherung genutzt werden. Spatestens dann, wenn Sie
eigene Programme schreiben, die eine groBe Datenmenge =zu
verwalten haben, werden Sie eine schnelle Datenorganisation
bendtigen. Die sequentielle Datenspeicherung ist zwar nicht
die schnellste, aber die einfachste Methode, Daten Zu
verwalten, was gerade fir Anfanger wichtig sein dirfte. Diese
Datenorganisation ist wvergleichbar mit der sequentiellen
Datenspeicherung auf Kassette, die ebenfalls in dieser
logischen Reihenfolge in ein Programm integriert wird:

1. Laden des Programms
2. Laden der kompletten Daten in den Speicher des Rechners

Z. Verwalten der Daten im Speicher (dndern, liéschen, hinzu-
figen)

4. Speichern der aktuellen Daten auf einem externen Spei-
chermedium (Kassette, Diskette)

5. Verlassen des Programms

Es ist selbstverstidndlich, daB die maximale Datenmenge von
der GroBe des Speichers im Rechner abhangig ist, da ein
Datensatz in einer sequentiellen Datei nicht direkt auf der
Diskette oder Kassette gedndert oder geliéscht werden kann.
Dazu muBl die gesamte Datei eingelesen, geandert und wieder
abgespeichert werden. Das Laden und Speichern der Datei
geschieht bei Einsatz eines Diskettenlaufwerkes wesentlich
schneller als bei einem Kassettenlaufwerk. Dies ist der erste
Vorteil der Datenspeicherung mit Diskette.

Der zweite Vorteil ist, daB zum Anfigen eines Datesatzes an
eine sequentiellen Diskettendatei nicht die gesamte Datei
eingelesen werden muB. Hierzu wird die Datei zum Anfigen
(APPEND) gedffnet. Dies ist bei der Speicherung auf Kassette
nicht miglich.

Erwdhnenswert ist noch, daB Programme, die bisher Daten
sequentiell auf Kassette verwalteten, auf einfache Art und
Weise an Diskettenspeicherung angepasst werden kiénnen. Hierzu
missen nur die entsprechenden OFPEN-Befehle gedndert werden.

1.4.1 Das Prinzip

Eine sequentielle Datei besteht aus mehreren Datensitzen, die
wiederum in Felder aufgeteilt sind. Am Beispiel einer
Adressen—Datei ist dies 1leicht Zu vaerdeutlichen: Die
einzelnen Adressen stellen die Datensitze dieser Datei dar.
Ein Adressen-Satz besteht aus mehreren Felder (Name, Vorname,

21

usw). Die Struktur einer Datei 1&Bt sich etwa so darstellen:

FELD 1 ¢ FELD 2 : FELD 3 : FELD 1 : FELD 2 ¢ FELD 3 2z

DATENSATZ 1 H DATENSATZ 2 I oeenass

DATETI

Die Datensitze einer Datei sind wie die Felder innerhalb
dieses Datensatzes hintereinander (sequentiell) angeordnet.
Die Felder und somit auch die Datensatze dirfen
unterschiedlich lang sein. So kann z.B. das Feld 1 des
Datensatzes 1 langer sein als das Feld 1 des Datensatzes 2.
Dies ist miglich, da die Felder voneinander durch ein Zeichen
(RETURN) getrennt werden, die von dem FPRINT-Befehl erzeugt
und von dem INPUT-Befehl erkannt werden. Jedem Feld ist eine
Variable zugeordnet, die mit einem PRINT-Befehl geschrieben
und mit einem INPUT-Befehl eingelesen wird. Es besteht aber
auch die Méglichkeit mit einem Befehl einen ganzen Datensatz
zu lesen oder schreiben. Da setzt aber voraus, das alle
Datensatze die gleiche Lange haben, da innerhalb des
Programms diese Datensatze mit Hilfe von speziellen Befehlen
in Felder zerlegt werden missen. Dazu muB dem Programm die
genaue Position jedes Feldes im Datensatz bekannt sein.

Doch wie erkennt der Rechner beim Einlesen der Daten, wann
ein Feld bzw. Datensatz beendet ist? Dazu wird hinter jedem
Feld der Datei ein "RETURN’ gesetzt, das die einzelnen Felder
voneinander trennt. Dieses 'RETURN® hat im ASCII-Code den
dezimalen Wert 13. Am Beispiel einer Telefon-Datei wird dies
sichtbar: Unsere Telefon—-Datei soll aus 3 Feldern bestehen:

FELD 1 : NAME

FELD 2 : VORNAME

FELD 3 : TELEFONNUMMER

Schauen wir uns einen Ausschnitt aus dieser bereits

beschriebenen Datei nun an (das Zeichen '+’ symbolisiert ein
‘RETURN “) =

Zeichen: 111111111122202222223TI3IIIIZ344444444445
12345678901234567890123456789012345678901234567890

Datei: KUNZE+HANS+236+KURZ+TIM+1213+SCHULZE+UTE+65432+. ..

Es ist zu erkennen, daB die Felder ungleich lang sind und
jeweils durch ein 'RETURN’ getrennt sind. Dieses “RETURN-’
wird bei der {bertragung mit einem PRINT-Befehl Jjeweils
hinter den Daten gesetzt, sofern diesem FRINT-Befehl kein
Semikolon, das ein "RETURN’ unterdrickt, folgt. Mit einem
INPUT-Befehl werden diese Daten dann in eine Variable
dabernommen und zwar bis zum ‘RETURN’. Danach mufl ein weiterer
INPUT-Befehl folgen, um das nachste Feld zu lesen, usw. Die
folgenden Abschnitte erlautern alles, was zur Erstellung von

22

Programmen mit sequentieller Datenspeicherung erforderlich
ist.

1.4.2 Das Erdffnen einer sequentiellen Datei

Um eine Datei zu erstellen, muB sie vorher gedéffnet werden.
Beim dffnen zum Beschreiben wird Folgendes durchgefiihrt:

1. Es wird gepriift, ob auf der Diskette bereits ein File mit
diesem Namen existiert. Wenn ja, wird die Fehlermeldung
“FILE EXISTS" ausgegegeben.

19

. Der entsprechende Fileeintrag in der Directory wird
angelegt. Dabei wird im Filetyp gekennzeichnet, daf dieses
File noch nicht geschlossen ist, was dann in der
aufgelisteten Directory durch einen Stern vor dem Filetyp
ersichtlich ist.

3. Es wird ein ein freier Block gesucht, auf dem die ersten
Daten gespeichert werden. Die Adresse (Spur und Sektar)
wird im Fileeintrag gespeichert.

4. Die Anzahl der Blocks im File wird auf O gesetzt, da noch
kein Block dieses Files beschrieben ist.

Nach dem Erstellen der Datei kann diese dann gedndert oder
erweitert werden. Im OPEN-Befehl wird festgelegt, zu welchem
Iweck die Datei gedffnet werden soll. Das Format des
OPEN-Befehls sieht folgendermaBen aus:

OPEN 1¥n,8,s5a,"filename,filetyp,modus"”

Die logische Filenummer liegt zwischen 1 und 127, wenn nach
einem PRINT-Befehl auf dieses File nur ‘RETURN® gesendet
werden soll. Dies wird in der Regel der Fall sein. Ist die
logische Filenummer groBer als 127 (128-255), so sendet der
PRINT-Befehl nach jedem ‘RETURN’ noch einen ‘LINE-FEED’
(Zeilenvorschub). Dies ist zum Beispiel bei Druckern
notwendig, die nach einem ‘RETURN’ keinen automatischen
Zeilenvorschub geben.

Die Sekundaradresse kann einen Wert zwischen 2 und 14
annehmen und fir Ein- und Ausgaben verwendet werden. Sie
bezeichnet den Kanal des Floppy-Laufwerkes, iiber den die
Daten Gbertragen werden sollen. Die Sekunddradresse 0 und 1
ist vom Betriebssystem zum Speichern und Laden von
Programmmen reserviert. Sekundidradresse 15 ist far den
Befehls-und Fehlerkanal bestimmt. Sollten mehrere Dateien
gleichzeitig gedffnet sein, so muB neben der logischen
Filenummer unbedingt die Sekundaradresse unterschiedlich
sein, da immer nur ein Kanal fir eine Datei zustdndig sein
kann. Wird Jjedoch eine Datei mit der Sekundiradresse
gedffnet, mit der vorher bereits eine Datei gedffnet wurde,
so wird die erste Datei geschlossen.

Was oft miBachtet wird, ist die Tatsache, daBR maximal 3

23

Kandle mit jeweils einer Datei geidffnet werden kénnen. Zu
Verwaltung von relativen Dateien benidtigt das DOS jedoch 2
Kandle gleichzeitig. Demnach sind folgende
Maximal kombinationen mdglich:

= 1 relative und 1 sequentielle Datei
- 3 sequentielle Dateien

Bei der Angabe des Filenamens ist darauf zu achten, daB
dieser Filename nicht bereits auf der Diskette existiert.
Soll eine Datei zum Schreiben gedffnet werden, die bereits
auf der Diskette existiert, so muB wie bei dem Befehl ‘SAVE "
dem Filenamen der Klammeraffe mit dem anschlieBendemm
Doppelpunkte vorangestellt werden!. Z.B.

OPEN 1,8,2,"8: ADRESSEN,S,W"

Bei der Erdffnung der Datei muf der Filetyp angegeben werden.
Diese Filetypen werden im OPEN-Befehl wie folgt angekiirzt:

- sequentielles File
- User-File

— Programmfile

- relatives File

IwCcw

User-Files sind sequentielle Files, die jedoch in der
Directory als USR-File ausgewiesen werden. Es sind keine
Dateien im eigentlichen Sinne. Dieser Filetyp wird gerne
benutzt, wenn Ausgaben, die normalerweise auf dem Bildschirm
erfolgen (BASIC-Listing, Directory) zur Floppy "umgeleitet"
werden. Im Kapitel 1.4.6 finden Sie eine Beschreibung dieser
Methode.

Der letzte Parameter (modus) legt fest, wie der Datenkanal
genutzt werden soll. Es gibt vier Miéglichkeiten:

W — Schreiben einer Datei (WRITE ~ Kapitel 1.4.3)
R - Lesen einer Datei (READ - Kapitel 1.4.4)
A - verlangern einer sequentiellen Datei

(APPEND — Kapitel 1.4.4)

M — Lesen einer nicht geschlossenen Datei
(wurde von uns im DOS-Listing "entdeckt" und
wird im Kapitel 1.4.5 erléautert)

offnen Sie nun einmal eine sequentielle Datei mit dem Namen
"SEQU. TEST" zum Schreiben:

OPEN 1,8,2,"SEQU. TEST,S,W"
Wenn Sie anschlieBend mit ‘LOAD "$",8° das Directory laden
und mit ‘LIST’ ausgeben, werden Sie feststellen, daB dieses
File mit einem Stern vor dem Filetypen als gedffnet
gekennzeichnet ist:

¢ SEQU. TEST *SEQ

24

Diese Datei 1&Bt sich nun aber nicht mehr schliefen! Bevor
also nach dem Eréffnen und Beschreiben einer Datei das
Directory geladen wird, muB unbedingt das File geaschlossen
werden !

Wahrend eine Datei gedffnet ist, darf zwar der
Befehls/Fehlerkanal 135 gedffnet werden, jedoch hat das
SchlieBen des Kanals 15 zur Folge, dafl alle anderen Files
auch geschlossen werden. Dies sollten Sie unbedingt
beachten.

Nun einige Beispiele zum OPEN-Befehl:

OPEN 1,8,2,"SERQU. TEST,S5,R" - ein sequentielles File wird
zum Lesen gedffnet

OPEN 2,8,3,"SEQU.TEST,U,W" — ein User-File wird zum
schreiben gedffnet

OPEN 3,8,4,"TEST,P,R" — ein Program—-File wird zum
lesen geidffnet

OPEN 4,8,5,"SEQU. TEST,S,A" - ein sequentielles File wird
zum Anfiigen von Daten ge-
offnet

OPEN 5,8,6, "KUNDEN. 1983,5,M" ~ Die Kundendatei wurde nicht

ordnungsgemal geschlossen
und soll gelesen werden.
1.4.3 Datenibertragung Floppy/Rechner

Nach dem Eroffnen eines Files zum Schreiben kénnen die darin
zu speichernden Daten an die Floppy mit dem PRINT-Befehl
ibermittelt werden. Dieser Befehl iibertrdgt zusatzlich ein
‘RETURM’, das zum Trennen der Daten bendtigt wird. Im
folgenden Beispiel wird eine Datei erdffnet, beschrieben und
wieder geschlossen. Da der PRINT-Befehl auch direkt, d.h.
auBerhalb eines Programms eingegeben werden kann, lassen sich
die entsprechenden Befehle hintereinander absetzen und
ausfiihren. Erdffnen Sie nun ein File mit dem Namen “TEST.1":

OPEN 1,8,2,"TEST.1,S,W"

Sie werden bemerkt haben, daB die rote Leuchtdiode an dem
Floppy—Laufwerk aufleuchtet. Sie signalisiert, daB ein File
gedffnet ist. Die Datei kann nun beschrieben werden. Hier
wird z.B. ein Datensatz einer Adressendatei, bestehend aus 4
Feldern erstellt:

PRINT#1 , "HANS"
PRINT#1,"SCHULTZ"
PRINT#1, "KASTANIENSTR. 7"
PRINT#1,"4000 DUSSELDORF"

Nun sind diese Daten in die Datei aufgenommen worden, und das
File kann wieder mit "'CLOSE 1° geschlossen werden. Die rote
Leuchtdiode ist gleichzeitig erloschen. Um diese Daten nun
wieder zu lesen, muB die Datei im Lese-Modus (R) eridffnet
werden. Da der INPUT-Befehl zum Einlesen der Daten nicht

25

direkt eingegeben werden kann, muB ein kleines Programm
geschrieben werden:

10 OPEN 1,8,2,"TEST.1,S,R"
20 INPUT#1,VN$

30 INPUT#1,NN$

40 INPUT#1,ST$

50 INPUT#1,0R$

60 CLOSE 1

70 PRINT"VORNAME: “;VNS$
80 PRINT"NAME: "3 NN$
90 PRINT“STRASSE: “;ST$
100 PRINT"PLZ/ORT: “;0R$

Das Programm ist einfach zu erkléaren:
Zeile 10 Die Datei “TEST.1" wird zum Lesen gedffnet

Zeile 20-50 Die Daten werden in der selben Reihenfolge
eingelesen, in der sie vorher geschrieben
wurden. Es werden dazu Variablen genutzt, die
nachher zum Ausgeben der Daten bendtigt wer-—
den.

Zeile 4O Die Datei wird wieder geschlossen.

Zeile 70-100 Die Daten werden mit entsprechendem Begleit-
text auf dem Bildschirm ausgegeben.

Wenn Sie diese Befehlsfolge eingegeben und mit ‘RUN”
gestartet haben, erscheinen die Daten, die vorher in die
Datei geschrieben wurden, nun auf dem Bildschirm:

VORNAME : HANS

NAME: SCHULTZ
STRASSE: KASTANIENSTR. 7
PLZ/0RT: 4000 DUSSELDORF

Zum Einlesen der Daten wurden 4 INPUT-Befehle eingesetzt, da
eine Adresse aus 4 Feldern besteht. Wenn aber z.B. eine Datei
gespeichert werden soll, deren Datensidtze aus ca. 20 Feldern
bestehen, so ist es sehr aufwendig, zum Einlesen 20
INPUT—-Befehle ins Program aufzunehmen. Durch Programmieren
einer Schleife kann dies wesentlich vereinfacht werden. Am
Beispiel unseres kleinen Programms ist dies ersichtlich:

10 OPEN 1,8,2,"TEST.1,S,R"
20 FOR I=1 TO 4
30 INPUT#1,D$ (1)

40 NEXT I

50 CLOSE 1

640 PRINT"VORNAME: ";D$(1)
70 PRINT"NAME: ;D& ()

80 PRINT"STRASSE: ";D$(3)
90 PRINT"PLZ/ORT: ";D$(4)

26

Hier wurden nicht 4 Stringvariablen, sondern eine indizierte
Variable mit dem Index 1—-4 benutzt. Es ist zu beachten, daR
der Index beim BASIC 2.0 hichstens 10 betragen darf, wenn er
nicht mit einer DIM-Anweisung hiher definiert wurde. Soll in
unserem Beispiel ein Datensatz mit 20 Felder eingelesen
werden, so muB vorher die Anweisung ‘DIM D$(20)° gegeben
werden.

Es gibt noch eine weitere Miéglichkeit der verkiirzten Ein— und
Ausgabe von Daten: Mit dem INPUT-Befehl zur Dateneingabe von
Tastatur kénnen mehrere Variablen, die durch ein Komma
getrennt sind, eingegeben werden. Z.B:

INPUT VN$,NN$,TE

Bei diesem Befehl missen drei Variablen =z.B. folgendermafBen
eingegeben werden:

NORBERT ,MiiLLER , 7465
Die eingelesenen Daten werden dann mit
PRINT VN$,NN$,TE

wieder auf dem Bildschirm ausgegeben werden. Auf diese Weise
konnen auch Daten in eine sequentielle Datei geschrieben und
auch wieder eingelesen werden. Der einzige Unterschied ist,
daB beim Schreiben in eine Datei Stringvariablen durch ein in
Hochkomma eingeschlossenes Komma getrennt werden miissen. Wenn
z.B. die o.g. Variablen in eine Datei geschrieben werden
sollen, mu3 der PRINT-Befehl folgendermaBen gedndert werden:

PRINT#1,VN$","NN$" ,"TE

Numerische Varialen werden nur mit dem Komma von anderen
Variablen getrennt. Zum Einlesen der Daten wird dann der
Befehl

INPUTH#1,VN$,NN$, TE

eingesetzt. Da die maximal einzugebene Zeichenzahl mit einem
INPUT-Befehl 88 nicht iiberschreiten darf, ist diese
Schreibweise nur begrenzt einsatzfidhig. Sollte ein Feld in
einem Datensatz lianger als 88 Zeichen sein, so muB ein
anderer Befehl zum Einlesen benutzt werden. Dies ist der
GET-Befehl, der jedes Zeichen einzeln einliest. Angenommen
Sie miéchten einen Datensatz lesen, der aus einem Feld mit der
Lange von 100 Zeichen besteht. Dieser Satz kann dann mit
folgender Routine in eine Stringvariable iibernommen werden:

10 OPEN 1,Byucnccercenannncnnes
20 D$= "

30 FOR I=1 TO 100

40 GETH#1,X$

50 D$=D$+X$

&0 NEXT I

27

70 GET#1,X$
80 CLOSE 1

Nach Ablauf dieser Befehlsfolge enthalt die Stringvariable
den 100 Zeichen umfassenden Datensatz. Nach dem offnen einer
sequentiellen Datei wird vom DOS ein Zeiger eingerichtet, der
immer auf das Zeichen zeigt, das hinter den bisher gelesenen
Daten liegt. Da wir annehmen, daB der 100-Zeichen umfassende
Datensatz mit einem PRINT-Befehl ohne abschlieBendes
Semikolon in die Datei geschrieben wurde, wurde der Datensatz
mit einem RETURN abgeschlossen. Nach dem Lesen des 100.
Zeichens weist der Zeiger auf dieses RETURN. Der néachste
GET-Befehl in Zeile 70 ist also notwendig, um das “RETURN-,
das sich hinter dem Datensatz befindet, zu lesen. Dadurch
erhdlt der erste GET-Befehl zum Lesen des ndchsten Satzes
wieder das erste Zeichen und nicht das "RETURN’.

In diesem Beispiel sind wir von einer konstanten
Datensatzlinge von 100 Zeichen ausgegangen. In der Regel ist
die Datensatzldnge einer sequentiellen Datei aber nicht
konstant. Derartge Dateien missen also, falls die maximale
Datensatzlinge die INPUT-Grenze von 88 Zeichen iiberschreitet,
mit einer GET-Schleife gelesen werden, die das trennende
RETURN als Satzende erkennt. Eine derartige Routine sieht
dann so aus:

10 OPEN 1,8,ccucscascssnsnnnnnan
20 S$= "

30 GET#1,X$

40 IF X$=CHR$ (13)THEN BO

50 S$=S$+X$

&0 IF ST<»&4 THEN 30

70 CLOSE1:END

80 PRINT S%

90 GOTO 20

Hier wird eine Datei mit variabler Satzlange gelesen und auf
dem Bildschirm ausgegeben. Anstatt der Ausgabe auf Bildschirm
kinnen diese Datensdtze natiirlich auch anders verarbeitet
werden.

Wenn Sie diese Probleme, die bei einer Datensatzlange von
Gber 88 Zeichen auftreten, vermeiden wollen, so teilen Sie
den Datensatz in mehrere Teile auf, die Sie dann nach dem
Einlesen wieder zusammenfiigen.

1.4.4 Anhidngen von Datensatzen

Stellen Sie sich vor, Sie miBten zum Erweitern einer
sequentiellen Datei diese komplett in den Hauptspeicher

28

laden, erweitern und wieder in der erweiterten Form
abspeichern. Es wdre sicher sehr zeitraubend. Aus diesem
Grunde bietet das DOS eine komfortable Méglichkeit, einer
sequentieller Datei Daten anzuhdngen, ohne die Datei vorher
einzulesen. Dies ermiglicht der Erdffnungsmodus ‘A’ (APPEND).
Wenn Sie also eine sequentielle Datei erstellt haben, wie
z.B. im vorherigem Abschnitt, so kinnen Sie immer wieder
Daten anhdngen, indem Sie im OPEN-Befehl den Modus ‘A7
angeben. Ein Beispiel:

Geben Sie folgende Befehlsfolge ein:

OFEN 1,8,2,"TEST.Z2,5,W"
PRINT#1,"1. DATENSATZ"
CLOSE1

Sie haben nun eine sequentielle Datei mit einem Datensatz
erstellt. Diese Datei soll nun mit folgender Befehlsfolge um
2 Datensitze erweitert werden:

OPEN 1,8,2,"TEST.Z,5,A"
PRINT#1,"2. DATENSATZ"
PRINT#1,"Z. DATENSATZ"
CLOSE1

Nun enthdlt die Datei ‘TEST.2’ 3 Datensatze. Mit dem
folgenden Programm kiénnen Sie dies iiberprifen:

100 OPEN 1,8,2,"TEST.Z,S,R"
110 FOR I=1 TO 3

120 INPUT#1,DS$

130 PRINTDS$

140 CLOSE 1

Nach dem Starten dieses Programms werden die Datensatze
ausgelsen und auf dem Bildschirm angezeigt.

Sie haben erkannt, daR der Modus ‘A’ bei sequentieller
Datenorganisation eine schnelle Erweiterung der Datei
ermiglicht.

1.4.5 SchlieBen einer sequentiellen Datei
Mit dem CLOSE-Befehl werden geidffnete Dateien wieder
geschlossen. Dieser Befehl hat das Format

CLOSE 14n

Der Farameter ‘1fn’ bezieht sich auf die logische Filenummer
der Datei, die bei dem entprechendem OPEN-Befehl angegeben
wurde. Sollen mehrere Dateien abgeschlosssn werden, so mufl
fir jede Datei ein CLOSE-Befehl abgesetzt werden. Mit dem
SchlieBen der letzten Datei erlischt die rote Leuchtdiode am
Laufwerk wieder.

Wie Ihnen bereits bekannt ist, werden die Daten iiber einen
Kanal zur Floppy gesendet. Dieser Kanal ist ein

29

floppyinterner Speicher (Puffer genannt), in dem die vom
Rechner iibermittelten Daten zundchst zwischengespeichert
werden. Erst wenn dieser Puffer gefillt ist, werden die darin
befindlichen Daten auf die Diskette geschrieben.

Beim SchlieBen der Datei werden die noch im Puffer
befindlichen Daten auf die Diskette geschrieben. Eine nicht
geschlossene Datei ist also nicht vollstandig, und wird auch
vom Disketten—Betriebssystem als nicht ordnungsgemal
geschlossenees File gekennzeichnet. Das DOS erlaubt nun im
Modus "R’ (READ) auf diese Datei keinen Lesezugriff mehr und
meldet "WRITE FILE OPEN".

Nun widre es aber sehr &rgerlich, wenn das DOS keinen
Lesezugriff auf diese Datei zulassen wirde. Aus diesem Grunde
bietet das DOS den Modus ‘M°. Eine in diesem Modus geidffnete
Datei, die als nicht ordnungsgemiB geschlassene Datei
gekennzeichnet ist, kann so gelesen werden. Sinnvoll ist es,
die gelesenen Datesitze in eine zweite Datei zu schreiben und
diese dann natiirlich ordnungsgemaB zu schlieBen. Auf diese
Weise kann man Dateien “retten”.

Das folgende Programm bietet die Mdglichkeit, eine nicht
geschlossene Datei (Ursprungsdatei) in eine korrekt
geschlossene Datei (Zieldatei) zu iibertragen:

100 INPUT"URSPRUNGSDATEI";U$
110 INPUT"ZIELDATEI";Z$

120 OPEN 1,8,2,U$+",5,M"

130 OPEN 2,8,3,Z$+",5,W"

140 INPUT#1,X$

150 PRINT#2,X$

160 IF ST<>64 THEN 140

170 CLOSE 1:CLOSE 2

180 OPEN 1,8,15,"S: “+U$

190 CLOSE 1

Am Ende des Programms wird dann die nicht mehr benidtigte
Ursprungsdatei geldscht.

1.4.6 "Umleiten" der Bildschirmausgabe

Jede Ausgabe, die auf dem Bildschirm erfolgt (PRINT,LIST
usw.) kann als sequentielle Datei auf die Diskette umleitet
werden. Dies wird mit dem CMD-Befehl erreicht, der folgendes
Format hat:

CMD 1+n

Dazu muB zuerst ein File eridffnet werden, das Zur
Unterscheidung von sequentiellen Dateien den Filetyp "USR"
erhdlt. Soll z.B. das Listing eines BASIC-Programms als
sequentielles File auf Diskette gespeichert werden, so dient
dazu die folgende Befehlsfolge:

OPEN 1,8,2,"TEST.LIST,U,W"
CMD 1)

30

LIST
CLOSE 1

Der Befehl °'CLOSE 1° bewirkt gleichzeitig, daB die weitere
Ausgabe wieder auf dem Bildschirm erfolgt.

Das Speichern von Programmen als sequentielle Dateien auf
Diskette ist z.B. sehr nitzlich, wenn man ein Programmlisting
mit einer Textverarbeitung lesen miéchte, um es in Text mit
einzubauen. Voraussetzung ist, dafi die entsprechende
Textverarbeitung in der Lage ist, in ASCII-Code gespeicherte
Dateien zu lesen.

So sind iibrigens die Listings in diesem Buch vom Commodore 64
der Textverarbeitung SUPERSCRIPT auf einem Commodore 8032
iibergeben worden.

Um dieses File nun wieder auf dem Bildschirm auszugeben,
benidtigen Sie die folgende Routine:

10 OPEN 1,8,2,"TEST.LIST,U,R"
20 GET$1,X$

30 PRINT X$;

40 IF ST<>&4 THEN 20

50 CLOSE 1

Diese Routine ist eine Schleife, die jedes Zeichen (Byte) des
Files liest und auf dem Bildschirm ausgibt. Das Ende des File
wird an der Statusvariablen ST erkannt, die bei Fileende auf
&4 gesetzt wird. Zur Ausgabe des sequentiellen Files ist
folgende Befehlsfolge erforderlich:

10 OPEN 1,8,2,"TEST.LIST,U,R"
20 OPEN 2,4

30 GET#1,X$

40 PRINT#2,X$

50 IF ST<»64 THEN 30

60 CLOSE 1

Hier wurde =zusatzlich der Drucker gedffnet, der die
Gerateadresse 4 besitzt.

1.4.7 Sequentielle Datei als Tabelle im Rechner

Sequentielle Dateien miissen zur Datenverwaltung komplett im
Rechner vorhanden sein. Dazu wird meist eine zweidimensionale
Tabelle benutzt. Diese Tabelle nennt man auch Matrix, da
durch Angabe von zwei Koordinaten jedes beliebige Feld eines
Datensatzes adressiert werden kann. Dazu verwendet man eine
zweifach indizierte Variable, die mit einer DIM-Anweisung
reserviert werden muf. Der erste Index bezeichnet den
Datensatz, der zweite Index das Feld innerhalb dieses
Datensatzes. Das folgende Schaubild zeigt das Beispiel einer
Tabelle:

31

Feld 1 Feld 2 Feld 3

Datensatz 1 D#(1,1) D$(1,2) D¥(1,3)
Datensatz 2 D (2,1) D$(2,2) D$(2,3)
Datensatz 3 D#(3,1) D$(3,2) D$(3,3)
Datensatz 4 D& (4,1) D$(4,2) D$(4,3)
Datensatz S D#(5,1) D#(5,2) D$#(5,3)
Datensatz 6 DE(6,1) D (6,2) D$(6,3)

Diese Tabelle ist eine Datei, die aus 6 Datensdtzen mit je 3
Feldern besteht. Als Variable wurde D$¥ benutzt, die mit ‘DIM
D$(6,3) " reseviert wird. Um eine sequentielle Datei als
Tabelle in den Rechner einzulesen, ist es erforderlich, eine
solche Datei mit z.B. & Datensatzen a’ 3 Feldern zu erzeugen.
Dazu benutzen Sie das folgende Programm:

100 OPEN 1,8,2,"TESTFILE.SE®,S,W"
110 FOR X=1 TO &

120 PRINT CHR$(147);

130 PRINT"DATENSATZ ";X
140 PRINT"———— e "
150 FOR Y=1 TO 3

160 PRINT“FELD “j;Y;": “;
170 INPUT X$

180 PRINT#1,X$

190 NEXT Y

200 NEXT X

210 CLOSE 1

Hier wird eine zweifach veschachtelte Schleife verwendet, mit
deren Variablen die Datensdtze und —felder numeriert werden.
Geben Sie nun die & Datensdtze ein. Nach Beendigung dieses
Programms befinden sich diese & Datensiatze als sequentielle
Datei auf der Diskette. Ein Tip: Speichern Sie dieses
Programm mit °SAVE"TEST.INP",8 ab, damit Sie es jedezeit
wieder laden kinnen.

Diese Datei soll nun als Tabelle in den Rechner eingelesen
werden. Dazu dient ebenfalls eine zweifach veerschachtelte
Schleife, deren Variablen nun zur Indizierung der
Tabellenplatze bendtigt werden:

100 OPEN 1,8,2,"TESTFILE.SEQ,S,R"
110 DIM D$(&,3)

120 FOR X=1 TO &

130 FOR Y=1 TO 3

140 INPUT#1,D$(X,Y)

150 NEXT Y

160 NEXT X

180 CLOSE 1

32

NMach dieser Befehlsfolge befinden sich die Daten in der mit
D# bezeichneten Tabelle. Mit einem PRINT-Befehl kiénnen Sie
nun iberprifen, ob die Daten an richtiger Stelle gespeichert
wurden. Da jedes Feld mit den Indizes adressierbar ist, geben
Sie z.B. ‘PRINT D#(1,2)° ein, um das 2. Feld des 1.
Datensatzes auf dem Bildschirm anzuzeigen. Sinnvoll ist es
nun, die Felder eines ausgewdhlten Datensatzes anzeigen zu
lassen. Benutzen Sie dazu die folgende Routine, nachdem Sie
das vorherige Programm abgespeichert haben:

100 INPUT"NUMMER DES DATENSATZES: “;X
120 PRINT" "
130 PRINT"FELD 1: "“;D$(X,1)
140 PRINT"FELD 2: ";D$(X,2)
150 PRINT"FELD 3: ";D$(X,3)

Sie haben sicher erkannt, daB der erste Index (die
Satznummer) nach der Abfrage als Variable in jeder
Feldausgabe verwendet wird. Der zweite Index (die Feldnummer)
ist dann jeweils konstant.

Diese Tabelle kann nun beliebig gedndert werden. Figen Sie
dem o.g. Programm die folgenden Zeilen an:

160 PRINT" "
170 INPUT"ZU ANDERNDES FELD: "sY
180 INPUT"NEUER INHALT: "3 DE(X,VY)

190 PRINT"O.K."

200 PRINT"WEITERE ANDERUNGEN (J/N)?"
210 GET X#$:IF X$=""THEN 210

220 IF X#="J"THEN 100

230 IF X$="N"THEN END

240 G6OTO 210

Hier wird die Nummer des zu A&ndernden Feldes als zweiter
Index benutzt, der dann neben dem bereits ausgewdhlten Index
des Datensatzes zur Eingabe des neuen Tabellenplatzes
eingesetzt wird.

Diese gednderte Tabelle muB nun wieder auf die Diskette
gespeichert werden. Benutzen Sie dazu die folgende Routine.
Speichern Sie aber vorher die Anderungsroutine ab!

100 OPEN 1,8,2,"a: TESTFILE.SER,S,W"
110 FOR X=1 TO &

120 FOR Y=1 TO 3

130 PRINT#1,D$(X,Y)

140 NEXT Y

150 NEXT X

160 CLOSE 1
Auch diese Routine ist durch Anwendung einer zweifach
verschachtelten Schleife relativ kurz. Der sogenannte

Klammeraffe vor dem Filenamen ist notwendig, da das bereits
existierende, alte File dberschrieben werden soll.

Der Datenzugriff ist bei dieser Tabelle sehr schnell. Die
Zugriffszeit ist von der Tabellengréfe unabhidngig. Jedoch ist
die GriBe der Tabelle und somit die Datenmenge abhangig von

33

der Speicherkapazitat. Der groBRe Speicher des Commodore 64
wird mit der Tabellenverarbeitung bestens ausgenutzt.
Angenommen, Sie haben ein Programm zur Verwaltung von
Adressen geschrieben, das vieleicht um die 8 KByte umfasst,
so verbleiben noch 30 Kbyte zur Speicherung der Adressen.
Wenn man bedenkt, daB zur Speicherung einer Adresse ca. 80
Zeichen notwendig sind, so kinnen Sie immerhin 384 Adressen

stadndig im Speicher verwalten! Und das mit einer
Zugriffszeit, die selbst bei der raffiniertesten
Dateiorganisation (indexsequentiell, relativ) nicht zZu

ibertreffen ist. Bei groBen Datenmengen ist die sequentielle
Speicherung jedoch nicht mehr anwendbar.

1.4.8 Suchen in der Tabelle

Wie bei der Tabellenverarbeitung erwahnt, kann jeder
Datensatz einer Tabelle indiziert werden. Da die Tabelle
zweidimensional ist, stellt der erste Index die Nummer des
Datensatzes dar, mit der jeder beliebige Satz adressiert und
ausgegeben werden kann. Wenn in einer als Tabelle im
Hauptspeicher geladenen Datei ein Satz manipuliert werden
soll, so setzt das voraus, dafl der Anwender die Nummer dieses
Satzes kennt. Diese Nummer ‘kann im einfachsten Fall z.B. die
Artikel- oder Kundennummer sein. Es gibt aber auch Dateien,
die kein geeignetes Feld zur Durchnumerierung der Daten
enthalten. In derartigen Dateien muB der gewiinschte Datensatz
in der Tabelle gesucht werden. Dazu missen alle Datensatze
der Tabelle durchsucht, und mit dem als Suchbegriff
eingegebenen Feld verglichen werden. Ein praktisches Beispiel
dazusz

Erstellen Sie zuerst mit folgendem Programm eine Datei, die
zum Beispiel Namen und Telefonnummern speichert:

100 OPEN 1,8,2,"TELEDAT,S,W"

110 PRINT CHR$(147)

120 INPUT “NAME : "sNN$

130 INPUT "VORNAME :";VN$

140 INPUT “VORWAHL :"3VW$

150 INPUT "NUMMER :";NU$

160 PRINT "EINGABE KORREKT (J/N)7?"

170 GET X$:IF X$=""0OR X$ <>"J" AND X$<>“N" THEN 170
180 IF X$="N"THEN110

190 PRINT"WEITERE EINGABEN (J/N)?"

200 GET X$:IF X$=""OR X$<>"J" AND X$ <>"N" THEN 200
210 IF X$="N"THEN 240

220 PRINTH#1,NN$", "UN$" ,"VW$" , "NU$

230 60TO 110

240 CLOSE 1

Die Dokumentation des Programms:

Ieile 100 Die sequentielle Datei "TELEDAT" wird zum

34

Schreiben gedffnet

Zeile 110 Der Bildschirm wird geldscht

Zeile 120-150 Die 4 Felder der Datei werden von Tastatur
eingegeben

Zeile 1&40-180 Falls die Daten nicht korrekt eingegeben

wurden, kann die Eingabe wiederholt werden

Zeile 1920-210 Hier kann die Eingabe und das Fraogramm
beendet werden

Zeile 220 Die 4 Felder des Datensatzes werden hin-
tereinander in die Datei geschrisben

Zeile 23F0 Die Eingabe wird fortgesetzt
Zeile 240 Die in Zeile 100 gedffnete Datei wird ge-
schlossen

Geben Sie nun dieses Programm ein, starten es und erfassen
einige Daten. Speichern Sie dieses Testprogramm auf Diskette,
wenn Sie es spidter einmal zusammen mit den folgenden
Beispielen zu einem Programm zusammenfassen michten. Im
letzten Abscchnitt dieses Kapitels finden Sie jedoch das
komplette Programm zur Verwaltung Ihres Telefonregisters.
Wenn Sie nun einige Daten erfasst haben, mbéchten Sie
vieleicht die ein oder andere Telefonnummer ausfindig machen.
Dazu kidnnen Sie u.U. die gesamte Datei auf Bildschirm oder
Drucker ausgeben und die entsprechende Telefonnummer
heraussuchen. Dies ist jedoch eine aufwendige Methaode,
besonders dann, wenn die Datei viele Datensitze umfasst.

Die Suche nach der Telefonnummer eines bestimmten Namens kann
man dem Rechner iberlassen. Er durchlduft in einer Schleife
die Datensdtze und vergleicht sie mit dem gewiinschten Namen.
Danach gibt er dann den gesamten Datensatz, in dem dieser
Mame enthalten ist, aus. Die folgende Routine arbeitet
dementsprechend:

100 OPEN 1,8,2,"TELEDAT,S,R"

110 DIM D$(100,4) :X=1

120 INPUT#1,D$(X,1),D$(X,2),D$(X,3) ,D$(X,4)
130 IF ST<>&64 THEN X=X+1:60TO 120

140 CLOSE 1

150 PRINT CHR$(147)

160 PRINT“GESUCHTER NAME: ";S$

170 FOR I=1 TO X

180 IF D$(I,1)=S$% THEN 210

190 NEXT I

200 PRINT "NAME NICHT GEFUNDEN'":B0TO 280
210 PRINT “NAME GEFUNDEN: "

220 PRINT "——————mmmmeom e "
230 PRINT "NAME: “s5D$(I,1)
240 PRINT "VORNAME: “;D$(I,2)
250 PRINT "VORWAHL: ";D$(I,3)

35

260 PRINT "“NUMMER: ";DE(I,4)

270 PRINT "—————————————— "

280 PRINT "WEITER (J/N)7?"

290 GET X#:IFX$=""0OR X$<{>"J"AND X$<>"N"THEN 290
300 IF X#="J"THEN 130

310 PRINT"PROGRAMM BEENDET":END

Die Dokumentation zu dem Programm:

Zeile 100 Die sequentielle Datei "TELEDAT" wird zum
Lesen gedffnet

Zeile 110 Die Tabelle wird fiir 100 Datensatze dimen-—
sioniert und der Index auf 1 gesetzt

Zeile 120 Die Datensitze werden in die Tabelle ein-
gelesen
Zeile 130 Die Statusvariable ST, die bei Dateiende

64 enthalt wird gepriift. Liegt kein Datei-
ende vor, so wird der Index um 1 erhdht
und erneut eingelesen

Ieile 140 Die in Zeile 100 gedffnete Datei wird ge—
schlossen

Zeile 150 Der Bildschirm wird gelidscht

Zeile 160 Der zu suchende Name wird von Tastatur
eingelesen und in die Variable S$ gespei-
chert

Zeile 170-190 Die Schleife sucht in der Tabelle den Da-

tensatz, dessen Namensfeld mit dem gesuch-—
ten Namen iibereinstimmt. Ist der Satz ge-
funden, so wird zur Ausgaberoutine ver-—

zweigt.
Zeile 200 Der Name wurde nicht gefunden.
Ieile 210-270 Der Satz, der den gesuchten Namen enthalt,

wird komplett ausgegeben

Zeile 280-310 Es wird die Miglichkeit eingerdumt, erneut
einen Namen zu suchen

Sie werden feststellen, daB dieser Suchvorgang selbst bei
einer griBeren datenmenge recht schnell ist, da die Datei vor
dem Suchen als Tabelle in den Rechner geladen wurde. Das
Suchen innerhalb des Speichers im Rechner ist schneller, als
die Suche auf der Diskette, wenn die Datei sich im Speicher
befindet. Das Programm 148t sich 1leicht derartig abandern,
daB nicht nur nach dem Namen, sondern nach einem beliebigen
anderen Feld gesucht wird. Vieleicht versuchen Sie es einmal,
eine Telefonnummer zu suchen.

36

Das eben behandelte Programm bricht die Suche nach dem ersten
Datensatz, der dem Suchbegriff entspricht, ab. Das ist aber
nicht immer sinnvoll. Wenn z.B. in der erstellten
Telefondatei alle Datensidtze gesucht und ausgegeben werden
sollen, die einer bestimmten Vorwahl entsprechen, so ist eine

andere Routine notwendig. Diese Routine muB nach dem
Auffinden eines Datensatzes diesen ausgeben und die Suche
fortsetzen. Das folgende Programm erfillt diese
Anforderungen:

100 OPEN 1,8,2,"TELEDAT,S,R"
110 DIM D$(100,4) :X=1

120 INPUT#1,D$(X,1),D$(X,2),D$(X,3) ,DE(X,4)
130 IF ST<{>64 THEN X=X+1:60TO 120

140 CLOSE 1

150 PRINT CHR$ (147)

160 PRINT“BESUCHTE VORWAHL: ";S%

170 FOR I=1 TO X

180 IF D$(I,3)=S$THEN 210

190 NEXT I

200 PRINT"DATEIENDE!":G0T0O 270
210 PRINT"——————————————— "

220 PRINT"NAME: “sD¥(I,1)
230 PRINT"VORNAME: ";D#(I,2)
240 PRINT"VORWAHL : “sDE (I,
250 PRINT"NUMMER: ";D$(1,4)
260 PRINT"————-—————————— "

270 PRINT"WEITER (J/N)?"

280 GETX#$: IFX$=""0R X$<>"J"AND X#{>"N"THEN 280
290 IF X$="J"THEN 190

300 PRINT"SUCHE ABGEBROCHEN!":END

Hier wird die Suche fortgesetzt, wenn ein Datensatz mit der
entsprechenden Vorwahl gefunden wurde. Dies bewirkt die Zeile
290, die das Programm nicht beendet, sondern die Schleife
fortsetzt. Erst nach Durchsuchen aller Datensidtze meldet das
Programm "Dateiende". Wenn Sie den Ablauf dieses Praogramms
vestanden haben, so entwickeln Sie vieleicht einmal eine
Suche nach dem Vornamen! Sicher wird es Ihnen mit
Zuhilfenahme der o.g. Befehlsfolge keine Schwierigkeiten
bereiten.

1.4.9 Einfaches Sortieren der Tabelle

In der Datenverarbeitung ist es oft erforderlich Daten sowohl
in numerischer als auch 1in alphanumerischer Form Zu
sortieren. Dies war schon immer ein rechenzeitintensiver
Vorgang, den Programmierer durch immer wieder vebesserten

Sortiermethoden zu verkirzen wulBten. Doch gerade in
Verbindung mit der Programmiersprache BASIC, die in der Form
eines Interpreters doch relativ langsam ist, ist das

Sortieren sehr zeitaufwendig.
Warum werden Daten eigentlich sortiert? Stellen Sie sich ein
Telefonbuch vor, in dem die Namen viéllig ungeordnet enthalten

37

sind. Sie miBten dann von Anfang bis Ende das Telefonbuch
durchsuchen, um einen bestimmten Namen zu finden. Die
Sortierung bietet also Vorteile beim Aufsuchen von Daten
innerhalb einer Datenmenge. Auch der Computer kann wesentlich
schneller in einer sortierten Datei suchen.

Es gibt mehrere Sortiermethoden, die sich hauptsachlich in
der Geschwindigkeit unterscheiden. Die einfachste
Sortiermethode ist die Methode des Vergleichens eines
Tabellenplatzes mit jedem anderen. Soll eine Tabelle
aufsteigend sortiert werden, so wird der erste Tabellenplatz
mit dem zweiten verglichen. Ist der erste grifler, so wird er
mit dem zweiten vertauscht. Danach wird der erste
Tabellenplatz mit dem dritten verglichen, usw., bis der
letzte Platz erreicht ist. Danach befindet sich der kleinste
Tabellenplatz am Anfang, also auf dem richtigen FPlatz. Der
ndchste Durchlauf beriicksichtigt den ersten Tabellenplatz
also nicht mehr. An einem Programmablaufplan 1&Bt sich diese
Logik verdeutlichen:

START

J I TAWOY=TA(I}
TAD =TAX)
TA(X)=TA(O)

38

Dieses Sortierpragramm geht vom Index 1 aus, der als
Anfangsindex in die Variable I gespeichert wird. Der zweite
Index ist die Variable X, die den um eins erhihten
Anfangsindex I enthdlt. Dann wird der erste Tabellenplatz mit
dem zweiten verglichen. Ist der Inhalt von TA(I) gréBer als
der von TA(X), muB das Programm deren Inhalt iiber das
Hilfsfeld TA(0) vertauschen. Dieser Ringtausch verhindert,
dal die Inhalte der beiden Felder verlorengehen. Danach wird
der Index X um eins erhdéht, also auf den Wert 3= gebracht,
wonach dann der erste Tabellenplatz TA(I) wmit dem dritten
TA(X) verglichen wird, usw. Wenn der letzte Tabellenlatz
erreicht ist (X > letzter Index), befindet sich im ersten
Tabellenplatz TA(I) der kleinste Tabellenplatz und der Index
I wird um eins erhiht. Nun wird der zweite Tabellenplatz mit
allen weiteren verglichen, usw.

Diese Sortiermethode erscheint auf den ersten Blick recht
umstdndlich. Die Vergleiche 1laufen im Hauptspeicher aber
relativ schnell ab. Fir kleinere Sortiermengen reicht diese
Methode aus.

Um dieses Programm laufen zu lassen, muB erst eine Tabelle
aufgebaut werden. Wir benutzen eine Tabelle mit 12 Platzen,
die alphanumerische Daten (Strings) enthdlt. Diese Tabelle
wird mit folgender Routine gefidllt:

100 DIM TA$(12)
110 FOR I=1 70O 12
120 INPUT TA$(I)
130 NEXT I

Nach Starten dieser Befehlsfolge geben GSie 12 beliebige
Strings ein, die dann mit dem folgendem Programm aufsteigend
sortiert werden:

140 I=1

150 X=I+1

1640 IF TA$(I) < TA$(X) THEN 180
170 TAF(O)=TAF (D) : TAF (1) =TASF (X) : TAE (X) =TA$ (0)
180 X=X+1

190 IF X <= THEN 140

200 I=I+1

210 IF I <> 12 THEN 150

220 FOR I=1 TO 12

230 PRINT TA$(D)

240 NEXT I

Die Tabelle wird nun sortiert und auf dem Bildschirm
ausgegeben. Soll anstatt dieser eindimensionalen Tabelle eine
zweidimensionale Tabelle wie unsere im Speicher befindliche
Telefondatei sortiert werden, so missen alle Felder eines
Satzes vertauscht werden. Die Zeilen 160 - 170 werden zum
Sortieren nach Namen folgendermaBen abgedndert:

160 IF D$(I,1) < D$(X,1) THEN 180
170 D$(0,1)=D$(I,1):D$(I,1)=D$(X,1) :D$(X,1)=D$(0,1)
171 D$(0,2)=D$(I,2):D$(I,2)=D$(X,2) :D$(X,2)=D$(0,2)
172 D$(0,3)=D$(I,3):D$(I,3)=D$(X,3) :D$(X,3)=D$(0,3)

39

173 D$(0,4)=D%$(1,4):D$(1,4)=D$(X,4):D$(X,4)=D%(0,4)

Einen grifBeren Datenbestand dieserart zu sortieren ist sehr
zeitaufwendig. Wenn Sie auch bei griBeren Datenmengen auf
eine schnelle Sotierung angewiesen sind, so empfehlen wir
Ihnen die sehr schnelle Maschinensprache-Sortierroutine aus
unserem Buch "64 TIPS UND TRICKS"

1.4.10 ADRESSENVERWALTUNG mit sequentieller DRatenspeicherung

Zum Ende dieses Kapitels bieten wir Ihnen eine komfortable
Adressenverwal tung, die wahrscheinlich jeder Anwender
sinnvoll einzusetzen weiB. Dieses Pogramms ist gleichzeitig
eine Anregung zur Erstellung vieler Dateiverwaltungen.

Eine Adressensatz dieses Programms besteht aus folgenden
Feldern:

— ANREDE

- NAME 1

- NAME 2

— STRASSE/NR.
- PLZ/ORT

— TELEFON

— BEMERKUNG

Die Anwendung der Felder 'NAME 1° und ‘NAME 2° bleibt dem
Anwender iberlassen. So kann z.B. in 'NAME 1° der Vorname und
in ‘NAME 2’ der Zuname gespeichert werden. Oder aber in ‘NAME
1° die Firma und in °'NAME 2° "zu Handen...". Das Feld
"BEMERKUNG® kann z.B. die Adressen gruppieren (Familie,
Beruf, Freunde usw.).

Das Programm bietet nach dem Starten folgende
Auswahlmiglichkeiten:

—1- DATEI LADEN

—2- DATEI SICHERN

—3— DATEN EINGEBEN

—4— DATEN AENDERN

—5— DATEN SELEKTIEREN/AUSGEBEN
—-6— DATEN LOESCHEN

—0- PROGRAMM BEENDEN

—1- DATEI LADEN

Nach Auswahl dieses Unterprogramms muB der Dateiname der zu
ladenen Datei eingegeben werden. Falls die Datei auf der
Diskette existiert wird diese geladen. Dann wird auf dem
Bildschirm die Anzahl der Datensitze, die die Datei enthé<,
ausgegeben. Sollte widhrend dem Laden ein Fehler auftreten,
oder die Datei gar nicht existieren, so wird die Meldung
"DISKETTENFEHLER!'" ausgegeben. Nach AbschlufB des
Unterprogramms mit "RETURMN’ erscheint wieder das Auswahlmenii.

40

—-2—- DATEI SICHERN

Falls Sie eine Datei nach dem Laden gedndert oder erweitert
haben, so miissen Sie vor Beendigung des Frogramms die Datei
mit diesem Unterprogramm auf Diskette sichern. Als Dateiname

wird hier entweder der Name, der bei der erstmaligen
Datenerfassung festgelegt wurde oder der Name der geladenen
Datei verwendet. Eine evtl. unter gleichem Namen

existierendes File wird iiberschrieben.

Wahrend der Arbeit mit diesem Programm sollten die Daten
zwischendurch immer wieder gesichert werden, da ein
Stromausfall die Daten im Rechner liéscht. Nach dem Sichern
der Daten kann mit dieser Datei wieder weiter gearbeitet
werden. Sie muB also nicht erst wieder geladen werden.

~3— DATEN EINGEBEN

Dieses Unterprogramm hat zwei Funktionen:

1. Es wurde noch keine Datei geladen. Bevor die Daten erfasst
werden kdnnen muB vorher ein Dateiname festgelegt werden. Die
nachfolgenden Daten werden dann unter diesem Namen gesichert.
Es sollte ein Name angegeben werden, der bisher noch nicht
auf der Diskette existiert, da sonst die alte Datei
iberschrieben wird.

2. Es befinden sich schon Daten im Rechner. Die im Rechner
befindliche Datei wird nun erweitert.

Nach der Erfassung einer Adresse erscheint die Meldung
"RICHTIG (J/N)7?". Hier wird die Miglicheit gegeben, die
eingegebenen Daten zu korrigieren. Dazu driicken Sie die Taste
‘N°. 8ind alle Daten korrekt eingegeben worden, so driicken
Sie ‘Jd’. Nun erscheint die Meldung "WEITERE EINGBABEN
(J/N)?". Soll die Erfassung fortgesetzt werden, so dricken
Sie die Taste "J’. Wird die Taste ‘N’ gedriickt, so erscheint
wieder das Auswahlmenii.

—4— DATEN AENDERN

Nach Auswahl dieses Unterprogramms muBl die zu &ndernde
Adresse bestimmt werden. Hierzu mu3 sowohl der Name 1, als
auch der Name 2 eingegeben werden. Sind diese beiden Angaben
nicht bekannt, so kiénnen in dem Unterprogramm “DATEN
SUCHEN/SELEKTIEREN" beide Namen aufgesucht werden. Nach
Eingabe dieser Namen wird die Adresse in der Datei gesucht.
Wird sie gefunden, so erscheint die komplette Adresse mit den
numerierten Feldern ausgegeben. Nun muB die dem zu &ndernen
Feld entsprechende Nummer eingegeben werden. Nun wird der
neue Inhalt bestimmt. Die Adresse wird noch einmal im neuen
Zustand angezeigt. Sind keine weiteren Anderungen in diesem
Satz erforderlich, so wird die Taste ‘9 gedriickt.
AnschlieBend fragt das Programm, ob eine weitere Adresse

41

geandert werden soll. Diese Frage wird dann mit den Tasten
‘J” und ‘N’ beantwortet.

—-5— DATEN SELEKTIEREN/AUSGEBEN

Dies ist ein sehr komplexes und vielseitiges Unterprogramm.
Zuerst bestimmen Sie, ob die selektierten Adressen auf dem
Bildschirm (Taste ‘B’) oder Drucker (Taste 'D’) ausgegeben
werden sollen. Haben Sie sich fir die Ausgabe auf dem Drucker
entschieden, so wmissen Sie nochmals auswdhlen, ob die
Adressen mit allen Feldern auf normales Druckerpapier (Taste
‘P’) oder die Felder 1-5 auf Aufklebern (Taste ‘A‘) gedruckt
werden sollen. Die AdreBaufkleber miissen einreihig sein und
das Format 89 * 36 mm haben.

Zum Selektieren der Daten fiillen Sie eine Suchmaske. Bei
Feldern, die nicht relevant sind, geben Sie nur ‘RETURN’.
Wollen Sie z.B. alle Adressen ausgeben, die dem
Postleitzahlengebiet 4 entsprechen, so geben Sie in den
ersten 4 Felder nur 'RETURN’. Im Feld °‘PLZ/0Ort’ geben Sie die
Zahl 4 mit anschlieBendem ‘RETURN’ ein. Die restlichen 2
Felder werden ebenfalls mit 'RETURN’ iibergangen.

Einige Beispiele selektierter Daten:

ANREDE : FIRMA
NAME 1 : "RETURN-
NAME 2 : "RETURN-
STRASSE/NR. : ‘RETURN-
PLZ/0RT : 4000
TELEFON : "RETURN”
BEMERKLUNG : ‘RETURN-

Hier werden alle Firmen ausgegeben, die ihren Sitz in
Diisseldorf haben.

ANREDE : "RETURN-
NAME 1 : M

NAME 2 : ‘RETURN-
STRASSE/NR. : ‘RETURN’
PLZ/ORT : "RETURN”
TELEFON : "RETURN-
BEMERKUNG : FAMILIE

Alle Familienmitglieder, deren Name 1 mit ‘M’ anfangt, werden
ausgegeben.

Sie sehen, wie vielseitig dieses Selektieren ist. Probieren
Sie es selbst einmal aus.

—6— DATEN LOESCHEN

Nach Eingabe des 1. und 2. Namens der Adresse wird diese noch

42

einmal angezeigt. Das Programm fragt, ob diese Adresse
wirklich gelidscht werden soll. Esrt nach Betatigung der Taste
‘J’ wird dann gelidscht.

—0— PROGRAMM BEENDEN

Bevor das Programm beendet wird, wird darauf hingewiesen, daf3
das Programm mit ‘GOTO 110° ohne Datenverlust wieder
gestartet werden kann. Das ist wichtig, falls Sie einmal
vergessen, die Daten vor Beendigung des Programms zu sichern.

Doch nun das Programm-Listing:

100 POKE S53280,5:POKES3281,2: PRINTCHR$ (158) ; : DIMD$(100,7)
110 GOSUBZ030
120 PRINT"WAEHLEN SIE DIE GEWUENSCHTE FUNKTION:"

130 PRINT" "z PRINT
140 PRINT" —-1- DATEI LADEN"

150 PRINT" —2—- DATEI SICHERN"

160 PRINT" —3— DATEN EINGEBEN"

170 PRINT" —4— DATEN AENDERN"

180 PRINT™ ~5— DATEN SELEKTIEREN/AUSGEBEN"

190 PRINT" —6— DATEN LOESCHEN":PRINT

200 PRINT" —0—- PROGRAMM BEENDEN"

210 PRINT

220 PRINT™ AUSWAHL. (0-6)?"

230 GETX$:IFX$<"O"ORX$>"&"THEN230

240 IFX$< >"0O"THEN340

250 PRINT:zPRINT" SICHER (J/N) 2"

260 GETX#%: IFX$E<>"N"ANDX$< >"J " THEN26O

270 IFX$="N"THEN110

280 GOSUB2030

290 PRINTTAB(%); "DAS PROGRAMM KANN MIT":PRINT
300 PRINTTAB(15);" 'GOTO 110 ":PRINT

310 PRINTTAB(8); "WIEDER GESTARTET WERDEN, ":PRINT
320 PRINTTAB(4); "OHNE DASS DATEN VERLOREN GEHEN!'"
330 END

340 ONVAL (X$)G0OSUB360,540,4680,880,1190,1770

350 GOTO110

FHO REM 330363833445

370 REM DATEI LADEN

ZE0 REM #3%%#%X%6#%%

390 GOSUB2030

400 INPUT“"NAME DER DATEI :"j;DN$

410 OPEN15,8,13

420 OPEN1 ,8,2,DN$+",5,R"

430 INPUT#15,FE: IF FE=0THEN46&0O

440 PRINT"DISKETTENFEHLER!'!'!'"

450 GOTOS10

460 X=1

470 INPUT#1,D$(X,1) ,D$(X,2),D$(X,3) ,D&(X,4),D$(X,5) ,DF(X,6),

43

D$(X,7)
480 IF ST<>64 THEN X=X+1:G0TO 470
490 PRINT"DATEI IST GELADEN UND BEINHALTET ";X
500 PRINT“DATENSAETZE":PRINT
510 CLOSE1:CLOSE1S
520 PRINT"WEITER MIT RETURN"
520 INPUTX#$:RETURN
S40 REM 3% 8383638643 %%
550 REM DATEI SICHERN
SEO REM 236663833 %% %%
570 IF X>OTHENS90
580 GOSUB2230: RETURN
5920 GOSUB2030
600 OPEN1,8,2,": "+DN$+" S, W"
610 FORI=1TOX
620 PRINTH#1,D$(I,1)","D$(I,2)","DS(I,3)",";
630 PRINT#1,D$(I,4)","D$(1,5)","D$(I,6)","D$(1,7)
640 NEXT
650 PRINT"DATEI IST GESICHERT":CLOSE1:PRINT
660 PRINT"WEITER MIT RETURN®"
&70 INPUTX$:RETURN
H80 REM 3353936396 3 3 3 3 36 3%
690 REM DATEN EINGEBEN
700 REM 3336363 3 3 % 3 3 3 36 % %
710 IFX>OTHENGOTO730
720 GOSUB2030: INPUT"DATEINAME ";DN$
730 X=X+1
740 GOSUB2030
750 PRINT"DATENEINGABE: "
760 PRINT"————————————— “:PRINT
770 I=X:G0OSUB2110
780 FORI=1TO7:FPRINTCHR#¥ (145) 3 :NEXT
7720 FORI=1TO7:PRINTTAB(12);: INPUTD# (X, I):NEXT
800 PRINT:PRINT"RICHTIG (J/N)7?"
810 GETX#: IFX$<>"N"ANDX$<>"J"THENB10O
820 IFX$="J"THEN840
830 GOTO740
840 PRINT"WEITERER EINGABEN (J/N)?"
850 GETX#: IFX$<>"J"ANDX$< >"N"THEN850
860 IFX$="J"THEN730
870 RETURN
B80 REM 363333336363 3 3 3% %
890 REM DATEN AENDERN
QOO0 REM 3533533333 -3 5 %
2?10 IFX>OTHEN?30
F20 GOSUB2230: RETURN
220 G6OSUB2030
240 INPUT"NAME 1: ";Ni%
950 INPUT"NAME 2: ";N2¢
260 FORI=1TOX
970 IFD#$(I,2)=N1$ANDD$ (I,3)=N2¢THEN10O10
280 NEXTI
290 PRINT"NAME NICHT GEFUNDEN'"™
1000 PRINT"WEITER MIT RETURN": INPUTX$:RETURN
1010 GOSUB2030
1020 PRINT"-1- ANREDE :";D$(I, 1)

a4

1030 PRINT"-2- NAME 1 :";D$(I,2)
1040 PRINT"-Z— NAME 2 :“;DE(I,3

1050 PRINT"-4— STRASSE/NR.:";D#(I,4)
1040 PRINT"-5- PLZ/ORT :";D$(IL,5)
1070 PRINT"-6— TELEFON :";DE(1,6)

1080 PRINT"-7—- BEMERKUNG :";D$(I,7):PRINT:zPRINT

1090 PRINT"NR. DES ZU AENDERNDEN FELDES: ":PRINT" (9=KEINE
AENDERUNG) " ; : PRINT

1100 GETX$: IFVAL (X$)<1 OR VAL (X#) >7ANDVAL (X$) < >9THEN1100

1110 IFVAL (X$)=9THEN1150

1120 Y=VAL (X$)

1130 INPUT"NEUER INHALT";D#(I,Y):PRINT

1140 GOTO1010

1150 PRINT"WEITER AENDERUNGEN (J/N)?"

1160 GETX#$: IFX$<>"J"ANDX$<>"N"THEN1 140

1170 IFX$="J"THENBBO

1180 RETURN

1190 REM 93335 3 36 3 363 36 36 3 3636 3963696 36 336 336 3

1200 REM DATEN SELEKTIEREN/AUSGEEREN

1210 REM %3333 363336 38 36 3636 36 36 3036353630 3363696

1220 IFX>0THEN1240

1230 GOSUB2230: RETURN

1240 GOSUB2030: PRINT"AUSGABE AUF DRUCKER (D) ODER BILDSCHIRM
(B)?"

1250 GETX#: IFX$<>"D"ANDX#$<>"B" THEN1250

1260 0$=X#%: IFO$="B"THEN1300

1270 PRINT:PRINT"PAPIER (P) ODER AUFKLEBERN (A)7?"

1280 GETX#$: IFX$<>"P"ANDX$<>"A"THEN1280

1290 D#$=X$%

1300 GOSUB2030

1310 PRINT"GEBEN SIE DIE SUCHBEGRIFFE EIN:"

1320 PRINT"BEI NICHT RELEVANTEN FELDERN NUR RETURN!'";

1330 PRINT" ":PRINT

1340 I=0:60S5UB2110

1350 FORI=1TO7:PRINTCHR%$ (145);:S#(I)="":NEXT

1360 FORI=1TO7:FPRINTTAB(12);: INPUTS$ (I):NEXT

1370 IFOQ%="B" OR D#="A"THEN1450

1380 GOSUB2030: PRINT"DRUCKER EINGESCHALTET (J)7?"

1390 GETX#$: IFX$<>"J"THEN1390

1400 OPENL1,4

1410 FRINT#1,"ANREDE";SPC(4); "NAME 1";SPC(14); "NAME 2";
SPC(14); "STRASSE"

1420 PRINT#1,5PC(3);"PLZ/ORT";SPC(18); "TELEFON";SPC(8);
"BEMERKUNG"

1430 FORI=1TO79:PRINT#1,"="3; :NEXT:PRINT#1

1440 CLOSE1

1450 FORI=1TOX

1460 FORY=1TO7

1470 IFS#(Y)=LEFT$(D$(I,Y),LEN(S%(Y)))THENZ=Z+1:60T01480

1480 NEXTY

1490 IFZ=7THEN GOSUB 1550

1500 Z=0:NEXTI

1510 PRINT:PRINT"DATEIENDE !!":PRINT

1520 PRINT"WEITER MIT RETURN":PRINT

1530 INPUTXS

1540 RETURN

45

1550 IFO%$="B"THEN1730

1560 IFD$="A"THEN1&70

1570 OPEN1,4

1580 PRINT#1,D$(I,1)3;SPC(10-LEN(D$(I,1)))3
1590 PRINT#1,D$(I,2);SPC(20-LEN(D$(I,2)));
1600 PRINT#1,D$(I,3);SPC(20-LEN(D$(I,3)))3;
1610 PRINT#1,D$(I1,4)

1620 PRINT#1,SPC(3);D$(1,5);SPC(25-LEN(D$(I,5)));
1630 PRINT#1,D$(I,6)3SPC(1S5-LEN(D$(I,6)));
1640 PRINT#1,D$(I,7)

1650 PRINT#1:CLOSE1

1660 RETURN

16470 OPEN2,4

1680 PRINT#2

16490 FORJ=1TOS5: PRINT#2,D$(I,J) :NEXT

1700 PRINT#Z2:PRINT#2: PRINT#2

1710 CLOSEZ2

1720 RETURN

1730 GOSUBZ030:G50SUB2110

1740 PRINT:PRINT"WEITER (J)7?2"

1750 GETX#: IFX$<{>"J"THEN1750

1760 RETURN

1770 REM 3533683365366 3 3 %

1780 REM DATEN LOESCHEN

1790 REM 335535 3 34 3363 3 3

1800 IFX>OTHEN1820

1810 GOSUB 2230: RETURN

1820 GOSUB2030

1830 INPUT"NAME 1 : ";Ni$

1840 INPUT"NAME 2 : "j;N2¢%

1850 FORI=1TOX

1860 IFD$(I,2)=N1$ANDD$ (I,3)=N2$THEN1200
1870 NEXTI

1880 PRINT"NAME NICHT GEFUNDEN!":PRINT
1890 PRINT"WEITER MIT RETURN": INPUTX$:RETURN
1900 GOSUBZ2030:G0SUB2110

1910 PRINT:PRINT"ADRESSE LOESCHEN (J/N)?"
1920 GETX#$: IFX$<>"J"ANDX$< >"N"THEN1220
1930 IFX$="N"THENRETURN

1940 FORY=ITOX-1

1950 FORJ=1TO&

1960 D#(Y,J)=D&(Y+1,J)

1970 NEXTJ,Y

1980 FORJ=1TO&:D$(X,J)="":NEXTJ

1990 X=X-1

2000 PRINT"SATZ IST GELOESCHT!"

2010 PRINT"WEITER MIT RETURN!"

2020 INPUTX#:RETURN

2030 REM 3585955818855

2040 REM PROGRAMM-KOPF

2050 REM 33333 3% % %% 6 3 3

2060 PRINTCHR$(147);

2070 PRINTTAB(8);" "
2080 PRINTTAB(B);"A DRESSENDATETI
2090 PRINTTAB(B);" . ":PRINT:PRINT
2100 RETURN

46

2110 REM 3385836566363 3%

2120 REM SATZAUSGABE

2130 REM 9636333699 3336 3 3 % %

2140 PRINT"ANREDE : ";D#(I,1)
2150 PRINT"NAME 1 T ";D$(I,2)
2160 PRINT"NAME 2 : "“;D$(I,3)
2170 PRINT"STRASSE/NR. : ";D$(I,4)
2180 PRIMT"PLZ/ORT : ";D$(I,5)
2200 PRINT"TELEFON : “;D$(I, &)
2210 PRINT"BEMERKUNG : ";D$(1I,7)
2220 RETURN

2230 REM #%5%%H3% %% %% %%

2240 REM KEINE DATEI!

2250 REM 33635533 %536 % %%

2260 GOSUB2030

2270 PRINTYKEINE DATEI IM RECHNER!'":PRINT
2280 PRINT"WEITER MIT RETURN"
2290 INPUTX#: RETURN

1.4.11 Anwendungsgebiete der sequentiellen Datenspeicheurng

Der groBe Varteil der sequentiellen Datei gegeniiber den in
den nachsten Kapiteln beschriebenen relativen und
Direktzugriffsdateien besteht vor allem im sehr sparsamen
Umgaing mit Speicherplatz. Daten der unterschiedlichsten Lange
kinnen fortlaufend hintereinander gespeichert werden, ochne
dal Datensatze eine bestimmte definierte Liange haben miissen
und Jjeweils nicht ausgenutzter Speicherplatz nutzlos
vergeudet wird. Sinnvoll ausnutzen 148t sich dieser Vorteil
iberall dort, wo nicht standig Teile der Datei geandert
werden miissen, wo nicht laufend auf auf bestimmte Datensatze
gezielt zugegriffen werden muB. Beispiele sind

#* Protokolldateien
In einem Buchungsjournal werden fortlaufend alle
Buchungsvorgidnge protokolliert. Anderungen sollen und
d idr f e n nicht vorgenommen werden.

#* Auswertungsdateien
Sie werten eine Direktzugriffsdatei aus, z.B. alle

Kunden mit mehr als DM 5000,— Umsatz aus dem
Postleitzahlengebiet 4, und schreiben die gefundenen
Datensatze fiir den spateren Ausdruck in eine

sequentielle Datei.

Natiirlich bieten sich die sequentiellen Dateien auch, wie in
den vorherigen Kapiteln beschrieben, als Ersatz fiir
Direktzugriffsdateien an, wenn beim Anwender weiterreichende
Programmierkenntnisse nicht vorhanden sind. Allerdings wiirden
wir Ihnen empfehlen, auch die anderen Arten der
Datenspeicherung durchzuarbeiten, da sie zum Teil gravierende
Vorteile bieten.

47

1.5 Relative Datenspeicherung

Die relative Datenspeicherung und ihre PFrogrammierung werden
im Handbuch der VC-1541 nicht beschrieben. Der Grund diirfte
darin liegen, daf der COMMODORE &4 und der VC-20 in ihrem
BASIC 2.0 keine Befehle zur Verwaltung von relativen Dateien
enthalten. Damit ist im Prinzip eine relative
Datenspeicherung mit dem CBM &4 und dem VC-20 nicht miglich -
aber nur im Prinzip. Wir haben einige Kunstgriffe entwickelt,
mit denen Sie die Beschriankung des BASIC 2.0 umgehen und die
relative Datenspeicherung auch mit dem VC-20 und dem &4-er
nutzen kinnen. Im einzelnen mag dies zwar manchmal etwas
kompliziert erscheinen — so werden z.B. Angaben i{iber die
Recordldnge an die Floppy mit CHR#(x)-Codes ibermittelt -
ydoch erschlieBen Sie sich so eine sehr komfortable Methode
der Datenspeicherung.

1.5.1 Das Prinzip

Bei der relativen Dateiverwaltung werden die Datensiatze (auch
Records genannt) durchnumeriert. Mit der Voraussetzung, daf
alle Datensidtze einer relativen Datei die gleiche Linge
haben, kann anhand der Recordnummer jeder Datensatz direkt
adressiert werden. Zum Auffinden eines Records ist es nicht
erforderlich, die gesamte Datei 2zu durchsuchen. Es wird
lediglich die Nummer des Records relativ zum Dateianfang
angegeben und der Record kann ausgelesen werden. Anhand der
Satznummer kann das DOS erkennen, wo sich der Datensatz
"relativ" zum Anfang der Datei auf Diskette befindet und so
direkt auf diesen Datensatz zugreifen. Damit miissen nicht
mehr komplette Dateien oder Indextabellen in den Rechner
eingelesen werden, sondern nur nuch die gerade benétigten
Datensatze.

Die Verwaltung einer relativen Datei 1lauft nach folgendem
Muster ab:

Einrichten einer relativen Datei:

1. Die Datei wird geiffnet. Dabei wird die Linge eines Re-
cords festgelegt.

2. Der letzte Record wird gekennzeichnet.

3. Die Datei wird wieder geschlossen.

Schreiben eines Records:
1. Die Datei wird gedffnet.
2. Es wird auf den zu schreibenden Record positioniert.

3. Der Record wird geschrieben.
4. Die Datei wird geschlossen.

48

Lesen eines Records:

1. Die Datei wird geidffnet.

2. Es wird auf den zu lesenden Record positioniert.
3. Der Record wird gelesen.

4. Die Datei wird geschlossen.

Dies war nur eine grobe dbersicht. In den folgenden
Abschnitten werden diese Vorgéange nach ausfithrlich
beschrieben.

1.5.2 Der VYorteil gegeniiber sequentieller Speicherung
Die wesentlichen Vorteile der relativen Speicherung sind:

#* schneller Zugriff auf jeden Record

relative Dateien entlasten den Speicher des Rechners
Bei der Behandlung der sequentiellen Dateien wurde bereits

erwihnt, daB die sequentielle Datei =zu deren Verwaltung
vollstindig im Speicher des Rechners enthalten sein muB. Ist

dies nicht der Fall, so ist es beim Aufsuchen eines
Datensatzes notwendig, die gesamte Datei zu durchsuchen. D.h.
jeder Datensatz mu gelesen und mit dem Suchbegrif+f

verglichen werden. Sollte eine sequentielle Datei nicht
vollstindig im Speicher unterzubringen sein, so ist diese
Methode des Suchens unumganglich.

Bei relativen Dateien ist das wesentlich einfacher. Mit Hilfe
der Recordnummer kann auf jeden Satz direkt zugegriffen
werden. Die Datei ist also vom Speicher des Rechners
unabhédngig. So kann z.B. mit einem Programm, das die 3,5
kKByte des VC 20 vollstiandig belegt, eine Datei mit bis zu 1463
kKByte verwaltet werden!

Die Vorteile der relativen gegeniiber der sequentiellen
Dateiverwaltung sind derart groB, daB jeder, der einmal mit
relativen Dateien vertraut ist, die Form der relativen
Dateien varziehen wird.

1.5.3 Das offnen einer relativen Datei

Auch relative Dateien werden mit einem OFEN-Befehl gedffnet.
Dieser Befehl unterscheidet sich nur gering von dem der
sequentiellen Dateien. Schauen Sie sich nun das Format des
OPEN-Befehls einmal an:

OPEN 1fn,ga,kanal,"filename,l,"+CHRS$ (recordlange)
Die ersten 4 Parameter sind mit denen des OPEN-Befehls fiir

sequentielle Dateien identisch. Alsao 1logische Filenummer,
Geriateadresse (im Normalfall 8), Kanal (2-14), Name der

49

Datei.

Nun folgt ein ‘L', das dem DOS mitteilt, daB nun eine
relative Datei geéffnet werden soll, deren Recardlange folgt.
Diese Recorldnge wird mit einem CHR$-Code ibermittelt. Die
Lange liegt zwischen 1 und 254. Ein Record darf also maximal
254 Zeichen umfassen.

Ist die Recordlange kleiner als 88, so kann der Record mit
einem INPUT-Befehl gelesen werden. Dazu ist es aber
erforderlich, daB der PRINT-Befehl den Record mit einem
abschlieBenden RETURN iibermittelt hat. In der Regel sendet
der PRINT-Befehl dieses RETURN, wenn er nicht mit einem
Semikolon abgeschlossen wurde. Dieses RETURN ist nun
Bestandteil des Records. Wollen Sie also Records mit INPUT
einlesen, so mufl die Recordlidnge im OPEN-Befehl immer um eins
erhiht werden.

Eine Datei, deren B80-Zeichen umfassende Records mit INPUT
eingelesen werden sollen wirde demnach folgendermafien
gedbffnet:

OPEN 1,8,2,"FILE.REL,L,"+CHR$(81)

Hier wird ein relatives File mit dem Namen "FILE.REL" iiber
Kanal 2 gedffnet. Die Recordlédnge soll 81 Zeichen betragen.
Es sollen also 80 Zeichen umfassende Records mit einem
PRINT-Befehl gesendet werden, dem kein Semikolon folgt.

Wichtig ist, dal immer nur eine relative Datei gedffnet sein
kann. Wollen Sie mit zwei relativen Dateien arbeiten, so muB
immer die erste geschlossen werden, bevor die zweite gebdffnet
wird. Zusiatzlich zu der relativen Datei kann eine
sequentielle Datei gedffnet werden.

Zum erstmaligen Einrichten einer relativen Datei ist es
sinnvoll, den letzten Record freizugeben, da dann samtliche
vor diesem Record liegende Datensdtze auch freigegeben
werden. Freigeben bedeutet, den Record mit dem Byte CHR%$(2355)
zu beschreiben. Versucht man, einen Reocrd zu lesen, dessen
Nummer iber die des letzten Records der Datei liegt, so
verursacht dies den Fehler "RECORD NOT PRESENT". Beschreibt
man jedoch einen Record, der iiber dem bisher hichsten Record
liegt, so werden gleichzeitig alle Records, die unterhalb
dieses neuen Records liegen, mit CHR$(255) beschrieben. Ein
spaterer Lesezugriff auf einen Record dieses Bereichs erfolgt
dann fehlerlos. Das Beschreiben dieser "freigegebenen"
Records erfolgt dann wesentlich schneller, weil alle Records,
die unter diesem liegen, nicht mehr freigegeben werden
miissen. Ein Beispiel:

Sie errichten eine relative Datei mit 100 Records. Sie geben
aber den letzten (100.) Record nicht frei. Wenn Sie nun einen
Record beschreiben, der iiber dem letzten beschriebenen Record
dieser Datei angeordnet ist, werden gleichzeitig alle
Records, die zwischen dem letzen und dem gerade beschriebenen
Record liegen, freigegeben. Um diese Prozedur zu vermeiden,
wird nach dem erstmaligem &6ffnen der letzte Record, und somit
auch alle anderen Records freigegeben. Das spatere
Beschreiben dieses freigegebenen Records lauft dann

50

wesentlich schneller ab.

Zum Freigeben des letzten Records wird dieser also lediglich
mit dem ASCII-Wert FFF —CHR# (235) - beschrieben. Zum
Beschreiben eines Records muB aber vorher auf diesen
positioniert werden. Dazu wird iiber dem Befehlskanal der
Floppy (15) ein Positionier-Befehl gesendet werden, der wie
falgt aufgebaut ist:

PRINT#1+n, "P"+CHR$ (kanal) +CHR#% (1ow) +CHR$ (high) +CHR$ (byte)

Wenn zum Freigeben von Records auf einem Record positioniert
wird, der iiber das bisherige Dateiende hinausgeht, s0
erscheint im Floppy—-Fehlerkanal die Meldung "“RECORD NOT
PRESENT". Da dieser positionierte Record aber nicht gelesen,
sondern nur beschrieben (freigegeben) werden soll, kann die
Meldung ignoriert werden. Der folgende PRINT auf diesen, noch
nicht freigegebenen Record wird trotz der Fehlermeldung
durchgefiihrt.

Die Parameter ‘low’ und ‘high’ im P-Befehl geben die
Recordnummer an. Da mit einem Byte maximal der Wert 254
angegeben werden kann, eine relative Datei aber bis zu &5535
Records beinhaltet, muB die Recordnummer in zwei Bytes
ibermittelt werden. Diese zwei Bytes berechnet man mit
folgender Formel:

HB=INT (RN/256)}
LB=RN-HB#*256

HB = High Byte (Parameter ‘high’)
LB = Low Byte (Farameter ‘low’)
RN = Recordnummer

Der letzte Parameter dient der Positionierung auf eine
bestimmte Stelle innerhalb des angegebenen Records. Ein
Beispiel:

PRINT#2,"P"+CHR%$ (2) +CHR# (10) +CHR# (1) +CHR%$ (5)

Hier wird auf das 5. Byte des 264. Records positioniert.
Diese 266 wird als Lowbyte 10 und Highbyte 1 codiert
(Highbyte * 256 + Lowbyte = Recordnummer)

Zum Lesen oder Schreiben eines kompletten Records mufl
unbedingt auf das 1. Byte positioniert werden. Wird der
letzte Parameter nicht angegeben, so wird das abschlieBende
"RETURN® -CHR#(13)- als Bytepositionierung angenommen.

Der entsprechende BASIC-Ausschnitt zum Einrichten einer Datei
mit 1000 Records und Jjeweils 80 Zeichen sieht dann
folgendermafen aus:

100 RN=1000
110 HB=INT (RN/256)

120 LB=RN-HB*256

130 OPEN1,8,2,"FILE.REL,L,"+CHR$ (80)
140 OPENZ,8,15

S1

150 PRINT#2, "P"+CHR$ (2) +CHR$ (LB) +CHR$ (HB) +CHR$ (1)
160 PRINT#1,CHR$ (255)
170 CLOSE 1:CLOSE 15

Das Freigeben der 1000 Records nimmt einige Zeit in Anspruch.
So kann das Einrichten dieser Datei ca. 10 Minuten dauern.
Beachten Sie aber, daB in diesen 80-Zeichen—-Records nur 79
Zeichen Daten untergebracht werden kann, wenn die Daten mit
einem PRINT-Befehl mit abschlieBendem RETURN iiber tragen
werden!

1.5.4 Vorbereitung der Daten zur relativen Speicherung

Wie bereits erwidhnt, sind Sie bei der relativen Speicherung
an eine feste Satzlinge gebunden. Besteht ein Record aus
mehrerern Feldern, so missen diese Felder zusammengefigt
werden. Wichtig ist hierbei, daB sich die Felder in der
gesamten Datei in jedem Datensatz immer an derselben Position
befinden miissen. Spielen wir dieses Problem einmal durch:

Es soll ein Artikelstamm relativ verwaltet werden. Dazu sind
folgende Felder notwendig:

ARTIKELNUMMER 4-stellig

BEZE ICHNUNG 15-stellig
LAGERNUMMER S-stellig
EINK.-PREIS 6—stellig
VERK.-PREIS b—-stellig
Recardl adnge 36 Bytes

Der Artikelstamm umfasst ca. 200 Artikel mit einer Satzlinge
von 3& Bytes. Diese Artikeldatei soll nun eingerichtet
werden:

100 RN=200:REM ANZAHL DER ARTIKELSATZE

110 RL=3&6 :REM RECORDLANGE

120 OPEN 1,8,2,"ARTIKEL,L,"+CHR$ (36)

130 OPEN 2,8,15

140 PRINT#2, "P"+CHR$ (2) +CHR$ (200) +CHR$ (0) +CHRS$ (1)
150 PRINT#1,CHRS$ (255)

160 CLOSE 1:CLOSE 2

Nun ist die Datei eingerichtet und alle Records kénnen
beschrieben werden. Nehmen wir nun einmal an, dafll die
Artikeldatei sequentiell vorliegt. Sie besteht aus 200
Datensitzen deren Felder hintereinander angeordnet sind.
Diese Felder miissen zu einzelnen Records zusammengebunden und
in die relative Datei iibertragen werden. Das ist aber nicht
einfach, da z.B. die Artikelbezeichnung nicht immer die volle
Lange von 15 Zeichen haben wird. Die Struktur der relativen
Datei soll wie folgt aussehen:

52

111111111122222222223333333
Position [123456787012345678901234567890123456

Feld AN$~BE$———————————— LN$——EP$~——VP$———
Inhalt 1 BLECH 2MM 1344 23.40 42.30
2 SCHRAUBE 3MM 1231 9.00 14.00
3 VENTIL A3A4 1243 23.45 29.90

200 SCHLAUCH 12MM 2321 6.70 9.80

Aus der sequentiellen Datei werden die Felder in folgende
Variablen eingelesen:

Artikel nummer nach AN$
Artikelbezeichnung nach BE#
Lagernummer nach LN#
Einkaufspreis nach EP#
Verkaufspreis nach VP#

Der folgende Befehl verkettet zwar diese Felder, aber wie
sich noch herausstellen wird, nicht mit dem erwiinschten
Erfolg:

RC¥ = AN$ + BE$ + LN$ + EP$ + VP#

Dieser Record RC# entspricht nicht der gewiinschten Struktur
der Datei. Der Grund dafir ist, daB der Artikelbezeichnug
dann unmittelbar die Lagernummer folgt. Da die Lagernummer
aber unbedingt ab Stelle 20 beginnen muf} und die
Artikelbezeichnug nicht konstant 15 Zeichen umfasst, ergeben
sich dabei Probleme. Um die Records nach dem Lesen aus der
relativen Datei wieder richtig aufbereiten zu kénnen, mull die
Struktur unbedingt eingehalten werden. Dazu missen alle
Felder, falls sie kirzer als die eingeplante Lange sind, mit
Leerzeichen aufgefiillt werden. Wenn man dies bericksichtigt,
sieht die Verkettung folgendermaBen aus:

BL$=" "
RC$=AN$+LEFT$ (BL$,4-LEN (AN$))
RC4$=RC$+BE$+LEFT$ (BL#$,15-LEN(BE%$))
RCH=RC$+LN$+LEFT# (BL$,5-LEN(LN$))
RC$=RC$+EP$+LEFT$ (BL$,6-LEN(EP$))
RC#=RC$+VP$+LEFT$ (BL$,6—-LEN(EP%$))

Diese Verkettung sieht komplizierter aus, als sie es wirklich
ist. Jedes Feld muff mit der Anzahl von Leerzeichen erganzt
werden, die sich aus max. Lange des Feldes minus
tatsidchlicher Linge des Feldes ergibt. Diese Leerzeichen
werden dem anfangs definierten String BL$ entnommen. Dieser
String ist so lang wie das langste Feld des Records, in
diesem Fall 15 Zeichen.

33

Spielen wir einmal ein Beispiel durch: Angenommen die erste
Artikelnummer ist B. Die Lange dieses Strings ,LEN(AN$), ist
also 1. Die max. Linge des Feldes (4) minus der tatsidchlichen
Linge (1) ergibt also 3. Der String AN$ muB also mit 3
Leerzeichen ,LEFT$(BL%,3), aufgefiillt werden.

Jeder Datensatz der bisherigen, sequentiellen Datei muB
derartig aufbereitet werden, bevor man ihn in die relative
Datei iibernehmen kann.

Natiirlich gilt das oben gesagte fiir alle Eingabewerte, die in
die relative Datei ibernommen werden sollen. Denken Sie
deshalb bei der Programmierung der relativen Dateiverwaltung
immer an die Benutzung einer Routine zum Auffillen der
einzelnen Felder bis zur Solldnge mit Leerzeichen.

1.5.5 Dateniibertragung Floppy / Rechner

Im Prinzip unterscheidet sich die Dateniibertragung nicht von
der bei der sequentiellen Speicherung. Satze werden mit PRINT
geschrieben und mit INPUT bzw. GET wieder gelesen. Der
einzige Unterschied ist, daB vor Lesen aoder Schreiben eines
Records auf diesen positioniert werden mufi. Dies geschieht
mit dem P-Befehl. Erstellen wir nun einmal mit folgendem
Programm eine relative Datei im Dialog:

100 BL$=" "

105 OPEN 1,8,2,"TEST.REL,L,"+CHR$ (41)

110 OFEN 2,8,15

120 PRINT#2,"P"+CHR$ (2) +CHR$ (100) +CHR$ (0) +CHR$ (1)
130 PRINT#1,CHRS (255)

140 PRINT CHR$(147)

150 PRINT"DATENSATZEINGABE: "

160 PRINT" "

170 INPUT"RECORDNUMMER (1-100) : “;RN

180 IF RN<1 DR RN>100 THEN PRINT CHR$ (145);:G0TD160
190 INPUT"FELD 1 (MAX.10 ZEICHEN): ";F1$

200 IF LEN(F1$)>10 THEN PRINT CHR$(145);:60TD190
210 INPUT"FELD 2 (MAX. 5 ZEICHEN): ";F2$

220 IF LEN(F2$)>5 THEN PRINT CHR$(145);:G60T0210
230 INPUT"FELD 3 (MAX.10 ZEICHEN): “;F3$

240 IF LEN(F3$)>10 THEN PRINT CHR$(145);:60TD230
250 INPUT"FELD 4 (MAX.15 ZEICHEN): ";F4$

260 IF LEN(F4$)>15 THEN PRINT CHR$(145);:60T0250
270 PRINT“RICHTIG (J/N)?"

280 BET X$:I7 X$<>"J" AND X$<>"N"THEN280

290 IF X$="N"THEN 140

300 RC$=F1$+LEFT$ (BL$, 10-LEN(F1%))

310 RC$=RC$+F2$+LEFT$ (BL$,5-LEN(F2$))

320 RC$=RC$+F3$+LEFTS (BL$,10-LEN(F3%$))

330 RC$=RC$+FA$+LEFTS (BL$,15-LEN (F4$))

340 PRINT#2,"P“+CHR$ (2) +CHR$ (RN) +CHR$ (0) +CHR$ (1)
350 PRINT#1,RC$

360 PRINT#"WEITERE EINGABEN (J/N)?"

370 GET X$:IF X$<>"J"AND X$<>"N"THEN 370

380 IF X$="J"THEN 140

54

3920 CLOSE 1:CLOSE 2:END

Die folgende, =zeilenorientierte Dokumentation verdeutlicht
die Arbeitsweise dieses Programms:

100 Es wird ein Leerzeichen-String mit der Linge 15
definiert.

105 Die relative Datei mit der Linge 41 wird gedffnet.

110 Der Befehlskanal 15 wird gedffnet.

120 Zum Initialisieren der relativen Datei wird auf das
1. Byte des letzten (100.) Satzes positioniert.

130 Der letzte Satz wird freigegeben und die Initiali-
sierung beginnt.

140 Der Bildschirm wird gelidscht.

150-260 Die Recordnummer und die Felder 1-4 werden eingege-
ben und auf korrekte Lange gepriift.

270-290 Die eingegebenen Daten kénnen noch einmal korri-
giert werden.

300-330 Der Record wird aufbereitet.

340 Es wird auf das 1. Byte des angegebenen Records
positioniert.

330 Der Record wird auf Diskette geschrieben.

360-380 Es konnen erneut Daten eingegeben werden.

390 Das Programm wird beendet

Erfassen Sie nun mit diesem Programm einige Records.
Vergessen Sie aber nicht, dieses Programm abzuspeichern,
falls Sie es spdter noch benidtigen.

Sicherlich ist es auch notwendig, erfasste Daten zu lesen und
verandern. Dazu wird die relative Datei gedéffnet, auf den
gewiinschten Record positioniert und eingelesen. Dieser Record
muB dann wieder in seinen Feldern zerlegt werden. Lesen wir
nun einmal gezielt einen Record, der mit der o.g. Routine
erfasst wurde. Die folgende Routine liest diesen Record:

100 OPEN 1,8,2,"TEST.REL,L,"+CHR$ (41)

110 OPEN 2,8,15

115 PRINT CHR$(147)

120 INPUT"RECORNUMMER :";RN

130 PRINT#2,"P"+CHR$ (2) +CHR$ (RN) +CHR$ (0) +CHR$ (1)

140 INPUT#1,RC$

160 IF ASC(RC$)<>255 THEN PRINT“RECORD NICHT
BELEGT ! ":GOTO 250

170 PRINT RC$

250 CLOSE 1:CLOSE 2

Diese Routine liest einen bestimmten Record. Ist dieser
Record nicht belegt, so wid dies an den Wert 255 erkannt, mit
dem beim Einrichten der Datei Jjeder freie Record
gekennzeichnet wird.

Ein beschriebener Record wird angezeigt. Sie erkennen dabei,
dafl die Felder 1-4 immer an derselben Stelle enthalten sind.
Wollen Sie den Record wieder in seine einzelnen Felder
aufteilen, so missen diese mit dem Befehl MID$ dem Record
entnommen werden. Um z.B. das Feld 1 dem Record zu entnehmen,

35

geben Sie nach Auffinden eines Records im Direkt-Modus
folgende Befehle ein:

F1$=MID$ (RC$,1,10)
PRINT Fi$

Nun befindet sich in der Variablen F1¥ das 1. Feld, wie es im
Erfassungsprogramm eingegeben wurde. Dieses "Zerpflicken" des
Records konnen Sie in die o.g. Routine einbauen. Geben Sie
dazu folgende Zeile zusatzlich ein:

170 F14=MID$ (RC$,1,10)

180 F2$=MID$(RC%,11,5)

190 F3$=MID$(RC$,16,10)

200 F4$=MID$ (RC$,26,15)

210 PRINT“FELD 1: ";F1%$

220 PRINT"FELD 2: "“;F2¢

230 PRINT"FELD 3: ";F3%

240 PRINT"FELD 4: ";F4$

250 PRINT"WEITERER ZUGRIFF (J/N)7?"
260 GETX$:IF X$<>"J"AND X$<>"N"THEN 260
270 IF X$="J“THEN 115

280 CLOSE 1:CLOSE 2

Hier wird der Record aufbereitet und die Felder angezeigt.
Wichtig hierbei ist, daB die Angaben im MID$-Befehl der
genauen Position des Feldes innerhalb des Records entsprechen
missen. Die erste Angabe innerhalb der Klammer ist die
Stringvariable, aus der ein Ausschnitt entnommen werden soll.
Die zweite Angabe ist die Position, ab der die Anzahl Zeichen
entnommen werden soll, die in der dritten Angabe bestimmt
ist.

Mit den selektierten Feldern kann nun innerhalb des Programms
weiter gearbeitet werden.

Bisher haben wir die Records mit dem INPUT-Befehl eingelesen.
Ist der Record aber langer als 88 Zeichen, so kann er mit dem
INPUT-Befehl nicht mehr eingelesen werden. Der Grund dafir
ist, das ein INPUT-Befehl grundsatzlich nicht mehr als 88
Zeichen einlesen kann. Die Ausweichmiglichkeit zu dem nur
beschrankt einsetzbaren INPUT-Befehl ist der GET-Befehl. Mit
diesem Befehl werden die Bytes des Records einzeln gelesen
und zu einem String verkettet. Nehmen wir einmal an, Sie
haben eine relative Datei mit 128 Zeichen eingerichtet und
diese auch beschrieben. Nun wollen Sie den 10. Record dieser
Datei lesen und in die Variable RC# ibernehmen. Das Beispiel
der folgenden Routine verdeutlicht dieses Einlesen mit GET:

100 OPEN 1,8,2,"TEST.GET,L,"+CHRS$ (128)

110 OPEN 2,8,15

120 PRINT#2, "P"+CHR$ (2) +CHR#$ (10) +CHR$ (0) +CHR$ (1)
130 RC$=""

140 FOR I=1 TO 128

150 GET#1,X$

160 RC$=RC$+X$

170 NEXT I

56

Mach Ablauf dieser Routine steht der Record in der Variablen
RC# zur Verfiigung. Ist dieser Record mit einem PRINT-Befehl
ohne anschlieBendes Semikolon (bertragen worden, das ein
RETURN unterdriickt, so ist das letzte Zeichen in dem String
RC# ein RETURN. Um dieses RETURN zu ignorieren, 13Bt man die
Schleife in Zeile 140 nur bis 127 laufen. das letzte Zeichen
des Records (das RETURN) wird nun nicht gelesen.

Wie bereits erwdhnt, gibt der letzte Parameter des P-Befehls
an, ab welchem Zeichen des Records gelesen werden soll. Wenn
Sie z.B in dem 127-Zeichen-Record des vorherigen Beispiels
ein an der Position 40-40 befindliches Feld lesen miéchten, so
wird auf das 40. Zeichen positioniert und die folgenden 21
Zeichen eingelesen. Die folgende Routine verdeutlicht dies:

100 OPEN 1,8,2,"TEST.GET,L, "+CHR$ (128)

110 OPEN 2,8,15

120 PRINT#2,"P"+CHR$ (2) +CHR$ (10) +CHR$ (0) +CHR$ (40)
130 Fg="v

140 FOR I= 1 TO 21

150 GET#1,X$

160 F$=F$+X$

170 NEXT I

Da in der Zeile 120 auf das 40. Byte des 10. Records
positioniert wird und die Schleife in den Zeilen 140-170 die
folgenden 21 Bytes (Bytes 40-40 des Records) in F$ einliest,
befindet sich das dort enthaltene Feld nach Ablauf dieser
Routine in F$.

Sie sehen also, daB zum Arbeiten mit einem Teil des Records
nicht der gesamte Record eingelesen werden mufl. Der
Positionier-Befehl erméglicht dies.

1.5.6 SchlieBen einer relativen Datei

Beim GSchlieBen einer relativen Datei gibt es keine
Unterschiede zur sequentiellen Speicherung. Da aber zur
Verwaltung einer relativen Datei immer der Befehlskanal 15
zum Senden des Positionierbefehls offen gehalten werden muB,
muB auch dieser geschlossen werden. Selbstverstidndlich muB
die Filenummer, die beim OPEN-Befehl gewidhlt wurde, auch beim
SchlieBen dem File bzw. dem Befehlskanal entsprechen.

1.5.7 Suchen eines Records nach der biniren Methode

97

Im Mormalfall wird auf jedem Record mit der Recordnummer
zugegriffen. Nun kann es aber z.B. vorkommen, daB in einer
relativen Adressendatei der Herr Miller gesucht wird, die
entsprechende Recordnummer aber nicht bekannt ist. Nun muB
der Herr Miiller gesucht werden. Eine Miéglichkeit ist, Jjeden
Record zu lesen, mit dem Namen Miller zu vergleichen, usw.
Das kann bei einer Datei, die vieleicht 1000 Adressen
enthialt, sehr zeitaufwendig sein. Liegt die Datei in
sortierter Form vor, so kann dieser Record mit einer anderen
Methode gesucht werden. Diese Methode nennt man "bindres
Suchen". Hierbei ist es aber unbedingt notwendig, die Datei
sortiert aufrechtzuhalten. Wird z.B. ein Record hinzugefiigt,
s0 muB dieser entsprechend eingeordnet werden.

Das bindre Suchen kann man an einem einfachen Beispiel
verdeutlichen: Wenn Sie z.B. in einem Telefonbuch nach einer
Telefonnummer suchen, so gehen Sie sicher nicht sequentiell
vor. Sie schlagen die Mitte des Buches auf und vergleichen,
ob der erste Buchstabe des gesuchten Namens dem
aufgeschlagenen Teil entspricht. Ist der gesuchte Name
kleiner, so schlagen Sie die Halfte des 1. Teils auf, usw.
Sie gehen also systematisch vor.

Beim bindren Suchen wird nicht sequentiell weitergesucht,
wenn ein Record gefunden ist, der nicht dem gesuchten Record
entspricht. Es wird anschlieBend auf den Record zugegriffen,
der jeweils durch Zweiteilung der restlichen Anzahl der
Datensiatze ermittlelt wird. Daa folgende Beispiel
verdeutlicht dies:

Es existiert folgende, aufwirts sortierte, relative Datei:

Recordnummer Inhalt
1 1985
2 1999
3 2005
4 2230
S 2465
& 2897
7 3490
8 3539
? 4123

10 5000
11 5210
12 6450
13 6500
14 &550
15 6999

Von diesen aufgefihrten 15 Records wird der Record wmit dem
Inhalt 3490 gesucht. Es ist nicht bekannt, auf welchem Platz
er gespeichert ist.

Zunidchst ist festzustellen, aus wieviel Records die Datei
besteht. Im vorliegenden Fall aus 15. Die festgestellte Zahl
ist durch zwei zu teilen. Diese Mitte der Datei stellt den 8.
Record mit dem Inhalt 3539 dar. Es ist nun festzustellen, ab
dieser Record den Suchbegriff 3490 enthidlt und falls nicht,

58

ob der Suchbegriff griBer oder kleiner als der vorgefundene
Inhalt, in diesem Fall 3539 ist. Das Vergleichsergebnis zeigt
kleiner an. Somit befindet sich der gesuchte Record in der
Menge der Records, die kleiner als der Vorgefundene ist. Es
ist also auf die Mitte dieser Restes =zuzugreifen. Wir
erhalten den Record 4 mit dem Inhalt 2230. Das
Vergleichsergebnis zeigt an, daB der Suchbegriff 3490 griBer
als der bei Record 4 vorgefundene Inhalt 2230 ist. Der dritte
Zugriff geht auf die Mitte zwischen dem 4. und dem B. Record,
also auf den &. Record mit dem Inhalt 2897. Das
Vergleichsergebnis zeigt abermals kleiner an; das bedeutet,
es ist die Mitte zwischen den Records & und 8 zu bilden.
Somit ist der Suchbegriff unter Record 7 zu finden.

Das Prinzip des bindren Suchens besteht darin, das jeweils,
je nach Vergleichsergebnis, aufwarts oder abwirts die Mitte
zu suchen ist, bis der Suchbegriff gefunden wurde. Die
maximale Anzahl der Suchvorginge errechnet sich nach
folgender Formel:

S=INT(LOG(N) /LOG (2) +1)

Hierbei ist § die Anzahl der Zugriffe und N die Anzahl der
Records der Datei. In einer sortierten, relativen Datei mit
z.B. 1000 Records werden maximal 10 Zugriffe zum Aufsuchen
eines beliebigen Records benidtigt!

Erstellen wir die relative Datei mit 15 Datensitze, um
anschlieBend innerhalb dieser Datei bindr zu suchen:

100 OPEN1,8,2,“BINAER.REL,L ,"+CHR$ (5)

110 FORI=1TO15

120 READ RC$

130 PRINT#1,RC$

140 NEXT I

150 CLOSE 1:CLOSE 2:END

160 DATA 1985, 1999,2005,2230,2465,2897,3490,3539
170 DATA 4123,5000,5210,6450,6500,6550,56999

Dieses Programm erstellt die 15 Records umfassende Datei
"BINAER.REL" mit den in Zeile 160 bis 170 angegebenen Werten.
Hier wird der Positionier—Befehl nicht benétigt, da die Datei
vom ersten bis zum letzten Satz komplett beschrieben wird.
Der Zeiger steht also nach Erdéffnen der relativen Datei auf
dem ersten Record. In dieser Datei sollen nun Records binéar
gesucht werden. Das folgende Programm ist nach der Logik des
binadaren Suchens aufgebauts:

100 OPEN1,8,2,"BINAER.REL,L,"+CHR$ (5)

110 OPEN2,8,15

120 PRINTCHR$ (147)

140 N=15: REM ANZAHL RECORDS

150 I=LOG(N) /LOG(2)

160 IFI-INT(I)<>OTHENI=INT(I)+1

170 M=I-1

180 I=2~I

190 X=1/2

210 INPUT“SUCHBEGRIFF (% FUER ENDE): ";SB$

59

220 IFSB$="#"THEN 320
230 IF M<O THEN PRINT"RECORD NICHT GEFUNNDEN":

240 M=M-1

250 PRINT#2, "P"+CHR$ (2) +CHR# (X) +CHR$ (0) +CHR# (1)
260 INPUT#1,RCS$

270 IF SB$=RC$ THEN 340

280 IF SB$<RC# THEN X=X-2"M:GOTO230

290 X=X+2"M

300 IF X>I THEN PRINT"DATEI UEBERSCHRITTEN":G0OTO140
310 GOTO 230

320 CLOSE 1:CLOSE 2

330 END

340 PRINT"RECORD GEFUNDEN! *

350 PRINT"INHALT :"RC#

360 GOTO140

Die Dokumentation des Programms:

100 Die relative Datei "BINAER.REL" wird gedffnet.

110 Der Befehlskanal wird gedffnet.

120 Der Bildschirm wird geléscht.

140 Die Anzahl der Records wird in der Variablen N ge-
speichert.

150-1920 Sofern die maximale Anzahl der Records keine
Zweierpotenz darstellt, wird die nachsthiherer

Zweierpotenz gebildet. Dabei wird der Dateibe-
reich zwar nach oben erweitert, aber es gehen auch
keine Records verloren. Der Exponent dieser Zweier-—
potenz wird als Index benutzt. X wird der Wert
1/2 zugeordnet. I/2 bhezeichnet die genau die Mitte
der (erweiterten) Datei. AuBerdem wird wird die Va-
riable M angelegt, die den Anfangswert I-1 enthdalt.

210-220 Der Suchbegriff wird eingelesen. Soll das Programm
beendet werden, so wird '#*° eingegeben.

230 Wenn M<O , dann ist der Suchbegriff nicht gefunden
worden.
240 M wird um eins vermindert. Die nichste Potenzierung

mit M ergibt also die Halfte des Restes der Datei.
250-260 Es wird auf den Record positioniert, dessen Nummer
in der Variablen X enthalten ist.

270 Entspricht der eingelesene Record dem Suchbegriff,
dann wird die Suche abgebrochen und der Record aus-—
gegeben.

280-310 Es wird festgestellt, ob der Suchbegriff kleiner
oder griéBer als der gelesene Record ist. Dement-
sprechend wird die Mitte des oberen oder unteren
Restes in die Variable X gespeichert und erneut ein-
gelesen.

I20-330 Die Dateien werden geschlossen und das Programm be—
endet.

340-360 Der gefundene Record wird ausgegeben.

Dieses, in BASIC codierte, bindre Suchen ist universell

einsetzbar. Es miissen nur die Anzahl der Records und die
Vergleiche Suchbegriff/Record entsprechend angepasst werden.

&0

Benutzen Sie also diese Suchroutine zum Auffinden von Records
in Ihren sortierten, relativen Dateien.

1.5.8 Suchen eines Records iiber seperate Index—-Dateien

Wenn Sie hdufig auf einzelne Datensidtze gezielt und schnell
mit alphanumerischen Schliisseln zugreifen wollen, die nicht
der logischen Satznummer entsprechen, und Sie Ihre Datei
nicht in entsprechend sortierter Form halten wollen, so
empfiehlt sich eine andere Methade.

Bilden Sie fir jeden gewiinschten Schliissel-Begriff bzw. Index
eine eigene Index-Datei, in der pro Datensatz abgelegt sind

- jeweiliger Index
— zugehirige Satznummer

Diese Datei laden Sie bei Bedarf und zur Pflege ganz in den
Speicher. Ein Beispiel:

Die haben als relative Datei Ihre Adressverwaltung angelegt,
bestehend aus

- Vorname

— Name

— StraBe

- PLZ

— Wohnort

- Telefonnummer

Sowohl nach dem Vornamen, als auch nach dem Namen méchten Sie
gezielt suchen kiénnen. Also bilden Sie zwei zusdtzliche
relative Dateien, die als Felder nur den gewiinschten
Schliisselbgriff, z.B. den Vornamen, und die Satznummer des
entsprechenden Datensatzes in der Hauptdatei enthalten.

Die gewiinschten Indexdateien sollten Sie jeweils komplett im
Speicher halten, da dort schnellstmigliche Indexsuche
erfolgen kann. Wollen Sie z.B. auf den Datensatz zugreifen,
dear als Vornamen "OTTO" hat, so durchsuchen Sie im Speicher
die entsprechende Indexdatei und greifen anschlieBend mit der
gefundenen Satznummer direkt auf den gewiinschten Satz Ihrer
Adressdatei zu.

Verfolgen Sie nun ein Beispiel:

Wir nehmen an, es existiert eine Hauptdatei und eine
Indexdatei fiir den Namen:

Hauptdatei: Indexdatei:
Vorname weitere Felder Index Satznr.
(Name) LB HB
Walter Karl sesssnssssmas Walter 01 00
Berger Rainer cesasssssnsan Berger 02 00

&1

Tietz Klaus camsesvacans « Tietz 03 00
Schacht Rol+ cemsmnsasanas Schacht 04 00

Horstner Gustav sessmassssuns Horstner 99 00

Die Datei beinhaltet also 99 Datensatze. Bevor mit dem
Programm gearbeitet werden kann, muB die Indextabelle
eingelesen werden. Dies kann z.B. eine sequentielle Datei
sein, die in der mit DIM IT$(99) reservierten Speichertabelle
eingelesen wird. Die ersten 20 Zeichen eines jeden
Indextabellen-Platzes stellt den Vornamen dar. Das varletzte
Byte (Nr.21) ist das Lowbyte und das letzte Byte (Nr.22) das
Highbyte der Satznummer. Unter dieses Voraussetzungen kann
mit folgender Routine ein beliebiger Datensatz aufgesucht
werden:

100 INPUT "NAME";N$

110 FOR I=1T099

120 IF LEFT$(IT$,20)=N$THEN 150

130 NEXT 1

140 PRINT "NAME NICHT GEFUNDEN!":END

150 PRINT"DATENSATZ GEFUNDEN'"

160 OPEN1,8,2, “ADRESSEN,L ,"+CHR$ (81)

170 OPEN 2,8,15

180 PRINT#2,"P"+CHR$ (2) +MID$ (IT$,21,1) +CHR$ (0)
+CHR$ (1)

190 INPUT#1,RCS

Die Schleife in Zeile 110-130 durchlauft sequentiell die
Indextabelle nach dem gesuchten Namen, der sich in den linken
20 Zeichen befindet. Wird der Name nicht gefunden, so wird
die Schleife verlassen und in Zeile 140 eine entsprechende
Meldung ausgegeben, bevor das Programm beendet wird.

Wird in Zeile 120 eine Ubereinstimmung zwischen Index und
gesuchtem Namen festgestellt, so wird nach Zeile 150
verzweigt. Nach Ausgabe der Meldung wird die Adressendatei
gedffnet (falls sie nicht vorher gedffnet wurde). NAch dem
offnen des Befehlskanals wird der Positionierbefehl zur
Floppy gesendet. Da im vorletzten Byte eines Indexeintrages
das Lowbyte der Satznummer enthalten ist, braucht dies
lediglch als MID$-Befehl eingebaut werden. Das Highbyte ist
bekanntlich null, wenn die Satznummer 255 nicht
iberschreitet.

In Zeile 190 wird der Datensatz dann eingelesen und steht zur
Ver fiigung.

Der Zugriff iber Indexdateien stellt ebenfalls eine sehr

&2

schnelle und ungemein flexible Form der Dateiorganisation
dar. Theoretisch kiénnen Sie beliebig viele Indexdateien prao
Hauptdatei anlegen. Allerdings miissen Sie zwei wichtige
Einschrankungen beachten:

1. Bei Anderungen in der Hauptdatei, die Schliisselfelder
betreffen, missen auch die entsprechenden Indexdateien
gepflegt werden. Dies kann, besonders bei mehreren
Indexdateien, sehr aufwendig sein.

2. Zahl und GriBe der Indexdateien, die Sie zum Zweck des
schnellen Zugriffs im Speicher Ihres Computers halten,
werden durch den verfiigbaren Speicherplatz begrenzt.

1.5.9 &Andern von Records
Der logische Ablauf zum Andern eines Records ist folgender:

1. Einlesen des Records

2. "Splitten" des Records in seine Felder
3. Andern der entsprechenden Felder

4. Zusammenfiigen der Felder zu einem Record
5. Zuriickschreiben des Records

Im Abschnitt 1.5.5 haben Sie einige Records in die Datei

"TEST.REL" geschrieben. Diese Datei hat folgende
Eigenschaften:

Recordlange: 41 Bytes

Anzahl Records: 100

Anzahl Felder: 4

Lange, Position Feld 1: 10, 1-10

" y " Feld 2: 5, 11-15

" . Feld 3: 10, 16-15

" s " Feld 4: 15, 26-40
abschlieBendes RETURN?: ja, Position 41

Eine derartige Dateibeschreibung sollten Sie fiir jede Ihrer
Dateien anlegen. Dies ist z.B. sehr wichtig, wenn andere
Programme auf diese Daten zugreifen sollen.

In dieser Datei sollen nun Records gedndert werden. Das
folgende Programm erfiillt diese Aufgabe:

100 REM
110 REM VORBERE I TUNGEN
120 REM
130 BL$=" “

140 OPEN 1,8,2,"TEST.REL,L,"+CHR$(41)
150 OPEN 2,8,15

160 REM
170 REM RECORD EINLESEN
180 REM

&3

420
430
440
450
460
470
480
490
500
510
520
530
540
330
560
570
980
590
&00
610
620
630
&40
650
&&60
&70
&80
690

PRINT CHR$ (147)
INPUT"RECORDNUMMER (1-100): "3RN

IF RN<1 OR RN>100 THEN PRINT CHR$ (145);:G0T0200
PRINT" "

PRINT#2, "P"+CHR$ (2) +CHR$ (RN) +CHR$ (0) +CHR$ (1)

INPUT#1,RCS$

IF ASC(RC#$)<>255 THEN 270
PRINT "RECORD UNBESCHRIEBEN"
GOTO 630

REM

REM RECORD AUFBEREITEN
REM

F#(1)=MID$(RC%,1,10)

F$£(2)=MID$(RC%,11,5)
F#(Z)=MID%¥(RC#%,16,10)
F#£(4)=MID#%(RC%,26,15)
REM
REM FELDER ANZEIGEN
REM
PRINT CHR#$(147)

FOR I=1 TO 4

PRINT"FELD"3I3": ";F$(I)

NEXT I

PRINT" "
REM
REM FELDER ANDERN
REM
PRINT"WELCHES FELD SOLL GEANDERT WERDEN (1-4)7?"
GET X#$:IF X$<{"1" OR X$>"4" THEN 460
INPUT"NEUER INHALT : ";F$(VAL(X$))

PRINT"RECORD IST GEANDERT"

PRINT"NOCH ANDERUNGEN IN DIESEM RECORD (J/N)7?"
GET X#£:IF X$<{>"J" AND X$<{>"N" THEN 500

IF X$="J"THEN 340

REM
REM FELDER VERKETTEN
REM
RC$=F% (1) +LEFT$(BL$,10-LEN(F$(1)))
RC$=RC$+F$ (2) +LEFT$ (BL$,5-LEN(F$(2)))
RC$=RC$+F$ (Z)+LEFTS$ (BL$, 10-LEN(F£(3)))
RC#=RC$+F$ (4) +LEFT$ (BL$,15-LEN(F$(4)))
REM
REM RECORD ZURUCKSCHREIBEN
REM
PRINT#1 ,RC#
REM
REM PROGRAMM ENDE?
REM
PRINT"NOCH ANDERUNGEN IN DER DATEI (J/N)7?"
GET X#$:IF X${>"J" AND X$<{>"N" THEN &70

IF X$="J" THEN 1&0

CLOSE 1: CLOSE 2: END

Nachdem Sie dieses Praogramm eingegeben und gestartet haben,
kénnen Sie nun beliebige Records andern. Diese Records missen
allerdings mit dem im Abschnitt 1.5.5 enthaltenen Programm

64

erfasst worden sein!

Dieses Anderungsprogramm prift die neuen Feldeingaben nicht
auf korrekte Lange, sondern schneidet die Uberldnge ab.

Die wesentlichen Befehlsfolgen in diesem Programm sind in den
entsprechenden Abschnitten bereits ausfihrlich beschrieben
worden.

1.5.10 Ergéanzen einer relativen Datei

Jede relative Datei hat eine vom Anwender festgelegte
Recordzahl. Diese kann beim Einrichten der Datei festgelegt
werden, indem der letzte Record mit dem Wert CHR$(255)
beschrieben wird. Dieses Beschreiben des letzten Records hat
zu Folge, daB jeder Record unterhalb dieser Hiéchstgrenze
ebenfalls mit CHR#$(255) beschrieben, also zum Beschreiben
freigegeben wird.

Die zweite Miglichkeit ist, daB die Datei beim Einrichten
nicht in Ihrem vollen Umfang freigegeben wird. Wird z.B. der
Record mit der Nummer I in die neue Datei geschrieben, so
wird gleichzeitig der Record 1 und 2 freigegeben, also mit
CHR#(255) beschrieben. Ein weiteres Beschreiben des 90.
Records hat dann zur Folge, daB gleichzeitig die Records 4
bis 89 freigegeben werden, usw. Legen Sie also beim
Einrichten der Datei nicht den letzten Record fest, so ist
beim anschlieBendem Beschreiben der Datei mit einer
wesentlich langeren Verarbeitungszeit zu rechnen. Es ist also
sinnvoll, die Datei =zu Anfang in Ihrem vollen Umfang
freizugeben.

Eine eingerichtete, relative Datei kann jederzeit, sofern es
die Diskettenkapazitit erlaubt, vergriBert werden. Dazu wird
der neu ermittelte, letzte Record mit CHR#(255) beschrieben.
Gleichzeitig werden dann alle Records zwischen dem alten und
dem neuen Dateiende freigegeben.

Ein Schreibzugriff auf eine relative Datei, der iiber das
Dateiende hinausgeht, hat also keinen Fehler zur Folge. Wenn
die Diskette diese Erweiterung ermiglicht, wird die Datei
lediglich vergriflert. Ist ein Erweitern der Datei aufgrund
mangelner Diskettenkapazitit nicht méglich, so wird der
Fehler “FILE TO LARGE" dem Fehlerkanal der Floppy iibergeben.
Ein das Dateiende iiberschreitender Lesezugriff jedach
verursacht den Fehler "RECORD NOT PRESENT*" im
Floppy-Fehlerkanal.

1.5.11 "HAUSHALTSBUCH" mit relativer Datenspeicherung

Ein Beispiel einer kompletten Problemlésung mit relativer
Datenspeicherung bietet Ihnen einen guten Einblick in die
Organisation von relativen Dateien. Es sall Ihnen
verdeutlichen, wie man die Idee zu einem Programm realisiert.
Gleichzeitig dieses Programm fir fast Besitzer dieses Buches
einsetzbar ist. ‘

a5

Die Idee, ein Computer—Haushaltsbuch =zu fithren ist nicht
gerade neu. Viele Programmierer haben sich mit diesem Problem
beschaftigt. Doch die wenigsten listen dieses mit Hilfe der
relativen Speicherung. Da die einzelnen Konten eines
Haushal tsbuches numeriert werden, eignen sich diese Nummern
sehr gut als Schlissel =zu dem entsprechenden Record. Die
Kontonummer stellt also gleichzeitig die Recordnummer dar.
Die ndchste ilberlegung war, wie ein Record eines Kontos
aufgebaut sein muB. Um die Konten nicht nur mit Nummern,
sondern auch mit Klartext-Bezeichnung zu versehen, ist das
erste Feld des Records der Kontenname. Wir haben diesen Namen
auf 20 Zeichen festgelegt.

Da fiir jedes Jahr eine Datei gefithrt werden soll, sind 12
Felder notwendig, um die Kontensummen im Record
unterzubringen. Diese Summenfelder sind jeweils 10 Zeichen
grofi. Diese Kontensummen werden als Strings abgelegt, die mit
Hilfe des VAL-Befehls in numerische Variablen umgesetzt
werden, um sie zu aktualisieren. Der Record umfaBt somit 141
Zeichen (20 fir Name, 12#%10 fir Monatssummen und 1 fir
RETURN)

Der Aufbau des Records:

Feld Lange Position
Kontenname 20 1-20
Summe Januar 10 21-30
Summe Februar 10 31-40
Summe November 10 121-130
Summe Dezember 10 131-140

-

Wir haben die maximale Anzahl der Konten auf 20 begrenzt.
Somit umfaBt eine Jahresdatei 20 Records mit je 141 Bytes.

Diese Dateistruktur war Grundl age jeder weiteren
Uberlegungen.

Die nichste Uberlegung war, welche Funktionen dieses Programm
bieten sollte. Dabei legten wir uns auf folgende

Programmteile fest:
* Konten anlegen
Buchen
Kontenibersicht
Kontennamen ausgeben
Monatsiibersicht

* Jahresibersicht

&b

<onten anlegen:

Dieses Unterprogramm errichtet die Datei fiir ein Jahr. Es
wird die Anzahl der Konten und deren Namen abgefragt. Die
jeweiligen Records werden dann mit den Kontennamen und den
auf 0 gesetzten Summenfeldern angelegt. Sollte eine Datei
bereits unter dem zu Anfang bestimmten Namen existieren, kann
diese geliéscht und neu eingerichtet werden.

Buchen:

Nach Eingabe der Nummer des zu buchenden Kontos wird
bestimmt, ob es sich um ein Einnahme oder Ausgabekonto
handelt. Das Konto "GEHALT" z.B. ist ein Einnahmekonto und
das Konto "MIETE" ein Ausgabekonto.

Danach wird der alte Stand des Kontos ausgegeben. Nun buchen
Sie den entsprechenden Betrag der immer positiv ist. GSollte
es sich um eine Korrekturbuchung handeln, so geben Sie einen
negativen Betrag an. |

Nun wird der neue Stand ausgegeben und eine erneute Buchung
ermiglicht.

Konteniibersicht

Nach Eingabe der Kontonummer werden die Summen der 12 Monate
somwie die Gesamtsumme des Jahres ausgegeben. Somit erhalten
Sie einen iUberblick idber die Ausgaben bzw. Einnahmen eines
Kontos in einem Jahr.

Kontennamen ausgeben

Jedes Konto wird mit seiner Nummer bestimmt. Sollte einmal
eine Nummer in Vergessenheit geraten, so besteht die
Méglichkeit, in diesem Unterprogramm alle Konten mit Nummer
und entsprechendem Namen auszugeben.

Monatsiibersicht:

Hier werden die Einnahmen bzw. Ausgaben aller Konten in einem
Monat ausgegeben. Der Monatssaldo aller Konten schlieBen
dieses Unterprogramm ab

Jahresibersicht:

Dieses Unterprogramm zeigt Ihnen die Jahressummen aller
Konten und den Jahressaldo. Dieses Auflisten nimmt etwas Zeit
in Anspruch, da alle Monatsfelder jedes Records gelesen und
aussummiert werden muB. Es wird also auf die gesamte Datei
zugegriffen.

67

Wir glauben, alle wesentlichen Anforderungen an ein
derartiges Programm erfiillt zu haben. Sollten SGie aber die
ein oder andere Idee einer Erweiterung haben, so studieren
Sie das Programm mit der anschliefenden Dokumentation. Dann
werden Ihnen Eingriffe in das Programm zur individuellen
Anpassung keine Probleme bereiten.

Das Listing des Programms:

100 POKES3280,2: POKES3281,2: PRINTCHR$(158);:
BL#=" ":DIMS(12)
110 GOSUB2050
120 INPUT"AKTUELLES JAHR : ";J%
130 IFJ$<{"1983"0RJ$>"1999"THENPRINTCHR® (145) ; : GOTD120
140 GOSUB2050
150 PRINT"FUNKTIONSAUSWAHL: "

160 PRINT" ":PRINT

170 PRINT" —1- KONTEN ANLEGEN"

180 PRINT" —2- BUCHEN"

120 PRINT" —3— KONTENUEBERSICHT"

200 PRINT™® —4— KONTENNAMEN AUSGEBEN"
210 PRINT"® —-5— MONATSUEBERSICHT"

220 PRINT" —6— JAHRESUEBERSICHT":PRINT
230 PRINT"® —-0- PROGRAMMENDE"

240 GET X$:IF X#<"0" OR X$>"&" THEN 240

250 IF X$<{>"O"THENZ270

2460 END

270 ON VAL (X$)60SUB 290,560,920,11460,1370,1720
280 GOTO140

290 REM
300 REM KONTEN ANLEGEN
10 REM
320 GOSUB2050

330 PRINT"ACHTUNG! EINE EVTL. DATEI DIESES JAHRES"
340 PRINT"WIRD GELDESCHT!":PRINT

350 PRINT"SICHER (J/N)7?"

260 GETX#: IFX$<>"J"AND X$<>"N"THEN 360

270 IF X$="J"THEN320

380 CLOSE1:CLOSE2:RETURN

390 DPENZ2,8,15,"S:KONTEN"+J%

400 OPEN1,8,2,"KONTEN"+J$+",L ,"+CHR$(141)

410 GOSUB2050

420 INPUT"WIEVIELE KONTEN (1-20): ";KZ

430 PRINT

440 IFKZ<10RKZ>20THENPRINTCHR® (145) ;5 : GOTO420

450 FORI=1TOKZ

4460 PRINT"NAME KONTO NR.";Is;": ";

470 INPUTKN$

480 IFLEN(KN$) >20THENPRINTCHR$ (145) ; : GOTO440

490 RC$H=KN$+LEF T4 (BL$,20-LEN(KN#%))

500 FORX=1T012

510 RC$=RC$+STR$(0)+LEFT#(BL#$,8)

520 NEXTX

530 PRINT#1,RCS$

540 NEXT I

&8

550 CLOSE1:CLOSE2: RETURN
560 REM
570 REM BUCHEN
SBO REM
590 GOSUB2050

600 INPUT"KONTONUMMER" ; KN

610 IFKN<10RKNZ>Z20THENFRINTCHR® (145) ; : GOTOL00
&20 GOSUB2140

&30 PRINT™ "

&40 PRINTU"NR. "3KEN3" — "3;KN$

650 PRINT™ "

&460 PRINT"EINNAHME ODER AUSGABE (E/A)7?"

&70 PRINT" "
&80 GETX#: IFX$S<>"E"ANDX$< >"A"THENALBO

620 INPUT"MONAT (1-12) : "iM

700 IFM<{10RM>12THENPRINTCHR$ (145) ; : GOTO&F0

710 PRINT® "

720 PRINT"ALTER STAND : "8 (M)

730 PRINT" "

740 INPUT“BUCHUNGSBETRAG : “";BB

750 PRINT® "

760 IFX4="E"THEN S(M)=5(M)+BB:GOTO780

770 S{(M)=S(M)-BB

780 PRINT"NEUER STAND @ "3;8(M)

790 PRINT™ "

800 RCE=KN$+LEFT$(BL%$,20-LEN(KN$))

810 FORI=1TO12

820 S#=STR$(S(I))

830 RC$=RCF+SE+LEFTH (BL$,10-LEN(5%))

840 NEXTI

830 PRINT#2, "P"+CHR%$ (2) +CHR#% (KN) +CHR$ (0) +CHR$ (1)
860 PRINT#1,RC$

870 CLOSE1:CLOSE2

880 PRINT"WEITERE BUCHUNGEN (J/N)?"

890 GETX#: IFX$<>"J"ANDX$<>"N"THENB?0

200 IFX$="J"THENGOSUB2050: GOTO&00

2?10 RETURN

220 REM
P30 REM KONTENUEBERSICHT
?40 REM
950 GOSUB2050

260 INPUT"KONTONUMMER : "3;KN

P70 IFKN<10RKN>20THENFRINTCHR$ (145) ; : GOTO960
280 GOSUB2140

990 GOSUB2050:PRINTCHR$(145) ;CHR$(145) 3

1000 PRINT" "

1010 PRINT"NR.";KN;" — “;KN$

1020 PRINT" "
1030 PRINT“MONAT SALDO"

1040 PRINT®" "
1050 GS=0

1060 FORI=1TO12

1070 PRINTI; TAB(8);S(I)

1080 GS=GS+S(I)

1090 NEXTI

1100 PRINT" "

&9

1110 PRINT"GESAMT"; TAB(8);GS
1120 PRINTTAB(B) ; “======="
1130 PRINT"WEITER MIT RETURN"
1140 INPUTXS$

1150 CLOSE1:CLOSE2:RETURN
1160 REM
1170 REM KONTENNAMEN AUSGEBEN
1180 REM
1190 GOSUB2050

1200 OPEN1,8,2,"KONTEN"+J$+",L, "+CHR$ (141)

1210 OPENZ,8,15

1220 I=1

1230 PRINT#2, "P"+CHR$ (2) +CHR$ (1) +CHR$ (0) +CHR$ (1)
1240 RC$=""

1250 FORX=1TDZ0

1260 GET#1,X$

1270 RC$=RCE+X$

1280 NEXTX

1290 INPUTH#Z,X

1300 IFX=S0THEN 1340

1320 PRINTI;" - “;RC$

1330 I=1+1:60T01230

1340 PRINT"WEITER MIT RETURN*

1350 INPUTX$

1340 CLOSE1:CLOSEZ:RETURN

1370 REM
1380 REM MONATSUEBERSICHT
1390 REM
1400 GOSUB2050

1410 INPUT“MONAT : “;M

1420 GOSUBZ050

1430 PRINT" "
1440 PRINT“NR. NAME BETRAG"

1450 PRINT" “

1460 OPEN1,8,2,"KONTEN"+J$+",L, "+CHR$ (141)

1470 OPENZ,8,15

1480 GS=0

1490 FOR KN=1T0O20

1500 KN$="";GSg=""

1510 PRINT#Z,"P"+CHR$ (2) +CHR$ (KN) +CHR$ (0) +CHR$ (1)

1520 FOR I=1T020

1530 GET#1,X$

1580 KN$=KN$+X$

1550 NEXTI

1540 INPUT#2,F

1570 IFF<>SOTHEN 1590

1580 6OTO1670

1590 PRINT#2, “P"+CHR$ (2) +CHR$ (KN) +CHR$ (0} +CHR$ (20+ (M—1) #10)
1600 FOR I=1TO10

1610 GET#1,X$

1620 S$=S$+X$

1630 NEXT I

1640 GS=GS+VAL (S%)

1650 PRINT KN; TAB(&) ;KN$; TAB(24) ;S¢

1660 NEXT KN

1670 PRINT" "

70

PRINT"GESAMTSALDO"; TAB (26) ; STR$ (GS)
PRINTTAB (26) ; "======="
PRINT“WEITER MIT RETLURN";
INPUTX#$: CLOSE 1z CLOSE2: RETURN

REM
REM JAHRESUEBERSICHT
REM
GOSUB2050

OPEN1,8,2, "KONTEN"+J$+" ,L, "+CHR$ (141)
OPENZ,8,15

PRINT" "
PRINT"NR. NAME JAHRESALDO"
PRINT" "
6S=0
FOR KN=1TDZ20

PRINT#2, "P“+CHR$ (2) +CHR$ (KN) +CHR$ (0) +CHR$ (1)
Rc*: nmw

FORI=1T0140

GET#1,Xs$

RC$=RCH+X$

NEXTI

INPUT#2,F: IFF=SOTHEN1980

KN$=LEFT$ (RC$,20)

Js=0

FORI=1TO10

JS=JS+VAL (MID$ (RC$, 20+ (I-1) %10,10))

NEXTI

GS=GS+JS

PRINTKN; TAB (&) 5 KN$;3 TAB (26) 5 IS

NEXTKN

PRINT" "
CLOSE1:CLOSE2

PRINT"GESAMTSALDO"; TAB (24) ; GS
PRINTTAB (264) ; "=======t

PRINT"WEITER MIT RETURN"

INPUTX$

RETURN

REM
REM PROGRAMMMKOPF
REM
PRINTCHRS (147) 5

PRINTTAB(4);" "
PRINTTAB(#);"H AUS HAL TS BUCH "+Js
PRINTTAB(4) ;" .
PRINT: PRINT
RETURN

REM
REM KONTO EINLESEN
REM :
OFEN1,8,2, "KONTEN"+J$+" L, "+CHR$ (141)
OPENZ,8,15

PRINT#2, "P"+CHR$ (2) +CHR$ (KN) +CHR$ (0) +CHR$ (1)
RC‘: "

FORI=1TO140

GET#1,X$

RC$=RC$+X$

71

2240 NEXT I

2250 INPUT#2,F

2260 IFF<>S0THEN 2300

2270 PRINT"JAHRESDATEI ODER KONTO NICHT GEFUNDEN!":PRINT
2280 PRINT"WEITER MIT RETURN"

2290 CLOSE1:CLOSE2: RETURN

2300 KN$=LEFT$(RC%,20)

2310 GS=0

2320 FORI=1TO12

2330 S(I)=VAL (MID$(RC%$,20+(I-1)%10,10))
2340 GS=6S+S(I)

2350 NEXT I

2360 RETURN

Die Dokumentation des Programms:

Varspann:

100 Bildschirm— und Zeichenfarbe setzen; Leerzeichen—
string definieren; Variable fiir Kontensummen
dimensionieren.

110-130 Programmkopf anzeigen und aktuelles Jahr einlesen.
140-280 Programmfunktionen anzeigen und Auswahl einlesen;
entsprechendes Unterprogramm aufrufen.

Konten anlegen:

390-400 Evtl. vorhandene Datei dieses Jahres 1ldschen und
neue Datei erdffnen.

480 Eingebenen Kontennamen in der Position 1-20 des
Records RC4 bereitstellen.

500-540 Monatssummen auf Null setzen und als
Stringvariablen im Record bereitstellen.

530 Record mit abschlieBendem RETURN ibertragen. RETURN

wird standardmaBig von FPRINT gesendet.

Buchen:

570 Routine "Konto einlesen" aufrufen. Diese Routine
stellt die Monatssummen des Kontos in den Variablen
S(1) bis S(12) zur Verfiigung.

800 Kontenname in Record iibertragen.

810-840 Kontosummen in Record ibertragen.

850-860 Record iibertragen.

Konteniibersicht:

80 Gewiinschtes Konto einlesen und Monatssummen in den
Variablen S(1) bis S(12) bereitstellen.

1050-10920 Monatssummen anzeigen und in Gesamtsumme (GS)
aufaddieren. :

1110 Gesamtsumme anzeigen.

72

Kontennamen ausgeben:

1220 Kontonummer auf Anfangswert setzen.

1230 Auf Record des entsprechenden Kontos positionieren.

1240-1280 Kontoname aus Record in RC$ einlesen.

1290-1300 Wenn RECORD NOT PRESENT im Fehlerkanal (Fehler 50),
dann Routine abbrechen.

1320 Kontonummer und Name ausgeben.

Monatsiibersicht:

1490-14660 Schleife zum Einlesen aller Konten.

1510 Auf Record positionieren.

1520-1550 Kontenname einlesen.

1540-1580 Feststellen, ob Konto vorhandenj; Abbruch wenn nicht
alle 20 Konte definiert wurden.

1590 Pasitionieren auf Summenfeld des gewiinschten
Monats.

1600-1630 Einlesen der Monatssumme.

1640 Monatssumme in Gesamtsumme aufaddieren.

14650 Kontonummer, Kontoname und Monatssumme ausgeben.

1680 Gesamtsaldo (Gesamtsumme) ausgeben.

Jahresiibersicht:

1820-1970 Schleife zum Einlesen aller Konten.

1830 Auf Record positionieren.
1850-1880 Gesamten Record in RC$ einlesen.
1890 Testen, ob RECORD NOT FRESENT.
1200 Kontoname aus Record holen.

1920-1940 Monatssummen lesen, in numerischer Form umwandeln
und in Jahressumme (JS) aufaddieren.

1950 Jahressumme (JS) in Gesamtsumme (GS) aufaddieren.
1960 Kontonummer, Kontoname und Jahressumme ausgeben.
2000 Gesamtsaldo (Monatssaldo) ausgeben.

Konto einlesen:

2190 Auf in KN iibergebenen Record positionieren.

2210-2240 Record in RC# einlesen.

2250-2260 Testen, ob RECORD NOT PRESENT.

2300 Kontoname aus Record lesen.

2320-2350 Monatssummen aus Record lesen, in numerischer Form
umwandeln und der Tabelle S§(1) bis S(12) ibergeben.

73

1.6 Die Fehlermeldungen der Floppy und ihre Ursachen

Machen Sie bei der Bedienung der Floppy einen Fehler oder
tritt ein Disketten- oder sonstiger Fehler auf, s0
signalisiert dies die Floppy durch Blinken der roten
Leuchtdiode (LED) am Laufwerk. Die LED blinkt solange, bis
Sie die Fehlermeldung der Floppy gelesen haben oder bis Sie
einen neuen Befehl zur Floppy geschickt haben. Als erstes
wollen wir sehen, wie man die Fehlermeldung der Floppy
einlesen kann.

Dazu muBl der Fehler— bzw. Kommandokanal unter der
Sekundiradresse 15 gedffnet sein:

100 OPEN 15,8,15
110 INPUTS1S, A,B$,C,D
120 PRINT A,B$,C,D

War keine Fehlerbedingung aufgetreten, so fihrt dies zur
Ausgabe von

(o] OK o) (o)

Dabei bedeutet die erste Zahl. (A) die Fehlernummer, in
unserem Falle 03 kein Fehler. Als nidchstes folgt die
Fehlermeldung im Klartext (Variable B$). Die Variablen C und
D enthalten die Track—- und Sektornummer, bei denen der Fehler
aufgetreten ist, sofern dies von der Fehlerart her miglich
ist (hauptsichlich bei Hardware-Fehlern und blockorientierten
Befehlen).

Eine analoge Routine gibt die Fehlermeldung =zusammenhingend
wieder:

100 OPEN 15,8,15
110 BETS15,A$: PRINT A$; : IF ST<>64 THEN 110

00, 0OK,00,00

Hier werden solange Zeichen vom Fehlerkanal geholt und
ausgegeben, bis das Ende erkannt wird (Status = 6&4). Dies
gibt die Fehlermeldung genauso wieder, wie dies mit dem BASIC
4.0 Befehl

PRINT DS#%

miglich ist. Hier sind DS$ und DS reservierte Variablen, die
die komplette Fehlermeldung bzw. die Fehlernummer enthalten.
Jeder Bezug auf diese Variablen gibt den Fehlerstatus der
letzten Diskettenoperation wieder.

Auf den nichsten Seiten sind nun alle miglichen Fehler-
meldungen in Detail beschrieben.

74

00, 0K,00,00
Diese Meldung tritt dann auf, wenn die letzte Disketten-
operation fehlerfrei verlaufen ist oder falls nach dem
Lesen der letzten Fehlermeldung keine Daten oder kein
Befehl zur Floppy geschickt wurden.

01,FILES SCRATCHED,XX,00

Dies ist die Rickmeldung nach einem SCRATCH-Befehl. Die
Zahl XX gibt dabei an, wieviel Dateien geldscht wurden, da
z.B. durch die Verwendung des Jokers mit einem Befehl mehr
als eine Datei geliéscht werden kann. Da dies keine
eigentliche Fehlermeldung ist, blinkt dabei auch nicht die
-LED. Arbeiten Sie mit dem BASIC 4.0 Befehl ‘SCRATCH", so
wird die Riickmeldung automatisch geholt und angezeigt.

20,READ ERROR,TT,SS
Dieser Fehler bedeutet, dafl der ‘Header®~ (Kopf) eines
Blocks nicht gefunden wurde. Dabei handelt es sich meist
um eine defekte Diskette. TT und SS bezeichnen hier Track
und Sektor, bei dem der Fehler aufgetreten ist. MaBnahmen:
Defekte Diskette auswechseln.

21 ,READ ERROR,TT,SS

Auch dies ist ein Lesefehler. Hier wurde zu einem Block
die entsprechende S8SYNC (Synchron-) Markierung nicht
gefunden. Als Ursache hier kann keine oder eine nicht
formatierte Diskette sein. Dieser Fehler kann auch auf
einen dejustierten Schreib/Lesekopf hindeuten. MaBnahmen:
Entweder Diskette austauschen, formatieren oder
Schrieb/Lesekopf justieren lassen.

22,READ ERROR,TT,SS
Diese Fehlermeldung bedeutet einen Prifsummenfehler im
Header eines Datenblocks, der durch fehlerhaftes Schreiben
eines Blocks verursacht sein kann.

23,READ ERROR,TT,SS
Bei diesem Lesefehler konnte ein Datenblock zwar in den
DOS-Puffer gelesen werden, es wurde jedoch ein Priaf-
summenfehler festgestellt. Ein oder mehrere Datenbytes
sind fehlerhaft. MaBnahmen: Files so weit wie miéglich auf
eine andere Diskette "retten".

24 ,READ ERROR,TT,SS
Auch bei dieser Fehlermeldung handelt es sich um einen
Prifsummenfehler entweder im Datenblock oder im voraus—
gehenden Datenheader. Es wurden fehlerhafte Bytes ein-—
gelesen. MaBnahmen: wie Fehler 23.

25,WRITE ERROR,TT,SS
Dieser Fehler ist eigentlich ein VERIFY ERROR. Nach jedem
Schreiben eines Datenblocks werden die Daten noch einmal
gelesen und mit den Daten im Puffer verglichen. Bei
fehlender Ubereinstimmung wird dieser Fehler gemeldet.
MaBnahmen: Befehl, der den Fehler verursachte wiederholen.
Falls kein Erfolg, dann entsprechenden Datenblock mit

75

BLock—-Allocate fir weitere Bewtzung sperren.

26,WRITE PROTECT ON,TT,SS
Es wurde der Versuch unternommen, auf eine Diskette zu
schreiben, die einen Schreibschutzaufkleber enthalt.
MaBnahmen: Schreibschutz entfernen.

27,READ ERROR,TT,SS
Hier handelt es sich um einen Prifsummenfehler im Header
eines Datenblocks. Mafnahmen: Befehl wiederholen oder
Block sperren.

28,WRITE ERROR,TT,SS
Nach dem Schreiben eines Datenblocks wird die SYNC
(Synchron-) Zeichenfolge des nachsten Datenblocks nicht
gefunden. MafBnahmen: Diskette neu formatieren oder
austauschen.

29,DISK ID MISMATCH,TT,SS
Die ID (zweistellige Diskettenidentifikation) im
DOS—-Speicher stimmt nicht mit der ID auf der Diskette
iiberein. Die Diskette wurde entweder nicht initialisiert
oder es liegt ein Fehler im Header eines Datenblocks vor.
MaBnahmen: Diskette initialisieren.

30,8YNTAX ERROR, 00,00
Ein Befehl, der iiber den Kommandokanal geschickt wurde,
kann vom DOS nicht interpertiert werden. MaBnahmen: Befehl
dberprifen und korrigieren.

31,8YNTAX ERROR,00,00
Ein Befehl wird vom DOS nicht erkannt, z.B. BACKUP-Befehl
(Duplicate) auf der 1541. MaBnahmen:
Ausweichbefehl /programm verwenden.

32,8YNTAX ERROR,00,00
Der iiber den Kommandokanal gesandte Befehl ist l&nger als
40 Zeichen. MaBnahmen: Befehl verkirzen.

33,5YNTAX ERROR, 00,00
Beim OFEN- oder SAVE-Befehl wurde der Joker (%7, “727)
unzuldssig verwendet. MaBnahmen: Joker entfernen.

34,SYNTAX ERROR,00,00
Das DOS kann den Filenamen in einem Befehl nicht finden,
weil z.B. der Doppelpunkt ‘:° nach dem Befehlswort
vergessen wurde. MafBnahmen: Befehl Gberprifen.

39,FILE NOT FOUND,OC,00
Benutzerprogramm vom Typ ‘USR° zum automatischen Ausfithren
wurde nicht gefunden. MaBnahmen: Filenamen iberprifen.

50,RECORD NOT PRESENT,00,00
Bei einer relativen Datei wurde ein Datensatz ange-
sprochen, der nocht nicht geschrieben - wurde. Beim
Schreiben eines Datensatzes ist dies kein eigentlicher

76

Fehler, sondern weist nur darauf hin, daB ein neuer
Datensatz angelegt wird. Sie kiénnen diese Fehlermeldunge
vermeiden, wenn Sie beim Anlegen einer relativen Datei
direkt in den Datensatz mit der hiéchsten Nummer CHR$(235)
schreiben. Bei weiteren Zugriffen kommt dieser Fehler dann
nicht mehr vor.

51 ,0VERFLOW IN RECORD,00,00
Beim Schreiben eines Datensatzes in eine relative Datei
ist die Anzahl der Zeichen (einschlieflich des Carriage
Return) gréBer als die Datensatzlinge der Datei. Die
iiberz&dhligen Zeichen werden ignoriert.

52,FILE TOO LARGE,00,00
Die Datensatznummer einer relativen Datei ist zu groB; fir
das Anlegen dieses Datensatzes reicht die freie Dis-
kettenkapazitiat nicht mehr aus. MaBnahmen: Andere Diskette
verwenden oder Recordanzahl veringern.

&0,WRITE FILE OPEN,00,00
Es wurde versucht, eine Datei zum Lesen =zu &ffnen, die
beim Schreiben nicht geschlossen wurde, weil z.B. die
Diskette aus dem Laufwerk genommen wurde, she die gebff-
nete Datei geschlossen wurde. MaBnahmen: Modus 'M° im
OPEN-Befehl zum Auslesen dieser Datei verwenden.

61,FILE NOT OFEN, 00,00
Es wurde eine Datei angesprochen, die nicht gedéffnet war.
MaBnahmen: Datei &ffnen oder Dateiname iberpriifen.

&2,FILE NOT FOUND,0O,00
Es wurde versucht, ein Programm zu laden oder eine Datei
zu offnen, die nicht auf der Diskette existiert.
MaBnahmen: Filename Uberpriifen.

&3,FILE EXISTS,00,00
Der Versuch, eine neue Datei mit einem Namen anzulegen,
der schon auf der Diskette existiert, fiihrt zu dieser
Fehlermeldung. MaBnahmen: Anderen Filenamen oder
Klammeraffe verwenden.

&4 ,FILE TYPE MISMATCH,00,00
Der Dateityp beim &ffnen einer Datei stimmt nicht mit dem
Dateityp im Directory iberein. MaBnahmen: Filetyp
korrigieren.

&5,N0 BLOCK,TT,SS

Diese Fehlermeldung wird beim BLOCK-ALLOCATE Befehl
ausgegeben, wenn der zu belegende Block nicht mehr frei
war. Das DOS sucht in diesem Falle selbsttidtig einen
freien Block mit héherer Sektor—- und/oder Tracknummer und
gibt diese Werte als Track- und Sektornummer der
Fehlermeldung aus. Ist kein Block mit griBerer Nummer mehr
frei, wird zweimal 0 ausgegeben.

66, ILLEGAL TRACK OR SECTOR,TT,SS

77

Wenn man bei den Blockbefehlen sich auf nicht existierende
Blocks bezieht, wird diese Fehlermeldung ausgegeben.

67 ,ILLEGAL TRACK OR SECTOR,TT,SS
Die Track-Sektor—-Verkettung einer Datei zeigt auf einen
nicht existierenden Track oder Sektor.

70,ND CHANNEL ,00,00
Es wurde versucht, mehr Dateien 2zu &ffnen als Kandle
vorhanden sind oder ein Direktzugriffskanal ist schon
belegt.

71,DIR ERROR,TT,SS
Die Anzahl der freien Blocks im DOS-Speicher stimmt mit
dem Bitmuster der BAM nicht iiberein. Evtl. wurde die
Diskette nicht initialisiert.

72,DISK FULL,00,00
Auf der Diskette sind nur noch weniger als 3 Blocks frei
oder die maximale Anzahl an Directoryeintrdgen wurde
erreicht (144 auf der VC 1541).

73,CBM DOS V2.6 1541,00,00
Diese Meldung erscheint als Einschaltmeldung der VC 1541.
Als Fehlermeldung tritt sie auf, wenn versucht wird, auf
eine Diskette zu schreiben, die nicht mit der gleichen
DOS—Version formatiert wurde, z.B. mit dem Vorliufer der
CBM 4040, der CBM 3040 (DOS Version 1.0).

74 ,DRIVE NOT READY, 00,00
Wenn man versucht, die Floppy anzusprechen, ohne daB eine
Diskette im Laufwerk liegt, erhdlt man diese Fehler-
meldung.

75,FORMAT SPEED ERROR,00,00
Diese Fehlermeldung gibt es nur auf der CBM 8250. Sie
zeigt Abweichungen von der Normdrehzahl wahrend der
Formatierung an.

78

1.7 Ubersicht aller Befehle mit Vergleich BASIC 2.0 -
BASIC 4.0 - DOS 5.1

BASIC 2.0 BASIC 4.0 (Abk.) DOS 5.1
OFEN — Modus ‘A° APFPEND (aP)
BACKUF (bA)
LoAD"$",8 & LIST CATALOG (cA) 8% oder »>%
V(alidate) COLLECT (col) av oder >V
CONCAT (conC)
C(opy) COPY (coP) AC:.. oder >»C:..
CLOSE ... DCLOSE (dC)
LOAD"...",8 DLOAD (dL)} tfile oder /file
OPEN ...,B,... DOPEN (dO?
OPEN 1,8,15 DS%, DS & oder >
SAVE"...",8 DSAVE (dS)
N (2w} HEADER (hE) aN:.. oder >N:i..
I(nitialise) I(nitialise) 81 oder >I
[RECORD (reC)
R (ename) RENAME (reN) 8r:.. oder >R..
S(cratch? SCRATCH (sC) 85:.. oder »S..
Diese Tabelle stellt die verschiedenen BASIC-Versionen
gegeniiber. Das DOS 9.1 befindet sich auf der

TEST/DEMO-Diskette und wird im Kaptitel 4.2.1 beschrieben.

Der wesentliche Unterschied zwischen BASIC 2.0 und BASIC 4.0
ist, dafi mit BASIC 2.0 jeder Befehl, der vom
Disketten-Betriebssystem (DOS) ausgefithrt wird, iber den
Kanal 15 gesendet werden muB. Die Disketten-Befehle des BASIC
4.0 jedoch verwalten diesen Kanal selbststandig (mit Ausnahme
von INITIALISE). So erzeuvgt dieses BASIC z.B. aus dem Befehl
HEADER DO,"DISK1",IHJ die ,leiche Befehlsfolge, die vom BASIC
2.0 dazu angegeben werden muB, namlich:

OPEN 1,8,15,"N:DISK1,HJ"
CLOSE 1

Doch nun die Erklarung der BASIC 4.0-Befehle:

Beachten Sie die folgenden Parameter:
1¥n = logische Filenummer
dn = Drivenummer — bei Doppellaufwerken gibt es ein
Drive O (DO) und ein Drive 1 (D1); Singlelauf-—
werke werden mit DO adressiert.
ga = BGeriteadresse der Diskettenstation (U4 bis U31)

Angaben in Klammern brauchen nicht angegeben werden.
werden die Standardparameter DO und U8 eingesetzt.

Dann

APPEND:

79

Dieser Befehl ermiglich. das Anhangen von Datensitzen an eine
sequentielle Datei, wie es in BASIC 2.0 mit dem OPEN-Modus
‘A’ realisiert wird.

Dieser Befehl hat das folgende Format:

APPEND#1 fn, "dateiname" (,Ddn,Uga?}

Soll z.B die sequentielle Datei "SEQU.1", die sich auf Drive
O befindet, um einen Datensatz erweitert werden, so ist dazu
die folgende Befehlsfolge notwendig:

100 APPEND#1,"SERQU.1",DO
110 PRINT#1,X$
120 CLOSE 1

BACKUP:

Mit diesem Befehl kann eine gesamte Diskette kopiert werden.
Der BACKUP-Befehl ist jedoch nur bei Doppellaufwerken
einsetzbar. Beachten Sie das Format dieses Befehls:

BACKUP Ddn TO Ddn(,Uga)

Wichtig ist, daB entweder DO TO D1 oder D1 TO DO angegeben
werden muB. Ein Beispiel:

Es so0ll eine Kopie der Diskette in Drive 1 auf die Diskette
in Drive 0 erstellt werden. Dazu wird folgender Befehl
eingegeben:1lni

BACKUP D1 TO DO

CATALOG:

Der CATALOG-Befehl des BASIC 4.0 hat den Vorteil, daB das
Anzeigen des Disketteninhaltes nicht den BASIC—-Speicher
léscht, wie es beim BASIC 2.0 der Fall ist. Das Format des
Befehls:

CATALOG (Ddn,Uga)
Wird bei Doppellaufwerken keine Drivenummer angegeben, so
werden die Inhalte beider Disketten ausgegeben. Bei
Singlelaufwerken wird CATALOG DO erzeugt. Ein Beispiel:
CATALOG DO
Es wird das Inhaltsverzeichnis der Diskette in Drive O

ausgegeben.

COLLECT:

80

Dieser Befehl entspricht dem VALIDATE-Befehl des BASIC 2.0.
Die Syntax des Befehls sieht so aus:

COLLECT (Ddn)

CONCAT:

CONCAT verkettet sequentielle Files, indem einem File die
Daten eines zweiten Files angehdngt werden. Das Format:

CONCAT (Ddn,)"filel” to (Ddn,})"file2" (ON Uga)
Angenommen Sie wollen die Daten der Datei “SEGU.2" in Drive O
an die Datei "SEQU.1" in D1 anhidngen. Um dies zu erreichen

geben Sie folgenden Befehl ein:

CONCAT DO,"SERU.2" TO Di,"SEQU.1"

Mit diesem Befehl kinnen Files (ausgenommen relative Files)
von einem Drive auf das andere kopiert werden. Samit findet
der Befehl bei Singlelaufwerken keine Anwendung. Die Syntax
des Befehls sieht folgendermaBen aus:

COPY (Ddn,) ("filel") TO (Ddn,) ("file2")

Sollen alle Files dbernommen werden (z.B. von Drive 0 auf
Drive 1}, so reicht die die folgende Befehlsform aus:

COPY DO TO Di

DCLOSE:

Der Befehl DCLOSE hat dieselbe Funktion wie der einfache
CLOSE-Befehl, mit folgenden Ausnahmen:

DCLOSE schlieft alle Files
DCLOSE#1 schliefBt das File mit der Nummer 1
DCLOSE#1 ON U? schlielt das logische File #1 der Gerite—
adresse 9
DCLOSE us schlielt alle Files der Geriteadresse 8
Der Befehl hat die folgende Syntax:

DCLOSE (#1+n) (ON Uga)

Der Befehl DLOAD hat den Vorteil, daB standardmdBig von

81

Gerateadresse 8 geladen wird. Das Format:
DLOAD “programm" (,Ddn) (,Uga}

Wollen Sie z.B. das Programm "“PRG.2" von Drive O laden oder
von einem Einzellaufwerk laden, so geben Sie den Befehl

DLOAD "PRG.2"

ein. Drive 0 (DO) wird standardmidBig eingesetzt.

Dieser Befehl des BASIC 4.0 ist sehr umfangreich. Das
folgende Format bestidtigt es:

DOPEN#1fn,"file" (,Ddn) (,Uga) (,fileparamter)

Das Besondere an dieser Art des dffnens ist der Fileparamter.
Es gibt zwei Fileparameter, die folgende Funktion haben:

"L ‘—Parameter} ‘W’'-Parameter Wirkungsweise

JA NEIN Eine relative Datei wird zum
Schreiben geidffnet.

NEIN JA Ein sequentielles File wird
zum Schreiben gedffnet.

NEIN NEIN Ein File wird zum lesen ge-—

offnet. (REL,SEQ,PRG,USR)

Zusatzlich zum °‘L’'—-Parameter muB die Recordldnge angegeben
werden (z.B. LB80). Ein derartiger DOPEN-Befehl sieht dann so
aus:

DOPEN#1,"FILE.REL".DO,L80

Hier wird ein relatives File mit einer Recordldnge von 80
Bytes zum Schreiben gedffnet.

Wird kein Fileparameter angeweben, so vird das argegebene
File zum Lesen gedffnet.

Nach Auftreten eines Diskettenfehlers kann entweder die
gesamte Fehlermeldung mit PRINT DS# oder nur die Fehlernummer
mit PRINT DS angezeigt werden. Selbstverstandlich kann auch
innerhalb eines Programms der Fehler abgefragt und
dementsprechend verzweigt werden. Z.B.:

100 IF DS = 19 THEN GOTO.....

82

Mit diesem Befehl kinnen Programme auf Diskette gespeichert
werden. Das folgende Format ist zu beachten:

DSAVE (Ddn,) "programmname" (,lUga)

HEADER:

Mit dem HEADER-Befehl werden im BASIC 4.0 Disketten
formatiert. Er entsprricht dem NEW-Befehl im BASIC 2.0. Die
Syntax des Befehls:

HEADER "diskettenname",DO,Iid(,Uga)
oder HEADER Ddn,"diskettenname",Ilid

Hier gibt es zwei Miglichkeiten, das Laufwerk zu bestimmen.
Die Angabe id ist die Disketten-Identifikation. Wird sie
nicht angegeben, so wird der Disketten, vorausgesetzt sie ist
formatiert, lediglich ein neuer Name zugewiesen und alle
darauf befindlichen Files geléscht.

RECORD:

Dieser Befehl entspricht dem Positionier-Befehl des BASIC
2.0, bzw. des DOS 2.6. Mit dem RECORD-Befehl kann also auf
einen Record in einer relativen Datei positioniert werden,
ohne daB diese Positionierung iiber Kanal 15 gesendet werden
muB. Die Syntax dieses Befehls verdeutlicht, wie komfortabel
diese Positionierung ist:

RECORD#1+n,rn(,bp)

Die logische Filenummer bezieht sich auf das gedéffnete,
relative File. Fir ‘rn’ wird die Recordnummer (1-65535) und
fiir ‘bp’ evtl. die Position innerhalb dieses Records (1-254)
angegeben.

Ein Beispiel: Sie wollen auf das 12. Byte des 128. Records
einer mit der logischen Filenummer 2 geidffneten, relativen
Files positionieren. Der folgende Befehl ermbglicht dies:

RECORD#2,128,12

RENAME =

Dieses RENAME ist &hnlich dem RENAME des BASIC 2.0. Das
Format dieses Befehls:

83

RENAME (Ddn,)"“alter name" TO "neuer name"(,Uga)

SCRATCH:

Diese Methode des Lischens von Files ist wesentlich
komfortabler, denn es kann mit einem Befehl geléscht werden.
Das Format dieses Befehls:

SCRATCH (Ddn,)"file" (,Uga)

Nach Eingabe eines SCRATCH-Befehls wird mit der Meldung “ARE
YOU SURE?" noch einmal eine Annulierung des Befehls
ermiglicht. Soll das File wirklich geléscht werden, sa geben
Sie 'Y’, ansonsten ‘N’ ein. Nach dem Léschen des Files
erscheint die Meldung "FILES SCRATCHED" auf dem Bildschirm.

84

Kapitel 21 Programmierung fiir Fortgeschrittene

2.1 Der Direktzugriff auf jeden Block der Diskette

Bei der Handhabung von Dateien und Programmen auf der Floppy,
wie sie in Kapitel 1 beschrieben ist, brauchen wir uns um die
Organisation auf der Diskette nicht zu kimmern, das Floppy-
betriebssystem (DOS) erledigt dies automatisch fiir uns.

Das DOS bietet jedoch auch die Midglichkeit, jeden Block auf
der Diskette, der durch Track (Spur) und Sektor bestimmt ist,
einzeln anzusprechen. Damit stehen uns jetzt weitreichende
Méglichkeiten zur Verfiigung, von der Manipulation einzelner
Files bis zur Realisierung eigener neuer Dateistrukturen.

Um auf einen Block direkt zugreifen zu kidnnen, muB8 vom DOS
ein Datenkanal und ein Datenpuffer zugeordnet werden, iiber
den die Daten iibermittelt werden. Der Datenpuffer dient zur
Zwischenspeicherung der Daten, ehe sie auf Diskette geschrie-
ben werden, bzw. in den sie von der Diskette gelesen werden.
Um dem DOS mitzuteilen, daB wir im Direktzugriff arbeiten
wollen, wird ein spezieller Filename im OPEN-Befehl benutzt:

OPEN 1,8,2, “#"

Mit diesem Befehl wird der logischen Filenummer 1 auf dem
Gerat 8, der Floppy, eine Direktzugriffsdatei zugeordnet. Zur
Dateniibermittlung dient der Kanal 2 der Floppy. An Kanal-
nummern (Sekundaradresse beim OPEN-Befehl) stehen Ihnen 2 bis
14 zur Verfigung. O und 1 sind fir LOAD und SAVE reserviert,
15 ist der Kommandokanal. Welche Sekundaradresse Sie wdhlen,
hat keine weitere Bedeutung. Natirlich diirfen Sie eine
Sekundaradresse nicht mehrmals verwenden, da das DOS beim
zweiten OPEN-Befehl mit gleicher Sekundiradresse die
varherige Datei mit dieser Kanalnummer schlieft. Das gilt
natirlich auch beim Arbeiten mit normalen Dateien.

Bei dieser Form des OPEN-Befehls sucht die Floppy selbst
einen freien Datenpuffer und weist ihn dem angesprochenen
Kanal zu. Wir kinnen die Puffernummer lesen, wenn wir
unmittelbar nach dem OPEN-Befehl mit GET ein Zeichen abholen.
Dieser Wert enthilt die Puffernummer.

100 OPEN 1,8,2, “#"
110 GET#1, A$

120 PRINT ASC (A$+CHR$ (0))
RUN

3

85

In unserem Falle wurde also Puffer 3 belegt. Die Numerierung
der Puffer geht von O bis 4. Die Fuffer belegen jeweils 254
Byte (wie jeder Block auf der Diskette) und liegen bei der VC
1541 in folgenden Speicherbereichen:

Puffernummer Speicherbereich
o] $300 - $3FF, 768 - 1023
1 $400 — $4FF, 1024 - 1279
2 $500 - $5FF, 1280 - 1535
3 $600 - $6FF, 1536 - 1791
4 $700 - $7FF, 1792 - 2047

Puffer 4 steht normalerweise nicht zur Verfiigung, da dort die
BAM gespeichert ist. Arbeiten wir gleichzeitig noch mit
normalen Dateien, kann auch Puffer 3 nicht benutzt werden, da
er dann firs Directory benutzt wird. Wollen wir beim
Direktzugriff einen bestimmten Pufferspeicher zuordnen, so
kinnen wir dies beim OPEN-Befehl mit angeben.

OPEN 1,8,2, "#3"

Hiermit wird dem Kanal 2 der Puffer 3 ($600 - $4AFF)
zugeordnet, sofern er noch frei ist. Falls nicht aus
besonderen Grinden ein bestimmter Puffer erforderlich ist
(z.B. wenn ein ausfihrbares Maschinenprogramm dort stehen
soll), so sollte man dem DOS die Wahl des Puffers dberlassen,
da bei der Auswahl eines festen Puffers die Méglichkeit, daB
er belegt ist, grioBer ist.

Sie sollten daher nach dem offnen des Kanal in jedem Falle
den Fehlerkanal abfragen.

130 OPEN 15,8,15
140 GET#15, A$: PRINT A%; : IF ST <> &4 THEN 140

Ist der Puffer bereits belegt, so bekommen Sie die Fehler-
meldung

70,NO CHANNEL ,00,00

Haben Sie keine anderen Dateien offen, so kénnen Sie bis zu 4
Kanale fir den Direktzugriff é6ffnen. Es werden dann in der
Reihenfolge des tffnens die Puffer 3 bis O zugeordnet, wie
Sie folgendem Beispiel entnehmen kénnen.

10 OPEN 1,8,15,"I0" : I=2 : REM FEHLERKANAL
20 OPEN 2,8,2, "#" : GOSUB 100

30 OPEN 3,8,3, "#" : GOSUB 100

40 OPEN 4,8,4, “#" : GOSUB 100

50 OPEN 5,8,5, "#" : GOSUB 100

&40 OPEN 6,8,6, "#" ; GOSUB 100

70 END

100 GET#I, A$: PRINT ASC (A$+CHR$(0)) '

110 I=I+1 : REM PUFFERNUMMER)
120 GET#1, A% : PRINT A$; : IF ST <> &4 THEN 120
130 RETURN

86

z
00, OK,00,00
2
00, OK,00,00
1
00, OK,00,00
0
00, 0OK,00,00
199
70,NO CHANNEL ,00

Wie Sie sehen, scheiterte der Versuch, einen 5. Kanal fir den
Direktzugriff zu dffnen.

Die Dateniibertragung von und zu den Pufferspeichern geschieht
wie iiblich mit GET# bzw. INPUT# und PRINT#-Befehlen.

Hier noch eine Bemerkung zum Einlesen von Daten in den
Rechner.

Hand~ "t es sich im Puffer um reine alphanumerische Daten,
z.B. Texte, die nicht langer als 88 Zeichen sind und die mit
CR (Carriage Return, CHR$(13)) von einander getrennt sind, so
kiénnen sie ohne weiteres mit INFUT# gelesen werden. Sind
jedoch such Steuerzeichen enthalten oder sind die mit Texte
Komm a oder Doppelpunkt getrennt, so versagt der
INPUT#-Befehl. Hier missen wir auf den GET#—-Befehl
ausweichen, der immer nur ein Zeichen holt. Hier missen wir
jedoch beachten, daB mit GET# kein Nullbyte CHR#(0) gelesen
werden kann. In diesem Falle erhalten Sie den Leerstring
zuriick, so daB dies extra abgefragt werden muB, z.B.

100 GET#Z, A% : IF A%="" THEN A% = CHR%(0)

Eine andere und meist einfachere Alternative ist die
Benutzung des Befehls “INPUT#®#’, wie er in Kapitel 4.3.1
beschrieben ist. Hier kénnen Sie angeben, wieviel Zeichen in
einen String eingelesen werden sollen. Auch gibt es hier
keine Probleme mit Nullbytes (CHR#$(0)). Hier kinnen wir auch
fast den ganzen Puffer (255 Zeichen sind méglich, d.h. bis
auf ein Zeichen) mit einem Befehl lesen.

In den nachsten Abschnitten sind nun alle Befehle im
Zusammenhang mit dem Direktzugriff ausfiihrlich beschrieben.

Haben Sie sich mit den Block-Befehlen bereits nadher befaBt
und wollen Sie sich einzelne Block komplett auf dem
Bildschirm ansehen oder Aandern, so kinnen Sie dafir den
Disk—Monitor aus Kapitel 4.6 benutzen, der dies aus einfache
und komfortable Weise ermiglicht.

87

2.2 Die Direktzugriffsbefehle

2.2.1 Der Block—Read-Befehl B-R

Der Block—-Read-Befehl dient zum Lesen eines Block von
Diskette in den Puffer einer zuvor gedffneten Direktzu-—
griffsdatei. Samtliche Block-Befehle werden iiber den Komman-—
dokanal (Sekundiradresse 15) an die Floppy geschickt. Der
Befehl zum Lesen eines Blocks lautet ‘B-R°. Da mit diesem
Befehl jedoch das erste Byte eines Block nicht gelesen wird,
benutzt man zum Lesen eines Blocks nur den Befehl °‘Ul°. Der
Befehl hat folgende Syntax:

U1l Kanalnummer Drive Track Sektor

Dabei miissen Sie die Kanalnummer angeben, die Sie beim Sffnen
der Direktzugriffsdatei verwendet haben. Als nidchstes folgt
die Drivenummer; bei der VC 1541 immer Null und dann die
Nummern des Tracks und Sektors, den Sie lesen wollen.

10 OPEN 1,8,15
20 OPEN 2,8,2, "#"
30 PRINT#1, "Ul 2 O 18 O"

Damit haben Sie den Inhalt wvon Track 18 Sektor 0 in den =zu
Kanal 2 gehirenden Puffer gelesen. Nun kénnen Sie mit GET#2
Daten aus diesem Puffer lesen.

40 GET#2, A%,B$
S0 PRINT ASC(A$), ASC(B$)

18 1

Damit haben wir die beiden ersten Byte aus dem Puffer gelesen
und angezeigt. Der Track 18, Sektor 0 enthdlt die BAM der
1541; die beiden gelesenen Werte bhezeichnen den Track und den
Sektor des ersten Directory-Blocks.

Im Demo—Programm ‘DISPLAY T&S' auf der Testdiskette (Kapitel
4.2.7) wurde dieser Befehl benutzt, um die BAM von Diskette
zu lesen und die Belegung der einzelnen Sektoren auf dem
Bildschirm grafisch darzustellen.

Mit dem GET#-Befehl kiénnen wir so alle 256 Byte des Blocks
aus dem Puffer 1lesen; in unserem Beispiel lesen wir ab
Position 144 den Diskettenamen und die ID.

Da die einzelnen Blocks einer Datei so verkettet sind, daB
die ersten beiden Bytes auf einem Block jeweils die Track-
und Sektornummer des nachfolgenden Blocks enthalten, kann man
so den Verlauf einer Datei iiber die Diskette verfolgen. Die
Datei ist dann zuende, wenn man als Folgetrack den Wert Null
erhidlt; das zweite Byte gibht dann an, wieviel Bytes auf

a8

diesem Sektor noch zur Datei gehidren. Den ersten Sektor einer
Datei kann man mit unserem FProgramm aus Kapitel 4.1.1
erfahren. Dann kann folgendes kleine Programm alle weiteren
Tracks und Sektoren anzeigen, die durch eine Datei belegt
sind.

100 OPEN 1,8,15
110 OPEN 2,8,2, "#"

120 INPUT "TRACK UND SEKTOR ";T,S

130 PRINT# 1, "U1l 2 0";T;S

140 GET# 2, T$, S%

150 T = ASC(T$+CHR$(0)): S = ASC(S$+CHR$(0))
160 IF T = O THEN CLOSE 2 : CLOSE 1 :END
170 PRINT “TRACK";T ,“SEKTOR":S

180 GOTO 130

Geben Sie 18 und 0 als Track und Sektor an, so vorfolgen Sie
die Blicke fiir BAM und Directory.

2.2.2 Der Buffer—Pointer—Befehl B-P

Bendtigen wir in unserem obigen Beispiel nur den
Diskettennamen, der in Track 18 Sektor O ab Position 144
steht, so muBten wir nach obiger Methode die ersten 143 Byte
iberlesen, ehe wir den Namen erhielten. Um den Zugriff auf
Jjedes beliebige Byte zu erleichtern hat man den
Block—-Pointer-Befehl eingefiihrt. Damit 1&Bt sich der Zeiger,
der die augenblickliche Lese- oder Schreibposition im Puffer
angibt, auf jedes beliebige Byte im Puffer setzen. Die Syntax
ist folgende:

B-F Kanalnummer Position
Jetzt kann man den Diskettennamen direkt lesen:

100 OPEN 1,8,15

110 OPEN 2,8,2, "#"

120 PRINT# 1, "U1l 2 0 18 o*

130 PRINT# 1, "B-P 2 144"

140 FOR I = 1 TO 16 :REM MAXIMALE LAENGE
150 GET# 2, A$: IF A$=CHR$(140) THEN 170
160 PRINT A$; : NEXT

170 CLOSE 2 : CLOSE 1

Hier haben wir nach dem Einlesen des Blocks den Pufferzeiger
auf 144 gesetzt und lesen dann 16 Bytes, falls vorher nicht
CHR#(160) (°'Shift Space’) gefunden wurde, welches das Ende
des Namens anzeigt.

Die Bytes im Puffer sind von 0 bis 255 nummeriert, das erste
Byte hat also die Nummer O. Beim Lesen eines Blocks mit UL
wird der Pufferzeiger automatisch auf das Byte Nummer null
gesetzt. Beim Bewegen des Pufferzeigers ist man viéllig frei.
Man kann z.B. in unserem obigen Beispiel nach dem Lesen des
Namens das Byte Nummer 2 lesen, kann dies einfach durch

89

Setzen des Pufferzeigers auf dieses Byte geschehen.

PRINT# 1, "B-P 2 2"

2.2.3 Der Block—Write-Befehl B-W

Der Block—-Write—-Befehl ermbglicht es uns, den Inhalt des
Pufferspeichers in einen beliebigen Block auf Diskette zu
schreiben. Man kann damit Daten, die man in den Puffer
geschrieben hat, auf einen Block der Diskette schreiben.
Ebenso ist es miglich, mit dem Block—-Read-Befehl einen Block
in den Puffer zu lesen, dann einige Bytes zu verandern und
den Block dann wieder zuriick zu schreiben. Der Block-Write—
Befehl wird mit B-W abgekiirzt. Da dieser ‘B-W'-Befehl jedoch
in das erste Byte des Puffers den augenblicklichen Inhalt des
Pufferzeigers schreibt,; benutzt man hier meist den uz2r-
Befehl. Die Syntax des Befehls ist analog zum B—-R Befehl

U2 Kanalnummer Drive Track Sektor

100 OPEN 1,8,15
110 OPEN 2,8,2, "#"
120 PRINT# 2, "TESTDATEN"
130 PRINT# 1, "U2 2 0 1 O"
140 CLOSE 2 :CLOSE 1

Hier wird der Text "TESTDATEN" in den zu Kanal zweil
gehirenden Puffer geschrieben und dieser dann auf Track 1
Sektor O der Diskette. Durch den ‘Ul’-Befehl werden der
Inhalt des Puffers sowie der Pufferzeiger nicht verindert.
Wir wollen jetzt den Block—Write-Befehl dazu benutzen, den
Namen der Diskette, den wir im letzten Abschnitt gelesen
haben, zu dndern. Dazu miissen wir den neuen Namen bis auf
eine Lange von 16 Zeichen mit ‘Shift Space’ CHR$(160)
auffiilllen, ehe wir ihn auf Diskette schreiben kiénnen. Wir
benutzen wieder den Buffer—-Pointer-Befehl, um den Zeiger
direkt auf die gewiinschte Position innerhalb des FPuffers zu
setzen.

100 OPEN 1,8,15

110 OPEN 2,8,2, "#"

120 PRINT# 1, "Ul 2 O 18 O

1Z0 PRINT# 1, "B-P 2 144"

140 A%¥ = "DIREKTZUGRIFF"

150 IF LEN(A$) < 16 THEN A% = A$+CHR$ (160} : GOTD 1S5S0
160 PRINT# 2, A%;

170 PRINT# 1, "U2 2 0 18 o"

180 CLOSE 2

190 PRINT# 1, "IO" : CLOSE 1

Wir lesen also erst Track 18 Sektor O in den Puffer, setzen
den Pufferzeiger auf die Position des Diskettennamens und
schreiben den auf 16 Zeichen aufgefillten Namen in den
Puffer. Jetzt wird in Zeile 170 der Pufferinhalt wieder in

{0

den wurspriinglichen Block geschrieben und der Kanal 2
geschlossen. Dann wird die Diskette neu initialisiert, damit
BAM und Name in den DOS-Speicher iibernommen werden. Hpolen Sie
jetzt das Inhaltsverzeichnis mit

LOAD "$".,8
LIST

auf den Bildschirm, so sehen Sie, daB unsere Diskette einen
neuen Namen bekommen hat.

2.2.4 Der Block-Allocate-Befehl B-A

Der Block-Allocate-Befehl hat die Aufgabe, einen Block in der
BAM (Block Availability Map, Verzeichnis der zur Verfigung
stehenden Blicke) als belegt zu kennzeichnen. Dies ist dann
erforderlich, wenn wir im Direktzugriff Blicke auf der
Diskette beschrieben haben, die nicht Teil einer Datei sind
und deshalb nicht automatisch als belegt gekennzeichnet sind.
Werden dermaBen benutzte Blécke nicht als belegt gekenn—
zeichnt, kiénnen sie beim nichsten Schreiben in eine regulire
Datei idberschrieben werden. Der Block—Allocate-Befehl hat
folgende Syntax:

B-A Drive Track Sektor

Damit wird der entsprechende Block in der BAM als belegt
gekennzeichnet und ist so vor dem Uberschreiben durch andere
Dateien geschiitzt. War der zu belegende Block bereits belegt
so erhdlt man die Fehlermeldung &5, ‘NO BLOCK'.

100 OPEN 1,8,15
110.INPUT "TRACK, SEKTOR ";T,S
120 FRINT# 1, "B-A 0";T;S

130 INPUT# 1, A$,B$,C$,D$

140 PRINT A$","B$","C$","D$

In dem kleinen Programm kann man Track und Sektor angeben,
die am als belegt kennzeichnen will. War der Block noch frei,
wir er belegt und die Meldung ‘00, ok,00,00° wird ausgegeben.
War der Block jedoch bereits belegt, erscheint die Meldung
‘65,NO0 BLOCK,TT,S5 . Die Track und Sektornummer TT und SS
geben jetzt den nichsten freien Block mit hiéherer Sektor und/
oder Tracknummer an. Erhialt man diese Fehlermeldung, so weif3
man, daBl dieser Block belegt ist kann den nachsten freien
Block benutzen. Erhalt bei der Fehlermeldung &5 jedoch als
Track und Sektornummer jeweils eine Null zurick, so ist kein
Block mit héherer Track und/ oder Sektornummer mehr frei. Das
folgende Programm belegt automatisch den nichsten freien
Sektor.

100 OFEN 1,8,15

110 INPUT "TRACK, SEKTOR “;T,S
120 PRINT# 1, "B-A 0";T;S

21

130 INPUT# 1, A$,B$,TT,SS
140 IF A% = "00" THEN 190

150 IF A$<>"45" THEN PRINT A$","B$","TT","SS : END
160 IF TT=0 THEN PRINT “KEIN FREIER BLOCK MEHR" : END
170 IF TT=18 THEN TT=19 : S8=0

180 T=TT : S=8S : GOTO 120

190 PRINT "TRACK" TT “SEKTOR" SS "WURDE BELEGT"

Die Abfrage auf Track 18 in Zeile 170 verhindert, daB ein
Block des Directorys belegt wird. Eine weitere Fehlermeldung
in diesem Zusammenhang mit dem ‘B-A’'—-Befehl ist noch
interresant. Versucht man einen Block zu belegen, der gar
nicht existitiert, z.B. Track 20 Sektor 21, so erhidlt man die
Fehlermeldung

&6, ILLEGAL TRACK OR SEKTOR,20,21

Die Kennzeichnung eines Blocks in der BAM als belegt
verhindert das iberschreiben des Blocks durch andere Dateien.
Der Block bleibt solange als belegt gekennzeichnet, bis der
Befehl ‘VALIDATE® (°'COLLECT in BASIC 4.0) auf die Diskette
angewandt wird. Dieser Befehl konstruiert eine neue BAM. Dies
geschieht folgendermaBen. Da samtliche Blocks einer Datei mit
einander verkettet sind, kann man so eine Datei iiber die
Diskette verfolgen. Dies macht dem WValidate-Befehl und
markiert jeden Block, der zu einer Datei gehirt, als belegt.
Nicht geschlossene Dateien, im Directory mit “#° gekenn-—
zeichnet, werden dabei geliéscht. Dabei werden dann auch alle
Blicke, die mit "B-A° belegt wurden und zu keiner reguldren
Datei gehiren, wieder freigegeben. Hat man also im
Direktzugriff Blicke belegt, die nicht zu Dateien gehiren,
die im Directory erscheinen, so darf man den Validate-Befehl
nicht anwenden, da sonst samtliche Blicke wieder freigegeben
werden.

2.2.5 Der Block-Free-Befehl B-F

Der Block-Free—-Befehl ist das Gegenstiick zum Block—-Allo-
cate-Befehl und gibt einen Block in der BAM wieder frei. Die
Syntax ist analog zum Block—-Allocate-Befehl:

B-F Drive Track Sektor

100 OPEN 1,8,15
110 PRINT# 1, "B-F 0 20 9"

Mit diesem Befehl wird der Block in Track 20 Sektor 9 wieder
in der BAM freigegeben. War der Block bereits freigegeben, so
gibt es hier keine Fehlermeldung.

Das Belegen und Freigeben von Blocks haben nur Effekt auf das
Uberschreiben des Blocks mit regulidren Dateien durch das DOS.
Die Block-Write— und Block—Read-Befehle bleiben davon unbe-—
eintrichtigt. Sie kénnen mit diesen Befehlen sowohl belegte

92

Blocks beschreiben, noch wird ein Block durch Beschreiben mit
Block-Write in der BAM belegt. Haben Sie z.B. auf einer
Diskette nur Direktzugriffsdateien, so ist es im Prinzip
nicht nitig, beschriebene Blicke als belegt zu kennzeichnen,
da keine anderen Dateien auf Diskette geschrieben werden. In
diesem Falle kidnnen Sie sogar die Directoryblécke in Track 18
mit benutzen, Sie kinnen so 672 Blicke auf der VC 1541
Diskette benutzen.

2.2.6 Der Block-Execute-Befehl B-E

Der Block-Execute—-Befehl dient dazu, einen Block von Diskette
in den Puffer zu lesen und den Pufferinhalt als Maschinen—
programm im DOS auszufiihren. Man kann also Routinen, die das
DOS ausfihren soll, mit dem ‘B-W'— bzw. ‘UZ’'-Befehl auf einen
Sektor auf Diskette schreiben und spater mit dem
Block-Execute-Befehl in einen Puffer holen und dort als
Maschinenprogramm ausfihren. Das setzt natirlich eine gute

Kenntnis der Interna des DOS veoraus. Will man den ‘B-E'—
Befehl benutzen, wird man beim &ffnen des Direktzugriffs—
kanal wmeist die Puffernummer mit angeben, falls das

Maschinenprogramm nicht verschiebbar und fiir einen bestimmten
Puffer geschrieben ist. Der Block—Execute—-Befehl hat folgende
Syntax:

B~E Kanalnummer Drive Track Sektor

100 OPEN 1,8,15
110 OPEN 2,8,2, "#3"
120 PRINT# 1, "B-E 2 0 17 12"

Hier wird der Puffer 23X ($600 - $&6FF) dem Kanal zwei
zugeordnet. AnschlieBend wird der Inhalt von Track 17, Sektor
12 in diesen Puffer geladen und dort als Maschinenprogramm
ausgefihrt.

Der Block—-Execute—-Befehl 1&Bt sich durch Block-Read und
Memory—Execute-Befehl ersetzen. Beispiele fir die Ausfihrung
von Maschinenprogrammen im DOS finden Sie im Kapitel 2.4 bei
den Memory-Befehlen.

93

2.3 Anwendungen des Direktzugriffs

Was 1&Bt sich nun mit den Direktzugriffsbefehlen anfangen ?

Dazu kann man sich mehrere Anwendungen vorstellen. Die erste
Miéglichkeit besteht in der Manipulation einzelner Sektoren.
Damit kann man eine Vielfalt von Aufgaben erfillen. Es fangt
an mit Manipulationen im BAM-Sektor, wo wir die Miglichkeit
haben, den Diskettennamen oder die ID zu &ndern. Dann bietet
sich das Directory an. Dort kinnten wir die ungenutzten Bytes
fir zusidtzliche Informationen nutzen. Wir kénnen Dateien
einen anderen Namen geben und kiénnen die Verkettung der
einzelnen Blocks einer Datei verfolgen und gegebenenfalls
nach eigenen Vorstellungen A&andern. Eine ganze Palette an
Mioglichkeiten tut sich auf, wenn es um den Filetyp der Datei
geht. Wir kdnnen z.B. aus einer sequentiellen Datei eine
Programmdatei machen, indem wir aus Filetyp 1 eine 2 machen.
Wir konnen wir eine nichtgeschlossene Datei in Directory
durch Setzen des Bit 7 schlieBeny aus $02 wird dann $82.
Solche Dateien sind im Directory durch einen Stern
gekennzeichnet; nach der obigen Anderung verschwindet der
Stern. Eine vom DOS zwar beriicksichtigte, per Befehl jedoch
nicht erreichbare Eigenschaft einer Datei ist der Schutz vor
dem Lischen. Dazu brauchen wir lediglich das Bit 6 des
Filetyps setzen, z.B wird aus #82 dann $C2. Im Directory
erscheint jetzt ein "<’ hinter der Typbezeichnung. Die Datei
ist nun gegen Scratchen immun. Damit kiénnen Sie z.B. wichtige
Systemprogramme auf Ihrer Diskette gegen unbeabsichtigtes
Liéschen schitzen. Diese und andere Miglichkeiten finden Sie
in Kapitel 4.1.

Haben Sie derartige Manipulationen vor, so wire es am
komfortabelsten, wenn man sich einen kompletten Sektor von
Diskette lesen kinnte, ihn auf dem Bildschirm anzeigen,
dndern und wieder auf Diskette schreiben kinnte. Ein solches
Programm, ein Disk-Monitor, ist in Kapitel 4.4 beschrieben.
Ehe Sie jedoch mit solchen Experimenten beginnen, sollten Sie
sich auf jeden Fall eine Kopie von Ihrer Diskette machen.
Machen Sie namlich gerade bei Directory und BAM Fehler, kann
unter Umstanden der ganze Disketteninhalt fiir Sie verloren
sein.

Haben Sie schon mal aus Versehen eine Datei oder ein Programm
auf Diskette gelidscht und sich dann dariiber geargert, daB Sie
das komplette Programm, neu Eingeben muBten 7 Falls Sie
danach noch nicht auf die Diskette geschrieben haben, kinnen
Sie die Datei einfach zurickholen. Beim Lischen einer Datei
wird namlich lediglich im Directory der Filetyp auf O gesetzt
und die belegten Bliécke in der BAM freigegeben. Sie brauchen
jetzt nur der Directoryeintrag der Datei zu suchen und den
Filetyp wieder einzusetzen: #$B1 fir SER, $82 fir PRG, $83 fir
USR und $84 fi4r REL. Danach miissen G8ie nach ein Validate
machen, damit die Bldicke der Datei wieder als belegt

24

gekennzeichnet werden, z.B. mit OPEN 1,8,15 : PRINT# 1, "vo-,

Andere Anwendungen des Direktzugriff kénnen z.B. dazu dienen,
eigene Dateistrukturen zu erzeugen, die das DOS nicht kennt.
Sie missen dann die Verwaltung der neuen Datei selbst
ibernehmen und benutzen zum Lesen und Schreiben die
Direktzugriffsdatei. Eine solche Dateiform ist =z.B. die
ISAM-Datei. ISAM ist die Abkirzung fir Index Sequentiell
Acces Method, zu deutsch Index—sequentielle Zugrfiffsmethaode
heift. Bei einer ISAM-Datei kinnen Sie auf jeden Dateisatz
direkt zugreifen, dhnlich wie bei einer realtiven Datei.
Hierbei wird jedoch nicht iGber die Satznummer, sondern iiber
einen sogenannten Zugriffsschlissel oder Index zugegriffen.
Dieser Index ist ein Feld des Datensatzes. Besteht ein
Datensatz z.B. aus 5 Feldern, die Namen, Vornamen, StraBe,
Postleitzahl und Ort enthalten, so kiénnten wir den Namen als
Zugriffsschlissel definieren. Wollen wir nun den Datensatz
des Kunden Miller lesen, so heiBt der Befehl dazu einfach
‘Lese Datensatz "Miiller"'. Wir brauchen uns also nicht um
irgenidwelche Satznummer oder sonstige Ordnungskriterien
kimmern wund kdnnen im Klartext angeben, welchen Datensatz wir
Lesen, Andern, Schreiben oder Lischen wollen. In solchen
ISAM-Dairisystemen ist meist der Index noch einmal separat
abgespeichert zusammen mit den Informationen, WO der
Datensat: auf Diskette Zu finden ist. Eine solche
ISAM-Datei--Verwaltung mit noch weitgehenderen Miglichkeiten,
als sie himr beschrieben ist, finden Sie z.B. neben anderen
Dingen im Programmentwicklungssystem MASTER, das auch fir den
Commodore &4 ~orhiltlich ist.

95

2.4 Der Zugriff auf das DOS -~ Die Memory-Befehle

In Kapitel 2.2.&6 haben wir bereits die Miglichkeit kennen—
gelernt, Praogramme in den DOS-Speicher zu laden und dort
auszufiihren. Mit den Memory—-Befehlen kinnen wir nun auf jedes
Byte des DOS zugreifen und Programm in RAM und ROM ausfiihren.
Wir kinnen z.B. auf den Arbeitsspeicher des DOS zugreifen und
z.B. die Anzahl der freien Blicke auf der Diskette lesen oder
den Diskettenname aus dem BAM-Puffer holen. Durch Schreiben
in das DOS—-RAM kiénnen wir Konstanten andern, z.B. die Geriate-
nummer der Floppy oder die Anzahl der Leseversuche fiir einen
Block, ehe eine Fehlermeldung gebracht wird. Weiterhin
besteht die Mioglichkeit, Routinen innerhalb des DOS-Speichers
ausfihren zu lassen. Das kiénnen sowohl Routinen des DOS als
auch eigene Routinen sein, die in einem Pufferspeicher
abgelegt und dort ausgefiihrt werden kénnen, wie beim
Block—Execute-Befehl. Voraussetzung Ffiir die erfolgreiche
Nutzung dieser Befehle sind natiarlich Kenntnise in 6502
Maschinensprache und in Arbeitsweise und Speicherbelegung des
DOS; bei letzterem, so hoffen wir, kann Ihnen dieses Buch
eine Hilfe sein. Es folgt nun eine Beschreibung der Befehle
sowie Beispiele zu ihrer Anwendung.

2.4.1 Der Memory—-Read-Befehl M-R

Mit diesem Befehl kann man jedes Byte des DOS lesen. Der
Befehl wird itber den Kommamdokanal iibermittelt und stellt das
gelesene Byte dann ebenfalls auf dem Kommamdokanal zur
Verfiigung, wo es mit GET# abgeholt werden kann. Die Syntax
des Befehls sieht so aus:

M-R CHR$(LO) CHR$ (HI)

Dabei bedeuten LO und HI das Low— und Highbyte der Adresse im
DOS, die gelesen werden soll. Das folgende Programm fragt
nach einer Adresse und liest den Inhalt dieser Adresse aus
dem DOS.

100 INPUT "ADRESSE ";A

110 HI = INT (A/256&)

120 LO = A-256%HI

130 OPEN 1,8,15

140 PRINT# 1, "M-R"; CHR$(LO); CHR$(HI)
150 GET# 1, A%

160 PRINT ASC (A$+CHR$ (0))

Wollen wir z.B. die Anzahl der freien Blocks auf einer
Diskette wissen, so brauchen wir nicht das komplette
Inhaltsverzeichnis zu lesen, sondern konnen direkt die
entsprechenden Bytes aus dem DOS-Speicher lesen. Dies kann
z.B. dann niitzlich sein, wenn man vom Programm aus Dateien

6

anlegt und sich so vergewissern kann, ob noch geniigend Platz
auf der Diskette ist.

100 OPEN 1,8,15 ,"IO"

110 PRINT# 1, "M—-R" CHR$(2350) CHR$(2)

120 GET# 1, A% : IF A$="" THEN A$=CHR$(0)

130 PRINT# 1, "M-R" CHR$(232) CHR$(2)

140 GET# 1, B : IF B$="" THEN B$=CHR$ (0}

150 PRINT ASC(A$) + 256 * ASC (B$) "BLOCKS FREI“
160 CLOSE 1

Mit der angegebenen Syntax muf3 fir jedes Byte, was gelesen
werden soll, ein eigener ‘M-R'-Befehl benutzt. Wie sich
jedoch aus dem DOS-Listing entnehmen und durch berpriifen
bestatigen 1&4Bt, kann man auch mehrere aufeinander folgende
Bytes mit einem ‘M-R’'-Befehl 1lesen. Man braucht nur die
Anzahl der zu lesenden Bytes als dritten Parameter angeben:

M-R CHR$(LO) CHR$(HI) CHR$ (ANZAHL)

Benutzen kiénnen wir dies z.B. dazu, um den Namen der Diskette
aus dem BAM-pufferspeicher zu lesen. Dazu muB man wissen, daB
die BAM beim Initialisieren oder sonst vor einem Dateizugriff
in den Fuffer ab Adresse $700 geladen wird, aus dem wir mit
einem 'M-R’-Befehl den Namen der Diskette lesen kinnen.

100 OPEN 1,8,15, "I0"

110 PRINT# 1, "M-R" CHR$(144) CHR$(7) CHR$(1&)
120 INPUTH# 1, AS

130 PRINT A$

Wir erhalten so auf einfache Weise den Namen der Diskette (16
Zeichen, aufgefillt mit ‘Shift Space’). Damit kann man vom
Programm her Gberprifen, ob die richtige Diskette eingelegt
ist.

Auf diese Weise kiénnen auch die Diskettenpuffer gelesen
werden, wenn man dem DOS auf die Spur kommen will. Ebensao
besteht die Miglichkeit, Teile des DOS, die man nach eigenen
Winschen manipulieren will, vom ROM in einen Pufferspeicher
zu kopieren, dort entsprechend zu Andern und dann zur
Ausfilhrung zu bringen. Doch dies gehort bereits in die beiden
nachsten Abschnitte.

2.4.2 Der Memory-Write-Befehl M-W

Der gegensiatzliche Befehl zum Memory—-Read ist der Befehl =zum
Schreiben von Daten in den DOS-Speicher, Memory-Write, ‘M-W-°.
Beschreiben 148t sich natirlich nur das DOS-RAM - Zeropage,
Stack und Pufferspeicher sowie evtl. die Ein/Ausgabe—Bau—
steine. Hier ist von vorneherein an die Miglichkeit gedacht
worden, mehrere aufeinder folgende Bytes mit einem Befehl zu
schreiben. Die Syntax sieht so aus:

97

M-W CHR#(LO) CHR#$(HI)> CHR#(ANZAHL) CHR$(DATA1) CHR#$ (DATAZ2)

Dabei kinnen soviele Daten iibergeben werden, wie in Anzahl
spezifiziert ist, theoretisch also 255, da der Eingabepuffer
Jjedoch nur 40 Zeichen faBt, ist die Anzahl auf 34 Bytes pro
Befehl beschrinkt. Eine migliche Anwendung des Befehls dient
zum Andern der Geratenummer der Floppy (siehe Programm ‘DISK
ADDR CHANGE ‘', Kapitel 4.2.3). Die Adresse steht in zwei
Speicherstellen in der Zeropage. In Adresse %77 gleich 119
steht die Geratenummer plus %20 gleich 32 fir LISTEN, also
fir den Empfang wvon Daten vom Computer. In der darauf-
folgenden Adresse steht die Gerdtenummer plus $40 gleich &4
fir TALK, also firs Senden von Daten zum Computer. Da die
Adressen separat gespeichert sind besteht also die
Miglichkeit, fir Senden und Empfangen verschiedene Adressen
zu verwenden. Im folgenden Beispiel wird die Empfangsadresse
auf ? und die Sendeadresse auf 10 gesetzt.

100 OPEN 1,8,15

110 PRINT# 1, “M-W" CHR$(119) CHR$(0) CHR$(2)
CHR$ (9+32) CHR$(10+64)

120 CLOSE 1

140 OPEN 1,9,15

150 OPEN 2,10,15

160 PRINT# 1,"IO"

170 INPUT# 2, A%$,B$,C$,D$

180 PRINT A% "," B$ "," C$ “," D$

00, 0OK,00,00

Programme kénnen Sie so jedoch nicht laden, hier bei ja der
Dateinamen gesandt wird und unter der selben Adresse versucht
wird, das Programm zu laden.

Das Andern der Gerateadresse ist dann erforderlich, wenn Sie
mehr als eine Floppy gemeinsam an einem Rechner betreiben
wollen. Dazu dndert man die Geridteadressse der zweiten Floppy
auf 9. Diese softwaremdBige Anderung bleibt jedoch nur
solange erhalten, bis ein Reset (z.B. durch Ausschalten
erfolgt). Soll die Anderung dauerhaft sein, kann dies im
Gerat durch éffnen von Drahtbriicken geschehen.

Da viele Parameter des DOS im RAM stehen, kinnen wir
weitgehend die Funktion des pos abandern, z.B. die
Schrittweite, mit der die Sektoren in einem Track belegt
werden (Adresse $69 gleich 105, enthidlt normalerweise 10).
Ebenso kénnen wir die Anzahl der Leseversuche bestimmen, ehe
eine Fehlermeldung erzeugt wird (Adresse $6A gleich 106,
Inhalt ist 5). Weitere Adressen von Parametern finden Sie in
Kapitel F.1.2.

2.4.3 Der Memory—Execute-Befehl M-E

Mit diesem Befehl nun kiénnen wir Maschinenprogramm im

98

DOS-Speicher aufrufen und ausfihren. Die Programme missen mit
RTS (Return from Subroutine, $60) abgeschlossen sein. Die
Syntax des Befehls lautet

M—-E CHR#(LO) CHR$(HI)

Dabei sind LO und HI wieder Low— und Highbyte der
Startadresse der Maschinenroutine. Es besteht sowohl die
Méglichkeit, Routinen des DOS-ROMs aufzurufen als auch eigene
Routinen mit "M-W’ in einen Pufferspeicher zu schreiben und
dort auszufiihren. Als Beispiel dazu sehen wir einmal, wie man
eine Routine aufrufen kann, die eine Fehlermeldung erzeugt.
In Adresse $EFC? steht z.B. der Aufruf zur Meldung 72, ‘disk
full’ . Der Befehl sieht dann so aus:

100 OPEN 1,8,15

110 PRINT# 1, "M-E" CHR$(201) CHR$(239)
120 INPUT# 1, A%,B$,C$,D$

130 PRINT A$ “," Bt "," C$ "," D$

In Zeile 110 wird die Adresse $EFC? in Lo-Byte $C9 gleich 201
und Hi—-Byte $EF gleich 239 zerlegt und als Parameter des
‘M-E‘~Befehls gesandt. Dann wird der Fehlerkanal abgefragt
und die Meldung ausgegeben.

72, DISK FULL,00,00

Will man eigene Programme in der Floppy ablaufen lassen, so
wird man Sie in einen der Pufferspeicher schreiben und dort
mit ‘M-E’ aufrufen. Soll dieses Programm ofter benutzt
werden, so kann man den Inhalt des Puffers auf einem Block
der Diskette speichern. Er kann dann spiater mit dem
‘B-E’'—~Befehl ausgefiihrt werden, der den Inhalt des Blocks in
den Puffer liest und dann die Routine auiciatisch startet.
Als Anregung fir eigene Programme im DOS kénnen Sie ja einmal
versuchen, das Directory in einer anderen Form auszugeben,
die zusdtzliche Parameter &hnlich wie im Programm in Kapitel
4.1.1. Zusidtzlich kinnte man noch die Anzahl der Dateien auf
der Diskette zadhlen und mit ausgeben. Bei der Realisierung
solch einer Routine kénnen Sie sich am DOS-Listing
orientieren, wie dort das Directory erzeugt wird. Ist man
sich iiber das neue Format des Directorys im klaren, dirfte es
keine Schwierigkeit mehr sein, die =zusitzlichen Parameter,
evtl. mit einer iberschrift, aus den Directoryeintrigen zu
entnehmen und im gewiinschten Format bereitzustellen.

2.4.4 Die User-Befehle U

Mit den User-Befehlen haben wir die zweite Méglichkeit,
Programme in der Floppy auszufiihren. Die User—Befehle haben
folgende Syntax:

ux

99

Dabei kann X fir einen Buchstaben von A bis J oder wahlweise
eine Ziffer von 1 bis @ und "z’ (anstelle von 10) stehen.
Beim Aufruf des Befehls wird zu folgenden Adressen im DOS

gesprungen:

uA u1 $CDSF Ersatz fir ‘Block—-Read”
uB uz2 $DC97 Ersatz fiir ‘Block-Write’
uc us $0500

upD uq 03503

UE us $0506

urF ué £0509

uG uz $050C

UH us $050F

uI ue $FFO1

uag Uz $EAAO Einschalt—-Reset

Die Befehle Ul und U2 bzw. UA und UB kennen wir bereits; sie
dienen als Ersatz fir ‘Block—Read’ und ‘Block-Write’. Die
Befehle U3 bis UB bzw. UC bis UH springen in den Puffer 2 ab
Adresse #3500 gleich 1280 (siehe Kapitel 2.1). Will man
mehrere Befehle benutzen, kann dort eine Sprungtabelle auf
die einzelnen Routinen stehen; wird bloB ein User-Befehl (U3)
benutzt, kann das Programm direkt bei $500 beginnen.

Der User-Befehl UJ springt zum Resetvektor; damit wird die
Floppy in den Einschaltzustand versetzt.

100 OPEN 1,8,15

110 PRINT# 1, "“UJ"

120 FOR I=1 TO 1000 : NEXT

130 GET# 1, A% : PRINT A%; :IF ST <> 64 THEN 130

73,CBM DOS V2.4 1514,00,00

Zeile 120 wartet den Reset der Floppy ab. Dann wird in Zeile
130 die Einschaltmeldung der Floppy abgeholt.

Bei der Benutzung der User—-Befehle kénnen nach Parameter an
die Routinen mit ibergeben werden. Der komplette
Befehlsstring wird im Eingabepuffer ab Adresse $200 gleich
512 abgelegt. Als Parameter wiren z.B. Adressen, Befehlskodes
und Dateinamen denkbar. Dadurch kinnen die User—Befehle
benutzt werden, um den Befehlsatz der Floppy zu erweitern
oder um eigene Dateistrukturen zu verwirklichen. Samtliche
User-Befehle lassen sich durch ‘M—-E '—Befehle mit den
entsprechenden Adressen ersetzen; der User—Aufruf ist doch
kirzer und Gbersichtlicher.

100

[sng-231 HI¥3S |

]

Kapitel 3: Technik der Floppy und der Diskette

3.1 Der Aufbau der der VC 1341

3.1.1

Blockschq}tbild der Floppy

Jd408-30718NY

L

an

101

< @
o T
| (e fe))
—) al)
Ul = = o
&~ @ - N =
—_— — g
—
D :
=
=]
o <
1 —_
] ooP 3
S > 3
— =
s =
m —~
i m
w =
@ o
< c
w w
COISK-HOTOR %
(=]
KOPF-SCHRITTAQTOR
o <
SCHREIB- LESEKOPE A o A 2
N D 2
N
WRITE-PROTECT o

3.1.2 Memory—-Map des DOS - ROM, RAM, 1/0

Die Speicherbelegung der Floppy VC 1341

&3535 *FFFF
16 K
Betriebssystem
49152 $CO00
7183 $1COF
IVIA Disk Contraol I
7168 £1CO00
6159 $180F
LVIA serieller Bus |
6144 -1 $1800
2047 $07FF
2 K
RAM
(o] #0000

102

Die Belegung der I/0-Ports (VIA 6522)

VIA 6522 1, Port fir seriellen Busg

¥1B00 FPort B
£1800 Fort A
#1802 Datenrichtung Port B
#1803 Datenrichtung Fort A

PB O: DATA IN

FB 1: DATA QUT
FB 2: CLOCK IN
FB 3: CLOCE ouT

FB 4: ATN A
FB H,4: Geriateadresse
CR Z: ATN IN

VIA 6522 2, Port fir Motor— und Schreib/ Lesekopfsteuerung

$1C00 Port B, Steuerport

#iCo1 Port A, Daten vom und zum Schreib/ Lesekopf
F$1C02 Datenrichtung Port B

£1C03 Datenrichtung Port A

FB O: STFP I

FBR 1: STP O Schrittmotor fir Kopfbewegung
FB 2: MTR Laufwerksmotor

FB Z: ACT LED am Laufwerk

FB 4: WFS Write Protect Switch

FB 7: SYNC

CA 1: Byte Ready

cA 2: S0E

103

Die Belegung der wichtigsten Speicherstellen

0 $00 Befehlskode fir Puffer 0
1 $01 Befehlskode fiir Puffer 1
2 $02 Befehlskode fiir Puffer 2
3 $03 Befehlskode fiir Puffer 3
4 $04 Befehlskode fir Puffer 4
[$04 - $07 Track und Sektor fiir Puffer 0
2 $08 - %09 Track und Sektor fir Puffer 1
10 $0A - $O0B Track und Sektor fiir Puffer 2
12 $0C - $0D Track und Sektor fiir Puffer 3
14 $0E - $0OF Track und Sektor fir Puffer 4
18 $12 - $13 ID fiir Laufwerk 0
20 $14 - %15 ID fiir Laufwerk 1
22 $16 - $17 1D
32 $20 - 321 Flag fir Kopftransport
48 $30 - $31 Pufferzeiger fir Disk-Controller
57 $39 Konstante 8, Kennzeichen fiir Beginn Datenblockheader
58 $2IA Parity fiir Datenpuffer
b1 $3D Drivenummer fiir Disk Controller
&3 $IF Puffernummer fir Disk Controller
47 $43 Anzahl der Sektoren pro Track bei der Formatierung
71 $47 Konstante 7, Kennzeichen fir Beginn Datenblock
73 $49 Stackpointer
74 $44A Schrittzdhler fiir Kopftransport
B1 $51 aktuelle Tracknummer bei der Formatierung
105 $69 Anzahl der Leseversuche (5)
106 $6A Schrittweite bhei Sektorzuteilung (10)
11t $6F - $70 leiger auf Adresse z.B fiir M- und B-Befehle
119 $77 Gerdtenummer + $20¢ fiir Listen
120 $78 Gerdtenummer + $40 fir Talk
121 $79 Flag fir Listen (1/0)
122 $7A Flag fir Talk (1/0)
i24 $7C Flag fiir ATN vom seriellen Bus empfangen
125 $7D Flag fir EOI vom seriellen Bus
127 $7F Drivenummer
128 $80 Tracknummer
129 $81 Sektornummer
13 $82 Kanalnummer
131 $83 Sekunddradresse
132 $84 Sekunddradresse
33 $85 Datenbyte
139 $8B - $8D Arbeitsspeicher fir Division
148 $94 - 495 aktueller Pufferzeiger
133 $99 - $9A Adresse Puffer 0 $200
155 $9B - $9C Adresse Puffer 1 $400
157 $9D0 - $9E Adresse Puffer 2 #3500
159 $9F - $A0 Adresse Puffer 3 $600
161 $A1 - $A2 Adresse Puffer 4 $700
163 $A3 - $A4 leiger auf Eingabepuffer $200
165 $AS - $Ab Zeiger auf Puffer fir Fehlermeldung $2DS
181 $B5 - $BA Record # lo, Blockzahl lo
187 $BB - $CO Record # hi, Blockzahl hi
193 $C1 - $Cé Schreibzeiger fiir Rel-Datei

104

RN S I SN VR o B VI o5 By
I a G e b ea e T
[T e

0
$200
$244
$258
$259
$25A
$274
$278
$297
$280
285
$2D5

$3FR /

£I00
$400
$300
$600
$700

§145
228

$284
$289
£2F9
$2FC
$3FF
$4FF
$5FF
$6FF
$46FF

$C7 - $CC

$F9
256-325
512-352
586
500
&01
802
628
432
863
540-444
585-649
725-741
T62/744
768-1023
1024-1279
1280-1535
1536-1791
1792-2047

Recordldnge fiir 'REL'-Dateien
Ieiger in Datensatz bei REL-Datei
Side Sektor Nummer
leiger auf Datenblock im Side-Sektor
Ieiger auf Datensatz in REL-Datei
Filetyp
Puffernummer
Stack
Puffer fir Befehlsstring
Filetyp
Recordlinge
Track Side-Sektor
Sektor Side-Sektor
Linge der Eingabezeile
lahl der Dateinamen
Filebetriebsart
Track eines Files
Sektor eines Files
Fuffer fir Fehlermeldung
Anzahl freie Blocks
Fuffer O
Puffer
Fuffer
Puffer
Puffer

EoRLC IS

105

3.2 Die Arbeitsweise des DOS - ein Uberblick

Die VC 1541 ist ein intelligentes Diskettenlaufwerk mit
eigenem Mikroprozessor und Betriebssystem (Disk Operating
System, DOS). Dadurch wird kein Speicherplatz und keine
Rechenzeit des angeschlossenen Rechners benétigt. Der Rechner
braucht der Floppy lediglich Befehle zu ibermitteln, die
diese dann selbsttitig ausfihrt.

Die Floppy hat damit drei Aufgaben gleichzeitig zu erledigen:
Zum Ersten muB sie den Datenverkehr vom und zum Rechner
durchfithren. Die zweite Aufgabe ist die Interpretation der
Befehle und die Verwaltung von Dateien und den zugeordneten
Ubertragungskandlen und der Blockpuffer. Die dritte Aufgabe
ist die hardwaremiBige Bedienung der Diskette; dazu gehért
das Schreiben und Lesen einzelner Blocks auf der Diskette
sowie das Formatieren von Disketten.

Diese Aufgaben muB bei der VC 1541 ein 6502-Mikroprozessor
gleichzeitig durchfiihren. Dies ist nur mit Hilfe der Inter-—
rupttechnik miglich. Nur so kénnen drei Programme quasi
gleichzeitig ablaufen.

Das Hauptprogramm kimmert sich um die Interpretation und
Ausfithrung der tbermittelten Befehle. Das Empfangen von Daten
und Befehlen vom Rechner wird nun per Interrupt erledigt.
Will der Rechner ein Peripheriegerit ansprechen, so sendet er
einen Impuls Ober die Leitung ATN (Attention, Achtung, siehe
auch Kapitel S5.1). Damit lidst er bei der Floppy einen Inter—
rupt aus. Die Floppy unterbricht nun ihr laufendes Programm
und merkt sich, daR der Rechner Daten senden wollte. Jetzt
wird erst der urspriingliche Befehl abgearbeitet. Danach kann
die Floppy nun weitere Daten und Befzhle vom Rechner annehmen
und verarbeiten. Ist der Befehl abgearbeitet, so steht die
Floppy in einer Warteschleife, bis neue Befehle vom Rechner
kommen.

Das Abarbeiten der Befehle in dieser Ebene beschrankt sich
jedoch auf die logische Verarbeitung der Befehle, die
Verwaltung der Ubertragungskanale vom und zum Rechner sowie
die Bereitstellung und Abholung der zu schreibenden bzw. =zu
lesenden Daten in die dafir vorgesehenen Pufferspeicher. Die
Aufgaben eines ‘Disk Controllers’, das Formatieren von Dis—
ketten sowie das Schreiben und Lesen einzelner Blocks, missen
ebenfalls vom Prozessor ausgefihrt werden.

Diese Aufgaben werden wieder interruptgesteuert durchgefiihrt.
Durch einen eingebauten Zeitgeber ('Timer ') wird ca. alle 14
Millisekunden das regulare Programm der Floppy unterbrochen
und in ein Programm verzweigt, das die Aufgaben eines
Disk-Controllers erfiillt. Die Kommunikation zwischen den
beiden eigenstandigen Programmen geschickt i(ber gemeinsam
benutzte Speicherstellen, in die das Hauptprogramm Befehls-—
kodes fiir das Disk—Controller—-Programm ablegt. Wird nun das

106

Interruptprogramm aktiv, so schaut es in diesen Speicher-
stellen nach, ob irgendwelche Aktivitidten verlangt werden.
z.B. eine Diskette formatieren. Ist dies der Fall, so werden
z.B. Laufwerks— und Kopfmotoren in Bewegung gesetzt. Nach
Beenden der Interruptroutine schaut das Hauptprogramm wieder
in bestimmten Speicherstellen nach, ob die Aufgabe vom
Disk-Controller schon erledigt wurde oder ob noch weiter

gewartet werden mufl. Ebenso wird auf diese MWeise dem
Hauptprogramm mitgeteilt, ob irgendwelche Fehlerbedingungen,
z.B. ein Read Error aufgetreten sind oder ob die

Schreibschutzmarke geklebt war. Das Hauptprogramm kann dann
entsprechend reagieren und z.B. eine Fehlermeldung bereit-
stellen.

Bei den groBen CBM-Floppys wird als Disk-Controller ein
eigener, zweiter Mikroprozessor von Typ 6504 eingesetzt. Die
Kommunikation geschieht wieder iiber gemeinsame Speicher-—
stellen.

Eine Ubersicht iber die Speicherbelegung des DOS sowie der

Ein—Ausgabe Bausteine zur Bedienung von Diskette und
seriellem Bus finden Sie im vorhergehenden Kapitel.

Diese Ubersicht iiber die Arbeit des DOS kann natirlich nur

einen groben Uberblick geben. Wollen Sie sich genauer
informieren, so kdnnen Sie das DOS-Listing der VC 1541 in
Kapitel 3.5 =zu Rate ziehen, in dem das komplette

16K -Betriebssystem ausfihrlich dokumentiert ist.

107

3.4 Der Aufbau der VC 1541-Diskette

Die Diskette der VC 1541 ist in 35 Spuren mit je 17 bis 21
Sektoren aufgeteilt. Die Gesamtzahl der Sektoren betriagt &B83.
Da das Directory die gesamte Spur 1B belegt, stehen 6&64
Datenblécke zur Verfiigung, die jeweils 256 Bytes aufnehmen
kdonnen. Die Spuren sind wie folgt belegt:

SPUR ANZAHL DER SEKTOREN
1 BIS 17 21

18 BIS 24 19

25 BIS 30 i8

31 BIS 35 17

Die unterschiedliche Anzahl der Sektoren je Spur ist bedingt
durch die Verkiirzung der Spuren zum Mittelpunkt hin.

3.4.1 Die BAM der VC 1541

BAM ist die Abkiirzung fiir Block—-Availability-Map. Sie hat die
Aufgabe, die Blicke als belegt oder frei zu kennzeichnen.
Nach jeder Manipulation der Blicke (speichern, lidschen, usw)
wird die BAM aktualisiert. Wenn anhand der BAM festgestellt
wird, daB ein zu speicherndes File mehr Blicke bendtigt, als
verfiigbar sind, so wird eine Fehlermeldung ausgegeben. Beim
Erdffnen eines Files wird die BAM in den DOS-Speicher
ibernommen, parallel mit den Ubertragungsbefehlen
aktualisiert und beim Schlieflen der Datei zuriick auf die
Diskette geschrieben. Befehle, die Schreib-— oder
Lischfunktion haben, lesen die BAM, aktualisieren und
schreiben sie wieder zuriick. Die BAM ist auf Spur 18, Sektor
0 folgendermaBen organisiert:

Spur 18, Sektor ©

BYTE INHALT BEDEUTUNG

0,1 ($00-%01)1 #12,%01 Spur und Sektor des ersten
Blocks der Directory

2 ($02) %41 ASCII-Zeichen "A"; zeigt
1541-Format an

3 ($03) $00 Null-Flag fir zukinftige
Benutzung

4-143 (£04—-%8F) Bitmuster der belegten bzw.
nicht belegten Blicke %

#) 1 = Block nicht belegt ; 0 = Block belegt

108

Das Bitmuster der Bliécke ist so organisiert, daB jeweils 4
Bytes eine Spur kennzeichnen. Wie es der folgenden Tabelle zu
entnehmen ist, enthilt das erste der 4 Bytes die Anzahl der
freien Blécke dieses Spur. Die restlichen 3 Bytes (24 Bits)
kennzeichnen die freien oder belegten Blicke dieser Spur.

Struktur des BAM-Eintrags einer Spur:

BYTE INHALT

Q Zahl der verfiigbaren Blicke der Spur
1 Bitmuster der Sektoren 0-7

2 Bitmuster der Sektoren 8-15

3 Bitmuster der Sektoren 16-23

4 Bytes einer Spurkennzeichnung in der BAM:

Spur 18, Sektor O, Byte 4-7 (Spur 1)

20001010 00000000 00000011 11111111
($0A) (£00) ($00) ($3F)

10 freie 1
Blicke Q

nicht belegt
belegt

Durch Programmierung einer Schleife, die das jeweils 1. Byte
liest und aufaddiert, ist es miglich, die freien Blicke der
gesamten Diskette zu ermitteln.

3.4.2 Das Directory

Das Directory ist das "Inhaltsverzeichns" der Diskette. Sie
enthdlt folgende Informationen:

-~ Diskettenname

— ID der Diskette

— Nummer der DOS-Version
— Filenamen

— Filetypen

- Blocks pro File

— freie Blicke

Dieses Directory wird mit dem Befehl °LOAD "$",B° in den
Speicher geladen. Dabei wird ein evtl. gespeichertes Programm
zerstbrt! Mit dem Befehl ‘LIST® kann sie dann auf dem
Bildschirm ausgegeben werden.

Das Directory belegt die gesamte Spur 18 der Diskette. Dem
Vorspann der Directory folgen die Fileeintrage. Jeder Block
nimmt maximal B Fileeintrige auf. Da die BAM und der Vorspann
der Directory 1 Block belegen, stehen auf dieser Spur noch 18

109

Blocke fiir Fileeintrdge zur Verfiigung. Es kiénnen demnach auf
einer Diskette maximal 144 Files (18 Bliécke mit je B8
Eintrige) verwaltet werden.
Format des Vorspanns der Directory:
Spur 18, Sektor 0
BYTE INHALT BEDEUTUNG H
144-161 ($20-%A1) Name der Diskette (ergéanzt
mit "SHIFT SPACE")
162,163 ($A2,$A3) ID-Kennzeichnung der Disk
164 ($A4) A0 "SHIFT SPACE"
165,166 ($AS5,$A4)] $32,%41 ASCII-Zeichen "2A" (Format)
167170 ($A7-%$AAY} $A0 "SHIFT SPACE"
171-255 ($AB-$FF)} $00 wird nicht benutzt, ist mit
Nullen ausgefiillt »*
% Die Bytes 180 bis 191 kiénnen auf manchen Disketten den
Inhalt "BLOCKS FREE" haben
Der Name der Diskette

Bei der Formatierung wird der Diskettenname, der aus

maximal

14 Zeichen besteht, festgelegt. Werden weniger als 14 Zeichen

angegeben,
ausgefiillt. Die folgende BASIC—-Routine liest den

so wird der Rest

"SHIFT SPACE"

Namen

($A0)
und

mit

speichert ihn in eine String—-Variable:

100

110
120

13Z0
140
150
140
170

OPEN 15,8,15,"I0" :REM
NEU
OFEN 2,8,2,"#" :REM

PRINT#15,"B-R";2;0;18; 0:REM
UND
:REM
:REM

PRINT#15,"“B-P";2; 144
DN$=" "

BEFEHLSKANAL 15 BFFNEN UND
INITIALISIEREN

DATENKANAL 2 oFFNEN

SPUR 18, BLOCK O LESEN

IN KANAL 2 ABLEGEN
BUFFER-POINTER AUF BYTE 144
STRING DN$ LOGSCHEN

REM SCHLEIFE ZUM EINLESEN DER 14 BYTES DES NAMENS

::FOR I=1 TO 14

1 :GETH#2,X$:REM

LESEN EINES BYTES

180 ::IF ASC(X#$)=160THEN200:REM SHIFT-SPACE NICHT UBERNEHMEN
190 :: DN$=DN%+X¢ :REM BYTE AN DN$ ANHANGEN

200 NEXT I

210 CLOSE 2:CLOSE 15 :REM KAMALE SCHLIESSEN

Nach Ablauf dieser Routine steht der Diskettenname in dem
String DN$¢ zur Verfiigung. Diese Routine kann z.B. in
Anwendungsprogrammen sinnvoll sein, um festzustellen, ob die

richtige Diskette singelegt ist.

ID-Kennzeichnung der Diskette

Die Disketten—-ID besteht aus 2 Zeichen und wird beim
Formatieren der Diskette bestimmt. Anhand dieser
Kennzeichnung stellt das DOS den Wechsel der Diskette fest,
was zum Initialisieren der neuen Diskette notwendig ist. Als
Initialisieren bezeichnet das Einlesen der BAM in den
Speicher des Laufwerkes. Damit das DOS stets die aktuelle BAM
im Speicher vorfindet, sollte die ID beim Formatieren immer
unterschiedlich sein. Sollte dies nicht der Fall sein, so mufB
nach einem Diskettenwechsel mit dem Befehl INITIALIZE “von
Hand" initialisiert werden.

3.4.3 Das Format deg Directory

Die Bliécke 1 bis 19 der Spur 18 beinhalten die Eintrige der
Files. Die ersten beiden Bytes eines Blocks zeigen auf den
Block mit den nichsten Fileeintriagen. Socllte kein weiterer
Block folgen, so beinhalten diese beiden Bytes #00 und $FF.

Spur 18, Sektor 1

Byte Inhalt

0,1 ($£00,$01) Spur und Sektor des nachsten Blocks
der Directory

2-31 ($02-%1F) Eintrag des 1. Files

34-463 ($22-%3F) Eintrag des 2. Files

&&6-95 ($42—-%5F) Eintrag des 3. Files

?8-127 ($62—-%7F) Eintrag des 4. Files
130-152 (¥82-%9F) Eintrag des 5. Files
162-191 ($A2—%BF) Eintrag des &. Files
194223 ($¥C2-%DF) Eintrag des 7. Files
226-255 ($E2-$FF) Eintrag des 8. Files

Format eines Directory-Eintrags

Jeder Fileeintrag besteht aus 30 Bytes, deren Funktion im
Folgendem beschrieben sind:

BYTE INHALT
o ($00) Filetyp
1,2 ($£01,%02) Spur und Sektor des ersten Datenblocks

3-18 ($03-%$12) Filename (erganzt mit "SHIFT SPACE")
19,20 ($13,414) Mur bei relativen Files benutzt
(Spur und Sektor des ersten Side—
Sector—-Blocks)

21 ($15) Nur bei relativen Files benutzt

(Recordlange)

22-25 ($16—%19) Nicht benutzt

26,27 ($1A-%$1B) Spur und Sektor des neuen Files beim
Uberschreiben mit dem Klammeraffen

28,29 ($1C-#1D) Anzahl der Blocks im File (Low-Byte,
High—-Byte)

Kennzeichnung des Filetyps

Das Byte O des Fileeintrags kennzeichnet den Filetyp. Zur
Kodierung der 5 Filetypen werden die Bits 0-2 benutzt. Das
Bit 7 kennzeichnet, ob das File ordnungsgemi geschlossen
ist. Wird ein File geidffnet, so wird der entsprechende
Filetyp gesetzt. Beim SchlieBen dieses Files wird dann das
Bit 7 gesetzt. Ein nicht geschlossenes File wird im
aufgelisteten Directory mit einem Stern vor dem Filetyp
gekennzeichnet. Wird =z.B. Ein sequentielles File "TEST"
gedffnet und anschliefend das Directory aufgelistet, so wird
dieses File so im Directory dargestellt:

12 “"TEST" *#SEQ
Wird das File wieder geschlossen, so erscheint der Stern bei
nochmaligem Auflisten des Directorys nicht mehr. Wird dieses

File nicht geschlossen wund spater nochmals eridffnet, so
erschient die Fehlermeldung "WRITE FILE OPEN".

Der Filetyp

Um die Funktion des Byte 0 im Fileeintrag, also den Filetyp,
richtig zu verstehen, folgt nun eine Tabelle aller Filetypen:

Filetyp Bitmaske gedffnet Bitmaske geschlossen
7654 3210 HEX 7654 3210 HEX
DELeted 0000 0000 $00 1000 0000 £80
SEQuential 0000 0001 $01 1000 0001 81
PRoGram 00C0 0010 $02 1000 0010 82
UseR cO00 0011 303 1000 0011 *83
RELative 0000 0100 $04 1000 0100 84

Vieleicht haben Sie erkannt, daB die Bits 3 bis 6 ohne
Funktion sind. Als wir dies mit Hilfe des DOS-Listings
nachpriften, stellten wir fest, daB das Bit & doch eine
Funktion hat:

DAS BIT 6 DES FILETYPS KENNZEICHNET EIN GESCHUTZTES FILE !

Setzt man dieses Bit auf 1, so kann das entsprechende File
nicht mehr geléscht werden. Dies wird im aufgelisteten
Directory mit dem Zeichen < hinter dem Filetypen
gekennzeichnet.

Da das Setzen dieses Bits eine Folge von komplizierten
Befehlen erfordert, finden Sie in Kapitel 4 dieses Buches ein
Frogramm, mit dem Sie Files schiitzen, freigeben und léschen
kiénnen.

Spur und Sektor des ersten Datenblocks

Die Bytes 1 und 2 des Fileeintrags weisen auf den ersten
Datenblock des Files. Dabei ist im Byte 1 die Spur und in
Byte 2 der Sektor dieses Blocks enthalten. Dieser erste
Datenblock enthidlt dann in den ersten beiden Bytes die
Adresse des zweiten Datenblocks, usw. Um den letzten
Datenblock zu identifizieren, enthilt dieser den Wert $00 im
ersten Byte. Das zweite Byte enthalt die Anzahl der Bytes,
die in diesem Block vom File belegt sind.

Diese Verkettung 138t sich mit Hilfe des DOS-MONITORS, der in
diesem Buch enthalten ist, gut verdeutlichen.:

*>2BO A0 A0 A0 AO AO 00 00 00 -

>:BE 00 00 00 00 00 OO0 OB 00

>:CO0 00 00 81 13 09 54 31 32T12

>:CB 2F 53 30 31 A0 A0 A0 AO /501

DO A0 AO A0 AC A0 00 00 OO oo

:D8) 00 Q0 o aaasasa Fxletyp

:E0 00 oo|82]10]J00]4a4 49 53DIS MSpur 1. Block

:EB 4B 20 41 44 44 52 Sektor 1. Block
:FO

:F8

48 41 4E 47 45 00 O HANGE. . .
00 00 00 00 00 00 Anzahl Blécke

Dies ist ein Auszug aus dem Directory (Spur 18, Sektor 1) der
TEST/DEMO-Diskette. Verfolgen wir nun die Organisation des
Files DISK ADDR CHANGE. Der Eintrag dieses Files beginnt bei
Byte $E2 und endet mit Byte #FF. Dies ist ein PRG-File, was

an dem Filetyp $82 in Byte $E2 zu erkennen ist. Dieses File
umfasst 4 Blicke auf der Diskette. Dies ist an den Bytes $FE
und *#FF ersichtlich. Die Bytes $E3 und $E4 des Eintrags
adressieren den ersten Datenblock des Files ($10, $00,
entspricht Spur 16, Sektor 0).

Schauen wir uns nun den Ausschnitt dieses Blocks einmal an:

»:00 [0_OAlO1 04 OF 04 64 00 $.

>:08 97 3I5 39 34 36 38 2C 31 .59448,1 N Adresse 2. Blaock
»310 32 00 39 04 GE 00 99 22 2.2...."

»218 93 13 11 11 11 11 44 52DR

»2120 49 56 45 20 41 44 44 52 IVE ADDR

»128 45 53 53 20 43 48 41 4E ESS CHAN

»>2 IO 47 45 20 50 52 4F 47 52 GE PROGR

»13Z8 41 4D 22 00 59 04 &F 00 AM".Y./.

»240 99 22 11 54 55 52 4E 20 .".TURN

>:48 AF 46 46 20 41 4C 4C 20 OFF ALL

Dieser Block enthilt den ersten Teil des Programms, das in
der linken Charakter-Darstellung schwer zu lesen ist. Das
liegt daran, dafR BASIC-Frogramme auf Diskette genauso
abgelegt werden, wie im Speicher des Rechners. Die
BASIC-Befehle werden in Form eines Ein-Byte-Codes (Tokens
genannt) abgekiirzt. Somit ist nur der Text zu erkennen. Die
ersten beiden Bytes dieses Datenblocks weisen nun auf den
zweiten Datenblock (#$10 und #$0A, also Spur 146, Sektor 10),
dessen Auschnitt nun folgt:

100 (10 14{ 34 30 00 1D OS5 AC _ ..40...

208 00 BD 20 IF ZO 30 ZA 20 .. Z00: Adresse 3. Block
>:10 8F 20 46 49 4E 44 20 44 . FIND D

»218 52 49 546 45 20 54 59 50 RIVE TYP

>:120 45 00 3% 0S5 AA 00 8D 20 E.9. ..

128 36 30 30 FA 20 8F 20 43 400: . C

>130 48 41 4E 47 45 20 41 44 HANGE AD

>*:ZB 44 52 45 53 53 00 48 05 DRESS. (.

>140 B4 00 99 22 11 54 48 45 .« ".THE

»148 20 53 45 4C 45 43 54 45 SELECTE

Das Programm wird in diesem Block fortgesetzt. Die Bytes #00
und #01 zeigen nun auf den 3. Datenblock des Files (#10, #14,
Spur 16, Sektor 20): :

»200 |10 0B8] F1 30 30 30 00 23 ..1000.#
:08 0& 54 01 8B 20 43 B2 32 .T.. C 2 Adresse 4. Block

ot

»>210 3I5 34 20 A7 20 4D 54 B2 54 MT
*218 31 31 39 3A 20 8F 3A 20 119: .:
»220 32 30 33 31 20 56 32 2E 2031 V2.
>128 36 00 45 06 SE 01 8B 20 6.E. ..
>:30 43 B2 32 32 X6 20 A7 20 C 226
»138 4D 54 B2 35 30 ZA 20 8F MT 50: .
>240 3A 20 32 30 Z4 3I0 20 56 = 2040 V
>:48 31 2E 32 00 &7 046 68 01 1.2, . (.

Dies ist der vorletzte Block des Programms. Sie haben sicher
erkannt, daB die Datenblécke zwar in der gleichen Spur,

jedoch nicht nacheinander angeordnet sind. Das heif3st aber
nicht, daf die Belegung der Bliécke ochne Sytem erfolgt. Der
erste Datenblock ist der Block 0. Der nachste ist der Block
10, also 10 Blicke weiter. Es werden immer @ Blicke
iibersprungen, was sich im weiteren Verlauf bewahrheitet. Der
3. Datenblock ist der Block 20. Das DOS fiangt wieder beim
ersten Block an, wenn der errechnete Block den héchsten Block
iiberschreitet. Weil sich die Spur 16 iber 21 Blicke
erstreckt, ist der letzte Datenblock der Block 8.Die ersten
beiden Bytes dieses 3. Blocks adressieren Ihn:

loo[F8l 56 42 B2 31 2047 . ZB 1 h

>:00

»>:08 20 3434 30 00 14 07 AE 440. .. Zeichen letzter
»:10 01 8B\20 53 54 20 A7 20 .. ST Block

>:18 31 30 Z0 30 00 45 07 BB 1000.E. \

*120 01 98 31 35 2C 22 4D 2D ..15,"M- Anzahl belegter
=228 52 22 C7 2B 31 37 32 29 R" (172) Bytes dieses
»:30 ©C7 28 31 36 29 3A Al 23 (16): # Elocks

238 31 35 2C SA 43 24 3A DA 15,71C%:1Z

>: 40 I B2 C6 28 5A 4% 24 AA C f(ZC*

>:48 €7 28 30 29 29 00 66 07 g{(0)).%&.

Hier ist das Ende des Programms durch den Wert $00 im Byte
$00 gekennzeichnet. Das Byte #01 gibt die Anzahl der Bytes
an, die von dem Programm in diesem letzten Block belegt sind
(¥F8 enstpricht 248 Bytes). Nun laBt sich 1leicht die Grifie
des Programms ermitteln:

3 Blicke mit je 254 Bytes
letzter Block

762 Bytes
248 BRytes

Grofe des Frogramms:

Der Filename

Der Filename ist in den Bytes 3-18 des Fileeintrags
enthalten. Er umfasst maximal 16 Zeichen. Sollte der Name
kleiner als 16 Zeichen sein, so wird der Rest wie beim
Diskettenname mit "SHIFT SPACE" (#AQ) ausgefillt.

Spur und Sektor des neuen Files beim “Uberschreiben”

Wird ein File durch Angabe des Klammeraffens vor dem
Filenamen iiberschrieben, so wird das neue File zuerst
komplett abgespeichert. Es wird aber fir dieses File kein
Eintrag erstellt, weil das File ja bereits unter diesem Namen
existiert. Die Adresse des ersten Blocks des neuen Files wird
in den Bytes 26 und 27 des Eintrags gespeichert. Ist das neue
Programm abgelegt, wird das alte geléscht, indem lediglich
die bisher von diesem File belegten Blécke in der BAM als

frei gekennzeichnet werden. Nun wird die Adresse des ersten
Datenblocks des neuen Files in die Bytes 1 und 2, Adresse des
ersten Datenblocks des Files, gebracht und das File ist
“iberschrieben”

Anzahl der Blicke im File

In den beiden Bytes 2B und 29 des Fileeintrags ist die Léange
des Files in Blécken angegeben. Eine Datei umfaBt mindestens
einen und hbochstens 644 Blicke. Das erste Byte ist das
Low-Byte, d.h. der rechte Teil der 2-Byte-Zahl. Das zweite
Byte ist das High—-Byte. Haben Sie z.B. mit dem DISK-MONITODR
die Filelidnge #1F,$00 ermittelt, so umfasst das File 31
Bl ocke.

116

3.4 Die Organisation von relativen Dateien

Relative Dateien unterscheiden sich von gewdhnlichen se-—
quentiellen Dateien dadurch, daB hier auf jeden Datensatz
direkt zugegriffen werden kann. Deshalb muB hier auBer den
Daten selbst noch zusatzlich eine Datei abgespeichert werden,
in der steht, wo jeder Datensatz zu finden ist.

Diese Aufgabe wird von der Floppy automatisch ohne Ihr Zutun
erledigt. Sehen wir uns die Organisation der relativen Datei
nun einmal etwas naher an.

Dazu dffnen wir eine relative Datei mit einer Datensatzlange
von 100:

OPEN 2,8,2, "REL-DATEI,L,"+CHR$(100)
und legen den Datensatz Nr. 70 an.

OPEN 1,8,15
FRINT#1, "P"+CHR$ (2)+CHR$ (70) +CHR$ (0) +CHR$ (1)
PRINT#2, "DATENSATZ 70"

CLOSE 2 : CLOSE 1

Der Directoryeintrag sieht dann so aus:

>:00 84 11 00 52 45 4C -« - REL
>:08 2D 44 41 54 45 49 A0 A0 -DATEI

>:10 A0 A0 AD A0 AD 11 OA 64 - ¥
>:18 00 00 00 00 00 OO0 1D 00 ..cavu.n

Das erste Byte #84 kennzeichnet eine relative Datei. Die
nachsten beiden Byte kennzeichnen den ersten Track und Sektor
der eigentlichen Daten (#11, $00; Track 17 Sektor 0); genau
wie bei einer sequentiellen Datei. Es folgt wieder wie iiblich
der Name der Datei (16 Zeichen, aufgefillt mit ‘Shift Space’,
$A0). Jetzt folgen drei Eintrige, die wir bei sequentiellen
Dateien nicht kennen. Die ersten beiden Byte weisen auf Track
und Sektor des ersten sogenannten Side-Sektor-Blocks, der die
Zeiger auf jeden Datensatz enthidlt und den wir gleich néher
kennenlernen werden (#11, $0A; Track 17 Sektor 11). Das
nidchste Byte enthdlt die Datensatzlénge, ein Wert zwischen 1
und 254, in unserem Falle %44 gleich 100. Die Annehmlichkeit,
auf jeden Datensatz direkt =zugreifen zu kénnen, erfordert
eine feste Lange fir jeden Datensatz, die wir beim Anlegen
der relativen Datei definieren miissen. Die restlichen Bytes
im Directoryeintrag haben wieder die iibliche Bedeutung; so
enthalten die beiden letzten Bytes wieder die Anzahl der
Blocks, die durch die Datei belegt werden (lo— und hi-Byte,
#1D und %00 gleich 29).

Wie sieht nun so ein Side-Sektor—-Block aus und welche Aufgabe
hat er ?

117

Die Side-Sektor—-Blocks enthalten die Track- und Sektor—Zeiger
auf die einzelnen Datenblocks. Wollen wir zum Beispiel den
70. Datensatz aus unserer relativen Datei 1lesen, so schaut
die Floppy im Side-Sektor-Block nach, auf welchem Track und
Sektor der Datensatz steht und kann dann direkt diesen Block
lesen. Dadurch wird verhindert, daB die gesamte Datei bis zum
70. Satz gelesen werden muB. Es missen also nur zwei Blocks
gelesen werden, um den Datensatz zu erhalten. Nach dieser
etwas vereinfachten Darstellung sehen wir und jetzt den
genauen Aufbau eines Side—-Sektor—-Blocks an. Wir beziehen uns
wieder auf die oben gedffnete Datei.

>:00 00 47 00 64 11 0A 00 00 .G.#....
>:08 00 00 00 00 00 00 00 00
>:10 11 00 11 OB 11 01 11 OC
>:18 11 02 11 OD 11 03 11 OE
»>:20 11 04 11 OF 11 05 11 10 ...v....
>:28 11 06 11 11 11 07 11 12
»>:30 11 08 11 13 11 09 11 14
>:38 10 08 10 12 10 06 10 10
»>:40 10 04 10 OE 10 02 10 OC
>:48 00 00 00 00 00 00 00 00
>:50 00 00 00 00 00 00 00 Q00
>:58 00 00 00 00 00 00 00 00
>:60 00 00 00 00 00 OO0 00 00c...
>:68 00 00 00 00 00 00 00 00
>:70 00 00 00 00 00 00 00 00-..
>»:78 00 00 00 00 00 00 00 00
>:80 00 00 00 00 00 00 00 OO0c.cc..
>:88 00 00 00 00 00 00 00 Q00
>:90 00 00 00 00 00 00 00 00
>:98 00 00 00 00 00 00 00 00
>:A0 00 00 00 00 00 00 00 00
>:AB 00 00 00 00 00 Q0 00 00
>:BO 00 00 00 00 00 00 00 Q00 ..uvau...
>:2B8 00 00 00 00 00 00 00 00
>:CO 00 00 00 00 00 00 00 00
>:C8 00 00 00 00 00 00 00 00
>:DO 00 00 00 00 00 00 00 00
>:D8 00 00 00 00 00 00 00 00
>:E0 00 00 00 00 00 00 00 00
>:E8 00 00 00 00 00 00 00 00
>:FO 00 00 00 00 00 00 00 00
>:F8 00 00 00 00 00 00 00 00

Die ersten beiden Byte zeigen wie iblich auf Track und Sektor
des nachsten Side-Sektor-Blocks. (In unserem Beispiel
existiert kein weiterer Side-Sektor-Block und es werden nur
$47 = 71 Bytes genutzt.) Byte 2 enthdlt die Nummer des
Side-Sektor-Blocks, 0. Dazu muB man wissen, daf eine relative
Datei maximal & solcher Blocks enthalten kannj; die
Nummerierung geht von © bis 5. In Byte 3 steht die
Datensatzlédnge $64 = 100. Die nachsten zwilf Byte (Nummer 4
bis 15) enthalten jeweils Track- und Sektor—-Zeiger auf die &
Side-Sektor-Blocks (0,0 falls der Block noch nicht angelegt
ist). Ab Byte 146 stehen die eigentlichen Zeiger auf die

Daten, und zwar die Track— und Sektor-Zeiger auf die ersten
120 Datenblicke (in unserem Falle nur 28 Zeiger). Soll nun
ein bestimmter Datensatz gesucht werden, so kann das DOS aus
der Datensatznummer und der Datensatzlange genau berechnen,
auf welchem Block die Daten stehen und ab welcher FPosition
innerhalb des Blocks der Datensatz beginnt. Nehmen wir dazu
folgendes Beispiel:

Wir wollen den 70. Datensatz aus unserer Datei mit einer
Datensatzlange mit 100 Zeichen lesen. Wir haben dann folgende
Rechnung durchzufiihren:

(70-1) * 100 / 254

Wir erhalten als Ergebnis 27 und einen Rest von 42. Das DOS
weifl nun, daB der Datensatz im 27. Datenblock ab der Position
42+2 gleich 44 zu finden ist. Die Rechnung erklart sich
folgendermafBen: Jeder Block enth&dlt 254 Byte, von denen die
ersten beiden Bytes als Zeiger auf den nachsten Block
gebraucht werden, es bleiben also 254 Bytes zur Daten—
speicherung Gbrig. Aus Datensatznummer und Datensatzlange
haben wir die Bytenummer innerhalb der Datei berechnet. Wenn
wir diesen Wert durch die Anzahl der Bytes pro Block
dividieren, erhalten wir die Nummer des Blocks, in dem der
Datensatz steht, widhrend der Rest der Division die Position
innerhalb des Blocks ergibt (plus 2, da die ersten beiden
Byte als Zeiger dienen). Geht der Datensatz iiber das
Blockende hinaus, so muB auch der nachste Datensatz gelesen
werden.

In unserem Beispiel steht der 27. Datenblock in Track $10 =
16 und Sektor $0C = 12. Wenn wir diesen Block lesen, erhalten
wir folgendes Bild:

>:00 00 F3 00 00 00 00 00 00cn-an
>:08 00 00 00 00 00 00 00 Q00 ..ceuwne
>210 00 00 00 00 00 00 00 00 ...cceen
>:18 00 00 00 00 00 00 00 00 ...cuun-
>220 00 00 00 00 00 00 00 00c.-
>228 00 00 00 00 44 41 54 45DATE
>:30 4E 53 41 54 S5A 20 37 30 NSATZ 70
>:38 OD 00 00 00 00 00 00 OO0-
>:140 Q0 00 00 00 00 00 00 00cnw-.
»>:248 00 00 00 00 00 00 00 Q0 ...cunen
>:30 00 00 00 00 00 00 00 00 ...nceen
>:58 00 00 00 00 00 00 00 00
>2&60 00 00 00 00 00 00 00 00
»>368 00 00 00 00 00 OO0 00 00 ...cccaen
»270 00 00 00 Q0 00 00 00 00anw
>:78 00 00 00 00 00 00 00 00c.n-
>:80 00 00 00 00 00 00 00 00-
>:88 00 00 00 00 OO0 00 00 00van-
¥>:90 FF 00 00 00 Q0 Q00 00 Q0
>:298 00 00 00 00 OO 00 00 00
>:A0 00 00 00 00 00 00 00 00
>:AB 00 00 00 00 00 00 00 00

>:BO 00 00 00 00 00 00 00 00
>:B8 00 00 00 00 00 00 00 OO0u..
>:CO 00 00 00 00 00 00 00 00
>:C8 00 00 00 00 00 00 00 00
>»DO 00 00 00 00 00 00 00 00
>:DB8 00 00 00 00 00 00 00 00ccnw
>E0 00 00 00 00 00 00 00 00
>:EB 00 00 00 00 00 00 00 00c...
>:FO 00 00 Q0 00 FF 00 00 00
>:F8 00 00 00 00 00 00 00 00can-

Erhalten wir bei der Berechnung eine Blocknummer iiber 120, so
befindet sich der Zeiger auf den Datensatz nicht mehr im
ersten Side-Sektor-Block, sondern in einem der nachsten
Blécke. Hier kénnen Sie wieder die Blockzahl durch 120
dividieren und Sie erhalten die NMNummer des GSide-Sektor-—
Blocks. Der Rest gibt dann wieder die Nummer des Datenzeigers
innerhalb dieses Blocks an. Haben wir als Blocknummer z.B.
4?5 erhalten, so erhalten wir 3 Rest 6&5. Wir missen also
Side-Sektorblock 3 lesen und dort den Zeiger auf den 65.
Datenblock holen. Da jeder Side-Sektor-Block die Track—- und
Sektornummern der anderen Side-Sektor-Blocks enthalt, ist
wiederum nur ein weiterer Lesezugriff erforderlich. Fir den
Zugriff auf einen Datensatz einer relativen Datei sind also
zwischen 2 und 4 Blockgriffe erforderlich. Da die eigent-
lichen Datensédtze einer relativen Datei genau wie bei einer
sequentiellen Datei mit einander verkettet sind, ist auch ein
sequentielles Lesen oder Schreiben ohne Angabe einer
Datensatznummer miéglich. Dabei wird nach jedem Schreiben oder
Lesen der Zeiger auf den jeweils nidchsten Datensatz gesetzt.
Beim Anlegen und Erweitern einer relativen Datei geschieht
folgendes:

Zuerst wird ein Directoryeintrag fur die relative Datei
erzeugt, der den Eintrag dber die beim &ffnen angegebene
Liénge enthalt. Gleichzeitig werden zwei Datenkandle fir die
relative Datei reserviert (einer fir die Daten selbst, der
andere fiir die Side—-Sektor-Blicke). Wird jetzt der
Recordzeiger auf einen bestimmten Datensatz gesetzt, wird
erst geprift, ob dieser Datensatz schon existiert. Ist dies
der Fall, werden die entsprechenden Blocks gelesen und die
Zeiger auf diesen Datensatz gesetzt, der nun gelesen oder
geschrieben werden kann. Existierte dieser Datensatz noch
nicht, so wird er angelegt. Dabei werden auch alle evtl. noch
nicht existierende Datensatze mit kleinerer Datensatznummer
angelegt. Das erste Byte des neuen Datensatzes enthidlt s$FF
(255), der Rest des Datensatzes wird mit %00 aufgefiillt.
Steht der angesprochene Datensatz an Anfang eines Blocks,
wird der Rest des Blocks ehbenfalls mit leeren Datensidtzen
gefiillt. Jedesmal wenn ein nicht existierender Datensatz
angesprochen wird, wird die Fehlermeldung ‘S0, record not
present’ ausgegeben. Beim Schreiben eines neuen Datensatzes
ist dies kein eigentlicher Fehler, sondern weist nur darauf
hin, daB ein neuer Datensatz erzeugt wird. Diese Methode
sollte man auch beim Anlegen einer neuen Datei benutzen, wenn
man die maximale Zahl von Datensatzen kennt. Man setzt
einfach den Recordzeiger auf diesen Datensatz und schreibt

120

$FF (CHR#$(255)) in diesen Datensatz. Damit werden alle
Datensatze bis zu dieser Nummer angelegt und die Fehler—
meldung SO tritt nicht mehr auf. Gleichzeitig weifs man auch,
ob noch genigend Platz auf der Diskette ist. Ist dies nicht
der Fall, erhalt man die Fehlermeldung °‘S2, file too large’.

Bei diesem Verfahren mit & Side-Sektoren kann eine relative
Datei maximal 6 % 120 % 254 = 182 880 Bytes enthalten. Im
Falle der VC 1541 ist dies mehr als die Kapazitat der ganzen
Diskette. Bei der griéBeren Floppy 8050, die pro Laufwerk mehr
als 500 K abspeichern kann, bedeutet dies eine Einschrankung.
Deshalb hat man ab der DOS-Version 2.7 eine Erweiterung des
Side-Sektor-Verfahrens vorgenommen (Super-Side-Sektor), bei
dem eine relative Datei maximal 23 MB an Daten enthalten
kann. Dies ist bei der CBM 8250 und den Commodore-Festplatten
sowie bei den neueren 8050-Floppies der Fall (siehe dazu auch
Kapitel 5.2).

Da wie gesagt eine relative Datei zwei Datenkanidle erfordert,
die VC 1541 jedoch nur drei Kandle zur freien Verfigung hat,
kann immer nur eine relative Datei Datei offen sein. Der
dritte Kanal kiénnte noch fir eine gleichzeitig offene
sequentielle Datei genutzt werden. Bei den grofien cBM
Floppies stehen Ihnen ebenfalls mehr Kandle zur Verfiigung
(gleichzeitig 3 offene relative Dateien, siehe auch Kapitel
5.2).

121

ve 15491

DOS 2.8

X322 2222222223222 2222222222233

€100 78 SEI

C101 A9 F7 LDA #$F7
C103 2D 00 1C AND $1C00
Ci06 48 PHA

€107 A5 7F LDA $7F
€109 FO 05 BER $Ci10
Ci0B 68 PLA

c10C 09 00 ORA #$00
CI10E DO 03 BNE $C113
€110 68 PLA

C11t 09 08 ORA #$08
C113 8D 00 IC STA $1C00
Ci16 58 CLI

€117 60 RTS

E222 223222 222222222 32222222222)
ci1g 78 SEI

Ci119 A9 08 LDA #s$08
Ci1B 0D 00 iIC ORA $1C00
CI1lE 8D 00 IC STA $1C00
121 58 CLI

€122 60 RTS
(2222222222222 23222222 ITS
€123 A9 00 LDA #$00
C125 8D 4C 02 STA $026C
€128 8D 6D 02 STA $026D
Ci2B 60 RTS
FERRRERRRERRRERRERERRRRRERRRRS
ci2c 78 SEI

Ci2D 8A TXA

C12E 48 PHA

Ci12F A9 50 LDA #$50
C131 8D 6C 02 STA $024C
Ci34 A2 00 LDX #$00
C136 BD CA FE LDA $FECA,X
C139 8D 6D 02 STA $026D
C13C 0D 00 IC ORA $1CO0
Ci3F 8D 00 IC STA $1C00
C142 68 PLA

Ci43 AA TAX

Cis4 58 CLl

C1a5 &0 RTS8
ERERERERREREREERRRRREERERRRRRS
Ci4s A9 00 LDA #$00
C148 BD F9 02 STA $02F9
Ci4B AD BE 02 LDA $028E
Ci14E 85 7F STA $7F

LED am Laufwerk einschalten
LED-Bit ldschen
Drivenummer

0 ?

nicht Laufwerk 0, dann LED aus

LED einschalten

LED einschalten

LED ein

Fehlerflags ldschen

X-Register retten

LED einschalten

X-Register zurickholen

Befehle vom Rechner auswerten

letzte Drivenummer
Drivenummer

122

C150 20 BC E& JSR $E&BC
C153 A5 84 LDA $84
€155 10 09 BPL $C140
C157 29 OF AND #$0F
C159 C9 oF CMP #$0F
Ci5B FO0 03 BEQ $C160
C15D 4C B4 D7 JMP $D7B4
C160 20 B3 C2 JSR $C2B3
C163 Bl A3 LDA ($A3),Y
C165 8D 75 02 STA $0275
C168 A2 0B LDX #$0B
C16A BD 89 FE LDA $FEB9,X
C16D CD 75 02 CMP $0275
Ci70 Fo o8 BED $C174
C172 CA DEX

€173 10 F§ BPL $C16A
€175 A9 3t LDA #$31
€177 4C CB C1 JMP sCiCB
C17A BE 2A 02 STX $022A
€170 EO0 09 CPX #$09
C17F 90 03 BCC $Ci184
€181 20 EE C1 JSR $CI1EE
C184 AE 2A 02 LDX $022A
€187 BD 95 FE LDA $FE95,X
C18A 85 &F STA $6F
C18C BD A1 FE LDA $FEA1,X
Ci8F B85 70 STA $70
€191 6C 6F 00 JMP ($004F)
EEREERERRREERERARRRERRRRRRARRR
€194 A% 00 LDA #$00
€196 8D F9 02 STA $02F9
€199 AD 6C 02 LDA $024C
C19C DO 2a BNE $CiC8
C19E A0 00 LDY #$00
CiA0 98 TYA

CiAl 84 80 STY $80
C1A3 84 81 STY $81
C1AS 84 A3 STY $A3
Ci1A7 20 C7 E6 JSR $E6CT
ClAA 20 23 C1 JSR $C123
CiAD A5 T7F LDA $7F
C1AF 8D BE 02 STA $028E
CiB2 AA TAX

CiB3I A9 00 LDA #$00
CiBS 95 FF STA $FF,X
CiB7 20 BD C1i JSR $C1BD
CiBA 4C DA D4 JMP $D4DA
EEERERRRRRR R RRRERRERRRRNRER
CiBD A0 28 LDY #$28
C1BF A9 00 LDA #$00
CiC1 99 00 02 STA $0200,Y
cCic4 88 DEY

CiC5 10 FA BPL $CIC1
CiC7 &0 RTS

‘ok ‘-Meldung bereitstellen
Sekundiradresse

15, Kommandokanal

ja

zum OPEN-Befehl

Zeilenldnge ermitteln und Flags léschen
erstes Zeichen holen

und merken

11

Kommandos

mit erstem Zeichen vergleichen

gefunden ?

nicht gefunden
31, ‘syntax error’
Nummer des Befehlsworts

Befehlsnummer ¢ 9 ?

Test fir 'R°, ‘S’ und ‘N’
Befehlsnummer

Sprungadresse lo
Sprungadresse hi

Sprung auf Befehl
Fehlermeldung nach Befehlsausfithrung bereitstellen
Flag gesetzt ?

ja, dann Fehlermeldung setzen
Fehlernummer 0

Tracknummer 0

Sektornummer 0

‘ok‘-Meldung bereitstellen
Fehlerflags ldschen

Drivenummer
als letzte Drivenummer merken

Eingabepuffer liéschen
interne Kandle schliefien

Eingabepuffer lidschen
41 leichen lischen

$200 bis $228

123

FERERERERRRERAERRRIRRRER AR Fehlermeldung ausgeben (Track + Sektor 0)
cice A0 00 LDY #$00

CiCA 84 80 STY $80 Track = 0

cicc 84 81 STY $81 Sektor = 0

CICE 4C 45 E6 JMP $E&4S Fehlernummer im Akku, Meldung generieren
EXRRRFRRRRRRERRRRERRRRRRR0%04% Eingabezeile prifen

CiDl A2 00 LDX #$00

C1D3 8E 7A 02 STX $027A leiger auf Laufwerknummer

CiDé A9 3A LDA #$3A e

ciD8 20 68 C2 JSR $C2é48 Test der leile bis ‘:’ oder bis zum Ende
CiDB FO 05 BEQ $C1E2 kein Doppelpunkt gefunden ?

cipp 88 DEY

CIDE 88 DEY

C1DF 8C 7A 02 STY $027A zeigt auf Laufwerknummer (vor Doppelpunkt)
ClE2 4C 6B C3 JMP $C3é8 Laufwerknummer holen und LED einschalten
FERERERRRERRRNERRRRRRRRERMNEX* Eingabezeile prifen

ClES A0 00 LDY #$00 leiger in Eingabepuffer

C1E7 A2 00 LDX #$00 ldhler fir Kommas

ClE9 A9 3A LDA #$3A ‘e

C1EB 4C 68 €2 JMP $C268 testet Zeile bis zum Doppelpunkt oder zum Ende
ERERRERRERRRRFRERR AR R 2242 Eingabezeile prifen

C1EE 20 E5 C1 JSR $CIES leilentest bis ‘:’ oder Ende

CiFt DO 05 BNE $C1F8 Doppelpunkt gefunden ?

CIF3 A9 34 LDA #$34

CiFS 4C C8 C1 JMP $CiC8 34, ‘syntax error’

CiFe 88 DEY

CiF9 a8 DEY leiger vor den Doppelpunkt setzen

C1FA 8C 7A 02 STY $027A als Position der Laufwerksnummer

CiFD 8A TXA Komma vor dem Doppelpunkt

CIFE DO F3 BNE $CIF3 ja, dann ‘syntax error’

€200 A9 3D LDA #$3D ‘=t

€202 20 68 C2 JSR $C268 Eingabe bis zum ‘=’ prifen

€205 8a TXA Komma gefunden ?

€206 FO 02 BEQ $C20A nein

€208 A9 40 LDA #$40 Bit &

C20A 09 21 ORA #$21 und Bit 0 und 5 setzen

czocC 8D 8B 02 STA $028B Flag fiir Syntaxprifung

C20F ES8 INX

€210 BE 77 02 STX $0277
€213 8E 78 02 STX $0278

€216 AD BA 02 LDA $028A Joker gefunden ?

c219 FO 0D BEG $C228 nein

C21B A9 80 LDA #$80

C21D 0D 8B 02 ORA $028B Bit 7 setzen

€220 8D 8B 02 STA $028B

€223 A9 00 LDA #$00

€225 8D 8A 02 STA $028A und Jokerflag riicksetzen
€228 98 TYA ‘=’ gefunden ?

€229 Fo 29 BEQ $C254 nein

€22B 9D 7A 02 STA $027A,X

C22E AD 77 02 LDA $0277 Anzahl Kommas vor Gleichheitszeichen
€231 8D 79 02 STA $0279

C£234 A9 8D LDA #$8D Shift CR

C236 20 68 C2 JSR $C248
€239 &8 INX

C23A BE 78 02 STX $0278
€230 CA DEX

C23E AD BA 02 LDA $028BA
€241 FO 02 BEQ $C245
€243 A9 08 LDA #$08
€245 EC 77 02 CPX $0277
€248 FO 02 BE@ $C24C
€24 09 04 ORA #$04
€24C 09 03 ORA #$03
C24E 4D 8B 02 EOR $028B
C251 8D 8B 02 STA $028B
C254 AD 8B 02 LDA $028B
C257 = AE 2A 02 LDX $022A
C25A 3D AS FE AND $FEA5,X
€250 DO 01 BNE $C260
C25F &0 RTS

C260 8D 6C 02 STA $026C
€263 A9 30 LDA #$30
€265 4C C8 C1 JMP $CiIC8B
FREERERRERE R RN RRRRRRRRRR
C268 8D 75 02 STA $0275
C26B CC 74 02 CPY $0274
C26E BO 2E BCS $C29E
€270 Bl A3 LDA ($A3),Y
€272 8 INY

€273 CD 75 02 CMP $0275
€276 FO 28 BE@ $C2A0
€278 €9 2A CMP 8824
C274 FO 04 BEQ $C280
€27Cc C9 3F CMP #$3F
C27E DO 03 BNE $C283
C280 EE BA 02 INC $028A
€283 €9 2C CHP #s$2C
€285 DO E4 BNE $C26B
€287 98 TYA

C288 9D 7B 02 STA $027B,X
C28B AD BA 02 LDA $028A
C28E 29 7F AND R$7F
€290 FO 07 BEQ $C299
€292 A9 80 LDA ¥$80
€294 95 E7 STA $E7,X
€296 8D B8A 02 STA $028A
€299 E8 INX

€294 EO 04 CPX #$04
€29C 90 CD BCC $C26B
C29E A0 00 LDY #$00
C2A0 AD 74 02 LDA $0274
C2A3 9D 7B 02 STA $027B,X
C2A6 AD BA 02 LDA $028A
C2p9 29 7F AND #$7F
C2AB FO 04 BEQ $C2B1
C2AD A9 B0 LDA #$80
C2AF 95 E7 STA $E7,X

leile bis zum Ende prifen
Kommazdhler erhéhen
Anzahl Kommas merken

Joker gefunden ?

nein

Bit 3 setzen

Komma nach dem 6Gleichheitszeichen ?
nein

Bit 2 setzen

Bit 0 und 1 setzen

als Flag fiir Syntax-Priifung
Syntaxflag

Befehlsnummer

mit Prifbyte verknipfen
fehlerhafte Syntax ?

Fehlerflag setzen

30, ‘syntax error’

leichen im Eingabepuffer suchen
leichen merken

leile schon zu Ende ?

ja

leichen aus Puffer holen
mit gesuchtem Zeichen vergleichen
gefunden

T

Ty

Jokerflag setzen

o

Kommaposition merken
Jokerflag

kein Joker

Flag merken

und als Jokerflag merken
Kommazahler erhihen

schon 4 Kommas ?

nein, weitermachen

Flag fir Zeilenende setzen
Jakerflag

kein Joker

Flag setzen

125

C2B1 98 TYA

C2B2 &0 RTS
ERREERRREREREERERERRRRRRFRENRE
C2B3 A4 A3 LDY $43
C2BS FO 14 BEQ@ $C2CB
c2B7 88 DEY

C2B8 FO 10 BEQ $C2CA
C2BA B9 00 02 LDA $0200,Y
C2BD C9 0D CMP #$0D
C2BF FO OA BEQ $C2CB
c2c1 a8 DEY

C2C2 B9 00 02 LDA $0200,Y
c2cs cC9 oD CHP #$0D
€2C7 FO 02 BEQ@ $C2CB
c2ce C8 INY

c2cA C8 INY

C2CB 8C 74 02 STY $0274
C2CE Co 2A CPY #$2A
C2D0 A0 FF LDY #$FF
€202 90 08 BCC sC2DpC
€204 B8C 2A 02 STY $022A
€207 A9 32 LDA #$32
€209 4C C8 C1 JMP $C1C8
EEERERRRRERRERRRRRRRERERIRRRRS
c2pC A0 00 LDY #$00
C2DE 98 TYA

C2DF 85 A3 STA $A3
C2E1 8D 58 02 STA $0258
C2E4 8D 4A 02 STA $024A
C2E7 8D 96 02 STA $0296
C2EA 85 D3 STA $D3
C2EC 8D 79 02 STA $0279
C2EF 8D 77 02 STA $0277
C2F2 8D 78 02 STA $0278
C2FS 8D 8A 02 STA $028A
C2F8 8D 6C 02 STA $026C
C2FB A2 05 LDX #$05
C2FD 9D 79 02 STA $0279,X
€300 95 07 STA $D7,X
€302 95 DC STA $DC,X
€304 95 Eit STA $E1,X
€306 95 Eb STA $E6,X
€308 9D 7F 02 STA $027F,X
C30B 9D B4 02 STA $0284,X
C30E CA DEX

C30F DO EC BNE $C2FD
C311 60 RTS
ERERRERRRRERRRRRRERRRRRRRRRRRS
C312 AD 78 02 LDA $0278
C315 8D 77 02 STA $0277
€318 A9 01 LDA #s01
C31A 8D 78 02 STA $0278
C3tD 8D 79 02 STA $0279

leilenléinge priifen
leiger in Befehlseingabepuffer
null ?

eins ?

leichen aus Eingabepuffer
“CR’

ja, leilenende

davorstehendes Zeichen
"CR”
ja

leiger wieder auf alten Wert
gleich Ieilenléinge
mit 42 Zeichen vergleichen

kleiner, dann ok

32, ‘syntax error’ Zeile zu lang

Flags fiir Befehlseingabe léschen

leiger auf Eingabepuffer Lo
Recordlinge
Dateityp

Kommazidhler

Jokerflag
Fehlerflag

Flags fir Zeilenanalyse
Directory-Sektoren
Pufferzeiger
Drivenummern

Jokerflags

Tracknummern
Sektornummern

Drivenummer ibernehamen
Anzahl Kommas
nmerken

Anzahl der Drivenummern

126

€320 AC BE 02 LDY $028E letzte Laufwerknummer

€323 A2 00 LDX %#$00

€325 86 D3 STX $D3

€327 BD 7A 02 LDA $027A,X Position des Doppelpunkts

C32A 20 3C C3 JSR $C33C Drivenummer vor Doppelpunkt holen
€32D A6 D3 LDX $D3

C32F 9D 7A 02 STA $027A,X evtl. exakte Position abspeichern
€332 98 TYA

€333 95 E2 STA $E2,X Drivenummer in Tabelle

€335 E8 INX

C334 EC 78 02 CPX $0278 schon alle Drivenummern geholt ?
€339 90 EA BCC $C325 nein, weiter machen

C33B 40 RTS

EEERRRERRERXRKRRXRRRXRRRR22%% Drivenummer suchen

€33C RA TAX Position merken

€33D A0 00 LDY #$00

C33F A9 3A LDA #$3A ‘y

€341 DD 01 02 CMP $0201,X Doppelpunkt dahinter ?

€344 FO oC BE@ $C352 ja

C346 DD 00 02 CMP $0200,X Doppelpunkt an dieser Stelle ?
C349 Do 16 BNE $C361 nein

C34B EB INX

c34C 98 TYA

C34D 29 o0t AND #$01 Drivenummer

C34F AB TAY

€350 8A TXA

€351 60 RTS

€352 BD 00 02 LDA $0200,X Drivenummer holen

C355 E8 INX

€356 EB INX

€357 €9 30 CMP #$30 0 ?

€359 FO F2 BEQ $C34D ja

€35B €9 31 CMP #$31 ‘10 ?

€350 FO EE BER $C34D ja

C35F DO EB BNE $C34C nein, letzte Drivenummer benutzen
C3a1 98 TYA letzte Drivenummer

€362 09 80 ORA #$80 Bit 7 setzen, unsichere Drivenummer
C3e64 29 81 AND #s81 restliche Bits ldéschen

C366 Do E7 BNE $C34F Drivenummer zur Verfigung stellen
FEEERERREREXRRRRRRRXARRAR222%% Drivenummer holen

€368 A9 00 LDA #$00

C36A 8D BB 02 STA $028B Syntaxflag léschen

C36D AC 74 02 LDY $027A Position in Befehlszeile

€370 B1 A3 LDA ($A3),Y leichen auf Befehslpuffer holen
€372 20 BD C3 JSR $C3IBD Laufwerknummer holen

€375 10 11 BPL $C388 sichere Nummer ?

c377 [:] INY leiger erhdhen

€378 CC 74 02 CPY $0274 leilenende ?

C37B BO 06 BCS $C383 ja

C37D AC 74 02 LDY $0274

c380 88 DEY

c381 D0 ED BNE $C370 leile nach Drivenummer absuchen

C383 CE 8B 02 DEC $028B

€386 A9 00 LDA #$00
€388 29 ot AND #$01
C38A 85 7F STA $7F
C38C 4C 00 C1 JMP $C100
EEERERRRERRRERRRRRERRRERRRRRER
C38F A5 7F LDA $7F
€391 49 01 EOR #$01
€393 29 ot AND #$01
€395 85 7F STA $7F
€397 60 RTS
ERARERRRERFRRERRRRRRRRRRRRR IR
€398 A0 00 LDY #$00
C39A AD 77 02 LDA $0277
C39D CD 78 02 CMP $0278
C3A0 FO 164 BEQ $C3B8
C3A2 CE 78 02 DEC $0278
C3AS AC 78 02 LDY $0278
C3A8 B9 7~ 02 LDA $027A,Y
C3AB A8 TAY

C3AC B1 A3 LDA ($A3),Y
C3AE A0 04 LDY #$04
C3B0 D9 BB FE CMP $FEBB,Y
C3B3 FO 03 BEQ $C3B8
C3B5 88 DEY

C3B6 DO F8 BNE $C3B0O
c3pg 98 TvA

C3B9 BD 96 02 STA $0296
C3BC 60 RTS
(2222322322222 222 22 22222 22]
C3BD C9 30 CMP #$30
C3BF FO 06 BEG@ $C3C7
C3C1 c9 31 CMP #$31
C3C3 FO 02 BEQ@ $C3C7
€3CS 09 80 ORA #$80
C3c7 29 8t AND #$81
C3C9 60 RTS
EEREEEERRR RN R RRRRRRRRRRRRY
C3CA A9 00 LDA #$00
C3CC 85 &F STA $6F
C3CE 8D 8D 02 STA $028D
€301 48 PHA

C3D2 AE 78 02 LDX $0278
C3D5 &8 PLA

C3D6 05 &F ORR $6F
c3pe8 48 PHA

C3D? A9 01 LDA #$01
C3DB 85 &F STA $6&F
C3DD CA DEX

C3DE 30 OF BMI $C3EF
C3E0 BS E2 LDA $E2,X
C3E2 10 04 BPL $C3ES8
C3E4 0b 6F ASL $6F

Drivenummer
LED einschalten

Drivenummer umschalten

Drivenummer
Bit 0 umdrehen

Dateityp feststellen
Gleichheitszeichen gefunden ?

nein
leiger holen

leiger auf Zeichen hinter '=' setzen
leichen aus Puffer

mit Kennzeichen fir Filetyp vergleichen
"§7, 'P', ‘U', ‘R’

iUbereinstimmung ?

Dateityp (1 bis 4) merken

Drivenummer prifen
"0°

qe

keine null oder eins, dann Bit 7 setzen

Drivenummern idberprifen

Anzahl der Drivenumamern

128

C3E6 06 &F ASL $6F

C3EB 4A LSR A
C3E9 90 EA BCC $C3DS
C3EB 06 6F ASL $6F
C3ED DO E& BNE $C3D5
C3EF &8 PLA

C3FO AA TAX

C3F1 BD 3F C4 LDA $C43F,X Syntax-Flag holen
C3F4 48 PHA

C3IFs 29 03 AND #$03

C3F7 8D 8C 02 STA $028C

C3IFA 68 PLA

C3FB 0A ASL A

C3FC 10 3E BPL $CA43C

C3FE A5 E2 LDA $E2

C400 29 01 AND #$01 Drivenummer isolieren
€402 85 7F STA $7F

C404 AD BC 02 LDA $028C

C407 FO 2B BEQ $C434

C409 20 3D C6 JSR $C63D Drive initialisieren
C40C FO 12 BEG $C420 kein Fehler ?

C40E 20 8F €3 JSR $C38F auf anderes Drive umschalten
ca1t A9 00 LDA #$00

C413 8D 8C 02 STA $028C

C416 20 3D Cé6 JSR $Cé3D Drive initialisieren
ca19 FoO 1E BEQ $C439 kein Fehler ?

C41B A9 74 LDA #$74

C41D 20 c8 C1 JSR $CiC8 74, ‘drive not ready’
€420 20 8F C3 JSR $C38F

C423 20 3D Cé JSR $C63D Drive initialisieren
C426 08 PHP

€427 20 8F C3 JSR $C38F auf anderes Drive umschalten
caza 28 PLP

C42B FO oOC BEQ $C439 kein Fehler ?

C42D A9 00 LDA #$00

C42F 8D 8C 02 STA $028C Anzahl der Dives

C432 FO 05 BEQ $C439

C434 20 3D Cé JSR $C63D Drive initialisieren
Ca37 DO E2 BNE $C41B Fehler ?

C439 4C 00 C1 JMP $C100 LED einschalten

C43C 2A ROL A Drivenummer vom Carry nach Bit 0

C43D 4C 00 C4 JMP $C400
FEEEEFRREERRRXERRRRERRRREN24%% Flags fir Drive-Priifung
C440 00 80 41 01 01 01 01 81

C448 81 B1 81 42 42 42 42

EEEEERRRERBRRRFHRRAARRRRRRR92% Datei im Directory suchen

C44F 20 CA C3 JSR $C3CA Drive initialisieren

€452 A9 00 LDA #$00

C454 8D 92 02 STA $0292 leiger

€457 20 AC C5 JSR $C5AC ersten Directoryblock lesen
CASA Do 19 BNE $CA475 Eintrag vorhanden ?

C4scC CE 8C 02 DEC $028C Drivenummer klar ?

CASF 10 01 BPL $C462 nein

129

Ca61

C462
C4b4
C4s67
CasA
C44D

c470

€473

€475
ca78
€a7B
C47D

C4a7e
cast
ca83
€a8s
cags
ca8a

C48B
C48E
€490

Ca92
€494
C497
C4a9a
C49D
CA9F
C4A2
C4AS
Caa7
CaAA
C4AD
CaAF
C4aB2
CaB4

C4BS
cap8
C4BA
C4BD
c4co
cac2
C4CS
cac7

c4co
cacc
CACE
capo
c4ap2
C4D5

60

A9
8D
20
20
AC

20

_Fo

20
AD
Fo
60

AD
30
10
AD
Fo
&0

20
FO
Do

A9
8D
20
20
A9
8D
20
Do
8D
AD
Do
CE
10
60

20
Fo
20
AE
10
AD
Fo
Do

AD
Fo
B3
29
(%]
Do

01
8D
8F
00

17
10
D8
8F
01

53
ED
FO
aF
D2

17
FO
']
53
07
8F
EE
OE

96

E7
07
96
DE

02
€3
C1
Cé

c4
02

02

02

Cé

02
c3
C1

02
CS

02
02

02

Cé

C4
02

02

02

02

RTS

LDA
STA
JSR
JSR
JMP

JSR
BEQ
JER
LDA
BEQ
RTS

LDA
BMI
BPL
LDA
BEQ
RTS

JSR
BEQ
BNE

LDA
S§TA
JSR
JSR
LDA
STA
JSR
BNE
STA
LDA
BNE
DEC
BPL
RTS

JSR
BEQ
JSR
LDX
BPL
LDA
BEQ
BNE

LDA
BEQ
LDA
AND
cup
BNE

#4301

$028D
$C38F
$C100
$CA452

$C617
$C485
$C4D8
$028F
$CATE

$0253
$CA470
$CA475
$028F
$C45C

$C604
$C4AA
$CABA

#$01

$028D
$C38F
$C100
#$00

$0292
$CSAC
$CABA
$028F
$028F
$C4D7
$028C
$C492

$Ch17
$CAAA
$CaDg
$0253
$CAC9
$028F
$CABS
$C4D7

$0296
$C4D7
$E7,X
1507

$0295
$CABS

Drive wechseln

LED einschalten

und suchen

ndchste Datei im Directory suchen
nicht gefunden ?

Eintrag im Directory uberprifen

weitere Dateien ?

Datei nicht gefunden ?
ja

nichsten Directoryblock suchen
nicht gefunden ?

Drive wechseln
LED einschalten

Directoryblock lesen
gefunden ?

ndchster Eintrag im Directory
nicht gefunden ?

Eintrag iberprifen

Datei gefunden ?

ja
nein, dann fertig

Dateityp

gleich gesuchter Dateityp ?

_nein

130

C4p7

c4D8
C4DA
C4DD
C4DE
C4E1
C4E4
C4Ee6

C4E7
C4EA
C4EC
CAEE
C4Fo
C4F1
C4F3
C4Fs
C4F7
CaF9
C4FC
C4FE
csot
€502
€505
€507

CS0A
€s50D
CS0F
cS11
€513
€515
€517
c519
C51B
csic
C31D
€520
€322
€525
€527
€529

€528
€S52D
CS2F
€531
€533
€535
€538
€538
€530
CS3F
€542
€545

76

00
2A
oC
DF

13
06
94
A0
B2
79
53
E7
80
8A
94
DD

02

02
]

€3

02

02

€3

02

02

02

02
02

02
02

LDX

STX
INX
STX
JSR
BEQ
RTS

JSR
BNE
LDA
EOR
LSR
BCC
AND
BEQ
LDA
cnp
BEQ
LDA
TAX
JSR
Loy
JNP

LDA
CHP
BEQ
CMp
BNE
LDA
CMP
BEQ
INX
INY
CPX
BCS
LDA
4,14
BEQ
BNE

CPY
BCS
LDA
Chp
BNE
LDX
STX
LDA
AND
STA
LDA
STA

#$FF
$0253

$028A
$C589
$C4EC

$C594

$C4ESL

$7F

$E2,X
A

$CAFE
#3540
$CAE7
#502
$028C
$C4E7
$027A,X

$C6Ab
#$03
$C51D

$0200,X
($94),Y
$CS1B
#$3F
$C4E7
($94) Y
#5A0
$CAE7

$0276
$C528
$0200,%
4520
$C535
$C50A

#513
$C535
($94),Y
#3500
$CAE7
$0279
$0253
$E7,X
#$80
$026A
$0294
$DD, X

Flag fir Datei gefunden

leiger auf Datei setzen

leiger auf nachste Datei
Ende, dann fertig
Drivenummer

Suche auf beiden Drives
ja

Linge des Dateinamens holen

leichen aus Befehlszeile holen
gleich Zeichen im Directory ?
ja

'y

nein

Shift Blank, Ende des Namens ?
ja
leiger erhdhen

Ende des Namens im Befehl ?
ja

ndchstes Zeichen

e

ja, Datei gefunden

sonst weitersuchen

19
Ende des Namens erreicht

Shift Blank, Ende des Namens
nicht gefunden

131

81
b8
00
94

40
&F

DF
02
20
27
&F
&F
80
E7
&F
E7
E2
80
7F
E2
94
80

94
85
58
07
15
94
58
FF
8F
78
79
79
01

00
91

53

80

02

02
02

02
02
02

02
02

02

02

02

02
FE

LDA
STA
Loy
LDA
INY
PHA
AND
STA
PLA
AND
BMI
ORA
AND
ORA
STA
LDA
AND
ORA
STA
LDA
AND
ORA
STA
LDA
STA
INY
LDA
STA
LDA
BNE
LDY
LDA
STA
LDA
STA
LDA
STA
DEC
BPL
RTS

LDX
LDA
BMI
LDA
BNE
LDA
STA
RTS

LDy
STY
DEY
sSTY
LDA
STA

$81
$08, X
#$00
($94),Y

#3840
$6F

#$DF
$C55€C
$$20
4527
$6F

$6F
#3580
$E7,X
$6F
$E7,X
$E2,X
#$80
$7F
$E2,X
($94),Y
$0280, X

($94) Y
$0285, X
$0258
$C589
#$15
($94),¥
$0258
$SFF
$028F
$0278
$0279
$0279
$C59A

$0279
$E7,X%
$CsA6
$0280, X
$C594
#$00
$028F

#$00
$0291

$0253
$FEBS
$80

Sektornummer des Directorys
in Tabelle eintragen

Filetyp

Scratchschutzbit (&) isolieren
und merken

Bit 7 ldschen

Bit 5 setzen

Bit 3 und 4 ldschen

Bit & wiederholen

Flag fir Joker isolieren

in Tabelle schreiben

Drivenummer

erstes Track der Datei

und Sektor aus Directory holen
Recardléange
schon erfaBt ?

Recordlinge
aus Directory holen

Flag fir Joker gesetzt ?

ja

Tracknummer schon gesetzt ?
ja

18, Directorytrack

132

CSBA
CSBC
CSBE
csct
csSc4
csc7
csc9

CSCA
csce
CSCF
31133

ot
81
93
73
93
133

?4
94
3B
81

02
D4
02

02

02
02

02

D1
Cs

D4

CS

02
DE

LDA
STA
STA
JER
LDA
BNE
RTS

LDA

#5$01
$81
$0293
$D475
$0293
$C5CA

#$07
$0295
#500
$D4Fs
$0293
$D4ES
$0295
#500
($94),Y
$C5FB
$0291
$C617
$DE3B
$81
$0291
$94
$0292
$0292
$Co17

#$01

$0292
$C62F
$C617

$FEBS
$80
$0290
$81
$D475
$0294
$DACE
#$FF
$0253
$0295
$C629
#$20
$D1Cs
$C507

$D44D
$CSC4

$94
$0294
$DE3B
$81

Sektor 1

Sektor lesen

Anzahl der Directoryeintridge (-1)
Zeichen aus Puffer holen

als Tracknummer merken
Pufferzeiger setzen

Zidhler vermindern

erstes Byte aus Directory

Track und Sektornummer holen

Sektornummer

Pufferzeiger

Pufferzeiger auf eins ?

18, Tracknummer der BAM
Tracknummer

Sektornummer
Block lesen

Pufferzeiger setzen
Flag fir Datei gefunden lischen
schon alle Directoryeintrdge geprift ?

Pufferzeiger um 32 erhihen, nichster Eintrag
und weitersuchen

Pufferzeiger setzen
nichsten Block lesen

Track und Sektornummer aus Puffer holen

133

C639 8D 90 02 STA
C63C 60 RTS
BREEARRREERRRNERRRRERURRRRRRRR
C63D A5 68 LDA
C63F DO 28 BNE
Co41 Ab TF LDX
C643 56 1C LSR
C645 90 22 BCC
C647 A9 FF LDA
C649 8D 98 02 STA
C64C 20 OE DO JSR
C64F A0 FF LDY
€631 C9 02 CHpP
C653 FO 0A BEQ
Ce35 C9 03 cnp
C657 FO 06 BEQ
€659 C9 OF CHP
C65B FO 02 BEQ@
CeSD A0 00 LDY
C&45F A6 7F LDX
Cé61 98 TYA
C662 95 FF STA
Cb64 DO 03 BNE
Cé66 20 42 DO JSR
C669 AL TF LDX
C66B BS FF LDA
Ce6D 60 RTS
EEREERERERERERRRRERRRRRRRRERER
Céb6E 48 PHA
C66F 20 A6 C6 JSR
C672 20 88 C6 JSR
C675 68 PLA
Cé76 38 SEC
C677 ED 4B 02 SBC
C67A AA TAX
C47B FO 0OA BEQ@
C67D 90 08 BCC
C&7F A9 AO LDA
Ce8tL . 91 94 STA
ce83 (8 INY
CéB4 CA DEX
C485 DO FA BNE
€687 60 RTS
[22222 222222222 222222222
CeB88 98 TYA
CeB9 0A ASL
CéeBA A8 TAY
CeéBB B9 99 00 LDA
C6BE 85 94 STA
C6é%0 B9 9A 00 LDA
C693 85 95 STA
C695 A0 00 LDY
Cé97 BD 00 02 LDA

$0290

$68
$C669
$7F

$1C,X
$CH69

#$03
$C65F
#$0F
$C65F
#$00
$7F

$FF,X
$C669
$0042
$7F

$FF,X

$CoAb
$Co688

$024B

$C487
$C687
#$A0
($94),Y

$C681

A

$0099,Y
$94
$0094,Y
$95
#$00
$0200, X

Sektornummer merken

Drive testen und initialisieren

Drivenuamer
wurde Diskette gewechselt ?
nein, dann fertig

Fehlerflag setzen
Directorytrack lesen

20, ‘read error’ ?

ja

21, ‘read error’ ?

ja

74, ‘drive not ready’ ?

ja

Drivenummer

Fehlerflag merken

Fehler ?

BAM laden

Drivenummer

Fehlerkode iibergeben

Name der Datei in Directorypuffer
Ende des Namens holen
Filenamen in Puffer schreiben

Linge mit maximaler Linge vergleichen

mit ‘Shift Blank’' auffillen

Puffernumaer

mal 2 als Zeiger

Pufferzeiger nach $94/%95

Zeichen in Puffer ibertragen

134

Ce9h 91 94 STA ($94),Y

ce9C c8 INY

Ce9D FO 06 BEQ $C&AS Puffer bereits voll ?
Ce9F EB INX

C6A0 EC 76 02 CPX $0276

C6A3 90 F2 BCC $C697 !

C6AS 60 RTS

FERRREERRERRRRRRRRRFRURR2H2%2% Ende des Namens im Befehl suchen
CbAb A9 00 LDA #$00

CeA8 8D 4B 02 STA $024B Vorbesetzung fiir Linge
C6AB BA TXA

C6AC 48 PHA

C6AD BD 00 02 LDA $0200,X Zeichen aus Puffer holen
C6BO €9 2C CHMP #$2C Ty

CéB2 FO 14 BEQ $Cé4C8

Cé6B4 C9 3D CMP #$3D f=

CeBs FO 10 BEQ $C4C8

CotB8 EE 4B 02 INC $024B Linge des Namens erhihen b
CéBB EB INX

C6BC A9 OF LDA #$0F 15

C4BE CD 4B 02 CMP $024B

CeCt 90 05 BCC $Cé4C8 griBer ?

C6C3 EC 74 02 CPX $0274 Eingabezeile zu Ende ?
C6Cé& 90 ES BCC $C4AD

C4CB BE 76 02 STX $027%

C6CB 648 PLA

cecc AA TAX leiger auf Ende des Naamens
[W:18)] 60 RTS

ERERERRERRRERERRRRRRERERERERRR

C4CE A5 83 LDA $83

CeDo 48 PHA Sekunddradresse und Kanalnummer
Céb1 AS 82 LDA $82

CeD3 48 PHA

CaD4 20 DE C6 JSR $CA4DE Dateieintrag fir Directory erzeugen
C4D7 68 PLA

CsdB8 85 82 STA $82

C4DA 68 PLA Daten zurickholen

CeDB B85 83 STA $83

CeDD &0 RTS

ERRRRRRERFRBRRRRRRRRERERERRARR

C6DE A% 11 LDA #$11 17

C6E0 85 83 STA $83 Sekunddradresse

C4E2 20 EB DO JSR $DOEB Kanal zum Lesen dffnen
C6ES 20 E8 D4 JSR $DAES Pufferzeiger setzen

C6EB AD 53 02 LDA $0253

C4EB 10 OA BPL $C&F7 noch nicht letzter Eintrag ?
CeED AD 8D 02 LDA $028D

C6F0 DO OA BNE $C4FC

C6F2 20 06 CB JSR $CBOG ‘blocks free.’ schreiben
C6FS 18 cLe

C&Fs &0 RTS

C&4F7 AD 8D 02 LDA $028D

C4FA FO 1F BEQ $C71B

135

CeFC CE 8D 02 DEC $028D

C4FF Do 0D BNE $C70E

c701 CE 8D 02 DEC $028D

€704 20 8F C3 JSR $C38F Drive wechseln

€707 20 06 C8 JSR $CBO& ‘blocks free.’ schreiben
C70A 38 SEC

C70B 4C 8F C3 JMP $C38F Drive wechseln

C70E A9 00 LDA #$00

€710 ap 73 02 STA $0273 Drivenummer fir iberschrift, Hi-Byte
C713 8D 8D 02 STA $028D

C716 20 B7 C7 JSR $C7B7 iiberschrift schreiben
€719 38 SEC

C71A 40 RTS

C7iB A2 18 LDX #s$18

C71D A0 1D LDY #$1D

C71F B1 94 LDA ($94),Y Anzahl Blocks hi

€721 8D 73 02 STA $0273 in Puffer

€724 FO 02 BEQ $C728 null ?

€726 A2 16 LDX #$14

c728 88 DEY

€729 Bl 94 LDA ($94),Y Anzahl Blocks lo

C728 8D 72 02 STA $0272 in Puffer

C72E EO 16 CPX #$14

C730 FO 0A BEQ@ $C73C

€732 C9 0A CMP #$0A 10

C734 90 06 BCC $C73C

C736 CA DEX

c737 C9 &4 CMP #$44 100

€739 90 01 BCC $C73C

C73B CA DEX

C73C 20 AC C7 JSR $C7AC Puffer lischen

C73F Bl 94 LDA ($94),Y Filetyp

C741 48 PHA

C742 0A ASL A Bit 7 ins Carry

C743 10 05 BPL $C74A Bit 6 nicht gesetzt ?
C745 A9 3C LDA #$3C ‘¢’ fiir geschitztes File

C747 9D B2 02 STA $02B2,X hinter Filetyp schreiben
C74a 68 PLA

C74B 29 OF AND #$0OF Bit 0 bis 3 isolieren
C74D A8 TAY als Index als Filetypbezeichnungen
C74E B9 CS FE LDA $FECS,Y 3. Buchstabe des Filetyps
C751 9D B1 02 STA $02B1,X in Puffer

C754 CA DEX

€755 B CO FE LDA $FECO,Y 2. Buchstabe des Filetyps
C758 9D B1 02 STA $02B1,X in Puffer

€758 CA DEX

C75C B9 BB FE LDA $FEBB,Y 1. Buchstabe des Filetyps
C75F 9D B1 02 STA $02B1,X in Puffer

€762 CA DEX

C763 CA DEX

C764 BO 05 BCS $C76B File nicht geschlossen ?
C766 A9 2A LDA #$2A ‘x’

C768 9D B2 02 STA $02B2,X vor Filetyp in Puffer

C76B A9 A0 LDA #$A0 mit ‘shift blank’ auffiillen

136

C76D 9D B1 02 STA
C770 CaA DEX
c771 A0 12 T LDY
€773 Bl 94 LDA
€775 9D B1 02 STA
€778 CA DEX
€779 88 DEY
C77a Co 03 cPY
c77C BO FS5 BCS
C77E A9 22 LDA
€780 9D Bl 02 S8TA
€783 EB INX
€784 EO 20 CPX
€786 BO OB BCS
C788 BD Bi 02 LDA
c7ep C9 22 CMP
C780 FO 04 BEQ
C78F C% AO CHMpP
€791 DO FO BNE
€793 A9 22 LDA
€795 9D B1 02 STA
€798 E8 INX
C799 EO0 20 CPX
C798B B0 0A BCS
C79D A9 7F LDA
C79F 3D B1 02 AND
C7a2 9D B1 02 STA
C7A5 10 F1 BPL
C7A7 20 BS C4 JSR
C74A 38 SEC
C7aB 60 RTS
FEEEERERERERRRERRRRRRRERRARR NS
C7AC A0 1B LDY
C7aE A9 20 LDA
C7B0 99 BO 02 STA
C7B3 @8 DEY
C7B4 DO FA BNE
C7B6 60 RTS
ERERERERERRREEFRRERERRERRRRRRS
C7B7 20 19 F1 JSR
C7BA 20 DF FO JSR
C7BD 20 AC C7 ISR
C7CO A9 FF LDA
€7€2 85 6F STA
C7ca A6 7F LDX
C7C6 8E 72 02 STX
€7C9 A% 00 LDA
C7CB 8D 73 02 STA
C7CE A& F9 LDX
C700 BD EO FE LDA
C7D3 85 95 STA
C7D5S AD B8 FE LDA
c7p8 85 94 STA
C7DA A0 16 Loy

$02B1,X

#8512
($94),Y
$02B1, X

#$03
$C773
#$22
$02B1, X

#$20
$C793
$02B1, X
¥$22
$C793
#$A0
$C783
#s22
$02B1,X

#$20
$C7A7
¥S$TF
$02B1,X
$02B1,X
$C798
$C4BS

#$18
#$20
$02B0,Y

$C7BO

$F119
$FODF
$C7AC
ASFF
$6F

$7F
$0272
#$00
$0273
$F9
$FEEO, X
$95
$FEBE
$94
4516

in Puffer

Filenamen
in Puffer schreiben

vor Filenamen schreiben

leichen aus Puffer
g

‘Shift Blank’ am Ende des Namens

durch """ ersetzen

Bit 7
in den restlichen Zeichen liéschen

nichsten Directoryeintrag suchen

Puffer fir Directory léschen

* Blank
in Puffer schreiben

iberschrift mit Diskettenname erzeugen
bei Bedarf initialisieren

Diskname lesen

Puffer léschen

Drivenummer

als Blockzahl lo in Puffer
Blockzahl lo

Puffernuamer

Hi-Byte der Pufferadresse

$90, Position des Diskettennames
merken

137

C7DC B1 94 LDA ($94),Y Puffer mit 'Shift blank’ fillen
C7DE C9 A0 CMP #$A0

C7e0 DO OB BNE $C7ED

C7e2 A9 31 LDA #$31 1

C7e4 2C .BYTE $2C

C7ES Bl 94 LDA ($94),Y leichen aus Puffer
C7E7 C? A0 CMP #$A0 mit ‘Shift blank’ vergleichen
C7E9 Do 02 BNE $C7ED

C7EB A9 20 LDA #3520 ° * Blank

C7ED 99 B3 02 STA $02B3,Y in Puffer

C7F0 88 DEY

C7F1 10 F2 BPL $CT7ES

C7F3 A9 12 LDA #$12 ‘RVS ON”

C7FS 8D B1 02 STA $02B1 in Puffer

C7F8 A9 22 LDA #$22 e

C7FA 8D B2 02 STA $02B2 vor und

C7FD 8D C3 02 STA $02C3 hinter Diskname schreiben
€800 A9 20 LDA #$20 ‘' Blank

€802 8D C4 02 STA $02C4 dahinter

€805 40 RTS
ERERERERERFRERRERRRRNRRRRRRERE OvhluBzeile erzeugen
€804 20 AC C7 JSR $C7AC Puffer lischen

c809 A0 OB LDY #$0B 12 Zeichen

C80B B9 17 C8 LDA $CB17,Y ‘blocks free.’
CBOE 99 Bi1 02 STA $02B1,Y in Puffer schreiben

ceit a8 DEY
€812 10 F7 BPL $CB0B
C814 4C 4D EF JMP SEF4D lahl der freien Blicke davor

ERREARERE RN R RN R R RER R RRER
CB817 42 4C 4F 43 4B 53 20 46 ‘blocks '

C81F 52 45 45 2t ‘ree.’
ERRRERRERARRRREFRERRRRRRRR2%2® S-Befehl ‘Scratch’

C823 20 98 C3 JSR $C398 Dateityp ermitteln

ca2é4 20 20 C3 JSR $C320 Drivenummer holen

c829 20 CA C3 JSR $C3CA Drive bei Bedarf initialisieren
c82C A9 00 LDA #$00

C82E 85 B6 STA $Bé& lihler fiir gelischte Dateien
c830 20 9D C4a JSR $C49D Datei im Directory suchen

€833 30 3D BMI $C872 nicht gefunden ?

€835 20 B7 DD JSR $DDB7 ist Datei offen ?

c83s 90 33 BCC sCB&D ja

C83A A0 00 LDY #$00

C83C Bl 94 LDA ($94),Y Filetyp

C83E 29 40 AND #$40 Scratch-Schutz ?

c840 DO 2B BNE $C86D ja

C842 20 B6 C8 JSR $C8Bé Datei ldschen und in Directory vermerken
CB845 A0 13 LDY #$13

CB847 Bl 94 LDA ($94),Y Tracknummer des ersten Side-Sektors
C849 FO OA BEQ $C85S keiner vorhanden ?

C84B 85 80 STA $80 Tracknummer merken

[4:L1)] ce INY

C84E Bl 94 LDA ($94),Y und Sektornummer

€850 85 81 STA #81

€852 20 7D CB JSR $CB7D Side-Sektoren ldéschen

€855 AE 53 02 LDX $0253 Dateinuamer

c858 A9 20 LDA #$20

CB5A 35 E7 AND $E7,X Bit 5 gesetzt ?

£8sc DO oD BNE $CB&B ja, Datei nicht geschlossen
C8SE BD 80 02 LDA $0280,X Track

C8a1 85 80 STA $80

€863 BD 85 02 LDA $0285,X und Sektor holen

€864 BS B1 STA $81

C848B 20 7D CB JSR $C87D Datei ldéschen

CB6B Eb 86 INC $86 Anzahl der geliéschten Dateien erhéhen
ca6d 20 8B C4 JSR $CA8B ndchste Datei suchen

ca7o0 10 C3 BPL $CB835 falls vorhanden léschen
C872 A5 86 LDA $86 Anzahl der geldschten Files
ce74 85 80 STA $80 als ‘Track’ speichern

C876 A9 01 LDA #s01 1 als Disk-Status

€878 A0 00 LDY #$00 0 als ‘Sektor’

c87a 4C A3 C1 JMP $C1A3 Meldung ‘files scratched’ bereit stellen
EERERREERRERERRERSRER AR 2 %3 44* Datei ldschen

c87p 20 SF EF JSR $EFSF Block in BAM freigeben

€880 20 75 D4 JSR $D475

caes3 20 19 F1 JSR $F119 Puffernummer der BAM holen
C8g8é BS A7 LDA $A7,X

cegs C9 FF CMP #$FF

C88A FO 08B BEQ $C894

C88C AD F9 02 LDA $02F9

C88F 09 40 ORA #$40

€891 8D F? 02 STA $02F9

€894 A9 00 LDA #$00

C896 20 CB D4 JSR $DACS Pufferzeiger auf Null

€899 20 56 DI JSR $D136 Track holen

€89C 85 BO STA $80

C89E 20 56 DI JSR $D154 Sektor holen

CeAl 85 81 STA $81

CBA3 A5 80 LDA $80 Tracknuamer

CBAS DO 06 BME $CBAD ungleich Null ?

C8A7 20 F4 EE JSR $EEF4 BAM schreiben

CBAA 4C 27 D2 JMP $D227 Kanal schlieBen

CBAD 20 5F EF JSR $EFSF Block in BAM freigeben

C8BO 20 4D D4 JSR $D44D ndchsten Block lesen

CeB3 4C 94 C8 JMP $CB894 und weiter machen

FERRERRRERERRXRRARRRRRRRA%%42% Directoryeintrag ldoschen
C8B& A0 00 LDY #$00

C8Bg 98 TYA

C8B9 91 94 STA ($94),Y Filetyp auf Null setzen
C8BB 20 SE DE JSR $DESE Block schreiben

CBBE 4C 99 D5 JMP $D599 und priifen
EERRREFRRARRERARRERIRSRE22222 D-Befehl, ‘Backup’
C8C1 A9 31 LDA #$31

€8C3 4C C8 Ci JMP $C1IC8 31, ‘syntax error’

FEERERRRRERERRNRERERR RN R RRERRX Diskette formatieren

139

C8Cs A9 4C LDA
£eces 8D 00 06 STA
cace A9 C7 LDA
€8CD 8D 01 06 STA
C8DO A9 FA LDA
€e8D2 8D 02 06 STA
€aps A% 03 LDA
€8D7 20 D3 D& JSR
C8DA AS 7F LDA
cepc 09 EO ORA
C8DE 85 03 STA
C8E0 A5 03 LDA
C8E2 30 FC BMI
C8E4 C9 02 cmp
CBE6 90 07 BCC
C8E8 A9 03 LDA
CBEA A2 00 LDX
CBEC 4C 0A E& JIMP
CBEF 60 RTS
REEEFERRRRERRRRRERRRRRFRRRRRRR
C8F0 A9 EO LDA
C8F2 8D 4F 02 STA
CBFS 20 D1 FO JSR
C8F8 20 19 F1 JSR
CBFB A9 FF LDA
CBFD 95 A7 STA
CBFF A9 OF LDA
€901 8D 56 02 STA
€904 20 ES C1 JSR
€907 DO 03 BNE
€909 4C Ci1 €8 JMP
C90C 20 FB8 C1 JSR
C90F 20 20 C3 ISR
€912 AD 8B 02 LDA
€915 29 55 AND
€917 DO OF BNE
C919 AE 7A 02 LDX
C91C BD 00 02 LDA
C91F €9 24A o, 1
€921 Do 05 BNE
€923 A9 30 LDA
€925 4C Ca8 C1 JMP
C928 AD 8B 02 LDA
€928 29 D9 AND
C92D DO F4 BNE
C92F 4C 52 C9 JMP
€932 A9 00 LDA
C934 8D 58 02 STA
€937 8D 8C 02 STA
€C93A 8D 80 02 STA
C?3D 8D 81 02 STA
C940 A5 E3 LDA

#$4C
$0600
#$C7
$0601
#$FA
$0602
#$03
$D6D3
$7F
#$E0
$03
$03
$C8EO
#$02
$CBEF
#$03
#4500
$EL0A

¥$E0
$024F
$FOD1
$F119
¥SEF

$A7,X
#$0F

$0256
$CIES
$cao0c
scact

$C1F8
$C320
$028B
855
$C928
$027A
$0200,%
#5204
$C928
#5$30
scice

$0288B
#$D9

$C923
$£952

#$00
$0258
$028C
$0280
$0281
$E3

JMP-Befehl

JMP $FAC7 nach $600 bis $602

Track und Sektornummer setzen
Drivenummer

Befehlskode fiir Formatieren
ibergeben

warten auf Ende der Formatierung

Rickmeldung priifen
kleiner 2, dann ok

21, ‘read error’

C-Befehl, ‘Copy”’

Puffernummer der BAM holen

Eingabezeile prifen
31, ‘syntax error’
Eingabezeile priifen

Drivenummern testen
Flag fir Syntaxpriifung

leichen des Befehls
g

30, ‘syntax error’
Syntaxflag

30, 'syntax error’

Anzahl der Laufwerke
Tracknummer im Directory

140

€942 29 01t AND #$01

€944 a5 7F STA $7F Drivenummer
€946 09 Ot ORA #$01

C?48 8D 91 02 STA $0291

C94B AD 7B 02 LDA $027B

C94E 8D 7A 02 STA $027A

€951 &0 RTS

€952 20 4F Ca JSR $Ca4F Datei im Directory suchen

€955 AD 78 02 LDA $0278 Anzahl der Dateinamen im Befehl

€958 €9 03 CMP #$03 kleiner als drei ?

C95A 90 45 BCC $C9Al ja

€95C A5 E2 LDA $E2 erste Drivenummer

C95E C5 E3 CMP $E3 zweite Drivenummer

€960 Do 3F BNE $C9A1 nicht auf gleichem Laufwerk ?

€962 AS DD LDA $DD Directoryblock der ersten Datei

€964 C5 DE CMP $DE gleich Directoryblock der zweiten Datei ?
€966 DO 39 BNE $C9A1 nein

948 AS D8 LDA $D8 Directorysektor der ersten Datei

C96A CS D9 CMP $D9 gleich Directorysektor der zweiten Datei ?
€94C DO 33 BNE $C9Al nein

C94E 20 CC CA JSR $CACC ist Datei vorhanden ?

€971 A9 01 LDA #s01

€973 8D 79 02 STA $0279
€976 20 FA C9 JSR $C9FA

€979 20 25 D1 JSR $D125 Dateityp holen

€97C Fo 04 BEQ $C982 Rel-Datei ?

C97e €9 02 CMP #$02 Prg-Datei

€980 DO 05 BNE $C987 nein

€982 A9 b4 LDA ¥$64

ce84 20 €8 C1 JSR $C1C8 64, ‘file type mismatch’
€987 A9 12 LDA #$12 18

€989 85 83 STA $83 Sekundédradresse

€988 AD 3C 02 LDA $023C
C98E 8D 3D 02 STA $023D

€991 A9 FF LDA #$FF

C993 8D 3C 02 STA $023C

€996 20 2A DA JSR $DA2A Append vorbereiten

€999 A2 02 LDX #$02

€99B 20 B9 C9 JSR $C9BY Dateien kopieren

C99E 4C 94 C1 JMP $C194 fertig

C9AL 20 A7 C9 JSR $C9A7 Dateien kopieren

C9A4 4C 94 C1 JMP $C194 fertig

C9A7 20 E7 CA ISR $CAE7

C9AA A5 E2 LDA $E2 Drivenummer des ersten Files
C9AC 29 ot AND #$01

CRAE 85 7F STA $7F Drivenummer

C9BO 20 86 D4 . JSR $D4BS Block anlegen

C9B3 20 E4 D& JSR $D&E4 Datei in Directory eintragen

C9B6 AE 77 02 LDX $0277

C9B? BE 79 02 STX $0279

C9BC 20 FA C9 JSR $C9FA

C9BF A9 11 LDA #$11 17
c9ct 85 83 STA $83

€9C3
c9Cs
cece
c9cB
C9CE
Cc9Do
Cc902

C9D5
cop8
C9DB
€c9DpD
CIEO
C9E2
C9ES
C9E7
C9EA
C9ED
COEE
C9F1
C9F3
C9FS
C9F7

C9FA
C9FD
C9FF
CAO01
CAO3
CAOG
CAo8
CAOA
CAOC
CAOF
CA12
CA14
CA17
CA1A
CAlC
CALE
CA21
CA23
CA26
CA29
CA2B
CA2E
CA30
CA31
CA32

CA35
CA37
CA39
CA3C
CA3E
CA40

cs

11
83
98
85
82
F2

Do

ca

c9

CF
CA

DD

D1

CF
02

02

DB

02

FE

D4
02

D4

02

02

02
D9

D1

D4

D3

JSR
JSR
BNE
JSR
LDA
STA
JMP

JSR
JSR
LDA
JSR
BEQ
JSR
BEQ
JSR
LDX
INX
CPX
BCC
LDA
STA
JMP

LDX
LDA
AND
STA
LDA
STA
LDA
STA
JSR
LDX
LDA
JSR
LDX
LDA
AND
STA
LDA
STA
JER
LDY
JSR
BEQ
INY
TYA
JMP

LDA
STA
JSR
STA
LDX
LDA

$DOEB
$0125
$C9CE
$CAS3
#5508
$F8
$C9D8

$CF9B
$CA3S
#$80

$DDAG
$C9D5
$D125
$C9EA
$CF9B
$0279

$0278
$C9B9
#$12
$83
$DB02

$0279
$E2,X
#3501
$7F
$FEBS
$80
$D8,X
$81
$D47S
$0279
$0D,X
$D4C8
$0279
$E7,X
#$07
$0240
#500
$0258
$D9A0
#3501
$D125
$CA3L

$D4C8

#s11
$83
$D398
85
$82
$F2,%

Dateityp holen
keine Rel-Datei ?

Byte in Puffer schreiben
und Byte holen

Bit 7 testen
nicht gesetzt ?
Dateityp prifen

Rel-Datei ?
Datenbyte in Puffer holen

18

Kanal schlieBen

Drivenummer

aerken

18, Directorytrack
merken
Directorysektor
Black lesen

leiger in Block
Pufferzeiger setzen

Dateityp

isolieren

und merken

Parameter fiir Rel-Datei holen
Dateityp holen

Rel-Datei ?

Pufferzeiger setzen

17

Kanal éffnen und Byte holen

Kanalnuamer

142

CA42 29 o8 AND #$08
CA44 B85 F8 STA $F8
CA46 DO OA BNE $CAS52
CA48 20 25 D1 JSR $D125
CA4B F0 05 BE@ $CAS52
CA4D A9 80 LDA #$80
CA4F 20 97 DD JSR $DD97
CAS2 40 RTS

CA53 20 D3 DI JSR $D1D3
CAS6 20 CB E1 JSR $EICB
CAS9 A3 Dé LDA $Dé
CASB 48 PHA

CASC A5 D5 LDA $DS
CASE 48 PHA

CASF A9 12 LDA #$12
CA61 85 83 STA $83
CAG3 20 07 DI JSR $D107
CAG6 20 D3 DI JSR $D1D3
CA69 20 CB El JER $EICB
CAGC 20 9C E2 JSR $E29C
CAGF A5 D& LDA $Dé
CAT1 85 87 STA $87
CA73 A5 DS LDA $DS
CA75 85 86 STA $86
CA77 A9 0O LDA #$00
CA79 85 88 STA $88
CA7B 85 D4 STA $D4
CA7D 85 D7 STA $D7
CA7F &8 PLA

CABO 85 D5 STA $DS
CAB2 68 PLA

CAB3 B5 D& STA $Dé
CABS 4C 3B E3 JMP $E33B
EEREARRERRRE RN RE RN R RRNARS
CAB8 20 20 C3I JSR $C320
CABB A5 E3 LDA $E3
CAgD 29 01 AND #$01
CABF 85 E3 STA $E3
CA91 €5 E2 CMP $E2
CA93 FO 02 BEQ $CA97
CA9S 09 80 ORA #$80
CA97 85 E2 STA $E2
CA99 20 4F C4 JSR $CA4F
CA9C 20 E7 CA JSR $CAE7
CA9F A5 E3I LDA $E3
CAAt 29 Ot AND #$01
CAA3 85 7F STA $7F
CAAS A5 DY LDA $D9
CAA7 85 81 STA $81
CAA9 20 57 DE JSR $DES7
CAARC 20 99 DS JSR $D599
CAAF AS DE LDA $DE
CABL 18 cLc

CAB2 &9 03 ADC #£03

Endekennzeichen isolieren
nicht gesetzt ?

Dateityp holen

Rel-Datei ?

Bit 7 setzen

Drivenummer setzen

18

Schreibkanal &ffnen
Drivenummer setzen

R-Befehl, ‘Rename’
Drivenummer aus Befehlszeile holen

2. Laufwerknummer
mit erster Laufwerknummer vergleichen
gleich ?

Datei im Directory suchen
existieren die Namen ?
Drivenummer

Sektornummer

liest Block aus Directory
ok ?

leiger auf Directoryeintrag

plus 3 gleich Zeiger auf Dateinamen

143

CAB4 20 CB D4 JSR $D4CB
CAB7 20 93 DF JSR $DF93
CABA AB TAY

CABB AE 7A 02 LDX $027A
CABE A9 10 LDA #$10
CACO 20 4E C6 JSR $Ch6E
CAC3 20 SE DE JSR $DESE
CAC6 20 99 D5 JSR $D599
CAC9 4C 94 C1 JMP $C194
ERERERRERRERRRRRRRERRRRRRRERRR
CACC A5 EB LDA $EB
CACE 29 07 AND #$07
CADO 8D 4A 02 STA $024A
CADI AE 78 02 LDX $0278
CAD6 CA DEX

CAD7 EC 77 02 CPX $0277
CADA 90 0A BCC $CAE6
CADC BD B0 02 LDA $0280,X
CADF DO F3S BNE $CADS6
CAEL A9 62 LDA #$62
CAE3 4C CB Ci1 . JMP s$CiCB
CAE6 60 RTS

CAE7 20 CC CA JSR s$CACC
CAEA BD 80 02 LDA $0280,X
CAED FO0 05 BEQ $CAF4
CAEF A9 63 LDA #$63
CAF1L 4C C8 C1 JMP $C1iCB
CAF4 CA DEX

CAFS 10 F3 BPL $CAEA
CAF7 &0 RTS
(2322222222312 2 22222232222 2)
CAF8 AD 01 02 LDA $0201
CAFB C9 2D CMP #$2D
CAFD DO 4C BNE $CBA4B
CAFF AD 03 02 LDA $0203
CB02 85 &F STA $6F
CBO4 AD 04 02 LDA $0204
CBO7 85 70 STA $70
CB0O9 A0 00 LDY #$00
CBOB AD 02 02 LDA $0202
CBOE C9 52 CMP #$52
CB10 FO OE BEQ $CB20
CB12 20 58 F2 JSR $F258
CB1S C9 57 CMP #$57
CB17 FO 37 BEQ $CBSO
CB19 C9 45 CMP #$45
CB1B DO 2E BNE $CB4B
CBID 6C &F 00 JMP ($004F)
FEREREERRRRRRERERR AR RRRRRS
CB20 B1 &F LDA ($6F),Y
CB22 85 85 STA $85
CB24 AD 74 02 LDA $0274

Pufferzeiger setzen
Nummer des Puffers holen

16 leichen

Namen in Puffer schreiben

Block auf Diskette schreiben

ok ?

fertig, Diskstatus bereitstellen

prift ob Datei vorhanden
Dateityp

merken

Tracknummer
ungleich null ?

62, ‘file not found~’
Datei mit altem Namen vorhanden ?
Tracknummer der neuen Datei

Datei geldscht ?

63, ‘file exists’

M-Befehle, ‘Memory’
zweites Zeichen aus Puffer

e

Adresse nach $4F/$70

3. leichen aus Puffer
‘R’

2um Memory-Read

(RTS)

iy

zum Memory-Write
£

Memory-Execute, Routine ausfiihren

M-R, ‘Memory-Read’
Byte lesen

Linge der Befehlszeile

144

CB27 C9 0é CMP %#$06
CB29 90 1A BCC $CB4S
CB2B AE 05 02 LDX %0205
CB2E CA DEX

CB2F FO 14 BEQ $CB45
CB31 8A TXA

CB32 i8 CLC

CB33 &5 &F ADC $6F
CB35 E& 6F INC $4F
CB37 BD 49 02 STA $0249
CB3A AS 6F LDA $&F
CB3C 85 A5 STA $AS
CB3E A5 70 LDA $70
CB40 85 Ab STA $A6
CB42 4C 43 D4 JMP $D443
CB45 20 EB DO JSR $DOEB
CBag 4C 3A D4 JIMP $D43A
CB4B A9 31 LDA #$31
CB4D 4C C8 Ct JIMP $C1iCB
ERRERRERRRRRRERRRRRRRRRRRRERRR
CBS0 B9 06 02 LDA $0206,Y
CBS3 91 &F STR ($6F),Y
CBSS ce INY

CB56 CC 05 02 CPY $0205
CBS9 90 F3 BCC $CBSO
CBSB 60 RTS
EEREEERRRRBRRERRRRRRRERRRRRRRR
CBSC AC 01 02 LDY %0201
CBSF €o 30 CPY #$30
CBé1 Do 09 BNE $CB&C
CB63 A7 EA LDA #$EA
CB&S 85 6B STA $6B
CB67 A9 FF LDA #$FF
CB6? 85 &C STA $6C
CB6B 460 RTS

CB&C 20 72 CB JSR $CB72
CB6F 4C 94 C1 JMP $C194
CB72 88 DEY

CB73 98 TYA

CB74 29 OF AND #$0F
CB76 0A ASL A

CB77 A8 TAY

CB78 Bl 6B LDA ($6B),Y
CB7A 85 75 STA $75
CB7C C8 INY

CB7D Bl 6B LDA ($6B),Y
CB7F 85 76 STA $76
[93:1:3) 6C 75 00 JMP ($0075)

EERREERRRRERRERRRRERERFRRRRREE

kleiner 6 ?
ja
Anzahl

nur ein Byte ?
Anzahl der Bytes

plus Startadresse
Endezeiger

Pufferzeiger fir Fehlermeldung
auf Startadresse fiir M-R setzen

Byte ausgeben
Lesekanal dffnen
Bytes ausgeben

31, ‘syntax error’
M-W, ‘memory-write’
leichen lesen

und speichern

Anzahl der Zeichen

schon alle Zeichen ?

U-Befehl, ‘User’
zweites Zeichen
0

nein

leiger auf Tabelle der User-Adressen
$FFEA

fertig, Fehlermeldung bereit stellen

Nummer
mal 2

als leiger in Tabelle

Adresse nach $75/$764

Funktion ausfihren

Direktzugriffskanal dffnen, '#°

145

CBB4
cBa7
[¥:1:1]
CB8B
[9:1: 19
CBBF
CB90
CB92
CB95
CB96
cB98
CB9A
CB9D

CBAO
CBA2
CBAS
CBA7
CBAA
CBAD
CBAF
CBB1
CBB3
CBBS
CBB7
CBB8
CBBA
CBBC
CBBD
CBBF
CBC1
CBC4
CBCs
CBCB
CBCB
CBCD
CBCF
CBD2
CBDS
CBD7
CBDA
CBDD
CBDF
CBE2
CBE4
CBE7
CBEY
CBEA
CBEC
CBEE
CBF1
CBF3
CBFé&
CBF8
CBFB
CBFD

AD
85
AS
48
20
68

AE
CA
Do
A9
20
4c

A9
4C
A0

AE
EO
BO
A9
85
a5
38
24
26
CA
10
AS
2D
Do
AS
2D
Do
AS
]
aD
AS
0D
8D
A9
20

AD
3
AR
AS
95
0
Ab
BD
09
90
A4
A9

8E
7F

3D

83
74

(]
01
E2
F1

70
ce
01
7C
85
03
EF
00
&F
70

02

Cé

02

D1

CB

c1

cc
02

02

02

02

02

02
02

D1

02

02

02

02

LDA
STA
LDA
PHA
JER
PLA
STA
LDX
DEX
BNE
LDA
JSR
JNP

LDA
JNP
LDY

LDX
CPX
BCS
LDA
STA
STA
SEC
ROL
ROL
DEX
BPL
LDA
AND
BNE
LDA
AND
BNE
LDA
ORA
STA
LDA
ORA
STA
LDA
JSR
LDX
LDA
STA
TAX
LDA
STA
STA
LDX
LDA
ORA
STA
LDy
LDA

$028E
$7F
$83

$C63D

$83
$0274

$CBAS
#3501

$D1E2
$CBF1

#$70
scice
#501
$CC7C
$02835
#$05
$CBAO
#500
$6F
$70

$6F
$70

$CBBS
$6F
$024F
$CBAO
$70
$0250
$CBAO
$6F
$024F
$024F
$70
$0250
$0250
#500
$DIE2
$82
$0285
$A7,X

$7F
$00,X
$0258, X
$83
$022B, X
#540
$022B,X
$82
ASFF

letzte Drivenummer
Drivenummer
Kanalnummer

Laufwerk priifen und evtl. initialisieren

Linge des Filenamens
griBer eins ?

Kanal und Puffer belegen
Flags setzen, fertig

70, ‘no channel’
Puffernummer holen
Puffernumaer

griBer gleich 5 ?
70, 'no channel”’

Puffer in Belegungsregister suchen

Puffer belegt ?

Puffer belegt ?

Puffer belegen

Kanal suchen und belegen
Kanalnummer
Puffernummer

Drivenummer

Sekundaradresse
READ und WRITE-Flag setzen

Kanalnumemer

146

CBFF 99 44 02 STA $0244,Y Endezeiger

cco2 A% 89 LDA #$89

ccos ?9 F2 00 STA $00F2,Y READ und WRITE-Flag setzen
cco7 B9 A7 00 LDA $00A7,Y Puffernummer

CCOA 99 3E 02 STA $023E,Y

CCOD 0A ASL A mal 2

CCOE AA TAX

CCOF A% 01 LDA #$01

cC1t 95 99 STA $99,X Pufferzeiger auf eins
CC13 A9 OE LDA #$0E

CC15 99 EC 00 STA $00EC,Y Flag fir Direktzugriff
CCiB 4C 94 C1 JMP $C194 fertig
FRERRXRRRFRRURRRNERRANRRRRNEEE B-Befehle, ‘Block”’
CCIB A0 00 LDY #$00

CCiD A2 00 LDX #$00

CCIF A% 2D LDA #$2D -

CC21 20 68 C2 JSR $C268 sucht Minuszeichen
cc24 DO 0A BNE $CC30 gefunden ?

CC26 A% 31 LDA #$31

CC28 4C C8 C1 JMP s$CiC8 31, ‘syntax error’
CC2B A9 30 LDA #$30

CC2D 4C C8 C1 JMP sCiCB 30, ‘syntax error’
CC30 8A TXA

cc3t DO F8 BNE $CC2B Komma, dann Fehler
CC33 A2 05 LDX #$05

CC35 B9 00 02 LDA $0200,Y Zeichen aus Puffer
CC38 DD 5D CC CMP $CCSD,X mit 'AFRWEP’ vergleichen

CC3B FO 05 BEQ@ $CC42 gefunden ?

CC3D CA DEX

CC3E 10 F8 BPL $CC38 mit allen Zeichen vergleichen
CC40 30 E4 BMI $CC26 nicht gefunden, Fehler

Cccaz2 84 TXA

CC43 09 80 ORA #$80 Befehlsnummer, Bit 7 setzen
CC45 8D 2A 02 STA $022A

ccas 20 &6F CC JSR $CC6F Parameter holen

CC4B AD 24 02 LDA $022A

CC4E 0A ASL A Nummer mal 2

CC4F AR TAX als Index

CCS0 BD 64 CC LDA $CCh4,X Adresse des Befehls Hi
CC53 85 70 STA $70

CC35 BD 63 CC LDA $CC&3,X Adresse lo

CCS8 85 6F STA $6F

CCSA 6C 6F 00 JMP ($006&F) Sprung auf Befehl

ERRXREERERERRREFARREREREER422% Namen der verschiedenen Blockbefehle

[Wi))] 41 46 52 57 45 50 'AFRWEP*
FEFXRREREREFRERRARERRA NI R%%%% Adressen der Blockbefehle
CC63 03 CD $CDO3, B-A

CC65 FS CC $CCF5, B-F

CCa7 36 CD $CD56, B-R

CC&9 73 CD $CD73, B-W

CCéB A3 CD $CDA3, B-E

147

FREERERRERFRRERRREERRRFRRREERR

cceDd BD CD
CC6F AO 00
cc71 A2 00
CC73 A% 3A
CC75 20 68
CC78 Do 02
CC7A AO 03
Cc7C B9 00
CC7F C9 20
ccet FO 08
cces €9 1D
CC8S FO 04
cce7 €9 2C
ccey Do 07
cces Cg

cceC CC 74
CCBF 90 EB
cCot 50

CC92 20 Al
CC9S EE 77
cces AC 79
CC9B EO 04
CC9D 90 EC
CC9F BO BA
CCAl A9 00
CCA3 85 &F
CCAS 85 70
CCA7 85 72
CCA? A2 FF
CCAB B9 00
CCAE €9 40
CCBO BO 18
cce2 €9 30
CCB4 90 14
CCB6 29 OF
CCeg 48

CCBY A5 70
CCBB 83 71
CCBD AS &F
CCBF 85 70
ccct 68

CCC2 85 &F
ccca cs

€ccs cc 74
CCC7 90 El
ccca 8C 79
cceo 18

CCCE A9 00
ccoo EB

cCDt E0 03
CCD3 BO OF
CCDS B4 &F
ccp7 s8

c2

02

02

cc
02
02

02

02

02

Loy
LDX
LDA
JSR
BNE
Loy
LDA
CMP
BEQ
CMP
BEQ
CMP
BNE
INY
CPY
BCC
RTS

JSR
INC
LDY
CPX
BCC
BCS
LDA
STA
STA
STA
LDX
LDA
o, 14
BCS
CHpP
BCC
AND
PHA
LDA
STA
LDA
§TA
PLA
STA
INY
CPY
BCC
STY
CLC
LDA
INX
CPX
BCS
LDY
DEY

£500
#500
#$34
$C248
$CC7C
#$03
$0200,Y
#$20
$CCEB

$6F

$0274
$CCAB
$0279

#$00
#$03

$CCE4
$6F X

$CDBD, B-P

Parameter fir Block-Befehle holen

leile bis Doppelpunkt testen
gefunden ?

nein, ab 4. Zeichen beginnen
Trennzeichen suchen

‘' Blank

Cursor right

.

s Komma

leilenende ?

nidchsten Parameter iibernehmen
Parameterzdhler erhéhen

mit Maximalzahl vergleichen
noch nicht idberschritten ?
30, ‘syntax error’

Speicherbereich fiir Dezimalziffern liéschen

Ieichen aus Eingabepuffer holen

keine Ziffer ?

0°

keine Ziffer ?

ASCII-Ziffer nach Hex wandeln
und merken

liffern eins weiter schieben

gelesene lahl merken

leiger in Eingabepuffer erhihen
leilenende erreicht ?

nein

leiger merken

Umarechnung der Hexziffern in ein Byte

148

ccpe 30 F& BMI $CCDO
CCDA 7D F2 CC ADC $CCF2,X
Ccop 90 F8 BCC s$CCD7
CCDF 18 cLc

CCEO0 E6 72 INC $72
CCE2 DO F3 BNE $CCD7
CCE4 48 PHA

CCES AE 77 02 LDX $0277
CCE8 A5 72 LDA $72
CCEA 9D 80 02 STA $0280,X
CCED &8 PLA

CCEE 9D B85 02 STA $0285,X
CCF1 &0 RTS

EEERRERERERERRRRRRRRRRERRRRRRN
CCF2 01 OA &4

L3222 2222222122232 22222222 3

CCFS 20 F5S CD JSR $CDFS
CCFB 20 5F EF JSR $EFSF
CCFB 4C 94 Ct JMP $C194
ERERERRRERRRRER RN RN RN R RRERR
CCFE A9 01 LDA #$01
CDOO 8D F9 02 STA $02F9

L2222 2222222222222 2222213

CDO3 20 F5 CD JSR $CDFS
CDo& AS 81 LDA $81
Cbos 48 PHA

CDO9 20 FA F1 JSR $F1FA
CDOC FO OB BE@ $CD19
CDOE 48 PLA

CDOF CS 81 CMP $81
Chit DO 19 BNE $CD2C
CD13 20 90 EF JSR $EF90
CD16 4C 94 C1 JMP $C194
Cb19 &8 PLA

CDIA A9 00 LDA #$00
cpic 85 81 STA $81
-CDIE E& 80 INC $80
€D20 A5 80 LDA $80
CD22 CD D7 FE CMP $FED7
CD25 BO 0A BCS $CD31
CD27 20 FA F1 JSR $FiFA
CD2A FO EE BE@ $CD1A
CD2C A9 65 LDA #$65
CD2E 20 45 Eé& JSR $E645
CD3I1 A9 &5 - LDA #$65
CD3I3 20 C8 C1 JSR $CiC8

ERERERRERRRRRRNRRRRERRRRNRRRES
CD36 20 F2 CD JSR $CDF2
CD3? 4C &40 D4 JMP $D440

dezimale Wertigkeit addieren

ldhler fir Parameter
Hi-Byte

Lo-Byte

Dezimalwerte
1, 10, 100

B-F Befehl, ‘Block free’

Track, Sektor und Drivenummer holen
Block freigeben

fertig, Fehlermeldung bereit stelllen

B-A Befehl, ‘Block allocate’
Track, Sektor und Drivenummer holen
Sektor

merken

sucht Block in BAM

Block schon belegt ?
gewiinschter Sektor

gleich nichster freier Sektor ?
nein

Block in BAM belegen

fertig

Sektor 0

ndchster Track

Tracknummer

36, letzte Tracknummer + 1

griBer oder gleich, dann 'no block”
freien Block im ndchsten Track suchen
nicht gefunden, nichsten Track prifen
65, Block

‘no block’ ndchster freier

65, ‘no block’ kein Block mehr frei

Kanal dffnen, Parameter setzen
Block von Diskette lesen

149

ERERREREERERERERRFER R RRRRRR Byte aus Puffer holen

£p3C 20 2F Dt JSR $D12F leiger auf Puffer setzen

CD3F Al 99 LDA ($99,X) Byte holen

CD41 60 RTS

FEEERRRRRRERARRRERRRXREXRRE%%% Block von Diskette lesen

Cp42 20 36 CD JSR $CD34 Kanal dffnen, Block lesen
CDh4s A9 00 LDA #$00

CDaz 20 C& D4 JSR $DaC8 Pufferzeiger auf Null setzen
CD4A 20 3C CD JSR $CD3C ein Byte aus Puffer holen
CD4D 99 44 02 STA $0244,Y

cDs0 A9 B9 LDA #$89 Schreib- und Leseflag setzen
cps2 99 F2 00 STA $00F2,Y

CD3S 60 RTS

EREXREFRRRRRNRRERLRARXRARRREXE DB-R Befehl, ‘Block Read’
CD36 20 42 CD JSR $CD42 Block von Diskette lesen

CDS9 20 EC D3I JSR $D3EC Byte aus Puffer bereitstellen
cpsc 4C 94 C1 JMP $C194 Fehlermeldung bereitstellen
FEEEEFERERRRREXRNERRRRRRNRNE%% Ul Befehl, Ersatz fiir ‘Block-Read’
CDSF 20 &6F CC JSR $CC6F Parameter des Befehls holen
CD62 20 42 CD JSR $CD42 Block von Diskette lesen

CD6S B? 44 02 LDA $0244,Y Endezeiger

chag 99 3E 02 STA $023E,Y als Datenbyte speichern
CDéB A9 FF LDA #$FF

CD&D 99 44 02 STR $0244,Y Endezeiger auf $FF

cp70 4C 94 Ct JMP $C194 fertig, Fehlermeldung bereit stellen
FARRERERRRERRARXARRRNRRRRRRER® B-W Befehl, ‘Block Write’
CD73 20 F2 CD JSR $CDF2 Kanal éffnen

CD76 20 E8 D4 JSR $D4ES Pufferzeiger setzen

cD79 AB TAY

CD7A 88 DEY

CD7B Cy 02 CMP #$02 Pufferzeiger lo kleiner 2
CD7D BO 02 BCS $CDB81 nein

CD7F A0 01 LDY #$01

cost A9 00 LDA #$00

cpaes 20 C8 D4 JSR $D4CB Pufferzeiger auf null

cpge 98 TYA

cna7 20 Ft CF JSR $CFF1 Byte in Puffer schreiben
CDBA BA TXA

CbBB 48 PHA

cpac 20 64 D4 JSR $D464 Block auf Diskette schreiben
CD8F 68 PLA

CD90 AA TAX

CcD91 20 EE D3 JSR $D3EE Byte aus Puffer holen

Cb94 4C 94 C1 IMP $C194 fertig, Fehlermeldung
EREAERRRENRRRRRRRERRRRRRNRNRREX U2, Ersatz fir ‘Block write’
CDe7 20 6F CC JSR $CC6F Parameter des Befehls holen
CD9A 20 F2 CD JSR $CDF2 Kanal dffnen

cD9D 20 64 D4 JSR $D464 und Block auf Diskette schreiben
CDAO 4C 94 Ct JMP $C194 fertig

ERREERERERRRRRRRREERRARRRREEXE 'B-E’ Befehl, 'Block execute’

150

CDA3Z 20 58 F2 JSR $F258
CDAb 20 36 CD JSR $CD36
CDA9 A9 00 LDA #$00
CDAB 85 &F STA $6F
CDAD Ab F9 LDX $F9
CDAF BD EO FE LDA $FEEO,X
CDB2 85 70 STA $70
CDB4 20 BA CD JSR $CDBA
CDB7 4C 94 C1 JMP $C194
CDBA &4C &F 00 JMP ($004F)
FRERREERERRERRRRRRRRRRRRRRRN RN
CDBD 20 D2 CD JSR $CDD2
coco AS F9 LDA $F?
cpcz2 0A ASL A

CDC3 AA TAX

coca AD 86 02 LDA $0286
cpc7 25 99 STA $99,X
cDey 20 2F D1 JSR $D12F
cocc 20 EE D3 JSR $D3EE
CDCF 4C 94 C1 JMP $C194
FEENEERRRRERRRRRRRRFR AR RRRRRR
cop2 A6 D3 LDX $D3
cDD4 E6 D3 INC $D3
CDDé BD 83 02 LDA $0285,X
CcDD9 AB TAY

CDDA a8 DEY

CDDB 88 DEY

cooe Co oC CPY #s0C
CDDE 90 05 BCC $CDES
CDEO A9 70 LDA #$70
CDE2 4C C8 C1 JMP $CiCB
CDES 85 83 STA $83
CDE7 20 EB DO JSR $DOEB
CDEA BO F4 BCS $CDEO
CDEC 20 93 DF JSR $DF93
CDEF 85 F9 STR $F9
CDF1 60 RTS
EREEERRRERERRRERRRRRRRRRRRRRAR
CDF2 20 D2 CD JSR $CDD2
CDFS Ab D3 LDX $D3
CDF7 BD 85 02 LDA $0285,X
CDFA 29 01 AND #$01
CDFC 85 7F STA $7F
CDFE BD 87 02 LDA $0287,X
CEOL 85 81 STA $81
CEO3 BD 86 02 LDA $0284,X
CEO® 85 80 STA $80
CeoB 20 SF D5 JSR $DSSF
CEDB 4C 00 C1 JMP $C100
KREEERRRRREERRRRRRRR RN RR R NR
CEOE 20 2C CE JSR $CE2C

(RTS)
Kanal &ffnen und Block einlesen

Adresse low
Puffernummer
Pufferadresse high

Routine ausfihren
fertig
Sprung auf Routine

‘B-P° Befehl, ‘Block pointer’
Kanal dffnen, Puffernummer holen
Puffernummer

* 2

als Index

Pointerwert

als Pufferzeiger abspeichern

ein Byte aus Puffer

zur Ausgabe bereitstellen

fertig

Kanal dffnen

Puffernummer

Puffernummer kleiner 14 7
ja

70, 'no channel’

Sekunddradresse

Kanal dffnen

schon belegt, dann 70, ‘no channel”’
Puffernummer

setzen

Puffernummer prifen und Kanal &ffnen
Kanalnummer
Pufferadresse

Drivenummer

Sektor

Track

Track und Sektor ok ?

LED einschalten

Pointer fiir REL-Datei setzen
Recordnummer # Recordlénge

CEll 20 6E CE JSR $CE4E
CE14 AS 90 LDA $90
CE1lb 85 D7 STA $D7
CE18 20 71 CE JSR $CE71
CE1B E6 D7 INC $D7
CEID E6 D7 INC $D7
CEIF A5 8B LDA $8B
CE21 85 DS STA $DS
CE23 A5 90 LDA $90
CE25 0A ASL A
CE26 18 cLe

CE27 69 10 ADC #$10
CE29 85 Dé STA $D6
CE2B 60 RTS
ERERRRERRERRERRRRRRRERRRERRARS
CE2C 20 D9 CE JSR $CED9
CE2F 85 92 STA $92
CE3L A6 82 LDX $82
CE3I3 BS BS LDA $BS,X
CE3I5 85 90 STA $90
CE37 BS BB LDA $BB,X
CE39 85 91 STA $91
CEIB DO 04 BNE $CE41
CE3D A5 90 LDA $90
CE3F FO OB BEQ $CE4C
CE4l AS 90 LDA $90
CE43 38 SEC

CE44 E9 01 SBC #$01
CE4s 85 90 STA $90
CE48 BO 02 BCS $CE4C
CE4A Cb6 91 DEC $91
CE4C B5 C7 LDA $C7,X
CE4E 85 &F STA $6F
CE30 46 &F LSR $6&F
CES2 90 03 BCC $CES7
CES4 20 ED CE JSR $CEED
CES7 20 ES CE JSR $CEES
CESA A5 oF LDA $&F
CESC DO F2 BNE $CESO
CESE AS D4 LDA $D4
CE&0 18 CLC

CEb1 45 BB ADC $8B
CES3 85 8B STA $8B
CE&S 90 08 BCC $CE&D
CE&7 Eb 8C INC $8C
CE&? DO 02 BNE $CE&D
CE&B E6 8D INC $8D
CE&D 60 RTS
EEREEERERRRRERRRRRRRERRRRNRRS
CEGE A9 FE LDA #$FE
CE70 2C «BYTE $2C
ERRREEERRREREEERRRRRRRRRRRRRS
CE71 A9 78 LDA #s$78
CE73 85 &F STA $&F

durch 254 gleich Datenblocknummer

Rest der Division gleich Zeiger in Datenblock
Datenzeiger

durch 120 gleich Side Sektornumaer
Datenzeiger plus 2 (Track/Sektor-Zeiger!')
Ergebnis der Division

gleich Side Sektornummer

Rest der Division

mal 2

plus 16
gleich Zeiger in Side-Sektor auf Datenblock

Arbeitsspeicher léschen

Kanalnummer
Recordnumaer 1o

Recordnummer hi

Recordnummer ungleich 0 ?

dann eins abziehen

Recordlédnge

Recordnummer % Recordlinge

Register linksverschieben

Ergebnis in $8B/$8C/$8D

Division durch 254, Datenblocknummer berechnen
254

Divison durch 120, Side Sektornummer berechnen

120
Divisor

152

#$03
$BF, X

$8A,X
$8F, X

$84,X

$CE77
$CED9
#500
$90,X
$8F X

#$04
$CEBY
#$00
$92
$6F
$CEA3
$8F

$8F

$CEES6
$CEED
$CEES
$6F

$CEBO
$CEE2
$8F

$90
$90
$CEBF
$91
$CEBF
$92
$92
$91
$CEB7
$90

$6F
$CED8
$8B
$CED6
$8C
$CEDSb
$8D
$90

#$00
$8B

CE7S A2 03 LDX
CE77 BS 8F LDA
CE79 48 PHA
CE7A BS 8A LDA
CE7C 95 BF STA
CE7E &8 PLA
CE7F 95 BA STA
Cest Ch DEX
CEB2 DO F3 BNE
CEB4 20 D9 CE JSR
CE87 A2 00 LDX
CEB? BS 90 LDA
CEGB 95 8F STA
CEBD EB INX
CEBE EO 04 CPX
CE90 90 F7 BCC
CE?2 A9 00 LDA
CE94 85 92 STA
CE96 24 &F BIT
CE98 30 09 BMI
CE9A 06 8F ASL
CE?C 08 PHP
CESD 46 BF LSR
CE9F 28 PLP
CEA0O 20 E& CE JSR
CEA3 20 ED CE JSR
CEA6 20 ES CE JSR
CER9 24 &F BIT
CEARB 30 03 BMI
CEAD 20 E2 CE JSR
CEBO A BF LDA
CEB2 18 CLC
CEB3 65 90 ADC
CEBS 835 90 STA
CEB7 90 06 BCC
CEB? E& 91 JINC
CEBB DO 02 BNE
CEBD Eé6 92 INC
CEBF A5 92 LDA
CECT 035 91 ORA
CEC3 Do C2 BNE
- CECS A5 90 LDA
CEC7 38 SEC
CEC8 EJ &F §BC
CECA 90 OC BCC
CECC E6 8B INC
CECE DO 06 BNE
CEDO Eé 8C INC
CEDZ DO 02 BNE
CED4 Eé6 8D INC
CED6 85 90 STA
CEDB &0 RTS
EREREERRRRRRRERRRRRRRRRRRERR R
CED9 A% 00 LDA
CEDB 85 8B STA

Arbeitsspeicher léschen

Register 1 linksverschieben
Register 0 zu Register 1 addieren
Register 1 linksverschieben

Register 1 zweimal linksverschieben

Quotient in $BB/$BC/$8D

Rest in $90

Arbeitsspeicher léschen

153

CEDD 85 8C STA $8C
CEDF 85 8D STA $8D
CEEl 60 RTS

ERRRREREERERERRRRRERRRRRRRRRRS
CEE2 20 ES CE JSR $CEES

FRERREREFERRRERREFERERFEXRERER

CEES 18 cLe

CEE6 26 90 ROL $90
CEE8 26 91 ROL $91
CEEA . 26 92 ROL $92
CEEC &0 RTS
ERRERRERRRRRRERRRRRRRRERRRERRN
CEED i8 CLC

CEEE A2 FD LDX #$FD
CEF0 BS BE LDA $BE,X
CEF2 75 93 ADC $93,X
CEF4 95 BE STA $8E,X
CEFé& EB INX

CEF7 DO F7 BNE $CEFO
CEF9 &0 RTS

CEFA A2 00 LDX #$00
CEFC 8A TXA

CEFD 95 FA STA $FA,X
CEFF EB INX

CFOO EO 04 CPX #$04
CF02 Do FB BNE $CEFC
CF04 A9 06 LDA #$06
CF06 95 FA STA $FA,X
CFoB &0 RTS

CF09 A0 04 LDY #$04
CFOB Ab4 82 LDX $82
CFOD B9 FA 00 LDA $00FA,Y
CF10 96 FA STX $FA,Y
CFi2 €S 82 CMP $82
CF14 FO 07 BEQ $CF1D
CFi6 88 DEY

CF17 30 Et BMI $CEFA
CF19 AA TAX

CF1A 4C OD CF JMP $CFOD
CFID 60 RTS

CF1E 20 09 CF JSR $CFO09
CF21 20 B7 DF JSR $DFB7
CF24 DO 46 BNE $CFé4C
CF26 20 D3 D1 JSR $D1D3
CF29 20 B8E D2 JSR $D2BE

CF2C 30 48 BMI $CF76
CF2E 20 C2 DF JSR $DFC2
CF31 AS BO LDA $80
CF33 48 PHA

CF34 A5 81 LDA 81

3-Byte-Register zweimal linksverschieben

3-Byte-Register einmal linksverschiehen

Register $90/$91/$92
zu Register $B8B/$8C/$8D addieren

Kanalnummer

Kanalnummer

Drivenummer setzen

Track

Sektor

154

CF36 48 PHA
CF37 A9 01 LDA
CF39 20 F6 D4 JSR
CF3C 85 81 STA
CF3E A9 00 LDA
CF4a0 20 F6 D4 JSR
CF43 85 80 STA
CF45 FO 1F BEQ
CF47 20 25 D1 JER
CF4a FO 0B BEQ
CF4C 20 AB DD ISR
CF4F DO 06 BNE
CF51 20 8C CF JSR
CF54 4C 5D CF JMP
CFS7 20 8C CF JSR
CF5A 20 57 DE J&R
CFSD 68 PLA
CFSE 85 81 STA
CF&0 68 PLA
CFal 85 80 STA
CF&63 AC &F CF JNMP
CF&é 68 PLA
CF67 85 81 STA
CFe9 68 PLA
CF6A B85 80 STA
CFaC 20 8C CF JSR
CF&F 20 93 DF JSR
CF72 AA TAX
CF73 4C 99 DS JMP
CF76 A9 70 LDA
CF78 4cC C8 C1 JMP
CF7B 20 09 CF JSR
CF7E 20 B7 DF JSR
CF81 Do 08 BNE
CFB3 20 BE D2 JSR
CFB6 30 EE BMI
CFes 20 C2 DF JSR
CF8B &0 RTS
EERERERRFRRRRERRRRRARRRRRRRRRN
CFBC A6 B2 LDX
CF8E BS A7 LDA
CFe0 49 80 EOR
CF92 95 A7 STA
CF94 B5 AE LDA
CF9& 49 80 EOR
CF98 935 AE STA
CF9a 60 RTS
EREERERRRERRRRRRRRRRRERRRRERRR
CF9B A2 12 LDX
CF9D 86 83 §TX

#3$01
$DAFS
$81
#3500
$D4F&
$80
$CF66
$D125
$CF57
$DDAB
$CFS57
$CFBC
$CFSD

$CFBC
$DES7

$81

$80
$CF&F

$81

$80
$CFBC
$DF93

$D599

#$70
$cice

$CFO9
$DFB7
$CF8B
$D28E
$CF76
$DFC2

£82

$A7,X
¥$80
$A7,X
$AE, X
#$80
$AE, X

#$12
$83

Byte 1 aus Puffer holen
Sektor

Byte 0 aus Puffer holen
Track

Dateityp prifen
Rel-Datei ?

Sektor-

und Tracknummer zuriickholen

Sektor-

und Tracknummer zurickholen

und prifen

70, ‘no channel’

Puffer wechseln
Kanalnummer

Bit 7 in Tabelle umdrehen

Datenbyte in Puffer schreiben

Kanal 18

135

CF9F 20 07 D1 JSR $D107
CFA2 20 00 C1 JSR $C100
CFAS 20 25 Di JSR $D125
CFAB 90 05 BCC $CFAF
CFAR A9 20 LDA #$20
CFAC 20 9D DD JSR $DD9D
CFAF A5 83 LDA $83
CFB1 C9 OF CMP #$0F
CFB3 FO 23 BEQ@ $CFD8
CFBS DO 08 BNE $CFBF
CFB7 A5 84 LDA $84
CFB? 29 8F AND #$8F
CFBB C9 OF CMP #$OF
CFBD BO 19 BCS $CFD8
CFBF 20 25 D1 JSR $D125
CFC2 BO 05 BCS $CFC9
CFC4 A5 85 LDA $85
CFC6 4C 9D D1 JMP $D19D
CFC9 DO 03 BNE $CFCE
CFCB 4C AB EO0 JMP $EOAB
CFCE A5 85 LDA $85
CFDO 20 F1 CF JSR $CFF1
CFD3 A4 B2 LDY $82
CFDS 4C EE D3I JMP $D3EE
CFDB A9 04 LDA #$04
CFDA 85 82 STA $82
CFDC 20 EB D4 JSR $D4ES
CFDF C9 2A CMP #$2A
CFEL FO 05 BEQ $CFES
CFE3 A5 85 LDA $85
CFES 20 F1 CF JSR $CFF1
CFEB A5 F8 LDA $F8
CFEA FO 01 BER $CFED
CFEC &0 RTS

CFED EE S5 02 INC $0255
CFFO &0 RTS
ERRRERERERERRRRRRRERARRRANRERS
CFFL 48 PHA

CFF2 20 93 DF JSR $DF93
CFF5 10 0b BPL $CFFD
CFF7 68 PLA

CFF8 A9 61 LDA #$61
CFFA 4C CB C1 JMP $CiC8
CFFD 0A ASL A
CFFE AA TAX

CFFF &8 PLA

Dooo 81 99 STA ($99,X)
D002 F& 99 INC $99,X
D004 60 RTS

Schreibkanal dffnen
LED einschalten
Dateityp prifen
keine Rel-Datei

Puffer wechseln
Sekundédradresse
15 2

ja

nein

Sekundiradresse

griBer gleich 15 ?

dann Eingabepuffer

Dateityp prifen

Rel-Datei oder Direktzugriff ?
Datenbyte

in Puffer schreiben

Direktzugriffsdatei ?
Datenbyte in Rel-Datei schreiben

Datenbyte in Puffer schreiben
Kanalnummer
nichstes Byte zur Ausgabe bereitstellen

Kanal 4

entspricht Eingabepuffer
Pufferzeiger setzen

40

Pufferende ?

Datenbyte in Puffer schreiben
Endflag gesetzt ?
ja

Kommandoflag setzen

Datenbyte in Puffer schreiben
Datenbyte merken

Puffernummer holen

Puffer zugeordnet ?

61, ‘file not open’
Puffernummer mal 2
als Index

Datenbyte

in Puffer schreiben
Pufferzeiger erhdhen

156

L3222 222 2222222222222 2]

D005 20 D1 Ci JSR $CiD1
DOOB 20 42 DO JSR $D042
DOOB 4C 94 C1 JMP $C194
EEERERRRRRFRRRRRERRRRRRRRRNRRS
DOOE 20 OF F1i JSR $F10F
Dott AB TAY

D012 B& A7 LDX $A7,Y
D014 EO FF CPX #S$FF
Dois DO 14 BNE $D02C
Do18 48 PHA

D019 20 8E D2 JSR $D28E
DOIC AA TAX

Do1D 10 05 BPL $D024
DOLF A9 70 LDA #$70
po21 20 48 E6 ISR $E648
D024 48 PLA

D025 A8 TAY

D026 B8A TXA

D027 09 80 ORA #$80
D029 99 A7 00 STA $00A7,Y
Do2C aA TXA

D02D 29 OF AND #$0F
DO2F 85 F9 STA $F9
D031 A2 00 LDX #$00
D033 86 81 STX $81
D035 AE 85 FE LDX $FEBS5
D038 86 80 STX $80
DO3A 20 D3 D6 JSR $D&D3
DO3D A9 BO LDA #$BO
DO3IF 4C 8C DS JMP $DS8C
EEEREERERRRRRRRRRERRRRRRARRRRR
D042 20 Dt FO JSR $FOD1
D045 20 13 DI JSR $D313
D048 20 OE DO JSR $DOOE
DOAB A6 TF LDX $7F
DO4D A9 00 LDA #$00
DO4F 9D 51 02 STA $0251,X
D052 8A XA

DOS3I 0A ASL A
D054 AA TAX

DOSS A5 16 LDA $16
D037 95 12 STA $12,X
DoS9? A5 17 LDA $17
DOSB 95 13 STA $13,X
DOSD 20 86 DS JSR $D586
D060 AS F9 LDA $F9
D062 0OA ASL A
DO&3 AA TAX

Do&4 A9 02 LDA #$02
DO 95 99 STA $99,X
D068 A1 99 LDA ($99,X)
DOGA A6 TF LDX $7F
D06C 9D 01 01 STA $0101,X

I-Befehl, Initialisieren
Drivenummer suchen

BAM laden

Diskstatus bereitstellen

70, ‘no channel’

Sektor 0

18

Track 18

Parameter an Disk-Controller iibergeben
Befehlskode ‘Block Header lesen’

an Disk-Controller ibergeben

BAM laden

Block lesen

Drivenummer

Flag fir 'BAM gedndert’ riicksetzen

ID speichern

Puffernummer

Pufferzeiger auf $200

leichen aus Puffer holen
Drivenummer

157

DO&F A9 00 LDA #%500
D071 95 1C STA $1C,X
D073 95 FF STA $FF,X
ERRREERRERRRRRRRRRRRRRRRRRRRRS
D075 20 3A EF JSR $EF3A
D078 A0 04 LDY #$04
DO7A A% 00 LDA #$00
po7C AA TAX

007D 18 CLeC

DO7E 71 &D ADC ($6D),Y
pog8o 90 01 BCC $D083
D082 E8 INX

po83 C8 INY

posa C8 INY

po8s C8 INY

D084 ce INY

D087 CO 48 CPY #$48
nog9 FO F8 BEQ $D0B3
D08B CO 90 CPY #$90
posp DO EE BNE $D0O7D
DOBF 48 PHA

D090 8A TXA

D091t A6 T7F LDX $7F
D093 9D FC 02 STA $02FC,X
D09s 48 PLA

D097 9D FA 02 STA $02FA,X
DO%A &0 RTS
FRERERRERRRRRRRRRERRRRRRRRRRRR
DO9B 20 DO D& JSR $D&DO
DO9E 20 C3 DO JSR $DOC3
DOAL 20 99 DS JSR $DS99
DOA4 20 37 D1 JSR $D137
DOA7 85 BO STA $80
DOA% 20 37 D1 JSR $D137
DOAC 85 81 STA $81
DOAE &0 RTS

DOAF 20 9B DO JSR $D09B
DOB2 A5 80 LDA $80
pop4 DO 01 BNE $DOB7
DOB6 60 RTS

DOB7 20 LE CF JSR $CF1E
DOBA 20 DO D& JSR $D&DO
DOBD 20 C3 DO JSR $DOC3
Doco 4C 1E CF JMP $CFIE
FERRREFREREERRRFRRRRRRRERR RS
DOC3 A9 80 LDA #$80
DoCS DO 02 BNE $DOC9
EREERERRRERRERERRERRRRRERRERR R
DOC7 A9 90 LDA #$90
DOC? 8D 4D 02 STA $024D
DOCC 20 93 DF JSR $DF93

Flag fiir Write Protect
Flag fir Lesefehler

Blocks free berechnen
Pufferadresse nach $46D/$6E
bei Position 4 beginnen

Anzahl freie Blocks pro Track addieren
X als Hi-Byte

plus 4

Track 18 ?

dann iibergehen
letzte Tracknummer ?
nein

Lo-Byte

Hi-Byte

Drivenuamer

Hi-Byte nach $2FC
Lo-Byte

nach $2FA

Parameter an Disk-Controller
Block lesen

ok ?

Byte aus Puffer holen

Track

nichstes Byte aus Puffer
Sektor

Track

Puffer wechseln

Parameter an Disk-Contraller
Block lesen

Puffer wechseln

Block lesen
Kode fiir ‘Lesen’

Block schreiben
Kode fir ‘Schreiben’
merken

Puffernummer holen

158

DOCF AA TAX
DoDo 20 06 D5 JSR
DoD3 BA TXA
DoD4 48 PHA
DoDsS 0A ASL
DoDs AR TAX
Dop7 A7 00 LDA
DoDY 95 99 STA
DODB 20 25 D1 JER
DODE C9 04 cHp
DOEC BO 06 BCS
DOE2 F& BS INC
DOE4 Do 02 BNE
DOES F& BB INC
DOES 68 PLA
DOE? AA TAX
DOEA 60 RTS
EERRRARRXERRERERRRR NI ERRORRR
DOEB A5 83 LDA
DOED £9 13 CuP
DOEF 0 02 BCC
DOF1 29 OF AND
DOF3 C9 OF cHp
DOFS Do 02 BNE
DOF7 A9 10 LDA
DOF9 AfA TAX
DOFA 38 SEC
DOFB BD 2B 02 LDA
DOFE 30 06 BMI
D100 29 OF AND
D102 85 82 STA
D104 AR TAX
D105 18 LS
D106 60 RTY
FERERRERRRRRRRRRRERRRRRRRRARRRR
D107 A5 B3 LDA
D109 9 13 cue
D1OB 90 02 BCC
D1oD 29 OF AND
D10OF AR TAX
D110 BD 2B 02 LDA
D113 A8 TAY
D114 0A ASL
D115 90 0A BCC
D117 30 0A BMI
D119 98 YA
DiiA 29 OF AND
DitC 85 82 STA
DI1E AA TAX
DLIF 18 CLC
D120 60 RTS
D121 30 Fb BMI
D123 38 SEC

$D506

#$00
$99,X
$D125
#$04
$DOEB
$B5,X
$DOEB
$BB, X

$83
#$13
$DOF3
#$0F
#$0F
$DOF9
#$10

$022B, X
$D106
#$0F
$82

$83
#$13
$D10OF
#$0F

$0228,X
A

$D121

$D123

#$0F
$82

$D119

Track/Sektor holen, Block lesen/schreiben
Pufferzeiger mal 2

leiger in Puffer auf null
Dateityp holen

Rel-Datei oder Direktzugriff ?
ja

Blockzahler erhihen

Kanal zum Lesen dffnen
Sekunddradresse

19

kleiner ?

16

Flag fiir ok

Kanal zum Schreiben &ffnen
Sekunddradresse

19

kleiner ?

Kanalnummer

Flag fir ok

Flag fiir Kanal belegt

159

D124 &0 RTS
ERERRERRERERRERRRRRRRRRRRRRIRR
D125 A6 82 LDX $82
D127 BS EC LDA $EC,X
D129 44 LSR A

D12A 29 07 AND #$07
D12C C9 04 CMP #$04
DI2E 60 RTS
(2222223222223 2223222222222 227
Di2F 20 93 DF JSR $DF93
D132 0A ASL A

D133 AA TAX

D134 A4 82 LDY $82
D136 &0 RTS
EEEREERRRRERRRERNERRRRRRRRRARS
D137 20 2F Di JSR $D12F
D13A B9 44 02 LDA $0244,Y
D13D FO 12 BEQ@ $D151
DI3F A1 99 LDA ($99,X)
D141t 48 PHA

D142 BS 99 LDA $99,X
D144 D9 44 02 CMP $0244,Y
D147 DO 04 BNE $D14D
D149 A9 FF LDA #$FF
D14B 95 99 STA $99,X
Di4D &8 PLA

DI4E F& 99 INC $99,X
D1S0 &0 RTS

D151 AL 99 LDA ($99,X)
D133 Fé6 99 INC $99,X
D155 60 RTS
ERERERERERRRRRERRERERRERRRRRRE
D156 20 37 DI JSR $D137
D159 DO 34 BNE $D191
DI5B 85 85 STA $85
DI5D B9 44 02 LDA $0244,Y
D160 FO 08 BEQ $D16&A
D162 A9 80 LDA #$80
D164 99 F2 00 STA $00F2,Y
D167 A5 85 LDA $85
D169 60 RTS

Di6A 20 1E CF JSR $CFIE
D16D A9 00 LDA #$00
Di6F 20 C8B D4 JSR $D4ACB
D172 20 37 D1 JSR $D137
D175 C9 00 CMP #$00
D177 FO 19 BEQ $D192
D179 85 B0 STA $80
Di7B 20 37 D1 JSR $D137
D17€ 85 81 STA $81
D180 20 1E CF JSR $CFI1E

Auf Filtyp ‘REL" priifen

‘REL® ?

Puffer- und Kanalnummer holen
Puffernummer holen

ein Byte aus Puffer holen
Puffer- und Kanalnummer holen
Endezeiger

Byte aus Puffer holen

Pufferzeiger
gleich Endezeiger ?
nein

Pufferzeiger auf -1
Datenbyte
Pufterzeiger erhdhen

Zeichen aus Puffer holen
Pufferzeiger erhdhen

Byte holen und evtl. ndchstes Block lesen
Byte aus Puffer holen

nicht das letzte Zeichen ?

Datenbyte merken

Endezeiger

ia

READ-Flag
Datenbyte

Puffer wechseln und nichsten Block lesen

Puffezeiger auf null setzen

erstes Byte aus Puffer holen

Tracknummer Null ?

ja, dann letzter Block

Tracknummer merken

nidchstes Byte holen

als Folgesektor merken

Puffer wechseln und nichsten Block lesen

160

D183 20 D3 D1 JSR $D1D3
D186 20 DO D& JSR $D&DO
D189 20 C3I DO JSR $DOC3
p18C 20 1E CF JSR $CF1E
D18F A5 85 LDA $85

D191 40 RTS

D192 20 37 Dt JSR $D137
D193 A4 82 LDY $82

D197 99 44 02 STA $0244,Y
Di9A A5 85 LDA $85

D19C &0 RTS
EEERERREREERRRRRRRERRERRRRRRRS
D19D 20 F1 CF JSR $CFF1
Di1A0O FO 01 BEQ $D1A3
D1A2 40 RTS

DiA3 20 D3 D1 JSR $D1D3
DiAé 20 1E F1 JSR $FILE
D1A9 A9 00 LDA #$00
D1AB 20 CB D4 JSR $DACSB
DIAE A5 80 LDA $80

D1BO 20 F1 CF JSR $CFF1
DIB3 A5 B1 LDA $81

DIBS 20 F1 CF JSR $CFF1
DiB8 20 C7 DO JSR $DOC7
D1BB 20 1E CF JSR $CFIE
DIBE 20 DO D& JSR $D&DO
DiC1 A9 02 LDA #$02
DIC3 4C C8 D4 JMP $DACS
ERREERRERRERERRRERERRERRRERERS
DIC6 BT &F STA $6F

D1C8 20 EB D4 JSR $D4EB
D1CB 18 CLC

DICC 65 &F ADC $6F

DICE 95 99 STA $99,X
Di1DO B5 94 STA $94

D1D2 60 RTS
EREREREFERERRRRRRRIRERRARRRRRS
DID3 20 93 DF JSR $DF93
DiDé AR TAX

D1D7 BD 5B 02 LDA $025B,X
D1DA 29 01 AND #$01
DiDC 85 7F STA $7F

DIDE 40 RTS
EREREEEERRERRERRRERERRRRRARRRS
DIDF 38 SEC

D1EO BO 01 BCS $D1E3
EREEERRERRERRERRRRRERRRERRRRRS
D1E2 18 cLe

DIE3 08 PHP

Drivenummer merken

Parameter an Disk-Controller

Lesebefehl iibergeben

Puffer wechseln und ndchstem Block lesen
Datenbyte zuriickholen

niachstes Byte aus Puffer holen
als Endezeiger merken

Datenbyte zuriickholen

Byte in Puffer und Block schreiben
Byte in Puffer
Puffer voll ?

Drivenummer holen

freien Block in BAM suchen
Pufferzeiger auf Null
Tracknummer als erstes Byte
Sektornummer als zweites Byte
Block schreiben

Puffer wechseln

Parameter an Disk-Controller
Pufferzeiger auf 2

Pufferzeiger erhihen

Pufferzeiger holen

und erhihen

Drivenusmer holen
Puffernummer holen

Drivenummer isolieren
und merken

Schreibkanal und Puffer suchen
Flag fiir Schreiben

Lesekanal und Puffer suchen
Flag fiir Lesen
merken

DIE4 85 6F STA $6F
D1E6 20 27 D2 JSR $D227
D1E9 20 7F D3 JSR $D37F
D1EC 85 B2 STA $82
DIEE A6 83 LDX $83
DiFO 28 PLP

DIF1 90 02 BCC $DIFS
DIF3 09 80 ORA #$80
DIFS 9D 2B 02 STA $022B,X
DiFB 29 3IF AND #$3F
DiFA A8 TAY

DiIFB A9 FF LDA #$FF
DIFD 99 A7 00 STA $00A7,Y
D200 99 AE 00 STA $00RE,Y
D203 99 CD 00 STA $00CD,Y
D206 C& &F DEC $6F
D208 30 1C BMI $D226
D20A 20 BE D2 JSR $D2BE
D20D 10 08 BPL $D217
D20F 20 SA D2 JSR $D25A
D212 A9 70 LDA #$70
D214 4C C8 C1 JMP $C1iC8
D217 99 A7 00 STA $00A7,Y
D21A Cé& &F DEC $6F
p21C 30 08 BMI $D226
D21E 20 BE D2 JSR $D2BE
D221 30 EC BMI $D20F
D223 99 AE 00 STA $00AE,Y
D226 60 RTS
EEREERRERERERRRRRRRRRRERRRAERS
D227 A5 83 LDA $83
D229 C9 OF CMP #$0F
D22B DO Ot BNE $D22E
D22D 60 RTS

D22E A6 83 LDX $83
D230 BD 2B 02 LDA $022B,X
D233 C9 FF CMP #$FF
D235 FO 22 BEQ $D239
D237 29 3F AND #$3F
D239 85 B2 STA s82
D23B A9 FF LDA #$FF
D23D 9D 2B 02 STA $022B,X
D240 A6 B2 LDX $82
D242 A9 00 LDA #$00
D244 95 F2 STA $F2,X
D246 20 SA D2 JSR $D25A
D249 A6 B2 LDX $82
D24B A9 01 LDA #$01
D24D CA DEX

D24E 30 03 BMI $D233
D250 0A ASL A

D251 DO FA BNE $D24D
D253 0D 56 02 ORA $0256
D256 8D 56 02 STA $0236

Anzahl der Puffer
Kanal schlieBen
freien Kanal belegen
Kanalnummer
Sekunddradresse

Lesekanal ?
Flag fiir Schreiben
setzen

Defaultwert
in Zuordungstabellen schreiben

Zahl der Puffer erniedrigen
schon fertig ?

Puffer suchen

gefunden ?

Flags in Tabelle lidschen

70, 'no channel’
Puffernummer in Tabelle
Pufferanzahl

schon fertig ?

Puffer suchen

nicht gefunden ?
Puffernummer in Tabelle

Kanal schliefien
Sekunddradresse

15 ?

nein

sonst schon fertig

Kanalnumaer

nicht zugeordnet ?

dann fertig

Kanalnummer

luodrnung in Tabelle léschen
READ und WRITE-Flag ldschen
Putfer freigeben

Kanalnummer

Bit 0 setzen

auf richtige Position schieben

und im Belegungsregister freigeben

162

D259 60 RTS

FRERFRRERRERRRRRRRRREREXRRRE%E Puffer freigeben

D25A Aé B2 LDX $82 Kanalnummer

D25C BS A7 LDA $A7,X Puffernummer

D25E €9 FF CMP #$FF

D260 FO 09 BEQ $D26B nicht zugeordnet ?

D262 48 PHA

D263 A9 FF LDA #$FF

D265 95 A7 STA $A7,X Pufferzuordnung lischen
D267 48 PLA

D268 20 F3 D2 JSR $D2F3 Puffer im Belegungsregister lischen
D268 A6 82 LDX $82 Kanalnummer

D26D BS AE LDA $AE,X

D26F C9 FF CMP #$FF in zweiter Tabelle zugeordnet ?
D271 FO 09 BEQ $D27C nein

D273 48 PHA

D274 A9 FF LDA #$FF

D276 95 AE STA $AE,X Zuordung ldschen

D278 48 PLA

D279 20 F3 D2 JSR $D2F3 Puffer im Belegungsregister ldschen
D27¢C AL B2 LDX $82 Kanalnummer

D27E BS CD LDA $CD,X

D280 Ce FF CMP #$FF in dritter Tabelle zugeordnet ?
D282 FO 09 BE@ $D28D nein

D284 48 PHA

D2B5 A9 FF LDA #$FF

D287 95 CD STA $CD,X Zuordung léschen

D289 48 PLA

D28A 20 F3 D2 JSR $D2F3 Puffer im Belegungsregister ldschen
D280 &0 RTS

FEXEXRERRRERAFRXRRRRNRRRRRRR%% Puffer suchen

D2BE 98 TYA

D28F 48 PHA

D290 A0 Ot LDY #s$01

D292 20 BA D2 JSR $D2BA

D295 10 oC BPL $D2A3

D297 88 DEY

D298 20 BA D2 JSR $D2BA

D298 10 06 BPL $D2A3

D290 20 39 D3 JSR $D339

D2A0 AA TAX

D2A1 30 13 BMI $D2Bé

D2A3 BS 00 LDA $00,X

D2AS 30 FC BMI $D2A3

D2A7 A5 TF LDA $7F

D2A9 95 00 STA $00,X

D2AB 9D SB 02 STA $025B,X

D2RE BA TXA

D2AF 0A ASL A

D2BO A8 TAY

D2B1 A9 02 LDA #s$02

D2B3 99 99 00 STA $0099,Y

D2B6 48 .PLA

D2B7 AB TAY

163

D2B8 8A TXA

D2B9 &0 RTS

D2BA A2 07 LDX #$07
D2BC B9 4F 02 LDA $024F,Y
D2BF 3D E? EF AND $EFE9,X
D2C2 FO 04 BEQ $D2C8
D2C4 CA DEX

D2C5 10 F5 BPL $D2BC
D2C7 60 RTS

D2CB B9 4F 02 LDA $024F,Y
D2CB 5D E9 EF EOR $EFE9,X
D2CE 99 4F 02 STA $024F,Y
D201 8A TXA

D2p2 88 DEY

D203 30 03 BMI $D2D8
p2ps 18 CLC

D2D6 69 08 ADC #$08
D2D8 AA TAX

D2D9 &0 RTS

D2DA A& B2 LDX $82
D2DC BS A7 LDA $A7,X
D2DE 30 09 BMI $D2E9?
D2E0 B8A TXA

D2E1 18 CLC

D2E2 69 07 ADC #$07
D2E4 AA TAX

D2ES BS A7 LDA $A7,X
D2E7 10 FO BPL $D2D9
D2E? C9 FF CMP #$FF
D2EB FO EC BER $D2D9
D2ED 48 PHA

D2EE A9 FF LDA #$FF
D2F0 95 A7 STA $A7,X
D2F2 68 PLA

D2F3 29 OF AND #$0F
D2FS AB TAY

D2F6 CB INY

D2F7 A2 10 LDX #$10
D2F9 &4E 50 02 ROR $0250
D2FC &E 4F 02 ROR $024F
D2FF 88 DEY

D300 DO 01 BNE $D303
D302 18 cLe

D303 CA DEX

D304 10 F3 BPL $D2F9
D306 60 RTS
EREREFREERRERERRRRRRRERRRRRRNR
D307 A9 OE LDA #$0E
D309 85 83 STA $83
D30B 20 27 D2 JSR $D227
D30E Cé 83 DEC #83
D310 DO F9 BNE $D30B
D312 &0 RTS

Bit laschen

Bit uamdrehen

Puffernummer

Puffernummer

Puffernummer
16

16-Bit Belegungsregister rotieren

Bit fir Puffer ldschen

alle Kandle schlieflen
14

Sekunddradresse

Kanal schlieBen

nichste Sekunddradresse

164

FERRERERERERRRREREEREERIRERREE 3lle Kandle des anderen Drives schlieflen
D313 A9 OE LDA #$0E 14

D315 85 83 STA $83 Sekundidradresse
D317 A& 83 LDX $83

D319 BD 2B 02 LDA $022B,X luordnungtabelle
D3IC C9 FF CMP #$FF Kanal zugeordnet ?
D3LE FO 14 BEQ $D334 nein

D320 29 3F AND #$3F

D322 85 82 STA $82 Kanalnummer
D324 20 93 DF JSR $DF93 Puffernummer holen
D327 AA TAX

D328 BD 5B 02 LDA $025B,X Drivenummer
D328 29 Ot AND #s$01 isolieren

D320 . CS 7F CMP $7F gleich aktuelle Drivenummer ?
D32F DO 03 BNE $D334 nein

D331 20 27 D2 JSR $D227 Kanal schlieBen
D334 Cb 83 DEC $83 nachsten Kanal
D336 10 DF BPL $D317

D338 40 RTS
ERRREERRRRRRRRRRRRRERAERRERERS

D339 AS &F LDA $6F

D3I3B 48 PHA

D33C A0 00 LDY #$00

D33E B& FA LDX $FA,Y

D340 BS A7 LDA $A7,X

D342 10 04 BPL $D348

D344 C? FF CMP #$FF

D346 DO 16 BNE $D3SE

D348 BA TXA

D349 18 cLC

D34A 69 07 ADC #s%07

D34cC AR TAX

D34D BS A7 LDA $A7,X

D34F 10 04 BPL $D355

D351 C9 FF CMP #$FF

D353 DO 09 BNE $D3S5E

D35S cs INY

D356 €O 05 CPY #$05

D358 90 E4 BCC $D33E

D3SA A2 FF LDX #$FF

D3S€ DO 1IC BNE $D37A

D3ISE Bb 6&F STX $&F

D360 29 3IF AND #$3F

D362 AA TAX

D363 B5 00 LDA $00,X

D365 30 FC BMI $D363

D367 €9 02 CHP #$02

D369 90 08 BCC $D373

D36B A4 &F LDX $6F

D3&D EO 07 CPX %#$07

D3&F 90 D7 BCC $D348

D371 BO E2 BCS $D355

D373 A4 &6F LDY $&F

D375 A9 FF LDA #$FF

165

D377 99 A7 00 STA
D374 68 PLA
D37B 85 &F STA
D370 8a TXA
D37E 60 RTS
EERERRRRERRERRRRRERRRRRARARRRS
D3I7F A0 00 LDY
D381 A9 01 LDA
D383 2C 56 02 BIT
D386 Do 09 BNE
D388 C8 INY
D389 0A ASL
D38A DO F7 BNE
D38C A% 70 LDA
D3BE 4C C8 C1 IMP
D391 49 FF EOR
D393 2D §6 02 AND
D396 8D 56 02 STA
D399 98 TYA
D394A 60 RTS
ERREEERRERRRRERRRERRRFRRRRRRRR
D398 20 EB DO JSR
D39E 20 00 C1 JSR
D3A1 20 AA D3 ISR
D3A4 AL B2 LDX
D3A6 BD 3E 02 LDA
D3A9 &0 RTS
D3AA A6 B2 LDX
D3AC 20 25 D1 J8R
D3AF DO 03 BNE
D3B1 4C 20 E1l JIMP
D3B4 AS 83 LDA
D3B& C9 oF cHp
D3BB FO S5A BEQ
D3IBA B5 F2 LDA
D3BC 29 08 AND
DIBE DO 13 BNE
D3CO 20 25 DI JSR
D3C3 €9 07 CMP
D3CS DO 07 BNE
D3C7 A9 89 LDA
D3C® 95 F2 STA
D3CB 4C DE D3 JMP
D3CE A9 00 LDA
D3IDO 95 F2 STA
D3D2 60 RTS
D3D3 A5 83 LDA
D3D5 FO 32 BEQ
D307 20 25 D1 JSR

$00A7,Y

$6F

$DOEB
$C100
$D3AA
$82
$023E,X

$82

$D125
$D3B4
$E120

$83
#$0F
$D414
$F2,X
#$08
$D3D3
$D125
#$07
$D3CE
#$89
$F2,X
$D3DE

£$00
$F2,X

$83
$D409
$D125

Kanal suchen und belegen
Bit 0 setzen
Kanal frei ?

Bit nach links schieben
alle Kandle geprift ?

70, 'no channel’

Bitmuster umdrehen
Bit ldschen
Kanal belegen

Byte zur Ausgabe holen

Kanal zum Lesen dffnen

LED einschalten

Byte ins Ausgaberegister holen
Kanalnummer

Byte holen

Kanalnummer

Dateityp priifen

keine Rel-Datei ?

Byte aus Rel-Datei holen

Sekundiradresse
15
ja, Fehlerkanal lesen

Endeflag gesetzt ?

nein

Dateityp priifen
Direktzugriffsdatei ?

nein

READ und WRITE-Flag setzen

READ und WRITE-Flag ldschen

Sekundiradresse
Null, LOAD ?
Dateityp prifen

166

D433

D43A
D43C
D43ZF
D441
D443
D445
D447
D449
D44C

D1

02

02

02

00

D1

02

02

ED
D4

D4

C1

Eb

D1

D4

02

LDA

JMP

J8R
Cup

LDA
CMP
BNE
LDA
STA
JER
LDA
JSR
DEC
LDA
BNE

JSR
STA
BNE
LDA
JER
LDA
STA
LDA
STA
LbA

RTS

#3504
$D400
$D12F
$99,X
$0244,Y
$D3EC
#$00
$99,X
£99,X
($99,X)
$023E,Y
$99,X
$0244,Y
$D3FF
#$81
$00F2,Y

$D156
$82
$023E,X

$0254
$D400
$EDLT
$D403

$D4ER
#$D4
$D433
$95
#$02
$D433
#$0D
$85
$C123
#$00
$E6CH
$AS
#$80
$D445

$D137
$85
$D443
#$D4
$n4acs
#$02
$9A,X
#5838
$F7
$85
$0243

Rel-Datei oder Direktzugriff ?
nein

Puffer- und Kanalnummer haolen
Pufferzeiger

gleich Endezeiger ?

nein

Pufferzeiger auf null
Pufferzeiger erhdhen
Byte aus Puffer holen
ins Ausgaberegister
Pufferzeiger

gleich Endezeiger ?
nein

Flags setzen

Byte aus Puffer holen
Kanalnummer
Byte in Ausgaberegister

Flag fiir Directory ?
nein
Directoryzeile erzeugen

Pufferzeiger setzen
zeigt er vor Puffer fir Fehlermeldung ?
nein

CR
in Ausgaberegister
Fehlerflags lidschen

‘ok’ Meldung erzeugen

Pufferzeiger zuricksetzen
READ-Flag setzen

Byte aus Puffer holen
ins Ausgaberegister
Pufferzeiger vor Fehlerpuffer setzen

Hi-Adresse
READ-Flag setzen

Datenbyte
ins Ausgaberegister

167

22 222222222222 22222222222)

044D 20 93 DF JSR $DF93
D450 0A ASL A

D451 AA TAX

D452 A9 00 LDA #$00
D454 95 99 STA $99,X
D456 A1 99 LDA ($99,X)
P458 FO 05 BER $DASF
D4SA Db 99 DEC $99,X
D4SC 4C 56 D1 JMP $D156
DASF 40 RTS
FREREERERRRREREEERRERRERRRRRER
D40 A9 B0 LDA #$80
D462 DO 02 BNE $D466
FHERRERERREERFAFRERERRRERERERE
D464 A9 90 LDA #$90
D444 05 TF ORA $7F

D448 8D 4D 02 STA $024D
D44B AS F9 LDA $F9

D44D 20 D3 D& JSR $D4D3
D470 A6 F9 LDX $F9

D472 4C 93 D5 JMP $D593
E2222222222X2 2222222222222 2]
D475 A9 01 LDA #$01
D477 8D 4A 02 STA $024A
D47A A9 11 LDA #$11
D47C 85 83 STA $83

D47E 20 44 DC JSR $DC46
D481 A9 02 LDA #$02
D483 4C C8 D4 JIMP $DACS
EERREEEFREREREREERERFERERRRRERR
D486 A9 12 LDA #$12
p488 85 83 STA $83

D4BA 4C DA DC JMP $DCDA

EREXRRRFRERRRFRERRERRRERRRERER

D48D 20 3B DE JSR $DE3B
D490 A9 Ot LDA #$01
D492 85 6F STA $6F
D494 A5 69 LDA $69
D496 48 PHA

D497 A9 03 LDA #$03
D499 85 &9 STA $69
D49B 20 2D F1 JSR $F12D
DA%t 48 PLA

D49F 83 &9 STA $69
D4AL A% 00 LDA #$00
D4A3 20 CB D4 JSR $DACB
D4A6 AS B8O LDA $80
D4AB 20 F1 CF JSR $CFF1
D4AB A5 81 LDA $81
D4AD 20 F1 CF JSR $CFF1

nichsten Block lesen
Puffernummer holen
mal 2

Pufferzeiger auf Null

erstes Byte aus Puffer holen
kein Folgeblock ?
Pufferzeiger auf -1

ndchsten Block lesen

Block lesen .
Befehlskode fir Lesen

Block schreiben

Befehlskode fir schreiben
Drivenummer

Kode merken

Parameter an Disk-Controller
Befehl ausfihren

Puffer belegen und Block lesen

Dateityp auf sequentiell
17

Sekundiradresse
Puffer belegen und Block lesen

Pufferzeiger auf 2
neuen Block anlegen
18

Sekundiradresse
neuen Block anlegen

Directoryblock schreiben
Track und Sektornuamer holen

ein Block

Schrittweite 10 bei Blockbelegung merken

durch 3 bei Directory ersetzen
freien Block in BAM suchen
Schrittweite zuriickholen
Pufferzeiger auf Null
Tracknummer in Puffer

Sektornummer in Puffer

D4BO 20 C7 DO JSR $DOC7 Block auf Diskette schreiben

D4B3 20 99 D5 JSR $D59¢9 und priifen

D4B6 A9 00 LDA #$00

D4B8 20 CB D4 JSR $D4cCB Pufferzeiger auf Null
D4BB 20 F1 CF JSR $CFF1 Puffer mit Nullen fillen
D4ABE DO FB BNE $D4BB

D4CO 20 F1 CF JSR $CFF1 Null als Folgetrack
D4C3 A9 FF LDA #$FF

D4CS 4C F1 CF JMP $CFF1 $FF als Anzahl der Bytes
ERRERFREFHFRENRRERRRRRRRSRR42% Pufferzeiger setzen
D4C8 85 &F STA $64F leiger merken

DACA 20 93 DF JSR $DF93 Puffernummer holen
D4acbD 0A ASL A mal 2

D4CE AA TAX

DACF BS 9A LDA $9A,X Pufferzeiger hi

D4aD1 85 95 STA $95

D4D3 AT &F LDA $&F

D4DS 95 99 STA $99,X Pufferzeiger lo, neuer Wert
D4ap7 85 94 STA $94

D4D9 60 RTS

FRERREEERRRRRRZRRERERXERRRRH%% Interne Kandle schlieBen
DaDA A9 11 LDA #$11 17

D4DC 85 83 STA $83

D4DE 20 27 D2 JSR $D227 Kanal schlieBen

D4E1 A9 12 LDA #$12 18

D4E3 85 83 STA $83

D4ES 4C 27 D2 JMP $D227 Kanal schlieBen
FREERERFERRERRRSRRRR SRR 242 Pufferzeiger setzen
DAE8 20 93 DF JSR $DF93 Puffernummer holen
D4EB 0A ASL A

D4EC AA TAX

D4ED BS 9A LDA $94,X Pufferzeiger hi

D4EF BS 95 STA $95

D4F1 B3 99 LDA $99,X Pufferzeiger lo

D4AF3 85 94 STA $94

D4FS &0 RTS

FEREERRRREXRXERARXFR XA 2222282 Byte aus Puffer holen
DaFs 85 71 STA $71 leiger lo

D4F8 20 93 DF JSR $DF93 Puffernummer holen
D4FB AA TAX R

D4FC BD EO FE LDA $FEEO,X Hi-Byte Pufferadresse
D4FF 85 72 STA $72 leiger hi

D501 A0 00 LDY #$00

D303 B1L 71 LDA ($71),Y Byte aus Puffer holen
D305 &0 RTS

EERRRERRERERERRRRRARERRRR%222¥% Track und Sektornummer iiberprifen
D506 BD SB 02 LDA $025B,X Befehlskode fir Disk-Controller

D509 29 o1 AND #$01 Drivenummer

D50B OD 4D 02 ORA $024D plus Befehlskode
DSOE 48 PHA merken

DSOF 86 F9 STX $F9 Puffernummer

169

D511 8A TXA

D512 0A ASL A
D513 AA TAX

D514 BS 07 LDA $07,X
D516 8D 4D 02 STA $024D
0519 BS 06 LDA $06,X
DS1B FO 2D BEQ $DS4A
D51D CD D7 FE CMP $FED7
D520 BO 28 BCS $DS4A
D522 AA TAX

D523 68 PLA

0524 48 PHA

D525 - 29 FO AND #$FO
D527 €9 90 CMP #$90
D529 DO 4F BNE $DS7A
D52B 68 PLA

DS2C 48 PHA

D520 4A LSR A
D52E BO 05 BCS $D535
D530 AD 01 01 LDA $0101
D533 %0 03 BCC $D338
D535 AD 02 01 LDA $0102
D538 FO 05 BEQ $DS3F
DS3A CD DS FE CMP $FEDS
DS3D DO 33 BNE $D572
DS3F B8A TXA

D540 20 4B F2 JSR $F24B
D543 CD 4D 02 CMP $024D
D546 FO 02 BEQR $D54A
D548 BO 30 BCS $D574
D54A 20 52 DS JSR $D552
D54D A9 bé LDA #$66
DS4F 4C 45 E6 JIMP $E64S
EEERRRRRERFERRRRRRRERRRFRRRRRR
D552 A5 F9 LDA $F9
D554 0A ASL A
D555 AA TAX

D356 BS 06 LDA $06,X
D558 85 80 STA $80
DS5A BS 07 LDA $07,X
DSSC 85 81 STA $81
DSSE 60 RTS

D3SF A5 80 LDA $80
D561 FO ER BE@ $D54D
D563 CD D7 FE CMP $FED7
D566 BO ES BCS $D54D
D568 20 4B F2 JSR $F24B
DS6B €S 81 CHP $81
D56D FO DE BEQ@ $D54D
D36F 90 DC BCC $D54D
D571 60 RTS

D572 20 52 D3 JSR $D552
D575 A9 73 LDA #%73

mal 2

Sektor

merken

Track

66, ‘illegal track or sector’
36, hichste Tracknummer + 1
66, ‘illegal track or sector’

Befehlskode

Kode fiir Schreiben ?
nein

‘A’, Formatkennzeichen

73, ‘cbm dos v2.6 1541’
Tracknummer

maximale Sektornummer holen
mit Sektornummer vergleichen
gleich, dann Fehler

kleiner ?

Track und Sektornummer holen

66, ‘illegal track or sector’
Track und Sektornummer holen
Puffernummer

*2

als Index

Track

Sektor

Track

null, dann Fehler

34, maximale Tracknummer + 1
66, ‘illegal track or sector’
maximale Sektornummer holen
Sektor

Fehler

Track und Sektornummer holen

170

D577 4C 45 E6 JMP $EL4S
DS7A A6 F9 LDX $F9
DS7C 68 PLA

D37D BD 4D 02 STA $024D
D380 95 00 STA $00,X
D582 9D 5B 02 STA $025B,X
D585 60 RTS
ERERRFRRERRRRRRRRRRRRRRRRRRARR
D586 A9 BO LDA ¥$80
psgs Do 02 BNE $D58C
ERERERRRRERRRRRRERRRRRRRRRRRRY
D3BA R? 90 LDA #$90
D58C 05 7F ORA $7F
D3BE A& F9 LDX $F9
D590 8D 4D 02 STA $024D
D393 AD 4D 02 LDA $024D
D596 20 OE D5 JSR $DSOE
EEERRERRRENRRRRRERRERRHERRERRR
D399 20 A6 DI JSR %DSA4
DE9C BO FB BCS $D599
DS9E 48 PHA

DS9F A9 00 LDA #$00
D3AL 8D 98 02 STA $0298
D5A4 68 PLA

DSAS 60 RTS

DSA6 BS 00 LDA $00,X
DSAB 30 1A BMI $DSC4
D5AA C9 02 CMP #$02
DSAC 90 14 BCC $DSC2
DSAE C9 o8 CHP #$08
D3BO FO 0B BEQ $DSBA
D5B2 C9 OB CMP #$0B
DSB4 FO 04 BEQ $DSBA
DSB6 C9 OF CHP #$0F
pspg DO OC BNE $DSC4
D3BA 2C 98 02 BIT $0298
DSBD 30 03 BMI $DSC2
DSBF 4C 3F D& JMP $D&3JF
D3c2 18 CLC

DSC3 &0 RTS

D5C4 38 SEC

DSCS &0 RTS

D3Ce 98 TYA

DSC7 48 PHA

D5CB A5 7F LDA $7F
DSCA 48 PHA

DSCB BD 5B 02 LDA $025B,X
DSCE 29 01 AND #$01
DEDO0 85 7F STA $7F

73, ‘cbm dos v2.6 1541°
Puffernummer

Befehlskode fir Disk-Controller
in Befehlsregister
und in Tabelle schreiben

Block lesen
Kode fir Lesen

Block schreiben
Kode fir schreiben
Drivenummer
Puffernummer

Befehlskade
Track und Sektor priifen und an Disk-Controller

Ausfihrung priifen
Ausfiihrung priifen
Ende abwarten

Riickmeldungskode

Fehlerflag ldschen

Befehlskode (Bit 7) noch im Register ?
ja

Rickmeldung kleiner 2

dann fehlerfreie Durchfilhrung

8

dann Write Protect

11

dann ID mismatch

15

Fehlermeldung erzeugen
Ausfilhrung beendet

Ausfithrung noch nicht beendet

Drivenummer

Drivenummer

FE
02
D&

Dé
02

02

02
02
02
02
FE
FE
Dé

02
D6

02

FE

02

02

E6

02

TAY
LDA
STA
JSR
o,]
BCS
Jnp
LDA
AND
PHA
cup
BNE
LDA
ORA
STA
BIT
BVS
LDA
STA
STA
LDy
LDA
SEC
SBC
STA
LDA
JSR
INC
JER
CHMP
BCC
Loy
LDA
BNE
LDA
JER
LDA
CHP
BCC
BIT
BPL
PLA
CHP
BNE
ORA

LDA
JSR
PLA
BIT
BMI
PHA
LDA
ORA
STA
LDA

$FECA,Y
$026D
$D6AG
#502
$DSE3
$D64D
$0258, X
#$FO

2590
$D5F4
$7F
#$88
$0258, X
$64
$D631
#$00
$0299
$029A
$0299
$029A

$FEDB, Y
$029A
$FEDB,Y
$D676
$0299
$D&AL
#502
$D625
$0299
$FEDB,Y
$D600
$0294
$D676
$00,X
#502
$D65C
$64
$D644

#$90
$D43F
$7F
$025B, X
$00, X
$E60A

$0298
$D66D

#$C0
$7F
$00,X
$00,X

Bitmuster fir Drive

Leseversuch
Rickmeldung
nicht ok ?

fertig

Befehlskode
isolieren

Kode fiir Schreiben
nein
Drivenummer

lZdhler fiir Suche neben dem Track

ldhler

Konstanten fiir Leseversuche neben dem Track

Kopf neben dem Track positionieren
lihler erhdhen

Leseversuch

Riickmeldung

kleiner 2, ok ?

lihler laden

Konstanten holen

noch nicht Null (Tabellenende) ?

Kopf positionieren

Rickmeldung
ok ?

Befehlskode

tir Schreiben ?

nein

Drivenummer
Befehlskode in Tabelle
Riickmeldung
Fehlermeldung setzen

Befehlskode fir Kopfpositionierung
Drivenummer
in Befehlsregister

172

D676

D674
D&e7C
D&7E
D&81
D682
Dé6B4
D686

Y-
D4BA
D&8D
D6BE
D690
D692

D693
D694
D695
D697
D&9A
D&9D
D&9F
DéAl
D6A4
D6AS

DéAb
DéAB
D6AA
DbAB
D6AE
DéB1
D6B4
D&B7

6A
3F

6D
00
00
5B
00

D&

02
D&

Dé

D&

02
02

02

02
ic
1c
02

LDY

ADC
BNE
RTS

PHA
TYA
LDY
STA
CMP
BEQ
LDA

PLA
RTS

LDA
AND
TAY
LDA
EOR
STA
LDA
STA

$D651
$DLAS
#$02

$D635

#$90
$D66D
$7F
$0258, X
$D6A6
#$02
$D63F

$7F

$00,X

#$00
$D692
$Ds88
#501
$D693

#$01
$D67C
$D692

#$FF
$D693

#$01
0688

$7F
$02FE, Y
$02FE, Y
$D694
#$00
$02FE, Y

$b6A
#$3IF

$026D
$1C00
$1C00
$025B, X
$00,X

Ausfithrung abwarten
Befehlsausfihrung nochmal versuchen
Rickmeldung

fehlerhaft ?

Befehlskode fiir Schreiben
nein

Drivenummer

in Tabelle

Ausfihrung nochmal versuchen
Rickmeldung

Fehler ?

Drivenummer zuriickholen

Fehlerkode
Flag fiir Ausfiihrung beendet

Daten fiir Kopfpositionierung ibergeben

Daten fiir Kopfpositionierung ibergeben

Drivenummer

Rickmeldung des Disk-Controllers abwarten

Maximalzahl der Wiederholungen

Bit fir LED
LED umschalten

Befehl
an Disk-Controller iibergeben

173

D6B9 BS 00 LDA
D6BB 30 FC BMI
D&4BD €9 02 CHP
D6BF 90 03 BCC
DsC1 88 DEY
D6C2 DO E7 BNE
DsC4 48 PHA
D&CS AD 6D 02 LDA
D4C8 0D 00 IC ORA
D4CB 8D 00 IC STA
D4CE 48 PLA
D4CF 60 RTS
ERRREERRFERREREEXERRRERRREFERS
D&DO 20 93 DF JSR
D&D3 0A ASL
D&D4 AB TAY
D6D5 A5 BO LDA
D&D7 99 04 00 STA
DDA A5 81 LDA
D&DC 99 07 00 STA
D6DF A5 7F LDA
D6E1 0A ASL
D4E2 AA TAX
D&E3 &0 RTS
ERRXREERFERRER AR ERERRERERERERES
D6E4 A5 B3 LDA
D&EL 48 PHA
DLET A5 82 LDA
D&E9 48 PHA
D4EA A5 81 LDA
D6EC 4B ‘PHA
D4ED AS 80 LDA
D6EF 48 PHA
D&FO A9 11 LDA
D6F2 85 83 sTA
D6F4 20 3B DE JSR
D&4F7 AD 4A 02 LDA
D&4FA 48 PHA
D6FB A5 E2 LDA
D&FD 29 o1 AND
D6FF 85 7F STA
D701 A6 F9 LDX
D703 5D 5B 02 EOR
D706 4A LSR
D707 90 0C BCC
D709 A2 01 LDX
D70B BE 92 02 STX
D70E 20 AC CS JSR
D711 FO 1D BEQ
D713 DO 28 BNE
D715 AD 91 02 LDA
D718 F0 OC BEQ
D71A L5 81 CHP

$00,%
$D6B9Y
4502

$D6C4

$D6AB

$026D
$1C00
$1C00

$DF93
A

$80
$0004,Y
$81
$0007,Y
$7F

A

$83
$82
$81
$80

511
$83
$DE3B
$024A

$E2
#$01
$7F

$F9
$025B, X
A
$D715
#$01
$0292
$C5AC
$D730
$D73D

$0291
$D726
$81

und Riickmeldung
abwarten

ok ?

ja

lihler erniedrigen
nochmal versuchen

LED aus

Parameter an Disk-Controller iibergeben
Puffernummer holen

Tracknummer
iibergeben
Sektornummer
ibergeben
Drivenummer
mal 2

nach X

Datei in Directory eintragen
Sekunddradresse

Kanalnummer
Sektornummer

Tracknummer
merken

Sekundaradresse 17

Track und Sektornummer holen
Dateityp

merken

Drivenummer

setzen
Puffernummer

gleiche Drivenummer ?

leiger in Directory

Directory laden und ersten Eintrag suchen
nicht gefunden ?

gefunden ?

Sektornummer im Directory

gleich null
gleiche Sektornummer ?

174

58
94
54

82

D4
D7

02

Cé

D4

02

02

D4

02

CF

02
CF

02

DF

02

cé

02

02

02

02

D4

$D73D
$81

$D460
$D73D

#$01
$0292
$C617
$D73D
$D48D
$81
$0291
#$02
$0292
$0292
$D4aCs8

$0244A
#3504
$D74D
#$80
$CFF1

$0280
$CFF1

$0285
$CFF1
$DF93

$027A

#$10
$CHAE
#$10
#$00
($94) Y

#$1B
$DT&F
$0244A
#$04
$D790
#$10
$0259
($94),Y

$025A
($94),Y

$0258
($98),Y
$D464

$82

ja
Sektornummer merken
Block lesen

leiger auf eins

ndchsten Eintrag im Directory suchen
gefunden ?

Directoryblock schreiben
Sektornummer

leiger auf 2
Pufferzeiger setzen

Dateityp

Rel-Datei ?

nein

Bit 7 setzen

und in Puffer schreiben

Folgetrack
in Puffer

Folgesektor

in Puffer

Puffernummer holen

leiger auf Drivenummer

16, Linge des Filenamens
Filenamen in Puffer schreiben

ab Position 16 mit Nullen fiillen
schon Position 27 ?

nein

Dateityp

Rel-Datei

nein

Track

und Sektor

der Side-Sektoren in Directoryeintrag
Recordlénge

in Directory

Block schreiben

Kanalnummer

175

D797 48 PLA

p798 85 83 5TA $83
D79A AD 91 02 LDA $0291
D790 85 D8 STA $D8
D79F 9D 40 02 STA $0260,X
D7A2 AD 92 02 LDA $0292
D745 85 DD STA $DD
D7A7 9D 46 02 STA $0266,X
D7AA AD 4A 02 LDA $0244
D740 85 E7 STA $E7
D7AF A5 7F LDA $7F
D7B1 85 E2 STA $E2
D7B3 40 RTS
EERREERXXERERXERREREREERRERER
D7B4 A5 83 LDA $83
D7B& 8D 4C 02 STA $024C
D7B9 20 B3 C2 JSR $C2B3
D7BC 8E 2A 02 STX $022A
D7BF AE 00 02 LDX $0200
D7C2 AD 4C 02 LDA $024C
D7C5 DO 2C BNE $D7F3
D7C7 EO 2A CPX #$2A
p7C9 DO 28 BNE $D7F3
D7CB AS 7E LDA $7E
D7CD FO 4D BEG $D81C
D7CF 85 80 STA $80
D701 AD &E 02 LDA $026E
D704 85 7F STA $7F
D7D& 85 E2 STA $E2
D7D8 A9 02 LDA #$02
D70A 85 E7 STA $E7
D7DC AD &F 02 LDA $024F
D7DF 85 81 STA $81
D7EL 20 00 C1 JSR $C100
D7E4 20 46 DC JSR $DC46
D7E7 A9 04 LDA #$04
D7E? 05 7F ORA $7F
D7EB As B2 LDX $82
D7ED 99 EC 00 STA $00EC,Y
D7FO 4C 94 C1 JMP $C194
D7F3 EO 24 CPX #$24
D7FS DO 1E BNE $DB1S
D7F7 AD 4C 02 LDA $024C
D7FA DO 03 BNE $D7FF
D7FC 4C 55 DA JMP $DASS
D7FF 20 D1 C1 JSR $C1D1
DBOZ AD 85 FE LDA $FEB5
D80S 85 80 STA $80
DBO7 A9 00 LDA #$00
D809 85 81 STA $81
DBOB 20 46 DC JSR $DCA6
DBOE A5 7F LDA $7F
D810 09 02 ORA #$02

Sekunddradresse

Dateityp

Drivenummer

OPEN-Befehl, Sekundidradresse <> 15
Sekunddradresse

leilenldnge holen, Flags léschen

erstes Zeichen aus Puffer
Sekunddradresse

ungleich 0 (LOAD) ?
e

letzte Tracknummer

Tracknummer
letzte Drivenummer
Drivenummer

Dateityp auf Programa
letzte Sektornummer

Sektor

LED einschalten

Puffer belegen, Block lesen
Dateityp

Drivenummer

Kanalnummer

Flag setzen

fertig

T
nein
Sekunddradresse
ungleich null ?
OPEN $

leile bis zu Ende analysieren
18, Directorytrack
Track

Sektor 0

Puffer belegen, Block lesen
Drivenuamer

176

pe12

D815
D817
D819

p8icC
DB1E
D821
0823
D825
peze
D82B
D82E
D830
D832
D834
D835
D837
D839

D83C
De3n
DB3IF
D840
D843
D845
D848
D849
D84C
DB4F
D852
DBss
D857
DB5A
D8sD
D8&0
D861
D864
D866
D869
DB6A
D86&D
DB6&F
D871
D873
DB7é
D879
D878
D87p
DB7F
n8s2
Dess
nes7
D88A
pesc

D7

02

Ct

3
c4
02
02
02

02

DA
02

02

02

JMP

CPX
BNE
JNP

LDA
STA
LDA
STA
STA
JSR
JSR
BNE
LDX
BEQ
TXA
BEQ
LDA
JMP

DEY

DEY
STY
LDA
JSR
INX
STX
JSR
JSR
JSR
LDX
STX
67X
STX
INX
CPX
BCS
JER
INX
CPX
BCS
CPY
BEQ
JER
LDX
sTX
CPX
BCS
STX
LDA
STA
LDA
BNE
LDA

$D7EB

#$23
$D82B
$CB84

#$02
$029¢6
#3500
$7F
$028BE
$D042
$C1ES
$0834
#500
$D840

$D083C
#$30
sCice

$D840

$0274
#$8D
$C268

$0278
$C312
$C3CA
$C49D
#$00

$0258
$0297
$024A

$0277
$D876
$DA0OYT

$0277
$DB76
#$04
$D8B1
$DAOY
$024C
$83
302
$D891
$0297
#$40
$02F9
$0244
$DBA7
#$02

weiter wie oben
Y

Direktzugriffsdatei dffnen

Dateityp Programs
Drive 0

BAM laden
leile analysieren
Doppelpunkt gefunden ?

Komma gefunden ?
nein

30, ‘syntax error’

leiger auf Drivenummer
Shift CR
leile bis Ende untersuchen

Kommazdhler

Drivenummer holen

Drivenummer priifen

Dateieintrag im Directory suchen
Defaultwerte

Recordléange

Dateityp

Komma vor Gleichheitszeichen ?
nein
holt Filetyp und Betriebsart

weiteres Komma ?
nein

holt Filetyp und Betriebsart

Sekundiradresse

griéBer gleich 2 ?

ja

0 oder 1 (LOAD oder SAVE)

Dateityp
nicht deleted
Prg

177

DBBE 8D 4A 02 STA #0244
D891 AD 4R 02 LDA $024A
D894 DO 11 BNE $DBA7
DB96 AS E7 LDA $E7
pegs 29 07 AND #807
DB9A BD 4A 02 STA $024A
DB9D AD 80 02 LDA $0280
DBAO DO 05 BNE $DBA7
p8A2 A9 o1 LDA #$01
DBA4 BD 4A 02 STA $024A
DBA7 AD 97 02 LDA $0297
DBAA C% 01 CMP #$01
DBAC FO 18 BEQ $D8Cé
DBAE 4C 40 D9 JMP $D940
D8B1 BC 7A 02 LDY $027A,X
D8B4 B9 00 02 LDA $%0200,Y
D8B7 BD 58 02 STA 40258
D8BA AD 80 02 LDA $0280
D8BD DO B7 BNE $DB76
DBBF A% 01 LDA #$01
D8C1 8D 97 02 STA $0297
pacs4 DO BO BNE $DB76
DBCé6 AT E7 LDA $E7
pace 29 80 AND #$80
DBCA AA TAX

D8CB DO 14 BNE $DBEL
D8CD A9 20 LDA #$20
D8CF 24 E7 BIT $E7
D8D1 FO 06 BEQ $D8D9
D8D3 20 B4 CB JSR $CBBS
pebe 4C E3 D9 JMP $DYE3
DBD9 AD 80 02 LDA $0280
pepc DO 03 BNE $DBE1
DBDE 4C E3 D9 JMP $DJEZ
DBE1 AD 00 02 LDA $0200
DBE4 C9 40 CMP #$40
DBE6 FO oD BEQ@ $DBFS
DBEB 8A TXA

DBE? DO 05 BNE $D8F0
DBEB A9 63 LDA #$63
DBED 4C C8 C1 JMP $CiC8
DBFO A9 33 LDA #$33
D8F2 4C CB C1 JMP s$CiCB
FRERFERRERRRERERRRRRRRRRRRRRRS
DBFS AS E7 LDA $E7
D8F7 29 07 AND #%07
DBF9 CD 4A 02 CMP $024A
DBFC DO &7 BNE $D9é&5
DBFE C9 04 CMP #s$04
D900 FO &3 BEQR $D945
D902 20 DA DC JSR $DCDA
D903 A5 82 LDA $82

als Dateityp

Dateityp aus Befehlszeile holen

Tracknummer
ungleich null ?

Dateityp sequentiell
Betriebsart

W

ja

Ieiger hinter zweites Komma
Wert holen
Recordlinge
Tracknummer

W
als Betriebsart

Dateityp
Jokerflag isolieren

Joker im Namen

war Datei geschlossen ?

ja

Byte 0 in Puffer und Block schreiben
Side-Sektor anlegen, fertig

Tracknummer des ersten Blocks

schon vorhanden

Side-Sektor Block anlegen

erstes Zeichen aus Eingabepuffer
* Klammeraffe ?

ja

Joker gesetzt ?

63, 'file exists’

33, ‘syntax error’

dffnen eines Files mit Uberschreiben

Filetyp

isolieren

Filetypen unterschiedlich ?

Rel-File ?

64, ‘file type mismatch’
neuen Sektor anlegen

178

02

Ct

02
02

LDA

LDA
JMP
LDA
Cup
BEQ
LDA
BIT
BERQ
LDA
JMP
LDA
AND
CHpP
BEQ
LDA
JMP
LDY

LDX
CPX
BNE
CMP

LDa
AND
STA
LDA
PHA
LDA

$0270
#$11
£83
$DOEB
$0294
$D4CS
£500
($94),V
#$20
(594),Y
$51A
$80
($94),Y

$81
($94),Y
$0270
$08
$0260, X
$DD
$0266,X
$DE3B
$D464
$DYEF

$0280
$D94A
#$62
scics
$0297
#$03
$D95C
#$20
$E7
$D95C
#$60
$C1C8
$E7
#$07
$0244
$D96A
#564
scics
#$00
$0279
$0297
#$02
$0990
#$04
$D945
($94),Y
#54F
($94),Y
$83

8811

Kanalnummer merken

Kanal 17
Lesekanal erdffnen

Pufferzeiger fiir Directory setzen

Filetyp
Bit 5§ setzen, Datei offen

Track

und Sektor
beim dffnen mit ‘Klammeraffe’
Kanalnummer

leiger in Directoryblock

Track und Sektornummer holen
Block schreiben
Track-, Sektor- und Drivenumme bereitstellen

erste Tracknummer
Datei nicht geldscht ?

62, 'file not found’

Betriebsart

M-

ja, dann kein Test auf nicht geschlossene Datei
Bit §

in Dateityp testen

nicht gesetzt, ok

60, ‘write file open’

Dateityp isolieren
iUbereinstimmung mit Typ aus Befehl ?
ja

64, ‘file type mismatch’

Betriebsart
‘A°, Append
nein

Rel-Datei ?

ja, dann Fehler

Bit 4,5 und 7 lischen,

als offen markieren
Kanalnummer merken

179

D985
D987
D98A
D98D
D98E
D990
D993
D996
D99e
D99A
D?9D

D9AO
D9A2
D9A4
D9A7
D9AB
D9AA
D9AD
D9AE
D9BO
D9B3
D9B&
D9B7
D9B9
D9BC
D9IBE
D9Co
D9C3
D9Cé
p9ce
D9CB
D9CE
D9DO
D9D3
D9DS
p9n8
D9DA
D9nd
D9DF
D9E2

DYE3
D9ES
D9E7
D9E?
" DYEC
D9EF
D9F1
D9F3
D9FS
D9F8
D9FA
D9FC
DYFE
DAO1

83
20
20
68
85
20
AD
ce
Do
20
4C

Ao

80
cs
B1
8D
cs
B1

8D

83
3B
64

83
Ao
97
02
55

94

13

59

94
SA

94

58

0A
58

50
c8
79
80
80
85
81

82
79
D8
60
DD
b6

E2
01
TF
DA
E4

02
11
3E
80
7E
TF
6E
81

DE
D4

D9
02

DA
C1

02

02

02

02

C1
02
02
02
nc
02
02

02

DC
D&

DE

02

STA
JSR
ISR
PLA
STA
JSR
LDA
CHP
BNE
JSR
JMP

LDy
LDA
STA
INY
LDA
STA
INY
LDA
LDX
STA
TXA
BEQ
CMP
BER
LDA
JER
LDX
LDA
STA
LDA
STA
JSR
LDY
LDX
LDA
STA
LDA
STA
RTS

LDA
AND
STA

JSR
LDA
CHP
BCS
JSR
LDA
STA
LDA
STA
LDA

$83
$DE3B
$D464

$83
$DFA0
$0297
#$02
$DIEF
$DA2A
$C194

¥$13
($94) ¥
$0259

($94),Y
$0254

($94),Y
$0258
$0258

$D9C3
$0258
$09C3
#$50
scice
$0279
$0280, X
$80
$0285,X
$81
$DC46
$82
$0279
$08,X
$0260,Y
$DD, X
$0266,Y

$E2
#3501
$7F
$DCDA
$D6E4
$83
#3502
$DA0S
$DE3E
$80
$7E
$7F
$026E
$81

Kanal 17
Track- Sektornummer holen
Block schreiben

Kanalnummer zurickholen
Side-Sektor-Parameter ibernehmen
Betriebsart

‘A’ Append

nein

Append vorbereiten

fertig, Diskstatus bereitstellen

Track

und Sektor des ersten Side Sector Blocks

Recordlange
letzte Recordlinge

letzte Recordlinge null
Recordldnge gleich ?
ja

50, ‘record not present’

Track

Sektor

Drivenummer

isolieren

Drivenummer

Block anlegen

Datei im Directory eintragen
Kanalnummer

grofer gleich 2 ?
Track und Sektornummer holen

Drivenummer

Sektor

180

DAG3 8D &F 02 STA $026F
DARO& 4C 99 C1 JMP $C199

FRERFRARRRRRREERRRUENRRRRUAEXE Filetyp und Betriebsarten prifen
DA09 BC 7A4 02 LDY $027A,X 1leiger in Befehlszeile

DAOC B9 00 02 LDA $0200,Y Zeichen aus Zeile holen

DAOF A0 04 LDY #$04

DA11 88 DEY

DA12 30 08 BMI $DAIC

DA14 D9 B2 FE CMP $FEB2,Y Betriebsarten 'R’, ‘W', ‘A’', ‘M’
DA17 DO F8 BNE $DA11

DA19 BC 97 02 STY $0297 merken
DAIC A0 05 LDY #$05

DALE B8 DEY

DALF 30 08 BMI $DA29

DA21 D9 B6 FE CMP $FEB&4,Y Filetypen ‘D', 'S, ‘P, "U', ‘L’
DA24 DO FB BNE $DALE

DA26 8C 4A 02 STY $024A merken

DA29 60 RTS

EXRERERNFSRRRRRRARRRERRRRRX4%% Vorbereitung fir Append

DA2A 20 39 CA JSR $CA39 Kanal zum Lesen dffnen, Byte holen
DA2D A9 80 LDA #$80

DAZF 20 A6 DD JSR $DDA4 letztes Byte ?

DA32 FO Fa4 BEQ $DA2A nein

DA34 20 95 DE JSR $DE9S Track und Sektornummer holen
DA37 A6 81 LDX $8B1 Sektornummer

DA3? ES8 INX

DA3A BA TXA

DAIB DO 05 BNE $DA42 nicht $FF ?

DA3D 20 A3 D1 JSR $D1A3 Puffer schlieBen, Block schreiben
DA40 A9 02 LDA #$02

DA42 20 C8 D4 JSR $DAC8 Pufferzeiger auf 2

DA4S Ab6 82 LDX $82 Kanalnummer

DA47 A9 01 LDA #$01

DA49 95 F2 STA $F2,X Flag fir WRITE setzen

DA4B A9 80 LDA #$80

DA4D 05 82 ORA $82

DA4F Ab B3 LDX $83

DAS1 9D 2B 02 STA $022B,X Kanalnummer in Tabelle
DAS4 60 RTS

FEEEERFEERRERRERERRRRRRRRRRRRE OPEN 8"

DASS A9 oC LDA #$0C Befehlsnummer 12
DAS7 BD 2R 02 STA $022A

DASA A9 00 LDA #$00

DASC AE 74 02 LDX $0274

DASF CA DEX

DAGO FO OB BEQ@ $DA4D

DA62 CA DEX

DA&3 Do 21 BNE $DAB&

DA6S AD 01 02 LDA $0201 zweites leichen
DA&B 20 BD C3 JSR $C3BD Drivenummer holen
DA&B 30 19 BMI $DABé& keine eindeutige Nummer ?
DAGD 85 E2 STA $E2

DAGF EE 77 02 INC $0277

181

DA72 EE 78 02 INC
DA75 EE 7A 02 INC
DA78 A9 80 LDA
DA7A 85 E7 STA
DA7C A9 2A LDA
DA7E 8D 00 02 STA
DAB1 8D 01 02 STA
DAB4 DO 18 BNE
DAB6 20 E5 C1 JSR
DAB? DO 05 BNE
DABB 20 DC €2 JSR
DABE A0 03 Loy
DA90 B8 DEY
DA91 88 DEY
DA92 BC 7A 02 STY
DA9S 20 00 C2 JSR
DA98 20 98 C3 JSR
DASB 20 20 C3 JSR
DA9E 20 CA C3 JSR
DAAL 20 B7 C7 JSR
DAA4 20 9D C4 JSR
DAA7 20 9E EC JSR
DAAA 20 37 D1 JSR
DAAD A4 82 LoX
DAAF 9D 3E 02 'STA
DAB2 A5 7F LDA
DAB4 8D BE 02 STA
DAB7 09 04 ORA
DAB? 95 EC STA
DABB A9 00 LDA
DABD 85 A3 STA
DABF 60 RTS
FREERERERRERRERRRERRRIRRRRRRRS
DACO A9 00 LDA
DAC2 8D F? 02 STA
DACS A5 83 LDA
DAC7 DO 0B BNE
DAC? A9 00 LbA
DACB 8D 54 02 STA
DACE 20 27 D2 JSR
DAD1 4C DA D4 JINMP
DAD4 C9 OF CHP
DAD6 FO 14 BEQ
DAD8 20 02 DB JSR
DADB A5 83 LA
DADD C9 02 CHP
DADF 90 FO BCC
DAE1 AD 6C 02 LDA
DAE4 DO 03 BNE
DAE6 4C 94 C1 JMP
DAE? 4C AD C1 JMP
DAEC A9 OE LDA
DAEE 85 83 STh

$0278
$027A
#$80
$E7
#$24
$0200
$0201
$DAYE
$CLES
$DA90
$C2pC
#$03

$0274
$€200
$C398
$C320
$C3CA
$C7B7
$C49D
$EC9E
$D137
$82
$023E,X
$7F
$028E
#504
$EC, X
#500
$A3

#$00
$02F9
$83
$DAD4
#500
$0254
$D227
$D4DA

#$0F
$DAEC
$DB02
$83
#3502
$DAD1
$026C
$DAEY
$C194

$C1AD
#$0E
$83

Jokerflag setZen
iyt
als Dateiname in Befehlspuffer

unbedingter Sprung

Eingabezeile bis zum ‘:’ testen
gefunden ?

Flags ldschen

leiger auf Drivenummer im Befehl
leile analysieren

Typ der Datei emitteln
Drivenummer holen

Drive bei Bedarf initialisieren
Disketten-Titel bereitstellen
Directory laden

Directory erzeugen und bereitstellen
Byte aus Puffer holen
Kanalnuamer

Byte in Ausgaberegister
Drivenummer

als letzte Drievnummer merken

PR6-Flag

leiger in Eingabepuffer riicksetzen
CLOSE-Routine

Sekunddradresse
ungleich null ?
Sekunddradresse 0, LOAD

Kanal schlieBen
interne Kandle 17 und 18 schlieBen

15

ja, alle Kandle schlieflen
Datei schliefen
Sekunddradresse

kleiner 2 ?
AbschluB

14
Sekunddradresse

182

DAFO 20 02 DB JSR $DBO2 Datei schliefen

DAF3 Cé 83 DEC $83 nichste Sekundaradresse
DAFS 10 F9 BPL $DAFO

DAF7 AD 4C 02 LDA $02&C

DAFA DO 03 BNE $DAFF

DAFC 4C 94 C1 JMP $C194 AbschluB

DAFF 4C AD C1 JMP $C1AD

ERREXEREERRARRERRRRRRR RN R%%% Datei schlieBen

DBO2 A6 83 LDX $83 Sekundiradresse

DB04 BD 2B 02 LDA $022B,X Kanalnummer holen

DBO7 C9 FF CMP #$FF kein Kanal zugeordnet ?
DBO9 DO o1 BNE $DBOC

DBOB 60 RTS nein, dann fertig

pBoC 29 OF AND #$0F Kanalnummer isolieren

DBOE B85 B2 STA $82

DB10 20 25 D1 JSR $D125 Dateityp priifen

DE13 C9 o7 CMP #s07 Direktzugriff ?

DB1S FO OF BEQ@ $DB2é ja

DB17 C9 04 CHP #504 Rel-Datei ?

DB19 FO 11 BEQ@ $DB2C ja

DBIB 20 07 D1 JSR $D107 Kanal zum Schreiben dffnen
DBIE BO 09 BCS $DB29 keine Datei zum Schreiben ?
DB20 20 62 DB JSR $DBé62 letzten Block schreiben
DB23 20 AS DB JSR $DBAS Eintrag im Directory und Block schreiben
DB24 20 F4 EE JSR $EEF4 BAM schreiben

DB29 4C 27 D2 JMP $D227 Kanal schliefien

DpB2C 20 F1 DD JSR $DDFt Puffernummer holen, Block schreiben
DB2F 20 1E CF JSR $CFIE Puffer wechseln

DB32 20 CB El JSR $EICB letzten Side-Sektor holen
DB3S A& D3 LDX $D5 Side-Sektor-Nummer

DB37 B& 73 STX $73

DB39 E&6 73 INC $73

DB3B A9 00 LDA #$00

DB3D 85 70 STA $70

DB3F 85 71 STA $71

DB41 AS D& LDA $D6

DB43 38 SEC

DB44 EY OE SBC #$0E minus 14 fir leiger

DB44 85 72 STA %72

DB48 20 51 DF JSR $DFS51 Blockzahl der Datei berechnen
DB4B A6 B2 LDX $82 Kanalnummer

DB4D A5 70 LDA $70

DB4F 95 BS STA $BS,X Recordnummer lo

DBS1 AS 71 LDA $71

DB53 95 BB STA $BB,X Recordnummer hi

DBS5 A9 40 LDA #$40

DBS7 20 A6 DD ISR $DDAS Bit & gesetzt ?

DBSA FO 03 BEQ@ $DBSF nein

DBSC 20 AS DB JSR $DBAS in Directory eintragen
DBSF 4C 27 D2 JMP $D227 Kanal schlieflen

FEEERERREERRRARRRRRR RN RRREE4E lotzten Block schreiben
DB62 A6 82 LDX $82 Kanalnummer

183

DB64 BS5 BS LDA $BS,X
DB&6 15 BB ORA $BB,X
DB6B DO OC BNE $DB76
DB&A 20 EB D4 JSR $D4EB
DB&D L9 02 CMP #$02
DB4F DO 05 BNE $DB76
DB71 A9 OD LDA #$0D
DB73 20 F1 CF JSR $CFF1
DB76 20 EB D4 JSR $DAES
DB79 €9 02 CMP #$02
DB7B DO OF BNE $DBSC
DB7D 20 1E CF JSR $CFIE
DEBO AL 82 LDX $82
DB82 BS BS LDA $BS,X
DBS4 DO 02 BNE $DB8S
DEB6 D& BB DEC $BB,X
DB88 D& BS DEC $BS,X
DBBA A9 00 LDA #$00
pBeC 38 SEC
DBBD E9 01 SBC #$01
DBBF 48 PHA
DB90 A9 00 LDA #$00
DB92 20 CB D4 JSR $D4C8
DB9S 20 F1 CF JSR S$CFFI
DB98 48 PLA
DB99 20 F1 CF JSR $CFF1
DB9C 20 C7 DO JSR $DOCT
DBSF 20 99 D5 JSR $D599
DBA2 4C 1E CF JIMP $CFIE
EEERERERRE R R R R R R R FRRREER
DBAS A& 82 LDX $82
DBA7 BE 70 02 STX $0270
DBAA A5 B3 LDA $83
DBAC 48 PHA
DBAD BD 40 02 LDA $0260,X
DBBO 85 81 STA $81
DBB2 BD 46 02 LDA $02b6,X
DBBS 8D 94 02 STA $0294
DBBB BS EC LDA $EC,X
DBBA 29 01 AND #501
DBBC 85 7F STA $7F
-DBBE AD 85 FE LDA $FEBS
DBCL 85 80 STA $80
DBC3 20 93 DF JSR $DF93
DBCG 48 PHA
DBC7 85 F9 STA $F9
DBCY 20 60 D4 JSR $D4&0
DBCC A0 00 LDY #$00
DBCE BD EO FE LDA $FEEO,X
DBDL 85 87 STA $87
DBD3 AD 94 02 LDA $0294
DBD6 85 B& STA $84
DBD8 Bl 86 LDA ($86),Y
DBDA 29 20 AND #$20
DBDC FO 43 BER $DC21

Recordnummer lo
Recordnummer hi
ungleich null ?
Pufferzeiger setzen

ungleich 2

CR

in Puffer
Pufferzeiger setzen
jetzt gleich 2 ?
nein

Puffer wechseln
Kanalnumner
Recordnumaer lo

Blockzahl hi
und Blockzahl lo vermindern

leiger auf Ende setzen

Pufferzeiger auf Null

Null in Puffer schreiben

zweites Byte gleich Zeiger auf Ende
in Puffer schreiben

Block auf Diskette schreiben

und iiberpriifen

Puffer wechseln

Directoryeintrag
Kanalnummer

merken

Sekunddradresse

merken

Sektornummer im Directory
setzen

leiger in Directory

Drivenummer

18, Directory Track
setzen

Puffernummer erhihen
Directoryblock lesen
Pufferadresse
Pufferzeiger
Dateityp

Datei geschlossen ?
ja

184

DBDE
DBE1
DBES
DBES
DBE7
DBEY
DBEB
DBEC
DBEE
DBFO
DBF2
DBF4
DBF &
DBF7
DBFE
DEFA
DBFC
DBFE
DBFF
DCO1
DCos
DCO&
co7
DCO9
DCOB
pcoc
DCOE
DCOF
DCit
DC13
DC14
DC16
ncis
C19
DC1B
DCLE

DC21
DCc23
DC23
Dcz27
DpC29
pC2c
DC2E
DC30
DC32
DC33

DC3S

DC37
DC38
DC39
DC3B
DC3D
DC40
DC41
DC4A3

25 Dt
04
4
86
8F
86

86

71
iB
86

86

80

81
&7
45 Eb

00
86

71
86

86
a1

8é
7D C8
29 b€

86
OF
80
86
70 02
ic
BS
86

BB

86

0

90 D5

83
07 D1

J8R
[o,13
BEQ@
LDA
AND
STA

LDy
LDA
STA
INY
LDA
STA
PLA
TAX
LDA
ORA
JSR
PLA
STA
Jnp

$D125
¥$04
$DC29
($86),Y
#$8F
($86),Y

($84),Y
£80

$71
#$1B
($86),Y

($86),Y
$DCO4
$80

$81
#3567
$E645

#$00
($86),Y

($88),Y

$71
($86),Y

($86),Y
s81

($86) Y
$C87D
$DC29

($86),Y
#$0F
£580
($86) ,Y
$0270
#$1C
$BS, X
($86) ,Y

$BB,X
($86),Y

#$90
$7F
$D390

$83
$0107

Dateityp prifen
Rel-Datei ?
ja

Bit 4, 5 und & léschen
im Dateityp

Tracknummer

Sektornummer der Datei beim Uberschreiben
merken

Tracknummer beim iiberschreiben
gesetzt ?
Tracknummer setzen

Sektornummer

67, ‘illegal track or sector’

Tracknummer

und Sektornummer der Ersatzdatei léschen

Track- und Sektornummer der neuen Datei setzen

alte Datei léschen

Dateityp holen
Bit 0 bis 3 isolieren
Bit 7 fir geschlossene Datei setzen

Kanalnummer

Blockzahl lo
in Directoryeintrag

und Blockzahl hi
schreiben
Puffernummer

Kode fiir "Schreiben’
Drivenummer
Block schreiben

Sekunddradresse
Kanal zum Schreiben dffnen

185

FERERERRRERRREREREE RN RRRRRES

DC46 A9 Ot LDA
DC4B 20 E2 D1 JSR
DC4B 20 B4 DC ISR
DC4E AD 4A 02 LDA
DCS1 48 PHA
DCS2 0A ASL
DCS3 05 7F ORA
DC5S 99 EC STA
DCS7 20 9B DO JSR
DCSA A4 82 LDX
DCSC A5 80 LDA
DCSE DO 05 BNE
DC40 A5 Bl LDA
DCé2 9D 44 02 STA
DCeS &8 PLA
DCé6 €9 04 cHp
DC&8 DO 3F BNE
DC4A A4 B3 LDY
DC4C B9 2B 02 LDA
DC&F 09 40 ORA
pDC71 99 2B 02 STA
DC74 AD 58 02 LDA
pc77 95 €7 STA
DC79 20 BE D2 JSR
pc7c 10 03 BPL
DC7E 4C OF D2 JNP
DC81 AL B2 LDX
pCce3 95 CD STA
DC8S AC 59 02 LDY
DCe8 84 80 STY
DCBA AC SA 02 LDY
pcepD 84 81 STY
DCBF 20 D3 D& JSR
pDCc92 20 73 DE JSR
DCYS 20 99 DS JSR
DC98 A& 82 LDX
DC9A A9 02 LDA
pceC 95 Ci STA
DCYE A9 00 LDA
DCAO 20 CB D4 JSR
DCA3 20 53 E1 JSR
DCA& 4C 3E DE JNP
DCA9 20 56 D1 JSR
DCAC A6 B2 LDX
DCAE 9D 3E 02 STA
DCB1 A9 88 LDA
DCB3 95 F2 STA
DCBS 60 RTS
L2 X122 222222222222 2222X232222°8
DCB6 Ab 82 LDX
DCBE BS A7 LDA
DCBA 0A ASL

4#s01

$D1E2
$DCB6
$0244A

A

$7F
$EC, X
$D09B
$82

$80
$DCAS
81
$0244, X

#3504
$DCAY
$83
$022B,Y
#$40
$022B,V
$0258
$C7,X
$D28E
spcat
$D20F

$82
$CD, X
$0259
$80

$025A
$81

$D6D3
$DE73
$D599
$82

$502
$C1,X
#$00
$D4C8
$E153
$DE3E

$D156
$82
$023E, X
#s88
$F2,X

$82
$A7,X
A

Block lesen, Puffer belegen

Kanal und Puffer zum Lesen suchen
leiger setzen

Dateityp

merken

Drivenummer

Black in Puffer lesen
Kanalnummer
Track
Folgetrack ?
Sektor

als Endezeiger
Dateityp
Rel-Datei ?
nein
Sekundidradresse
Kanalnummer

Flag fiir READ und WRITE setzen
Recordlinge

Puffer fir Side Sektor suchen
gefunden ?
70, 'no channel’

Kanalnummer

Track fir Side Sektor

Sektor fiir Side Sektor

Paramater an Disk-Controller iibergeben
Block lesen

und prifen

Kanalnummer

leiger fiir Schreiben

Pufferzeiger auf Null
nichsten Record suchen
Track und Sektornummer holen

Byte aus Puffer holen
Kanalnummer

Byte ins Ausgaberegister
Flag fiir READ setzen

leiger riicksetzen
Kanalnummer
Puffernummer

mal 2

186

DCBB A8 TAY
DCBC A9 02 LDA
DCBE 99 99 00 STA
DCCt BS AE LDA
DCC3 09 80 ORA
DCCS 95 AE STA
DCC7 0A ASL
DCCB AB TAY
DCC? A9 02 LDA
DCCB 99 99 00 STA
DCCE A9 00 LDA
DCDO 95 BS STA
BED2 95 BB STA
DCD4 A9 00 LDA
DED6é 9D 44 02 STA
DCDY 60 RTS
ERERRRRERRRERERRRRRRRRRRRRERRE
DCDA 20 A9 F1 JSR
DCDD A9 01 LDA
DCDF 20 DF D1 JSR
DCE2 20 DO D& ISR
DCES 20 B6 DC ISR
DCES A6 B2 LDX
DCEA AD 4A 02 LDA
DCED 48 PHA
DCEE 04 ASL
DCEF 05 7F ORA
DCF1 95 EC STA
DCFI 68 PLA
DCF4 €9 04 CHpP
DCF& FO 05 BEQ
DCF8 A9 o1 LDA
DCFA 95 F2 §TA
DCFC 60 RTS
DCFD A4 B3 LDy
DCFF B9 2B 02 LDA
ppo2 29 3F AND
pDo4 09 40 ORA
DDO6 99 2B 02 STA
DD09 AD 58 02 LDA
pboC 95 C7 STA
DDOE 20 BE D2 ISR
DD11 10 03 BPL
DD13 4C OF D2 JNP
DD16 A6 82 LDX
ppi8 95 CD STA
DD1A 20 C! DE JSR
DDID 20 1E F1 JSR
DD20 A5 80 LDA
pD22 8D 59 02 STA
DD25 A5 81 LDA
DD27 8D 5A 02 STA
DD2A A6 82 LDX

#502
$0099,Y
$AE, X
#$80
$AE, X

A

#$02
$0099,Y
#500
$B5,X
$8B, X
#500
$0244,X

$FLA9
4501
$D1DF
$D6D0
$DCBs
$82
$0244A

a
$7F
$EC, X

#$04
$DCFD
#s01

$F2,X

$83
$0228,Y
¥$3F
#$40
$022B,Y
$0258
$C7,X
$D28E
$DD16
$D20F

$82
$CD, X
$DEC1
$FILE
$80
$0259
81
$025A
$82

Pufferzeiger lo

Bit 7 setzen , Puffer nicht belegt

Pufferzeiger lo

Blockzahl lo
Blockzahl hi

Endezeiger

neuen Block anlegen
freien Sektor in BAM suchen

Kanal dffnen und Puffer belegen
Parameter an Disk-Controller ibergeben
leiger ricksetzen

Kanalnuamer

Dateityp

Drivenummer
als Flag merken

Rel-Datei ?
ja

WRITE-Flag setzen

Sekunddradresse
Kanalnummer in Tabelle

die obersten 2 Bit ldéschen
Bit 6 setzen,

READ und WRITE Flag
Recordlénge

in Tabelle

Puffer suchen und belegen
gefunden ?

70, ‘no channel’

Kanalnummer

Puffernummer fiir Side-Sektor
Puffer léschen

freien Block in BAM suchen
Track

fir ersten Side-Sektor
Sektor

fir Side-Sektor

Kanalnummer

187

DpD2C BS CD LDA $CD,X Puffernuamer

DD2E 20 D3 D6 JSR $D6D3 Parameter an Disk-Controller ibergeben
DD31 A% 00 LDA #$00

DD33 20 E9 DE JSR $DEE9Q Pufferzeiger auf Null

DD36 A% 00 LDA #$00

DD38 20 8D DD JSR $DD8D Null als Trackzeiger in Puffer
DD3B A9 11 LDA #s$11 17

DD3D 20 8D DD JSR $DD8D als Endezeiger in Puffer

DD40 A9 00 LDA #$00 Null

DD42 20 8D DD JSR $DD8D als Side-Sektor Nummer in Puffer
DD45 AD 58 02 LDA $0258 Recordlange

DD4g8 20 8D DD JSR $DD8D in Puffer

DD4B AS 80 LDA $80 Tracknummer dieses Blocks

DD4D 20 8D DD JSR $DD8D in Puffer

DDSO A5 81 LDA $81 Sektornummer

DDS2 20 8D DD JSR $DDBD in Puffer

DDSS A9 10 LDA #$10 16

DD57 20 E9 DE JSR $DEE9 Pufferzeiger auf 16

DD5A 20 3&E DE JSR $DE3E Track und Sektornummer holen
DDSD AS 80 LDA $80 Tracknummer des ersten Datenblocks
DDSF 20 8D DD JSR $DDBD in Puffer

DD&2 A5 81 LDA $81 Sektornummer des ersten Datenblocks
DD&4 20 8D DD JSR $DD8BD in Puffer

DD&7 20 6C DE JSR $DE&C Block auf Diskette schreiben
DD&A 20 99 DS JSR $D599 und prifen

DD&D A9 02 LDA #$02

DD&F 20 C8B D4 ISR .$DACSB Pufferzeiger auf 2

DD72 A6 82 LDX $82 Kanalnummer

DD74 38 SEC

DD75 A9 00 LDA #%00

DD77 FS C7 SBC $C7,X Recordlinge

DD79 95 Ci STA $C1,X leiger fiir Schreiben

DD7B 20 E2 E2 JSR $E2E2 Puffer lischen

DD7E 20 19 DE JSR $DE19 Linkbytes in Puffer schreiben
ppset 20 5E DE JSR $DESE Block auf Diskette schreiben
DD84 20 99 D5 JSR $D599 und priifen

DDB7 20 F4 EE JSR $EEF4 BAM schreiben

DDBA 4C 98 DC JMP $DC98 und fertig
EERERRERRRERRARERLRRRRER220%2% Byte in Side-Sektor Block schreiben
ppsD 48 PHA Byte merken

DDBE A4 B2 LDX $82 Kanalnummer

DD90 BS CD LDA $CD,X Puffernummer des Side-Sektors
DD92 4C FD CF JMP $CFFD Byte in Puffer schreiben
EFEEEFERREERRRRRRRRRRRRR X2 %22 Flags manipulieren

DD9S 90 04 BCC $DD9D

DD97 A6 82 LDX $82 Kanalnummer

DD99 15 EC ORA $EC,X Flag setzen

DD9B DO 06 BNE $DDA3

DD9D Ab B2 LDX %82 Kanalnummer

DD9F 49 FF EOR #$FF

DDAL 35 EC AND $EC,X Flag léschen

DDA 95 EC STA $EC,X

DDAS &0 RTS

188

DDAR6 A6 82 LDX $82
ppAe 35 EC AND $EC,X
DDAA 40 RTS
EERERERARRRRERRRRRRRRRRRRRRRRR
DDAB 20 93 DF JSR $DF93
DDAE AA TAX

DDAF BD 5B 02 LDA $025B,X
DDB2 29 FO AND #$FO0
DDB4 C9 90 CMP #$90
DDB& 60 RTS
EEEREERRRERERRRERRRRRERRNERRRS
DDB7 A2 00 LDX #$00
DDB? B& 71 §TX $71
DDBB BD 2B 02 LDA $022B,X
DDBE C9 FF CMP #$FF
DDCO DO 08 BNE $DDCA
DDC2 A6 71 LDX $71
DbC4 EB INX

DDCS EO 10 CPX #s$10
DDC7 90 FO BCC $DDBY
ppc? &0 RTS

DDCA 86 71 STX $71
ppcc 29 3F AND #$3F
DDCE AB TAY

DDCF BY? EC 00 LDA $00EC,Y
pop2 29 Ot AND #$01
bDp4 85 70 STA $70
DDD6 AE 53 02 LDX $0253
DDD9 BS E2 LDA $E2,X
DDDB 29 Ot AND #$01
ppdD €S 70 CMP $70
DDDF DO Ei BNE $DDC2
DDE1 B? 60 02 LDA $0260,Y
DDE4 D5 D8 CMP $D8,X
DDE6 DO DA BNE $DDC2
DDEB B9 66 02 LDA $0264,Y
DDEB D5 DD CMP $DD,X
DDED DO D3 BNE $DDC2
DDEF 18 CLEC

DDFO &0 RTS
ERREREERERRRRRERRRRRRRRRRRRRRES
DDF1 20 9€ DF JSR $DF9E
DDF4 50 06 BVC $DDFC
DDF6 20 SE DE JSR $DESE
DDF9 20 99 DS JSR $D599
DDFC &0 - RTS
ERRERERRRRRRERRRERRRRRERRRRERS
DDFD 20 2B DE JSR $DE2B
DE0OO A5 80 LDA $80
DE0O2 91 94 STA ($94),Y
DEO4 C8 INY

Kanalnummer
Flag testen

Befehlskode fiir Schreiben prifen
Puffernummer holen

Befehlskode isolieren
Kode fir schreiben ?

lihler fir Sekundiradressen
Kanalnummer aus Tabelle holen

Datei offen ?

lihler erhdhen
noch kleiner als 14 ?

Kanalnummer isolieren

Drivenummer isolieren

Drivenummer isolieren
gleiches Drive ?

nein

Sektornummer im Directory
gleiche wie Datei ?

nein

leiger gleich ?
nein

Block einer Rel-Datei schreiben
Puffernummer holen

keine Rel-Datei ?

Block schreiben

und priifen

Bytes fiir Folgetrack schreiben
Pufferzeiger setzen
Tracknummer

in Puffer

189

DEOS AS 81 LDA $81
DEO7 91 94 STA ($94),Y
DEO9 4C 05 E1 JMP $E10S
ERREERRRERERRERERRRRRRERRRRRRE
DEOC 20 2B DE JSR $DE2B
DEOF Bl 94 LDA ($94),Y
DE11 85 80 STA $80
DE13 C8 INY

DE14 Bl 94 LDA ($94),Y
DE16 85 Bi STA $81
DE18 . &0 RTS
ERRRERERREERERRRARARRRRRRRRARE
DE19 20 2B DE JSR $DE2B
DEIC A9 00 LDA ¥$00
DE1IE 91 94 STA ($94),Y
DE20 C8 INY

DE21 A6 B2 LDX $82
DE23 BS Ci LDA $C1,X
DE25 AR TAX

DE26 CA DEX

DE27 8A TXA

DE28 91 94 STA ($94),Y
DE2A 60 RTS
ERRERERERERREREERRRERRRRRRNRNR
DE2B 20 93 DF JSR $DF93
DE2E 0A ASL A

DE2F AR TAX

DE30 BS 94 LDA $94,X
DE32 85 95 STA %95
DE34 A9 00 LDA #$00
DE3S 85 94 STA $94
DE38 A0 00 LDY #$00
DE3A 40 RTS
EREERERRRRRRERRRRRRRRRRRRRREER
DE3B 20 EB DO JSR $DOEB
DE3E 20 93 DF JSR $DF93
DE41 85 F9 STA $F9
DE43 0A ASL A

DE44 A8 TAY

DE4S B9 06 00 LDA $0006,Y
DE48 85 80 STA $80
DE4A B? 07 00 LDA $0007,Y
DE4D 85 81 STA $81
DE4AF 60 RTS
ERRRERRRRERERREERRRRERRERRRRER
DESO A9 90 LDA #$90
DES2 8D 4D 02 STA $024D
DESS DO 28 BNE $DE7F
DES7 A9 80 LDA #$80
DES? 8D 4D 02 STA $024D
DESC DO 21 BNE $DE7F

Sektornummer

in Puffer

Rel-Flag setzen

Folgetarck und Sektornummer holen

Pufferzeiger setzen
Folgetracknummer

und Sektornummer holen

Folgetrack bei letztem Block
Pufferzeiger setzen

null

als Tracknummer

Kanalnummer
leiger in Block

minus 1

als Zeiger in Block
Pufferzeiger auf Null
Puffernummer holen

mal 2

Pufferzeiger hi

Pufferzeiger lo

Track und Sektor holen
Kanalnummer holen
Puffernummer holen
merken

mal 2

Track

und Sektor vom Disk-Controller holen

Befehlskode fiir Schreiben

Befehlskode fiir Lesen

190

DESE A9 90 LDA #$90
DE6O BD 4D 02 STA $024D
DE&3 DO 24 BNE $DEBB
DE&S A9 80 LDA #480
DE67 8D 4D 02 STA $024D
DE4A DO IF BNE $DEBB
DEGC A9 90 LDA #$90
DEGE BD 4D 02 S5TA $024D
DE71 DO 02 BNE $DE735
DE73 A% 80 LDA #$80
DE75S 8D 4D 02 STA $024D
DE78 A6 82 LDX $82
DE7A B3 CD LDA $CD,X
DE7C AA TAX

DE7D 10 13 BPL $DE92
DE7F 20 DO Dé JSR $D&DO
DEB2 20 93 DF JSR $DF93
DEBS AA TAX

DEBS6 A5 T7F LDA $7F
DEB8 9D 5B 02 STA $025B,X
DEBB 20 15 E1 JSR $E115
DEBE 20 93 DF JSR $DF93
DE?1 AA TAX

DE92 4C 06 D3 JIMP $D506
EEEREERRERRERRRRRR AR ERRNRRRR
DE9S A% 00 LDA #$00
DE97 20 CB D4 JSR $DACS
DE9A 20 37 DI JSR $D137
DE?D 85 80 S§TA $80
DE9F 20 37 DI JSR $D137
DEAZ 89 81 STA $81
DEA4 60 RTS
FEEERRERERRERRERRRRRERRRRRRERN
DEAS 48 PHA

DEA&E A9 00 LDA #$00
DEAB 85 &F STA $6F
DEAA B5 71 STA $71
DEAC B9 EO FE LDA $FEEOQ,Y
DEAF B85 70 STA $70
DEB1 BD EO FE LDA $FEEO,X
DEB4 85 72 STA $72
DEB6 6B PLA

DEB7 A8 TAY

DEB8 88 DEY

DEB9 Bl &F LDA ($6F),Y
DEBB 91 71 STA ($71),Y
DEBD 88 DEY

DEBE 10 F9 BPL $DEB9
DECO &0 RTS

E 3222222222222 2222222223223

Befehlskode fir Schreiben

Befehlskode fir Lesen

Befehlskode fiir Schreiben

Befehlskode fiir Lesen

Kanalnummer
Puffernummer Side-Sektor

Puffer zugeordnet ?
Header fiir Disk-Controller generieren
Puffernummer holen

Drivenummer

Puffernummer
Puffernummer holen

Block schreiben

Folgetrack und Sektor aus Puffer holen
Pufferzeiger auf Null

Byte holen

als Track merken

Byte holen
als Sektor

Pufferinhalte kopieren

Pufferadresse Y, Hi

Pufferadresse X, Hi

Inhalt Puffer Y
nach Puffer X kopieren

Puffer Y lischen

191

DEC1 AB TAY
DEC2 B9 EO FE LDA
DECS 85 70 STA
DEC7 A9 00 LDA
DECY 85 &F STA
DECB AB TAY
DECC 91 &F STA
DECE C8 INY
DECF DO FB BNE
DED1 60 RTS
ERREERRRERERRRRRRRERRRERRRRRRS
DED2 A% 00 LDA
DED4 20 DC DE JSR
DED7 A0 02 LDy
DED? B1 94 LDA
DEDB &0 RTS
EREERERREERRRRERRRRRRRRRRRRRRR
DEDC 85 94 STA
DEDE Ab B2 LDX
DEEO BS CD LDA
DEE2Z AA TAX
DEE3 BD EO FE LDA
DEE6 8BS 95 STA
DEEB &0 RTS
FRERERERRRERRRERERRRRRRERRRRRR
DEE? 48 PHA
DEEA 20 DC DE JSR
DEED 48 PHA
DEEE 8A TXA
DEEF 0A ASL
DEFO AA TAX
DEF1 48 PLA
DEF2 95 94 STA
DEF4 &8 PLA
DEFS 95 99 STA
DEF7 60 RTS
ERERERERREERRRRRRRERARRRRRRRER
DEF8 20 &6 DF J8R
DEFB 30 0OE BMI
DEFD 50 13 BVC
DEFF A& 82 LDX
DFOL B3 CD LDA
DF03 20 1B DF JSR
DF06 20 &6 DF JSR
DFO9 10 07 BPL
DFOB 20 CB El JSR
DFOE 2C CE FE BIT
DFIt &0 RTS
DF12 A5 D& LDA
DF14 20 E9 DE JSR
DF17 2C CD FE BIT
DF1A 60 RTS

$FEEO,Y
$70
$$00
$&F

($6F) Y

$DECC

#500
$DEDC
#$02
($94),Y

$94
$82
$CD, X

$FEEO, X
$95

$DEDC

$9A,X

$99,%

$DF&6
$DFOB
$DF12
$82

$CD,X
$DF1B
$DF b6
$DF12
$E1CB
$FECE

$D6
$DEEY
$FECD

Puffernuamer
Hi-Adresse holen

Lo-Adresse

Puffer ldischen

Side-Sektor Nummer holen
Pufferzeiger auf null

Byte 2 enthdlt Side-Sektor Nummer

Pufferzeiger auf Side-Sektor setzen
leiger lo

Kanalnummer

Puffernummer

Pufferadresse Hi
setzen

Pufferzeiger fiir Side-Sektor
leiger in Side-Sektor
Pufferzeiger setzen

Puffernummer
mal 2

Pufferzeiger hi

Pufferzeiger lo

Side-Sektor und Pufferzeiger holen
ist Side-Sektor im Puffer ?
nein

ok

Kanalnummer

Puffernummer

Side-Sektor lesen

und prifen ob im Puffer

ja ?

letzten Side-Sektor holen
V-Bit setzen

Side-Sektor Endezeiger

leiger in Side-Sektor setzen
V-Bit lidschen

192

ERRRREFERRERRFERERARERRRREREER

DF1B 85 F9 STA $F9
DFID A9 8O LDA #$80
DFLF DO 04 BNE $DF25

FRERRERRRERRERRRRFRRRRRRERRRRN

DF21 85 F9 STA $F9
DF23 A9 90 LDA #$90
DF25 48 PHA

DF26 BS EC LDA $EC,X
DF28 29 01 AND %$01
DF2A 85 7F STA $7F
DF2C &8 PLA

DF2D 05 7F ORA $7F
DF2F 8D 4D 02 STA $024D
DF32 Bi 94 LDA ($94),Y
DF34 85 80 STA $B80O
DF36 C8 INY

DF37 Bl 94 LDA ($94),Y
DF39 85 81 STA $81
DF3B A5 F9 LDA $F9
DF3D 20 D3 Dé JSR $D&D3
DF40 A& F9 LDX $F9
DF42 4C 93 D5 JMP $D593

RERERERRFREFRERERRRRRERER RS

DF4S A6 82 LDX $82
DF47 BS CD LDA $CD,X
DF49 4C EB D4 JMP $DAEB

FREREFEFFRRRRERERRERXERBRRRERR

DF4C A9 78 LDA 4478
DF4E 20 SC DF JSR $DFSC
DFS51 CA DEX

DFS2 10 FB BPL $DF4C
DFS4 A5 72 LDA $72
DFS6 44 LSR A
DF37 20 SC DF JSR $DFSC
DFSA A5 73 LDA $73
DF5C 18 cLc

DFSD &5 70 ADC $70
DFSF 85 70 STA $70
DF61 90 02 BCC $DF&S
DF63 E6 71 INC $71
DF63 60 RTS

FEEREERRRRRRRREREXRRRRERRRRRER

DFés 20 D2 DE JSR $DED2
DF69 €5 DS CHMP $DS
DF6B DO OE ‘BNE $DF7B
DF&D R4 D& LDY $Dé
DF&F Bl 94 LDA ($94),Y
DF71 FO 04 BEQ $DF77
DF73 2C CD FE BIT $FECD
DF76 60 RTS

Side-Sektar lesen
Puffernummer
Befehlskode fir lesen

Side-Sektor schreiben
Puffernumamer
Befehlskode fir schreiben

Drivenummer isolieren

Befehlskode plus Drivenummer
merken
Tracknummer

Sektornummer

Puffernummer

Parameter an Disk-Controller iibergeben
Puffernummer

Befehl an Disk-Controller iibergeben

Pufferzeiger in Side-Sektor setzen
Kanalnummer

Puffernummer

Pufferzeiger setzen

Blockzahl einer Rel-Datei berechnen
120 Blockzeiger pro Sidesektor

zu $70/%71 addieren
Side-Sektornuamer

nichster Side-Sektor ?

Anzahl der Zeiger im letzten Block
durch 2

zu bisheriger Summe addieren

lahl der belegten Side-Sektor Blicke

addieren

Side-Sektor im Puffer prifen
Side-Sektor Nummer holen

gleich Nummer des erforderlichen Blocks ?

nein
leiger in Side-Sektor
Tracknummer

.noch nicht angelegt ?

Bits ldschen

193

DF77 2C CF FE BIT $FECF
DF74 60 RTS

DF7B A5 DS LDA $D5
DF7D €9 06 CHP #$06
DF7F BO 0A BCS $DFBB
DF81 0A ASL A
DF82 A8 TAY

DFB3 A9 04 LDA #$04
DFBS 85 94 STA $94
DFB7 Bl 94 LDA ($94),Y
DFB9 DO 04 BNE $DFBF
DFBB 2C DO FE BIT $FEDO
DFBE 60 RTS

DFBF 2C CE FE BIT $FECE
DF92 &0 RTS
FEEREBRERERRRRRRRRERRRERRRRRRE
DF93 A6 82 LDX $82
DF9S BS A7 LDA $A7,X
DF97 10 02 BPL $DF9B
DF99 BS AE LDA $AE,X
DF9B 29 BF AND #$BF
DF9D &0 RTS

DFYE Ab4 B2 LDX $82
DFA0 BE 57 02 STX $0257
DFA3 BS A7 LDA $A7,X
DFAS 10 09 BPL $DFBO
DFA7 BA TXA

DFAB 18 CLC

DFAY? 49 07 ADC #$07
DFAB 8D 57 02 STA $0257
DFAE BS AE LDA $AE,X
DFBO 83 70 STA $70
DFB2 29 IF AND #$1F
DFB4 24 70 RIT $70
DFB6 60 RTS

DFB7 A6 82 LDX $82
DFB9 BS A7 LDA $A7,X
DFBB 30 02 BMI $DFBF
DFBD BS AE LDA $AE,X
DFBF C9 FF CMP #$FF
DFC1 60 RTS

DFC2 A6 B2 LDX %82
DFC4 09 80 ORA #$80
DFC6 B4 A7 LDY $A7,X
DFCB 10 03 BPL $DFCD
DFCA 95 A7 STA $A7,X
DFCC 60 RTS

DFCD 95 AE STA $AE,X
DFCF &0 RTS

N-Bit setzen

Side-Sektornummer
6 oder grafler ?
ja

Tracknummer
bereits angelegt ?
N- und V-Bit setzen

V-Bit setzen

Puffernummer holen

Kanalnuamer

Puffernummer

belegt ?

Puffernummer aus zweiter Tabelle
V-Bit ldschen

Kanalnummer

merken
Puffernummer holen
Puffer belegt ?

Nummer um sieben erhihen
und merken
Puffernummer aus Tabelle 2

die obersten 3 Bit léschen

Kanalnummer

Puffernumaer

Puffer frei ?

Puffernummer aus Tabelle 2
frei ?

FHEREFR R R AR RN AR RERRRRAERRRRLS

DFDO
DFD2
DFDS
DFD7
DFDA
DFDC
DFDE
DFEQ
DFE2
DFE4
DFE&
DFES
DFEA
DFED
DFEF
DFF1
DFF3
DFF&
DFF8
DFFA
DFFD
DFFF
EOO01
E003
E006
E009
E0OA
EOOC
EQOE
EO1L
EO13
E014
EO1&
EO18
EO1A
EO1D
E020
E022
E025
E027
E029

EO2A
E02D
EO2F
E031
E033

E034
E03S
E037
E039

L2222 222222222222 222222222 2]

EO3C

A9
20
A9
20
Do
A6
Fé
Do
Fé
Ab
BS
FoO
20
Ab
DS
0
20
Ab
BS
20
Al
85
A9
20
20
48
90
A9
20
Do
68
ce
FO
A9
20
20
BS
99
A9
85
&0

20
A6
A9
95
&0

20
0
80
Ab
41
82
BS
02
BB
82
Ci
2E
EB
82
[
03
3C
82
C1
c8
99
85
20
9D
04

28
00
Fé
21

02
12
80
97
2F
99
44
oD
85

35
82
00
c1

82
C1
13

]

DD

D4

EO

D4

DD
E3

D4

DD
D1

02

EO

El

20 D3 D1

LDA
J8R
LDA
JSR
BNE
LDX
INC
BNE
INC
LDX
LDA
BEQ
JSR
LDX
CHP
BCC
JSR
LDX
LDA
JSR
LDA
STA
LDA
JSR
JSR
PHA
BCC
LDA
JSR
BNE
PLA
CMP
BEG
LDA
JSR
JSR
LDA
STA
LDA
STA
RTS

JSR
LDX
LDA
STA
RTS

PLA
LDX
STA
JIMP

JSR

#$20
£DD9D
#$80
$DDAL
$E01D
$82
$B5, X
SDFE4
$BB, X
$82
$C1,X
$E018
$DAEB
$82
$C1,X
$DFFb
$EO3C
$82
$C1,X
$D4C8
($99,X)
85
#$20
$DD9D
$E304

$E034
#$00

$D4aF6
$E034

#502
$E02A
#$80
$0097
$D12F
$99,X
$0244,Y
¥$0D
$85

$E03S
$82
$500
$C1,X

$82
$C1,X
$E14E

$D1D3

nichsten Record in Rel-Datei holen
Bit 5 léaschen

Bit 7 testen

gesetzt ?
Kanalnummer
Recordnummer erhiéhen

Recordnummer hi

Kanalnuamer

Schreibzeiger

null ?

Pufferzeiger setzen

Kanalnummer

Pufferzeiger kleiner Schreibzeiger ?
ja

Block schreiben, ndchsten Block lesen
Kanalnuamer

Schreibzeiger

Pufferzeiger gleich Schreibzeiger setzen
Byte aus Puffer

in Ausgaberegister holen

Bit § léschen

Recordlinge zu Schreibzeiger addieren
und merken

noch nicht im ndchsten Block ?

Tracknummer holen
Block vorhanden ?
leiger

gleich 2

ja

Bit 7 setzen

Byte aus Puffer holen
Pufferzeiger

als Endezeiger

CR

in Ausgaberegister

Kanalnummer

Schreibzeiger auf null

Kanalnummer
Schreibzeiger setzen

Block schreiben und ndchsten Block lesen
Drivenummer holen

195

EOIF 20 95 DE JSR $DE9S
E042 20 9E DF JSR $DF9E
E045 50 16 BVC $EOSD
E047 20 S5E DE JSR $DESE
EO4A 20 1E CF JSR $CFiE
E04D A9 02 LDA #$02
EO4F 20 CB D4 JSR $D4C8
E052 20 AB DD JSR $DDAB
EOSS DO 24 BNE $E07B
E057 20 57 DE JSR $DES7
EOSA 4C 99 D5 JMP $D599
EOSD 20 1E CF JSR $CFIE
E060 20 AB DD JSR $DDAB
E043 DO 06 BNE $E0&B
E06S 20 57 DE JSR $DES7
E04B 20 99 D5 JSR $D599
E06B 20 95 DE JSR $DE9S
EOGE A5 80 LDA $80
EO70 FO 09 BEQR $EO7B
E072 20 1E CF JSR $CF1E
E075 20 57 DE JSR $DES7
E078 20 1E CF JSR $CF1E
EO7B 60 RTS
EEEEEERERRRRERERRRE RN RRRRR
EO7C 20 05 El JSR $E105
EO7F 20 93 DF JSR $DF93
E0B2 0A ASL A
E0OB3 AA TAX

E0B4 AT 85 LDA $85
EOB6 B1 99 STA ($99,X)
E0BE8 B4 99 LDY $99,X
EOBA C8 INY

EOBB DO 09 BNE $E096
E0OBD A4 B2 LDY $82
EOBF BY C1 00 LDA $00C1,Y
E092 FO 0A BER $EO9E
EO94 A0 02 LDY #$02
E096 98 TYA

E097 A4 82 LDY $82
E099 D9 Ci1 00 CMP $00CH1,Y
EO9C DO 05 BNE $EOA3
EO9E A9 20 LDA #$20
EOA0O 4C 97 DD JMP $DD97
EOA3 Fb6 99 INC $99,X
EOAS DO 03 BNE $EOAA
EOA7 20 3C E0O JSR $EO3C
EOAA 60 RTS
EEREERERRRERRRRR RN RRRRERERS
EOAB A9 A0 LDA #$A0
EOAD 20 A6 DD JSR $DDA&
EOBO DO 27 BNE $EOD9
E0OB2 A5 85 LDA $85

Track und Sektornummer holen
Puffernummer holen

keine Rel-Datei ?

Block schreiben

Puffer wechseln

Pufferzeiger auf zwei
Befehlskode fiir Schreiben ?
nein

Block lesen

und priifen

Puffer wechseln

Befehlskode fiir Schreiben ?
nein

Block lesen

und priifen

Track und Sektornummer holen
Track

kein Folgetrack ?

Puffer wechseln

Block lesen

Puffer wechseln

ein Byte in Record schreiben

Puffernummer holen
mal 2

Datenbyte

in Puffer schreiben
Pufferzeiger
erhihen

ungleich null ?
Kanalnuamer
Schreibzeiger
gleich null ?
Pufferzeiger auf 2

Kanalnuamer

Pufferzeiger gleich Schreibzeiger ?

nein

Bit § setzen

Pufferzeiger erhihen

ungleich null ?

sonst Block schreiben, ndchsten Block lesen
Byte in Rel-Datei schreiben

Bit 6 und 7 testen

gesetzt ?
Datenbyte

196

EOB4 20 7C E0 JSR $EO7C
EOB7 A5 FB LDA $FB
EOB? FO 0D BER $EOCS
EOBB &0 RTS

EOBC A9 20 LDA #$20
EOBE 20 A6 DD JSR $DDA4
EOCt FO 03 BEQ $EOCS8
EOC3 A9 51 LDA #$51
EOCS 8D 6C 02 STA $026C
EOCB 20 F3 E0 JSR $EOF3
EOCB 20 53 El JSR $E1S3
EOCE AD 6C 02 LDA $024C
EODL FO 03 BEQ@ $EO0D&
EOD3 4C C8 Ct JMP $C1C8
EOD6 4C BC E6 JMP $E6BC
EOD? 29 80 AND #$80
EODB DO 05 BNE $EOE2
EODD A5 FB8 LDA $F8
EODF FO DB BEQD $EOBC
EQE! 60 RTS

EOE2 A5 85 LDA $835
EOE4 48 PHA

EOES 20 iC E3 JSR $E3JIC
EOEB 48 PLA

EOE? 85 85 STA $85
EOEB A9 80 LDA #$80
EOED 20 9D DD JSR $DD9D
EOF0 4C B2 E0 JMP $EOB2
ERREERRRRRRRRRRRRRRRRRRRRRRERS
EOF3 A9 20 LDA #$20
EOFS 20 A6 DD JSR $DDA6
EOF8 DO 0A BNE $E104
EOFA A% 00 LDA #$00
EOFC 85 85 STA $85
EOFE 20 7C E0 JSR $EO7C
E101 "4C F3 E0O JMP $EOF3
E104 60 RTS
ERERRERRRERRRRRRRRERRRRRRRRRRR
E105 A9 40 LDA #$40
E107 20 97 DD JSR $DD97
E10A 20 9E DF JSR $DFSE
E10D 09 40 ORA #$40
E10F AE 57 02 LDX $0257
E112 95 A7 " BTA $A7,X
E1t4 60 RTS

E115 20 9E DF JSR $DF9E
E118 29 BF AND #$BF
E11A AE 57 02 LDX $0257

in Record schreiben
Ende ?
ja

Bit 5 testen

nicht gesetzt

51, ‘overflow in record’
Fehlerflag setzen

Rest des Records mit Nullen fiilllen

Fehlerflag gesetzt ?
nein
Fehlermeldung setzen

fehlerfreie Ausfihrung

Bit 7 gesetzt ?
ja

Ende ?

Datenbyte

Side-Sektoren erweitern

Bit 7 léschen
Byte in Datei schreiben

Record mit Nullen auffiillen

Bit 5 testen
gesetzt ?

null als Datenbyte
in Record schreiben
bis Record voll

Puffernummer in Tabelle schreiben

Bit 6 setzen
Puffernummer holen
Bit & setzen
Kanalnummer + 7

in Tabelle schreiben

Puffernummer holen
Bit 6 ldschen
Kanalnummer + 7

197

E11D 95 A7 STA
E11F &0 RTS
(2222222222222 222222222 222223
E120 A9 80 LDA
E122 20 A6 DD JSR
E125 DO 37 BNE
E127 20 2F D1 JSR
E12A BS 99 LDA
E12C D9 44 02 CHNP
E12F FO0 22 BEQ
E131 Fé6 99 INC
E133 - DO 06 BNE
E135 20 3C E0O JSR
E138 20 2F DI JSR
E13B Al 99 LDA
E13D 99 3E 02 STA
E140 A9 89 LDA
E142 99 F2 00 STA
E145 BS 99 LDA
E147 D9 44 02 CMP
E14A FO 01 BEQ
E14C 60 RTS
E14D A9 81 LDA
E14F 99 F2 00 STA
E152 60 RTS
E153 20 DO DF JSR
E156 20 2F D1 JSR
E159 A5 B85 LDA
E1SB 4C 3D E1 JNP
E1SE A6 82 LDX
E160 A9 OD LDA
E162 9D 3E 02 STA
E165 A9 B1 LoA
E167 95 F2 STA
E169 A% 50 LDA
E16B 20 CB C1 JSR
E16E A6 82 LDX
E170 BS5 C1 LDA
E172 85 87 STA
E174 Cé 87 DEC
E176 C9 02 CNP
E178 DO 04 BNE
E17A A9 FF LDA
E17C 85 87 STA
E17E BS C7 LDA
E180 85 88 STA
E182 20 EB D4 ISR
E185 A& 82 LDX
E187 C5 87 cmp
E189 90 19 BCC
E18B FO 17 BEQ

$A7,X

#580
$DDAGL
$E1SE
$D12F
$99,X
$0244,Y
$E153
$99,X
$E13B
$E03C
$D12F
($99,X)
$023E, Y
4589
$00F2,Y
$99,X
$0244,Y
$E14D

4581
$00F2,Y

$DFDO
$D12F
$83

$E13D

$82
250D
$023E, X
4581
$F2,X
#$50
scice

$82
$C1,X
$87
$87
2502
$E17E
#$FF
$87
$C7,X
$88
$D4EB
$82
$87
$E1A4
SE1A4

in Tabelle schreiben

Byte aus Rel-Datei holen

Bit 7 testen

gesetzt ?

Byte aus Puffer holen

Pufferzeiger

mit Endezeiger vergleichen

gleich ?

Pufferzeiger erhihen

ungleich null ?

Block schreiben, nidchsten Block lesen
Byte aus Puffer holen

ins Ausgaberegister
READ und WRITE Flag setzen
Pufferzeiger

mit Endezeiger vergleichen
gleich ?

Flag fir Ende setzen

nichsten Record suchen
Puffernummer und Kanalnummer holen
Datenbyte

ins Ausgaberegister

Kanalnumaer

CR

ins Ausgaberegister
Flag fir Ende setzen
50, ‘record not present’
Kanalnummer
Schreibzeiger

merken

gleich 2 ?

nein

Recordlinge
Pufferzeiger setzen
Kanalnumamer

Pufferzeiger gréBer als Schreibzeiger ?

nein

198

E18D 20 1E CF ISR
E190 20 B2 E1 JSR
E193 90 08 BCC
E195 A6 82 LDX
E197 9D 44 02 STA
E19A 4C 1E CF JMP
E19D 20 1E CF JSR
E1A0 A9 FF LDA
E1A2 85 87 STA
E1A4 20 B2 E1 JSR
E1A7 BO 03 BCS
E1R9 20 EB D4 JSR
EIAC A6 82 LDX
EI1ARE 9D 44 02 STA
E1B1 60 RTS
E1B2 20 2B DE JSR
E1BS A4 87 LDY
E1B7 Bl 94 LDA
E1B9 DO 0D BNE
EiBB 88 DEY
E1BC CO 02 CPy
E1IBE 90 04 BCC
E1CO Co €8 DEC
E1C2 DO F3 BNE
EIC4 Cé 88 DEC
EiC6 18 CcLC
EI1C7 60 RTS
EiC8 98 TYA
EIC? 38 SEC
EICA 60 RTS
EREEEERRERRRRRERERERRRERRRRRRE
EICB 20 D2 DE JSR
E1CE 85 DS S§TA
E1DO A9 04 LDA
E1D2 B85 94 STA
E1D4 A0 0A LDY
E1D6 DO 04 BNE
E1D8 B8 DEY
EID? 88 DEY
EIDA 30 26 BMI
E1DC Bl 94 LDA
EIDE FO FB BEQ
EIE0 98 TYA
E1E1 4A LSR
E1E2 C5 DS cmp
E1E4 FO 09 BE@
E1E6 85 DS STA
EIEB Rb B2 LDX
EIEA BS CD LDA
E1EC 20 1B DF JSR
E1EF A0 00 LDY

$CF1E
$E1B2
$E19D
$82
$0244,X
$CF1E

$CFIE
$SFF
$87
$E1B2
$E1AC
$D4ES
$82
$0244,X

$DE2B
$87
($94),Y
$EICS

#502
$E1C4
$88
$E1B7
$88

$DED2
$D5
#$04
$94
#$0A
$E1DC

$E202
($94) ¥
$E1D8

$D5
SELEF
$05

$82

$CD, X
$DF1B
#500

Puffer wechseln

Kanalnuamer
Puffer wechseln

Puffer wechseln

Pufferzeiger setzen
Kanalnummer
Endezeiger

Pufferzeiger auf null

Byte aus Puffer
ungleich null ?

letzten Side-Sektor holen
Nummer des Side-Sektors holen
merken

leiger auf Side-Sektoren

Tracknummer der vorhergehende Blocks
noch nicht angelegt ?

durch 2 ergibt Nummer

gleich Nummer des aktuellen Blocks ?
ja

sonst als Nummer merken

Kanalnumaer

Puffernummer

Block lesen

199

E1F1 B84 94 STY $94
EIF3 B1l 94 LDA ($94),Y
EIFS DO 0B BNE $E202
E1IF7 C8 INY

E1F8 Bl 94 LDA ($94),Y
EIFA A8 TAY

EIFB 88 DEY

EIFC 84 D& STY $Deé
ELFE 98 TYA

EIFF 4C E9 DE JMP $DEEY
E202 A9 &7 LDA #$67
E204 20 45 E6 JSR $E&4S
EREEEERERRERRRRR R RN
E207 20 B3 C2 JSR $C2B3
E20A AD 01 02 LDA %0201
E20D 85 83 STA $83
E20F 20 EB DO JSR $DOEB
E212 90 03 BCC $E219
E214 A9 70 LDA #$70
E216 20 CB C1 JSR sCiC8
E219 A9 A0 LDA #$A0
E21B 20 9D DD JSR $DD9D
E21E 20 25 D1 JSR $D125
E221 FO 05 BEQ $E228
E223 A9 64 LDA #$64
E225 20 C8 C1 JSR s$CiC8
E228 BS EC LDA $EC,X
E22A 29 01 AND #$01
E22C 83 7F STA $7F
E22E AD 02 02 LDA $0202
E231 95 BS STA $B5,X
E233 AD 03 02 LDA $0203
E236 95 BB STA $BB,X
E238 A4 B2 LDX $82
E23A A9 B89 LDA #$89
E23C 95 F2 STA $F2,X
E23E AD 04 02 LDA $0204
E241 FO 10 BEQ $E253
E243 38 SEC

E244 E9 O1 SBC #$01
E244 FO 0B BEQ $E2353
E248 D5 C7 CMP $C7,X
E24A 90 07 BCC $E253
E24C A9 51 LDA #¢51
E24E 8D &C 02 STA $026C
E251 A9 00 LDA #$00
E253 85 D4 STA $D4
E235 20 0E CE JSR $CEOE
E258 20 F8 DE JSR $DEF8
E25B 50 08 BVC $E265
E25D A9 80 LDA #$80
E25F 20 97 DD JSR $DD97

Pufferzeiger
Tracknummer
folgt weiterer Block ?

Sektornummer gleich Endezeiger

Endezeiger merken

Pufferzeiger setzen

&7, ‘'illegal track or sector’
P-Befehl, ‘Record’

leile prifen

Sekundiradresse

sucht Kanalnummer
gefunden ?

70, ‘no block’

Bit & und 7 léschen
prift auf ‘REL'-File
ja

64, 'file type mismatch’

Drivenummer
Recordnummer lo

Recordnummer hi
Kanalnummer
READ und WRITE-Flag

Byte-Pointer
null ?

mit Recordldnge des Files vergleichen

51, ‘overflow in record’

leiger in Rel-Datei berechnen
und entsprechenden Side-Sektor-Block lesen
Block vorhanden ?

Bit 7 setzen

200

E262

E265
E268
E26A
E26D
E26F
E272

E275
E278
E27A
E27D
E27F
" E281
E282
E284
E286

E289
E28A
E28C
E28E
E290
E291
E294

E297
E299

E29C
E29E
E2A0
E2A2
E2A4
E2A7
E2A9

E2AA
E2AD
E2BO
E2B2
E2B4
E2B7
E2B?
E2BC
E2BF
E2C2
E2C4
E2Cé
E2C8
E2CY
E2CB
E2CD

E2DO

St
cs

94
89
95
BA
Do
01

El

E2

DD

El
C1

E2

D4

E2

EO
El

C1

E2

DD

DE

E2

CF

D2

Do

DE

JNP

JER
LDA
JER
BERQ
JMP
JIMP

JSR

LDA
STA
LDA

RTS

$E15E

$E275
#$80

$DDAL
$E272
$E15E
$C194

$E29C
$07
$D4C8
$82
$C7,X

$D4
$E289
$E£202

$D7
$E291
#$01

$E009
$E138

#$51
$CiC8

$94
$89
$95
$B8A
$E2DO
$E2AA

$DDF1
$DEOC
$80
$E2C2
$E2D3
$E2BF
$CF1E
$D2DA
$D2DA
#$00
($89),Y
$80

($89),Y
81
$DOAF

$DE3E

und 50, ‘record not present’

Bit 7 testen

nicht gesetzt

50, ‘record not present’
fertig

leiger in Rel-Datei
Pufferzeiger setzen
Kanalnummer
Recordléange

minus Position

positiv ?
67, ‘illegal track or sector’

leiger in Datenblock addieren
kein ilberlauf

plus 2

leiger setzen

und Byte aus Puffer holen

51, ‘overflow in record’
Pufferzeiger lo

Pufferzeiger hi

Track und Sektor vergleichen
ungleich ?

Track

kein Folgeblock ?

Track und Sektornummer vergleichen
ungleich ?

Puffer wechseln

Track

und Sektor des nadchsten Blocks

Block lesen

E2D3 A0 00 LDY
E2DS B1 B89 LDA
E2D7 C5 80 cup
E2D9 FO 01 BE@
E2DB 40 RTS
E2DC C8 INY
E2DD Bl 89 LDA
E2DF €5 81 CMpP
E2E1 40 RTS
EEREREREEERRRERRRREARRRRRRRRRR
E2E2 20 2B DE JSR
E2ES A0 02 LDY
E2E7 A9 00 LDA
E2E9 91 94 STA
E2EB C8 INY
E2EC DO FB BNE
E2EE 20 04 E3 JSR
E2F1 93 C1 STA
E2F3 A8 TAY
E2F4 A9 FF LDA
E2F6 91 94 STA
E2FB 20 04 E3 JSR
E2FB 90 F4 BCC
E2FD DO 04 BNE
E2FF A9 00 LDA
E301 95 C1 STA
E303 40 RTS
ERERERERRERRRRRRRBFRRRBRRRRIRY
E304 A6 B2 LDX
E306 BS C1 LDA
E308 38 SEC
E309 FO 0D BE@
E30B 18 CLC
E30C 75 C7 ADC
E30E 90 OB BCC
E310 DO 06 BNE
E312 A9 02 LDA
E314 2C CC FE BIT
E317 60 RTS
E318 69 01 ADC
E31A 38 SEC
E31B &0 RTS
EEERRERERRERERRNRERRRRERRRRERR
E3IC 20 D3 Dt JSR
E31F 20 CB E1 JSR
E322 20 9C E2 JSR
E325 20 7B CF JSR
E328 A5 Db LDA
E32A 85 87 STA
E32C AT DS LDA
EJ2E 85 86 STA
E330 A9 00 LDA

£500
($89),Y
$80
$E2DC

($89),V
$81

$DE2B
#3502
#$00
($94),Y

$E2E9
$E304
$C1,X

$$FF
($94) ,Y
$E304
$E2F1
$E303
#3500
$C1,X

$82
$C1,X

$E318

$C7,X
$E31B
$E318
¥$02

$FECC

#$01

$D1D3
$EICB
$E29C
$CF7B
$D6
$87
$D5
$86
#5500

Tracknummer
vergleichen

Sektornummer
vergleichen

Datenblock in Records unterteilen
Pufferzeiger setzen

Puffer lidschen

leiger auf nichsten Record setzen

$FF als erstes Zeichen des Records
leiger auf nichsten Record setzen
noch komplett in diesem Block ?
Block voll ?

Schreibzeiger auf Null

leiger auf nachsten Record setzen
Kanalnummer

Schreibzeiger

gleich null ?

Recordlinge addieren

kleiner als 256 ?
gleich 256 ?

zwei addieren

Side-Sektoren erweitern

Drivenummer holen
letzten Side-Sektor holen

Side-Sektor Nummer

202

E332
E334
E336
E338
E33B
E33E
E340
E342
E343
E344
E345
E347
E349
E34B
E34D
EJ4F
E3S1
E353
E355
E357
E358
E35A
E3SD

CE
EF

C1

DF

D4

STA
LDA
STA
JER
JSR
LDy
LDX

XA
CLe
ADC
BCC
INC
INC
BNE
INC
LDA
STA
LDA
CLC
ADC
JER
LDA
CMpP
BCC
LDA
JSR
LDA
SEC
SBC
BCS
SBC
CLC
STA
LDA
SBC

LDX
STX
STX
TAX
JER
LDA
BNE
LDX
DEX
BNE
INC
CMP
BCC
BNE
LDA
o, 14
BCC
LDA
JSR

$88
#$00
$D4
$CEOE
SEF4D
$82
$C7,Y

$D7
$EIST
$Dé6
$D6
$E355
$DS
#$10
$Dé
$87

#$02
$DEEY
$DS
#8064
$E368
#$52
$CiC8
$Db6

$87
$E372
#$0F

$72
$D5
$86
$73
#$00
$70
$71

$DFS1
$71
$E3IBF
$70

$E3IBF
88
$0273
$E39D
$E363
$0272
$70
$E363
#501
$D4AF6

Side-Sektor Nummer und Zeiger berechnen
lahl der freien Blicke

Kanalnummer

Recordlinge

plus Zeiger in Datenblock

leiger auf Ende um zwei erhihen (Track/Sektor)
kein Ubertrag ?
Side-Sektor Nummer erhihen

leiger auf 16 setzen

Pufferzeiger fiir Side-Sektor setzen
Side-Sektor Nummer

kleiner als 6 ?

52, 'file too large’
Endezeiger

minus letzter Endezeiger

minus 16

Side-Sektor Nummer

minus letzte Side-Sektor Nummer

merken

Summe fir Brechnung ldschen

Blockzahl der Rel-Datei berechnen

Blockzahl der Rel-Datei
griBer als freie Blocks auf Diskette ?
52, ‘file too large’

52, ‘file too large’

Byte aus Puffer holen

203

E418
E41B

81

3E
81

80

0A
4€
10
E9
86

8D

8D

DE

DF

£4

DE

DD

DD

DF

DF

TAX
BNE
JSR
LDA
JER
INC

JSR
PLA
JSR
PLA
STA

STA
BEQ
LDA
cHp
BNE
JSR
o1
BCC
BER
JSR
PHA

#$01
$82

$C1,X
$FILE
$DDFD
$88

$E3CE
$DESE
$CF1E
$D4DO
$FILE
$DDFD
$E2E2
$E3D4

$CFLE
$D6D0O
$E2E2
$DE19
$DESE
$DEOC
$80

$81

$DE3E
$81

$80
$DF435

$E3F9
$E44E
#$10
$DEE9
$86

$DDBD
$DD8D
$81

$80
$E418

$DS

$E3BS
$DF4S
$D6

$E3B6
$E3C8
$DF45

plus 1

als Schreibzeiger
freien Block in BAM suchen
Track und Sektor in Puffer

nur ein Block erforderlich ?

Block schreiben

Puffer wechseln

Parameter an Disk-Controller ibergeben
freien Block in BAM suchen

Track und Sektor in Puffer

Puffer lioschen

Puffer wechseln

Parameter an Disk-Controller ibergeben
Puffer lischen

Nullbyte und Endezeiger in Puffer
Block schreiben

Track und Sektor holen

Track

und Sektor

merken

Track und Sektor vom Disk-Controller holen
Sektor

und Track merken
Pufferzeiger fiir Side-Sektor setzen

leiger ungleich null ?
Side-Sektor schreiben, ndchsten anlegen

Pufferzeiger auf 16
Side-Sektor Nummer erhéhen

Track in Side-Sektor
Sektor in Side-Sektor
Sektor

und Track zuriickholen

kein weiterer Block ?

Side-Sektor Nummer

gedndert ?

ja

Pufferzeiger in Side-Sektor setzen
Endezeiger

kleiner ?

gleich

Pufferzeiger in Side-Sektor setzen

204

E41C A9 00 LDA #$00
E41E 20 DC DE JSR $DEDC
E421 A9 00 LDA #$00
E423 A8 TAY

E424 91 94 STA ($94),Y
E426 C8 INY

E427 68 PLA

E428 38 SEC

E429 E9 Of SBC #$01
E42B 91 94 STA ($94),Y
E42D 20 6C DE JSR $DE6C
E430 20 99 DS JSR $D599
E433 20 F4 EE JSR $EEF4
E436 20 OE CE JSR $CEOE
E439 20 1E CF JSR $CF1E
E43C 20 FB DE JSR $DEF8
E43F 70 03 BVS $E444
E441 4C 75 E2 JIMP $E275
E444 A9 BO LDA #$80
E446 20 97 DD JSR $DD97
E449 A9 50 LDA #$50
E44B 20 C8 Ct JSR $CiC8
EREERRERERRRERERRRRRRRRRRRRR RN
E44E 20 1E F1 JSR $FILE
E451 20 1E CF JSR $CF1E
E454 20 F1 DD JSR $DDF1
E457 20 93 DF JSR $DF93
E45A 48 PHA

E45B 20 C1 DE JSR $DECI
EASE A6 B2 LDX $82
E460 BS CD LDA $CD,X
E462 A8 TAY

E463 68 PLA

E464 AR TAX

E465 A9 10 LDA #$10
E4467 20 AS DE JSR $DEAS
E46A A9 00 LDA #$00
E46C 20 DC DE JSR $DEDC
E46F A0 02 LDY #$02
E471 B1 94 LDA ($94),Y
E473 48 PHA

E474 A% 00 LDA ¥$00
E476 20 C8 D4 JSR sD4CB
E479 &8 PLA

E474 18 CLC

E47B 69 O1 ADC #$01
E47D 91 94 STA ($94),Y
E47F 0A ASL A
E4B80 49 04 ADC #$04
E482 85 B89 STA %89
E484 A8 TAY

E485 38 SEC

E486 E9 02 SBC #$02
E488 B85 8A STA $8A

Pufferzeiger auf null

Null als Tracknummer
Endezeiger

minus eins

als Sektor

Block schreiben

und priifen

BAM updaten

leiger fir Rel-Datei updaten
Puffer wechseln

richtiger Side-Sektor ?
nein

Bit 7 setzen
50, ‘record not present’

Side-Sektor schreiben und neuen anlegen
freien Block in BAM suchen

Puffer wechseln

Block schreiben

Puffernummer holen

Puffer ldschen

Kanalnummer
Puffernummer

146 Bytes des Side-Sektors
in Puffer kopieren

Pufferzeiger auf null, alter Side-Sektor

Side-Sektor Nummer

Pufferzeiger auf null, neuer Side-Sektor

Side-Sektor Nummer erhidhen

und in Puffer

mal 2

plus 4

gleich Zeiger auf Track/Sektor

minus 2
gleich Zeiger auf alten Side-Sektor

205

E4BA
E48C
E4BE
E490
E491
E493
E495
E497
E499
E494A
E49C
E49D
EA49F
E4AL
E4A3
E4Ab
E4A9
E4AC
E4AE
E4BO
E4B1
E4B4
E4Bé
E4B8
E4B9
E4BC
E4BE
E4CO
E4C3
EA4CS
E4C7
EACY
E4CA
E4CC
E4CE

E4D1
E4D4
E4D&
E4D9
E4DB
E4DE
E4EQ
E4E2
E4E4
E4E&
E4ES8
E4E9
E4EB
E4ED
E4F0
E4F3
EA4FS
E4F7
E4F9

D4

DS

DF

02

D4

DF

DF

D4

DE
D3

LDA
STA
STA
INY
LDA
STA
STA
LDY
TYA
STA
INY
LDA

LDA
JSR
JSR
JER
LDX
LDA
PHA
JSR
LDX
STA
PLA
LDX
STA
LDA
JSR
LDY
LDA
STA
INY
LDA
STA
JMP

JSR
LDX

LDA
JSR
DEC
DEC
LDY
LDA
STA
INY
LDA
STA
JSR
JSR
LDY
CPY
BCS
JMP

$80
$87
($94),Y

$81

$88
($94),Y
#500

($94) Y

#s11
($94),Y
#$10
$D4CS
$DESO
$D599
$82
$CD,X

$DFIE
$82
$CD,X

$0257
$A7,X
#$00
$D4C8
#$00
$80
($94) ,Y

81
($94),¥
$E4DE

$DF93
$82
$DF1B
#$00
$D4C8
$8A

$8A

$89

$87
($94),Y

$88
($94) ,Y
$DESE
$D599
$84
#$03
$E4D1
$CF1E

Track
in Puffer
Sektor

in Puffer

Null in Puffer

17

fAnzahl der Bytes im Block

16

Pufferzeiger auf 1é

Block schreiber

und priifen

Kanalnummer

Puffernummer des Side-Sektors

Puffernummer holen
Kanalnummer
in Tabelle schreiben

Kanalnummer + 7
in Tabelle

Pufferzeiger auf null

Track
in Puffer

Sektor
in Puffer

Puffernummer holen
Kanalnuamer
Block lesen

Pufferzeiger auf Null
lihler fir Side-Sektor Blocks

Tracknummer
in Puffer

Sektornummer

in Puffer

Block schreiben

und priifen

lihler fir Side-Sektor Blocks

griBer oder gleich 3 ?
Puffer wechseln

206

EERRRFRARFRRRRRERRRERRRAERRR Tabelle der Fehlermeldungen

E4FC 00 00

E4FD AO 4F CB ‘oK’

ES00 20 21 22 23 24 27 Fehlernummern der ‘read error’
E506 D2 45 41 44 ‘Read”’

E50A 89 leiger auf “error’

ES0B 52 52

ES0C 83 - leiger auf "file’

ES0D 20 54 4F 4F 20 4C 41 52 47 CS * too largE’

ES17 50 50

E518 BB 06 leiger auf ‘record ' und ‘not '
ES51A 20 50 52 45 53 45 4E D4 ' presenT’

E522 St St

E523 CF 56 435 52 464 4C 4F 57 20 ‘Overflow in’

ES2E 8B leiger auf ‘record’

ES2F 25 28 Fehlernummern der ‘write error’
ES31 8A 89 leiger auf ‘write’ und ‘' error’
ES33 26 26

ES34 BA leiger auf ‘write’

ES35 20 50 52 4F 54 45 43 54 20 4F CE ‘' protect oN'

E540 29 29

ES41 88 leiger auf ‘disk’

E542 20 49 85 ©id’

ES545 85 leiger auf ‘' mismatch’

ES46 30 31 32 33 34 Fehlernummern fir ‘syntax error’
ES4B D3 59 4E 54 41 58 ‘Syntax”

E551 89 leiger auf ° error’

ES52 40 60

ESS53 8A 03 84 leiger auf ‘write’, ‘file’ und ‘open’
ES56 63 63

ES57 83 leiger auf “file’

ES558 20 45 58 49 53 54 D3 ' exist§’

ESSF 64 64

E560 83 leiger auf ‘file’

ES61 20 54 59 50 45 ' type’

ES66 85 leiger auf ‘mismatch’

ES67 65 65

ES6B CE 4F 20 42 4C 4F 43 CB ‘No block’

ES70 66 47 Fehlernummern fir "illegal track or sector’
ES72 C9 4C 4C 45 47 41 4C 20 ‘Illegal

ES7A 54 52 41 43 4B 20 4F 52 ‘track or’

E582 20 53 45 43 54 4F D2 ' sectoR’

ESB9 &1 61

ESBA 83 046 84 leiger auf ‘file’, ‘not’ und ‘open’
ES8BD 39 62 Fehlernummern fir ‘file not found’
E590 83 06 87 leiger auf ‘file’, ‘not’ und ‘found’
E593 01 01

ES94 83 leiger auf ‘file’

ES94 53 20 53 43 52 41 54 43 48 45 C4 ‘s scratcheD’

ES9F 70 70

ESA0 CE 4F 20 43 48 41 4E 4E 45 CC 'No channeL’

ESAA 71 71

ESAB C4 49 52 ‘Dir’

ESAE 89 leiger auf ‘error’

ESAF 72 72

ESBO 88 leiger auf ‘disk’

207

ESB1 20 46 55 4C CC © full”’

ESB6 73 73

ESB7 C3 42 4D 20 44 4F 53 20 ‘Cbm dos *

ESBF 56 32 2E 36 20 31 35 34 Bl ‘v2.46 1541°

ESC4 74 74

ESCS C4 52 49 56 A5 ‘Drive’

ESCA 06 leiger auf ‘not’

ESCB 20 52 45 41 44 D9 ' readY’

ESDS 09

ESD6 C5 52 52 4F D2 ‘ErroR’

ESDB 0A

ESDC D7 52 49 54 C5 ‘WritE’

ESE1 03

ESE2 C6 49 4C C5 ‘FilE’

ESE6 04

E&GE7 CF 50 45 CE ‘OpeN’

ESEB 05

ESEC CD 49 53 4D 41 54 43 C8 ‘MismatcH’

ESF4 06

ESFS CE 4F D4 ‘NoT’

ESF8 07

ESF9 Cé 4F 55 4€E C4 ‘FounD’

ESFE 08

ESFF C4 49 53 CB ‘DisK’

E403 OB

E604 D2 45 43 4F 52 C4 ‘RecorD”
FREEERERRERRAREF AR AR RERR222% Fehlernummer und -Meldung bereitstellen
E60A 48 PHA Fehlerkode merken

E4OB 86 F9 STX $F9 Drivenuamer

E6O0D 8A TXA

EGOE OA ASL A mal 2

E&0F AA TAX als leiger

E610 BS 06 LDA $06,X

E612 85 80 STA $80 Track

E614 BS 07 LDA $07,X

Eblb 85 8t STA $81 und Sektornummer holen
E61B 68 PLA Fehlerkode zuriickholen
E619 29 OF AND #$0OF Bits 0 bis 3 isolieren
E61B FO 08 BEQ@ $Eb425 null, dann 24, ‘read error’
E61D C9 OF CMP #$0F 15 ?

E6IF DO 06 BNE $E&627

E621 A9 74 LDA #$74

E623 DO 08 BNE $E62D 74, ‘'drive not ready’
E625 A9 06 LDA #$06 -]

E627 09 20 ORA #$20 $20 addieren

E629 AA TAX

E&2A CA DEX

E62B ca DEX zwei abziehen

E42C 8BA TXA

E&2D 48 PHA Fehlernummer merken
E&2E AD 2A 02 LDA $022A Nummer des Diskettenkommandos
E&31 €9 00 CMP #%00 OPEN oder VALIDATE ?
E633 DO OF BNE $E&644 nein

E435 A9 FF LDA #$FF

E637 8D 2A 02 STA $022A

208

E63A 68 PLA

E63B 20 C7 E& JSR $E&C7
E63E 20 42 DO JSR $D042
E641 4C 48 E6 JMP $EL4B
E644 48 PLA

E645 20 C7 E& JSR $E&C7
E648 20 BD Ci JSR $C1BD
E64B A9 00 LDA #$00
E64D 8D F9 02 STA $02F9
E650 20 2C Ci JSR $C12C
E653 20 DA D4 JSR $D4DA
E&S6 A% 00 LDA #$00
E65B B85 A3 STA $A3
E6S5A | A2 45 LDX #$45
E&SC 94 X8

E6SD A5 B84 LDA $84
E6SF 29 OF AND #$0F
Ebb1 85 83 STA $83
E663 C9 OF CMP #$0F
Eb6S FO 31 BEQ $E698
E&67 78 SEI

E668 AS 79 LDA $79
E64A DO IC BNE $E688
E66C AT 7A LDA $74A
E6E DO 10 BNE $E680
E670 A6 B3 LDX $83
E672 BD 2B 02 LDA $022B,X
E67S €9 FF CMP #$FF
E677 FO IF BEQ $E698
E&79 29 OF AND #$0F
E6&7B 85 B2 STA $82
E67D 4C BE E&6 JMP $EGBE
ERERRERRRRERRRRRERERRRRRRRRIRR
E6BO 20 EB DO JSR $DOEB
E6B3 20 4E EA JSR $EA4E
E6B6 DO 06 BNE $E&BE
ERREERREERERRRRRRRRRRRERRRRARN
E688 20 07 Dt JER $D107
E6BB 20 4E EA JSR $EA4E
E6BE 20 25 D1 JSR $D125
E691 C9 04 CMP #$04
E693 B0 03 BCS $E&98
E695 20 27 D2 JSR $D227
E698 4C E7 EB JMP S$EBE7
EEERRERRERRRERRRERRRERERRRERRS
E69B AA TAX

E69C A9 00 LDA #$00
E69E F8 SED

E69F EO 00 CPX #$00
E6Al Fo 07 BEQ $E6AA
E6A3 18 CLc

E6AR 69 01 ADC #$01

Fehlernummer zuriickholen
Fehlermeldung generieren
BAM laden

Fehlermeldung setzen

Fehlermeldung setzen
Eingabepuffer ldschen

Fehlerflag ldschen
LED ausschalten
Kandle 17 und 18 schliefBen

leiger Eingabepuffer auf Null

Stackpointer initialisieren
Sekundéradresse

15 ?
ja, Kommandokanal

LISTEN aktiv ?

ja

TALK aktiv ?

ja

Kanalnummer

Kanal zu dieser Sekunddradresse offen ?

nein

Kanalnummer

TALK
Kanal zum Lesen dffnen
Byte annehmen

LISTEN

Kanal zum Schreiben &ffnen
Byte annehmen

Dateityp prifen

Dateityp REL ?

ja

Kanal schlieBen

Hexzahl in Dezimalzahl wandlen (2 Bytes)

Hexzahl in BCD-Zahl wandlen

209

E6AL CA DEX
E6A7 4C 9F Eb6 JMP S$E69F
E6GARA DB CLD

FERREXFRRFFRRRRERRERR AR RA22%% BCD-Zahl in zwei Bytes zerlegen
E6AB AR TAX

E6AC 44 LSR A

E6AD 4a LSR A Hi-Nibble nach unten verschieben
EGAE 44 LSR A

EGAF 4A LSR A

E6BO 20 B4 Eb& JSR $E6B4 nach ASCII wandeln

E6B3 BA TXA

E6B4 29 OF AND #$OF oberste 4 Bit léaschen

E6BL 09 30 ORA #$30 ‘0’ addieren

E6BB 91 AS STA ($AS5),Y in Puffer schreiben

E6BA C8 INY Pufferzeiger erhihen

E6BB 40 RTS

FEEFRFRRBRRRRRARRRARRRRXARRXXE 0k’ in Puffer schreiben

E6BC 20 23 Ci JSR $C123 Fehlerflags léaschen

E&BF A9 00 LDA #$00 Fehlernummer 0

E&CL A0 00 LDY #$00

E4C3 B4 80 STY s80 Track ©

E4CS 84 B1 STY $81 Sektor O
FRERERRRRFARRRRRRRRRRR 22222 Fehlermeldung in Puffer (Nummer im Akku)
E6C7 AD 00 LDY #$00 Pufferzeiger

E6C? A2 DS LDX #$D5

E4CB B4 AS STX $AS leiger $AS/$A6 auf $2D5

E6CD A2 02 LDX #$02

E6CF B6 A6 STX $Ab4

E6D1 20 AB E& JSR $E&AB Fehlernummer nach ASCII und in Puffer
E6D4 A9 2C LDA #$2C 'y’ Komma

E6DA 91 A5 STA ($A5),Y in Puffer schreiben

E4DB cs INY Pufferzeiger erhihen

E6D9 AD DS 02 LDA $02D5 erste Ziffer des Diskettenstatus
E6DC 8D 43 02 STA $0243 ins Ausgaberegister

E6DF BA TXA Fehlernummer in Akku

E&EOQ 20 06 E7 JSR $E706 Fehlermeldung in Puffer

E6E3 A9 2C LDA #s2C ‘y" Komma

EGES 91 AS STA ($AS),Y in Puffer schreiben

E&E7 ce INY und Pufferzeiger erhihen

E&GEB A5 80 LDA $80 Tracknummer

EGEA 20 9B E6 JSR $E&9B nach ASCII und in Puffer

EGED A9 2C LDA #$2C 'y Komma

E6EF 91 AS STA ($A5),Y in Puffer schreiben

E6F1 c8 INY Pufferzeiger erhéhen

E6F2 A5 81 LDA $81 Sektor

E6F4 20 9B E6 JSR $E&9B nach ASCI! wandeln und in Puffer
E6F7 88 DEY

E6F8 98 TYA

E6F9 18 CLC

E6FA 69 DS ADC #$D5

EGFC 8D 49 02 STA $0249 Endezeiger

E6FF Eb& AS INC $AS5

E701 A9 88 LDA #s88 READ-Flag setzen

210

E703 85 F7 STA $F7

E705 &0 - RTS

EERRERRRARRRRERRNERRRRRLR%R¥2% Text der Fehlermeldung in Puffer schreiben
E706 AA TAX Fehlercode nach X

E707 A5 86 LDA $84 .

E709 48 PHA leiger $B86/$87 retten

E70A A5 87 LDA $87

E70C 48 PHA

E70D A9 FC LDA #sFC

E70F 85 86 STA $86 leiger $84/$87 auf $EAFC

E711 A9 EA4 LDA W$E4 Beginn der Fehlermeldungen

E713 85 87 STA $87

E715 8A TXA Fehlernummer in Akku

E716 A2 00 LDX #$00

E718 C1 B6 CMP ($86,X) mit Fehlernummer in Tabelle vergleichen
E71A FO 21 BEQ@ $E73D

E71C 48 PHA

E71D 20 75 E7 JSR $E775 Bit 7 ins Carry und liéschen

E720 90 05 BCC $E727 nicht gesetzt ?

E722 20 75 E7 JSR $E77S Bit 7 ins Carry

E725 90 FB BCC $E722 warten auf Zeichen mit gesetztem Bit 7
E727 AS 87 LDA $87

E729 C9 E& CMP #$Eb

E72B 90 08 BCC $E7335 $ELOAR, auf Ende der Tabelle prifen
E72D DO 0A BNE $E739

E72F A9 0A LDA #$0A

E731 C5 86 CMP $86

E733 90 04 BCC $E739

E735 &8 PLA

E736 4T 18 E7 JMP $E718 nein, weitermachen

E739 48 PLA

E73A 4C 4D E7 JMP $E74D fertig

E73D 20 &7 E7 JSR $E747 ein Zeichen holen, Bit 7 ins Carry
E740 90 FB BCC $E73D warten auf Zeichen mit Bit 7 gesetzt
E742 20 54 E7 JSR $E754 und in Puffer schreiben

E745 20 67 E7 JSR $E747 ndchstes Zeichen holen

E748 90 F8 BCC $E742 warten auf Zeichen mit gesetzem Bit 7
E74A 20 54 E7 JSR $E754 leichen in Puffer

E74D &8 PLA

E74E 85 87 STA $87

E750 &8 PLA leiger $84/$87 zuriickholen

E751 85 86 STA $86

E753 60 RTS

FRRRERERRXERRRRERRERRRRAR%% 222 Jeichen holen und in Puffer

E754 C9 20 CMP #$20 ‘' Leerzeichen

E756 BO 0B BCS $E763 griBer, dann in Puffer schreiben
E738 AR TAX Kode merken

E759 A% 20 LDA #$20 Leerzeichen .

E75B 91 AS STA ($A5),Y in Puffer schreiben

E75D C8 INY Pufferzeiger erhihen

E75SE 8A TXA Kode in Akku

E75F 20 06 E7 JSR $ET06 zugehirigen Text ausgeben

E762 60 RTS

211

E763 91 A5 STA ($A5),Y
E763 C8 INY

E766 60 RTS
ERRRRERRRRERRRERRRERRRERRENERS
E767 Eb 86 INC $86
E769 Do 02 BNE $E76D
E76B Eb 87 INC $87
E76D Al 86 LDA ($86,X)
E76F OA ASL A

E770 Al 86 LDA ($86,X)
E772 29 7F AND #$7F
E774 60 RTS
EREEREREREREREERRRRRRRERRRRERS
E775 20 éD E7 JSR $E76D
E778 Eb6 86 INC $Bé
E77A DO 02 BNE $E77E
E77C Eb6 87 INC $87
E77E 60 RTS
HEENEEEERRRRREERR RN RRRRRRN
E77F 60 RTS
122222233222 32 2222222232 2)
E780 AD 00 18 LDA $1800
E78B3 AA TAX

E784 29 04 AND #$04
E786 FO F7 BEQG $E77F
E788 BA TXA

E789 29 01 AND #s$01
E78B FO F2 BEQ $E77F
E78D 58 CLI

E78E AD 00 18 LDA $1800
E791 29 05 AND #$05
E793 DO F9 BNE $E7BE
E795 EE 78 02 INC $0278
E798 EE 74 02 INC $0274
E79B A% 2A LDA ¥$2A
E79D 8D 00 02 STA $0200
E7A0 4C AB E7 JMP $E7AB
EEEERRERREERRRRRRRERRRRERRR RN
E7A3 A9 8D LDA #$8D
E7AS 20 68 C2 JSR $C268
E7A8 20 58 F2 JSR $F258
E7AB AD 78 02 LDA $0278
E7AE 48 PHA

E7AF A% 01 LDA #$01
E7BL 8D 78 02 STA $0278
E7B4 A9 FF LDA #$FF
E7B6 8BS 86 STA $86
E7BB 20 4F C4 JSR $C44F
E7BB AD 80 02 LDA $0280
E7BE DO 05 BNE $E7CS
E7CO0 A9 39 LDA #$39

leichen in Puffer schreiben
und Zeiger erhihen

ein Zeichen der Fehlermeldung holen
leiger erhihen

leichen holen
Bit 7 ins Carry
leichen holen
Bit 7 ldschen

leiger erhidhen
Bit 7 ins Carry

leiger erhdhen

prift auf AUTO-Start
IEC-Port lesen

'CLOCK IN‘-Bit isolieren
nicht gesetzt, dann fertig

‘DATA IN‘-Bit isolieren
nicht gesetzt, dann ferig

IEC-Port laden

‘DATA IN’ und ‘CLOCK IN' testen
warten bis beide gesetzt sind
ein Dateinamen

ein leichen in der Eingabezeile
‘#' als Filename

in Puffer schreiben

‘%’ - Betehl

Befehlszeile bis zum Ende priifen
(RTS)

Zahl der Dateinamen

merken

ein Dateiname

Datei suchen

gefunden ?

212

Ct

02
02

D4

EB

E8
E8

E8

E8
E8
E8

E8

CA

DE

Eb

00
CA

LDA

$CiC8

$0278
$0280
$80

$£0285

#$03
$D477
#$00
$87
$EB39
$88
$EB4B
$EB39
$89
$EB4B
$86
$E7FA
$88

89

39, 'file not found’
Zahl der Dateinamen zuriickholen
Track

und Sektor
Dateityp ‘USR’
Puffer belegen, ersten Block lesen

Priifsumme ldschen

Byte aus Datei holen

als Startadresse lo merken
Prifsumme bilden

Byte aus Datei holen

als Startadresse hi
Prifsumme bilden

Programmstartadresse merken

Byte aus Datei holen
als Zdhler merken
Priifsumme bilden
Byte aus Datei holen

als Programmbytes abspeichern
Priifsumme bilden

leiger $88/%89 erhihen

ldhler erniedrigen

nichstes Byte holen
Datenbyte

gleich Priifsumme ?
ja

Parameter an Disk-Controller ibergeben

50, ‘record not present’
Ende ?
nein, ndchster Datenblock

Programmstartadresse zuriickholen
und Programm ausfihren

Byte aus Datei holen
Ende ?

EB3E DO 08 BNE $EB848
EB40 20 3E DE JSR $DE3E
EB43 A9 51 LDA #351
EBA5 20 45 E6 JSR $E645
EB48 A5 85 LDA $85
EB4R 40 RTS
FEREEFRREERRFXRRERRRERRRRRRRER
EB4B 18 cLe

EBAC &5 87 ADC $87
EB4E 49 00 ADC #$00
EBS0 85 87 STA $87
EBS2 &0 RTS
2222222222222 22222222 X LS
EB53 AD 01 18 LDA $1801
EBS6 A9 01 LDA #$01
EBS8 B85 7C STA $7C
EBSA 60 RTS
FREREFREE R AR RREREREFRRRREER
E8SE 78 SEI

EBSC A9 00 LDA #$00
EBSE 85 7C STA $7C
EB&0 B85 79 STA $79
EB62 B85 7A STA $7A
EB44 A2 45 LDX #$45
EB&L 9A TX§

EBL7 A9 80 LDA #$80
EB6? B85 F8 STA $F8
EB&B 85 7D STA $7D
EBAD 20 B7 E9 JSR $E9B7
EB70 20 AS E9 JSR $E9AS
EB73 AD 00 18 LDA $1800
EB76 09 10 ORA #$10
EB78 8D 00 18 STA $1800
EB7B AD 00 18 LDA $1800
EB7E 10 57 BPL $EBD7
EBB0 29 04 AND #5$04
EBB2 DO F7 BNE $EB7B
EBB4 20 C9 E9 JSR $E9CY
€887 €9 3IF CMP #$3F
EBBY DO 06 BNE $EB91
EBBB A9 00 LDA #$00
EBBD 85 79 STA $79
EBBF FO 71 BEQ $E902
EB91 C9 SF CMP #$5F
EB93 DO 06 BNE $EB9B
EB9S A% 00 LDA #$00
E897 85 7A STA $7A
EB99 FO &7 BE@ $E902
EB9B CS5 78 CHP $78
EBSD DO OA BNE $EBAY
EBYF A9 01 LDA #$01
EBA1 85 7A STA $7A
EBAZ A9 00 LDA #$00

nein

Parameter an Disk-Controller iibergeben

51, ‘overflow in record’
Datenbyte

Priifsumme bilden

IR@-Routine fir seriellen Bus
Port A lesen, IRQ-Flag liéschen

Flag fir "ATN empfangen’ setzen

Bedienung des seriellen Bus

Flag fir ‘ATN empfangen’ léschen
Flag fir LISTEN ldschen
Flag fiir TALK léschen

Stackpointer initialisieren

Endeflag ldschen
EQOI-Flag ldschen
CLOCK OUT 1o

DATA OUT, Bit ‘0", hi

Datenleitungen auf Eingabe schalten

IEC-Port lesen

EQI ?

CLOCK IN ?

nein

Byte vom Bus haolen
Unlisten ?

nein

Flag fir LISTEN riicksetzen
Untalk ?

nein

Flag fir TALK ricksetzen

TALK-Adresse ?
nein

Flag fiir TALK setzen

214

EBAS 85 79 STA $79
EGA7 FO 29 BEQ $EBD2
EBAY €3 77 CcHp $77
EBAB DO 0A BNE $EBB7
EBAD A9 01 LDA #$01
EBAF 85 79 STA $79
EBBI A9 00 LDA #$00
EBB3 85 7A STA $74A
EBBS FO 1B BER $EBD2
EBB7 AA TAX

EBBS8 29 &0 AND #$60
EBBA C9 &0 CMP #$60
EBBC DO 3F BNE $EBFD
EBBE 8R TXA

EBBF 85 84 STA $84
EBC1 29 OF AND #$0F
EBC3 B85 83 STA $83
EBCS A5 84 LDA B84
EBCY 29 FoO AND #$F0
EBC? C9 EO CMP #$E0
EBCB DO 35 BNE $E902
EBCD 58 CL1

EBCE 20 CO DA JSR $DACO
EBD1 78 SEI

EBD2 2C 00 18 BIT $1800
EBDS 30 AD BMI $EB8B4
EBD7 A9 00 LDA #$00
EBD? 85 7D STA $7D
EBDB AD 00 18 LDA $1800
EBDE 29 EF AND #$EF
EBE0O 8D 00 18 STA $1800
EBE3 A5 79 LDA $79%
EBES FO 06 BEQ@ $EBED
EQE7 20 2E EA JSR $EA2E
EBEA 4C E7 EB JMP $EBE7
EBED A5 7A LDA $7A
EBEF FO 09 BEQ $EBFA
EBF1 20 9C E? JSR $E99C
20 AE E9 JSR $E9AE

EBF7 20 09 E9 JSR $E909
EBFA 4C 4E EA JIMP SERAE
EBFD A9 10 LDA #$10
EBFF 8D 00 18 STA $1800
E902 2C 00 18 BIT $1800
E905 10 DO BPL $EBD7
E907 30 F9 BMI $E902
EEEERRE R AR R RN R RN RRRRRER
E909 78 SEI

E90A 20 EB DO JSR $DOEB
E90D BO 06 BCS $E91S
E90F Ab B2 LDX $82
E911 BS F2 LDA $F2,X
E?13 30 ot BMI $E916

Flag fir LISTEN ricksetzen

LISTEN-Adresse ?
nein

Flag fir LISTEN setzen

Flag fir TALK riicksetzen

Bit 5 und 6 gesetzt ?
nein

Byte ist Sekundiradresse

Kanalnummer

CLOSE ?

CLOSE-Routine

EOI setzen
1EC-Port
Datenleitungen auf Ausgabe schalten

LISTEN aktiv ?
nein

Daten empfangen
zur MWarteschleife

TALK aktiv ?
nein
DATA OUT, Bit ‘1, lo EBF4

CLOCK OUT hi

Daten senden
2ur Warteschleife

weder TALK noch LISTEN, Byte ignorieren
Datenleitungen auf Eingabe schalten
Handshake abwarten

Daten senden

Kanal zum Lesen dffnen

Kanal aktiv ?

Kanalnummer

READ-Flag gesetzt ?
ja

215

E915 60 RTS

E916 20 59 EA JSR $EAS9 auf EOI priifen

E919 20 CO E9 JSR $E9CO IEC-Port lesen

E91C 29 01 AND #s$01 Datenbit isolieren

E91E 08 PHP und merken

E?1F 20 B7 E9 JSR $E9B7 CLOCK 0UT lo

E922 28 PLP

E923 Fo 12 BEQ $E937

E925 20 59 EA JSR $EAS9 auf EOI prifen

E928 20 CO E9 JSR $E9CO IEC-Port lesen

E92B 29 01 AND #s$01 Datenbit isolieren

E92D Do Fé BNE $E925

E92F R6 82 LDX $82 Kanalnummer

E931 B5 F2 LDA $F2,X

E933 29 08 AND #%08

E935 DO 14 BNE $E94B

E937 20 59 EA JSR $EAS9 auf EOI priifen

E93A 20 CO E9 JSR $E9CO 1EC-Port lesen

E93D 29 01 AND #$01 Datenbit isolieren

E93F DO Fé BNE $E937

E941 20 59 EA JSR $EAS9 auf EOI prifen

EF44 20 CO E9 JSR $E9CO IEC-Port lesen

E947 29 01 AND #$01 Datenbit isolieren

E949 FO Fé BEQ $E941

E94B 20 AE E9 JSR $E9AE CLOCK OUT hi

E94E 20 59 EA JSR $EAS9 auf EOI prifen

E951 20 CO E9 JSR $E9CO 1IEC-Port lesen

E954 29 01 AND #$01 Datenbit isolieren

E9S6 DO F3 BNE $E94B

E958 A9 0B LDA #s08 lihler auf B Bits fiir serielle iibertragung
E95A 85 98 STA $98

E95C 20 CO E9 JSR $E9CO IEC-Port lesen

E95F 29 Ot AND #$01 Datenbit isolieren

Eq61 DO 36 BNE $E999

E963 A4 82 LDX $82

E?65 BD 3E 02 LDA $023E,X

E968 6A ROR A unterstes Bit ins Carry
E969 9D 3E 02 STA $023E,X

E96C BO 0S5 BCS $E973 Bit gesetzt

E94E 20 AS E9 JSR $E9AS DATA OUT, Bit "0’ ausgeben
E971 Do 03 BNE $E976 unbedingter Sprung

E973 20 9C E? JSR $E99C DATA 0OUT, Bit '1° ausgeben
E976 20 B7 E? JSR $E9B7 CLOCK OUT setzen

E979 A5 23 LDA $23

E97B DO 03 BNE $E980

E97D 20 F3 FE JSR $FEF3 Verzbgerung fir seriellen Bus
E980 20 FB FE JSR S$FEFB DATA OUT und CLOCK OUT setzen
E983 Cs 98 DEC $98 schon alle Bits ausgegeben ?
E985 DO DS BNE $E9SC nein

E987 20 59 EA JSR $EAS9 auf EOI priifen

E9B8A 20 CO E9 JSR $E9CO IEC-Port lesen

E98D 29 01 AND #s$01 Datenbit isnlieren

E98F FO F6 BEQ@ $E987

E991 58 cL1

E992 20 AR D3I JSR $D3AA niachstes Datenbyte holen
E995 78 SEI

E996 4C OF E9 JMP $E9OF
E999 4C 4E EA JMP $EA4E
FREFEEFERRRRRRFRFERRERREEEREERR
E99C AD 00 18 LDA $1800
E99F 29 FD AND #$FD
E9A1 BD 00 18 STA $1800
E9A4 &0 RTS
EEFEREFREEREFRRRERRRRRRERREEEE
E9AS AD 00 18 LDA $1800
E9AB 09 02 ORA #$02
E9AA 8D 00 18 STA $1800
"E9AD 60 RTS
EEREREERERRRRERERRRERRERREEEER
ESAE AD 00 18 LDA $1800
E9B1 09 08 ORA #$08
E9B3 8D 00 18 STA $1800
E9B6 &0 RTS
ERRERERRER XXX RRXERRREXXERXEER
E9B7 AD 00 18 LDA $1800
E9BA 29 F7 AND #$F7
E9BC 8D 00 18 STA $1800
E9BF &0 RTS
EREFERRERRERREE R RRERRRERERREER
E9CO AD 00 18 LDA $1800
E9C3 CD 00 18 CMP $1800
E9C& DO FB BNE $E9CO
E9CB &0 RTS
REREEEER RN R ERRER RN R RRERES
E9CY A9 08 LDA #$08
E9CB 85 98 STA $98
E9CD 20 59 EA JSR $EASY
E9D0 20 CO E9 JSR $E9CO
E9D3 29 04 AND %504
E9D5 DO Fé BNE $E9CD
E9D7 20 9C E9 JSR $E99C
E9DA A9 01 - LDA #$01
E9DC 8D 05 18 STA $1805
E9DF 20 59 EA JSR $EASY
ESE2 AD OD 18 LDA $180D
E9ES 29 40 AND #$40
E9E7 DO 09 BNE $E9F2
E9EY 20 CO E9 JSR $E9CO
E9EC 29 04 AND #$04
E9EE FO EF BE@ $E9DF
E9F0 DO 19 BNE $EAOB
E9F2 20 AS E9 JSR $E9AS
E9F5 A2 0A LDX #$0A
E9F7 CA DEX

und ausgeben
zur Warteschleife
DATA OUT lo
Bit ‘1° ausgeben
DATA OUT hi

Bit ‘0’ ausgeben

CLOCK OUT hi

Bit 3 setzen

CLOCK 0UT lo

Bit 3 ldéschen

IEC-Port lesen
Port lesen
konstanten Wert abwarten

Bitzdhler serielle Ausgabe

auf EOI priifen
IEC-Port lesen
CLOCK IN ?

nein, warten

DATA OUT, Bit ‘1~

Timer setzen
auf EOI priifen

Timer abgelaufen ?
ja, EOI

IEC-Port lesen
CLOCK IN ?

nein, warten

DATA OUT Bit
10

‘07, hi

Verzigerungsschleife, ca. 30 Mikrosekunden

217

E9F8 DO FD BNE $E9F7
E9FA 20 9C E? JSR $E99C
E9FD 20 59 EA JSR $EAS9
EAOO 20 CO E9 JSR $E9CO
EARO3Z 29 04 AND #$04
EAOS FO Fé BEG@ $E9FD
EAO7 A9 00 LDA #$00
EA09 85 F8 STA $F8
EAOB AD 00 18 LDA $1800
EAOE 49 01 EOR #$01
EALO 4A LSR A
EALL 29 02 AND #$02
EAL3 DO Fé BNE $EAOB
EAIS EA NOP

EAl6 EA NOP

EAL7 EA NOP

EALIB 66 8BS ROR $85
EALA 20 59 EA JSR $EAS9
EAID 20 CO E? JSR $E9CO
EA20 29 04 AND #$04
ER22 FO Fb BEQ $EALA
EA24 Cb6 98 DEC $98
EA26 DO E3 BNE $EAOB
EA28 20 AS E9 JSR $E9AS
EA2B A5 85 LDA $835
EA2D &0 RTS
ERARRERERRRERRRRRRRRRRRRRRRRRS
EA2E 78 SEI

EA2F 20 07 DI JSR $D107
EA32 BO 05 BCS $EA39
EA34 BS F2 LDA $F2,X
EA3L bR ROR A
ER37 BO 0B BCS $EA44
EA39 A5 B4 LDA $84
EA3SB 29 FO AND #$FO
EAZD C9 FO CMP #$FO
EAZF FO0 03 BEQ $EA44
EA&L 4C 4E EA JMP $EA4E
EA44 20 C9 E9 JSR $E9CY
EA47 58 CLI

ER48 20 B7 CF JSR $CFB7
EA4B 4C 2E EA JIMP $EAZE
ER4E A9 00 LDA #$00
EAS0 8D 00 18 STA $1800
EAS3 4C E7 EB JMP $EBE7
EAS6 4C 5B E8 JMP $EBSB

222222222 S22 222222222 2222222 2]

EAS9 A5 7D LDA $7D

EASB FO 06 BE@ $EA63
EASD AD 00 18 LDA $1800
EAGO 10 09 BPL $EA&B

DATA OUT, Bit ‘1’, lo
auf EOI prifen
IEC-Part lesen

CLOCK IN ?

nein, warten

EOI-Flag setzen
IEC-Port
Datenbit invertieren

CLOCK IN ?

ndchstes Bit bereitstellen
auf EOI priifen

IEC-Port lesen

CLOCK IN ?

nein

Bitzdhler erniedrigen

alle Bits schaon ausgegeben ?
DATA QUT Bit ‘0, hi
Datenbyte wieder laden

Datenannahme vom seriellen Bus

Kanal zum Schreiben dffnen
Kanal nicht aktiv ?
WRITE-Flag

nicht gesetzt ?
Sekunddradresse

OPEN-Befehl ?

ja

zur Warteschleife

Datenbyte vom Bus holen

und in Puffer schreiben

zum Schleifenanfang

IEC-Port riicksetzen

zur Warteschleife

zur Hauptschleife serieller Bus
EOI empfangen ?

ja
IEC-Port

218

EAL2 60 RTS

EA43 AD 00 18 LDA $1800
EAGL 10 FA BPL $EA62
EA4B 4C 5B EB JMP $EB5B
EAGB 4C D7 EB JMP $EBD7
EXEREEREERRRRER AR R L EERRERRRR
EAGE A2 00 LDX %500
EA70 2C .BYTE $2C
EA7L Ab &F LDX $6F
EA73 9A XS

EA74 BA TSX

EA7S A9 08 LDA #$08
EA77 0D 00 1C ORA $1C00
EA7A 4C EA FE JMP $FEEA
EA7D 98 YA

EATE 18 cLe

EATF 49 01 ADC #$01
EAB1 DO FC BNE $EATF
EAB3 88 DEY

EAB4 DO FB BNE $EA7E
EAB6 AD 00 I1C LDA $1C00
EABY 29 F7 AND #$F7
EABB 8D 00 IC STA $1C00
EABE 98 TVA

EABF 18 tLe

EA0 &9 01 ADC #$01
EA92 DO FC BNE $EA90
EA94 B8 DEY

EA9S DO FB BNE $EABF
EA97 CA DEX

EA98 10 DB BPL $EA7S
EA9A EO FC CPX #$FC
EASC DO FO BNE $EABE
EA9E FO D4 BEQ $EAT74
FEERREE R R R R R R R R R RRRRRRERS
EAAO 78 SEI

EAAL D8 cLD

EAA2 A2 FF LDX #$FF
EAA4 BE 03 18 STX $1803
EAA7 EB INX

EARB A0 00 LDY #$00
EARA A2 00 LDX #$00
EAAC BA TXA

EAAD 95 00 STA $00,X
EARF EB INX

EABO DO FA BNE $ERAC
EAB2 BA TXA

EAB3 D5 00 CMP $00,X
EABS DO B7 BNE $EAGE
EAB7 Fb 00 INC $00,X
EAB9 C8 INY

EABA DO FB BNE $EAB7

IEC-Paort
zur Hauptschleife serieller Bus
EOI setzen, seriellen Bus bedienen

LED-Blinken bei Hardwaredefekten, Selbsttest
1 mal blinken, Zeropage

X+1 mal blinken fir RAM/ROM-Fehler

LED-Bit im Port auswdhlen

LED einschalten, zurick nach $EA7D

LED ausschalten

Verzigerungsschleife

Verzigerung abwarten
LED wieder einschalten

RESET-Routine

Port A auf Ausgabe

leropage léschen

ist Byte gelischt ?
nein, dann zur Fehleranzeige (blinken)

219

EABC
EABE
EACO
EAC2
EAC4
EACH
EAC7
EACY
EACB
EACD
EACF
EAD1
EAD2
EAD4
EADS
EAD7
EAD?
EADA
EADC
EADD
EADF
EAEL
EAE2
EAE4
EAES
EAES
EAEA
EAEC
EAEE
EAFO
EAF2
EAF3
EAF4
EAFb&
EAFB
EAF?
EAFB
EAFD
EAFE
EBOO
EB02
EBO4
EBOS
EBO6
EBO7
EBO9
EBOB
EBOD
EBOF
EBI1
EBL3
EB1S
EB17
EBi8
EB1A
EBIB

76
73

F7
76

F2
07
76

76
75
12
FF
75
75
75
08

EA

ES

CHp
BNE
STY
LDA
BNE
INX
BNE
INC
STX
LDA
STA
TAY
LDX
CLC
DEC
ADC
INY
BNE
DEX

ADC
TAX
CMP
BNE
CPX

LDA
STA
INC
LDX
TYA
cLc
ADC
STA
INY
BNE
INC
DEX
BNE
LDX
DEC
DEY
TYA
CLC
ADC
4,13
BNE
EOR
§TA
EOR
STA
BNE

BNE
DEX
BNE

$00,X
$EAGE
$00,X
$00,X
$EALE

$EAB2
$6F
$76
#$00
$75

#$20

$76
($75),Y

$EAD7

$EADS
#$00

$76
$EBIF
#3$C0
$EACY
#$01
$76
$6F
#$07

$76
($75),Y

$EAF2
$76

$EAF2
#$07
$76

$76
($75),Y
$EBIF
¥S$FF
($75),Y
($75),¥
($75),Y
SEBIF

$EBO4

$EBO2

Fehler

Fehler

32 Pages testen

ROM Testen

ROM-Fehler

RAM testen, beginnend bei Page 7

RAM-Fehler

RAM-Fehler

weiter testen

220

EB1D
EBIF

EB22
EB24
EB25
EB28
EB2A
EB2D
EB2F
EB32
EB34
EB37
EB3A
EB3D
EB3F
EB40
EB41
EB42
EB43
EB4S
EB47
EB49
EB4B
EB4D
EB4F
EBS1
EBS3
EBS4
EBS7
EBS9
EBSA
EBSB
EBSD
EBSF
EBb1
EB63
EB&4
EB&6
EB6B
EB&9
EB&B
EB&D
EB&E
EB70
EB72
EB74
EB76
EB79
EB7A
EB7C
EB7E
EB8BO
EBB2
EBB4
EB8S

05
FO
00
99

02
99

EA

iC

18

18

18

FE

02

BEQ
JMP

LDX

LDA
AND
STA
LDA
STA
LDA
STA
STA
LDA
AND
ASL

ROL
ROL
ORA
STA
EOR
STA
LDX
LDY
LDA
STA
INX
LDA
STA
INX
INY
CPY
BNE
LDA

BPL

#$48
$78
4560
$77
#$00
#500
#500
$99,X

$FEEO,Y
£99,X

¥$05
$EBAF
2500

£99,X

#502
$99,X

1505
$99,X

#4502
$99,X
¥SFF
#$12
$022B, X

$EB76
#$05
$A7,X
$AE, X
$CD, X

$EB7E

ok
zur Fehleranzeige
Stackpointer initialisieren

LED ausschalten

CA1 (ATN IN) auf positive Flanke triggern
Interrupt durch ATN IN erméglichen
L]
Port B lesen
Bit S und & isolieren (Geratenummer)
nach Bitposition 0 und 1 schieben
Offset von B plus $40 fiir Talk addieren
Gerdtenummer fir TALK (senden)

Bit & léschen, Bit 5 setzen
Gerdtenummer plus $20 fir LISTEN (empfangen)

Low-Byte der Pufferadressen
High-Byte der Adresse aus Tabelle
speichern

S Pufferspeicher

leiger $A3/$A4 auf $200, Eingabepuffer

leiger $A5/$Ab6 auf $2D5, Puffer Fehlermeldung

Kanaltabelle mit $FF fiillen ('nicht belegt’)

Puffertabellen lidschen

Side-Sektor Tabelle ldéschen

221

EB87 A% 05 LDA #$05
EBB? 85 AB STA $AB
EBBB A9 06 LDA #%$06&
EBBD 85 AC STA $AC
EBBF A9 FF LDA #$FF
EB91 B85 AD STA $AD
EB93 85 B4 STA $B4
EB9S A9 05 LDA #4035
EB97 8D 3B 02 STA $023B
EBYA A9 84 LDA #$84
EB9C 8D 3A 02 STA $023A
EB9F A9 OF LDA #$0F
EBA1 8D 56 02 STA $0256
EBA4 A9 01 LDA #$01
EBA6 85 Fé STA $F6
EBAB A9 88 LDA #$88
EBAA 85 F7 STA $F7
EBAC A% EO LDA #$EO
EBAE 8D 4F 02 STA $024F
EBB1 A9 FF LDA #$FF
EBB3 8D 50 02 STA $0250
EBB6 A% 01 LDA #$01
EBB8 85 1IC STA $1C
EBBA 85 1D STA $1D
EBBC 20 63 CB JSR $CBé&3
EBBF 20 FA CE JSR $CEFA
EBC2 20 §9 F2 JSR $F259
EBCS A9 22 LDA #$22
EBC7 B5 65 STA $45
EBC? A9 EB LDA #$EB
EBCB 8BS &6 STA $66
EBCD A9 0A " LDA #s0A
EBCF 85 &9 STA $69
EBDt A9 0S5 LDA #$05
EBD3 85 6R STA $6A
EBDS A9 73 LDA #$73
EBD7 20 C1 E6 JSR $E6CH
EBDA A9 1A LDA #$1A
EBDC 8D 02 18 STA $1802
EBDF A9 00 LDA #$00
EBE1 8D 00 18 STA $1800
EBE4 20 80 E7 JSR $E780
EBE7 58 CLI

EBE8 AD 00 18 LDA $1800
EBEB 29 ES AND #$ES
EBED 8D 00 18 5TA $1800
EBFO AD 55 02 LDA $0255
EBFI FO 0A BEQ@ S$EBFF
EBFS A7 00 LDA #$00
EBF7 8D 55 02 STA $0255
EBFA 85 &7 STA $b67
EBFC 20 46 C1 JSR $C146
FRRERREERRRERREE AR R RERRRRRL
EBFF 58 CLI

ECO0 A5 7C LDA $7C

Puffer §
Kanal 4 zuordnen
Puffer &
Kanal 5§ zuordnen

Kanal 5 WRITE-Flag gelischt

Kanal 4 WRITE-Flag gesetzt
Kanalbelegungsregister initialisieren
Bit ‘1’ gleich Kanal frei

WRITE-Flag

READ-Flag

S Puffer frei

Pufferbelegungsregister initialisieren
$24F/$250, 16 Bit, ‘1’ gleich Puffer belegt
Flags fir Write Protect

Vektor fir U0 setzen

Kanaltabelle initialisieren
Initialisierung fir Disk-Controller

leiger $65/%66 auf $EB22

Schrittweite 10 bei Sektorzuweisung
5 Leseversuche

Einschaltmeldung bereitstellen

73, ‘cbm dos v2.6 1541°

Bit 1, 3 und 4 auf Ausgang
Datenrichtung Port B

Datenregister ldschen

priift auf Auto-Start

seriellen Port riicksetzen

Kommandoflag gesetzt ?
nein

Kommandoflag riicksetzen
Befehl analysieren und ausfiihren
Warteschleife

ATN-Signal entdeckt ?

222

ECO2
ECO4
ECO7
ECos
ECOA
ECOC
ECOE
EC10
EC12
EC14
EC17
EC19
EC1B
ECID
ECIF
EC22
EC23
EC26
EC28
EC29
EC2B
EC2D
EC2F
EC31
EC34
EC36
EC38
EC39
EC3B
EC3C
EC3E
EC3F
EC42
ECA44
EC45
ECA7
EC49
ECA4B
EC4D
ECAF
ECSt
ECS53
ECSS
ECS8
EC59
ECS5B
ECSC
ECSE
EC40
EC62
EC64
ECo4
EC69
ECoA
EC&C
EC&D

6F
72
EJ

00
05
01

&F

F3

00
F7

7F
86
00
7F
6F

1C
03
13

08

7F
70
0B
1D
03
13

00

86

E8

DF

02

iC

D3

D3

BEQ
JMP
CLI
LDA
STA
LDA
STA
STA
LDX
LDA
[, 14
BEQ
AND
STA
JSR
TAX
LDA
AND
TAX
INC
DEC
BPL
LDY
LDA
BPL
AND
TAX
INC
DEY
BPL
SEI
LDA
AND
PHA
LDA
STA
LDA
STA
LDA
BEQ
LDA
BEQ
JSR
PLA
ORA
PHA
INC
LDA
BEQ
LDA
BEQ

PLA
ORA
PHA
LDA

$ECO7
$EB5B

#$0E
$72
4500
$6F

$70

$72
$0228,X
#$FF
$EC28B
¥$3F
$82
$DF93

$025B,X
#$01

$6F X
$72
$EC12
#3504
$0000,Y
$EC3B
#501

$6F X
$EC31

$1C00
#$F7

$7F
$86
#$00
$7F
$6F
$ECSC
$1C
$ECS8
$D313

#508

$7F
$70
$EC6D
$1D
$ECH9
$D313

#$00

$86

nein
zur IEC-Routine

14
als Sekundidradresse

Job-ldhler

Sekunddradresse
Kanal zugeordnet ?
nein

Kanalnummer
Puffernummer holen

Drivenummer

Jobzdhler erhihen
Lo-Adresse

weiter suchen

Pufferzahler
Disk-Controller in Aktion ?
nein

Drivenummer isolieren

Jobzdhler erhéhen

ndchster Puffer

LED-Bit ldschen

Drivenummer

Drive 0

Job fir Drive 0 ?

nein

Write Protect fir Drive 0 ?
nein

alle Kandle zu Drive 0 schlieBen

LED-Bit setzen

Drivenummer erhihen

Job fir Drive 1 ?

nein

Write Protect fir Drive 1 ?

nein

alle Kandle zu Drive 1 schliefen

223

EC6F 85 7F STA $7F
EC71 &8 PLA

EC72 AE 4C 02 LDX $026C
EC7S FO 21 BEQ $EC98
EC77 AD 00 1C LDA $1C00
EC7A EO 80 CPX #$80
EC7C DO 03 BNE $ECS1
EC7E 4C 8B EC JMP $ECSB
ECB1 AE 05 18 LDX $1805
ECB4 30 12 BMI $EC98
ECBS6 A2 AO LDX #$A0
ECB8 BE 05 18 STX $1805
ECBB CE 4C 02 DEC $026C
ECBE DO 08 BNE $EC98
EC90 4D &D 02 EOR $02&D
EC93 A2 10 LDX #$10
EC9S BE 4C 02 STX $026C
EC98 8D 00 IC STA $1C00
EC9B 4C FF EB JMP $EBFF
FREEEREERERAERERERRREREREEERR
EC9E A9 00 LDA #3500
ECAO 85 83 STA $83
ECA2 A9 Ot LDA #s$01
ECA4 20 E2 D1 JSR $DI1E2
ECA7 A9 00 LDA #$00
ECA9 20 C8 D4 JSR s$D4CB
ECAC A& 82 LDX $82
ECAE A9 00 LDA #$00
ECBO 9D 44 02 STA $0244,X
ECB3 20 93 DF JSR $DF93
ECB6 AA TAX

ECB7 @5 7F LDA $7F
ECBY 9D 5B 02 STA $025B,X
ECBC A9 01 LDA #501
ECBE 20 F1 CF JSR $CFF1
ECC1 A9 04 LDA #$04
ECC3I 20 F1 CF JSR $CFF1
ECC6 A9 O1 LDA #$01
ECCB 20 Ft CF JSR $CFF1
ECCB 20 F1 CF JSR $CFF1
ECCE AD 72 02 LDA $0272
ECDt 20 F1 CF JSR $CFF1
ECD4 A9 00 LDA #$00
ECD4 20 F1 CF JSR $CFF1
ECD9 20 59 ED JSR $EDS9
ECDC 20 93 DF JSR $DF93
ECDF 0A ASL A
ECE0 AA TAX

ECE1 Db 99 DEC $99,X
ECE3 D& 99 DEC $99,X
ECES A% 00 LDA %#$00
ECE7 20 F1 CF JSR $CFF1
ECEA A9 01 LDA #$01
ECEC 20 F1 CF JSR $CFF1
ECEF 20 F1 CF JSR $CFF1

Drivenummer zuriickholen
Bit fir LED
Interruptzihler

auf null ?

Timerinterrupt léschen

Timer setzen
lihler erniedrigen
noch nicht null ?

lihler neu setzen
LED ein/ausschalten
zuriick zur Warteschleife

LDAD "s"
Sekunddradresse Null
Kanal und Puffer suchen

Pufferzeiger initialisieren
Kanalnummer

leiger auf Ende gleich Null
Puffernummer holen

Drivenummer

in Tabelle bringen

1

in Puffer schreiben
4, Startadresse $0401
in Puffer schreiben

2 mal 1

als Linkadresse in Puffer schreiben
Drivenummer

als Zeilennummer in Puffer schreiben
leilennummer hi

in Puffer

Directoryeintrag in Puffer
Puffernummer holen

Pufferzeiger erniedrigen

0 als Zeilenende in Puffer

2 mal 1 als Linkadresse

224

ECF2 20 CE Cé JSR $C4CE
ECF5 90 2C BCC $ED23
ECF7 AD 72 02 LDA $0272
ECFA 20 F1 CF JSR $CFF1
ECFD AD 73 02 LDA $0273
EDOO 20 F1 CF JSR $CFF1
EDO3 20 S9 ED JSR $EDS9
EDO6 A9 00 LDA #$00
EDOB 20 F1 CF JSR $CFF1
EDOB DO DD BNE $ECEA
EDOD 20 93 DF JSR $DF93
ED10 OA ASL A

EDI1 AA TAX

ED12 A9 00 LDA #$00
ED14 95 99 STA $99,X
ED16 A9 88 LDA #$88
ED18 A4 82 LDY $82
EDIA 8D 54 02 STA $0254
EDID 99 F2 00 STA $00F2,Y
ED20 A5 85 LDA $85
ED22 60 RTS
ERRRERRRERERRRERRRRRRRRRRRERRS
ED23 AD 72 02 LDA $0272
ED26 20 F1 CF JSR $CFF1
ED29 AD 73 02 LDA $0273
ED2C 20 F1 CF JSR $CFF1
ED2F 20 59 ED JSR $EDS9
ED32 20 93 DF JSR $DF93
ED3S 0A ASL A

ED3I6 AA TAX

ED37 D& 99 DEC $99,X
ED39 D& 99 DEC $99,X
ED3B A9 00 LDA #$00
ED3ID 20 F1 CF JSR $CFF1
ED40 20 F1 CF JSR $CFF1
ED43 20 F1 CF JSR $CFF1
ED46 20 93 DF JSR $DF93
ED49 0A ASL A

ED4A AB TAY

ED4B B9 99 00 LDA $0099,Y
ED4E A6 B2 LDX $82
EDSO 9D 44 02 STA $0244,X
ED53 DE 44 02 DEC $0244,X
EDS6 4C OD ED JMP $EDOD
ERERRENRERERRRERRRERRRRRRRRNRS
EDS9 A0 00 LDY #$00
EDSB B9 B1 02 LDA $02B1,Y
EDSE 20 F1 CF JSR $CFF1
ED61 ce INY

ED62 CO 1B CPY ¥#s$1B
ED64 DO F3S BNE $EDSB
ED66 40 RTS

2222222222 222222 2222222222222]

Directoryeintrag in Puffer
weiterer Eintrag ?
Blockzahl lo

in Puffer

Blockzahl hi

in Puffer

Directoryeintrag in Puffer

Null als Endekennzeichen in Puffer

Puffer voll ? nein
Puffernumamer holen

Pufferzeiger auf Null
READ-Flag setzen
Kanalnummer

Flag fiir Kanal
Datenbyte

Blockzahl lo

in Puffer schreiben
Blockzahl hi

in Puffer

‘Blocks free.’ in Puffer
Puffernummer holen

mal 2

Pufferzeiger minus 2

dreimal Null als Programmende

Puffernummer holen
mal 2

Pufferzeiger

als Endekennzeichen

Direcectoryzeile iibertragen

Leichen aus Puffer
in Ausgabepuffer schreiben

schon 27 Zeichen ?

Byte aus Puffer holen

225

ED&7 20 37 D1 JSR $D137
ED6A FO O1 BEQ $ED&D
ED6C 60 RTS

ED6D 85 85 STA $85
ED&F A4 B2 LDY $82
ED71 B? 44 02 LDA $0244,Y
ED74 FO 08 BEQ $EDT7E
ED76 A9 80 LDA #$80
ED78 99 F2 00 STA $00F2,Y
ED7B A5 85 LDA $85
ED7D 60 RTS

ED7E 48 PHA

ED7F - 20 EA EC JSR $ECEA
EDB2 &8 PLA

EDB3 &0 RTS
EEEEERERERRRREERRERRER RN RERR
EDB4 20 D1 Ci JSR $C1D1
ED87 20 42 DO JSR $D042
EDBA A9 40 LDA #$40
EDBC 8D F9 02 STA $02F9
ED8F 20 B7 EE JSR $EEB7
ED92 A9 00 LDA #$00
ED74 8D 92 02 STA $0292
ED97 20 AC CS JSR $CSAC
ED?A DO 3D BNE $EDD9
EDSC A9 00 LDA #$00
EDYE 85 81 STA $81
EDAO AD 85 FE LDA $FEBS
EDA3 85 80 STA $80
EDAS 20 E5 ED JSR $EDES
EDAB A% 00 LDA #$00
EDAR 8D F9 02 STA $02F9
EDAD 20 FF EE JSR $EEFF
EDBO 4C 94 C1 JMP $C194
EEREEERRNEIRERERRRRRRRRRRRRRRR
EDB3 (8 INY

EDB4 B1 94 LDA ($94),Y
EDB6 48 PHA

EDB7 C8 INY

EDB8 Bl 94 LDA ($94),Y
EDBR 48 PHA

EDBB A0 13 LDY #$13
EDBD - B1 94 LDA ($94),Y
EDBF FO 0A BEQ $EDCB
EDC1 85 80 STA $80
EDC3 €8 INY

EDC4 B1 94 LDA ($94),Y
EDC& 85 81 STA $81
EDC8 20 ES ED JSR $EDES
EDCB 48 PLA

EDCC 85 81 STA $81
EDCE &8 PLA

Byte aus Puffer holen
Pufferzeiger null ?

Datenbyte merken
Kanalnummer
Endekennzeichen setzen
Null (LOAD $) ?

READ-Flag setzen
Datenbyte

Directoryzeile im Puffer erzeugen

V-Befehl, ‘Collect’
Eingabezeile auf Laufwerknummer durchsuchen
BAM laden

neue BAM im Puffer erzeugen

Directory laden, ersten Eintrag suchen
gefunden ?

Sektor ©

18

Track 18 fur BAM
Directorybliécke als belegt kennzeichnen

BAM auf Diskette zurickschreiben
fertig, Diskstatus bereitstellen

Track und

Sektor merken
leiger auf Side-Sektor-Block

kein Folgeblock ?
Track

und Sektor des ersten Side-Sektor-Blocks
Side-Sektor Bliocke als belegt kennzeichnen

Track und Sektor zurickholen

226

EDCF 85 80 STA $80

EDD1 20 ES ED JSR $EDES Bldcke der Datei als belegt kennzeichnen
EDD4 20 04 C6 ISR $C604 nichsten Eintrag im Directory lesen

EDD7 FO C3 BEQ@ $EDIC Ende des Directorys ?

EDD? A0 00 LDY #$00

EDDB B1 94 LDA ($94),Y Filetyp

EDDD 30 D4 BMI $EDB3 Bit 7 gesetzt, File geschlossen ?

EDDF 20 B& CB JSR $CBBé Dateityp auf Null und BAM schreiben

EDE2 4AC D4 ED JMP $EDD4

ERRREEERXXFXRERARRERERS 2222822 Dateiblocke in BAM belegen

EDES 20 SF D5 JSR $D5SF Track und Sektornummer prifen
EDEB 20 90 EF JSR $EF90 Block in BAM belegen
EDEB 20 75 D4 JSR $D473 ndchsten Block lesen
EDEE A% 00 LDA #$00

EDFO 20 C8 D4 JSR $DACS Pufferzeiger auf Null
EDF3 20 37 D1 JSR $D137 Byte aus Puffer holen
EDF6 85 80 STA $80 Track

EDF8 20 37 D1 JSR $D137 Byte aus Puffer holen
EDFB 85 81 STA $81 Sektor

EDFD AS 80 LDA $80 folgt weiterer Block ?
EDFF DO 03 BNE $EE04 ja

EEO1 4C 27 D2 JMP $D227 Kanal schlieBen

EEO4 20 90 EF JSR $EF90 Block in BAM belegen
EEO07 20 4D D4 JSR $D44D nidchsten Block lesen
EEOA 4C EE ED JMP $EDEE weiter
FRERRERRRERHNRERRRERRRRRNNRS%% N-Befehl, 'Header’
EEOD 20 12 €3 JSR $C312 Drivenummer holen
EE10 A5 E2 LDA $E2 Drivenummer

EE12 10 05 BPL $EE19 nicht eindeutig ?
EE14 A9 33 LDA #$33

EE16 4C C8 Cit JMP $C1C8 33, ‘syntax error’
EE19 29 o1 AND #$01

EE1B 85 7F STR $7F Drivenummer

EEID 20 00 C1 JSR $C100 LED einschalten

EE20 AS 7F LDA $7F Drivenummer

EE22 0A ASL A mal 2

EE23 AA TAX

EE24 AC 7B 02 LDY $027B Kommaposition

EE27 CC 74 02 CPY $0274 mit Ende Name vergleichen
EE2A FO 1A BEQ $EE46 Formatieren ohne 1D
EE2C B9 00 02 LDA $0200,Y erstes Zeichen der ID
EE2F 95 12 STA $12,X speichern

EE3L B? 01 02 LDA $0201,Y zweites Zeichen

EE34 95 13 STA $13,X

EE36 20 07 D3I JSR $D307 alle Kandle schliefen
EE3? A9 01 LDA #s01

EE3B 85 80 STA $80 Track 1

EE3D 20 Cé6 C8 JSR $C8BCs Diskette formatieren
EE40 20 05 FO JSR $F005 Puffer léschen

EE43 4C 56 EE JMP $EESH weiter wie unten

EE46 20 42 DO JSR $D042 BAM laden

EE49 R6 7F LDX $7F Drivenummer

227

EE4B BD 01 Of LDA $0101,X
EE4E CD DS FE CMP $FEDS
EESt FO 03 BEQ@ $EES6
EES3 4C 72 DS JMP $D572
EES6 20 B7 EE JSR $EEB7
EES? A5 F9 LDA $F?
EESB A8 TAY

EESC 0A ASL A

EESD AA TAX

EESE AD 88 FE LDA $FEBB
EE6L 95 99 STA $99,X
EE63 AE 7A 02 LDX $027A
EE66L A9 1B LDA #$1B
EE6B 20 &E C6 JSR $CH6E
EESB AD 12 LDY #$12
EEGD A6 TF LDX $7F
EE6F AD DS FE LDA $FEDS
EE72 9D 01 o0t STA $0101,X
EE7S BA TXA

EE76 0A ASL A

EE77 AR TAX

EE78 BS 12 LDA $12,X
EE7A 91 94 STA ($94),Y
EE7C C8 INY

EE7D BS 13 LDA $13,X
EE7F 91 94 STA ($94),Y
EEBL ce INY

EEB2 C8 INY

EEB3 A9 32 LDA #$32
EESS 91 94 STA ($94),Y
EEB7 (8 INY

EEBB AD D5 FE LDA $FEDS
EEBB 91 94 STA ($94),Y
EEBD A0 02 LDY #$02
EESF 91 6D STA ($6D),Y
EE91 AD B5 FE LDA $FEBS
EE94 85 80 STA $80
EE96 20 93 EF JSR $EF93
EEF? A9 01 LDA #$01
EE9B 85 81 STA $81
EE?D 20 93 EF JSR $EF93
EEA0 20 FF EE JSR $EEFF
EEAI 20 05 FO JSR $F00S
EEA6 A0 01 LDY #$01
EEA8 A9 FF LDA #$FF
EEAA 91 6D STA ($6D),Y
EEAC 20 64 D4 JSR $D4b4
EEAF Cé B1 DEC $81
EEB1 20 60 DA JSR $D4&60
EEB4 4C 94 Ci JMP $C194
EEERRERRRRRRRRRRRRERRERARNRTRS
EEB7 20 D1 FO JSR $FOD1
EEBA A0 00 LDY #$00
EEBC A9 12 LDA #$12

‘A’ Kennzeichen fir 1541-Format
ok
73, ‘cbm dos v2.6 1541°

BAM erzeugen
Puffernummer

$90, Beginn Diskname
Pufferzeiger auf Name

27

Filenamen in Puffer schreiben
Position 18

Drivenummer

‘A’, 1541-Format

mal 2

ID, erstes leichen
in Puffer

und zweites Zeichen
in Puffer

g
in Puffer

‘A’ 1541-Format
in Puffer

und an Position 2

18

Tracknummer

Block als belegt kennzeichnen

1

Sektornummer

Block als belegt kennzeichnen

BAM schreiben

leiger $6D/$&6E auf Puffer, Puffer léschen

Folgetrack 0, $FF gleich Anzahl giltige Bytes
Block schreiben

Sektornummer erniedrigen, 0

Block lesen

Diskstatus bereit stellen

BAM erzeugen

18

228

EEBE 91 64D STA ($6D),Y
EECO C8 INY

EECt 98 TYA

EEC2 91 &D STA ($6D),Y
EEC4 C8 INY

EECS C8 INY

EEC6 C8 INY

EEC7 A9 00 LDA #$00
EECY 83 &F STA $6&F
EECB 85 70 STA $70
EECD 85 71 STA $71
EECF 98 TYA

EEDO 4h LSR A

EED1 4A LSR A

EED2 20 4B F2 JSR $F24B
EEDS 91 &D STA ($6D),Y
EED7 C8 INY

EED8 AA TAX

EED9 38 SEC

EEDA 26 &F ROL $6F
EEDC 26 70 ROL $70
EEDE 26 71 ROL $71
EEE0 CA DEX

EEEL DO F& BNE $EED9
EEE3 BS 6F LDA $&6F,X
EEES 91 &D STA ($6D),Y
EEE7 C8 INY

EEE8 ES8 INX

EEE? EO 03 CPX #$03
EEEB 90 Fé BCC $EEE3
EEED CO 90 CPY #$90
EEEF 90 Dé BCC $EEC7
EEFL 4C 75 DO JMP $DO75
EEEEEERERERRRRRRRERRRRRRRRRARS
EEF4 20 93 DF JSR $DF93
EEF7 AA TAX

EEFB BD 5B 02 LDA $025B,X
EEFB 29 01 AND #$01
EEFD 85 7F STA $7F
EEFF A4 7F LDY $7F
EFO1 B9 51 02 LDA $0251,Y
EF04 DO 01 BNE $EF07
EF06 &0 RTS

EF07 A9 00 LDA #$00
EF09 99 51 02 STA $0251,Y
EFOC 20 3A EF JSR $EF3A
EFOF AS 7F LDA $7F
EF11 0A ASL A

EF12 48 PHA

EF13 20 AS FO JSR $FOAS
EF16 &8 PLA

EF17 18 CLC

EF18 69 01 ADC #$01
EF1A 20 A5 FO JSR $FOAS

leiger auf Directory-Track

1
Ieiger auf Directory-Sektor

3 Bytes gleich 24 Bits fiir Sektoren
Byteposition
durch 4 ergibt Tracknummer

Anzahl Sektoren holen
und in BAM

Bitmuster erzeugen

3 Bytes
der BAM in Puffer

schon Position 144 ?
nein, nachsten Track
Anzahl freie Blocks berechnen

BAM bei Bedarf schreiben
Puffernummer holen

Befehl fir Disk-Controller
Drivenummer isolieren

BAM-Anderungsflag gesetzt ?
ja

BAM-Anderungsflag riicksetzen
Pufferzeiger fir BAM setzen
Drivenummer

mal 2

BAM-Eintrag iiberpriifen

Tracknummer erhihen
BAM-Eintrag iberprifen

229

EFID A5 80 LDA $80

EFIF 48 PHA

EF20 A9 01 LDA #$01
EF22 85 80 STA $80
EF24 0A ASL A
EF25 0A ASL A
EF26 85 6D STA $6D
EF28 20 20 F2 JSR $F220
EF2B E6 80 INC $80
EF2D A5 80 LDA $80
EF2F CD D7 FE CMP $FED7
EF32 90 FO BCC $EF24
EF34 68 PLA

EF3S 85 80 STA $80

EF37 4C BA DS JMP $DS8BA

EREREEREERENERRRRE RN RRRRNRRS
EF3A 20 OF F1 JSR $F10F

EF3D AA TAX

EF3E 20 DF FO JSR $FODF
EF41 A6 F9 LDX $F9
EF43 BD EO FE LDAR $FEEO,X
EF46 85 6E STA $6E
EF48 A9 00 LDA #$00
EF4A 85 6D STA $&D
EFAC &0 RTS

ERERERRERRERRERRRRERRRRRRRRRRE
EF4D A6 TF LDX $7F

EFAF BD FA 02 LDA $02FA,X
EF52 8D 72 02 STA $0272
EFS5 BD FC 02 LDA $02FC,X
EF58 8D 73 02 STA $0273
EF3B 60 RTS

EEEEERERRERRERRRRRERRRRNRRERS
EFSC 20 F1 EF JSR $EFF!
EFSF 20 CF EF JSR $EFCF

EF62 38 SEC

EF63 DO 22 BNE $EF87
EF65 Bl 6D LDA ($6D),Y
EF67 1D E9 EF ORA $EFE9,X
EF6A 91 6D STA ($6D),Y
EF6C 20 88 EF JSR $EFB8
EF6F A4 &F LDY $6F
EF71 18 cLc

EF72 Bl &D LDA ($6D),Y
EF74 69 01 ADC #s01
EF76 91 &D STA ($6D),Y
EF78 A5 B0 LDA $80
EF7A CD B5 FE CMP $FEBS
EF7D FO0 3B BEQ $EFBA
EF7F FE FA 02 INC $02FA,X
EF82 DO 03 BNE $EF87
EFB4 FE FC 02 INC $02FC,X
EF87 60 RTS

Track

Track 1
mal 4

dberpriift BAM
Tracknuemer erhdhen

und mit Maximalwert plus 1 = 36 vergleichen
ok, nichster Track

Tracknummer zuriickholen
BAM auf Diskette schreiben

Pufferzeiger fiir BAM setzen
& fir Drive 0 holen

Puffer belegen
Puffernummer
Pufferadresse, hi Byte

lo Byte
leiger nach $4D/$6E

Anzahl freie Blocks fir Directory holen
Drivenummer
Anzahl Blocks lo

Anzahl Blocks hi

in Puffer fir Directory

Block als frei kennzeichnen
Pufferzeiger setzen
Bit fiir Sektor in BAM léschen

Block bereits frei, dann fertig
Bitmuster der BAM
Bit X setzen, Kennzeichen fir frei

Flag fir BAM gedndert setzen

Anzahl der freien Blocks pro Track erhihen
Track

gleich 18 ?

dann iibergehen

Anzahl der freien Blocks der Diskette erhdhen

Anzahl Blocks hi erhidhen

230

FEEEREERERRERRRRFRRRRRRERERERS

EF88 A6 TF LDX $7F
EFBA A9 01 LDA #$01
EFBC 9D 51 02 STA $0251,X
EFBF 60 RTS

ERERRERRERRRRERRRRRRRRERRRNINS
EF90 20 F1 EF JSR $EFF1
EF93 20 CF EF JSR $EFCF

EF96 FO 36 BEQ $EFCE
EF98 Bl 64D LDA ($6D),Y
EF9A 5D E9 EF EOR $EFE9?,X
EF9D 91 6D STA ($6D),Y
EF9F 20 88 EF JSR $EFB8
EFA2 A4 &F LDY $6F
EFA4 Bl 6D LDA ($6D),Y
EFAs 38 SEC

EFA7 E9 01 SBC #$01
EFA? 91 6D STA ($6D),Y
EFAB A5 80 LDA $80
EFAD CD 85 FE CMP $FEBS
EFBO FO OB BEQ $EFBD
EFB2 BD FA 02 LDA $02FA,X
EFBS DO 03 BNE $EFBA

EFB7 DE FC 02 DEC $02FC,X
EFBA DE FA 02 DEC $02FA,X
EFBD BD FC 02 LDA $02FC,X

EFCO DO oC BNE $EFCE
EFC2 BD FA 02 LDA $02FA,X
EFCS C9 03 CMP #$03
EFC7 BO 05 BCS $EFCE
EFC? A9 72 LDA #$72
EFCB 20 C7 E6 JSR $E6GC7
EFCE 60 RTS

ERRERRRRERARRRERRRERRRRRRRRES
EFCF 20 11 FO JSR $FO11

EFD2 98 TYA

EFD3 85 &F STA $6F
EFDS A5 B1 LDA $81
EFD7 4A LSR A

EFD8 4A LSR A

EFD? 4A LSR A

EFDA 38 SEC

EFDB 65 &F ADC $6F
EFDD A8 TAY

EFDE A5 81 LDA $81
EFEO 29 07 AND #$07
EFE2 AR TAX

EFE3 Bl 6D LDA (s6D),Y
EFES 3D E9 EF AND $EFE9,X
EFEB 60 RTS

ERERRER RN R RN R AR R RRRRRR
EFE9 01 02 04 08 10 20 40 80

Flag fir 'BAM gedndert’' setzen
Drivenummer

Flag gleich eins

Block als belegt kennzeichnen
Pufferzeiger setzen

Bit fir Sektor in BAM léschen
bereits belegt, dann fertig

Bit des Blocks umkehren (ldschen)

Flag fiir BAM gedndert setzen

Anzahl der Blocks pro Track erniedrigen
Track

i8 ?

Directorytrack aussparen

Anzahl freie Blocks lo

Anzahl der freien Blocks erniedrigen
Anzahl freie Blocks hi

mehr als 255 Blocks frei ?

freie Blocks lo

weniger als 3 ?

72, ‘disk full’

Bit fir Sektor in BAM-Eintrag léschen
sucht BAM-Feld fir diesen Track
Sektor

durch B8 teilen

Bytenummer in BAM-Eintrag
Sektornummer

Bitnummer in BAM-Eintrag
Byte in BAM
Bit fir Sektor léschen entspricht belegt

Ilweierpotenzen

231

E2 2222222222222 S 2222222222222)

EFF1 A9 FF LDA #$FF
EFF3 2C F9 02 BIT $02F9
EFF6 FO OC BEQ $F004
EFF8 10 0A BPL $F004
EFFA 70 08 BVS $F004
EFFC A9 00 LDA #$00
EFFE 8D F9 02 STA $02F9
FOO1L 4C BA DS JMP $DSBA
F004 &0 RTS
ERERRRRERRRRRRRERRERRNERRRRRRN
FOOS 20 3A EF JSR $EF3A
FOo08 A0 00 LDY #$00
FOOA 98 TYA

FOOB 91 6D STA ($6D),Y
FoOoD C8 INY

FOOE DO FB BNE $FO00B
FO10 &0 RTS
FEERRERRRRRRRRRRRRRRRRERRRARRS
Foti1 AS &F LDA $6F
FO13 48 PHA

FO14 A5 70 LDA $70
FO16 48 PHA

FO17 A& TF LDX $7F
Fo19 BS FF LDA $FF,X
FOIB FO 05 BEQ $F022
FOID A9 74 LDA #$74
FOIF 20 48 E6 JSR $Eb48
F022 20 OF F1 JSR $F10F
F025 85 &F STA $6F
F027 BA TXA

F028 0OA ASL A
F029 85 70 STA $70
FO2B AA TAX

F02C A5 80 LDA $80
FO2E DD 9D 02 CMP $029D,X
FO31 FO 0B BE@ $FO3E
F033 EB INX

F034 86 70 STX $70
FO36 DD 9D 02 CMP $029D,X
FO39 FO 03 BER $FO3E
FO3B 20 SB FO JSR $FO0SB
FO3E A5 70 LDA $70
FO40 A6 TF LDX $7F
F042 9D 9B 02 STA $029B,X
F045 0A ASL A

Fo4e 0OA ASL A

Fo47 18 cLe

F048 69 Al ADC #$A1
FO4A 85 &D STA $4D
FO4C A9 02 LDA #$02
FO4E 69 00 ADC #$00
F050 B3 éE STA $6E
F032 A0 00 LDY #$00
F054 &8 PLA

BAM nach Anderung schreiben

Flag riicksetzen
Block schreiben

BAM-Puffer liéschen
leiger $6D/$6E auf BAM-Puffer

BAM-Puffer liéschen

Drivenummer
Drive Null ?

‘drive not ready’
Puffernummer fir BAM holen

Track

Drivenummer

mal 4

232

F055 85 70 STA
FO57 &8 PLA
F0SB 85 &F STA
FO5A &0 RTS
ERERERRRRRRERRRRRRRRR RN RIS
FOSB A6 6&F LDX
FOSD 20 DF FO ISR
F0&40 A5 7F LDA
F062 AA TAX
F063 O0A ASL
FO44 1D 9B 02 ORA
F067 49 01 EOR
F069 29 03 AND
FO&4B 8BS 70 STA
FO&D 20 AS FO JSR
FO70 A5 F9 LDA
FO072 0A ASL
FO73 AA TAX
FO74 AS 80 LDA
FO76 0A ASL
FO77 0A ASL
Fo78 95 99 STA
FO7A AS 70 LDA
FO7C 0A ASL
FO7D OA ASL
FO7E A8 TAY
FO7F A1 99 LDA
FoB1 99 A1 02 STA
FOB4 A9 00 LDA
FoB& 81 99 STA
Fo88 F& 99 INC
FOBA C8 INY
FOBB 98 VA
FoBC 29 03 AND
FOBE DO EF BNE
F090 A6 70 LDX
F092 A5 80 LDA
F094 9D 9D 02 STA
FO97 AD F9 02 LDA
FO9A DO 03 BNE
FO9C 4C BA D5 JMP
FO9F 09 80 ORA
FoAlL 8D F9 02 STA
FOA4 60 RTS
FOAS A8 TAY
FOR6 B9 9D 02 LDA
FOA? FO 25 BEQ
FOAB 48 PHA
FOAC A% 00 LDA
FORE 99 9D 02 STA
FOBL A5 F9 LDA
FOBI OA ASL
FOB4 AA TAX

$70

$6F

$6F
$FODF
$7F

A
$0298,X
¥$01
#503
$70
$FOAS
$F9

A

$80

A

A
$99,%
$70

A

A

($99,X)
$0201,Y
#3500
($99,%)
$99,X

#$03

$029D,Y
$FODO

#3500
$029D,Y
$F9

A

Drivenummer

Puffernummer

Track

mal 4
gleich Zeiger in BAM-Feld

Null in Puffer
Pufferzeiger erhihen

Track

Block schreiben

Puffernummr
mal 2

233

00
0

A7
FF
25

8E

03
70
ce
F9

80
A7

as
00
07
84

OF
F9

02

D2

C1

00

FE

DS

PLA
ASL
ASL
STA
TYA
ASL
ASL
TAY
LDA
STA
LDA
STA
INC
INY
TYA
AND
BNE
RTS

LDA
ASL
TAX
LDA
STA
INX
STA
RTS

LDA
4,13
BNE
TXA
PHA
JSR
TAX
BPL
LDA
JSR
STX
PLA
TAY
TXA
ORA
STA
ASL
TAX
LDA
STA
LDA
STA
JMP

AND
STA
RTS

$99,X
A
A
$0241,Y
($99,X)
£500

$02A1,Y
$99,X

#$03
$FOBE

$7F
A

#$00
$029D,X

$029D, X

$A7,X
#$FF
$F10A

$D28E

$FOF2
#$70
$cice
$F9

#$80
$00A7,Y

$FEBS
$06,X
#500

$07,X
$D586

#$0F
$F9

in Puffer schreiben

Pufferzeiger erhihen

Drivenummer

70, ‘no channel’

18, Directorytrack
merken

0

als Sektor

Block schreiben

Puffernummer

234

FRERRRXRERRERRFRRRRERERRRR222% Puffernummer fir BAM holen
FI10F A9 06 LDA #$06

Fi11 AL 7F LDX $7F Drivenummer

F113 DO 03 BNE $F118

F115 18 CLC

F116 69 07 ADC #s07 gibt 13 fir Drive 0

F118 &0 RTS

ERRERFERRRFRRFRRNFRRIRRRXXXE¥EX Puffernummer fir BAM nach X
F119 20 OF F1i JSR $F10F Puffernummer holen

F11C AA TAX

F11D 40 RTS

FREERRERERRKRRERERRRRKEARRR4%% freien Block in BAM suchen und belegen
F11E 20 3E DE JSR $DE3E Track und Sektornummer holen
F121 A% 03 LDA #$03

F123 B85 &F STA $6F Zdhler

F125 A9 01 LDA #$01

F127 0D F9 02 ORA $02F9
F12a 8D F9 02 STA $02F9

F12D A5 &F LDA $6F lihler merken

F12F 48 PHA

F130 20 11 FoO JSR $FO11 BAM-Feld zu diesem Track suchen
F133 48 PLA

F134 85 6F STA $6F lihler zuriickholen

F134 Bl 6D LDA ($6D),Y Anzahl der freien Bytes des Tracks
F138 DO 39 BNE $F173 noch Blocks frei ?

Fi13A A5 B0 LDA $80 Track

F13C CD 85 FE CMP $FEBS5 18, Directorytrack ?

FI3F FO 19 BER $F15A ja, ‘disk full’

F141 90 1C BCC $F1SF kleiner, dann ndchst niedrigerer Track
F143 E6 BO INC %80 Tracknummer erhéhen

F145 A5 8O LDA $80

F147 CD D7 FE CMP $FED7 36, hichste Tracknummer plus eins
Fi4a DO E1l BNE $F12D nein, auf diesem Track weitersuchen
F14C AE B85 FE LDX $FEBS 18, Directorytrack

F14F CA DEX erniedrigen

F150 86 BO STX $80 als Tracknummer merken

F152 A9 00 LDA #$00

F154 85 81 STA $81 mit Sektornummer null beginnen

F156 C& &F DEC $6&F ldhler erniedrigen

Fi158 DO D3 BNE $F12D noch nicht null, dann weitersuchen
FI15A A9 72 LDA #$72

F15C 20 €8 Ct JSR $CiC8 72, ‘disk full’

FISF Cé 80 DEC $80 Tracknummer erniedrigen

F161 DO CA BNE $F12D noch nicht null, in diesem Track weitersuchen
F163 AE 85 FE LDX $FEBS 18, Directorytrack

Fl66 E8 INX erhihen

F187 86 80 STX $80 als Tracknummer merken

F169 A9 00 LDA #$00

F16B 85 81 STA $81 mit Sektor null beginnen

F16D Cé &F DEC $6&F ldhler erniedrigen

F16F DO BC BNE $F12D noch nicht null, dann weiter suchen
F171 FO E7 BEQ $F15A sonst ‘disk full’

F173 A5 B1 LDA $81 Sektornummer

235

F175 18 CLC

F176 65 69 ADC $49 plus Schrittweite (10)

F178 85 81 STA $81 als neue Nummer

F17A AS 80 LDA $80 Tracknummer

F17C 20 4B F2 JSR $F24B maximale Sektornummer holen

F17F 8D 4E 02 STA $024E

F182 8D 4D 02 STA $024D und merken

F185 C5 81 CMP $8B1 griBer als gewdahlte Sektornummer ?
F187 BO OC BCS $F195 ja

F189 38 SEC sonst

F18A A5 81 LDA $81 Sektornummer

F18C ED 4E 02 SBC $024E minus maximale Sektornummer

F18F 85 81t STA $81 als neue Sektornummer merken
F191 FO 02 BEQ $F195 null ?

F193 Cé 81 DEC $81 sonst Sektornummer um eins erniedrigen
F195 20 FA F1 JSR $F1iFA BAM priifen, freien Sektor suchen
F198 FO 03 BEQ $F19D nicht gefunden ?

F19A 4C 90 EF JMP $EF90 Block in der BAM belegen

F19D A9 00 LDA #$00

F19F 85 81 STA $B81 Sektor Null

F1Al 20 FA F1 JSR $F1FA freien Sektor ab Nummer 0 suchen
F1A4 Do F4 BNE $F19A gefunden ?

F1A6 4C FS F1 JMP $FIFS nein, ‘dir error’

FERRERRXRRRRRNERRARRRRR SR 422222 freien Sektor suchen und belegen
F1A% A9 01 LDA #$01

F1AB OD F9 02 ORA $02F9

FIAE 8D F9 02 STA $02F9

F1B1 AS B4 LDA $84

F1B3 48 PHA

F1B4 A9 01 LDA #$01 Trackzahler

F1B6 B85 86 STA $86

F1B8 AD 85 FE LDA $FEBS 18, Directorytrack

FiBB 38 SEC

F1BC ES 86 SBC $86 minus Zdhler

F1BE 85 B0 STA $80 als Tracknummer merken

F1CO 90 09 BCC $FICB Ergebnis kleiner gleich Null ?
F1C2 FO 07 BEQ@ $FICB dann oberhalb Directory versuchen
F1C4 20 11 FO JSR $FOit BAM-Feld zu diesem Track suchen
F1C7 B1 6D LDA ($6D),Y Anzahl der freien Blocks in diesem Track
F1C9 DO 1B BNE $F1ES freie Blocks vorhanden

FICB AD 85 FE LDA $FEBS 18, Directorytrack

F1CE 18 cLC

F1CF 65 Bb ADC $86 plus Zdhler

F1D1 85 80 STA $80 als Tracknummer merken

FID3 Eb 86 INC $8B6 lihler erhidhen

F1D5 CD D7 FE CMP $FED7 36, maximale Tracknummer plus eins
F1D8 90 05 BCC $F1DF kleiner, dann ok

FIDA A9 67 LDA #8467

F1DC 20 45 Eé6 JSR $E645 67, ‘illegal track or sector’

FIDF 20 11 FO JSR $FO1t BAM-Feld zu diesem Track suchen
F1E2 B1 &D LDA ($6D),Y Anzahl der freien Blocks in diesem Track
F1E4 FO D2 BEQ $F1BB kein Block mehr frei ?

F1E6 48 PLA

F1E7 8S B6 STA $86

F1E9 A9 00 LDA #$00

F1EB 85 81 STA $81
FIED 20 FA F1 JSR $FIFA
FIF0O FO 03 BEQ $FIFS
FIF2 4C 90 EF JMP $EF90
FIFS A9 71 LDA #%71
F1F7 20 45 E& JSR $E645
EREEEEFERRRRRRR R R RN RN RRRY
FIFA 20 11 FO JSR $FO11
FIFD 98 TYA

FIFE 48 PHA

FIFF 20 20 F2 JSR $F220
F202 A5 BO LDA $80
F204 20 4B F2 JSR $F24B
F207 8D 4E 02 STA $024E
F20A 68 PLA

F20B 85 &F STA $6F
F20D A5 81 LDA $81
F20F CD 4E 02 CMP $024E
F212 B0 09 BCS $F21D
F214 20 DS EF JSR $EFDS
F217 DO 06 BNE $F21F
F219 E6 81 INC $81
F21B DO FO BNE $F20D
F21D A% 00 LDA #$00
F21F 60 RTS
ERRERERRERERRERRRRERRERRRRRERS
F220 A5 &F LDA $&F
F222 48 PHA

F223 A% 00 LDA #$00
F225 85 6F STA $6F
F227 AC 86 FE LDY $FEBS
F224 88 DEY

F22B A2 07 LDX #$07
F22D Bl &D LDA ($6D),Y
F22F 3D E9 EF AND $EFE9,X
F232 FO0 02 BEQ $F236
F234 Eb &F INC $6F
F236 CA DEX

F237 10 F4 BPL $F22D
F239 88 DEY

F23A DO EF BNE $F22B
F23C B1 6D LDA ($6D),Y
F23E CS &F CMP $6F
F240 DO 04 BNE $F246
F242 68 PLA

F243 85 &F STA $6F
F245 60 RTS

F246 A9 71 LDA #$71
F248 20 45 E6 JSR $Eb645
EEREREREERRRRARERRRERRRRRRRRRRN
F24B AE D6 FE LDX $FED&
F24E DD D6 FE CMP $FED&,X

Sektor 0

freien Sektor suchen
nicht gefunden ?
Block in BAM belegen

71, ‘'dir error’

freien Sektor auf aktuellem Track suchen
BAM-Feld zu diesem Track suchen
zeigt auf Anzahl der freien Blocks

BAM iberpriifen

Track

maximale Sektornummer des Tracks holen
merken

leiger merken

Sektor

mit Maximalzahl vergleichen
griBer oder gleich ?
Bitnummer des Sektors holen
Sektor frei ?

Sektornummer erhihen

und prifen ob frei

kein Sektor frei

Anzahl freie Blocks in BAM iiberpriifen

lihler auf null
4, Anzahl Bytes pro Track in der BAM

Bit isolieren

bei freiem Sektor Zahler erhihen

mit Anzahl auf Diskette vergleichen

ungleich, dann Fehler

71, ‘dir error’
Anzahl Sektoren pro Track bestimmen

4 verschiedene Werte
Tracknummer

237

F251] DEX

F252 BO FA BCS $F24E
F254 BD D1 FE LDA $FED1,X
F237 &0 RTS

F258 &0 RTS
EREERERRRRRRRRRRRERRRRRRRRRRRS
F259 A9 &F LDA #$4F
F25B 8D 02 IC STA $1C02
F25E 29 FO AND #$FO
F260 8D 00 1C STA $1C00
F263 AD OC IC LDA $1COC
F266 29 FE AND #$FE
F268 09 OE ORA #$0E
F26A 09 EO ORA #$EOQ
F26C 8D OC 1IC STA s1COC
F26F A9 41 LDA #$41
F271 8D 0B IC STA $1COB
F274 A9 00 LDA #$00
F276 8D 06 1IC STA $1C06
F279 A9 3A LDA #$3A
F27B 8D 07 1C STA $1C07
F27E 8D 05 IC STA $1C0S
F281 A9 7F LDA #$7F
F283 8D OE 1IC STA $1COE
F286 A9 CO LDA #$CO
F288 8D OD IC STA $1COD
F28B 8D OE 1C STA $1COE
F2BE A9 FF LDA #$FF
F290 85 3E STA $3E
F292 B85 51 STA $51
F294 A9 08 LDA #$08
F296 85 39 STA $39
F298 A9 07 LDA #$07
F29A BS5 47 STA $47
F29C A9 05 LDA #$05
F29E 85 62 STA $62
F2A0 A9 FA LDA #$FA
F2A2 85 &3 STA $63
F2A4 A9 C8 LDA #sC8
F2A6 85 b4 STA $64
F2A8 A9 04 LDA #$04
F2AA 85 SE STA $5E
F2AC A9 04 LDA #$04
F2AE 85 SF STA $5F
ERERREREERRRENRRRRERRRRRRRRRRR
F2B0 BA TSX

F2B1 86 49 STX $49
F2B3 AD 04 IC LDA $1CO4
F2B6 AD OC 1C LDA siCOC
F2B9 09 OE ORA #$0E
F2BB 8D OC iC STA siCoC
F2BE A0 05 LDY #$05
F2C0 B9 00 00 LDA $0000,Y

noch grafler ?
Anzahl der Sektoren holen

Initialisierung fiir Disk Controller
Bit 4 (Write Protect) und 7 (SYNC) Eingang
Datenrichtungsregister Port B

Port B, Steuerport
PCR, Kontrollregister

Timer 1 free running, Port A Latch enable
Timer 1 lo Latch

Timer 1 Hi Latch
Timer 1 Hi

IR@s liéschen
IER, Interrupts erlauben

Trackzdhler fir Formatierung
8

Konstante fir Blockheader

7

Konstante fir Datenblock
leiger $62/%63 auf $FAOS

200

IR@-Routine fir Disk-Controller
Stackpointer merken

Interruptflag vom Timer lédschen

Auftrag fir Puffer Y ?

4

238

F301
F304
F306
F308
F30A
F30C
F30F
F311
F313
F315
F317
F319
F31B
F31D

F320
F322
F324
F326
F328
F324

F3

F9

F9

F9

F9

F3

Fe

$F2F3
#$D0
$F2CD

$F370

#$01
$F208
$3F
#$0F
$F969

$3D
$3E
$F2E9
$F97E
$3D
$3E
$F99C

$20
$F2F0

$F2F9
$F99C

$F2C0
$F99C

#5$20
$20
#$05

$F393
$F320
$3F
$F301
$41
$F395
$42

$4A

$44
4560
$20
($32),Y
$22
$F99C

#501
$F306

$22
$F33C

nein
Kode fiir Programm im Puffer ausfihren ?
nein

Programm im Puffer ausfiihren

Drivenummer icolieren
Drive null ?

sanst
74, ‘drive not ready’

liuft Motor ?
ja
Laufwerksmotor einschalten

Flag setzen
zur Jobschleife

Kopftransport schon programmiert ?
zur Jobschleife

ndchsten Puffer prifen
2ur Jobschleife

Kopftransport programmieren

Pufferzdhler initialisieren
leiger in Puffer setzen

liegt Auftrag fir Puffer vor ?
lihler erniedrigen

ndchsten Puffer prifen
Puffernummer

leiger in Puffer setzen
Trackdifferenz zu letztem Job
als lahler fir Kopftransport

Flag fiir Kopftransport setzen
Tracknummer aus Puffer holen

zur Jobschleife

Drivenummer isolieren

gleich Drivenummer des letzten Jobs ?
nein

letzte Tracknuamer
gleich null ?

239

F32B Ft 32 SBC ($32),Y
F32D FO 0D BER $F33C
F32F 49 FF EOR #$FF
F331 85 42 STA $42
F333 Eb 42 INC $42
F335 A3 3F LDA $3F
F337 85 41 STA $41
F339 4C 06 F3 JMP $F306
F33C A2 04 LDX #$04
F33E Bt 32 LDA ($32),Y
F340 85 40 STA $40
F342 DD D6 FE CMP $FED4,X
F345 CA DEX

F346 BO FA BCS $F342
F348 BD DL FE LDA $FEDL,X
F34B 85 43 STA $43
F34D BA XA

F34E O0A ASL A

F34F 0A ASL A

F350 0A ASL A

F351 0A ASL A

F352 0A ASL A

F353 85 44 STA $44
F335 AD 00 1C LDA $1C00
F358 29 9F AND #$9F
F35A 05 44 ORA $44
F35C 8D 00 IC STA $1C00
F3SF A6 3D LDX $3D
F361 AS 45 LDA $45
F363 C9 40 CMP #$40
F365 FO 15 BEQ $F3I7C
F367 C9 &0 CMP %860
F369 FO 03 BEQ $F3&E
F36B 4C B1 F3 JMP $F3B1
FEEERERRERRRRRRRRRR RN RRRERE
F36E A5 3F LDA $3F
F370 18 CLC

F371 69 03 ADC #$03
F373 85 31 STA $31
F375 A9 00 LDA #$00
F377 85 30 STA $30
F379 &6C 30 00 JMP ($0030)
EREERERRERR R R R RRERRRRR,
F37C A9 &0 LDA #$60
F37e 85 20 STA $20
F380 AD 00 IC LDA $1C00
F383 29 FC AND #$FC
F385 8D 00 IC STA $1C00
F388 A9 A4 LDA #$p4
F38A 85 4A STA $4A
F38C A9 01 LDA #$01
F3IBE 8BS 22 STA $22
F390 4C 69 F9 JMP $F969

gleich der Tracknummer dieses Jobhs ?
ja

Drivenummer

weiter prifen

Tracknummer des Jabs

merken

mit maximaler Tracknummer vergleichen
gréBer ?

Sektorzahl pro Track holen
und merken

Nummer des Spurbereichs mal 32

gibt 0, 32, &4, 9%

Steuerbyte fiir Motor generieren

Befehlskode

Kopf positionieren ?

ja

Befehlskode fir Programm im Puffer ausfihren ?
ja

Blockheader lesen

Programm im Puffer ausfihren
Puffernummer

plus 3
gleich Adresse des Puffers

Programm im Puffer ausfithren

Kop# positionieren

Flag fir Kopftransport setzen
Steppermotoren einschalten

164
Schrittzdhler fir Kopftransport

Tracknummer
ok

240

FRERERERRRRERRRRRER RN R%42% Teiger in Puffer initialisieren

F393 A4 3F LDY $3F Puffernummer

F395 B9 00 00 LDA $0000,Y Befehlskode

F398 48 PHA merken

F399 10 10 BPL $F3AB

F39B 29 78 AND #$78 Bit 0,1,2 und 7 léschen
F39D 85 4S5 STA $435

F39F 98 TYA Puffernummer

F3A0 0A ASL A mal 2

F3A1 69 04 ADC #8064 plus &

F3A3 85 32 STA $32 gleich Zeiger auf aktuellen Puffer
F3AS 98 TYA Puffernummer

F3A4 18 cLC

F3A7 &9 03 ADC #%03 plus 3

F3A9 85 31 STA $31 gleich Pufferadresse hi
F3AB A0 00 LDY #$00

F3AD 84 30 STY $30 Pufferadresse lo

F3AF 68 PLA Befehlskode zuriickholen
F3BO 40 RTS

ERARARKEXRRERERRRXRARRURRARN2%% Blockheader lesen, ID iberprifen
F3B1 A2 S5A LDX #$5A 90

F3B3 B6 4B STX $4B lahler

F3BS A2 00 LDX #£00

F3B7 A% 52 LDA #$52 82

F3B9 85 24 STA $24

F3BB 20 56 F5 JSR $F556 SYNC abwarten

F3BE 50 FE BVC $F3BE Byte Ready ?

F3Co B8 CLv

F3C1 AD 01 1C LDA $1CO1 Daten vom Lesekopf

F3C4 CS5 24 CMP $24

F3Cé Do 3F BNE $F407 20, ‘read error’

F3C8 50 FE BVC $F3C8 Byte Ready ?

F3CA B8 cLv

F3CB AD 01 1C LDA #$1CO1 Datenbyte von Diskette (Blockheader)
F3CE 95 25 STA $25,X 7 Bytes speichern

F3D0 EB INX

F3D1 EO 07 CPX #s07

F3D3 DO F3 BNE $F3C8 weiter einlesen

F3DS 20 97 F4 JSR $F497

F3D8 A0 04 LDY #s04 4 Byte plus Parity

F3DA A% 0O LDA #$00

F3DC 59 16 00 EOR $0016,Y Priifsumme dber Header bilden
F3DF 88 DEY

F3EO0 10 FA BPL $F3DC

F3E2 C9 00 CHP #$00 Parity in Ordnung ?

F3E4 DO 38 BNE $F41E 27, 'write error’

F3E6 A6 3E LDX $3E Drivenummer

F3EB AS 18 LDA $18 Tracknummer des Headers
F3EA 95 22 STA $22,X als aktuelle Tracknummer ibernehmen
F3EC A5 45 LDA $45

F3EE c9 30 CHP #$30 Kode fir ‘Header idbernehmen’
F3F0 FO 1E BEQ $F410 Header ibernehmen

F3F2 A5 3E LDA $3E

F3F4 OA ASL A

F3FS A8 TAY

241

F3F6 B9 12 00 LDA $0012,Y
F3F? €5 14 CMP $16
F3FB DO 1E BNE $F41B
F3FD B9 13 00 LDA $0013,Y
F400 CS 17 CMP $17
F402 DO 17 BNE $F41B
FAa04 AC 23 F4 JMP $F423
F407 Cé 4B DEC $4B
F409 DO BO BNE $F3BB
F40B A9 02 LDA #$02
FA0D 20 69 F? JSR $F969
EREERERRERERRRRRRRERRRRNRRRRER
F&410 AS 14 LDA $16
F412 @5 12 STA $12
Fa14 A5 17 LDA $17
Fa16 85 13 STA $13
F418 A% 01 LDA #$01
F4ia 2C .BYTE $2C
F41B A9 OB LDA #$0B
F41D 2C .BYTE $2C
F41E A9 09 LDA #$09
F420 4C 69 F9 IMP $F969
EEEEREFRAERERRRRRNRRRRRRRRRRRS
F423 A9 T7F LDA #$7F
F425 85 4C STA $4C
F4a27 A5 19 LDA $19
F429 i8 CLC

F42a 69 02 ADC #$02
Fa2C CS 43 CMP $43
FA42E 90 02 BCC $F432
F430 ES 43 SBC $43
F432 85 4D STA $4D
F434 A2 05 LDX #$05
F436 86 3IF STX $3F
F438 A2 FF LDX #$FF
F43A 20 93 F3 JSR $F393
F43D 10 44 BPL $F483
FA3F 85 44 STA $44
Fa41 29 01 AND #$01
F443 C5 3E CMP $3E
F445 DO 3C BNE $F483
F447 A0 00 LDY #$00
F449 Bl 32 LDA ($32),Y
F44B C5 40 CMP $40
F44D DO 34 BNE $F483
F44F A5 45 LDA $45
F451 €9 &0 CMP #$60
F453 FO0 oC BE@ $F461
F435 A0 01 LDY #$01
F457 38 SEC

F458 Bl 32 LDA ($32),Y
F45A E5 4D §BC $4D
F45C 10 03 BPL $F461

ID1 vergleichen

ID2 vergleichen

ungleich, dann 29, ‘disk id mismatch’

lihler fiir Versuche erniedrigen
und nochmal probieren

ansonsten

20, ‘read error’

Blockheader iibernehmen
1Dt

und ID2
ibernehmen
ok
29, ‘disk id mismatch’
27, ‘write error’
AbschluB

Pufferzeiger fiir Disk-Controller setzen

Befehlskode

242

FASE
F45SF
Fab61
F463
F4635
Fahb
Fa68
F4b6h
F4sB
F46D
F46F
F471
F473
F475
Fa77
Fa78
Fa7A
F47C
F4T7E
F47F
F481
F483
F4835
Fa87
F488
F4BA

F48D
F48F
Fa92
F494

Fa97
F499
F49a
F49C
F49D
F49F
F4A1
F4A/3
F4AS
F4A7
F4A9
F4AC
F4AE
F4BO
F4B2
F4B4
F4B6
F4B8
F4BB
F4BD
F4BF
FaCt
Fac3
F4C4

3F
93
45
]

30

F3

F4

F7

CcLC
ADC
CHpP
BCS
PHA
LDA
BEQ
PLA
cHp
BCC
[, 14
BCS
STA
LDA
TAX
ADC
STA
BNE
PLA
cMp
BCC
DEC
BPL
TXA
BPL
Jup

§TX
JSR
LDA
JMP

LDA
PHA
LDA
PHA
LDA
STA
LDA
STA
LDA
STA
JSR
LDA
STA
LDA
STA
LDA
STA
JSR
LDA

LDA
STA
PLA
STA

$43

$F483

$45
$FATE

#3509
$F483
#s$0C
$F483
$4C
$3F

#$03
$31
$F483

#$06
$F473
$3F
$FA3A

$F48D
$F99C

$3F
$F393
$45
$FACA

$30
$31

4824
$30
#$00
$31
#$00
$34
$FTE6
$55
$18
$54
$19
$33
$1A
$F7E6
$52
$17
$53
$16

$31

zur Jabschleife

Puffernummer holen
Befehlskode
weiter prifen

leiger $30/$31 retten

leiger $30/$31 auf $24

243

F4Cé 68 PLA leiger $30/$31 zuriickholen
Fac7 85 30 STA $30

FaC9 60 RTS

EERERRRRERRERRRRRRRARRRRRRRARY

F4CA C9 00 CMP #£00 Befehlskode fir ‘Lesen’ ?
FACC FO 03 BER $F4D1 ja

FA4CE 4C 6E F5 JMP $FS6E Befehlskode weiter priifen
F4D1 20 0A F3 JSR $FS0A Datenblockanfang suchen
F4D4 50 FE BVC $F4D4 Byte Ready ?

F4D6 B8 cLv

F4D7 AD 01 1IC LDA $1COt Datenbyte holen

F4DA 91 30 STA ($30),Y und in Puffer schreiben
F4DC C8 INY 256 mal

F4DD DO F35 BNE $F4D4

F4DF A0 BA LDY #$BA

FAE1L 50 FE BVC $FA4E1 Byte Ready ?

F4E3 BB cLv

F4E4 AD 01 IC LDA $1CO1 Bytes lesen

F4E7 99 00 01 STA $0100,Y nach $1BA bis $1FF
FAEA ce INY

F4EB DO F4 BNE $F4E1

F4ED 20 EO F8 JSR $FBEO

F4F0 AS 38 LDA $38

FAF2 C5 47 CMP $47 gleich 7, Beginn Datenblock ?
F4F4 FO 05 BEQ@ $F4FB ja

FAF6 A9 04 LDA #$04 22, 'read error’

F4F8 4C 69 F9 JMP $F969 FehlerabschluB

FAFB 20 E9 FS JSR $FSE9 Parity des Datenblock berechnen
F4FE €5 3A CMP $3A ibereinstimmung ?

F3500 FO0 03 BER $F505 ia

F502 A9 05 LDA #£05 23, ‘read error’

F504 2c .BYTE $2C

F505 A9 01 LDA #$01 ok

F307 4C 69 F9 JMP $F969 Fehlermeldung bereitstellen
FEEEREEEREFERNRRZRRERRNRRA42% Datenblockanfang suchen
F50A 20 10 FS JSR $F510 Blockheader lesen

FS50D 4C 56 FS JMP $FS5S56 SYNC abwarten
ERREREEREERRERSRRRRRRNE 222222 Blockheader lesen

FS10 AS 3D LDA $3D Drivenummer

F512 0A ASL A

FS13 AA TAX

FS14 BS 12 LDA $12,X D1

FS16 85 16 STA $16 merken

F518 BS 13 LDA $13,X D2

FS1A 85 17 STA $17 merken

F51C A0 00 LDY #$00

FS1E Bl 32 LDA ($32),Y Track

F520 85 18 STA $18

F522 C8 INY

F523 Bt 32 LDA ($32),Y und Sektornummer aus Puffer holen
F525 85 19 STA $19

244

FS27 A9 00 LDA #£00
F3529 45 16 EOR $16
F52B 435 17 EOR $17
F52D 45 18 EOR $18
F32F 45 19 EOR $19
FS31 85 1A STA $1A
F333 20 34 F9 JSR $F934
F336 A2 5A LDX #$5A
F338 20 56 F3 JSR $F356
FS3IB AOD 00 LDY #£00
F53D 50 FE BVC $F53D
FS3F BB CLv

F540 AD 01 1C LDA $1CO1
FS43 D9 24 00 CMP $0024,Y
FS546 DO 04 BNE $F54E
F548 C8 INY

F549 CO 08 CPY #$08
FS54B DO FO BNE $F33D
F54D 60 RTS

FS54E CA DEX

FS4F DO E7 BNE #$F3538
F551 A9 02 LDA #$02
F353 4C 69 F9 JIMP $F969
EERERERRERRERRRRRRRRRRENRRRNNR
F556 A9 DO LDA #$DO
F558 8D 05 18 STA $1805
F55B A9 03 LDA #$03
F55D 2C 05 1B BIT $18035
F560 10 F1 BPL $F353
F562 2C 00 IC BIT $1C00
F565 30 Fé BMI $F35D
F567 AD 01 1C LDA $1CO1L
FSeA B8 CLv

F56B A0 00 LDY #$00
F56D 60 RTS
FRERRRRERRRERRRERRRERRRRRRRRRR
FS6E C9 10 CMP #$10
F370 FO 03 BEQ@ $F3575
F572 4C 91 F& JIMP $F&91
FEREERERRRRRRRRNRRRRRRRRNRR R
F375 20 E9 F3 JSR $FSE9
F378 83 3A STA $3A
F57A AD 00 1IC LDA $1C00
FS7D 29 10 AND #$10
F37F DO 03 BNE $F386
F381 A9 08 LDA #$08
F583 4C 69 F9 JMP $F969
F586 20 8F F7 JSR $F78F
F589 20 10 FS JSR $FS10
F58C A2 09 LDX #$09
F58E 50 FE BVC $F38E

Parity fiir Blockheader berechnen

und merken

90 Versuche
SYNC abwarten

Byte Ready ?

Daten vaom Blockheader lesen

mit gespeicherten Daten

vergleichen

ungleich, dann nochmal versuchen

schon 8 Bytes gelesen ?
nein

Zidhler erniedrigen
noch nicht null ?

20, ‘read error’

SYNC abwarten
208

Timer starten
Fehlerkode

Timer abgelaufen, dann 21 , ‘read error’

SYNC-Signal
nocht nicht gefunden ?
Byte lesen

Befehlskode fir ‘Schreiben’

ja

Befehlskode weiter priifen

Datenblock auf Diskette schreiben
Parity fiir Puffer berechnen

und speichern

Port B lesen

Bit fir ‘Write Protect’
nicht gesetzt, ok

26, ‘write protect on’

Blockheader suchen

Byte Ready ?

245

isolieren

F590 B8 CLY

FS91 CA DEX 9 Bytes nach Blockheader iiberlesen
F592 DO FA BNE $FS8E

F594 A9 FF LDA #$FF

F396 8D 03 1C STA $1C03 Port A (Schreib/Lesekopf) auf Ausgang
F599 AD OC IC LDA $iCOC

F59C 29 IF AND #$1F

F59E 09 CoO ORA #$CO PCR auf Ausgabe umschalten

F5A0 8D OC IC STA $1COC

FSA3 A9 FF LDA #$FF

F5A5 A2 05 LDX #$05

FSA7 8D 01 IC STA $1CO1 S mal $FF auf Diskette schreiben
FS5AA B8 cLv

FSAB 50 FE BVL $F35AB als SYNC-Ieichen

FSAD B8 cLv

FSAE CA DEX

FSAF DO FA BNE $FSAB

F5B1 RO BB LDY #$BB

F3B3 B9 00 01 LDA $0100,Y Bytes $1BB bis $1FF auf Diskette
FSB6 50 FE BVC $FSB6&

F5B8 B8 cLv

FS5B9 8D 01 IC STA $1CO1

F5BC C8 INY

FSBD DO F4 BNE $FSB3

FSBF Bl 30 LDA ($30),Y Datenpuffer (254 Bytes) auf Diskette schreiben
F5C1 50 FE BVC $FSCH

FSC3 BB [4RY

FSC4 8D 01 IC STA $1CO1

F5C7 C8 INY

FSC8 DO FS5 BNE $FSBF

FSCA 50 FE BVC $FSCA Byte Ready ?

FSCC AD OC IC LDA $1COC

FSCF 09 EO ORA #$EO PCR wieder auf Eingabe

F5D1 8D OC 1C STA $1CoC

F5D4 A9 00 LDA #$00

F5Dé6 8D 03 iC STA $1C03 Port A (Schreib/Lesekopf) auf Eingang
F5D9 20 F2 FS JSR $FSF2

FSDC A4 3F LDY $3F

FSDE B9 00 00 LDA $0000,Y

FSE1 49 30 EOR #$30 Befehlskode ‘Schreiben’ in "Verify’' umwandeln
FSE3 99 00 00 STA $0000,Y

FSE6 4C B1 F3 JMP $F3Bi

FREERRRRERRRRRRRARRRRRRRRRR#%% Parity fir Datenpuffer berechnen
FSE9 A9 00 LDA #$00

FSEB A8 TAY

FSEC 51 30 EOR ($30),Y

FSEE C8 INY

FSEF DO FB BNE $FSEC

FSF1 60 RTS

F5F2 A9 00 LDA #%$00

FSF4 B85 2E STA $2E

FS5F6 BS 30 STA $30

F5F8 BS 4F STA $4F

FSFA A5 31 LDA $31

246

F7

F7

F7

$53
($26),Y

$54
($2E),Y

$55
($2E),Y

$36
$FTEL
$36

$52
($2E) Y

$53
($2E) Y

$F643
$54
($2E),Y

$55
($2E),Y

$36
$F624
$54
($30),Y

$55
($30),Y

$36
$F7ES
$34

$52
($30),Y

$53
($30),¥

$54
($30),Y

247

F&b3 AS 55 LDA $53

F&6S 91 30 STA ($30),Y

Fb67 c8 INY

F&68 B84 36 STY $36

F&sA CO BB CPY #$BB

F&4C 90 E1 BCC $F64F

F&LE A% 45 LDA #$45

F&70 85 2E STA $2E

F&72 AS 31 LDA 31

F&74 85 2F STA $2F

F&746 A0 BA LDY #$BA

F&78 B1 30 LDA ($30),Y

F&7A 91 2E STA ($2E),Y

F&7cC 88 DEY

F&7D D0 F9 BNE $F&678

F&7F B1 30 LDA ($30),Y

F&81 91 2E STA ($2E),Y

F683 A2 BB LDX #$BB

F685 BD 00 01 LDA $0100,X

Fe88 91 30 STA ($30),Y

F&BA C8 INY

F&8B ESB INX

F&BC Do F7 BNE $F685

F6BE B6 50 STX $50

F&90 60 RTS

EREERRRRRRRRRRRRRRRRARRERRRRRN

F&91 €9 20 CMP #$20 Befehlskode fir ‘'Verify’ ?
F&93 FO 03 BEQ $F&98 ja

F&95 4C CA Féb IMP $F6CA Befehlskode weiter priifen
F678 20 E? F3 JSR $FSE9 Parity fir Datenpuffer berechnen
F&9B 85 A STA $3A und merken

F69D 20 8F F7 JSR $F78F

F&AD 20 0A FS JSR $FS0A Datenblockanfang suchen
F6A3 A0 BB LDY #$BB

F6AS BY 00 01 LDA $0100,Y Daten aus Puffer

F4AB 50 FE BVC $F6&AB Byte Ready ?

F&AA BS CLy

F&AB 4D 01 1IC EOR #1CO1 mit Daten von Diskette vergleichen
F6RE DO 15 BNE $F&4C5 ungleich, dann Fehler
F&BO ce INY

F&B1 DO F2 BNE $F6AS

F&B3 Bt 30 LDA ($30),Y Daten aus Puffer

F&BS 50 FE BVC $F6BS

F&B7 BB CLv

Fé6B8 4D 01 IC EOR #$1iCO1 mit Daten von Diskette vergleichen
F&BB Do 08 BNE $F6CS ungleich, dann Fehler
F&BD C8 INY

FGBE CO FD CPY #$FD

F&CO DO F1 BNE $F6B3

F&C2 4C 18 F4& JMP $F418 fehlerfreier AbschluB
F&CS A9 07 LDA #$07

F&C7 4C 69 F9 JMP $F369 253, 'write error’

ERREEER RN KRR KA RRRRRRRRRRERERS

248

F6CA 20 10 FS JSR $FS10
F&CD 4C 18 F4 JMP $F418
EEERRRRRRERERRRERNEERRRIRNERNH
FeDO A9 00 LDA #$00
F&D2 85 957 STA $57
F&D4 B85 SA STA $5A
F&D6 A4 34 LDY $34
F6D8 A5 52 LDA $52
F&DA 29 FO AND #$FO
F&eDC 44 LSR A

FeDD 4A LSR A

F&DE 4A LSR A

F6DF 44 LSR A
F6E0 AA TAX

F&E1 BD 7F F7 LDA $F77F,X
FGE4 0OA ASL A

FGES 0A ASL A

FGES 0A ASL A

FGE7 85 56 STA $56
FGE9 AS 92 LDA $52
FGEB 29 OF AND #$0F
FGED AA TAX

FGEE BD 7F F7 LDA $F77F X
F&F1 6A ROR A

F&F2 66 57 ROR $357
F&F4 6A ROR A

F&FS &6 57 ROR $57
F&F7 29 07 AND #$07
F6F9 0S5 Sé ORA $56
F&FB 91 30 STR ($30),Y
F&FD C8 INY

F4FE A5 53 LDA $53
F700 29 FO AND #$F0
F702 4A LSR A
F703 4A LSR A
F704 4A LSR A

F705 44 LSR A
F706 AA TAX

F707 BD 7F F7 LDA $F77F,X
F70A 0A ASL A

F70B 03 57 ORA $57
F70D 85 57 STA $357
F70F A3 53 LDA $353
F711 29 OF AND #$0F
F713 AA TAX

F714 BD 7F F7 LDA $F77F,X
F717 24 ROL A
F718 2A ROL A
F719 2A ROL A
F71iA 2A ROL A

F71B 85 58 STA $58
F71D 2A ROL A
F71E 29 01 AND #$01
F720 05 57 ORA $57
F722 91 30 STA ($30),Y

Blockheader lesen
fertig

Hi-Nibble isclieren

und in unteres Nibble schieben

als Index in Tabelle

mal 8

unteres Nibble isolieren
als Index in Tabelle

in Puffer
Pufferzeiger erhidhen

oberes Nibble isolieren

in unteres Nibble schieben

als Index in Tabelle

unteres Nibble
als Index

in Puffer

249

54
FoO

7F

SA

SA
03

30
04
31
o5
OF
7F
5A
30

34

F7

F7

F7

RTS

$54
#$FO
A

A
A
A
$FT7F,X

a
$58
($30),Y

A
#3$80
$59
$54
#$0F

$FT7F X
A

A
#$7C
$59
$59
$55
#$F0

A

A
A
A
$FTTF X
A

$54

A
$54

A
$5A
£$03
$59
($30),Y

$FT4F
$2F
$31
$55
#$0F

$FTTF X
$5A
($30),Y

$34

Pufferzeiger erhihen

Hi-Nibble isolieren

in Puffer
Pufferzeiger erhihen

unteres Nibble
als Index

Hi-Nibble isolieren

in unteres Nibble schieben

als Index in Tabelle

in Puffer
Pufferzeiger erhdhen

unteres Nibble
als Index

in Puffer
Pufferzeiger erhbhen
und merken

FRERREFERRRERRRRRRRRRRRRRRRNEN
F77F 0A OB 12 13 OFE OF 16 17
F787 09 19 1A 1B 0D 1D 1E 1§

EXRREERERRRRRERRRLRRRRRRERRERR

F78F
F791
F793
F795
F7%97
F799
F798B
F79D
F79F
F7A1
F7AZ
F7a5
F7A7
F7R9
F7AB
F7AD

A9

Fé

Fé

LDA
STA
STA
STA
LDA
STA
STA
LDA
STA
LDA
STA
LDA
STA
LDY
LDA
STA
INY
LDA
STA
INY
LDA
STA
INY
STY
JSR
LDY
LDA
STA
INY
BEQ
LDA
STA
INY
LDA
STA
INY
LDA
STA
INY
BNE
LDA
STA
LDA
STA
STA
JMP

LDY
LDA
AND
LSR

#$00
$30

$2€

$36
#$BB
$34

$50

$31

$2F
#$01
$31

$47

$52

$36
($2E),Y
$53

($2E) Y
$54

($2E),Y
$55

$34
$F4DO
$36
($26),Y
$52

$F7D9
($2E),¥
$53

($2E),Y
$54

($2E),Y
$55

$F7BA
$3A
$53
#$00
$54
$55
$F&DO

$34
($30),Y
#$F8

A

251

F7ED

F7EF
F7F1

F7F9
F7FA

F844

96
30
07

59

30
FoO

30
80

01

S5A
30
7C

$56
($30),Y
#507

$357

$FB02
$4E
$31

($30),Y
¥$C0

$39

($30),Y
#$F0

A

A

A

A
$59
$59
($30),Y
#$0F

A
$54

($30),Y
#5$80

252

F845 4A LSR A

F846 85 5B STA $5B
F848 BL 30 LDA ($30),Y
F84A 29 03 AND #$03
F8aC oA ASL A

FB4D 0A ASL A

FB4E 0A ASL A

FB4F BS 5C §TA $5C
F8S1 CB INY

F8S52 DO 04 BNE $FB5A
FBS4 A5 4E LDA $4E
F856 B5 31 5TA $31
FBSB A4 4F LDY $4F
F8SA Bl 30 LDA ($30),Y
FBSC 29 EO AND #$EO
FBSE 2A ROL A

FBSF 2A ROL A

FB&OD 24 ROL A

FB6l 2A ROL A

FB62 05 5C ORA $5C
FB64 85 SC STA $5C
FB&6 Bl 30 LDA ($30),Y
F868 29 1F AND #$1F
FB6A BS 5D §TA $5D
FB6C €8 INY

F84D B4 34 §TY $34
FB6F A6 56 LDX $56
F871 BD A0 F8 LDA $FBA0,X
F874 A& 57 LDX $57
F876 1D CO FB ORA $FBCO,X
F879 85 52 STA $52
FB7B A6 58 LDX $58
F87D BD AO F8 LDA $FBAO,X
FBBO A& 59 LDX $59
F882 1D CO FB ORA $FBCO,X
F885 85 53 STA $53
F887 A6 SA LDX $5A
FBBY9 BD AO FB LDA $FBAO,X
F88C A& 5B LDX $SB
FBBE 1D CO F8 DRA $FBCO,X
FB91 85 54 STA $54
FB93 A6 5C LDX $5C
FB95 BD A0 FB LDA $FBAO,X
FB98 A4 5D LDX $5D
FB9A 1D CO FB ORA $FBCO,X
F89D 85 55 STA $55
F89F 40 RTS
FRRERERRRRRRERRRERRRRRRERERERR
FBAO FF FF FF FF FF FF FF FF
F8A8 FF 80 00 10 FF CO 40 50
FBBO FF FF 20 30 FF F0 40 70
F8BB FF 90 A0 BO FF DO EO FF
F8CO FF FF FF FF FF FF FF FF
FBCB FF 0B 00 01 FF 0C 04 05

253

FBDO FF FF 02 03 FF OF 06 07
FBD8 FF 09 0A OB FF 0D OE FF

E2 22222222222 2222222222 sl

FBEO
FBE2
FBE4
FBEb
FBEB

F7

F7

LDA
STA
STA
STA
LDA
STA
LDA
STA
LDA
STA
JSR
LDA
STA
LDY
LDA
STA
INY
LDA
STA
INY
LDA
STA

#$00
$34

$2E

$36
#$01
$4E
#$BA
$4F

$31

$2F
$F7EL
$52

$38

$36

$53
($2E),Y

$54
($2E),Y

$55
($2E) ,Y

$36
$FTES
$36

$52
($2E),Y

$F928B
$53
($2E) Y

$54
($2E),Y

$55
($2E) ,Y

$F90C
$33
$3A
$2F
$31

254

Fé&

00

FS
F9

$3F
$0000,Y
$50
$F975
$FSF2
$F98F
$49

#$A0
$20
$1C00
#4504
$1C00
#$3C
$48

$3E
$20
#$10
$20
#$FF
$48

$1C07
$1C0S
$1C00
#$10
$1E
$1E
$F9B1
#3$01

Stackpointer zuriickholen

Laufwerkmotor ausschalten

‘Write Protect’ ?

255

02

02

FA

iC

FA

00

$1C
$02FE
$F9CB
#$02
$F9C1L
#$00
$02FE
$F9CB

#$02
$02FE
$FAZE

$3E
$F9D6
$20

#$20
$F9D9
$FABE

$48
$F9FA

$F9E4
#$7F
$20
#$10
$F9FA
$1C00
#$FB
$1C00
#$FF
$3E
#$00
$20
$F9Ds

#$40
$FAO2
$FABE

($0062)

$4A
$FAOE
#$FF

#4501
$64
$FALC
#$3B
$62
#$FA
$63
$FAZE

Laufwerkmotor ein

leiger $62/$63 auf $FAJB

FALIC ES SE

FALE ES SE
FA20 85 &1
FA22 AS S5E
FA24 85 60
FA26 A9 7B
FA28 B85 62
FA2A A9 FA
FAR2C 85 &3
FAZE AS 44
FAZO 10 31
FA32 E6 4A
FAZ4 AE 00 1IC
FA37 CA

FAZ8 4C 69 FA

FREEEERRRE RN R R R AR XN ERRRRRRS

FAZB AS 4A
FAZD DO EF
FAIF A9 4E
FA41 85 62
FA43 A7 FA
FA4S 85 63
FA47 A9 05
FA49 83 60

FA4B 4C BE FA

FERERERRREREEXRREXERERREXERHRRR

FA4E Cé 60
FAS0 DO 6C
FAS2 A5 20
FAS4 29 BF
FASE 85 20
FASSE A9 05
FASA 85 62
FASC A9 FA
FASE 85 63

FALO 4C BE FA

FREEERRRRAFE IR AR ARRERRRRRREH

FAG3 Cé& 44
FAGS AE 00 1IC
FR4B EB

FALS BA

FAGA 29 03
FA4C 85 4B
FAGE AD 00 1C
FA71 29 FC
FA73 05 4B

FRERERERARERRFRRER R RN ERRRRRR

FA7B 38
FA7C AD 07 IC
FATF ES SF

LDX

IMP

LDA
BNE
LDA
STA
LDA
STA
LDA
STA
JNP

JNP

DEC
LDX
INX
TXA
AND
STA
Lba
AND
ORA
STA
JIMP

SEC
LDA
SBC

$4A
$FAZE
#$4E
$62
#$FA
$63
#4035
$60
$FABE

$60
$FABE
$20
#$BF
$20
#3505
$62
#3FA
$63
$FABE

$4A
$1C00

#403
$4B
$1C00
#$FC
$4B
$1C00
$FABE

$1C07
$5F

leiger $62/%$63 auf $FA7B
Schrittzadhler fiir Kopftransport

erhdhen

Schrittzdhler fiir Kopftransport
noch nicht null ?

Ieiger $62/%63 auf $FA4E

Zdhler auf §

Zdhler erniedrigen
noch nicht null ?

Bit & ldschen

leiger $62/%$63 auf $FAOS

Schrittzahler fiir Kopftransport erniedrigen

Steppermotor aus

257

FAB1 8D 05 1IC STA $1C05
FAB4 Co 60 DEC $60
FABGL DO oC BNE $FA94
FABS AS SE LDA $5SE
FABA 85 60 STA $60
FABC A7 97 LDA #$97
FASE 85 62 STA %62
FAZ0 A9 FA LDA #$FA
FA92 85 63 STA $63
FA94 4C 2E FA JMP $FAZE
ERERERRRRRBRRRERRRRRRRRRRRRRRR
Fa97 Co 61 DEC $61
FA99 DO F9 BNE $FA94
FA9B A9 AS LDA #$A5
FA9D 85 62 STA $62
FA9F A7 FA LDA ¥$FA
FAAL 83 63 STA $63
FAAJZ DO EF BNE $FA94
ERERRERNRRERRRRERRRRERRRRRRRRR
FAAS AD 07 1C LDA $1C07
FAAB 18 CLC

FAAS &5 5F ADC $5F
FAAB 8D 05 1C STA $1C05
FAAE Cé 60 DEC $60
FABO DO E2 BNE $FA94
FAB2 A9 AE LDA #$4E
FAB4 85 62 STA $62
FAB& A9 FA LDA #$FA
FABB 85 63 STA $63
FABA A9 03 LDA #$05
FABC 85 60 STA $60
FABE AD OC 1C LDA $1COC
FACL 29 FD AND #$FD
FAC3 8D oC 1C §TA $1COC
FACS 60 RTS
EREEERERERRREARRRRRRRRRARRRRRR
FAC7 AS 51 LDA 51
FACY 10 2A BPL $FAFS
FACB A& 3D LDX $3D
FACD A9 60 LDA #$60
FACF 95 20 STA $20,X
FADL A7 01 LDA #$01
FAD3 95 22 STA $22,X
FADS 85 51 STA $51
FAD7 A9 A4 LDA #$A4
FAD9 85 4A STA $4A
FADB AD 00 1IC LDA $1C00
FADE 29 FC AND #$FC
FAEO 8D 00 1IC STA $1C00
FAE3 A9 0A LDA #$0A
FAES 8D 20 06 STA $0620
FAESB A7 AD LDA #$A0
FAEA 8D 21 06 STA £0621

lahler erniedrigen
noch nicht null ?

ldhler neu setzen

leiger $62/$63 auf $FA97

leiger $62/$63 auf $FAAS

léhler erniedrigen
noch nicht null ?

leiger $62/%63 auf $FA4E

lihler auf §

Bit 1t léschen

Formatierung

Tracknummer

Formatierung bereits im Gange ?
Drivenummer

Flag fir Kopftransport

setzen

lieltrack setzen

laufende Tracknummer bei der Formatierung
164

Schrittziahler fiir Kopftransport

Steppermotor ein

10

Fehlerzdhler

$621/%622 = 4000

zur Bestimmung der Trackkapazitdt initialisieren

06

FD

18
ic

LDA
STA
JIMP

LDy
CHp
BEQ
JMP
LDA
AND
BNE
LDA
JMP

JSR

STX

BIT

$FB43

$FDD3

$71
$72
#$00
#300
$1804
$1C00

4000 ¢ Kapazitat ¢ 2¥4000 Bytes

zuriick in Jobschleife

zur Jobschleife

‘Write Protect’ ?
nein

26, ‘write protect on’

10240 mal Kode $FF auf Diskette schreiben
($621/%622) mal Kode $FF auf Diskette
$55

zum Schreibkop+t

und ($621/$622) mal auf Diskette

auf Lesen umschalten

Timer setzen, $FF (S5YNC) suchen

Timer 1 free running

98 Taktzyklen, ca. 0.1 ms

Timer starten
Zdhler auf Null

SYNC gefunden ?

nein, warten

SYNC gefunden ?

warten bis SYNC-Bereich zu Ende
Interruptflag Timer zuriicksetzen
SYNC gefunden ?

nicht SYNC-Bereich ($55) zu Ende ?
Interrupt-Flag-Register
Timerflag nach Bit sieben

Timer noch nicht abgelaufen ?
ldhler erhihen

Hi-Byte des Zdhlers erhdhen

ivberlauf, dann Fehler
20, ‘read error’

ldhlerstand gleich Dauer des $55-Bereichs
merken

ldhler wieder auf null

Timer 1 Interruptflag riicksetzen
SYNC gefunden ?

259

11
0D

FS

EF

EC

D3

71

70

72

71

FF

FF

00
0E
F9

F3

F2
03

FD

06
06

06

FB

" $FB7D

180D
$FB67
$FB6A
$FBGA

#$02
$FDD3

$71
$70
$72
$71

$FB97
#EFF

#$FF

$1C00

$FBBB

$FBBB

$FBBB
#$03

ja

Interrupt-Flag-Register

Timerflag nach Bit 7

nein, warten bis Timer abgelaufen

Zdhler erhihen

iberlauf, dann Fehler
20, ‘read error’

Differenz zwischen Zdhlerstand ($355)

und Wert fiir §FF-Bereich
nach $70/$71 bringen

Differenz positiv ?

Absolutwert der Differenz berechnen

Differenz kleiner 4 # 0.1 ms ?
ja

Differenz verdoppeln

zu Ausgangswert 4000 addieren

wiederholen, bis Differenz kleiner 0.4 ms
lihler wieder auf null
SYNC ?

nein
Byte Ready ?

Lihler erhihen

iberlauf, dann Fehler

260

D3

FS
FF

00

25
03
24

FF

00

43
03

03

F3
26
04
05
03
D3

FD

06

06

18
18

06

0&

06

06

08

FD

06

FD

JMP

TRY

$FDD3

$0625

$0624
#$BF
$180B
$1808B
#8606
$0626

#$00

$0626
$FBF1

$FBEA
#$FF

#$00

$0625
$FCO3
$0624

#$FF

#$00

$0624
$FC13
#$04

$FDD3

#3500

$43
$FC21

$FC24

$FC19
$0626
#3504
$FC30
#$05
$FDD3

21, read error

Zihler verdoppeln

und nach $624/$625 als Spurkapazitit

102

Anzahl der Sektoren in diesem Track

Berechnung der Anzahl aller Bytes
in den Blockzwischenrdumen

Ergebnis in A/X

22, ‘read error’

Die Gesamtzahl wird durch die Anzahl
der Sektoren ($43) dividiert

Zahl der Bytes pro Zwischenraum
mit Minimalwert vergleichen
ok

23, ‘read error’

43
27

28
00
3D
39
00

28
00

51

13
00

ES
FS
05
31
E9

06

06

03

06

03

03

03

03

05

FE

FD
FD

FS

$0300,V

$0628
$0300,Y

$51
$0300,Y

$13,X
$0300,Y

$12,X
$0300,Y

#$OF
$0300,Y

$0300,Y

#3500
$02FA, Y
$02FB,Y
$02FC,Y
$02FD,Y
$02F9,Y
$0628
$0628
$43
$FC3F

$0500, X

$FC88
#$03
$31
$FE30

$FDES
$FDFS5
#3405
$31
$FSER

Rest der Division
plus Anzahl der Sektoren
merken

ldhler fiir Sektoren

Zihler lo

Drivenummer

Konstante B, Kennzeichen fir Headeranfang
in Puffer

Sektornummer
in Puffer

Tracknummer
in Puffer

ID 2
in Puffer

D1
in Puffer

15
in Puffer

15 in Puffer

Prifsumme bilden

ldhler erhdhen

ldhler

mit Anzahl der Sektoren vergleichen
kleiner, dann weiter machen

Pufferzeiger auf $300

Pufferdaten kopieren
Daten in Puffer kopieren

Pufferzeiger auf $500
Parity fiir Datenpuffer berechnen

262

F7

FE

03
iC

ic

01

iC

06

ic

$3A
$F78F
$#$00
$32
$FEOE
#SFF
$1C01
#$05
$FCB8

$FCB8
#$0A
$32
$FCC2

$0300,Y
$1C01

$FCC2
#$09
$FCD1

#$535
$1C01

$FCD1
#$FF
#$05
$FCEO

$1C01

$FCEO
#$BB
$FCEB

$0100,X
$1C01

$FCEB
#$00
$FCF9

($30),Y
$1C01

$FCF9
#$55

$0626
$FDO9
$1C01

$FDO9

und merken

Umschalten auf Schreiben 10240 mal $55 schreiben
zum Schreibkopf

S mal &FF schreiben
Byte Ready ?

10 mal
Pufferzeiger
Byte Ready ?

Daten aus Puffer
schreiben

schon 10 Daten geschrieben ?

9 mal
Byte Ready ?

$55
schreiben

schon 9 mal ?
$FF

5 mal

Byte Ready ?

zum Schreibkopf

Bereich $1BB bis $1FF
schreiben

Byte Ready ?
256 Byte Daten

auf Diskette schreiben

$55
($626) mal

schreiben

263

32
0A
32
28

FE

06

FE

06

06
F3

iC

FD

06

FD

F5

ic
01

1C
05

$FD40

$1C01
($30),Y
$FD58

$FDAO

$30
#$0A
$30
$FD&62

$0623
$FD2C
#$06

$FDD3J

$F556
#4$BB
$FD67

$1c01
$0100,Y
$FDS58

$FD&7
#$FC
$FD77

$1C01
$0500,Y
$FD58

plus 10

Sektornummer erniedrigen
Byte Ready ?

Byte Ready ?

Umschalten auf Lesen
200

Pufferzeiger auf $300
Anzahl der Sektoren pro Track

SYNC abwarten
10 Daten

Byte Ready ?
Byte lesen

mit Daten im Puffer vergleichen
ungleich, Fehler

leiger um 10 erhdhen

Zdhler fiir Versuche erniedrigen
noch nicht null ?

sonst Fehler

24, ‘read error’

SYNC abwarten

Byte Ready ?

Byte lesen

und mit Pufferinhalt vergleichen
ungleich, Fehler

ndchstes Byte

Byte Ready ?

Byte lesen

mit Pufferinhalt vergleichen
ungleich, dann Fehler

FDB2 C8 INY
FDBZ CA DEX

FD84 DO Fi BNE $FD77
FD86 CE 28 06 DEC $0428
FDB9 DO AE BNE $FD39
FDBB E6 51 INC $51
FDBD A5 51 LDA $51
FDBF C9 24 CMP #$24
FD?1 BO 03 BCS $FD96
FD93 4C 9C F9 JMP $F99C
FD96 A9 FF LDA #$FF
FD98 85 51 STA $51
FDFA A9 00 LDA #$00
FD9C B85 50 STA $50
FD9E A9 01 LDA #$01
FDAO 4C 69 F9 JMP $F949
EREREEERFREERREERREERERRRRERER
FDAZ AD OC IC LDA $1COC
FDA6 29 IF AND #$1F
FDAB 09 CO ORA ¥$CO
FDAA BD OC IC STA $1COC
FDAD A9 FF LDA #$FF
FDAF 8D 03 IC STA $1C03
FDB2 8D 01 IC STA $1CO1
FDBS A2 28 LDX #$28
FDB7 A0 00 LDY #$00
FDB9 50 FE BVC $FDBY
FDBE B8 cLy

FDBC 88 DEY

FDBD DO FA BNE $FDBY
FDBF CA DEX

FDCO DO F7 BNE $FDBY
FDE2 &0 RTS
EEEREEREERREF XXX ERRRE R R RNR
FDC3 AE 21 06 LDX $0621
FDC6 AC 22 06 LDY $0422
FDCY = S0 FE BVC $FDCY
FDCB B8 cLy

FDCC CA DEX

FDCD DO FA BNE $FDCY
FDCF 88 DEY

FDDO 10 F7 BPL $FDCY
FDD2 &0 RTS

L2222 2222222222222 22T LTS
FDD3 CE 20 06 DEC $0420
FDD& FO 03 BEQ $FDDB
FDDB 4C 9C F9 JMP $F99C
FDDB A0 FF LDY #$FF
FDDD 84 51 STY $51
FDDF C8 INY

FDEO 84 50 STY $50

nachstes Byte

Sektorzdhler erniedrigen

noch nicht null ?

Tracknummer erhihen

mit 36, hichster Tracknummer +1 vergleichen

griBer, dann Formatierung fertig
weiter machen

Tracknummer auf $FF

ok
10240 mal $FF schreiben

PCR auf Schreiben umschalten

Part A (8chreib/Lesekopf) auf Ausgabe
$FF auf Diskette schreiben
40

Byte Ready ?

($621/%622) mal schreiben/lesen

Byte Ready ?

Versuchezdhler beim Formatieren
Anzahl der Versuche erniedrigen
null, dann Fehler melden

weiter machen

Flag fiir Formatierung beendet

FDE2 4C 69 F9 JIMP $F969
ERRRERRRRRRRRRRRRRRRRRRARRRRAR
FDES B? 00 03 LDA $0300,Y
FDEB 99 45 03 STA $0345,Y
FDEB a8 DEY
FDEC DO F7 BNE $FDES
FDEE AD 00 03 LDA $0300
FDF1 8D 45 03 STA $0345
FDF4 60 RTS
EREERERRER RN RRRRR RN RN
FDFS RO 44 LDY #$44
FDF7 B9 BB 01 LDA $01BB,Y
FDFA 91 30 STA ($30),Y
FDFC 88 DEY
FDFD 10 F8 BPL $FDF7
FDFF 60 RTS
CERRRERRRRRERRRRRRERRRERERRRERR
FEOO AD OC 1C LDA $1COC
FEO3 09 EO ORA #$EO
FEOS 8D oC 1C STA $1COC
FEOB A9 00 LDA #$00
FEOA 8D 03 1IC STA £1C03
FEOD &0 RTS
EREEERERERRFRFERRRRRRRRRRRNRRR
FEOE AD OC IC LDA $1COC
FE11 29 1F AND #s$1F
FE13 09 €O ORA #$CO
FE1S 8D oC 1IC STA #1CoC
FE18 A9 FF LDA #$FF
FE1A 8D 03 1C STA $1C03
FEID A9 S5 LDA #$55
FELF 8D 01 1IC STA $1C04
FE22 A2 28 LDX #$28
FE24 A0 00 LDY #$00
FE26 50 FE BVC $rE26
FE28 B8 CLv
FE29 a8 DEY
FE2A DO FA BNE $FE26
FE2C CA DEX
FE2D DO F7 BNE $FE26
FE2F 60 RTS
ERERRRRRRRRERRRRRRRRERRRRRRRRR
FE30 A9 00 LDA #$00
FE32 85 30 STA $30
FE34 85 2E STA $2E
FE36 85 36 STA 34
FE3B A9 BB LDA #$BB
FE3A 85 34 STA $34
FE3C AS 31 LDA $31
FE3E 85 2F STA $2F
FE40 A9 01 LDA #$01

FehlerabschluB

Pufferinhalt kopieren

$1BB bis $1FF
in Puffer $30/#31 schreiben

Umschalten auf Lesen

PCR auf Lesen umschalten

Port A auf Eingang

10240 mal $55 schreiben

PCR auf Schreiben umschalten

Fort A auf Ausgabe zum Schreibkopf
%01010101
auf Port A zum Schreibkopf

Byte Ready von Schreibelektronik ?

10240 mal

266

FE42 85 31 STA $31
FE44 A4 36 LDY $3é
FE4& B1 2E LDA ($2E),Y
FE4B 85 52 STA $52
FE4A C8B INY

FE4B B1 2E LDA ($2E),Y
FE4D 85 53 STA $53
FEA4F c8 INY

FESO Bl 2E LDA ($2E),Y
FES2 85 54 STA $54
FES4 (8 INY

FESS Bl 2E LDA ($2E),Y
FES7 B85 595 STA $535
FES? C8 INY

FESA FO 08 BEQ $FE&4
FESC 84 3¢ STY $36
FESE 20 DO F6 JSR $F4DO
FE&1 4C 44 FE JMP $FE44
FE&4 4C DO Fb IMP $F6DO
ERERERRRRRRERRERRRRRNERNRRRNRR
FE&7 48 PHA

FE&B BA TXA

FEL9 48 PHA

FE&A 98 TYA

FE&B 48 PHA

FE&C AD OD 18 LDA $180D
FE&F 29 02 AND #%$02
FE71 FO 03 BER $FE7é
FE73 20 53 EB JSR $EBS3
FE7& AD 0D iC LDA $1COD
FE79 0A ASL A

FE7A 10 03 BPL $FE7F
FE7C 20 BO F2 JSR $F2BO
FE7F 68 PLA

FEBO A8 TAY

FEBL 48 PLA

FEB2 AR TAX

FEB3 68 PLA

FEB4 40 RTI

EREERERRARERRRRRRRRRRRRRRARRRR

FEBS 12
FEB& 04
FEB7 04
FEB8 90

Interrupt-Routine

Register retten

Interrupt vom seriellen Bus (ATN IN) ?

nein
seriellen Bus bedienen
Interrupt von Timer 1 ?

nein
IRG-Routine fir Disk-Controller

Register zurickholen

Konstanten fiir Diskettenformat

18, Track fir BAM und Directory
Start der BAM ab Position 4

4 Bytes in BAM fir jeden Track

$90 = 144, Ende BAM, Start Diskname

FEERERFRXRRRERERRRERRRRRRX%%%% Tabelle der Kommandoworte

FEBY 56 49 44 4D 42 55
FEBF S50 26 43 52 53 4E

‘v, "Iy D7, M, "B, U’
P, ‘%, 'C’, 'R", 'S§’, N’

ERXERERRARRRRERRRE RN R22% L0-Byte der Adressen der Befehle

FE95 84 05 C1 FB8 1B SC
FE9F 07 A3 FO 88 23 0D

267

FRERRRRFRARRRAR R R RRRRRR¥%%4%% Hi-Byte der Adressen der Befehle
FEAL ED DO CB CA CC CB
FEA7 E2 E7 C8 CA C8 EE

FREREERRRRRRRRRRRRRRRRRRRRRENN

FEAD 51 DD IC 9E 1IC Bytes fiir Syntaxpriifung
EEEERERRRRRARRXRXXRRXXXXXX%%%% File-Betriebsarten

FEB2 52 37 41 4D ‘R°y ‘W' "A°, "N’
EREREFRRRRERAEFRRERRERRRRRRE%% Filetypen

FEB6 44 53 50 55 4C ‘D'y 87, P7y, U, 'L’
ERERERRXRRRRRRRRRER AL X% %%%% Namen der Filetypen

FEBB 44 53 50 55 52 1. Buchstabe des Filetyps ‘D", °S‘, "P', ‘U", ‘R’
FECO 45 45 52 53 45 2. Buchstabe " ‘E'y 'E"y 'R", ‘8", 'E’
FECS 4C 51 47 52 4AC 3. Buchstabe " ‘Ly ‘&7, 67, 'R", L"
ERERERRRRERRERRRRRRRRRRRRRRRRR

FECA 08 00 00

FRRREERRRRERRRRRRRRRRFRRRRERNR

FECD 3F 7F BF FF Masken fiir Bit-Befehl
ERERERRERRRXRRRRALRRRREARRRXRE Anzahl der Sektoren pro Track

FED1 11 12 13 15 17, 18, 19, 21
FERRKXERRXRXRRRXRRXRRR AR X% ¥%%2% Konstanten fiir Diskettenformat

FEDS 41 ‘A’ Kennzeichen fiir 1541-Format

FED6 04 4 Tracknummern

FED7 24 34, hichste Tracknummer + 1

FED8B 1F 19 12 31, 25, 18 Tracks mit Wechsel Anzahl Sektoren

FRERRERRRRRRRRRRARRIRRRRRRRERY
FEDB 01 FF FF 01 00 Steuerbytes fiir Kopfpositionierung

FERERRERRERXRRBRRR XA AR AR 2% Adressen der Pufferspeicher
FEEO 03 04 05 06 07 High-Bytes

HEERERRRERRRRRRRRRRRRRRRRERRNR
FEES 07 OE

FRERRRRRERRERREERRRRURRRRRR2%% Vom UI-Befehl
FEE7 4C 65 00 JMP ($0065)

EXRREERRREERRHRRERRRRRRRARA22% von der Diagnose-Routine

FEEA 8D 00 IC STA $1C00 LED einschalten
FEED 8D 02 IC STA $1C02 Port auf Ausgabe
FEFO 4C 7D EA JMP $EATD zuriick zur Diagnose-Routine

FAXRRERREXRRRRERRRRRRRNRRRARX% Verzdgerungsschleife fir seriellen Bus
FEF3 BA TXA

FEF4 A2 05 LDX #$035

FEF6 CA DEX ca. 40 Mikrosekunden
FEF7 DO FD BNE $FEF6

FEF9 AR TAX

268

FEFA

60

RTS

FEREREERRRREREFERRRRRRRRRRRRRR

Datenausgabe auf seriellen Bus
CLOCK 0UT hi
DATA OUT lo

FEFB 20 AE E9 JSR $EYAE
FEFE 4C 9C E? JMP $E99C
EEREEERRRERRRRERRRRRRRRRERRRRR
FFO1 AD 02 02 LDA $0202
FF04 C9 2D CMP #$2D
FF0&6 FO 05 BEG@ $FFOD
FFOB 38 SEC

FF09 E9 2B SBC #$2B
FFOB DO DA BNE $FEE7
FFOD 85 23 STA $23
FFOF 60 RTS

ERRERERERERRRRRRRRRNRRRARRRRRR
FF10 AA ...
FFE1 ... AA

EERRREERRERRERRRRRRRRRRRRRARNR
FFE2 52 53 52 AA
FFE6 Cé CB BF F9

EEEREERERERRRERERRESR

Ul-Vektor

h
indirekter Sprung iiber ($65)

USER-Vektoren

FFEA SF CD ua, U1, $CDSF

FFEC 97 CD uUB, U2, $CD97

FFEE 00 05 uc, u3, $0500

FFFO 03 05 up, U4, $0503

FFF2 06 05 UE, U5, $0506

FFF4 09 05 UF, U&, $0509

FFF& OC 05 uG, U7, sos0C

FFF8 OF 05 UH, U8, $050F

FFFA 01 FF ul, U9, $FFot (NMI-Vektor wird nicht benutzt)
FEEREERREERRRRRRRER2% Hardware-Vektoren

FFFC AO EA $EAAO0 RESET- und UJ- bzw. U:- Vektor
FFFE &7 FE $FEL7 IR@-Vektor

269

4.1.1 Anzeige samtlicher Fileparameter

Dem Directory sind nicht alle Informationen eines Files zu
entnehmen. Vieleicht standen Sie auch einmal vor dem Problem,
daB Sie z.B. die Anfangsadresse eines auf Diskette abgelegten
Frogramms benidtigen. Dann kennen Sie sicher auch die
Umstadnde, die wmit der Ermittlung dieser Anfangsadresse
verbunden sind.

Ein weiteres Beispiel ist die Recordlange eines relativen
Files. Sie kann nur mit groBem Programmieraufwand ermittelt
werden, wenn sie in Vergessenheit geraten ist.

Dies sind nur zwei der vielen Fileparameter, die mit dem
folgendem Programm duBerst einfach ermittelt und angezeigt
werden kinnen. Die Fileparameter sind natiarlich auch vom
Filetyp abhangig. So kann z.B. einem relativen File keine
Anfangsadresse zugeordnet werden. Die folgende Tabelle stellt
die mit diesem Programm ermittelbaren Parameter der einzelnen
Filetypen dar:

PARAMETER FILETYP
DEL SEQ@ PRG USR REL
File geschlossen? X X X X X
File geschiutzt? X X X X X
belegte Blicke X X X X X
Recordl ange X
Side—Sector-Bl dcke X
Datenblécke X
Records X
Anfangsadresse X
freie Blbocke Disk X X X X X
belegte Bl. Disk X X X X X

Um einen guten Uberblick idber die Arbeitsweise dieses

Programms =zu erhalten, was wohl im Interesse jedes
ernsthaften Programmierers liegt, ist es bis ins letzte
Detail dokumentiert. Einer Ubersicht der im Programm
verwendeten Variablen folgt eine zeilenorientierte

Dokumentation:1n1
Im Programm verwendete Variablen:

numerische Variablen

T - Track (Spur) des aktuellen Blocks der Fileeintrage im
Directory

s — Sektor des aktuellen Blocks der Fileeintrage im
Directory

FL - Flag, das gesetzt wird, wenn die von der Diskette ge-

lesenen Filenamen zum Auflisten, nicht zum Vergleichen
mit dem gesuchten File benutzt werden
TY - Filetyp des angegebenen Files (Byte O des Eintrags)

270

FT

Halbbyte des Filetyps (RBit O bis 3), enthdlt den ei-
gentlichen Filetyp

LB Low—-Byte einer von der Diskette gelesenen Anfangs-—
adresse

HB High-Byte einer von der Diskette gelesenen Anfangs—
adresse

BL Anzahl der vom File belegten Bliécke

RL Recordlange eines realtiven Files

DT Track (Spur) des ersten Datenblocks eines Program—
Files, der die Anfangsadresse enthalt

DS Sektor des ersten Datenblocks eines Program—Files

AA Anfangsadresse eines Program-Files

BF Anzahl der freien Blicke auf der Diskette

BB Anzahl der belegten Blicke auf der Diskette

BS Anzahl der Side—-Sector-Blicke in einem relativen File

RC Anzahl der Records in einem relativen File

Stringvariablen

F% Name des gesuchten Files

FF# Enthalt den aktuellen Filenamen aus der Directory

FT# Filetyp (Klartext)

GE# Konstante, die angibt, ob das File geschlosssen ist
(enthalt "JA" oder "NEIN")

SA% Konstante, die bestimmt, ob das File geschitzt ist
(enthalt "JA" oder "NEIN")

RE# enthalt CHR$(18), REVERSE ON

RA$ enthdlt CHR%(1464), REVERSE OFF

Dokumentation des Frogramms:

110
120
210
250

280

500

540

600

&20

&40

Setzt Farbcode des Bildschirms

200 Programmkopf

230 Abfrage, ob Namen aufgelistet werden sollen.
Setzt Flag FL auf 1 und fihrt Routine 280 - 490
aus.

270 Eingabe des Filenamens. Fordert erneute Eingabe,
wenn Filename griBer als 16 Zeichen

430 lieBt die Filenamen aus der Directory und gibt
Sie entwerder aus (FL=1) oder vergleicht sie mit
dem gesuchten Filenamen

530 lief3t das Byte O (Filetyp) des Fileeintrags des
gesuchten Files und speichert es in TY. Zusatz-
lich wird das rechte Halbbyte in FT gespeichert

590 priuft den Filetyp und speichert dessen Klartext
in FT#$, prift auf ungiiltigem Filetyp

610 prift das Bit 7 des Filetyp-Bytes (File ge—
schlossen?) und speichert das Resultat in GE#

&30 prift das Bit 6 des Filetyp-Bytes (File ge-
schitzt?) und speichert das Resultat in SA#

&70 lieBt die Anzahl der vom File belegten Blicke
aus den Bytes 28 und 29 des Eintrags und spei-

271

chert sie in BL

700 - 730 falls ein relatives File vorliegt, wird hier die
Recordlange aus Byte 21 des Eintrags gelesen und
nach RL gebracht

740 — 880 falls ein Program—File vorliegt, wird die An-
fangsadresse des Files aus seinem ersten Daten-—
block ermittelt und in AA abgelegt

890 — 980 berechnet die freien Blicke der Diskette, indem
das jeweils erste Byte des spurkennzeichnenden
BAM-Ausschnittes gelesen und in BF aufaddiert
wird. Die belegten Blicke werden dann mit
BB = 444 - BF ermittelt

990 — 1020 hier wird bei relativen Files mit Hilfe der Re-
cordldange (RL) und der wvom vom File belegten
Bliécke die Anzahl der Side-Sector-Blicke (BS)
und die Anzahl der Records (RC) errechnet. Da
fiir jeweils 120 Blicke eines relativen Files ein
Side-Sector-Block gebildet wird, wird die Anzahl
der Side—-Sector-Bliocke mit BS = BL / 121 und der
Aufrundung auf die nachste ganze Zahl berechnet.
Die restlichen Blicke multipliziert mit 254 und
dividiert mit der Recordlange ergeben die Anzahl
der Records im File.

1040 - 1230 hier werden die ermittelten Daten wahlweise auf
dem Bildschirm oder auf dem Drucker ausgegeben.
Die Fileparameter werden REVERSE angezeigt.

1240 - 1280 ermiglicht die Farameterausgabe eines weiteren
Files

Das Programm wurde auf einem CBM 64 erstellt. Trotzdem ist es
ohne groBartige Anderungen auf dem VC 20 lauffahig. Lediglich
die Zeile 110, wo die Bildschirmfarbe gesetzt wird, muB dem
VC 20 angepasst werden.

BASIC-Listing des Programms:

100 CLR

110 POKES3280,2: POKES3281,2: PRINTCHRS (158) ; CHR$ (147) 3
120 PRINTTAB(&)-"
130 FRINTTAB(6); "ANZEIGE ALLER FILEPARAMETER"
140 PRINTTAB(&);"
150 PRINT:PRINT
160 PRINT"MIT DIESEM PROGRAMM KDENNEN SAEMTLICHE"
170 PRINT"PARAMETER EINES FILES WAHLWEISE AUF"
180 PRINT"BILDSCHIRM ODER DRUCKER AUSGEGEBEN WER-"
190 PRINT"DEN. "

200 PRINT:PRINT

210 FRINT"FILENAMEN AUFLISTEN (J/N)?"

220 BGETX$: IFX$=""0RX$<>"J"ANDX$< >"N" THENZ20

230 IFX$="J"THENFL=1: GOSUB280

240 FL=0

250 INPUT"NAME DES FILES: ";F$

260 IFLEN(F$)<=16THEN280

270 PRINT"FILENAME ZU LANG!":GOTO250

280 OPEN15,8,15,"10":0PEN2,8,2,"#"

290 T=18:S=1

272

FRINT#15,"B-R";2;0;T;8
FRINT#15,"B-P"32;0

GET#2 , X#: IFX$=""THENX$=CHR# (0)
T=ASC (X$)

GET#2 ,X$: IFX$=""THENX$=CHR$ (0)
S=ASC (X$)

FORX=0TO7

PRINT#15, "B-F";2; X*32+5
FEg=

FORY=0TO15

GET#2 ,X$: IFX$=""THENX$=CHR$ (0)
IFASC (X$) =160THEN430
FF$=FF$+X%

NEXT Y

IFF$=FF$THEN490

IFFLTHENFRINT FF$

NEXT X

IF T=0 THEN480

60TO300

CLOSE2:CLOSELS

IFFL=0THENPRINT"FILENAME NICHT GEFUNDEN!":60T0210

IFFL THEN RETURN
FRINT#15,"B-F";2; X*#32+2

GETH#2Z , X#: IFX$=""THENX%=CHR% (Q)
TY=ASC (X¥)

FT=TYAND135

IFFT=0THENF T#="DELETED"
IFFT=1THENF T$="SEQUENTIAL"
IFFT=2THENFT$="PROGRAM"
IFFT=3THENFT$="USER"
IFFT=4THENFT$="RELATIVE"
IFFT>ATHENPRINT"UNGUELTIGER FILETYF!":G0TOZ00
IFTYAND128THENGE$#="JA": GOTO&620
GE$="NEIN"
IFTYANDG64THENSA$="JA" : GOTO&40
SA$="NEIN"
PRINT#15,"B-P"2,X*#32+30

GET#2, X$: IFX$=""THENX$=CHR% (0)
LE=ASC (X$)

GET#2 ,X$: IFX$=""THENX$=CHR$ (0)
HB=ASC (X$) 256

BL=LB+HB

IFFT< >4THEN740
PRINT#15, "B-P"; 2; X*32+23

GET#2 ,X$: IFX$=""THENX$=CHR$ (0O)
RL=ASC (X$)

IFFT< >2THENS90
PRINT#15, "B—P"; 25 X#32+3

GET#2 , X$: IFX$=""THENX$=CHR$ (0)
DT=ASC (X$)

GET#2,X$: IFX$=""THENX$=CHR$ (0)
DS=ASC (X$)

OPEN3,8,3, "#"
PRINT#15,"B-R";3;0;DT;DS
PRINT#15,"B-P";3;2

GET#3 ,X$: IFX$=""THENX$=CHR% (0)

273

LB=ASC (X$)

GET#3, X$: IFX$=""THENX$=CHR$ (0)

HB=ASC (X$) ¥256

AA=LB+HB

CLOSES

PRINT#15,"B-R";2;0; 1850

BF=0

FORI=4TO140STEP4

IFI=72THEN9&0

PRINT#15,"B-P";2; 1

GETH#2, X$: IFX$=""THENX$=CHR%$ (0)

BF=ASC (X$) +BF

NEXT

BB=644-BF

IFFT< >4THEN1040
BS=BL/121: IFBS< >INT (BS) THENBS=INT (BS+1)

RC=INT (((BL—BS) *254) /RL)
PRINTCHR$ (147) ; "BILDSCHIRM ODER DRUCKER (B/D)?"
GETX$: IFX$=""0RX$< >"B"ANDX$< >"D" THEN1050
RE$=CHRS$ (18) : RA$=CHR$ (146)

1070 IFX$="B"THENOPEN1,3: PRINT#1,CHR$(147)

IFX$="D"THENOPEN1,4

FPRINT#1,"PARAMETER DES FILES "sRE$;F$;RO$
FRINT#1," "
PRINT#1,"FILETYF: "3RE$;FT#; RAF:PRINT#1
PRINT#1,"FILE GESCHLOSSEN: "3 RE$; GE$; RAS:PRINT#1
PRINT#1,"FILE GESCHUETZT: "3RE%; SA$; RAF: PRINT#1
PRINT#1,"BELEGTE BLOECEKE: "3sRE$; BL;RA$: PRINT#1
IFFT< >4THEN1200

PRINT#1 , "RECORDLAENGE: "sRE$#;RL; RA$: PRINT#1
PRINT#1,"SIDE-SECTOR BLOECKE: ";RE$;BS; RA$: PRINT#1
PRINT#1,"DATENBLOECKE: ";RE$; BL-BS; RA$: PRINT#1
FPRINT#1,"RECORDS: "3RE$;RC; RA%: PRINT#1

IFFT=2THEN PRINT#1, "ANFANGSADRESSE :

;5 AA; RA$: PRINT#1

PRINT#1,"FREIE BLOECKE (DISK): “;RE#;BF;RA%:FRINT#1
FRINT#1,"BELEGTE BLOECKE (DISK):";RE%;BB;RA%:PRINT#1
CLOSE1

FPRINT"WEITER (J/N)7?"

CLOSE2:CLOSE1S

GETX#: IFX$=""0RX$<>"J"AND X#<>"N"THEN1260

IF X$="J"THEN10OQ

END

274

4.1.2 Scratch-Schutz von Files - Fileprotect

Wie bereits erwdhnt, besteht die Miglichkeit Files auf der VC
1541-Diskette zu schiitzen und sie auch im Directory als
geschitzt auszuweisen. Im Byte O des Fileeintrags ist der
Filetyp enthalten. Das Bit 6, also das Bit mit der dezimalen
Wertigkeit 64 kennzeichnet ein geschiitztes File. Ist dieses
Bit 1, so kann das File nicht mehr mit dem Befehl "SCRATCH "
gelischt werden. Da das DOS aber keinen Befehl zum Setzen
dieses Bits beinhaltet, ist dazu eine BASIC-Befehlsfolge
erforderlich.

Mit dem folgenden Programm kinnen Sie:

* alle Files der eingelegten Diskette auf dem Bildschirm
anzeigen,

* Files schiitzen

Files freigeben

* Files liéschen

Es konnen sowohl ungeschiitzte als auch geschitzte Files
gelischt werden. Bei geschiitzten Files mul der Wunsch des
Lischens zusatzlich bestatigt werden.

Auch dieses Programm ist mit einer Variablentabelle und einer
zeilenorientierten Beschreibung ausreichend dokumentiert,
sodafl Sie die eine oder andere Befehlsfolge auch in TIhren
eigenen Frogrammen verwenden kiénnen.

Liste der Variablen:

GF - Flag, daB in der Routine "lesen/suchen von Files"
gesetzt wird, falls der gesuchte Filename gefunden
wird

FL — wird gesetzt, wenn die Routine "lesen/suchen von
Files nur zum auflisten aller Files benutzt wird

FT — Variable zur Speicherung des Filetyps

T — Track (Spur) des aktuellen Blocks der Fileeintrage

=] — Sektor des aktuellen Blocks der Fileeintrage

TT — Track, in dem sich der Fileeintragsblock des ge—
suchten Files befindet

=15 — Sektor, in dem sich der Fileeintragsblock des gesuch-
ten Files befindet

FF¥ — zuletzt gelesener Filename aus der Directory

F#% — eingegebener, gesuchter Filename

Dokumentation des Programms:

100 Setzen der Bildschirmfarbe
110 - 230 Programmkopf und Auswahlmeni
240 - 260 Lesen der Meniauswahl und Aufruf des ent—
sprechenden Unterprogramms
270 Zurick zum Auswahlmenii
280 - 350 Unterprogramm "auflisten aller Files"
310 Bildschirm 1l8schen

275

320

350
260 - &00
390
400
410-450
460-480
490-300
510
S520-350
560
570-600
&10 - 850
&40
&50
660-700
710-730
740-750
760
770-800
810
820-850
860 - 1170
870
200
210-950
260-980
990
1000-1030
1040-1060
1070
1080-1110
1120
1130
1140-1170
1190 -1560
1220
1230-1240
1250-1320

setzen Flag FL zum Auflisten der Files im
Unterprogramm "lesen/suchen von Files"
Zuricksetzen des Flags und Riicksprung
Unterprogramm "schiitzen von Files"®

Aufrufen Unterprogramm “"Eingabe des Filena-
mens

Aufrufen des Unterprogramms "lesen/suchen
von Files"

Mit Hilfe von Flag GF testen, ob Filename
gefunden wurde

lesen Filetyp und speichern in FT

Testen, ob Files bereits geschiitzt ist

File schiitzen (Bit & auf 1)

Ubertragen des Filetyps in den Buffer und
schreiben des Blocks auf Diskette

SchlieBen der Kandle

Meldung "File geschiitzt” und Riicksprung
Unterprogramm "Freigeben von Files"

Aufrufen Unterprogramm “Eingabe des Filena-
mens

Aufrufen Unterprogramm "lesen /suchen von
Files"

Testen, ob Filename gefunden wurde

Filetyp lesen und in FT speichern

Testen, ob File bereits freigegeben ist
Freigeben des Files (Bit & auf 0)

Ubertragen des Filetyps in den Buffer und
schreiben des Blocks auf Diskette

SchlieBen der Files

Beenden des Unterprogramms

Unterprogramm "lischen eines Files"

Aufrufen Unterprogramm "Eingabe des Filena-
mens

Aufrufen des Unterprogramms "lesen/suchen
von Files"

Testen, ob Filename gefunden wurde

Lesen des Filetyps und speichern in FT
Testen, ob File geschitzt

Hinweis, daB File geschiitzt ist, mit der
Miéglichkeit, trotzdem zu léschen

Frage, ob File wirklich geliéscht werden soll
Bit 6 zuricksetzen, wenn geschitzt
Ubertragen des Filetyps in den Buffer und
schreiben des Blocks auf Diskette
Initialisieren der Diskette

Liéschen des Files

Beenden des Unterprogramms

Unterprogramm "lesen/suchen von Files"
dffnen des Befehls— und Datenkanals
Directory lesen und Bufferpointer setzen
Testen, ob die Diskette einen Schreibschutz
enthdlt. Dazu wird die Directory wieder un-
veridandert zuriickgeschrieben (Zeile 1250).
Befindet sich ein Schreibschutz auf der
Diskette, so wird die Fehlermeldung 26,WRITE
PROTECT ON gesetzt.

276

1330 Anfangswerte der Variablen fir Spur und Sek-—

tor setzen

1340-1350 Lesen des Fileeintrag-Blocks und Positionie—
ren des Buffer—-Pointers auf das erste Byte
1360-1390 Lesen der Adresse des ndchsten Fileeintrag—

blocks

1400-1530 Schleife =zum Lesen der Filenamen. Die Namen

werden dann, je nach

Inhalt

von Flag FL,

entweder auf dem PBildschirm aufgelistet,
oder mit dem gesuchten Filenamen verglichen
1540-1560 Wenn die Variable T (Track)
halt, so folgt kein weiterer Fileeintrag-
Block und das Unterprogramm wird beendet

BASIC-Listing des Programms:

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490

eine Null ent-

FOKES3280,2: POKES3281 ,2: FRINTCHR$(158) ; CHR$(147).

PRINTTAB(4)'"

FRINTTAB(4); "LOESCHEN UND SCHUETZEN VON FILES“

FRINTTAB(4) 3"
FRINT: PRINT

FRINT"MIT DIESEM FROGRAMM KOENNEN FILES GE-"
PRINT"SCHUETZT, GELOESCHT UND FREIGEGEBEN "

FRINT"WERDEN. "
PRINT: PRINT

PRINTTAB(6) 3" —1— AUFLISTEN ALLER FILES":PRINT
PRINTTAB(&) ;" —-2- SCHUETZEN EINES FILES":PRINT
PRINTTAEB(&) ;" —-3— FREIGEBEN EINES FILES":PRINT
PRINTTAB(&) ;" —4— LOESCHEN EINES FILES":PRINT
FRINTTAB(6) ;" -5— BEENDEN DES PROGRAMMS":PRINT
GETX#: IFX$=""0RVAL (X%) <10RVAL (X¥) >STHEN240

IFVAL (X$) =STHENEND

ONVAL (X$) GOSUE280,360, 610,860
GOTO100

REM
REM AUFLISTEN ALLER FILES
REM
PRINTCHRS$ (147)

FL=1: GOSUB1190
PRINT:PRINT*WEITER MIT RETURN"
INPUTX$

FL=0:RETURN

REM
REM SCHUETZEN EINES FILES
REM
GOSUE1580

GOSUB1190

IFGF= 1 THEN4&0

PRINT"FILE NICHT GEFUNDEN!'":PRINT
PRINT*WEITER MIT RETURN!"
INPUTX$: CLOSEZ: CLOSE1S

RETURN

PRINT#15,"B—P";2; X*3242

GET#2, X$: IFX$=""THENX$=CHR$ (0)
FT=ASC (X$)

IF(FT AND 64)=0THENS10

277

500 PRINT"FILE IST BEREITS GESCHUETZT!":PRINT:GOTO430
510 FT=(FT OR 64)

520 PRINTH#15,"B—P";2; X#32+2

530 PRINT#2,CHR$ (FT) 3

S40 PRINT#15,"B-P"3;2;0

550 PRINT#15,"U2";2;0; TT;SS

560 CLOSEZ2:CLOSE1S

570 PRINT"FILE GESCHUETZT!'®

580 PRINT"WEITER MIT RETURN!'"

590 INPUTX$

600 CLOSEZ:CLOSE15:RETURN

610 REM
420 REM FREIGEBEN EINES FILES
630 REM
640 GOSUB1580

650 GOSUB1190

650 IFGF= 1 THEN710

670 PRINT“FILE NICHT GEFUNDEN!":PRINT

680 PRINT"WEITER MIT RETURN'®

690 INPUTX$:CLOSEZ:CLOSE1S

700 RETURN

710 PRINT#15,"B—P";2; X*32+2

720 GETH#2,X$: IFX$=""THENX$=CHR%$ (O)

730 FT=ASC(X$)

740 IF(FT AND &4)=64 THEN760

750 FRINT"FILE IST BEREITS FREIGEGEBEN!":PRINT:GOTD&80
760 FT=(FT AND 255-64)

770 PRINT#15,"B—P";2; X#3242

780 PRINT#2,CHR$ (FT);

790 PRINT#15,"B-P";2;0

800 PRINT#15,"U2";2;0;TT;SS

810 CLOSE2:CLOSE1S

820 PRINT"FILE FREIGEGEBEN!'"

830 PRINT"WEITER MIT RETURN!®"

840 INFUTX$

850 RETURN

860 REM
870 REM LOESCHEN EINES FILES
880 REM
890 GOSUB1580

900 GOSUB1190

910 IFGF= 1 THEN9&0

920 PRINT"FILE NICHT GEFUNDEN!":PRINT

930 PRINT"WEITER MIT RETURN!"

940 INPUTX$:CLOSE2:CLOSE1S

950 RETURN

960 PRINTH#15,"B—P";2; X#32+2

970 GETH#2,X$: IFX$=""THENX$=CHR% (0)

980 FT=ASC (X$)

990 IF(FT AND &4)=0THEN1040

1000 PRINT"ACHTUNG'! FILE IST GESCHUETZT!'®"
1010 PRINT"FREIGEBEN UND LOESCHEN (J/N)7"
1020 GETX$: IFX$=""0DRX$< >"N"ANDX$<>" I " THEN1020
1030 IFX$="N"THEN1170

1040 PRINT"SICHER (J/N)7"

1050 GETX$: IFX$=""0RX$<>"N"ANDX$<>" I " THEN10S0

278

1060 IFX$="N"THEN1170
1070 FT=(FT AND 255-64)

1080 FRINT#15S,"B—F";2; X*32+2
1090 PRINTH#Z,CHRE (FT) 3

1100 PRINT#15,"B-F";2;0

1110 PRINTH#15,"U2";2:0;TT; 85
1120 PRINT#15,"I0"

1130 PRINT#15,"S: "+F$

1140 PRINT"FILE GELOESCHT!"
1150 PRINT"WEITER MIT RETURN!"
1160 INPUTX$

1170 CLOSEZ2:CLOSE15: RETURN
1180 REM
1190 REM
1200 REM LESEN / SUCHEN VON FILES
1210 REM
1220 OFEN15,8,15,"10":0PENZ,8,2,"#"

1230 PRINT#15,"B-R";2;0;18;0

1240 FRINT#15,"B-P";2;0

1250 PRINT#15,"U2";2;0;18;0

1260 INFUTH#15,X1%

1270 IFVAL (X1$) < >26THEN1330

1280 PRINT"BITTE VOR BENUTZUNG DIESES FROGRAMMS DEN"j
1290 PRINT“SCHREIBSCHUTZ ENTFERNEN!™" .
1300 PRINT"WEITER MIT RETURN!'®

1310 INPUTX$

1320 CLOSEZ2:CLOSE15:RETURN

1330 T=18:5=1:TT=18:55=1

1340 PRINT#15,"B-R";2;0;T;:S

1350 FRINT#15,"B-F"3;2;0

1360 GET#Z,X$: IFX$=""THENX$=CHR$ (0)

1370 T=ASC(X$):IF T<>OTHENTT=T

1380 GETH#2,X$: IFX$=""THENX$=CHR$ (0)

1390 S=ASC (X$) : IFS<>25STHENSS=5

1400 FORX=0TO7

1410 PRINTH#15,"B-P";2; X#32+2

1420 GET#2,X$: IFX$=""THENX$=CHR$ (0)

1430 IFASC (X$)=0THEN1530

1440 PRINTH#15,"B-P";2; X*32+45

1450 FE$=""

1460 FORY=0TO1S

1470 GETH#2,X%$: IFX$=""THENX$=CHR$ (0)

1480 IFASC(X$)=160THEN 1500

1490 FF$=FF$+X$

1500 NEXTY

1510 IFFLTHENPRINTFF$:G0T01530

1520 IFF$=FF$THENGF=1:G0TO1570

1530 NEXTX

1540 IFT<>0THEN1340

1550 CLOSEZ2:CLOSE1S

1560 IF FL=OTHENPRINT"FILENAME NICHT GEFUNDEN!"
:FORI=1TO2000: NEXT

1570 RETURN

1580 REM
1590 REM EINGABE DES FILENAMENS
1600 REM

279

1610 PRINT:PRINT

1620 INPUT"NAME DES FILES:";F#

1630 IFLEN(F#$)<=16THEN1&650

1640 FRINT"FILENAME ZU LANG!":G0TO1620
1650 GF=0:FL=0

1660 RETURN

Dieses Dienstprogramm wurde auf einem CBM 64 erstellt. Es ist
jedoch in dieser Version auch auf dem VC 20 lauffahig. Dazu
muB lediglich die Zeile 100, die beim CBM &4 die
Bildschirmfarben setzt, entsprechend angepasst oder ignoriert
werden. Wenn Sie Wert auf eine optisch einwandfreie
Bildschirmausgabe legen, kinnen Sie die Zeilen 110-230 der VC
20-Bildschirmdarstellung anpassen.

280

4.1.3 Backup-Programm - Kopieren von Disketten

Die Floppy VC 1541 hat als Einzellaufwerk nicht die
Méglichkeit, selbststandig Disketten zu duplizieren, wie dies
die Doppellaufwerke mit dem Befehl ‘Duplicate’ bzw. "BACKUFP *
in BASIC 4.0 bieten. Bei der 1541 muB3 dies per Programm iiber
den Rechner gemacht werden.

Das Prinzip sieht so aus:

Zuerst werden die BAM sowie Namen und ID der zu kopierenden
Diskette gelesen. Aus der BAM ermittelt man nun, welche
Blocks auf der Originaldiskette belegt sind. Aus Grinden der
Zeitersparnis sollen nur die belegten Blocks kopiert werden.
Dann wird eine Direktzugriffsdatei erdffnet von der von den
ersten 169 Sektoren (soviel wie in etwa in den Speicher des
Commodore 64 passen) die belegten gelesen. Dann wird der
Benutzer aufgefordert, eine neue Diskette ins Laufwerk zu
legen. Diese wird nun mit dem Namen und der ID der
Originaldiskette formatiert. Jetzt werden die zuvor gelesenen
Blocks aus dem Speicher auf die neue Diskette geschrieben.
Nun konnen die nachsten 169 Blocks der Originaldiskette
geprift und bei Bedarf in den Speicher gelesen und
anschlieflend auf die Zieldiskette geschrieben werden. Dies
lauft insgesamt viermal ab, bis die komplette Diskette
kopiert ist.

Das Frogramm ist bis auf das Lesen und Schreiben der
Direktzugriffsdatei in BASIC geschrieben. Die dafir
enthaltenen Maschinenprogramme sind bedeutend schneller als
eine GETS8-Schleife iiber 256 Bytes in BASIC. Da die
Effektivitat des Programms, die Anzahl der Diskettenwechsel,
vom zur Verfiigung stehenden freien Speicher des Rechners
abhangt, ist es nur fir den Commodore &4 gedacht. Selbst bei
einem VC 20 mit 16 K Erweiterung widren je elfmaliger Wechsel
von Original— und Zieldiskette erforderlich.

Hier noch ein ungefdhrer Zeitvergleich zwischen diesem
Programm und dem Duplizieren auf einem Doppellaufwerk mit der
gleichen Kapazitat. Unser Frogramm braucht je nach
Diskettenbelegung ca. 20 Minuten, die CBM 4040 schaffts in
ca. 3 Minuten.

Die Duplizieren von Disketten mit diesem Programm verlauft
denkbar einfach: Sie brauchen nach dem Starten lediglich nach
den Anweisungen auf dem Bildschirm jeweils die Original- oder
die Zieldiskette einzulegen, den Rest erledigt das Programm
fur Sie. -

100 REM BACKUFP-PROGRAMM Cb64 — VC 1541
110 REM

120 POKESA,23:CLR:GOSUB640

130 OPEN1,8,15

140 DIM B%(35,23),S%(35) ,Z(7) ,A$ (1)
150 A$(0)="ZIEL":A%$(1)="0RIGINAL":R=1
160 AD=23I#256:GOSUBS90

281

170
180
190
200
210
220

240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
S10
520
530
540

850
560
570
580
590
600
610
620
&30
640
650
660
&70
680
&90
700
710

FOKE250,0: POKE251 ,AD/256

GOSUBS30: GOSUBZ90
PRINTNS"BLOCKS ZU KOPIE
T=1:5=0

FORI=1TO4: TT=T:8S=5:R=1
IFR=0ANDI=1THENGOSUB450
GDSUBS?20
FOKEZ251,AD/256: FORJ=1TO
IFBY(T,5) =0THENGOSUBS70

REN":PRINT

: IFI=1THEN240
: GOTO240

169

§=6+1: IF5=5%(T) THENT=T+1:5=0: IFT=36THENJ=16%

NEXT: IFRTHENR=0: T=TT:5=
NEXT:60TOS10

T=18:5=0: GOSUBS70

NS=0: FOR T=1TO3S : S=0
NS=NS+5% (T) —PEEK (AD+4%T
FORJ=1TD3

E=PEEK (AD+4%T+J)
FORI=0TO7

B%(T,S5)=B AND Z(I):S=G+
NEXT I1,J

FOR S=S%(T)T023
BZ(T,S)=—1 : NEXT S,T
FOR I=0TO1S

A=PEEK (AD+144+1)

IFA< >160THENNS$=N$+CHR$
NEXT
I1$=CHR$ (PEEK (AD+162)) +C
PRINTNS, I$: RETURN
FRINT"BITTE NEUE DISKET
PRINT"UND RETURN DRUECK
BETA%$: IFA$< >CHR$ (13) THE
PRINTE1,"NO: "N$" ,"I%

S§5: GOTO220

)

1

A)

HR% (PEEK (AD+163))

TE EINLEGEN"

EN !":FPRINT:FPOKE198,0:CLOSEZ2

N470

INPUTS1,A,B$,C,D: IFATHENPRINTA" , "B$","C", "D: END

GOTOL30
CLOSEZ2:CLOSE1:END

REM SEKTOREN PRO TRACK
FORT=1T0O35

SZ(T)=21: IFT>17THENSYZ (T)=19: IFT>24THENSZ (T)=18:

IFT>30THENSZ (T)=17
NEXT
FORI=0TO7:Z(I)=2"1:NEXT
IFRTHENPRINTS1,"Ul1 2 O"

:RETURN
T3;S5:SYSIN:RETURN

PRINTS&1,"B-F 2 0":SYSOUT:PRINTS1,"U2 2 0"T;S5:RETURN
CLOSEZ2: PRINT"BITTE "A%(R)"DISKETTE EINLEGEN"
EN !":FRINT:FOKE198,0
GETA%: IFA$< >CHR$ (13) THEN&10

PRINT"UND RETURN DRUECK

PRINTS1,"I0
OPENZ,8,2,"§":RETURN

FOR I = 828 TO 873 : REM MASCHINENPROGRAMM LESEN

READ X : POKE I,X : S=S
DATA 1462, 2, 32,198,25

DATA 200,208,248,230,251, 32,204,255, 96,198,

DATA 2, 32,201,255,16
DATA 208,248,230,251, 3
IF § <> 7312 THEN PRINT
IN=828: 0UT=849: RETURN

+X @ NEXT

5,160, 0, 32,207,255,145,250

1,142

o, ©0,177,250, 32,210,255,200

2,204,255,230, 1,
"FEHLER IN DATAS

282

6

END

4.1.4 FKopieren einzelner Files auf eine andere Diskette

Das nachfolgende Programm erlaubt es Ihnen, einzelne Dateien
von einer Diskette auf eine andere Diskette zu kopieren. Bei
den Dateien kann es sich um Programme (PRG), sequentielle
Dateien (SE®) oder Userdateien (USR) handeln. Relative
Dateien lassen sich mit diesem Programm nicht kopieren;
kinnen jedoch mit einem BASIC-Programm, daB alle Datensatze
in ein Stringarray liest und von dort wieder in eine neue
Datei schreibt, kopiert werden.

Das Frogramm liest im ersten Gang die komplette Datei in den
Speicher des Commodore 64. Dann wird die Zieldiskette
eingelegt und dort eine Datei mit gleichem Namen eriéffnet.
Dann werden die kompletten Daten auf die zweite Diskette
geschrieben. Zum Datenspeichern stehen im Rechner 49 KByte
zur Verfiigung; Sie kinnen deshalb Dateien mit bis zu 196
Blocks auf Diskette verarbeiten.

Aus Geschwindigkeitsgrinden wurde das Einlesen und Zurick-
schreiben der Daten mit einem kleinen Maschinenprogramm
erledigt, das in DATA-Statements abgelegt ist.

Das Frogramm eignet sich auBer zum Kopieren von sequentiellen
Dateien wie gesagt auch zum Kopieren von Programmen aller
Art; die Startadresse (bei Maschinenprogrammen) ist dabei
nicht relevant.

Bei der Bedienung des Programms brauchen Sie sich nur an die
Anweisungen zu halten und die entsprechenden Disketten
einlegen.

100 REM FILE-KOPIERPROGRAMM Cb4

110 REM

120 POKE 56,12 : CLR

130 GOSUB 1000

140 INPUT "DATEINAME ";N$

150 PRINT "DATEITYP “;

160 GETT$: IFT$<>"S"ANDTS$< >"P"ANDT$< >"U" THEN140
170 PRINTT$:PRINT

180 PRINT"BITTE ORIGINALDISKETTE EINLEGEN"
190 PRINT“UND TASTE DRUECKEN !'":PRINT

200 BETA$: IFA$=""THENZ00

210 OPEN 2,8,2,N$+","+T$ '

220 POKES,0:FOKE4,12:5YSB66

230 CLOSEZ

240 PRINT"BITTE ZIELDISKETTE EINLEGEN "
250 PRINT"UND TASTE DRUECKEN !":PRINT

260 GETA$: IFA$=""THENZ40

270 OPEN 2,8,2,N$+", "+T$+" W"

280 POKE3,0:POKE4,12:5YS828

290 CLOSE 2 :END

283

FOR I = 828 TO 898
READ X : POKE I,X
paATA 162, 2, 32,2
DATA 229, 5,165,

: S=S+X : NEXT
01,255,198, 1,160, 0, 56,165, 3
4,229, 6,176, 13,177, 3, 32,210

DATA 255,230, 3,208,234,230, 4,208,232,230, 1, 76

DATA 204,255,162,
DATA 145, 3,230,
DATA 165, 3,133,
IF § <> 8634 THEN
RETURN

2, 32,198,255,160, O, 32,207,255
3,208, 2,230, 4, 36,144, 80,241
5,165, 4,133, 6, 76,204,255

PRINT "FEHLER IN DATAS '!'" : END

284

4.1.5 Einlesen des Directorys innerhalb von Programmen

Es gibt Anwendungsprogramme, die benutzereigene Dateien unter
einem beliebigen Namen abspeichern. Wenn Sie zum Arbeiten mit
dieser Datei deren Namen angeben missen, der Name Ihnen aber
entfallen ist, so ergibt sich ein Problem: Zum Auffinden
dieses Namens miissen Sie das Frogramm verlassen, den Namen im
Directory suchen und das Programm neu laden und starten.
Diese Frozedur 1last sich durch Integrieierung einer
Directory-Auflistroutine in das Programm vermeiden. Ist Ihnen
dann ein Dateiname entfallen, so kiénnen Sie, z.B. mit einer
Funktinstaste, das Directory auf dem Bildschirm ausgeben,
ohne dal das Frogramm verlassen werden muB. Wir haben eine
dementsprechende Routine entwickelt, dessen Listing nun
folgt:

100 PRINTCHR$(147);

110 OPEN1S,8,15,"10":0PEN2,8,2,"#"
120 T=18:8=1

130 PRINT#15,"B-R";2;0;T;5

140 PRINT#15,"B-F";2;0

150 GET#2,X$: IFX$=""THENX$=CHR$ (0)
160 T=ASC (X$)

170 GETH#2,X#$: IFX$=""THENX$=CHR$ (0)
180 S=ASC (X$)

190 FORX=0TO7

200 PRINT#15,"B—P";2; X*¥32+45

210 FF$=""

220 FORY=0TO15

230 GET#2,X$: IFX$=""THENX$=CHR$ (0)
240 IFASC (X$)=160THEN 270

250 FF$=FF$+X$

260 NEXTY

270 IFA=OTHENA=1:PRINTFF$;: GOTD290
280 A=0:PRINTTAB(20);FF$

290 NEXTX

300 IFT< *OTHEN130

310 CLOSE1:CLOSEZ

320 PRINT"WEITER MIT RETURN!'"

330 GETX$

340 END:REM WENN UNTERPROGRAMM, DANN RETURN

Nach Selektieren der Filenamen aus dem Directory werden diese
auf dem Bildschirm ausgegeben. Soll dieses Programm als
Unerprogramm benutzt werden, daB mit GOSUB aufgerufen wird,
so muB in Zeile 340 anstatt des Befehls END der Befehl RETURN
eingesetzt werden.

Diese Routine haben wir auch in den Dienstprogrammen in den
Kapiteln 4.1.1 und 4.1.2 verwendet.

285

4.2 Die Dienstprogramme der Test/Demo-Diskette

Es gibt viele VC-5141 Besitzer, die mit den auf der
Test/Demo~Diskette enthaltenen Programmen wenig anzufangen
wissen. Der Grund dafir ist, daB diese Programme entweder in
englischer Sprache selbstdokumentierend oder aber sogar
ganzlich undokumentiert sind. Die folgenden Beschreibungen
dieser Frogramme soll Ihnen weiterhelfen:

4.2.1 DOS 5.1

Das DOS 5.1 vereinfacht die Handhabung des VC—-13541 DOS. Es
ist auf den Rechnern VC-20 und COMMODORE 64 einsetzbar. Zum
Laden des DOS 5.1 mit dem VC-20 geben Sie die Befehle

LOAD"VIC-20 WEDGE",8
RUN

ein. Dies ist das Ladeprogramm des DOS 5.1 fir den VC-20.
Wollen Sie das DOS 5.1 auf dem COMMODORE &4 betreiben, so
geben Sie die Befehle

LOAD"C—-64 WEDGE",8
RUN

ein. Hiermit wird das DOS 5.1 in den CBM 64 geladen.

Doch was bietet nun dieses DOS S5.17 Sie konnen die am meisten
bendtigten Befehle mit Symbolen Abkirzen. Wollen Sie z.B. das
Directoy auf dem Bildschirm anzeigen, so geben Sie den DOS
S.1-Befehl ‘3%° oder °>%° ein. Hier wird auch nicht das im
Speicher befindliche Programm geldscht.

Die einzelnen Befehle des DOS S.1:

Schreibweise Funktion
3% oder >% Das Directory wird angezeigt
v oder >V Selbe Funktion wie "VALIDATE"
dc:... oder »C:.. Kopieren von Files (COFY)
Pfile oder /file Laden von Programmen
a oder > Fehlerkanal abfragen und anzeigen
AN:... oder >N:... Formatieren einer Diskette
Al oder >I Initialisieren der Diskette
t... oder »R:... Umbenennen eines File (RENAME)

AS:... oder »S:... Lischen eines Files (SCRATCH)

4.2.2 COFPY/ALL
Mit dem Programm "“COPY/ALL" konnen Files zwischen zwei

Laufwerken verschiedener Adressen ausgetauscht werden. Dazu
muB ein Laufwerk z.B. mit dem Programm "DISK ADDR CHANGE" auf

286

eine andere Geriteadresse als 8 umgestellt werden. Nach dem
Starten des Programms erscheint die Meldung:

disk copy all jim butterfield

from unit? 8

auf dem Bildschirm. Hier geben Sie die Gerateadresse der
Diskettenstation an, von dem Sie die Files herunterholen
miéchten. Ist dies die Adresse B, so driicken Sie nur RETURN.
AnschlieBend geben Sie das entsprechende Laufwerk dieser
Diskettenstion an (bei Einzellaufwerken immer 0). Auf diese
Wiese stellen Sie auch die Geriateadresse des Ziellaufwerkes
ein. Ist dies geschehen, so fragt das Programm

want to new the output disk
™

Es wird gefragt, ob die Zieldiskette noch formatiert werden
soll. Sie antworten hier mit 'y’ (ja) oder ‘n’ (nein).

Dann konnen Sie die zu kopierende Files mit dem Joker (%)
auswahlen. Sollen alle Files kopiert werden, so geben Sie
nurt den Stern ein.

Nun gibt das Programm die Anweisung

hold down ‘y’° or 'n’ key to select

Das Programm zeigt nun die Files der Originaldiskette an, die
Sie dann mit der Taste 'y’ (ja) oder n’ (nein) auswihlen
kinnen. Die Files, bei der Sie 'y’ gedrickt haben, werden
kopiert.

Erscheinen wihrend dem Kopiervorgang Sterne (###) hinter den
Files, so bedeutet das, daB dieser Kopiervorgang nicht
fehlerfrei verlief.

Kénnen nicht alle Files auf die Zieldiskette untergebracht
werden, so wird "#%% output disk full" und "do you have a new
one" gemeldet. Die restlichen Files kiénnen auf eine andere,
formatierte Diskette untergrbracht werden, in dem Sie nach
der Frage 'y’ eingeben.

Nach AbschluB des Kopiervorgangs wird die Anzahl der freien
Blocks der Zieldiskette angezeigt.

4.1.3 DISK ADRR CHANGE

Mit diesem Programm konnen Laufwerke softwaremdBig auf eine
andere Gerateadresse eingestellt werden (4-15). Nach Starten
des Programms schalten Sie alle angeschlossenen Laufwerke,
auBer dem zu andernden Laufwerk aus. Nun geben Sie die alte
und anschlieBend die neu Gerateadresse ein.

Danach wird die Adresse umgestellt und alle anderen Laufwerke
kénnen wieder eingeschaltet werden.

Folgende Laufwerke von diesem Programm umgestellt werden:

287

2031 DOS V2.6
2040 DOS V1.1
4040 DOS V2.1
4040 DOS V2.7
8050 DOS V2.5
8050 DOS V2.7
8250 DOS V2.7

4.2.4 DIR

Dies ist ein kleines Hilfsprogramm mit folgenden
Moglsichkeiten:

d — Zeigt das Directory auf dem Bildschirm an

> — Mit diesem Zeichen kann ein Diskettenbefehl in ver-—
kirzter Form eingegeben werden (z.B >N:TEST,KN) zum
formatieren einer Diskette

q — Verlassen des Frogramms

s — Fehlerkanal anzeigen

Diese Miglichkeiten haben Sie auch mit dem DOS 5.1, auferdem
noch weitere Befehle beinhaltet.

4.2.5 VIEW BAM

Moit diesem Dienstprogramm kénnen Sie die Belegung der Blocks
auf der Diskette auf dem Bildschirm anzeigen lassen. Diese
Tabelle zeigt in vertikaler Richtung die Sektoren und in
horizontaler Richtung die Spuren an. Normale Kreuze
kennzeichnen freie und reverse Kreuze die belegten Blicke.
Die Bezeichnung "n/a" bedeutet, daB diese Blicke nicht auf
der Spur existieren.

Nach Ausgabe der Tabelle wird der Diskettenname und die
Anzahl der freien Bliécke angezeigt.

4.2.6 CHECE DISK

Das Dienstprogramm "CHECK DISK" testet jeden Block der
Diskette, indem er beschrieben und gelesen wird. Der momentan

bearbeitete Block und die Gesamtzahl der getesteten Blicke
wird am Bildschirm angezeigt.

4.2.7 DISPLAY T&S

Wenn Sie an dem Aufbau der einzelnen Blocks der Diskette
interessiert sind und diese auf dem Bildschirm oder Drucker

288

ausgeben wollen, hilft Ihnen dieses Dienstprogramm weiter.
Mach Starten des Programms geben Sie die gewinschte Spur
(TRACK) und den Block (SECTOR) ein. Dieser wird dann entweder
auf dem Drucker ider auf dem Bildschirm ausgegeben. Der in
diesem Buch enthaltene DISK-MONITOR ist aber wesentlich
komfortabler als dieses Programm, da wmit Ihm auch Blicke
gedndert und wieder zurickgeschrieben werden kinnen.

4.2.8 PERFORMACE TEST

Dieses Programm ermiglicht es, die Mechanik des Laufwerkes
VC-1541 zu testen. Dazu werden alle Zugriffsbefehle auf die
Diskette in folgender Reihenfolge ausgefiihrt:

1. Diskette wird formatiert

2. Ein File wird zum Schreibn gedffnet
3. Daten werden in dieses File geschrieben
4. Das File wird wieder geschlosssen
5. Dieses File wird zum Lesen geiffnet
6. Die Daten werden gelesen

7. Das File wird wieder geschlossen

8. Das File wird gelischt

9. Die Spur 35 wird beschrieben
10. Die Spur 1 wird beschrieben

11. Die Spur 35 wird gelesen
12. Die Spur 1 wird gelesen

Nach jedem Zugriff auf die Diskette wird der Fehlerkanal
angezeigt. Auf diese Weise kann festgestellt werden, welcher
Zugriff auf die Diskette nicht fehlerfrei verlauft.

Benutzen Sie fur dieses Test nur Disketten, die keine
wichtigen Daten enthalt, da diese verloren gehen.

4.3 BASIC-Erweiterungen und Programme zur komfortablen
Nutzung der VC 13541

4.3.1 Eingabe beliebig langer Strings von Diskette

Das Einlesen von Daten von der Floppy mit Hilfe des INPUT#-
Befehls hat leider einen groBen Nachteil: Mit Commodore 64
und VC 20 kdnnen keine Daten eingelesen werden, die mehr als
88 Zeichen haben. Dies liegt am Eingabepuffer des Rechners,
der nicht langer ist. AuBerdem kidnnen nicht alle Zeichen it
INPUT# gelesen werden. Steht innerhalb eines Datensatzes ein
Komma oder ein Doppelpunkt, so sieht der Rechners dies als
Trennzeichen an, und der Rest der Eingabe wird der nachsten
Variable =zugewiesen. Enhdlt der INFUTH#-Befehl nur eine
Variable, so wird der Rest ganz ignoriert und beim nachsten
INFUT# wird erst hinter dem nachsten Carriage Return
(CHR#(13)) weitergelesen. Die Alternative, die Eingabe wmit
dem GET#-Befehl erfordert eine langsame Schleife in BASIC,
die wir vermeiden wollen.

Hier kann eine kleine Haschfnenroutine Abhilfe schaffen.

Wir andern hier den INPUT#-Befehl ab, indem wir als zusitz-
lichen Farameter die Anzahl der zu lesenden Zeichen mit
angeben. Zur Unterscheidung vom normalen INPUT#-Befehl nennen
wir unseren Befehl INFUT*. Die Syntax sieht dann folgender-—
mafien aus:

INPUT* 1+, len, var

Dabei ist 1f die logische Filenummer der zuvor gedffneten
Datei, len ist die Anzahl der Zeichen , die eingelesen werden
sollen und var ist die Stringvariable, in die die Zeichen
eingelesen werden sollen. Ein Programmausschnitt kénnte dann
z.B. so aussehen:

100 OFPEN 2,8,2, "DATEI"
110 INPUT* 2,100,A%

Damit wird ein String von 100 Zeichen Lé&ange aus der
gedéffneten Datei nach A% gelesen. Dieses Verfahren ist
besonders fiir relative Dateien geeignet, da hierbei nach der
Positionierung der Record-Zeigers mit einem Befehl der kom—
plette Datensatz gelesen werden kann. Die Aufteilung des
Datensatzes in die einzelnen Datenfelder kann dann mit dem
MID$-Befehl geschehen. Wie man Datensatze auf elegante Weise
erzeugt, wird im ndchsten Kapitel beschrieben.

Bei diesem Verfahren ist es auch nicht mehr nitig, einen
Datensatz mit einem Carriage Return abzuschlieBen. Sie kiénnen
also besonders bei relativen Dateien die maximale Datensatz-—
lange ausnutzen:

100 OFEN 1,8,15

110 OPEN 2,8,2, "REL-DATEI,L,"+CHR$(20)
120 PRINT#1, "P"+CHR$(10)+CHR$ (0)+CHR$ (1)
130 PRINT#2, "12345678901234567890";

140 PRINT#1, "P"+CHR$ (10)+CHR%$ (0)+CHR$ (1)
150 INPUT* 2,20,A%

160 PRINT A%

12345678901234567890

AnschieBend finden Sie das Assemblerlisting des Maschinen—
programms, das im Kassettenpuffer abgelegt wurde sowie je ein
Ladeprogramm in BASIC fir Commodore 64 und VC 20.

110: 033C LOPT P
: INPUT# LF,LEN,A$

H

150 033C INPUT = $8S
160: 033C STERN = $AC
170: 033C BASVEC = $308
180: 033C CHRGET = $73
190: 033C CHRGOT = CHRBET + &
s
2101 033 ; Cé4 - VERSION
210: 033C ;
380: 033C CHEIN = $EL1E
390: 033C BASIN = $E112
400: 033C CHKCOM = $AEFD
410: 033C INTER = $A7AE
420: 033C EXECOLD = $ATE7
430: 033C INFUTOLD = $ABBF
440: 033C FINDVAR = $B0BB
450: 033C STRRES = $B475
4601 033C FRESTR = $B6A3
470: 033C GETBYT = $B79E
; 20ER VERSION
240: 033C CHEIN = $E11B
250: 033C BASIN = $E10F
2605 033C CHECOM = $CEFD
270: 033C INTER = $C7AE
280: 033C EXECOLD = $C7E7
290: 033C INPUTOLD = $CHBF
3000 033C FINDVAR = $D0BB
310: 033C STRRES = $D47S
3201 033C FRESTR = $D6A3
330: 033C GETBYT = $D79E
; GEMEINSAME LABELS
3y
490: 033C VARADR = $49
500: 033C CLRCH = $FFCC
510: 033C PARA = 61

s

291

530 0330 *= 828

5401 033C A9 47 INIT LDA #<TEST

5501 033E A0 03 LDY #>TEST

5602 9340 8D 08 03 STA BASVEC

370 0343 8C 09 03 STY BASVEC+!

580 0346 60 RTS

600: 0347 20 73 00 TEST JSR CHRBET

6101 0344 C9 85 CMF #INFUT

6202 034C FO 06 BE@ FOUND

56302 034E 20 79 00 JSR CHRGOT

440z 0351 4C E7 A7 JMP EXECOLD ; ZUR ALTEN ROUTINE
6501 0354 20 73 00 FOUND JSR CHRGET

6603 0357 €9 AC CMF #5TERN ; NEUE INPUT ROUTINE
6701 0359 FO 06 BE@ OKSTERN

4803 0358 20 BF AB JSR INFUTOLD

680: 035E 4C AE A7 JMP INTER

6903 0361 20 9B B7 OKSTERN JSR GBETBYT-3 ; FILENUMMER HOLEN
700: 0364 20 1E E1 JSR CHKIN

710 0367 20 FD AE JSR CHECOM

720 036A 20 9E B7 JSR GETBYT ; LAENGE

730: 036D BA TXA

730: 034E 48 FHA 5 MERKEN

740: 036F 20 FD AE JSR CHKCOM

7502 0372 20 8B BO JSR FINDVAR ; VARIABLE SUCHEN
7603 0375 B3 49 STA VARADR

760: 0377 84 4A STY VARADR+1

770: 0379 20 A3 B4 JSR FRESTR

780: 037C 48 PLA i LAENGE

790z 037D 20 75 B4 J8R STRRES ; PLATZ FUR STRING RESERVIEREN
800: 0380 AD 02 LDY #2

810: 0382 BY 61 00 STORE LDA PARA,Y

820: 0385 91 49 STA (VARADR),Y

B830: 0387 88 DEY

840: 0388 10 F8 BFL STORE

850: 038A C8 INY 7 Y=0

860: 0388 20 12 E1 FETCH JSR BASIN

870: 03BE 91 62 STA (FARA+1),Y

880: 0390 C8 INY

890: 0391 €4 61 CPY PARA

2002 0393 DO Fé BNE FETCH

910: 0395 20 CC FF JSR CLRCH

910: 0398 4C AE A7 JMF INTER 3 LUR INTERPRETERSCHLEIFE

Hier sind nun die BASIC-Programme zur Eingabe der
Maschinenprogramme fir den INFUT* - Befehl.

INPUT* , 64er Version

100 FOR 1 = 828 TO 922

110 READ X : POKE I,X : S5=S+X : NEXT

120 DATA 169, 71,160, 3,141, 8, 3,140, 9, 3, 94, 32
130 DATA 115, 0,201,133,240, 6, 32,121, O, 76,231,167

tJ
0
L8]

140
i50
160
170
180
190
200
210

DATA 32,115, 0,201,172,240, 6, 32,191,171, 76,174
DATA 167, 32,155,183, 32, 30,225, 32,253,174, 32,158
DATA 183,138, 72, 32,253,174, 32,139,176,133, 73,132
DATA 74, 32,163,182,104, 32,117,180,160, 2,185, 97
DATA 0,145, 73,136, 16,248,200, 32, 18,225,145, 98
DATA 200,194, 97,208,246, 32,204,255, 76,174,167

IF S <> 11096 THEN PRINT "FEHLER IN DATAS !'!" : END
SYS 828 : PRINT "OK '

INPUT* , 20er Version

100
110
120
130
140
150
160
170
180
190
200
210

FOR I = 828 TO 922

READ X : POKE I,X : S=5+X : NEXT

DATA 169, 71,140, 3,141, 8, 3,140, 9, 3, 94, 32
DATA 115, 0,201,133,240, 6, 32,121, 0, 76,231,199
DATA 32,115, 0,201,172,240, &, 32,191,203, 74,174
DATA 199, 32,155,215, 32, 27,225, 32,253,206, 32,158
DATA 215,138, 72, 32,253,206, 32,139,208,133, 73,132
DATA 74, 32,1463,214,104, 32,117,212,160, 2,185, 97
DATA 0,145, 73,136, 16,248,200, 32, 15,225,145, 98
DATA 200,196, 97,208,246, 32,204,255, 76,174,199

IF S <> 11442 THEN PRINT “FEHLER IN DATAS !'!" : END
SYS 828 : PRINT "OK '

293

4.3.2 Komfortables Aufbereiten von Datensatzen

Haben Sie schon einmal mit relativen Dateien gearbeitet, so
wissen Sie, dall dort eine feste Datensatzldnge vorgegeben
ist. Dieser Datensatz ist meist in mehrere Felder unterteilt,
die ebenfalls an festen Positionen innerhalb des Datensatzes
beginnen und eine definierte Lange haben.

Geben Sie z.B. in einem Programm einen neuen Datensatz ein,
s0 wird meistens fir jedes Feld ein separater INFUT-Befehl
verwendet. Bevor nun der komplette Datensatz geschrieben
wird, muf3 er erst richtig zusammengesetzt werden. Jedes Feld
muf3 auf seine Lange geprift werden. Ist es langer als die
vargesehene Lange des entsprechenden Datenfeldes, muf3 der
Rest abgeschnitten werden. Bei kiirzeren Feldern wird man im
allgemeinen mit Leerzeichen auf die geforderte Lange
auffiillen. Im folgenden werden Ihnen nun zwel neuen
BASIC-Befehle vorgestellt, die sich far diese Aufgabe
hervoragend eignen. Diese neuen Befehle sind in
Maschinensprache geschrieben und werden einmal mit einem
SYS—-Befehl initialisiert. Ab sofort sind sie dann wie alle
anderen BASIC-Befehle iiber Befehlsworte aufzurufen.

Der erste Befehl bekommt den Namen 'STR$% und dient zum
Erzeugen eines Strings mit der Lange des Datensatzes.

AF = !STRF¥(100," ")

erzeugt einen String mit 100 Leerzeichen und legt ihn in der
Variablen A% ab.

Der nachste Befehl dient nun Zum Einsetzen unserer
Datenfelder in den oben erzeugten String. Wollen Sie z.B. die
Variable N#, die den MNachnamen enthialt, als Datenfeld von 25
Zeichen Lange ab Position 1 in den String A% einsetzen, so
sieht unser neuer Befehl so aus:

MID$ (A$,1,25) = N$

Hier wird der MID$-Befehl als sogenannte Pseudo-Variable auf
der linken Seite des Gleichheitszeichens verwendet. Was dabei
passiert ist folgendes:

Die Variable N¢¥ ersetzt die ersten 25 Zeichen der Variable
A%¥. Ist die Variable N#$ 1langer als 235 Zeichen, so ist
sichergestellt, daB nur .25 Zeichen ersetzt werden und der
Rest der Variablen nicht beriicksichtigt wird. Ist N#% jedoch
kirzer, werden nur so viele Zeichen ersetzt, wie die N#
beinhaltet. Dort bleiben die urspriinglichen Zeichen in A% (in
unserem Falle die Leerzeichen) erhalten. Das ist ganau das,
was wir haben wollen. Jetzt kénnen Sie folgendermafien
programmieren:

294

200 INPUT "NACHNAME
210 INFUT "VORNAME "
220 INPUT "STRASSE "; S%

230 INFUT “NUMMER “s NR%¥
240 INPUT "ORT "; O%
250 INPUT "PLZ " P$
260 A% = 'STR$ (94, ")
270 MID$ (A%$,1,25) = N$
280 MID$ (A$,26,20) = V$
290 MID$ (A$,46,20) = S%
300 MID$ (A%$,66,5) = NR$
310 MID$ (A$,71,20) = O%
320 MID$ (A$,91,4) = P$

330 PRINT#2, A%

Hier nun das Maschinenprogramm fiir den Commodore 64.

135 cgoo *= $C800
140: caoo CHKAUF = $AEFA
1502 c£Boo CHKIU = $AEF7
1602 €800 CHKCOM = $AEFD
170: €800 FRMEVL = $AD9E
180: ceoo CHKSTR = $ADBF
190: €800 FRESTR = $B6A3
200: caoo YFAC = $B3IA2
205: caoo CHRGET = £73

210z C800 CHRGOT = CHRGET+é
220: €800 GETBYT = $B798
226: caoo INTEBER = $B1AA
229; €800 DESCRFT = $64

230: C800 STRADR = $62

231: c8oo ADR2Z = FB

232: cgoao ADR1 = $FB+2
233: C800 LEN1 = 3

234: Ceo00 LENZ = 4

235: C800 ANZAHL = 5

236: [:141) START = [

237: €800 TYPFLAG = 13

238: C800 STRCODE = $C4

240: €800 ILLQUAN = $B248
241: 800 SYNTAX = $AFOB
242 c8o00 POSCODE = $B9

243: C800 VECTOR = $30A
245: cgoo TEMP = LEN1
248: CBOO A9 0D LDA #<TESTIN
248: €802 A0 C8 LDY #:TESTIN
248: C804 8D 0A 03 STA VECTOR
248: C807 8C 0B 03 §TY VECTOR+1
248: CBOA 4C 6B CB JMF MIDSTR
250: C80OD A9 00 TESTIN LDA #0

250: CBOF B85 0D STA TYFFLAG
2501 c811 20 73 00 JSR CHRGBET
251: cgi4 C9 21 CMP gm i
251: CB16 FO 06 BER TEST2

251: catg 20 79 00 JSR CHRGOT
251: C81B 4C 8D RE JHF $AEBD
252: C8LE 20 73 00 TESBT2 JSR CHRGET
282: ce2t C9 C4 CHMF #BTRCODE
252: C823 FO 03 BE@ STRING
253: C825 4C 08 AF JMF SYNTAX

é STRINGS-FUNKTION

3

900: £828 20 73 00 STRING JSR CHRGBET

2002 C82B 20 FA AE J8R CHKAUF 3 KLAMMER AUF

910 C82E 20 9E B7 JSR GETBYT+3

920: C8xt 8A TXA

920: C£832 44 FHA 3 LANGE MERKEN

930: C833 20 FD AE JSR CHKCOM

940: C£836 20 9E AD J8R FRMEVL

950: €839 24 0D BIT TYFFLAG

360 C83p 30 0C BMI STR 3 STRING

970 C83D 20 AA Bl J8R INTEGER

980: C840 A5 64 LDA DESCRFT ; HIGHBYTE

990 C842 DO 24 BNE ILL yo» 259

1000: C844 AT &5 LDA DESCRPT+1 ; LOW-BYTE, LANGE

1010: CB46 4C 52 C8 JMF STR2

1020: C849 20 B2 B7 STR JSR $E782 i SETSTR, TYPFLAG AUF NUMERISCH

1030: CB4C FO 1A BEG ILL 3 LANGE NULL

1040 CB4E AD 00 LDY #0

1050: €8BS0 B 2 LDA ($22),Y ; ERSTES IEICHEN

1060 CBS2Z 85 03 STR2 STA TEMF

1070: €854 48 FLA 3 LANGE

te80:r C83I3 20 7D B4 JSR $B47D s FRESTR

1090: CB8B38 AB TARY

1100: CBS9 FO 07 BE@ GTR3

1110+ CB5B AS 03 LDA TEMP

1120: CB3D 88 LOOP DEY

1120 CB3E 91 62 STA (STRADR),Y ; STRING ERIEUGEN

1130: CB60 DO FB BNE LOCP

1140: CB62 20 CA B4 STR3 JSR $B4CA ; STRING IN DESCRIPTORSTACK BRINGEN

1150: C8&5 4C F7 AE JMP CHKZU

1160: CB868 4C 48 B2 ILL JHF ILLQUAN
3 MID$ (STRINGVARIABLE,POSITION,LANGE) = STRINBAUSDRUCK
3 MID${(STRINGVARIABLE,FOSITION) = STRINGAUSDRUCK

200: C86R MIDCODE = $CA

210: CB&E EXECUT = $308 3 VECTOR FilR STATEMENT AUSFUHREN

240: C86B EXECOLD = $ATET

250: C86E VARNAN = $45

255: CB6E VARADR = 49

260: C8&E DESCRPT = $64

2702 CB&R TESTSTR = $ADBF

280: C86B GETVAR = $BOBE

2903 CB&B SETSTR = $AAS2

325: CB6E TEST = $AEFF

330: C86B GETBYT = $B79E

355: 0003 *= 3

360: 0004 LAENGE *= *+]

296

06

9E

04
79
29
04
FF
oc
FD
9€

03
48
03
04

02

03
03

Bé

AR

AE
B7

00

AE
B7

B2

POSITION #=

VARSTR
GLEICH
IEIG2

MIDSTR

MIDTEST

MID

NEXT

ILL
STORE

*=

LDA
STA
JSR
JSR
TXA

DEX
5TX
JSR
CMF
BNE
LDA
BNE
JSR
JSR
TXA
BNE
JMP
STA
PLA
SEC
SBC
CMP
BCS

*+1
¥42
B2
$50

#<MIDTEST
#>MIDTEST

EXECUT
EXECUT+1

CHRGET -
#MIDCODE
MID
CHRGOT
EXECOLD
CHRGET
CHKAUF
GETVAR
DESCRFT
DESCRPT+
VARADR
VARADK+1
FRESTR
#0

i
H
.
H

1

s CODE FUR MID$?
JA

NORMALES STATEMENT AUSFUHREN

NACHSTES ZEICHEN
KLAMMER AUF
VARIABLE HOLEN

(DESCRFT) ,Y

ILL
SETSTR
#1

(VARADR) ,Y

VARSTR

(VARADR) , Y

VARSTR+1
CHKCOM
GETBYT

ILL

FOSITION
CHRGOT
#myn
NEXT
#$FF
STORE
CHKCOM
GETBYT

*+5
ILLAUAN
LAENGE

FOSITION
LAENGE
0K

297

5

'

LANGE

STRING IN RAM UGBERTRAGEN

VARIABLENADRESSE MERKEN

FOSITION HOLEN

AUSDRUCK ZIU ENDE ?

MAX. LANGE

LANGE HOLEN

717
7201
730
770:
780:
790:
800:
8001
800:
8003
B0O:
800:
810:
810:
8201
840:
850:
860z
870:
880:
880:
210:
9102
9201
940:
950:
950:
2601
270z
970:
980:

Fur diejenigen,
den Commodore 64 verfigen,

cane
Cape
C8DE
CBEOQ
CBE3
CBESG
cae?
C8ER
C8ED
CBEF
C8Fo
C8F2
CBF4
C8FS
C8F7
CBFY
CaFE
C8FD
C8FF
coo01
ce02
co04
€06
cq08
C90A
cqoc
c90D
C90F
C91t
C13
€915

119}

LOOFP

BASIC abgedruckt.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280

FOR I

READ
DATA
DATA
DATA

X =
169, 13,160,
200,169, O,
32,121, O,
8,
72,
12, 32,170,
200, 32,130,
104, 32,125,
208,251, 32,
118,160,200,

0,201,202,
115, o0, 32,
133, 73,132,
240, 44, 32,
177, 73,133,
23,202,134,
255,208, 12,

51200 TO

die dber keinen Monitor

POKE I,X

LAENGE
CHKIU
#GLEICH
TEST
FRMEVL
FRESTR

42
(DESCRFT) ¥
1EIG2+1

KLAMMER ZU

AUSDRUCK HOLEN

(DESCRFT),Y
IEIG2

(DESCRFT), Y

ILL ; NULL DANN FEHLER
LAENGE

oK1

LAENGE

VARSTR

POSITION
VARSTR
*+4
VARSTR+1
LAENGE

INC
LDY
DEY
LDA
STA
CrY
BNE
JIMF

(IEI1B2),Y ; ZEICHEN AUS STRINGAUSDRUCK
(VARSTR),Y ; IN STRINGVARIABLE UBERTRAGEN
#0

LOOF

$ATAE 3+ IUR INTERPRETERSCHLEIFE

fiir
in

Assembler
Ladeprogramm

oder

haben wir ein

51479
: S=S+X : NEXT
200,141, 10, 3,140, 11, 3, 76,107
133, 13, 32,115, 0,201, 33,240, 6
76,141,174, 32,115, 0,201,196,240
175, 32,115, o0, 32,250,174, 32,158
32,253,174, 32,158,173, 36, 13, 48
177,145,100,208, 36,165,101, 76, 82
183,240, 26,160, 0,177, 34,133, 3
180,148,240, 7,165, 3,134,145, 98
202,180, 76,247,174, 7&, 72,178,169
141, 8, 3,140, 9,> 3, 94, 32,115
240, &, 32,121, 0, 76,231,167, 32
250,174, 32,139,176,133,100,132,101
74, 32,163,182,160, 0,177,100, 72
82,170,160, 1,177, 73,133, 5,200
&6, 32,253,174, 32,158,183,138,240
4, 32,121, 0,201, 41,208, 4,169
32,253,174, 32,158,183,138,208, 3

298

290
300
310
320
330
340
350
360
370

pATA 76, 72,178,133, 3,
paTA 2,133, 3, 32,247,
DATA 158,173, 32,163,182,
DATA 177,100,133, 80,136,
DATA 2,133, 3,165, S5,
DATA 230, 6,164, 3,136,

DATA 247, 76,174,167
IF 8§ <> 31128 THEN PRINT
5YS 51200 : PRINT "OK '*

104, 56,229, 4,197, 3,176
174,169,178, 32,255,174, 32
160, 2,177,100,133, 81,136
177,100,240,211,197, 3,176
24,101, 4,133, 5,144, 2
177, 80,145, 5,192, 0,208

"FEHLER IN DATAS !!" : END

299

4.3.%3 Spooling — Direktes Drucken von Diskette

Haben Sie an Ihrem Rechner auBer der Floppy noch einen
Drucker angeschlossen, kinnen Sie eine spezielle Eigenschaft
des seriellen Bus ausnutzen.

Es besteht namlich die Méglichkeit, Dateien von der Floppy
direkt zum Drucker zu schicken, ohne daB dies Byte fir Byte
iber den Rechner geschehen muB. Hat man z.B. einen beliebigen
Text als sequentielle Datei auf Diskette gespeichert und will
man diesen auf dem Drucker ausgeben, widre folgende Program—
mierung miéglich:

100 OFPEN 1,4 : REM DRUCKER

110 OPEN 2,8,2, "O:TEXT" : REM TEXTDATEI
120 GETH#2, A% : IF ST = 64 THEN 140

130 PRINT#1, A%; : GOTO 120

140 CLOSE 1 : CLOSE 2

150 END

Es werden solange Zeichen von der Floppy geholt und zum
Drucker geschickt, bis das Dateiende erkannt wird. Dann
werden beide Dateien geschlossen und das Programm beendet.

Beim Spooling wird nun folgendes gemacht: ¢

Zuerst werden wieder beide Dateien gedffnet. Jetzt wird an
den Drucker ein Befehl zum Daten empfangen (Listen) gesandt,
wahrend die Floppy den Befehl zum Daten senden (Talk) erhalt.
Ab sofort schickt die Floppy solange Daten selbsttatig an den
Drucker, bis das Dateiende errreicht ist. Widhrend dieser Zeit
kénnen Sie Ihren Rechner weiter benutzen, ohne daB die
Ubertragung davon beeintrachtigt wird. Lediglich die
Benutzung von Peripheriegeraten uber den seriellen Bus ist
wahrend dieser Zeit nicht méglich.

In der Praxis wird dies mit einem kleinen Maschinenprogramm
gemacht. Will man das Spooling starten, ruft man das Programm
auf und iibergibt dabei den Namen der Datei, die man senden
will.

5YS 828, "TEXT"

offnet die Datei "TEXT" auf der Diskette und schickt sie zum
Drucker. Sobald die Ubertragung startet, meldet sich der
Rechner mit ‘READY.’ wieder und Sie koénnen ihn weiter
benutzen, solange nicht auf den seriellen Bus zugegriffen
wird. Sie kéonnen zum Beweis, daB der Rechner nicht mehr zur
Ubertragung gebraucht wird, das Buskabel zur Floppy
herausziehen, so daB die Floppy nur noch mit dem Drucker
verbunden ist. Ist das Spooling beendet, so bleibt die Datei
in der Floppy noch gedffnet (die rote LED 1leuchtet weiter).
Sie kdnnen die Datei schlieBen, indem Sie den SYS—-Befehl ohne
Dateinamen eingeben (natiirlich muB das Kabel zur Floppy
wieder eingesteckt sein).

300

5YS 828

Mit dem gleichen Befehl kiénnen Sie auch eine laufende
Ubertragung beenden. Das Maschinenprogramm sowie Jje ein
Ladeprogramm fir Commodore 64 und VC 20 finden Sie im
AnschluB.

;s 1541- 44 SFOOL

)
1402 033C CHRGOT = 79
CCo: 033C SERFORT = $DD0OO 3 PORT FiR SERIELLEN BUS
160 033C LISTEN = $FFEL
170 033C ATNRES = $EDBE 3 ATN RUCKSETZEN
180: 033 CLRCH = $FFCC
190 9330 CLOSE = $FFC3
2002 033C CLALL = $F3IZF
2102 033C GETNAME = $E254 3 FILENAME HOLEN
2201 033C OFEN = $FFCO
230: 033C CHEIN = $FFCo
240 033C FA = $EBA 1 GERATEADRESSE
250: 033C SA = $B9 3 SEKUNDARADRESSE
2601 033C FNLEN = $B7 3 LANGE DES FILENAMENS
270: 033C TEMF = $FB
280: 033C INDEV = $99 7 EINGABEGERAT
290 033C NMBFLS = $98 3 ANZAHL DER FILES
300 033C guTDEY = £94 3 AUSGABEGERAT
310: 033C SETFIL = $FFBA ;s FILEPARAMETER SETZEN
320: 033C READY = $E37B
330: 033C ERROR = $AF08B 3 SYNTAX ERROR
400: 033C *= 828
410z 033C 20 79 00 JSR CHRGOT ; FOLGEN WEITERE ZEICHEN ?
420 033F FO 4F BE@ OFF 3 NEIN, DANN SPOOLING BEENDEN
4303 0341 20 2F F3 JSR CLALL
440: 0344 20 5S4 E2 JSR GETNAME ; FILENAME HOLEN
4503 0347 A6 B7 LDX FNLEN
4401 0349 FO SE BEQ@ SYNTAX
470z 034B 86 FB STX TEMF
4801 034D A9 O1 LDA #1 ; LOGISCHE FILENUMMER
490 034F AZ 08 LDX #8 1 BERATENUMMER
500: 0351 AD OF LDY #15 s SEKUNDARADRESSE
S510: 0353 20 BA FF JSR SETFIL
5201 0356 A9 00 LDA %0
5301 0358 85 B7 STA FNLEN
5401 035A 20 CO FF JSR OPEN
5501 035D 20 CC FF JSR CLRCH
5601 0360 AS FEB LDA TEMP
570: 0362 85 BY STA FNLEN
5801 0364 A9 02 LDA #2
590z 0366 AZ 0B LDX #8
6001 0368 A0 02 LDY #2
6102 036A 20 BA FF JSR SETFIL
6201 036D 20 CO FF ISR OFEN
630: 0370 A2 02 LDX #2
6401 0372 20 C6 FF JSR CHKIN
6502 0375 AD 00 DD LDA SERPORT

301

660
6703
680:
690:
700:
7102
7201
730:
740:
7501
760
7702
780:
790:
800:
810:
8201
830:
840:
850:
8460:
B870:

0378
0374
037D
037F
0381
0384
0387
0389
038B
038D
0390
0392
0394 .
0396
0398
0394
039C
039F
03A1
03A4
03R4
03A9

8D 00 DD

20 Bl FF
20 BE ED

A% 08
85 99
20 CC FF
A7 01
20 C3 FF
A9 02
4C C3 FF

4C 08

AF SYNTAX

JSR
LDA
JHF
NP

#58 ; BTN
SERPORT

#4

FA ; DRUCKER
LISTEN

ATNRES

%0

INDEV

NMBFLS

READY

CLRCH 7 KANALE RUCKSETIZIEN

CLOSE 3 DATEIEN SCHLIESSEN

ERROR i+ SYNTAX ERROR

Nun das BASIC-Ladeprogramm fir den Commodore &4.

100
110
120
130
140
150
160
170
180
190
200
210
220
230

Hier

100

FOR I = 828 70O 939

READ X : POKE I,X : S5=6+X : NEXT

DATA 32,121, 0,240, 79, 32,231,255, 32, 84,226,166
DATA 183,240, 94,134,251,169, 1,162, 8,160, 15, 32
DATA 184,255,169, 0,133,183, 32,192,255, 32,204,255
DATA 165,251,133,183,169, 2,162, 8,160, 2, 32,186
DATA 255, 32,192,255,162, 2, 32,198,255,173, 0,221
DATA 2, 8,141, 0,221,149, 4,133,186, 32,177,255
DATA 32,190,237,169, 0,133,153,133,152, 76,123,227
DATA 1469, 2,133,152,169, 4,133,154,16%9, 8,133,153
DATA 32,204,255,169, 1, 32,195,255,16%9, 2, 76,195
DATA 255, 76, 8,175

IF 8 <> 14511 THEN PRINT "FEHLER IN DATAS !'" : END
PRINT "OK '*

ist das Ladeprogramm fir den VC 20.

FOR I = 828 TO 939

READ X : POKE I,X : S=S+X : NEXT

DATA 32,121, 0,240, 79, 32,231,255, 32, 81,226,166
DATA 183,240, 94,134,251,169, 1,162, 8,160, 15, 32
DATA 184,255,149, 0,133,183, 32,192,255, 32,204,255
DATA 165,251,133,183,169, 2,162, 8,160, 2, 32,186
DATA 255, 32,192,255,162, 2, 32,198,255,173, 31,145
DATA 9,128,141, 31,145,169, 4,133,186, 32,177,255
DATA 32,197,238,169, 0,133,153,133,152, 76,103,228
DATA 169, 2,133,152,169, 4,133,154,169, 8,133,153
DATA 32,204,255,169, 1, 32,195,255,169, 2, 76,195
DATA 255, 74, 8,207

IF S <> 14559 THEN PRINT "FEHLER IN DATAS !!" : END

PRINT "0OK '*®

4.4 Overlaytechnik und Nachladen von Maschinenprogrammen

Eine bewdhrte Programmiertechnik besteht darin, fiir eine
Probleml isung ein sogenanntes Menue- oder Auswahlprogramm zu
schreiben, von dem aus fiir die einzelnen Teilprobleme jeweils
ein eigenes Frogramm geladen und ausgefihrt wird. Dabei gibt
es zwei grundsidtzliche Miéglichkeiten: {bernahme oder keine
Ubernahme der Variablen in das nachgeladene Programm. Eine
Ubernahme der Variablen ist nur dann miglich, wenn das auf-—
rufende Programm mindestens so grof3 oder groBer als das nach-—-
geladene ist. Wird wvon einem Programm aus ein anderes
Programm nachgeladen, so bleiben die Zeiger auf das Programm-—
ende erhalten und das neue FProgramm wird vom Beginn an
abgearbeitet. In unserem Beispiel wirden wir folgendes
Ergebnis erhalten:

100 REM PROGRAMM 1

110 REM DIESES PROGRAMM IST GRGOGSSER ALS DAS ZWEITE
120 A = 1000

130 LOAD "PROGRAMM 2",8

100 REM PROGRAMM 2
110 PRINT A

1000

Ist das nachgeladene Frogramm Jjedoch gréBer als das ur-—
springliche Programm, so wirde ein Teil der Variablen iber—
schrieben und wir erhielten undefinierte Werte. AuBerdem
wiirde bei Wertzuweisungen an Variablen der Teil des Frogramms
zerstirt, der iiber die Lange des ersten Programms hinaus
geht.

Beim Ubernehmen vom Variablen gibt jedoch noch zwei Beson-—
derheiten zu beachten: Handelt es sich um Stringvariablen,
die im ersten Frogramm als Konstanten in Anfiihrungszeichen
definiert worden sind, so gibt es Probleme. Bei String—
variablen wird ein Zeiger verwendet, der auf den eigentlichen
Text der Variablen zeigt. Wird eine Stringvaribable nun z.B.
mit folgender Anweisung im ersten Programm definiert

100 A% = "TEXT"

so zeigt der Variablenzeiger in den Programmtext. Beim
Nachladen des nidchsten Frogramms wird nun dieser Zeiger nicht
verandert. An der urspriinglichen Stelle steht jetzt jedoch
der neue Programmtext, so daB die Variable nun einen un-—-
definierten Inhalt hat. Dies kénnen wir jedoch leicht
umgehen. Wir brauchen blof3 dafiir zu sorgen, daB der Text aus
dem Programm in den oberen RAM-Bereich kopiert wird, in dem
die Textvariablen normalerweise stehen. Dies erreichen wird
z.B. durch folgende Frogrammzeile:

100 A%$ = "TEXT + "*

303

Durch die Addition des Leerstrings wird das Kopieren des
Variableninhalts in den Stringbereich erzwungen. Ahnliche
Uberlegungen gelten auch bei Funktionsdefinitionen, da auch
hier der Zeiger auf die Definition im FProgramm zeigt. Hier
missen wir die Funktion in zweiten Programm noch einmal
definieren, z.B.

100 DEF FN A(X) = 0.5 #* EXP (-X*X)

Halten wir noch einmal fest:

Wollen wir ein Programm nachladen, so kénnen wir die
Variablen nur dann weiter benutzen, wenn das zweite Programm
kleiner als das erste Programm ist. Ist das nachgeladene
Programm grifer und sollen keine Variablen ibernommen werden,
kénnen wir uns mit einem Trick aus der Affire ziehen:

Wir brauchen lediglich unmittelbar nach dem Laden den Zeiger
auf das Ende des BASIC-Programms auf den Wert des neuen
Frogramms setzen. Dies ist mit zwei FOKE-Befehlen méglich, da
die Endadresse nach dem Laden zur Verfigung steht:

FOKE 45, PEEK(174) : FOKE 4&, PEEK(175) : CLR

Der CLR-Befehl ist unbedingt erforderlich. Diese Zeile sollte
als erste im nachgeladenen Programm stehen. Damit haben wir
also die Miglichkeit geschaffen, beliebig groBe Programme
ohne Variableniibergabe nachzuladen. Eine andere nicht so
elegante Miglichkeit besteht darin, den Ladebefehl in den
Tastaturpuffer zu schreiben und das Programm dann im
Direktmodus automatisch nachladen zu kénnen. Dazu schreiben
wir vor dem Laden den LOAD- und RUN-Befehl auf den Bildschirm
und fidllen den Tastaturpuffer mit 'HOME’ und Carriage Return.
Im Programm muBl danach eine END-Anweisung stehen. Das
Betriebssystem holt dann im Direktmodus den Inhalt des
Tastaturpuffers und liest damit den LOAD- und RUN-Befehl, der
zum Laden und Ausfithren des Programms fihrt. Da dies im
Direktmodus geschieht, werden automatisch die Endadresse des
Programms gesetzt, die Variablen geléscht und mit dem
nachfolgendem RUN das Frogramm gestartet. Der Nachteil
hierbei ist jedoch, daB der Ladebefehl auf den Bildschirm
geschrieben und eine evtl. Bildschirmmaske dabei zerstiért
wird. In der Fraxis sahe das so aus:

1000 FRINT CHR$(147)"LOAD"CHR% (34) "FROGRAMM 2"CHR$(34)",8"
1010 PRINT : PRINT : PRINT : PRINT

1020 PRINT “"RUN"
1030 POKE 631,19
1040 POKE 634,13
1050 POKE 198,6

POKE 632,13 : POKE 633,13
POKE 635,13 : POKE 636,13
END

Sie sehen schon, daB dieses Verfahren umstandlicher als das
oben geschilderte Verfahren ist; es ist nur der Vollstandig-
keit halber erwidhnt. Beim ersten Verfahren wdre nur in Zeile
1000 der programmierte LOAD-Befehl erforderlich:

304

1000 LOAD "PROGRAMM 2",8

Beim Nachladen von Maschinenprogrammen hat sich eine andere
Technik bewdhrt.

Werden von einem BASIC-Frogramm Maschinenprogramme benutzt,
so0 werden diese meist zu Beginn des BASIC-Programms geladen.
Dabei miissen wir jedoch zweierlei beachten:

Zum einen muB dafiir gesorgt werden, daBR die Maschinenprao-
gramme absolut, d.h. in einen bestimmten Speicherbereich
geladen werden. Gibt man beim Laden eines Frogramms keine
zusatzlichen Farameter an, so geht das Betriebssytem davon
aus, daB es sich um BASIC-Frogramme handelt und 1&adt sie
immer ab der Startadresse des BASIC-RAMs, im allgemeinen also
ab Adresse 2049 (beim Commodore 64). Maschinenprogramme sind
jedoch nur lauffihig, wenn sie an die Adresse geladen werden,
fir die sie auch geschrieben wurden. Dieses absolute Laden
kann man durch Anhdngen der Sekundiradresse 1 erreichen:

LOAD "MASCH-PRG",8,1

Desweiteren erinnern wir uns, daB beim . Laden im Frogramm—
modus das Programm wieder von Anfang an gestartet wird. Das
wirde beim Laden von Maschinenprogrammen jedoch zu einer
Endlosschleife fihren, da das Betriebssystem davon ausgeht,
daB ein neues BASIC-Frogramm nachgeladen wurde:

100 LOAD "MASCH-FRG",8,1

Hier kidnnen wir nun ausnutzen, daff die Variablen beim
Nachl aden erhalten bleiben. Wenn wir folgendermaflen
programmieren, haben wir unser Ziel erreicht:

100 IF A=0 THEN A=1 : LOAD "MASCH-FRG",B,1
110 ...

Wenn wir das Programm mit RUN starten, hat A noch den Wert
Null und die Anweisungen hinter THEN werden ausgefihrt: A
erhdlt den Wert 1 und das Maschinenprogramm wird geladen.
Wenn nach dem Laden das Programm wieder von Angang an
abgearbeitet wird, hat A den Wert 1 und es wird direkt in die
nachste Zeile gesprungen, wir haben unser Ziel erreicht.

Ganz &hnlich kann man vorgehen, wenn man mehrere Maschinen-—
programme zu laden hat.

100 IF A=0 THEN A=1 : LOAD "FROG 1",8,1
110 IF A=1 THEN A=2 : LOAD “PROG 2",8,1
120 IF A=2 THEN A=3 : LOAD "FROG 3",8,1
130

Hier wird im ersten Durchlauf PROG 1 geladen, im nichsten

PROG 2 usw. Sind alle Programme geladen, wird der Rest des
BASIC-Frogramms ausfgefihrt.

305

4.5 Merge - Aneinanderhdngen von BASIC-FProgrammen

Sicher haben Sie schon einmal an die Méglichkeit gedacht,
BASIC-Frogramme, die Sie einzeln auf Diskette abgespeichert
haben, zu einem Programm zusammen zu figen. Ohne weiteres ist
dies nicht miéglich, da bei Laden eines FProgramms das im
Speicher stehende Programm iberschrieben wird. Mit der Kennt-
nis, wie BASIC-Programme im Speicher abgelegt und auf Dis~-
kette abgespeichert werden, konnen wir jedoch ein einfaches
Verfahren entwickeln, das diese Aufgabe bewerkstelligt.

BASIC-Programme stehen folgendermaBen in Speicher:

NL NH Zeiger auf die nachste Programmzeile, lo hi
ZL ZH Zeilennummer, lo hi

XX YY ZZ Zeileninhalt

00 Kennzeichen fir Zeilenende

NL NH Zeiger auf die nachste Programmzeile, lo hi
L ZH Zeilennummer, lo hi

XX Yy zz Zeileninhalt

00 Kennzeichen fir Zeilenende

Am Ende des Frogramms stehen zus&tzlich noch 2 Nullbytes:
00 00 , insgesamt also 3 Nullbytes

In diesem Format werden Programme nun auch abgespeichert. Wo
Programmstart und Frogrammende liegen, steht in zwei Zeigern
in der Zeropage:

PRINT PEEK(43) + 25& % PEEK (44)

ergibt den BASIC-Start, 2049 beim Commodore 64,

PRINT PEEK(45) + 256 % FEEK (46)

zeigt auf das Byte hinter den drei Nullbytes.

Da ein Programm immer an den BASIC-Start geladen wird, der
durch den Zeiger 43/44 bestimmt ist, kann man also erreichen,
daB ein zweites Programm ans Ende des ersten Programms
geladen wird. In der Praxis missen wir also wie folgt

vargehen:

Zuerst laden wir das erste Programm in den Speicher. Jetzt
holen wir uns den Wert des Programmendes.

A = PEEK(45) + 256 * FEEK(46)

Dieser Wert wird um 2 vermindert, damit nachher die beiden
Nullbytes am Frogrammende mit (Gberschrieben werden.

A=A -2

Nun merken wir uns den urspringlichen Wert des BASIC-Starts.

306

FPRINT PEEK (43), PEEK(44)

Jetzt setzen wir diesen Wert als BASIC-Start.
POKE 43, A AND 255 : POKE 44, A / 256

Nun kénnen wir das zweite Programm nachladen.
LOAD "PROGRAMM 2" .8

Wenn wir nun die alten Werte fir den BASIC-Start wieder
setzen, z.B. 1 und 8 beim Commodore 64 (wie oben mit dem
PRINT-Befehl erhalten), haben wir das komplette Programm im
Speicher und kiénnen es uns mit LIST ansehen oder mit SAVE
komplett abspeichern.

FOKE 43,1 : POKE 44,8
Bei dieser Methode ist jedoch folgendes zu beachten:

Das angehangene Programm darf nur Zeilennummern enthalten,
die gréfBer sind als die griBte Zeilennummer des ersten
Programm, da andernfalls diese Zeilennummer nie mit GOTO oder
GOSUB erreicht werden kénnten und die geordnete Reihenfolge
nicht gewahrleistet wire.

Dieses Verfahren eignet sich vor allem zum Anlegen einer
Unterprogrammbibliothek fur ofter gebrauchte Routinen, die
dann nicht jedesmal neu programmiert werden missen. Gehen Sie
beim Anlegen Ihrer Frogrammbibliothek am besten so vor, daB
Sie fir jedes Programm einen bestimmten Zeilennummernbereich
reservieren, z. B. 20000 - 25000, 235000 — 30000 usw. Wollen
Sie mehrere Programme in der oben beschriebenen Weise
nachladen, missen Sie zuerst die Programme mit den kleinsten
Zeilennummer laden und danach das Programm mit den néchst
hiheren Nummern.

307

4.6 Disk—-Monitor fir Commodore &4 und VC 20

In diesem Kapitel stellen wir Ihnen ein sehr niitzliches
Werkzeug fiir den Umgang mit Ihrer Floppy vor, das Sie in die
Lage versetzt, jeden beliebigen Black von Diskette zu laden,
auf dem Bildschirm anzuzeigen, zu a&andern und wieder auf
Diskette zuriick zu schreiben.

Das Programm ist aus Geschwindigkeitsgriinden— vollkommen in
Maschinensprache geschrieben. Folgende Befehle werden Ihnen
zur Verfiigung gestellt:

Lesen eines Blocks von Diskette
Schreiben eines Blocks auf Diskette
Anzeige eines Blocks auf dem Bildschirm
Andern eines Blocks auf dem Bildschirm
Senden von Diskettenbefehlen

Anzeigen der Fehlermeldung der Diskette
Rickkehr zu BASIC

* % k k % k %

Das Programm meldet sich nach dem Starten (automatisch durch
das BASIC-Ladeprogramm) mit

DISK-MONITOR V1.0
>

und erwartet Ihre Eingabe. Geben Sie jetzt * ° (Klammeraffe)
ein, so wird die Fehlermeldung von Diskette geholt und auf
dem Bildschirm angezeigt, z.B.

00, ok,00,00

Wollen Sie einen Befehl an die Diskette senden, so geben Sie
‘P gefolgt von dem Befehl ein. Initialisieren kénnen Sie die
Diskette dann mit

>§1

Sie kdénnen so samtliche Diskettenbefehle senden, die Sie
sonst {ber die Befehlsfolge

OPEN 15,8,15
PRINT# 15, “"Befehl"
CLOSE 15

senden wirden. Sie kénnen z.B. Dateien léschen, Disketten
formatieren usw.

Die wichtigste Funktion des Diskettenmonitors ist jedoch der
Direktzugriff auf jeden Block der Diskette. Dazu dienen die
Befehle ‘R° und ‘W'. 'R° steht fir READ und liest einen
gewiinschten Block, ‘W’ bedeutet WRITE und schreibt einen

308

Block auf Diskette. Sie brauchen lediglich anzugeben, welchen
Track und Sektor Sie lesen wollen. Diese Angaben missen in
hexadezimaler Form erfolgen, genauso wie auch die Ausgabe auf
dem Bildschirm erfolgt. Wenn Sie z.B. Track 18, Sektor 1
lesen wollen (den ersten Directoryblock), geben Sie folgenden
Befehl ein:

>R 12 01

Samtliche Eingabe missen also als zweistellige Hexzahlen
erfolgen, die durch ein Leerzeichen von einander getrennt
sind.

Um sich den Block jetzt auf dem Bildschirm anzusehen, dient
der Befehl °‘M°. Wir erhalten z.B. folgende Ausgabe:

DISK-MONITOR V1.0

M

»>:00 12 04 B2 11 01 47 52 41GRA
>:08 46 49 4B 20 41 49 44 2E FIK AID.
>:10 53 52 43 A0 A0 00 00 00 SRC ...
>:18 00 00 00 00 00 00 15 00 ...uun..

>:20 00 00 82 13 00 48 S0 4CHPL
>:28 4F 54 2E 53 52 43 A0 A0 OT.SRC
»:30 A0 A0 A0 A0 AO 00 00 00 e

»>:38 00 00 00 00 00 00 05 00
>:40 00 OO0 82 13 03 56 50 4CVPL
>:48 4F 54 2E 53 52 43 A0 A0 OT.SRC
»>:30 A0 A0 A0 A0 A0 00 00 00 -
>:58 00 00 00 00 00 00 09 00
>:60 00 OO0 B2 13 09 4D 45 4DMEM
>:68 2E 53 52 43 A0 A0 A0 A0 .SRC
>370 A0 A0 A0 A0 A0 00 00 0O -
>:78 00 00 00 Q00 00 00 06 00ca..
>:80 00 00 B2 13 08 4D 45 4DMEM
>:88 2E 4F 42 4A A0 A0 A0 AO .0OBJ
>:90 A0 AD A0 A0 A0 00 00 00 -
>:98 00 00 00 00 00 00 01 00
>:A0 00 00 82 10 00 53 57 41SWA
>:AB 50 2E 53 52 43 A0 A0 A0 P.SRC
>:BO A0 AD A0 A0 AO 00 00 00 -
>:B8 00 00 00 00 00 00 04 00
»:CO 00 00 82 10 01 4D 41 54MAT
>:C8 52 49 98 2E 53 52 43 A0 RIX.SRC
>:D0 A0 A0 A0 A0 AO OO0 00 00 -
>:D8 00 00 00 00 00 00 OD 00
>:E0 OO0 00 82 13 OC 47 41 55GAU
>:EB 53 53 2E 54 45 53 54 AO SS.TEST
>:FO AO A0 A0 A0 AO 00 00 0O e
>:F8 00 00 00 00 00 00 01 00c.-.

Sehen wir uns die Ausgabe mal etwas genauer an. Die erste
Hexzahl nach dem Doppelpunkt gibt die Adresse der folgenden 8
Bytes im Block an, 00 bedeutet das erste Byte innerhalb des
Blocks (Die Nummerierung lauft von 00 bis FF bzw. O bis 255).

309

Nach der Adresse folgen 8 Bytes (4 auf dem VC 20). In der
rechten Halfte steht die entsprechenden ASCII-Zeichen.
Handelt es sich um nichtdruckende Zeichen (ASCII-Kode $00 bis
$1F und $80 bis $9F), so steht dort ein Punkt. Geben Sie wie
oben den Befehl ‘M’ ein, so wird der ganze Block angezeigt.
Da der Block nicht komplett auf den Bildschirm passt, besteht
auch die Mbéglichkeit, sich nur einen Teil anzusehen. Geben
Sie dazu den Adressbereich an den Sie anzeigen mbchten.
Wollen Sie nur die Halfte sehen, schreiben Sie:

>M 00 7F
Die zweite Halfte entsprechend mit:
>M 80 FF

Beim VC 20 kiénnen Sie entsprechend sich jeweils ein Viertel
eines Block ansehen. Wollen Sie nun irgendwelche Daten
andern, so gehen GSie einfach mit dem Cursor an die
entsprechende Stelle und iiberschreiben das entsprechende Byte
und dricken Return. Der neue Wert wird jetzt {bernommen und
gleichzeitig das ASCII-Zeichen in der rechten Hialfte mit
geandert.

Wollen Sie nun den veranderten Block wieder auf Diskette
zuriickschreiben, so benutzen Sie dazu den Befehl ‘W' Auch
hierbei miissen Sie wieder hexadezimal angeben, welchen Track
und Sektor Sie schreiben wollen.

W 12 01

schreibt den Block wieder nach Track 18, Sektor 1, von wo wir
den Block vorher gelesen hatten.

Wollen Sie wieder ins BASIC zuriick, so geben Sie 'X° ein und
der Rechner meldet sich wieder mit °‘READY. . Wollen Sie den
Disk—Monitor danach noch einmal benutzen, brauchen Sie ihn
nicht mehr neu zu laden, sondern kiénnen mit SYS 49152 beinm
b4er bzw. mit SYS 6690 beim VC 20 wieder in den Monitor
springen.

Hier fir den Anfang noch eine Warnung:

Machen Sie unbedingt von Ihrer Diskette, die Sie so behandeln
wollen, eine Kopie, mit der Sie dann arbeiten. Machen Sie
namlich beim Andern oder Schreiben eines Blocks einen Fehler,
kénnen Sie wichtige Informationen auf der Diskette =zerstiéren
und die Diskette ist unter Umstanden auf normalem Wege nicht
mehr zu lesen. Sie sollten sich es daher zur Regel machen,
bei derartigen Manipulation immer mit einer Kopie zu
arbeiten.

Nachfolgend finden Sie das Assemblerlisting dieses (etwas

langeren) Maschinenprogramms, im AnschluB daran wieder
Ladeprogramme in BASIC fir den Commodore &4 und den VC 20.

310

;3 disk monitor wvc20 / cbm 64
§

190: c000 prompt = "

200: c000 ncmds = [s anzahl der befehle

210: c000 input = $ffct

220: c000 talk = $ffha

230: c000 sectalk = $££96

240: c000 iecin = $ffad

250: c000 untalk = $ffab

260: c000 listen = $ffb1

270: c000 seclist = $££93

280: c000 iecout = $ffal

290: c000 unlist = $ffae

300: <000 wride = $fd2

310: c000 open = $ffcO

320: c000 close = $f£§c3

330: c000 setpar = $ffba

340: c000 setnam = $ffbd

350: c000 chkin = $ffco

360: c000 ckout = $ffc9

370: c000 clrch = $ffcc

380: c000 cr = 13

390: c000 quote = $22

400: c000 quotflg = $d4

410: 0200 *= $200 ; basic eingabepuffer

420: 0201 savx *= *+1

430: 0202 wrap *= *+]

440: 0203 bad *= 41

450: 0204 von *= *+1

460: 0205 bis *= *+1

470: 0205 status = $90

480: 0205 sa = $b9 s sekunddr adresse

490: 0205 fa = $ba ; gerdtenummer

500: 0203 fnadr = $bb 3 adresse des filenamens

510: 0205 fnlen = $b7 3 ldnge des filenamens

520: 0205 tapc = $97

610: c000 count = 8 ; anzahl der bytes pro zeile
s 4 beim vc20

620: c000 ready = $e37b 3 $ed467 beim vc20

6302 c000 a2 00 init ldx #0

640: €002 bd B85 c2 msgout lda message,x

650: c005 20 d2 ff jsr write

6460 c008 e8 inx ; einschaltmeldung ausgeben

670: c009 e0 12 cpx #ascdmp-message

680: cO0b dO 5 bne msgout

690: c00d a2 od start ldx #cr

700: c00f a9 3e lda #prompt

710: c011 20 eb c0 jsr wrtwo

710: c014 a9 00 lda #0

710: c016 8d 01 02 sta wrap

720: c019 20 33 cl sti jsr rdoc 3 eingabezeile lesen

730: c0ic c9 3e cmp #prompt

740: cOle 0 9 beq sti

750: €020 c9 20 cap #* " ;s leerzeichen iiberlesen

7601
770:
780:
790:
800:
B40:
850:
860:
870:
880:
890:
900:
910:

260:
970:
980:
990:
1000:
1000:
1000
1010:
1020:
1030:

1040:
1070:
1080:
1090:
1100:
1110:
1120:
1130:
1140:
1150:
1160:

11902
1200:
1210:
1220:
12302
1240:
12502
1240:
1270:
1280
1290:
1300:

1320:
1330z

c022
c024
c026
c029
c02b
c02e
c031
c032
c035
c036
c037
c038
c03a

c03d
c03f
c042
c045
c048
c049
c04b
cOde
c050
c052

c053
c056
c058
c05b
c05c
c03e
c05f
c062
cDb4d
c065
c067

chba
c06b
c0éc
c06d
cObe
c0b6f
c070
c071
c072
c073
c074
c075
c076
c077
c078

f0

97

62
20

0d
d2

02
c0

c0

co

co

c2

c0

beq
s0 ldx
sl cop
bne
stx
lda
pha
lda
pha
rts
52 dex
bpl
imp

dm sta
dmi jsr
lda
jsr
iny
bne
inc
dm2 dec
bne
rts

stl

#ncmds-1 ;s mit befehlstabelle vergleichen
cmds,x

s2

savx ;s nummer des befehls in der tabelle
adrh,x

3 riicksprungadresse auf stack

adrl,x

si ;s schleife iiber alle befehle
start

unterprogramm zur anzeige
des disketteninhalts

tapc

space

buffer,y ; byte aus puffer holen
wrob

dm2
wrap
tmpc
dmi

;s bytes lesen und in speicher schreiben

byt jsr
bece
sta
by3 iny
dec
rts
spac2 jsr
space lda

rdob
by3 3 leerzeichen ?
buffer,y j byte in puffer schreiben

tmpc

space
“ L "

.byte %$2c

crlf 1da
jmp

#cr
write

§
; befehls- und adresstabelle
m

cmds byt
byt
byt
.byt
byt
.byt
adrh byt
byt
byt
byt
byt
byt
adrl byt
.byt
.byt

et 3 speicherinhalt andern
" block schreiben
block lesen
bytes anzeigen
disketten befehl
x" exit
yaltm-1
>direkt-1
>direkt-1
>dsplym-1
>disk-1
>ready-1
<altm-1
<direkt-1
{direkt-1

- e cm e W e

1340: c079 7b .byt <dsplym-1

1350: c07a 3e byt <disk-1

1360: cO7b 7a byt <{ready-1

1370: c07c a0 00 dsplynm ldy #0

1370: c07e 8c 03 02 sty von

1370: c0B81 88 dey

1370: c0B2 Bc 04 02 sty bis

1370 c0BS 20 cf f+ jsr input

1370: c0B8 c9 Od cmp #cr

1370: c08a 0 17 beq dspl

1380: c08c 20 fe cO jsr rdob 3 startadresse lesen
1390: c08F 90 12 bce dspl

1400: c091 Bd 03 02 sta von

1410: c094 20 cf f+ jsr input

1410: c097 c9 od cmp #cr

14101 c099 f0 08 beq dspl

1420: c0%9b 20 fe cO jsr rdob ; endadresse lesen
1430: c0%e 90 03 bcc dspil

1440: c0a0 Bd 04 02 sta bis

1450: c0a3 ac 03 02 dspi ldy von

1460: cDab 20 cb c2 dsp2 jsr testend

1470: c0a9 20 dbé c2 jsraltrit

1470: cOac 98 tya

1480: cOad 20 dc cO jsr wrob s adresse

1490: cObO 20 62 cO jsr space 3 beim vc 20 weglassen
1500: c0b3 a%? 08 lda #count 3§ 8 oder 4

1510: c0bS 20 3d c0 jsr dm 3 anzeigen

1520: cObB 20 97 c2 jsr ascdmp ; ascii-dump

1530: cObb 4c ab cO jmp dsp2 j unbedingter sprung

1550: cObe 4c 0d c0 begsl jmp start
sspeicher dndern ; adresse und daten lesen

1570: c0cl 20 fe cO altm jsr rdaob s adresse lesen
1580: cOc4 90 +8 bcc begsi H
1590: cOcé a8 tay
1600t c0c7 a% 08 lda #count 3 anzahl der bytes
1610: c0c9 B85 97 sta tapc
1610: cOcb 20 33 ci jsr rdoc 3 beim vc20 weglassen
1620t cOce 20 33 cl a§ jsr rdoc
1620: c0dl 20 53 coO jsr byt
1630: c0d4 dO +8 bne aS
1640: c0dé6 20 97 c2 jsr ascdmp
1650 c0d9 4c 0d cO jmp start
b
3 byte als hexzahl schreiben
1710: cOdc 48 wrob pha
1720: cO0dd 4a lsr a
1730: co0de 4a Isr a
1740: cOdf 4a lsr a
17501 c0e0 4a lsr a
1760 cOel 20 4 cO jsr ascii 5 nach ascii convertieren
1770: cOed aa tax
1780: cOe5 4B pla
1790: cOeb 29 0Of and #0111
1800: c0eB 20 f4 cO jsr ascii

3 zeichen in x und a schreiben

313

1820:
1830:
1840:
1850:
1860:
1870:
1880:
1890:
1900:
1910:
1920:

19502
1960:
1970:
1980:
1990:
2000:
2010:
20201
2030:
2040:
2050:
2060:
2070:
2080:
2090:
2100:
2110:
2120:
2130:
2140:
2150:
2140:
2170:
2180:
2190:
2200:
2210:
22201
2230:
2240:
2250:
22460:
2270:
2280:

2320:
2330:
2340:
2350:
2350:
2340:
2370:

cOeb
clec
cOed
c0f0
c0f1
c0f4
c0+5
c0f7
c0f9
cOfb
cOfd

cOfe
c100
c103
cl106
c108
c10a
c10d
cl0f
citl
ci12
ci13
cilé
ci1?
cii8
cli9
clla
clid
c120
c123
c126
c127
c128
cl2a
ci2b
cl2d
ci2e
c130
c132
c133
c136
c138
c13a
ci3b
ci3c

c13f
c142
cl44
cl46
cl48
clda
clad

20

do
a9
85
20
a9

02
33
28
02
3a
0f

02
08

cf

8

0d

cf

27
00
90
65
08

f

02
cl

cl

cl

02
cl
ct
02

£t

co

ff

c0

wrtwo

ascii

ascl

pha
txa
jsr
pla
jmp
clc
adc
bece
adc
adc
rts

write

write

#5556
ascl
#6

#$3a

; hexbyte lesen und nach a bringen

rdob

rdobl

rdob2

rdob3

hexit

hex09
rdoc

lda
sta
jsr
cmp
bne
jsr
cmp
bne
cle
rts
jsr
asl
asl
asl
asl
sta
isr
jsr
ora
sec
rts
cmp
php
and
plp
bee
adc
rts
jsr
camp
bne
pla
pla
jmp

*#0
bad
rdoc
g
rdob2
rdoc
goon
rdob3

hexit
a

a

a

a

bad
rdoc
hexit
bad

#$3a

#l1111

hex09
#8

input

#cr
hex09

start

;5 dos support

disk

jsr
cmp
bne
lda
sta
jsr
lda

input
#cr
dskcmd
#0
status
crlf
48

314

ndchstes zeichen lesen

ndchstes zeichen lesen

cy=0

nach hex wandeln

cy=1

0-9

plus 9 (c-1)

zeichen lesen
cr ?

nein, return

ja, zum start

disk command

status ldschen

2380: c14f BS ba sta fa ;5 floppyadresse

2390: c151 20 b4 f¢ jsr talk

2400: c154 a9 6&f lda #15+$60 ; sa 15
2410: c154 B85 b9 sta sa

2420: c158 20 96 +f jsr sectalk ; sekadr
2430: c15bh 20 a5 ff errin jsr iecin

2440: cl15e 24 90 bit status

2440: c160 70 05 bvs enddsk

2450: c162 20 d2 ¢ jsr write

2460: c145 dO f4 bne errin

2470: c167 20 ab ff enddsk jsr untalk

2480: cléa 4c 0d cO jmp start

2490: cléd c9 24 dskcmd cap #"s$*

2500: cléf £0 id beq errt ; catalog
2510: c171 48 pha

2510: 172 a9 08 1da #8

2520: c174 85 ba sta fa

2530: c176 20 b1l ff jsr listen

2540: cl79 a9 &f lda #15+$60

2550: ci7b 85 b9 sta sa

2560: c17d 20 93 ¢ jsr seclist

2560: c180 48 pla

2570: «c181 20 a8 ff cmdout jsr iecout

2580: c184 20 cf 4 jsr input

2590: c187 c9 od cap #cr

2600: c189 dO f4 bne cmdout

2610: c18b 20 ae ff jsr unlist

2630: ciBe 4c 0d c0O erri jmp start

2640: c191 20 33 cl direkt jsr rdoc

2640: c194 20 fe cO jsr rdob 3 track lesen
2650: c197 90 5 becc errt

2660: 199 8d 27 c2 sta track

2670: ci9c 20 33 ci jsr rdoc

2670: c19f 20 fe cO jsr rdob

2680: cla2 90 ea bcc erri

2690: cla4 Bd 2a c2 sta sector

2690: cla7 20 49 c2 jsr opndir

2690: claa ad 00 02 lda savx

2690: clad c9 01 cap #1

2690: claf f0 le beq diruwrite

2700: cibl a9 3t lda #"1"

2710 c1b3 20 ed cl jsr sendcmd ; block-read befehl senden
2720: clbé a2 0d ldx #13

2730: c1bB 20 cé ff jsr chkin

2740: clbb a2 00 ldx #0

2750: cibd 20 cf £f dirin jsr input

2760: cicO0 9d e0 c2 sta buffer,x

2770: cic3 e8 inx

2770: clcé4 do 7 bne dirin

2780: cicé 20 cc 4 jsr clrch

2790: cic? 20 4e c2 enddir jsr clsdir

2790: «clcc 4c 0d cO jmp start

2800: clicf 20 2c c2 dirwrite jsr bufpnt ; bufferpointer setzen
2810: c1d2 a2 Od ldx #13

2820: c1d4 20 c9 ¢ jsr ckout

315

2830:
2840:
2850:
28460:
2860:
2870:
2880:
2890:
2900:
2910:
2910:
2920:
2920:
2920:
2920:
2930:
2930:
29301
2930:
2940:
2940:
2950:
2960:
2970:
2980:
2980:
2990:
3000:
3010:
3020:
3030:
3040:
3050:
3040:
3070:
3080:
3090:
3090:
3100:
3110:
3120
3130:
3130:
3140:
3150:
3140:
3170:
3180:
3190:
3190:
3200:
3210:
3220:
3230:
3240:

cld7
cid9
cldc
cidf
cle0
cle2
cled
cle?
clea
cled
cifo
clf2
clfs
cifs
clfb
cife
c201
c204
c207
c20a
£20c
c20f
c2l1
c214
c217
c218
c2la
c2lc
c2tf
c227
c22a
c22c
c22e
c231
c233
c236
c239
c23a
c23c
c23e
c241
c249
c24b
c24c
c24e
c251
€253
c256
c259
c25b
€25¢c
c25e
c261
c263
€245

c2
ff

ff

£+
3a
20

ff
ff

dirout

sendcmd

comdout

cmdstr
track

sector
bufpnt

pntout

buftxt
opndir

ldx
lda
jsr
inx
bne
isr
lda
jsr
inp
sta
ldx
lda
jsr
stx
sta
lda
jsr
stx
sta
ldx
jsr
ldx
lda
jsr
inx
cpx
bne
jmp

#0
buffer,x
write

dirout
clrch
#n2"
sendcmd ;3 block-write befehl senden
enddir
cmdstr+1
#15
track
numbasc
track
track+1
sector
numbasc
sector
sector+l
#15
ckout

#0
cmdstr,x
write

#bufpnt-cadstr
comdout
clrch

.asc "ul:l3 0 "
.byt 0,0, " *
.byt 0,0

ldx
jsr
ldx
lda
jsr
inx
cpx
bne
imp

#15
ckout

#0
buftxt,x
write

#opndir-buftxt
pntout
clrch

.asc "b-p 13 0"

lda
tay
ldx
jsr
lda
jsr
jsr
lda
tay
ldx
jsr
lda
ldx
ldy

#15

#8
setpar
#0
setnam
open
#13

#8
setpar
#1
#< dadr
#> dadr

316

3250: c267 20 bd ¢ jsr setnam

3260: c26a 4c c0 ff jmp open
3270: c26d 23 dadr byt "#"
3280: c26be a9 0d clsdir lda #13
3290: €270 20 c3 ff jsr close
3300: 273 a9 of lda #15
3310 c275 4c c3 ff jmp close
3320: €278 a2 30 numbasc ldx #"0" 3 hexzahl nach ascii
3330 c27a 38 sec

3340: c27b e9 0a numb1 shc #10
3350 c27d 90 03 bcc numb2
3360: c27f eB iny

3370: c280 b0 £9 bcs numbl
3380: 282 69 Za numb2 adc #"9"+1
3390: c284 60 rts

34G0: c285 Od message .byt cr

3410 c284 44 49 53 .asc "disk-monitor vi.0"
3430: c297 98 ascdmp tya

3440: c298 38 sec

3440: c299 e9 08 sbc #count
3440: c29b aB tay

3450: c29c 20 62 c0 jsr space
3460 c29+f a%? 12 lda #18B ;5 rvs on
3470 c2al 20 d2 4 jsr write
3480: c2a4 a2 08 ldx #count
3490: c2ab b9 e0 c2 ac2? lda buffer,y
3500: c2a9 29 74 and #$7¢
3510 c2ab c9 20 cmp #" "
3520: c2ad b0 04 becs ac3
3930: c2af a9 2e lda #"."
3540 c2bt dO 03 bne acéd
3550: c¢2b3 b9 e0 €2 ac3 lda buffer,y
3560: c2bé 20 d2 ff ach jsr write
3579: c2b9 a9 00 lda &0

3570: c2bb 85 d4 sta quotflg
3580: c2bd c8 iny

3580: c2be ca dex

3590: c2bf d0 e5 bne ac2
3600: c2cl a9 92 lda #1446 y rvs off
3610: c2c3 4c d2 ff jmp write
3620: c2cb ad 0! 02 testend lda wrap
3620 c2c9 dO 06 bne endend
3630 c2ch cc 04 02 cpy bis
3640: c2ce b0 01 becs endend
3650 c2dO 60 rts

Ib60: c2d1 68 endend pla

3660 c2d2 68 pla

3660: c2d3 4c 0d cO jmp start
36702 c2dé 20 65 c0 altrit jsr crlf
3680: c2d9 a9 3a lda #":"
3690 c2db a2 3e ldx #prompt
3700: c2dd 4c eb c0 imp wrtwo
3730 c2e0 buffer = * 3 256 bytes buffer fiir block

317

Nachfolgend finden Sie wieder das BASIC—-Programm zur Eingabe
des Disk-Monitors.

Disk-Monitor, 64er Version

100 for i = 49152 to 49887

110 read x : poke i,x : s=s+x : next

120 data 162, 0,189,133,194, 32,210,255,232,224, 18,208
130 data 245,162, 13,169, &2, 32,235,192,169, 0,141, 1
140 data 2, 32, 51,193,201, 62,240,249,201, 32,240,245
150 data 162, 5,221,106,192,208, 12,142, o0, 2,189,112
160 data 192, 72,189,118,192, 72, 96,202, 16,234, 76, 13
170 data 192,133,151, 32, 98,192,185,224,194, 32,220,192
180 data 200,208, 3,238, 1, 2,198,151,208,237, 94, 32
190 data 254,192,144, 3,153,224,194,200,198,151, 96, 32
200 data 98,192,169, 32, 44,169, 13, 74,210,255, 58, 87
210 data 82, 77, 64, 88,192,193,193,192,193,227,192,144
220 data 144,123, 62,122,160, 0,140, 3, 2,136,140, 4
230 data 2, 32,207,255,201, 13,240, 23, 32,254,192,144
240 data 18,141, 3, 2, 32,207,255,201, 13,240, 8, 32
250 data 254,192,144, 3,141, 4, 2,172, 3, 2, 32,198
260 data 194, 32,214,194,152, 32,220,192, 32, 98,192,149
270 data 8, 32, 61,192, 32,151,194, 76,166,192, 76, 13
280 data 192, 32,254,192,144,248,168,16%, 8,133,151, 32
290 data 51,193, 32, 51,193, 32, 83,192,208,248, 32,151
300 data 194, 76, 13,192, 72, 74, 74, 74, 74, 32,244,192
310 data 170,104, 41, 15, 32,244,192, 72,138, 32,210,255
320 data 104, 76,210,255, 24,105,246,144, 2,105, 6,105
330 data 58, 96,169, 0,141, 2, 2, 32, 51,193,201, 32
340 data 208, 9, 32, 51,193,201, 32,208, 15, 24, 956, 32
350 data 40,193, 10, 10, 10, 10,141, 2, 2, 32, 51,193
360 data 32, 40,193, 13, 2, 2, 56, 96,201, 58, 8, 41
370 data 15, 40,144, 2,105, 8, 96, 32,207,255,201, 13
380 data 208,248,104,104, 76, 13,192, 32,207,255,201, 13
390 data 208, 39,169, 0,133,144, 32,101,192,169, 8,133
400 data 186, 32,180,255,16%9,111,133,185, 32,150,255, 32
410 data 165,255, 36,144,112, 5, 32,210,255,208,244, 32
420 data 171,255, 76, 13,192,201, 36,240, 29, 72,169, 8
430 data 133,186, 32,177,255,169,111,133,185, 32,147,255
440 data 104, 32,168,255, 32,207,255,201, 13,208,246, 32
450 data 174,255, 76, 13,192, 32, 51,193, 32,254,192,144
4560 data 245,141, 39,194, 32, 51,193, 32,254,192,144,234
470 data 141, 42,194, 32, 73,194,173, o0, 2,201, 1,240
480 data 30,169, 49, 32,237,193,162, 13, 32,198,255,1462
490 data 0, 32,207,255,157,224,194,232,208,247, 32,204
500 data 255, 32,110,194, 76, 13,192, 32, 44,194,162, 13
310 data 32,201,255,162, 0,189,224,194, 32,210,255,232
520 data 208,247, 32,204,255,169, 50, 32,237,193, 76,201
530 data 193,141, 32,194,162, 15,173, 39,194, 32,120,194
540 data 142, 39,194,141, 40,194,173, 42,194, 32,120,194
550 data 142, 42,194,141, 43,194,162, 15, 32,201,255,162
560 data 0,189, 31,194, 32,210,255,232,224, 13,208,245
570 data 76,204,255, 85, 49, 58, 49, 51, 32, 48, 32, O

318

580 data o, 32, 0, 0,162, 15, 32,201,255,162, 0,189
590 data 65,194, 32,210,255,232,224, 8,208,245, 76,204
600 data 255, &6, 45, 80, 32, 49, 51, 32, 48,169, 15,168
610 data 162, 8, 32,186,255,169, O, 32,189,255, 32,192
620 data 255,169, 13,168,162, 8, 32,186,255,169, 1,162
630 data 109,160,194, 32,189,255, 76,192,255, 35,1679, 13
640 data 32,195,255,169, 15, 76,195,255,162, 48, 56,233
650 data 10,144, 3,232,176,249,105, 58, 96, 13, &8, 73
660 data 83, 75, 45, 77, 7%, 78, 73, 84, 79, 82, 32, 86
670 data 49, 46, 48,152, 56,233, 8,168, 32, 98,192,169
680 data 18, 32,210,255,162, 8,185,224,194, 41,127,201
690 data 32,176, 4,169, 46,208, 3,185,224,194, 32,210
700 data 255,169, 0,133,212,200,202,208,229,169,146, 76
710 data 210,255,173, 1, 2,208, 6,204, 4, 2,176, 1
720 data 96,104,104, 76, 13,192, 32,101,192,169, 58,162
730 data 62, 76,235,192

740 if s <> 90444 then print "fehler in datas '!" : end

750 sys 49152

Disk-Monitor, 20er Version

Damit das Programm auch auf dem VC 20 in der Grundversion
lauft, wurde das Ladeprogramm in zwei Teile zerlegt. Geben
Sie beide Programm ein und speichern Sie sie jeweils unter
dem Namen "dos lader.1" bzw. "dos lader.2" auf Diskette ab.
Um den DOS-Monitor zu laden, laden Sie bitte das erste
Programm (’dos lader.1’) von Diskette und starten Sie es mit
‘run’. Wenn alle data’s in Ordnung sind, wird automatisch der
zweite Teil des Laderprogramms nachgeladen und anschlieBend
der DOS—Monitor gestartet, sofern auch hier keine Fehler in
den data-Statements sind.

100 poke 55, 6690 and 255 : poke S6, 6690 / 256 : clr
105 for i = 6690 to 7054 :rem dos lader.1

110 read % : poke i,x : s=s+x : next

120 data 162, 0,189,164, 28, 32,210,255,232,224, 18,208
130 data 245,162, 13,169, 62, 32, 7, 27,169, 0,141, 1
140 data 2, 32, 79, 27,201, 62,240,249,201, 32,240,245
150 data 162, 5,221,140, 26,208, 12,142, 0, 2,189,146
160 data 26, 72,189,152, 26, 72, 96,202, 16,236, 746, 47
170 data 26,133,151, 32,132, 26,185, o0, 29, 32,248, 26
180 data 200,208, 3,238, 1, 2,198,151,208,237, 9&, 32
190 data 26, 27,144, 3,153, 0, 29,200,198,151, 96, 32
200 data 132, 26,167, 32, 44,169, 13, 74,210,255, 58, 87
210 data 82, 77, 64, 88, 26, 27, 27, 26, 27,228,223,175
220 data 175,157, 90,102,160, 0,140, 3, 2,136,140, 4
230 data 2, 32,207,255,201, 13,240, 23, 32, 26, 27,144
240 data 18,141, 3, 2, 32,207,255,201, 13,240, 8, 32
250 data 26, 27,144, 3,141, 4, 2,172, 3, 2, 32,229
260 data 28, 32,245, 28,152, 32,248, 26,169, 4, 32, 95
270 data 26, 32,182, 28, 76,200, 26, 74, 47, 26, 32, 26
280 data 27,144,248,168,169, 4,133,151, 32, 79, 27, 32
290 data 117, 26,208,248, 32,182, 28, 746, 47, 26, 72, 74

319

data 74, 74, 74, 32, 16, 27,170,104, 41, 15, 32, 14
data 27, 72,138, 32,210,255,104, 76,210,255, 24,105
data 246,144, 2,105, 6,105, 58, 96,169, 0,141, 2
data 2, 32, 79, 27,201, 32,208, 9, 32, 79, 27,201
data 32,208, 15, 24, 96, 32, &8, 27, 10, 10, 10, 10
data 141, 2, 2, 32, 79, 27, 32, &8, 27, 13, 2, 2
data 56, 96,201, 58, 8, 41, 15, 40,144, 2,105, 8
data 96, 32,207,235,201, 13,208,248,104,104, 74, 47
data 26, 32,207,255,201, 13,208, 39,169, 0,133,144
data 32,135, 26,169, 8,133,186, 32,180,255,169,111
data 133,185, 32,150,255, 32,165,255, 346,144,112, 5
data 32,210,255,208,244, 32,171,255, 76, 47, 26,201
data 36,240, 29, 72,169, 8,133

if s <> 35614 then print "fehler in datas '!'" : end

load "dos lader.2",8

clr = for i = 7057 to 7422 :rem dos lader.2

read x : poke i,x @ s=s+x : next

data 186, 32,177,255,169,111,133,185, 32,147,255,104
data 32,168,255, 32,207,255,201, 13,208,246, 32,174
data 255, 76, 47, 26, 76, 47, 26, 32, 79, 27, 32, 26
data 27,144,245,141, 70, 28, 32, 79, 27, 32, 26, 27
data 144,234,141, 73, 28, 32,104, 28,173, O, 2,201
data 1,240, 30,169, 49, 32, 12, 28,162, 13, 32,198
data 255,162, 0, 32,207,255,157, o0, 29,232,208,247
data 32,204,255, 32,141, 28, 76, 47, 26, 32, 75, 28
data 162, 13, 32,201,255,162, 0,189, 0, 29, 32,210
data 255,232,208,247, 32,204,255,149, 50, 32, 12, 28
data 76,232, 27,141, 63, 28,162, 15,173, 70, 28, 32
data 151, 28,142, 70, 28,141, 71, 28,173, 73, 28, 32
data 151, 28,142, 73, 28,141, 74, 28,162, 15, 32,201
data 255,162, 0,189, &2, 28, 32,210,255,232,224, 13
data 208,245, 76,204,255, 85, 49, 58, 49, 51, 32, 48
data 32, o0, O, 32, 0, 0,162, 15, 32,201,255,162
data 0,189, %94, 28, 32,210,255,232,224, 8,208,245
data 76,204,255, &6, 45, 80, 32, 49, 51, 32, 48,149
data 15,168,162, 8, 32,186,255,169, O, 32,189,255
data 32,192,255,169, 13,148,162, 8, 32,186,255,169
data 1,162,140,160, 28, 32,189,255, 76,192,255, 35
data 169, 13, 32,195,255,169, 15, 74,195,255,1462, 48
data 56,233, 10,144, 3,232,176,249,105, 58, 96, 13
data 68, 73, 83, 75, 45, 77, 79, 78, 73, 84, 79, 82
data 32, 86, 49, 46, 48,152, 56,233, 4,148, 32,132
data 26,169, 18, 32,210,255,162, 4,185, 0, 29, 41
data 127,201, 32,176, 4,169, 46,208, 3,185, 0, 29
data 32,210,255,169, 0,133,212,200,202,208,229,169
data 146, 76,210,255,173, 1, 2,208, 6,204, 4, 2

data 176, 1, 96,104,104, 746, 47, 26, 32,135, 26,169
data 358,162, &2, 76, 7, 27

if s <> 39496 then print "fehler in datas !!" : end
sys 6690

320

S Die grofien CBM-Floppys
5.1 IEC-Bus und serieller Bus

Commodore 64 und VC 20 haben serienmaBig einen seriellen Bus,
iber den Peripheriegeriate angeschlossen werden konnen, z.B.
die Floppy VC 1541 sowie Drucker und Flotter.

Das Busprinzip ermiglicht es, die Gerate gleichzeitig
anzuschlieBen. Damit die Grate unterschieden werden kénnen,
wird jedem Gerat eine Gerateadresse zugewiesen, unter der man
das Gerat ansprechen kann. Die Standardadresse der Floppy ist
8, ein Drucker wird meist mit Adresse 4 angesprochen. Die
Gerateadresse ist identisch wmit der Primaradresse im
OFEN-Befehl, so offnet z.B.

OFEN 1,4

einen Kanal zum Drucker. Um bei der Floppy nun mehrere
Dateien gleichzeitig d6ffnen zu kénnen, dient eine weitere
Adresse, die Sekundaradresse, zur Unterscheidung. Die Floppy
verfigt dber 16 Sekundaradressen von O bis 15. Drei
Sekundaradressen dienen festen Zwecken, widhrend die iibrigen
13 frei benutzt werden konnen:

Sekundaradresse 0 dient zum Laden von Frogrammen.
Sekundaradresse 1 dient zum Abspeichern von Programmen.
Sekundaradresse 15 ist der Kommando— und Fehlerkanal.

Die uUbrigen Sekunddradressen 2 bis 14 kénnen frei zum Offnen
von Dateien benutzt werden.

Die iUbertragung zwischen Commodore 64 und VC 1541 geschieht
seriell iiber diesen Bus. Dabei bedeutet seriell, daB die
Daten bitweise dber nur eine Leitung ubertragen werden.
Intern werden die Daten im Rechner und Floppy Jjeweils zu 8
Bit gleich ein Bit gleichzeitig gespeichert und verarbeitet.
Soll ein Byte nun seriell iibertragen werden, so wird jedes
Bit einzeln iiber eine Datenleitung gesandt. Damit Sender und
Empfanger sich bei der Ubertragung auf einander abstimmen
kénnen, werden noch sogenannte ‘Handshake ' —Leitungen
bendtigt. Sehen wir uns den Anschlufl des seriellen Bus einmal
genauer an, so finden wir 6 Leitungen:
Pin Belegung
SRE IN
Masse
ATN
CLCK
DATA
RESET

WD WK -

321

Will der Rechner Daten zur Floppy iibertragen, so wird die
Leitung ATN (Attention, Achtung) gesetzt. Ist dieses Signal
gesetzt, unterbrechen alle Geridte am Bus ihre augenblickliche
Arbeit und iUbernehmen das nachfolgend ibertragene Byte. Die
Daten kommen bitweise i{ber die Leitung DATA. Damit die
Empfanger wissen, wann das nachste Bit kommt, wird bei jeden
Bit die Leitung CLCK (Clock, Takt) invertiert. Dieses
ibertragene Byte ist die Gerateadresse. Stimmt dieser Wert
nicht mit der Geriteadresse der empfangenden Gerats dberein,
werden die weiteren Daten ignoriert. Ist das Gerat jedoch
adressiert, so kann eine evtl. Sekundaradresse iibertragen
werden. Gleichzeitig mit der Gerateadresse (0 bis 31) wurde
mittels der restlichen drei Bit dem Gerat noch mitgeteilt, ob
es Daten empfangen (LISTEN) oder selbst Daten senden (TALEK)
soll. Abhdngig davon werden jetzt Daten vom Rechner oder von
adressierten Gerat gesandt.

Die Leitung RESET versetzt beim Einschalten des Computers
alle angschlossenen Gerate in den Grundzustand. Uber die
Leitung SR IN (Service Request, Bedienungsanforderung)
kinnen Peripheriegerite dem Buscontroller (in unserem Falle
immmer dem Computer) melden, wenn z.B. Daten bereit stehen.
Diese Leitung wird Jjedoch vom Betriebssystem der
Commodorerechner nicht abgefragt.

Will man mehrere Floppys gleichzeitig anschlieBen, so missen
die Gerdte unterschiedliche Adressen haben. Soll dies nur
gelegentlich geschehen, kann dies mit dem Programm 'DISK ADR
CHANGE ° geschehen, das in Abschnitt 4.2.3 beschrieben ist.
Die neue Adresse, z.B. 9, bleibt jedoch nur solange erhalten,
bis das Gerit wieder ausgeschaltet wird. Goll die Anderung
dauerhaft sein, kann dies durch Trennen einer Bricke im Gerat
erfolgen. .

Analog zu PFrinzip des seriellen Bus funktioniert auch die
Dateniibertragung iiber den IEC- oder IEEE 488 Bus. Der
wichtigste Unterschied besteht jedoch darin, daB die Daten
nicht seriell, sondern parallel iber 8 Datenleitungen
gleichzeitig ibertragen werden. Auflerdem sind noch
zusatzliche Handshakeleitungen vorhanden, s0 dafi der
parallele IEC-Bus ein 24adriges Kabel bendtigt. Der
Hauptvorteil des IEEE 488 Bus besteht aufgrund der
gleichzeitigen Ubertragung eines kompletten Bytes in dem
damit erreichten Geschwindigkeitsvorteil. Durch Messungen
ergibt sich, daB der IEC-Bus etwa 5 mal schneller als der
serielle Bus ist: 1,8 KB/s gegeniiber 0.4 KB/s. Damit dauert
das Laden eines Programms von 10 KByte mit der VC 1541 ca. 25
Sekunden; auf der sonst identischen CBM 2031 jedoch weniger
als 6 Sekunden. Allein aus diesem Grunde kann es sich also
schon lohnen, seinen Rechner mit einem IEC-Bus auszuriisten.

Gleichzeitig besteht damit die Méglichkeit, auf alle anderen
FPeripheriegerate der grofen CBM-Computer zugreifen zu kinnen.

322

5.2 Gegeniiberstellung aller CBM-Floppy

In der folgenden Tabelle finden Sie die technischen Daten
aller CBM-Floppys zum Vergleich gegeniibergestellt.

Die technischen Daten aller Commodore-Floppy-Laufwerke

Modell 1541 2031 4040 8050 8250
DOS-Version (en) 2.6 2.6 2.1/ 2.5/ 2.7
2.7 2.7
Laufwerke 1 1 2 2 2
Kopfe pro Laufwerk 1 1 1 1 2
Speicherkapazitit) 170 K 170 K 340 K 1.05 M 2.12 M
Sequentielle Datei 168 K 168 K 168 K 521 K 1.05 M
Relative Datei 167 K 167 K 167 K 183 K/ 1.04 M
518 K
Pufferspeicher (KB) 2 2 4 4 4
Tracks 35 35 35 77 77
Sektoren pro Track 17-21 17-21 17-21 23-29 23-29
Bytes pro Block 256 256 256 256 256
freie Blocks b64 bb4 1328 4104 8266
Directory und BAM (Track) 18 18 18 38/39 38/39
Directoryeintréage 144 144 144 224 224
iibertragungsrate (KB/s)
intern 40 40 40 40 40
iber ser./IEC-Bus 0.4 1.8 1.8 1.8 1.8
Zugriffszeiten (ms)
Track zu Track 30 30 30 S S
mittlere Zeit 3460 360 360 125 125
Umdrehungen pro Minute 300 300 300 300 300

Uberblick iber die "grofen" CBM-Floppys

Die VC-1541 Floppy ist von der Speicherkapazitidt her die
kleinste CBM-Floppy, bis jetzt jedoch auch die einzige Floppy
mit seriellem Bus zum direkten AnschluB an Commodore &4 und
vc 2o.

Von den Funktionen, dem Aufbau und der Arbeitsweise her
identisch ist die Floppy CBM 2031. Der einzige Unterschied
zur VC 1541 ist die Ausristung mit dem parallelen IEEE 488
Bus im Gegensatz zum seriellen Bus. Dies bringt eine
bedeutende Erhiéhung der Uber tragungsgeschwindigkeit zZum

323

=

Rechner etwa um den Faktor 5 mit sich. Zum AnschluB an
Commodore 64 oder VC 20 benidtigt man ein IEC-Bus-Modul,
ebenso wie bei allen weiteren CBM-Floppys. Vom Speicherformat
ist die CBM 2031 voll kompatibel zur VC 1541; beide haben 170
KB pro Diskette. Disketten die auf einem Gerat beschrieben
wurden, kdinnen vom jeweils anderen Gerat gelesen und
gschrieben werden. Dies gilt auch fir die nachste Floppy in
dieser Reihe, die CEBM 4040. Die 4040 ist ein Doppellaufwerk
mit zweimal 170 KB.

Der Vorteil eines Doppellaufwerks liegt nicht allein in der
doppelten Speicherkapazitiat, sondern vor allem in der Mig-

" lichkeit, Daten von einem Laufwerk zum anderen zu iber-

tragen. Dies ist einmal mit kompletten Programmen und Dateien
mit dem auch bei der 1541 vorhandenen Befehl ‘copy’ méglich,
z.B. kopiert

OFEN 1,8,15, "Cl:TEST=0:TEST" bzw.
cory “"TEST",DO TO "TEST",D1

die Datei “TEST® von Laufwerk O unter dem gleichen Namen auf
Laufwerk 1. Ebenso kann man mehrere Dateien von unter-—
schiedlichen Laufwerken zusammenfiigen (‘'concat’). Die wich-—
tigste Miglichkeit des Doppellaufwerks ist jedoch das
Duplizieren von kompletten Disketten. Dies geschieht eben-
falls mit einem Befehl vom Rechner; das Laufwerk formatiert
dann automatisch die neue Diskette und kopiert dann Track fiir
Track von einem Laufwerk auf das andere. Der Befehl dazu
lautet:

OPEN 1,8,15, “D1=0" bzw.
BACKUP DO TO D1

Das ganze dauert auf der 4040 keine 3 Minuten; der Rechner
kann wahrend dieser Zeit weiterarbeiten, da die Floppy diese
Arbeit komplett ibernimmt.

Die beiden anderen CBM-Floppys CBM BOS0 und 8250 beschreiben
die Disketten mit doppelter Dichte (’'double density’, 77
Tracks). Auf der 1541 bzw. 4040 beschriebene Disketten sind
dem zufolge nicht mit 8050/8250-Disketten kaompatibel.
Programme und Daten lassen sich jedoch, z.B. mit dem Programm
‘COPY/ALL ", von einem Format auf ein anderes ubertragen.
Dafiir treten diese Flopppies durch die bedeutend hihere
Speicherkapazitat hervor: 1 MB bei der 8050 und 2 MB bei der
B8250. Die doppelte Kapazitat der B250 wird durch Ausnutzen
beider Diskettenseiten wvon der Floppy erreicht ("double
sided’), sie hat 2 Schreib/Lesekipfe pro Laufwerk. Um die
gesamte Kapazitat auch fir relative Files ausnutzen zu kénnen
(siehe Kapitel 3.4) wurde hierbei ein sogenannter
‘Super—Side-Sektor’ eingefihrt, der die Zeiger auf 127
Gruppen von je & Side-Sektor—Blicken enthdlt. Dadurch kann
hier eine relative Datei (theoretisch) 23 MB umfassen (bei
der 8050 ab DOS-Version 2.7). iUber IEC-Bus lassen sich die

324

Floppys problemlos an Commodore 64 und VC 20 anschlieBen, so
daf3 auch diese Computer ‘on 1line’ auf mehrere Megabyte
zugreifen kiénnen.

Ein weiterer Vorteil der grofien CBM-Floppys ist ihr doppelt
so groBer Pufferspeicher. Dadurch sind Sie in der Lage, mehr
Dateien gleichzeitig offen zu halten als dies mit der VC 1541
méglich ist. Hier koénnen Sie gleichzeitig bis zZu S
sequentielle Dateien oder bis zu 3 relative Dateien offen
halten, natirlich auch eine Kombination daraus, z.B. 2
relative und 2 sequentielle.

Im folgenden werden die unterschiedliche Lage und Aufbau von
BAM und Directory beim 154174040 Format mit dem 8050/
8250-Format verglichen.

Beim 8050/8250-Format werden die Tracks 38 und 39 fir BAM und
Directory benutzt. In Track 39 Sektor o] stehen der
Diskettenname und das Formatkennzeichen.

>z00 26 00 43 00 00 00 43 42 &%.C...CE
»>:08 4E 20 38 30 35 30 A0 A0 M B80SO
»>z10 A0 A0 AD AO A0 A0 AO AO

»:18 30 31 A0 32 43 A0 A0 AD O1 2C

In Byte 0 und 1 steht der Track/Sektor-Zeiger auf den ersten
BAM Block (Track 38 Sektor 0). Byte 2 enthalt das
Formatkennzeichen ‘C’. Byte drei bis S5 sind ungenutzt. Von
Byte & bis 21 steht der Diskettenname, aufgefiilllt mit ‘Shift
Space’, in unserem Falle ‘'CBM 8050°. Byte 24 und 25 enthalten
die ID ‘01°, widhrend in Byte 27 und 28 das DOS-Format '2C°
steht. Der Rest des Blocks ist unbenutzt.

Die BAM passt hier nicht mehr in einen Block und wird daher
dber Track 38 verteilt; bei der 8050 werden Sektor O und 3
benutzt, bei der 8250 zusatzlich noch Sektor 6 und 9. Da hier
auch mehr Sektoren pro Track benutzt werden, muBte der
BAM-Eintrag fir jede Spur vergriBert werden und belegt jetzt
S Byte. Dabei enthdlt das jeweils erste Byte wieder die
Anzahl der freien Sektoren pro Track und die nachfolgenden
Bytes enthalten das Bitmuster der freien und belegten
Sektoren (0 = Sektor belegt, 1 = Sektor frei). Hier haben wir
den Inhalt von Track 38 Sektor O.

>:00 26 03 43 00 01 33 1D FF
>:08 FF FF 1IF 1D FF FF FF 1IF
»>:10 1D FF FF FF 1F 1D FF FF
»>:18 FF 1F 1D FF FF FF 1F 1D
>:20 FF FF FF 1F 1D FF FF FF
»:28 1IF 1D FF FF FF IF 1D FF
>:30 FF FF IF 1D FF FF FF 1F
»>:38 1D FF FF FF iF 1D FF FF
»>:40 FF 1F 1D FF FF FF iF 1D
>:48 FF FF FF 1IF 1D FF FF FF
>:50 1IF 1D FF FF FF 1F 1D FF
>:SB FF FF IF 1D FF FF FF 1F
>:60 1D FF FF FF 1F 1D FF FF

2]
M
[4]

»:68 FF 1F 1D FF FF FF 1F 1D
»:70 FF FF FF 1F 1D FF FF FF
»:78 1F 1D FF FF FF 1F 1D FF
>:80 FF FF 1F 1D FF FF FF 1F
>:88 1D FF FF FF 1F 1D FF FF
>:90 FF 1F 1D FF FF FF 1F 1D
>:98 FF FF FF 1F 1D FF FF FF
>:A0 1IF 1D FF FF FF 1F 1D FF
>:A8 FF FF IF 18 FC F3 EF 1IF
>:BO 00 00 00 00 00 00 00 00
»>:B8 00 00 00 00 00 00 00 OF
>:CO F4 93 46 1A 18 &C FB FF
>:C8 1F 00 00 00 00 00 00 00
>:DO 0O 00 00 00 00 OO 00 00
>:D8 OS5 00 00 4D 04 1B FF FF
>:EQ0 FF 07 1B FF FF FF 07 1B
>:E8 FF FF FF 07 1B FF FF FF
>:FO 07 1B FF FF FF 07 1B FF
>:F8 FF FF 07 1B FF FF FF 07

Die Bytes 0 und 1 zeigen wieder auf den nachsten BAM-Block,
hier Track 38 Sektor 3. Byte 2 enthilt wieder das
Formatkennzeichen ‘C’. In Byte 4 stehen die Tracknummern, fiir
die dieser BAM-Teil zustandig ist; hier Track 1 bis 5S1. @b
Position 6 finden wir die S-Byte—Eintriage fir jede Spur. Der
nidchste BAM-Block ist analog aufgebaut, ist bei der B80S0 fir
die Tracks S2 bis 77 zustdndig und belegt die Bytes bis 140.
Der letzte BAM-Block zeigt immer auf den ersten
Directory-Block: Track 39, Sektor 1.

Bei der 8250 sind 4 Blocks fir die BAM erforderlich, Track 38
Sektor O enthdlt die Tracks 1 bis 51, Track 38 Sektor 3
enth< 32 bis 100, Track 38 Sektor &6 enthdlt Track 101 bis
150 und Track 38 Sektor 9 schlieBlich ist fir die Tracks 151
bis 154 zustandig.

Die Directoryspur, Track 39, enthalt noch 28 freie Blocks; es
sind deshalb 28%8 = 224 Directoryeintrage miglich im Gegen-
satz zu 144 bei 1541/4040. Der Aufbau der Directory ist bei
allen Formaten gleich. Im folgenden die Track—-Sektor-Belegung
noch einmal tabellarisch:

1541 / 4040 8050 / 8250
Tracks 1 -17 = 0 - 20 1 -39 : 0 - 28 Sektoren
18- 24 : 0 - 18 40 - 53 : O — 26
25- 30 : 0 - 17 S4 - 64 : O - 24
31— 35 : 0 - 16 &5 - 77 = 0 — 22
nur 8250
78 —-116 : 0 — 28
117 -130 = O - 26
131 —-141 : O - 24
142 —-154 : O - 22
Blocks 683 2083 / 4186
freie Blocks 664 2052 /7 4133

326

Mit DATAMAT haben wir das erste Programm in der neuen Reihe der
DATA BECKER PROGRAMME
vorgestelit. Ziel dieser neuen Reihe ist es, den Anwenderndes COMMODORE 64
fir wenig Geld professionelle Programme zugénglich zu machen. Nur in einem
Punkt haben wir Kompromisse gemacht: beim Preis. Jedes der Programme
kostet trotz der auBergewohnlichen Leistungsmerkmale nur
DM 99,- (unverbindl. Preisempfehlung incl. 14% MwSt.)

Ab Oktober/November '83 sind auch die folgenden Programme erhaltlich:

PROFIMAT

Ein Spitzenpaket fir Maschinenspracheprogrammierer. PROFIMAT enthait
nicht nur unseren komfortablen Maschinensprache-Monitor PROFI-MON,
sondern auch PROFI-ASS, einen sehr leistungsfahigen Assembler fir den
COMMODORE 64. PROFI-ASS bietet unter anderem formatfreie Eingabe,
komplette Assembilerlistings, ladbare Symboltabellen (Labels), verschiedene
Moglichkeiten zur Speicherung des erzeugten Maschinencodes, redefinierbare
Symbole, eine Reihe von Pseudo-Codes (Assembleranweisungen), bedingte
Assemblierung und die Moglichkeit zur Erzeugung von Assemblerschieifen.
PROFIMAT kostet komplett nur DM 99,-.

BASIC 64

Dieser neue 1-Pass-BASIC-Compiler macht Ihre Programme bis zu 10mal
schneller. Er erzeugt direkten Maschinencode, der beliebig im Speicher
plazierbar ist. BASIC 64 unterstutzt FlieBkommaarithmetik, Stringverwaltung
und den gesamten 64er Befehlssatz bis auf FRE, TAB, SPC, ON X GOTO/
GOSUB, mehrdimensionale Felder und Klammerrechnung. Ein Superknulier fur
nur DM 99,-.

PASCAL 64

Endlich ein PASCAL fiir den 64er. PASCAL 64 hat einen groBen Befehlssatz mit
allen wesentlichen Standardbefehlen und enthalt auch Dateiverwaltungsbefehle.
AOS-Arithmetik real und integer. Kein eigener Editor erforderiich, da im
Commodore Editor-Modus eingegeben werden kann. PASCAL 64 ist sehrschnell,
da echter Maschinencode erzeugt wird, und kostet komplett mit ausfuhrlichem
Handbuch nur DM 99,-.

SUPERGRAPHIK 64

Die neueste Version unserer beliebten SUPERGRAPHIK enthalt jetzt Gber 30(!)
Befehle zur Ausnutzung der fantastischen Moglichkeiten, die der 64 mit
hochauflésender Graphik und Farbe bietet. Mit SUPERGRAPHIK 64 kdnnen Sie
Punkte, Linien und Kreise ziehen, SPRITES definieren und manipulieren, Farben
setzen, komplette Graphikbildschirme auf Diskette abspeichern bzw. laden und
vieles andere mehr. Ergdnzt wurde die SUPERGRAPHIK 64 zusétzlich um
SUPERSOUND, eine neue Befehiserweiterung zur Nutzung der hervorragenden
Soundméglichkeiten des 64. Mit SUPERGRAPHIK 64 machen Sie mehr aus
Ihrem 64er, und das fir nur DM 99,-.

TEXTOMAT

Ein auBergewdhnliches Textverarbeitungsprogramm. Bis zu 255 Zeichen pro
Zeile mit horizontalem Scrolling, Texte bis zu 24000,-Zeichen, Textbaustein-
Verarbeitung, umfangreiche Formatierungsmoglichkeiten, Schnittstelle zu
DATAMAT fur Rundschreiben und Serienbriefe und vieles andere mehr.
TEXTOMAT ist komplett in Assembler geschrieben und sehr schnell.
TEXTOMAT ist naturlich in deutsch, mit deutscher Bedienerfihrung und kostet
mit ausfihrlichem Handbuch nur DM 99,-.

DATAMAT

Eine universelle Dateiverwaltung, die Sie von der Adressverwaltung Uber die
Mitgliederverwaltung bis zur Lagerbuchfiihrung auf vielfaltigste Weise nutzen
kéonnen. Die frei gestaltbare Eingabemaske kann bis zu 50 Felder, max. 40
Zeichen pro Feld und max. 253 Zeichen pro Datensatz enthalten. Bis zu 2000
Datensatze pro Diskette sind moglich. Nach allen Feldern kann sortiert und selek-
tiert werden, sogar nach mehreren gleichzeitig. Auswertungen konnen als Listen
und als Etiketten gedruckt werden. Ein Superprogramm, das zu jedem 64er
gehoren sollte. Komplett mit ausfihrlichem Handbuch nur DM 99,-.

KONTOMAT

Ein Einnahme-UberschuBprogramm nach § 4 (3) EStG mit Kassenbuch,
Bankkontenliberwachung, automatischer Steuerbuchung (Brutto u. Netto), AfA
Tabellenerstellung, Kontenbléattern & Journal, Ermittlung der USt.-Voranmel-
dungswerte und Monats- und Jahresrechnung. KONTOMAT ist voll para-
meterisiert (Firmendaten, Steuersatze, Konten, Buchungstexte) und 1aBt sich
damit an lhre Bedurfnisse anpassen. KONTOMAT ist geeignet fur alle
Selbstédndigen und Gewerbetreibenden, die nicht laut HGB zur Buchfihrung
verpflichtet sind. Komplett mit ausfiuhrlichem Handbuch nur 99,-.

FAKTUMAT

Eine Sofortfakturierung mit integrierter Lagerbuchfiihrung. Die Kunden- und
Artikelstammdatei ist voll pflegbar. Steuersatze, MaBeinheiten und Firmendaten
sind individuell anpaBbar. Schneller Diskettenzugriff auf Kunden- und
Artikeldaten. Schnittstelle zur Textverarbeitung. Komplett mit ausfuhrlichem
Handbuch nur DM 99,-.

SYNTHIMAT

Mit diesem Superprogramm verwandeln Sie thren 64er in einen professionellien,
polyphonen, dreistimmigen Synthesizer, mit dem Sie Uber die Tastatur ganze
Akkorde spielen kdnnen. Zu den unglaublich vielen Mdglichkeiten dieses
Programms gehort auch die ,Bandaufnahme-/Wiedergabe" direkt auf bzw. von
Diskette. Verwandeln Sie lhren 64er fir wenig Geld .in eine Super-Musik-
maschine mit SYNTHIMAT. Komplett mit ausfihrlichem Handbuch nur DM 99 -.

DATA BECKER PROGRAMME erhalten Sie dort, wo Sie auch DATA BECKER
BUCHER bekommen:

® im COMMODORE-Fachhandel

® in groBen Kauf- und Warenhausern

@ in Fachbuchhandlungen
oder direkt von DATA BECKER. Vertrieb in der Schweiz uber THALI AG und in
Osterreich Gber Fachbuchcenter ERB.

VC-20 - COMMODORE 64 EXECUTIVE

DA STEHT ALLES DRIN!

VC-INFO

3/83 ist da!

Der neue, 80(!)seitige Katalog rund um den
VC-20, COMMODORE 64 und den neuen
COMMODORE EXECUTIVE, mit den
neuesten Software-Hits aus aller Welt,

- interessantem Zubehér, vielseitigen
Peripheriegeriten, neuen Superbiichern,
Programmiertips & Tricks und der
groBen Ubersichtstabelle »Was lauft womit«.
Das VC-INFO 3/83 erhalten Sie gegen
DM 3,- in Briefmarken.

IHR GROSSER PARTNER
FUR KLEINE COMPUTER

DATA BECKER

MerowingerstraBe 30 - 4000 Dusseldorf 1
im Hause AUTO BECKER - Telefon 0211/310010

w
>
(-
=
o
w
X
w
<
©
w
o
o
(o]
o
3
=
o
o
o
N
o
>

IAILND3AXI $9 IHOAOWWOD - 02-2A

EXECUTIVE - COMMODORE 64 - VC-20

DATA BECKER BUCHER

Angerhausen - Briickmann
Englisch - Gerits

64

intern

Das groBe Buch zum
COMMODORE 64
mit
dokumentiertem Schaltplan

EIN DATA BECKER BUCH

Angerhausen - Engllaeh
Gerits

64

Tips & Tricks

Eine Fundgrube fiir den
COMMODORE 64 Anwender

EIN DATA BECKER BUCH

|
|

Jetzt in Uberarbeiteter und erweiter-
ter 3. Auflage: 64 INTERN erklart
detailliert Architektur und tech-
nische Moglichkeiten des C-64, zer-
legt mit einem ausfuhrlich doku-
mentierten ROM-Listing Betriebs-
system und BASIC-Interpreter,
bringt mehr Gber Funktion und
Programmierung des neuen
Synthesizer Sound Chip und der
hochauflosenden Graphik, zeigt die
Unterschiede zwischen VC-20,
C-64 und CBM 8000 und gibt Hin-
weise zur Umsetzung von Pro-
grammen. Zahlreiche lauffertige
Beispielprogramme, Schaltbilder
und als Clou: zwei ausfuhrlich
dokumentierte Original
COMMODORE Schaltplane

zum Ausklappen. Dieses Buch
sollte jeder 64-Anwender und Inte-
ressent haben.

64 INTERN, 3. Auflage 1983,

ca. 320 Seiten, DM 69,-

Die Uberarbeitete und erweiterte

2. Auflage von 64 TIPS & TRICKS
enthalt eine umfangreiche Samm-
lung von POKE’s und anderen nitz-
lichen Routinen, Multitasking mit
dem C-64, hochauflésende Graphik
und Farbe flr Fortgeschrittene,
mehr Uber CP/M auf dem C-64, mehr
Uber AnschluB3- und Erweiterungs-
moglichkeiten durch USER PORT
und EXPANSION PORT, sowie
zahlreiche ausfuhrlich dokumen-
tierte Programme von der SORT-
Routine lber zahlreiche BASIC-
Erweiterungen bis hin zur
3D-Graphik (alle Maschinenpro-
gramme jetzt mit BASIC-Ladepro-
gramm!). 64 TIPS UND TRICKS ist
eine echte Fundgrube fiir jeden
COMMODORE 64 Anwender.

64 TIPS & TRICKS, 2. Auflage 1983,
ca. 280 Seiten, DM 49,-

DATA BECKER BUCHER

Die uberarbeitete und erweiterte
2. Auflage von VC-20 INTERN
R beschaftigt sich detailliert mit
AngerhallEa::”:rhuckmann Technik und Betriebssystem des
VC-20 und enthélt ein ausfuhrlich
dokumentiertes ROM-Listing, die
Belegung der ZEROPAGE und
anderer wichtiger Bereiche, Uber-

sichtliche Zusammenfassungen der
- Routinen des BASIC-Interpreters
und des VC-20 Betriebssystems,

- eine Einfihrung in die Programmie-
,ntern rung in Maschinensprache, eine
—_— detaillierte Beschreibung der
Technik des VC-20 und als Clou
drei Original COMMODORE
Schaltplane zum Ausklappen! Damit
Betriebssystem und Technik ist VC-20 INTERN fiir jeden interes-
des VC-20 sant, der sich ndher mit Technik
und Maschinenprogrammierung
des VC-20 auseinandersetzen
mochte.
EIN DATA BECKER BUCH VC-20 INTERN, 2. Auflage 1983,
ca. 230 Seiten, DM 49 -

Die uberarbeitete und erweiterte
2. Auflage von VC-20 TIPS & TRICKS
Angerhausen - Riedner enthélt eine detaillierte Beschrei-
Schellenberger bung der Programmierung von
Sound und Graphik des VC-20,
mehr Uber Speicherbelegung,
Speichererweiterung und die
optimale Nutzung der einzelnen

Speichermodule, BASIC-Erweite-
| rungen zum Eintippen, umfang-
reiche Sammlung von Poke’s und

- - anderen natzlichen Routinen, zahl-

T’ps & Tr’cks reiche interessante Beispiel- und

_—— Anwendungsprogramme, komplett
dokumentiert und fertig zum Ein-
tippen (z.B. Spiele, Funktionen-
plotter, Graphik Editor, Sound

Eine Fundgrube fiir den Editor) und vieles andere mehr.
VC-20 Anwender VC-20 TIPS & TRICKS ist eine echte
Fundgrube fiir jeden VC-20
Anwender.

VC-20 TIPS & TRICKS, 2. Auflage
EIN DATA BECKER BUCH 1983, ca. 230 Seiten, DM 49,-

DATA BECKER BUCHER

Englisch - Szczepanowski

Das groBe

Floppy-
Buch

Disketten-Programmierung
mit COMMODORE Computern

fiir Anfiéinger, Fortgeschrittene
und Profis

EIN DATA BECKER BUCH

Angerhausen - Schellenberger

64

fiir Profis

Anwendungsprogrammierung
in BASIC
fiir Fortgeschrittene

EIN DATA BECKER BUCH

Darauf haben Sie gewartet: Endlich
ein Buch, das lhnen ausfuhrlich
und verstandlich die Arbeit mit der
Floppy VC-1541 erklart. DAS
GROSSE FLOPPY BUCH ist fur An-
fanger, Fortgeschrittene und Profis

~ gleichermaBen interessant. Sein In-

halt reicht von der Programmspei-
cherung bis zum DOS-Zugriff, von
der sequentiellen Datenspeiche-
rung bis zum Direktzugriff, von der
technischen Beschreibung bis zum
ausfihrlich dokumentierten DOS
Listing, von den Systembefehlen
bis zur detaillierten Beschreibung
der Programme der Test/Demodis-
kette. Exakt beschriebene Beispiel-
und Hilfsprogramme erganzen die-
ses neue Superbuch. Mit dem
GROSSEN FLOPPY-BUCH
meistern Sie auch lhre Floppy.
DAS GROSSE FLOPPY BUCH,
1983, ca. 320 Seiten, DM 49 -

Wer besser und leichter in BASIC
programmieren mochte, der
braucht dieses neue Buch.

64 FUR PROFIS zeigt, wie man er-
folgreich Anwendungsprobleme in
BASIC 16st und verrat Erfolgsge-
heimnisse der Programmierprofis.
Vom Programmentwurf Giber Men(-
steuerung, Maskenaufbau, Para-
meterisierung, Datenzugriff und
Druckausgabe bis hin zur Doku-
mentation wird anschaulich mit
Beispielen dargelegt, wie gute
BASIC-Programmierung vor sich
geht. FUnf komplett beschriebene,
lauffertige Anwendungspro- ,
gramme far den C-64 illustrieren
den Inhalt der einzelnen Kapitel
beispielhaft. Mit 64 FUR PROFIS
lernen Sie gute und erfolgreiche
BASIC-Programmierung.

64 FUR PROFIS,

1983, 220 Seiten, DM 49,-
Lieferbar ca. Nov. '83

