
Plenge

DAS
GRAFIKBUCH

ZUM
COMMODORE 64

EIN DATA BECKER BUCH

 Plenge

DAS
GRAFIKBUCH

ZUM
COMMODORE 64

EIN DATA BECKER BUCH

ISBN 3-89011-011-8

1. Auflage

Copyright (C) 1984 DATA BECKER GmbH

Merowingerstr. 30

4000 Düsseldorf

Alle Rechte vorbehalten. Kein Teil dieses Buches darf in

irgendeiner Form (Druck, Fotokopie oder einem anderen

Verfahren) ohne schriftliche Genehmigung der DATA BECKER GmbH

reproduziert oder unter Verwendung elektronischer Systeme

verarbeitet, vervielfältigt oder verbreitet werden.

Wichtiger Hinweis

Die in diesem Buch wiedergegebenen Schaltungen, Verfahren

und Programme werden ohne Rücksicht auf die Patentlage

mitgeteilt. Sie sind ausschließlich für Amateur- und Lehr-

zwecke bestimmt und dürfen nicht gewerblich genutzt werden.

Alle Schaltungen, technische Angaben und Programme in

diesen Buch wurden von den Autoren mit größter Sorgfalt

erarbeitet bzw. zusammengestellt und unter Einschaltung

wirksamer Kontrollmaßnahmen reproduziert. Trotzdem sind

Fehler nicht ganz auszuschließen. DATA BECKER sieht sich

deshalb gezwungen, darauf hinzuweisen, daß weder eine

Garantie noch die juristische Verantwortung oder irgendeine

Haftung für Folgen, die auf fehlerhafte Angaben zurückgehen,

übernommen werden kann. Für die Mitteilung eventueller Fehler

sind die Autoren jederzeit dankbar.

Vorwort

Grafik ist nicht nur eine der Hauptstärken des COMMODORE 64;

COMMODORE hat diese Stärke auch sehr sorgfältig versteckt.

Der Basic - Anfänger kennt Grafik nur bewundernd von den

vielen fertigen Programmen und Aktionspielen, die natürlich

über entsprechende Routinen - meist in Maschinensprache - die

grafischen Fähigkeiten des COMMODORE 64 voll ausnutzen.

Dieses Buch soll nun jedem COMMODORE 64 - Anwender die Mög-

lichkeit geben, auch in eigenen Programmen die Vielzahl

grafischer Möglichkeiten seines Computers zu nutzen.

Als Autor konnten wir Herrn Axel Plenge gewinnen, der den

COMMODORE 64,besonders von der Grafikseite her, wie kaum ein

anderer kennt und dies mit der beliebten Supergraphik ja

bereits eindeutig unter Beweis gestellt hat. Ihm machte das

Schreiben dieses Buches so viel Spaß, und er entdeckte dabei

so viele interessante Sachen, daß das Grafikbuch gleich fast

50 Seiten umfangreicher wurde als geplant. Für Sie als Leser

hat dies viele Vorteile, und wir dürfen Ihnen viel Spaß beim

Ausprobieren der vielen Anregungen und Programme von Axel

Plenge wünschen.

Dr. Achim Becker

Imhaltsverzeichnis

Kapitel

Einleitung......c cece cacees wee cere ewe wee ees wee eee eee ee eB

Kapitel

Bits and ByteES... cere cer ween ewe veves rr9

2.1. Dezimalsystem......:.... error ne rennen see eee cette 9

2.2. Dualsystem...... cece eee te eee rennen wwe ee wees 10

2.3. Hexadezimalsystem...... eee eee cee ewer eee cc eee eee ee 13

2.4. Logische Operationen............ wee ee eee eee ee ee ee 14

Kapitel

Hardwaregrundlagen......cccccccscccceces eee ee we were ee ..16

3.1. Die Register des VIC...... error erne sereere...16

3.2. Betriebsarten des VIC... ... cece ew wen ee eee wee ee ee wee 22d

3.3. Speicherverwaltung des CBM 64.............. see eee ..28

3.3.1. Die Speicherzugriffe des 6510.............. ..31

3.3.1.1. Lesen eines Bytes........ccrer.. oee Sl

3.3.1.2. Schreiben eines Bytes..........-000. 34

3.3.2. Die Speicherzugriffe des VIC..........cceeee .35

3.3.2.1. Speicherfunktionen des VIC..........36

3.3.2.2. VIC-Speicheransteuerung......:..:.....38

3.3.2.3. Verschieben der Bildschirmspeicher..39

3.4. Punkt-Graphik....... cee ee eee eevee cece cece eee eee ee + 5

3.4.1. Farben...... ee eee ee eee ee runs. wee ee ee AS

3.4.2. Hochauflösende Graphik (HGR)......... ernennen. 46

3.4.3. Multicolor-Graphik (MC).....zeceeeereere wee ee DS

3.5. Sprites... ccc ccc ccc reece vr sraseerevees eee ee eee cece ee 55

3.5.1. Aufbau und Farbe normaler Sprites............ 56

3.5.2. Multicolor-Spriteaufbau........ see wee ene ee ...57

3.5.3. Spritedefinition — Farbe.... cc. cw eww cw sw wees 59

3.5.4. Weitere Spriteeigenschaften.......:.seree....63

3.5.4.1. Positionieren........ wee wees 2200 63

3.5.4.2. Vergr6Bern........e.eeees cece eee eee ee OO

3.5.4.3. Prioritat...........2.200.% ween eee ee OE

3.5.4.4. Kollisionen.......... rece e cece eee BF

3.6. Text- und Zeichensatzverwaltung.......:.crereeeeenee. BR

3.6.1. TextseitenorganiSation...... cc cee vvecvvvceses 68

3.6.2. ZeichensatzorganiSation..... cece evevvecvsons 72

3.7. TRQ-MéGglichkeiten..... ccc ccc ec eee wee ee ee eee renee 77

3.7.1. Bildschirmrasterzeilen.......... cc v ev wccceee 80

3.7.2. Lightpen. ccc ccc wn w cr cence r ence rarer vvceses 84

3.7.3. Sprite-Kollisionen...... ccc cece we ewe ee newness 86

Kapitel

Grundsätzliche Graphikprogrammierung........ cc ccccecveccs 88

4.1. Text und Graphik auf dem Low-Res-Bildschirm......... 89

4.2. Programmierung der Punktgraphik........vcceecccceee 102

4.2.1. Initialisieren der Graphik..........2ceceees 104

4.2.1.1. Einschalten der Graphik............ 104

4.2.1.2. Léschen der Graphik............2.00- 106

4.2.1.3. Löschen der Farbe..............c200 107

4.2.1.4. Ausschalten der Graphik........... 108

4.2.2. Einfache Figuren in der Punktgraphik........ 109

4.2.2.1. Pumkt...... cc ccc eee c cern reece vvvns 109

Ai2.2.2. LAnie.. . ccc cre creer even cv cccccnves 114

4.2.2.3. Ellipse/KreisS.... ccc creer ccc cvvecne 119

4.3. Spriteprogrammiecrung... cc ccc eevee scence ecesevveces 122

4.3.1. Erstellung von Sprites (Spriteeditor)....... 123

4.3.2. Darstellung und Programmierung

der Spriteeigenschaften....... ccc eave cscces 145

4.4. ZeichensatZprogrammMie rung... ccc cvcsesesescevscsvssees 157

4.4.1. Anderung einiger Zeichen........cccevvvvvee .158

4.4.2. Änderung eines Zeichensatzes (Zeichenformer)163

4.5. Eingabe/Ausgabe von Graphik und Zeichensatz........ 181

4.5.1. Abspeichern/laden......vsceseeeeeeeeeeeeennee 182

4.5.2. Hardcopy...... meee eee rem eee reece nee escres 184

4.6. IRQ-Handhabung..... ccc scarce cv cer cers ccecessseres 187

4.6.1. Rasterzeilen-IRQ....., ccc creer reer rv nvr nvces 188

4.6.2. Lightpen.... ccc cece cc cence weer nrc ewer cnee 194

4.7. Ein kleines Graphik~-Paket....... cc cccvvccvvcvcvceres 199

Kapitel

ANWENACUNGEN.... cc cree ccc rere crv csccsenseseveccssesesevves 218

5.1. Graphikanwendungen......:sereeeenereeee ernennen. 218

| 5.1.1. Funktionendarstellungen........ cc cece enccves 219

5.1.2. 3-Dimensionale Graphik -—- CAD...........e6- ..232

5.1.2.1. Parallel~-Projektion.............. ..233

5.1.2.2. Zentral-Projektion........:ece.....240

5.1.2.3. 3-D-Funktionen........ bee eer eee eee 242

5.1.2.4. Bewegte Bilder in 3-D..........0..00. 248

5.1.3. Graphische Statistik... ceca cece ev cvs ..251

a) Kurvenstatistik...... error nen 251

b) Balkendiagramme............- nenne. onen. 251

c) Kuchendiagramme.....vezeeeeeereee rennen. 255

.2. Laufschriften..... error ern nen 261

Das Geheimnis der Spiele.........c200. soe e eee oe ee 266

5.3.1. Animation..... wee eee errors eens 267

5.3.2. Scrolling.........-.cees rarer rrr 271

Kapitel

Anhang... ccc ewe wee cee ee wee eee ere eee eee eee rrr 279

.l. Programmoptimierung.........06. cee eee comme eee eee ee 279

6.2. Graphikspeicheraufbau........ cc cc ccc ence cnc ccacccess 282

6.2.1. Graphikspeicher..........ec000. Cee eee eee ...282

6.2.2. Videoram.... .. wee ere cere nrc nnn r enc cvvecece 283

6.3. Farbtabelle...... ce eee wee eee eee ee 2000. - 284

6.4. BildschirmcodeS....... ccc cre c ern crew vce renes one. 285

6.5. Dez-Hex-Dual - Konversionstabelle........ see ewes ..287

6.6. Spriteentwurfsblatt...... ER ...288

6.7. Zeichenentwurfsblatt.......,..2 ccc cc evcccvvee eee ee - 289

6.8. VIC-Register-Ubersicht....... ccc cece ccnnvcces rn 290

6.9. Literaturhinweise........ Cee meee meee r ornare eee ceee 293

6.10.Nachtrag zu Abschnitt 4.1............ mee eeeceveoees 295

1. Kapitel

Einleitung

"64 K RAM, 8 unabhängige Sprites, frei auf dem Bildschirm

bewegbar, hochauflösende Graphik mit 320x200 Punkten,

Multicolorgraphik (160x200 Punkte), 16 Farben, 40 Zeichen, 25

Zeilen, veränderbarer Zeichensatz, sensationelle Interrupt-

möglichkeiten, ..., ein Computer, den jeder kennenlernen,

nein, besitzen muß! ..."

So oder ähnlich wird -wohl auch zurecht- unser guter alter

Commodore 64 angepriesen. Kaum jemand, der sich auch nur ein

wenig mit Computern auskennt, wird an solchen Anzeigen

vorbeischauen, denn Ihr 64er kann wirklich viel.

Doch bald nach dem Kauf und dem hoffnungsvollen Studium der

Betriebsanleitung aber bekommt man ein merkwürdiges Gefühl in

der Magengrube: Kein Wort von der hochauflösenden Graphik,

geschweige denn von solchen Vorzügen wie Zeichen-

satzveränderung oder Interuptfähigkeiten. Selbst das für die

Maßstäbe des Handbuches relativ ausführliche Kapitel über die

Sprites und ihre Programmierung verschleiert die wahren

Möglichkeiten des Gerätes.

Doch wir sollten nicht zu streng mit dieser Kurzanleitung zu

Gerichte ziehen. Um auch nur annähernd alle Vorzüge unseres

Rechners zu beschreiben und gar ihre Anwendung zu demon-

strieren, bedarf es einer etwas umfangreicheren Lehrbuch-

konzeption.

An dieser Stelle greift nun das vorliegende Graphikbuch zum

64er an. Dieses Buch soll Ihnen umfassende Kenntnisse über

das graphische Innenleben eines Computers vermitteln, der

nicht umsonst zum Computer des Jahres 1983 gewählt wurde.

Durch das gesamte Buch zieht sich eine typische Dreiteilung.

Dabei werden alle Fähigkeiten des Rechners unter drei

verschiedenen Gesichtspunkten besprochen und von allen Seiten

beleuchtet. Diese drei Sinnabschnitte behandeln die folgenden

Thenen:

- Hardwaregrundlagen

- grundsätzliche Programmierung

- Anwendungen

Im ersten großen Abschnitt (Kapitel 3) erfahren Sie alles

(wirklich alles), was es über die Bildschirmsteuerung durch

den VIC (Videocontroller), dem Organisator des gesamten Bild-

geschehens, zu erfahren gibt. Hier sehen Sie, welche

Bedeutung beispielsweise den vielen Registern dieses

"Managers" zukommt, was Sprites sind und wie sie organisiert

sind, was man tun muß, um Graphik einzuschalten, zu erstellen

und zu bedienen. Ihnen wird endlich klar, was es mit der

bisher ziemlich undurchsichtig erscheinenden Graphik-,

Zeichensatz- oder Bildschirmspeicher - Verschiebung auf sich

hat, allgemein wie der gesamte Speicheraufbau des 64ers

beschaffen ist und welche Möglichkeiten sich ergeben...

Doch damit kann man gemeinhin noch nicht viel anfangen, wenn

einen das ’Know how’ fehlt, das Wissen um die Programmierung

der vielen verschiedenen Bildschirmfunktionen. So erfahren

Sie im 4. Kapitel, wie Sie die Graphik starten und wie Sie

die ersten einfachen Figuren wie Punkte, Linien, Kreise oder

Ellipsen auf der Graphikanzeige erscheinen lassen. Sprites

und ganze Zeichensätze werden erstellt bzw. verändert. Hierzu

werden Ihnen zwei sehr komfortable Editorprogramme zur Ver-

fiigung gestellt, mit denen Sie ohne viele Mühe, bequem und

handlich diese Dinge erledigen können. Sprites werden auf dem

Bildschirm bewegt und auf Kollisionen etc. überprüft. Weitere

Kapitel führen Sie in das Laden, Speichern und die Erstellung

von Hardcopys der Graphik ein und erläutern Ihnen die

Interrupttechniken. Schließlich, als kleiner Höhepunkt,

ermöglicht ein Graphik-Paket den schnellen und problemlosen

Umgang mit diesem Schatz Ihres Computers.

Wo das 4. Kapitel die Programierung der einzelnen Optionen

des Rechners getrennt behandelt, werden im 5. großen Sinn-

abschnitt schließlich Beispiele der Anwendung des Gelernten

unter Kombination aller seiner graphischen Fähigkeiten Thema

unser Betrachtungen. Hier erfahren Sie, wie Sie das Zusammen-

spiel dieser Dinge organisieren und welche Möglichkeiten sich

ergeben. Kurz, hier entdecken Sie den tatsächlichen Nutzen

des 64ers; auf diesen Abschnitt kénnen Sie verweisen, wenn

Sie jemand fragt: "Ein Computer? Was soll ich damit?"

Wir hoffen, damit jeden 64er - Anwender zu einem absoluten

"Graphik-Freak" zu machen, einem Fachmann in allen Fragen,

der zu Rate gezogen wird, immer dann, wenn andere nicht mehr

weiter wissen. Und sollte doch einmal eine Gedächtnislücke

auftreten, so schlägt er kurz einmal im Anhang nach und schon

weiß er bescheid. Umfangreiche Hinweise auf weiterführende

Literatur runden das Buch ab.

Noch etwas in ’eigener’ Sache: Wir haben eingesehen, daß

nicht jeder die Zeit und Lust aufbringt, jedes der vielen

Programme -vor allem der langen- einzutippen. Da aber ein

wesentlicher Informationsteil ohne diese Routinen verloren

ginge, haben wir uns entschlossen, Ihnen eine Diskette zur

Verfügung zu stellen, auf der alle Programme dieses Buches

plus weiterer nützlicher Utilities abrufbereit und lauffertig

gespeichert sind. Ich versichere Ihnen, die Anschaffung wird

sich lohnen.

2. Kapitel

Bits and Bytes

Um die vielen verschiedenen Faktoren festzulegen, mit denen

Sie die zahllosen Möglichkeiten der Graphikvariation be-

stimmen können, werkeln Sie direkt in der Speicherstruktur

Ihres Gerätes bzw. mit den unterschiedlichen Registern (s.u.)

der integrierten Schaltkreise. Bekommen Sie keinen Schreck!

Wir wollen Sie nicht etwa mit elektronischen Einzelheiten

bombardieren. Zum Verständnis dieser Dinge bedarf es nur

etwas Mathematik, die relativ einfach zu durchschauen ist und

oft schon zum Stoff von 5- oder 6-Klässlern gehört. Es geht

unter anderem um die Darstellung von Zahlen im sogenannten

Binär- oder Dualsystenm.

Für einen gewöhnlichen Computer, der ja bekanntlich aus einer

Unzahl von elektronischen Leitungen und Bausteinen besteht,

gibt es lediglich zwei Zustände, aus denen seine ganze kleine

Welt besteht: Strom ein --- Strom aus. Da wir Menschen nun

aber von ihm eine ganze Menge mehr verlangen, mußten wir uns

etwas einfallen lassen, um mit diesem Mangel zu leben. Wollen

wir zum Beispiel eine Zahl im Computer darstellen, so kommen

wir nicht mit diesen beiden Zuständen aus. Wir könnten zwar

dem Zustand "Strom aus” die Zahl 0 und "Strom ein" die Zahl 1

zuordnen, werden damit aber wohl nicht weit kommen, da wir

außer 0 und 1 noch unendlich viele andere Zahlen darstellen

wollen.

2.12 Dezimalsystem

Im alltäglichen Leben stehen uns 10 Ziffern (0-9) zur

Verfügung (deshalb der Name "Dezimal"system von decem lat. -

zehn), mit denen wir durch einen kleinen Trick sämtliche

weiteren Zahlen darstellen können: Wir reihen einfach mehrere

Ziffern zu einer großen Zahl zusammen. Wollen wir beispiels-

weise bis 1000 zählen, so sind wir bereits bei der Ziffer 9

am Ende unseres Ziffernvorrates. Jedem ist bekannt, daß wir

danach einfach wieder von vorne (bei 0) anfangen zu zählen,

‚wobei wir jedoch als Kennzeichen, daß wir bereits einmal bei

9 angelangt sind eine 1 vor die laufende Ziffer schreiben.

Die nächsten Zahlen nach 9 lauten bekanntlich 10 (eins null),

il (eins eins), 12 (eins zwei) usw. Bei 19 sehen wir uns dem

gleichen Problem gegenübergestellt. Doch wieder beginnen wir

bei 0 und erhöhen lediglich die vorgestellte Ziffer um eins.

Das Ergebnis: 20 (zwei null). Sind wir bei dieser ersten

Ziffer ebenfalls bei 9 angekommen (99), so beginnen wir hier

gleichfalls einfach wieder bei 0 und stellen davor die Zahl 1

(100). Nach diesem Prinzip werden schließlich sämtliche

ganzen Zahlen dargestellt. Dabei werden die einzelnen Ziffern

einer Zahl Stellen genannt und diese wiederum als Einer,

Zehner, Hunderter, Tausender, ... bezeichnet. Eine Zahl z,

deren Ziffern (dı, d2,...) bekannt sind, läßt sich somit

wie folgt errechnen:

z = do*10% + dı*x10! + d2X102 + ...

wobei d jeweils die Einer-, Zehner-, Hunderter-, ... -stellen

bezeichnet (eine kleine Anmerkung: eine Zahl hoch 0 ergibt

stets 1, also 10 hoch 0 ist gleich 1, genauso wie z.B. 5 hoch

0 gleich eins ist --- Ausnahme: 0 hoch 0 ist nicht defi-

niert). Eine andere Darstellung ist die folgende (hier an dem

Beispiel der willkürlich gewählten Zahl 3124):

104 | 103/ 102/102); 109

0 3 1 2 4

Die obere Zeile nennt dabei den Wert der einzelnen Stellen,

die untere Zeile den Faktor d.

2.2 Dualsystem

Wir besitzen, wie gesagt, zehn Ziffern, um unsere Zahlen

einigermaßen übersichtlich darzustellen. Unser armer Computer

muß sich jedoch mit 2 Ziffern begnügen (0 und 1), wie oben

dargelegt. Wie aber zählt er dann bis 1000? Ganz einfach:

genauso wie wir! Also:

0, 1

damit ist sein Ziffernschatz "verbraucht" und er startet

10

wieder bei 0, setzt aber gleichfalls als Kennzeichen eine 1

davor und erhält:

10

Es geht weiter mit:

11,100,101,110,111,1000,1001,1010,1011,1100,1101,....

Wie Sie sehen, ist das sogenannte Binärsystem völlig analog

zu dem uns vertrauten Dezimalsysten aufgebaut. Entsprechend

läßt sich der Wert einer Dualzahl durch die folgende Formel

errechnen:

z = bo*2° + bi *21 + bo*22 +

wobei die Parameter bo,1,2,... die einzelnen Ziffern,

angefangen von der ersten (Einerstelle) bis zur höchsten

Dualstelle, darstellen. Kennen Sie also die Ziffern einer

Dualzahl, so ist es Ihnen mit Hilfe dieser Formel möglich,

sie in eine Dezimalzahl umzurechnen. Wie oben kann dies

ebenfalls durch die folgende Tabelle erreicht werden (hier an

dem Beispiel der Zahl 10110100):

27-| 264 257 945 2335 22-| 21-=| 20=

128 64 | 32 | 16 8 4 2 1

1 0 1 1 0 1 0 0

128 +32 |+16 +4 = 180

Eine solche Stelle nennt man nun in der Computerfachsprache

ein Bit, d.h. eine Informationseinheit. Unter Informations-

einheit (oder Bit) versteht man also die Möglichkeit zweier

Zustände (ja oder nein bzw. 1 oder 0). In Ihrem Rechner sind

nun 8 solcher Bits (oder Dualstellen) zu einer Einheit

zusammengefaßt, dem sogenannten Byte. Mit diesen 8 Bits

lassen sich also Zahlen von 0-255 darstellen. Mit zwei Byte

(=16 Bits) dagegen schon von 0-65535. Wollen wir ein Byte

also in eine Dezimalzahl umrechnen (was notwendig wird, wenn

wir von Basic aus Änderungen direkt an bestimmten Speicher-

stellen vornehmen wollen), so verwenden wir selbst-

verständlich wieder unsere Tabelle (oder die Formel).

Wollen wir dagegen umgekehrt eine Dezimalzahl in eine

Dualzahl umrechnen, so gehen wir wie folgt vor (am Beispiel

der Zahl 180):

11

180 : 128 = 1 Rest 52

52 : 64 = 0 Rest 52

52 : 32 = 1 Rest 20

20 : 16 = 1 Rest 4

4: 8 = 0 Rest 4

4: 4 = 1 Rest 0

0: 2 = 0 Rest 0

0: 1 = 0 Rest 0

180ca) = 10110100cv)

Hier wurde also die umzurechnende Zahl 180 nacheinander durch

die Potenzwerte aus der Tabelle geteilt. Das Ergebnis stellt

dabei jeweils eine Ziffer der gewünschten Dualzahl dar, der

Rest dieser Division wird für die übrigen Rechnungen

weiterverwendet.

Eine zweite Methode ist die folgende. Sie eignet sich

besonders für Computerprogramme, da sie rekursiv und damit

besonders einfach und schnell ist:

180 2 = 90 Rest 0

90 2 = 45 Rest 0

45 2 = 22 Rest 1

22 2 = 11 Rest 0

il 2 = 5 Rest 1

5 2 = 2 Rest]

2 2 = 1 Rest 0

] 2 = 0 Rest 1

Hier wird, wie Sie sehen, ständig durch 2 geteilt. Der

jeweilige Rest stellt dabei startend von der Einerstelle eine

Dualziffer dar. Das Ergebnis der Divison wird weiter -für die

folgenden Rechnungen verwandt, solange, bis es 0 wird.

Um zu kennzeichnen, daß es sich bei einer bestimmten Zahl um

eine Dualzahl handelt, setzen wir vereinbarungsgemäß ein

Prozentzeichen (%) vor die jeweilige Zahl. Dies ist üblich

und wird auch im Weiteren verwendet.

Wie Sie in den ganzen Ausführungen sehen, werden unsere

Zahlen auf die Dauer umständlich lang und unübersichtlich.

Der Computer kann damit sehr viel besser umgehen. Wir aber

sehnen uns nach unserer guten alten Dezimalschreibweise. Doch

hier ist die Umrechnung stets etwas schwierig, wie Sie sahen.

12

Aus diesem Grunde hat man sich etwas anderes ausgedacht, das

2.3 Hexadezimalsystem

Das Hexadezimal- oder 16er-System bietet hier einige

Vorteile, die Sie im folgenden kennenlernen werden. Es

besitzt 16 verschiedene Ziffern. Da wir von unserem

Dezimalsystem her jedoch nur 10 Ziffern kennen, müssen wir

sechs weitere erfinden. Alle verfügbaren Ziffern lauten:

Dez | ol i} 2) al al 5ı el 7} a} slıolınlızlıslialıs
Hex | solsifs2}ssisaiss}sels7} ss} salsa] sa} scispisel sr

Die fehlenden Ziffern wurden also durch Buchstaben

symbolisiert. Um eine Hexadezimalzahl als solche zu

kennzeichen, ist es üblich, ein $ (Dollarzeichen) vor diese

Zahl zu setzen. Wie Sie sich denken können, läuft die

Berechnung oder Umrechnung zwischen den einzelnen Systemen

völlig analog. Mithilfe der folgenden Tabelle rechnen Sie

eine Hexadezimalzahl in eine 10er-Zahl um (am Beispiel

$FE2A):

162=| 162= | 161=| 16°=
4096 256 16 1

F E 2 A
-15*4096| +14%256, +2%16| +10*1 = 65066

Diese Verwandlung ist ebenfalls rekursiv möglich.

Die umgekehrte Rechnung lautet dagegen:

65066 : 4096 = 15 Rest 3626

3626 : 256 = 14 Rest 42

42: 16= 2Restt 10

10 : 1 = 10 Rest 0

65066c a) = FE2A:H)

Sie sehen, diese Umrechnung folgt den selben Gesetz-

mäßigkeiten, wie unter Dualzahlen beschrieben. Die dort

erwähnte rekursive Methode ist hier selbstverständlich

ebenfalls anwendbar.

13

Welchen Vorteil bietet nun das beschriebene Hexa-

dezimalsystem?

Zunächst einmal ist es durch dieses System möglich, Zahlen

sehr kurz und übersichtlich anzugeben. Dies allein ist jedoch

noch nicht ausschlaggebend. Wichtig ist, daß sich die

Umrechnung von Hexadezimal- in Dualzahlen äußerst einfach

gestaltet. Jeweils 4 Binärziffern nämlich ergeben stets eine

Hexadezimalziffer. Ein Byte kann also durch 2 Hexziffern

festgelegt werden. Z.B.:

x 1101 0110

$ D 6

Sie sehen, wie einfach und übersichtlich so eine sonst

umständlich lange Dualzahl beschrieben werden kann. Im Anhang

finden Sie zu Ihrer Unterstützung Dez-Hex-Dual - Conversions-

tabellen.

2.4 Logische Operationen

Um später die Inhalte bestimmter Bytes oder Speicherstellen

zu verändern oder zu manipulieren, sind verschiedene logische

Operationen nützlich, die auch vom Commodore - Basic aus

angewählt werden können und von denen hier zwei kurz

beschrieben werden sollen: AND und OR. Bei beiden sind stets

zwei miteinander zu verknüpfende Dualzahlen notwendig.

a) AND:

Nehmen wir einmal an, Sie wollen ein bestimmtes Bit in

einem Byte nur dann erhalten, wenn es gleichzeitig in

einem anderen Byte steht. In diesem Falle verwenden Sie

die AND-Verknüpfung. Sie wird Bit für Bit vorgenommen und

kann durch die folgende Verknüpfungstabelle beschrieben

werden:

Sie sehen also, daß das Ergebnis nur dann gleich 1 ist,

14

b)

wenn beide verknüpften Bits ebenfalls gleich 1 sind,

andernfalls bleibt alles 0. Wollen wir nun zwei voll-

ständige Bytes (bestehend aus je 8 Bits) miteinander

"ANDieren", so sieht das Ganze so aus:

10110010

AND 01100111
——

00100010

Hier wurde also jedes einzelne Bit des ersten mit dem

korrespondierenden Bit des zweiten Bytes durch AND

miteinander verknüpft. |

Diese Operation wird neben der als nächstes beschriebenen

ständig verwendet, um z.B. lediglich ein Bit eines Bytes

zu verändern, während die anderen erhalten bleiben.

OR:

Die OR-Verknüpfung kann -wie auch AND- durch eine

sogenannte Verknüpfungstabelle dargestellt werden:

Wie ersichtlich wird das Ergebis 1 schon dann, wenn

bereits eines der beiden zu verknüpfenden Bits gleich 1

ist. Ein Byte kann somit etwa so geOÖRt werden:

10110010

OR 01100111

11110111

15

3. Ka tel

Hardwaregrundlagen

Ihr Commodore 64 besitzt eine ungeheure Vielzahl an

Möglichkeiten, Graphiken zu erstellen und zu kontrollieren.

Da er jedoch keinerlei Befehle zur Ausnutzung dieser Dinge in

seinem Basic zur Verfügung hat, ja, die Möglichkeit

hochauflösender Graphik nicht einmal in seinem Handbuch

erwähnt wird, muß alles, was die Graphik betrifft, selbst

entweder direkt in Maschinensprache oder von Basic aus

programmiert werden, es sei denn, Sie besitzen eine

entsprechende Graphikerweiterung, die Ihnen diese Befehle an

die Hand gibt. Doch keine noch so gute Erweiterung kann auf

alle Fähigkeiten des CBM 64 eingehen. Deshalb bedarf es einer

guten Kenntnis der in Ihrem Rechner verwirklichten Graphik-

organisation, um sie alle zu nutzen. Außerdem ist es äußerst

interessant, festzustellen, wie perfekt die einzelnen Dinge

zusammenspielen, oder wo es manchmal ärgerliche Haken oder

ösen, durch die man hindurchschlüpfen kann, gibt.

Bevor wir uns also mit der Programmierung der Graphik

beschäftigen und den vielen Anwendungsmöglichkeiten, die den

Nutzen dieser Rechnereigenschaft (auch oder gerade bei der

Verwendung einer entsprechenden Erweiterung, die auf jeden

Fall zu empfehlen ist) erst richtig zum Ausdruck bringt,

wollen wir daher eine detailierte Kenntnis über die einzelnen

Positionen der Graphik und Ihre Organisation vermitteln.

Zugegeben, es ist nicht ganz einfach, aber wir wollen

versuchen es Ihnen so nahe wie möglich zu bringen.

3.1 Die Register des Vic

Zunächst einmal werden Ihnen die 47 Register des VIC, also

des Video Interface Chips, dem zentralen Prozessor, der u.a.

die gesamte Bildschirmausgabe steuert, kurz und übersichtlich

beschrieben. Mithilfe dieser Register werden (fast) alle

Funktionen bezüglich Graphik, Text usw. gesteuert. Sie

besitzen daher fundamentalsten Wert für Ihr Verständnis über

16

Graphik und Bildschirmmanipulationen und sollten schon (bis

auf einige Kleinigkeiten) weitestgehendst verstanden werden.

Diese Übersicht wird dann in den folgenden Abschnitten und

Kapiteln vertieft und näher erläutert. Wenn Sie also nicht

sofort alles verstehen, so ist das nur verständlich und

praktisch zwingend. Wir werden jedoch stets mit diesen Dingen

arbeiten, weswegen Sie im Anhang des vorliegenden Buches noch

einmal eine kurze Übersicht über die Registerbelegung jenes

integrierten Schaltkreises finden. Grundsätzlich ist diese

folgende Beschreibung als Nachschlagewerk gedacht und auch

verfaßt.

Nun aber zu den Registern:

17

VIC-Register --- Basisadresse: 53248 ($D000)

Reg. Kurzbeschreibung Startbelegung

Dez Hex Dez Dual

00 $00 x-Koordinate Sprite 0 00 *0000 0000

Dieses Register beinhaltet die 8 unteren Bits (0-255)

der x-Koordinate des ersten Sprites (Sprite 0). Das

oberste, 9. Bit (auch MSB = most significant bit

genannt) wird dagegen in Register 16 gespeichert.

Dies ist notwendig, da die x-Koordinate größer als

255 werden kann.

01 $01 y-Koordinate Sprite 0 00 %x0000 0000

Wie oben, nur ohne Übertrag.

02-15 $02-0OF Koordinaten der übrigen 7 Sprites

16_ $10

17_ $11

(Aufbau wie oben). Sprite 1: Reg. 2/3; Sprite 2: Reg.

4/5 usw.

MSB der x-Koordinaten 00 *0000 0000

Hier befinden sich die Überläufe (9. Bit) aus den

x-Koordinaten Registern. Jedem Bit ist ein Sprite

zugeordnet. Bit 0 fiir Sprite 0 / Bit 1 fiir Sprite 1

usw.

Steuerregister 1 155 %1001 1011

Bit 0-2: Bildschirmverschiebung oben/unten

Bit 3: =0: 24 Zeilen / =1: 25 Zeilen

Bit 4: =0: Bildschirm aus / =1: ein

Ist der Bildschirm aus, so wird die cCPU

nicht mehr vom VIC unterbrochen (was z.B.

bei der Generierung von Sprites für bis zu

40 Millisekunden geschehen kann) und Ihr

Programm läuft evt. etwas schneller und

gleichmäßiger.

Bit 5: =l: Standart Bitmap Mode

Bit 6: =1: Extended Colour Mode

Bit 7: Übertrag aus Register 18 ($12)

18 $12 Rasterzeilen-IRQ 55 *0011 0111

Wird dieses Register beschrieben, so geben Sie hier

18

die Bildschirmrasterzeile an, bei deren Aufbau durch

den VIC ein IRQ ausgelöst werden kann. Wird es

dagegen gelesen, so steht in ihm stets die aktuelle

Rasterzeile, die der VIC gerade aufbaut. Der Übertrag

dieses Registers steht in Register 17.

x

19 $13 Lightpen-x-koordinate 00 %0000 0000

x-Koordinate (Rasterkoordinate) der Bildschirm-

position, die gerade aufgebaut wurde, als ein Signal

vom Lightpen kam (Lightpenleitung = 0).

20 $14 Lightpen-y-koordinate 00 x0000 0000

Wie Register 19, jedoch y-Koordinate.

21 $15 Sprite ein/aus 00 x0000 0000

Hier werden die einzelnen Sprites ein- oder aus-

geschaltet. Jedem Bit ist ein Sprite zugeordnet (wie

in Register 16).

22 $16 Steuerregister 2 08 *0000 1000

Bit 0-2: Bildschirmverschiebung links/rechts

Bit 3: =0: 38 Zeilen / =1: 40 Zeilen pro Zeile

Bit 4: =1: Multicolor Modus

Bit 5-7: unbenutzt

23 $17 Spritevergrößerung y-Richtung 00 x0000 0000

Jedem Sprite ist ein Bit zugeordnet. Bit=1l: Sprite

wird doppelt so breit. (s. auch Reg. 29)

24 $18 VIC-Basisadressen 20 x0001 0100

Hier, werden einige der oberen Bits der Startadressen

von Videoram und Zeichensatzspeicher abgelegt. Durch

Anderung ist eine Verschiebung dieser Bereiche

möglich (s. auch Reg. 0 der CIA 2). Die Belegung

lautet:

Bit 0 : unbenutzt

Bit 1-3: Adressbits 11-13 des Zeichensatzes (*2048)

Bit 4-7: Adressbits 10-13 des Videorams (*1024)

Die im CBM 64-Handbuch auf Seite 158 angegebene Bele-

gung dieses Registers ist falsch!

19

25 $19 Interrupt Request Reg. (IRR) 15 %0000 1111

Hier kann die Ursache für einen IRQ festgestellt

werden:

Bit 0 = 1: Ursache: Rasterzeilen-IRQ (Reg. 18)

Bit 1 = 1: Ursache: Sprite-Hintergr. Koll. (Reg. 31)

Bit 2 = 1: Ursache: Sprite-Sprite Koll. (Reg. 30)

Bit 3 = 1: Ursache: Lightpen sendet Impuls

Bit 4-6 : unbenutzt

Bit 7 = 1: mindestens eines der ersten 4 Bits ist 1.

Dieses Register muß (soweit es verwendet wird) nach

dem Ereignis wieder gelöscht werden. Dies geschieht,

indem man den gerade aus gelesenen Wert wieder

hineinschreibt.

26 $1A Interrupt Mask Register (IMR) 00 *0000 0000

Hier wird vom Programmierer ausgewählt, durch welches

Ereignis ein IRQ ausgelöst werden soll. Die Belegung

entspricht der des Registers 25. Ist ein Bit sowohi

in diesem, wie auch gleichzeitig im Reg. 25 gesetzt,

so wird ein IRQ ausgelöst, d.h. Alle im Reg. 26

gesetzten Bits ermöglichen die Auslösung eines IRQ

durch Reg. 25.

27 $1B Priorität 00 x0000 0000

Jedem Sprite ist ein Bit zugeordnet. Bit=-1: Hinter-

grundzeichen hat Priorität vor dem Sprite / Bit=0:

Sprite vor Hintergrundzeichen

28 $1C Multicolor-Sprites 00 *0000 0000

Jedem Sprite ist ein Bit zugeordnet. Bit=1l: Sprite

wird im Multicolor Modus gezeichnet.

29 $1D Spritevergrößerung x-Richtung 00 *0000 0000

Jedem Sprite ist ein Bit zugeordnet. Bit=1: Sprite

wird in x-Richtung vergrößert (doppelt so hoch).

30 $1E Sprite-Sprite-Kollision 00 *0000 0000

Jedem Sprite ist ein Bit zugeordnet. Beriihrt ein

Sprite ein anderes, so werden die beiden ent-

sprechenden Bits dieser Sprites gesetzt. Gleich-

zeitig wird Bit 2 des Registers 25 (IRR) =1. Nach dem

20

Ereignis muß dieses Register gelöscht werden, da sich

die Bits nicht selbsttätig zurücksetzen.

31 $1F Sprite-Hintergrund-Kollision 00 *0000 0000

Wie Register 30. Hier jedoch wird die Beriihrung eines

Sprites mit einem Hintergrundzeichen (gesetzter

Punkt) registriert.

32 $20 Rahmenfarbe 14 %0000 1110

33 $21 Hintergrundfarbe 0 06 %0000 0110

34-36 $22-24 Hintergrundfarben 1-3 01 02 03

37/38 $25/26 Sprite Multicolor 0/1 04 00

39-46 $27-2E Farbe Sprite 0-7 01 02 03 04 05 06 07

Nach der dezimalen und hexadezimalen Nummernangabe der

einzelnen Register, die bei der Ansteuerung stets zu der

Basisadresse hinzuaddiert werden muß, folgt, wie Sie sehen,

der Registername und die Startbelegung. Unter Startbelegung

verstehen wir dabei den Wert, der nach dem Einschalten des

Computers in das jeweilige Register als Initialisierungswert

eingeschrieben wird. Dieser Wert wird in unserer Übersicht

Dezimal (z.B. für Basic-Programmierer) und Dual angegeben.

Zusätzlich zu diesen Registern des VIC gibt es natürlich noch

einige andere Speicherstellen, die besonders interessant im

Zusammenhang mit der Graphikprogrammierung sind. Der

Vollständigkeit halber seien sie hier hinten angefügt:

a) Spritedefinitionspointer:

Um dem VIC mitzuteilen, wo in seinem Adressierungsbereich

er die 63 Byte lange Definition eines bestimmten Sprites

findet, müssen die 8 letzten Bytes des Videoram mit einem

Pointer belegt werden (im Originalzustand: Speicherstellen

2040 - 2047 bzw. $07F8 - $07FF). Multipliziert man ihn mit

64, so gibt er die Adresse des Definitionsbeginns eines

Sprites relativ zu dem Adressbereich des VIC an

21

b)

c)

(einzustellen mit Register 0, Bit 1 und 0 der CIA 2

(s.u.)). Dabei ist jedem der 8 Bytes ein Sprite (von 0-7)

zugeordnet und die Pointer können Werte von 0-255 annehmen

(16 Kbyte Adressierung).

höchstwertige Adressbits des VIC-Adressbereiches

Neben dem VIC-Register 24 gibt es noch eine weitere

Speicherstelle, mit welcher z.B. Videoram oder Zeichensatz

verschoben werden können. Es ist dies das Register 0 der

CIA 2 (= Complex Interface Adapter 2) mit der Adresse

56576 ($DD00), speziell Bit 0 und 1. Diese beiden Bits

ergeben die obersten zwei Adressbits (Bit 14 und 15) der

Basisadresse des VIC

Vorsicht! Die Bits sind LOW-Aktiv, d.h. ist ein Bit=l so

gilt es als 0 und umgekehrt!

Joystick/Paddle/Tastatur

Hierfür sind (u.a.) die ersten zwei Register der CIA 1

zuständig:

Register 0 (Adresse: 56320/$DC00):

Normalbetrieb:

Bit 0-7: Reihenauswahl der Tastatur

weitere Aufgaben:

Bit 0-4: Joystick 0: Bit O=1: oben

(Port 1) Bit 1=1: unten

Bit 2=1: links

Bit 3=1: rechts

Bit 4=1: Knopf

Bit 6/7: Paddle-Set-Auswahl: Bit 6=1: Set A

(Port 1) Bit 7=1: Set B

Nur eins der zwei Bits darf = 1 sein!

Für den Joystick-Betrieb muß hier zunächst das Register 0

durch ein POKE 56322,224 (Register 2 - $DC02) auf Eingabe

gestellt werden. Rückstellung: POKE 56322,255 (gilt nicht

unbedingt für Register]l).

Register 1 (Adresse: 56321/$DC01):

Normalbetrieb:

Bit 0-7: Spaltenrückmeldung der Tastatur

22

weitere Aufgaben:

Bit 0-4: wie Register 0 nur fiir Port 2

(Joystick 1 / Paddles)

Soweit in aller Kiirze das Wichtigste zur CBM 64-Graphik. Nun

lassen Sie sich genauer in die vielen Geheimnisse Ihres

Rechners einweihen - Geheimnisse, die über Jahrtausende stets

unter dem Siegel der Verschwiegenheit nur von Programmierer-

ohr zu Programmiererohr weitergegeben wurden. Sie werden

staunen, wie sich Ihnen plötzlich Welten auftun und Sie sich

fürwahr traun in den 7. Programmierhimmel versetzt fühlen.

Aufgemerkt nun also und die Ohren gespitzt!

3.2 Die Betriebsasarten des Vic

Mit dem Video Interface Chip ist eine große Menge von

Einstellungen möglich. Grob unterteilt man diese in drei

Kategorien:

- hochauflösende Graphik mit

dem Einzelpunktmodus

(Standart Bitmap Mode)

- Sprites

- Textmodus (= Zeichen aus

einem festen Zeichensatz)

Hinzu kommen noch zwei Modi, die Sie jeweils für diese drei

Grunddarstellungen zusätzlich wählen können:

- Normalfarbenmodus

- Multicolormodus

und eine weitere Möglichkeit, die jedoch nur in Zusammenhang

mit den Text- und nicht gemeinsam mit dem Multicolormodus

verwendet werden darf, der:

- Extended Color Modus

23

Die einzelnen Modi sollen im folgenden kurz skizziert werden,

um Ihnen einen Überblick zu gewähren. Die nähere Besprechung

geschieht dann aber in den späteren Abschnitten (für die

Begriffe Farbram, Videoram, Graphikspeicher, Zeichensatz-

speicher schauen Sie bitte unter # 3.3).

A. Einzelpunktmodus

a) Normaler Einzelpunktmodus

Im normalen Einzelpunktmodus, der durch das Setzen der

Bits 5 und 6 des VIC-Registers 17 ausgewählt wird (Re-

gister 22, Bit 4=0), besteht ein direkter Zusammenhang

zwischen Bildschirm und Graphikspeicher. Ein Bit des

Graphikspeichers korrespondiert mit einem Punkt des

Bildschirns.

Die Auflösung beträgt 320x200 Punkte, der Graphik-

speicher nimmt somit einen Raum von etwa BK ein. Die

Farbe kommt aus dem etwa 1 K großen Videoram, wobei je

ein Byte des Videorams die Farbinformation für ein

8x8-Punkte großes Feld des Bildschirms liefert. Dabei

gilt für jedes Bit des Graphikspeichers die folgende

Farbherkunfts - Zuordnung:

Bit=-0: 4 untere Bits des Videorans

Bit=-1: 4 obere Bits des Videorans

b) Multicolor-Einzelpunktmodus

In dieser Betriebsart (wählbar durch Setzen der Bits 5

und 6 des VIC-Registers 17 und des 4. Bits des 22.

Registers) sind jeweils 2 Bit des Graphikspeichers für

einen doppelt breiten Punkt des Bildschirms zuständig.

Die Auflösung beträgt daher nur 160x200 Punkte. Dafür

sind pro 8x8-Punkte Feld insgesamt 4 verschiedene

Farben wählbar. Mit Hilfe der erwähnten 2 Bit pro Punkt

wird festgelegt, welche dieser Farben ein Punkt

besitzen soll. Dabei gilt folgende Zuordnungen der

Farbquellen:

Bits-00: Hintergrund-Farbregister 0

Bits=01l: Videoram untere 4 Bits

Bits=10: Videoram obere 4 Bits

Bits=1ll: Farbram

24

B. Sprites

Sprites sind frei definierbare Objekte fester Auflösung,

veränderlicher Größe und Farbe, von denen 8 völlig

unabhängig voneinander gleichzeitig auf den Bildschirm

gebracht werden können. Ihre Priorität untereinander und

in Bezug auf die Hintergrundzeichen, sowie Ihre Position

auf dem Bildschirm (Bewegungsauflösung: 512x256, also über

den Bildschirmrand hinaus) können variiert werden. Die

Spritedefinition wird in 63 Bytes untergebracht. Man

unterscheidet:

a) Normale Sprites

Diese besitzen eine Auflösung von 24x21 Punkten. Jedes

Bit der Spritedefinition repräsentiert einen Punkt der

Spritematrix. Für die Farbe gilt dabei:

Bit=0: durchsichtig

Bit=l: Sprite Color Register (Reg. 39-46)

b) Multicolor-Sprite

Bei Multicolor-Sprites bestimmen jeweils 2 Bit der

Definition einen doppelt breiten Punkt auf dem Bild-

schirm. Folglich schrumpft die Punkteauflösung auf

12x21 Punkte. Diese 2 Bit bestimmen die Herkunft der

Farbe eines Punktes in folgender Weise:

Bits=00: durchsichtig

Bits=01l: Multi Color Register 0

Bits=10: Multi Color Register 1

Bits=11: Sprite Color Register

Es ist möglich, gleichzeitig Sprites beider Darstellungs-

arten auf dem Bildschirm zu erzeugen.

C. Zeichendarstellung

Bei der Zeichendarstellung wird eine im Zeichensatz-

speicher (Zeichengenerator) festgelegte Punkteanordung als

festes Zeichen in einer 8x8-Matrix verwendet (für jedes

Zeichen sind somit 8 Byte norwendig). In diesem

Zeichensatzspeicher sind z.B. alle Buchstaben oder Zahlen

festgehalten. Ein Byte des Videoram gibt dann die

25

Information, welches der maximal 2x256 Zeichen auf dem

Bildschirm erscheinen soll.

a) Normale Zeichendarstellung:

b)

In dieser Betriebsart wird das vollständige Byte aus

dem Videoram als Zeiger auf ein Bitmuster des Zeichen-

generators verwendet. Gleichzeitig sind maximal 256

verschiedene Zeichen auf dem Bildschirm darstellbar.

Ein Bit des Bitmusters bestimmt dabei die Farbe eines

einzelnen Punktes des Zeichens. Die Farbe stammt aus:

Bit=0: Hintergrundfarbregister 0

Bit=l: untere 4 Bits des Farbram

Zeichen im Multicolormodus:

In diesen Modus sind beide Möglichkeiten der

Darstellung vorhanden: Normale und Multicolor-

Darstellung. Ist das 3. Bit des Farbrams =0, so wird

das Zeichen in der normalen 8x8-Matrix dargestellt. Wie

unter a) beschrieben wird die Farbe des Zeichens ganz

normal festgelegt mit der Einschränkung, daß zwangs-

läufig nur 8 Farben für die gesetzten Bits des Zeichen-

musters möglich sind (das 3. Bit des Farbrams ist ja

gleich 0).

Ist das besagte 3. Bit jedoch gleich 1, so bestinmen

Jeweils 2 Bit des Zeichenmusters die Farbe eines

doppelt breiten Punktes des Zeichens. Die Auflösung

beträgt somit nur 4x8 Punkte. Ein Zeichen aber kann nun

aus insgesamt 4 Farben bestehen. Die Herkunft dieser

Farben wird durch die beiden Bits eines Punktes

bestimmt:

Bits=00: Hintergrundfarbregister 0

Bits=01: Hintergrundfarbregister 1

Bits=10: Hintergrundfarbregister 2

Bits=11: tibrige drei Bits des Farbram

Die Farbe drei kann also ebenfalls nur eine von 8

Farben sein. Die restlichen drei Farben sind fir alle

Zeichen gleich.

: 26

c) Zeichen im Extended Color Modus

In diesem Modus kann jedes Zeichen des Bildschirms eine

von 4 Hintergrundfarben erhalten. Die Zeichen-

darstellung an sich entspricht den Normalmodus °

(8x8-Matrix). Für die gesetzten Bits des Zeichen-

musters (Bit=0) stammt die Farbe ebenso wie im Normal-

modus aus dem Farbram. Die gelöschten Bits dagegen, die

die Hintergrundfarbe bestimmen, stammen aus verschie-

denen Quellen. Die zwei höchsten Bits (Bit 6/7) des

Videorams, also des Speichers, der die Zeichen enthält,

legen dabei diese Quelle fest:

Bits=00: Hintergrundfarbregister

Bits=01: Hintergrundfarbregister

Bits=10: Hintergrundfarbregister

wo
D
D

me
©

Bits=ll: Hintergrundfarbregister

Da aber von den 8 Bits des VYideorams nur noch 6 als

Zeiger auf das Zeichenmuster übrig bleiben, können nur

noch 64 verschiedene Zeichen. gleichzeitig auf den

Bildschirm gebracht werden!

Soweit der Überblick über die verschiedenen Betriebsarten des

Videocontrollers, die in den ## 3.4 bis 3.6 näher erläutert

werden. Als nächstes folgt eine weitere Spezialität Ihres

Commodore 64, die ihn sehr flexibel macht.

27

3.3 Die Speicherverwaltung des

CBM G4

Dieses Kapitel stellt einige Anforderungen an die Kenntnis um

Speicheraufbau, Speicheradressierung und ähnliche Dinge und

sollte daher von blutigen Laien übersprungen werden. Auch die

Leser, die noch nichts über die Graphikmöglichkeiten dieses

Gerätes oder gar überhaupt noch nichts über Graphik wissen,

sollten sich nach einer kurzen Lektüre des Paragraphen

3.3.2.1 sogleich an das Kapitel 3.4 machen. Un sich

allerdings effektiv und vollständig mit der Erstellung von

Graphiken zu beschäftigen, ist eine Lektüre der folgenden

Seiten unumgänglich, zumal noch einige Aussagen über die

allgemeine Speicherhandhabung Ihres Gerätes gemacht werden.

In diesem Zusammenhang sollte darauf hingewiesen werden, daß

die meisten und wertvollsten Funktionen nur in Maschinen-

sprache (Assembler) erreichbar sind. Aus diesem Grunde lohnt

sich auf jeden Fall, sich vielleicht einmal mit diesen

Themenkomplex zu beschäftigen. Oft besteht eine grundlose

Hemnschwelle zu dieser Sprache. Dabei ist Sie für Leute, die

bereits Basic programmieren, relativ leicht zu erlernen,

besonders, wenn man ein gutes Buch zur Hand hat. Da DATA

BECKER ein wirklich exellentes Werk über Maschinensprache

speziell für 64er-Anwender herausgebracht hat, ist dieser

Mangel behoben. Auch das nötige Rüstzeug (Maschinensprache-

monitor und Assembler) sind vorhanden. Sie werden sehen, bald

programmieren Sie lieber in Assembler, als in dem klobigen

und langsamen Basic. Sollten Sie sich jedoch nicht für diesen

Weg entscheiden, und trotzdem viel mit Graphik hantieren, so

empfiehlt sich eine entsprechende Graphikerweiterung, die es

inzwischen ebenfalls für den 64er gibt. Hier stehen Ihnen

einfache Befehle zur Verfügung, die das Programmieren für Sie

zum Kinderspiel werden lassen. Hier sollte man sich natürlich

auf dem Markt umgucken. Ein Tip: in Bezug auf Graphik ist die

Geschwindigkeit ein sehr wesentlicher Faktor! Vergleichen Sie

einmal und Sie werden auf das richtige Programm stoßen. Nun

aber zum Wesentlichen:

Da sämtliche Bildschirminhalte gespeichert werden müssen,

damit der VIC ständig weiß, was er auf den Bildschirm bringen

28

soll, bedarf es einer Menge an Speicherplatz für Text oder

Graphik. Für den Graphikspeicher beispielsweise werden sage

und schreibe 8 K, für die dazugehörige Farbe noch einmal 1 K,

bei Multicolor sogar 2x1 K benötigt. Dieser Speicherplatz

steht dann für andere Zwecke nicht mehr zur Verfügung. Aus

diesem Grunde wurden einige Möglichkeiten geschaffen, die

Lage dieser Bereiche selbst zu wählen, um optimales Arbeiten

zu ermöglichen. Gleichzeitig stehen Bereiche zur Verfügung,

die sonst nicht oder nur sehr schwer (z.B. von Basic aus)

genutzt werden.

Um die folgenden Ausführungen zu verstehen, muß zunächst

einiges über den Speicheraufbau Ihres Rechners gesagt werden:

Der Commodore 64 besitzt einen 6510 als Hauptprozessor, auch

CPU (Central Processing Unit) genannt, der für sämtliche

Rechenvorgänge, also Programme benötigt wird. Dieser 6510 hat

den gleichen Befehlssatz wie sein Vorgänger 6502, ist also

softwarekompatibel zu ihm. Doch gibt es beim 6510 einige

weitere Leitungen, die unter anderem die Speicherverwaltung

unterstützen. Er besitzt damit zwei eigene Register mit den

Adressen O0 und 1. Für uns ist lediglich das Register 1 von

Bedeutung. Eine weitere Eigenart dieser CPU, die sie diesmal

mit dem 6502 gemeinsam hat, ist der sogenannte Adressierungs-

bereich. Darunter versteht man die Größe des Speichers, den

der Rechner ansteuern kann. Dieser beträgt bei Ihrem Rechner

64 K, da für die Adressierung, also die Ansteuerung von

Speicherstellen, insgesamt 16 Bit zur Verfügung stehen. Damit

können also die Adressen 0-65535 ($0000-$FFFF) angesteuert

werden.

Nun wissen Sie aber, daß Ihr CBM 64 allein schon 64 K RAM

besitzt (unter RAM = Random Access Memory versteht man

Speicher, der gelesen und beschrieben werden kann. Sein

Inhalt geht beim Ausschalten des Gerätes verloren. Er dient

also als Arbeitsspeicher. Im Gegensatz hierzu kann der

sogenannte ROM = Read Only Memory nur gelesen werden. Sein

Inhalt wird nicht verändert, auch wenn der Computer

ausgeschaltet wird. Seine Aufgabe ist die Beherbergung des

Betriebssystems, des Basicinterpreters, des Zeichensatzes

usw.).

Zu diesen genannten 64 K kommen weiterhin aber noch die

verschiedenen ROM-Bereiche und Register der einzelnen

Peripheriebausteine (VIC, CIA, Synthesizer etc.), die

29

insgesamt noch einmal einen Platz von 24 K benötigen. Wohin

aber mit soviel Speicher, der normal gar nicht angesteuert

werden kann?

Die Lösung ist die Speicherüberlappung. Diese wird so

realisiert, daß mehrere Speicherbereiche (z.B. ROM und RAM)

dieselben Adressen besitzen, also eigentlich an derselben

Stelle im Speicher stehen. Der Aufbau sähe dann so aus:

$0000 ... $7000 $8000 $9000 $A000 $B000 $C000 $D000 $E000 $F000

i R A M
evt.Modulbe- Basic-ROM Zeichen Kernal-ROM

 reich (ROM)

Im gerade eingeschalteten Zustand sind alle diejenigen

Bereiche lesbar, die in diesem Schema von unten sichtbar

sind. Also:

$0000-$9FFF: RAM

$A0O00-$BFFF: ROM

$COOO-$CFFF: RAM

$D000-$DFFF: I/0

$EOOO-$FFFF: ROM

In diese Tabelle schiebt sich bei dem Betrieb eines Moduls

noch der Bereich $8000-$9FFF als Modul-ROM ein.

Dem Computer muß nun jedoch mitgeteilt werden, welchen

Bereich er ansteuern soll. Dies hängt dabei von einigen

Faktoren ab. Die für uns wichtigsten sind:

- Lese oder Schreibzugriff des 6510

- Zugriff des VIC oder des 6510

- Ansteuerung des Bereiches v. $DO000-$DFFF oder nicht

Inhalt des Registers 1, Bits 0-2 des 6510

Grundsätzlich müssen wir hier zwischen den beiden Prozessoren

VIC und 6510 unterscheiden, da sie praktisch zur gleichen

Zeit unterschiedliche Bereiche ansteuern. Um die Ansteuerung

durch den VIC müssen wir uns in sofern kümmern, als wir ja

bei Graphik o.ä. festlegen müssen, in welche Bereiche wir die

30

einzelnen Speicher (Videoram, ...) legen wollen, wir müssen

also feststellen, ob der VIC diese überhaupt erreicht.

Die Ansteuerung des 6510 betrifft uns unmittelbar und auch,

wenn wir überhaupt nichts mit Graphik bzw. Bildschirm-

steuerung zu tun haben. Die Möglichkeiten von Basic aus sind

zwar einigermaßen beschränkt, da viele Bereiche fest in

Gebrauch sind, von Maschinensprache (Assembler) aber steht

uns alles frei zur Verfügung. Um einen Überblick zu erhalten,

beginnen wir mit:

3.3.1 Die S er. e des 6510

3.3.1.1 Lesen eines Bytes

Soll ein Byte einer bestimmten Adresse (z.B. durch PEEK)

gelesen werden (darunter versteht man auch den Ablauf eines

Maschinenprogrammes), so hängt die Auswahl, welche der sich

überlappenden Speicherbereiche angesprochen werden, -sofern

für uns beeinflußbar- nur von dem Inhalt des sogenannten

Datenregisters der 6510 CPU (Register 1) ab. Dort haben die

ersten 3 Bits (0-2) die Funktion, auf bestimmte Bereiche

umzuschalten. Die drei Bits sind nach dem Einschalten des

Gerätes gesetzt, was zu der im obigen Schema verdeutlichten

Speicherkonfiguration führt, und haben im Einzelnen die

folgenden Funktionen:

A. Bit 0/1 - LORAM/HIRAM:

a) Bits 0/1=11:

Sind diese Bits beide 1, so wird bei einem Lesezugriff

auf die Adressen $A000-BFFF das dort befindliche

Basic-RAM, bei einem Zugriff auf die Adressen

$E0O00-$FFFF das dortige Kernal-ROM angesteuert. Dies

ist der Normalzustand. Ist ein Modul im $8000er Bereich

installiert, so ist auch dieses eingeschaltet. Die

Speicherkonfiguration sähe dann also so aus:

$0000 ... $7000 $8000 $9000 $A000 $B000 $C000 $D000 $E000 $F000

R A M,evt.Modulbe-| Basic-ROM 1/0- | Kernal-ROM

‘reich (ROM) bereic

31

b) Bits 0/1=10:

Ist lediglich das Bit 1 gesetzt, so ist der Modul- und

der Basic-ROM — Bereich ausgeschaltet und statt dessen

wird nun aus dem darunter befindlichen RAM gelesen. Wir

haben also folgende Belegung:

$0000 ... $7000 $8000 $9000 $A000 $B000 $C000 $D000 $E000 $F000
R A M 1/0- Kerne on

ereich

Diese Konfiguration kann (auch von Basic aus) genutzt

werden, indem z.B. der Basic - Interpreter in das unten

liegende RAM copiert wird und, nachden einige

Veränderungen vorgenonmen wurden, von nun an in diesem

RAM als modifiziertes Basic liegt. Ein Basicprogramm

dazu könnte z.B. so aussehen:

10 FOR AD=10*4096 TO 12*4096-1
20 POKE AD, PEEK(X) : REM BASIC-ROM INS RAM COPIEREN
30 NEXT AD
40 REM HIER NUN VERAENDERUNGEN EINPOKEN ...
50 POKE 1, PEEK(1) AND 254 : REM RAM EINSCHALTEN

Zu beachten ist hierbei, daB bei einem Modulbetrieb der

Bereich von $8000-$9FFF ebenfalls copiert werden muß,

um einen Absturz zu verhindern, da er gleichfalls

ausgeschaltet wird.

Gehen Sie mit diesem Register 1 der CPU besonders

vorsichtig um (vor allem bei den folgenden Belegungen),

da hier jede Änderung tiefgreifende Einschnitte in die

Speicherorganisation Ihres Rechners mit sich führt und

bei einer Fehlbelegung oft nur der Ausschaltknopf die

"zum einzige Möglichkeit ist, Ihren Rechner wieder

Leben zu erwecken” (keine Angst, Ihrem Rechner passiert

dabei natürlich nichts).

c) Bits 0/1=01:

Ist nun nur das Bit 0 gesetzt, so haben Sie sämtlichen

ROM-Speicher ausgeschaltet. Der I/O-Bereich von

$D000-$DFFF bleibt davon jedoch unberührt, kann also

weiterhin ohne Änderungen angesteuert werden. Wir

erhalten damit 60 K ansteuerbares RAM:

32

$0000 $7000 $8000 $9000 $A000 $B000 $C000 $D000 $E000 $F000

R

A M 1/0- R A M

bereich

d)

$0000

Bits 0/1=00:

Sind beide Bits gelöscht, so ist sämtlicher RAM

eingeschaltet. Kein ROM und auch keine I/O-Funktionen

können mehr ausgelesen oder verändert werden (obwohl

der VIC und die anderen Bausteine weiterhin alle ihre

Register lesen können und somit das Bild erhalten

bleibt!). Die Konfiguration ist denkbar einfach:

... $7000 $8000 $9000 $A000 $B000 $Cc000 $D000 $E000 $F000

R A M

Dies ist die einzige Möglichkeit, die unter dem

I/0O-Bereich und dem Zeichensatz liegenden 4 K RAM mit

zu nutzen.

B. Bit 2 - CHAREN:

Dieses Bit dient dazu, den verschiebbaren Zeichengenerator

(s .u.) auch für den 6510, also für den Programmierer

lesbar zu machen, um ihn z.B. zu copieren und dann zu

verändern (s.u.).

a) Bit 2=]1;

Dieses Bit bezieht sich lediglich auf den Bereich der

$D-Seiten ($DO00-$DFFF) des Commodorespeichers. Die

anderen Adressen werden nicht beeinflußt. Im Normal-

zustand liegt es gesetzt vor. Damit kann der 4 K große

Zeichensatz, der ebenfalls genau den Bereich von

$D000-$DFFF einnimmt, nur vom VIC gelesen werden. Statt

dessen stehen die I/O-Adressen, das sind die Register

des VIC, des SID (Sound Interface Device) und der CIAs,

sowie der Farbram zur freien Verfügung. Wir finden also

folgende Einrichtungen in besagtem Raume vor:

$D000 ... $D400 ... $D800 ... $DC00 $DD00 $DE00 $DF00
|vic-Reg. |sInD-Reg. |Farbram |cıa Llcıa 2| 1/0 01/0 1]

33

b) Bit 2=0

Ist das Bit gelöscht, so kann auch der Programmierer

bzw. die 6510 CPU den Inhalt des Zeichensatzspeichers

lesen. Dabei belegt er alle 4K des I/O-Bereiches.

Versuchen Sie das jedoch in Basic, so wird sich Ihr

Rechner abrupt innerhalb der nächsten 1/60 Sekunde von

Ihnen verabschieden, da 60 mal pro Sekunde eine

sogenannte Interruptroutine, von der wir im # 3.7 mehr

hören werden, aufgerufen wird, die mit dem in der CIA |

befindlichen Timer hantiert, der dann natürlich nicht

mehr ansprechbar ist, wenn dieses Bit auf 0 gesetzt

ist. In Maschinensprache muß zunächst das Interrupt-

flag gesetzt werden (Befehl: SEI), um den Aufruf dieser

Interruptroutine zu unterbinden. Später wird durch CLI

der Interrupt wieder ermöglicht. Das Gleiche muß

geschehen, wenn durch das Löschen von Bit 1 das

Kernal-ROM ausgeschaltet wird, in dem sich die

Interruptroutine befindet.

3.3.1.2 Schreiben eines Bytes

Wird ein Schreibzugriff auf den Speicher unternommen (z.B.

durch POKE), so ändern sich die Verhältnisse grundsätzlich:

Da es nicht sinnvoll ist, etwas in den ROM-Speicher zu

schreiben, wurde es eingerichtet, daß jeder Schreibzugriff

unabhängig von der Einstellung im Register 1 der CPU den

unter dem ROM liegenden RAM erreicht. Mit einer Ausnahme: Der

Bereich von $D000 bis $DFFF. Hier wird normalerweise nur der

I/0-Speicherbereich erreicht. Wollen Sie auch hier den RAM

durch einen Schreibzugriff ansprechen, so stehen Ihnen zwei

Möglichkeiten zur Auswahl:

- Ausschalten aller ROMs

- Einschalten des Zeichensatzspeichers

Ersteres geschieht bekanntlich, indem Sie die ersten beiden

Bits (0 und 1) des 1. CPU-Registers =-0 setzen, der zweite

Zustand wird durch Löschen des Bits 2 dieser Speicherstelle

erreicht (s.o.).

Nun werden Sie wohl auch das kleine oben angeführte

34

Basic-Programm vollständig verstehen. In Zeile 20 wurde dort

durch den Befehl POKE AD, PEEK(AD) der Inhalt des Basic-ROMs

gelesen, durch den Schreibbefehl (POKE) aber nicht etwa

wieder dorthin zurückgeschrieben, sondern in das darunter-

liegende RAM! Sie sehen, welche Bedeutung dieser Tatsache

zukonmt.

3.3.2 Die S ersu e des VIC

Neben dem Hauptprozessor, der fiir den Ablauf aller Programme

zuständig ist, muß selbstverständlich noch der Video-

controller (VIC) auf den Speicher zugreifen, um Bildschirm-

informationen wie Farbe oder Punktsetzung zu erhalten. Da

hier natürlich Zugriffe z.B. auf das Kernal-ROM oder den

Basicinterpreter sinnlos sind, wurde hier einiges anders

gestaltet, als dies bei der CPU-Ansteuerung der Fall ist. Die

Umschaltungen zwischen verschiedenen Speicherbereichen nimmt

der VIC dabei selbständig vor. Für uns ergibt sich damit ein

mehr oder weniger statisches Bild im Vergleich zu den vielen

Möglichkeiten des Programmierers bei der gerade besprochenen

CPU. Wir müssen also lediglich wissen, welche Bereiche der

VIC für welche Zwecke ansteuert und welche nicht.

Gleichzeitig zeigt sich die Speicherverwaltung des VIC von

einer anderen Seite äußerst dynamisch. Sie selbst können

nämlich unter Einhaltung verschiedener Bedingungen bestimmen,

wo welche Speicherfunktionen des Videocontrollers liegen

sollen. Mit anderen Worten, Sie haben die Möglichkeit,

Graphikspeicher, Zeichensatz, Videoram und Spritespeicher in

die Speicherbereiche zu verlegen, die Ihnen angenehn

erscheinen.

Doch bevor wir uns damit beschäftigen, wollen wir zunächst

ein wenig zu den Speicherfunktionen des VIC sagen, um die

Begriffe zu klären, die von nun an unser täglich Brot sein

werden.

35

3.3.2.1 Die Speicherfunktionen des VIC:

Um die verschiedenen Aufgaben zu erfüllen, die dem VIC

zugeordnet sind (Text, Graphik, Sprites, Farbe, ...) bedarf

es umfangreicher Speicherräume mit den unterschiedlichsten

Funktionen:

- Zeichengenerator

- Videoran

- Farbram

- Graphikspeicher

- Spritedefinitionen

Im Folgenden sollen die Bedeutung und der Nutzen jeder dieser

einzelnen Positionen, die schon in früheren Kapiteln erwähnt

worden waren, dargelegt und erläutert werden. Die näheren

Funktionen und der genaue Aufbau jedoch werden in den

folgenden ## 3.4 bis 3.6 abgehandelt. Die hier befindliche

Auflistung soll lediglich als Orientierung und Begriffs-

erklärung dienen, um das hernach zu Sagende verständlich zu

machen, da wir dort ständig mit diesen Dingen umgehen.

a) Zeichengenerator: .

Unter Zeichengenerator (auch Zeichensatz oder Zeichensatz-

speicher genannt) verstehen wir denjenigen Speicher, der

die Definitionen bzw. das sogenannte Bitmuster für jedes

einzelne Zeichen enthält, das wir durch einfachen

Tastendruck auf den Bildschirm bringen können. Er umfaßt

insgesamt 2x2 K und damit die Information für 512 Zeichen,

von denen allerdings jeweils nur ein Teil gleichzeitig auf

den Bildschirm gebracht werden kann (s. ## 3.2, 3.6, 4.4).

b) Videoram:

Der Videoram umfaßt etwa 1K und hat verschiedene

Aufgaben. Im normalen Zustand (Einschaltzustand) dient er

als Zeichenspeicher (nicht zu verwechseln mit "Zeichen-

satzspeicher"), in dem der sogenannte Bildschirmcode (ein

Code für Zeichen ähnlich dem ASCII-Code, er dient als

Zeiger auf den Zeichengenerator) für jedes einzelne

Zeichen, das sich zur Zeit auf dem Bildschirm befindet,

abgelegt ist.

36

c)

d)

e)

Im Graphikmodus erhält der Videoram die Funktion des

Farbspeichers, der die Punkt- und die Hintergrundfarbe

bzw. in Multicolor Farben 1 und 2 jedes 8x8-Punktefeldes

(in MC: 4x8) des Graphikbildschirms bestimmt (s. ## 3.4,

3.6, 4.2, 4.4).

Eine weitere Funktion des Videoram ist die Beherbergung

der Pointer auf die Spritedefinitionen in den letzten 8

Bytes.

Farbram: ‘

Der Farbram umfaßt wie der Videoram ca. 1 K und liegt fest

in dem Bereich $D800-$DBFF (55296-56319). Er ist lesbar

und beschreibbar, jedoch sind jeweils nur die unteren 4

Bits aktiv. Die oberen 4 können nicht verändert werden und

sind stets gesetzt. Im normalen Modus dient er als

Speicher für die Farbe der Textzeichen auf dem Bildschirm.

Im Graphikmodus hat er nur bei Multicolor eine Funktion.

Dort stellt er die MC-Farbe 3 jeweils für ein 4x8-Punkte-

feld des Graphikbildes dar.

Graphikspeicher:

Der sogenannte Graphikspeicher, der umfangreichste

Bildspeicher überhaupt, beinhaltet, wie der Name sagt, den

Inhalt eines Graphikbildes. Dabei muß jeder einzelne Punkt

des Bildschirms separat gespeichert werden. Bei einer

Auflösung von 320x200 (in hochauflösender Graphik) sind

dies 64000 Punkte, für deren Speicherung etwa 8 K benötigt

werden.

Spritedefinitionen:

Un das Aussehen der verschiedenen Sprites zu speichern,

werden vom Benutzer diverse Speicherbereiche reserviert,

deren Umfang sich jeweils auf 63 Bytes erstreckt. In

diesen 63 Bytes sind alle 21x24 Punkte eines normalen

Sprite vermerkt.

37

9.3.2.2 VIC-Speicheransteuerung:

Die Ansteuerung der verschiedenen Speicherbereiche durch den

Videocontroller ist weitaus einfacher und übersichtlicher als

die vielen Möglichkeiten, die die CPU bietet. Hier kann man

einfach nach dem Grundsatz vorgehen: Wenn im folgenden nichts

anderes gesagt wird, so wird stets der RAM (auch in dem

Bereich von $D000-$DFFF = 53248-57343) vom Videocontroller

angesprochen, selbst wenn für den Programmierer lediglich ROM

erreichbar ist (also unabhängig von der Einstellung im

Register 1 der CPU). Dies ist äußerst wichtig, da dadurch

z.B. der Graphikspeicher platzsparend unter den ROM gelegt

werden kann, also keinen Basic-Speicherplatz verschwendet,

wie dies z.B. in der SUPERGRAPHIK 64 verwirklicht wurde.

Dieser Grundsatz gilt für:

- Videoram

| Graphikspeicher

- Spritedefinitionen

- Zeichengenerator

Diese drei Speicher werden also stets aus dem RAM geholt ---

mit zwei Ausnahmen:

Werden durch eine Einstellung (wie im nächsten Abschnitt

beschrieben) die Speicherbereiche von $1000-$1FFF (4096-8191)

oder von $9000-$9FFF (36864-40960) angesprochen (etwa, wenn

man versucht die Graphikseite nach $8000-$9FFF zu legen, oder

in der Einschaltkonfiguration für die Sprites die Blöcke

64-127 (Bereich $1000-$1FFF) zu wählen), so werden nicht etwa

die Informationen aus diesen RAM-Bereichen, sondern, aus dem

Zeichengenerator-ROM geholt, das bei $D000-$DFFF liegt

(s.0.).

Diese zunächst merkwürdige Besonderheit erklärt sich aus der

Tatsache heraus, daß nach dem Einschalten Ihres Rechners für

den VIC nur die unteren 16 K des 64-Speicherbereiches

ansteuerbar sind (s.u.). Der feste Zeichensatz, der ja

bekanntlich für die Herstellung der einzelnen Textzeichen auf

dem Bildschirm notwendig ist, liegt jedoch bei $D000-$DFFF

unter den I/O-Adressen. Aus diesem Grunde wurde der Adresse

$1000-$1FFF jener Sonderstatus zugesprochen und der Zeichen-

satz logisch eigentlich nach $1000-$1FFF verlegt. Die anderen

38

Funktionen fallen dem dann leider auch zum Opfer. Der Bereich

$9000 resultiert ebenfalls aus dieser Sonderstellung.

Bemerkenswert ist in diesem Zusammenhang, daB bei einer

direkten Adressierung (also nicht indirekt tiber die Adresse

$1000) der verschiedenen Funktionen (auch des Zeichensatzes)

durch den Programmierer in den Bereich $D000 ff. nicht etwa

der dort liegende Zeichensatz-ROM vom VIC angesprochen wird,

sondern vielmehr der darunter liegende RAM. Die Speicher-

einteilung sieht im Schema also folgendermaßen aus:

$0000 $1000 $2000 ... $9000 $A000 $B000 $C000 $D000 $E000 $F000
IR AM|"leer| R A M "leer" R A M |

| Zeichen .

s.-ROM

Dies nur der Vollständigkeit halber. Mehr davon in den

folgenden Abschnitt.

Bei dem Farbram ist die Sache fast noch einfacher: Da er

nicht verschiebbar ist, wie die anderen Bereiche (s.u.), wird

er stets aus dem Bereich $D800-$DBFF (55296-56319) gewonnen.

Hier ist jedoch zu beachten, daß er einen eigenen, vom

darunter liegenden RAM verschiedenen Bereich belegt, der für

den Programmierer in der Ebene der I/O-Adressen liegt (s.o.).

Der Farbram bei $D800 darf also nicht mit dem normalen RAM

bei $D800 verwechselt werden.

9.9.2.3 Verschieben der Bildschirmspeicher:

Wohl zit eine der schönsten und praktischsten Dinge in der

Speicherverwaltung des Videocontrollers ist die Möglichkeit,

die einzelnen Bildschirmspeicher in dem gesamten Speicher

Ihres Rechners zu verschieben. Sie können also den Graphik-

speicher, den Sie für Ihre Graphiken verwenden, sowohl z.B.

nach $2000 (8192) schaffen, als auch, wenn Sie die dortige

Lage im Basicbereich stört, meinetwegen etwa nach $E000

(41440) unter den ROM verschieben. Vielleicht legen Sie sogar

zwei oder mehr Graphikseiten an, von denen Sie dann eine

bearbeiten können, während die andere sichtbar für den

Beobachter bleibt, wie dies z.B. in der Graphikerweiterung

SUPERGRAPHIK 64, die eben schon angesprochen wurde, möglich

ist.

39

Oder Sie verschieben den Zeichensatzspeicher in einen anderen

Bereich und können sich so Ihren eigenen ganz persönlichen

Zeichensatz erstellen (z.B. mit Umlauten, Sonderzeichen, ...

- s. hierzu auch ## 3.6, 4.4). Es eröffnet sich Ihnen eine

derartige Fülle von Möglichkeiten, wie Sie sich zur Zeit

wahrscheinlich noch gar nicht vorstellen können!

Doch bei jeder Verschiebung halten Sie stets im Auge, welche

Speicherbereiche der VIC überhaupt ansteuern kann, was soeben

im vorherigen Abschnitt dargelegt wurde. So wird es

beispielsweise nie gehen, eine Spritedefinition in den RAM

bei $1000-$1FFF zu legen, da dort -wie Sie wissen- der VIC

nicht RAM sondern den Zeichensatz-ROM bei $DOOO-$DFFF lieBt

(s.0.). Deshalb ist das Verständnis des Paragraphen 3.3.2.2

für die folgenden Ausführungen von unbedingter Not-

wendigkeit!

a) Allgemeine Verschiebung:

Der VIC oder Videocontroller kann von Haus aus, also

intern für sich lediglich 16 K ($0000 - $3FFF oder

x0000 0000 0000 0000 bis %*0011 1111 1111 1111) adres-

sieren. Unser Adressierungsbereich umfaßt aber 64 K, also

4 mal so viel. Dem VIC fehlen demnach die obersten zwei

Adressenbits (Bits 14 und 15). Sie müssen von außen

zugeführt werden. Hierfür ist ein Register zuständig, das

(selbstverständlich) bereits in # 3.1 erwähnt wurde, es

ist das ’

Register 0, Bits 0/1 der CIA 2 ($DD00=56576)

Diese beiden Bits stellen die gesuchten zwei obersten

Adressbits für die Speicheradressierung des VIC dar (im

folgenden Schaubild unterstrichen):

Adressbits $FEDC BA98 7654 3210

Man könnte Sie also einfach einsetzen und hätte die

vollständige Adresse. Die Sache hat aber einen kleinen

Haken. Diese beiden Bits sind LOW-Aktiv, d.h. sind sie

40

gesetzt, so gelten Sie als geléscht und umgekehrt. Wollen

wir die richtige Adresse erhalten, so miissen wir sie erst

umadrehen (invertieren). Haben wir dies erledigt, so kennen

wir den Bereich, den der VIC nun ansteuern kann, d.h. es

verschieben sich automatisch alle Bildspeicherfunktionen,

die vom VIC angesteuert werden (außer der Farbran),

jeweils in 16 K-Schritten:

- Videoram

- Graphikspeicher

- Zeichengenerator

- Spritedefinitionen

Zu Ihrer Unterstützung seien hier die Speicherbereiche

tabellarisch festgehalten, die durch eine bestimmte

Belegung dieser Bits in die Reichweite des VIC gelangen:

B 0/1 | Adr-B | erreichbare Adressen

11 00 $0000-$3FFF (0-16383)

10 01 $4000-$7FFF (16384-32767)

01 10 $8000-$BFFF (32768-49151)

00 1l $COOO-$FFFF (49152-65535)

Unter "B 0/1" wird hier die Belegung der zwei Bits aus

Register 0 der CIA 2 verstanden. "Adr-B" sind dann die

daraus resultierenden Adressbits 14 und 15 für die

VIC-Speicheradressierung. Die originale Belegung ist: B

0/1=11, also der erste Fall in der Tabelle. Nur so kann

der Videoram von $0400-$07FF (1024-2047) gehen und der

Zeichensatz (durch die Sonderstellung der Adresse $1000

(s.0o.)) bei $D000 (53248) liegen.

Bin Beispiel: Angenommen, Sie wollen aus irgendeinem

Grunde den Videoram, der ja die Speicherung aller

Bildschirmzeichen vornimmt, nach $C400 (baw. 50176 =

49152+4x256) verschieben (abgesehen einmal davon, daß ohne

weitere Änderungen dann keine Zeichen mehr auf dem

Bildschirm verändert werden können). Zu diesem Zweck geben

Sie lediglich den Befehl:

POKE 56576, PEEK(56576) AND 253 OR 0

41

b)

ein, und schon holt sich der VIC seine Informationen nur

noch aus dem Bereich zwischen $C000 und $FFFF, was in

unserem Falle zu einem wilden Chaos auf dem Bildschirm

führt (nur die Farbe kann richtig verändert werden, wegen

der Unverschiebbarkeit des Farbrams), das durch den Befehl

POKE 56576, PEEK(56576) AND 253 OR 3

wieder rückgängig gemacht werden kann (was Sie dort blind

in die Tastatur eingeben erscheint natürlich erst nach dem

<return> auf dem Bildschirm, falls Sie keinen Fehler

gemacht haben.).

Verschieben des Videoram:

Zusätzlich zu dieser allgemeinen Verschiebung kann u.a.

separat auch noch der Videoram innerhalb dieses 16 K

Adressierungsbereiches in kleineren Schritten verschoben

werden. Diese Verschiebung ist möglich durch die

Veränderung des VIC-Registers 24 ($18), speziell der Bits

4-7 (s. # 3.1). Diese 4 Bits legen hier einen Teil der

Adresse zur Ansteuerung des Videorams fest. Es sind dies

die Adressbits 10-13 ($A-$D). Das folgende Schaubild mag

das erläutern:

Adressbits [$F EJD C B A[9 8 7654 3210
CIAZfiReg. 241 VIC-intern

BO/l4Bits 4-7

Der Videoram kann also in 1 K-Schritten innerhalb des

gesamten 16 K-Adressraumes verschoben werden. Nach den

Einschalten lauten die 4 besagten Bits: %0001. Aus diesen

Grunde liegt unser Videoram (in Funktion als Textspeicher)

bei $400 (1024). Wichtig ist, daß diese Adresse -anders

als die unter a) beschriebene Verschiebemöglichkeit- nur

und ausschließlich für den Videoram gilt. Bei einer

Veränderung dieser Bits bleiben die anderen Speicher-

bereiche in ihrer Lage unverändert.

Ein Beispiel: Wir wollen unseren Videoram, also den

Textspeicher, der noch bei $400 (1024) liegt, nach $800

(2048) verlegen (auch hier erwarten wir natürlich

42

c)

Nonsense, da hier der Basic-Speicher beginnt). Dies

erreichen wir mit dem Befehl:

POKE 53248+24, PEEK(53248+24) AND 15 OR 2*16

um uns wieder in die heimischen Gefilde, sprich: zu

unserem alten Videoram zu begeben, drücken wir ein:

POKE 53248+24, PEEK(53248+24) AND 15 OR 1%16

Diese Verschiebemöglichkeit kann z.B. von Nutzen sein,

wenn Sie so große Basic-Programme verwenden, daß Sie den

Speicherbereich von $400-$7FF ebenfalls nutzen möchten,

oder Sie verwenden zwei Textseiten, die Sie dann ständig

umschalten oder ... oder ... oder ...

Verschieben des Zeichengenerators: \

Neben dem Videoram können Sie auch den Zeichengenerator

innerhalb des unter a) gewählten 16 K-Raumes verschieben.

Auch hier dient uns das 24. Register des VIC als Zwischen-

speicher für einige Adressbits. Diesmal sind es lediglich

3, die die Adressbits 11-13 darstellen, weswegen wir den

insgesamt 2x2 K groBen Zeichensatz lediglich in

2 K-Schritten verschieben können:

Adressbits [$F EJ[D C BJA 98 7654 3210
crA2} Rea. 24) vIc-intern
BO/1}Bit1-3

Interessant ist, daß auch das Betriebssysten Ihres

Computers von diesen 3 Bits Gebrauch macht. Wenn Sie durch

die Tastenkombination <C=><shift> auf den alternativen

Zeichensatz umschalten, so ändert Ihr Rechner das 11. Bit

der Zeichensatzadresse durch Anderung des 1. Bits von

VIC-Register 24 (s. auch # 3.6).

Wichtig ist dabei das unter # 3.3.2.2 zu der

Sonderstellung des Adressenbereiches von $1000-$1FFF

(4096-8191) Gesagte. Wollen Sie den Zeichengenerator

verschieben, um z.B. einen eigenen zu betreiben, so ist es

vielleicht sehr nützlich, wenn Sie auch den # 3.3.1

gelesen haben.

43

d) Verschieben des Graphikspeichers:

Auch die Lage des Graphikspeichers kann gewählt werden. Da

er jedoch 8 K groß ist, paßt er nur zweimal in den

16 K-Adressierungsbereich hinein. Aus diesem Grunde können

Sie auch nur ein separates Bit für ihn wählen (außer

natürlich der allgemeinen Verschiebung). Es ist dies das

3. Bit des VIC-Registers 24, das nun praktisch zwei

Aufgaben besitzt:

- Zeichensatzverschiebung

- Graphikspeicherverschiebung

Wie beim Zeichensatz bestimmt es das 13. Bit der Graphik-

speicheradresse:

Adressbits |$F EIDIC BA9R 7654 3210

el) VIC - intern
BO/113

Liegt Ihr VIC-Adressbereich z.B. bei $0000-$3FFF

(0-16383), so können Sie wählen, ob der Graphikspeicher

bei $0000 oder $2000 (8192) beginnen soll (in diesem Fall

empfiehlt sich natürlich zweiteres, da ansonsten Null-

seite, Stack usw. in Mitleidenschaft gezogen würden).

Alles Weitere erfahren Sie im nächsten Kapitel 3.4.

44

3.4. Punktgraphik

Nach so vielen Einzelheiten über Register und Speicher-

verwaltung sollten wir uns nun einmal speziell dem Aufbau der

hochauflösenden bzw. der Multicolor- Graphik, also der

sogenannten Punktgraphik (da jeder Punkt einzeln angesteuert

werden kann) widmen - ein hochinteressantes Thema und

unumgänglich für jeden Graphikprogrammierer. Dieser Abschnitt

(und die vier folgenden) sind die hardwaremäßigen Vor-

bereitungen auf die im Kapitel 4 dargelegten Programmier-

möglichkeiten. Versuchen Sie also, auch wenn Sie nicht alles

verstehen sollten, sich in diesen Komplex hinein zu denken

und wenigstens in etwa den Aufbau der Graphik gegenwärtig zu

haben. Dabei wird sich, wie Sie sehen, die recht komplizierte

Farbrealisierung Ihres Gerätes in den verschiedenen Graphik-

arten besonders später in der Anwendung als ziemlich

schwierig herausstellen. Geben Sie jedoch nicht auf. Ein Buch

und ganz besonders eins dieser Art sollte sowieso mindestens

zweimal gelesen werden. Mit manchen Passagen werden Sie

wahrscheinlich täglich arbeiten, wenn Sie sich näher der

Graphik widmen wollen. Fangen wir aber gleich einmal an:

3.4.1. Farben:

Ihr Commodore 64 verfügt über die Möglichkeit, 16 Farben

sowohl im Graphikbetrieb, als auch (wie sicher schon bekannt)

für die Textgestaltung zu verwenden. Diese 16 Farben besitzen

jeweils einen sogenannten Farbcode, der als Binärzahl in die

verschiedenen Register gespeichert wird, die dem Gerät zur

Zeichendarstellung verhelfen. Wird z.B. in das 32. Register

des Video Interface Chips der Wert 0 gePOKEd, so nimmt der

äußere Bildschirmrahmen die Farbe schwarz an. Im Folgenden

sind die den einzelnen Farben zugeordneten Codes aufgelistet

(im Anhang finden Sie eine vollständige Tabelle, die sich mit

dem gleichen Thema beschäftigt):

45

Code Farbe Code [Farbe

Dez| Hex Dez | Hex

0 I$00Ischwarz 8 I$08lorange

i 1$01]weiß 9 j$09! braun

2 I$021rot 10 |$0Alhellrot

3 !$03|türkis 11 !$0B!grau 1

4 \$04] violett 12 I$0C!grau 2

5 1$05| grün 13 1$0D!hellgrün

6 |$06|blau 14 I$0Elhellblau

7 1$071gelb 15 J$OF} grau 3

Diese Tabelle wird Sie ständig in allen Bereichen der Graphik

begleiten, sei es, Sie arbeiten mit Sprites, Graphik, Text

oder was auch immer. Sie sollten Sie also stets im Auge

halten. Über den Einsatz der Farben wird Ihnen in den

entsprechenden Kapiteln Auskunft gegeben.

9.4.2. Hochauflösende Graphik (HGR)

Ihr Rechner hat die Möglichkeit, von Haus aus zwei verschie-

dene Graphikarten zu bedienen:

- hochauflösende Graphik (HGR)

- Multicolorgraphik (MC)

Erstere bietet Ihnen ein Graphikfeld von 320 Punkten in

x-Richtung (waagerecht) und 200 Punkten in y-Richtung

(senkrecht). Man spricht von einer Auflösung von 320x200.

Dies verschafft Ihnen ein Reservoir von insgesamt 64.000

Punkten jeweils in gleicher Dichte verteilt auf Ihrem

Bildschirmfenster.

Natürlich muß die Graphik genauso wie der Text oder die Farbe

gespeichert sein. Schließlich muß der VIC das auf dem Bild-

schirm entstehende Bild alle ca. 1/20 Sekunden selbst auf

Ihrem Fernseher oder Monitor neu erstellen, damit Sie es

ständig beobachten können (s. Lightpenkapitel). Dies

geschieht für die Punktgraphik mit Hilfe des sogenannten

Graphikspeichers. Jeder Punkt ist einzeln ansprechbar und in

diesem Graphikspeicher durch ein Bit repräsentiert. Wie Sie

wissen (s. Kapitel 2) ist ein Bit eine Informationseinheit

46

und kann die Werte 1 oder 0 annehmen. Jeweils 8 Bit hinter-

einander bezeichnet man bekanntlich als ein Zeichen (Wort)

bzw. als ein Byte. Ein Byte kann also 2 hoch 8 = 256

verschiedene Werte annehmen. Diese kommen durch die

verschiedenen Kombinationen von gesetzten (1) und nicht

gesetzten (0) Bits zustande.

Ein Byte repräsentiert also 8 Punkte auf Ihrem Bildschirm.

Folglich bedarf es 64000/8 = 8000 Bytes (etwa 8 Kilobytes

(8 K)), um den gesamten Bildschirminhalt der HGR zu

speichern. Wie Sie vielleicht aus dem # 3.3.2.3 wissen, falls

Sie sich ihn durchgelesen haben, können diese B K irgendwo im

64 K-Speicher Ihres Rechners plaziert werden. Haben Sie dies

getan (s. # 4.2.1.1), so können Sie anfangen. Vorher aber

müssen Sie erfahren, wie denn eigentlich der Aufbau des

Graphikbildes aus den Speicherinformationen vonstatten geht:

a) Graphikaufbau:

Man könnte sich vorstellen, daß der Graphikspeicher ein

direktes Abbild des Bildschirms ist, also Reihe für Reihe

nacheinander alle notwendigen Bytes hintereinander folgen.

Doch die Angelegenheit ist nicht so einfach, wie sie

ausschaut. Der Graphikspeicher besitzt (das ist hardware-

mäßig einfacher zu gestalten) den gleichen Aufbau wie der

später beschriebene Zeichengenerator. Ein Zeichen besteht,

das kann man hier schon einmal vorwegnehmen, aus

8x8-Punkten. Sie besitzen also eine sogenannte 8x8-Punkte-

matrix (Matrix ist der gebräuchliche Begriff für Raster).

Grundlage des Graphikspeichers ist ebenfalls eine

8x8-Matrix, die jeweils durch 8 Bytes des Graphikspeichers

dargestellt wird. Da eine solche Matrix also 8 Punkte hoch

und breit ist, passen insgesamt 320/8 = 40 solcher

Päckchen in eine Zeile und 200/8 = 25 in eine Spalte

(genauso ist der Aufbau im Textmodus). Ein Byte liefert

nun die Information für eine 8-Punkte breite Reihe eines

solchen Päckchens. 8 Bytes untereinander (im Speicher

natürlich hintereinander) stellen somit diesen Block dar.

Dabei bilden die einzelnen korrespondierenden Bits jedes

dieser 8 zusammengehörenden Bytes -also Bits der gleichen

Nummer oder Wertigkeit- untereinander liegende Punkte.

Dies kann anhand eines kleinen Schaubildes verdeutlicht

werden:

47

Spalte 0 Spalte 1 cee

Bit: 765432101765 43241 0] usw.

Z| Byte 0 os ee ee lw tl lth fl lw wt el lt lt lt ll

e| Byte 1 coe we we we lw wt fl ww 2 nn

ij Byte 2 oo 2 ~ fee .

l|Byte 3

e| Byte 4 . 8 ..

Byte 5 ren .

0|Byte 6 . FE

Byte 7 eee oe ee

ZiByte 320| . 2» 2 2 2 2 «© oe fw 2 © ew ew we ew

Byte 321]...eife.

ljByte 322; 6.

usw.
Es wird also Zeile für Zeile aus diesen Päckchen

generiert. Noch etwas zu Terminologie: Eine Spalte nennt

man die 8 Punkte dicken senkrechten "Balken", von denen

Jeweils 40 nebeneinander auf den Bildschirm passen. Eine

Zeile ist das gleiche, nur waagerecht ausgerichtet. 25

Zeilen passen somit untereinander in das Graphikfenster.

Jede Spalte besteht aus 8 senkrechten Reihen, jede Zeile

aus 8 waagerechten Reihen. Damit passen 320 senkrechte und

200 waagerechte Reihen in ein Bild. Jede Spalte, Zeile und

Reihe ist numeriert (startend bei 0) und kann so genau

lokalisiert werden. Diese Vereinbarungen sind im folgenden

wichtig, um Verwechslungen zu vermeiden.

Um nun auf einfache Weise einen einzelnen Punkt

anzusprechen, gibt man am besten jeden Punkt eine

sogenannte Koordinate. Dies sind zwei Werte (x und y), die

die Nummer der senkrechten (x-Koordinate) und die der

waagerechten Reihe (y-Koordinate) angeben, in denen sich

der Punkt befindet. Damit ist jeder Punkt des Bildschirms

eindeutig bestimmt. Um nun aus dieser Koordinate die

Position des entsprechenden Bytes und Bits im Graphik-

speicher zu berechnen, behilft man sich einer

entsprechenden Formel, die im # 4.2 unter "Zeichnen eines

Punktes" angeführt und erläutert wird (vielleicht

versuchen Sie es interessehalber einmal selbst. Das Schema

der Zeilenanfangsadressen des Graphikspeichers im Anhang

sollte Ihnen dabei eine gute Hilfe sein).

48

b)

Zun Schluß noch eine Bemerkung: Wie Sie vielleicht schon

bemerkt haben, werden nicht alle Bytes der genannten BK

für den Graphikspeicher verwendet, genauer gesagt nur 8000

($1F40). Die restlichen 192 ($C0) Bytes können von Ihnen

für andere Zwecke genutzt werden. Ähnliches gilt, wie Sie

sehen werden, auch für die anderen Speicher-

bereiche

Farbaufbau:
Zu jedem hochauflösenden Bild, d.h. zu jedem Graphik-

speicher, gehört auch ein Farbspeicher. Dieser wird durch

den sogenannten Videoram dargestellt. Der Videoram dient

normalerweise dazu, Text oder allgemein Zeichen, die durch

Tastendruck auf dem Bildschirm erscheinen, zu speichern,

danit der VIC sein Bild erstellen kann. Wenn Sie ihn also

nicht verschieben und somit dort lassen, wo normalerweise

der Text gespeichert ist, dann erscheinen die

verschiedenen Zeichen des ursprünglichen Text-Bildschirns

als kleine Farbquadrate auf dem Graphikbildschirm (Über

die Verschiebemöglichkeiten von Videoram usw. gibt Ihnen

3.3.2.3 Auskunft). Diesen Effekt können Sie bei dem

folgenden Programm beobachten:

100 V = 53248 : REM BASISADRESSE VIDEORAM ($D000)

110 REM

120 REM XXX KK K KK KK

130 REM %%k TEIL 1 %%

140 REM XKKKKKKKKKKK

150 REM

160 REM GRAPHIK EINSCHALTEN:

170 POKE V+17, PEEK(V+17) OR 6*16 : REM BITS 5 UND 6

VIC-REGISTER 17 SETZEN

180 REM GRAPHIKSPEICHER NACH $2000 (8192) VERSCHIEBEN:

190 POKE V+24, PEEK(V+24) OR 8 : REM BIT 3 VIC-REGISTER 24

SETZEN |

200 REM WAIT 198,255 : GOTO 220 : REM AUF TASTE WARTEN

210 END

220 REM

49

230 REM ¥XXKEKEEREKK

240 REM ** TEIL 2 *x

250 REM XKKKKKEKEKE

260 REM

270 REM GRAPHIK AUSSCHALTEN:

280 POKE V+17, PEEK(V+17) AND 9*16+15 : REM BITS 5 UND 6

VIC-REGISTER 17 LOESCHEN

290 REM ZEICHENGENERATOR RUECKSETZEN:

300 POKE V+24, PEEK(V+24) AND 15*16 + 7 : REM BIT 3

VIC-REGISTER 24 LOESCHEN

310 END

Dieses Programm können Sie in zwei Variationen laufen

lassen:

1.) so, wie es hier steht

2.) indem Sie das erste REM in Zeile 200 weglassen

Im ersten Fall endet das Programm sofort nach dem

Umschalten und Sie können weitere Eingaben machen, die Sie

nun allerdings nicht mehr normal sehen, sondern -wie

gesagt- jeden Buchstaben als Farbquadrat. Wollen Sie

wieder auf normalen Text zurückschalten, so geben Sie ein:

RUN 220

Im zweiten Fall wartet das Programm auf eine Taste

Ihrerseits und schaltet dann die Graphik automatisch

wieder aus (s. # 4.2)

In diesem Beispiel wird der Graphik - Farbbezug deutlich.

Tatsächlich bestimmt ein Byte des Videoram die Farbe für

ein 8x8-Punktefeld der HGR. In HGR kann dabei für jedes

solches Kästchen sowohl die Hintergrundfarbe, also die

Farbe der nicht gesetzten Punkte (oder Bits), und die

sogenannte Punktfarbe, d.h. die Farbe der gesetzten Punkte

(oder Bits) jeweils aus den 16 verschiedenen Farben

gewählt werden. Dabei bestimmen in jedem Byte des Videoram

die obersten 4 Bits die Punkt- und die unteren 4 die

Hintergrundfarbe dieses Kästchens. Die Farbauflösung ist

also weitaus geringer als die normale Graphik erlaubte.

Dies war insofern notwendig, als es arg zu viel Speicher

50

verschlingen würde, wenn jedem der 64.000 Punkte eine

eigene Farbe zugemessen werden könnte (zumal ein normaler

Farbfernseher damit sowieso Problene hätte). Sie bräuchten

dafür 64.000 * 4 = 256.000 Bits, also 32 K RAM. Die

Bearbeitungsgeschwindigkeit wäre ebenfalls erheblich

herabgesetzt, was einen eigenen Graphikprozessor notwendig

machen würde!

Der Videoram ist nun etwas einfacher organisiert, als der

Graphikspeicher. Hier werden Byte für Byte und Zeile für

Zeile nacheinander in den Speicher abgelegt. Der Aufbau

sieht dann so aus:

Spalte

e 0 12 3 4 5 6 7... 39

0 $00 01 02 03 04 05 06 07 ... ID

1 $1E IF 20 21 22 23 24 25 ... 4F

2 $50 51 52 53

 |
Zeile

 24 kaco 301...

Im hochaufiösenden Graphikbetrieb ist jedem Byte des

Videoram also ein eindeutig bestimmtes 8x8-Feld |

zugeordnet. Hat man die Speicheradresse eines Punktes

(abzüglich der Startadresse des Graphikspeichers), so

braucht man diese lediglich durch 8 zu teilen und schon

besitzt man die Adresse des korrespondierenden Video-

rambytes, zu der man nun nur noch die Startadresse des

Videoram hinzuaddieren muß.

51

3.4.3. Multicolor hik_ (MC):

Bevor Sie sich diesem Abschnitt widmen, sollten Sie sich

zunächst einmal mit dem letzten Paragraphen (# 3.4.2)

beschäftigt haben, da das in jenem Teil des Buches

vermittelte Wissen hier zum Teil vorausgesetzt wird.

Wie Sie dort gesehen haben, besitzt Ihr Commodore 64 eine

recht hohe Graphikauflösung. Die Farbe kommt dabei jedoch

(trotz 16 verschiedener Töne) etwas zu kurz. Um dieses

speicherplatzbedingte Manko auszugleichen, haben sich die

Konstrukteure entschlossen, einen zweiten Graphikmodus

einzuführen, den eine größere Farb-, dafür allerdings eine

niedrigere Graphikauflösung auszeichnet: Den Multicolor-

modus.

Der Multicolormodus ermöglicht es, in einem 8x8-Block statt

zwei, insgesamt 4 Farben gleichzeitig zu verwenden. Auch hier

findet der 8 K-Graphikspeicher Verwendung. Nun werden

allerdings jeweils 2 Bit jedes Bytes für die Bestimmung eines

doppelt breiten Bildschirnpunktes benötigt. Die Auflösung

beträgt demnach 160 doppelt breite Punkte in x-Richtung

(doppelt breit deshalb, da ansonsten das Bildschirmfenster

‚natürlich nur halb so groß wie normal wäre) und 200 Punkte in

y-Richtung (Auflösung: 160x200).

Die Farbe stammt nun nicht mehr lediglich aus dem Videoram,

sondern es werden gleichzeitig noch das Hintergrund-

farbregister 0 des VIC und der Farbram hinzugezogen. Wir

unterteilen diese Bereiche in 4_ sogenannte Farbkanäle, die

von 0 bis 3 durchnumeriert sind. Jedes Bitpaar, das ja für

einen Punkt zuständig ist und damit Werte von 0-3 (%00-%11)

annehmen kann, teilt dem VIC nun mit, aus welchem Kanal er

die Farbe des Punktes beziehen soll (In HGR war es

bekanntlich so, daß das eine zuständige Bit angab, ob die

Farbe aus dem Hintergrundkanal oder dem Punktfarbkanal

stammte). Im Graphikspeicher steht also nicht, welche Farbe

(Farbcode) ein Punkt haben soll, sondern vielmehr, wo dieser

eigentliche Farbcode steht. Die Bitpaar - Kanal - Speicher -

Beziehung wird in dem angefügten Schema verdeutlicht:

Bitcode Kanalnr. Speicherbereich des Kanals

00 0 Register 33 des VIC

01 1 untere 4 Bits des Videoran

52

10 2 obere 4 Bits des Videoram

ll 3 Farbram

Unter Bitcode verstehen wir hier die Binärzahl, die die zwei

Bits darstellen, die jeweils für einen Punkt zuständig sind.

Der Speicherbereich eines Kanals ist der Teil des Speichers,

der durch einen Kanal bzw. durch eine Bitcodeeinstellung

angesprochen wird.

Ein Beispiel: Im Graphikspeicher wird ein Punkt durch die

zwei Bits mit den Belegungen 0 und 1 dargestellt. Der

resultierende Bitcode %01 spricht den Kanal 1 an und damit

die unteren 4 Bits des zuständigen Bytes des Videoram. Dieses

zuständige Byte ermittelt man auf genau die gleiche Weise,

wie unter # 3.4.2 (HGR) dargestellt.

Neu hierbei ist nun, daß die Farbe 3 bzw. der Kanal 3 aus dem

Farbram stammt. Dieser Farbram ist normalerweise für die

Farbe des im Videoram befindlichen Textes zuständig. Da der

Farbram nicht verschiebbar ist, kommt es an dieser Stelle

zwangsläufig zu Überschneidungen, wenn gleichzeitig Multi-

color und Text verwendet werden. Auch hier läßt sich wieder

die Adresse des für einen Punkt zuständigen Bytes des Farbram

auf die unter HGR angegebene Weise bestimmen, da er genauso

organisiert ist wie der Videoram.

Wie in HGR können diese Farben jeweils für ein 8x8- bzw.

(wegen der halben Auflösung) 4x8-Punktefeld durch ein

zuständiges Byte des Video- oder Farbram festgelegt werden.

Dabei ergibt sich die Möglichkeit, jedem solchen Kästchen

seine eigene Farbkombination zuzuweisen. Lediglich Kanal 0,

also die Hintergrundfarbe stammt für die gesamte Graphik aus

dem Hintergrundfarbregister 0 des VIC (Reg. 33) und ist damit

für das ganze Bild einheitlich.

Wichtig ist bei der Erstellung von Multicolor - Graphiken,

auf die Verzerrung in x-Richtung zu achten, die durch die

doppelte Punktdicke zustande kommt.

Zum besseren Verständnis sei hier noch einmal ein Schema der

Speicherstruktur des Graphikspeichers in Multicolor

angeführt, das Ihnen das oben Gesagte noch einmal veranschau-

lichen soll:

53

Spalte 0 Spalte 1 cee

Bit: 76543210], 765 432441 «0 i] usw.

Z| Byte 0 <-> <-> <=>] <-> «=> «=> =>

e| Byte 1 <-> <-> > <->] <-> <-> «=> C-)

ilByte 2 <-> <-> «=> «=>] <-> <->

1| Byte 3 {<-> <-> <-> «=>

e|Byte 4 <-> <=> <-> <->

Byte 5 <-> {=> <-> «=>

O|Byte 6 <-> <-> <-> «<->

Byte 7 <-> <-> <-> <->

ZiByte 320 | <-> <-> <-> <-> | <-> <-> <-> <->

. IByte 321 | <-> <-> <-> <-> | <-> <->

l|Byte 322 | <-> <-> <-> <->

usw.
In diesem Schema stellen die "<->" jeweils den doppelt

breiten Punkt dar, der auf dem Bildschirm erscheint. An

dieser Stelle möchte ich Sie noch einmal auf die

unterschiedliche Belegung des Videoram bei HGR und MC

hinweisen. Zugegebenermaßen wird die Handhabung der Graphik

durch diese schwer durchschaubaren Verhältnisse und

Unterschiede nicht gerade vereinfacht. Auch scheint mir die

Aufteilung der Farbauflösung nicht gerade gelungen, da sich

hierdurch, wie wir noch im 4. Kapitel sehen werden, einige

Probleme ergeben. Trotzdem läßt sich doch Einiges mit ihr

erreichen. Sie werden sehen, schöne Effekte sind an der

Tagesordnung.

54

3.5. Sprites

Eines der hervorstechendsten Merkmale Ihres Commodore 64 sind

natürlich die Sprites. Sprites sind eigenständige kleine

Graphiken, die unabhängig voneinander und von dem übrigen

Bildschirminhalt in dem Text- oder Graphikfenster bewegt

werden können. Insgesamt haben Sie die Möglichkeit, 8 Sprites

gleichzeitig auf den Bildschirm zu bringen.

Sprites können bezüglich Ihrer Farbe, Ihrer Größe und der

Priorität vor den Hintergrundzeichen und auch gegeneinander

variiert werden. Sie können Kollisionen zwischen Sprites

untereinander und mit dem Hintergrund feststellen. Zudem

besitzen Sie auch hier die Möglichkeit, zwischen den beiden

Spritemodi

- nornal

- Multicolor

zu wählen, wobei Sie dies bei jedem einzelnen Sprite getrennt

bestinmen können. All diese Funktionen können sehr leicht mit

Hilfe des VIC (Videocontroller 6567) und seinen Registern

realisiert werden. Zunächst aber wollen wir uns einmal mit

dem Aufbau der Sprites beschäftigen. Da wir es dabei in

besonderem Maße mit der Binärarithmetik und den verschiedenen

Registern Ihres Computers zu tun haben werden, sollten Sie

sich vorher diese Kapitel (## 2 und 3.1) zu Gemüte führen

oder, falls Sie diese noch nicht richtig verstanden haben,

noch einmal konzentriert lesen.

Während der Erörterung des Spriteaufbaus sollten Sie zwei

Dinge stets im Kopf behalten:

Sie können (wie gesagt) gleichzeitig insgesamt B verschiedene

Sprites auf dem Bildschirm darstellen. Jedem Sprite ist eine

spezifische Nummer (0-7) zugeordnet, die Sie durch das

gesamte Kapitel begleiten wird.

55

9.5.1. Aufbau und Farbe normaler Sprites

Jedes normale Sprite besteht aus 504 Punkten, die Sie einzeln

setzen oder löschen können. Verwendet wird dabei eine

24x21-Punktematrix, d.h. ein Sprite ist 24 Punkte breit und

21 Punkte hoch. Innerhalb dieses Bereiches können Sie nun die

unterschiedlichsten Graphiken oder Figuren erstellen.

Um die Definition, d.h. das Aussehen unserer Sprites zu

speichern und dem VIC mitzuteilen, bedarf es insgesamt

504/8 = 63 Bytes, da jeder einzelne Punkt als ein Bit

abgelegt wird und ein Byte -wie Sie wissen- 8 Bits umfaßt. Da

jedes Sprite eine Breite von 24 Punkten besitzt, passen in

eine Reihe genau 24/8 = 3 Bytes hinein. D.h. die ersten drei

Bytes bestimmen die 24 Punkte der ersten Reihe.

Dementsprechend wird mit der zweiten, dritten, vierten usw.

Reihe verfahren. Jeweils 3 hintereinanderfolgende Bytes legen

eine Reihe fest. Die nächste Reihe beginnt dann ebenfalls mit

dem nächsten Byte. Wir können diesen Sachverhalt in einer

kleinen Skizze darlegen:

Spalte 0!Spalt ISp te 2

Reihe/Bit:|76 5432101765 210, 654321

OjByte O|. oe be we ew .

liByte 31... 2... | ern FE oo.

2|Byte 61... ... een

3lByte 9/........ I . FE re >.

alByte 121. 2. 2 2 2 2 2 to ne. sie eee .

| usw t

20 |pyte 60]. - 2 2 te ee N. i

Wollen Sie also ein Sprite eingeben, so geben Sie die

zuständigen Bytes Spalte für Spalte und Reihe für Reihe

nacheinander ein. Wie dies in Basic realisiert wird, erfahren

Sie in dem großen Kapitel 4.

Sie können den insgesamt 8 verschiedenen Sprites, die Sie

gleichzeitig auf den Bildschirm bringen können, jeweils

unterschiedliche der zur Verfügung stehenden 16 Farben

zuordnen. Dabei erhalten alle gesetzten Punkte die Farbe aus

dem für das jeweilige Sprite zuständigen Spritefarbregister

(VIC-Register 39-46). Wollen Sie also Sprite 5 weiß zeichnen,

so belegen Sie das VIC-Register 39+5 = 44, also die Speicher-

56

stelle $D02C (53292) mit dem Wert 1 (fiir weiß). Alle nicht

gesetzten Punkte wirken transparent d.h. durchsichtig und

sind daher nicht zu sehen.

3.5.2 Aufbau und Farbe eines Mul ites

Nicht jedes Sprite besitzt diesen 24x21-Punkte-Aufbau. Sie

können jeweils zwischen hochauflösenden und sogenannten

Multicolor - Sprites wählen. Erstere besitzen die gerade

geschilderte Matrix und die dazugehörige Farbgebung. Die

Multicolor - Sprites hingegen werden ähnlich der Multicolor -

Graphik gebildet. Aus diesem Grunde besitzt ein solches

Sprite in x-Richtung die halbe Auflösung. Hier befinden sich

also nur 12, jedoch doppelt breite Punkte in einer Zeile.

Dafür aber kann ein Gebilde aus insgesamt vier verschiedenen

Farben (mit der Hintergrundfarbe) zusammengesetzt sein,

während -wie gesagt- ein hochauflösendes (HGR-) Sprite nur

zwei Farben beinhaltet. Diese vier Farben sind vergleichbar

mit den Kanälen der MC-Graphik und in den verschiedenen

VIC-Registern untergebracht.

Um für jeden der 12x21 = 252 Punkte eines MC-Sprites den

Farbkanal zu bestimmen, aus dem die Farbe dieses doppelt

breiten Punktes stammen soll, werden jeweils 2 Bits (Bitcode)

verwendet, die bekanntlich die Werte 0-3 (%00-%11) annehmen

können und damit die Nr. des Kanals festlegen. Der VIC holt

sich dann aus diesem Kanal die Farbe des Punktes. Die

Zuordnung der Kanäle zu den einzelnen Bitcodes demonstriert

die folgende Tabelle:

Kanalnr.| Bitcode | Farbspeicher

0 00 durchsichtig

1 01 Multicolor Reg. 0 (VIC-Reg 37)

2 10 Multicolor Reg. 1 (VIC-Reg 38)

3 11 Sprite Color Reg. (Reg. 39-46)

Wie Sie sehen, kann lediglich die Farbe des Kanals 3 für alle

8 Sprites unterschiedlich sein, da diese für jedes Sprite in

einem eigenen Register steht. Die anderen Farben (Farben 1

und 2 neben der Hintergrundfarbe) sind jeweils für alle

Sprites gleich, da sie aus identischen Registern gewonnen

57

werden. Entgegen den Angaben des CBM 64 Benutzerhandbuchs

können auch in Multicolor sämtliche 16 Farben zur Erstellung

Ihrer Figuren verwendet werden.

Um ein Sprite in Multicolor auf dem Bildschirm erscheinen zu

lassen, ist es notwendig, dem VIC diese Absicht in einen

speziellen Register mitzuteilen. Es ist dies das Register 28

($1C), in dem jedem Bit des 8 Bit großen Bytes eins der 8

Sprites zugeordnet ist. Ist hier ein Bit gesetzt, so wird von

nun an das entsprechende Sprite zu einem Multicolor - Sprite.

Die Bitzuordnung dieses Registers ist die folgende:

Bit: | b7|b6| b5| b4| b3] b2| b1| bo
Wert: | 128/64] 32] 16, 8 a 2 ı
Sprite:| s7|s6| s5| s4| s3| s2 s1| s0

Wollen Sie z.B. Sprite 4 als Multicolorsprite verwenden, so

setzen Sie in dem Register 28 des VIC gleichfalls das Byte 4,

d.h. Sie POKEn, sofern Sie von Basic aus hantieren, wie

folgt:

POKE 53248+28, 16

Wollen Sie mehrere Sprites derart darstellen (z.B. Sprites 1,

5 und 7), so geben Sie beispielsweise ein:

POKE 53248+28, 1 OR 32 OR 128 oder:

POKE 53248+28, 1 + 32 + 128

(Ausnahmsweise kann der OR-Befehl auch durch eine Addition

ersetzt werden) Der Aufbau eines MC-Sprites gleicht ansonsten

einem normalen Sprite. Auch jenes wird in 63 Bytes abgelegt.

Zur Veranschaulichung ein entsprechendes Diagramm:

58

Spalte 1!Spalte

76543210176543210
<-> <-> €-> CD 1 > KD CHD CH
Cd CI CI CI ICH => KD KD
<=> <-> (=> K=> 1 => K=> CHD KD
Ca» SD CH CINCH CI CI
CI CI CI CHI 1 C-r CI 8-3 0)
USW.

<-> ¢-> <-> «=>

Reihe/Bit:|7 65 43 21 0

O|Byte 0| <-> <-> <-> <-)

Byte 3] <-> <-> <-> <->

Byte 6|<-> <-> <-> <->

Byte 9/<-> <-> <-> <->

Byte 12] <-> <-> <-> <->

Pm
©

DN
eH

 20 |Byte 60|<-> <-> <-> <-> {<-> <-> 73 <->

\
|
\
|
1

{
|
{
{
{
{

{
'
{

Wie Sie sich vielleicht denken können, stellt hier ein "<->"

Jeweils einen doppelt breiten Punkt dar, der durch ein

Bitpaar codiert wird.

3.5.3. Spritedefinition - Farbe

Wollen Sie nun ein Sprite auf den Bildschirm bringen, so

haben Sie zunächst einige Dinge zu beachten. Als erstes

sollten Sie sich natürlich erst einmal Gedanken über das

Aussehen ihres Objektes machen und entsprechend die 63

notwendigen Bytes bereitstellen. Dazu werden Ihnen in Kapitel

4.3 einige Hilfen und Tips gegeben (u.a. ein sehr

komfortabler Spriteeditor).

Als Nächstes sollten Sie sich überlegen, wo in Ihrem Speicher

Platz für diese 63 Bytes vorhanden ist. Dabei müssen Sie

selbstverständlich das unter # 3.3.2 Gesagte mit berück-

sichtigen. In der Einschaltkonfiguration z.B. gibt es nur

relativ wenige Möglichkeiten, Sprites unterzubringen. Hier

ist Platz für lediglich 4 verschiedene Spritedefinitionen.

Wollen Sie noch mehr unterbringen, so müssen Sie schon

entweder einfach den Basicanfang (normal bei $0801 = 2049)

verschieben (durch UmPOKEn der Speicheradressen $2B/$2C

(43/44)), wobei Sie allerdings beachten sollten, daß dies vor

dem Einspeichern oder Einladen eines Basicprogrammes

geschehen muß, oder Sie verlegen den Videoram und haben den

alten Videoramspeicher von $400-$7FF zur freien Verfiigung,.

was jedoch bei der gleichzeitigen Textanzeige ein UmPOKEn

einer Speicherstelle notwendig macht, die das Highbyte des

Videorambeginns enthält (normal: $04; das Highbyte wird

dezinal errechnet durch: INT(Videoramstart / 256). Diese zu

59

verändernde Speicherstelle hat die Adresse $288 = 648. Haben

Sie z.B. den Videoram nach $0800 (= 2048) verlegt (was

nebenbei ebenfalls eine Verlegung des Basic-Starts notwendig

macht) und wollen Sie dort trotzdem Text darstellen, so geben

Sie ein:

POKE 648, INT(2048/256)

Nach diesem UmPOKEn muß dann unbedingt ein <shift><clr/home>

bzw. ein PRINT CHR$(147) zum Löschen des Bildschirms folgen.

Doch in den meisten Fällen kommen Sie mit 4 verschiedenen

Spritedefinitionen aus, da Sie für zwei gleich aussehende

Sprites keine neue Definition abspeichern brauchen, wie Sie

gleich sehen werden.

Um dem VIC zu ermöglichen, die von Ihnen abgelegte 63-Byte

Definition zu finden und zu lesen, müssen Sie den

16 K-Adressierungsbereich des VIC in 256 Blöcke mit je 64

Bytes unterteilen. Diese Blöcke werden von 0-255 = durch-

nummeriert. Nach dem Einschalten hätten die Blöcke die

folgenden Startadressen (bei einer Verschiebung des gesamten

VIC-Adressraumes durch Ändern der Bits 0/1 von Register 0 der

CIA 2 (s.o.) muß hier natürlich die neue Basisadresse

hinzuaddiert werden):

Block | Startadresse |

0 | $0000 - 0}
1 $0040 - 64

2 $0080 - 128

3 $00C0 - 192

4 $0100 - 256

usw.

255 $3FC0O - 16320

In jedem solchen Block kann nun eine einzige Sprite-

definition untergebracht werden. Dabei hat das letzte Byte

des Blockes keine Bedeutung, da ja nur 63 Bytes für ein

Sprite benötigt werden. In der normalen Einstellung stehen

Ihnen jedoch lediglich die Blöcke:

60

Block | Adressbereich

11 $02C0-$02FE (704- 766)

13 $0340-$037E (832- 894)

14 $0380-$03BE (896- 958)

15 $03C0-$03FE (960-1022)

zur freien Verfügung, wobei jedoch angemerkt werden muß, daß

die letzten 3 Bereiche sich mit dem Bandpuffer überschneiden,

bei dem Arbeiten mit der Datasette also gelöscht werden. Dann

beginnt die Möglichkeit des Spritegebrauchs erst wieder bei

$2000 (8192), also Block 128 (Vorsicht bei langen Basic-

programmen und großem Speicherbedarf!'), da der Bereich von

$1000-$1FFF (4096-8192) bekanntlich dem Sonderstatus

unterliegt (s. # 3.3.2.2) und daher nicht benutzbar ist. Bei

einer Verschiebung des 16 K-Adressbereiches gelten natürlich

evt. andere Beschränkungen.

Was fangen wir aber mit diesen Dingen an?

Un dem VIC jetzt mitzuteilen, in welchem Block er denn die

von Ihnen abgelegte Spritedefinition findet, müssen Sie diese

Blocknummer in eins der 8 letzten Bytes des Videoram legen

(s. # 3.1). Sie liegen in der Einschaltkonfiguration bei

$O7F8-S$O7FF (2040-2047).

Wenn Sie einmal nachrechnen, wieviel Bytes eigentlich fiir die

Speicherung eines Text - Bildschirminhalts benötigt werden,

so kommen Sie auf lediglich 40x25 = 1000. Der Videoram umfaßt

aber genau 1 K, also 1024 Bytes. Die restlichen 24 Bytes

werden normalerweise nicht gebraucht und können von Ihnen

frei verwendet werden, bis auf die letzten 8 Bytes. Sie

werden eben für den gerade genannten Zweck benötigt. Jedem

Byte ist dabei ein Sprite in der folgenden Weise zugeordnet

(die Adressen gelten für die Position des Videoram nach dem

Einschalten und verschieben sich natürlich in dem Falle einer

Änderung der Videoramadresse mit diesem):

Register :| $07F8| 07F9| O7FAIO7TFBIOTFCI O7FDIOT7TFEIOTFF

2040| 2041| 204212043] 2044| 2045| 2046| 2047

Spritenr.: 0 1 2 3 4 5 6 7

Ein Beispiel: Angenommen, Sie haben ein Sprite in den Bereich

von $03C0-$03FE (960-1022), also in Block 15 gelegt. Jetzt

61

wollen Sie, daß sowohl Sprite Nr. 2 wie auch Sprite Nr. 6 so

aussieht, wie Sie es in Block 15 definiert haben. In diesen

Falle schreiben Sie mittels:

POKE 2040+2, 15 : POKE 2040+6, 15

den Wert 15 als Zeiger auf Block 15 in die entsprechenden

Register ein. Sie sehen, daß auf diese Weise mehrere Sprites

das gleiche Aussehen haben können, indem Sie einfach die

Zeiger auf den gleichen Block setzen.

Haben Sie nun in Block 14 ein weiteres Sprite definiert und

wollen z.B. das Sprite Nr. 2 in seinem Aussehen ändern, so

genügt lediglich ein

POKE 2040+2, 14

um damit schlagartig die Definition zu wechseln (s. # 4.3).

Wir wollen jetzt die beiden Sprites, die wir soeben definiert

haben auch auf dem Bildschirm erscheinen lassen. Dazu müssen

wir sie jedoch zunächst einmal einschalten. Das VIC-Register ©

24, "Sprite ein/aus", übernimmt diese Funktion. Jedem der 8

Bits des Registers ist ein Sprite in der gleichen Veise

zugeordnet, wie uns dies schon von der Multicolorwahl (Reg.

28) her bekannt ist:

Bit: b7|b6|b5| b4] b3| b2] b1] bo
Wert: |128|64/32| 16] 3] 4| 2| ı
Sprite] s7|s6|s5| s4|s3|s2| 51/80

In unserem Fall der Sprites 2 und 6 müssen wir also

eintippen:

POKE 53248+24, 64 OR 4 oder

POKE 53248+24, 64 + 4

Doch damit brauchen die Sprites noch nicht sichtbar zu sein,

da sie meist erst in den Bildschirm hineinverschoben werden

müssen. Um Näheres über die Programmierung der Sprites zu

erfahren, sehen Sie bitte unter Kapitel 4 nach.

62

3.5.4. Weitere_Spriteeigenschaften

Doch mit dem einfachen Definieren, der Farbwahl und dem

Einschalten haben wir noch längst nicht alles ausgeschöpft,

was uns an Gestaltung und Veränderung der Sprites zur

Verfügung steht. Die folgenden Zeilen zeigen Ihnen, was die

Sprites erst zu DEN Sprites macht.

3.5.4.1. Positionieren

Die erste Möglichkeit der Variation und wohl auch die

wichtigste ist die Wahl der jeweiligen Bildschirmposition

jedes einzelnen Sprites. Sie können also bestimmen, wo auf

Ihrer Mattscheibe Ihre Figuren zum Stehen kommen sollen. Dies

ist besonders wichtig, da dadurch Bewegungen und schöne

Effekte erzeugt werden können, wie es im 4. Kapitel dargelegt

wird.

Dabei unterteilt man den Bildschirm in sogenannte Koordinaten

x und y, wie es uns bereits von der Graphik her bekannt ist.

Dabei ist allerdings folgendes zu beachten:

Die Spritekoordinaten stellen stets die Position der unteren

linken Ecke eines Sprites dar.

Die Spritebewegung besitzt eine Auflösung von 512x256

Punkten, also weit mehr, als auf dem Bildschirm darstellbar.

Das Raster, also der Abstand bzw. die Größe der Punkte, ist

dabei identisch mit dem der hochauflösenden Graphik. Es sind

also 320 Punkte in x-Richtung und 200 in y-Richtung zu sehen.

Damit wird es Ihnen aber möglich, die Sprites jeweils bei

Bewegungen aus dem Bildschirm hinausfahren zu lassen; an

verdeckenden Rand sehen Sie also einen stets kleiner

werdenden Teil Ihres Sprites (s. Kapitel 4).

Der Nullpunkt der Spritekoordinaten liegt weit außerhalb des

Text- oder Graphikfensters oben links in der Ecke. Der erste

sichtbare Punkt dieses Koordinatenrasters und damit der

Nullpunkt der normalen Graphik besitzt schon die Koordinaten

x=20 und y=30. Hier erst ist das Sprite also vollständig zu

sehen. Um damit von Sprite- auf Graphikkoordinaten

umzurechnen, müssen Sie bei ersteren stets 20 vom x- und 30

vom y-Wert abziehen (umgekehrt: Graphik- in Sprite-

koordinaten umrechnen durch hinzuaddieren dieser Größen). Bei

63

x=320+20=340 und y=200+30=220 ist das Sprite nicht mehr zu

sehen. ¢

Um dem VIC nun mitzuteilen, wo er welches der 8 Sprites auf

dem Bildschirn unterbringen soll, stehen Ihnen seine ersten

17 Register (von O0 bis 16) zur Verfügung. Das 16. Register

nimmt dabei eine Sonderstellung ein und wird etwas weiter

unten besprochen. Die 16 zuständigen Speicheradressen sind

jeweils paarweise den 8 Sprites zugeordnet. Das erste Element

dieser Registerpaare gibt dabei die x-, das zweite die

y-Koordinate des entsprechenden Sprites an:

Sprite :1s0Isli s2]s3184|j85|5s6| 57

x-K. Reg.:| 0| 2] 4| 6|j 8|10|12}j14

y-K. Reg.:| 1| 31 5] 7] 9|11113}j15

Wollen wir also beispielsweise Sprite 6 auf die Koordinaten

x=100, y=150 setzen, so brauchen wir lediglich einzutippen:

POKE 53248 + 2%6 ‚ 100

POKE 53248 + 2*6 + 1, 150

und schon kommt unser vorher definiertes Sprite dort zu

stehen. Wie Sie aber vielleicht bereits gemerkt haben, können

wir von den oben genannten 512 Punkten der Spritebewe-

gungsauflösung lediglich 256 Punkte erreichen (ein Byte kann

maximal 256 verschiedene Werte annehmen). Aus diesem Grunde

mußte noch ein weiteres Register eingerichtet werden, das für

das oberste 8. Bit (MSB = Most Significant Bit = höchst-

wertiges Bit) der x-Koordinate jedes Sprites zuständig ist:

Register 16. In diesem Byte ist wieder jedem Sprite ein Bit

zugeordnet, das die gesuchte Information beinhaltet:

Bit: b7| b6| b5| b4| b3| b2| b1jbO

. Wert: [128] 64) 32) 16] 8] 4; 2; 1

Sprite? s7|s6| s5| s4|s3] s2|s1]|s0

Wollen wir also unser Sprite auch über die Koordinate x=255

hinaus auf den Bildschirm bringen, so ist das entsprechende

Bit dieses Registers zu setzen. Zu dem Wert im regulären

x-Koordinatenregister ist dann 256 hinzu zu zählen.

64

3.5.4.2. Vergrößerung

So schaut unser Sprite ja schon recht hübsch aus - wir geben

uns voll zufrieden - doch Ihr Rechner noch nicht. Er bietet

Ihnen einige schöne weitere Kleinigkeiten, die Ihr Herz

erfreuen sollen und werden. In dem Registerschatz des

Videocontrollers befinden sich nämlich u.a. noch zwei bisher

nicht besprochene Adressen. Dies sind die Register 23 und 29.

Mithilfe dieser beiden Bytes können Sie Ihr Sprite

vergrößern. Dabei ist das erste der zwei hier genannten für

eine Vergrößerung in y-, also eine Längsdehnung, das zweite

für eine Vergrößerung in x-Richtung, also eine Vertikal-

dehnung, zuständig. Beidesmal ist der Streckungsfaktor gleich

2, d.h. jeder Punkt eines Sprites wird doppelt so hoch bzw.

breit. Sie können beide Möglichkeiten getrennt oder gemeinsam

(also sowohl Vergrößerung in x- als auch in y-Richtung)

anwenden, was jeweils verschiedene Effekte mit sich bringt.

Der Aufbau der beiden Register dürfte Ihnen inzwischen

bekannt vorkommen und ist in den jeweiligen Diagrammen z.B.

unter Positionierung nachzuschauen, da auch hier jedem Sprite

ein Bit zugeordnet ist. Ist das entsprechende Bit gelöscht,

so wird nicht, ist es gesetzt, so wird vergrößert. Die

Verhältnisse können etwa so dargestellt werden:

Vergrößerung | Vergrößerungsfaktor |Punktmatrix

keine 1x1 24x21

x-Richtung 2x1 48x21

y-Richtung 1x2 24x42

x/y-Richtung 2x2 48x42

Unter Punktmatrix ist hierbei natürlich die Matrix gemeint,

die auf dem Bildschirm erscheint (sie ist ja auch bei Multi-

color - Sprites identisch), also die Anzahl der Punkte des

Bildschirms, die von einem Sprite maximal überdeckt werden.

Zu bemerken ist weiterhin, daß ein vergréBertes Sprite nicht

mehr vollständig am linken oder oberen Rand (oder an beiden)

verschwindet, auch wenn die Spritekoordinaten gleich null

werden. |

65

3.5.4.3. Priorität

Was passiert nun aber, wenn sich zwei eingeschaltete Sprites

oder ein Sprite und z.B. ein Buchstabe überlappen? Überdecken

Sie sich und wenn ja, wer verdeckt wen? Dies soll in diesen

Abschnitt geklärt werden.

a) Sprite-Sprite-Überlappung:

In diesem Fall ist die Sache denkbar einfach: Den

einzelnen Sprites sind bekanntlich Nummern von 0-7

zugeordnet. Uberlappen sich jetzt zwei Sprites, so wird

dasjenige Sprite "über" dem anderen liegen, es also

verdecken, welches die niedrigere Nummer besitzt. D.h. das

Sprite z.B. mit der Nummer 0 wird ein Sprite mit der

Nummer 5 an den Stellen verdecken, an denen Sie sich

überlappen (genau genommen wird das Sprite 0 Sprite 5 nur

dort überdecken, wo es nicht transparent (durchsichtig)

ist (s. Spritedefinition)).

b) Sprite-Hintergrundzeichen-Überlappung

Bei einer Überlappung eines Hintergrundzeichens mit einen

Sprite wird die Sache schon komplizierter, aber auch

interessanter. Zunächst aber eine Begriffserklärung: Im

folgenden sind unter Hintergrundzeichen stets wirgend-

welche gesetzten Punkte verstanden, sei es z.B. ein

Buchstabe, ein Sonderzeichen oder Graphik.

Wir können, so ist es eingerichtet, hierbei selber wählen,

ob ein Sprite von diesen Hintergrundzeichen überdeckt

wird, das Sprite sich also praktisch hinter den

verschiedenen Objekten des Bildschirms befindet, oder ob

es diese selbst verdeckt, also vor Ihnen steht. Für diese

Funktion existiert ein weiteres Register des VIC, Register

27. Der Aufbau ist Ihnen wohl inzwischen geläufig, er

entspricht dem der Register 16, 21, 23, 28 und 29. Auch

hier ist jedem Bit ein Sprite zugeordnet. Ist nun ein Bit

gelöscht, was nach der Einschalten (wie in # 3.1

ersichtlich) der Fall ist, so erscheint das jeweilige

Sprite vor den übrigen Zeichen, ist es dagegen gesetzt, so

überdecken alle Hintergrundzeichen das betreffende Sprite.

Mit Hilfe dieser wertvollen Eigenschaften ist es möglich,

66

3-dimensionale Graphik oder Bewegungen darzustellen. In

Kapitel 4 wird Ihnen einiges dazu gesagt.

9.5.4.4. Kollisionen

Besonders für Spiele eine unschätzbare Einrichtung: Die Fest-

stellung von Kollisionen bzw. Berührungen zwischen Sprites

untereinander und mit Hintergrundzeichen wird Ihnen durch

verschiedene andere Register sehr einfach gemacht. Hierfür

sind u.a. die Speicherstellen 30 und 31 des VIC zuständig.

In der ersten dieser beiden wird automatisch registriert,

wenn sich zwei Sprites im Laufe der Zeit einmal berühren

(Überlappung). Dabei ist jedes Bit dieses Registers fiir eins

der acht Sprites zuständig (s.o.). Berühren sich nun zwei

Sprites, so werden hier die beiden korrespondierenden Bits

gesetzt. Kollidieren also Sprite 6 und 2, so lautet der

Inhalt des Registers: %*0100 0010. Dieser Inhalt bleibt

solange bestehen, bis er (als Zeichen dafiir, daB er abgefragt

wurde) wieder vom Programmierer z.B. durch

POKE 53248+30, 0

gelöscht wird. Gleichzeitig mit diesen beiden Bits wird noch

ein anderes gesetzt. Es ist dies das Bit 2 des VIC-Registers

25 (IRR), welches uns noch völlig unbekannt ist und auch erst

im # 3.7 erläutert wird. Soviel sei gesagt: Falls von

Register 26 erlaubt, kann hier also durch eine Kollision ein

IRQ (Interrupt Request) ausgelöst werden.

Das zweite Register mit der Nummer 31, das uns in diesem

Zusammenhang interessiert, ist für den Vernerk einer

Kollision eines Hintergrundzeichens mit einen Sprite

zuständig. Findet ein solches Ereignis demnach statt, so wird

hier das dem jeweiligen kollidierten Sprite zugeordnete Bit

gesetzt (wie Register 30). Berührt z.B. Sprite 2 einen

gesetzten Punkt des Bildschirms, so steht hier: %0000 0010.
Auch dieses Register muß nach der Abfrage auf dieselbe Art

und Weise wieder gelöscht werden wie eben beschrieben. Und

auch hier wird in dem Register 25 diesmal das Bit 1 gesetzt,

um bei Bedarf einen IRQ auszulösen.

67

3.6. Text/Zeichensatz

6.1. Textasite: tion

Damit sich der Rechner alle Ausgaben, die auf dem Bildschirm

stehen, merken kann (er muß dieses Bild auf Ihrem Fernseher

schließlich alle 1/20 Sekunden selbst erstellen (s. # 3.7)),

legt er sämtliche Zeichen, die Sie im normalen Textmodus

(z.B. nach dem Einschalten) durch Tastendruck eingeben, in

den uns sicher schon bekannten Videoram ab. Dieser umfaßt

etwa 1 K (in Wahrheit nur 40x25 = 1000 Bytes) und geht im

Normalzustand von der Speicherstelle $0400 (1024) bis hin zu

$O7FF (2047). Uber die Verschiebeméglichkeiten gibt Ihnen

3.3.2 Auskunft. In der hochauflösenden und der Multicolor

Graphik wird dieser Speicher für die Beherbergung der Farbe

verwendet.

Den einzelnen Zeichen werden jeweils bestimmte Codes zuge-

ordnet und in den Videoran abgelegt, wenn dieses Zeichen an

einer bestimmten Stelle auf dem Bildschirm erscheinen soll.

Die Zuteilung von Codes kennen Sie sicher bereits von der

sogenannten ASCII - Codierung. Die Bildschirmcodes jedoch

werden nach einem anderen System gebildet. Während Die CBM -

ASCII - Tabelle, wie Sie sie im Anhang ihres Bedienungs-

handbuches finden, manchmal verschiedenen Werten gleiche

Zeichen zuordnet und gleichzeitig sogenannte Controlcodes

vorhanden sind, die auf dem Bildschirm kein Zeichen

erbringen, sind die Bildschirmcodes eindeutig und ohne Lücken

verteilt, da Sie neben sämtlichen normalen Zeichen

gleichfalls noch die inversen Zeichen unterscheidbar machen

müssen - wie anders sollte der Rechner anhand eines Codes

anders wissen, ob er nun ein Zeichen normal oder invers

darstellen soll. Wie Sie wissen wird dies von der Tastatur

aus durch die Umschaltung mittels zweier Controlcodes (<rvs

on> und <rvs off> = CHR$(18) und CHR$(146)) bewerkstelligt.

Eine Tabelle der Bildschirmcodes finden Sie im Anhang.

Addieren Sie 128 jeweils zu den einzelnen Werten hinzu, so

erhalten Sie das gleiche Zeichen in inverser Form.

68

3.6.1.1. Normaler Text

Neben den Zeichen muB aber fiir jedes Zeichen gleichfalls die

Zeichenfarbe gespeichert werden, da ja bekanntlich rein

theoretisch jedes Zeichen eine andere Farbe besitzen kann.

Hierfür existiert ein weiterer sogenannter fFarbram mit der

gleichen Größe wie der Videoram, der die notwendigen

Infornationen enthält. Dieser Farbram liegt bei $D800-$DFFF

(55296-56295) und wird ebenfalls in der Multicolor - Graphik

als Farbspeicher verwendet. Jedes Byte dieses Bereiches

bestinmt die Farbe des dazugehörigen Zeichens des Videoran,

dessen Aufbau identisch ist. ‘

Die Hintergrundfarbe des Textbildes wird dagegen durch ein

einziges Register des VIC angesprochen. Dieses Register

(Register 33) liegt in der Speicherstelle 53248+33 und kann

z.B. mit

POKE 53248+33,0 : REM HINTERGRUNDFARBE = SCHWARZ

verändert werden.

3.6.1.2. Multicolor ~ Modus

Fiir den Multicolor - Modus der Zeichendarstellung schauen Sie

bitte unter # 3.2 nach, wo dieser entsprechend beschrieben

ist.

3.6.1.3. Extended Colour - Modus

Ihr Commodore 64 besitzt neben dem gerade beschriebenen

normalen Textmodus mit einer Hintergrundfarbe für alle

Zeichen einen weiteren, in dem Sie für jedes Zeichen eine

andere Hintergrundfarbe wählen können (jeweils 4 Hintergrund-

farbregister, also 4 frei wählbare Hintergrundfarben stehen

zur Verfügung). Diese Darstellungsart heißt: extended Colour

- Modus.

Wie gesagt, stehen Ihnen hier für jedes Zeichen eine von 4

Hintergrundfarben zur Verfügung, die Sie durch EinPOKEn der

jeweiligen Werte in die folgenden Register verändern können:

69

Hintergrundfarbe 0: VIC-Register 33

Hintergrundfarbe 1: VIC-Register 34

Hintergrundfarbe 2: VIC-Register 35

Hintergrundfarbe 3: VIC-Register 36

Wie Sie sehen, entspricht das Farbregister 0 dem normalen

Register zur Festlegung der Hintergrundfarbe. In diese

Adressen legen Sie dann natürlich den jeweiligen Farbcode,

den Sie dem Anhang entnehmen können (0-15).

Um den Extended Colour - Modus einzuschalten, müssen Sie

lediglich etwa durch

POKE 53248+17, PEEK(53248+17) OR 4x16

das 6. Bit des VIC-Registers 17 ($11) setzen. Durch

POKE 53248+17, PEEK(53248+17) AND 256 — 4*16

wird es wieder gelöscht.

Wollen Sie nun festlegen, welche dieser Hintergrundfarben die

einzelnen Zeichen schließlich besitzen, so müssen Sie

folgendes wissen:

Die oberen 2 Bits jedes Bytes aus dem Videoram, der

eigentlich (wie wir soeben erfahren haben) lediglich die

verschiedenen Zeichen des Textfensters speichert, legen dies

Jeweils für jedes Zeichen fest. Da aber diese Bits normaler-

weise ebenfalls dazu verwendet werden, um die verschiedenen

Zeichen zu codieren, stehen Ihnen im extended Colour - Modus

(ECM) nur 64 Zeichen zur Verfügung.

Alle Graphikzeichen und im Kleinschrift/Großschrift - Modus

ebenfalls die Großbuchstaben, sowie alle inversen Zeichen

fallen dem zum Opfer. Steuern Sie diese trotzdem an, so wird

eines der erlaubten 64 Zeichen mit einer anderen Hinter-

grundfarbe erscheinen. Welche Zeichen davon wie betroffen

sind, können Sie am besten der Tabelle der Bildschirmcodes im

Anhang entnehmen. Dabei gilt folgende Zuordnung:

70

MSBs | Bildschirmcodes | Hintergrundfarbe

00 000-063/$00-$3F HF 0

01 064-127/$40-$7F HF 1

10 128-191/$80-$BF HF 2

11 192-255/$C0-$FF HF 3
Unter MSBs verstehen wir hier die beiden obersten Bits des

Videoram, also Bits 6 und 7 (MSB = Most Significant Bit).

Vergleichen Sie diese Tabelle mit der angegebenen Bildschirm-

codetabelle im Anhang.

Ein Beispiel: Sie wollen ein B mit der Hintergrundfarbe 7 =

gelb auf den Bildschirm bringen. Dafür belegen Sie das

gewünschte Hintergrundfarbregister (hier 1) mit dem Wert 7

für gelb und POKEn eine 2 für B zuzüglich 64 für die

Ansteuerung des Registers 1 an die entsprechende Stelle im

Bildschirmspeicher oder geben mittels PRINT-Statement das

Zeichen <shift>, also CHR$(98) auf dem Bildschirm aus. Im

Programm sähe dies dann so aus:

10 V = 53248 : REM VIC-REG-BASISADRESSE

20 POKE V+17, PEEK(V+17) OR 4x16 : REM ECM EINSCHALTEN

30 POKE V+34, 7 : REM HINTERGRUNDFARBE 1 = GELB

40 POKE 1024, 2+64 : REM ZEICHEN OBEN LINKS IN DIE ECKE

oder:

10 V = 53248 : REM VIC-REG-BASISADRESSE

20 POKE V+17, PEEK(V+17) OR 4%16 : REM ECM EINSCHALTEN

30 POKE V+34, 7 : REM HINTERGRUNDFARBE 1 = GELB

40 PRINT CHR$(98) : REM ZEICHEN AN DIE CURSORPOSITION

Nach Ablauf dieser Programme befinden Sie sich weiterhin in

diesem Modus und können ein wenig herumprobieren. Wie Sie

wieder herauskommen, wissen Sie bereits (s.o.).

7ı

3. tzor; tion

Neben den ungewöhnlich variationsreichen Graphikmöglichkeiten

bietet Ihnen Ihr Commodore 64 noch weitere Kostbarkeiten.

Bine dieser Fähigkeiten ist die softwaremäßige Veränderung

des Zeichensatzes. Sie ist die Grundlage fast aller Spiele

und ist dasjenige Mittel (neben den Sprites), das alle Spiele

auf dem CBM 64 so unheimlich schnell und trotzdem graphik-

und effektreich werden läßt. Ohne diese Möglichkeit ist eine

vernünftige Spielprogrammierung undenkbar geworden. Wo sich

andere Computer mit riesigen Graphikspeichern herumquälen,

dort schnippst Ihr Commodore 64 einmal mit dem kleinen

Finger.

Zunächst einmal eine Definition: Unter Zeichensatz verstehen

wir die Gesamtheit aller Zeichen (Buchstaben und Graphik-

zeichen), die Sie im Textnodus durch Drücken verschiedener

Tasten und Tastenkombinationen (siehe <shift> und <C=>

(Commmodore - Taste)) auf den Bildschirm bringen können.

Die Form und das Aussehen dieser Zeichen muß dem Computer

natürlich bekannt, also irgendwo und irgendwie gespeichert

sein. Gleichzeitig sollten Sie auch nach irgendwelchen

Kriterien geordnet sein, damit Ihr Rechner weiß, daß er

| beispielsweise ein B auf den Bildschirm bringen soll, wenn

Sie die Taste B drücken. Diese Informationen sind natürlich

in allen Computern gespeichert.

Beim CBM 64 ist dieser Speicher so angelegt, daß er software-

mäßig, also vom Programmierer erreichbar ist, d.h. sein

Inhalt kann ausgelesen und beispielsweise irgendwo in einen

anderen Speicherbereich copiert (übertragen) werden. Diese

Möglichkeit wurde ausführlich in dem Paragraphen 3.3.1

dargelegt. Weiterhin besitzt Ihr Rechner die Fähigkeit, die

Speicheradresse, aus der er die Form der einzelnen Zeichen

abliest, zu verändern (s. # 3.3.2). Sie haben also die Wahl,

Ihrem CBM 64 zu sagen, daß er sich die Zeichengestalt von nun

an z.B. aus dem Speicherbereich ab $2000 (= 8192) also aus

dem RAM holen soll. Diesen Speicherbereich können wir

natürlich selbst veränderiı.

Haben wir vorher den Zeichensatz aus dem ursprünglichen ROM

in diesen Bereich copiert, so bemerken wir zunächst keine

72

Änderung, da ja alle Information erhalten geblieben ist.

Verändern wir jedoch Teile dieses Speicherbereiches, so

ändern wir damit gleichzeitig die Form eines bestimmten

Zeichens.

Um nun die einzelnen Zeichen nach unseren Wünschen zu

gestalten, müssen wir wissen, wie die Form eines Zeichens

gespeichert wird. Dies sei im folgenden erklärt:

Ihr Computer besitzt insgesamt 4 Zeichensätze mit je 128

Zeichen, von denen jeweils nur 2 gleichzeitig auf dem

Textbildschirm erscheinen. Wir wollen im Folgenden diese vier

Zeichensätze kurz benennen:

Satz I/l - Normal - Großschrift/Graphikzeichen

Satz 1/2 - Invers - Großschrift/Graphikzeichen

Satz II/l - Invers — GroB-/Kleinschrift

Satz II/2 - Invers - Groß-/Kleinschrift

Bekanntlich können Sie die beiden Zeichensätze I und II durch

die gleichzeitige Betätigung der Tasten <C=> und <shift> von

Hand aus wechseln. Vom Programm aus dienen hierzu die

ASCII-Werte 14 und 142 (Anmerkung: 142 = 128+14), d.h. Sie

können mit |

PRINT CHR$(14);

auf Satz II und mit

PRINT CHR$(142);

auf Satz I umschalten. Mit

PRINT CHR$(8);

blockieren Sie dabei die Möglichkeit der Umschaltung über die

Tastatur, die ja auch während des Programmlaufs möglich ist,

und sit

PRINT CHR$(9);

heben Sie diese Blockade wieder auf (s. hierzu auch das CBM

64 - Benutzerhandbuch auf den Seiten 135-137).

73

Die Umschaltung zwischen Sätzen 1 und 2 bewerkstelligen Sie

durch die Verwendung von <RVS ON> und <RVS OFF>.

In dem Zeichensatzspeicher müssen natürlich alle diese 4

Zeichensätze getrennt aufgelistet sein. Sie haben also die

Möglichkeit 4x128 = 512 Zeichen zu verändern (Wie gesagt,

können davon jedoch nur jeweils 256 verschiedene Zeichen

gleichzeitig angezeigt werden.).

Jedes Zeichen besteht auf dem Bildschirm aus einer Matrix von

8x8 Punkten, wie Sie vielleicht schon wissen. Entsprechend

müssen also im Zeichensatzspeicher diese 8x8 = 64 Punkte

repräsentiert sein. Das wird erreicht, indem jeder Punkt des

Zeichens auf dem Bildschirm -ähnlich wie in HGR- durch ein

Bit im Speicher vertreten ist. Somit setzt sich ein Zeichen -

Bit - Muster aus 8 Byte zu je 8 Bit zusammen. Jedes Byte

repräsentiert eine der 8 Zeilen des Zeichens. Ein gesetztes

Bit bedeutet also einen gesetzten Punkt auf dem Bildschirm.

Wir können uns die Speicherung eines Zeichens wie folgt

vorstellen:

Bit 76543210

Byte 0

Byte 1

Byte 2

Byte 3

Byte 4 re

5

6

7

Byte

Byte

Byte
Der Zeichensatzspeicher ist also aus insgesamt 512 hinterein-

anderliegender Definitionen dieser Art zu je 8 Bytes

zusammengesetzt. Er benötigt also einen Speicherbereich von 4

K (= 4096 Bytes), der normalerweise im ROM von $D000 - $DFFF

(dezimal: 53248 - 57344) liegt. Dieser Bereich ist jedoch von
Basic aus nicht auszulesen. Zur Demonstration sei an dieser

Stelle gezeigt, wie ein normales, großes B im

Zeichensatzspeicher definiert wird:

14

Bit: | 7

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

. e

e
e

e
e

e

e
&

He
Hh

Hh

HM
H
I
S

ee

0%
02

HM
MH

MH
B
I
O

e e

N
O
O
O

fF

W
N

m

©

Wir erhalten also folgende 8 Bytes:

Byte 0: 0111 1000 = $78 = 120

Byte 1: 0110 0110 = $66 = 102

Byte 2: 0110 0110 = $66 = 102

Byte 3: 0111 1000 = $78 = 120

Byte 4: 0110 0110 = $66 = 102

Byte 5: 0110 0110 = $66 = 102

Byte 6: 0111 1000 = $78 = 120

Byte 7: 0000 0000 = $00 = 000

Diese acht Werte stehen nun an der Stelle in dem Zeichen-

satzspeicher, die für das große, normale B reserviert ist.

Bei Multicolorzeichen stehen jeweils 2 Bit für einen doppelt

breiten Punkt des Zeichens, wodurch sich die Auflösung einer

Matrix auf 4x8 Punkte pro Zeichen verringert. Da der Vorgang

weitestgehendst parallel zur Multicolorgraphik und -sprites

funktioniert und da das Wichtigste hierzu bereits unter # 3.2

gesagt wurde, wollen wir lediglich die Punkt-Bit-Beziehung

anhand einer kleinen Graphik darstellen:

Bit: 17654321 0

Byte 0: | <-> <-> <-> <->

Byte l: | <-> <-> <-> <->

Byte 2: | <-> <-> <-> <->

Byte 3: | <-> <-> <-> <->

Byte 4: | <-> <-> <-> «<->

Byte 5: [<-> <-> <-> <->

Byte 6: | <-> <-> <-> <->

Byte 7: | <-> <-> <-> <->

75

Das nächste Problem ist die Ermittlung der Position einer

Zeichendefinition. Ausgangspunkt aller Berechnungen sind die

Bildschirmcodes der einzelnen Zeichen, der Codes also, die

zur Bestimmung eines Zeichens im Videoram stehen (s. Anhang).

Der Rest ist relativ einfach: Da jedes Zeichen 8 Byte

benötigt, müssen wir nur den Wert des Bildschirmcodes mal 8

nehmen und die Basisadresse des Zeichensatzes, also die

Anfangsadresse, bei der unser Zeichensatz beginnt,

hinzuaddieren. Bei der Basisadresse ist zu beachten, daß

Zeichensatz I und II unterschieden werden müssen. Ein kleines

b des Klein- / Großschriftmodus mit dem Bildschimcode 2 liegt

2 K entfernt vom großen B des Großschrift / Graphik-

zeichenmodus mit ebenfalls dem Code 2 (nicht zu verwechseln

mit dem großen B des Klein- / GroBschriftmodus). Im

originalen Zeichensatz lauten die Basisadressen:

- Groß/Graphikzeichen: $D000 (53248)

- Klein/Großschrift : $D800 (55296)

Aus soeben Gesagten ergibt sich die Formel:

adresse = basisadresse + 8 % bildschirmcode

Für das Zeichen B im normalen Zeichenspeicher wäre dieses:

adresse = $D000 + 8 * 2 = $DO10 = 53256

Im Kapitel 4 werden Sie ausführlich erfahren, wie Sie diese

Änderungen am besten vornehmen (u.a. mit einen sehr

komfortablen Zeicheneditor) und wie Sie das Gelernte anwenden

können.

716

3.7. IROo—-Möglichkeiten

Eine der goldenen Bigenschaften Ihres Gerätes ist die

mannigfaltig verwendete Interrupt - Einrichtung. Unter

Interrupt versteht man die gesteuerte Unterbrechung eines

Programms an einer beliebigen Stelle, verursacht durch

irgendein Ereignis. Ist eine Unterbrechung ausgelöst worden,

so springt der interne Prozessor unterprogrammmäßig (Merken

der Rücksprungadressen) an eine bestimmte Stelle im Speicher,

die indirekt adressiert wird, und durchläuft dort eine

sogenannte Interrupt- oder Unterbrechungsroutine. Nach

Beendigung dieser Routine kehrt er genau an dieselbe Stelle

des unterbrochenen Programms zurück und fährt ganz normal

fort - bis zur nächsten Unterbrechung. Soweit in aller Kürze

eine Beschreibung des Interruptvorganges.

Keine Angst, Sie können ruhig weiterlesen, auch wenn Sie von

Interrupt noch nie etwas gehört haben und auch der Maschinen-

sprache nicht mächtig sind. Fast alle hier vorgestellten

Möglichkeiten, mit Interrupt zu arbeiten, funktionieren

gleichfalls ohne diese - nur in Assemblerprogrammen

verwendbare - Raffinesse. Falls Sie auf diesem Gebiet also

nicht so bewandert sind, sollten Sie sich die Stellen, in

denen von Interrupt die Rede ist, trotzdem durchlesen, um

einen Überblick zu erhalten. Lassen Sie sich aber nicht

abschrecken, da im Anschluß daran stets auch die

Möglichkeiten, die von Basic aus existieren, erläutert

werden.

Ein Interrupt ist also eine gewollte und programmtechnisch

vorgesehene Unterbrechung (kein Abbruch!). Interrupts sind

grundsätzlich ebenfalls in Basic möglich (z.B. die

Supergraphik 64 bietet dieses Hilfsmittel), die hier

besprochenen sind jedoch hardwarenäßig eingerichtete (durch

Software gesteuerte) Unterbrechungen der CPU (Central

Prozessing Unit -.Zentraler Microprozessor). Nun gibt es für

den in Ihrem Gerät verwendeten Microprozessor vier

verschiedene Interrupts:

77

a)

b)

c)

d)

- Reset

NMI (Non Maskable Interrupt)

BRK (Break)

IRQ (Interrupt Request)

Reset:

Erster, er kann nicht softwaremäßig unterdrückt werden,

wird nach dem Einschalten ausgelöst und initialisiert den

Computer. Am Ende dieses Vorganges steht die (jedem, der

den 64er einmal eingeschaltet hat, bekannte) Kopfschrift

auf dem Bildschirm:

x*%%% COMMODORE 64 BASIC V2 xx%%

64K RAM SYSTEM 38911 BASIC BYTES FREE

READY.

NMI:

Dieser nicht maskierbare, d.h. ebenfalls unbedingte

Interrupt wird ausgelöst, wenn Sie auf die <(restore>-Taste

drücken. Er wird gleichfalls benötigt, um die RS 232 -

Schnittstelle zu bedienen, falls vorhanden. Sie können die

indirekte Sprungadresse des NMI in den Speicherstellen

$318/$319 (792/793) erfahren oder ändern.

BRK:

Dies ist ein sogenannter Softwareinterrupt, der von einem

Assembler - Programm aus betätigt werden kann. Er wird

dann ausgelöst, wenn der Prozessor auf den BRK-Code $00

stößt (indirekter Sprung zur der Adresse, die in den

Speicherstellen $316/$317 (790/791) steht).

IRQ:

Hier ist er endlich! Alle oben genannten Interrupts sollen

uns hier nicht weiter interessieren und sind nur der

Vollständigkeit halber erwähnt worden. Die eigentlich für

uns interessante Unterbrechung ist dieser sogenannte

maskierbare Interrupt. Maskierbar heißt, daß per Software

gesagt werden kann, ob er ausgelöst werden darf oder

nicht. Sie können ihn also beliebig abschalten, wenn es

Ihnen gefällt. Hierfür existieren die beiden Assembler-

befehle SEI (Set Interruptflag - verhindert Interrupt) und

78

CLI (Clear Interruptflag _ ermöglicht Interrupt).

Gleichzeitig können Sie beim Commodore 64 in speziellen

Registern auswählen, welche Ursache von einer ganzen

Palette an Möglichkeiten einen IRQ auslösen darf und

welche nicht. So können beispielsweise die Timer der cCIA

nach Ihrem Ablauf eine Unterbrechung hervorrufen, was vom

Basic - Betriebssystem genutzt wird, indem es alle 1/60

Sekunde den normalen Programmablauf unterbricht und in die

ROM-IRQ-Routine springt (indirekte Adresse in $314/$315;

dezimal: 788/789). Hier wird der Cursor blinken gelassen,

die interne Uhr (TI$) gestellt, und die Tastatur (z.B.

STOP-Taste) abgefragt. Doch wir können die Auslösung eines

IRQ gleichfalls einigen anderen Ereignissen als nur dem

Ablauf eines Timers ermöglichen. Die für uns interessanten

sind:

- Rasterzeilendurchlauf

- Lightpen

- Sprite-Sprite-Kollision

- Sprite-Hintergrund-Koll.

Wenn wir nun die indirekte Adresse der IRQ-Routine des

Betriebssystems auf eine eigene Interruptroutine richten,

können wir diese Möglichkeiten ausnutzen. Wie dies

programmtechnisch zu lösen ist, wird Ihnen in den

entsprechenden Abschnitten des Kapitels 4 dargelegt. Der

Vorteil der IRQ-Verwendung für diese Anwendungen ist, daß

das Ereignis sofort gemeldet wird, ohne daß bis zur

nächsten Abfrage gewartet werden muß (neben dem IRQ gibt

es natürlich bei allem die Möglichkeit, auf das Ereignis

im Laufe des Programms durch eine einfache Abfrage zu

testen). Dies hat besonders große Bedeutung bei den

Rasterzeilen-IRQ, da hier die Vorgänge sehr schnell

ablaufen müssen. Nun aber zu den angekündigten Einzel-

besprechungen:

79

3.7.1. Bildschirmrasterseilen

Eine der am wenigsten verstandenen, dafür jedoch äußerst

ansprechenden Fähigkeiten Ihres Computers ist der

Rasterzeileninterrupt. Sie können mit diesen Dingen eine

große Anzahl von Effekten erzielen, die Ihr Herz höher

schlagen lassen: Mehrere Hintergrundfarben, mehr als 8

Sprites, gemischte Graphik- und Textanzeige usw. usw. Doch

bevor wir uns in Kapitel 4 mit der Realisierung dieser Dinge

beschäftigen, wollen wir zunächst einmal die Frage klären,

was unter sogenannten Rasterzeilen eigentlich zu verstehen

ist.

Dazu müssen wir verstehen, wie auf dem Fernseher oder Monitor

ein Bild entsteht. Wie Sie vielleicht wissen, besteht der

Bildschirm aus einer Lochrasterplatte in Verbindung mit einer

phosphoreszierenden Schicht, die durch den Aufprall der

Elektronen eines Elektronenstrahles punktuell zu leuchten

beginnt. Dieser Elektronenstrahl geht nun Zeile für Zeile

jeden einzelnen Punkt des lLochrasters durch und läßt ihn - je

nach Bedarf - aufleuchten oder nicht. Dies geschieht in einer

ungeheuren Geschwindigkeit, so daß der Strahl pro Sekunde 20

mal ein neues Bild erzeugt, also 20 mal über sämtliche Punkte

des Punktrasters hinüberfegt. So entsteht für uns der

Eindruck eines bewegten Bildes. Dieser Elektronenstrahl wird

durch die komplizierten Apparaturen am hinteren Ende einer

Bildröhre gesteuert. Doch die Information, ob ein Punkt des

Bildschirms nun aufleuchten oder erblassen soll, muß von

einer anderen Quelle stammen. Beim normalen Fernseher sind

dies die über den Äther gesandten und von der Antenne

eingefangenen Signale der Sendestationen. In unserem Fall muß

der Computer dieses Signal erzeugen. Er also muß praktisch

Reihe für Reihe und Punkt für Punkt durchgehen, und das

"an/aus"-Signal senden. Diese Aufgabe übernimmt im Falle des

CBM 64 ebenfalls der Videocontroller (VIC).

Normalerweise wird das alles intern geregelt, ohne daß der

Programmierer darauf Einfluß nehmen oder überhaupt daran

beteiligt sein könnte. Anders beim 64er: Hier besitzt die

Software die Möglichkeit festzustellen, welche Rasterzeile

der VIC gerade erstellt. Dies kann u.a. durch das Lesen des

VIC-Registers 18 erfolgen. Hierzu muß zunächst aber etwas

gesagt werden:

80

Da bei der Rasterzeilenerstellung selbstverständlich neben

dem eigendlichen Text- oder Graphikfenster ebenfalls der

Rahmen mit übergeben werden muß und die Strahlablenkung etwas

über den Bildschirm hinausgeht, stellt sich die Koordinaten-

einteilung etwas anders dar, als wir sie von der Graphik oder

den Sprites her kennen. Zur Veranschaulichung des im

folgenden Gesagten vergleichen Sie bitte das unten gezeigte

Schaubild, das eine Skizze des Bildschirms mit dem Fenster

darstellt.

30 40 200 210

30- tt

Textfenster

 240 =

280=

Der Strahl startet in der obersten Reihe. Diese besitzt nun

aber nicht etwa die Nummer 0 oder |, wie man vermuten könnte,

sondern die obere Kante Ihres Bildschirms beginnt bereits bei

Reihe Nr. 30 ($1E) (wobei die angegebenen Randwerte von

Fernseher (Monitor) zu Fernseher leicht variieren können).

Sie endet (untere Bildschirmkante) ca. bei Nr. 280 ($118).

Das eigentliche Bildschirmfenster, das normalerweise

verwendet werden kann, hat an der oberen Kante den Raster-

zeilenwert von etwa 40, während die untere mit der Raster-

zeile Nr. 240 übereinstimmt.

Wie Sie sehen, unterteilt der VIC das Textfenster (genau

übereinstimmend mit der Punktauflösung) in 200 Zeilen

(Reihen). Sie werden im Kapitel "Joystick" sehen, daß dies im

Falle der Spaltenauflösung nicht so einfach ist.

Wie gesagt können wir jetzt selber aktiv in das Geschehen

eingreifen, bzw. uns über den jeweiligen Stand unterrichten.

Was heißt das nun?

Zum einen können wir (wie oben erwähnt) dem Register 18 des

Videocontrollers die Nummer der Rasterzeile, die er gerade

8l

dem Sichtgerät sendet, entnehmen. Da ein Register jedoch

Werte von 0 bis maximal 255 annehmen kann, der VIC aber

mindestens bis zu 280 Reihen sendet, wird das fehlende

oberste (8.) Bit vom VIC-Register 17 geliefert. Wie Sie aus

der in # 3.1 gezeigten Tabelle entnehmen, stellt das 7. Bit

dieses Registers 17 das gesuchte oberste Bit der Raster-

zeilennummer dar. Somit können wir durch einfaches Lesen die

genaue Rasterzeile erfahren. Da jedoch ein Bild pro Sekunde

20 mal erneuert wird, und mindestens 280 Reihen pro Bild an

den Bildschirm gesendet werden müssen, wird eine Reihe in ca.

1 sek./(20%280) = 0,00018 sek., also in 0,18 milli- oder 180

mikrosekunden (eine Mikrosekunde ist eine Millionstel

Sekunde), das sind 5600 Reihen pro Sekunde, aufgebaut. Wenn

man bedenkt, daß eine Reihe weiterhin noch aus einer großen

Zahl von Punkten (s. # 3.7.2) besteht, kann man sich in etwa

vorstellen, wo hier die Zeitverhältnisse pro Punkt liegen

(etwa bei 0,89 mikrosekunden).

Damit scheint die softwaremäßige Behandlung auch in Assembler

(immerhin dauert ein Befehl in Assembler mindestens eine

500.000stel Sekunde (= 2 mikrosekunden) - bei manchen

Befehlen das bis zu 3,5 fache) unmöglich, da praktisch

dauernd abgefragt werden müßte, wo sich der Strahl gerade

befindet, um eine bestimmte Reihe anzusteuern.

Doch dies ist aufgrund einer äußerst interessanten

Einrichtung nicht notwendig. Sie können nämlich den VIC dazu

veranlassen, einen IRQ (wie oben beschrieben), also eine

Unterbrechung Ihres Programms, auszulösen, wenn er gerade

eine bestimmte Reihe des Bildes aufbaut (genau einen

bestimmten Punkt anzusprechen, wäre aufgrund der winzigen

Punktdurchlaufzeiten (s.o.) sinnlos). Für diesen Zweck

schreiben Sie die gewünschte Zeile, bei deren Strahl-

durchlauf ein Interrupt ausgelöst und damit eine Interrupt-

routine aufgerufen werden soll, genau in dasselbe Register

18, aus dem wir sonst die aktuelle Position des Strahl

ziehen. Auch hier dient Bit 7 des 17. Registers als Highbyte.

Wir müssen dem Computer (bzw. dem VIC) nur noch mitteilen,

daß er ab sofort diese Unterbrechung ausführen soll, wenn er

die bestimmte Reihe erreicht hat. Dies geschieht mit Hilfe

der beiden Register 25 und 26 ($19/$1A). Ersteres ist das

sogenannte Interrupt Request Register (IRR). Hier wird

angegeben, welche Ursache ein durch den VIC ausgeléster IRQ

82

hat. Dabei gilt:

Bit 0 = 1: Rasterzeileninterrupt

Bit 1 = 1: Interrupt durch Sprite-Hgrund-Koll.

Bit 2 = 1: Interrupt durch Sprite-Sprite-Koll.

Bit 3 = 1: Interrupt durch lightpen

Bits 4-6 : unbenutzt

Bit 7 = 1: Interrupt hat eine der 4 Ursachen

Sie sehen also, daß hier der Programmierer durch Abfrage des

7. Bits erfährt, ob eins der 4 unteren Bits gleich 1 ist, ein

Interrupt also durch eine der 4 Möglichkeiten verursacht

wurde (wie gesagt kann er ja auch andere Ursachen haben).

Nach jeder Abfrage muß dieses Register wieder zurückgesetzt

werden, da ansonsten direkt nach der durchlaufenen Interrupt-

routine wieder ein IRQ ausgelöst wird usw. - "Absturz"! Dies

geschieht, indem man denselben Wert, den man aus diesen

Register ausgelesen hat wieder hierhin zurückschreibt.

Trotzdem wüßte der VIC immer noch nicht, wodurch er einen IRQ

auslösen sollte, würden wir nicht Gebrauch von dem Register

26 machen. Hier existiert die gleiche Zuordnung der einzelnen

Bits wie im gerade beschriebenen Register 25 (außer 7. Bit).

Hier bedeutet allerdings ein gesetztes Bit, daß das

betreffende Ereignis von Stund an ein IRQ-Auslöser sein kann.

Wollen wir beispielsweise, daß der VIC immer dann unser

Programm unterbricht und der Prozessor dann unsere

IRQ-Routine anspringt, deren Adresse wir in $314/$315 (=

788/789; s.o.) abgelegt haben, wenn er die Reihe 100 erreicht

hat, so schreiben wir zunächst 100 in dieses Register 18

(MSB = 0!), löschen Register 25, indem wir den Inhalt lesen

und wieder rückschreiben, und setzen das Bit 0 des Registers

26 gleich 1. Wie das alles programnmtechnisch unter einen Hut

gebracht wird, sollten Sie nun in dem entsprechenden

Paragraphen des Kapitels 4 nachlesen.

83

3.7.2. Lightpen

Bevor Sie diesen Paragraphen durcharbeiten, sollter Sie

wenigstens die Ausführungen in 3.7.1 über die Entstehung des

Bildes auf dem Bildschirm gelesen haben, da die folgenden

Erklärungen auf diesem Wissen aufbauen.

Ihr Commodore 64 besitzt verschiedene Möglichkeiten,

steuernde Geräte als Peripheriebausteine anzuschließen. Zu

diesem Zwecke befinden sich an der rechten Seite Ihres

Computers, wenn Sie sich das einmal anschauen wollen, zwei

sogenannte Controlports. Dies sind Steckbuchsen für den

Anschluß von Joysticks, Paddles, Lightpen oder sogar selbst-

gebaute Steuer- bzw. Meßeinrichtungen (wie z.B. Thermoneter,

Feuchtigkeitsmesser, Impulsgeber etc.). Die Steckerbelegung

wird in Ihrem CBM 64 -Benutzerhandbuch auf der Seite 141

beschrieben. Sie brauchen diese nicht unbedingt zu kennen, um

beispielsweise einen Joystick an Ihr Gerät anzuschließen und

ihn richtig zu gebrauchen. Wichtig ist nur, daß der Eingang

für den unten beschriebenen Lightpen identisch ist mit den

des Feuerknopfes eines in Port 1 gesteckten Joysticks. Um

etwas vorzugreifen: Sie können also auch mit dem Feuerknopf

von Port 1 einen Interrupt auslösen, was sicher hoch-

interessant nicht nur für Spiele ist. Sie können damit Geräte

anschließen, die im Computer einen IRQ auslösen können, eine

Möglichkeit, die wertvolle Konsequenzen hat!

Eine der hochinteressanten Einsatzmöglichkeiten ist der

Lightpen:

Unter Lightpen (oder Lichtgriffel) versteht man einen

handlichen Stift, der zur Eingabe oder Bestimmung eines

Punktes auf dem Bildschirm dient und den direkten Kontakt

zwischen Ihnen und dem Fernseher (Monitor) gestattet. Mit dem

Lichtgriffel ist es also möglich, durch ein simples Auflegen

der Stiftspitze auf den Bildschirm dem Computer eine

Bildschirmposition einzugeben.

Wie geht das nun vonstatten? Sie zeigen mit Ihrem in Control-

port 1 gesteckten Lichtgriffel auf einen Punkt des

Bildschirms. Dabei ist es egal, ob sich dieser Punkt

innerhalb oder außerhalb des eigentlichen Textfensters

befindet. Der Computer ist alsdann in der Lage, diesen Punkt

zu identifizieren, er kennt also die Koordinaten dieses

Punktes. Wenn Sie diese in Ihrem Programm abfragen, können

84

Sie beispielsweise feststellen, ob sich an der Stelle ein

bestimmtes Objekt (Buchstabe oder eine Graphik) befindet.

Oder Sie zeichnen genau an dieser Stelle einen Punkt in die

Graphik, so daB Sie per Hand auf den Bildschirm zeichnen

können! Eine andere Idee wäre, den Lightpen als komfortable

Cursorsteuerung einzusetzen. Es gibt eine Menge Möglichkeiten

der Verwendung.

Doch nun zur technischen Seite des ganzen Geschehens. Wie

stellt der Computer fest, wo auf dem Bildschirm nun gerade

der Lightpen positioniert ist? Sie wissen, daß ein Bild des

Fernsehers (Monitors) aus vielen kleinen Punkten zusammen-

gesetzt ist, die alle 1/20 Sekunden von einem Elektronen-

strahl, der auf die erwähnte Lochrasterplatte fällt, zum

Aufleuchten gebracht werden. Der Lightpen registriert nun,

sofern er auf einen Punkt des Bildschirms gerichtet ist,

dieses kurze Aufleuchten und sendet einen Impuls an den

Computer. Achten Sie bei der Verwendung des Lightpen deshalb

darauf, keine schwarze Hintergrundfarbe zu wählen und den

Helligkeitsregler Ihres Bildausgabegerätes nicht zu niedrig

einzustellen. Der genannte Impuls erreicht den VIC, der

sofort die aktuelle Rasterzeile und die (uns bisher

unbekannte) Rasterspalte in zwei Registern als x,y-Punkt-

koordinaten ablegt. Es sind dies die beiden VIC-Register 19

und 20 (x- und y-Anteil). Hier kann jetzt ein Programm die

beiden Werte auslesen und verwerten (z.B. indem es an dieser

Stelle einen Punkt zeichnet). Zunächst aber muß noch Einiges

zu den Koordinatensystem gesagt werden. Die y-Einteilung,

also die Einteilung nach Rasterzeilen kennen Sie bereits. Sie

wurde in # 3.7.1 ausführlich erörtert. Die x-Einteilung ist

nun etwas komplizierter. Hier gibt es jeweils halb so viele

ansprechbare Rasterpunkte, wie wir von der Graphik her

kennen, d.h. ein angegebener Rasterpunkt steht für zwei wahre

Graphikpunkte. Es ergeben sich folgende Randwerte: Die linke

Kante Ihres Bildschirms besitzt etwa den Randwert 30, die

rechte ist Spalte Nr. 210. Das reguläre Bildfenster aber

liegt links bei ca. 40 und rechts bei 200, womit wir

. 160 = 320/2 Rasterpunkte im Textfenster besitzen. Angenommen,

wir haben zwei Werte für die Rasterkoordinaten aus den

Registern 19/20 entnommen, und wollen genau an dieser Stelle

einen Punkt zeichnen. Dann müssen wir die Rasterkoordinaten

in solche für die Graphik umrechnen. Dies können wir nach den

85

obigen Ausfiihrungen durch die folgenden Formeln vornehmen:

(xp-40) *2

yp-40

wobei x und y die Graphik- und xr, yr die Rasterkoordinaten

darstellen. Jetzt können wir an der errechneten Stelle einen

Punkt setzen.

Das ist die einfache und auch von Basic aus programmierbare

Möglichkeit. Doch auch hier bietet Ihnen Ihr Computer eine

Möglichkeit, mit der Interrupttechnik zu arbeiten:

Sendet der Lightpen nämlich einen Impuls, so wird das 3. Bit

des VIC-Registers 25 gesetzt. Haben wir vorher in Register 26

ebenfalls das 3. Bit gesetzt, kann ein Interrupt ausgelöst

werden. Ihr Programm wird also unterbrochen und Ihre

Interruptroutine aufgerufen, die das Ereignis bearbeitet.

Auch hier werden Programnierbeispiele etc. in Kapitel 4

gegeben.

3.7.3. Sprite-Kollisionen

Wenn Sie sich den Abschnitt 3.5.4.4 durchgelesen haben,

wissen Sie bereits, daß Sie eventuelle Berührungen von

Sprites untereinander oder mit Hintergrundzeichen feststellen

können, indem Sie den Inhalt der VIC-Register 30 und 31 lesen

und analysieren. Wie Sie wissen, ist hier jedem Sprite ein

Bit zugeordnet und diejenigen Bits gesetzt, deren Sprite

kollidiert ist. Doch es gibt eine weitere Möglichkeit aus

Assembler heraus Kollisionen zu registrieren. Wie Sie sich

schon denken können, beruht diese Möglichkeit wieder auf der

Interrupttechnik. Sie können den VIC (wieder durch den

Gebrauch der Register 25/26) veranlassen, bei irgendeiner

Kollision einen Interrupt auszulösen. Auch hier werden wieder

Berührungen zwischen Sprites und dem Hintergrund und Sprite -

Sprite - Kollisionen unterschieden. In Register 25 (IRR) ist

dafür jeweils ein Bit reserviert. Bit 3 wird gesetzt, wenn

eine im Register 30 näher angegebene Berührung zwischen zwei

Sprites stattgefunden hat. Entsprechendes passiert mit Bit 2,

falls die Berührung zwischen einen Sprite und einen

86

Hintergrundzeichen stattfand. Ein Interrupt wird, wie Sie

sich sicher denken können, aber erst ausgelöst, wenn Sie

vorher das korrespondierende Bit in Register 26 gesetzt

haben. Vergessen Sie nicht, die IRQ-Adresse umzulegen und

nach jedem IRQ das IRR durch Zurückschreiben der Lesedaten zu

löschen.

87

4. Kapitel

Grundsätzliche

Graphikprogrammiecrung

Nachdem wir jetzt genügend graue Theorie über die Graphik-

fähigkeiten Ihres Rechners gehört haben, wollen wir uns in

diesem Kapitel mit der Realisierung dieser Dinge

beschäftigen. Denn was nützt uns das alles, wenn wir nicht

wissen, wie wir Sprites oder hochauflösende Graphik

einsetzen. Es ist das "Know how", das uns fehlt. Aus diesem

Grunde gibt es zu jedem der obigen Abschnitte des 3. einen

dazugehörigen aus diesem Kapitel, der die Programmierung bzw.

die Anwendung der einzelnen Möglichkeiten behandelt.

Programme werden möglichst in Basic, bei den vielen

Maschinenspracheroutinen zusätzlich ein Basiclader angegeben.

Alle Programme sind in REM-Zeilen bzw. mit Kommeıtaren

dokumentiert. Die wichtigen und neuen Programmteile werden

auch im Text beschrieben. Bei den Basicroutinen für die

einzelnen Graphikfiguren und -anwendungen muß in aller

Deutlichkeit gesagt werden, daß dies selbstverständlich nur

Hilfen sind; die entsprechenden Assemblerroutinen führen die

gewünschte Funktion sehr viel schneller aus. Deswegen lohnt

sich -wie auch oben schon einmal erwähnt- der Erwerb von

Maschinensprachekenntnissen ungeheuer. Wenn Sie Basic

einigermaßen gut beherrschen, ist der Schritt dorthin nicht

mehr weit. Versuchen Sie es einmal!

88

4.1 Text und Graphik auf

dem Low-Res—-Bildschirm

Die erste und einfachste Möglichkeit, Graphiken auf Ihren

Bildschirm darzustellen, ist das Arbeiten mit den originalen

Graphikzeichen, die Sie an der vorderen Seite der einzelnen

Tasten Ihres Rechners finden. Schon hiermit lassen sich sit

etwas Phantasie (sie wird bei der Graphikerstellung stets

benötigt) wunderbare und vielfarbige Bilder erzeugen. Die

Graphikzeichen lassen sich auf verschiedene Art und Weise

erreichen:

a) Ansteuerung durch die Tastatur:

Die Zeichen, die auf der rechten Seite der Tasten stehen,

lassen sich durch gleichzeitiges Drücken dieser jeweiligen

normalen- mit der <shift>-Taste auf dem Bildschirm

darstellen. Diejenigen, die links stehen, werden mit der

gedrückten <C=> (<commodore>) -Taste angewählt. Zusätzlich

zu diesen normalen können Sie noch sogenannte inverse

Zeichen erzeugen, indem Sie vorher gleichzeitig auf die

Tasten <ctrl> und <rvs on> drücken (oder Sie geben ein:

PRINT CHR$(18)). Wollen Sie die ausgesuchten Zeichen nicht

mehr invers darstellen, so genügt ein <ctrl> mit <rvs off>

(PRINT CHR$(146)).

Farben:

Die 16 verschiedenen Zeichen-Farben, die auf den

Bildschirm dargestellt werden können, sind ebenfalls. durch

die Tastatur anwählbar (eine umfassende Tabelle der Farben

und ihrer verschiedenen Zuordnungen finden Sie im Anhang):

Dabei drücken Sie für die ersten 8 Farben (numeriert nach

den Farbcodes) gleichzeitig mit der <ctrl>-Taste eine der

Tasten <1-8> (die dabei entstehende Farbe steht ebenfalls

auf der Frontseite der 8 Tasten). Wollen Sie dagegen den

folgenden Zeichen eine der 8 letzten Farben (Farben Nr.

8-15) geben, so drücken Sie einfach die <C=>- mit den

erwähnten 8 Farbtasten.

b) Ansteuerung durch das PRINT-Statement:

Jedes Zeichen besitzt einen bestimmten, sogenannten

89

ASCII-Code. Durch Angabe dieses Codes kann jedes Zeichen

eindeutig bestimmt werden (dabei besteht zwischen inversen

und normalen Zeichen allerdings kein Unterschied). Den

ASCII-Code eines Zeichens können Sie durch den

Basic-Befehl ASC in der folgenden Weise ermitteln (In

diesem Falle für das Zeichen "A"):

PRINT ASC("A") oder

2$ = "A" : PRINT ASC(Z$)

Der Rechner schreibt: 65. Kennen Sie umgekehrt den

ASCII-Code eines Zeichens, so finden Sie dieses wie folgt

durch den Befehl CHR$ (ebenfalls für das Zeichen "A"):

PRINT CHR$(65) oder

C = 65 : PRINT CHR$(C)

Und schon steht ein A auf dem Bildschirm. Der Vorteil

dieser Codierung ist eine Berechenbarkeit von Zeichen,

d.h. Sie können ein Zeichen durch irgendeinen Algorithmus

(Rechenvorschrift) bestimmen. Gleichzeitig werden

Vergleiche o.ä. sehr vereinfacht.

Farben:

Auch die verschiedenen Farben (neben vielen anderen

Control - Funktionen wie <clr/home> etc.) besitzen

ASCII-Codes. Leider werden im CBM 64-Handbuch nur die der

ersten 8 Farben angegeben; Hier daher eine vollständige

Auflistung:

ASCII | Farbe ASCII] Farbe
144 schwarz 129 orange

5 weiß 149 braun

28 rot 150 hellrot

159 cyan 151 grau 1

156 violett 152 grau 2

30 grün 153 hellgrün

31 blau 154 hellblau

158 gelb 155 grau 3
90

c) Ansteuerung durch POKE:

Alle Zeichen, die sich auf dem Bildschirm befinden, werden

in einem besonderen Speicher abgelegt: dem Videoram (s.

3.6). Hier müssen natürlich normale und inverse Zeichen

unterschieden werden, während Controlzeichen, die nicht

auf dem Bildschirm erscheinen, nicht vermerkt werden

brauchen. Somit wird bei der Abspeicherung ein anderer

Code, der sogenannte Bildschirscode verwendet (s. Kapitel

4). Wollen Sie also direkt in diesen Speicher POKEn, so

müssen Sie sich jenes Codes bedienen. Mit

POKE 1024, 1

beispielsweise bringen Sie ein A in die linke obere Ecke

des Bildschirms. Dieses A ist jedoch noch nicht zu sehen

(falls dort nicht zufällig vorher schon ein Zeichen

stand). Es fehlt die Farbe, die im sogenannten Farbram

abgespeichert wird und z.B. mit

POKE 55296,5

angewählt wird (die 5 stellt den Farbcode dar, der im

Farbram abgespeichert wird). Das Zeichen wird grün (Farbe

5). Diese Zusammenhänge sind ausgiebig in Kapitel 3.6.1

dargelegt.

Auf den folgenden Seiten werden ihnen drei Programme

vorgestellt, die alle das gleiche Ergebnis (s. Bild)

erbringen, welches jedoch auf drei unterschiedliche Arten

entsteht, ohne Rücksicht darauf, daß sich die eine oder

andere Methode in diesem Falle so-gut wie gar nicht für den

demonstrierten Zweck eignet. Sie sollen Ihnen lediglich

zeigen, wie die einzelnen Möglichkeiten der Zeichen-

darstellung in vivo, also direkt im Programm realsiert werden

können.

AN DIESER STELLE SOLLTE EIGENTLICH
EIN KLEINES PROGRAM
AUS DRUCKTECHNISCHEN GRUENDEN JEDOCH
MUSSTEN WIR ES IN DE
ANHANG (4.18) VERLEGEN

9]

100 REM X KXKKKKKKERKKKKKKK KK KK KK

110 REM %% xx

120 REM ** LOW-GRAPHIK/CHR$ %%

130 REM ** xx

140 REM KXXKKKKKKKKKKKKKKKKKEKKE

150 REM

160 PRINT CHR$(147) : PRINT : PRINT : REM BILDSCHIRM

LOESCHEN/LEERZEILEN

170 FOR X=1 TO 290 : REM 290 ASCII-CODES RINLADEN

180 READ CH : REM LESE DATA

190 PRINT CHR$(CH); : REM SCHREIBE ZEICHEN

200 NEXT X

210 REM

220 REM KXXXXXXKEKKXEKKKKKK

230 REM ** DATAZEILEN xx

240 REM ¥*XXXXKXEXKKXKKKKKKX

250 REM

260 DATA 32, 32, 205, 32, 206, 13

270 REM

280 DATA 32, 205, 213, 201, 32, 32

290 DATA 32, 32, 32, 32, 32, 32

300 DATA 32, 32, 32, 213, 203, 13

310 REM

320 DATA 32, 32, 202, 203, 205, 13

330 REM

340 DATA 32, 206, 32, 205, 32, 32

350 DATA 32, 32, 32, 32, 32, 32

360 DATA 32, 213, 203, 13

370 REM

380 DATA 32, 32, 32, 32, 32, 32

390 DATA 32, 32, 32, 32, 32, 32

400 DATA 32, 175, 13

410 REM

420 DATA 32, 32, 32, 32, 32, 32

430 DATA 32, 32, 32, 32, 175, 175

440 DATA 175, 204, 204, 175, 175, 13

450 REM

460 DATA 32, 32, 32, 32, 32, 32

470 DATA 32, 32, 32, 206, 205, 32

480 DATA 32, 32, 32, 32, 32, 205

490 DATA 13

92

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

780

790

800

810

820

830

840

850

860

870

880

890

900

REM

DATA

DATA

DATA

DATA

REM

DATA

DATA

DATA

DATA

REM

DATA

DATA

DATA

DATA

REM

DATA

DATA

DATA

REM

DATA

DATA

DATA

DATA

REM

DATA

DATA

DATA

DATA

REM

DATA

DATA

DATA

DATA

REM

DATA

DATA

DATA

DATA

DATA

REM

32,

32,

32,

13

32,

32,

205,

13

32,

32,

208,

13

32,

32,

170,

32,

32,

170,

176,

32,

32,

170,

177,

32,
32,

170,
215,

32,

32,

183,

183,

183,

32,

32,

32,

206,

32,

207,

32,

165,

32,

32,

165,

32,

174,

32,

165,

32,

177,

32,

165,

206,

195,

32,

183,

32,

183,

183,

206,

32,

32,

32,

32,

32,

183,

32,

32,

176,

32,

32,

173,

32,

213,

32,

32,

206,

203,

32,

32,

32,

195,

32,

183,

32,

183,

13

32,

32,

32,

32,

32,

32,

32,

183,

32,

32,

174,

32,

32,

189,

206,

201,

32,

207,

32,

202,

32,

207,

32,

215,

32,

207,

32,

183,

32,

32,

32,

32,

32,

32,

32,

183,

32,

32,

176,

206,

32,

173,

32,

13

32,

208,

32,

201,

32,
170,
45,

177,

32,

183,

207,

183,

93

32

205

182

32

32

182

32

183

206

32

174

13

32

189

32

32

32

213

13

32

32

177

13

32

183

183

183

910 DATA 32, 32, 32, 32, 32, 32

920 DATA 32, 32, 32, 204, 175, 175

930 DATA 175, 175, 175, 175, 165, 13

100 REM KXEKAKKKKERKEKKRREKERKEES

110 REM xx xx

120 REM ** LOW-GRAPHIK/POKE %%

130 REM %% xx

140 REM KXKXKEKAKKAKKEKAEAAKEE RATES

150 REM

160 FA = 5 : REM FARBE = GRUEN

170 PRINT CHR$(147) : REM BILDSCHIRM LOESCHEN

180 VR = 1024 + 2%40 : REM POKE-STARTADRESSE (VIDEORAM)

190 FR = 55296 + 2*40 : REM POKE-STARTADRESSE (FARBRAM)

200 FOR Y=0 TO 15 : REM 16 ZEILEN

210 READ ZA : REM ANZAHL DER ZEICHEN IN DER ZEILE HOLEN

220 VR = VR+40 : REM NAECHSTE ZEILE (40 SPEICHERSTELLEN

WEITER)

230 FR = FR+40 : REM NAECHSTE ZEILE (40 SPEICHERSTELLEN

WEITER)

240 FOR X=0 TO ZA-1 : REM ZA ZEICHEN POKEN

250 READ BC : REM BILDSCHIRMCODE LESEN

260 POKE VR+X, BC : REM UND IN VIDEORAM SCHREIBEN

270 POKE FR+X, FA : REM FARBE EINPOKEN

280 NEXT X

290 NEXT Y

300 REM

310 REM ¥€XXXKKEEKKEKERERARKAKKE

320 REM ** BILDSCHIRMCODES %*%

330 REM 4XXKKAKKEKEKAREAAKKEKEK

340 REM

350 DATA 5

360 DATA 32, 32, 77, 32, 78

370 REM

380 DATA 17

390 DATA 32, 77, 85, 73, 32, 32

400 DATA 32, 32, 32, 32, 32, 32

410 DATA 32, 32, 32, 85, 75

420 REM

430 DATA 5

440 DATA 32, 32, 74, 75, 77

94

450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850

REM

DATA

DATA

DATA

DATA

REM

DATA

DATA

DATA

DATA

REM

DATA

DATA

DATA

DATA

REM

DATA

DATA

DATA

DATA

REM

DATA

DATA

DATA

DATA

REM

DATA

DATA

DATA

DATA

REM

DATA

DATA

DATA

DATA

REM

DATA

DATA

DATA

DATA

REM

15

32,

32,

32,

14

32,

32,

32,

17

32,

32,

ıll,

17

32,

32,

106,

78,

32,

85,

32,

32,

111

32,

32,

76,

32,

32,

32,

32,

32,

32,

32,

78,

32,

32,

79,

32,

32,

101,

32,

32,

32,

75

32,

32,

32,

32,

76,

32,

32,

32,

32,

78,

32,

32,

32,

32,

119,

32,

32,

112,

32,

77,

32,

32,

32,

32,

111,

32,

78,

32,

32,

32,

32,

32,

32,

32,

32,

119,

32,

32,

110,

32,

32,

32,

32,

32,

32,

lll,

111

32,

77,

32,

32,

32,

32,

32,

32,

32,

32,

119,

32,

32,

112,

78

95

32

32

32

32

32

lil

32

32

77

32

77

118

32

32

118

32

119

78

32

110

860

870

880

890

900

910

920

930

940

950

960

970

980

990

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

DATA

DATA

DATA

DATA

DATA

REM

DATA

DATA

DATA

DATA

DATA

REM

DATA

DATA

DATA

DATA

DATA

REM

DATA

DATA

DATA

DATA

DATA

DATA

REM

DATA

DATA

DATA

DATA

22

32,

32,

106,

112,

23

32,

32,

106,

113,

23

32,

32,

106,

87,

26

32,

32,

119,

119,

119,

17

32,

32,

lll,

32, 32, 32, 32,

101, 109, 125, 109,

32, 32, 78, 32,

110, 85, 73

32, 32, 32, 32,

101 9 32 ’ 79, 80 ’

32, 78, 32, 32,

113, 75, 74, 73

32, 32, 32, 32,

101, 32, 79, 106,

78, 32, 32, 45,

67, 67, 87, 113

32, 32, 32, 32,

119, 119, 79, 119,

32 9 32 9 32 9 79 >

119, 119, 119, 119,

119

32, 32, 32, 32,

32, 32, 76, 111,

lil, 111, 111, 101

nl

On) ar
la

 | Uorssensrsensseetene

32

125

32

32

32

85

32

32

113

32

119

119

119

32

lll

Das erste der drei Programme zeigt die Erstellung eines

Bildes mittelst PRINT-Statement,

96

die hier schnellste und

kürzeste und damit in diesen Fall wohl günstigste

Möglichkeit. Hier wird das Bild nach dem Löschen des

Bildschirmes, was in Zeile 160 durch ein

PRINT CHR$(147)

geschieht, durch je ein PRINT-Statement pro Zeile zusammen-

gesetzt. Dabei wird ausgiebig von den erwähnten Graphik-

zeichen Gebrauch gemacht. In den REM-Zeilen dahinter erfahren

Sie, auf welchen Tasten Sie die einzelnen Gebilde finden (die

Leerzeichen sind dabei natürlich ausgelassen). Sie müssen

diese Tasten dann nur noch gemeinsam mit <shift> oder <C=>

drücken (wie oben beschrieben), und schon erscheint das

gewünschte Zeichen auf Ihrem Bildschirm.

Im zweiten Programm wird das gespeicherte Bild ebenfalls

durch PRINT-Statements erzeugt. Sie enthalten jedoch nicht

direkt die einzelnen Zeichen, sondern diese werden über den

Umweg der ASCII-Codes erzeugt. Die verschiedenen ASCII-Codes

sind dabei in DATA-Zeilen untergebracht. Wie Sie vielleicht

wissen, werden in DATA-Zeilen verschiedene durch Komma

abgetrennte Elemente gespeichert, die dann durch den Befehl

READ nacheinander(!) in einen beliebigen Speicher (hier CH)

eingelesen werden können (s. CBM 64 -— Handbuch Kapitel 8).

Dieses Einlesen geschieht in unserem Programm in Zeile 180.

Die Variable CH enthält nun den ASCII-Wert des als nächstes

auszugebenden Wertes. In Zeile 190 wird das zugeordnete

Zeichen dann gePRINTet. Das Ganze spielt sich in einer

FOR...NEXT - Schleife ab, die insgesamt 290 mal durchläuft,

um alle 290 Daten einzulesen. Am Ende jeder Bildzeile (die in

den DATA-Zeilen durch ein REM getrennt sind) steht, wie Sie

sehen, die Zahl 13. Dies ist der ASCII-Code fiir <return> und

veranlaßt den Computer das nächste Zeichen an den Anfang der

nächsten Zeile zu setzen. Wie Sie weiterhin sehen, werden

hier eine ganze Menge DATAs benötigt, was diese Methode in

unserem Falle recht uneffektiv gestaltet. Ein wenig geändert

wäre die Lage, wenn man statt der vielen Codes für die

Leerzeichen (ASCII = 32) am Anfang einer Zeile einen Merker

angibt, der über die Anzahl der Leerzeichen Auskunft gibt,

die ausgegeben werden müssen, bevor die richtigen Graphik-

zeichen erscheinen. Lassen Sie sich einmal etwas einfallen.

97

Beispiel Nr. 3 demonstriert uns die Anwendung des POKE-Be-

fehls, um Zeichen direkt in den Videoram einzuschreiben. Auch

hier werden diesmal die Bildschirmcodes in DATA-Zeilen

untergebracht. Doch neben dem einfachen Einschreiben eines

Zeichens in den Speicher müssen Sie weiterhin noch die Farbe

jedes einzelnen Buchstaben etc. in den Farbram eintragen, wie

oben dargelegt. Kern des Programms sind zwei ineinander

verschachtelte FOR...NEXT - Schleifen. Die äußere (2.

200-290) erhöht (nach dem Durchlauf der inneren) die Nummer

der Zeile, die mit Graphikzeichen gefüllt werden scll. Vor

dem Start der inneren Schleife wird zunächst ein Wert aus den

DATA-Zeilen in die Variable ZA gelesen (Z. 210), der die

Anzahl der Zeichen in der jeweiligen Bildschirm-Zeile angibt.

Dieser dient dazu die Anzahl der inneren Schleifendurchläufe

zu bestimmen. In dem Inneren dieser Schleife werden nun

nacheinander die Bildschirmcodes der verschiedenen Zeichen

durch READ eingelesen (Z. 250) und an die laufende Adresse im

Videoram gePOKEt (Z. 260). Alsdann schreiben wir in die

korrespondierende Stelle des Farbrams den Wert 5 für die

Farbe grün (Z. 270), der in Zeile 160 festgelegt wurde. Auch

hier bietet sich natürlich die gleiche Verkürzung der

DATA-Zeilen wie im zweiten Beispiel beschrieben an.

Wie stellt man aber nun am günstigsten ein eigenes

Graphikbild zusammen? Hier gibt es die unterschiedlichsten

Möglichkeiten, und jeder wird selbst entscheiden, welche von

ihnen ihm am einfachsten erscheinen. Allgemein kann aber

gesagt werden, daß ein richtig schönes Bild mit vielen

Details eine recht zeitaufwendige Sache ist, besonders, wenn

man dazu noch selbstdefinierte Zeichen mit ins Spiel bringt,

wie dies in Paragraph 4.4 dargelegt ist. Doch können auch

einfache errechnete (also durch eine bestimmte

Rechenvorschrift erzeugte) Bilder oft schöne Effekte

erzeugen. Dies demonstriert z.B. das folgende Beispiel:

100 REM ¥XXKKEKKEKEKEKEKKKES

110 REM *x xx

120 REM ** ZUFALLSBILD xx

130 REM ** *x

140 REM XXXKKKKKKKKEKKKKKKE

150 REM

98

160 PRINT CHR$(147) : REM BILDSCHIRM LOESCHEN

170 PRINT CHR$(RND(1)%3 + 177); : REM EINES DER DREI ZEICHEN

ASCII=177/178/179

180 GOTO 170

Vielleicht versuchen Sie dieses Programm einmal zu verstehen.

Ein Tip: RND(1) ergibt Zufallszahlen von 0-1.

Eine weitere Möglichkeit zur Erstellung von Bildern ist mit

der Verwendung einer besonderen Routine verbunden. Diese

Routine positioniert den aktuellen Cursor an eine beliebige

Stelle des Bildschirms. Wie Sie wissen ist dies mit dem

originalen Basic nur innerhalb einer Zeile möglich. Die

kleine Unterroutine ab Zeile 1000 des folgenden Programms

aber läßt einen beliebigen Zugriff zu:

100 REM KK KKKKKKKKKKKKK KK KK IK KK

110 REM ** xx

120 REM ** SINUSKURVE IM TEXT %*x

130 REM ** xx

140 REM 44ERKAKERKAKRAERAEEAEEERES

150 REM

160 PRINT CHR$(147) : REM BILDSCHIRM LOESCHEN

170 FOR X=0 TO 39

180 Y=13%SIN(X/3)+12 : REM FUNKTION

190 GOSUB 1000 : PRINT"x"; : REM POSITION BERECHNEN

200 NEXT X : END

210 REM

220 REN POSITIONSBERECHNUNG:

230 REM KXKKKEKKKEKEKKKEKEKES

1000 PRINT CHR$(19);:IF Y>O THEN FOR Z=1 TO Y:PRINT: NEXT T

1010 PRINT TAB(X);: RETURN

Gezeichnet wird eine Sinuskurve (s. # 5.1) mithilfe des

Sternzeichnes (%*). Dabei werden dem Unterprogramm in Zeile

1000 in den Speichern X und Y die Parameter fiir die Spalte

(X) und die Reihe (Y) der gewiinschten Cursorposition

übergeben. Nach einem <home> (PRINT CHR$(19);) werden solange

carrige returns gesendet, bis die gewünschte Zeile ereicht

ist. Dann muß nur noch durch einen TAB-Befehl die richtige

Spalte ausgewählt werden. Dieses kleine, aber äußerst

effektive Unterprogramm erlaubt Ihnen wunderschöne Graphiken

schon im Textmodus.

99

Ein weiteres recht schönes und übersichtliches Verfahren der

Erstellung von Bildern besteht darin, das gewünschte Bild auf

dem Fernseher direkt mit dem Cursor und der Tastatur zu

erstellen. Dabei lassen Sie die Farbe am besten zunächst

einmal außer betracht. Alsdann schreiben Sie vor jede

einzelne Zeile (entweder mit Insert, wobei Sie beachten

müssen, daß dadurch eventuell Zeilen unten fortgeschoben

werden, oder durch einfaches Überschreiben) zunächst die

Zeilennummer, ein PRINT (abkürzbar mit einem Fragezeichen

(?)) und ein Anführungszeichen (") und gefolgt schließlich

von <return> (Sie brauchen also nicht unbedingt ein zweites

Anführungszeichen, wenn die Zeile mit diesem PRINT-Ausdruck

endet). Damit haben Sie schon einmal die wesentlichen

Bildinhalte gespeichert. Doch die Sache hat einige Haken:

Erstens muß in einer Zeile noch Platz für die Zeilennummer,

Frage- und Anführungszeichen sein. Soll dieser Platz

ebenfalls genutzt werden, so muß dies nachträglich im

Programm geschehen. Vorsicht ist in der letzten

Bildschirmzeile geboten. Sollten Sie zufällig mit dem Cursor

nach unten über diese hinwegrollen, so wird der gesante

Bildschirm nach oben geschoben und die oberste Zeile

verschwindet. Ein weiteres Problem: Sie dürfen in keiner

Zeile die letzte Spalte verwenden. In diesem Fall würde eine

neue Bildschirmzeile eingeschoben, was zu diversen

Schwierigkeiten führt.

Weiterhin können keine inversen Zeichen direkt in ein

PRINT-Statement aufgenommen werden. Sollte Ihr Bild solche

enthalten, so müssen Sie sie durch folgende Sequenz ersetzen:

<rvs on><....><rvs off>

Mit <....> sind alle hintereinander folgenden (im Programm

normalen) Zeichen gemeint, die auf dem Bildschirm invers

dargestellt werden sollen.

Drittens können Sie ebenfalls keine Farben direkt in ein

PRINT-Statement mit aufnehmen. Dies muß durch den Einbau der

entsprechenden Farb - Controlcodes in ein PRINT-Statement

nach dem Editieren geschehen. Eine Bemerkung zum Schluß: Die

Control-Zeichen werden bekanntlich nur dann richtig in einen

100

PRINT - Ausdruck eingebaut (und nicht sofort ausgeführt),

wenn Sie vorher ein Anführungszeichen (") gegeben haben. Dies

ist aber bei nachträglichen Einfügungen sehr störend und auch

nicht unbedingt notwendig. Sie können nämlich durch Einfügen

einer Leerstelle mit <inst> ebenfalls an diese Stelle ein

Controlzeichen setzen. Wollen Sie also in dem String "AB"

zwischen A und B ein Controlzeichen einfügen, so kann dies

einfach durch <inst> <controlzeichen> geschehen.

Wie Sie sehen, ist diese Methode der Bilderzeugung nicht

gerade sehr komfortabel, doch für den Anfang oder den

Gelegenheitsdesigner akzeptabel. Wollen Sie aber

professionell Bilder in größerer Stückzahl und Qualität

erzeugen, so sollten Sie sich einen kleinen Bildeditor

schreiben, also ein Programm, mit dem Sie einfach durch

Bewegen eines (selbst erzeugten) Cursors ein Bild wit allen

Farben und Möglichkeiten erstellen können. Dies ist

zugegebenermaßen nicht ganz einfach, aber ein sicher

lohnendes Projekt. Diejenigen, die sich für dieses Thema

besonders interessieren, sollten hierzu unbedingt noch den

Paragraphen 4.4 gelesen haben.

101

4.2 Programmierung

der Punktgraphik

Besonders die komplizierte Organisation der hochauflösenden

oder gar der Multicolor - Graphik macht einem zu schaffen,

wenn man versucht, diese zu bedienen. Allein die Ansteuerung

eines Punktes in einem (gedachten) Koordinatensystem

verursacht schon recht großes Kopfzerbrechen und schließlich

einen enormen Rechenaufwand. Die bloße Berücksichtigung aller

notwendigen Faktoren zum Einschalten der Graphik bedarf eines

guten Überblicks, der sich erst nach einiger Beschäftigung

mit dem Thema Graphik einstellt. Die Erstellung von einfachen

Linien oder sogar Kreisen ist dabei so schwer und bedarf

vieler mathematischer Kenntnisse, daß sie schon nur noch von

recht firmen Programmierern gelöst werden können. Aus diesen

Grunde werden hier die verschiedenen Routinen (also Programm-

teile) vorgestellt, die zur Realisierung der in Kapitel 3

dargelegten Möglichkeiten Ihres Rechners notwendig sind. Es

ist dabei nicht unbedingt erforderlich, daß jeder einzelne

Schritt eines Programms verstanden ist, da letztendlich die

Anwendung dieser Dinge ausschlaggebend ist. Wer also nicht

weiß, was beispielsweise sin oder cos bedeuten, der sollte

über die einzelnen Stellen (hier der Kreiserzeugung)

hinweglesen. Trotzdem sollte er den entsprechenden Abschnitt

in Kapitel 3 (Abschnitt 3.4) über die Grundlagen der Graphik

gelesen haben. Für die Interessierten jedoch können solche

Informationen wertvoll sein, um die einzelnen Routinen für

eigene Zwecke abzuwandeln oder Teile daraus für ähnliche

Aufgaben zu verwenden.

Sie sollten sich jedoch darüber im Klaren sein, daß eine

Basicroutine, so übersichtlich sie sein mag, bei weitem nicht

die Geschwindigkeit besitzt, wie ein entsprechendes

Maschinenspracheprogramm. Damit sind viele Effekte allein in

Basic nur sehr träge zu verwirklichen. Wenn Sie sich einmal

anschauen, wie lange es in Basic dauert, einen Kreis zu

zeichnen, so werden Sie mir da wohl in aller Entschiedenheit

und ohne zu zögern zustimmen. Um dieses Manko zu eliminieren,

werden wir Ihnen am Ende dieses 4. Kapitels ein kleines

Assembler - Graphik-Aid (samt Basiclader) zusammenstellen,

102

das Ihnen komprimiert die Möglichkeiten verschafft, die die

Kernpunkte jeder Graphik darstellen. Die einzelnen Funktionen

des Graphik-Packetes können Sie -quasi als kleine Basic-

erweiterung- von Basic aus ansteuern. Wollen Sie nur in Basic

programmieren, so beherzigen Sie die Tips, die Ihnen im

Anhang zur Optimierung Ihrer Programme gegeben wurden.

Bei allen Programmen wird davon ausgegangen, daß der Graphik-

speicher bei $2000-$3FFF (8192-16383) und der Videoran

weiterhin bei $0400-$07FF (1024-2047) liegen. Dies macht zwar

ein Arbeiten mit Text und Graphik zugleich unmöglich, ist

Jedoch programmtechnisch besser zu bewältigen. Achten Sie

aber bei langen Programmen und/oder vielen Speichern darauf,

daß diese nicht mit der Graphikseite kollidieren. Sollte dies

einmal geschehen, so setzen Sie in der ersten Zeile Ihres

Programms einfach durch

POKE 45,0 : POKE 46,64

den Start der Variablen hoch auf $4000 (16384). Dabei ist

Jedoch zu beachten, daß bei jeder Programmveränderung die

Graphikseite zerstört wird und bei einem Abspeichern auf

Diskette oder Kassette die Graphik mit übertragen wird.

Wollen Sie also Veränderungen an Ihrem Programm vornehmen

nachden es einmal gestartet worden ist, so müssen Sie es erst

einmal wieder einladen und direkt nach der Veränderung

abspeichern, bevor Sie es wieder starten!

Wichtig bei allen Angaben ist, daß Sie diese direkt am

Computer ausprobieren. Nur so werden Sie Herr über die

Unmasse an Fakten und Zusammenhängen und nur so lernen Sie

damit umzugehen. Der Computer ist Praxis!

Doch jetzt wollen wir endlich anfangen. Krempeln wir uns also

die Ärnel hoch, spucken dreimal in die Hände und los geht’s!

103

4.2.1. Initialisierung der Graphik

Bevor wir unsere Figuren auf den Bildschirm zaubern, müssen

wir natürlich erst einmal dafür sorgen, daß überhaupt Graphik

zu sehen ist. Dazu gehört, daß der Bildschirm zunächst

gelöscht wird, da im Anfang stets Einiges an "Müll"

erscheinen wird. Der Graphikspeicher wurde schließlich vorher

anderweitig genutzt. Zu dem Löschen des Graphikbildschirms

gehört natürlich auch ein Löschen der Farbe bzw. das

Herstellen eines einfarbigen Bildschirms. Anschließend wollen

wir sicher wieder zurück, um Text anzuzeigen. Wir benötigen

also insgesamt vier getrennte Programmteile, sogenannte

Routinen, allein um in die Graphik einzusteigen:

Graphik einschalten

- Graphik löschen

- Farbe löschen

- Graphik ausschalten

Diese vier Rechenvorschriften (Algorithmen) werden im

folgenden einzeln vorgestellt und besprochen. Sie werden

sehen, daß sie in jedem späteren Programm, das sich mit der

Graphik beschäftigt, wieder in Form von Unterprogrammen

auftauchen werden. Sie sollten also zu Ihrem ständigen

Repertoire gehören.

4.2.1.1. Einschalten der Graphik

Nun ist es also soweit, wir können beginnen. Stellen wir

zunächst einmal die Dinge zusammen, die zum Einschalten

benötigt werden:

a) Speicherlage:

Zunächst einmal müssen wir uns einigen, wo im gesamten

Speicherbereich des 64ers die einzelnen Funktionen wie

Videoram und Graphikspeicher liegen sollen. Hierfür sind

Register 24 (Bits 3 und 4-7) des Videocontrollers und das

Register 0 (Bits 0 und 1) der CIA 2 zuständig, deren

Funktionen ausgiebig in dem Abschnitt 3.3 erläutert

werden. In allen unseren Anwendungen werden wir uns -wie

104

oben schon erwähnt- mit dem Graphikspeicher nur in dem

Bereich von $2000 bis $3FFF (8192-16383) aufhalten, der

Videoram liegt bei $0400-$07FF (1024-2047). Wollen Sie

Ihre Graphiken in anderen Bereichen ablegen, so müssen Sie

entsprechende Änderungen vornehmen.

b) Graphikart:

Wir müssen uns entscheiden, ob wir unser Bild in

Multicolor, die bekanntlich eine höhere Farbauflösung

zuläßt, dafür aber weniger Punkte in x-Richtung besitzt,

oder ob wir die hochauflösende Graphik wählen mit nur

einer Farbe pro 8x8-Punkte - Feld. Der Aufbau und die

Unterschiede dieser beiden Graphikarten wurden: bereits in

Paragraph 3.4 ausgiebig erörtert.

Der zweite Punkt ist schnell gelöst. Wir wollen uns mit der

hochauflösenden Graphik beschäftigen. Diese wird durch Setzen

der Bits 5 und 6 (Bit 6 muß gleichfalls gesetzt werden!) von

Register 17 des VIC und das Löschen von Bit 4 des Registers

22 eingeschaltet. Letzteres ist normalerweise gelöscht,

braucht also nicht unbedingt gleich Null gesetzt werden. Das

alles passiert durch zwei einfache POKEs, die in der unten

folgenden Routine in den Zeilen 10070 und 10080 stehen.

Auch die Adresslagenwahl ist in unserem Falle recht einfach.

Da wir uns nicht aus dem unteren 16 K-Bereich unseres

Speichers herausbewegen (Sie wissen, daß der VIC nur 16 K

addressieren kann (s. # 3.3.2) und im Normalzustand die

untersten 16 K für ihn erreichbar sind), brauchen wir keine

Veränderungen im Register der CIA 2 zu unternehmen. Lediglich

die Basisadresse der Graphikseite muß durch Setzen des 3.

Bits von Register 24 in den oberen Teil der 16 K, also nach

unseren $2000 (8192) gelegt werden. In dem folgenden

Unterprogramm wird dies in Zeile 10090 erreicht:

10000 REM KXKKKKKKKKKKKEEKKKKKEKEKKKE

10010 REM xx **k

10020 REM ** GRAPHIK EINSCHALTEN *xx

10030 REM *x xx

10040 REM KKKKKKKKKKKKKKKK KK KK KR X

10050 REM

10060 V = 53248 : REM BASISADRESSE - VIDEOCONTROLLER

105

10070 POKE V+17, PEEK(V+17) OR (8+3)%*16 : REM GRAPHIK EIN

10080 POKE V+22, PEEK(V+22) AND 255-16 : REM MULTICOLOR AUS

10090 POKE V+24, PEEK(V+24) OR 8 : REM GRAPHIK NACH $2000

(8192)

Die Befehle AND und OR sind in Kapitel 2 beschrieben. Die

Zeilennummern sind extra hoch, um die Routine leicht an ein

Programm anzuhängen. Der Textmodus kann auch durch <run/stop>

<restore> wieder eingeschaltet werden.

4.2.1.2. Löschen der Graphik

Da in dem Speicher, den nun unsere Graphik einnimmt, vorher

stets etwas anderes stand, erhalten wir nach dem Einschalten

der Graphik ein recht wildes Durcheinander von Strichen oder

sonstigen Punkten. Um nun jeden Graphikpunkt zu löschen,

müssen wir jedes Bit des Graphikspeichers auf 0 setzen. Mit

einem POKE sind wir in der glücklichen Lage, gleich 8 Bits

(Byte), also B Punkte gleichzeitig anzusprechen. Es genügt

also eine FOR...NEXT - Schleife, in der -angefangen von der

Graphik - Startadresse ($2000 = 8192) bis zum Ende bei $3FFF

(16383)- alle Bytes gelöscht werden. Da nun ein Bild aber nur

320x200 = 64000 Punkte, also 64000/8 = 8000 Bytes besitzt,

brauchen wir tatsächlich nur 8000 Bytes zu löschen:

10200 REM XXKKKKKKKKKKKKKERKKEKEKE

10210 REM xx xx

10220 REM xx GRAPHIK LOESCHEN **

10230 REM xx xx

10240 REM ¥XXKKKKEKKKKKKAEKKKEKEKE

10250 REM

10260 BG = 8192 : REM BASISADRESSE DES GRAPHIKSPEICHERS

10270 FOR X=BG TO BG+8000 : REM 8000 BYTES

10280 POKE X,0 : REM LOESCHEN

10290 NEXT X

Wie Sie sehen, dauert dieser Vorgang recht lange. Haben Sie

sich einmal das Graphik-Packet am Ende des Kapitels

abgeschrieben, so werden Sie sehen, wie schnell so etwas in

Assembler gehen kann. Die Variable BG gehört streng genommen

106

nicht zu der Routine, genauso, wie die Variable V im oberen

Programm. Sie sollten am Anfang eines jeden Programmes

gesetzt werden. Wollen Sie die einzelnen Routinen als Unter-

programme laufen lassen, so müssen sie mit dem Befehl RETURN

abgeschlossen werden.

4.2.1.3. Löschen der Farbe

Die Farbe liegt bei der hochauflösenden Graphik stets im

Videoram (s. # 3.4). Dabei bestimmen die obersten 4 Bits

eines jeden Bytes die Farbe der gesetzten Punkte in der

Graphikseite, die unteren 4 dagegen die Farbe der nicht

gesetzten Punkte, also quasi die der Hintergrundfarbe. Da der

Videoram vor dem Einschalten der Graphik den Text enthielt,

zeigen sich auch nach dem Löschen noch kleine Farbquadrate an

den Stellen, an denen vorher Text stand. Um auch diese zu

eliminieren, müssen wir im Videoram die Farbe einheitlich

setzen. Dies wird in der folgenden Routine vorgenommen:

10400 REM KXKKKKKKKEKEKERKKKEKES

10410 REM *x *x

10420 REM ** FARBE LOESCHEN *%

10430 REM xx xx

10440 REM RXKKKKKKKEKAKKERKKKEKES

10450 REM

10460 BF = 1024 : REM BASISADRESSE DES VIDEORAM

10470 FA = 6%16 + 7 : REM PUNKT-FARBE=BLAU/HINTERGRUND=GELB

10480 FOR X=BF TO BF+1000 : REM 1000 BYTES

10490 PORE X, FA : REM MIT PUNKT- UND HINTERGRUNDFARBE

10500 NEXT X

Hier gilt natürlich das Gleiche bezüglich der Variablen BF,

wie im vorigen Programm dargelegt. FA ist ebenfalls eine

Variable, die der Routine vom übergeordneten Programm

übergeben wird und den Wert enthält, der in jedes Byte des

Videoram geschrieben werden soll und damit Punkt- und Hinter-

grundfarbe bestimmt. Sie sollten (besonders hier) ein wenig

an den Programmen verändern, um sie richtig zu verstehen.

Dies allerdings muß mit der nötigen Vorsicht geschehen, da

wir uns direkt im Herz des Rechners befinden. Lassen Sie

107

beispielsweise BF gleich 0 werden, so wird Ihr Computer nicht

zögern, sich von Ihnen zu verabschieden, da Sie direkt die

Null-Seite des Speichers manipulieren, das "Kurzzeit-

gedächtnis" des Betriebssystems.

4.2.1.4. Ausschalten der Graphik

Bislang konnten Sie sich immer nur durch <run/stop> <restore>

aus der Graphikanzeige retten. Doch wird dadurch zwangsläufig

Ihr Programm beendet, was nicht unbedingt im Sinne des

Erfinders ist. Um diese Funktion regulär in unsere Routinen-

sammlung aufzunehmen, müssen wir sämtliche Veränderungen

rückgängig machen, die wir in dem Teil "Graphik einschalten"

unternommen haben:

- Bits 5/6 - Register 17 löschen

- Bit 4 - Register 22 löschen

- Bit 3 - Register 24 löschen

Dies geschieht im folgenden Programm:

10600 REM ¥XXXEKKEKKKKKEKAKEKKKEEKKES

10610 REM xx xx

10620 REM ** GRAPHIK AUSSCHALTEN *x

10630 REM ** xx

10640 REM KXXKKKKKKKKKKKKKEKEKKKEKEKEK

10650 REM

10660 V = 53248 : REM BASISADRESSE — VIDEOCONTROLLER

10670 POKE V+17, PEEK(V+17) AND 255-6%16 : REM GRAPHIK AUS

10680 POKE V+22, PEEK(V+22) AND 255-1%16 : REM MULTICOLOR AUS

10690 POKE V+24, PEEK(V+24) AND 255-8 : REM ZEICHENSATZ

WIEDER NACH $1000 (4096)

Damit haben wir alle wichtigsten Dinge, um die Graphik zu

bedienen. Nun können wir uns den schwierigeren Zusammenhängen

widmen, die uns ermöglichen, auch etwas auf unserem Bild

darzustellen.

108

4.2.2. Einfache Fi n in der hik

Nachdem wir uns mit den Dingen beschäftigt haben, die wir zun

Ein- und Ausschalten der Graphik benötigen, kommen wir nun zu

den ersten Gehversuchen der Graphikprogrammierung. Angefangen

mit der Darstellung eines einfachen Punktes auf dem

Bildschirm gehen wir über zu den geometrischen Grundformen

der Linie und des Kreises, aus denen näherungsweise fast alle

anderen Figuren hergestellt werden können.

4.2.2.1. Punkt

Wir vollen, wie an anderer Stelle schon des öfteren erwähnt,

das gesamte Graphikfeld in sogenannte Koordinaten

unterteilen. Dabei stellt der erste Wert stets die

x-Koordinate, also die Anzahl der Punkte zwischen dem

jeweiligen Punkt und dem linken Bildschirmfensterrand

(0-319). Der zweite genannte Wert ist dann der y-Anteil der

Koordinate, also die Anzahl der Punkte zwischen dem Punkt und

der oberen Bildschirmkante (0-199). Der Nullpunkt

(Koordinaten: 0,0) liegt demnach in der oberen linken Ecke

des Tensters. Die untere rechte Ecke dagegen besitzt die

Koordinaten 319,199.

Soweit, sogut. Doch dies ist unsere Vereinbarung. Wir können

dem Computer selbst nicht die entsprechenden Koordinaten

angeben, um einen Punkt zu bestimnen. Wenn Sie die

entsprechenden Kapitel gelesen haben (# 3.4.2.), so kennen

Sie den Aufbau der hochauflösenden Graphik und ihre Speicher-

organisation. Um nun aus den angegebenen Koordinaten auf das

Byte und das Bit zu schließen, das den betreffenden Punkt

bestimmt, müssen wir zunächst einige Umrechenarbeit leisten.

Sie brauchen die folgenden Ausführungen nicht unbedingt zu

verstehen. Den Interessierten unter Ihnen sei die Herleitung

der im folgenden Programm verwendeten Formel dargelegt. |

Lassen Sie uns zunächst einmal den Einfluß der y-Koordinate

untersuchen:

Um die Nummer der Graphikzeile (eine Zeile besteht aus 8

Reihen) zu berechnen, in der sich der Punkt befindet, müssen

wir die y-Koordinate lediglich durch 8 teilen (ohne Rest):

zeilennummer = INT(yK/8)

109

Da jede Zeile aus 320 Bytes besteht (jede Reihe besteht aus

320/8 = 40 Byte), müssen wir diese Nummer mal 320 nehmen, um

die Startadresse der betreffenden Zeile relativ zur

Startadresse des Graphikspeichers zu erhalten:

zeilenadresse = 320 * INT(yK/8)

Der Rest der eben durchgeführten Division stellt nun die

Nummer der Reihe in dieser Zeile dar und muß nur noch

hinzuaddiert werden:

reihenadresse = 320 * INT(yK/8) + (y AND 7)

Der Einfluß der x-Koordinate ist etwas schwieriger, da hier

nicht nur einzelne Bytes, sondern sogar die Bits

unterschieden werden müssen:

Als erstes berechnen wir die Adresse des angesprochenen Bytes

relativ zur Startadresse der betreffenden Reihe (s.o.). Wir

rechnen:

byteadresse = 8 * INT(xK/8)

Nun berechnen wir die Position des gewünschten Bits in dem

betreffenden Byte durch Erstellung einer Maske. Das jeweilige

Bit wird in der Maske gesetzt, alle anderen sind gleich 0:

maske = 27(7-(xK AND 7))

Diese Einzelteile werden - wie in der folgenden Routine

gezeigt - zusammengesetzt:

10700 REM ¥XXKEKKEKAKEKEKEKKREEE

10710 REM ** xx

10720 REM ** PUNKTBERECHNUNG xx

10730 REM ** (SETZEN) xx

10740 REM 2X KK KK x KK K ER EKEKKE RER

10750 REM

10760 RA = 320 * INT(YK/8) + (YK AND 7)

10770 BA = 8 * INT(XK/8)

110

10780 MA = 2T(7-(XK AND 7))

10790 AD = SA + RA + BA

10800 POKE AD, PEEK(AD) OR MA

10810 REM

10900 REM KXKKKKKKKKKKEKAKEKKKEAEKE

10910 REM xx xx

10920 REM ** PUNKTBERECHNUNG %%

10930 REM kx (LOESCHEN) *x

10940 REM ¥XXKKKKKKKKKKKKKEKKEKES

10950 REM

10960 RA = 320 * INT(YK/8) + (YK AND 7)

10970 BA 8 * INT(XK/8)

10980 MA 255 - 2T(7-(XK AND 7))

10990 AD = SA + RA + BA

11000 POKE AD, PEEK(AD) AND MA

11010 REM

11020 REM INTERNE PARAMETER:

11030 REM ¥XXKKXEKKKKKEKEKEE

11040 REM RA: REIHENADRESSE

11050 REM BA: BYTEADRESSE

11060 REM MA: MASKE

11070 REM AD: ZIELADRESSE

11080 REM

11090 REM VORZUGEBENDE PARAMETER:

11100 REM ¥&XKKEXKEKKKKKEKKEKEKESKS

11110 REM SA: GRAPHIKSPEICHERSTARTADRESSE (Z.B. 8192)

11120 REM XK: X-KOORDINATE

11130 REM YK: Y-KOORDINATE

it
H

Wie Sie sehen, unterscheiden wir hier zwischen dem Setzen und

dem Löschen eines Punktes in HGR. Tatsächlich müssen diese

Fälle getrennt behandelt werden. Die Variable SA gibt die

Anfangsadresse des betreffenden Graphikspeichers an und wird

bei uns stets bei 8192 gehalten. Natürlich werden die beiden

Routinen wie die im letzten Abschnitt vorgeführten meist als

Unterprogramme verwendet und enden daher zum größten Teil mit

einem RETURN. Dies erkennen Sie bereits in dem folgenden

Programm, das die inzwischen vorgeführten Routinen anwendet:

100

110

120

130

140

150

160

170

175

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

REM KEKEKKEEKKKKKKLIKK

REM xx *%*

REM xx SINUSKURVE &x

REM xx xx

REM KEKKEKKRKKEKKKIIEN

REM

V=53248 : REM STARTADRESSE DES VIC

SA = 8192 : REM STARTADRESSE DES GRAPHIKSPEICHERS

POKE V+32, 10 : REM RAHMENFARBE

GOSUB 10000 : REM GRAPHIK EINSCHALTEN

GOSUB 10200 : REM GRAPHIK LOESCHEN

FA = 7316 + 2 : GOSUB 10400 : REM FARBE SETZEN

YK = 100 : REM X-ACHSE ZEICHNEN

FOR XK=0 TO 319

GOSUB 10700 : REM PUNKT ZEICHNEN

NEXT XK

XK = 160 : REM Y-ACHSE ZEICHNEN

FOR YK=0 TO 199

GOSUB 10700 : REM PUNKT ZEICHNEN

NEXT YK

FOR XK=0 TO 319 : REM SINUSKURVE ZEICHNEN

YK = 70 * SIN (XK/25.5) + 99

GOSUB 10700 : REM PUNKT ZEICHNEN

NEXT XK

POKE 198,0 : REM TASTEN LOESCHEN

WAIT 198,255 : REM AUF TASTE WARTEN

GOSUB 10600 : REM GRAPHIK AUS

END

REM

10000 REM KK KK KK KK KKKKKKKKK KR IKK

10010 REM *x «xk

10020 REM ** GRAPHIK EINSCHALTEN **

10030 REM xx «x

10040 REM KXXXXEKKKKKEKEKKKEEKKKKEKEKE

10050 REM

10070 POKE V+17, PEEK(V+17) OR (8+3)*16 : REM GRAPHIK EIN

10080 POKE V+22, PEEK(V+22) AND 255-16 : REM MULTICOLOR AUS

10090 POKE V+24, PEEK(V+24) OR 8 : REM GRAPHIK NACH $2000

(8192)

10100 RETURN

10110 REM

112

10200

10210

10220

10230

10240

10250

10270

10300

10310

10400

10410

10420

10430

10440

10450

10460

10480

10510

10520

10600

10610

10620

10630

10640

10650

10670

10680

10690

REM €XEXKKKKKEKKKKKKAKEKEKEAE

REM %% x

REM *%* GRAPHIK LOESCHEN %%

REM xx 4x

REM XKXKKKEKEKKEKEKKEKKEAK KEKE

REM

FOR X=SA TO SA+8000 : POKE X,0 : NEXT X

RETURN

REM

REM KXKKKKKKKKKKKAKKKEKKKKS

REM x* kx

REM ** FARBE LOESCHEN xx

REM xx ak

REM KXKKKKEKEKKKKKEKEKKKKE

REM

BF = 1024 : REM BASISADRESSE DES VIDEORAM

FOR X=BF TO BF+1000 : POKE X,FA : NEXT X

RETURN

REM

REM XXXEKKKEEKERKKKARAKERAKAKEKE

REM *x xx

REM ** GRAPHIK AUSSCHALTEN xx

REM *x xx

Ne 222 222322222222 232 22222 2325

REM

POKE V+17, PEEK(V+17) AND 255-6%16 : RE

POKE V+22, PEEK(V+22) AND 255-16 :

POKE V+24, PEEK(V+24) AND 255-

WIEDER NACH $1000 (4096)

10695

10700

10710

10720

10730

10740

10750

10760

10770

10780

10790

10800

10810

RETURN

REM 4XKXKEKEKKAKAEK ERA RAKES

REM ** **

REM ** PUNKTBERECHNUNG x*%

REM ** (SETZEN) x*

REM €4REKKAREREAAERERER EERE

REM

RA = 320 * INT(YK/8) + (YK AND 7)

BA = 8 * INT(XK/8)

MA = 21(7-(XK AND 7))

AD = SA + RA + BA

POKE AD, PEEK(AD) OR MA
RETURN

113

REM

8

M GRAPHIK AUS

MULTICOLOR AUS

REM ZEICHENSATZ

Bis auf ein paar Anderungen (z.B. wurde in dem Unterprogramm

"Graphik löschen", aus Geschwindigkeitsgründen weitest-

gehendst auf REM-Zeilen verzichtet). Sind die verwendeten

Routinen identisch mit den bisher vorgestellten. Probieren

Sie ruhig einmal die einzelnen Dinge aus (besonders in der

Zeile 300 sollten Sie die verschiedenen Zahlen verändern).

Nur so lernen Sie mit ihnen umzugehen.

4.2.2.2. Linie

Schon etwas schwieriger gestaltet sich das Zeichnen einer

Linie zwischen zwei beliebigen Punkten auf dem Bildschira.

Man sieht dies zwar täglich in irgendwelchen Programmdemos,

macht sich jedoch nie richtig Gedanken darüber, welche

Überlegungen dahinter stecken. Das Problem ist: wie stelle

ich fest, welche Punkte des Bildschirm auf dieser Linie

liegen. Um es zu lösen müssen wir uns ein wenig mit der

sogenannten analytischen Geometrie beschäftigen. Bekommen Sie

keinen Schreck! Hinter diesem monströsen Begriff verbirgt

sich etwas ganz harmloses (jedenfalls in dem Rahmen, der uns

hier interessiert) und wenn es Sie nicht so sehr

interessieren sollte, etwa weil sich Ihnen damit üble

Kindheitserinnerungen verbinden, dann können Sie die

folgenden Zeilen ruhig überlesen. Was wir suchen ist eine

Formel, mit der wir die Punkte einer Geraden berechnen

können, deren Eckpunkte gegeben sind.

Nahezu jeder von uns wird schon einmal in irgendeinem

Zusammenhang (meist aus der Schule her) von der sogenannten

normierten Geradengleichung gehört haben:

y = mx +n

wobei x und y die Koordinaten eines Punktes auf einer

Geraden, m die Steigung der Geraden und n den Schnittpunkt

mit der y-Achse darstellen. Durch einfache Umformung dieser

Formel erhalten wir:

n = y-mX

114

Kennen wir nun zwei Punkte der Geraden (unsere Endpunkte

xl,yl und x2,y2), so können wir gleichfalls die zwei

folgenden Formeln aufsetzen, die wir gleichsetzen können:

n = yı-mxı = n = y2-mx2

—> Yı-mkı = yY2-mx2

y2yı

<=) m = -----

X2—-X1

Letzere Formel läßt uns nun die Steigung m der obigen

Gleichung ausrechnen. Ist n=0, so geht die Gerade durch den

Ursprung mit Koordinaten 0,0. Verschieben wir diesen Ursprung

der Gerade zu einem Endpunkt, so müssen wir entsprechend die

beiden Koordinaten (in diesem Fall x2 und y2) zu x und y

hinzuaddieren. Die folgende Formel gibt uns nun die

endgültige Geradengleichung wieder, die bereits die

verschobene Gerade angibt und in die m eingesetzt wurde:

Y= ----- * (X - x2) + ya

Diese Formel ist die Grundlage des unten dargestellten

Programms und wird stückweise in den Zeilen 10970, 11000 und

11020 errechnet, wobei die x-Koordinate XK stets von X2 nach

Xl läuft, und für jeden solchen x-Wert der entsprechende

y-Wert bestimmt wird. Ein Schaubild mag diese Formel

erläutern:

115

Das einzige Problem bei dieser Formel entsteht, wenn wir eine

Senkrechte zeichnen wollen. In diesem Fall wird xl=x2 und

damit der Nenner der Steigung gleich 0, was zu einem DIVISION

BY ZERO ERROR führt. Wir umgehen diese Unkorrektheit, inden

wir in Zeile 10990 verzweigen und dort direkt eine Senkrechte

zeichnen. Wie Sie sehen werden und was schon oft erwähnt

wurde, kommt ein Basicprogramm in der Geschwindigkeit mit

einem Maschinenprogramm natürlich nicht mit. Trotzdem mag

Ihnen diese Routine, die Sie ebenfalls als Unterprogramm

verwenden können, gute Dienste leisten.

100 REM KXKKKKAKEKEKKK EE

110 REM xx xx

120 REM xx GERADE xx

130 REM *x xx

140 REM EXEKEKKKKKKE EX

150 REM

160 V=53248 ;: SA=8192

170 GOSUB 10000 : REM GRAPHIK EIN

180 FA = 1416 + O0 : GOSUB 10400 : REM FARBE SETZEN

190 GOSUB 10200 : REM GRAPHIK LOESCHEN

270 X1=110: Y1=120: X2=130: Y2=140: REM ENDPUNKT-KOORDINATEN

280 GOSUB 10900 : REM GERADE

290 WAIT 198,255 : REM AUF TASTE WARTEN

300 GOSUB 10600 : REM GRAPHIK AUS

310 END

320 REM

10000 REM ¥XXKKKKEKKKKEKKKAKEKEKEKEKEEK

10020 REM ** GRAPHIK EINSCHALTEN xx

10040 REM ¥XXXKKEKKKKEKAKERARKKKAKEKKEE

10050 REM

10070 POKE V+17, PEEK(V+17) OR (8+3)*16 : REM GRAPHIK EIN

10080 POKE V+22, PEEK(V+22) AND 255-16 : REM MULTICOLOR AUS

10090 POKE V+24, PEEK(V+24) OR 8 : REM GRAPHIK NACH $2000

(8192)

10100 RETURN

10110 REM

116

10200

10220

10240

10250

10270

10300

10310

10400

10420

10440

10450

10460

10480

10510

10520

10600

10620

10640

10650

10670

10680

‘10690

REM XXEKKKXKKEKEEKAKRAKEKEEKE

REM %*%* GRAPHIK LOESCHEN ¥*k

REM €¥KKKAKKKKEREKKKKKEEKEKE

REM

FOR X=SA TO SA+8000 : POKE X,0 : NEXT X

RETURN

REM

REM KXKKEAKAKAEKAEKAARAKEK KES

REM *xk FARBE LOESCHEN **

REM KXKKEKEKKEAER AKA KEK

REM

BF = 1024 : REM BASISADRESSE DES VIDEORAM

FOR X=BF TO BF+1000 : POKE X,FA : NEXT X

RETURN

REM

REM ZKRKKKKKKKKKEKKIE RK KK KK

REM ** GRAPHIK AUSSCHALTEN xx

REM ¥XEXKAKEKKRKREKKAREKE KKK

REM

POKE V+17, PEEK(V+17) AND 255-6*16 : REM GRAPHIK AUS

POKE V+22, PEEK(V+22) AND 255-16 : REM MULTICOLOR AUS

POKE V+24, PEEK(V+24) AND 255-8 : REM ZEICHENSATZ

WIEDER NACH $1000 (4096)

10695
10700
10720
10730
10740
10750
10760
10770
10780
10790
10800
10810
10900
10910
10930
10950
10960
10970

RETURN

REM ¥XXXKKKEKAKEKERERE KEKE

REM ** PUNKTBERECHNUNG xx

REM xx (SETZEN) *x

REM XXEKKKAKEAKEKERAKEKEEKE

REM

RA = 320 * INT(YK/8) + (YK AND 7)

BA 8 * INT(XK/8)

MA 2” (7-(XK AND 7))

AD = SA + RA + BA

POKE AD, PEEK(AD) OR MA

RETURN

REM

REM KARRIERE N

REM ** GERADE ZEICHNEN xx

REM 44XKKEXKKAKAEAERAKEKEKES

REM

DY=Y2-Y1:DX=X2-X1:REM DIFFERENZEN

i

117

10980 YK=Y2:XK=X2:REM Y-START

10990 IFDX=OTHEN FOR YK=Y2TOYl STEPSGN(-DY):GOSUB 11060:NEXT

YK:GOTO 11050: REM SENKR.

11000 DD=DY/DX:REM STEIGUNG

11010 FOR XK=X2 TO X1 STEP SGN(-DX)

11020 ZK=INT(DD*(XK-X2)+Y2):REM GERADENGLEICHUNG

11030 IF ZK<> YK THEN YK=YK+SGN(-DY):GOSUB 11060: GOTO

11030:REM SENKR. ZEICHNEN

11040 GOSUB11060:NEXT XK: REM NAECHSTE X-KOORD.

11050 RETURN

11060 GOSUB10760: XK=XK+1: GOSUB10760: XK=XK-—1: RETURN: REM

DOPPELT BREIT ZEICHNEN

Sollten Sie es einmal leid sein, stets darauf zu warten, bis

der gesamte Bildschirm gelöscht ist, so setzen Sie einfach

vor die Zeile 190 ein REM, um diese Prozedur zu unterdrücken.

In der obigen Routine werden einige Speicher verwendet, deren

Inhalt im folgenden kurz erläutert sei:

Eingabewerte:

X1/Yl bzw.

X2/Y2 : Endkoordinaten der Linie

interne Werte:

DX/DY : Differenzen der Koordinatenpaare

DD : Die Steigung m

XK/YK : Koordinaten des aktuellen Punktes

ZK : Zwischenspeicher

Zwei Punkte müssen hier noch erläutert werden: Zum einen die

Funktion SGN, zum anderen die Zeile 11060.

SGN besitzt eine recht nützliche Eigenschaft: Ist die Zahl,

die in den Klammern steht positiv, so ist das Ergebnis 1, ist

sie negativ, so nimmt es den Wert -1 an (bei 0 wird SGN

ebenfalls 0). Die Funktion dient also zur Bestimmung des

Vorzeichens.

In Zeile 11060 wird jeder Punkt, der angesteuert wird

dupliziert, so daß ein doppelt breiter Punkt entsteht. Dies

ist notwendig, da einzelne Punkte, die in x-Richtung keinen

Nachbarn besitzen entweder gar nicht oder nur sehr schwach zu

sehen sind. So, und jetzt viel Spaß bei Ihrer Linienkreation.

118

4.2.2.3. Ellipse/Kreis

Eine weitere wichtige und viel verwendete Figur ist der Kreis

oder allgemeiner die Ellipse. Mit Ihnen lassen sich schöne

Effekte erzeugen. Auch hierzu wird Ihnen im folgenden eine

kleine Demonstrationsroutine angegeben, mit der Sie Ellipsen

bzw. Kreise zeichnen können. Doch vorher sollten wir für die

Interessierten unter Ihnen die mathematischen Grundlagen

darlegen, die für das Verständnis dieser Funktion vonnöten

sind. Wir werden uns in diesem Buch mit insgesamt zwei

Möglichkeiten der Kreis- bzw. Ellipsenerzeugung beschäftigen.

Die erste etwas einfacher zu verstehende wird hier angeführt.

Die zweite, sie resultiert aus der Verwendung sogenannter

Polarkoordinaten und erlaubt das Zeichnen von Kreisbögen,

finden Sie unter dem Abschnitt "Kuchendiagramme” im 5.

Kapitel (# 5.1.3). Doch hier seien Sie zunächst in die

übliche Darstellungsweise eingeführt:

In unserer Routine gehen wir von der sogenannten

Mittelpunktsgleichung der Ellipse aus:

x2 y2

Dabei bedeuten x und y die jeweiligen Koordinaten der

Randpunkte der Ellipse. a ist der Radius in x-Richtung und b

derjenige in y-Richtung. Der Mittelpunkt der Ellipse liegt im

Koordinatenursprung (x=0/y=0): yA

fo.

Um diese Gleichung in unser Programn einzufiigen, miissen wir

sie zunächst einmal nach y auflösen:

119

Mit dieser recht kompliziert aussehenden Gleichung können wir

nun die Punkte eines Ellipsenrandes berechnen. Dabei ist

jedoch zu beachten, daß dabei stets nur gleichzeitig ein

Bogen von 90 Grad gezeichnet werden kann, da eine Ellipse

streng genommen keine Funktion darstellt (Relation). Um die

vier anderen Bögen zu zeichnen, müssen wir die Vorzeichen von

x und y umkehren. Für x geschieht das im unten stehenden

Programm durch die FOR...NEXT-Schleife in Zeilen 11150 -

11190, in dem F2 nacheinander die Werte -1 und 1 annimmt. y

dagegen wird in Zeile 11180 negiert. Da die obige Gleichung

nur fiir Ellipsen mit dem Mittelpunkt bei x=0 und y=0 gilt,

müssen wir entsprechende Summanden zu x und y hinzufügen, wie

unten gezeigt.

Wollen Sie mit unten stehendem Programm einen Kreis zeichnen,

so müssen Sie a und b (also die Speicher XR/YR), und damit

die beiden Radien gleich groß werden lassen, weil ein Kreis

lediglich einen Sonderfall einer Ellipse darstellt.

100 REM KEKKEKKKKEKKAKKS

110 REM xk «x

120 REM ** ELLIPSE xx

130 REM xx xx

140 REM KKKKKKKKEKKAKES

150 REM

160 V=53248 : SA=8192

170 GOSUB 10000 : REM GRAPHIK EIN

180 FA = 1*16 + 0 : GOSUB 10400 : REM FARBE SETZEN

190 GOSUB 10200 : REM GRAPHIK LOESCHEN

270 XR=40: YR=20: XM=160: YM=100: REM

X/Y-RADIUS===MITTELPUNKTKOORDINATEN

280 GOSUB 11100 : REM ELLIPSE

290 WAIT 198,255 : REM AUF TASTE WARTEN

300 GOSUB 10600 : REM GRAPHIK AUS

310 END

320 REM

10000 REM EXXKEKEKKEKEKKKKEKEREKEREKE

10020 REM ** GRAPHIK EINSCHALTEN %*%*

10040 REM ¥¥KKKKKKKKAKEKEREKAREKERKEE

10050 REM

10070 POKE V+17, PEEK(V+17) OR (8+3)*16 : REM GRAPHIK EIN

10080 POKE V+22, PEEK(V+22) AND 255-16 : REM MULTICOLOR AUS

120

10090 POKE V+24, PEEK(V+24) OR 8 : REM GRAPHIK NACH $2000

(8192)

10100 RETURN

10110 REM

10200 REM = ¥XXKKKKKKKKKKKKKKEKKAKEKS

10220 REM ** GRAPHIK LOESCHEN xx

10240 REM = XXKKKKKKKKKKEKEKKEEKEKKEKS

10250 REM

10270 FOR X=SA TO SA+8000 : POKE X,0 : NEXT X

10300 RETURN

10310 REM

10400 REM KEKKKKEKKKKKKKKKKEKK KK

10420 REM **x FARBE LOESCHEN xx

10440 REM EXKKKKAKEKEREKAKKEKKEE

10450 REM

10460 BF = 1024 : REM BASISADRESSE DES VIDEORAM

10480 FOR X=BF TO BF+1000 : POKE X,FA : NEXT X

10510 RETURN

10520 REM

10600 REM ¥€XXXKRKKAKKKKKKKAKEKEAKKAEKE

10620 REM ** GRAPHIK AUSSCHALTEN *x

10640 REM €XXEKKEKKKKKKEKEKEKKEKERKEKE

10650 REM

10670 POKE V+17, PEEK(V+17) AND 255-6%16 : REM GRAPHIK AUS

10680 POKE V+22, PEEK(V+22) AND 255-16 : REM MULTICOLOR AUS

10690 POKE V+24, PEEK(V+24) AND 255-8 : REM ZEICHENSATZ

WIEDER NACH $1000 (4096)

10695 RETURN

10700 REM xx X KK KK KK KK KKKKEKEK KK

10720 REM ** PUNKTBERECHNUNG xx

10730 REM ** (SETZEN) xx

10740 REM ¥XXKEKKEKKKKEKARKERKEKE

10750 REM

10760 RA = 320 * INT(YK/8) + (YK AND 7)
10770 BA = 8 * INT(XK/8)
10780 MA = 27(7-(XK AND 7))
10790 AD = SA + RA + BA
10800 POKE AD, PEEK(AD) OR MA
10810 RETURN
11100 REM

121

11110 REM xxx 22x KK KK KK KK KK %

11120 REM ** ELLIPSE ZEICHNEN *x

11130 REM ®&SKERKKAEEKEEREKRERE REE

11140 REM

11150 FOR F2=-1 TO 1 STEP 2 : REM RECHTS/LINKS-FLAG

11160 FOR X=0 TO F24(XR) STEP F2

11170 ZK YR * SQR(1-X*2/XR*2): XK=X+XM : REM KREISGLEICHUNG

11180 YK = YM + ZK:GOSUB 10760: YK = YM - ZK:GOSUB 10760 : REM

PUNKTE OBEN/UNTEN

11190 NEXT X,F2: RETURN

Die 4 Ubergabeparameter sind:

XM/YM : Koordinaten des Mittelpunktes

XR/YR : x-/y-Radius (a und b)

4.3 Spriteprogrammierung

Eine der wohl faszinierendsten Eigenschaften Ihres Rechners

ist die Fähigkeit, insgesanut 8 sogenannte Sprites gleich-

zeitig auf den Bildschirms zu bringen. Wenn Sie den ent-

sprechenden Abschnitt im dritten Kapitel (# 3.5) gelesen

haben, dann besitzen Sie schon einen kleinen Überblick über

die Spriteorganisation und die hardwaremäßige Verwirklichung

dieser Bildschirmobjekte. Hier nun lernen Sie, wie Sie mit

ihnen umgehen und was Sie dabei zu beachten haben.

122

4.3.1. Erstellung von Sprites

Das erste Problem jeder Spriteprogrammierung ist die

Erstellung eines solchen Objektes, denn dies ist natürlich

die Voraussetzung für jede Manipulation. Doch schon dies ist

eine recht schwieriges Unterfangen, da die Ablegung der

Sprites im Speicher relativ kompliziert ist.

Wie sie aus # 3.5 wissen, besitzt ein Sprite eine Auflösung

von 24x21 Punkten (in Multicolor: 12x21). Jeder Punkt wird

durch ein Bit (zwei Bit bei MC) im Speicher repräsentiert. Je

8 Punkte sind somit in einem Byte zusammengefaßt. Um eine

Zeile zu bestimmen, sind damit 24/8 = 3 Bytes notwendig.

Diese drei stehen im Speicher direkt hintereinander. Die

nächsten drei Bytes definieren dann die zweite Zeile und so

fort.

Um ein Sprite zu erstellen, legt nan sich vorzugsweise eine

Schablone an, die sie im Anhang finden und sich am besten

abzeichnen und mehrmals kopieren sollten (oder Sie verwenden

den unten stehenden Spriteeditor). In diese Schablone können

Sie jeden einzelnen Punkt Ihres Sprites mit Bleistift als

kleines Kreuz (bzw. in Multicolor als Ziffer, stellvertretend

für die jeweilige Farbe) eintragen und erhalten so ein

vollständiges und übersichtliches Bild des zukünftigen

Raumschiffes, Vogels oder Buchstabens. Doch Vorsicht! Sie

sollten darauf achten, daB Sie jeweils mindestens zwei Punkte

nebeneinander zeichnen, da ein einzelner, ohne linken oder

rechten Nachbarn nicht, oder nur sehr schwach auf dem

Bildschirm erscheint. Dies gilt nicht für Multicolor, da hier

ein Punkt sowieso schon doppelte Breite besitzt.

Im Anschluß daran ersetzen Sie jedes Kreuzchen durch eine |,

jedes freie Feld durch eine O0 oder, falls Sie ein Mulcicolor-

sprite entwerfen, durch die binäre Zahl, die sich aus der

eingetragenen Ziffer ergibt. Nun fassen Sie jeweils 8 dieser

Nullen und Einsen zu einem Byte zusammen und errechnen sich

nach der Konversionstabelle im Anhang die entsprechende

Dezimalzahl. Auf diese Weise erhalten Sie insgesamt 63 Zahlen

von 0 bis 255, die den Inhalt der 63 Bytes einer

Spritedefinition wiederspiegeln.

Von Basic aus gibt es verschiedene Möglichkeiten, Sprite-

definitionen abzulegen und wieder einzulesen. Die erste und

wohl einfachste ist die Speicherung dieser 63 Daten in

123

DATA-Zeilen. Natürlich können Sie sie platzsparend möglichst

eng hintereinander packen, doch zweckmäßigerweise und aus

Gründen der Ubersichtlichkeit sollten Sie in etwa die

folgende Form besitzen:

1000 DATA 000,000,000

1010 DATA 000,000,000

1020 DATA 002,000,064

1030 DATA 001,000,128

1040 DATA 000,129,000

1050 DATA 000,066,000

1060 DATA 000,060,000

1070 DATA 000,126,000

1080 DATA 000,195,000

1090 DATA 001,141,128

1100 DATA 003,044,192

1110 DATA 031,255,248

1120 DATA 062,153,124

1130 DATA 125,066,190

1140 DATA 255,255,255

1150 DATA 001,255,128

1160 DATA 001,189,128

1170 DATA 003,060,192

1180 DATA 015,000,240

1190 DATA 015,000,240

1200 DATA 000,000,000

Sie sehen zwar nicht sofort, daß es sich hierbei um das

Fahrzeug eines Außerirdischen handelt, doch die

3x21-Bytestruktur wird doch recht deutlich. Jede DATA-Zeile

enthält hier die Information für eine Spritezeile. Um jedoch

diese Daten in den eigentlichen Speicher zu lesen (in die

bekannten Blöcke), müssen wir noch eine kleine Routine

hinzufügen, die etwa so aussehen könnte:

100 AD = 13x64 : REM ADRESSE BLOCK 13

110 FOR X=0 TO 62

120 READ DT : REM 63 DATEN LESEN

130 POKE AD+X, DT : REM IN BOLCK 13 POKEN

140 NEXT X

124

Dieser Zusatz liest nacheinander die 63 Daten ein und

schreibt sie in den Speicher (zu den Blöcken s.u.). Diese

Form der Spritespeicherung benötigt jedoch eine ganze Menge

Speicherplatz. Eine weitere, platzsparendere Möglichkeit der

Speicherung ist das Ablegen eines Sprites auf Diskette oder

Kassette z.B. als Sequentielles File. Auf diese Weise können

Sie an jeder beliebigen Stelle des Programms ein Sprite

einlesen, das Sie auf Diskette gespeichert halten. So ist es

ihnen beispielsweise möglich, ganze Datenbanken auf einer

Diskette anzulegen, aus denen sich Ihr Programm die

notwendigen Teile ausliest.

Am Anfang der Erzeugung eines solchen Definitionsfiles stehen

dabei wieder unsere DATAs. Mit Hilfe des folgenden Programms

können Sie nun die einzelnen Werte aus den bekannten

DATA-Zeilen herauslesen und als Sequentielles File auf

Diskette ablegen:

10 OPEN 1,8,2,"SPRITE,S,W" : REM FILE ZUM SCHREIBEN EROEFFNEN

20 FOR X=0 TO 62

30 READ DT : REM 63 DATEN LESEN

40 PRINT#1, CHR$(DT) : REM AUF DISKETTE SCHREIBEN

50 NEXT X : REM (ASCII-FORMAT)

60 CLOSE 1 : REM FILE SCHLIESSEN

Der Name des entstehenden Files ist "SPRITE". Um diese Daten

wieder einzulesen und direkt in den entsprechenden Speicher

zu POKEn, dürfte Ihnen diese Routine behilflich sein:

10 AD = 1364 : REM ADRESSE BLOCK 13

20 OPEN 1,8,2,"SPRITE,S,R" : REM SEQ. FILE ZUM LESEN

EROEFFNEN

30 FOR X=0 TO 62

40 INPUT#l, DT$: REM DATEN LESEN (ASCII-FORMAT)

50 POKE AD+X, ASC(DT$+CHR$(0)) : REM UND POKEN

60 NEXT X

70 CLOSE 1 : REM FILE SCHLIESSEN

selbstverständlich gibt es noch die Möglichkeit, ein Sprite

direkt als Programmfile abzuspeichern und ebenso einzuladen.

Wie Sie sehen, ist die ganze Sache ziemlich kompliziert und

macht Ungeübten einiges zu schaffen. Aus diesem Grunde wird

125

Ihnen im folgenden ein Programm vorgestellt, das Ihnen die

Arbeit der Spriteerstellung wesentlich erleichtert. Dieser

Spriteeditor, der teilweise in Basic und Maschinensprache

geschrieben wurde, gibt Ihnen komfortable Möglichkeiten in

die Hand, ein hochauflösendes Sprite zu erstellen und

schließlich in Ihr Programm einzubauen. Er erzeugt

Programmfiles, die auf die gleiche Art und Weise gelesen

werden können, wie in der letzten Routine demonstriert, wenn

Sie die Zeile 20 dort durch die folgende Zeile ersetzen:

20 OPEN 1,8,2,"SPRITE,P,R" : REM PROGRAMMFILE ZUM IESEN

OEFFNEN

Sicher ist es eine ganze Menge Arbeit, dieses Programm

abzutippen, aber es lohnt sich. Bevor Sie es starten, sollten

Sie es zunächst einmal abspeichern, da verschiedene

Basiczeiger "verdreht" werden! Haben Sie sich bei der Eingabe

der DATAs vertan, so wird ihnen dies durch eine entsprechende

Fehlermeldung kundgetan.

100 REM ¥XXXKKKKEKEKEKEKREEEY

110 REM *x x

120 REM ** SPRITEFORMER *%

130 REM xx *x

140 REM KXKKKKKKKKKKEKKKAKKS

150 REM

160 REM INITIALISIERUNG:

170 REM ¥XXXXKKKKKKEEKKEKS

180 GOSUB2730:REM MASCHINENROUTINEN EINLESEN

190 POKE 53280,0:POKE 53281,0: REM HINTERGRUND-/RAHMENFARBE

200 POKE650,255:REM ALLE ZEICHEN REPEAT

210 POKE 45,0:POKE 46,80:RUN 220:REM BASICENDE=$5000

220 REM

230 REM MASCHINENROUTINEN:

240 REM KXXKKKKKKKEKEREKKE

250 IN%=18432:REM INITROUTINE

260 PUX=18632:REM PUNKT EINZEICHNEN

270 NEX=18567:REM KOORDINATENSYSTEM

280 LA%=18503: REM ZEICHENSATZ LADEN

290 SP%=18531:REM ZEICHENSATZ SPEICHERN

300 CAX=18758:REM CATALOG

126

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

99)

460

470

480

490

500

510

520

530

540

550

560

570

580.

590

600

610

620

630

640

650

660

670

680

690

BE%=18712: REM BEFEHLSIDENTIFIZIERUNG

IV%=18830:REM INVERTIEREN

VR¥=18844: REM VERSCHIEBEN-RECHTS

VL%=18870:REM VERSCHIEBEN-LINKS

v0%=18895: REM VERSCHIEBEN-OBEN

VU%=18935:REM VERSCHIEBEN-UNTEN

Q = T704:REM SPRITEBLOCK-ADRESSE

vy =53248:REM VIDEOCONTROLLER

REM

REM CONTROLZEICHEN:

REM XXXXKKKKKKKKKEKK

CO$=CHR$(147):REM BILDSCHIRM LOESCHEN

CI$=CHR$(19): REM HOME

C2$=CHR$(183):REM HOCHSTRICH

C8$=CHR$(99)+CHR$(99) +CHR$(

:C3$=CHR$(117)+C8$+CHR$(105):REM OBERER FENSTERR. 1

C4$=CHR$(106)+C8$+CHR$(107): REM UNTERER SPRITEFENSTERRAND

C5$=CHR$(117)+C8$+C8$+CHR$(105):REM OBERER RAND 2

c8$=CHR$ (106) +C8$+CB$+CHR$ (107): REM UNTERER RAND 2

C9$=CHR$(98): REM MITTELSTRICH (SENKR)

C6$=CHR$(18):REM RVS ON

C7$=CHR$(146):REM RVS OFF

NA%X=828: REM FILENAMENLAENGE ($C800)

GA%=186: REM GERAETEADRESSE($BA)

TAX=821:REM TASTE/BEFEHLSCODE

SG%= 1:REM SPRITEGROESSE

YK%=822: REM Y-KOORD

XK%=823:REM X-KOORD

REM

REM FARBEN DEFINIEREN:

REM ¥XKKKKAKKKKERKKKKE

DATA 144, 5, 28,159,156, 30, 31,158

DATA 129,149,150,151, 152,153, 154,155

DIM C$(16):FOR Y=0 TO 15:READ X:C$(Y)=CHR$(X): NEXT Y

N=1:F(0)=0:F(1)=1:V$=" ":SYS IN%:REM FARBEN/INIT

REM

REM LOESCHROUTINE (FELDAUFBAU):

REM KKKKKKKKKKKK KK KK KK KK KK KK I X

SYS IN% : REM SPRITE LOESCHEN

PRINT CO$

127

700 PRINT C1$;SPC(13);C$(7);"SPRITE-CREATION"

710 PRINT SPC(12);C$(1);"(C) BY AXEL PLENGE"

720 PRINT C$(4);:FOR X=1 TO 40: PRINT C2$;:NEXT X

730 PRINTC$(7)" 7"C$(6)"6543210"C$(7)"7"C$(6)"6543210"C$(7)"

7"C$(6)"6543210";

740 SYS NEX : REM NETZ ZEICHNEN

750 GOSUB 1820: PRINT: PRINT:REM STATUSFELD ERSTELLEN

760 PRINT: PRINT: PRINTTAB(30) ;C3$

770 FOR X=1 TO 3:PRINTTAB(30);C9$;" "C9$:NEXT

X:PRINTTAB(30);C4$:REM TESTSPRITEL

780 PRINTTAB(27);" ";C5$;" ":FOR X=1 TO

5:PRINTTAB(27);" ";09$;" "xC9$:NEXT X

790 PRINTTAB(27);" ";Cc8$;" ";:REM TESTSPRITE2

800 POKE 53248+21,3:X=0:Y=0:REM SPRITES AN/X-,Y-KOORDINATE=0

810 REM

820 REM EINGABESCHLEIFE:

830 REM KXXKXXKKXKKKKKKXS

840 A=X+2:B=Y+4:GOSUB 2450: REM POSITIONIEREN

850 POKE XK%,X:POKE YK%,Y: F=0:REM KOORDINATEN UEBERGEBEN

860 PRINT C$(7);C6$;" ";CHR$(157);:REM BLINKPHASE AN

870 FOR S=1 TO 50:GETA$:IF A$<>"" THEN 890

880 NEXT S:SYS PUX: FOR S=1 TO 50:GET A$:IF A$="" THEN NEXT

S:GOTO 860: REM AUSSCHALTEN

890 REM

900 REM BEFEHLSERKENNUNG:

910 REM KXKKKKEKKKKKKKKKK

920 SYS PU%:C=ASC(A$):POKE TAX,C:SYS BE%:S=PEEK(TAX): REM

BEF-UEBERGABE/RUECKMELDUNG

930 REM VERTEILUNG:

940 ON S GOTO 1050,1050,1070,1070,1090,1090

950 ON S-6 GOTO 1110,1110,1910,1910,1910,1910

960 ON S-12 GOTO 1910,1910,1910,1910,650,1360

970 ON S-18 GOTO 1450,1490,1570,1130,2150

980 ON S-23 GOTO 1200,1970,1240,810

990 REM

1000 REM BEFEHLSBEARBEITUNG:

1010 REM XXXXXKXKKXKKKKKKEKKKS

1020 REM

1030 REM CURSORBEWEGUNG:

1040 REM XXXXKXKKKKKKKEX

1050 X=X+1:IF X=24 THEN X=0:GOTO 1090

128

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

GOTO 810: REM RECHTS

xX=X-1:IF X<O THEN X=23:G0TO 1110

GOTO 810:REM LINKS

Y=Y+l:IF Y=21 THEN Y=0

GOTO 810: REM RUNTER

Y=Y-1:IF Y<O THEN Y=20

GOTO 810: REM HOCH

REM

REM BEENDEN:

REM ¥X*¥X****

A=2:B=15:GOSUB 2450:REM POSITIONIEREN

PRINT C6$;C$(7); "BEENDEN?";C7$;C$(6): INPUT T$

IF T$="J" OR T$="JA" THEN SYS 64738:REM KALTSTART

GOTO 690

REM

REM CATALOG:

REM ¥*XXKX**

PRINT CO$:SYS CA%:GOSUB 2490:GOTO 690

REM

REM VERSCHIEBUNG:

REM ¥XXXXKKXKKEKS

GOSUB 2530:GOSUB 2440:PRINT C$(1); "VERSCHIEBUNG": REM

MELDEFELD

128) PRINT TAB(27)"NACH:": PRINT TAB(27)"RECHTS(R),": PRINT

TAB(27)"LINKS(L),"

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

PRINT TAB(27)"OBEN (0),": PRINT TAB(27)"UNTEN(U):"

GOSUB 2490

IF T$="R" THEN SYS VRX:GOTO1350

IF T$="L" THEN SYS VL%:GOTO1350

IF T$="0" THEN SYS VO%:GOTO1350

IF T$="U" THEN SYS VUX

GOSUB 2530:GOTO 700

REM

REM SPRITEGROESSE:

REM XXXXXKKKKKEKKK

ON SGX+1 GOSUB 1410,1420,1430,1440

POKE V+23,A:POKE V+29,B: SG%=(SG%+1) AND 3:GOTO 810

A=2:B=2: RETURN

A=0:B=2: RETURN

A=2:B=0: RETURN

A=0:B=0: RETURN

129

1450

1460

1470

1480

1490

1500

1510

1520

1530

REM

REM SPRITE INVERTIEREN:

REM ¥XXXKKKEKKKAKKEKKKE

SYS IV% : GOTO 700

REM

REM SPRITE SPEICHERN:

REM XX¥XXXKKEEKAKEKKKEE

GOSUB 2530

GOSUB 2440:PRINT C6$;C$(1); “SPRITEAB-": PRINT

TAB(27);C6$; "SPEICHERUNG" ;C7$

1540 GOSUB 1700: IF F=1 THEN F=0:GOTO 1490: REM

EINGABE/FEHLERABFR.

1550

1560

1570

1580

1590

1600

1610

IF F=2 THEN F=0:GOTO 1630:REM FEHLER

SYS SP%:GOTO 1650:REM SPEICHERN

REM

REM SPRITE LADEN:

REM ¥¥XXXXXKEKXKKK

GOSUB 2530

GOSUB 2440: PRINT C6$;C$(1); "SPRITE": PRINT

TAB(27);C6$; "LADEN: ";C7$

1620

1630

1640

1650

1660

1670

1680

1690

GOSUB 1700: IF F=1 THEN F=0:G0TO 1570

IF F=2 THEN F=0:GOTO 690

SYS LA%

REM FEHLERABFRAGE (NUR FUER DISK!):

OPEN 1,8,15: INPUT#1,DS,DS$,DT, DB: CLOSE]

IF DS<20 THEN 690:REM OK

PRINT: T$=STR$(DS)+","+DS$+","+STR$(DT)+","+STR$(DB)

GOSUB 2600: PRINT T$: FOR S=1 TO 2000:NEXT S:GOTO 690:REM

BLINKEN

1700

1710

1720

1730

REM

REM NAMENEINGABE:

REM KKKKKKKKKKKKK

A$="":PRINT: PRINT TAB(27)"FILENAME"C$(6): PRINT

TAB(27);: INPUT A$: T=LEN(A$)

1740

1750

GA,S:

1760

1770

1780

1790

S=VAL(RIGHT$(A$,1))

IF S<>0 AND LEFT$(RIGHT$(A$,2),1)=";" THEN T=T-2: POKE

REM GERAETEADR.

IF T=0 THEN F=2: RETURN: REM KEIN NAME

IF T>17 THEN 1800

REM NAMEN AN MASCHINENROUTINEN:

POKE NA%,T: FOR S=1 TO T:POKE

130

NAX+S,ASC(MID$(A$,S,1)):NEXT S: RETURN

1800 PRINT CHR$(145); : T$=C6$+" LAENGE! "+C7$:GOSUB

2590:REM FEHLERMELDUNG

1810 PRINT C$(6): F=1: RETURN

1820 REM

1830 REM STATUSFELD ERSTELLEN:

1840 REM KXXXKKKKKKKEKKKKKKKKS

1850 A=27:B=4:GOSUB 2450

1860 GOSUB 2530

1870 A=27:B=5:GOSUB 2450

1880 PRINT TAB(27);C$(7); "FARBEN: "

1890 PRINT TAB(27);C$(2);: FOR S=] TO 7: PRINT CHR$(163);: NEXT

S: PRINT C$(6)

1900 FOR S=0 TO 1:PRINT TAB(27);"GRDF.";S;":";F(S): NEXT

S: RETURN

1910 REM

1920 REM PLOT:

1930 REM **xxx

1940 S=((S-12) AND 2)/2:REM PLOTFARBE FESTSTELLEN

1950 T=X/8: AD=INT(T): T=2*(7-8%(T-AD)): AD=Y*3+AD+Q

1960 POKE AD,PEEK(AD) AND (255-T) OR S*T:GOTO 810

1970 REM

1980 REM FARBENWAHL:

1990 REM *XXK¥XKKKKE

2000 PRINTCHR$(147)

2010 A=0:B=4:GOSUB 2450: PRINT

TAB(4);C$(1)"F"C$(2)"A"C$(3)"R"C$(4)"B"C$(5)"E";

2020 PRINT C$(6)"N"C$(7)"W"C$(4) "A"C$(6)"H"C$(2)"L"C$(7)":"

2030 PRINT TAB(4);C$(1);CHR$(172);: FOR S=1 TO 32:PRINT

CHR$(162);: NEXT S: PRINT CHR$(187)

2040 FOR S=1 TO 2:PRINT TAB(4);C6$;CHR$(161);

2050 FOR T=0 TO 15: PRINT C$(T);" ";: NEXT T: PRINT

C$(1);C7$;CHR$(161):NEXT S

2060 PRINT

TAB(4);C6$;CHR$(161);" 0123 4 5 6 7 8 9101112131415" ;C7$;C

HR$(161)

2070 PRINT: PRINT C$(6);" FUER GRUNDFARBENNR. (F1/F3): ";

2080 GOSUB 2490: T=ASC(T$)-133:REM FUNKTIONSTASTE

2090 IF T<O OR T>1 THEN GOSUB 2590:GOTO 690:REM FEHLER

2100 IF T>1 THEN T=T-4

2110 PRINT T:T$="": INPUT " FARBE ";T$:S=ABS(INT(VAL(T$)))

131

2120 IF T$="" OR S>15 THEN GOSUB 2590: GOTO690:REM FEHLER

2130 F(T)=S:POKE V+33,F(0): REM HINTERGRUNDFARBE SETZEN

2140 POKE V+39,F(1):POKE V+40,F(1):GOTO 690:REM SPRITEFARBE

SETZEN

2150 REM

2160 REM BEFEHLSSATZ:

2170 REM ¥XXXXKKKKKKEK

2180 POKE V+21,0 : REM SPRITES AUS

2190 PRINT C0$;C6$;C$(2)" ":C$(7);

2200 PRINT "BEFEHLSSATZ";C$(2);" ";C7$;

2210 PRINT C$(4);: FOR S=1 TO 40:PRINT CHR$(184);:NEXT S: PRINT

2220 PRINT C$(1)" NR. "C6$"BEFEHL "C7$"-"C$(5)"

FUNKTION"C$(4)

2230 FOR S=1 TO 10:PRINT "----";:NEXT S

2240 PRINT C$(1)" (1) "“CO$"(><...)"C7$"-"C$(5)" CURSORBEWEGU

NGEN"

2250 PRINT C$(1)" "C6$"(2QWA)"C7$;C$(5)

2260 PRINT C$(1)" (2) "C6$"(FI-F8)"C7$"-"C$(5)" PLOT IN

FARBEN 0-15" |

2270 PRINT C$(1)" (3) "C6$"(F) "C7$"-"C$(5)" FARBEN 0-15

F. F1/3 DEF."

2280 PRINT C$(1)" (4) "“C6$"(B) "C7$"-"C$(5)" BEFEHLSSATZ"

2290 PRINT c$(1)" (5) "C6$"(G) "C7$"-"C$(5)" SPRITE

GROESSE"

2300 PRINT C$(1)" (6) "C6$"(T) "C7$"-"C$(5)" SPRITE

INVERTIEREN"

2310 PRINT C$(1)" (7) "C6$"(V) "C7$"-"C$(5)" SPRITE

VERSCHIEBEN"

2320 PRINT C$(1)" (8) "C6$"(L) "C7$"-"C$(5)" SPRITE

LOESCHEN"

2330 PRINT C$(1)" (9) “C6$"(CTRLG)"C7$"—"C$(5)" GET-SPRITE

LADEN"
2340 PRINT C$(1)"(10) “C6$"(CTRLS)"C7$"-"C$(5)" SAVE-SPRITE

SPEICHERN" |
2350 PRINT C$(1)"(11) "C6$"(C) "C7$"-"C$(5)" DIREKTORY/CA

TALOG"

2360 PRINT C$(1)"(12) "“C6$"(CTRLX)"C7$"-"C$(5)" BEENDEN"

2370 GOSUB 2490:POKE V+21,3:GOTO 690:REM WARTEN+SPRITES AN

2380 REM |

2390 REM UNTERPROGRAMME:

2400 REM X4KKKKKKKEKEEKE

132

2410 REM

2420 REM POSITIONIERUNG:

2430 REM ¥€XXKKKKKKKKEKKX

2440 A=27:B=5:REM MELDEFELD

2450 PRINT Cl$;:FOR S=2 TO B:PRINT:NEXT S: PRINT

TAB(A); : RETURN

2460 REM

2470 REM TASTENEINGABE:

2480 REM KXXKKKKKKKKEKK

2490 WAIT 198,255:GET T$: RETURN

2500 REM

2510 REM MELDEFELD LOESCHEN:

2520 REM KKKKKKKKKKKKKK KK KK

2530 GOSUB 2440

2540 FORS=1T0O6: PRINTTAB(27); : FORT=1T04: PRINT" "S: NEXT T:

PRINT: NEXT S : REM MELDEFELD LOESCHEN

2550 RETURN

2560 REM

2570 REM FEHLERBLINKEN:

2580 REM ¥KKKKKKKKEKEKK

2590 T$="UNZULAESSIG!"

2600 A=4: B=18: GOSUB2450: PRINTC$(1):FOR S=1 TO 9:PRINT

TAB(4)T$:GOSUB 2630: PRINT CHR$(145);

2610 PRINT TAB(4)" ";

2620 PRINT CHR$(145):GOSUB 2630:NEXT S: PRINT

TAB(4)" ";F=1: RETURN

2630 FOR T=1 TO 75:NEXT T: RETURN: REM WARTESCHLEIFE

2640 REM

2650 REM KXXKKEKAKKAKKKKKAKKKEKKKX

2660 REM xx xx

2670 REM *x* MASCHINENROUTINEN *x

2680 REM *% xx

2690 REM XXKKKKKKKKKKKKKKKEKEKKKKS

2700 REM

2710 REM DATAS WERDEN NACH DEM STARTEN GELOESCHT !!!

2720 REM

2730 FOR I = 1 TO 16 : READ X : NEXT I : REM VORDERE DATAS

UEBERSPRINGEN (FARBEN)

2740 FOR I = 18432 TO 18969

2750 READ X : POKE I,X : S=S+X : NEXT

2760 DATA 162, 62,169, 0,157,192, 2,202, 16,250,169, 11

133

2770

2780

2790

2800

2810

2820

2830

2840

2850

2860

2870

2880

2890

2900

2910

2920

2930

2940

2950

2960

2970

2980

2990

3000

3010

3020

3030

3040

3050

3060

3070

3080

3090

3100

3110

3120

3130

3140

3150

3160

3170

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

253,169,

202, 16,245, 96,162,

232,136,208,249,169,

239,166,

141,248,

163,141,

3,208,169,

141, 23,208,141,

28,208,169, 1,141,

60, 3,162, 61,160, 3,

186,160, 0, 32, 0,254,169,

76,213,255,173, 60, 3,162,

2,166,186,160, 0,

133, 2,169, 2,133, 3,169,

76,216,255,160, 0,169, 13,

56,233, 10,144, 12,168,233,

50, 44,169, 49, 44,169, 32,

48, 32,210,255,104,168,162,

29, 32,210,255,232,224,

7,141,249,

1,208,169,

3,141,

29,208,169,

7,169,

7,141,

210,255,200,192, 21,208,194, 96,174, 55,

54, 3,138, 72,152,

2,138,160,255, 56,233,

170,152, 24,101, 2,168,169,

252, 57,192, 2,208, 3,160,

6,185, 12,

168,104,170, 96,146,

32, 31,146,157,173,

221, 43, 73,240,

87, 29, 81,157, 65, 17,

135,139,136,140, 76, 71, 73,

70, 86,169, 36,133, 2,169,

32,249,253,169,

169, 0,162, 0,160, 64,134,

255,165, 95,164, 96, 32,

173, 1, 3, 72,169, 61,141,

1, 3, 32,195,166,104,141,

3, 96,162, 62,189,192, 2,

0,160,

0,106,

2,224, 63,208,233, 96,162,

191, 2,202,136,208, 249,169,

157,194,

21,132, 3,166,

168, 104,157,192,

2,202,134,

72,133,

31,111,

53,

2,189,132,

134

16,208,141,

39,208,141,

32,249,253,169,

3,162,

3,136,208,247,142, 53,

50,145,133,137,134,138

2,166,186,160,

55,165,173,

2,138,208,234, 96,162,

2,152,202,202,202,198,

2,224, 59,208,221,

16,141, 0,208,169

2,208,169,201,141

21,208,169, 2

0,141, 27,208,141

40,208, 96,173

2,166

0,162,192,160, 2

61,160, 3, 32,249

32, 0,254,169,192

2,162,255,160, 2

32,210,255,152, 72

10,144, 4,168,169

32,210,255,152, 9
0, 32,206, 72,169

24,208,243,169,165, 32

3,172

2, 10,101, 2,133

8,200,176,251,105, 8

0, 56,106,202, 16

0, 44,160, 6,162

73, 32,210,255, 200,202, 208, 246, 104

31,146,157, 18, 28

0,160, 28,232

3, 96

19, 7,

1,162,

0,
95,132,

24, 66, 67

2,160, 0

32, 0,254

96, 32,213

0, 3, 72

0, 3,169,227,141

1, 3,104,141, 0

73,255,157,192, 2

3, 24,126,192, 2

29,189, 2,157,189

63,160, 3, 24, 62

0, 42, 29,194, 2

62,134, 2,160

72,189,192, 2

3,208

96,162

2,

3180 DATA 2,134, 2,160, 21,132, 3,166, 2,189,252, 2

3190 DATA 72,189,192, 2,168,104,157,192, 2,152,232,232

3200 DATA 232,198, 3,208,239,198, 2, 16,226, 96

3210 IF S <> 61707 THEN PRINT "FEHLER IN DATAS !!" : END

3220 PRINT "OK" : RETURN

135

END OF ASSEMBLY!

07

Q7

DO

D@

D@

Da

DO

Da

Da

DO

Da

Da

DO

CONASS

CHROUT

FNPAR

FPAR

SAVE

LOAD

V

BLOCK

BLOCKN

LAENGE

MODUS

TASTE

YKOORD

XKOORD

INIT

Ti

~L5

=
s

; MASCHINENROUTINEN:
SERRUERERKRNRRHNNRER

=

‘a
t

-OS

‚BA

„MC

#4300

$0800

; STARTADRESSE

; SPRUNGADRESSEN UND REGISTER:
SEH HEHEHE HEHE HEHEHE ERE

5

» DE

„DE

» DE

» DE

» DE

» DE

.DE

. DE

„DE

„DE

.DE

. DE

.DE

» DE

1
$FFD2
$FDF9
$FEOO
$FFDS
$FFDS
spaaa
704
11
$033C
50334
$0335
$0336
$0337

; ZE ICHENAUSGABE

; FILENAMENPARAMETER SETZEN

;FILEPARAMETER SETZEN

;SFEICHERN AUF DISK/KASSETTE

;LADEN VON DISK/KASSETTE

; VIDEOCONTROLLER (53248)

;SPRITEBLOCK 11

; BLOCKNUMMER 11

; FILENAMENLAENGE

; SPEICHERMODUS

; BEFEHLSTASTENDRUCK

;FELD-Y-KOORDINATE

; FELD-X-KOORDINATE

3

; TESTSPRITE LOESCHEN+PARAMETER:
EHH HEHEHE HEHE KEE HERE RHEE EERE EER

LDX
LDA
STA
DEX
BPL
LDA
STA
STA
LDA
STA

STA

LDA

STA

STA

LDA

STA

STA

RTS

#62
#500
BLOCK, X

Ti

#BLOCKN

V+3

#700000G 11

V+16

V+21

#4006000 10

v+235

V+29

#+20

V+27

V+28

#701

V+39

V+40

:
;SPRITE LADEN:

136

:63 BYTES

;BLOCK 11 LOESCHEN

«BLOCK 11
sPOINTER SPRITE @ AUF 11
;POINTER SPRITE 1 AUF 11

:SPRITE 8: X-KOORD. HIGHBYTE

; Y-KOORDINATE

;SPRITE 1:X-KOORD. HIGHBYTE

; Y-KOORDINATE
sX-K. HIGHBYTES=1

;SPRITES EINSCHALTEN

Y-VERGROESSERUNG
X-VERGROESSERUNG

sSPRITE is

sSPRITE 1:

; SPRITE-PRIORITAET

; NORMALFARBENSPRITES

WEISS
WEISS

;SPRITE @:
:SPRITE 1:
; ZURUECK

4963-

4866-

4848-

486A-

486D-—

486F-

4871-

4873-

487 6-

4878-

487A-

487C—

487E—-

4880-

4982-

4884-

82

DD

D2

2A

ac

aA
a4

32

208
D2

38
D2

20

CE

1D

25

FD

FE

FF

35

FD

FE

FF

FF

FF

FF

48

1718

1728

1758
1748

1750

LADEN

SPEICH

NETZ

N@

N1

3 RKKKKEKKRERERE

JMP

LAENGE

#_,LAENGE
#H, LAENGE
FNPAR

#396
#L, BLOCK
#H, BLOCK
LOAD

3 NAME NLAENGE
; FILENAMENADRESSE LOW-
; HIGHBYTE

; LOGISCHE FILENUMMER

; GERAETEADESSE

; SECUNDAERADRESSE

; LDAD/VERIFY-FLAG
; STARTADRESSE (LOWBYTE)
; STARTADRESSE (HIGHBYTE)

8

;SPRITE SPEICHERN:
fH EE HEREE

s

LDA

LDX

LDY

JSR

LDA

LDX

LDY

JSR

„LS

LDA

STA

LDA

STA

LDA

LDX

LDY

JMP

“LS

LAENGE
#_ ,LAENGE
#H „LAENGE
FNPAR

#302

*$BA

#20

FPAR

#_ BLOCK
“+02

#H, BLOCK
*$05

#302

#L , BLOCK+23F

#H , BLOCK +$3F

SAVE

; F ILENAMENLAENGE
;FILENAMENADRESSE (LOW)
;FILENAMENADRESSE (HIGH)

;LOGISCHE FILENUMMER
3; GERAE TEADRESSE
; SECUNDAERADRESSE

;STARTADRESSE (LOWBYTE)

; STARTADRESSE (HIGHBYTE)
;NULLSEITENADRESSE DER STARTADRESS
;ENDADRESSE (LOWBYTE)
;ENDADRESSE (HIGHBYTE)
;SPEICHERE SPRITE

; ARBEITSFELD HERSTELLEN:
ETUI

5
LDY

LDA

#200

#30D

CHROUT

#10
N1

#10
N2

#°2

$2C

$2C

#20

CHROUT

#330

CHROUT

#700

PUNKT

##1D

137

ı ZEILENZAEHLER = 8

;CARRIGE RETURN

;LEERZEICHEN BEI Y<1®

;NAECHSTEN BEF. UEBERSPRINGEN

sNAECHSTEN BEF. UEBERSPRINGEN
;" " LEERZEICHEN
; AUSGEBEN
: REST
sASCII HERSTELLEN
;AUSGEBEN

sEINEN PUNKT ZEICHNEN
;CURSOR RECHTS

A4BBS-
48B8-
48B9—
ABBB-
48BD—
'48BF-
ABC2-
48C5—
4805-
48C7-—

4I8C-
490F —
4912-
4915-

92
iF
i2
ıF

37
36

02

82
82

FF

28

FB
08

82

FC

QS
ou

@4
a6
ac
D2

Fé

iF
92
ic
92

FF

FF

OS
853

49
FF

6F
9D
20
9D

1768
1770
1788
1790
1808
1810
1828
1838
1849
1850
1860
1870
1880
1898
1980
1918
1920
1936
1948
1958
1968
1970
1988
1990
22000
2010
2820
2830
2848
2458

PUNKT2

PUNKT

PS

2060 —
2070
2086
2890
2100
2110
2120
2130
2148
2150
2168
2178
2188
2190
2208
22180
2220
2258
2240
2258
2268
2270
2288
2290
23508
2518
2528
2330
2548
2358
2368
23708

2388

23908

PO

Fil

P2

PKTTAB

RTS

CHROUT

#24
NS
HEAS
CHROUT

#21

N@

sNAECHSTER PUNKT
324 PUNKTE PRO ZEILE

sSTRICH (CHR#(165))

sNAECHSTE ZEILE
s2i ZEILEN

3
;EINE KOORDINATE ZEICHNEN:
ERNEUTEN NER

$

LDX
LDY
TXA
PHA
TYA
PHA
STA
ASL
ADC
STA
TXA
LDY
SEC
SBC
INY
BCS
ADC
TAX
TYA
CLC
ADC
TAY
LDA
SEC
ROR
DEX
BPL
AND
BNE
LDY
„BY
LDY
LDX
LDA
JSR
INY
DEX
BNE
PLA
TAY
PLA
TAX
RTS

XKOORD
YKOORD

*$02

*$02

*$02

#$FE

#08

PS
#288

#02

#5200

A

PO

BLOCK ,Y
Pi
#300
$2C
#206
#506
PKTTAB,Y
CHROUT

P2

sANSTEUERUNG DURCH BASIC

ıX/Y-KDORDINATE

KOORDINATEN RETTEN

ı Y-KOORDINATE*3
UND RETTEN

; ZAEHLER=@

:X-KOORDINATE/8

REST

3 Y*3+INT (X/8)

sEIN BIT SETZEN
;RICHTIGES BIT HERAUSSUCHEN
;REST ERNIEDIRIGEN

sANDERE BITS DES SPRITEBYTES LOESC

;BIT (=PUNKT) GESETZT?

:NEIN

; BIT-BEFEHL

;BIT GESETZT!

;ZEICHEN AUS PUNKTDARSTELLUNGSTABE

;NAECHSTES ZEICHEN

KOORDINATEN WIEDERHOLEN

3
; ZEICHEN FUER EINE KOORDINATE:
SERIEN

3
-BY 146 831 111 851 144 157

.BY @18 028 052 @31 146 157

”
3

138

4918-
491B-
A91D-
49iF—
4920-
4923-
4925-
4926-
4928-
492B—

492C-
492F-

4932-
4935-

4938-
493B-

493E-
4941-

4943-

4946-
4948-
4940-
494C-
494E-
4950-
4953-
4955-
4957-
4959-
495C-
495E-
4960-
4962-
4964-
4966-
4969-
496B-
496D-
4970-
4973-
4974-
4977-
4978-
497A-
497D-
497F-
4982-
4985-
4986-
4989-

AD
AZ
AG
EB
DD

88
DO

46

37
9D

32
89

87
BC

49
18

43

35
Og
ic

2B
23

F7
3S

iD
41

Fil
86

SB
4C

15
42

46

03

49

05

ol
11

85
BA

88
47

@7

36

FD

FE

FF

AS

053

05

853
AS

OS

BEF IDE

Bi

B2

BEFTAB

CATALG

; TASTE ALS BEFEHL IDENTIFIZIEREN:
5 EEE ERNE EEE EEE REE ERE REE

3
LDA TASTE ; TASTENCODE
LDX #+08 ; BEFEHLSCODE
LDY #$1C 27-1 BEFEHLE (ZAEHLER)
INX ; BEFEHLSCODE ERHOEHEN
CMP BEFTAB-1,X ; TASTE MIT TABELLE VERGLEICHEN
BEQ B2 3; GEFUNDEN
DEY sNAECHSTER BEFEHL
BNE Bi 3NOCH NICHT FERTIG
STX TASTE ;BEFEHLSCODE ALS RUECKMELDUNG
RTS ; ZURUECK ZU BASIC

5
; BEFEHLSTASTENTABELLE:
§ EEE EEE RENEE EERE

3 W/CRSR-RE/Q/CRSR-LI/A/CRSR-UN
„BY @87 @29 B81 157 @65 617

; 2/CRSR-OB/ F1/ F2/ F3/ F4
-BY 050 145 133 137 134 138

; FS/ F6/ F7/ F8/ L / G
„BY 135 139 156 1480 @76 071

3 I/CTRL.S/CTRL.G/CTRL.X/ B
.BY @73 8197 a07 024 66

; C/FJ/M
.BY 067 870 G86

3
3; DISKCATALOG:
§ EEE IE

LDA ##24 ı"$" ALS FILENAME
STA *$@2

LDA #401
LDX #$02
LDY ##00 75.0.
JSR FNPAR
LDA #$02
LDX *$BA ; GERAETEADRESSE
LDY #00
JSR FPAR
LDA ##00 3 LOAD/VERIFY—FLAG
LDX #$00 Ä
LDY #$40 ; STARTADRESSE
STX #$5F
STY *$60
JSR LOAD ;LADE CATALOG WIE BASICPROGRAMM
LDA *$5F ;SIMULIERE:
LDY *$68 ; BASIC-PROGRAMMSTARTADRESSE
JSR $A537 ; BASICZEILEN BINDEN
LDA #0300
PHA
LDA $8301 sORIGINALEN WARMSTARTVEKTOR
PHA 3 RETTEN
LDA ##3D
STA 2300
LDA #$E3
STA $0301 sUND AUF RTS SETZEN
JSR $A6C3 ; LISTBEFEHL AUSFUEHREN
PLA
STA $0301
PLA

139

498A-
49aD-

498E-
4990-
4993-
4995-
4998-
4999-
499B-

49CF-

49DD-
49ED-
49E1-
49E2-
49ES-
49E6-
49E7-
49E8-
49E9-
49EB-

8D

60

Az
BD
49
9D
cA
12
60

Az

AG

18

7E

EB

88

De

A?

6A

iD

9D

E@

Da

68

AZ

AQ

18

SE

CA

Bo

Da

A?

2A

1D

9D

BA

Da

68

AZ

84

AG

84

AG

BD

48

ED

AB

48

9D

98

CA

CA

CA

Ca

Da

a

SE
C@

ca

aa

a3

ca

SF

25

BF

FF

aa

C2

C2

EA

SE

15
=
.

84

ca

Ce

a5

a>

22

a2
a2

22

a2
22

G2

@2

@2

3828

3830

38040

30358

3860

3879

3088

Sa7Q

31280

3110

3128

31308

2148

31508

3149

3170

3180

2198

3200

3218

3220

3258

3240

3250

3260

3278

INVERS

INi

RECHTS

RE1

RE2

LINKS

Li

LI2

OBEN

OB1

OB2

STA #20300 sALTEN VEKTOR WIEDERHOLEN

RTS ; ZURUECK ZU BASIC

3
;SPRITE INVERTIEREN:
5 EKER EKE HH ERE HEED

LDX #62 362+1 BYTES

LDA BLOCK, X ;BYTE HOLEN

EOR #3FF 3; INVERT IEREN

STA BLOCK, xX ; ZURUECKSCHRE I BEN

DEX

BPL INI sNAECHSTES BYTE

RTS

sSPRITE VERSCHIEBEN:
5 FRRRERERKFERTTERTERTETER

LDX #300 ; BYTEZAEHLER ABSOLUT
LDY #303 ;BYTEZAEHLER IN ZEILE
ELC
ROR BLOCK, xX ; VERSCHIEBEN
INX
DEY
BNE RE2
LDA #$00
ROR A :LETZTES BIT IN AKU
ORA BLOCK-3,X UND AN ANFANG SETZEN
STA BLOCK-3,X
CPX #63
BNE RE1
RTS :FERTIG
;

LDX #63 ; BYTEZAEHLER ABSOLUT
LDY #303 ;BYTEZAEHLER IN ZEILE
CLC
ROL BLOCK-1,X ; VERSCHIEBEN
DEX
DEY
BNE LI2
LDA ##20
ROL A sLETZTES BIT IN AKU
ORA BLOCK+2,X UND ANS ENDE SETZEN
STA BLOCK+2,X
TXA
BNE LI1
RTS :FERTIG

s

LDX #62 ;BYTEZAEHLER ABSOLUT
STX *$02
LDY #71 3 ZEILENZAEHLER
STY *$@3
LDX *$02
LDA BLOCK~6@,X ;ERSTES BYTE HOLEN
PHA ; IN ZWISCHENSPEICHER 1
LDA BLOCK,X sBYTE HOLEN
TAY ;IN ZWISCHENSPEICHER 2
PLA 3 ZISCHENSPEICHER 1 HOLEN
STA BLOCK, xX ;IN BYTE ABLEGEN
TYA 3 ZWISCHENSPEICHER 2 HOLEN
DEX
DEX
DEX ;DARUEBER LIEGENDES BYTE
DEC *$03 ;NAECHSTE ZEILE
BNE 0B2

140

22

22

END OF ASSEMBLY!

Bi =491F

BEFIDE =4918

BLOCK =@2C@

CATALG =4946

CONASS =0001

FPAR =FEQQ

IN1 =4999

INVERS =498E

LAENGE =@33C

LI2 =49BB

LOAD =FFDS

N@ =4889

N2 =489E

NETZ =4887

OB2 =49DC

PQ =48ED

P2 =48FD

PKTTAB =490C

PUNKT2 =48C8

REZ =49A1

SAVE =FFD8

TASTE =@335

UN2 =4A04

V =Deag

YKOQORD =@336

LABEL FILE: —

//O@00,4A1A,@A1A

LDX *$02
DEX
STX *$02
CPX #59
BNE OBI
RTS

UNTEN LDX #02
STX *$02

UNi LDY #21
STY *303
LDX #302
LDA BLOCK+4@, X

UN? PHA
LDA BLOCK,X
TAY
PLA
STA BLOCK ,X
TYA
INX
INX
INX
DEC «#03
BNE UN2
DEC *#a2
BPL UN1
RTS
EN

B2 =4928
BEFTAB =492C
BLOCKN =@00B
CHROUT =FFD2
FNPAR =FDF9
Il =4804
INIT =4800
LADEN =4847
Lil =49B8
LINKS =49B4
MODUS =@334
N1 =48A1
N3 =48B@
OB1 =49D3
OBEN =49CF
Pi =48F9
P3 =48DD
PUNKT =48CE
REi =499E

XKOORD =8337

141

s;NAECHSTE SPALTE

; BYTEZAEHLER ABSOLUT

; ZEILENZAEHLER

;LETZTES BYTE HOLEN
‚IN ZWISCHENSPEICHER 1
;BYTE HOLEN
; IN ZWISCHENSPEICHER 2
; ZISCHENSPEICHER 1 HOLEN
;IN BYTE ABLEGEN
; ZWISCHENSPEICHER 2 HOLEN

; DARUNTER LIEGENDES BYTE
; NAECHSTE ZEILE

;NAECHSTE SPALTE

An dieser Stelle sollte erwähnt werden, daß, wenn Sie keine

Zeit oder Lust haben, dieses Programm von Hand einzugeben,

eine Diskette mit allen in diesem Buch angeführten Programmen

erhältlich ist. Sie sparen sich somit für wenig Geld viel

Sorge und Ärger beim Eingeben und der nachherigen Fehler-

suche.

Sofern Sie beim Eingeben keinen Fehler gemacht haben, meldet

sich das vorliegende Programm wie folgt:

—— | | ee eee eee ee wee en TE en er eee ee ee
u Tun me ee Mur MER crm ums Ben tem Wan Me um Mm ein MER TA MER em Sem min Gr Mm «irn mem m

Farbzutei-

lungsfeld/

Secundär-

Operationen

24x21-Feld

Original

feld 1

Original-

feld 2

Dieser Aufbau gibt Ihnen ständig die aktuellen Informationen,

die Sie über den Zustand Ihres Arbeitssprites benötigen.

24x21-Feld:

In diesem übersichtlichen Arbeitsfeld können Sie mit Hilfe

der verschiedenen Funktionen (s.u.) und dem Feld-Cursor Ihr

Zeichen herstellen. Die Ziffern am linken Feldrand geben die

y-Koordinate bzw. die Reihe, die Ziffern am oberen Rand die

x-Koordinate oder das zuständige Bit im jeweiligen Byte des

Spritespeichers an. Jedes gesetzte Bit (Punkt) wird als rotes

Kästchen dargestellt.

Originalfelder:

Diese Felder stellen Ihr aktuelles Sprite in den jeweils

gewählten Farben (s. "F") in der mit "G" gewählten Größe dar,

um Ihnen einen anschaulichen Überblick über das spätere

Aussehen des Sprites zu ermöglichen. Feld 1 zeigt dabei

ständig den momentanen Zustand des Objektes in Normalgröße,

Feld 2 dagegen in x- und/oder y-Richtung vergrößert an.

142

Farbzuteilungsfeld:

Hir wird Ihnen ein Überblick über die den Grundfarben

zugeordneten Farben gegeben, die Sie beliebig ändern können

(s.u.)

Secundäroperationsfeld:

Hier werden weitere Informationen gegeben oder verlangt,

sobald es dem Rechner notwendig erscheint.

---- Befehlssatz ----

Jeder Befehl besteht aus einem Tastendruck ohne

Return 1! (Ausnahmen s.u.):

- B -

Einen kurzen Befehlsüberblick gibt Ihnen dieser Befehl. Nach

Betätigung einer Taste kommen Sie zurück zur Spriteeingabe.

- <ersr> -

Mithilfe der Ihnen bekannten Cursorfunktionen können Sie den

Feldcursor bewegen.

- 2/Q/w/A -

Zum leichteren Arbeiten besitzen diese Tasten ebenfalls

Cursorfunktionen, deren Bewegungsrichtung aus der

entsprechenden Tastaturposition resultiert.

- fl...f8 -

Mit diesen Tasten können Sie einen Punkt auf Ihr 24x21-Feld

in der diesen Tasten (Grundfarben) zugeordneten Farbe

zeichnen.

- F-

F versetzt Sie in die Lage, den Tasten fl-8 (Grundfarben)

entsprechende Farben zuzuordnen. Die mit diesen Tasten

gezeichneten Punkte werden nun entsprechend in ihrem

Originalfeld andersfarbig.

Achtung! Taste f1/2 (=Grundfarbe 0) steht fiir die

Hintergrundfarbe!

143

Durch Drücken dieser Taste können Sie die Größe des Sprites,

das sich in dem Originalfeld 2 befindet wechseln.

-— I -

Dieser Befehl ermöglicht Ihnen Ihr Sprite zu invertieren.

-y-

Sie können ihr Zeichen in Ihrem Feld beliebig verschieben.

Dabei geht keine Information verloren, da die Ränder auf der

anderen Seite wieder auftauchen.

Nach V drücken Sie R,L,O,U für Rechts, Links, Oben, Unten

(Selbstverständlich läßt sich jede Operation direkt im

Originalfeld beobachten).

- Z-

Loscht Ihr gesamtes Sprite.

- ¢ -

Bringt das Inhaltverzeichnis der Diskette (Direktory) auf den

Bildschirm. Bei Drücken der ctrl.-Taste wird die Auflistung

verlangsamt. Jede andere Taste bringt Sie wieder zurück.

- <cetrl>S / <ctrl>G -

Abspeichern (<ctr1>S) oder Laden (<ctrl>G) eines Sprites:

Geben Sie den Filenamen und - durch Semikolon(!) abgetrennt -

die Gerätenumner an (bei Fehlen wird das zuletzt benutzte

Gerät angesprochen). Nun drücken Sie <return>. Haben Sie

diese Tasten versehentlich gedrückt, so genügt ein <return>,

um wieder zurückzukehren (dies gilt für alle Secundär-

operationen, wie V‚F,...). Beim Speichern wird ein

Programmfile erzeugt, das entweder direkt in den Speicher

eingeladen, oder auf die oben beschriebene Weise quasi wie

ein Sequentielles File gehandhabt werden kann.

- <cetrl>X -

Sind Sie fertig und wollen beenden, so beantworten Sie anch

diesem Befehl die Frage "Beenden??" mit J oder JA, löschen

die restliche Zeile und drücken <return>. Jede andere Eingabe

bringt Sie wieder zurück.

144

Ich hoffe, Sie werden viel Spaß haben mit Ihrer neuen

Spritecreation, die Ihren Bekannten die Blässe ins Gesicht

treiben wird.

4.3.2. Programmierung der

Spriteeigenschaften

Das theoretische Wissen über die Art und Weise, wie ein

Sprite definiert, eingeschaltet und seine Eigenschaften

verändert werden, sollte Ihnen der Paragraph 3.5 vermittelt

haben. Jetzt ist es an der Zeit, diese Dinge auch von Basic

aus anzuwenden. Dies soll anhand eines kleinen Beispiel-

programmes geschehen, das sich fast aller Variations-

möglichkeiten bedient und schon einen kleinen Einblick in die

typische Spriteanwendung zur Animation, also der bewegten

Bilder, verschaffen soll. Dieses Thema soll zwar erst an

späterer Stelle behandelt werden, doch bietet es sich hier

geradezu an.

An diesem Beispielprogramm sollten Sie so viel ändern, wie

sie wollen. Lediglich bei den Adressen der POKE-Befehle, also

dem ersten Parameter, sollten Sie etwas vorsichtiger sein und

zunächst einmal überlegen, welche Auswirkungen das haben

könnte. Falls es Ihnen jedoch nichts ausmacht, den Rechner

nach einem Absturz auszuschalten und das Programm neu zu

laden, dann brauchen Sie sich aus dieser Warnung nichts zu

machen. Doch hier zunächst einmal das Programm:

1000 REM XKKKKKKKKKKKKKK KK KK KK

1010 REM ** xx

1020 REM ** SPRITE-BEISPIEL ¥*x

1030 REM *x xx

1040 REM KXXXKKKKKKKKKKKKKKKKKKK

1050 REM

1060 V = 53248 : REM BASISADRESSE VIDEOCONTROLLER
1070 POKE V+32,0 : POKE V+33,0 : REM RAHMEN UND HINTERGRUND =
SCHWARZ
1080 REM
1090 REM SPRITEDEFINITION IN BLOCK 13:
1100 REM KXKXKKKKXXKKEKKKEKKKKKKKEKKKKEK

1110 Al = 13%64 : REM ADRESSE BLOCK 13
‘

145

1120 FOR X=0 TO 62

1130 READ DT : POKE Al+X,DT : REM DATEN LESEN UND IN BLOCK 13

POKEN

1140 NEXT X
1150 REM DATAS ERSTES SPRITE:

1160 DATA 000,007,000

1170 DATA 056,013,128

1180 DATA 025,031, 224

1190 DATA 126,031,204

1200 DATA 025,012,252

1210 DATA 056,007,000

1220 DATA 000,014,000

1230 DATA 000,014,000

1240 DATA 000,015,128

1250 DATA 000,014,192

1260 DATA 000,030,096

1270 DATA 000,062,048

1280 DATA 000,046, 000

1290 DATA 000,079,000

1300 DATA 000,155,128

1310 DATA 001,025,192

1320 DATA 002,024,096

1330 DATA 003,024,096

1340 DATA 127,024,120

1350 DATA 188,024,000

1360 DATA 036,030,000

1370 REM

1380 REM SPRITEDEFINITION IN BLOCK 14:

1390 REM XXXXXKKKKKEKKKKKKKKKKKKKEKKKSE

1400 A2 = 14%64 : REM ADRESSE BLOCK 14

1410 FOR X=0 T0 62 |

1420 READ DT : POKE A2+X,DT : REM DATEN LESEN UND IN BLOCK 13

POKEN

1430 NEXT X

1440 REM DATAS ZWEITES SPRITE:

1450 DATA 000,003,010

1460 DATA 000,013,132

1470 DATA 058,031,224

1480 DATA 124,031,170

1490 DATA 058,015,250

1500 DATA 000,007,000

146

1510 DATA 000,014,000

1520 DATA 000,014,000

1530 DATA 000,014,000

1540 DATA 000,015,000

1550 DATA 000,015,128

1560 DATA 000,014,160

1570 DATA 000,030,000

1580 DATA 000,047,000

1590 DATA 000,077,128

1600 DATA 000,141,128

1610 DATA 001,057,128

1620 DATA 003,097,128

1630 DATA 127,113,128

1640 DATA 220,025,128

1650 DATA 036,001,224

1660 POKE 2046, Al/64 : REM ZUNAECHST BLOCK 13 FUER SPRITE 6

1676 POKE V+21, 2°6 : REM SPRITE 6 EINSCHALTEN

1680 POKE V+39+6, 1 : REM FARBE SPRITE 6: WEISS

1690 POKE V+27, 0 : REM SPRITE VOR HINTERGRUND

1700 POKE V+28, 0 : REM NORMALFARBEN-SPRITE

1710 POKE V+23, 2°6 : REM SPRITE 6 IN Y-RICHTUNG VERGROESSERT

1720 POKE V+29, 2°6 : REM SPRITE 6 IN X-RICHTUNG VERGROESSERT

1730 POKE V+2*6+1, 101: REM SPRITE 6 Y-KOORDINATE FESTLEGEN

1735 POKE V+2*6 , 100: REM SPRITE 6 X-KOORDINATE ZUR

DEMONSTRATION

1740 POKE V+16, 0 : REM X-KOORDINATE HIGH-BIT LOESCHEN

1745 REM

1750 REM

1760 PRINT CHR$ (30) CHR$(147) : REM GRUEN + BILDSCHIRM

LOESCHEN

1770 FOR X=1 TO 10

1780 PRINT : REM 10 LEERZEILEN

1790 NEXT X

1800 PRINT CHR$(18); : REM RVS ON

1810 FOR X=1 TO 40

1820 PRINT " "; : REM 40 INVERSE, GRUENE LEERZEICHEN

1830 NEXT X

1840 REM

1850 REM

1860 REM KKKKKKKKKK KK

1870 REM xx xx

147

1880 REM ** LAUFEN xx

1890 REM xx xx

1900 REM XXKXKKKKXXXKXKKX

1910 REM |

1920 G = 10 : REM GESCHWINDIGKEIT

1930 F = 1 : REM FARBSTART

1940 FOR X=1 TO 400 STEP G

1950 F = F+.3: REM FARBE WECHSELN

1960 IF F=16 THEN F=1

1970 REM ---------------

1980 POKE V+39+6, F : REM FARBE WECHSELN

1990 POKE 2046, Al/64 : REM SPRITE 6 AUF BLOCK 13

2000 KO=X:IF X>255 THEN KO=X-256: POKE V+16,2”6:G0T02020:REM

HIGH BIT X-KOORD. SETZEN

2010 POKE V+16, O : REM X-KOORDINATE - HIGH BIT LOESCHEN.

2020 POKE V+2*6, KO : REM SPRITE BEWEGEN

2030 FOR Y=1 TO 40 : NEXT Y : REM WARTESCHLEIFE

2040 REM ---------------

2050 POKE 2046, A2/64 : REM SPRITE 6 AUF BLOCK 14

2060 KO=X+G/2:IF KO>255 THEN KO=KO-256:POKE V+16,2”6:G010

2080:REM HIGH BIT X-KOORD.

2070 POKE V+16, O : REM X-KOORDINATE - HIGH BIT LOESCHEN

2080 POKE V+2%6, KO : REM SPRITE BEWEGEN

2090 FOR Y=1 TO 40 : NEXT Y : REM WARTESCHLEIFE

2100 REM

2110 NEXT X

In der ersten Zeile (Z. 1060) wird zunächst wieder die

Variable V definiert, eine Prozedur, die Sie wohl bereits

kennen und die vor jedem Ihrer Sprite- oder Graphikprogramme

durchgeführt werden sollte, Alsdann ändern wir die Rahmen-

und die Hintergrundfarbe in schwarz.

Jetzt beginnt die eigentliche Arbeit:

a) Spritedefinition:

Aus dem vorherigen Abschnitt kennen Sie bereits die ab

Zeile 1100 folgende Routine: Die 63 Datenbytes, die ein

Sprite definieren, werden aus nachstehenden DATA-Zeilen

eingelesen und in den Speicher gePOKEt. Im ersten Fall

wird die Definition in Block 13, im zweiten in Block 14

(ab Zeile 1400) eingeschrieben. Die Startadressen dieser

148

b)

c)

d)

beiden Blöcke wurde zunächst durch Multiplikation mit 64

errechnet und in die Speicher Al und A2 abgelegt.

Wir haben nun also zwei Sprites definiert, die, wie Sie

sehen werden, recht ähnlich aussehen. Es handelt sich

dabei in beiden Fällen um einen älteren Herrn mit Pfeife,

der gerade seinen Hund ausführt und von einem Vogel

begleitet wird. Die beiden Sprites zeigen lediglich zwei

Phasen der Bewegung unseres laufenden Männchens, der

rauchenden Pfeife und des flatternden Vogels (Sie können

sich die beiden Sprite getrennt einmal ansehen, wenn sie

in die "Laufroutine" nacheinander in die Zeilen 2030 und

2090 ein STOP einfügen). Unsere Absicht ist es nicht etwa,

diese zwei Sprites gleichzeitig auf den Bildschirm zu

bringen, wir wollen vielmehr versuchen, die sich nur durch

jene paar Veränderungen unterscheidenden Objekte stets

abwechselnd so auf den Bildschirm zu bringen, daß sich aus

den Unterschieden eine Bewegung entwickelt.

Blockvektor:

Wir verwenden für dieses Vorhaben Sprite 6 und legen als

erstes den Block fest, aus dem die Spritedefinition für

Sprite 6 stammen soll. Zu Beginn soll Block 13 die

Definition liefern. Aus diesem Grunde müssen wir in das

sechste der letzten 8 Bytes des Videoram, also als

Spritedefinitionsvektor, eine 13 POKEn (s. # 3.5.3), was

in Zeile 1660 geschieht. |

Einschalten:

Doch damit haben wir längst noch nicht alles getan, um ein

Sprite sichtbar zu machen. Wir müssen es zumindest noch

einschalten. Dies wird in unserem Programm in Zeile 1670

unternommen. Hier wird in das Register 21 des VIC, das

hierfür bekanntlich zuständig ist, der Wert 2hoch6 = 64

gePOKEt. Damit wird hier das 6. Bit gesetzt als Zeichen,

daß nun Sprite 6 eingeschaltet ist.

Farbe:

Trotzdem werden wir höchstwahrscheinlich noch nicht viel

zu sehen bekommen. Dies liegt meist daran, daß es noch

außerhalb des Bildschirmfensters liegt. Darum werden wir

uns später kümmern. Erst wollen wir die Farbe des Sprites

149

e)

f)

g)

h)

festlegen. Hierfür sind bekanntlich die Register 39-46 des

VIC zuständig. In Zeile 1680 wird in das sechste dieser 8

Register (also in Register 39+6 = 45) der Wert 1 für weiß

(s. Anhang) gebracht, um diese Festlegung fiir das Sprite 6

vorzunehmen.

Prioritat:

Wir entscheiden uns nun in Zeile 1690, ob wir unser Sprite

vor oder hinter den Hintergrundzeichen sehen wollen. Mit

anderen Worten: wird unser Sprite von dem später

gezeichneten grünen Strich verdeckt oder verdeckt es

diesen? Wir haben uns für den letzteren Fall entschieden

und das entsprechende Bit im VIC-Register 27 gelöscht. Mit

POKE V+27, 2°6 jedoch können Sie diesen Sachverhalt

ändern. Probieren Sie einmal! Lesen Sie hierzu auch

3.5.4.3

Multicolor:

Wir haben unsere zwei Spritedefinitionen als Normalfarben-

sprites geplant und entwickelt. Daher müssen wir eberfalls

diesen Modus einschalten. Dieses Kriterium entscheidet

sich, wie Sie sehen, bereits sehr früh, schon bei der

eigentlichen Konstruktion.

Vergrößerung:

Und noch eine Entscheidungen müssen wir treffen, bevor wir

zur Tat schreiten können: Wollen wir das besagte Objekt in

Originalgröße oder in irgendeine Richtung gedehnt

anzeigen? Um die einzelnen Details der zwei Sprites besser

erkennen zu können, wählten wir eine Vergrößerung des

Objektes in x- und in y-Richtung und setzten in den Zeilen

1710/1720 die für Sprite 6 zuständigen Bits der Register

23 und 29 des VIC (s. # 3.5.4.2). Doch auch in

Originalgröße sieht das Ganze recht lustig aus (erreichbar

durch Ersetzen des Wertes 2hoch6 durch 0). Versuchen Sie

doch einmal eine Vergrößerung nur in x- oder y-Richtung!

Positionierung:

Endlich ist es soweit! Jetzt schreiten wir zur Tat und

bringen unser Sprite sichtbar auf den Bildschirm. Nun

150

nänlich legen wir die Koordinaten fest, bei denen sich das

Objekt befinden soll. Später werden diese Angaben noch

verändert, doch seien Sie hier schon der Vollständigkeit

halber beigefügt. Wie Sie in # 3.5.4.1 erfahren haben,

sind hierfür die Register 0-16 zuständig, speziell für

Sprite 6 die Nummern 2%6 = 12 (Low-Byte x-Koordinate),

2%X6+1 = 13 (y-Koordinate) und 16 Bit 6 (High-Bit

x-Koordinate). Diese Register bzw. das 6.Bit von Register

16 werden bei uns in den Zeilen 1730-1740 belegt.

In diesem Stadium schon ist unser Sprite sichtbar. Wir haben

also alles Notwendige getan, um ein Sprite zu definieren. All

diese Dinge sollten daher in jedem Spriteprogramm auftauchen.

Sie sehen, daß es trotz des Komforts gar nicht so leicht ist,

Sprites zu bedienen. Doch mit der Zeit werden Sie Routine

bekommen und auch Wege finden, wie man die verschiedenen

Dinge abkürzen oder gar weglassen kann.

Doch weiter bei unserer Programmbesprechung. Es folgt nun der

Teil des Programms (ab Zeile 1750), der die vorherigen Dinge

anwendet und für den eigentlich sichbaren Verlauf zuständig

ist:

Nach dem Bildschirmlöschen und dem Zeichnen einer grünen

Linie startet eine Schleife, die insgesamt 400 mal durchläuft

und den Wert X von 1 bis 400 ansteigen läßt (Zeile 1940).

Dabei entscheidet G über die Schrittgröße pro

Schleifendurchlauf.

In dieser Schleife passiert eine ganze Menge:

Zunächst wird der Speicher F um 0,3 erhöht (Zeile 1950). F

wird verwendet, um die Farbe des Sprites in der Schleife zu

verändern (Z. 1980). Da dabei nur ganze (integer-) Werte

verwendet werden, ändert sich die Farbe nur dann, wenn sich

der ganzzahlige Teil von F verändert. Dies geschieht somit

etwa jede 3. Schleife.

Als Nächstes wird die Hauptaufgabe dieses Programmteils

wahrgenommen: die Bewegung und der Definitionswechsel.

Zunächst zum Definitionswechsel:

Wie Sie wissen, ist für unser Sprite die Speicherstelle 2046

der Zeiger auf den jeweiligen Block, aus dem die Definition

entnommen werden soll. Weiter oben hatten wir die beiden

Ob jekte in den Blöcken 13 und 14 niedergelegt. Um nun eine

Bewegung des Sprites an sich zu erhalten, müssen wir stets

151

zwischen den beiden Definitionen hin und her schalten. An

dieser Stelle (Z. 1990) wird deswegen der Wert 13 in 2046

gePOKEt, um den Vektor dorthin zu legen, es wird also das

erste Sprite angezeigt. Weiter unten schlieBlich (Z. 2050)

wird nach Definition 14 gewechselt, und das zweite Sprite ist

sichtbar.

Um eine kontinuierliche Bewegung unseres Objektes erscheinen

zu lassen (in Wahrheit wird es ja stets ruckweise verschoben,

unser Auge jedoch nimmt dies als gleichmäßige Bewegung wahr),

versetzen wir es jeden Schleifendurchlauf um einen oder

mehrere Punkte in x-Richtung (die y-Koordinate bleibt

konstant). Hierfür wird der ansteigende Speicher X verwendet.

Er wird zunächst in KO (für KOordinate) zwischengespeichert

(Z. 2000). Jetzt wird geprüft, ob dieser Wert größer ist als

255. Ist das der Fall, so reicht ein Byte alleine nicht mehr

aus und es muß gleichfalls noch das High-Bit der x-Koordinate

in Register 16 gesetzt werden. Natürlich wird dabei der

Speicher KO um 256 erniedrigt, um ein ILLEGAL QUANTITY ERROR

zu verhindern. Nun wird auch das Low-Byte bestimmt (Z. 2020),

und das Sprite ist versetzt. Im dritten Teil der Schleife

wird diese Prozedur (nach einer Warteschleife) ein weiteres

Mal ausgeführt (Z. 2060 ff.).

Im obigen Beispiel wurden Ihnen schon einige Techniken

vermittelt, die Ihnen bei Ihrer Sprite-Programmierung

behilflich sein werden. Doch einige Themen wurden noch gar

nicht angeschnitten: Multicolor, Kollisionsbehandlung und das

Arbeiten mit mehreren Sprites gleichzeitig.

Dies soll im nächsten Schritt vorgenommen werden. Sie sollten

inzwischen wissen, daß in Multicolor insgesamt 4 Farben pro

Sprite verwendet werden können, unter der Einschränkung

allerdings, daß hierbei die x-Auflösung um die Hälfte

abnimmt, die Gesamtgröße jedoch konstant bleibt und damit die

Punktbreite mit dem Faktor 2 zunimmt. Im Speicher wird jeder

Punkt durch 2 Bits bestimmt, die das Register angeben, aus

dem die jeweilige Farbe entnommen wird, angeben. Diese

Register sind die Multicolor-Register 0 und 1 (VIC-Register

37/38) und das für jedes Sprite eigene Farb-Register

(VIC-Register 39-46). Sind die beiden Bits gelöscht, so ist

diese Stelle des Sprites durchsichtig (s. ## 3.5.3 f.).

Es können zwei verschiedene Kollisionen festgestellt werden:

152

Sprite —- Sprite (VIC-Register 30) und Sprite - Hintergrund-

zeichen (VIC-Register 31). In den jeweiligen Registern werden

bei einer Berührung besagter Ob jekte die mit den

Spritenummern korrespondierenden Bits gesetzt. Sollten Sie

diese Dinge noch nicht kennen, so lesen Sie bitte unter

3.5.4.4 nach. In unserem Fall wird getestet, ob sich zwei

Sprite berühren.

Auch hier soll wieder ein Beispielprogramm zur Veranschau-

lichung des weiter unten gesagten dienen, dessen übertragung

sich allein schon aufgrund der hübschen Spritedefinition

lohnt:

100 REM ¥XXKKKKKKKEKKKKKKKKKEKKSK

110 REM *x xx

120 REM ** SPRITE-KOLLISION xx

130 REM *x (MULTICOLOR) xx

140 REM ¥XXKKKKKKEKKKKKRKKEREKE

150 REM

160 V=53248 : REM VIC-BASISADRESSE

170 Al = 11%*64 : REM BLOCK 11

180 FOR X=0 TO 62

190 READ DT : POKE Al+X, DT : REM DEFINITION LESEN UND POKEN

200 NEXT X

210 POKE 2040, 11 : POKE 2042, 11 : REM BLOCKZEIGER SPRITE 0

UND 2 AUF 11

220 POKE V+28, 2”0 OR 2”2 : REM SPRITE 0 UND 2 AUF MULTICOLOR

230 POKE V+27, 2°0 : REM NUR SPRITE 2 HAT PRIORITAET VOR

HINTERGRUND

240 POKE V+29, 2°0 OR 2°2 : POKE V+23, 2°0 OR 2*°2 : REM BEIDE

GROESSER

250 POKE V+21, 2°0 OR 2”2 : REM BEIDE SPRITES AN

260 POKE V+37, 7 REM SPRITE-MULTICOLOR O = GELB

270 POKE V+38, 6 : REM SPRITE-MULTICOLOR 1 = BLAU

280 POKE V+39, 5 POKE V+4], 8 : REM INDIVIDUALFARBEN SPRITE

0 UND 2

290 POKE V+16,0 : REM X-KOORD. HIGH-BITS LOESCHEN

300 POKE V+1,100 : POKE V+5,100 : REM Y-KOORDINATEN VORSETZEN

310 X2 = 255 : REM START-X-KOORDIANTE SPRITE 2

320 POKE V+0,0 : POKE V+4,X2 : REM X-KOORDIANTEN VORSETZEN

330 POKE V+30,0 : REM KOLLISION RUECKSETZEN

340 FOR X0=1 TO 255 : REM X-KOORD. SPRITEO

153

350

360

0/2

370

380

X2 = X2-1 : REM X-KOORD. SPRITE 2 ERNIEDRIGEN

POKE V+0, XO : POKE V+4, X2 : REM X-KOORDIANTEN SPRITE

(LOW-BYTES)

POKE V+1, 40%SIN(X0/30)+100 : REM BEWEGEN AUF SINUSKURVE

POKE V+5, 40%3COS(X0/30)+100 : REM BEWEGEN AUF

COSINUSKURVE

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

IF PEEK(V+30)=(2*0 OR 2”2) THEN GOTO 420

NEXT x0

REM

REM KOLLISIONSROUTINE:

REM

FOR X=1 TO 255

POKE V+39,X : POKE V+41,X : REM SPRITEFARBE WECHSELN

NEXT X

POKE V+0, O0 : REM SPRITES AUSEINANDERBRINGEN

POKE V+30,0 : REM KOLLISION RUECKSETZEN

REM

REM SPRITE-DATEN

REM

DATA 008,000,128

DATA 010,002,128

DATA 002,138,000

DATA 064,136,005

DATA 080,168,021

DATA 084,032,093

DATA 117,033,125

DATA 125,101,253

DATA 127,103,253

DATA 123,103,173

DATA 123,103,173

DATA 123,103,173

DATA 123,103,173

DATA 123,103,173

DATA 123,103,173

DATA 123,103,173

DATA 123,103,173

DATA 127,103,253

DATA 095,101,253

DATA 021,097,117

DATA 005,032,084

154

Zunächst werden hier wieder die üblichen Formalitäten zum

Initialisieren der Sprites unternommen. In diesem Programm

wird mit nur einer Spritedefinition gearbeitet, die in Block

11 untergebracht wird (Z. 170-200). Dafür aber sollen zwei

Sprites gleichzeitig auf dem Bildschirm erscheinen. Wir

wählen dafür Sprite 0 und 2. Beide Sprites besitzen jedoch

dieselbe Form. Dies wird in Zeile 210 realisiert, in der

beide Vektoren für Sprite O0 und 2 auf den Block 11 gerichtet

werden. Beide Sprites also beziehen ihre Definition aus

diesem Block. Trotzdem aber können Sie in den anderen

Parametern weiterhin völlig unabhängig betrieben werden. Dies

zeigen z.B. die Zeilen 230, in der beiden unterschiedliche

Priorität vor den Hintergrundzeichen zugeschrieben wird, und

280, in der beide Sprite unterschiedliche Teilfarben

erhalten. Wie gesagt wollen wir nun mit Multicolorsprites

arbeiten. Die in den DATA-Zeilen angegebene Definition wurde

deshalb als ein solches entworfen. Nun müssen wir dies

gleichfalls dem VIC mitteilen, was in Zeile 220 geschieht.

Hier haben wir auch gleich eine bisher noch nicht

aufgetretene Schwierigkeit bewältigt. Bisher brauchten wir in

allen Registern, die bitweise arbeiten lediglich ein Bit zu

setzen. Hier aber wollen wir sowohl Sprite 0 als auch Sprite

2 zu Multicolorsprites erklären. Dies geschieht hier durch

ODER- (OR-) Verknüpfung der beiden Einzelwerte 2hoch(0 (Bit 0

gesetzt) und 2hoch2 (Bit 2 gesetzt). Sollten Sie damit noch

Schwierigkeiten haben, so ziehen Sie sich noch einmal Kapitel

2 zu Gemüte.

Neues kommt auch in den Zeilen 260-280 auf uns zu. Hier

werden die verschieden Farben der Multicolorsprites in die

jeweiligen Register gelegt. Beachten Sie, daß nur Farbe 3

(Farbkanal 3) für alle Sprites unterschiedlich sein kann!

Unsere Sprites sind bereits eingeschaltet, aber

wahrscheinlich noch nicht auf dem Bildschirm zu sehen. Wir

werden sie also in das Bildschirmfenster hineinversetzen.

Dies geschieht in den Zeilen 290-320. Eigentlich wäre diese

Prozedur nicht notwendig, da alle Parameter (außer die

High-Bits in Register 16) auch in der folgenden Bewegungs-

schleife gesetzt werden. Doch hier tritt noch eine weitere

Schwierigkeit auf uns zu. Wir wollten die Sprites bei Ihrer

Bewegung auf eventuelle Kollisionen überprüfen. Oft ist es

aber so, daß sie sich bereits am Anfang berühren, was stets

155

nach dem Einschalten des Rechners der Fall ist, da alle

Koordinaten auf 0 stehen und auch Kollisionen vernerkt

werden, wenn die Sprites außerhalb des Sichtbereiches sind.

Wenn dies aber der Fall ist, dann würde unser Programm ja

bereits ganz am Anfang eine Kollision feststellen und

entsprechend verzweigen (s.u.). Wir bringen also die Objekte

zunächst einmal auseinander.

Danach - und das ist ebenfalls sehr wichtig - setzen wir das

Sprite-Sprite - Kollisionsregister zurück, indem wir den Wert

0 hineinschreiben, da dessen Inhalt bekanntlich so lange

erhalten bleibt (genau genonmen nur die gesetzten Bits), bis

dieses Löschen vorgenommen wurde, auch wenn die Berührung

längst nicht mehr besteht.

Danach können wir loslegen. Auch hier (wie in dem vorherigen

Beispiel) werden die Sprites wieder in einer Schleife bewegt.

Dabei wird der Schleifenzähler (X0) als laufend ansteigender

Wert zur Bestimmung der x-Koordinate von Sprite 0 verwendet.

Ein von 255 bis 1 absteigender Wert (X2), der stets einmal

pro Schleife in Zeile 350 erniedrigt wird, legt die

x-Koordinate des Sprite 2 fest (Zeile 360). Um.nun Sprite 0

entlang einer Sinus- und Sprite 2 gemäß einer Cosinuskurve

"fliegen" zu lassen, werden die y-Koordianten in den Zeilen

360 und 370 durch eine entsprechende Formel errechnet.

Verändern Sie hierbei ruhig einmal die verschiedenen

Parameter! (Die 40 sorgt für die Größe des Ausschlages

(Amplitude), die 30 für die Länge der Kurven (Wellenlänge)

und die 100 für die Verschiebung der gesamten Kurve in

y-Richtung).

Nun kommen wir wieder zu einem sehr interessanten Teil: Die

Kollisionsabfrage. In Zeile 390 wird gefragt, ob Bits O0 und 2

des Registers 30, also des Sprite-Sprite - Kollisions-

registers, gesetzt sind. Ist das der Fall, so verzweigt das

Programm nach Zeile 440 in die Kollisionsroutine. Hier wird

ein kleiner Farb-Effekt erzeugt und die beiden sich

berührenden Sprites auseinander gebracht, um das Kollisions-

register zu löschen. Weshalb wir die Sprite erst auseinander

bringen müssen (wir hätten auch eines ausschalten können),

ist weiter oben dargelegt. Damit hätten wir alles Notwendige,

um Kollisionen zu bedienen.

Hier wurden Ihnen - ich hoffe recht anschaulich - die

156

Grundlagen der Spriteprogrammierung vermittelt. Jetzt ist es

an Ihnen, zu probieren und zu programmieren. Es gibt tausende

von Anwendungen, denen lediglich Ihre Phantasie Grenzen

setzt. Selbstverständlich kann in diesem Buch nicht auch nur

ein Bruchteil dieser Dinge vermittelt werden. Es bedarf schon

einiger Eigeninitiative, um hier Fuß zu fassen. Das aber ist

ja gerade das Interessante am Programmieren. Der ganze Reiz

wäre fort, wenn alle Möglichkeiten bereits vorgekaut vor

Ihnen lägen und Sie sie lediglich zusammenfügen müßten. So

bleibt Ihnen genügend Freiraum, in dem Sie Ihrem Forschungs-

drang Lauf lassen können.

4.4 Zeichensat z—

programmierung

Ein bisher recht stiefmütterlich behandeltes Thema ist das

der Zeichensatzveränderung. Enorme Möglichkeiten tun sich

hier auf. Ich kenne nur sehr wenige mehr oder minder

anspruchsvolle Spiele, die nicht auf diese Eigenschaft Ihres

Rechners zurückgreifen oder gar den Kern Ihres Inhalts nicht

hierhin verlagern. Hier entscheiden die großen graphischen

Möglichkeiten, die fast an die hochauflösende Graphik

heranreichen, bei einer 8-9 mal schnelleren Verarbeitungs-

geschwindigkeit. Mit der Fähigkeit, einen eigenen Zeichensatz

zu creieren wird der Commodore 64 ungeheuer anpassungsfähig.

Der große Mangel vieler Computer, die sich mit den vielen

verschiedenen Zeichensätzen oder Sonderzeichen in unter-

schiedlichen Ländern herumschlagen ist hier behoben. Nicht

nur den amerikanischen, sondern auch den deutschen,

schwedischen, ja sogar russischen, griechischen oder

Japanischen Zeichensatz kann Ihr Computer auf den Bildschirm

bringen. Schriftarten können gewechselt werden und vieles

mehr. Das bekannte Textomat beispielsweise, ein erfolgreiches

Textverarbeitungsprogramm, bedient sich dieses inneren

Schatzes. Sie sehen, diese Rechnereigenart ist nicht zu

unterschätzen. Aus diesem Grunde widmen wir uns in diesem

Kapitel der programmtechnischen Realisierung der Zeichensatz-

157

änderung. Diese ist nicht so einfach wie beispielsweise die

Spriteprogrammierung und kommt zumindest an einer Stelle

nicht ohne Maschinensprache aus, außer, Sie besitzen eine

entsprechende Basicerweiterung. Deshalb sollten Computer-

neulinge zunächst einmal diesen Abschnitt überspringen.

Gleichfalls ist es empfehlenswert vor der Lektüre der

folgenden Ausführungen den Paragraphen 3.6 gelesen und

verstanden zu haben.

Wie Sie in dem Abschnitt 3.6 erfahren haben, besteht eine

Zeichendefinition aus 8 Bytes zu je 8 Bits, was eine

8x8-Punkte - Matrix pro Zeichen ergibt. Gleichzeitig sind 512

verschiedene Zeichen speicherbar, maximal jedoch nur 256 zur

selben Zeit auf dem Bildschirm darzustellen. Der gesante Satz

von 512 Zeichen besitzt eine Länge von 4 K und liegt

normalerweise bei $DO00-$DFFF (53248-57343) im sogenannten

Zeichensatz-ROM. Er ist verschiebbar durch Änderung der

Register 24 des VIC und Register 0, Bits 0/1 der CIA 2

(Adressen: $DOl8 = 53272 und $DDOO = 56576). Soweit das

Wichtigste noch einmal in Kürze.

Bei der Zeichensatzerstellung muß man zwei Falle

unterscheiden. Im ersten Fall sollen nur einige wenige Teile

des Zeichensatzes (Sonderzeichen) verändert werden. Bei der

anderen Möglichkeit wird der gesamte Satz ausgewechselt.

Zunächst zur ersten:

4.4.1. Änderung einiger Zeichen

Wollen wir ein paar Zeichen des Zeichengenerators durch

eigene Zeichenformen ersetzen, so müssen wir den originalen

Satz zunächst einmal aus dem ROM-Bereich in einen uns

angenehmen RAM-Bereich copieren. Anschließend ändern wir die

Start - Adresse des Generators auf die in Abschnitt 3.3.2

(das Kapitel 3.3 sollten Sie, um alles richtig zu verstehen,

bereits gelesen haben) erläuterte Art und Weise. Dann gehen

wir hin und ändern die Zeichen, die wir ersetzen wollten.

Was hier so kurz und einfach erscheint, bedarf doch Einiges

an Hintergrundwissen und Programmiertechnik. Grundsätzlich

kann man den Zeichengenerator nicht von Basic aus auslesen

bzw. copieren. Dies ist dadurch verursacht, daß der Ort von

158

20:

30:

40:

50:

60:

70:

80:

90:

100:

110:

120:

130:

140:

150:

160:

170:

180:

190:

200:

210:

220:

230:

240:

250:

260:

270:

280:

$D000-$DFFF (53248-57343), in dem er sich befindet,

nornalerweise alle Eingabe / Ausgabe - Bereiche (E/A-Bereich)

umfaßt und somit erst durch Andern des Registers 1 der CPU

(s. # 3.5), also der Speicherstelle 1 eingeschaltet werden

muß, Damit ist aber der E/A-Bereich, der von der Interrupt-

routine des Betriebssystems verwendet wird, lahmgelegt und es

käme in Basic zum Absturz des Computers. In Maschinensprache

jedoch kann man den Interrupt durch Setzen des Interrupt-

flags der CPU verhindern. Aus diesem Grunde geben wir Ihnen

an dieser Stelle ein Maschinenprogramm an, das die Aufgabe

des Copierens und des Verschiebens des Zeichengenerators für

Sie übernimmt. Letzteres könnte zwar ebensogut von Basic aus

geschehen, ist aber so einfacher.

’

; ZEICHENSATZVERSCHIEBUNG:

KK KK IE IKK KK KK

‘
’

C800 *= $C800 ;STARTADRESSE (51200)

C800 V = 53248 ;BASTSADRESSE VIDEOCONTROLLER

c800 SATZ = 53248 ;BASISADRESSE ZEICHENSATZ

C800 ZIEL = $3000 ;BASISADRESSE COPIERADRESSE

c800 78 START SEI ; INTERRUPT VERHINDERN

C801 A5 Ol LDA $01 ;CPU-REG. 1

C803 48 PHA ; RETTEN

C804 29 FB AND #%11111011 ;BIT 2 LOESCHEN

C806 85 01 STA $01 ; (ZEICHENGENERATOR AUSLESBAR)

C808 AQ DO LDA #>SATZ

C80A 85 03 STA $03 ;QUELLADRESSE HIGH-BYTE

c8g0c AY 30 LDA #>ZIEL

C80E 85 05 STA $05 ;ZIELADRESSE HIGH-BYTE

C810 AO 00 LDY #$00

C812 84 02 STY $02

C814 84 04 STY $04 ; LOW-BYTES = 00

C816 A2 20 LDX #$20 ; ZAEHLER FUER 4 K-BYTE

C818 Bl 02 COPIE LDA ($02),Y ;BYTE LADEN

C8lA 91 04 STA ($04),Y ;UND COPIEREN

C81C C8 INY

C81D DO FY BNE COPIE ;256 MAL

C8ölF E6 03 INC $03

C821 E6 05 INC $05 ;HIGH-BYTES ERHOEHEN
w

159

C823 CA | DEX
C824 DO F2 BNE COPIE ;4 K COPIEREN

C826 68 PLA

C827 85 01 STA $01 ; ZEICHENGENERATOR AUS-E/A EIN

C829 AD 18 DO LDA V+24 ; ZEICHENGENERATORADRESSE

C82c 29 Fl AND #%11110001

C82E 09 OC ORA #%00001100

C830 8D 18 DO STA V+24 ;AUF $3000 SETZEN

C833 58 CLI ; INTERRUPT WIEDER ERLAUBEN

C834 60 RTS ; ZURUECK NACH BASIC

Und hier der dazugehörige Basiclader:

100 FOR I = 51200 TO 51252

110 READ X : POKE I,X : S=S+X : NEXT

120 DATA 120,165, 1, 72, 41,251,133, 1,169,208,133, 3

130 DATA 169, 48,133, 5,160, 0,132, 2,132, 4,162, 32

140 DATA 177, 2,145, 4,200,208,249,230, 3,230, 5,202

150 DATA 208,242,104,133, 1,173, 24,208, 41,241, 9, 12

160 DATA 141, 24,208, 88, 96

170 IF S <> 5884 THEN PRINT "FEHLER IN DATAS !!" : END

180 PRINT "OK"

Wollen Sie also Teile Ihres Zeichensatzes ändern, so brauchen

Sie lediglich diesen Lader einzuladen, RUN zu drücken und

anschließend ein SYS 51200 einzutippen, und schon ist der

originale Zeichensatz verschoben (Sie können, falls Sie einen

Monitor besitzen, natürlich auch direkt das Maschinen-

programm eingeben, abspeichern und später mit LOAD "name",8,1

einladen).

Der ursprüngliche Grund für diese Exkursion war aber das

Ziel, verschiedene Zeichen des Zeichengenerators zu

verändern. Dies wollen wir jetzt unternehmen.

Aus dem Abschnitt 3.6 kennen wir bereits den 8x8-Aufbau (bzw.

4x8 bei Multicolor) eines Zeichens und seine Abspeicherung in

8 Bytes. Um nun eine Zeichendefiniton auszuwechseln, müssen

wir uns zunächst eine eigene überlegen. Dies geschieht an

besten auf die gleiche Weise, wie bei den Sprites mit Hilfe

eines Zeichenentwurfsblattes, das Sie ebenfalls im Anhang

finden. Die Anwendung kennen Sie bereits von den Sprites her.

Jede Reihe dieses Zeichenentwurfes bildet dabei genau ein

160

Byte, jeder gesetzte Punkt ein Bit der Definition. Nun haben

wir beispielsweise folgendes Gebilde creiert:

Bit: | 765432710

Byte 0: .

Byte 1: x x .

Byte 2: x. xxx x

Byte 3: x.

Byte 4: x. xxx x

Byte 5: . xk *

Byte 6: xxx

Byte 7: . .

Wir erhalten damit folgende 8 Bytes:

Byte 0: %0001 1100 = $1C = 028

Byte 1: %0111 0000 = $70 = 112

Byte 2: %1100 1111 = $CF = 207

Byte 3: %1100 0000 = $C0 = 192

Byte 4: %1100 1111 = $CF = 207

Byte 5: %0111 0000 = $70 = 112

Byte 6: *0001 1100 = $1C = 028

Byte 7: *0000 0000 = $00 = 000

Damit taucht auch gleich die nächste Frage auf: Welches

Zeichen soll unsere Neuschöpfung ersetzen, und welchem der

insgesamt 4 Zeichensätze (s. # 3.6) soll es angehören? In

unserem Fall wollen wir statt des normalen Pfundzeichens, das

im Groß/Graphikmodus erreichbar ist, nun diese Definition

setzen.

Jetzt müssen wir feststellen, wo die entsprechenden 8 Bytes

innerhalb des gesamten Zeichengenerators liegen. Dazu

verwenden wir die im 3. Kapitel angegebene Fornel:

adresse = basisadresse + 8 * bildschirmcode

Die Basisadresse des Zeichengenerators hängt grundsätzlich

von dem Bereich ab, in den wir diesen verschoben haben. Da

wir uns in unserem Beispiel innerhalb der Adressen

$3000-$3FFF (12288-16383) befinden und wir nur den

GroBschrift Graphikzeichenmodus verändern wollen (die

161

Definitionen für dessen Zeichen liegen von $3000-$37FF

(12288-14335)), liegt dieser erste Wert hier schon einmal

fest. Bleibt lediglich der Bildschirmcode: Diesen erfahren

wir durch Nachschlagen in der Bildschirmcodetabelle im

Anhang. Er ergibt sich für das normale Pfundzeichen zu 28

($1C) (das inverse Pfundzeichen hätte den Code: 128+28=156).

Damit können wir die verschiedenen Werte in unsere Formel

einsetzen:

adresse = 12288 + 8x*28 = 12512 = $30E0

Damit wissen wir, daß die 8 Bytes von $30E0 bis $30E7

(12512-12519) die Definition für besagtes Pfundzeichen

enthalten. Mit einem Speichern der obigen 8 Bytes unseres

Sonderzeichens in diese Positionen ändern wir sofort das

Aussehen aller Pfundzeichen auf dem Bildschirm. Dies

geschieht etwa durch folgendes Basicprogramm (selbst-—

verständlich, nachdem Sie zunächst mit obiger Routine den

Zeichensatz copiert und verschoben haben):

10 REM ZEICHENAENDERUNG

20 FOR X=0 TO 7

30 READ DT : REM 8 DATEN LESEN

40 POKE 12288 + 8*28 + X, DT : REM UND EINPOKEN

50 NEXT X

60 DATA 28,112,207,192,207,112,28,0

Bevor Sie dieses Programm ablaufen lassen, sollten Sie ein

paar Pfundzeichen auf den Bildschirm bringen, um die Wirkung

direkt zu sehen. Wenn Sie nach dem Starten dann auf den

Klein- / Großschrift - Modus umschalten (mit <shift><C=>),

dann sehen Sie, daß das Pfundzeichen dieses Satzes aus einem

anderen Speicherbereich stammt. Diese Operation können Sie

natürlich mit allen anderen Zeichen genauso durchführen und

sich damit ein ganzes Reservoir an Sonderzeichen schaffen,

die bei der Erstellung von besonders schönen und abwechs-

lungsreichen Graphiken oder beim kommerziellen Gebrauch

Verwendung finden.

162

4.4.2. Anderung eines Zeichensatzes

Wollen wir einen ganzen Zeichensatz auswechseln, so brauchen

wir den originalen nicht extra zu copieren. Damit kommt man

völlig mit den Möglichkeiten, die in Basic bestehen aus. _ Man

lad einfach den neuen Zeichensatz in einen bestimmten

Speicherbereich ein und teilt dem VIC mit, daß er die

Definition der verschiedenen Buchstaben etc. von nun ab von

dort holen soll.

Doch zunächst einmal muß dieser neue Zeichensatz entstehen,

der jetzt von mir aus alle griechischen, russischen,

kyrillischen Zeichen oder nur Blocksatz, Elite oder

Schreibschrift enthält. Dies ist normalerweise aufgrund der

Vielzahl der verschiedenen Zeichen recht mühselig und mancher

Programmierer würde ob dieser schier unbewältigbar

erscheinenden Arbeit verzweifeln. Jedes Zeichen müßte auf

einem Blatt entworfen, in Bytes übersetzt und schließlich

entweder per Monitor direkt oder - was noch mühseliger wäre -

von Basic aus durch POKEs in den Speicher eingegeben werden.

Weil aus diesen Gründen ein vernünftiges Arbeiten mit ganzen

Zeichensätzen kaum realisierbar erscheint, werden wir Ihnen

an dieser Stelle ein Programm vorstellen - ähnlich dem

Spriteeditor -, mit dem Sie auf einfachste Art und Weise

solche Tätigkeiten vornehmen können. Auch hier erwartet Sie

wieder einiges an Tiparbeit, die sich jedoch ernsthaft lohnt!

Halten Sie dies jedoch für verlorene Zeit, so weise ich Sie

auch hier wieder darauf hin, daß Sie exklusiv zu diesem Buch

eine Diskette mit allen hier aufgeführten Programmen erhalten

können. Speziell zum Zeichenformer ist dort auch eine Version

für Multicolorzeichen und ein Programmteil "Erläuterungen"

vorhanden.

In dem vorliegenden Programm wurde wieder viel Wert auf

Dokumentation gelegt, damit Sie die Möglichkeit haben, dieses

Programm auch zu verstehen.

163

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

ZEI

310

320

330

340

350

360

370

380

390

395

REM KKKKKKKKKKKEKKKKKKK KICK

REM *x *x

REM *x ZEICHENFORMER *x

REM xx xx

REM KXXKKKXKKKKKKKKEKKKKK

REM

REM INITIALISIERUNG:

REM XXXKKKKKEKKEKEKKS

GOSUB 10000 : REM MASCHINENROUTINEN EINLESEN

POKE 53280,0:POKE 53281,0:REM HINTERGRUND-/RAHMENFARBE

POKE 763,0:POKE 650,255: REM MODUS=0: ALLE ZEICHEN REPEAT

POKE 45,0:POKE 46,80:RUN 130:REM BASICENDE=$5000

REM

REM MASCHINENROUTINEN:

REM XXXKKKKKKEKKKKKEKK

IN%=18432:REM INITROUTINE

PU%=18633:REM PUNKT EINZEICHNEN

NE%=18586:REM KOORDINATENSYSTEM

LA%=18487:REM ZEICHENSATZ LADEN

SP%=18515:REM ZEICHENSATZ SPEICHERN

CA%=18765:REM CATALOG

BE%=18689:REM BEFEHLSIDENTIFIZIERUNG

Q =13048:REM TESTZEICHENADRESSE

REM

REM CONTROLZEICHEN:

REM KKKKKKKKKKKKKKK

CO$=CHR$(147):REM BILDSCHIRM LOESCHEN

C1$=CHR$(19):REM HOME

C2$=CHR$(183):REM HOCHSTRICH

C3$=CHR$(117)+CHR$(99)+CHR$(105):REM OBERER

CHENFENSTERRAND

CA$=CHR$(106)+CHR$(99)+CHR$(107): REM UNTERER RAND

C5$=CHR$(98):REM MITTELSTRICH (SENKR)

C6$=CHR$(18):REM RVS ON

C7$=CHR$(146):REM RVS OFF

NA%=704:REM FILENAMENLAENGE ($02C0)

GA%=186: REM GERAETEADRESSE($BA)

MO%=763:REM MODUS

TA%=764:REM TASTE/BEFEHLSCODE

YK%=765:REM Y-KOORD

XK%=766: REM X-KOORD

164

400 REM

410 REM FARBEN DEFINIEREN:

420 REM KKKKKKKKIKKKKKK KK

430 DATA 144, 5, 28,159,156, 30, 31,158

440 DATA 129,149,150,151,152,153,154,155

450 DIM C$(16): FOR Y=0 TO 15:READ X:C$(Y)=CHR$(X):NEXT Y

460 N=1:F(0)=0:F(1)=1:V$=" ":SYS IN%:REM FARBEN/INIT

500 REM

510 REM LOESCHROUTINE (FELDAUFBAU):

520 REM KXKKKKKKKKKKKKAKKKKEKKKKKEKKE

530 FOR Y=Q TO Q+7:POKE Y,O:NEXT Y:REM TESTZEICHEN LOESCHEN

540 PRINT CO$

550 PRINT C1$;SPC(10);C$(7); "ZEICHEN-NEU-CREATION"

560 PRINT SPC(11);C$(1);"(C) BY AXEL PLENGE"

570 PRINT C$(4);:FOR X=1 TO 40: PRINT C2$;:NEXT X: PRINT

C$(6): PRINT

580 PRINT " 76543210": SYS NEX

590 PRINT " ";:FOR X=0 TO 7: PRINTC2$;:NEXT X

600 A=15:B=5:GOSUB 9000:REM POSITIONIEREN

610 PRINT C3$:PRINT TAB(15) ;C5$;CHR$(127);C5$: POKE

55552,F(1):REM TESTZEICHEN MIT FARBE

620 PRINT TAB(15);C4$:GOSUB 3000: X=0: Y=0: REM

STATUSFELD/X/Y-KOORD=0

700 REM

710 REM EINGABESCHLEIFE:

T20 REM KXKKKKKKKKKEKK KK

730 A=X+3:B=Y+6:GOSUB 9000: REM POSITIONIEREN

740 POKE XK%,X:POKE YK%,Y: F=0:REM KOORDINATEN UEBERGEBEN

750 PRINT C$(7);C6$;" ";CHR$(157);:REM BLINKPHASE AN

760 FOR S=1 TO 50:GETA$:IF A$<>"" THEN 800

770 NEXT S:SYS PU%: FOR S=1 TO 50:GET A$:IF A$="" THEN NEXT

S:GOTO 750:REM AUSSCHALTEN

800 REM

810 REM BEFEHLSERKENNUNG:

820 REM €XXKKKKKKEKKKKKKK

830 SYS PU%:C=ASC(A$):POKE TA%,C:SYS BEX: S=PEEK(TA%): REM

BEF-UEBERGABE/RUECKMELDUNG

840 REM VERTEILUNG:

850 ON S GOTO 1600,2800,2900,1060,1060,1080,1080,1100,1100

860 ON S-9 GOTO 1110,1110,3100,3100,3100,3100

870 ON S-15 GOTO 3100, 3100, 3100,3100,500,1700

165

880 ON S-21 GOTO 1800,1900,2000,2100,1200, 3400

890 ON S-27 GOTO 1300,3200,1400, 700

1000 REM

1010 REM BEFEHLSBEARBEITUNG:

1020 REM 20K

1030 REM

1040 REM CURSORBEWEGUNG:

1050 REM ¥XXXEKKEKE REA

1060 X=X+1:IF X=8 THEN X=0:GOTO 1100

1070 GOTO 700:REM RECHTS

1080 X=X-1:IF X<O THEN X=7:GOTO 1110

1090 GOTO 700:REM LINKS

1100 Y=(Y+1)AND7:GOTO 700:REM RUNTER

1110 Y=(Y-1)AND7:GOTO 700:REM HOCH

1200 REM

1210 REM BEENDEN:

1220 REM *****4xx

1230 A=2:B=15:GOSUB 9000:REM POSITIONIEREN

1240 PRINT C6$;C$(7);"BEENDEN?";C7$;C$(6): INPUT T$

1250 IF T$="J" OR T$="JA" THEN SYS 64738:REM KALTSTART

1260 GOTO 540

1300 REM

1310 REM CATALOG:

1320 REM KXkkxkx%

1330 PRINT CO$:SYS CA%:GOSUB 9100:GOTO 540

1400 REM

1410 REM VERSCHIEBUNG:

1420 REM €4€KEKKKKKKERE

1430 GOSUB 8999:PRINT C$(1);"VERSCHIEBUNG:":REM MELDEFELD

1440 PRINT "NACH: RECHTS(R), LINKS(L),":PRINT SPC(6)

"OBEN (0), UNTEN(U):"

1450 GOSUB 9100:IF T$<>"R" THEN 1470

1460 FOR T=0 TO 7:R=PEEK(Q+T):POKE Q+T,(R/2) + (R AND

1)*128:NEXT T:REM RECHTS

1470 IF T$<>"L" THEN 1490

1480 FOR T=0 TO 7:R=PEEK(Q+T)*2:POKE Q+T,(R AND 255) +

R/256:NEXT T:REM LINKS

1490 S=l1:IF T$="0" THEN 1510

1500 S=-1:IF T$<>"U" THEN 1520

1510

FORT=0TO7: P(T)=PEEK((7ANDT+S)+Q) : NEXTT: FORT=0TO7: POKEQ+T, P(T)

166

:NEXTT: REM HOCH/RUNTER

1520 GOSUB 9200:GOTO 550

1600 REM

1620 REM MODUSWECHSEL:

1630 REM ¥XXKKXKKKKKKS

1640 M=ABS(M-1):POKE MO%,M:GOSUB 3000:G0TO 700

1700 REM

1710 REM ZEICHEN DEFINIEREN:

1720 REM KXXEKKKKAKKKKKKKKKSK

1730 GOSUB 8999: PRINT C6$;C$(5);"GEBEN SIE AN:";C7$

1740 PRINT C$(7); "ZUORDNUNG DES

ZEICHENS: ";C$(6);CHR$(127);C$(7)

1750 GOSUB 2500: IF F=1 THEN F=0:G0TO 540: REM

ADRESSENERR.+FEHLERABFR.

1760 FOR X=0 TO 7:POKE T+X,PEEK(Q+X):NEXT X:REM SPEICHERN

1770 FOR X=1 TO 1500:NEXT X:GOSUB 9200: GOTO550: REM

WARTEN+ LOESCHEN

1800 REM

1810 REM ZEICHEN HOLEN:

1820 REM XKXKKKKKKKKKKK

1830 GOSUB 8999: PRINT

C$(1);"GEBEN SIE DAS ZU BEARBEITENDE": PRINT "ZEICHEN EIN:"

1840 GOSUB 2500:IF F=1 THEN F=0:GOTO 540: REM

ADRESSENERR.+FEHLERABFR.

1850 FOR Y=0 TO 7: POKE Q+Y,PEEK(T+Y): NEXT Y:GOSUB 9200:GOTO

550: REM LADEN

1900 REM

1910 REM ZEICHEN INVERTIEREN:

1920 REM ¥XKKKKKKEKKKKKKKKEKE

1930 FOR B=0 TO 7:POKE Q+B,255-PEEK(Q+B):NEXT B: GOTO 550

2000 REM

2010 REM ZEICHENSATZ SPEICHERN:

2020 REM XXXKKKKKKKKEKKKKKKKEKE

2030 GOSUB 8999: PRINT

C6$;C$(1); "ZEICHENSATZABSPEICHERUNG" ;C7$

2040 GOSUB 2300: IF F=1 THEN F=0:GOTO 2000: REM

EINGABE/FEHLERABFR.

2050 IF F=2 THEN F=0:GOTO 2150:REM FEHLER

2060 SYS SP%:GOTO 2200:REM SPEICHERN

2100 REM

2110 REM ZEICHENSATZ LADEN:

167

2120

2130

2140

2150

2160

2200

2210

2220

2230

2240

REM GGG IO IRE
GOSUB 8999: PRINT C6$;C$(1);"ZEICHENSATZ LADEN: ";C7$:
GOSUB 2300: IF F=1 THEN F=0:G0T0 2100
IF F=2 THEN F=0:GOTO 540
SYS LAX
REM FEHLERABFRAGE (NUR FUER DISK!):
OPEN 1,8, 15: INPUT#1,DS,DS$, DT, DB:CLOSE1
IF DS<20 THEN 500:REM OK
PRINT: T$=STR$(DS)+", "+DS$+", "+STRS (DT) +", "+STR$ (DB)
GOSUB 9310:PRINT T$:FOR S=1 TO 2000:NEXT S:GOTO 500:REM

BLINKEN

2300

2310

2320

2330

2340

2350

GA,S:

2360

2370

2375

2380

REM

REM NAMENEINGABE:

REM ¥XXXXEKKKKKKK

A$="":PRINT: PRINT "FILENAME"+C$(6);: INPUT A$: T=LEN(A$)

S=VAL(RIGHT$(A$,1))

IF $<>0 AND LEFT$(RIGHT$(A$,2),1)=";" THEN T=T-2: POKE

REM GERAETEADR.

IF T=0 THEN F=2:RETURN: REM KEIN NAME

IF T>17 THEN 2390

REM NAMEN AN MASCHINENROUTINEN (704=$02C0):

POKE NA%,T: FOR S=1 TO T: POKE

NA%+S, ASC (MID$(A$,S,1)): NEXT S: RETURN

2390 PRINT CHR$(145);: T$=C6$+" LAENGE! "+C7$: GOSUB

915:REM FEHLERMELDUNG

2400

2500

2510

2520

2530

2540

2550

2560

2570

PRINT C$(6): F=1:RETURN

REM

REM ZEICHENADRESSE ERRECHNEN:

REM KKKKKKKKKKKKKK KK IKK KK KK

PRINT "ZEICHENSATZ(1-4): ";N:A$=""

PRINT "TASTE(F3) ODER ASCII(F5)?":GOSUB 9100

ON ABS(ASC(T$)-132) GOTO 2570,2570,2590,2590

GOTO 9300

INPUT "TASTE";A$: A$=LEFT$(A$,1):IF A$="" THEN 9300:REM

TASTENEINGABE

2580

2590

2600

2610

2620

2630

T=ASC(A$):GOTO 2620

INPUT "ASCII";A$: IF A$="" THEN 9300:REM ASCII-EINGABE

T=VAL(A$) /255: T=INT((T-INT(T))*255) : A$=CHR$(T)

IF T<32 OR (T<160 AND T>127) THEN 9300

IF T>191 THEN T=T-96:REM ASCII-UMWANDLUNG

PRINT CHR$(145); "TASTE: ";A$;" ASCII: ";T;:IF B>8 THEN

168

V$=A$

2640 REM UMRECHNUNG (T IST DER NORMALE ASCII-WERT DES

ZEICHENS):
2650 IF T<64 THEN S=256:GOTO 2680

2660 IF T<128 THEN S=256%((32 AND T)/16)

2670 IF T>159 THEN S=256%(INT(T/32)-2)

2680 T=(€N+47)*1024+S+(31 AND T)*8: RETURN

2800 REM

2810 REM ZEICHENSATZWECHSEL:

2820 REM ¥XKKKKKKKKKAKAKKKKKE

2830 A=36:B=5:GOSUB 9000: PRINT C$(2);C6$;N;C7$;C$(6):REM

NUMMER INVERTIEREN

2840 GOSUB 9100:S=VAL(T$):IF S=0 OR S>4 THEN S=N: REM

S=NEUER/N=-ALTER ZEICHENSATZ

2850 N=S:GOSUB 3000:GOTO 700

2900 REM

2910 REM ZEICHEN HOLEN (IN MODUS 1):

2920 REM ¥KKKKKAKKRRKAKKK KEKE KEKE AKE

2930 IF C<32 OR (C>127 AND C<160) THEN 700

2940 T=C:R=N:V$=A$:GOSUB 3000:G0TO 1850

3000 REM

3010 REM STATUSFELD ERSTELLEN:

3020 REM EXKKKKHKKKKKKEKK KEKE

3030 A=20:B=5:GOSUB 9000: PRINT

C$(7); "MODUS: "3;M;"/ SATZ: ";N: A$=V$: T=ASC(A$)

3040 PRINT TAB(20);CHR$(17);CHR$(17);C$(6);

3050 GOSUB 2620:PRINT CHR$(157);" "“: PRINT

3060 PRINT TAB(20);C$(7);"FARBZUTEILUNG: "

3070 PRINT TAB(20);C$(2);: FOR S=1 TO 14: PRINTCHR$(163);:NEXT

S: PRINT C$(6)

3080 FOR S=0 TO 1: PRINT TAB(20); "GRUNDFARBE";S;":";F(S):NEXT

S: RETURN

3100 REM

3110 REM PLOT:

3120 REM **xxkx

3130 S=((S-12) AND 2)/2:REM PLOTFARBE FESTSTELLEN

3140 T=2” (7-X):POKE Q+Y,PEEK(Q+Y) AND (255-T) OR S*T:GOTO 700

3200 REM

3210 REM FARBENWAHL:

3220 REM €XXKKKKKKKK

3230 GOSUB 8999:PRINT

169

TAB(4);C$(1)"F"C$(2)"A"C$(3)"R"C$(4) "B"C$(5)"E"C$(6)"N";

3240 PRINT C$(7)"W"C$(4)"A"C$(6)"H"C$(2)"L"C$(7)":"

3250 PRINT TAB(4);C$(1);CHR$(172);: FOR S=1 TO 32: PRINT

-CHR$(162);:NEXT S: PRINT CHR$(187)

3260 FOR S=1 TO 2:PRINT TAB(4);C6$;CHR$(161);

3270 FOR T=0 TO 15:PRINT C$(T);" ";:NEXT T:PRINT

C$(1);C7$;CHR$(161):NEXT S

3280 PRINT

TAB(4);C6$;CHR$(161);" 012 3 45 6 7 8 9101112131415";C7$;C

HR$(161)

3290 PRINT:PRINT C$(6);" FUER GRUNDFARBENNR. (F1/F3): ";

3300 GOSUB 9100: T=ASC(T$)-133: REM FUNKTIONSTASTE

3310 IF T<O OR T>1 THEN GOSUB 9300:GOTO 540:REM FEHLER

3320 IF T>1l THEN T=T-4

3330 PRINT T:T$="": INPUT " FARBE ";T$:S=ABS(INT(VAL(T$)))

3340 IF T$="" OR S>15 THEN GOSUB 9300:G0T0540:REM FEHLER

3350 F(T)=S:POKE 53281+T,S:REM FARBE SETZEN

3360 GOTO 540

3400 REM

3410 REM BEFEHLSSATZ:

3420 REM KXkkKKKKKK KK

3430 PRINT CO$;C6$;c$(2)" "3;C$(7);

3440 PRINT "BEFEHLSSATZ";C$(2);" ":07$;

3450 PRINT C$(4);:FOR S=1 TO 40:PRINT CHR$(184);:NEXT S:PRINT

3460 PRINT

c$(1)" NR. "C6$"BEFEHL "C7$"-"C$(5)" FUNKTION"C$(4)

3470 FOR S=1 TO 10: PRINT "----";:NEXT S

3480 PRINT C$(1)" (1) "C6$"(<>T..)"C7$"-"C$(5)"

CURSORBEWEGUNGEN"

3490 PRINT C$(1)" (2) "C6$"()"C7$"~-"C$(5)" MODUSWECHSEL

3500 PRINT C$(1)" (3) "C6$"(CTRLT)"C7$"-"c$(5)" ZEICHENSATZW

ECHSEL"

3510 PRINT C$(1)" (4) "C6$"(F1-F8)"C7$"-"C$(5)" PLOT IN FARB

EN 0-15"

3520 PRINT C$(1)" (5) "c6$"(F) "C7$"-"c$(5)" FARBEN 0-15

F. F1/3 DEF."

3530 PRINT C$(1)" (6) "C6$"(B) "C7$"-"C$(5)" BEFEHLSSATZ"

3540 PRINT C$(1)" (7) "c6$"(D) "C7$"-"c$(5)" ZEICHEN DEFI

NIEREN"

3550 PRINT C$(1)" (8) "c6$"(H) "C7$"-"c$(5)" ZEICHEN HOLEN"

170

3560 PRINT C$(1)" (9)

RTIEREN"

3570 PRINT C$(1)"(10)

CHIEBEN"

3580 PRINT C$(1)"(11)

CHEN"

3590 PRINT C$(1)"(12)

LADEN"

3600 PRINT C$(1)"(13)

S. SPEICHERN"

3610 PRINT C$(1)"(14)

TALOG"

3620 PRINT C$(1)"(15)

"C6$"(I) "C7$"—-"C$(5)"

"C6$"(V) "C7$"-"C$(5)"

"C6$"(L) "C7$"-"C$(5)"

"Cé6$" (CTRLG) "c7$"—"C$(5)"

"o6$" (CTRLS) "C7$"—"C$(5)"

"C6$"(C) "C7$"-—"C$(5)"

"C6$ " (CTRLX) "C7$"-"C$(5) tt

3630 GOSUB 9100:GOTO 540

8000 REM

8100 REM UNTERPROGRAMME:

8200 REM XXKKKEKEKKKEKKKS

8300 REM

8400 REM POSITIONIERUNG:

8500 REM XXKXKKKKKKKKKKK

8999 A=0:B=16:REM MELDEFELD

9000 PRINT Cl$;:FOR S=2 TO B: PRINT: NEXT S: PRINT

TAB(A); : RETURN

9050 REM

9060 REM TASTENEINGABE:

9070 REM KXKKKKKEKKKKKE

9100 WAIT 198,255:GET T$: RETURN

9150 REM

9160 REM MELDEFELD LOESCHEN:

9170 REM KXKKKKKEKEKKKKKEKK KK

9200 A=0:B=16:GOSUB 9000: FOR S=1 TO 5:GOSUB 9210:PRINT: NEXT

S: RETURN

9210 FOR T=1 TO 9:PRINT " ";:NEXT T: RETURN

9250 REM

9260 REM FEHLERBLINKEN:

9270 REM ¥KKKKKKKKKEKKX

9300 T$="UNZULAESSIG!"

ZEICHEN INVE

ZEICHEN VERS

ZEICHEN LOES

GET-ZEICHENS

SAVE-ZEICHEN

DIREKTORY/CA

BEENDEN"

9310 PRINT C$(1): FOR S=1 TO 9: PRINT T$:GOSUB 9330: PRINT

CHR$ (145);

9320 GOSUB 9210: PRINT CHR$(145):GOSUB 9330:NEXT S:GOSUB

171

9200: F=1: RETURN

9330 FOR T=1 TO 75:NEXT T: RETURN: REM WARTESCHLEIFE

9890 REM

9900 REM KXRKKK KKK KKK KKK KKK KKK KK

9910 REM xx xx

9920 REM %% MASCHINENROUTINEN *x

9930 REM *x xx

9940 REM KRITIK KK KK KK

9950 REM

9960 REM DATAS WERDEN NACH DEM STARTEN GELOESCHT !!!

9970 REM

10000 FOR I = 1 TO 16 : READ X : NEXT I : REM VORDERE DATAS

UEBERSPRINGEN (FARBEN)

10005 FOR I = 18432 TO 18836

10010 READ X : POKE I,X : S=S+X : NEXT

10020 DATA 120,169, 51,133, 1,169, 48, 32, 26, 72,169,192

10030 DATA 32, 26, 72,169, 55,133, 1,169, 28,141, 24,208

10040 DATA 88, 96,133, 5,169,208,160, 0,132, 2,132, 4

10050 DATA 133, 3,162, 16,177, 2,145, 4,136,208,249,230

10060 DATA 5,230, 3,202,208,242, 96,173,192, 2,162,193

10070 DATA 160, 2, 32,249,253,169, 2,166,186,160, 0, 32

10080 DATA 0,254,169, 0,162, 0,160,192, 76,213,255,173

10090 DATA 192, 2,162,193,160, 2, 32,249,253,169, 2,166

10100 DATA 186,160, 0, 32, 0,254,169, 20,141, 24,208, 169

10110 DATA 48,133, 5,169,192, 32, 30, 72,169, 0,133, 2

10120 DATA 169, 48,133, 3,169, 2,162,255,160, 63, 32,216

10130 DATA 255,120,169, 48,162, 51,134, 1, 32, 26, 72,169

10140 DATA 55,133, 1,169, 28,141, 24,208, 88, 96,160, 0

10150 DATA 169, 32, 32,210,255, 32,210,255,152, 9, 48, 32

10160 DATA 210,255,162, 0, 32,207, 72,169, 29, 32,210,255

10170 DATA 232,224, 8,208,243,169,165, 32,210,255,169, 13

10180 DATA 32,210,255,200,192, 8,208,212, 96,174,254, 2

10190 DATA 172,253, 2,152, 72,138, 72,169, 0, 56,106,202

10200 DATA 16,252, 57,248, 50,208, 3,160, 0, 44,160, 6

10210 DATA 162, 6,185,245, 72, 32,210,255, 200, 202,208, 246

10220 DATA 104,170,104,168, 96,146, 31,111, 31,146,157, 18

10230 DATA 28, 32, 31,146,157,173,252, 2,162, 0,201, 20

10240 DATA 240, 35,201,148,240, 31,232,201, 30,240, 26,201

10250 DATA 94,208, 5,172,251, 2,240, 17,232,172,251, 2

10260 DATA 208, 11,160, 28,232,221, 47, 73,240, 3,136,208

10270 DATA 247,232,142,252, 2, 96, 87, 29, 81,157, 65, 17

172

10280 DATA 50,145,133,137,134,138,135,139,136,140, 76, 68

10290 DATA 72, 73, 19, 7, 24, 66, 67, 70, 86,169, 36,133

10300 DATA 2,169, 1,162, 2,160, 0, 32,249,253,169, 2

10310 DATA 166,186,160, 0, 32, 0,254,169, 0,162, 0,160

10320 DATA 64,134, 95,132, 96, 32,213,255,165, 95,164, 96

10330 DATA 32, 55,165,173, 0, 3, 72,173, 1, 3, 72,169

10340 DATA 61,141, 0, 3,169,227,141, 1, 3, 32,195,166

10350 DATA 104,141, 1, 3,104,141, 0, 3, 96

10360 IF S <> 46617 THEN PRINT "FEHLER IN DATAS !!" : END

10370 PRINT "OK" :RETURN

173

END OF ASSEMBLY!

0010 5
2020 ; MASCHINENROUTINEN:
2a30 5 EH HEHE RHEE EK

8240 3
2050 3
2060 -OS
2270 -BA #4800 ; STARTADRESSE
naso -MC #0800
2070 3
2100 3; SPRUNGADRESSEN UND REGISTER:
2110 FH KEE NENNEN HERR
0120 :

2138 CHROUT .DE #FFD2 ; ZEICHENAUSGABE
@14@ FNPAR „DE #FDF? ;FILENAMENPARAMETER SETZEN
2150 FPAR „DE #FEQ@ ;FILEPARAMETER SETZEN
@16@ SAVE „DE $FFD8 ;SPEICHERN AUF DISK/KASSETTE
@17@ LOAD „DE #FFDS ; LADEN VON DISK/KASSETTE
2188 TESTCH „DE #32F8 ; TESTZEICHEN (ANGEZEIGTES)
@19@ LAENGE .DE #02C@ ; FILENAMENLAENGE
2200 MODUS .DE #@2FB ; MODUS
2212 TASTE .DE #@2FC ; BEFEHLSTASTENDRUCK
0220 YKOORD .DE #@2FD ; FELD-Y-KOORDINATE
02380 XKOORD „DE $BZFE ; FELD-X-KODORDINATE
2240 3
0250 ; ZEICHENSATZ COPIEREN:
0260 SEREHHRNITNRERRNRRRR
2270 :

480@- 78 4280 INIT SEI 3;KEIN INTERRUPT
48@1- AP 33 2270 LDA #433
48@3- 95 Bi 0300 STA *%@1 ; ZEICHENSATZ LESBAR MACHEN
4805- AF 50 0318 LDA #330 ;VON #D@@@ NACH #3200
48@7- 20 1A 48 0328 JSR MOVE ; COPIEREN
48@A- AI Ca 25350 LDA #302 :VON $D@@0 NACH $C200
4830C- 20 1A 48 0348 JSR MOVE 3 COPIEREN
48@F-— AI 37 0350 LDA #$37
4811- 85 @1 368 STA *$@1 31/0 AUSWAEHLEN
4813- A? 1C 0570 LDA #$1C
4815- 8D 18 D@ 0580 STA #D@1is8 s ZEICHENSATZADRESSE NACH $3000
4818- 58 0370 CLI ; INTERRUPT ERMOEGLICHEN
4819- 60 2400 RTS

0410 3
204208 ; COPIEREN:
2430 SRRERRERRR
2440 ;

4S81A- 85 085 0450 MOVE STA *3#@5 ; ZIELADRESSE HIGHBYTE
481C- A? DB 2440 LDA ##D@ ;QUELLADRESSE HIGHBYTE
481E- AD 30 0470 MO LDY #320
4820- 84 02 2490 STY *#@2 ;QUELLADRESSE LOWBYTE
4B22- 84 04 0490 STY *#04 ; ZIELADRESSE LOWBYTE
4824—- 85 @3 2500 STA *$83
4826- AZ 10 2518 LDX #310
4828- Bl @2 @52@ Mi LDA (302) ,Y ; LADEN
482A- 91 04 @530 STA ($04) ,Y ; SPEICHERN
482C- 88 2540 DEY
482D- DO F7 n550 BNE M1
482F- E6 @5 0560 INC *#@5
4831- E& OF 0578 INC #$@3
48233- CA 58a DEX
4934- DO F2 05970 BNE M1 ;NAECHSTE SEITE
4836- 68 2400 RTS

0610 ;
0620 ; ZEICHENSATZ LADEN:

174

AD

A2

Aa

28

Ag

AG

AG

20

Ag

AZ

AG

4C

AD

a2

FD

FE

FF

82

FD

FE

Da

48

FF

48

Da

FF

FF

48

FF

LADEN

SPEICH

NETZ

N@

N1

§ MHHKKKKKKEKKEKEKEEEE

LDA

LDX

LDY

JSR

LDA

LDX

LDY

LAENGE

#+C1

#502

FNPAR >

#502

*$BA

#200

FPAR

#200

#200

3; NAMENLAENGE
; FILENAMENADRESSE LOW-
; HIGHBYTE

;LOGISCHE FILENUMMER

3; GERAE TEADESSE

; SECUNDAERADRESSE

; LOAD/VERIFY-FLAG
sSTARTADRESSE (LOWBYTE)
; STARTADRESSE (HIGHBYTE)

; ZEICHENSATZ SPEICHERN:
3 KREKRHKEKEHEHEERERRHKEKKREHRE

RTS

LAENGE
#$C1
#402
FNPAR
#$02
*$BA
#$00
FPAR
#214
$D218
#$30
*$05
#$C0
Ma
#500
*$02
#$30
*$03
#502
##FF
#43F
SAVE

#220

#E33

*#$@1

MOVE

#237

*2@1

#21C

$D01&

; FILENAMENLAENGE

:FILENAMENADRESSE (LOW)

;FILENAMENADRESSE (HIGH)

;LOGISCHE FILENUMMER
; GERAETEADRESSE
; SECUNDAERADRESSE

sORIGINALE ZEICHENSATZLAGE
; ZIELADRESSE (HIGHBYTE)

;QUELLADRESSE (HIGHBYTE)
VON #C@O@ NACH $3000

;STARTADRESSE (LOWBYTE)

sSTARTADRESSE (HIGHBYTE)

;NULLSEITENADRESSE DER STARTADRESS

;ENDADRESSE (LOWBYTE)

sENDADRESSE (CHIGHBYTE)

;SPEICHERE ZS AB #3000

; INTERRUFT BLOCKIEREN

; ZIELADRESSE (HIGHBYTE)

; ZEICHENSATZ LESBAR MACHEN

VON $D@Q@ NACH $3000

31/0 AUSWAEHLEN

; ZEICHENSATZADRESSE NACH #3000
3; INTERRUPT ERMOEGLICHEN

; ZURUECK NACH BASIC

3
;ARBEITSFELD HERSTELLEN:
SEEN RN

3

LDY

LDA

JSR

JSR

TYA

ORA

JSR

LDX

JSR

LDA

JSR

#400

#$20

CHROUT

CHROUT

#30

CHROUT

#200

PUNKT

#F1D

CHROUT

3; ZEILENZAEHLER = @
2t a
3

;2 LEERZEICHEN

; ZEILENZAEHLER IN ZIFFER WANDELN
3 AUSGEBEN

sEINEN PUNKT ZEICHNEN

; CURSOR RECHTS

Har5—

H3öFB—-

ISFE—

ISFE—

ES

EG

Da

A?

A?

28

cea

ca

Da

68

FE

FD

0a

FC

25

aa

24

FS
D2

Fö

ıF

ic

92

FC

0a

23
94
iF

1E

1A

JE

25

FB

02

a2

48
FF

oF

9D

28

9D

82

v2

1860

1870

1880

1890

1980

1718

1728

PUNKT2

PUNKT

Fo

Pi

P2

PETTAB

BEF IDE

INX ; NAECHSTER PUNKT

CPX #208 ;ACHT PUNKTE PRO ZEILE

BNE Ni

LDA #$A5 3;STRICH (CHR#(165))

JSR CHROUT

LDA #4¢@D ;CARRIGE RETURN

JSR CHROUT

INY ; NAECHSTE ZEILE

CPY #£08 38 ZEILEN

BNE N@

RTS

3
;EINE KOORDINATE ZEICHNEN:
§ EHH HK HEHEHE EERE NREEEREEE

LDX XKOORD : ANSTEUERUNG DURCH BASIC

LDY YKOORD 3 X/Y-KOORDINATE

TYA

PHA

TXA

PHA ; KOORDINATEN RETTEN

LDA #90

SEC ;EIN BIT SETZEN

ROR A ‚RICHTIGES BIT HERAUSSUCHEN

DEX

BPL PO

AND TESTCH,Y sANDERE BITS DES TESTZEICHENS LOES

BNE F1 BIT (=PUNKT) GESETZT?

LDY #300 ; NEIN

„BY #2C ; BIT-BEFEHL

LDY #306 ‚BIT GESETZT!

LDX #406

LDA PKTTAB,Y ; ZEICHEN AUS PUNKTDARSTELLUNGSTABE

JSR CHROUT

INY

DEX

BNE P2 ;NAECHSTES ZEICHEN

PLA

TAX

PLA

TAY ; KOORDINATEN WIEDERHOLEN

RTS

3
; ZEICHEN FUER EINE KOORDINATE:
SEEK KHER HEHEHE EKER ERE EERE

-BY 146 @31 111 @31 146 157

‚BY 018 O28 @32 031 146 157

TASTE ALS BEFEHL IDENTIFIZIEREN:
HHH HEHEHE EH HEE HEHEHE EH EEE

LDA TASTE ; TASTENCODE
LDX #$00 ; BEFEHLSCODE
CMP #$14 ;sDEL (=MODUSWECHSEL) ?
BEQ B2 JA
CMP #394 ‚ INSERT (WIE DEL)?
BEQ B2 JA
INX ; BEFEHLSCODE + 1
CMP #$1E sCTRL. "PFEIL HOCH" ?
BEQ B2 ‚JA
CMP #$5E ;"PFEIL HOCH" ?
BNE Ba 3NEIN
LDY MODUS ;NUR IN MODUS @

176

471A-

4971C-

491D-

4728-

4922-

4924—

4925-

4728-

492A-

492B-

472D-

492E-

4931-

4932-
4935-

4938-
473B-

493E-
4941-

4944-
4947-

494A-

494D-
A94F-
4951-
4953-
4955-
4957-
495A-
495C-
495E-
4960-
4963-
4965-
4967-
4969-
496B-
496D-
4970-
4972-
4974-
4977-
497A-
497B-
497E-
497F-
4981-
4984-
4986-
4989-
498C-
498D-
4990-

37

9D

32

87

87

BC

48

@7

43

il

FB

ic

2F
25

F7

FC

iD
41

9

Bd

8B

4C

49
18

46

i

3D

aa

@1

C2

vi

a2

49

2

a1

11

85
BA

38
44

13
42

36

FD

FE

1750

19748

1958

1768

1770

1980

1998

2800

2810

2828

2830

2840

2850

2068

2270

2288

2070

2100

2118

2128

2138

2140

2158

2168

2178

2280
2290
2200
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2418
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540

BG

Bi

B2

BEF TAB

CATALG

BEQ B2
INX ; BEFEHLSCODE + 1
LDY MODUS ;MODUS 1?
BNE B2 sJA, DANN KEINE WEITEREN BEFEHLE
LDY #$1C ı27-1 BEFEHLE (ZAEHLER)
INX ; BEFEHLSCODE ERHOEHEN
CMP BEFTAB-—3, X ; TASTE MIT TABELLE VERGLEICHEN
BEQ BZ ; GEFUNDEN
DEY ;NAECHSTER BEFEHL
BNE Bi ;NOCH NICHT FERTIG
INX
STX TASTE ; BEFEHLSCODE ALS RUECKMELDUNG
RTS ; ZURUECK ZU BASIC

3
; BEFEHLSTASTENTABELLE:
5 EERE KE HEE EEERERERER

W/CRSR-RE/Q/CRSR-LI/A/CRSR-UN
BY @87 @29 081 157 @65 017 “

e
n

u

: 2/CRSR-OB/ Fi/ F2/ F3/ F4

.BY 250 145 133 137 134 138

; FS/ F6/ F7T/ F8/ L/D

„BY 135 139 136 140 076 848

; H / I/<HOME>/CTRL.G/CTRL.X/ B

„BY @72 @73 019 007 224 66

; C / F / V

-BY @47 2870 @86

s

; DISKCATALOG:
SRE EEK

3

LDA #24 ı"’$" ALS FILENAME

STA #92

LDA #£81

LDX #$02

LDY #£00 35.0.

JSR FNPAR

LDA #£02

LDX ##BA ; GERAETEADRESSE

LDY ##0@

JSR FPAR

LDA #£#00 ı LOAD/VERIFY-FLAG

LDX #+00

LDY #408 ; STARTADRESSE

STX x*$5F

STY x$408

JSR LOAD ;LADE CATALOG WIE BASICPROGRAMM

LDA *$5F ; SIMULIERE:

LDY x*$60 ; BASIC-PROGRAMMSTARTADRESSE

JSR A537 ;BASICZEILEN BINDEN

LDA #02300

PHA

LDA #0301 sORIGINALEN WARMSTARTVEKTOR

PHA ; RETTEN

LDA ##3D

STA #0300

LDA ##E2

STA #0301 sUND AUF RTS SETZEN

JSR #A6C3 ;LISTBEFEHL AUSFUEHREN

PLA

STA #0301

PLA

177

4991- 8D 00 85 2550 STA #4300
4994- 60 2560 RTS

25708 .EN
END OF ASSEMBLY!

--- LABEL FILE: —-

BO =491C Bi =4924
BZ =492D BEFIDE =4981
BEFTAB =4932 CATALG =494D
CHROUT =FFD2 FNPAR =FDF9
FPAR =FEQ@ INIT =4800
LADEN =4837 LAENGE =@2C®
LOAD =FFDS MB =481E
Mi =4828 MODUS =@2FB
MOVE =481A N@ =489C
Ni =48AC NETZ =489A
PO =48D%& Pl =48E2
P2 =48E6 PKTTAB =48F5
PUNKT =48CF PUNKT2 =48C9
SAVE =FFDS SPEICH =4853
TASTE =@2FC TESTCH =32F8
XKOORD =BZFE YKOORD =B2FD

4/0000 , 4995 , 8995
iG

178

sALTEN VEKTOR WIEDERHOLEN

; ZURUECK ZU BASIC

Der Zeichenformer funktioniert analog zu dem Spriteeditor von

Paragraph 4.3. Auch hier existieren ein Secundäroperations-,

ein Farbzuteilungs-, ein Editor- (hier 8x8) und ein Original-

feld. Hinzu kommt noch die sogenannte Modus- und Satzangabe.

Ihr Programm kennt zwei Modi:

- 0: Eingabemodus:

In Modus O0 können Sie alle Befehle benutzen

und Ihr eigenes Zeichen herstellen.

- 1! Abrufmodus:

Modus 1 ermöglicht Ihnen einen bequemen Abruf

bereits hergestellter Zeichen per Tastendruck

aus dem Zeichenbuffer (Nach dem Starten Ihres

Programmes enthält der zuständige Zeichenbuffer

den kompletten originalen Zeichensatz).

Zur Satzangabe sind die 4 Zeichensätze (normal - Groß/Graphik

// invers - Groß/Graphik // normal - Klein/Groß // invers -

Klein/Groß) mit Ihren jeweils 128 Zeichen von 1-4 durch-

numeriert. Der aktuelle Satz, der gerade behandelt wird,

steht dann in der Satzangabe.

Grundsätzlich können alle Befehle des Spriteeditor (bis auf

G) auch im Zeichenformer angewandt werden und sind dort

nachzulesen. Zusätzlich stehen Ihnen hier noch folgende

Funktionen zur Verfügung:

- -

Moduswechsel (Modus 0-1)

- <cetrl>t -

Wollen Sie die Nummer des Zeichensatzes wechseln, so drücken

Sie <ctrl>T und die Nr. (1-4) des Satzes ein (in Modus 0

genügt auch 7).

- D/H -

Mit D können Sie Ihr Zeichen einem ASCII-Zeichen, bzw. einer

Taste zuordnen und damit in Ihren Zeichensatz iibernehmen.

Mit H holen Sie sich ein bereits existierendes Zeichen aus

dem Zeichenbuffer in ihr Feld (analog zu Modus |).

179

Bei beiden wird der aktuelle Zeichensatz (s.o.) (1-4)

angesprochen. Nun entscheiden Sie, ob Sie das Zeichen als

ASCII-Wert (f5/f6) oder Tastendruck (fl/f3) angeben wollen.

Jetzt erfolgt die Eingabe der Taste oder des ASCII-Wertes mit

<return>!

- <etrl>S / (ctrl>G -

Abspeichern oder Laden eines ganzen Zeichensatzes. Näheres

siehe Spriteeditor.

Haben Sie sich mit diesem komfortablen Zeicheneditor Ihren

eigenen, persönlichen Zeichensatz hergestellt und auf

Diskette gespeichert, dann können Sie Ihn nach dem Beenden

des Editorprogramms ganz einfach mit LOAD "name",8,1 nach

$3000 (12288) einladen (um ihn woanders hin zu laden,

brauchen Sie einen Monitor oder ein Maschinensprache -

Ladeprogramm). Als Nächstes müssen Sie mit dem folgenden

einfachen Befehl den originalen Zeichensatzvektor

verschieben, so daß der VIC sich die benötigten Definitionen

von Stund an aus diesem Bereich holt:

POKE 53248+24, PEEK(53248+24) AND 241 OR 12

In diesem Befehl werden die drei Bits 1-3 des 24.

VIC-Registers, die die Lage bzw. die Adressbits 11-13 des

Zeichengenerators bestimmen, zunächst gelöscht (241 = %1111

0001) und dann die obersten beiden der drei Bits gesetzt

(12 = %0000 1100). Schlagartig erscheint Ihre neue Zeichen-

creation auf dem Bildschirm. So einfach ist das.

180

4.5 Eingabe/Ausgabe von

Graphik und Zeichensatz

Mitunter dauert es recht lange, bis wir mühselig ein

Graphikbild ersonnen und auf den Bildschirm gebracht haben.

Sollten wir dies jedesmal machen, wenn wir uns das Bild

betrachten wollen, so ginge uns recht bald die Lust verloren.

Doch es gibt einige Möglichkeiten, um diesen Prozess

abzukürzen. Zum einen können wir unser Bild auf Diskette oder

Kassette abspeichern und bei Bedarf wieder in den Speicher

holen. Zum anderen, was das Anschauen später noch weiter

verkürzt, sind wir in der Lage - sofern Sie einen Drucker

besitzen, der gleichfalls Graphik ausgeben kann (z.B. durch

Einzelnadelansteuerung) - sogenannte Hardcopies anzufertigen,

also Bilder auf dem Blatt Papier. Die notwendigen Techniken

für diese Unterfangen werden Ihnen hier vorgestellt. Es ist

klar, daß wir keine Hardcopyroutinen für alle möglichen

Drucker angeben können, da leider fast jeder Drucker seine

eigene Art und Weise der Graphikausgabe besitzt. Deshalb

sollten Sie einmal mit dem hier Gesagten versuchen, sich

selbst eine eigene Routine für Ihren Drucker zu schreiben.

Notfalls schauen Sie sich einmal in den entsprechenden

Fachzeitschriften um, die ab und zu einmal verschiedene

Artikel zu diesem Thema bringen. Ist Ihnen dies ebenfalls zu

umständlich, so bleibt Ihnen nichts anderes übrig, als auf

eine Graphikerweiterung zurückzugreifen, die Ihren Drucker

betreiben kann.

181

4.5.1. Abspeichern/Laden

Das Problem bei der Ein- und Ausgabe von Graphiken oder eines

Zeichensatzes auf Diskette oder Kassette ist das Abspeichern,

da hierbei dem Computer Anfangs- und Endadresse des zu

speichernden Bereiches angegeben werden muß und kein

entsprechender Befehl hierzu existiert. Bei normalen Basic-

programmen sind dem Rechner diese Dinge bekannt, Maschinen-

programme oder sonstige Daten jedoch müssen auf etwas

kompliziertere Art und Weise auf das Speichermedium

übertragen werden.

Grundsätzlich kann dies durch die folgende Routine geschehen.

Sie ist wieder so gehalten, daß Sie sich reibungslos in Ihre

gesammelten Graphikroutinen einfügt:

10 REM KKKKKKKKKKKKKI KK IKK KK KK KK

20 REM xx xx

30 REM %% GRAPHIKABSPEICHERUNG xx

40 REM *x xx

50 REM KKKKKKKKKKKKK KK KK IKK KK

60 REM

70 FI$="GRAPHIK" : GA = 8 : REM FILENAME UND GERAETEADRESSE

80 BE = 8192 : EN = 16192 : REM START- UND ENDADRESSE (HIER

GRAPHIK BEI $2000)

90 GOSUB 11200 : END : REM SPEICHERN

11200 REM

11210 REM OOOO OK

11220 REM %** ABSPEICHERN xx

11230 REM KKKKKKKKKKKKKKKKKKK

11240 REM

11250 SYS 57812 FI$,GA : REM DISKPARAMETERUEBERNAME (AN

$E1D4)

11260 X = EN/256

11270 POKE 175, INT(X) : REM HIGH-BYTE ENDADRESSE ($AF)

11280 POKE 174, (X-INT(X))*256 : REM LOW-BYTE ENDADRESSE

($AE)

11290 X = BE/256

11300 POKE 194, INT(X) : REM HIGH-BYTE STARTADRESSE ($C2)

11310 POKE 193, (X-INT(X))*256 : REM LOW-BYTE STARTADRESSE

($C1)

11320 SYS 62954 : REM SAVE-ROUTINE ($F5EA)

11330 RETURN |

182

In diesem Programm werden in den Zeilen 70 und 80 der

eigentlichen Speicherroutine die notwendigen Informationen

zur Erzeugung eines Files übergeben. Zeile 11250 ruft dann

einen Teil des normalen Basic SAVE-Befehls auf, der Filenamen

und Geräteadresse (für Disk: SA=8; für Kassette: SA=l)

übernimmt. Ihnen mag dieser eine Befehl etwas ungewohnt

erscheinen, diese Form ist aber durchaus korrekt. Nachdem

nämlich mit dem SYS 57812 die besagte Routine aufgerufen

wurde, werden, wie beim SAVE-Befehl, die beiden Parameter

verlangt. Aus diesem Grunde gibt es keinen SYNTAX ERROR.

Die folgenden Zeilen übergeben der in Zeile 11320

aufgerufenen eigentlichen SAVE-Routine in bestimmten

Speicherstellen die Start- und die Endadresse des zu

speichernden Bereiches.

Wir können dieses Programm für alle fraglichen Funktionen

verwenden, die wir im Auge hatten. Sowohl Zeichensätze, wie

Sprites, Graphik-, Text- und Farbspeicher können so auf

Diskette oder Kassette gesichert werden. Ausschlaggebend ist

dabei lediglich die Wahl der verschiedenen Parameter. Oben

wurde das Beispiel zur Speicherung von Graphik gegeben, die

in dem Bereich von $2000-$3F3F (8192-16192) liegt. Für unsere

Zeichensätze, die wir in $3000-$3FFF (12288-16383)

gespeichert hatten, müßten Sie die Zeile 80 wie folgt ändern:

80 BE = 12288 : EN = 16384

Wie Sie sehen, müssen Sie zur Endadresse stets 1 hinzu-

zählen. Möchten Sie vielleicht einmal Ihre gesamte Textseite

auf Diskette bringen, die bekanntlich von $0400 bis $07E7

(1024-2023) geht, so schreiben Sie:

80 BE = 1024 : EN = 2024

Gleiches tippen Sie ein, wenn Sie den Farbteil Ihrer Graphik

(sofern er dort liegt) auf Band oder Diskette bringen wollen.

Vielleicht aber haben Sie auch eine Spritedefinition in Block

ll und wollen diese abspeichern, z.B. um sie dem Sprite-

editor aus Paragraph 4.3 zugänglich zu machen (in diesem Fall

muß die Definition in Block 11 liegen) oder einfach, um Sie

183

später wieder direkt hinein zu laden. Da Block 11 bei

$02C0-$02FD (704-766) liegt, muß die entsprechende Passage

lauten:

80 BE = 704 : EN = 767

Nebenbei können Sie damit auch jedes Maschinenprogramm

speichern, ohne einen Monitor zu Rate ziehen zu müssen.

Wollen wir die verschiedenen Dinge wieder einladen, so genügt

ein LOAD "name",8,1 (bei Floppy-Besitzern) oder für

Kassettenrecorder: LOAD "name",1,1 und schon ist die Sache

erledigt.

4.5.2. Hardcopy

Die Archillesferse aller kommerziellen Programme ist der

Druckerbetrieb. Da es ’zig verschiedene Druckertypen gibt und

natürlich jeder seine eigenen Ansteuerungen, ASCII-Codierung

oder Steuerzeichen besitzt (besonders, was die Graphik

betrifft), gibt es kaum Programme, die mehr als ein oder

höchstens zwei Druckertypen bedienen können. Wenn Sie sich

z.B. nach einer Graphikbefehlserweiterung oder einem anderen

(Graphik-) Programm umschauen, so gebe ich Ihnen den Tip,

unbedingt darauf zu achten, daß dieses Programm auch Ihren

Drucker bedienen kann, und falls Sie noch keinen Drucker

besitzen, besonderes Augennerk auf die Programme zu legen,

die möglichst viele verschiedene Druckertypen ansteuern

können. Denn Sie werden sich, auch wenn Sie zur Zeit

vielleicht noch keinen Wert darauf legen, garantiert nach

einiger Zeit irgendeinen Drucker zulegen. Allein schon die

Tatsache, daß etwas größere Programme ohne Druckerlisting

völlig unüberschaubar werden, zwingt einen nach einiger Zeit

zum Drucker. Falls Sie mit Graphik arbeiten, so ist unbedingt

auf die Graphikfähigkeit eines solchen Gerätes zu achten

(u.a. auch die Sauberkeit des Druckes, mit der ein Bild aufs

Papier gebracht wird, die besonders bei Graphikausdrucken ins

Auge fällt). Sie werden es sonst noch einmal bereuen!

Wie oben bereits gesagt, ist es hier unmöglich, alle

Druckertypen mit den entsprechenden Routinen vorzustellen.

184

Aus diesem Grund werden wir uns hier mit dem wohl gängigsten

Gerät, dem Seikosha GP 100 VC beschäftigen, auf dem eine

graphische Hardcopy aufgrund des T7-Nadelkopfes wohl am

kompliziertesten ist. Routinen für andere Drucker können Sie

sich dabei gut davon ableiten. Angenommen wird wieder eine

Graphikseite bei $2000-$3F3F (8192-16191).

11800 REM KKKKKKKKKKKKKKK KK KK KK KK K IKK X

11810 REM *x GRAPHIK- xx

11820 REM ** HARDCOPY - GP 100 VC xx

11830 REM %*x | xx

11840 REM KXXKKKKKKKKKKKKKKKKKKKKKAKKS

11850 REM

11860 SA = 8192

11870 OPEN1,4 : REM DRUCKERKANAL OEFFNEN

11880 Y=35:MK=255:2Z=28:SG=6: REM Y-KOORD. / MASKE /

ZEILENZAHL / SPALTENGROESSE

11890 FOR FLAG=1 TO 2

11900 FOR ZE=1 TO ZZ : REM ZZ ZEILEN

11910 PRINT#1,CHR$(8)CHR$(27)CHR$(16)CHR$(O)CHR$(80); : REM

MITTENZENTRIERT+GRAPHIK EIN

11920 XK=0

11930 FOR SP=1 TO 40 : YK=Y : REM SPALTENZAEHLER

11940 FOR X=0 TO SG:GOSUB

12150:ZW(X)=PEEK(AD): YK=YK+1:NEXT X: REM 8%7 PUNKTE LADEN

11950 FOR X=0 TO 7 : REM 8 BYTES ZUM DRUCKER

11960 MS=21(7-X):B2=0

11970 FOR Z=0 TO SG:Bl=-2%((ZW(Z) AND MS)>0):B2=B2 OR

(B1*Z+(Z+B1=0)): NEXT Z

11980 B2=(B2 AND MK) OR 128: PRINT#1,CHR$(B2) ;

11990 NEXT X : REM NAECHSTES DRUCKERBYTE

12000 XK=XK+8

12010 NEXT SP : REM NAECHSTE SPALTE

12020 PRINT#1 : REM RETURN

12030 Y=Y+7 : REM Y-KOORD.

12040 NEXT ZE : REM NAECHSTE ZEILE

12050 ZZ=1 : REM NUR LETZTE ZEILE

12060 MK = 16 : REM MASKE (OBERE 4 BITS ABSCHNEIDEN)

12070 SG=4 : REM SPALTENGROESSE

12080 NEXT FLAG : NOCH EINMAL FUER DIE LETZTE ZEILE

12090 CLOSE 1:END

185

12100 REM

12110 REM XXXKKKKKKKKEKKKKKKK KEKE

12120 REM ** PUNKTBERECHNUNG *x

12130 REM ¥XRKKKKEKKKKKK KKK KKKAKK

12140 REM

12150 AD = SA + 320 * INT(YK/8) + (YK AND 7) + 8 * INT(XK/8)

RETURN

Auch diese Routine können Sie wieder in Ihren Unterprogramn-

schatz aufnehmen. Sie brauchen dann nur noch per GOSUB

aufgerufen werden. Sie können jedoch auch Ihre Graphik bei

SA=8192 ($2000) erstellen, dann dieses Programm hier einladen

und laufen lassen. Da dabei die Graphik nicht zerstört wurde,

erscheint eine originalgetreue Abbildung des Graphik-

speichers auf dem Druckerpapier. Diese Routine funktioniert

natürlich auch auf allen kompatiblen Druckern, wie beispiels-

weise Epson mit Data-Becker - Interface. Doch so eine Routine

in Basic dauert sehr lange. Geben Sie also nicht gleich den

Mut auf, wenn Sie etwas warten müssen. Sicher kann dieses

Programm, wie auch alle anderen "frisiert" werden (wie das zu

machen ist, wird im Anhang geschildert), doch hier wurde der

Übersichtlichkeit halber geordnet vorgegangen. Wichtig zum

Verständis dieser Routine ist die Tatsache, daß stets 7

untereinander liegende Punkt in einem Byte an den Drucker

übergeben werden (jedes gesetzte Bit resultiert in einem

gesetzten Punkt auf dem Papier), wobei das High-Bit stets

gesetzt sein muß (dies erfordert der Drucker). Dadurch taucht

eine kleine Schwierigkeit am Graphikende auf: Es bleiben

nämlich 4 Reihen übrig, da 200 (die Zahl der Punkte in

y-Richtung) nicht durch 7 teilbar ist. Diese werden in einem

weiteren Durchlauf mit ein paar veränderten Parameter

übersandt. In dem Hauptteil der Routine (Zeilen 11940-11990)

werden zunächst 7 untereinander liegende Graphikbytes

eingelesen (Z. 11940), die dann Spalte für Spalte an den

Drucker gegeben werden (Z. 11950-11990). Die weiteren

Einzelheiten zu besprechen, würde den Rahmen sprengen. Nur

eine Kleinigkeit sollte hier noch erwähnt werden: Die

Operation Z+tBl=0, wie Sie in Zeile 11970 durchgeführt wird,

ergibt -1, wenn Z+B1=0 ist und 0, wenn dies nicht der Fall

ist. Aus 4=6 z.B. resultiert 0, aus 4=4 jedoch -1. Probieren

Sie es aus. Dieser Trick kann eine wertvolle Hilfe in vielen

186

Anwendungen sein, in denen Entscheidungen gefordert werden,

die Sie ungern mit IF oder ON...GOTO tätigen (z.B. aus

Zeitgründen). In dem Fall hier wird damit die Tatsache

umgangen, daß der Commodore 64 aus 0Ohoch0 1 herausbekommt,

was falsche Resultate bringen würde. In dem Graphik-Aid

weiter unten wird diese Hardcopy - Routine in Assembler

angegeben.

4.56 IROQOo-Handhabung

Aus Abschnitt 3.7 kennen Sie bereits die verschiedenen

Interrupt- (Unterbrechungs-) möglichkeiten, die bei

graphischen Anwendungen interessant sind. Dort wurde Ihnen

diese Fähigkeit vorgestellt und alle theoretischen Grundlagen

geliefert. Jetzt, da wir auch einigen praktischen Unterbau in

Sachen Graphik besitzen, ist es an der Zeit, das wohl

schwierigste aller Kapitel zu beginnen: Die Interrupt-

programmierung. Schon die Tatsache, das [Interrupts nur von

Maschinensprache aus zu bedienen sind, macht das ganze für

den Uneingeweihten nebulös und undurchsichtig. Aber auch

erfahrene Assemblerprogrammierer müssen sich mit den völlig

neuen Programmiertechniken vertraut machen. Doch haben Sie

keine Angst. Sie können die angegebenen Beispiele ruhig

ausprobieren. Sie werden Ihnen besonders hübsche Effekte

zeitigen.

Die Interrupttechnik soll Ihnen anhand des Rasterzeilen-IRQs

und des Lightpens gezeigt werden. Danach können Sie die

erfahrenen Kenntnisse auf Ihre eigenen Programme mit z.B.

Sprite-Kollisionen etc. anwenden. Bevor Sie sich jedoch an

diesen Abschnitt begeben, sollten Sie zunächst Paragraph 3.7

gut durchgelesen haben.

Erinnern wir uns kurz an die wesentlichen Faktoren, die zur

Bedienung von allgemeinen IRQs des VIC wissensnotwendig sind:

Interrupts sind kontrollierte Unterbrechungen des Programm-

ablaufs. Es gibt 4 verschiedene Ursachen, durch die der

Videocontroller Interrupts auslösen kann: Rasterzeilen,

Lightpen, Sprite-Sprite-, und Sprite-Hintergrundzeichen -

187

Kollisionen. Diese sind durch Setzen der entsprechenden Bits

im Interrupt Mask Register (IMR), also VIC-Register 26,

auszuwählen. Wird ein Interrupt ausgelöst, so erfolgt die

Rückmeldung durch Setzen des korrespondieren Bits in Register

25 des VIC, das sogenannte Interrupt Request Register (IRR);

das 7. Bit dieser Speicherstelle wird dabei als Kennzeichen

ebenfalls gesetzt. Dieses Register ist nach jedem Interrupt

durch Rückschreiben seines Inhalts zu löschen. Bei jedem IRQ

wird eine sogenannte Interruptroutine aufgerufen, deren

Adresse in den Speicherstellen $0314/$0315 (788/789) steht.

Ein IRQ kann in Maschinensprache durch das Setzen des

Interruptflags unterbunden werden.

4.6.1. Raster zeilen-IRQ

Auch hier sollten wir uns zunächst an die notwendigen binge

erinnern, die für Rasterzeilen - Interrupts nützlich sind:

Für diese Art von Unterbrechung sind jeweils Bits 0 der IRR

und IMR zuständig. Aus den Registern 18 und 17/Bit 7 erfahren

Sie die aktuelle Bildschirmzeile, die der VIC gerade aufbaut.

Das vom VIC verwandte Koordinatensystem unterscheidet sich

von dem normalen, uns bekannten (s. # 3.7). Werden diese

beiden Register beschrieben, so geben Sie damit an, bei

welcher Rasterzeile ein Interrupt stattfinden soll.

Mit diesen Informationen ist es uns jetzt möglich, eine

eigene Interruptroutine zu erzeugen und damit direkt in das

Geschehen einzugreifen. Dazu sei diese als Assemblerlisting

angegeben:

100: C800 x= $C800

110: C800 FARBEl = $FB

120: C800 FARBE2 = $FC

130: C800 OBEN = $FD

140: C800 UNTEN = $FE

150: C800 IRQVECT = $0314

160: C800 IRQALT = $EA31

170: C800 RASTER = $D012

180: C800 IRR = $D019

190: C800 IMR = $DO1A

200: C800 RAHMEN = $D020

188

210:

220:

230:

240:

250:

260:

270:

280:

290:

300:

310:

320:

330:

340:

350:

360:

370:

380:

390:

400:

410:

420:

430:

440:

450:

460:

470:

480:

490:

500:

510:

520:

530:

540:

550:

560:

570:

580:

590:

600:

610:

c800

c800

c800

c801

c803

C806

c808

C80B

c80D

c810

C813

C815

C818

CB1A

c81D

CB1E

CBLF

C8BlF

C822

C825

C827
C82A
C82B
C82E

C831

C833

C835
C837
C83A
C83D
C83F
C842
C845
C847

78

AQ

8D

Ag

8D

A5

8D

AD

29

8D

Ag

8D

58

60

AD

8D

30

AD

58

ac

AD

C5

BO

A5

8D

8D

A5

8D

4c

A5

8D

IF

14

c8

15

FD

12

11

TF

11

8l

1A

19

19

07

OD

31

12

FE

10

FB

20

21

FE

12

BC

FC

20

03

03

DO

DO

DO

DO

DO

DO

DC

EA

DO

DO

DO

DO

FE

DO

HGRUND = $D021

;

; INITIALISIEREN:

OOK RK KEK

INIT SEI ; INTERRUPT VERHINDERN

LDA #< IRQNEU

STA IRQVECT

LDA #> IRQNEU

STA IRQVECT+1 ;IRQ-VEKTOR UMLEGEN

LDA OBEN

STA RASTER ;1.RASTERZ. FESTLEGEN

LDA RASTER-1

AND #$7F

STA RASTER-1 ;HIGH-BIT LOESCHEN

LDA #%10000001 ;MASKE

STA IMR ;RASTERZ.-IRQ WAEHLEN

CLI ; IRQ ERMOEGLICHEN

RTS

;

; INTERRUPTROUTINE:

RICK

;

IRQNEU LDA IRR ; INTERRUPTREGISTER

STA IRR ; LOESCHEN

BMI IRQRAS ;RASTERZ.-IRQPRINT

;NORMALER IRQ: |

LDA $DCOD ;CIA 1-IRR LOESCHEN

CLI ; INTERR. ERMOEGLICHEN

JMP IRQALT ;ZUR ALTEN ROUTINE

IRQRAS LDA RASTER’ ;RASTERPOSITION

CMP UNTEN ;UNTERER WERTPRINT

BCS ZWEITER ;JA=>SPRUNG

LDA FARBE]

STA RAHMEN ;RAHMEN- UND

STA HGRUND ;HINTEGRUNDFARBE

LDA UNTEN ;UNTEREN WERT IN

STA RASTER ;RASTERPOSITION

JMP $FEBC ;ABSCHLIESSEN

ZWEITER LDA FARBE2

STA RAHMEN ;RAHMEN- UND

189

620: C84A 8D 21 DO STA HGRUND ;HINTERGRUNDFARBE

630: C84D A5 FD LDA OBEN ;OBEREN WERT IN

640: C84F 8D 12 DO STA RASTER ;RASTERPOSITION

650: C852 4C BC FE JMP $FEBC ; ABSCHLIESSEN

Und hier das entsprechende Basic-Ladeprogramm mit einer

kleinen hübschen Anwendung:

1000 FOR I = 51200 TO 51284

1010 READ X : POKE I,X : S=S+X : NEXT

1020 DATA 120,169, 31,141, 20, 3,169,200,141, 21, 3,165

1030 DATA 253,141, 18,208,173, 17,208, 41,127,141, 17,208

1040 DATA 169,129,141, 26,208, 88, 96,173, 25,208,141, 25

1050 DATA 208, 48, 7,173, 13,220, 88, 76, 49,234,173, 18

1060 DATA 208,197,254,176, 16,165,251,141, 32,208,141, 33

1070 DATA 208,165,254,141, 18,208, 76,188,254,165,252,141

1080 DATA 32,208,141, 33,208,165,253,141, 18,208, 76,188

1090 DATA 254

1100 IF S <> 11288 THEN PRINT "FEHLER IN DATAS !!" : END

1110 PRINT "OK"

1120 Fl = 7 : FZ2 = 6 : REM FARBEN 1 UND 2 (STREIFEN IN FARBE

1)

1130 OB = 60 : UN = 150 : REM OBERE UND UNTERE KANTE DES

STREIFENS

1140 POKE 251,F1:POKE 252,F2:POKE 253,0B:POKE 254,UN : REM

UEBERGEBEN

1150 SYS 51200 : REM ROUTINE EINSCHALTEN

1160 REM

1170 FOR X=1 TO 5000 : NEXT X : REM WARTESCHLEIFE

1180 REM

1190 REM BEWEGEN:

1200 REM *xkkkıkx

1210 FOR X=40 TO 240 : POKE 253,X : POKE 254, X+10 : NEXT X

1220 GET A$: IF A$="" THEN 1190 : REM TASTE?

Doch zunächst zu unserer Maschinenroutine:

Unser Programm erzeugt einen quer über den Bildschirm

gezogenen gelben Streifen (samt Rand) auf blauem Hintergrund.

Dies ist möglich durch kontinuierliches Umschalten der

Rahmen- und Hintergrundfarbe, jeweils genau dann, wenn sich

der Videocontroller in bestimmten Rasterzeilen befindet.

190

Bevor aber unsere eigentliche Interruptroutine vom Prozessor

aufgerufen wird, müssen wir erst einige Dinge erledigen. Dies

geschieht in der Initialisierungsroutine. Als allererstes

wird dort der IRQ-Vektor bei $0314/$0315 (788/789; s.o.), der

nornalerweise auf die originale Interruptroutine im ROM bei

$EA3l (59953) zeigt, auf unser neues Unterbrechungs _

Programm (hier bei $C81F (51231)) gerichtet. Für diesen Zweck

werden Low- und High-Byte der neuen Adresse an diesen Vektor

geschrieben (Zeilen 270-300). Doch damit nicht zwischendurch

ein Interrupt ausgelöst wird, was ja bekanntlich alle 1/60

Sekunde geschieht, um die Tastatur abzufragen etc., müssen

wir vorher durch ein SEI das Interruptflag des Prozessors

setzen (Zeile 260).

Nun wird die Rasterzeile bestimmt, bei deren Strahldurchlauf

der erste Rasterinterrupt stattfinden soll. Diese, es ist die

obere Kante unseres gelben Streifens, steht in der

nullseitigen Speicherstelle $FD (253), in die der gewünschte

Wert durch das übergeordnete Basic-Programm eingeschrieben

wurde. Der Wert wird jetzt in das Rasterzeilenregister

(VIC-Register 18) eingeschrieben (Zeilen 310/320). Damit wird

der erste Interrupt genau dann ausgelöst, wenn der Video-

controller gerade diese Zeile aufbaut. Da wir das High-Bit

hier nicht verwenden, wird es durch Zeilen 330-350 gelöscht.

Der nächste wichtige Schritt ist das Einschalten des

Raster-IRQs durch Setzen des 0. Bits des IMR, also der

Interrupt - Maske. Damit erst kann eine Unterbrechung

ausgelöst werden, wenn das besagte Ereignis eintritt.

Am Schluß unserer Inititialisierung wird das I-Flag wieder

gelöscht, sodaß die anstehenden Interrupts bedient werden

können.

Das Problem bei der Unterbrechungsbehandlung ist, daß jetzt

zwei Quellen existieren, durch die ein IRQ ausgelöst werden

kann:

- Timer-IRQ

- Raster-IRQ

Ersterer dient zu oben genannten Zwecken und ist absolut

notwendig für den normalen Betrieb des Computers. Denjenigen,

die ihre Programme in Maschinensprache schreiben und auf die

191

Funktionen der Tastaturabfrage, Cursorblinken oder TI$-Uhr

stellen verzichten können, ist natürlich freigestellt, ob Sie

hier den Aufruf der normalen Interruptroutine zulassen wollen

oder nicht. Doch sollten sich diejenigen, die damit

manipulieren, gut im Betriebssystem Ihres Rechners auskennen.

Grundsätzlich aber müssen wir unterscheiden, wodurch ein

Interrupt ausgelöst wurde, da unsere Routine von Stund an

auch dann aufgerufen wird, wenn der Timer der CIA 1

abgelaufen ist und damit die Tastaturabfrage fällig wäre. Zu

diesem Zweck laden wir als allererstes das IRR und schreiben

den erhaltenen Wert wieder zurück, um es zu löschen

(ansonsten würde gleich nach Beenden unserer Routine wieder

ein Interrupt ausgelöst usw.). Wurde ein Raster-IRQ

ausgelöst, so sind dort u.a. das 0. und das 7. Bit gesetzt

(s. # 3.7). Auf das 7. Bit wird nun geprüft (Zeile 460) und

in besagtem Falle weiter zum zweiten Teil verzweigt (nach

Zeile 510). Stammt der IRQ jedoch vom Timer, so müssen wir

die alte (normale) Interruptroutine aufrufen, die bei $EA3l

(59953) beginnt.

Doch hier taucht eine kleine Schwierigkeit auf. Bei jedem

Interrupt wird automatisch (hardwaremäßig) die Rücksprung-

adresse und das Flag-Register der CPU auf den Stack gebracht

und - was das hier wichtige ist - das Interruptflag gesetzt,

so daß kein weiterer IRQ während unserer Interruptroutine

ausgelöst werden kann, was ja auch vernünftig ist. Doch

nehmen wir einmal an, wir verzweigen normal nach $EA31 und

lassen dort die notwendigen Dinge ausführen. Dann kann es

geschehen, daß während dieser Vorgänge ein Raster - Interrupt

ausgelöst wird. Da aber das I-Flag gesetzt ist, wird dieser

nicht bedient. Dieses Dilemma macht sich dann als kurzes

Aufblitzen des Bildschirms bemerkbar, da nicht früh genug auf

die andere Hintergrund- und Rahmenfarbe umgeschaltet wurde.

Deshalb müssen wir den Rasterinterrupt während des Durchlaufs

der Timerroutine zulassen und damit praktisch bei Bedarf die

normale Interruptroutine durch einen Interrupt unterbrechen.

Das klingt zwar sehr kompliziert und "gefährlich", ist aber

durchaus statthaft und nach einigen Überlegungen auch

logisch.

Wir könnten also einfach vor dem Aufruf der normalen

IRQ-Routine das I-Flag löschen und alles wäre in Ordnung.

192

Doch wir haben wieder etwas vergessen. Bevor das Flag

gelöscht wird müssen wir erst einmal - wie immer - die

Ursache für den betreffenden Interrupt (in diesem Fall der

Timer-Interrupt) beseitigen. Dies geschieht auch hier durch

das Löschen eines IRR. Dieses IRR liegt dabei in den

Registersatz der CIA 1 und besitzt die Adresse $DCOD (56333).

Das Löschen funktioniert do-* jedoch etwas anders. Es genügt

ein einfaches Lesen des Registers um diese Aufgabe zu

erfüllen, was in Zeile 480 geschieht. Jetzt haben wir aber

alles getan, um einen reibungslosen Ablauf zu gewährleisten

und gehen weiter in unserer eigentlichen Interruptroutine (ab

Zeile 510).

Da wir ja pro Bildaufbau insgesamt zweimal unsere Farben

umschalten müssen, einmal um Farbe 2 auf Farbe 1 zu setzen,

und einmal, um wieder von Farbe 1 auf Farbe 2 zurück-

zuschalten, müssen wir erst nachprüfen, in welcher Phase wir

gerade sind. Dies geschieht bei uns durch Lesen der aktuellen

Rasterzeile (Zeile 510), um sie mit dem Wert der unteren

Kante unseres gelben Streifens zu vergleichen (Z. 520). Ist

die aktuelle Zeile größer oder gleich dieses Wertes, so

müssen wir auf die zweite Farbe umschalten, springen daher

nach Zeile 600. Wir hätten rein theoretisch auch prüfen

können, welche Farbe gerade Hintergrundfarbe ist, was

ebenfalls seine Vorteile hätte. (Anmerkung: Da es eine ganze

Weile dauert, bis das Programm nach dem IRQ an exakt diese

Stelle kommt, ist der Rasterstrahl inzwischen einige Zeilen

weiter gelaufen. Deshalb werden wir nie genau den Wert als

aktuelle Zeile erhalten, bei der der Interrupt stattfand.

Bedenken Sie, daß auch schon, bevor unsere Routine aufgerufen

wird, einige Befehle im ROM abgearbeitet werden, die auch

Zeit kosten. Das ist auch der Grund, warum die scheinbare(!)

Rastereinteilung nicht ganz mit derjenigen übereinstimmt, die

in Paragraph 3.7 angegeben wurde.)

Der Rest ist relativ einfach: Wir ändern die Rahmen- und

Hintergrundfarbe und setzen den nächsten Rasterinterrupt auf

den oberen bzw. unteren Zeilenwert. Als Abschluß springen wir

in das reguläre Interruptende der normalen Routine, da noch

einige Register wiedergeholt und ein RTI (return from

Interrupt) ausgeführt werden müssen.

193

Wie Sie sehen, steht in den vier nullseitigen Speicherstellen

die notwendige Information, die die Art des Streifens

charakterisiert:

Adresse (Hex-Dez)|Inhalt

$FB - 251 Farbe 1

$FC - 252 Farbe 2

$FD - 253 Obere Kante

$FE - 254 Untere Kante

Durch Ändern der Inhalte dieser Adressen können Sie nun die

Farbe des Streifens oder des restlichen Hintergrundes, die

Position der oberen und der unteren Kante bestimmen. Dies

geschieht am besten durch ein kleines Basicprogramm, das

Ihnen oben ebenfalls angegeben wurde. Es lädt die Maschinen-

routinen ein, legt die 4 Parameter fest und startet die

Initialisierung und damit den Interrupt. Ab Zeile 1200 wird

Ihnen ein Beispiel einer schönen Anwendung gegeben. Denken

Sie sich doch einmal etwas aus. Vielleicht machen Sie einmal

ein Programm, mit dem Sie -durch die Cursortasten steuerbar-

jeweils einzelne Zeilen des Bildschirms hervorheben können,

oder - falls Sie sich etwas in Maschinensprache auskennen -

Sie wechseln statt der Hintergrundfarben immer zwischen Text-

und Graphikmodus und erhalten so eine gemischte Anzeige.

Haben Sie schon einmal 16 Sprites oder zwei Zeichensätze

gleichzeitig auf dem Bildschirm gesehen? Es gibt unzählbar

viele Möglichkeiten.

4.6.2. Lightpen

Bitte lesen Sie ruhig weiter, auch wenn Sie keinen Lightpen

besitzen, es springt auch etwas für Sie ab!

Was ein Lightpen oder Lichtgriffel ist, wie er funktioniert

und in den Rechnerablauf integriert wird, wissen Sie bereits

aus dem Abschnitt 3.7.2. Fassen wir hier das wichtigste noch

einmal kurz zusammen: |

Der Lightpen ist ein Instrument, mit dem der Computer

beliebige Positionen des Bildschirms identifizieren kann, auf

die der Stift gerade zeigt. Die jeweiligen x und

y-Koordinaten dieses Punktes können durch Lesen der

194

VIC-Register 19 und 20 festgestellt werden. Das Koordinaten-

raster entspricht dem der Rasterzeilen (s. # 3.7). Auch der

Lightpen kann einen Interrupt auslösen. In den IMR und IRR

sind dafür jeweils die 3. Bits zuständig. Sein Eingang am

Controlport 1 stimmt mit dem Eingang für den Feuerknopf eines

Joysticks überein.

Doch wie ist ein Lightpen anzuwenden, wie wird er

programmiert?

Die Lightpenabfrage kann auf zwei verschiedene Arten durch-

geführt werden. Die einfachere ist die durch ein kleines

Basicprogramm, das lediglich die beiden Register ausliest,

die die Bildschirmkoordinaten enthalten. Ein Beispiel wäre

etwa das Zeichnen eines Punktes an die Stelle, auf die der

Lightpen gerichtet ist. Diese Funktion übernimmt das folgende

kleine Demonstrationsprogramm, das nur zusammen mit den

Graphikroutinen aus dem Abschnitt 4.2 funktionstüchtig ist!

100 REM XXXXKKKEKKKKKKES

110 REM xx xx

120 REM ** LIGHTPEN xx

130 REM ** xx

140 REM XXX KKKKKKKKKKKKK

150 REM

160 V = 53248 : REM VIC BASISADRESSE

170 SA = 8192 : REM GRAPHIKSTARTADRESSE

180 GOSUB 10000:GOSUB 10200: FA=7*16+2:GOSUB 10400 : REM

GRAPHIK INITIALISIEREN

190 XP = PEEK(V+19) : REM LIGHTPEN-X-KOORDINATE

200 YP = PEEK(V+20) : REM LIGHTPEN-Y-KOORDINATE

210 XK = 2 x (XP - 40) : REM ERRECHNE X-KOORD.

220 YK = YP - 40 : REM ERRECHNE Y-KOORD.

230.IF XK>319 OR XK<O OR YK>199 OR YK<O THEN 190 : REM AUF

BEREICH TESTEN

240 GOSUB 10700 : REM PUNKT ZEICHNEN

250 GOTO 190

10000 REM INITIALISIERUNGS+PUNKTSETZ-ROUTINEN

10010 REM

10020 REM ... (S. KAPITEL 4.2)

In diesem kleinen Programm werden - nach dem Einschalten und

* Löschen der Graphik - in den Zeilen 190 und 200 lediglich die

195

x- und y-Koordinaten des Punktes auf dem Bildschirm

eingelesen, bei dem der Lightpen zuletzt auflag. Diese

Bildschirmkoordinaten werden dann in unsere bekannten

Graphikkoordinaten nach der Formel umgerechnet, die in

Abschnitt 3.7.2 angegeben wurde (Z. 210/220). Alsdann muß das

Ergebnis darauf geprüft werden, ob der Punkt, den der

Lightpen anzeigte nicht außerhalb des Bildschimfensters

liegt, was negative oder zu große Werte resultieren ließ.

Erst dann kann die Punkt-Setz - Routine aufgerufen werden, um

an der jeweiligen Stelle eben einen Punkt zu setzen. Sie

können dieses Programm beliebig erweitern mit vielen

Funktionen, so daß evt. ein ganzes Zeichenprogramm entsteht.

Vielleicht legen Sie mit dem Lightpen die Eckpunkte von

Linien oder den Mittelpunkt eines Kreises und seinen Radius

fest, die auf Tastendruck dann gezeichnet werden, oder wählen

per Lightpen bestimmte Menuefunktionen aus, die am Bildrand

angezeigt werden. |

Doch eine Sache stört dabei doch. Egal ob der Lightpen auf

den Bildschirm zeigt oder nicht, an dieser Stelle wird ein

Punkt gezeichnet. Hier mag das noch nicht so schlimme Folgen

haben, bei anderen Anwendungen wird es sicher stören. Eine

andere Möglichkeit der Bedienung ist die per Interrupt.

Jedesmal, wenn der Lightpen einen Impuls sendet, also nur

dann, wenn er auch tatsächlich auf den Bildschirm zeigt,

könnte beispielsweise ein IRQ ausgelöst werden, der entweder

einen Punkt zeichnet oder einfach in einer Speicherstelle ein

kurzes Signal gibt, das nach einiger Zeit wieder gelöscht

wird.

Eine andere Möglichkeit ist beispielsweise die Konstruktion

einer Alarmanlage: Der Lightpen wird an die Zimmerlampe

montiert, oder einfach auf sie gerichtet. Sobald irgendjemand

diese Lampe beim Eintreten einschaltet, sendet der Lightpen

einen Impuls an den Computer, der sofort mit einem Heulgetöse

beginnt, das sämtliche Nachbarn aus dem Bett wirft (man

könnte den Audioausgang vielleicht an eine Stereoanlage

anschließen (geht mit einem einfachen Überspielkabel), die

dem Ganzen noch etwas mehr "Power" gibt). Eine Variation

dieser Alarmanlage wäre es z.B., wenn das Aufgehen der Türe

.einen Kontakt auslöste, der eine Lampe zum Leuchten brächte,

was seinerseits wieder über den Lightpen zu einer Reaktion

des Computers führte.

196

Wir wollen uns statt der Auslösung eines Alarms mit einem

Farbwechsel des Rahmens zufrieden geben:

100:

110:

120:

130:

140:

150:

160:

170:

180:

190:

200:

210:

220:

230:

240:

250:

260:

270:

280:

290:

300:

310:

320:

330:

340:

350:

360:

370:

380:

390:

400:

410:

420:

430:

440:

450:

460:

C800

C800

C800

C800

C800

c800

C800

c800
c801
c803
c806
C808
C80B
C80D
C80F
c81l
c814
c815

C816

C819

c81ic

C8lE

c821

C822

C825

C827

C82A

C82C

78

Ag

8D

AQ

8D

Ag

85

Ag

8D

58

60

AD

8D

30

AD

58

4c

A5

8D

E6

4c

16

14

C8

15

00

FB

88

1A

19

19

07

OD

31

FB
20

FB

BC

03

03

DO

DO

DO

DC

EA

DO

FE

x= $C800

FARBE = $FB

IRQVECT= $0314

IRQALT = $EA31

IRR = $D019

IMR = $DOIA

RAHMEN = $D020

5

; INITIALISIEREN

5 KKK KKK KKK KEKE

;

INIT SEI ; INTERRUPT VERHINDERN

LDA #< IRQNEU

STA IRQVECT

LDA #> IRQNEU

STA IRQVECT+1 ;IRQ-VEKTOR UMLEGEN

LDA #$00

STA FARBE ; FARBE SCHWARZ

LDA #%10001000 ;MASKE

STA IMR ; LIGHTPEN-IRQ WAEHLEN

CLI ; IRQ ERMOEGLICHEN

RTS

;

; INTERRUPTROUTINE

> KKKKKKKKKKKKAKEKEK

IRQNEU LDA IRR ; INTERRUPTREGISTER

STA IRR ; LOESCHEN

BMI IRQRAS ;RASTERZ.-IRQPRINT

; NORMALER IRQ

LDA $DCOD ;CIA 1-IRR LOESCHEN

CLI ; INTERRUPT ERMOEGLICHEN

JMP IRQALT ;ZUR ALTEN ROUTINE

IRQRAS LDA FARBE

STA RAHMEN ;RAHMENFARBE

INC FARBE ; FARBE ERHOEHEN

JMP $FEBC ; ABSCHLIESSEN

197

Und hier das Ladeprogramm:

100 FOR I = 51200 TO 51246

110 READ X : POKE I,X : S=S+X : NEXT

120 DATA 120,169, 22,141, 20, 3,169,200,141, 21, 3,169

130 DATA 0,133,251,169,136,141, 26,208, 88, 96,173, 25

140 DATA 208,141, 25,208, 48, 7,173, 13,220, 88, 76, 49

150 DATA 234,165,251,141, 32,208,230,251, 76,188,254

160 IF S <> 5910 THEN PRINT “FEHLER IN DATAS !!" : END

170 PRINT "OK"

Sie starten wie immer mit einem

SYS 51200

Alle im folgenden genannten Zeilennummern beziehen sich auf

das Assemblerlisting.

Die Initialisierungsroutine, die in Zeile 220 beginnt, sollte

Ihnen inzwischen schon geläufig sein. Auch hier wird erst

wieder der IRQ-Vektor umgelegt auf unsere eigene Routine und

der entsprechende Interrupt diesmal durch Setzen des 3. Bits

des IMR (Interrupt Mask Register) eingeschaltet. Nichts

Besonderes bietet gleichfalls der Einstieg in unsere

Interruptroutine (ab Zeile 360). Wieder wird auf die Art des

Interrupts geprüft und entsprechend verzweigt. Dann aber

kommt der Wechsel der Rahmenfarbe. Der Vorgang an sich ist

leicht zu verstehen, wichtig hierbei ist allerdings, daß zum

erstenmal eine reguläre Speicherstelle durch die Interrupt-

routine verändert wird. Dies bringt besondere Effekte, ist

aber auch besonders gefährlich, wenn man nicht genau weiß,

was mit dieser Stelle wann passiert, denn der Interrupt kann

Ja grundsätzlich zu jeder Zeit und in jeder Routine ausgelöst

werden. Sie können aber von außen, also beispielsweise von

Basic aus, den momentanen Zustand der IRQ-Routine abfragen

oder andere Steuerfunktionen übernehmen. Dies wird z.B. vom

Betriebssystem genutzt, indem die interne Unterbrechungs-

routine jedesmal die TI$-Uhr verstellt, die dann von Basic

aus abgefragt werden kann. Auch hier natürlich stehen Ihnen

viele Möglichkeiten offen.

Bitte erinnern Sie sich, daß sie dieses Bildschirmblinken

auch durch Betätigen des Feuerknopfes Ihres in Port 1

gesteckten Joysticks erzeugen können.

198

Sie sehen, der Interrupt ist ein schönes "Spielzeug", das

enorme Welten entstehen läßt, wenn man es richtig zu nutzen

weiß. Beschäftigen Sie sich ruhig ein wenig damit, es lohnt

sich!

4.7 Ein kleines

Graphik—-Paket

Wir haben eine ganze Menge über Graphik und Ihre Program-

mierung gehört und gelesen. Viele Routinen sollten uns das

Leben erleichtern und ein wenig Einblick in die phantastische

Welt der Bilder vermitteln. Doch beim Ausprobieren all dieser

Utilities und Basic - Programme, die wir gespannt eingetippt

hatten, wurden wir zwar nicht durch das Ergebnis enttäuscht,

dafür aber umso mehr durch den Weg dorthin. Bärte und graue

Haare waren keine Seltenheit: Unsere Basicprogramme waren so

langsam, auch wenn wir die gut gemeinten Tips im Anhang

beherzigten, daß da kaum was von den Wogen der graphischen

Dramatik hinüberschwappte. Kurz: Wir wissen zwar, wie es

geht, doch die richtige Befriedigung machte sich kaum

bemerkbar. Dem soll in diesem Abschnitt abgeholfen werden.

Hier wird erst einmal anständig ausgepackt. Ein relativ

umfangreiches Graphikpaket in Maschinensprache macht Ihre

Graphik schnell und interessant.

Wenn Sie sich die nächsten Seiten betrachten, sollten Sie

nicht kapitulieren. Es ist zwar viel Arbeit, die ganzen

Maschinenroutinen abzuschreiben und auf Fehler zu

kontrollieren, doch es lohnt sich! Wer wirklich ernsthaft mit

Graphik arbeiten will, der sollte vor diesem Zeit- und

Mußeaufwand nicht zurückschrecken, der braucht einfach das

entsprechende Handwerkszeug.

Sie haben die Wahl:

1.) Entweder Sie bleiben bei den einfachen, aber langsamen

Basicroutinen,

2.) Sie setzen sich einmal einen Tag hin und schreiben das

Folgende ab.

199

3.) Sie kaufen sich eine Graphikerweiterung, die Ihnen viel

Arbeit abnimmt, oder

4.) Sie besorgen sich die zu diesem Buch erhältliche

Programmdiskette mit allen in diesem Buch befindlichen

Routinen und Programmen (auch dem Graphikpaket).

Die Graphik völlig zu ignorieren kann ich Ihnen nicht

empfehlen.

Doch nun zum Thema: Zunächst wird Ihnen das Assemblerlisting

des Graphik - Paketes mit vielen Kommentaren vorgestellt, für

diejenigen, die sich für die einzelnen Routinen

interessieren. Sie werden sehen, daß einige Dinge aus

Geschwindigkeitsgründen etwas anders organisiert sind, als

wir es in den obigen Basicprogrammen getan haben. Dazu gehört

z.B. die Routine, die beliebige Linien auf den Bildschirm

zeichnet. Hier werden nicht direkt die Koordinaten eines

jeden Punktes ausgerechnet, aus denen ja dann wieder die

Speicheradresse errechnet werden müßte, sondern wir berechnen

quasi das Verhältnis der Anzahl der zu gehenden Schritte nach

oben/unten zu der Anzahl von Schritten nach rechts/links, um

vom Ausgangspunkt zum Endpunkt zu gelangen, und gehen dann

stets in einem bestimmten Rythmus, der diesem Verhältnis

entspricht, eben in diese Richtungen. Dabei wird die Tatsache

voll berücksichtigt, daß stets zwei Punkte über- bzw.

nebeneinander liegen müssen, um eine zusammenhängende Linie

zu erhalten. Sie werden staunen, wie schnell so etwas geht.

Nach diesem sogenannten Source-Listing wird Ihnen wieder ein

Basic-Lader für diejenigen, die keinen Monitor besitzen,

angeboten, um das Programm sicher und gut eintippen zu

können. Doch hier das Listing:

200

END OF ASSEMBLY!

001 „BA #C800

2028 -MC +0800

42030 -OS

2940 5
7050 SEE HEHEHE EHH REE EN

20460 =e HX

0070 ss #*#* HOCH AUFLOESENDES **
aa80a 5 #* GRAPHIK - FAKET HH

0090 5 ee He
2100 SEEKER HEE NENNEN RR

Bill :

0120 :

0130 3

2140 ı ROM-SPRUNGADRESSEN:
81508 SER HERE ER EEH

0140 3

2172 GETEYT .DE #B79E HOLT BYTEWERT

@180@ CHKCOM .DE $AEFD :FRUEFT AUF KOMMA

@19@ CHKGET .DE £B7Fi 3; CHKCOM+GETBYT

82088 GETCOR „DE #B7EB ;HOLT KOORDINATEN

0212 QERR -DE #8248 3; ILLEGAL QUANTITY

4220 V .DE #D@@@ s VIDEOCONTROLLER

8230 :

2240 sNULLSEITIGE REGISTER:
3250 5 EH HERE EEE EERE REED

0268 :

@27@ OFFX „DE #63

@280 MSK .DE $AB 3 MASKE

0290 DIF@ „DE #649

@30@0@ DIFi -DE $é6A

@31@ DIF2 „DE #6B

23520 DIFS3 ‚DE $öC

2538 DIF4 „DE #6D

8348 DIFS „DE #6E

0358 ZWN „DE $4F sXK/8 (HLINE)
B5s0 ZA .DE +78 3; ZAEHLER (HLINE)
0370 A „DE #AC ; PUNKTADRESSE
01580 B ‚DE #AC+1
23908 XK .DE $14 3 X-KOORDINATE
6408 FLG „DE #97 »UNPLOT/PLOT-FLAG
2418 USE -DE #FD ; DIVERSES
44208 ;
0430 ;FESTE WERTE:
0440 5 EERE HERE

0450 3

024460 GRAPH „DE $2000 3 GRAPHIKSTART
2478 VIDEO .DE $0400 3 VIDEORAMSTART
@48@ GSTART .DE #721 ; GR-START+1-H-BYTE
2490 GEND .DE #3E ; GR-ENDE-1-H-BYTE
0500 ;
0518 5
0520 ; ANSTEUERADRESSEN:
@53a SER RR NR

0548 3

CB8@@- 4C 24 CS 8550 JMP INIT ;GRAPHIK EIN
CB85- AC 41 CB 9560 JMP GOFF ; GRAPHIK AUS
C8@6- 4C 12 C9 8578 JMP GCLEAR ; GRAPHIK LOESCHEN
[889- 4C 31 C9 8588 JMP SCOLOR sFARBE SETZEN (LOESCHEN)
Ce@c— 4C 2A C9 8590 JMP PCOLOR 3; PLOTFARBE
C8@F—- 4C 58 CH 8600 JMP PLOT ;PUNKT SETZEN
C812- ACC 55 CB 86418 JMF UNPLOT ; PUNKT LOESCHEN
CBiS- 4C 6B C8 8628 JMP SLINE sLINIE ZEICHNEN

201

cC8l8-

CB1iR-

CBl1E-

Ce21-—

cs4i-

c844—

C847-

Cc84Aa-

CSs4D-—

CBA4F-

C852-

[85357

C8S7-

C868-

CSseé6A-

CB4B-—-

CB&SD-

[87B-

AZ

2C

A2

2C

A2

28

48
43

7
=

67

28

aa

8@
5A
FD

CB

Da

De

C8

ES

cs

AE

0728

2730

12890

1898

11208

1118

1120

1158

1148

11508

1168

1178

1180

1178

1200

1218

1220

1258

1240

1258

1260

1278

1288

INIT

GOFF

UNPLOT

PLOT

PL1

CLLINE

SLINE

JMP CLLINE

JMP GLOAD

JMP GSAVE

JMP HARDC

sLINIE LOESCHEN

3 GRAPHIK LADEN

;GRAPHIK SPEICHERN

sHARDCOPY (GP 1@@ VC ETC.)

;GRAPHIK EINSCHALTEN:
3 KERERERERERTERUEHERE

V+17

STORE1

v+24

STORE2

#700111011

V+17

#7.00011000

V+24

#360

INIT

sKEINE BLOCKADE

sALTE INHALTE RETTEN

;GRAPHIK EIN

;NACH #2000

;CODE FUER RTS ALS BLOCKADE

sINIT WIRD BLOCKIERT

3
; GRAPHIK AUSSCHALTEN:
SEHRKERINKTN KNUT

STOREI

v+17

STORE2

v+24

PUNKT LOESCHEN:
HEEEKEH EERE EEER

n
a
m

a
u

‘
a
8

LDX #400
.BY $2C

a
n

a
n

‘
a
e

*
7 UNKT SETZEN:

KEKE HK EERE

a
e

r So Pd

#480

*FLG

CHKCOM

TESCOR

HFOSN

PLT

STX

JSR

JSR

JSR

JMP

:LINIE LOESCHEN:
; FERIEN

3
LDX #3900

„BY #2C

sLINIE ZEICHNEN:
ERKENNE

LDX ##80
ISR PL1
JSR CHKCOM

202

;ALTE INHALTE RUECKHOLEN

;CODE FUER NOP FUER

; BLOCKADE AUFHEBEN

; BILDSCHIRM LOESCHEN

;LOESCH-FLAG

; SETZ-FLAG

; KOORDINATEN HOLEN

; ADRESSE ERRECHNEN

;PUNKT SETZEN/LOESCHEN

3; LOESCH-FLAG

; SETZ-FLAG

;ERSTEN PUNKT SETZEN

C873-

UB76-

C879-

C87C-—

C87D-

EB7E-

csa@a-

C882-

c894-

CB86-

CB88-

LEBBA-

CB8C-

CBSE-

C89@-

CB91—-

20

4C

79 C8

BE C9

iC CB

in CB

1B CB

15

2F CE

AD

23

49
AC

CB

07

TESCOR

Ti

ILLFF

HPOSN

JSR

JMF

TESCOR

HL INE

;ZWEITE KOORD. HOLEN
: LINIE ZEICHNEN

: KOORDINATEN TESTEN:
ERERUENEENERRERRRR

JSR

TXA

TAY

LDX

CPY

BCS

LDA

CFX

BCC

BNE

CMP

BCS

RTS

JUMP

GETCOR

#XK+1
#200
ILLFF
*XK
#H, 320
Ti
ILLFF
#L, 320
ILLFF

QERR

; HOLEN

3;Y-KOORD. >= 2007

JA!

ıX-KOORD. >= 2207

sJA

ı A: XK-LOW

X: XK-HIGH

ıY:YK

; ILLEGAL QUANTITY

8

;ADRESSE ERRECHNEN:
SERIEN RR INH HER

STY

STA

STX

sta

STX

TYA

LSR

. LSR

LSR

TAX

LDA

STA

TXA

AND

TAX

LDA

STA

YK

XKL

XKH

#XE

#XK+1

A

A

A

MUL/H,X

*B

#3

MUL/L,X
“A

#7

#A
“A
*XK
#4F8
x OFF X
#H, GRAPH
*B
*B

*A

*OF FX

“A

*B

*#XK+1

*B

*XK

#7

#7

MSKTAB,X

203

;Y-K

3 X-KL

»X-KH (ZWISCHENSPEICHERN)

; INT(Y/8)

ı 520*INT(Y/8) CHIGH-BYTE)

;BITS @+1 ISOLIEREN

; 320*INT(Y/8) (LOW-BYTE)

; Y-KOORD.

3 ¢Y AND 7)

; OF FY=S204INT(CY/8)+CY AND 7)
SEEN RR

3 OFF X=8* INT (X/8)
SERIEN
; GRAPHIKSEITE

3+SA

ıAD = OFFY + OFFX + 5A
3 HEKEKECEE EEE EEK EEREEK

37-(X AND 7)

; MASKENTABELLE

CSDF- 85 AB 1950 STA *#MSK 32° (7-(X AND 7))

CBEi- 68 1940 RTS
1778 5
1980 ;
1990 ; PUNKT PLOTTEN:
2000 5 EERE EEE HEED

2010 3
CBE2- AB 00 2420 PLT LDY #8
CBE4— 38 2030 PHP ; CARRY-FLAG RETTEN
CBES- AS AB 2040 LDA *MSK ; MASKE
ECBE7- 24 97 2050 BIT *FLG 3; PLOT/UNPLOT—FLAG
ECBEI- 30 @5 2060 BMI PL2 ;PLOT
CSEB- 49 FF 2078 EOR #3FF 3; UNPLOT
CBED- 31 AC 2080 AND (A),Y
CSEF— 2C 20970 .BY $2C ; UEBERSPRINGE NAECHSTEN BEFEHL
CSEF@- 11 AC 210@ PL2 ORA (A),Y ;PLOT
CBF2- 91 AC 2118 STA (A) „Y
CBF4- AS AC 2128 LDA *A ;FARBE SETZEN
CSF6- 85 FD 2138 STA *USE
C8FE- AS AD 2148 LDA *B
CBFA- 4A 2150 LSR A
CBFB- 646 FD 2168 ROR *USE
CBFD- 4A 2178 LSR A
COFE- 66 FD 2188 ROR #USE
[craB- AA 2198 LSR A
C9@1-— 64 FD 2200 ROR *#USE 3; ADRESSE /8
C9@3— 29 @ 2218 AND #2035
C995- a9 04 2228 ORA #304 3; VIDEORAM AB £0400
C797- 85 FE 2238 STA *USE+1
C9@9- AD 1D CB 22408 LDA COLOR ;FARBE IN
C9@C-— 91 FD 2258 STA (USE) ,Y 3 VIDEORAM
C9BE- 28 2260 PLP ; CARRY-FLAG
LIBOF—- A4 OF 2278 LDY *ZWN
C911- 48 2288 RTS

2298 3
2500 5
2518 ; GRAPHIK LOESCHEN:
23280 3 RRR EKER HEE
2358 ;

C912- AP? 28 2349 GCLEAR LDA #H,GRAPH
C914- 85 FE 2358 STA *USE+1
C716- AB 80 23568 LDY #L.,GRAPH 3 Y=8
C918- 84 FD 23780 STY *USE 3 GRAPHIK-STARTADRESSE
CPLA- AZ 20 2588 LDX #320 ; LAENGE
CFI1C- 98 2378 TYA 3; Y=@!
C91D- 71 FD 24980 GC1 STA (USE) ,Y 3; LOESCHEN
C91IF- CB 2410 INY
C97280- DO FB 2428 BNE GC1
C922- Eö FE 2430 INC *USE+1
C924—- CA 2440 DEX
C925- DB Fö& 2458 BNE GC1
C927- 4C 37 C9 2448 JMP SCOL1 ; VIDEORAM LOESCHEN

2470 ;
2486 5
2490 ıFUNKTFARBE DEFINIEREN:
2508 SERRENKKUN HET ER
2518 :

C92A- 20 F1 BZ 2528 PCOLOR JSR CHKGET 3 KOMMA+F ARBE
C92D- BE 1D CR 25308 STX COLOR
CISG- 68 2548 RTS

2550 :

2560 5
2578 ;FARBE SETZEN:
2580 5 HEHE TEE HEE EE HE HE EE
2578 3

C931- 28 Fi B7 260@ SCOLOR JSR CHKGET 3 KOMMA+F ARBE

204

E993-

C997-
C999-
C99B-
CIIC-
C99D-

E2

AC
07
25

FF
a4
C7
AD
AC
AC

28
AD

CB

2618

2628

3228
3230
3248
3258
3268

SCOL1

GM9

GM9.

UNTEN

uni

UN2

u/O

OBEN

OB1

OB2

RECHTS

3; VEE TORROUT INEN:
3 RHRKKHKKEKEREEEEE

LDA

RTS

3

LSR

BCC

ROR

LDA

INY

CLC

ADC

COLOR
#3
#H ‚VIDEO
*USE+1
#_,VIDEO
*USE
*FLG
COLOR
(USE) ,Y

*FLG

GM9

*USE+1

GM9.

GM?

#4ES
*FLG

GM9

UNTEN

*MSK

*MSK

*A

#8

205

sADRESSE VIDEORAM

:Y=0!

; FARBE

:SETZEN

7 SPRITEVEKTOREN .SCHUETZEN

; UNBEDINGT

; PUNKTADRESSE—-LOW

3; PACKENRAND!

sADDIERE 1 (C=1!)

sADDIERE 320-7=313

3;C=1!

; ADRESSE

;PACKENRAND (OBEN)

;SUBTRAHIERE 1
;SUBTAHIERE 320+7=327
3;C=1!

;MASKE VERSCHIEBEN
NOCH INNERHALB BYTE
;AUSSERHALB BYTE

C99F-
CHA1-
CIAZ-
CIAS-

LFAB-

CIAB—

CI9AA—

LIAC-

C9AE-

CIBO—

C9Bi-

C9B2-

C9B4-

EC7B&-

C7BR3-

EIBA-

85

98

E&

60

18

1B

1a

or

1A

CB

CB

CB

CB

CB

CB

CB

CB

RE2

R/L

LINKS

LIS

LIi

HL INE

LA

STA #A

RE2

*B

RECHTS

*MSK

LI1

*MSK

“A

#8
“A
LI1
+B

;LINIE ZEICHNEN:
ERKENNEN

3
PHA

LDA XKH

LSR A

LDA XKL

ROR A

LSR A

LSR A

STA +ZWN

PLA

PHA

SEC

SBC

PHA

TXA

SBC

STA

BCS

PLA

XKL

XKH

*DIF3

LS

#$FF
#1

+0

*DIFS

*DIFi

*DIFS

*DIF®

+DIF4

KL

XKH

YK

#$FF

#3FE

*DIF2

*+DIF>3

*+DIF@

206

38 ADDIEREN

38 SUBTRAHIEREN

X2-LOW-BYTE

X2-HIGH-BYTE

Y2

x1-LOW-BYTE

xX1-LOW-BYTE

V1

8 ZWISCHENSP.

3X2-X1

s; NEGATIV?

sJA

; VORZE TCHENWECHSEL

3 (X2-X1)—-HIGH

» (X2-X1)-LOW

svY2-Yi

ı NEGATIV?

3; VORZE ICHENWECHSEL

3 (Y2-Y1)

3 (X2-X1)/2

s (Y2-Y1)-(X2-X1)

;LOW-BYTE NACH X-REG.

CA43-

CA44—

CA49—

CA4B—

CA4D-

CA4F-

CASZ-

CASS-—

CASE-

CASA-

LASC-

CASE-

CAé6a-

CA62-

CA64—

CA&6-

CA69—-

CAéC-

CA6E-

28

AG

AZ

AP

4C

8&

28

FD

28
a0
2a
DS

Fi

67

OF

C?

C8

C9

AE

Ei

FF

AE

Ei

FF

B7

FS

3938

Li

L2

Lé |

GLOAD

GSAVE

HARDC

STA *ZA ;HIGH-BYTE NACH ZA

BCS LS ; UNBEDINGT

JSR R/L ; RECHTS/LINKS

LDA *DIF4

ADC *DIF2

STA *DIF4

LDA *DIFS

SEC #8 s (X2-X1) -(Y2-YLDNACH (X2-X1)

STA *DIFS

STY *ZWN

JSR PLT ‚PUNKT ZEICHNEN

BNE L&

INC *ZA

BNE L6 ;DEC ZAEHLER

LDA *DIFS

BCS Li

JSR U/O ; UNTEN/OBEN

LDA *DIF4

ADC *DIF@

STA *DIF4

LDA *DIFS

ADC *DIF1

BVC L2 ; UNBEDINGT

;GRAPHIE LADEN:
5 EEE HEHEHE EERE

JSR CHKCOM 3 KOMMA?
JSR #E1D4 ı PARAMETER HOLEN

LDY #H,GRAPH

LDX #L,GRAPH ; STARTADRESSE

LDA #200 ;LOAD-FLAG

JMP $FFDS ; LADEN

3 .

;GRAPHIK SPEICHERN:
5 EHH EEE EEE HEHE K

3

JSR CHKCOM ; KOMMA?

JSR $E1D4

; ENDADRESSE

LDX #H,GRAPH+8000

LDY #L,GRAPH+8000

LDA #L,GRAPH

STA *$FD

LDA #H,GRAPH

STA *$FE ; STARTADRESSE

LDA #$FD ; POINTER

JMP $FFD8 ; SPEICHERN
=
3

;
sHARDCOPY SEIKOSHA GP 1@@ VC:
5 KFRKHKFRERFREREEEERTF EEK HK

JSR CHKGET-
STX #367
JSR $F3OF : SUCHT LOG. FILENR.

‚HOLE LOG. FILENR.

207

FS

FF

CB

CB

CB
FF

CB

C8

CB

CB

FF

CB

FF
CB

CB

4970
4980

5820

9038

5040

3850

3048

3078

3888

5890

3100

3118

3120

3130

3140

3158

3168

3178

3188

31978

3208

„218

3220

32308

5248

HAI

HAI.

HA2

HAS

HA4
HAS

HAG

*USE+1

*USE

HAS

#0

#7

*USE

BUFF,X

A

HAS
*$61
#$80
$FFD2

HA4

*$65

#8

*$6S3

HA&

*$64

FLG2

HA2

#4$@0D

$FFD2

ZWIS

#7

ZWIS

*FLG

HAB.

208

;SETZT FILEPARAM.

;KANAL OEFFNEN

; MASKE

; PACKENGROESSE

; ZEILENZAEHLER

; YK-MERKER

} PACKENZAEHLER

;MITTENZENTRIERT
; AUSGABE

s XK=0

3 YK

ı BUFFERZEIGER

3 XK—-L

3 XK—-H

3 YK

;POSITION BERECHNEN

:BYTE HOLEN

; BUFFERZEIGER

‚IN BUFFER

sYK

;EIN BIT HOLEN
sUND IN AKU SCHIEBEN
; BUFFERZEIGER ERHOEHEN

;BEI LETZTER ZEILE=#$BF
;HIGH-BYTE
; SENDEN
38 BYTES SENDEN

3 XK—-L

3XK+8

3 XK—-H

;CARRIGE RETURN

; SENDEN

3 YK+7

CAFD-

CBBB-

CBO2—

CBO4—

CBaé—

CBOE—

CBOA-—

CBaC—

CBBE-

CB1B-

CB12-

CB14—

CB17-

CRiA-

CBiB-

CBiC—

CBiD-

ECB1E-

CBiF-

CB20-

CB21-

CH22-

CB2A—

CB2D-—

CR2F—

CB32-

CB3S-

CBS8-

CBSB-

CBSD-

CBAU-

CBA43-

CB46—

CB49-

CB4c—

CB4D-
CBSB-

32

28

ca

v1

as

8A CA 5258

02

08

40

02 24

3268

3270

5280

32978

5300

3518

33522

333580

3246

3338

5268

3578

3388

35370

5400

3418

9420

3430

7440

3450

3468

3470

3488

3490

3988

3418

3928

967978

3788

5718

3728

3758

3740

3758

3768

3770

5788

5798

5800

HAS

HAS.

HA?

XKL

XKH

COLOR

STORE 1

STORE?

ZWIS

FLG2

BUFF

HATAB

MUL /H

MUL /L

JMP HAI

#4

*USE

HA7

*USE ;LETZTE ZEILE

#1

*FLG ;FLAG

#$F

*#$61 ; MASKE

HAB

#15 ; NORMAL MODUS

$FFD2

$F FCC ;SCHLIESST KANAL

B
a
a
r

o
n
r
w
r
n
w
o
r

BW
M
O
Z
A
D
A
D

A
M
E
S

T
A
D
P
D
M
P
P
T
P
r
p
r
s

w
s

INTERNE SPEICHER:
HREEHEKEREEHEEREER

E
A

a
l

a
‚DS 1 ı XK-LOW-ZWISCHENSPEICHER

-DS 1 3; XK—-HIGH—ZWISCHENSPE ICHER

-DS 1 3; YK-ZWISCHENSPE ICHER

-DS i ; FARBE

-DS i 3; V+17—REG. —ZWISCHENSP.

-DS 1 ; V+24-REG. -ZWISCHENSP.

-DS 1 3; ZWISCHENSPEICHER

-DS 1 3; ZWISCHENSPE ICHER

-DS 8 ; BUFFER FUER HARDCOPY

; TABELLEN:
GREEN

; DRUCKERZE ICHEN:

(RUECKWAERTS)

a

"
e
e

‘
a
a

‘
a
n

‘
H
e

MITTENZENTRIERT/GRAPHIK EIN

B Y 80 @ 16 27 8

a

w
e

S
e

8

MULTIPLIKATIONSTABELLE:

(N*¥32@ FUER N=@ BIS N=24)

"a
e

‘a
s

IGSH-BYTES H

BY @1235 67 8 1@ 11 12 13 15 16 “
a
e

‚BY 17 18 20 21 22 23 25 26 27 28 30 Si

:LOW-BYTES
3
-BY #00 $40 #80 #C@

‘
a
n

‘
a
s

; MASKENTABELLE:

MSKTAB .BY 2989000001 Zo@n@BB1a ~OBBNA1e0 ZORDBA1000

209

CBS1- 12 28 48 5818 „BY £09010000 ~00100000 4210900000 %10000000

CBS54- 80

38280 „EN

END OF ASSEMBLY!

--—- LABEL FILE: --

A =OBAC B =@@AD
BUFF =CB22 CHKCOM =AEFD
CHKGET =B7Fi CLLINE =C868
COLOR =CBiD DIF® =0069
DIF1 =Q@6A DIF2 =@@4B
DIF =@@4C DIF4 =006D
DIFS =@06E FLG =0097
FLG2 =CB21 GC1 =C91D
GCLEAR =C912 GEND =@03E
GETBYT =B79E GETCOR =B7EB
GLOAD =CA43 GM9 =C946
GM9. =C955 GOFF =ce41
GRAPH =2000 GSAVE =CA52
GSTART =0071 HA1 =CABA
HA1. =CA91 HAZ =CAAG
HAS =CAA9 HA4 =CACB
HAS =CACA HAS =CAES
HA7 =CB12 HAB =CAFD
HAS. =CBaa HARDC =CA69
HATAB =CB2A HLINE =C9BB
HPOSN =C894 ILLFF =C891
INIT =C824 Li =CA11
L2 =CA2@ L3 =C9E1
L4 =C9FC LS =CA16
L& =CA2F LIi =C9BA
LIZ =C9B2 LINKS =C9AB
MSK =@@AB MSKTAB =CB4D
MUL/H =CB2F MUL/L =CB49
OB1 =C984 0OB2 =C988
OREN =C979 OFFX =@0643
PCOLOR =C92A PLi =Casa
PL? =CeFe PLOT =C858
PLT =C8E2 GERR =B248
R/L =C9AG RE? =C9A5
RECHTS =C993 SCOL1 =C937
SCOLOR =C931 SLINE =C86B
STORE1 =CBiE STORE2 =CBiF
Ti =C89@ TESCOR =C879
U/O =C977 UN1 =C968
UN2 =C94C UNPLOT =C855
UNTEN =C95B USE =0@FD
v =Dea@e VIDEO =20400
XK =0014 XKH =CBiB
XKL =CB1A YK =CBIC
ZA =0070 ZWIS =CB20
ZWN =Q@Q46F
//0000,CB55,@B55

210

Kommen wir zum Basiclader:

100 FOR I = 51200 TO 52054

110 READ X : POKE I,X : S=S+X : NEXT

120 DATA 76, 36,200, 76, 65,200, 76, 18,201, 76, 49,201

130 DATA 76, 42,201, 76, 88,200, 76, 85,200, 76,107,200

140 DATA 76,104,200, 76, 67,202, 76, 82,202, 76,105,202

150 DATA 234,173, 17,208,141, 30,203,173, 24,208,141, 31

160 DATA 203,169, 59,141, 17,208,169, 24,141, 24,208,169

170 DATA 96,141, 36,200, 96,173, 30,203,141, 17,208,173

180 DATA 31,203,141, 24,208,169,234,141, 36,200, 76, 68

190 DATA 229,162, 0, 44,.162,128,134,151, 32,253,174, 32

200 DATA 121,200, 32,148,200, 76,226,200,162, 0, 44,162

210 DATA 128, 32, 90,200, 32,253,174, 32,121,200, 76,187

220 DATA 201, 32,235,183,138,168,166, 21,192,200,176, 13

230 DATA 165, 20,224, 1,144, 6,208, 5,201, 64,176, 1

240 DATA 96, 76, 72,178,140, 28,203,141, 26,203,142, 27

250 DATA 203,133, 20,134, 21,152, 74, 74, 74,170,189, 47

260 DATA 203,133,173,138, 41, 3,170,189, 73,203,133,172

270 DATA 152, 41, 7, 24,101,172,133,172,165, 20, 41,248

280 DATA 133, 99,169, 32, 5,173,133,173, 24,165,172,101

290 DATA 99,133,172,165,173,101, 21,133,173,165, 20, 41

300 DATA 7, 73, 7,170,189, 77,203,133,171, 96,160, 0

310 DATA 8,165,171, 36,151, 48, 5, 73,255, 49,172, 44

320 DATA 17,172,145,172,165,172,133,253,165,173, 74,102

330 DATA 253, 74,102,253, 74,102,253, 4l, 3, 9, 4,133

340 DATA 254,173, 29,203,145,253, 40,164,111, 96,169, 32

350 DATA 133,254,160, 0,132,253,162, 32,152,145,253,200

360 DATA 208,251,230,254,202,208,246, 76, 55,201, 32,241

370 DATA 183,142, 29,203, 96, 32,241,183,142, 29,203,162

380 DATA 3,169, 4,133,254,160, 0,132,253,132,151,173

390 DATA 29,203,145,253,200,196,151,208,249,230,254,202

400 DATA 240, 3, 16,242, 96,162,232,134,151,208,235,165

410 DATA 172, 41, 7,201, 7,240, 5, 56,169, 0,176, 4

420 DATA 169, 56,230,173,101,172,133,172,169, 0,101,173

430 DATA 133,173, 96, 48,226,165,172, 41, 7,240, 5, 24

440 DATA 169,255,144, 4,169,199,198,173,101,172,133,172

450 DATA 165,173,233, 0,133,173, 96, 70,171,144, 14,102

460 DATA 171,165,172,200, 24,105, 8,133,172,144, 2,230

470 DATA 173, 96, 16,235, 6,171,144, 14, 38,171,165,172

480 DATA 136, 56,233, 8,133,172,176, 2,198,173, 96, 72

211

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

780

790

800

810

820

830

840

850

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

173, 27,203, 74,173, 26,203,106, 74, 74,133,111

104, 72,

108,176,

56,237,

10,104,

26,203,

73,255,105,

72,138,237,

1,

27,20

72,169,

3,133

0,229

108,133,106, 133,110,104,133,105,133, 109,104, 141

26,203,142, 27,203,152, 24,237, 28,203,144, 4

73,255,105, 254,133,107,140, 28,203,102,108, 56

229,105,170,169,255, 229,106,133,112,164,111,176

56,165,109,101,107,133,109 5, 10, 32,166,

165,110,233,

208, 5,230,112,

119,201,

106, 80,221,

0,169, 0,

162, 63,160,

169,253,

64,

76,216,

97,169,

32,203,169, 40,

32,210,255,202, 16,247,169,

32, 203,133,101, 169, 173,

100,164,101,

157,

169, 0,160,

249, 37, 97,

99, 24,105, 8,

203,208,181,169,

105, 7,141,

169, 4,197,253,

169, 15,133,

204,255, 48,

58, 32,143,

l, 2, 3, 5,

16, 17, 18, 20,

31, 0, 64,128,

128, 76, 79

32,

"OK et

201,

0,133,110,132,111,

208,

32,253,174,

76,213,255,

169,

255,

7,133,253,169,

141,

32,148,200, 160,

133,

13,

32,203,198,151,240,

240,

87,

6,

21,

192,

IF S <> 104883 THEN PRINT

PRINT

1,

32,253,174,

3

32,21

32,226,200, 232

96,165,108,176,222, 32

24,165,109,101,105,133,109,165,110,101

32,212,225,160, 2,162

2,225

0,133,253,169, 32,133,254

32,241,183,134,103, 3

243, 32, 31,243,166,103, 32,201,255,169, 255,133

33,203,162,

0,133,

30, 34,203,

99,144,

32,210,255,173,
3,

12,133,253,169,

58,

80,

8,

23,

2,

32,130,

0, 16,

10, 11,

25, 26,

4, 8,

65,

"FEHLER

0,133,254,165,

0,177,172,166,254

34,203,230,101,232,134, 254,228, 253, 208, 229

7,166,253,

9,128, 32,210,255, 136,

IN DATAS

28,133,151,169,

4,189, 42,203

99,13

9

42,20

16,23

2,230,100, 206,

32,20

76,13

1,13

97,208,235,169, 15, 32,210,255,

48, 48, 32, 32,

27,

12, 1

27, 2

16, 3

8

€¢ ft
oo @

Wie ist nun diese Graphik-Hilfsprogramm anzuwenden?

Der Aufruf sämtlicher 12 Befehle erfolgt

weisung, die in einigen Fällen noch durch

212

über eine

einige

2, 15

0,141

3,100

9,166

2, 16

7,165

33

3, 24

8,202

3,151

76

32

0

15

30

64

8,

8,

3,

8,

2,

END

SYS-An-

Parameter

ergänzt wird. Das erscheint im ersten Moment etwas

ungewöhnlich, da die Syntax des eigentlichen SYS-Befehls

keine weiteren Parameter außer der Adresse zuläßt, Sie werden

sich aber schnell daran gewöhnen. Am besten verfährt man, wie

dies im Anwendungsbeispiel vorgeführt wird: Man definiert

zunächst am Programmanfang zwölf Variablen mit den Sprung-

adressen zu den einzelnen Befehlen. Im Verlauf des übrigen

Programms geschieht der Aufruf dann stets über diese

Variablen, wobei bei Bedarf die notwendigen Parameter ergänzt

werden. Eine kleine Tabelle informiert Sie über die Sprung-

adressen und die Syntax der verschiedenen Befehle:

SYS 51200 - Graphik einschalten

SYS 51203 _ Graphik ausschalten

SYS 51206 - Graphik löschen

SYS 51209,PF*16+HF - Farbe setzen

SYS 51212,PF*16+HF - Plotfarbe ändern

SYS 51215,X,Y - Punkt setzen

SYS 51218,X,Y - Punkt löschen

SYS 51221,X1,Y1,X2,Y2 - Linie zeichnen

SYS 51224,X1,Y1,X2,Y2 - Linie löschen

SYS 51227,"name",GA - Graphik laden

SYS 51230,"name",GA - Graphik speichern

SYS 51233,LF - Hardcopy S.GP-100VC

Dabei bedeuten:

PF - Farbe eines Graphikpunktes v. 0-15

HF - Hintergrundfarbe von 0 bis 15

X - X-Koordinate eines Punktes (0-319)

Y - Y-Koordinate eines Punktes (0-199)

X1/2 - X-Koordinate des Start-/Endpunktes

Y1/2 - Y-Koordinate des Start-/Endpunktes

"name" - Filename (auch als Stringspeicher)

GA - Geräteadresse (1 oder 8)

LF - logische Filenumner v. OPEN LF,GA

Bevor wir direkt in unser Demonstrationsprogramm einsteigen,

sollten wir kurz die wesentlichsten Dinge besprechen, wobei

Sie die Details am besten durch testen und probieren heraus-

bekomnen:

213

Die ersten drei Befehle dürften klar sein, wobei beachtet

werden sollte, daß beim Einschalten der Graphik diese nicht,

beim Ausschalten jedoch der Bildschirm gelöscht wird.

Beim Setzen der Farbe wird die Farbe aller Graphikpunkte und

des Hintergrundes für das gesante Graphikbild festgelegt.

Wählen Sie also den Hintergrund grün (Farbcode: 5) und die

Farbe der Punkte violett (Farbcode: 4), so setzen Sie PF>5

und HF=4. Bei jedem gezeichneten Punkt aber wird gleichfalls

das entsprechende Farbbyte des Videoram gesetzt. Die

jeweilige Farbe wird erstens durch den gerade besprochenen

Befehl gesetzt (damit ändert sich die Farbe beim Zeichnen

nicht), und zweitens durch das folgende Kommando, das

lediglich besagt, daß ab jetzt alle neu gezeichneten Figuren

in dieser neuen Farbe gezeichnet werden.

Ihnen stehen zwei Befehle zur Verfügung, um einen Punkt zu

zeichnen und um einen Punkt zu löschen. Gleichzeitig wird im

Farbram die aktuelle Farbe gesetzt.

Wollen Sie eine Linie von den Koordinaten X1,Yl nach X2,Y2

zeichnen bzw. löschen, so verwenden Sie die beiden nächsten

Befehle. Was eben zu der Farbsetzung gesagt wurde, gilt hier

natürlich genauso.

Die zwei Kommandos zum Laden und speichern von Graphik

verwenden Sie bitte genauso, wie Sie Basicprogramme

laden/speichern - unter Angabe des Filenamens und der Geräte-

adresse (GA=1 fiir Kassettenbetrieb, GA=8 fiir Diskette).

Bevor Sie eine Hardcopy auf dem Drucker Seikosha GP-100VC

(oder Epson mit DATA BECKER - Interface) starten, mUssen Sie

z.B. mit OPEN 1,4 entsprechend den Druckerkanal öffnen.

Anschließend folgt ein SYS HC,1l (da wir LF, die logische

Filenummer als 1 gewählt haben) und ein CLOSE 1 (s. Demo-

programm).

Damit sollten die größten Unklarheiten beseitigt sein, und

wir können loslegen:

er

RE 4 7 =

EEE

10

30

40

50

60

70

80

90

100

110

120

130

140

150

200

210

220

230

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

REM 20K X

REM *x x

REM ** GRAPHIK-PAKET %*k

REM xx xx

REM X -DEMO- x

REM **x xx

AVS SESS SS SSCS SS SS esses:

REM

REM MASCHINENROUTINEN:

IN-51200 : OF=51203 :REM INIT /GRAPHIK OFF

Gc=51206 : SC=51209 :REM GCLEAR /SET COLOR

Pc=-51212 : PL=51215 :REM PCOLOR /PLOT

UP-51218 : SL=51221 :REM UNPLOT /SET LINE

CL=51224 : GL=51227 :REM CLR LINE /GLOAD

GS=51230 : HC=51233 :REM GSAVE /HARDCOPY

REM

REM BEISPIELE:

REM XKKKKKKKKK

REM

SYS IN : REM GRAPHIK EIN

SYS GC : REM GRAPHIK LOESCHEN

SYS SC,1*16+2 : REM FARBE SETZEN

SYS PC,7*16+2 REM PLOTFARBE SETZEN

REM

REM FIGUR 1:

REM KKKKKKKK

REM

FOR X=1 TO 319 STEP 4

SYS SL,X,50,70,X/1.6 : REM LINIEN

NEXT X

REM

FOR X=1 TO 5000 : NEXT X : REM WARTESCHLEIFE

GOSUB 2000 SYS GC : REM GRAPHIK LOESCHEN

REM

REM FIGUR 2:

REM KEKKKKKK

REM

FOR X=1 TO 319 STEP 3

SYS SL,X,40,50*SIN(X/30)+100,X/1.6

NEXT X

REM

215

520

530

540

550

560

570

580

590

600

610

620

630

640

1000

1100

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2200

2210

2220

2230

2240

2250

2260

2270

2280

2290

2300

2310

2320

2330

2340

FOR X=1 TO 5000 : NEXT X : REM WARTESCHLEIFE

GOSUB 2000 : SYS GC : REM GRAPHIK LOESCHEN

REM

REM FIGUR 3:

REM XXXXXXkXKxX

REM

FOR X=1 TO 319 STEP 2 .

SYS SL,X,40*COS(X/20)+100, 50*SIN(X/30)+100,X/1.6

NEXT X

REM

FOR X=1 TO 5000 : NEXT X : REM WARTESCHLEIFE

GOSUB 2000 : SYS GC : REM GRAPHIK LOESCHEN

REM

WAIT 198,255 : REM AUF TASTE WARTEN

SYS OF : END

SYS OF : REM GRAPHIK AUS

PRINT "WOLLEN SIE: ": PRINT

PRINT "(1) - GRAPHIK LADEN"

PRINT "(2) - GRAPHIK SPEICHERN"

PRINT "(3) — HARDCOPY"

PRINT "(4) - WEITER" : PRINT

POKE 198,0 : REM TASTEN LOESCHEN

WAIT 198,255 : REM AUF TASTE WARTEN

GET A$

ON VAL(A$) GOTO 2200,2300,2400,2500

GOTO 2000

REM

REM GRAPHIK LADEN:

REM XKXKXKKKKKKKKKKK

REM

INPUT "FILENAME,GA";FI$,GA

SYS GL,FI$,GA : REM LADEN

SYS IN : REM GRAPHIK EIN

SYS SC,16%3+9

FOR X=1 TO 5000 : NEXT X : REM WARTEN

GOTO 2000

REM

REM GRAPHIK SPEICHERN:

REM XKKKKKKKKKKKKKKKK KK

REM

INPUT "FILENAME,GA";FI$,GA

216

‚2350 SYS GS,FI$,GA : REM SPEICHERN

2360 GOTO 2000

2400 REM

2410 REM HARDCOPY:

2420 REM KKKKKKKKK

2430 REM

2440 PRINT “DRUCKER EINSCHALTEN UND TASTE DRUECKEN"

2450 FOKE 198,0 : WAIT 198,255 : GET A$

2460 FRINT : PRINT "BITTE WARTEN!"

2470 OPEN 1,4 : REM DRUCKERKANAL OEFFNEN

2480 SYS HC,1 : REM HARDCOPY

2490 CLOSE 1 : REM SCHLIESSEN

2495 GOTO 2000

2500 REM

2510 REM WEITER:

2520 REM ¥4X4%%*

2530 REM

2540 SYS IN : SYS SC,16%2+7 : RETURN

In diesem kleinen Demoprogramm wurden Ihnen einige

Anwendungsbeispiele dargelegt. Sie können ohne Weiteres Ihre

eigenen Routinen mit einfügen.

Viel Spaß beim Programmieren!

217

5. Kapitel

Anwendungen

Nachdem wir nun das große Kapitel der grundlegenden Graphik-

programmierung hinter uns haben, in dem uns die verschiedenen

Möglichkeiten des Zeichnens von Punkten, Linien und Kreisen,

der Sprite- oder Zeichensatz - Darstellung und -entwicklung,

sowie die diversen Ausgabebedienungen und vieles mehr

dargelegt wurden.

Doch was fangen wir mit diesem Wissen an? Wie verwendet man

etwa Linien und Kreise, um unterschiedliche Sachverhalte

darzustellen? Was bringen uns die Sprites? Und so weiter und

sofort.

In diesem Kapitel sollen Ihnen einige Beispiele nahegebracht

werden, die Ihnen die Arbeit mit diesen Themen schmackhaft

machen sollen. Viele Tricks und Tips können Sie den einzelnen

Paragraphen entnehmen, die Sie in Ihren Programmen gut

verwenden können.

Drei große Abschnitte behandeln die verschiedenen

Möglichkeiten der hochauflösenden Graphik oder einer schönen

Anwendung der Sprites in Laufschriften, die besonders im

kommerziellen Gebrauch Verwendung finden. Stellen Sie sich

doch einmal die Repräsentation eines Produktes oder Sonder-

angebotes mit Hilfe der Sprites und den enormen Graphik- und

Soundfähigkeiten des Commodore 64 vor. Sind das nicht

verlockende Aussichten?

Als letzten Abschnitt zeigen wir Ihnen die Möglichkeiten, die

sich z.B. bei Spielen ergeben, einige nützliche Routinen

werden auch hier vorgestellt.

53’1GGraphikanwendungen

Lassen wir keine Müdigkeit aufkommen, gehen wir gleich zur

Sache. Alle im folgenden angeführten Beispiele verwenden den

Befehlssatz, der Ihnen durch das kleine Graphik - Paket in

Kapitel 4 zur Verfügung gestellt wurde, um sie nicht allzu

218

langsam werden zu lassen. Haben Sie sich nicht die Mühe

gemacht und unser Hilfsprogramm abgetippt, dann können Sie

selbstverständlich auch die Basic - Unterprogramme verwenden,

die Sie im vorherigen Kapitel kennengelernt haben. Sie

brauchen lediglich die einzelnen Parameter in die

entsprechenden Speicher zu geben und das jeweilige Unter-

programm aufzurufen. Vergessen Sie nicht, am Anfang ihres

Programmes V und SA für die Basisadresse des Video-

controllers und den Graphikspeicher mit V=53248 und SA=8192

festzulegen.

Besitzen Sie eine Graphikbefehlserweiterung, die Sie sich

vielleicht inzwischen zugelegt haben, dann können Sie die

einzelnen SYS-Befehle ebenfalls durch die entsprechenden

Graphikbefehle ersetzen. Die Programme sind extra so

gehalten, daß derartige Veränderungen nicht besonders

schwierig sind.

Vor allem die hochauflösende Graphik läßt sich gut für

kommerzielle Zwecke, aber auch für hübsche Privatanwendungen

(Schule, Beruf, Freizeit) verwenden. Arbeiten Sie einmal die

folgenden Abschnitte durch.

5.1.1. Funktionendarstellung

Eine beliebte Art, die hochauflösende Graphik zu nutzen, ist

das Zeichnen der Graphen verschiedener Funktionen. Dabei

werden oft in Beispielprogrammen Sinus- oder Cosinuskurven

verwendet (s. Beispielprogramm in Paragraph 4.2.2.1). Dies

hat meist zwei Gründe: erstens sieht das Ganze recht

eindrucksvoll aus, und zweitens - was wohl das Wichtigere

ist - man hat nicht so große Probleme mit eventuellen

Bereichsüberschreitungen. Letzteres ist die größte

Schwierigkeit bei dem Zeichnen solcher Bilder. Um diesen

Problem auf die Spur zu kommen, müssen wir uns wieder ein

wenig mit der Mathematik beschäftigen.

Eine Funktion ist eine (eindeutige) Abbildung einer Menge auf

eine andere, d.h. jedem Element der einen Menge ist genau ein

Element der anderen zugeordnet (aber nicht unbedingt

umgekehrt). Die Elemente der ersten Menge nennt man in

algebraischen Funktionen auch x, die der zweiten Menge y. x

und y sind in diesem Fall durch irgendeine mathematische

219

Formel bzw. Gleichung verbunden (in dem Fall der Linien aus

Abschnitt 4.2.2.2 beispielsweise durch die Geraden-

gleichung):

y = f(x) sprich: y gleich f von x

Will man z.B. ein Zuordnungspaar feststellen, so setzt man

fiir x einen beliebigen Wert ein und kann so y errechnen. Die

Beziehung zwischen x und y kann man gleichfalls graphisch in

einem Koordinatensystem darstellen. Dabei stellt die

horizontale Achse des Systens alle möglichen x- (Abszisse),

die vertikale dagegen alle nöglichen y-Werte (Ordinate) der

Funktion dar. Kennen wir ein x/y-Paar, so fällen wir ein Lot

auf den betreffenden x-Wert der x- und entsprechend auf den

y-Wert der y-Achse. Am Schnittpunkt dieser beiden Senk-

rechten wird nun ein Punkt eingetragen. Um ein möglichst

genaues Bild des entstehenden Graphen zu erhalten, müssen wir

viele solcher Koordinatenpaare berechnen und in unser System

eintragen. In der Computerpraxis sieht das dann so aus, daß

schrittweise x-Koordinaten, die stetig von einem bestimmten

Wert bis zu einem zweiten Wert ansteigen (durch eine

FOR...NEXT-Schleife realisierbar), in die jeweilige Formel

eingesetzt werden, und dadurch die fehlende y-Koordinate

errechnet wird. Das Koordinatenpaar dient nun zum Zeichnen

eines Punktes auf dem Bildschirm. Beim Zeichnen einer linie

oder eines Kreises im 4. Kapitel wurde das gleiche Prinzip

angewendet. Das folgende Programm mag dies noch einmal

veranschaulichen:

70 REM MASCHINENROUTINEN:

100 IN=51200 : OF=51203 :REM INIT /GRAPHIK OFF

110 Gc=51206 : SC=51209 :REM GCLEAR /SET COLOR

120 PC=51212 : PL=51215 :REM PCOLOR /PLOT

130 UP=51218 : SL=51221 :REM UNPLOT /SET LINE

140 CL=51224 : GL=51227 :REM CLR LINE/GLOAD

150 GS=51230 : HC=51233 :REM GSAVE /HARDCOPY

160 REM

170 REM KKK KK RRR KKK KKK K

180 REM

200 SYS IN: SYS GC : SYS SC,16*1+6 : REM GRAPHIK INIT

210 FOR X=0 TO 319

220

220 Y = X”2 : REM FUNKTIONSWERT: ERRECHNEN

230 IF Y>199 THEN WAIT 198,255 : SYS OF : END : REM

BEREICHSUEBERSCHREITUNG

240 SYS PL,X,Y : REM PUNKT SETZEN

250 NEXT X

Wie Sie sehen wird hier in Zeile 230 geprüft, ob der y-Wert

noch im Bereich des Bildschirm liegt, um ein ILLEGAL

QUANTITY ERROR zu verhindern. Unter anderem darüber soll hier

diskutiert werden.

Die in diesem Programm gewählte Funktion bereitet uns ein

wenig Kopfzerbrechen, denn zum ersten kommt nur einer der

erwarteten zwei Parabeläste auf das Bild und der auch noch

verkehrt herum, dann ist die Funktion durchaus nicht

bildfüllend und drittens wurden viel zu wenig Punkte

berechnet, um einen schönen Kurvenverlauf zu erreichen. Dies

hat die folgenden Gründe:

Auf unserem Computer besitzt unser Koordinatensystem eine

festgelegte Ausdehnung. Wir können für x und y beispiels-

weise keine negativen oder gebrochenen Zahlen oder Werte

einsetzen, die größer sind als 319 (für x) bzw. 199 (für y).

Trotzdem gibt es Funktionen, die gerade in diesen Bereichen

die interessanten Teile besitzen. So liefern einfache Winkel-

funktionen wie:

y = sin(x) oder y = cos(x)

nur Werte zwischen -1 und]1 für y und besitzen eine

Schwingungsperiode von 2*pi, also ca. 6, was direkt für

unsere Anwendung nicht zu gebrauchen ist.

Es existieren nun Methoden, die diesem Dilemma Abhilfe

verschaffen. Dazu gehören:

- Scalierung

- Verschiebung

- Verzerrung

a) Scalierung:

Unter Scalierung versteht man das Vergrößern oder

Verkleinern der einzelnen Koordinatenwerte und damit der

gesamten Kurve. Dies wird durch einfaches Multiplizieren

221

der x- und(!) y-Werte mit einem bestimmten Faktor

erreicht. Dies kann auf zwei Arten geschehen:

1.) Es werden zunächst die normalen Werte für x zur

Berechnung der unveränderten Funktion verwendet und

nachher x- und y-Wert mit dem besagten Faktor

multipliziert. Dabei hängt es vom Faktor (hier f genannt)

ab, ob Sie damit den Graphen verkleinern oder vergrößern:

Faktor Auswirkung

0<f<1l Verkleinerung

f>1 Vergrößerung

Wahlen Sie zusätzlich f<0, so erscheint die Funktion

spiegelverkehrt und kopfüber. Eine Basicroutine wäre

hierzu etwa:

110 F=30 : REM VERGROESSERUNGSFAKTOR

120 FOR X=0 TO 10

130 Y = SIN(X) : REM WERT ERRECHNEN

140 Y = FXY : X = FXX : REM SCALIEREN

150 IF Y>199 OR X>319 THEN WAIT 198,255 : SYS OF : END

160 SYS PL,X,Y : REM PUNKT ZEICHNEN

170 NEXT X

Dieses Programm läuft natürlich nur mit dem Graphik -

Paket und der vorherigen Variablendefinierung. Außerdem

liefert es noch negative Werte für y

2.) Sie bauen die Scalierung direkt in die Funktion mit

ein. Dazu erzeugen Sie direkt scalierte Werte für x (durch

die FOR...NEXT-Schleife), müssen diese in der Formel dann

aber durch Dividieren von x durch f wieder rücksetzen. Die

y-Scalierung erfolgt dann direkt in der Formel. Das könnte

dann etwa so aussehen:

110 F=30 : REM VERGROESSERUNGSFAKTOR

120 FOR X=0%XF TO 104%F

130 Y = F x SIN(X/F) : REM SCAL. WERT

140 IF Y>199 THEN WAIT 198,255 : SYS OF : END

150 SYS PL,X,Y : REM PUNKT ZEICHNEN
160 NEXT X

222

b)

Diese Form hat insbesondere drei Vorteile: Erstens ist sie

sichtbar kürzer und schneller, zweitens ist damit gleich

von Anfang an überprüfbar, ob größere Werte für x gewählt

werden, als erlaubt, denn wir wählen den Umfang der

Schleife direkt danach, und drittens berechnen Sie schon

hier statt der obigen 11 ganze 301 Werte, was die

Genauigkeit der Kurve natürlich beträchtlich steigert.

Trotzdem hat die ganze Sache noch einen Haken: y wird

immer noch negativ.

Verschiebung:

Um diesen Punkt zu beheben, können wir den gesanten

Graphen in dem Koordiantensystem in alle Richtungen

verschieben. Wir können also die Sinuskurve aus dem

negativen herunter in den positiven Bereich verschieben,

sodaß y nur noch positive Werte annimmt. Oder wir

verschieben den obigen Quadratfunktionsgraphen um einen

bestimmten Betrag nach rechts, wodurch sein linker Ast

sichtbar wird.

Dies funktioniert, indem zu den beiden Koordinaten jeweils

bestimmte Werte hinzuaddiert werden. Diese Werte müssen

nicht unbedingt gleich sein, wie bei der Scalierung, um

das Aussehen des Graphen nicht zu beeinflussen. Addieren

wir einen Wert b zu der y-Koordinate, so verschieben wir

den Graphen nach oben bzw. unten, wenn b negativ ist (wir

führen also eigentlich eine Subtraktion durch). Geschieht

dies mit der x-Koordinate (a wird addiert), so resultiert

eine Rechts- (für a>0) bzw. eine Linksverschiebung (a<0).

Auch hier gibt es wieder die beiden Möglichkeiten, die

völlig analog zu oben funktionieren:

1.) Der Wert der beiden Koordinaten wird errechnet und

dann die beiden Summanden hinzuaddiert. Die Zeilen 130/140

in dem unter a)l.) stehenden Programm währen also so zu

ersetzen (ohne Scalierung):

130 Y = SIN(X)

140 Y Y+B : X = XtA

223

2.) Auch hier können wir das Ganze in eine Formel packen

und erhalten (Zeilen 120/130 des unter a)2.) stehenden

Programms):

120 FOR X=1 TO 10

130 Y = SIN(X-A) + B

Sie sehen, A wird von X abgezogen, statt addiert.

Unser Quadratprogramm vom Anfang könnten wir dann

umschreiben, indem wir die Zeile 220 ersetzen durch z.B.:

220 Y = (X-13)*2 + 5

Schon erhalten wir ein ganz anderes Ergebnis. Hier wurde

a=13 und b=5 gesetzt. Wahlen wir für a z.B. größere Werte,

so wird nichts gezeichnet, da y dann zu groß wird, was ja

von unserer Abfrage in Zeile 230 abgefangen wird. Wie

dieses Problem zu lösen ist, wird später erläutert.

c) Verzerrung:

Die Verzerrung ist einfach nur ein allgemeinerer Fall der

Scalierung. Hier nämlich brauchen x und y nicht unbedingt

mit dem gleichen Faktor multipliziert werden (wir nennen

die beiden Faktoren jetzt einfach fl und f2). Dadurch

werden aber die Proportionen der Kurve verändert, d.h. es

kommt zu einer Stauchung (für O<f1/2<1) oder Streckung

(f1/2>1) in x- (für fl) bzw. y-Richtung (für f2). Jetzt

erst werden die meisten Kurven wirklich zeichenbar.

Ersetzen Sie doch einmal Zeile 220 des Quadratfunktions -

Programmes durch:

220 Y = 0.01 * ((X-139)/1)*2 + 5

Sie werden strahlen, das war es. Hier werden Verzerrung

und Verschiebung gleichzeitig angewandt, was zu diesem

hübschen Ergebnis führt. Die einzelnen Veränderungswerte

lauten: fl=1; f2=0.01; a=139; b=5 (statt mit 0.01 zu

multiplizieren, könnten wir der Einfachheit halber auch

durch 100 dividieren).

Doch es sind noch ein paar Dinge zu klären. Unsere Parabel

224

steht immer noch auf dem Kopf und zweitens werden bei der

Veränderung der verschiedenen Parameter immer noch ILLEGAL

QUANTITY ERRORs produziert. Zunächst zum Ersten:

Dieses Phänomen taucht auf, da unser Koordinatensystem auf

dem Kopf steht. Unser Nullpunkt liegt nicht unten, sondern

oben links in der Ecke. Die y-Werte werden nach unten hin

nicht immer kleiner, sondern größer. Diese Eigenart kann

durch einen einfachen Trick behoben werden. Wir drehen die

Kurve einfach um, indem wir das Vorzeichen aller y-Werte

umkehren (s.o.). Da wir dann aber oft nur negative Werte für

y bekommen, verschieben wir die Kurve gleichfalls noch um

einen bestimmten Betrag nach unten (eigentlich oben), indem

wir z.B. 195 addieren. Das sähe dann so aus:

220 Y = - 0.01 * ((X-139)/1) + 195

Das Ergebnis bestätigt das oben Gesagte.

Doch nun zu den Fehlermeldungen, die inzwischen immer

häufiger werden. Die Ursache liegt einfach in unserer

unvollkommenen Bereichsüberprüfung. Zum einen testen wir gar

nicht, ob y negativ wird, zum anderen beenden wir gleich

unser Programm, wenn es zu einer Überschreitung gekommen ist.

Wenn Sie das obige "Quadrat" — Programm ab der Zeile 210 wie

folgt ändern, dann werden Sie für alle Einsetzungen von

a,b,fl und f2 und für jede Funktion zufrieden sein, sofern

sie überhaupt in dem gewählten Bereich liegt:

210 Fl = 1: F2 = 0.1: A = 160 : B = 100

220 FOR X=0 TO 319

230 Y = — F2 * ((X-A)/F1)*2 + B

240 IF Y>199 OR Y<O THEN NEXT X : GOTO 270

250 SYS PL,X,Y : REM PUNKT SETZEN

260 NEXT X

270 WAIT 198,255 : SYS OF : END

Bevor der Computer etwas zeichnet, kann er schon eine ganze

Menge Werte durchlaufen haben. Warten Sie also etwas, bevör

Sie das Programm abbrechen. In diesem Programm wurde der

Nullpunkt unseres verschobenen Koordinatensystems nach

160,100, also in die Mitte des Bildschirms gebracht. Wir

könnten dort also auch z.B. zur Veranschaulichung die Achsen

einzeichnen.

225

Eine weitere Möglichkeit ist beispielsweise die Niederlegung

der Funktion in einer sogenannten Funktionsdefinition. Dies

ist eine besondere Eigenschaft des Basic und wird durch den

Befehl DEF FN realisiert. Mit diesem Befehl wird eine

Funktion definiert, die irgendwo im Programm beliebig

aufgerufen werden kann, ohne sie umständlich nieder zu

schreiben. Sie müßten dazu lediglich folgende Änderungen

vornehmen:

215 DEF FN F(X)= - F2 * ((X-A)/F1)°2 + B

230 Y = FN F(X)

Oder wenn Sie lediglich die reine Funktion in der

Definitionszeile stehen lassen wollen:

215 DEF FN F(X)= X”2

230 Y= - F2 * FN F((X-A)/Fl) + B

Der jeweilige Wert für die verschiedenen Variablen wird dabei

stets in die Formel eingesetzt. So können Sie irgendwo die

Funktion verändern, ohne in die Schleife eingreifen oder

diese suchen zu müssen.

Das folgende Programm geht noch etwas weiter. Es zeichnet für

Sie eine beliebige Funktion. Sie können in eine INPUT -

Abfrage Ihre Funktion eintippen und das Programm entwickelt

für Sie daraus durch EinPOKEn entsprechender Bytes in einen

freien Basicbereich die Funktionsanweisung. Sie brauchen

diese relativ komplizierte Routine nicht unbedingt zu

verstehen, Sie demonstriert Ihnen aber den guten Nutzen des

DEF FN - Befehls. Die Funktion wird ohne Verzerrungs- oder

Verschiebungsparameter, also in "reiner" Form eingegeben.

Diese werden später in der Hauptschleife in der Weise hinzu-

gefügt, wie in den zuletzt gezeigten zwei Zeilen. Doch hier

das Programm.

Achten Sie bitte unbedingt darauf, in dem ersten Teil bis zum

Ende der DEF FN - Zeile (also bis einschließlich Zeile 350)

genau den Wortlaut mit REM und mit genau der gleichen

Leerzeichenanzahl abzuschreiben, da das Programm damit

rechnet! Beachten Sie das nicht, so kommt es im Zweifelsfall

226

zum Absturz des Programms. Vor dem ersten Start sollten Sie

das Programm daher auf Jeden Fall zunächst einmal

abspeichern!

LOO REM KKKKK KKK KKK KKK KKK KK KK KK

110 REM xx xx

120 REM Xk FUNKTIONENPLOTTER xx

130 REM xx xx

140 REM KKK KK KKK KKK KKK KKK KKK KKK

150 REM

160 REM

170 REM DEF FN - ROUTINE:

180 REM KKXKKKKKKKKKKKKKKK

190 REM

200 RESTORE: DIM A$(25):PRINT CHR$(147)

210 PRINT "GEBEN SIE EINE BELIEBIGE FUNKTION EIN

:":PRINT: PRINT: PRINT

220 GOSUB 500 : REM EINGABEROUTINE

230 AD=2684-1:REM POKE-START

240 FOR X=1 TO 25:READ A$(X):NEXT X:REM DATEN EINLESEN

250 FORX=1TOLEN(A$):AD=AD+1

260 Q=K: FORY=1T025: BS=A$(Y): FORZ=1TOLEN(B$): C$=MID$(A$,X,1)

270 IFC$=" "THENAD=AD-1: NEXTX: GOTO310

280 IFC$=MID$(B$,Z,1)THENX=X+1:NEXTZ: POKEAD, Y+169: X=X-1: NEXTX

:GOTO310

290 X=Q: NEXTY

300 POKEAD, ASC(C$):NEXTX

310 POKEAD+1,58: POKEAD+2,143

340 REM FREIHALTER:

350 DEFFNF(X)=000

0000000000000000000

400 REM 25 FUNKTIONEN:

410 DATA +,-,*,/,%*,AND,OR,<,=,>,SGN,INT, ABS,USR,FRE,POS,SQR,R

ND, LOG,EXP

420 DATA COS,SIN, TAN, ATN, PEEK

430 GOTO 600 : REM WEITER

500 INPUT "F(X)=";A$: RETURN : REM EINGABEROUTINE (ZUM

AUSBAU)

540 REM

550 REM XKKKKKKKKKKKKKKKK

560 REM ***xk GRAPHIK-ROUTINEN *xxx

227

570

580

600

610

620

630

640

650

655

660

670

680

690

700

710

REM

REM

IN=51200

GC=51206 :

PC=51212

UP=51218

CL=51224

GS=51230

POKE 2,0

REM

REM

REM

REM

REM

PRINT

xXx

PRINT

720

730

740

750

1000

1005

1007

1010

1020

1030

1040

1050

1060

1070

1080

1210

1220

1230

1240

1250

1260

1270

1280

GRAP

1290 REM *x*xx

"p

"PF

INPUT

INPUT

INPUT "A

INPUT "B

SYS IN

IF PEEK

POKE 2,

REM

REM ACH

REM *xx

IF A>=0

IF B>=0

REM

REM

REM

FL%]

FOR X=]

Y=-F2XF

IF Y<O

IF FL%=

FL%=0

X1=X: Y1

POKE 19

HIK AUS

ZEI

xxx

KKKKKKKKKKKIKKKK

OF=51203

sC=51209

PL=51215

SL=51221

GL=51227 :REM

HC=51233 : REM

REM LOESCHFLAG

: REM

: REM

:REM

: REM

INIT /GRAPHIK OFF

GCLEAR/SET COLOR

PCOLOR/PLOT

UNPLOT/SET LINE

CLINE /GLOAD

GSAVE /HARDCOPY

KKKKKKKKKKKKK

* HAUPTPROGRAMM *xx*

OK KOK KKK KK KKK

PRINT "GEBEN SIE DIE FOLGENDEN PARAMETER EIN: "

1 (X-ZERRFAKTOR) ";Fl

2 (Y-ZERRFAKTOR) ";F2

(X-VERSCHIEBUNG)";A

(Y-VERSCHIEBUNG)";B

SYS SC,16*1+5 REM INITIALISIEREN

(2)=0 THEN SYS GC REM GRAPHIK LOESCHEN

0 REM LOESCHFLAG

SEN ZEICHNEN:

KEKKAKEKKKKKS

AND A<320 THEN SYS SL,A,0,A,199 : REM X-ACHSE

AND B<200 THEN SYS SL,0,B,319,B REM Y-ACHSE

CHENROUTINE:

KKKKKKKKKKKX

REM AUSSERHALB-FLAG

To 319

NF((X-A)/F1)+B

OR Y>199 THEN FL%=1:NEXT X:GOTO 1280

0 THEN SYS SL,X1,Y1,X,Y

=Y:NEXT X

8,0

REM LETZTE KOORD. MERKEN

WAIT 198,255 GET A$ SYS OF REM

MENUE: *xXxxx

228

1300 PRINT "WOLLEN SIE:" : PRINT : PRINT

1310 PRINT "(1) ANDERE PARAMETER"

1320 PRINT "(2) ANDERE FUNKTION"

‘1330 PRINT "(3) GRAPHIK NICHT LOESCHEN"

1340 PRINT "(4) GRAPHIK SPEICHERN"

1350 PRINT "(5) GRAPHIK LADEN"

1360 PRINT "(6) HARDCOPY"

1390 PRINT "(7) BEENDEN"

1450 WAIT 198,1 : GET A$

1460 ON VAL(A$) GOTO 700,1480,1490,1510,1600,1650,1500

1470 GOTO 1450 : REM FEHLEINGABE

1480 RUN : REM ANDERE FUNKTION

1490 POKE 2,1 : PRINT "OK" : PRINT : GOTO 1450 : REM FLAG

SETZEN

1500 END : REM BEENDEN

1510 REM

1520 REM GRAPHIK SPEICHERN:

1530 REM

1540 INPUT "FILENAME,GA";FI$,GA
1550 SYS GS,FI$,GA : REM SPEICHERN

1560 PRINT "OK" : GOTO 1450
1570 REM
1580 REM GRAPHIK LADEN:
1590 REM
1600 INPUT "FILENAME,GA";FI$,GA

1610 SYS GL,FI$,GA : REM LADEN
1620 SYS IN : SYS SC,16*1,5 : GOTO 1280
1630 REM
1640 REM HARDCOPY:

1645 REM |
1650 PRINT "DRUCKER FERTIG MACHEN UND TASTE DRUECKEN"
1660 OPEN 1,4 : SYS HC,1 : CLOSE 1 : REM HARDCOPY

1670 PRINT "OK" : GOTO 1450

Beachten Sie bitte, daß auch dieses Programm für das

Graphik-Paket aus # 4.7 geschrieben wurde und bei der

Verwendung anderer Graphikroutinen erst auf die in der

Einleitung (v. Kapitel 5) dargelegte Weise umgeschrieben

werden muß.

Wie gesagt werden Sie zunächst aufgefordert, eine Funktion

einzugeben. Das hierzu verwendete INPUT steht als Unter-

229

programm in Zeile 500 und kann so von Ihnen durch eine andere

Eingabeschleife - z.B. mit GET - ersetzt werden. Die

Verlegung nach Zeile 500 war notwendig, da Sie bis zur Zeile

350 ja keinerlei Änderungen vornehmen dürfen. Die Funktion

steht dann in A$ und wird an die Übersetzerroutine bis Zeile

350 Übergeben. Diese formt daraus dann eine DEF FN - Zeile,

d.h. Sie POKEt die notwendigen Bytes direkt in den Basic-

speicher und verändert so die Zeile 350. Sie können sich ja

einmal diese Zeile anschauen, nachdem Sie die erste Funktion

eingegeben haben. Die Adresse, bei der die besagte Zeile

beginnt, bzw. bei der das Programm beginnt, seine Funktion

einzuschreiben, steht in Zeile 230 und kann von Program-

mierern geändert werden, die die Routine verstanden haben und

in diesem Bereich Änderungen vornehmen wollen.

Grundsätzlich können Sie in Ihre Funktion jede der 25 Teil-

funktionen aufnehmen, die Sie in den Zeilen - 410/420 finden.

Dabei ist die Syntax genau dieselbe, wie in Basic.

Nach den obligatorischen Sprungadressendefinitionen werden

Sie aufgefordert, die beiden Verzerrfaktoren f1/f2 und die

Verschiebesummanden a und b einzugeben (Z. 710-750). Hier

können Sie das anwenden, was Sie in den obigen Ausführungen

gelernt haben. Hier einige Richtwerte: fl und f2 werden bei

den meisten Funktionen größer als 1 (bei Winkelfunktionen ist

z.B. der Bereich von 10-70 empfehlenswert). Wie Sie wissen

ist fl dafür zuständig, den Graphen nach links und rechts

auseinander zu ziehen. f2 dagegen dehnt die Kurve nach oben

und unten. Für einen ersten Überblick empfehlen sich für a

und b die Werte a=160 und b=100, wodurch der Nullpunkt des

Koordinatensystems genau in die Mitte des Bildschirms

gebracht wird. Wollen Sie dann z.B. nur die für x positiven

Bereiche, dann wählen Sie a=-0 usw.

Nach dem Einschalten und eventuellen Löschen der Graphik

(abhängig vom Löschflag) werden dann ab Zeile 1040 die Achsen

des Koordinatensystems gemäß der gewählten Verschiebung

gezeichnet. Wenn Sie wollen, können Sie hier noch Teilstriche

als Einheiten entlang den Achsen zeichnen.

In Zeile 1210 beginnt nun die eigentliche Zeichenarbeit. Sie

finden hier die altbekannte Routine vor, die wir oben

entwickelt haben. Lediglich eine Kleinigit ist verändert. Um

nicht nur die einzelnen Punkte der Kurve zu sehen, die

berechnet wurden, werden diese hier durch Linien miteinander

230

verbunden. So entsteht ein schönes, angenähertes Bild. Man

spricht hier auch von Aproximation. Die Schwierigkeit besteht

darin, daß gerade dann nicht vom letzten Punkt zum gerade

berechneten gezeichnet werden darf, wenn der Graph aus einem

ungültigen Bereich kommt. Dafür sorgt das Flag Fl% (Integer-

variable).

Ist die Kurve gezeichnet, so kommen Sie nach einem Tasten-

druck in das Hauptmenue. Hier können Sie verschiedene

Optionen wählen. Sie können eine ganz neue Funktion wählen,

nur die Parameter verändern, das alte Bild erhalten, während

das neue gezeichnet wird (für Vergleiche besonders geeignet),

Graphik speichern / laden, eine Hardcopy anfertigen oder

einfach beenden.

y= sin(x) / (x-(x=0))

Noch etwas zur Funktioneneingabe: Bitte achten Sie darauf,

daB erstens die Syntax Ihrer Funktion richtig ist

- andernfalls entsteht ein SYNTAX ERROR. Zweitens sollten Sie

darauf achten, daß keine undefinierten Werte eingesetzt

werden. Dies sind z.B.: allgemein zu hohe Werte, der Wert 0

in Nennern oder bei Logarithmus, negative Werte bei Wurzel

oder Logarithmus.

Negative Werte können z.B. ausgeschlossen werden durch

Verwendung der Absolut - Funktion, 2.B.:

SQR(ABS(X))

Der Wert Null wird vermieden durch ersetzen von X durch den

Term (%-(X=0)):

231

statt 1/X >: 1/(X-(X=0)) oder

statt LOG(X): LOG(ABS(X-(X=0)))

Wird x gleich 0, so wird der Ausdruck xX=0 im Commodore -

Basic gleich -1, ansonsten bleibt er 0. Ähnlich können

Größer- oder Kleinerzeichen (>,<) verwendet werden.

Ist ein Fehler aufgetaucht, so können Sie das Programm auch

mit RUN 350 starten, wobei die Funktion erhalten bleibt.

5.1.2. 3-dimensionale Graphik

Kaum eine Computer-Werbeanzeige und zunehmend auch Anzeigen

aus anderen Bereichen verzichten auf wunderschöne meist drei-

imensionale Graphikbilder, um Ihre Produkte anzupreisen. Kein

Wunder, die Zeichnungen strahlen eine enorme Ästhetik aus,

durch die der Betrachter die unendlichen Weiten des Raumes

mit dem jeweiligen Werbeobjekt assoziiert. Imner mehr

Graphikdesigner besinnen sich auf das Hilfsmittel Computer

und seine Fähigkeit auch komplizierte 3-dimensionale

Funktionen und allgemein räumliche Bilder herzustellen. Wer

hier nicht hinterher hinken will, der sollte sich einmal

informieren.

Aber auch dem privaten Anwender bereitet es ungeheuren Spaß,

sich mit diesen Dingen zu beschäftigen. Nicht umsonst ist

meist eins der ersten Objekte des Informatikunterrichts in

Schulen die Erzeugung von einfachen zweidimensionalen

Funktionsgraphen (s. vorheriges Kapitel) bis hin zu den

räumlichen Darstellungen.

Doch stößt Letzteres ohne Vorkenntnisse und ohne sachkundige

Anleitung auf erhebliche Schwierigkeiten, da die Fach-

literatur oft reichhaltiges Wissen voraussetzt und die eigene

Ableitung der Algorithmen (Rechenvorschriften) relativ

kompliziert ist. Aus diesem Grunde seinen hier einige

Verfahren dargelegt, die sich auf die Kenntnis des in

Abschnitt 5.1.1 Gesagten stützen.

232

5.1.2.1 Parallel-Projektion

Man unterscheidet grundsätzlich zwei Arten von Projektionen:

- parallele Pröjektion

- Zentralprojektion

Wir werden uns im folgenden mit der ersten einfachen

Projektionsart beschäftigen. Weiter unten liefern wir auch

das nötige Rüstzeug für die zweite, wirklichkeitsnahere.

Zunächst einmal müssen wir unser 2-dimensionales Koor-

dinatensystem erweitern. Hierzu verwenden wir die Achsen

xr,yr und zr (r steht für räumlich). Jeder Punkt eines

3-D-Objektes (z.B. ein Haus) hat damit drei Koordinaten

(xr,yr,zr). Dieses Koordinatentripel muß zur Darstellung auf

dem Bildschirm (denn hier kennen wir ja nur die Koordinaten x

und y) in die ebenen Koordinaten x und y umgerechnet werden.

Bevor wir dies unternehmen, müssen wir uns erst einmal über

das Aussehen unseres 3-D-Koordinatensystems einigen. Wir

legen dafür hiermit folgendes fest (s.Abbildung):

Die xr- und zr-Achsen liegen in der Zeichenebene und stehen

senkrecht aufeinander. Die durch die Zeichenebene gehende

yr-Achse bildet mit der xr-Achse den Winkel w:

v Tz,

 X

T & ya cost) | X,

Wie aus der Zeichnung ersichtlich, ergeben sich damit

folgende Formeln, die die Umrechnung der Raum- auf die

Ebenenkoordianten vornehnen:

x =xr + yr%cos(w)

y= zr + yrxsin(w)

Der Winkel w bestimmt dabei die Perspektive, also den Winkel,

233

m

mit dem man das Objekt betrachtet. Wollen wir das Bild

verschieben, so daß wir es z.B. mitten im Graphikfenster zu

sehen bekommen oder das Objekt in weite Ferne zu rücken,

können wir drei Summanden a,b und c zu der xr-,zr- und

yr-Koordinate hinzuaddieren (s. # 5.1). Wir erhalten dann:

atxr + (yr+tce)%cos(w)

b+tzr + (yr+c)%*sin(w) wd
 N

Wollen Sie die Figur lediglich in der Ebene verschieben, so

wählen Sie c=0. Doch auch hier wird es oft dazu kommen, daß

Teile des Bildes nicht zu sehen sind, da sie entweder aus dem

Bildschirm herausragen oder viel zu klein sind, als daß die

Auflösung ausreichte, sie zu erkennen. Aus diesem Grunde

führen wir wieder unsere bekannten Verzerrfaktoren ein, die

ans erlauben sollen, das Objekt einfach zu vergrößern oder

Länge, Höhe und Breite zu verändern. Um alle drei Faktoren zu

verändern, müssen wir wieder direkt die Raumkoordinaten mit

den drei Faktoren fl,f2 und f3 für die xr-, zr- und

yr-Koordinaten:

flk(atxr) + f3X(yr+te)*cos(w)

f2%(b+zr) + f3x(yr+c)%*sin(w)

i
'H

Wollen Sie die Figur nur vergrößern, ohne Sie zu verzerren,

so wählen Sie fl=-f2=f3. Für die drei Faktoren gilt wieder das

in Abschnitt 5.1 Gesagte:

f1l/2/3 > 1 => Streckung (Vergrößerung)

0 < f£1/2/3 < 1 => Stauchung (Verkleinerung)

Um die jeweilige Figur nun noch genau auf den Bildschirm zu

bekommen, da der Nullpunkt der Raumkoordinaten nicht

unbedingt immer mit dem Nullpunkt des Bildschirms überein-

stimmen soll, der bekanntlich oben links in der Ecke liegt,

wollen wir noch zwei Verschiebesummanden vl und v2 einführen.

vl verschiebt das planare Koordinatensystem in +x-, v2 in

-y-Richtung. Wollen Sie den Nullpunkt des Koordinatensystems

beispielsweise genau in die Mitte des Bildschirms

positionieren, so wählen Sie v1:160 und v2=100. Auch hier

stehen unsere y-Ebenen-Koordinaten wieder auf dem Kopf, wir

234

müssen also ihr Vorzeichen ändern. Damit ergeben sich die

beiden folgenden Formeln:

x = f1k(atxr) + f3Xlyr+te)Xcos(w) + vl

y = -f2*(btzr) - f3*(yrt+tc)*sin(w) + v2

In dem folgenden Programm wird ein Haus räumlich dargestellt.

Die dazu notwendigen Eckpunkte sind mit Ihren 3 räumlichen

Koordinaten in DATA-Zeilen niedergelegt (Zeilen 1110-1140).

Die 3-D-Koordinaten werden in die der Ebene umgerechnet und

die einzelnen Punkte miteinander verbunden. Welche Punkte

jeweils verbunden werden sollen, steht ebenfalls in dahinter

liegenden DATA-Zeilen. Die Punkte werden der Reihe nach von 1

ab durchnumeriert und jeweils die Nummern zweier zu

verbindender Punkte hintereinander in den Linien - DATA -

Zeilen aufgeführt. Die Reihenfolge, in der die Linien

gezeichnet werden, ist völlig egal, sie brauchen auch nicht

zusammen zu hängen. Jeweils zu Anfang der Punkt- und der

Linien-Daten steht die Anzahl der Punkte (Zeile 1100) und der

Linien (Zeile 2100), die gezeichnet werden sollen. Wenn Sie

sich an diese Datenform halten, können Sie sich beliebige

eigene Figuren ausdenken und räumlich darstellen. Beispiels-

weise können Sie doch einmal Ihren Computer vermessen und die

Daten in das Programm eingeben. Sie erhalten dann ein schönes

räumliches Bild Ihres Gerätes.

Doch wofür sich die Umstände machen und die Koordinaten

3-dimensional eingeben? Dies hat einen besonderen Grund. Sie

können Ihre einmal so erstellte Figur, wie in unserem Fall

das Haus, beliebig vergrößern, verzerren, perspektivisch

drehen oder verschieben. Dies erreichen Sie durch Veränderung

der einzelnen Parameter a,b,c, fl,f2,f3, vl,v2 und w. Es wird

eine Weile dauern, bis Sie die Auswirkungen dieser vielen

verschiedenen Variablen überblicken. Bedenken Sie, daß die

Zerrfaktoren fl,f2 und f3 die Einheiten der Achsen bestimmen,

d.h. bei ihrer Veränderung scheinen sich die Ob jekte

gleichfalls fort oder heran zu bewegen. Stört Sie das, so

ändern Sie die einfach die obigen Formeln in jene:

x = flka+txr + f3kyrkcos(w)+tc + vl

y = -f2%Xb-zr - f3kyrksin(w)-c + v2

235

Nun besitzen fl, f2 und f3 keinen Einfluß mehr auf den

Abstand, obwohl diese Formeln mathematisch nicht ganz

einwandfrei sind. Die Verzerrung bezieht sich nur auf das

Objekt, nicht auf das Koordinatensystem. Wollten Sie also

Einheiten an den Achsen abtragen, käme es zu Unstimmigkeiten.

Eine sicher interessante Sache ist in den Zeilen 600-620

niedergelegt. Wir haben an dieser Stelle gerade die Raum-x-

und die Raum-z- Achse gezeichnet. Um nun auch die in die

Zeichenebene hineinragende y-Achse zu zeichnen, berechnen wir

einfach den Punkt, bei dem die y-Ebenen - Koordinate 0 (bzw.

199) ist (unter Berücksichtigung des Winkels w) und zeichnen

eine Linie vom Ursprung dorthin.

Wichtig bei allen Zeichenvorgängen ist die vorherige Über-

prüfung der Werte auf Bereichsüberschreitungen. Ein sehr

gutes, professionelles Zeichenprogramm würde, falls ein oder

zwei Eckpunkte außerhalb des Bildschirms liegen, trotzdem

aber noch Teile der Linie zu sehen wären, die Schnittpunkte

der Linie mit den Fensterränder berechnen und den sichtbaren

Teil der Linie zeichnen. Unser einfaches Programm zeichnet

diese Linien gar nicht. Sie könnten da ja Abhilfe schaffen.

Gleichfalls werden die Linien, die eigentlich verdeckt sein

sollten, ebenfalls gezeichnet. Dieses Problem der verdeckten

Linien gehört zu den schwierigsten und langwierigsten

Kapiteln der 3-D-Graphik. Große Institute tüfteln mit

teilweise großem mathematischen Aufwand an solchen

Algorithmen. Weiter unten wird Ihnen ein äußerst einfacher

vorgestellt, der insbesondere bei 3-dimensionalen Funktionen

Verwendung findet.

Vielleicht verändern Sie dieses Programm noch weiter. Sie

könnten z.B. die jetzt in DATA-Zeilen abgelegten Daten in

irgendeiner Form auf Diskette abspeichern und gegebenenfalls

später wieder einladen. (DATA-Zeilen wären hierfür natürlich

ungeeignet. Sie könnten alle Daten in Arrays unterbringen,

die als sequentielles File auf Diskette gebracht werden

können) Oder Sie bauen das Programm zu einem richtigen menue-

gesteuerten Zeichenprogramm aus; als kleines Beispiel dient

Ihnen dazu schon das Programm aus Paragraph 5.1.

236

100 REM KKKKKKKKKKEKK KKK KK KK

110 REM xx xx

120 REM *xk 3-D-DESIGNER xx

130 REM ** xx

140 REM KKKKKKKKKKKKKKKKKKKK

150 REM

200 REM

210 REM KKK KKK KKK KKK KKK

220 REM **** GRAPHIK-ROUTINEN ***x

230 REM KKK KKK KKK KKK KEK

240 REM

250 IN=51200 : OF=51203 :REM INIT /GRAPHIK OFF

260 GC=51206 : SC=51209 : REM GCLEAR/SET COLOR

270 PC=51212 : PL=51215 : REM PCOLOR/PLOT

280 UP=51218 : SL=51221 :REM UNPLOT/SET LINE

290 CL=51224 : GL=51227 :REM CLINE /GLOAD

300 GS=51230 : HC=51233 :REM GSAVE /HARDCOPY

400 REM

410 REM KOK KK KKK

420 REM xXkk PARAMETER *x*

430 REM KEKKKKKKK

440 REM

450 Fl = 5: F2 = 5 : F3 = 3 : REM ZERRUNG

460 AR = 15 : BR = 0 : CR = 10 : REM VERSCHIEBUNG DER

RAUMKOORD.

470 W= 3.1415/4: REM SICHTWINKEL (IN RAD)

480 SI = SIN(W) : CO = COS(W) : REM KONSTANTEN (NICHT

VERAENDERN)

490 vl = 100 : V2 = 180 : REM VERSCHIEBUNG DER EBENENKOORD.

500 REM

510 REM KIKKKKKKKK

520 REM xkkk UMRECHNUNG xxx

530 REM KKKKKKKKKK

540 REM

550 SYS IN: SYS GC : SYS SC,16*7+8 : REM GRAPHIK INIT

560 FG=0: IF V1<O OR V1>319 THEN FG=1:GOTO 580 : REM FLAG

570 SYS SL,V1,0,V1,199 : REM RAUM-Z-ACHSE

580 IF V2<0 OR V2>200 THEN FG=1:GOTO 600

590 SYS SL,0,V2,319,V2 : REM RAUM-X-ACHSE

600 22 = V1 - (199-V2)/SIXCO : Z1 = V1 + V2/SI*CO

610 IF FG=0 AND Z1>=0 AND Z1<320 THEN SYS SL,V1,V2,Z1,0: REM

237

RAUM-Y-ACHSE OBEN

620 IF FG=0 AND Z2>=0 AND Z2<320 THEN SYS SL,V1,V2,22,199:

REM RAUM-Y-ACHSE UNTEN

630 READ AP : DIM X%(AP),Y%(AP) : REM ANZAHL PUNKTE

640 FOR ZA=1 TO AP : REM PUNKTEZAHL

650 READ XR,ZR,YR

660 X%(ZA) = FI*(XR+AR) + F3*(YR+CR) *CO+V1

670 Y%(ZA) = -F2X(ZR+BR) - F3X(YR+CR)XSI+V2

680 NEXT ZA : REM NAECHSTER PUNKT

700 REM

710 REM KKKKKKK

720 REM **¥KX STRICHE XIX

730 REM KKKKKKK

740 REM

750 READ AL : REM ANZAHL LINIEN

760 FOR ZA=1 TO AL

770 READ P1,P2 : REM PUNKTNUMMERN LESEN

775 IF X%(P1)<0 OR Y%(P1)<O OR X%(P2)<0 OR Y%(P2)<0O THEN

790: REM AUSSERHALB

777 IF X%(P1)>319 OR Y%(P1)>199 OR X%(P2)>319 OR

Y%(P2)>199THEN790: REMAUSSERHALB

780 SYS SL,X%(P1l),Y%(P1),X%(P2),Y%(P2) : REM VERBINDEN

790 NEXT ZA : REM NAECHSTE LINIE

900 POKE 198,0 : WAIT 198,255 : GET A$

910 SYS OF : LIST : REM GRAPHIK AUS

1000 REM

1010 REM KORO KOK ORK

1020 REM **x** KOORDINATEN Kxkx

1030 REM FORK KICK

1100 DATA 10 : REM ANZAHL PUNKTE

1110 DATA 0, 0, 0, 6,0,0D, 6,10, 0

1120 DATA 0,10, 0, 3,15, D, 3,15,15

1130 DATA 6,10,15, 6, 0,15, 0, 0,15

1140 DATA 0,10,15

2000 REM

2010 REM KOR KKK KKK KK

2020 REM **x**k VERBINDUNGEN **xx

2030 REM KKK KKK KK KKKK

2100 DATA 17 : REM ANZAHL LINIEN

2110 DATA 1, 2, 2, 3, 3, 4, 4, 1

2120 DATA 4, 5, 5, 3, 5, 6, 6, 7

238

2130 DATA 7, 3, 7, 8, 8, 2, 8, 9

2140 DATA 9, 1, 9,10, 10, 4, 10,6

2150 DATA 10, 7

ff +

Wenn Sie dieses Programm eingetippt und ausprobiert haben,

werden Sie sehen, welchen Spaß es macht, mit ihm zu arbeiten.

Speichern Sie ruhig einmal gelungene Bilder ab, oder

erstellen Sie eine Hardcopy auf Ihrem Drucker.

Wollen wir die einzelnen Objekte zusätzlich im Raum drehen

(nicht nur die Perspektive ändern), so müssen wir aus den

ungedrehten Raumkoordinaten xr,yr,zr erst die gedrehten

xr’,yr’,zr’ errechnen, bevor wir sie in Ebenenkoordinaten

umrechnen können. Dies geschieht mit Hilfe der folgenden

Formeln:

Drehung um die xr-Achse:

xr’ = xr

’ yr’ = yr%cos(u) + zr*%sin(u)

9 zr’ = -yr%sin(u) + 2rxcos(u)

Drehung um die yr-Achse:

xr’ = xr%cos(t) + zr*sin(t)

yr’ = yr

zr’ = -xrksin(t) + zrxkcos(t)

Drehung um die zr-Achse:

xr’ = xr%cos(s) + yr%sin(s)

yr’ = -xr%*%sin(s) + yr%*cos(s)

zr’ = zr

239

dabei bedeuten:

u,s,t : Drehwinkel um die jeweiligen Achsen

Wollen Sie um zwei Achsen drehen, dann miissen diese Drehungen

nacheinander ausgeführt werden: Sie berechnen erst die

gedrehten Koordinaten für die Drehung um die erste Achse,

dann setzen Sie die erhaltenen Werte in die Gleichungen ein,

die für die Drehung um die zweite Achse zuständig sind.

Entsprechendes gilt bei der Drehung um alle Achsen.

Die Erstellung dreidimensionaler Bilder findet in vielen

Bereichen Anwendung. Da mit dem Computer auf die besprochene

Art und Weise besonders gut reale Gegenstände oder

Situationen maßstabsgetreu dargestellt und verändert werden

können, eignen sich diese Techniken für die Konstruktion bzw.

den Entwurf bestimnter Objekte wie Gebäude, Einrichtungen,

Maschinen oder Maschinenteile. Dieses computerunterstützte

Entwerfen (auch CAD = Computer Aided Design genannt), ist in

vielen Teilen der Indrustrie und Ingenieurtätigkeit zu einen

nicht mehr weg zu denkenden Werkzeug geworden. Autos,

Flugzeuge werden konstruiert, technische Zeichnungen

angefertigt oder Motoren etc. auf den Bildschirm und dann auf

Papier gebracht. In diesem Zusammenhang eignet sich die

3-dimensionale Graphik hervorragend zur Simulation auch

komplizierter Vorgänge. Diese Möglichkeit des Computers ist

schon relativ früh entdeckt worden, zu einer Zeit, in der ein

einfacher Taschenrechner noch ein Vermögen kostete,

kompliziertere Geräte aber Unsummen verschlangen, was wohl

ein Zeichen für die Wichtigkeit solcher Techniken ist.

5.1.2.2 Zentral-Projektion

Wenn wir Gegenstände betrachten, so können wir Ihre

Entfernung unter anderem dadurch feststellen, daß sie, je

entfernter sie stehen, desto kleiner sie werden. Das

klassische Beispiel hierzu sind die langen Eisenbahn-

schienen, die immer schmaler werden und sich weit weg mit dem

Horizont treffen. Tatsächlich ist es so, daß alle Linien sich

auf einen virtuellen Punkt zuzubewegen scheinen, den

240

sogenannten Fluchtpunkt. Das Problem ist es nun, ein

mathematisches Verfahren zu entwickeln, um unsere bisher

parallelen Linien auf einen Punkt zu richten. Da die

Ableitung der entsprechenden Formeln hier zu lange dauern

würde, seien Sie hier mit Scalierung (f1/f2/f3) und

Verschiebung (a/b/c) angegeben. Dabei stehen nun alle Achsen

aufeinander senkrecht und die Z-Achse ragt in die Bildebene

hinein (eben war es die y-Achse!):

= (fl*xrta)/q

= (f2kyrtb)/q

1-(f3xzrt+c)/fpz

e
x

tt mit: q

dabei bedeuten nun:

xr,yr,zr: räumliche Koordinaten

fl,f2,f3: Verzerrung in xr-,yr-,zr-Richtung

a, b, c: Verschiebung in xr-,yr-,zr-Richtung

fpz : Entfernung (z-Koord.) des Fluchtpunktes

Sie müssen also erst q errechnen, um die beiden gesuchten

Ebenen - Koordinaten zu errechnen. Wollen Sie gleichzeitig

Ihr Objekt noch in alle drei Richtungen drehen, so wird die

Sache sehr viel komplizierter:

= (f1*(Akxr + Dkyr + Gkzr)ta) / q

= (f2%(B%xr + Exyr + Hkzr)+b) / q

1-(f£3*(Ckxr + Fxyr + Ikzr)+c) / fpz

<
x

mit: q

Das sieht schon kompliziert genug aus. Wenn Sie aber sehen,

was Sie für A,B,C,...I einsetzen sollen, werden Ihnen die

Augen ausgehen:

cos(s)*cos(t)

sin(s)*cos(t)

-sin(t)

-sin(s)*cos(u) + cos(s)%sin(t)*sin(u)

cos(s)*cos(u) + sin(s)*sin(t)%sin(u)

cos(t)*sin(u)

sin(s)*sin(u) + cos(s)*sin(t)xXcos(u)

-cos(s)*sin(u) + sin(s)*sin(t)*cos(u)

cos(t)*cos(u)

u

se
G
O

By
Mm

DS

0
0

»

u

241

dabei bedeuten:

s: Winkel der Rotation um die z-Achse

t: Winkel der Rotation um die y-Achse

u: Winkel der Rotation um die x-Achse

Solche Mammutaufgaben können selbstverständlich nur in

Maschinensprache in relativ angemessener Zeit bewältigt

werden. Selbst da gibt es einige Zeitprobleme (ein Tip am

Rande: Die beste Möglichkeit wäre das Anlegen einer Tabelle

von Sinus- und Cosinuswerten (jeweils in einem bestinmten

Winkelabstand (z.B.1 Grad etc.)), in der das Programm bei

Bedarf immer nachschlagen kann, ohne die Werte erst lange

errechnen zu müssen).

5. 1 e203 3-D-Funktionen

Eine sehr reizvolle Anwendung der 3-D-Technik ist die

Darstellung dreidimensionaler Funktionen. Doch nicht nur dem

bloßen Vergnügen des Erstellers oder einiger Mathematiker

dient diese weitere Möglichkeit. Auf diese Weise sind
komliziertere Zusammenhänge, die sonst aus vielen unüber-

sichtlichen Tabellen erahnt werden müssen, äußerst plastisch

und informativ darstellbar. Sie kennen den Nutzen von zwei -

dimensionalen Diagrammen, die beispielsweise die Entwicklung

des jährlichen Umsatzes im Laufe der Jahre wiederspiegeln.

Wollte man nun etwa gleichzeitig noch die Abhängigkeit des

Umsatzes vom Preis eines bestimmten Produktes in den

verschiedenen Jahren darstellen, so müßte man für jedes Jahr

ein solches Diagramm erstellen, was auf die Dauer zu einer

unübersehbaren Schar von Kurven führte. Doch dieser konlexe

Zusammenhang kann anschaulich in einem einzigen 3-D-Diagramm

vermittelt werden. So erhalten Sie einen schnellen und guten

Überblick über die Dinge und können so gemäß den Trends den

optimalen Preis Ihres Produktes im nächsten Jahr (Monat)

ermitteln. Ich brauche Ihnen nicht erst zu sagen, welche

Vorteile Ihnen dadurch erwachsen.

Hier soll Ihnen die Technik der Erstellung anhand von

242

mathenatischen Funktionen vermittelt werden. In diesem Fall

werden die einzelnen Werte, die notwendig sind, um das Bild

zu erstellen, errechnet. Sie können diese selbstverständlich

auch aus irgendwelchen Tabellen ermitteln, was den

Anwendungsbereich der jetzt beschriebenen Vorgänge enorm

erweitert.

Zu den Graphen einer 3-D-Funktion kommen wir durch Verwendung

einer sogenannten Wertematrix. Als Beispiel soll uns die

Funktion

Z= xe + ye

dienen. Sie erinnern sich aus Abschnitt 5.1.1, daß dort die

Funktionswerte f(x) in einer FOI ..NEXT - Schleife ermittelt

wurden, in der die Variabi« x (ase sogenannte Laufvariable)

stets aufgezahlt und die Variable y errechnet wurde. So

erhielten wir beliebig viele Wertepaare, die uns als

Koordinaten fiir den Graphen unserer Funktion dienten.

Bei drei-dimensionalen Funktionen -f(x,y)- dagegen besitzen

wir zwei Laufvariablen (x und y), mit denen wir die dritte

(z) berechnen müssen. Um diesem Umstand gerecht zu werden,

verwenden wir zwei ineinander geschachtelte FOR...NEXT -

Schleifen. In der ersten wird der x-Wert, in der zweiten der

y-Wert hochgezählt. Das folgende Programm bringt Sie diesen

Sachverhalt näher:

100 REM XXXKKXKKKKKKEKKAKKEKKKKK

110 REM xx xx

120 REM ** 3-D: Z=YT2-XT2 kx

130 REM *x *x

140 REM KEK KKEKKKKKKKKKRKKKKKK

150 REM

230 REM **** GRAPHIK-ROUTINEN *xXxx

240 REM KKKKKKKKKKKKKKKK

250 IN=51200 : OF=51203 :REM INIT /GRAPHIK OFF

260 GC=51206 : SC=51209 : REM GCLEAR/SET COLOR

270 Pc=51212 : PL=51215 :REM PCOLOR/PLOT

280 UP=51218 : SL=51221 :REM UNPLOT/SET LINE

290 Cl=51224 : GL=51227 :REM CLINE /GLOAD

300 GS=51230 : HC=51233 : REM GSAVE /HARDCOPY

320 REM

243

330 REM **kx PARAMETER *&xx
340 REM KXXKKKKKK

400 W = 3.1415/8
410 A=0:B=+0:C=0
420 Fl = 20: F2 = 5: F3 = 8
430 V1 = 160 : v2 = 100
440 CO = COS(W) : SI = SIN(W)
520 REM

530 REM ***x* ZEICHNEN **xx

540 REM KAKKKKKK

600 SYS IN : SYS GC : SYS S8C,16*1+4 : REM GRAPHIK INIT

610 FOR YR=3 TO -4 STEP -0.5

620 FOR XR=3 TO -3 STEP -0.05

630 ZR=YRXYR-XRXXR : REM FUNKTION

640 X=F1*(A+XR) + F3*(YR+C)*CO + V1

650 Y=F2*(B+ZR) + F3*(YR+C)*SI + V2

660 SYS PL,X,Y: REM PUNKT ZEICHNEN

670 NEXT XR,YR

1000 POKE 198,0:WAIT 198,255:SYS OF : REM GRAPHIK AUS

Die besagten FOR...NEXT-Schleifen überstrecken, wie Sie

vielleicht sehen, die Zeilen 610 bis 670. In 630 wird dann

aus den beiden Laufvariablen der zr-Wert berechnet, um dann

diese Raumkoordinaten auf altbekannte Weise in Ebenen-

koordinaten umzurechnen. Das einzige Problem ist hier, wie

immer, die Wahl der Parameter und des xr-, yr-Wertebereichs.

Bei 3-D-Funktionen tritt es besonders auf, da hier so viele

Parameter zu bestimmen sind. Man hilft sich, indem man

zunächst möglichst einfache Zahlen einsetzt (etwa: a,b,c=0,

fl,2,3=1, w=3.1415/4, v1=160, v2=100) und dann das

entstehende Bild entsprechend verändert.

244

Vernetzung:

Durch einen kleinen Trick können wir nun einen ganz besonders

schönen Effekt mit hineinbringen. Bislang erhalten wir nur

schrittweise den Verlauf in die

Oft sieht

Graphik

einzelne Kurven, die uns

dritte

gebogene Gitternetze,

Dimension vermitteln. man aber quasi

die uns die noch ein ganzes

Stück plastischer erscheinen lassen (Vernetzung oder cross-

eine scheinbare Drehung

deshalb,

Drehung handelt,

hatching). Dies wird einfach durch

der Kurve erreicht. Scheinbar weil es sich

eigentlich gar nicht um eine sondern nur

eine Veränderung der Schrittweiten, in denen die xr-, bzw.

also

FOR...NEXT -

yr-Werte vom Start- zum Endwert gelangen, derjenigen

Werte, die hinter den STEP-Komandos der beiden

Schleifen erscheinen.

~0.5,

etwa

Im obigen Beispiel wurde yr mit einer Schrittweite von

-0.05 aufgezählt.

was passieren würde,

xr dagegen mit Dadurch erschien nicht

eine gleichmäßige Fläche, wenn wir beide

Schrittweiten gleich groß wählten, sondern jenes bekannte

"Streifenmuster".

Wenn wir jetzt die Schrittweiten austauschen, so verläuft

unser Streifenmuster genau senkrecht zum ersten. Das wird im

nächsten Programm ausgenutzt:

100 REM KKKKKKKKKKKKKKKKE KK KK X

110 REM xx *x

120 REM ** 3-D: 2Z=YT2-XT2 xx

130 REM xx VERNETZUNG xx

140 REM XXKKKKKKKKKKKKEKKKEKEKX

150 REM

230 REM ***x GRAPHIK-ROUTINEN **xx

240 REM KIKKKKKKKKKKKEKK

250 IN=51200 OF=51203 :REM INIT /GRAPHIK OFF

260 GC=51206 SC=51209 : REM GCLEAR/SET COLOR

270 PC=51212 PL=51215 :REM PCOLOR/PLOT

280 UP=51218 SL=51221 :REM UNPLOT/SET LINE

290 CL=51224 GL=51227 : REM CLINE /GLOAD

300 GS=51230 HC=51233 :REM GSAVE /HARDCOPY

320 REM

330 REM ****k PARAMETER ***x

340 REM KKKKKKKKK

400 W= 3.1415/8

245

410 A=0: B=0: C=0

420 Fl = 20 : F2 = 5: F3 = 8

430 Vl = 160 : V2 = 100

440 CO = COS(W) : SI = SIN(W)

520 REM

530 REM *x*x ZEICHNEN **xx

540 REM KKKKKKKK

600 SYS IN : SYS GC : SYS SC,16*1+4 : REM GRAPHIK INIT

610 SY=-0.5 : SX=-0.03 : REM SCHRITTWEITEN (STEPS)

620 FOR ZA=1 TO 2 : REM ZAEHLER

630 FOR YR=3 TO -4 STEP SY

640 FOR XR=3 TO -3 STEP SX

650 ZR=YR*YR-XR*XR : REM FUNKTION

660 X=F1*(A+XR) + F3*(YR+C)*CO + VI

670 Y=F2*(B+ZR) + F3*(YR+C)*SI + V2

680 SYS PL,X,Y: REM PUNKT ZEICHNEN

690 NEXT XR,YR

700 IF ZA=1 THEN GOSUB 1100 : SYS GC : SY=-0.04 : SX=-0.5

710 NEXT ZA

720 FOR T=8192 TO 8192+8000: POKET, PEEK(T)ORPEEK(T+8192):NEXTT

: REM OREN

1000 POKE 198,0:WAIT 198,255:SYS OF:END: REM GRAPHIK AUS

1100 FOR T=8192 TO 8192+8000: POKET+8192,PEEK(T):NEXTT : REM

UEBERTRAGEN

1110 RETURN

Sie sehen, der Graph wird insgesamt zweimal auf zwei

verschiedene Weisen gezeichnet. Nach dem ersten Mal wird die

gesamte Graphik (bei $2000 = 8192) nach $4000

(8192+8192 = 16384) übertragen bzw. zwischengespeichert.

Hernach zeichnen wir mit vertauschten STEP — Parametern. Zu

guter Letzt werden die beiden Graphiken miteinander durch OR

verknüpft, was zu einer Überlagerung führt. Haben Sie Geduld,

‘der Prozess der Zwischenspeicherung und Überlagerung dauert

recht lange, schalten Sie also nicht ab!

In unserem speziellen Beispiel wäre das Zwischenspeichern und

nachherige ORen nicht nötig, wir könnten also direkt das

zweite Bild über das erste zeichnen. Doch für unseren

nächsten Schritt ist dieses Verfahren unabdingbar.

Vielleicht bringen Sie noch ein 3-D-Koordinatensystem in das

Bild, wie es Ihnen das vorherige Programm zeigt.

246

Versteckte Linien:

Im diesem Teil werden wir ein einfaches Verfahren für das

Auslöschen eigentlich von vorderen Flächen verdeckter Linien

beim Zeichnen mathematischer und auch anderer Funktionen

vorstellen.

Im täglichen Leben können wir normalerweise nicht durch die

Dinge schauen, die wir betrachten. Wie Sie jedoch beim

Zeichnen unserer Funktion sehen, ist dies hier der Fall.

Unsere Linien durchdringen sich, obwohl die vorderen, die ja

eine Fläche abstecken, die hinteren verdecken müßten.

Bei Funktionen gibt es nun unter anderem zwei Methoden, diese

verdeckten Linien zu unterdrücken, bzw. nachträglich wieder

zu löschen. Fangen wir bei der ersten an. Sie ist äußerst

simpel, aber sehr effektiv und trickreich:

Beim Zeichnen unseres Graphen achten wir darauf, daß wir

stets von hinten nach vorne, also mit abnehmendem yr

zeichnen. Haben wir jetzt einen Punkt ganz normal

ausgerechnet und auf den Bildschirm gesetzt, dann löschen wir

einfach unter dem Punkt in einer Linie alles bis zum unteren

Ende des Graphikfensters. Damit verdeckt jede neu gezeichnete

Ebene alles hintere, vorausgesetzt, es liegt räumlich unter

dem gezeichneten Punkt. So erhalten wir eine Aufsicht auf die

graphische Struktur der Funktion. Wenn Sie in das obige

Programm lediglich eine einzige Zeile hinzufügen, wird Ihnen

der Effekt deutlich:

685 SYS CL,X,Y+1,X,199 : REM UNTER PUNKT LOESCHEN

Das einzige Problem sind eventuell die Randbereiche. Hier

könnte man eigentlich die Sicht quasi von unten auf die Kurve

zulassen. Doch mit unserem Algorithmus ist dies nicht möglich

- wie Sie sehen, wenn Sie das Programm laufen lassen -, da

auch die "Rückansicht" gelöscht wird. Um dieses Manko auszu-

gleichen könnte man nun nicht bis zum unteren Bildrand,

sondern lediglich zum darunterliegenden Punkt der nächsten

Linie löschen. Damit wäre das Problem erledigt. Das Zeichnen

würde mit dieser Methode jedoch um Einiges länger dauern.

Vielleicht versuchen Sie einmal das obige Programm so umzu-

schreiben. Es gibt einige schönre Funktionen, die Sie

ausprobieren sollten. Versuchen Sie es evt. ’mal mit jenen:

247

z = x@+y?

z = 1/(1+x2+y2)

z = SQR(1-x?/4-y?2/9)

z= sin(x)/xtsin(y)/y

z = sin(1/x)/xtsin(l/y)/y

Sie konnen diese Funktionem auch mischen, da der Teil, der x

enthält den Verlauf in x-Richtung wiederspiegelt, der Teil

mit vy den in y-Richtung. Man käme dann beispielsweise auf so vw

etwas (Mischung: letzte und vorletzte:):

z = sin(x)/x+tsin(l/y)/y

5.1.2.4. Bewegte Bilder in 3-D

In den letzten Paragraphen haben Sie die Methoden kennen-

gelernt, die zur Erzeugung 3-dimensionaler Bilder notwendig

sind. Wenn es nicht gerade kleine Objekte waren, dauerte die

Erstellung recht lange. Wie sollten daraus laufende Vorgänge

entstehen, die von uns als bewegt angesehen werden können?

Nun es gibt im Prinzip hierbei zwei Möglichkeiten. Die erste

ist relativ einfach: Sie erstellen ein Bild unsichtbar in

einem im Moment nicht angezeigten Graphikbereich während Sie

den Inhalt eines anderen Graphikbereiches auf dem Bildschirm

darstellen. Ist das Bild vollendet, so schalten Sie einfach

auf die neue Graphikseite um (s. # 3.3.2). Die nun unsichtbar

gewordene erste Seite kann dann zur Erstellung des nächsten

Bildes herangezogen werden usw.

Zwar ereichen Sie damit keine besonders schnell bewegten

248

Bilder, doch ist für uns trotzdem ein gewisser Bewegungs-

effekt vorhanden. Sehr schön sind Rotationen oder schritt-

weise Vergrößerungen der Objekte.

Die zweite Methode ist ein wenig aufwendiger. Sie benötigen

dafür eine Filmkamera, die mit Einzelbildschaltung und einen

Fernauslöser ausgerüstet ist. Rein theoretisch ist es auch

möglich, eine Kamera ohne eine solche Einrichtung zu

verwenden. Sie müssen dann zum Filmen einer Situation extrem

kurz auf den Auslöser drücken, um möglichst wenige Bilder auf

einmal zu knipsen. Mit etwas Übung erhalten Sie dann

ebenfalls recht schöne Ergebnisse. Sind diese Voraus-

setzungen geschaffen, dann konnen.Sie Ihre eigenen Computer-

graphikfilme produzieren. Was sonst nur. im Kino oder

Fernsehen in Science fiction - Filmen zu sehen ist, das

bekomnen Sie nun hautnah ins Haus.

Sie brauchen Ihre Kamera lediglich auf den Fernseher zu

fixieren (am besten mit Stativ), die Einzelbildschaltung

einzustellen und loszulegen: Sie programmieren dem Rechner

eine Folge von Bildern ein. Die Rechen- bzw. Erstellungszeit

ist dabei egal. Beispielsweise drehen Sie Ihr Objekt (Kurven

oder Gegenstände) mit jedem Male ein Stück um eine Achse.

Jedesnal, wenn ein Bild fertig gezeichnet ist, dann drücken

Sie zum Festhalten eines Bildes einmal auf den Auslöser. Dies

muß in sehr kleinen Schritten erfolgen, damit der Vorgang

nachher auf dem Film nicht zu schnell erfolgt. Im Zweifels-

fall photographieren Sie jede Szene mehrmals.

Eine noch elegantere Methode ist die Steuerung der Kamera

durch den Computer. Dies ist dann möglich, wenn Ihre Kamera

einen elektischen Fernauslöser besitzt. Haben Sie nur einen

Drahtauslöser, dann gibt es entsprechende Adapter, die im

Fachgeschäft erhältlich sind. Sie können dann Ihren Computer

alleine laufen lassen, ohne selbst jedesmal die Kamera

betätigen zu müssen. Gleichfalls können Sie, wenn Sie keine

Einzelbildschaltung besitzen, extrem kurze Schaltzeiten

erreichen und so nur wenige, oder gar nur ein Bild auf einmal

filmen.

Zur Verwirklichung dieses Vorhabens müssen wir einen kleinen

Abstecher in die Elektronik machen. Der Computer sendet

jedesmal, wenn ein Bild geknipst werden soll ein Signal an

den User-Port. Mittels der unten angegebenen Schaltung wird

249

dann die Kamera ausgelöst. Sie können sich diese folgende

Schaltung selbst oder von kundigen Bekannten zusammenlöten

lassen. Weiterhin benötigen Sie einen User-Port-Stecker und

einen entsprechenden Stecker für den Fernauslöser Ihrer

Kamera, die beide im Elektronik - Fachgeschäft erhältlich

sind. SV Pin 2

Diese Schaltung wurde eigenhändig ausprobiert und lieferte

hervorragende Filmergebnisse. Mit den unten stehenden

Befehlsfolgen können Sie die Kamera ansteuern:

10 C2=56576 : REM BASISADRESSE CIA 2 ($DD00)
20 POKE C2+3, PEEK(C2+2) OR 1 : REM PIN AUF AUSGANG
30 POKE C2+1,0 : REM KAMERA AUS
40 POKE C2+1,1 : REM KAMERA EIN

Zeile 20 braucht nur einmal im Verlaufe des Programms gegeben

werden. Beachten Sie bitte, daß zwischen einem ’ein’ und

’ aus’ genügend Zeit ist, daß das Relais und die Kamera

reagieren können.

250

6.1.3. Graphische Statistik

Ein beliebtes Anwendungsgebiet der Graphik, besonders für den

kommerziellen Gebrauch, stellt die Veranschaulichung kompli-

zierter Tabellen in übersichtlichen Diagrammen dar. Hierzu

werden verschiedene Darstellungsmethoden verwendet. Die

wichtigsten unter ihnen sind:

- Kurvenstatistik

- Balkendiagramme

- Kuchendiagramme

a) Kurvenstatistik:

Besitzen wir viele "Meßwerte" in Abhängigkeit eines

bestimmten Faktors (z.B. der Umsatz einer Firma in

Abhängigkeit von dem jeweiligen Monat (d.h. in jeweils

verschiedenen Monaten)), so verwenden wir allgemein die

erste Form der Ausgabe. Hierbei werden die gleichen

Techniken angewandt, wie dies bei der Darstellung von

2-dimensionalen Funktionen (s. # 5.1.1) der Fall ist. Der

Unterschied liegt lediglich in der Herkunft der einzelnen

Daten. Dort wurden sie errechnet, hier aus zwei-reihigen

Tabellen gewonnen. Diesen Abschnitt sollten Sie sich also

durchgelesen haben. Grundsätzlich gelten dieselben Regeln

zur Verschiebung, Scalierung und Verzerrung der Kurven,

wie in Abschnitt 5.1.1 dargelegt. Besonders hier spielen

die Einheiten an den beiden Koordinatenachsen eine Rolle

und sollten beachtet werden (s.u.).

b) Balkendiagramme:

Bei den Balkendiagrammen wird die Sache schon etwas

komplizierter, obwohl das Prinzip identisch ist. Sie

verwendet man bei relativ kleinen Datenmengen, die optisch

besser sichtbar gemacht werden sollen. Ein Wertepaar dient

nun nicht zur Bestimmung der Lage eines Punktes auf den

Bildschirm, sondern der Höhe und Position eines Balkens,

der sich von der x-Achse in die Höhe zieht. Das folgende

kleine Programm soll Ihnen die Programmierung solcher

Balken demonstrieren. Nehmen wir an, es sollen die

Umsatzzahlen einer (den Marktschwankungen recht stark

ausgelieferten) Firma über 10 Jahre mit Hilfe eines

251

Balkendiagramns dargestellt werden, um dem Leiter eine

dringend nötige Übersicht zu vermitteln. Die jeweiligen

Zahlen (in Tausend DM) werden dabei in DATA-Zeilen bereit

gehalten. Sie könnten aber auch per INPUT solche laten

erfragen und evt. auf Diskette (Kasette) speichern und

schon hätten Sie ein recht schönes Statistik-

programm.

100 REM ¥XXXKKKEKKKKKKAKKKKKEKK

110 REM xx xx

120 REM ** PBALKENDIAGRAMM xx

130 REM xx xx

140 REM KXXXKKKKKKKKKKKKKKKKKKK

150 REM

230 REM *k** GRAPHIK-—ROUTINEN **xx

240 REM KXKKKKKKKKKK KEKE

250 IN=51200 : OF=51203 :REM INIT /GRAPHIK OFF

260 GC=51206 : SC=51209 :REM GCLEAR/SET COLOR

270 PC=51212 : PL=51215 :REM PCOLOR/PLOT

280 UP=51218 : SL=51221 :REM UNPLOT/SET LINE

290 CL=51224 : GL=51227 :REM CLINE /GLOAD

300 GS=51230 : HC=51233 :REM GSAVE /HARDCOPY

320 REM

330 REM ***x ACHSEN **xx

340 REM KEKE

350 SYS IN : SYS GC : SYS SC,16%7+10 : REM GRAPHIK INIT

360 READ ZA : REM ZAHL DER WERTEPAARE

370 READ HI : REM HOECHSTER Y-WERT

380 XH = 300 : YH = 180 : REM ANZAHL DER PUNKTE IN

X-/Y-RICHTUNG (MAX.)

390 XE=INT(XH/ZA*1) : YE=INT(YH/HI¥10) : REM BERECHNUNG

DER (1ER) 10ER EINHEITEN

400 SYS SL,10,10,10,190 : REM Y-ACHSE

410 SYS SL,10,190,310,190 : REM X-ACHSE

420 T=-1:FOR Y=190 TO 10 STEP -YE

430 T=T+1: IF T/5-INT(T/5)=0 THEN SYS SL,5,Y,15,Y : REM

GROSSER STRICH

435 IF T/10-INT(T/10)=0 THEN SYS SL,3,Y,17,Y : REM GROSSER

STRICH

440 SYS SL,7,Y,13,Y : REM EINHEITSMARKIERUNGEN

450 NEXT Y

252

460 T=0:BE=20+XE/2 : REM BEGINN ERSTER STRICH
470 FOR X=BE TO 310 STEP XE
480 T=T+1:IF T/5-INT(T/5)=0 THEN SYS SL,X,195,X,190 : REM
GROSSER STRICH
485 IF T/10-INT(T/10)=0 THEN SYS SL,X,198,X,190 : REM
GROSSER STRICH |

490 SYS SL,X,193,X,190 : REM EINHEITSMARKIERUNGEN
500 NEXT X

600 REM

610 REM ***x DIAGRAMM ***x

620 REM KKKKKKKK

630 BR=XE-20 : REM BALKENBREITE ERECHNEN

640 PO=BE-BR/2 : REM STARTPOSITION ERSTER BALKEN

650 FOR T=1 TO ZA

660 READ DA : REM DATEN LESEN

670 Y=190-DAxXYE/10 : REM BALKENHOEHE (EINHEIT!)

680 FOR X=PO TO PO+BR : REM BALKENBREITE

690 SYS SL,X,Y,X,190 : REM BALKEN ZEICHNEN

700 NEXT X
710 PO=PO+XE : REM NEUE BALKENPOSITION
720 NEXT T |
800 POKE198,0:WAIT 198,255:SYS OF: END
900 REM
910 REM xx**x* DATEN KKK

920 REM 44KKK
1000 DATA 10 : REM ANZAHL WERTE

1010 DATA 100 : REM HOECHSTER WERT

1100 DATA 100,50,20,46,38,10,2,6,48,99

253

Das Ganze sieht zunächst recht kompliziert aus, da eine

Menge von Formeln angewandt werden. Diese "Formeln" sind

aber recht gut zu verstehen, da Sie lediglich die

Formatierung der Achsen und Balken betreffen.

Wir haben uns in diesem Programm als Ziel gestellt,

möglichst variabel bezüglich der Anzahl und der Größe der

Daten zu sein, ohne Bereichsüberschreitungen oder viel zu

kleine Graphiken zu erzeugen. Aus diesem Grunde werden vor

die eigentlichen Daten zwei Werte gestellt: Die Anzahl der

Daten und das größte Glied, die in den Zeilen 360/370

eingelesen werden. Weiterhin legen wir uns den Bereich

fest, in dem die Balkendiagramme liegen sollen. Wir haben

dafür ein 300x180 - Punktefeld reserviert (Z. 380).

Als erstes Problem stellt sich das Zeichnen der Achsen, da

wir Einheiten eintragen wollen. Die Senkrechte (y-Achse)

soll (so unsere Vereinbarung) jede’ 10. Einheit mit einem

einfachen Strich anzeigen. Jede 50. Einheit steht ein etwa

doppelt langer, jede 100. ein etwa dreifacher Strich. Auf

der Waagerechten (x-Achse) wird die gleiche Einteilung

unternommen, mit dem Unterschied, daß hier die 1., 5. und

10. Einheiten hervorgehoben werden.

Dazu berechnen wir zunächst die Anzahl der Punkte, die auf

eine (bei der x-Achse) bzw. 10 (y-Achse) Einheiten fallen

dürfen, so daß wir sowohl nach rechts, als auch nach oben

nicht zu weit hinauskommen, aber auch die gesamte

verwendbare Fläche ausnutzen (Z. 390).

Nun zeichnen wir erst einmal die bloßen Achsen (Z.

400/410). Dann folgt der Eintrag der Scalen (Z. 420-500).

Dieser Vorgang sollte relativ leicht zu durchschauen sein.

Dazu einige Bemerkungen: In den Zeilen 430, 435, 490 und

495 wird jeweils geprüft, ob gerade der 5. bzw. 10. Strich

gezeichnet wird und entsprechend verlängert. Der dazu

hinter dem IF stehende Ausdruck ist nichts weiter als das

Abschneiden der Zahl vor dem Komma (auch Fraction genannt

- das "Gegenteil" von INT). In Zeile 460 wird der

Startpunkt der x-Scalierung errechnet. Die hier angeführte

Formel hat etwas mit der Breite der Balken zu tun.

Jetzt erst werden die eigentlichen Balken gezeichnet. Dazu

wird die Balkenbreite so bestimmt, daß zwischen zwei

Balken genügend Platz ist (Z. 630). Die Formel für die

Startpositon der Balken und Ihre Höhe sollten Sie

254

c)

ebenfalls verstehen (bei letzterer Formel wird mit der

Anzahl der Punkte pro Einheit multipliziert, um der Scala

an der y-Achse gerecht zu werden).

Sie können beliebig die Daten ab Zeile 1000 verändern,

sollten aber darauf achten, keine negativen und nicht zu

viele zu verwenden. Bei extrem hohen Werten sollten Sie

die Scaleneinheiten der Achsen ändern.

Damit haben Sie einen Einblick in die Programmier-

techniken dieser Anwendung. Sicher fallen Ihnen noch viele

Änderungen ein, die Sie an diesem Programm vornehmen

können.

Kuchendiagramme:

Diese Art der graphischen Statistik ist geeignet zur iiber-

sichtlichen Darstellung von Ver- bzw. Aufteilungen von

Mengen in Teilmengen und der Größenverhältnisse unter

ihnen. Hierzu wird ein Kuchen (Kreis) gezeichnet, der die

Gesamtheit aller zu betrachtenden Elemente darstellt (100

%) und der sich in verschieden große Teilstücke

unterteilt. Die Größe der Teilstücke gibt dann den Anteil

dieser Teilmenge an der Gesamtmenge an.

Oft sehen wir solche Graphiken bei Wahlen zur Darstellung

z.B. der Sitzverteilung im Bundestag etc. oder im

Geographieatlas, um beispielsweise die Anteile bestimmter

Import- oder Exportwaren eines Landes am Gesamtumschlag zu

demonstrieren usw.

Doch wie ist solches programmtechnisch zu verwirklichen?

Schließlich haben wir es mit der ziemlich komplizierten

Relation eines Kreises zu tun, der in bestimmte Winkel-

ausschnitte unterteilt werden muß. In Paragraph 4.2.2.3

haben wir bereits die Erzeugung eines Kreises (Ellipse)

kennengelernt. Doch die dort angegebene Kreisformel ist

nicht dazu geeignet, lediglich Ausschnitte, die ja durch

Angabe des jeweiligen Winkels definiert werden zu

zeichnen. Aus diesem Grunde weisen wir Sie hier (wie schon

in Abschnitt 4.2.2.3 angekündigt) in die Kreiserzeugung

per Polarkoordinaten ein. Polarkoordinaten sind eine

alternative Möglichkeit der Darstellung von Funktionen.

Verwendet wird ein sogenanntes Polarkoordinatensystem, in

dem nicht x und y als Achsenabschnitte, sondern w als

Winkel zwischen der Verbindung von einem beliebigen,

255

gesuchten Punkt zu dem Nullpunkt und der Waagerechten und

] fiir den Abstand des Nullpunktes und dem besagten Punkt

angegeben werden. Veranschaulicht sähe das dann etwa so

aus:
A

y

v

Ein Kreis ist dann leicht durch die Anderung des Winkels w

bei konstant halten des Abstandes |] zu kontruieren.

Allgemein für eine beliebige Ellipse mit dem Mittelpunkt .

im Ursprung (0,0) gilt dann unter Berücksichtigung der

Umrechnung von Polar- (1l,w) in die uns bekannten

sogenannten kartesischen Koordinaten (x,y):

tt axcos(w)

b*sin(w) “<
 u

wobei außer den genannten Parametern bedeuten:

a: Radius der Ellipse in x-Richtung

b: Radius der Ellipse in y-Richtung

Diese Zuordnung ist uns schon aus dem oben genannten

Abschnitt bekannt. Mithilfe dieser beiden Formeln ist es

uns nun möglich, einen bestimmten Randpunkt einer Ellipse

durch Angabe des Winkels der Polarkoordinaten des Punktes

zu bestimmen.

Eine Sache muß noch erläutert werden. Auch in den vorigen

Abschnitten war öfter von Winkeln die Rede. Es gibt

verschiedene Möglichkeiten, einen Winkel anzugeben:

- Angabe in Altgrad (0-360)

- Angabe in Neugrad (0-400)

- Angabe in Radiant (0-2*pi)

256

Die uns vertrauteste von allen ist wohl die erste. Doch

unser Rechner rechnet nur mit der dritten, bei der 360

Altgrad dem Wert von 2%pi (pi=3.1415...) entsprechen.

Dieser Wert entspricht der Länge eines Kreisbogens mit dem

Radius 1 über den angegebenen Winkel. Wollen Sie Radiant

in Altgrad oder umgekehrt umrechnen, so verwenden Sie

diese Formel:

grad = 180*2x*pi/rad oder

rad = 180x*2xpi/grad

Danit besitzen wir das notwendige Rüstzeug,‘ um das

folgende Programm verstehen zu können:

100 REM ¥XXKKKKKKKEKKKKKEKKKKKEK

110 REM xx xx

120 REM %k KUCHENDIAGRAMME xxk

130 REM xx xx

140 REM XXXXKKKKEKKEKKKKKEKKKEEK

150 REM

230 REM **xkx GRAPHIK-ROUTINEN k€xx*

240 REM KKKKKKKKKKKKKKKK

250 IN=51200 : OF=51203 :REM INIT /GRAPHIK OFF

260 GC=51206 : SC=51209 :REM GCLEAR/SET COLOR

270 PC=51212 : PL=51215 :REM PCOLOR/PLOT

280 UP=51218 : SL=51221 :REM UNPLOT/SET LINE

290 CL=51224 : GL=51227 :REM CLINE /GLOAD

300 GS=51230 : HC=51233 :REM GSAVE /HARDCOPY

320 REM
330 REM **k* ELLIPSE **xx

340 REM KKKKKKK

350 PI=3.1415

360 SYS IN : SYS GC : SYS SC,16*5+13 : REM GRAPHIK INIT

370 A = 100 : B = 60 : V1=160 : V2=80 : REM PARAMETER

380 W=0:GOSUB 930:X1=X:Y1=Y: REM Xl UND X2 VORBESTIMMEN

390 SP=7#PI/180 : REM STEP
400 BE=0:EN=2*PI : REM START- UND ENDWINKEL

410 GOSUB 800 : REM ELLIPSE ZEICHNEN

420 BE=0:EN=1.03%PI : REM ETWA 180 GRAD

430 V2=100 : REM TIEFER SETZEN

440 GOSUB 800 : REM ELLIPSE ZEICHNEN

257

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

799

800

810

820

830

840

850

860

870

900

910

920

930

940

1000

1010

1020

1100

1110

Wie

REM

REM **** KUCHENSTUECKE **x**

REM KKKKKKKKKKKKE

READ ZA : DIM T(ZA) : REM ANZAHL DER TEILE

FOR S=1 TO ZA

READ T(S) : REM DATEN LESEN

SU=SU+T(S) : REM SUMME BILDEN

NEXT S

W = 0 : REM STARTWINKEL

FOR S=1 TO ZA

PR=T(S)/SU : REM PROZENT AUSRECHNEN

WA=2*PI*PR : REM WINKEL DES AUSSCHNITTES

W=W+WA : REM WIRKLICHER WINKEL

v2=80:G0SUB 930: REM KOORDINATEN ERRECHNEN

SYS SL,V1,V2,X,Y : REM TRENNLINIE

IF W>PI THEN 690 : REM NUR AUF DER SICHTBAREN SEITE

X1=X:Yl=Y : REM MERKEN

V2=100:GOSUB 930:REM UNTERE KOORD. ERRECHNEN

SYS SL,X1,Y1,X,Y : REM SENKRECHTE ZUM UNTEREN BOGEN

NEXT S

WAIT 198,255:SYS OF: END

REM

REM **** ELLIPSENBOGEN **xX*

REM KKKKKKKKKKEKE

FOR W-BE TO EN+SP STEP SP : REM WINKEL BESTIMMEN

GOSUB 930 : REM KOORDINATEN BESTIMMEN

SYS SL,X1,Y1,X,Y : REM LINIE

X1=X: Y1=Y

NEXT W : RETURN

REM

REM *X*k%%* PUNKT BERECHNEN *xxx

REM KKKKKKKEKKKAKEK

X = AXCOS(W) + V1

Y = B*SIN(W) + V2 : RETURN

REM

REM **xk DATEN **xx

REM 1K

DATA 6 : REM ANZAHL

DATA 20,10,15,40,30,8

Sie sehen, können Sie hier aus den Zeilen 800-940 für

258

Ihre eigenen Programme eine alternative Kreisformel

entnehmen. Die Ubergabeparameter sind im einzelnen:

BE: Startwinkel

EN: Endwinkel

SP: Schritteinheit

Vl: Mittelpunkt-x-Koordinate

v2: Mittelpunkt-y-Koordinate

x-Radius

y-Radius

Zu der Schrittweite SP muß folgendes gesagt werden: Sie

bestimmt, in welchem Winkelabstand die einzelnen Punkte

der Ellipse berechnet werden, also die Genauigkeit. Diese

Punkte werden dann in Zeile 850 durch. eine Linie

verbunden. Wählen Sie SP sehr groß, z.B. 30 oder 45, so

erhalten Sie spezielle Effekte: Damit wird dann ein

gleichseitiges Vieleck (8-Eck etc.) gezeichnet, was für

andere Zeichnungen gut verwendet werden kann!

Eigentlich muß die Zeile 380 bereits in diesem

Unterprogramm aufgeführt werden und sollte auch von Ihnen

übernommen werden, sofern Sie lediglich die Ellipsen-

routine verwenden wollen. Hier wurde sie herausgenommen,

um einen speziellen Effekt zu erzielen (s.u.).

In dem obigen Programm wollen wir nicht einfach eine

simple Scheibe zeichnen und dann entsprechende Abschnitte

abtragen. Vielmehr soll das Ganze etwas Format haben und

in 3-D gezeichnet sein. Es. wird eine runde Platte mit

einer gewissen Dicke dargestellt, die in die unter-

schiedlichen "Kuchen"stücke zerschnitten ist und von

schräg oben gesehen werden soll. Dazu zeichnen wir

zunächst einmal eine Ellipse als Oberfläche (Z. 410).

Alsdann zeichnen wir die gleiche Figur nur um ein paar

Punkte nach unten verschoben und als Halbellipse, um den

unteren Rand der Platte darzustellen (Z. 440). Eigentlich

wird bei dieser Konstruktion der Platte ein wenig

"gemogelt", da wir die seitlichen Ränder als gerade Linien

darstellen müßten (was rechts auch geschieht), dafür

zeichnen wir die Ellipse ein klein wenig über 180 Grad

(lkpi) hinaus, was wegen der Auflösung kaum auffällt.

Nun kommen wir zu den eigentlichen Kuchenschnitten:

259

Vorher sollten wir etwas über die verwendete Daten-

struktur sagen. Am Anfang vor den eigentlichen Daten steht

wie immer ihre Anzahl. Dann folgen beliebig viele und

beliebig hohe Zahlen, die z.B. die Anzahl der Sitze der

einzelnen Parteien oder allgemein die Größe der verschie-

denen Teilmengen wiedergeben.

Im ersten Teil der ab Zeile 500 folgenden Routine werden

alle durch ZA angegebenen Daten in ein eindimensionales

Feld eingelesen und (das ist der eigentliche Grund für

diese Schleife) die Summe aller Teilmengen gebildet (Z.

540-570).

In der nächsten FOR...NEXT - Schleife werden dann die

Unterteilungen vorgenommen: Zeile 600 rechnet den prozen-

tualen Anteil der jeweiligen Partei an der Gesantheit aus.

Zeile 610 bestimmt die daraus resultierende Größe des

Kreis- (Ellipsen-) Ausschnittes in Radiant, die zu dem

aktuellen Winkel W hinzugezählt wird (Z. 620). Nun, da der

Winkel des betreffenden Schnittes bekannt ist, kann die

Position des entsprechenden Randpunktes der Ellipse

errechnet werden. Alsdann wird vom Mittelpunkt der Ellipse

zu diesem Punkt eine Linie gezeichnet (Z.640).

Nun kommt es darauf an, ob sich dieser Schnitt bereits auf

der hinteren Hälfte der Scheibe oder noch vorne befindet.

Im ersten Fall ist die Sache erledigt und der nächste Wert

kann bearbeitet werden. Im zweiten Fall jedoch muß der

Schnitt noch sichtbar bis zur Unterkante gezogen werden.

Dies geschieht, indem wir einfach die Position auf ‘der

verschobenen Kante berechnen und vom zuletzt gezeichneten

Punkt bis hierhin ein Linie ziehen (Z. 650-680). Damit

wäre der 3-dimensionalität Genüge getan.

260

Auch dieses Programm ist selbstverstandlich voll ausbau-

fähig. Sie könnten beispielsweise die einzelnen Teile in

verschiedenen Farben oder schraffiert zeichnen usw. Ihrer

Phantasie sind keine Grenzen gesetzt.

5.2 Laufschriften

Eine verlockend einfache und gleichzeitig recht schöne Art

und Weise, beliebig gestaltete und bewegliche Buchstaben auf

den Bildschirm (auch in die hochauflösende Graphik) zu

bringen, ist die Konstruktion von Buchstabensprites. Die

Sprites besitzen eine geradezu phantastische Auflösung zur

Erstellung von Schrift und können vergrößert, bewegt usw.

werden.

Das einzige Problem bei diesem Unterfangen ist der begrenzte

Speicherraum, der uns in Basic zur Verfügung steht. Mit den

vier Blöcken, die uns in Basic zur völlig freien Verfügung

stehen, kommen wir nicht aus. Um hier Abhilfe zu schaffen,

können wir erstens den gesamten VIC-Adressbereich um 16, 32

oder gar 48 K nach oben verschieben (s. # 3.3.2) und so in

Speicherebenen gelangen, die wir ohne weiteres nutzen können.

Doch hier tritt eine kleine Schwierigkeit auf. Es verschieben

sich ja nicht nur die Spriteblöcke, sondern gleich alle

Bildschirmspeicher wie Videoram und Graphikspeicher, was die

Handhabung erheblich erschwert.

Wir wollen uns die zweite Möglichkeit zu Nutze machen: Wir

packen alle Sprite - Definitionen, die wir in unserem

Programm verwenden, in den Bereich von $2000-$3FFF

(8192-16383), wo wir normalerweise unsere Graphik beher-

bergen. Zwar können wir dann nicht mehr gleichzeitig Graphik

anzeigen, aber man muß bereit sein, auch Kompromisse zu

schließen. Damit verwenden wir die Blöcke 8192/64=128 bis 255

und haben Platz für insgesamt 127 Spritedefinitionen, was

ausreichend sein sollte. Wir brauchen dann nur darauf zu

achten, daß wir nicht unbedingt riesige Mammutprogramme oder

solche mit einem großen Speicheraufwand schreiben und der

Fall ist erledigt.

Kommen wir zu den Buchstabendefinitionen. Normalerweise ist

es unnötiger Platzverbrauch, alle Spritedefinitionen als

261

DATA-Zeilen in unser Basicprogramm nieder zu legen.

Alternative Methoden wurden Ihnen in Paragraph 4.3

vorgestellt. Hier allerdings wollen wir ausnahmsweise damit

arbeiten, zumal wir nur wenige Buchstabendefinitionen

vorstellen.

Die einzelnen Sprites können Sie mit dem Spriteformer in

Abschnitt 4.3 erstellen und später z.B. direkt in den

Speicher einlesen. Sie können sich so einen ganzen Vorrat an

Zeichen erstellen und bei Bedarf abrufbereit halten.

Wir wollen aber nun zu der eigentlichen Aufgabe vorschreiten:

der Programmierung von Laufschriften. Hierzu ein kleines

Basicprogramm:

100 REM KXXKKKKKKKKEKEKKKKEEKK

110 REM *% xx

120 REM ** LAUFSCHRIFTEN xx

130 REM xx xx

140 REM XXXKKKEKEKKKKKKKKKKKKK

150 REM

160 V = 53248 : REM BASISADRESSE VIDEOCONTROLLER

170 POKE V+32,0 : POKE V+33,0 : REM RAHMEN UND HINTERGRUND =

SCHWARZ

175 PRINT CHR$(147)

180 REM

190 REM **** EINSPEICHERUNG **xx

200 REM XKKIKKKKKKKKKKKK

210 FOR X=1 TO 9 : REM 9 BUCHSTABEN

220 READ A$: REM NAME DES BUCHSTABEN

230 BK=ASC(A$)-32+128 : REM SPRITES NACH ASCII GEORDNET IM

SPEICHER (BLOCKNUMMER)

240 AD=BK*64 : REM ADRESSEN AB 8192

250 FOR Y=AD TO AD+62

260 READ DA : POKE Y,DA : REM DATEN LESEN UND SCHREIBEN

270 NEXT Y,X : REM 63 DATEN/8 BUCHSTABEN LESEN

300 REM

310 REM **** INITIALISIERUNG *x*x**

320 REM KEKXKKEKEKEKKKKEK

330 FOR X=0 TO 7

340 POKE V+39+X,X+1 : REM FARBEN SPRITES 0-7 FESTLEGEN

350 NEXT X

360 POKE V+23,255 : REM ALLE SPRITES GROSS (Y)

262

370

380

390

400

410

POKE V+29,255 : REM ALLE SPRITES GROSS (X)

POKE V+27,0 : REM PRIORITAET

POKE V+28,0 : REM NORMAL-FARBEN

SP=0 : REM START-SPRITENUMMER

ZA=8 : REM ANZAHL DER BUCHSTABEN AUF DEM BILD

(GLEICHZEITIG / MAX.:8)

420 AB=330/ZA : REM ABSTAND ZWEIER SPRITES

430 GE = 20 : REM GESCHWINDIGKEIT

500 REM

510 REM ***x LAUFSCHRIFT *x**

520 REM KEKKKKKKKKK

530 IE$="DATA-BECKER---" : REM LAUFTEXT

540 FOR LA=1 TO 10 : REM 10 DURCHLAEUFE

550 FOR BU=1 TO LEN(TE$)

560 BUS=MID$(TE$,BU,1) : REM LAUFENDER BUCHSTABE

570 BK =ASC(BU$)-32 + 128 : REM BLOCKNUMMER DES BUCHSTABEN

580 POKE 2040+SP,BK : REM SPRITE AUF ENTSPRECHENDEN BLOCK

SETZEN

590 POKE V+SPx2,95 : REM SPRITE-X-KOORD.-LOW-BYTE

600 POKE V+SPx2+1,100 : REM SPRITE-Y-KOORD.

610 POKE V+16,PEEK(V+16) OR 2”SP : REM

SPRITE-X-KOORD.-HIGH-BIT

620

630

635

640

650

660

POKE V+21,PEEK(V+21) OR 2°SP : REM SPRITE EINSCHALTEN

SP=SP+l : REM NAECHSTE SPRITENUMMER

IF SP=ZA THEN SP=0

FOR K=1 TO AB STEP GE : REM AB SCHRITTE *** BEWEGEN ¥**x*

FOR S=0 TO ZA-1l : REM ZA SPRITES BEWEGEN

AD=V+S*X2: XL=PEEK(AD)-GE: XH=PEEK(V+16)AND2”S: REM

X-KOORDINATE DES SPRITES

670 IF XL<O THEN XL=256+XL:POKE V+16,PEEK(V+16) AND

255-2°S: IFXH=OTHENXL=0

680 POKE AD, XL

685 GOSUB 800

690 NEXT S,K

700 NEXT BU : REM NAECHSTEN BUCHSTABEN

710 NEXT LA : REM NAECHSTEN DURCHLAUF

800 POKE V+21,PEEK(V+21) AND 255-2°SP:RETURN : REM SPRITE AUS

1000 REM |

1010 REM ***x SPRITE-DATA x**%

1020 REM FRR

1090 REM

263

1100
1110
1120
1130
1140
1150
1160
1170
1190
1200
1210
1220
1230
1240
1250
1260
1270
1290
1300
1310
1320
1330
1340
1350
1360
1370
1390
1400
1410
1420
1430
(1440
1450
1460
1470
1500
1510
1520
1530
1540
1550

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
REM
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
REM
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
REM
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

A:

000,

007,

006,

006,

006,

006,

006,

B

c

D

000,

012,

012,

012,

012,

012,

015,

E

REM BUCHSTABE A

000,000, 000,000,000,

000,224, 006,000,096,

000,096, 006,000,096,

000,096, 007,255,224,

000,096, 006,000,096,

000,096, 006,000,096,

000,096, 000,000,000,

: REM BUCHSTABE B

000,

003,

003,

003,

003,

003,

003,

000,000, 000,000,000,

001,128, 003,000,192,

000,192, 003,000,192,

255,000, 003,001,128,

000,096, 003,000,096,

000,096, 003,000,192,

255,000, 000,000,000,

: REM BUCHSTABE C

000,

003,

003,

003,

003,

003,

001,

000,000, 000,000,000,

129,192, 003,000,000,

000,000, 003,000,000,

000,000, 003,000,000,

000,000, 003,000,000,

000,000, 003,000,000,

255,192, 000,000,000,

: REM BUCHSTABE D

000,000, 000,000,000,

001,128, 012,000,192,

000,192, 012,000,192,

000,192, 012,000,192,

000,192, 012,000,192,

000,192, 012,000,192,

255,000, 000,000,000,

: REM BUCHSTABE E

000,

003,

003,

003,

003,

000,000, 000,000,000,

001,192, 003,000,000,

000,000, 003,000,000,

255,000, 003,006,000,

000,000, 003,000,000,

264

003,255,192

006,000,096

006,000,096

006,000,096

006,000,096

006,000,096

000,000,000

003,255,000

003,000,192

003,001,128

003,000,192

003,000,096

003,001,128

000,000,000

001,255,192
003,000,000
003,000,000
003,000,000
003,000,000
003,129,192
000,000,000

015,255,000

012,000 192

012,000,192

012,000,192

012,000,192

012,001,128

000,000,000

003,255,192

003,000,000

003,006,000

003,000,000

003,000,000

1560 DATA 003,000,000, 003,000,000, 003,001,192
‘1570 DATA 003,255,192, 000,000,000, 000,000,000
1590 REM
1600 DATA K : REM BUCHSTABE K
1610 DATA 000,000,000, 000,000,000, 003,001,128
1620 DATA 003,003,000, 003,006,000, 003,012,000
1630 DATA 003,024,000, 003,048,000, 003,096,000
1640 DATA 003,192,000, 003,192,000, 003,096,000
1650 DATA 003,048,000, 003,024,000, 003,012,000
1660 DATA 003,006,000, 003,003,000, 003,001,000
1670 DATA 003,000,192, 000,000,000, 000,000,000
1690 REM
1700 DATA R : REM BUCHSTABE R
1710 DATA 000,000,000, 000,000,000, 001,255,000
1720 DATA 003,001,128, 003,000,192, 003,000,192
1730 DATA 003,000,192, 003,000,192, 003,001,128
1740 DATA 003,255,000, 003,192,000, 003,096,000
1750 DATA 003,048,000, 003,024,000, 003,012,000
1760 DATA 003,006,000, 003,003,000, 003,001,000
1770 DATA 003,000,192, 000,000,000, 000,000,000
1790 REM
1800 DATA T : REM BUCHSTABE T
1810 DATA 000,000,000, 000,000,000, 015,255,192
1820 DATA 012,048,192, 000,048,000, 000,048,000
1830 DATA 000,048,000, 000,048,000, 000,048,000
1840 DATA 000,048,000, 000,048,000, 000,048,000
1850 DATA 000,048,000, 000,048,000, 000,048,000
1860 DATA 000,048,000, 000,048,000, 000,048,000
1870 DATA 000,048,000, 000,000,000, 000,000,000
1890 REM
1900 DATA "-" : REM BINDESTRICH
1910 DATA 000,000,000, 000,000,000, 000,000,000
1920 DATA 000,000,000, 000,000,000, 000,000,000
1930 DATA 000,000,000, 000,000,000, 000,000,000
1940 DATA 000,000,000, 003,255,192, 000,000,000
1950 DATA 000,000,000, 000,000,000, 000,000,000
1960 DATA 000,000,000, 000,000,000, 000,000,000
1970 DATA 000,000,000, 000,000,000, 000,000,000

Dieses Programm kann Ihnen nur die Grundzüge der Laufschrift-

technik vermitteln. Es liegt an Ihnen, die entsprechenden

265

Anwenderprogramme zu schreiben. Richtig schnell und

ansehnlich wird das Ganze natürlich erst in Maschinen-

sprache. Aber ich hoffe, Sie haben auch so Ihren Spaß daran.

Wenn Sie sich das Programm durchschauen, so sollte Ihnen das

Verständnis der Abläufe durch die vielen REM-Zeilen gut

verständlich sein. Wie gesagt können Sie sich einen ganzen

Zeichensatz zusammenstellen und schließlich beliebige Texte

ausgeben. Viel Spaß!

553.3 Das Geheimnis der Spiele

Inzwischen gibt es wohl bereits annähernd tausend gute bis

weniger gute Spiele für den Commodore 64, die in Computer -

Shops zu kaufen sind. Wir lassen uns von ihrer Graphik, ihren

Soundkaskaden berauschen und klopfen uns befriedigt auf die

Schulter: "Hab’ ich mir doch einen guten Rechner gekauft, was

der alles kann!". In der Tat zeigen von allen Programmen ganz

besonders die Spiele, welche Qualitäten ein Gerät besitzt, da

diese meist bis an die Grenzen des Machbaren stoßen. Beim

64er sind diese Grenzen ziemlich hoch angesetzt und sogar die

besten Spieleprogrammierer haben Probleme alle Möglichkeiten

voll auszunutzen. Doch was nutzt einem ein guter Computer,

mit dem alles möglich ist, wenn man selbst nicht weiß, wie es

geht? Und ewig nur zuzuschauen, was andere programmiert

haben, macht einen auch nicht satt.

In diesem Buch haben Sie bereits Vieles erfahren, das Ihnen

helfen wird, Ihren Computer bezüglich Graphik, Sprites und

allgemein der Bildschirmausgabe optimal zu nutzen. Natürlich

konnte nicht annähernd alles, was der 64er bietet und im

kapitel 3 (Hardwaregrundlagen) steht, auch zur Anwendung

gebracht werden. Das ist auch gut so. Auf diese Weise bleibt

noch geniigend Freiraum fiir Ihren Forscherdrang.

Die meisten Spiele sind in Maschinensprache geschrieben, da

das originale Basic einfach zu langsam ist. Es wurden Ihnen

bereits einige Utilities in Assembler angeboten, die quasi

als kleine Erweiterung des Basic - Befehlssatzes für die Auf-

besserung der Geschwindigkeiten Ihrer Programme zur Verfügung

stehen (z.B. das Graphik - Paket). Hier nun sollen Ihnen

einige Techniken und Erweiterungen speziell für Spiele

266

vermittelt werden (Sie sind selbstverständlich auch für

andere Anwendungen recht nützlich). So sind Sie in der Lage,

auch in Basic (erst recht in Maschinensprache) schnelle und

anspruchsvolle Spiele zu programmieren.

5.3.1. Animation

Unter Animation versteht man die Erzeugung bewegter Bilder

auf dem Bildschirm. Natürlich "leben" die Spiele von der

Animation, sofern nicht etwa Denkspiele wie Schach, Memorie

etc. gemeint sind. Ohne Bewegung auf dem Bildschirm "läuft"

nichts. Oft werden Spiele nur aufgrund der Qualität dieser

Bewegung in die Reihe der Actionspiele oder "sonstige" Spiele

eingereiht. Wir wollen uns deshalb zunächst mit diesem

wichtigen Thema beschäftigen.

Man unterscheidet beim Commodore 64 fünf Arten von Animation:

- Sprite-interne Bewegung

- Spriteverschiebung

- Zeichen-interne Bewegung

- Zeichenverschiebung

- graphische Animation

Unter ’intern’ verstehen wir hier das Bewegen des jeweiligen

Objektes selbst, ohne daß es seine Position auf dem

Bildschirm verändert.

Die ersten beiden Formen haben wir bereits in den zwei

Beispielen zur Spriteprogrammierung im Abschnitt 4.3.2

ausführlich dargelegt und erläutert. Sie sollten sich diesen

Paragraphen sowieso durchgelesen haben, da die Sprite-

programmierung ein, wenn nicht gar das wichtigste Fundament

der Spiele darstellt.

Auch den letzten Punkt wollen wir hier nicht abhandeln, da er

sich aus den verschiedenen Graphikkapiteln ableitet und aus

Geschwindigkeitsgründen nur selten oder gar nicht bei Spielen.

Verwendung findet.

AuBerst beliebt sind dagegen die beiden restlichen Punkte.

Meist werden sie in Verbindung mit einer Zeichensatzänderung

verwendet.

267

a) Zeichen-interne Bewegung:

Das Prinzip der Zeichen-internen Bewegung ist das gleiche,

wie bei der Bewegung der Sprites. Eine aus einem oder

mehreren Zeichen zusammengesetzte Figur wird durch den

stetigen Wechsel von Zuständen bestimmter Teile des

Ob jektes so verändert, daß daraus eine Bewegung entsteht.

Im Klartext bedeutet das folgendes:

Angenommen wir wollen ein Männchen so steuern, daß es

stets beide Arme und Beine auf und nieder bewegt. Wir

setzen dieses Männchen dann aus mehreren Teilen zusammen,

damit es nicht zu klein wird. Um nun die gewünschte

Bewegung zu programmieren, legen wir uns jedoch zwei oder

mehr Männchen bereit, die jeweils andere Phasen der

Bewegung festhalten. Diese verschiedenen Figuren lassen

wir dann in einem uns genehmen Takt abwechselnd an der

gleichen Stelle auf dem Bildschirm erscheinen, und schon

haben wir den gewünschten Effekt.

Um die diversen Zeichen auf eine bestimmte Position des

Bildschirms zu bringen, verwenden wir die in Abschnitt 4.]1

dargelegte Routine zur programminternen Cursorsteuerung.

Besonders effektiv wird das Ganze natürlich mit einen

veränderten Zeichensatz oder ein paar veränderten Zeichen.

Wie dies auf einfache Weise gemacht wird, zeigt Ihnen

Abschnitt 4.4. Besonders hier zeigen Multicolorzeichen

Ihren Sinn. Ihr Objekt wird recht schön farbig. Sie sehen,

beim Thema Spiele fließt alles Wissen und Können des

Programmierers zusammen.

Das folgende Beispiel soll Ihnen den Nutzen auch des

originalen Zeichensatzes für dieses Thema darlegen:

100 REM KXXKKKEKEKKKEKKEKKKKEKS

110 REM x*x xx

120 REM ** ANIMATION-1 %x%

130 REM *x xx

140 REM ¥XXKKKKKKEKKKKKKEKK

150 REM

160 ag(0)=" " +CHR$ (119)

170 A$(1)=CHR$(99)+CHR$(123)+CHR$(99)

180 A$(2)=CHR$(167)+CHR$(183)+CHR$(165)

190 A$(3)=" " +CHR$ (113)

200 A$(4)=CHR$(173)+CHR$(123)+CHR$ (189)

268

b)

210 A$(5)=CHR$(183)+CHR$ (183) +CHR$(183)

300 PRINT CHR$(147) : REM BILDSCHIRM LOESCHEN

310 X=18 : REM SPALTENPOSITION

320 FOR ZA=0 TO 5 STEP 3

330 Y=12 : GOSUB 1000 : REM POSITIONIEREN

340 PRINT A$(ZA):GOSUB 1010 : REM KOPF

350 PRINT A$(ZA+1):GOSUB 1010 : REM RUMPF/ARME

360 PRINT A$(ZA+2) : REM BEINE

370 FOR S=1 TO 100 : NEXT S : REM WARTESCHLEIFE

380 NEXT ZA

390 GOTO 320 : REM MIT <RUN/STOP> UNTERBRECHEN

400 REM

410 REM ***xk POSITIONIEREN X%*%Xx%

420 REM KKEKKKKKKKKKE

1000 PRINT CHR$(19);:IF Y>O THEN FOR T=1 TO Y:PRINT: NEXT T

1010 PRINT TAB(X);: RETURN

' In diesem Programm werden zu Anfang (Zeilen 160-210) die

Teile für die zwei Phasen der Bewegung des Mannchens

definiert. Insgesamt bauen wir es aus 7 Zeichen auf, die

in 3 untereinander liegenden Reihen stehen sollen. Jede

der drei Reihen wird in einen separaten Array-Speicher

(A$(...)) abgelegt (Nr. 0-2 fiir die erste Phase und Nr.

3-5 für die zweite). Alsdann werden die Startkoordinaten

des Männchens festgelegt und positioniert (Z. 330). Der

Rest ist relativ einfach zu durchschauen: Die drei Reihen

werden gezeichnet (1.Phase), wobei jeweils nur ein Teil

der Positionierungsroutine aufgerufen wird. Im zweiten

Durchlauf der FOR...NEXT - Schleife werden dann die Reihen

der 2. Phase gezeichnet. Durch Veränderung der Länge der

Warteschleife in Zeile 370 kann die Geschwindigkeit der

Bewegung gesteuert werden. Versuchen Sie doch einmal,

dieses Männchen durch eigene Zeichendefinitionen

darzustellen (s. # 4.4). Dann ist es Ihnen gleichfalls

möglich, mehr als zwei Bewegungsphasen nacheinander

ablaufen zu lassen, was die Effektivität natürlich um

Einiges steigert.

Zeichenverschiebung:

Wie bei den Sprites können wir auch unser Männchen über

den Bildschirm bewegen. Dies geschieht auf ähnliche Weise,

269

wie in Kapitel 4.3 angegeben. Wir zeichnen unser Männchen

an einer bestimmten Position auf den Bildschirm. Nach

einiger Zeit (Warteschleife) löschen wir es wieder und

setzen es dafür ein klein wenig verschoben weiter nach

rechts, links, oben oder unten usw. Aus dieser stetigen

Verschiebung resultiert dann eine kontinuierliche

Bewegung, wie wir sie von den Sprites her kennen. Das

einzige Problem dabei ist die Auflösung der Bewegung.

Normalerweise können wir unser Objekt immer nur um minimal

ein Zeichen verschieben. Dieses Manko können wir

allerdings ein klein wenig dadurch ausgleichen, daß wir

auch hier "Zwischenphasen" programmieren (das Objekt steht

praktisch "zwischen" zwei Zeichen). Das geht natürlich nur

unter Veränderung des Zeichensatzes.

Doch beschäftigen wir uns lieber erst einmal mit den

Grundlagen. Das folgende Programm vereinigt die Technik

der internen Bewegung mit der Zeichenverschiebung und

vermittelt ein schon recht hübsches Bild. Wenn wir dies =

Männchen nun noch per Joystick steuern, bleibt (fast) kein

Wunsch mehr offen.

100 REM KXXKKKKKKRKKERKKKKK

110 REM *x *x

120 REM ** ANIMATION-2 xx

130 REM *x xx

140 REM KKKKKKKKKRKKKKKKK KK

150 REM

160 A$(0)=" "+" " +CHR$(119)+" " yon

170 A$(1)=" "+CHR$(99)+CHR$(123)+CHR$(99)+" "

180 A$(2)=" "+CHR$(167)+CHR$(183)+CHR$(165)+" "

190 Ag$(3)=" "+" " +CHR$(113)+" " +"

200 A$(4)="_ "+CHR$(173)+CHR$(123)+CHR$(189)+" "

210 A$(5)=" "+CHR$(183)+CHR$(183)+CHR$(183)+" "

300 PRINT CHR$(147) : REM BILDSCHIRM LOESCHEN

305 SP=1:B=0:E=33

310 FOR X=B TO E STEP SP : REM SPALTENPOSITION

320 FOR ZA=0 TO 5 STEP 3

330 Y=12 : GOSUB 1000 : REM POSITIONIEREN

340 PRINT A$(ZA):GOSUB 1010 : REM KOPF

350 PRINT A$(ZA+1):GOSUB 1010 : REM RUMPF/ARME

360 PRINT A$(ZA+2) : REM BEINE

270

370 FOR S=1 TO 60 : NEXT S : REM WARTESCHLEIFE

380 X=X+SP

390 NEXT ZA

400 X=X-SP

410 NEXT X

420 SP=-SP : ZW=B : B=E : E=ZW : GOTO 310 : REM AUSTAUSCH

(BEWEGUNGSR. AENDERN)

500 REM

510 REM ***kx POSITIONIEREN **xx

520 REM KKKKKKKKKKKKE

1000 PRINT CHR$(19);:IF Y>O THEN FOR T=1 TO Y:PRINT: NEXT T

1010 PRINT TAB(X);: RETURN

Wir haben in diesem Programm um die bereits bekannte

Bewegungsroutine eine weitere FOR...NEXT - Schleife

gepackt. Weiterhin mußten wir die Reihendefinitionen in

den Zeilen 160-210 jeweils um ein Leerzeichen vorne und

hinten erweitern, um ein Löschen der zuletzt gezeichneten

Figur sowohl beim Hin-, als auch beim Zurückgehen zu

gewährleisten. Vielleicht versuchen Sie einmal hinter die

Bedeutung der Speicher SP, B, E (und ZW) zu kommen. Sie

dienen zur Bereitstellung der notwendigen Parameter für

Rechts- und Linkslauf.

Danit haben wir Ihnen einige Tips gegeben, wie Sie neben

den Sprites noch einige einfache Bewegungen mehr in Ihr

Spiel bekommen. Kommen wir daher gleich zum nächsten

Thema.

5.3.2. Scrolling

Wer hat nicht schon einmal ’Defender’ oder ähnliche

Actionspiele gesehen oder gar mit ihnen gespielt, in denen

Sie Führer eines Raumschiffes sind, das mit einer Höllen-

geschwindigkeit durch den Weltraum fliegt. Oder Sie fahren

mit einem Rennwagen unter Aufbringung aller Konzentration

auf einer Piste, verfolgt von anderen Rivalen, die Sie

abdrängen.

Doch wenn Sie genauer hinschauen, sind es nicht das

Flugzeug oder das Auto, die sich vorwärts bewegen, sondern

vielmehr der Hintergrund. D.h. der gesamte Bildschirm

271

10:

20:

30:

40:

50:

60:

70:

80:

110:

120:

130:

140:

150:

160:

200:

210:

220:

230:

280:

290:

300:

310:

320:

330:

340:

(oder Teile) wird nach rechts, links, oben oder unten

verschoben, während das jeweilige zu steuernde Objekt (ein

Sprite) meist nur beschränkt bewegt werden kann. Nun ist

ein solches Verschieben, Rollen oder Scrolling des

Bildschirms eine sehr zeitaufwendige Sache und kann daher

nur in Maschinensprache durchgeführt werden. Dabei

verwendet man nicht etwa Graphik (hier müßten für einmal

verschieben 8 K bewegt werden) sondern den Textmodus, was

bei Spielen fast das Gleiche ist, da wir ja den Zeichen-

satz beliebig verändern können und so quasi hochauf-

lösende Bilder erhalten. Bekanntlich müssen hier nur etwa

1 K Bytes bewegt werden, was die Arbeit gewaltig

verringert. Im folgenden werden Ihnen entsprechende

Assemblerroutinen angegeben, die Sie genauso wie die

Befehle des Graphik - Paketes per SYS aufrufen können:

CcCc00 *x= $CC00

;

SKKKKAKKKKKKKKKI KK

; «x x%

;** SCROLLING xx

3 *x xx

SERIE KK K

cc00 CHKGET = $B7F]l

ccoo0 OB = 2038

ccoo UN = 2039

cCc00 FLAG = $FD

cc00 ZAHL = $FE

cc00 ADRESS = $61

CC0O0O 20 Fl B7 START JSR CHKGET ;KOMMA + BYTE HOLEN

Ccc03 8A TXA ; RECHTS/LINKS-FLAG

cc04 4A LSR A

cc05 08 PHP

CC06 20 Fl B7 JSR CHKGET

cc09 EO 19 CPX #25 ;OBERE ZEILE

CCOB 90 02 Bcc Sl

CcOD A2 18 LDX #24

CCOF 8E F6 07 S] STX OB

Ccc12 20 Fl B7 JSR CHKGET ;UNTERE ZEILE

cc15 EO 19 CPX #25

272 |

360:

370:

380:

390:

400:

410:

420:

430:

440:

450:

460:

470:

480:

490:

500:

510:

520:

530:

540:

550:

560:

570:

580:

590:

600:

610:

620:

630:

640:

650:

660:

670:

680:

690:

700:

710:

720:

750:

760:

cc17

cc19

CC1B

CC1E

cC1F

cc22

cc25

CC26

cc29

CC2B

cC2D

cc30

CC33

CC35

CC36

CC37

cc39

CC3A

CC 3B

cC3C

CC3F

cc 41

cc 44

cc 46

CC 47

cc48

CC4A

cc4c

CC4E

cc50

cc52

cc54

cc56

cc58

cc59

CC5A

cc5D

90

AZ

BE

SA

AE

AC

38

ED

BO

49

AE

AC

85

28

08

90

C8

98

AA

BD

85

BD

85

28

08

90

E9

85

BO

c6

A5

29

09

28

08

20

28

02

18

F7

F6

F7

F6

08

FF

F7

F6

FE

03

CB

62

E5

61

08

01

61

02

62

62

03

04

86

07

07

07

07

07

07

cc

cc

cc

$2

$3

S4

.
3

BCC

LDX

STX

TXA

LDX

LDY

SEC

SBC

BCS

EOR

LDX

LDY

STA

PLP

PHP

BCC

INY

TYA

TAX

LDA

STA

LDA

STA

PLP

PHP

BCC

SBC

STA

BCS

DEC

S2

#24

UN

OB

UN

OB ;OBEN - UNTEN

S3

#$FF ; OBEN< UNTEN=>TAUSCH

UN

OB

ZAHL ; ZAEHLER

;RE/LI-FLAG

S4

;RECHTS: ZEILE WEITER

; UND UNTEN STARTEN

MULH,X ;HIGH BYTE ADRESSE

ADRESS+1

MULL,X ;LOW-BYTE

ADRESS

;RE/LI-FLAG

MOVE

#1 ;BEI RECHTS -l

ADRESS

MOVE

ADRESS+]1

; VERSCHIEBUNG

> KKKKKKKKE KKK

.

3

MOVE LDA
AND
ORA
PLP
PHP
JSR
PLP

ADRESS+1

#3

#4 ; BASISADRESSE=$0400

; FLAG

MOVE] ; VIDEORAM VERSCHIEBEN

273

770:

780:

790:

800:

810:

820:

830:

840:

850:

860:

870:

880:

890:

900:

910;

912:

915:

920:

930:

940:

950:

960:

970:

980:

990:

1000:

1010:

1020:

1030:

1040:

1050:

1060:

1070:

1080:

1090:

1100:

1140:

1150:

1160:

1170:

1180:

CC5E

CC5F

ccél

CC63

CC65

CC67

ccé69g

CC6B

CC6D

CC6F

cc71

CC73

CC75

CC77

cc79

CC7B

CC7C

CC7D

cc80

CC82

cc84

CC85

CC86

cc88

CCBA

CC8D

CC8F

cc91

ccg2

cc94

CC96

CcCc97

cc98

08

A5

90

69

85

90

E6

BO

E9

85

BO

C6

A5

29

09

28

08

20

C6

10

28

60

85

90

4c

AU

Bl

AA

AO

Bl

48

SA

91

61

0A

27

61

OC

62

08

27

61

02

62

62

03

D8

86

FE

CE

62

03

AB

00

61

27

61

61

PHP
LDA
BCC
ADC
STA
BCC
INC
BCS

Ml SBC
STA
BCS
DEC

M2 LDA
AND
ORA
PLP
PHP

cc JSR
DEC
BPL
PLP
RTS

.
’

; VERTEILER

; FLAG

ADRESS

M1

#39 ;C=l! / RECHTS

ADRESS

M2

ADRESS+1

M2 ; UNBEDINGT

#39 ;C=0! / LINKS

ADRESS

M2

ADRESS+1

ADRESS+1

#3

#$D8 ; FARBRAM BEI $D800

MOVEI ; FARBRAM VERSCHIEBEN

ZAHL

MOVE

SOR KK KKK

i

MOVE] STA

BCC

cc JMP

.
s

ADRESS+1

LINKS

RECHTS

; LINKS VERSCHIEBUNG

5 KKK KK KKK KKK KKK KEK

LINKS LDY

LDA

TAX

LDY

L2 LDA

PHA

TXA

STA

274

#0

(ADRESS), Y

;ERSTES BYTE MERKEN

#39

(ADRESS) ,Y

;MERKER 1

;HOLE MERKER 2

(ADRESS),Y

1190:

1200:

1210:

1220:

1230:

1240:

1250:

1260:

1270:

1280:

1290:

1300:

1310:

1320:

1330:

1340:

1350:

1360:

1370:

1380:

1390:

1400:

1410:

1420:

1460:

1470:

1480:

1490:

1500:

1510:

1520:

1530:

1540:

1550:

1560:

1570:

1580:

1590:

1600:

1610:

1620:

CC9A
CC9B

CC9C

CC9D

CC9OF

CCAO

CCA2

CCA4

CCA6

CCA8

CCAA

CCAB

CCAC

CCAE

CCBO

CCB2

CCB4

CCB6

CCB8

CCBA

CCBB

CCBD

CCBF

ccco

cccl

CCC3

ccc4

ccc5

CCcC6

ccc8

CCCA

CCCB

CCD8

CCE5

CCEC

CCF2

CCFY9

68

AA

88

10

18

A5

69

85

90

E6

60

38

A5

E9

85

BO

C6

AO

Bl

AA

AO

Bl

48

8A

91

68

AA

C8

co

DO

60

04

06

00

18

08

20

F5

61

28

61

02

61

28

61

02

62

28

61

01

61

61

29

F3

04

06

28

40

30

48

PLA ;HOLE MERKER 1

TAX ; IN MERKER 2

DEY

BPL L2

CLC

LDA ADRESS

ADC #40 ;NAECHSTE ZEILE

STA ADRESS

BCC L3

INC ADRESS+1

L3 RTS

; RECHTS VERSCHIEBUNG

> KKK KK KKK KKK KKKK EK

RECHTS SEC ©

LDA ADRESS

SBC #40

STA ADRESS ‚40 ABZIEHEN

BCS Rl

DEC ADRESS+1

Rl LDY #40

LDA (ADRESS),Y ;LINKES BYTE HOLEN

TAX

LDY #1

R3 LDA (ADRESS),Y

PHA ;MERKER 1

TXA ;MERKER 2 HOLEN

STA (ADRESS),Y

PLA ;MERKER 1

TAX ; IN MERKER 2

INY

CPY #41

BNE R3

RTS

O04 MULH .BYTE4,4,4,4,4,4,4,5,5,5,5,5,5

06 .BYTE6,6,6,6,6,6,6,7,7,7,7,757

50 MULL .BYTE$O0, $28, $50,$78,$A0,$C8, $FO

68 . BYTE$18, $40, $68, $90, $B8, $E0

58 . BYTE$08, $30, $58, $80,$A8, $D0, $F8

70 . BYTE$20, $48, $70, $98, $C0, $E8

275

Auch hier wird Ihnen natürlich wieder ein entsprechender

Basic-Lader angeboten:

100 FOR I = 52224 TO 52480

110 READ X : POKE I,X : S=S+X : NEXT

120 DATA 32,241,183,138, 74, 8, 32,241,183,224, 25,144

130 DATA 2,162, 24,142,246, 7, 32,241,183,224, 25,144

140 DATA 2,162, 24,142,247, 7,138,174,246, 17,172,247

150 DATA 7, 56,237,246, 7,176, 8, 73,255,174,247, 7

160 DATA 172,246, 7,133,254, 40, 8,144, 3,200,152,170

170 DATA 189,203,204,133, 98,189,229,204,133, 97, 40, 8

180 DATA 144, 8,233, 1,133, 97,176, 2,198, 98,165, 98

190 DATA 41, 3, 9, 4, 40, 8, 32,134,204, 40, « 8,165

200 DATA 97,144, 10,105, 39,133, 97,144, 12,230, 98,176

210 DATA 8,233, 39,133, 97,176, 2,198, 98,165, 98, 41

220 DATA 3, 9,216, 40, 8, 32,134,204,198,254, 16,206

230 DATA 40, 96,133, 98,144, 3, 76,171,204,160, 0,177

240 DATA 97,170,160, 39,177, 97, 72,138,145, 97,104,170

250 DATA 136, 16,245, 24,165, 97,105, 40,133, 97,144, 2

260 DATA 230, 98, 96, 56,165, 97,233, 40,133, 97,176, 2

270 DATA 198, 98,160, 40,177, 97,170,160, 1,177, 97, 72

280 DATA 138,145, 97,104,170,200,192, 41,208,243, 96, 4

290 DATA 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5,5

300 DATA 6, 6, 6, 6, 6, 6, 6, 7, 7, 7,7, 7

310 DATA 7, O, 40, 80,120,160,200,240, 24, 64,104,144

320 DATA 184,224, 8, 48, 88,128,168,208,248, 32, 72,112

330 DATA 152,192,232, 0, 0

340 IF S <> 27098 THEN PRINT "FEHLER IN DATAS !!" : END

350 PRINT "OK"

Dieses Programm harmonisiert mit dem Graphik - Paket aus

Kapitel 4, d.h. beide Maschinenprogramme können sich gleich-

zeitig im Speicher befinden und auch verwendet werden. Der

Aufruf erfolgt, wie gesagt, ebenfalls über SYS und zwar in

der wie folgt angegebenen Art und Weise:

SYS 52224,r,a,e

Dabei bedeuten:

r: Richtung des Scrollens (0=links/l=rechts)

276

a: Anfangszeile und

e: Endzeile zwischen denen gescrollt wird

Die Anwendung dieser Basicerweiterung sollten Sie dem

folgenden kleinen Demonstrationsprogramm entnehmen:

100 REM K¥XXKKKKKKKKKKEKKE

110 REM ** xx

120 REM ** SCROLLING **

130 REM ** *%

140 REM ¥XKXKKKKKKKKKEKKEE

150 REM

200 SR = 52224 : REM SCROLL-ADRESSE

210 PRINT CHR$(147) :. REM BILDSCHIRM LOESCHEN

220 PRINT:PRINT" DER SCROLL-BEFEHL ERMOEGLICHT IHNEN,"

230 PRINT" JEDE BELIEBIGE BILDSCHIRMZEILE"

240 PRINT" UND BEI BEDARF AUCH MEHRERE GLEICH-"

250 PRINT" ZEITIG ZU VERSCHIEBEN."

260 PRINT" SEHEN SIE?"

270 FOR X=1 TO 5000 : NEXT X

280 FOR X=1 TO 40

290 FOR Y=1 TO 50 : NEXT Y ,

300 SYS SR,1,6,6

310 NEXT X

320 PRINT:PRINT "DAS GANZE GEHT NATUERLICH AUCH SCHNELLER"

330 FOR X=1 TO 4000 : NEXT X

340 FOR X=1 TO 200 : SYS SR,1,8,8 : NEXT X

350 PRINT" UND ANDERS HERUM!"

360 FOR X=1 TO 4000 : NEXT X

370 FOR X=1 TO 400 : SYS SR,0,10,10 : NEXT X

380 PRINT : PRINT" VIELLEICHT AUCH DER GANZE BILDSCHIRM"

390 FOR X=1 TO 4000 : NEXT X

400 FOR X=1 TO 200 : SYS SR,0,0,24 : NEXT X

410 PRINT: PRINT" WOLLEN SIE EINMAL"

420 PRINT" LAUFSCHRIFTEN ERSTELLEN?"

430 FOR X=1 TO 4000 : NEXT X

440 PRINT: PRINT" -~-- DATA BECKER --~-"

450 FOR X=1 TO 400:SYS SR,0,17,17: FOR Y=X TO 150: NEXT Y,X

Wie Sie sehen, macht es richtig Spaß mit diesem schönen

Befehl zu arbeiten. Denken Sie sich doch einmal andere

Anwendungen aus - Sie werden es nicht bereuen!

277

Wir haben Ihnen nun die wichtigsten Grundlagen für die

Programmierung der Spiele vermittelt. Nun ist es an Ihnen,

diese in die Tat umzusetzen. Die Phantasie können wir Ihnen

nicht abnehmen. Und wenn Sie einmal ein kleines Spiel fertig

haben, dann laden Sie mich doch einmal ein.

278

SS. Kapitel

Anhang

6.1 Programmoptimierun sg

‘In den einzelnen Kapiteln haben wir Ihnen viele Basic-

programme vorgestellt. Doch stört uns oft Ihre Langsamkeit,

was nicht selten schöne Effekte verschleiert. Im folgenden

werden Ihnen einige Tips gegeben, wie Sie Ihre Basic-

programme friesieren können.

Man unterscheidet grundsätzlich zwei Methoden der

Geschwindigkeits - Aufbesserung:

1.) Das Optimieren des Basicprogrammes selbst

2.) Das Ersetzen von langwierigen Basicroutinen durch ent-

sprechende Assemblerprogramme.

Zum ersten Punkt seien hier einige geraffte Informationen

gegeben:

- Vermeiden Sie REM-Zeilen (zumindest oder besonders in oft

zu durchlaufenden Schleifen).

- Vermeiden Sie zu viele Zeilen. Oft zu durchlaufende

Schleifen etc. sollten in möglichst wenigen Zeilen unter-

gebracht werden (Nutzen Sie die Befehlsabkürzungen, um

möglichst viele Befehle in eine Zeile zu bekommen).

- Vermeiden Sie Leerzeichen zwischen oder in den Befehlen,

die nicht syntax- oder programmnotwendig sind.

- Verringern Sie den Rechenaufwand in zeitkritischen

Schleifen, indem Sie wenn dies möglich ist, Rechnungen oder

Teilrechnungen bereits vor Aufruf der Schleife durchführen

und die Ergebnisse in Zwischenspeichern bereithalten.

- Vermeiden Sie das direkte Rechnen mit Zahlen (Konstanten)

in Schleifen; besser ist, wenn Sie diese vor Aufruf der

Schleife in entsprechende Zischenspeicher packen, da Zahlen

immer erst in das rechnerinterne Floatingpoint - Format

umgerechnet werden müssen.
~

279

- Vermeiden Sie Unterprogrammaufrufe (GOSUBs) oder GOTOs in

zeitrelevanten Schleifen.

- Konstruieren Sie Schleifen möglichst nur mit FOR...NEXT -

Vermeiden Sie IF.

- Definieren Sie viel gebrauchte (vor allem in Schleifen

verwendete) Speicher möglichst zuerst. Es genügt z.B. ein X=0

am Programmanfang, wenn Sie diese Variable im Laufe des

Programmes sehr häufig verwenden.

-— Packen Sie zusammengehörige Programmteile möglichst nahe

beieinander, um langes Suchen des Rechners nach der Zeilen-

nummer bei GOTO und GOSUB abzukürzen.

- Legen Sie DATA-Zeilen möglichst zusammen und ebenfalls in

möglichst wenigen Zeilen an.

Leider vertragen sich (fast) alle diese Maßnahmen nicht mit

der geforderten Übersicht über das Programm und sollten

deshalb teilweise möglichst erst dann durchgeführt werden,

wenn das Programm ’läuft’. Dieses ’speed up’ Ihres Programms

sollte also sein letzter Schliff sein.

Der zweite Punkt, das Ausführen von Maschinenprogramnmen, ist.

natürlich etwas schwieriger, stellt aber bei vielen nicht

arithmetischen (= nicht mathematischen) Prozessen eine

sinnvolle und die effektivste Maßname dar, um Programme zu

beschleunigen. Das Maschinenprogranmm steht dazu in

DATA-Zeilen und wird vor der Ausführung des eigentlichen

Basicprogramms durch READ ausgelesen und in den jeweiligen

Speicherbereich gePOKEt, in dem das Programm laufen soll, das

später durch SYS aufgerufen wird (s. Zeichenformer, Sprite-

editor und die vielen Beispiele, die von Assemblerprogrammen

unterstützt werden).

Am eindrucksvollsten zeigt sich der Nutzen dieser Technik bei

bestimmten graphischen Routinen (s. Graphik-Paket). Hier

sollen die in Basic wohl zeitaufwendigsten Arbeiten mit der

Graphik kurz durch entsprechende Assemblerroutinen ersetzt

werden. Es sind dies: das Löschen der Graphik und die

Farbgebung:

Graphik loschen

100 FOR I = 51200 TO 51221

110 READ X : POKE I,X : S=S+X : NEXT

120 DATA 169, 32,133,254,160, 0,132,253,162, 32,152,145

130 DATA 253,200,208, 251,230, 254,202,208,246, 96

140 IF S <> 3772 THEN PRINT "FEHLER IN DATAS !!" : END

150 PRINT "OK")

Farbe setzen

100 FOR I = 51222 TO 51261

110 READ X : POKE I,X : S=S+X : NEXT

120 DATA 32,241,183,134,151,162, 3,169, 4,133,254,160

130 DATA 0,132,253,132, 2,165,151,145,253,200,196, 2

140 DATA 208,249,230,254,202,240, 3, 16,242, 96,162,232

150 DATA 134, 2,208,235

160 IF S <> 5970 THEN PRINT "FEHLER IN DATAS !!" : END

170 PRINT "OK"

Diese beiden Einleseroutinen können Sie in Ihre Programme

einbauen, wenn Sie sich nicht die Mühe gemacht haben, das

Graphik-Aid in Ihren Rechner zu tippen. Die Syntax der beiden

neuen Graphikbefehle lautet:

SYS 51200 : REM GRAPHIK LOESCHEN

SYS 51222, 16%PF+HF : REM FARBE SETZEN

Dabei bedeuten:

PF: Punktfarbe

HF: Hintergrundfarbe

Wie sie anzuwenden sind, zeigen Ihnen die Erläuterungen in

Paragraph 4.7.

281

56.2 Graphikspeicheraufbau

Im folgenden wird Ihnen der Aufbau der drei zweit wichtigsten

Graphik - Speicherfunktionen dargestellt: Videoram und

Graphikspeicher. Zu den am Rand angegebenen relativen

Adressen der jeweiligen Zeilenanfänge müssen Sie stets noch

die Basisadresse hinzuzählen. Diese hängt von der Lage des

Speichers ab und lautet nach dem Einschalten für den

Videoram: 1024 ($0400). Der Farbram besitzt den gleichen

Aufbau wie der Videoram und hat die Basisadresse: 55296

($D800).

Bei dem Schaubild für den Graphikspeicher müssen Sie jeden

Kasten noch einmal in 8x8 Kästchen unterteilen, un die

einzelnen Punkte zu symbolisieren. Den genauen Aufbau

entnehmen Sie bitte dem Kapitel 3.

6.2.1.Graphikspeicher

0
320
640
960

1280
1600
1920
2240
2560
2880
3200
3520
3840
4160
4480
4800
5120
5440

282

6.2.2. Videoram

283

S. 53 Farbtabelle

Der Commodore 64 besitzt in allen verfügbaren Modi 16 Farben.

Jeder dieser Farben ist ein sogenannter Farbcode zugeordnet,

der in die entsprechenden Register gePOKEt wird, die für

Farbangelegenheiten zuständig sind. Gleichzeitig können Sie

aber auch alle 16 Farben im Textmodus für das Aussehen der

Zeichen von Hand (Tastatur) aus anwählen. Dementsprechend

gibt es für jede Farbe einen ASCII-Code, der die Bestimmung

der Textfarbe auch von Programmen aus ermöglicht. In

PRINT-Statements erscheinen die typischen Graphikzeichen. Die

folgende Tabelle vereinigt alle Ansteuerungsmöglichkeiten

übersichtlich zum schnellen Nachschlagen.

Taste ASCII jAusgabel Codes Farbe

Dez| Hex | Dez] Hex

<ctri> 1| 144| $90 mi | 00|$00 | schwarz
<ctrl> 2] 005] $05 u 01] $01 | weiB

<ctrl> 3| 028| $1Ic Es 02| $02 | rot

<ctrl> 4] 159/$9F| mg | 03|$03 | zyanblau
<ctrl> 5| 156/$9c| am 04|$04 | violett
<ctrl> 6 | 030|$1E Ka | 05|$05 | grün

<etrl> 7 | O31/$1F at 06] $06 | blau

<ctrl> 8 | 158|$9E Ki 071$07 | gelb

<C=> 1 129|$81 u: 08/$08 | orange

<C=> 2 | 149]$95 m 09|$09 | braun

<C=> 3 | 150/$96 wi 10|$0A | hellrot

<C=> 4 | 151|$97 a 111$0B | dunkelgrau

<C=> 5 | 152 |$98 ca 12|$0C | mittelgrau

<c=> 6|153|/$99} mu 13|$0D | hellgrün

<c=> 71154/$9a | 14|$0E | hellblau

<C=> 8 |155/$9B] wi 15|$0F | hellgrau
284

S.4 Bildschirmcodes

Jeden Zeichen des Bildschirms ist ein bestimmter ASCII-Code,

aber auch ein Bildschirmcode zugeordnet.

Code, mit dem das Zeichen im

Wollen Sie also ein Zeichen direkt

POKEn, so verwenden Sie jene

inversen Zeichen erhalten Sie,

normalen Zeichen hinzuaddieren.

Modest AST I eel chen

Sate] Poatee

a ea & ca
1 ec A a

a EE E kes

= ar fa in
ef ee T cd

& Fe F rf

& FE fl Fi
5 Pm 1 il

iG vo Bj Ei
11 va| |E |
12 re L u
13 rr rr Li

id; Fe] [R i
is 7a a a
16 ee F P

? 51 er cy
12 a FR) re
13 EEE = B
26 Sid T |
=i me | |

22 ec | M a
23 a? 4 1.)
ze me Ki =)

a? a1 | C | J
28 32 £ €
29) se] [3 Bl
38 Sef + t
31 35 | +
a2 az | =
33 33 Ka
Set Ste} i a

35 a # #
36 Se | £ u hail
Ar 37 | |
38 m & it
33 2a “ “

285

Letzterer ist der

abgespeichert wird.

diesen Textspeicher

Die Codes für die

128 zu denen der

==) AHSCII Zei chen

ut tr

ae
s my

u
i

Ao
A

A
ft

fx

Pe.

LA
iT
;

Ä
“4

om

1

Lo

=.
t
e

T
h

oh

i)

O
O

O
o

nA

Te
t

Lu

“
1
4

ri

h
i
h
i

ih

ia

f
a

id

i
h
n

In

EN

De

f
T

LA

my
m
J
y

md
 o

t
wd

Le

ato ff Sia

a .

41

42

ofc

de
45

Ag

E
E
E

PE

RE

Je

er
r

7

“wa
te”

SR
SS

SE
ST

T
TI

FR

IS
T

2
in wt

Sd e
ial ”

Ih

IM

ih

C
A
A

A
IN

D
o
n

dd

Ya
t

Fz

we

il

S
R
E
P

ES
D

SE
E

ee
e

oe
,

‘a

fe
a

e
e

fe

f
e
e

fea

ec
k

fe

fe
i

et

pe
e

ee

T
T

GD

e
e

to

A

} 1=[
2[7

[=

]
4
]
+
|
 5}
 ANTE Tef

e
n

Pa
t

Bel
fi

ap
)

Je

fe
Pa
en

ce

e
e
s

Je
Ts

 B
M

oO
W
A
R

O
h

S
o

o
m

{ t

fi

fe

f
u
n
k
 eh

me

ds

an

fs
t

ri
r

of

Ya
 x

f
=

mr

A
R
O

R
O
A

R
O

w
n

er
me

i

mr

of

in

tt

G
T

te

M
w

Wo

8G

bo

to

6G

il

e
e

=
21

fe

ee

al

1
6
3
8

I
-
|
®
|

|
[
#
1
]

fa
t
P
e
e

R
m

P
e

r
i

ih

f

TI

=

| —
|

in
| m
e

,
R
e

in
 a

n
|
=

|
ve

|
ı

=|

]-+
] h

s]

 fe
at

s
fo
m

f
c

f
k

f
o
n
e

fe
w

f
e
n
s

fe

w
Fu
nd
e

fe
e

fe
e

ee

fe
el

fe

fe

ct
s

™®
7

ph
oh

T
o
h

oh

hy
ha

Ba

bo

fe

Bo

pe

Pa

fa
“
J
o
,

LA

fp

1#
]=

1
[l

s
=]
 1
43

-1
*]
+1
#1
-1
®]

 aC =

2
 od

mf
r

om
)

iT

f mr

St

a!

m
m
i

t
t

e
e

fa
ul

e
ja
ah

jo
ch
e

=,

3
)

f
e

SD

fo
nt

s

fe
el

p
e

i
h
:

u

I
Tt

if

£7

M
i
n

B
i
t
!

a

Z
e
u
s

fe
ud
e

Ze
e

Da
nt

e
fu
ah
e

he
he

Zu

ne

o
n

we
d

m
h

m
J

~
j

“4
4

- =
O
m

O
o

N
N

f
e

e
k
e

eh

fa

fa
n

mh
o
m

J
A
N

E
i

h
i
e

H
W

o
N

~~
 co

Mm

a

ei

i

io

oo

me

PS

LG
 ee

l
TT
l
*

el
e

a
F
F
E

Te

Tt
[2

Te
be

Pe
L
P

|

eo

286

 ee
l
t
e

e
T

E
R

Te
h

Tt
fs

Te
de
 P

e
8

6.5 Dez/Hex/Dual—-Konversion

%| %1 %I 31 BP KB] KT %] BS] %| BE %| %I %| KT %

0; OF OF OF OF OF OF OF IK 1) 1) 1) 1 day iti

0; O; OF; OF Li Ty Tt LY OF OF OF OF LT TT 17 il

O7; OF; 1] 1) OF OF LT] TY] OF OF TY LT] OF Of 17 1

O; 1} OF 17 OF Ly] OF 1] OF Lt OF LY OF 1] OF 1

O; 1] 2] 3] 4) 5] G6} 7] By] 9F10}11)12)13)14 415

*0000 0000 0 ($00 101) 02/03)04|05 |}06/07/08/09| 0A] 0B/0C|OD} OF | OF

%0001 0000 | 16 j$10 J11j 12/13/14 |15 J16 | 17 | 18/19 J1A| IB | IC |I1D|1E | IF

%0010 0000 | 32 |$20|21122|23/24|25|26127128|29]2A| 2B|2C |2D| 2E|2F

%0011 0000 | 48 |$30 |31) 3233 |34 | 35 [36 |37 |38 |39] 3A] 3B | 3C |3D | 3E |3F

*0100 0000| 64 j$40)41)42|43|]44|45 |146|47|48|49]4A|4B|4C |4D|AE jAF

%0101 0000| 80 |$50 |51152|53|54 |55 |56 157 |58 |59 |5A | 5B |5c [50 |5& |5F

%x0110 0000| 96 j$60|61|62]63|64 65 |66 | 67|68|69| 6A | 6B | 6C |6D | GE |6F

%0111 0000 J112 |$70 |71|72 |73 |74 | 75 |76 | 77 |78 |79|7A | 78 |7c |7n |7« [7

%1000 0000 11281$80|81|82|]83|84|185 |186|87|88|89|8A| 8B | 8C |8D | 8E |8F

%1001 0000 |144 |$90|91|92|93j 94 | 95 I96 | 9719899 | 9A | 9B |9C |9D | Y9E |9F

%1010 0000 |160 $AO| Al A2|A3|AAJAS JAGJAT|ABJAQGIAA|AB|AC |AD|AE [AF

x1011 0000 |176j$BO|JB1|B2|B3|BA|B5 |B6|B7|BBEIBY|BAI BB |BC |BD |BE |BF

%1100 0000] 192] $CcO |C1|C2]C3]jCc4|C5 |C6|C7|CBEI|CYICAICBICC ICDI|CE ICF

%1101 0000|208|$D0|D1|D2|D3)D4|D5 ID6|D7|D8|D9Y9|DA|DB |DC |DD |DE |DF

%1110 0000]224| $EOJE1lJE2|E3|EA|ES JEGS|E7T|EBJEY|EA| EB |EC JED|EE {EF
 %x1111 0000]240|$FO|F1)F2]F3]| FA] F5 IF6I F7TIFB|FY|FA|FB |FC |FDIFE |FF

287

8.6 Spriteentwurfsblatt

Mit Hilfe dieses Formblattes ist es Ihnen möglich auf

einfache Art und Weise Sprites zu erstellen, indem Sie die

einzelnen Kästchen, die jeweils einen Punkt darstellen,

ausmalen und die oben stehenden Werte zu einem Byte (drei

Bytes pro Zeile) zusammenzählen. Multicolorsprites erstellen

Sie, indem Sie für einen Punkt zwei nebeneinander liegende

Kästchen (möglichst die 3 verschiedenen Multicolorfarben auch

in drei verschiedenen Farben zeichnen) ausmalen.

288

6.7 Zeichenentwurfsblatt

Ebenso wie beim Spriteentwurfsblatt können Sie auch mit der

folgenden Tabelle Multicolorzeichen erstellt werden, indem

Sie für einen Punkt jeweils zwei Kästchen ausmahlen.

Bit: 17 |16|5|14|3|2|1/0

Wert: 128 164 2 11618 | 4 j2 11 | Codes

~~
]

m

|

w
m

|

a

um
s

289

6.6 VIC-Register-Übersicht

Register| Adresse Bit 7 Bits Bit5 Bit 4 Bits Bit2 Bit1 Bit

tere le le | 128 ae a 2 |
on $00 saned $p000 Sprite 0 --- x - Koordinate (Bits 0-7) (0-255)

oi] $01 | 53249 $0001 sprite © --- y - Koordinate (0-25)

02] $02 | 532501 $0002 Sprite 1 -—- x - Koordinate (Bits 0-7) (0-255)

03 803 | 53251 $0003 Sprite 1 --- y - Koordinate (0-255)

04] 304 | 53252] $D004 Sprite 2. --- x - toordinate (Bits 0-7)(0-255)

05] $05 | 53253) $0005 Sprite 2 ~--~ y - koordinate (0-255)

06] $06 | 53254| $p006 Sprite 3 --- x - Koordinate (Bits 0-7)(0-255)

071807 | 53255) $0007 Sprite 3 --- y - Koordinate (0-255)

081808 | 53256] $D008 Sprite 4 --- x - Koordinate (Bits 0-7)(0-255)

091809 | 53257] 80009 “Sprite 4 --- y - Koordinate (0-255)

10/804 | 53258/$D00A Sprite 5 --- x - Koordinate (Bits 0-7)(0-255)

11|s08 | 53259] sp008 sprite 5 --- y - koordinate (0-255)

121806. | 53268 |$D00€ Sprite & --- x - Koordinate (Bits 0-7)(0-255)

131808 | 53261 1$D00D Sprite 6 --- y - Koordinate (0-255)

14 1$0E | 53262 |$DOOE Sprite 7 --- x ~ Koordinate (Bits 0-7) (0-255)

151$0F | 53265 |$DO0F Sprite 7 --- Y - koordinate (0-255)

290

tegister Adresse Bit 7 Bit 6 | Bit 5 | Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ez Hex Dez {Hex 128 64 32 16 8 4 2

16} $10 55264) $D010

Sp. 7 Sp. 6 | Sp. 5 Sp. 4

Sprite 0-7 --- x - Koordinat

Sp. 3 Sp. 2

en (Bit 8)(#256)

Ex Sp. 0

171811 95265) $D011 Raster

Bit 2

extend.| Hi-Res-| Bild

Color Graphik aus
 Zeilen 25/2 y-Scrolling

181812 33266} $D012 Rasterzeile (aktuelle/Vorgabe) (Bits 0-7)(0-259

$13 53267] $B015 Lightpen --- x - Koordinate (0-255)

$14 53268] $D014 Lightpen --- y - Koordinate (0-255)

21 $15 53269] $D015

Sp. 7 Sp. 6 | Sp. 5 | Sp. 4

Sprite --- an / aus

sp. 3 [5.2 | 9.1 [59.0

$16 53270] $0016 nicht benutzt Kulti-

color Spalte

40/38 | x-Scrolling

$1? 53271) $D017

Sp. 7

Sprite ---

| sp. 6 | Sp..5 [Sp. 4

y - Vergrößerung

sp. 3 | Sp. 2| Sp. 1 Sp. 0

$18 55272] $D018 Bildschiraspeichetadr. (#1024)

Bit 13 Bit 12] Bit 11 [Bit 10

Zeichengen adr . (#2048)

Bit 15 Bit 12 Bit 11

nicht

benutzt

$19 55273} $6019 IRO-

Flag

nicht benutzt

Light-

pen

Sp.-SP

Kollis

Sp.-Hg.

| Kollis.

Raster

zeilen

26 [14 33274] $D01A nicht benutzt Light-

pen

Sp.-Sp

Kollis
Sp.-Hg.

Kollis.

Raster

zeilen

27 [818 33275] $DO1B Sprite - Hintergrund - Priorität

sp. 6| Sp.5 [Sp 4] Sp. 3 | Sp. 2| Sp. 1 | Sp. 0

sic 55276] $D01C Hulticolor - Sprites

Sp. 6| Sp. 5 | sp. 4| Sp. 3 | Sp. 2 | sp. 1 | Sp. 0
 $1D 55277| $DOLD €

Sprite --- x - Vergrößerung

| Sp. sp. 5 | 4 | Sp. 3 | Sp. 2 | Sp. 1 | sp. 0

291

Register} Adresse | Bit 7 | Bité [Bit S| Bit 4} Bit 3 | Bit 2 [itt | sito

Dex|Hex | Dez |Hex | mel 64] 32] wf 8] 4] 2] 1
301 SIE sen $001E Sprite - Sprite - Kollision

sp. 7 | Sp. 6 |Sp. 5 | Sp. 4] Sp. 3 | Sp. 2 [sp. 1 | 59. 0
zılsır | 53279] sB01F _ $prite - Hintergrund - Kollision

Sp. 7 | Sp.6 | Sp. 5 | Sp. 4 | Sp. 3 | sp. 2 | Sp. 1 | Sp. 0

$20 | 53280] $9020 Rahnenfarbe (0-15)

331321 | 53281180021 Hintergrundfarbe Wr. 0 (0-15)

34l $22 | 53282] $022 Hintergruadfarbe Ar. 1 (0-15)

35/23 | 53283/ $023 Hintergrundfarbe Wr. 2 (0-15)

361824 | 53284) $0024 Hintergrundfarbe Hr. 3 (0-15)

371925 | 53285180025 Gemeinsame Sprite-Farbe Nr. 0 in Multicolor (0-15)

381 $26 | 53286180026 Gemeinsase Sprite-Farbe Wr. 1 in Multicolor (0-15)

39127 | 53287 180027 Farbe fir Sprite Mr. 0 (0-15)

401$28 | 53288160028 Farbe fiir Sprite Wr. 1 (0-15)

411$29 | 53289 190029 Farbe fir Sprite Mr. 2 (0-15)

a2lsoa | 53290|$p024 Farbe fir Sprite Wr. 3 (0-15)

431928 | 53291 180028 Farbe fiir Sprite Wr. 4 (0-15)

441 $20 53292 |D02C Farbe fir Sprite Wr. 5 (0-15)

451320 | 53293 ee Farbe für Sprite Nr. 6 (0-15)

36/$2E | 53294 |6D02E Farbe fir Sprite Wr. 7 (0-15)

292

6.9 Literaturhinweise

Commodore 64:

Sally Greenwood Larsen

Sprite Graphics for the Commodore 64

Micro Text Publications

ISBN: 0-13-838144-5

Compute!’s First Book of Commodore 64

Compute! Books Publication

ISBN: 0-942386-20-5

C. Lorenz

Beherrschen Sie Ihren Commodore 64

Hofacker Verlag

ISBN: 3-88963-147-9

Stan Krute

Commodore 64 Graphics & Sound Programming

Tab Books Inc.

ISBN: 0-8306-0140-6

Shaffer

Commodore 64 Color Graphics: A Beginners Guide

The Book Company

ISBN:0-912003-06-5

Angerh. /Briick. /Eng./Gerits

64 intern

DATA BECKER GmbH

ISBN: 3-89011-000-2

Graphik-Fachbiicher:

Faux/Pratt

Computational Geometry for Design and Manufacture

Ellis Horwood Limited

ISBN: 0-85312-114-1

293

Hearn/Baker

Computer Graphics for the IBM Personal Computer

Prentice-Hall, Inc.

ISBN: 0-13-164335-5

Encarnacao

Computer Aided Design-Modelling, Systems Engineering,

CAD-Systens

Springer-Verlag

ISBN: 0-387-10242-6

Encarncao

Computer-Graphics - Programmierung und Anwendung von

graphischen Systemen

R.Oldenbourg Verlag

ISBN: 3-486-34651-2

Brodlie

Mathematical Methods in Computer Graphics and Design

Academic Press

ISBN: 0-12-134880-6

Barnhill/Boehm

Surfaces in Computer Aided Geometric Design

North-Holland

ISBN: 0-444-86550-0

Myers

Microcomputer Graphics

Addison-Wesley Publishing Company

ISBN: 0-201-05092-7

294

6.10 Nachtrag zu Abschnitt 4.1

Im folgenden wird das in Abschnitt 4.1 aus technischen

Gründen fehlende Basicprogramm nachgetragen:

REM aioe ee

REM a HE

REM

PRINT CHR#¢i¢e?> > FRINT : PRINT : REM BILDSCHIRM LOESCHEH-LEERZE ILEH

PRINT’ so ": REM M.N

PRINT’ ses oe ": REM MoU. TUK

FRIHT" “at "> REM J.K OM

FEIHT" m "> REM N.M.L.K

PRINT" u ": REM F

a PRINT" sername ale ‘) REM FPOPLP OL GL GF oP

ee

ee
 o
e

em

Wo

S
I
N
G

oe

oa

fe
a

ee

Ge

a
a

Pa

Po

Rd
 x

38 PRINT" Fa “se ": REM H.M.HM

42 FRIHNT" wo ": REM M.M.L

=a PRIWT" a “sy t ": REM N.M.L
a
 PRIWT" ey a ") REM GO. YP OH

PRIHT" I | Fa "> REM HAL SoM

FRIHT" I I mm ": REM H.Z.3.N.N,A.S.

PRIHT" PrP le ee, ": REM HOF HOM OLILE .

FRIHT" Pb ent " REM H CMON Mom SE

I

u

D
a
n

2.1.1

: ok A I a E.

gt

mi

C
1

ee

m
i

hg

=
.

la

ia

Pa

po

PO

fl

Pa

fü

Pa

1@ FRIWT" I ": REM PoP tt ae

ef FRINT" | | ": REM L.F.F.P.F.F.E

295

 Laden, Starten-
Klar!
DIE DISKETTE ZUM BUCH
Über 500.000 DATA BECKER Bücher sind bisher verkauft und
das nicht ohne Grund. Die beliebten DATA BECKER Stan-
dardwerke zum VC 20 und zum COMMODORE 64 Stecken
voller Programmiertips und Listings, die jeder Leser
am liebsten sofort am Gerät ausprobieren möchte.
Doch ohne fleißiges Abtippen der Programme
läuft nichts. Abtippen ist so langweilig wie
unzuverlässig; der kleinste Tippfehler kann J
den ganzen Spaß verderben. Ab sofort ao 7
nimmt Ihnen DATA BECKER diese
Arbeit ab. Die DISKETTEN ZUM BUCH
enthalten alle Programme und
Utilities, die Sie als Listing im jeweiligen
Buch finden. Diskette ins Laufwerk, ge-
wünschtes Programm laden, starten
und schon können Sie mit der ausge-
tüftelten Software der DATA BECKER
Autoren arbeiten. Und: Sie haben die
Sicherheit, daß diese Programme
wirklich auf Anhieb laufen.
ist das nichts?

Die Diskette zum Buch:
Das große Drucker-Buch. DM 39,-

Die Diskette zum Buch:
Das Maschinensprachebuch

zum COMMODORE 64. DM 39,- &

Die Diskette zum Buch:
Die Diskette zum Buch: i 1

Das Maschinensprachebuch für Pascal 64 Tips Sr Is
Fortgeschrittene zum COMMODORE ’

64. DM 39,- Die Diskette zum Buch:
Das Grafikbuch zum

Die Diskette zum Buch: COMMODORE 64. DM«39,-

Das große Floppy-Buch. DM 39,-
Die Diskette zum Buch:

Die Diskette zum Buch: 64 INTERN. DM 39,- om
64 Tips & Tricks. DM 39,- Die Diskette zum Buch:

Die Diskette zum Buch: Das Trainingsbuch zu Datamat
Die Diskette zum Buch: Das 64 für Profis. DM 39,- DM 39,-

Schulbuch zum COMMODORE 64.
Diese Superdiskette enthält zusätz- Die Diskette zum Buch: Die Diskette zum Buch:

lich noch 14 weitere Lernprogramme VC-20 Tips & Tricks. DM 39,- oe Adventures —
und ein ca. 70seitiges Handbuch. und wie man sie programmert

Ein absolutes Muß für Schüler, Lehrer Die Diskette zum Buch:

und Eltern. DM 49- APPLE II Tips & Tricks. DM 39,-

DATA BECKER BÜCHER & PROGRAMME erhalten Sie im Computer-Fachhandel, in guten
Buchhandlungen und in den Fachabteilungen der Kauf- und Warenhäuser.

DATA BECKER
Merowingerstr. 30 : 4000 Düsseldorf - Tel. (0211) 310010 - im Hause AUTO BECKER

DAS
SCHULBUCH

ZUM
COMMODORE 64 Ein neues DATA BECKER BUCH,

das den Einsatz des COMMO-
DORE 64 in der Schule ent-
Scheidend mitprägen dürfte,

wurde von Professor Voß
geschrieben. Besonders für

"Schüler der Mittel- und Ober- EIN DATA BECKER BUCH

stufe geschrieben, enthält
das Buch viele interessante

Problemilösungs- und Lernprogramme, die beson-

ders ausführlich und leicht verständlich beschrie-

ben sind. Sie ermöglichen ein intensives und anre-

gendes Lernen, unter anderem mitfolgendenThe-
men: Satz desPythagoras, quadratische Gleichun-
gen, geometrische Reihen, Pendeilbewegungen,
mechanische Hebel, Molekülbildung, exponentiel-
lesWachstum,Vokabelnlernen, unregelmäßigeVer-
ben, Zinseszinsrechnung. Ein kurzer Überblick über
die Grundlagen der EDV, eine knappeWiederholung
der wichtigsten BASIC-Elemente und eine Einfüh-
rung in dieGrundzüge der Problemanalyse vervoll-
ständigen dasGanze. Mit diesem Buch machen die
Hausaufgaben wieder Spaß!

DAS SCHULBUCH ZUM COMMODORE 64, 1984, über 300
Seiten, DM 49-

Tempo!
MASCHINENSPRACHE FUR
FORTGESCHRITTENE ist be-
reits das zweite Buch von
Lothar Englisch zum Thema
Maschinenprogrammierung
mit dem COMMODORE 64.
Hier wird von der Problem-
analyse bis zum Maschinen-
sprachealgorithmus in die
Grundlagen der professio-
nellen Maschinensprache-
programmierung eingeführt. In diesem Buch fin-
den Sie unter anderem folgende Themen behan-
delt: Problemlösungen in Maschinensprache, Pro-
grammierung von Interruptroutinen, Interrupt-
quellen beim COMMODORE 64, Interrupts durch
CIAs und Videocontroller, Programmierung der
Ein-Ausgabe-Bausteine, die CIA’s des COMMODORE
64, Timer, Echtzeituhr, parallele und serielle Ein/
Ausgabe, BASIC-Erweiterungen, Programmierung
eigener BASIC-Befehle und -Funktionen, Möglich-
keiten zur Einbindung ins Betriebssystem sowie
viele weitere Tips & Tricks zur Maschinenprogram-
mierung. Dieses Buch sollte jeder haben, der wirk-
lich intensiv mit der Maschinensprache des COM-
MODORE 64 arbeiten will.

MASCHINENSPRACHE FÜR FORTGESCHRITTENE, 1984,
ca. 200 Seiten, DM 39,-

Macht Druck.
DAS GROSSE DRUCKERBUCH
für Drucker-Anwender mit
COMMODORE-Computern ist
endlich da! Es enthält eine
riesige Sammiung von Tips
& Tricks, Programmlistings
und Hardwareinformatio-
nen. Rolf Brückmann und
Klaus Gerits beschaftigen
sich mit Sekundaradressen,
Anschluß einer Schreib-
maschine am Userport, Druckerschnittstellen (Cen-
tronics, V 24, IEC-Bus), hochauflösender Grafik, Text-
und Grafikhardcopy, Grafik mit Standardzeichen-
satz, formatierter Datenausgabe, Plakatschrift,
Textverarbeitung und vieles mehr. Zusätzlich wird
das Betriebssystem des MPS801 zerlegt, mit Prozes-
sorbeschreibung (8035), Blockschaltbild und einem
ausführlich kommentierten ROM-Listing. Thomas
wiens schrieb den Teil über die Programmierung
des PlottersVC-1520: Handhabung desPlotters, Pro-
grammierung von Sonderzeichen, Funktionendar-
stellung, Kuchen und Säulendiagramme, Entwurf
dreidimensionaler Gegenstände. Natürlich wieder
viele interessante Listings. Unentbehrlich für
jeden, der einen COMMODORE 64 oder VC-20 und
einen Drucker besitzt.

DAS GROSSE DRUCKERBUCH, 1984, über 300 Seiten,
DM 49-

Tausend-
SaSSa.
Fast alles, was man mit dem
COMMODORE 64 machen
Kann, ist in diesem Buch aus-
führlich beschrieben. Es ist
nicht nur spannend zu lesen
wie ein Roman, sondern ent-
hält neben nützlichen Pro-
grammlistings vor allem
viele, viele Anwendungs-
möglichkeiten des C64. Dabei wurde besonderer
Wert darauf gelegt, daß das Buch auch für Laien
leicht verständlich ist. Eine Auswahl aus der The-
menvielfalt: Gedichte vom Computer, Einladung
zur Party, Diplomarbeit - professionell gestaltet,
individuelle Werbebriefe, Autokosten im Griff, Bau-
kostenberechnung, Taschenrechner, Rezeptkartei,
Lagerliste, persönliches Gesundheitsarchiv, Diät-
plan elektronisch, intelligentes Wörterbuch, kleine
Notenschule, CAD für Handarbeit, Routenoptimie-
rung, Schaufensterwerbung, Strategiespiele. Teil-
weise sind Programmnlistings fertig zum Eintippen
enthalten, soweit sich die „Rezepte“ auf 1-2 Seiten
realisieren ließen. Wenn Sie bisher. nicht immer
wusßten, was Sie mit ihrem 64er alles anfangen soll-
ten, nach dem Lesen des IDEENBUCHES wissen Sie's
bestimmt!

DAS IDEENBUCH ZUM COMMODORE 64, 1984, über 200
Seiten, DM 29,-

 EIN DATA BECKER BUCH

Prof. 64.
Ein faszinierendes Buch, um
in die Welt der Wissenschaft
einzusteigen, hat Rainer
Severin geschrieben. ZU-
nächst werden Variablen-
typen, Rechengenauigkeit
und nützliche POKE-Adres-
sen des COMMODORE 64
bezüglich den Anforderun-
gen wissenschaftlicher Pro-
bleme analysiert. Verschie-
dene Sortieralgorithmen wie Bubble, Quick und
Shell-Sort werden miteinander verglichen. Die Pro-
grammbeispiele aus der Mathematik nehmen
dabei eine zentrale Stelle im Buch ein: Nullstellen
nach Newton, numerische Ableitung mit dem Dif-
ferenzenquotienten, lineare und nichtlineare
Regression, Chi-Quadrat-Verteilung und Anpas-
sungstest, Fourieranalyse und -synthese, Skalar-,
Vektor- und Spatprodukt, ein Programmpaket zur
Matrizenrechnung für Inversion, Eigenwerte und
vieles weitere mehr. Programme aus der Chemie
(Periodensystem), Physik, Biologie (Schadstoffe in

. Gewässern - Erfassung der Meßwerte), Astronomie
(Planetenpositionen) und Technik (Berechnung
komplexer Netzwerke, Platinenlayout am Bild-
schirm) und viele weitere Softwarelistings zeigen
die riesigen Möglichkeiten auf, dieder Computerin
Wissenschaft und Technik hat.

COMMODORE 64 FÜR TECHNIK UND WISSENSCHAFT,
1984, über 200 Seiten, DM 49,-

Grundkurs.
Das neue BASIC-Trainings-
buch zum C-64 ist eine aus-
führliche, didaktisch gut
geschriebene Einführung in
das CBM BASIC V2. Alle
Befehle werden ausführlich
erläutert. Dieses Buch geht
aber über eine reine Befehls-
beschreibung hinaus, es wird EIN DATA BECKER BUCH

eine fundierte Einführung in
die Programmierung gege-
ben. Von der Problemanalyse bis zum fertigen
Algorithmus lernt man das Entwerfen eines Pro-
grammes und den Entwurf von Datenflußplänen.
ASCII-Code und verschiedene Zahlensysteme wie
hexadezimal, binär und dezimal sind nach der Lek-
ture des Buches keine Fremdworte mehr. Die Pro-
grammierung von Schleifen, Sprüngen, bedingten
Sprüngen lernt man leicht durch „learning by
doing“. So enthält das Trainingsbuch viele Auf-
gaben, Übungen und unzählige Beispiele. Den
Schluß des Buches bildet eine Einführung ins pro-
fessionelle Programmieren, in der es um mehr-
dimensionale Felder, Menuesteuerung und Unter-
programmtechnik geht. Endlich ein Buch, das
Ihnen wirklich hilft, solide und sicher BASIC zu ler-
nen.

BASIC TRAININGSBUCH ZUM COMMODORE 64, 1984,
ca. 250 Seiten, DM 39-

Sang und Klang!
Der COMMODORE 64 ist ein
Musikgenie. DAS MUSIKBUCH
hilft Ihnen, die riesigen
Klangmöglichkeiten des C64
zu nutzen. DieThemenbreite
reicht von einer Einführung
in die Computermusik über
die Erklärung der Hardware-
grundlagen desCOMMODORE
64 und die Programmierung
in BASIC bis hin zur fort-
geschrittenen Musikpro-
grammierung in Maschinensprache. Einiges aus
dem Inhalt: Soundregister des COMMODORE 64,
Gate-Signal, Programmierung der "ADSR'-Werte,
Synchronisation und Ring-Modulation, Counter-
prinzip, lineare und nichtlineare Musikprogram-
mierung, Frequenzmodulation, Interrupts in der
Musikprogrammierung und vieles mehr. Zahl-
reiche Beispielprogramme, komplette Songs und
nützliche Routinen ergänzen den Text. Geschrie-
ben wurde das Buch von Thomas Dachsel, dem
Autor der weltbekannten Musikprogramme Syn-
thimat und Synthesound. Erschließen Sie sich die
Welt des Sounds und der Computermusik mit dem
Musikbuch zum C-64!

DAS MU SIEBUCH ZUM COMMODORE 64, Uber 200 Sei-
ten, DM 39-

Nützlich.
Das Trainingsbuch zu MULTI-
PLAN bieteteine guteEinfüh-
rung in die Grundlagen der
Tabellenkalkulation. Dabei
wird großer Wert auf ein
möglichstschnellesEinarbei-
ten in die wichtigsten
Befehle gelegt, so daß man
bald sicher mit MULTIPLAN
arbeiten kann, ob nun auf
dem COMMODORE 64 oder
einem anderen Rechner. Am [nna
Ende wird man in der Lage sein, ‚den umfangrei-
chen Befehlssatz von MULTIPLAN auch kommerziell
zu nutzen. Übungen am Ende jedesKapitelssorgen
dafür, daß man das Gelernte lange behält. Grund-
lage des Buches sind viele Seminare, die der Autor
zu MULTIPLAN konzipiert und erfolgreich durch-

geführt hat.

DAS TRAININGSBUCH ZU MULTIPLAN, 1984, ca. 250 Sei-
ten, DM 49-

Fur Tuftier.
Ein hochinteressantes Buch
für Hobbyelektroniker hat
Rolf Brückmann vorgelegt.
Er ist ein engagierter Techni-
ker, für den der Computer
Hobby und Beruf zur glei-
chen Zeit ist. Vor allem aber
kennt er den C-64 in- und aus-
wendig. So werden einfüh-
rend die Schnittstellen des
COMMODORE 64 detailliert
beschrieben und kurz die)
Funktionsweise der CIAS 6526 erläutert. Hauptteil
des Buches sind die Beschreibungen der vielfälti-
gen Einsatzmöglichkeiten des COMMODORE 64. Die
vielen Schaltungen, von Rolf Brückmann alle selbst

entwickelt, sind jeweils umfangreich dokumen-
tiert und leichtverständlich erklärt. Die Reihe der
hier ausführlich behandelten Anwendungen mit
dem COMMODORE 64 ist äußerst umfangreich:
Motorsteuerung, Stoppuhr mit Lichtschranke
Lichtorgel, A/D-Wandler, Spannungsmessung, Tem-
peraturmessung und vieles mehr. Dazu kommen
noch eine Reine kompletter Schaltungen zum Sel-
berbauen, wie ein EPROM Programmiergerät für
den C-64, eine EPROM-Karte, ein Frequenzzähler
und Sprachein/ausgabe (). Zusätzlich sind jeweils
Schaltplan, Softwarelisting und zu einigen Schal-
tungen sogar zusätzlich Platinenlayouts vorhan-
en.

DER COMMODORE 64 UND DER REST DER WELT, 1984,
ca. 220 Seiten, DM 49,-

Computerkunstier.
Das Grafikbuch zum COMMODORE 64 Buch aus der
Bestseller-Serie von DATA BECKER stammt aus der
Feder von Axel Plenge. Es geht weit über die reine
Hardware-Beschreibung der
Grafikeigenschaften des C-64
hinaus. Der Inhalt reicht von
den Grundlagen der Grafik-
programmierung bis zum
Computer Aided Design. Es
ist ein Buch fir alle, die mit
inrem C-64 kreativ tatig sein
wollen. Themen sind z.B.: Zei-
chensatzprogrammierung,
bewegte Sprites, High-Re-
solution, Multicolor-Grafik,
Lightpenanwendungen, Be-
triebsarten des VIC, Verschie-
ben der Bildschirmspeicher,
IRQ-Handhabung, 3-Dimensionale Grafik, Projektio-
nen, Kurven- Balken- und Kuchendiagramme, Lauf-
schriften, Animation, bewegte Bilder. Viele Pro-

_ grammilistings und Beispiele sind selbstverstand-
lich. Das COMMODORE-BASIC V2 unterstützt die her-
ausragenden Grafikeigenschaften des C-64 be-
kanntlich kaum. Hier helfen die vielen Beispielpro-
gramme in diesem Buch weiter, die die faszinie-
rende Welt der Computergrafik jedermann zu-
gänglich machen. Kompetent ist der Autor dazu wie
kaum ein anderer, schließlich hat er das äußerst lei-
stungsfahige Programm SUPERGRAFIK geschrieben.

DAS GRAFIKBUCH ZUM COMMODORE 64, 1984, 295 Sei-
ten, DM 39-

Vielfalt.
Auf dem neuesten Stand ist
VC-20 TIPS & TRICKS von Dirk
Paulissen gebracht worden,
der über hundert Seiten
hinzufügte. Bisher schon
enthalten waren Informatio-
nen über Speicheraufbau .
des VC-20 und die Erweite- Eine Eundprube türen
rungsmöglichkeiten, ein Gra-
fikkapitel über program-
mierbare Zeichen, Lauf- EINDATA BECKER BUCH
schrift und die Supererwei-
terung. Stark erweitert wurde der Abschnitt über
POKEs und andere nützliche Routinen.Obesum die
Programmierung der Funktionstasten, Pro-
gramme die sich selber starten, „Maus‘-Simulation
mit dem Joystick oder die Anderung von Speicher-
bereichen geht, man ist immer wieder über die
Fülle der Möglichkeiten erstaunt. Der Clou dieses

Tips & Tricks

Buches sind aber die vielen Programmilistings. Die
BASIC-Erweiterungen allein stellen schon ein erst-
klassiges Toolkit dar: APPEND (Anhangen von Pro-
grammen, AUTO (automatische Zeilennummerie-
rung), BASIC-Befehle auf Tastendruck, PRINT POSI-
TION, UNNEW, Strings größer als88 Zeichen einlesen
und vieles mehr. Die Bandbreite reicht von Spielen
wie Goldgraber oder Starshooter bis zu nützlichen
Programmen wie Cassetteninhaltsverzeichnis und
-katalog mit automatischem Suchen nach Dateien
und einem Terminkalender. Fur den VC-20 Anwen-
der ist dieser 324 Seiten-walzer eine wahre Fund-
grube, in der es immer etwas neues zu entdecken
gibt. |

VC-20 TIPS& TRICKS, 3. erweiterte und überarbeitete
Auflage, 1984, 324 Seiten, DM 49,-

Interessant.
Einen guten Einstieg in PAS-
CAL bietet dieses Trainings-
buch. Es gibt eine leichtver-
ständliche Einführung,
sowohl in UCSD-PASCAL wie
auch in PASCAL6A, wobei ws
allerdings EDV-und BASIC- PASCAL
Grundkenntnisse voraus- uno pascaL 64
gesetzt werden. Der Autor,
Ottmar Korbmacher, ist Stu-
dent der Mathematik. inm EIN DATA BECKER BUCH

gelingt es, in einem sprach- =a
lich aufgelockerten Stil mit vielen interessanten
Beispielprogrammen, dem Leser Programmstruk-
turen, Ein/Ausgabe, Arithmetik und Funktionen,
Prozeduren und Rekursionen, Sets, Files und
Records näherzubringen. Die Übungsaufgaben am
Ende jeden Kapitels helfen dabei, das Gelernte zu
vertiefen. Ein Anhang mit allen PASCAL-Schlüssel-
worten, der ansich schon ein umfangreiches Lexi-
kon darstellt, macht das Buch für jeden PASCAL-
Anwender interessant.

DAS TRAININGSBUCH ZU PASCAL, 1984, ca. 250 Seiten;
DM 39-

Bewährt.
Die bereits dritte Auflage
von VC-20 INTERN ist wieder
erheblich erweitert worden.
Das Buch beschaftigt sich
ausführlich mit der Technik
und dem Betriebssystem.des
VC-20. Dazu gehört natürlich
zuerst einmal ein ausführlich
dokumentiertes ROM-Listing.
Dazu gehort auch die Bele-
gung der Zeropage, dem
wichtigsten Speicherbe- ™&
reich für den 6502-Prozessor, eine übersichtliche
Auflistung der Adressen aller Betriebssystemrouti-
nen, ihrer Bedeutung und ihrer Übergabeparame-
ter. Dies ermöglicht dem Programmierer endlich,
den VC-20 von Maschinensprache aus sinnvoll ein-
zusetzen. Denn warum Routinen, die bereits vor-
handen sind, noch einmal schreiben? Weiterer
Inhalt: Einführung in die Maschinensprache -
Maschinensprachemonitor, Assembler, Disassem-
bler - Verbindung von Maschinensprache- und
BASIC-Programmen - Beschreibung der wichtigen
IC’s des VC-20 - Blockschaltbild - drei Original COM-
MODORE-Schaltpläne. Das Buch braucht jeder der
sich intensiv mit der Maschinenspracheprogram-
mierung des VC-20 auseinandersetzen möchte.

VC-20 INTERN, 3. Auflage, 1984, ca. 230 Seiten, DM 49,-

Starthilfe!
DassollteihrerstesBuch zum
COMMODORE 64 sein: 64 FÜR
EINSTEIGER ist eine sehr
leicht verständliche Einfüh-
rung in Handhabung, Ein-
Satz, Ausbaumöglichkeiten FÜR EINSTEIGER
und Programmierung des epv
COMMODORE 64, die keinerlei al
Vorkenntnisse voraussetzt.
Sie reicht vom Anschluß des 1
Geräts über die Erklärung EIN DATABECKEN BUCH
der einzeinen Tasten und
Funktionen sowie die Peripheriegeräte und ihre
Bedienung bis zum ersten Befehl. Schritt für
Schritt führt das Buch Sie in die Programmier-
sprache BASIC ein, wobei Sie nach und nach eine
komplette Adressenverwaltung erstellen, die Sie
anschließend nutzen können. Zahlreiche Abbildun-
gen und Bildschirmfotos ergänzen den Text. Viele
Anwendungsbeispiele geben nützliche Anregun-
gen zum sinnvollen Einsatz des COMMODORE 64. Das
Buch ist sowonl als Einführung alsauch als Orientie-
rung vor dem 64er Kauf gut geeignet.

64 FÜR EINSTEIGER, 1984, ca. 200 Seiten, DM 29-

VonAbisz
So etwas haben Sie gesucht: Umfassendes Nach-
schlagewerk zum COMMODORE 64 und seiner Pro-
grammierung. Allgemeines Computerlexikon mit
Fachwissen von A-Z und
Fachwörterbuch mit Über-
setzungen wichtiger engli-
scher Fachbegriffe - das
DATA BECKER LEXIKON ZUM
COMMODORE 64 stellt prak-
tisch drei Bücher in einem
dar. Es enthält eine unglaub-
liche Vielfalt an Informatio-
nen und dient so zugleich als
kompetentes Nachschlage-
werk und als unentbehr-
liches Arbeitsmittel. Viele
Abbildungen und Beispiele ergänzen den Text. Ein
Muß für jeden COMMODORE 64 Anwender!

DAS DATA BECKER LEXIKON ZUM COMMODORE 64,
1984, 354 Seiten, DM 49,-

Fundgrube.
64 Tips & Tricks ist eine hoch-
interessante Sammiung von
Anregungen zur fortge-
schrittenen Programmie-
rung des COMMODORE ra
POKEs und andere nütz- z
liche Routinen, interessan- Tips & Tricks
ten Programmen - sowie gun
interessanten Programmiier-
tips & -tricks. Aus dem Inhalt:
3D-Graphik in BASIC-Farbige
Balkengraphik - Definition
eines eigenen Zeichensatzes - Tastaturbelegung
und ihre Anderung - Dateneingabe mit Komfort -
Simulation der Maus mit einem Joystick - BASIC für
Fortgeschrittene - C-64 spricht deutsch - CP/M auf
dem COMMODORE 64 - Druckeranschluß über den
USER-Port - Datenübertragung von und zu ande-
ren Rechnern - Expansion-Port-Synthesizerin Ste-
reo -Retten einer nicht ordnungsgemäß geschlos-
senen Datei - Erzeugen einer BASIC-Zeile in BASIC -
Kassettenpuffer als Datenspeicher - Sortieren von
Stringfelder - Multitasking auf dem COMMODORE
64 - POKE’s und die Zeropage - GOTO, GOSUB und
RESTORE mit berechneten Zeilennummern, INSTR
und STRING-Funktion - Repeat-Funktion für alle

EIN DATA BECKER BUCH

EIN DATA BECKER BUCH

Tasten - und vieles andere mehr. Alle Maschinen-
programme mit BASIC-Ladeprogrammen. 64 Tips &
Tricks ist eine echte Fundgrube für jeden COMMO-
DORE 64 Anwender. Schon über 65000mal verkauft!

64 TIPS & TRICKS, 1984, Uber 300 Seiten, DM 49,-

Know-how!
350 Seiten dick ist die 4.
erweiterte und überarbei-
tete Auflage von 64 INTERN
geworden. Das bereits über
65000mal verkaufte Stan-
dardwerk bietet jetzt noch
mehr Informationen. Hinzu-
gekommen ist ein Kapitel
über den IEC-Bus und viele,
viele Ergänzungen, die sich
im Laufe der Zeit angesam-
melt haben. Ebenfalls über-
arbeitet und noch ausführlicher ist jetzt die Doku-
mentation des ROM-Listings. Weitere Themen:
genaue Beschreibung des Sound- und Video-Con-
trollers mit vielen Hinweisen zur Programmierung
von Sound und Grafik, der Ein/Ausgabesteuerung
(CIAs), BASIC-Erweiterungen (RENEW, HARDCOPY,
PRINTUSING), Hinweise zur Maschinenprogrammie-
rung wie Nutzung der E/A-Routinen des Betriebs-
systems, Programmierung der Schnittstelle RS 232,
ein Vergleich VC20 - C-64 - CBM zur Umsetzung von
Programmen. Dies und viele weitere Informatio-
nen machen das umfangreiche Werk zu einem
unentbehrlichen Arbeitsmittel für jeden, der sich
ernsthaft mit Betriebssystem undTechnik des C-64
auseinandersetzen will. Zum professionellen
Gehalt des Buches tragen auch zwei Original-COM-
MODORE-Schaltpläne zum Ausklappen und zahl-
reiche ausführlich beschriebene und dokumen-
tierte Fotos, Schaltbilder und Blockdiagramme bei.

64 INTERN, 4. Uberarbeitete und erweiterte Auflage,
1984, ca. 350 Seiten, DM 69,-

EINDATA BECKER BUCH

Erfolgreich.
64 für Profis zeigt, wie man
erfolgreich Anwendungs-
probleme in BASIC löst und
verrät die Erfolgsgeheim-
nisse der Programmier-
profis. Vom Programment-
wurf über Menüsteuerung,
Maskenaufbau, Parametri-
sierung, Datenzugriff und
Druckausgabe bis hin zur
guten Dokumentation wird
anschaulich mit vielen Bei-
spielen dargestellt wie Profi-Programmierung vor
sich geht. Besonders stolz sind wir auf die völlig

EIN DATA BECKER BUCH

‚neuartige Datenzugriffsmethode QUISAM, die in
diesem Buch zum ersten Mal vorgestellt wird.
QUISAM erlaubt eine beliebige Datensatzlänge, die
dynamisch mit der Eingabe der Daten wächst. Eine
lauffertige Literaturstellenverwaltung veran-
schaulicht die Arbeitsweise von QUISAM. Neben die-
sem Programm finden Sie noch weitere Pro-
gramme zur Lager- und Adressenverwaltung, Text-
verarbeitung und einen Reportgenerator. Alle
diese Programme sind mit Variablenliste versehen

und ausführlich beschrieben. Damit sind diese für
Ihre Erweiterungen offen und können von Ihnen
an Ihre persönlichen Bedürfnisse angepaßt wer-
den. Steigen Sie in die Welt der Programmierprofis

ein.

64 FÜR PROFIS, 2. Auflage, 1984, ca. 300 Seiten,
DM 49,-

Rundum gut!
Endlich ein Buch, das Ihnen
ausführlich und verständlich
die Arbeit mit der Floppy VC-
1541 erklärt. Das große
Floppybuch ist für Anfänger,
Fortgeschrittene und Profis
gleichermaßen. interessant.
Sein Inhalt reicht von der
Programmspeicherung bis
zum DOS-Zugriff, von der
sequentiellen Datenspeiche- BIN DATA BECKER OUCH
rung bis zum Direktzugriff,
von der technischen Beschreibung bis zum aus-

fuhrlich dokumentierten DOS-Listing, von den
Systembefehlenbis zur detaillierten Beschreibung
der Programme auf der Test-Demo-Diskette. Exakt
beschriebene Beispiel- und Hilfsprogrammeergän-
zen dieses neue Superbuch. Aus dem Inhalt: Spei-
chern von Programmen - Floppy-Systembefehle -
Sequentielle Datenspeicherung - relative Daten-
Speicherung - Fehlermeldungen und ihre Ursa-
chen - Direktzugriff - DOS-Listing der VC-1541 -
BASIC-Erweiterungen und Programme - Overlay-
technik - Diskmonitor - IEC-Bus und serieller Bus -
Vergleich mit dengroßen CBM-Floppies.EinMuß für
jeden Floppy: -Anwender! Bereits über 45.000mal
verkau

DAS GROSSE FLOPPY-BUCH, 2.überarbeitete Auflage,
1984, ca. 320 Seiten, DM 49,-

BASIC-PLUS.
SIMON’s BASIC ist ein Hit -
wenn man es richtig nutzen
kann. Auf über 300 Seiten
erklärt Ihnen das DATA
BECKER Trainingsbuch detail-
liert den Umgang mit den
über 100 Befehlen des
SIMON’S BASIC. Alle Befehle
werden ausführlich dar-
gestellt, auch die, die nicht |
im Handbuch stehen! Natür- en para neonen ven
lich zeigen wir auch die
Macken des SIMON’sSBASIC und geben wichtige Hin-
weise wieman diese umgeht. Natürlich enthält das
Buch viele Beispielprogramme und viele inter-
essante Programmiertricks. Weiterer Inhalt: Ein-
führung in das CBM-BASIC 2.0 - Programmierhilfen
- Fehlerbehandiung - Programmschutz - Pro-
grammstruktur -Variablen - Zahlenbehandlung -
Eingabekontrolle-Ein/ Ausgabe Peripheriebefehle
- Graphik - Zeichensatzerstellung - Sprites - Musik
-SIMON’SBASIC unddieVerträglichkeitmitanderen
Erweiterungen und Programmen. Dazu ein um-
fangreicher Anhang. Nach jedem Kapitel finden Sie
Testaufgaben zum optimalen Selbststudium und
zur Lernerfolgskontrolle.

DAS TRAININGSBUCH ZUM SIMON’'s BASIC, 2. Uber-
arbeitete Auflage, 1984, ca. 380 Seiten, DM 49-

Futtern
erwunscht!
Diese beliebte umfangreiche
Programmsammiung hat es
in sich. Ober 50 Spitzenpro-
gramme für den COMMO-
DORE 64 aus den unterschied-
lichsten Bereichen, von
attraktiven Superspielen
(Senso, Pengo, Master Mind,
Seeschlacht, Poisson Square,
Memory) über Grafik- und
Soundprogramme (Fourier 64, Akustograph, Funk-
tionsplottern und mathematische Programme
(Kurvendiskussion, Dreieck) sowie Utilities (SORT,
RENUMBER, DISK INIT, MENUE) bis hin zu kompletten
Anwendungsprogrammen wie ‚Videothek‘, ‚File
Manager“ und einer komfortablen Haushaltsbuch-
führung, inderfastprofessionellgebuchtwird.Der
Hit zu jedem Programm sind aktuelle Program-
miertips und Tricks der einzelnen Autoren zum Sel-
bermachen. Also nicht nur abtippen, sondern auch
dabei lernen und wichtige Anregungen fir die
eigene Programmierung sammeln.

DATA BECKER’s GROSSE 64er PROGRAMMSAMMLUNG,
1984, 250 Seiten, DM 49-

Schrittmacher.
Eine leicht verständliche Ein-
führung in die Maschinen-
spracheprogrammierung
für alle, denen das C-64 BASIC
nicht mehr ausreicht. Sie
lernen Aufbau und Arbeits-
weise des 6510-Mikroprozes-
sors kennen und anwenden.
Dabei werden die Analogien
zu BASIC Ihnen beim Verständnis helfen. Ein weite-
res Kapitel beschäftigt sich mit der Eingabe von
Maschinenprogrammen. Dort erfahren Sie auch
alles über Monitor-Programme sowie über Assem-
bier. Zum einfachen und komfortablen Erstellen
Ihrer eigenen Maschinensprache enthält das Buch
einen kompletten ASSEMBLER, damit Sie gleich von
Anfang an komfortabel und effektiv programmie-
ren können. Weiterhin finden Sie dort einen DIS-
ASSEMBLER, mit dem Sie sich Ihre Maschinenpro-
gramme oder die Routinen des BASIC-Interpreters
und des BASIC-Betriebssystems ansehen können.
Ein besonderer Clou ist ein in BASIC geschriebener
Einzelschrittsimulator, mit dem Sie Ihre Pro-
gramme schrittweise ausführen können. Dabei
werden Sie nach jedem Schritt über Register-
inhalte und Flags informiert und können den logi-
schen Ablauf Ihres Programmes verfolgen. Eine
unschätzbare Hilfe, besonders für den Anfänger.
Als Beispielprogramm finden Sie ausführlich
beschriebene Routinen zur Grafikprogrammie-
rung und für BASIC-Erweiterungen. Natürlich sind
alle Beispiele und Programme auf den C-64 zuge-
schnitten.

DAS MASCHINENSPRACHEBUCH ZUM COMMODORE 64,
ca. 200 Seiten, DM 39,-

SYNTHIMAT
SYNTHIMAT verwandelt ihren COMMODORE 64in
einen professionellen, polyphonen, dreistimmi-
gen Synthesizer, der in seinen unglaublich vie-
len Möglichkeiten großen Systemen kaum
nachsteht.

SYNTHIMAT in Stichworten:
drei Oszillatoren (VCOs) mit 7 Fußlagen und 8
Wellenformen - drei Hüllkurvengeneratoren
(ADSRs) - ein Filter (VCF) mit 8 Betriebsarten und
Resonanzregulierung - VCF mit Eingang für
externe Signalquelle - ein Verstärker (VCA) -
Ringmodulation mit allen drei VCOs - 8 soft-
waremäßig realisierte Oszillatoren (LFOs) - kräf-
tiger Klang durch polyphones Spielen - zwei
Manuale (Solo und Begleitung) - speichern von
bis zu 256 Klangregistern - schneller Register-
wechsel - speichern von 9 Registerdateien auf
Diskette - ,Bandaufnahme’ auf Diskette durch
direktes Spielen - keine lästige Noteneingabe -
speichern von bis zu 9 „Bandaufnahmen‘ je Dis-
kette - integrierte 24 Stunden-Echtzeituhr -
einstellbares PITCH-BENDING - farblich gekenn-
zeichnete, übersichtlich angeordnete Module -
umfangreiches Handbuch -läuftmiteinem Dis-
kettenlaufwerk - Diskettenprogramm.

DM 99-

STRUKTO 64.
STRUKTO 64 ist eine fantastische neue Program-
miersprache für strukturiertes Programmieren
mit dem C-64 und fur alle Programmierer geeignet,
die den C-64 als Allround-Computer einsetzen und
auf einfache Weise anspruchsvolle Programme
erstellen wollen.

STRUKTO 64 In Stichworten:
Interpretersprache, die die Vorzüge von BASIC und
PASCAL vereint - strukturiertes Programmieren -
übersichtliche Programme - leichte Erlernbarkeit
- einfache Bedienung -eingebautesToolkiterleich-
tert das Eingeben und Verbessern von Program-
men - leichteres Arbeiten mit der Floppy - Sprite-
Editor ermöglicht das Einlesen der Sprite-Formen
direkt vom Bildschirm - Graphikbedienung wird
mit gut durchdachten Befehlen unterstützt -
Abspielen von Musik ist unabhängig vom Pro-
grammablauf möglich - ca.80 neueBefehle -Iiefer-
bar als Diskettenprogramm - ausführliches deut-
sches Handbuch.

DM 99-

wo
a

Für viele ein Traum, für die meisten bisher zu
teuer: die Rede ist von einer echten Datenbank
für den 64er. SUPERBASE 64 füllt eine Lücke.
Nicht allein die Kapazität, die verwaltet werden
kann, bewegt sich in professionellen Regionen,
die ausgeprägten Fähigkeiten des SUPERBASE
64 im Rechnen und Kalkulieren lassen dieses
Paket beinahe als Rund-Um-Software erschei-
nen.

SUPERBASE 64 in Stichworten:
maximale Datensatzlänge 1108 Zeichen, verteilt
auf bis zu 4 Bildschirmseiten - bis zu 127 Felder
pro Datensatz, wobei Textfelder bis zu 255 Zei-
chen lang sein können - insgesamt 15 Einzel-
dateien können zu einer SUPERBASE-Datenbank
verknüpft werden - Speicherkapazität nur
durch Diskette begrenzt - umfangreiche Aus-
wertungsmöglichkeiten und komfortabler
Report-Generator - Kalkulationsmöglichkeiten
und Rechnen - Import- (Einlesen von externen
Daten) und Export- (Ausgabe von SUPERBASE
Dataien als sequentielle Datei) Funktionen
ermdglichen Datenaustausch mit anderen Pro-
grammen - durch leistungsfähige, eigene
Datenbanksprache auch als kompletter An-
wendungsgenerator verwendbar.

DM 398,-

MASTER 64
MASTER 64 ist ein professionelles Programm-
entwicklungssystem für den C-64, das es Innen
ermöglicht, die Programmentwicklungszeit
auf einen Bruchteil der sonst üblichen Zeit zu
reduzieren. MASTER 64 bietet einen Programm-
komfort, den Sie nutzen sollten.

MASTER 64 In Stichworten:
70 zusätzliche Befehle - Bildschirmmasken-
generator - definieren von Bildschirmzonen -
Eingabe aus Zonen - formatierte Ausgabe -

_ Abspeicherung von Bildschirminhalten - Arbei-
ten mit mehreren Bildschirmmasken - ISAM
Dateiverwaltung, in der Datensätze über einen
zugriffschlüsselangesprochen werdenkönnen
- Datensätze bis zu 254 Zeichen -Schlüssellänge
bis zu 30 Zeichen - Dateigröße nur von Disket-
tenkapazität abhängig - Zugriff über Schlüssel
und Auswahlmasken - Bildschirm- und Druck-
maskengenerator - Erstellung beliebiger För-
mulare und Ausgabemasken - BASIC-Erweite-
rungen - Toolkitfunktionen - Mehrfachgenaue
Arithmetik (Rechnen mit 22 Stellen Genauig-
keit).

DM 198,-

TEXTOMAT
Das Bearbeiten vonTexten gehört zum wichtig-
sten Betätigungsfeld von Homecomputer-An-
wendern. So ist es auch nicht verwunderlich,
daß eine Unzahl verschiedenerTextprogramme
für den 64er angeboten wird. TEXTOMAT zeich-
net sich dadurch aus, daß er auch vom Einstei-
ger sofort benutzt werden kann. Über eine
Menuezeile können alle Funktionen angewählt
werden. Selbstverständlich beherrscht TEXTO-
MAT deutsche Umlaute und Sonderzeichen.

TEXTOMAT in Stichworten:

Diskettenprogramm - durchgehend menue-
gesteuert - deutscher Zeichensatz auch auf
COMMODORE-Druckern Rechenfunktionen für
alle Grundrechenarten — 24.000 Zeichen pro Text
im Speicher - beliebig lange Texte durch Ver-
knüpfung - horizontales Scrolling für 80 Zei-
chen pro Zeile - läuft mit 10oder 2Floppies -frei
programmierbare Steuerzeichen - Formular-
steuerung für Randeinstellung u.s.w. - kom-
plette Bausteinverarbeitung - Blockoperatio-
nen, Suchen und Ersetzen - Serienbriefschrei-
bung mit DATAMAT - formatierte Ausgabe auf
Bildschirm - an fast jeden Drucker anpaßbar -
ausführliches deutsches Handbuch mit
Übungslektionen.

DM 99-

 Ya’ am

PAINT PIC
Malen (!) mit dem Computer, welch eine faszinie-
rende Idee. Mit dem Malprogramm PAINT PIC für
den COMMODCRE 64 wird diese Idee Realität. Mit
PAINT PIC ist es auch fur den Einsteiger leicht, fanta-
stische Computerbilder zu erstellen. Man kann die
Bilder auf Diskette abspeichern und wieder laden
und selbstverständlich steht auch weiterhin der
COMMODORE-Zeichensatz zur Verfügung. Wichtig:
PAINT PIC benötigt keine zusätzliche Hardware.

PAINT PIC in Stichworten:
Programmsteuerung: Tastatur -— Steuerung des

Stifts: Cursortasten und eckige Klammer (diag.)

(Joystick kann benutzt werden) - Routinen: Linien,

Rechtecke, Dreiecke, Parallelogramme, Kreise,

Kreisbögen, Ellipsen, Bestimmungvon Mittelpunkt,

und perspektivischer Linie, Kopieren und Drehen

von Teilbildern, Verdoppeln, halbieren und spiel-

geln von Teilbildern - Modi: Malstiftmodus
(schmale Linie) Pinselmodus (8 verschiedene Brei-

ten) (Art der Linie selbst definierbar) — Textmodus

(kompl. Zeichensatz COMMODORE) (Hoch-Tief-
schrift - Speichern: Teilbilder (Blöcke) oder ganze

Bilder — Menue: 1 Hauptmenue mit 8 Untermenues

- mit ausführlichem deutschen Handbuch - Disket-
tenprogramm - Bilder kann man auf Diskette
abspeichern.

DM 99-

 eee ff]

PROFIMAT
Wer sich tiefer in die Innereien des Computers
begeben will, kommt ohne besonderes Werk-
zeug nicht aus. Einerseits muß der volleEinblick
in alle Speicherbereiche möglich sein, anderer-
seits soll der umgang mit Maschinenprogram-
men so komfortabel wie möglich gestaltet sein.
PROFIMAT hat Lösungen für beide Probleme:
Der Maschinensprache-Monitor PROFI-MON bie-
tet alle Hilfsmittel zum Umgang mit Maschinen-
programmen; PROFI-ASS ist ein Macro-Assem-
bler, der das Schreiben von Maschinenpro-
grammen fast so einfach macht wie das Pro-
grammieren in BASIC.

PROFIMAT in Stichworten:
Registerinhalte und Flags anzeigen - Speicher-
inhalte anzeigen - Maschinenprogramme
laden, ausführen und Speichern - Speicher-
bereiche durchsuchen, vergleichen, füllen und
verschieben - echter Einzelschrittmodus - Set-
zen von Unterbrechungspunkten - Schneller
Trace-Modus - Rückkehr zu BASIC - formatfreie
Eingabe - Verkettung beliebig vieler Quellpro-
gramme - erzeugter Objektcode kann in Spei-
cher oder auf Diskette gehen - formatiertes
Assemblerlisting - ladbare Symboltabellen -
redefinierbare Symbole - Operatoren - Unter-
stützung der Fließkommaarithmetik - be-
dingte Assemblierung - Assemblerschleifen -
MACROS mit beliebigen Parametern.

DM 99-

 KONTOMAT
KONTOMAT ist ein menuegesteuertes Einnah-
me-Überschußprogramm nach § 43) EStG mit
Kassenbuch, Bankkontenüberwachung, auto-
matischer Steuerbuchung, AFA Tabellenerstel-
lung, Kontenblättern, Ermittlung der USt.Vor-
anmeldungswerte und Monats- und Jahres-
abrechnung. Der neue KONTOMAT ist voll para-
meterisiert und läßt sich damit an Ihre Bedürf-
nisse anpassen. Für alleGewerbetreibenden, die
nicht laut HGB zur Buchführung verpflichtet
sind. KONTOMAT ist für den gewerblichen Ein-
satz, aber auch als Lernprogramm oder zur
Haushaltsbuchführung geeignet.

KONTOMAT in Stichworten:
Diskettenprogramm - maximal 120 Konten -
Beträge mit biszu 6Vor-und 2Nachkommastellen -
4 Mehrwert- und Vorsteuersätze - intervallmäßige
Belegeingabe - 4 Buchungsarten (SOLL, HABEN,
SOLL/HABEN und*HABEN/SOLL) - Anzeige der Soll-
und: Habensumme bei mehrfachen Buchungssät-
zen - komfortable Belegeingabe mit Datum,
Buchungstext, Stuerkennzeichen und Betrag -
Druck des Journals während der Belegeingabe -
Druck von umfangreichen Kontenblättern - Druck
einer Summen- und Saldenliste mit Monats- und
Jahresumsatzsummen - betriebswirtschaftliche
Auswertung mit Druckausgabe - Ermittlung und
Druckausgabe der Umsatzsteuerzahllast -Speiche-
rung der Anlagegüter und automatische Abschrei-
bung am Jahresende - übersichtliche AfA-Liste -
arbeitet mit 1 oder 2 Laufwerken - umfangreiches
deutsches Handbuch.

DM 148, -

FAKTUMAT
Mit FAKTUMAT ist das Schreiben von Rechnun-
gen kein Alptraum mehr. Eine Sofortfakturie-
rung mit integrierter Lagerbuchführung. Indi-
viduelle Anpassung von Steuersätzen, Maßein-
heiten und Firmendaten. Kunden- und Artikel-
stamm voll pflegbar. Schneller Zugriff auf Kun-
den- und Artikeldaten, über freidefinierbaren,

6-stelligen Schlüssel. Automatische Fortschrei-
bung von Artikel- und Kundendaten, individuell
nutzbar. Alles in allem die Arbeits- und Zeit-
ersparnis, die Sie sich schon immer gewünscht
haben.

FAKTUMAT In Stichworten:
vollmenuggesteuert - läuftmiteineroderzwei
Floppies - Diskettenwechsel (eine Floppy) nur
beim Wechsel vom Hauptmenue ins Unterpro-
gramm und umgekehrt - mit Ausnahme des
Ausschaltens der Floppy wahrend der Verarbei-
tung werden alle Fehler abgefangen (z. B. Druk-
ker nicht eingeschaltet - arbeitet mit 1525, 1526
(9), MPS 801, EPSON Drucker und DATA BECKER
Interface - voll parameterisiert: Firmenkopf,
MWSt. und Rabattsätze, Größe der Dateien belie-
big wählbar - 5 Zeilen für Firmenkopf je 30
Zeichen (erste Zeile erscheint auf derRechnung
in Breitschrift - 4 Mehrwertsteuer-Sätze; wäh-
rend der Rechnungsschreibung können also

~ Artikel mit unterschiedliichem Mehrwert-
steuer-Satz verrechnet werden - 10 Rabatt-
sätze (Rabattsatz 1 vorbelegt mit 0%), bei der
Rechnungsschreibung kann jedem Artikel ein
Rabattsatz zugewiesen werden - maximal 1900
Artikel bei 50 Kunden oder 950 Kunden bei 100
Artikel (max. Artikel = [1000-Kundenl*2; max.
Kunden = [2000-Artikell/2) - manuelle Eingabe
von Artikeln und/oder Kunde während der
Rechnungsschreibung - d.h. es können mehr
Artikel verrechnet weden als überhaupt in die
Datei passen (bei Verzicht auf Lagerbuchfüh-
rung) bzw. es können Rechnungen an Kunden
geschrieben werden, die nicht erfaßtwurden -

integrierte Lagerbuchführung mit Ausgabe
einer Inventurliste - Rechnungsbeträge und
Datum werden in der Kundendatei festgehal-
ten - Druck von: Rechnung (mit Abbuchen aus
Lager), Rechnung (ohne Abbuchen aus Lager),
Lieferschein - deutsches detailliertes Hand-
buch mit Übungs- und Anwendungsteil -
deutsche Bedienerführung innerhalb des Pro-
gramms (z.B. „Artikel nicht vorhanden‘ anstelle
„RECORD NOT PRESENT").

DM 148,-

UNI-TAB
Heute schon die Bundesliga-Tabelle von morgen
kennen, das geht mit UNI-TAB. Alle Rechnereien, die
man ohne dieses Programm nie machen würde,
lassen sich in Sekundenschnelle durchführen. Wer

will, kann mit simulierten Spielergebnissen den
Weltmeister '86 vorausberechnen. Aber nicht nur
Fußball-Ligen können tabellarisch erfaßt werden,
fast alle Sportarten sind UNI-TAB-fähig. Gag am
Rande; für viele Sportarten stehen die bekannten
Piktogramme zur Verfügung.

UNI-TAB In Stichworten:
Menuesteuerung über die Funktionstasten mit
leicht verständlichen Auswahlmöglichkeiten -
Bedienerfreundlich (Mannschaften werden über
Kennzahlen gesteuert) - Ligen mit 4 bis 20 Mann-
schaften können verwaltet werden (6 bis 38 Spiel-
tage möglich) - unsinnigeLigen (2.B.13 Mannschaf-
ten sollen 5 Spieltage absolvieren) sind ausge-
schlossen - favorisierte Mannschaft kann während
des Programmablaufs durch reverse Darstellung
gekennzeichnet werden - Tabelle kann geändert
werden (wichtig bei Spielanullierungen) - drei ver-
schiedene Tabellenarten können abgespeichert
und später eingelesen werden (die aktuelle Tabelle
tunabhängig von der Vollständigkeit eines Spiel-
tagesı, der komplette Spieltag [Vollständigkeit und
Nummer des Spieltages werden automatisch
errechneti, die simulierte Tabelle Ider Anwender
kann so selbst Schicksal spielen und seinen Tip spa-
ter mit dem tatsächlichen Geschehen verglei-
chen!) - zwei verschiedene Arten der Saisonüber-
sicht (die statistische Übersicht zeigt an, weichen
Tabellenplatz das jeweilige Team bei weichem
Punkte- und Torverhältnis an den einzelnen Spiel-
tagen einnahm; die graphische Übersicht zeigt die
Leistungskurve jeder Mannschaft) - alle Tabellen
und Graphiken sind als Hardcopy auf einem Druk-
ker darstellbar - bei Fehlbedienung (z.B. ge-
wünschte Druckausdabe bei nicht eingeschalte-
tem Drucker) erscheinen leicht verständliche
deutsche Fehlermeldungen.

DM 69,-

SUPERGRAFIK 64
Entdecken Sie die faszinierende Welt der Com-
putergraphik mit SUPERGRAFIK 64, der starken
Befehiserweiterung mit den vielseitigen MÖQ-
lichkeiten. Durch die neue verbesserte Version
jetzt noch leistungsstärker.

SUPERGRAFIK 64 in Stichworten:

2 unabhängige Graphikseiten (320x200 Punkte)
- logische Verknüpfung der beiden Graphiksei-
ten (AND, OR, EXOR) - 1 Standard Low-Graphik
Seite (80x50 Punkte) - Normalfarben Graphik
(300 x 200 Punkte) - Multicolor-Graphik (160 x 200
Punkte) - verdecktes Zeichnen (z.B. Text sicht-
bar, Graphikseite 2 wird erstellt) -Textfensterin
der Graphik - 183 Befehle und Befehlskombina-
tionen (1. Für jeden Befehl wählbare Zwischen-
modi: Zeichnen, Löschen, Punktieren, Graphik-
Cursor bewegen, Zeichnen mit/ohne Farbset-
zung, Punkte zählen; 2. Durch einfache Befehle
zu steuernde Graphikfiguren: Punkt, Linie,
Linienschar, Linie vom Graphik-Cursor, Kreise,
Kreisbögen, Ellipse, Ellipsenbögen, selbstdefi-
nierbare Figuren, rotieren und vegrößern die-
ser Figuren, Rahmen, Feld, Text in Graphik; 3.
Weitere Graphikbefehle: Graphikseiten- und
Moduswechsel Graphik löschen, Graphik inver-
tieren, Scrolling von Text und Graphik, Wählen
der Rahmen- Hintergrund- Zeichen-. oder
Punktfarbe) — Speichern, Laden von Graphik
(auch verdeckt) -Kopieren des Textbildschirms
in die Graphikseite - Hardcopies für EPSON, Sei-
kosha GP100VC, Farb()drucker Seikosha GP700
und andere mit DATA BECKER Interface - 16!
Sprites gleichzeitig auf dem Bildschirm - alle
Sprite-Eigenschaften veränderbar - Positionie-
ren und Bewegen (!) von 16 Sprites gleichzeitig
und unabhängig voneinander, während das
übrige Programm weiterläuft (IRQ) -Sprite-Kol-
lisionsüberprüfung, Joystickunterstützung -
automatische Unterbrechung des BASIC-Pro-
gramms bei Kollisionen (Interrupt), Sprung in
Unterbrechungsroutine, dann Weiterführung
des Hauptprogramms - komfortable Sound-
programmierung mit Verstellung aller mög-
lichen Sound-Parameter (Lautstärke, Klang, Fil-
ter, Tonhöhe, Tonlänge), ebenfalls unabhängig

vom übrigen Programmlauf - zahlreichen Pro-
grammiertools (MERGE, RENUMBER usw.) - um-
fangreiche Anleitung - Diskettenprogramm.

DM 99,-

PASCAL 64
Beim Wort „Compiler“ fällt dem Eingeweihten .
Sicher der Begriff „Geschwindigkeit“ ein. Ein
PASCAL-Compiler sollte jedoch weitere Assozia-
tionen wecken. Strukturiertes Programmieren
heißt das Zauberwort. PASCAL wurde eigens zu
didaktischen Zwecken entwickelt und erfüllt

diese Aufgabe auch heute noch. Der PASCAL 64
Compiler bringt diese phantastische Program-
miersprache auf den 64er.
Gerade die neue, verbesserte Version unter-
stützt die Möglichkeiten des C-64 in jeder Hin-
sicht und macht leistungsfähige Programme
möglich.

PASCAL 64 in Stichworten:
besitzt einen sehr umfangreichen Befehlsvor-
rat - erlaubt Interruptprogrammierung und
bietet Schnittstellen zu Monitor und Assembler
- erzeugt sehr Schnelle Programme in reinem
Maschinencode - unterstützt relative Dateiver-
waltung, Graphik und Sound - bietet die Daten-
typen REAL, INTEGER, CHAR und BOOLEAN sowie
Aufzähltypen und POINTER, die zu Datenstruk-
turen RECORD, SET, ARRAY und PACKED ARRAY
kombiniert werden können - erlaubt vorzeiti-
gen Abschluß von Prozeduren mit EXIT, unein-
geschränkte Rekursionen und komfortableVer-
arbeitung von Teilfeldern (Strings) - ist ein aus-
gereiftes, deutsches Produkt und wird mit aus-
führlichem Handbuch geliefert.

DM 99,-

DISKOMAT
Der Umgang mit Diskettenlaufwerken ist für
viele noch immer mit Geheimnissen belastet.
Andere störensich an den wenig komfortablen
Diskettenbefehlen des BASIC V2. DISKOMAT
bringt Abhilfe; alle Diskettenbefehle des BASIC
4.0 stehen zur Verfügung. Außerdem können
mit dem Programm SUPERTWIN zwei 1541-Lauf-
werke wie ein Doppellaufwerk verwaltet wer-
den. Für Benutzer, die sich die Fähigkeiten der
Floppy 1541 ganz erschließen wollen, steht der
DISK-MONITOR bereit; er macht es endlich MÖY-
lich, den direkten Zugriff auf einzeine Blocks
einfach und bequem vorzunehmen.

DISKOMAT in Stichworten:
Diskettenprogramm - DISK BASIC unterstützt
Diskettenbefehle des BASIC 40 (CONCAT,
HEADER, APPEND, RENAME, OPEN, COLLECT,
DSAVE, SCRATCH, DCLOSE, BACKUP, DLOAD, DIREC-
TORY, RECORD, COPY, CATALOG, DS & DS$) - SUPER
TWIN behandelt 2 Laufwerke 1541 wie ein Dop-
pellaufwerk-DISK-MONITOR ermöglicht direkte
Analyse und Manipulation von Disketten (direk-
tes Lesen und Schreiben einzelner Blöcke,
ändern von Blöcken mittels Bildschirm-Editor,
Anzeige des Diskettenstatus, direktes Absen-
den von Disketten-Befehlen) - ausführliches
deutsches Handbuch beschreibt jeden einzel-
nen der 3 Programmteile.

DM 99-

C
G

N
a
S

we
L
E
A
L

r
r
r

R
HAUSVERWALTUNG
Jetzt können alle Hausbesitzer aufatmen: das Pro-
gramm HAUSVERWALTUNG bietet ihnen eine sehr
komfortable Verwaltung der Mietwohnungen mit
dem COMMODORE 64.
Alles, wasSie dazu brauchen, ist ein COMMODORE 64,
ein Diskettenlaufwerk 1541, ein anschlußfähiger
Drucker und das obengenannte Programm HAUS-
VERWALTUNG. Die nachfolgenden und viele weitere
leistungsfähige Features ermöglichen eineäußerst
rationelle Verwaltung Ihrer Mietwohnungen.

HAUSVERWALTUNG In Stichworten:
Dikettenprogramm -Verwaltung von 50Einheiten
pro Objekt möglich - Stammdatenverwaltung für
Häuser und Mieter - Verbuchen der Miete, Neben-
kosten und Garagenmieten - Mietkontoanzeige -
Haus- und Mieteraufstellung - Mahnungen - Ver-
buchen der anfallenden Kosten - Kostengegen-
überstellung - Jahresendabrechnung mit automa-
tischem Jahresübertrag - umfangreiches deut-
sches Handbuch.

DM 198,-

TRAININGSKURS zu ADA
Diese Programmiersprache der Zukunft, die das
Pentagon in Auftrag gegeben hat, wird jetzt
durch DATA BECKER auch dem C-64 Anwender
zugänglich gemacht durch denTRAININGSKURS
zu ADA, der eine sehr gute Einführung in diese
Supersprache bietet. Der dazu gelieferte Com-
piler liefert ein umfangreiches Subset der
Sprache.

ADA in Stichworten:
blockstrukturierte Programme - modularer
Aufbau der Programme - ermöglicht die
Behandlung von Ausnahmezuständen - FEnhler-
überprüfung beim Übersetzen und zur Laufzeit
- ermöglicht das einfache Einbinden von
Maschinenprogrammen - sehr leichtes Arbei-
ten mit Programmbibliotheken - Programm-
diskette enthält Editor, Übersetzer, Assembler
und Disassembler - umfangreiches deutsches
Handbuch.

DM 198 -

DATAMAT
Daten verwalten kann ein schier endioses Han-
tieren mit Karteikasten und Aktenordnern
bedeuten; kann aber auch C-64 plus DATAMAT
heißen. Dann wird Suchen und Sortieren zum
Spaß. Der DATAMAT bietet in seiner neuen Ver-
sion einiges, was in dieser Preisklasse bisher
unvorstellbar schien. Nicht nur Geschwindig-
keit und Bedienungsfreundlichkeit wurden
weiter verbessert, auch die Anpassung an die
meisten Drucker ist inzwischen machbar.

DATAMAT in Stichworten:
menuegesteuertes Diskettenprogramm, da-
durch extrem einfach zu bedienen - für jede
Art von Daten - völlig frei gestaltbare Eingabe-
maske - 50 Felder pro Datensatz - 253 Zeichen
pro Datensatz - biszu 2000 Datensätze pro Datei
je nach Umfang - Schnittstelle zu TEXTOMAT -
läuft mit 1 oder 2 Floppies - völlig in Maschinen-
sprache - extrem Schnell - deutscher Zeichen-
satz auch auf COMMODORE-Druckern -fastjeder
Drucker anschließbar - ausdrucken über RS 232
- duplizieren der Datendiskette - verbesserte
Benutzerführung - Hauptprogramm komplett
im Speicher (kein Diskettenwechsel mehr) -
integrierte Minitextverarbeitung - deutsches
Handbuch mit Übungslektionen
Sie können:
jedenDatensatzin2-3Sekundensuchen-nach
beliebigen Feldern selektieren - nach allen Fel-
dern gleichzeitig sortieren - Listen in völlig
freiem Format drucken - Etiketten drucken.

DM 99-

ZAHLUNGSVERKEHR
Umfangreicher Zahlungsverkehr kann zur
Plage werden. Das Software-Paket ZAHLUNGS-
VERKEHR übernimmt den größten Teil dieser
Arbeit. AuBer den notwendigen Fahigkeiten fir
das Ausfüllen und Auflisten von Überweisun-
gen und Schecks ist der ZAHLUNGSVERKEHR in
der Lage, Sammellisten, Einzugslisten etc. selb-
standig zusammenzustellen.

ZAHLUNGSVERKERR in Stichworten:
Diskettenprogramm - max. 100 Zahlungsemp-
fänger pro Diskette - drei definierbare Absen-
derbanken - 25 Zahlungsdateien .- 14 frei defi-
nierbare Formulare - Kontrolldruck bei Beleg-
eingabe möglich - Eingabe von Rechnungs-
daten oder eines Verwendungszwecks - AuS-
druck einer Sammel-Überweisungsliste - Kor-
rekturmöglichkeit der einzelnen Zahlungs-
dateien -arbeitet miteiner oderzweiFloppies-
umfangreiches deutsches Handbuch.

DM 148-

DAS STEHT DRIN:
DAS GRAFIKBUCH ZUM COMMODORE 64 ist ein
Buch fur alle, die mit ihrem C-64 kreativ tatig sein
wollen. Der Inhalt reicht von den Grundlagen der Gra-
fikprogrammierung bis zum Computer Aided Design.

Aus dem Inhalt:

— Zeichensatzprogrammierung, bewegte Sprites
— High-Resolution, Multi-Color-Grafik
— Lightpenanwendungen
— Betriebsarten des VIC
— Verschieben der Bildschirmspeicher
— Dreidimensionale Grafik, Projektionen
— Kurven, Balken- und Kuchendiagramme
— Laufschriften, Animation
— Bewegte Bilder

UND GESCHRIEBEN HAT DIESES BUCH:
Axel Plenge, vielen bereits bekannt als Autor der
SUPERGRAFIK und als Co-Autor des Trainingsbu-
ches zu Simon’s Basic, legte hiermit ein Standardwerk
zur Grafikprogrammierung auf dem 64er vor. Er ist
Student der Informatik.

ISBN 3-89011-011-8

