#
8

m,)
S

Shop

Computer

Programmieren leichtgemacht

ll-llll-llmm.
TEEEEEEEEEEEE

Birkhauser

Computer Shop
Band 9

lan Stewart / Robin Jones

Commodore 64

Programmieren leichtgemacht

Aus dem Englischen von
Tony Westermayr

Birkhauser Verlag
Basel - Boston - Stuttgart

Die Originalausgabe erschien 1983 unter dem Titel:
"’Easy Programming for the Commodore 64"

bei Shiva Publishing Ltd., Nantwich, England

© 1983 lan Stewart und Robin Jones .

Professor lan Stewart
Mathematics Institute
University of Warwick
Coventry CA4 7AL
England, U.K.

Professor Robin Jones

Computer Unit

South Kent College of Technology
Ashford, Kent

England, U.K.

CIP-Kurztitelaufnahme der Deutschen Bibliothek

Stewart, lan:
Commodore 64 : programmieren leicht gemacht /
lan Stewart ; Robin Jones. Aus d. Engl. von
Tony Westermayr. — Basel ; Boston ; Stuttgart :
Birkhauser, 1984.
(Computer-Shop ; Bd. 9)
Einheitssacht.: Easy programming for the
Commodore 64 {dt.>
ISBN 3-7643-1588-1
NE: 28 Jones, Robin:; GT

Die vorliegende Publikation ist urheberrechtlich geschutzt.

Alle Rechte vorbehalten. Kein Teil dieses Buches darf ohne schriftliche
Genehmigung des Verlages in irgendeiner Form durch Fotokopie, Mikrofilm,
Kassetten oder andere Verfahren reproduziert werden. Auch die Rechte der
Wiedergabe durch Vortrag, Funk oder Fernsehen bleiben vorbehalten.

© 1984 der deutschsprachigen Ausgabe: Birkhauser Verlag, Basel
Umschlaggestaltung: Bruckmann & Partner

Printed in Germany

ISBN 3-7643-1588-1

Inhalt

Einleitung 6

Auf los geht's los! 9

Das Keyboard (vulgo Tastatur) 72
Appetitanreger 17

Direkte Befehle 20
Programme 23

Schleifen 30

TV-Ausgabe 36

Variable 45

Eingaben 50

Debugging | 55
Verzweigen 59

Binare Zahlen 64

PEEK und POKE 75
Subroutinen (Unterprogramme) 84
Debugging Il 94

Strings 96

Substrings 701
ASCII-Codes 107

19 Bildschirm- und Farbspeicher 1171
20 Tonbandkassetten 122

21 Debugging Il 129

22 Zufallszahlen 136

23 PET-Grafik 740

24 Keyboardsteuerung 145

25 Arrays (Felder) 152

26 Debugging IV 162

27 Datenlisten 172

28 Sprites 176

29 Debugging V 195

30 Klang und Musik 198

31 Programmplanung 213

32 Hochauflosende Grafik 225
33 Debugging Vi 236

34 Files (Dateien) 240

WONOOPWN_LSOONOOPRWN =

[I QU W W i e e)

Anhang 1: Byte-Umwandlungstabelle binar/dezimal 253
Anhang 2: Sprite-Register, leichtgemacht 255

Anhang 3: Bibliothek der Sprite-Subroutinen 256
Anhang 4: Klangchip-Register, leichtgemacht 258
Anhang 5: Commodore 64-Speicherkarte 259

Anhang 6: Einige niitzliche Systemvariable 260

Anhang 7: Keyboard-Abfragecodes 261

Programmregister 262
Register allgemein 263

Einleitung

Dieses Buch ist gedacht fuir den Neuling, der sich einen Commodore 64-Mikro-
computer gekauft hat oder kaufen méchte. Fir erfahrenere Aufsteiger, die von
einem anderen Gerat kommen, sollte es ebenfalls von Nutzen sein. Der 64 ist ein
aullerordentlich leistungsstarker Computer mit modernen Einrichtungen wie
einem Klangchip, Sprites-Grafik und ausgedehnten Maoglichkeiten zur Erweite-
rung des Systems. Das hier gesteckte Ziel ist vergleichsweise bescheiden; es
geht darum, in verstandlichen Ausdrucken die Haupteigenschaften des Gerats
und seiner Programmiersprache BASIC zu beschreiben.

Wenn Sie einen 64 kaufen, bekommen Sie gratis ein Handbuch dazu. Der
Haken bei Handbiichern ist der, da sie selten genug Platz haben, um mit
Beispielen ins Einzelne zu gehen. Die richtige Informationsquelle fir den 64 ist
denn auch nicht das Handbuch, sondern ein dickes Nachschlagewerk von 486
Seiten mit dem Titel “Commodore 64 Programmer’'s Reference Guide”, ein
Fahrer also, der alles enthélt bis hin zum Schaltplan und zur Anschlubelegung
der Chips . . . Eine hervorragende Sache fir den erfahrenen Programmierer, aber
den Anfanger erdriickt wohl eher die Masse gedrangt formulierter Information,
die Fachsprache wird ihn verwirren. Unser Buch soll deshalb eine Briicke
zwischen Handbuch und Reference Guide sein. Billiger als der Guide ist es auch
noch!

Wir haben eine grundliche, aber verstandliche Beschreibung der Grund-
lagen von BASIC aufgenommen, das ist die “hGhere” Standard-Programmier-
sprache fir den Commodore 64. Zugeschnitten ist das auf die besonderen
Eigenheiten und Fahigkeiten des Commodore, und es enthalt die wichtigsten
Befehle, die fiir den Anfanger von Nutzen sein konnen. Sich mit allen Punkten
auseinanderzusetzen, ist schon aus Platzgrinden nicht mdglich, aber wir
mochten lhnen eine tragfeste Grundlage liefern, auf der Sie miihelos weiter-
bauen kénnen.

Damit man die vielseitigeren Merkmale des 64 nutzen kann, muf3 man ein
gewisses MaR an “Theorie”” im Kopf haben, vor allem die Verwendung der
Binarzahlen und die Organisation des Hauptspeichers. Wir befassen uns mit
den PEEK- und POKE-Befehlen naher, weil sie unentbehrlich sind, wenn Sie
aus dem 64 alle die staunenswerten Leistungen herausholen wollen, die AnlaR
fur den Kauf gewesen sind. Der Commodore ist eine Spur anspruchsvoller als
manches andere Gerat, aber wir haben uns bemiiht, die Gedanken leicht faRlich
darzustellen und ihre Anwendung zu erleichtern.

Der Text umfalt eine groRe Zahl Programmbeispiele, von Testroutinen fur
neue Befehle bis hin zu langeren Programmen fiir Spiele, interessante Grafik-
displays, Umgang mit Daten auf Tonbandkassetten, Musik und Spritesteu-
erung. Die meisten Kapitel enthalten eine oder mehrere Aufgaben, die lhre
Fortschritte prufen und zusatzliche Vorschlage liefern. Am Ende des jeweiligen
Kapitels stehen die Losungen der Aufgaben und konnen damit als Zusatzinfor-
mation genutzt werden.

Sehr wichtig sind die beiden Kapitel Uber Musik und Sprites. Der 64
besitzt einen eindrucksvollen Klangchip namens SID, der (neben Klangeffek-
ten) drei Stimmen harmonisch auf verschiedenen Instrumenten erzeugen kann.
Unsere Absicht ist, den SID jedem zuganglich zu machen, der kiaren Kopf
bewahren kann. Sprites sind vielseitig bewegliche Grafikblocke, groRartig ge-

6

eignet fur Spiele, Animation und Grafikdisplays; gesteuert werden sie vom
VIC-Chip, der so eindrucksvoll (und kompliziert) ist wie der SID. Wir erklaren
in vereinfachter Weise die VIC-Speicherregister, und wie man sie zur Steuerung
von Sprites verwendet; dazu gibt es ein Programm fiir die automatische Produk-
tion von Sprites auf dem Bildschirm und als Anhang eine Sammliung von
Subroutinen fir den Umgang mit Sprites.

Andere Anhéange betreffen nutzliche Dinge, die in den Anhangen des
Handbuchs nicht enthalten sind: so etwa Binarzahlen (konnen Sie sich vorstel-
len, daR Sie die brauchen, um Sprites zu konstruieren und Musik zu spielen?),
den Speicheraufbau und nutzliche Systemvariable.

Eine wichtige (und ziemlich ungewohnliche) Eigenschaft dieses Buches
ist die Kapitelfolge Gber Debugging (Fehlersuche): Wie man dahinterkommt,
warum ein Programm nicht lduft, und den Fehler behebt. Jeder, der selbst
Programme schreibt, wird diese Kapitel als besonders nutzlich empfinden. Wir
bieten auch ein paar Empfehlungen fir das Verfassen gutstrukturierter Pro-
gramme, vor allem fir die sinnvolle Nutzung von Subroutinen, um das Pro-
gramm in handliche Blocke aufzuteilen.

Eine Frage, auf die das Handbuch nicht eingeht, ist die Maoglichkeit
hochauflosender Grafik, mit deren Hilfe man Kurven, Diagramme und Feinskiz-
zen zeichnen kann. Wir erklaren, wie man den Computer in den Hi-res-Modus
(Hi-res = hochauflosend) versetzt und diese Fahigkeiten nutzt. Ein abschlie-
Bendes, halbwegs schwieriges Kapitel erlautert wie man mit Files Information
auf Tonbandkassetten festhalt.

Der Aufbau des Buches und die Auswahl des Inhalts beruhen auf unserer
Erfahrung mit einer ganzen Reihe von Mikrocomputern verschiedener Herstel-
ler. Die Programmlistings sollen jedoch keine Wunderexemplare verfeinerter
Programmierung sein. Wir haben uns vielmehr bemiiht, gut funktionierende
Programme zu liefern, deren Eingabe in den Computer nicht eine Ewigkeit
beansprucht. Wir wollen kliger machen, nicht eine Show aufziehen. Und es
gibt natirlich viele, viele Eigenschaften des Gerats, die wir (iberhaupt nicht
erwahnen, entweder weil sie eine groRe Wissensgrundlage erfordern, oder weil
wir den Platz nicht haben. Das ist unvermeidlich (falls man nicht Unsummen fiir
Riesenscharteken ausgeben will); aber was wir zu bieten haben, ist eine behut-
same und doch grindliche Einfihrung in den Commodore 64, die erk/art, was
vorgeht (Kochbuchrezepte moégen wir nicht) und sich mit den Hauptmerk-
malen befallt, die neue Anwender kennen sollten. Das eigentliche Problem ist
ja doch immer, vom Boden hochzukommen.

Hinweis flir Experten

Wie eben erwahnt, ist das ein Buch fiir Erstanwender; es wurde nicht fur
Fachleute geschrieben. Genauer: Die einfachste Weise, ein gewinschtes
Ergebnis zu erzielen, ist nicht immer die effektivste. Wenn wir also manchmal
den Eindruck erwecken, wir stellten uns ungeschickt an, trifft das wohl zu. Vor
dem Laufen sollte man aber erst einmal das Gehen lernen, die einfachen Dinge
zuerst, bevor man sich den komplizierteren und vielseitigeren zuwendet.
Erwarten Sie also auch nicht, daf3 die Programmlistings ausgefeilte End-
produkte mit der Grafikqualitat von Spielhallengeraten sind, die mit atemberau-
bender Geschwindigkeit Wunder an Computerleistung bewirken. Hier geht es
darum, einfache Listings zu liefern, die der Leser erstens in einer vernunftigen

7

Zeit eingeben und zweitens durcharbeiten und verstehen kann. Fir das Kom-
plizierte bleibt Zeit genug.

Hinweis fir Pedanten und Grammatiker

Vor einem halben Dutzend Bichern sind wir zu dem Entschlufs gekommen, wir
sollten uns gemeinsam als “ich” bezeichnen. Das ist vielleicht ein biBchen
ungewohnlich, aber sehr praktisch, weil wir gelegentlich personliche Erfahrun-
gen mitzuteilen haben. “Wie wir heute frih zu unserer Frau sagten ...” — also
nein, das hort sich nicht gut an. “Ich” ist also eine Art Gesamtkomposition von
uns beiden. “Wir"" bedeutet in Hinkunft “der Leser und ich”.

1 Auf los geht’s los

Qas Erste: Wie baut man die Hardware auf? Sie kénnen das vermut-
lich schon, falls aber nicht, mégen ein paar Hinweise von Nutzen
sein.

Wenn Sie an lhren Fernseher schon einmal ein Videospiel oder einen Heimcom-
puter angeschlossen haben, fallt es lhnen nicht schwer, den Commodore anzu-
schliefen. Soliten Sie das aber noch nicht getan haben, stellen Sie vielleicht
fest, daR eine genaue Schilderung lhnen Mihe erspart.

Sie haben den Computer schon ausgepackt, weil kein normaler Mensch
es fertigbrachte, ihn nach der Ankunft im Haus langer als eine halbe Minute im
Paket zu lassen. Vorgefunden haben Sie demnach:

1. Den Computer.

2. Das Netzgerat, ein klobiges graues Kastchen mit zwei langeren Kabeln, an
einem davon ein graues Kunststoffgebilde mit kleinen Stiften im Inneren.

3. Das FernsehanschluRkabel, ungefahr zwei Meter lang, an beiden Enden
mit Koaxialanschlissen.

4. Das Handbuch.

Bevor Sie alles zusammenschliefien, sollten Sie sich eine zivilisierte Anordnung
liberlegen. Falls Sie keinen Zweitfernseher verwenden, muf® der Commodore

irgendwo in der Nahe lhres Fernsehgerats zu Hause sein. lhn auf den Boden zu
stellen, ist keine gute Idee; Sie laufen Gefahr, draufzutreten und den Computer
zu beschéadigen. Noch schlimmer: Vom verkrampften Sitzen schlafen lhnen die
Beine ein. Holen Sie also einen Tisch, vorzugsweise einen niedrigen, nehmen
Sie einen Stuhl und stellen Sie beides vor den Fernseher.

Der Computer kommt auf den Tisch, das Netzgerat schlieRen Sie an der
Buchse mit der Aufschrift POWER an. Daneben befindet sich ein schwarzer
ON/OFF-Schalter (EIN/AUS); stellen Sie ihn auf OFF. Das Netzgerat schlieRen
Sie ans Stromnetz an.

Nehmen Sie das TV-AnschluRkabel und schieben Sie das mit einem
Mittelstift versehene Ende in die entsprechende Buchse an der Rickseite des
Computers. Driicken Sie es fest hinein.

Das andere Ende stecken Sie in die Antennenbuchse lhres Fernsehers.

Ubrigens funktioniert der 64 bei einem Schwarzweil’3- Fernseher perfekt,
nur konnen Sie dann die Farbeinrichtungen nicht nutzen.

Manche (alten) Fernseher haben einen Drehknopf als Kanalwahler. Hier
stellen Sie auf Kanal 36.

Sonst gibt es sechs oder acht Tasten fiir die Kanalwahl. Man nimmt in der
Regel Taste 1 fiir das Erste Programm (ARD), Taste 2 fur das Zweite (ZDF), und
so weiter. Natirlich kann jede Taste auf jeden beliebigen Kanal eingestellt
werden. Nehmen Sie am besten eine sonst nicht benutzte Taste (meinetwegen
6) und driicken Sie sie hinein.

Schalten Sie Fernseher und Computer ein.

Zu diesem Zeitpunkt werden Sie auf dem Bildschirm nur “Schnee” sehen,
weil Sie die Feinabstimmung am Kanalwahler noch nicht vorgenommen haben.
Irgendwo am Fernseher gibt es kieine Radchen (oder Knopfe oder sonst was),
die dazu dienen. Oft sind sie hinter einer kleinen Klappe versteckt. Sollten sie
Ilhnen noch nie aufgefallen sein, dann suchen Sie einmal danach. Sie werden
Uberrascht sein. Manchmal klappt der Herstellername herunter, manchmal ein
ganzer Bauteil heraus, wenn man an der richtigen Stelle driickt. Sobald Sie das
gefunden haben, stimmen Sie Kanal 6 (wie vorgewahlt) ab, bis auf dem Bild-
schirm eine Mitteilung erscheint. Sie werden das Radchen vermutlich mehrmals
drehen oder die Drehrichtung andern miissen, wenn es nicht auf Anhieb klappt.
(Im Gbrigen hilft Ihnen sicher gern Ihr Fernsehtechniker.)

Moglicherweise missen Sie auch Helligkeit und Kontrast und die Farb-
einstellung abstimmen. Sie sind auf der Suche nach einem blauen Bildschirm
mit der Meldung:

*+»» COMMODORE 64 BASIC V2 * = = = U
64K RAM SYSTEM 38911 BASIC BYTES FREE

Sobald Sie das vor sich haben, ist der Computer betriebsbereit. Wenn Sie nichts
herbekommen, priifen Sie nach, ob alles richtig angeschlossen und eingeschal-
tet ist, und ob die Stecker fest in den Buchsen sitzen; versuchen Sie es dann
erneut mit der Abstimmung. Wenn Sie an die richtige Stelle herankommen,
sehen Sie, durch den Schnee schwach sichtbar, flackernde Linien. Kénnen Sie,
nachdem Sie den ganzen Abstimmungsbereich durchlaufen haben, die Mitei-
lung immer noch nicht sehen, dann drehen Sie entweder am falschen Radchen
oder irgend etwas stimmt nicht. Falls Sie ein biRchen geschickt sind, sehen Sie
sich die Anschlisse der Kabel darauf an, ob Drahte sich gelockert haben,
und/oder prifen Sie mit Batterie und Taschenlampenbirne auf irgendwelche

10

Kurzschlisse in den Kabeln. Hilft das immer noch nicht, dann setzen Sie sich mit
dem Laden in Verbindung, wo Sie den Computer gekauft haben. Computer-
Hardware ist sehr zuverlassig, aber ab und zu geht eben doch etwas schief.

Kassettenrecorder

Spater werden Sie an lhren 64 einen Kassettenrecorder anschlieen wollen, um
Programme auf Tonband zu sichern. Im Augenblick befassen wir uns damit
noch nicht. Wenn Sie wissen wollen, wie das geht, schlagen Sie Kapitel 20 auf.
(Fir den Commodore gibt es auch Diskettenlaufwerke.)

Ein diskreter Rat

Es konnte vielleicht sein, daR bestimmte Mitglieder lhres Haushalts vom 64
nicht so hellauf begeistert sind wie Sie. Man wird diese Gefiihle erfolgreich
verbergen bis zu dem Tag, an dem man den Fernseher einschaltet, um sich die
neueste Folge von “Dallas” anzusehen, jedoch von einem mittleren Schnee-
sturm in Farbe Uberrascht wird. Wenn Sie mit der Arbeit am Computer fertig
sind, dann stellen Sie den Fernseher wieder auf seine Normaleinstellung zurtick
und vergewissern Sie sich, daf er richtig [auft. Auch ein Computer muR sich zu
benehmen wissen.

11

2 Das Keyboard (vulgo Tastatur)

Was bewirken diese Tasten am Computer? Wenn wir sie wahllos
betatigen, nichts Gescheites! Aber auf diese Weise bekommen Sie
wenigstens ein Gefihl fir das Keyboard.

Das Keyboard des 64 hat sehr viel Ahnlichkeit mit der Tastatur einer Schreib-
maschine, die Buchstabenanordnung halt sich an die gewohnte “QWERTY" -
Folge (die deutschen Tastaturen haben "“QWERTZ"). Im Grunde ist das eine
unsinnige Anordnung; sie stammt noch aus der Zeit, als Typenhebel sich oft
verhedderten; aber die Sache hat sich so eingebiirgert, da man sich eben damit
abfinden muR.

Neben Buchstaben und Ziffern gibt es Tasten mit den Aufschriften CTRL,
RUN/STOP, RESTORE, RETURN und so weiter; zwei Tasten mit CRSR und
Pfeilen; unten vorne einen langen Tastenbalken; vier groRRere abgesetzte Tasten
auf der rechten Seite mit f1, f3, 5, f7; und vorne links eine Taste mit einem
Symbol, das ungefahr so aussieht:

C:

Ich werde sie von jetzt an die COMMODORE-Taste nennen. Dieses Kapitel soll
Sie einigermalen mit dem Keyboard vertraut machen; wenn Sie sich ausken-
nen, konnen Sie das Meiste hier iberspringen.

Alphanumerische Tasten

Das sind Buchstaben und Ziffern. Wie bei einer Schreibmaschine erzeugen sie
auf dem Bildschirm das entsprechende Zeichen. Experimentieren Sie eine Weile
und fullen Sie den Bildschirm mit Kauderwelsch, driicken Sie aber, um sich das
Dasein zu erleichtern, noch keine der anderen Tasten mit den merkwurdigen
Abkiirzungen.

Beachten Sie, daR das blinkende Quadrat, Cursor genannt, bestimmt, wo
das jeweilige Zeichen hinkommt, und daR der Cursor beim Schreiben automa-
tisch horizontal eine Stelle (und notfalls eine ganze Zeile) weiterrtickt.

Hmmmm. GroRartig, aber wie werden Sie den Zeichensalat wieder los?

CLR/HOME

Diese Taste befindet sich oben rechts. Wenn Sie sie driicken, stellen Sie fest, daf3
der Cursor nach oben links zurickgesprungen ist ("Home"’ - Position). Driicken
Sie auRRerdem gleichzeitig SHIFT (Sie halten zuerst SHIFT nieder und dricken
CLR/HOME), wird der Bildschirm von allen Zeichen gel6scht.

12

SHIFT

SHIFT kann aber viel mehr. SHIFT sorgt im Grunde dafiir, daB die Wirkung
anderer Tasten verandert wird.

Stehen auf einer Taste oben zwei Symbole, dann wahlt SHIFT die obere.
Beispiel:

SHIFT und Taste 3 erzeugen ein 3# -Zeichen
SHIFT und Taste 8 erzeugen ein (-Zeichen

Mit den alphabetischen Tasten zusammen liefert SHIFT jedoch das rechte
Symbol von beiden an der Vorderseite der Taste. Das ist ein besonderes ““PET-
Grafik”’-Symbol, von Taste zu Taste verschieden.

Es gibt, damit es praktischer ist, zwei SHIFT-Tasten, und mit SHIFT LOCK
verhalt sich der Computer so, als sei SHIFT standig gedrickt. Um das aufzuhe-
ben, drickt man SHIFT LOCK ein zweitesmal.

COMMODORE (C=)

Das ist eigentlich eine zweite Shift-, also Umschalttaste. Damit wird das /linke
Grafikzeichen an der Tastenvorderseite gewahlit. Dazu kommen noch ein paar
andere, weniger klare Funktionen, die ich spater erklaren will, hier aber eine, auf
die gleich hingewiesen werden soll.

Kleinbuchstaben

Der 64 kann neben den GroRbuchstaben ABCD ... ebensogut Kleinbuchsta-
ben abcd . . . liefern. Um diese zu erreichen, miissen Sie die Tasten COMMO-
DORE und SHIFT gleichzeitig driicken. Augenblicklich werden alle GroBbuch-
staben auf dem Schirm zu Kleinbuchstaben, alle neu getippten Buchstaben
werden ebenfalls klein geschrieben. Die Grafikzeichen verandern sich ebenfalls
auf recht willkirliche Weise. Es ist so: Der 64 besitzt einen doppelten Zeichen-
vorrat (die Menge an Symbolen, die er auf dem Bildschirm anzeigen kann), und
Sie kénnen bestimmen, welcher verwendet werden soll. Driickt man COMMO-
DORE und SHIFT gleichzeitig ein zweitesmal, wird der alte Zustand wiederher-
gestellt (GroBbuchstaben). Wenn Sie die genauen Verdanderungen sehen wol-
len, schiagen Sie Anhang E des Handbuchs S. 132 nach.

Cursortasten

Die beiden CRS-Tasten mit Pfeilen bewegen den Cursor auf dem Bildschirm.
Wenn Sie SHIFT nicht driicken, bewegt die linke CRSR-Taste ihn eine Stelle
nach unten; die rechte bewegt ihn nach rechts. Wird gleichzeitig SHIFT ge-
drickt, dann bewegt die linke CRSR-Taste ihn nach oben, die rechte Taste nach
links. Bei Links- oder Rechtsbewegungen springt er zu einer neuen Zeile,
sobald er vom Bildschirmrand geht; bei Abwartsbewegungen scro/lt der Bild-
schirm (das heift, er rollt als Ganzes nach oben und erzeugt neue Zeilen), wenn

13

Sie versuchen, iber die unterste Zeile hinauszugehen. Bei Aufwéartsbewegun-
gen 13t der Computer den Cursor nicht vom Bildschirm gehen, aber es wird
nicht gescrolit.

Dadurch, dal® der Cursor mit den Tasten an jede gewinschte Stelle zu
bringen ist, konnen Sie Zeichen auf den Bildschirm schreiben, wohin Sie
wollen, statt nur dort, wo die automatische Cursorbewegung es bestimmt.

RUN/STOP

Ohne SHIFT hat diese Taste die Wirkung STOP . . . was die Ausfiihrung eines
Programms zum Stehen bringt. Das ist dann nutzlich, wenn Sie im Programm
einen Fehler haben und nicht warten wollen, bis es abgeschlossen ist, bevor Sie
ihn ausbessern konnen. (Bei manchen sehr haufig auftretenden Fehlern hort es
vielleicht nie auf!)

Die Wirkung RUN wird erzielt durch gieichzeitiges Driicken von SHIFT,
und betroffen ist das Kassettenrecordersystem, so daf} Sie eine seltsame Mel-
dung erhalten:

LOAD
PRESS PLAY ON TAPE

was uns im Augenblick nicht interessiert. Nur: Wenn Sie das aus Versehen
driicken, sind Sie augenscheinlich in Schwierigkeiten, weil der Computer nicht
mehr auf das Keyboard reagiert . . .

RESTORE

Aus der Schwierigkeit konnen Sie sich jedoch befreien, wenn Sie RUN/STOP
und RESTORE gemeinsam dricken. (RESTORE allein geniigt nicht.) Damit
wird der Computer auf seinen normalen Ausgangszustand zuriickgesetzt. Wenn
Sie ein Programm im Speicher haben, geht es nicht verloren, aber anderes, wie
die Bildschirmfarben, kehrt zu den Normalwerten zurtick. Sobald Sie in Schwie-
rigkeiten geraten, soliten RUN/STOP + RESTORE lhnen heraushelfen, wobei
moglichst wenig geleistete Arbeit zerstort wird. (Die Alternative, den Strom
abzuschalten, l0scht den gesamten Speicherinhalt.) Im gangigen Sprachge-
brauch liefert RESTORE thnen einen “Warmstart”.

INST/DEL

Ohne SHIFT ist das eine Ldschtaste (delete = loschen). Tippen Sie ein paar
Buchstaben und driicken Sie DEL; Sie werden feststellen, dal der letzte Buch-
stabe verschwunden und der Cursor eine Stelle zurlickgegangen ist. Das nach-
ste DEL entfernt diesen Buchstaben, und so weiter. Sie konnen den Cursor mit
den CSRS-Tasten an die gewunschte Stelle bringen und dann DEL benutzen,
um das Zeichen unmittelbar links neben dem Cursor loszuwerden. Zeichen
rechts neben dem Cursor rlicken automatisch auf, damit keine Leerstelle ent-
steht.

14

INST flr insert (= einschieben) hat die entgegengesetzte Wirkung. Es
flgt rechts neben dem Cursor Leerstellen ein und schiebt die Zeile weiter. Um
das zu bewirken, dricken Sie gleichzeitig SHIFT und INST/DEL. Das wird vor
allem bei der Programmbearbeitung gebraucht. Siehe dazu Kapitel 10.

CTRL

Das ist die Contro/-Taste (control = steuern). Sie ahnelt ein wenig SHIFT, weil
sie die Bedeutung der gleichzeitig gedriickten Taste beeinfluRt. Sie wirkt aber
nur auf die oberste Tastenreihe und die Cursortasten.

Beispiel: Halten Sie CRTL nieder und dricken Sie Taste 9. Sie werden
erkennen, daB die Schriftzeichen nun in /inverse video, also in Negativschrift
erscheinen (umgekehrte Farben fiir Vordergrund und Hintergrund). Das bedeu-
tet das RVS ON auf Taste 9. Ebenso stellt RVS OFF auf Taste § die normale
Farbgebung wieder her, vorausgesetzt, daB Sie §) zusammen mit CRTL driicken.

CRTL mitden Tasten 1-8 verdandert die Farbe der Symbole, wie sie auf der
Tastenvorderseite angegeben ist: Schwarz, Weil3, Rot, Cyan (Hellblau), Dun-
kelrot, Grin, Blau, Gelb. Damit konnen Sie ein anders gefarbtes Display erzeu-
gen. (Hintergrund- und Randfarben konnen Sie ebenfalls verandern, aber nicht
so leicht. Siehe dazu Kapitel 13.)

RETURN

Diese Taste teilt dem Computer mit, “fiihre den eben geschriebenen Befehl
aus”. Bis Sie RETURN dricken, ist die Maschine im Grunde ein passiver
Displayapparat, eine aufgemotzte Schreibmaschine ohne eigenen Willen. Wenn
Sie ein Programm eintippen (Kapitel 5), miissen Sie nach jeder Programmzeile
RETURN dricken, um sie im Speicher festzuhalten.

Probieren Sie Folgendes: Geben Sie eine Menge sinnloses Zeug ein und
driicken Sie RETURN. Sie erhalten die Meldung:

?SYNTAX ERROR
READY

Das bedeutet, daR der Computer versucht hat, lhren unsinnigen Befehl auszu-
flhren, ihn nicht versteht und lhnen das mitteilt. Kein Wunder! Wenn der Befehl
Sinn hat, bringt die Maschine keine Syntaxfehlermeldung, sondern fihrt ihn
aus. Probieren Sie beispielsweise den Befehl aus

PRINT "ETWAS” + RETURN

und das Wort “ETWAS" wird auch wirklich angezeigt.

Steht der Cursor auf irgendeiner Bildschirmzeile, und Sie driicken verse-
hentlich RETURN, so wird der Cursor versuchen, diese Zeile auszufiihren. In der
Regel wird das Unsinn sein, und Sie erhalten einen Syntax Error —also wundern
Sie sich nicht uber die gelegentliche Fehlermeldung!

Andere Reaktionen sind undurchsichtiger. Tippen Sie beliebiges Zeug,
driicken Sie RETURN und nehmen Sie die Fehlermeldung entgegen; dann

15

stellen Sie den Cursor eine Zeile hinauf, in gleiche Hohe mit dem READY, und
geben erneut RETURN. Wollen Sie raten, was geschieht? Das:

?0UT OF DATA ERROR
READY

Das mag lhnen Ratsel aufgeben. Das dumme Ding hat Ready als den (sinnvol-
len) Befehl READ Y gelesen, als Aufforderung, nach einer DATA-Anweisung zu
suchen. Da sie nicht vorhanden ist. .. Sie sehen selbst. Ich erwahne diesen
bizarren Vorgang nur, weil er viel Kopfzerbrechen bereiten kann, wenn Sie nicht
zu erkennen vermogen, warum er auftritt.

Leertaste

Wie bei einer Schreibmaschine erzeugt der lange Tastenbalken unten eine
Leerstelle. In diesem Buch verwende ich das Symbol:

O

fur eine Leerstelle. (Suchen Sie auf dem Keyboard nicht nach einem []. Es ist
nicht da. Genau deshalb habe ich es genommen!) Wenn vollig klar ist, wo
Leerstellen hingehoéren, nehme ich mir vielleicht die Freiheit, die []-Zeichen
wegzulassen.

Funktionstasten

Die groRen Tasten im abgesetzten Feld rechts sind “programmierbare Funk-
tionstasten’’. Wenn Sie diese driicken, kann das Gerat veranlalt werden, auf
geeignete Programmierung in der von lhnen gewiinschten Weise zu reagieren.
In Kapitel 24 finden Sie nahere Einzelheiten.

Noch mehr?
Das ist natirlich bei weitem noch nicht alles. Das Keyboard des Commodore 64
kann noch eine Menge anderer Dinge. Zu Anfang wollen Sie sich aber nicht mit

zu vielen Komplikationen belasten, also verschiebe ich die Feinheiten bis zu der
Gelegenheit, wo sie gebraucht werden.

16

3 Appetitanreger

Sie mochten sich gewil8 nicht durch einen ganzen Programmier-
kurs qualen missen, bevor Sie erfahren;, wozu der 64 fahig ist. Hier
also drei kurze Programme:

Sie brauchen, um Programme zu schreiben, vom Programmieren nichts zu
verstehen! Das heil3t, vorausgesetzt, Sie klauen sie bei irgend jemand anderem.
Eine vollig verniinftige Sache — fiir den Anfang das einzig Richtige, um mit dem
Keyboard vertraut zu werden. Ich hoffe aber, dal3 Sie hohere Ambitionen haben,
als nur anderer Leute Software zu fahren!

Bei jedem der drei unten aufgelisteten Programme gilt:

Tippen Sie NEW und driicken Sie dann die RETURN-Taste.

Schreiben Sie das Programmlisting sorgfaltig ab. Driicken Sie nach jeder

Zeile RETURN. Wenn Sie einen Fehler machen und RETURN noch nicht

gedrickt haben, dann verwenden Sie die DEL-Taste, um die Zeile auszu-

bessern; ist RETURN schon gedriickt, tippen Sie die ganze Zeile einfach

noch einmal.

3. Tippen Sie LIST und RETURN, um sich zu vergewissern, daR das Listing
des Programms mit dem meinen Ubereinstimmt.

4. Tippen Sie RUN und sehen Sie sich das Ganze an.

N —

Da das fur Sie nur gut ist, wurden die Programme als Aufgaben angelegt.

Aufgabe 1: Wiirmer

10 FORN =1TO 1000

20 C=105+ INT (4 * RND (0))
30 IFC=108 THENC =117
49 PRINT CHR$ (C);

50 NEXT N

Aufgabe 2: Blinker

19 FORN=1TO100

20 X=INT (16 RND (0))
30 POKE 53281, X

49 POKE 53280, 15 - X

17

50 FORT=1TO100
60 NEXTT
70 NEXTN

Aufgabe 3: Kakutani

Das Kakutani-Problem, noch immer ungelost, betrifft folgenden Vorgang. Neh-
men Sie eine ganze Zahl (meinetwegen 48). Wenn sie gerade ist, wird sie
halbiert. (Das ist hier der Fall, also erhalten wir 24.) Wenn ungerade, wird sie
verdreifacht und 1 hinzugefliigt. Wiederholen Sie das, solange Sie wollen —
erhalten Sie am Ende immer 1? Beispielsweise haben wir hier:

48 — (halbieren) — 24 — (halbieren) — 12 — (halbieren) — 6
— (halbieren) — 3 — (verdreifachen + 1) —» 19 — (halbieren) — 5
— (verdreifachen + 1) - 16 — (halbieren) — 8 — (halbieren) — 4

— (halbieren) — 2 — (halbieren) — 1

und landen bei 1. Das nachste Programm ruft einen Zufallsstart hervor und
rechnet die Folge aus. Es hort erst auf, wenn es bei 1 ist.

10 N =100+ INT (1000 - RND (9))

20 PRINTN

30 M=N:L=INT (M/2)

40 IFM=2+LTHENN=L

50 IFM>1ANDM <> 2+LTHENN=3+*M +1
60 IFN > 1THEN 20

70 PRINT1

Eine schwache Ausrede

Sobald Sie mit dem Keyboard zurechtkommen, werden Sie einen Befehl oder -
ein ganzes Programm eintippen und fahren kdnnen, ohne irgendeine der An-
weisungen darin verstanden zu haben.” Sie konnen sich sogar Listings aus
Blchern und Zeitschriften ““borgen”. Das ist vollig normal, und Sie brauchen
deshalb nicht schuldbewuf3t zu sein. Von Zeit zu Zeit tibermannt jeden die Lust.
Und es tragt dazu bei, daR Ihr Interesse erhalten bleibt und das Selbstvertrauen
wachst. (Wie bei allen guten Dingen sollte man nicht ibertreiben. Wenn das
Jahr der Informationstechnologie nicht mehr bewirkt, als eine Generation von
Menschen hervorzubringen, die anderer Leute Software abschreiben, aber

* Das haben Sie eben getan bei Aufgabe 1, 2 und 3.

18

keine eigene verfassen konnen, hatte man das Geld besser fiir ein Viertes
Fernsehen ausgegeben.)

Manchmal, wenn ein bestimmter BASIC-Befehl vorgefiihrt wird, vor
allem anfangs, wo wir noch nicht so viele kennen, ware es hiibsch, einen Befehl
zu verwenden, der noch nicht erklart worden ist. Und genau das werde ich tun,
wo ich es fir angebracht halte.

Reil’en Sie also nicht vor Entsetzen die Arme hoch und fangen Sie nicht
an zu jammern, der komische Kauz hatte das noch gar nicht erklart. BeiRen Sie
die Zdhne zusammen, geben Sie den Befehl trotzdem ein und beobachten Sie,
was er bewirkt. Das ist der Sinn. Zu lhrem eigenen Wohl.

Jedenfalls ist das meine Ausrede.

19

4 Direkte Befehle

Ein Programm ist nichts als eine Folge von Anweisungen, die
gespeichert und spéter ausgefiihrt werden. Zuniachst konnen Sie
Jjedoch versuchen, die Befehle direkt vom Keyboard aus einzuge-
ben. Hier spielt der 64 mit seinen Arithmetikmuskeln.

Wenn Sie dem Computer vom Keyboard aus einen Befehl erteilen, so dal’ er ihn
nach Driicken der RETURN-Taste augenblicklich ausfihrt, benutzen Sie ihn im
Direktmodus. ("'Modus”, zu deutsch Betriebsart, ist Computerjargon; gemeint
ware damit der “Gemitszustand’’ des Computers — falls er ein Gemit hatte.
Daher der Witz in einem Computerfachblatt, dal in einer bestimmten Serie von
Fernsehprogrammen der Moderator die ganze Zeit im “Staunmodus’™ zu sein
schien.) Es gibt einen zweiten, den indirekten Modus;, hier wird der Befehl in
den Speicher eingelesen und spater ausgefiihrt. Tatsachlich wird in der Regel
eine ganze Liste solcher Befehle, die ein Programm bilden, gespeichert. Pro-
gramme besprechen wir im nachsten Kapitel; vorerst bleiben wir im Direktmo-
us.

Ein 64 im Direktmodus ist nicht nur eine Schreibmaschine, sondern auch
ein eindrucksvoller Rechner.

Probieren Sie:

PRINT 2 + 2

(und dann RETURN). Sie sehen auf dem Bildschirm die Lasung 4. Na ja, so
eindrucksvoll vielleicht auch wieder nicht, aber wenn Sie verlangen:

PRINT 12345678 + 87654321
erhalten Sie genauso schnell 99999999.

Aufgabe 1

Der Computer soll fiir Sie berechnen:

1. 7+4

2. 17 + 41

3. 5+16

4, 15123 + 97784

Der 64 kann auch subtrahieren:

PRINT11 -5
PRINT 77 - 3
PRINT 55555 — 22222

20

und so weiter. Zur Multiplikation missen Sie statt des gewohnten Zeichens x
das Sternchen * verwenden (weil Programmierer es sonst mit dem Buchstaben
x verwechseln.) Probieren Sie:

PRINT 2 « 2
PRINT2+3
PRINT5+5
PRINT 99 ~ 77

SchlieBlich noch das Dividieren. Dafiir wird statt ./. das Zeichen / verwendet.
Wenn Sie also 24 durch 3 teilen wollen, missen Sie verlangen:

PRINT 24/3
und um 777 durch 7 zu teilen:
PRINT 77717

Der 64 kann nicht nur mit ganzen Zahlen wie diesen, sondern auch mit Dezi-
malzahlen wie 27.432 (statt des Dezimalkommas also stets der Punkt!) und
negativen Zahlen wie —99 oder —27.342 umgehen. Ferner kann er aulder den
arithmetischen Operationen von Addition, Subtraktion, Multiplikation und Di-
vision eine ganze Reihe mathematischer Berechnungen ausfiihren. In diesem
Buch hier benotigen aber alle Programme nur die Grundlagen der Arithmetik.
SchlieBlich ist nicht jeder, der das Computern lernen mochte, ein begabter
Mathematiker! Und es ist ganz erstaunlich, was man ohne komplizierte Mathe-
matik alles leisten kann.

Potenzen

Fir die mathematisch starker Interessierten sollte hier jedoch noch ein Punkt
erwahnt werden. Statt der iblichen Schreibweise

XN
fur die Nte Potenz von X, verwendet der 64 einen nach oben weisenden
Pfeil:

X1TN
Beispielsweise wird die Kubikzahl von 5, also:
B3=5+5+5=125
so geschrieben:
513
21

In Kapitel 33 finden Sie einige Warnungen zu Rundungsfehlern bei Verwen-

dung des Aufwartspfeils.

NS

22

Losungen

Aufgabe 1

PRINT7 + 4 (ergibt 11)
PRINT 17 + 41 (ergibt 58)
PRINT5 + 16 (ergibt 21)

PRINT 15123 + 97784 (ergibt 112907)

5 Programme

Den Computer bewegt man dazu, das zu leisten, was Sie win-
schen, indem man die erforderlichen Anweisungen in einer syste-
matischen Liste zusammenfaBt.

Ein Programm ist eine Folge von Anweisungen, die der Computer ausfuhren
soll. Es hat durchaus Ahnlichkeit mit einem Rezept aus dem Kochbuch:

Man nehme 2 Eier

schlage sie in einen Topf

rihre sie 20 Sekunden lang
gebe 2 Kilogramm Zucker dazu

sowie 4 Dosen braune Bohnen

und so fort. Ein Computerprogramm muf aber in einer sehr prazisen Sprache
geschrieben sein.
Hier ein einfaches Programm:

10 PRINT “HALLO!;
20 GOTO 19

Das konnen Sie in thren Computer eingeben. Zuerst tippen Sie NEW und
driicken RETURN —damit werden alle Reste friiherer Programme beseitigt. Tun
Sie das IMMER, bevor Sie ein neues Programm eingeben. Dann schreiben Sie
die erste Zeile:

190 PRINT “HALLO!"

und driicken RETURN. Da die Anweisung mit einer Zah/ beginnt, hier 10,
behandelt der Computer sie im indirekten Modus: Er speichert sie, um sie dann
auszufiihren, wann das verlangt wird. Nun schreiben Sie:

20 GOTO19

plus RETURN. Zerbrechen Sie sich vorerst nicht den Kopf dariiber, was dieses
Gestammel zu bedeuten hat.

Damit ist es in den Speicher gelangt, aber wie weisen wir den Computer
an, das ablaufen zu lassen, wie es im Jargon heif3t. Wir geben den Befehl ein

RUN

(dazu RETURN, versteht sich — ich werde das kiinftig nicht mehr jedesmal
erwahnen, erwarte aber, dal3 Sie nach dem Ende jeder ““Zeile”” eines Programms
und nach jedem Befehl im Direktmodus RETURN driicken).

23

Unterstellt, Sie haben fehlerlos abgeschrieben, wird jetzt die Hallo-Holle
los sein. Das Wort "HALLO!"" wird Gberall auf dem Bildschirm auftauchen und
wild herumsausen. Wenn Sie nicht Einhalt gebieten, geht das ewig so weiter.
Aber woher kommt das?

Die Maschine anhalten

Hier kommt die STOP-Taste zu ihrem Recht. Wenn Sie sie driicken, halt das
Programm an und liefert eine Meldung, um anzugeben, wo es sich befindet.
Falls Sie die Taste jetzt driicken, haben Sie den Bildschirm fast ganz voller
“Hallos!” und am Ende die Meldung:

BREAKIN 10
READY
oder bei Gelegenheit auch:
BREAK N 29
READY
Sie kénnen mit STOP ein Programm immer anhalten, wenn es zu hangen

scheint oder etwas falsch macht. Falls das nicht funktioniert, probieren Sie
RUN/STOP plus RESTORE wie in Kapitel 2.

CONT
Um nach einem STOP weiterzumachen, konnen Sie den Befehl
CONT

verwenden (abgekiirzt fir “continue” = fahre fort). Machen Sie das, und es
geht wieder los!

Was geht da vor?

In einem BASIC-Programm hat jede Anweisung eine Nummer, ihre Zeilennum-
mer. Hier sind es die Zeilennummern 10 und 2@. Normalerweise fiihrt das Gerét
die Befehle in numerischer Reihenfolge der Zeilennummern aus — hier also
zuerst Zeile 10 und dann Zeile 20.

ABER: Manche Befehle haben die Wirkung, die als nachste auszufiih-
rende Zeilennummer zu verandern. Hier bedeutet der Befehl:

GOTO 10

“beachte die nachste Zeile, falls vorhanden, nicht, und fiihre statt dessen Zeile
10 aus”.

24

Um zu begreifen, was das Programm bewirkt, miissen wir noch eines
wissen. Der Strichpunkt (;) nach der PRINT “HALLO!”-Anweisung teilt dem
Computer mit, das Nachste, was anzuzeigen ist, soll unmittelbar nach dem Ende
des HALLO! folgen. Wird der Strichpunkt weggelassen, dann zeigt der Com-
puter statt dessen auf der nachsten Bildschirmzeile an.

Wird also RUN eingegeben, so tut die Maschine folgendes.

Sie sucht nach der ersten Zeile:

10 PRINT “HALLO!";
und fihrt sie aus, mit dem Bildschirmdisplay:
HALLO!

Da dieser Befehl nicht verlangt hat, der Computer solle den normalen Ablauf der
Zeilennummern verandern, geht er in numerischer Reihenfolge zur nachsten
Zeile:

20 GOTO 10

Sie fiihrt das aus und kehrt wieder zu Zeile 10 zuriick. Nun zeigt sie ein zweites
HALLO! an, was so aussieht:

HALLO!HALLO!
und geht weiter zu Zeile 20, die sie aber zurtickschickt zu Zeile 10.
HALLO!HALLO!HALLO!

und HALLO! ewig weiter (oder zumindest so lange, bis ein auRerer Eingriff, die

STOP-Taste oder das Greisenalter oder das Ende der Welt Einhalt gebieten).

Nach dem siebten Mal lauft sie vom Ende der Zeile und wickelt sich um die

nachste, nach ungefahr 160 Ablaufen (turns) erreicht sie die unterste Zeile, der

Bildschirm rollt nach oben. Konkret geht das alles so schnell, dal Sie aulRer

aufflackernden HALLOS! nichts sehen, wahrend der Bildschirm vorbeisaust.
Um das zu verlangsamen, konnen Sie eine Zusatzzeile einfligen:

15 FOR1 =0 TO 200: NEXT |

(was ich in Kapitel 6 erklare). Jetzt ist der Ablauf klar, nach dem die Anzeige
stattfindet.

LIST

Wenn Sie ein Programm eingetippt haben, wollen Sie es vielleicht zu irgendei-
nem Zeitpunkt in ordentlicher Form auf dem Bildschirm dargeboten haben, um
einen Uberblick zu bekommen. (Vielleicht mochten Sie eine Zeile andern,
wissen aber die Nummer nicht mehr.) Um das zu erreichen, tippen Sie im
Direktmodus den Befehl:

LIST
25

Probieren Sie das gleich aus.

Sie kénnen ein Programm durch zusatzliche Zeilen erganzen und brau-
chen Sie nur einzutippen. Zerbrechen Sie sich nicht den Kopf Giber die Reihen-
folge der Zeilennummern; der Computer sortiert sie ganz automatisch in der
richtigen Ordnung. Wenn Sie eingeben:

20 PRINT “NICHT IN ORDNUNG"”
190 PRINT “"DIESES PROGRAMM IST”

und dann LIST tippen, steht auf dem Schirm:

190 PRINT “DIESES PROGRAMM IST”
29 PRINT “NICHT IN ORDNUNG”

Ebenso konnen Sie eine Zeile einfach dadurch verdndern, daB Sie eine neue mit
derselben Nummer eingeben, also:

20 PRINT “IN ORDNUNG"”

und wieder LIST.
Um eine Zeile ganz zu I6schen, schreiben Sie ihre Nummer, aber nichts
sonst (aufier naturlich RETURN). So loscht:

20 (plus RETURN)

Zeile 20. (Der Computer behandelt sie als Programmzeile ohne eigentlichen
Befehl, nur als Zahl, und beachtet sie einfach nicht.) Es gibt raffiniertere Metho-
den, Zeilen zu verandern, siehe Kapitel 10; was ich lhnen eben erklart habe, ist
praktisch das Kleine ABC dessen, was man sich leisten kann. Gehen wir gleich
weiter zu interessanteren Dingen.

Um bestimmte Zeilen aufzulisten (was bei einem langen Programm we-
gen Scrolling notwendig sein mag), verwenden Sie Befehle wie:

LIST 50 — 180

worauf die Zeilen 50 bis 180 angezeigt werden.

NEW

Diesen Befehl habe ich schon in Kapitel 3 erwéhnt, aber hier hat er auch seinen
Platz. Um ein altes Programm aus dem Speicher zu entfernen und reinen Tisch
zu machen, tippen Sie:

NEW

und, wie gewohnt, RETURN. Wenn Sie das nicht tun, lauern Reste des vorigen
Programms irgendwo im Gerat und fiihren zu einer verbliiffenden Vielfalt von
unerklarlichen “bugs’ (Fehlern) im Programm, von dem Sie sich froh eingebil-
det haben, es sei richtig eingegeben.

26

Sie konnen NEW auch innerhalb eines Programms verwenden, was aber
lediglich dazu fihrt, dal® das Programm sich selbst zerstort.

STOP und END
Die beiden Befehle:

STOP
END

bringen die Ausfiihrung eines Programms zum Stillstand. Der Unterschied:
Nach einem STOP koénnen Sie mit CONT weitermachen, nach END aber nicht.
Es gehort zum ordentlichen Programmieren, mit STOP oder END aufzuhoren,
und Sie missen STOP vielleicht verwenden, um zu verhindern, da® ein Pro-
gramm in den falschen Nummernbereich hineinlauft.

Zeilennummern in BASIC

Nicht alle hoheren Sprachen verwenden Zeilennummern, um der Maschine
mitzuteilen, in welcher Reihenfolge sie Befehle ausfiihren soll, aber irgendeine
bestimmte Ordnung bestehtimmer. Manche Anweisungen dienen jedoch dazu,
auf diese naturliche Ordnung einzuwirken, und schicken die Maschine damit
zurtick, um eine friihere Anweisung zu wiederholen (moglicherweise mit leich-
ten Abanderungen). Genau dieses Gemisch von prazisen Instruktionen und
variabler Ordnung, in der sie ausgefiihrt werden, macht den Computer so
vielseitig.

In BASIC undin einigen anderen Sprachen ist jede Anweisung numeriert.
Beim 64 konnen Sie Zahlen zwischen § und 63999 verwenden. Sie brauchen
die Zeilen nicht 1, 2, 3 und so weiter zu numerieren; vielmehr ist es tiblich, mit
10, 20, 30 . . . anzufangen, in Zehnerschritten. Der Sinn ist der, Platz zu lassen,
wo zusatzliche Zeilen eingefiigt werden konnen, falls Sie das spater flr erfor-
derlich halten: es wiirde schwer halten, zwischen den Zeilen 2 und 3 eines
Programms eine Zeile einzufligen! Es gibt aber keine Regel, wonach die Num-
mern regelmalig sein miRten: Sie konnten die Zeilen (meinetwegen) 17, 18,
25, 356, 1000, 1003, 1010, 1020, 5033 numerieren, wenn Sie wollen. Die
meisten Programme beginnen mit ordentlich aussehenden Zeilennummern und
horen auf mit ungeordneten, weil inzwischen Fehler ausgebessert worden sind.

Zeilen mit Mehrfachbefehlen

Sie konnen mehrere Befehle in eine einzige Programmzeile setzen, vorausge-
setzt, Sie trennen sie durch Doppelpunkte (:). Beispiel:

10 FORT=1TO200: PRINT T;: PRINT “[] MAL 999 ERGIBT []";:
PRINT 999 » T: NEXT T

27

Das kann Platz und Zeit fiirs Schreiben sparen, ist aber nicht immer eine so gute
Idee, weil:

1. nur zum Beginn einer Zeile mit Mehrfachbefehlen gesprungen werden
kann.
2. das Andern einer Zeile bei einem Schreibfehler schwerer wird.

Es gibt jedoch Gelegenheiten, wo die Anwendung solcher Mehrfachbefehle
viel Arbeit spart und keine Schwierigkeiten hervorruft, beispielsweise dann,
wenn man eine ganze Reihe von Variablen zuteilt (siehe Kapitel 8):

10 A=1:B.=2:C=3:D=4:E=5

In manchen meiner Listings finden Sie ab und zu Zeilen mit Mehrfachbefehlen,
weshalb ich Sie darauf aufmerksam machen wollte. Man kommt aber sehr gut
ohne sie aus, und sie sollten auf keinen Fall zu haufig verwendet werden, weil
das Programm sonst unlesbar wird. Ein bekannter Verleger von Software fir
Unterrichtszwecke untersagt Zeilen mit Mehrfachbefehlen aus eben diesem
Grund.

REM: Sag ihnen Bescheid tiber REM v

Es gibt einen Befehl, der zulaRt, daB Sie Bemerkungen als Gedéachtnishilfe (fir
sich oder andere) in ein Programm setzen, namlich:

REM

Der Computer la3t in jeder Zeile unbeachtet, was nach einem REM kommt. Sie
konnen also etwa schreiben:

150 REM SATELLITENVERFOLGUNGSBERECHNUNG
1690 THETA = 52: REM BREITENGRAD
170 PHI = 35: REM LANGENGRAD

Beachten Sie, daB in einer Zeile mit Mehrfachbefehlen Anweisungen nach dem
REM ebenfalls nicht beachtet werden. Also:

209 X = 365: REM LANGE DES JAHRES:
Y = 31: REM LANGE DES MONATS

setzt X auf 365, Y aber nicht auf 31.

Wenn Sie mit dem Programmieren anfangen, werden Sie vermutlich
feststellen, dal REM-Anweisungen ein biRchen ablenken. Und sie kosten Zeit
beim Schreiben. Sie kdnnen alle REM-Anweisungen weglassen, geraten aber
in Schwierigkeiten, wenn es einen GOTO- oder GOSUB-Befehl gibt, der sich
auf die REM-Zeile bezieht. Am einfachsten ist es, die REMs einzugeben und die
Bemerkungen wegzulassen!

28

Wenn lhr Selbstvertrauen zunimmt, werden Sie sehen, dal® die REM-
Anweisungen in Wirklichkeit sehr nitzlich sind, und sie Gberall hineinsetzen.
Ich habe in diesem Buch deshalb versucht, einen Kompromi® zu schlieRen,
indem ich ein paar wichtige REMs eingefiigt, sonst aber das Listing, soweit die
Verstandlichkeit nicht darunter litt, moglichst kurz gehalten habe. (Es gibt noch
verschiedene andere Methoden der Codeverdichtung, um Listings kurz zu
halten, aber sie fihren zu Listings, die schwer zu lesen sind, deshalb verwende
ich sie nicht.)

Abgekurzte Schlusselworter

Als konkretes Beispiel dafiir: Die meisten BASIC-Schliisselworter (Befehls-
worter wie PRINT, GOTO) konnen abgekiirzt werden. So laRt sich GOTO
ersetzen durch:

G SHIFT/O

Anhang D des Handbuchs, S. 139, fiihrt diese Abkiirzungen auf. (Vorsicht: Er
enthalt mehrere Druckfehler: Das “G"” bei GOTO und verschiedene Grafikzei-
chen in den Kastchen.) Da sie zu sonderbaren Listings fihren, verwende ich sie
hier nicht, aber Sie konnen es tun, wenn Sie das vorziehen: Sie sparen wirklich
Zeit.

Die Aufgabe des Programmierers

Inzwischen sollte klar sein, worin die Aufgabe des Programmierers besteht. Um
ein bestimmtes Ziel zu erreichen, mu® der Programmierer eine Folge von An-
weisungen zusammenfligen, die, wenn sie vom Computer exakt ausgefiihrt
werden, das gewunschte Ergebnis erzielen.

Wichtig ist, sich dariiber klarzuwerden, daR der Computer keine Ahnung
hat, worin der “Zweck” eines Programms besteht. Er gehorcht einfach den
Befehlen. Er ist ein blitzschnell denkender und absolut pedantischer Sklave,
und wenn Sie ihm auftragen, etwas Dummes zu tun, dann gehorcht er.

Das werden Sie sicher sehr rasch entdecken, sobald Sie sich daran ma-
chen, Programme zu schreiben.

29

6 Schleifen

Eine grundlegende Programmiermethode veranlalSst den Computer,
eine gestellte Aufgabe immer und immer wieder auszufiihren. Noch
besser, sie kann bei den Aufgaben auch regelméalSige Veranderun-
gen vornehmen. Unter den Beispielen: Multiplikationstabellen.

In diesem Kapitel lernen wir den FOR ... NEXT-Befehl kennen (der schon
verwendet wurde, um den Computer bei seinen Uberlegungen zu bremsen).
Der Befehl beauftragt das Gerat, eine gestellte Aufgabe mehrmals hintereinan-
der auszufiihren. Das ware nicht besonders aufregend, wenn die Aufgabe
eindeutig festgelegt ware, aber man kann dafir sorgen, daR ein paar Einzelhei-
ten der Aufgabe sich bei jedem Schritt verandern. Die Folge ist eine ganz
beachtliche Starkung des Programmierers.

Da’ich Lust habe, ein bidchen Bildung zu vermitteln, schlage ich vor, daR
Sie das folgende Programm ausprobieren. Ich erklare es, sobald Sie das getan

haben.

Multiplikationstabellen

10
20
30
49
50
60

PRINT CHRS$ (147) [Schirm léschen. Siehe Kapitel 7]
PRINT “MAL SIEBEN"

PRINT

FORN=1TO12

PRINTN; "X [70=0[1"7*N

NEXT N

Fahren Sie das mit RUN. Wenn Sie keinen Fehler gemacht haben, soliten Sie
sehr rasch erhalten:

MAL SIEBEN
1x7=7
2x7=14
3x7=21
4x7 =28
5x7 =35
6x7 =42
7x7 =49
8x7 =56

30

9x7=63

10x7=70
1M x7=77
12x7 =84

Wie die Schleife funktioniert

Das nennt man eine Schleife. Die Schleife beginnt mit dem FOR-Befehl in Zeile
40 und endet mitdem NEXT-Befehlin Zeile 60. Dazu miissen wir noch eine Zahl
N setzen, die als Zahler dient, und dem Computer sagen, wo er mit dem Zahlen
anfangen (1) und aufhoren soll (12). Das geschieht alles in Zeile 49:

FOR (beginn hier mit der Schleife)
N (verwende N als Zahler)

=1 (Startwert fiir N)

TO (geh weiter bis zu)

12 (Endwert flr N)

Es geschieht folgendes: Wenn der Computer der Schleife erstmals begegnet,
setzt er N gleich dem Startwert (1) und fiihrt die Befehle aus, bis er auf NEXT
stoRt. Dann vergleicht er N mit dem Endwert (12), erhoht, falls N darunter liegt,
Num 1 (erhaltalso 2) und kehrt zum Beginn der Schleife zurlick, um die Befehle
alle noch einmal auszufiihren. Bei der nachsten Begegnung mit NEXT ver-
gleicht er wieder und erh6ht N auf 3, dann auf 4,5, 6 .. ., bis N 12 wird. Wenn
er auf NEXT stot und feststellt, daR N den Endwert von 12 erreicht hat, verlait
er die Schleife und geht weiter zur nachsten Programmzeile (falls vorhanden)
oder hort auf (falls nicht).

Ich gehe das gleich im Einzelnen durch, zuerst aber ein Wort zu Zeile 50.
Das ist einfach eine Reihe von aneinandergehangten PRINT-Anweisungen und
fahrt zu Displays wie diesem:

1x7=7
Die Leerstellen [] sind nur dazu da, damit das am Ende auch hiibsch aussieht.

Dieses Display erscheint dann, wenn der Zahler N auf den Wert 1 gesetztist, und
ergibt sich so:

PRINT N PRINT 1 1

; nicht weiter

“XO70=0" PRINT*XO70=0" 1x7=
; nicht weiter

7+N PRINT 7 = 1 (also 7) 1x7=17
(kein Strichpunkt) weiter zur nachsten Zeile

31

Beachten Sie die Verwendung von PRINT N ohAne Anfiihrungszeichen. Wenn
Sie PRINT “N” schreiben, dann zeigt er nur den einzelnen Buchstaben N an.
Werden die Anfiihrungszeichen weggelassen, zeigt er den numerischen Wert
an, der N zugeteilt ist. Da N bei 1 beginnt und Schritt fir Schritt auf 12 erhoht
wird, hat der PRINT N-Befehl die Wirkung, je nach dem Stand in der Schleife

die Zahlen 1, 2, 3 ... 12 anzuzeigen.

Ebenso nimmt 7+ NdieWerte 7+1=7,7+«2=14...7+12=84an, so
dal auch diese Zahlen der Reihe nach angezeigt werden.
Nun kénnen wir das Programm im Ablauf durchgehen und feststellen,

wie es sein Ergebnis erzielt.

10 PRINT CHRS (147)
20 PRINT “MAL SIEBEN"
30 PRINT

40 FORN=1TO12

50 PRINTN;"XOJ70=0"
7+N
60 NEXTN

50 PRINTN;"XJ700=01"
7+N
60 NEXTN

60 NEXTN

Aufgabe 1

Losch den Schirm.

MAL SIEBEN

Zeig eine Leerzeile an, damit unter
der Uberschrift Platz bleibt.

Setz eine Schleife mit N als Zahler,
die von 1 (Start) bis 12 (Ende)
reicht.

1x7=7
Ist N = 12? Nein, es ist 1. Addiere 1,
damit N 2 wird, und kehr zuriick zu
Zeile 50.

2x7 =14

Ist N = 12? Nein, es ist 2. Erhohe auf
3 und geh zuriick zu 5@. Fahr so
fort. ..

N ist jetzt 12, also aus der Schleife
heraus. Keine Befehle mehr: STOP.

Verandern Sie Zeile 20 und 50 so, dak der Computer anzeigt:

1. Eine Tabelle mal finf;
2. Eine Tabelle mal neun;

und fir die Ehrgeizigen

32

3. Eine Tabelle mal neunundneunzig.

(Hinweis: Verandern Sie die 7 zu 5, 9 oder 99.)

Schrittgrol3e

Wenn Sie einen Befehl solcher Art schreiben:
FORR=3TO 14

unterstellt der Computer, daB er in Einerschritten zahlen soll:
3,4,56,7,89,10,11,12,13,14

Sie konnen diese GroRe aber verandern, wenn Sie den Befehl STEP verwenden.
Um in Zweierschritten zu zahlen, wirden Sie schreiben:

FORR=3TO 14 STEP 2
was R der Reihe nach die Werte gabe:

3,5,7,9,11,13
(Da hort es auf, weil der nachste Wert 15 groRer ware als der begrenzende Wert
14 im Befehl. R wird uberhaupt nicht gleich dem Wert 14 gesetzt. Hatten Sie
jedoch geschrieben:

FORR =3TO 15STEP 2
dann bekdme R die Werte:

3.5,7,9,11,13,15

und der hochste Wert 15 im FOR-Befehl wiirde wirklich erreicht werden.)

Aufgabe 2
Verandern Sie Zeile 40 des Programms TABELLE MAL SIEBEN so, daR es nur
Vielfache gerader Zahlen von 7 anzeigt.

Aufgabe 3
Wie Aufgabe 2, aber nur die ungeraden Zahlen.

Sie konnen sogar riickwarts zahlen, wenn Sie eine negative SchrittgroRe

verwenden:

190 PRINT CHRS$ (147)
20 FORI=1Q0TO @ STEP -1

33

30 PRINTI
40 NEXTI
50 PRINT “WELTRAUMSTART GELUNGEN"

Pause

Wenn der Computer eine bestimmte Zeitspanne lang pausieren soll (etwa,
damit Sie Zeit haben, den Bildschirm zu lesen), konnen Sie eine “Tunix"-
Schleife dieser Art verwenden:

500 FORI=1TO 100
510 NEXTI

Das vergeudet einfach Zeit, wahrend von 1 bis 100 gezahlt wird, bevor die
Berechnungen weitergehen. Soll Platz gespart werden, konnen Sie auch diese
Form wahlen:

FOR1=1TO 100: NEXT I

Die genaue Dauer der Pause hangt von der SchieifengroRe ab. Soll die Pause
langer sein, verdndern Sie 100 zu einem groReren Wert, umgekehrt zu einem
kleineren. Als grober Hinweis: Jede zusatzliche Sekunde erfordert eine Erho-
hung der SchleifengroRe um etwa 190@. Die Verzogerung mit einer Schieife der
GroBe 100, wie oben, betragt also nur rund eine Zehntelsekunde.

Abkiirzung

Der Schleifenzahler kann in jedem NEXT-Befehl weggelassen werden. Das
heiRt, Sie konnen einfach NEXT statt NEXT | oder NEXT R oder was auch immer
schreiben. Das spart Platz, aber Sie verlieren vielleicht die Ubersicht, welches
Next nun kommt. (Der Computer aber nicht!)

Losungen

Aufgabe 1

1. 20 PRINT “MAL FONF"

50 PRINTN;“X[J5[]=[]"5*N
2. 20 PRINT “MAL NEUN"

50 PRINTN;“X[19[1=[1"9+N
3. 20 PRINT“MAL NEUNUNDNEUNZIG"

50 PRINTN;“X[]99[J]=[1%99*N

34

Aufgabe 2
40 FORN=2TO12STEP2

Aufgabe 3

49 FORN=1TO11STEP2
oder

40 FORN=1TO12STEP2

(Es geht mit beiden Zeilen. Vergessen Sie aber nicht, alle anderen Zeilen wie
oben-aufzunehmen!)

35

7 TV-Ausgabe

Mit zu den ersten Dingen, die man beherrschen mul3, gehort, wie
der Computer dazu zu bewegen ist, auf den Fernsehbildschirm das
zu schreiben, was Sie wollen.

Ein Computer nitzt nicht viel, wenn er einfach dasteht und frohlich vor sich
hinsummt, mit der AuRenwelt aber nicht in Verbindung treten will. Ein paar
Verbindungsmethoden haben wir schon in Aktion gesehen —das Keyboard (das
als Eingabegerat fungiert und Information in den Computer einspeist) und den
TV-Bildschirm (ein Ausgabegerat, das sie wieder herausfischt). Eingabe (In-
put) ist, wie Sie mit dem Computer reden, Ausgabe (Output), wie er mit lhnen
redet. In diesem Kapitel befasse ich mich naher mit TV-Ausgabe; zu Eingabe
siehe Kapitel 9.

Zahlen und Strings

Der 64 befaf’t sich mit zwei verschiedenen Arten von Information: Zah/en und
Strings. Zahlen werden in ihrer (blichen Form angezeigt, gegebenenfalls mit
negativem Vorzeichen und Dezimalpunkten, etwa so:

25
—999
76.332

und so weiter. Strings sind einfach Folgen von Symbolen oder Zeichen, als eine
Einheit betrachtet. Um das hervorzuheben, werden sie normalerweise in Anfiih-
rungsstriche gesetzt:

“MARMELADE"
“CATCH — 22"

“x x x» ENDE * * *"

“%Er4999BCXXX/* * UNSINN + + + »”

und ahnlich.

PRINT

Das ist der grundlegende Ausgabebefehl. Print (zu deutsch drucken) brauchen
Sie aber nicht wortlich zu nehmen, selbst wenn Sie iber einen Drucker verfu-
gen. Esliefert TV-Ausgabe, kein ausgedrucktes Listing. Der PRINT-Befehl wirkt
jenach dem, was anzuzeigen ist, ein bi3chen verschieden.

36

Wenn Sie eine Zah/ mit PRINT anzeigen wollen, etwa 42, verwenden Sie
eine Programmzeile dieser Art:

430 PRINT 42 ‘
Um einen String anzuzeigen, setzen Sie in Anfiihrungsstriche:
449 PRINT “"MARMELADE"

Wenn Sie diese "“Programme’” ausprobieren (RETURN nicht vergessen) und mit
RUN fahren, werden Sie feststellen, daR das erste auf dem Bildschirm

42
liefert, das zweite, wie man erwarten mochte:
MARMELADE

Der Unterschied: Die Anfiihrungsstriche um einen String werden nicht ange-
zeigt. So kommt bei

PRINT 42
und
PRINT 42"

dasselbe heraus. Wenn lhnen das Ganze sinnlos erscheint, versuchen Sie es mit:

Aufgabe 1
Vergleichen Sie die Ergebnisse der folgenden Einzeiler-Programme.
1. 10 PRINT6+7
und
10 PRINT“6+7"
2. 20 PRINT490+2
und
20 PRINT “49 + 2"

3. 30 PRINT “"THE ANSWER TO THE GREAT QUESTION OF LIFE, THE
UNIVERSE, AND EVERYTHING"”

und

37

30 PRINT THE ANSWER TO THE GREAT QUESTION OF LIFE, THE
UNIVERSE, AND EVERYTHING
Der Unterschied zwischen der Anzeige von Zahlen und Strings durch PRINT
wird wichtiger, wenn Sie die Werte von Variablen anzeigen wollen. Siehe
Kapitel 8.)
Abkirzung
Statt das Wort
PRINT
zu tippen, konnen Sie auch ein einzelnes Fragezeichen verwenden:
?
STATT PRINT “MENUE" konnen Sie also auch schreiben:
? "“MENUE"
Das spart Speicherplatz und Schreibzeit gegen den Preis, nicht auf Anhieb
verstandlich zu sein. Ich schlage vor, daB Sie sich zuerst an PRINT gewohnen
und dann zum Fragezeichen (iberwechseln. Der leichteren Verstandlichkeit

halber verwende ich in diesem Buch stets PRINT. Der 64 hat ohnehin Speicher-
platz genug!

Abgesetzte Anzeige
Einem PRINT-Befehl kann eines von drei Satzzeichen angehangt sein:

1. Strichpunkt (;)
2. Komma (,)
3. gar keines

Entsprechende Beispiele sahen dann so aus:

1. 100 PRINT “DAS MACHT EINEN BRAVEN COMPUTER SEHR

FROH";

2. 110 PRINT “DAS MACHT EINEN BRAVEN COMPUTER SEHR
FROH",

3. 120 PRINT “DAS MACHT EINEN BRAVEN COMPUTER SEHR
FROH"”

38

Die Satzzeichen schieben nach dem Angezeigten Leerstellen ein und passen
dadurch die nachste PRINT-Position auf dem Schirm an. Sie wirken auf Zahlen
anders als auf Strings, und zwar so (gedacht ist das fiir Ihre Bequemlichkeit,
aber ich bin da ein biRchen skeptisch):

Zahlen Strings
Strichpunkt LaB eine Leerstelle LaR keine Leerstellen
Komma Geh zur nachsten Spalte | Geh zur nachsten Spalte
ab 0,10, 20,30 ab1,11, 21,31
Nichts Geh zur nachsten Zeile Geh zur nachsten Zeile

Weil wir schon dabei sind, mochte ich erwahnen, dal’ einfaches
PRINT

einfach eine leere Zeile anzeigt und zur nachsten weitergeht — wie bei der
Zeilenumschaltung einer Schreibmaschine. In der Computersprache wird diese
Operation NEWLINE genannt.

Der Grund fiir diese Absetzmoglichkeiten: Man kann verschiedene For-
mate von TV-Bildschirmausgabe herstellen. Die Hauptsache ist, da man in
einem einzigen PRINT-Befehl mehr als einen Posten unterbringen kann, vor-
ausgesetzt, die Posten werden durch Satzzeichen getrennt. So kénnten Sie
etwa schreiben:

500 PRINT “FRED”, “LAURA"; 77, 4.22; “ROGER AND OUT"”
und erhalten als Display:

FRED [] [0 [J LAURA [177 (][O O [0 4.22 ROGER [J AND []
ouT

Sonderlich hiibsch ist das ja nun nicht, aber die nachste Aufgabe liefert Besse-
res.

Aufgabe 2
Vergleichen Sie die Ergebnisse der folgenden Programme:

1. 10 PRINT1

29 PRINT2

30 PRINT4
2. 10 PRINT1,2,3,4
3. 10 PRINT1;2;3;4
4. 10 PRINT1,2,3,4

39

5. 10 PRINT1,2,3
290 PRINT4,5, 6
6. 10 PRINT1,2,3,
290 PRINTA4,5,6
7. 10 PRINT1,2,3
29 PRINT
30 PRINT4,5,6

8. Probieren Sie noch einmal dle Programme 1-7, ersetzen Sie 1, 2,...6
aber durch die Strings “A”, “B”,

9. Wie Aufgabe 8, aber nun Strings mit unterschiedlicher Linge wie “MAR-
MELADE", “JR", “RAT"”, “"ROTKOHL" und so weiter.

TAB

Sie konnen diesen Befehl dazu benutzen, die Ausgabe in sauberlichen Kolon-
nen zu tabulieren. Das Bildschirmdisplay des 64 besteht aus 25 Reihen von

Spaltennummer —

11111 11

11122
12345678906 12345¢67829201

4 ¢

Spalte 7 PRINT TAB (7); Spalte 24 PRINT TAB (24);

Abbildung 7.1
Das Bildschirmdisplay hat 25 Reihen zu je 40 Zeichen.
Der TAB-Befehl wahlt eine Spalte fiir die Anzeige.

40

Zeichen, jede Reihe umfat 49 Zeichen. Sie kénnen sich den Schirm also so
vorstellen, daR er 4Q Spalten besitzt (Abbildung 7.1). Sie sind, wie man sieht,
von $-39 numeriert.

Die Anweisung

TAB (C);

in einem PRINT-Befehl fihrt dazu, daf® die Anzeige an der nachsten verfigba-
ren Stelle in Spalte C beginnt. (Wenn Sie an Spalte C schon vorbei sind,
geschieht das in der nachsten Zeile — nicht immer nach lhren Erwartungen!)
Beispielsweise fiihrt

PRINT TAB (22); “WAS?"

zu dem Ergebnis, das Abbildung 7.2 zeigt.

Spaltennummer—M8M8M8M8¥

20 21 22 23 24 25 26

w A S ?

Eine typische Verwendung von TAB zeigt nachstehendes Programm:

10
20
30
40

50

Abbildung 7.2
Wirkung von PRINT TAB (22); “WAS?”

PRINT “ZAHL"; TAB (10); “QUADRAT"; TAB (20;
“WURFEL"; TAB (30); “HOCH VIER"

PRINT

FORT=1T020

PRINTT; TAB (10); T+ T; TAB (20); T+ T~ T;

TAB (30); T+T*T+T

NEXTT

Steuerzeichen und Zitiermodus

Probieren Sie dieses Programm aus und zerbrechen Sie sich noch nicht den
Kopf Gber die Eigenheiten des Displays! Bringen Sie zuerst irgendeinen Zei-
chensalat auf den Schirm und tippen Sie dann

10 PRINT”

41

driicken Sie gleichzeitig SHIFT und CLR/HOME und geben Sie das abschlie-
RBende

ein, danach RETURN.

Jetzt RUN.

Sie werden sehen, daB der Bildschirm leer wird und der Cursor zur
Home-Position geht — genauso, als hatten Sie SHIFT und CLR/HOME als
direkten Befehl eingegeben.

Auf dieselbe Weise konnen mehrere direkte Befehle, in dieser Art vom
Keyboard verfligar, innerhalb eines Programms eingegeben werden. Beispiel:
Wenn Sie in dem obigen Beispiel statt SHIFT + CLR/HOME die Tasten CTRL +
6 driicken, werden Sie feststellen, da® nach RUN die Hintergrundfarbe griin
geworden ist. :

Diese Methode nennt man “"Verwendung eines Steuerzeichens” oder
Zitiermodus. Ein Steuerzeichen wird nicht angezeigt, es bewirkt etwas.

Um Sie daran zu erinnern, daB ein Steuerzeichen im Spiel ist, zeigt der 64
im Listing eines Programms trotzdem etwas an. Das ist aber ein willkirliches
Symbol in Zusammenhang mit dem Steuerzeichen, zur Erinnerung gedacht. Bei
CLEAR (also SHIFT + CLR/HOME) ist dieses Symbol ein Grafikzeichen in
Negativschrift, das “"Herz"”’-Symbol nach Spielkartenart. Bei CTRL + 6 ist es ein
anderes Grafikzeichen in Negativschrift.

Das ist zwar eine nitzliche Methode, die in Programmlistings aber Ver-
wirrung stiftet (blattern Sie in den Fachzeitschriften — manche Listings sind aus
diesem Grund beinahe unleserlich). Ich vermeide das also in diesem Buch
moglichst und ersetze Steuerzeichen durch ihre codierte Form, namlich

CHRS (K)

wobei K eine Codezahl, der ASClI-Code, fiir das Zeichen ist (siehe Kapitel 20).
Die Codes sind aufgefiihrt in Anhang F des Handbuchs, S. 135-137. Wenn Sie
diese Liste durchgehen, entdecken Sie beispielsweise CLR/HOME zweimal als
Zeichencodes 19 und 147. Der erste ist die Version ohne Shift (Cursor HOME),
die zweite mit Shift (CLEAR Bildschirm und Cursor HOME). So hat

PRINT CHRS$ (147)
dieselbe Wirkung wie das oben erwahnte Herz im Zitiermodus. Ebenso kann mit
PRINT CHRS (30)
grine Hintergrundfarbe erreicht werden. Ich empfehle, sich zu Anfang dartiber
keine groRen Gedanken zu machen. Behalten Sie lediglich im Gedachtnis, daR®

PRINT CHR$ (K) oft verwendet wird, um aus einem Programm heraus solche
Wirkungen zu erzielen.

Anzeigen in einer vorgewahlten Reihe
Durch die Verwendung von Steuerzeichen konnen Sie vom Computer an jedem
gewilinschten Bildschirmpunkt ein Zeichen anzeigen lassen. Wie TAB eine
Spalte auswahit, habe ich schon gezeigt, aber wie bestimmen wir die Reihe?

42

Hier ist ein Weg. Nehmen Sie zuerst CHR$ (19), um den Cursor nach oben
zu bringen, ohne den Bildschirm zu I6schen. Dann verwenden Sie eine Schieife,
die mehrmals PRINT CHRS$ (17) enthélt, um den Cursor herunterzufiihren. (Das
ist der Code des Steuerzeichens fir CURSOR ABWARTS.) Wollen Sie also zu
Beginn von Reihe 15 anzeigen, schreiben Sie:

500 PRINT CHR$ (19);
519 FORT=1TO15: PRINT CHR$ (17);: NEXTT
520 PRINT “DAS IST IN REIHE 15~

Beachten Sie die Strichpunkte. Ohne sie werden viel mehr Reihen ibersprun-
gen. Wenn Sie in Spalte 8, Reihe 15, mit PRINT anzeigen wollen, verandern Sie
obige Zeile 520 zu:

5290 PRINT TAB (8); “DAS IST IN REIHE 15 SPALTE 8~

Dieselbe Wirkung kann dadurch erreicht werden, dal® man auf den entspre-
chenden Steuertasten im Zitiermodus schreibt, also innerhalb der Anfihrungs-
striche eines PRINT “. . ."”-Befehls wie oben. Es gibt noch einen vollig anderen
Weg ohne Zitiermodus oder Steuerzeichen, den ich in Kapitel 19 erlautere. Ich
personlich ziehe ihn vor, aber lhr Geschmack ist vielleicht ein anderer.

Losungen

Aufgabe 1

1. 42
6+7
2. 42
49 + 2
3. THE ANSWER TO THE GREAT QUESTION OF LIFE, THE UNIVERSE
AND EVERYTHING
0
? SYNTAX ERROR

(Hier hat das TO einen Syntaxfehler hervorgerufen: THE ANSWER ist als
Variable gesehen worden!)

Aufgabe 2

1. [O1
]2

43

44

13

14
0 O O O A
aOooooooona

10020003004
1O0000oOoooOobooooOnoondn?2
OsOOOooOoooooooOnoodonn4
1OOoooboooooooooOonn?2
3
O400000000000000000ataos
(16
o 2
O=sO0booOonooooooonoododna
OsoootbooootbooionooOnte

- O1OoOooooOoooooobooOodno2

13

O400000000o0oo0oodondns
16

Wie oben, aber 1 Stelle nach links verschoben.
Wie bei 8, was die Startpositionen fir die Strings angeht.

8 Variable

Bei vielen Programmen missen Sie mehrere Zahlen verwenden und
sie auf eine bestimmte Art behandeln, aber die Zahlen selbst kéon-
nen sich verandern. Dann kommen die Variablen ins Spiel.

Viele Programme umfassen die regelmaRige Verarbeitung verschiedener Daten-
arten. Ein Programm, das die Stabilitat von Hangebrticken analysiert, wird mit
sehr vielen numerischen Daten umzugehen haben; ein Textautomat im Biro
verarbeitet Textdaten, die aus Folgen von Buchstaben, Leerstellen und anderen
Symbolen bestehen. In BASIC verwendet man fir den Umgang mit solchen
GroRen Variable. Eine Variable wird mit irgendeinem Namen bezeichnet, den der
Programmierer bestimmt, und dient als Platzhalter fir die Daten; die eigentli-
chen Daten bestimmen die Werte, die die Variable annimmt. In Beispielen ist das
alles, wie wir gleich sehen werden, viel einfacher als im Abstrakten. Hier ein
typischer Fall:

10 FORT=0TO 1000

20 PRINTT; ”IM QUADRATIST", T+ T
30 NEXTT

Das hat das Quadrat T * T der Zahl T von @ bis 1009 zu berechnen. Wir sagen,
T sei eine numerische Variable. Sie besitzt einen festen Namen, hier T, und einen
Wert, der sich im Verlauf eines Programms andern kann. Hier beginnt sie mit
Wert @, nimmt dann Wert 1 und 2 und so weiter an, bis am Ende ihr Wert 1000
ist.

Beim 64 gibt es zwei Hauptarten von Variablen:

1. Numerische Variable, die als ihre Werte Zahlen umfassen.
2. Stringvariable, die Folgen von Zeichen umfassen.

Variablennamen missen mit einem Buchstaben beginnen und aus Buchstaben
und Ziffern aufgebaut sein. (Fur diesen Zweck gelten Grafikzeichen als Buch-
staben.) Typische numerische Variablennamen sind:

A B Cc ALPHA Ab
GEWICHT GROESSE HARRY MARIA X233

und so weiter. Bei einer Stringvariablen muB am Ende das Dollarzeichen $
angehangt werden:

A$ B$ Cs$ ALPHAS Ab$
GEWICHTS GROESSE$ HARRYS MARIAS X233s

45

Zu den Variablennamen muR man sich zwei Dinge merken:

1. Nur die beiden ersten Buchstaben oder Ziffern werden vom Computer
erkannt (allerdings sind langere Namen bis zu rund 89 Zeichen erlaubt).
Demnach werden

EX EXPERTE EXIL EX55

alle mit der gleichen Bedeutung gelesen. Das kann nachteilig sein, wenn Sie
Namen verwenden, die Sie an die Funktion der Variable erinnern sollen. Bei
einem Firmenprogramm werden:

BEITRAG

und
BEZUEGE

vom Computer als gleich behandelt (BE), aber dem Programmierer entfallt das
in der Hitze des Gefechts vielleicht, und er gerat in Verwirrung, wenn er das
Ergebnis sieht . . .

2. Enthalt ein Variablenname irgendwo ein BASIC-Schlisselwort wie
PRINT, LIST, TO, FOR und so weiter, so laRt das System ihn nicht zu.
(Obwohl es sich nur fiir die beiden ersten Buchstaben interessiert! Der
Grund: Es sucht zuerst nach den Schiiisselwortern.) Die folgenden Na-
men kénnen Sie also nicht verwenden, weil sie Schllsselworter (unter-
strichen) enthalten:

TOTAL FORDERUNG SORTENS BESTAND STABIL

und zu meinem Schrecken ist mein altes Lieblingswort

FRED

auch nicht zulassig, weil es ein BASIC-Wort FRE gibt, das mitteilt, wieviel
Speicherplatz noch vorhanden ist (siehe Kapitel 12).

In manchen Fallen kann das System milverstehen, was Sie gemeint
haben, statt einfach Einspruch zu erheben. Versuchen Sie zu erraten, was dieses
Programm bewirkt.

19 LETTERS = "A”
20 PRINT LETTERS

Sie erhalten eine Fehlermeldung. Verandern Sie Zeile 20 zu:
29 PRINTTERS$

und der Computer zeigt ein A’ an! Er hat Zeile 10 als einen Befehl aufgefalt!
19 LETTERS$ ="A”

46

bezieht sich auf eine Variable namens TERS. Sehr spaRig. Aber Sie konnen
Schwierigkeiten aus dem Weg gehen, solange Sie BASIC-Schlisselworter -
sorgfaltig meiden.

Aufgabe 1

Zwei der folgenden Namen sind zugelassen, alle anderen nicht. Welche und
warum? (Hinweis: Lassen Sie vom Computer mit PRINT alle anzeigen.)

#NEUN SPENDE RATLOS FUNKTION 221B
BAKER STREET VERWENDUNG SINN
GETRAGEN POST WAND NOTE VERDORBEN
BREMSE FERNDIENST

Variable zuteilen

Der Programmierer mufs dem Computer mitteilen, welchen Wert er einer Varia-
blen zuteilen soll. (Wenn Sie das unterlassen, unterstellt er fir jeden numeri-
schen Wert @ und fir jede Stringvariable einen sogenannten /eeren String ohne
jedes Symbol.) Werte kdnnen Sie zuteilen mit dem Befehl:

LET
auf solche Weise:

100 LET GEWICHT =77
119 LET NAMES$ = "CHARLIE"

Um Platz zu sparen, darf man das Wort LET weglassen (und tut das in der Regel
auch):

100 GEWICHT =77
119 NAME$ = “CHARLIE"”

Beachten Sie die Anfiihrungsstriche um “CHARLIE"”. Sie brauchen Anfiih-
rungsstriche stets dann, wenn Sie Stringvariable zuteilen. Die GansefiiRchen
sind aber nicht Teil des Variablenwerts; sie geben nur an, wo die Folge von
Symbolen anfangt und aufhort. Mehr (ber Strings in Kapitel 16.

Der Wert der Variablen kann auch indirekt dadurch zugeteilt werden, daf’
die neue Variable als eine Kombination schon definierter Variablen ausgedriickt
wird:

190 A=36
20 B=5
30 K=10+A+B

47

setzt K auf den Wert 10 » 36 + 5, also 365. Das nachste Programm multipliziert
die beiden Zahlen 77 und 88:

10 A=77
20 B =88
30 K=A+B
40 PRINTK

Sie kénnen, wenn Sie wollen, die Zeilen 10 und 20 verdandern, um andere
Zahlen zu multiplizieren. Natdrlich gibt es kiirzere Wege, um dasselbe zu errei-
chen, etwa:

190 K=77+88

20 PRINTK
oder einfach:

19 PRINT 77~ 88

aber das liegt daran, daB ich ein besonders einfaches Beispiel gewahlt habe.

Aufgabe 2

In Commodore-Kaufhausern kostet ein Helm mit Schmuckbesatz 135 Dollar,
ein Zauberglas 32 Dollar und eine Packung Echsenschuppen 3 Dollar. Beniit-
zen Sie die drei Variablen HELM, GLAS und ECHS, um ein Programm aufzu-
bauen, das die Kosten von sechs Helmen, funf Glasern und neunundzwanzig
Packungen Echsenschuppen berechnet. Nennen Sie diese Variable PREIS.

Aufgabe 3

Andern Sie nur eine einzige Programmzeile ab, um die Kosten von elf Helmen,
vierzehn Glasern und drei Packungen Echsenschuppen zu berechnen.

Aufgabe 4
Andern Sie vier weitere Zeilen ab und lsen Sie Aufgabe 2, wenn die Preise sich

gedndert haben auf-147 Dollar flir den Helm, 43 Dollar fiir ein Glas und 1 Dollar
fiir eine Packung Echsenschuppen (die nicht mehr in Mode sind).

48

Losungen

Aufgabe 1
Die zulassigen Namen sind BAKER und STREET. Die Namen #NEUN und
221B beginnen nicht mit Buchstaben. Die lbrigen enthalten BASIC-Schlis-
selworter wie folgt:

SPENDE RATLOS FUNKTION VERWENDUNG
SINN GETRAGEN POST WAND NOTE

VERDORBEN BREMSE FERNDIENST

Aufgabe 2

10 PRINT CHRS$ (147

20 HELM =135

30 GLAS =32

40 ECHS =3

50 PREIS =6+*HELM + 5+ GLAS + 29 * ECHS

60 PRINT “GESAMTPREIS BETRAEGT []$"; PREIS

(lch habe einen Hinweis auf Leerstellen in der Meldung Zeile 6@ bewuft
unterlassen; von jetzt an mache ich das immer, wenn klar ist, wo sie hingeho-
ren.)

Aufgabe 3

Verandern Sie Zeile 50 zu:

50 PREIS=11+HELM + 14 » GLAS + 3 » ECHS

Aufgabe 4
Verandern Sie die Zeilen 20-40 zu:

20 HELM =146
30 GLAS =43
49 ECHS =1

49

9 Eingaben

Um Information in den Computer einzugeben, brauchen Sie ihm
nur zu befehlen, er moge Sie erinnern, sobald er etwas wissen mul.

Die Aufgaben 2—4 im vorigen Kapitel haben ihre Arbeit in der Tat geleistet, aber
es ist doch arg miihsam, jedesmal Programmzeilen verandern zu missen, wenn
Sie den Wert einer Variablen andern wollen. Zum Glick ist das auch nicht
notwendig, dank dem Befehl:

INPUT
mit dem Sie vom Keyboard aus den Wert setzen konnen. Und zwar so:

10 PRINT “GIB EINE ZAHL EIN”
20 INPUTN
30 PRINT “"DIEZAHLWAR []"; N

Wenn Sie das fahren, erhalten Sie GIB EINE ZAHL EIN und dann ein Fragezei-
chen. Wenn Sie auf dem Keyboard jetzt eine Zahl tippen und RETURN drucken,
geht das Programm weiter zu Zeile 30 und zeigt die Meldung samt der Zahl an.

Mehrfacheingaben

Wie bei PRINT-Befehlen konnen Sie mit INPUT mehrere verschiedene Variable
eingeben, die Sie durch Kommata trennen. Probieren Sie

10 INPUTA,B,C
20 PRINTA,B,C

Sie erhalten ein ?-Zeichen. Driicken Sie eine Ziffer, meinetwegen 3. Nun erhal-
ten Sie ?? fur die zweite Zahl. Geben Sie 5 ein. Noch einmal erscheint ??, also
driicken Sie 7. Der 64 zeigt prompt die Werte 3, 5, 7 an, die Sie fir A, B, C
eingegeben haben. Das Endergebnis sieht so aus:

RUN

73

2?5

227 1
3 5 7

READY

50

Unrichtige Eingaben

Wenn Sie beim Input einen Fehler machen, konnen Sie mit der INST/DEL-Taste
ausbessern, vorausgesetzt, Sie haben nicht auf RETURN gedriickt. Haben Sie
das doch getan, gibt es Schwierigkeiten . . . aulRer in einem Fall, wo der 64 sich
(und Sie) gegen einen haufig vorkommenden Fehler schiitzt.

Versuchen Sie fiir eine numerische Variable etwas einzugeben, das keine
Zahl ist, erhalten Sie die Fehlermeldung

REDO FROM START

Sie sollen also die Eingabe wiederholen.

Aufforderung

Sie konnen eine Meldung anzeigen, die Sie daran erinnert, wozu eine Eingabe
dient (ein ?-Zeichen ist nicht immer von Nutzen), namlich so:

10 INPUT “GIB EINEZAHL EIN”; N

was dieselbe Wirkung hat wie die Zeilen 10 und 20 des Programms, mit dem
dieses Kapitel anfing. Sie konnen mit diesen An- oder Aufforderungsmeldun-
gen auch Mehrfacheingaben verbinden. Beachten Sie, wo Strichpunkt und
Anflhrungsstriche stehen.

Hier ein Weg, die Aufgaben 2-4 des vorigen Kapitels ganz allgemein
besser zu bewaltigen.

10 PRINT CHRS$ (147)
20 INPUT “PREISE: HELM, GLAS, ECHS?"; HE, GL, EC
30 INPUT “MENGEN?"; NH, NG, NE
40 PREIS=NH=+*HE+ NG+*GL+ NE+*EC
50 PRINT “GESAMTPREIS BETRAEGT $”; PREIS
Um das Listing abzukiirzen, habe ich auf Variable mit zwei Zeichen abgekiirzt.

HE, GL und EC sind die alten HELM, GLAS und ECHS, und fur die jeweiligen
Mengen habe ich drei neue Variable namens NH, NG und NE.

Ein sauberes Display

Angenommen, Sie mochten, dald jemand, sagen wir, sein Alter und die Telefon-
nummer eingibt. lhr erster Versuch konnte so aussehen:

10 PRINT CHRS (147)
20 INPUT “ALTER"; A
30 PRINTA

51

49 INPUT “TELEFONNUMMER"; T
50 PRINTT

Das funktioniert zwar, aber am Ende sieht es auf dem Bildschirm so aus:
Alter? 17
17
TELEFONNUMMER? 361005
361005
READY

was nicht gerade ansehnlich ist. Es geht besser, wenn Sie die Reihenfolge ein
bikchen verandern:

190 PRINT CHR$ (147)

20 INPUT "ALTER"; A

30 INPUT “TELEFONNUMMER?"; T
40 PRINT CHRS (147)

50 PRINTA T

Manchmal wollen Sie aber vielleicht nicht bis zum Ende warten, um alles
anzuzeigen. Dann waére es besser, dafiir zu sorgen, daR die Meldungen oben auf
dem Bildschirm angezeigt und geléscht werden, bevor es weitergeht.

Hier ist der Ort fiir Steuerzeichen. Sie entsinnen sich, dal PRINT CHR$
(19) den Cursor zurlickfiihrt, den Bildschirm aber nicht antastet. Das konnen
wir nutzen, um dafiir zu sorgen, daR die Aufforderungszeichen in den obersten
Zeilen angezeigt werden. Hier ein Beispiel mit Mehrfacheingaben.

10 PRINT CHRS (147)

20 REIHE=4

30 PRINT CHR$ (19)

49 PRINT “[30 x (11"

50 PRINT “[30 x (11"

60 INPUT “ALTER”; A

70 INPUT “TELEFONNUMMER"; T
80 PRINT CHRS$ (19)

90 FORR =1 TO REIHE: PRINT CHR$ (17); : NEXT R
100 PRINTA, T

1190 REIHE = REIHE + 1

120 GOTO 39

52

Hier I6scht Zeile 10 den Schirm, Zeile 2@ setzt eine Variable fir die Reihennum-
mer, wo der nachste Eintrag in der Liste angezeigt werden soll. Zeilen 30-5¢
l6schen die obersten beiden Reihen fir neue Eingaben; 60—70 nehmen die
neuen Eingaben an. Zeilen 80—90 fiihren zur Anzeige in der Reihe REIHE. Zeile
100 schreibt die Eintrage der Tabelle, 110 fuhrt REIHE um 1 weiter zur nachsten
Reihe, und 120 wiederholt den ganzen Vorgang.

Ein biRchen Jongleurkunst, aber nicht unmaoglich, wenn man klaren Kopf
behalt . ..

Ubrigens bedeutet Zeile 40, daR Sie

PRINT “[30 x 11"

schreiben missen, ebenso bei Zeile 50.

Aufgabe 1

Schreiben Sie ein Programm, das als Eingaben bis zu 15 Namen und Rufnum-
mern annimmt und sie nach der Eingabe anzeigt, wobei das Display ordentlich
aussieht.

Losungen

Aufgabe 1

19 PRINT CHRS$ (147)

20 REIHE=4

30 FORK=1TO15

40 PRINT CHRS$ (19)

50 PRINT “[30 x []]"

60 PRINT “[30 x []]"

70 INPUT “NAME"; NAMES

80 INPUT “TELEFONNUMMER"; T
90 PRINT CHRS$ (19)

1090 FORR =1 TO REIHE: PRINT CHR$ (17);: NEXT R
110 PRINT NAMES, T

1290 REIHE = REIHE + 1

130 NEXTK

53

Ubrigens konnten Sie Zeilen 20 und 120 weglassen und 19 ersetzen durch
100 FORR=1TOK + 3: PRINT CHR$ (17);: NEXT R

weil Sie in Wahrheit keine zwe/i Zahler REIHE und K brauchen.

54

10 Debugging |

Es heilSt, der bildkriftige Ausdruck “die Bugs (Kéfer, Insekten)
herauszuholen” sei in der Frihzeit der Computer entstanden, als
Insekten in die Maschine krabbelten und Kurzschlisse hervorrie-
fen. Wenn heutzutage der Computer versagt, ist in der Regel der
Programmierer schuld. Aber um das beheben zu kénnen, miissen
Sie sich mit dem Debugging (= Entfehlern) trotzdem auskennen.

Sie sollten sich nie entmutigen lassen, wenn ein Programm beim ersten Lauf
nicht gleich fehlerlos lauft. Das kommt sogar bei Berufsprogrammierern ganz oft
vor!

Sie mussen also iber Methoden verfliigen, die Ihnen helfen, die Fehler in
einem Programm rasch und ohne Mihe zu finden. Das nennen wir Debugging.

Syntaxfehler

Fangen wir an mit den Fehlern, die erstmals dann auftreten, wenn Sie ein
Programm fahren. Beispiel: Nehmen wir an, Sie schreiben irgendwo in einem
Ihrer Programme

50 FOR1=1-7

weil Sie vergessen haben, dal’ man in einer FOR-Schleife die Werte durch ein
“TO" trennen mufd. Der 64 nimmt das nun geduldig an, wenn Sie es eingeben,
aber beim Lauf des Programms erhalten Sie die Meldung:

SYNTAX ERROR IN 59

Mit anderen Worten: Dem 64 behagt die grammatikalische Konstrukion der
Anweisung in Zeile 50 nicht. Das ist ganz so, als wiirde ich sagen: "'64, er nicht
verstehen diese Anweisung!” Sie wiirden Einwande gegen meine Syntax erhe-
ben! Der einzige Unterschied ist der, daR Sie meine ungrammatikalische Mittei-
lung begreifen wiirden, der 64 sich aber gar nicht die Mihe macht, Zeile 50 zu
verstehen. Er wirft sie, wie wir gesehen haben, einfach hinaus.

Fehler dieser Art unterlaufen besonders haufig, wenn Sie eine Program-
miersprache erlernen, und es ist sehr argerlich, ein Programm von sechzig Zeilen
mit zehn FOR-Anweisungen einzugeben, um dann beim Lauf zu erfahren, da
Sie den Aufbau einer FOR-Anweisung falsch in Erinnerung haben und sie nun
alle andern missen. Sie sollten es sich also zur Gewohnheit machen, nach
jeweils zwei, drei eingetippten Zeilen RUN zu geben. Unvollstandige Pro-
gramme verhalten sich freilich nicht sinnvoll, und Sie konnen sogar Fehlermel-
dungen erhalten, die wieder verschwinden, wenn der nachste Teil eingegeben
wird, aber in diesem Stadium kommt es fiir Sie nur darauf an, die Syntaxfehler
zu entdecken, bevor lhnen zu viele davon unterlaufen.

55

Die fehlerhafte Zeile andern

Sobald Sie den Fehler entdeckt haben, wollen Sie die Anweisung andern. Am
einfachsten geht das, wenn Sie die Zeile neu eingeben. (Wohlgemerkt: Wenn
Sie eine Zeile ganz entfernen wollen, schreiben Sie einfach die Zeilennummer,
gefolgt von RETURN.) Der Haken dabei ist natirlich der, daR die Zeile recht
lang sein kann und es als Zeitvergeudung erscheint, die ganze Tipperei mit
vielleicht nur einer einzigen Anderung wiederholen zu mussen.

Der 64 bedient Sie mit einem Editor, um dieses Problem zu bewaltigen. Er
ist sehr leistungstark und erfordert wie vieles in dieser Art ein wenig Ubung,
bevor Sie richtig damit umgehen konnen.

Sorgen Sie als erstes dafiir, daR die Zeile, die Sie andern wollen, irgendwo
auf dem Bildschirm erscheint, an welcher Stelle, ist ganz gleichgiiltig. Wenn das
nicht der Fall ist, schreiben Sie (in unserem Beispiel) LIST 50.

Beniitzen Sie nun die beiden Cursortasten (am Keyboard unten rechts)
dazu, den Cursor auf die 5" zu bewegen, also:

50 FORN=1-7

Dazu halten Sie die SHIFT-Taste gedrickt und driicken gleichzeitig die innere
Cursortaste. Wenn Sie die Taste nur fiir ein, zwei Sekunden driicken, sehen Sie
den Cursor eine Zeile hoherklettern. Driicken Sie die Taste langere Zeit nieder,
dann wiederholt sich der Vorgang auf einmal sehr rasch, und Sie werden
feststellen, daB Sie, bis Sie Ubung bekommen haben, tiber das Ziel hinausschie-
Ren. Macht nichts; um am Bildschirm wieder herunterzukommen, driicken Sie
einfach die Taste, diesmal aber ohne SHIFT.

Betatigen Sie nun die andere Cursortaste (ohne SHIFT), um den Cursor
die Zeile entlangzubewegen, bis er auf dem — ist:

50 FORN=1-7

Tippen Sie “T". Es tritt an die Stelle des —:
5600 FORN=1T7

Wenn Sie nun Q" tippen, ersetzt es die 7, was in diesem Fall keine grof3e Rolle
spielen wirde, weil Sie die Ziffer einfach noch einmal tippen konnten, aber wie
sahe es aus, wenn danach noch 20 weitere Zeichen kdmen? Der 64 verschafft
uns einen Weg, das Problem heimlich zu umgehen: Wir kdénnen eine Zeile
dadurch erweitern, daRR Stellen eingeschoben werden, die man dann Uber-
schreiben kann. An der Tastatur oben rechts befindet sich eine /nsert-(Ein-
schub)-Taste INST. Beachten Sie, daR das die obere Tastenhaifte betrifft, so dal®
Sie dazu SHIFT betatigen miissen, weil sonst mit DEL geloscht wird.

Steht der Cursor so, wie oben angegeben, und Sie driicken INST, entsteht
zwischen “T” und 7" eine freie Stelle:

50 FORN=1T[]7

wo Sie das “0O" jetzt hineinsetzen kénnen:
50 FORN=1TO7

56

Dricken Sie dann noch RETURN, und die Sache hat sich.

Das Ganze zu beschreiben, hat natlrlich viel langer gedauert, als es zu

tun, vor allem dann, wenn man ein biRchen Ubung hat.

Aufgabe 1

Hier ein paar Beispiele fiir Sie zum Uben. In jedem findet sich ein Syntaxfehler.
Versuchen Sie alle Anweisungen einzugeben, herauszufinden, worin der Fehler
besteht, und mit dem Editor den Fehler dann zu entfernen. Schreiben Sie
schlieBlich RUN, um sich zu vergewissern, daRR keine ?SYNTAX ERROR-
Meldung mehr kommt. (Sie erhalten vielleicht eine andere Meldung, aber hier
befassen wir uns zunachst nur mit Syntaxfehlern.)

o o wbh =

20 INPUTA

30 B-C=F

49 INPUT “GIB EINEN WERT EIN", V
50 IFP=1:PRINT"P=1"

60 A=3B=7,C=10

70 TOP=4

Losungen

Aufgabe 1

Das miiRte lauten:
20 INPUTA

Fihren Sie, um es abzuandern, den Cursor auf “M", schreiben Sie “N”
und drucken Sie RETURN. Einfach!

Das ist verkehrt herum. Es muR heiRRen:
30 F=B+*C

In einem solchen Fall geht es vermutlich schneller, die Zeile neu zu
schreiben, statt den Editor zu verwenden. Zur Ubung trotzdem:

Fuhren Sie den Cursor auf “B” und fligen Sie zwei Leerstellen ein. Tippen
Sie “F=""hinein. Fuhren Sie anschlieRend den Cursor am “‘F" des Zeilen-
endes vorbei, entfernen Sie “F” und “=" mit DEL. Driicken Sie, wie
gewohnt, RETURN.

Das Trennzeichen Komma muf ein Strichpunkt sein:
40 INPUT “GIB EINEN WERT EIN"; V
Also wird schlicht getauscht, wie in Beispiel 1.

57

4, Das muR lauten:
50 IFP=1THENPRINT “p=1"

(siehe Kapitei 11), sodaR Siedas “=""durch ““T" ersetzen, drei Leerstellen
einfugen und “HEN" hineinschreiben mussen.

5. Die Strichpunkte miissen Doppelpunkte sein, also schlicht austauschen.

6. Da werden Sie vermutlich iberfordert sein. Auf Anhieb ist nichts dagegen
einzuwenden, “TOP" als Variablennamen zu verwenden, aber leider ent-
halt er am Anfang das BASIC-Schlusselwort “TO" (wie bei FOR N =1
TO 20) —siehe Kapitel 8. Der 64 gerat also in Verwirrung, weil er Sinn in
einer Anweisung sucht, die mit “TO" beginnt und er als erstes ein “FOR"
erwartet.

Sie missen den Variablennamen andern, vielleicht zu “MAX".

Das Problem kommt ziemlich oft vor, und es ist gut, darauf zu achten, weil
es viel Verwirrung stiften kann. Sobald Sie ohne erkennbaren Grund einen
Syntaxfehler zu sehen bekommen, versuchen Sie die Variablennamen zu
andern!

Hinweis: Wenn Sie ausgebessert haben, wird der Cursor vermutlich nicht in
einer leeren Zeile stehen. Wenn Sie RUN schreiben, ersetzen Sie dann die ersten
drei Zeichen in der Zeile, so dal®, wenn die Zeile, zum Beispiel, lautete:

READY
dort nun

RUNDY
steht. Wenn Sie RETURN drucken, versucht BASIC zu verstehen, was RUNDY

sein soll, was nicht geht, so daB Sie wieder eine Fehlermeldung einfangen. Am
besten I6scht man nach abgeschlossener Ausbesserung den Bildschirm.

58

11 Verzweigen

Manchmal mul8 der Computer verschiedene Aufgaben unter ver-
schiedenen Bedingungen ausfiihren. Dazu nutzt man Verzweigun-
gen.

Wir haben zwei Befehle mit Auswirkungen auf die Reihenfolge kennengelernt,
in welcher der Computer Befehle ausfihrt, namlich GOTO, der ihn einfach zu
einer bestimmten Zeile, und FOR ... NEXT, der ihn durch eine regeilmaBige
Schleife schickt. Die beiden sind fiir Programme, die unter verschiedenen
Bedingungen verschieden reagieren missen, ein bichen zu regelmaRig.

DaR das Programm sich entsprechend den Bedingungen verzweigt, ladt
sich unter anderem mit dem Befehl

IF...THEN...

erreichen.
Hier ein Beispiel:

Bankkonto

Das ist ein ganz einfaches Beispiel fur ein “Praxis’ -Programm. Es berechnet
Ihren Kontostand, wenn Sie den vorherigen Stand angeben und lhre Einkiinfte
und Ausgaben Posten fiir Posten aufflihren. Damit es einfach bleibt, habe ich
mir keine Gedanken Uber die Position der Eingabemeldungen gemacht; Sie
konnen, wenn Sie Lust haben, hier Ordnung schaffen.

190 PRINT CHRS$ (147)
20 PRINT "BISHERIGER KONTOSTAND";

30 INPUTB
40 PRINT “FUEHRE AUSGABEN AUF”
50 INPUTA

60 IFD < @THEN 90

79 LETB=B-A

80 GOTO 50

90 PRINT “FUEHRE EINNAHMEN AUF”
100 INPUTE
110 IFE < @ THEN 140
120 LETB=B+E

59

130 GOTO 10
149 PRINT “"DERZEITIGER KONTOSTAND []”; B

Die entscheidenden Zeilen hier sind 60 und 110. Um zu sehen, wie sie wirken,
missen Sie wissen, dald das Zeichen < weniger als bedeutet. Die Bedingung D
< @ bedeutet also: “D ist kleiner als Null”. Das ist keine Zahl, hat also keinen
numerischen Wert; es ist eine logische Feststellung, die entweder wahr oder
falsch sein kann (je nachdem, ob D wirklich kleiner ist als Null oder nicht).
Beispiel:

3 < Qistfalsch
-7 < Qist wahr

Eine typische IF . . -THEN-Anweisung hat die Form
IF Bedingung THEN Befehl

Ist die Bedingung wahr, wird der Befehl ausgefiihrt. Ist sie aber falsch, geht das
Programm zur nachsten Zeile. Zeile 6@ schickt das Programm also dann zu Zeile
90, wenn D negativ, aber zur nachsten, Zeile 7¢, wenn D positiv ist.

Sehen wir uns an, wie das geht. Bis Zeile 50 sollte alles klar sein. Nehmen
wir an, Sie haben drei Ausgaben (Barzahlungen) von 15, 7 und 11 Pfund (oder
Dollar, wenn lhnen das lieber ist — beim heutigen Wechselkurs wird der Unter-
schied bald nicht mehr zu sehen sein). Wenn Sie das erstemal aufgefordert
werden, D einzugeben, teilen Sie dem Computer den ersten Betrag mit.

2156

Da D < @ falsch ist, geht das Programm weiter zu den Zeilen 70 und 80, die es
zu einer neuen Eingabe in Zeile 50 zuriickschicken. Sie liefern also den zweiten
Betrag:

27
und dann den dritten:
?5
aber der Computer giert immer noch nach einer Eingabe:

?

also missen Sie etwas tun. Nun kommt D < @ zu seinem Recht. Geben Sie
einen negativen Wert ein (—1 bietet sich an). Jetzt geht das Programm zu Zeile
90, weil D < @ wahr ist. Der ganze Ablauf wiederholt sich, jetzt fiir Einkiinfte
(eingehende Betrage); und die Eingabe hort auf, wenn Sie wieder —1 beisteu-
ern. Der Gebrauch eines sinnlosen Werts wie —1, um eine Verzweigung zu
steuern, ist ein ublicher Kniff; wir sagen, —1 diene als Begrenzer, weil er dem
Computer “Ende der Eingabeliste” signalisiert.

Inzwischen haben die Zeilen 79 und 120 Abhebungen abgezogen und
Eingange hinzuaddiert, so daR er endgiiltige Kontostand in Erscheinung tritt.

60

Aufgabe 1

Schreiben Sie ein Programm zur Addierung der Preise einer Einkaufsliste und
verwenden Sie einen Begrenzer — 1, um das Ende der Eingaben anzuzeigen.

Aufgabe 2

Schreiben Sie ein Programm zur Eingabe einer Zahl, das anzeigen soll, ob sie
kleiner als 100, gleich 100 oder groRer als 10Q ist. (Hinweis: > bedeutet
“groRer als”.)

GrolRenrelationen von Zahlen

Es gibt eine ganze Reihe von Symbolen fir die Feststellung, ob eine Zahl groRer
ist als eine andere oder gleich oder anders oder was auch immer. Hier eine
vollstandige Liste mit Beispielen.

= gleich (3 = 3 wahr; 3 = 4 falsch)

> groRer als (3 > 2 wahr; 3 > 4 falsch)

< kleiner als (3 < 4 wahr; 3 < 2 falsch)

< > nicht gleich (3 <> 4 wahr; 3 < >3 falsch)

> = groler als oder gleich (3 >=3, 3 >= 2 wahr; 3 > = 4 falsch)
<= kleiner als oder gleich (3 <=3, 3 <=4 wahr; 3 <= 2 falsch)

Logik

Die Befehlsworter
AND
OR

konnen dazu verwendet werden, Bedingungen zu verkniipfen. Wenn ¢ und d
Bedingungen sind, dann ist c AND d wahr, falls ¢ und d beide wahr sind.
Demnach ist

X>@ANDX < 3
nur wahr, wenn X groer ist als @ und auch kleiner als 3. Bei ganzen Zahlen X
bedeutet das, X muf 1 oder 2 sein; bei Dezimalzahlen (liber die ich noch nicht
gesprochen habe), 1at das erheblich mehr Moglichkeiten zu.

61

Ebenso ist c OR d wahr, falls entweder ¢ oder d wahr ist (oder moglicher-
weise beide). Also bedeutet

X<B50RX=5

dasselbe wie X <= 5.
SchlieBlich sollte ich noch den logischen Befehl

NOT

erwahnen, der wahr in falsch verwandelt und umgekehrt.

Bedingte Spriinge

Ein gangiger Gebrauch von IF ... THEN ist der, das Programm zu einer neuen
Zeile umzuleiten, namlich so:

830 IFX=YTHEN 990

840 beliebig. .
Das nennt man einen bedingten Sprung.
Nach THEN folgt ein (stillschweigendes) GOTO. Eigentlich sollte es

heiBen IF X = Y THEN GOTO 990. Der Kiirze halber wird das GOTO aber
weggelassen.

Bedingte Zuweisungen

Eine andere Moglichkeit ist die, einer Variablen verschiedene Werte je nach
Wahrheit oder Falschheit einer Bedingung zu geben:

890 IFX=YTHENK=77
900 IFX <> YTHENLETK =99

wonach K 77 ist, wenn X =Y, und 99, wenn nicht. Das LET kann, wie (blich,
weggelassen werden.

Aufgabe 3

Die Verkaufssteuer fur eine Ware hangt wie folgt von der steuerlichen Einstu-
fung ab:

Tarif 1 (Erziehung) 2%
Tarif 2 (Kinderprodukte) 5%
Tarif 3 (Staatsverwendung) 0%
Tarif 4 (alles Ubrige) 15%

62

Schreiben Sie ein Programm, das den Steuertarif als Eingabe annimmt und den
Prozentsatz der Steuer anzeigt.

Losungen

Aufgabe 1

10 PRINT CHRS (147)

20 PRINT “EINKAUFSLISTE"

30 INPUTX

40 IFX < @ THEN 70

50 SUMME = SUMME + X

60 GOTO 30

70 PRINT “GESAMTBETRAG"; SUMME

Aufgabe 2

190 PRINT CHRS$ (147)

20 INPUTN

30 IFN < 100 THEN PRINT “KLEINER ALS 100"
49 IFN =100 THEN PRINT “GLEICH 100"

50 IFN > 100 THEN PRINT “"GROESSER ALS 100"

Aufgabe 3

190 PRINT CHRS$ (147)
20 INPUT “STEUERTARIF"; S
30 IFS<10RS > 4THEN 20
40 IFS =1THEN PRINT “2% ERZIEHUNGSTARIF"
50 IFS =2THEN PRINT 5% KINDERTARIF"
60 IFS =3 THEN PRINT “0% STAATSTARIF"
70 IFS = 4 THEN PRINT “15% — PECH GEHABT!"

Nur zum SpaR habe ich bei Zeile 30 eine Narrensicherung eingebaut, das heildt,
gegen unsinnige Eingaben geschiitzt.

63

12 Binare Zahlen

Computer verarbeiten Zahlen nicht nach unserer gewohnten Dezi-
malschreibweise, sondern auf eine Art, die fir elektronische Schal-
tungen besser geeignet ist. Es ist ein biSchen so, als zahle man mit
den Fil8en, statt mit den Fingern.

Man braucht kein mathematischer Experte zu sein, um beim 64 Binarzahlen
richtig zu nutzen, aber ein paar Grundgedanken sind unentbehrlich. Beispiels-
weise kann man ohne Binarzahlen keine Spritegrafik erzeugen. Wir miissen also
ein bichen friher, als uns eigentlich lieb ist, in den Computer hineinsteigen
und uns damit befassen, was er in Wahrheit macht. Dann mal ran.
Normalerweise befassen wir uns mit Zahlen auf Zehnergrundlage. Wenn
ich die Zahl 3814 schreibe, verstehen wir darunter alle die Zusammensetzung

3x1000+8x100 +1x10 + 4 x1

und wir konnen erkennen, dal wir, um einen “Stellenwert” von rechts weiter-
zukommen, einfach mit Zehn multiplizieren. Wir sagen, die Zahl beruhe auf der
Basis Zehn.

Weil wir das schon so lange tun, wie wir denken konnen, fallt die Erkennt-
nis schwer, da es noch andere, vollig verniinftige Wege gibt, dieselbe Aufgabe
zu bewaltigen. Die ersten Computerkonstrukteure kamen jedenfalls nicht dar-
auf; sie verwendeten bei ihren Maschinen Zehnerdarstellungen und gerieten in
bose Schwierigkeiten. Meistens rihrten sie daher, daR elektronische Verstarker
sich nicht bei allen Signalen, die man eingeben mochte, gleich verhalten.
Beispiel: Ein Verstarker, der sein Eingabesignal verdoppeln soll, mag das bei
Eingaben von 1, 2, 3 und 4 Einheiten durchaus tun, aber dann beginnt er
“abzuflachen”, so daR eine Eingabe von 5 zu einer Ausgabe von nur 9.6, 6 zu
10.8 fihrt und man den Unterschied in der Ausgabe bei Eingaben von 8 und 9
kaum noch unterscheiden kann.

Legen Sie eine Musikkassette in lhren preiswert erworbenen Recorder
und drehen Sie die Lautstarke ganz auf. Horen Sie die Verzerrung bei den lauten
Stellen? Das ist dieselbe Wirkung. !

Die Computerkonstrukteure der Anfangszeit horten keine Verzerrung; sie
stellten nur fest, daR die Maschinen manchmal nicht zwischen Ziffern unter-
scheiden konnten, bei einem Computer eine aussichtslose Sache. Sie mufdten
also ihre Zahlendarstellung neu iberdenken, um sie dem anzupassen, was die
Elektronikgeister am besten konnten.

Das Einfachste, was man mit einem elektrischen Signal machen kann, ist,
es an- oder abzuschalten; die Ziffern @ (ein) und 1 (aus) lassen sich also
befriedigend darstellen. Verzerrung spielt keine Rolle mehr. Alles bleibt klar, ob
ein Signal vorhanden ist oder nicht, ohne Ricksicht auf irgendeine Verzerrung.
Aber l?<6nnen wir denn ein Zahlensystem aufbauen, das sich nur auf ¢ und 1
stutzt?

Allerdings. Bei einer Zahl auf Zehnerbasis ist die groBtmdogliche Ziffer 9.
Tut man 1 zu 9 hinzu, erhalt man 10 — stattgefunden hat ein Ubertrag. Wir
konnen jede Zahl mit jeder anderen Basis schreiben, die uns behagt, und die

64

groRtmogliche Ziffer wird stets um 1-niedriger sein als die Basis. Bei Basis 2 ist
die groRte Ziffer 1, also enthalt eine Zahl auf Basis 2 (oder bindre Zahl) nur
jeweils @ und 1.

Und die Stellenwerte? Bei Basis Zehn erhielten wir sie, wenn wir (rechts)
bei 1 anfingen und jedesmal, wenn wir eine Stelle nach links gingen, mit 10
multiplizierten. Bei einer Binarzahl beginnen wir auch mit 1, multiplizieren aber
jedesmal, wenn wir nach links gehen, mit 2.

So kann beispielsweise die Binarzahl 11@1 auf folgende Weise in Basis
Zehn umgewandelt werden.

11 0 1

I x1——

x
IS
0 S -

Umgekehrt 18Rt sich ebenso leicht umwandeln; nehmen wir als Beispiel 25.
Wenn wir die binaren Stellenwerte

32 16 8 4 2 1

niederschreiben und links beginnen, ist klar, daR wir eine 16 brauchen, so daf}
9 Ubrigbleibt, bestehend aus 8 und 1. 25 ist also:

() 1 1 0 0 1
Jede binare Ziffer (¢ oder 1) wird ein Bit (von binary digit) genannt.

Bytes

Ein Byte ist eine Binarzahl von 8 Ziffern, beispielsweise 11000101 (dezimal also
197). Die Dezimalwerte von Bytes gehen von @ bis 255. Beim 64 kdnnen
Speicherplatze genau ein Byte aufnehmen, daher ihre Bedeutung. (Das liegt
daran, da® der 64 ein sogenannter 8 Bit-Mikroprozessor ist;, kompliziertere
Gerate haben groRere Speicherplatze, aber das kostet!) Anhang 1 liefert die
Dezimal- und Binarwerte aller 266 moglichen Bytes. Mit dem nachsten Pro-
gramm konnen Sie ein Byte eingeben und genau verfolgen, wie es in Dezimal
umgewandelt wird.

10 DIM B (8)

20 SUMME =0

30 PRINT CHRS (147)

49 INPUT “GIB EINE BINAERZAHL EIN"; B$
50 IF LEN (B$) <> 8 THEN 40

65

60

79

80

90
100
110
120
130
140
150
160
170
180
190

- 200

210
220
230
240
250

.260

270

PRINT CHRS$ (147)

PRINT “UM DIE ZAHL [1”; B$; “[] IN DEZIMAL"
PRINT “UMZUWANDELN, WIRD SO VERFAHREN:"
PRINT

FORT=1TO8

S=21(8-T)

B (T) = VAL (MIDS$ (B$, T, 1))

PRINT B (T); TAB (3); “X"; S; TAB (10); “=";
IFB(T)=@THENPRINT*"J 1 1 O0"
IFB(T) =1ANDT > 1 THEN PRINT “[1";
IFB(T) =1ANDT > 4 THEN PRINT “[]";
IFB(T) =1THEN PRINT“[]]S
SUMME = SUMME + B (T) * S

NEXT T

PRINT “[17 x Grafik-D + SHIFT]”
PRINT"GESAMT O O O O =00

IF SUMME < 109 THEN PRINT “[]";

IF SUMME < 10 THEN PRINT “[]";

PRINT SUMME

PRINT “[17 x Grafik-D + SHIFT]”

PRINT

PRINT

Bits in Bytes

Wir mochten uns manchmal auf, sagen wir, das fiinfte Bit des Bytes 11010101
beziehen. Meinen wir damit aber das fiinfte von links oder das fiinfte von rechts?
Darauf kommt es an; das eine ist 0, das andere 1. Um Verwirrung zu vermeiden,
Ubernehmen wir eine Standardnumerierung von 0 bis 7, die von rechts nach
links verlauft. (Sinnvoll ist das aus mathematischen Griinden, siehe unten.)
Also so:

Bitnummer — 7 6 5 4 3 2 1 0

Wert

66

Nun kénnen wir von ““Bit 4 des Bytes 11010101" sprechen, und es gibt keine
MiBverstandnisse.

Der Grund fur diese Numerierung ist, daR die bedeutsamsten Bits, das
heilt, jene, die zum Dezimalwert die grofite Menge beitragen, die hochsten
Nummern haben. Eine 1" in Bit 7 tragt zum Wert 128 bei, eine 1" in Bit 6 liefert
64, und so weiter bis hinunter zu Bit 0, das durftige 1 beisteuert. Bit K liefert also
2K, das ist die Kte Potenz von 2. (In BASIC wird das 21K geschrieben.)

Hohe und niedrige Bytes
Ein Byte kann Zahlen nur bis zu 255 aufnehmen, aber viele wichtige Zahlen
(beispielsweise Zeilennummern und Maschinenadressen) konnen groRer sein.
Wenn wir zwei Bytes kombinieren, konnen wir bis 656535 kommen. Angenom-
men, zwei aufeinanderfolgende Bytes enthalten die Zahlen N und H, dann wird
der Wert behandelt als

N + 256 + H
Wir nennen N das niedrige Byte und H das hohe Byte. So wiirde die Zahl

2500 = 196 + 9 » 256

gespeichert werden als

niedriges Byte hohes Byte
bindr —— | 11000100 | | 00001001
dezimal — 196 9

Im Grunde wird die Zahl damit als eine zweiziffrige Zahl mit Basis 256 behan-
delt! Diese Art von Zahlendarstellung wird etwa im SID-Klangchip verwendet
(Kapitel 30). Bei einer allgemeinen Zahl X zwischen @ und 65535 sind die
beiden Bytes:

hohes Byte H = INT (X/256)
niedriges Byte N = X — 256 * H = X — 256 * INT (X/256)

(INT bedeutet “Ganzzahliger- oder /ntegerteil von'.) Ebenso kann ein Einzel-
byte dazu verwendet werden, zwei 4 Bit-Zahlen zwischen F und G (zwischen
® und 15) aufzunehmen, indem 16 * F + G gespeichert wird:

F G

10100101 = 165

19 5
67

Ist der Bytewert X, dann haben wir:

F = INT (X/16)
G=X-16+F=X—- 16+ INT (X/16) .

Die Umhullende Kurve (ASDR) im SID verwendet diese Methode, statt tiberall
halbe Bytes zu vergeuden. (Ein halbes Byte wird im ““Reference Guide”” manch-
mal ein Nybb/e genannt.)

Speicherbelegung

Die GroRe von Computerspeichern wird gewohnlich in Kilobytes gemessen. Ein
Kilobyte umfafit 1024 Bytes (was also nah genug bei 1000 liegt). Ein “‘nackter”
64 hat 65536 Bytes oder 64 Kilobytes (64K) Speicher, aber rund 26 K sind
reserviert vom System, so daR lhnen zum Spielen 38K bleiben. Um genau zu
sein, 38911 Bytes.

Wahrend Sie ein Programm schreiben, wird Speicherplatz verbraucht.
Auch Variablenwerte erfordern Platz. Es kann oft nitzlich sein, zu wissen,
wieviel Speicherplatz noch frei ist.

Um das festzustellen, verwenden Sie den Befehl

PRINT FRE (9)

Ist das Ergebnis positiv, wird die Zahl der freien Bytes genannt. Ist es negativ,
versuchen Sie es noch einmal mit:

PRINT 65536 + FRE (0)

und erhalten jetzt den richtigen Wert. Es ist eine Eigenheit des FRE-Befehls, dal
das vorkommt, noch dazu eine recht alberne, aber das lalt sich miihelos behe-
ben. Wenn FRE einen negativen Wert meldet, haben Sie auf jeden Fall minde-
stens noch 32K freien Speicherplatz. In einem Programm koénnten Sie verwen-
den:

1000 F=FRE(Q):IFF < THENF = F + 65536
1010 PRINTF; “ BYTES FREI”

Byte-Logik
Man kann mit Binarzahlen Arithmetik betreiben, entweder direkt oder durch
Umwandlung in Dezimalzahlen und zuriick. Man kann aber auch /ogische
Operationen AND und OR ausflihren. Vielleicht méchten Sie raten, wie die
Losung von

185 OR 148
lautet? Waren Sie auf 189 gekommen? Warten Sie auf die Erklarung.

68

Es gibt einen Zusammenhang zwischen Byte-Logik und gewohnlicher
Logik, gestutzt auf eine Auffassung, wobei eine Ziffer einen Wahrheitswert
erhalt:

" @ bedeutet “falsch”

1 bedeutet “wahr”

Dann wirken bei einziffrigen Zahlen die logischen Operatoren OR und AND so:

O AND p=0 OQORO=0
O AND 1=0 ® OR1=1
1 AND 0=90 1ORO=1
1 AND 1=1 10R1=1

Das heiRt: p AND q ist wahr (Wert 1) nur dann, wenn p und q beide wabhr sind;
p OR g ist wahr, vorausgesetzt, p ist wahr oder q ist wahr oder beide sind es. Das
stimmt mit den Ublichen Regeln der Logik Uberein.

Dieser Gedanke gilt auch fir Folgen von Binarziffern. Wir fiihren die
Operation an jeder Stelle der Folge der Reihe nach aus. Um etwa

10111001 OR 10010100

zu berechnen, nehmen wir die Ziffern der Reihe nach so:

erste zweite
Zahl , Zahl Losung
Bit 7 - 1 OR 1 = 1
Bit 6 -) OR 0 = 0
Bit 5 - 1 OR 0 = 1
Bit 4 - 1 OR 1 = 1
Bit 3 - 1 OR 0 = 1
Bit 2 - 0 OR 1 = 1
Bit 1 -) OR 0 = 0
Bit @ - 1 OR 0 = 1

Dann lesen wir die Antwort ab:
10111001 OR 110010100 = 10111101
In der Dezimalschreibweise wird das, wie ich vorhin erklart habe, zu
185 0R 148 =189
69

Ebenso ergibt 185 AND 148:

Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit @

e

AND
AND
AND
AND
AND
AND
AND
AND

O TR = N e Y Gy
e e 2,8 = e v =
I

e 8 & v N v v =

~Hier ist die Antwort also 10010009 oder dezimal 144.
Das nachste Programm hilft lhnen vielleicht, diese
Giben, damit der Grundgedanke sich einpragt.

10
20
30
40
50
60
70
80
90
100
110
120

“130

70

140
150
160
170
180

PRINT CHR$ (147)

INPUT “ERSTE ZAHL SCHREIBEN"; A

IFA < @ OR A > 255 THEN 20

INPUT “*AND’ ODER 'OR’ SCHREIBEN"; X$
IFX$ <> “AND" AND X$ <> “OR’" THEN 40
INPUT “ZWEITE ZAHL SCHREIBEN"; B
IFB < ® OR B > 255 THEN 60

PRINT: PRINT

PRINT TAB (5); A; TAB (25);

C = A: GOSUB 500: PRINT K$

PRINT

PRINT TAB (5); B; TAB (25)

C = B: GOSUB 500: PRINT K$

PRINT TAB (25); "[8 x Grafik-* + SHIFT]"
IFX$ = “AND” THEN C = AAND B

IFX$ = "OR” THEN C = AOR B

GOSUB 500

PRINT TAB (5); A; X$; B

Berechnungen zu

190 PRINT TAB (25); K$

200 PRINT TAB (25); “[8 x Grafik-* + SHIFT]"
219 PRINT TAB (6);

229 PRINT “IST IN DEZIMAL"; C

230 END
500 REM BINAER-DEZIMAL-UMWANDLUNG C IN K$
519 K$="":Z=C

520 FORT=1TOS8

- 530 CH = INT (C/2)
540 IF2+«CH=CTHENKS$="0"+ K$
550 [F2+«CH <> CTHENKS$ ="1" + K$
560 C=CH
570 NEXTT
580 C=2Z:RETURN

Die Grafikzeichen in den Zeilen 140 und 200 sind 8mal das Zeichen auf Taste
«, wenn SHIFT gedriickt wird. Der GOSUB-Befehl ist noch nicht erklart; siehe
Kapitel 14. Er entspricht einem GOTO mit variablem Rickkehr-GOTO am Ende,
verwendet, um irgendeine Unteraufgabe zu erfiillen — hier die Umwandlung von
C in eine Binarzahl, die als String K$ gespeichert wird. Zerbrechen Sie sich
dariber jetzt nicht den Kopf.

Das Programm hat drei Eingaben: die erste Zahl, die Wahl von AND oder
OR, und die zweite Zahl.

Systemvariable setzen

Sie werden sich wohl fragen, was das alles nutzen soll. Das taucht auf, wenn wir
den Computer in einen bestimmten “Gemutszustand” versetzen missen, indem
wir den Inhalt eines geeigneten Speicherplatzes verandern. Das System ver-
wendet manchmal die Binarziffern an bestimmten Platzen (Systemvariable
genannt) als Flaggen — das heiRt, als Signale, die bestimmen, ob gewisse
Eintrage in Gebrauch sind oder nicht. Man kann sich ein Byte als eine Folge von
acht kleinen Schaltern vorstellen, wobei 0 ““aus” oder “‘Flagge unten’” und 1
“ein” oder “'Flagge oben’ bedeuten. Siehe Abbildung 12.1, die versucht, Flag-
gen und Schalter gleichzeitig darzustellen.

7

0 = Aus 0 0 ()

: Abbildung 12.1
Ein Byte gleicht einer Reihe von acht Schaltern oder Flaggen, die sich jeweils in einem von zwei
Zustédnden befinden konnen.

Angenommen, wir mochten Bit 2 auf “Ein” schalten, gleichgiiltig, worauf es
schon gesetzt ist, und die anderen Schalter in Ruhe lassen. Wenn wir wii8ten,
dal Schalter 2 aus ist, ware es einfach: Man addiert zum Binarwert 4:

10111001 + 00000100 = 190111101
Bit 2 abgeschaltet Bit 2 eingeschaltet

Fein! Aber nehmen wir an, wir wissen nicht, wie der Schalter gesetzt ist? 4 zu
addieren, konnte schlimm werden, denn:

10111101 + 00000100 = 11000001
Bit 2 eingeschaltet Hoppla Bit 2 abgeschaltet!

und was noch schlimmer ist, Bits 5, 4, 3 sind ebenfalls abgeschaltet, Bit 6 haben
wir eingeschaltet. Es ist so, als ware der Computer ein Auto, und wir hatten
versucht, die Scheinwerfer einzuschalten, sie statt dessen aber ausgeschaltet,
obwohl sie schon brannten, den Motor abgestellt, die Parkleuchten und die
Richtungsblinker abgeschaltet — und die Hupe angestellt. Nicht das Ideale.

Das Problem sind die Ubertragsziffern. Wir brauchen eine Operation, die
nur Bit 2 betrifft und es ungeachtet seines momentanen Wertes auf 1 setzt.
Wenn Sie eine Ziffer durch OR mit @ verkniipfen, bleibt sie bekanntermalen
gleich, und wenn Sie durch OR mit 1 verknuipfen, wird daraus 1. (Prifen Sie das
anhand der obigen Tabelle nach.) Wenn wir also ein Byte durch OR mit
00000100 verkniipfen, bleiben alle seine Bits gleich, bis auf Bit 2, das zu 1 wird.
Kurz gesagt,

parstuvw OR 00000100 = pqgrstivw
72

flr alle Werte 0, 1 von p, q, ... w. Da wir diese Operation auf OR in Dezimal
setzen konnen, heil3t das, dal

XOR4

dasselbe ist wie X, mit Bit 2 aber eingeschaltet.

Ebenso miissen wir, um Bit 2 auf @ zu setzen, alle anderen aber unveran-
dert zu lassen, die Zahl durch AND mit 11111011 (251 dezimal) verbinden. Das
liegt daran, daB p AND 1 = p, und zwar immer, dagegen p AND @ = (. (Es ist
kein Zufall, daR 251 = 255 — 4, aber nur Mathematiker sollten versuchen, hinter
den Grund zu kommen.)

Ich werde diese Methode weiter unten gelegentlich verwenden miissen.
Sie brauchen sie in diesen Einzelheiten nicht zu verstehen, um den Anweisun-
gen folgen zu konnen (jetzt sagt er uns das! Stohn, jaul), aber es tragt dazu bei,
das klarzumachen, was sonst sinnloses Gefasel ware. Vor allem sollen Sie sich
einpragen, daR eine Programmzeile wie

Y=XOR4

kein Anzeichen fiir schlechtes Korrekturlesen ist; sie ergibt durchaus Sinn. Und
man darf wetten, daB sie an irgendeinem Speicherplatz Bit 2 einschaltet.

Aufgabe 1

(Nehmen Sie diese nicht allzu ernst, aber vielleicht tragt sie dazu bei, die
Verwendung von Bits als Flaggen fiir die Art zu erklaren, wie das System
arbeitet.) Der (erfundene, aber beriichtigte) Mikro Storch 37 verwendet eine
Variable namens SCHALTER, um einige seiner wahlweise kauflichen Periphe-
riegerate wie folgt zu steuern:

Bit 7 6 54 3 2 1 0 Inhalt 1/Q

Kaffee ein/aus

Toaster ein/aus

> Tir auf/zu

Katze rein/raus

Geschirrspiiler ein/aus

Kahlschrank ein/aus

— Gartenschlauch ein/aus

> Heizung ein/aus

Sie wissen nicht, worauf die Bits gesetzt sind, aber Sie wollen die Katze
hinaustun. Welchen Befehi geben Sie?

73

Losung

Aufgabe 1
Bit 3 steuert die Katze, und 11110111 ist 247 dezimal, also bewirkt
SCHALTER = SCHALTER AND 247

das Gewdlinschte. Miaaauuuu!

74

13 PEEK und POKE

Jeder Platzim Commodore 64-Speicher hat seine eigene Adre8be-
nennung. Durch Verdanderung des Inhalts geeigneter Speicher-
platze konnen Sie den Computer veranlassen, eine ganze Reihe von
Aufgaben zu erfiillen. Zwei Befehle zeigen lhnen, was an einer
bestimmten Adresse gespeichert ist, und wie Sie es andern kénnen.

Beim Programmieren in BASIC konnen Sie in der Regel dem Computer den
Grol3teil der Arbeit Giberlassen, und Fragen wie: “Wo im Speicher ist das eigent-
lich abgelegt?” bekiimmern den Programmierer nicht. Sobald Sie aber die
fortgeschritteneren Einrichtungen des 64 nutzen wollen, etwa Farbe und Klang,
die Uber Standard-BASIC hinausgehen, erlangen solche Fragen Bedeutung.
Der 64 ist Anfangern gegenulber nicht so entgegenkommend wie manches
andere Gerat, und verlangt vom Programmierer, daR er eine grofle Menge
Organisationsdetails im Kopf behalt. Wenn Sie sich aber die Miihe machen, ein
paar einfache Grundideen zu beherrschen, reagiert der Computer als Ausgleich
dafiir viel schneller auf Ihre Befehle. Sie konnen sogar einfach die untenstehen-
den Befehle haargenau abschreiben und die erwahnten Einrichtungen nutzen,
ohne eigentlich zu wissen, was Sie tun. Sollte lhnen dieses Kapitel also zu
anstrengend vorkommen, dann Uberblattern Sie es und kommen Sie spater
darauf zurtick. Wie bei den meisten Aufgaben wird das Dasein aber erheblich
erleichtert, wenn Sie nicht nur das Wie der Befehle verstanden haben, sondern
auch das Warum der Griinde.

Speicheraufbau

Der Computerspeicher ist auBerordentlich starr und systematisch aufgebaut.
Jeder Speicherplatz erhalt eine feste Nummer, seine Adresse. Beim 64 gehen
die Adressen von @ bis 63535. Jede Adresse enthalt eine Zahl zwischen ¢ und
255 (den Informationswert eines einzelnen Zeichens). Diese Zahl ist nun in
Binéarschreibweise als ein String von acht Nullen oder Einsen gespeichert, so
daR jede Adresse ein einzelnes Byte enthalt. Fir manche Zwecke gentigt es, sich
die Zahl als eine gewohnliche DezimalgroRe vorzustellen, und zunachst halte
ich es hier so.

Der Computer verflgt Gber zwei Speicherarten:

1. ROM (Read Only Memory = Nur-Lese- oder Festspeicher), der sein
Betriebssystem enthalt, die eingebauten Arbeitsanweisungen, durch die
er funktioniert.

2. RAM (Random Acces Memory — Speicher mit wahlfreiem Zugriff), der
das speichert, was geandert werden kann: BASIC-Programm, Bild-
schirmdisplays, Notizblock fiir Berechnungen, und so weiter.

75

Verandern konnen Sie den Inhalt von RAM, aber nicht von ROM. Wenn Sie im
Speicher herumwihlen, konnen Sie also schlimmstenfalls den Computer in
einen Zustand versetzen, der ein Ricksetzen erfordert; an diesem Punkt miissen
Sie ihn kurz abschalten. Sie verlieren den Inhalt von RAM, richten aber keinen
dauernden Schaden an, so daR Sie unbesorgt experimentieren dirfen, ohne
sich Sorgen daruber zu machen, was Sie dem Gerat antun kénnten.

Beispielsweise sehen die letzten zehn Bytes von ROM aus wie Tabelle
13.1, und im 64 sind noch viele Tausend Bytes Information mehr untergebracht.
Wenn der Computer arbeitet, sausen all die kleinen Nullen und Einsen im
Inneren wie Ameisen durcheinander (na schon, die Einser sind Ameisen, die
Nullen Nicht-Ameisen), bis sie da landen, wo Sie, der Programmierer (und die
Leute, die das ROM-Programm geschrieben haben) das wiinschen. Erfalt Sie
nicht Ehrfurcht und Demut bei dem Gedanken, Herrschaft tiber Leben und Tod
so vieler Ameisen zu besitzen?

Tabelle 13.1
Adresse Inhalt
binar dezimal
65526 01010010 82
65527 01010010 82
65528 01000010 66
65529 01011001 89
65530 01000011 67
65531 11111110 254
65532 11100010 226
65533 11111100 252
65534 01001000 72
65535 11111111 255
PEEK

Der Befehl, mit dem Sie in einen Speicherplatz blicken und erkennen (aber mcht
verdndern) konnen, was sich dort befindet, heif3t:

PEEK
Um etwa den Inhalt von Adresse 65535 zu finden, geben Sie

PRINT PEEK (65535)
ein. Auftauchen sollte die Zahl 255; wenn nicht, habe ich Sie angelogen.

Mit folgendem Programm (das im Verlauf des Kapitels noch erganzt wird,
daher die sonderbaren Zeilennummern) konnen Sie durch PEEK einen Blick in
jeden beliebigen Speicherteil werfen:

76

10 REM PEEKING ROUTINE
20 INPUT “ADRESSE FUER START"; AD: IF AD < @ OR AD >
65535 THEN 20

30 H=0

60 P = PEEK (AD)

99 PRINT AD; TAB (8); P; TAB (16);

100 IFP < 320RP > 127 AND P < 160 THEN PRINT “CTRL";
110 IFP > 31 AND P < 128 OR P > 159 THEN PRINT CHRS (P);
120 PRINT TAB (24);

130 IFP > 191 THEN PRINT “+";

149 PRINT
230 AD=AD + 1: IFAD > 63535 THEN STOP
240 H=H+1:1FH < 20 THEN 60
250 GET A$: IF A$ = " THEN 250
260 IF A$ = “S” THEN STOP
2790 GOTO 30

Fahren Sie das mit RUN und geben Sie 65526 ein, wenn die Startadresse
verlangt wird. Sie sollten den Inhalt der letzten zehn Speicherplatze im ROM,
wie oben aufgefiihrt, erhalten (ohne die Binarversion, aber mit einer Zusatzko-
lonne, die das Zeichen angibt, dessen Code die von PEEK erkannte Zahl ist). Da
habe ich sie her.

Allgemein konnen Sie jeden beliebigen Startwert eingeben; das Pro-
gramm ist mit einer Narrensicherung ausgestattet, um eine Eingabe zwischen @
und 65535 sicherzustellen. Sie erhalten eine “Seite” Display. Driicken Sie Taste
“’S" zum Anhalten und irgendeine beliebige Taste fiir die nachste Seite. Konzen-
trieren Sie sich auf die Zahlen in den ersten beiden Kolonnen, die Adressen und
ihren Inhalt; die dritte Kolonne erklare ich unten.

Die konkreten Zahlen hier ergeben fur Sie wohl nicht viel Sinn. Begreif-
lich — sie sind im eigenen privaten und personlichen Maschinencode des
6510-Mikroprozessorchips geschrieben. Es wiirde ein weiteres Buch (etwa
den “Reference Guide™) erfordern, Sie hier auch nur auf den Weg zu bringen.
Wenn Sie aber immer wieder eine Taste fiir eine neue Seite dricken, wird lhnen
immerhin klar werden, daf3 im Inneren lhres Computers enorm viel Information
steckt. Manches davon erkennen Sie vielleicht sogar:

Aufgabe 1
Fahren Sie das obige Programm mit RUN und geben Sie 41118 ein, dann
wiederholen Sie das Ganze mit 41374. Welchen Bereich des Speichers haben
Sie vor sich?

77

Narzif3 schlagt wieder zu

Der Legende nach verliebte NarziR sich in sein eigenes Spiegelbild in einer
Quelle und wurde in eine Blume verwandelt (ein Racheakt von Artemis, als
Narzi eine Nymphe namens Echo nicht zu schatzen wulte). Ich riskiere das-
selbe Schicksal, wenn ich nun die PEEK-Routine mit PEEK auf sich selbst
blicken lasse!

BASIC-Programme werden normalerweise beginnend bei Adresse 2048
gespeichert (auller, Sie jonglieren mit den richtigen RAM-Bits, um das zu
andern, wobei ich davon ausgehe, daR Sie das nicht getan haben; wenn Sie
wissen, wie man den BASIC-Zeiger verandert, brauchen Sie dieses Kapitel
ohnehin nicht zu lesen). Wenn Sie die Routine mit RUN fahren und 2048
eingeben, erhalten Sie auf der ersten Displayseite:

Adresse Inhalt/Dezimal Zeichen
2048 0 CTRL
2049 23 CTRL
2050 8 CTRL
2051 10 CTRL
2052 0 CTRL
2053 143 CTRL
2054 32 (Leerstelle)
2055 80 P
2056 69 E
2057 69 E
2058 75 K
2059 73]
2060 78 N
2061 71 G
2062 32 (Leerstelle)
2063 82 R
2064 79 0}
2065 85 U
2066 84 T
2067 73 |
2068 78 N
2069 69 E

(Streng genommen, stehen die beiden letzten Zeilen auf der zweiten Seite des
Displays, und Sie mussen eine Taste driicken, um sie zu sehen —zusammen mit
anderen Eintragen. Aber ich brauche sie der Ordnung halber.)

Die dritte Kolonne verwandelt die im Speicherplatz enthaltene Zahl in das
entsprechende Zeichen (siehe Handbuch, Anhang F, S. 135-137). Manche
Zeichen haben seltsame Auswirkungen auf das Display, wenn Sie versuchen,
sie mit PRINT anzuzeigen, und aus diesem Grund habe ich dafiir gesorgt, daR
stattdessen CTRL (“control’’) angezeigt wird. Bei Codes von mehr als 191 steht
ein “+"-Zeichen, weil sie dieselben Zeichen ergeben wie bestimmte kleinere
Zahlen. Wenn Sie weiter nachforschen, wird lhnen aulRerdem auffallen, daR
Code 34 eine hochst eigenartige Anzeige ergibt, die zu erklaren der Platz fehlt.
Im Ubrigen ist sie harmlos.

78

Nicht alles in der Tabelle ergibt auf Anhieb Sinn, aber die Uberschrift
PEEKING ROUTINE konnen Sie ganz deutlich sehen. Wenn Sie weitergehen zu
spateren Seiten des Displays, stoRen Sie auf andere Teile des Programms, die
augenblicklich erkennbar sind, vermischt mit weniger einleuchtendem Material.
Das Unklare codiert die Zeilennummern auf nicht gerade durchsichtige Weise
oder verdichtet die BASIC-Schliisselworter zu 1 Byte-Codes, um Speicherplatz
zu sparen. So steht etwa 143 an Speicherplatz 2053 fir REM. Jawohl, Herr-
schaften, das Programm istim Computer wirk/ich gespeichert, und wenn Sie an
der richtigen Stelle nachgucken, konnen Sie es sehen.

4 Hmmmm ... bis jetzt noch nichts Blumiges zu merken. Dafiir etwas
anderes . . .

POKE

Sie konnen das Programm nicht nur sehen, sondern sogar verandern. Geben Sie
diese direkten Befehle ein:

POKE 2(058,86
POKE 2060,83
POKE 2061,72

Lassen Sie sich mit LIST das Programm zeigen. Sieht aus wie vorher? Nicht
ganz; beim REM steht jetzt

PEEVISH ROUTINE

Wenn Sie die Routine mit RUN noch einmal fahren und auch hier bei 2048
beginnen, kénnen Sie sehen, was vorgegangen ist: Bei den Adressen 2058,
2060 und 2061 ist der Inhalt der Codes fur V, S, H, statt fiir K, N, G verdndert
worden. Mit dem POKE-Befehl konnen Sie also ein bestimmtes Byte an einer
bestimmten Adresse in einen Speicherplatz setzen.

Aufgabe 2

Verandern Sie PEEKING ROUTINE mit zwei POKE-Befehlen in PARKING
ROUTINE.

Jetzt habe ich Pandoras Biichse aber ganz aufgemacht. Wenn Sie nach Belie-
ben mit POKE in Speicherplatze einzugreifen vermogen, konnen Sie alles ver-
andern, was Sie wollen, vorausgesetzt, Sie wissen, wo es sich befindet, und es
ist nicht sicherim ROM verwahrt. Die ntitzlichen Adressen konnen Sie aus dem
“Reference Guide” erfahren — ich werde in spateren Kapiteln nicht wenige
erwahnen. Jedenfalls konnen Sie nach Herzenslust mit PEEK in der ganzen
Speicherkarte herumfuhrwerken, und wenn Sie die Lust nach einem gelegent-
lichen POKE anwandelt, tun Sie sich keinen Zwang an. Nur eine Warnung:
Wahllose POKE-Versuche bringen seiten viel ein; man mull vom System einiges
verstehen, bevor man daran herumbasteln kann, ganz wie bei einem Auto.

79

Bildschirmfarben

Als eine Einfiihrung in die POKErei, die von auen her das Betriebssystem nutzt,
wollen wir uns die Bildschirmfarben ansehen. Standig sind drei Farben vorhan-
den: Der Rand (Border) des Bildschirmbereichs, die Hintergrundfarbe auf dem
Schirm (die ich Paper nennen werde), und die Farbe des angezeigten Zeichens
(/nk). Sie konnen die Inkfarbe mit der CTRL-Taste verandern (siehe Handbuch,
S.10) ... aber wie andern Sie Paper und Border?

Die Codes fir die Steuerung dieser Farben sind in zwei Platzen gespei-
chert:

53280 Borderfarbe
53281 Paperfarbe
und fir Ink gibt es auch einen:
646 laufende Inkfarbe
den Sie statt der CTRL-Methode verwenden koénnen. Soll etwas verdndert

werden, brauchen Sie in der Adresse mit POKE nur den erforderlichen Farbcode
einzugeben. Die Farbcodes sind:

@ Schwarz 8 Orange

1 Weil} 9 Braun

2 Rot 10 Hellrot

3 Cyan 11 Dunkelgrau
4 Purpur 12 Mittelgrau
5 Grin 13 Hellgrin

6 Blau 14 Hellblau

7 Gelb 15 Hellgrau

So liefert zum Beispiel

POKE 53280, 9 einen braunen Rand
POKE 53281, 4 purpurnen Hintergrund
POKE 646,11 dunkelgraue Inkfarbe
Die Paper- und Borderveranderungen wirken sich sofort auf den ganzen Bild-

schirm aus. Die Inkveranderung betrifft aber nur neu angezeigte Zeichen; die
alten bleiben so, wie sie waren.

Der Zeichensatz

Als SchluBschnorkel will ich Ihnen zeigen, wo der 64 die Information speichert,
um seine Zeichen hervorzubringen. Damit das Programm aber funktioniert,
mussen zwei knifflige Punkte berucksichtigt werden.

80

Der erste: Die Zeicheninformation kann nur dann richtig gesehen werden,
wenn die Zahlen bindr geschrieben sind, weil jedes binare ““1" einen winzigen
Punkt auf dem Bildschirm bestimmt und das Zeichen aus diesen Punkten
aufgebaut ist. Ich mul} also eine Routine zur Binarumwandlung aus Kapitel 12
einfugen.

Der zweite Haken: Die Adressen fur den Zeichensatz sind zwar durchaus
leicht erreichbar — laut “Reference Guide” gehen sie von 53248 bis 57343 -
aber wenn Sie dort mit PEEK hineingehen, finden Sie die richtige Information
nicht! Der 64 ist ein kompliziertes Ding und schiebt im Speicher Inhalte je nach
seinen Bedirfnissen herum. Er jongliert sogar mit AdreRbezeichnungen, so dal
eine gegebene Adresse mehr als eine Bedeutung haben kann, je nach dem
“Gemlitszustand”, in dem die Maschine sich gerade befindet.

In ihrem normalen Zustand beziehen die obigen Adressen sich ganz und
gar nicht auf den ROM-Zeichensatz, sondern auf einen RAM-Bereich, der fur
Input/Output verwendet wird. Der 64 kann aber durch ein biRchen POKErei
dazu bewogen werden, diese Adressen dem ROM anzuhangen. Zusatzliches
Poking ist notig, um wahrenddessen das Keyboard abzuschalten, weil sonst die
schlimmsten Dinge passieren konnen. Sobald man mit dem PEEKen fertig ist,
muf die Maschine naturlich wieder in ihren Normalzustand versetzt werden,
damit sie wie gewohnt arbeiten kann. Hort sich ein biRchen umstandlich an, ist
aber mein Problem, nicht lhres, ja? Tun mussen Sie also folgendes:

Flgen Sie der PEEKING ROUTINE oben folgende Zeilen ein:

49 POKE 56334, PEEK (566334) AND 254
50 POKE1, PEEK (1) AND 251

70 POKE1,PEEK (1) OR4

80 POKE 56334, PEEK (56334) OR1

Das ist das Umschalten im Speicher. Zeile 49 unterbindet Unterbrechungen
(das Keyboard); 50 holt die Information Giber den Zeichensatz an ihren Platz; 70
schiebt sie wieder hinaus; und 80 ermdglicht wieder Unterbrechungen. Dann
die Umwandlung in Binar:

149 PRINT TAB (28);

150 B$=""

160 FORS=1T08

1790 PH = INT (P/2)

189 IFP =2+ PH THEN B$ = CHRS (46) + B$
1990 IFP <> 2+ PHTHEN B$ = CHRS (166) + B$

200 P=PH
210 NEXTS
220 PRINT B$

81

Beachten Sie, dal die neue Zeile 140 die vorherige iiberschreibt. Andern Sie
schlieBlich Zeile 240 so ab, daR sie lautet:

240 H=H+1:IFH < 20 THEN 49

Fahren Sie mit RUN und geben Sie als Startadresse 53248 ein. Sie sehen die
Formen der Zeichen, A, B, C, . .. an der rechten Randseite auftauchen. Statt (
und 1 zu verwenden, habe ich versucht, die Formen dadurch deutlicher hervor-
zuheben, dal ich einen Punkt und ein kariertes Quadrat verwendet habe —
Zeichen 46 und 166, daher die Zeilen 180 und 19¢ im Programm. Wenn Sie @
und 1 vorziehen, andern Sie diese Zeilen ab zu:

180 IFP=2+PHTHENBS ="0" + B$
190 IFP <> 2+«PHTHENB$="1"+ B$

Abbildung 13.1
Zeichendaten, aus dem ROM entwendet.

Die verschiedenen Zeichenarten werden gespeichert, beginnend an den fol-
genden Adressen:

53248 Grol3buchstaben
53760 Grafik
54272 GroRbuchstaben in Negativschrift
(Paper und Ink vertauscht)
54784 Grafik in Negativschrift
55296 Kleinbuchstaben
55808 GroRbuchstaben und Grafik
56320 Kleinbuchstaben in Negativschrift
56832 GroBRbuchstaben und Grafik in Negativschrift

82

Ein bestimmtes Mal an Wiederholung tritt wegen der Art auf, wie der 64 zwei
verschiedene Zeichensatze verwendet (Handbuch, Anhang E, S. 132-134).
Sie kénnen die Zeicheninformation in Programmen verwenden — bei-
spielsweise, um Zeichen in Grofform anzuzeigen. Verwenden Sie jedesmal,
wenn Sie das tun, die Zeilen 40, 50, 70, 80 aus dem obigen Programm. Sie
konnen sogar selbst neue Zeichensatze entwerfen . .. aber das ist fiir dieses
Buch zu hoch. Schlagen Sie also nach im “Reference Guide”, S. 107-113.

Losungen

Aufgabe 1

Eine Tabelle von BASIC-Schliisselwortern.

Eine Tabelle von Fehlermeldungen. Das letzte Zeichen in jedem Schlis-
selwort und in jeder Meldung ist verandert worden, um eine Markierung
zu liefern, die dem Computer zeigt, wo das Wort aufhort. Driicken Sie
COMMODORE + SHIFT und fahren Sie das Programm erneut. Nun
stehen die Worter in Kleinschrift und die Merkzeichen in GroRschrift. Der
Gebrauch solcher Merkzeichen ist ein listiger Kniff, um Speicherplatz zu
sparen.

N -

Aufgabe 2

POKE 2056,65
POKE 2057,82

83

14 Subroutinen (Unterprogramme)

Wenn Sie feststellen, dals Sie immer wieder dieselben Codeteile mit
kleinen Abwandlungen schreiben, oder wenn lhnen zu entfallen
beginnt, was Teile eines Programms eigentlich leisten sollen, dann
kénnten Subroutinen angebracht sein.

Oft wird innerhalb eines Programms eine bestimmte Folge von Befehlen mehr-
mals verwendet. Es kann lhnen gelingen, durch (berlegte Verwendung von
GOTO-Befehlen das wiederholte Schreiben der Sequenz zu vermeiden, aber
das genligt nicht immer. Der Befehl

GOSuB

ist wie ein GOTO, das “weilR, wo es herkommt”. Bei der Begegnung mit einem
anderen Befehl:

RETURN

springt das Programm zu der Zeile nach der jeweiligen GOSUB-Zeile zuriick,
von der es zunachst ausgegangen war.
Dem GOSUB muR eine Zeilennummer folgen, etwa

GOSUB 1000

Damit wird das Programm zu der Folge von Befehlen geschickt, die mit Zeile
1000 beginnen (genau wie bei GOTO 1000). Der Teil des Programms, der
zwischen Zeile 1000 und dem RETURN-Befehl liegt, wird als Subroutine
bezeichnet, und man spricht davon, dal® sie vom GOSUB-Befehl aufgerufen
wird. Eine Subroutine ist also eine Art “Miniprogramm”, das innerhalb eines
groReren Programms eine bestimmte Aufgabe erfiillen soll.

e Fir die Verwendung von Subroutinen gibt es mindestens zwei gute

rinde: ,

1. Sie vermeiden unnotige Wiederholung und fiihren zu kurzen und effekti-
ven Programmen.

2. Sie erlauben dem Programmierer, ein Programm in leicht zu erfassenden
Teilen zu strukturieren, wodurch Testen und Debugging einfacher wird.

Es lohnt, sich bald an Subroutinen zu gewohnen, vor allem beim 64, wo viele
Standardmaoglichkeiten am besten durch die Entwickiung effektiver Subrouti-
nen genutzt werden.

Beispiel: Die Veranderung der Hintergrundfarbe (Paper). Ein Minipro-
gramm dafir hat die Form:

3000 REM PAPERFARBE
3019 -POKE 53281, PAPER

84

Hier ist PAPER eine Variable, die je nach der gewtlinschten Farbe im Bereich
0-15 gesetzt wird (siehe Kapitel 13). Um das als Subroutine nutzen zu kénnen,
missen Sie eine zusatzliche Zeile anfligen:

30290 RETURN

Jetzt kdnnen Sie statt eines Befehls POKE 53281 etc. einen GOSUB 3000-Be-
fehl verwenden, was zu grofierer Klarheit flihrt. Nehmen wir als Beispiel an, Sie
wollen Farbveranderungen dazu verwenden, den Reiz eines Werbedisplays zu
steigern. Dann konnten Sie ungefahr so verfahren:

100 REM HAUPTPROGRAMM

110 PRINT CHRS (147) [Schirm loschen, Cursor home]
120 PRINT: PRINT: PRINT [3 leere Zeilen]

130 PRINTTAB (10); “BIRKHAEUSER VERLAG"

149 PRINT

150 PAPER =2: GOSUB 3000 [Paper rot]
160 PRINTTAB (5); "COMPUTERKATALOG NOVEMBER 1987"
170 PRINT
180 PAPER = 4: GOSUB 3009 [Paper purpur]
190 PRINT “CRAY 1 - PROGRAMMIEREN LEICHT GEMACHT"”
200 PRINT
2190 PAPER =7:GOSUB 3000 [Paper gelb]
22¢ PRINT “SPIELE AUF IHREM VAX"
230 PRINT
249 PAPER = 8: GOSUB 30Q00 [Paper orange]
250 PRINT “COMPILERGENERATOREN
FUER BLUTIGE ANFAENGER"”

260 PRINT
2790 PAPER = 13: GOSUB 3009 [Paper hellgriin]
280 GOTO 100 [fang von vorne an]

Der Hauptpunkt, der begriffen werden muB: Begegnet das Programm einem
GOSUB, sagen wir, dem in Zeile 150, dann springt es zur angesprochenen Zeile
(hier 300Q) und fuhrt Befehle aus, bis es auf RETURN st68t, um anschlieRend
zur nachsten Zeile nach 150 zu springen, das ist also Zeile 160. Diese Wirkung
kénnten Sie nun auch erreichen, wenn Sie

150 PAPER =2:GOTO 3000
85

. verwenden und das RETURN verandern zu:

3020 GOTO 160

Aber . . . sobald Sie Zeile 180 erreichen, das nachste GOSUB 3000, schickt das
RETURN Sie zurick zu Zeile 190, so dal die abgeanderte Zeile (3020) nicht das
Richtige leisten wiirde. Ebenso kehrt das GOSUB in Zeile 210 durch RETURN
zu Zeile 220 zuriick, das GOSUB in Zeile 240 zu Zeile 250, und das GOSUB in
Zeile 279 zu Zeile 280. Das ist der entscheidende Unterschied zwischen GO-
SUB und GOTO, und dadurch ist GOSUB als Befehl viel leistungsfahiger.

Korrektur

Wenn Sie versuchen, das obige Programm wirklich zu fahren, werden Sie
feststellen, dald alles ganz schnell ablauft, so daR die Werbung nahezu unleser-
lich ist. Das geht naturlich nicht; wir missen den Ablauf dadurch verlangsamen,
dafd wir an den angemessenen Stellen Pausen einfligen. Das geht gut mit einer
zusatzlichen Subroutine:

2009 REM PAUSE ETWA 2 SEKUNDEN
2019 FORT=1TO 1500

2020 NEXTT

20390 RETURN

Nun konnen wir diese Subroutine jedesmal aufrufen, wenn wir eine Pause
wollen:

145 GOSUB 2000
175 GOSUB 2000
205 GOSUB 2000
235 GOSUB 2000

265 GOSUB 2000
Diese Art, eine Subroutine zu verwenden, um nachtraglich zusatzliche Befehle

einzufligen, wird als Korrekturroutine bezeichnet. Sie belegt eine weitere Me-
thode, die Vielseitigkeit des GOSUB-Befehls zu nutzen.

Programmstruktur
Die Grundstruktur des Programms sieht jetzt aus wie Abbildung 14.1. Es gibt
eine “"Hauptrichtung’ im Programmfluf mit wiederholten Abschweifungen zu
den Subroutinen.

86

|
I Zeig 1.Meldung an
| GOSUB 2008

I GOSuB 1000 I RETURN

RETURN |

I Zeig 2.Meldung an

| GOSUB 2000
GOSUB1GB8 |

RETURN

RETURN |

Zeig 3.Meldung an |

] GOSUB 2009
GOSUB 1909 J RETURN

RETURN l

L Zeig 4.Meldung an I
| GOSUB 2009
GOSUB 1008 | RETURN
RETURN |
[Zeig 5.Meldung an |

| GOSUB 2000

| GOSUB 1009 I RETURN

RETURN)
geh zuriick zum Anfang ————

Abbildung 14.1
Steuerflul3 im Werbeprogramm. Beachten Sie die wiederholten Aufrufe der beiden Subroutinen und
die verschiedenen Riicksprungpositionen.

Das Vorrecht der Weiblichkeit . . .

...ist, ihren Sinn zu dndern (heilt es). Angenommen, Sie kommen zu der
Meinung, die Borderfarbe sollte sich verandern und der Paperfarbe entspre-
chen. Wenn Sie jede Farbveranderung mit POKE 53281,2 und so weiter direkt
geschrieben hatten, miRten Sie eine Menge POKE 53280,2 einfligen, um das
Programm hinzubringen. Mit Subroutinen leistet aber eine einzige Zeile das-
selbe:

3015 POKE 53280, PAPER
87

Aufgabe 1

Damit es wirklich ordentlich wird, soliten Sie auch die Borderfarbe auf Dunkel-
blau setzen. Tun Sie das.

Top-down-Prinzip

Ein weiterer Vorteil von Subroutinen ist der, da® man mit ihnen ein Programm
“top-down” (also von oben nach unten) entwerfen kann. Das heil3t, grob
gesprochen, man schiebt die Verfeinerungen fur spater auf. “Wer die Mark nicht
ehrt, ist den Pfennig nicht wert . .."”, wie es im Sprichwort nicht heif3t. .. aber
- der Rat ist trotzdem besser. Nehmen wir das obige Beispiel, tun wir so, als hatten
wir es nicht so angefangen, wie es der Fall war, und wenden wir das Top-
down-Prinzip an. Sie werden sehen, daR das Ergebnis unauffallig subtile ver-
bessert wird.

Erstes Anliegen: Die wesentlichen Unteraufgaben bestimmen. Mir fallen
auf Anhieb drei ein:

1. Eine Meldung anzeigen.
2. Pause.
3. Farbe von Paper (und/oder) Border andern.

Diese werden jeweils funfmal verwendet. Wir beschlieBen also, drei Subrouti-
nen zu schreiben, um sie zu bewaltigen:

1000 REM ZEIG MELDUNG AN
(etwas, um eine Meldung M$ anzuzeigen) — 1. Subroutine
???? RETURN |

2009 REM PAUSE
(etwas fur rund 2 Sekunden Pause) — 2. Subroutine
???? RETURN _

3000 REM PAPERFARBE]
(etwas, um die Paperfarbe zu der von
einer Variablen PAPER bestimmten — 3. Subroutine
zu verandern)
???? RETURN _

Hier ist 72?7 eine Zeilennummer, die festzulegen ist, sobald wir die Subroutinen
konkret schreiben. \orerst brauchen wir aber nur darauf zu achten, welche
Variablen sie verwenden werden.

88

Wir mussen auRerdem den Computer in die richtigen Startbedingungen
versetzen (Bildschirm Ioschen, Cursor home, etc.):

4. Initialisiere System.

Wir brauchen also eine vierte Subroutine:

4000 REM INITIALISIEREN

(etwas, um die erforderlichen Bedingungen

zu schaffen) 4. Subroutine

77?

RETURN

Das Hauptprogramm

Version 1

Das Hauptprogramm nimmt nun die Form an:

100
110
120
130
149
150
160
179
180
190
200
219
220
230
249
250
260
270

REM HAUPTPROGRAMM

GOSUB 4000 [initialisieren]

M$ = “BIRKHAEUSER VERLAG”

GOSUB 1000 [1. Meldung anz.]
GOSUB 2000 [Pause]

PAPER = 2: GOSUB 3000 [Paper rot]

Ms$ = “COMPUTERKATALOG NOVEMBER 1987"

GOSUB 1000 , [2. Meldung anz.]
GOSUB 2000 [Pause]

PAPER = 4: GOSUB 3000 [Paper purpur]

Ms$ = “CRAY 1 - PROGRAMMIEREN LEICHT GEMACHT"
GOSUB 1000 [3. Meldung anz.]
GOSUB 2000 [Pause]

PAPER = 7: GOSUB 3000 [Paper gelb]

Ms$ = “SPIELE AUF IHREM VAX" '

GOSUB 1000 [4. Meldung anz.]
GOSUB 2000 [Pause]

PAPER = 8: GOSUB 3000 [Paper orange]

89

280 Ms$ = "COMPILERGENERATOREN FUER BLUTIGE

ANFAENGER"”
2990 GOSUB 1000 [6. Meldung anz.]
300 GOSUB 2000 [Pause]
3190 PAPER = 13: GOSUB 3000 [Paper hellgrin]
320 GOTO 100 [das Ganze wieder-
holen]
Version 2

Wir haben diese Subroutinen noch nicht geschrieben . . . aber bevor wir es tun,
ist jetzt ziemlich klar, dal3 das Hauptprogramm nicht vollkommen befriedigt. Es
enthalt viele Wiederholungen — derselbe Ablauf wird fiinfmal wiederholt, es
andern sich nur Meldungen und Farbcodes. Ware da eine Schleife nicht effek-
tiver?

Allerdings — aber nur, wenn wir Arrays verwenden, von denen wir bis
Kapitel 25 offiziell nichts wissen. Das heilt, finf Variable

M$ (1) Ms$ (2) Ms$ (3) M$ (4) Ms$ (5)
enthalten die Meldungen, und
P (1) P(2) P(3) P (4) P (5)

die Paperfarben. Lauft der Schleifenzahler S von 1 bis 5, dann konnen wir uns
auf die Variable S im Programm beziehen als M$ (S) oder P (S). Die tatsachli-
chen Werte dieser Variablen missen natirlich irgendwo gesetzt werden — ein
geeigneter Platz ist innerhalb der Subroutine /nitialisieren. Jetzt haben wir also:

100 REM HAUPTPROGRAMM

110 GOSUB 4000 [initialisieren]

120 FORS=1TO5

130 M$ = Ms (S) GOSUB 1000 [zeig Meldung S an]

1490 GOSUB 2000 [Pause]

150 PAPER =P (S): GOSUB 3000 [Paper auf Farbe S]

160 NEXTS [zurlick zur Schleife]

170 GOSUB 2000 [Pause]

180 PRINT CHRS (147) [Schirm leer/Cursor home]
190 GOTO 120 [das Ganze wiederholen]

Beachten Sie, daBB nach Zeile 199 nicht erneut initialisiert werden muB; wir
verwenden GOTO 100 nicht.

90

Nun haben wir eine sehr klare Vorstellung von der ganzen Programm-
struktur — aber von den Subroutinen haben wir immer noch keine geschrieben!
Das ist der grof3e Vorteil des Top-down-Prinzips: Wir muBten im anderen Fall
alle diese Programmteile ebenfalls schreiben, und das Ganze ware wohl durch-
einandergeraten. Schlimmer noch, die gesamte Aufgabe wiirde viel ab-
schreckender wirken und unser Selbstvertrauen beschadigen. Wie lautet Jones’
Erstes Computergesetz? “Verschiebe nie auf morgen, was du lbermorgen
kannst besorgen.” -

In diesem Geiste:

Aufgabe 2
Schreiben Sie die Subroutinen in den Zeilen 1000, 2000, 3000 und 4000, die

noch benotigt werden, damit das Werbeprogramm lauft, und probieren Sie es
anschlieRend aus.

Aufgabe 3
Erfinden Sie sieben zusatzliche naheliegende Buchtitel fur das Birkhauser-

Angebot 1987 im Computershop, und wandeln Sie das Programm ab, um sie in
den Katalog aufzunehmen.

Losungen

Aufgabe 1
Figen Sie eine Zeile ein:

115 POKE 53280,6

Aufgabe 2
Die Subroutinen lauten:

1000 REM DISPLAYMELDUNG

1010 PRINT [leere Zeile]
1020 PRINT Ms$ [Meldung]
1030 RETURN

2000 REM PAUSE VON ETWA 2 SEKUNDEN

20190 FORT=0TO 1500 [“Tunix" -
2020 NEXTT Schileife]
2030 RETURN

91

3000
3010
3020
4000
4010
4020
4030
4040
4050
4060

4200
4210
4220
4230
4240
4400
4410
4420

REM PAPERFARBE

POKE 53281, PAPER

RETURN

REM INITIALISIEREN

DIM Ms$ (5): DIM P (b) [Dimensionierungsarrays, Kap. 25]
Ms$ (1) = “BIRKHAEUSER VERLAG”

Ms$ (2) = “COMPUTERSHOP-KATALOG NOVEMBER 1987
Ms$ (3) = “"CRAY 1 — PROGRAMMIEREN LEICHT GEMACHT"
Ms$ (4) = “SPIELE FUER IHREN VAX-COMPUTER"

Ms$ (5) = “COMPILERGENERATOREN FUER BLUTIGE
ANFAENGER”

P(1)=2

P(2)=4

P@3)=7

P(4)=8

P (5) =13

PRINT CHR$ (147) [Schirm leer/Cursor home]

POKE 646,90 [Ink schwarz]

RETURN

Die fehlenden Zeilennummern in Subroutine 4000 sollen Platz lassen fir die
dritte Aufgabe und haben keine Bedeutung.

Aufgabe 3

Verandern Sie die SchleifengroRe:

120 FORS=1TO12

Verandern Sie die ArraygroRen (Einzelheiten in Kapitel 25):

4019

DIM M$ (12): DIM P (12)

Flgen Sie zusatzliche Titel und Farben ein:

40790

92

Ms$ (6) = "REALTIME-STEUERUNG VON RAUMFAEHREN
MIT DEM VIC-20"

4080
4¢9¢
4100
4110
4120

4130
4250
4260
4279
4280
4290
4300
4310

M$ (7) = “TIPS ZUM UMGANG MIT DEM UNIX-BETRIEBS-
SYSTEM FUER DIE JUNGE BRAUT”

M$ (8) = “WIE BAUT MAN VLSI-SCHALTUNGEN AUS ALTEN
STREICHHOELZERN?”

M$ (9) = “COMMODORE 256 - PROGRAMMIEREN NICHT SO
LEICHT GEMACHT”

M$ (10) = “MASCHINENCODEPROGRAMME FUER NUME-
RISCH GESTEUERTE TOASTER"

M$ (11) = “EINE EINFUEHRUNG IN DAS NETZSYSTEM SPIEL
UND SPASS"”

M$ (12) = “LOGO FUER SYSTEMANALYTIKER”

P(6) =3

P(7)=10

P(8)=5

P(9) =14

P(10) =15

P(11)=9

P(12)=6

Beachten Sie librigens, wie leicht es ware, die Farben in dem nach obiger Art
strukturierten Programm zu andern. Man mif3te lediglich die Zuteilungen der
Variablen P (1)-P (12) abandern. Ebenso konnten die Buchtitel geandert
werden, ohne daf3 am Hauptprogramm etwas verandert werden miifte.

93

15 Debugging Il

Debugging | befalSte sich mit Fehlern in der “Grammatik”. Eine
Anweisung kann aber grammatikalisch vollig in Ordnung sein und
in einem Programm trotzdem Unsinn hervorrufen.

Laufzeitfehler

Der 64 weist Sie auf Syntaxfehler zwar erst dann hin, wenn Sie RUN tippen,
aber im Prinzip konnte er es schon vorher tun, weil er eine Anweisung nur
durchzugehen braucht, um zu erkennen, daR etwas nicht in Ordnung ist. Es gibt
aber andere Arten von Fehlern, die auf keinen Fall zu erkennen sind, bevor das
Programm gefahren wird. Man nennt sie Laufzeitfehler.

Hier ein simples Beispiel:

10 FORP=1TO 20
20 N=5/(5-P)
30 PRINTN

40 NEXTP

Fahren Sie das. Sie werden feststellen, daR es ganz brav losgeht und die Werte

1.25
1.66666667
25

5

liefert, dann aber mit einer Fehlermeldung aufwartet:
? DIVISION BY ZERO ERROR IN 20

Was ist da passiert? Die Meldung teilt uns mit, daB dem 64 an Zeile 20 etwas
unangenehm aufgefallen ist, die da lautet:

190 N=5/(5- P)

An der Anweisung selbst kann es allerdings nicht liegen, weil sie schon viermal
ausgefihrt wurde und die obigen vier Zahlen hervorbrachte. Es muB also mit
dem Wert von P zusammenhangen, das einzige, was sich verandert. Schreiben
Sie “PRINT P” (oder, damit es rascher geht, auch nur “?P’’). Der Bildschirm
zeigt “"b".

94

Der Computer versucht also auszurechnen:
5 5

5-5 0

und kann das nicht, weil das Ergebnis eine Zahl ware, groRer, als Sie sich
vorstellen mogen, und so gro der Speicher des 64 auch ist, sie konnte er doch
nicht aufnehmen. Der 64 nimmt also sehr verniinftig Notiz, sobald Sie irgend-
eine Zahl durch Null teilen wollen, und fangt erst gar nicht damit an, sondern
teilt lhnen lieber mit, daB es hier krankt.

Dieser Fehler kann in viel weniger auffalliger Weise auftreten. Wie ware es
damit?

30 INPUTP,Q,R
409 A=(P+Q-R)/(B+(P-R)*(P-R)-2+Q)
Probieren Sie 7, 15 und 2 als Werte fiir P, Q und R und warten Sie ab!

Aufgabe 1

Welche Werte in den folgenden Beispielen wiirden die Meldung “Teilung durch
Null’” hervorrufen?

1. A=7/(B-C)
2. R=P+Q/(2+P—-Q)
M=R+2/(R«R+R*R=*R)

Losung
Aufgabe 1

Sie kénnen davon kommen, wenn Sie alle Variablen in diesen Beispielen auf
Null setzen, aber andere Maglichkeiten sind: i

1. B und C gleich setzen.
2. Q doppelt so groR setzen wie P, etwaQ =7,p = 3.6
3. R = —1 setzen.

Sie konnen (und sollten) stets das Auftauchen der Meldung verhindern, wenn
Sie einen eigenen Test einfligen. Bei Beispiel 1 oben konnten Sie beispielsweise
schreiben:

20 INPUTB,C

30 b=B-C

49 IFD =@ THEN PRINT “GEHT NICHT. NOCH EINMAL"; GOTO 20
50 A=7/D

95

16 Strings

Man kann Computer dazu bewegen, nicht nur Zahlen, sondern
auch Worter und andere Arten symbolischer Schreibweise zu ver-
arbeiten.

Der Postbote kiopft an die Tir. Ein Brief fiir Sie. Ein sehr personlicher. “Lieber
Herr Wagenschmalz”, heit es da, “Sie sind unter den Bewohnern von Hinter-
dorfhagen ausgewahlt worden und erhalten vollig kostenlos . . .”

Sehr erfreulich. Die alte Frau Schnaufberger nebenan hat aber den glei-
chen Brief bekommen, wie auch jeder andere Einwohner von Hinterdorfhagen
nebst dem gesamten Sprengel.

Das geht so.

190 INPUT “WIE IST IHR NAME"; N$
20 INPUT “IN WELCHER STADT LEBEN SIE”; T$
30 PRINT CHR$ (147)
49 PRINT “LIEBER HERR []"; N$
50 PRINT “[] [1] SIE PERSOENLICH SIND HIERIN []"; T$
60 PRINT “AUSGEWAEHLT WORDEN UND ERHALTEN"
70 PRINT “VON UNS GRATIS UND OHNE KOSTEN (*)”
80 PRINT “EINEN GROSSARTIGEN NASEN-"
90 PRINT "BEFESTIGUNGSRING, VERGOLDET.”
100 PRINT “WIR SIND SICHER, HERR []"; N$
119 PRINT “DASS SIE AM SELBIGEN BALDIGST”
1290 PRINT “"HERUMGEFUEHRT WERDEN KOENNEN."”
130 PRINT “[J [J] MIT DEN FREUNDLICHSTEN GRUESSEN"
149 PRINT“[J [J] [] OTTOBALD K. BEUTELSCHNEIDER"”
150 PRINT “[] [[J VERTRIEB FUER LUKRATIVE
NEUIGKEITEN"
160 PRINT
170 PRINT "+ VERSANDGEBUEHREN DM 892,—"

96

Fahren Sie das und suchen Sie sich Eingaben aus:

WAGENSCHMALZ
HINTERDORFHAGEN
ZECKERWETTEL
SCHLAFHAUSEN

und so weiter. Probieren Sie andere Namen und Orte aus. Na.. . .

Nun stellen Sie sich vor, daB dieses Programm automatisch mit Namen
und Adressen aus einer Datenbank gefiittert wird und in der Stunde Tausende
von Briefen hinausgehen.

Abgesehen davon, wie albern das Ganze wirkt, ist das Interessante daran,
daR keinerlei Rechenarbeit stattfindet. Es wird nur gespeichert und ein biBchen
mit geschriebenem Text herumgespielt. Der Computer bewaltigt das, weil er
nicht nur Zahlen, sondern auch Strings speichern kann. Das ist es, was diese
Dollarzeichen $ signalisieren, obschon in diesem Zusammenhang noch eine
naheliegendere Verbindung zu bestehen scheint.

In Kapitel 8 habe ich Strings und Stringvariable schon vorgestellt. Jetzt
will ich Ihnen zeigen, wie man damit umgeht.

Verkettung

... ein hochgestochenes Wort fiir “aneinanderfiigen”. Wenn Sie zwei Strings
aneinanderkleben wollen, schreiben Sie ein +-Zeichen dazwischen. Beispiel: -

PRINT “HOT” + “"DOG"”
was.ergibt:
HOTDOG

Beachten Sie die Reihenfolge: “DOG™ + “"HOT" ergibt “DOGHOT". Beachten
Sie auRerdem, dal die Anfuhrungsstriche nicht Bestandteil des Strings sind.
Wenn ein String angezeigt oder auf andere Weise verarbeitet wird, sind die
Anfihrungsstriche nur da, um Anfang und Ende zu bezeichnen.

Man kann mehrere Strings auf folgende Weise kombinieren:

190 INPUT BS$, C$

20 PRINTB$ + B$ + C$
Was geschieht, wenn Sie als Eingaben:

B$ = "B” Cs="C"

B$ = "KO” Cs$ = "SNUSS”

B$ = “"DU, [[]”C$ = "NUR DU ALLEIN"
nehmen? Warum?

97

Kommt eine bestimmte Folge von Zeichen (und dazu gehoren auch
Grafikzeichen) in einem Programm mehrmals vor, dann empfinden Sie es viel-
leicht als lohnend, sie einer Stringvariablen zuzuteilen.

Die Lange eines Strings
Der Befehl
LEN

liefert die Lange eines Strings — das heillt, die Anzahl der darin enthaltenen
Zeichen. Beispiele:

LEN (“FIDO") = 4
LEN ("££££EELLLE££L7) = 11
LEN (2+2=5")=5

LEN (") = 0

aery

wobei ", der /eere String, ein String ohne Zeichen ist. Um allgemein die Lange
des Strings K$ zu finden, schreiben Sie:

LEN (K$)
Probieren Sie, um das zu testen, folgendes Programm aus:

10 INPUT “STRING"”; K$
29 PRINTKS; “[[] HAT LAENGE"; LEN (K$)
30 GOTO19

Erklart sich eigentlich von selbst.

Wortumkehrung

Das nachste Programm nimmt als Eingabe Buchstaben fiir Buchstaben ein Wort
an und nutzt die Stringverkettung, um dieses Wort hervorzubringen, aber ver-
kehrt herum. (Mit fortgeschritteneren Befehlen wie MID$, LEFT$, RIGHTS
konnte man das ganze Wort auf einmal eingeben, aber der Einfachheit halber
gehe ich hier Buchstaben fiir Buchstaben vor. Im nachsten Kapitel finden Sie
weitere Einzelheiten.)

190 INPUT “ERSTER BUCHSTABE"; F$
290 INPUT “NAECHSTER BUCHSTABE"; N$
30 IFN$="0"THEN 60

98

40 F$=Ns$+Fs$

50 GOTO 20

60 PRINT CHR$ (147)
70 PRINT F$

Um der Eingabe in Zeile 20 ein Ende zu machen, geben Sie keinen Buchstaben
ein, sondern 0",

Um zu sehen, wie das funktioniert, nehmen Sie das Wort “GARTEN". In
Zeile 10 geben wir den ersten Buchstaben **G™ ein, also wird F$ auf “G" gesetzt.
In Zeile 20 geben wir den nachsten Buchstaben ““A” ein. Zeile 40 verwandelt F$
nunin:

N$ + F$ ="A" + "G" = "AG”

und Zeile 50 schickt uns zuriick zu 20, um einen weiteren Buchstaben zu holen,
diesmal “R". F$ wird damit zu

N$ + F$ = “R"” + “AG" = "RAG"”
und so weiter:
Eingabe “T": F$ = N$ + F$ = “T” + "RAG"” = "TRAG”
Eingabe “E": F$ = N$ + F$ = “E” + “"TRAG"” = "ETRAG"”
N”:F$=N$+ F$="N"+ “ETRAG"” = “NETRAG”
Eingabe “@": Programm springt zu Zeile 6@ und zeigt "NETRAG" an.

Eingabe “

Das Entscheidende ist die Reihenfolge, in der die Strings in Zeile 49 zusammen-
gefligt werden. Was geschieht, wenn Sie stattdessen

40 F$=F$+Ns$

schreiben?

Aufgabe 1

Es gibt ein Spiel mit Wortern, bei dem der erste Spieler einen einfachen Satz
bildet wie:

GESTERN SAH ICH EINEN PAVIAN
Der nachste Spieler hangt dem Pavian ein beschreibendes Eigenschaftswort an:
GESTERN SAH ICH EINEN ROSA PAVIAN
Der nachste steuert wieder ein Adjektiv bei:
GESTERN SAH ICH EINEN WILDEN ROSA PAVIAN
99

und so weiter. Der Satz wird immer Ianger (bis jemand nicht mehr weil3, wo das
Wort hineingehort), und sieht am Ende vielleicht so aus:

GESTERN SAH ICH EINEN BEDENKENREICHEN FAULEN LEICHT-
GLAEUBIGEN ERFRISCHENDEN RIESIGEN BESONDERS VER-
STAERKTEN MISSGELAUNTEN KUNSTSTOFFGEFUTTERTEN HER-
VORRAGENDEN WILDEN ROSA PAVIAN

oder so in der Art.
Schreiben Sie ein Programm, mit dem die Spieler solche Satze dadurch
aufbauen konnen, dal3 sie bei jedem Schritt ein zusatzliches Adjektiv einfugen.

Losung

Aufgabe 1

10 Y$="GESTERN SAH ICH EINEN 1"
20 B$ = "PAVIAN"

30 As=""

49 PRINTYS + B$ + A$

50 INPUT “ADJEKTIV?”; I$

60 As=I1$+"[]"+As

70 GOTO 40

100

17 Substrings

Wenn Sie Teile eines Strings als Substrings herausnehmen, konnen
Sie Waorter manipulieren. Sie finden hier Beispiele fir Schdittelreime
und ein Programm, das lhnen mitteilt, auf welchen Wochentag lhr
Geburtstag fiel.

Im vorigen Kapitel habe ich den Gedanken eines Strings von Zeichen vorge-
stellt. Jetzt komme ich auf die Befehle

LEFTS$
RIGHTS
MIDs$

mit denen Sie Teile eines Strings auswahlen konnen — sogenannte Substrings.
Flr den Umgang mit Strings allgemein sind das sehr niitzliche Befehle.

Links, rechts und Mitte

Um die linke Seite eines Strings zu wahlen, verwenden Sie den Befehl
LEFTS$ (X$; N)

was die linken N Zeichen des Strings X$ liefert. Beispiel:
10 LET X$ = "LANDSCHAFTSMALEREI”
20 LET Y$ = LEFTS$ (X$, 4)
30 PRINTYS

erbringt LAND. Ebenso gibt es einen Befehl fur die rechten N Zeichen:
RIGHT$ (X3, N)

und

10 LET X$ = "LANDSCHAFTSMALEREI"
20 LETY$ = RIGHTS (X3, 2)

30 PRINTYS
ergibt El. (Ubrigens sind diese LET-Anfange eine Sache der freien Wahl und
konnen genau wie bei Zuteilungen fir numerische Variablen weggelassen
werden.)

101

SchlieRlich kommt in diesem Zusammenhang noch der Befehl:
MID$ (X$, M, N)

der die N Zeichen von X$ ab Position M liefert. Fiir M gibt es eine Einschran-
kung: Es muR groBer sein als @. LaBt man N weg, wird alles ab M erfaBt. Im
obigen Programm heiRt es dann:

29 LETY$ = MIDS$ (X, 5, 6)

und Sie haben SCHAFT.
Eine typische Verwendungsart dieser Methode ist die, den Wochentag mit
einer Ziffer von 1-7, beginnend ab Sonntag, anzuzeigen:

10 W$="SOMODIMIDOFRSA"
20 INPUT "WELCHER TAG"; T
30 Y$=MID$ (W$2+T—-1,2)
40 PRINTYS

Das 2 = T — 1 liefert die richtigen Startpositionen 1,3, 5,7,9, 11 und 13 in WS.

Aufgabe 1

Verwenden Sie einen String “"JANFEBMAR ... DEZ"”, um ein ahnliches Pro-
gramm zu schreiben, das mit einer Zahl von 1-12 den Monat anzeigt.

Strings und Zahlen

Der String “493"” und die Zahl 493 werden vom Computer verschieden aufge-
faRt. Das fallt lhnen vielleicht nicht auf, wenn Sie sie nur anzeigen.

PRINT 493
PRINT 493"

liefern dasselbe Ergebnis. Nun probieren Sie:

PRINT 493 + 7
PRINT “493" + 7
PRINT 493" + “7”

Sie werden feststellen, daR Sie drei verschiedene Ergebnisse erhalten:

500
? TYPE MISMATCH ERROR
4937

102

Im ersten Fall werden die Zahlen einfach addiert.

Im zweiten wird versucht, einen String zu einer Zahl zu addieren, was
einfach nicht geht. Einen String statt einer Zahl zu verwenden und umgekehrt,
ruft jedesmal diese Fehlermeldung hervor.

Im dritten Fall werden die Strings 493" und "7’ verkettet, zu “4937"
zusammengesetzt und ohne Anflihrung angezeigt.

Das kann sehr nutzlich sein, weil man mit Strings Dinge tun kann, die bei
Zahlen nicht so leicht fallen. Um beispielsweise die erste Ziffer von 987654321
zu finden, brauchen Sie nur LEFT$ ('987654321",1). Mit arithmetischen Me-
thoden geht das viel schwerer. Das Ergebnis ware jedoch ein String 9" und
nicht die Zahl 9. Vielleicht wollen Sie mit dieser 9 jetzt ein bilchen Arithmetik
treiben. Und zwar wie?

Ein String, der die Form einer Zahl hat (in Anfihrungsstrichen) kann in
eine echte Zahl verwandelt werden durch das Befehlswort

VAL
(far “value” = Wert). Demnach ist
VAL (""97)
die Zahl/ 9. Probieren Sie
PRINT VAL ('493") + VAL ("'7")

dann konnen Sie sehen, dal} es wirklich funktioniert.
Es gibt einen dahnlichen Befehl

STR$
der umgekehrt wirkt. Er verwandelt eine Zahl in einen String. Beispiel:
STR$ (7751) ist "7751""

Beispiele dazu finden Sie in Kapitel 34, Losungen, Aufgabe 1.

Schuttelreime

Der Schiittelreim lebt davon, da® die Anfangskonsonanten eines Reimpaars
vertauscht werden und dadurch einen uberraschenden neuen Sinn ergeben.
Durch Stringmanipulation kann man das mit dem Computer bewaltigen.
Ob die Ergebnisse komisch sind oder nicht, ist erstens eine Geschmacksfrage,
und zweitens hangt es vom Anwender ab. Das Programm hat dazu keine
Meinung.
Verfassen wir ein Programm dafir.

10 INPUT “ERSTES WORT"; A$
20 INPUT “ZWEITES WORT"; B$
30 P$ = LEFTS (A$1)

103

49 Q$ = MID$ (A$,2)
50 R$= LEFTS$ (B$,1)
60 Ss$= MIDS$ (Bs$,2)
70 PRINTA$ +“[]" + B$
80 PRINT “WIRD ALS SCHUETTELREIM”
90 PRINTR$ +Q$+“[]” +P$+S$
100 GOTO 10

Fahren Sie das und geben Sie in den Zeilen 19 und 2¢ “"GELBER"” und “'SE-
HEN" ein.

Zeile 30 nimmt den ersten Buchstaben links von “GELBER", also P$ =
“E"”. Zeile 40 nimmtvom Zeichen 2 an alles mit und macht Q$ zu “ELBER". Zeile
50 hangt R$ = “G" an, Zeile 60 liefert "EHEN"".

Zeile 70 und 80 setzen das urspriingliche Wort wieder zusammen, und
Zeile 90 zeigt an:

“S" + “ELBER” + "[]” + “G"” + "EHEN" = SELBER GEHEN

was eigentlich gar nicht so schlecht ist, wenn man es genau bedenkt.

Tagfinder

Dieses Programm nimmt als Eingabe ein Datum an (Tag Nummer T, Monat M,
Jahr J) und berechnet, welcher Wochentag es ist.

10 A$ = “"033614625035"

20 B$="SOMODIMIDOFRSA"

30 INPUT “TAG"; T

49 INPUT “MONAT"; M

50 INPUT “JAHR";J

60 PRINT “DER TAG IST [1";

70 Z=J-1

80 C =INT (Z/4) - INT (Z/1100) + INT (2/400)

99 X=J+T+C+VAL(MIDS$ (A$, M, 1)) — 1

100 IFM > 2 AND (J = 4 = INT (J/4)) AND
J<> 100« INT (J/100) OR J = 400 » INT (J/400)
THEN X = X + 1

1190 X =X—7+INT (X/7)

120 PRINT MID$ (B$,2 * X + 1,2)

104

Schreiben Sie das sehr genau ab, vor allem die Klammer in Zeile 10. Fahren Sie
es und geben Sie (versuchsweise) 24 fiir T, 9 fiir M und 1945 fiir N ein. (Also
den 24. September 1945). Sie mdissen das vollstandige Jahr eingeben, nicht
bloR 45, sonst liefert das Programm die falsche Antwort. Sie sollten erhalten

DER TAG IST MO

fiir Montag. Probieren Sie es mit dem heutigen Datum. Mit Ihrem Geburtstag.
Stellen Sie fest, an welchem Datum Goethe gestorben ist, und versuchen Sie es
damit.

Zeile 10 speichert die “monatlichen Korrekturzahlen” in dichter Form als
Einzelstring.

Zeile 20 baut den oben beschriebenen “Wochentags” - String auf.

Zeilen 30—60 sind Eingabe/Ausgabe-Anweisungen, nichts Ungewohnli-
ches.

Zeilen 80-100 fahren eine komplizierte Berechnung aus, die Schaltjahre
und die “monatlichen Korrekturen” beriicksichtigt. Beachten Sie die Verwen-
dung von VAL und MIDS$ in Zeile 90; hier wird die Ziffer M in A$ gefunden und
in eine Zahl verwandelt.

Zeile 110 liefert eine Zahl im Bereich §—6 fiir den Wochentag (statt der
oben zur Erlauterung verwendeten 1-7) und Zeile 120 zeigt den Tag an, wobei
es MIDS$ bei B$ verwendet.

Die Uhr

Der 64 hat eine eingebaute Uhr —ja, sogar mehrere! Mit BASIC konnen Sle zwei
Standardvariable nutzen:

TI
TIS

Die erste ist eine numerische Variable, und ihr Wert betragt 6@mal die Zahl der
Sekunden, die abgelaufen sind, seitdem der Computer eingeschaltet wurde. Die
zweite ist eine Stringvariable; sie gibt die Zeit in Stunden, Minuten und Sekun-
den an. Beispiel:

021143 = 2 Stunden, 11 Minuten, 43 Sekunden
150422 = 15 Stunden, 4 Minuten, 22 Sekunden

TI$ kann jederzeit auf Null zuriickgesetzt werden mit

TI$ = 000000

dann zahlt die Uhr die von diesem Augenblick an abgelaufene Zeit. Tl kann auf
diese Weise nicht zurickgesetzt werden. Ich erwéhne die beiden hier, weil TI$
eine Stringvariable ist und mit ein biBchen Stringmanipulation zu mehr Entge-
genkommen veranlaRt werden kann.

105

10 PRINT CHRS (147)

20 A$=TI$

30 PRINT LEFT$ (A$,2); “[] STUNDEN []”; MID$ (A$, 3, 2);
“[] MINUTEN [J"; RIGHTS (A$,2); “[] SEKUNDEN"

49 GOTO 20

Jetzt haben Sie eine Uhr auf dem Bildschirm. Sie rollt ab wie verriickt, also
mochten Sie vielleicht einfugen:

25 PRINT CHRS$ (19);

Beachten Sie, daR sie nicht regelmaBlig im Sekundentakt lauft; das liegt am
zeitlichen Ablauf des Zyklus. Ein paar Werte werden weggelassen, weil die Uhr
nicht im richtigen Augenblick gelesen wird. Aber die Zeit stimmt trotzdem.
Eine Erganzung, die sich bei jedem Programm empfiehlt, ist eine Routine,
mit der die abgelaufene Zeit angezeigt wird. Schreiben Sie gleich zu Anfang:

1 Tis = “000p00"

Dann lhr Programm. Aber statt STOP geben Sie (sagen wir) GOTO 10000 ein
und fugen an:

10000 As=TI$

10019 GET BS:IF B$ = """ THEN 10010 [Pause fir das Driicken einer
Taste]

10020 PRINT “ABGELAUFENE GESAMTZEIT BETRAEGT”

10030 PRINT LEFTS$ (AS$, 2); “[C] STUNDEN []; MIDS$ (AS, 3, 2);
“[J MINUTEN []”; RIGHTS (As, 2); “[[] SEKUNDEN"

100490 STOP

Losung

Aufgabe 1

190 Ms ="JANFEBMARAPRMAIJUNJULAUGSEPOKTNOVDEZ"
29 INPUT "WELCHER MONAT"; M

30 J$=MID$ (Ms,3+«M —23)

40 PRINT Js

106

18 ASCII-Codes

Jedes Zeichen hat seine eigene Codenummer. Damit kénnen Sie
priifen, was fir eine Art Zeichen es ist, oder von einem Code in den
anderen verwandeln. Ein Anwendungsgebiet wére das Morsen.

ASCII heil3t “American Standard Code for Information Interchange’ (amerika-
nischer Standardcode fiir Informationsaustausch) und entspricht seinem Na-
men ziemlich genau. Als eingeblrgertes System fiir die Codierung von Zeichen
als Zahlen ist es schon lange vorhanden.

Wenn Sie den Code eines Zeichens K$ finden wollen, verlangen Sie:

ASC (K$)

Hier ein Testprogramm:

10 INPUT K$
20 PRINT ASC (K$)
30 GOTO 10

Die ASCIl-Codes sind aufgefiihrt im Handbuch auf den Seiten 135-37. Die -
Zeichen 0—31 sind Steuerzeichen und werden vom Betriebssystem verwendet.
Die Zeichen 96-127 sind Grafikzeichen.

Um festzustellen, welches Zeichen einem gegebenen Code C entspricht,
verwendet man einen Befehl, den wir schon oft gesehen haben:

CHRS (C)

Hier ein Analog-Testprogramm:

10 INPUTC
20 PRINT CHRS (C)
30 GOTO10

Probieren Sie verschiedene Zahlen zwischen @ und 255 aus. Von @ bis 31
erhalten Sie seltsame Ergebnisse, weil das System sie nicht anzeigt, sondern
ihnen gehorcht!

Eine der Giblichen Anwendungen der ASCII-Codes ist die Prifung, ob ein
Zeichen zu einer bestimmten Art gehort. Nehmen wir an, das Zeichen sei K$. So
ergibt sich aus

IF ASC (K$) > 47 AND ASC (K$) < 58. ..

107

daB K$ eine Einzelziffer ist. Ebenso:

IF ASC (K$) > 64 AND ASC (K$) < 91...
dann ist K$ ein GroBbuchstabe. Und

IF ASC (K$) > 95 AND ASC (K$) < 128...

dann ist es ein Grafikzeichen. Und so weiter.

Aufgabe 1

Schreiben Sie ein Programm, das nach Eingabe eines Strings die einzel-
nen ASCII-Codes ausgibt.

Morsecode-Generator
Das folgende Programm nimmt eine Eingabe an und zeigt sie in Morsecode an:

10 DIM A$ (26)

20 A$(1) =" "
30 A$(2)="-..."
40 A$(3)="—.-."
50 A$(4)="-.."
60 AS$(5) ="."

70 A$(B) ="..-."
80 A$(7)="—-."
90 A$(8)="...."
100 A$(9)=".."
110 A$(19) =" ———"
120 A$ (11) = "—. "
130 A$(12) =".—.."
149 A$ (13) = ="
150 A$ (14) = "—."
160 A$ (15) = “——-"
179 A$(16) =".——."
180 A$(17) =“——. "

108

190 A$(18) =".-."
200 As(19)="..."
210 As (20) = -~
229 As(21) ="
230 As$(22)="...-"
249 As$(23)=".—--"
250 As$(24)="-..-"
260 As (25) ="-.--"
270 AS$ (26) ="—-.."
Das setzte nur die Codes fiir die Buchstaben A—Z hintereinander als Stringarray;

vielleicht fallen lhnen weniger langweilige Methoden dafur ein. Nun zum
Programm selbst:

300 INPUT “MITTEILUNG EINGEBEN"; M$

310 PRINT CHRS$ (147)

3290 FORI=1TO LEN (M$)

330 C=ASC (MID$ (M3, 1,1))

340 IFC <320RC > 32ANDC < 65 OR C > 99 THEN 380
350 C=C- 64

360 IFC < @ THEN FORJ = 1 TO 209: NEXT J: PRINT

370 IFC > @ THEN PRINT CHRS$ (C + 64), A$ (C)

380 NEXTI

3990 STOP

Zeile 300 erhilt die Mitteilung zum Verschlisseln. Zeilen 320 und 380 setzen
eine Schleife, um die Mitteilung Zeichen fir Zeichen abzusuchen; Zeile 330
findet das Zeichen I. Zeile 340 achtet darauf, daR es entweder ein Leerraum oder
ein Buchstabe ist und beachtet es im anderen Fall nicht. Zeile 350 zieht von
seinem ASCII-Code 64 ab, so da A 1 wird, B 2, und so weiter. (Achtung:
Leerraum wird jetzt zu 32-64, was negativ ist; sieche unten).

Zeile 360 fugt eine Verzogerung ein, wenn das Zeichen eine Leerstelle ist,
um Worter zu trennen, und zeigt eine Leere Zeile an.

Zeile 370 zeigt den Buchstaben der Mitteilung und seine Form in Morse-
zeichen an (entnommen aus dem Array A$).

Im Augenblick haben wir etwas leicht Ungewohntes: stummes Morsen.
Verwendet man den SID-Klangchip im 64, kann man auch die zugehorigen
Gerdusche erzeugen; dazu Aufgabe 2 in Kapitel 30.

109

110

Losung

Aufgabe 1

19
20
30
40
50

INPUT “STRING"; S$
FOR1=1TO LEN (S$)
K$=MID $ (S$,1,1)
PRINT ASC (K$)
NEXT |

19 Bildschirm- und Farbspeicher

Die Information, die erforderlich ist, um das TV-Bildschirmdisplay
hervorzubringen, ist in zwei Speicherbereichen enthalten. Diese
sind dem Programm/erer direkt zuganglich und kénnen genutzt
werden, um das a/splay zu steuern.

In Kapitel 7 habe ich erwahnt, daR man sich das TV-Schirmdisplay als aus 25
Reihen zu je 40 Zeichen bestehend vorstellen kann, und daB die Reihen ubli-
cherweise von §—24 und die Spalten von $-39 numeriert werden. Abbildung
19.1 zeigt diese Anordnung. Beachten Sie, daB sie genau 1000 (= 25 x 40)
Zeichen umfaBlt. Jedes Zeichen kann durch seinen Code als ein Einzelbyte
Information bestimmt werden. Aus diesem Grund verwundert es nicht, einen
Speicherbereich von 1000 Adressen GroRe vorzufinden, der diese gesamte
Information enthalt.

Spaltennummer

111

t 1111112222 2 2233333323333
@123 45678906123 45¢6789¢806123 789 012345¢672839

222
4 5 6

55206 — []
55336 1
55376 2
55416 3
55456 4
55496 5
55536 6
55576 []
O 55616 8 o
g)) 55656 s 5
@ 55696 10 ©
5 55736 1 g
< 55776 2z
55816 13
55856 14 3
55896 15 3
55936 6 2
55976 17
56016 18 1
56056 19
56096 - 20
56136 21
56176 22
56216 23
56256 24

Abbildung 19.1
Aufbau des Bildschirmspeichers ahmt den des Bildschirms selbst nach.

111

Bildschirmspeicher

Der betreffende Speicherbereich beginnt bei Adresse 1924 und endet bei 2023.
Er wird Bildschirmspeicher oder Video-RAM genannt. Nun hat ein Computer-
speicher von Natur aus keine rechteckige Form, wie Abbildung 19.1 sie zeigt;
praktisch ist alles in einer einzigen langen Reihe von Adressen angelegt. In
diesem Fall verlaufen die Adressen den Reihen entlang und bewegen sich erst
dann eine Spalte tiefer, wenn eine Reihe aufhort — so, als lase man in einem
Buch. Anders ausgedrickt: Die oberste Reihe des Bildschirms ist gespeichert in
den Adressen

1024 1025 1026 1027
1062 1063

Die nachste Reihe (Reihe 1) in:
1064 1065 1066 1067
1102 1103

und so weiter, mit dem Ende in Reihe 24 und:

1984 1985 1986 1987
2022 2023

Die allgemeine Regel: Reihe R, Spalte C entspricht der Adresse:
1024 +40«R+ C

Wollen wir also auf dem Bildschirm in Reihe R, Spalte C ein bestimmtes Zeichen
anzeigen, brauchen wir nur mit einem geeigneten Code lUber POKE in diese
Adresse hineinzugehen:

POKE 1024 + 40 = R + C, Code fir Zeichen

Es gibt zwei kleine Haken.

1. Der erforderliche Code ist nicht der ASCIli-Code, sondern der in Anhang
E des Handbuchs, S. 132, aufgeflihrte. Grob gesprochen, handelt es sich
um den ASCII-Code minus 64 fir Buchstaben (und ein paar andere),
minus 32 fir Grafikzeichen, und unangetastet fir Zahlen.

2. Es gibt konkret zwei Zeichensatze, die Sie anzeigen konnen. Satz 1 hat
GroBschrift, Satz 2 Kleinschrift. Um sie zu wahlen, miissen Sie mit POKE
in die Systemvariable 53272 heineingehen:

Satz 1: POKE 53272,20
Satz 2: POKE 53272,22

112

Wenn Sie nicht versucht haben, den verwendeten Satz zu andern, wird es
Satz 1 mit GroBbuchstaben sein. Ich schlage vor, daf® Sie zunachst bei
Satz 1 bleiben, bis Sie die Grundbegriffe verstanden haben.

POKE zum Bildschirm

Angenommen, wir mochten in Reihe 12, Spalte 20, nah beim Mittelpunkt des
Bildschirms, einen Ball anzeigen. Die Adresse lautet:

1024 + 40«12 + 20 = 1524

und der Code fiir den Ball (Anhang E des Handbuchs):
81

Sie brauchen also die Anweisung
POKE 1524,81

\Slgrrgucgen Sie das als direkten Befehl. Driicken Sie vorher RUN/STOP + RE-
RE.

Hat sich irgend etwas getan?

Nein. Das ist ein biBchen merkwirdig, weil entsprechend dem Hand-
buch, S. 64 oben, ein weiler Ball auf dem Bildschirm erscheinen solite. Dem
Handbuch kann man sonst durchaus vertrauen, aber diesmal ist es ausge-
rutscht. Auf dem Schirm ist sogar wirklich ein Ball, aber Sie konnen ihn nicht
sehen, weil er nicht weil ist, sondern blau! Verandern Sie die PAPER-FARBE
durch

POKE 563281,7

Der Bildschirm wird gelb, und da ist der Ball!
Jetzt konnen Sie experimentieren. Probieren Sie

POKE 1525,81

und Sie sehen einen zweiten (blauen) Ball.

Aufgabe 1

Welche POKE-Anweisungen bendtigt man, um anzuzeigen:

1. Das Zeichen M in Reihe 7, Spalte 9?

2. Das Zeichen fir Kreuz (Treff) aus einem Kartenspiel in Reihe 20,
Spalte 32?7

3. Das Zeichen (pi) in Reihe 11, Spalte 8?

(Gehen Sie davon aus, daR Sie im Zeichensatz 1 sind.)

113

‘PRINT AT’-Subroutine

Ich mdchte ein bestimmtes Zeichen an einer bestimmten Position auf dem
Bildschirm 6fter anzeigen. Manche Versionen von BASIC haben einen PRINT
AT-Befehl, der das mihelos bewaltigt, wie

PRINT AT 10, 15, “Z"]

Die Version von BASIC im 64 dagegen (manchmal, falls ich das aussprechen
darf, ein biBchen durftig) 1aRt das nicht zu. Wie behilft man sich? Man schreibt
eine Standard-Subroutine, die das leistet. Ich setze sie in Zeile 10000, vor aliem
deshalb, weil das eine viel hohere Zahl ist, als Sie in der Regel verwenden, so
daR nichts anderes gestort wird, was Sie schreiben. Genauso mache ich es bei
allen anderen niitzlichen Unterprogrammen — nattirlich mit jeweils anderen
Zeilennummern. Auf diese Weise baue ich eine Bibliothek von nitzlichen Sub-
routinen auf. Das erweitert die Fahigkeiten des 64 ganz erheblich und erspart
viel Routinearbeit.

Esist ein guter Grundsatz, Subroutinen moglichst allgemein zu halten. So
ware es beispielsweise sinnlos, eine Subroutine zu verfassen, die in einer
gewlinschten Reihe vonSpalte ‘X' anzeigt, wenn ein biRchen zuséatzliche Uber-
legung Sie jedes gewiinschte Zeichen anzeigen laRt. Diese Routine erfordert
drei Datenposten:

REIHE = die Reihennummer
CLM = die Spaltennummer
CDE = den Zeichencode

Hier ist sie:

10000 REM PRINT AT REIHE, CLM, CDE
10010 POKE 1024 + 40 » REIHE + CLM, CDE
10020 RETURN

Ich habe ausgefallene Variablennamen gewéhlt, um mégliche Uberschneidun-
gen mit einem anderen Programm zu verhindern.

Sie konnen das genauso verwenden wie ein PRINT AT. Beispiel: Da der
Code fur ‘Z" 26 ist, konnen Sie die Wirkung von (*) oben erzielen durch
Verwendung von:

REIHE = 19: CLM = 15: CDE = 26: GOSUB 10000

Was zu schreiben nicht viel langer dauert.

Beachten Sie das Format: Teilen Sie die in der Subroutine verwendeten
Variablen zu und rufen Sie mit GOSUB auf. Variable, die in einer Subroutine
verwendet werden, bezeichnet man oft als zugeteilte Parameter. Sie missen sie
immer auf die richtigen Werte setzen, bevor Sie die Subroutine aufrufen. Oft
berechnet eine Subroutine die Werte anderer Variablen; das sind die von der
Subroutine gelieferten Parameter.

114

Beispiel: Der Umwandlungsroutine bindr/dezimal in Zeile 50Q des Pro-
gramms auf Seite 71 wird der Parameter C zugeteilt, sie liefert K$.

Achten Sie darauf, daR die Namen, die Sie fiir solche Variablen verwen-
den, nicht irgendwo in lhrem Programm mit anderer Bedeutung verwendet
werden; das kann Schwierigkeiten geben!

Das schnelle

Ich prasentiere jetzt einen Computerklassiker, die Grundlage vieler friiher Spiel-
hallen-Videogerate, und eine ausgezeichnete Einfiihrung fiir bewegte Grafik
und die Verwendung von Verzweigungsbefehlen.

Geben Sie zuerst ab Zeile 10000 die obige PRINT AT-Subroutine ein.
Dann fugen Sie an:

10 PRINT CHRS (147): POKE 53281,7

20 C=2:R=3

30 H=1:V=1

40 REIHE = R: CLM = C: CDE = 35: GOSUB 10000
5) C=C+H:R=R+V

60 IFC=Q0ORC=39THENH=-H

70 IFR=Q0ORR=24THENV =-V

80 GOTO 40

Wenn Sie das fahren, zieht mit grofRer Geschwindigkeit eine Folge von “4'-Zei-
chen ber den Bildschirm und prallt an den Randern ab. Der Pralleffekt wird
erzielt durch die Zeilen 69 und 79. Die Grundlage: C, R sind die laufende
Position des bewegten #, H, V die Veranderungen, die fiur die nachste Position
in C und R gemacht werden missen (H fur horizontal, V fur vertikal). Anfangs
sind H und V 1, so daB das # abwarts und nach rechts lauft, aber jedesmal,
wenn es an einen Rand stof3t, kehren H oder V die Richtung um. Beachten Sie
die Verwendung der Subroutine in Zeile 40.

Die Bewegungsillusion ist ziemlich stark, wird aber verdorben durch den
nachgezogenen # -Schwanz. Um der lilusion aufzuhelfen, konnen wir jedes 4
loschen, sobald das nachste geplottet ist. Zuerst miissen wir uns an seine
Position erinnern:

45 CPp=C:Rp=R
Wenn C und R sich in Zeile 5@ dann andern, tun CQ und R es nicht. Nachdem
wir in Zeile 49 das neue # geplottet haben, |6schen wir das alte (durch Anzeige
eines Leerraums, Code 32). Eine gute Stelle (das Loschen so lange wie moglich
verzogern, damit das Bild nicht so flackert) ist in Zeile 75:

75 REIHE = R@: CLM = C@: CDE = 32: GOSUB 10000

115

Und los geht es!

Statt eines einzelnen # wollen wir einen ganzen Wurm haben, der aus
vier # hintereinander besteht. Das konnen Sie erreichen, wenn Sie eine Art
‘Verzogerungszeile' einfligen, wo die PRINT-Position fir die Léschung schritt-
weise in der Zeile weitergereicht und endlich danach gehandelt wird. Léschen
Sie die obige Zeile 45 und ersetzen Sie sie durch:

42 CO=C1:Rp=R1
44 C1=C2:R1=R2
46 C2=C3:R2=R3
48 C3=C:R3=R

Wenn Sie dahinterkommen, wie die Verzogerungen wirken, werden Sie lber-
haupt keine Schwierigkeiten haben mit

Aufgabe 2

Ersetzen Sie die Zeilen 42—-48 durch sieben Zeilen, die einen 7gliedrigen # -
Wurm erzeugen.

Farbspeicher

Kehren wir jetzt zuriick zu dem Ausrutscher im Handbuch. Passiert war Folgen-
des: Das Zeichen wurde zwar angezeigt — aber in der falschen Farbe, die zufallig
auch die PAPER-Farbe war! Das ist ein bedauerliches Merkmal (ein Merkmal ist
ein Fehler, der sich nicht beseitigen 1alt), aber man kann es umgehen, wenn wir
die Farben selbst steuern. Oben habe ich geschwindelt, als ich zu Beginn die
PAPER-Farbe veranderte, was ohnehin keine schlechte Idee ist. Sie konnen die
Farbe von Zeichen aber dadurch steuern, dall Sie mit POKE geeignete Codes in
einen anderen Speicherbereich eingeben, den Farbspeicher oder Farb-RAM.
Der Speicherbereich beginnt jetzt bei Adresse 55296 und endet bei 56295 und
entspricht dem Bildschirm genauso wie der Bildschirmspeicher: Reihe @ ist
enthalten in den Adressen:

55296 55297 55298 55299
55334 556335

und so weiter, sieche Abbildung 19.2. Der Farbcode fiir Reihe R, Spalte Cist also
enthalten in Adresse:

55296 + 40 «R + C

Leeren Sie den Schirm, geben Sie wie zuvor ein:
POKE 1524,81

116

und warten Sie, wahrend nichts geschieht. Dann schreiben Sie:
POKE 55796,5

und bekommen einen griinen Ball zu sehen. Die Farbcodes entsprechen denen
in Kapitel 13, also bedeutet 5 ‘griin’. Und die Farbadresse, die Reihe 12, Spalte
20 entspricht, ist: '

55296 + 49 » 12 + 20 = 55796
also das, was wir verwendet haben.

Moral: Wenn man in den Bildschirmspeicher mit POKE ein Zeichen ein-
gibt, dann auch gleichzeitig seine Farbe in den Farbspeicher.

Spaltennummer —
1111111111222 222%2222333333333 3
1234567890123 45¢6 7829061234526 7890612345¢©6738 9
1924 —» [}
1964 1.
11g4 2
1144 3
1184 4
1224 s
1264 6
1364 7
D 1344 s N
n @
o 1384 s =
O 1424 19 @
T 1464 13
<C 15¢4 12 2
1544 18 S
1584 14 3
1624 15 3
1664 16 R
1794 17
1744 18 l
1784 19
1824 20
1864 21
1904) - 22
1944 23
1984 24

2023

Abbildung 19.2
Aufbau des Farbspeichers entspricht genau dem des Bildschirmspeichers, verwendet aber andere
Adressen.

Aufgabe 3

Wie Aufgabe 1, aber die Farben nun wie folgt:

1. Rot
2. Hellgrin
3. Weil3

Sie kénnen auch die PRINT AT-Subroutine verandern, um die Farbe zu setzen:
Verwenden Sie einfach eine Variable CR fiir den Farbcode und fligen Sie die
Zeile ein:

10015 POKE 55296 + 40 ~ REIHE + CLM, CR
117

Wenn Sie vergessen, den Wert von CR zu setzen, erhalten Sie als Vorgabewert
0, also schwarz.
Hier ein Beispiel fiir eine verbesserte PRINT AT-Routine in Gebrauch:

10
20
30
49

PRINT CHR$ (147)

FORT=0TO15

REIHE=T+2:CLM=T+2:CDE=T+1: CR = T: GOSUB 10000
NEXT T

50 GOTO 59

Fugen Sie die Zeilen 10000, 10010, 10015 und 10020 aneinander und fahren
Sie. Geben Sie STOP, um das Programm anzuhalten; Zeile 5@ verhindert, daR
eine Fehlermeldung das Display verdirbt.

Dynamische Wortumkehrung

Als ein langeres Beispiel hier ein Programm, das ein Wort von bis zu 21 Zeichen
annimmt und es durch Bewegung der Buchstaben auf dem Bildschirm umkehrt:

100
110
120
130
149
150
160
170
180
200
210
229
230
249
250
300
310

118

DIM X$ (21)

PRINT CHR$ (147)

PRINT “SCHREIB DAS UMZUKEHRENDE WORT"
PRINT

INPUT W$

WL = LEN (WS$)

IFWL = 2 * INT (WL/2) THEN WL = WL + 1: W$ = W$ + “[]"
WH = (WL-1)/2

FORT =1TOWL: X$ (T) = MID$ (W8, T, 1): NEXT T
REM WORT ANZEIGEN

PRINT CHR$ (147)

R=12

FORT=1TOWL

C=19-WH + T: C$ = X$ (T): GOSUB 2009

NEXT T

REM ERSTER TEIL ROTATION

FORS =1TOWH

320
330
340
350
360
370
400
419
429
430
449
450
460
479
500
510
520
530
540
550
560
570
600
610
620
630
640
650
660
679
680

FORT =S TO WH

C=20+T:R=S+11:C$="[]": GOSUB 2000
R=R+1:C$=X$ (C+WH-19): GOSUB 2000
C=20-T:R=13-S:C$="[]": GOSUB 2000
R=R-1:C$=X$ (WH + C—19): GOSUB 2000

NEXT T: NEXT S

REM ZWEITER TEIL ROTATION

FORS =1TOWH

FORT=1TOS

C=19-WH +S:R=11-WH + T: C$ = “[]": GOSUB 2000
C=C+1:C$=X$(T): GOSUB 2000
C=21+WH-S:R=13+WH-T:C$ = “[]": GOSUB 2000
C=C-1:C$=X$ (WL +1-T): GOSUB 2000

NEXT T: NEXT S

REM DRITTER TEIL ROTATION

FORS =1TO WH

FORT=1TOWH +1-S

R=11-WH+T:C=19+S:C$ = “[]"; GOSUB 2000
C=C+1:C$=X$ (T): GOSUB 2000
C=21-S:R=13+WH-T:C$ = “[]": GOSUB 2000
C=C-1:C$=Xs$ (WL +1-T): GOSUB 2000
NEXT T: NEXT S

REM VIERTER TEIL ROTATION

FORS =1 TO WH

FORT=1TOS

R=13+WH-S:C=19-WH + T: C$ = “[]"": GOSUB 2000
R=R-1:C$=X$(WL+1-T): GOSUB 2000
R=11-WH+S:C=21+WH-T:C$ = "“[]": GOSUB 2000
R=R+1:C$=X$ (T): GOSUB 2000

NEXT T: NEXT S

STOP

119

2009 REM PRINT ATR, C, C$

2019 CD = ASC (C$)

2020 IF CD > 64 THEN CD = CD - 64
2030 POKE1024 + 40 +R + C, CD
2049 POKE55296 +40+R + C,7
2050 RETURN

Ich werde nicht erklaren, wie das im einzelnen funktioniert, weil das umstand-
liche Berechnungen daruber betrifft, wo jedes einzelne Zeichen hinkommt.
Beachten Sie aber die wiederholte Verwendung der Subroutine. Das ist eine
Abwandlung unseres gewohnlichen PRINT AT-Unterprogramms; das Zeichen
wird direkt angenommen, der Code umgewandelt. Mehr (iber ASC in Kapitel

18.

Losungen

Aufgabe 1

POKE 1024 + 49 =7 + 9, 13 oder POKE 1313, 13
2. POKE 1024 + 40 = 20 + 32, 88 oder POKE 1696, 88
3. POKE 1024 + 40 « 11 + 8, 94 oder POKE 1472, 94

Aufgabe 2

Loschen Sie die Zeilen 42-48 und fugen Sie ein:

41
42
43
44
45
46
47

Cop=C1:R0=R1
C1 =C2:R1 =R2
C2=C3:R2=R3
C3=C4:R3=R4
C4=Cb:R4=R5
Cb = C6: R6 = R6
C6=C:R6=R

Offensichtlich muB es Methoden geben, das auf flottere Weise zu erreichen,
indem man dem Computer die ganze Arbeit Gberlat. Lesen Sie uber Arrays
nach (Kapitel 2b) und versuchen Sie das Programm zu verbessern.

120

Aufgabe 3
Erganzen Sie die POKE-Anweisungen in Aufgabe 1 um

1. POKE 55296 + 40 + 7 + 9, 2 oder POKE 55585, 2
2. POKE 55296 + 40 « 20 + 32, 13 oder POKE 55968, 13
3. POKE 55296 + 40 * 11 + 8, 1 oder POKE 55744, 1

121

20 Tonbandkassetten

Mit einem Spezial-Kassettenrecorder kénnen Sie Programme auf
Band sichern und sie spater neu laden, wenn Sie sie wieder ver-
wenden wollen. Das geht so:

Wenn Sie ein Programm geschrieben haben, das etwas Hiibsches leistet, und
Sie besonders zufrieden mit ihm (und sich selbst) sind, wollen Sie es nicht
jedesmal wieder eintippen mussen, falls Sie es jemandem zeigen oder es selbst
bentitzen wollen. Sobald Sie den 64 aber abschalten, verliert er sein Gedacht-
nis. (Das tun alle Heimcomputer. Sie verwenden ein Speichersystem namens
Dynamite RAM, das Strom braucht, um zu laufen.)

Oder falls IThnen beim Schreiben eines langeren Programms die Zeit
ausgeht oder Sie bei der Entwicklung voriibergehend steckenbleiben, wollen
Sie beim nachstenmal nicht noch einmal alles eingeben missen.

Sie konnen den Computer nicht gut ununterbrochen eingeschaltet las-
sen. Stattdessen ubertragen Sie das Programm auf Tonband, und zwar mit dem
Befehl:

SAVE
Ein zweiter Befehl
LOAD

holt das Zeug wieder vom Band und bringt es zuriick in den 64. Freilich ist ein
biRchen mehr dran, daher dieses Kapitel.

Das Kassettengerat

Sie brauchen ein Spezial-Kassettengerat. Normale Kassettenrecorder, wie sie
Gberall angeboten werden, funktionieren nicht —ihnen fehlen die erforderlichen
Anschlisse und Bedienungsknopfe. Das Gerat ist ein C2N Cassette Unit, er-
haltlich bei lhrem Commodore-Handler. Es lauft bei den CIV-, PET-, und
CBM-Modellen ebenso wie beim 64. Angeschlossen wird es an der Riickseite
des 64. Ein Schlitz im entsprechenden Stecker sorgt dafiir, daR er nicht falsch
eingeschoben werden kann.

Warnung: Stellen Sie den Stromanschlu auf OFF, bevor Sie
den Kassettenrecorder einschalten, weil Sie sonst den Com-
puter beschadigen. Losen Sie den Recorderanschluf3 auch
nicht, solange er unter Strom steht.

122

Mein Kassettenrecorder war mit einem Erdanschluf® ausgestattet. Zu benétigen
scheint man den nicht, aber erkundigen Sie sich, wenn Sie unsicher sind, bei
Ihrem Handler.

Der 64 Gibernimmt den groten Teil der Steuerung fiir den Recorder selbst,
aber ein paar Knopfe mussen Sie driicken. Es lohnt vielleicht, im Umrif3 zu
erklaren, was sich abspielen wird, weil einige der Befehle dann mehr Sinn
ergeben.

Es geht darum, dal® der Computer die Programmzeichen in eine Folge von
akustischen Signalen umwandelt, die sich anhoren wie Morsezeichen in Hoch-
geschwindigkeit. Diese werden auf Tonband aufgezeichnet, so, wie Sie es mit
einem Musikstuck tun wirden. Wenn Sie dann wieder laden mochten, werden
diese Signale in den Computer zuriickgeladen.

Auf dem Vorspannband der Kassette aus Kunststoff konnen Sie kein
Programm speichern; sie kdnnen keines zuriickladen, das nicht aufgezeich-
net wurde oder sich an der falschen Stelle befindet; und Sie kdnnen versehent-
lich ein aufgezeichnetes Programm loschen, wenn Sie auf demselben Band-
abschnitt ein anderes sichern. Also aufpassen!

VorsichtsmaRnahmen
Um die besten Ergebnisse zu erzielen und das Dasein zu erleichtern:

1. Achten Sie darauf, dal Sie alles richtig zusammengeschlossen haben.

2. Sorgen Sie daflir, daB alles an den Strom angeschlossen und eingeschal-
tet ist. Vergewissern Sie sich, daR der Kassettenrecorder lauft.

3. Reinigen und entmagnetisieren Sie Ton- und Loschkopf Ihres Recorders.
Das sind die beiden kleinen Metallblocke, an denen das Tonband ent-
langlauft. Magnetische Teilchen an diesen Stellen konnen die Aufzeich-
nungsqualitat beeintrachtigen und zu Schwierigkeiten fihren.

4, Verwenden Sie eine Bandkassette guter Qualitat. Eine Computerkassette
C12 oder C15 ist ideal, eine C30 mittlerer Qualitat mifite aber genligen.
Spottbillige Bander funktionieren vielleicht, aber sie halten nicht lange
und hinterlassen beim Lauf haufig Magnetteilchen, so daR oft gereinigt
werden muR.

5. Verwenden Sie kein Band von mehr als 39 Minuten Lange, weil das dem
Kassettengerat schaden kann.

6. Spulen Sie die Kassette zum Anfang zurlick, damit Sie wissen, wo Sie
sind. Verwenden Sie ein Band, auf dem sonst nichts aufgezeichnet ist
(damit S/e leicht horen konnen, was vorgeht).

7. Lassen Sie das Band vorlaufen, bis der Vorspann durch ist. Dort aufzu-
zeichnen, hat keinen Sinn; es geht nicht.

SAVE testen

Geben Sie ein einfaches Testprogramm ein, meinetwegen:

190 PRINT "EINFACHES TESTPROGRAMM”
20 GOTO19

123

oder was lhnen sonst einfallt. Dann schreiben Sie:
SAVE “FRED”

und driicken RETURN. Auf dem Bildschirm erscheint die Meldung:
PRESS RECORD & PLAY ON TAPE

Driicken Sie also Aufnahme- und Wiedergabetasten des Recorders. (Ganz fest:
Achten Sie darauf, daR die Tasten richtig eingerastet sind, bevor Sie loslassen,
sonst mussen Sie noch einmal anfangen.)

Der Bildschirm wird nun fiir einige Sekunden leer. Der Kassettenrecorder
fangt von selbst an zu laufen, tut das eine Weile und bleibt stehen. Es erscheint
die Meldung:

SAVING FRED
READY

Das war’s! Ihr Programm befindet sich jetzt auf dem Magnetband, und zwar
unter dem Namen FRED.

LOAD testen

Spulen Sie das Band zum Anfang zuriick und schreiben Sie NEW, um das
Programm aus dem Speicher zu entfernen. Das geschieht nur, damit wir sicher
sein konnen, daR das Band wirklich das Programm enthalt.

Tippen Sie:

LOAD “FRED"”
und dricken Sie RETURN. Die Meldung lautet nun:
PRESS PLAY ON TAPE

Driicken Sie die Taste Wiedergabe am Recorder. Das Band lauft wieder und hait
nach einer Weile an (nur Geduld!).

oK
SEARCHING FOR FRED

FOUND FRED
Nach einer Pause (die Sie durch Druck auf die COMMODORE-Taste abkiirzen
konnen) lauft das Band weiter, und wenn alles gut ist,bleibt es mit der SchluR-
meldung stehen:

LOADING

READY

124

Sie konnen das Programm jétzt mit LIST anzeigen lassen, um nachzuprifen, ob
es wirklich wieder im Speicher ist, und es wie gewohnt mit RUN fahren.

Programmnamen

Warum SAVE “FRED" und LOAD “FRED"’? Was hat der arme alte Fred damit zu
tun?

Ein Programm auf Band soll einen Namen erhalten, damit es von irgend-
welchen anderen auf demselben Band zu unterscheiden ist. Der Name kann
beliebig sein und bis zu 16 Zeichen umfassen. Erlaubte Programmnamen sind
also:

FRED

MARTHA

PROG1

++ # # # # A< >DD7.

SAVE ohne Namen sichert das Programm einfach auf Band; SAVE, gefolgt von
einem Namen in Anfihrungszeichen, sichert zusatzlich einen ‘Kopfblock’, der
den Namen enthalt und spater gefunden werden kann. LOAD ohne Namen ladt
einfach das erste Programm, das auf Band gefunden wird. LOAD, gefolgt von
einem Namen in Anfuhrungszeichen, sucht, bis es den entsprechenden Kopf-
block findet, und ladt dann das Programm.

Der Grund, warum man Namen auf diese Weise verwendet, ist der, daRR
Sie mehrere Programme mit verschiedenen Namen auf einem Band aufzeichnen
und dann jenes laden konnen, das Sie ausgewahlt haben. Sichern Sie, um das
zu beobachten, mehrere Testprogramme unter verschiedenen Namen mit SAVE
hinteinander (achten Sie aber darauf, nicht eines auf das vorherige aufzuspie-
len):

SAVE “TEST1”

SAVE “TEST2”
SAVE “TEST3”

(Die Programme konnen alle gleich sein, wenn Sie wollen; aber Sie sehen
vielleicht eher ein, dal} es klappt, wenn sie unterscheidbar sind.)
Spulen Sie das Band zurilick und schreiben Sie dann:

LOAD “TEST3”
Die tibliche Meldung

PRESS PLAY ON TAPE
125

erscheint; halten Sie sich daran. Warten Sie. Das Band beginnt zu laufen, der
Bildschirm wird leer, das Band bleibt stehen, und die Meldung

SEARCHING FOR TEST3
FOUND TEST1

erscheint. Es gibt eine lange Pause (abzukirzen durch Druck auf die COMMO-
DORE-Taste), dann geht es weiter . . . und diesmal kommt:

SEARCHING FOR TEST3
FOUND TEST1
FOUND TEST2

Endlich wird TEST3 gefunden und wie gewohnt geladen.

VERIFY

Dieser Befehl wirkt genau wie ein LOAD, nur ladt er das Programm nichtin den
Computer, sondern vergleicht es mit dem, was sich schon im Speicher befindet.
Die Meldungen und der Ablauf der Ereignisse bleiben im Grunde gleich. Der
Hauptzweck von VERIFY ist die Prifung, ob ein Programm wirklich gesichert
worden ist. Also SAVE, zurtickspulen, VERIFY.

Der Kassettenspieler hat einen eingebauten Bandzahler; mit ihm konnen
Sie feststellen, wo auf dem Band Sie sich befinden. Es ist eine ausgezeichnete
Idee, auf der Karte in der Kassettenbox eine Liste der Programme und Bandzah-
len zu fihren.

Aber was ist, wenn Sie das vergessen haben und herausfinden wollen,
was sich auf einem Band befindet . . . ohne jedoch ein Programm zu storen, das
sich schon im Computer befindet? Ein Versuch mit LOAD ist sinnlos; Sie
konnten Erfolg haben und das verlieren, was schon im Computer ist.

Der Kniff: Man verwendet

VERIFY “NICHTS”

wobei NICHTS fir irgendeinen Namen steht, den Sie nicht fir ein Programm
verwenden. Der Computer sucht dann nach NICHTS und zeigt dabei auf dem
Bildschirm eine Liste aller Programme, die sich auf dem Band befinden:

SEARCHING FOR NICHTS
FOUND FRED

FOUND MARTHA

FOUND CRAYSIMULATOR
FOUND SCHACHPROGRAMM

etc.
Sie konnen sich bei jeder Stufe die Bandzahlen notieren.

126

Software im Handel

Sie konnen Programme kaufen, die schon auf Band aufgezeichnet sind. Der
Ladevorgang bei ihnen ist derselbe wie bei den von lhnen gesicherten Program-
men. Spulen Sie die Kassette zum Anfang zuriick und schreiben Sie LOAD.
(Wenn das Programm einen Namen hat, sollten Sie ihn aus der beigegebenen
Dokumentation erfahren, zusammen mit irgendwelchen besonderen Lade-
instruktionen; aber einfaches LOAD miif3te immer genligen.) Haben Sie Ge-
duld, weil die Hersteller oft lange Bandabschnitte vor dem Programm leer-
lassen.

Schutz gegen Loschen

Hi-Fi-Experten kennen sich da aus, aber Leute, die einen Kassettenspieler
eigens fir den Computer gekauft haben, vielleicht nicht. Sie konnen eine
Kassette gegen Loschen (durch versehentliches Driicken von RECORD) schiit-
zen, wenn Sie am Kassettenrand der Bandseite gegentiber ein Plastikplattchen
entfernen. Bei einer beliebigen Seite nach oben schitzt das linke Plattchen
diese Seite. Brechen Sie es mit einem kleinen Schraubenzieher oder einem
ahnlichen Instrument heraus.

Wenn Sie auf einem geschitzten Band aufnehmen wollen, kieben Sie
einfach ein Stiickchen Klebeband liber das Loch, wo das Plattchen war.

Im Handel angebotene Kassetten werden in der Regel mit Lochern an-
stelle der Plattchen geliefert.

Programme ketten

Wenn ein Programm geladen ist, miissen Sie immer noch RUN schreiben, umes
zu fahren. Sie konnen LOAD aber auch von innerhalb eines Programms ver-
wenden. In diesem Fall 1auft das geladene Programm automatisch.

Sie konnen also auf Band eine Kette von Programmen aufbauen, viel-
leicht so:

PROG1: 10
20

5000 LOAD “PROG2"
PROG2: 10
20

7000 LOAD “PROG3"”
127

PROG3 10
20

8962 LOAD “PROG4"

und so weiter. Laden Sie PROG1 mit LOAD per Hand und fahren Sie mit RUN;
der Rest lauft automatisch. Beispielsweise konnten Sie ein Videospiel ‘Golf’
betreiben. PROG1 betrifft das erste Loch, PROG2 das zweite, und so weiter; Sie
erreichen die Zeile, die das nachste Programm ladt, nur, wenn Sie den Ball ins
Loch befordern. Bei komplizierter Grafik, die zuviel Platz erfordert, als daB die
ganze Folge von Programmen gleichzeitig aufgenommen werden kénnte, er-
weitert das den Bereich des Maglichen.

Fur andere Verwendungen von Bandkassetten siehe Kapitel 34 zu Files.

Hinweis: Fir den Commodore 64 wie auch fir den VC 20 gibt es jetzt
auch Diskettenlaufwerke.

128

21 Debugging IlI

Bleistift und Papier haben immer noch ihren Nutzen . . .

Schreibtischtests

Haufig sind Laufzeitfehler nicht so leicht zu finden wie die in “"Debugging 1.
Wenn Sie nicht gleich erkennen kdonnen, was nicht stimmt, miissen Sie den
Code sorgfaltig und systematisch durchgehen. Das kann eine sehr miihsame
Sache sein, aber wenn Sie sich eisern daran halten, ist der Erfolg beinahe
garantiert.

Ich will die Methode fir den ““Schreibtischtest” eines Programms an
einem Beispiel erlautern. Wir stellen uns vor, Sie hatten den folgenden Pro-
grammcode in einem Zeitschriftenartikel gefunden:

10 INPUT “NAECHSTE ZAHL EINGEBEN"; N

20 IFN>QTHENS=S+N:C=C+1:GOTO 10
30 PRINT “MITTELIST”; S/C

40 INPUT "WEITERE DATEN (J/N)"; Q$

50 IFQ$="J"THEN10

und der dazugehorige Text teilt Ihnen mit, Sie wirden das Mittel einer Reihe
positiver Zahlen erhalten, beendet mit Null. Mit anderen Worten: Sie konnten
eingeben

NAECHSTE ZAHL EINGEBEN? 3
NAECHSTE ZAHL EINGEBEN? 4
NAECHSTE ZAHL EINGEBEN? b
NAECHSTE ZAHL EINGEBEN? @

und die Meldung erhalten
MITTELIST 4

(Die Null gehort nicht zu den Daten; sie ist der Begrenzer, siehe Kapitel 11.) Das
Programm wird den Anwender dann fragen, ob er es mit einer neuen Daten-
menge versuchen will:

WEITERE DATEN (J/N)?

Wenn Sie auf diese Frage “J"’ eingeben, fangt das Programm von vorne an und
verlangt erneut eine Folge von Zahlen.

129

Wenn Sie das Programm eingeben und mit den Zahlen 3, 4, 5 und 0
fahren, werden Sie feststellen, daB es nicht funktioniert. Es nimmt die Zahlen
wie erwartet an, aber sobald Sie die Null eingegeben haben, stirzt es mit der
Meldung ab:

?DIVISION BY ZERO ERROR IN 30

Der Nullteiler-Damon hat wieder zugeschlagen!

Um nun festzustellen, was der dumme Computer angestellt hat, tun Sie
so, als waren Sie die Maschine, und gehorchen sklavisch den Programmanwei-
sungen, wie der Computer es tate. Sie weisen nach, wie die verschiedenen
Werte, die das Programm verarbeitet, sich in einer Tabelle folgender Art veran-
dern:

Zeile Nr. S N C | Verzweigung

Dieses Programm enthalt nur vier Variable: S, N, C und I. Wahrend jede Zeile
ausgefihrt wird, tragen Sie die Zeilennummer ein, die neuen Werte von S, N, C
und | (falls sie in dieser Zeile verandert werden) und, wenn die Anweisung ein
IF... THEN ist, in die Spalte ““Verzweigung” einen Haken, falls ein Sprung
stattfindet, sonst ein Kreuz.

Bevor wir aber anfangen, tut der 64 noch eines, sobald Sie RUN tippen,
.namlich, alle Variablen auf Null zu setzen, so da® die Tabelle zu Beginn so
aussieht: /

Zeile Nr. S N C

Verzweigung

Wir wollen das Programm mit den Zahlen 3, 4, 5 und @ testen. Die erste Zeile 10
ist ausgefiihrt, 3 wird an N weitergegeben, also:

Zeile Nr. S N C | Verzweigung
0)) 0
10 3

130

Bei Zeile 20 ist N grofer als (, also wird die 3 zu S addiert, 1(@) zu C, und die
Verzweigung zu Zeile 10 findet statt:

Zeile Nr. S N C l Verzweigung
0 0]
10 3
20 3] v

Wenn wir das fortsetzen, erhalten wir:

Zeile Nr. S N C | Verzweigung
0) 0 0

10 3
20 3)
10 4 \"
20 7 0
10 5 \"
20 12 0
10 0 \"
20
30 X

Wir konnen also erkennen, warum der Fehler aufgetreten ist. Aus der Tabelle
ergeben sich Hinweise darauf, wie jede Variable sich verandert. sehen Sie sich
zuerst Spalte N an. Wir sehen die eingegebenen 3, 4, 5 und @ der Reihe nach in
Erscheinung treten, was den Erwartungen entspricht. S ist schon interessanter.
Hier sehen wir, wie die Summe der Zahlen in N langsam entsteht. Zuerst
erscheintdie 3,dann7 (3 + 4),dann 12 (3 + 4 + 5). Und was ist mit C los? Dort
ist absolut nichts los! Da drei Zahlen eingegeben wurden, sollte das Mittel 12/3
= 4 betragen, also miilte C 3 sein. Der Grund, weshalb C bei Null bleibt, ist in
Wahrheit der, daR ihm immer wieder | zuaddiert wird und | auf Null festgelegt
ist. Angenommen, | ware ein Schreibfehler fiir 1? Dann sahe die Tabelle so aus:

Zeile Nr. S C Verzweigung

S

0
20 3
7
2

N
< < <

20 1

e o ~ ws|Z2

30 Print 12/3=4

131

Jetzt sehen die Dinge vielversprechend aus. Zeile 2 wird redigiert, aus dem 1"
eine 1" gemacht, und mit RUN gefahren. Geben Sie wie vorher 3, 4, 5, { ein,
angezeigt wird 4. Nun geben Sie “J”, wenn Sie gefragt werden, ob- weitere
Daten kommen, und versuchen Sie es mit 19, 20, 30, @. Das Programm zeigt die
Lésung 12 an, was seltsam ist, weil das Mittel von 10, 20 und 30 namlich 20 ist!

Logikfehler

Das ist nun ein Beispiel fiir eine neue Art von Fehler — einen logischen Fehler.
Das Programm leistet etwas und schlieRt seine Aufgabe ab, ohne dalk dem 64
etwas auffiele, aber was immer das Programm auch gemacht haben mag, es hat
nicht das Mittel aus 10, 20 und 39 genommmen.

Fahren wir mit dem Schreibtischtest also fort, um festzustellen, was
schiefgegangen ist. Die bisherige Arbeit zu wiederholen, hat wenig Sinn, also
brauchen wir nur festzuhalten, daR®, wenn wir Zeile 40 erreichen,S=12,N=0Q
und C = 3. AuRerdem brauchen wir nun die Stringvariable Q$: :

Zeile Nr. S N C Qs Verzweigung
40 12) 3 J
50
10 10
20 22 4

Weiter, glaube ich, brauchen wir nicht zu gehen, um das Problem zu erkennen.
Da S zu Beginn 12 ist, wird es 22, obwohl! es nur 10, und C zu 4, wo es 1 sein
sollte. Anders ausgedrickt: Der 64 hat die erste Folge von Werten nicht verges-
sen, als er die zweite verarbeitete, wird also ausrechnen:

3+4+5+10+20+30)/6=12

Jetzt ist das leicht zu béheben. Wir fligen einfach eine Zeile 5 ein:
5 S=0:C=0

und verdndern Zeile 50 zu:
50 IFQ$="J"THEN5

Mit welcher Wahrscheinlichkeit treten Fehler dieser Art auf? Nun ja, Schreibfeh-
ler von der Art | fur 1, 2 fir Z sind ziemlich haufig (wenn auch nicht in diesem
Buch, wie ich hoffe), und selbst wenn der Fehler nicht auf der gedruckten Seite
steht, ist die Wahrscheinlichkeit gro, dal lhnen bei der Eingabe eines Pro-
gramms gelegentlich unbemerkt ein Ubertragungsfehler unterlauft. Selbst
wenn Sie ein eigenes Programm schreiben, werden Sie sich wundern, wie oft
Sie den Namen einer Variablen vergessen und die falsche verwenden oder sogar
dieselbe Variable fiir zwei verschiedene Dinge verwenden. Sie sollten vorsichtig
sein und sich die Namen aller Variablen und ihrer Funktion gleich zu Beginn
aufschreiben; aber so, wie der Mensch nun einmal gebaut ist . . .

132

Der zweite Fehler zeigt zwei wichtige Dinge. Erstens: Obwohl BASIC
dadurch von Nutzen zu sein versucht, daR es Variable auf Null initialisiert, ohne
dal Sie das verlangen miussen, ist das doch kein reiner Segen. Obwohl man es
vielleicht nicht muR, sollte man zu Beginn eines Programms alle Variablen
festlegen, weil damit die Moglichkeit eines solchen Fehlers vermieden wird. Ich
meine nicht, dal lhnen ein derart banaler Fehler unterlaufen konnte, aber wenn
man ein Programm verfaRt, das sich mit einer bestimmten Datenmenge befaRt,
und es erst spater andert, damit es viele Datenmengen verarbeiten kann, laf3t
sich schon begreifen, daB die Initialisierung tibersehen wird.

Zweitens zeigt er, wie sorgfaltig Sie beim Testen eines Programms vorge-
hen miissen. Wenn ein Programm bei einer bestimmten Datenmenge lauft,
dirfen Sie sich noch nicht zu der SchluRfolgerung verleiten lassen, das wiirde
auch bei jeder anderen geschehen. Zu diesem Thema habe ich in den Kapiteln
26 und 29 noch mehr zu sagen.

Aufgabe 1

Hier ein Beispiel fiir Sie, an dem Sie Ihr Konnen erproben konnen. Das folgende
Programm soll eine Folge von positiven Werten (Null bis 1000) annehmen und
am Ende den groRten und kleinsten gelesenen Wert anzeigen. Als Begrenzer
wird eine negative Zahl verwendet. Beispiel: Wenn die Daten 8, 4, 3, 9, —1
lauten, sollte das Programm demnach anzeigen

9 3
Einen Hinweis gebe ich lhnen — man muR nach zwei Fehlern suchen.
10 MAX=0:MIN=0
20 INPUTN
30 IFN < MINTHEN MIN =N
490 IFN > MAXTHEN MAX =N
50 IFN < @ THEN PRINT MAX, MIN: END
60 GOTO 20

133

Losung

Aufgabe 1

Bei meinem Beispiel sieht der Schreibtischtest so aus:

Zeile Nr. MAX MIN N Verzweigung

0 9 0
10 o 0

50 Print 9, —1

Der grofSste Wert wird also richtig angezeigt, der kleinste dagegen nicht. Wenn
wir uns die MAX-Spalte ansehen, konnen wir erkennen, wie das Programm
arbeiten soll. Jedesmal, wenn ein Wert groRer als der in MAX erscheint, ersetzt
er den laufenden Wert in MAX. MIN sollte sich natiirlich ebenso verhalten, so
daR dort zuerst 8, dann 4, dann 3 auftauchen sollten. In MIN geht aber keine
Veranderung vor, bis —1 eingegeben wird, was aber gar nichts bewirken soll,
weil das ja nur ein Begrenzer ist!

Der Grund, warum keine neuen Werte in MIN gesetzt werden: Der kleinste
mogliche Wert (Null) ist dort schon enthalten. MIN solite vielmehr mit einem
sehr groRen Wert beginnen, damit der erste erscheinende Wert ihn ersetzt, denn
der neue Wert muB kleiner sein. Da als der groRtmégliche Wert 1000 bekannt ist,
geht alles, was groRer ist. Zeile 10 muB also lauten:

10 MAX=0: MIN = 1001
134

Nun mussen wir verhindern, dal3 das begrenzende —1 nach MIN gelangt. Kein
Problem. Wir muissen fragen, ob die Dateneingabe beendet ist, bevor wir versu-
chen, den Wert nach MAX oder MIN zu tibertragen. Zeile 50 sollte also geloscht
und als Zeile 25 neu geschrieben werden.

135

22 Zufallszahlen

Sogar ein Computer kann unberechenbar sein!

Bei manchen Programmen mochte man, da® der Computer sich unberechenbar
verhalt. Der 64 verfligt Gber einen Befehl, der “Zufalls”-Zahlen hervorbringt,
und diese konnen Sie verwenden, wenn der Computer etwas tun soll, Sie aber
vorher nicht wissen wollen, was er macht. Besonders nutzlich ist das bei
Spielen. Wieviele Spiele kennen Sie, bei denen gewdrfelt oder eine Karte
gezogen wird?

Der Befehl fiir Zufallszahlen ist

RND

gefolgt von einer Zahl in Klammern.
Damit Sie einen Begriff davon bekommen, was dieser Befehl leistet,
schreiben Sie ab und fahren Sie:

10 INPUT N
20 FORT=1TO10
30 PRINT RND (N)
49 NEXTT
50 GOTO 10

Geben Sie flr N zuerst 1 ein. Sie erhalten zehn Dezimalzahlen zwischen ¢ und
1 ohne erkennbare Anordnung. Nehmen Sie noch einmal 1. Sie erhalten wieder
zehn Zahlen, noch immer ohne jede Ordnung.
0 Nehmen Sie jetzt §. Wieder erhalten Sie zehn beliebige Zahlen zwischen
und 1.
Jetzt nehmen Sie —2. Sie erhalten eine Zahl, die sich zehnmal wiederholt.
Die allgemeine Folge von RND (N) ist namlich:

1. Ist N positiv, erzeugt RND (N) Zufallszahlen zwischen @ und 1 (@ kann
vorkommen, 1 nicht.) Das geschieht allerdings auf “wiederholbare”
Weise.

2. Ist N Null, so liefert RND (@) eine Zufallszahl, bestimmt durch die Ge-
samtzeit, die seit dem Einschalten des Computers abgelaufen ist. In einem
gewissen Sinn geht es nicht zufalliger!

3. Ist N negativ, erzeugt RND (N) eine bestimmte “Zufalls”-zahl, die von N
abhangt. .

Ich schlage vor, dal’ Sie Punkt 3 ganz beiseite lassen. Er wird meist fiir Debug-
ging verwendet und steht in Verbindung mit dem konkreten Prozef}, durch den
die “Zufalls”-Zahlen erzeugt werden. (Sie sind nicht wirklich zufallig, unter-
stellt, dal’ das Wort tiberhaupt etwas zu bedeuten hat, aber der Prozel3, der sie

136

hervorbringt, gesteuert von einer Zahl, die Keim genannt wird, ist darauf ausge-
richtet, fur die meisten praktischen Zwecke ungeordnete Ergebnisse zu erzeu-
gen.) Der einzige Befehl, den Sie wohl je brauchen werden, ist:

RND ()

und bei dem bleibe ich von jetzt an.

Wiirfel, Spielkarten und Gliicksspieleinrichtungen

Halt mal, da klopft es an die Tur... Nein, Herr Inspektor, ich habe keine
Spielklublizenz . . . Na gut, wenn Sie darauf bestehen, andere ich die Uber-
schrift des Abschnitts ab zu

Zufallsereignisse

Mann! Aber nun zur Sache. Wenn Sie einen Wiirfel rollen, liefert er zufillige
Zahlen zwischen 1 und 6. Der ““Wiirfel” im 64 liefert Zahlen zwischen @ und 1,
die Dezimalzahlen sein konnen. Ein biRchen mathematische Jongleurkunst ist
also angebracht.

Hier eine typische Liste von zufalligen Zahlen des 64 (in der ersten
Spalte) zusammen mit dem, was geschieht, wenn Sie mit 6 multiplizieren.

RND(9) 6 * RND(Q)
131137465 | .78682479
.80924873 | 4.85549238
.846447204 | 5.07868323
591965711 | 5.04921935
.26800113 | 3.65179427

Multiplikation mit 6 dehnt also den Zahlenbereich von §—1 zu §—6 aus. Ein
Schritt in die richtige Richtung. Der nachste besteht darin, die Dezimalpunkte
loszuwerden. Der Befehl

INT
ersetzt eine Zahl durch ihren Integerteil, die groRte ganze Zahl, die nicht groRRer
ist als sie. Bei positiven Zahlen ist dies der Teil vor dem Dezimalpunkt, bei
negativen Zahlen um 1 kleiner. Beispiel:

INT (4.85549238) = 4

INT (-3.131592) = -4

Steht vor dem Dezimalpunkt nichts, gibt INT @ (bei positiven Zahlen). Wenn wir
aus der rechten Spalte also INT-Werte nehmen, erhalten wir die Zahlenfolge:

0 4 5 5 3
137

was fur Wiirfelspiele fast schon richtig ist. Der einzige Haken: Sie gehen von 0
bis 5, statt von 1 bis 6. Wir fiigen also 1 hinzu:

1 5

6 6 4

was genau richtig ist. Alles zusammengenommen, erzeugt

INT (6 + RND (0)) +1

wie ein Wiirfel im Bereich 1-6 zuféllige ganze Zahlen.

Aufgabe 1

Welche Befehle wiirden Sie verwenden, um zufallige ganze Zahlen hervorzu-
bringen entsprechend:

grwN=

Einem Paket von 52 Spielkarten?

Einer einzelnen Farbe von 13 Spielkarten?

Einem Domino aus einem vollstandigen Satz von 28 Steinen?
Einem Geburtstag in einem Nichtschaltjahr?

Einer Zahl zwischen 10 und 99 (beide eingeschlossen)?

Frequenzdiagramm

Hier ein Programm von halbwegs ernster Art. Es wirft 150 Wurfel und halt fest,
wie oft jede Zahl erscheint.

10
20
30
40
50
60
70
80
90
100
110
120

138

PRINT CHR$ (147)

POKE 53281,0

POKE 53280,

POKE 646,1

FORR=1TO®6

REIHE = 3+ R: CLM = 0: CDE = 48 + R: CR = 1: GOSUB 10000
NEXT R

FORT=1TO 150

W = INT (6 * RND (@) + 1)

C (W) = C (W) +1

IF C (W) > 38 THEN STOP

REIHE =3 * W: CLM = C (W) + 2: CDE = 160: CR = W + 1
GOSUB 10000

130 NEXTT
149 GOTO 130

10000 REM PRINT AT

100190 POKE 1024 + 40 ~ REIHE + CLM, CDE
10015 POKE 55296 + 40 » REIHE + CLM, CR
10020 RETURN

Zeilen 10-40 leeren den Bildschirm und setzen die Farben. Die Anzahl, wie oft
der Wiirfel die Zahl 1, 2, 3, 4, 5, 6 gezeigt hat, wird in sechs Variablen C(1), C(2),
C(3), C(4), C(b), C(6) festgehalten. Ich habe ein biBchen geschwindelt, weil
diese Variablenliste das ist, was man ein Array nennt, ich aber erst in Kapitel 25
zu Arrays komme. Egal, was gemeint ist, wird deutlich.

Zeilen 50-70 zeigen die Zahlen 1-6 in einer Kolonne an. Das 48+R
erzeugt lediglich die Zeichen fir 1-6, deren Bildschirmcodes (siehe Anhang E .
des Handbuchs) 49-54 sind. Beachten Sie den Gebrauch der PRINT-AT-
Subroutine ab Zeile 10000.

Zeilen 80 und 139 werfen den Wiirfel 150mal.

Zeile 100 erhoht die Zahlung fir den jeweiligen Wurf.

Zeile 120 zeigt in der Zeile mit der Zahl W auf dem Bildschirm einen Block
Farbe an. Zeile 110 verhindert lediglich Probleme, wenn die Anzeigeposition
vom rechten Bildschirmrand wandert.

Beachten Sie, wie die Balken wachsen; auch wenn bei einem Lauf eine
%a_hl im Vorsprung sein mag, auf die Dauer gleicht sich das aus. Der Wiirfel ist

air.

Losung

Aufgabe 1

INT (52 * RND (0)
INT (13 = RND (0)
INT (28 * RND (9)
INT (365 * RND (0)) +1

INT (90 « RND (0)) + 10, weil 90 * RND (@) von @ bis 89 geht, die
Addition von 10 also den Bereich 10-99 liefert. die 99 habe ich erhalten
durch Abzéhlen des Bereichs 99 — 10 = 89 plus eins am Ende, dann mit
der 10 eingeregelt.

) +1
) +1
) +1

arwN=

Es konnte sein, daR Sie erwogen haben, das Dominoproblem (Nr. 3) durch INT
(7 * RND (0)) zu bewaltigen, um Punkte §—6 zu erzeugen, mit @ fir einen leeren
(halben) Dominostein. Tun Sie das zweimal, behalten Sie aber nur Paare M, N,
fr die gilt M < = N, sonst bekommen Sie die nicht-doppelten Dominosteine
wie [3] 6] zweimal, einmal so und einmal als [6 [3], die doppelten [5] 5 |
aber nur einmal, was die Wahrscheinlichkeit verandert.

139

23 PET-Grafik

Der 64 ist ausgestattet mit einem enormen Bereich von Grafikzei-
chen, die man dazu beniitzen kann, auf dem Schirm Bilder aufzu-
bauen.

Es kann Ihnen kaum entgangen sein, dal der 64 neben Buchstaben und Zahlen
auch Grafikzeichen anzeigen kann. Diese sind vom Keyboard aus zuganglich
und stehen auf der Vorderseite der Tasten. Das rechte Zeichen wird bedient
durch SHIFT, das linke durch die COMMODORE-Taste. Die Zeichen, ein wil-
der, aber vielseitiger Haufen, stammen noch vom Commodore PET-Computer,
daher diese Kapiteltberschrift.

Was den Computer angeht, ist ein PET-Grafikzeichen wie jedes andere
auch, auf dieselbe Weise mit PRINT anzuzeigen, iiber seinen ASCII-Code
zuganglich und mit POKE zum Bildschirm zu bringen.

Fuar Verfasser von Biichern stellen die Grafikzeichen ein Problem dar: Im
Satzbestand der Normaldruckerei sind sie nicht zu finden. Auferdem sind sie oft
schwer zu unterscheiden (wie Sie feststellen werden, wenn Sie sich gedruckte
Programme in Zeitschriften ansehen). Wir brauchen also eine Ubereinkunft, um
sie besprechen zu konnen.

Nehmen Sie Taste A. Links befindet sich ein Grafikzeichen in der Art eines
kleinen rechten Winkels, rechts das Symbol einer Pik. Ich bezeichne sie der
Reihe nach als

gAc (Grafik-A + COMMODORE-Taste)
gAs (Grafik-A + SHIFT-Taste)

und ebenso bei anderen Tasten.

Gitterkonstruktion

Sie kénnen auf einem Gitter aus PET-Grafik Bilder aufbauen. Beispielsweise
zeigt Abbildung 23.1 den Versuch, ein Auto zu zeichnen.

Abbildung 23.1
Pet-Grafikentwurf fiir ein Auto

140

Die verwendeten Zeichen sind:

O

gNs gOs ¢gOs gOs gMs [

gNs [gYc gYc gYc gYc gYc gPs

gZc gCs gWs gCs gCs gCs gWs gCs

Wir konnten also den Wagen etwa so auf den Bildschirm zeichnen:

10 PRINT CHR$(147)

20 PRINT: PRINT: PRINT

30 PRINT TAB(15); “[(] gNs gOs gOs gOs gMs [] [1”

40 PRINT TAB(15); “gNs [] gYc gYcgYcgYcgYcgPs”
50 PRINTTAB(15); “gZc gCs GWs gCs gCs gCs gWs gCs”
60 GOTO 60

Aufgabe 1

Entwerfen Sie eine Lok mit einem angehangten Waggon. Zeigen Sie den Zug
auf dem Bildschirm.

Bewegte Grafik

Vielleicht ist Ihnen der Gedanke gekommen, man kénnte das Auto in Bewe-
gung versetzen, wenn bei der Anzeige verschiedene TAB-Werte eingegeben
werden. Ungefahr so:

10
20
30
40
50
60
70
80

PRINT CHRs$(147)

FORC=0TO 30

PRINT CHR$(19)

PRINT: PRINT: PRINT

PRINT TAB(C); “[[] gNs gOs gOs gOsgMs [] []”
PRINT TAB(C); “gNs [] gYc gYcgYcgYc gYc gPs”
PRINT TAB(C); “gZc gCs gWs gCs gCs gCs gWs gCs”’
NEXT C

Versuchen Sie es. Irgend etwas stimmt nicht ganz! Wir hinterlassen einen
Rattenschwanz von Autos.

141

Das Problem: Wir haben vergessen, das vorige Auto zu l6schen, wenn wir
das neue anzeigen. Sie kénnten Zeile 39 verandern zu:

30 PRINT CHR$(147)

aber das empfehle ich nicht, weil der Bildschirm zu stark flackert.

Eine bessere Methode ist die, das Auto mit einem "unsichtbaren
Schwanz” von Leerstellen auszustatten, der vorige Autos ausloscht. Sie brau-
chen nur die Zeilen 50—70 umzuschreiben und vor jeden String von Grafikzei-
chen eine zusatzliche Leerstelle zu setzen:

50 PRINTTAB(C); “[J] gNs gOs gOsgOs gMs [] [1”
60 PRINTTAB(C); “[JgNs [1gYcgYcgYcgYcgYcgPs”
70 PRINT TAB(C); “[] gZc gCs gWs gCs gCs gCs gWs gCs”

Jetzt ist alles in Ordnung.

Aufgabe 2

Das Auto soll von Spalte 30 zu Spalte @ zuriickstoBen. (Hinweis: Sie brauchen
einen "“unsichtbaren Bug” statt einen Schwanz.)

Verwendung von Stringvariablen

Wenn Sie auf diese Weise eine Folge von Grafikzeichen anzeigen missen, ist es
viel besser, sie als Stringvariable zu setzen. Hier etwa ein Programm, bei dem
zwei Autos ein Rennen gegeneinander austragen.

10 PRINT CHR$(147)

20 C1=0:C2=0:C=90

30 As="[] [gNsgOsgOsgOsgMs”

490 B$="[]gNs[]gYcgYcgYcgYcgYcgPs”
50 C$="[1gZcgCsgWs gCs gCs gCs gWs gCs"
60 R =8:GOSUB 1000

70 R=16:GOSUB 1000

80 N =INT (1+2+RND (0))

90 IFN=1THENC1=C1+1:R=8:C=C1
100 IFN=2THENC2=C2+1:R=16:C=C2
1190 GOSUB 1000

120 IFC1 =30 THEN PRINT CHR$(19); “AUTO 1 SIEGT": STOP

142

130 IF C2 =30 THEN PRINT CHR$(19); “AUTO 2 SIEGT": STOP
149 GOTO 89

1009 PRINT CHR$(19);

1919 FORT =1 TO R: PRINT: NEXT T
1020 PRINT TAB(C); A$

1030 PRINT TAB(C); B$

1040 PRINT TAB(C); C$

1050 RETURN

In Zeile 1000 beginnt eine Subroutine, die in Reihe R, Spalte C ein Auto anzeigt.
Anfangs sind die Spaltennummern C1 und C2 fir Autos 1 und 2 noch 0, die
Reihen 8, 16. Zeile 80 entscheidet zufillig, welches Auto sich bewegt: 99-110
bewegen es; 120-130 priifen, welches gewonnen hat.

Aufgabe 3

Schreiben Sie das Programm so um, daf3 Auto 1 rot und Auto 2 griin angezeigt
wird. (Hinweis: PRINT CHR$(28) erzeugt Ink rot, PRINT CHR$(30) Ink griin.)

Losungen

Aufgabe 1

10 PRINT CHR$(147)
20 A$="gAcgCsgCsgCsgSc [1g0sgYcg—s[][][1gNcg-s"
30 B$="g-sg+c[Jg+tcg—s[]gPs[]gEcg-sg—sg—sgZcgls”
40 C$="g-sGWRgQcgRcgOsAMTRAKg-s”
50 D$ = "gZc gWs gCs gWs gXc [] gCs gQs gCs gCs gQs gCs gQs
gXc”
60 FORT=1TO7:PRINT:NEXTT
70 PRINT TAB(8); A$
80 PRINT TAB(8); B$
90 PRINT TAB(8); C$
100 PRINTTAB(8); D$
119 GOTO 119

143

Beachten Sie, wie in Zeile 49 Textzeichen (G W R, etc.) und Grafik gemischt

werden.

Aufgabe 2

10
20
30
49
50
60
79
80

PRINT CHR$(147)

FORC =30 TO @ STEP -1

PRINT CHR$(19)

PRINT: PRINT: PRINT

PRINT TAB(C); “[] gNs gOs gOs gOs gMs [] [] [1”
PRINT TAB(C); “gNs [] gYc gYcgYcgYcgYcgPs [1”
PRINT TAB(C); “gZc gCs gWs gCs gCs gCs gWs gCs [1"
NEXT C

In Zeile 50 brauchen Sie am rechten Ende nur einen Leerraum; warum?

Aufgabe 3

Flgen Sie eine Zeile ein:

19015 PRINT CHR$(26 + 2« N)

und schreiben Sie diese Zeilen um:

60 R=8:N=1:GOSUB 1000
70 R=16:N=2: GOSUB 1000

144

24 Keyboardsteuerung

Der Computer kann angewiesen werden, das Keyboard abzusu-
chen und je nachdem, was er vorfindet, auf verschiedene Weise zu
reagieren. Ein Anwendungsgebiet: Die Steuerung bewegter Grafik.

Der Haken bei einem INPUT-Befehl ist der, dal er alles aufhalt, bis die Eingabe
erfolgt ist. Stellen Sie sich ein Videospiel vor, bei dem alles stehenbleibt, bis Sie
die Tasten driicken . . . Wiirde nicht viel SpaR machen! Der Befehl

GET

weist den Computer an, die Tastatur abzusuchen und festzustellen, was ge-
driickt wird. Das Ergebnis wird in irgendeiner von lhnen gewéhlten String-
variablen gespeichert. Wenn Sie A$ verwenden wollen, sdhe das Format so aus:

GET A$
(hiibsch zum Merken: hol nen String, nicht? Na ja, schon gut.)
Hier ein einfaches Testprogramm:

19 PRINT CHR$(147)

20 GETAS

30 PRINT “SIE DRUECKTEN TASTE []”; A$
49 GOTO 2¢

Eine endlose Linie von Mitteilungen saust vorbei, aber wenn Sie eine Taste
driicken, etwa “Z”, sehen Sie auch das Z vorbeirasen, ebenso bei den anderen
Tasten.

Der Grund fir soviel Aktion: Wenn Sie keine Taste driicken, setzt der
Computer A$ auf den leeren String " und macht trotzdem weiter. Um das zu
umgehen, fligen Sie ein:

25 IFA$=""THEN 20

Jetzt sitzt er in einer kleinen Schleife und wartet darauf, dal® Sie eine Taste
dricken; schon viel friedlicher! Experimentieren Sie. Probieren Sie die RE-
TURN-Taste (durch die das Display um eine Zeile weiterspringt: RETURN wirkt
wie NEWLINE). Versuchen Sie es mit CTRL-Tasten, etwa mit CTRL + 5.

Bewegte Grafik

Fiihren wir die Idee einen Schritt weiter und verwenden wir die Tasten dazu,
Grafik zu steuern. Kehren wir zu unserem Auto aus Kapitel 23 zuriick. Nehmen

145

wir an, wir wollen es, wenn wir Taste “V" driicken, eine Stelle vorwarts-, wenn
wir “R” driicken, eine Stelle rickwartsbewegen. Das geht so:

10
20
30
49
50
60
70
80
90
100
110
120

1000
1010
1020
1030
1049
1050

PRINT CHR$(147)

C=15

A$ =[] [] gNs gOs gOs gOs gMs []”

B$ = “[J gNs] gYcgYcgYcgYcgYcgPs []”

C$ = "[] gZc gCs gWs gCs gCs gCs gWs gCs [1"

R =12: GOSUB 1000

GET G$ AS$ ist schon verwendet!
IFG$="V'THENC=C +1

IFG$ = “R" THENC = C — 1
IFC <@THENC =0

IFC > 29 THEN C = 29

GOTO 60 '

PRINT CHR$(19);

FORT =1 TO R: PRINT: NEXT T

PRINT TAB(C); A$
PRINT TAB(C); B$
PRINT TAB(C); C$
RETURN

Die Spalte, in der das Auto angezeigt wird, ist in Variable C enthalten. Zeilen 80
und 90 passen C je nach der gedriickten Taste an. Zeilen 100 und 11 schiitzen
vor dem Verlassen des Bildschirms.

Beachten Sie den unsichtbaren Bug ebenso wie den unsichtbaren
Schwanz in den Zeilen 30-5@. Das Auto kann sich ebensogut in der einen wie
in der anderen Richtung bewegen.

Aufgabe 1

Schreiben Sie das Programm so um, daR das Auto sich nicht nur seitlich,
sondern auf dem Bildschirm auch auf- und abwarts bewegt, und zwar mit den
Taste “O"” und “U". (Bilden Sie, wenn Sie wollen, die Grafik zu einem Hub-
schrauber um.)

146

Dummer Puffer

GET hat einen Haken, der damit zusammenhangt, wie das Keyboard gelesen
wird, wenn es in Gebrauch ist. Es gibt einen Keyboardpuffer von bis zu 10
Zeichen, und auf Druck einer Taste wird das Ergebnis (falls Platz ist) im Puffer
gespeichert. Die Folge: Wenn Sie mehrere Tasten driicken (wie das in der Hitze
des Gefechts schon vorkommen kann), werden Sie alle gespeichert und be-
folgt.

Wenn Sie das sehen wollen, verlangsamen Sie das fahrende Auto durch
Anflgen einer Verzogerung:

115 FORT=1TO 1000: NEXTT

Fahren Sie das Programm jetzt und driicken Sie mehrmals schnell auf V. Sie
werden sehen, wie das Auto sich bewegt, erneut bewegt und weiter bewegt, bis
der Pufferspeicher leer ist. Tippen Sie schnel// VRVRVR und warten Sie: das
Auto bewegt sich hin und her.

Um diese Eigenheit des Computers zu (iberwinden, konnen Sie die Lange
des Keyboardpuffers steuern mit einem Befehl:

POKE 649,1

was ihn so setzt, daR er nur noch ein Zeichen aufnehmen kann. (Fir N Zeichen
nehmen Sie POKE 649,N). Probieren Sie das durch Hinzufligen einer Zeile:

5 POKE 649,

Jetzt ruft Mehrfachdruck auf Tasten nur noch eine Bewegung hervor — die der
nach dem vorherigen GET erstmals gedriickten Taste.

Automatische Wiederholung

Sie werden auRerdem feststellen, daB, sobald Sie eine Taste gedriickt halten, der
GET-Befehl das nicht mehr zur Kenntnis nimmt. Er liest eine Taste und beachtet
sie dann nicht mehr, bis diese Taste losgelassen wird. Sie konnen das Auto also
nicht einfach dadurch schnell vorwartsbewegen, daR Sie V"' standig gedrickt
halten. Oft wollen Sie aber genau das.

Das Geheimnis ist die Systemvariable in Adresse 197, die eine (sonderbar
codierte) Version der derzeit niedergedriickten Taste enthalt. Geben Sie dieses
kleine Programm ein:

2009 PRINT PEEK (197)
20190 GOTO 2009

Und jetzt RUN 2000. Eine Kolonne 64 lauft den Bildschirm hinunter. Dricken
Sie eine Taste, meinetwegen “A”, und halten Sie sie unten; aus der Zahl wird 10.
Versuchen Sie es mit anderen Tasten. Sie werden sehen, daR jede ein anderes
Ergebnis bringt. Die richtigen Zahlen sind in Anhang 7 aufgefiihrt; es sind weder
ASCII-, noch Bildschirmcodes, sondern etwas vollig anderes!

147

Der Code fiir “V” ist 31, fur “R” 17. Wenn wir unser Automobil also
automatisch wiederholen lassen wollen, kdnnen wir so vorgehen:
Loschen Sie Zeile 115. Schreiben Sie 70-90 so um:

70 A =PEEK (197)
80 IFA=31THENC=C+1
99 IFA=17THENC=C -1

Geben Sie nun wieder RUN, halten Sie die Tasten V oder R gedrickt und
beobachten Sie die sofortige Reaktion.

Die Funktionstasten

Sie haben sich vielleicht gefragt, wozu die vier groRen, auffalligen Tasten auf der

rechten Keyboardseite dienen mogen. Das Handbuch nennt sie ““programmier-

bare Funktionstasten” und erwahnt sie anschlieBend mit keinem Wort mehr.
Es sind in Wahrheit acht Tasten, ohne Umschaltung:

1 3 5 7
und mit SHIFT:
f2 f4 fé6 8

In Wirklichkeit sind sie nur “Attrappen”-Tasten, die von einem GET-Befehl
gelesen werden konnen. Eine echte “programmierbare’” Taste wiirde sofort
reagieren, sobald sie mit einer vom Anwender eingegebenen Standardroutine
gedriickt wird; aber diese Tasten reagieren nur, wenn Sie selbst eine GET-
Anweisung programmieren. Innerhalb des Commodore-BASIC werden Sie
echte Programmierbarkeit leider nicht erreichen konnen. Mit den Funktionsta-
sten haben Sie aber wenigstens Standardpositionen zur Verfligung, die den
ganzen Kram “drickt man Taste “Z"” oder “K”, um die fremde Raumflotte zu
zerblasen” Gberfllissig machen.
Die ASCII-Codes fiir die Funktionstasten (siehe Kapitel 18) sind:

f1 133
f2 137
3 134
f4 138
5 135
f6 139
7 136
8 149

148

Eine Art, etwa Taste f5 zu verwenden, ist also diese:
150 GET As$: IF A$ = CHR$(135) THEN und so weiter . ..
Eine andere Methode ist die, den Zitiermodus zu bentitzen (Kapitel 7):
150 GET A$: IF A$ = “'[Taste f5 driicken]” THEN . ..

Nehmen wir zum Beispiel an, Sie mdchten, wenn Sie Taste fb6 driicken, den
Bildschirm Ioschen. Dann kénnten Sie verwenden:

150 GET AS$: IF A$ = “[Taste 5] THEN PRINT CHR$(147)

Geben Sie das ein und fahren Sie mit RUN, wenn Sie wollen; driicken Sie 5.
Geschieht etwas? Nur, wenn Sie sehr schnell sind, weil f5 nur in Betrieb ist,
solange der GET-Befehl ausgefiihrt wird. Fiigen Sie ein

160 GOTO 150

dann wird es besser . . .
Der zivilisierte Weg, mit diesen Tasten umzugehen, ist der, Subroutinen zu
schreiben, etwa:

15000 GET As: IF A$ = “[Taste f5]” THEN PRINT CHR$(147)
15019 RETURN

An strategischen Stellen verstreuen Sie dann GOSUB 15000-Befehle in lhrem
Programm, so dal} es standig Taste f5 prift. Beispielsweise konnen Sie ein
solches GOSUB in die innerste Schieife eines Mehrschleifensystems setzen.

Insoweit, als die Funktionstasten grol® und leicht zu finden sind, ist das
eine ausgezeichnete Methode. Denken Sie aber daran, daR Taste f5 nichts
leistet, was Sie auf dieselbe Art nicht auch mit irgendeiner anderen Taste, etwa
“Z", tun konnten.

Aufgabe 2
Schreiben Sie eine Routine, die eine Tabelle von Quadraten zwischen 1 und

1 Million anzeigt und, wenn Sie Taste f7 driicken, die PAPER-Farbe schritt-
weise von P—15 wandern laBt.

Losungen

Aufgabe 1
Geben Sie dem Auto zunachst oben und unten einen unsichtbaren Rand:

25 D$s="[10x[]1"
55 E$="[10x[1]"

149

Nun lassen Sie sie anzeigen:
1015 PRINT TAB (C); D$
1045 PRINT TAB (C); E$
Dann erweitern Sie den Bereich der Keyboardabfrage:
92 IFG$="0"THENR=R -1
93 IFG$="U"THENR=R +1
und schutzen Sie:
95 IFR<Q@THENR=0
96 IFR > 18THENR =18
SchlieBlich teilen Sie Zeile 6@ auf in:
55 R=12
60 GOSUB 1000
Fur die Hubschraubergrafik zeigt Abbildung 24.1 einen Vorschlag. Das fuhrt zu:
30 A$="[]gCsgCsgRcgCsgCs[][]"
49 Bs$="[]gUsg0sgOsgYcgMsgPcgQs []”
50 C$="[]gJsgCsgWsgCsgCsgCsgKs[]"”

" Abbildung 24.1
PET-Grafik-Entwurf fiir einen Hubschrauber

150

Aufgabe 2

10
29
30
49
50
60
70

5000
5010
5020
5030
5040

PRINT CHR$(147)
CL=9

FORT =1TO 1000000
PRINTT, T+T

GOSUB 5000

NEXTT

STOP

GET A$

IF A$ <> “[Taste f7]" THEN RETURN
POKE 53281, CL
CL=CL+1:IFCL=16THENCL=0
RETURN

151

25 Arrays

Computerprogramme erfordern oft Informationslisten: Zahlen oder
Woarter. Eine Art, solche Listen zu speichern, nutzt Arrays.

Ein Array ist im Grunde eine numerierte Liste von Einzelposten, wie eine
Wascheliste:

1. Socken

2. Hemd

3. Kissenbezug
4, Pullover

Wenn jemand Posten 3 braucht, kann er/sie in der Liste nachsehen, was das sei
(hier also ein Kissenbezug). Es gibt zwei Arten von Arrays: numerische Arrays
und Stringarrays.

Nehmen wir an, wir wollen im Computer eine Liste der zwolf Monate im
Jahr in Reihenfolge speichern. Monatsnamen sind Strings, also verwenden wir
ein Stringarray.

(Die Regeln fiir Arraynamen entsprechen denen fir Variablennamen. Nur
die beiden ersten Buchstaben zahlen.)

Als erstes miissen wir dem Computer mitteilen, wie lang die Liste sein
wird. Das nennt man “das Array dimensionieren”, und es geschieht durch einen
Befehl

DIM
in dieser Art:
190 DIM MONATS (12)

Streng genommen, kamen Sie auch mit 11 statt 12 durch, weil (aus Griinden,
auf die ich hier nicht eingehen will) Arrays im 64 ab @ gezahlt werden: Ein wie
oben auf 12 dimensioniertes Array hat die Eintrage 9,1, 2,3,4,5,6,7,8,9,190,
11, 12 —insgesamt dreizehn! Der Verwirrung entgeht man am besten dadurch,
daR man den Q-Eintrag nicht beachtet.

‘A(Ijs nachstes mussen Sie dem Computer mitteilen, was die 12 Eintragun-
gen sind:

20 MONATS$ (1) = “"JANUAR"”
30 MONATS (2) = “FEBRUAR"”

130 MONATS (12) = "DEZEMBER"”

Ich habe Punkte verwendet, aber Sie miissen alle zwolf Monate eingeben. Pech
far Sie. Sie konnen sich jetzt auf jeden beliebigen Eintrag im Array beziehen,

152

wenn Sie den Namen des Arrays verwenden, gefolgt von der Postennummer in
Klammern. Beispiel:

MONATS (7)
erweist sich als “JULI", und so weiter.

Um also einen beliebigen Monat anzeigen zu lassen, konnten Sie die
Zeilen anfiigen:

140 INPUT “ZAHL DES MONATS"”; N
150 PRINT MONATS (N)

Ebenso konnen Sie numerische Arrays aufbauen:
10 DIM ALICE (500) \

mit Eintragungen:

ALICE (9) oft am besten ignoriert, aber nicht immer
ALICE (1)

ALICE (2)

ALICE (500)

Arrays nehmen rasch viel Speicherplatz in Anspruch. Wenn Sie ein groRes Array
haben, dessen Eintrdge /nteger sind (also keine Dezimal-, sondern ganze Zah-
len) konnen Sie Platz sparen, indem Sie /ntegervariable verwenden; nahere
Einzelheiten in Kapitel 30. Eine Integervariable ist wie eine gewdhnliche nume-
rische Variable, aber dem Namen muR ein %-Zeichen folgen:

DIM ALICE% (500)

Multidimensionale Arrays

Multidimensionale Arrays funktionieren ganz ahnlich, aber die Eintrage bilden
eine Art Tabelle. Bei, sagen wir, zwei Dimensionen:

DIM ALICE (7, 4)
besteht die Tabelle aus sieben Reihen und vier Spalten. Das heilt, eigentlich aus
acht Reihen und finf Spalten, weil eine zusatzliche Reihe @ und Spalte @
eingeschlossen sind, genau wie im eindimensionalen Fall:

153

ALICE (0, 0)

ALICE (9, 1) ALICE (9, 2) ALICE (@, 3) ALICE (0, 4)

ALICE (1,0) | ALICE (1, 1) ALICE (1, 2) ALICE (1, 3) ALICE (1, 4)
ALICE (2,0) | ALICE (2, 1) ALICE (2, 2) ALICE (2, 3) ALICE (2, 4)
ALICE (3,0) | ALICE (3,1) ALICE (3, 2) ALICE (3, 3) ALICE (3, 4)
ALICE (4, 0) | ALICE (4, 1) ALICE (4, 2) ALICE (4, 3) ALICE (4, 4)
ALICE (5,0) | ALICE (5, 1) ALICE (5, 2) ALICE (5, 3) ALICE (5, 4)
ALICE (6,0) | ALICE (6, 1) ALICE (6, 2) ALICE (6, 3) ALICE (6, 4)
ALICE (7,0) | ALICE (7, 1) ALICE (7, 2) ALICE (7, 3) ALICE (7, 4)

Die Zeilen teilen das Material bei Reihe oder Spalte @ ab, was man am besten oft
unbeachtet 1aRt... je nachdem. Der Eintrag in Reihe REIHE und Spalte
SPALTE ist:

ALICE (REIHE, SPALTE)
Sie konnen auch ein zweidimensionales Stringarray verwenden:
DIM ALICES (7, 4)
dessen Eintrage Strings sind, nicht Zahlen.
Arrays sind sehr nitzliche Einrichtungen, weil enorm viel Information auf

natlrliche Weise in tabellarischer Form vorkommt. Sie brauchen nur an ein
Telefonbuch zu denken:

Name Adresse Telefonamt Nummer
Franz Bauer Marktgasse 23 Basel 555555
Karl Huber Hauptplatz 8 Dorfen 4242
Otto Schenk Goethestralle 46 Minchen 2323712
Marie Murks Odenwaldplatz 9 Frankfurt 104767

Auf diese Weise aufgeteilt, konnen Sie sich das als Vierspalten-Stringarray
vorstellen. (Die Telefonnummern miif3ten als Strings betrachtet werden, weil
man Strings und Zahlen in einem Array nicht mischen darf.)

Spielkarten zeichnen

Ich will vorfuhren, wie nutzlich Arrays sein kénnen, wenn man ein Programm
entwickelt, das auf dem Bildschirm ein Pokerblatt (5 Karten) zeigen soll. Um
das Programmlisting in Grenzen zu halten, nehme ich ein paar Vereinfachungen
vor:

1. Nur Karten von As bis 10 sind erlaubt; keine Figuren — oder Bilderkarten.
(Im Prinzip ist es nicht schwierig, diese herzustellen; entwerfen Sie sie
einfach mit PET-Grafik. Das Abfassen ist aber langwierig, so daB ich es
hier unterlasse, wo es das Grundsétzliche {iberdeckt.)

2. Jede Karte wird zufallig ausgewahlt und kein Versuch unternommen,
festzustellen, ob dieselbe Karte zweimal vorkommt. Siehe Aufgabe 1, wie
das umgangen werden kann.

154

Na gut, sieht schwierig aus, also gehen wir “top down’’ vor. Die Grundschritte
werden sein:

Zufallige Karte auswahlen
Zufallige Farbe auswahlen
Karte an geeigneter Stelle auf den Bildschirm zeichnen

Fir 5 Karten der Reihe nach wiederholen

Das Hauptproblem wird offenkundig sein, eine Karte zu ziehen, also konzen-
triere ich mich zunachst darauf.

Wir werden Symbole fiir Herz, Treff, Karo und Pik brauchen; kein Problem
— PET-Grafik. Auch der Kartenrand kann mit PET-Grafik gezeichnet werden.
Schwierig wird es wohl bei der Anordnung der Symbole. Ich strebe ein befrie-
digendes Ergebnis an, aber keines, das so gut aussieht wie eine echte Spielkarte.

Nachdem ich ein paar Vorstellungen auf Papier ausprobiert hatte, be-
schloB ich, fiir die Symbole, angeordnet wie in Abbildung 25.1, ein Normalgit-
ter zu verwenden.

Spalte —»
] 1 2 3 4

N\ W\
7 O §§
1
\ \
e L8
eihe
3 .
1 4] besetzte Zellen

—_
A=} ©

N

Abbildung 25.1
Normalgitter fir Spielkartenpunkte

Es gibt 11 mogliche Stellen, wo Symbole hinkommen konnen, im Bild nume-
riert. Beispielsweise konnen Sie eine gute Pik-Drei erzielen, wenn Sie an die
Stellen 3, 6, 9 je ein Pikzeichen setzen.

155

Fir jeden Wert der Kartennummer 1-10 muB ich also festlegen, welche
dieser Zellen besetzt werden soll. Ich verwende fiir die Kartennummer eine
Variable KARTE, die von 1 bis 10 reicht. Wenn ich auf die Byte-Logik zuriick-
greife, kann ich jedem Wert von KARTE einen String von 11 Bits aus () oder 1
zuteilen—eine @ am Platz K bedeutet, daR Zelle K in Abbildung 25.1 leergelassen
wird, eine 1, dal3 das Farbensymbol dort vorhanden ist. KARTE = 3 entspricht
also der Folge 00100100109, wo 1 nur an den Stellen 3, 6, 9 auftaucht. Das ist
eine gute ldee, weil ich alle zehn Folgen in einem Stringarray C$ unterbringen
kann.

Da das Gesamtlisting ziemlich lang ist, liefere ich es lhnen Stiick fir
Stiick, und Sie konnen das Ganze eingeben, wie Sie wollen — ich schlage vor,
ebenfalls Stuck fir Stuck. Bis jetzt fihrt meine Vorstellung zu:

100 DIM C$ (10)

119 Cs(1) = 00000100000
120 Cs$(2) = “00100000100"
130 C$(3) = "00100100100"
140 Cs(4) = "11000000011"
150 C$(5) = "11000100011"
160 C$(6) ="11011000011"
1790 Cs(7) ="11100011011"
180 C$(8) ="11100011111"
190 C$(9) =“11911111911"
200 Cs$(19) = 11111911111~

Anzeigepositionen

Bis jetzt schon und gut, aber diese Zellen besetzen recht unregelmaBig ange-
ordnete Positionen. Ich kann das umgehen, wenn ich Reihe und Spalte fiir eine
gegebene Zelle K als den Eintrag K von numerischen Arrays R und C speichere.
Abgelesen von Abbildung 25.1 ergibt das:

250 DIM R(11): DIM C(11)
260 R(1)=0:C(1)=90
270 R(2)=0:C(2)=4
280 R(3)=2:C(3)=2
290 R(4) =4:C(4) =0
300 R(5)=4:C(5)=4
319 R(6) =5:C(6) = 2

156

320 R(7)=6:C(7)=0
330 R(8)=6:C(8) =4
340 R(9) =8:C(9) =2
350 R(10) =10:C(10) =0
360 R(11)=10:C(11) =4

Farben
lch numeriere die vier Kartenfarben so:

Herz
Treff
Karo
Pik

PN~

Also: Die Bildschirm-POKE-Werte fur die vier entsprechenden Grafiksymbole
sind 83, 88, 89, 65. Wieder unregelmaRig. Wir verwenden deshalb ein anderes
numerisches Array S, um sie aufzunehmen:

400 S(1) =83:5(2) =88:S(3) =90:S(4) =65

(S hat nur vier Eintrage, also spare ich mir die Miihe des Dimensionierens.)

Herz und Karo sind rote Farben, die anderen schwarz. Die Farbcodes @
(schwarz) und 2 (rot) leisten das, und wir konnen sie in einem Array K unter-
bringen:

410 K(1)=2:K(2)=0:K(3) =2:K(4) =9

Hauptprogramm

Nun zur Sache. Um das Dasein zu vereinfachen, wollen wir damit anfangen,
auszuarbeiten, wie eine Karte entsteht, deren Symbolgitter (Abbildung 25.1)
angezeigt wird mit ihrer oberen Ecke an Reihe REIHE und Spalte CLM (allge-
mein denken, ja?). Im Augenblick setze ich REIHE auf 5 und CLM auf 7, aber
das wird sich spater andern, wenn wir das ganze Programm in eine Schleife
setzen, um ein Blatt von finf Karten zu erzielen.

Als erstes wahlen wir Zufallswerte fir KARTE und FARBE:

500 KARTE =1+ INT (10 * RND (0))
5190 FARBE =1 +INT (4 - RND (9))

Dann setzen wir REIHE und CLM:

520 REIHE=5
530 CLM =7

157

Nun finden wir Symbolcode und Farbcode fiir die Kartenfarbe:
54p SCD =S (FARBE): KR = K (FARBE)

Als nachstes zeichnen wir die Karte. Da wir noch nicht wissen, wie wir das
machen, verwende ich eine Subroutine:

550 GOSUB 2000: REM ZEICHNE KARTE
und fiir den Augenblick:
560 STOP

Die Subroutine Zeichne-eine-Karte

Wir haben in Abbildung 25.1 11 Zellen, jede entsprechend einem madglichen
“Punkt” auf der Karte. Wir miissen also alle 11 Positionen im String C$ (KARTE)
absuchen und, wenn wir eine 1 sehen, an der richtigen Stelle einen Punkt
zeichnen.

2009 REM PUNKT SUCHEN

2019 FORX=1TO 11

20209 U$ = MID$ (C$ (KARTE), X, 1)

2030 |IF U$ = 0" THEN 2050

2040 GOSUB 3009: REM PUNKT ZEICHNEN
2050 NEXT X

2060 RETURN

Wird schon . .. Nun zum Punktezeichnen:

3000 REM PUNKT ZEICHNEN

30190 RC = REIHE + R (X): CC = CLM + C (X)

3020 POKE1024 + 490« RC + CC, SCD

3030 POKE 55296 + 40 « RC + CC, KR

30490 RETURN
Wenn Sie das mit RUN fahren, werden Sie erstens feststellen, daR wir den
Bildschirm leeren und die Farbe wahlen sollten, und aulerdem, daR die Karte
keinen Rand hat. Die Initialisierung ist einfach:

19 POKE 53281,7

20 PRINT CHRS$ (147)

158

Darstellung verbessern

Um der Karte einen Rand zu geben sowie Farbe und Wert dafiir zu schreiben,
brauchen wir noch eine weitere Subroutine:

545 GOSUB 4000: REM UMRANDUNG KARTE
Ich kann das Schlimme nicht langer vor mir herschieben — also los.

4000 REM UMRANDUNG KARTE

4019 PRINT CHR$ (19);

40290 FORY =1 TO REIHE —3: PRINT: NEXT Y
4030 Cp=CLM -4

4040 PRINT TAB (C9); “gUs [11 mal g * s] gls”
4050 FORY=1TO 15

4060 PRINTTAB (C0); “g - s[11x[lg~-s"
4070 NEXTY

4080 PRINT TAB (CQ); “gJs [11 mal g * s] gKs”

Das liefert die Umrandungen. Beachten Sie die Grafikzeichen: g * s ist Grafik *
plus SHIFT, g — s ist Grafik — plus SHIFT.

Nun Farbe und Wert:

4100 PRINT CHR$(19);

4119 FORY =1TO REIHE —2: PRINT: NEXTY

4120 PRINT TAB (CLM —3); KARTE

4130 PRINT TAB (CLM —-3); CHR$ (SCD + 32)

4149 RETURN
Das SCD + 32 dient dazu, von Bildschirm-POKE-Codes in ASCIl umzuwan-
deln. Die verschiedenen CLM —4, CLM -3, etc. wurden durch Herumprobieren

gefunden (was lange dauerte); bilden Sie sich nicht ein, es ginge immer so glatt,
wie es im Buch steht!

Ein ganzes Blatt

Nachdem das lauft und entfehlert ist — sieht recht hiibsch aus, nicht wahr? —
konnen wir jetzt in die Schleife setzen, um fiinf Karten zu zeichnen.

159

Léschen Sie Zeilen 520, 530 und 560. Fiigen Sie ein:
4990 FORZ=1TO5b

520 REIHE=5+Z:CLM=5+4+Z

560 NEXTZ

57¢ GOTO 570

Das war's.

Abbildung 25.2 .
Das Endergebnis: Ein Pokerblatt.

Aufgabe 1

Fiigen Sie eine Routine ein, die jede Zufallsauswahl von Karte und Farbe
iberprift, um sich zu vergewissern, daf sie nicht schon einmal vorgekommen
ist, und es in diesem Fall erneut versucht. (Ein Blatt mit zwei Pik-As in einer
Pokerrunde wiirde den Gegenspielern kaum behagen . . .)

Die niachste Aufgabe bekommt von mir keine Nummer, weil ich die Zeit nicht

aufwenden will, die fiir eine gute Erklarung erforderlich ware. Aber trotzdem:
Uberlegen Sie sich, wie Sie Figurenkarten zeichnen wiirden.

160

Losung

Wir missen ein Array aufbauen und jede neue Karte samt Farbe damit verglei-
chen. Hier ist eine Methode.

511 FORW=1TOZ
512 IF F (W) = KARTE AND G (W) = FARBE THEN 500
513 NEXTW

514 F (Z) = KARTE: G (Z) = FARBE

Das speichert die Werte fur KARTE in Array F, FARBE in G. Da sie nur 5 Posten
lang sind, brauchen F und G nicht dimensioniert zu werden.

Streng genommen ist es ungut, aus einer Schieife zu springen. Wir sollten
also lieber eine Flagge setzen, auf die nach Schleifenende reagiert wird:

512 IFF (W) = KARTE AND G (W) = FARBE THEN FLAGGE =1
515 IF FLAGGE =1 THEN FLAGGE = @: GOTO 5000
516 FLAGGE=90

Aber das ist schon ein biRchen pedantisch.

161

26 Debugging IV

Wie man Computer veranlalSt, Fehler selbst zu beseitigen!

In Debugging Il sprach ich vom ‘Schreibtischtest’ eines Programms — auf dem
Papier den Flu® der Befehle nachverfolgen. Der Hauptnachteil bei dieser Me-
thode ist, daR der Anwender — also Sie —die ganze Arbeit allein tun muR. Der 64
hockt behaglich da und laRt Sie wissen, er habe keine Ahnung, wovon Sie
reden, oder, noch schlimmer, liefert nur falsche Antworten. Es wird Zeit, ihn an
die Arbeit zu schicken, dafir ist er schlieBlich da.

Man kann ihn dazu bringen, selbst einen ‘Trockenlauf’ zu veranstalten.
Sehen wir uns zum Beispiel noch einmal Aufgabe 1 aus Debugging Il an:

10 MAX=0:MIN=0

20 INPUTN

30 IFN < MINTHEN MIN = N

40 IFN > MAXTHEN MAX =N

50 IFN < @ THEN PRINT MAX, MIN: END
60 GOTO 20

Das soll Hochst- und Mindestwert einer Reihe von Eingaben finden. Tut es aber
nicht! Den (die) Fehler eruiert man nun so: Fiigen Sie eine Zeile 5 ein, um die
Tabellenliberschriften und in jeder Zeile die Zeilennummer und jeden Wert, der
sich in dieser Zeile andert, in den entsprechenden Spalten anzuzeigen:

5 PRNT"INO OOMAXOOMINOONOOOO
VERZWEIGUNG”

10 MAX=0: MIN = @: PRINT “10"”; TAB (5) ; MAX; TAB (10); MIN

20 INPUT N: PRINT “20”; TAB (15); N

30 IFN < MINTHEN MIN = N: PRINT ““30"; TAB (10); MIN

40 IFN > MAXTHEN MAX = N: PRINT “49"; TAB (5); MAX

50 IFN < @ THEN PRINT MAX, MIN: END

60 PRINT “60"; TAB (20); “V": GOTO 20
Der TAB-Befehl sorgt lediglich dafir, daB in der entsprechenden Bildschirm-
spalte angezeigt wird. Die Form der daraus entstehenden Tabelle ist von der auf
dem Papier ein biRchen verschieden. Zeilen, in denen keine Veranderung ein-

tritt, werden nicht aufgefiihrt, aber dadurch wird das Ganze eher lbersichtli-
cher. Ein ernsteres Problem ist, daf3 die Eingabe-Anforderungen und -werte die

162

Tabelle auseinanderreiften. Im Idealfall sollten die beiden Arten von Ausgabe an
verschiedene Stellen geschickt werden. Beispielsweise konnte die Tabelle Gber
einen Drucker, oder, wenn Sie keinen haben, Gber Kassettenband ausgegeben
werden. Das erfordert eine Kenntnis des File-Systems im 64, und ich komme auf
dieses Problem zuriick, wenn ich in Kapitel 34 Dateien besprochen habe. Falls
Sie keinen Drucker besitzen, haben Sie vielleicht den Wunsch, bei der Zahl der
angezeigten Werte sparsam zu verfahren. Beispiel: In diesem Fall wird es ver-
mutlich schon geniigen, die Werte in MAX und MIN am Ende jeder Schleife zu
kennen. Es ware also ausreichend, dem Programm nur eine Zeile 55 einzufiigen:

55 PRINT MAX, MIN

Sie mochten die Variablen vielleicht verandern, um sie bei verschiedenen Test-
laufen zu untersuchen. Ein guter Kniff ist der, in eine PRINT-Anweisung, die Sie
lahmlegen wollen, ein REM einzufiigen, also:

55 REM PRINT MAX, MIN

Da Zeile 55 jetzt eine Bemerkung ist, beachtet der Computer sie nicht. Wenn Sie
sie spater wieder brauchen, erspart lhnen das, die Zeile neu schreiben zu
miissen — Sie brauchen nur das REM zu l6schen.

Der 64 kann uns also mitteilen, wie seine Variablen sich verandern. Er
konnte noch zwei nitzliche Dinge tun:

1. Er kdnnte uns sagen, welche Zeilen er ausfihrt und in welcher Reihen-
folge.

2. Er konnte uns sagen, wie oft er bestimmte Zeilen oder Codeblocke aus-
fihrt.

Ablaufuberwachung

Die einfachste Methode, den Weg zu verfolgen, den ein Programm nimmt, ist
die, in jede Zeile eine PRINT-Anweisung einzufiigen, die einfach die ausge-
fihrten Zeilennummern anzeigt. Das Maximum/Minimum-Programm sahe
dann so aus:

10 PRINT"<10>"MAX=0:MIN=0

20 PRINT "< 20 >":INPUTN

30 PRINT”"< 30 >":IFN < MINTHEN MIN =N

49 PRINT "< 40 >":IFN > MAXTHEN MAX =N

50 PRINT "< 50 >":IFN < @ THEN PRINT MAX, MIN: END

60 PRINT “< 60 >":GOTO 20
Ich habe die angezeigten Zeilennummern in Winkelklammern gesetzt, damit
man sie nicht mit den vom Programm ausgegebenen Zahlen verwechseln kann.
Sie sollen nicht den Kopf verlieren.

163

Beachten Sie, daR der verfolgte Teil der Zeile stets zuerst auftaucht.
Normalerweise ist die Reihenfolge unwichtig, aber wenn ich Zeile 30 so abge-
falt hatte:

30 IFN < MIN THEN MIN = N: PRINT "< 30 >"

wiurde das PRINT nur dann ausgefihrt werden, wenn N k/einer ware als MIN,
die Verfolgung ware also unvollstandig.

Ablaufiiberwachungen konnen verwirrender sein als nutzvoll, wenn man
sie unbekiimmert und wahllos anwendet. Man mul bei jeder Debuggingme-
thode darauf achten, vernunftige Fragen.zu stellen, und den Computer dann
veranlassen, die Antworten auf genau diese Fragen zu liefern. Es hat keinen
Sinn, einen kompletten Test anzustellen, wenn Sie eigentlich nur wissen wol-
len, ob eine bestimmte Variable jemals den Wert 25 erreicht. Je mehr Daten Sie
sich vom Gerat anzeigen lassen, desto langer brauchen Sie fir die Analyse. Bei
Ablaufiiberwachungen ist es genauso. Wenn Sie sicher sind, daR ein bestimm-
ter Codeblock richtig ausgefiihrt wird, warum ihn protokollieren? Im groRRen
und ganzen werden wir uns damit befassen, ein Programm in der Umgebung
von Verzweigungen zu Gberwachen.

Hier ein Beispiel. Wir schreiben einen Codeteil, der einen Tag des Monats
fir Verwendung an anderer Stelle in einem Programm annimmt. Es empfiehlt
sich, den eingegebenen Wert zu priifen, um dafiir zu sorgen, daB er im Bereich
1-31 liegt. Wir konnten kompliziertere Tests anstellen, um zu prifen, daR der
Wert nicht groRer ist als 29, wenn es sich um den Februar handelt, und so weiter,
bleiben hier aber bei den einfachsten Verfahren.

Unser erster Versuch konnte lauten:

50 INPUT “GIB TAG DES MONATS EIN"; T
60 IFT>QORT < 32THEN 200

79 PRINT “GIBT ES NICHT”

80 GOTO 59

- 2090 REM HIER FUER GUELTIGEN TAG
Das Programm verhalt sich nicht richtig, also konnten wir so umschreiben:
60 PRINT"<60>"IFT>0ORT < 32THEN 200

80 PRINT“< 80 >": GOTO 50
200 PRINT “< 200 >": REM HIER FUER GUELTIGEN TAG

um den verdachtigen Code aufzusplren.
Wenn wir das fahren, stellen wir fest, daB, gleichgliltig, welcher Wert fiir
T eingegeben wird, der Ablauf stets so erscheint:

60
200
164

Zeile 70 kann nicht erreicht werden. Zeile 6Q hatte so lauten missen:
60 IFT>QOANDT < 32THEN 200

Wenn Sie es sich genau lberlegen, ist namlich jede Zeile entweder groBer als
oder kleiner als 32!

Verwechslungen von AND und OR kommen nicht selten vor, wenn man
nicht genau nachdenkt. Schiampereien verzeiht der Computer aber nicht.

Programmprofile

Ein Programmprofil zeigt, wie oft jede Zeile eines Programms ausgefiihrt wor-
den ist. Wie Ublich ist das des Guten zuviel, und wir soliten uns genau tiberle-
gen, welche Teile eines Programms im Profil dargestellt werden miissen. Neh-
men wir an, wir wollen in Erfahrung bringen, wie oft Zeile 420 eines bestimmten
Programms ausgefiihrt wird. Wir setzen zu Beginn des Programms eine Zahlung
auf @ und inkrementieren jedesmal um 1, wenn Zeile 420 durchlaufen wird:

5 PZ=90

420 A=A~ (P-1)
421 PZ=PZ+1

809 PRINT PZ
819 STOP

Sehen wir uns ein konkretes Beispiel an. Das folgende Programm soll im
Hochstfall 20 Werte, begrenzt durch Null, annehmen und sie in aufsteigender
Reihenfolge ordnen. Lautet die Eingabefolge also:

3

N B =

sollte herauskommen:

165

Die Null sollte nicht erscheinen, weil sie nur ein Begrenzer ist.

10 DIM A(20)

20 FORP=1T020

30 INPUTA(P)

49 1IFA(P) =0 THEN 60

50 NEXTP

60 N=P

656 F=0

70 FORP=1TON

80 IFA(P) <A(P+ 1) THEN 130
90 T=A(P)

100 A(P) =A(P+1)

110 AP+1)=T

120 F=1

130 NEXTP

140 IFF=1THEN 65

150 FORP=1TON

160 PRINT A(P)

170 NEXTP
Das Programm leistet nicht ganz, was es sollte. (Geben Sie ein und probieren
Sie es aus.) Vielmehr gerat es in eine Endlosschleife.

Wo also mit dem Suchen anfangen? Die erste Schleife (20-50) sieht ganz
harmlos aus, die letzte (150—170) zeigt lediglich den Arrayinhalt an. Demnach
erscheint es angebracht, sich mit der Schleife von 70 bis 130 zu befassen. Aus
Zeile 80 wird kiar, daR manchmal alle Anweisungen in der Schleife ausgefiihrt
werden, manchmal die von 90 bis 120 nicht beachtet werden. Wir nehmen also
zwei Profilzahlungen vor, Z1 und Z2. Sie zdhlen, wie oft in die Schleife elnge-

treten und wie oft der letzte Teil der Schleife ausgefiihrt wird.
Das konnen wir erreichen mit:

67 21=0
68 22=0
75 21 =21 +1

166

126 72=72 +1

132

PRINT Z1, 22

Weil wir schon dabei sind, konnen wir ebensogut den Inhalt des Arrays am Ende
jeder Schleife anzeigen lassen; es liegt nahe, dal im Inneren Zahlen umge-

schaufelt un

134

135
136
137
138

Probieren w
eingeben:

3

o1 00 = O

0

erhalten wir:

d nur sehr wenige andere Variable verwendet werden. Demnach:

FORQ=1TON [weil 1 TO N der betroffene Arrayteil
zu sein scheint)

PRINT A(Q);

NEXT Q

PRINT

FOR X =1TO 200: NEXT X [Pause]

ir ein paar Datensatze aus, um zu sehen, was passiert. Wenn wir

6 4
316500
6 4
130056
6 2
100356
6 2
?91356
6 2
001356

167

6 1
001356
6 1
001356

und so weiter, bis unendlich.

Die Werte scheinen zwar in die Reihenfolge zu kommen, aber die ‘8’
haben wir verloren, und wo kommt pl6tzlich das Nullenpaar her? AulRerdem
geht das Problem beharrlich sechsmal durch die Hauptschleife, aber die Durch-
laufe in der Unterschleife nehmen standig ab, bis sie 1 erreichen, wo sie bleiben.

Eine der Nullen ist offenkundig der Begrenzer, die andere ein Element des
Arrays, das nicht wahrend des Laufs gesetzt, sondern durch das System auf Null
initialisiert wird. Anders ausgedriickt: Das Programm behandelt zwei Werte
zuviel. Schreiben wir die Zeile 6 also um:

60 N=P-2

und versuchen wir es noch einmal. Die Hoffnung wahret ewiglich ... Wir
erhalten:

4 2
3165

4 2
1356

4]
1356

1

3

5

6

Immerhin ein gewisser Fortschritt — wir sind die Nullen losgeworden. Aber
unsere 8 haben wir immer noch nicht wieder.

Schwer zu erkennen, wo sie verlorengegangen sein kann. Vielleicht ist sie
noch da und wird nur nicht angezeigt. Wo zeigen wir sie mit PRINT an? In den
Zeilen 150-17@. Der Bereich 1 TO N muR zu klein sein. Erhéhen wir ihn um 1:

150 FORP=1TON +1

Und weil wir schon dabei sind: Die Uberwachung in Zeile 134 wird wohl
dieselben Probleme haben. Das beheben wir auch gleich:

134 FORQ=1TON +1
Je nun, Freunde, la’t es uns noch einmal versuchen . ..

168

Diesmal erhalten wir (bei denselben Daten):

4 2
31658
4 2
13568
4 0
13568
1
3
5
6
8

Prima! Wir haben es geschafft. Jetzt klappt alles. Wirklich? Probieren wir:

g = N O W

0

Diesmal erhalten wir:

4 3
321565
4 3
21355
4 2
12355
4 1
12355
4 1
12355

169

4 1
12355

etc.

Das Programm liefert die richtige Antwort, kommt aber nie aus der Schleife
heraus. Uns fallt auf, daB Z2 in diesem Fall nie auf Null kommt. Man darf also
davon ausgehen, da® dadurch das Programm abgeschlossen wird.

Va)/as entscheidet, ob das Programm in die Unterschleife eintritt oder nicht?
Zeile 80:

80 IFA(P) <A(P+1)THEN130

Der Unterschied zwischen den beiden Datensatzen ist der, daR der zweite zwei

identische Werte enthalt. Da 5 nicht kleiner ist als 5, wird die Unterschleife

jedesmal ausgefiihrt, sobald die beiden 5 auftauchen. Deshalb geht das Pro-

gramm stets einmal durch die Unterschleife. Vielleicht sollte die Frage lauten:
80 IFA(P) <=A(P+1)THEN 130

Diesmal funktioniert alles.

4 2
32155
4 2
21355
4 1
12355
4 0
12355
1
2
3
5
5

Jetzt lauft es wie geschmiert, und wir konnen die Testzeichen herausnehmen.
Ich hoffe, ich habe hier ein paar wichtige Punkte veranschaulichen kon-
nen. Erstens muRten wir nicht genau wissen, wie die Prozedur verlduft. Wenn
Sie diesen Abschnitt sorgfaltig durchgearbeitet haben, wird sie inzwischen
ziemlich klar sein, und ein paar Schreibtischtests wiirden Sie vermutlich davon
uberzeugen, daR Sie sie begriffen haben. (Schreibtischtests tragen sehr dazu
bei, Computerprozeduren zu begreifen. Ich habe bei unklarem Code — von

170

fremder Hand, versteht sich — oft bis zu einem Dutzend Tests angestellt, bis mir
richtig klar wurde, was sich abspielte.) Zweitens neigt man, wenn ein Pro-
gramm das erstemal erfolgreich ist, stets zu dem Glauben, nun sei die Arbeit
getan und man konne sich in der Eckkneipe rasch ein Glas gonnen. Wir wir
gesehen haben, ist die Arbeit nicht getan, weil es andere Datensatze geben
kann, bei denen das Programm versagt; abgesehen davon, hat die Kneipe schon
vor eineinhalb Stunden zugemacht, falls Ihnen die Zeit beim Codeverfassen so
schnell vergeht wie mir.

171

27 Datenlisten

Es gibt zweckmaligere Methoden, eine Vielzahl von Variablen zu
definieren, als sehr ahnlich geartete Programmzeilen in Mengen
einzugeben.

Wenn Sie dieses Buch durchblattern, wird Ihnen auffallen, daR ein grofer Teil
der Programme lange Folgen von Zahlen oder Strings zu betreffen scheint. Oft
sind diese in Arrays gespeichert. Kapitel 25 ist ein extremes Beispiel. Soweit die
angebliche Starke eines Computers darin besteht, ahnlich geartete Befehle
ohne menschlichen Eingriff oft auszufiihren, muB3 es gewild einen besseren Weg
geben, als diese fast gleich lautenden Zeilen vom Programmierer miihsam
eintippen zu lassen. Die Zahlen und Strings freilich mussen auf /rgendeine
Weise eingegeben werden, weil der 64 keine Gedanken lesen kann.
Es gibt einen Weg. Er verwendet den Befehl

DATA
um die Zahlenliste aufzubauen, und
READ

um Zahlen gebrauchsbereit von der Liste zu holen.

Die Posten in einer DATA-Anweisung konnen sowohl Zahlen als auch
Strings sein, und Sie durfen die beiden nach Belieben mischen. ‘Allerdings
miissen Sie dafiir sorgen, daR in jeder READ-Anweisung die richtige Art Vari-
able verwendet wird. Wenn

READ X
auf einen String stoBt, bewirkt es nichts; Sie miften den String mit

READ X$

einer Stringvariablen zuteilen. Beispiel: Hier ein Programm, das den Beginn
einer Liste bundesdeutscher Lander und ihrer Bevolkerungszahlen (in 1000)
anzeigt:

190 PRINT CHR$(147)

20 DATA BAYERN, 190644, BREMEN, 757, BERLIN, 2130,
HESSEN, 5461

30 FORT=1T04

49 READ Ls$, BEV

50 PRINT LS, BEV

60 NEXTT

172

Sie konnen, wenn Sie wollen, Strings in Anfuhrungszeichen setzen oder auch
nicht — in einer DATA-Liste spielt das keine Rolle. Man kann also auch “BRE-
MEN" etc. nehmen. Ein Stnng, der Kommas enthalt, muB in Anfihrungsstri-
chen stehen.

Aufgabe 1

Hier ist eine Liste der ersten funf Prasidenten der Vereinigten Staaten mit ihren
Amtszeiten. Schreiben Sie ein Programm, das DATA- Listen verwendet, um die
Information anzuzeigen.

George Washington 1789-1797
John Adams 1797-1801
Thomas Jefferson 1801-1809
James Madison 1809-1817
James Monroe 1817-1825

Planetensuche

Mit einer DATA-Liste konnen Sie mehr tun, als sie nur anzuzeigen! Beispiels-
weise kdnnen sie darin nach einem bestimmten Eintrag suchen:

10 DATA MERKUR, 58, VENUS, 108

29 DATA ERDE, 150, MARS, 228

30 DATAJUPITER, 778, SATURN, 1427

40 DATA URANUS, 2879, NEPTUN, 4997, PLUTO, 5900

50 INPUT “WELCHER PLANET"; PLANET$

60 FORG=1TO9

70 READX$,Y

80 IF X$ = PLANETS THEN 100

90 NEXTG
1090 PRINT X$; “[JIST VON DER SONNE"
110 PRINTY; “[JMILLIONEN KILOMETER"
120 PRINT “[JENTFERNT.”

Zeilen 10-40 fuhren die Daten auf. Auf den Namen des Planeten folgt seine
Entfernung (in Millionen Kilometer) zur Sonne. Die Schleife von Zeile 50 bis 90
sucht die Datenliste nach einem bestimmten Planeten ab, dessen Namen sie in
Zeile 50 eingeben. Wenn er gefunden ist, geht das Programm zu Zeilen 100—
120, die das Gewiinschte an Information anzeigen.

173

(Zur Beachtung: Sie missen PLANET$ genauso eingeben, wie aufge-
fahrt, also keine zusatzlichen Leerstellen etc., sonst verlaRt das Programm die
Schileife, ohne Ihre Eingabe entdeckt zu haben, und zeigt die Daten fir Pluto an.
(Warum gerade fiir Pluto?)

Wenn Sie ins Reiseburo oder zum Flugschalter gehen und man lhren
Namen eingibt, um zu prifen, ob lhr Flug gebucht ist, verwendet man eine
(kompliziertere) Version dieser Art von Datensuche. Diese Datenliste ist natur-
lich riesengro8, und der Hauptaufwand an Programmierkonnen dient der nar-
rensicheren Verarbeitung enormer Datenmengen.

RESTORE

Manchmal wollen Sie vielleicht in einem Programm dieselbe Datenliste mehr-
mals verwenden. Hier ein sehr simpler Fall. Was geht vor?

190 DATA FRED

20 READ Xs$

30 PRINTX$

49 GOTO 20
Das erste FRED wird angezeigt —dann kommt die Meldung OUT OF DATA. Der
Computer weill nicht, dal er die urspriingliche Datenliste wiederverwenden
soll Um ihm das zu sagen, verwenden Sie das Wort

RESTORE
Flgen Sie eine Zeile

35 RESTORE

an, dann konnen sie es sehen. RESTORE schickt den ‘Zeiger’ zur laufenden
Position in der Datenliste zurtick, an den Anfang.

Losung

Aufgabe 1

10 DATA GEORGE WASHINGTON, 1789, 1797,
JOHN ADAMS, 1797, 1801

20 DATA THOMAS JEFFERSON, 1801, 1809,
JAMES MADISON, 1809, 1817

30 DATA JAMES MONROE, 1817, 1825

174

49
50
60
70
80

PRINT CHR$(147)
FORN=1TO5

READ NAMES, D1, D2

PRINT NAMES, D1; “BIS"; D2
NEXT N

175

28 Sprites

Eine anregende und ungewdhnliche Eigenschaft des Commodore
64 ist seine Fahigkeit, lberall auf den Bildschirm groBSe Grafik-
blocke zu zeichnen und zu bewegen. Sie kénnen sich lberlappen,
ZusammenstoBe lassen sich feststellen.

Sprites oder MOBs (Moveable Object Blocks, dt. etwa Bewegliche Block-
objekte) sind mittelgroRe Grafikgebilde, die von einem eigenen VIP-Chip ver-
arbeitet werden. Man kann sie nach Wunsch des Programmierers auf dem
Bildschirm bewegen. Sie kénnen zur Grundlage vieler hiibscher Spiele und
Displays gemacht werden. Ganz einfach ist der Umgang mit ihnen aber nicht.
Dieses Kapitel hat zum Ziel, einige der Grundgedanken darzustellen, jedenfalls
soviel, da Sie selbst Sprites einsetzen konnen.

Spriteaufbau

Die Information, die ein Sprite definiert, besteht aus einem 21 x 24 Punkte
grofRen Gitter, dessen Zellen entweder leer oder geschwarzt sind. Beispiels-
weise zeigt Abbildung 28.1 ein Sprite in Form eines ‘Raumkreuzers’.

1111 1111112222 Bytes
6123 456789 012345¢67188906123

o] 0 L)

1 2 '] 9

2 o 9 0

3 o @)]

4)))

5 1 248 ¢

6 1 224 I’

7 60 192 (4]

8 7 202 112

9 135 255 255
10 258 255 252
1 127 255 240
12 63 255 192
13 127 254 ¢
14 63 249]
15 127 192 L]
16 14) [}
17 ¢ o 0
19) 0 [}
20 '] 2 [}

. Abbildung 28.1
Raumkreuzer auf einem Spritegitter, und die entsprechenden Daten, von Binér in Dezimal umgewan-
delt.

176

Diese leeren oder ausgefiillten Zellen miissen in eine Folge von Zahlen umge-
wandelt und an der entsprechenden Stelle gespeichert werden (siehe unten).
Dazu ersetzt man jede leere Zelle durch eine 0, jede volle Zelle durch eine 1, wie
in Abbildung 28.1. Teilen Sie jede Reihe von 24 Ziffern in drei Abschnitte zu je
8 Ziffern auf. Beispielsweise zerfallt Reihe 8 der Abbildung folgendermaRen:

00000111 11001010 01110000

Sie sehen aus wie Binarbytes . . . und genau das ist der Sinn. Umgewandelt in
Dezimalzahlen werden daraus

7 202 12

Man kann sich jede Reihe des Sprites demnach als eine Folge von drei Dezi-
malzahlen (zwischen @ und 255) vorstellen. Die Zahlen fiir das gesamte Sprite
sind neben Abbildung 28.1 aufgefiihrt, und gelesen werden sie der Reihe nach
von oben links nach unten rechts, also die drei Bytes fiir Reihe @, dann die drei
fir Reihe 1 und so weiter bis Reihe 2. Das ergibt insgesamt 63 Zahlen.

Sie konnen |hr Sprite auf kariertem Papier entwerfen und die Zahlen aus
der Tabelle in Anhang 1 entnehmen, aber ware es nicht viel hibscher, wenn man
die ganze Arbeit dem Computer aufhalsen konnte?

Computerunterstiitzte Spritekonstruktionen

Hier ein ziemlich einfaches Programm. Damit konnen Sie auf dem Bildschirm
ein Sprite zeichnen und die Datenliste generieren. Um das Listing in Grenzen zu
halten, sind verschiedene mogliche Verbesserungen weggelassen worden. Falls
Sie den Wunsch haben, das aufzumobeln, bitte gern!

10 POKE 53280, 4

20 PRINT CHR$(147);

30 FORS=0TO20

49 IFS=8+INT(S/8) THEN PRINT

[24 — Zeichen]
50 IFS < > 8+INT(S/8) THEN PRINT

60 NEXTS

1090 DIM S(20, 23)

119 FORR=0TO 20

120 FORC=0TO 23

1390 CDE = 63: GOSUB 1000
140 GET A$

177

150 IFA$ < > “0” AND A$ < > “1” THEN 149
160 IF A$ = “9” THEN S(R,C) = 0: CDE = 32: GOSUB 1000
170 IF A$ = “1" THEN S(R,C) = 1: CDE = 192: GOSUB 1000
180 NEXTC
199 NEXTR
209 POKE 53280, 3
210 GETAS$: IFA$ < > “N” AND A$ < > “J” THEN 210
220 IF A$ = “N” THEN POKE 53280, 4: GOTO 119
250 PRINT CHR$(19);
260 FORR=0TO 20
270 FORX=0TO 16 STEP 8
280 V=290
299 FORC=0TO7
300 IFS(R,X+C)=1THENV =V + 21 (7-C)
319 NEXTC
320 PRINT TAB(24 + X/2); V;
330 NEXTX
349 PRINT
350 NEXTR
360 GOTO 360
1009 REM PRINT AT
1010 POKE 1024 + 40+ R + C, CDE
10290 POKE55296 + 40 +R + C, 3
1030 RETURN

Fahren Sie das mit RUN. Der Rand wird pupurrot, aus Griinden, die gleich
klarwerden. Sie erhalten ein 21 x 24 grofes Gitter aus Punkten und Strichen, in
Abschnitte 8 x 8 aufgeteilt, damit es praktischer ist. Oben links steht ein ?-Zei-
chen. Wenn Sie ‘1’ driicken, wird es ersetzt durch ein kariertes Muster, bei ‘@’
durch eine Leerstelle. Dann bewegt es sich um eine Stelle vorwarts. So konnen
sie weitermachen und einen Block oder eine Leerstelle plotten, bis das ganze
Gitter ausgefillt ist.

An diesem Punkt wird der Rand cyanfarben, um Sie daran zu erinnern,
dal Sie eine Taste driicken missen. (Fir eine Meldung bleibt nicht viel Platz,
deshalb ist das ein glinstiger Ausweg.) ‘J’ fiir ‘Ja’ teilt dem Programm mit, da®
es fortfahren soll; ‘N’ fir ‘Nein’ bedeutet, daR® Sie einen Fehler gemacht haben

178

und es noch einmal versuchen wollen. (Beim zweiten Lauf missen sie alle 0
und 1 noch einmal eingaben; hier ware eine Verbesserung méglich.)

Der Computer listet dann automatisch an der rechten Seite die Daten fiir
die Reihen auf. Notieren Sie sich die auf einem Blatt Papier. (Oder lassen Sie sie
vom Drucker ausdrucken oder kopieren Sie in eine Datei auf Kassette, siehe
Kapitel 34.)

Abbildung 28.2
Das Sprite-Aufbauprogramm in Aktion.

Die Sprite-Register

Fur die Sprites sind eigene Speicherbereiche reserviert. Die Adressen beginnen
bei 53248 (was ich aus praktischen Erwagungen von jetzt an V nenne) und
enden bei 53294. Nicht alle sind fiir einen Anfanger von Nutzen, und ich lasse
die ausgefalleneren weg. Zusatzlich gibt es in den Adressen 2040-2047 noch
mehrere Zeiger, die dem Computer mitteilen, wo er die 63 Bytes Grafikdaten
suchen soll, die zur Definierung jedes Sprites gebraucht werden. Ich beschreibe
sie gleich ausfihrlicher, hier zunachst ein rascher Uberblick.

Spritepositionen: Adressen V bis V + 15 enthalten Spaltennummer (oder
x-Koordinate in hochauflosender Grafik) und Reihennummer (Y-Koordinate)
fir jedes der acht Sprites. Diese Zahlen gehen von (—255. Jede ist als ein Byte
in einer Einzeladresse gespeichert.

Versetzungsflagge: Die acht Bits eines Einzelbytes in Adresse V + 16 definieren
eine Versetzung an der X-Koordinate (Spaltennummer) nach rechts. Ist Bit K auf
1 gesetzt, wird die Spaltennummer um 256 erhoht. Das ist erforderlich, um
Sprites zur rechten Bildschirmseite zu befordern.

179

Aktivieren/Sperren. Die acht Bits eines Einzelbytes in Adresse V + 21 aktivieren
das Sprite K (schalten es ein), wenn Bit Kauf 1 gesetzt ist, und sperren (schalten
es ab), wenn Bit K 0 ist.

Vertikal erweitern: Die acht Bits eines Einzelbytes in Adresse V + 23 erweitern
das Sprite K auf doppelte Hohe, wenn Bit K 1 ist.

Horizontal erweitern: Ebenso erweitern die acht Bits in Adresse V + 29 Sprite K
auf doppelte Breite, wenn Bit K 1 ist.

Kollisionsflagge: Wenn zwei Sprites ‘zusammenstoRen’, werden die entspre-
chenden Bits in diesem Register auf 1 gesetzt.

Farben: Jede Adresse V + 39 bis V + 46 enthalt den Farbcode (wie in Kapitel
13 von @ bis 15) fiir ein Sprite.

Datenzeiger: Adressen 2040 bis 2047 (oberes Ende des Farb-RAM) enthalten
Zeiger zu den Startadressen der Daten fiir die Sprites @ bis 7 der Reihe nach.
Wenn der Zeiger K den Wert PTR hat, beginnt die Adresse fir die Daten bei
64+PTR. Wir wollen das den PTR-Speicherblock nennen, von 64+«PTR bis
64+PTR+63. Damit konnen Sie tiberall in den ersten 16 348 Bytes RAM Sprites
definieren. Es gibt Methoden, auch die anderen 49 512 Bytes zu verwenden,
aber sie sind ziemlich umstandlich, siehe ‘Reference Guide’, S. 101 und 133. Sie
konnen aber nicht einfach Sprites in jede beliebige Adresse setzen; das
BASIC-System demoliert die Daten. Siehe unten die empfohlenen Adressen.)

Die Adressen fur die Steuerung von Sprites sind zusammengefaltt in den Tabel -
len 28.1 und 28.2, zur besseren Bequemlichkeit als Anhang 2 wiederholt. Zur
Bedeutung der weggelassenen Adressen siehe ‘Reference Guide’, S. 131-181.
Das sind 50 Seiten; ich sage ja, mit Sprites ist es nicht ganz so einfach!

Tabelle 28.1 Sprite-Datentrager

Adesse Inhalt

2040 Datenzeiger Sprite 0
2041 Datenzeiger Sprite 1
2042 Datenzeiger Sprite 2
2043 Datenzeiger Sprite 3
2044 Datenzeiger Sprite 4
2045 Datenzeiger Sprite 5
2046 Datenzeiger Sprite 6
2047 Datenzeiger Sprite 7

180

Tabelle 28.2 Sprite-Register

V = 53248 @ = Startadresse des Registerbereichs

Adresse Inhalt Funktion
V+0 Spaltennummer Sprite 0

V+1 Reihennummer Sprite @

V+2 Spaltennummer Sprite 1

V+3 Reihennummer Sprite 1

V+4 Spaltennummer Sprite 2

V+5 Reihennummer Sprite 2

V+6 Spaltennummer Sprite 3

V+7 Reihennummer Sprite 3 Spritepositionen
V+8 Spaltennummer Sprite 4

V+9 Reihennummer Sprite 4

V+10 Spaltennummer Sprite 5

V+ 11 Reihennummer Sprite 5

V+12 Spaltennummer Sprite 6

V+13 Reihennummer Sprite 6

V+14 Spaltennummer Sprite 7

V+15 Reihennummer Sprite 7

V +16 |Sp7|Sp6|Sp5|Sp4|Sp3{Sp2|Sp1 (Sp®| Versetzungsflagge
V +21|Sp7|Sp6|Sp5|Sp4|Sp3|Sp2|Sp1 [Sp® | Aktivieren/Sperren
V + 23 |Sp7|Sp6|Sp5|Sp4|Sp3|Sp2|Sp1 [Sp P | erweitern vertikal
V + 29 |Sp7|Sp6|Sp5|Sp4|{Sp3|{Sp2|Sp1 [Sp®| erweitern horizontal
V + 30 |Sp7|Sp6|Sp5|Sp4|Sp3{Sp2{Sp1 |Sp® | Kollisionsflagge
VvV + 39 Farbcode Sprite 0

V + 40 Farbcode Sprite 1

VvV + 41 Farbcode Sprite 2

V+42 Farbcode Sprite 3 Farben

V + 43 Farbcode Sprite 4

V+44 Farbcode Sprite 5

V + 45 Farbcode Sprite 6

V + 46 Farbcode Sprite 7

Sprite-Koordinaten

Sprite-Reihen- und Spaltennummern konnen in den folgenden Bereichen lie-

gen:

Reihe: 0—255
Spalte: 511 (Versetzungsflagge eingeschlossen)

181

Das ist viel groRer als der Bildschirmbereich, der 20@ Reihen und 320 Spalten
umfaBit. Der 64 nutzt das und lalt zu, dafld sie Sprites auferhalb des Bildschirms
in Position bringen und unbehindert weiterbewegen. Die Beziehung zwischen
Sprite-Koordinaten und Bildschirm ist Abbildung 28.3 zu entnehmen.

Spalte ———— —p»

0 23 24 343 344 511

29
30

Reihe

229
239

255

Abbildung 28.3
Koordinatengitter fir Sprite.

Beachten Sie, da Reihen- und Spaltennummern eines Sprites die Position der
oberen linken Ecke des 21 x 24-Gitters sind, das es definiert. In Programmen
mussen Sie das berticksichtigen. Bei erweiterten Sprites bleibt es die linke obere
Gitterecke.

Ein Sprite aufbauen
Um ein Sprite auf den Bildschirm zu bekommen, miissen wir:

Die Daten fir seine Form definieren.

Den Zeiger dorthin setzen, wo die Daten gespeichert sind.
Die Daten mit POKE an Ort und Stelle bringen.

Das Sprite aktivieren.

Die Farbe des Sprites bestimmen.

Reihen- und Spaltennummern fiir das Sprite einsetzen

ogarwNn=

Nehmen wir das Raumkreuzer-Sprite von weiter oben und bauen wir es als
Sprite 1 auf. Dazu brauchen wir:

10
100
10
120
130
149
200
219
220
230

249
250
260
279
280

V = 53248

DATA 0,0,0,0.0,0,0,0,0,.9,0,0,0.0,9
DATA1,248,0,1,224,0,60,192, 9,7, 202,112, 135, 255, 255
DATA 255, 255, 252, 127, 255, 240, 63, 255,192, 127, 254, ¢
DATA 63,240, 0,127,192,0,14,0,0.0.0,0,0,. 0,0
DATAD,0,0.0,0.0

POKE 2041, 13 [Sprite 1-Zeiger auf 13. Block]
FORG=0TO 62
READ H [lies Daten]
POKE 832 + G, H [mit POKE in Block:
beachten 832 = 64+13]
NEXT G
POKEV + 21,2 [Sprite 1 aktivieren]
POKEV + 49,7 [Sprite 1 gelb]
POKEV + 2,100 [Sprite in Spalte 100]
POKEV + 3,100 [Sprite 1 in Reihe 100]

Geben Sie das sorgfaltig ein und fahren sie mit RUN. Sie sollten, wie ge-
winscht, den Raumkreuzer in Gelb sehen.

Sie kénnen mit der Veranderung der Positionen durch direkte Befehle
experimentieren.

POKEV + 2,110

bewegt es nach rechts,

POKEV + 3, 90

nach oben; durch

POKEV + 40,5

wird es grun. Versuchen Sie andere Werte und sehen Sie sich an, was geschieht.

183

Bewegung

Um das Sprite zu bewegen, brauchen wir nur laufend die Reihen- und Spalten-
nummern zu verandern. Beispiel: Léschen Sie 270 und 280 oben und fiigen Sie
die Schleife an:

1000 X=0:Y=79

1019 POKEV + 2, X: POKEV +3,Y
1020 X=X+ 3:IFX > 255THENX =0
1100 GOTO 10910

Der Raumkreuzer bewegt sich jetzt wiederholt von links nach rechts ber den
Bildschirm. Beachten Sie, daB er nicht die ganze Strecke zuriicklegt; das liegt
daran, daR wir dazu die Spaltennummer groRer setzen miissen als 255. Siehe
weiter unten, weil hier eine kleine Komplikation auftritt.

Erweiterung

Fir einen Raumkreuzer ist das Ding ja wirklich ein biRchen kurz und plump.
Keine Sorge, wir konnen ihn horizontal dehnen durch die zusatzliche Zeile:

2990 POKEV + 29,2

Das erweitert Sprite 1, aber keine anderen, weil 2 in Binar = 00000010 ist, also
nur Bit 1 auf 1 gesetzt wird. Sieht schon besser aus, nicht?
Um ihn auch noch vertikal auszudehnen, fugen Sie hinzu:

3090 POKEV + 23,2

Die Erweiterungen verdoppeln die GroRe in der jeweiligen Richtung. Beachten
Sie, wie die Grafik grober wird, wenn Sie das tun. Sie wird zusammengesetzt
aus denselben Daten, aber mit Pixelblocken 2 x 1,1 x 2 oder 2 x 2.
Ich mag groB8e, dicke Raumkreuzer nicht, also |6schen wir 300 wieder.
Nur zum SpaR, um lhnen die Art von Effekt zu zeigen, den Sie anstreben
konnen, fugen Sie das der Bewegungsschleife an:

1030 POKEV + 29,2«INT (2*RND(9))
1040 POKEV + 23,2+INT (2*RND(9))

Nun verandert er die Form in zufélliger Weise ganz rasch. Wenn Sie auch noch
die Farbe verandern wollen, schreiben Sie dazu:

1050 POKEV + 40, 16*RND(0)
Lustig . . . aber es lenkt ab, also 16schen wir 1030-1050 wieder.
184

Keyboard-Steuerung

Wenn wir innerhalb der Schlieife ein GET verwenden, konnen wir die Bewegung
vom Keyboard aus beeinflussen.

1030 GET A$
1040 IFA$S="0"THENY=Y-4
1050 IFAS="U"THENY=Y +4

Nun geht der Raumkreuzer am Bildschirm nach oben, wenn Sie ‘O’, und nach
unten, wenn Sie ‘U’ dricken. Offensichtlich kdnnten viel kompliziertere Posi-
tionsveranderungen bewirkt werden, aber das veranschaulicht die Moglichkei-
ten.

Um die Vorgange zu beschleunigen, ersetzen Sie das X + 3in 1020 durch
X + 6 oder X + 10 (schnellere Bewegung verlauft auch ruckhafter):

1020 X=X+6:1FX>255THENX =0

Bewegung uber den ganzen Bildschirm

Es wird Zeit, sich mit dem Problem zu befassen, wie das Sprite auf der rechten
Seite des Bildschirms in Position gebracht wird, Giber Spalte 255 hinaus.

Hier wird die Versetzungsflagge in V + 16 genutzt. Wenn Bit Kdavon 1 ist,
wird die Spaltennummer von Sprite K um 256 erhoht. Wir schreiben 1010 also
folgendermafen um:

10190 POKEV +3,Y
1011 IFX > 265 THEN OF =1
1012 IFOF=Q@THEN POKEV + 16, (PEEKV + 16)) AND 253
1013 IFOF=1THEN POKEV + 16, (PEEK (V + 16)) OR 2
1014 POKEV + 2, X-OF+256
1915 OF =90

Nehmen Sie diese Veranderung vor und schreiben Sie Zeile 1020 um:
1020 X=X+6:1FX > 350 THENX =10

Nun befahrt der Raumkreuzer auf seinen Reisen den ganzen Bildschirm.

Sprite-Prioritat
Wenn sich zwei Sprites liberschneiden, scheint das mit der kleinsten Nummer
dem anderen aufzuliegen. Das Sprite ‘darunter’ ist aber durch alle ‘Locher’ im
oberen sichtbar, so, wie man es auch im richtigen leben erwarten wiirde.

185

Um das auszuprobieren, will ich ein zweites Sprite aufbauen. Dieselbe
Routine (zunéachst ist das gut fir die Ubung, aber spater will ich einen besseren
Weg empfehlen, wenn Sie viele Sprites verwenden mochten).

400
419
420
4390
4490

500
510
520
530
540

DATA 0, 255, 0, 3, 255, 192, 15, 195, 249, 63, 0, 252, 255, §, 255
DATA 63, 0, 252, 127, 195, 254, 31, 255, 248, 3, 255, 192

DATA 0, 255, 0, 0,195,0,1,129,128,3, 0,192, 6, 0, 96

DATA 15, 0, 240, 15, 0, 240, 7,129, 224, 3,195, 192
DATA1,231,128,0, 0, 0, 31, 255, 248

POKE 2040,14 [Sprite @-Zeiger zum 14. Block]
FORG=0TO 62

READ H

POKE 896 + G, H [Block 14: 896 = 64+14]

NEXT G

Um Sprite ® ebenso zu aktivieren wie Sprite 1, missen wir Zeile 250 oben
umschreiben zu:

250

186

POKEV + 21,3

Abbildung 28.4
Sprite-Prioritat: Eines liegt ‘auf’ dem anderen.

weil 3in Binar 00000011 ist, die Bits 1 und @ also auf 1 gesetzt sind. Nun fahren
wir fort:

560 POKEV + 39,5 [Sprite grin]

570 POKEV, 120 [Sprite @ in Spalte 120]

580 POKEV + 1,95 [Sprite @ in Reihe 95]

590 POKEV + 29,3 [Sprites @, 1 horizontal erweitern]
600 POKEV + 23,1 [Sprite O vertikal erweitern]

Nun RUN und mit den Tasten ‘O’ und ‘U’ den Raumkreuzer fliegen lassen
im — na ja, All. Sehen Sie, wie er sich dahinterzuschieben scheint? Das liegt
daran, das das griine Gebilde (Sprite) Prioritdt gegeniiber dem Kreuzer hat
(Sprite 1).

Angenommen, wir mochten diese Prioritat andern. Dann konnen wir das Grine
Gebilde zu Sprite 2, nicht § machen. Das erfordert folgende Anderung:

500 POKE 2042, 14

250 POKEV + 21,6 [6 = 00000110]
560 POKEV +41,5

570 POKEV + 4,120

580 POKEV + 5,95

590 POKEV + 29,6

600 POKEV + 23,4

Probieren Sie es — der Raumkreuzer schiebt sich jetzt davor, nicht dahinter.

Verwendung derselben Daten flir mehrere Sprites

Wir konnen mehr als ein Sprite dadurch auf dieselben Daten setzen, daR® wir
zwei oder mehr Zeiger auf gleichen Wert festlegen. Nehmen wir an, wir haben
Sprite 1 und 2 wie oben aufgebaut, wollen aber nun, daB Sprite @ ein Schwarzes
Gebilde (ebenfalls doppelter Grofke) an einer anderen Stelle sei. Das konnen
wir. Wir aktivieren alle drei Sprites, indem wir 250 erneut umschreiben:

250 POKEV + 21,7 [7=00000111]
Nun Sprite 0 aufbauén:
700 POKE 2040,14 [Daten fiir Sprite @ vom selben Block, 14]
_ [Sprite @ schwarz]
770 POKEV, 70 Sprite 0 in Spalte 70

187

780 POKEV +1,124 Sprite @ in Reihe 124
790 POKEV +29,7 alle 3 Sprites horizontal gedehnt
800 POKEV + 23,5 nur @ und 2 horizontal

Wenn Sie jetzt mit RUN fahren, finden Sie zwei Gebilde und einen Raumkreu-
zer.

Abbildung 28.5
Dieselben Daten fiir ein zusatzliches Sprite

Aufgabe 1

Schreiben Sie das Programm so um, dal® Sprite 3 als zweiter Raumkreuzer von
derselben Form, aber in Rot, erscheint; er soll mit dem gelben auf gleicher Hohe
fliegen, aber 20 Reihen tiefer auf dem Bildschirm

Kollisionserkennung

Jetzt wollen wir herauszufinden versuchen, ob es einen ZusammenstoR mit
Sprite 2 gibt. Die ZusammenstoRe werden erkannt durch die Flaggen im Regi-
ster V + 30. Wenn zwei Sprites zusammenstoRen, werden diese beiden Bits auf
1 gesetzt. Beispiel: Wenn Sprite 1 und 2 zusammenstof3en, enthalt vV + 30

00000110 =6

Der Wert wird bei jedem Zusammenstol3 aktualisiert. Wenn Sie mit PEEK in diese
Adresse hineingehen, wird der Inhalt automatisch auf @ zuriickgesetzt.

188

Um zu sehen, ob Sprite 2 ein anderes. Sprite gerammt hat, miissen wir
Bit 2 des Registers prifen; das geschieht durch den Befehl

IF (PEEK (V + 30) AND 4) = 4 THEN hat es gekracht . . .
Wir kdnnen einen Kollisionstest bei Zeile 1000 so in die Schleife setzen:

1025 GOSUB 2000

2009 REM KOLLISIONSTEST FUER SPRITE 2

2019 |IF (PEEK (V+30) AND 4) =4 THEN POKE 53280, X-7+INT (X/7)
202¢ RETURN

Dadurch blinkt der Rand (wieso?), wenn der Zusammenstol eintritt.

Fahren Sie das Programm und uberprifen Sie, dal der Rand blinkt, wenn
Sprite 1 mit Sprite 2 zusammenstoft.

Sie konnen sich sogar damit amisieren, dauernd mit PEEK in V + 30
hineinzusehen, um festzustellen, was dort los ist:

2015 PRINT PEEK (V + 30)
Das tragt dazu bei, noch einen wichtigen Punkt darzulegen: Das Sprite-Display
ist von dem ublichen Text auf dem Bildschirm ganz unabhéangig, und Sie
konnen beides gleichzeitig haben. Sie werden eine Kolonne von Zahlen sehen,
in der Regel 0, aber die Zahlen wechseln, so oft zwei Sprites sich berihren.
Vergewissern Sie sich, daR ihr Bitmuster dem richtigen Spritepaar entspricht:

3 =00000011, wenn Sprite 1 mit Sprite zusammenstoRt
6 = 00000110, wenn Sprite 1 mit Sprite 2 zusammenstoRt

Aufgabe 2
Welche Zahl erscheint in V + 30, wenn:
1. Sprite 5 mit Sprite 7 zusammenstofRt?
2. Sprite 2 mit Sprite 4 zusammenstoRt?
3. Sprite 6 mit Sprite 3 zusammenstoRt?

Aufgabe 3

Versuchen Sie das V + 30 in Zeilen 2010 und 2015 zu V + 31 abzuandern. Der
Rand blinkt ab und zu immer noch. Wann? Was geht da vor?

189

Das ist erst der Anfang

Das ist ein langes Kapitel gewesen, dabei haben wir die Oberflaiche kaum
angekratzt. Sie konnen beispielsweise vielfarbige Sprites erzeugen. Der Platz
geht aber zu Ende, und ich hoffe, Sie haben genug Anregungen erhalten, um
auch so genug beschaftigt zu sein. Sobald Sie das beherrschen, was ich lhnen
Gber den Umgang mit Sprites erzahit habe, konnen Sie zusatzliche Moglichkei-
ten im ‘Reference Guide’ erkunden.

Verbesserungen

Statt jedes Sprite ‘von Hand’ aufzubauen, erscheint es Ihnen vielleicht besser,
eine Folge von Subroutinen fiir den Umgang mit Sprites zu schreiben und diese
zu verwenden. Anhang 3 fiihrt ein paar Grundprogramme auf.

Wo man Sprite-Daten speichert

Fur drei oder weniger Sprites konnen Sie Blocks 13, 14 und 15 verwenden. Sie
liegen im Kassettenpuffer, einem Speicherbereich, der nur beniitzt wird, wenn
der Kassettenrecorder angeschlossen ist. Dort kann man Sprites also ungefahr-
det speichern. Leider ist er nicht lang genug, um alle acht 64 Byte-Blocks
aufzunehmen. Wenn Sie nicht ein sehr langes BASIC-Programm haben, emp-
fiehlt der ‘Reference Guide’ die Blocke 192-199. Wenn Sie mehr wissen moch-
ten, sollten Sie sich auch hier an den ‘Reference Guide’ halten.

Grand Prix

Das ist alles graue Theorie. Aus diesem Grund hier ein verhaltnismafig ein-
faches, aber vollstandiges Spielprogramm, das Umgang mit Sprites beinhaltet.
Es gehort zu den gangigen Erscheinungen des Marktes: Auf einer Rennbahn
steht ein Auto, die Rennbahn rollt vorbei. Hier das Listing — es nutzt mehrere
Kniffe, die wir uns in vorangegangenen Kapiteln angeeignet haben.

190 PRINT CHR$(147)

20 PRINT “GRAND PRIX"

30 GOSUB 1000: REM SPRITE AUFBAUEN
40 PRINT

50 INPUT “STUFE: 1 BIS5"; D

60 IFD <10ORD > 5THEN 50

70 L=9+D:R=31-D

80 PRINT CHR$(147)

99 FORT=1TO15

190

100 PRINT TAB (L); “gWc g+c”;

TAB (R); “g+cgQc” [Rand der Strale]
110 NEXTT
120 TI$ = "000000" [Uhr stellen]

130 POKEV + 31,0
209 PRINTTAB (L); “gWcg +c¢”;
TAB (R); “g + c gQc” [neuer StraBenrand]

210 Q= INT (3*RND(9))-1

220 IFL+Q<@ORR+Q>38THENQ =0

230 L=L+Q:R=R+Q

2490 GOSUB 2000: REM LIES KEYBOARD

250 GOTO 200
1000 REM SPRITE
1019 V =153248
1020 DATA®, 126, 0, 0, 255, 9, 49, 255, 149, 49, 255, 140
1030 DATA 63, 255, 252, 49, 255, 2¢4, 49, 255, 294, 3, 255, 192
1040 DATA3, 255,192, 3, 255, 192, 3, 255, 192, 3, 255, 192
1050 DATA 3, 255,192, 3, 255, 192, 49, 255, 140, 49, 255, 140
1060 DATA 63, 255, 252, 49, 255, 140, 48, 255,12, 9, 126,
1070 DATAQ, 24,0

1080 POKE 2041,13 [Sprite 1 in Block 13]

1099 FORG=0TO 62

1100 READH

11190 POKES832 + G, H [Sprite in Block 13 setzen]

1120 NEXTG

1130 POKEV + 21,2 [Sprite 1 aktivieren]

1149 POKEV + 49,7 [gelb farben]

1150 POKEV + 23,2 [vertikal erweitern]

1160 POKEV + 29,2 [horizontal erweitern]
1179 X=168 [horizontale Koordinate]

1180 POKEV + 2, X: POKEV + 3,100 [in Position bringen]
1199 RETURN

191

192

2000
2019
2020
2030
2049
2050

2060

3000
3010
3020
3030
3040
3050
3060
4000
4010
4020
4030
4040
4050
4060
4079
4080
4090
4100

4119

4120

REM LIES KEYBOARD

P = PEEK (197) [zuletzt gedruickte Taste]
IFP =47 THEN X = X-3 [nach links, wenn < gedr.]
IFP=44THEN X=X+ 3 [nach rechts, wenn > gedr.]

GOSUB 3009: REM SPRITE BEWEGEN

IF (PEEK (V + 31) AND 2) =

2 THEN 4009 [Unfalltest]
RETURN

REM SPRITE SEITWAERTS BEWEGEN

IFX > 265 THEN OF =1

POKEV + 2, X-256+0F

IFOF = @ THEN POKEV + 16, 0

IF OF =1 THEN POKEV + 16, 2

OF=90

RETURN

REM FINISH

Ms$ =Tis [Uhr ablesen]
FORN=1TO25

POKE 53281, 15*RND (0) [Bildschirm blinken]
NEXT N

POKE 53281, 6 [Schirm wieder blau]
PRINT CHR$(19)

PRINT: PRINT

PRINT “gTc[2mal]”

PRINT “UNFALL NACH"

PRINT VAL (LEFTS (MS$, 2));
“STUNDENI OO OO O”

PRINT VAL (MID$ (MS$, 3, 2));

“MINUTEN]] [T" [Gesamtfahrzeit]
PRINT VAL (RIGHT$ (M$,2));

“SEKUNDEN[] 10~

4130 PRINT “g@c [12mal]”
4149 STOP

Wenn Sie das fahren, werden Sie aufgefordert, die Schwierigkeitsstufe zu
wabhlen. 1 ist leicht, 5 schwer. Im Zweifel beginnen Sie bei 1 und arbeiten sich
hoch.

Das Spiel beginnt, sobald Sie nach dieser Eingabe RETURN driicken.
(Falls Sie das Uberrascht, fiigen sie ein:

85 FORT=1TO 2000: NEXTT

damit Sie Zeit zum Uberlegen haben.)

Driicken Sie Taste qul fir Bewegung nach links und Taste [] fiir Bewe-
gung nach rechts. Versuchen Sie den StralRenrand zu meiden. Das Programm
verwendet Kollisionserkennung von Hintergrundsprites (siehe Losung zu Auf-
gabe 3). ‘

Losungen

Aufgabe 1
Flugen Sie dem Programm diese Zeilen an:

850 POKE 2043,13
860 POKEV +42,2

um Zeiger und Farbe zu setzen. Schreiben Sie vorangehende Zeilen um, um alle
vier Sprites zu aktivieren und die Erweiterungen richtig zu erzielen:

250 POKEV + 21,15
7990 POKEV + 29,15

und nun die Schleife abandern:
10190 POKEV + 3,Y:POKEV +7,Y + 20
1012 IFOF=1THEN POKEV + 16, (PEEK (V + 16)) OR 10

1013 IF OF = @ THEN POKE V + 16, (PEEK (V + 16)) AND 245
1014 POKEV + 2, X-OF+256: POKE V + 6, X-OF*256

Aufgabe 2

1. 10100000 = 160
2. 00010100 = 20
- 01001000 = 72

193

Aufgabe 3

Der Rand blinkt, wenn das Sprite mit 7ext zusammenstoRt. Register V + 31 setzt
bei Kollisionen zwischen Sprites und Text Bit K auf 1, sobald Sprite K mit Text
zusammenstoRt. Seite 154 des Handbuchs beschreibt das als ‘Sprite-Hinter-
grund-Kollision’, ein eher verwirrender Begriff, es muB heilRen ‘Sprite-
Vordergrund-Kollision’. Ebenso muR es bei Register V + 27 im Handbuch statt
"Hintergrund-Sprite-Prioritat’ ‘Sprite-Vordergrund- Prioritat’ heilRen. Bit K ent-
scheidet dann, ob Sprite K auf oder unter Text dargestellt wird.

194

29 Debugging V

Lauft das Programm wirklich?

Wie beweisen wir schlissig, dal® ein Programm genau das leistet, wozu es
geschrieben worden ist? Ich mochte hier nicht philosophisch werden (wir sind
auf dem besten Weg dazu), aber grob gesprochen ist das so dhnlich, als wolle
man von einem Astronomen wissen, ob morgen die Sonne aufgehen wird.
Wenn er sehr pedantisch ist, erwidert er vielleicht, die Erde floge nun schon sehr
lange Zeit um die Sonne, und wir waren mit einer Reihe von physikalischen
Gesetzen vertraut, die darauf hindeuten, daR sie das regelmalig weiterhin zu
tun gedenke, weshalb man einiges darauf verwetten diirfe, es werde auch
morgen noch der Fall sein; er wiirde aber hinzufligen, da er nicht wissen
konne, ob unsere physikalischen Gesetze auch richtig seien und das, was wir
Jahrtausende lang beobachtet haben, nicht vielleicht die duRere Erscheinung
eines viel komplexeren Gesetzes sei, dessen Wirkung morgen darin bestehen
konne, die Richtung der Erddrehung umzukehren oder den Erdball ganz aus
seiner Bahn zu fiihren.

Versteckte Fehler

Analog gibt es, weil ein Programm sich bei den ersten tausend Satzen von
Dateneingaben richtig verhalt, keine absolute Garantie dafiir, daR es beim
tausendunderstenmal auch klappt. Vielmehr treten Fehler oft monate- oder
sogar jahrelang nicht in Erscheinung, nachdem ein Programm erfolgreich ab-
geschlossen und bei Dutzenden oder sogar Hunderten von Anlassen problem-
los gefahren worden ist. Eigentlich kein Wunder; schlief8lich sind es gerade die
am seltensten auftretenden Bedingungen, die ein Programmierer am leichtesten
Uibersieht.
Hier ein Beispiel:

Wir schreiben eine Folge von Programmen fiir die E-Werke Magerhausen zur
Verwaltung ihrer Kundenkonten. Wir erfahren, daf’ es zwei Tarife gibt, A und B.
Bei Tarif A bezahlt der Kunde eine Vierteljahrespauschale von 150 Mark und pro
Verbrauchseinheit 4 Pfennig. Bei Tarif B fallt die Pauschale weg, die Einheit
kostet 7 Pfennig. Wir schreiben also einen Code solcher Art:

100 INPUTTS

105 INPUT EINHEITEN

110 IFT$="A"THEN 300

120 IFT$="B”" THEN 140

130 GOTO 5000

1490 RECHNUNG =7 = EINHEITEN/100

195

150 PRINT RECHNUNG
160 GOTO 190
300 RECHNUNG =150 + 4 =« EINHEITEN/100
310 PRINT RECHNUNG
. 320 GOTO100

5000 PRINT “UNGUELTIGER TARIF”
5019 STOP

Schon. ich weiR, der Code konnte effektiver sein, und wir wiurden mehr Infor-
mationen bendtigen, etwa Namen und Kontonummer des Kunden, aber der
Sinn wird schon klar.

Wir testen also das Programm, es [auft glatt, und wir entfernen uns mit
den gemurmelten Worten, eigentlich sei es doch eine Schande, da® wir mit
unseren glanzenden Gaben derart lacherliche Programme verfassen muRten.

Und es lauft auch wunderbar, jahrelang, bis eines schonen Tages eine
Rechnung Giber DM (.00 ausgedruckt wird. Das fallt natirlich keinem Men-
schen auf, weil es eine Rechnung unter Tausenden ist, die vermutlich ohnehin
automatisch kuvertiert werden. Der Empfanger wundert sich lber die Rech-
nung und ist wahrscheinlich belustigt, weil sie wieder einmal beweist, wie blod
Computer doch sind; er sieht aber keinen Anlal, etwas zu unternehmen und
wirft die Rechnung in den Papierkorb. Leider haben wir in derselben Folge ein
Programm verfal3t, mit dem das Absendedatum jeder Rechnung gespeichert
wird. Falls keine Bestatigung eingeht, daR® die Rechnung innerhalb von 28
Tagen beglichen worden ist, geht eine letzte Mahnung hinaus. Diesmal ist der
Empfanger eher verargert als belustigt, wirft aber auch diese Rechnung weg.
Von nun an geht’s bergab. Die Routine, mit der die Frist zwischen Rechnungs-
datum und Zahlungseingang liberwacht wird, weist die Betriebsabteilung an,
dem Kunden den Strom abzuschalten, falls er nach 60 Tagen immer noch nicht
bezahlt hat.

Was ist passiert? Ganz einfach! Der Kunde ist ein Rentner, der sich die
billigen Touristikangebote zunutzegemacht und den ganzen Winter in Mallorca
verbracht hat. Er war knapp Gber drei Monate aufBer Landes und hat fiir einen
ganzen Berechnungszeitraum keinen Strom verbraucht. AuRerdem ist er ein
sparsamer Stromverbraucher, zahlt also nach Tarif B. Deshalb hat das System
eine Aufforderung abgeschickt, Null Mark zu entrichten. Freilich kann das nicht
oft vorkommen, weil nur wenige Menschen so lange von zu Hause fort sind und
auch nicht sehr viele Leute Tarif B wahlen dirften. Damit das Problem auftreten
kann, muR der Kunde beiden Bedingungen entsprechen.

Einmal entdeckt, ist der Fehler leicht zu beheben:

145 IF RECHNUNG = @ THEN 100

so dafl} die PRINT-Anweisung umgangen wird. Dieses Problem soll bei einem
friihen Computersystem aufgetaucht sein, aber es kann sich auch um eine
Legende handeln. Auf jeden Fall scheint es mir deutlich zu zeigen, daR ein
Fehler fast ewig schlummern kann.

196 ;

Die Moral: Wenn Sie Daten erfinden, um ein Programm zu testen, tun Sie
das nicht aufs Geratewohl. Wahlen Sie Werte in und bei Verzweigungswerten
im Programm. Wenn es in einer Anweisung heif3t

305 IFU < 30 THEN 400

fahren Sie einen Test mit U bei 29.999, einen mit U = 30 und einen mit U =
30.001. Sie konnten auch gemeint haben:

305 IFU < =30 THEN 400
Wenn Sie nur mit U = 15 und U = 160 testen, fallt Ihnen der Fehler nicht auf.
Wahlen Sie Testdaten so aus, daR® zu irgendeinem Zeitpunkt jeder Ab-

schnitt des Programms ausgefuhrt wird. Und natirlich mussen Sie genau wis-
sen, wie die Antwort fiir jeden Satz Testdaten auszufallen hat.

197

30 Klang und Musik

Laut Commodore bedeutet die Abkirzung SID fir den Klangchip
‘Sound Interface Device’. Nach meinem Gefiihl steht sie fir ‘Syd-
ney Opera House’ und ist nur falsch geschrieben.

Sie haben VIC kennengelernt, der, wie wir sehen konnten, bemerkenswerte
Dinge beim Bildschirmdisplay bewirkt. Jetzt mochte ich lhnen SID vorstellen,
der sich nicht lumpen |alt, sondern den 64 in ein Musikinstrument oder sogar
in einen annehmbaren Synthesizer verwandelt. .

SID mitzuteilen, was Sie tun wollen, besitzt viel Ahnlichkeit mit den
Anweisungen fir VIC. Das heifRt, SID hat eine Anzahl von Registern, in die Sie
mit POKE hineingehen konnen. Jedes Register bestimmt eine andere Eigen-
schaft des Tones, der erzeugt werden soll.

Wir sollten uns zu Beginn iberlegen, welche Eigenschaften eines Tons
ihn fur ein bestimmtes Instrument charakterisieren. Beispielsweise konnen wir
den Unterschied zwischen dem eingestrichenen C auf eine Gitarre und demsel-
ben Ton auf einer Orgel leicht erkennen. Warum?

reine Sinuswelle
keine Obertone -

/W/l Sraezann

dreieckig

i

Abbildung 30.1
Die vier Wellengrundformen.

198

Nun, erstens gibt es die Zusammensetzung der Frequenzen innerhalb der Note.
Ich will hier nicht auf die Physik der Tonerzeugung eingehen, aber ganz kurz:
Bei jedem Ton wird eine Tongrundfrequenz zusammen mit Oberténen erzeugt,
die Vielfache der Grundfrequenz sind. Zahl und relative Lautstarke dieser Ober-
tone (verglichen mit dem Grundton) verleihen dem Ton einen Klang, der fiir das
Instrument charakteristisch ist. Wenn wir uns diese Frequenzen kombiniert
vorstellen, ergibt sich eine bestimmte Wellenform, die auf einem Oszillographen
wie Abbildung 30.1 aussehen kénnte.

Wiirden Sie SID aber nur mitteilen, wie er die Frequenzen eines Gitarren-
tons erzeugen soll, wirde das Ergebnis kaum nach einer Gitarre klingen. Das
liegt daran, daB eine zweite Eigenschaft zu beruicksichtigen ist. Die Lautstarke
des Tones verandert sich beim Spiel. Beispielsweise beginnt bei einer Orgel der
Ton leise, weil in der Pfeife nicht viel Luft ist, aber wenn sie sich verstarkt, nimmt
der Ton an Lautstarke zu. Bei einer Gitarre ist es umgekehrt; der Ton ist unmit-
telbar nach dem Zupfen der Saite am lautesten, dann verklingt er langsam, falls
er vom Gitarristen nicht bewul3t gedampft wird. Ein Saxophonist kann einen
Ton, den zu spielen er beginnt, durchhalten, solange sein Atem reicht. Und so
weiter.

Aus alledem ergibt sich deutlich, daR die Produktion der richtigen Eigen-
schaften (oder Hillkurve) eines Tons aus mehreren Stufen besteht.

SID kennt vier davon:

1. Anschlag (Atack): Die Geschwindigkeit, mit der vom Beginn des Tones

an die hochste Lautstarke erreicht wird.
2. Abschwellen (Decay): Das Tempo, mit dem die Lautstarke von diesem

Scheitelpunkt hinabfallt zum:
3. Halten (Sustain): Der Lautstarkepegel, der dann gehalten wird, bis der

Ton nicht mehr gespielt wird.
4. Ausklingen (Release): Das Tempo, mit dem der Ton verklingt, wenn er

nicht mehr gespielt wird.

A
Lautstarke Abschwellen
Halten
Anschlag Ausklingen
Zeit'
Abbildung 30.2

Die vier Stufen einer ADSR-Hiillkurve.
(ADSR = Attack, Decay, Sustain, Release)

All das erlaubt Ihnen allerhand Raffinessen, aber wie gewohnt, je leistungsstar-
ker etwas ist, desto vorsichtiger muf3 man damit umgehen, und desto mehr muf
man wissen.

199

Wir fangen also mit sehr begrenzten Zielen an und erweitern unseren
Horizont nur langsam.

Die erste Aufgabe ist die, einen musikalischen Ton zu erzeugen und dann
Tone aneinanderzureihen, damit sie eine Melodie bilden. Ob das dann nach
Klavier oder Orgel klingt, ist im Augenblick belanglos.

Offensichtlich ware es praktisch, musikalisch gesprochen (einigerma-
Ren) konventionell zu denken. Ich méchte vom ‘eingestrichenen C’' oder ‘F4t’
und so reden. Aus Riicksicht auf die numerische Beschaffenheit von BASIC
definieren wir jeden Ton als Zahlenpaar, das den Ton und seine Oktave bezeich-
net. Wir nennen die mittlere Oktave @ und ‘C’ Ton @. Die mittlere Oktave wird
also geschrieben wie in Tabelle 30.1.

Tabelle 30.1
Ton Oktave Notenschreibweise
0 0 C
1 0 C4# (oder Db)
2 0 D
3 0 D4 (oder Eb)
4 0 E
5 0 F
6 0 F# (oder Gb)
7 0 G
8 0 G # (oder Ap)
9 0 A
10 0 A# (oder B oder H5)
11 0 H
0 1 C (eine Oktave hoher)

Auf diese Weise reichen die verfliigbaren Oktaven von —4 (der niedrigsten) bis 3
(der hochsten).

Jetzt brauchen wir einen Zusammenhang zwischen dieser Schreibweise
und den Frequenzen, die mit POKE in die entsprechenden Register von SID
eingegeben werden missen.

Die Frequenzintervalle zwischen Noten in der Musik des Abendlandes
beruhen auf der sogenannten diatonischen Skala. (Diatonisch heif3t ‘in Ton-
intervallen’ und hat nichts zu tun mit der Vertonung von Diapositiven.) Leider
sind die Verhaltnisse zwischen aufeinanderfolgenden Tonen nicht immer
gleich. Die Komponisten im 18. Jahrhundert kamen dahinter, daB das hieR, sie
kénnten die Tonart nicht wechseln, und erfanden deshalb die ‘gleichschwe-
bende Temperatur’, die nah herankommt.

Das geht so: Um von einem Ton in einer Oktave zum gleichen in einer
anderen zu gelangen, multipliziert man mit zwei. (Das gilt fiir beide Tonleitern.)
Da es in jeder Oktave zwolf Tone gibt, mufl man, um die Verhaltnisse zwischen
aufeinanderfolgenden Tonen gleichzuhalten, mit 2 1 (1/12) multiplizieren, um
von einem Ton zum nachsten zu gelangen.

Nun ergibt sich, daR die Frequenz fiir das eingestrichene C 4291 ist. Wir
brauchen also eine Subroutine, die einen Noten- und Oktavwert annimmt (NTE
und OCT), 4291 mal 2 hoch irgendwas multipliziert und einen angemessenen

200

Wert liefert, der in die Frequenzregister von SID gesteckt werden kann. Register
Mehrzahl? Wieso mehr als eines? Nun, es gibt mehr als 256 verschiedene Tone,
also bestimmen zwei Bytes (die ich H% und L%, fir High (hohes) und Low
(niedriges) Byte nenne), die Frequenz.

Also los:

1000 F=4291+210CT [fir die richtige Oktave]
1019 IF NTE > @ THEN [mit 2 1 (1/12) fir jeden Ton
F=F*21.0833333333: Gber C multiplizieren]

NTE = NTE-1: GOTO 1010
1020 Fl=INT (F + 0.5) ~ [F aufrunden und Integerteil

nehmen]
1030 H% = FI/256: L% = FI - 256 * H% die zwei Bytes erzeugen
10490 RETURN

Die %-Zeichen an H% und L% verwundern Sie vielleicht. Es gibt zwei Moglich-
keiten, im Computer Zahlen zu speichern: FlieBpunkt (Dezimalzahlen wie
7.443) und /Integer (ganze Zahlen wie 7). Integervariable erfordern im Speicher
weniger Platz. Wenn Sie dem Namen einer Variablen oder einen Array das
%-Zeichen anhangen, weisen Sie den Computer an, sie als ganze Zahlen zu
behandeln. Das mussen Sie aber im ganzen Programm tun, denn der Computer
behandelt H und H% als verschiedene Variable.

Jetzt zum Hauptprogramm. Ich kann mir die Registeradressen von SID
nie n;erken, beginne also damit, dal} ich diejenigen, die ich brauche, Variablen
zuteile:

190 VOL = 54296: FH = 54273: FL = 54272: WFM = 54276: AD =
54277: SR = 564278

'VOL' setzt die Lautstarke fir den ganzen Chip auf einen Wert zwischen @ und
15. FH und FL sind die hohen und niedrigen Bytes der Frequenz. WFM ist die
Wellenform. AD und SR sind die Anschlag/Abschwell- und Halten/Ausklang-
Teile der Hullkurve.

Die Berechnung anzustellen, wahrend die Musik spielt, ist nicht prak-
tisch; das dauert zu lange. Wir setzen also Arrays, berechnen die verlangten
Werte, speichern sie und spielen die Melodie erst am Schluf.

20 DIM H%(200), L%(200), D(200)

H% und L% sind die hohen und niedrigen Bytes der Frequenzwerte, D ist die
Dauer des Tons. Ich lasse maximal 201 Tone zu, aber Sie konnten nattrlich Platz
fiir mehr vorsehen.

Wir gehen davon aus, dal wir eine DATA-Liste von Noten haben, mit
denen wir arbeiten kdnnen, jede bestehend aus Noten-, Oktav- und Dauerwer-
ten. Eine Dauer von § soll als Begrenzer dienen.

201

Wir konnen also eine Schleife setzen, die Noten liest, notwendige Um-
wandlungen vornimmt und die Arrays ladt:

40 P=9

50 READ NTE, OCT,D

55 IFD=Q0THEN 100

60 GOSUB 1000: REM GET H%, L%

70 H%(P) = H%: L%(P) = L%: D(P) = D
80 P=P+1

99 GOTO 50

Jetzt die Melodie spielen. Zuerst setzen wir einen Tempowert, damit die Ge-
schwindigkeit, mit der die Melodie gespielt wird, verandert werden kann. Dann
setzen wir die anderen Register:

100 INPUT “TEMPO”; TE

102 INPUT“AD,SR™; A, S

104 POKE AD, A: POKESR, S
106 INPUT “WELLENFORM™; W
108 POKEWFM, W

119 POKEVOL, 15

Die Reihenfolge der Ereignisse hier ist bedeutsam. Besonders WFM muR aus
Gruinden, auf die ich spater komme, nach AD und SR gesetzt werden.

Jetzt gehen wir durch eine Schleife, geben die Arraywerte mit POKE in die
F;‘eqnéenzregister ein und verzogern das Abspielen des nachsten Tons entspre-
chend: :

115 P=90

1290 POKE FH, H%(P): POKE FL, L%(P)

130 FORN =1TO D(P) * TE: NEXT

149 P=P+1

150 (FD(P) =@ THEN POKE VOL, 9: END

160 GOTO 120
Beachten Sie, daB die Verzégerung in 130 von TE abhangt. Je grofer TE, desto
langsamer wird die Melodie gespielt. Die in D konkret verwendeten Zahlen
spielen deshalb keine Rolle, solange das Verhaltnis zwischen ihnen richtig ist.
TEkonnen Sie jederzeit auf angemessene Weise anpassen. Beachten Sie auBer-

dem, daB VOL am Ende auf Null gesetzt wird, weil der letzte Ton sonst endlos
lange ausgehalten wird.

202

Probieren Sie es jetzt. Schreiben Sie:

2000 DATA1,0,2

2010
und RUN.

Versuchen Sie es mit folgenden Parametern:

DATAD, 0,0

TEMPO = 200
AD, SR = 0,240
WELLENFORM =17

Sie sollten in der mittleren Oktave ein C4 erhalten, das orgelahnlich klingt.

Lassen Sie Zeile 2000, wie sie dasteht, und fiigen Sie an:

2019
2020
2030
2049
2050
2060
2070
2080
2099
2100
2119
2129
2130
2149
2150
2160
2179
2189
2190
2209
2219

DATA1,0,2
DATAb, 9,2
DATAb, 9,2
DATA3,0,2
DATA1,0,2
DATA®G6, 0,2
DATA®6, 0,2
DATAS5, 9,2
DATA3, 9,2
DATAb, 9,2
DATAS8, 9,2
DATAS, 0,2
DATA7,9,2
DATAS8, 0.4
DATAS5, 0,2
DATA10,0,3
DATAS8, 0,1
DATA®G, 9,2
DATAD5, 0,2
DATA 3. 9,2
DATA1,0,2

203

2220 DATAQ,0,2
2230 DATAS, 0,2
2240 DATA3, 0,2
2250 DATA1,0,2
2260 DATA1,0,2
2270 DATA®,0,2
2280 DATA1,0,4
2290 DATAQ, 0,0

RUN, und dieselben Werte wie zuvor. Das pafdt vielleicht ganz gut, wenn Sie
lhren 64 zu Weihnachten bekommen haben!

Mein eigentlicher Grund fiir diese Wahl ist aber der, daR die meisten Tone
von gleicher Lange und in derselben Oktave sind, so daR das leicht zu bewalti-
gen ist. Man kann das (‘While Shepherds Watched Their Flocks’ heif3t das
schone Lied) auch von Notenblattern abschreiben, aber ich habe es durch
Herumprobieren herausgebracht. (Was heifdt da, das merkt man?)

Aufgabe 1

Verandern Sie die DATA-Liste in diesem Programm, damit es den Refrain von
‘Don’t Cry for Me, Argentina’ spielt.

Harmonik

SID ist viel schlauer, als ich bisher zugegeben habe.

Als erstes konnen wir mehr als eine Stimme spielen (sogar bis zu drei), die
sich voneinander vollig unabhangig entfalten konnen.

Um das vorzufiihren, probieren wir ein biRchen mit Zweiklangen. Da
gleichzeitig zwei Tone gespielt werden, bauen Sie Zeile 20 um:

20 DIM H%(200.2), L%(200,2), D(200) -

(Der Einfachtheit halber unterstellen wir, daR beide Tone dieselbe Dauer ha-
ben.) Jede DATA-Anweisung enthalt nun also funf Werte:

Ton (Stimme 1), Oktave (Stimme 1), Dauer, Ton (Stimme 2),

Oktave (Stimme 2)
In Zeile 5@ wollen wir die ersten drei davon haben, also bleibt sie gleich, wie
auch die Zeilen 55 und 6@, aber in Zeile 79 missen die Ergebnisse in die erste
Spalte der Arrays gesetzt werden:

70 H%(P,1) = H%: L%(P,1) =D(P)=D

204

Nun mussen wir den zweiten Ton holen und die Berechnungen bei ihm wieder-
holen, aber das Ergebnis gehort in die zweite Spalte der Arrays:

75 READ NTE, OCT
76 GOSUB 1009
77 H%(P,2) = H%: L%(P,2) = L%

Alle vorher fiir Stimme 1 gesetzten Register mussen jetzt auch fur Stimme 2
gesetzt werden. Praktischerweise befinden sich alle Register fir die zweite
Stimme 7 iiber den entsprechenden Registern fiir Stimme 1. Ubrigens sind die
Register fiir die dritte Stimme 14 (iber den Werten fiir Stimme 1. Siehe An-
hang 4, der eine kurze Zusammenfassung von SID-Registern enthalt.

Der Codeblock, der die Register setzt, sieht also nun etwa so aus:

100 INPUT “TEMPO”; TE wie vorher

192 INPUT “AD,SR(1)"; A, S

104 POKE AD, A: POKE SR, S

105 INPUT “AD, SR(2)"; A, S: POKEAD + 7, A: POKESR + 7, S
106 INPUT “WELLENFORM(1)"; W1: POKE WFM, W1

108 INPUT “WELLENFORM(2)”; W2: POKE WFM + 7, W2

Zeile 120 wird zu:
120 POKE FH, H%(P, 1): POKE FL, L%(P, 1)
und wir brauchen eine Zeile 125 fur die Harmonik:
1256 POKE FH + 7, H%(P, 2): POKE FL + 7, L%(P, 2)

Im Gbrigen bleibt das Programm, wie es war. Samtliche DATA-Anweisungen
verandern sich naturlich:

20090 DATADL,0,1,50
2019 DATA1,0,1,50
20290 DATA3,0,1,50
2030 DATAS5,0,1,5,0
2049 DATAS8,0,1,50
2050 DATAG6,0,1,5 0
20690 DATAG6,0,1,6,0
2070 DATA10,0,1,6,0
2080 DATAS8,0,1,6,0

205

2099 DATAS,0,1,8,0
21090 DATA1,1,1,8,0
2110 DATA®,1,1,8,0
2120 DATA1,1,1,8,0
2130 DATAS8,0,1,8,0
2140 DATAS5,0,1,8,0
2150 DATA1,0,1,6,0
2160 DATA3,0,1,6,0
2170 DATAG5,0,1,6,0
2180 DATAG6,0,1,5,0
2190 DATAS8,0,1,5,0
2200 DATA10,0,1,5,0
2210 DATAS8,0,1,5,0
2220 DATAG6,0,1,5,0
2230 DATAS5,0,1,5,0
2249 DATA3,0,1,1,0
2250 DATAG5,0,1,1,0
2260 DATA1,0,1,1,0
2270 DATA0,0,1,0,0
2280 DATA1,0,1,0,0
2290 DATA3,0,1,0,0
2300 DATAS8,-1,1,0,0
2310 DATAQ,0,1,0,0
2320 DATA3,0,1,0,0
2330 DATAG6,0,1,0,0
2340 DATAG5,0,1,0,0
2350 DATA3,0,1,0,0
2360 DATAS5,0,1,5,0
2370 DATA1,0,1,5,0
2380 DATA3,0,1,5,0
2390 DATAG5,0,1,5,0

206

2400 DATAS8,0,1,5,0
2419 DATAG6,0,1,5,0
2420 DATAG6,0,1,6,0
2430 DATA10,0,1,6,0
2440 DATAS8,0,1,6,0
2450 DATAS8,0,1,8,0
2460 DATA1,1,1,8,0
2470 DATA9,1,1,8,0
2480 DATA1,1,1,8,0
2490 DATAS8,0,1,8,0
2500 DATAG5,0,1,8,0
2510 DATA1,0,1,6,0
2520 DATA3,0,1,6,0
2530 DATAG5,0,1,6,0
2540 DATA10,-1,1,5,0
2550 DATAS8,0,1,5,0
2560 DATAG6,0,1,5,0
2570 DATAS5,0,1,5,0
2580 DATA3,0,1,5,0
25990 DATA1,0,1,5,0
2600 DATAS,-1,1,0,0
2610 DATA1,0,1,0,0
2620 DATA0,0,1,0,0
2630 DATA1,0,6,1,0
2640 DATA(,0.0,0,0

Fahren Sie das mit RUN und nehmen Sie fiir den Anfang dieselben Parameter
wie vorher fiir beide Stimmen. Sie sollten horen ‘Jesus, du des Menschen
Freude’ von J. S. Bach. (Nicht Johann Sebastian, sondern sein wenig bekann-
ter Sohn Jones Stewart Bach, der dafiir bekannt war, daB ihm seine Harmonik
immer ein biRchen durcheinandergeriet.)

Um den Klang ein biRchen zu ‘verbreitern’, schreiben Sie Zeile 75 um:

75 READ NTE, OCT: OCT=0CT 1
207

Nun lauft die Harmonik eine Oktave unter der Melodie. Klingt doch recht
hiibsch, oder?

Verandern Sie als nachstes die Wellenform fiir die Melodie (Stimme 1).
Verwenden Sie 33 statt 17. Der Unterschied im Klangcharakter ist auffallig.

Bis jetzt bin ich der Aufgabe ausgewichen, an den ASDR-Werten herum-
zubasteln, aber nun haben wir eine ausreichende Grundlage, um zuversichtlich
mit ihnen umgehen zu konnen. Die Anschlag- und Abschwellwerte sind in den
beiden Halften eines 8 Bit-Reigsters (siehe Kapitel 12) so enthalten:

Anschlag Abschwellen

Je groRer die Zahl in beiden, desto langer die Anschlags- (oder Abschwell)pe-
riode. Der hochste Anschlag ist also 1111 (= 15 Dezimal). Da sich das in der
linken Halfte des Bytes befindet, ist es in Wirklichkeit das 16fache (= 240). Ein
ziemlich rascher Abschwellwert ware 0911, die Dezimalentsprechung fiir diese
Kombination 243.

Die Werte fiir Halten und Ausklingen sind ahnlich organisiert:

Halten Ausklingen

Der hochste Wert fiir das Halten ist somit 249 (dezimal).

Die Werte, die ich bisher verwendet habe, liefern schnellsten Anschlag,
schnellstes Abschwellen fiir den lautesten Haltewert, gefolgt vom raschesten
Ausklingen. In Wahrheit gibt es kein Abschwellen, weil der Haltewert dafur
sorgt, dafl die hochste Lautstarke beibehalten wird. Wenn man hinhort, merkt
man das.

Verwirrender ist, da® man nicht horen kann, wie die Tone abgeschaltet
werden. Vom einen zum anderen findet ein glatter Ubergang statt.

Der Grund: Der Wert fiir das Halten wird endlos beibehalten, bis Bit @ des
Wellenform-Steuerregisters (WFM) auf Null zuriickgesetzt wird. Die Bitmuster
der Wellenform, die wir bis jetzt beniitzt haben, sind 18 (binar 9001001) und
33 (binar 00100001), die beide Bit @ auf 1 setzen. Deshalb ist es wichtig, ADSR
vor WFM zu setzen. Sobald Bit @ von WFM gesetzt ist, konnen Sie mit ADSR
ohne Auswirkungen anstellen, was Sie wollen. Dies alles bedeutet, daR der
einzige Weg, den Ausklingteil des Zyklus auszulosen, der ist, mit POKE in WFM
eine @ einzugeben. Dann missen Sie den gewiinschten Wellenform-Wert mit
POKE neu eingeben, bevor Sie versuchen, den nachsten Ton zu spielen.

Um das also auszuprobieren, lassen Sie die Unterharmonik in Ruhe und
schreiben Zeile 120 so um:

120 POKE WFM, W1: POKE FH, H%(P, 1): POKE FL, L%(P, 1)
208

Wir wollen den entsprechenden Harmonieton im selben Augenblick beginnen
(oder so nah wie moglich daran), also bleibt Zeile 125 unverandert, aber nun
miissen wir nach einer passenden Verzogerung die Melodie abschalten:

127 FORN=1TOD(P) * MD: NEXT: POKE WFM, 0

Das unterstellt natlrlich, daR fir MD (Melodieverzogerung) ein Wert beige-
steuert worden ist. Da wir vermutlich die Verzogerung in der Melodie und das
Tempo getrennt andern wollen, ware es verninftig, beide einzugeben; dann
sahe Zeile 100 so aus:

100 INPUT"TEMPO”; TE:INPUT “MELODIEVERZOEGERUNG"; MD

Die Verzogerung in Zeile 130 ist jetzt zu lang; die Schleife sollte TE-MDmal
ausgefiihrt werden:

130 FORN=1TO D(P) * (TE-ND): NEXT
Fahren Sie das und probieren Sie die folgenden Werte aus:

TEMPQO? 180

MELODIE? 180 [damit beide Tone gleich lang dauern]
AD SR (1)?9,0

AD, SR (2)? 0,240

WELLENFORM (1)? 33

WELLENFORM (2)? 17

Nun lassen Sie die Melodie von einem Cembalo spielen, eine Orgel steuert die
Harmonik bei! (Na ja, ein bilBchen Phantasie muf? man schon mitbringen!)

Andere Instrumente

Sie konnen mit Wellenform- und ADSR-Werten in zufalliger Weise spielen und
recht erstaunliche Ergebnisse erzielen. Wenn Sie aber ein bestimmtes Instru-
ment nachahmen wollen, missen Sie ein paar Dinge im Gedachtnis behalten.

Wellenform 17 (‘Dreieck’) besitzt den ziemlich reinen Klang, den man mit
Orgel, Flote oder Glocke verbindet.

Wellenform 33 (‘Sagezahn’) hat etwas Schwirrendes an sich. Daher die
Verwendung flir Cembalo.

Es gibt noch eine andere Wellenform, von der wir noch gar nicht gespro-
chen haben. |hr Wert ist 65, und sie erzeugt Pulse, die durch Setzen eines 2
Byte-Registers in der Schwingung verandert werden konnen. Fir Stimme 1 ist
das niedrige Byte 54274, das hohe Byte 54275. Probieren Sie aus:

POKE 54274,255: POKE 54275,0
209

FaPrgeB Sie das Programm erneut und setzen Sie Wellenform 1 auf 65, ADSR 1
auf 9,0.

Das schwirrt noch mehr, nicht? Das Handbuch behauptet, es sei ein
Klavier, aber ich meine, man braucht schon eine Riesenphantasie, um darauf zu
kommen. Ein Instrument, das ebenfalls schwirrt, ist jedoch die Gitarre. Kbnnen
wir berechnen, wie die Hullkurve fir einen Gitarrenton aussehen miiRte?

Geht ganz leicht, wenn man uberlegt. Die Saite wird geschlagen (oder
gezupft) und erzeugt unmittelbar danach den lautesten Klang. Der Anschlag ist
also schnell (@). Der Ton wird nun mit der Zeit leiser, so da3 das Abschwellen
ziemlich lange dauert, sagen wir 10. Der AD-Wert istalso @ * 16 + 10 = 10.
Halten gibt es nicht, und das Ausklingen konnen wir rasch besorgen (weil es
keinen Unterschied macht), also SR = .

Probieren Sie das. Ich denke, Sie werden Gitarrenartiges horen. Verrin-
gern Sie den AD-Wert ein biBchen (6? 4?). Sie werden feststellen, daB der Ton,
wie erwartet, ‘gedampft’ ist und Sie einen Banjo- oder Ukuleleklang erhalten.
B Wie ware es mit einer Glocke? In Begriffen der Hullkurve besteht viel
Ahnlichkeit mit einer Gitarre, weil der Ton von seinem Scheitelpunkt, der sofort
nach dem Schlagen auftritt, langsam abschwillt. Der Klang ist aber reiner.
Versuchen Sie also Wellenform 17 mit AD = 10, SR = (. Das Ergebnis laRt sehr
an eine Glocke denken, aber das fallt Ihnen vielleicht nicht auf, bis Sie ein sehr
langsames Tempo wahlen, um den Ton ausklingen zu lassen.

Aufgabe 2

Das Morseprogramm in Kapitel 18 zeigte nur die Punkte und Striche an. Es ware
viel interessanter, zusatzlich die angemessenen Gerausche zu erzeugen. Schrei-
ben Sie das Programm entsprechend um.

(Verwenden Sie fir Punkte und Striche denselben Ton, aber die Strich-
tone sollen dreimal so lang sein wie die Punkttone.)

Losungen

Aufgabe 1

Die folgenden DATA-Anweisungen genigen (andere sind nattrlich méglich,
wenn Sie eine andere Tonart bevorzugen):

2000 DATA7,0,4
20190 DATA7,0,2
2020 DATA7,0,2
2030 DATA7,0,4
20490 DATAS, 9,2
2050 DATA10,0,2
2060 DATAQ,1,2
20790 DATA10,0,8

210

2080 DATA10,0,2
2090 DATA0.1,4
2100 DATAD,1,2
2119 DATA19,0,2
2120 DATA3,1,6
2130 DATA10,0,2
2149 DATAS8, 0.4
2150 DATA7,0,4
2160 DATA7,0,3
21790 DATAS8,0,3
2180 DATA10,0,2
2190 DATAb, 0,8
2209 DATAS5,0,3
2219 DATA7,0,3
2229 DATAS, 0,3
2230 DATA3, 0,10
2249 DATA3,0,2
2250 DATAb5, 0,2
2260 DATA3, 0,2
2279 DATA7,0,4
2280 DATA10,0,6
2299 DATA19,-1,2
2300 DATA10,-1,2
23190 DATA10,-1,2
2320 DATAQ, 0.4
2330 DATA3,0,6
2340 DATAQ, 0,0

Hier taucht ein kleines Problem auf. Da manche der aufeinanderfolgenden Tone
gleich sind, kdnnen Sie das Ende des einen vom Anfang des nachsten Tones
nicht unterscheiden — er wird einfach durchgehalten.

Wenn Sie den ganzen Abschnitt (iber Harmonik gelesen haben, werden
Sie einen Weg sehen, jeden Ton bewuBt abzuschalten, damit man die Tone
getrennt hort. (Sie miissen die Zeilen 120 und 130 adndern.)

21

Aufgabe 2

Zuerst die SID-Register wie gewohnt initialisieren:

5 VOL =54296: FH = 54273: FL = 54272: WFM = 54276.
AD =54277: SR = 54278

Das Morseprogramm selbst bleibt unverandert, mit zwei Ausnahmen:

1.

212

Flgen Sie Zeilen 280, 290 und 295 ein:

280 INPUT “GIB NOTE, OKTAVE EIN”; NTE, OCT

2990 GOSUB 1000

295 POKE FH, H%: POKE FL, L%: POKE VOL, 15:
POKE AD, 9: POKE SR, 240

Die Subroutine ab Zeile 1000 ist natirlich jene, die eine Frequenz nach
den eingegebenen musikalischen Werten berechnet. Schreiben Sie ab
von Seite 201.

Rufen Sie in Zeile 370 eine Subroutine auf, um den Klang zu erzeugen:

370 IFC > @ THEN PRINT CHRS (C + 64), A$ (C): GOSUB 5000
Das bringt eine neue Subroutine ins Spiel, die so aussieht:
5000 K$=A$(C)
50190 T=1
5020 Ls$= MID$ (Ks$, T,1)
5030 IFL$=""THEN POKEWFM,17: FORD =0
TO 100: NEXT D: POKE WFM, 0

5049 IFL$ ="-"THEN POKEWFM,17: FORD =0
TO 309: NEXT D: POKE WFM, @
5050 IFL$s=" "ORT=4THEN RETURN

5060 T=T+1:GOTO 5020

31 Programmplanung

Beim Entwurf eines Programms erleichtert man sich das Dasein oft,
wenn man den richtigen Weg wahlt, Information im Computer
darzustellen. Als Beispiel hier ein Programm, das ‘Nullen und
Kreuze’ spielt.

In Kapitel 14 haben wir uns ein Programm angesehen, wo es von Nutzen war,
die beteiligten Subroutinen regelmalig zu strukturieren. Befassen wir uns nun
mit einem, in dem das Programm nicht nur strukturierte Subroutinen, sondern
auch strukturierte Daten besitzt.

Es geht darum, den Computer zu veranlassen, daf’ er auf eine verniinftige
Weise mit einem menschlichen Gegner ‘Nullen und Kreuze’ spielt (eine Art
‘Mihlespiel’ auf Papier). Ich wahle das, weil die Regeln sehr einfach sind: In ein
Gitter von 3 x 3 Feldern setzen die Spieler abwechselnd O oder X. Wer als erster
drei Zeichen in einer Reihe hat, ist Sieger. Es fallt leicht, sich von Fragen der
Spielstrategie ablenken zu lassen und komplizierte Routinen erdenken zu wol-
len, um die besten Ziige zu bestimmen, aber ein biBchen Nachdenken vorher
zahlt sich spater aus. Zu Beginn muf klar entschieden werden, wie Spielfeld
und Spielstand dargestellt werden sollen.

Das Spielfeld

Eine typische Spielsituation sieht etwa so aus:

X 0
X X
(0]

Darstellen kann man sie etwa dadurch, da man die Zellen so numeriert:

1 2 3
4 5 6
7 8 9

und dann eine Liste davon anfertigt, was jede Zelle enthalt:

1 X
2 (0]
3 -

213

4 X
5 _
6 X
7 0]
8 -
9 -

Ein Gedankenstrich bedeutet hier eine leere Zelle. Die Symbole X, O, — ersetzt
man durch einen numerierten Code:

Ersetze X durch 1
Ersetze O durch -1
Ersetze — durch @

(Sie werden spater sehen, warum ich gerade diese Zahlen wahle. Im Augenblick

ist es nur eine Meinung, ausgelost durch ein Gefiihl fir Symmetrie.) Der
Spielstand auf dem Feld wird also zu einem Array BD:

BD

OCONOOIRARWN -

So oft der Spielstand sich andert, verandern sich auch die Eintrage in BD, so daf}
beispielsweise BD (5) stets den Inhalt der mittleren Zelle des Feldes speichert.

Sie fragen sich vielleicht, warum das besser sein soll als ein Array BDS$, das
die O- und X-Zeichen als Strings enthalt. Nur Geduld, alles kommt an den Tag.

Eine Position bewerten

Das nachste Problem: Wie konnen wir den Computer zu verniinftigen Ziigen
zwingen? Es hat keinen Sinn, ihn zufallig spielen zu lassen — stehen beispiels-
weise in einer Reihe zwei X, so muf er sperren. (Ich gehe durchwegs davon aus,
daR der 64 den O-Part spielt.) Wir brauchen also eine Methode, den Spielstand
auf irgendeine Weise zu bewerten, das heildt, mogliche Ziige abzuwagen.

Wir schaffen ein zweites Array namens EV, das Information lber den
I(:iaufendertv1 Stand jeder Reihe, Spalte und Diagonale enthélt. Insgesamt gibt es

avon acht:

214

4 5 6
I~ Vb L8
1- 112 |3
2> 4 |5 |6
3- 71819

Wenn wir diese Methode, Reihen, Spalten und Diagonale zu numerieren, ver-
wenden, ermitteln wir EV so:

EV
|
1 0 = BD(1) + BD(2) + BD(3) oberste Reihe
2 2 = BD(4) + BD(b) + BD(6) zweite Reihe
3 |1 = BD(7) + BD(8) + BD(9) dritte Reihe
4 1 = BD(1) + BD(4) + BD(7) linke Spalte
5 | ~1 = BD(2) + BD(b) + BD(8) mittlere Spalte
6 1 = BD(3) + BD(6) + BD(9) rechte Spalte
7 1 = BD(1) + BD(5) + BD(9) vordere Diagonale
8 | 1 = BD(3) + BD(5) + BD(7) hintere Diagonale

Die in EV gezeigten Werte sind die fur den konkreten Spielstand oben, und wir
sehen, dal sie uns Hinweise auf vernlinftige Ziige geben. Beachten Sie, dal
jeder Wert in EV einfach die Summe der Eintrage in BD fiir die betreffende Reihe
etc. ist. Das ist ein Grund, die Position nicht in einem Stringarray festzuhalten.
Aber warum die Summe verwenden?

Sehen Sie sich als erstes EV (2) an, das 2 enthalt. Das kann nur gesche-
hen, wenn in dieser Reihe zwei X stehen und kein O die Reihe sperrt. Zwei X und
ein O werden namlich eine Summe 1 + 1 + (-1) = 1 ergeben, nicht 2. Siehe EV
(4), wo genau das stattfindet.

Der springende Punkt ist also der: Wenn irgendwo in EV eine +2 steht,
konnte X einen Gewinnzug machen (falls der betreffende Spieler an der Reihe
ist). Ebenso bedeutet ein Eintrag -2 in EV, daR O einen Gewinnzug machen
konnte. Eintrag—3 bedeutet, dall O soeben gewonnen hat, Eintrag +3, dal® X der
Sieger ist.

Ubrig bleiben die kniffligeren Falle, wo EV 1, -1 oder @ enthalt, aber wir
sehen, daR wir uns dariiber den Kopf nicht zu zerbrechen brauchen, weil sie
‘entscheidenden’ Punkten im taktischen Spiel nicht entsprechen.

215

Programmstruktur

Die Gesamtstruktur des Programms wird so aussehen:

Subroutine

Funktion Beginn Zeile
Feld initialisieren 1000

Feld anzeigen 2000

Zug des menschlichen Spielers holen 3000

Feld anzeigen 2000 [erneut]
Auf Spielende priifen 4000
Computerzug 5000

Feld anzeigen 2000 [erneut]
Auf Spielende priifen 4000 [erneut]

Ein paar davon missen weiter aufgegliedert werden. Beispielsweise muR die
‘Spielende’-Priifroutine das EV-Array erzeugen und dann nach Ergebnissen
von 3 und -3 suchen. Sind keine vorhanden, muB sie feststellen, ob das Spiel
unentschieden ausgegangen ist, indem sie prift, ob in BD noch Nullen vorhan-
den sind. Wenn nicht, sind alle Quadrate verbraucht worden.

Auf Spielende priifen (4000)

Spielfeld bewerten (6000)

Wenn in EV -3 vorhanden, siegt der Computer: END

Wenn in EV 3 vorhanden, siegt der Mensch: END

Wenn in BD keine Nullen, Spiel unentschieden: END RETURN

(Rufen Sie sich in Erinnerung, dal’ der 64 stets O spielt. Es ist nicht schwer, das
so abzuandern, daR er je nach Laune X oder O spielt, aber das fiihrt Komplika-
tionen ein, die von der Hauptsache ablenken.)

Wie steht es nun mit der Routine ‘Computerzug’? Nun, um verniinftig zu
spielen, muB er den Spielstand kennen; er wird also damit beginnen, dal} er die
Routine ‘Spielfeld bewerten’ aufruft. Dann sucht er in EV nach-2. Findet er das,
weild er, daR er mit dem nachsten Zug gewinnen kann und es keinen Sinn hat,
weiterzusuchen. Im anderen Fall sucht er nach 2, weil das eine Bedrohung
darstellt, der begegnet werden kann. Es sei denn, daR 2 zweimal vorhanden
ware, weil X dann im nachsten Durchgang gewinnen kann, gleichgiiltig, was O
tut. (In Wirklichkeit stimmt das nicht ganz; es kann sein, dal% die beiden X-Rei-
hen sich tGberschneiden und O beide mit einem Zug zu sperren vermag. Das
kann allerdings nur vorkommen, wenn bei einem vorherigen Zug X schon zwei
Zeichen in einer Reihe hatte ... so dalR der Computer gezwungen gewesen
ware, zu sperren, weil er das Spiel andernfalls einen Zug friher ohnehin schon
verloren hatte. Anders ausgedriickt: Die Strategie des Computers sorgt dafiir,
daR diese Moglichkeit in Wahrheit nie eintritt!)

Wenn es keinen Gewinnzug gibt und keine Drohung abgeblockt werden
muB, spielt der Computer einen Zufallszug. (Mit anderen Worten: Er blickt nur

216

einen Zug voraus. Man konnte weitsichtigere Strategien entwickeln, aber fir
dieses Spiel sind sie kaum erforderlich.)

Computerzug (5000)

Spielfeld bewerten (600Q)
Wenn in EV -2 vorhanden, Siegeszug (7000): RETURN
Wenn in E zweimal 2 vorhanden, dann aufgeben: END
Wenn in EV eine 2 vorhanden, dann sperren (809@): RETURN
Zufallszug spielen (9000)
RETURN
Wir haben jetzt in der nachstniedrigen Schicht mehrere Routinen erfunden.

‘Spielfeld bewerten’ ist sehr leicht zu schreiben, und ich sage dazu nichts mehr,
bis ich den Code dafiir liefere. Siegzug sieht so aus:

Siegzug (7000)

Zufallszug spielen (9000)

Spielfeld bewerten (6000)

Wenn EV -3 enthalt, RETURN

Zuriicknehmen (10000)
Der Sinn: Da wir Siegzug liberhaupt erreicht haben, mul8 es einen solchen
geben. Wir k6nnten eine Routine schreiben, um ihn direkt zu finden, aber es ist
einfacher und geht in der Praxis genauso schnell, bioR einen Zufallszug zu
spielen und das Spielfeld erneut zu bewerten. Wenn EV -3 enthalt, hat der
Computer gewonnen. Wenn nicht, war es der falsche Zug; also nehmen wir ihn
zurick (das heifdt, wir geben BD seinen vorherigen Zustand zuriick) und versu-

chen es noch einmal.
‘Sperren’ ist ganz ahnlich.

Sperren (8000)

Zufallszug spielen (9000)
Spielfeld bewerten (6000)

Wenn EV nicht 2 enthalt, RETURN
Zuriicknehmen (10000)

Alle lbrigen Routinen sind ohne die Erfindung weiterer Subroutinen direkt
codiert. Jetzt konnen wir also endlich mit BASIC loslegen!

217

Der Code

Das Hauptprogramm schreibt sich von selbst:

5
10
20
30
49
50
60
79
80
90

DIM BD(9): DIM EV(8)
GOSUB 1009: REM SPIELFELD INITIALISIEREN
GOSUB 2000: REM ANZEIGEN

GOSUB 3009: REM ZUG HOLEN

GOSUB 2009: REM ANZEIGEN

GOSUB 4909: REM AUF SPIELENDE PRUEFEN
GOSUB 5009: REM COMPUTERZUG

GOSUB 2009: REM ANZEIGEN

GOSUB 4000: REM AUF SPIELENDE PRUEFEN
GOTO 30

Die /nitialisierungsroutine ist einfach:

1000 FORP=1TO9
1019 BD(P) =90
1020 NEXTP

1030 RETURN

Sie fragen sich vielleicht: ““Warum die ganze Muhe, wenn das DIM doch alles
auf Null setzt?”, und das ist gewifs eine gute Frage. Allerdings gibt es eine
Anwort darauf: Sicherheit. Unter den Aufgaben sind solche, die mehrere Spiel-
partien hintereinander betreffen, und Sie mifRten zwischen den Spielen BD auf
Null zurticksetzen. So etwas vergifit sich sehr leicht, wenn man an einem
Programm herumbastelt, und man initialisiert iblicherweise Variable, ohne zu

friheren Werten irgend etwas zu unterstellen.
Hier die Anzeigeroutine:

2009 FORP=1TO9

2019 IFBD(P) =1 THEN PRINT “X";
2020 IF BD(P) = -1 THEN PRINT “0";
2030 IFBD(P) = @ THEN PRINT “.";
2049 IF INT(P/3) = P/3 THEN PRINT
2050 NEXT P

2060 PRINT: PRINT

20790 RETURN

218

Auch das vertragt einen Kommentar. Das BD-Array wird abgesucht nach 1, —1
und @, und diese werden in X, O und Punkte umgewandelt. Wir méchten aber,
daR die drei ersten Werte in derselben Zeile stehen; aus diesem Grund folgen auf
jedes PRINT Strichpunkte, um zu verhindern, daR auf neue Zeilen umgesprun-
gen wird. Wir brauchen aber eine Methode, eine Newline zu erzwingen, wenn
0O = 3, 6 oder 9 ist, weil sonst das Spielfeld angezeigt werden wiirde als

XX . X . X O
und nicht als

X 0.
X . X
0.

Das ist die Funktion von Zeile 204@. Wenn P 3 ist, dann INT(P/3) = 1, was
dasselbe ist wie P/3. Ebenso sind beide, wenn P 6 oder 9 ist, 2 beziehungsweise
3. Ist aber etwa P = 4, dann INT(P/3) = 1, aber P/3 ist 1.3333. Nur wenn P ein
Vielfaches von 3 ist, sind P/3 und INT(P/3) gleich. (Siehe Kapitel 22). Wir
erhalten neue Zeilen also nur fiar P = 3,6 und 9.

Ich hatte natirlich den Driickeberger spielen und schreiben konnen:

20490 IFP=30RP=60RP=9THEN PRINT
aber der Kniff mit INT ist vielseitiger anwendbar.

Es wird lhnen aufgefallen sein, dal diese Routine ein biRchen primitiv ist.
Sie erhalten Anzeigen wie:

X 0]

Und das Display ist an die linke Bildschirmseite gequetscht.

Wenn das ganze Programm zufriedenstellend lauft, mochten Sie diese
Routine vielleicht durch eine andere ersetzen, die das vertrautere Format liefert.
PET-Grafik wiirde da viel nutzen. Das ist tbrigens eine der schonen Seiten
dabei, Programme auf diese Weise in Subroutinen zu strukturieren. Sie kdnnen
eine Subroutine herausziehen und durch eine verbesserte oder andersartige
Version ersetzen — und Sie konnen (ziemlich) sicher sein, daR sich das auf
andere Programme nicht nachteilig auswirkt, weil es keine GOTO-Befehle gibt,
die mehr als eine Subroutine beeinflussen. (Freilich mu® man weiterhin darauf
achten, keine Variablennamen zu gebrauchen, die sich gegenseitig ins Gehege
kommen kénnen.)

219

Der Zug des menschlichen Spielers ist ebenfalls leicht zu codieren:

3000 INPUT “GIB ZUG EIN"; P
3010 IFBD(P) < > @ THEN PRINT
“DIESES QUADRAT IST BESETZT: GOTO 3000

3020 BD (P) =1

3030 RETURN
Der Zug wird eingegeben als eine Zahl 1-9. Als erstes testen wir das angemes-
sene Element von BD. Ist es nicht Null, dann steht dort also schon etwas, wir
sagen das und springen zuriick, um einen glltigen Zug zu verlangen. Im ande-
ren Fall setzen wir das Element von BD auf 1 (fir eine X), weil der Mensch an

der Reihe ist. ‘Auf Spielende priifen’ halt sich ziemlich genau an sein obiges
Gerist: |

4000 GOSUB 6000

4019 FORP=1TOS8

402¢ IF EV(P) =-3 THEN PRINT “ICH GEWINNE": END
40390 IFEV(P) =3 THEN PRINT “"DU GEWINNST": END
4049 NEXTP

4050 FORP=1TO9

4060 IFBD(P) = @ THEN RETURN

4070 NEXTP

4080 PRINT “UNENTSCHIEDEN": END

Ebenso die Routine ‘Computerzug’:

50090 GOSUB 6000

5010 MT=9

5020 FORP=1TO8

5030 IF EV(P) =-2 THEN GOSUB 7000: RETURN

5049 IFEV(P) =2THEN MT = MT +1

5050 NEXTP

5069 IF MT =2THEN PRINT "AUCH GUT. ANGEBER!": END
5079 IFMT=1THEN GOSUB 8000: RETURN

5080 GOSUB 9000

5099 RETURN

220

Ebenfalls leicht fallt ‘Spielfeld bewerten’:

6000 EV(1) =BD(1) + BD(2) + BD(3)
6010 EV(2) =BD(4) + BD(5) + BD(6)
6020 EV(3) =BD(7) + BD(8) + BD(9)
6030 EV(4) =BD(1) + BD(4) + BD(7)
6049 EV(5) =BD(2) + BD(5) + BD(8)
6050 EV(6) =BD(3) + BD(6) + BD(9)
6060 EV(7) =BD(1) + BD(5) + BD(9)
6070 EV(8) =BD(3) + BD(5) + BD(7)
6080 RETURN

Offenkundig sind hier Muster, die man dazu verwenden kdnnte, in Schleifen zu
berechnen, oder Sie verwenden geeignete DATA-Listen ... aber die Miihe
lohnt eigentlich nicht.

Uber ‘Siegzug’ ist nicht viel zu sagen:

7000 GOSUB 9000

7019 GOSUB 6000

7020 FORP=1TO8

7030 IFEV(P) =-3 THEN RETURN
7040 NEXTP

7050 GOSUB 10000

7060 GOTO 7000

Und ‘Sperren’ ist ziemlich ahnlich, sieht man davon ab, daB eine Flagge F fur die
Entscheidung verwendet wird, ob noch eine 2 vorhanden ist:

8009 GOSUB 9000

8010 GOSUB 6000

8020 F=0

8030 FORP=1T08

8040 IFEV(P) =2THENF =1
8050 NEXTP

8060 IFF=0THEN RETURN
8070 GOSUB 10000

8080 GOTO 8000

221

Beachten Sie, da das RETURN von dieser Routine in Zeile 8060 steht. Da wir
wissen, daR es einen Sperrzug gibt, wird der Computer ihn schlieRlich finden:
Die Flagge bleibt bei @, und der Riicksprung von der Subroutine erfolgt, wie es
sich gehort. ,

Hier ‘Zufallszug:

90p® CM =8+ RND () +1

9019 IFBD(CM) < > @ THEN 9000
9029 BD(CM) = -1

9030 RETURN

Warum ein Zufallszug? Warum nicht einfach P von 1 bis 9 laufen lassen? Das
konnten Sie auch tun, aber die Reaktion des Computers ware dann vollig
voraussehbar. Bei einem Spiel vermeidet man das besser.

‘Zurucknehmen’ erweist sich als das Einfachste tiberhaupt:

10000 BD(CM) =90
10010 RETURN

Und damit hat sich die Sache! Das Programm hat sich beinahe von selbst
geschrieben — nach der harten, langen Arbeit, die fiir den Aufbau der Struktur
aufgewendet worden ist. Was ein kompliziertes Durcheinander von unleserli-
chen Hieroglyphen hatte werden konnen, entpuppt sich als lediglich eine
Handvoll kurzer, klarer Subroutinen, erganzt durch eine noch libersichtlichere
Steuerroutine, die sie miteinander verbindet. Und Sie haben jetzt einen verninf-
tigen Gegenspieler.

Aber . . . das lieRe sich noch verbessern. (Wie immer. Das ist der Grund,
warum fast jedes Programm und fast jeder Computer sich als Ausgabe 3.7 Ib
vorstellt. Das urspriingliche Modell wird verbessert, weil Sie, nachdem es lauft,
endlich begriffen haben, worum es bei dem Problem in Wirklichkeit geht —und
warum lhre Losung nicht so gut war, wie Sie dachten.) lch habe schon empfoh-
len, das Display zu verbessern. Hier ein paar andere Vorschlage.

Aufgabe 1

Spieler O (der Computer) beginnt stets im Nachteil, weil er erst an zweiter Stelle
zieht. (Man kann bei diesem Spiel nachweisen, daR das wirklich ein Nachteil ist;
bei manchen Spielen trifft das nicht zu!) Seine Verteidigung sollte deshalb
moglichst hieb- und stichfest gemacht werden. Vor allem sollte er, wenn er
kann, jedesmal das Mittelquadrat (Nummer 5) besetzen. ‘Computerzug’ sollte
deshalb so umgeschrieben werden, daRR das geschieht (vorausgesetzt, es be-
steht keine Bedrohung oder eine Gewinnposition.) Tun Sie das.

Aufgabe 2
Im Augenblick wird nur eine Partie gespielt, dann missen Sie wieder RUN
geben. Andern Sie das Programm so ab, daB eine Folge von Partien gespielt und
Buch gefiihrt wird.

222

Aufgabe 3

Veranlassen Sie, daRR X und O abwechselnd beginnen, aber, wenn O gewinnt,
X das nachste Spiel beginnt, und umgekehrt.

Losungen

Aufgabe 1

So, wie die Routine ‘Computerzug’ dasteht (5000), wird, sobald entschieden
ist, dal® keine Gewinn- oder Sperrziige zu machen sind, ein Zufallszug getan
mit:

5080 GOSUB 9000

Kurz zuvor sollten Sie deshalb einen Test einschieben, um zu priifen, ob Quadrat
5 unbesetzt ist, und falls ja, dort spielen:

5075 IF BD(5) = @ THEN BD(5) = -1: RETURN

Aufgabe 2

Sie brauchen zwei neue Variable XSCRE und OSCRE (und DR, um die Unent-
schieden zu zahlen, wenn Sie das wollen), die zu Anfang auf () gesetzt werden.
Gleichzeitig kann eine Spielende-Flagge gesetzt werden:

4 XSCRE=0:0SCRE=0:DR=0:EOG=90

(Auch hier zur Sicherheit: Sie konnten diese Initialisierung weglassen, aber . . .)
Nun mussen Sie alle END-Anweisungen andern. Bei einem Sieg fiir den
Computer geht OSCRE um 1 héher, EOG wird auf 1 gesetzt. Bei einem Sieg des
menschlichen Spielers wird XSCRE um 1 inkrementiert und EOG auf 1 gesetzt.
Bei einem Unentschieden wird DR inkrementiert und EOG auf 1 gesetzt.
Aus 4020, 4030 und 4080 werden also:

4020 |IF EV(P) =-3 THEN PRINT “ICH GEWINNE":
OSCRE = OSCRE + 1: EOG = 1: RETURN

4030 IFEV(P) =3 THEN PRINT “DU GEWINNST":
XSCRE = XSCRE + 1: EOG = 1: RETURN

4080 PRINT “UNENTSCHIEDEN": DR = DR + 1:
EOG = 1: RETURN

Ubrigens wird Zeile 4030 nie ausgefiihrt, weder im Original noch in dieser
Abwandlung! Warum nicht?

223

Es gibt noch eine Stelle, wo das Spiel zu Ende gehen kann, in der Routine
‘Sperren’, wo der Computer eingesehen hat, daR er unterlegen ist und aufgibt
(nicht gerade begeistert). Zeile 5060 verandert sich deshalb zu:

5060 IF MT =2THEN PRINT “"AUCH GUT. ANGEBER!":
XSCRE = XSCRE + 1: EOG = 1: RETURN

Nun wird EOG im Hauptprogramm getestet:

55 IF EOG =1 THEN GOSUB 11000
85 IFEOG =1 THEN GOSUB 11000

und dann bei 11000 eine Subroutine geschrieben, die sich erkundigt, ob der
Spieler noch eine Partie wiinscht, und, falls nicht, den Endstand anzeigt.

110090 INPUT “NOCH EIN SPIEL? (J/N)”; QS

1190190 IFQs="J" THEN EOG = ¢: GOSUB 1000: RETURN

11020 PRINT “ENDSTAND"”

11030 PRINT “[J X [J: ”; XSCRE; “[] O [J: ”; OSCRE;
“[[] UNENTSCHIEDEN []: []"; DR

11040 END

Vergessen Sie nicht, die Spielende- Flagge zuriickzusetzen und das Spielfeld auf
Zeile 11010 neu zu initialisieren!

Wenn Sie das fahren, werden Sie feststellen, daR es einen heimlichen
(nun, halbwegs heimlichen) Fehler enthalt. A//e Spielende-Bedingungen hat-
ten in der Subroutine ab Zeile 400@ behandelt werden miissen. So hat sich in
der niachsten Routine in Zeile 5060, eine Macke eingeschlichen. Sie hatte
eigentlich so verfaBt werden missen, daB sie eine Flagge zurlickbringt, die von
der Routine ab 4000 aufgenommen wird. Nachdem ich Sie aber in diese
Klemme gebracht habe, kommen wir am schnellsten wieder heraus, wenn wir
die Display-Routine abschalten, falls EOG = 1:

2000 IF EOG =1 THEN RETURN
2005 FORP=1TO9

Aufgabe 3

Es wird lThnen aufgefallen sein, daR sie schon gelost ist! Da X und O abwech-
selnd spielen und ein neues Spiel in die Schleife dort wieder eintritt, wo sie
verlassen wurde, macht, wenn X den letzten Zug einer Partie getan hat, O den
ersten der nachsten. Das heif’t, die Spielanfange wechseln in einer Folge von
Unentschieden ab (weil ein Unentschieden 9 Ziige umfaRt), aber O fangt an,
wenn X das letzte Spiel gewonnen hat, und umgekehrt.

224

32 Hochauflosende Grafik

Das Handbuch erwéahnt davon zwar nichts, aber Sie kénnen neben
der groben PET-Grafik mit dem 64 auch sehr feine Grafik zeichnen.
Das kostet zwar ein biBchen Miihe, aber sie lohnt sich!

Jede Zeichenzelle des TV-Displays besteht in Wahrheit aus einem Quadrat von
8 x 8 winzigen Zellen oder Pixeln, mit denen das Zeichen (tief innen in der
Elektronik) aufgebaut wird. Dadurch, daB Sie direkten Zugang zu diesen Zellen
gewinnen, kénnen Sie auf dem Hi-res-Bildschirm (hochauflosend) grafische
Displays zeichnen. Das heilt, Sie haben ein Display von 25 x 8 = 200 Reihen
und 40 x 8 = 320 Spalten zur Verfiigung. Das ist fast dasselbe Numerierungs-
system wie bei den Sprites, aber beschrankt auf den Bildschirmbereich (siehe
Abbildung 32.1).

0 Spaltennummer ———» 319
X
v }
@ —> T sty 14 saaass:
s I T
At | I
I
T I
. N r | FH
Reihen- U\ i i
nummer \ !
eine Textzelle N
|
|
|
il
VY e
MR i
.....'.l.\
eine Hi-res-Zelle
an Position X, Y
STHIT H
in T
tH
199 —p s i

Abbildung 32.1
Struktur des hochauflésenden Bildschirms.

225

Hochauflosender Modus

Weil Hi-res fir Anfénger ein biRchen schwierig ist, gebe ich lhnen drei wichtige
Subroutinen, die Sie abschreiben und in BASIC-Programmen verwenden kon-
nen.

1. schalten auf hochauflésenden Modus und setzen eines Bildschirmspei-
cherbereichs;

2. plotten eines Pixels an einer gewahlten Position;

3. ziehen einer Linie zwischen zwei gewahlten Pixeln.

Um den Computer in hochauflésenden Modus umzuschalten, mussen wir Bit
5 von Adresse 53265 auf 1 setzen (siehe den ‘Reference Guide’, S. 123). Das
geschieht durch den Befehl:

POKE 53265, PEEK (53265) OR 32

der so funktioniert, wie Kapitel 12 das erklart. AuBerdem muR Speicherplatz fir
die Bildschirmdisplaydaten reserviert, dieser Platz freigemacht und es mussen
Farben zugeteilt werden. Die folgende Routine setzt den Bildschirmspeicher-
bereich auf Adresse 8192:

110090 REM HI-RES INITIALISIERUNG
11019 POKE 53265, PEEK(53265) OR 32
11029 POKE 53272, PEEK(53272) OR 8
11030 BM =8192

110490 FORU=BMTO BM + 7999
11050 POKEU, 0

11060 NEXT U

11970 FOR U =1024TO 2023

1190890 POKEU, 13

110990 NEXT U

11109 RETURN

Fahren Sie das. Zuerst erhalten Sie ein Durcheinander, dann wird der Schirm
leer mit vorwiegend schwarzem Hintergrund, aber mit einigen farbigen Kleck-
sen, wo der Text gewesen ist; zuletzt wird alles hellgriin. (Verandern Sie das 13
in Zeile 11080 zu 16 = INK + PAPER, wo INK und PAPER die Farbcodes sind,
die Sie wiinschen. Dieses Programm liefert INK schwarz auf PAPER hellgriin.)

Beachten Sie, dall das Freimachen des Bildschirmspeichers ziemlich
langsam vor sich geht. Bei BASIC dauert es etwa 20 Sekunden. Eine Maschi-
netl;ncode'-Routine wirde das im Nu bewaltigen, aber das ist eine andere Ge-
schichte!

226

PLOT

Abbildung 32.2
Wenn der hochauflésende Bildschirm erstmals gesetzt wird, sieht er so aus. Er mul8 von Daten
freigemacht werden, bevor er fur Grafik verwendet werden kann.

Die Hi-res Spalten und Reihen bestimmen ein System von Koordinaten auf dem
Bildschirm, wie Abbildung 32.1 es zeigt. Die Hauptaufgabe ist die, eine Routine
zu schreiben, die ein Einzelpixel an Position (X, Y) PLOT, das heif3t, in Spalte X,
Reihe Y. Wenn wir solche Plots kombinieren, konnen wir Linien, Kurven oder
sogar ganze Regionen zeichnen.

Die nachste Routine plottet ein Einzelpixel in Reihe Y, Spalte X. Sie geht
davon aus, daR Y zwischen @ und 199, X zwischen ¢ und 320 liegt.

12000
120190
12020

REM PLOT X, Y
BY = BM + 320 « INT (Y/8) + 8 « INT (X/8) + (Y AND 7)
BT =7- (XAND 7)

12030 POKE BY, PEEK (BY) OR (2 1 BT)
120490 RETURN
Aufgabe 1

Schiitzen Sie die obige Subroutine so, daR nur zulassige Eingaben fiir X und Y
angenommen werden.

227

Wie funktioniert das?

Dieser Abschnitt gerat ein biRchen theoretisch. Sie kdnnen ihn also tberblat-
tern und spater darauf zuriickkommen.

Jedes Byte im Hi-res-Bildschirmspeicher enthalt Daten fiir eine Reihe
von 8 x 1-Pixel auf dem hochauflésenden Bildschirm. Eine binare ¢ bedeutet
‘kein Punkt hier’, eine 1 ‘setze hier einen Punkt’. Beispielsweise liefert das Byte
101190101 somit die in Abbildung 32.3 gezeigte Wirkung.

1 BN

Abbildung 32.2
Pixel mit Biteinteilung.

Wenn Sie die Systemvariable in Adresse 53265 auf hochauflésenden Modus
setzen, wird der Computer vom Betriebssystem angewiesen, die Daten auf diese
Weise zu interpretieren. Das nennt man biteingeteilte Grafik.

die Adressen fiir unseren hochauflosenden Bildschirmspeicher entspre-
chen den tatsachlichen Bildschirmpositionen in Tabelle 32.1.

Tabelle 32.1
Spalten-
nummer
niedrig -
0 1 2 .. 39 « auflosend
Reihen- 9 8182 8200 8208 ... 8504 Reihen-
nummer 1 8193 8201 8209 ... 8505 nummer
hoch- 2 8194 8202 8219 ... 8506 niedrig-
auflosend 3 8195 8203 8211 ... 8507 [~ 0 auflosend
l 4 8196 8204 8212 ... 8508 l
5 8197 8205 8213 ... 8509
6 8198 8206 8214 ... 8510
7 8199 8207 8215 ... 8511
8 8512 8520 ... e T
9 8513 8521 ...
10 8514 8522 ...
11 8515 8523 ... N
12 8516 8524 ...
13 8517 8525
14 8518 8526 ...
15 8519 8527 ... e

228

Jede Zeichenzelle, die im Bildschirmspeicher einer Adresse zu entsprechen
pflegte, entspricht also nun acht Adressen, einem Speicherblock von acht Bytes
Lange. Die Blocke sind in derselben Reihenfolge angeordnet wie die Zellen im
Bildschirmspeicher — zuerst die niedrigauflosenden Reihen entlanggehen und
nach Spalte 39 eine Reihe hinunterspringen.

Angenommen, wir méchten in die linke obere Ecke eine Diagonallinie
von 5 Pixel Lange setzen. Die Adressen und Inhalte nehmen die Form von
Abbildung 32.4 an.

Adresse

Inhalte

8192 /

8193

8194

8195

8196)

DU Y/

|

Abbildung 32.4

Pixel fiir eine Diagonallinie zusammensetzen.

Dieses Programm sollte das also bewaltigen:

10
20
30
40
50
60
70

GOSUB 11000
POKE 8192, 128
POKE 8193, 64
POKE 8194, 32
POKE 8195, 16
POKE 8196, 8
GOTO 70

Probieren Sie es aus.
Dieselbe Methode allgemein:

Dezimal

128

64

32

16

[Hi-res-Subroutine eingeben]

1. Die in Frage kommende Adresse finden.
2. Mit POKE den erforderlichen Wert eingeben, um das gewlinschte Bild-

schirmdisplay zu erzielen.

Da wir nichts l16schen wollen, was sich schon auf dem Bildschirm beﬁngiet,
mussen wir unterstellen, dal die Adresse einen Wert enthalten kann, der nicht

229

Null ist. Dazu mussen wir den Inhalt mit dem neuen Wert in OR-Verbindung
bringen, wie in Kapitel 12.

Zeile 12010 berechnet die richtige Adresse.

Zeile 12020 berechnet den Wert, der mit POKE eingegeben werden mul3,
um ein neues Pixel zu plotten.

Zeile 12030 stellt die OR-Verbindung mit dem vorhandenen Inhalt wieder
her und setzt das Ergebnis mit POKE wieder hinein.

Weitere Einzelheiten im ‘Reference Guide’, S. 125.

Spirale
Hier ein Beispiel dafiir, wie man diese Routinen nutzt.

10 GOSUB 11009

20 FORT=1TO 1000

30 X=160+T*SIN (T/10)/10

40 Y =100 + T+ COS (T10)/10
- 50 -GOSUB 12000

60 NEXTT

70 GOTO 79

Vergessen Sie die beiden obigen Subroutinen nicht! Dieses Programm hier
nutzt die trigonometrischen Funktionen SIN und COS, um die Spirale zu zeich-
nen.

Wenn Sie sich am Ergebnis lange genug ergotzt haben, dricken Sie
RUN/STOP + RESTORE.

Abbildung 32.5
Eine Spirale aus 1000 geplotteten Bits.

230

DRAW

Die nachste Aufgabe ist die, eine Routine zu entwickeln, die eine (ziemlich)
gerade Linie zwischen Punkten mit den Koordinaten (A, B) und (C, D) wie in
Abbildung 32.6 zeichnet.

Das wird ein biBchen mathematisch, so daR ich auf die Feinheiten nicht
eingehe. Auf jeden Fall kommt dabei heraus:

13000
13010
13020
13030
13040
13050
13060
13070
13080
13090
13100
13110
13120
13130
13140
13150
13200
13210
13229
13230

REM DRAW (A, B) TO (C, D)
IFA>CTHENAP=C:C=A:A=A0:BO=D:D=B:B=B0
CA=C-A:DB=D-B

IFCA =@ THEN 13100

IFDB < = CAAND DB > = —-CA THEN 13200
S = SGN(DB)

FORV =0 TODBSTEP S
X=V=+CA/DB+ A:Y =V + B: GOSUB 12000
NEXTV

RETURN

IF DB = § THEN RETURN

S = SGN(DB)

FORV=BTODSTEPS

X =AY =V:GOSUB 12000

NEXTV

"RETURN

FORV =0 TOCA

Y =V +DB/CA + B:X =V + A: GOSUB 12000
NEXT V

RETURN

Das SGN in 13050 und 13110 ist die Vorzeichenfunktion. SGN (J) ist 1, wenn
J>0,0,wennd=0,und-1, wenndJ < @. Der Rest ist Koordinationsgeometrie.

231

] A C 319

0 T T
| |
I i
! I
| |
(A.B) ! !
BlF—————e—a—= I
|
|
|
|
|
I
I

Db e _ (C,D)

199
Abbildung 32.6
Eine Linie zwischen zwei Punkten zeichnen.
Speichen

Dieses Programm zeichnet Radiallinien in Speichenart.

10 GOSUB 11000

20 FORT=1TO30

30 A=160:B =100

49 C=160+ 90 - COS(n * T/15)
50 D =100 + 90 * SIN(% * T/15)
60 GOSUB 13000

70 NEXTT

80 GOTO 8D
Verandern Sie das 30 in Zeile 20 zu (meinetwegen) 20 oder 49, wenn es

weniger oder mehr Speichen werden sollen. Vergessen sie nicht, daf auch die
Standardroutinen bei 11000, 12000 und 13009 eingegeben werden miissen!

232

Vielecke
Hier noch ein Programm:

10 INPUT “ZAHL DER SEITEN”; N
20 GOSUB 11000

30 FORT=0TON-1

40 U=T+1

50 A =160+ 90+ COS(2*n * T/N)
60 B =100+ 90« SIN(2+*m*T/N)
70 C=160 + 90 COS(2 * n = U/N)
80 D =100+ 90 = SIN(2 *x + U/N)
99 GOSUB 13000

100 NEXTT

119 GOTO 110

Versuchen Sie das der Reihe nachmit N =5, 6,7 .. . zu fahren. Nach jedem Lauf
RUN/STOP + RESTORE.

Abbildung 32.7
Speichen.

233

Computerkunst

Zum SchluB ein Programm, das Zufallsvielecke zeichnet, bis Sie es durch Druck
auf Taste ‘S’ anhalten

10 GOSUB 11000

20 CX =30+ 260+ RND(0): CY =30 + 140 - RND(9)
30 RAD =20+ RND(®) + 5

50 N =INT(4 + 6 - RND(0))

60 FORT=0TON-1

70 U=T+1

80 A =CX+ RAD *COS(2* = *T/N)
90 B =CY + RAD * SIN(2 *n * T/N)
100 C=CX+ RAD *COS(2* =+ U/N)
1190 D= CY + RAD = SIN(2 * & * U/N)
1290 GOSUB 13000
130 NEXTT
140 GETAS:IFA$ < > “S”" THEN 20
150 GOTO 150

Sie brauchen trotzdem RUN/STOP + RESTORE, um ganz aufzuhoren.

Abbildung 32.8
Computerkunst mit Zufallsvielecken.

234

Aufgabe 2

Schreiben Sie ein Programm, um in hochauflosendem Modus ein Rechteck mit
den Spaltennummern XL und XR fir die linken und rechten Seiten und den
beiden Zahlen YT, YB fir Ober- und Unterseite zu zeichnen.

Losungen

Aufgabe 1
Flgen Sie die Zeilen an:

12002 IFX < @ORX > 319 THEN FLAGGE = 1: RETURN
12004 IFY <@ORY > 193 THEN FLAGGE = 1: RETURN

Fagen Sie dann in lhr Hauptprogramm einige Zeilen ein, um die Flagge aufzu-
nehmen, (vielleicht) eine Fehlermeldung anzuzeigen und X und Y in dieser
Richtung neu zu definieren:

764 |F FLAGGE =1 THEN PRINT “HOPPLA, VOM BILDSCHIRM
GERUTSCHT": FLAGGE = 0:
GOTO (dorthin, wo X und Y gesetzt sind)

etc.

Es hangt vom Programm ab.

Aufgabe 2

10 INPUT “LINKE SPALTE”; XL

20 INPUT “RECHTE SPALTE”; XR

30 INPUT “OBERE REIHE”; YO

40 INPUT “UNTERE REIHE”; YU

50 GOSUB 11000

60 A=XL:B=YO;C=XR:D=Y0: GOSUB 13000
70 A=XR:B=YU:C=XR:D=Y0: GOSUB 13000
80 A=XR:B=YU:C=XL:D=YU: GOSUB 13000
990 A=XL:B=YO:C=XL:D=YU: GOSUB 13000
100 GOTO 100

Ich habe mir nicht die Mithe gemacht, die INPUT-Anweisungen zu schitzen;
Sie konnen das, wenn Sie wollen, leicht nachholen.

235

33 Debugging VI

Manchmal sind Zahlen, die gleich aussehen, gar nicht gleich!

Abrundungsfehler

Die Art von Fehlern, nach denen wir bisher suchten, stammten von uns selbst
und waren, einmal erkannt, verhaltnismaRig leicht zu beheben. Es gibt einen
anderen Fehler, der durch den Aufbau des Computers selbst entsteht. Das ist
kein Konstruktionsfehler, sondern eine Folge dessen, wie alle Computer ange-
legt sind. Er wird bedingt durch die Art der Genauigkeit, mit der Computer
Zahlen speichern. Wenn wir uns Gberlegen, wie Zahlen normalerweise festge-
halten werden, liegt nahe, dal’ es fur die Anzahl der Ziffern, die zu bewaltigen
sind, eine Grenze gibt. Ein Auto-Tachometer, beispielsweise, kann nur 5 Ziffern
bewaltigen, weil er nur funf ‘Fenster’ hat. Beim Computer ist es genauso. Jede
Zahl kann nicht mehr besetzen als eine festgelegte Zahl von ‘Fenstern’. Nicht
jedes Fenster steht aber fur eine Dezimalziffer. Der interne Maschinencode fur
Computer ist ganz anders angelegt, als wir uns Zahlen vorstellen; mit den
grausigen Einzelheiten will ich Sie nicht langweilen. Die Tatsache, dal’ von
Natur aus Ungenauigkeit besteht und eine Codeumwandlung angewendet
wird, bedeutet, daR® die auBere Darstellung einer Zahl (wie sie auf dem Bild-
schirm erscheint) durchaus nicht dieselbe sein muf3 wie die innere Darstellung.
Ich will das, was ich meine, durch ein Beispiel mit Logarithmen der Schulzeit
erlautern. Wenn Sie 2 mit 2 logarithmisch multiplizieren, erhalten Sie:

Zahl log
2 0.3010
2 0.3010
3.999 0.6020 +

also 2 x 2 = 3.999!!

Die Kombination der Tatsache daR Logarithmen nur auf 4 Stellen genau
sind (das heifst, nur 4 Fenster besetzen durfen), und da eine Codeumwand-
lung stattfindet (Zahl in Logarithmus, Logarithmus zurick in Zahl), erzeugt die
Ungenauigkeit.

Hier ein Programm, das dieselbe Art von Problem hervorruft:

10 FORP=1TO10

20 S =SQR(P)

30 a=S12

49 IFP < > QTHEN PRINTP,Q
50 NEXTP

Nehmen Sie den Fall, wo P = 9. In Zeile 20 wird die Wurzel gezogen, also S =
3. Wir erheben S in Zeile 30 ins Quadrat, also Q = 9, wie P. P wird Q natdrlich

236

immer gleich sein, weil der Rechenvorgang des Wurzelziehens aus dem Quadrat
gefolgt vom Erheben ins- Quadrat dorthin zurtickfiihren muf3, wo man herge-
kommen ist. Zeile 49 ist demnach unsinnig, weil P sich von Q nie unterscheidet.
Es wird also nichts angezeigt.

Oder doch? Fahren Sie das Programm einmal. Sie erhalten:

3 3
5.00000001
6.00000001
7.00000001
9.00000001

o 10

Das ist allerdings ein iberaus seltsames Ergebnis, weil der Computer nicht nur
Werte anzeigt und damit behauptet, sie waren verschieden, sondern sie auch
noch so anzeigt, als waren sie gleich! Was passiert ist? Die verwickelten mathe-
matischen Prozesse haben zu kleinen Ungenauigkeiten in der internen Zahlen-
darstellung gefiihrt, die verantwortlich sind fiir die Unterschiede zwischen P
und Q. Ungenauigkeiten treten aber auch auf, wenn das interne Format ent-
schliisselt wird zu den auf dem Bildschirm angezeigten Dezimalzahlen, so daR
sie identisch zu sein scheinen, obwoh! der Computer steif und fest behauptet,
sie waren es nicht. Bei manchen Werten sind die internen Codes in der Tat
identisch — etwa bei 8.

Diese Art von Fehler kann aufRerordentlich verwirrend sein, und manch-
mal bleibt nur der Ausweg, in die IF-Anweisung einen kleinen Fehler einzu-
bauen, also:

IFABS(P-Q) < 0.0001 THEN . ..

= O N O o

Die ABS-Funktion ist notwendig, weil Q groRer sein konnte als P und das
Resultat dann negativ ware, demnach kleiner als 0.0001, obwohl sein Wert sehr
groB sein konnte (—30 ist kleiner als 0.0001!) Das ABS schneidet das Minus-
zeichen ab.

Potenzen

Rundungsfehler treten besonders haufig auf, wenn Sie fir die Potenz N einer
Zahl

TTN
verwenden. Probieren Sie Folgendes:

19 FORT=1TO10
20 PRINTT+T,T12
30 NEXTT

237

Seltsames findet statt bei T = 7 und 9, namlich Rundung. Wenn Sie (sagen wir)
die flinfte Potenz einer ganzen Zahl berechnen wollen, verwenden Sie zutref-
fender:

T*+T*T*THT
statt
- T1s
T 1 N wird namlich berechnet als
EXP (N * LOG (T))

(fur diejenigen, die mit Exponenten und Logarithmen vertraut sind).
Beispiel: Sie suchen nach ganzzahligen Losungen A, B, C der Gleichung:

A? + B2 = C?
Sie konnten in Versuchung geraten, es so zu probieren:

10 FORA=1TO10

20 FORB=1TO10

3) C=SQR(A12+B12)

49 IFC=INT (C) THEN PRINTA, B, C
50 NEXTB

60 NEXTC

Das scheitert klaglich, weil es keine Losungen findet, obwohl (beispieisweise)
3, 4, 5 eine Losung in dem abgesuchten Bereich ware. Der Siinder ist der
Rundungsfehier. Der Fehler mit { kann beseitigt werden, wenn man A 1 2 und
B 172 durch A+ A und B = B ersetzt. Das SQR schafft schon mehr Probleme, aber
ein Ausweg ware:

10 FORA=1TO10

20 FORB=1TO10

30 C=INT(SQR(A*A+B+B))

490 IFA+A+B+B=CTHENPRINTA, B,C
50 NEXTB

60 NEXTA

Das funktioniert, zum Teil deswegen, weil SQR zu hoch zu schatzen scheint. Als
zusatzliche Sicherheit fiigen Sie ein:

45 [FA*A+B+*B=(C+1)+*(C+1)THENPRINTA,B,C+1
238

fir den Fall, da® INT etwas abgerundet hat, das ein bichen kleiner ist als eine
ganze Zahl.

(Das ist, mathematisch gesehen, ohnehin eine hochst unzweckmaRige
Weise, sich mit dem Problem auseinanderzusetzen, aber der Fehler kommt so
haufig vor, dal er Erwahnung verdient.)

Integervariable A%, B%, C% konnen die Erfolgsaussicht ebenfalls verbes-
sern — aber nicht bei Fehlern von zu niedriger Schatzung.

239

34 Files (Dateien)

Der Speicher des 64 mag fir die meisten Zwecke recht grol8 er-
scheinen, aber er reicht nicht immer aus. Wenn man sehr groB3e
Datenmengen oder kleine Mengen fir Spezialzwecke zu verarbei-
ten hat, sind zusétzliche Speicherarten notig.

Zu den Dingen, die Computer besonders gut konnen, gehort, groRe Datenmen-
gen zu speichern und durchzugehen. Aber wie machen sie das? Schliel8lich hat
der Speicher des Commodore 64 nur um die 39000 Bytes (Zeichen) Speicher-
platz, und das reicht nicht weit, wenn Sie die Werke Goethes speichern oder
einen Katalog fur ein groRes Kunstmuseum aufstellen wollen.

Diese Seite enthalt rund 1800 Zeichen (30 Zeilen zu je 60 Anschlagen,
Leerraume mitgerechnet). Der 64 konnte auf einmal also rund 22 Seiten dieses
Buches aufnehmen. Und das, bevor wir den Speicherplatz abgezogen haben,
den das Programm fiur die Analyse der Daten besetzt — es ist sogar noch
schlimmer, als es den Anschein hat!

Dazu kommt noch ein Problem: Die Daten werden nur gespeichert, so-
lange der Computer eingeschaltet ist, also muBten wir den 64 fir 22 Seiten
‘Faust’ (oder sonst irgend etwas) reservieren und nie mehr abschalten.

Das ist ohne Zweifel unsinnig; es muR einen besseren Weg geben. Was
wir brauchen, ist ein Datenspeicher, der nichtflichtig ist (soll heillen, der nicht
die Sinne verliert, wenn man ihm den Strom abschaltet). Mit einem solchen
Speichersystem sind wir bereits gut vertraut: Tonbandkassetten. Der einzige
Unterschied: Wir mochten es dazu verwenden, Daten zu speichern, wahrend
wir ihn vorher nur fir die Aufzeichnung von Programmen genutzt haben.

Kassettendateien

Ein Datensatz, der als Einheit auf Band festgehalten wird, heil3t File oder Datei.
Sie kénnen sich, wenn Sie wollen, auch ein Programm als File vorstellen, und
so, wie wir Programmen Namen geben, benennen wir auch Datenfiles.

Wenn wir ein Programm sichern, schreiben wir etwa:

SAVE “FRED"”

Das hat zwei Wirkungen. Zuerst wird der Dateiname ‘FRED’ auf das Band
geschrieben, dann das Programm.

Wenn Sie Daten auf ein Kassettenfile ausgeben mochten, sind diese
beiden Schritte ebenfalls notwendig, aber sie geschehen gleichzeitig. Mit an-
deren Worten: Sie missen zuerst einen Befehl geben, der die Datei benennt, und
dann einen zweiten, der ihr Daten einliest.

Um eine Datei zu benennen, schreiben Sie:

OPEN1,1,1, "FRED”
240

Das ‘1, 1, 1" bedarf einer Erklarung. Das erste ‘1’ ist eine Filenummer (oder
Kanalnummer), und Sie konnen dafiir jeden beliebigen Wert nehmen. Ich habe
sie "1’ genannt, weil sie die erste ist, die ich vergebe. Die zweite ‘1’ bezeichnet
das verwendete Gerat. Das ist ‘1" fir einen Kasettenrecorder, ‘4’ fiir einen
Drucker, ‘8’ fiir ein Diskettenlaufwerk, und so weiter. Diese Werte konnen Sie
nicht andern. Sie sind vom System festgelegt. Das dritte ‘1" teilt dem System mit,
ob vom Gerét gelesen oder in dieses etwas geschrieben werden soll. (Es hat fir
verschiedene Gerate verschiedene Bedeutung, aber da wir hier nur von Kaset-
tenrecordern sprechen, will ich die Dinge nicht dadurch komplizieren, daf ich
seine Bedeutung fiir andere Peripherie mitteile.)

_Die allgemeine Form einer OPEN-Anweisung somit nur bei Kassetten
lautet:

OPEN CH, 1, 1/0, "FNAME”

| | L
Dateiname

0 = Eingabedatei

(es wird abgelesen)

1 = Ausgabedatei
(es wird geschrieben)

definiert Kassette

willkirliche Kanalnummer

Gut. Probieren Sie zum Anfang:

19 CH=5

290 OPENCH, 1,1, FRED”
30 FORN=1TO10

49 PRINT4# CH, N

50 PRINTN

60 NEXTN

790 CLOSECH

Zeile 20 benennt die Datei ‘'FRED’ und bestimmt einen Ausgabekanal (5) dafir.
Zeile 4@ schreibt die Zahlen 1 bis 10 in den Kanal und damit in die Datei (FRED),
die damit in Verbindung gebracht wird. Beachten Sie die Form dieser Anwei-
sung. Sie ist wie eine gewohnliche PRINT-Anweisung, bis auf das ‘4 CH’, das
die Wirkung hat, die Ausgabe zu Kanal 5 zu steuern. Als nachstes (Zeile 50)
werden die Zahlen auf dem Bildschirm angezeigt. Nach dem Ende der Schleife
wird die Datei geschlossen (Zeile 70). Sie bemerken, daR der Dateiname nur in
der OPEN-Anweisung erwahnt wird. Uberall sonst wird lediglich die Kanal-
nummer angegeben.

241

Wenn sie das fahren, erhalten Sie die Aufforderung:
PRESS RECORD & PLAY ON TAPE

Sorgen Sie dafiir, daR eine Kassette eingelegt ist und driicken Sie RECORD und
PLAY gleichzeitig. Achten Sie genau auf den Bildschirm. Sie sehen, daR er leer
wird und die Kassette automatisch lauft. Wahrend dieser Zeit gehorcht der
Computer Zeile 20 und schreibt den Dateinamen auf einen ‘Kopfblock’ des
Tonbands. Dann leuchtet kurz ein Bildschirmdisplay auf, wahrend die Zahlen
1 bis 10 angezeigt werden. Wahrend dieser kurzen Zeit bleibt das Band stehen!
Der Schirm wird wieder leer, das Band lauft weiter, das Display wird schlieRlich
wiederhergestellt und die Kassette bieibt stehen.

Wenn Sie es sich recht iberlegen, ist das ja merkwiirdig. Die Anweisun-
gen fur die Ausgabe zum Band sind schlieRlich mit denen verwoben, die das
Display anzeigen, so daR man annehmen mochte, das Band liefe weiter, wah-
rend die Zahlen auf dem Sichtgerat angezeigt werden. Der Grund flr dieses
seltsame Verhalten ist der, daR der Computer lhnen nicht wirklich gehorcht,
wenn Sie verlangen, er solle einen Wert an eine Datei ausgeben. Er speichertihn
vorubergehend in einem Speicherbereich, der Puffer genannt wird, bis er soviel
Daten hat, daR es lohnt, sie auf das Kassettenband zu tbertragen (das heif3t,
wenn der Puffer vollist). Nunfillen die Zahlen 1 bis 19 den Pufferspeicher nicht
vollig. Sollten Sie also nichts weiter unternehmen, wiirden auf das Band {iber-
haupt keine Daten gelangen! Dazu ist die CLOSE-Anweisung in Zeile 70 da. Sie
teiltdem 64 mit, daf’ in die mit Kanal CH verbundene Datei keine weiteren Daten
mehr geschrieben werden sollen, er also ausgeben mul, was er gerade im Puffer
hat. Das nennt man den ‘Puffer leeren’.

SchreibenSie Zeile 30 um zu

30 FORN=1TO 200

und fahren Sie wieder mit RUN. Jetzt werden Sie die Pufferorganisation sehr
deutlich sehen, weil mehrere Puffer voll Daten zu Ubertragen sind und Sie
zwischen den Ubertragungen der einzelnen Blocke Displays geliefert bekom-
men.

Das Band sieht also so ahnlich aus, wie Abbildung 34.1 es zeigt:

Licken zwischen

Blocken
Dateiname Daten- Daten- Daten- letzter
block 1 block 2 block 3 Datenblock
-erzeugt von erzeugt von erzeugt
OPEN-Anweisung PRINT*-Anweisungen von CLOSE-
Anweisung

Abbildung 34.1
Struktur einer Datei auf Kassette.

242

Fir Sie, den Anwender, spielt im einzelnen nichts davon eine Rolle, solange Sie
nicht vergessen, nach Beendigung einer Ausgabe in eine Datei eine CLOSE-
Anweisung anzufiigen; rechnen Sie einfach nicht damit, daR die Kassette sofort
nach jeder PRINT# -Anweisung zu laufen beginnt. Wenn Sie wissen, was
wirklich vorgeht, werden lhnen weniger Fehler unterlaufen — oder schlimmsten-
falls werden Sie lhnen erklarlich sein, wenn sie passieren. (Das ist ein bilRichen
wie beim Autofahren: Sie brauchen nicht zu wissen, wie ein Getriebe funktio-
niert, um den Gang zu wechseln — aber es erklart, warum das Schalten lohnt,
und es erklart auch das graRliche Knirschen, das manchmal auftritt, wenn Sie
.das Kupplungspedal nicht richtig.durchgedriickt.haben.)

Die Datei lesen

Nun wollen wir sehen, ob wir die Daten auch wieder von der Kassette holen
konnen. Fugen Sie diesen Zeilen an:

80 END
19090 OPENCH, 1,0, “"FRED” [Offne Kanal 5 fiir Ablesen aus ‘FRED’]
119 INPUT# CH, A
120 PRINTA
130 IFA < > 200 THEN 110

Spulen Sie die Kassette zurlick und fahren Sie mit GOTO 100 (nicht RUN 100
— Sie verlieren sonst den Wert in CH). Sie werden aufgefordert, das Band mit
PLAY laufen zu lassen, und das System sucht nach dem Kopfblock mit ‘FRED".
Sobald es Erfolg gehabt hat, sieht es sich sofort einer Aufforderung gegeniiber,
vom Band abzulesen (Zeile 110), so daB auf der Stelle ein zweiter Block gelesen
wird. Nun wird der erste Block Zahlen angezeigt, dann der nachste Block
gelesen, und so weiter, bis die Zahl 20 gelesen wird, wo das Programm in den
Abgrund kippt und stehenbleibt.

Ich habe vorgeschlagen, Programme im Speicher gleichzeitig zu ‘lesen’
und ‘schreiben’, damit Sie mit diesen Vorstellungen miihelos experimentieren
kénnen und irgendwelche Anfangsprobleme nicht zu katastrophal werden.
Beispielsweise kommen Sie vielleicht dahinter, daR Sie versuchen, auf Vor-
spannband zu schreiben, wenn Sie vergessen haben, die Kassette vor dem
Einlegen in den Recorder vorzuspulen. In diesem Fall ist der Kopfblock nicht
gesichert, und die Leseroutine kann ihn nicht finden, also missen Sie den
ganzen Ablauf wiederholen.

Anwendung: Geburtstage

Das ist ja nun alles hochinteressant, aber ist es auch nutzlich? Doch, ja, und das
in mehr als einer Beziehung. Ein Beispiel: Nehmen wir an, der Computer soll
einige verwickelte mathematische Aufgaben bewaltigen, die mehrere Stunden
in Anspruch nehmen. Klar, da Sie nicht vor dem Ding sitzenbleiben wollen, bis
endlich die Antwort geliefert wird, aber wenn Sie nicht gerade einen Drucker

243

haben, miRten Sie das tun, zumindest dann, wenn die Gefahr besteht, daf die
Werte, die Sie brauchen, durch spatere Ausgaben vom Bildschirm gescrolit
werden. Die Alternative ist die, die Ausgabe in eine Datei zu bewirken, damit Sie
lesen konnen, wann sie Zeit haben. Und selbst wenn Sie einen Drucker besit-
zen, kann sich die Methode lohnen, wenn ein langes Programm Uber Nacht
laufen soll. Es kann hochst argerlich sein, wenn zwischen Mitternacht und 6
Uhr morgens ein lauter Drucker alle 20 Minuten losrattert.

Eine viel alltaglichere Verwendung von Dateien ist die, einen organisier-
ten Vorrat an alphabetischen wie numerischen Daten anzulegen. Zum Beispiel
mochten Sie vielleicht eine Adressliste aller Ihrer Freunde und Bekannten haben
— ein computerisiertes AdreRbuch, wenn Sie so wollen. Offensichtlich miissen
Sie Namen, Adressen und Rufnummern festhalten, aber es ware hiibsch, auch
noch zusatzliche Informationen zu besitzen, etwa die, ob Sie normalerweise
einer bestimmten Person zum Geburtstag oder zu Weihnachten eine Gliick-
wunschkarte oder auch ein Geschenk schicken. Wenn Sie Geburtstagsge-
schenke schicken, wird es niitzlich sein, auch Geburtsdaten in die Datei aufzu-
nehmen. Auf diese Weise sollten wir Programme schreiben kénnen, die in der
Datei nach Personen suchen, denen Sie beispielsweise im Marz irgendeinen
Geburtstagsgru® senden. Nie mehr kann es vorkommen, dal sie irgendeinen
Geburtstag vergessen!

Aber das kommt spater. Unsere erste Aufgabe ist die, fur die Datei zu
sorgen. Jede Person hat einen Eintrag, der besteht aus:

Name
Adresse
Geburtsdatum

Einzelheiten zu Geschenk und Gliickwunschkarte

Wir nennen das einen Datensatz. (Um die Dinge zu vereinfachen, wollen wir
Rufnummern und dergleichen hier vergessen.) Jeden der darin enthaltenen
Posten, etwa die Adresse, nennen wir ein Datenfeld.

Die beiden ersten Felder stellen keine Probleme dar. Wir miissen aber ein
Standardformat fir das Geburtsdatum festlegen und dabei bleiben. SchlieBlich
hat es keinen Sinn, dem Computer aufzutragen, er mége nach NOV suchen, -
wenn die Monate als Zahlen abgespeichert sind, so daR er eigentlich nach 11
suchen miRte.

Uberhaupt wird es am einfachsten sein, Zahlen zu verwenden, so dal}

020960
bedeutet:
02 2.
P9 September (Monat 9)

60 1960 (das 19 lassen Sie weg)
AuRerdem brauchen wir eine geeignete Methode, die Glickwunschinforma-
tion zu codieren. Dafiir gibt es viele Moglichkeiten. Wie ware es, sie zu nume-
rieren, etwa so:

244

Karte zum Geburtstag 1
Geschenk zum Geburtstag 2
Karte zu Weihnachten 3

Geschenk zu Weihnachten 4

so dal’ der Code 13 lautet, wenn Sie jemandem zum Geburtstag und zu Weih-
nachten eine Karte schicken, aber keine Geschenke.
Ein Programm folgender Art wiirde die Datei erzeugen:

5 CH=1:KAS=1:IN=0: AUS =1
19 OPEN CH, KAS, AUS, “MLIST”
290 INPUT “NAME";N$
30 PRINT# CH, N$
49 INPUT “ADRESSE"”; AD$
50 PRINT4# CH, AD$
60 INPUT “GEBURTSDATUM"; BD$
70 PRINT4 CH, BD$
80 INPUT "GLUECKWUNSCHCODES", G$
99 PRINT# CH, G$
100 INPUT “WEITERE DATEN (J/N)”; Q$
119 IFQS ="J" THEN 20
115 PRINT# CH, " = =+
120 CLOSEKAS
130 END

Obwohl der Code sehr einfach erscheint, sind ein paar Bemerkungen ange-
bracht.

Erstens ist es verlockend, alle Felder einzugeben und dann zu schreiben:
PRINT 4 CH, N$, AD$, BDs, G$

Der Haken dabei: PRINT 3# ruft genau dieselbe Wirkung bei der Datei hervor wie
PRINT beim Bildschirm. Wenn also N$ = “HUGO"”, AD$ = HAUBENGASSE 48
OSTHOFEN"”, BD$ = “110737" und G$ = 3", haben Sie in der Datei:

HUGO HAUBENGASSE 48 OSTHOFEN 119737 3

(dazu diverse Leerstellen zwischendrin). Wenn Sie das zuriickzuholen versu-
chen mit

INPUT# CH, N$, ADS$, BDS, G$
245

geht es nicht. Der ganze Datensatz wird nach N$ (bertragen, weil die Felder
nicht durch Kommas getrennt sind, was INPUT erwartet.
Sie konnten die Kommas bewuf3t einstreuen:

PRINT#, CH, N$; “,”"; ADS; ”,”"; BD$; ”,”"; G$

aber ich finde das haRlich und ziehe getrennte PRINT # - Anweisungen vor.

Zweitens durfen aus denselben Griinden keine Kommas in den Adreffel-
dern stehen.

Drittens: Beachten Sie, daR die letzten beiden Felder zwar Zahlen sind, ich
sie aber wie Strings behandelt habe. Den Grund werden Sie spater erkennen.

Viertens: Sehen Sie sich Zeile 115 an. Sie schreibt an das Ende der Datei
einen Begrenzer (* * * *), und zwar in das ‘Namens’-Feld des Satzes nach dem
letzten eingegebenen. Wir brauchen das, um zu bestimmen, ob schon die ganze
Datei gelesen worden ist, wenn wir sie absuchen.

Sehen Sie sich schlieRlich Zeile 5 an. Ich habe sie dazu beniitzt, sinnvolle
Abkurzungen fir die Dateioperationen zu definieren, die normalerweise von
Zahlen angezeigt werden. Beispielsweise kann ich jetzt in einer OPEN-
Anweisung statt ‘1" ‘AUS’ schreiben, um anzuzeigen, daB in die Datei geschrie-
ben werden soll. Das kommt sprachlich der Anweisung ‘Offne einen Kanal fir
Kassette zur Ausgabe’ naher als ‘OPEN1,1,1...

Aufgabe 1

Zur Zeit muf der Anwender sich die Gliickwunschcodes noch merken. Ersetzen
Sie Zeile 80 durch:

80 GOSUB 1000

und schreiben Sie in Zeile 1000 eine Subroutine, die dem Anwender eine Reihe
von Fragen stellt wie:

HAST DU EINE GEBURTSTAGSKARTE GESCHICKT?

und G$ automatisch erzeugt.

Die Datei absuchen

Wir mochten Fragen beantworten konnen wie: “An welche Geburtstage muf®
ich mich im Juni erinnern und was muf} ich den Leuten schicken?” Schreiben
wir also zunachst ein Programm, das genau dies leistet. Es wird uns einige
Hinweise darauf liefern, wie wir es spater allgemeiner fassen kénnen.

Als erstes mussen wir die Datei 6ffnen:

5 CH=1:KAS=1:IN=0:AUS =1
10 OPEN CH, KAS, IN, “MLIST”

und dann einen Datensatz lesen:

246

29 INPUT4 CH, N$

25 IFN$="++++"THEN END [auf Begrenzer priifen)]
30 INPUT# ADS

49 INPUT+# CH, BDS

50 INPUT# CH, G$

Nun wird festgestellt ob dieser Datensatz fur uns von Interesse ist:
60 IF MID$ (BDS, 2,2) = “@6” THEN GOSUB 500: REM HAB EINEN

Mit anderen Worten: Ist der Geburtsmonat Juni? Ich verwende MID$ (siehe
Kapitel 17), um die mittleren beiden Zeichen von BD$ auszuwahlen und sie mit
06 zu vergleichen. Deshalb habe ich das Geburtsdatum im Stringformat genom-
men. Es ist viel einfacher, die Mitte eines Strings als mehrere Ziffern einer Zahl
auszuwahlen. Und ich kann ihn oder Teile davon mit VAL (Kapitel 17) jederzeit
in Zahlen zuriickverwandeln, wenn es sein muf3. Haben wir jemanden gefun-
den, der im Juni geboren ist, wird die Steuerung der Subroutine ab 500
Ubertragen, und dariiber zerbrechen wir uns spater den Kopf.
Nun den nachsten Datensatz holen:

70 GOTO 20

Die ‘Hab-einen’-Routine

Nun zur Subroutine. Wir miissen G$ durchgehen auf der Suche nach 1 (Karte)
und 2 (Geschenk) oder beidem.

500 FLAGGE=90

519 FORP=1TO4

520 IF MID$ (G$, P, 1) = 1" THEN FLAGGE = 1: PRINT “KARTE"

53¢ IF MID$ (G$, P, 1) = “2” THEN FLAGGE = 1: PRINT "GE-
SCHENK”

540 NEXTP

550 IF FLAGGE = 9 THEN RETURN

560 PRINT

570 PRINT N$

580 PRINT ADS$

590 PRINT: PRINT

600 RETURN

247

Wir gehen G$ auf der Suche nach ‘1’ oder ‘2’ durch. Wenn wir ‘1’ finden, wird
KARTE angezeigt, bei 2 GESCHENK. In beiden Fallen wird eine Flagge auf 1
gesetzt, die urspriinglich Null war. Wenn wir also aus der Schleife kommen und
die Flagge immer noch Null ist, wissen wir, dal® wir den Geburtstag dieser
Person nicht beriicksichtigen, so daR es keinen Sinn hat, Namen und Adresse
anzuzeigen. Daher Zeile 550, die dafiir sorgt, dall wir es nicht tun. Ist die Flagge
aber auf 1 gesetzt, schicken wir ihm oder ihr etwas; das Programm macht also
weiter und zeigt Namen und Adresse in geeignetem Format an, bevor es zuriick-
springt.

Aufgabe 2

Wandeln Sie diese Routine so ab, daR sie fiir jeden Monat verwendet werden
kann.

Aufgabe 3

Schreiben Sie eine Routine, die Weihnachtskarten und -geschenke bewaltigt
und veranlassen Sie den Computer, |hnen mitzuteilen, wieviele Weihnachtskar-
ten Sie kaufen mussen.

Die Ausgabedatei wechseln

Wenn Sie eine PRINT-Anweisung geben, geht das System normalerweise
davon aus, Sie wiinschen die Ausgabe auf dem Bildschirm des Sichtgerats. Wie
wir gesehen haben, konnen Daten dadurch, da® die Form einer PRINT-
Anweisung geandert wird, zu jedem gewunschten Gerat geschickt werden.
Was ich aber noch nicht erklart habe, ist, daR Daten sogar ohne Anderung der
ganzen PRINT-Anweisungen umgelenkt werden kénnen.

Das geschieht mit dem CMD-Befehl, dessen Grundform lautet:

CMD Kanal
Wenn ich schreibe:
CMD5

schaltet das die Ausgabe vom Bildschirm zum Kanal 5. Kanal 5 muB natirlich
vorher in einer OPEN-Anweisung errichtet worden sein, etwa durch

OPEN 5, KAS, AUS, "BILDSCHIRMABZUG" [unterstellt, daB KAS und
AUS wie vorher auf 1 ge-

setzt sind]

Nun werden alle urspringlich fiir den Bildschirm bestimmten Daten auf die
Kassette tibertragen. Die einzigen Ausnahmen sind Fehlermeldungen, die nach
wie vor auf dem Bildschirm erscheinen.

248

Um das System in seinen urspriinglichen Zustand (das hei8t, Ausgabe
auf den Bildschirm) zurtickzuversetzen, wird zuerst eine Nullzeile (mit anderen
Worten, einfach eine Newline) zur Datei ausgegeben:

PRINT# 5
und die Datei dann geschlossen:
CLOSE5

Hier tritt eine kleine Seltsamkeit auf. Man mochte annehmen, man werde statt
‘PRINT # 5’ einfach ‘PRINT’ schreiben konnen, weil zu Kanal 5 ohnehin Daten
ausgegeben werden, aber das kann man nicht. Fragen Sie mich nicht nach dem
Grund.

Aufgabe 4

Erinnern Sie sich an die Ablaufiiberwachung und Profile in Debugging IV? Es
gibt einen Weg, eine Ablaufiiberwachung so zu verwenden, daf sie ein Profil
liefert.

Das geht so: Schreiben Sie das Programm unter Einschluf3 von Uberwa-
chungsanweisungen wie in Debugging IV, geben Sie die Uberwachungsaus-
gaben aber zum Kassettenrecorder aus. Die < - und > -Zeichen um die Zeilen-
nummern lassen Sie dabei weg. Sie sind nicht notig, weil die Uberwachungs-
einzelheiten jetzt zu einem anderen Platz als der normalen Ausgabe gehen und
das Dasein beim nachsten Schritt auRerdem ein biRchen schwieriger wird.

Der nachste Schritt: Schreiben Sie ein Programm, das eine Zeilennummer
anfordert, dann die Datei liest, die Sie eben geschaffen haben, und zahlt, wie oft
diese Zeilennummer vorkommt. Zeigen Sie diesen Wert an, dann wissen Sie, wie
oft die entsprechende Anweisung ausgefiihrt worden ist!

Losungen

Aufgabe 1

1000 G$ = “": REM G$ IST ZU ANFANG AUF NULL GESETZT

1010 INPUT “SCHICKST DU EINE GEBURTSTAGSKARTE?
(JIN)"; Q$

1020 IFQ$="J"THEN G$ = G$ + “1"

1030 INPUT “"SCHICKST DU EIN GEBURTSTAGSGESCHENK?
(JIN)"; G$

1049 1FQ$="J" THEN G$ = G$ + 2"

1050 INPUT “SCHICKST DU EINE WEIHNACHTSKARTE? (J/N)”; Q$

249

1060 IFQs="J"THEN G$=G$ + 3"

1079 INPUT “SCHICKST DU EIN WEIHNACHTSGESCHENK?
(J/N)”; Qs

1089 IFQ$="J"THEN G$ = G$ + 4"

1099 RETURN
Sehen Sie, wie G$ schrittweise aufgebaut wird?
Die Ahnlichkeit der Fragen und die Wirkung auf G$ sollten eine Alterna-

tive nahelegen. Wie ware es, wenn wir zu Beginn des Programms das folgende
Stringarray aufbauen:

BCs

GEBURTSTAGSKARTE
GEBURTSTAGSGESCHENK
WEIHNACHTSKARTE
WEIHNACHTSGESCHENK

PWN—

Dann konnten wir schreiben:

1000 Gs=""

1919 FORP=1T04

1020 PRINT “SCHICKST DU EIN/EINE[]"; BC$ (P):

1030 INPUT Q$

1049 IFQs$="J" THEN G$ = G$ + STR$ (P)

1050 NEXTP

1060 RETURN
Beachten Sie, daR wir in Zeile 1040 mit STR$ P in seine Stringentsprechung
verwandeln missen.

In diesem Fall lohnt die Muhe eigentlich nicht, weil die drei ersparten
Zeilen mehr als ausgeglichen werden, wenn wir BC$ setzen. Gibt es aber
mehrere zusatzliche Bedingungen, dann ware das eine geeignete Methode.

Aufgabe 2
Das einfachste ist, eine zusatzliche Zeile einzubauen:

15 INPUT “GIB MONAT ALS ZAHL VON ZWEI ZIFFERN EIN"; MTH$
und Zeile 60 umzuschreiben:

60 IF MID$ (BDS, 2,2) = MTH$ THEN GOSUB 500

250

Noch besser: Sie konnten gegen zuféllige Eingabe einer Einzelziffer (etwa 5
statt §5) schiitzen mit:

16 IFLEN (MTHS$) =1 THEN MTHS$ = “0” + MTH$

Aufgabe 3

Hier brauchen wir keine Dateninformation, also wird aus Zeile 60:
60 GOSUB 500

und 520 und 530 veréndern sich zu:

520 IF MID$ (G$, P, 1) = “3” THEN NK = NK + 1: FLAGGE = 1:
PRINT “KARTE"”
530 IF MID$ (Gs, P, 1) = “4” THEN FLAGGE = 1: PRINT “GE-
SCHENK"”
Jedesmal, wenn eine Weihnachtskarte verlangt ist, wird eine Variable namens
NK um 1 erhoht, so da® wir sicherheitshalber flir den Anfang auf Null setzen
sollten.:
6 NK=0
Und am Ende mussen wir anzeigen:

75 PRINT “ZAHL DER ERFORDERLICHEN KARTEN:"; NK

Aufgabe 4
lhr Originalprogramm muR eine Datei zuteilen:

19 OPEN 3, KAS, AUS, “UEBERWACHUNG" [unterstellt, daB KAS
und AUS wie vorher
definiert sind

und dann in jeder Anweisung, die verfolgt werden soll, PRINT # 3 enthalten:
150 PRINT#, 3, “150": REM DIESE ANWEISUNG VERFOLGEN

Ans Ende des Programms, aber bevor die Datei geschlossen wird, schreiben Sie
einen geeigneten Begrenzer fur die Datei:

800 PRINT# 3, 1"
8190 CLOSE3
820 END

251

Um das Profil einer bestimmten Zeile zu erhalten, konnten Sie schreiben:

10 IN = 0: KAS = 1: ZAEHLUNG =0

20 OPEN 5, KAS, IN, “"UEBERWACHUNG"

30 INPUT “GEWUENSCHTE ZEILENNUMMER"; N
49 INPUT5, N

50 IFN < @ THEN PRINT ZAEHLUNG: END

60 IFL=NTHENZAEHLUNG = ZAEHLUNG + 1
70 GOTO 49

Einfach und praktisch!

Sie konnten das erweitern, um das Profil einer Anzahl von Zeilen zu
erhalten, ohne das Band zuriickspulen zu miissen. Sie brauchen dafur ein Array,
das die fur das Profil vorgesehenen Zeilen festhalt, Zeile 39 wird zu einer
Schileife, in die alle gewiinschten Zeilennummern eingegeben werden, und
Zeile 60 zum Aufruf einer Subroutine, die das Array nach einer Entsprechung
absucht.

Den Code liberlasse ich Ihnen.

252

Anhang 1

Byteumwandlung Binar/Dezimal

Dezi- Dezi- Dezi- Dezi-
Binar mal Binar mal Binar mal Binar mal
00000000 | O | 00100000 | 32 | 01000000 | 64 | 01100000 | 96
20000001 1 | 00100001 | 33 | 01000001 | 65 | 01100001 | 97
00000010 | 2 | 00100010 | 34 | 01000010 | 66 | 01100010 | 98
P0000011 3 | 00100011 | 35 | 01000011 | 67 | 01100011 | 99
00000100 | 4 | 00100100 | 36 (01000100 | 68 | 01100100 | 100
20000101 5 | 00100101 | 37 | 01000101 | 69 | 01100101 | 101
00000110 | 6 | 00100110 | 38 (01000110 | 70 | 01100110 | 102
00000111 7 00100111 | 39 | 01000111 | 71 | 01100111 | 103
00001000 | 8 00101000 | 40 01001000 | 72 | 01101000 | 104
00001001 9 (00101001 | 41 | 01001001 | 73 | 01101001 | 105
00001010 | 10 [00101010 | 42 | 01001010 | 74 | 01101010 | 106
00001011 | 11 | 00101011 | 43 | 01001011 | 75 | 91101011 | 107
00001100 | 12. | 00101100 | 44 | 01001100 | 76 | 01101100 | 108
00001101 | 13 | 00101101 | 45 | 01001101 | 77 | 01101101 | 109
00001110 | 14 | 00101110 | 46 | 91001110 | 78 | 01191119 | 110
00001111 | 15 | 001901111 1 47 | 01001111 | 79 | 91191111 | 111
00010000 | 16 | 00110000 | 48 | 01010000 | 80 | 91110000 | 112
00010001 | 17 | 00110001 | 49 | 01010001 | 81 |01110001 | 113
00010010 | 18 | 00110010 | 50 | 01010010 | 82 | 01110010 | 114
00010011 | 19 | 00110011 | 51 [01010011 | 83 | 011190011 | 1156
00010100 | 20 | 00110100 | 52 | 01010100 | 84 | 01110100 | 116
00010101 | 21 | 00110101 | 53 | 91019101 | 85 | 011190101 | 117
00010110 | 22 | 00110110 | 54 | 91010110 | 86 | 01119110 | 118
P0010111 | 23 | 00119111 | 55 | Q1010111 | 87 | G1119111 | 119
00011000 | 24 | 00111000 | 56 | 01011000 | 88 | 01111000 | 120
00011001 | 25 | 00111001 | 57 | 01011001 | 89 |01111001 | 121
00011010 | 26 | 00111010 | 58 | 01011010 | 90 (01111010 | 122
00011011 | 27 | 00111011 | 59 | 01911011 | 91 (01111911 | 123
00011100 | 28 | 00111100 | 60 | 01011100 | 92 (01111100 | 124
00011101 | 29 |00111191 | 61 (91011101 | 93 | 91111191 | 125
00011110 | 30 | 00111110 | 62 | 01011110 | 94 [P1111110 | 126
00011111 | 31 | 00111111 | 63 | 01011111 | 95 [01111111 | 127

253

Binar

Dezi-

mal

Binar

Dezi-

mal

Binar

Dezi-

mal

Binar

Dezi-
mal

10000000
10000001
10000010
10000011
10000100
10000101
10000110
10000111
10001000
10001001
10001010
10001011
10001100
10001101
10001110
10001111
10010000
10010001
10010010
10010011
10010100
10019101
10010110
10010111
10011000
10011001
10011019
10011011
10011100
10011101
10011110
10011111

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

10100000
10100001
10100010
10100011
10100100
10100101
10100110
10100111
10101000
10101001
10101010
10191911
10101100
10191101
10101110
10191111
10110000
10110001
10110010
10110011
10110100
10110101
10110119
10119111
10111000
10111001
10111010
10111011
10111100
10111101
10111119
10111111

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

11000000
11000001
11000010
11000011
11000100
11000101
11000110
11000111
11001000
11001001
11001010
11001011
11001100
11001101
11001119
11001111
11010000
11010001
11010010
11010011
11010100
11010101
11010110
11019111
11011000
11011001
11011010
11011011
11011100
11011101
119011119
11911111

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

11100000
11100001
11100010
11100011
11100100
11100101
11100110
11100111
11101000
11101001
11101019
11191911
11101100
11191101
11101110
11191111

11110000-

11110001
11110010
11110011
11110100
11110101
11119119
11110111
11111000
11111001
11111019
11111911
11111100
11111101
11111119
11111111

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
249
241
242
243
244
245
246
247
248
249
250
251
252
253 |
254
255

254

Anhang 2
Sprite-Register, leicht gemacht

Adresse Inhalt Funktion
V+0 Spaltennummer Sprite (

V+1 Reihennummer Sprite @

V+2 Spaltennummer Sprite 1

V+3 Reihennummer Sprite 1

V+4 Spaltennummer Sprite 2

V+5 Reihennummer Sprite 2

V+6 Spaltennummer Sprite 3

V+7 Reihennummer Sprite 3 Spritepositionen
V+38 Spaltennummer Sprite 4

V+9 Reihennummer Sprite 4

V+10 Spaltennummer Sprite 5

V+11 Reihennummer Sprite 5

V+12 Spaltennummer Sprite 6

V+13 Reihennummer Sprite 6

V+14 Spaltennummer Sprite 7

V+15 Reihennummer Sprite 7

V+ 16 |Sp7|Sp6|Sp5|Sp4|Sp3|Sp2|Sp1 [Sp® | Versetzungsflagge
V +21|Sp7|Sp6|Sp5({Sp4|Sp3|Sp2|Sp1 [Sp® | Aktivieren/Sperren
V + 23 |Sp7|Sp6|Sp5{Sp4|Sp3|Sp2|Sp1 |{Spd | erweitern vertikal
V + 29 |Sp7|Sp6{Sp5{Sp4|Sp3|Sp2|Sp1 [Sp? | erweitern horizontal
V + 30 |Sp7|Sp6|Sp5|Sp4|Sp3|Sp2{Sp1 [Sp 0| Kollisionsflagge
VvV + 39 Farbcode Sprite 0

V+ 40 Farbcode Sprite 1

V + 41 Farbcode Sprite 2

V + 42 Farbcode Sprite 3 Farben

V +43 Farbcode Sprite 4

V + 44 Farbcode Sprite 5

V + 45 Farbcode Sprite 6

V + 46 Farbcode Sprite 7

2040 Zeiger Sprite @

2041 Zeiger Sprite 1

2042 Zeiger Sprite 2

2043 Zeiger Sprite 3 Zeiger

2044 Zeiger Sprite 4 .

2045 Zeiger Sprite 5

2046 Zeiger Sprite 6

2047 Zeiger Sprite 7

255

Anhang 3
Bibliothek von Sprite-Subroutinen

Diese Sammlung von Routinen soll den Umgang mit Sprites erleichtern. Sie
sollten aus dem Hauptprogramm mit GOSUB aufgerufen werden, nachdem die
notwendigen Parameter gesetzt sind. Wie immer ist V = 53248 die Startadresse
der Sprite-Register.

Zeiger fur Sprite K auf PTR setzen

20000 POKE 2040 = K, PTR
20019 RETURN

Daten fur Sprite K mit POKE in PTR-Block abspeichern

20100 FORG=0TO 62
20119 READH

20120 POKE64+PTR + G, H
20130 NEXTG

201490 RETURN

(Diese Routine unterstellt, daB die erforderlichen DATA-Anweisungen im
Hauptprogramm gegeben sind.)

Sprite K einschalten
20200 POKEV + 21, (PEEK (V +21)) OR21K
20219 RETURN
Sprite K abschalten
20309 POKEYV + 21, (PEEK (V + 21)) AND (255-2 1 K)
20319 RETURN
Sprite K auf Farbe CR setzen
204090 POKEV + 39 + K, CR
20410 RETURN
Sprite Kin Reihe Y, Spalte X setzen
205090 POKEV+2+K+1,Y
20519 IFX > 255 THEN OF =1
20520 POKEV + 2+ K, X-256 + OF

256

205390 IFOF =1THEN POKEV + 16, PEEK(V + 16) OR21 K
20549 IFOF =@ THEN POKEV + 16, PEEK(V + 16) AND (255-2 1 K)
20550 OF=9 -
20560 RETURN

Sprite K in horizontaler Richtung erweitern
20600 POKEV + 29, PEEK (V+29) OR21K
20619 RETURN

Sprite K in horizontaler Richtung zusammenziehen
20700 POKEV + 29, PEEK (V +.29) AND (255-2 1K)
20719 RETURN .

Sprite K in vertikaler Richtung erweitern
20800 POKEV + 23, PEEK (V +23) OR2 1K
208190 RETURN

Sprite K in vertikaler Richtung zusammenziehen
20909 POKEV + 23, PEEK (V + 23) AND (255-2 1 K)
20919 RETURN

Zusammenstof’ von Sprite K mit anderem Sprite feststellen

21000 |IF (PEEK (V + 30) AND 21 K) =21 KTHEN GOSUB 30000
21019 RETURN

(30000 ist eine Subroutine, die eingreift, wenn der ZusammenstoR stattfindet.)
Zusammenstof zwischen Sprite K und L feststellen

21109 IF (PEEK (V + 30) AND (21K +21L)) =21K + 21 LTHEN
30000
21119 RETURN

Zusammenstof zwischen Sprite K und Text feststellen

21200 IF (PEEK (V +31) AND 21 K) =21 KTHEN 30000
21219 RETURN

257

Anhang 4

Klangchip-Register,

einfach gemacht

S =54272
Adresse
Stimme | Stimme | Stimme
1 2 3 Inhalt Funktion
S+ | S+ 7 | S+14 Niedriges Frequenzbyte Tonhohe
S+1 | S+ 8 | S+15 | Hohes Frequenzbyte setzen
Niedriges Pulsbyte Art der
S+2 | S+ 9 | S+16 (nur Puls-Wellenform) Puls-Wellenform
Hohes Pulsbyte setzen
S+3 | S+10 | S+17 (nur Puls-Wellenform)
Wellenform-Code* ‘Instrument’
S+4 | S+11 | S+18 wahlen
4 Bit- 4 Bit- Anschlag/
S+5 | S+12 | S+19 Anschlag- Abschwell-| Abschwellen
wert wert
4 Bit 4 Bit Halten/
S+6 | S+13 | S+26 Halte- Ausklang- | Ausklingen
wert wert
S+24 Lautstarke (0-15) Lautstarke
*Wellenform-Codes:
17: Dreieck
33: Sagezahn
65: Puls

129: Rauschen

2568

Anhang 5
Speicherkarte Commodore 64

Das ist ein einfacher Fiihrer zu den Hauptabschnitten des Commodore 64-Spei-
chers. Weitere Einzelheiten sieche Anhang 6 und ‘Reference Guide'. Beachten
Sie, dall manche Abschnitte mehr als eine Verwendung haben, was vom Zu-
sammenhang und davon abhangt, wie manche Systemvariable gesetzt sind.

Adressen Inhalt

0-827 Verwendung durch System
828-1023 Kassettenpuffer + ungenutzter Platz
1024-2023 Bildschirmspeicher (Video-RAM)
2040-2047 Datenzeiger fiir Sprites
2048-40959 Normaler Programmplatz fiir BASIC

4096049151 BASIC ROM (bei PEEK) oder 8K RAM
49152-53247 4K RAM

53248-57343 Input/Output-Gerate und Farbspeicher
oder Zeichen-ROM (siehe Kapitel 13)
oder 4K RAM

53248-54271 VIC-Chip (Sprites + Videodisplay)
54272-55295 SID-Chip (Klang)

55296-56319 Farbspeicher

53620-56575 CIA-Chip * 1 (Schnittstellen zu Zusatzgerat) -
56576-56831 CIA-Chip * 2

56832-57343 Reserviert fur kiinftige 1/0-Erweiterung

5734465535 KERNAL+*ROM (bei PEEK) oder 8K RAM

* KERNAL ist das zentrale Betriebssystem, so angelegt, daR geschriebene
Programme, die es verwenden, mit kiinftigen Modellen des Computers kompa-
tibel sein werden.

259

Anhang 6
Einige nutzliche Systemvariable

Das ist eine Auswahl von Adressen, die das Betriebssystem verwendet, und die
in nitzlicher Weise mit PEEK oder POKE angegangen werden konnen. Eine
vollstandige Beschreibung findet sich im ‘Reference Guide'.

Name Adesse Funktion
TXTTAB 43-44 Zeiger zu Start von BASIC-Textbereich
VARTAB 45-46 Zeiger zu Beginn von BASIC-Variablen
ARYTAB 47-48 Zeiger zu Beginn von BASIC-Arrays
STREND 49-50 Zeiger zu Ende von BASIC-Arrays + 1
FRETOP 51-52 Zeiger zu Unterseite Stringspeicherung
CURLIN 57-568 Laufende BASIC-Zeilennummer
OLDLIN 59-60 Zuletzt ausgefiihrte BASIC-Zeilennummer
DATLIN 63-64 Laufende DATA-Zeilennummer
FBUFPT 113-114 Zeiger zu Kassettenpuffer
RNDX 139-143 Keimwert fiir RND-Funktion
LSTX 197 Code der zuletzt gedriickten Taste*
USER 243-244 Zeiger zu Farb-RAM
COLOR 646 Laufende INK-Farbe
XMAX 649 GroRe des Keyboard-Puffers
53265 (Bit) Bit-Modus einschalten (Kapitel 32)
53280 Border-Farbe
53281 PAPER-Farbe

* Codes siehe Anhang 7

Hinweis: Die meisten Adressen umfassen zwei Bytes. Wenn sie sich in den
Adressen X und X+1 befinden, ist der gespeichterte Wert:

PEEK(X)+256*PEEK(X+1)

(niedriges Byte als erstes, hohes Byte als zweites). Beispiel: Die Adresse fiir den
Beginn des BASIC-Textbereichs ist:

PEEK(43) +256+PEEK (44)

260

Anhang 7
Keyboard-Abfragecodes

Aufgeflihrt ist der Inhalt von Adresse 197, wenn eine beliebige Taste gedriickt
wird. Mit PEEK(197) kann die gerade niedergedruickte Taste unter Umgehung
des Keyboardpuffers festgestellt werden.

Taste Code Taste Code Taste Code
(keine) 64 @ 46 T 22
* 49 A 10 U 30
+ 40 B 28 Y 31
. 47 Cc 20 W 9
- 43 D 18 X 23
. 44 E 14 Y 25
/ 55 F 21 V4 12
0 35 G 26 RETURN 1
1 56 H 29 CLR/HOME| 51
2 59 | 33 INST/DEL 0
3 8 J 34 CRSR 1| 7
4 11 K 37 CRSR - « 2
5 16 L 42 - 57
6 19 M 36 1 4
7 24 N 39 3 5
8 27 (0] 38 5 6
9 32 P 41 7 3
: 45 Q 62 £ 48
; 50 R 17 Leertaste | 60
= 53 S 13

261

Programmregister

abgelaufene Zeit 106
ASCli-Werte 107

Auto 141

automatische Post 96
automatische Programmprofile 251

Autorennen 142

Bandwurmsatze 100
Bankkonto 59
bewegter Raumkreuzer
bindr — dezimal 65
binare Logik 70
Blinker 17

184

Computerkunst 234
Cursorsteuerung 43

Datei absuchen 246
Dateierzeugung 245

Don’t Cry For Me, Argentina 210
DRAW-Unterprogramm 231
dynamische Wortumkehrung 118

Einkaufsliste 63

farbige Quadrate 151
freier Speicherplatz 68
Frequenzdiagramm 138

Grand Prix 190

Hi-Res-Initialisierung 226
Hubschrauber 150

Jesus, Du Des Menschen Freude 205

Kakutani 147
Kaufhaus 49
Keyboardabfrage 147

mal sieben 30

Max und Min 162
Mittelwerte 129
Morsecode 108
Morsen mit Ton™ 212

Note — Frequenz —
Unterprogramm 201
Nullen und Kreuze 213

Papierfarbe — Unterprogramm 84

Peeking-Routine 77
Planetensuche 173

262

PLOT X,Y — Unterprogramm
PEINT AT- Unterprogramm

Rechtecke 235

schnelles # 115
Schiittelreime 103
Speichen 232
Spielkarten 154
Spirale 230
Sprite abschalten —
Unterprogramm
Sprite einschalten —
Unterprogramm 254
Sprite erweitern —
Unterprogramm 255
Sprite zusammenziehen —
Unterprogramm 255
Spritedaten speichern —
Unterprogramm 254
Spritefarben setzen —
Unterprogramm 254
Spritekollision erkennen —
Unterprogramm 255
Spritekonstruktionen 177
Spriteposition setzen —
Unterprogramm 255
Spritezeiger setzen —
Unterprogramm 254
Steuertarif 63

Tagfinder 104
Telefonnummern 53

Uhr 106
US-Prasidenten 174

Vielecke 233
Werbung 89

254

227
114

While Shepherds Watched Their

Flocks 203
Wortumkehrung 98
Wirmer 17

Register allgemein

Ablaufiuberwachung 163

ABS 237

ADSR 208

AND 61,68

arithmetische Operationen
(+—=17) 20

Arrays 90,103

ASC 107

ASCIil-Codes 107

Bildschirmspeicher 112
Bit 65
Byte 65

CHR$ 107,42

CLOSE 241
CLR/HOME-Taste 12
CMD 248
COMMODORE-Taste 12,13
CONT 24

CTRL-Taste 15
Cursortasten 13

DATA 172

Datenfeld 244
Datensatz 244
DIM 92,152

Editor 56
END 27

Farben 80

Farbspeicher 116

FOR 30

FRE 68

Funktionstasten 16, 148

GET 145

GOSUB 84
GOTO 23
Grundfrequenz 199

Harmonik 204

hochauflosende Grafik 225

hochauflésender Bildschirm-
speicher 228

Hallkurve 199

IF 59

INPUT 50

INPUT 4 243
INST/DEL-Taste 14,56

INT 67
Integer 153

Kanal 241
Keyboardpuffer 147
Keyboardsteuerung 145

Leertaste 16
LEFTS 101
LEN 98

LET 47
LIST 25
LOAD 122

Mehrfachbefehle 27
MID$ 101
multidimensionale Arrays 153

NEW 17,26

NEXT 30

NOT 62
Notenschreibweise 200
numerische Variable 45

OPEN 240
OR 61,68

Pause 34

PEEK 75

POKE 75

PRINT 23,36

PRINT # 241
Programmprofile 165
Programmverkettung 127

READ - 172

REM 28
RESTORE 174
RESTORE-Taste 14
RETURN 84
RETURN-Taste 14
RIGHTSs 101

RND 136

RUN 23
RUN/STOP-Taste 14,24
Rundungsfehler 236

SAVE 122

SGN 231

SHIFT-Taste 13
Sprite-Datenspeicherung 190
Sprite-Kollision 188
Sprite-Prioritat 185

263

Sprite-Register 179
Sprites 176

STEP 33
Steuerzeichen 41
STOP 27

STR$ 103
Stringvariable 45, 97
Stringverkettung 97

TAB 40
THEN 59
TI, TI$ 105
TO 30

VAL 103
VERIFY 126

Zeichensatz 80

Zitiermodus 41
;. in PRINT-Anweisungen 38

264

Ob Sie nun Neuling sind in der Computerei und
sich den C64 als ersten Computer erstanden
haben, oder von einer kleineren Maschine zu
ihm aufsteigen: Dieses Buch hier ist die
grundlegende Einfiihrung in BASIC auf dem
Commodore 64.

Sie finden

— Strings

— Arrays

— Klang und Musik

— Sprites .

— Hochauflosende Grafik

Viele Programme sind gebrauchsfertig
aufgelistet, etwa

— Planetensuche
— Schiittelreime
— Grand Prix
— Morsecode

Auf der ernsthafteren Seite fiihrt Sie eine
einmalige Kapitelserie in Fehlersuchtechniken
ein, aber auch der Umgang mit Dateien und die
Gestaltung von Programmen werden griindlich
behandelt.

Der umfangreiche Anhangteil enthiilt Tabellen
fiir Binir/Dezimal-Umwandlungen,
Spriteregister, Klangchipregister und einen Plan
der Speicheraufteilung. Aufgaben mit Antworten
am Ende jeden Kapitels werden lhnen helfen, am
Ball zu bleiben.

ISBN 3-7643-1588-1

