Plenge

DAS
GRAFIKBUCH
ZUM
COMMODORE 64

EIN DATA BECKER BUCH

Plenge

DAS
GRAFIKBUCH
ZUM
COMMODORE 64

EIN DATA BECKER BUCH

ISBN 3-89011-011-8
1. Auflage

Copyright (C) 1984 DATA BECKER GmbH
Merowingerstr. 30
4000 Diisseldorf

Alle Rechte vorbehalten. Kein Teil dieses Buches darf in
irgendeiner Form (Druck, Fotokopie oder einem anderen
Verfahren) ohne schriftliche Genehmigung der DATA BECKER GmbH
reproduziert oder unter Verwendung elektronischer Systeme
verarbeitet, vervielfdltigt oder verbreitet werden.

Wichtiger Hinweis

Die in diesem Buch wiedergegebenen Schaltungen, Verfahren
und Programme werden ohne Riicksicht auf die Patentlage
mitgeteilt. Sie sind ausschlieBlich fiir Amateur- und Lehr-
zwecke bestimmt und diirfen nicht gewerblich genutzt werden.

Alle Schaltungen, technische Angaben und Programme in
diesen Buch wurden von den Autoren mit groéBter Sorgfalt
erarbeitet bzw. zusammengestellt wund unter Einschaltung

wirksamer KontrollmaBnahmen reproduziert. Trotzdem sind
Fehler nicht ganz auszuschlieBen. DATA BECKER sieht sich
deshalb gezwungen, darauf hinzuweisen, daB weder eine

Garantie noch die juristische Verantwortung oder irgendeine
Haftung fiir Folgen, die auf fehlerhafte Angaben zuriickgehen,
iiberncmmen werden kann. Fiir die Mitteilung eventueller Fehler
sind die Autoren jederzeit dankbar.

Vorwort

Grafik ist nicht nur eine der Hauptstidrken des COMMODORE 64;
COMMODORE hat diese Stdrke auch sehr sorgfaltig versteckt.
Der Basic - Anféanger kennt Grafik nur bewundernd von den
vielen fertigen Programmen und Aktionspielen, die natiirlich
iber entsprechende Routinén - meist in Maschinensprache - die
grafischen Fahigkeiten des COMMODORE 64 voll ausnutzen.
Dieses Buch soll nun jedem COMMODORE 64 - Anwender die Moég-
lichkeit geben, auch in eigenen Programmen die Vielzahl

grafischer Moglichkeiten seines Computers zu nutzen.

Als Autor konnten wir Herrn Axel Plenge gewinnen, der den
COMMODORE 64,besonders von der Grafikseite her, wie kaum ein
anderer kennt und dies mit der beliebten Supergraphik ja
bereits eindeutig unter Beweis gestellt hat. Ihm machte das
Schreiben dieses Buches so viel SpaB, und er entdeckte dabei
so viele interessante Sachen, daB das Grafikbuch gleich fast
50 Seiten umfangreicher wurde als geplant. Fiir Sie als Leser
hat dies viele Vorteile, und wir diirfen Ihnen viel SpaB bein
Ausprobieren der vielen Anregungen und Programme von Axel

Plenge wiinschen.

Dr. Achim Becker

Inhaltsver=zeichnis

Kapitel
Einleitung.....cooiiiiininenneonens Ce et ee e .6
Kapitel
Bits and Bytes.....cu e iitienntoioiionassssssssnssssnssenss 9
2.1, Dezimalsystem.t v oinrnnnsneensoannosnns veenss9
2.2, DualsysStem.viiiienotooenseosossonscessnsssanssons 10
2.3. Hexadezimalsystem...... e e P B
2.4. Logische Operationen........cceviiiunenneenencansnnns 14
Kapitel
Hardwaregrundlagen.........ooivinnvenns S et 16
3.1. Die Register des VIC.......voueveencncnsns P | -]
3.2. Betriebsarten des VIC........ciiivtiinneennnnnnnnesn 23
3.3. Speicherverwaltung des CBM 64.........0.0c00tecennnnn 28
3.3.1. Die Speicherzugriffe des 6510.............. ..31
3.3.1.1. Lesen eines Bytes........ccoeuieuunns 31
3.3.1.2. Schreiben eines Bytes...........c... 34
3.3.2. Die Speicherzugriffe des VIC........vcovvvuuns 35
3.3.2.1. Speicherfunktionen des VIC.......... 36
3.3.2.2. VIC-Speicheransteuerung........c.... 38
3.3.2.3. Verschieben der Bildschirmspeicher..39
3.4. Punkt-Graphik.......oovvivienrnnnennns P - £
3.4.1. Farben......vcuiiiiiiiieiiinrinnnnnnnns veeee...45
3.4.2. Hochauflésende Graphik (HGR)......... che e 46
3.4.3. Multicolor-Graphik (MC)......ciiivvonerennnns 52
3.5, SPrites. ..ttt inersrterasttocnstsoesioacnnn 58
3.5.1. Aufbau und Farbe normaler Sprites............ 56
3.5.2. Multicolor-Spriteaufbau........ 4
3.5.3. Spritedefinition — Farbe........c.vcvevnennn 59
3.5.4. Weitere Spriteeigenschaften....... P - X1
3.5.4.1. Positionieren.........co0iuiiunnaann ...63
3.5.4.2., VergroBern......oveueees P - 151
3.5.4.3. Prioritat..... e [..66
3.5.4.4. Kollisionen............... et 67
3.6. Text~ und Zeichensatzverwaltung........... Ceeeaaeaen 68

3.6.1. Textseitenorganisation............civvueannn 68

3.6.2. Zeichensatzorganisation..........coiveuvaans .72

3.7. IRQ-Méglichkeiten....... ... iiiiiiiiiiiiiieinneennn 77

3.7.1. Bildschirmrasterzeilen............... [N ..80

3.7.2. Lightpen..... ...ttt ienensnses ..84

3.7.3. Sprite-Kollisionen...... ettt .86
Kapitel

Grundsédtzliche Graphikprogrammierung......... [- 11

4.1, Text und Graphik auf dem Low-Res-Bildschirm...... ...89

4.2. Programmierung der Punktgraphik.............. ceeee.102

4.2.1. Initialisieren der Graphik.................. 104

4.2.1.1. Einschalten der Graphik............ 104

4.2,1.2. Léschen der Graphik.......... veess.106

4.2.1.3. Loschen der Farbe.................. 107

4.2.1.4. Ausschalten der Graphik............108

4.2.2. Einfache Figuren in der Punktgraphik....... .109

4.2.2.1. Punkt........cinivnnn eeeees...109

4.2.2.2. Linie....ovvvuniiinnns PO B X

4.2.2.3. Ellipse/Kreis....... et 119

4.3. Spriteprogrammierung.........c.c00e0000. Ceei et 122

4.3.1. Erstellung von Sprites (Spriteeditor).......123
4.3.2. Darstellung und Programmierung

der Spriteeigenschaften................ ve...145
4.4. Zeichensatzprogrammierung.........oceeeeuesonses ... 157
4.4.1. Anderung einiger Zeichen..........co00u. ...158

4.4.2. Anderung eines Zeichensatzes (Zeichenformer)163

4.5. Eingabe/Ausgabe von Graphik und Zeichensatz...... ..181
4.5.1. Abspeichern/laden.......covveuss PP : 1
4.5.2, Hardcopy......eoeuuunn O ..184

4.6. IRQ-Handhabung...... P ...187
4.6.1. Rasterzeilen-IRQ..........cievveunnnn ces....188
4,6.2. Lightpen..... ..ottt ireiensessnonessnnnsns ..194

4.7. Ein kleines Graphik-Paket.................... e 199

Kapitel

Anwendungen........ccce0euo0ann e PN ...218

5.1. Graphikanwendungen...........cicietreersonescessss.218
5.1.1. Funktionendarstellungen...............c.0.vu 219

5.1.2. 3-Dimensionale Graphik - CAD.............. ..232

5.1.2.1. Parallel-Projektion...... Cee e 233

5.1.2.2. Zentral-Projektion.............240

5.1.2.3. 3-D-Funktionen........... ... 242

5.1.2.4. Bewegte Bilder in 3-D.............. 248

5.1.3. Graphische Statistik............00 e 251

a) Kurvenstatistik........... ..o, 251

b) Balkendiagramme.......... PP 1. §

c¢) Kuchendiagramme.........co0000. cehee e 255

.2. Laufschriften..................... SN 261

3. Das Geheimnis der Spiele...... ... iiiiiiennnnnns 266

5.3.1. An;mation et 267

5.3.2. Scrolling.... ittt ittt nnaen 271
Kapitel

Anhang....... her e C et et T 279

6.1. Programmoptimierung..........cioeueeuenonerennccnnns 279

6.2. Graphikspeicheraufbau...........ciiiiiiineiiinennens 282

6.2.1. Graphikspeicher......... .. 282

6.2.2, Videoram.......uoeiivuiirerrnenneeencnnnannns 283

6.3. Farbtabelle................. ettt 284

6.4. Bildschirmcodes.........coiitiieniiinnnennnennennnns .285

6.5. Dez-Hex-Dual - Konversionstabelle............... ...287

6.6. Spriteentwurfsblatt.. ... ittt econnens 288

6.7. Zeichenentwurfsblatt............... e ceee...289

6.8. VIC-Register-Ubersicht...........ciiiiiiiiiiiennnns 290

6.9. Literaturhinweise.......... i civiiiiireiinennnnnn ...293

6.10.Nachtrag zu Abschnitt 4.1............ T 295

1. Kapitel
Einleitung

"64 K RAM, 8 unabhéngige Sprites, frei auf dem Bildschirm
bewegbar, hochauflésende Graphik mit 320x200 Punkten,
Multicolorgraphik (160x200 Punkte), 16 Farben, 40 Zeichen, 25
Zeilen, verénderbarer Zeichensatz, sensationelle Interrupt-
méglichkeiten, ..., ein Computer, den jeder kennenlernen,
nein, besitzen musg! ..."

So oder #dhnlich wird -wohl auch zurecht- unser guter alter
Commodore 64 angepriesen. Kaum jemand, der sich auch nur ein
wenig mit Computern auskennt, wird an solchen Anzeigen
vorbeischauen, denn Ihr 64er kann wirklich viel.

Doch bald nach dem Kauf und dem hoffnungsvollen Studium der
Betriebsanleitung aber bekommt man ein merkwiirdiges Gefiihl in
der Magengrube: Kein Wort von der hochauflésenden Graphik,
geschweige denn von solchen Vorziigen wie Zeichen-
satzverdnderung oder Interuptfidhigkeiten. Selbst das fiir die
MaBstiédbe des Handbuches relativ ausfiihrliche Kapitel iiber die
Sprites und ihre Programmierung verschleiert die wahren
Moglichkeiten des Geriites.

Doch wir sollten nicht zu streng mit dieser Kurzanleitung zu
Gerichte ziehen. Um auch nur anniédhernd alle Vorziige unseres
Rechners zu beschreiben und gar ihre Anwendung 2zu demon-
strieren, bedarf es einer etwas umfangreicheren Lehrbuch-
konzeption.

An dieser Stelle greift nun das vorliegende Graphikbuch zum
64er an. Dieses Buch soll IThnen umfassende Kenntnisse iiber
das graphische Innenleben eines Computers vermitteln, der
nicht umsonst zum Computer des Jahres 1983 gewidhlt wurde.
Durch das gesamte Buch zieht sich eine typische Dreiteilung.
Dabei werden alle Féhigkeiten des Rechners unter drei
verschiedenen Gesichtspunkten besprochen und von allen Seiten
beleuchtet. Diese drei Sinnabschnitte behandeln die folgenden
Themen:

- Hardwaregrundlagen
— grundsédtzliche Programmierung
- Anwendungen

Im ersten groBen Abschnitt (Kapitel 3) erfahren Sie alles
(wirklich alles), was es iiber die Bildschirmsteuerung durch
den VIC (Videocontroller), dem Organisator des gesamten Bild-
geschehens, 2zu erfahren gibt. Hier sehen Sie, welche
Bedeutung beispielsweise den vielen Registern dieses
"Managers" zukommt, was Sprites sind und wie sie organisiert
sind, was man tun muB, um Graphik einzuschalten, zu erstellen
und zu bedienen. Ihnen wird endlich klar, was es mit der
bisher ziemlich undurchsichtig erscheinenden Graphik-—,
Zeichensatz- oder Bildschirmspeicher - Verschiebung auf sich
hat, allgemein wie der gesamte Speicheraufbau des 64ers
beschaffen ist und welche Mdéglichkeiten sich ergeben...

Doch damit kann man gemeinhin noch nicht viel anfangen, wenn
einen das 'Know how’ fehlt, das Wissen um die Programmierung
der vielen verschiedenen Bildschirmfunktionen. So erfahren
Sie im 4. Kapitel, wie Sie die Graphik starten und wie Sie
die ersten einfachen Figuren wie Punkte, Linien, Kreise oder
Ellipsen auf der Graphikanzeige erscheinen lassen. Sprites
und ganze Zeichensiédtze werden erstellt bzw. verédndert. Hierzu
werden Ihnen zwei sehr komfortable Editorprogramme zur Ver-
fiigung gestellt, mit denen Sie ohne viele Miihe, bequem und
handlich diese Dinge erledigen kénnen. Sprites werden auf dem
Bildschirm bewegt und auf Kollisionen etc. iiberpriift. Weitere
Kapitel fiihren Sie in das Laden, Speichern und die Erstellung
von Hardcopys der Graphik ein und erldutern Ihnen die
Interrupttechniken. SchlieBlich, als kleiner Héhepunkt,
erméglicht ein Graphik-Paket den schnellen und problemlosen
Umgang mit diesem Schatz Ihres Computers.

Wo das 4. Kapitel die Programierung der einzelnen Optionen
des Rechners getrennt behandelt, werden im 5. groBen Sinn-
abschnitt schlieBlich Beispiele der Anwendung des Gelernten
unter Kombination aller seiner graphischen Fihigkeiten Thema
unser Betrachtungen. Hier erfahren Sie, wie Sie das Zusammen-
spiel dieser Dinge organisieren und welche Méoglichkeiten sich

ergeben. Kurz, hier entdecken Sie den tatséchlichen Nutzen

des 64ers; auf diesen Abschnitt kénnen Sie verweisen, wenn
Sie jemand fragt: "Ein Computer? Was soll ich damit?"

Wir hoffen, damit jeden 64er - Anwender 2zu einem absoluten
"Graphik-Freak" zu machen, einem Fachmann in allen Fragen,
der zu Rate gezogen wird, immer dann, wenn andere nicht mehr
weiter wissen. Und sollte doch einmal eine Gedédchtnisliicke
auftreten, so schliédgt er kurz einmal im Anhang nach und schon
weiB er bescheid. Umfangreiche Hinweise auf weiterfiihrende
Literatur runden das Buch ab.

Noch etwas in 'eigener’ Sache: Wir haben eingesehen, daB
nicht jeder die Zeit und Lust aufbringt, jedes der vielen
Programme -vor allem der langen- einzutippen. Da aber ein
wesentlicher Informationsteil ohne diese Routinen verloren
ginge, haben wir uns entschlossen, Ihnen eine Diskette zur
Verfiigung zu stellen, auf der alle Programme dieses Buches
plus weiterer niitzlicher Utilities abrufbereit und lauffertig
gespeichert sind. Ich versichere Ihnen, die Anschaffung wird
sich lohnen.

2. Kapitel
Bits and Bytes

Um die vielen verschiedenen Faktoren festzulegen, mit denen
Sie die zahllosen Miglichkeiten der Graphikvariation be-
stimmen kénnen, werkeln Sie direkt in der Speicherstruktur
Ihres Gerédtes bzw. mit den unterschiedlichen Registern (s.u.)
der integrierten Schaltkreise. Bekommen Sie keinen Schreck!
Wir wollen Sie nicht etwa mit elektronischen Einzelheiten
bombardieren. Zum Verstiédndnis dieser Dinge bedarf es nur
etwas Mathematik, die relativ einfach zu durchschauen ist und
oft schon zum Stoff von 5- oder 6-Kldsslern gehért. Es geht
unter anderem um die Darstellung von Zahlen im sogenannten
Bindr- oder Dualsystem.

Fiir einen gewdhnlichen Computer, der ja bekanntlich aus einer
Unzahl von elektronischen Leitungen und Bausteinen besteht,
gibt es lediglich zwei Zustinde, aus denen seine ganze kleine
Welt besteht: Strom ein --- Strom aus. Da wir Menschen nun
aber von ihm eine ganze Menge mehr verlangen, muBten wir uns
etwas einfallen lassen, um mit diesem Mangel zu leben. Wollen
wir zum Beispiel eine Zahl im Computer darstellen, so kommen
wir nicht mit diesen beiden Zustiénden aus. Wir konnten zwar
dem Zustand "Strom aus” die Zahl 0 und "Strom ein" die Zahl 1
zuordnen, werden damit aber wohl nicht weit kommen, da wir
auBer 0 und 1 noch unendlich viele andere Zahlen darstellen
wollen.

2.1 Dezimalsystem

Im alltéglichen Leben stehen uns 10 Ziffern (0-9) zur
Verfiigung (deshalb der Name "Dezimal"system von decem lat. -
zehn), mit denen wir durch einen kleinen Trick sé&mtliche
weiteren Zahlen darstellen kénnen: Wir reihen einfach mehrere
Ziffern zu einer groBen Zahl zusammen. Wollen wir beispiels-
weise bis 1000 ziéhlen, so sind wir bereits bei der Ziffer 9
am Ende unseres Ziffernvorrates. Jedem ist bekannt, daB wir
danach einfach wieder von vorne (bei 0) anfangen 2zu zéhlen,

.wobei wir jedoch als Kennzeichen, daB wir bereits einmal bei
9 angelangt sind eine 1 vor die laufende Ziffer schreiben.
Die néichsten Zahlen nach 9 lauten bekanntlich 10 (eins null),
11 (eins eins), 12 (eins zwei) usw. Bei 19 sehen wir uns dem
gleichen Problem gegeniibergestellt. Doch wieder beginnen wir
bei 0 und erhéhen lediglich die vorgestellte Ziffer um eins.
Das Ergebnis: 20 (zwei null). Sind wir bei dieser ersten
Ziffer ebenfalls bei 9 angekommen (99), so beginnen wir hier
gleichfalls einfach wieder bei 0 und stellen davor die Zahl 1
(100). Nach diesem Prinzip werden schlieBlich sé#émtliche
ganzen Zahlen dargestellt. Dabei werden die einzelnen Ziffern
einer Zahl Stellen genannt und diese wiederum als Einer,
Zehner, Hunderter, Tausender, ... bezeichnet. Eine Zahl =z,
deren Ziffern (di, dz,...) bekannt sind, 1&Bt sich somit

wie folgt errechnen:
z = do*10° + di1%x10! + dz2%102 + ,,,

wobei d jeweils die Einer-, Zehner—-, Hunderter—-, ... -stellen
bezeichnet (eine kleine Anmerkung: eine Zahl hoch 0 ergibt
stets 1, also 10 hoch 0 ist gleich 1, genauso wie z.B. 5 hoch
0 gleich eins ist —-- Ausnahme: 0 hoch 0 ist nicht defi-
niert). Eine andere Darstellung ist die folgende (hier an dem
Beispiel der willkiirlich gewidhlten Zahl 3124):

104]10%|102|10|10°
0 3 1 2 4

Die obere Zeile nennt dabei den Wert der einzelnen Stellen,

die untere Zeile den Faktor d.

2.2 Dualsystem

Wir besitzen, wie gesagt, zehn Ziffern, um unsere Zahlen
einigermaBen iibersichtlich darzustellen. Unser armer Computer
muB sich jedoch mit 2 Ziffern begniigen (0 und 1), wie oben
dargelegt. Wie aber zidhlt er dann bis 1000? Ganz einfach:
genauso wie wir! Also:

0, 1
damit ist sein Ziffernschatz "verbraucht" und er startet

10

wieder bei 0, setzt aber gleichfalls als Kennzeichen eine 1
davor und erhdlt:
10
Es geht weiter mit:
11,100,101,110,111,1000,1001,1010,1011,1100,1101,....
Wie Sie sehen, ist das sogenannte Bindrsystem véllig analog
zu dem uns vertrauten Dezimalsystem aufgebaut. Entsprechend
148t sich der Wert einer Dualzahl durch die folgende Formel

errechnen:

z = bo%20 + b1%21 + b2%22 + ...

wobei die Parameter bo,1,2,... die einzelnen Ziffern,
angefangen von der ersten (Einerstelle) bis zur héchsten
Dualstelle, darstellen. Kennen Sie also die Ziffern einer
Dualzahl, so ist es Ihnen mit Hilfe dieser Formel méglich,
sie in eine Dezimalzahl umzurechnen. Wie oben kann dies
ebenfalls durch die folgende Tabelle erreicht werden (hier an
dem Beispiel der Zahl 10110100):

27=] 26 25 244 234 22 21z 204
128/ 64 | 32| 16 8 4 2 1
1 0 1 1 0 1 0
128 +32 |+16 +4 = 180

Eine solche Stelle nennt man nun in der Computerfachsprache
ein Bit, d.h. eine Informationseinheit. Unter Informations-
einheit (oder Bit) versteht man also die Méglichkeit zweier
Zustiénde (ja oder nein bzw. 1 oder 0). In Ihrem Rechner sind
nun 8 solcher Bits (oder Dualstellen) 2zu einer Einheit
zusammengefaBt, dem sogenannten Byte. Mit diesen 8 Bits
lassen sich also Zahlen von 0-255 darstellen. Mit 2zwei Byte
(=16 Bits) dagegen schon von 0-65535. Wollen wir ein Byte
also in eine Dezimalzahl umrechnen (was notwendig wird, wenn
wir von Basic aus Anderungen direkt an bestimmten Speicher-
stellen vornehmen wollen), so verwenden wir selbst-
verstindlich wieder unsere Tabelle (oder die Formel).

Wollen wir dagegen umgekehrt eine Dezimalzahl in eine
Dualzahl umrechnen, so gehen wir wie folgt vor (am Beispiel
der Zahl 180):

11

180 : 128 = 1 Rest 52
52 : 64 = 0 Rest 52
62 : 32 = 1 Rest 20
20 : 16 = 1 Rest 4

4 : 8 = 0 Rest 4
4 : 4 =1 Rest 0
0 : 2 = 0 Rest 0
0 : 1 =0 Rest 0
180¢a) = 10110100¢»)

Hier wurde also die umzurechnende Zahl 180 nacheinander durch
die Potenzwerte aus der Tabelle geteilt. Das Ergebnis stellt
dabei jeweils eine Ziffer der gewiinschten Dualzahl dar, der
Rest dieser Division wird fiir die iibrigen Rechrungen
weiterverwendet.

Eine 2zweite Methode 1ist die folgende. Sie eignet sich
besonders fiir Computerprogramme, da sie rekursiv und damit
besonders einfach und schnell ist:

180 : 2 = 90 Rest 0
90 : 2 = 45 Rest 0
45 : 2 = 22 Rest 1
22 : 2 = 11 Rest 0
11 : 2 = 5 Rest 1

5 : 2 = 2 Rest 1
2 2 = 1 Rest 0
1 : 2= 0 Rest 1

Hier wird, wie Sie sehen, stdndig durch 2 geteilt. Der
jeweilige Rest stellt dabei startend von der ERinerstelle eine
Dualziffer dar. Das Ergebnis der Divison wird weiter-fiir die
folgenden Rechnungen verwandt, solange, bis es 0 wird.

Um zu kennzeichnen, daB es sich bei einer bestimmten Zahl um
eine Dualzahl handelt, setzen wir vereinbarungsgeméf ein
Prozentzeichen (%) vor die jeweilige Zahl. Dies 1ist iblich
und wird auch im Weiteren verwendet.

Wie Sie in den ganzen Ausfithrungen sehen, werden unsere
Zahlen auf die Dauer umstédndlich lang und uniibersichtlich.
Der Computer kann damit sehr viel besser umgehen. Wir aber
sehnen uns nach unserer guten alten Dezimalschreibweise. Doch
hier ist die Umrechnung stets etwas schwierig, wie Sie sahen.

12

Aus diesem Grunde hat man sich etwas anderes ausgedacht, das

2.3 Hexadezimalsystem

Das Hexadezimal- oder 16er-System bietet hier einige
Vorteile, die Sie im folgenden kennenlernen werden. Es
besitzt 16 verschiedene Ziffern. Da wir von unserem
Dezimalsystem her jedoch nur 10 Ziffern kennen, miissen wir
sechs weitere erfinden. Alle verfiigbaren Ziffern lauten:

Dez Of 1p 2% 3¢ 4 50 6f 7F 8] 9F10F11112813114015
Hex | Of10¢21$31$47$5 1$61TH81$9$SAISBISCISDISENSF

Die fehlenden Ziffern wurden also durch Buchstaben
symbolisiert. Um eine Hexadezimalzahl als solche zu
kennzeichen, ist es iiblich, ein $ (Dollarzeichen) vor diese
Zahl zu setzen. Wie Sie sich denken koénnen, léuft die
Berechnung oder Umrechnung zwischen den einzelnen Systemen
vollig analog. Mithilfe der folgenden Tabelle rechnen Sie
eine Hexadezimalzahl in eine 10er-Zahl um (am Beispiel
$FE2A):

163= 162= 161 = 160=
4096 256 16 1
F E 2 A
15%4096| +14%256| +2x16| +10x1 = 65066

Diese Verwandlung ist ebenfalls rekursiv moéglich.
Die umgekehrte Rechnung lautet dagegen:

65066 : 4096 = 15 Rest 3626

3626 : 256 = 14 Rest 42

42 : 16 = 2 Rest 10

10 : 1 = 10 Rest 0
65066¢ay = FE2A(n)

Sie sehen, diese Umrechnung folgt den selben Gesetz-
méBigkeiten, wie unter Dualzahlen beschrieben. Die dort
erwidhnte rekursive Methode ist hier selbstverstédndlich
ebenfalls anwendbar.

13

Welchen Vorteil bietet nun das beschriebene Hexa-
dezimalsystem?

Zuniichst einmal ist es durch dieses System méglich, Zahlen
sehr kurz und iibersichtlich anzugeben. Dies allein ist jedoch
noch nicht ausschlaggebend. Wichtig ist, daB sich die
Umrechnung von Hexadezimal- in Dualzahlen é#uBerst einfach
gestaltet. Jeweils 4 Bindrziffern nédmlich ergeben stets eine
Hexadezimalziffer. Ein Byte kann also durch 2 Hexziffern

festgelegt werden. Z.B.:

% 1101 0110
$ D 6

Sie sehen, wie einfach und iibersichtlich so eine sonst
umstiéndlich lange Dualzahl beschrieben werden kann. Im Anhang
finden Sie zu Ihrer Unterstiitzung Dez-Hex-Dual - Conversions-
tabellen.

2.4 Logimsmche Operatiomen

Um spédter die Inhalte bestimmter Bytes oder Speicherstellen
zu verdndern oder zu manipulieren, sind verschiedene logische
Operationen niitzlich, die auch vom Commodore - Basic aus
angewihlt werden konnen und von denen hier zwei kurz
beschrieben werden sollen: AND und OR. Bei beiden sind stets

zwei miteinander zu verkniipfende Dualzahlen notwendig.

a) AND:
Nehmen wir einmal an, Sie wollen ein bestimmtes Bit in
einem Byte nur dann erhalten, wenn es gleichzeitig in
einem anderen Byte steht. In diesem Falle verwenden Sie
die AND-Verkniipfung. Sie wird Bit fiir Bit vorgenommen und
kann durch die folgende Verkniipfungstabelle beschrieben

werden:

Sie sehen also, daB das Ergebnis nur dann gleich 1 ist,

14

b)

wenn beide verkniipften Bits ebenfalls gleich 1 sind,
andernfalls bleibt alles 0. Wollen wir nun 2zwei voll-
stindige Bytes (bestehend aus je 8 Bits) miteinander

"ANDieren", so sieht das Ganze so aus:

10110010
AND 01100111
00100010

Hier wurde also jedes einzelne Bit des ersten mit dem
korrespondierenden Bit des 2zweiten Bytes durch AND
miteinander verkniipft.

Diese Operation wird neben der als nédchstes beschriebenen
stindig verwendet, um z.B., lediglich ein Bit eines Bytes

zu veriéndern, wiéhrend die anderen erhalten bleiben.

OR:
Die OR-Verkniipfung kann -wie auch AND- durch eine

sogenannte Verkniipfungstabelle dargestellt werden:

Wie ersichtlich wird das Ergebis 1 schon dann, wenn
bereits eines der beiden zu verkniipfenden Bits gleich 1
ist. Ein Byte kann somit etwa so geORt werden:

10110010

OR 01100111
11110111

15

3. Kapitel

Hardwaregr lage

Ihr Commodore 64 besitzt eine ungeheure Vielzahl an
Méglichkeiten, Graphiken zu erstellen und 2zu kontrollieren.
Da er jedoch keinerlei Befehle zur Ausnutzung dieser Dinge in
seinem Basic zur Verfiigung hat, Jja, die Moglichkeit
hochaufléosender Graphik nicht einmal in seinem Handbuch
erwdhnt wird, muB8 alles, was die Graphik betrifft, selbst
entweder direkt in Maschinensprache oder von Basic aus
programmiert werden, es sei denn, Sie besitzen eine
entsprechende Graphikerweiterung, die Thnen diese Befehle an
die Hand gibt. Doch keine noch so gute Erweiterung kann auf
alle Fdhigkeiten des CBM 64 eingehen. Deshalb bedarf es einer
guten Kenntnis der in Ihrem Rechner verwirklichten Graphik-
organisation, um sie alle zu nutzen. AuBerdem ist es #uBerst
interessant, festzustellen, wie perfekt die einzelnen Dinge
zusammenspielen, oder wo es manchmal #rgerliche Haken oder
Usen, durch die man hindurchschliipfen kann, gibt.

Bevor wir wuns also mit der Programmierung der Graphik
beschéaftigen und den vielen Anwendungsméglichkeiten, die den
Nutzen dieser Rechnereigenschaft (auch oder gerade bei der
Verwendung einer entsprechenden Erweiterung, die auf jeden
Fall zu empfehlen ist) erst richtig zum Ausdruck bringt,
wollen wir daher eine detailierte Kenntnis iiber die einzelnen
Positionen der Graphik und Ihre Organisation vermitteln.
Zugegeben, es ist nicht ganz einfach, aber wir wollen

versuchen es Ihnen so nahe wie méglich zu bringen.

3.1 Die Register des VIC

Zunidchst einmal werden Ihnen die 47 Register des VIC, also
des Video Interface Chips, dem zentralen Prozessor, der u.a.
die gesamte Bildschirmausgabe steuert, kurz und iibersichtlich
beschrieben. Mithilfe dieser Register werden (fast) alle
Funktionen beziiglich Graphik, Text usw. gesteuert. Sie
besitzen daher fundamentalsten Wert fiir Ihr Verstédndnis iiber

16

Graphik und Bildschirmmanipulationen und sollten schon (bis
auf einige Kleinigkeiten) weitestgehendst verstanden werden.
Diese tlbersicht wird dann in den folgenden Abschnitten und
Kapiteln vertieft und ndher erléutert. Wenn Sie also nicht
sofort alles verstehen, so ist das nur verstidndlich und
praktisch zwingend. Wir werden jedoch stets mit diesen Dingen
arbeiten, weswegen Sie im Anhang des vorliegenden Buches noch
einmal eine kurze Ubersicht iiber die Registerbelegung jenes
integrierten Schaltkreises finden. Grundsédtzlich ist diese
folgende Beschreibung als Nachschlagewerk gedacht und auch
verfabt.

Nun aber zu den Registern:

17

VIC-Register ———- Basisadresse: 53248 ($D000)

Reg. Kurzbeschreibung Startbelegung
Dez Hex Dez Dual
00 $00 x-Koordinate Sprite 0 00 %0000 0000
Dieses Register beinhaltet die 8 unteren Bits (0-255)
der x-Koordinate des ersten Sprites (Sprite 0). Das
oberste, 9. Bit (auch MSB = most significant bit
genannt) wird dagegen in Register 16 gespeichert.
Dies ist notwendig, da die x-Koordinate gréBer als
255 werden kann.
01 $01 y-Koordinate Sprite 0 00 %0000 0000

Wie oben, nur ohne Ubertrag.

02-15 $02-0F Koordinaten der iibrigen 7 Sprites

16 $10

(Aufbau wie oben). Sprite 1: Reg. 2/3; Sprite 2: Reg.
4/5 usw.

MSB der x—Koordinaten 00 %0000 0000

Hier befinden sich die Uberldufe (9. Bit) aus den
x-Koordinaten Registern. Jedem Bit ist ein Sprite
zugeordnet. Bit 0 fiir Sprite 0 / Bit 1 fiir Sprite 1

usw.

17 $11 Steuerregister 1 155 %1001 1011

18 $12

Bit 0-2: Bildschirmverschiebung oben/unten

Bit 3: =0: 24 Zeilen / =1: 25 Zeilen

Bit 4: =0: Bildschirm aus / =1: ein
Ist der Bildschirm aus, so wird die CPU
nicht mehr vom VIC unterbrochen (was z.B.
bei der Generierung von Sprites fiir bis zu
40 Millisekunden geschehen kann) und Ihr
Programm léuft evt. etwas schneller und
gleichméBiger.

Bit §5: =1: Standart Bitmap Mode

Bit 6: =1: Extended Colour Mode

Bit 7: Ubertrag aus Register 18 ($12)

Rasterzeilen-IRQ 55 %0011 0111

Wird dieses Register beschrieben, so geben Sie hier

18

die Bildschirmrasterzeile an, bei deren Aufbau durch
den VIC ein IRQ ausgelést werden kann. Wird es
dagegen gelesen, so steht in ihm stets die aktuelle
Rasterzeile, die der VIC gerade aufbaut. Der Ubertrag
dieses Registers steht in Register 17.

AN
19 $13 Lightpen-x-koordinate 00 %0000 0000

x—Koordinate (Rasterkoordinate) der Bildschirm-
position, die gerade aufgebaut wurde, als ein Signal
vom Lightpen kam (Lightpenleitung = 0).

20 $14 Lightpen-y-koordinate 00 x0000 0000
Wie Register 19, jedoch y-Koordinate.

21 $15 Sprite ein/aus 00 x0000 0000
Hier werden die einzelnen Sprites ein- oder aus-
geschaltet. Jedem Bit ist ein Sprite zugeordnet (wie
in Register 16).

22 $16 Steuerregister 2 08 %0000 1000
Bit 0-2: Bildschirmverschiebung links/rechts
Bit 3: =0: 38 Zeilen / =1: 40 Zeilen pro Zeile
Bit 4: =1: Multicolor Modus
Bit 5-7: unbenutzt

23 $17 SpritevergréBerung y-Richtung 00 x0000 0000
Jedem Sprite ist ein Bit zugeordnet. Bit=1l: Sprite
wird doppelt so breit. (s. auch Reg. 29)

24 $18 Vic-Basisadressen 20 %0001 0100
Hier, werden einige der oberen Bits der Startadressen

von Videoram und Zeichensatzspeicher abgelegt. Durch
Anderung ist eine Verschiebung dieser Bereiche
moglich (s. auch Reg. 0 der CIA 2). Die Belegung
lautet:

Bit 0 : unbenutzt

Bit 1-3: Adressbits 11-13 des Zeichensatzes (%2048)
Bit 4-7: Adressbits 10-13 des Videorams (%*1024)

Die im CBM 64-Handbuch auf Seite 158 angegebene Bele-
gung dieses Registers ist falsch!

19

25 $19 Interrupt Request Reg. (IRR) 15 x0000 1111

Hier kann die Ursache fiir einen IRQ festgestellt
werden:

Bit 0 = 1: Ursache: Rasterzeilen-IRQ (Reg. 18)

Bit 1 = 1: Ursache: Sprite-Hintergr. Koll. (Reg. 31)
Bit 2 = 1: Ursache: Sprite-Sprite Koll. (Reg. 30)

Bit 3 = 1: Ursache: Lightpen sendet Impuls

Bit 4-6 : unbenutzt

Bit 7 = 1: mindestens eines der ersten 4 Bits ist 1.
Dieses Register muB (soweit es verwendet wird) nach
dem Ereignis wieder geloscht werden. Dies geschieht,
indem man den gerade aus gelesenen Wert wieder

hineinschreibt.

26 $1A Interrupt Mask Register (IMR) 00 %0000 0000

Hier wird vom Programmierer ausgew#ahlt, durch welches
Ereignis ein IRQ ausgelést werden soll. Die Belegung
entspricht der des Registers 25. Ist ein Bit sowohl
in diesem, wie auch gleichzeitig im Reg. 25 gesetzt,
so wird ein IRQ ausgeldést, d.h. Alle im Reg. 26
gesetzten Bits ermdglichen die Auslésung eines IRQ
durch Reg. 25.

27 $1B Prioritét ' 00 %0000 0000

Jedem Sprite ist ein Bit zugeordnet. Bit=1l: Hinter-
grundzeichen hat Prioritat vor dem Sprite / Bit=0:
Sprite vor Hintergrundzeichen

28 $1C Multicolor-Sprites 00 %0000 0000

Jedem Sprite ist ein Bit zugeordnet. Bit=1l: Sprite
wird im Multicolor Modus gezeichnet.

29 $1D SpritevergriéBerung x-Richtun 00 %0000 0000
Jedem Sprite ist ein Bit zugeordnet. Bit=1l: Sprite

wird in x-Richtung vergréB8ert (doppelt so hoch).

30 $1E Sprite-Sprite—-Kollision 00 %0000 0000

Jedem Sprite ist ein Bit zugeordnet. Beriihrt ein
Sprite ein anderes, so werden die beiden ent—
sprechenden Bits dieser Sprites gesetzt. Gleich-
zeitig wird Bit 2 des Registers 25 (IRR) =1. Nach dem

20

Ereignis muB dieses Register geldscht werden, da sich
die Bits nicht selbsttatig zuriicksetzen.

31 $1F Sprite-Hintergrund-Kollision 00 %0000 0000

Wie Register 30. Hier jedoch wird die Beriihrung eines
Sprites mit einem Hintergrundzeichen (gesetzter
Punkt) registriert.

32 $20 Rahmenfarbe 14 %0000 1110
33 $21 Hintergrundfarbe 0 06 %0000 0110
34-36 $22-24 Hintergrundfarben 1-3 01 02 03
37/38 $25/26 Sprite Multicolor 0/1 04 00
39-46 $27-2E Farbe Sprite 0-7 01 02 03 04 05 06 07

Nach der dezimalen und hexadezimalen Nummernangabe der
einzelnen Register, die bei der Ansteuerung stets zu der
Basisadresse hinzuaddiert werden muB, folgt, wie Sie sehen,
der Registername und die Startbelegung. Unter Startbelegung
verstehen wir dabei den Wert, der nach dem Einschalten des
Computers in das jeweilige Register als Initialisierungswert
eingeschrieben wird. Dieser Wert wird in wunserer Ubersicht
Dezimal (z.B. fiir Basic-Programmierer) und Dual angegeben.

Zusédtzlich zu diesen Registern des VIC gibt es natiirlich noch
einige andere Speicherstellen, die besonders interessant im
Zusamrenhang mit der Graphikprogrammierung sind. Der
Vollstdndigkeit halber seien sie hier hinten angefiigt:

a) Spritedefinitionspointer:
Um dem VIC mitzuteilen, wo in seinem Adressierungsbereich

er die 63 Byte lange Definition eines bestimmten Sprites
findet, miissen die 8 letzten Bytes des Videoram mit einem
Pointer belegt werden (im Originalzustand: Speicherstellen
2040 - 2047 bzw. $07F8 - $07FF). Multipliziert man ihn mit
64, so gibt er die Adresse des Definitionsbeginns eines
Sprites relativ zu dem Adressbereich des vVIc an

21

b)

c)

(einzustellen mit Register 0, Bit 1 wund 0 der CIA 2
(s.u.)). Dabei ist jedem der 8 Bytes ein Sprite (von 0-T)
zugeordnet und die Pointer konnen Werte von 0-255 annehmen
(16 Kbyte Adressierung).

hochstwertige Adressbits des VIC—-Adressbereiches

Neben dem VIC-Register 24 gibt es noch eine vweitere
Speicherstelle, mit welcher z.B. Videoram oder Zeichensatz
verschoben werden kénnen. Es ist dies das Register 0 der
CIA 2 (= Complex Interface Adapter 2) mit der Adresse
56576 ($DD00), speziell Bit 0 und 1. Diese beiden Bits
ergeben die obersten zwei Adressbits (Bit 14 und 15) der
Basisadresse des VIC

Vorsicht! Die Bits sind LOW-Aktiv, d.h. ist ein Bit=1l so
gilt es als 0 und umgekehrt!

Joystick/Paddle/Tastatur
Hierfiir sind (u.a.) die ersten zwei Register der CIA 1
zust#dndig:

Register 0 (Adresse: 56320/$DC00):
Normalbetrieb:
Bit 0-7: Reihenauswahl der Tastatur
weitere Aufgaben:
Bit 0-4: Joystick 0: Bit 0=1: oben
(Port 1) Bit 1=1: unten
Bit 2=1: links
Bit 3=1: rechts
Bit 4=1: Knopf
Bit 6/7: Paddle-Set-Auswahl: Bit 6=1: Set A
(Port 1) Bit 7=1: Set B
Nur eins der zwei Bits darf = 1 sein!

Fiir den Joystick-Betrieb muB hier zunidchst das Register 0
durch ein POKE 56322,224 (Register 2 - $DC02) auf Eingabe
gestellt werden. Riickstellung: POKE 56322,255 (gilt nicht
unbedingt fiir Register 1).

Register 1 (Adresse: 56321/$DC01):

Normalbetrieb:
Bit 0-7: Spaltenriickmeldung der Tastatur

22

weitere Aufgaben:
Bit 0-4: wie Register 0 nur fiir Port 2
(Joystick 1 / Paddles)

Soweit in aller Kiirze das Wichtigste zur CBM 64-Graphik. Nun
lassen Sie sich genauer in die vielen Geheimnisse Ihres
Rechners einweihen - Geheimnisse, die iiber Jahrtausende stets
unter dem Siegel der Verschwiegenheit nur von Programmierer-
ohr zu Programmiererohr weitergegeben wurden. Sie werden
staunen, wie sich Ihnen plétzlich Welten auftun und Sie sich
fiirwahr traun in den 7. Programmierhimmel versetzt fiihlen.
Aufgemerkt nun also und die Ohren gespitzt!

3.2 Die Betriebsartemnm des VIC

Mit dem Video Interface Chip ist eine groBe Menge von
Einstellungen méglich. Grob wunterteilt man diese in drei
Kategorien:

- hochauflésende Graphik mit
dem Einzelpunktmodus
(Standart Bitmap Mode)

- Sprites

- Textmodus (= Zeichen aus

einem festen Zeichensatz)

Hinzu kommen noch zwei Modi, die Sie jeweils fiir diese drei

Grunddarstellungen zusédtzlich wédhlen konnen:

- Normalfarbenmodus
- Multicolormodus

und eine weitere Moglichkeit, die jedoch nur in Zusammenhang
mit dem Text- und nicht gemeinsam mit dem Multicolormodus

verwendet werden darf, der:

- Extended Color Modus

23

Die einzelnen Modi sollen im folgenden kurz skizziert werden,
um Ihnen einen Uberblick zu gewidhren. Die nidhere Besprechung
geschieht dann aber in den spédteren Abschnitten (fiir die
Begriffe Farbram, Videoram, Graphikspeicher, Zeichensatz-
speicher schauen Sie bitte unter # 3.3).

A. Einzelpunktmodus
a) Normaler Einzelpunktmodus

Im normalen Einzelpunktmodus, der durch das Setzen der
Bits 5 und 6 des VIC-Registers 17 ausgewihlt wird (Re-
gister 22, Bit 4=0), besteht ein direkter Zusammenhang
zwischen Bildschirm und Graphikspeicher. Ein Bit des
Graphikspeichers korrespondiert mit einem Punkt des
Bildschirms.

Die Auflosung betrdgt 320x200 Punkte, der Graphik-
speicher nimmt somit einen Raum von etwa 8 K ein. Die
Farbe kommt aus dem etwa 1 K groBen Videoram, wobei je
ein Byte des Videorams die Farbinformation fir ein
8x8-Punkte groBes Feld des Bildschirms liefert. Dabei
gilt fiir jedes Bit des Graphikspeichers die folgende
Farbherkunfts - Zuordnung:

Bit=0: 4 untere Bits des Videoranms
Bit=1: 4 obere Bits des Videorams

b) Multicolor-Einzelpunktmodus
In dieser Betriebsart (widhlbar durch Setzen der Bits 5
und 6 des VIC-Registers 17 und des 4. Bits des 22.
Registers) sind jeweils 2 Bit des Graphikspeichers fiir
einen doppelt breiten Punkt des Bildschirms zustandig.
Die Auflésung betrédgt daher nur 160x200 Punkte. Dafiir
sind pro 8x8-Punkte Feld insgesamt 4 verschiedene
Farben wahlbar. Mit Hilfe der erwidhnten 2 Bit pro Punkt
wird festgelegt, welche dieser Farben ein Punkt
besitzen soll. Dabei gilt folgende Zuordnuﬁgen der

Farbquellen:

Bits=00: Hintergrund-Farbregister 0
Bits=01l: Videoram untere 4 Bits
Bits=10: Videoram obere 4 Bits
Bits=11: Farbram

24

Sprites

Sprites sind frei definierbare 0Objekte fester Auflésung,
verdnderlicher GréBe und Farbe, von denen 8 vollig
unabhéingig voneinander gleichzeitig auf den Bildschirm
gebracht werden kénnen. Ihre Priorit#dt untereinander und
in Bezug auf die Hintergrundzeichen, sowie 1Ihre Position
auf dem Bildschirm (Bewegungsauflésung: 512x256, also iiber
den Bildschirmrand hinaus) koénnen variiert werden. Die
Spritedefinition wird in 63 Bytes untergebracht. Man
unterscheidet:

a) Normale Sprites
Diese besitzen eine Auflésung von 24x21 Punkten. Jedes
Bit der Spritedefinition reprédsentiert einen Punkt der
Spritematrix. Fiir die Farbe gilt dabei:

Bit=0: durchsichtig
Bit=1: Sprite Color Register (Reg. 39-46)

b) Multicolor-Sprite
Bei Multicolor-Sprites bestimmen jeweils 2 Bit der
Definition einen doppelt breiten Punkt auf dem Bild-
schirm. Folglich schrumpft die Punkteaufldésung auf
12x21 Punkte. Diese 2 Bit bestimmen die Herkunft der
Farbe eines Punktes in folgender Weise:

Bits=00: durchsichtig

Bits=01: Multi Color Register 0
Bits=10: Multi Color Register 1
Bits=11: Sprite Color Register

Es ist méglich, gleichzeitig Sprites beider Darstellungs-

arten auf dem Bildschirm zu erzeugen.

C. Zeichendarstellung

Bei der Zeichendarstellung wird eine im 2Zeichensatz-
speicher (Zeichengenerator) festgelegte Punkteanordung als
festes Zeichen in einer 8x8-Matrix verwendet (fir jedes
Zeichen sind somit 8 Byte norwendig). In diesem
Zeichensatzspeicher sind z.B. alle Buchstaben oder Zahlen
festgehalten. Ein Byte des Videoram gibt dann die

25

Information, welches der maximal 2x256 Zeichen auf dem

Bildschirm erscheinen soll.

a)

b)

Normale Zeichendarstellung:

In dieser Betriebsart wird das vollsténdige Byte aus
dem Videoram als Zeiger auf ein Bitmuster des Zeichen-
generators verwendet. Gleichzeitig sind maximal 256
verschiedene Zeichen auf dem Bildschirm darstellbar.
Ein Bit des Bitmusters bestimmt dabei die Farbe eines
einzelnen Punktes des Zeichens. Die Farbe stammt aus:

Bit=0: Hintergrundfarbregister 0
Bit=1: untere 4 Bits des Farbram

Zeichen im Multicolormodus:

In diesenm Modus sind beide Méglichkeiten der
Darstellung vorhanden: Normale und Multicolor-
Darstellung. Ist das 3. Bit des Farbrams =0, so wird
das Zeichen in der normalen 8x8-Matrix dargestellt. Wie
unter a) beschrieben wird die Farbe des Zeichens ganz
normal festgelegt mit der Einschrédnkung, daB zwangs-—
ldufig nur 8 Farben fir die gesetzten Bits des Zeichen-
musters méglich sind (das 3. Bit des Farbrams ist ja
gleich 0).

Ist das besagte 3. Bit jedoch gleich 1, so bestimmen
Jjeweils 2 Bit des Zeichenmusters die Farbe eines
doppelt breiten Punktes des Zeichens. Die Auflésung
betriéigt somit nur 4x8 Punkte. Ein Zeichen aber kann nun
aus insgesamt 4 Farben bestehen. Die Herkunft dieser
Farben wird durch die beiden Bits eines Punktes

bestimmt:

Bits=00: Hintergrundfarbregister 0
Bits=01: Hintergrundfarbregister 1
Bits=10: Hintergrundfarbregister 2
Bits=11: iibrige drei Bits des Farbram

Die Farbe drei kann also ebenfalls nur eine von 8

Farben sein. Die restlichen drei Farben sind fiir alle

Zeichen gleich.

. 26

c) Zeichen im Extended Color Modus

In diesem Modus kann jedes leichen des Bildschirms eine
von 4 Hintergrundfarben erhalten. Die Zeichen-
darstellung an sich entspricht dem Normalmodus -
(8x8-Matrix). Fir die gesetzten Bits des Zeichen-
musters (Bit=0) stammt die Farbe ebenso wie im Normal-
modus aus dem Farbram. Die geldoschten Bits dagegen, die
die Hintergrundfarbe bestimmen, stammen aus verschie—
denen Quellen. Die zwei héchsten Bits (Bit 6/7) des
Videorams, also des Speichers, der die Zeichen enthilt,
legen dabei diese Quelle fest:

Bits=00: Hintergrundfarbregister
Bits=01: Hintergrundfarbregister
Bits=10: Hintergrundfarbregister

W N~

Bits=11l: Hintergrundfarbregister

Da aber von den 8 Bits des Videorams nur noch 6 als
Zeiger auf das Zeichenmuster iibrig bleiben, kénnen nur
noch 64 verschiedene Zeichen gleichzeitig auf den
Bildschirm gebracht werden!

Soweit der Uberblick iiber die verschiedenen Betriebsarten des
Videocontrollers, die in den ## 3.4 bis 3.6 nidher erlédutert
werden. Als nichstes folgt eine weitere Spezialitédt Ihres
Commodore 64, die ihn sehr flexibel macht.

27

3.3 Die Speicherverwaltung des
CBM 64

Dieses Kapitel stellt einige Anforderungen an die Kenntnis um
Speicheraufbau, Speicheradressierung und @&hnliche Dinge und
sollte daher von blutigen Laien iibersprungen werden. Auch die
Leser, die noch nichts iiber die Graphikmdglichkeiten dieses
Ger#dtes oder gar iiberhaupt noch nichts iiber Graphik wissen,
sollten sich nach einer kurzen Lektiire des Paragraphen
3.3.2.1 sogleich an das Kapitel 3.4 machen. Unm sich
allerdings effektiv und vollstiéndig mit der Erstellung von
Graphiken zu beschiédftigen, ist eine Lektiire der folgenden
Seiten unumgénglich, zumal noch einige Aussagen iiber die
allgemeine Speicherhandhabung Ihres Gerédtes gemacht werden.
In diesem Zusammenhang sollte darauf hingewiesen werden, daB
die meisten und wertvollsten Funktionen nur in Maschinen-
sprache (Assembler) erreichbar sind. Aus diesem Grunde lohnt
sich auf jeden Fall, sich vielleicht einmal mit diesem
Themenkomplex zu beschdftigen. Oft besteht eine grundlose
Hemmschwelle zu dieser Sprache. Dabei ist Sie fiir Leute, die
bereits Basic programmieren, relativ 1leicht zu erlernen,
besonders, wenn man ein gutes Buch zur Hand hat. Da DATA
BECKER ein wirklich exellentes Werk iiber Maschinensprache
speziell fiir 64er-Anwender herausgebracht hat, ist dieser
Mangel behoben. Auch das notige Riistzeug (Maschinensprache-
monitor und Assembler) sind vorhanden. Sie werden sehen, bald
programmieren Sie lieber in Assembler, als in dem klobigen
und langsamen Basic. Sollten Sie sich jedoch nicht fiir diesen
Weg entscheiden, und trotzdem viel mit Graphik hantieren, so
empfiehlt sich eine entsprechende Graphikerweiterung, die es
inzwischen ebenfalls fiir den 64er gibt. Hier stehen Ihnen
einfache Befehle zur Verfiigung, die das Programmieren fiir Sie
zum Kinderspiel werden lassen. Hier sollte man sich natiirlich
auf dem Markt umgucken. Ein Tip: in Bezug auf Graphik ist die
Geschwindigkeit ein sehr wesentlicher Faktor! Vergleichen Sie
einmal und Sie werden auf das richtige Programm stoBen. Nun

aber zum Wesentlichen:

Da sédmtliche Bildschirminhalte gespeichert werden miissen,

damit der VIC stidndig weiB, was er auf den Bildschirm bringen

28

soll, bedarf es einer Menge an Speicherplatz fiir Text oder
Graphik. Fiir den Graphikspeicher beispielsweise werden sage
und schreibe 8 K, fiir die dazugehérige Farbe noch einmal 1 K,
bei Multicolor sogar 2x1 K benétigt. Dieser Speicherplatz
steht dann fiir andere Zwecke nicht mehr zur Verfiigung. Aus
diesem Grunde wurden einige Moglichkeiten geschaffen, die
Lage dieser Bereiche selbst zu wéahlen, um optimales Arbeiten
zu erméglichen. Gleichzeitig stehen Bereiche zur Verfiigung,
die sonst nicht oder nur sehr schwer (z.B. von Basic aus)
genutzt werden.

Um die folgenden Ausfiihrungen 2zu verstehen, muB zuniédchst
einiges iiber den Speicheraufbau Ihres Rechners gesagt werden:
Der Commodore 64 besitzt einen 6510 als Hauptprozessor, auch
CPU (Central Processing Unit) genannt, der fiir s#amtliche
Rechenvorgiéinge, also Programme benotigt wird. Dieser 6510 hat
den gleichen Befehlssatz wie sein Vorgiédnger 6502, ist also
softwarekompatibel zu ihm. Doch gibt es beim 6510 einige
weitere Leitungen, die unter anderem die Speicherverwaltung
unterstiitzen. Er besitzt damit zwei eigene Register mit den
Adressen 0 und 1. Fiir uns ist lediglich das Register 1 von
Bedeutung. Eine weitere Rigenart dieser CPU, die sie diesmal
mit dem 6502 gemeinsam hat, ist der sogenannte Adressierungs-
bereich. Darunter versteht man die GréBe des Speichers, den
der Rechner ansteuern kann. Dieser betrdgt bei Ihrem Rechner
64 K, da fiir die Adressierung, also die Ansteuerung von
Speicherstellen, insgesamt 16 Bit zur Verfiigung stehen. Damit
kénnen also die Adressen 0-65535 ($0000-$FFFF) angesteuert
werden.

Nun wissen Sie aber, da8 Ihr CBM 64 allein schon 64 K RAM
besitzt (unter RAM = Random Access Memory versteht man
Speicher, der gelesen und beschrieben werden kann. Sein
Inhalt geht beim Ausschalten des Geriétes verloren. Er dient
also als Arbeitsspeicher. Im Gegensatz hierzu kann der
sogenannte ROM = Read Only Memory nur gelesen werden. Sein
Inhalt wird nicht veréndert, auch wenn der Computer
ausgeschaltet wird. Seine Aufgabe ist die Beherbergung des
Betriebssystems, des Basicinterpreters, des Zeichensatzes
usw.).

Zu diesen genannten 64 K kommen weiterhin aber noch die
verschiedenen ROM-Bereiche und Register der einzelnen
Peripheriebausteine (VIC, CIA, Synthesizer etc.), die

29

insgesamt noch einmal einen Platz von 24 K benétigen. HWohin
aber mit soviel Speicher, der normal gar nicht angesteuert
werden kann?

Die Losung ist die Speicheriiberlappung. Diese wird s0
realisiert, daB mehrere Speicherbereiche (z.B. ROM und RAM)
dieselben Adressen besitzen, also eigentlich an derselben

Stelle im Speicher stehen. Der Aufbau siéhe dann so aus:

$0000 ... $7000 $8000 $9000 $A000 $BOOO $C000 $D000 $E000 $FO000
R A M

evt.Modulbe{ Basic—ROM Zeichen| Kernal-ROM
reich (ROM) satz

I/0-

bereicﬂ

Im gerade eingeschalteten Zustand sind alle diejenigen

Bereiche lesbar, die in diesem Schema von wunten sichtbar

sind. Also:

$0000-$9FFF: RAM
$A000-$BFFF: ROM
$CO000-$CFFF: RAM
$D000-$DFFF: I/0
$E000-$FFFF: ROM

In diese Tabelle schiebt sich bei dem Betrieb eines Moduls
noch der Bereich $8000-$9FFF als Modul-ROM ein.

Dem Computer muB nun jedoch mitgeteilt werden, welchen
Bereich er ansteuern soll. Dies hiédngt dabei von einigen

Faktoren ab. Die fiir uns wichtigsten sind:

- Lese oder Schreibzugriff des 6510

- Zugriff des VIC oder des 6510

- Ansteuerung des Bereiches v. $D000-$DFFF oder nicht
Inhalt des Registers 1, Bits 0-2 des 6510

Grundsétzlich missen wir hier zwischen den beiden Prozessoren
VIC und 6510 unterscheiden, da sie praktisch 2zur gleichen
Zeit unterschiedliche Bereiche ansteuern. Um die Ansteuerung
durch den VIC miissen wir uns in sofern kiimmern, als wir ja

bei Graphik o.4. festlegen miissen, in welche Bereiche wir die

30

einzelnen Speicher (Videoram, ...) legen wollen, wir miissen
also feststellen, ob der VIC diese iiberhaupt erreicht.

Die Ansteuerung des 6510 betrifft uns unmittelbar und auch,
wenn wir iiberhaupt nichts mit Graphik bzw. Bildschirm-
steuerung zu tun haben. Die Moglichkeiten von Basic aus sind
zwar einigermaBen beschridankt, da viele Bereiche fest in
Gebrauch sind, von Maschinensprache (Assembler) aber steht
uns alles frei zur Verfiigung. Um einen Uberblick zu erhalten,

beginnen wir mit:

3.3.1 Die S; or 'e des 6510

3.3.1.1 Lesen eines Bytes

Soll ein Byte einer bestimmten Adresse (z.B. durch PEEK)
gelesen werden (darunter versteht man auch den Ablauf eines
Maschinenprogrammes), so hiédngt die Auswahl, welche der sich
iiberlappenden Speicherbereiche angesprochen werden, -sofern
fiir uns beeinfluBbar— nur von dem Inhalt des sogenannten
Datenregisters der 6510 CPU (Register 1) ab. Dort haben die
ersten 3 Bits (0-2) die Funktion, auf bestimmte Bereiche
umzuschalten. Die drei Bits sind nach dem Einschalten des
Geriites gesetzt, was zu der im obigen Schema verdeutlichten
Speicherkonfiguration fiithrt, wund haben im Einzelnen die
folgenden Funktionen:

A. Bit 0/1 - LORAM/HIRAM:

a) Bits 0/1=11:
Sind diese Bits beide 1, so wird bei einem Lesezugriff
auf die Adressen $A000-BFFF das dort befindliche
Basic-RAM, bei einem Zugriff auf die Adressen
$EQ00-$FFFF das dortige Kernal-ROM angesteuert. Dies
ist der Normalzustand. Ist ein Modul im $8000er Bereich
installiert, so ist auch dieses eingeschaltet. Die

Speicherkonfiguration siéhe dann also so aus:

$0000 ... $7000 $8000 $9000 $A000 $B00O0 $C000 $D000 $E000 $F000
R A M| evt.Modulbe-| Basic-ROM 1/0- | Kernal-ROM
ireich (ROM) bereich|

31

b) Bits 0/1=10:
Ist lediglich das Bit 1 gesetzt, so ist der Modul- und
der Basic-ROM - Bereich ausgeschaltet und statt dessen
wird nun aus dem darunter befindlichen RAM gelesen. Wir
haben also folgende Belegung:

$0000 ... $7000 $8000 $9000 $A000 $BOOO $C000 $D000 $E00($F000
R A M I/0- |Kernal-ROM
ereich

Diese Konfiguration kann (auch von Basic aus) gerutzt
werden, indem z.B. der Basic - Interpreter in das unten
liegende RAM copiert wird und, nachdenm einige
Veridnderungen vorgenommen wurden, von nun an in diesem
RAM als modifiziertes Basic 1liegt. Ein Basicprogramm
dazu kénnte z.B. so aussehen:

10 FOR AD=10%4096 TO 12x4096-1

20 POKE AD, PEEK(X) : REM BASIC—-ROM INS RAM COPIEREN
30 NEXT AD

40 REM HIER NUN VERAENDERUNGEN EINPOKEN ...

50 POKE 1, PEEK(1) AND 254 : REM RAM EINSCHALTEN

Zu beachten ist hierbei, daB bei einem Modulbetrieb der
Bereich von $8000-$9FFF ebenfalls copiert werden muB,
um einen Absturz zu verhindern, da er gleichfalls
ausgeschaltet wird.

Gehen Sie mit diesem Register 1 der CPU besonders
vorsichtig um (vor allem bei den folgenden Belegungen),
da hier jede Anderung tiefgreifende Rinschnitte in die
Speicherorganisation Ihres Rechners mit sich fiithrt und
bei einer Fehlbelegung oft nur der Ausschaltknopf die

"zum

einzige Méglichkeit ist, Ihren Rechner wieder
Leben zu erwecken"” (keine Angst, Ihrem Rechner passiert

dabei natiirlich nichts).

c) Bits 0/1=01:
Ist nun nur das Bit 0 gesetzt, so haben Sie sédmtlichen
ROM-Speicher ausgeschaltet. Der I/0-Bereich von
$D000-$DFFF bleibt davon jedoch unberiihrt, kann also
weiterhin ohne Anderungen angesteuert werden. Wir
erhalten damit 60 K ansteuerbares RAM:

32

$0000

... $7000 $8000 $9000 $A000 $BOOO $C000 $D0O0 $E000 $FO000

A M 1/0- R A M
bereich

d)

$0000

Bits 0/1=00:

Sind beide Bits geldoscht, so ist s#amtlicher RAM
eingeschaltet. Kein ROM und auch keine I/0-Funktionen
kénnen mehr ausgelesen oder verdndert werden (obwohl
der VIC und die anderen Bausteine weiterhin alle ihre
Register lesen kénnen und somit das Bild erhalten

bleibt!). Die Konfiguration ist denkbar einfach:

... $7000 $8000 $9000 $A000 $BO00 $C000 $D000 $E000 $FO000

R A M

Dies ist die einzige Méglichkeit, die wunter dem
I/0-Bereich und dem Zeichensatz liegenden 4 K RAM mit
zu nutzen.

B. Bit 2 - CHAREN:

Dieses Bit dient dazu, den verschiebbaren Zeichengenerator

(s

.u.) auch fir den 6510, also fiir den Programmierer

lesbar zu machen, um ihn z.B. zu copieren und dann zu

veridndern (s.u.).

a)

Bit 2=1:

Dieses Bit bezieht sich lediglich auf den Bereich der
$D-Seiten ($D000-$DFFF) des Commodorespeichers. Die
anderen Adressen werden nicht beeinfluBt. Im Normal-
zustand liegt es gesetzt vor. Damit kann der 4 K groBe
Zeichensatz, der ebenfalls genau den Bereich von
$D000-$DFFF einnimmt, nur vom VIC gelesen werden. Statt
dessen stehen die I/0-Adressen, das sind die Register
des VIC, des SID (Sound Interface Device) und der CIAs,
sowie der Farbram zur freien Verfiigung. Wir finden also
folgende Einrichtungen in besagtem Raume vor:

$D000 ... $D400 ... $D800 ... $DCOO $DDO0 $DE0O $DFOO
[VIC-Reg. [SID-Reg. |Farbram [cIA 1[cIa 2[1/0 0[1/0 1|

33

b) Bit 2=0

Ist das Bit geléscht, so kann auch der Programmierer
bzw. die 6510 CPU den Inhalt des Zeichensatzspeichers
lesen. Dabei belegt er alle 4 K des 1I/0-Bereiches.
Versuchen Sie das jedoch in Basic, so wird sich Ihr
Rechner abrupt innerhalb der niéchsten 1/60 Sekunde von
Ihnen verabschieden, da 60 mal pro Sekunde eine
sogenannte Interruptroutine, von der wir im # 3.7 nmehr
horen werden, aufgerufen wird, die mit dem in der CIA 1
befindlichen Timer hantiert, der dann natiirlich nicht
mehr ansprechbar ist, wenn dieses Bit auf 0 gesetzt
ist. In Maschinensprache muB 2zundchst das Interrupt-
flag gesetzt werden (Befehl: SEI), um den Aufruf dieser
Interruptroutine zu unterbinden. Spéter wird durch CLI
der Interrupt wieder erméglicht. Das Gleiche muB
geschehen, wenn durch das Léschen von Bit 1 das
Kernal-ROM ausgeschaltet wird, in dem sich die
Interruptroutine befindet.

3.3.1.2 Schreiben eines Bytes

Wird ein Schreibzugriff auf den Speicher unternommen (z.B.
durch POKE), so dandern sich die Verhiédltnisse grundsatzlich:
Da es nicht sinnvoll ist, etwas in den ROM-Speicher zu
schreiben, wurde es eingerichtet, daB jeder Schreibzugriff
unabhiingig von der Einstellung im Register 1 der CPU den
unter dem ROM liegenden RAM erreicht. Mit einer Ausnahme: Der
Bereich von $D000 bis $DFFF. Hier wird normalerweise nur der
I/0-Speicherbereich erreicht. Wollen Sie auch hier den RAM
durch einen Schreibzugriff ansprechen, so stehen 1Ihnen :wei
Moglichkeiten zur Auswahl:

- Ausschalten aller ROMs
- Einschalten des Zeichensatzspeichers

Ersteres geschieht bekanntlich, indem Sie die ersten beiden
Bits (0 und 1) des 1. CPU-Registers =0 setzen, der zweite
Zustand wird durch Léschen des Bits 2 dieser Speicherstelle
erreicht (s.0.).

Nun werden Sie wohl auch das kleine oben angefiihrte

34

Basic-Programm vollstidndig verstehen. In Zeile 20 wurde dort
durch den Befehl POKE AD, PEEK(AD) der Inhalt des Basic—-ROMs
gelesen, durch den Schreibbefehl (POKE) aber nicht etwa
wieder dorthin zuriickgeschrieben, sondern in das darunter-
liegende RAM! Sie sehen, welche Bedeutung dieser Tatsache

zukonmt.

3.3.2 Die S ersu e des VIC

Neben dem Hauptprozessor, der fiir den Ablauf aller Programme
zusténdig ist, muB selbstverstédndlich noch der Video—
controller (VIC) auf den Speicher zugreifen, um Bildschirm-
informationen wie Farbe oder Punktsetzung 2zu erhalten. Da
hier natiirlich Zugriffe z.B. auf das Kernal-ROM oder den
Basicinterpreter sinnlos sind, wurde hier einiges anders
gestaltet, als dies bei der CPU-Ansteuerung der Fall ist. Die
Umschaltungen zwischen verschiedenen Speicherbereichen nimmt
der VIC dabei selbstidndig vor. Fiir uns ergibt sich damit ein
mehr oder weniger statisches Bild im Vergleich zu den vielen
Moglichkeiten des Programmierers bei der gerade besprochenen
CPU. Wir miissen also lediglich wissen, welche Bereiche der
VIC fiir welche Zwecke ansteuert und welche nicht.
Gleichzeitig zeigt sich die Speicherverwaltung des VIC von
einer anderen Seite &#uBerst dynamisch. Sie selbst kénnen
nédmlich unter Einhaltung verschiedener Bedingungen bestimmen,
wo welche Speicherfunktionen des Videocontrollers liegen
sollen. Mit anderen Worten, Sie haben die Moéglichkeit,
Graphikspeicher, Zeichensatz, Videoram und Spritespeicher in
die Speicherbereiche 2zu verlegen, die Ihnen angenehm
erscheinen.

Doch bevor wir uns damit beschdaftigen, wollen wir zuniéchst
ein wenig zu den Speicherfunktionen des VIC sagen, um die
Begriffe zu klédren, die von nun an unser téglich Brot sein

werden.

35

3.3.2.1 Die Speicherfunktionen des VIC:

Um die verschiedenen Aufgaben 2zu erfiillen, die dem VIC
zugeordnet sind (Text, Graphik, Sprites, Farbe, ...) bedarf
es umfangreicher Speicherrédume mit den unterschiedlichsten

Funktionen:

— Zeichengenerator
~ Videoranm

~ Farbram

- Graphikspeicher

— Spritedefinitionen

Im Folgenden sollen die Bedeutung und der Nutzen jeder dieser
einzelnen Positionen, die schon in friiheren Kapiteln erwédhnt
worden waren, dargelegt und erlédutert werden. Die niheren
Funktionen und der genaue Aufbau jedoch werden in den
folgenden ## 3.4 bis 3.6 abgehandelt. Die hier befindliche
Auflistung soll lediglich als Orientierung und Begriffs-
erklarung dienen, um das hernach zu Sagende verstidndlich zu

machen, da wir dort sténdig mit diesen Dingen umgehen.

a) Zeichengenerator:
Unter Zeichengenerator (auch Zeichensatz oder Zeichensatz-
speicher genannt) verstehen wir denjenigen Speicher, der
die Definitionen bzw. das sogenannte Bitmuster fiir jedes
einzelne Zeichen enthdlt, das wir durch einfachen
Tastendruck auf den Bildschirm bringen kénnen. Er umfaBt
insgesamt 2x2 K und damit die Information fiir 5§12 Zeichen,
von denen allerdings jeweils nur ein Teil gleichzeitig auf
den Bildschirm gebracht werden kann (s. ## 3.2, 3.6, 4.4).

b) Videoram:

Der Videoram umfaBt etwa 1 K und hat verschiedene
Aufgaben. Im normalen Zustand (Einschaltzustand) dient er
als Zeichenspeicher (nicht zu verwechseln mit "Zeichen-
satzspeicher"), in dem der sogenannte Bildschirmcode (ein
Code fiir Zeichen #hnlich dem ASCII-Code, er dient als
Zeiger auf den Zeichengenerator) fiir jedes einzelne
Zeichen, das sich zur Zeit auf dem Bildschirm befindet,
abgelegt ist.

36

c)

d)

e)

In Graphikmodus erhdalt der Videoram die Funktion des
Farbspeichers, der die Punkt- und die Hintergrundfarbe
bzw. in Multicolor Farben 1 und 2 jedes 8x8-Punktefeldes
(in MC: 4x8) des Graphikbildschirms bestimmt (s. ## 3.4,
3.6, 4.2, 4.4).

Eine weitere Funktion des Videoram ist die Beherbergung
der Pointer auf die Spritedefinitionen in den letzten 8
Bytes.

Farbram: ,

Der Farbram umfaBt wie der Videoram ca. 1 K und liegt fest
in dem Bereich $D800-$DBFF (55296-56319). Er ist lesbar
und beschreibbar, jedoch sind jeweils nur die unteren 4
Bits aktiv. Die oberen 4 kénnen nicht verédndert werden uynd
sind stets gesetzt. Im normalen Modus dient er als
Speicher fiir die Farbe der Textzeichen auf dem Bildschirm.
In Graphikmodus hat er nur bei Multicolor eine Funktion.
Dort stellt er die MC-Farbe 3 jeweils fiir ein 4x8-Punkte-
frld des Graphikbildes dar.

Graphikspeicher:
Der sogenannte Graphikspeicher, der umfangreichste

Bildspeicher iiberhaupt, beinhaltet, wie der Name sagt, den
Inhalt eines Graphikbildes. Dabei muB jeder einzelne Punkt
des Bildschirms separat gespeichert werden. Bei einer
Auflésung von 320x200 (in hochauflésender Graphik) sind
dies 64000 Punkte, fiir deren Speicherung etwa 8 K bendtigt

werden.

Spritedefinitionen:
Un das Aussehen der verschiedenen Sprites zu speichern,

werden vom Benutzer diverse Speicherbereiche reserviert,
deren Umfang sich jeweils auf 63 Bytes erstreckt. 1In
diesen 63 Bytes sind alle 21x24 Punkte eines normalen

Sprite vermerkt.

37

3.3.2.2 VIC-Speicheransteuerung:

Die Ansteuerung der verschiedenen Speicherbereiche durch den
Videocontroller ist weitaus einfacher und iibersichtlicher als
die vielen Moglichkeiten, die die CPU bietet. Hier kann man
einfach nach dem Grundsatz vorgehen: Wenn im folgenden nichts
anderes gésagt wird, so wird stets der RAM (auch in dem
Bereich von $D000-$DFFF = 53248-57343) vom Videocontroller
angesprochen, selbst wenn fiir den Programmierer lediglich ROM
erreichbar ist (also wunabhédngig von der Einstellung im
Register 1 der CPU). Dies ist é&uBerst wichtig, da dadurch
z.B. der Graphikspeicher platzsparend unter den ROM gelegt
werden kann, also keinen Basic-Speicherplatz verschwendet,
wie dies z.B. in der SUPERGRAPHIK 64 verwirklicht wurde.
Dieser Grundsatz gilt fiir:

- Videoram

]

Graphikspeicher

Spritedefinitionen

~ Zeichengenerator

Diese drei Speicher werden also stets aus dem RAM geholt ---
mit zwei Ausnahmen:

Werden durch eine Einstellung (wie im néchsten Abschnitt
beschrieben) die Speicherbereiche von $1000-$1FFF (4096-8191)
oder von $9000-$9FFF (36864-40960) angesprochen (etwa, wenn
man versucht die Graphikseite nach $8000-$9FFF zu legen, oder
in der Einschaltkonfiguration fiir die Sprites die Blécke
64-127 (Bereich $1000-$1FFF) zu wédhlen), so werden nicht etwa
die Informationen aus diesen RAM-Bereichen, sondern aus dem
Zeichengenerator-ROM geholt, das bei $D000~-$DFFF liegt
(s.0.).

Diese zunédchst merkwiirdige Besonderheit erkléart sich aus der
Tatsache heraus, daB nach dem Einschalten Ihres Rechners fiir
den VIC nur die wunteren 16 K des 64-Speicherbereiches
ansteuerbar sind (s.u.). Der feste Zeichensatz, der ja
bekanntlich fiir die Herstellung der einzelnen Textzeichen auf
dem Bildschirm notwendig ist, liegt jedoch bei $D00C-$DFFF
unter den I/0-Adressen. Aus diesem Grunde wurde der Adresse
$1000-$1FFF jener Sonderstatus zugesprochen und der Zeichen-
satz logisch eigentlich nach $1000-$1FFF verlegt. Die anderen

38

Funktionen fallen dem dann leider auch zum Opfer. Der Bereich
$9000 resultiert ebenfalls aus dieser Sonderstellung.

Bemerkenswert ist in diesem Zusammenhang, daB8 bei einer
direkten Adressierung (also nicht indirekt iiber die Adresse
$1000) der verschiedenen Funktionen (auch des Zeichensatzes)
durch den Programmierer in den Bereich $D000 ff. nicht etwa
der dort liegende Zeichensatz—ROM vom VIC angesprochen wird,
sondern vielmehr der darunter liegende RAM. Die Speicher-

einteilung sieht im Schema also folgendermaBen aus:

$0000 $1000 $2000 ... $9000 $A000 $BOOO $C000 $D000 $E000 $F000
h AM "leerﬂ R A M|"leerﬂ R A M AJ

Zeiche
s.—~ROM
Dies nur der Vollstidndigkeit halber. Mehr davon in dem

folgenden Abschnitt.
Bei dem Farbram ist die Sache fast noch einfacher: Da er

nicht verschiebbar ist, wie die anderen Bereiche (s.u.), wird
er stets aus dem Bereich $D800-$DBFF (55296-56319) gewonnen.
Hier ist jedoch 2zu beachten, daB er einen eigenen, vom
darurter liegenden RAM verschiedenen Bereich belegt, der fiir
den Programmierer in der Ebene der I/0-Adressen liegt (s.o.).
Der Farbram bei $D800 darf also nicht mit dem normalen RAM
bei $D800 verwechselt werden.

3.3.2.3 Verschieben der Bildschirmspeicher:

Wohl mit eine der schénsten und praktischsten Dinge in der
Speicherverwaltung des Videocontrollers ist die Méglichkeit,
die einzelnen Bildschirmspeicher in dem gesamten Speicher
Ihres Rechners zu verschieben. Sie kénnen also den Graphik-
speicher, den Sie fiir Thre Graphiken verwenden, sowohl z.B.
nach $2000 (8192) schaffen, als auch, wenn Sie die dortige
Lage im Basicbereich stért, meinetwegen etwa nach $E000
(41440) unter den ROM verschieben. Vielleicht legen Sie sogar
zwei oder mehr Graphikseiten an, von denen Sie dann eine
bearbeiten koénnen, wiéhrend die andere sichtbar fiir den
Beobachter bleibt, wie dies z.B. in der Graphikerweiterung
SUPERGRAPHIK 64, die eben schon angesprochen wurde, moglich
ist.

39

Oder Sie verschieben den Zeichensatzspeicher in einen anderen
Bereich und kdénnen sich so Ihren eigenen ganz persénlichen
Zeichensatz erstellen (z.B. mit Umlauten, Sonderzeichen, ...
- 8. hierzu auch ## 3.6, 4.4). Es eroffnet sich Ihnen eine
derartige Fiille von Moglichkeiten, wie Sie s8ich zur Zeit
wahrscheinlich noch gar nicht vorstellen kénnen!

Doch bei jeder Verschiebung halten Sie stets im Auge, welche
Speicherbereiche der VIC iiberhaupt ansteuern kann, was soeben
im vorherigen Abschnitt dargelegt wurde. So wird es
beispielsweise nie gehen, eine Spritedefinition in den RAM
bei $1000-$1FFF zu legen, da dort -wie Sie wissen- der VIC
nicht RAM sondern den Zeichensatz—-ROM bei $D000-$DFFF lieBt
(s.0.). Deshalb ist das Verstédndnis des Paragraphen 3.3.2.2
fiir die folgenden Ausfiilhrungen von unbedingter Not-

wendigkeit!

a) Allgemeine Verschiebung:

Der VIC oder Videocontroller kann von Haus aus, also
intern fiir sich 1lediglich 16 K ($0000 - $3FFF oder
%0000 0000 0000 0000 bis %0011 1111 1111 1111) adres-
sieren. Unser Adressierungsbereich umfaBt aber 64 K, also
4 mal so viel. Dem VIC fehlen demnach die obersten zwei
Adressenbits (Bits 14 und 15). Sie miissen von auBen
zugefiihrt werden. Hierfiir ist ein Register zustédndig, das
(selbstverstindlich) bereits in # 3.1 erwdahnt wurde, es
ist das .

Register 0, Bits 0/1 der CIA 2 ($DD00=56576)
Diese beiden Bits stellen die gesuchten zwei obersten
Adressbits fiir die Speicheradressierung des VIC dar (im
folgenden Schaubild unterstrichen):
Adressbits $F EDC BA98 7654 3210
Man kénnte Sie also einfach einsetzen und hétte die

vollstidndige Adresse. Die Sache hat aber einen kleinen
Haken. Diese beiden Bits sind LOW-Aktiv, d.h. sind sie

40

gesetzt, so gelten Sie als geldoscht und umgekehrt. Wollen
wir die richtige Adresse erhalten, so miissen wir sie erst
umdrehen (invertieren). Haben wir dies erledigt, so kennen
wir den Bereich, den der VIC nun ansteuern kann, d.h. es
verschieben sich automatisch alle Bildspeicherfunktionen,
die vom VIC angesteuert werden (auBer der Farbram),
Jjeweils in 16 K-Schritten:

- Videoram
- Graphikspeicher
— Zeichengenerator

- Spritedefinitionen
Zu Ihrer Unterstiitzung seien hier die Speicherbereiche
tabellarisch festgehalten, die durch eine bestimmte

Belegung dieser Bits in die Reichweite des VIC gelangen:

B 0/1 | Adr-B |erreichbare Adressen

11 00 $0000-$3FFF (0-16383)
10 01 $4000-$7FFF (16384-32767)
01 10 $8000-$BFFF (32768-49151)
00 11 $CO00-$FFFF (49152-65535)

Unter "B 0/1" wird hier die Belegung der 2zwei Bits aus
Register 0 der CIA 2 verstanden. "Adr-B" sind dann die
daraus resultierenden Adressbits 14 wund 15 fir die
VIC-Speicheradressierung. Die originale Belegung ist: B
0/1=11, also der erste Fall in der Tabelle. Nur so kann
der Videoram von $0400-$07FF (1024-2047) gehen und der
Zeichensatz (durch die Sonderstellung der Adresse $1000
(s.0.)) bei $D000 (53248) liegen.

Ein Beispiel: Angenommen, Sie wollen aus irgendeinem
Grunde den Videoram, der ja die Speicherung aller
Bildschirmzeichen vornimmt, nach $C400 (bzw. 50176 =
49152+4%256) verschieben (abgesehen einmal davon, daB ohne
weitere Anderungen dann keine Zeichen mehr auf dem
Bildschirm veriédndert werden koénnen). Zu diesem Zweck geben
Sie lediglich den Befehl:

POKE 56576, PEEK(56576) AND 253 OR 0

41

b)

ein, und schon holt sich der VIC seine Informationen nur
noch aus dem Bereich zwischen $C000 und $FFFF, was in
unserem Falle zu einem wilden Chaos auf dem Bildschirm
fiithrt (nur die Farbe kann richtig veriédndert werden, wegen
der Unverschiebbarkeit des Farbrams), das durch den Befehl

POKE 56576, PEEK(56576) AND 253 OR 3

wieder riickgdngig gemacht werden kann (was Sie dort blind
in die Tastatur eingeben erscheint natiirlich erst nach dem
<return> auf dem Bildschirm, falls Sie keinen Fehler
gemacht haben.).

Verschieben des Videoram:

Zusétzlich zu dieser allgemeinen Verschiebung kann wu.a.
separat auch noch der Videoram innerhalb dieses 16 K
Adressierungsbereiches in kleineren Schritten verschoben
werden. Diese Verschiebung /ist moéglich durch die
Verédnderung des VIC-Registers 24 ($18), speziell der Bits
4-7 (s. # 3.1). Diese 4 Bits legen hier einen Teil der
Adresse zur Ansteuerung des Videorams fest. Es sind dies
die Adressbits 10-13 ($A-$D). Das folgende Schaubild mag
das erléautern:

Adressbits [$F EfJD C B A[|9 8 7654 3210
CIA2fjReg. 24| VI C - intern
B0/1yBits 4-7

Der Videoram kann also in 1 K-Schritten innerhalb des
gesamten 16 K—Adressraumes verschoben werden. Nach denm
Einschalten lauten die 4 besagten Bits: %0001l. Aus diesenm
Grunde liegt unser Videoram (in Funktion als Textspeicher)
bei $400 (1024). Wichtig ist, daB diese Adresse -anders
als die unter a) beschriebene Verschiebeméglichkeit- nur
und ausschlieBlich fiir den Videoram gilt. Bei einer
Verinderung dieser Bits bleiben die anderen Speicher-
bereiche in ihrer Lage unveréndert.

Ein Beispiel: Wir wollen wunseren Videoram, also den
Textspeicher, der noch bei $400 (1024) liegt, nach $800
(2048) verlegen (auch hier erwarten wir natiirlich

42

c)

Nonsense, da hier der Basic-Speicher beginnt). Dies
erreichen wir mit dem Befehl:

POKE 53248+24, PEEK(53248+24) AND 15 OR 2x16

um uns wieder in die heimischen Gefilde, sprich: zu

unserem alten Videoram zu begeben, driicken wir ein:

POKE 53248+24, PEEK(53248+24) AND 15 OR 1x16

Diese Verschiebeméglichkeit kann z.B. von Nutzen sein,
wenn Sie so groBe Basic-Programme verwenden, daB Sie den
Speicherbereich von $400-$7FF ebenfalls nutzen moéchten,
oder Sie verwenden zwei Textseiten, die Sie dann stédndig

umschalten oder ... oder ... oder ...

Verschieben des Zeichengenerators:

Neben dem Videoram konnen Sie auch den Zeichengenerator
innerhalb des unter a) gewdhlten 16 K-Raumes verschieben.
Auch hier dient uns das 24. Register des VIC als Zwischen-
speicher fiir einige Adressbits. Diesmal sind es lediglich
3, die die Adressbits 11-13 darstellen, weswegen wir den
insgesamt 2x2 K groBen Zeichensatz lediglich in

2 K-Schritten verschieben kénnen:

Adressbits ($F E|D C BjA 9 8 7654 3210
CIA2|Reg.24 VIC-intern
BO/1§Bitl-3

Interessant ist, daB8 auch das Betriebssystem Ihres
Computers von diesen 3 Bits Gebrauch macht. Wenn Sie durch
die Tastenkombination <C=><shift> auf den alternativen
Zeichensatz umschalten, so @ndert Ihr Rechner das 11. Bit
der Zeichensatzadresse durch Anderung des 1. Bits von
VIC-Register 24 (s. auch # 3.6).

Wichtig ist dabei das unter # 3.3.2.2 zu der
Sonderstellung des Adressenbereiches von $1000-$1FFF
(4096-8191) Gesagte. Wollen Sie den Zeichengenerator
verschieben, um z.B. einen eigenen zu betreiben, so ist es
vielleicht sehr niitzlich, wenn Sie auch den # 3.3.1
gelesen haben.

43

d) Verschieben des Graphikspeichers:

Auch die Lage des Graphikspeichers kann gewiéhlt werden. Da
er jedoch 8 K gro8 ist, paBt er nur zweimal in den
lé K-Adressierungsbereich hinein. Aus diesem Grunde kénnen
Sie auch nur ein separates Bit fiir ihn widhlen (auBer
natiirlich der allgemeinen Verschiebung). Es ist dies das
3. Bit des VIC-Registers 24, das nun praktisch zwei
Aufgaben besitzt:

~ Zeichensatzverschiebung
- Graphikspeicherverschiebung

Wie beim Zeichensatz bestimmt es das 13. Bit der Graphik-

speicheradresse:

Adressbits [$F EfDJC B A 9 8 7654 3210
CIA2|B VIC - intern
B0/1]3

Liegt Ihr VIC-Adressbereich z.B. bei $0000-$3FFF
(0-16383), so konnen Sie widhlen, ob der Graphikspeicher
bei $0000 oder $2000 (8192) beginnen soll (in diesem Fall
empfiehlt sich natiirlich 2zweiteres, da ansonsten Null-
seite, Stack usw. in Mitleidenschaft gezogen wiirden).
Alles Weitere erfahren Sie im néchsten Kapitel 3.4.

44

3.4. Punktgraphik

Nach so vielen Einzelheiten iiber Register wund Speicher-
verwaltung sollten wir uns nun einmal speziell dem Aufbau der
hochauflésenden bzw. der Multicolor- Graphik, also der
sogenannten Punktgraphik (da jeder Punkt einzeln angesteuert
werden kann) widmen - ein hochinteressantes Thema und
unumgénglich fiir jeden Graphikprogrammierer. Dieser Abschnitt
(und die vier folgenden) sind die hardwaremdBigen Vor-
bereitungen auf die im Kapitel 4 dargelegten Programmier-
méglichkeiten. Versuchen Sie also, auch wenn Sie nicht alles
verstehen sollten, sich in diesen Komplex hinein zu denken
und wenigstens in etwa den Aufbau der Graphik gegenwidrtig zu
haben. Dabei wird sich, wie Sie sehen, die recht komplizierte
Farbrealisierung Ihres Gerédtes in den verschiedenen Graphik-
arten besonders spédter in der Anwendung als ziemlich
schwierig herausstellen. Geben Sie jedoch nicht auf. Ein Buch
und genz besonders eins dieser Art sollte sowieso mindestens
zweimal gelesen werden. Mit manchen Passagen werden Sie
wahrscheinlich tidglich arbeiten, wenn Sie sich néher der
Graphik widmen wollen. Fangen wir aber gleich einmal an:

3.4.1. Farben:

Ihr Commodore 64 verfiigt iiber die Méglichkeit, 16 Farben
sowohl im Graphikbetrieb, als auch (wie sicher schon bekannt)
fir die Textgestaltung zu verwenden. Diese 16 Farben besitzen
jeweils einen sogenannten Farbcode, der als Bindrzahl in die
verschiedenen Register gespeichert wird, die dem Gerét zur
Zeichendarstellung verhelfen. Wird z.B. in das 32. Register
des Video Interface Chips der Wert 0 gePOKEd, so nimmt der
duBere Bildschirmrahmen die Farbe schwarz an. Im Folgenden
sind die den einzelnen Farben zugeordneten Codes aufgelistet
(im Anhang finden Sie eine vollstidndige Tabelle, die sich mit
dem gleichen Thema beschaftigt):

45

Code |Farbe Code [Farbe
Dez|Hex Dez|Hex
0 |$00]schwarz 8 {$08jorange
1 |$01]weiB 9 |$09)braun
2 |$02irot 10 {$0Alhellrot
3 |$03] tiirkis 11 |$0Bjgrau 1
4 |$04]violett 12 {$0C|grau 2
5 |$05]griin 13 |$0D|hellgriin
6 [$06{blau 14 {$0Elhellblau
7 |$07]|gelb 15 J$0F)grau 3

Diese Tabelle wird Sie stiéndig in allen Bereichen der Graphik
begleiten, sei es, Sie arbeiten mit Sprites, Graphik, Text
oder was auch immer. Sie sollten Sie also stets im Auge
halten. Uber den Einsatz der Farben wird TIhnen in den
entsprechenden Kapiteln Auskunft gegeben.

3.4.2. Hochauflésende Graphik (HGR)

Ihr Rechner hat die Méglichkeit, von Haus aus zwei verschie-
dene Graphikarten zu bedienen:

- hochauflésende Graphik (HGR)
- Multicolorgraphik (MC)

Erstere bietet Ihnen ein Graphikfeld von 320 Punkten in
x-Richtung (waagerecht) und 200 Punkten in y-Richtung
(senkrecht). Man spricht von einer Auflésung von 320x200.
Dies verschafft Ihnen ein Reservoir von insgesamt 64.000
Punkten jeweils in gleicher Dichte verteilt auf Ihrem
Bildschirmfenster.

Natiirlich muB die Graphik genauso wie der Text oder die Farbe
gespeichert sein. SchlieBlich muB der VIC das auf dem Bild-
schirm entstehende Bild alle ca. 1/20 Sekunden selbst auf
Ihrem Fernseher oder Monitor neu erstellen, damit Sie es
stidindig beobachten konnen (s. Lightpenkapitel). Dies
geschieht fiir die Punktgraphik mit Hilfe des sogenannten
Graphikspeichers. Jeder Punkt ist einzeln ansprechbar urd in
diesem Graphikspeicher durch ein Bit représentiert. Wie Sie
wissen (s. Kapitel 2) ist ein Bit eine Informationseinheit

46

und kann die Werte 1 oder 0 annehmen. Jeweils 8 Bit hinter-—
einander bezeichnet man bekanntlich als ein Zeichen (Wort)
bzw. als ein Byte. Ein Byte kann also 2 hoch 8 = 256
verschiedene Werte annehmen. Diese kommen durch die
verschiedenen EKombinationen von gesetzten (1) wund nicht
gesetzten (0) Bits zustande.

Ein Byte repriésentiert also 8 Punkte auf Ihrem Bildschirm.
Folglich bedarf es 64000/8 = 8000 Bytes (etwa 8 Kilobytes
(8 K)), um den gesamten Bildschirminhalt der HGR zZu
speichern. Wie Sie vielleicht aus dem # 3.3.2.3 wissen, falls
Sie sich ihn durchgelesen haben, kénnen diese 8 K irgendwo im
64 K-Speicher Ihres Rechners plaziert werden. Haben Sie dies
getan (s. # 4.2.1.1), so kénnen Sie anfangen. Vorher aber
miissen Sie erfahren, wie denn eigentlich der Aufbau des

Graphikbildes aus den Speicherinformationen vonstatten geht:

a) Graphikaufbau:

Man konnte sich vorstellen, daB8 der Graphikspeicher ein
direktes Abbild des Bildschirms ist, also Reihe fiir Reihe
nacheinander alle notwendigen Bytes hintereinander folgen.
Doch die Angelegenheit ist nicht so einfach, wie sie
ausschaut. Der Graphikspeicher besitzt (das ist hardware-
méBig einfacher zu gestalten) den gleichen Aufbau wie der
spiiter beschriebene Zeichengenerator. Ein Zeichen besteht,
das kann man hier schon einmal vorwegnehmen, aus
8x8-Punkten. Sie besitzen also eine sogenannte 8x8-Punkte-
matrix (Matrix ist der gebréduchliche Begriff fiir Raster).

Grundlage des Graphikspeichers ist ebenfalls eine
8x8-Matrix, die jeweils durch 8 Bytes des Graphikspeichers
dargestellt wird. Da eine solche Matrix also 8 Punkte hoch
und breit ist, passen insgesanmt 320/8 = 40 solcher
Péackchen in eine Zeile und 200/8 = 25 in eine Spalte
(genauso ist der Aufbau im Textmodus). Ein Byte liefert
nun die Information fiir eine 8-Punkte breite Reihe eines
solchen Pédckchens. 8 Bytes untereinander (im Speicher
natiirlich hintereinander) stellen somit diesen Block dar.
Dabei bilden die einzelnen korrespondierenden Bits |jedes
dieser 8 zusammengehdrenden Bytes —also Bits der gleichen
Nummer oder Wertigkeit- untereinander 1liegende Punkte.
Dies kann anhand eines kleinen Schaubildes verdeutlicht

werden:

47

Spalte 0 Spalte 1 e
Bit: 76543210[7654321 0] usw.
Z| Byte 0 T
e| Byte 1 . N T T
i| Byte 2 .. N N
1| Byte 3 e e e
e|Byte 4 s e e e e e e
Byte 5§ c e e e . .
0|Byte 6 . . e .
Byte 7 . N
ZIByte 320 o v o ol e e e v v e
.|Byte 321}
1|Byte 322 |
usw.

Es wird also Zeile fiir Zeile aus diesen Péackchen
generiert. Noch etwas zu Terminologie: Eine Spalte nennt
man die 8 Punkte dicken senkrechten "Balken", von denen
Jjeweils 40 nebeneinander auf den Bildschirm passen. Eine
Zeile ist das gleiche, nur waagerecht ausgerichtet. 25
Zeilen passen somit untereinander in das Graphikfenster.
Jede Spalte besteht aus 8 senkrechten Reihen, jede Zeile
aus 8 waagerechfen Reihen. Damit passen 320 senkrechte und
200 waagerechte Reihen in ein Bild. Jede Spalte, Zeile und
Reihe ist numeriert (startend bei 0) und kann so genau
lokalisiert werden. Diese Vereinbarungen sind im folgenden
wichtig, um Verwechslungen zu vermeiden.

Um nun auf einfache Weise einen einzelnen Punkt
anzusprechen, gibt man am besten jedem Punkt eine
sogenannte Koordinate. Dies sind zwei Werte (x und y), die
die Nummer der senkrechten (x-Koordinate) und die der
waagerechten Reihe (y—-Koordinate) angeben, in denen sich
der Punkt befindet. Damit ist jeder Punkt des Bildschirms
eindeutig bestimmt. Um nun aus dieser Koordinate die
Position des entsprechenden Bytes und Bits im Graphik-
speicher zZu berechnen, behilft man sich einer
entsprechenden Formel, die im # 4.2 unter "Zeichnen eines
Punktes" angefiihrt und erlidutert wird (vielleicht
versuchen Sie es interessechalber einmal selbst. Das Schema
der Zeilenanfangsadressen des Graphikspeichers im Anhang
sollte Ihnen dabei eine gute Hilfe sein).

48

b)

Zum SchluB noch eine Bemerkung: Wie Sie vielleicht schon
bemerkt haben, werden nicht alle Bytes der genannten 8 K
fiir den Graphikspeicher verwendet, genauer gesagt nur 8000
($1F40). Die restlichen 192 ($C0) Bytes konnen von Ihnen
fiir andere Zwecke genutzt werden. Khnliches gilt, wie Sie
sehen werden, auch fir die anderen Speiche}—

bereiche

Farbaufbau:

Zu jedem hochauflésenden Bild, d.h. zu jedem Graphik-
speicher, gehoért auch ein Farbspeicher. Dieser wird durch
den sogenannten Videoram dargestellt. Der Videoram dient
normalerweise dazu, Text oder allgemein Zeichen, die durch
Tastendruck auf dem Bildschirm erscheinen, 2zu speichern,
danit der VIC sein Bild erstellen kann. Wenn Sie ihn also
nicht verschieben und somit dort lassen, wo normalerweise
der Text gespeichert ist, dann erscheinen die
verschiedenen Zeichen des urspriinglichen Text-Bildschirms
als kleine Farbquadrate auf dem Graphikbildschirm (Uber
die Verschiebeméglichkeiten von Videoram usw. gibt Ihnen
3.3.2.3 Auskunft). Diesen Effekt konnen Sie bei dem
folgenden Programm beobachten:

100 V = 53248 : REM BASISADRESSE VIDEORAM ($D000)
110 REM

120 REM xxkkkkkkkkkx

130 REM **x TEIL 1 *x

140 REM XxXkkkkkkkkkxX

150 REM
160 REM GRAPHIK EINSCHALTEN:
170 POKE V+17, PEEK(V+17) OR 6x16 : REM BITS 5 UND 6

VIC-REGISTER 17 SETZEN

180 REM GRAPHIKSPERICHER NACH $2000 (8192) VERSCHIEBEN:

190 POKE V+24, PEEK(V+24) OR 8 : REM BIT 3 VIC-REGISTER 24
SETZEN '

200 REM WAIT 198,255 : GOTO 220 : REM AUF TASTE WARTEN

210 END

220 REM

49

230 REM *XxkkkkkkkXkX

240 REM *x TEIL 2 x*xx

250 REM XXkkxkkkkkkk

260 REM

270 REM GRAPHIK AUSSCHALTEN:

280 POKE V+17, PEEK(V+17) AND 9%x16+15 : REM BITS 5§ UND 6
VIC-REGISTER 17 LOESCHEN

290 REM ZEICHENGENERATOR RUECKSETZEN:

300 POKE V+24, PEEK(V+24) AND 15%x16 + 7 : REM BIT 3
VIC-REGISTER 24 LOESCHEN
310 END

Dieses Programm kénnen Sie in zwei Variationen 1laufen

lassen:

1.) so, wie es hier steht

2.) indem Sie das erste REM in Zeile 200 weglassen

Im ersten Fall endet das Programm sofort mnach dem
Umschalten und Sie konnen weitere Eingaben machen, die $ie
nun allerdings nicht mehr normal sehen, sondern -vie
gesagt- jeden Buchstaben als Farbquadrat. Wollen Sie

wieder auf normalen Text zuriickschalten, so geben Sie ein:

RUN 220

Im 2zweiten Fall wartet das Programm auf eine Taste
Ihrerseits und schaltet dann die Graphik automatisch
wieder aus (s. # 4.2)

In diesem Beispiel wird der Graphik - Farbbezug deutlich.
Tatsédchlich bestimmt ein Byte des Videoram die Farbe fir
ein 8x8-Punktefeld der HGR. In HGR kann dabei fiir jedes
solches Kédstchen sowohl die Hintergrundfarbe, also die
Farbe der nicht gesetzten Punkte (oder Bits), und die
sogenannte Punktfarbe, d.h. die Farbe der gesetzten Punkte
(oder Bits) jeweils aus den 16 verschiedenen Farben
gewdhlt werden. Dabei bestimmen in jedem Byte des Videoram
die obersten 4 Bits die Punkt- und die unteren 4 (die
Hintergrundfarbe dieses Kdstchens. Die Farbauflésung ist
also weitaus geringer als die normale Graphik erlaubte.

Dies war insofern notwendig, als es arg zu viel Speicher

50

verschlingen wiirde, wenn jedem der 64.000 Punkte eine
eigene Farbe zugemessen werden kénnte (zumal ein normaler
Farbfernseher damit sowieso Probleme hidtte). Sie bréduchten
dafiir 64.000 x 4 = 256.000 Bits, also 32 K RAM. Die
Bearbeitungsgeschwindigkeit wire ebenfalls erheblich
herabgesetzt, was einen eigenen Graphikprozessor notwendig
machen wiirde!

Der Videoram ist nun etwas einfacher organisiert, als der
Graphikspeicher. Hier werden Byte fiir Byte und Zeile fiir
Zeile nacheinander in den Speicher abgelegt. Der Aufbau

sieht dann so aus:

Spalte

W, —

Zeil 0 1 2 3 4 6 6 7 ...39
0 $00 01 02 03 04 05 06 07 ... 1D
1 $1E 1F 20 21 22 23 24 25 ... 4F
2 $50 51 52 53

24 3c0 3c1 ...

Im hochauflosenden Graphikbetrieb ist jedem Byte des
Videoram also ein eindeutig bestimmtes 8x8-Feld
zugeordnet. Hat man die Speicheradresse eines Punktes
(abziiglich der Startadresse des Graphikspeichers), so
braucht man diese lediglich durch 8 zu teilen und schon
besitzt man die Adresse des korrespondierenden Video-
rambytes, zu der man nun nur noch die Startadresse des

Videoram hinzuaddieren muB.

51

3.4.3. Multicolor, (MC):

Bevor Sie sich diesem Abschnitt widmen, sollten Sie sich
zundchst einmal mit dem letzten Paragraphen (# 3.4.2)
beschdaftigt haben, da das in jenem Teil des Buches
vermittelte Wissen hier zum Teil vorausgesetzt wird.

Wie Sie dort gesehen haben, besitzt 1Ihr Commodore 64 eine
recht hohe Graphikauflésung. Die Farbe kommt dabei jedoch
(trotz 16 verschiedener Téne) etwas zu kurz. Um dieses
speicherplatzbedingte Manko auszugleichen, haben sich die
Konstrukteure entschlossen, einen zweiten Graphikmodus
einzufiihren, den eine gréBere Farb-, dafiir allerdings eine
niedrigere Graphikauflésung auszeichnet: Den Multicolor-
modus.

Der Multicolormodus erméglicht es, in einem 8x8-Block statt
zwei, insgesamt 4 Farben gleichzeitig zu verwenden. Auch hier
findet der 8 K-Graphikspeicher Verwendung. Nun werden
allerdings jeweils 2 Bit jedes Bytes fiir die Bestimmung eines
doppelt breiten Bildschirmpunktes benotigt. Die Auflésung
betrédgt demnach 160 doppelt breite Punkte in x-Richtung
(doppelt breit deshalb, da ansonsten das Bildschirmfenster
.natiirlich nur halb so groB wie normal wédre) und 200 Punkte in
y—-Richtung (Auflosung: 160x200).

Die Farbe stammt nun nicht mehr lediglich aus dem Videoranm,
sondern es werden gleichzeitig noch das Hintergrund-
farbregister 0 des VIC und der Farbram hinzugezogen. Wir
unterteilen diese Bereiche in 4 sogenannte Farbkanidle, die
von 0 bis 3 durchnumeriert sind. Jedes Bitpaar, das ja fir
einen Punkt zusté@ndig ist und damit Werte von 0-3 (%00-%11)
annehmen kann, teilt dem VIC nun mit, aus welchem Kanal er
die Farbe des Punktes beziehen soll (In HGR war es
bekanntlich so, daB das eine zustandige Bit angab, ob die
Farbe aus dem Hintergrundkanal oder dem Punktfarbkanal
stammte). Im Graphikspeicher steht also nicht, welche Farbe
(Farbcode) ein Punkt haben soll, sondern vielmehr, wo dieser
eigentliche Farbcode steht. Die Bitpaar - Kanal - Speicher -

Beziehung wird in dem angefiigten Schema verdeutlicht:
Bitcode Kanalnr. Speicherbereich des Kanals

00 0 Register 33 des VIC
01 1 untere 4 Bits des Videoram

52

10 2 obere 4 Bits des Videoram Gy o
11 3 Farbram Uil gt AL =

Unter Bitcode verstehen wir hier die Bindrzahl, die die zwei
Bits darstellen, die jeweils fiir einen Punkt zust#dndig sind.
Der Speicherbereich eines Kanals ist der Teil des Speichers,
der durch einen Kanal bzw. durch eine Bitcodeeinstellung
angesprochen wird.

Ein Beispiel: Im Graphikspeicher wird ein Punkt durch die
zwei Bits mit den Belegungen O und 1 dargestellt. Der
resultierende Bitcode %01 spricht den Kanal 1 an und damit
die unteren 4 Bits des zustidndigen Bytes des Videoram. Dieses
zustidndige Byte ermittelt man auf genau die gleiche Weise,
wie unter # 3.4.2 (HGR) dargestellt.

Neu hierbei ist nun, daB die Farbe 3 bzw. der Kanal 3 aus dem
Farbram stammt. Dieser Farbram ist normalerweise fiir die
Farbe des im Videoram befindlichen Textes zustédndig. Da der
Farbram nicht verschiebbar ist, kommt es an dieser Stelle
zwangsldufig zu Uberschneidungen, wenn gleichzeitig Multi-
color und Text verwendet werden. Auch hier ldaBt sich wieder
die Adresse des fiir einen Punkt zustédndigen Bytes des Farbram
auf die unter HGR angegebene Weise bestimmen, da er genauso
organisiert ist wie der Videoram.

Wie in HGR kénnen diese Farben jeweils fiir ein 8x8- bzw.
(wegen der halben Auflésung) 4x8-Punktefeld durch ein
zusténdiges Byte des Video- oder Farbram festgelegt werden.
Dabei ergibt sich die Moglichkeit, jedem solchen Késtchen
seine eigene Farbkombination zuzuweisen. Lediglich Kanal O,
also die Hintergrundfarbe stammt fiir die gesamte Graphik aus
dem Hintergrundfarbregister 0 des VIC (Reg. 33) und ist damit
fiir das ganze Bild einheitlich.

Wichtig ist bei der Erstellung von Multicolor - Graphiken,
auf die Verzerrung in x-Richtung zu achten, die durch die
doppelte Punktdicke zustande kommt.

Zum besseren Verstédndnis sei hier noch einmal ein Schema der
Speicherstruktur des Graphikspeichers in Multicolor
angefiihrt, das Ihnen das oben Gesagte noch einmal veranschau-

lichen soll:

53

Spalte 0 Spalte 1 .o
Bit: 76543210|76543210]|usw.

Z| Byte 0 => <=> (=) {=>| <=> (> (~> <=>
e|Byte 1 {=> =3 (=> <(=>] <=> <=> K=> <=
i|Byte 2 =2 =2 <=> <(=>] <(=> <>
1|Byte 3 {=> K-> {=> =>
e|Byte 4 (=> <=> (=> <>

Byte 5 <=> {=> {=> (>
OlByte 6 {=> <=> &=> <(=>

Byte 7 <=> K=> <=5 <>

Z |Byte 320 | (> <=> (> <=> | <(=> {=> (=> <=>
Byte 321 | <-> <-> <(=> <=> | <=> <=>
1|Byte 322 | <-> <=> <=> <=>

usw.

In diesem Schema stellen die "<->" jeweils den doppelt
breiten Punkt dar, der auf dem Bildschirm erscheint. An
dieser Stelle mochte ich Sie noch einmal auf die
unterschiedliche Belegung des Videoram bei HGR wund MC
hinweisen. ZugegebenermaBen wird die Handhabung der Graphik
durch diese schwer durchschaubaren Verhédltnisse und
Unterschiede nicht gerade vereinfacht. Auch scheint mir die
Aufteilung der Farbauflésung nicht gerade gelungen, da sich
hierdurch, wie wir noch im 4. Kapitel sehen werden, einige
Probleme ergeben. Trotzdem 1&Bt sich doch Einiges mit ihr
erreichen. Sie werden sehen, schéne Effekte sind an der

Tagesordnung.

54

3.5. Sprites

Eines der hervorstechendsten Merkmale Ihres Commodore 64 sind
natiirlich die Sprites. Sprites sind eigenstidndige kleine
Graphiken, die unabhiéngig voneinander und von dem iibrigen
Bildschirminhalt in dem Text— oder Graphikfenster bewegt
werden konnen. Insgesamt haben Sie die Moglichkeit, 8 Sprites
gleichzeitig auf den Bildschirm zu bringen.

Sprites kénnen beziiglich Ihrer Farbe, Ihrer GroéBe und der
Prioritét vor den Hintergrundzeichen und auch gegeneinander
variiert werden. Sie kénnen Kollisionen zwischen Sprites
untereinander und mit dem Hintergrund feststellen. Zudem
besitzen Sie auch hier die Méglichkeit, zwischen den beiden
Spritemodi

- normal

- Multicolor

zu widhlen, wobei Sie dies bei jedem einzelnen Sprite getrennt
bestimmen konnen. All diese Funktionen kénnen sehr leicht mit
Hilfe des VIC (Videocontroller 6567) und seinen Registern
realisiert werden. Zundchst aber wollen wir uns einmal mit
dem Aufbau der Sprites beschiaftigen. Da wir es dabei in
besonderem MaBe mit der Bindrarithmetik und den verschiedenen
Registern Ihres Computers zu tun haben werden, sollten Sie
sich vorher diese Kapitel (## 2 und 3.1) 2zu Gemiite fiihren
oder, falls Sie diese noch nicht richtig verstanden haben,
noch einmal konzentriert lesen.

Wihrend der Erérterung des Spriteaufbaus sollten Sie 2zwei
Dinge stets im Kopf behalten:

Sie kinnen (wie gesagt) gleichzeitig insgesamt 8 verschiedene
Sprites auf dem Bildschirm darstellen. Jedem Sprite ist eine
spezifische Nummer (0-7) zugeordnet, die Sie durch das
gesamte Kapitel begleiten wird.

55

3.5.1. Aufbau und Farbe normaler Sprites

Jedes normale Sprite besteht aus 504 Punkten, die Sie einzeln
setzen oder 1dschen konnen. Verwendet wird dabei eine
24x21-Punktematrix, d.h. ein Sprite ist 24 Punkte breit wund
21 Punkte hoch. Innerhalb dieses Bereiches kdénnen Sie nun die
unterschiedlichsten Graphiken oder Figuren erstellen.

Um die Definition, d.h. das Aussehen unserer Sprites zu
speichern und dem VIC mitzuteilen, bedﬁrf es insgesanmt
504/8 = 63 Bytes, da jeder einzelne Punkt als ein Bit
abgelegt wird und ein Byte -wie Sie wissen- 8 Bits umfadt. Da
jedes Sprite eine Breite von 24 Punkten besitzt, passen in
eine Reihe genau 24/8 = 3 Bytes hinein. D.h. die ersten drei
Bytes bestimmen die 24 Punkte der ersten Reihe.
Dementsprechend wird mit der zweiten, dritten, vierten usw.
Reihe verfahren. Jeweils 3 hintereinanderfolgende Bytes legen
eine Reihe fest. Die nidchste Reihe beginnt dann ebenfalls mit
dem niéchsten Byte. Wir koénnen diesen Sachverhalt in einer
kleinen Skizze darlegen:

Spalte 0! pal IS p 1te
Reihe/Bit:|7 6 5 4 3 2 1 0: 765 21 0: 7654 210
O|Byte O [. e PN
1|{Byte 3.: e e e e e . :.
2(Byte 6. oo .. :. e e .
3|Byte 9|. :. T T ..
alByte 12|. L. ... :
:usw‘ '

2OByte60........E...... i ..

Wollen Sie also ein Sprite eingeben, 80 geben Sie die
zustéandigen Bytes Spalte fiir Spalte und Reihe fiir Reihe
nacheinander ein. Wie dies in Basic realisiert wird, erfahren
Sie in dem groBen Kapitel 4.

Sie konnen den insgesamt 8 verschiedenen Sprites, die Sie
gleichzeitig auf den Bildschirm bringen konnen, jeweils
unterschiedliche der zur Verfiigung stehenden 16 Farben
zuordnen. Dabei erhalten alle gesetzten Punkte die Farbe aus
dem fiir das jeweilige Sprite zustiéndigen Spritefarbregister
(VIC-Register 39-46). Wollen Sie also Sprite 5 weiB zeichnen,
so belegen Sie das VIC-Register 39+5 = 44, also die Speicher-

56

stelle $D02C (53292) mit dem Wert 1 (fir weiB). Alle nicht
gesetzten Punkte wirken transparent d.h. durchsichtig und
sind daher nicht zu sehen.

3.5.2 Aufbau und Farbe eines Multicolorsprites

Nicht jedes Sprite besitzt diesen 24x21-Punkte-Aufbau. Sie
konnen jeweils zwischen hochauflésenden und sogenannten
Multicolor - Sprites wiéhlen. Erstere besitzen die gerade
geschilderte Matrix wund die dazugehdrige Farbgebung. Die
Multicolor - Sprites hingegen werden dhnlich der Multicolor -
Graphik gebildet. Aus diesem Grunde besitzt ein solches
Sprite in x-Richtung die halbe Auflésung. Hier befinden sich
also nur 12, jedoch doppelt breite Punkte in einer 2Zeile.
Dafiir aber kann ein Gebilde aus insgesamt vier verschiedenen
Farben (mit der Hintergrundfarbe) zusammengesetzt sein,
wihrend -wie gesagt- ein hochauflésendes (HGR-) Sprite nur
zwei Farben beinhaltet. Diese vier Farben sind vergleichbar
mit den Kandlen der MC-Graphik und in den verschiedenen
VIC-Registern untergebracht.

Um fiir jeden der 12x21 = 252 Punkte eines MC-Sprites den
Farbkanal zu bestimmen, aus dem die Farbe dieses doppelt
breiten Punktes stammen soll, werden jeweils 2 Bits (Bitcode)
verwendet, die bekanntlich die Werte 0-3 (%00-%11) annehmen
kénnen und damit die Nr. des Kanals festlegen. Der VIC holt
sich dann aus diesem Kanal die Farbe des Punktes. Die
Zuordnung der Kandle zu den einzelnen Bitcodes demonstriert
die folgende Tabelle:

Kanalnr.| Bitcode | Farbspeicher
0 00 durchsichtig
1 0l Multicolor Reg. 0 (VIC-Reg 37)
2 10 Multicolor Reg. 1 (VIC-Reg 38)
3 11 Sprite Color Reg. (Reg. 39-46)

Wie Sie sehen, kann lediglich die Farbe des Kanals 3 fiir alle
8 Sprites unterschiedlich sein, da diese fiir jedes Sprite in
einem eigenen Register steht. Die anderen Farben (Farben 1
und 2 neben der Hintergrundfarbe) sind jeweils fiir alle

Sprites gleich, da sie aus identischen Registern gewonnen

57

werden. Entgegen den Angaben des CBM 64 Benutzerhandbuchs
kénnen auch in Multicolor sémtliche 16 Farben zur Erstellung
Ihrer Figuren verwendet werden.

Um ein Sprite in Multicolor auf dem Bildschirm erscheinen zu
lassen, ist es notwendig, dem VIC diese Absicht in einem
speziellen Register mitzuteilen. Es ist dies das Register 28
($1C), in dem jedem Bit des 8 Bit groBen Bytes eins der 8
Sprites zugeordnet ist. Ist hier ein Bit gesetzt, so wird von
nun an das entsprechende Sprite zu einem Multicolor - Sprite.

Die Bitzuordnung dieses Registers ist die folgende:

Bit: b7[b6] b5] b4 b3[b2 b1 bO
wert: | 1286432/ 16| 8 4 2| 1
Sprite:| s7|s6|s5| s4 sS]sZ sl| s0

Wollen Sie z.B. Sprite 4 als Multicolorsprite verwenden, so
setzen Sie in dem Register 28 des VIC gleichfalls das Byte 4,
d.h. Sie POKEn, sofern Sie von Basic aus hantieren, wie
folgt:

POKE 53248+28, 16

Wollen Sie mehrere Sprites derart darstellen (z.B. Sprites 1,
5 und 7), so geben Sie beispielsweise ein:

POKE 53248+28, 1 OR 32 OR 128 oder:
POKE 53248+28, 1 + 32 + 128

(Ausnahmsweise kann der OR-Befehl auch durch eine Addition
ersetzt werden) Der Aufbau eines MC-Sprites gleicht ansonsten
einem normalen Sprite. Auch jenes wird in 63 Bytes abgelegt.

Zur Veranschaulichung ein entsprechendes Diagramm:

58

p a e IS palte l'spalte
Reihe/Bit:[7 6 5 ,76543210(7654
0|Byte 0 > <=> 1 (=) <-> <=> <—>i <->
1{Byte 3|<=> <=> <(=> <=> : (=> <(=> (=> (=> L (=> (=> (=> <(=>
2|Byte B|<-> <(-> (=> (=> : {=> <> <(-> <= E (=> <=> £-> <K~
3|Byte 9| <=> <(=> (=> =D 1 (=D (=D <(=> (=D 1 {=> (=> (=> <&=>
4 |Byte 12| <-> <-> <> (-): <=> (> <(-> <= :(—) <=> <(=> <K~
: usw. :
20 |Byte 60| <-> <=> <(=> <=> : (=> (=> <(=> <(=> E {=> <=> <=> <>

Wie Sie sich vielleicht denken kénnen, stellt hier ein "<->"
Jjeweils einen doppelt breiten Punkt dar, der durch ein
Bitpaar codiert wird.

3.5.3. Spritedefinition - Farbe

Wollen Sie nun ein Sprite auf den Bildschirm bringen, so
haben Sie zunéchst einige Dinge 2zu beachten. Als erstes
sollten Sie sich natiirlich erst einmal Gedanken iiber das
Aussehen ihres Objektes machen und entsprechend die 63
notwendigen Bytes bereitstellen. Dazu werden Ihnen in Kapitel
4.3 einige Hilfen und Tips gegeben (u.a. ein sehr
komfortabler Spriteeditor).

Als Nichstes sollten Sie sich iiberlegen, wo in Ihrem Speicher
Platz fiir diese 63 Bytes vorhanden ist. Dabei miissen Sie
selbstverstindlich das unter # 3.3.2 Gesagte mit beriick-
sichtigen. In der Einschaltkonfiguration z.B. gibt es nur
relativ wenige Méglichkeiten, Sprites unterzubringen. Hier
ist Platz fiir lediglich 4 verschiedene Spritedefinitionen.
Wollen Sie noch mehr unterbringen, so miissen Sie schon
entweder einfach den Basicanfang (normal bei $0801 = 2049)
verschieben (durch UmPOKEn der Speicheradressen $2B/$2¢C
(43/44)), wobei Sie allerdings beachten sollten, daB dies vor
dem ERinspeichern oder Einladen eines Basicprogrammes
geschehen muB, oder Sie verlegen den Videoram und haben den
alten Videoramspeicher von $400-$7FF zur freien Verfiigung,
was jedoch bei der gleichzeitigen Textanzeige ein UmPOKEn
einer Speicherstelle notwendig macht, die das Highbyte des
Videorambeginns enthidlt (normal: $04; das Highbyte wird
dezimnal errechnet durch: INT(Videoramstart / 256). Diese zu

59

veréindernde Speicherstelle hat die Adresse $288 = 648. Haben
Sie z.B. den Videoram nach $0800 (= 2048) verlegt (was
nebenbei ebenfalls eine Verlegung des Basic-Starts notwendig
macht) und wollen Sie dort trotzdem Text darstellen, so geben

Sie ein:
POKE 648, INT(2048/256)

Nach diesem UwPOKEn muB dann unbedingt ein <shift><{clr/home>
bzw. ein PRINT CHR$(147) zum Ldéschen des Bildschirms folgen.
Doch in den meisten Fiéllen kommen Sie =it 4 verschiedenen
Spritedefinitionen aus, da Sie fiir 2zwei gleich aussehende
Sprites keine neue Definition abspeichern brauchen, wie Sie
gleich sehen werden.

Um dem VIC zu ermdglichen, die von 1Ihnen abgelegte 63-Byte
Definition 2zu finden und zu lesen, miissen Sie den
16 K-Adressierungsbereich des VIC in 256 Blécke mit je 64
Bytes unterteilen. Diese Blécke werden von 0-255 durch-
numeriert. Nach dem Einschalten hétten die Blocke die
folgenden Startadressen (bei einer Verschiebung des gesamten
VIC-Adressraumes durch Andern der Bits 0/1 von Register 0 der
CIA 2 (s.o.) muB hier natiirlich die neue Basisadresse
hinzuaddiert werden):

Block | Startadresse
0 $0000 - 0
1 $0040 - 64
2 $0080 - 128r
3 $00CO0 - 192
4 40100 - 256
usw.

255 $3FCO0 — 16320

In jedem solchen Block kann nun eine einzige Sprite-
definition untergebracht werden. Dabei hat das letzte Byte
des Blockes keine Bedeutung, da ja nur 63 Bytes fiir ein
Sprite benétigt werden. In der normalen Einstellung stehen
Ihnen jedoch lediglich die Bloécke:

60

Block | Adressbereich
11 $02C0-$02FE (704- 766)
13 $0340-$037E (832- 894)
14 $0380-$03BE (896- 958)
15 $03C0-$03FE (960-1022)

zur freien Verfiigung, wobei jedoch angemerkt werden muB8, daB
die letzten 3 Bereiche sich mit dem Bandpuffer iiberschneiden,
bei dem Arbeiten mit der Datasette also geléscht werden. Dann
beginnt die Moglichkeit des Spritegebrauchs erst wieder bei
$2000 (8192), also Block 128 (Vorsicht bei langen Basic-—
programmen und groBem Speicherbedarf!), da der Bereich von
$1000-$1FFF (4096-8192) bekanntlich dem Sonderstatus
unterliegt (s. # 3.3.2.2) und daher nicht benutzbar ist. Bei
einer Verschiebung des 16 K-Adressbereiches gelten natiirlich
evt. andere Beschrénkungen.

Was fangen wif aber mit diesen Dingen an?

Un dem VIC jetzt mitzuteilen, in welchem Block er denn die
von Thnen abgelegte Spritedefinition findet, miissen Sie diese
Blocknummer in eins der 8 letzten Bytes des Videoram legen
(s. # 3.1). Sie liegen in der Einschaltkonfiguration bei
$0TFB-$07FF (2040-2047).

Wenn Sie einmal nachrechnen, wieviel Bytes eigentlich fiir die
Speicherung eines Text - Bildschirminhalts benétigt werden,
so kommen Sie auf lediglich 40x25 = 1000. Der Videoram umfaBt
aber genau 1 K, also 1024 Bytes. Die restlichen 24 Bytes
werden normalerweise nicht gebraucht und koénnem von Ihnen
frei verwendet werden, bis auf die 1letzten 8 Bytes. Sie
werden eben fiir den gerade genannten Zweck benétigt. Jedem
Byte ist dabei ein Sprite in der folgenden Weise zugeordnet
(die Adressen gelten fiir die Position des Videoram nach dem
Einschalten und verschieben sich natiirlich in dem Falle einer
Knderung der Videoramadresse mit diesem):

Register :| $07F8| 07F9| 07FA[07FB]07FC] 07FD[O7FE[OTFF
2040]| 2041| 2042|2043|2044] 2045]2046]2047
Spritenr.: 0 1 2 3 4 5 6 7

Rin Beispiel: Angenommen, Sie haben ein Sprite in den Bereich
von $03CO0-$03FE (960-1022), also in Block 15 gelegt. Jetzt

61

wollen Sie, daB sowohl Sprite Nr. 2 wie auch Sprite Nr. 6 so
aussieht, wie Sie es in Block 15 definiert haben. In diesem
Falle schreiben Sie mittels:

POKE 2040+2, 15 : POKE 2040+6, 15

den Wert 15 als Zeiger auf Block 15 in die entsprechenden
Register ein. Sie sehen, daB auf diese Weise mehrere Sprites
das gleiche Aussehen haben kénnen, indem Sie einfach die
Zeiger auf den gleichen Block setzen.

Haben Sie nun in Block 14 ein weiteres Sprite definiert und
wollen z.B. das Sprite Nr. 2 in seinem Aussehen iéndern, so
genligt lediglich ein

POKE 2040+2, 14
um damit schlagartig die Definition zu wechseln (s. # 4.3).

Wir wollen jetzt die beiden Sprites, die wir soeben definiert
haben auch auf dem Bildschirm erscheinen lassen. Dazu missen
wir sie jedoch zuniéichst einmal einschalten. Das VIC-Register
24, "Sprite ein/aus", iibernimmt diese Funktion. Jedem der 8
Bits des Registers ist ein Sprite in der gleichen Veise
zugeordnet, wie uns dies schon von der Multicolorwahl (Reg.
28) her bekannt ist:

Bit: b7|b6|b5| b4} b3|b2| b1l]bO
Wert: |128]64|32]16] 8| 4 2] 1
Sprite] s87|s6|s5| s4|s3|s2| s1]|s0

In unserem Fall der Sprites 2 und 6 miissen wir also

eintippen:

POKE 53248+24, 64 OR 4 oder
POKE 53248+24, 64 + 4

Doch damit brauchen die Sprites noch nicht sichtbar zu sein,
da sie meist erst in den Bildschirm hineinverschoben werden
missen. Um Nédheres iiber die Programmierung der Sprites zu
erfahren, sehen Sie bitte unter Kapitel 4 nach.

62

3.5.4, Weitere

Doch mit dem einfachen Definieren, der Farbwahl und dem
Einschalten haben wir noch léngst nicht alles ausgeschopft,
was uns an Gestaltung und Verédnderung der Sprites zur
Verfiigung steht. Die folgenden Zeilen zeigen Ihnen, was die
Sprites erst zu DEN Sprites macht.

3.5.4.1. Positionieren

Die erste Moglichkeit der Variation und wohl auch die
wichtigste ist die Wahl der jeweiligen Bildschirmposition
jedes einzelnen Sprites. Sie konnen also bestimmen, wo auf
Ihrer Mattscheibe Ihre Figuren zum Stehen kommen sollen. Dies
ist besonders wichtig, da dadurch Bewegungen und schone
Effekte erzeugt werden kénnen, wie es im 4. Kapitel dargelegt
wird.

Dabei unterteilt man den Bildschirm in sogenannte Koordinaten
x und y, wie es uns bereits von der Graphik her bekannt ist.
Dabei ist allerdings folgendes zu beachten:

Die Spritekoordinaten stellen stets die Position der unteren
linken Ecke eines Sprites dar.

Die Spritebewegung besitzt eine Auflésung von 512x256
Punkten, also weit mehr, als auf dem Bildschirm darstellbar.
Das Raster, also der Abstand bzw. die GréBe der Punkte, ist
dabei identisch mit dem der hochauflésenden Graphik. Es sind
also 320 Punkte in x-Richtung und 200 in y-Richtung zu sehen.
Damit wird es Ihnen aber méglich, die Sprites jeweils bei
Bewegungen aus dem Bildschirm hinausfahren 2zu lassen; am
verdeckenden Rand sehen Sie also einen stets kleiner
werdenden Teil Ihres Sprites (s. Kapitel 4).

Der Nullpunkt der Spritekoordinaten liegt weit auBerhalb des
Text- oder Graphikfensters oben links in der Ecke. Der erste
sichtbare Punkt dieses Koordinatenrasters und damit der
Nullpunkt der normalen Graphik besitzt schon die Koordinaten
x=20 und y=30. Hier erst ist das Sprite also vollsténdig zu
sehen. Um damit von Sprite- auf Graphikkoordinaten
umzurechnen, miissen Sie bei ersteren stets 20 vom x- und 30
vom y-Wert abziehen (umgekehrt: Graphik- in Sprite-
koordinaten umrechnen durch hinzuaddieren dieser GréSen). Bei

63

x=320+20=340 und y=200+30=220 ist das Sprite nicht mehr =zu
sehen. e

Um dem VIC nun mitzuteilen, wo er welches der 8 Sprites auf
dem Bildschirm unterbringen soll, stehen Ihnen seine ersten
17 Register (von 0 bis 16) zur Verfiigung. Das 16. Register
nimmt dabei eine Sonderstellung ein und wird etwas weiter
unten besprochen. Die 16 zusténdigen Speicheradressen sind
Jjeweils paarweise den 8 Sprites zugeordnet. Das erste Element
dieser Registerpaare gibt dabei die x-, das zweite die
y—-Koordinate des entsprechenden Sprites an:

Sprite :180|8l]s82|83|s4|85]|86|87
x-K. Reg.:] 0] 2] 4] 6] 8/10]12]|14
y-K. Reg.:] 1] 3] 5] 7] 9{11]13}15

Wollen wir also beispielsweise Sprite 6 auf die Koordinaten
x=100, y=150 setzen, so brauchen wir lediglich einzutippen:

POKE 53248 + 2x%6 » 100
POKE 53248 + 2x6 + 1, 150

und schon kommt unser vorher definiertes Sprite dort zu
stehen. Wie Sie aber vielleicht bereits gemerkt haben, kinnen
wir von den oben genannten 512 Punkten der Spritebewe-
gungsauflésung lediglich 256 Punkte erreichen (ein Byte kann
maximal 256 verschiedene Werte annehmen). Aus diesem Grunde
muBte noch ein weiteres Register eingerichtet werden, das fiir
das oberste 8. Bit (MSB = Most Significant Bit = héchst-
wertiges Bit) der x-Koordinate jedes Sprites zustdndig ist:
Register 16. In diesem Byte ist wieder jedem Sprite ein Bit
zugeordnet, das die gesuchte Information beinhaltet:

Bit: b7| b6| b5| b4| b3| b2| b1|b0|
Wert: |128]64]|32| 16| 8| 4] 2| 1
|Sprite] 87| s6]| s5| s4|s3]| s2|sl}s0

Wollen wir also unser Sprite auch iiber die Koordinate x=255
hinaus auf den Bildschirm bringen, so ist das entsprechende
Bit dieses Registers zu setzen. Zu dem Wert im reguléren
x-Koordinatenregister ist dann 256 hinzu zu z&hlen.

64

3.5.4.2. VergrdBerung

So schaut unser Sprite ja schon recht hiibsch aus - wir geben
uns voll zufrieden - doch Ihr Rechner noch nicht. Er bietet
Thnen einige schone weitere Kleinigkeiten, die Ihr Herz
erfreuen sollen und werden. In dem Registerschatz des
Videocontrollers befinden sich n#émlich u.a. noch zwei bisher
nicht besprochene Adressen. Dies sind die Register 23 und 29.
Mithilfe dieser beiden Bytes konnen Sie Ihr Sprite
vergroBern. Dabei ist das erste der zwei hier genannten fiir
eine VergréBerung in y-, also eine Lingsdehnung, das zweite
fiir eine VergréBerung in x-Richtung, also eine Vertikal-
dehnung, zustédndig. Beidesmal ist der Streckungsfaktor gleich
2, d.h. jeder Punkt eines Sprites wird doppelt so hoch bzw.
breit. Sie konnen beide Méglichkeiten getrennt oder gemeinsanm
(also sowohl VergréBerung in x— als auch in y-Richtung)
anwenden, was jeweils verschiedene Effekte mit sich bringt.
Der Aufbau der beiden Register diirfte Ihnen inzwischen
bekannt vorkommen und ist in den jeweiligen Diagrammen z.B.
unter Positionierung nachzuschauen, da auch hier jedem Sprite
ein Bit zugeordnet ist. Ist das entsprechende Bit geléscht,
80 wird nicht, ist es gesetzt, so wird vergréBert. Die
Verhidltnisse kénnen etwa so dargestellt werden:

VergréBerung | VergroBerungsfaktor |Punktmatrix
keine 1x1 24x21
x-Richtung 2x1 48x21
y-Richtung 1x2 24x42
x/y-Richtung 2x2 48x42

Unter Punktmatrix ist hierbei natiirlich die Matrix gemeint,
die auf dem Bildschirm erscheint (sie ist ja auch bei Multi-
color - Sprites identisch), also die Anzahl der Punkte des
Bildschirms, die von einem Sprite maximal iiberdeckt werden.
Zu bemerken ist weiterhin, daB ein vergréBertes Sprite nicht
mehr vollsténdig am linken oder oberen Rand (oder an beiden)
verschwindet, auch wenn die Spritekoordinaten gleich null
werden.

65

3.5.4.3. Prioritét

Was passiert nun aber, wenn sich zwei eingeschaltete Sprites
oder ein Sprite und z.B. ein Buchstabe iiberlappen? Uberdecken
Sie sich und wenn ja, wer verdeckt wen? Dies soll in diesem
Abschnitt geklart werden.

a) Sprite-Sprite~Ulberlappung:

In diesem Fall ist die Sache denkbar einfach: Den
einzelnen Sprites sind bekanntlich Nummern von 0-7
zugeordnet. Uberlappen sich jetzt zwei Sprites, 8o wird
das jenige Sprite "iiber" dem anderen liegen, es also
verdecken, welches die niedrigere Nummer besitzt. D.h. das
Sprite z.B. mit der Nummer 0 wird ein Sprite mit der
Nummer 5 an den Stellen verdecken, an denen Sie sich
iiberlappen (genau genommen wird das Sprite 0 Sprite § nur
dort iiberdecken, wo es nicht transparent (durchsichtig)
ist (s. Spritedefinition)).

b) Sprite-Hintergrundzeichen-Uberlappung

Bei einer Uberlappung eines Hintergrundzeichens mit einem
Sprite wird die Sache schon komplizierter, aber auch
interessanter. Zunichst aber eine Begriffserklédrung: Im
folgenden sind unter Hintergrundzeichen stets irgend-
welche gesetzten Punkte verstanden, sei es z.B. ein
Buchstabe, ein Sonderzeichen oder Graphik.

Wir kénnen, so ist es eingerichtet, hierbei selber wihlen,
ob ein Sprite von diesen Hintergrundzeichen iiberdeckt
wird, das Sprite sich also praktisch hinter den
verschiedenen Objekten des Bildschirms befindet, oder ob
es diese selbst verdeckt, also vor Ihnen steht. Fiir diese
Funktion existiert ein weiteres Register des VIC, Register
27. Der Aufbau ist Ihnen wohl inzwischen gel#dufig, er
entspricht dem der Register 16, 21, 23, 28 und 29. Auch
hier ist jedem Bit ein Sprite zugeordnet. Ist nun ein Bit
geloscht, was nach dem Einschalten (wie in 4 3.1
ersichtlich) der Fall ist, so erscheint das jeweilige
Sprite vor den iibrigen Zeichen, ist es dagegen gesetzt, so
iiberdecken alle Hintergrundzeichen das betreffende Sprite.

Mit Hilfe dieser wertvollen EREigenschaften ist es méglich,

66

3-dimensionale Graphik oder Bewegungen darzustellen. In
Kapitel 4 wird Ihnen einiges dazu gesagt.

3.5.4.4. Kolligionen

Besonders fiir Spiele eine unschédtzbare Rinrichtung: Die Fest-
stellung von Kollisionen bzw. Berilhrungen zwischen Sprites
untereinander und mit Hintergrundzeichen wird Ihnen durch
verschiedene andere Register sehr einfach gemacht. Hierfiir
sind u.a. die Speicherstellen 30 und 31 des VIC zustiéndig.

In der ersten dieser beiden wird automatisch registriert,
wenn sich zwei Sprites im Laufe der Zeit einmal beriihren
(Uberlappung). Dabei ist jedes Bit dieses Registers fiir eins
der acht Sprites zustiéndig (s.o.). Berithren sich nun zwei
Sprites, so werden hier die beiden korrespondierenden Bits
gesetzt. Kollidieren also Sprite 6 und 2, so lautet der
Inhalt des Registers: %0100 0010. Dieser Inhalt bleibt
solange bestehen, bis er (als Zeichen dafiir, daB8 er abgefragt
wurde) wieder vom Programmierer z.B. durch

POKE 53248+30, 0

geloscht wird. Gleichzeitig mit diesen beiden Bits wird noch
ein anderes gesetzt. Es ist dies das Bit 2 des VIC-Registers
25 (IRR), welches uns noch véllig unbekannt ist und auch erst
im # 3.7 erlédutert wird. Soviel sei gesagt: Falls von
Register 26 erlaubt, kann hier also durch eine Kollision ein
IRQ (Interrupt Request) ausgelést werden.

Das zweite Register mit der Nummer 31, das uns in diesem
Zusammenhang interessiert, ist fir den Vermerk einer
Kollision eines Hintergrundzeichens mit einem Sprite
zusténdig. Findet ein solches Ereignis demnach statt, so wird
hier das dem jeweiligen kollidierten Sprite =zugeordnete Bit
gesetzt (wie Register 30). Berithrt z.B. Sprite 2 einen
gesetzten Punkt des Bildschirms, so steht hier: %0000 0010.
Auch dieses Register muB nach der Abfrage auf dieselbe Art
und Weise wieder geloscht werden wie eben beschrieben. Und
auch hier wird in dem Register 25 diesmal das Bit 1 gesetzt,
um bei Bedarf einen IRQ auszulésen.

67

3.6. Text/Zeichensat=

3.6.1. Textseitenorganisation

Damit sich der Rechner alle Ausgaben, die auf dem Bildschirm
stehen, merken kann (er muB dieses Bild auf Ihrem Fernseher
schlieBlich alle 1/20 Sekunden selbst erstellen (s. # 3.7)),
legt er siémtliche Zeichen, die Sie im normalen Textmodus
(z.B. nach dem Einschalten) durch Tastendruck eingeben, in
den uns sicher schon bekannten Videoram ab. Dieser umfaBt
etwa 1 K (in Wahrheit nur 40x25 = 1000 Bytes) und geht im
Normalzustand von der Speicherstelle $0400 (1024) bis hin zu
$07FF (2047). Uber die Verschiebeméglichkeiten gibt Ihnen
3.3.2 Auskunft. In der hochauflésenden und der Multicolor
Graphik wird dieser Speicher fiir die Beherbergung der Farbe
verwendet.

Den einzelnen Zeichen werden jeweils bestimmte Codes zuge-
ordnet und in den Videorarm abgelegt, wenn dieses Zeichen an
einer bestimmten Stelle auf dem Bildschirm erscheinen soll.
Die Zuteilung von Codes kennen Sie sicher bereits von der
sogenannten ASCII - Codierung. Die Bildschirmcodes jedoch
werden nach einem anderen System gebildet. Wéhrend Die CBM -
ASCII - Tabelle, wie Sie sie im Anhang ihres Bedienungs-
handbuches finden, manchmal verschiedenen Werten gleiche
Zeichen zuordnet und gleichzeitig sogenannte Controlcodes
vorhanden sind, die auf dem Bildschirm kein Zeichen
erbringen, sind die Bildschirmcodes eindeutig und ohne Liicken
verteilt, da Sie neben sdmtlichen normalen Zeichen
gleichfalls noch die inversen Zeichen unterscheidbar machen
miissen - wie anders sollte der Rechner anhand eines Codes
anders wissen, ob er nun ein Zeichen normal oder invers
darstellen soll. Wie Sie wissen wird dies von der Tastatur
aus durch die Umschaltung mittels zweier Controlcodes (<rvs
on> und <rvs off> = CHR$(18) und CHR$(146)) bewerkstelligt.
Eine Tabelle der Bildschirmcodes finden Sie im Anhang.
Addieren Sie 128 jeweils zu den einzelnen Werten hinzu, so
erhalten Sie das gleiche Zeichen in inverser Form.

68

3.6.1.1. Normaler Text

Neben den Zeichen muB aber fiir jedes Zeichen gleichfalls die
Zeichenfarbe gespeichert werden, da ja bekanntlich rein
theoretisch jedes Zeichen eine andere Farbe besitzen kann.
Hierfir existiert ein weiterer sogenannter Farbram mit der
gleichen GroBe wie der Videoram, der die notwendigen
Informationen enthédlt. Dieser Farbram liegt bei $D800-$DFFF
(55296-56295) und wird ebenfalls in der Multicolor - Graphik
als Farbspeicher verwendet. Jedes Byte dieses Bereiches
bestimmt die Farbe des dazugehorigen Zeichens des Videoranm,
dessen Aufbau identisch ist.

Die Hintergrundfarbe des Textbildes wird dagegen durch ein
einziges Register des VIC angesprochen. Dieses Register
(Register 33) liegt in der Speicherstelle 53248+33 und kann

z.B. mit

POKE 53248+33,0 : REM HINTERGRUNDFARBE = SCHWARZ

verédndert werden.

3.6.1.2. Multicolor - Modus

Fiir den Multicolor - Modus der Zeichendarstellung schauen Sie
bitte unter # 3.2 nach, wo dieser entsprechend beschrieben

ist.

3.6.1.3. Extended Colour - Modus

Ihr Commodore 64 besitzt neben dem gerade beschriebenen
normalen Textmodus mit einer Hintergrundfarbe fiir alle
Zeichen einen weiteren, in dem Sie fiir jedes Zeichen eine
andere Hintergrundfarbe wihlen kénnen (jeweils 4 Hintergrund-
farbregister, also 4 frei widhlbare Hintergrundfarben stehen
zur Verfiigung). Diese Darstellungsart heiBt: extended Colour
- Modus.

Wie gesagt, stehen Ihnen hier fiir jedes Zeichen eine von 4
Hintergrundfarben zur Verfiigung, die Sie durch EinPOKEn der
Jjeweiligen Werte in die folgenden Register verédndern koénnen:

69

Hintergrundfarbe 0: VIC-Register 33
Hintergrundfarbe 1: VIC-Register 34
Hintergrundfarbe 2: VIC-Register 35
Hintergrundfarbe 3: VIC-Register 36

Wie Sie sehen, entspricht das Farbregister 0 dem normalen
Register 2zur Festlegung der Hintergrundfarbe. In diese
Adressen legen Sie dann natiirlich den jeweiligen Farbcode,
den Sie dem Anhang entnehmen kénnen (0-15).

Um den Extended Colour - Modus einzuschalten, miissen Sie
lediglich etwa durch

POKE 53248+17, PEEK(53248+17) OR 4x16
das 6. Bit des VIC-Registers 17 ($11) setzen. Durch
POKE 53248+17, PEEK(53248+17) AND 256 - 4x16

wird es wieder geléscht.

Wollen Sie nun festlegen, welche dieser Hintergrundfarben die
einzelnen Zeichen schlieBlich besitzen, so miissen Sie
folgendes wissen:

Die oberen 2 Bits jedes Bytes aus dem Videoran, der
eigentlich (wie wir soeben erfahren haben) lediglich die
verschiedenen Zeichen des Textfensters speichert, legen dies
Jjeweils fiir jedes Zeichen fest. Da aber diese Bits normaler-
weise ebenfalls dazu verwendet werden, um die verschiedenen
Zeichen zu codieren, stehen Ihnen im extended Colour - Modus
(ECM) nur 64 Zeichen zur Verfiigung.

Alle Graphikzeichen und im Kleinschrift/GroBschrift - Modus
ebenfalls die GroBbuchstaben, sowie alle inversen Zeichen
fallen dem zum Opfer. Steuern Sie diese trotzdem an, so wird
eines der erlaubten 64 Zeichen mit einer anderen Hinter-
grundfarbe erscheinen. Welche Zeichen davon wie betroffen
sind, konnen Sie am besten der Tabelle der Bildschirmcodes im
Anhang entnehmen. Dabei gilt folgende Zuordnung:

70

MSBs | Bildschirmcodes | Hintergrundfarbe
00 000-063/$00-$3F HF 0
01 064-127/$40-$7F HF 1
10 128-191/$80-$BF HF 2
11 192-255/$CO-$FF HF 3

Unter MSBs verstehen wir hier die beiden obersten Bits des
Videoram, also Bits 6 und 7 (MSB = Most Significant Bit).
Vergleichen Sie diese Tabelle mit der angegebenen Bildschirm-
codetabelle im Anhang.

Ein Beispiel: Sie wollen ein B mit der Hintergrundfarbe 7 =
gelb auf den Bildschirm bringen. Dafiir belegen Sie das
gewiinschte Hintergrundfarbregister (hier 1) mit dem Wert 7
fiilr gelb und POKEn eine 2 fiir B zuziiglich 64 fir die
Ansteuerung des Registers 1 an die entsprechende Stelle im
Bildschirmspeicher oder geben mittels PRINT-Statement das
Zeichen <shift>, also CHR$(98) auf dem Bildschirm aus. Im

Programm sidhe dies dann so aus:

10 V = 53248 : REM VIC-REG-BASISADRESSE

20 POKE V+17, PEEK(V+17) OR 4%16 : REM ECM EINSCHALTEN
30 POKE V+34, 7 : REM HINTERGRUNDFARBE 1 = GELB

40 POKE 1024, 2+64 : REM ZEICHEN OBEN LINKS IN DIE ECKE

oder:

10 Vv = 563248 : REM VIC-REG-BASISADRESSE

20 POKE V+17, PEEK(V+17) OR 4x16 : REM ECM EINSCHALTEN
30 POKE V+34, 7 : REM HINTERGRUNDFARBE 1 = GELB

40 PRINT CHR$(98) : REM ZEICHEN AN DIE CURSORPOSITION

Nach Ablauf dieser Programme befinden Sie sich weiterhin in

diesem Modus und konnen ein wenig herumprobieren. Wie Sie

wieder herauskommen, wissen Sie bereits (s.o0.).

71

3.6.2. Zeichensatsorganisation

Neben den ungewohnlich variationsreichen Graphikmoéglichkeiten
bietet Ihnen Ihr Commodore 64 noch weitere Kostbarkeiten.
Eine dieser Fidhigkeiten ist die softwaremédBige Veriinderung
des Zeichensatzes. Sie ist die Grundlage fast aller Spiele
und ist dasjenige Mittel (neben den Sprites), das alle Spiele
auf dem CBM 64 so unheimlich schnell und trotzdem graphik-
und effektreich werden lé8t. Ohne diese Méglichkeit ist eine
verniinftige Spielprogrammierung undenkbar geworden. Wo¢ sich
andere Computer mit riesigen Graphikspeichern herumquilen,
dort schnippst Ihr Commodore 64 einmal mit dem kleinen
Finger.

Zunéchst einmal eine Definition: Unter Zeichensatz verstehen
wir die Gesamtheit aller Zeichen (Buchstaben und Graphik-
zeichen), die Sie im Textmodus durch Driicken verschiedener
Tasten und Tastenkombinationen (siehe <shift> und <C=>
(Commmodore - Taste)) auf den Bildschirm bringen kénnen.

Die Form und das Aussehen dieser Zeichen muB dem Computer
natiirlich bekannt, also irgendwo und irgendwie gespeichert
sein. Gleichzeitig sollten Sie auch nach irgendwelchen
Kriterien geordnet sein, damit Ihr Rechner weiB, daB8 er
beispielsweise ein B auf den Bildschirm bringen soll, wenn
Sie die Taste B driicken. Diese Informationen sind natiirlich
in allen Computern gespeichert.

Beim CBM 64 ist dieser Speicher so angelegt, daB er software-
miéBig, also vom Programmierer erreichbar ist, d.h. sein
Inhalt kann ausgelesen und beispielsweise irgendwo in einen
anderen Speicherbereich copiert (iibertragen) werden. Diese
Moglichkeit wurde ausfiihrlich in dem Paragraphen 3.3.1
dargelegt. Weiterhin besitzt Ihr Rechner die Fiahigkeit, die
Speicheradresse, aus der er die Form der einzelnen Zeichen
abliest, zu verdndern (s. # 3.3.2). Sie haben also die Wahl,
Ihrem CBM 64 zu sagen, dal er sich die Zeichengestalt von nun
an z.B. aus dem Speicherbereich ab $2000 (= 8192) also aus
dem RAM holen so0ll. Diesen Speicherbereich konnen wir
natiirlich selbst veréndern.

Haben wir vorher den Zeichensatz aus dem urspriinglichen ROM
in diesen Bereich copiert, so bemerken wir 2zundchst keine

72

Knderung, da ja alle Information erhalten geblieben ist.
Veriéindern wir jedoch Teile dieses Speicherbereiches, so
déndern wir damit gleichzeitig die Form eines bestimmten
Zeichens.

Ue nun die einzelnen Zeichen nach unseren Wiinschen zu
gestalten, miissen wir wissen, wie die Form eines Zeichens
gespeichert wird. Dies sei im folgenden erklirt:

Ihr Computer besitzt insgesamt 4 Zeichensidtze mit je 128
Zeichen, von denen jeweils nur 2 gleichzeitig auf dem
Textbildschirm erscheinen. Wir wollen im Folgenden diese vier
Zeichensiitze kurz benennen:

Satz I/1 - Normal - GroBschrift/Graphikzeichen
Satz I/2 - 1Invers - GroB8schrift/Graphikzeichen
Satz II/1 - Invers — GroB-/Kleinschrift
Satz II/2 - Invers — GroB-/Kleinschrift

Bekanntlich kénnen Sie die beiden Zeichensétze I und II durch
die gleichzeitige Betitigung der Tasten <C=> und <shift> von
Hand aus wechseln. Vom Programm aus dienen hierzu die
ASCII-Werte 14 und 142 (Anmerkung: 142 = 128+14), d.h. Sie
kénnen mit

PRINT CHR$(14);

auf Satz II und mit

PRINT CHR$(142);

auf Satz I umschalten. Mit

PRINT CHR$(8);

blockieren Sie dabei die Méglichkeit der Umschaltung iiber die
Tastatur, die ja auch wihrend des Programmlaufs moglich ist,
und mit

PRINT CHR$(9);

heben Sie diese Blockade wieder auf (s. hierzu auch das CBM
64 - Benutzerhandbuch auf den Seiten 135-137).

73

Die Umschaltung zwischen Sdtzen 1 und 2 bewerkstelligen Sie
durch die Verwendung von <RVS ON> und <RVS OFF)>.

In dem Zeichensatzspeicher miissen natiirlich alle diese 4
Zeichensiédtze getrennt aufgelistet sein. Sie haben also die
Moglichkeit 4x128 = 512 Zeichen 2zu veridndern (Wie gesagt,
konnen davon jedoch nur jeweils 256 verschiedene Zeichen
gleichzeitig angezeigt werden.).

Jedes Zeichen besteht auf dem Bildschirm aus einer Matrix von
8x8 Punkten, wie Sie vielleicht schon wissen. Entsprechend
miissen also im Zeichensatzspeicher diese 8x8 = 64 Punkte
reprédsentiert sein. Das wird erreicht, indem jeder Punkt des
Zeichens auf dem Bildschirm —-#dhnlich wie in HGR- durch ein
Bit im Speicher vertreten ist. Somit setzt sich ein Zeichen -
Bit - Muster aus 8 Byte zu je 8 Bit zusammen. Jedes Byte
repriésentiert eine der 8 Zeilen des Zeichens. Ein gesetztes
Bit bedeutet also einen gesetzten Punkt auf dem Bildschirm.
Wir konnen uns die Speicherung eines Zeichens wie folgt
vorstellen:

-]
™

[
;]
(-]
3]
£y
w
n
-
(=]

Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte

IO O s W N~ O
.
.

Der Zeichensatzspeicher ist also aus insgesamt 512 hinterein-
anderliegender Definitionen dieser Art zu je 8 Bytes
zusammengesetzt. Er benétigt also einen Speicherbereich von 4
K (= 4096 Bytes), der normalerweise im ROM von $D000 - $DFFF
(dezimal: 53248 - 57344) liegt. Dieser Bereich ist jedoch von
Basic aus nicht auszulesen. Zur Demonstration sei an dieser
Stelle gezeigt, wie ein normales, groBes B im
Zeichensatzspeicher definiert wird:

74

Bit: |7 6 5 3210
Byte 0: | . % X% x . . .
Byte 1: | . %x x , . .
Byte 2: | . x x , . x .
Byte 3: | . * X ¥ x . .
Byte 4: x x ., .
Byte 6: | . * x ., .
Byte 6: | . X x x x , , .,
Byte 7: |}

Wir erhalten also folgende 8 Bytes:

Byte 0: 0111 1000 = $78 = 120
Byte 1: 0110 0110 = $66 = 102
Byte 2: 0110 0110 = $66 = 102
Byte 3: 0l1ll 1000 = $78 = 120
Byte 4: 0110 0110 = $66 = 102
Byte 5: 0110 0110 = $66 = 102
Byte 6: 0111 1000 = $78 = 120
Byte 7: 0000 0000 = $00 = 000

Diese acht Werte stehen nun an der Stelle in dem Zeichen-
satzspeicher, die fiir das groBe, normale B reserviert ist.
Bei Multicolorzeichen stehen jeweils 2 Bit fiir einen doppelt
breiten Punkt des Zeichens, wodurch sich die Auflésung einer
Matrix auf 4x8 Punkte pro Zeichen verringert. Da der Vorgang
weitestgehendst parallel zur Multicolorgraphik und -sprites
funktioniert und da das Wichtigste hierzu bereits unter # 3.2
gesagt wurde, wollen wir lediglich die Punkt-Bit-Beziehung
anhand einer kleinen Graphik darstellen:

Bit: |76 5§ 43210
Byte 0: | <=> <(=> (=> <(->
Byte l: | <-> <=> <(=> <=>
Byte 2: (=> <=3 <(=> <=>
Byte 3: <=> <{=> (> <=
Byte 4: | <-> <=> <(-> <(=>
Byte 5: <=> <=> <(=> <=>
Byte 6: | (> <(=> <(=> (=)
Byte 7: | <(-> <=> <(=> <(->

75

Das niachste Problem ist die Ermittlung der Position einer
Zeichendefinition. Ausgangspunkt aller Berechnungen sind die
Bildschirmcodes der einzelnen Zeichen, der Codes also, die
zur Bestimmung eines Zeichens im Videoram stehen (s. Anhang).
Der Rest ist relativ einfach: Da jedes Zeichen 8 Byte
benétigt, miissen wir nur den Wert des Bildschirmcodes mal 8
nehmen und die Basisadresse des Zeichensatzes, also die
Anfangsadresse, bei der unser Zeichensatz beginnt,
hinzuaddieren. Bei der Basisadresse ist zu beachten, da8s
Zeichensatz I und II unterschieden werden miissen. Ein kleines
b des Klein- / GroBschriftmodus mit dem Bildschimcode 2 liegt
2 K entfernt vom groBen B des GroB8schrift / Graphik-—
zeichenmodus mit ebenfalls dem Code 2 (nicht 2zu verwechseln
mit dem groBen B des Klein- / GroBschriftmodus). Im

originalen Zeichensatz lauten die Basisadressen:

- GroB/Graphikzeichen: $D000 (53248)
- Klein/GroBschrift : $D800 (55296)

Aus soeben Gesagtem ergibt sich die Formel:

adresse = basisadresse + 8 % bildschirmcode

Fir das Zeichen B im normalen Zeichenspeicher wire dieses:
adresse = $D000 + 8 x 2 = $D0O10 = 53256

Im Kapitel 4 werden Sie ausfﬁh;lich erfahren, wie Sie diese
Anderungen am besten vornehmen (u.a. mit einem sehr

komfortablen Zeicheneditor) und wie Sie das Gelernte anwenden

kénnen.

76

3.7. ITROMbglichkeiten

Eine der goldenen Eigenschaften Ihres Geriites ist die
mannigfaltig verwendete Interrupt - Einrichtung. Unter
Interrupt versteht man die gesteuerte Unterbrechung eines
Programms an einer beliebigen Stelle, verursacht durch
irgendein Ereignis. Ist eine Unterbrechung ausgelést worden,
so springt der interne Prozessor unterprogrammmiéBig (Merken
der Riicksprungadressen) an eine bestimmte Stelle im Speicher,
die indirekt adressiert wird, und durchliduft dort eine
sogenannte Interrupt- oder Unterbrechungsroutine. Nach
Beendigung dieser Routine kehrt er genau an dieselbe Stelle
des unterbrochenen Programms zuriick und féhrt ganz normal
fort - bis zur néchsten Unterbrechung. Soweit in aller Kiirze
eine Beschreibung des Interruptvorganges.

Keine Angst, Sie kénnen ruhig weiterlesen, auch wenn Sie von
Interrupt noch nie etwas gehdrt haben und auch der Maschinen-
sprache nicht méchtig sind. Fast alle hier vorgestellten
Moglichkeiten, mit Interrupt 2zu arbeiten, funktionieren
gleichfalls ohne diese - nur in Assemblerprogrammen
verwendbare - Raffinesse. Falls Sie auf diesem Gebiet also
nicht so bewandert sind, sollten Sie sich die Stellen, in
denen von Interrupt die Rede ist, trotzdem durchlesen, um
einen Uberblick zu erhalten. Lassen Sie sich aber nicht
abschrecken, da im Anschlus daran stets auch die
Moglichkeiten, die von Basic aus existieren, erldutert
werden.

Ein Interrupt ist also eine gewollte und programmtechnisch
vorgesehene Unterbrechung (kein Abbruch!). Interrupts sind
grundsdtzlich ebenfalls in Basic méglich (z.B. die
Supergraphik 64 bietet dieses Hilfsmittel), die hier
besprochenen sind jedoch hardwaremiéBig eingerichtete (durch
Software gesteuerte) Unterbrechungen der CPU (Central
Prozessing Unit -.Zentraler Microprozessor). Nun gibt es fiir
den in Ihrem Gerét verwendeten Microprozessor vier
verschiedene Interrupts:

77

a)

b)

c)

d)

- Reset

NMI (Non Maskable Interrupt)
BRK (Break)

IRQ (Interrupt Request)

Reset:

Erster, er kann nicht softwareméB8ig unterdriickt werden,
wird nach dem Einschalten ausgelést und initialisiert den
Computer. Am Ende dieses Vorganges steht die (jedem, der
den 64er einmal eingeschaltet hat, bekannte) Kopfschrift
auf dem Bildschirm:

*%%x*x COMMODORE 64 BASIC V2 xXx*xx
64K RAM SYSTEM 38911 BASIC BYTES FREE
READY.

NMI:
Dieser nicht maskierbare, d.h. ebenfalls unbedingte

Interrupt wird ausgelést, wenn Sie auf die <restore>-Taste
driicken. Er wird gleichfalls benétigt, um die RS 232 -
Schnittstelle zu bedienen, falls vorhanden. Sie koénnen die
indirekte Sprungadresse des NMI in den Speicherstellen
$318/$319 (792/793) erfahren oder é#ndern.

BRK:

Dies ist ein sogenannter Softwareinterrupt, der von einem

Assembler - Programm aus betdtigt werden kann. Er wird
dann ausgelést, wenn der Prozessor auf den BRK-Code $00
stoBt (indirekter Sprung zur der Adresse, die in den
Speicherstellen $316/$317 (790/791) steht).

IRQ:

Hier ist er endlich! Alle oben genannten Interrupts sollen
uns hier nicht weiter interessieren und sind nur der
Vollstédndigkeit halber erwdhnt worden. Die eigentlich fiir
uns interessante Unterbrechung ist dieser sogenannte
maskierbare Interrupt. Maskierbar heiBt, daB per Software
gesagt werden kann, ob er ausgeldst werden darf oder
nicht. Sie kénnen ihn also beliebig abschalten, wenn es
Ihnen gefédllt. Hierfiir existieren die beiden Assembler-
befehle SEI (Set Interruptflag - verhindert Interrupt) und

78

CLI (Clear Interruptflag - erméglicht Interrupt).
Gleichzeitig koénnen Sie beim Commodore 64 in speziellen
Registern auswiéhlen, welche Ursache von einer ganzen
Palette an Méglichkeiten einen IRQ auslésen darf und
welche nicht. So konnen beispielsweise die Timer der CIA
nach Ihrem Ablauf eine Unterbrechung hervorrufen, was vom
Basic - Betriebssystem genutzt wird, indem es alle 1/60
Sekunde den normalen Programmablauf unterbricht und in die
ROM-IRQ-Routine springt (indirekte Adresse in $314/$315;
dezimal: 788/789). Hier wird der Cursor blinken gelassen,
die interne Uhr (TI$) gestellt, und die Tastatur (z.B.
STOP-Taste) abgefragt. Doch wir koénnen die Auslésung eines
IRQ gleichfalls einigen anderen Ereignissen als nur denm
Ablauf eines Timers erméglichen. Die fiir uns interessanten
sind:

- Rasterzeilendurchlauf

Lightpen
- Sprite-Sprite—-Kollision

Sprite-Hintergrund-Koll.

Wenn wir nun die indirekte Adresse der IRQ-Routine des
Betriebssystems auf eine eigene Interruptroutine richten,
konnen wir diese Moglichkeiten ausnutzen. Wie dies
programmtechnisch 2zu 1lésen ist, wird Ihnen in den
entsprechenden Abschnitten des Kapitels 4 dargelegt. Der
Vorteil der IRQ-Verwendung fiir diese Anwendungen ist, daB
das Ereignis sofort gemeldet wird, ohne daB bis zur
nichsten Abfrage gewartet werden muB (neben dem IRQ gibt
es natiirlich bei allem die Méglichkeit, auf das Ereignis
im Laufe des Programms durch eine einfache Abfrage zu
testen). Dies hat besonders groBe Bedeutung bei dem
Rasterzeilen-IRQ, da hier die Vorgédnge sehr schnell
ablaufen miissen. Nun aber 2zu den angekiindigten Einzel-
besprechungen:

79

3.7.1. Bildschirmrasterseilen

Eine der am wenigsten verstandenen, dafiir jedoch é&uBerst
ansprechenden Fidhigkeiten Ihres Computers ist der
Rasterzeileninterrupt. Sie kénnen mit diesen Dingen eine
groBe Anzahl von Effekten erzielen, die Ihr Herz héher
schlagen lassen: Mehrere Hintergrundfarben, mehr als 8
Sprites, gemischte Graphik- und Textanzeige wusw. usw. Doch
bevor wir uns in Kapitel 4 mit der Realisierung dieser Dinge
beschidftigen, wollen wir zunidchst einmal die Frage kléren,
was unter sogenannten Rasterzeilen eigentlich zu verstehen
ist.

Dazu miissen wir verstehen, wie auf dem Fernseher oder Monitor
ein Bild entsteht. Wie Sie vielleicht wissen, besteht der
Bildschirm aus einer Lochrasterplatte in Verbindung mit. einer
phosphoreszierenden Schicht, die durch den Aufprall der
Elektronen eines Elektronenstrahles punktuell 2zu 1leuchten
beginnt. Dieser Elektronenstrahl geht nun Zeile fiir Zeile
Jjeden einzelnen Punkt des lochrasters durch und 1é&B8t ihn - je
nach Bedarf - aufleuchten oder nicht. Dies geschieht in einer
ungeheuren Geschwindigkeit, so daB der Strahl pro Sekunde 20
mal ein neues Bild erzeugt, also 20 mal iiber sémtliche Punkte
des Punktrasters hiniiberfegt. So entsteht fiir uns der
Eindruck eines bewegten Bildes. Dieser Elektronenstrahl wird
durch die komplizierten Apparaturen am hinteren Ende einer
Bildrohre gesteuert. Doch die Information, ob ein Punkt des
Bildschirms nun aufleuchten oder erblassen soll, muB8 von
einer anderen Quelle stammen. Beim normalen Fernseher sind
dies die iiber den Ather .gesandten und von der Antenne
eingefangenen Signale der Sendestationen. In unserem Fall muB
der Computer dieses Signal erzeugen. Er also muB praktisch
Reihe fiir Reihe und Punkt fiir Punkt durchgehen, und das
"an/aus"-Signal senden. Diese Aufgabe iibernimmt im Falle des
CBM 64 ebenfalls der Videocontroller (VIC).

Normalerweise wird das alles intern geregelt, ohne daB der
Programmierer darauf EinfluB nehmen oder iiberhaupt daran
beteiligt sein kénnte. Anders beim 64er: Hier besitzt die
Software die Moglichkeit festzustellen, welche Raster:zeile
der VIC gerade erstellt. Dies kann u.a. durch das Lesen des
VIC-Registers 18 erfolgen. Hierzu muB 2zundchst aber etwas

gesagt werden:

80

Da bei der Rasterzeilenerstellung selbstverstiéndlich neben
dem eigendlichen Text- oder Graphikfenster ebenfalls der
Rahmen mit ilibergeben werden muB und die Strahlablenkung etwas
iiber den Bildschirm hinausgeht, stellt sich die Koordinaten-
einteilung etwas anders dar, als wir sie von der Graphik oder
den Sprites her kennen. Zur Veranschaulichung des im
folgenden Gesagten vergleichen Sie bitte das unten gezeigte
Schaubild, das eine Skizze des Bildschirms mit dem Fenster
darstellt.
3? l.;) 2010 2170
30= -

Textfenster

240 =
280 =

Der Strahl startet in der obersten Reihe. Diese besitzt nun
aber nicht etwa die Nummer 0 oder l, wie man vermuten kdnnte,
sondern die obere Kante IThres Bildschirms beginnt bereits bei
Reihe Nr. 30 ($1E) (wobei die angegebenen Randwerte von
Fernseher (Monitor) zu Fernseher leicht variieren koénnen).
Sie endet (untere Bildschirmkante) ca. bei Nr. 280 ($118).
Das eigentliche Bildschirmfenster, das normalerweise
verwendet werden kann, hat an der oberen Kante den Raster-
zeilenwert von etwa 40, wiéhrend die untere mit der Raster-
zeile Nr. 240 iibereinstimmt.

Wie Sie sehen, unterteilt der VIC das Textfenster (genau
iibereinstimmend mit der Punktauflésung) in 200 Zeilen
(Reihen). Sie werden im Kapitel "Joystick" sehen, daB dies im
Falle der Spaltenauflésung nicht so einfach ist.

Wie gesagt konnen wir jetzt selber aktiv in das Geschehen
eingreifen, bzw. uns iiber den jeweiligen Stand wunterrichten.
Was heiBt das nun?

Zum einen koénnen wir (wie oben erwihnt) dem Register 18 des
Videocontrollers die Nummer der Rasterzeile, die er gerade

81

dem Sichtgeridt sendet, entnehmen. Da ein Register jedoch
Werte von 0 bis maximal 255 annehmen kann, der VIC aber
mindestens bis zu 280 Reihen sendet, wird das fehlende
oberste (8.) Bit vom VIC-Register 17 geliefert. Wie Sie aus
der in # 3.1 gezeigten Tabelle entnehmen, stellt das 7. Bit
dieses Registers 17 das gesuchte oberste Bit der Raster-
zeilennummer dar. Somit konnen wir durch einfaches Lesen die
genaue Rasterzeile erfahren. Da jedoch ein Bild pro Sekunde
20 mal erneuert wird, und mindestens 280 Reihen pro Bild an
den Bildschirm gesendet werden miissen, wird eine Reihe in ca.
1 sek./(20%280) = 0,00018 sek., also in 0,18 milli- oder 180
mikrosekunden (eine Mikrosekunde ist eine Millionstel
Sekunde), das sind 5600 Reihen pro Sekunde, aufgebaut. Wenn
man bedenkt, daB eine Reihe weiterhin noch aus einer groB8en
Zahl von Punkten (s. # 3.7.2) besteht, kann man sich in etwa
vorstellen, wo hier die Zeitverhidltnisse pro Punkt liegen
(etwa bei 0,89 mikrosekunden).

Damit scheint die softwareméBige Behandlung auch in Assembler
(immerhin dauert ein Befehl in Assembler mindestens eine
500.000stel Sekunde (= 2 mikrosekunden) - bei manchen
Befehlen das bis 2zu 3,5 fache) unméglich, da praktisch
dauernd abgefragt werden miiBte, wo sich der Strahl gerade
befindet, um eine bestimmte Reihe anzusteuern.

Doch dies ist aufgrund einer duBerst interessanten
Einrichtung nicht notwendig. Sie kénnen némlich den VIC dazu
veranlassen, einen IRQ (wie oben beschrieben), also eine
Unterbrechung Ihres Programms, auszuldésen, wenn er gerade
eine bestimmte Reihe des Bildes aufbaut (genau einen
bestimmten Punkt anzusprechen, wire aufgrund der winzigen
Punktdurchlaufzeiten (s.o.) sinnlos). Fir diesen Zweck
schreiben Sie die gewiinschte Zeile, bei deren Strahl-
durchlauf ein Interrupt ausgelost und damit eine Interrupt-
routine aufgerufen werden soll, genau in dasselbe Register
18, aus dem wir sonst die aktuelle Position des Strahl
ziehen. Auch hier dient Bit 7 des 17. Registers als Highbyte.
Wir miissen dem Computer (bzw. dem VIC) nur noch mitteilen,
daB er ab sofort diese Unterbrechung ausfiihren soll, wenn er
die bestimmte Reihe erreicht hat. Dies geschieht =mit Hilfe
der beiden Register 25 und 26 ($19/$1A). Ersteres ist das
sogenannte Interrupt Request Register (IRR). Hier wird
angegeben, welche Ursache ein durch den VIC ausgeléster IRQ

82

hat. Dabei gilt:

Bit 0 = 1: Rasterzeileninterrupt
Bit 1
Bit 2 = 1: Interrupt durch Sprite-Sprite-Koll.
Bit 3 = 1: Interrupt durch lightpen

Bits 4-6 : unbenutzt

Bit 7 = 1: Interrupt hat eine der 4 Ursachen

"

1: Interrupt durch Sprite-Hgrund-Koll.

Sie sehen also, daB hier der Programmierer durch Abfrage des
7. Bits erfidhrt, ob eins der 4 unteren Bits gleich 1 ist, ein
Interrupt also durch eine der 4 Moglichkeiten verursacht
wurde (wie gesagt kann er ja auch andere Ursachen haben).
Nach jeder Abfrage muB dieses Register wieder zuriickgesetzt
werden, da ansonsten direkt nach der durchlaufenen Interrupt-
routine wieder ein IRQ ausgelést wird usw. — "Absturz"! Dies
geschieht, indem man denselben Wert, den man aus diesem
Register ausgelesen hat wieder hierhin zuriickschreibt.
Trotzdem wiiBte der VIC immer noch nicht, wodurch er einen IRQ
auslisen sollte, wiirden wir nicht Gebrauch von dem Register
26 machen. Hier existiert die gleiche Zuordnung der einzelnen
Bits vie im gerade beschriebenen Register 25 (auBer 7. Bit).
Hier bedeutet allerdings ein gesetztes Bit, daB das
betreffende Ereignis von Stund an ein IRQ-Ausléser sein kann.

;ﬁ;llen wir beispielsweise, daB der VIC immer dann unser
Programm unterbricht und der Prozessor dann unsere
IRQ-Routine anspringt, deren Adresse wir in $314/$315 (=
788/789; s.o.) abgelegt haben, wenn er die Reihe 100 erreicht
hat, so schreiben wir zundchst 100 in dieses Register 18
(MSB = 0!), léschen Register 25, indem wir den 1Inhalt lesen
und wieder riickschreiben, und setzen das Bit 0 des Registers
26 gleich 1. Wie das alles programmtechnisch unter einen Hut
gebracht wird, sollten Sie nun in dem entsprechenden
Paragraphen des Kapitels 4 nachlesen.

83

3.7.2. Lightpen

Bevor Sie diesen Paragraphen durcharbeiten, sollter Sie
wenigstens die Ausfiihrungen in 3.7.1 iiber die Entstehung des
Bildes auf dem Bildschirm gelesen haben, da die folgenden
Erklédrungen auf diesem Wissen aufbauen.

Ihr Commodore 64 besitzt verschiedene Moglichkeiten,
steuernde Geridte als Peripheriebausteine anzuschlieBen. 2Zu
diesem Zwecke befinden sich an der rechten Seite Ihres
Computers, wenn Sie sich das einmal anschauen wollen, zwei
sogenannte Controlports. Dies sind Steckbuchsen fiir den
AnschluB von Joysticks, Paddles, Lightpen oder sogar selbst-
gebaute Steuer- bzw. MeBeinrichtungen (wie z.B. Thermoneter,
Feuchtigkeitsmesser, Impulsgeber etc.). Die Steckerbelegung
wird in Ihrem CBM 64 -Benutzerhandbuch auf der Seite 141
beschrieben. Sie brauchen diese nicht unbedingt zu kennen, um
beispielsweise einen Joystick an Ihr Geriét anzuschlieBen und
ihn richtig zu gebrauchen. Wichtig ist nur, daB der Eingang
fiir den unten beschriebenen Lightpen identisch ist mit dem
des Feuerknopfes eines in Port 1 gesteckten Joysticks. Um
etwas vorzugreifen: Sie kéonnen also auch mit dem Feuerknopf
von Port 1 einen Interrupt auslésen, was sicher hoch-
interessant nicht nur fiir Spiele ist. Sie kénnen damit Gerite
anschlieBen, die im Computer einen IRQ auslésen konnen, eine
Méglichkeit, die wertvolle Konsequenzen hat!

Eine der hochinteressanten Einsatzméglichkeiten ist der
Lightpen:

Unter Lightpen (oder Lichtgriffel) versteht man einen
handlichen Stift, der zur Eingabe oder Bestimmung eines
Punktes auf dem Bildschirm dient und den direkten Kontakt
zwischen Ihnen und dem Fernseher (Monitor) gestattet. Mit dem
Lichtgriffel ist es also méglich, durch ein simples Auflegen
der Stiftspitze auf den Bildschirm dem Computer eine
Bildschirmposition einzugeben.

Wie geht das nun vonstatten? Sie zeigen mit Ihrem in Control-
port 1 gesteckten Lichtgriffel auf einen Punkt des
Bildschirms. Dabei 1ist es egal, ob sich dieser Punkt
innerhalb oder auBerhalb des eigentlichen Textfensters
befindet. Der Computer ist alsdann in der Lage, diesen Punkt
zu identifizieren, er kennt also die Koordinaten dieses
Punktes. Wenn Sie diese in Ihrem Programm abfragen, kionnen

84

Sie beispielsweise feststellen, ob sich an der Stelle ein
bestimmtes Objekt (Buchstabe oder eine Graphik) befindet.
Oder Sie zeichnen genau an dieser Stelle einen Punkt in die
Graphik, so daB Sie per Hand auf den Bildschirm =zeichnen
konnen! Eine andere Idee wére, den Lightpen als komfortable
Cursorsteuerung einzusetzen. Es gibt eine Menge Mbéglichkeiten
der Verwendung.

Doch nun zur technischen Seite des ganzen Geschehens. Wie
stellt der Computer fest, wo auf dem Bildschirm nun gerade
der Lightpen positioniert ist? Sie wissen, daB ein Bild des
Fernsehers (Monitors) aus vielen kleinen Punkten zusammen-
gesetzt ist, die alle 1/20 Sekunden von einem Elektronen-
strahl, der auf die erwihnte Lochrasterplatte fdllt, zum
Aufleuchten gebracht werden. Der Lightpen registriert nun,
sofern er auf einen Punkt des Bildschirms gerichtet ist,
dieses kurze Aufleuchten und sendet einen Impuls an den
Computer. Achten Sie bei der Verwendung des Lightpen deshalb
darauf, keine schwarze Hintergrundfarbe zu wiéhlen und den
Helligkeitsregler Ihres Bildausgabegerédtes nicht zu niedrig
einzustellen. Der genannte Impuls erreicht dem VIC, der
sofort die aktuelle Rasterzeile und die (uns bisher
unbekannte) Rasterspalte in zwei Registern als x,y-Punkt-
koordinaten ablegt. Es sind dies die beiden VIC-Register 19
und 20 (x— und y-Anteil). Hier kann jetzt ein Programm die
beiden Werte auslesen und verwerten (z.B. indem es an dieser
Stelle einen Punkt zeichnet). Zunéchst aber muB noch Einiges
zu denm Koordinatensygtel gesagt werden. Die y-Einteilung,
also die Einteilung nach Rasterzeilen kennen Sie bereits. Sie
wurde in # 3.7.1 ausfiihrlich erortert. Die x-Einteilung ist
nun etwas komplizierter. Hier gibt es jeweils halb so viele
ansprechbare Rasterpunkte, wie wir von der Graphik her
kennen, d.h. ein angegebener Rasterpunkt steht fiir zwei wahre
Graphikpunkte. Es ergeben sich folgende Randwerte: Die linke
Kante Ihres Bildschirms besitzt etwa den Randwert 30, die
rechte ist Spalte Nr. 210. Das reguldre Bildfenster aber
liegt links bei ca. 40 und rechts bei 200, womit wir
160 = 320/2 Rasterpunkte im Textfenster besitzen. Angenommen,
wir haben 2zwei Werte fiir die Rasterkoordinaten aus den
Registern 19/20 entnommen, und wollen genau an dieser Stelle
einen Punkt zeichnen. Dann miissen wir die Rasterkoordinaten
in solche fiir die Graphik umrechnen. Dies kénnen wir nach den

85

obigen Ausfiihrungen durch die folgenden Formeln vornehmen:

(xp-40) %2
yp-40

<
"

wobei x und y die Graphik- und xr, yr die Rasterkoordinaten
darstellen. Jetzt koénnen wir an der errechneten Stelle einen
Punkt setzen.

Das ist die einfache und auch von Basic aus programmierbare
Méglichkeit. Doch auch hier bietet Ihnen Ihr Computer eine
Méglichkeit, mit der Interrupttechnik zu arbeiten:

Sendet der Lightpen némlich einen Impuls, so wird das 3. Bit
des VIC-Registers 25 gesetzt. Haben wir vorher in Register 26
ebenfalls das 3. Bit gesetzt, kann ein Interrupt ausgeléost
werden. Ihr Programm wird also wunterbrochen und Ihre
Interruptroutiﬁe aufgerufen, die das Ereignis bearbeitet.
Auch hier werden Programmierbeispiele etc. in Kapitel 4
gegeben.

3.7.3. Sprite-Kollisionen

Wenn Sie sich den Abschnitt 3.5.4.4 durchgelesen haben,
wissen Sie bereits, daB Sie eventuelle Beriihrungen von
Sprites untereinander oder mit Hintergrundzeichen feststellen
konnen, indem Sie den Inhalt der VIC-Register 30 und 31 lesen
und analysieren. Wie Sie wissen, ist hier jedem Sprite ein
Bit zugeordnet und diejenigen Bits gesetzt, deren Sprite
kollidiert ist. Doch es gibt eine weitere Moglichkeit aus
Assembler heraus Kollisionen zu registrieren. Wie Sie sich
schon denken kénnen, beruht diese Méglichkeit wieder auf der
Interrupttechnik. Sie koénnen den VIC (wieder durch den
Gebrauch der Register 25/26) veranlassen, bei irgendeiner
Kollision einen Interrupt auszulésen. Auch hier werden wieder
Beriihrungen zwischen Sprites und dem Hintergrund und Sprite -
Sprite - Kollisionen unterschieden. In Register 25 (IRR) ist
dafiir jeweils ein Bit reserviert. Bit 3 wird gesetzt, wenn
eine im Register 30 niher angegebene Beriihrung zwischen zwei
Sprites stattgefunden hat. Entsprechendes passiert mit Bit 2,
falls die Beriihrung 2zwischen einenm Sprite und einem

86

Hintergrundzeichen stattfand. Ein Interrupt wird, wie Sie
sich sicher denken kénnen, aber erst ausgelost, wenn Sie
vorher das korrespondierende Bit in Register 26 gesetzt
haben., Vergessen Sie nicht, die IRQ-Adresse umzulegen und
nach jedem IRQ das IRR durch Zuriickschreiben der Lesedaten zu
l6schen.

87

4. Kapitel
Grundséit=liche
Graphikprogrammierung

Nachdem wir jetzt geniigend graue Theorie iiber die Graphik-
fdhigkeiten Ihres Rechners gehért haben, wollem wir wuns in
diesem Kapitel mit der Realisierung dieser Dinge
beschédftigen. Denn was niitzt uns das alles, wenn wir nicht
wissen, wie wir Sprites oder hochauflésende Graphik
einsetzen. Es ist das "Know how", das uns fehlt. Aus diesem
Grunde gibt es zu jedem der obigen Abschnitte des 3. einen
dazugehoérigen aus diesem Kapitel, der die Programmierung bzw.
die Anwendung der einzelnen Méglichkeiten behandelt.

Programme werden moéglichst in Basic, bei den vielen
Maschinenspracheroutinen zusédtzlich ein Basiclader angegeben.
Alle Programme sind in REM-Zeilen bzw. mit Kommentaren
dokumentiert. Die wichtigen und neuen Programmteile verden
auch im Text beschrieben. Bei den Basicroutinen fiir die
einzelnen Graphikfiguren und -anwendungen muB in aller
Deutlichkeit gesagt werden, daB dies selbstverstédndlich nur
Hilfen sind; die entsprechenden Assemblerroutinen fithren die
gewiinschte Funktion sehr viel schneller aus. Deswegen lohnt
sich -wie auch oben schon einmal erwdhnt- der Erwerb von
Maschinensprachekenntnissen ungeheuer. Wenn Sie Basic
einigermaBen gut beherrschen, ist der Schritt dorthin nicht

mehr weit. Versuchen Sie es einmal!

88

4.1 Text und Graphik auf
dem Low—Res—Bildschirm

Die erste und einfachste Moéglichkeit, Graphiken auf Ihrem
Bildschirm darzustellen, ist das Arbeiten mit den originalen
Graphikzeichen, die Sie an der vorderen Seite der einzelnen
Tasten Ihres Rechners finden. Schon hiermit lassen sich mit
etwas Phantasie (sie wird bei der Graphikerstellung stets
benotigt) wunderbare und vielfarbige Bilder erzeugen. Die
Graphikzeichen lassen sich auf verschiedene Art und Weise
erreichen:

a) Ansteuerung durch die Tastatur:
Die Zeichen, die auf der rechten Seite der Tasten stehen,

lassen sich durch gleichzeitiges Driicken dieser jeweiligen
normalen- mit der <shift>-Taste auf dem Bildschirm
darstellen. Diejenigen, die links stehen, werden mit der
gedriickten <C=> (<commodore>) -Taste angewdhlt. Zusitzlich
zu diesen normalen koénnen Sie noch sogenannte inverse
Zeichen erzeugen, indem Sie vorher gleichzeitig auf die
Tasten <ctrl> und <rvs on> driicken (oder Sie geben ein:
PRINT CHR$(18)). Wollen Sie die ausgesuchten Zeichen nicht
mehr invers darstellen, so geniigt ein <ctrl> mit <rvs off>
(PRINT CHR$(146)).

Farben:

Die 16 verschiedenen Zeichen-Farben, die auf dem
Bildschirm dargestellt werden kénnen, sind ebenfalls durch
die Tastatur anwdhlbar (eine umfassende Tabelle der Farben
und ihrer verschiedenen Zuordnungen finden Sie im Anhang):
Dabei driicken Sie fiir die ersten 8 Farben (numeriert nach
den Farbcodes) gleichzeitig mit der <(ctrl>-Taste eine der
Tasten <1-8> (die dabei entstehende Farbe steht ebenfalls
auf der Frontseite der 8 Tasten). Wollen Sie dagegen den
folgenden Zeichen eine der 8 letzten Farben (Farben Nr.
8-15) geben, so driicken Sie einfach die <C=>- mit den
erwihnten 8 Farbtasten.

b) Ansteuerung durch das PRINT-Statement:
Jedes Zeichen besitzt einen bestimmten, sogenannten

ASCII-Code. Durch Angabe dieses Codes kann jedes Zeichen
eindeutig bestimmt werden (dabei besteht zwischen inversen
und normalen Zeichen &allerdings kein Unterschied). Den
ASCII-Code eines Zeichens kénnen Sie durch den
Basic—-Befehl ASC in der folgenden Weise ermitteln (In
diesem Falle fiir das Zeichen "A"):

PRINT ASC("A") oder
Z$ = "A" : PRINT ASC(Z$)

Der Rechner schreibt: 65. Kennen Sie umgekehrt den
ASCII-Code eines Zeichens, so finden Sie dieses wie folgt
durch den Befehl CHR$ (ebenfalls fiir das Zeichen "A"):

PRINT CHR$(65) oder
C = 65 : PRINT CHR$(C)

Und schon steht ein A auf dem Bildschirm. Der Vorteil
dieser Codierung ist eine Berechenbarkeit von Zeichen,
d.h. Sie kénnen ein Zeichen durch irgendeinen Algorithmus
(Rechenvorschrift) bestimmen. Gleichzeitig werden

Vergleiche o.&. sehr vereinfacht.

Farben:

Auch die verschiedenen Farben (neben vielen anderen
Control - Funktionen wie <clr/home> etc.) besitzen
ASCII-Codes. Leider werden im CBM 64-Handbuch nur die der
ersten 8 Farben angegeben; Hier daher eine vollstindige
Auflistung:

ASCII | Farbe ASCII| Farbe
144 schwarz 129 orange
5 weiB 149 braun
28 rot 150 hellrot
159 cyan 151 grau 1
156 violett 152 grau 2
30 griin 153 hellgriin
31 blau 154 hellblau
158 gelb 155 grau 3

90

c) Ansteuerung durch POKE:
Alle Zeichen, die sich auf dem Bildschirm befinden, werden

in einem besonderen Speicher abgelegt: dem Videoram (s.
3.6). Hier miissen natiirlich normale und inverse Zeichen
unterschieden werden, wiéhrend Controlzeichen, die nicht
auf dem Bildschirm erscheinen, nicht vermerkt werden
brauchen. Somit wird bei der Abspeicherung ein anderer
Code, der sogenannte Bildschirmcode verwendet (s. Kapitel
4). Wollen Sie also direkt in diesen Speicher POKEn, so
missen Sie sich jenes Codes bedienen. Mit

POKE 1024, 1

beispielsweise bringen Sie ein A in die linke obere Ecke
des Bildschirms. Dieses A ist jedoch noch nicht 2zu sehen
(falls dort nicht =zufdllig vorher schon ein Zeichen
stand). Es fehlt die Farbe, die im sogenannten Farbram

abgespeichert wird und z.B. mit
POKE 55296,5

angewidhlt wird (die 5 stellt den Farbcode dar, der im
Farbram abgespeichert wird). Das Zeichen wird griin (Farbe
5). Diese Zusammenhédnge sind ausgiebig in Kapitel 3.6.1
dargelegt.

Auf den folgenden Seiten werden ihnen drei Programme
vorgestellt, die alle das gleiche Ergebnis (s. Bild)
erbringen, welches jedoch auf drei unterschiedliche Arten
entsteht, ohne Riicksicht darauf, daB sich die eine oder
andere Methode in diesem Falle so-gut wie gar nicht fiir den
demonstrierten Zweck eignet. Sie sollen Ihnen lediglich
zeigen, wie die einzelnen Méglichkeiten der Zeichen-
darstellung in vivo, also direkt im Programm realsiert werden
konnen.

AN DIESER STELLE SOLLTE EIBGENTLICH
EIN KLEINES PROGRAM

AUS UCKTECHNISCHEN BGRUENDEN JEDOCH
MUSSTEN WIR E8 I

ANHANG (6.10) VERLEGEN

Mgl'ﬂl

91

100 REM XXkXXKkkkKkKKKKkkKkXkkkk

110 REM *x XX

120 REM *x LOW-GRAPHIK/CHR$ xXxx

130 REM *x X%

140 REM XXXXkkxkkXkkkkkkkkxkrkkkk

150 REM

160 PRINT CHR$(147) : PRINT : PRINT : REM BILDSCHIRM
LOESCHEN/LEERZEILEN

170 FOR X=1 TO 290 : REM 290 ASCII-CODES EINLADEN
180 READ CH : REM LESE DATA

190 PRINT CHR$(CH); : REM SCHREIBE ZEICHEN
200 NEXT X

210 REM

220 REM *XkxkXxxkkkxkxkkkkkk

230 REM **x DATAZEILEN xx

240 REM X¥XkkXkkkkkkkkxkkkk

250 REM

260 DATA 32, 32, 205, 32, 206, 13
270 REM

280 DATA 32, 205, 213, 201, 32, 32
290 DATA 32, 32, 32, 32, 32, 32
300 DATA 32, 32, 32, 213, 203, 13
310 REM

320 DATA 32, 32, 202, 203, 205, 13
330 REM

340 DATA 32, 206, 32, 205, 32, 32
350 DATA 32, 32, 32, 32, 32, 32
360 DATA 32, 213, 203, 13

370 REM

380 DATA 32, 32, 32, 32, 32, 32
390 DATA 32, 32, 32, 32, 32, 32
400 DATA 32, 175, 13

410 REM

420 DATA 32, 32, 32, 32, 32, 32
430 DATA 32, 32, 32, 32, 175, 175
440 DATA 175, 204, 204, 175, 175, 13
450 REM

460 DATA 32, 32, 32, 32, 32, 32
470 DATA 32, 32, 32, 206, 205, 32
480 DATA 32, 32, 32, 32, 32, 205
490 DATA 13

92

500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900

REM

DATA
DATA
DATA
DATA
REM

DATA
DATA
DATA
DATA
REM

DATA
DATA
DATA
DATA
REM

DATA
DATA
DATA
REM

DATA
DATA
DATA
DATA
REM

DATA
DATA
DATA
DATA
REM

DATA
DATA
DATA
DATA
REM

DATA
DATA
DATA
DATA
DATA
REM

32,
32,
32,
13

32,

32,
205,

13

32,

32,
208,

13

32,
32,
170,

32,
32,
170,
176,

32,

32,
170,
177,

32,
32,
170,
215,

32,
32,
183,
183,
183,

-
32,
32,
32,

32,
206,
32,

32,
207,
32,

32,
165,
32,

32,
165,
32,
174,

32,
165,
32,
177,

32,
165,
206,
195,

32,
183,
32,
183,
183,

32,
2086,
32,

32,
32,
32,

32,
183,
32,

32,
176,
32,

32,
173,
32,
213,

32,
32,
206,
203,

32,
32,
32,
195,

32,
183,

32,
183,

13

32,
32,
32,

3z,
32,
32,

32,
183,
32,

32,
174,
32,

32,
189,
206,
201,

32,
207,
32,
202,

32,
207,
32,
215,

32,
207,
32,
183,

32,
32,
32,

32,
32,
32,

32,
183,
32,

32,
176,
206,

32,
173,

32,

13

32,
208,
32,
201,

32,
170,
45,
177,

32,
183,
207,
183,

93

32
205
182

32
32
182

32
183
206

32
174
13

32
189
32

32
32
213
13

32
32
177
13

32
183
183
183

910

DATA 32, 32, 32, 32, 32, 32

920 DATA 32, 32, 32, 204, 175, 175

930 DATA 175, 175, 175, 175, 165, 13

100 REM XXEXkXkXRKKKKKKRXKKEKKX KX

110 REM *x *X

120 REM **x LOW-GRAPHIK/POKE XX

130 REM *x *x

140 REM XkXXRXXXKXXKXKXEXKEKERXKKX

150 REM

160 FA = 5 : REM FARBE = GRUEN

170 PRINT CHR$(147) : REM BILDSCHIRM LOESCHEN

180 VR = 1024 + 2%x40 : REM POKE-STARTADRESSE (VIDEORAM)
190 FR = 55296 + 2%40 : REM POKE-STARTADRESSE (FARBRAM)
200 FOR Y=0 TO 15 : REM 16 ZEILEN

210 READ ZA : REM ANZAHL DER ZEICHEN IN DER ZEILE HOLEN
220 VR = VR+40 : REM NAECHSTE ZEILE (40 SPEICHERSTELLEN
WEITER)

230 FR = FR+40 : REM NAECHSTE ZEILE (40 SPEICHERSTELLEN
WEITER)

240 FOR X=0 TO ZA-1 : REM ZA ZEICHEN POKEN

250 READ BC : REM BILDSCHIRMCODE LESEN

260 POKE VR+X, BC : REM UND IN VIDEORAM SCHREIBEN

270 POKE FR+X, FA : REM FARBE EINPOKEN

280 NEXT X

290 NEXT Y

300 REM

310 REM XXXk kXxkXXkkkkkKERkkkKX

320 REM *xx BILDSCHIRMCODES %X

330 REM XkXRXXKXRERKKKEKRRRNKKK

340 REM

350 DATA 5

360 DATA 32, 32, 177, 32, 178

370 REM

380 DATA 17

390 pATA 32, 77, 85, 73, 32, 32

400 DATA 32, 32, 32, 32, 32, 32

410 DATA 32, 32, 32, 85, 75

420 REM

430 DATA 5

440 DATA 32, 32, 174, 175, 177

94

450 REM

460 DATA 15

470 DATA 32, 78, 32, 77, 32, 32
480 DATA 32, 32, 32, 32, 32, 32
490 DATA 32, 85, 175

500 REM

510 DATA 14

520 DATA 32, 32, 32, 32, 32, 32
630 DATA 32, 32, 32, 32, 32, 32
540 DATA 32, 111

550 REM

560 DATA 17

570 DATA 32, 32, 32, 32, 32, 32
580 DATA 32, 32, 32, 32, 111, 1ll1
590 DATA 111, 76, 76, 111, 111

600 REM

610 DATA 18

620 DATA 32, 32, 32, 32, 32, 32
630 DATA 32, 32, 32, 78, 177, 32
640 DATA 32, 32, 32, 32, 32, 177
650 REM

660 DATA 18

670 DATA 32, 32, 32, 32, 32, 32
680 DATA 32, 32, 178, 32, 32, 77
690 DATA 32, 32, 32, 32, 32, 118
700 REM

710 DATA 18

720 DATA 32, 32, 32, 32, 32, 32
730 DATA 32, 78, 32, 32, 32, 32
740 DATA 77, 32, 32, 32, 32, 118
750 REM

760 DATA 18

770 DATA - 32, 32, 32, 32, 32, 32
780 DATA 32, 79, 119, 119, 119, 119
790 DATA 80, 32, 32, 32, 32, 178
800 REM

810 DATA 17

820 DATA 32, 32, 32, 32, 32, 32
830 DATA 32, lol, 112, 110, 112, 110
840 DATA 106, 32, 32, 32, 178

850 REM

95

860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140

Das

Bildes mittelst

DATA 22
DATA 32,
DATA 32,
DATA 106,
DATA 112,
REM

DATA 23
DATA 32,
DATA 32,
DATA 106,
DATA 113,
REM

DATA 23
DATA 32,
DATA 32,
DATA 106,
DATA 87,
REM

DATA 26
DATA 32,
DATA 32,
DATA 119,
DATA 119,
DATA 119,
REM

DATA 17
DATA 32,
DATA 32,
DATA 111,

erste der

32,
101,
32,
110,

32,
101,
32,
113,

32,

101,
78,
67,

32,
119,

32,
119,
119

32,
32,
111,

32,
109,
32,
85,

32,
32,
78,
5,

32,
32,
32,
67,

32,
119,
32,
119,

32,
32,
111,

32,
125,

78,

73

32,
79,
32,
74,

32,
79,
32,
87,

32,
79,
32,
119,

32,
76,
111,

32,
109,
32,

32,
80,
32,
73

32,

106,
45,

113

32,
119,
79,
119,

32,
111,
101

drei

Programme
PRINT-Statement,

96

32
125
32

32
32
85

32
32
113

32
119
119
119

32
111

zeigt

die

die
hier

Erstellung eines
schnellste und

kiirzeste und damit in diesen Fall wohl diinstigste
Moglichkeit. Hier wird das Bild nach dem Léschen des
Bildschirmes, was in Zeile 160 durch ein)

PRINT CHR$(147)

geschieht, durch je ein PRINT-Statement pro Zeile zusammen-
gesetzt. Dabei wird ausgiebig von den erwidhnten Graphik-
zeichen Gebrauch gemacht. In den REM-Zeilen dahinter erfahren
Sie, auf welchen Tasten Sie die einzelnen Gebilde finden (die
Leerzeichen sind dabei natiirlich ausgelassen). Sie miissen
diese Tasten dann nur noch gemeinsam mit <shift> oder <C=>
driicken (wie oben beschrieben), und schon erscheint das
gewiinschte Zeichen auf Ihrem Bildschirm.

Im zweiten Programm wird das gespeicherte Bild ebenfalls
durch PRINT-Statements erzeugt. Sie enthalten jedoch nicht
direkt die einzelnen Zeichen, sondern diese werden iiber den
Umweg der ASCII-Codes erzeugt. Die verschiedenen ASCII-Codes
sind dabei in DATA-Zeilen untergebracht. Wie Sie vielleicht
wissen, werden in DATA-Zeilen verschiedene durch Komma
abgetrennte Elemente gespeichert, die dann durch den Befehl
READ nacheinander(!) in einen beliebigen Speicher (hier CH)
eingelesen werden konnen (s. CBM 64 - Handbuch Kapitel 8).
Dieses Einlesen geschieht in unserem Programm in Zeile 180.
Die Variable CH enthélt nun den ASCII-Wert des als nichstes
auszugebenden Wertes. In Zeile 190 wird das zugeordnete
Zeichen dann gePRINTet. Das Ganze spielt sich in einer
FOR...NEXT - Schleife ab, die insgesamt 290 mal durchléuft,
um alle 290 Daten einzulesen. Am Ende jeder Bildzeile (die in
den DATA-Zeilen durch ein REM getrennt sind) steht, wie Sie
sehen, die Zahl 13. Dies ist der ASCII-Code fiir <{return> und
veranlaBt den Computer das nidchste Zeichen an den Anfang der
nichsten Zeile zu setzen. Wie Sie weiterhin sehen, werden
hier eine ganze Menge DATAs benétigt, was diese Methode in
unserem Falle recht uneffektiv gestaltet. Ein wenig geiéndert
wire die Lage, wenn man statt der vielen Codes fiir die
Leerzeichen (ASCII = 32) am Anfang einer Zeile einen Merker
angibt, der iiber die Anzahl der Leerzeichen Auskunft gibt,
die ausgegeben werden miissen, bevor die richtigen Graphik-
zeichen erscheinen. Lassen Sie sich einmal etwas einfallen.

97

Beispiel Nr. 3 demonstriert uns die Anwendung des POKE-Be-
fehls, um Zeichen direkt in den Videoram einzuschreiben. Auch
hier werden diesmal die Bildschirmcodes in DATA-Zeilen
untergebracht. Doch neben dem einfachen Einschreiben eines
Zeichens in den Speicher miissen Sie weiterhin noch die Farbe
jedes einzelnen Buchstaben etc. in den Farbram eintragen, wie
oben dargelegt. Kern des Programms sind 2zwei ineinander
verschachtelte FOR...NEXT - Schleifen. Die duBere (z.
200-290) erhéht (nach dem Durchlauf der inneren) die Nummer
der Zeile, die mit Graphikzeichen gefiillt werden scll. Vor
dem Start der inneren Schleife wird zuniéchst ein Wert aus den
DATA-Zeilen in die Variable ZA gelesen (Z. 210), der die
Anzahl der Zeichen in der jeweiligen Bildschirm-Zeile angibt.
Dieser dient dazu die Anzahl der inneren Schleifendurchléufe
zu bestimmen. In dem Inneren dieser Schleife werden nun
nacheinander die Bildschirmcodes der verschiedenen Zeichen
durch READ eingelesen (Z. 250) und an die laufende Adresse im
Videoram gePOKEt (Z. 260). Alsdann schreiben wir in die
korrespondierende Stelle des Farbrams den Wert 5 fiir die
Farbe griin (Z. 270), der in Zeile 160 festgelegt wurde. Auch
hier bietet sich natiirlich die gleiche Verkiirzung der
DATA-Zeilen wie im zweiten Beispiel beschrieben an.

Wie stellt man aber nun am ginstigsten ein eigenes
Graphikbild zusammen? Hier gibt es die unterschiedlichsten
Moglichkeiten, und jeder wird selbst entscheiden, welche von
ihnen ihm am einfachsten erscheinen. Allgemein kann aber
gesagt werden, daB ein richtig schénes Bild mit vielen
Details eine recht zeitaufwendige Sache ist, besonders, wenn
man dazu noch selbstdefinierte Zeichen mit ins Spiel bringt,
wie dies in Paragraph 4.4 dargelegt ist. Doch konnen auch
einfache errechnete (also durch eine bestimmte
Rechenvorschrift erzeugte) Bilder oft schone Effekte
erzeugen. Dies demonstriert z.B. das folgende Beispiel:

100 REM xkkkk¥kkkkkkkkkkkkk

110 REM xx XX
120 REM *x ZUFALLSBILD *x
130 REM x*xx F'S 3
140 REM *¥Xkkkkkkkkkkkkkkkx
150 REM

98

160 PRINT CHR$(147) : REM BILDSCHIRM LOESCHEN
170 PRINT CHR$(RND(1)*3 + 177); : REM EINES DER DREI ZEICHEN

ASCII=177/178/179
180 Gotro 170

Vielleicht versuchen Sie dieses Programm einmal zu verstehen.
Ein Tip: RND(l) ergibt Zufallszahlen von 0-1.

Eine weitere Moglichkeit zur Erstellung von Bildern ist mit
der Verwendung einer besonderen Routine verbunden. Diese
Routine positioniert den aktuellen Cursor an eine beliebige
Stelle des Bildschirms. Wie Sie wissen ist dies mit dem
originalen Basic nur innerhalb einer Zeile méglich. Die
kleine Unterroutine ab Zeile 1000 des folgenden Programms
aber liBt einen beliebigen Zugriff zu:

100 REM X¥kkkkXXXRKKXKKKXKKKKKKKKK

110 REM *x xx
120 REM *x SINUSKURVE IM TEXT x*xx
130 REM *x *x
140 REM XXXRXRXKKXERKKKKKKKKKKRKXKK
150 REM

160 PRINT CHR$(147) : REM BILDSCHIRM LOESCHEN
170 FOR X=0 TO 39
180 Y=13%SIN(X/3)+12 : REM FUNKTION

190 GOsSUB 1000 : PRINT"*"; : REM POSITION BERECHNEN
200 NEXT X : END
210 REM

220 REM POSITIONSBERECHNUNG:

230 REM XXkXKKKXKKKXKXKKKKKX

1000 PRINT CHR$(19);:IF Y>0O THEN FOR Z=1 TO Y:PRINT:NEXT T
1010 PRINT TAB(X);: RETURN

Gezeichnet wird eine Sinuskurve (s. # 5.1) mithilfe des
Sternzeichnes (%*). Dabei werden dem Unterprogramm in Zeile
1000 in den Speichern X und Y die Parameter fiir die Spalte
(X) und die Reihe (Y) der gewiinschten Cursorposition
iibergeben. Nach einem <home> (PRINT CHR$(19);) werden solange
carrige returns gesendet, bis die gewiinschte Zeile ereicht
ist. Dann muB nur noch durch einen TAB-Befehl die richtige
Spalte ausgewdhlt werden. Dieses kleine, aber auBerst
effektive Unterprogramm erlaubt Ihnen wunderschéne Graphiken

schon im Textmodus.

99

Ein weiteres recht schones und iibersichtliches Verfahren der
Erstellung von Bildern besteht darin, das gewiinschte Bild auf
dem Fernseher direkt mit dem Cursor und der Tastatur zu
erstellen. Dabei lassen Sie die Farbe am besten zundéchst
einmal auBer betracht. Alsdann schreiben Sie vor Jjede
einzelne Zeile (entweder mit Insert, wobei Sie beachten
miissen, daB dadurch eventuell 2Zeilen unten fortgeschoben
werden, oder durch einfaches Uberhchreiben) zunéichst die
Zeilennummer, ein PRINT (abkiirzbar mit einem Fragezeichen
(?)) und ein Anfiithrungszeichen (") und gefolgt schlieBlich
von <return> (Sie brauchen also nicht unbedingt ein :zweites
Anfiihrungszeichen, wenn die Zeile mit diesem PRINT-Ausdruck
endet). Damit haben Sie schon einmal die wesentlichen
Bildinhalte gespeichert. Doch die Sache hat einige Haken:
Erstens muB in einer Zeile noch Platz fiir die Zeilennummer,
Frage- und Anfiihrungszeichen sein. Soll dieser Platz
ebenfalls genutzt werden, so muB dies nachtriglich im
Programm geschehen. Vorsicht ist in der letzten
Bildschirmzeile geboten. Sollten Sie zufdllig mit dem Cursor
nach unten iiber diese hinwegrollen, so wird der gesamte
Bildschirm nach oben geschoben und die oberste Zeile
verschwindet. Ein weiteres Problem: Sie diirfen in keiner
Zeile die letzte Spalte verwenden. In diesem Fall wiirde eine
neue Bildschirmzeile eingeschoben, was zu diversen
Schwierigkeiten fiihrt.

Weiterhin koénnen keine inversen Zeichen direkt in ein
PRINT-Statement aufgenommen werden. Sollte Ihr Bild solche
enthalten, so miissen Sie sie durch folgende Sequenz ersetzen:

<rvs on><....><rvs off)>

Mit <....> sind alle hintereinander folgenden (im Programm
normalen) Zeichen gemeint, die auf dem Bildschirm invers
dargestellt werden sollen.

Drittens kénnen Sie ebenfalls keine Farben direkt in ein
PRINT-Statement mit aufnehmen. Dies muB durch den Einbau der
entsprechenden Farb - Controlcodes in ein PRINT-Statement
nach dem Editieren geschehen. Eine Bemerkung zum SchluB: Die
Control-Zeichen werden bekanntlich nur dann richtig in einen

100

PRINT - Ausdruck eingebaut (und nicht sofort ausgefiihrt),
wenn Sie vorher ein Anfiithrungszeichen (") gegeben haben. Dies
ist aber bei nachtrédglichen Einfiigungen sehr stérend und auch
nicht unbedingt notwendig. Sie kénnen némlich durch Einfiigen
einer Leerstelle mit <inst)> ebenfalls an diese Stelle ein
Controlzeichen setzen. Wollen Sie also in dem String "AB"
zwischen A und B ein Controlzeichen einfiigen, so0 kann dies
einfach durch <inst)> <{controlzeichen)> geschehen.

Wie Sie sehen, ist diese Methode der Bilderzeugung nicht
gerade sehr komfortabel, doch fiir den Anfang oder den
Gelegenheitsdesigner akzeptabel. Wollen Sie aber
professionell Bilder in gréBerer Stiickzahl und Qualitit
erzeugen, so sollten Sie sich einen kleinen Bildeditor
schreiben, also ein Programm, mit dem Sie einfach durch
Bewegen eines (selbst erzeugten) Cursors ein Bild mit allen
Farben und Moéglichkeiten erstellen koénnen. Dies ist
zugegebenermaBen nicht ganz einfach, aber ein sicher
lohnendes Projekt. Diejenigen, die sich fiir dieses Thema
besonders interessieren, sollten hierzu unbedingt noch den
Paragraphen 4.4 gelesen haben.

101

4.2 Programmierung
der Punktgraphik

Besonders die komplizierte Organisation der hochaufliésenden
oder gar der Multicolor - Graphik macht einem 2zu schaffen,
wenn man versucht, diese zu bedienen. Allein die Ansteuerung
eines Punktes in einem (gedachten) Koordinatensystem
verursacht schon recht groBes Kopfzerbrechen und schlieBlich
einen enormen Rechenaufwand. Die bloBe Beriicksichtigung aller
notwendigen Faktoren zum Einschalten der Graphik bedarf eines
guten Uberblicks, der sich erst nach einiger Beschédftigung
mit dem Thema Graphik einstellt. Die Erstellung von einfachen
Linien oder sogar Kreisen ist dabei so schwer und bedarf
vieler mathematischer Kenntnisse, daB sie schon nur noch von
recht firmen Programmierern geldést werden konnen. Aus diesem
Grunde werden hier die verschiedenen Routinen (also Programm-
teile) vorgestellt, die zur Realisierung der in Kapitel 3
dargelegten Méglichkeiten Ihres Rechners notwendig sind. Es
ist dabei nicht unbedingt erforderlich, daB jeder einzelne
Schritt eines Programms verstanden ist, da 1letztendlich die
Anwendung dieser Dinge ausschlaggebend ist. Wer also nicht
weiB, was beispielsweise sin oder cos bedeuten, der sollte
iiber die einzelnen Stellen (hier der Kreiserzeugung)
hinweglesen. Trotzdem sollte er den entsprechenden Abschnitt
in Kapitel 3 (Abschnitt 3.4) iiber die Grundlagen der Graphik
gelesen haben. Fiir die Interessierten jedoch koénnen solche
Informationen wertvoll sein, um die einzelnen Routinen fiir
eigene Zwecke abzuwandeln oder Teile daraus fiir é&hnliche
Aufgaben zu verwenden.

Sie sollten sich jedoch dariiber im Klaren sein, daB eine
Basicroutine, so iibersichtlich sie sein mag, bei weitem nicht
die Geschwindigkeit besitzt, wie ein entsprechendes
Maschinenspracheprogramm. Damit sind viele Effekte allein in
Basic nur sehr triége zu verwirklichen. Wenn Sie sich einmal
anschauen, wie lange es in Basic dauert, einen Kreis 2zu
zeichnen, so werden Sie mir da wohl in aller Entschiedenheit
und ohne zu zdégern zustimmen. Um dieses Manko zu eliminieren,
werden wir Ihnen am Ende dieses 4. Kapitels ein kleines
Assembler - Graphik-Aid (samt Basiclader) zusammenstellen,

das Ihnen komprimiert die Méoglichkeiten verschafft, die die
Kernpunkte jeder Graphik darstellen. Die einzelnen Funktionen
des Graphik-Packetes konnen Sie -quasi als kleine Basic-
erweiterung- von Basic aus ansteuern. Wollen Sie nur in Basic
programmieren, so beherzigen Sie die Tips, die Ihnen im
Anhang zur Optimierung Ihrer Programme gegeben wurden.

Bei allen Programmen wird davon ausgegangen, daB der Graphik-
speicher bei $2000-$3FFF (8192-16383) und der Videoram
weiterhin bei $0400-$07FF (1024-2047) liegen. Dies macht zwar
ein Arbeiten mit Text und Graphik zugleich unméglich, ist
Jedoch programmtechnisch besser zu bewidltigen. Achten Sie
aber bei langen Programmen und/oder vielen Speichern darauf,
daB diese nicht mit der Graphikseite kollidieren. Sollte dies
einmal geschehen, so setzen Sie in der ersten Zeile Ihres

Programms einfach durch

POKE 45,0 : POKE 46,64

den Start der Variablen hoch auf $4000 (16384). Dabei ist
Jjedoch zu beachten, daB bei jeder Programmveridnderung die
Graphikseite zerstort wird und bei einem Abspeichern auf
Diskette oder Kassette die Graphik mit iibertragen wird.
Wollen Sie also Veriédnderungen an Ilhrem Programm vornehmen
nachdean es einmal gestartet worden ist, so miissen Sie es erst
einmal wieder einladen und direkt nach der Veriédnderung
abspeichern, bevor Sie es wieder starten!

Wichtig bei allen Angaben ist, daB Sie diese direkt am
Computer ausprobieren. Nur 8o werden Sie Herr iiber die
Unmasse an Fakten und Zusammenhiéngen und nur so lernen Sie
damit umzugehen. Der Computer ist Praxis!

Doch jetzt wollen wir endlich anfangen. Krempeln wir uns also
die Armel hoch, spucken dreimal in die Hénde und los geht's!

103

4.2.1, Ini der

Bevor wir unsere Figuren auf den Bildschirm zaubern, miissen
wir natiirlich erst einmal dafiir sorgen, daB iiberhaupt Graphik
zu sehen ist. Dazu gehdért, daB der Bildschirm zunédchst
geléscht wird, da im Anfang stets Einiges an "Miill"
erscheinen wird. Der Graphikspeicher wurde schlieBlich vorher
anderweitig genutzt. Zu dem Loéschen des Graphikbildschirms
gehért natiirlich auch ein Léschen der Farbe bazw. das
Herstellen eines einfarbigen Bildschirms. AnschlieBend wollen
wir sicher wieder zuriick, um Text anzuzeigen. Wir benétigen
also insgesamt vier getrennte Programmteile, sogenannte
Routinen, allein um in die Graphik einzusteigen:

~ Graphik einschalten
- Graphik léschen

Farbe léschen

- Graphik ausschalten

Diese vier Rechenvorschriften (Algorithmen) werden im
folgenden einzeln vorgestellt und besprochen. Sie werden
sehen, daB sie in jedem spédteren Programm, das sich mit der
Graphik beschaftigt, wieder in Form von Unterprogrammen
auftauchen werden. Sie sollten also 2zu Ihrem stindigen
Repertoire gehoren.

4.2.1.1. Einschalten der Graphik

Nun ist es also soweit, wir konnen beginnen. Stellen wir
zundchst einmal die Dinge 2zusammen, die 2zum Einschalten

benstigt werden:

a) Speicherlage:
Zunédchst einmal miissen wir uns einigen, wo im gesamten

Speicherbereich des 64ers die einzelnen Funktionen wie
Videoram und Graphikspeicher liegen sollen. Hierfiir sind
Register 24 (Bits 3 und 4-7) des Videocontrollers und das
Register 0 (Bits 0 und 1) der CIA 2 zustédndig, deren
Funktionen ausgiebig in dem Abschnitt 3.3 erldutert
werden. In allen unseren Anwendungen werden wir uns -wie

104

oben schon erwidhnt— mit dem Graphikspeicher nur in dem
Bereich von $2000 bis $3FFF (8192-16383) aufhalten, der
Videoram liegt bei $0400-$07FF (1024-2047). Wollen Sie
Ihre Graphiken in anderen Bereichen ablegen, so miissen Sie
entsprechende Anderungen vornehmen.

b) Graphikart:

Wir miissen uns entscheiden, ob wir unser Bild in
Multicolor, die bekanntlich eine hoéhere Farbauflésung
zuléBt, dafiir aber weniger Punkte in x-Richtung besitzt,
oder ob wir die hochauflésende Graphik widhlen mit nur
einer Farbe pro 8x8-Punkte - Feld. Der Aufbau wund die
Unterschiede dieser beiden Graphikarten wurden bereits in
Paragraph 3.4 ausgiebig erértert.

Der zweite Punkt ist schnell gelést. Wir wollen uns mit der
hochauflésenden Graphik beschéftigen. Diese wird durch Setzen
der Bits 5 und 6 (Bit 6 muB gleichfalls gesetzt werden!) von
Register 17 des VIC und das Loschen von Bit 4 des Registers
22 eingeschaltet. Letzteres ist normalerweise geloéscht,
braucht also nicht unbedingt gleich Null gesetzt werden. Das
alles passiert durch zwei einfache POKEs, die in der wunten
folgenden Routine in den Zeilen 10070 und 10080 stehen.

Auch die Adresslagenwahl ist in unserem Falle recht einfach.
Da wir uns nicht aus dem unteren 16 K-Bereich wunseres
Speichers herausbewegen (Sie wissen, daB der VIC nur 16 K
addressieren kann (s. # 3.3.2) wund im Normalzustand die
untersten 16 K fiir ihn erreichbar sind), brauchen wir keine
Verédnderungen im Register der CIA 2 zu unternehmen. Lediglich
die Basisadresse der Graphikseite muB durch Setzen des 3.
Bits von Register 24 in den oberen Teil der 16 K, also nach
unseren $2000 (8192) gelegt werden. In dem folgenden
Unterprogramm wird dies in Zeile 10090 erreicht:

10000 REM XXkkXkXkkkKRKXKKKKRKKKKRKXKK

10010 REM xx xX
10020 REM *x GRAPHIK EINSCHALTEN *x
10030 REM *x X%
10040 REM kXxkkXkkkkXEAKRKKKEKKKKRKXKXRX
10050 REM

10060 v = 53248 : REM BASISADRESSE - VIDEOCONTROLLER

105

10070 POKE V+17, PEEK(V+17) OR (8+3)%16 : REM GRAPHIK EIN
10080 POKE V+22, PEEK(V+22) AND 255-16 : REM MULTICOLOR AUS
10090 POKE V+24, PEEK(V+24) OR 8 : REM GRAPHIK NACH $2000
(8192)

Die Befehle AND und OR sind in Kapitel 2 beschrieben. Die
Zeilennummern sind extra hoch, um die Routine leicht an ein
Programm anzuhédngen. Der Textmodus kann auch durch <run/stop)
{restore> wieder eingeschaltet werden.

4.2,1.2. Loschen der Graphik

Da in dem Speicher, den nun unsere Graphik einnimmt, vorher
stets etwas anderes stand, erhalten wir nach dem Einschalten
der Graphik ein recht wildes Durcheinander von Strichen oder
sonstigen Punkten. Um nun jeden Graphikpunkt zu léschen,
miissen wir jedes Bit des Graphikspeichers auf 0 setzen. Mit
einem POKE sind wir in der gliicklichen Lage, gleich 8 Bits
(Byte), also 8 Punkte gleichzeitig anzusprechen. Es geniigt
also eine FOR...NEXT - Schleife, in der —angefangen von der
Graphik - Startadresse ($2000 = 8192) bis zum Ende bei $3FFF
(16383)—- alle Bytes geléscht werden. Da nun ein Bild aber nur
320x200 = 64000 Punkte, also 64000/8 = 8000 Bytes besitzt,
brauchen wir tatsdchlich nur 8000 Bytes zu loéschen:

10200 REM kokokxokokokok ok ok k ok k ko kK k k¥ kX

10210 REM *x XX
10220 REM ** GRAPHIK LOESCHEN xx
10230 REM *x X%
10240 REM XxkkXxkkkxkkkXkkkkokkkkkkk
10250 REM

10260 BG = 8192 : REM BASISADRESSE DES GRAPHIKSPEICHERS
10270 FOR X=BG TO BG+8000 : REM 8000 BYTES

10280 POKE X,0 : REM LOESCHEN

10290 NEXT X

Wie Sie sehen, dauert dieser Vorgang recht lange. Haben Sie
sich einmal das Graphik-Packet am Ende des Kapitels
abgeschrieben, so werden Sie sehen, wie schnell so etwas in
Assembler gehen kann. Die Variable BG gehért streng genommen

106

nicht zu der Routine, genauso, wie die Variable V im oberen
Programm. Sie sollten am Anfang eines jeden Programmes
gesetzt werden. Wollen Sie die einzelnen Routinen als Unter-
programme laufen lassen, so miissen sie mit dem Befehl RETURN
abgeschlossen werden.

4.2.1.3. Loechen der Farbe

Die Farbe liegt bei der hochauflésenden Graphik stets im
Videoram (s. # 3.4). Dabei bestimmen die obersten 4 Bits
eines jeden Bytes die Farbe der gesetztem Punkte in der
Graphikseite, die unteren 4 dagegen die Farbe der nicht
gesetzten Punkte, also quasi die der Hintergrundfarbe. Da der
Videoram vor dem Einschalten der Graphik den Text enthielt,
zeigen sich auch nach dem Léschen noch kleine Farbquadrate an
den Stellen, an denen vorher Text stand. Um auch diese 2zu
eliminieren, miissen wir im Videoram die Farbe einheitlich

setzen. Dies wird in der folgenden Routine vorgenommen:

10400 REM L3222 22222222223 22232 3]

10410 REM *% xx
10420 REM *¥ FARBE LOESCHEN xx
10430 REM % XX
10440 REM 1222222222232 2223 222221
10450 REM

10460 BF = 1024 : REM BASISADRESSE DES VIDEORAM

10470 FA = 6%16 + 7 : REM PUNKT-FARBE=BLAU/HINTERGRUND=GELB
10480 FOR X=BF TO BF+1000 : REM 1000 BYTES

10490 POKE X, FA : REM MIT PUNKT- UND HINTERGRUNDFARBE
10500 NEXT X

Hier gilt natiirlich das Gleiche beziiglich der Variablen BF,
wie im vorigen Programm dargelegt. FA ist ebenfalls eine
Variable, die der Routine vom iibergeordneten Programm
iilbergeben wird und den Wert enthédlt, der in jedes Byte des
Videoram geschrieben werden soll und damit Punkt- und Hinter-
grundfarbe bestimmt. Sie sollten (besonders hier) ein wenig
an den Programmen verédndern, um sie richtig 2zu verstehen.
Dies allerdings muB mit der nétigen Vorsicht geschehen, da

wir uns direkt im Herz des Rechmers befinden. Lassen Sie

107

beispielsweise BF gleich 0 werden, so wird Ihr Computer nicht
zégern, sich von Ihnen zu verabschieden, da Sie direkt die
Null-Seite des Speichers manipulieren, das "Kurzzeit-—-
gedédchtnis" des Betriebssystems.

4.2.1.4. Ausschalten der Graphik

Bislang konnten Sie sich immer nur durch <run/stop> <restore>
aus der Graphikanzeige retten. Doch wird dadurch zwangsliufig
Ihr Programm beendet, was nicht wunbedingt im Sinne des
Erfinders ist. Um diese Funktion regulidr in unsere Routinen-
sammlung aufzunehmen, miissen wir sémtliche Veriénderungen
riickgéingig machen, die wir in dem Teil "Graphik einschalten"”
unternommen haben:

- Bits 5/6 - Register 17 léschen
- Bit 4 - Register 22 léschen
- Bit 3 ~ Register 24 léschen

Dies geschieht im folgenden Programm:

10600 REM ¥Xk%kXkkk¥AKkR¥Kk kXK kRAK KKK K kK

10610 REM xx XX
10620 REM ** GRAPHIK AUSSCHALTEN *x
10630 REM *x xx
10640 REM XXXkkkkkkkkkokkkxkkkikkkkkkkk
10650 REM

10660 V = 53248 : REM BASISADRESSE — VIDEOCONTROLLER

10670 POKE V+17, PEEK(V+17) AND 255-6%16 : REM GRAPHIK AUS
10680 POKE V+22, PEEK(V+22) AND 255-1%16 : REM MULTICOLOR AUS
10690 POKE V+24, PEEK(V+24) AND 255-8 : REM ZEICHEKSATZ
WIEDER NACH $1000 (4096)

Damit haben wir alle wichtigsten Dinge, um die Graphik zu
bedienen. Nun kénnen wir uns den schwierigeren Zusammenhingen
widmen, die uns ermdoglichen, auch etwas auf unserem Bild
darzustellen.

108

4.2.2. Einfache Figuren in der Punktgraphik

Nachdem wir uns mit den Dingen beschaftigt haben, die wir zum
Ein- und Ausschalten der Graphik benétigen, kommen wir nun zu
den ersten Gehversuchen der Graphikprogrammierung. Angefangen
mit der Darstellung eines einfachen Punktes auf dem
Bildschirm gehen wir iiber zu den geometrischen Grundformen
der linie und des Kreises, aus denen niherungsweise fast alle

anderen Figuren hergestellt werden konnen.

4.2.2.1. Punkt

Wir vollen, wie an anderer Stelle schon des 6fteren erwidhnt,
das gesamte Graphikfeld in sogenannte Koordinaten
unterteilen. Dabei stellt der erste Wert stets die
x-Koordinate, also die Anzahl der Punkte zwischen dem
Jjeweiligen Punkt und dem linken Bildschirmfensterrand
(0-319). Der zweite genannte Wert ist dann der y-Anteil der
Koordinate, also die Anzahl der Punkte zwischen dem Punkt und
der oberen Bildschirmkante (0-199). Der Nullpunkt
(Koordinaten: 0,0) liegt demnach in der oberen 1linken Ecke
des Tensters. Die untere rechte Ecke dagegen besitzt die
Koordinaten 319,199.

Soweit, sogut. Doch dies ist unsere Vereinbarung. Wir konnen
dem Computer selbst nicht die entsprechenden Koordinaten
angeben, um einen Punkt 2zu bestimmen. Wenn Sie die
entsprechenden Kapitel gelesen haben (# 3.4.2.), so kennen
Sie den Aufbau der hochauflésenden Graphik und ihre Speicher-
organisation. Um nun aus den angegebenen Koordinaten auf das
Byte und das Bit zu schlieBen, das den betreffenden Punkt
bestimmt, miissen wir zunéchst einige Umrechenarbeit leisten.
Sie brauchen die folgenden Ausfiihrungen nicht unbedingt zu
verstehen. Den Interessierten unter Ihnen sei die Herleitung
der im folgenden Programm verwendeten Formel dargelegt.

Lassen Sie uns zunédchst einmal den EinfluB der y-Koordinate
untersuchen:

Um die Nummer der Graphikzeile (eine Zeile besteht aus 8
Reihen) zu berechnen, in der sich der Punkt befindet, miissen
wir die y—-Koordinate lediglich durch 8 teilen (ohne Rest):
zeilennummer = INT(yK/8)

109

Da jede Zeile aus 320 Bytes besteht (jede Reihe besteht aus
320/8 = 40 Byte), miissen wir diese Nummer mal 320 nehmen, um
die Startadresse der betreffenden Zeile relativ zur
Startadresse des Graphikspeichers zu erhalten:

zeilenadresse = 320 % INT(yK/8)

Der Rest der eben durchgefiihrten Division stellt nun die
Nummer der Reihe in dieser 2Zeile dar und =mu8 nur noch
hinzuaddiert werden:

reihenadresse = 320 *x INT(yK/8) + (y AND 7)

Der EinfluB der x-Koordinate ist etwas schwieriger, da hier
nicht nur einzelne Bytes, sondern sogar die Bits
unterschieden werden miissen:

Als erstes berechnen wir die Adresse des angesprochenen Bytes
relativ zur Startadresse der betreffenden Reihe (s.o0.). Wir
rechnen:

byteadresse = 8 * INT(xK/8)

Nun berechnen wir die Position des gewiinschten Bits in dem
betreffenden Byte durch Erstellung einer Maske. Das jeweilige
Bit wird in der Maske gesetzt, alle anderen sind gleich 0:

maske = 27 (7-(xK AND 7))

Diese Einzelteile werden - wie in der folgenden Routine
gezeigt - zusammengesetzt:

10700 REM XXkXRkkXAXKKKXKXKKKKEKE

10710 REM xx X
10720 REM *x PUNKTBERECHNUNG *x
10730 REM *x (SETZEN) X%
10740 REM XXXXEEXXKKKKKKKKKKKKKKK
10750 REM

10760 RA = 320 x INT(YK/8) + (YK AND 7)
10770 BA = 8 * INT(XK/8)

110

10780 MA = 2T(7-(XK AND 7))
10790 AD = SA + RA + BA
10800 POKE AD, PEEK(AD) OR MA

10810 REM

10900 REM %X3¥kkkokk ko k Kok ok ok ok ok & % Xk % k

10910 REM *x *Xx

10920 REM xx PUNKTBERECHNUNG XX

10930 REM xx (LOESCHEN) X%

10940 REM kkokkokkokkok koK kokkokdkkok Xk k%

10950 REM

10960 RA = 320 x INT(YK/8) + (YK AND 7)
10970 BA = 8 x INT(XK/8)

10980 MA = 255 - 27(7-(XK AND 7))

10990 AD = SA + RA + BA

11000 POKE AD, PEEK(AD) AND MA
11010 REM

11020 REM INTERNE PARAMETER:

11030 REM *Xxxkkkkkkkkkkkkkkk
11040 REM RA: REIHENADRESSE

11050 REM BA: BYTEADRESSE

11060 REM MA: MASKE

11070 REM AD: ZIELADRESSE

11080 REM

11090 REM VORZUGEBENDE PARAMETER:
11100 REM XXXkkkkkkkXkXkXRKKKKKKKXX
11110 REM SA: GRAPHIKSPEICHERSTARTADRESSE (Z.B. 8192)
11120 REM XK: X-KOORDINATE

11130 REM YK: Y-KOORDINATE

Wie Sie sehen, unterscheiden wir hier zwischen dem Setzen und
dem Loschen eines Punktes in HGR. Tatsédchlich miissen diese
Fdlle getrennt behandelt werden. Die Variable SA gibt die
Anfangsadresse des betreffenden Graphikspeichers an und wird
bei uns stets bei 8192 gehalten. Natiirlich werden die beiden
Routinen wie die im letzten Abschnitt vorgefiihrten meist als
Unterprogramme verwendet und enden daher zum gréBten Teil mit
einem RETURN. Dies erkennen Sie bereits in dem folgenden
Progrann, das die inzwischen vorgefiihrten Routinen anwendet:

100 REM EXXKKKKEXRKEEREERERKK

110 REM XX 33
120 REM *% SINUSKURVE xx
130 REM XX kX
140 REM AERRKKXEKREKKKRRKK
150 REM

160 v=53248 : REM STARTADRESSE DES VIC

170 SA = 8192 : REM STARTADRESSE DES GRAPHIKSPEICHERS
175 POKE V+32, 10 : REM RAHMENFARBE

180 GOSUB 10000 : REM GRAPHIK EINSCHALTEN

190 GOSUB 10200 : REM GRAPHIK LOESCHEN

200 FA = 7%16 + 2 : GOSUB 10400 : REM FARBE SETZEN
210 YK = 100 : REM X-ACHSE ZEICHNEN

220 FOR XK=0 TO 318

230 GOSUB 10700 : REM PUNKT ZEICHNEN

240 NEXT XK

250 XK = 160 : REM Y-ACHSE ZEICHNEN

260 FOR YK=0 TO 199

270 GOSUB 10700 : REM PUNKT ZEICHNEN

280 NEXT YK

290 FOR XK=0 TO 319 : REM SINUSKURVE ZEICHNEN
300 YK = 70 % SIN (XK/25.5) + 99

310 GOSUB 10700 : REM PUNKT ZEICHNEN

320 NEXT XK

330 POKE 198,0 : REM TASTEN LOESCHEN

340 WAIT 198,255 : REM AUF TASTE WARTEN

350 GOSUB 10600 : REM GRAPHIK AUS

360 END

370 REM

10000 REM XXXkkXXkRKKKKKKKRKKEKXKEXKKKK
10010 REM x*x %k
10020 REM %% GRAPHIK EINSCHALTEN *x
10030 REM xx xx
10040 REM XXkXXXKKKKKKKEXKKRKXKKXKRKE
10050 REM

10070 POKE V+17, PEEK(V+17) OR (8+3)%16 : REM GRAPHIK EIN
10080 POKE V+22, PEEK(V+22) AND 255-16 : REM MULTICOLOR AUS
10090 POKE V+24, PEEK(V+24) OR 8 : REM GRAPHIK NACH $2000
(8192)

10100 RETURN

10110 REM

112

113

10200 REM kXkkXXKkKKXKKXKRKXXRKKKEKAK

10210 REM *x *k

10220 REM ** GRAPHIK LOESCHEN x*x

10230 REM xx K

10240 REM XXXXkkXXXKKKXXKXKAXKKERAK

10250 REM

10270 FOR X=SA TO SA+8000 : POKE X,0 : NEXT X
10300 RETURN

10310 REM

10400 REM AKK KKK K K AR K KK X Xk K K ok kK kK

10410 REM X% 2]

10420 REM %% FARBE LOESCHEN %X

10430 REM xX xk

10440 REM P332 2233333333323 333

10450 REM

10460 BF = 1024 : REM BASISADRESSE DES VIDEORAM
10480 FOR X=BF TO BF+1000 : POKE X,FA : NEXT X
10510 RETURN

10520 REM

10600 REM %Xkxkkkkkkkkkkkkkkkkkkkkkkk

10610 REM *x* XX

10620 REM **x GRAPHIK AUSSCHALTEN *x

10630 REM *xx XX

10640 REM XXkkkkXXXkkkkERRRKKKRKKKKKK

10650 REM)

10670 POKE V+17, PEEK(V+17) AND 255-6%16 : REM GRAPHIK AUS
10680 POKE V+22, PEEK(V+22) AND 255-16 : REM MULTICOLOR AUS
10690 POKE V+24, PEEK(V+24) AND 255-8 : REM ZEICHENSATZ
WIEDER NACH $1000 (4096)

10695 RETURN

10700 REM Xxkxkkkkkkkkkkkkkkokkkkk

10710 REM xx *%

10720 REM *x PUNKTBERECHNUNG %X

10730 REM xx (SETZEN) *%

10740 REM Xxkxkkkkkkkkxkkkkkkkkkk

10750 REM

10760 RA = 320 * INT(YK/8) + (YK AND 7)

10770 BA = 8 *x INT(XK/8)

10780 MA = 27(7-(XK AND 7))

10790 AD = SA + RA + BA

10800 POKE AD, PREK(AD) OR MA

10810 RETURN

Bis auf ein paar Anderungen (z.B. wurde in dem Unterprogramm
"Graphik 16schen”, aus Geschwindigkeitsgriinden weitest-
gehendst auf REM-Zeilen verzichtet). Sind die verwendeten
Routinen identisch mit den bisher vorgestellten. Probieren
Sie ruhig einmal die einzelnen Dinge aus (besonders in der
Zeile 300 sollten Sie die verschiedenen Zahlen veriéndern).

Nur so lernen Sie mit ihnen umzugehen.

4.2.2.2. Linie

Schon etwas schwieriger gestaltet sich das Zeichnen einer
Linie zwischen zwei beliebigen Punkten auf dem Bildschira.
Man sieht dies zwar tédglich in irgendwelchen Programmdemos,
macht sich jedoch nie richtig Gedanken dariiber, welche
Uberlegungen dahinter stecken. Das Problem ist: wie stelle
ich fest, welche Punkte des Bildschirms auf dieser Linie
liegen. Um es zu l6sen miissen wir uns ein wenig mit der
sogenannten analytischen Geometrie beschaftigen. Bekommen Sie
keinen Schreck! Hinter diesem monstrésen Begriff verbirgt
sich etwas ganz harmloses (jedenfalls in dem Rahmen, der uns
hier interessiert) und wenn es Sie nicht so sehr
interessieren sollte, etwa weil sich Ihnen damit iible
Kindheitserinnerungen verbinden, dann koénnen Sie die
folgenden Zeilen ruhig iiberlesen. Was wir suchen ist eine
Formel, mit der wir die Punkte einer Geraden berechnen
konnen, deren Eckpunkte gegeben sind.

Nahezu jeder von uns wird schon einmal in irgendeinem
Zusammenhang (meist aus der Schule her) von der sogenannten

normierten Geradengleichung gehort haben:

y = mx + n

wobei x und y die Koordinaten eines Punktes auf einer
Geraden, m die Steigung der Geraden und n den Schnittpunkt
mit der y-Achse darstellen. Durch einfache Umformung dieser

Formel erhalten wir:

n = y-mx

114

Kennen wir nun zwei Punkte der Geraden (unsere Endpunkte
x1,yl und x2,y2), so kénnen wir gleichfalls die zwei
folgenden Formeln aufsetzen, die wir gleichsetzen konnen:

n = yi-mxi ——— n = yz2-mxz
=> yi1-mX1 = yz2-mX2
yz2-y1
<=> m = -—-=-
X2 —X1
Letzere Formel 1&8t uns nun die Steigung m der obigen
Gleichung ausrechnen. Ist n=0, so geht die Gerade durch den

Ursprung mit Koordinaten 0,0.
der Gerade zu einem Endpunkt,
beiden Koordinaten (in diesem
Die

hinzuaddieren. folgende

endgiiltige Geradengleichung

verschobene Gerade angibt und

Verschieben wir diesen Ursprung

so miissen wir entsprechend die

Fall x2 und y2) zu x und vy
Formel gibt uns nun die
wieder, die bereits die

in die m eingesetzt wurde:

yz-y1
y = —-——- X (x - x2) + y2

X2-X1
Diese Formel ist die Grundlage des unten dargestellten
Programms und wird stiickweise in den Zeilen 10970, 11000 und
11020 errechnet, wobei die x—Koordinate XK stets von X2 nach
X1 lduft, und fiir jeden solchen x-Wert der entsprechende
y-Wert bestimmt wird. Ein Schaubild mag diese Formel
erlédutern:

” .

115

Das einzige Problem bei dieser Formel entsteht, wenn wir eine
Senkrechte zeichnen wollen. In diesem Fall wird x1=x2 und
damit der Nenner der Steigung gleich 0, was zu einem DIVISION
BY ZERO ERROR fithrt. Wir umgehen diese Unkorrektheit, indem
wir in Zeile 10990 verzweigen und dort direkt eine Senkrechte
zeichnen. Wie Sie sehen werden und was schon oft erwihnt
wurde, kommt ein Basicprogramm in der Geschwindigkeit mit
einem Maschinenprogramm natiirlich nicht mit. Trotzdem mag
Ihnen diese Routine, die Sie ebenfalls als Unterprogramm

verwenden kénnen, gute Dienste leisten.

100 REM (2222223222333
110 REM X% x%
120 REM *%X GERADE *x
130 REM x% x¥
140 REM KRKKKRKKKRXRK KX
150 REM

160 v=53248 : SA=8192

170 GOSUB 10000 : REM GRAPHIK EIN

180 FA = 1%16 + 0 : GOSUB 10400 : REM FARBE SETZEN

190 GOSUB 10200 : REM GRAPHIK LOESCHEN

270 X1=110:Y1=120:X2=130:Y2=140:REM ENDPUNKT-KOORDINATEN
280 GOSUB 10900 : REM GERADE

290 WAIT 198,255 : REM AUF TASTE WARTEN

300 GOSUB 10600 : REM GRAPHIK AUS

310 END

320 REM

10000 REM XXXkkkkkRKKKKKKKKKXKKKRKKKKK

10020 REM *%* GRAPHIK EINSCHALTEN *x

10040 REM XXXXXXXKKXKKXKKKKKKKKKKKkKKkKXK

10050 REM

10070 POKE V+17, PEEK(V+17) OR (8+3)%16 : REM GRAPHIK EIN
10080 POKE V+22, PEEK(V+22) AND 255-16 : REM MULTICOLOR AUS
10090 POKE V+24, PEEK(V+24) OR 8 : REM GRAPHIK NACH $2000
(8192)

10100 RETURN

10110 REM

116

10200
10220
10240
10250
10270
10300
10310
10400
10420
10440
10450
10460
10480
10510
10520
10600
10620
10640
10650
10670
10680
‘10690

REM XXXXXXRXKXEKXKKEXKKKERKXKK
REM *%x GRAPHIK LOESCHEN *x
REM XXERXEXKXKXKKXXKKKKKERRXKK
REM

FOR X=SA TO SA+8000 : POKE X,0 : NEXT X

RETURN

REM

REM XEREXRRKRKKKRKKKRKKKRXK
REM *x FARBE LOESCHEN xx
REM AKXKKKRRRKRKRKKRKKRK KKK
REM

BF = 1024 : REM BASISADRESSE DES VIDEORAM

FOR X=BF TO BF+1000 : POKE X,FA :
RETURN

REM

REM XXkXkXKXXRXRKKRERKERKKKRXKK

REM x* GRAPHIK AUSSCHALTEN XX
REM XXXXXKKEKXXKRKXRXKKKKEKKKKKRX
REM

POKE V+17, PEEK(V+17) AND 255-6%16 :

POKE V+22, PEEK(V+22) AND 255-16 :
POKE V+24, PEEK(V+24) AND 255-8

WIEDER NACH $1000 (4096)

10695
10700
10720
10730
10740
10750
10760
10770
10780
10790
10800
10810
10900
10910
10930
10950
10960
10970

RETURN

REM XXXXXXXXKXKKKERKRK KKKk X

REM *x PUNKTBERECHNUNG *x

REM *x (SETZEN) XX

REM XXXXXXXKAXKKEXKXERXKRKKX

REM

RA = 320 x INT(YK/8) + (YK AND 7)
BA = 8 x INT(XK/8)

MA = 2™ (7-(XK AND 7))

AD = SA + RA + BA

POKE AD, PEEK(AD) OR MA

RETURN

REM

REM XXkXXkRKERKKKKXXKKKKERKKX

REM *x GERADE ZEICHNEN *x

REM X%XkXkXkXKKkRRKXKKEKKKKKRX

REM

DY=Y2-Y1:DX=X2-X1:REM DIFFERENZEN

117

.

NEXT X

REM GRAPHIK AUS
REM MULTICOLOR AUS

REM ZEICHENSATZ

10980 YK=Y2:XK=X2:REM Y-START

10990 IFDX=0THEN FOR YK=Y2TOYl STEPSGN(-DY):GOSUB 11060:NEXT
YK:GOTO 11050:REM SENKR.

11000 DD=DY/DX:REM STEIGUNG

11010 FOR XK=X2 TO X1 STEP SGN(-DX)

11020 ZK=INT(DD*(XK-X2)+Y2):REM GERADENGLEICHUNG

11030 1IF ZK<O YK THEN YK=YK+SGN(-DY) : GOSUB 11060:GOTO
11030: REM SENKR. ZEICHNEN

11040 GOSUB11060:NEXT XK: REM NAECHSTE X-KOORD.

11050 RETURN

11060 GOSUB10760:XK=XK+1:GOSUB10760: XK=XK-1:RETURN: REM
DOPPELT BREIT ZEICHNEN

Sollten Sie es einmal leid sein, stets darauf zu warten, bis
der gesamte Bildschirm geloscht ist, so setzen Sie einfach
vor die Zeile 190 ein REM, um diese Prozedur zu unterdricken.
In der obigen Routine werden einige Speicher verwendet, deren
Inhalt im folgenden kurz erlédutert sei:

Eingabewerte:
X1/Y1 bzw.
X2/Y2 : Endkoordinaten der Linie

interne Werte:
DX/DY : Differenzen der Koordinatenpaare

DD : Die Steigung m
XK/YEK : Koordinaten des aktuellen Punktes
ZK : Zwischenspeicher

Zwei Punkte miissen hier noch erlédutert werden: Zum einen die
Funktion SGN, zum anderen die Zeile 11060.

SGN besitzt eine recht niitzliche Eigenschaft: Ist die Zahl,
die in den Klammern steht positiv, so ist das Ergebnis 1, ist
sie negativ, so nimmt es den Wert -1 an (bei O wird SGN
ebenfalls 0). Die Funktion dient also zur Bestimmung des
Vorzeichens.

In Zeile 11060 wird jeder Punkt, der angesteuert wird
dupliziert, so daB ein doppelt breiter Punkt entsteht. Dies
ist notwendig, da einzelne Punkte, die in x-Richtung keinen
Nachbarn besitzen entweder gar nicht oder nur sehr schwach zu
sehen sind. So, und jetzt viel SpaB bei Ihrer Linienkreation.

118

1.2.2.3. Ellipee/Kreis

Bine weitere wichtige und viel verwendete Figur ist der Kreis
oder ellgemeiner die Ellipse. Mit Ihnen lassen sich schone
Effekte erzeugen. Auch hierzu wird Ihnen im folgenden eine
kleine Demonstrationsroutine angegeben, mit der Sie Ellipsen
bzw. Kreise zeichnen kénnen. Doch vorher sollten wir fiir die
Interessierten unter Ihnen die mathematischen Grundlagen
darlegen, die fiir das Versténdnis dieser Funktion vonnéten
sind. Wir werden uns in diesem Buch mit insgesamt zwei
Méglichkeiten der Kreis— bzw. Ellipsenerzeugung beschiéftigen.
Die erste etwas einfacher zu verstehende wird hier angefiihrt.
Die zweite, sie resultiert aus der Verwendung sogenannter
Polarkoordinaten und erlaubt das Zeichnen von Kreisbégen,
finden Sie unter dem Abschnitt "Kuchendiagramme" im 5.
Kapitel (# 5.1.3). Doch hier seien Sie zundchst in die
iibliche Darstellungsweise eingefiihrt:

In unserer Routine gehen wir von der sogenannten
Mittelpunktsgleichung der Ellipse aus:

x2 y2

Dabei bedeuten x und y die jeweiligen Koordinaten der
Randpunkte der Ellipse. a ist der Radius in x-Richtung und b
derjenige in y-Richtung. Der Mittelpunkt der Ellipse liegt im
Koordinatenursprung (x=0/y=0):

7

Um diese Gleichung in unser Programm einzufiigen, miissen wir
sie zundchst einmal nach y auflésen:

119

Mit dieser recht kompliziert aussehenden Gleichung kénnen wir
nun die Punkte eines Ellipsenrandes berechnen. Dabei ist
Jjedoch zu beachten, daB8 dabei stets nur gleichzeitig ein
Bogen von 90 Grad gezeichnet werden kann, da eine Ellipse
streng genommen keine Funktion darstellt (Relation). Um die
vier anderen Bégen zu zeichnen, miissen wir die Vorzeichen von
x und y umkehren. Fir x geschieht das im unten stehenden
Programm durch die FOR...NEXT-Schleife in Zeilen 11150 -
11190, in dem F2 nacheinander die Werte -1 und 1 annimmt. y
dagegen wird in Zeile 11180 negiert. Da die obige Gleichung
nur fiir Ellipsen mit dem Mittelpunkt bei x=0 und y=0 gilt,
miissen wir entsprechende Summanden zu x und y hinzufiigen, wie
unten gezeigt.

Wollen Sie mit unten stehendem Programm einen Kreis zeichnen,
so miissen Sie a und b (also die Speicher XR/YR), und damit
die beiden Radien gleich groB werden lassen, weil ein Kreis

lediglich einen Sonderfall einer Ellipse darstellt.

100 REM AERKEXKRXKKIKKK
110 REM xx X%
120 REM *¥ ELLIPSE *x
130 REM XX X%
140 REM L2222 22222220221
150 REM

160 v=53248 : SA=8192

170 GOSUB 10000 : REM GRAPHIK EIN

180 FA = 1x%16 + 0 : GOSUB 10400 : REM FARBE SETZEN

190 GOSUB 10200 : REM GRAPHIK LOESCHEN

270 XR=40:YR=20:XM=160:YM=100:REM
X/Y-RADIUS===MITTELPUNKTKOORDINATEN

280 GOSUB 11100 : REM ELLIPSE

290 WAIT 198,255 : REM AUF TASTE WARTEN

300 GOSUB 10600 : REM GRAPHIK AUS

310 END

320 REM

10000 REM XxXkkkXkkkkdkokkkkkkkkkkxkkkk

10020 REM *xx* GRAPHIK EINSCHALTEN xx

10040 REM XxXkkkkkXxkkkkkkkkkkxkkkkkxkx

10050 REM

10070 POKE V+17, PEEK(V+17) OR (8+3)%16 : REM GRAPHIK EIN
10080 POKE V+22, PEEK(V+22) AND 255-16 : REM MULTICOLOR AUS

120

10090

(8192)

10100
10110
10200
10220
10240
10250
10270
10300
10310
10400
10420
10440
10450
10460
10480
10510
10520
10600
10620
10640
10650
10670
10680
10690

10695
10700
10720
10730
10740
10750
10760
10770
10780
10790
10800
10810
11100

POKE V+24, PEEK(V+24) OR 8 : REM GRAPHIK NACH

RETURN

REM

REM X30kdokkkokkokkkkkokkkkkkkk

REM *x GRAPHIK LOESCHEN XX

REM kXXX XKXKKRKKRKKKKKKkkKkK %

REM

FOR X=SA TO SA+8000 : POKE X,0 : NEXT X
RETURN

REM

REM (2222222222222 222222224

REM *x FARBE LOESCHEN *x

REM XRKRRKKKERKREKRKRKRK KKK

REM

BF = 1024 : REM BASISADRESSE DES VIDEORAM
FOR X=BF TO BF+1000 : PGKE X,FA : NEXT X
RETURN

REM

REM XXKRXXKKKKRRKRKR KKK KKKk Kk

REM *¥* GRAPHIK AUSSCHALTEN XX

REM XX kkk Xk kkkkkokkkkkkdkokokkkkk

REM

$2000

POKE V+17, PEEK(V+17) AND 255-6%16 : REM GRAPHIK AUS
POKE V+22, PEEK(V+22) AND 255-16 : REM MULTICOLOR AUS
POKE V+24, PEEK(V+24) AND 255-8 : REM ZEICHENSATZ
WIEDER NACH $1000 (4096)

RETURN

REM XXXXKXKKXKRKXRKKKKKRK KK

REM *x PUNKTBERECHNUNG *x

REM *x (SETZEN) *x

REM XRXkkRKKXKKRKKKKRKKKKKKX

REM

RA = 320 % INT(YK/8) + (YK AND 7)

BA = 8 % INT(XK/8)
MA = 27(7-(XK AND 7))
AD = SA + RA + BA

POKE AD, PEEK(AD) OR MA
RETURN
REM

121

11110 REM XEX¥EEkXERKKKXKKKKXKKKKXX

11120 REM ** ELLIPSE ZEICHNEN *x

11130 REM XEkkRkXXkKXXKXAKKRKEKKKXXK

11140 REM

11150 FOR F2=-1 TO 1 STEP 2 : REM RECHTS/LINKS-FLAG

11160 FOR X=0 TO F2%(XR) STEP F2

11170 ZK = YR x SQR(1-X"2/XR"2):XK=X+XM : REM KREISGLEICHUNG
11180 YK = YM + ZK:GOSUB 10760:YK = YM - ZK:GOSUB 10760 : REM
PUNKTE OBEN/UNTEN

11190 NEXT X,F2:RETURN

Die 4 Ubergabeparameter sind:

XM/YM : Koordinaten des Mittelpunktes
XR/YR : x-/y-Radius (a und b)

4.3 Spriteprogrammierung

Eine der wohl faszinierendsten Eigenschaften Ihres Rechners
ist die Fdhigkeit, insgesamt 8 sogenannte Sprites gleich-
zeitig auf den Bildschirm 2zu bringen. Wenn Sie den ent-
sprechenden Abschnitt im dritten Kapitel (# 3.5) gelesen
haben, dann besitzen Sie schon einen kleinen Uberblick iiber
die Spriteorganisation und die hardwaremédBige Verwirklichung
dieser Bildschirmobjekte. Hier nun lernen Sie, wie Sie mit
ihnen umgehen und was Sie dabei zu beachten haben.

122

4.3.1. von Sprites

Das erste Problem jeder Spriteprogrammierung ist die
Erstellung eines solchen Objektes, denn dies ist natiirlich
die Voraussetzung fiir jede Manipulation. Doch schon dies ist
eine recht schwieriges Unterfangen, da die Ablegung der
Sprites im Speicher relativ kompliziert ist.

Wie sie aus # 3.5 wissen, besitzt ein Sprite eine Auflésung
von 24x21 Punkten (in Multicolor: 12x21). Jeder Punkt wird
durch ein Bit (zwei Bit bei MC) im Speicher représentiert. Je
8 Punkte sind somit in einem Byte zusammengefaBt. Um eine
Zeile zu bestimmen, sind damit 24/8 = 3 Bytes notwendig.
Diese drei stehen im Speicher direkt hintereinander. Die
nidchsten drei Bytes definieren damn die zweite Zeile wund so
fort.

Um ein Sprite zu erstellen, legt man sich vorzugsweise eine
Schablone an, die sie im Anhang finden und sich am besten
abzeichnen und mehrmals kopieren sollten (oder Sie verwenden
den unten stehenden Spriteeditor). In diese Schablone koénnen
Sie jeden einzelnen Punkt Ihres Sprites mit Bleistift als
kleines Kreuz (bzw. in Multicolor als Ziffer, stellvertretend
fiir die jeweilige Farbe) eintragen und erhalten so ein
vollstédndiges und iibersichtliches Bild des zukiinftigen
Raumschiffes, Vogels oder Buchstabens. Doch Vorsicht! Sie
sollten darauf achten, daB Sie jeweils mindestens zwei Punkte
nebeneinander zeichnen, da ein eimzelner, ohne linken oder
rechten Nachbarn nicht, oder nmnur sehr schwach auf dem
Bildschirm erscheint. Dies gilt nicht fiir Multicolor, da hier
ein Punkt sowieso schon doppelte Breite besitzt.

Im AnschluB daran ersetzen Sie jedes Kreuzchen durch eine 1,
Jjedes freie Feld durch eine 0 oder, falls Sie ein Mulcicolor-
sprite entwerfen, durch die binidre Zahl, die sich aus der
eingetragenen Ziffer ergibt. Nun fassen Sie jeweils 8 dieser
Nullen und Einsen zu einem Byte zusammen und errechnen sich
nach der EKonversionstabelle im Anhang die entsprechende
Dezimalzahl. Auf diese Weise erhalten Sie insgesamt 63 Zahlen
von 0 bis 255, die den Inhalt der 63 Bytes einer
Spritedefinition wiederspiegeln.

Von Basic aus gibt es verschiedene Méglichkeiten, Sprite-
definitionen abzulegen und wieder einzulesen. Die erste und

wohl einfachste ist die Speicherung dieser 63 Daten in

123

DATA-Zeilen. Natiirlich kénnen Sie sie platzsparend moglichst
eng hintereinander packen, doch zweckmidBigerweise und aus
Griinden der Ubersichtlichkeit sollten Sie in etwa die

folgende Form besitzen:

1000 DATA 000,000,000
1010 DATA 000,000,000
1020 DATA 002,000,064
1030 DATA 001,000,128
1040 DATA 000,129,000
1050 DATA 000,066,000
1060 DATA 000,060,000
1070 DATA 000,126,000
1080 DATA 000,195,000
1090 DATA 001,141,128
1100 DATA 003,044,192
1110 DATA 031,255,248
1120 DATA 062,153,124
1130 DATA 125,066,190
1140 DATA 255,255,255
1150 DATA 001,255,128
1160 DATA 001,189,128
1170 DATA 003,060,192
1180 DATA 015,000,240
1190 DATA 015,000,240
1200 DATA 000,000,000

Sie sehen zwar nicht sofort, daB es sich hierbei um das
Fahrzeug eines AuBerirdischen handelt, doch die
3x21-Bytestruktur wird doch recht deutlich. Jede DATA-Zeile
enthdlt hier die Information fiir eine Spritezeile. Um jedoch
diese Daten in den eigentlichen Speicher 2zu lesen (in die
bekannten Blécke), miissen wir noch eine kleine Routine

hinzufiigen, die etwa so aussehen konnte:

100 AD = 13%64 : REM ADRESSE BLOCK 13

110 FOR X=0 TO 62

120 READ DT : REM 63 DATEN LESEN

130 POKE AD+X, DT : REM IN BOLCK 13 POKEN
140 NEXT X

124

Dieser Zusatz liest nacheinander die 63 Datern ein und
schreibt sie in den Speicher (zu den Blécken s.u.). Diese
Form der Spritespeicherung benétigt jedoch eine ganze Menge
Speicherplatz. Eine weitere, platzsparendere Moglichkeit der
Speicherung ist das Ablegen eines Sprites auf Diskette oder
Kassette z.B. als Sequentielles File. Auf diese Weise konnen
Sie an jeder beliebigen Stelle des Programms ein Sprite
einlesen, das Sie auf Diskette gespeichert halten. So ist es
ihnen beispielsweise méglich, ganze Datenbanken auf einer
Diskette anzulegen, aus denen sich Thr Programm die
notwendigen Teile ausliest.

Am Anfang der Erzeugung eines solchen Definitionsfiles stehen
dabei wieder unsere DATAs. Mit Hilfe des folgenden Programms
kénnen Sie nun die einzelnen Werte aus den bekannten
DATA-Zeilen herauslesen und als Sequentielles File auf
Diskette ablegen:

10 OPEN 1,8,2,"SPRITE,S,W" : REM FILE ZUM SCHREIBEN EROEFFNEN
20 FOR X=0 TO 62

30 READ DT : REM 63 DATEN LESEN

40 PRINT#1, CHR$(DT) : REM AUF DISKETTE SCHREIBEN

50 NEXT X : REM (ASCII-FORMAT)

60 CLOSE 1 : REM FILE SCHLIESSEN

Der Name des entstehenden Files ist "SPRITE". Um diese Daten
wieder einzulesen und direkt in den entsprechenden Speicher
zu POKEn, diirfte Ihnen diese Routine behilflich sein:

10 AD = 13%64 : REM ADRESSE BLOCK 13

20 OPEN 1,8,2,"SPRITE,S,R" : REM SEQ. FILE ZUM LESEN
EROEFFNEN

30 FOR X=0 TO 62

40 INPUT#1, DT$: REM DATEN LESEN (ASCII-FORMAT)

50 POKE AD+X, ASC(DT$+CHR$(0)) : REM UND POKEN

60 NEXT X

70 CLOSE 1 : REM FILE SCHLIESSEN

selbstverstdndlich gibt es noch die Méglichkeit, ein Sprite
direkt als Programmfile abzuspeichern und ebenso einzuladen.
Wie Sie sehen, ist die ganze Sache ziemlich kompliziert und

macht Ungeiibten einiges zu schaffen. Aus diesem Grunde wird

125

Ihnen im folgenden ein Programm vorgestellt, das Ihnen die
Arbeit der Spriteerstellung wesentlich erleichtert. Dieser
Spriteeditor, der teilweise in Basic und Maschinensprache
geschrieben wurde, gibt Ihnen komfortable Moéglichkeiten in
die Hand, ein hochauflésendes Sprite zu erstellen und
schlieBlich in Ihr Programm einzubauen. Er erzeugt
Progranifiles, die auf die gleiche Art und Weise gelesen
werden kénnen, wie in der letztenm Routine demonstriert, wenn
Sie die Zeile 20 dort durch die folgende Zeile ersetzen:

20 OPEN 1,8,2,"SPRITE,P,R" : REM PROGRAMMFILE ZUM IESEN
OEFFNEN

Sicher ist es eine ganze Menge Arbeit, dieses Programm
abzutippen, aber es lohnt sich. Bevor Sie es starten, sollten
Sie es zunidchst einmal abspeichern, da verschiedene
Basiczeiger "verdreht" werden! Haben Sie sich bei der Eingabe
der DATAs vertan, so wird ihnen dies durch eine entsprechende

Fehlermeldung kundgetan.

100 REM *Xkxkkkkkkkkkkkkkkkkx

110 REM *x x%
120 REM *x SPRITEFORMER *x
130 REM *x X%
140 REM kkXkkkkkkkkkxkkkkkki
150 REM

160 REM INITIALISIERUNG:

170 REM XEXkEXXkXKXKEKXKX

180 GOSUB2730:REM MASCHINENROUTINEN EINLESEN

190 POKE 53280,0:POKE 53281,0:REM HINTERGRUND-/RAHMENFARBE
200 POKE650,255:REM ALLE ZEICHEN REPEAT

210 POKE 45,0:POKE 46,80:RUN 220:REM BASICENDE=$5000
220 REM

230 REM MASCHINENROUTINEN:

240 REM XXXkkXXXXkkKkKRkKkkX

250 INX=18432:REM INITROUTINE

260 PUX=18632:REM PUNKT EINZEICHNEN

270 NEX=18567:REM KOORDINATENSYSTEM

280 LAX=18503:REM ZEICHENSATZ LADEN

290 SPX=18531:REM ZEICHENSATZ SPEICHERN

300 CAXx=18758:REM CATALOG

126

310 BE%X=18712:REM BEFEHLSIDENTIFIZIERUNG
320 1Vv%=18830:REM INVERTIEREN

330 VRX=18844:REM VERSCHIEBEN-RECHTS

340 VL%=18870:REM VERSCHIEBEN-LINKS

350 VOox=18895:REM VERSCHIEBEN-OBEN

360 VU%=18935:REM VERSCHIEBEN-UNTEN

370 @ = 704:REM SPRITEBLOCK-ADRESSE
380 v =53248:REM VIDEOCONTROLLER
390 REM

400 REM CONTROLZEICHEN:

410 REM X¥xxkkkkkkkkkkkxk

420 CO$=CHR$(147):REM BILDSCHIRM LOESCHEN

430 Cl$=CHR$(19):REM HOME

440 C2$=CHR$(183):REM HOCHSTRICH

450 C8$=CHR$(99)+CHR$(99)+CHR$(
99):C3$=CHR$(117)+C8$+CHR$ (105) : REM OBERER FENSTERR.1

460 C4$=CHR$(106)+C8$+CHR$(107):REM UNTERER SPRITEFENSTERRAND

470 C5$=CHR$(117)+C8$+C8$+CHR$ (105):REM OBERER RAND 2
480 C8$=CHR$(106)+C8$+C8$+CHR$(107): REM UNTERER RAND 2
490 C9$=CHR$(98):REM MITTELSTRICH (SENKR)

500 C6$=CHR$(18):REM RVS ON

510 C7$=CHR$(146):REM RVS OFF

520 NA%=828:REM FILENAMENLAENGE($C800)

530 GA%=186:REM GERAETEADRESSE ($BA)

540 TA%=821:REM TASTE/BEFEHLSCODE

550 SG%= 1:REM SPRITEGROESSE

560 YKX=822:REM Y-KOORD

570 {K%¥=823:REM X-KOORD

580 REM

590 REM FARBEN DEFINIEREN:

600 REM kkkkkkkkkkkkkkkkkx

610 DATA 144, 5, 28,159,156, 30, 31,158

620 DATA 129,149,150,151,152,153, 154,155

630 DIM C$(16):FOR Y=0 TO 15:READ X:C$(Y)=CHR$(X):NEXT Y
640 N=1:F(0)=0:F(1)=1:V$=" ":SYS INX:REM FARBEN/INIT
650 REM

660 REM LOESCHROUTINE (FELDAUFBAU):

670 REM XkkkkRKkkKKKKKkKkKKKkKKKKXKKKKXk

680 SYS IN% : REM SPRITE LOESCHEN

690 PRINT CO$

127

700 PRINT C1$;SPC(13);C$(7);"SPRITE-CREATION"

710 PRINT SPC(12);C$(1);"(C) BY AXEL PLENGE"

720 PRINT C$(4);:FOR X=1 TO 40:PRINT C2$;:NEXT X

730 PRINTC$(7)" 7"C$(6)"6543210"C$(7)"7"C$(6)"6543210"C$(7)"
7"C$(6)"6543210";

740 SYS NEX : REM NETZ ZEICHNEN

750 GOSUB 1820:PRINT:PRINT:REM STATUSFELD ERSTELLEN

760 PRINT:PRINT:PRINTTAB(30);C3$

770 FOR X=1 TO 3:PRINTTAB(30);C9%;" "C9$:NEXT
X:PRINTTAB(30);C4$:REM TESTSPRITEL

780 PRINTTAB(27);" ";C5¢;" ":FOR X=1 TO
5:PRINTTAB(27);" ";C9¢;" ";C9$:NEXT X

790 PRINTTAB(27);" ";C8%;" ";:REM TESTSPRITE2

800 POKE 53248+21,3:X=0:Y=0:REM SPRITES AN/X-,Y-KOORDINATE=0
810 REM

820 REM EINGABESCHLEIFE:

830 REM XkkkkkxkkkkkkkkX

840 A=X+2:B=Y+4:GOSUB 2450:REM POSITIONIEREN

850 POKE XKX,X:POKE YKX,Y:F=0:REM KOORDINATEN UEBERGEBEN
860 PRINT C$(7);C6$;" ";CHR$(157);:REM BLINKPHASE AN

870 FOR S=1 TO 50:GETA$:IF A$<>"" THEN 890

880 NEXT S:SYS PUX:FOR S=1 TO 50:GET A$:IF A$="" THEN NEXT
S:GOTO 860:REM AUSSCHALTEN

890 REM

900 REM BEFEHLSERKENNUNG:

910 REM XxXxxkkkx¥kkkkkkkkkk

920 SYS PU%:C=ASC(A$):POKE TAX,C:SYS BE%X:S=PEEK(TAX):REM
BEF-UEBERGABE/RUECKMELDUNG

930 REM VERTEILUNG:

940 ON S GOTO 1050,1050,1070,1070,1090,1090

950 ON S-6 GOTO 1110,1110,1910,1910,1910,1910

960 ON S-12 GOTO 1910,1910,1910,1910,650,1360

970 ON S-18 GOTO 1450,1490,1570,1130,2150

980 ON S-23 GOTO 1200,1970,1240,810

990 REM

1000 REM BEFEHLSBEARBEITUNG:

1010 REM Xkkkk¥kkkkkkkkkkkxx

1020 REM

1030 REM CURSORBEWEGUNG:

1040 REM XXkXkk¥xkXxkkXXk¥kX

1050 X=X+1:IF X=24 THEN X=0:GOTO 1090

1060 GOTO 810:REM RECHTS
1070 X=X-1:IF X<0 THEN X=23:GOTO 1110
1080 GOTO 810:REM LINKS
1090 Y=Y+1:IF Y=21 THEN Y=0
1100 GOTO 810:REM RUNTER
1110 Y=Y-1:IF Y<O THEN Y=20
1120 GOTO 810:REM HOCH
1130 REM
1140 REM BEENDEN:
1150 REM *x¥xkkkx
1160 A=2:B=15:GOSUB 2450:REM POSITIONIEREN
1170 PRINT C6$;C$(7);"BEENDEN?";C7$;C$(6): INPUT T$
1180 IF T$="J" OR T$="JA" THEN SYS 64738:REM KALTSTART
1190 GOTO 630
1200 REM
1210 REM CATALOG:
1220 REM *¥¥kkxkk
1230 PRINT CO$:SYS CA%:GOSUB 2490:GOTO 690
1240 REM
1250 REM VERSCHIEBUNG:
1260 REM XXkkkkkkkkkkkk
1270 GOSUB 2530:GOSUB 2440:PRINT C$(1);"VERSCHIEBUNG":REM
MELDEFELD
1280 PRINT TAB(27)"NACH:":PRINT TAB(27)"RECHTS(R),":PRINT
TAB(27)"LINKS(L),"
1290 PRINT TAB(27)"OBEN (O),":PRINT TAB(27)"UNTEN(U):"
1300 GOSUR 2490
1310 IF T$="R" THEN SYS VRX:GOTO01350
1320 IF T$="L" THEN SYS VL%:GOTO1350
1330 IF T$="0" THEN SYS VO%:GOTO1350
1340 IF T$="U" THEN SYS VUX
1350 GOSUB 2530:GOTO 700
1360 REM
1370 REM SPRITEGROESSE:
1380 REM X¥k¥kkkXkkXKEKX
1390 ON SGx+1 GOSUB 1410,1420,1430,1440
1400 POKE V+23,A:POKE V+29,B:SGX=(SGx+1) AND 3:GOTO 810
1410 A=2:B=2:RETURN
1420 A=0:B=2:RETURN
1430 A=2:B=0:RETURN
1440 A=0:B=0:RETURN

129

1450
1460
1470
1480
1490
1500
1510
1520
1530

REM

REM SPRITE INVERTIEREN:

REM Xk¥XXXkXKKRXXKKRKkKKX

SYS IV%¥ : GOTO 700

REM

REM SPRITE SPEICHERN:

REM XXXXXXXkXKkkKKKKKXX

GOSUB 2530

GOSUB 2440:PRINT C6$;C$(1); "SPRITEAB-":PRINT

TAB(27);C6$; "SPEICHERUNG";CT$

1540

GOSUB 1700:IF F=1 THEN F=0:GOTO 1490:REM

EINGABE/FEHLERABFR.

1550
1560
1570
1580
1590
1600
1610

IF F=2 THEN F=0:GOTO 1630:REM FEHLER

SYS SPX:GOTO 1650:REM SPEICHERN

REM

REM SPRITE LADEN:

REM XXXkXkXRkkXkkX

GOSUB 2530

GOSUB 2440:PRINT C6$;C$(1); "SPRITE": PRINT

TAB(27);C6$;"LADEN: ";CT$

1620
1630
1640
1650
1660
1670
1680
1690

GOSUB 1700: IF F=1 THEN F=0:GOTO 1570

IF F=2 THEN F=0:GOTO 690

SYS LA%X

REM FEHLERABFRAGE (NUR FUER DISK!):

OPEN 1,8,15: INPUT#1,DS,DS$,DT,DB:CLOSE]

IF DS<20 THEN 690:REM OK

PRINT: T$=STR$(DS)+","+DS$+","+STR$(DT)+","+STR$ (DB)
GOSUB 2600:PRINT T$:FOR S=1 TO 2000:NEXT S:GOTO 690:REM

BLINKEN

1700
1710
1720
1730

REM

REM NAMENEINGABE:

REM XXkXXkXkxXXkXkkx

A$="":PRINT: PRINT TAB(27)"FILENAME"C$(6):PRINT

TAB(27); : INPUT A$:T=LEN(AS$)

1740
1750

GA,S:

1760
1770
1780
1790

S=VAL(RIGHT$(AS$,1))

IF S<>0 AND LEFT$(RIGHT$(A$,2),1)=";" THEN T=T-2:POKE
REM GERAETEADR.

IF T=0 THEN F=2:RETURN:REM KEIN NAME

IF T>17 THEN 1800

REM NAMEN AN MASCHINENROUTINEN:

POKE NAX,T:FOR S=1 TO T:POKE

130

NA%+S,ASC(MID$(A$,S,1)):NEXT S:RETURN

1800 PRINT CHR$(145);:T$=C6$+"LAENGE!"+C7$:GOSUB
2590:REM FEHLERMELDUNG

1810 PRINT C$(6):F=1:RETURN

1820 REM

1830 REM STATUSFELD ERSTELLEN:

1840 REM ¥ ¥k fkkkkkkkkkkkkXkK

1850 A=27:B=4:GOSUB 2450

1860 GOSUB 2530

1870 A=27:B=5:GOSUB 2450

1880 PRINT TAB(27);C$(7);"FARBEN:"

1890 PRINT TAB(27);C$(2);:FOR S=1 TO 7:PRINT CHR$(163);:NEXT
S:PRINT C$(6)

1900 FOR $=0 TO 1:PRINT TAB(27);"GRDF.";S;":";F(S):NEXT
S:RETURN

1910 REM

1920 REM PLOT:

1930 REM XX¥XxX

1940 S=((S-12) AND 2)/2:REM PLOTFARBE FESTSTELLEN

1950 T=X/8:AD=INT(T):T=2"(7-8%(T-AD)):AD=Y*3+AD+Q

1960 POKE AD,PEEK(AD) AND (255-T) OR S*T:GOTO 810

1970 REM

1980 REM FARBENWAHL:

1990 REM ¥¥kkkkkkkkx

2000 PRINTCHRS$ (147)

2010 A=0:B=4:GOSUB 2450:PRINT
TAB(4);C$(1)"F"C$(2)"A"C$(3)"R"C$(4)"B"C$(5)"E";

2020 PRINT C$(6)"N"C$(T)"W"C$(4)"A"CS$(6)"H"C$(2)"L"C$(T)":"
2030 PRINT TAB(4);C$(1);CHR$(172);:FOR S=1 TO 32:PRINT
CHR$(162); : NEXT S:PRINT CHR$(187)

2040 FOR S=1 TO 2:PRINT TAB(4);C6$;CHR$(161);

2050 FOR T=0 TO 15:PRINT C$(T);" ";:NEXT T:PRINT
C$(1);C7$;CHR$(161) : NEXT S
2060 PRINT

TAB(4);C6$;CHR$(161);" 0 1 2 3 4 5 6 7 8 9101112131415";C7$;C
HR$(161)

2070 PRINT:PRINT C$(6);" FUER GRUNDFARBENNR. (F1/F3): ";
2080 GOSUB 2490:T=ASC(T$)-133:REM FUNKTIONSTASTE

2090 IF T<0 OR T>1 THEN GOSUB 2590:GOTO 690:REM FEHLER

2100 IF T>1 THEN T=T-4

2110 PRINT T:T$="":INPUT " FARBE ";T$:S=ABS(INT(VAL(T$)))

131

2120 IF T$="" OR S>15 THEN GOSUB 2590:GOT0690:REM FEHLER
2130 F(T)=S:POKE V+33,F(0):REM HINTERGRUNDFARBE SETZEN

2140 POKE V+39,F(1):POKE V+40,F(1):GOTO 690:REM SPRITEFARBE
SETZEN

2150 REM

2160 REM BEFEHLSSATZ:

2170 REM XX¥k¥kkkkkkkk

2180 POKE V+21,0 : REM SPRITES AUS

2190 PRINT CO$;C6$;C$(2)" ";C$(T)

2200 PRINT "BEFEHLSSATZ";C$(2);" " CT$;

2210 PRINT C$(4);:FOR S=1 TO 40:PRINT CHR$(184);:NEXT S:PRINT
2220 PRINT C$(1)" NR. "C6$"BEFEHL "C7$"-"C$(5)"
FUNKTION"C$(4)

2230 FOR S=1 TO 10:PRINT "---—";:NEXT S

2240 PRINT C$(1)" (1) "C6$"(><...)"C7$"-"C$(5)" CURSORBEWEGU
NGEN"

2250 PRINT C$(1)" "C6$"(2QWA)"C7$;C$(5)

2260 PRINT C$(1)" (2) "C6$"(FL-F8)"C7$"-"C$(5)" PLOT IN
FARBEN 0-15"

2270 PRINT C$(1)" (3) "C6$"(F) "C7¢"-"C$(5)" FARBEN 0-15
F. F1/3 DEF."

2280 PRINT C$(1)" (4) "C6$"(B) "C7$"-"C$(5)" BEFEHLSSATZ"
2290 PRINT C$(1)" (5) "C6%$"(G) "C7¢"-"C$(5)" SPRITE
GROESSE"

2300 PRINT C$(1)" (6) "C68%$"(I) "C7¢"-"C$(5)" SPRITE
INVERTIEREN"

2310 PRINT C$(1)" (7) "C6$"(V) "C7¢"-"C$(5)" SPRITE
VERSCHIEBEN"

2320 PRINT C$(1)" (8) "C6$"(L) "C7¢"-"C$(5)" SPRITE
LOESCHEN"

2330 PRINT C$(1)" (9) "C6$"(CTRLG)"C7$"-"C$(5)" GET-SPRITE
LADEN"

2340 PRINT C$(1)"(10) "C6$"(CTRLS)"C7$"-"C$(5)" SAVE-SPRITE
SPEICHERN"

2350 PRINT C$(1)"(11) "cC6%"(C) "C7$"-"C$(5)" DIREKTORY/CA
TALOG"

2360 PRINT C$(1)"(12) "C6$"(CTRLX)"CT7$"-"C$(5)" BEENDEN"
2370 GOSUB 2490:POKE V+21,3:GOTO 690: REM WARTEN+SPRITES AN
2380 REM

2390 REM UNTERPROGRAMME:

2400 REM XXkXXXkkXkkkkkX

132

2410

REM

2420 REM POSITIONIERUNG:

2430 REM X*kXkxkkkkkkkkkX

2440 A=27:B=5:REM MELDEFELD

2450 PRINT Cl1$;:FOR S=2 TO B:PRINT:NEXT S:PRINT
TAB(A); : RETURN

2460
2470
2480
2490
2500
2510
2520
2530
2540

2550
2560
2570
2580
2590
2600

REM
REM
REM

TASTENEINGABE:
L2222 2222222 23

WAIT 198,255:GET T$:RETURN

REM
REM
REM

MELDEFELD LOESCHEN:
L2222 2222222223

GOSUB 2440

FORS=1TO6:PRINTTAB(27); : FORT=1T04: PRINT" ", :NEXT T:
PRINT: NEXT S :REM MELDEFELD LOESCHEN

RETURN

REM
REM
REM

FEHLERBLINKEN:
XRKERERKKKKKKX

T$="UNZULAESSIG!"

A=4:

B=18:GOSUB2450: PRINTC$(1):FOR S=1 TO 9:PRINT

TAB(4)T$:GOSUB 2630:PRINT CHR$(145);

2610 PRINT TAB(4)" "

2620 PRINT CHR$(145):GOSUB 2630:NEXT S:PRINT
TAB(4)"

2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730

FOR
REM
REM
REM
REM
REM
REM
REM
REM
REM
FOR

":F=1:RETURN
T=1 TO 75:NEXT T:RETURN:REM WARTESCHLEIFE

20k 3 K K 3k ok 3k ok ok ok ok K 5 ok Kok ok ok sk k ok k

X% XX
*x MASCHINENROUTINEN %X
*X XX

A0K Kk K ok ok ok Xk ok 3k Kk Kok K Kk ok Kok Xk k

DATAS WERDEN NACH DEM STARTEN GELOESCHT !!!

I =1TO 16 : READ X : NEXT I : REM VORDERE DATAS

UEBERSPRINGEN (FARBEN)

2740 FOR I = 18432 TO 18969

2750 READ X : POKE I,X : S=S+X : NEXT

2760 DATA 162, 62,169, 0,157,192, 2,202, 16,250,169, 11

133

2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
~3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

141,248, 7,141,249, 17,169, 16,141, 0,208,169
163,141, 1,208,169, 7,141, 2,208,169,201,141
3,208,169, 3,141, 16,208,141, 21,208,169, 2
141, 23,208,141, 29,208,169, 0,141, 27,208,141
28,208,169, 1,141, 39,208,141, 40,208, 96,173
60, 3,162, 61,160, 3, 32,249,253,169, 2,166
186,160, o0, 32, 0,254,169, 0,162,192,160, 2
76,213,255,173, 60, 3,162, 61,160, 3, 32,249
253,169, 2,166,186,160, 0, 32, 0,254,169,192
133, 2,169, 2,133, 3,169, 2,162,255,160, 2
76,216,255,160, 0,169, 13, 32,210,255,152, 72
56,233, 10,144, 12,168,233, 10,144, 4,168,169
50, 44,169, 49, 44,169, 32, 32,210,255,152, 9
48, 32,210,255,104,168,162, 0, 32,206, 72,169
29, 32,210,255,232,224, 24,208,243,169,165, 32
210,255,200,192, 21,208,194, 96,174, 55, 3,172
54, 3,138, 72,152, 72,133, 2, 10,101, 2,133
2,138,160,255, 56,233, 8,200,176,251,105, 8
170,152, 24,101, 2,168,169, 0, 56,106,202, 16
252, 57,192, 2,208, 3,160, O, 44,160, 6,162
6,185, 12, 73, 32,210,255,200,202,208,246,104
168,104,170, 96,146, 31,111, 31,146,157, 18, 28
32, 31,146,157,173, 53, 3,162, 0,160, 28,232
221, 43, 73,240, 3,136,208,247,142, 53, 3, 96
87, 29, 81,157, 65, 17, 50,145,133,137,134,138
135,139,136,140, 76, 71, 73, 19, 7, 24, 66, 67
70, 86,169, 36,133, 2,169, 1,162, 2,160, 0
32,249,253,169, 2,166,186,160, 0, 32, 0,254
169, 0,162, 0,160, 64,134, 95,132, 96, 32,213
255,165, 95,164, 96, 32, 55,165,173, 0, 3, 72
173, 1, 3, 72,169, 61,141, 0, 3,169,227,141
1, 3, 32,195,166,104,141, 1, 3,104,141, O
3, 96,162, 62,189,192, 2, 73,255,157,192, 2
202, 16,245, 96,162, 0,160, 3, 24,126,192, 2
232,136,208,249,169, 0,106, 29,189, 2,157,189
2,224, 63,208,233, 96,162, 63,160, 3, 24, 62
191, 2,202,136,208,249,169, 0, 42, 29,194, 2
157,194, 2,138,208,234, 96,162, 62,134, 2,160
21,132, 3,166, 2,189,132, 2, 72,189,192, 2
168,104,157,192, 2,152,202,202,202,198, 3,208
239,166, 2,202,134, 2,224, 59,208,221, 96,162

134

3180
3190
3200
3210
3220

DATA 2,134, 2,160, 21,132, 3,166, 2,189,252, 2
DATA 72,189,192, 2,168,104,157,192, 2,152,232,232
DATA 232,198, 3,208,239,198, 2, 16,226, 96

IF S <> 61707 THEN PRINT "FEHLER IN DATAS !!" : END
PRINT "OK" : RETURN

135

END OF ASSEMBLY!

oa1a .LS
ooza H
2230 s MASCHINENROUT INEN:
Q40 H P22 2222222222222
a5 3
2040 3
oa70 .08
eose .BA £4800 s STARTADRESSE
o070 .MC $0800
2100 H
2112 s SPRUNGADRESSEN UND REGISTER:
2120 H 369633 36 I I I F I I I I I
2138 H
@140 CONASS .DE 1
@158 CHROUT .DE $FFD2 ;s ZEICHENAUSGABE
@168 FNFAR .DE $FDF9 s FILENAMENPARAMETER SETZEN
@178 FPAR .DE $FEQQ@ s FILEPARAMETER SETZEN
@182 SAVE .DE $FFD8 $ SPEICHERN AUF DISK/KASSETTE
@192 LOAD .DE $FFDS ;LADEN VON DISK/KASSETTE
azea v .DE $DOQa s VIDEOCONTROLLER (53248)
@212 BLOCK .DE 704 sSPRITEBLOCK 11
@22@ BLOCKN .DE 11 s BLOCKNUMMER 11
@230 LAENGE .DE $833C 3 F ILENAMENLAENGE
@24@ MODUS .DE $0334 s SPEICHERMODUS
@250 TASTE .DE $@335 s BEFEHLSTASTENDRUCK
@260 YKOORD .DE #0336 s FELD-Y-KOORDINATE
#2708 XKOORD .DE $@337 3 FELD—-X-KOORDINATE
az280 H
az9e s TESTSPRITE LOESCHEN+PARAMETER:
2300 HE S S & S R 2 0 L 0 a bt f 0 8 8 8 8 8 bt bkt b st)
a31e H
4808- AZ 3E @328 INIT LDX #&62 ;63 BYTES
4802- A9 00 2338 LDA #3000
4804—- 9D CO @2 @340 11 STA BLOCK,X $BLOCK 11 LOESCHEN
48087~ CA a3sa DEX
48@8-- 1@ FA @368 BPL I1
480A— A9 @B a370 LDA #BLOCKN $BLOCK 11
480C- 8D F8 @7 0380 STA $07F8 sPOINTER SPRITE @ AUF 11
480F—- 8D F9 @7 @390 STA $07F9 sPOINTER SPRITE 1 AUF 11
4812- A% 10 @aa00 LDA #16&
4814- 8D @0 D@ 0410 STA V+@ $SPRITE @: X-KOORD. HIGHBYTE
4817- A? A3 0420 LDA #1463
481%- 8D @1 D@ 0430 STA V+1 5 Y-KOORDINATE
481C—- A7 @7 @440 LDA #7
481E—- 8D @2 D@ 0450 STA V+2 sSPRITE 1:X—-KOORD. HIGHBYTE
4821- A% C9 24460 LDA #2081
4823~ 8D @3 D@ @470 STA V+3 3 Y-KOORDINATE
4826— A7 @3 2480 LDA #.00000011 3 X-K. HIGHBYTES=1
4828- 8D 1@ DB 0490 STA V+16
482B- 8D 15 D@ @500 STA V+21 sSPRITES EINSCHALTEN
482E- A9 B2 es1e LDA #/00000010
483@— 8D 17 D@ @Sz20 STA V+23 sSPRITE 1: Y-VERGROESSERUNG
4833—- 8D 1D D@ @530 STA V+29 $SPRITE 1: X-VERGROESSERUNG
4836— AT 00 @540 LDA #+00
4838- 8D 1B D@ @550 STA V+27 s SPRITE-PRIORITAET
483B— 8D IC D@ @560 STA V+28 3 NORMALFARBENSPRITES
483E— A? 01 as7e LDA #+01
4840—- 8D 27 D@ @580 STA V+39 sSPRITE @: WEISS
4843— 8D 28 D@ @590 STA V+4@ 3SPRITE 1: WEISS
4846- 6@ 2600 RTS s ZURUECK
2618 H
0620 sSPRITE LADEN:

136

0630 PR 22220 22 22 2

2640 s

4847—- AD 3C @3 @658 LADEN LDA LAENGE 3 NAMENLAENGE
484A- A2 3C 0660 LDX #L,LAENGE s FILENAMENADRESSE LOW-
484C—- ALB B3 2670 LDY #H,LAENGE s HIGHBYTE
484E- 2@ F9 FD @480 JSR FNPAR
4851- A9 @2 2570 LDA #$02 ;s LOGISCHE FILENUMMER
4853- A4 BA a7e0 LDX *$BA ;s GERAETEADESSE
4855 A 20 2710 LDY #+0@ s SECUNDAERADRESSE
4857- 20 0@ FE @720 JSR FPAR
485A- A7 00 0730 LDA #$00 s LOAD/VERIFY-FLAG
485C- AZ Ca@ a74e LDX #L,BLOCK s STARTADRESSE (LOWBYTE)
485E- AQ 02 a75e LDY #H,BLOCK s STARTADRESSE (HIGHBYTE)
4846@- 4C DS FF @760 JMP LOAD

@770 3

a780 s SPRITE SPEICHERN:

2790 § HEI IR N

o80@ :
4863~ AD 3IC 83 ©81@ SPEICH LDA LAENGE s FILENAMENL AENGE
4866— A2 3C 2820 LDX #L ,LAENGE ;s FILENAMENADRESSE (LOW)
4848—- AB O3 283a LDY #H,LAENGE s FILENAMENADRESSE (HIGH)
486A—- 20 F? FD @840 JSR FNPAR
486D- A7 @2 2850 LDA #302 s LOGISCHE FILENUMMER
486F- A4 BA 2860 LDX #$BA ;s GERAETEADRESSE
4871- AG @@ a87@ LDY #+00 ;s SECUNDAERADRESSE
4873- 20 08 FE 0880 JSR FPAR

29350 .LS
4876—- AT CO 2960 LDA #L,BLOCK
4878- 835 02 a97a STA *$02 ;s STARTADRESSE (LOWBYTE)
487A- A9 02 098@ LDA #H,BLOCK
487C- B8S B3 a90 STA *»$@03 s STARTADRESSE (HIGHBYTE)
487E- A9 02 1000 LDA #$02 s NULLSEITENADRESSE DER STARTADRESSE
4880—- A2 FF 1010 LDX #L,BLOCK+$3F ;ENDADRESSE (LOWBYTE)
4882- AQ 02 ieze LDY #H,BLOCK+$3F ;ENDADRESSE (HIGHBYTE)
4884— 4C DB FF 1030 JMP SAVE s SFEICHERE SPRITE

1450 .LS

1460 H

1470 sARBEITSFELD HERSTELLEN:

1486 H 363636 33 W3 636 3636 B I I HEIE I3

1490 ;
4887- AB @0 150@ NETZ LDY #3000 s ZEILENZAEHLER = @
4887- A? @D 1518 N@ LDA #3$@D sCARRIGE RETURN
488B- 2@ D2 FF 1520 JSR CHROUT
488E- 98 153@ TYA
488F—- 48 1540 PHA
4890- 38 1550 SEC
4871- E9 @A 1560 SBC #10@
4893~ 9@ @C 1570 BCC N1 sLEERZEICHEN BEI Y<1@
4895- A8 1580 TAY
48946—- ET OA 1590 SBC #10
4898—- 90 04 1600 BCC N2 ;Y<20
489A—- AB 1610 TAY
489B~ A9 32 1620 LDA #°2
489D- 2C 1630 .BY $2C sNAECHSTEN BEF. UEBERSPRINGEN
489E- A9 31 1648 N2 LDA #°1
48A0—- 2C 1650 .BY #2C sNAECHSTEN BEF. UEBERSPRINGEN
48A1- A9 20 166@ N1 LDA #3220 5" " LEERZEICHEN
48A3— 20 D2 FF 1470 JSR CHROUT s AUSGEBEN
48A6— 98 14680 TYA sREST
48A7- @9 30 1670 ORA #$30 $ASCII HERSTELLEN
48A9- 20 D2 FF 1700 JSR CHROUT s AUSGEBEN
48AC- 68 1710 PLA
48AD- AB 1728 TAY
48AE- A2 00 1730 LDX #+$00
48E0—- 20 CE 48 1740 N3 JSR PUNKT sEINEN PUNKT ZEICHNEN
48B3—- A9 1D 1750 LDA #£$1D sCURSOR RECHTS

137

48B5—
48B8-
48B9-
48BB-
48BD-
‘48BF -
48C2-
48C3—
48CS5-
48C7-

48C8-
48CB-
48CE-
48CF-
48D0-
48D1-
48D2-
48D4—
48D5-
48D7-
48D9-
48DA-
48DC-
48DD-
48DF -
48E@-
4BE2-
48E4—
4BES-
48E6-
48E7-
48E9-
4BEA-
48EC-
48ED-
4BEE-
4BEF-
48F1~
48F 4~
48F6—
48F8-—
48F9—
48FB—
48FD-
4900-
4903~
4904
4905-
49@7-
4908-
4909
490A—
490B-

a90c-
490F-
4912~
4915-

20
E8
E@
Da
A9

cs
ce
Do
&0

AE

8A
48
98
48
85
A
65
85
8a
AD
38
E9?
ce
BO
69
AA
98
18

A9

6A
cAa
10
39
Do
AD
2C
AB
A2
B9

cs
cAa
Do
&8

68

92
iF
12
1F

D2

i8
F3
AS
D2

15
c2

37
36

a2

a2z

FF

a8

FB
o8

a2

oo

FC
ce
a3
(]

26
a6
ac
D2

Fé6

1F
92
1C
92

FF

FF

a3
a3

az

49
FF

9D
20
9D

176@
177@
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1870
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2378

2380

2390

PUNKTZ2

PUNKT

P3

F@

P1

P2

PKTTAB

JSR CHROUT

INX sNAECHSTER PUNKT
CPX #24 524 PUNKTE PRO ZEILE
BNE N3

LDA #$A5 sSTRICH (CHR$(165))
JSR CHROUT

INY sNAECHSTE ZEILE

CPY #21 521 ZEILEN

BNE N@

RTS

L]
sEINE KOORDINATE ZEICHNEN:
3 BTN I

.

LDX XKOORD s ANSTEUERUNG DURCH BASIC
LDY YKOORD s X/Y-KODORDINATE

TXA

PHA

TYA

PHA sKOORDINATEN RETTEN

STA =$02

ASL A

ADC *$02 s Y-KOORDINATE*3

STA *$02 sUND RETTEN

TXA

LDY #s$FF s ZAEHLER=0

SEC

SBC #$08

INY

BCS P3 ;s X-KOORDINATE/8

ADC #+08 sREST

TAX

TYA

CLC

ADC *$02 s Y%3+INT (X/8)

TAY

LDA #3500

SEC sEIN BIT SETZEN

ROR A sRICHTIGES BIT HERAUSSUCHEN
DEX sREST ERNIEDIRIGEN

BFL PO

AND BLOCK,Y $ANDERE BITS DES SPRITEBYTES LOESC
BNE P1 sBIT (=PUNKT) GESETIT?
LDY #$00 sNEIN

-BY $2C s BIT-BEFEHL

LDY #$2&6 sBIT GESETZT!

LDX #$06

LDA PKTTAB,Y s ZEICHEN AUS PUNKTDARSTELLUNGSTABE
JSR CHROUT

INY

DEX

BNE P2 $NAECHSTES ZEICHEN

PLA

TAY

PLA

TAX s KOORDINATEN WIEDERHOLEN
RTS

L
s ZEICHEN FUER EINE KOORDINATE:
3 I IEIIE NI I I U I

H
.BY 144 @31 111 @31 146 157

.BY 018 028 032 @31 146 157

138

4918-
491B-
491D~
491F-
4920
4923~
4925~
4926
4928
492B-

492c-
492F-

4932
4935~

4938-
493B—

493E-
4941~

4943—

4946—
4948-
494A—
494C-
494E—
4950~
4953~
4955
4957~
4959-
495C-
495E-
4960
4962
4964
4966~
4969
496B—
496D-
4970~
4973~
4974—
4977~
4978-
4974-
497D-
497F—
4982-
4985-
4986—
4989

ER8BSSEERS

87
8c

49
18

43

A9
85
A?

AD
20
A?
Ab
AB
20
A9
A2
AB
86
84
20
AS
A4
20
AD
48
AD
48
A7
8D
A9
8D
20
&8
8D

33
oe
ic

2B
23

F7
35

1D
41

91
8é&

8B
4C

13
42

44

24
o2
21
a2

F9
a2
BA

]
oe
ea
4@
SF
6@
DS
SF
1]
37

a1

3D
aa
E3
a1
c3

o1

a3

49

a3

51
11

a5
8A

88
47
a7

56

FD

FE

FF

AS

a3

a3

a3
Ab

a3

2400
2410
2420
2430
2440
2450
2460
2470
2480
249a
2500
2510
2520
2530
2540
2550
2560
257@
2580

259@
2600

2610
2620

2630
2640

2650
2660
267@
2680
2690
2700
2710
2720
2730
2740
2730
2760
277@
2780
2770
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2710
2920
2930
2940
2950
29460
297@
2980
2990
300
3010

BEFIDE

B1

B2

BEFTAB

CATALG

sTASTE ALS BEFEHL IDENTIFIZIEREN:
5 I IIEIEIE T T I I

3

LDA TASTE
LDX #$00
LDY ##$1C
INX

CMP BEFTAB-1,X

BEQ@ B2
DEY

BNE B1
STX TASTE
RTS

;s TASTENCODE

s BEFEHLSCODE

$27-1 BEFEHLE (ZAEHLER)

s BEFEHLSCODE ERHOEHEN

s TASTE MIT TABELLE VERGLEICHEN
3 GEFUNDEN

s NARECHSTER BEFEHL

$NOCH NICHT FERTIG

s BEFEHLSCODE ALS RUECKMELDUNG
§ ZURUECK ZU BASIC

§
s BEFEHLSTASTENTABELLE:
§ I

H W/CRSR-RE/Q/CRSR-LI/A/CRSR-UN

-BY @87 @29 081

157 @65 017

H 2/CRSR-0B/ F1/ F2/ F3/ FA4
.BY @58 145

133 137 134 138

H FS/ F&/ F7/ FB8/ L /7 G
-BY 135 139 136 14@ @76 071

H I/CTRL.S/CTRL.G/CTRL.X/ B
.BY @73 @19

;s DISKCATALOG:
I

s

LDA #$24
STA »$02
LDA #$01
LDX #+02
LDY #$00
JSR FNPAR
LDA #$02
LDX *$BA
LDY #$00
JSR FPAR
LDA #$00
LDX #$00
LDY #$40
STX #*$5F
STY #$60
JSR LOAD
LDA #$5F
LDY *$60
JSR $AS537
LDA $0300
PHA

LDA $0301
PHA

LDA #$3D
STA $@300
LDA #$E3
STA $0301
JSR $ALC3
PLA

STA $0301
PLA

Cr/7srF /s vV
BY @467 @70 086

139

024 @bb

1"$" ALS FILENAME

$5.0.

3 GERAETEADRESSE

s LOAD/VERIFY-FLAG

s STARTADRESSE

sLADE CATALOG WIE BASICPROGRAMM
3 SIMULIERE:

s BASIC-PROGRAMMSTARTADRESSE
sBASICZEILEN BINDEN

sORIGINALEN WARMSTARTVEKTOR
s RETTEN

sUND AUF RTS SETZEN
s LISTBEFEHL AUSFUEHREN

498A- 8D 08 @3 3020 STA $0300 sALTEN VEKTOR WIEDERHOLEN

498D— 6@ 3030 RTS 3 ZURUECK ZU BASIC
2040 3
3050 sSPRITE INVERTIEREN:
3060 5 NI NI I NI IR
3Ia7e H
498E- A2 3E 308@ INVERS LDX #62 362+1 BYTES
499@0—- BD C2 @2 3@90 INt LDA BLOCK,X s BYTE HOLEN
4993- 4% FF 3100 EOR #$FF s INVERTIEREN
4995—- 9D Co @2 3110 STA BLOCK X s ZURUECKSCHRE IBEN
4998- CA 3120 DEX
4999~ 1@ F5 3130 BPL IN1 s NARECHSTES BYTE
499B- 60 3140 RTS
3150 H
3160 sSPRITE VERSCHIEBEN:
3170 5 NI NI NI IR
3180 H
499C- AZ 20 319@ RECHTS LDX #$00 s BYTEZAEHLER ABSOLUT
499E- AB O3 3200 RE1 LDY #$@3 s BYTEZAEHLER IN ZEILE
49A0—- 18 3210 CLC
49A1- 7E CB @2 322@ REZ2 ROR BLOCK , X s VERSCHIEBEN
49A4—- EB 3238 INX
49A5—- 88 3240 DEY
49A46—- DB F% 3250 BNE REZ2
49A8- A7 00 3260 LDA #$00
498A- 6A 3270 ROR A sLETZTES BIT IN AKU
49AB—- 1D BD @2 3280 ORA BLOCK-3,X sUND AN ANFANG SETZEN
49AE—- 9D BD @2 3270 STA BLOCK-3,X
49B1—- E@ 3F 3300 CPX #63
49B3- D@ E9 3310 BNE RE1
49B5— 60 3320 RTS sFERTIG
3330 H
3340 H
49Bb6—~ A2 3F 3350 LINKS LDX #63 s BYTEZAEHLER ABSOLUT
49B8—- AD @3 33640 LIt LDY #%03 s BYTEZAEHLER IN ZEILE
49BA—- 18 3370 CLC
49BB— 3E BF @02 3380 LI2 ROL BLOCK-1,X s VERSCHIEBEN
49BE—~ CA 3390 DEX
49BF— 88 3400 DEY
49CO—- DO F9 3410 BNE LIZ2
49C2—- A9 00 3420 LDA #3020
49C4— 2A 3430 ROL A sLETZTES BIT IN AKU
49CS— 1D C2 @2 3440 ORA BLOCK+2,X sUND ANS ENDE SETZEN
49C8—- 9D C2 @2 3450 STA BLOCK+2,X
49CB- 8A 3460 XA
49CC—- D@ EA 3470 BNE LIt
49CE—- 60 3480 RTS sFERTIG
3490 3
3500 3
49CF— A2 3E 3510 OBEN LDX #&62 s BYTEZAEHLER ABSOLUT
49D1—- 86 @2 3520 STX *$02
49D3—- A@ 15 35308 OB1 LDY #21 3 ZEILENZAEHLER
49D5— 84 @3 3540 STY *$03
49D7- A6 02 3550 LDX *$02
49D9- BD 84 @2 3540 LDA BLOCK-&@,X s ERSTES BYTE HOLEN
49DC—- 48 3570 0B2 FHA 3 IN ZWISCHENSPEICHER 1
49DD—- ED C@ @2 3580 LDA BLOCK,X s BYTE HOLEN
49ED—- A8 3590 TAY 5 IN ZWISCHENSPEICHER 2
49E1- &8 3600 PLA 3 ZISCHENSPEICHER 1 HOLEN
49E2—- 9D CO @2 3610 STA BLOCK,X s IN BYTE ABLEGEN
49E5—- 98 3620 TYA s ZWISCHENSPEICHER 2 HOLEN
49E6—- CA 3630 DEX
49E7—- CA 3640 DEX
49E8- CA 3650 DEX s DARUEBER LIEGENDES BYTE
49E9—- C6 @3 3660 DEC +*$@3 s NARECHSTE ZEILE
49EB— D@ EF 3670 BNE 0OB2

140

a2

az
3B
DD

az
a2
AB 15
a3
oz
FC

ce

ce

a3
EF
a2
E2

END OF ASSEMBLY!

Bl =491F
BEFIDE =4918
BLOCK =@2Ca
CATALG =4746
CONASS =0001
FPAR =FEQ@
IN1 =499@
INVERS =498E
LAENGE =@33C
LIZ =49BR
LOAD =FFDS
N@ =4889

N2 =489E
NETZ =4887
0B2 =49DC

F@ =48ED

P2 =48FD
FKTTAR =490C
PUNKT2 =48C8
REZ =49A1
SAVE =FFD8
TASTE =033S
UNZ2 =4A04

v =Dooa

YKOORD =@33&

a2

a2z

@2

LABEL FILE: -

3680 LDX *$02
3690 DEX
3700 STX *302
37108 CPX #59
3720 BNE OB1
3730 RTS
3740 3
3750 ;
37608 UNTEN LDX #82
3770 STX *$02
378@ UN1 LDY #21
3790 STY *$03
3800 LDX *$02
3810 LDA BLOCK+6&@,X
3820 UN2 FHA
3830 LDA BLOCK,X
3840 TAY
3850 PLA
3860 STA BLOCK,X
387@ VA
3880 INX
3890 INX
3900 INX
3910 DEC *$03
3928 BNE UN2
3930 DEC *$@2
3940 BPL UN1
3950 RTS
3960 .EN

B2 =4928

BEFTAB =492C

BLOCKN =00@B

CHROUT =FFD2

FNPAR =FDF9

11 =4804

INIT =4800

LADEN =4847

LIl =49B8

LINKS =49B&

MODUS =0334

N1 =48A1

N3 =48B0

OB1 =49D3

OBEN =49CF

P1 =48F9

P3 =48DD

PUNKT =48CE

RE1 =499E

RECHTS =499C

SPEICH =4863

UN1 =49FB

UNTEN =49F7

//0008,4A1A,0A1A

XKOORD =@33

7

141

s NAECHSTE SPALTE

s BYTEZAEHLER ABSOLUT

3 ZEILENZAEHLER

sLETZTES BYTE HOLEN

;s IN ZWISCHENSPEICHER 1

s BYTE HOLEN

;s IN ZWISCHENSPEICHER 2

3 ZISCHENSPEICHER 1 HOLEN
;s IN BYTE ABLEGEN

;s ZWISCHENSPEICHER 2 HOLEN

s DARUNTER LIEGENDES BYTE
s NAECHSTE ZEILE

s NRECHSTE SPALTE

An dieser Stelle sollte erwdhnt werden, daB, wenn Sie keine
Zeit oder Lust haben, dieses Programm von Hand einzugeben,
eine Diskette mit allen in diesem Buch angefiihrten Programmen
erhdltlich ist. Sie sparen sich somit fiir wenig Geld viel
Sorge und Arger beim Eingeben und der nachherigen Fehler-
suche.

Sofern Sie beim Eingeben keinen Fehler gemacht haben, meldet
sich das vorliegende Programm wie folgt:

Farbzutei-
lungsfeld/
Secundér-
Operationen
24x21-Feld
Original
feld 1
Original-—-
feld 2

Dieser Aufbau gibt Thnen stéandig die aktuellen Informationen,
die Sie iiber den Zustand Ihres Arbeitssprites bendtigen.

24x21-Feld:

In diesem iibersichtlichen Arbeitsfeld kénnen Sie mit Hilfe
der verschiedenen Funktionen (s.u.) und dem Feld-Cursor TIhr
Zeichen herstellen. Die Ziffern am linken Feldrand geben die
y—-Koordinate bzw. die Reihe, die Ziffern am oberen Rand die
x—Koordinate oder das zustidndige Bit im jeweiligen Byte des
Spritespeichers an. Jedes gesetzte Bit (Punkt) wird als rotes
Kédstchen dargestellt.

Originalfelder:

Diese Felder stellen Ihr aktuelles Sprite in den jeweils
gewdhlten Farben (s. "F") in der mit "G" gewidhlten GréBe dar,
um Ihnen einen anschaulichen Uberblick iiber das spitere
Aussehen des Sprites 2zu erméglichen. Feld 1 zeigt dabei
stindig den momentanen Zustand des Objektes in NormalgréBe,
Feld 2 dagegen in x- und/oder y-Richtung vergréBert an.

142

Farbzuteilungsfeld:
Hir wird Ihnen ein Uberblick iiber die den Grundfarben
zugeordneten Farben gegeben, die Sie beliebig é&dndern koénnen

(s.u.)

Secunddroperationsfeld:
Hier werden weitere Informationen gegeben oder verlangt,

sobald es dem Rechner notwendig erscheint.

---— Befehlssatz --—-

Jeder Befehl besteht aus einem Tastendruck o hne

Retur n ! (Ausnahmen s.u.):

...B-
Einen kurzen Befehlsiiberblick gibt Ihnen dieser Befehl. Nach

Betédtigung einer Taste kommen Sie zuriick zur Spriteeingabe.

- <crsr> -
Mithilfe der Ihnen bekannten Cursorfunktionen kénnen Sie den

Feldcursor bewegen.

- 2/Q/W/A -
Zum leichteren Arbeiten besitzen diese Tasten ebenfalls
Cursorfunktionen, deren Bewegungsrichtung aus der

entsprechenden Tastaturposition resultiert.

- fl...f8 -

Mit diesen Tasten kénnen Sie einen Punkt auf Thr 24x21-Feld
in der diesen Tasten (Grundfarben) zugeordneten Farbe
zeichnen.

F

F versetzt Sie in die Lage, den Tasten fl1-8 (Grundfarben)
entsprechende Farben zuzuordnen. Die mit diesen Tasten
gezeichneten Punkte werden nun entsprechend in ihrem

Originalfeld andersfarbig.
Achtung! Taste f1/2 (=Grundfarbe 0) steht fir die

Hintergrundfarbe!

143

_G—
Durch Driicken dieser Taste konnen Sie die GroBe des Sprites,

das sich in dem Originalfeld 2 befindet wechseln.

- I -

Dieser Befehl ermoglicht Ihnen Ihr Sprite zu invertieren.

-y -
Sie konnen ihr Zeichen in Ihrem Feld beliebig verschieben.
Dabei geht keine Information verloren, da die Rdander auf der
anderen Seite wieder auftauchen.

Nach V driicken Sie R,L,0,U fiir Rechts, Links, Oben, Unten
(Selbstverstidndlich 1aBt sich jede Operation direkt im
Originalfeld beobachten).

.L
Loscht Ihr gesamtes Sprite.

"C‘
Bringt das Inhaltverzeichnis der Diskette (Direktory) auf den
Bildschirm. Bei Driicken der ctrl.-Taste wird die Auflistung

verlangsamt. Jede andere Taste bringt Sie wieder zuriick.

- <ctrl>sS / <ctrl>G -

Abspeichern (<ctrl>S) oder Laden (<ctrl>G) eines Sprites:
Geben Sie den Filenamen und - durch Semikolon(!) abgetrennt -
die Gerdtenummer an (bei Fehlen wird das 2zuletzt benutzte
Gerdt angesprochen). Nun driicken Sie <return>. Haben Sie
diese Tasten versehentlich gedriickt, so geniigt ein <return>,
um wieder zuriickzukehren (dies gilt fiir alle Secundar-
operationen, wie V,F,...). Beim Speichern wird ein
Programmfile erzeugt, das entweder direkt 1in den Speicher
eingeladen, oder auf die oben beschriebene Weise quasi wie

ein Sequentielles File gehandhabt werden kann.

- <ctrl>X -

Sind Sie fertig und wollen beenden, so beantworten Sie anch
diesem Befehl die Frage "Beenden??" mit J oder JA, léschen
die restliche Zeile und driicken <{return>. Jede andere Eingabe

bringt Sie wieder zuriick.

144

Ich hoffe, Sie werden viel SpaB haben mit Ihrer neuen
Spritecreation, die Ihren Bekannten die Blésse ins Gesicht

treiben wird.

4.3.2, rung der
Spriteeigenschaften

Das theoretische Wissen iiber die Art und Weise, wie ein
Sprite definiert, eingeschaltet wund seine Eigenschaften
verédndert werden, sollte Ihnen der Paragraph 3.5 vermittelt
haben. Jetzt ist es an der Zeit, diese Dinge auch von Basic
aus anzuwenden. Dies soll anhand eines kleinen Beispiel-
programmes geschehen, das sich fast aller Variations-—
méglichkeiten bedient und schon einen kleinen Einblick in die
typische Spriteanwendung zur Animation, also der bewegten
Bilder, verschaffen soll. Dieses Thema soll zwar erst an
spéterer Stelle behandelt werden, doch bietet es sich hier
geradezu an.

An diesem Beispielprogramm sollten Sie so viel é&ndern, wie
sie wollen. Lediglich bei den Adressen der POKE-Befehle, also
dem ersten Parameter, sollten Sie etwas vorsichtiger sein und
zundchst einmal iiberlegen, welche Auswirkungen das haben
konnte. Falls es Ihnen jedoch nichts ausmacht, den Rechner
nach einem Absturz auszuschalten und das Programm neu zu
laden, dann brauchen Sie sich aus dieser Warnung nichts zu

machen. Doch hier zunédchst einmal das Programm:

1000 REM Xkxokxkokkokkkkkokkokkkkxkkkxk

1010 REM xx XX
1020 REM ** SPRITE-BEISPIEL XX
1030 REM *x X%
1040 REM *xkkkkkokkkkkkkkkkkkkkxk
1050 REM

1060 V = 53248 : REM BASISADRESSE VIDEOCONTROLLER

1070 POKE V+32,0 : POKE V+33,0 : REM RAHMEN UND HINTERGRUND =
SCHWARZ

1080 REM

1090 REM SPRITEDEFINITION IN BLOCK 13:

1100 REM XkXkXKKKKXKKKKRKKKKKKXKRKKKXK

1110 A1 = 13%64 : REM ADRESSE BLOCK 13

N

145

1120
1130
POKEN
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
POKEN
1430
1440
1450
1460
1470
1480
1490
1500

FOR X=0 TO 62
READ DT : POKE Al+X,DT : REM DATEN LESEN UND IN BLOCK 13

NEXT X

REM DATAS ERSTES SPRITE:

DATA 000,007,000

DATA 056,013,128

DATA 025,031,224

DATA 126,031,204

DATA 025,012,252

DATA 056,007,000

DATA 000,014,000

DATA 000,014,000

DATA 000,015,128

DATA 000,014,192

DATA 000,030,096

DATA 000,062,048

DATA 000,046,000

DATA 000,079,000

DATA 000,155,128

DATA 001,025,192

DATA 002,024,096

DATA 003,024,096

DATA 127,024,120

DATA 188,024,000

DATA 036,030,000

REM

REM SPRITEDEFINITION IN BLOCK 14:
REM XkXkkkkkkkkkkkXkkkkkkkkkkkkkxkx
A2 = 14%64 : REM ADRESSE BLOCK 14
FOR X=0 TO 62

READ DT : POKE A2+X,DT : REM DATEN LESEN UND IN BLOCK 13

NEXT X

REM DATAS ZWEITES SPRITE:
DATA 000,003,010

DATA 000,013,132

DATA 058,031,224

DATA 124,031,170

DATA 058,015,250

DATA 000,007,000

146

1510
"1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
167¢
1680
1690

DATA 000,014,000

DATA 000,014,000

DATA 000,014,000

DATA 000,015,000

DATA 000,015,128

DATA 000,014,160

DATA 000,030,000

DATA 000,047,000

DATA 000,077,128

DATA 000,141,128

DATA 001,057,128

DATA 003,097,128

DATA 127,113,128

DATA 220,025,128

DATA 036,001,224

POKE 2046, A1/64 : REM ZUNAECHST BLOCK 13 FUER SPRITE 6
POKE V+21, 276 : REM SPRITE 6 EINSCHALTEN
POKE V+39+6, 1 : REM FARBE SPRITE 6: WEISS
POKE V+27, 0 : REM SPRITE VOR HINTERGRUND

1700 POKE V+28, 0 : REM NORMALFARBEN-SPRITE

1710 POKE V+23, 2"6 : REM SPRITE 6 IN Y-RICHTUNG VERGROESSERT
1720 POKE V+29, 276 : REM SPRITE 6 IN X-RICHTUNG VERGROESSERT
1730 POKE V+2%6+1, 101: REM SPRITE 6 Y-KOORDINATE FESTLEGEN
1735 POKE V+2%6 , 100: REM SPRITE 6 X-KOORDINATE ZUR
DEMONSTRATION

1740 POKE V+16, 0 : REM X-KOORDINATE HIGH-BIT LOESCHEN

1745 REM

1750 REM

1760 PRINT CHR$ (30) CHR$(147) : REM GRUEN + BILDSCHIRM
LOESCHEN

1770 FOR X=1 TO 10

1780
1790
1800
1810
1820
1830
1840
1850
1860
1870

PRINT : REM 10 LEERZEILEN
NEXT X

PRINT CHR$(18); : REM RVS ON
FOR X=1 TO 40

FRINT " "; : REM 40 INVERSE, GRUENE LEERZEICHEN
NEXT X

REM

REM

REM Xk kkd0kkkkokkkkk

REM *x XX

147

1880 REM *x LAUFEN XX

1890 REM x X
1900 REM XXkxkkkkkkkkXkkxX
1910 REM '

1920 G = 10 : REM GESCHWINDIGKEIT

1930 F = 1 : REM FARBSTART

1940 FOR X=1 TO 400 STEP G

1950 F = F+.3: REM FARBE WECHSELN

1960 IF F=16 THEN F=1

1970 REM —-————~-———---—

1980 POKE V+39+6, F : REM FARBE WECHSELN

1990 POKE 2046, Al1/64 : REM SPRITE 6 AUF BLOCK 13

2000 KO=X:IF X>255 THEN KO=X-256:POKE V+16,276:G0T02020:REM
HIGH BIT X-KOORD. SETZEN

2010 POKE V+16, 0 : REM X-KOORDINATE - HIGH BIT LOESCHEN
2020 POKE V+2x6, KO : REM SPRITE BEWEGEN

2030 FOR Y=1 TO 40 : NEXT Y : REM WARTESCHLEIFE

2040 REM ———--—————————-

2050 POKE 2046, A2/64 : REM SPRITE 6 AUF BLOCK 14

2060 KO=X+G/2:IF KO>255 THEN KO=K0-256:POKE V+16,2"6:GOT0
2080: REM HIGH BIT X-KOORD. .

2070 POKE V+16, 0 : REM X-KOORDINATE - HIGH BIT LOESCHEN
2080 POKE V+2x6, KO : REM SPRITE BEWEGEN

2090 FOR Y=1 TO 40 : NEXT Y : REM WARTESCHLEIFE

2100 REM ~——————————=—~—

2110 NEXT X

In der ersten Zeile (Z. 1060) wird zundchst wieder die
Variable V definiert, eine Prozedur, die Sie wohl bereits
kennen und die vor jedem Ihrer Sprite- oder Graphikprogramme
durchgefiihrt werden sollte. Alsdann d@ndern wir die Rehmen-
und die Hintergrundfarbe in schwarz.
Jetzt beginnt die eigentliche Arbeit:

a) Spritedefinition:

Aus dem vorherigen Abschnitt kennen Sie bereits die ab
Zeile 1100 folgende Routine: Die 63 Datenbytes, die ein
Sprite definieren, werden aus nachstehenden DATA-Zeilen
eingelesen und in den Speicher gePOKEt. Im ersten Fall
wird die Definition in Block 13, im zweitenm in Block 14
(ab Zeile 1400) eingeschrieben. Die Startadressen dieser

148

b)

c)

d)

beiden Blocke wurde zundchst durch Multiplikation mit 64
errechnet und in die Speicher Al und A2 abgelegt.

Wir haben nun also zwei Sprites definiert, die, wie Sie
sehen werden, recht &hnlich aussehen. Es handelt sich
dabei in beiden Féllen um einen élteren Herrn mit Pfeife,
der gerade seinen Hund ausfithrt und von einem Vogel
begleitet wird. Die beiden Sprites zeigen lediglich zwei
Phasen der Bewegung unseres laufenden Ménnchens, der
rauchenden Pfeife und des flatternden Vogels (Sie konnen
sich die beiden Sprite getrennt einmal ansehen, wenn Sie
in die "Laufroutine” nacheinander in die Zeilem 2030 und
2090 ein STOP einfiigen). Unsere Absicht ist es nicht etwa,
diese zwei Sprites gleichzeitig auf den Bildschirm zu
bringen, wir wollen vielmehr versuchen, die sich nur durch
Jjene paar Ver#dnderungen unterscheidenden Objekte stets
abwechselnd so auf den Bildschirm zu bringen, daB sich aus

den Unterschieden eine Bewegung entwickelt.

Blockvektor:

Wir verwenden fiir dieses Vorhaben Sprite 6 und legen als
erstes den Block fest, aus dem die Spritedefinition fiir
Sprite 6 stammen soll. Zu Beginn soll Block 13 die
Definition liefern. Aus diesem Grunde miissen wir in das
sechste der 1letzten 8 Bytes des Videoram, also als
Spritedefinitionsvektor, eine 13 POKEn (s. # 3.5.3), was
in Zeile 1660 geschieht.

Einschalten:

Doch damit haben wir léngst noch nicht alles getan, um ein
Sprite sichtbar zu machen. Wir miissen es zumindest noch
einschalten. Dies wird in unserem Programm in Zeile 1670
unternommen. Hier wird in das Register 21 des VIC, das
hierfiir bekanntlich zustédndig ist, der Wert 2hoch6 = 64
gePOKEt. Damit wird hier das 6. Bit gesetzt als Zeichen,

daB nun Sprite 6 eingeschaltet ist.

Farbe:

Trotzdem werden wir hochstwahrscheinlich noch nicht viel
zu sehen bekommen. Dies liegt meist daran, daB es noch
auBerhalb des Bildschirmfensters liegt. Darum werden wir

uns spater kiimmern. Erst wollen wir die Farbe des Sprites

149

e)

f)

g)

h)

festlegen. Hierfiir sind bekanntlich die Register 39-46 des
VIC zustédndig. In Zeile 1680 wird in das sechste dieser 8
Register (alsno in Register 39+6 = 45) der Wert 1 fir weiB
(s. Anhang) gebracht, um diese Festlegung fiir das Sprite 6

vorzunehmen.

Prioritéat:

Wir entscheiden uns nun in Zeile 1690, ob wir unser Sprite
vor oder hinter den Hintergrundzeichen sehen wollen. Mit
anderen Worten: wird unser Sprite von dem spéater
gezeichneten griinen Strich verdeckt oder verdeckt es
diesen? Wir haben uns fir den letzteren Fall entschieden
und das entsprechende Bit im VIC-Register 27 geldscht. Mit
POKE V+27, 2”6 jedoch konnen Sie diesen Sachverhalt
dndern. Probieren Sie einmal! Lesen Sie hierzu auch
3.5.4.3

Multicolor:

Wir haben unsere zwei Spritedefinitionen als Normalfarben-
sprites geplant und entwickelt. Daher miissen wir ebernfalls
diesen Modus einschalten. Dieses Kriterium entscheidet
sich, wie Sie sehen, bereits sehr frith, schon bei der

eigentlichen Konstruktion.

VergroBerung:

Und noch eine Entscheidungen miissen wir treffen, bevor wir
zur Tat schreiten konnen: Wollen wir das besagte Objekt in
OriginalgroBe oder in irgendeine Richtung gedehnt
anzeigen? Um die einzelnen Details der zwei Sprites besser
erkennen zu konnen, w#dhlten wir eine VergroBerung des
Objektes in x- und in y-Richtung und setzten in den Zeilen
1710/1720 die fiir Sprite 6 zustdndigen Bits der Register
23 und 29 des VIC (s. # 3.5.4.2). Doch auch in
OriginalgréBe sieht das Ganze recht lustig aus (erreichbar
durch Ersetzen des Wertes 2hoch6 durch 0). Versuchen Sie

doch einmal eine VergréBerung nur in x- oder y—-Richtung!

Positionierung:
Endlich ist es soweit! Jetzt schreiten wir zur Tat und

bringen unser Sprite sichtbar auf den Bildschirm. Nun

150

nédmlich legen wir die Koordinaten fest, bei denen sich das
Objekt befinden soll. Spidter werden diese Angaben noch
verdndert, doch seien Sie hier schon der Vollstédndigkeit
halber beigefiigt. Wie Sie in 4 3.5.4.1 erfahren haben,
sind hierfiir die Register 0-16 2zustidndig, speziell fiir
Sprite 6 die Nummern 2%6 = 12 (Low-Byte x-Koordinate),
2%6+1 = 13 (y-Koordinate) wund 16 Bit 6 (High-Bit
x-Koordinate). Diese Register bzw. das 6.Bit von Register
16 werden bei uns in den Zeilen 1730-1740 belegt.

In diesem Stadium schon ist unser Sprite sichtbar. Wir haben
also alles Notwendige getan, um ein Sprite zu definieren. All
diese Dinge sollten daher in jedem Spriteprogramm auftauchen.
Sie sehen, daB es trotz des Komforts gar nicht so leicht ist,
Sprites zu bedienen. Doch mit der 2Zeit werden Sie Routine
bekommen und auch Wege finden, wie man die verschiedenen
Dinge abkiirzen oder gar weglassen kann.

Doch weiter bei unserer Programmbesprechung. Es folgt nun der
Teil des Programms (ab Zeile 1750), der die vorherigen Dinge
anwendet und fiir den eigentlich sichbaren Verlauf zustiéndig
ist:

Nach dem Bildschirmléschen und dem Zeichnen einer griinen
Linie startet eine Schleife, die insgesamt 400 mal durchléuft
und den Wert X von 1 bis 400 ansteigen 1léBt (Zeile 1940).
Dabei entscheidet G iiber die SchrittgroBe pro
Schleifendurchlauf.

In dieser Schleife passiert eine ganze Menge:

Zunéchst wird der Speicher F um 0,3 erhoht (Zeile 1950). F
wird verwendet, um die Farbe des Sprites in der Schleife 2zp
veréndern (Z. 1980). Da dabei nur ganze (integer-) Werte
verwendet werden, &dndert sich die Earbe nur dann, wenn sich
der ganzzahlige Teil von F veréndert. Dies geschieht somit
etwa jede 3. Schleife.

Als Niéchstes wird die Hauptaufgabe dieses Programmteils
wahrgenommen: die Bewegung und der Definitionswechsel.
Zunédchst zum Definitionswechsel:

Wie Sie wissen, ist fiir unser Sprite die Speicherstelle 2046
der Zeiger auf den jeweiligen Block, aus dem die Definition
entnommen werden soll. Weiter oben hatten wir die beiden
Objekte in den Blécken 13 und 14 niedergelegt. Um nun eine

Bewegung des Sprites an sich zu erhalten, miissen wir stets

151

zwischen den beiden Definitionen hin wund her schalten. An
dieser Stelle (Z. 1990) wird deswegen der Wert 13 in 2046
gePOKEt, um den Vektor dorthin zu legen, es wird also das
erste Sprite angezeigt. Weiter unten schlieBlich (Z. 2050)
wird nach Definition 14 gewechselt, und das zweite Sprite ist
sichtbar.

Um eine kontinuierliche Bewegung unseres Objektes erscheinen
zu lassen (in Wahrheit wird es ja stets ruckweise verschoben,
unser Auge jedoch nimmt dies als gleichm@Bige Bewegung wahr),
versetzen wir es jeden Schleifendurchlauf um einen oder
mehrere Punkte in x-Richtung (die y-Koordinate bleibt
konstant). Hierfiir wird der ansteigende Speicher X verwendet.
Er wird zunidchst in KO (fir KOordinate) 2zwischengespeichert
(Z. 2000). Jetzt wird gepriift, ob dieser Wert groBer ist als
255. Ist das der Fall, so reicht ein Byte alleine nicht mehr
aus und es muB gleichfalls noch das High-Bit der x-Koordinate
in Register 16 gesetzt werden. Natiirlich wird dabei der
Speicher KO um 256 erniedrigt, um ein ILLEGAL QUANTITY ERROR
zu verhindern. Nun wird auch das Low-Byte bestimmt (Z. 2020),
und das Sprite ist versetzt. Im dritten Teil der Schleife
wird diese Prozedur (nach einer Warteschleife) ein weiteres
Mal ausgefihrt (Z. 2060 ff.).

Im obigen Beispiel wurden TIhnen schon einige Techniken
vermittelt, die 1Ihnen bei Ihrer Sprite-Programmierung
behilflich sein werden. Doch einige Themen wurden noch gar
nicht angeschnitten: Multicolor, Kollisionsbehandlung und das
Arbeiten mit mehreren Sprites gleichzeitig.

Dies soll im nidchsten Schritt vorgenommen werden. Sie sollten
inzwischen wissen, daB in Multicolor insgesamt 4 Farben pro
Sprite verwendet werden koénnen, unter der Einschrinkung
allerdings, daB hierbei die x—-Auflésung um die Halfte
abnimmt, die GesamtgroBe jedoch konstant bleibt und damit die
Punktbreite mit dem Faktor 2 zunimmt. Im Speicher wird jeder
Punkt durch 2 Bits bestimmt, die das Register angeben, aus
dem die jeweilige Farbe entnommen wird, angeben. Diese
Register sind die Multicolor-Register 0 und 1 (VIC-Register
37/38) und das fiir jedes Sprite eigene Farb-Register
(VIC-Register 39-46). Sind die beiden Bits geldéscht, so ist
diese Stelle des Sprites durchsichtig (s. ## 3.5.3 f.).

Es konnen zwei verschiedene Kollisionen festgestellt werden:

152

Sprite - Sprite (VIC-Register 30) und Sprite - Hintergrund-
zeichen (VIC-Register 31). In den jeweiligen Registern werden
bei einer Beriihrung besagter Objekte die mit den
Spritenummern korrespondierenden Bits gesetzt. Sollten Sie
diese Dinge noch nicht kennen, so lesen Sie bitte unter
3.5.4.4 nach. In unserem Fall wird getestet, ob sich zwei
Sprite beriihren.

Auch hier soll wieder ein Beispielprogramm 2zur Veranschau-
lichung des weiter unten gesagten dienen, dessen iibertragung
sich allein schon aufgrund der hiibschen Spritedefinition
lohnt:

100 REM kkkokokkokkkakokdkokdkokdkokkokkkok X

110 REM xx *k
120 REM %% SPRITE-KOLLISION XX
130 REM XX (MULTICOLOR) x%
140 REM kkskokokokokokk ok 3k ok 3 ok k 3k ok ok k k% Xk
150 REM

160 v=53248 : REM VIC-BASISADRESSE

170 Al = 11%64 : REM BLOCK 11

180 FOR X=0 TO 62

190 READ DT : POKE Al+X, DT : REM DEFINITION LESEN UND POKEN
200 NEXT X

210 POKE 2040, 11 : POKE 2042, 11 : REM BLOCKZEIGER SPRITE 0
UND 2 AUF 11

220 POKE v+28, 270 OR 2”2 : REM SPRITE O UND 2 AUF MULTICOLOR
230 POKE V+27, 270 : REM NUR SPRITE 2 HAT PRIORITAET VOR
HINTERGRUND

240 POKE vV+29, 270 OR 272 : POKE V+23, 270 OR 272 : REM BEIDE
GROESSER

250 POKE V+21, 270 OR 272 : REM BEIDE SPRITES AN

260 POKE V+37, 17 REM SPRITE-MULTICOLOR 0 = GELB

270 POKE V+38, 6 : REM SPRITE-MULTICOLOR 1 = BLAU

280 POKE V+39, 5 POKE V+41, 8 : REM INDIVIDUALFARBEN SPRITE
0 UND 2

290 POKE V+16,0 : REM X-KOORD. HIGH-BITS LOESCHEN

300 POKE V+1,100 : POKE V+5,100 : REM Y-KOORDINATEN VORSETZEN
310 X2 = 255 : REM START-X-KOORDIANTE SPRITE 2

320 POKE V+0,0 : POKE V+4,X2 : REM X-KOORDIANTEN VORSETZEN
330 PCKE V+30,0 : REM KOLLISION RUECKSETZEN

340 FOR X0=1 TO 255 : REM X-KOORD. SPRITEO

153

350 X2 = X2-1 : REM X-KOORD. SPRITE 2 ERNIEDRIGEN
360 POKE V+0, X0 : POKE V+4, X2 : REM X-KOORDIANTEN SPRITE
0/2 (LOW-BYTES)

370 POKE V+1, 40%xSIN(X0/30)+100 : REM BEWEGEN AUF SINUSXURVE
380 POKE V+5, 40%COS(X0/30)+100 : REM BEWEGEN AUF
COSINUSKURVE

390 IF PEEK(V+30)=(2"0 OR 272) THEN GOTO 420

400 NEXT X0

410 REM

420 REM KOLLISIONSROUTINE:

430 REM

440 FOR X=1 TO 255

450 POKE V+39,X : POKE V+41,X : REM SPRITEFARBE WECHSELN
460 NEXT X

470 POKE V+0, 0 : REM SPRITES AUSEINANDERBRINGEN
480 POKE V+30,0 : REM KOLLISION RUECKSETZEN

490 REM

500 REM SPRITE-DATEN

510 REM

520 DATA 008,000,128

530 DATA 010,002,128

540 DATA 002,138,000

550 DATA 064,136,005

560 DATA 080,168,021

570 DATA 084,032,093

580 DATA 117,033,125

590 DATA 125,101,253

600 DATA 127,103,253

610 DATA 123,103,173

620 DATA 123,103,173

630 DATA 123,103,173

640 DATA 123,103,173

650 DATA 123,103,173

660 DATA 123,103,173

670 DATA 123,103,173

680 DATA 123,103,173

690 DATA 127,103,253

700 DATA 095,101,253

710 DATA 021,097,117

720 DATA 005,032,084

154

Zuniéchst werden hier wieder die iiblichen Formalitédten zum
Initialisieren der Sprites unternommen. In diesem Programm
wird mit nur einer Spritedefinition gearbeitet, die in Block
11 untergebracht wird (Z. 170-200). Dafiir aber sollen zwei
Sprites gleichzeitig auf dem Bildschirm erscheinen. Wir
wiahlen dafiir Sprite 0 und 2. Beide Sprites besitzen jedoch
dieselbe Form. Dies wird in Zeile 210 realisiert, in der
beide Vektoren fiir Sprite 0 und 2 auf den Block 11 gerichtet
werden. Beide Sprites also beziehen ihre Definition aus
diesem Block. Trotzdem aber konnen Sie in den anderen
Parametern weiterhin v6llig unabhédngig betrieben werden. Dies
zeigen z.B. die Zeilen 230, in der beiden wunterschiedliche
Prioritdt vor den Hintergrundzeichen zugeschrieben wird, und
280, in der beide Sprite unterschiedliche Teilfarben
erhalten. Wie gesagt wollen wir nun mit Multicolorsprites
arbeiten. Die in den DATA-Zeilen angegebene Definition wurde
deshalb als ein solches entworfen. Nun missen wir dies
gleichfalls dem VIC mitteilen, was in Zeile 220 geschieht.
Hier haben wir auch gleich eine bisher noch nicht
aufgetretene Schwierigkeit bewéltigt. Bisher brauchten wir in
allen Registern, die bitweise arbeiten lediglich ein Bit 2zu
setzen. Hier aber wollen wir sowohl Sprite 0 als auch Sprite
2 zu Multicolorsprites erkldren. Dies geschieht hier durch
ODER- (OR-) Verkniipfung der beiden Einzelwerte 2hoch0 (Bit 0
gesetzt) und 2hoch2 (Bit 2 gesetzt). Sollten Sie damit noch
Schwierigkeiten haben, so ziehen Sie sich noch einmal Kapitel
2 zu Genmiite.

Neues kommt auch in den Zeilen 260-280 auf uns 2zu. Hier
werden die verschieden Farben der Multicolorsprites in die
Jjeweiligen Register gelegt. Beachten Sie, daB nur Farbe 3
(Farbkanal 3) fiir alle Sprites unterschiedlich sein kann!
Unsere Sprites sind bereits eingeschaltet, aber
wahrscheinlich noch nicht auf dem Bildschirm 2zu sehen. Wir
werden sie also in das Bildschirmfenster hineinversetzen.
Dies geschieht in den Zeilen 290-320. Eigentlich widre diese
Prozedur nicht notwendig, da alle Parameter (auBer die
High-Bits in Register 16) auch in der folgenden Bewegungs-
schleife gesetzt werden. Doch hier tritt noch eine weitere
Schwierigkeit auf uns zu. Wir wollten die Sprites bei Ihrer
Bewegung auf eventuelle Kollisionen iiberpriifen. Oft ist es

aber so, daB sie sich bereits am Anfang beriihren, was stets

155

nach dem Einschalten des Rechners der Fall ist, da alle
Koordinaten auf 0 stehen und auch Kollisionen vermerkt
werden, wenn die Sprites auBerhalb des Sichtbereiches sind.
Wenn dies aber der Fall ist, dann wiirde unser Programm ja
bereits ganz am Anfang eine Kollision feststellen und
entsprechend verzweigen (s.u.). Wir bringen also die Objekte
zundchst einmal auseinander.

Danach - und das ist ebenfalls sehr wichtig - setzen wir das
Sprite-Sprite - Kollisionsregister zuriick, indem wir den Wert
0 hineinschreiben, da dessen Inhalt bekanntlich so lange
erhalten bleibt (genau genommen nur die gesetzten Bits), bis
dieses Lioschen vorgenommen wurde, auch wenn die Beriihrung
ldngst nicht mehr besteht.

Danach konnen wir loslegen. Auch hier (wie in dem vorherigen
Beispiel) werden die Sprites wieder in einer Schleife bewegt.
Dabei wird der Schleifenzdhler (X0) als laufend ansteigender
Wert zur Bestimmung der x-Koordinate von Sprite 0 verwendet.
Ein von 255 bis 1 absteigender Wert (X2), der stets einmal
pro Schleife in Zeile 350 erniedrigt wird, legt die
x—Koordinate des Sprite 2 fest (Zeile 360). Um.nun Sprite 0
entlang einer Sinus- und Sprite 2 gemdB einer Cosinuskurve
"fliegen" zu lassen, werden die y-Koordianten in den Zeilen
360 und 370 durch eine entsprechende Formel errechnet.
Verdndern Sie hierbei ruhig einmal die verschiedenen
Parameter! (Die 40 sorgt fir die GroBe des Ausschlages
(Amplitude), die 30 fiir die Lidnge der Kurven (Wellenlinge)
und die 100 fir die Verschiebung der gesamten Kurve in
y—Richtung).

Nun kommen wir wieder zu einem sehr interessanten Teil: Die
Kollisionsabfrage. In Zeile 390 wird gefragt, ob Bits 0 und 2
des Registers 30, also des Sprite-Sprite - Kollisions-
registers, gesetzt sind. Ist das der Fall, so verzweigt das
Programm nach Zeile 440 in die Kollisionsroutine. Hier wird
ein kleiner Farb-Effekt erzeugt und die beiden sich
beriithrenden Sprites auseinander gebracht, um das Kollisions-
register zu léschen. Weshalb wir die Sprite erst auseinander
bringen miissen (wir hdtten auch eines ausschalten kénnen),
ist weiter oben dargelegt. Damit hédtten wir alles Notwendige,

um Kollisionen zu bedienen.

Hier wurden TIhnen - ich hoffe recht anschaulich - die

156

Grundlagen der Spriteprogrammierung vermittelt. Jetzt ist es
an [hnen, zu probieren und zu programmieren. Es gibt tausende
von Anwendungen, denen lediglich 1Ihre Phantasie Grenzen
setzt. Selbstverstandlich kann in diesem Buch nicht auch nur
ein Bruchteil dieser Dinge vermittelt werden. Es bedarf schon
einiger Eigeninitiative, um hier FuB zu fassen. Das aber ist
ja gerade das Interessante am Programmieren. Der ganze Reiz
wdre fort, wenn alle Moglichkeiten bereits vorgekaut vor
Ihnen ldgen und Sie sie lediglich zusammenfiigen miiBten. So
bleibt Ihnen geniigend Freiraum, in dem Sie Ihrem Forschungs-

drang Lauf lassen kénnen.

4.4 Zeichensat=—
Programmierung

Ein bisher recht stiefmiitterlich behandeltes Thema ist das
der Zeichensatzverinderung. Enorme Moéglichkeiten tumn sich
hier auf. Ich kenne nur sehr wenige mehr oder minder
anspruchsvolle Spiele, die nicht auf diese Eigenschaft Ihres
Rechners zuriickgreifen oder gar den Kern Ihres Inhalts nicht
hierhin verlagern. Hier entscheiden die groBSen graphischen
Méglichkeiten, die fast an die hochauflésende Graphik
heranreichen, bei einer 8-9 mal schnelleren Verarbeitungs-—
geschwindigkeit. Mit der Fahigkeit, einen eigenen Zeichensatz
zu creieren wird der Commodore 64 ungeheuer anpassungsfiéhig.
Der groBe Mangel vieler Computer, die sich mit den vielen
verschiedenen Zeichensédtzen oder Sonderzeichen in unter-
schiedlichen Lédndern herumschlagen ist hier behoben. Nicht
nur den amerikanischen, sondern auch den deutschen,
schwedischen, ja sogar russischen, griechischen oder
japanischen Zeichensatz kann Ihr Computer auf den Bildschirm
bringen. Schriftarten kdonnen gewechselt werden wund vieles
mehr. Das bekannte Textomat beispielsweise, ein erfolgreiches
Textverarbeitungsprogramm, bedient sich dieses inneren
Schatzes. Sie sehen, diese Rechnereigenart ist nicht zu
unterschédtzen. Aus diesem Grunde widmen wir uns in diesem

Kapitel der programmtechnischen Realisierung der Zeichensatz-

157

dnderung. Diese ist nicht so einfach wie beispielsweise die
Spriteprogrammierung und kommt zumindest an einer Stelle
nicht ohne Maschinensprache aus, auBer, Sie besitzen eine
entsprechende Basicerweiterung. Deshalb sollten Computer-
neulinge =zunéchst einmal diesen Abschnitt iberspringen.
Gleichfalls ist es empfehlenswert vor der Lektiire der
folgenden Ausfiihrungen den Paragraphen 3.6 gelesen und

verstanden zu haben.

Wie Sie in dem Abschnitt 3.6 erfahren haben, besteht eine
Zeichendefinition aus 8 Bytes 2zu je 8 Bits, was eine
8x8-Punkte - Matrix pro Zeichen ergibt. Gleichzeitig sind 512
verschiedene Zeichen speicherbar, maximal jedoch nur 256 zur
selben Zeit auf dem Bildschirm darzustellen. Der gesamte Satz
von 512 Zeichen besitzt eine Lidnge von 4 K und liegt
normalerweise bei $D000-$¢DFFF (53248-57343) im sogenannten
Zeichensatz-ROM. Er 1ist verschiebbar durch Anderung der
Register 24 des VIC und Register 0, Bits 0/1 der CIA 2
(Adressen: $D018 = 53272 und $DD00 = 56576). Soweit das
Wichtigste noch einmal in Kiirze.

Bei der Zeichensatzerstellung muB man zwel Falle
unterscheiden. Im ersten Fall sollen nur einige wenige Teile
des Zeichensatzes (Sonderzeichen) verdndert werden. Bei der
anderen Moglichkeit wird der gesamte Satz ausgewechselt.

Zundchst zur ersten:

4.4.1. Anderung einiger Zeichen

Wollen wir ein paar Zeichen des Zeichengenerators durch
eigene Zeichenformen ersetzen, so miissen wir den originalen
Satz zunédchst einmal aus dem ROM-Bereich in einen uns
angenehmen RAM-Bereich copieren. AnschlieBend dndern wir die
Start - Adresse des Generators auf die in Abschnitt 3.3.2
(das Kapitel 3.3 sollten Sie, um alles richtig zu verstehen,
bereits gelesen haben) erliduterte Art und Weise. Dann gehen
wir hin und &dndern die Zeichen, die wir ersetzen wollten.

Was hier so kurz und einfach erscheint, bedarf doch Einiges
an Hintergrundwissen und Programmiertechnik. Grundsédtzlich
kann man den Zeichengenerator nicht von Basic aus auslesen

bzw. copieren. Dies ist dadurch verursacht, daB der Ort von

158

$D000~-$DFFF (53248-57343), in dem er sich befindet,
normalerweise alle Eingabe / Ausgabe - Bereiche (E/A-Bereich)
umfaBt und somit erst durch Andern des Registers 1 der CPU
(s. # 3.5), also der Speicherstelle 1 eingeschaltet werden
muB, Damit ist aber der E/A-Bereich, der von der 1Interrupt-
routine des Betriebssystems verwendet wird, lahmgelegt und es
kdme in Basic zum Absturz des Computers. In Maschinensprache
Jjedoch kann man den Interrupt durch Setzen des Interrupt-
flags der CPU verhindern. Aus diesem Grunde geben wir Ihnen
an dieser Stelle ein Maschinenprogramm an, das die Aufgabe
des Copierens und des Verschiebens des Zeichengenerators fiir
Sie iibernimmt. Letzteres konnte zwar ebensogut von Basic aus

geschehen, ist aber so einfacher.

20: H
30: ; ZEICHENSATZVERSCHIEBUNG:
40: § 3K KOk ok ok 3K K ok KOk X0k K kK Kk ok k
50: H
60: C80C Xx= $C800 ;s STARTADRESSE (51200)
70: €800 v = 53248 ;BASISADRESSE VIDEOCONTROLLER
80: €800 SATZ = 53248 ; BASISADRESSE ZEICHENSATZ
90: €800 ZIEL = $3000 ;BASISADRESSE COPIERADRESSE
100: €800 78 START SEI ; INTERRUPT VERHINDERN
110: €801 A5 01 LDA $01 ;CPU-REG. 1
120: €803 48 PHA ; RETTEN
130: ¢804 29 FB AND #%11111011 ;BIT 2 LOESCHEN
140: €806 85 01 STA $01 ; (ZEICHENGENERATOR AUSLESBAR)
150: Cc808 A9 DO LDA #>SATZ
160: €80A 85 03 STA $03 ;s QUELLADRESSE HIGH-BYTE
170: c80C A9 30 LDA #>ZIEL
180: C80E 85 05 STA $05 ;ZIELADRESSE HIGH-BYTE
190: €810 A0 00 LDY #$00
200: c812 84 02 STY $02
210: C814 84 04 STY $04 ; LOW-BYTES = 00
220: C816 A2 20 LDX #$20 ; ZAEHLER FUER 4 K-BYTE
230: €818 Bl 02 COPIE LDA ($02),Y ;BYTE LADEN
240: C81A 91 04 STA ($04),Y ;UND COPIEREN
250: c81cC c8 INY
260: C81D DO F9 BNE COPIE ;2566 MAL
270: CB81F E6 03 INC $03
280: €821 E6 05 INC $05 ;s HIGH-BYTES ERHOEHEN

-

159

€823 CA DEX

C824 DO F2 BNE COPIE ;4 K COPIEREN

C826 68 PLA

€827 85 01 STA $01 3 ZEICHENGENERATOR AUS-E/A EIN
C829 AD 18 DO LDA V+24 ; ZEICHENGENERATORADRESSE

c82c 29 F1 AND #%11110001

C82E 09 0OcC ORA #%00001100

C830 8D 18 DO STA V+24 ;AUF $3000 SETZEN

C833 58 CLI ; INTERRUPT WIEDER ERLAUBEN
C834 60 RTS ; ZURUECK NACH BASIC

Und hier der dazugehorige Basiclader:

100 FOR I = 51200 TO 51252

110 READ X : POKE I,X : S=S+X : NEXT

120 DATA 120,165, 1, 72, 41,251,133, 1,169,208,133, 3
130 DATA 169, 48,133, 5,160, 0,132, 2,132, 4,162, 32
140 paTA 177, 2,145, 4,200,208,249,230, 3,230, 5,202
150 DATA 208,242,104,133, 1,173, 24,208, 41,241, 9, 12
160 DATA 141, 24,208, 88, 96

170 IF S8 <> 5884 THEN PRINT "FEHLER IN DATAS !!" : END
180 PRINT "OK"

Wollen Sie also Teile Ihres Zeichensatzes #dndern, so brauchen
Sie lediglich diesen Lader einzuladen, RUN 2zu driicken und
anschlieBend ein SYS 51200 einzutippen, und schon ist der
originale Zeichensatz verschoben (Sie konnen, falls Sie einen
Monitor besitzen, natiirlich auch direkt das Maschinen-
programm eingeben, abspeichern und spiéter mit LOAD "name",8,1
einladen).

Der urspriingliche Grund fiir diese Exkursion war aber das
Ziel, verschiedene Zeichen des Zeichengenerators zu
verédndern. Dies wollen wir jetzt unternehmen.

Aus dem Abschnitt 3.6 kennen wir bereits den 8x8-Aufbau (bzw.
4x8 bei Multicolor) eines Zeichens und seine Abspeicherung in
8 Bytes. Um nun eine Zeichendefiniton auszuwechseln, miissen
wir uns zundchst eine eigene iiberlegen. Dies geschieht am
besten auf die gleiche Weise, wie bei den Sprites mit Hilfe
eines Zeichenentwurfsblattes, das Sie ebenfalls im Anhang
finden. Die Anwendung kennen Sie bereits von den Sprites her.

Jede Reihe dieses Zeichenentwurfes bildet dabei genau ein

160

Byte, jeder gesetzte Punkt ein Bit der Definition. Nun haben

wir beispielsweise folgendes Gebilde creiert:

Bit: | 7 6 5 4 3 10
Byte O0: R ..
Byte 1: . X k X% . e .
Byte 2: | x % , X X %X X
Byte 3: | x x . .
Byte 4: | x % . X X %X X
Byte 5: X %

Byte 6: x X . .
Byte T7:

Wir erhalten damit folgende 8 Bytes:

Byte 0: %0001 1100 = $1C = 028
Byte 1: %0111 0000 = $70 = 112
Byte 2: %1100 1111 = $CF = 207
Byte 3: %1100 0000 = $CO0 = 192
Byte 4: %1100 1111 = $CF = 207
Byte 5: %0111 0000 = $70 = 112
Byte 6: %0001 1100 = $1C = 028
Byte 7: %0000 0000 = $00 = 000

Damit taucht auch gleich die nédchste Frage auf: Welches
Zeichen soll unsere Neuschépfung ersetzen, und welchem der
insgesamt 4 Zeichensidtze (s. # 3.6) s0ll es angehdéren? 1In
unserem Fall wollen wir statt des normalen Pfundzeichens, das
im GroB/Graphikmodus erreichbar ist, nun diese Definition
setzen.

Jetzt miissen wir feststellen, wo die entsprechenden 8 Bytes
innerhalb des gesamten Zeichengenerators liegen. Dazu

vervenden wir die im 3. Kapitel angegebene Formel:

adresse = basisadresse + 8 % bildschirmcode

Die Basisadresse des Zeichengenerators hangt grundsédtzlich

von dem Bereich ab, in den wir diesen verschoben haben. Da

wir uns in unserem Beispiel innerhalb der Adressen
$3000-$3FFF (12288-16383) befinden und wir nur den
Grofschrift Graphikzeichenmodus verédndern wollen (die

161

Definitionen fiir dessen Zeichen liegen von $3000-$37FF
(12288-14335)), liegt dieser erste Wert hier schon einmal
fest. Bleibt lediglich der Bildschirmcode: Diesen erfahren
wir durch Nachschlagen in der Bildschirmcodetabelle im
Anhang. Er ergibt sich fiir das normale Pfundzeichen =zu 28
($1C) (das inverse Pfundzeichen hidtte den Code: 128+28=156).
Damit konnen wir die verschiedenen Werte in unsere Formel

einsetzen:

adresse = 12288 + 8%28 = 12512 = $30E0

Damit wissen wir, daB die 8 Bytes von $30E0 bis $30E7
(12512-12519) die Definition fiir besagtes Pfundzeichen
enthalten. Mit einem Speichern der obigen 8 Bytes unseres
Sonderzeichens in diese Positionen #ndern wir sofort das
Aussehen aller Pfundzeichen auf dem Bildschirm. Dies
geschieht etwa durch folgendes Basicprogranmnm (selbst~—
verstdndlich, nachdem Sie zundchst mit obiger Routine den
Zeichensatz copiert und verschoben haben):

10 REM ZEICHENAENDERUNG

20 FOR X=0 TO 7

30 READ DT : REM 8 DATEN LESEN

40 POKE 12288 + 8x28 + X, DT : REM UND EINPOKEN
50 NEXT X

60 DATA 28,112,207,192,207,112,28,0

Bevor Sie dieses Programm ablaufen lassen, sollten Sie ein
paar Pfundzeichen auf den Bildschirm bringen, um die Wirkung
direkt zu sehen. Wenn Sie nach dem Starten dann auf den
Klein- / GroB8schrift - Modus wumschalten (mit <shift><C=>),
dann sehen Sie, daB das Pfundzeichen dieses Satzes aus einem
anderen Speicherbereich stammt. Diese Operation kénnen Sie
natiirlich mit allen anderen Zeichen genauso durchfiihren und
sich damit ein ganzes Reservoir an Sonderzeichen schaffen,
die bei der Erstellung von besonders schonen und abwechs-
lungsreichen Graphiken oder beim kommerziellen Gebrauch
Verwendung finden.

162

4.4.2. Anderung eines Zeichensatses

Wollen wir einen ganzen Zeichensatz auswechseln, so brauchen
wir den originalen nicht extra zu copieren. Damit kommt man
vollig mit den Moglichkeiten, die in Basic bestehen aus. Man
ldd einfach den neuen Zeichensatz in einen bestimmten
Speicherbereich ein und teilt dem VIC mit, daB er die
Definition der verschiedenen Buchstaben etc. von nun ab von
dort holen soll.

Doch zunéchst einmal muB dieser neue Zeichensatz entstehen,
der jetzt von mir aus alle griechischen, russischen,
kyrillischen Zeichen oder nur Blocksatz, Elite oder
Schreibschrift enthédlt. Dies ist normalerweise aufgrund der
Vielzahl der verschiedenen Zeichen recht mithselig und mancher
Programmierer wiirde ob dieser schier unbewédltigbar
erscheinenden Arbeit verzweifeln. Jedes Zeichen nmiiBte auf
einem Blatt entworfen, in Bytes iibersetzt und schlieBlich
entweder per Monitor direkt oder - was noch miihseliger wire -
von Basic aus durch POKEs in den Speicher eingegeben werden.
Weil aus diesen Griinden ein verniinftiges Arbeiten mit ganzen
Zeichensédtzen kaum realisierbar erscheint, werden wir Ihnen
an dieser Stelle ein Programm vorstellen - &hnlich dem
Spriteeditor -, mit dem Sie auf einfachste Art und Weise
solche Tatigkeiten vornehmen kénnen. Auch hier erwartet Sie
wieder einiges an Tiparbeit, die sich jedoch ernsthaft lohnt!
Halten Sie dies jedoch fiir verlorene Zeit, so weise ich Sie
auch hier wieder darauf hin, daB Sie exklusiv zu diesem Buch
eine Diskette mit allen hier aufgefiihrten Programmen erhalten
konnen. Speziell zum Zeichenformer ist dort auch eine Version
fiir Multicolorzeichen und ein Programmteil "Erl&duterungen"
vorhanden.

In dem vorliegenden Programm wurde wieder viel Wert auf
Dokumentation gelegt, damit Sie die Moglichkeit haben, dieses

Programm auch zu verstehen.

163

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
ZEI1
310
320
330
340
350
360
370
380
390
395

REM XXXXKKERKRXKKKKRKRKKXX

REM *% XX
REM *x ZEICHENFORMER *x
REM XX *X
REM XXXk kKKK kK kKK Kk KXk X XX
REM

REM INITIALISIERUNG:

REM X*XXkkkXkkkkkXk kXX
GOSUB 10000 : REM MASCHINENROUTINEN EINLESEN

POKE 53280,0:POKE 53281,0: REM HINTERGRUND-/RAHMENFARBE
POKE 763,0:POKE 650,255: REM MODUS=0:ALLE ZEICHEN REPEAT
POKE 45,0:POKE 46,80:RUN 130:REM BASICENDE=$5000
REM

REM MASCHINENROUTINEN:

REM XXkkkkkkkkkkkkkkxx

IN%=18432:REM INITROUTINE

PU%=18633:REM PUNKT EINZEICHNEN

NE%=18586:REM KOORDINATENSYSTEM

LA%=18487:REM ZEICHENSATZ LADEN

SP%=18515:REM ZEICHENSATZ SPEICHERN
CA%=18765:REM CATALOG

BEX=18689:REM BEFEHLSIDENTIFIZIERUNG

Q =13048:REM TESTZEICHENADRESSE

REM

REM CONTROLZEICHEN:

REM XXkkkkkkkkkkkkxX

CO0$=CHR$(147):REM BILDSCHIRM LOESCHEN

Cl$=CHR$(19):REM HOME

C2$=CHR$(183):REM HOCHSTRICH

C3$=CHR$(117)+CHR$(99)+CHR$(105):REM OBERER
CHENFENSTERRAND

C4$=CHR$(106)+CHR$(99)+CHR$(107):REM UNTERER RAND
C5$=CHR$(98):REM MITTELSTRICH (SENKR)

C6$=CHR$(18):REM RVS ON

C7$=CHR$(146):REM RVS OFF

NA%=704:REM FILENAMENLAENGE ($02C0)

GAX=186:REM GERAETEADRESSE($BA)

MO%=763:REM MODUS

TA%=764:REM TASTE/BEFEHLSCODE

YK%=765:REM Y-KOORD

XK%=766: REM X-KOORD

164

400 REM

410 REM FARBEN DEFINIEREN:

420 REM XxkkkxkkkkkkkkkkkXx

430 DATA 144, 5, 28,159,156, 30, 31,158

440 DATA 129,149,150,151,152,153,154,155

450 DIM C$(16):FOR Y=0 TO 15:READ X:C$(Y)=CHR$(X):NEXT Y
460 N=1:F(0)=0:F(1)=1:V$=" ":SYS IN%:REM FARBEN/INIT

500 REM

510 REM LOESCHROUTINE (FELDAUFBAU):

520 REM X%k kokkkokkokkkokokkoKkokok ¥k k ok kk Xk

530 FOR Y=Q TO Q+7:POKE Y,0:NEXT Y:REM TESTZEICHEN LOESCHEN
540 PRINT CO$

550 PRINT C1$;SPC(10);C$(7);"ZEICHEN-NEU-CREATION"

560 PRINT SPC(11);C$(1);"(C) BY AXEL PLENGE"

570 PRINT C$(4);:FOR X=1 TO 40:PRINT C2¢$;:NEXT X:PRINT
C$(6):PRINT

580 PRINT " 76543210":SYS NE%

590 PRINT " ";:FOR X=0 TO 7:PRINTC2$;:NEXT X

600 A=15:B=5:GOSUB 9000:REM POSITIONIEREN

610 PRINT C3$:PRINT TAB(15);C5¢%$;CHR$(127);C5%:POKE
55552,F(1):REM TESTZEICHEN MIT FARBE

620 PRINT TAB(15);C4$:GOSUB 3000:X=0:Y=0:REM
STATUSFELD/X/Y-KOORD=0

700 REM

710 REM EINGABESCHLEIFE:

720 REM X¥Xkkkkkkkkkkkxk

730 A=X+3:B=Y+6:GOSUB 9000: REM POSITIONIEREN

740 POKE XK%,X:POKE YK%,Y:F=0:REM KOORDINATEN UEBERGEBEN
750 PRINT C$(7);C6%$;" ";CHR$(157);:REM BLINKPHASE AN

760 FOR S=1 TO 50:GETA$:IF A$<>"" THEN 800

770 NEXT S:SYS PU%:FOR S=1 TO 50:GET A$:IF A$="" THEN NEXT
S$:GOTO 750:REM AUSSCHALTEN

800 REM

810 REM BEFEHLSERKENNUNG:

820 REM XkXkdkkkkkkkkkkkk

830 SYS PU%:C=ASC(A$):POKE TA%,C:SYS BEX:S=PEEK(TAX):REM
BEF-UEBERGABE/RUECKMELDUNG

840 REM VERTEILUNG:

850 ON § GOTO 1600,2800,2900,1060,1060,1080,1080,1100,1100
860 ON s-9 GOoTO 1110,1110,3100,3100,3100,3100

870 ON s-15 GOTO 3100,3100,3100,3100,500,1700

165

880 ON S-21 GOTO 1800,1900,2000,2100,1200,3400

890 ON S-27 GOTO 1300,3200,1400,700

1000 REM

1010 REM BEFEHLSBEARBEITUNG:

1020 REM ®kkkkkkkkkkkkkkkkxk

1030 REM

1040 REM CURSORBEWEGUNG:

1050 REM ¥¥okkkkkkkkkkkkx

1060 X=X+1:IF X=8 THEN X=0:GOTO 1100

1070 GOTO 700:REM RECHTS

1080 X=X-1:IF X<0 THEN X=7:GOTO 1110

1090 GOTO 700:REM LINKS

1100 Y=(Y+1)AND7:GOTO 700:REM RUNTER

1110 Y=(Y-1)AND7:GOTO 700:REM HOCH

1200 REM

1210 REM BEENDEN:

1220 REM *kkx¥kkk

1230 A=2:B=15:GOSUB 9000:REM POSITIONIEREN

1240 PRINT C6$;C$(7);"BEENDEN?";C7$;C$(6): INPUT T$
1250 IF T$="J" OR T$="JA" THEN SYS 64738:REM KALTSTART
1260 GOTO 540

1300 REM

1310 REM CATALOG:

1320 REM XXkkkkkk

1330 PRINT C0$:SYS CA%:GOSUB 9100:GOTO 540

1400 REM

1410 REM VERSCHIEBUNG:

1420 REM ¥kkkXkkkk kKKK

1430 GOSUB 8999:PRINT C$(1);"VERSCHIEBUNG: ":REM MELDEFELD
1440 PRINT "NACH: RECHTS(R), LINKS(L),":PRINT SPC(6)
"OBEN (0), UNTEN(U):"

1450 GOSUB 9100:IF T$<>"R" THEN 1470

1460 FOR T=0 TO 7:R=PEEK(Q+T):POKE Q+T, (R/2) + (R AND
1)%128: NEXT T:REM RECHTS

1470 IF T$<>"L" THEN 1490

1480 FOR T=0 TO 7:R=PEEK(Q+T)*2:POKE Q+T, (R AND 255) +
R/256:NEXT T:REM LINKS

1490 s=1:IF T$="0" THEN 1510

1500 S=-1:IF T$<>"U" THEN 1520

1510
FORT=0TOT:P(T)=PEEK((TANDT+S)+Q) : NEXTT: FORT=0TO7 : POKEQ+T,P(T)

166

:NEXTT: REM HOCH/RUNTER

1520 GOSUB 9200:GOTO 550

1600 REM

1620 REM MODUSWECHSEL:

1630 REM XXxkkkkkkkkkkk

1640 M=ABS(M-1):POKE MO%,M:GOSUB 3000:GOTO 700

1700 REM

1710 REM ZEICHEN DEFINIEREN:

1720 REM %k kK% k% k %k k %k %k k % %k k Xk

1730 GOSUB 8999:PRINT C6$;C$(5);"GEBEN SIE AN:";C7$
1740 PRINT C$(7);"ZUORDNUNG DES

ZRICHENS: ";C$(6);CHR$(127);C$(7)

1750 GOSUB 2500:IF F=1 THEN F=0:GOTO 540:REM
ADRESSENERR.+FEHLERABFR.

1760 FOR X=0 TO 7:POKE T+X,PEEK(Q+X):NEXT X:REM SPEICHERN
1770 FOR X=1 TO 1500:NEXT X:GOSUB 9200:GOTO550:REM
WARTEN+LOESCHEN

1800 REM

1810 REM ZEICHEN HOLEN:

1820 REM XXXkkkXXXkXkkXKX

1830 GOSUB 8999:PRINT

C$(1);"GEBEN SIE DAS ZU BEARBEITENDE":PRINT "ZEICHEN EIN:"
1840 GOSUB 2500:IF F=1 THEN F=0:GO0TO 540:REM
ADRESSENERR.+FEHLERABFR.

1850 FOR Y=0 TO 7: POKE Q+Y,PEEK(T+Y):NEXT Y:GOSUB 9200:GOTO
550: REM LADEN

1900 REM

1910 REM ZEICHEN INVERTIEREN:

1920 REM XkkkkkkXxXkkkkkkkkkXX

1930 FOR B=0 TO 7:POKE Q+B,255-PEEK(Q+B):NEXT B:GOTO 550
2000 REM

2010 REM ZEICHENSATZ SPEICHERN:

2020 REM ok k k% 3k ok %k &k %k kK X X %k Xk %

2030 GOSUB 8999:PRINT

C6$;C$(1); "ZEICHENSATZABSPEICHERUNG";C7$

2040 GOSUB 2300:IF F=1 THEN F=0:GOTO 2000:REM
EINGABE/FEHLERABFR.

2050 IF F=2 THEN F=0:GOTO 2150:REM FEHLER

2060 SYS SPX:GOTO 2200:REM SPEICHERN

2100 REM

2110 REM ZEICHENSATZ LADEN:

167

2120 REM X¥KkXKXXKXKEKKKKKK
2130 GOSUB 8999:PRINT C6$;C$(1); "ZEICHENSATZ LADEN:";CT7$
2140 GOSUB 2300:IF F=1 THEN F=0:GOTO 2100

2150 IF F=2 THEN F=0:GOTO 540

2160 SYS LA%

2200 REM FEHLERABFRAGE (NUR FUER DISK!):

2210 OPEN 1,8,15: INPUT#1,DS,DS$,DT,DB:CLOSEL

2220 IF DS<20 THEN 500:REM OK

2230 PRINT:T$=STR$(DS)+","+DS$+","+STR$(DT)+","+STR$ (DB)
2240 GOSUB 9310:PRINT T$:FOR S=1 TO 2000:NEXT S:GOTO 500:REM
BLINKEN

2300 REM

2310 REM NAMENEINGABE:

2320 REM XXkXkKKKKXAF

2330 A$="":PRINT:PRINT "FILENAME"+C$(6);: INPUT A$:T=LEN(A$)
2340 S=VAL(RIGHT$(AS$,1))
2350 IF S<>0 AND LEFT$(RIGHT$(A$,2),1)=";" THEN T=T-2:POKR

GA,S:REM GERAETEADR.

2360 IF T=0 THEN F=2:RETURN:REM KEIN NAME

2370 IF T>17 THEN 2390

2375 REM NAMEN AN MASCHINENROUTINEN (704=$02C0):

2380 POKE NA%,T:FOR S=1 TO T:POKE
NA%+S,ASC(MID$(A$,S,1)):NEXT S:RETURN

2390 PRINT CHR$(145);: T$=C6$+"LAENGE!"+C7$:GOSUB

915:REM FEHLERMELDUNG

2400 PRINT C$(6):F=1:RETURN

2500 REM

2510 REM ZEICHENADRESSE ERRECHNEN:

2520 REM XXkk¥kkkkkkkkkkkkkk ¥k kkkk kX

2530 PRINT "ZEICHENSATZ(1-4): ";N:A$=""

2540 PRINT "TASTE(F3) ODER ASCII(F5)?":GOSUB 9100

2550 ON ABS(ASC(T$)-132) GOTO 2570,2570,2590,2590

2560 GOTO 9300

2570 INPUT "TASTE";A$:A$=LEFT$(A$,1):IF A$="" THEN 9300:REM
TASTENEINGABE

2580 T=ASC(A$):GOTO 2620

2590 INPUT "ASCII";A$:IF A$="" THEN 9300:REM ASCII-EINGABE
2600 T=VAL(A$)/255:T=INT((T-INT(T))*255):A$=CHR$(T)

2610 IF T<32 OR (T<160 AND T>127) THEN 9300

2620 IF T>191 THEN T=T-96:REM ASCII-UMWANDLUNG

2630 PRINT CHR$(145);"TASTE:";A$;" ASCII:";T;:IF B>8 THEN

168

V$=As

2640 REM UMRECHNUNG (T IST DER NORMALE ASCII-WERT DES
ZEICHENS): '

2650 IF T<64 THEN S=256:GOTO 2680

2660 IF T<128 THEN S=256%((32 AND T)/186)

2670 IF T>159 THEN S=256%(INT(T/32)-2)

2680 T=(N+47)%1024+S+(31 AND T)*8:RETURN

2800 REM

2810 REM ZEICHENSATZWECHSEL:

2820 REM Xk 3kok ¥k %k Kk ok kX k% k & k X

2830 A=36:B=5:GOSUB 9000:PRINT C$(2);C6$;N;C7$;C$(6):REM
NUMMER INVERTIEREN

2840 GOSUB 9100:S=VAL(T$):IF S=0 OR S>4 THEN S=N:REM
S=NEUER/N=ALTER ZEICHENSATZ

2850 N=S:GOSUB 3000:GOTO 700

2900 REM

2910 REM ZEICHEN HOLEN (IN MODUS 1):

2920 REM okkkokk ok Kk Xk Kok % &k Xk % X ok k kX Kk % Kk

2930 IF C<32 OR (C>127 AND C<160) THEN 700

2940 T=C:R=N:V$=A$:GOSUB 3000:GOTO 1850

3000 REM

3010 REM STATUSFELD ERSTELLEN:

3020 REM Xk¥xkkkkkkkokkkkkkkkkkk

3030 A=20:B=5:GOSUB 9000: PRINT

C$(7);"MODUS: ";M;"/ SATZ:";N:A$=V$:T=ASC(AS$)

3040 PRINT TAB(20);CHR$(17);CHR$(17);C$(6);

3050 GOSUB 2620:PRINT CHR$(157);" ":PRINT

3060 PRINT TAB(20);C$(7); "FARBZUTEILUNG:"

3070 PRINT TAB(20);C$(2);:FOR S=1 TO 14:PRINTCHR$(163);:NEXT
S:PRINT C$(6)

3080 FOR S=0 TO 1:PRINT TAB(20);"GRUNDFARBE";S;":";F(S):NEXT
S:RETURN

3100 REM

3110 REM PLOT:

3120 REM XXxXxXx

3130 s=((S-12) AND 2)/2:REM PLOTFARBE FESTSTELLEN
3140 T=2"(7-X):POKE Q+Y,PEEK(Q+Y) AND (255-T) OR SxT:GOTO 700
3200 REM

3210 REM FARBENWAHL:

3220 REM xokkkkkkkkkx

3230 GOSUB 8999:PRINT

169

TAB(4);Cs(l)"F"C$(2)"A"C$(3)"R"C$(4)"B"C$(5)"E"C$(G)"N";
3240 PRINT C$(7)"W"C$(4)"A"CS$(6)"H"C$(2)"L"C$(7)":"
3250 PRINT TAB(4);C$(1l);CHR$(172);:FOR S=1 TO 32:PRINT

CHR$(162); : NEXT S:PRINT CHR$(187)

3260 FOR S=1 TO 2:PRINT TAB(4);C6$;CHR$(161)

3270 FOR T=0 TO 15:PRINT C$(T);"

C$(1);C7$;CHR$(161):NEXT S

3280 PRINT

"; :NEXT T:PRINT

TAB(4);C6$;CHR$(161);" 0 1 2 3 4 56 6 7 8 9101112131415";C7$;C

HR$(161)

3290 PRINT:PRINT C$(6);"
3300 GOSUB 9100:T=ASC(T$)-133:REM FUNKTIONSTASTE

FUER GRUNDFARBENNR. (F1/F3): ";

3310 IF T<0 OR T>1 THEN GOSUB 9300:GOTO 540:REM FEHLER

3320 IF T>1 THEN T=T-4
3330 PRINT T:T¢$="":INPUT "

FARBE ";T$:S=ABS(INT(VAL(T$)))

3340 IF T$="" OR S>15 THEN GOSUB 9300:GOT0540: REM FEHLER
3350 F(T)=S:POKE 53281+T,S:REM FARBE SETZEN

3360 GOTO 540
3400 REM

3410 REM BEFEHLSSATZ:

3420 REM *X¥XkxkxkXkkkk

3430 PRINT C0$;C6%;C$(2)"

3440 PRINT "BEFEHLSSATZ";C$(2);"

3460 PRINT

" C$(7);

";CT8;
3450 PRINT C$(4);:FOR S=1 TO 40:PRINT CHR$(184); :NEXT S:PRINT

C$(1)" NR. "C6¢$"BEFEHL "C7¢$"-"C$(5)" FUNKTION"C$(4)
3470 FOR S8=1 TO 10:PRINT "----";:NEXT S
"Cesﬂ (<>T‘ .)"C7$H_"C$(5)"

3480 PRINT C$(1)"
CURSORBEWEGUNGEN"
3490 PRINT C$(1)"
3500 PRINT C$(1)"
ECHSEL"

3510 PRINT C$(1)"
EN 0-15"

3520 PRINT C$(1)"
F. F1/3 DEF."
3530 PRINT C$(1)"
3540 PRINT C$(1)"
NIEREN"

3550 PRINT C$(1)"

(1)

(2)

(3)

(4)

(5)

(6)
(7

(8)

"CE$" ()"C7$"~-"C$(5)"

"CG$"(CTRLT)"C7$"'"C$(5)"

"C6$" (F1-F8)"CT7¢$"-"C$(5)"

"C6$"(F)

"Css"(B)
"C6$"(D)

"CG$"(H)

170

"C7$"-"C$(5)"

nc7n_nc(5)n
"C7$"‘"C$(5)"

"C7$"""C$(5)"

MODUSWECHSEL

ZEICHENSATZW

PLOT IN FARB

FARBEN 0-15

BEFEHLSSATZ"
ZEICHEN DEFI

ZEICHEN HOLEN"

3560 PRINT C$(1)"

RTIEREN"

3570 PRINT C$(1)"(10)

CHIEBEN"

3580 PRINT C$(1)"(11)

CHEN"

3590 PRINT C$(1)"(12)
LADEN"

3600 PRINT C$(1)"(13)

S. SPEICHERN"

3610 PRINT C$(1)"(14)

(9)

"CS$"(I) "CT$"-"C$(5)"
"CE$" (V) "CT$"-"C$(5)"
"c6$" (L) "CT7$"-"C$(5)"

"C6$" (CTRLG) "C7¢"-"C$(5)"

"CS$"(CTRLS)"C7$"—"C$(5)"

"C6$"(C) "C7$"*"C$(5)"

TALOG"

3620
3630
8000
8100
8200
8300
8400
8500
8999
9000

9050
9060
9070
9100
9150
9160
9170
9200

PRINT C$(1)"(15)

GOSUB 9100:GOTO 540

REM
REM
REM
REM
REM
REM
A=0

UNTERPROGRAMME :
XKKKRRRKKKKKKKXK

POSITIONIERUNG:
kKRR KRKKKKKKkX
:B=16:REM MELDEFELD

"C6$" (CTRLX) "C7$"-"C$(5)"

PRINT Cl$;:FOR S=2 TO B:PRINT:NEXT S:PRINT
TAB(A); : RETURN

REM
REM
REM

TASTENEINGABE:
XKRKKRRRKKKK KKk

WAIT 198,255:GET T$:RETURN

REM
REM
REM
A=0

S:RETURN

9210
9250
9260
9270
9300
9310

FOR
REM
REM
REM

MELDEFELD LOESCHEN:
KRKKKRKRKKKXKKKKKKX

ZEICHEN INVE

ZEICHEN VERS

ZEICHEN LOES

GET-ZEICHENS

SAVE-ZEICHEN

DIREKTORY/CA

BEENDEN"

:B=16:GOSUB 9000:FOR S=1 TO 5:GOSUB 9210:PRINT:NEXT

T=1 TO 9:PRINT "

FEHLERBLINKEN:
XKk RRKK KRRk X

T$="UNZULAESSIG!"
PRINT C$(1):FOR S=1 TO 9:PRINT T$:GOSUB 9330:PRINT
CHR$(145);
9320 GOSUB 9210:PRINT CHR$(145):GOSUB 9330:NEXT S:GOSUB

"; :NEXT T:RETURN

171

9200: F=1: RETURN

9330 FOR T=1 TO 75:NEXT T:RETURN:REM WARTESCHLEIFE
9890 REM

9900 REM kkkokokokok ok ok ok ok ok X ok ok ok X kK k X

9910 REM *x XX

9920 REM *x*x MASCHINENROUTINEN %X

9930 REM xx *%

9940 REM kkkkokokkkkokkokokkdkokkokk k¥ ok

9950 REM

9960 REM DATAS WERDEN NACH DEM STARTEN GELOESCHT !!!
9970 REM

10000 FOR I = 1 TO 16 : READ X : NEXT I : REM VORDERE DATAS
UEBERSPRINGEN (FARBEN)

10005 FOR I = 18432 TO 18836

10010 READ X : POKE I,X : S=S+X : NEXT

10020 DATA 120,169, 51,133, 1,169, 48, 32, 26, 72,169,192
10030 DATA 32, 26, 72,169, 55,133, 1,169, 28,141, 24,208
10040 DATA 88, 96,133, 5,169,208,160, 0,132, 2,132, 4
10050 DATA 133, 3,162, 16,177, 2,145, 4,136,208,249,230
10060 DATA 5,230, 3,202,208,242, 96,173,192, 2,162,193
10070 DATA 160, 2, 32,249,253,169, 2,166,186,160, 0, 32
10080 DATA 0,254,169, 0,162, 0,160,192, 76,213,255,173
10090 DATA 192, 2,162,193,160, 2, 32,249,253,169, 2,166
10100 DATA 186,160, 0, 32, 0,254,169, 20,141, 24,208,169
10110 DATA 48,133, 5,169,192, 32, 30, 72,169, 0,133, 2
10120 DATA 169, 48,133, 3,169, 2,162,255,160, 63, 32,216
10130 DATA 255,120,169, 48,162, 51,134, 1, 32, 26, 72,169
10140 DATA 55,133, 1,169, 28,141, 24,208, 88, 96,160, 0
10150 DATA 169, 32, 32,210,255, 32,210,255,152, 9, 48, 32
10160 DATA 210,255,162, 0, 32,207, 72,169, 29, 32,210,255
10170 DATA 232,224, 8,208,243,169,165, 32,210,255,169, 13
10180 DATA 32,210,255,200,192, 8,208,212, 96,174,254, 2
10190 DATA 172,253, 2,152, 72,138, 72,169, 0, 56,106,202
10200 DATA 16,252, 57,248, 50,208, 3,160, 0, 44,160, 6
10210 DATA 162, 6,185,245, 72, 32,210,255,200,202,208,246
10220 DATA 104,170,104,168, 96,146, 31,111, 31,146,157, 18
10230 DATA 28, 32, 31,146,157,173,252, 2,162, 0,201, 20
10240 DATA 240, 35,201,148,240, 31,232,201, 30,240, 26,201
10250 DATA 94,208, 5,172,251, 2,240, 17,232,172,251, 2
10260 DATA 208, 11,160, 28,232,221, 47, 73,240, 3,136,208
10270 DATA 247,232,142,252, 2, 96, 87, 29, 81,157, 65, 17

172

10280
10290
10300
10310
10320
10330
10340
10350
10360
10370

DATA 50,145,133,137,134,138,135,139,136,140, 76, 68
70, 86,169, 36,133
0, 32,249,253,169, 2

DATA 72, 73, 19,

7, 24, 66, 67,

DATA 2,169, 1,162, 2,160,
0, 32, 0,254,169,

DATA 166,186,160,

DATA 64,134, 95,132,

DATA 32, 55,165,173, o0, 3, 72,173,
3,169,227,141,

DATA 61,141, O,
DATA 104,141, 1,

IF S <> 46617 THEN PRINT "FEHLER IN DATAS !!'"

PRINT "OK" :RETURN

3,104,141,

173

o,

1,
3,

0,162,

1,

3,

0,160

96, 32,213,255,165, 95,164, 96

72,169

3, 32,195,166

96

END

END OF ASSEMBLY!

o210 H
0020 s MASCHINENROUTINEN:
2030 PR T R
2040 H
2050 H
2060 .0s
a070 -.BA #4800 ;s STARTADRESSE
oase ~-MC %0800
on70]
D100 s SPRUNGADRESSEN UND REGISTER:
2110 5 660K I KT TN N
fa12 3
@13@ CHROUT .DE $FFDZ2 1 ZEICHENAUSGABE
@140 FNPAR .DE $FDF9 s FILENAMENPARAMETER SETZEN
B815@ FPAR .DE $FEQQ@ sFILEPARAMETER SETZEN
@16@ SAVE .DE $FFD8 s SPEICHERN AUF DISK/KASSETTE
@170 LOAD .DE $FFDS s LADEN VON DISK/KASSETTE
@180 TESTCH .DE $32F8 s TESTZEICHEN (ANGEZEIGTES)
@19@ LAENGE .DE $02CQ@ s FILENAMENLAENGE
220@ MODUS .DE $02FB s MODUS
B821@ TASTE .DE $02FC s BEFEHLSTASTENDRUCK
@220 YKOORD .DE $@2FD s FELD-Y-KOORDINATE
@23@ XKOORD .DE $QZFE ;s FELD-X-KOORDINATE
2240 H
8250 3 ZEICHENSATZ COPIEREN:
2260 5 96293606 I I 6NN
!8z27a H
4800- 78 @z28@ INIT SEI sKEIN INTERRUPT
4801- A9 33 0z27a LDA #333
48@3—- 85 01 a3ee STA *3$@1 s ZEICHENSATZ LESBAR MACHEN
48@05- A? 30 2310 LDA #$30 s VON $DO0@ NACH $3200
4807- 20 1A 48 @320 JSR MOVE ;s COPIEREN
480A—- A7 CO 2330 LDA #3CO s VON $DO@@ NACH $C200
480C- 20 1A 48 @340 JSR MOVE 3 COPIEREN
480F—- A9 37 235e LDA #$37
4811- 85 @1 az6a STA *$01 s 1/0 AUSWAEHLEN
4813- A9 1C @a37a LDA #s$1C
4815- 8D 18 D@ @380 STA sDh@18 s ZEICHENSATZADRESSE NACH $3000
4818- 58 2370 CLI s INTERRUPT ERMOEGLICHEN
4819- &0 2400 RTS
2410 3
2420 s COPIEREN:
2430 § RN
0440 3
481A- 85 @S 24508 MOVE STA *$05 s ZIELADRESSE HIGHBYTE
481C- A? D@ 0460 LDA #$D@ s QUELLADRESSE HIGHBYTE
481E- AD 00 2470 M@ LDY #$00
4820—- 84 @2 0480 STY *302 s QUELLADRESSE LOWBYTE
4822—- 84 04 0470 STY *324 ;s ZIELADRESSE LOWBYTE
4824- 85 @3 2500 STA *$@3
4826— A2 10 2510 LDX #+$10
4828- B1 02 2520 M1 LDA ($02),Y s LADEN
482A- 91 04 @530 STA ($04),Y ;s SPEICHERN
482C- 88 a540 DEY
482D—- DO F9 2550 BNE M1
482F- E6 @S5 as5s6a INC *$@5
4831—- E&6 B3 o578 INC *$23
4833- CA as58a DEX
4834—- DO F2 25908 BNE M1 s NAECHSTE SEITE
4836 60 2600 RTS
Bs10 H
8620 s ZEICHENSATZ LADEN:

174

4853

4890
489C-
489E-
48Aa1-
48A4—
48A5—-
48A7-
4B8AA—
48AC-
48AF—
48B1-

AD
A2
Al
20
A9
A6
AD
20
A9
A2
AB
4c

&0

AB
A
20
2a
98
a9
20
AZ
20
A9
20

82

FD

FE

a2

FD

FE

be

48

FF

48

e

FF

FF

48

FF

2630
2640
0650
0660
2670
24680
as7a
a70a
azie
a720
2732
@740
a75e
@760
a77@
a78e
a79e
2800
2810
2820
2830
as40
2850

LADEN

SFEICH

NETZ

N1

§ J6963636 963636 3096 3 36 996 3 96 36 96

.

LDA LAENGE
LDX #$C1
LDY #$@2
JSR FNPAR °
LDA #$02
LDX #*#$BA
LDY #$00
JSR FPAR
LDA #$00
LDX #$00
LDY #$C@
JMP LOAD

5 NAMENLAENGE
3 FILENAMENADRESSE LOW—
sHIGHBYTE

s LOGISCHE FILENUMMER
;s GERAETEADESSE
s SECUNDAERADRESSE

;s LOAD/VERIFY-FLAG
s STARTADRESSE (LOWBYTE)
s STARTADRESSE (HIGHBYTE)

H
s ZEICHENSATZ SPEICHERN:
§ I I

H

LDA LAENGE
LDX #$C1
LDY #$@2
JSR FNPAR
LDA #$02
LDX *$BA
LDY #$00
JSR FPAR
LDA #$14
STA $D@18
LDA #$30
STA *$05
LDA #$CO
JSR M@
LDA #s$00
STA *$02
LDA #$30
STA *$03
LDA #$02
LDX #$FF
LDY ##3F
JSR SAVE

LDA #$30
LDX ##$33
STX »$01
JSR MOVE
LDA #$37
STA *$01
LDA ##£1C
STA $DO18

RTS

3 FILENAMENL AENGE
;s FILENAMENADRESSE (LOW)
s FILENAMENADRESSE (HIGH)

;LOGISCHE FILENUMMER
;s GERAETEADRESSE
s SECUNDAERADRESSE

sORIGINALE ZEICHENSATILAGE
s ZIELADRESSE (HIGHBYTE)

s QUELLADRESSE (HIGHBYTE)
s VON $C20@ NACH $3000

s STARTADRESSE (LOWBYTE)

s STARTADRESSE (HIGHBYTE)
sNULLSEITENADRESSE DER STARTADRESS
s ENDADRESSE (LOWBYTE)

s ENDADRESSE (HIGHBYTE)

sSPEICHERE ZS AB $3000

s INTERRUPT BLOCKIEREN

s ZIELADRESSE (HIGHBYTE)

s ZEICHENSATZ LESBAR MACHEN
s VON $DO0@ NACH $3000

s 1/0 AUSWAEHLEN
5 ZEICHENSATZADRESSE NACH #3000

3 INTERRUPT ERMOEGL ICHEN
s ZURUECK NACH BASIC

L
sARBEITSFELD HERSTELLEN:
§ I I TN I

s

LDY #$00
LDA #$20
JSR CHROUT
JSR CHROUT
TYA

ORA #$£30
JSR CHROUT
LDX #3300
JSR PUNKT
LDA #£1D
JSR CHROUT

175

sZEILENZAEHLER = @

an n
»

32 LEERZEICHEN

s ZEILENZAEHLER IN ZIFFER WANDELN
3 AUSGEBEN

sEINEN PUNKT ZEICHNEN
s CURSOR RECHTS

48B4— EB 1290 INX s NARECHSTER PUNKT

48B5—- E@ @8 1300 CPX #$08 s ACHT PUNKTE PRO ZEILE
48B7—- D@ F= 1310 BNE N1
48B9— A? AS 1320 LDA #$A5 sSTRICH (CHR#(165))
48RB- 2@ D2 FF 1330 JSR CHROUT
48BE—- A% @D 1340 LDA #$@D s CARRIGE RETURN
48C0—- 28 D2 FF 1350 JSR CHROUT
48C3- C8 1360 INY s NARECHSTE ZEILE
48C4—- CO @8 1370 CPY #$08 8 ZEILEN
48C6— D@ D4 1380 BNE N@
48C8— 6@ 1370 RTS
1400 H
1410 sEINE KOORDINATE ZEICHNEN:
1420 § DI I I NI I NI
1430 H
48C9— AE FE @2 1440 PUNKT2 LDX XKOORD s ANSTEUERUNG DURCH BASIC
48CC— AC FD 82 1450 LDY YKOORD s X/Y—-KOORDINATE
48CF—- 98 1440 PUNET TYA
48D@— 48 i47@ PHA
48D1—- 8A 1488 TXA
48D2- 48 1490 PHA s KOORDINATEN RETTEN
18D3—- A9 00 1500 LDA #$00
18D5- 38 1510 SEC sEIN BIT SETZEN
18D6—~ &6A 1520 F@ ROR A sRICHTIGES BIT HERAUSSUCHEN
18D7—- CA 1530 DEX
18D8- 1@ FC 1540 BPL PO
18DA— 37 FB8 32 155@ AND TESTCH,Y sANDERE BITS DES TESTIEICHENS LOES
18DD- D@ @3 1560 ENE P1 sBIT (=PUNKT) GESETZIT?
18DF—- AG 00 157@ LDY #$00 sNEIN
18E1- 2C 1580 -.BY $2C s BIT-BEFEHL
18E2- A@ 06 1598 P1 LDY #$06 sBIT GESETZT!
18E4- A2 @6 1600 LDX #%$Q6
18E6— B? FS 48 1610 P2 LDA PKTTAB,Y s ZEICHEN AUS PUNKTDARSTELLUNGSTABE
18E9—- 20 D2 FF 14620 JSR CHROUT
¥8EC- C8 1630 INY
18ED— CA 1640 DEX
{8EE—- D@ F& 1450 BNE P2 s NAECHSTES ZEICHEN
18F@— &8 1660 PLA
18F1—- AA 1670 TAX
18F2- &8 1680 PLA
18F3—- AB 1690 TAY s KOORDINATEN WIEDERHOLEN
18F4—- 60 1700 RTS
1710 F
1720 $ZEICHEN FUER EINE KOORDINATE:
1730 & 03I I I3 I I 36 I I I J I

1740 H
I8F5—- 92 1F 6F 1750 PKTTAB .BY 146 031 111 @31 146 157
I8FB8— 1F 92 9D
IBFB- 12 1C 20 1760 .BY 018 @28 @32 031 146 157
I8FE- 1F 92 9D

177@ H

i78@ s TASTE ALS BEFEHL IDENTIFIZIEREN:

179@ 5 FEIE I I I I NI I I I

1800 H
I19@81- AD FC @82 1810 BEFIDE LDA TASTE s TRSTENCODE
1904—- A2 DO 1820 LDX #$00 s BEFEHLSCODE
I9@6— C9 14 1830 CMP #$14 s DEL (=MODUSWECHSEL) ?
I19@8—- F@ 23 1840 BE@ B2 sJA
190A—- C? 94 1850 CMP #$94 s INSERT (WIE DEL)?
I17@C—- FO 1F 1860 BE@ B2 :JA
I90E- E8 1870 INX ;s BEFEHLSCODE + 1
190F- C9 1E 1880 CMP #$1E sCTRL. "PFEIL HOCH" ?
I211- F@ 1A 1890 BE@ B2 sJA
1213—- C9 SE 17900 CMP #$5E ;s "PFEIL HOCH" ?
915—- D@ @5 1710 BNE B@ sNEIN
1917- AC FB 82 1920 LDY MODUS sNUR IN MODUS @

176

491A—- FO 11 1930 BEGQ B2

491C- EB 1940 B@ INX ; BEFEHLSCODE + 1
491D- AC FB 02 1950 LDY MODUS sMODUS 17
4920- D@ OB 1960 BNE B2 3JA, DANN KEINE WEITEREN BEFEHLE
4922- AB 1IC 1970 LDY #$1C 327-1 BEFEHLE (ZAEHLER)
4924- EB 1980 Bi INX s BEFEHLSCODE ERHOEHEN
4925- DD 2F 49 199@ CMP BEFTAB-3,X ;TASTE MIT TABELLE VERGLEICHEN
4928- FO @3 2000 BE@ B2 s GEFUNDEN
492a- 88 2010 DEY s NAECHSTER BEFEHL
492B- DO F7 2020 BNE B1 sNDCH NICHT FERTIG
492D- E8 . 2030 B2 INX
492E- BE FC 02 2040 STX TASTE s BEFEHLSCODE ALS RUECKMELDUNG
4931- 60 2050 RTS s ZURUECK ZU BASIC

2060 3

2078 ;s BEFEHLSTASTENTABELLE:

2080 3 36363696 2636363 36 3636 36 I 36 36 363

2090 :

2100 W/CRSR-RE/Q/CRSR-LI/A/CRSR-UN

4932—- 57 1D 51 2110 BEFTAB
4935- 9D 41 11

BY @87 029 @81 157 065 017

2120 H 2/CRSR-0B/ F1/ F2/ F3/ F4
4938- 32 91 85 2130 -BY @58 145 133 137 134 138
493B- 89 B& BA
214@ H FS/ F&/ F7/ F8/ L / D
493E~ 87 8B 88 2150 -BY 135 139 136 140 @76 @48
4941- 8C 4C 44
2160 H H /7 1/<HOME>/CTRL.G/CTRL.X/ B
4944— 48 49 13 217@ -BY @72 @73 019 oa7 @24 Q&6
4947- @7 18 42 :
2180 H C/7s7F /7 VvV
494A- 43 46 56 2190 -BY @67 @70 @86
2200 H
2210 ;s DISKCATALOG:
222@ § NI
2230 H
494D- A7 24 224@ CATALG LDA #%24 1 "$" ALS FILENAME
494F- 85 82 22350 STA *$02
4951- A9 01 2260 LDA #$B1
4953- A2 02 2270 LDX #$02
4955- AG 00 2280 LDY #$00 $8.0.
4957~ 2@ F9 FD 2290 JSR FNPAR
495A- A9 02 2300 LDA #$02
495C- A6 BA 2310 LDX #$BA ;s BERAETEADRESSE
493E- AD 00 2320 LDY #+0@
4960- 20 @@ FE 2330 JSR FPAR
4963- A9 00 2340 LDA #$D00 ;s LOAD/VERIFY-FLAG
4965- A2 00 2350 LDX #$00
4967—- AD 40 2360 LDY #%40 s STARTADRESSE
4969—- B& SF 237@ STX *$5F
496B- B84 40 2380 STY =440
49464D- 2@ DS FF 2390 JSR LOAD sLADE CATALOG WIE BASICPROGRAMM
497@- AS SF 2400 LDA *$5F s SIMULIERE:
4972- A4 60 2410 LDY »$60 5 BASIC-PROGRAMMSTARTADRESSE
4974- 28 37 AS 2420 JSR $A537 s BASICZEILEN BINDEN
4977- AD @@ 03 2430 LDA $0300
497A- 48 2440 PHA
497B- AD 21 83 2450 LDA $@381 s ORIGINALEN WARMSTARTVEKTOR
497E- 48 2460 PHA 5 RETTEN
497F- A9 3D 2470 LDA #$3D
4981- 8D @@ 03 2480 STA $@300
4984- A9 E3 2470 LDA #$E3
4986—- 8D @01 0= 2500 STA $0@301 sUND AUF RTS SETZEN
4989- 20 CZ A6 2510 JSR $A6C3 ;s LISTBEFEHL AUSFUEHREN
498C- &8 2520 PLA
498D- 8D @1 03 2530 STA $0301

499@- 68 254@ PLA
177

4991— 8D 0@ 03 2550 STA $0300

4994- 60 2560 RTS
2570 -EN
END OF ASSEMBLY'!

--— LABEL FILE: --

B@ =491C B1 =4924

B2 =492D BEFIDE =4901
BEFTAB =4932 CATALG =494D
CHROUT =FFD2 FNPAR =FDF9
FPAR =FEQ@ INIT =4800
LADEN =4837 LAENGE =02C0
LOAD =FFDS M@ =481E

M1 =4828 MODUS =@2FB
MOVE =481A N@ =489C

N1 =48AC NETZ =489A
P@ =48Dé& P1 =48E2

P2 =48E6 PKTTAB =48FS
PUNKT =48CF PUNKT2 =48C%9
SAVE =FFD8 SPEICH =4833
TASTE =@2FC TESTCH =32F8
XKOORD =@2FE YKOORD =@2FD
//0000,4995,08995

1]

178

$ALTEN VEKTOR WIEDERHOLEN
;s ZURUECK ZU BASIC

Der Zeichenformer funktioniert analog zu dem Spriteeditor von
Paragraph 4.3. Auch hier existieren ein Secunddroperations-,
ein Farbzuteilungs—, ein Editor- (hier 8x8) und ein Original-
feld. Hinzu kommt noch die sogenannte Modus- und Satzangabe.

Ihr Programm kennt zwei Modi:

- 0: Eingabemodus:
In Modus 0 kénnen Sie alle Befehle benutzen

und Ihr eigenes Zeichen herstellen.

- 1: Abrufmodus:
Modus 1 ermoglicht Ihnen einen bequemen Abruf
bereits hergestellter Zeichen per Tastendruck
aus dem Zeichenbuffer (Nach dem Starten Ihres
Programmes enthédlt der zustidndige Zeichenbuffer

den kompletten originalen Zeichensatz).

Zur Satzangabe sind die 4 Zeichensétze (normal - GroB/Graphik
// invers - GroB/Graphik // normal - Klein/GroB // invers -
Klein/GroB) mit Ihren jeweils 128 Zeichen von 1-4 durch-
numeriert. Der aktuelle Satz, der gerade behandelt wird,

steht dann in der Satzangabe.

Grundsdtzlich kénnen alle Befehle des Spriteeditor (bis auf
G) auch im Zeichenformer angewandt werden und sind dort
nachzulesen. Zusétzlich stehen TIhnen hier noch folgende

Funktionen zur Verfiigung:

~ -
Moduswechsel (Modus 0-1)

- <Lctrb>t -

Wollen Sie die Nummer des Zeichensatzes wechseln, so driicken
Sie <ctrl>®™ und die Nr. (1-4) des Satzes ein (in Modus 0
geniigt auch *).

- D/H -

Mit D konnen Sie Ihr Zeichen einem ASCII-Zeichen, bzw. einer
Taste zuordnen und damit in Ihren Zeichensatz iibernehmen.

Mit H holen Sie sich ein bereits existierendes Zeichen aus

dem Zeichenbuffer in ihr Feld (analog zu Modus 1).

179

Bei beiden wird der aktuelle Zeichensatz (s.0.)(1-4)
angesprochen. Nun entscheiden Sie, ob Sie das Zeichen als
ASCII-Wert (f5/f6) oder Tastendruck (fl/f3) angeben wollen.
Jetzt erfolgt die Eingabe der Taste oder des ASCII-Wertes mit
{return>!

- <Lctrl>sS / <ctrl>G -~
Abspeichern oder Laden eines ganzen Zeichensatzes. Nédheres

siehe Spriteeditor.

Haben Sie sich mit diesem komfortablen Zeicheneditor Ihren
eigenen, personlichen Zeichensatz hergestellt und auf
Diskette gespeichert, dann kénnen Sie Thn nach dem Beenden
des Editorprogramms ganz einfach mit LOAD "name",8,1 nach
$3000 (12288) einladen (um ihn woanders hin zu laden,
brauchen Sie einen Monitor oder ein Maschinensprache -
Ladeprogramm). Als Ndchstes miissen Sie mit dem folgenden
einfachen Befehl den originalen Zeichensatzvektor
verschieben, so daB der VIC sich die benétigten Definitionen

von Stund an aus diesem Bereich holt:

POKE 53248+24, PEEK(53248+24) AND 241 OR 12

In diesem Befehl werden die drei Bits 1-3 des 24.
VIC-Registers, die die Lage bzw. die Adressbits 11-13 des
Zeichengenerators bestimmen, zunédchst geléscht (241 = %1111
0001) und dann die obersten beiden der drei Bits gesetzt
(12 = %0000 1100). Schlagartig erscheint Ihre neue Zeichen-

creation auf dem Bildschirm. So einfach ist das.

180

4.5 Eingabe/Ausgabe wvon
Graphik und Zeichensat=

Mitunter dauert es recht lange, bis wir miihselig ein
Graphikbild ersonnen und auf den Bildschirm gebracht haben.
Sollten wir dies jedesmal machen, wenn wir uns das Bild
betrachten wollen, so ginge uns recht bald die Lust verloren.
Doch es gibt einige Moglichkeiten, um diesen Prozess
abzukirzen. Zum einen kénnen wir unser Bild auf Diskette oder
Kassette abspeichern und bei Bedarf wieder in den Speicher
holen. Zum anderen, was das Anschauen spédter noch weiter
verkiirzt, sind wir in der Lage - sofern Sie einen Drucker
besitzen, der gleichfalls Graphik ausgeben kann (z.B. durch
Einzelnadelansteuerung) - sogenannte Hardcopies anzufertigen,
also Bilder auf dem Blatt Papier. Die notwendigen Techniken
fiir diese Unterfangen werden Ihnen hier vorgestellt. Es ist
klar, daB wir keine Hardcopyroutinen fiir alle méglichen
Drucker angeben koénnen, da leider fast jeder Drucker seine
eigene Art und Weise der Graphikausgabe besitzt. Deshalb
sollten Sie einmal mit dem hier Gesagten versuchen, sich
selbst eine eigene Routine fiir Ihren Drucker zu schreiben.
Notfalls schauen Sie sich einmal 1in den entsprechenden
Fachzeitschriften um, die ab und 2zu einmal verschiedene
Artikel zu diesem Thema bringen. Ist Ihnen dies ebenfalls zu
umstédndlich, so bleibt Ihnen nichts anderes iibrig, als auf
eine Graphikerweiterung zuriickzugreifen, die TIhren Drucker

betreiben kann.

181

4.5.1. Abspeichern/Laden

Das Problem bei der Ein- und Ausgabe von Graphiken oder eines
Zeichensatzes auf Diskette oder Kassette ist das Abspeichern,
da hierbei dem Computer Anfangs- und Endadresse des zu
speichernden Bereiches angegeben werden mufl und kein
entsprechender Befehl hierzu existiert. Bei normalen Basic-
programmen sind dem Rechner diese Dinge bekannt, Maschinen-
programme oder sonstige Daten jedoch miissen auf etwas
kompliziertere Art und Weise auf das Speichermedium
iibertragen werden.

Grunds#dtzlich kann dies durch die folgende Routine geschehen.
Sie ist wieder so gehalten, daB Sie sich reibungslos in Ihre

gesammelten Graphikroutinen einfiigt:

10 REM kKX kkKKKKK kK kKKK KKk kKK kkKkkX

20 REM *x Xx%
30 REM *xx GRAPHIKABSPEICHERUNG *x
40 REM xx X%
50 REM XXXk k%K kkkkkkkkkkkkkkkkkkkk
60 REM

70 FI$="GRAPHIK" : GA = 8 : REM FILENAME UND GERAETEADRESSE
80 BE = 8192 : EN = 16192 : REM START- UND ENDADRESSE (HIER
GRAPHIK BEI $2000)

90 GOSUB 11200 : END : REM SPEICHERN

11200 REM

11210 REM Kk ok 0k ok ok K ok ok %k %k K Xk k kK k X

11220 REM **x ABSPEICHERN xx

11230 REM %K 2k K %k ok %k ok %k % K %k % Xk X 5k Xk X

11240 REM

11250 SYS 57812 FI$,GA : REM DISKPARAMETERUEBERNAME (AN
$E1D4)

11260 X = EN/256

11270 POKE 175, INT(X) : REM HIGH-BYTE ENDADRESSE ($AF)
11280 POKE 174, (X-INT(X))*256 : REM LOW-BYTE ENDADRESSE
($AE)

11290 X = BE/256

11300 POKE 194, INT(X) : REM HIGH-BYTE STARTADRESSE ($C2)
11310 POKE 193, (X-INT(X))*256 : REM LOW-BYTE STARTADRESSE
($c1)

11320 SYS 62954 : REM SAVE-ROUTINE ($F5EA)

11330 RETURN

182

In diesem Programm werden in den Zeilen 70 und 80 der
eigentlichen Speicherroutine die notwendigen Informationen
zur Erzeugung eines Files iibergeben. Zeile 11250 ruft dann
einen Teil des normalen Basic SAVE-Befehls auf, der Filenamen
und Ger#dteadresse (fiir Disk: SA=8; fiir Kassette: SA=1)
iibernimmt. Ihnen mag dieser eine Befehl etwas ungewohnt
erscheinen, diese Form ist aber durchaus korrekt. Nachdem
ndmlich mit dem SYS 57812 die besagte Routine aufgerufen
wurde, werden, wie beim SAVE-Befehl, die beiden Parameter
verlangt. Aus diesem Grunde gibt es keinen SYNTAX ERROR.

Die folgenden Zeilen ibergeben der in Zeile 11320
aufgerufenen eigentlichen SAVE-Routine in bestimmten
Speicherstellen die Start- und die Endadresse des zZu
speichernden Bereiches. ‘

Wir kénnen dieses Programm fiir alle fraglichen Funktionen
verwenden, die wir im Auge hatten. Sowohl Zeichensdtze, wie
Sprites, Graphik-, Text- und Farbspeicher kénnen so auf
Diskette oder Kassette gesichert werden. Ausschlaggebend ist
dabei lediglich die Wahl der verschiedenen Parameter. Oben
wurde das Beispiel zur Speicherung von Graphik gegeben, die
in dem Bereich von $2000-$3F3F (8192-16192) liegt. Fiir unsere
Zeichenséatze, die wir in $3000-$3FFF (12288-16383)

gespeichert hatten, miiBten Sie die Zeile 80 wie folgt &ndern:
80 BE = 12288 : EN = 16384

Wie Sie sehen, miissen Sie zur Endadresse stets 1 hinzu-
zdhlen. Mochten Sie vielleicht einmal Ihre gesamte Textseite
auf Diskette bringen, die bekanntlich von $0400 bis $07E7
(1024—?023) geht, so schreiben Sie:

80 BE = 1024 : EN = 2024

Gleiches tippen Sie ein, wenn Sie den Farbteil Ihrer Graphik
(sofern er dort liegt) auf Band oder Diskette bringen wollen.
Vielleicht aber haben Sie auch eine Spritedefinition in Block
11 und wollen diese abspeichern, 2z.B. um sie dem Sprite-
editor aus Paragraph 4.3 zugidnglich zu machen (in diesem Fall

muB die Definition in Block 11 liegen) oder einfach, um Sie

183

spdter wieder direkt hinein 2zu laden. Da Block 1l bei
$02C0-$02FD (704-766) liegt, muB die entsprechende Passage

lauten:

80 BE = 704 : EN = 767

Nebenbei koénnen Sie damit auch jedes Maschinenprogramm

speichern, ohne einen Monitor zu Rate ziehen zu miissen.

Wollen wir die verschiedenen Dinge wieder einladen, so geniigt
ein LOAD "name",8,1 (bei Floppy-Besitzern) oder fir
Kassettenrecorder: LOAD "name",1,1 und schon ist die Sache

erledigt.

4.5.2. Hardcopy

Die Archillesferse aller kommerziellen Programme ist der
Druckerbetrieb. Da es ’zig verschiedene Druckertypen gibt und
natiirlich jeder seine eigenen Ansteuerungen, ASCII-Codierung
oder Steuerzeichen besitzt (besonders, was die Graphik
betrifft), gibt es kaum Programme, die mehr als ein oder
hochstens zwei Druckertypen bedienen kénnen. Wenn Sie sich
z.B. nach einer Graphikbefehlserweiterung oder einem anderen
(Graphik-) Programm umschauen, so gebe ich Ihnen den Tip,
unbedingt darauf zu achten, daB dieses Programm auch Ihren
Drucker bedienen kann, und falls Sie noch keinen Drucker
besitzen, besonderes Augenmerk auf die Programme 2zu legen,
die moéglichst viele verschiedene Druckertypen ansteuern
konnen. Denn Sie werden sich, auch wenn Sie zur Zeit
vielleicht noch keinen Wert darauf legen, garantiert nach
einiger Zeit irgendeinen Drucker zulegen. Allein schon die
Tatsache, daB etwas gréBere Programme ohne Druckerlisting
vo6llig uniiberschaubar werden, zwingt einen nach einiger Zeit
zum Drucker. Falls Sie mit Graphik arbeiten, so ist unbedingt
auf die Graphikfdahigkeit eines solchen Gerdtes 2zu achten
(u.a. auch die Sauberkeit des Druckes, mit der ein Bild aufs
Papier gebracht wird, die besonders bei Graphikausdrucken ins
Auge fallt). Sie werden es sonst noch einmal bereuen!

Wie oben Dbereits gesagt, ist es hier unméglich, alle

Druckertypen mit den entsprechenden Routinen vorzustellen.

184

Aus diesem Grund werden wir uns hier mit dem wohl gédngigsten
Gerdt, dem Seikosha GP 100 VC beschaftigen, auf dem eine
graphische Hardcopy aufgrund des 7-Nadelkopfes wohl am
kompliziertesten ist. Routinen fiir andere Drucker kénnen Sie
sich dabei gut davon ableiten. Angenommen wird wieder eine
Graphikseite bei $2000-$3F3F (8192-16191).

11800 REM %kxkkkkkkokKkkokkkkkkkkk X kkXkkk

11810 REM x*xx GRAPHIK- L 33
11820 REM *x*x HARDCOPY - GP 100 VC xx
11830 REM *xx X%
11840 REM XkkkXkkkk KKk KK kkk kXK kkkkXXkxkkX
11850 REM

11860 SA = 8192

11870 OPEN1,4 : REM DRUCKERKANAL OEFFNEN

11880 Y=35:MK=255:22=28:5G=6: REM Y-KOORD. / MASKE /
ZEILENZAHL / SPALTENGROESSE

11890 FOR FLAG=1 TO 2

11900 FOR ZE=1 TO ZZ : REM ZZ ZEILEN

11910 PRINT#1,CHR$(8)CHR$ (27)CHR$(16)CHR$ (0)CHR$(80); : REM
MITTENZENTRIERT+GRAPHIK EIN

11920 XK=0

11930 FOR SP=1 TO 40 : YK=Y : REM SPALTENZAEHLER

11940 FOR X=0 TO SG:GOSUB

12150:ZW(X)=PEEK(AD): YK=YK+1:NEXT X:REM 8%7 PUNKTE LADEN
11950 FOR X=0 TO 7 : REM 8 BYTES ZUM DRUCKER

11960 MS=21T(7-X):B2=0

11970 FOR Z=0 TO SG:B1=-2x((ZW(Z) AND MS)>0):B2=B2 OR
(B17Z+(Z+B1=0)):NEXT Z

11980 B2=(B2 AND MK) OR 128:PRINT#1,CHR$(B2);

11990 NEXT X : REM NAECHSTES DRUCKERBYTE

12000 XK=XK+8

12010 NEXT SP : REM NAECHSTE SPALTE

12020 PRINT#1 : REM RETURN

12030 Y=Y+7 : REM Y-KOORD.

12040 NEXT ZE : REM NAECHSTE ZEILE

12050 ZZ=1 : REM NUR LETZTE ZEILE

12060 MK = 16 : REM MASKE (OBERE 4 BITS ABSCHNEIDEN)
12070 SG=4 : REM SPALTENGROESSE

12080 NEXT FLAG : NOCH EINMAL FUER DIE LETZTE ZEILE
12090 CLOSE 1:END

185

12100 REM

12110 REM X3okkokokokdokokkok ok dkokk X Xk Xk kk

12120 REM xx PUNKTBERECHNUNG Xx

12130 REM X¥k¥kkokkkkkokkokokkkkkkkkx

12140 REM

12150 AD = SA + 320 x INT(YK/8) + (YK AND 7) + 8 x INT(XK/8)
RETURN

Auch diese Routine koénnen Sie wieder in lhren Unterprogramm-
schatz aufnehmen. Sie brauchen dann nur noch per GOSUB
aufgerufen werden. Sie konnen jedoch auch Ihre Graphik bei
SA=8192 ($2000) erstellen, dann dieses Programm hier einladen
und laufen lassen. Da dabei die Graphik nicht zerstért wurde,
erscheint eine originalgetreue Abbildung des Graphik-
speichers auf dem Druckerpapier. Diese Routine funktioniert
natiirlich auch auf allen kompatiblen Druckern, wie beispiels-
weise Epson mit Data-Becker - Interface. Doch so eine Routine
in Basic dauert sehr lange. Geben Sie also nicht gleich den
Mut auf, wenn Sie etwas warten miissen. Sicher kann dieses
Programm, wie auch alle anderen "frisiert" werden (wie das zu
machen ist, wird im Anhang geschildert), doch hier wurde der
Ubersichtlichkeit halber geordnet vorgegangen. Wichtig zum
Verstdndis dieser Routine ist die Tatsache, daB stets 7
untereinander liegende Punkt in einem Byte an den Drucker
iibergeben werden (jedes gesetzte Bit resultiert in einem
gesetzten Punkt auf dem Papier), wobei das High-Bit stets
gesetzt sein muB (dies erfordert der Drucker). Dadurch taucht
eine kleine Schwierigkeit am Graphikende auf: Es bleiben
namlich 4 Reihen iibrig, da 200 (die Zahl der Punkte in
y-Richtung) nicht durch 7 teilbar ist. Diese werden in einem
weiteren Durchlauf mit ein paar verdnderten Parameter
iibersandt. In dem Hauptteil der Routine (Zeilen 11940-11990)
werden zundchst 7 untereinander liegende Graphikbytes
eingelesen (Z. 11940), die dann Spalte fiir Spalte an den
Drucker gegeben werden (Z. 11950-11990). Die weiteren
Einzelheiten zu besprechen, wiirde den Rahmen sprengen. Nur
eine Kleinigkeit sollte hier noch erwdahnt werden: Die
Operation Z+Bl=0, wie Sie in Zeile 11970 durchgefiihrt wird,
ergibt -1, wenn Z+B1=0 ist und 0, wenn dies nicht der Fall
ist. Aus 4=6 z.B. resultiert 0, aus 4=4 jedoch ~-1. Probieren

Sie es aus. Dieser Trick kann eine wertvolle Hilfe in vielen

186

Anwendungen sein, in denen Entscheidungen gefordert werden,
die Sie ungern mit IF oder ON...GOTO té#tigen (z.B. aus
Zeitgriinden). In dem Fall hier wird damit die Tatsache

umgangen, daB der Commodore 64 aus Ohoch0 1 herausbekommt,

was falsche Resultate bringen wiirde. In dem Graphik-Aid
weiter unten wird diese Hardcopy - Routine in Assembler
angegeben.

4.6 ITROQO—Handhabung

Aus Abschnitt 3.7 kennen Sie bereits die verschiedenen
Interrupt- (Unterbrechungs—) moglichkeiten, die bei
graphischen Anwendungen interessant sind. Dort wurde Ihnen
diese Fahigkeit vorgestellt und alle theoretischen Grundlagen
geliefert. Jetzt, da wir auch einigen praktischen Unterbau in
Sachen Graphik besitzen, ist es ah der Zeit, das wohl
schwierigste aller Kapitel 2zu beginnen: Die Interrupt-
programmierung. Schon die Tatsache, das Interrupts nur von
Maschinensprache aus zu bedienen sind, macht das ganze fiir
den Uneingeweihten nebulés und wundurchsichtig. Aber auch
erfahrene Assemblerprogrammierer miissen sich mit den vollig
neuen Programmiertechniken vertraut machen. Doch haben Sie
keine Angst. Sie konnen die angegebenen Beispiele ruhig
ausprobieren. Sie werden Ihnen besonders hiibsche Effekte
zeitigen.

Die Interrupttechnik soll Ihnen anhand des Rasterzeilen-IRQs
und des Lightpens gezeigt werden. Danach konnen Sie die
erfahrenen Kenntnisse auf Ihre eigenen Programme mit z.B.
Sprite-Kollisionen etc. anwenden. Bevor Sie sich jedoch an
diesen Abschnitt begeben, sollten Sie zunéchst Paragraph 3.7
gut durchgelesen haben.

Erinnern wir uns kurz an die wesentlichen Faktoren, die zur
Bedienung von allgemeinen IRQs des VIC wissensnotwendig sind:
Interrupts sind kontrollierte Unterbrechungen des Programm-
ablaufs. Es gibt 4 verschiedene Ursachen, durch die der
Videocontroller Interrupts auslésen kann: Rasterzeilen,

Lightpen, Sprite-Sprite-, wund Sprite-Hintergrundzeichen -

187

Kollisionen. Diese sind durch Setzen der entsprechenden Bits
im Interrupt Mask Register (IMR), also VIC-Register 26,
auszuwdhlen. Wird ein Interrupt ausgelost, so erfolgt die
Ruckmeldung durch Setzen des korrespondieren Bits in Register
25 des VIC, das sogenannte Interrupt Request Register (IRR);
das 7. Bit dieser Speicherstelle wird dabei als Kennzeichen
ebenfalls gesetzt. Dieses Register ist nach jedem Interrupt
durch Riickschreiben seines Inhalts zu léschen. Bei jedem IRQ
wird eine sogenannte Interruptroutine aufgerufen, deren
Adresse in den Speicherstellen $0314/$0315 (788/789) =steht.
Ein IRQ kann in Maschinensprache durch das Setzen des

Interruptflags unterbunden werden.

4.6.1. Rasterzeilen-IRQ

Auch hier sollten wir uns zundchst an die notwendigen Dinge
erinnern, die fiir Rasterzeilen - Interrupts niitzlich sind:
Fir diese Art von Unterbrechung sind jeweils Bits 0 der IRR
und IMR zustédndig. Aus den Registern 18 und 17/Bit 7 erfahren
Sie die aktuelle Bildschirmzeile, die der VIC gerade aufbaut.
Das vom VIC verwandte Koordinatensystem unterscheidet sich
von dem normalen, uns bekannten (s. # 3.7). Werden diese
beiden Register beschrieben, so geben Sie damit an, bei
welcher Rasterzeile ein Interrupt stattfinden soll.

Mit diesen Informationen ist es uns jetzt moglich, eine
eigene Interruptroutine zu erzeugen und damit direkt in das

Geschehen einzugreifen. Dazu sei diese als Assemblerlisting

angegeben:

100: c800 x= $C800
110: €800 FARBEl = $FB
120: c800 FARBE2 = $FC
130: €800 OBEN = $FD
140: €800 UNTEN = $FE
150: €800 IRQVECT = $0314
160: €800 IRQALT = $EA31
170: c800 RASTER = $D012
180: €800 IRR = $D019
190: €800 IMR = $D01A
200: €800 RAHMEN = $D020

188

210:
220:
230:
240:
250:
260:
270:
280:
290:
300:
310:
320:
330:
340:
350:
360:
370:
380:
390:
400:
410:
420:
430:
440:
450:
460:
470:
480:
490:
500:
510:
520:
530:
540:
550:
560:
570:
580:
590:
600:
610:

c800

c800

€800
€801
c803
c806
c808
C80B
C80D
c810
c813
c815
c818
C81A
c81D
CB1E

C8LF

CB81F
cB822
Cc825

c827
C82A
C82B
C82E
C831
C833
C835
C837
C83A
C83D
C83F
Cc842
c845
c847

78
A9
8D
A9
8D
A5
8D
AD
29
8D
A9
8D
58
60

AD
8D
30

AD
58
4cC
AD
c5
BO
A5
8D
8D
AS
8D
4C
A5
8D

1F
14
c8
15
FD
12
11
7F
11
81
1A

19
19
07

(1))

31
12
FE
10
FB
20
21
FE
12
BC
FC
20

03

03

Do
Do

Do

Do

Do

Do

nC

EA
DO

DO
Do

Do
FE

Do

HGRUND = $D021
H
s INITIALISIEREN:
3 Kok kokokk ok ok kkkkkk
H
INIT SEI ;s INTERRUPT VERHINDERN
LDA #< IRQNEU
STA IRQVECT
LDA #> IRQNEU
STA IRQVECT+1 ; IRQ-VEKTOR UMLEGEN
LDA OBEN
STA RASTER ;1.RASTERZ. FESTLEGEN
LDA RASTER-1
AND #$7F
STA RASTER-1 ;HIGH-BIT LOESCHEN
LDA #X10000001 ;MASKE
STA IMR ; RASTERZ.-IRQ WAEHLEN
CLI ; IRQ ERMOEGLICHEN
RTS
3
; INTERRUPTROUTINE:
2323222222322 2¢2 24
)
IRQNEU LDA IRR ;s INTERRUPTREGISTER
STA IRR ; LOESCHEN
BMI IRQRAS ;RASTERZ.-IRQPRINT
; NORMALER IRQ:
LDA $DCOD ;CIA 1-IRR LOESCHEN
CLI ; INTERR. ERMOEGLICHEN
JMP IRQALT ;ZUR ALTEN ROUTINE
IRQRAS LDA RASTER ;RASTERPOSITION
CMP UNTEN ; UNTERER WERTPRINT
BCS ZWEITER ;JA=>SPRUNG
LDA FARBE1
STA RAHMEN ;RAHMEN- UND
STA HGRUND ;HINTEGRUNDFARBE
LDA UNTEN ; UNTEREN WERT IN
STA RASTER ;RASTERPOSITION
JMP $FEBC ; ABSCHLIESSEN
ZWEITER LDA FARBE2
STA RAHMEN ; RAHMEN- UND

189

620: C84A 8D 21 DO STA HGRUND ;HINTERGRUNDFARBE

630: C84D A5 FD LDA OBEN ; OBEREN WERT IN
640: C84F 8D 12 DO STA RASTER ;RASTERPOSITION
650: €852 4C BC FE JMP $FEBC ; ABSCHLIESSEN

Und hier das entsprechende Basic-Ladeprogramm mit einer

kleinen hiibschen Anwendung:

1000 FOR I = 51200 TO 51284

1010 READ X : POKE I,X : S=S+X : NEXT

1020 DATA 120,169, 31,141, 20, 3,169,200,141, 21, 3,165
1030 DATA 253,141, 18,208,173, 17,208, 41,127,141, 17,208
1040 DATA 169,129,141, 26,208, 88, 96,173, 25,208,141, 25
1050 DATA 208, 48, 7,173, 13,220, 88, 76, 49,234,173, 18
1060 DATA 208,197,254,176, 16,165,251,141, 32,208,141, 33
1070 DATA 208,165,254,141, 18,208, 76,188,254,165,252,141
1080 DATA 32,208,141, 33,208,165,253,141, 18,208, 76,188
1090 DATA 254

1100 IF S <> 11288 THEN PRINT "FEHLER IN DATAS !'!" : END
1110 PRINT "OK"

1120 F1 = 7 : F2 = 6 : REM FARBEN 1 UND 2 (STREIFEN IN FARBE
1)

1130 OB = 60 : UN = 150 : REM OBERE UND UNTERE KANTE DES
STREIFENS

1140 POKE 251,F1:POKE 252,F2: POKE 253,0B:POKE 254,UN : REM
UEBERGEBEN

1150 SYS 51200 : REM ROUTINE EINSCHALTEN

1160 REM

1170 FOR X=1 TO 5000 : NEXT X : REM WARTESCHLEIFE

1180 REM

1190 REM BEWEGEN:

1200 REM XXXkkkkxx

1210 FOR X=40 TO 240 : POKE 253,X : POKE 254, X+10 : NEXT X
1220 GET A$: IF A$="" THEN 1190 : REM TASTE?

Doch zunéchst zu unserer Maschinenroutine:

Unser Programm erzeugt einen quer iiber den Bildschirm
gezogenen gelben Streifen (samt Rand) auf blauem Hintergrund.
Dies ist mdglich durch kontinuierliches Umschalten der
Rahmen— und Hintergrundfarbe, jeweils genau dann, wenn sich

der Videocontroller in bestimmten Rasterzeilen befindet.

190

Bevor aber unsere eigentliche Interruptroutine vom Prozessor
aufgerufen wird, miissen wir erst einige Dinge erledigen. Dies
geschieht in der Initialisierungsroutine., Als allererstes
wird dort der IRQ-Vektor bei $0314/$0315 (788/789; s.o0.), der
nornalerweise auf die originale Interruptroutine im ROM bei
$EA31 (59953) zeigt, auf unser neues Unterbrechungs -
Programm (hier bei $C81F (51231)) gerichtet. Fiir diesen Zweck
werden Low- und High-Byte der neuen Adresse an diesen Vektor
geschrieben (Zeilen 270-300). Doch damit nicht 2zwischendurch
ein Interrupt ausgeldést wird, was ja bekanntlich alle 1/60
Sekunde geschieht, um die Tastatur abzufragen etc., miissen
wir vorher durch ein SEI das Interruptflag des Prozessors
setzen (Zeile 260).

Nun wird die Rasterzeile bestimmt, bei deren Strahldurchlauf
der erste Rasterinterrupt stattfinden soll. Diese, es ist die
obere Kante wunseres gelben Streifens, steht in der
nullseitigen Speicherstelle $FD (253), in die der gewiinschte
Wert durch das iibergeordnete Basic-Programm eingeschrieben
wurde. Der Wert wird jetzt in das Rasterzeilenregister
(VIC-Register 18) eingeschrieben (Zeilen 310/320). Damit wird
der erste Interrupt genau dann ausgeldst, wenn der Video-
controller gerade diese Zeile aufbaut. Da wir das High-Bit

hier nicht verwenden, wird es durch Zeilen 330-350 geléscht.

Der ndchste wichtige Schritt ist das Einschalten des
Raster-IRQs durch Setzen des 0. Bits des IMR, also der
Interrupt - Maske. Damit erst kann eine Unterbrechung

ausgelost werden, wenn das besagte Ereignis eintritt.
Am SchluB unserer Inititialisierung wird das I-Flag wieder
geléscht, sodaB die anstehenden Interrupts bedient werden

konnen.

Das Problem bei der Unterbrechungsbehandlung ist, daB jetzt
zwei Quellen existieren, durch die ein IRQ ausgeldst werden

kann:

-~ Timer-IRQ
- Raster-IRQ

Ersterer dient zu oben genannten Zwecken und ist absolut

notwendig fiir den normalen Betrieb des Computers. Denjenigen,

die ihre Programme in Maschinensprache schreiben und auf die

191

Funktionen der Tastaturabfrage, Cursorblinken oder TI$-Uhr
stellen verzichten konnen, ist natiirlich freigestellt, ob Sie
hier den Aufruf der normalen Interruptroutine zulassen wollen
oder nicht. Doch sollten sich diejenigen, die damit
manipulieren, gut im Betriebssystem Ihres Rechners auskennen.
Grundsétzlich aber miissen wir unterscheiden, wodurch ein
Interrupt ausgelést wurde, da unsere Routine von Stund an
auch dann aufgerufen wird, wenn der Timer der CIA 1
abgelaufen ist und damit die Tastaturabfrage féallig wire. Zu
diesem Zweck laden wir als allererstes das IRR und schreiben
den erhaltenen Wert wieder zuriick, um es zu loschen
(ansonsten wiirde gleich nach Beenden unserer Routine wieder
ein Interrupt ausgelost usw.). Wurde ein Raster-IRQ
ausgelost, so sind dort u.a. das 0. und das 7. Bit gesetzt
(s. # 3.7). Auf das 7. Bit wird nun gepriift (Zeile 460) und
in besagtem Falle weiter zum 2zweiten Teil verzweigt (nach
Zeile 510). Stammt der IRQ jedoch vom Timer, so missen wir
die alte (normale) Interruptroutine aufrufen, die bei $EA31
(59953) beginnt.

Doch hier taucht eine kleine Schwierigkeit auf. Bei jedem
Interrupt wird automatisch (hardwaremdBig) die Riicksprung-
adresse und das Flag-Register der CPU auf den Stack gebracht
und - was das hier wichtige ist - das Interruptflag gesetzt,
so daB kein weiterer IRQ wihrend unserer Interruptroutine
ausgelost werden kann, was Jja auch verniinftig ist. Doch
nehmen wir einmal an, wir verzweigen normal nach $EA31 und
lassen dort die notwendigen Dinge ausfithren. Dann kann es
geschehen, daB widhrend dieser Vorgédnge ein Raster - Interrupt
ausgelost wird. Da aber das I-Flag gesetzt ist, wird dieser
nicht bedient. Dieses Dilemma macht sich dann als kurzes
Aufblitzen des Bildschirms bemerkbar, da nicht friih genug auf
die andere Hintergrund- und Rahmenfarbe umgeschaltet wurde.
Deshalb miissen wir den Rasterinterrupt widhrend des Durchlaufs
der Timerroutine zulassen und damit praktisch bei Bedarf die
normale Interruptroutine durch einen Interrupt wunterbrechen.
Das klingt zwar sehr kompliziert und "gefdhrlich", ist aber
durchaus statthaft und nach einigen Uberlegungen auch
logisch.

Wir konnten also einfach vor dem Aufruf der normalen

IRQ-Routine das I-Flag l6éschen und alles widre in Ordnung.

192

Doch wir haben wieder etwas vergessen. Bevor das Flag
geléscht wird miissen wir erst einmal - wie immer - die
Ursache fiir den betreffenden Interrupt (in diesem Fall der
Timer—-Interrupt) beseitigen. Dies geschieht auch hier durch
das Loschen eines IRR. Dieses IRR liegt dabei in dem
Registersatz der CIA 1 und besitzt die Adresse $DCOD (56333).
Das Loschen funktioniert dor-* jedoch etwas anders. Es geniigt
ein einfaches Lesen des Registers um diese Aufgabe zu
erfiilllen, was in Zeile 480 geschieht. Jetzt haben wir aber
alles getan, um einen reibungslosen Ablauf zu gewdhrleisten
und gehen weiter in unserer eigentlichen Interruptroutine (ab
Zeile 510).

Da wir ja pro Bildaufbau insgesamt zweimal unsere Farben
umschalten miissen, einmal um Farbe 2 auf Farbe 1 2zu setzen,
und einmal, um wieder von Farbe 1 auf Farbe 2 zuriick-
zuschalten, miissen wir erst nachpriifen, in welcher Phase wir
gerade sind. Dies geschieht bei uns durch Lesen der aktuellen
Rasterzeile (Zeile 510), um sie mit dem Wert der unteren
Kante unseres gelben Streifens zu vergleichen (Z. 520). Ist
die aktuelle Zeile groBer oder gleich dieses Wertes, so
miissen wir auf die zweite Farbe umschalten, springen daher
nach Zeile 600. Wir h#dtten rein theoretisch auch priifen
konnen, welche Farbe gerade Hintergrundfarbe ist, was
ebenfalls seine Vorteile hidtte. (Anmerkung: Da es eine ganze
Weile dauert, bis das Programm nach dem IRQ an exakt diese
Stelle kommt, ist der Rasterstrahl inzwischen einige Zeilen
weiter gelaufen. Deshalb werden wir nie genau den Wert als
aktuelle Zeile erhalten, bei der der Interrupt stattfand.
Bedenken Sie, daB auch schon, bevor unsere Routine aufgerufen
wird, einige Befehle im ROM abgearbeitet werden, die auch
Zeit kosten. Das ist auch der Grund, warum die scheinbare(!)
Rastereinteilung nicht ganz mit derjenigen iibereinstimmt, die
in Paragraph 3.7 angegeben wurde.)

Der Rest ist relativ einfach: Wir 4&dndern die Rahmen- wund
Hintergrundfarbe und setzen den niachsten Rasterinterrupt auf
den oberen bzw. unteren Zeilenwert. Als AbschluB springen wir
in das regulédre Interruptende der normalen Routine, da noch
einige Register wiedergeholt wund ein RTI (return from

Interrupt) ausgefiihrt werden miissen.

193

Wie Sie sehen, steht in den vier nullseitigen Speicherstellen
die notwendige Information, die die Art des Streifens

charakterisiert:

Adresse (Hex-Dez)|Inhalt
$FB - 251 Farbe 1
$FC - 252 Farbe 2
$FD - 253 Obere Kante
$FE - 254 Untere Kante

Durch Andern der Inhalte dieser Adressen kénnen Sie nun die
Farbe des Streifens oder des restlichen Hintergrundes, die
Position der oberen und der unteren Kante bestimmen. Dies
geschieht am besten durch ein kleines Basicprogramm, das
Ihnen oben ebenfalls angegeben wurde. Es lddt die Maschinen-
routinen ein, legt die 4 Parameter fest und startet die
Initialisierung und damit den Interrupt. Ab Zeile 1200 wird
Ihnen ein Beispiel einer schénen Anwendung gegeben. Denken
Sie sich doch einmal etwas aus. Vielleicht machen Sie einmal
ein Programm, mit dem Sie -~durch die Cursortasten steuerbar-
jeweils einzelne Zeilen des Bildschirms hervorheben konnen,
oder ~ falls Sie sich etwas in Maschinensprache auskennen ~
Sie wechseln statt der Hintergrundfarben immer zwischen Text-
und Graphikmodus und erhalten so eine gemischte Anzeige.
Haben Sie schon einmal 16 Sprites oder 2zwei Zeichensitze
gleichzeitig auf dem Bildschirm gesehen? Es gibt unzéhlbar

viele Moglichkeiten.

4.6.2. Lightpen

Bitte lesen Sie ruhig weiter, auch wenn Sie keinen Lightpen
besitzen, es springt auch etwas fiir Sie ab!

Was ein Lightpen oder Lichtgriffel ist, wie er funktioniert
und in den Rechnerablauf integriert wird, wissen Sie bereits
aus dem Abschnitt 3.7.2. Fassen wir hier das wichtigste noch
einmal kurz zusammen:

Der Lightpen ist ein Instrument, mit dem der Computer
beliebige Positionen des Bildschirms identifizieren kann, auf
die der Stift gerade zeigt. Die jeweiligen xX- und

y-Koordinaten dieses Punktes kénnen durch Lesen der

194

VIC-Register 19 und 20 festgestellt werden. Das Koordinaten-
raster entspricht dem der Rasterzeilen (s. # 3.7). Auch der
Lightpen kann einen Interrupt ausldsen. In den IMR und IRR
sind dafiir jeweils die 3. Bits zustdndig. Sein Eingang am
Controlport 1 stimmt mit dem Eingang fiir den Feuerknopf eines
Joysticks iiberein.

Doch wie ist ein Lightpen anzuwenden, wie wird er
programmiert?

Die Lightpenabfrage kann auf zwei verschiedene Arten durch-
gefiihrt werden. Die einfachere ist die durch ein kleines
Basicprogramm, das lediglich die beiden Register ausliest,
die die Bildschirmkoordinaten enthalten. Ein Beispiel wire
etwa das Zeichnen eines Punktes an die Stelle, auf die der
Lightpen gerichtet ist. Diese Funkticn libernimmt das folgende
kleine Demonstrationsprogramm, das nur 2zusammen mit den

Graphikroutinen aus dem Abschnitt 4.2 funktionstiichtig ist!

100 REM kXkXkkokkkkkkikkkk

110 REM *x *%
120 REM xx LIGHTPEN *x
130 REM *xx *X
140 REM XkXkXkkkkXkkkkkx
150 REM

160 vV = 53248 : REM VIC BASISADRESSE

170 SA = 8192 : REM GRAPHIKSTARTADRESSE

180 GOSUB 10000:GOSUB 10200:FA=7%16+2:GOSUB 10400 : REM
GRAPHIK INITIALISIEREN

190 XP = PEEK(V+19) : REM LIGHTPEN-X-KOORDINATE

200 YP = PEEK(V+20) : REM LIGHTPEN-Y-KOORDINATE

210 XK = 2 * (XP - 40) : REM ERRECHNE X-KOORD.

220 YK = YP - 40 : REM ERRECHNE Y-KOORD.

230 .IF XK>319 OR XK<0 OR YK>199 OR YK<O THEN 190 : REM AUF
BEREICH TESTEN

240 GOSUB 10700 : REM PUNKT ZEICHNEN

250 GOTO 190

10000 REM INITIALISIERUNGS+PUNKTSETZ~-ROUTINEN

10010 REM

10020 REM ... (S. KAPITEL 4.2)

In diesem kleinen Programm werden - nach dem Einschalten und
* Loschen der Graphik - in den Zeilen 190 und 200 lediglich die

195

x- und y-Koordinaten des Punktes auf dem Bildschirm
eingelesen, bei dem der Lightpen 2zuletzt auflag. Diese
Bildschirmkoordinaten werden dann in unsere bekannten
Graphikkoordinaten nach der Formel wumgerechnet, die in
Abschnitt 3.7.2 angegeben wurde (Z. 210/220). Alsdann muB das
Ergebnis darauf gepriift werden, ob der Punkt, den der
Lightpen anzeigte nicht auBerhalb des Bildschimfensters
liegt, was negative oder zu groBe Werte resultieren lieB.
Erst dann kann die Punkt-Setz - Routine aufgerufen werden, um
an der jeweiligen Stelle eben einen Punkt 2zu setzen. Sie
konnen dieses Programm beliebig erweitern mit vielen
Funktionen, so daB evt. ein ganzes Zeichenprogramm entsteht.
Vielleicht legen Sie mit dem Lightpen die Eckpunkte von
Linien oder den Mittelpunkt eines Kreises und seinen Radius
fest, die auf Tastendruck dann gezeichnet werden, oder wihlen
per Lightpen bestimmte Menuefunktionen aus, die am Bildrand
angezeigt werden.

Doch eine Sache stort dabei doch. Egal ob der Lightpen auf
den Bildschirm zeigt oder nicht, an dieser Stelle wird ein
Punkt gezeichnet. Hier mag das noch nicht so schlimme Folgen
haben, bei anderen Anwendungen wird es sicher stéren. Eine
andere Moglichkeit der Bedienung ist die per Interrupt.
Jedesmal, wenn der Lightpen einen Impuls sendet, also nur
dann, wenn er auch tatsdchlich auf den Bildschirm zeigt,
konnte beispielsweise ein IRQ ausgeldst werden, der entweder
einen Punkt zeichnet oder einfach in einer Speicherstelle ein
kurzes Signal gibt, das nach einiger Zeit wieder gelbdscht
wird.

Eine andere Moglichkeit ist beispielsweise die Konstruktion
einer Alarmanlage: Der Lightpen wird an die Zimmerlampe
montiert, oder einfach auf sie gerichtet. Sobald irgendjemand
diese Lampe beim Eintreten einschaltet, sendet der Lightpen
einen Impuls an den Computer, der sofort mit einem Heulgetose
beginnt, das siamtliche Nachbarn aus dem Bett wirft (man
konnte den Audiocausgang vielleicht an eine Stereoanlage
anschlieBen (geht mit einem einfachen Uberspielkabel), die
dem Ganzen noch etwas mehr "Power" gibt). Eine Variation
dieser Alarmanlage widre es z.B., wenn das Aufgehen der Tiire
.einen Kontakt ausléste, der eine Lampe zum Leuchten bréchte,
was seinerseits wieder iiber den Lightpen 2zu einer Reaktion

des Computers fiihrte.

196

Wir wollen uns statt der Ausldésung eines Alarms mit einem

Farbwechsel des Rahmens zufrieden geben:

100:
110:
120:
130:
140:
150:
160:
170:
180:
190:
200:
210:
220:
230:
240:
250:
260:
270:
280:
290:
300:
310:
320:
330:
340:
350:
360:
370:
380:
390:
400:
410:
420:
430:
440:
450:
460:

c800
c800
c800
c800
€800
c800
c800

c800
c801
c803
c806
€808
C80B
c80D
C80F
c811
c814
c815

c816
c819
c8l1c

C81E
c821
c822
€825
c827
C82A
c82¢C

78
A9
8D
A9
8D
A9
85
A9
8D
58
60

AD
8D
30

AD
58
4c
A5
8D
E6
4cC

16
14
c8
15
00
FB
88
1A

19
19
07

oD

31
FB
20
FB
BC

03

03

Do

Do

Do

DC

EA

Do

FE

x= $C800
FARBE = $FB
IRQVECT= $0314
IRQALT = $EA3l
IRR = $D019
IMR = $DO1A
RAHMEN = $D020
;
; INITIALISIEREN
3 K30k Kk Xk K kK Kk Kk X
;
INIT SEI ; INTERRUPT VERHINDERN
LDA #< IRQNEU
STA IRQVECT
LDA #> IRQNEU
STA IRQVECT+1 ; IRQ-VEKTOR UMLEGEN
LDA #$00
STA FARBE ;FARBE SCHWARZ
LDA #%10001000 ;MASKE
STA IMR ; LIGHTPEN-IRQ WAEHLEN
CLI ; IRQ ERMOEGLICHEN
RTS
;
; INTERRUPTROUTINE
5 KKKk Kk Kk kkkkkkkkkXk
IRQNEU LDA IRR ; INTERRUPTREGISTER
STA IRR ; LOESCHEN
BMI IRQRAS ;RASTERZ.-IRQPRINT
; NORMALER IRQ
LDA $DCOD ;CIA 1-IRR LOESCHEN
CLI ; INTERRUPT ERMOEGLICHEN
JMP IRQALT ;ZUR ALTEN ROUTINE
IRQRAS LDA FARBE
STA RAHMEN ; RAHMENFARBE
INC FARBE ;FARBE ERHOEHEN
JMP $FEBC ; ABSCHLIESSEN

197

Und hier das Ladeprogramm:

100 FOR 1 = 51200 TO 51246

110 READ X : POKE I,X : S=S+X : NEXT

120 DATA 120,169, 22,141, 20, 3,169,200,141, 21, 3,169
130 DATA 0,133,251,169,136,141, 26,208, 88, 96,173, 25
140 DATA 208,141, 25,208, 48, 7,173, 13,220, 88, 76, 49
150 DATA 234,165,251,141, 32,208,230,251, 76,188,254

160 IF S <> 5910 THEN PRINT "FEHLER IN DATAS !!" : END
170 PRINT "OK"

Sie starten wie immer mit einem

SYS 51200

Alle im folgenden genannten Zeilennummern beziehen sich auf
das Assemblerlisting.

Die Initialisierungsroutine, die in Zeile 220 beginnt, sollte
Ihnen inzwischen schon geldufig sein. Auch hier wird erst
wieder der IRQ-Vektor umgelegt auf unsere eigene Routine und
der entsprechende Interrupt diesmal durch Setzen des 3. Bits
des IMR (Interrupt Mask Register) eingeschaltet. Nichts
Besonderes bietet gleichfalls der Einstieg in unsere
Interruptroutine (ab Zeile 360). Wieder wird auf die Art des
Interrupts gepriift und entsprechend verzweigt. Dann aber
kommt der Wechsel der Rahmenfarbe. Der Vorgang an sich ist
leicht zu verstehen, wichtig hierbei ist allerdings, daB zum
erstenmal eine regulidre Speicherstelle durch die Interrupt-
routine verdndert wird. Dies bringt besondere Effekte, ist
aber auch besonders gefdhrlich, wenn man nicht genau weiB,
was mit dieser Stelle wann passiert, denn der Interrupt kann
Jja grundsidtzlich zu jeder Zeit und in jeder Routine ausgelést
werden. Sie konnen aber von auBen, also beispielsweise von
Basic aus, den momentanen Zustand der IRQ-Routine abfragen
oder andere Steuerfunktionen iibernehmen. Dies wird z.B. vom
Betriebssystem genutzt, indem die interne Unterbrechungs-
routine jedesmal die TI$-Uhr verstellt, die dann von Basic
aus abgefragt werden kann. Auch hier natiirlich stehen Ihnen
viele Moglichkeiten offen.

Bitte erinnern Sie sich, daB sie dieses Bildschirmblinken
auch durch Betdtigen des Feuerknopfes Ihres in Port 1

gesteckten Joysticks erzeugen konnen.

198

Sie sehen, der Interrupt ist ein schénes "Spielzeug", das
enorme Welten entstehen 14Bt, wenn man es richtig 2zu nutzen
weiB. Beschédftigen Sie sich ruhig ein wenig damit, es lohnt

sich!

4.7 Ein kleines
Graphik—Paket

Wir haben eine ganze Menge iiber Graphik und Ihre Program-
mierung gehort und gelesen. Viele Routinen sollten uns das
Leben erleichtern und ein wenig Einblick in die phantastische
Welt der Bilder vermitteln. Doch beim Ausprobieren all dieser
Utilities und Basic - Programme, die wir gespannt eingetippt
hatten, wurden wir zwar nicht durch das Ergebnis enttauscht,
dafiir aber umso mehr durch den Weg dorthin. Béarte und graue
Haare waren keine Seltenheit: Unsere Basicprogramme waren so
langsam, auch wenn wir die gut gemeinten Tips im Anhang
beherzigten, daB da kaum was von den Wogen der graphischen
Dramatik hiniiberschwappte. Kurz: Wir wissen 2zwar, wie es
geht, doch die richtige Befriedigung machte sich kaum
bemerkbar. Dem soll in diesem Abschnitt abgeholfen werden.
Hier wird erst einmal anstédndig ausgepackt. Ein relativ
umfangreiches Graphikpaket in Maschinensprache macht TIhre
Graphik schnell und interessant.

Wenn Sie sich die ndachsten Seiten betrachten, sollten Sie
nicht kapitulieren. Es ist zwar viel Arbeit, die ganzen
Maschinenroutinen abzuschreiben und auf Fehler zZu
kontrollieren, doch es lohnt sich! Wer wirklich ernsthaft mit
Graphik arbeiten will, der sollte vor diesem Zeit- wund
MuBeaufwand nicht zuriickschrecken, der braucht einfach das
entsprechende Handwerkszeug.

Sie haben die Wahl:

1.) Entweder Sie bleiben bei den einfachen, aber langsamen
Basicroutinen,

2.) Sie setzen sich einmal einen Tag hin und schreiben das

Folgende ab.

199

3.) Sie kaufen sich eine Graphikerweiterung, die Ihnen viel
Arbeit abnimmt, oder

4.) Sie besorgen sich die 2zu diesem Buch erhdaltliche
Programmdiskette mit allen in diesem Buch befindlichen
Routinen und Programmen (auch dem Graphikpaket).

Die Graphik vo6llig zu ignorieren kann ich TIhnen nicht
empfehlen.

Doch nun zum Thema: Zundchst wird Ihnen das Assemblerlisting
des Graphik - Paketes mit vielen Kommentaren vorgestellt, fiir
diejenigen, die sich fir die einzelnen Routinen
interessieren. Sie werden sehen, daB einige Dinge aus
Geschwindigkeitsgriinden etwas anders organisiert sind, als
wir es in den obigen Basicprogrammen getan haben. Dazu gehort
z.B. die Routine, die beliebige Linien auf den Bildschirm
zeichnet. Hier werden nicht direkt die Koordinaten eines
jeden Punktes ausgerechnet, aus denen ja dann wieder die
Speicheradresse errechnet werden miiBte, sondern wir berechnen
quasi das Verhdltnis der Anzahl der zu gehenden Schritte nach
oben/unten zu der Anzahl von Schritten nach rechts/links, um
vom Ausgangspunkt zum Endpunkt zu gelangen, und gehen dann
stets in einem bestimmten Rythmus, der diesem Verhédltnis
entspricht, eben in diese Richtungen. Dabei wird die Tatsache
voll Dberiicksichtigt, daB stets 2zwei Punkte iiber- bzw.
nebeneinander liegen miissen, um eine zusammenhdngende Linie
zu erhalten. Sie werden staunen, wie schnell so etwas geht.
Nach diesem sogenannten Source-Listing wird Ihnen wieder ein
Basic-Lader fiir diejenigen, die keinen Monitor besitzen,
angeboten, um das Programm sicher und gut eintippen zu

konnen. Doch hier das Listing:

200

END OF ASSEMBLY'!

Ccsee-
cBe3-
CB06—-
ceey-
csec-
CBerF-
ce12-
ce15-

4c
4ac
4C
4c
4c
4c
4C

24
41
12
31

58
55

cs8
cs
[
ce

cse
ce

o010
2020

as5e
2560
as7e
2580
asqa
24600
2610
0620

GETBYT
CHKCOM
CHKGET
GETCOR
QERR

Vv

GRAPH
VIDEO
GSTART
GEND

-BA
-MC
.08

%
* ¥
I 36 I I I I3 I IE I IE I I I I I I I WK

$C800
$0800

I I I H I I I I I I I I I I W
¥
¥* 3%

*%

HOCH AUFLOESENDES #*%
GRAPHIK - PAKET *%

* %

: ROM—SPRUNGADRESSEN:
5 6N I I I

.DE $B79E sHOLT BYTEWERT
.DE $AEFD sPRUEFT AUF KOMMA
.DE $B7F1 ;s CHKCOM+GETBYT
.DE $B7EB sHOLT KOORDINATEN
.DE $B248 s ILLEGAL QUANTITY
.DE $D0@@ : VIDEOCONTROLLER
3

sNULLSEITIGE REGISTER:

HE S S 8 & & & 2 8 5 8 & 8 4 0 8 8 b2

.

.DE &3

.DE $AB 3 MASKE

.DE $69

.DE $6A

.DE $6B

.DE $6C

.DE $6D

.DE $6E

.DE $6&F s XK/8 (HLINE)

.DE $7@ ; ZAEHLER (HLINE)
.DE $AC s PUNKTADRESSE

.DE $AC+1

.DE $14 3 X—~KOORDINATE

.DE $97 s UNPLOT/PLOT-FLAG
.DE $FD ; DIVERSES

.

sFESTE WERTE:

H R 22222 222 23

L]

.DE $2000 s GRAPHIKSTART

.DE $0400 3 VIDEORAMSTART
.DE $21 s BR-START+1-H-BYTE
.DE $3E 3 GR-ENDE-1-H-BYTE
3

.

s ANSTEUERADRESSEN:

5 F 36663696 36 36 3236363 36

’

JMP INIT s GRAPHIK EIN

JIMP GOFF s GRAPHIK AUS

JMP GCLEAR s GRAPHIK LOESCHEN
JMP SCOLOR $FARBE SETZEN (LOESCHEN)
JMP PCOLOR s PLOTFARBE

JMP PLOT sPUNKT SETZEN
JMP UNPLOT 3 PUNKT LOESCHEN
JMP SLINE sLINIE ZEICHNEN

201

C818- 4C 48 C8 0430 JMP CLLINE sLINIE LOESCHEN

C81B—- 4C 43 CA B640 JMP GLOAD s GRAPHIK LADEN
CB81E— 4C 52 CA @650 JMP GSAVE s GRAPHIK SPEICHERN
CB821—- 4C &9 CA 0640 JMP HARDC sHARDCOFPY (GP 1@@ VC ETC.)
as70 H
2680 H
2490 ;BRAPHIK EINSCHALTEN:
a7ea 3 3K IEN I NI I
@710 H
C824- EA @720 INIT NOP s KEINE BLOCKADE
€e25- AD 11 DB @730 LDA V+17
C828- 8D 1E CB @74@ STA STORE1
C82B- AD 18 DB @750 LDA V+24
C82e— 8D 1F CBR @740 STA STOREZ2 $ALTE INHALTE RETTEN
C831- A7 3B e77e LDA #7.00111011
C833- 8D 11 D@ @780 STA V+17 ;s GRAPHIK EIN
C836—- A7 18 @770 LDA #%00011000
ca38- 8D 18 D@ @800 STA Vv+24 sNACH $2000
C83B- A7 60 o810 LDA #$60 ;CODE FUER RTS ALS BLOCKADE
C83D- 8D 24 C8 0820 STA INIT s INIT WIRD BLOCKIERT
ce40- 60 2830 RTS
as4e H
2850 H
2860 s GRAPHIK AUSSCHALTEN:
o870 R s]
2880 H
C841—- AD 1E CE ©B9@ GOFF LDA STORE1 .
CB44- 8D 11 D@ @900 STA V+17
Ce47- AD 1IF CB @910 LDA STOREZ2
CB4A- 8D 18 D@ @920 STA V+24 sALTE INHALTE RUECKHOLEN
C84D- A? EA a93e LDA #$EA sCODE FUER NOP FUER
C84F—- 8D 24 CB 0940 STA INIT 3 BLOCKADE AUFHEBEN
C852- 4C 44 ES @950 JMP $ES44 s BILDSCHIRM LOESCHEN
29460 H
ag7@ 3
2980 ; PUNKT LOESCHEN:
2998 5 IR IR INN
1000 3
C855- AZ oa 1@1@ UNPLOT LDX #$@@ ;s LOESCH-FLAG
c857- 2C 1020 -BY $2C
1@30 i
1042 H
1@50 s PUNKT SETZEN:
1060 3 NI NN HHN
1@a7@ H
C858- A2 B0 1@8@ PLOT LDX #$80 s SETZ-FLAG
c8sA- 86 97 109@ PL1 STX #*FLG
€C85C- 20 FD AE 1100 JSR CHKCOM
c85F- 2@ 79 C8 111@ JSR TESCOR ;s KOORDINATEN HOLEN
CB&2- 20 94 C8 1120 JSR HFOSN ;s ADRESSE ERRECHNEN
C8&45— 4C E2 C8 1130 JMP PLT 3 PUNKT SETZEN/LOESCHEN
114@ 3
1150 i
116@ ;LINIE LOESCHEN:
1170 RAS 22222 2222 2223
1180 H
CB&8- A2 0O 119@ CLLINE LDX #$0@ s LOESCH-FLAG
C8&6A— 2C 1200 -BY #$2C
1210 H
1220 H
1230 sLINIE ZEICHNEN:
124@ 5 AR
1250 H
C8s6B- A2 80 126@ SLINE LDX #+80 s SETZ-FLAG
C8&D- 20 SA C8 127@ JSR PL1 sERSTEN PUNKT SETIEN
C878- 20 FD AE 1280 JSR CHKCOM

202

2@
4c

20
8a
A8
A&
ca
BO
AS
E@
70
D@
ce
B@
60
4CcC

79 C8
BE C?

iC CB

1B CB

2F CB
AD

a3

49 CB
AC

a7

AC

14
F8
63
20
AD
AD

AC
&3 -
AC
AD

AD
14
a7
a7

4D CB

180a
1810
1820
1830
1840
185@
1860
i87@
1880
1890
1900
191@
192@
1930
1940

TESCOR

T1
ILLFF

HPOSN

JSR
JMP

TESCOR
HLINE

$ZWEITE KOORD. HOLEN
s LINIE ZEICHNEN

;KDORDINATEN TESTEN:
5 H 6N IE I KNI

H

JSR
TXA
TAY
LDX
CPY
BCS
LDA
CPX
BCC
BNE
cMP
BCS
RTS
JMP
H

GETCOR

#*XK+1
#200
ILLFF
*XK
#H,320
T1
ILLFF
#L,320
ILLFF

QERR

s HOLEN

s Y-KOORD. >= 2007
s JA!

;s X-KOORD. >= 32@7?
;JA

s Az XK-LOW

s X3 XK—HIGH

sY: YK

s ILLEGAL QUANTITY

H
s ADRESSE ERRECHNEN:
3 U6 NI I

STY
sTA

ADC
STA
LDA
ADC
8TA
LDA
AND
EOR
TAX
LDA

YK
XKL
XKH
*# XK
*XK+1

A
A
A

MUL/H, X
*B

#3

MUL/L,X
*A

#7

*A

*A

*XK

#$FB
*0FF X
#H, GRAPH
*B

*B

*A
*OFF X
*Q
*B
*#XK+1
*B
*XK
#7
#7

MSKTAB, X

203

sY—K
3 X—KL

;s X—KH (ZWISCHENSPEICHERN)

s INT (Y/8)

3 320%INT(Y/8) (HIGH-BYTE)

sBITS @+1 ISOLIEREN

s 320%INT(Y/8) (LOW-BYTE)

: Y-KOORD.
3 (Y AND 7)

sOFFY=320%INT(Y/8)+(Y AND 7)
§ I IEIIE NI I NI NI NNIHH

s OFFX=8%INT (X/8)
§ FEIEIE NI I
s GRAPHIKSEITE

3 +SA

sAD = OFFY + OFFX + SA
PR s e s s]

:7—(X AND 7)

s MASKENTABELLE

C8DF—
C8E1-

Co2A-
Co2D-
co3e-

C931-

85

20

AB

FB
FE

Fé
37

F1
iD

F1

ce

B7

B7

2500
2510
2520
2530
2540
2550
2560
257a
2580
2598

GCLEAR

GC1

PCOLOR

STA
RTS
§

H
s PUNKT PLOTTEN:
5 NI

’

LDY
PHP
LDA
BIT
BMI
EOR
AND
- BY
ORA
STA
LDA
STA
LDA
LSR

*MSK

#0

*USE+1
COLOR
(USE) ,Y

*ZWN

32°(7—-(X AND 7))

s CARRY-FLAG RETTEN
s MASKE

s PLOT/UNPLOT-FLAG
s PLOT

;s UNPLOT

;s UEBERSPRINGE NAECHSTEN BEFEHL
sPLOT

s FARBE SETZEN

s ADRESSE/8
sVIDEORAM AB $0400
sFARBE IN

3 VIDEORAM
s CARRY-FLAG

;s GRAPHIK LOESCHEN:
IRAa a2 2222 2 2 222222

.

LDA
8TA
LDY
sTY

JMP

H

#H,GRAPH
*USE+1
#L,GRAPH
*USE
#$20

(USE) ,Y

GC1
*USE+1

GC1
SCoL 1

s Y=0

;s GRAPHIK-STARTADRESSE
;s LAENGE

1 Y=0!

s LOESCHEN

s VIDEORAM LOESCHEN

s FUNKTFARBE DEFINIEREN:
PR 2222 s 22222 222222

B

JSR
8TX
RTS

H
H

; FARBE SETZEN:
H pa 2222222222

H

CHKGET
COLOR

2600 SCOLOR JSR CHKGET

204

3 KOMMA+FARBE

1 KOMMA+FARBE

Cco88-
co8a-
co8c-
C98E-
co990-
C?92-

Co93-
C995~
C997-
C999-
C99B-
C99C-
C99D-

3a

AS
29
Fa
18
A9
7@
A%
cé
&5
85
AS
E?
a5
6@

46
9@
66
AS
ce
18
&9

1D CB 2610

AB

AB
AC

a8

2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2758
2760
277@

3100
3110
3120
3130
3140
3150
3160
317@
318@
319e
3200
3210
32208
3230
3240
3250
3260

SCOoL1

GM9

GM9.

UNTEN

UN1

UN2

uso

OBEN

0OB1

oB2

RECHTS

* <

LDA
DEC
ADC
STA
LDA
SBC
STA
RTS

.
LSR
BCC
ROR
LDA
INY
CLC
ADC

COLOR

#3
#H,VIDEO
*USE+1
#L,VIDEO
*USE
*FLG
COLOR
(USE) , Y

*FLG
GM9
*USE+1

GM9.
GM9

#$E8
*#FLG
GM9

EKTORROUTINEN:
I AT

UNTEN

*A
#7
0B1

#$FF

#$C7
*B
*A
*A
*B
#0
*B

*MSK
RE2
*MSK
*A

#8

205

s ADRESSE VIDEORAM
;Y=0!

s FARBE

s SETZEN

s SPRITEVEKTOREN .SCHUETZEN
s UNBEDINGT

;s PUNKTADRESSE-LOW

s PACKENRAND !

sADDIERE 1 (C=1!)
sADDIERE 320-7=313
sC=1!

s ADRESSE

s PACKENRAND (OBEN)

s SUBTRAHIERE 1
s SUBTAHIERE 32@0+7=327
sC=1!

§MASKE VERESCHIEBEN
$NOCH INNERHALB BYTE
s AUSSERHALB BYTE

C99F-
coAt-
CoA3-
CYAS-

CoA6—

C9AB-
CoAA—
C?AC-
CoAE-
CoB@O—
C9B1-
coB2-
coB4-
CoB&—
C9B8-
C9BA-

Co9BB-
C9BC—
C9BF—
Cc9oCce-
CoCz-
CoCa-
CoC5—
CoCe—

CoCA—
C9CB-

1B

iA

&F

iA
1B

ic
04

FE
6B
iC
&c

&9

CB

CB

CB

CB

CB
CB

CB

CE

REZ2

R/L

LINKS

LI3

LIt

HLINE

L3

L4

STA *A
RE2

*B

RECHTS

*+MSK
LI1
*MSK
*A

#8
*A
LI1
+B
RTS

L]
sLINIE ZEICHNEN:
3 NN

3

PHA

LDA XKH
LSR A
LDA XKL
ROR A
LSR A
LSR A
STA *ZUWN
PLA
PHA
SEC
SBC
PHA
TXA
SBC
STA
BCS
PLA
EOR
ADC
PHA
LDA
SBC
STA
STA
PLA
STA
STA
PLA

XKL

XKH
*DIF3

#$FF
#1

#Q
*DIF3
*DIF1
*DIFS

*DIF@
*DIF4

XKL
XKH
YK
#$FF
#$FE
*DIF2
*DIF3

*DIF@

206

;8 ADDIEREN

38 SUBTRAHIEREN

X2-1.OW-BYTE
X2-HIGH-BYTE
Y2
X1-LOW-BYTE
X1-LOW-BYTE
Y1

8 ZWISCHENSP.

5 X2-X1
s NEBATIV?
sJdA

s VORZEICHENWECHSEL

3 (X2-X1)-HIGH

5 (X2-X1)-LOW

sY2-Y1
s NEGATIV?

3 VORZEICHENWECHSEL
5 (Y2-Y1)

3 (X2-X1)/2

3 (Y2-Y1) - (X2-X1)
sLOW-BYTE NACH X-REG.

CAa3-
CA46-
cAa9-
CA4B-
CA4D-
CA4F-

cAL9-
cAsC-
CALE-

28
20
AD

~
£

A9
4C

20
86
20

F1
67
aF

ce

c8

ce

AE

FF

AE
El

FF

B7

F3

L1

LS

L2

Lé

GLOAD

GSAVE

HARDC

LDA
SBC
STA
LDY
BCS
ASL
JSR
SEC
LDA
ADC
STA
LDA
SBC
STA
STY
JSR
INX
BNE
INC
BNE
RTS
LDA
BCS
JSR
CcLC
LDA
ADC
STA
LDA
ADC
BVC
H

#$FF
*DIF1
*ZA
*ZWN
LS

R/L

*DIF4
#*DIF2
*DIF4
*DIFS

*DIFS
*#ZWN
PLT

L&
*ZA
Lé6

*DIF3
L1
u/o

*DIF4
*DIF@
*DIF4
#*DIFS
#*DIF1
L2

5
s GRAFPHIK LADEN:
3 WA NN

.

JSR
JSR
LDY
LDX
LDA
JMP

CHKCOM
$E1D4
#H,GRAPH
#L ,GRAPH
#$00
$FFDS

sHIGH-BYTE NACH ZA
s UNBEDINGT

s RECHTS/LINKS

$ (X2-X1)—-(¥Y2-Y1)NACH(X2-X1)

3 PUNKT ZEICHNEN

sDEC ZAEHLER

s UNTEN/OBEN

s UNBEDINGT

s KOMMA?
s PARAMETER HOLEN

s STARTADRESSE
; LOAD-FLAG
s LADEN

s
s GRAPHIK SPEICHERN:
R 2

H
JSR
JSR

CHKCOM
$E1D4

s ENDADRESSE

- ae

#H,GRAPH+B000
#L ,GRAPH+8000
#L ,GRAPH

*$FD

#H,GRAPH

*$FE

#$FD

$FFD8

5 KOMMA?

;s STARTADRESSE
;s POINTER
;s SPEICHERN

s HARDCOPY SEIKOSHA GP 1@@ VC:
§ 0 IEIEI I I I IEIE NI I

H

JSR
8TX
JSR

CHKGET
*$67
$F30F

207

sHOLE LOG. FILENR.

s SUCHT LOG. FILENR.

CA71- 2@ IF F3 4590 JSR $F31F $SETZT FILEPARAM.

CA74—- A6 &7 44600 LDX #$47

CA76— 2@ C9? FF 4610 JSR $FFC9? s KANAL OEFFNEN
CA79- A9 FF 4620 LDA #$FF

CA7B- 85 61 44630 STA *$61 s MASKE

CA7D- A9 @7 44640 LDA #7

CA7F— 85 FD 4650 STA *USE s PACKENGROESSE
CAB1- A7 1C 4660 LDA #28

CA83—- 85 97 4670 STA *FLG s ZEILENZAEHLER
CA85— A? 00 44680 LDA #0

CAB7- 8D 20 CB 4490 STA ZWIS s YK-MERKER
CABA—- A9 28 4708 HA1L LDA #40

CASC—- 8D 21 CB 4710 8TA FLG2 s PACKENZAEHLER
CABF— AZ 04 4720 LDX #4

CA?1—- BD 2A CB 4730 HAl. LDA HATAB,X sMITTENZENTRIERT
CA94- 2@ D2 FF 4740 JSR $FFD2 s AUSGABE

CA97—- CA 4730 DEX

CaA98- 1@ F7 4760 BPL HA1.

CA9A- A9 ao 477@ LDA #0

CA9C- 85 63 4780 STA *#$463

CAYE- 85 64 4790 STA *$64 5 XK=0

CAAD— AD 20 CB 4800 HAZ2 LDA ZWIS

CAA3—- 835 65 4810 STA *$65 s YK

CAAS— A7 00 4820 LDA #0

CAA7- 85 FE 4830 STA *USE+1 s BUFFERZEIGER
CAAT— AS &3 4848 HA3 LDA %$43 s XK-L

CAAB- AL 64 4850 LDX *$&64 3 XK—H

CAAD- A4 &5 4860 LDY %3465 3 YK

CAAF—- 2@ 94 C8 4870 JSR HPOSN sPOSITION BERECHNEN
CAB2- AG 00 4880 LDY #@

CAB4—- Bl1 AC 4890 LbDAa (A),Y s BYTE HOLEN
CAB&— A6 FE 4900 LDX #USE+1 ;s BUFFERZEIGER
CABB- 9D 22 CB 4910 STA BUFF,X s IN BUFFER
CABB- E6 65 4920 INC *$4635 3 YK

CABD- E8 4930 INX

CABE—- 86 FE 4940 STX #USE+1

CAC@- E4 FD 4950 CPX *USE

CAC2- DB ES 49460 BNE HA3

CAC4- A9 00 4970 LDA #0

CAC6— AD 07 4980 LDY #7

CAC8- A6 FD 4998 HA4 LDX *USE

CACA—- 1E 22 CB 5008 HAS ASL BUFF,X sEIN BIT HOLEN
CACD- 2A Sa10 ROL A sUND IN AKU SCHIEBEN
CACE- CA Soz2e DEX ;s BUFFERZEIGER ERHOEHEN
CACF- 1@ F? Sa3e BPL HAS

CAD1- 25 61 5S040 AND *$61 sBEI LETZTER ZEILE=#$0F
CAD3- @9 8@ Sase ORA #$80 sHIGH-BYTE
CADS—- 2@ DZ FF 5040 JSR $FFD2 ;s SENDEN

CAD8- 88 Sa7ae DEY 38 BYTES SENDEN
CAD?- 10 ED S8 BPL HA4

CADB- AS 63 5090 LDA *$63 s XK-L

CADD- 18 5100 CLC

CADE- &9 @8 5110 ADC #8

CAED—- 85 63 5120 STA *$63 ; XK+8

CAE2- 90 @2 S130 BCC HA&

CAE4- E6 64 5140 INC *$64 s XK-H

CAE6— CE 21 CB 51508 HAs DEC FLG2

CAE?- D@ BS 5160 BNE HAZ2

CAEB- A9 @D 5170 LDA #$@D sCARRIGE RETURN
CAED- 20 D2 FF 5180 JSR $FFD2 s SENDEN

CAF@- AD 20 CB 5190 LDA ZWIS

CAF3- 18 5200 cLC

CAF4- &9 @7 5210 ADC #7

CAF6—- BD 20 CB 5220 STA ZIWIS s YK+7

CAF9- C& 97 5230 DEC *FLG

CAFB- F@ @3 5240 BEQ HAB.

208

CAFD- 4C 8A CA 3525@ HA8B JMP HA1l

CEOB- A9 04 5260 HAB. LDA #4
CB@2- CS FD 5278 CMP *USE
CB@4—- F@ oC 5280 BEQ HA7
CB@&— 85 FD 52790 STA *USE sLETZTE ZEILE
CB@8- A% 01 5300 LDA #1
CB@A- 85 97 5318 STA *FLG sFLAG
CB@C- A% OF 5320 LDA #$F
CBOE- 85 61 5330 STA *%61 s MASKE
CB10—- D@ EER 5340 BNE HAS8
CB12- A% OF 535@ HA7 LDA #15 s NORMAL MODUS
CB14- 2@ D2 FF 5360 JSR $FFD2
CB17- 4C CC FF 5370 JMP $FFCC s SCHLIESST KANAL
538@ 3
5390 H
S400 s INTERNE SPEICHER:
5410 H E 222222222222 12
5420 H P 4
CB1A- S43@ XKL .DS 1 3 XK-LOW-ZWISCHENSPEICHER
CB1B- 5448 XKH DS 1 3 XK—HIGH-ZWISCHENSPEICHER
ceiC- 5430 YK .DS 1 5 YK—ZWISCHENSPEICHER
CB1D- 5468 COLOR .DS 1 s FARBE
CB1E- 547@ STORE1 .DS 1 s V+17-REG. -ZWISCHENSP.
CB1iF- 548@ STOREZ .DS 1 §V+24-REG. —~ZWISCHENSP.
CB2@- 5490 ZWIS .DS 1 3 ZWISCHENSPEICHER
CB21- 5500 FLGZ2 .DS 1 s ZWISCHENSPE ICHER
Cp22- 551@ BUFF .DS 8 s BUFFER FUER HARDCOPY
5520 H
5530 H
5540 s TARBELLEN:
5550 § NN
5560 H
5570 s DRUCKERZE ICHEN:
5588 3 (RUECKWAERTS)
5590 H
5608 sMITTENZENTRIERT/GRAPHIK EIN
5610 :
CB2A- 50 0@ 18 5620 HATAB .BY 8@ @ 16 27 8
CB2D- 1B @8
5630 3
5640 H
5650 $MULTIPLIKATIONSTABELLE:
5660 3 (N#320 FUER N=@ BIS N=24)
5670]
5680 sHIGH-BYTES
5690

CB2F- 2@ 01 @2 S7@00 MUL/H .BY @8 1 2 3 567 8 10 11 12 13 15 16
CB32- @3 05 a6
CB35—- @7 08 @A
CB38- @B @C @D
CB3B- OF 10
CB3D- 11 12 14 5710 BY 17 18 2@ 21 22 23 25 26 27 28 30 31
CBa@- 15 16 17
CB43- 19 1A 1B
CBa&- 1C 1E IF
5720 3
5730 s LOW-BYTES
5740 3
CB49- 0@ 48 80 5750 MUL/L .BY $00 $40 $8@2 $CO
CBac- Cce
. 5760 H
5770 3
5780 s MASKENTABELLE:
579@ H
CB4D- @1 02 B4 5800 MSKTAER .BY 00000001 700000010 00000100 %ZO02A1000
CBS5@- @8 209

CBS1- 10 20 4@ 5810 -BY Z00010000 00100000 %Z01000000 10000000
CBS54- 80

o820 -EN
END OF ASSEMBLY!
——— LABEL FILE: --—
A =00AC B =00AD
BUFF =CB22 CHKCOM =AEFD

CHKGET =B7F1
COLOR =CB1D

DIF1 =006A
DIF3 =@0&C
DIFS =@0&E
FLG2 =CB21

GCLEAR =C?12
GETBYT =B79E
GLOAD =CA43
GM?. =C935

GRAPH =2000
GSTART =0021

HAl. =CA91
HA3Z =CAAT?
HAS =CACA
HA7 =CB12
HAB. =CB0O@

HATAB =CB2ZA
HPOSN =C8%4

INIT =C824
L2 =CA20

L4 =C9FC

L& =CAZF
LI3 =C9B2
MSK =@@AB
MUL/H =CB2F
0OB1 =C984
OBEN =C979
PCOLOR =C92A
FL2 =C8F0@
PLT =CBEZ2
R/L =C9A&

RECHTS =C993
SCOLOR =C931
STORE1 =CB1E

ZWN =006F

//@0eea,CB55, 8B5S

CLLINE =C868
DIF@ =006%
DIF2 =006B
DIF4 =086&D
FLG =0097
GC1 =C?1D
GEND =0@03E
GETCOR =B7EB
6M? =C7946
GOFF =C841
GSAVE =CAS2
HA1 =CABA
HAZ =CAAB
HA4 =CAC8
HA& =CAE&L
HAB =CAFD
HARDC =CA&Y
HLINE =C9BB
ILLFF =C891

L1 =CA11
L3 =C9E1
LS =CA1é6
LI1 =C9BA

LINKS =C9A8
MSKTAB =CBA4D
MUL/L =CB49
0OB2 =C988
OFFX =0063
PL1 =C85A
PLOT =C858
QERR =B248
RE2 =C9AS
SCOoL1 =C937
SLINE =C86B
STORE2 =CBIF
TESCOR =C879%
UN1 =C968
UNPLOT =C855
USE =0@FD
VIDEDO =0400
XKH =CB1B

YK =CE1C
WIS =CB20

210

Kommen wir zum Basiclader:

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480

FOR I

READ
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

= 51200 TO 52054
X : POKE I,X : S=S+X : NEXT
76, 36,200, 76, 65,200, 76, 18,201, 76, 49,201
76, 42,201, 76, 88,200, 76, 85,200, 76,107,200
76,104,200, 76, 67,202, 76, 82,202, 76,105,202
234,173, 17,208,141, 30,203,173, 24,208,141, 31
203,169, 59,141, 17,208,169, 24,141, 24,208,169
96,141, 36,200, 96,173, 30,203,141, 17,208,173
31,203,141, 24,208,169,234,141, 36,200, 76, 68
229,162, 0, 44,162,128,134,151, 32,253,174, 32
121,200, 32,148,200, 76,226,200,162, 0, 44,162
128, 32, 90,200, 32,253,174, 32,121,200, 76,187
201, 32,235,183,138,168,166, 21,192,200,176, 13
165, 20,224, 1,144, 6,208, 5,201, 64,176, 1
96, 76, 72,178,140, 28,203,141, 26,203,142, 27
203,133, 20,134, 21,152, 74, 74, 74,170,189, 47
203,133,173,138, 41, 3,170,189, 73,203,133,172
152, 41, 7, 24,101,172,133,172,165, 20, 41,248
133, 99,169, 32, 5,173,133,173, 24,165,172,101
99,133,172,165,173,101, 21,133,173,165, 20, 41
7, 73, 17,170,189, 77,203,133,171, 96,160, 0
8,165,171, 36,151, 48, 5, 73,255, 49,172, 44
17,172,145,172,165,172,133,253,165,173, 74,102
253, 74,102,253, 74,102,253, 41, 3, 9, 4,133
254,173, 29,203,145,253, 40,164,111, 96,169, 32
133,254,160, 0,132,253,162, 32,152,145,253,200
208,251,230,254,202,208,246, 76, 55,201, 32,241
183,142, 29,203, 96, 32,241,183,142, 29,203,162
3,169, 4,133,254,160, 0,132,253,132,151,173
29,203,145,253,200,196,151,208,249, 230, 254, 202
240, 3, 16,242, 96,162,232,134,151,208,235,165
172, 41, 7,201, 7,240, 5, 56,169, 0,176, 4
169, 56,230,173,101,172,133,172,169, 0,101,173
133,173, 96, 48,226,165,172, 41, 7,240, 5, 24
169,255,144, 4,169,199,198,173,101,172,133,172
165,173,233, 0,133,173, 96, 70,171,144, 14,102
171,165,172,200, 24,105, 8,133,172,144, 2,230
173, 96, 16,235, 6,171,144, 14, 38,171,165,172
136, 56,233, 8,133,172,176, 2,198,173, 96, 72

211

490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
IF S
PRINT

173, 27,203, 74,173, 26,203,106; 74, 74,133,111

104, 72,
108,176,

56,237,
10,104,

26,203,
73,255,105,

72,138,237,

1,

27,203,133
72,169, 0,229

108,133,106,133,110,104,133,105,133,109,104, 141

26,203,142, 27,203,152, 24,

237,

28,203,144, 4

73,255,105,254,133,107,140, 28,203,102,108, 56
229,105,170,169,255,229,106,133,112,164,111,176

5, 10, 32,166,201,
165,110,233, 0,133,110,132,
208, 5,230,112,208, 1,
119, 201,
106, 80,221, 32,263,174,

0,169, 0, 76,213,255,
162, 63,160, 64,169,
169,253, 76,216,255,

111,

56,165,109,101,107,133,109

32,226,200,232

96,165,108,176,222, 32
24,165,109,101,105,133,109,165,110,101
32,212,225,160,
32,253,174,
0,133,253,169,
32,241,183,134,103,

32,162
32,212,225
32,133,254
32, 15

243, 32, 31,243,166,103, 32,201,255,169,255,133

97,169, 7,133,253,169,
32,203,169, 40,141, 33,203,
32,210,255,202, 16,247,169,

173, 32,203,133,101, 169,

100,164,101, 32,148,200,160,

157,

169, 0,160, 7,166,253,

249, 37, 97, 9,128,
99, 24,105, 8,133,

203,208,181,169, 13,

105, 7,141, 32,203,198,151,

169, 4,197,253,240,

169, 15,133,

204,255, 48,
58, 32,143,

1, 2, 3, 5, 8,
16, 17, 18, 20, 21,
31, 0, 64,128,192,

128, 76, 79

<> 104883 THEN PRINT
-

99,144,

48,
32,

48,
87,

32,
65,
7,
22,
1,

58,
80,
8,
23,
2,

"FEHLER

28,133,151,169,

162,
07

0,133,254,165,

0,

2,

32,210,255,173,

240,

12,133,253,169,
97,208,235,169, 15, 32,210,255, 76

32,
0,
10,
25,
4,

IN

0,141

4,189, 42,203
133, 99,133,100
99, 166
177,172,166, 254

34,203,230,101,232,134,254,228,253,208, 229
30, 34,203, 42,202,
32,210,255,1386,

16
16,237,165
230,100,206, 33
32,203, 24
76,138,202

1,133,151

3,

130,
16,
11,
26,

8,

32,
27,
12,
27,
16,

88,

8,
13,
28,
32,

32

0
15
30
€4

DATAS

R

END

Wie ist nun diese Graphik-Hilfsprogramm anzuwenden?

Der Aufruf samtlicher 12 Befehle erfolgt

weisung,

die in einigen Fédllen noch durch

iber

eine

einige

SYS-An-
Parameter

ergdanzt wird. Das erscheint im ersten Moment etwas
ungewohnlich, da die Syntax des eigentlichen SYS-Befehls
keine weiteren Parameter auBer der Adresse zulidBt, Sie werden
sich aber schnell daran gewohnen. Am besten verfdhrt man, wie
dies im Anwendungsbeispiel vorgefihrt wird: Man definiert
zuniachst am Programmanfang zw6lf Variablen mit den Sprung-
adressen zu den einzelnen Befehlen. Im Verlauf des iibrigen
Programms geschieht der Aufruf dann stets iber diese
Variablen, wobei bei Bedarf die notwendigen Parameter ergénzt
werden. Eine kleine Tabelle informiert Sie iiber die Sprung-

adressen und die Syntax der verschiedenen Befehle:

SYS 51200 - Graphik einschalten
SYS 51203 - Graphik ausschalten
SYS 51206 - Graphik léschen

SYS 51209,PFXx16+HF - Farbe setzen

SYS 51212,PF%x16+HF - Plotfarbe é&ndern
SYS 51215,X,Y ~ Punkt setzen

SYsS 51218,X,Y ~ Punkt léschen

SYs 51221,X1,Y1,X2,Y2 ~ Linie zeichnen
SYS 51224,X1,Y1,X2,Y2 - Linie ldschen

SYS 51227, "name",GA - Graphik laden
SYS 51230, "name",GA - Graphik speichern
SYS 51233,LF - Hardcopy S.GP-100VC

Dabei bedeuten:

PF - Farbe eines Graphikpunktes v. 0-15
HF - Hintergrundfarbe von 0 bis 15

X ~ X-Koordinate eines Punktes (0-319)
Y - Y-Koordinate eines Punktes (0-199)
X1/2 ~ X-Koordinate des Start-/Endpunktes
Yl/2 - Y-Koordinate des Start-/Endpunktes
"name" ~ Filename (auch als Stringspeicher)
GA - Gerédteadresse (1 oder 8)

LF ~ logische Filenummer v. OPEN LF,GA

Bevor wir direkt in unser Demonstrationsprogramm einsteigen,
sollten wir kurz die wesentlichsten Dinge besprechen, wobei
Sie die Details am besten durch testen und probieren heraus-

bekommen:

213

Die ersten drei Befehle diirften klar sein, wobei beachtet
werden sollte, daB beim Einschalten der Graphik diese nicht,
beim Ausschalten jedoch der Bildschirm geléscht wird.

Beim Setzen der Farbe wird die Farbe aller Graphikpunkte wund
des Hintergrundes fiir das gesamte Graphikbild festgelegt.
Wahlen Sie also den Hintergrund griin (Farbcode: 5) wund die
Farbe der Punkte violett (Farbcode: 4), so setzen Sie PF=5
und HF=4. Bei jedem gezeichneten Punkt aber wird gleichfalls
das entsprechende Farbbyte des Videoram gesetzt. Die
jeweilige Farbe wird erstens durch den gerade besprochenen
Befehl gesetzt (damit &dndert sich die Farbe beim zeichnen
nicht), wund 2zweitens durch das folgende Kommando, das
lediglich besagt, daB ab jetzt alle neu gezeichneten Figuren
in dieser neuen Farbe gezeichnet werden.

Ihnen stehen zwei Befehle zur Verfiigung, um einen Punkt 2zu
zeichnen und um einen Punkt zu loschen. Gleichzeitig wird im
Farbram die aktuelle Farbe gesetzt.

Wollen Sie eine Linie von den Koordinaten X1,Yl mnach X2,Y2
zeichnen bzw. loschen, so verwenden Sie die beiden néchsten
Befehle. Was eben zu der Farbsetzung gesagt wurde, gilt hier
natiirlich genauso.

Die zwei Kommandos zum Laden und speichern von Graphik
verwenden Sie bitte genauso, wie Sie Basicprogramme
laden/speichern - unter Angabe des Filenamens und der Gerdte-—
adresse (GA=1 fiir Kassettenbetrieb, GA=8 fiir Diskette).

Bevor Sie eine Hardcopy auf dem Drucker Seikosha GP-100VC
(oder Epson mit DATA BECKER - Interface) starten, mUssen Sie
z.B. mit OPEN 1,4 entsprechend den Druckerkanal &ffnen.
AnschlieBend folgt ein SYS HC,1 (da wir LF, die logische
Filenummer als 1 gew&hlt haben) und ein CLOSE 1 (s. Demo-
programm) .

Damit sollten die groBten Unklarheiten beseitigt sein, und

wir konnen loslegen:

10

30

40

50

60

70

80

20

100
110
120
130
140
150
200
210
220
230
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510

REM Xkkkokkkkkkkkkkkkkkkkk
REM XX X%
REM XX GRAPHIK-PAKET *x
REM *x *X%
REM *x -DEMO - XX
REM xx X%
REM XkkXxXkkkkkkkkkkkkkkkx
REM
REM MASCHINENROUTINEN:
IN=51200 : OF=51203 :REM INIT /GRAPHIK OFF
GC=51206 : SC=51209 :REM GCLEAR /SET COLOR
PC=51212 : PL=51215 :REM PCOLOR /PLOT
UP=51218 : SL=51221 :REM UNPLOT /SET LINE
CL=51224 : GL=51227 :REM CLR LINE /GLOAD
GS=51230 : HC=51233 :REM GSAVE /HARDCOPY
REM
REM BEISPIELE:
REM XXXxXXkXXXXxxX
REM
SYS IN : REM GRAPHIK EIN
SYS GC REM GRAPHIK LOESCHEN
SYS SC,1x16+2 REM FARBE SETZEN
SYS PC,7*1642 REM PLOTFARBE SETZEN
REM
REM FIGUR 1:
REM XXkXxkokXkx
REM
FOR X=1 TO 319 STEP 4
sYs SL,X,50,70,X/1.6 : REM LINIEN
NEXT X
REM
FOR X=1 TO 5000 NEXT X REM WARTESCHLEIFE
GOSUB 2000 : SYS GC : REM GRAPHIK LOESCHEN
REM
REM FIGUR 2:
REM XXXk kXkx
REM
FOR X=1 TO 319 STEP 3
SYS SL,X,40,50%SIN(X/30)+100,X/1.6
NEXT X
REM

215

520 FOR X=1 TO 5000 : NEXT X : REM WARTESCHLEIFE
530 GOSUB 2000 : SYS GC : REM GRAPHIK LOESCHEN
540 REM

550 REM FIGUR 3:

560 REM XX¥XxxkkXkxk

570 REM

580 FOR X=1 TO 319 STEP 2

590 SYS SL,X,40%C0S(X/20)+100,50%SIN(X/30)+100,X/1.6
600 NEXT X

610 REM

620 FOR X=1 TO 5000 : NEXT X : REM WARTESCHLEIFE
630 GOSUB 2000 : SYS GC : REM GRAPHIK LOESCHEN
640 REM

1000 WAIT 198,255 : REM AUF TASTE WARTEN

1100 SYS OF : END

2000 SYS OF : REM GRAPHIK AUS

2010 PRINT "WOLLEN SIE:":PRINT

2020 PRINT "(1) - GRAPHIK LADEN"

2030 PRINT "(2) - GRAPHIK SPEICHERN"

2040 PRINT "(3) - HARDCOPY"

2050 PRINT "(4) - WEITER" : PRINT

2060 POKE 198,0 : REM TASTEN LOESCHEN

2070 WAIT 198,255 : REM AUF TASTE WARTEN

2080 GET A$

2090 ON VAL(A$) GOTO 2200,2300,2400,2500

2100 GOTO 2000

2200 REM

2210 REM GRAPHIK LADEN:

2220 REM Xxkxxxokkiokkkkx

2230 REM

2240 INPUT "FILENAME,GA";FI$,GA

2250 SYS GL,FI$,GA : REM LADEN

2260 SYS IN : REM GRAPHIK EIN

2270 SYS SC,16%3+9

2280 FOR X=1 TO 5000 : NEXT X : REM WARTEN
2290 GOTO 2000

2300 REM

2310 REM GRAPHIK SPEICHERN:

2320 REM Xxkkkkkkkkikkkkkkxx

2330 REM

2340 INPUT "FILENAME,GA";FI$,GA

216

2350 SYS GS,FI$,GA : REM SPEICHERN

2360 GOTO 2000

2400 REM

2410 REM HARDCOPY:

2420 REM XXxkkkkXXkxX

2430 REM

2440 PRINT "DRUCKER EINSCHALTEN UND TASTE DRUECKEN"
2450 POKE 198,0 : WAIT 198,255 : GET A$
2460 PRINT : PRINT "BITTE WARTEN!'"

2470 OPEN 1,4 : REM DRUCKERKANAL OEFFNEN
2480 SYS HC,1 : REM HARDCOPY

2490 CLOSE 1 : REM SCHLIESSEN

2495 GOTO 2000

2500 REM

2510 REM WEITER:

2520 REM X¥x¥xXxkkxX

2530 REM

2540 SYS IN : SYS SC,16%2+7 : RETURN

In diesem kleinen Demoprogramm wurden Ihnen einige
Anwendungsbeispiele dargelegt. Sie kénnen ohne Weiteres Ihre

eigenen Routinen mit einfiigen.

Viel SpaB beim Programmieren!

217

5. Kapitel
Anwendungen

Nachdem wir nun das groBe Kapitel der grundlegenden Graphik-
programmierung hinter uns haben, in dem uns die verschiedenen
Moglichkeiten des Zeichnens von Punkten, Linien und Kreisen,
der Sprite- oder Zeichensatz - Darstellung und -entwicklung,
sowie die diversen Ausgabebedienungen und vieles mehr
dargelegt wurden.

Doch was fangen wir mit diesem Wissen an? Wie verwendet man
etwa Linien und Kreise, um unterschiedliche Sachverhalte
darzustellen? Was bringen uns die Sprites? Und so weiter und
sofort.

In diesem Kapitel sollen Ihnen einige Beispiele nahegebracht
werden, die Ihnen die Arbeit mit diesen Themen schmackhaft
machen sollen. Viele Tricks und Tips konnen Sie den einzelnen
Paragraphen entnehmen, die Sie in TIhren Programmen gut
verwenden koénnen.

Drei groBe Abschnitte behandeln die verschiedenen
Méglichkeiten der hochauflésenden Graphik oder einer schénen
Anwendung der Sprites in Laufschriften, die besonders im
kommerziellen Gebrauch Verwendung finden. Stellen Sie sich
doch einmal die Reprédsentation eines Produktes oder Sonder-
angebotes mit Hilfe der Sprites und den enormen Graphik- und
Soundfédhigkeiten des Commodore 64 vor. Sind das nicht
verlockende Aussichten?

Als letzten Abschnitt zeigen wir Ihnen die Méglichkeiten, die
sich z.B. bei Spielen ergeben, einige niitzliche Routinen

werden auch hier vorgestellt.

5.1 Graphikanwendungen

Lassen wir keine Miidigkeit aufkommen, gehen wir gleich zur
Sache. Alle im folgenden angefithrten Beispiele verwenden den
Befehlssatz, der Ihnen durch das kleine Graphik - Paket in

Kapitel 4 zur Verfiigung gestellt wurde, um sie nicht allzu

218

langsam werden zu lassen. Haben Sie sich nicht die Mihe
gemacht und unser Hilfsprogramm abgetippt, dann koénnen Sie
selbstverstédndlich auch die Basic - Unterprogramme verwenden,
die Sie im vorherigen Kapitel kennengelernt haben. Sie
brauchen lediglich die einzelnen Parameter in die
entsprechenden Speicher zu geben und das jeweilige Unter-
programm aufzurufen. Vergessen Sie nicht, am Anfang ihres
Programmes V und SA fiir die Basisadresse des Video-
controllers und den Graphikspeicher mit V=53248 und SA=8192
festzulegen.

Besitzen Sie eine Graphikbefehlserweiterung, die Sie sich
vielleicht inzwischen zugelegt haben, dann koénnen Sie die
einzelnen SYS-Befehle ebenfalls durch die entsprechenden
Graphikbefehle ersetzen. Die Programme sind extra so
gehalten, daB derartige Verdnderungen nicht besonders
schwierig sind.

Vor allem die hochauflésende Graphik 1&aB8t sich gut fiir
kommerzielle Zwecke, aber auch fiir hilbsche Privatanwendungen
(Schule, Beruf, Freizeit) verwenden. Arbeiten Sie einmal die

folgenden Abschnitte durch.

5.1.1. Funktionendarstellung

Eine beliebte Art, die hochaufloésende Graphik zu nutzen, ist
das Zeichnen der Graphen verschiedéner Funktionen. Dabei
werden oft in Beispielprogrammen Sinus- oder Cosinuskurven
verwendet (s. Beispielprogramm in Paragraph 4.2.2.1). Dies

hat meist 2zwei Griinde: erstens sieht das Ganze recht

eindrucksvoll aus, und zweitens - was wohl das Wichtigere
ist - man hat nicht so groBe Probleme mit eventuellen
Bereichsiiberschreitungen. Letzteres ist die groBte

Schwierigkeit bei dem Zeichnen solcher Bilder. Um diesem
Problem auf die Spur zu kommen, missen wir uns wieder ein
wenig mit der Mathematik beschéaftigen.

Eine Funktion ist eine (eindeutige) Abbildung einer Menge auf
eine andere, d.h. jedem Element der einen Menge ist genau ein
Element der anderen 2zugeordnet (aber nicht unbedingt
umgekehrt). Die Elemente der ersten Menge nennt man in
algebraischen Funktionen auch x, die der zweiten Menge y. x

und y sind in diesem Fall durch irgendeine mathematische

219

Formel bzw. Gleichung verbunden (in dem Fall der Linien aus
Abschnitt 4.2.2.2 beispielsweise durch die Geraden-—
gleichung):

y = f(x) sprich: y gleich f von x

Will man z.B. ein Zuordnungspaar feststellen, so setzt man
fiir x einen beliebigen Wert ein und kann so y errechnen. Die
Beziehung zwischen x und y kann man gleichfalls graphisch in
einem Koordinatensystem darstellen. Dabei stellt die
horizontale Achse des Systems alle méglichen x- (Abszisse),
die vertikale dagegen alle néglichen y-Werte (Ordinate) der
Funktion dar. Kennen wir ein x/y-Paar, so fédllen wir ein Lot
auf den betreffenden x-Wert der x- und entsprechend auf den
y-Wert der y-Achse. Am Schnittpunkt dieser beiden Senk-
rechten wird nun ein Punkt eingetragen. Um ein méglichst
genaues Bild des entstehenden Graphen zu erhalten, miissen wir
viele solcher Koordinatenpaare berechnen und in unser System
eintragen. In der Computerpraxis sieht das dann so aus, daB
schrittweise x-Koordinaten, die stetig von einem bestimmten
Wert bis 2zu einem 2zweiten Wert ansteigen (durch eine
FOR...NEXT-Schleife realisierbar), in die jeweilige Formel
eingesetzt werden, und dadurch die fehlende y-Koordinate
errechnet wird. Das Koordinatenpaar dient nun zum Zeichnen
eines Punktes auf dem Bildschirm. Beim Zeichnen einer LlLinie
oder eines Kreises im 4. Kapitel wurde das gleiche Ptrinzip
angewendet. Das folgende Programm mag dies noch einmal

veranschaulichen:

70 REM MASCHINENROUTINEN:

100 IN=51200 : OF=51203 :REM INIT /GRAPHIK OFF
110 GC=51206 : SC=51209 :REM GCLEAR /SET COLOR
120 PC=51212 : PL=51215 :REM PCOLOR /PLOT

130 UP=51218 : SL=51221 :REM UNPLOT /SET LINE
140 CL=51224 : GL=51227 :REM CLR LINE/GLOAD

150 GS=51230 : HC=51233 :REM GSAVE /HARDCOPY
160 REM

170 REM X3okskokskokkokkokok ok ok Kok k

180 REM

200 SYS IN : SYS GC : SYS SC,16%1+6 : REM GRAPHIK INIT
210 FOR X=0 TO 319

220

220 Y = X*2 : REM FUNKTIONSWERT ERRECHNEN

230 IF Y>199 THEN WAIT 198,255 : SYS OF : END : REM
BEREICHSUEBERSCHREITUNG

240 SYS PL,X,Y : REM PUNKT SETZEN

250 NEXT X

Wie Sie sehen wird hier in Zeile 230 gepriift, ob der y-Wert
noch im Bereich des Bildschirms 1liegt, um ein ILLEGAL
QUANTITY ERROR zu verhindern. Unter anderem dariiber soll hier
diskutiert werden.

Die in diesem Programm gewdhlte Funktion bereitet wuns ein
wenig Kopfzerbrechen, denn zum ersten kommt nur einer der
erwarteten zwei Parabelédste auf das Bild und der auch noch
verkehrt herum, dann ist dié Funktion durchaus nicht
bildfillend wund drittens wurden viel 2zu wenig Punkte
berechnet, um einen schénen Kurvenverlauf zu erreichen. Dies
hat die folgenden Griinde:

Auf unserem Computer besitzt unser Koordinatensystem eine
festgelegte Ausdehnung. Wir kénnen fiir x wund y beispiels-
weise keine negativen oder gebrochenen Zahlen oder Werte
einsetzen, die gréBer sind als 319 (fir x) bzw. 199 (fur vy).
Trotzdem gibt es Funktionen, die gerade in diesen Bereichen
die interessanten Teile besitzen. So liefern einfache Winkel-

funktionen wie:
y = sin(x) oder y = cos(x)

nur Werte 2zwischen -1 und 1 fiir y und besitzen eine
Schwingungsperiode von 2%pi, also ca. 6, was direkt fiir
unsere Anwendung nicht zu gebrauchen ist.

Es existieren nun Methoden, die diesem Dilemma Abhilfe

verschaffen. Dazu gehéren:

- Scalierung

~ Verschiebung
- Verzerrung
a) Scalierung:
Unter Scalierung versteht man das VergroBern oder

Verkleinern der einzelnen Koordinatenwerte und damit der

gesamten Kurve. Dies wird durch einfaches Multiplizieren

221

der x— und(!) y-Werte mit einem bestimmten Faktor

erreicht. Dies kann auf zwei Arten geschehen: ~

1.) Es werden 2zundchst die normalen Werte fiir x zur
Berechnung der wunveridnderten Funktion verwendet und
nachher x- und y-Wert mit dem besagten Faktor
multipliziert. Dabei héngt es vom Faktor (hier f genannt)

ab, ob Sie damit den Graphen verkleinern oder vergroBern:

Faktor Auswirkung
0<f<1 Verkleinerung
f>1 VergroBerung

Wahlen Sie zus&dtzlich <0, so erscheint die Funktion
spiegelverkehrt und kopfiiber. Eine Basicroutine wére

hierzu etwa:

110 F=30 : REM VERGROESSERUNGSFAKTOR

120 FOR X=0 TO 10

130 Y = SIN(X) : REM WERT ERRECHNEN

140 Y = FxY : X = FXX : REM SCALIEREN

150 IF Y>199 OR X>319 THEN WAIT 198,255 : SYS OF : END
160 SYs PL,X,Y : REM PUNKT ZEICHNEN

170 NEXT X

Dieses Programm l&auft natiirlich nur mit dem Graphik -
Paket und der vorherigen Variablendefinierung. AuBerdem

liefert es noch negative Werte fir vy

2.) Sie bauen die Scalierung direkt in die Funktion mit
ein. Dazu erzeugen Sie direkt scalierte Werte fiir x (durch
die FOR...NEXT-Schleife), miissen diese in der Formel dann
aber durch Dividieren von x durch f wieder riicksetzen. Die
y-Scalierung erfolgt dann direkt in der Formel. Das konnte

dann etwa so aussehen:

110 F=30 : REM VERGROESSERUNGSFAKTOR

120 FOR X=0xF TO 10%F

130 Y = F x SIN(X/F) : REM SCAL. WERT

140 IF Y>199 THEN WAIT 198,255 : SYS OF : END
150 sYs PL,X,Y : REM PUNKT ZEICHNEN

160 NEXT X

222

b)

Diese Form hat insbesondere drei Vorteile: Erstens ist sie
sichtbar kiirzer und schneller, zweitens ist damit gleich
von Anfang an iiberpriifbar, ob gréBere Werte fiir x gewdhlt
werden, als erlaubt, denn wir wahlen den Umfang der
Schleife direkt danach, und drittens berechnen Sie schon
hier statt der obigen 11 ganze 301 Werte, was die
Genauigkeit der Kurve natiirlich betrachtlich steigert.
Trotzdem hat die ganze Sache noch einen Haken: y wird

immer noch negativ.

Verschiebung:
Un diesen Punkt 2zu beheben, kodnnen wir den gesamten

Graphen in dem Koordiantensystem in alle Richtungen
verschieben. Wir koénnen also die Sinuskurve aus denm
negativen herunter in den positiven Bereich verschieben,
sodaB y nur noch positive Werte annimmt. Oder wir
verschieben den obigen Quadratfunktionsgraphen um einen
bestimmten Betrag nach rechts, wodurch sein linker Ast
sichtbar wird.

Dies funktioniert, indem zu den beiden Koordinaten jeweils
bestimmte Werte hinzuaddiert werden. Diese Werte miissen
nicht unbedingt gleich sein, wie bei der Scalierung, um
das Aussehen des Graphen nicht zu beeinflussen. Addieren
wir einen Wert b zu der y-Koordinate, so verschieben wir
den Graphen nach oben bzw. unten, wenn b negativ ist (wir
fiihren also eigentlich eine Subtraktion durch). Geschieht
dies mit der x-Koordinate (a wird addiert), so resultiert
eine Rechts- (fir a>0) bzﬁ. eine Linksverschiebung (a<0).
Auch hier gibt es wieder die beiden Moéglichkeiten, die

v6llig analog zu oben funktionieren:

1.) Der Wert der beiden Koordinaten wird errechnet und
dann die beiden Summanden hinzuaddiert. Die Zeilen 130/140
in dem unter a)l.) stehenden Programm wdhren also so 2zu

ersetzen (ohne Scalierung):

130 Y = SIN(X)
140 Y Y+B : X = X+A

223

2.) Auch hier konnen wir das Ganze in eine Formel packen
und erhalten (Zeilen 120/130 des unter. a)2.) stehenden

Programms):

120 FOR X=1 TO 10
130 Y = SIN(X-A) + B

Sie sehen, A wird von X abgezogen, statt addiert.
Unser Quadratprogramm vom Anfang konnten wir dann

umschreiben, indem wir die Zeile 220 ersetzen durch z.B.:

220 Y = (X-13)"2 + 5

Schon erhalten wir ein ganz anderes Ergebnis. Hier wurde
a=13 und b=5 gesetzt. Wiahlen wir fiir a z.B. groBere Werte,
so wird nichts gezeichnet, da y dann zu groB wird, was ja
von unserer Abfrage in Zeile 230 abgefangen wird. Wie

dieses Problem zu lésen ist, wird spédter erléutert.

c) Verzerrung:
Die Verzerrung ist einfach nur ein allgemeinerer Fall der
Scalierung. Hier ndmlich brauchen x und y nicht wunbedingt
mit dem gleichen Faktor multipliziert werden (wir nennen
die beiden Faktoren jetzt einfach fl1 wund f2). Dadurch
werden aber die Proportionen der Kurve verédndert, d.h. es
kommt zu einer Stauchung (fiir 0<fl/2<1) oder Streckung
(f1/2>1) in x~- (fir fl1) bzw. y-Richtung (fiir f2). Jetzt
erst werden die meisten Kurven wirklich zeichenbar.
Ersetzen Sie doch einmal Zeile 220 des Quadratfunktions -

Programmes durch:

220 Y = 0.01 x ((X-139)/1)"2 + 5

Sie werden strahlen, das war es. Hier werden Verzerrung
und Verschiebung gleichzeitig angewandt, was 2zu diesem
hiibschen Ergebnis fiihrt. Die einzelnen Veradnderungswerte
lauten: fl=1; £2=0.01; a=139; b=5 (statt mit 0.01 zu
multiplizieren, kénnten wir der Einfachheit halber auch
durch 100 dividieren).

Doch es sind noch ein paar Dinge zu klédren. Unsere Parabel

224

steht immer noch auf dem Kopf und zweitens werden bei der
Verdnderung der verschiedenen Parameter immer noch ILLEGAL
QUANTITY ERRORs produziert. Zunédchst zum Ersten:

Dieses Phanomen taucht auf, da wunser Koordinatensystem auf
dem Kopf steht. Unser Nullpunkt liegt nicht unten, sondern
oben links in der Ecke. Die y-Werte werden nach unten hin
nicht immer kleiner, sondern gréBer. Diese Eigenart kann
durch einen einfachen Trick behoben werden. Wir drehen die
Kurve einfach um, indem wir das Vorzeichen aller y-Werte
umkehren (s.o.). Da wir dann aber oft nur negative Werte fir
y bekommen, verschieben wir die Kurve gleichfalls noch um
einen bestimmten Betrag nach unten (eigentlich oben), indem

wir z.B. 195 addieren. Das sdhe dann so aus:

220 ¥ = - 0.01 x ((X-139)/1) + 195

Das Ergebnis bestédtigt das oben Gesagte.

Doch nun 2zu den Fehlermeldungen, die inzwischen immer
héufiger werden. Die Ursache liegt einfach in unserer
unvollkommenen Bereichsiiberpriifung. Zum einen testen wir gar
nicht, ob y negativ wird, 2zum anderen beenden wir gleich
unser Programm, wenn es zu einer Uberschreitung gekommen ist.
Wenn Sie das obige "Quadrat" - Programm ab der Zeile 210 wie
folgt @ndern, dann werden Sie fiir alle Einsetzungen von
a,b,fl und f2 und fiir jede Funktion =zufrieden sein, sofern

sie iiberhaupt in dem gewdhlten Bereich liegt:

210 F1 = 1 : F2 = 0.1 : A = 160 : B = 100
220 FOR X=0 TO 319

230 Y = - F2 x ((X-A)/F1)"2 + B

240 IF Y>199 OR Y<O0 THEN NEXT X : GOTO 270
250 sYs PL,X,Y : REM PUNKT SETZEN

260 NEXT X

270 WAIT 198,255 : SYS OF : END

Bevor der Computer etwas zeichnet, kann er schon eine ganze
Menge Werte durchlaufen haben. Warten Sie also etwas, bevor
Sie das Programm abbrechen. In diesem Programm wurde der
Nullpunkt wunseres verschobenen Koordinatensystems nach
160,100, also in die Mitte des Bildschirms gebracht. Wir
kénnten dort also auch z.B. zur Veranschaulichung die Achsen

einzeichnen.

225

Eine weitere Moglichkeit ist beispielsweise die Niederlegung
der Funktion in einer sogenannten Funktionsdefinition. Dies
ist eine besondere Eigenschaft des Basic und wird durch den
Befehl DEF FN realisiert. Mit diesem Befehl wird eine
Funktion definiert, die irgendwo im Programm beliebig
aufgerufen werden kann, ohne sie umstdndlich nieder 2zu
schreiben. Sie miiBten dazu lediglich folgende Anderungen

vornehmen:

215 DEF FN F(X)= - F2 % ((X-A)/F1)"2 + B
230 Y = FN F(X)

Oder wenn Sie lediglich die reine Funktion in der

Definitionszeile stehen lassen wollen:

215 DEF FN F(X)= X"2
230 Y = - F2 x FN F((X-A)/Fl) + B

Der jeweilige Wert fiir die verschiedenen Variablen wird dabei
stets in die Formel eingesetzt. So konnen Sie irgendwo die
Funktion verdndern, ohne in die Schleife eingreifen oder

diese suchen zu miissen.

Das folgende Programm geht noch etwas weiter. Es zeichnet fiir
Sie eine beliebige Funktion. Sie konnen in eine INPUT -
Abfrage Ihre Funktion eintippen und das Programm entwickelt
fiir Sie daraus durch EinPOKEn entsprechender Bytes in einen
freien Basicbereich die Funktionsanweisung. Sie brauchen
diese relativ komplizierte Routine nicht unbedingt zu
verstehen, Sie demonstriert Ihnen aber den guten Nutzen des
DEF FN -~ Befehls. Die Funktion wird ohne Verzerrungs- oder
Verschiebungsparameter, also in "reiner" Form eingegeben.
Diese werden spater in der Hauptschleife in der Weise hinzu-
gefiigt, wie in den zuletzt gezeigten zwei Zeilen. Doch hier
das Programm.

Achten Sie bitte unbedingt darauf, in dem ersten Teil bis zum
Ende der DEF FN - Zeile (also bis einschlieBlich Zeile 350)
genau den Wortlaut mit FREMs und mit genau der gleichen
Leerzeichenanzahl abzuschreiben, da das Programm damit

rechnet! Beachten Sie das nicht, so kommt es im Zweifelsfall

226

zum Absturz des Programms. Vor dem ersten Start sollten Sie
das Programm daher auf Jeden Fall zunédchst einmal

abspeichern!

100 REM kokokokokok ok ok ok ok ko ok ok 3ok ok k ok X %k %

110 REM xx *%
120 REM xx FUNKTIONENPLOTTER *x
130 REM xx *%
140 REM 3okokokokokokokok ok ok ok ok ok ok ok X ok Kok k
150 REM
160 REM

170 REM DEF FN - ROUTINE:

180 REM kkkkkkokkkkkkkxx

190 REM

200 RESTORE:DIM A$(25):PRINT CHR$(147)

210 PRINT "GEBEN SIE EINE BELIEBIGE FUNKTION EIN

:":PRINT: PRINT: PRINT

220 GOSUB 500 : REM EINGABEROUTINE

230 AD-2684-1:REM POKE-START

240 FOR X=1 TO 25:READ A$(X):NEXT X:REM DATEN EINLESEN

250 FORX=1TOLEN(A$):AD=AD+1

260 Q=X:FORY=1T025:B$=A$(Y):FORZ=1TOLEN(B$):C$=MID$(AS$,X,1)
270 IFC$=" "THENAD=AD-1:NEXTX:GOTO310

280 IFC$=MID$(B$,Z,1)THENX=X+1:NEXTZ:POKEAD,Y+169:X=X~-1:NEXTX
:GOTO310

290 X=Q:NEXTY

300 POKEAD,ASC(C$):NEXTX

310 POKEAD+1,58:POKEAD+2,143

340 REM FREIHALTER:

350 DEFFNF(X)=000
0000000000000000000

400 REM 25 FUNKTIONEN:

410 DATA +,-,%,/,”,AND,OR,<,=,>,SGN,INT, ABS, USR, FRE,POS,SQR,R
ND, LOG,EXP

420 DATA COS,SIN,TAN,ATN,PEEK

430 GOTO 600 : REM WEITER

500 INPUT "F(X)=";A$: RETURN : REM EINGABEROUTINE(ZUM
AUSBAU)

540 REM

550 REM (2222222222222 223

560 REM ***x GRAPHIK-ROUTINEN XXxXx

227

570 REM KkRKkkRkkKKKKKRKKXK XK

580 REM

600 IN=51200 : OF=51203 :REM INIT /GRAPHIK OFF
610 GC=51206 : SC=51209 :REM GCLEAR/SET COLOR
620 PC=51212 : PL=51215 :REM PCOLOR/PLOT

630 UP=51218 : SL=51221 :REM UNPLOT/SET LINE
640 CL=51224 : GL=51227 :REM CLINE /GLOAD

650 GS=51230 : HC=51233 :REM GSAVE /HARDCOPY
655 POKE 2,0 : REM LOESCHFLAG

660 REM

670 REM XKk kokkkkkkokk

680 REM *XXxx HAUPTPROGRAMM XXX
690 REM Xokkokokkokkkkokkk

700 REM

710 PRINT : PRINT "GEBEN SIE DIE FOLGENDEN PARAMETER EIN:"
PRINT

720 INPUT "F1 (X-ZERRFAKTOR) ";Fl

730 INPUT "F2 (Y-ZERRFAKTOR) ";F2

740 INPUT "A (X-VERSCHIEBUNG)";A

750 INPUT "B (Y-VERSCHIEBUNG)";B

1000 SYS IN : SYS SC,16%1+5 : REM INITIALISIEREN

1005 IF PEEK(2)=0 THEN SYS GC : REM GRAPHIK LOESCHEN

1007 POKE 2,0 : REM LOESCHFLAG

1010 REM

1020 REM ACHSEN ZEICHNEN:

1030 REM kkkkkkkkkkkkkkkk

1040 IF A>=0 AND A<320 THEN SYS SL,A,0,A,199 : REM X-ACHSE
1050 IF B>=0 AND B<200 THEN SYS SL,0,B,319,B : REM Y-ACHSE
1060 REM

1070 REM ZEICHENROUTINE:

1080 REM Xxkkkkkkkkkkkkx

1210 FL% = 1 : REM AUSSERHALB-FLAG

1220 FOR X=1 TO 319

1230 Y=-F2%FNF((X-A)/F1)+B

1240 IF Y<0 OR Y>199 THEN FL%=1:NEXT X:GOTO 1280

1250 IF FL%=0 THEN SYS SL,X1,Y1l,X,Y

1260 FL%=0

1270 X1=X:Y1=Y:NEXT X : REM LETZTE KOORD. MERKEN

1280 POKE 198,0 : WAIT 198,255 : GET A$: SYS OF : REM
GRAPHIK AUS

1290 REM x*x*xxX*x MENUE: kXxxXx

228

1300 PRINT "WOLLEN SIE:" : PRINT : PRINT

1310 PRINT "(1) ANDERE PARAMETER"

1320 PRINT "(2) ANDERE FUNKTION"

1330 PRINT "(3) GRAPHIK NICHT LOESCHEN"

1340 PRINT "(4) GRAPHIK SPEICHERN"

1350 PRINT "(5) GRAPHIK LADEN"

1360 PRINT "(6) HARDCOPY"

1390 PRINT "(7) BEENDEN"

1450 WAIT 198,1 : GET A$

1460 ON VAL(A$) GOTO 700,1480,1490,1510,1600,1650,1500
1470 GOTO 1450 : REM FEHLEINGABE

1480 RUN : REM ANDERE FUNKTION

1490 POKE 2,1 : PRINT "OK" : PRINT : GOTO 1450 : REM FLAG
SETZEN

1500 END : REM BEENDEN

1510 REM

1520 REM GRAPHIK SPEICHERN:

1530 REM

1540 INPUT "FILENAME,GA";FI$,GA

1550 SYS GS,FI$,GA : REM SPEICHERN

1560 PRINT "OK" : GOTO 1450

1570 REM

1580 REM GRAPHIK LADEN:

1590 REM

1600 INPUT "FILENAME,GA";FI$,GA

1610 SYS GL,FI$,GA : REM LADEN

1620 SYS IN : SYS SC,16%1,5 : GOTO 1280

1630 REM

1640 REM HARDCOPY:

1645 REM

1650 PRINT "DRUCKER FERTIG MACHEN UND TASTE DRUECKEN"
1660 OPEN 1,4 : SYS HC,1 : CLOSE 1 : REM HARDCOPY
1670 PRINT "OK" : GOTO 1450

Beachten Sie bitte, daB auch dieses Programm fiir das
Graphik—~Paket aus # 4.7 geschrieben wurde wund bei der
Verwendung anderer Graphikroutinen erst auf die in der
Einleitung (v. Kapitel 5) dargelegte Weise umgeschrieben
werden muB.

Wie gesagt werden Sie zundchst aufgefordert, eine Funktion

einzugeben. Das hierzu verwendete INPUT steht als Unter-

229

programm in Zeile 500 und kann so von Ihnen durch eine andere
Eingabeschleife - z.B. mit GET - ersetzt werden. Die
Verlegung nach Zeile 500 war notwendig, da Sie bis zur Zeile
350 ja keinerlei Anderungen vornehmen diirfen. Die Funktion
steht dann in A$ und wird an die Ubersetzerroutine bis Zeile
350 Ubergeben. Diese formt daraus dann eine DEF FN - Zeile,
d.h. Sie POKEt die notwendigen Bytes direkt in den Basic-
speicher und verdndert so die Zeile 350. Sie koénnen sich ja
einmal diese Zeile anschauen, nachdem Sie die erste Funktion
eingegeben haben. Die Adresse, bei der die besagte Zeile
beginnt, bzw. bei der das Programm beginnt, seine Funktion
einzuschreiben, steht in Zeile 230 und kann von Program-
mierern geidndert werden, die die Routine verstanden haben und
in diesem Bereich Anderungen vornehmen wollen.

Grundsatzlich konnen Sie in Ihre Funktion jede der 25 Teil-
funktionen aufnehmen, die Sie in den Zeilen - 410/420 finden.
Dabei ist die Syntax genau dieselbe, wie in Basic.

Nach den obligatorischen Sprungadressendefinitionen werden
Sie aufgefordert, die beiden Verzerrfaktoren fl1/f2 und die
Verschiebesummanden a und b einzugeben (Z. T710-750). Hier
konnen Sie das anwenden, was Sie in den obigen Ausfiihrungen
gelernt haben. Hier einige Richtwerte: fl und f2 werden bei
den meisten Funktionen groéBer als 1 (bei Winkelfunktionen ist
z.B. der Bereich von 10-70 empfehlenswert). Wie Sie wissen
ist fl1 dafiir zustandig, den Graphen nach 1links und rechts
auseinander zu ziehen. f2 dagegen dehnt die Kurve nach oben
und unten. Fir einen ersten Uberblick empfehlen sich fir a
und b die Werte a=160 und b=100, wodurch der Nullpunkt des
Koordinatensystems genau in die Mitte des Bildschirms
gebracht wird. Wollen Sie dann z.B. nur die fir x positiven
Bereiche, dann wahlen Sie a=0 usw.

Nach dem Einschalten und eventuellen Léschen der Graphik
(abhangig vom Loschflag) werden dann ab Zeile 1040 die Achsen
des Koordinatensystems gemdB der gewahlten Verschiebung
gezeichnet. Wenn Sie wollen, konnen Sie hier noch Teilstriche
als Einheiten entlang den Achsen zeichnen.

In Zeile 1210 beginnt nun die eigentliche Zeichenarbeit. Sie
finden hier die altbekannte Routine vor, die wir oben
entwickelt haben. Lediglich eine Kleinigit ist verédndert. Um
nicht nur die einzelnen Punkte der Kurve 2zu sehen, die

berechnet wurden, werden diese hier durch Linien miteinander

230

verbunden. So entsteht ein schones, angendhertes Bild. Man
spricht hier auch von Aproximation. Die Schwierigkeit besteht
darin, daB gerade dann nicht vom letzten Punkt 2zum gerade
berechneten gezeichnet werden darf, wenn der Graph aus einem
ungiiltigen Bereich kommt. Dafiir sorgt das Flag FL¥ (Integer-
variable).

Ist die Kurve gezeichnet, so kommen Sie nach einem Tasten-—
druck in das Hauptmenue. Hier kénnen Sie verschiedene
Optionen wahlen. Sie konnen eine ganz neue Funktion wéahlen,
nur die Parameter veridndern, das alte Bild erhalten, wahrend
das neue gezeichnet wird (fiir Vergleiche besonders geeignet),
Graphik speichern / laden, eine Hardcopy anfertigen oder

einfach beenden.

y=sin(x)/ (x-(x=0))

Noch etwas zur Funktioneneingabe: Bitte achten Sie darauf,

daB erstens die Syntax Ihrer Funktion richtig ist
— andernfalls entsteht ein SYNTAX ERROR. Zweitens sollten Sie
darauf achten, daB keine undefinierten Werte eingesetzt

werden. Dies sind z.B.: allgemein zu hohe Werte, der Wert 0
in Nenrern oder bei Logarithmus, negative Werte bei Wurzel
oder Logarithmus.

Negative Werte konnen z.B. ausgeschlossen werden durch

Verwendung der Absolut - Funktion, z.B.:

SQR(ABS(X))

Der Wert Null wird vermieden durch ersetzen von X durch den
Term (X-(X=0)):

231

statt 1/X 0 1/(X~-(X=0)) oder
statt LOG(X): LOG(ABS(X-(X=0)))

Wird x gleich 0, so wird der Ausdruck X=0 im Commodore -
Basic gleich -1, ansonsten bleibt er 0. Ahnlich konnen
GroBer—- oder Kleinerzeichen (>,<) verwendet werden.

Ist ein Fehler aufgetaucht, so konnen Sie das Programm auch
mit RUN 350 starten, wobei die Funktion erhalten bleibt.

5.1.2. 3-dimensionale Graphik

Kaum eine Computer-Werbeanzeige und zunehmend auch Anzeigen
aus anderen Bereichen verzichten auf wunderschéne meist drei-
imensionale Graphikbilder, um Ihre Produkte anzupreisen. Kein
Wunder, die Zeichnungen strahlen eine enorme Asthetik aus,
durch die der Betrachter die unendlichen Weiten des Raumes
mit dem jeweiligen Werbeobjekt assoziiert. Immer mehr
Graphikdesigner besinnen sich auf das Hilfsmittel Computer
und seine Fahigkeit auch komplizierte 3-dimensionale
Funktionen und allgemein rdumliche Bilder herzustellen. Wer
hier nicht hinterher hinken will, der sollte sich einmal
informieren.

Aber auch dem privaten Anwender bereitet es ungeheuren Spas,
sich mit diesen Dingen zu beschidftigen. Nicht umsonst ist
meist eins der ersten Objekte des Informatikunterrichts in
Schulen die Erzeugung von einfachen zweidimensionalen
Funktionsgraphen (s. vorheriges Kapitel) bis hin 2zu den
rdumlichen Darstellungen.

Doch stoBt Letzteres ohne Vorkenntnisse und ohne sachkundige
Anleitung auf erhebliche Schwierigkeiten, da die Fach-
literatur oft reichhaltiges Wissen voraussetzt und die eigene
Ableitung der Algorithmen (Rechenvorschriften) relativ
kompliziert ist. Aus diesem Grunde seinen hier einige
Verfahren dargelegt, die sich auf die Kenntnis des in
Abschnitt 5.1.1 Gesagten stiitzen.

232

5.1.2.1 Parallel-Projektion

Man unterscheidet grundsédtzlich zwei Arten von Projektionen:

- parallele Projektion

- Zentralprojektion

Wir werden uns im folgenden mit der ersten einfachen
Projektionsart beschdftigen. Weiter unten 1liefern wir auch

das notige Riistzeug fiir die zweite, wirklichkeitsnahere.

Zundchst einmal miissen wir unser 2-dimensionales Koor-
dinatensystem erweitern. Hierzu verwenden wir die Achsen
xr,yr und zr (r steht fiir rédumlich). Jeder Punkt eines

3-D-Objektes (z.B. ein Haus) hat damit drei Koordinaten
(xr,yr,zr). Dieses Koordinatentripel muB zur Darstellung auf
dem Bildschirm (denn hier kennen wir ja nur die Koordinaten x
und y) in die ebenen Koordinaten x und y umgerechnet werden.
Bevor wir dies unternehmen, miissen wir uns erst einmal iiber
das Aussehen unseres 3-D-Koordinatensystems einigen. Wir
legen dafiir hiermit folgendes fest (s.Abbildung):

Die xr- und zr-Achsen liegen in der Zeichenebene wund stehen
senkrecht aufeinander. Die durch die Zeichenebene gehende

yr-Achse bildet mit der xr—Achse den Winkel w:

y 1z,

i
<L ypasintv)
/Vw é ¥ X
1T % 'yrg cos(w) Xp

Wie aus der Zeichnung ersichtlich, ergeben sich damit
folgende Formeln, die die Umrechnung der Raum—- auf die

Ebenenkoordianten vornehmen:

Xr + yr*cos(w)

y = zr + yrksin(w)

Der Winkel w bestimmt dabei die Perspektive, also den Winkel,

233

mit dem man das Objekt betrachtet. Wollen wir das Bild
verschieben, so daB wir es z.B. mitten im Graphikfenster zu
sehen bekommen oder das Objekt in weite Ferne zu riicken,
konnen wir drei Summanden a,b und ¢ 2zu der xr-,zr- und

yr-Koordinate hinzuaddieren (s. # 5.1). Wir erhalten dann:

"

a+xr + (yr+c)*cos(w)

y = b+zr + (yr+c)*sin(w)

Wollen Sie die Figur lediglich in der Ebene verschieben, so
wiahlen Sie ¢=0. Doch auch hier wird es oft dazu kommen, daB
Teile des Bildes nicht zu sehen sind, da sie entweder aus dem
Bildschirm herausragen oder viel zu klein sind, als daB die
Auflosung ausreichte, sie 2zu erkennen. Aus diesem Grunde
filhren wir wieder unsere bekannten Verzerrfaktoren ein, die
uns erlauben sollen, das Objekt einfach 2zu vergroBern oder
Lange, Hohe und Breite zu verdndern. Um alle drei Faktoren zu
verdndern, missen wir wieder direkt die Raumkoordinaten mit
den drei Faktoren f1,f2 wund f3 fiir die xr-, 2zr- und

yr-Koordinaten:

x
0

flx(a+xr) + f3%(yr+c)*cos(w)
y = f2%(b+zr) + f3%(yr+c)¥sin(w)

Wollen Sie die Figur nur vergréBern, ohne Sie 2zu verzerren,
so wahlen Sie fl=f2=f3. Fir die drei Faktoren gilt wieder das
in Abschnitt 5.1 Gesagte:

f1/2/3 > 1 => Streckung (VergroéBerung)
0 < f1/2/3 < 1 => Stauchung (Verkleinerung)

Um die jeweilige Figur nun noch genau auf den Bildschirm zu
bekommen, da der Nullpunkt der Raumkoordinaten nicht
unbedingt immer mit dem Nullpunkt des Bildschirms iiberein-
stimmen soll, der bekanntlich oben links in der Ecke liegt,
wollen wir noch zwei Verschiebesummanden vl und v2 einfiihren.
vl verschiebt das planare Koordinatensystem in +x-, v2 in
—~y-Richtung. Wollen Sie den Nullpunkt des Koordinatensystems
beispielsweise genau in die Mitte des Bildschirms
positionieren, so wdhlen Sie v1=160 und v2=100. Auch hier

stehen unsere y-Ebenen-Koordinaten wieder auf dem Kopf, wir

234

miissen also ihr Vorzeichen d&ndern. Damit ergeben sich die

beiden folgenden Formeln:

x = flx(a+xr) + f3x(yr+c)*cos(w) + vl
y = ~-f2¥%(b+zr) - f3%(yr+c)*sin(w) + v2

In dem folgenden Programm wird ein Haus raumlich dargestellt.
Die dazu notwendigen Eckpunkte sind mit Ihren 3 ré¨ichen
Koordinaten in DATA-Zeilen niedergelegt (Zeilem 1110-1140).
Die 3-D-Koordinaten werden in die der Ebene umgerechnet wund
die einzelnen Punkte miteinander verbunden. Welche Punkte
Jjeweils verbunden werden sollen, steht ebenfalls in dahinter

liegenden DATA-Zeilen. Die Punkte werden der Reihe nach von 1

ab durchnumeriert und jeweils die Nummern zweier zu
verbindender Punkte hintereinander in den Linien - DATA -
Zeilen aufgefiihrt. Die Reihenfolge, in der die Linien

gezeichnet werden, ist véllig egal, sie brauchen auch nicht
zusammen zu héngen. Jeweils zu Anfang der Punkt- wund der
Linien-Daten steht die Anzahl der Punkte (Zeile 1100) und der
Linien (Zeile 2100), die gezeichnet werden sollen. Wenn Sie
sich an diese Datenform halten, konnen Sie sich beliebige
eigene Figuren ausdenken und rdumlich darstellen. Beispiels-
weise konnen Sie doch einmal Ihren Computer vermessen und die
Daten in das Programm eingeben. Sie erhalten dann ein schoénes
rdumliches Bild Ihres Gerétes.

Doch wofiir sich die Umstinde machen und die Koordinaten
3-dimensional eingeben? Dies hat einen besonderen Grund. Sie
konnen Ihre einmal so erstellte Figur, wie in wunserem Fall
das Haus, beliebig vergréBern, verzerren, perspektivisch
drehen oder verschieben. Dies erreichen Sie durch Veranderung
der einzelnen Parameter a,b,c, fl1l,f2,f3, vl,v2 und w. Es wird
eine Weile dauern, bis Sie die Auswirkungen dieser vielen
verschiedenen Variablen iiberblicken. Bedenken Sie, daB die
Zerrfaktoren f1,f2 und f3 die Einheiten der Achsen bestimmen,
d.h. bei ihrer Verdnderung scheinen sich die Objekte
gleichfalls fort oder heran zu bewegen. Stért Sie das, so

dndern Sie die einfach die obigen Formeln in jene:

x = fl¥at+xr + f3xyrkxcos(w)+c + vl

y = -f2%b-zr - f3xyr*sin(w)-c + v2

235

Nun besitzen fl, f2 und f3 keinen EinfluB mehr auf den
Abstand, obwohl diese Formeln mathematisch nicht ganz
einwandfrei sind. Die Verzerrung bezieht sich nur auf das
Objekt, nicht auf das Koordinatensystem. Wollten Sie also
Einheiten an den Achsen abtragen, kédme es zu Unstimmigkeiten.
Eine sicher interessante Sache ist in den Zeilen 600-620
niedergelegt. Wir haben an dieser Stelle gerade die Raum-x-
und die Raum-z- Achse gezeichnet. Um nun auch die in die
Zeichenebene hineinragende y—Achse zu zeichnen, berechnen wir
einfach den Punkt, bei dem die y-Ebenen - Koordinate 0 (bzw.
199) ist (unter Beriicksichtigung des Winkels w) und zeichnen
eine Linie vom Ursprung dorthin.

Wichtig bei allen Zeichenvorgédngen ist die vorherige® Uber-
priifung der Werte auf Bereichsiiberschreitungen. Ein sehr
gutes, professionelles Zeichenprogramm wiirde, falls ein oder
zwei Eckpunkte auBerhalb des Bildschirms liegen, trotzdem
aber noch Teile der Linie zu sehen wdren, die Schnittpunkte
der Linie mit den Fensterrénder berechnen und den sichtbaren
Teil der Linie zeichnen. Unser einfaches Programm 2zeichnet
diese Linien gar nicht. Sie konnten da ja Abhilfe schaffen.
Gleichfalls werden die Linien, die eigentlich verdeckt sein
sollten, ebenfalls gezeichnet. Dieses Problem der verdeckten
Linien gehért 2zu den schwierigsten und langwierigsten
Kapiteln der 3-D-Graphik. GroBe Institute tifteln mit
teilweise groBem mathematischen Aufwand an solchen
Algorithmen. Weiter unten wird Ihnen ein &uBerst einfacher
vorgestellt, der insbesondere bei 3-dimensionalen Funktionen
Verwendung findet.

Vielleicht verédndern Sie dieses Programm noch weiter. Sie
kéonnten z.B. die jetzt in DATA-Zeilen abgelegten Daten in
irgendeiner Form auf Diskette abspeichern und gegebenenfalls
spater wieder einladen. (DATA-Zeilen wédren hierfiir natiirlich
ungeeignet. Sie konnten alle Daten in Arrays unterbringen,
die als sequentielles File auf Diskette gebracht werden
konnen) Oder Sie bauen das Programm zu einem richtigen menue-
gesteuerten Zeichenprogramm aus; als kleines Beispiel dient

Ihnen dazu schon das Programm aus Paragraph 5.1.

236

100 REM kKK KKK KKKk kR kXX KXk XK

110 REM XX XX
120 REM *x 3-D-DESIGNER XX
130 REM XX *x
140 REM XXKKRRRKRKKRKKKRKKKKKX
150 REM

200 REM

210 REM % ok K K KOk Kk ok ok kK

220 REM *X** GRAPHIK-ROUTINEN XXX
230 REM L2222 222223322233

240 REM

250 IN=51200 : OF=51203 :REM INIT /GRAPHIK OFF
260 GC=51206 : SC=51209 :REM GCLEAR/SET COLOR
270 PC=51212 : PL=51215 :REM PCOLOR/PLOT

280 UP=51218 : SL=51221 :REM UNPLOT/SET LINE
290 CL=51224 : GL=51227 :REM CLINE /GLOAD

300 GS=51230 : HC=51233 :REM GSAVE /HARDCOPY
400 REM

410 REM XKk kKK k kX

420 REM *%x% PARAMETER Xx*x
430 REM Xk Kok ok ok kok X

440 REM

450 F1 = 5 : F2 = 5 : F3 = 3 : REM ZERRUNG

460 AR = 15 : BR = 0 : CR = 10 : REM VERSCHIEBUNG DER
RAUMKOORD .

470 W = 3.1415/4: REM SICHTWINKEL (IN RAD)

480 SI = SIN(W) : CO = COS(W) : REM KONSTANTEN (NICHT

VERAENDERN)

490 vl = 100 : V2 = 180 : REM VERSCHIEBUNG DER EBENENKOORD.
500 REM

510 REM KoKk 3Ok ok Xk kK X

520 REM *kxx%x UMRECHNUNG *xx

530 REM Ak ok AOk ok Kk K K

540 REM

550 SYS IN : SYS GC : SYS SC,16x7+8 : REM GRAPHIK INIT
560 FG=0:IF V1<0 OR V1>319 THEN FG=1:GOTO 580 : REM FLAG
570 sYs sL,v1,0,V1,199 : REM RAUM-Z-ACHSE

580 IF v2<0 OR V2>200 THEN FG=1:GOTO 600

590 sys sL,0,v2,319,VZ : REM RAUM-X-ACHSE

600 Z2 = V1 - (199-V2)/SI*CO : Z1 = V1 + V2/SI*CO

610 IF FG=0 AND Z1>=0 AND Z1<320 THEN SYS SL,Vl1l,V2,Z1,0: REM

237

RAUM-Y-ACHSE OBEN

620 IF FG=0 AND Z2>=0 AND Z2<320 THEN SYS SL,V1,v2,2Z2,199
REM RAUM-Y-ACHSE UNTEN

630 READ AP : DIM X%(AP),Y%(AP) : REM ANZAHL PUNKTE

640 FOR ZA=1 TO AP : REM PUNKTEZAHL

650 READ XR,ZR,YR

660 X%(ZA) = F1*(XR+AR) + F3x(YR+CR)*CO+V1
670 Y%(ZA) = -F2%(ZR+BR) - F3*(YR+CR)*SI+V2
680 NEXT ZA : REM NAECHSTER PUNKT

700 REM

710 REM Xk kKoK k

720 REM *Xx%xx STRICHE *ix

730 REM Xk KKk k%

740 REM

750 READ AL : REM ANZAHL LINIEN

760 FOR ZA=1 TO AL

770 READ P1,P2 : REM PUNKTNUMMERN LESEN

775 IF X%(P1)<0 OR Y%(P1)<0 OR X%(P2)<0 OR Y%(P2)<0 THEN
790:REM AUSSERHALB

777 IF X%(P1)>319 OR Y%(P1)>199 OR X%(P2)>319 OR
Y%(P2)>199THEN790: REMAUSSERHALB

780 SYS SL,X%(P1),Y%(Pl),X%(P2),Y%(P2) : REM VERBINDEN
790 NEXT ZA : REM NAECHSTE LINIE

900 POKE 198,0 : WAIT 198,255 : GET A$

910 SYS OF : LIST : REM GRAPHIK AUS

1000 REM

1010 REM KKKk K K % Kk kX

1020 REM *x%* KOORDINATEN &kxxx
1030 REM K0k ok k kK Kok kK

1100 DATA 10 : REM ANZAHL PUNKTE

1110 DATA 0, 0, 0, 6, 0, D, 6,10, 0
1120 pATA 0,10, 0, 3,15, 0, 3,15,15
1130 DATA 6,10,15, 6, 0,15, 0, 0,15
1140 DATA 0,10,15

2000 REM

2010 REM X0k K ok 3k ok 5k ok ok k

2020 REM xxxx VERBINDUNGEN XXxXxX
2030 REM X0k Kk Kk ok ok k ok Kok

2100 DATA 17 : REM ANZAHL LINIEN
2110 DATA 1, 2, 2, 3, 3 4, 4, 1
2120 DATA 4, 5, 5, 3, 5 6, 6, 7

2130 DATA 7, 3, 7, 8, 8, 2, 8, 9
2140 DATA 9, 1, 9,10, 10, 4, 10, 6
2150 DATA 10, 7

Wenn Sie dieses Programm eingetippt wund ausprobiert haben,
werden Sie sehen, welchen SpaB es macht, mit ihm zu arbeiten.
Speichern Sie ruhig einmal gelungene Bilder ab, oder

erstellen Sie eine Hardcopy auf Ihrem Drucker.

Wollen wir die einzelnen Objekte zusédtzlich im Raum drehen
(nicht nur die Perspektive édndern), so missen wir aus den
ungedrehten Raumkoordinaten xr,yr,zr erst die gedrehten
xr’,yr’,zr’ errechnen, bevor wir sie in Ebenenkoordinaten
umrechnen konnen. Dies geschieht mit Hilfe der folgenden

Formeln:

Drehung um die xr-Achse:

Xr' = xr

yr

zr’ = -yr¥sin(u) + zr*cos(u)

’ yr¥cos(u) + zrxsin(u)

1

Drehung um die yr-Achse:

xr’ = xr*cos(t) + zr*sin(t)
yr’ = yr
zr’ = —-xrxsin(t) + zr*cos(t)

Drehung um die zr-Achse:

xr’ = xr*cos(s) + yrxsin(s)
yr’ = -xr¥sin(s) + yr*cos(s)
zr' = 2r

239

dabei bedeuten:

u,s,t : Drehwinkel um die jeweiligen Achsen

Wollen Sie um zwei Achsen drehen, dann miissen diese Drehungen
nacheinander ausgefiihrt werden: Sie berechnen erst die
gedrehten Koordinaten fiir die Drehung um die erste Achse,
dann setzen Sie die erhaltenen Werte in die Gleichungen ein,
die fiir die Drehung um die 2zweite Achse 2zustédndig sind.
Entsprechendes gilt bei der Drehung um alle Achsen.

Die Erstellung dreidimensionaler Bilder findet in vielen
Bereichen Anwendung. Da mit dem Computer auf die besprochene
Art und Weise besonders gut reale Gegenstinde oder
Situationen maBstabsgetreu dargestellt und verdndert werden
konnen, eignen sich diese Techniken fiir die Konstruktion bzw.
den Entwurf bestimmter Objekte wie Gebdude, Einrichtungen,
Maschinen oder Maschinenteile. Dieses computerunterstitzte
Entwerfen (auch CAD = Computer Aided Design genannt), ist in
vielen Teilen der Indrustrie und Ingenieurtdtigkeit zu einem
nicht mehr weg 2zu denkenden Werkzeug geworden. Autos,
Flugzeuge werden konstruiert, technische Zeichnungen
angefertigt oder Motoren etc. auf den Bildschirm und dann auf
Papier gebracht. In diesem Zusammenhang eignet sich die
3-dimensionale Graphik hervorragend zur Simulation auch
komplizierter Vorginge. Diese Méglichkeit des Computers ist
schon relativ frith entdeckt worden, zu einer Zeit, in der ein
einfacher Taschenrechner noch ein Vermoégen kostete,
kompliziertere Gerdte aber Unsummen verschlangen, was wohl

ein Zeichen fiir die Wichtigkeit solcher Techniken ist.

5.1.2.2 Zentral-Projektion

Wenn wir Gegenstidande betrachten, so kénnen wir Ihre
Entfernung unter anderem dadurch feststellen, daB sie, je
entfernter sie stehen, desto kleiner sie werden. Das
klassische Beispiel hierzu sind die langen Eisenbahn-
schienen, die immer schmaler werden und sich weit weg mit dem
Horizont treffen. Tatsdchlich ist es so, daB alle Linien sich

auf einen virtuellen Punkt zuzubewegen scheinen, den

240

sogenannten Fluchtpunkt. Das Problem ist es nun, ein
mathematisches Verfahren zu entwickeln, um unsere bisher
parallelen Linien auf einen Punkt =zu richten. Da die
Ableitung der entsprechenden Formeln hier 2zu lange dauern
wirde, seien Sie hier mit Scalierung (f1/f2/£3) und
Verschiebung (a/b/c) angegeben. Dabei stehen nun alle Achsen
aufeinander senkrecht und die z—Achse ragt in die Bildebene

hinein (eben war es die y-Achse!):

= (flxxr+a)/q
= (f2%yr+b)/q
mit: q = 1-(f3%zr+c)/fpz

<« X

dabei bedeuten nun:

Xr,yr,zr: rédumliche Koordinaten
fl,f2,f3: Verzerrung in xr-,yr—,zr-Richtung
a, b, c: Verschiebung in xr-,yr-,zr-Richtung

fpz : Entfernung (z-Koord.) des Fluchtpunktes

Sie miissen also erst q errechnen, um die beiden gesuchten
Ebenen - Koordinaten zu errechnen. Wollen Sie gleichzeitig
Ihr Objekt noch in alle drei Richtungen drehen, so wird die

Sache sehr viel komplizierter:

1l

(fl*x(Axxr + DXyr + G*zr)+a) / q
= (f2%(Bxxr + Exyr + Hx*zr)+b) / q
1-(£f3%(Ckxr + Fxyr + Ixzr)+c) / fpz

< X

"

mit: g
Das sieht schon kompliziert genug aus. Wenn Sie aber sehen,
was Sie fir A,B,C,...I einsetzen sollen, werden TIhnen die

Augen ausgehen:

cos(s)*cos(t)

"

sin(s)*cos(t)
-sin(t)

-sin(s)*cos(u) + cos(s)*sin(t)*sin(u)

cos(s)*cos(u) + sin(s)*sin(t)*sin(u)

= cos(t)*sin(u)

"

sin(s)*sin(u) + cos(s)*sin(t)*cos(u)

u

-cos(s)*sin(u) + sin(s)*sin(t)*cos(u)
cos(t)%cos(u)

- oo QM om e QW
]

241

dabei bedeuten:

s: Winkel der Rotation um die z-Achse
t: Winkel der Rotation um die y-Achse

u: Winkel der Rotation um die x-Achse

Solche Mammutaufgaben konnen selbstverstédndlich nur in
Maschinensprache in relativ angemessener Zeit bewdltigt
werden. Selbst da gibt es einige Zeitprobleme (ein Tip am
Rande: Die beste Moglichkeit ware das Anlegen einer Tabelle
von Sinus- und Cosinuswerten (jeweils in einem bestimmten
Winkelabstand (z.B.1 Grad etc.)), in der das Programm bei
Bedarf immer nachschlagen kann, ohne die Werte erst lange

errechnen zu miissen).

5.1.2.3 3-D-Funktionen

Eine sehr reizvolle Anwendung der 3-D-Technik ist die
Darstellung dreidimensionaler Funktionen. Doch nicht nur dem
bloBen Vergniigen des Erstellers oder einiger Mathematiker
dient diese weitere Moglichkeit. Auf diese Weisé sind
komliziertere Zusammenhdnge, die sonst aus vielen wuniber-
sichtlichen Tabellen erahnt werden miissen, &uBerst plastisch
und informativ darstellbar. Sie kennen den Nutzen von zwei -
dimensionalen Diagrammen, die beispielsweise die Entwicklung
des jdahrlichen Umsatzes im Laufe der Jahre wiederspiegeln.
Wollte man nun etwa gleichzeitig noch die Abhangigkeit des
Umsatzes vom Preis eines bestimmten Produktes in den
verschiedenen Jahren darstellen, so miiBte man fiir jedes Jahr
ein solches Diagramm erstellen, was auf die Dauer zu einer
uniibersehbaren Schar von Kurven fiihrte. Doch dieser konlexe
Zusammenhang kann anschaulich in einem einzigen 3-D-Diagramm
vermittelt werden. So erhalten Sie einen schnellen und guten
Uberblick iiber die Dinge und kénnen so gemdB den Trends den
optimalen Preis Ihres Produktes im nédchsten Jahr (Monat)
ermitteln. Ich brauche Ihnen nicht erst 2zu sagen, welche
Vorteile Ihnen dadurch erwachsen.

Hier soll TIhnen die Technik der Erstellung anhand von

242

mathenatischen Funktionen vermittelt werden. In diesem Fall
werden die einzelnen Werte, die notwendig sind, um das Bild
zu erstellen, errechnet. Sie konnen diese selbstverstdndlich
auch aus irgendwelchen Tabellen ermitteln, was den
Anwendungsbereich der jetzt beschriebenen Vorgédnge enorm
erweitert.

Zu den Graphen einer 3-D-Funktion kommen wir durch Verwendung
einer sogenannten Wertematrix. Als Beispiel soll wuns die

Funktion

z = x2 + y2

dienen. Sie erinnern sich aus Abschnitt 5.1.1, daB dort die
Funktionswerte f(x) in einer FOI ..NEXT - Schleife ermittelt
wurden, in der die Variabl: x (u.e sogenannte Laufvariable)
stets aufgezahlt und die Variable y errechnet wurde. So
erhielten wir beliebig viele Wertepaare, die uns als
Koordinaten fiir den Graphen unserer Funktion dienten.

Bei drei—-dimensionalen Funktionen -f(x,y)- dagegen besitzen
wir zvwei Laufvariablen (x und y), mit denen wir die dritte
(z) berechnen miissen. Um diesem Umstand gerecht 2zu werden,
verwenden wir 2zwei ineinander geschachtelte FOR...NEXT -
Schleifen. In der ersten wird der x-Wert, in der zweiten der
y-Wert hochgezidhlt. Das folgende Programm bringt Sie diesem

Sachverhalt naher:

100 REM Xkkkk¥kkkkkkkkkkkokkkkx

110 REM *x X%

120 REM ** 3-D: Z=YT2-XT2 *x

130 REM xx X%

140 REM Xkkkkkkkkkkkkk¥kkkkkkkX

150 REM

230 REM **x* GRAPHIK-ROUTINEN XXX
240 REM X0k KKk ok Kk X0k k Kk Kk

250 IN=51200 : OF=51203 :REM INIT /GRAPHIK OFF
260 GC=51206 : 8C=51209 :REM GCLEAR/SET COLOR
270 PC=51212 : PL=51215 :REM PCOLOR/PLOT

280 UP=51218 : SL=51221 :REM UNPLOT/SET LINE
290 CL=51224 : GL=51227 :REM CLINE /GLOAD

300 G§=51230 : HC=51233 :REM GSAVE /HARDCOPY
320 REM

243

330 REM *%X%x% PARAMETER XXxXx
340 REM Xkkkxkkkk

400 W = 3.1415/8

410 A =0 : B=0:C=20
420 F1 = 20 : F2

n
(3,
]
w

"
o

430 V1 = 160 : V2 = 100

440 CO = COS(W) : SI = SIN(W)
520 REM

530 REM Xx*x% ZEICHNEN XXX
540 REM *Kkkkkkk

600 SYS IN : SYS GC : SYS SC,16%1+4 : REM GRAPHIK INIT
610 FOR YR=3 TO -4 STEP -0.5

620 FOR XR=3 TO -3 STEP -0.05

630 ZR=YRXYR-XR*XR : REM FUNKTION

640 X=F1x(A+XR) + F3%(YR+C)*CO + V1

650 Y=F2x(B+ZR) + F3%x(YR+C)%XSI + V2

660 SYS PL,X,Y: REM PUNKT ZEICHNEN

670 NEXT XR,YR

1000 POKE 198,0:WAIT 198,255:SYS OF : REM GRAPHIK AUS

Die besagten FOR...NEXT-Schleifen iiberstrecken, wie Sie
vielleicht sehen, die Zeilen 610 bis 670. In 630 wird dann
aus den beiden Laufvariablen der zr-Wert berechnet, um dann
diese Raumkoordinaten auf altbekannte Weise in Ebenen-—
koordinaten umzurechnen. Das einzige Problem ist hier, wie
immer, die Wahl der Parameter und des xr—-, yr-Wertebereichs.
Bei 3-D-Funktionen tritt es besonders auf, da hier so viele
Parameter zu bestimmen sind. Man hilft sich, indem man
zundchst moéglichst einfache Zahlen einsetzt (etwa: a,b,c=0,
f1,2,3=1, w=3.1415/4, v1=160, v2=100) und dann das

entstehende Bild entsprechend veriandert.

244

Vernetzung:
Durch einen kleinen Trick konnen wir nun einen ganz besonders

schonen Effekt mit hineinbringen. Bislang erhalten wir nur
einzelne Kurven, die uns schrittweise den Verlauf in die
dritte Dimension vermitteln. Oft sieht man aber quasi
gebogene Gitternetze, die uns die Graphik noch ein ganzes
Stiick plastischer erscheinen lassen (Vernetzung oder cross-—
hatching). Dies wird einfach durch eine scheinbare Drehung
der Kurve erreicht. Scheinbar deshalb, weil es sich
eigentlich gar nicht um eine Drehung handelt, sondern nur
eine Verdnderung der Schrittweiten, in denen die xr-, bzw.
yr-Werte vom Start- zum Endwert gelangen, also derjenigen
Werte, die hinter den STEP-Komandos der beiden FOR...NEXT -
Schleifen erscheinen.

Im obigen Beispiel wurde yr mit einer Schrittweite von -0.5,
xr dagegen mit -0.05 aufgezdhlt. Dadurch erschien nicht etwa
eine gleichm@Bige Fldche, was passieren wiirde, wenn wir beide
Schrittweiten gleich groB widhlten, sondern jenes bekannte
"Streifenmuster".

Wenn wir jetzt die Schrittweiten austauschen, so verlauft
unser Streifenmuster genau senkrecht zum ersten. Das wird im

nédchsten Programm ausgenutzt:

100 REM ¥Xkkkkk¥kkkkkkkkkkkkkkk
110 REM x*x X%
120 REM xx 3-D: Z=YT2-XT2 x*x
130 REM x*x VERNETZUNG XX
140 REM XXkk¥kkxkkkkkkkkkkkkk kX

150 REM
230 REM *x*** GRAPHIK-ROUTINEN XXX
240 REM XKk Kok Kk Kk kk Kk kX

250 IN=51200 : OF=51203 :REM INIT /GRAPHIK OFF
260 GC=51206 : SC=51209 :REM GCLEAR/SET COLOR
270 PC=51212 : PL=51215 :REM PCOLOR/PLOT

280 UP=51218 : SL=51221 :REM UNPLOT/SET LINE
290 CL=51224 : GL=51227 :REM CLINE /GLOAD

300 GS=51230 : HC=51233 :REM GSAVE /HARDCOPY

320 REM
330 REM **X* PARAMETER *XxXx
340 REM XRRKKKk KK

400 W = 3.1415/8

245

410 A =0 : B=0:C =0

420 F1 = 20 : F2 = 56 : F3 = 8
430 V1 = 160 : v2 = 100

440 CO = COS(W) : SI = SIN(W)

520 REM
530 REM *x*xx ZEICHNEN X¥xXx
540 REM XXokkkkkk

600 SYS IN : SYS GC : SYS $C,16%1+4 : REM GRAPHIK INIT

610 SY=-0.5 : SX=-0.03 : REM SCHRITTWEITEN (STEPS)

620 FOR ZA=1 TO 2 : REM ZAEHLER

630 FOR YR=3 TO -4 STEP SY

640 FOR XR=3 TO -3 STEP SX

650 ZR=YR*YR-XR*XR : REM FUNKTION

660 X=F1x(A+XR) + F3X(YR+C)*CO + V1

670 Y=F2%(B+ZR) + F3%(YR+C)*SI + V2

680 SYS PL,X,Y: REM PUNKT ZEICHNEN

690 NEXT XR,YR

700 IF ZA=1 THEN GOSUB 1100 : SYS GC : SY=-0.04 : SX=-0.5
710 NEXT ZA

720 FOR T=8192 TO 8192+8000:POKET, PEEK(T)ORPEEK(T+8192):NEXTT
:REM OREN

1000 POKE 198,0:WAIT 198,255:5YS OF:END: REM GRAPHIK AUS
1100 FOR T=8192 TO 8192+8000: POKET+8192,PEEK(T):NEXTT : REM
UEBERTRAGEN

1110 RETURN

Sie sehen, der Graph wird insgesamt zweimal auf zwei

verschiedene Weisen gezeichnet. Nach dem ersten Mal wird die

gesamte Graphik (bei $2000 = 8192) nach $4000
(8192+8192 = 16384) iibertragen bzw. zwischengespeichert
Hernach zeichnen wir mit vertauschten STEP - Parametern. Zu

guter Letzt werden die beiden Graphiken miteinander durch OR
verkniipft, was zu einer Uberlagerung fithrt. Haben Sie Geduld,
der Prozess der Zwischenspeicherung und Uberlagerung dauert
recht lange, schalten Sie also nicht ab!

In unserem speziellen Beispiel wdre das Zwischenspeichern und
nachherige ORen nicht notig, wir konnten also direkt das
zweite Bild iiber das erste zeichnen. Doch fiir wunseren
nachsten Schritt ist dieses Verfahren unabdingbar.

Vielleicht bringen Sie noch ein 3-D-Koordinatensystem in das

Bild, wie es Thnen das vorherige Programm zeigt.

246

Versteckte Linien:

Im diesem Teil werden wir ein einfaches Verfahren fiir das
Ausloschen eigentlich von vorderen Fldchen verdeckter Linien
beim Zeichnen mathematischer und auch anderer Funktionen
vorstellen.

Im tdglichen Leben konnen wir normalerweise nicht durch die
Dinge schauen, die wir betrachten. Wie Sie jedoch beim
Zeichnen unserer Funktion sehen, dst dies hier der Fall.
Unsere Linien durchdringen sich, obwohl die vorderen, die ja
eine Flache abstecken, die hinteren verdecken miiBten.

Bei Funktionen gibt es nun unter anderem zwei Methoden, diese
verdeckten Linien zu unterdriicken, bzw. nachtraglich wieder
zu loschen. Fangen wir bei der ersten an. Sie ist 4&duBerst
simpel, aber sehr effektiv und trickreich:

Beim Zeichnen unseres Graphen achten wir darauf, daB wir
stets von hinten nach vorne, also mit abnehmendem yr
zeichnen. Haben wir Jjetzt einen Punkt ganz normal
ausgerechnet und auf den Bildschirm gesetzt, dann léschen wir
einfach unter dem Punkt in einer Linie alles bis zum wunteren
Ende des Graphikfensters. Damit verdeckt jede neu gezeichnete
Ebene alles hintere, vorausgesetzt, es liegt räich wunter
dem gezeichneten Punkt. So erhalten wir eine Aufsicht auf die
graphische Struktur der Funktion. Wenn Sie in das obige
Programm lediglich eine einzige Zeile hinzufiigen, wird Ihnen
der Effekt deutlich:

685 SYS CL,X,Y+1,X,199 : REM UNTER PUNKT LOESCHEN

Das einzige Problem sind eventuell die Randbereiche. Hier
konnte man eigentlich die Sicht quasi von unten auf die Kurve
zulassen. Doch mit unserem Algorithmus ist dies nicht méglich
- wie Sie sehen, wenn Sie das Programm laufen lassen -, da
auch die "Riickansicht" geléscht wird. Um dieses Manko auszu-
gleichen kénnte man nun nicht bis 2zum unteren Bildrand,
sondern lediglich zum darunterliegenden Punkt der néachsten
Linie ldschen. Damit wdre das Problem erledigt. Das Zeichnen
wirde mit dieser Methode jedoch um Einiges léanger dauern.
Vielleicht versuchen Sie einmal das obige Programm so umzu-
schreiben. Es gibt einige schoéowe Funktionen, die Sie

ausprobieren sollten. Versuchen Sie es evt. ’'mal mit jenen:

247

z = x2+y?

z = 1/(1+x2+y?)

z = SQR(1-x2/4-y2/9)

z = sin(x)/x+sin(y)/y

z = sin(l/x)/x+sin(l/y)/y

Sie konnen diese Funktionem auch mischen, da der Teil, der x
enthdlt den Verlauf in x-Richtung wiederspiegelt, der Teil
mit v den in y-Richtung. Man kéme dann beispielsweise auf so

etwas (Mischung: letzte und vorletzte:):

z = sin(x)/x+sin(1l/y)/y

An v)
C\ RS ERT)
} LA
AN ";’}ﬁ .

5.1.2.4. Bewegte Bilder in 3-D

In den letzten Paragraphen haben Sie die Methoden kennen-
gelernt, die zur Erzeugung 3-dimensionaler Bilder notwendig
sind. Wenn es nicht gerade kleine Objekte waren, dauerte die
Erstellung recht lange. Wie¢ sollten daraus laufende Vorgénge
entstehen, die von uns als bewegt angesehen werden konnen?
Nun es gibt im Prinzip hierbei zwei Mdéglichkeiten. Die erste
ist relativ einfach: Sie erstellen ein Bild unsichtbar in
einem im Moment nicht angezeigten Graphikbereich wahrend Sie
den Inhalt eines anderen Graphikbereiches auf dem Bildschirm
darstellen. Ist das Bild vellendet, so schalten Sie einfach
auf die neue Graphikseite um (s. # 3.3.2). Die nun unsichtbar
gewordene erste Seite kann dann zur Erstellung des néchsten
Bildes herangezogen werden usw.

Zwar ereichen Sie damit keine besonders schnell bewegten

248

Bilder, doch ist fir uns trotzdem ein gewisser Bewegungs-—
effekt vorhanden. Sehr schoén sind Rotationen oder schritt-

weise VergroBerungen der Objekte.

Die zweite Methode ist ein wenig aufwendiger. Sie bendtigen
dafiir eine Filmkamera, die mit Einzelbildschaltung und einem
Fernausloser ausgeriistet ist. Rein theoretisch ist es auch
méglich, eine Kamera ohne eine solche Einrichtung zu
verwenden. Sie miissen dann zum Filmen einer Situation extrem
kurz auf den Ausléser driicken, um méglichst wenige Bilder auf
einmal zu knipsen. Mit etwas Ubung erhalten Sie dann
ebenfalls recht schone Ergebnisse. Sind diese Voraus-—
setzungen geschaffen, dann kénnen.Sie Ihre eigenen Computer-—
graphikfilme produzieren. Was sonst nur im Kino oder
Fernsehen in Science fiction - Filmen 2zu sehen ist, das
bekommen Sie nun hautnah ins Haus.

Sie brauchen Ihre Kamera 1lediglich auf den Fernseher zu
fixieren (am besten mit Stativ), die Einzelbildschaltung
einzustellen und loszulegen: Sie programmieren dem Rechner
eine Folge von Bildern ein. Die Rechen- bzw. Erstellungszeit
ist dabei egal. Beispielsweise drehen Sie Ihr Objekt (Kurven
oder Gegenstidnde) mit jedem Male ein Stiick um eine Achse.
Jedesmal, wenn ein Bild fertig gezeichnet ist, dann driicken
Sie zum Festhalten eines Bildes einmal auf den Ausléser. Dies
muB in sehr kleinen Schritten erfolgen, damit der Vorgang
nachher auf dem Film nicht zu schnell erfolgt. Im Zweifels-
fall photographieren Sie jede Szene mehrmals.

Eine noch elegantere Methode ist die Steuerung der Kamera
durch den Computer. Dies ist dann méglich, wenn Ihre Kamera
einen elektischen Fernausléser besitzt. Haben Sie nur einen
Drahtausléser, dann gibt es entsprechende Adapter, die im
Fachgeschaft erhaltlich sind. Sie konnen dann Ihren Computer
alleine laufen lassen, ohne selbst jedesmal die Kamera
betdtigen zu miissen. Gleichfalls koénnen Sie, wenn Sie keine
Einzelbildschaltung besitzen, extrem kurze Schaltzeiten
erreichen und so nur wenige, oder gar nur ein Bild auf einmal
filmen.

Zur Verwirklichung dieses Vorhabens miissen wir einen kleinen
Abstecher in die Elektronik machen. Der Computer sendet
jedesmal, wenn ein Bild geknipst werden soll ein Signal an

den User-Port. Mittels der unten angegebenen Schaltung wird

249

dann die Kamera ausgeldst. Sie konnen sich diese folgende
Schaltung selbst oder von kundigen Bekannten zusammenléten
lassen. Weiterhin bendtigen Sie einen User-Port-Stecker und
einen entsprechenden Stecker fiir den Fernausléser Ihrer
Kamera, die beide im Elektronik - Fachgeschiaft erhdltlich

sind. +SV Pin2

/J__— Kamera
[

~~

0000 0300

Read Relais

P80
Pin C

Diese Schaltung wurde eigenhiandig ausprobiert und lieferte
hervorragende Filmergebnisse. Mit den unten stehenden

Befehlsfolgen konnen Sie die Kamera ansteuern:

10 €2=56576 : REM BASISADRESSE CIA 2 ($DD0O)

20 POKE C2+3, PEEK(C2+2) OR 1 : REM PIN AUF AUSGANG
30 POKE C2+1,0 : REM KAMERA AUS

40 POKE C2+1,1 : REM KAMERA EIN

Zeile 20 braucht nur einmal im Verlaufe des Programms gegeben

werden. Beachten Sie bitte, daB zwischen einem ’ein’ und

aus’ geniigend Zeit 1ist, daB das Relais und die Kamera

reagieren konnen.

250

5.1.3. Graphische Statistik

Ein beliebtes Anwendungsgebiet der Graphik, besonders fiir den

kommerziellen Gebrauch, stellt die Veranschaulichung kompli-

zierter Tabellen in iibersichtlichen Diagrammen dar. Hierzu

werden verschiedene Darstellungsmethoden verwendet. Die

wichtigsten unter ihnen sind:

a)

b)

- Kurvenstatistik
- Balkendiagramme

- Kuchendiagramme

Kurvenstatistik:

Besitzen wir viele "MeBwerte" in Abhédngigkeit eines
bestimmten Faktors (z.B. der Umsatz einer Firma in
Abhéngigkeit von dem jeweiligen Monat (d.h. in jeweils
verschiedenen Monaten)), so verwenden wir allgemein die
erste Form der Ausgabe. Hierbei werden die gleichen
Techniken angewandt, wie dies bei der Darstellung von
2-dimensionalen Funktionen (s. # 5.1.1) der Fall ist. Der
Unterschied liegt lediglich in der Herkunft der einzelnen
Daten. Dort wurden sie errechnet, hier aus zwei-reihigen
Tabellen gewonnen. Diesen Abschnitt sollten Sie sich also
durchgelesen haben. Grunds&dtzlich gelten dieselben Regeln
zur Verschiebung, Scalierung und Verzerrung der Kurven,
wie in Abschnitt 5.1.1 dargelegt. Besonders hier spielen
die Einheiten an den beiden Koordinatenachsen eine Rolle

und sollten beachtet werden (s.u.).

Balkendiagramme:
Bei den Balkendiagrammen wird die Sache schon etwas

komplizierter, obwohl das Prinzip identisch ist. Sie
verwendet man bei relativ kleinen Datenmengen, die optisch
besser sichtbar gemacht werden sollen. Ein Wertepaar dient
nun nicht zur Bestimmung der Lage eines Punktes auf dem
Bildschirm, sondern der Héhe und Position eines Balkens,
der sich von der x—Achse in die Hohe zieht. Das folgende

kleine Programm soll Ihnen die Programmierung solcher

" Balken demonstrieren. Nehmen wir an, es sollen die

Umsatzzahlen einer (den Marktschwankungen recht stark

ausgelieferten) Firma iiber 10 Jahre mit Hilfe eines

251

Balkendiagramms dargestellt werden, um dem Leiter eine
dringend noétige Ubersicht zu vermitteln. Die jeweiligen
Zahlen (in Tausend DM) werden dabei in DATA-Zeilen bereit
gehalten. Sie kéonnten aber auch per IN?UT solche Jlaten
erfragen und evt. auf Diskette (Kasette) speichern wund
schon hatten Sie ein recht schones Statistik-

programm.

100 REM kkokkokokkkokkkokdkokkkkkxkxk

110 REM xx XX

120 REM **x BALKENDIAGRAMM XX

130 REM *x XX

140 REM kxkkkokokkokskokokkkokok % % k%

150 REM

230 REM *xXx** GRAPHIK-ROUTINEN XXX
240 REM kKRR kkKRKKkRX KKKk

250 IN=51200 : OF=51203 :REM INIT /GRAPHIK OFF

260 GC=51206 : SC=51209 :REM GCLEAR/SET COLOR

270 PC=51212 : PL=51215 :REM PCOLOR/PLOT

280 UP=51218 : SL=51221 :REM UNPLOT/SET LINE

290 CL=51224 : GL=51227 :REM CLINE /GLOAD

300 GS=51230 : HC=51233 :REM GSAVE /HARDCOPY

320 REM

330 REM X¥xx ACHSEN X¥Xx

340 REM KRKKKK

350 SYS IN : SYS GC : SYS SC,16%x7+10 : REM GRAPHIK INIT
360 READ ZA : REM ZAHL DER WERTEPAARE

370 READ HI : REM HOECHSTER Y-WERT

380 XH = 300 : YH = 180 : REM ANZAHL DER PUNKTE IN
X-/Y-RICHTUNG (MAX.)

390 XE=INT(XH/ZA*1) : YE=INT(YH/HI*10) : REM BERECHNUNG
DER (1ER) 10ER EINHEITEN

400 SYS SL,10,10,10,190 : REM Y-ACHSE

410 SYS SL,10,190,310,190 : REM X-ACHSE

420 T=-1:FOR Y=190 TO 10 STEP -YE

430 T=T+1:IF T/5-INT(T/5)=0 THEN SYS SL,5,Y,15,Y : REM
GROSSER STRICH

435 IF T/10-INT(T/10)=0 THEN SYS SL,3,Y,17,Y : REM GROSSER
STRICH

440 SYS SL,7,Y,13,Y : REM EINHEITSMARKIERUNGEN

450 NEXT Y

252

460 T=0:BE=20+XE/2 : REM BEGINN ERSTER STRICH

470 FOR X=BE TO 310 STEP XE

480 T=T+1:IF T/5-INT(T/5)=0 THEN SYS SL,X,195,X,190 : REM
GROSSER STRICH

485 IF T/10-INT(T/10)=0 THEN SYS SL,X,198,X,190 : REM
GROSSER STRICH

490 sys SL,X,193,X,190 : REM EINHEITSMARKIERUNGEN

500 NEXT X

600 REM

610 REM *%xx DIAGRAMM xXXxXxX
620 REM XkkRkkkkK

630 BR=XE-20 : REM BALKENBREITE ERECHNEN

640 PO=BE-BR/2 : REM .STARTPOSITION ERSTER BALKEN
650 FOR T=1 TO ZA

660 READ DA : REM DATEN LESEN

670 Y=190-DAXYE/10 : REM BALKENHOEHE (EINHEIT!)
680 FOR X=PO TO PO+BR : REM BALKENBREITE

690 SYs SL,X,Y,X,190 : REM BALKEN ZEICHNEN

700 NEXT X

710 PO=PO+XE : REM NEUE BALKENPOSITION
720 NEXT T

800 POKE198,0:WAIT 198,255:5YS OF:END
900 REM

910 REM x%x% DATEN XkXxX

920 REM XKkkXX

1000 DATA 10 : REM ANZAHL WERTE
1010 DATA 100 : REM HOECHSTER WERT
1100 DATA 100,50,20,46,38,10,2,6,48,99

253

Das Ganze sieht zundchst recht kompliziert aus, da eine
Menge von Formeln angewandt werden. Diese "Formeln" sind
aber recht gut 2zu verstehen, da Sie lediglich die
Formatierung der Achsen und Balken betreffen.

Wir haben uns in diesem Programm als Ziel gestellt,
méoglichst variabel beziiglich der Anzahl und der GroBe der
Daten zu sein, ohne Bereichsiiberschreitungen oder viel zu
kleine Graphiken zu erzeugen. Aus diesem Grunde werden vor
die eigentlichen Daten zwei Werte gestellt: Die Anzahl der
Daten und das groBte Glied, die in den Zeilen 360/370
eingelesen werden. Weiterhin legen wir uns den Bereich
fest, in dem die Balkendiagramme liegen sollen. Wir haben
dafiir ein 300x180 - Punktefeld reserviert (Z. 380).

Als erstes Problem stellt sich das Zeichnen der Achsen, da
wir Einheiten eintragen wollen. Die Senkrechte (y-Achse)
soll (so unsere Vereinbarung) jede 10. Einheit mit einem
einfachen Strich anzeigen. Jede 50. Einheit steht ein etwa
doppelt langer, jede 100. ein etwa dreifacher Strich. Auf
der Waagerechten (x-Achse) wird die gleiche Einteilung
unternommen, mit dem Unterschied, daB hier die 1., 5. wund
10. Einheiten hervorgehoben werden.

Dazu berechnen wir zundchst die Anzahl der Punkte, die auf
eine (bei der x—Achse) bzw. 10 (y-Achse) Einheiten fallen
diirfen, so-daB wir sowohl nach rechts, als auch nach oben
nicht zu weit hinauskommen, aber auch die gesamte
verwendbare Fliache ausnutzen (Z. 390).

Nun zeichnen wir erst einmal die bloBen Achsen (Z.
400/410). Dann folgt der Eintrag der Scalen (Z. 420-500)
Dieser Vorgang sollte relativ- leicht zu durchschauen sein.
Dazu einige Bemerkungen: In den Zeilen 430, 435, 490 und
495 wird jeweils gepriift, ob gerade der 5. bzw. 10. Strich
gezeichnet wird und entsprechend verlédngert. Der dazu
hinter dem IF stehende Ausdruck ist nichts weiter als das
Abschneideén der Zahl vor dem Komma (auch Fraction genannt
- das "Gegenteil" wvon INT). In Zeile 460 wird der
Startpunkt der x-Scalierung errechnet. Die hier angefiihrte
Formel hat etwas mit der Breite der Balken zu tun.

Jetzt erst werden die eigentlichen Balken gezeichnet. Dazu
wird die Balkenbreite so bestimmt, daB zwischen zwei
Balken geniigend Platz ist (Z. 630). Die Formel fiir die

Startpositon der Balken und Ihre Hohe sollten Sie

254

c)

ebenfalls verstehen (bei letzterer Formel wird mit der
Anzahl der Punkte pro Einheit multipliziert, um der Scala
an der y—-Achse gerecht zu werden).

Sie konnen beliebig die Daten ab Zeile 1000 verédndern,
sollten aber darauf achten, keine negativen und nicht 2zu
viele zu verwenden. Bei extrem hohen Werten sollten Sie
die Scaleneinheiten der Achsen édndern.

Damit haben Sie einen Einblick in die Programmier-
techniken dieser Anwendung. Sicher fallen Ihnen noch viele
Anderungen ein, die Sie an diesem Programm vornehmen

kénnen.

Kuchendiagramme:

Diese Art der graphischen Statistik ist geeignet zur iiber-
sichtlichen Darstellung von Ver- bzw. Aufteilungen von
Mengen in Teilmengen und der GréBenverhdltnisse unter
ihnen. Hierzu wird ein Kuchen (Kreis) gezeichnet, der die
Gesamtheit aller zu betrachtenden Elemente darstellt (100
%) und der sich in verschieden groBe Teilstiicke
unterteilt. Die GriéBe der Teilstiicke gibt dann den Anteil
dieser Teilmenge an der Gesamtmenge an.

0ft sehen wir solche Graphiken bei Wahlen zur Darstellung
z.B. der Sitzverteilung im Bundestag etc. oder im
Geographieatlas, um beispielsweise die Anteile bestimmter
Import- oder Exportwaren eines Landes am Gesamtumschlag zu
demonstrieren usw.

Doch wie ist solches progfamntechnisch zu verwirklichen?
SchlieBlich haben wir es mit der ziemlich komplizierten
Relation eines Kreises zu tun, der in bestimmte Winkel-
ausschnitte unterteilt werden muB8. In Paragraph 4.2.2.3
haben wir bereits die Erzeugung eines Kreises (Ellipse)
kennengelernt. Doch die dort angegebene Kreisformel ist
nicht dazu geeignet, lediglich Ausschnitte, die ja durch
Angabe des jeweiligen Winkels definiert werden zZu
zeichnen. Aus diesem Grunde weisen wir Sie hier (wie schon
in Abschnitt 4.2.2.3 angekiindigt) in die Kreiserzeugung
per Polarkoordinaten ein. Polarkoordinaten sind eine
alternative Méglichkeit der Darstellung von Funktionen.
Verwendet wird ein sogenanntes Polarkoordinatensystem, in
dem nicht x und vy als Achsenabschnitte, sondern w als
Winkel 2zwischen der Verbindung von einem beliebigen,

255

gesuchten Punkt zu dem Nullpunkt und der Waagerechten und
1 fiir den Abstand des Nullpunktes und dem besagten Punkt
angegeben werden. Veranschaulicht siéhe das dann etwa so

aus:

Ein Kreis ist dann leicht durch die Anderung des Winkels w

bei konstant halten des Abstandes 1 2zu kontruieren.

Allgemein fiir eine beliebige Ellipse mit dem Mittelpunkt .
im Ursprung (0,0) gilt dann wunter Beriicksichtigung der

Umrechnung von Polar- (1,w) in die uns bekannten

sogenannten kartesischen Koordinaten (x,y):

aXcos(w)
bxsin(w)

H

wobei auBer den genannten Parametern bedeuten:

a: Radius der Ellipse in x-Richtung
b: Radius der Ellipse in y-Richtung

Diese Zuordnung ist wuns schon aus dem oben genannten
Abschnitt bekannt. Mithilfe dieser beiden Formeln ist es
uns nun moéglich, einen bestimmten Randpunkt einer Ellipse
durch Angabe des Winkels der Polarkoordinaten des Punktes
zu bestimmen.

Eine Sache muB8 noch erliutert werden. Auch in den vorigen
Abschnitten war ofter von Winkeln die Rede. Es gibt

verschiedene Méglichkeiten, einen Winkel anzugeben:
~ Angabe in Altgrad (0-360)

- Angabe in Neugrad (0-400)
- Angabe in Radiant (0-2%pi)

256

Die uns vertrauteste von allen ist wohl die erste. Doch
unser Rechner rechnet nur mit der dritten, bei der 360
Altgrad dem Wert von 2%pi (pi=3.1415...) entsprechen.
Dieser Wert entspricht der Lénge eines Kreisbogens mit dem
Radius 1 iiber den angegebenen Winkel. Wollen Sie Radiant
in Altgrad oder umgekehrt umrechnen, so verwenden Sie

diese Formel:

grad = 180%2%pi/rad oder
rad = 180%2xpi/grad

Damit besitzen wir das notwendige Riistzeug,' um das

folgende Programm verstehen zu kénnen:

100 REM XXkkkdKkkokk kKKK Kk kkkokkkk

110 REM x*xx *%
120 REM **x KUCHENDIAGRAMME XX
130 REM *x *Xx
140 REM XXkXokkokkdokkokokk kokokk Xk kkkk
150 REM

230 REM ***% GRAPHIK-ROUTINEN *xXxXx
240 REM XK KKK kKKK KKK KKKk

250 IN=51200 : OF=51203 :REM INIT /GRAPHIK OFF

260 GC=51206 : SC=51209 :REM GCLEAR/SET COLOR

270 PC=51212 : PL=51215 :REM PCOLOR/PLOT

280 UP=51218 : SL=51221 :REM UNPLOT/SET LINE

290 CL=51224 : GL=51227 :REM CLINE /GLOAD

300 GS=51230 : HC=51233 :REM GSAVE /HARDCOPY

320 REM

330 REM *Xx* ELLIPSE X%xx

340 REM XXkkRkk¥

350 PI1=3.1415

360 SYS IN : SYS GC : SYS SC,16%x5+13 : REM GRAPHIK INIT
370 A = 100 : B = 60 : V1=160 : v2=80 : REM PARAMETER
380 W=0:GOSUB 930:X1=X:Yl=Y: REM X1 UND X2 VORBESTIMMEN
390 SP=7xPI/180 : REM STEP

400 BE=0:EN=2%PI : REM START- UND ENDWINKEL

410 GOSUB 800 : REM ELLIPSE ZEICHNEN

420 BE=0:EN=1.03%PI : REM ETWA 180 GRAD

430 v2=100 : REM TIEFER SETZEN

440 GOSUB 800 : REM ELLIPSE ZEICHNEN

257

500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
799
800
810
820
830
840
850
860
870
900
910
920
930
940
1000
1010
1020
1100
1110

Wie

REM

REM XX*% KUCHENSTUECKE *X*xX

REM *kkkokokkkkkkk X

READ ZA : DIM T(ZA) : REM ANZAHL DER TEILE

FOR S=1 TO ZA

READ T(S) : REM DATEN LESEN

SU=SU+T(S) : REM SUMME BILDEN

NEXT §

W = 0 : REM STARTWINKEL

FOR S=1 TO ZA

PR=T(S)/SU : REM PROZENT AUSRECHNEN
WA=2%PI*PR : REM WINKEL DES AUSSCHNITTES
W=W+WA : REM WIRKLICHER WINKEL
V2=80:GOSUB 930:REM KOORDINATEN ERRECHNEN
SYs SL,Vl,Vv2,X,Y : REM TRENNLINIE

IF W>PI THEN 690 : REM NUR AUF DER SICHTBAREN SEITE

X1=X:Yl=Y : REM MERKEN
V2=100:GOSUB 930:REM UNTERE KOORD. ERRECHNEN

SYS SL,X1,Yl,X,Y : REM SENKRECHTE ZUM UNTEREN BOGEN

NEXT S

WAIT 198,255:SYS OF:END

REM

REM *xxx% ELLIPSENBOGEN *XXx

REM FREAKAK KKK KK

FOR W:BE TO EN+SP STEP SP : REM WINKEL BESTIMMEN

GOSUB 930 : REM KOORDINATEN BESTIMMEN
SYs SL,X1,Y1,X,Y : REM LINIE

X1=X:Y1l=Y

NEXT W : RETURN

REM

REM XX*x PUNKT BERECHNEN XXxXx
REM KKKk KKk KKKk kK kk

X = AXCOS(W) + V1

Y = BXSIN(W) + V2 : RETURN

REM
REM xXx%k DATEN XxXxx
REM *Kkkk

DATA 6 : REM ANZAHL
DATA 20,10,15,40,30,8

Sie sehen, konnen Sie hier aus den Zeilen 800-940

258

fir

Ihre eigenen Programme eine alternative Kreisformel

entnehmen. Die Ubergabeparameter sind im einzelnen:

BE: Startwinkel

EN: Endwinkel

SP: Schritteinheit

V1: Mittelpunkt-x-Koordinate

V2: Mittelpunkt-y-Koordinate
x-Radius

B : y-Radius

Zu der Schrittweite SP muB folgendes gesagt werden: Sie
bestimmt, in welchem Winkelabstand die einzelnen Punkte
der Ellipse berechnet werden, also die Genauigkeit. Diese
Punkte werden dann in Zeile 850 durch. eine Linie
verbunden. Wdhlen Sie SP sehr groB, z.B. 30 oder 45, so
erhalten Sie spezielle Effekte: Damit wird dann ein
gleichseitiges Vieleck (8-Eck etc.) gezeichnet, was fir
andere Zeichnungen gut verwendet werden kann!

Eigentlich muB8 die Zeile 380 bereits in diesem
Unterprogramm aufgefiihrt werden und sollte auch von TIhnen
iibernommen werden, sofern Sie lediglich die Ellipsen-
routine verwenden wﬁllen. Hier wurde sie herausgenommen,
um einen speziellen Effekt zu erzielen (s.u.).

In dem obigen Programm wollen wir nicht einfach eine
simple Scheibe zeichnen und dann entsprechende Abschnitte
abtragen. Vielmehr soll das Ganze etwas Format haben und
in 3-D gezeichnet sein. Es wird eine runde Platte mit
einer gewissen Dicke dargestellt, die in die unter-
schiedlichen "Kuchen"stiicke zerschnitten ist wund von
schridg oben gesehen werden soll. Dazu zeichnen wir
zundchst einmal eine Ellipse als Oberflidche (Z. 410).
Alsdann zeichnen wir die gleiche Figur nur um ein paar
Punkte nach unten verschoben umnd als Halbellipse, um den
unteren Rand der Platte darzustellen (Z. 440). Eigentlich
wird bei dieser Konstruktion der Platte ein wenig
"gemogelt", da wir die seitlichen Rénder als gerade Linien
darstellen miiBten (was rechts auch geschieht), dafiir
zeichnen wir die Ellipse ein klein wenig iiber 180 Grad
(lxpi) hinaus, was wegen der Auflésung kaum auffallt.

Nun kommen wir zu den eigentlichen Kuchenschnitten:

259

Vorher sollten wir etwas iiber die verwendete Daten-
struktur sagen. Am Anfang vor den eigentlichen Daten steht
wie immer ihre Anzahl. Dann folgen beliebig viele und
beliebig hohe Zahlen, die z.B. die Anzahl der Sitze der
einzelnen Parteien oder allgemein die GréBe der verschie-
denen Teilmengen wiedergeben.

Im ersten Teil der ab Zeile 500 folgenden Routine werden
alle durch ZA angegebenen Daten in ein eindimensiocnales
Feld eingelesen und (das ist der eigentliche Grund fiir
diese Schleife) die Summe aller Teilmengen gebildet (Z.
540-570).

In der nédchsten FOR...NEXT - Schleife werden dann die
Unterteilungen vorgenommen: Zeile 600 rechnet den prozen-
tualen Anteil der jeweiligen Partei an der Gesamtheit aus.
Zeile 610 bestimmt die daraus resultierende GréBe des
Kreis— (Ellipsen—) Ausschnittes in Radiant, die zu dem
aktuellen Winkel W hinzugezidhlt wird (Z. 620). Nun, da der
Winkel des betreffenden Schnittes bekannt ist, kann die
Position des entsprechenden Randpunktes der Ellipse
errechnet werden. Alsdann wird vom Mittelpunkt der Ellipse
zu diesem Punkt eine Linie gezeichnet (Z.640).

Nun kommt es darauf an, ob sich dieser Schnitt bereits auf
der hinteren Hdlfte der Scheibe oder noch vorne befindet.
Im ersten Fall ist die Sache erledigt und der niéchste Wert
kann bearbeitet werden. Im zweiten Fall jedoch muf der
Schnitt noch sichtbar bis zur Unterkante gezogen werden.
Dies geschieht, indem wir einfach die Position auf ‘der
verschobenen Kante berechnen und vom zuletzt gezeichneten
Punkt bis hierhin ein Linie ziehen (Z. 650-680). Damit
widre der 3-dimensionalitdt Geniige getan.

260

Auch dieses Programm ist selbstverstandlich voll ausbau-
fahig. Sie konnten beispielsweise die einzelnen Teile in
verschiedenen Farben oder schraffiert zeichnen usw. Ihrer

Phantasie sind keine Grenzen gesetzt.

5.2 Laufschriften

Eine verlockend einfache und gleichzeitig recht schone Art
und Weise, beliebig gestaltete und bewegliche Buchstaben auf
den Bildschirm (auch in die hochauflésende Graphik) =zu
bringen, ist die Konstruktion von Buchstabensprites.. Die
Sprites besitzen eine geradezu phantastische Auflésung zur
Erstellung von Schrift und konnen vergréBert, bewegt usw.
werden.

Das einzige Problem bei diesem Unterfangen ist der begrenzte
Speicherraum, der uns in Basic zur Verfiigung steht. Mit den
vier Blocken, die uns in Basic zur voéllig freien Verfiigung
stehen, kommen wir nicht aus. Um hier Abhilfe 2zu schaffen,
kénnen wir erstens den gesamten VIC-Adressbereich um 16, 32
oder gar 48 K nach oben verschieben (s. # 3.3.2) wund so in
Speicherebenen gelangen, die wir ohne weiteres nutzen kénnen.
Doch hier tritt eine kleine Schwierigkeit auf. Es verschieben
sich ja nicht nur die Spriteblécke, sondern gleich alle
Bildschirmspeicher wie Videoram und Graphikspeicher, was die
Handhabung erheblich erschwert.

Wir wollen uns die zweite Moglichkeit zu Nutze machen: Wir
packen alle Sprite - Definitionen, die wir in unserem
Programm verwenden, in den Bereich von $2000-$3FFF
(8192-16383), wo wir normalerweise unsere Graphik beher-
bergen. Zwar konnen wir dann nicht mehr gleichzeitig Graphik
anzeigen, aber man muB8 bereit sein, auch Kompromisse zu
schlieBen. Damit verwenden wir die Blocke 8192/64=128 bis 255
und haben Platz fiir insgesamt 127 Spritedefinitionen, was
ausreichend sein sollte. Wir brauchen dann nur darauf 2zu
achten, daB wir nicht unbedingt riesige Mammutprogramme oder
solche mit einem groBen Speicheraufwand schreiben und der
Fall ist erledigt.

Kommen wir zu den Buchstabendefinitionen. Normalerweise ist

es unnotiger Platzverbrauch, alle Spritedefinitionen als

261

DATA-Zeilen in unser Basicprogramm nieder zu legen.
Alternative Methoden wurden Ihnen in Paragraph 4.3
vorgestellt. Hier allerdings wollen wir ausnahmsweise damit
arbeiten, zumal wir nur wenige Buchstabendefinitionen
vorstellen.

Die einzelnen Sprites konnen Sie mit dem Spriteformer in
Abschnitt 4.3 erstellen und spédter 2z.B. direkt in den
Speicher einlesen. Sie kénnen sich so einen ganzen Vorrat an
Zeichen erstellen und bei Bedarf abrufbereit halten.

Wir wollen aber nun zu der eigentlichen Aufgabe vorschreiten:
der Programmierung von Laufschriften. Hierzu ein kleines

Basicprogramm:

100 REM XXXkXxkkk¥kkkkkkkkkkXkX

110 REM x*x XX
120 REM *x LAUFSCHRIFTEN XX
130 REM *x L 2
140 REM XXxkkkkkkkkkkkkkxkkkkxk
150 REM

160 VvV = 53248 : REM BASISADRESSE VIDEOCONTROLLER

170 POKE V+32,0 : POKE V+33,0 : REM RAHMEN UND HINTERGRUND =
SCHWARZ

175 PRINT CHR$(147)

180 REM
190 REM **x% EINSPEICHERUNG *%XX
200 REM KKK KKKRKKK KKk XK

210 FOR X=1 TO 9 : REM 9 BUCHSTABEN

220 READ A$: REM NAME DES BUCHSTABEN

230 BK=ASC(A$)-32+128 : REM SPRITES NACH ASCII GEORDNET IM
SPEICHER (BLOCKNUMMER)

240 AD=BKx64 : REM ADRESSEN AB 8192

250 FOR Y=AD TO AD+62

260 READ DA : POKE Y,DA : REM DATEN LESEN UND SCHREIBEN
270 NEXT Y,X : REM 63 DATEN/8 BUCHSTABEN LESEN

300 REM

310 REM xxx% INITIALISIERUNG *Xx*X

320 REM Kk KKKK KK kKKK KK

330 FOR X=0 TO 7

340 POKE V+39+X,X+1 : REM FARBEN SPRITES 0-7 FESTLEGEN
350 NEXT X

360 POKE V+23,255 : REM ALLE SPRITES GROSS (Y)

262

370
380
390
400
410

POKE V+29,255 : REM ALLE SPRITES GROSS (X)
POKE V+27,0 : REM PRIORITAET

POKE V+28,0 : REM NORMAL-FARBEN

SP=0 : REM START-SPRITENUMMER

ZA=8 : REM ANZAHL DER BUCHSTABEN AUF DEM BILD

(GLEICHZEITIG / MAX.:8)

420 AB=330/ZA : REM ABSTAND ZWEIER SPRITES

430 GE = 20 : REM GESCHWINDIGKEIT

500 REM

510 REM *x** LAUFSCHRIFT *Xxx

520 REM KRKKKKKRKKK

530 TE$="DATA-BECKER---" : REM LAUFTEXT

540 FOR LA=1 TO 10 : REM 10 DURCHLAEUFE

550 FOR BU=1 TO LEN(TES$)

560 BU$=MID$(TE$,BU,1) : REM LAUFENDER BUCHSTABE

570 BK =ASC(BU$)-32 + 128 : REM BLOCKNUMMER DES BUCHSTABEN
580 POKE 2040+SP,BK : REM SPRITE AUF ENTSPRECHENDEN BLOCK
SETZEN

590 POKE V+SPx2,95 : REM SPRITE-X-KOORD.-LOW-BYTE

600 POKE V+SPx2+1,100 : REM SPRITE-Y-KOORD.

610 POKE V+16,PEEK(V+16) OR 2"SP : REM

SPRITE-X-KOORD.-HIGH-BIT

620
630
635
640
650
660

POKE V+21,PEEK(V+21) OR 2”SP : REM SPRITE EINSCHALTEN

SP=SP+1 : REM NAECHSTE SPRITENUMMER

IF SP=ZA THEN SP=0

FOR K=1 TO AB STEP GE : REM AB SCHRITTE Xxx
FOR S=0 TO ZA-1 : REM ZA SPRITES BEWEGEN
AD=V+S*2: XL=PEEK(AD)-GE: XH=PEEK(V+16)AND2"S: R

X-KOORDINATE DES SPRITES
670 IF XL<0 THEN XL=256+XL:POKE V+16,PEEK(V+16) AND

BEWEGEN

EM

XXX

255-2"S: IFXH=0THENXL=0

680 POKE AD,XL

685 GOSUB 800

690 NEXT S,K

700 NEXT BU : REM NAECHSTEN BUCHSTABEN
710 NEXT LA : REM NAECHSTEN DURCHLAUF
800 POKE V+21,PEEK(V+21) AND 255-2"SP:RETURN : REM SPRITE AUS
1000 REM

1010 REM *xx* SPRITE-DATA XXXx

1020 REM KRRKKKKRKK KK

1090 REM

263

1100
1110
1120
1130
1140
1150
1160
1170
1190
1200
1210
1220
1230
1240
1250
1260
1270
1290
1300
1310
1320
1330
1340
1350
1360
1370
1390
1400
1410
1420
1430
1440
1450
1460
1470
1500
1510
1520
1530
1540
1550

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
REM

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
REM

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
REM

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

A

000,
007,
0086,
006,
006,
0086,
006,

B

C

D

E

REM BUCHSTABE A

000,000, 000,000,000,
000,224, 006,000,096,
000,096, 006,000,096,
000,096, 007,255,224,
000,096, 006,000,096,
000,096, 006,000,096,
000,096, 000,000,000,

: REM BUCHSTABE B
000,
003,
003,
003,
003,
003,
003,

000,000, 000,000,000,
001,128, 003,000,192,
000,192, 003,000,192,
255,000, 003,001,128,
000,096, 003,000,096,
000,096, 003,000,192,
255,000, 000,000,000,

: REM BUCHSTABE C
000,
003,
003,
003,
003,
003,
001,

000,000, 000,000,000,
129,192, 003,000,000,
000,000, 003,000,000,
000,000, 003,000,000,
000,000, 003,000,000,
000,000, 003,000,000,
255,192, 000,000,000,

: REM BUCHSTABE D
000,
012,
012,
012,
012,
012,
015,

000,000, 000,000,000,
001,128, 012,000,192,
000,192, 012,000,192,
000,192, 012,000,192,
000,192, 012,000,192,
000,192, 012,000,192,
255,000, 000,000,000,

: REM BUCHSTABE E
000,
003,
003,
003,
003,

000,000, 000,000,000,
001,192, 003,000,000,
000,000, 003,000,000,
255,000, 003,006,000,
000,000, 003,000,000,

264

003,255,192
006,000,096
006,000,096
006,000,096
006,000,096
006,000,096
000,000,000

003,255,000
003,000,192
003,001,128
003,000,192
003,000,096
003,001,128
000,000,000

001,255,192
003,000,000
003,000,000
003,000,000
003,000,000
003,129,192
000,000,000

015,255,000
012,000,492
012,000,192
012,000,192
012,000,192
012,001,128
000,000,000

003,255,192
003,000,000
003,006,000
003,000,000
003,000,000

1560
1570
1590
1600
1610
1620
1630
1640
1650
1660
1670
1690
1700
1710
1720
1730
1740
1750
1760
1770
1790
1800
1810
1820
1830
1840
1850
1860
1870
1890
1900
1910
1920
1930
1940
1950
1960
1970

DATA
DATA
REM

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
REM

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
REM

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
REM

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

003,000,000,
003,255,192,

003,000,000,
000,000,000,

K : REM BUCHSTABE K

000,000,000,
003,003,000,
003,024,000,
003,192,000,
003,048,000,
003,006,000,
003,000,192,

000,000,000,
003,006,000,
003,048,000,
003,192,000,
003,024,000,
003,003,000,
000,000,000,

R : REM BUCHSTABE R

000,000,000,
003,001,128,
003,000,192,
003,255,000,
003,048,000,
003,006,000,
003,000,192,

000,000,000,
003,000,192,
003,000,192,
003,192,000,
003,024,000,
003,003,000,
000,000,000,

T : REM BUCHSTABE T

000,000,000,
012,048,192,
000,048,000,
000,048,000,
000,048,000,
000,048,000,
000,048,000,

000,000,000,
000,000,000,
000,000,000,
000,000,000,
000,000,000,
000,000,000,
000,000,000,

000,000,000,
000,048,000,
000,048,000,
000,048,000,
000,048,000,
000,048,000,
000,000,000,

REM BINDESTRICH

000,000, 000,
000,000,000,
000,000,000,
003,255,192,
000,000, 000,
000,000,000,
000,000, 000,

003,001,192
000,000,000

003,001,128
003,012,000
003,096,000
003,096,000
003,012,000
003,001,000
000,000,000

001,255,000
003,000,192
003,001,128
003,096,000
003,012,000
003,001,000
000,000,000

015,255,192
000,048,000
000,048,000
000,048,000
000,048,000
000,048,000
000,000,000

000,000,000
000,000,000
000,000,000
000,000,000
000,000,000
000,000,000
000,000,000

Dieses Programm kann Ihnen nur die Grundziige der Laufschrift-

technik vermitteln. Es liegt an Ihnen, die entsprechenden

265

Anwenderprogramme zu schreiben. Richtig schnell und
ansehnlich wird das Ganze natiirlich erst in Maschinen-
sprache. Aber ich hoffe, Sie haben auch so Ihren SpaB daran.
Wenn Sie sich das Programm durchschauen, so sollte Ihnen das
Verstédndnis der Abldufe durch die vielen REM-Zeilen gut
verstdndlich sein. Wie gesagt konnen Sie sich einen ganzen
Zeichensatz zusammenstellen und schlieBlich beliebige Texte

ausgeben. Viel SpaB!

5.3 Das Geheimnis der Spiele

Inzwischen gibt es wohl bereits anndhernd tausend gute bis
weniger gute Spiele fiir den Commodore 64, die in Computer -
Shops zu kaufen sind. Wir lassen uns von ihrer Graphik, ihren
Soundkaskaden berauschen und klopfen uns befriedigt auf die
Schulter: "Hab’ ich mir doch einen guten Rechner gekauft, was
der alles kann!". In der Tat zeigen von allen Programmen ganz
besonders die Spiele, welche Qualitdten ein Gerédt besitzt, da
diese meist bis an die Grenzen des Machbaren stoBen. Bein
64er sind diese Grenzen ziemlich hoch angesetzt und sogar die
besten Spieleprogrammierer haben Probleme alle Moglichkeiten
voll auszunutzen. Doch was nutzt einem ein guter Computer,
mit dem alles méglich ist, wenn man selbst nicht weiB, wie es
geht? Und ewig nur zuzuschauen, was andere programmiert
haben, macht einen auch nicht satt.

In diesem Buch haben Sie bereits Vieles erfahren, das Ihnen
helfen wird, Ihren Computer beziiglich Graphik, Sprites und
allgemein der Bildschirmausgabe opfimal zu nutzen. Natiirlich
konnte nicht annéhernd alles, was der 64er bietet wund im
kapitel 3 (Hardwaregrundlagen) steht, auch 2zur Anwendung
gebracht werden. Das ist auch gut so. Auf diese Weise bleibt
noch geniigend Freiraum fiir Thren Forscherdrang.

Die meisten Spiele sind in Maschinensprache geschrieben, da
das originale Basic einfach zu langsam ist. Es wurden Ihnen
bereits einige Utilities in Assembler angeboten, die quasi
als kleine Erweiterung des Basic - Befehlssatzes fiir die Auf-
besserung der Geschwindigkeiten Ihrer Programme zur Verfiigung
stehen (z.B. das Graphik - Paket). Hier nun sollen Ihnen

einige Techniken und Erweiterungen speziell fir Spiele

266

vermittelt werden (Sie sind selbstversténdlich auch fir
andere Anwendungen recht niitzlich). So sind Sie in der Lage,
auch in Basic (erst recht in Maschinensprache) schnelle und

anspruchsvolle Spiele zu programmieren.

5.3.1. Animation

Unter Animation versteht man die Erzeugung bewegter Bilder
auf dem Bildschirm. Natiirlich "leben" die Spiele von der
Animation, sofern nicht etwa Denkspiele wie Schach, Memorie
etc. gemeint sind. Ohne Bewegung auf dem Bildschirm "l&uft"
nichts. Oft werden Spiele nur aufgrund der Qualitat dieser
Bewegung in die Reihe der Actionspiele oder "sonstige" Spiele
eingereiht. Wir wollen wuns deshalb zundchst mit diesem
wichtigen Thema beschaftigen.

Man unterscheidet beim Commodore 64 fiinf Arten von Animation:

- Sprite-interne Bewegung
~ Spriteverschiebung

- Zeichen-interne Bewegung
~ Zeichenverschiebung

- graphische Animation

Unter ’intern’ verstehen wir hier das Bewegen des jeweiligen
Objektes selbst, ohne daB es seine Position auf dem
Bildschirm veréandert.

Die ersten beiden Formen haben wir bereits in den zwei
Beispielen 2zur Spriteprogrammierung im Abschnitt 4.3.2
ausfiihrlich dargelegt und erldutert. Sie sollten sich diesen
Paragraphen sowieso durchgelesen haben, da die Sprite-
programmierung ein, wenn nicht gar das wichtigste Fundament
der Spiele darstellt.

Auch den letzten Punkt wollen wir hier nicht abhandeln, da er
sich aus den verschiedenen Graphikkapiteln ableitet wund aus
Geschwindigkeitsgriinden nur selten oder gar nicht bei Spielen.
Verwendung findet.

AuBerst beliebt sind dagegen die beiden restlichen Punkte.
Meist werden sie in Verbindung mit einer Zeichensatzidnderung

verwendet.

267

a) Zeichen-interne Bewegung:
Das Prinzip der Zeichen—internen Bewegung ist das gleiche,
wie bei der Bewegung der Sprites. Eine. aus einem oder
mehreren Zeichen zusammengesetzte Figur wird durch den
stetigen Wechsel von Zustédnden bestimmter Teile des
Objektes so verdndert, daB daraus eine Bewegung entsteht.
Im Klartext bedeutet das folgendes:
Angenommen wir wollen ein Miannchen so steuern, daB es
stets beide Arme und Beine auf und nieder bewegt. Wir
setzen dieses Ménnchen dann aus mehreren Teilen zusammen,
damit es nicht 2zu klein wird. Um nun die gewiinschte
Bewegung zu programmieren, legen wir uns jedoch zwei oder
mehr Ménnchen bereit, die jeweils andere Phasen der
Bewegung festhalten. Diese verschiedenen Figuren lassen
wir dann in einem uns genehmen Takt abwechselnd an der
gleichen Stelle auf dem Bildschirm erscheinen, und schon
haben wir den gewiinschten Effekt.
Um die diversen Zeichen auf eine bestimmte Position des
Bildschirms zu bringen, verwenden wir die in Abschnitt 4.1
dargelegte Routine zur programminternen Cursorsteuerung.
Besonders effektiv wird das Ganze natiirlich mit einem
verdnderten Zeichensatz oder ein paar verédnderten Zeichen.
Wie dies auf einfache Weise gemacht wird, zeigt Ihnen
Abschnitt 4.4. Besonders hier zeigen Multicolorzeichen
Ihren Sinn. Ihr Objekt wird recht schon farbig. Sie sehen,
beim Thema Spiele flieBt alles Wissen und Koénnen des
Programmierers zusammen.
Das folgende Beispiel so0ll Thnen den Nutzen auch des
originalen Zeichensatzes fiir dieses Thema darlegen:

100 REM soxskokskokokkokokokokkkok ok kX

110 REM xx *%
120 REM xx ANIMATION-1 %X
130 REM *x XX
140 REM ¥Rk KKKK KKK KKK
150 REM

160 A$(0)=" " +CHR$ (119)

170 A$(1)=CHR$(99)+CHR$(123)+CHR$(99)
180 A$(2)=CHR$(167)+CHR$ (183)+CHR$(165)
190 A$(3)=" " +CHR$(113)

200 A$(4)=CHR$(173)+CHR$(123)+CHR$(189)

268

b)

210 A$(5)=CHR$(183)+CHR$(183)+CHR$(183)

300 PRINT CHR$(147) : REM BILDSCHIRM LOESCHEN
310 X=18 : REM SPALTENPOSITION

320 FOR ZA=0 TO 5 STEP 3

330 Y=12 : GOSUB 1000 : REM POSITIONIEREN

340 PRINT A$(ZA):GOSUB 1010 : REM KOPF

350 PRINT A$(ZA+1):GOSUB 1010 : REM RUMPF/ARME
360 PRINT A$(ZA+2) : REM BEINE

370 FOR S=1 TO 100 : NEXT S : REM WARTESCHLEIFE
380 NEXT ZA

390 GOTO 320 : REM MIT <RUN/STOP> UNTERBRECHEN
400 REM

410 REM x*** POSITIONIEREN XXxx

420 REM %k kK kK KKKk kK X

1000 PRINT CHR$(19);:IF Y>0 THEN FOR T=1 TO Y:PRINT:NEXT T
1010 PRINT TAB(X);: RETURN

In diesem Programm werden zu Anfang (Zeilen 160-210) die
Teile fiir die 2zwei Phasen der Bewegung des Miénnchens
definiert. Insgesamt bauen wir es aus 7 Zeichen auf, die
in 3 untereinander liegenden Reihen stehen sollen. Jede
der drei Reihen wird in einen separaten Array-Speicher
(A$(...)) abgelegt (Nr. 0-2 fiir die erste Phase wund Nr.
3-5 fiir die zweite). Alsdann werden die Startkoordinaten
des Mannchens festgelegt und positioniert (Z. 330). Der
Rest ist relativ einfach zu durchschauen: Die drei Reihen
werden gezeichnet (1.Phase), wobei jeweils nur ein Teil
der Positionierungsroutine aufgerufen wird. Im 2zweiten
Durchlauf der FOR...NEXT - Schleife werden dann die Reihen
der 2. Phase gezeichnet. Durch Verdnderung der Lénge der
Warteschleife in Zeile 370 kann die Geschwindigkeit der
Bewegung gesteuert werden. Versuchen Sie doch einmal,
dieses Miénnchen durch eigene Zeichendefinitionen
darzustellen (s: # 4.4). Dann ist es 1Ihnen gleichfalls
méglich, mehr als zwei Bewegungsphasen nacheinander
ablaufen zu lassen, was die Effektivitdt natiirlich um

Einiges steigert.

Zeichenverschiebung:

Wie bei den Sprites konnen wir auch unser Médnnchen iiber

den Bildschirm bewegen. Dies geschieht auf #@hnliche Weise,

269

wie in Kapitel 4.3 angegeben. Wir zeichnen unser Ménnchen
an einer bestimmten Position auf den Bildschirm. Nach
einiger Zeit (Warteschleife) léschen wir es wieder und
setzen es dafiir ein klein wenig verschoben weiter nach
rechts, links, oben oder unten usw. Aus dieser stetigen
Verschiebung resultiert dann eine kontinuierliche
Bewegung, wie wir sie von den Sprites her kennen. Das
einzige Problem dabei ist die Auflésung der Bewegung.
Normalerweise konnen wir unser Objekt immer nur um minimal
ein Zeichen verschieben. Dieses Manko kénnen wir
allerdings ein klein wenig dadurch ausgleichen, daB wir
auch hier "Zwischenphasen" programmieren (das Objekt steht
praktisch "zwischen" zwei Zeichen). Das geht natiirlich nur
unter Verdnderung des Zeichensatzes.

Doch beschiaftigen wir uns lieber erst einmal mit den
Grundlagen. Das folgende Programm vereinigt die Technik
der internen Bewegung mit der Zeichenverschiebung und
vermittelt ein schon recht hiibsches Bild. Wenn wir dies >
Mannchen nun noch per Joystick steuern, bleibt (fast) kein

Wunsch mehr offen.

100 REM xkkkkkkkkkkkkkkxkkx

110 REM xx XX

120 REM xx ANIMATION-2 *x

130 REM *x XX

140 REM X kXXX kX kKK KXk XXk kXX

150 REM

160 A$(0)=" "+" " +CHR$(119)+" " O

170 A$(1)=" "+CHR$(99)+CHR$(123)+CHR$(99)+" "
180 A$(2)=" "+CHR$(167)+CHR$(183)+CHR$(165)+" "
190 A$(3)=" "+" " +CHR$(113)+" " "o
200 A$(4)=" "+CHR$(173)+CHR$(123)+CHR$(189)+" "
210 A$(5)=" "+CHR$(183)+CHR$(183)+CHR$(183)+" "
300 PRINT CHR$(147) : REM BILDSCHIRM LOESCHEN
305 SP=1:B=0:E=33

310 FOR X=B TO E STEP SP : REM SPALTENPOSITION
320 FOR ZA=0 TO 5 STEP 3

330 Y=12 : GOSUB 1000 : REM POSITIONIEREN

340 PRINT A$(ZA):GOSUB 1010 : REM KOPF

350 PRINT A$(ZA+1):GOSUB 1010 : REM RUMPF/ARME
360 PRINT A$(ZA+2) : REM BEINE

270

370 FOR S=1 TO 60 : NEXT S : REM WARTESCHLEIFE

380 X=X+SP

390 NEXT ZA

400 X=X-SP

410 NEXT X

420 SP=~SP : ZW=B : B=E : E=ZW : GOTO 310 : REM AUSTAUSCH
(BEWEGUNGSR. AENDERN)

500 REM
510 REM **%x POSITIONIEREN XXxXx
520 REM XKk K Kk ok k ok k kKK

1000 PRINT CHR$(19);:IF Y>0 THEN FOR T=1 TO Y:PRINT:NEXT T
1010 PRINT TAB(X);: RETURN

Wir haben in diesem Programm um die bereits bekannte
Bevegungsroutine eine weitere FOR...NEXT - Schleife
gepackt. Weiterhin muBten wir die Reihendefinitionen in
den Zeilen 160-210 jeweils um ein Leerzeichen vorne und
hinten erweitern, um ein Léschen der zuletzt gezeichneten
Figur sowohl beim Hin-, als auch beim Zuriickgehen 2zu
gewidhrleisten. Vielleicht versuchen Sie einmal hinter die
Bedeutung der Speicher SP, B, E (und ZW) 2zu kommen. Sie
dienen zur Bereitstellung der notwendigen Parameter fiir
Rechts— und Linkslauf.

Danit haben wir Ihnen einige Tips gegeben, wie Sie neben
den Sprites noch einige einfache Bewegungen mehr in Ihr
Spiel bekommen. Kommen wir daher gleich zum nédchsten

Thema.

5.3.2. Scrolling

Wer hat nicht schon einmal ’Defender’ oder é&hnliche
Actionspiele gesehen oder gar mit ihnen gespielt, in denen
Sie Fihrer eines Raumschiffes sind, das mit einer Héllen-
geschwindigkeit durch den Weltraum fliegt. Oder Sie fahren
mit einem Rennwagen unter Aufbringung aller Konzentration
auf einer Piste, verfolgt von anderen Rivalen, die Sie
abdréngen.

Doch wenn Sie genauer hinschauen, sind es nicht das
Flugzeug oder das Auto, die sich vorwirts bewegen, sondern

vielmehr der Hintergrund. D.h. der gesamte Bildschirm

271

10:

20:

30:

40:

50:

60:

70:

80:
110:
120:
130:
140:
150:
160:
200:
210:
220:
230:
280:
290:
300:
310:
320:
330:
340:

(oder Teile) wird nach rechts, 1links, oben oder unten
verschoben, widhrend das jeweilige zu steuernde Objekt (ein
Sprite) meist nur beschrédnkt bewegt werden kann. Nun ist
ein solches Verschieben, Rollen oder Scrolling des
Bildschirms eine sehr zeitaufwendige Sache und kann daher
nur in Maschinensprache durchgefiihrt werden. Dabei
verwendet man nicht etwa Graphik (hier miiBten fiir einmal
verschieben 8 K bewegt werden) sondern den Textmodus, was
bei Spielen fast das Gleiche ist, da wir ja den Zeichen-
satz beliebig verandern konnen und so quasi hochauf-
lésende Bilder erhalten. Bekanntlich miissen hier nur etwa
1 K Bytes bewegt werden, was die Arbeit gewaltig
verringert. Im folgenden werden Ihnen entsprechende
Assemblerroutinen angegeben, die Sie genauso wie die

Befehle des Graphik - Paketes per SYS aufrufen koénnen:

ccoo *= $CCO0
;
 RRRRAXKRRKKKKKKKK
3 KX X
;kx SCROLLING *x
;KX *x
KREXEXRERKKKKKKKK
ccoo CHKGET = $B7F1
cCcoo OB = 2038
ccoo UN = 2039
ccoo FLAG = $FD
€coo ZAHL = $FE
ccoo ADRESS = $61
CC00 20 F1 B7 START JSR CHKGET ;KOMMA + BYTE HOLEN
cCc03 8A TXA ; RECHTS /LINKS-FLAG
cCc04 44 LSR A
cco5 08 PHP
cC06 20 F1 B7 JSR CHKGET
cco9 E0 19 CPX #25 ; OBERE ZEILE
CCOB 90 02 BCC S1
cCOD A2 18 LDX #24
CCOF 8E F6 07 sl STX OB
cclz 20 F1 B7 JSR CHKGET ;UNTERE ZEILE
CCl5 EO 19 CPX #25

272

350: C€C17 90 02 BCC S2

360: CCl9 A2 18 LDX #24

370: cC1lB 8E F7 07 s2 STX UN

380: CClE 8A TXA

390: CC1lF AE F6 07 LDX OB

400: C€C22 AC F7 07 LDY UN

410: cc25 38 SEC

420: CC26 ED F6 07 SBC OB ;OBEN — UNTEN

430: cc29 BO 08 BCS S3

440: CC2B 49 FF EOR #$FF ;OBENCUNTEN=>TAUSCH
450: CC2D AE F7 07 LDX UN

460: CC30 AC F6 07 LDY OB

470: CC33 85 FE s3 STA ZAHL ; ZAEHLER

480: CC35 28 PLP

490: cCc36 08 PHP ; RE/LI-FLAG

500: CC37 90 03 BCC sS4

510: cc39 c8 INY ; RECHTS: ZEILE WEITER
520: cC3A 98 TYA ; UND UNTEN STARTEN
530: CC3B AA TAX

540: CC3C BD CB CC sS4 LDA MULH,X ;HIGH BYTE ADRESSE
550: CC3F 85 62 STA ADRESS+1

560: €C41 BD E5 cCC LDA MULL,X ;LOW-BYTE

570: cc44 85 61 STA ADRESS

580: cC46 28 PLP

590: cC47 08 PHP ; RE/LI-FLAG

600: CC48 90 08 BCC MOVE

610: cc4A E9 01 SBC #1 ;BEI RECHTS -1
620: cc4c 85 61 STA ADRESS

630: CC4E BO 02 BCS MOVE

640: CC50 C6 62 DEC ADRESS+1

650: H

660: ; VERSCHIEBUNG

670: s XKRKXKEKKKKKKKXK

680: H

690: CC52 A5 62 MOVE LDA ADRESS+1

700: cc54 29 03 AND #3

710: cC56 09 04 ORA #4 ; BASISADRESSE=$0400
720: CC58 28 PLP

730: cc59 08 PHP ; FLAG

750: CC5A 20 86 cC JSR MOVE1l ; VIDEORAM VERSCHIEBEN
760: CC5D 28 PLP

273

770:
780:
790:
800:
810:
820:
830:
840:
850:
860:
870:
880:
890:
900:
910:
912:
915:
920:
930:
940:
950:
960:
970:
980:
990:
1000:
1010:
1020:
1030:
1040:
1050:
1060:
1070:
1080:
1090:
1100:
1140:
1150:
1160:
1170:
1180:

CC5E
CC5F
cc6l
cC63
CC65
CCB7
cC69
CC6B
CC6D
CC6F
CcC71
CcC73
CC75
cCc77
CC79
CC7B
cc7c
CCT7D
cc80
cc82
ccs4
cc85

cc86
cc8s
CCBA

cCc8D
CC8F
ccal
cc92
cC94
cCc96
cCa7
ccos

08
A5
90
69
85
920
E6
BO
E9
85
BO
cé
A5
29
09
28
08
20
Cc6
10
28
60

85
90
4c

A0
Bl
AA
AQ
Bl
48
8A
91

61
0A
27
61
0ocC
62
08
217
61
02
62
62
03
D8

86
FE
CE

62
03
AB

00
61

27
61

61

cC

cC

M1

M2

’

PHP
LDA
BCC
ADC
STA
BCC
INC
BCS
SBC
STA
BCS
DEC
LDA
AND
ORA
PLP
PHP
JSR
DEC
BPL
PLP
RTS

; FLAG
ADRESS
M1
#39 ;€C=1! / RECHTS
ADRESS
M2
ADRESS+1
M2 ; UNBEDINGT
#39 ;€=0! / LINKS
ADRESS
M2
ADRESS+1
ADRESS+1
#3
#$D8 ; FARBRAM BEI $D800

MOVE1l ; FARBRAM VERSCHIEBEN
ZAHL
MOVE

; VERTEILER
5 Rkkkokkkkkx

3

MOVE1l

s

STA
BCC
JMP

ADRESS+1
LINKS
RECHTS

;s LINKSVERSCHIEBUNG
222222232322 222 25

LINKS

LDy
LDA
TAX
LDY
LDA
PHA
TXA
STA

274

#0
(ADRESS),Y

;ERSTES BYTE MERKEN
#39
(ADRESS),Y

; MERKER 1

; HOLE MERKER 2
(ADRESS),Y

1190:
1200:
1210:
1220:
1230:
1240:
1250:
1260:
1270:
1280:
1290:
1300:
1310:
1320:
1330:
1340:
1350:
1360:
1370:
1380:
1390:
1400:
1410:
1420:
1460:
1470:
1480:
1490:
1500:
1510:
1520:
1530:
1540:
1550:
1560:
1570:
1580:
1590:
1600:
1610:
1620:

CCY9A
CCIB
cc9c
CC9D
CCYF
CCAO
CCA2
CcCA4
CCAB
CCA8
CCAA

CCAB
CCAC
CCAE
CCBO
CCB2
CCB4
CCB6
CCB8
CCBA
CCBB
CCBD
CCBF
ccco
ccel
ccc3
ccc4
ccch
CCC6
cces
CCCA
CCCB
ccn8
CCE5
CCEC
CCFZ
CCF9

68
AA
88
10
18
A5
69
85
90
E6
60

38
A5
E9
85
BO
c6
A0
Bl
AA
AQ
Bl
48
84
91
68
AA
c8
co
Do
60
04
06
00
18
08
20

F5

61
28
61
02

61
28
61
02
62
28
61

01
61

61

29
F3

04
06
28
40
30
48

04
06
50
68
58
70

PLA ; HOLE MERKER 1
TAX ; IN MERKER 2
DEY
BPL L2
CLC
LDA ADRESS
ADC #40 ;s NAECHSTE ZEILE
STA ADRESS
BCC L3
INC ADRESS+1

L3 RTS

sRECHTSVERSCHIEBUNG
3k okokok kokokokodkok ok ok ok k ok X

RECHTS SEC
LDA ADRESS
SBC #40
STA ADRESS ;40 ABZIEHEN
BCS R1
DEC ADRESS+1

R1 LDY #40
LDA (ADRESS),Y ;LINKES BYTE HOLEN
TAX
LDY #1

R3 LDA (ADRESS),Y
PHA ; MERKER 1
TXA sMERKER 2 HOLEN
STA (ADRESS),Y
PLA ;s MERKER 1
TAX ; IN MERKER 2
INY
CPY #41
BNE R3
RTS

MULH .BYTE4,4,4,4,4,4,4,5,5,5,5,5,5
.BYTE6,6,6,6,6,6,6,7,7,7,7,7,7

MULL .BYTE$00,$28,$50,$78,$A0,$C8,$F0
.BYTE$18, $40,$68,$90,$B8, $E0
.BYTE$08,4$30,$58,$80,$A8,$D0,$F8
.BYTE$20,$48,$70,$98,$C0, $E8

275

Auch hier wird Ihnen natiirlich wieder ein entsprechender

Basic-Lader angeboten:

100 FOR I = 52224 TO 52480

110 READ X : POKE I,X : S5=S+X : NEXT

120 DATA 32,241,183,138, 74, 8, 32,241,183,224, 25,144
130 DATA 2,162, 24,142,246, 7, 32,241,183,224, 25,144
140 DATA 2,162, 24,142,247, 17,138,174,246, 7,172,247
150 DATA 7, 56,237,246, 7,176, 8, 73,255,174,247, 17
160 DATA 172,246, 7,133,254, 40, 8,144, 3,200,152,170
170 DATA 189,203,204,133, 98,189,229,204,133, 97, 40, 8
180 DATA 144, 8,233, 1,133, 97,176, 2,198, 98,165, 98
190 DATA 41, 3, 9, 4, 40, 8, 32,134,204, 40, : 8,165
200 DATA 97,144, 10,105, 39,133, 97,144, 12,230, 98,176
210 DATA 8,233, 39,133, 97,176, 2,198, 98,165, 98, 41
220 DATA 3, 9,216, 40, 8, 32,134,204,198,254, 16,206
230 DATA 40, 96,133, 98,144, 3, 76,171,204,160, 0,177
240 DATA 97,170,160, 39,177, 97, 72,138,145, 97,104,170
250 DATA 136, 16,245, 24,165, 97,105, 40,133, 97,144, 2
260 DATA 230, 98, 96, 56,165, 97,233, 40,133, 97,176, 2
270 DATA 198, 98,160, 40,177, 97,170,160, 1,177, 97, 72
280 DATA 138,145, 97,104,170,200,192, 41,208,243, 96, 4
290 DATA 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5
300 DATA 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, T, 7
310 DATA 7, 0, 40, 80,120,160,200,240, 24, 64,104,144
320 DATA 184,224, 8, 48, 88,128,168,208,248, 32, 72,112
330 DATA 152,192,232, o0, O

340 IF S <> 27098 THEN PRINT "FEHLER IN DATAS !!" : END
350 PRINT "OK"

Dieses Programm harmonisiert mit dem Graphik - Paket aus
Kapitel 4, d.h. beide Maschinenprogramme koénnen sich gleich-
zeitig im Speicher befinden und auch verwendet werden. Der
Aufruf erfolgt, wie gesagt, ebenfalls iiber SYS und 2zwar in

der wie folgt angegebenen Art und Weise:

SYS 52224,r,a,e

Dabei bedeuten:

r: Richtung des Scrollens (0=links/l=rechts)

276

a: Anfangszeile und

e: Endzeile zwischen denen gescrollt wird

Die Anwendung dieser Basicerweiterung sollten Sie dem

folgenden kleinen Demonstrationsprogramm entnehmen:

100 REM xXkkkkkxkkkkkkkkk

110 REM *x* xx
120 REM ** SCROLLING *x
130 REM x* XX
140 REM xxxkxkkkkkkkkkkkkx
150 REM

200 SR = 52224 : REM SCROLL-ADRESSE
210 PRINT CHR$(147) :. REM BILDSCHIRM LOESCHEN
220 PRINT:PRINT" DER SCROLL-BEFEHL ERMOEGLICHT IHNEN,"

230 PRINT" JEDE BELIEBIGE BILDSCHIRMZEILE"
240 PRINT" UND BEI BEDARF AUCH MEHRERE GLEICH-"
250 PRINT" ZEITIG ZU VERSCHIEBEN."

260 PRINT" SEHEN SIE?"

270 FOR X=1 TO 5000 : NEXT X

280 FOR X=1 TO 40

290 FOR Y=1 TO 50 : NEXT Y ’
300 sYs SR,1,6,6

310 NEXT X

320 PRINT:PRINT "DAS GANZE GEHT NATUERLICH AUCH SCHNELLER"
330 FOR X=1 TO 4000 : NEXT X

340 FOR X=1 TO 200 : SYS SR,1,8,8 : NEXT X

350 PRINT" UND ANDERS HERUM!'"

360 FOR X=1 TO 4000 : NEXT X

370 FOR X=1 TO 400 : SYS SR,0,10,10 : NEXT X

380 PRINT : PRINT" VIELLEICHT AUCH DER GANZE BILDSCHIRM"
390 FOR X=1 TO 4000 : NEXT X

400 FOR X=1 TO 200 : SYS SR,0,0,24 : NEXT X

410 PRINT:PRINT" WOLLEN SIE EINMAL"
420 PRINT" LAUFSCHRIFTEN ERSTELLEN?"

430 FOR X=1 TO 4000 : NEXT X

440 PRINT:PRINT" ~~-- DATA BECKER --—--"

450 FOR X=1 TO 400:SYs SR,0,17,17:FOR Y=X TO 150: NEXT Y,X

Wie Sie sehen, macht es richtig SpaB mit diesem schoénen
Befehl zu arbeiten. Denken Sie sich doch einmal andere

Anwendungen aus - Sie werden es nicht bereuen!

277

Wir haben TIhnen nun die wichtigsten Grundlagen fiir die
Programmierung der Spiele vermittelt. Nun ist es an Ihnen,
diese in die Tat umzusetzen. Die Phantasie kénnen wir Ihnen
nicht abnehmen. Und wenn Sie einmal ein kleines Spiel fertig
haben, dann laden Sie mich doch einmal ein.

278

6. Kapitel
Anhang

6.1 Programmoptimierung

In den einzelnen Kapiteln haben wir 1Ihnen viele Basic-
programme vorgestellt. Doch stért uns oft Ihre Langsamkeit,
was nicht selten schone Effekte verschleiert. Im folgenden
werden Ihnen einige Tips gegeben, wie Sie Thre Basic-
programme friesieren konnen.

Man unterscheidet grundséatzlich zwel Methoden der

Geschwindigkeits - Aufbesserung:

1.) Das Optimieren des Basicprogrammes selbst
2.) Das Ersetzen von langwierigen Basicroutinen durch ent-

sprechende Assemblerprogramme.

Zum ersten Punkt seien hier einige geraffte Informationen

gegeben:

- Vermeiden Sie REM-Zeilen (zumindest oder besonders in oft
zu durchlaufenden Schleifen).

- Vermeiden Sie 2zu viele Zeilen. O0ft zu durchlaufende
Schleifen etc. sollten in méglichst wenigen Zeilen unter-
gebracht werden (Nutzen Sie die Befehlsabkiirzungen, um
moglichst viele Befehle in eine Zeile zu bekommen).

- Vermeiden Sie Leerzeichen zwischen oder in den Befehlen,
die nicht syntax- oder programmnotwendig sind.

- Verringern Sie den Rechenaufwand in zeitkritischen
Schleifen, indem Sie wenn dies méglich ist, Rechnungen oder
Teilrechnungen bereits vor Aufruf der Schleife durchfiihren
und die Ergebnisse in Zwischenspeichern bereithalten.

- Vermeiden Sie das direkte Rechnen mit Zahlen (Konstanten)
in Schleifen; besser ist, wenn Sie diese vor Aufruf der
Schleife in entsprechende Zischenspeicher packen, da Zahlen
immer erst in das rechnerinterne Floatingpoint - Format

umgerechnet werden miissen.

279

— Vermeiden Sie Unterprogrammaufrufe (GOSUBs) oder GOTOs in
zeitrelevanten Schleifen.

- Konstruieren Sie Schleifen méglichst nur mit FOR...NEXT -
Vermeiden Sie IF.

- Definieren Sie viel gebrauchte (vor allem in Schleifen
verwendete) Speicher méglichst zuerst. Es geniigt z.B. ein X=0
am Programmanfang, wenn Sie diese Variable im Laufe des
Programmes sehr haufig verwenden.

- Packen Sie zusammengehérige Programmteile méglichst nahe
beieinander, um langes Suchen des Rechners nach der Zeilen-
nummer bei GOTO und GOSUB abzukiirzen.

- Legen Sie DATA-Zeilen méglichst zusammen und ebenfalls in

moglichst wenigen Zeilen an.

Leider vertragen sich (fast) alle diese MaBnahmen nicht mit
der geforderten Ubersicht iiber das Programm und sollten
deshalb teilweise méglichst erst dann durchgefiithrt werden,
wenn das Programm ’l&uft’. Dieses ’speed up’ Ihres Programms

sollte also sein letzter Schliff sein.

Der zweite Punkt, das Ausfiihren von Maschinenprogrammen, ist
natiirlich etwas schwieriger, stellt aber bei vielen nicht
arithmetischen (= nicht mathematischen) Prozessen eine
sinnvolle und die effektivste MaBname dar, um Programme 2zu
beschleunigen. Das Maschinenprogramm steht dazu in
DATA-Zeilen und wird vor der Ausfiihrung des eigentlichen
Basicprogramms durch READ ausgelesen und in den jeweiligen
Speicherbereich gePOKEt, in dem das Programm laufen soll, das
spiter durch SYS aufgerufen wird (s. Zeichenformer, Sprite-
editor und die vielen Beispiele, die von Assemblerprogrammen
unterstiitzt werden).

Am eindrucksvollsten zeigt sich der Nutzen dieser Technik bei
bestimmten graphischen Routinen (s. Graphik-Paket). Hier
sollen die in Basic wohl zeitaufwendigsten Arbeiten mit der
Graphik kurz durch entsprechende Assemblerroutinen ersetzt
werden. Es sind dies: das Léschen der Graphik und die

Farbgebung:

280

Graphik léschen

100 FOR I = 51200 TO 51221

110 READ X : POKE I,X : S=S+X : NEXT

120 DATA 169, 32,133,254,160, 0,132,253,162, 32,152,145
130 DATA 253,200,208,251,230,254,202,208,246, 96

140 IF S <> 3772 THEN PRINT "FEHLER IN DATAS !!" : END
150 PRINT "OK" '

Farbe setzen

100 FOR I = 51222 TO 51261

110 READ X : POKE I,X : S=S+X : NEXT

120 DATA 32,241,183,134,151,162, 3,169, 4,133,254,160
130 DATA 0,132,253,132, 2,165,151,145,253,200,196, 2
140 DATA 208,249,230,254,202,240, 3, 16,242, 96,162,232
150 DATA 134, 2,208,235

160 IF S <> 5970 THEN PRINT "FEHLER IN DATAS !!" : END
170 PRINT "OK"

Diese beiden Einleseroutinen kénnen Sie in 1Ihre Programme
einbauen, wenn Sie sich nicht die Miihe gemacht haben, das
Graphik—Aid in Ihren Rechner zu tippen. Die Syntax der beiden

neuen Graphikbefehle lautet:

SYS 51200 : REM GRAPHIK LOESCHEN
SYS 51222, 16%PF+HF : REM FARBE SETZEN

Dabei bedeuten:

PF: Punktfarbe
HF: Hintergrundfarbe

Wie sie anzuwenden sind, zeigen Ihnen die Erlduterungen in
Paragraph 4.7.

281

6.2 Graphikspeicheraufbau

Im folgenden wird Ihnen der Aufbau der drei zweit wichtigsten
Graphik - Speicherfunktionen dargestellt: Videoram und
Graphikspeicher. 2Zu den am Rand angegebenen relativen
Adressen der jeweiligen Zeilenanfiinge miissen Sie stets noch
die Basisadresse hinzuzdhlen. Diese hingt von der Lage des
Speichers ab und lautet nach dem Einschalten fiir den
Videoram: 1024 ($0400). Der Farbram besitzt den gleichen
Aufbau wie der Videoram und hat die Basisadresse: 55296
($D800).

Bei dem Schaubild fiir den Graphikspeicher miissen Sie jeden
Kasten noch einmal in 8x8 Kastchen unterteilen, un die
einzelnen Punkte zu symbolisieren. Den genauen Aufbau

entnehmen Sie bitte dem Kapitel 3.

62.1. Graphikspeicher

0

320

640

960

1280

1600

1920

2240

2560

2880

3200

3520

3840

4160

4480

4800

5120

5440

5760

6080

6400

6720

7040

7360

7680 L

282

622. Videoram

40

120

160

200

240

280

320

360

400

440

480

520

560

600

640

680

720

760

840

880

920

1000

283

6.3 Farbtabelle

Der Commodore 64 besitzt in allen verfiigharen Modi 16 Farben.
Jeder dieser Farben ist ein sogenannter Farbcode zugeordnet,
der in die entsprechenden Register gePOKEt wird, die fiir
Farbangelegenheiten zustédndig sind. Gleichzeitig konnen Sie
aber auch alle 16 Farben im Textmodus fiir das Aussehen der
Zeichen von Hand (Tastatur) aus anwdhlen. Dementsprechend
gibt es fiir jede Farbe einen ASCII-Code, der die Bestimmung
der Textfarbe auch von Programmen aus erméglicht. In
PRINT-Statements erscheinen die typischen Graphikzeichen. Die
folgende Tabelle vereinigt alle Ansteuerungsméglichkeiten
iibersichtlich zum schnellen Nachschlagen.

Taste ASCII |Ausgabe| Codes Farbe
Dez| Hex Dez| Hex
<ctrl> 1| 144|$90 [1] 00| $00 | schwarz
(ctrl> 2| 005]|$05 = 01]| $01 | weiB
<ctrl> 3| 028]s1c] 02| $02 | rot
<ctrl> 4| 159|$9F [V] 03| $03 | zyanblau
<ctrl> 5| 156|$9C Iz] 04| $04 | violett
<ctrl> 6| 030|$1E [T] 05| $05 | griin
<ctrl> 7| 031|$1F 06| $06 | blau
<ctrl> 8| 158|$9E =i 07]$07 | gelb
<C=> 1] 129|¢81 EX 08| $08 | -orange
<C=> 2| 149|$95 | 09]|$09 | braun
<C=> 3 | 150 |$96 [] 10| $0A | hellrot
<C=> 4] 151 (%97 11| $0B | dunkelgrau
<C=> 5 | 152|498 [+] 12|$0C | mittelgrau
<C=> 6 | 153($99 m 13|/ $0D | hellgriin
<C=> 7 | 154 |$9A [o] 14| $0E | hellblau
<C=> 8 | 155 |$9B | -H 15| $0F | hellgrau

284

6.4 Bildschirmcodes

Jedenr Zeichen des Bildschirms ist ein bestimmter ASCII-Code,
aber auch ein Bildschirmcode zugeordnet. Letzterer ist der
Code, mit dem das Zeichen im Videoram abgespeichert wird.
Wollen Sie also ein Zeichen direkt in diesen Textspeicher
POKEn, so verwenden Sie jene Werte. Die Codes fiir die
inversen Zeichen erhalten Sie, indem Sie 128 2zu denen der

normalen Zeichen hinzuaddieren.

Sodes | RECTT Codes| AECIT] Zeichen
Satzilcatzz
) G [2] an] <]
1 &5 A B 41 B B
E a7] =] 43 [+] +]
4 i el pall L
b =5 E & 45 -l -l
2 wa | [F]] a6 | []
71 5] =] a7 | [B
, e fal 4g | 1@)
5 i i] 43 | [1) 1]
1a 74 1] i | S =)
11 TE K] s1 | [3] =
= T] 1 sz B]
| we | M o] : sz | [5] =]
:] H] i S S & =
i; 7o | (9] o]] s5 | 7] 7]
16 aa | [P 2 56 se | [E] &]
17 21 & B 57 57 El El
| =&z [F: = sg =2 | []
11’3 a3 B =] 5o G B H
z i T B S e =] <]
21 &5 0] m &1 &1 =] =
2z g6 | [V] 62 g2 | [
23 g7 | W] &3 ez | |2 B
z o (] 5] e HE - =
zs| =s | [v]] s | s | [#] A
28 1] z =] &6 23 i [E|
27 a1 IT]] &7 g3 | [F =
28 B €] az | 1ea | [T T
23 sz | 3] H &3 | 1@t | r'g_
EE @ | T] 1]] 1az -] IF]
31 a5 | |4 = 71 | 1ezs | [T =
z2 zz | [L] F2 | 1ed | [T [A]
I3 a3 | | L] vz | es | 4 1]
4 24 | [] 74 | 1@8 - 7]
s [#] #] s | wer | [F] K]
3 ¥ hd TE 163 L L
*) od 1= =
] & [l BLE 1]
28 & 1] VE 11@]
29 7o | 111 I m

285

DO)

WD

19] T 0 07 () P 3 T 1

E
)

1]

IHEE

[E[=]=

S e

P Yl T Yl i B SR R PR (R ER A PR B T E

FOCF RN = R PRI e ls [[]

286

6.5 Dez/Hex/Dual—Konversion

-0 O © 3

b O b e 3@

O = e e 3@

e i 1

oo ©O O O e

—

N|O = O O i

Wi~ =~ o © 3¢

wlo © =~ O e

G~ © = O ¢

NO = = O e

EN R A S Y]

VIO © O = e

Ol—~ © O = 3

o|lo ~ © =

el -]

N|O © m~ = 3¢

13

14

%0000

0000

$00

01

02

03

04

05

06

07

08

0B

0C

0D

0E

%0001

0000

16

$10

11

12

13

14

15

16

17

18

1C

1D

1E

%0010

0000

32

$20

21

22

23

24

25

26

27

28

2B

2C

2D

2E

%0011

0000

48

$30

31

32

33

34

35

36

37

38

3B

3cC

3D

3E

%0100

0000

64

$40

41

42

43

44

45

46

47

48

4B

4c

4D

4E

%0101

0000

80

$50

51

52

53

54

55

56

57

58

5B

5C

5D

5E

%0110

0000

96

$60

61

62

63

64

65

66

67

68

6B

6C

6D

6E

%0111

0000

112

$70

71

72

73

74

75

76

77

78

7B

7C

7D

7B

%1000

0000

128

$80

81

82

83

84

85

86

87

88

8B

8C

8D

8E

%1001

0000

144

$90

91

92

93

94

95

96

97

98

9B

9C

9D

9E

%1010

0000

160

$A0

Al

A2

A3

A4

A5

A7

A8

AB

AC

AD

AE

%1011

0000

176

$BO

Bl

B2

B3

B4

B5

B6

B7

B8

BB

BC

BD

BE

%1100

0000

192

$CO

Cl

Cc2

C3

c4

c5

433

c7

CB

CcC

CcD

CE

%1101

0000

208

$D0

D1

D2

D3

D4

D5

06

D7

D8

DB

DC

DD

DE

%1110

0000

224

$EO0

El

E2

E3

E4

E5

E6

E7

E8

EC

ED

%1111

0000

240

$FO0

F1

F2

F3

F4

F5

F6

F7

F8

FB

FC

FD

FE

287

6.6 Spriteentwurfsblatt

Mit Hilfe dieses Formblattes ist es Ihnen wméglich auf
einfache Art und Weise Sprites zu erstellen, indem Sie die
einzelnen Késtchen, die jeweils einen Punkt darstellen,
ausmalen und die oben stehenden Werte zu einem Byte (drei
Bytes pro Zeile) zusammenziéhlen. Multicolorsprites erstellen
Sie, indem Sie fiir einen Punkt 2zwei nebeneinander 1liegende
Késtchen (méglichst die 3 verschiedenen Multicolorfarben auch

in drei verschiedenen Farben zeichnen) ausmalen.

Bit: |7(6{s|af3]2{1/0f7]6f5]|4]|3]2[1]0f7]6]5]4[3][2

-
o

Wert: l12slca|32lac| 8|4 |2 |1 fat]|cs]a2|1é] @ |« |2 | 4 hzeléais2]|1¢] 8]2 |4 |0 Codes

O (N V& WINlalo

288

6.7 Zeichenentwurfsblatt

Ebenso wie beim Spriteentwurfsblatt kénnen Sie auch mit der
folgenden Tabelle Multicolorzeichen erstellt werden, indem

Sie fir einen Punkt jeweils zwei Kidstchen ausmahlen.

Bit: |7 6|5 |&|3 2|10
Wert: {128 |64 |32 |16 |8 | & |2 |1 Codes

289

6.6 VIC—Register—Ubersicht

Register| Adresse Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bits
pedber | ez [Her | 18 & 2 16 8 4 2 |
oo 00 53243 $0000 sprite @ — x - Koordinate (Bits 0-7){(0-255)

01} $01 | 53249 $0001 Sprite 0 -— y - Koordinate (0-255)

02 $02 | 532501 $D002 Sprite 1 -— x - Koordinate (Bits 0-7){(0-255)

03} $03 | 53251} $0003 Sprite 1 -—-y - Koordinate (0-255)

041304 | 53252) $D004 Sprite 2 -~ x - Koordinate (Bits 0-7)(0-255)
05/$05 | 53253 $0005 Sprite 2 --- y - Koordinate (0-255)

06]$06 | 53254| $D006 Sprite 3 -- x - Koordinate (Bits 0-7)(0-255)
07)807 | 53235{ $D007 Sprite 3 --- y - Koordinate (0-255)

08{$06 | 53256) $D00S Sprite 4 --- x - Koordinate (Bits 0-7)(0-255)
09(809 | 53257| 30009 Sprite 4 -y - Koordinate (0-255)

10]30A | 53258|8D00A Sprite 5 -— x - Koordinate (Bits 0-7)(0-255)
11]$08 | 53259 $D00B Sprite 5 -—- y - koordinate (0-255)

12|$00 | 53260 $D00C Sprite 6 ~— x - Koordinate (Bits 0-7){0-255)
13180D | 53261 {$D00D Sprite 6 --- y - Koordinate (0-255)

14|$0F | 53262 |$DOOE Sprite 7 -—- x - Koordinate (Bits 0-7)(0-255)
15{$0F | 53263 |$DOOF Sprite 7 -- Y - Koordinate (0-255)

290

tegister|

Adresse

Bit 7

Bit 6 [Bit S |Bit4

Bit 3

Bit 2

Bit 1

Bit 0

Jez|Hex

Dez

Hex

128

o4 32 16

8

4

2

16]810

53264

$0010

Sp. 7

Sp. 6 |Sp. 5 }Sp. 4

Sprite 0-7 --- x - Koordinat

Sp. 3

en (Bit 8)(¢256)
5. 2] . 1

Sp. 0

17{s11

53265 $D011

Raster | extend.| Hi-Res-{ Bild

Bit 8

Color | Graphil aus

25/24

Ieilen

y-Scrolling

18812

53266

$0012

Rasterzeile (aktuelle/Vorgabe)(Bits 0-7)(0-25%)

19]$13

53267|

$0013

Lightpen - 1 - Koordinate (0-255)

220|814

53268

$0014

Lightpen —- y - Koordinate (0-255)

211815

53269

$0015

Sp. 7

5.6] 5.5 |p. 4

Sp. 3

Sprite — an / aus
5.2 | .1 |9v.o

21816

53270 $D016

nicht benutzt | Multi-
color

40/38

Spalten

1-Scrolling

231817

53271

$0017

Sp. 7

Sprite ——
EXIEXREY

y - VergraBerung

5.3 |s. 2] %1

5.0

24[818

53272

$0018

Bildsc
Bit 13

hiraspeichetadr. (¥1024)
pit 12] Bit 11 |8t 10

Zeichengen_adr . (¢2048)

Bit 13

Bit 12

Bit 11

nicht
benutzt

25(819

53273

$0019

IR~
Flag

nicht beautzt

Light-
pen

Sp.-%p)
Kollis

Sp-Hg
Kollis

Raster

zeilen

26($1A

53274

$D01A

nicht benutzt

Light-
pen

Sp.-%p

follis

Sp.-Hig
Kollis

Raster

zeilen

271818

53275

$0018

Sprite - Hintergrund - Prioritat
5. 6] -5 |- 4] %.3 |Sp.213p.1LSp.n

53276

$001C

Malticolor - Sprites
5. 6| .5 |3p.4| S 3| 5.2 %150

$3277

¥
~

Sprite -—— x -~ VergroBerung
Sp.6| %. 5 |sn.&| Sp.SISp.Z'Sp.lISp.I)

291

Register| Adresse | mit 7 | Bite [mit 5| mita |mit3 |sit2 [sit1 jeito
vezlhex [Dez Jhex | 18] e | 2| 1] s8] 4] 2] 1
30| s1€ | ss278{ svore serite - Sprite - Kollision

9.7 9.6 5959 4[%.3]%.2[%1]%0
31| s1F | s3279 sporr Sprite - Niatergrend - Kollision

9. 7|56 |55 | 4] 3% 2]|%.1 |- 0
32820 | 53280| $0020 Rahsenfarbe (0-15)
33|21 | 5328180021 Hintergrundfarbe Nr. 0 (0-15)
34{$22 | 53282{$0022 Hintergrundfarbe Nr. 1 (0-15)
35/825 | 5328340023 Hintergrandfarbe Wr. 2 (0-15)
36/$24 | 53284|$0024 Hintergrundfarbe Mr. 3 (0-15)
37/825 | 53285|$0025 Gemeinsase Sprite-Farbe Nr. 0 in Multicolor (0-15)
38{$26 | 5328680026 Gemeinsase Sprite-Farbe Nr. 1 in Multicolor (0-15)
39{s27 | 53287 |spo27 Farbe fir Sprite Wr. 0 (0-15)
40[$28 | 5328380028 Farbe fiir Sprite Wr. 1 (0-15)
41{$29 | 53289 [$p029 Farbe fir Sprite Wr. 2 (0-15)
42|24 | 532908002 Farbe fir Sprite Wr. 3 {0-15)
43828 | 53291 [$D028 Farbe fiir Sprite Nr. 4 (0-15)
ws2e | 53292s0ze Farbe fiir Sprite Mr_ 5 (0-15)
45{$2p | 53293 [$po2D Farbe fiir Sprite Nr. 6 (0-15)
1o[soE | 530m Farbe fiir Sprite Nr. 7 (0-15)

292

6.9 Literaturhinweise

Commodore 64:

Sally Greenwood Larsen

Sprite Graphics for the Commodore 64
Micro Text Publications

ISBN: 0-13-838144-5

Compute!’s First Book of Commodore 64
Compute! Books Publication
ISBN: 0-942386-20-5

C. Lorenz

Beherrschen Sie Ihren Commodore 64
Hofacker Verlag

ISBN: 3-88963-147-9

Stan Krute

Commcdore 64 Graphics & Sound Programming
Tab Books Inc.

ISBN: 0-8306-0140-6

Shaffer

Commodore 64 Color Graphics: A Beginners Guide
The Book Company

ISBN:0-912003-06-5

Angerh. /Briick./Eng. /Gerits
64 intern

DATA BECKER GmbH

ISBN: 3-89011-000-2

Graphik-Fachbiicher:

Faux/Pratt

Computational Geometry for Design and Manufacture
Ellis Horwood Limited

ISBN: 0-85312-114-1

293

Hearn/Baker

Computer Graphics for the IBM Personal Computer
Prentice-Hall, Inc.

ISBN: 0-13-164335-5

Encarnacao

Computer Aided Design-Modelling, Systems Engineering,
CAD-Systems

Springer-Verlag

ISBN: 0-387-10242-6

Encarncao

Computer-Graphics -~ Programmierung und Anwendung von
graphischen Systemen

R.Oldenbourg Verlag

ISBN: 3-486-34651-2

Brodlie

Mathematical Methods in Computer Graphics and Design
Academic Press

ISBN: 0-12-134880-6

Barnhill/Boehm

Surfaces in Computer Aided Geometric Design
North-Holland

ISBN: 0-444-86550-0

Myers

Microcomputer Graphics
Addison-Wesley Publishing Coipany
ISBN: 0~-201-05092-7

294

6.10 Nachtrag zZu Abschnitt 4.1

1664
i1e
126
1z@
1482
15
l1e@
17a@
R-=ic)
15
g}
218
228
sl
248
258
2Ed
a7

286
29
jelsdc)
zla

el

Im folgenden wird das in Abschnitt

4.1 aus technischen

Griinden fehlende Basicprogramm nachgetragen:

FEM
REM ## ¥
REM #% LOW-GRAPHIKAFPRIMT %%
REM ##¥ L2
REM
REM

PRINT CHR$C147)> @ PRINT : PRINT

FRINT" =~

FRINT" ~ e~ ~
FPRINT" Rt

PRIMT" » = -~

FRINT" -

PRINT" [ES— I E—
FRINT" e
FRINWNT" A]
PRINT" E A]
PRINWT" m #
FRIWT" e -
FRINT" [B O e
FRINT" [T
PRINT" L I N e L
FRINT" T T

FRINT" | EUR—

295

TR

EM BILDSCHIRM LOESCHEM~LEERZEILEH

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

M.N

MU TLULK

J.ELM

HLMLLLK

FJ

F.F.F.L.L.F.P

HaM .

HaMLL

MM

DL LY PN

HoF LS. HLM

H.Z . NGHLALS UL T
HoCLFHLM UL E LE K
HLOLHL MM = E LWL
VRO LYY LYY
L.P.F.P.F.F.&

Laden, Starten-

DIE DISKETTE ZUM BUCH

Ober 500.000 DATA BECKER Bucher sind bisher verkauft und
das nicht ohne Grund. Die beliebten DATA BECKER Stan-
dardwerke zum VC 20 und zum COMMODORE 64 stecken
voller Programmiertips und Listings, die jeder Leser
am liebsten sofort am Gerat ausprobieren mochte.
Doch ohne fleiBiges Abtippen der Programme
1auft nichts. Abtippen ist so langweilig wie
unzuverlissig; der kleinste Tippfehler kann
den ganzen SpaB verderben. Ab sofort
nimmt lhnen DATA BECKER diese
Arbeit ab. Die DISKETTEN ZUM BUCH
enthalten alle Programme und
Utilities, die Sie als Listing im jeweiligen
Buch finden. Diskette ins Laufwerk, ge-
wiinschtes Programm laden, starten
und schon kénnen Sie mit der ausge-
tuftelten Software der DATA BECKER
Autoren arbeiten. Und: Sie haben die
sicherheit, daB diese Programme
wirklich auf Anhieb laufen.

Ist das nichts?

Die Diskette zum Buch:
Das groBe Drucker-Buch. DM 39—

Die Diskette zum Buch:
Das Maschinensprachebuch

zum COMMODORE 64. DM 39,- @
. Die Diskette zum Buch:

Die Diskette zum Buch: "

Das Maschinensprachebuch fir Pascal GaTios & o
Fortgeschrittene zum COMMODORE g

64.DM 39~ Die Diskette zum Buch:

Das Grafikbuch zum

Die Diskette zum Buch: COMMODORE 64. DM+39,~

Das groBe Floppy-Buch. DM 39,-
Die Diskette zum Buch:

Die Diskette zum Buch: 64 INTERN. DM 39,-
64 Tips & Tricks. DM 39- o Die Diskette zum Buch:
Die Diskette zum Buch: Das Trainingsbuch zu Datamat
Die Diskette zum Buch: Das 64 fur Profis. DM 39,- DM39,-

Schulbuch zum COMMODORE 64.

Diese Superdiskette enthalt zusatz- Die Diskette zum Buch: Die Diskette zum Buch:
lich noch 14 weitere Lernprogramme VC-20 Tips & Tricks. DM 39,- @ Adventurss —
und ein ca. 70seitiges Handbuch. und wie man sie programmiert

Ein absolutes MuB fur Schuiler, Lehrer Die Diskette zum Buch: N DM 49~
und Eltern. DM 49~ APPLE Il Tips & Tricks. DM 39,- '

DATA BECKER BUCHER & PROGRAMME erhalten Sie im Computer-Fachhandel, in guten
Buchhandlungen und in den Fachabteilungen der Kauf- und Warenhauser.

DATA BECKER

Merowingerstr. 30 - 4000 Diisseldorf - Tel. (0211) 310010 - im Hause AUTO BECKER

Spickzettel
ade. -

Ein neues DATABECKERBUCH, ||| comwooone se
das den Einsatz des COMMO-
DORE 64 in der Schule ent- @" ,
scheidend mitpragen dirfte, ﬂ:'
wurde von Professor VoB fu 3
geschrieben. Besonders fir —~y
Schiler der Mittel- und Ober- £ DATA BECKER BUCH
stufe geschrieben, enthilt \
das Buch viele interessante

Problemi6sungs- und Lernprogramme, die beson-
ders ausfuhrlich und leicht verstandlich beschrie-
ben sind. Sie ermdglichen ein intensives und anre-
gendes Lernen, unter anderem mit folgendenThe-
men: Satz des Pythagoras, quadratische Gleichun-
gen, geometrische Reihen, Pendelbewegungen,
mechanische Hebel, Molekilbildung, exponentiel-
leswachstum,vokabeln lernen, unregelmagigeVver-
ben, Zinseszinsrechnung. Ein kurzer Uberblick Giber
dieGrundlagen der EDV, eine knappeWiederholung
der wichtigsten BASIC-Elemente und eine Einflh-
rung in die Grundziige der Problemanalyse vervoll-
stindigen dasGanze. Mit diesem Buch machen die
Hausaufgaben wieder SpaB!

DAS SCHULBUCH ZUM COMMODORE 64,1984, Uiber 300
Seiten, DM 49-

Tempo!
MASCHINENSPRACHE FUR
FORTGESCHRITTENE ist be-
reits das zweite Buch von
Lothar Englisch zum Thema
Maschinenpregrammierung
mit dem CCMMODORE 64.
Hier wird von der Problem-
analyse bis zum Maschinen-
sprachealgorithmus in die
Grundiagen der professio-
nellen Maschinensprache-
programmierung eingefinhrt. In diesem Buch fin-
den Sie unter anderem folgende Themen behan-
delt: Problemidsungen in Maschinensprache, Pro-
grammierung von Interruptroutinen, Interrupt-
quellen beim COMMODORE 64, Interrupts durch
CIA's und Videocontroller, Programmierung der
Ein-Ausgabe-Bausteine, die CIA's des COMMODORE
64, Timer, Echtzeituhr, paraliele und serielle Ein/
Ausgabe, BASIC-Erweiterungen, Programmierung
eigener BASIC-Befehle und -Funktionen, Méglich-
keiten zur Einbindung ins Betriebssystem sowie
viele weitere Tips & Tricks zur Maschinenprogram-
mierung. Dieses Buch solite jeder haben, der wirk-
lich intensiv mit der Maschinensprache des COM-
MODORE 64 arbeiten will.

MASCHINENSPRACHE FUR FORTGESCHRITTENE, 1984,
ca. 200 Seiten DM 39-

Macht Druck.

DAS GROSSE DRUCKERBUCH
fur Drucker-Anwender mit
COMMODORE-Computern ist
endlich da! Es enthdlt eine
riesige Sammiung von Tips
& Tricks, Programmilistings
und Hardwareinformatio-
nen. Rolf Briickmann und
Klaus Gerits beschaftigen
sich mit Sekundaradressen,
AnschluB einer Schreib-
maschineam Userport, Druckerschnittstellen (Cen-
tronics, V 24, IEC-Bus), hochauflésender Grafik, Text-
und Grafikhardcopy, Grafik mit Standardzeichen-
satz, formatierter Datenausgabe, Plakatschrift,
Textverarbeitung und vieles mehr. Zusatzlich wird
das Betriebssystem des MPS801zeriegt, mit Prozes-
sorbeschreibung (8035), Blockschaltbild und einem
ausfuihrlich kommentierten ROM-Listing. Thomas
Wiens schrieb den Teil iiber die Programmierung
des PlottersVC-1520: Handhabung des Plotters, Pro-
grammierung von Sonderzeichen, Funktionendar-
stellung, Kuchen und Saulendiagramme, Entwurf
dreidimensionaler Gegenstande. Natirlich wieder
viele interessante Listings. Unentbehrlich fur
jeden, der einen COMMODORE 64 oder VC-20 und
einen Drucker besitzt.

DAS GROSSE DRUCKERBUCH, 1984, Uber 300 Seiten,
DM 49-

Tausend-
sassa.

Fast alles, was man mit dem
COMMODORE 64 machen
kann, ist in diesem Buch aus-
fuhrlich beschrieben. Es ist
nicht nur spannend zu lesen
wie ein Roman, sondern ent-
halt neben nitzlichen Pro-
grammlistings vor allem
viele, viele Anwendungs-
maoglichkeiten des C64. Dabei wurde besonderer
Wert darauf gelegt, daB das Buch auch fir Laien
leicht verstandlich ist. Eine Auswahl aus der The-
menvielfalt: Gedichte vom Computer, Einladung
zur Party, Diplomarbeit - professionell gestaltet,
individuelle Werbebriefe, Autokosten im Griff, Bau-
kostenberechnung, Taschenrechner, Rezeptkartei,
Lagerliste, personliches Gesundheitsarchiv, Diat-
plan elektronisch, intelligentes Worterbuch, kieine
Notenschule, CAD fur Handarbeit, Routenoptimie-
rung, Schaufensterwerbung, Strategiespiele. Teil-
weise sind Programmlistings fertig zum Eintippen
enthalten, soweit sich die ,Rezepte” auf 1-2 Seiten
realisieren lieBen. Wenn Sie bisher nicht immer
wuBten, was Sie mit Ihrem 64er alles anfangen soll-
ten, nach dem Lesen des IDEENBUCHES wissen Sie's
bestimmt!

DAS IDEENBUCH ZUM COMMODORE 64, 1984, Uber 200
Seiten, DM 29~

EIN DATA BECKER BUCH

EIN DATA BECKER BUCH

Prof. 64.

Ein faszinierendes Buch, um
in die Welt der Wissenschaft
einzusteigen, hat Rainer
Severin geschrieben. Zu-
ndachst werden Variablen-
typen, Rechengenauigkeit
und nitzliche POKE-Adres-
sen des COMMODORE 64
beziiglich den Anforderun-
gen wissenschaftlicher Pro-
bleme analysiert. Verschie-
dene Sortieralgorithmen wie Bubble, Quick und
Shell-Sort werden miteinander verglichen. Die Pro-
grammbeispiele aus der Mathematik nehmen
dabei eine zentrale Stelle im Buch ein: Nullstellen
nach Newton, numerische Ableitung mit dem Dif-
ferenzenquotienten, lineare und nichtlineare
Regression, Chi-Quadrat-Verteilung und Anpas-
sungstest, Fourieranalyse und -synthese, Skalar-
Vektor- und Spatprodukt, ein Programmpaket zur
Matrizenrechnung fur Inversion, Eigenwerte und
vieles weitere mehr. Programme aus der Chemie
(Periodensystem), Physik, Biologie (Schadstoffe in
Gewadssern - Erfassung der MeBwerte), Astronomie
(Planetenpositionen) und Technik (Berechnung
komplexer Netzwerke, Platinenlayout am Bild-
schirm) und viele weitere Softwarelistings zeigen
die riesigen Méglichkeiten auf, die der Computerin
Wissenschaft und Technik hat.

COMMODORE 64 FUR TECHNIK UND WISSENSCHAFT,
1984, Uber 200 Seiten, DM 49-

Grundkurs.

Das neue BASIC-Trainings-
buch zum C-64 ist eine aus-
fluhrliche, didaktisch gut
geschriebene Einfiihrung in
das CBM BASIC V2. Alle
Befehle werden ausfuhrlich
erldutert. Dieses Buch geht
aber Uiber eine reine Befehls-
beschreibung hinaus, es wird
eine fundierte Einfihrungin
die Programmierung gege-
ben. Von der Problemanalyse bis zum fertigen
Algorithmus lernt man das Entwerfen eines Pro-
grammes und den Entwurf von DatenfluBplanen.
ASCli-Code und verschiedene Zahlensysteme wie
hexadezimal, bindr und dezimal sind nach der Lek-
tare des Buches keine Fremdworte mehr. Die Pro-
grammierung von Schleifen, Springen, bedingten
Springen lernt man leicht durch ,learning by
doing“. So enthdlt das Trainingsbuch viele Auf-
gaben, Ubungen und unzihlige Beispiele. Den
SchiuB des Buches bildet eihe Einflihrung ins pro-
fessionelle Programmieren, in der es um mehr-
dimensionale Felder, Menuesteuerung und unter-
programmtechnik geht. Endlich ein Buch, das
Ihnen wirklich hilft, solide und sicher BASIC zu ler-
nen.

BASIC TRAININGSBUCH ZUM COMMODORE 64, 1984,
ca. 250 Seiten, DM 39-

Sang und Klang!

Der COMMODORE 64 ist ein
Musikgenie. DAS MUSIKBUCH
hilft Ihnen, die riesigen
Klangmadglichkeiten des C64
zu nutzen. DieThemenbreite
reicht von einer Einfihrung
in die Computermusik Uber
die Erkldrung der Hardware-
grundlagen des COMMODORE
64 und die Programmierung
in BASIC bis hin zur fort-
geschrittenen Musikpro-
grammierung in Maschinensprache. Einiges aus
dem Inhalt: Soundregister des COMMODORE 64,
Gate-Signal, Programmierung der "ADSR“Werte,
synchronisation und Ring-Modulation, Counter-
prinzip, lineare und nichtlineare Musikprogram-
mierung, Frequenzmodulation, Interrupts in der
Musikprogrammierung und vieles mehr. Zahi-
reiche Beispielprogramme, komplette Songs und
nutzliche Routinen erganzen den Text. Geschrie-
ben wurde das Buch von Thomas Dachsel, dem
Autor der weltbekannten Musikprogramme Syn-
thimat und Synthesound. ErschlieBen Sie sich die
Welt des Sounds und der Computermusik mit dem
Musikbuch zum C-64!

DAS MUSIKBUCH ZUM COMMODORE 64, (iber 200 Sei-
ten, DM 39-

Nutzlich.

Das Trainingsbuch zu MULTI-
PLAN bietet eine gute Einfih-
rung in die Grundlagen der
Tabellenkalkulation. Dabei
wird groBer Wert auf ein
moglichstschnellesEinarbei-
ten in die wichtigsten
Befehle gelegt, so daB man
bald sicher mit MULTIPLAN
arbeiten kann, ob nun auf
dem COMMODORE 64 oder |JErrrvaesymm
einem anderen Rechner.Am
Ende wird man in der Lage sein, den umfangrei-
chen Befehlssatz von MULTIPLAN auch kommerziell
2u nutzen. Ubungen am Ende jedesKapitels sorgen
dafiir, daB man das Gelernte lange behdit. Grund-
lage des Buches sind viele Seminare, die der Autor
zu MULTIPLAN konzipiert und erfolgreich durch-
gefihrt hat.

DAS TRAININGSBUCH ZU MULTIPLAN, 1984, ca. 250 Sei-
ten, DM 49~

FUr Tuftler.

Ein hochinteressantes Buch
fir Hobbyelektroniker hat
Rolf Brickmann vorgelegt.
Er ist ein engagierter Techni-
ker, fur den der Computer
Hobby und Beruf zur glei-
chen Zelit ist. Vor allem aber
kennt er den C-64in-und aus-
wendig. So werden einfih-
rend die Schnittstellen des
COMMODORE 64 detalilliert
beschrieben und kurz die
Funktionsweise der ClAs 6526 erldutert. Hauptteil
des Buches sind die Beschreibungen der vielfalti-
gen Einsatzmdglichkeiten des COMMODORE 64. Die
vielen Schaltungen, von Rolf Brickmann alleselbst

entwickelt, sind jeweils umfangreich dokumen-
tiert und leichtverstandlich erklart. Die Reihe der
hier ausfuhriich behandelten Anwendungen mit
dem COMMODORE 64 ist duBerst umfangreich:
Motorsteuerung, Stoppuhr mit Lichtschranke,
Lichtorgel, A/D-Wandler, Spannungsmessung, Tem-
peraturmessung und vieles mehr. Dazu kommen
noch eine Reihe kompletter Schaltungen zum Sel-
berbauen, wie ein EPROM Programmiergerat fur
den C-64, eine EPROM-Karte, ein Frequenzzahler
und Sprachein/ausgabe (). Zusatzlich sind jeweils
Schaitplan, Softwarelisting und zu einigen Schal-
gungen sogar zusatzlich Platinenlayouts vorhan-
en.

DER COMMODORE 64 UND DER REST DER WELT, 1984,
ca. 220 Seiten, DM 49-

Computerkiinstier.

Das Grafikbuch zum COMMODORE 64 Buch aus der
Bestseller-Serie von DATA BECKER stammt aus der
Feder von Axel Plenge. Es geht weit tiber die reine
Hardware-Beschreibung der
Grafikeigenschaften desC-64
hinaus. Der inhalt reicht von
den Grundlagen der Grafik-
programmierung bis zum
Computer Aided Design. ES
ist ein Buch fir alle, die mit
ihrem C-64 kreativ tadtig sein
wollen.Themen sind z.B.: Zei-
chensatzprogrammierung,
bewegte Sprites, High-Re-
solution, Multicolor-Grafik,
Lightpenanwendungen, Be-
triebsarten des VIC, Verschie-
ben der Bildschirmspeicher,
IRQ-Handhabung, 3-Dimensionale Grafik, Projektio-
nen, Kurven-, Balken- und Kuchendiagramme, Lauf-
schriften, Animation, bewegte Bilder. Viele Pro-
grammlistings und Beispiele sind selbstverstand-
lich. Das COMMODORE-BASIC V2 unterstitzt die her-
ausragenden Grafikeigenschaften des C-64 be-
kanntlich kaum. Hier helfen die vielen Beispielpro-
gramme in diesem Buch weiter, die die faszinie-
rende Welt der Computergrafik jedermann zu-
ganglich machen. Kompetent ist der Autor dazu wie
kaum ein anderer, schlieBlich hat er das duBerst lei-
stungsfahige Programm SUPERGRAFIK geschrieben.

DAS GRAFIKBUCH ZUM COMMODORE 64,1984, 295 Sei-
ten, DM 39~

Vielfalt.

Auf dem neuesten Stand ist
VC-20 TIPS & TRICKS von Dirk
Paulissen gebracht worden,
der Uber hundert Seiten
hinzufiigte. Bisher schon
enthalten waren Informatio-
nen (ber Speicheraufbau
des VC-20 und die Erweite-
rungsmaoglichkeiten, ein Gra-
fikkapitel (ber program-
mierbare Zeichen, Lauf- FnpATABEcKER BusH
schrift und die Supererwei-
terung. Stark erweitert wurde der Abschnitt uber
POKEs und andere nutzliche Routinen.Ob esum die
Programmierung der Funktionstasten, Pro-
gramme die sich selber starten, ,Maus‘-Simulation
mit dem Joystick oder die Anderung von Speicher-
bereichen geht, man ist immer wieder Uber die
Fiille der Méglichkeiten erstaunt. Der Clou dieses

Buches sind aber die vielen Programmlistings. Die
BASIC-Erweiterungen allein stellen schon €in erst-
klassiges Toolkit dar: APPEND (Anhd@ngen von Pro-
grammen, AUTO (automatische Zeilennummerie-
rung), BASIC-Befehle auf Tastendruck, PRINT POSI-
TION, UNNEW, Strings groBer als88Zeicheneinlesen
und vieles mehr. Die Bandbreite reicht von Spielen
wie Goldgraber oder Starshooter bis zu nitzlichen
Programmen wie Cassetteninhaltsverzeichnis und
-katalog mit automatischem Suchen nach Dateien
und einem Terminkalender. Fur den VC-20 Anwen-
der ist dieser 324 Seiten-Walzer eine wahre Fund-
grube, in der es immer etwas neues zu entdecken
gibt.

VC-20 TIPS & TRICKS, 3. erweiterteund tberarbeitete
Auflage, 1984, 324 Seiten, DM 49~

Interessant.

Einen guten Einstieg in PAS-
CAL bietet dieses Trainings-
buch. Es gibt eine leichtver-
standliche Einfhrung,
sowohl in UCSD-PASCAL wie
auch in PASCAL64, wobei
allerdings EDV-und BASIC-
Grundkenntnisse voraus-
gesetzt werden. Der Autor,
Ottmar Korbmacher, ist Stu-
dent der Mathematik. Inm
gelingt es, in einem sprach- -
lich aufgelockerten Stil mit vielen interessanten
Beispielprogrammen, dem Leser Programmstruk-
turen, Ein/Ausgabe, Arithmetik und Funktionen,
Prozeduren und Rekursionen, Sets, Files und
Records naherzubringen. Die Obungsaufgaben am
Ende jeden Kapitels helfen dabei, das Gelernte zu
vertiefen. Ein Anhang mit allen PASCAL-Schliussel-
worten, der ansich schon ein umfangreiches Lexi-
kon darstellt, macht das Buch fir jeden PASCAL
Anwender interessant.

DAS TRAININGSBUCH ZU PASCAL, 1984, ca. 250 Seiten;
D

-

Bewahrt.

Die bereits dritte Auflage
von VC-20 INTERN ist wieder
erheblich erweitert worden.
Das Buch beschéftigt sich
ausfihriich mit der Technik
und dem Betriebssystem des
VC-20. Dazu gehért natirlich
zuerst einmal ein ausfuhrlich
dokumentiertes ROM-Listing.
Dazu gehort auch die Bele-
gung der Zeropage, dem
wichtigsten Speicherbe-
reich fur den 6502-Prozessor, eine ubersichtliche
Auflistung der Adressen aller Betriebssystemrouti-
nen, ihrer Bedeutung und ihrer Obergabeparame-
ter. Dies ermdglicht dem Programmierer endlich,
den VC-20 von Maschinensprache aus sinnvoll ein-
zusetzen. Denn warum Routinen, die bereits vor-
handen sind, noch einmal schreiben? Weiterer
Inhalt: Einfihrung in die Maschinensprache -
Maschinensprachemonitor, Assembler, Disassem-
bler - Verbindung von Maschinensprache- und
BASIC-Programmen - Beschreibung der wichtigen
IC's des VC-20 - Blockschaltbild - drei Original COM-
MODORE-Schaltplane. Das Buch braucht jeder der
sich intensiv mit der Maschinenspracheprogram-
mierung des VC-20 auseinandersetzen mochte.

VC-20INTERN, 3. Auflage, 1984, ca. 230 Seiten, DM 49~

Starthiife!

Dassolitelhr erstesBuchzum
COMMODORE 64 sein: 64 FOR
EINSTEIGER ist eine sehr
leicht verstandliche Einfih-
rung in Handhabung, Ein-
satz, Ausbaumadglichkeiten FUR EINSTEIGER
und Programmierung des oV
COMMODORE 64, die keinerlei ;::l
Vorkenntnisse voraussetzt.

Sie reicht vom Anschiug des |
Gerats uber die Erklarung

der einzelnen Tasten und ¢
Funktionen sowie die Peripheriegerate und ihre
Bedienung bis zum ersten Befehl. Schritt fur
Schritt fuhrt das Buch Sie in die Programmier-
sprache BASIC ein, wobei Sie nach und nach eine
komplette Adressenverwaitung erstellen, die Sie
anschlieBend nutzen kénnen. Zahireiche Abbildun-
gen und Bildschirmfotos ergénzen den Text. Viele
Anwendungsbeispiele geben nitzliche Anregun-
gen zum sinnvollen Einsatz des COMMODORE 64.Das
Buchistsowohl als Einfiihrung alsauch als Orientie:
rung vor dem 64er Kauf gut geeignet.

64 FUR EINSTEIGER, 1984, Ca. 200 Seiten, DM 29-
Von A bis 2.

So etwas haben Sie gesucht: Umfassendes Nach-
schlagewerk zum COMMODORE 64 und seiner Pro-
grammierung. Aligemeines Computerlexikon mit
Fachwissen von A-Z und
Fachwadrterbuch mit Ober-
setzungen wichtiger engli-
scher Fachbegriffe - das
DATA BECKER LEXIKON ZUM
COMMODORE 64 stellt prak-
tisch drei Bucher in einem
dar. Es enthdlt eine unglaub-
liche Vielfalt an Informatio-
nen und dient so zugleich als
kompetentes Nachschlage-
werk und als unentbehr-
liches Arbeitsmittel. Viele
Abbildungen und Beispiele erganzen den Text. Ein
MuB fur jeden COMMODORE 64 Anwender!

DAS DATA BECKER LEXIKON ZUM COMMODORE 64,
1984, 354 Seiten, DM 49,

Fundgrube.

64 Tips & Tricks ist eine hoch-
interessante Sammiung von
Anregungen zur fortge-
schrittenen Programmie-
rung des COMMODORE 64,
POKE's und andere nitz-
liche Routinen, interessan-
ten Programmen - sowie
interessanten Programmier-
tips & -tricks. Aus dem Inhait:
3D-Graphikin BASIC-Farbige
Balkengraphik - Definition
eines eigenen Zeichensatzes - Tastaturbelegung
und ihre Anderung - Dateneingabe mit Komfort -
Simulation der Maus mit einem Joystick - BASIC fur
Fortgeschrittene - C-64 spricht deutsch - CP/M auf
dem COMMODORE 64 - DruckeranschiuB Uber den
USER-Port - Datenlibertragung von und zu ande-
ren Rechnern -Expansion-Port-Synthesizerin Ste-
reo - Retten einer nicht ordnungsgemas geschlos-
senen Datei - Erzeugen einer BASIC-Zeile in BASIC -
Kassettenpuffer als Datenspeicher — Sortieren von
stringfelder - Multitasking auf dem COMMODORE
64 - POKE's und die Zeropage - GOTO, GOSUB und
RESTORE mit berechneten zeilennummern, INSTR
und STRING-Funktion - Repeat-Funktion fur alle

Tasten - und vieles andere mehr. Alle Maschinen-
programme mit BASIC-Ladeprogrammen. 64 Tips &
Tricks ist eine echte Fundgrube fur jeden COMMO-
DORE 64 Anwender. Schon (iber 65000mal verkauft!

64 TIPS & TRICKS, 1984, Uber 300 Seiten, DM 49~

Know-how!

350 Seiten dick ist die 4.
erweiterte und Uberarbei-
tete Auflage von 64 INTERN
geworden. Das bereits tiber
65000mal verkaufte Stan-
dardwerk bietet jetzt noch
mehr Informationen. Hinzu-
gekommen ist ein Kapitel
uber den IEC-Bus und viele,
viele Erganzungen, die sich
im Laufe der Zeit angesam-
melt haben. Ebenfalls Uber-
arbeitet und noch ausfiihrlicher ist jetzt die Doku-
mentation des ROM-Listings. Weitere Themen:
genaue Beschreibung des Sound- und Video-Con-
trollers mit vielen Hinweisen zur Programmierung
von Sound und Grafik, der Ein/Ausgabesteuerung
(CIAS), BASIC-Erweiterungen (RENEW, HARDCOPY,
PRINTUSING), Hinweise zur Maschinenprogrammie-
rung wie Nutzung der E/A-Routinen des Betriebs-
systems, Programmierung der Schnittstelle RS 232,
einVergleich VC20 - C-64 - CBM zur Umsetzung von
Programmen. Dies und viele weitere Informatio-
nen machen das umfangreiche Werk zu einem
unentbehrlichen Arbeitsmittel fir jeden, der sich
ernsthaft mit Betriebssystem undTechnik des C-64
auseinandersetzen will. Zum professionellen
Gehalt des Buches tragen auch zwei Original-COM-
MODORE-Schaltplane zum Auskiappen und zahl-
reiche ausfuhrlich beschriebene und dokumen-
tierte Fotos, Schaltbilder und Blockdiagramme bei.

64INTERN, 4. Uberarbeitete und erweiterte Auflage,
1984, ca. 350 Seiten, DM 69~

ENDATA BECKER BUCH

Erfolgreich.

64 fur Profis zeigt, wie man
erfolgreich Anwendungs-
probleme in BASIC |6st und
verrat die Erfolgsgeheim-
nisse der Programmier-
profis. vom Programment-
wurf Uber Menusteuerung,
Maskenaufbau, Parametri-
sierung, Datenzugriff und
Druckausgabe bis hin zur
guten Dokumentation wird
anschaulich mit vielen Bei-
spielen dargestellt wie Profi-Programmierung vor
sich geht. Besonders stolz sind wir auf die vollig
neuartige Datenzugriffsmethode QUISAM, die in
diesem Buch zum ersten Mal vorgestelit wird.
QUISAM erlaubt eine beliebige Datensatzlange, die
dynamisch mit der Eingabe der Daten wachst.Eine
lauffertige Literaturstellenverwaltung veran-
schaulicht die Arbeitsweise von QUISAM.Nebendie-
sem Programm finden Sie noch weitere Pro-
grammezurLager-und Adressenverwaitung, Text-
verarbeitung und einen Reportgenerator. Alle
diese Programme sind mit Variablenliste versehen
und ausfiihrlich beschrieben. Damit sind diese fur
Ilhre Erweiterungen offen und kénnen von ihnen
an Ihre personlichen Bedirfnisse angepaBt wer-
den. Steigen Sie in die Welt der Programmierprofis
ein.

64 FUR PROFIS, 2. Auflage, 1984, ca. 300 Seiten,
DM 49-

Rundum gut!

Endlich ein Buch, das Ihnen
ausfihrlich und verstandlich
die Arbeit mit der Floppy VC-
1541 erklart. Das groBe
Floppybuch ist fir Anfanger,
Fortgeschrittene und Profis
gleichermaBen. interessant.
Sein Inhait reicht von der
Programmspeicherung bis
zum DOS-zugriff, von der
sequentiellen Datenspeiche-
rung bis zum Direktzugriff,
von der technischen Beschreibung bis zum aus-

fuhrlich dokumentierten DOS-Listing, voh den
Systembefehlenbis zur detaillierten Beschreibung
der Programme auf der Test-Demo-Diskette. Exakt
beschriebene Beispiel- und Hilfsprogramme ergin-
zen dieses neue Superbuch. Aus dem Inhalt: Spei-
chern von Programmen - Floppy-Systembefehle —
Sequentielle Datenspeicherung - relative Daten-
speicherung - Fehlermeldungen und ihre Ursa-
chen - Direktzugriff - DOS-Listing der VC-1541 -
BASIC-Erweiterungen und Programme - Overlay-
technik - Diskmonitor - IEC-Bus und serieller Bus -
Vergleich mit den groBen CBM-Floppies.EinMuB fir
jeden Floppy-Anwender! Bereits (iber 45.000mal
verkauft.

DAS GROSSE FLOPPY-BUCH, 2. iberarbeitete Auflage,
1984, ca. 320 Seiten, DM 49, -

BASIC-PLUS.

SIMON's BASIC ist ein Hit -
wenn man es richtig nutzen
kann. Auf Uber 300 Seiten
erkidrt Ihnen das DATA
BECKER Trainingsbuch detail-
liert den Umgang mit den
Uber 100 Befehlen des
SIMON's BASIC. Alle Befehle
werden ausfuhrliich dar-
gestellt, auch die, die nicht
im Handbuch stehen! Natir-
lich zeigen wir auch die
Macken des SIMON's BASIC und geben wichtige Hin-
weise wie man diese umgeht. Natirlich enthalt das
Buch viele Beispielprogramme und viele inter-
essante Programmiertricks. Weiterer Inhait: Ein-
fihrung in das CBM-BASIC 2.0 - Programmierhilfen
- Fehlerbehandlung - Programmschutz - Pro-
grammstruktur -Variablen - Zahlenbehandlung -
Eingabekontrolle-Ein/Ausgabe Peripheriebefehle
- Graphik - Zeichensatzerstellung - Sprites - Musik
-SIMON's BASICunddieVertraglichkeitmitanderen
Erweiterungen und Programmen. Dazu ein um-
fangreicher Anhang. Nach jedem Kapitel finden Sie
Testaufgaben zum optimalen Selbststudium und
zur Lernerfolgskontrolle.

DAS TRAININGSBUCH ZUM SIMON's BASIC, 2. iber-
arbeitete Auflage, 1984, ca. 380 Seiten, DM 49-

Futtern
erwinscht!

Diese beliebte umfangreiche
Programmsammiung hat es
in sich. Uber 50 Spitzenpro-
gramme fir den COMMO-
DORE 64 aus den unterschied-
lichsten Bereichen, von
attraktiven Superspielen
(Senso, Pengo, Master Mind,
Seeschlacht, Poisson Square,
Memory) iber Grafik- und
Soundprogramme (Fourier 64, Akustograph, Funk-
tionsplotter) und mathematische Programme
(Kurvendiskussion, Dreieck) sowie Utilities (SORT,
RENUMBER, DISK INIT, MENUE) bis hin zu kompletten
Anwendungsprogrammen wie Videothek*, ,File
Manager* und einer komfortablen Haushaltsbuch-
fuhrung, inder fast professionell gebuchtwird.Der
Hit zu jedem Programm sind aktuelle Program-
miertips und Tricks der einzelnen Autoren zum Sel-
bermachen. Also nicht nur abtippen, sondern auch
dabei lernen und wichtige Anregungen fir die
eigene Programmierung sammeiln.

DATA BECKER's GROSSE 64er PROGRAMMSAMMLUNG,
1984, 250 Seiten, DM 49~

Schrittmacher.

Eine leicht verstandliche Ein-
fihrung in die Maschinen-
spracheprogrammierung
fur alle, denen das C-64 BASIC
nicht mehr ausreicht. Sie
lernen Aufbau und Arbeits-
weise des 6510-Mikroprozes-
sors kennen und anwenden.
Dabei werden die Analogien
zu BASIC Ihnen beim Verstandnis helfen. Ein weite-
res Kapitel beschaftigt sich mit der Eingabe von
Maschinenprogrammen. Dort erfahren Sie auch
alles Gber Monitor-Programme sowie (iber Assem-
bler. Zum einfachen und komfortablen Erstellen
Ihrer eigenen Maschinensprache enthalt das Buch
einen kompletten ASSEMBLER, damit Sie gleich von
Anfang an komfortabel und effektiv programmie-
ren kdnnen. Weiterhin finden Sie dort einen DIS-
ASSEMBLER, mit dem Sie sich Ihre Maschinenpro-
gramme oder die Routinen des BASIC-Interpreters
und des BASIC-Betriebssystems ansehen kénnen.
Ein besonderer Clou ist ein in BASIC geschriebener
Einzelschrittsimulator, mit dem Sie Ihre Pro-
gramme schrittweise ausfiihren kénnen. Dabei
werden Sie nach jedem Schritt Gber Register-
inhalte und Flags informiert und kénnen den logi-
schen Ablauf Ihres Programmes verfolgen. Eine
unschatzbare Hilfe, besonders fur den Anfanger.
Als Beispielprogramm finden Sie ausfuhrlich
beschriebene Routinen zur Grafikprogrammie-
rung und fur BASIC-Erweiterungen. Natirlich sind
alle Beispiele und Programme auf den C-64 zuge-
schnitten.

DAS MASCHINENSPRACHEBUCHZUM COMMODORE 64,
ca. 200 Seiten, DM 39~

SYNTHIMAT

SYNTHIMAT verwandelt ihren COMMODORE64in
einen professionelien, polyphonen,dreistimmi-
gen Synthesizer, der in seinen unglaublich vie-
len Moglichkeiten groBen Systemen kaum
nachsteht.

SYNTHIMAT In Stichworten:

drei Oszillatoren (VCOs) mit 7 FuBlagen und 8
Wellenformen - drei Hillkurvengeneratoren
(ADSRS) - ein Filter (VCF) mit 8 Betriebsarten und
Resonanzregulierung - VCF mit Eingang fir
externe Signalquelle - ein Verstarker (VCA) -
Ringmodulation mit allen drei VCOs - 8 soft-
waremagig realisierte Oszillatoren (LFOS) - kraf-
tiger Klang durch polyphones Spielen - zwei
Manuale (Solo und Begleitung) - speichern von
bis zu 256 Klangregistern - schneller Register-
wechsel - speichern von 9 Registerdateien auf
Diskette - ,Bandaufnahme" auf Diskette durch
direktes Spielen - keine lastige Noteneingabe -
speichern von bis zu 9 ,Bandaufnahmen" je Dis-
kette - integrierte 24 Stunden-Echtzeituhr -
einstellbares PITCH-BENDING - farblich gekenn-
zeichnete, ibersichtlich angeordnete Module -
umfangreiches Handbuch -1auft miteinem Dis-
kettenlaufwerk - Diskettenprogramm.

DM 99-

STRUKTO 64

STRUKTO 64 ist eine fantastische neue Program-
miersprache fir strukturiertes Programmieren
mit dem C-64 und fiir alleProgrammierer geeignet,
die den C-64 als Allround-Computer einsetzen und
auf einfache Weise anspruchsvolle Programme
erstellen wollen.

STRUKTO 64 In Stichworten:
Interpretersprache, die die Vorzuge von BASICund
PASCAL vereint - strukturiertes Programmieren -
ubersichtliche Programme - leichte Erlernbarkeit
- einfache Bedienung - eingebautesToolkit erleich-
tert das Eingeben und Verbessern von Program-
men - leichteres Arbeiten mit der Floppy - Sprite-
Editor ermdglicht das Einlesen der Sprite-Formen
direkt vom Bildschirm - Graphikbedienung wird
mit gut durchdachten Befehlen unterstutzt -
Abspielen von Musik ist unabhangig vom Pro-
grammablauf moglich —ca.80neueBefehle -liefer-
bar als Diskettenprogramm - ausfiihrliches deut-
sches Handbuch.

DM 99-

FUr viele ein Traum, fiir die meisten bisher zu
teuer: die Rede ist von einer echten Datenbank
fur den 64er. SUPERBASE 64 fillt eine Lucke.
Nicht allein die Kapazitdt, die verwaltet werden
kann, bewegt sich in professionellen Regionen,
die ausgepragten Fahigkeiten des SUPERBASE
64 im Rechnen und Kalkulieren lassen dieses
Paket beinahe als Rund-Um-Software erschei-
nen.

SUPERBASE 64 in Stichworten:
maximale Datensatzlange 1108 Zeichen, verteilt
auf bis zu 4 Bildschirmseiten - bis zu 127 Felder
pro Datensatz, wobei Textfelder bis zu 255 Zei-
chen lang sein kdnnen - insgesamt 15 Einzel-
dateien kénnen zu einer SUPERBASE-Datenbank
verkniipft werden - Speicherkapazitat nur
durch Diskette begrenzt - umfangreiche Aus-
wertungsmoglichkeiten und komfortabler
Report-Generator - Kalkulationsmdglichkeiten
und Rechnen - Import- (Einlesenvon externen
Daten) und Export- (Ausgabe von SUPERBASE
Dataien als sequentielle Dateil Funktionen
ermdoglichen Datenaustausch mitanderen Pro-
grammen - durch leistungsfihige, eigene
Datenbanksprache auch als kompletter An-
wendungsgenerator verwendbar.

DM 398~

=D
MASTER 64

MASTER 64 ist ein professionelles Programm-
entwicklungssystem fir den C-64, das es Ihnen
ermdoglicht, die Programmentwickiungszeit
auf einen Bruchteil der sonst (blichen Zeit zu
reduzieren. MASTER 64 bietet einen Programm-
komfort, den Sie nutzen soliten.

MASTER 64 in Stichworten:

70 zusdtzliche Befehle - Bildschirmmasken-
generator - definieren von Bildschirmzonen -
Eingabe aus Zonen - formatierte Ausgabe -
Abspeicherung von Bildschirminhalten - Arbei-
ten mit mehreren Bildschirmmasken - ISAM
Dateiverwaltung, in der Datensatze (iber einen
2ugriffschlisselangesprochenwerden konnen
- Datensatze biszu 254 Zeichen -Schlissellange
bis zu 30 Zeichen - DateigréBe nur von Disket-
tenkapazitat abhangig - Zugriff iber Schlussel
und Auswahimasken - Bildschirm- und Druck-
maskengenerator - Erstellung beliebiger For-
mulare und Ausgabemasken - BASIC-Erweite-
rungen - Toolkitfunktionen - Mehrfachgenaue
Arithmetik (Rechnen mit 22 Stellen Genauig-
keit).

DM 198~

TEXTOMAT

Das Bearbeiten von Texten gehért zum wichtig-
sten Betdtigungsfeld von Homecomputer-An-
wendern. So ist es auch nicht verwunderlich,
daBeineUnzahlverschiedenerTextprogramme
fur den 64er angeboten wird. TEXTOMAT zeich-
net sich dadurch aus, daB er auch vom Einstei-
ger sofort benutzt werden kann. Ober eine
Menuezeile kdnnen alle Funktionen angewahit
werden. Selbstverstandlich beherrscht TEXTO-
MAT deutsche Umlaute und Sonderzeichen.

TEXTOMAT In Stichworten:
Diskettenprogramm - durchgehend menue-
gesteuert - deutscher Zeichensatz auch auf
COMMODORE-Druckern Rechenfunktionen fir
alleGrundrechenarten -24.000Zeichen proText
im Speicher - beliebig lange Texte durch Ver-
kniipfung - horizontales Scrolling fir 80 Zei-
chen pro Zeile - 1duft mit 1 oder 2 Floppies - frei
programmierbare Steuerzeichen - Formular-
steuerung fir Randeinstellung us.w. - kom-
plette Bausteinverarbeitung - Blockoperatio-
nen, Suchen und Ersetzen - Serienbriefschrei-
bung mit DATAMAT - formatierte Ausgabe auf
Bildschirm - an fast jeden Drucker anpaBbar -
ausfihrliches deutsches Handbuch mit
Ubungslektionen.

DM 99-

(
PAINT PIC

Malen () mit dem Computer, welch eine faszinie-
rende Idee. Mit dem Malprogramm PAINT PIC flr
den COMMODORE 64 wird diese Idee Realitat. Mit
PAINT PICist esauch flr den Einsteiger leicht, fanta-
stische Computerbilder zu erstellen. Man kann die
Bilder auf Diskette abspeichern und wieder laden
und selbstverstandlich steht auch weiterhin der
COMMODORE-Zeichensatz zur Verfigung. Wichtig:
PAINT PIC benétigt keine zusatzliche Hardware.

PAINT PIC in Stichworten:
Programmsteuerung: Tastatur - Steuerung des
Stifts: Cursortasten und eckige Klammer (diag.)
(Joystick kann benutzt werden) - Routinen: Linien,
Rechtecke, Dreiecke, Parallelogramme, Kreise,
Kreishdgen, Ellipsen, Bestimmung von Mittelpunkt,
und perspektivischer Linie, Kopieren und Drehen
von Teilbildern, Verdoppeln, halbieren und spiel-
gein von Teilbildern - Modi: Malstiftmodus
(schmale Linie) Pinselmodus (8 verschiedene Brei-
ten) (Art der Linie selbst definierbar) — Textmodus
(kompl. Zeichensatz COMMODORE) (Hoch-Tief-
schrift) - Speichern: Teilbilder (Blocke) oder ganze
Bilder — Menue: 1 Hauptmenue mit 8 Untermenues
-mitausfuhrlichem deutschen Handbuch - Disket-
tenprogramm - Bilder kann man auf Diskette
abspeichern.

DM 99~

s SS-./

PROFIMAT

Wer sich tiefer in die Innereien des Computers
begeben will, kommt ohne besonderes Werk-
zeug hicht aus. Einerseits muB der volle Einblick
in alle Speicherbereiche moglich sein, anderer-
seits soll der umgang mit Maschinenprogram-
men so komfortabel wie mdglich gestaitet sein.
PROFIMAT hat Lésungen fur beide Probleme:
Der Maschinensprache-Monitor PROFI-MON bie-
tetalle Hilfsmittel zum Umgang mit Maschinen-
programmen; PROFI-ASS ist ein Macro-Assem-
bler, der das Schreiben von Maschinenpro-
grammen fast so einfach macht wie das Pro-
grammieren in BASIC.

PROFIMAT In Stichworten:
Registerinhalte und Flags anzeigen - Speicher-
inhalte anzeigen - Maschinenprogramme
laden, ausfiihren und speichern - Speicher-
bereiche durchsuchen, vergleichen, fullen und
verschieben - echter Einzelschrittmodus - Set-
zen von Unterbrechungspunkten - schneller
Trace-Modus - Ruickkehr zu BASIC - formatfreie
Eingabe - Verkettung beliebig vieler Quelipro-
gramme - erzeugter Objektcode kann in Spei-
cher oder auf Diskette gehen - formatiertes'
Assemblerlisting - ladbare Symboitabellen -
redefinierbare Symbole - Operatoren - unter-
stutzung der FlieBkommaarithmetik - be-
dingte Assemblierung - Assemblerschieifen -
MACROS mit beliebigen Parametern.

DM 99~

KONTOMAT

KONTOMAT ist ein menuegesteuertes Einnah-
me-OberschuBprogramm nach §4(3) EStG mit
Kassenbuch, Bankkonteniiberwachung, auto-
matischer Steuerbuchung, AFA Tabellenerstel-
lung, Kontenblattern, Ermittiung der USt-Vor-
anmeldungswerte und Monats- und Jahres-
abrechnung. Der neue KONTOMAT ist voll para-
meterisiert und 148t sich damit an Ihre Bedrf-
nisse anpassen. Fur alieGewerbetreibenden, die
nicht laut HGB zur Buchfiihrung verpflichtet
sind. KONTOMAT ist fiir den gewerblichen Ein-
satz, aber auch als Lernprogramm oder zur
Haushaltsbuchfiihrung geeignet.

KONTOMAT In Stichworten:
Diskettenprogramm - maximal 120 Konten -
Betrage mitbiszu 6Vor-und 2Nachkommastellen-
4 Mehrwert- und Vorsteuersatze - intervallmagige
Belegeingabe - 4 Buchungsarten (SOLL, HABEN,
SOLL/HABEN und*HABEN/SOLL) - Anzeige der Soll-
und Habensumme bei mehrfachen Buchungssat-
zen - komfortable Belegeingabe mit Datum,
Buchungstext, Stuerkennzeichen und Betrag -
Druck des Journals wahrend der Belegeingabe -
Druck von umfangreichen Kontenblattern - Druck
einer Summen- und Saldenliste mit Monats- und
Jahresumsatzsummen - betriebswirtschaftliche
Auswertung mit Druckausgabe - Ermittiung und
Druckausgabe der Umsatzsteuerzahllast - Speiche-
rung der Anlageguter und automatische Abschrei-
bung am Jahresende - bersichtliche AfA-Liste -
arbeitet mit 1 oder 2 Laufwerken -umfangreiches
deutsches Handbuch.

DM 148~

FAKTUMAT

Mit FAKTUMAT ist das Schreiben von Rechnun-
gen kein Alptraum mehr. Eine Sofortfakturie-
rung mit integrierter Lagerbuchfihrung. Indi-
viduelle Anpassung von Steuersatzen, MaBein-
heiten und Firmendaten. Kunden- und Artikel-
stamm voll pflegbar. Schneller Zugriff auf Kun-
den- und Artikeldaten, Uber freidefinierbaren,
6-stelligen Schiussel. Automatische Fortschrei-
bung von Artikel- und Kundendaten, individuell
nutzbar. Alles in allem die Arbeits- und Zeit-
ersparnis, die Sie sich schon immer gewunscht
haben.

FAKTUMAT In Stichworten:

voll menuggesteuert - 1duft mit einer oderzwei
Floppies - Diskettenwechsel (eine Floppy) nur
beim Wechsel vom Hauptmenue ins Unterpro-
gramm und umgekehrt - mit Ausnahme des
Ausschaltens der Floppy wahrend der Verarbei-
tung werden alle Fehier abgefangen (z.B. Druk-
ker nicht eingeschaltet - arbeitet mit 1525,1526
(?), MPS 801, EPSON Drucker und DATA BECKER
Interface - voll parameterisiert: Firmenkopf,
MWSt. und Rabattsitze, GréBe der Dateien belie-
big wahlbar - 5 Zeilen fur Firmenkopf je 30
Zeichen (erste Zeile erscheint auf derRechnung
in Breitschrift - 4 Mehrwertsteuer-Satze; wah-
rend der Rechnungsschreibung kdnnen also

““Artikel mit unterschiedlichem Mehrwert-

steuer-Satz verrechnet werden - 10 Rabatt-
sitze (Rabattsatz 1 vorbelegt mit 0%), bei der
Rechnungsschreibung kann jedem Artikel ein
Rabattsatz zugewiesen werden - maximal 1900
Artikel bei 50 Kunden oder 950 Kunden bei 100
Artikel (max. Artikel = [1000-Kundenl+2; max.
Kunden = [2000-Artikell/2) - manuelle Eingabe
von Artikeln und/oder Kunde wahrend der
Rechnungsschreibung - d.h. es kénnen mehr
Artikel verrechnet weden als Uberhaupt in die
Datei passen (bei Verzicht auf Lagerbuchfih-
rung) bzw. es kdnnen Rechnungen an Kunden
geschrieben werden, die nicht erfaBt wurden -

integrierte Lagerbuchfiihrung mit Ausgabe
einer Inventurliste - Rechnungsbetrage und
patum werden in der Kundendatei festgehal-
ten - Druck von: Rechnung (mit Abbuchen aus
Lager), Rechnung (ohne Abbuchen aus Lager),
Lieferschein - deutsches detailliertes Hand-
buch mit Ubungs- und Anwendungsteil -
deutsche Bedienerfihrung innerhalb des Pro-
gramms (2.B. ,Artikel nicht vorhanden® anstelle
,RECORD NOT PRESENT").

DM 148~

UNI-TAB

Heute schon die Bundesliga-Tabelle von morgen
kennen, das geht mit UNI-TAB. Alle Rechnereien, die
man ohne dieses Programm nie machen wirde,
lassen sich in Sekundenschnelle durchfihren. wer
will, kann mit simulierten Spielergebnissen den
Weltmeister '86 vorausberechnen. Aber nicht nur
FuBball-Ligen kénnen tabellarisch erfaBt werden,
fast alle Sportarten sind UNI-TAB-fahig. Gag am
Rande; fur viele Sportarten stehen die bekannten
Piktogramme zur Verfugung.

UNI-TAB in Stichworten:

Menuesteuerung (ber die Funktionstasten mit
leicht verstdandlichen Auswahimoglichkeiten -
Bedienerfreundlich (Mannschaften werden uber
Kennzahlen gesteuert) - Ligen mit 4 bis 20 Mann-
schaften kdnnen verwaltet werden (6 bis 38 Spiel-
tage maoglich) - unsinnige Ligen (z. B.13Mannschaf-
ten sollen 5 Spieltage absolvieren) sind ausge-
schlossen - favorisierte Mannschaft kann wahrend
des Programmablaufs durch reverse Darstellung
gekennzeichnet werden - Tabelle kann geandert
werden (wichtig bei Spielanullierungen) - drei ver-
schiedene Tabellenarten konnen abgespeichert
und spater eingelesen werden (die aktuelle Tabelle
{unabhadngig von der Vollstandigkeit eines Spiel-
tagesl, der komplette Spieltag [Volistandigkeit und
Nummer des Spieltages werden automatisch
errechnet], die simulierte Tabelle [der Anwender
kann so selbst Schicksal spielen und seinenTip spa-
ter mit dem tatsdchlichen Geschehen verglei-
chen) - zwei verschiedene Arten der Saisoniiber-
sicht (die statistische Obersicht zeigt an, welchen
Tabellenplatz das jeweilige Team bei weichem
Punkte- und Torverhditnis an den einzelnen Spiel-
tagen einnahm; die graphische Obersicht zeigt die
Leistungskurve jeder Mannschaft) - alle Tabellen
und Graphiken sind als Hardcopy auf einem Druk-
ker darstellbar - bei Fehlbedienung (z.B. ge-
wiinschte Druckausdabe bei nicht gingeschalte-
tem Drucker) erscheinen leicht verstindliche
deutsche Fehlermeldungen.

DM 69~

SUPERGRAFIK 64

Entdecken Sie die faszinierende Welt der Com-
putergraphik mit SUPERGRAFIK 64, der starken
Befehiserweiterung mit den vielseitigen M6g-
lichkeiten. Durch die neue verbesserte Version
jetzt noch leistungsstarker.

SUPERGRAFIK 64 in Stichworten:
2unabhangige Graphikseiten (320 x 200 Punkte)
- logische Verknipfung der beiden Graphiksei-
ten (AND, OR, EXOR) - 1 Standard Low-Graphik
Seite (80x50 Punkte) - Normalfarben Graphik
(300 x 200 Punkte) - Multicolor-Graphik (160 x 200
Punkte) - verdecktes Zeichnen (z.B. Text sicht-
bar, Graphikseite 2 wird erstellt) -Textfensterin
der Graphik - 183 Befehle und Befehiskombina-
tionen (1. Fir jeden Befehl wahlbare Zwischen-
modi: Zeichnen, Léschen, Punktieren, Graphik-
cursor bewegen, Zeichnen mit/ohne Farbset-
zung, Punkte zihlen; 2. Durch einfache Befehle
zu steuernde Graphikfiguren: Punkt, Linie,
Linienschar, Linie vom Graphik-Cursor, Kreise,
Kreisbogen, Elipse, Ellipsenbdgen, selbstdefi-
nierbare Figuren, rotieren und vegréBern die-
ser Figuren, Rahmen, Feld, Text in Graphik; 3.
Weitere Graphikbefehle: Graphikseiten- und
Moduswechsel, Graphik I6schen, Graphik inver-
tieren, Scrolling von Text und Graphik, Wahlen
der Rahmen- Hintergrund- Zeichen- oder
Punktfarbe) - Speichern, Laden von Graphik
(auch verdeckt) - Kopieren des Textbildschirms
in die Graphikseite — Hardcopies fiir EPSON, Sei-
kosha GP100VC, Farb(hdrucker Seikosha GP700
und andere mit DATA BECKER Interface - 16!
Sprites gleichzeitig auf dem Bildschirm - alle
Sprite-Eigenschaften veranderbar - Positionie-
ren und Bewegen (1) von 16 Sprites gleichzeitig
und unabhdngig voneinander, wahrend das
ubrige Programm weiterlauft (IRQ) - Sprite-Kol-
lisionsuberprifung, Joystickunterstutzung -
automatische Unterbrechung des BASIC-Pro-
gramms bei Kollisionen (interrupt), Sprung in
Unterbrechungsroutine, dann Weiterfiihrung
des Hauptprogramms - komfortable Sound-
programmierung mit Verstellung aller még-
lichen Sound-Parameter (Lautstarke, Klang, Fil-
ter, Tonhohe, Tonldnge), ebenfalls unabhangig
vom (ibrigen Programmlauf - zahlreichen Pro-
grammiertools (MERGE, RENUMBER usw.) - um-
fangreiche Anleitung - Diskettenprogramm.

DM 99--

PASCAL 64

Beim Wort ,Compiler” falit dem Eingeweihten .

sicher der Begriff ,Geschwindigkeit ein. Ein
PASCAL-Compiler solite jedoch weitere Assozia-
tionen wecken.Strukturiertes Programmieren
heiBt das Zauberwort. PASCAL wurde eigens zu
didaktischen Zwecken entwickelt und erfulit

diese Aufgabe auch heute noch. Der PASCAL 64
Compiler bringt diese phantastische Program-
miersprache auf den 64er.

Gerade die neue, verbesserte version unter-
stltzt die Moglichkeiten des C-64 in jeder Hin-
sicht und macht leistungsfahige Programme
maoglich.

PASCAL 64 in Stichworten:

besitzt einen sehr umfangreichen Befehlsvor-
rat - erlaubt Interruptprogrammierung und
bietet Schnittstellen zu Monitor und Assembler
- erzeugt sehr schnelle Programme in reinem
Maschinencode - unterstutzt relative Dateiver-
waltung, Graphik und Sound - bietet die Daten-
typen REAL, INTEGER, CHAR und BOOLEAN sowie
Aufzahitypen und POINTER, die zu Datenstruk-
turen RECORD, SET, ARRAY und PACKED ARRAY
kombiniert werden kénnen - erlaubt vorzeiti-
gen AbschiuB von Prozeduren mit EXIT, unein-
geschrankte Rekursionen und komfortableVer-
arbeitung von Teilfeldern (Strings) - ist ein aus-
gereiftes, deutsches Produkt und wird mit aus-
fuhriichem Handbuch geliefert.

DM 99~

DISKOMAT

Der Umgang mit Diskettenlaufwerken ist fur
viele hoch immer mit Geheimnissen belastet.
Andere storen sich an den wenig komfortablen
Diskettenbefehlen des BASIC V2. DISKOMAT
bringt Abnhilfe; alle Diskettenbefehle des BASIC
40 stehen zur Verfigung. AuBerdem kdénnen
mit dem Programm SUPERTWIN zwei 1541-Lauf-
werke wie ein Doppellaufwerk verwaitet wer-
den. FUr Benutzer, die sich die Fahigkeiten der
Floppy 1541 ganz erschlieBen wollen, steht der
DISK-MONITOR bereit; er macht es endlich mog-
lich, den direkten zugriff auf einzelne Blocks
einfach und bequem vorzunehmen.

DISKOMAT In Stichworten:
Diskettenprogramm - DISK BASIC unterstutzt
Diskettenbefehle des BASIC 4.0 (CONCAT,
HEADER, APPEND, RENAME, OPEN, COLLECT,
DSAVE, SCRATCH, DCLOSE, BACKUP, DLOAD, DIREC-
TORY, RECORD, COPY, CATALOG, DS & DS$) - SUPER
TWIN behandeit 2 Laufwerke 1541 wie ein Dop-
pellaufwerk-DISK-MONITOR ermdglicht direkte
Analyse und Manipulation von Disketten (direk-
tes Lesen und Schreiben einzelner Blocke,
andern von Blécken mittels Bildschirm-Editor,
Anzeige des Diskettenstatus, direktes Absen-
den von Disketten-Befehlen) - ausfuhrliches
deutsches Handbuch beschreibt jeden einzel-
nen der 3 Programmteile.

DM 99-

HAUSVERWALTUNG

Jetzt kdnnen alle Hausbesitzer aufatmen: das Pro-
gramm HAUSVERWALTUNG bietet ihnen eine sehr
komfortable Verwaltung der Mietwohnungen mit
dem COMMODORE 64.

Alles, was Sie dazu brauchen, ist ein COMMODORE 64,
ein Diskettenlaufwerk 1541, ein anschluBfahiger
Drucker und das obengenannte Programm HAUS-
VERWALTUNG. Die nachfolgendenund viele weitere
leistungsfahige Features ermdglichen eineduBerst
rationelle Verwaltung Ihrer Mietwohnungen.

HAUSVERWALTUNG in Stichworten:
Dikettenprogramm -Verwaltung von 50 Einheiten
pro Objekt moglich - Stammdatenverwaltung fur
H4user und Mieter - Verbuchen der Miete, Neben-
kosten und Garagenmieten - Mietkontoanzeige -
Haus- und Mieteraufstellung - Mahnungen - Ver-
buchen der anfallenden Kosten - Kostengegen-
Uberstellung - Jahresendabrechnung mitautoma-
tischem Jahresubertrag - umfangreiches deut-
sches Handbuch.

DM 198-

TRAININGSKURS zu ADA

Diese Programmierspracheder Zukunft, die das
Pentagon in Auftrag gegeben hat, wird jetzt
durch DATA BECKER auch dem C-64 Anwender
zuganglich gemacht durch den TRAININGSKURS
Zu ADA, der eine sehr gute Einflhrung in diese
Supersprache bietet. Der dazu gelieferte Com-
piler liefert ein umfangreiches Subset der
Sprache.

ADA in Stichworten:

blockstrukturierte Programme - modularer
Aufbau der Programme - ermiglicht die
Behandlung von Ausnahmezustanden - Fehler-
Uberprufung beim Ubersetzen undzur Laufzeit
- ermoglicht das einfache Einbinden von
Maschinenprogrammen - sehr leichtes Arbei-
ten mit Programmbibliotheken - Programm-
diskette enthdit Editor, Ubersetzer, Assembler
und Disassembler - umfangreiches deutsches
Handbuch.

DM 198~

DATAMAT

Daten verwalten kann ein schier endioses Han-
tieren mit Karteikdsten und Aktenordnern
bedeuten; kann aber auch C-64 plus DATAMAT
heiBen. Dann wird Suchen und Sortieren zum
SpaB. Der DATAMAT bietet in seiner neuen Ver-
sion einiges, was in dieser Preisklasse bisher
unvorstelibar schien. Nicht nur Geschwindig-
keit und Bedienungsfreundlichkeit wurden
weiter verbessert, auch die Anpassung an die
meisten Drucker ist inzwischen machbar.

DATAMAT in Stichworten:
menuegesteuertes Diskettenprogramm, da-
durch extrem einfach zu bedienen - fir jede
Art von Daten - véllig frei gestaltbare Eingabe-
maske - 50 Felder pro Datensatz - 253 zeichen
pro Datensatz - bis zu 2000 Datensatze pro Datei
je nach Umfang - Schnittstelle zu TEXTOMAT -
lauft mit 1 oder 2 Floppies - véllig in Maschinen-
sprache - extrem schnell - deutscher zeichen-
satzauch auf COMMODORE-Druckern -fastjeder
Drucker anschlieBbar - ausdrucken tiber RS 232
- duplizieren der Datendiskette - verbesserte
Benutzerfiihrung - Hauptprogramm komplett
im Speicher (kein Diskettenwechsel mehr) -
integrierte Minitextverarbeitung - deutsches
Handbuch mit Obungslektionen

Sie kénnen:

jedenDatensatzin 2-3Sekundensuchen-nach
beliebigen Feldern selektieren -nach allen Fel-
dern gleichzeitig sortieren - Listen in vollig
freiem Format drucken - Etiketten drucken.

DM 99-

ZAHLUNGSVERKEHR
Umfangreicher Zahlungsverkehr kann zur
Plage werden. Das Software-Paket ZAHLUNGS-
VERKEHR Ubernimmt den gréBten Teil dieser
Arbeit. AuBer den notwendigenFahigkeitenfir
das Ausfillen und Auflisten von Uberweisun-
gen und Schecks ist der ZAHLUNGSVERKEHR in
der Lage, Sammellisten, Einzugslisten etc. selb-
standig zusammenzustellen.

ZAHLUNGSVERKEHR in Stichworten:
Diskettenprogramm - max. 100 Zahlungsemp-
fanger pro Diskette - drei definierbare Absen-
derbanken - 25 Zahlungsdateien - 14 frei defi-
nierbare Formulare - Kontrolidruck bei Beleg-
eingabe mdoglich - Eingabe von Rechnungs-
daten oder eines Verwendungszwecks - Aus-
druck einer Sammel-Oberweisungsliste - Kor-
rekturmoglichkeit der einzelnen Zahlungs-
dateien -arbeitet miteiner oderzweiFloppies-
umfangreiches deutsches Handbuch. '

DM 148~

DAS STEHT DRIN:

DAS GRAFIKBUCH ZUM COMMODORE 64 ist ein
Buch fiur alle, die mit ihrem C-64 kreativ tatig sein
wollen. Der Inhalt reicht von den Grundlagen der Gra-
fikprogrammierung bis zum Computer Aided Design.

Aus dem Inhalt:

— Zeichensatzprogrammierung, bewegte Sprites
— High-Resolution, Multi-Color-Grafik

— Lightpenanwendungen

— Betriebsarten des VIC

— Verschieben der Bildschirmspeicher

— Dreidimensionale Grafik, Projektionen

— Kurven, Balken- und Kuchendiagramme

— Laufschriften, Animation

— Bewegte Bilder

UND GESCHRIEBEN HAT DIESES BUCH:

Axel Plenge, vielen bereits bekannt als Autor der
SUPERGRAFIK und als Co-Autor des Trainingsbu-
ches zu Simon’s Basic, legte hiermit ein Standardwerk
zur Grafikprogrammierung auf dem 64er vor. Er ist
Student der Informatik.

ISBN 3-89011-011-8

