
Computer

Birkhäuser

MR IH x
N oa ny
Car AY oye

Pe = = I

Computer Shop
Band 9

lan Stewart / Robin Jones

Commodore 64
Programmieren leichtgemacht

Aus dem Englischen von
Tony Westermayr

Birkhauser Verlag
Basel - Boston - Stuttgart

Die Originalausgabe erschien 1983 unter dem Titel:
"Easy Programming for the Commodore 64”
bei Shiva Publishing Ltd., Nantwich, England
© 1983 lan Stewart und Robin Jones .

Professor lan Stewart
Mathematics Institute
University of Warwick
Coventry CA4 7AL
England, U.K.

Professor Robin Jones
Computer Unit |
South Kent College of Technology
Ashford, Kent
England, U.K.

CIP-Kurztitelaufnahme der Deutschen Bibliothek

Stewart, lan:
Commodore 64 : programmieren leicht gemacht /
lan Stewart ; Robin Jones. Aus d. Engl. von
Tony Westermayr. — Basel ; Boston ; Stuttgart :
Birkhäuser, 1984.
(Computer-Shop ; Bd. 9)
Einheitssacht.: Easy programming for the
Commodore 64 dt.)
ISBN 3-7643-1588-1

NE: 28 Jones, Robin:; GT

Die vorliegende Publikation ist urheberrechtlich geschützt.
Alle Rechte vorbehalten. Kein Teil dieses Buches darf ohne schriftliche
Genehmigung des Verlages in irgendeiner Form durch Fotokopie, Mikrofilm,
Kassetten oder andere Verfahren reproduziert werden. Auch die Rechte der
Wiedergabe durch Vortrag, Funk oder Fernsehen bleiben vorbehalten.

© 1984 der deutschsprachigen Ausgabe: Birkhäuser Verlag, Basel
Umschlaggestaltung: Bruckmann & Partner
Printed in Germany
ISBN 3-7643-1588-1

Inhalt

Einleitung 6
1 Auf los geht's los! 9
2 Das Keyboard (vulgo Tastatur) 72
3 Appetitanreger 17
4 Direkte Befehle 20
5 Programme 23
6 Schleifen 30
7 TV-Ausgabe 36
8 Variable 45
9 Eingaben 50
@ Debugging | 55
1 Verzweigen 59
2 Binäre Zahlen 64
3 PEEK und POKE 75

Subroutinen (Unterprogramme) 84
5 Debugging Il 94
6 Strings 96
7 Substrings 707

18 ASCII-Codes 107
19 Bildschirm- und Farbspeicher 771
20 Tonbandkassetten 122
21 Debugging III 729
22 Zufallszahlen 136
23 PET-Grafik 740
24 Keyboardsteuerung 145
25 Arrays (Felder) 152
26 Debugging IV 162
27 Datenlisten 172
28 Sprites 176
29 Debugging V 195
30 Klang und Musik 198
31 Programmplanung 213
32 Hochauflösende Grafik 225
33 Debugging VI 236
34 Files (Dateien) 240

Anhang 1: Byte- Umwandlungstabelle binar/dezimal 253
Anhang 2: Sprite-Register, leichtgemacht 255
Anhang 3: Bibliothek der Sprite-Subroutinen 256
Anhang 4: Klangchip- Register, leichtgemacht 258
Anhang 5: Commodore 64-Speicherkarte 259
Anhang 6: Einige nutzliche Systemvariable 260
Anhang 7: Keyboard-Abfragecodes 267

Programmregister 262
Register allgemein 263

Einleitung

Dieses Buch ist gedacht für den Neuling, der sich einen Commodore 64-Mikro-
computer gekauft hat oder kaufen möchte. Für erfahrenere Aufsteiger, die von
einem anderen Gerät kommen, sollte es ebenfalls von Nutzen sein. Der 64 ist ein
außerordentlich leistungsstarker Computer mit modernen Einrichtungen wie
einem Klangchip, Sprites-Grafik und ausgedehnten Möglichkeiten zur Erweite-
rung des Systems. Das hier gesteckte Ziel ist vergleichsweise bescheiden; es
geht darum, in verständlichen Ausdrücken die Haupteigenschaften des Geräts
und seiner Programmiersprache BASIC zu beschreiben.

Wenn Sie einen 64 kaufen, bekommen Sie gratis ein Handbuch dazu. Der
Haken bei Handbuchern ist der, daß sie selten genug Platz haben, um mit
Beispielen ins Einzelne zu gehen. Die richtige Informationsquelle für den 64 ist
denn auch nicht das Handbuch, sondern ein dickes Nachschlagewerk von 486
Seiten mit dem Titel "Commodore 64 Programmer’s Reference Guide”, ein
Führer also, der alles enthalt bis hin zum Schaltplan und zur Anschlußbelegung
der Chips . . . Eine hervorragende Sache fur den erfahrenen Programmierer, aber
den Anfanger erdruckt wohl eher die Masse gedrangt formulierter Information,
die Fachsprache wird thn verwirren. Unser Buch soll deshalb eine Brucke
zwischen Handbuch und Reference Guide sein. Billiger als der Guide ist es auch
noch!

Wir haben eine gründliche, aber verständliche Beschreibung der Grund-
lagen von BASIC aufgenommen, das ist die “höhere” Standard-Programmier-
sprache für den Commodore 64. Zugeschnitten ist das auf die besonderen
Eigenheiten und Fähigkeiten des Commodore, und es enthält die wichtigsten
Befehle, die für den Anfänger von Nutzen sein können. Sich mit allen Punkten
auseinanderzusetzen, ist schon aus Platzgründen nicht möglich, aber wir
möchten Ihnen eine tragfeste Grundlage liefern, auf der Sie mühelos weiter-
bauen können.

Damit man die vielseitigeren Merkmale des 64 nutzen kann, muß man ein
gewisses Maß an “Theorie” im Kopf haben, vor allem die Verwendung der
Binärzahlen und die Organisation des Hauptspeichers. Wir befassen uns mit
den PEEK- und POKE-Befehlen näher, weil sie unentbehrlich sind, wenn Sie
aus dem 64 alle die staunenswerten Leistungen herausholen wollen, die Anlaß
für den Kauf gewesen sind. Der Commodore ist eine Spur anspruchsvoller als
manches andere Gerät, aber wir haben uns bemüht, die Gedanken leicht faßlich
darzustellen und ihre Anwendung zu erleichtern.

Der Text umfaßt eine große Zahl Programmbeispiele, von Testroutinen für
neue Befehle bis hin zu längeren Programmen für Spiele, interessante Grafik-
displays, Umgang mit Daten auf Tonbandkassetten, Musik und Spritesteu-
erung. Die meisten Kapitel enthalten eine oder mehrere Aufgaben, die Ihre
Fortschritte prüfen und zusätzliche Vorschläge liefern. Am Ende des jeweiligen
Kapitels stehen die Lösungen der Aufgaben und können damit als Zusatzinfor-
mation genutzt werden.

Sehr wichtig sind die beiden Kapitel über Musik und Sprites. Der 64
besitzt einen eindrucksvollen Klangchip namens SID, der (neben Klangeffek-
ten) drei Stimmen harmonisch auf verschiedenen Instrumenten erzeugen kann.
Unsere Absicht ist, den SID jedem zugänglich zu machen, der klaren Kopf
bewahren kann. Sprites sind vielseitig bewegliche Grafikblöcke, großartig ge-
6 |

eignet für Spiele, Animation und Grafikdisplays; gesteuert werden sie vom
VIC-Chip, der so eindrucksvoll (und kompliziert) ist wie der SID. Wir erklären
in vereinfachter Weise die VIC-Speicherregister, und wie man sie zur Steuerung
von Sprites verwendet; dazu gibt es ein Programm für die automatische Produk-
tion von Sprites auf dem Bildschirm und als Anhang eine Sammlung von
Subroutinen für den Umgang mit Sprites.

Andere Anhänge betreffen nützliche Dinge, die in den Anhängen des
Handbuchs nicht enthalten sind: so etwa Binärzahlen (können Sie sich vorstel-
len, daß Sie die brauchen, um Sprites zu konstruieren und Musik zu spielen?),
den Speicheraufbau und nützliche Systemvariable.

Eine wichtige (und ziemlich ungewöhnliche) Eigenschaft dieses Buches
ist die Kapitelfolge über Debugging (Fehlersuche): Wie man dahinterkommt,
warum ein Programm nicht läuft, und den Fehler behebt. Jeder, der selbst
Programme schreibt, wird diese Kapitel als besonders nützlich empfinden. Wir
bieten auch ein paar Empfehlungen für das Verfassen gutstrukturierter Pro-
gramme, vor allem für die sinnvolle Nutzung von Subroutinen, um das Pro-
gramm in handliche Blöcke aufzuteilen.

Eine Frage, auf die das Handbuch nicht eingeht, ist die Möglichkeit
hochauflösender Grafik, mit deren Hilfe man Kurven, Diagramme und Feinskiz-
zen zeichnen kann. Wir erklären, wie man den Computer in den Hi-res-Modus
(Hi-res = hochauflösend) versetzt und diese Fähigkeiten nutzt. Ein abschlie-
Rendes, halbwegs schwieriges Kapitel erläutert, wie man mit Files Information
auf Tonbandkassetten festhält.

Der Aufbau des Buches und die Auswahl des Inhalts beruhen auf unserer
Erfahrung mit einer ganzen Reihe von Mikrocomputern verschiedener Herstel-
ler. Die Programmlistings sollen jedoch keine Wunderexemplare verfeinerter
Programmierung sein. Wir haben uns vielmehr bemüht, gut funktionierende
Programme zu liefern, deren Eingabe in den Computer nicht eine Ewigkeit
beansprucht. Wir wollen klüger machen, nicht eine Show aufziehen. Und es

_ gibt natürlich viele, viele Eigenschaften des Geräts, die wir überhaupt nicht
erwähnen, entweder weil sie eine große Wissensgrundlage erfordern, oder weil
wir den Platz nicht haben. Das ist unvermeidlich (falls man nicht Unsummen für
Riesenscharteken ausgeben will); aber was wir zu bieten haben, ist eine behut-
same und doch gründliche Einführung in den Commodore 64, die erklärt, was
vorgeht (Kochbuchrezepte mögen wir nicht) und sich mit den Hauptmerk-
malen befaßt, die neue Anwender kennen sollten. Das eigentliche Problem ist
ja doch immer, vom Boden hochzukommen.

Hinweis für Experten

Wie eben erwähnt, ist das ein Buch für Erstanwender; es wurde nicht für
Fachleute geschrieben. Genauer: Die einfachste Weise, ein gewünschtes
Ergebnis zu erzielen, ist nicht immer die effektivste. Wenn wir also manchmal
den Eindruck erwecken, wir stellten uns ungeschickt an, trifft das wohl zu. Vor
dem Laufen sollte man aber erst einmal das Gehen lernen, die einfachen Dinge
zuerst, bevor man sich den komplizierteren und vielseitigeren zuwendet.

Erwarten Sie also auch nicht, daß die Programmlistings ausgefeilte End-
produkte mit der Grafikqualität von Spielhallengeräten sind, die mit atemberau-
bender Geschwindigkeit Wunder an Computerleistung bewirken. Hier geht es
darum, einfache Listings zu liefern, die der Leser erstens in einer vernünftigen

7

Zeit eingeben und zweitens durcharbeiten und verstehen kann. Für das Kom-
plizierte bleibt Zeit genug.

Hinweis für Pedanten und Grammatiker

Vor einem halben Dutzend Büchern sind wir zu dem Entschluß gekommen, wir
sollten uns gemeinsam als “ich” bezeichnen. Das ist vielleicht ein bißchen
ungewöhnlich, aber sehr praktisch, weil wir gelegentlich persönliche Erfahrun-
gen mitzuteilen haben. "Wie wir heute früh zu unserer Frau sagten...” — also
nein, das hört sich nicht gut an. “Ich” ist also eine Art Gesamtkomposition von
uns beiden. “Wir” bedeutet in Hinkunft “der Leser und ich’.

1 Auf los geht's los

Das Erste: Wie baut man die Hardware auf? Sie können das vermut-
lich schon, falls aber nicht, mögen ein paar Hinweise von Nutzen
sein.

Wenn Sie an Ihren Fernseher schon einmal ein Videospiel oder einen Heimcom-
puter angeschlossen haben, fällt es Ihnen nicht schwer, den Commodore anzu-
schließen. Sollten Sie das aber noch nicht getan haben, stellen Sie vielleicht
fest, daß eine genaue Schilderung Ihnen Mühe erspart.

Sie haben den Computer schon ausgepackt, weil kein normaler Mensch
es fertigbrächte, ihn nach der Ankunft im Haus länger als eine halbe Minute im
Paket zu lassen. Vorgefunden haben Sie demnach:

1 Den Computer.
2 Das Netzgerät, ein klobiges graues Kästchen mit zwei längeren Kabeln, an

einem davon ein graues Kunststoffgebilde mit kleinen Stiften im Inneren.
3. Das Fernsehanschlußkabel, ungefähr zwei Meter lang, an beiden Enden

mit Koaxialanschlussen. |
4 Das Handbuch.

Bevor Sie alles zusammenschließen, sollten Sie sich eine zivilisierte Anordnung
überlegen. Falls Sie keinen Zweitfernseher verwenden, muß der Commodore

irgendwo in der Nähe Ihres Fernsehgeräts zu Hause sein. Ihn auf den Boden zu
stellen, ist keine gute Idee; Sie laufen Gefahr, draufzutreten und den Computer
zu beschädigen. Noch schlimmer: Vom verkrampften Sitzen schlafen Ihnen die
Beine ein. Holen Sie also einen Tisch, vorzugsweise einen niedrigen, nehmen
Sie einen Stuhl und stellen Sie beides vor den Fernseher.

Der Computer kommt auf den Tisch, das Netzgerät schließen Sie an der
Buchse mit der Aufschrift POWER an. Daneben befindet sich ein schwarzer
ON/OFF-Schalter (EIN/AUS); stellen Sie ihn auf OFF. Das Netzgerät schließen
Sie ans Stromnetz an.

Nehmen Sie das TV-Anschlußkabel und schieben Sie das mit einem
Mittelstift versehene Ende in die entsprechende Buchse an der Rückseite des
Computers. Drücken Sie es fest hinein.

Das andere Ende stecken Sie in die Antennenbuchse Ihres Fernsehers.
Übrigens funktioniert der 64 bei einem Schwarzweiß-Fernseher perfekt,

nur können Sie dann die Farbeinrichtungen nicht nutzen.
Manche (alten) Fernseher haben einen Drehknopf als Kanalwähler. Hier

stellen Sie auf Kanal 36.
Sonst gibt es sechs oder acht Tasten für die Kanalwahl. Man nimmt in der

Regel Taste 1 für das Erste Programm (ARD), Taste 2 für das Zweite (ZDF), und
so weiter. Natürlich kann jede Taste auf jeden beliebigen Kanal eingestellt
werden. Nehmen Sie am besten eine sonst nicht benutzte Taste (meinetwegen
6) und drücken Sie sie hinein.

Schalten Sie Fernseher und Computer ein.
Zu diesem Zeitpunkt werden Sie auf dem Bildschirm nur “Schnee” sehen,

weil Sie die Feinabstimmung am Kanalwähler noch nicht vorgenommen haben.
Irgendwo am Fernseher gibt es kleine Rädchen (oder Knöpfe oder sonst was),
die dazu dienen. Oft sind sie hinter einer kleinen Klappe versteckt. Sollten sie
Ihnen noch nie aufgefallen sein, dann suchen Sie einmal danach. Sie werden
überrascht sein. Manchmal klappt der Herstellername herunter, manchmal ein
ganzer Bauteil heraus, wenn man an der richtigen Stelle druckt. Sobald Sie das
gefunden haben, stimmen Sie Kanal 6 (wie vorgewählt) ab, bis auf dem Bild-
schirm eine Mitteilung erscheint. Sie werden das Rädchen vermutlich mehrmals
drehen oder die Drehrichtung ändern müssen, wenn es nicht auf Anhieb klappt.
(Im übrigen hilft Ihnen sicher gern Ihr Fernsehtechniker.)

Möglicherweise müssen Sie auch Helligkeit und Kontrast und die Farb-
einstellung abstimmen. Sie sind auf der Suche nach einem blauen Bildschirm
mit der Meldung:

» x» * COMMODORE 64 BASIC V2 « « * * u

64K RAM SYSTEM 38911 BASIC BYTES FREE

Sobald Sie das vor sich haben, ist der Computer betriebsbereit. Wenn Sie nichts
herbekommen, prüfen Sie nach, ob alles richtig angeschlossen und eingeschal-
tet ist, und ob die Stecker fest in den Buchsen sitzen; versuchen Sie es dann
erneut mit der Abstimmung. Wenn Sie an die richtige Stelle herankommen,
sehen Sie, durch den Schnee schwach sichtbar, flackernde Linien. Konnen Sie,
nachdem Sie den ganzen Abstimmungsbereich durchlaufen haben, die Mitei-
lung immer noch nicht sehen, dann drehen Sie entweder am falschen Rädchen
oder irgend etwas stimmt nicht. Falls Sie ein bißchen geschickt sind, sehen Sie
sich die Anschlüsse der Kabel darauf an, ob Drähte sich gelockert haben,
und/oder prüfen Sie mit Batterie und Taschenlampenbirne auf irgendwelche

10

Kurzschlüsse in den Kabeln. Hilft das immer noch nicht, dann setzen Sie sich mit
dem Laden in Verbindung, wo Sie den Computer gekauft haben. Computer-
Hardware ist sehr zuverlässig, aber ab und zu geht eben doch etwas schief.

Kassettenrecorder

Später werden Sie an Ihren 64 einen Kassettenrecorder anschließen wollen, um
Programme auf Tonband zu sichern. Im Augenblick befassen wir uns damit
noch nicht. Wenn Sie wissen wollen, wie das geht, schlagen Sie Kapitel 20 auf.
(Für den Commodore gibt es auch Diskettenlaufwerke.)

Ein diskreter Rat

Es könnte vielleicht sein, daß bestimmte Mitglieder Ihres Haushalts vom 64
nicht so hellauf begeistert sind wie Sie. Man wird diese Gefühle erfolgreich
verbergen bis zu dem Tag, an dem man den Fernseher einschaltet, um sich die
neueste Folge von "Dallas’’ anzusehen, jedoch von einem mittleren Schnee-
sturm in Farbe überrascht wird. Wenn Sie mit der Arbeit am Computer fertig
sind, dann stellen Sie den Fernseher wieder auf seine Normaleinstellung zurück
und vergewissern Sie sich, daß er richtig läuft. Auch ein Computer muß sich zu
benehmen wissen.

1

2 Das Keyboard (vulgo Tastatur)

Was bewirken diese Tasten am Computer? Wenn wir sie wahllos
betätigen, nichts Gescheites! Aber auf diese Weise bekommen Sie
wenigstens ein Gefuhl für das Keyboard.

Das Keyboard des 64 hat sehr viel Ähnlichkeit mit der Tastatur einer Schreib-
maschine, die Buchstabenanordnung hält sich an die gewohnte "OWERTY"-
Folge (die deutschen Tastaturen haben "OWERTZ”). Im Grunde ist das eine
unsinnige Anordnung; sie stammt noch aus der Zeit, als Typenhebel sich oft
verhedderten; aber die Sache hat sich so eingebürgert, daß man sich eben damit
abfinden muß.

Neben Buchstaben und Ziffern gibt es Tasten mit den Aufschriften CTRL,
RUN/STOP, RESTORE, RETURN und so weiter; zwei Tasten mit CRSR und
Pfeilen; unten vorne einen langen Tastenbalken; vier größere abgesetzte Tasten
auf der rechten Seite mit f1, f3, f5, f7; und vorne links eine Taste mit einem
Symbol, das ungefähr so aussieht:

C=

Ich werde sie von jetzt an die COMMODORE-Taste nennen. Dieses Kapitel soll
Sie einigermaßen mit dem Keyboard vertraut machen; wenn Sie sich ausken-
nen, können Sie das Meiste hier überspringen.

Alphanumerische Tasten

Das sind Buchstaben und Ziffern. Wie bei einer Schreibmaschine erzeugen sie
auf dem Bildschirm das entsprechende Zeichen. Experimentieren Sie eine Weile
und füllen Sie den Bildschirm mit Kauderwelsch, drücken Sie aber, um sich das
Dasein zu erleichtern, noch keine der anderen Tasten mit den merkwürdigen
Abkürzungen.

Beachten Sie, daß das blinkende Quadrat, Cursor genannt, bestimmt, wo
das jeweilige Zeichen hinkommt, und daß der Cursor beim Schreiben automa-
tisch horizontal eine Stelle (und notfalls eine ganze Zeile) weiterrückt.

Hmmmm. Großartig, aber wie werden Sie den Zeichensalat wieder los?

CLR/HOME

Diese Taste befindet sich oben rechts. Wenn Sie sie drücken, stellen Sie fest, daß
der Cursor nach oben links zuruckgesprungen ist (“‘Home”- Position). Drucken
Sie außerdem gleichzeitig SHIFT (Sie halten zuerst SHIFT nieder und drucken
CLR/HOME), wird der Bildschirm von allen Zeichen gelöscht.

12

SHIFT

SHIFT kann aber viel mehr. SHIFT sorgt im Grunde dafür, daß die Wirkung :
anderer Tasten verändert wird.

Stehen auf einer Taste oben zwei Symbole, dann wählt SHIFT die obere.
Beispiel:

SHIFT und Taste 3 erzeugen ein + -Zeichen

SHIFT und Taste 8 erzeugen ein (-Zeichen

Mit den alphabetischen Tasten zusammen liefert SHIFT jedoch das rechte
Symbol von beiden an der Vorderseite der Taste. Das ist ein besonderes “‘PET-
Grafik”’-Symbol, von Taste zu Taste verschieden.

Es gibt, damit es praktischer ist, zwei SHIFT-Tasten, und mit SHIFT LOCK
verhält sich der Computer so, als sei SHIFT ständig gedrückt. Um das aufzuhe-
ben, druckt man SHIFT LOCK ein zweitesmal.

COMMODORE (C=)
Das ist eigentlich eine zweite Shift-, also Umschalttaste. Damit wird das /inke
Grafikzeichen an der Tastenvorderseite gewahlt. Dazu kommen noch ein paar
andere, weniger klare Funktionen, die ich spater erklaren will, hier aber eine, auf
die gleich hingewiesen werden soll.

Kleinbuchstaben

Der 64 kann neben den Großbuchstaben ABCD ... ebensogut Kleinbuchsta-
ben abcd... liefern. Um diese zu erreichen, mussen Sie die Tasten COMMO-
DORE und SHIFT gleichzeitig drücken. Augenblicklich werden alle Großbuch-
staben auf dem Schirm zu Kleinbuchstaben, alle neu getippten Buchstaben
werden ebenfalls klein geschrieben. Die Grafikzeichen verandern sich ebenfalls
auf recht willkurliche Weise. Es ist so: Der 64 besitzt einen doppelten Zeichen-
vorrat (die Menge an Symbolen, die er auf dem Bildschirm anzeigen kann), und
Sie können bestimmen, welcher verwendet werden soll. Druckt man COMMO-
DORE und SHIFT gleichzeitig ein zweitesmal, wird der alte Zustand wiederher-
gestellt (Großbuchstaben). Wenn Sie die genauen Veränderungen sehen wol-
len, schlagen Sie Anhang E des Handbuchs S. 132 nach.

Cursortasten

Die beiden CRS-Tasten mit Pfeilen bewegen den Cursor auf dem Bildschirm.
Wenn Sie SHIFT nicht drücken, bewegt die linke CRSR-Taste ihn eine Stelle
nach unten; die rechte bewegt ihn nach rechts. Wird gleichzeitig SHIFT ge-
drückt, dann bewegt die linke CRSR-Taste ihn nach oben, die rechte Taste nach
links. Bei Links- oder Rechtsbewegungen springt er zu einer neuen Zeile,
sobald er vom Bildschirmrand geht; bei Abwärtsbewegungen scro//t der Bild-
schirm (das heißt, er rollt als Ganzes nach oben und erzeugt neue Zeilen), wenn

13

Sie versuchen, über die unterste Zeile hinauszugehen. Bei Aufwärtsbewegun-
gen läßt der Computer den Cursor nicht vom Bildschirm gehen, aber es wird
nicht gescrollt.

Dadurch, daß der Cursor mit den Tasten an jede gewünschte Stelle zu
bringen ist, können Sie Zeichen auf den Bildschirm schreiben, wohin Sie
wollen, statt nur dort, wo die automatische Cursorbewegung es bestimmt.

RUN/STOP

Ohne SHIFT hat diese Taste die Wirkung STOP... was die Ausführung eines
Programms zum Stehen bringt. Das ist dann nützlich, wenn Sie im Programm
einen Fehler haben und nicht warten wollen, bis es abgeschlossen ist, bevor Sie
ihn ausbessern können. (Bei manchen sehr häufig auftretenden Fehlern hört es
vielleicht nie auf!)

Die Wirkung RUN wird erzielt durch gleichzeitiges Drücken von SHIFT,
und betroffen ist das Kassettenrecordersystem, so daß Sie eine seltsame Mel-
dung erhalten:

LOAD

PRESS PLAYON TAPE

was uns im Augenblick nicht interessiert. Nur: Wenn Sie das aus Versehen
drücken, sind Sie augenscheinlich in Schwierigkeiten, weil der Computer nicht
mehr auf das Keyboard reagiert...

RESTORE

Aus der Schwierigkeit können Sie sich jedoch befreien, wenn Sie RUN/STOP
und RESTORE gemeinsam drücken. (RESTORE allein genügt nicht.) Damit
wird der Computer auf seinen normalen Ausgangszustand zurückgesetzt. Wenn
Sie ein Programm im Speicher haben, geht es nicht verloren, aber anderes, wie
die Bildschirmfarben, kehrt zu den Normalwerten zurück. Sobald Sie in Schwie-
rigkeiten geraten, sollten RUN/STOP + RESTORE Ihnen heraushelfen, wobei
möglichst wenig geleistete Arbeit zerstört wird. (Die Alternative, den Strom
abzuschalten, löscht den gesamten Speicherinhalt.) Im gängigen Sprachge-
brauch liefert RESTORE Ihnen einen “‘Warmstart”.

INST/DEL

Ohne SHIFT ist das eine Loschtaste (de/ete = löschen). Tippen Sie ein paar
Buchstaben und drücken Sie DEL; Sie werden feststellen, daß der letzte Buch-
stabe verschwunden und der Cursor eine Stelle zuruckgegangen ist. Das näch-
ste DEL entfernt diesen Buchstaben, und so weiter. Sie können den Cursor mit
den CSRS-Tasten an die gewünschte Stelle bringen und dann DEL benützen,
um das Zeichen unmittelbar links neben dem Cursor loszuwerden. Zeichen
rechts neben dem Cursor rücken automatisch auf, damit keine Leerstelle « ent-
steht.

14

INST für insert (= einschieben) hat die entgegengesetzte Wirkung. Es
fügt rechts neben dem Cursor Leerstellen ein und schiebt die Zeile weiter. Um
das zu bewirken, drücken Sie gleichzeitig SHIFT und INST/DEL. Das wird vor
allem bei der Programmbearbeitung gebraucht. Siehe dazu Kapitel 1®.

CTRL

Das ist die Control-Taste (control = steuern). Sie ähnelt ein wenig SHIFT, weil
sie die Bedeutung der gleichzeitig gedrückten Taste beeinflußt. Sie wirkt aber
nur auf die oberste Tastenreihe und die Cursortasten.

Beispiel: Halten Sie CRTL nieder und drucken Sie Taste 9. Sie werden
erkennen, daß die Schriftzeichen nun in inverse video, also in Negativschrift
erscheinen (umgekehrte Farben für Vordergrund und Hintergrund). Das bedeu-
tet das RVS ON auf Taste 9. Ebenso stellt RVS OFF auf Taste ® die normale
Farbgebung wieder her, vorausgesetzt, daß Sie ® zusammen mit CRTL drucken.

CRTL mit den Tasten 1-8 verändert die Farbe der Symbole, wie sie auf der
Tastenvorderseite angegeben ist: Schwarz, Weiß, Rot, Cyan (Hellblau), Dun-
kelrot, Grün, Blau, Gelb. Damit können Sie ein anders gefarbtes Display erzeu-
gen. (Hintergrund- und Randfarben können Sie ebenfalls verändern, aber nicht
so leicht. Siehe dazu Kapitel 13.)

RETURN

Diese Taste teilt dem Computer mit, “führe den eben geschriebenen Befehl
aus’. Bis Sie RETURN drücken, ist die Maschine im Grunde ein passiver
Displayapparat, eine aufgemotzte Schreibmaschine ohne eigenen Willen. Wenn
Sie ein Programm eintippen (Kapitel 5), müssen Sie nach jeder Programmzeile
RETURN drücken, um sie im Speicher festzuhalten.

Probieren Sie Folgendes: Geben Sie eine Menge sinnloses Zeug ein und
drücken Sie RETURN. Sie erhalten die Meldung:

?SYNTAX ERROR

READY

Das bedeutet, daß der Computer versucht hat, Ihren unsinnigen Befehl auszu-
führen, ihn nicht versteht und Ihnen das mitteilt. Kein Wunder! Wenn der Befehl
Sinn hat, bringt die Maschine keine Syntaxfehlermeldung, sondern führt ihn
aus. Probieren Sie beispielsweise den Befehl aus

PRINT “ETWAS” + RETURN

und das Wort "ETWAS” wird auch wirklich angezeigt.
Steht der Cursor auf irgendeiner Bildschirmzeile, und Sie drücken verse-

hentlich RETURN, so wird der Cursor versuchen, diese Zeile auszuführen. In der
Regel wird das Unsinn sein, und Sie erhalten einen Syntax Error - also wundern
Sie sich nicht über die gelegentliche Fehlermeldung!

| Andere Reaktionen sind undurchsichtiger. Tippen Sie beliebiges Zeug,
drücken Sie RETURN und nehmen Sie die Fehlermeldung entgegen; dann

15

stellen Sie den Cursor eine Zeile hinauf, in gleiche Höhe mit dem READY, und
geben erneut RETURN. Wollen Sie raten, was geschieht? Das:

?OUT OF DATA ERROR

READY

Das mag Ihnen Rätsel aufgeben. Das dumme Ding hat Ready als den (sinnvol-
len) Befehl READ Y gelesen, als Aufforderung, nach einer DATA-Anweisung zu
suchen. Da sie nicht vorhanden ist... Sie sehen selbst. Ich erwähne diesen
bizarren Vorgang nur, weil er viel Kopfzerbrechen bereiten kann, wenn Sie nicht
zu erkennen vermögen, warum er auftritt.

Leertaste

Wie bei einer Schreibmaschine erzeugt der lange Tastenbalken unten eine
Leerstelle. In diesem Buch verwende ich das Symbol:

u

für eine Leerstelle. (Suchen Sie auf dem Keyboard nicht nach einem [_]. Es ist
nicht da. Genau deshalb habe ich es genommen!) Wenn völlig klar ist, wo
Leerstellen hingehören, nehme ich mir vielleicht die Freiheit, die [_]-Zeichen
wegzulassen.

Funktionstasten

Die großen Tasten im abgesetzten Feld rechts sind "programmierbare Funk-
tionstasten’’. Wenn Sie diese drücken, kann das Gerät veranlaßt werden, auf
geeignete Programmierung in der von Ihnen gewünschten Weise zu reagieren.
In Kapitel 24 finden Sie nähere Einzelheiten.

Noch mehr?

Das ist naturlich bei weitem noch nicht alles. Das Keyboard des Commodore 64
kann noch eine Menge anderer Dinge. Zu Anfang wollen Sie sich aber nicht mit
zu vielen Komplikationen belasten, also verschiebe ich die Feinheiten bis zu der
Gelegenheit, wo sie gebraucht werden.

16

3 Appetitanreger -

Sie möchten sich gewiß nicht durch einen ganzen Programmier-
kurs quälen müssen, bevor Sie erfahren, wozu der 64 fahig ist. Hier
also drei kurze Programme: |

Sie brauchen, um Programme zu schreiben, vom Programmieren nichts zu
verstehen! Das heißt, vorausgesetzt, Sie klauen sie bei irgend jemand anderem.
Eine völlig vernünftige Sache - für den Anfang das einzig Richtige, um mit dem
Keyboard vertraut zu werden. Ich hoffe aber, daß Sie höhere Ambitionen haben,
als nur anderer Leute Software zu fahren!

Bei jedem der drei unten aufgelisteten Programme gilt:

Tippen Sie NEW und drücken Sie dann die RETURN-Taste.
Schreiben Sie das Programmlisting sorgfältig ab. Drücken Sie nach jeder
Zeile RETURN. Wenn Sie einen Fehler machen und RETURN noch nicht
gedrückt haben, dann verwenden Sie die DEL-Taste, um die Zeile auszu-
bessern; ist RETURN schon gedrückt, tippen Sie die ganze Zeile einfach
noch einmal.

3. Tippen Sie LIST und RETURN, um sich zu vergewissern, daß das Listing
des Programms mit dem meinen übereinstimmt.

4. Tippen Sie RUN und sehen Sie sich das Ganze an.

N

—

Da das für Sie nur gut ist, wurden die Programme als Aufgaben angelegt.

Aufgabe 1: Wurmer

10 FORN = 1 TO 1009

20 C=105+ INT (4*RND (9))

30 IFC=108 THEN C=117

40 PRINT CHR$ (C);

50 NEXTN

Aufgabe 2: Blinker

10 FORN=1TO19®

| 20 X=INT (16 *RND (®))

30 POKE 53281,X

40 POKE 53280, 15 - X

17

50 FORT=1TO10®

60 NEXTT

70 NEXTN

Aufgabe 3: Kakutani

Das Kakutani-Problem, noch immer ungelöst, betrifft folgenden Vorgang. Neh-
men Sie eine ganze Zahl (meinetwegen 48). Wenn sie gerade ist, wird sie
halbiert. (Das ist hier der Fall, also erhalten wir 24.) Wenn ungerade, wird sie
verdreifacht und 1 hinzugefügt. Wiederholen Sie das, solange Sie wollen —
erhalten Sie am Ende immer 1? Beispielsweise haben wir hier:

48 — (halbieren) > 24 + (halbieren) > 12 — (halbieren) — 6

— (halbieren) > 3 > (verdreifachen + 1) > 10 — (halbieren) > 5

— (verdreifachen + 1) — 16 — (halbieren) > 8 > (halbieren) — 4

— (halbieren) > 2 — (halbieren) + 1

und landen bei 1. Das nächste Programm ruft einen Zufallsstart hervor und
rechnet die Folge aus. Es hört erst auf, wenn es bei 1 ist.

10 N = 100 + INT (1000 « RND (P))
20 PRINTN
30 M=N:L=INT (M/2)
40 IFM=2*LTHENN=L
50 IFM>1ANDM <> 2*LTHENN=3*+M +1
60 IFN > 1THEN 29
70 PRINT1

Eine schwache Ausrede

Sobald Sie mit dem Keyboard zurechtkommen, werden Sie einen Befehl oder -
ein ganzes Programm eintippen und fahren können, ohne irgendeine der An-
weisungen darin verstanden zu haben.* Sie können sich sogar Listings aus
Büchern und Zeitschriften "borgen’. Das ist völlig normal, und Sie brauchen
deshalb nicht schuldbewußt zu sein. Von Zeit zu Zeit übermannt jeden die Lust.
Und es trägt dazu bei, daß Ihr Interesse erhalten bleibt und das Selbstvertrauen
wächst. (Wie bei allen guten Dingen sollte man nicht übertreiben. Wenn das
Jahr der Informationstechnologie nicht mehr bewirkt, als eine Generation von
Menschen hervorzubringen, die anderer Leute Software abschreiben, aber

* Das haben Sie eben getan bei Aufgabe 1, 2 und 3.

18

keine eigene verfassen können, hätte man das Geld besser für ein Viertes
Fernsehen ausgegeben.)

Manchmal, wenn ein bestimmter BASIC-Befehl vorgeführt wird, vor
allem anfangs, wo wir noch nicht so viele kennen, wäre es hübsch, einen Befehl
zu verwenden, der noch nicht erklärt worden ist. Und genau das werde ich tun,
wo ich es für angebracht halte.

Reißen Sie also nicht vor Entsetzen die Arme hoch und fangen Sie nicht
an zu jammern, der komische Kauz hätte das noch gar nicht erklärt. Beißen Sie
die Zähne zusammen, geben Sie den Befehl trotzdem ein und beobachten Sie,
was er bewirkt. Das ist der Sinn. Zu Ihrem eigenen Wohl.

Jedenfalls ist das meine Ausrede.

19

4 Direkte Befehle

Ein Programm ist nichts als eine Folge von Anweisungen, die
gespeichert und später ausgeführt werden. Zunächst können Sie
jedoch versuchen, die Befehle direkt vom Keyboard aus einzuge-
ben. Hier spielt der 64 mit seinen Arithmetikmuskeln.

Wenn Sie dem Computer vom Keyboard aus einen Befehl erteilen, so daß er ihn
nach Drücken der RETURN-Taste augenblicklich ausführt, benutzen Sie ihn im
Direktmodus. (Modus, zu deutsch Betriebsart, ist Computerjargon; gemeint
ware damit der ““Gemutszustand” des Computers - falls er ein Gemüt hatte.
Daher der Witz in einem Computerfachblatt, daß in einer bestimmten Serie von
Fernsehprogrammen der Moderator die ganze Zeit im ""Staunmodus” zu sein
schien.) Es gibt einen zweiten, den indirekten Modus; hier wird der Befehl in
den Speicher eingelesen und später ausgeführt. Tatsächlich wird in der Regel
eine ganze Liste solcher Befehle, die ein Programm bilden, gespeichert. Pro-
gramme besprechen wir im nächsten Kapitel; vorerst bleiben wir im Direktmo-
dus.

Ein 64 im Direktmodus ist nicht nur eine Schreibmaschine, sondern auch
ein eindrucksvoller Rechner.

Probieren Sie:

PRINT2+2

(und dann RETURN). Sie sehen auf dem Bildschirm die Lösung 4. Na ja, so
eindrucksvoll vielleicht auch wieder nicht, aber wenn Sie verlangen:

PRINT 12345678 + 87654321

erhalten Sie genauso schnell 99999999.

Aufgabe 1

Der Computer soll für Sie berechnen:

1. 7+4
2. 17+41
3. 5 +16
4. 15123 + 97784

Der 64 kann auch subtrahieren:

PRINT 11 -5

PRINT 77-3

PRINT 55555 — 22222

20

und so weiter. Zur Multiplikation müssen Sie statt des gewohnten Zeichens x
das Sternchen * verwenden (weil Programmierer es sonst mit dem Buchstaben
x verwechseln.) Probieren Sie:

PRINT 2 * 2

PRINT 2*3

PRINT 5*5

PRINT 99 * 77

Schließlich noch das Dividieren. Dafür wird statt ./. das Zeichen / verwendet.
Wenn Sie also 24 durch 3 teilen wollen, müssen Sie verlangen:

PRINT 24/3

und um 777 durch 7 zu teilen:

PRINT 777/77

Der 64 kann nicht nur mit ganzen Zahlen wie diesen, sondern auch mit Dezi-
malzahlen wie 27.432 (statt des Dezimalkommas also stets der Punkt!) und
negativen Zahlen wie —99 oder -27.342 umgehen. Ferner kann er außer den
arithmetischen Operationen von Addition, Subtraktion, Multiplikation und Di-
vision eine ganze Reihe mathematischer Berechnungen ausführen. In diesem
Buch hier benötigen aber alle Programme nur die Grundlagen der Arithmetik.
Schließlich ist nicht jeder, der das Computern lernen möchte, ein begabter
Mathematiker! Und es ist ganz erstaunlich, was man ohne komplizierte Mathe-
matik alles leisten kann. |

Potenzen

Für die mathematisch stärker Interessierten sollte hier jedoch noch ein Punkt
erwähnt werden. Statt der üblichen Schreibweise

XN

fur die Nte Potenz von X, verwendet der 64 einen nach oben weisenden

Pfeil:

XTN

Beispielsweise wird die Kubikzahl von 5, also:

5§ = 5*5*5=125

so geschrieben:

573

21

In Kapitel 33 finden Sie einige Warnungen zu Rundungsfehlern bei Verwen-
dung des Aufwärtspfeils.

P
o
n

=

22

Lösungen

Aufgabe 1

PRINT7+4 (ergibt 11)

PRINT 17 + 41 (ergibt 58)

PRINT 5 +16 (ergibt 21)

PRINT 15123 + 97784 (ergibt 112907)

5 Programme

Den Computer bewegt man dazu, das zu leisten, was Sie wün-
schen, indem man die erforderlichen Anweisungen in einer syste-
matischen Liste zusammenfaßt.

Ein Programm ist eine Folge von Anweisungen, die der Computer ausfuhren
soll. Es hat durchaus Ahnlichkeit mit einem Rezept aus dem Kochbuch:

Man nehme 2 Eier

schlage sie in einen Topf

ruhre sie 20 Sekunden lang

gebe 2 Kilogramm Zucker dazu

sowie 4 Dosen braune Bohnen |

und so fort. Ein Computerprogramm muf aber in einer sehr prazisen Sprache
geschrieben sein.

Hier ein einfaches Programm:

18 PRINT “HALLO!”";

20 GOTO 19

Das können Sie in Ihren Computer eingeben. Zuerst tippen Sie NEW und
drücken RETURN - damit werden alle Reste früherer Programme beseitigt. 7un
Sie das IMMER, bevor Sie ein neues Programm eingeben. Dann schreiben Sie
die erste Zeile:

10 PRINT “HALLO!”

und drücken RETURN. Da die Anweisung mit einer Zahl beginnt, hier 190,
behandelt der Computer sie im indirekten Modus: Er speichert sie, um sie dann
auszuführen, wann das verlangt wird. Nun schreiben Sie:

20 GOTO 1®

plus RETURN. Zerbrechen Sie sich vorerst nicht den Kopf darüber, was dieses
Gestammel zu bedeuten hat.

Damit ist es in den Speicher gelangt, aber wie weisen wir den Computer
an, das ablaufen zu lassen, wie es im Jargon heißt. Wir geben den Befehl ein

RUN

(dazu RETURN, versteht sich — ich werde das künftig nicht mehr jedesmal
erwähnen, erwarte aber, daß Sie nach dem Ende jeder Zeile” eines Programms
und nach jedem Befehl im Direktmodus RETURN drücken).

23

Unterstellt, Sie haben fehlerlos abgeschrieben, wird jetzt die Hallo-Hölle
los sein. Das Wort “HALLO!” wird überall auf dem Bildschirm auftauchen und
wild herumsausen. Wenn Sie nicht Einhalt gebieten, geht das ewig so weiter.
Aber woher kommt das?

Die Maschine anhalten

Hier kommt die STOP-Taste zu ihrem Recht. Wenn Sie sie drücken, hält das
Programm an und liefert eine Meldung, um anzugeben, wo es sich befindet.
Falls Sie die Taste jetzt drücken, haben Sie den Bildschirm fast ganz voller
“Hallos!” und am Ende die Meldung:

BREAK IN 1®

READY

oder bei Gelegenheit auch:

BREAK IN 20

READY

Sie können mit STOP ein Programm immer anhalten, wenn es zu hängen
scheint oder etwas falsch macht. Falls das nicht funktioniert, probieren Sie
RUN/STOP plus RESTORE wie in Kapitel 2.

CONT

Um nach einem STOP weiterzumachen, können Sie den Befehl

CONT

verwenden (abgekürzt fur “continue” = fahre fort). Machen Sie das, und es
geht wieder los!

Was geht da vor?

In einem BASIC-Programm hat jede Anweisung eine Nummer, ihre Ze//ennum-
mer. Hier sind es die Zeilennummern 1® und 2®. Normalerweise führt das Gerät
die Befehle in numerischer Reihenfolge der Zeilennummern aus — hier also
zuerst Zeile 10 und dann Zeile 29.

ABER: Manche Befehle haben die Wirkung, die als nächste auszufüh-
rende Zeilennummer zu verändern. Hier bedeutet der Befehl:

GOTO 10

"beachte die nächste Zeile, falls vorhanden, nicht, und führe statt dessen Zeile
10 aus”.

24

Um zu begreifen, was das Programm bewirkt, müssen wir noch eines
wissen. Der Strichpunkt (;) nach der PRINT "HALLO!”-Anweisung teilt dem
Computer mit, das Nächste, was anzuzeigen ist, soll unmittelbar nach dem Ende
des HALLO! folgen. Wird der Strichpunkt weggelassen, dann zeigt der Com-
puter statt dessen auf der nächsten Bildschirmzeile an.

Wird also RUN eingegeben, so tut die Maschine folgendes.
Sie sucht nach der ersten Zeile:

19 PRINT "HALLO!”;

und fuhrt sie aus, mit dem Bildschirmdisplay:

HALLO!

Da dieser Befehl nicht verlangt hat, der Computer solle den normalen Ablauf der
Zeilennummern verandern, geht er in numerischer Reihenfolge zur nachsten
Zeile:

20 GOTO 10

Sie führt das aus und kehrt wieder zu Zeile 10 zurück. Nun zeigt sie ein zweites
HALLO! an, was so aussieht:

HALLO!HALLO!

und geht weiter zu Zeile 2®, die sie aber zurückschickt zu Zeile 19.

HALLO!HALLO!HALLO!

und HALLO! ewig weiter (oder zumindest so lange, bis ein äußerer Eingriff, die
STOP-Taste oder das Greisenalter oder das Ende der Welt Einhalt gebieten).
Nach dem siebten Mal läuft sie vom Ende der Zeile und wickelt sich um die
nächste, nach ungefähr 169 Abläufen (turns) erreicht sie die unterste Zeile, der
Bildschirm rollt nach oben. Konkret geht das alles so schnell, daß Sie außer
aufflackernden HALLOS! nichts sehen, während der Bildschirm vorbeisaust.

Um das zu verlangsamen, können Sie eine Zusatzzeile einfügen:

15 FOR1=@TO 200: NEXTI

(was ich in Kapitel 6 erkläre). Jetzt ist der Ablauf klar, nach dem die Anzeige
stattfindet.

LIST

Wenn Sie ein Programm eingetippt haben, wollen Sie es vielleicht zu irgendei-
nem Zeitpunkt in ordentlicher Form auf dem Bildschirm dargeboten haben, um
einen Überblick zu bekommen. (Vielleicht möchten Sie eine Zeile ändern,
wissen aber die Nummer nicht mehr.) Um das zu erreichen, tippen Sie im
Direktmodus den Befehl:

LIST

25

Probieren Sie das gleich aus.
Sie können ein Programm durch zusätzliche Zeilen ergänzen und brau-

chen Sie nur einzutippen. Zerbrechen Sie sich nicht den Kopf über die Reihen-
folge der Zeilennummern; der Computer sortiert sie ganz automatisch in der
richtigen Ordnung. Wenn Sie eingeben:

20 PRINT "NICHT INORDNUNG”

10 PRINT "DIESES PROGRAMM IST”

und dann LIST tippen, steht auf dem Schirm:

10 PRINT "DIESES PROGRAMM IST”

20 PRINT “NICHT INORDNUNG”

Ebenso können Sie eine Zeile einfach dadurch verändern, daß Sie eine neue mit
derselben Nummer eingeben, also:

20 PRINT “INORDNUNG”

und wieder LIST.
Um eine Zeile ganz zu löschen, schreiben Sie ihre Nummer, aber nichts

sonst (außer natürlich RETURN). So löscht:

20 (plus RETURN)

Zeile 20. (Der Computer behandelt sie als Programmzeile ohne eigentlichen
Befehl, nur als Zahl, und beachtet sie einfach nicht.) Es gibt raffiniertere Metho-
den, Zeilen zu verändern, siehe Kapitel 19; was ich Ihnen eben erklärt habe, ist
praktisch das Kleine ABC dessen, was man sich leisten kann. Gehen wir gleich
weiter zu interessanteren Dingen.

Um bestimmte Zeilen aufzulisten (was bei einem langen Programm we-
gen Scrolling notwendig sein mag), verwenden Sie Befehle wie:

LIST 50 - 180

worauf die Zeilen 5® bis 180 angezeigt werden.

NEW

Diesen Befehl habe ich schon in Kapitel 3 erwähnt, aber hier hat er auch seinen
Platz. Um ein altes Programm aus dem Speicher zu entfernen und reinen Tisch
zu machen, tippen Sie:

NEW

und, wie gewohnt, RETURN. Wenn Sie das nicht tun, lauern Reste des vorigen
Programms irgendwo im Gerät und führen zu einer verblüffenden Vielfalt von
unerklarlichen “bugs” (Fehlern) im Programm, von dem Sie sich froh eingebil-
det haben, es sei richtig eingegeben.

26

Sie können NEW auch innerhalb eines Programms verwenden, was aber
lediglich dazu führt, daß das Programm sich selbst zerstört.

STOP und END

Die beiden Befehle:

STOP

END

bringen die Ausführung eines Programms zum Stillstand. Der Unterschied:
Nach einem STOP können Sie mit CONT weitermachen, nach END aber nicht.
Es gehört zum ordentlichen Programmieren, mit STOP oder END aufzuhören,
und Sie müssen STOP vielleicht verwenden, um zu verhindern, daß ein Pro-
gramm in den falschen Nummernbereich hineinläuft.

Zeilennummern in BASIC

Nicht alle höheren Sprachen verwenden Zeilennummern, um der Maschine
mitzuteilen, in welcher Reihenfolge sie Befehle ausführen soll, aber irgendeine
bestimmte Ordnung besteht immer. Manche Anweisungen dienen jedoch dazu,
auf diese natürliche Ordnung einzuwirken, und schicken die Maschine damit
zurück, um eine fruhere Anweisung zu wiederholen (möglicherweise mit leich-
ten Abänderungen). Genau dieses Gemisch von präzisen Instruktionen und
variabler Ordnung, in der sie ausgeführt werden, macht den Computer so
vielseitig.

In BASIC und in einigen anderen Sprachen ist jede Anweisung nummeriert.
Beim 64 können Sie Zahlen zwischen ® und 63999 verwenden. Sie brauchen
die Zeilen nicht 1, 2, 3 und so weiter zu numerieren; vielmehr ist es üblich, mit
10,20,3®... anzufangen, in Zehnerschritten. Der Sinn ist der, Platz zu lassen,
wo zusätzliche Zeilen eingefügt werden können, falls Sie das später für erfor-
derlich halten: es würde schwer halten, zwischen den Zeilen 2 und 3 eines
Programms eine Zeile einzufügen! Es gibt aber keine Regel, wonach die Num-
mern regelmäßig sein müßten: Sie könnten die Zeilen (meinetwegen) 17, 18,
25, 356, 1000, 1903, 1919, 1920, 5033 numerieren, wenn Sie wollen. Die
meisten Programme beginnen mit ordentlich aussehenden Zeilennummern und
hören auf mit ungeordneten, weil inzwischen Fehler ausgebessert worden sind.

Zeilen mit Mehrfachbefehlen

Sie können mehrere Befehle in eine einzige Programmzeile setzen, vorausge-
setzt, Sie trennen sie durch Doppelpunkte (:). Beispiel:

10 FORT = 1 TO 200: PRINT T;: PRINT "[_] MAL 999 ERGIBT [1";:

PRINT 999 * T: NEXTT

27

Das kann Platz und Zeit fürs Schreiben sparen, ist aber nicht immer eine so gute
Idee, weil: |

1. nur zum Beginn einer Zeile mit Mehrfachbefehlen gesprungen werden
kann.

2. das Ändern einer Zeile bei einem Schreibfehler schwerer wird.

Es gibt jedoch Gelegenheiten, wo die Anwendung solcher Mehrfachbefehle
viel Arbeit spart und keine Schwierigkeiten hervorruft, beispielsweise dann,
wenn man eine ganze Reihe von Variablen zuteilt (siehe Kapitel 8):

10 A=1:B=2:C0C=3:D=-4E=5

In manchen meiner Listings finden Sie ab und zu Zeilen mit Mehrfachbefehlen,
weshalb ich Sie darauf aufmerksam machen wollte. Man kommt aber sehr gut
ohne sie aus, und sie sollten auf keinen Fall zu häufig verwendet werden, weil
das Programm sonst unlesbar wird. Ein bekannter Verleger von Software für
Unterrichtszwecke untersagt Zeilen mit Mehrfachbefehlen aus eben diesem
Grund.

REM: Sag ihnen Bescheid über REM “

Es gibt einen Befehl, der zuläßt, daß Sie Bemerkungen als Gedächtnishilfe (für
sich oder andere) in ein Programm setzen, nämlich:

REM

Der Computer läßt in jeder Zeile unbeachtet, was nach einem REM kommt. Sie
können also etwa schreiben:

150 REM SATELLITENVERFOLGUNGSBERECHNUNG

169 THETA = 52: REM BREITENGRAD

170 PHI = 35: REM LÄNGENGRAD

Beachten Sie, daß in einer Zeile mit Mehrfachbefehlen Anweisungen nach dem
REM ebenfalls nicht beachtet werden. Also:

200 X = 365: REM LÄNGE DES JAHRES:

Y = 31: REM LANGE DES MONATS

setzt X auf 365, Y aber nicht auf 31.
Wenn Sie mit dem Programmieren anfangen, werden Sie vermutlich

feststellen, daß REM-Anweisungen ein bißchen ablenken. Und sie kosten Zeit
beim Schreiben. Sie können alle REM-Anweisungen weglassen, geraten aber
in Schwierigkeiten, wenn es einen GOTO- oder GOSUB-Befehl gibt, der sich
auf die REM-Zeile bezieht. Am einfachsten ist es, die REMs einzugeben und die
Bemerkungen wegzulassen!

28

Wenn Ihr Selbstvertrauen zunimmt, werden Sie sehen, daß die REM-
Anweisungen in Wirklichkeit sehr nützlich sind, und sie überall hineinsetzen.
Ich habe in diesem Buch deshalb versucht, einen Kompromiß zu schließen,
indem ich ein paar wichtige REMs eingefügt, sonst aber das Listing, soweit die
Verständlichkeit nicht darunter litt, möglichst kurz gehalten habe. (Es gibt noch
verschiedene andere Methoden der Codeverdichtung, um Listings kurz zu
halten, aber sie führen zu Listings, die schwer zu lesen sind, deshalb verwende
ich sie nicht.)

Abgekurzte Schlusselworter

Als konkretes Beispiel dafür: Die meisten BASIC-Schlüsselwörter (Befehls-
wörter wie PRINT, GOTO) können abgekürzt werden. So läßt sich GOTO
ersetzen durch:

G SHIFT/O

Anhang D des Handbuchs, S. 139, führt diese Abkürzungen auf. (Vorsicht: Er
enthält mehrere Druckfehler: Das "G" bei GOTO und verschiedene Grafikzei-
chen in den Kästchen.) Da sie zu sonderbaren Listings führen, verwende ich sie
hier nicht, aber Sie können es tun, wenn Sie das vorziehen: Sie sparen wirklich
Zeit.

Die Aufgabe des Programmierers

Inzwischen sollte klar sein, worin die Aufgabe des Programmierers besteht. Um
ein bestimmtes Ziel zu erreichen, muß der Programmierer eine Folge von An-
weisungen zusammenfügen, die, wenn sie vom Computer exakt ausgeführt
werden, das gewünschte Ergebnis erzielen.

Wichtig ist, sich darüber klarzuwerden, daß der Computer keine Ahnung
hat, worin der "Zweck" eines Programms besteht. Er gehorcht einfach den
Befehlen. Er ist ein blitzschnell denkender und absolut pedantischer Sklave,
und wenn Sie ihm auftragen, etwas Dummes zu tun, dann gehorcht er.

Das werden Sie sicher sehr rasch entdecken, sobald Sie sich daran ma-
chen, Programme zu schreiben.

29

6 Schleifen

Eine grundlegende Programmiermethode veranlaßt den Computer,
eine gestellte Aufgabe immer und immer wieder auszuführen. Noch
besser, sie kann bei den Aufgaben auch regelmäßige Veränderun-
gen vornehmen. Unter den Beispielen: Multiplikationstabellen.

In diesem Kapitel lernen wir den FOR... NEXT-Befehl kennen (der schon
verwendet wurde, um den Computer bei seinen Überlegungen zu bremsen).
Der Befehl beauftragt das Gerät, eine gestellte Aufgabe mehrmals hintereinan-
der auszuführen. Das wäre nicht besonders aufregend, wenn die Aufgabe
eindeutig festgelegt wäre, aber man kann dafür sorgen, daß ein paar Einzelhei-
ten der Aufgabe sich bei jedem Schritt verändern. Die Folge ist eine ganz
beachtliche Stärkung des Programmierers.

Daich Lust habe, ein bißchen Bildung zu vermitteln, schlage ich vor, daß
Sie das folgende Programm ausprobieren. Ich erkläre es, sobald Sie das getan
haben.

Multiplikationstabellen

10

20

30

40

50

60

PRINT CHRS$ (147) [Schirm löschen. Siehe Kapitel 7]

PRINT "MAL SIEBEN”

PRINT

FORN=1TO12

PRINTN; "X [J7[J = [17 *N

NEXTN

Fahren Sie das mit RUN. Wenn Sie keinen Fehler gemacht haben, sollten Sie
sehr rasch erhalten:

MAL SIEBEN

1x7=7

2x7=14

3x7=21

4x7=28

5x7=35

6x7=42

7x17=49

8x7=56

30

9x7=63

10x7=70

11x7= 77

12x7=84

Wie die Schleife funktioniert

Das nennt man eine Schleife. Die Schleife beginnt mit dem FOR-Befehl in Zeile
40 und endet mit dem NEXT-Befehl in Zeile 69. Dazu müssen wir noch eine Zahl
N setzen, die als Zähler dient, und dem Computer sagen, wo er mit dem Zählen
anfangen (1) und aufhören soll (12). Das geschieht alles in Zeile 49:

FOR (beginn hier mit der Schleife)

N (verwende N als Zähler)

=1 (Startwert für N)

TO (geh weiter bis zu)

12 (Endwert für N)

Es geschieht folgendes: Wenn der Computer der Schleife erstmals begegnet,
setzt er N gleich dem Startwert (1) und führt die Befehle aus, bis er auf NEXT
stößt. Dann vergleicht er N mit dem Endwert (12), erhöht, falls N darunter liegt,
N um 1 (erhält also 2) und kehrt zum Beginn der Schleife zurück, um die Befehle
alle noch einmal auszuführen. Bei der nachsten Begegnung mit NEXT ver-
gleicht er wieder und erhöht N auf 3, dann auf 4,5,6..., bis N 12 wird. Wenn
er auf NEXT stößt und feststellt, daß N den Endwert von 12 erreicht hat, verläßt
er die Schleife und geht weiter zur nächsten Programmzeile (falls vorhanden)
oder hört auf (falls nicht).

Ich gehe das gleich im Einzelnen durch, zuerst aber ein Wort zu Zeile 5®.
Das ist einfach eine Reihe von aneinandergehängten PRINT-Anweisungen und
führt zu Displays wie diesem:

1x7=7

Die Leerstellen [_] sind nur dazu da, damit das am Ende auch hübsch aussieht.
Dieses Display erscheint dann, wenn der Zähler N auf den Wert 1 gesetzt ist, und
ergibt sich so:

PRINTN PRINT 1 1

; nicht weiter

xJ7L21=-[L[" PRNTXOD7O=TD" 1x7=

; nicht weiter

7*N PRINT 7 * 1 (also 7) 1x7=7

(kein Strichpunkt) weiter zur nächsten Zeile

31

Beachten Sie die Verwendung von PRINT N ohne Anführungszeichen. Wenn
Sie PRINT "N” schreiben, dann zeigt er nur den einzelnen Buchstaben N an.
Werden die Anführungszeichen weggelassen, zeigt er den numerischen Wert
an, der N zugeteilt ist. Da N bei 1 beginnt und Schritt für Schritt auf 12 erhöht
wird, hat der PRINT N-Befehl die Wirkung, je nach dem Stand in der Schleife
die Zahlen 1, 2,3... 12 anzuzeigen.

Ebenso nimmt 7 * N die Werte 7 +1 = 7,7*2=14...7*12 = 84 an, so
daß auch diese Zahlen der Reihe nach angezeigt werden.

Nun können wir das Programm im Ablauf durchgehen und feststellen,
wie es sein Ergebnis erzielt.

10 PRINT CHRS (147)

20 PRINT “MAL SIEBEN”

30 PRINT |

49 FORN=1TO1I2

50 PRINTN “XCL) 70) =(1":

7*N

60 NEXTN

50 PRINTN: XO7O=D".

7*N

60 NEXTN

60 NEXTN

Aufgabe 1

Lösch den Schirm.

MAL SIEBEN

Zeig eine Leerzeile an, damit unter

der Überschrift Platz bleibt.

Setz eine Schleife mit N als Zähler,

die von 1 (Start) bis 12 (Ende)

reicht.

1x7=7

Ist N = 12? Nein, es ist 1. Addiere 1,

damit N 2 wird, und kehr zurück zu

Zeile 50. |

2x7=14

Ist N = 12? Nein, es ist 2. Erhöhe auf

3 und geh zurück zu 59. Fahr so

fort...

N ist jetzt 12, also aus der Schleife

heraus. Keine Befehle mehr: STOP.

Verändern Sie Zeile 20 und 5® so, daß der Computer anzeigt:

1. Eine Tabelle mal fünf;
2. Eine Tabelle mal neun;

und für die Ehrgeizigen

32

3. Eine Tabelle mal neunundneunzig.

(Hinweis: Verandern Sie die 7 zu 5, 9 oder 99.)

Schrittgröße _

Wenn Sie einen Befehl solcher Art schreiben:

FORR=3TO14

unterstellt der Computer, daß er in Einerschritten zahlen soll:

3,4, 5,6, 7,8, 9,19, 11,12, 13, 14

Sie können diese Größe aber verändern, wenn Sie den Befehl STEP verwenden.
Um in Zweierschritten zu zählen, würden Sie schreiben:

FORR=3TO14STEP2

was R der Reihe nach die Werte gabe:

3,5, 7,9,11,13

(Da hort es auf, weil der nachste Wert 15 größer ware als der begrenzende Wert
14 im Befehl. R wird überhaupt nicht gleich dem Wert 14 gesetzt. Hätten Sie
jedoch geschrieben:

FORR=3TO15STEP2

dann bekäme R die Werte:

3,5, 7,9,11,13,15

und der höchste Wert 15 im FOR-Befehl würde wirklich erreicht werden.)

Aufgabe 2

Verändern Sie Zeile 49 des Programms TABELLE MAL SIEBEN so, daß es nur
Vielfache gerader Zahlen von 7 anzeigt.

Aufgabe 3

Wie Aufgabe 2, aber nur die ungeraden Zahlen.
Sie können sogar rückwärts zählen, wenn Sie eine negative Schrittgröße

verwenden:

18 PRINT CHRS (147)

20 FORI=19TO®@STEP -1

33

30 PRINTI

40 NEXTI

59 PRINT “WELTRAUMSTART GELUNGEN”

Pause

Wenn der Computer eine bestimmte Zeitspanne lang pausieren soll (etwa,
damit Sie Zeit haben, den Bildschirm zu lesen), können Sie eine "Tunix”-
Schleife dieser Art verwenden:

509 FORI=1TO100

510 NEXTI

Das vergeudet einfach Zeit, während von 1 bis 19@ gezählt wird, bevor die
Berechnungen weitergehen. Soll Platz gespart werden, können Sie auch diese
Form wählen:

FOR I = 1 TO 10®: NEXT I

Die genaue Dauer der Pause hängt von der Schleifengröße ab. Soll die Pause
länger sein, verändern Sie 100 zu einem größeren Wert, umgekehrt zu einem
kleineren. Als grober Hinweis: Jede zusätzliche Sekunde erfordert eine Erhö-
hung der Schleifengröße um etwa 1®®0. Die Verzögerung mit einer Schleife der
Größe 199, wie oben, beträgt also nur rund eine Zehntelsekunde.

Abkürzung

Der Schleifenzähler kann in jedem NEXT-Befehl weggelassen werden. Das
heißt, Siekönnen einfach NEXT statt NEXT | oder NEXT R oder was auch immer
schreiben. Das spart Platz, aber Sie verlieren vielleicht die Ubersicht, welches
Next nun kommt. (Der Computer aber nicht!)

Losungen

Aufgabe 7

1. 20 PRINT “MAL FÜNF”

50 PRINTN: “XC]5() =(1";5*N

2. 2Q0 PRINT “MAL NEUN”

50 PRINTN x O9O] = TD";9*N

3. 20 PRINT "MAL NEUNUNDNEUNZIG”

50 PRINTN; XD 99T = TD";99*N

34

Aufgabe 2

40 FORN=2TO12STEP2

Aufgabe 3

49 FORN=1TO11STEP2

oder

40 FORN=1TO12STEP2

(Es geht mit beiden Zeilen. Vergessen Sie aber nicht, alle anderen Zeilen wie
oben aufzunehmen!)

35

7 TV-Ausgabe

Mit zu den ersten Dingen, die man beherrschen muß, gehört, wie
der Computer dazu zu bewegen ist, auf den Fernsehbildschirm das
zu schreiben, was Sie wollen.

Ein Computer nützt nicht viel, wenn er einfach dasteht und fröhlich vor sich
hinsummt, mit der Außenwelt aber nicht in Verbindung treten will. Ein paar
Verbindungsmethoden haben wir schon in Aktion gesehen — das Keyboard (das
als Zingabegerät fungiert und Information in den Computer einspeist) und den
TV-Bildschirm (ein Ausgabegerät, das sie wieder herausfischt). Eingabe (In-
put) ist, wie Sie mit dem Computer reden, Ausgabe (Output), wie er mit Ihnen
redet. In diesem Kapitel befasse ich mich näher mit TV-Ausgabe; zu Eingabe
siehe Kapitel 9.

Zahlen und Strings

Der 64 befaßt sich mit zwei verschiedenen Arten von Information: Zahlen und
Strings. Zahlen werden in ihrer üblichen Form angezeigt, gegebenenfalls mit
negativem Vorzeichen und Dezimalpunkten, etwa so:

25

-999

76.332

und so weiter. Strings sind einfach Folgen von Symbolen oder Zeichen, als eine
Einheit betrachtet. Um das hervorzuheben, werden sie normalerweise in Anfüh-
rungsstriche gesetzt:

“MARMELADE”

“CATCH - 22”

“ee ENDE « ++"

“%WE4999BCXXX/* * UNSINN + + + 9”

und ähnlich.

PRINT

Das ist der grundlegende Ausgabebefehl. Print (zu deutsch drucken) brauchen
Sie aber nicht wörtlich zu nehmen, selbst wenn Sie über einen Drucker verfu-
gen. Esliefert TV-Ausgabe, kein ausgedrucktes Listing. Der PRINT-Befehl wirkt
jenach dem, was anzuzeigen ist, ein bißchen verschieden.

36

Wenn Sie eine Zahl mit PRINT anzeigen wollen, etwa 42, verwenden Sie
eine Programmzeile dieser Art:

430 PRINT 42 ‘

Um einen String anzuzeigen, setzen Sie in Anfuhrungsstriche:

440 PRINT "MARMELADE"

Wenn Sie diese ‘Programme’ ausprobieren (RETURN nicht vergessen) und mit
RUN fahren, werden Sie feststellen, daß das erste auf dem Bildschirm

42

liefert, das zweite, wie man erwarten möchte:

MARMELADE

‘Der Unterschied: Die Anfuhrungsstriche um einen String werden nicht ange-
zeigt. So kommt bei

PRINT 42

und

PRINT “42”

dasselbe heraus. Wenn Ihnen das Ganze sinnlos erscheint, versuchen Sie es mit:

Aufgabe 1

Vergleichen Sie die Ergebnisse der folgenden Einzeiler-Programme.

1. 10 PRINT6*7

und

10 PRINT “6«7”

2. 20 PRINT 40+ 2

und

20 PRINT "40 + 2”

3. 30 PRINT "THE ANSWER TO THE GREAT QUESTION OF LIFE, THE

UNIVERSE, AND EVERYTHING”

und

37

30 PRINT THE ANSWER TO THE GREAT QUESTION OF LIFE, THE

UNIVERSE, AND EVERYTHING

Der Unterschied zwischen der Anzeige von Zahlen und Strings durch PRINT
wird wichtiger, wenn Sie die Werte von Variablen anzeigen wollen. Siehe
Kapitel 8.

Abkürzung

Statt das Wort

PRINT

zu tippen, können Sie auch ein einzelnes Fragezeichen verwenden:

?

STATT PRINT “MENUE” können Sie also auch schreiben:

?"MENUE”

Das spart Speicherplatz und Schreibzeit gegen den Preis, nicht auf Anhieb
verständlich zu sein. Ich schlage vor, daß Sie sich zuerst an PRINT gewöhnen
und dann zum Fragezeichen überwechseln. Der leichteren Verständlichkeit
halber verwende ich in diesem Buch stets PRINT. Der 64 hat ohnehin Speicher-
platz genug!

Abgesetzte Anzeige

Einem PRINT-Befehl kann eines von drei Satzzeichen angehängt sein:

1. Strichpunkt (;)

2. Komma (,)

3. gar keines

Entsprechende Beispiele sahen dann so aus:

1. 100 PRINT “DAS MACHT EINEN BRAVEN COMPUTER SEHR

FROH’;

2. 110 PRINT “DAS MACHT EINEN BRAVEN COMPUTER SEHR

FROH”,

3. 120 PRINT “DAS MACHT EINEN BRAVEN COMPUTER SEHR

FROH”

38

Die Satzzeichen schieben nach dem Angezeigten Leerstellen ein und passen
dadurch die nächste PRINT-Position auf dem Schirm an. Sie wirken auf Zahlen
anders als auf Strings, und zwar so (gedacht ist das für Ihre Bequemlichkeit,
aber ich bin da ein bißchen skeptisch):

Zahlen Strings

Strichpunkt Laß eine Leerstelle Laß keine Leerstellen
Komma Geh zur nächsten Spalte | Geh zur nächsten Spalte

ab 0,19, 20, 30 ab 1, 11, 21, 31
Nichts Geh zur nächsten Zeile Geh zur nächsten Zeike

Weil wir schon dabei sind, möchte ich erwähnen, daß einfaches

PRINT

einfach eine leere Zeile anzeigt und zur nächsten weitergeht — wie bei der
Zeilenumschaltung einer Schreibmaschine. In der Computersprache wird diese
Operation NEWLINE genannt.

Der Grund fur diese Absetzmöglichkeiten: Man kann verschiedene For-
mate von TV-Bildschirmausgabe herstellen. Die Hauptsache ist, daß man in
einem einzigen PRINT-Befehl mehr als einen Posten unterbringen kann, vor-
ausgesetzt, die Posten werden durch Satzzeichen getrennt. So könnten Sie
etwa schreiben:

500 PRINT “FRED”, "LAURA"; 77, 4.22; “ROGER AND OUT”

und erhalten als Display:

FRED [] L] [J LAURA [J] 77 LJ LJ CJ [DJ 4.22 ROGER [J] AND []

OUT

Sonderlich hubsch ist das ja nun nicht, aber die nachste Aufgabe liefert Besse-
res.

Aufgabe 2

Vergleichen Sie die Ergebnisse der folgenden Programme:

1. 10 PRINT 1

20 PRINT 2

39 PRINT 4

10 PRINT 1, 2,3, 4

3. 10 PRINT 1;2;3;4

4. 10 PRINT 1,, 2, 3,4

39

5. 10

20

6. 19

20

7. 10

20

30

PRINT 1,, 2,,3

PRINT 4,, 5,,6

PRINT 1,, 2,, 3,,

PRINT 4,, 5,, 6

PRINT 1,, 2,, 3

PRINT

PRINT 4,, 5,, 6

8. Probieren Sie noch einmal die Programme 1-7, ersetzen Sie 1, 2,...6
aber durch die Strings “A”, “B”, oe

9. Wie Aufgabe 8, aber nun Strings mit unterschiedlicher Lange wie "MAR-
MELADE”, “JR”, “RAT”, “ROTKOHL” und so weiter.

TAB

Sie konnen diesen Befehl dazu benutzen, die Ausgabe in sauberlichen Kolon-
nen zu tabulieren. Das Bildschirmdisplay des 64 besteht aus 25 Reihen von

Spaltennummer
17171

5

>
”

40

111 1111222 222333333333 3
01234567890123456789912 7890123456789

4 t
Spalte 7 PRINT TAB (7); Spalte 24 PRINT TAB (24);

Abbildung 7.1
Das Bildschirmdisplay hat 25 Reihen zu je 40 Zeichen.

Der TAB-Befehl wählt eine Spalte für die Anzeige.

Zeichen, jede Reihe umfaßt 4® Zeichen. Sie können sich den Schirm also so
vorstellen, daß er 49 Spalten besitzt (Abbildung 7.1). Sie sind, wie man sieht,
von ß-39 numeriert.

Die Anweisung

TAB (C);

in einem PRINT-Befehl führt dazu, daß die Anzeige an der nächsten verfügba-
ren Stelle in Spalte C beginnt. (Wenn Sie an Spalte C schon vorbei sind,
geschieht das in der nächsten Zeile — nicht immer nach Ihren Erwartungen!)
Beispielsweise führt

PRINT TAB (22); “WAS?”

zu dem Ergebnis, das Abbildung 7.2 zeigt.

Spaltennummer >

20 21 22 23 24 256 26

W A S ?

Abbildung 7.2
Wirkung von PRINT TAB (22); “WAS?”

Eine typische Verwendung von TAB zeigt nachstehendes Programm:

10 PRINT "ZAHL"; TAB (10); "QUADRAT"; TAB (29;

“WÜRFEL”; TAB (30); “HOCH VIER”

20 PRINT

309 FORT=1T0O 20

4@ PRINT T; TAB (10); T + T; TAB (20); T * TT;

TAB (30); T*T*T*#T

50 NEXTT

Steuerzeichen und Zitiermodus

Probieren Sie dieses Programm aus und zerbrechen Sie sich noch nicht den
Kopf uber die Eigenheiten des Displays! Bringen Sie zuerst irgendeinen Zei-
chensalat auf den Schirm und tippen Sie dann

10 PRINT”

41

drücken Sie gleichzeitig SHIFT und CLR/HOME und geben Sie das abschlie-
ßende

ein, danach RETURN.
Jetzt RUN.
Sie werden sehen, daß der Bildschirm leer wird und der Cursor zur

Home-Position geht — genauso, als hätten Sie SHIFT und CLR/HOME als
direkten Befehl eingegeben.

Auf dieselbe Weise können mehrere direkte Befehle, in dieser Art vom
Keyboard verfügar, innerhalb eines Programms eingegeben werden. Beispiel:
Wenn Sie in dem obigen Beispiel statt SHIFT + CLR/HOME die Tasten CTRL +
6 drücken, werden Sie feststellen, daß nach RUN die Hintergrundfarbe grün
geworden ist. |

Diese Methode nennt man “Verwendung eines Steuerzeichens” oder
Zitiermodus. Ein Steuerzeichen wird nicht angezeigt, es bewirkt etwas.

Um Sie daran zu erinnern, daß ein Steuerzeichen im Spiel ist, zeigt der 64
im Listing eines Programms trotzdem etwas an. Das ist aber ein willkurliches
Symbol in Zusammenhang mit dem Steuerzeichen, zur Erinnerung gedacht. Bei
CLEAR (also SHIFT + CLR/HOME) ist dieses Symbol ein Grafikzeichen in
Negativschrift, das ‘‘Herz’’-Symbol nach Spielkartenart. Bei CTRL + 6 ist es ein
anderes Grafikzeichen in Negativschrift.

Das ist zwar eine nutzliche Methode, die in Programmlistings aber Ver-
wirrung stiftet (blättern Sie in den Fachzeitschriften - manche Listings sind aus
diesem Grund beinahe unleserlich). Ich vermeide das also in diesem Buch
moglichst und ersetze Steuerzeichen durch ihre codierte Form, namlich

CHRS (K)

wobei Keine Codezahl, der ASCII-Code, für das Zeichen ist (siehe Kapitel 20).
Die Codes sind aufgeführt in Anhang F des Handbuchs, S. 135-137. Wenn Sie
diese Liste durchgehen, entdecken Sie beispielsweise CLR/HOME zweimal als
Zeichencodes 19 und 147. Der erste ist die Version ohne Shift (Cursor HOME),
die zweite mit Shift (CLEAR Bildschirm und Cursor HOME). So hat

PRINT CHRS (147)

dieselbe Wirkung wie das oben erwähnte Herz im Zitiermodus. Ebenso kann mit

PRINT CHR$ (30)

grüne Hintergrundfarbe erreicht werden. Ich empfehle, sich zu Anfang darüber
keine großen Gedanken zu machen. Behalten Sie lediglich im Gedächtnis, daß
PRINT CHRS (K) oft verwendet wird, um aus einem Programm heraus solche
Wirkungen zu erzielen.

Anzeigen in einer vorgewählten Reihe

Durch die Verwendung von Steuerzeichen können Sie vom Computer an jedem
gewünschten Bildschirmpunkt ein Zeichen anzeigen lassen. Wie TAB eine
Spalte auswählt, habe ich schon gezeigt, aber wie bestimmen wir die Reihe?

42

Hier ist ein Weg. Nehmen Sie zuerst CHR$ (19), um den Cursor nach oben
zu bringen, ohne den Bildschirm zu löschen. Dann verwenden Sie eine Schleife,
die mehrmals PRINT CHRS (17) enthält, um den Cursor herunterzuführen. (Das
ist der Code des Steuerzeichens fur CURSOR ABWARTS.) Wollen Sie also zu
Beginn von Reihe 15 anzeigen, schreiben Sie:

5600 PRINT CHRS$ (19);

519 FORT =1[TO 15: PRINT CHR$ (17);: NEXT T

520 PRINT “DAS IST IN REIHE 15”

Beachten Sie die Strichpunkte. Ohne sie werden viel mehr Reihen ubersprun-
gen. Wenn Sie in Spalte 8, Reihe 15, mit PRINT anzeigen wollen, verändern Sie
obige Zeile 520 zu:

520 PRINT TAB (8); "DAS IST IN REIHE 15 SPALTE 8”

Dieselbe Wirkung kann dadurch erreicht werden, daß man auf den entspre-
chenden Steuertasten im Zitiermodus schreibt, also innerhalb der Anführungs-
striche eines PRINT ”.. ."-Befehls wie oben. Es gibt noch einen völlig anderen
Weg ohne Zitiermodus oder Steuerzeichen, den ich in Kapitel 19 erläutere. Ich
persönlich ziehe ihn vor, aber Ihr Geschmack ist vielleicht ein anderer.

Lösungen

Aufgabe 1

1. 42

6*7

2. 42

40 +2

3. THE ANSWER TO THE GREAT QUESTION OF LIFE, THE UNIVERSE

AND EVERYTHING

)

? SYNTAX ERROR

(Hier hat das TO einen Syntaxfehler hervorgerufen: THE ANSWER ist als
Variable gesehen worden!)

Aufgabe 2

1. [1

[12

43

44

[13

[14

NOO OU UODUDOLPODOIDDOILIDILDIEIDI3

IND OIDDILILILI4

LMOO2003004

CMOOOOOOUOOOOUOOOUOOUOO

DIS OUOOUOUOUOUOOOUOOUOUOOUOOS

LH OOOOOUOUOOUOOOOOOOOO
[13

DIDI DU OU OD OD ODOUDDLIDILITD15
[16

LMOOOOUODOUOOOOOUOOOOOOO

BUND U OU OU DO ODOUODOTDIDITILIA

DIsb JOJOOOOOUOOUOOUOUOOUOOOUE

SU DJ OD OOo Oooo
[13

D400 OOOOOOOOOOOOoOoOo0o0oO0s
[16

Wie oben, aber 1 Stelle nach links verschoben.

Wie bei 8, was die Startpositionen für die Strings angeht.

8 Variable

Bei vielen Programmen müssen Sie mehrere Zahlen verwenden und
sie auf eine bestimmte Art behandeln, aber die Zahlen selbst kön-
nen sich verändern. Dann kommen die Variablen ins Spiel.

Viele Programme umfassen die regelmäßige Verarbeitung verschiedener Daten-
arten. Ein Programm, das die Stabilität von Hängebrücken analysiert, wird mit
sehr vielen numerischen Daten umzugehen haben; ein Textautomat im Büro
verarbeitet Textdaten, die aus Folgen von Buchstaben, Leerstellen und anderen
Symbolen bestehen. In BASIC verwendet man für den Umgang mit solchen
Größen Variable. Eine Variable wird mit irgendeinem Namen bezeichnet, den der
Programmierer bestimmt, und dient als Platzhalter für die Daten; die eigentli-
chen Daten bestimmen die Werte, die die Variable annimmt. In Beispielen ist das
alles, wie wir gleich sehen werden, viel einfacher als im Abstrakten. Hier ein
typischer Fall:

19 FORT =9TO 1000

20 PRINT T: “IM QUADRAT IST”, T*T

30 NEXTT |

Das hat das Quadrat T * T der Zahl T von ® bis 190@ zu berechnen. Wir sagen,
T sei eine numerische Variable. Sie besitzt einen festen Namen, hier T, und einen
Wert, der sich im Verlauf eines Programms ändern kann. Hier beginnt sie mit
Wert ®, nimmt dann Wert 1 und 2 und so weiter an, bis am Ende ihr Wert 1009
ist.

Beim 64 gibt es zwei Hauptarten von Variablen:

1. Numerische Variable, die als ihre Werte Zahlen umfassen.
2. Stringvariable, die Folgen von Zeichen umfassen.

Variablennamen müssen mit einem Buchstaben beginnen und aus Buchstaben
und Ziffern aufgebaut sein. (Für diesen Zweck gelten Grafikzeichen als Buch-
staben.) Typische numerische Variablennamen sind:

A B C ALPHA Ad

GEWICHT GROESSE HARRY MARIA X233

und so weiter. Bei einer Stringvariablen muß am Ende das Dollarzeichen $
angehangt werden:

AS BS Cs ALPHAS A5$

GEWICHTS GROESSES HARRYS$S MARIAS X233$

45

Zu den Variablennamen muß man sich zwei Dinge merken:

1. Nur die beiden ersten Buchstaben oder Ziffern werden vom Computer
erkannt (allerdings sind längere Namen bis zu rund 8® Zeichen erlaubt).
Demnach werden

EX EXPERTE EXIL EX55

alle mit der g/eichen Bedeutung gelesen. Das kann nachteilig sein, wenn Sie
Namen verwenden, die Sie an die Funktion der Variable erinnern sollen. Bei
einem Firmenprogramm werden:

BEITRAG

und

BEZUEGE

vom Computer als gleich behandelt (BE), aber dem Programmierer entfallt das
in der Hitze des Gefechts vielleicht, und er gerat in Verwirrung, wenn er das
Ergebnis sieht...

2. Enthalt ein Variablenname irgendwo ein BASIC-Schlusselwort wie
PRINT, LIST, TO, FOR und so weiter, so la&t das System thn nicht zu.
(Obwohl es sich nur fur die beiden ersten Buchstaben interessiert! Der
Grund: Es sucht zuerst nach den Schlusselwortern.) Die folgenden Na-
men konnen Sie also nicht verwenden, weil sie Schlusselworter (unter-
strichen) enthalten: |

TOTAL FORDERUNG SORTENS BESTAND STABIL

und zu meinem Schrecken ist mein altes Lieblingswort

FRED

auch nicht zulassig, weil es ein BASIC-Wort FRE gibt, das mitteilt, wieviel
Speicherplatz noch vorhanden ist (siehe Kapitel 12).

In manchen Fällen kann das System mißverstehen, was Sie gemeint
haben, statt einfach Einspruch zu erheben. Versuchen Sie zu erraten, was dieses
Programm bewirkt.

18 LETTERS = “A”

20 PRINT LETTERS

Sie erhalten eine Fehlermeldung. Verändern Sie Zeile 20 zu:

20 PRINT TERS

und der Computer zeigt ein A’ an! Er hat Zeile 19 als einen Befehl aufgefaßt!

10 LET TERS = “A”

46

bezieht sich auf eine Variable namens TER$. Sehr spaßig. Aber Sie können
Schwierigkeiten aus dem Weg gehen, solange Sie BASIC-Schlusselworter -
sorgfältig meiden.

Aufgabe 1

Zwei der folgenden Namen sind zugelassen, alle anderen nicht. Welche und
warum? (Hinweis: Lassen Sie vom Computer mit PRINT alle anzeigen.)

+ NEUN SPENDE RATLOS FUNKTION 221B

BAKER STREET VERWENDUNG SINN

GETRAGEN POST WAND NOTE VERDORBEN

BREMSE FERNDIENST

Variable zuteilen

Der Programmierer muß dem Computer mitteilen, welchen Wert er einer Varia-
blen zuteilen soll. (Wenn Sie das unterlassen, unterstellt er für jeden numeri-
schen Wert ® und für jede Stringvariable einen sogenannten /eeren String ohne
jedes Symbol.) Werte können Sie zuteilen mit dem Befehl:

LET

auf solche Weise:

1098 LET GEWICHT = 77

118 LET NAMES = “CHARLIE”

Um Platz zu sparen, darf man das Wort LET weglassen (und tut das in der Regel
auch):

109 GEWICHT = 77

110 NAMES = “CHARLIE”

Beachten Sie die Anfuhrungsstriche um “CHARLIE”. Sie brauchen Anfuh-
rungsstriche stets dann, wenn Sie Stringvariable zuteilen. Die Gänsefüßchen
sind aber nicht Teil des Variablenwerts; sie geben nur an, wo die Folge von
Symbolen anfangt und aufhort. Mehr uber Strings in Kapitel 16.

Der Wert der Variablen kann auch indirekt dadurch zugeteilt werden, daß
die neue Variable als eine Kombination schon definierter Variablen ausgedrückt
wird:

10 A=36

20 B=5

30 K=10*A+B

47

setzt K auf den Wert 10 * 36 + 5, also 365. Das nächste Programm multipliziert
die beiden Zahlen 77 und 88:

10 A=77
20 B=88
30 K=A+B
40 PRINTK

Sie können, wenn Sie wollen, die Zeilen 10 und 29 verändern, um andere
Zahlen zu multiplizieren. Natürlich gibt es kürzere Wege, um dasselbe zu errei-
chen, etwa:

10 K=77+88

20 PRINTK

oder einfach:

10 PRINT 77 88

aber das liegt daran, daß ich ein besonders einfaches Beispiel gewählt habe.

Aufgabe 2

In Commodore-Kaufhäusern kostet ein Helm mit Schmuckbesatz 135 Dollar,
ein Zauberglas 32 Dollar und eine Packung Echsenschuppen 3 Dollar. Benüt-
zen Sie die drei Variablen HELM, GLAS und ECHS, um ein Programm aufzu-
bauen, das die Kosten von sechs Helmen, fünf Gläsern und neunundzwanzig
Packungen Echsenschuppen berechnet. Nennen Sie diese Variable PREIS.

Aufgabe 3

Ändern Sie nur eine einzige Programmzeile ab, um die Kosten von elf Helmen,
vierzehn Gläsern und drei Packungen Echsenschuppen zu berechnen.

Aufgabe 4

Ändern Sie vier weitere Zeilen ab und lösen Sie Aufgabe 2, wenn die Preise sich
geändert haben auf 147 Dollar für den Helm, 43 Dollar für ein Glas und 1 Dollar
für eine Packung Echsenschuppen (die nicht mehr in Mode sind).

48

Lösungen

Aufgabe 1

Die zulässigen Namen sind BAKER und STREET. Die Namen #NEUN und
221B beginnen nicht mit Buchstaben. Die übrigen enthalten BASIC-Schlüs-
selwörter wie folgt:

SPENDE RATLOS FUNKTION VERWENDUNG

SINN GETRAGEN POST WAND NOTE

VERDORBEN BREMSE FERNDIENST

Aufgabe 2

10

20

30

40

50

60

PRINT CHR$ (147

HELM = 135

GLAS = 32

ECHS = 3

PREIS = 6 * HELM + 5 * GLAS + 29 * ECHS

PRINT "GESAMTPREIS BETRAEGT [_]|$”; PREIS

(Ich habe einen Hinweis auf Leerstellen in der Meldung Zeile 69 bewußt
unterlassen; von jetzt an mache ich das immer, wenn klar ist, wo sie hingehö-
ren.)

Aufgabe 3

Verändern Sie Zeile 5® zu:

50 PREIS = 11 x HELM + 14 » GLAS + 3 * ECHS

Aufgabe 4

Verändern Sie die Zeilen 20-40 zu:
20

30

40

HELM = 146

GLAS = 43

ECHS = 1

49

9 Eingaben

Um Information in den Computer einzugeben, brauchen Sie ihm
nur zu befehlen, er möge Sie erinnern, sobald er etwas wissen muß.

Die Aufgaben 2-4 im vorigen Kapitel haben ihre Arbeit in der Tat geleistet, aber
es ist doch arg mühsam, jedesmal Programmzeilen verändern zu müssen, wenn
Sie den Wert einer Variablen ändern wollen. Zum Glück ist das auch nicht
notwendig, dank dem Befehl:

INPUT

mit dem Sie vom Keyboard aus den Wert setzen können. Und zwar so:

10 PRINT “GIB EINE ZAHL EIN”

20 INPUTN

30 PRINT “DIE ZAHL WAR []"; N

Wenn Sie das fahren, erhalten Sie GIB EINE ZAHL EIN und dann ein Fragezei-
chen. Wenn Sie auf dem Keyboard jetzt eine Zahl tippen und RETURN drucken,
geht das Programm weiter zu Zeile 3® und zeigt die Meldung samt der Zahl an.

Mehrfacheingaben

Wie bei PRINT-Befehlen konnen Sie mit INPUT mehrere verschiedene Variable
eingeben, die Sie durch Kommata trennen. Probieren Sie

19 INPUTA, B,C

20 PRINTA, B,C

Sie erhalten ein ?-Zeichen. Drucken Sie eine Ziffer, meinetwegen 3. Nun erhal-
ten Sie ?? fur die zweite Zahl. Geben Sie 5 ein. Noch einmal erscheint ??, also
drucken Sie 7. Der 64 zeigt prompt die Werte 3, 5, 7 an, die Sie fur A, B, C
eingegeben haben. Das Endergebnis sieht so aus:

RUN

23

225

2?7 4

3 5 7

READY

50

Unrichtige Eingaben

Wenn Sie beim Input einen Fehler machen, können Sie mit der INST/DEL-Taste
ausbessern, vorausgesetzt, Sie haben nicht auf RETURN gedrückt. Haben Sie
das doch getan, gibt es Schwierigkeiten . . . außer in einem Fall, wo der 64 sich
(und Sie) gegen einen häufig vorkommenden Fehler schützt.

Versuchen Sie für eine numerische Variable etwas einzugeben, das keine
Zahl ist, erhalten Sie die Fehlermeldung

REDO FROM START

Sie sollen also die Eingabe wiederholen.

Aufforderung

Sie können eine Meldung anzeigen, die Sie daran erinnert, wozu eine Eingabe
dient (ein ?-Zeichen ist nicht immer von Nutzen), nämlich so:

10 INPUT "GIB EINE ZAHL EIN”; N

was dieselbe Wirkung hat wie die Zeilen 19 und 20 des Programms, mit dem
dieses Kapitel anfing. Sie können mit diesen An- oder Aufforderungsmeldun-
gen auch Mehrfacheingaben verbinden. Beachten Sie, wo Strichpunkt und
Anführungsstriche stehen.

Hier ein Weg, die Aufgaben 2-4 des vorigen Kapitels ganz allgemein
besser zu bewältigen.

1@ PRINT CHRS (147)

20 INPUT "PREISE: HELM, GLAS, ECHS?”; HE, GL, EC

30 INPUT "MENGEN?”; NH, NG, NE

49 PREIS=NH*HE+NG*GL+NE*EC

50 PRINT "GESAMTPREIS BETRAEGT $”; PREIS

Um das Listing abzukurzen, habe ich auf Variable mit zwei Zeichen abgekürzt.
HE, GL und EC sind die alten HELM, GLAS und ECHS, und für die jeweiligen
Mengen habe ich drei neue Variable namens NH, NG und NE.

Ein sauberes Display

Angenommen, Sie möchten, daß jemand, sagen wir, sein Alter und die Telefon-
nummer eingibt. Ihr erster Versuch könnte so aussehen:

10 PRINT CHRS (147)

20 INPUT “ALTER”; A

30 PRINTA

51

49 INPUT "TELEFONNUMMER; T

50 PRINTT

Das funktioniert zwar, aber am Ende sieht es auf dem Bildschirm so aus:

Alter? 17

17

TELEFONNUMMER? 361005

361905

READY

was nicht gerade ansehnlich ist. Es geht besser, wenn Sie die Reihenfolge ein
bißchen verändern:

18 PRINT CHRS (147)

20 INPUT “ALTER”; A

30 INPUT “TELEFONNUMMER?”; T

40 PRINT CHRS$ (147)

50 PRINTA,T

Manchmal wollen Sie aber vielleicht nicht bis zum Ende warten, um alles
anzuzeigen. Dann wäre es besser, dafür zu sorgen, daß die Meldungen oben auf
dem Bildschirm angezeigt und gelöscht werden, bevor es weitergeht.

Hier ist der Ort fur Steuerzeichen. Sie entsinnen sich, daß PRINT CHRS$
(19) den Cursor zurückführt, den Bildschirm aber nicht antastet. Das können
wir nutzen, um dafür zu sorgen, daß die Aufforderungszeichen in den obersten
Zeilen angezeigt werden. Hier ein Beispiel mit Mehrfacheingaben.

10 PRINT CHRS (147)
20 REIHE=4
30 PRINTCHRS (19)
40 PRINT "[30xD]J"
50 PRINT “(30x (]”
60 INPUT “ALTER”; A
70 INPUT "TELEFONNUMMER; T
80 PRINT CHRS (19)
99 FORR = 1TO REIHE: PRINT CHR$ (17);: NEXT R

100 PRINTA,T
110 REIHE = REIHE +1

120 GOTO 39

52

Hier löscht Zeile 1@ den Schirm, Zeile 20 setzt eine Variable für die Reihennum-
mer, wo der nächste Eintrag in der Liste angezeigt werden soll. Zeilen 30-50
löschen die obersten beiden Reihen für neue Eingaben; 60-70 nehmen die
neuen Eingaben an. Zeilen 80-99 führen zur Anzeige in der Reihe REIHE. Zeile
100 schreibt die Einträge der Tabelle, 11® führt REIHE um 1 weiter zur nächsten
Reihe, und 120 wiederholt den ganzen Vorgang.

Ein bißchen Jongleurkunst, aber nicht unmöglich, wenn man klaren Kopf
behält...

Übrigens bedeutet Zeile AP, daß Sie

PRINT "[30 x L]]”

schreiben müssen, ebenso bei Zeile 50.

Aufgabe 7

Schreiben Sie ein Programm, das als Eingaben bis zu 15 Namen und Rufnum-
mern annimmt und sie nach der Eingabe anzeigt, wobei das Display ordentlich
aussieht.

Lösungen

Aufgabe 1

10 PRINT CHRS (147)

20 REIHE =4

30 FORK=1T015

40 PRINT CHRS$ (19)

50 PRINT “(30x []]”

60 PRINT “[30x (]]"

70 INPUT “NAME”; NAMES

80 INPUT "TELEFONNUMMER"; T

90 PRINT CHR$ (19)

109 FOR R=1TO REIHE: PRINT CHR$ (17);: NEXT R

11@ PRINT NAMES, T

120 REIHE = REIHE + 1

130 NEXTK

53

Übrigens könnten Sie Zeilen 20 und 120 weglassen und 19@ ersetzen durch

199 FORR=1TOK + 3: PRINT CHRS$S (17);: NEXTR

weil Sie in Wahrheit keine zwei Zähler REIHE und K brauchen.

54

10 Debugging |

Es heißt, der bildkräftige Ausdruck "die Bugs (Käfer, Insekten)
herauszuholen” sei in der Frühzeit der Computer entstanden, als
Insekten in die Maschine krabbelten und Kurzschlüsse hervorrie-
fen. Wenn heutzutage der Computer versagt, ist in der Regel der
Programmierer schuld. Aber um das beheben zu können, müssen
Sie sich mit dem Debugging (= Entfehlern) trotzdem auskennen.

Sie sollten sich nie entmutigen lassen, wenn ein Programm beim ersten Lauf
nicht gleich fehlerlos läuft. Das kommt sogar bei Berufsprogrammierern ganz oft
vor!

Sie müssen also über Methoden verfügen, die Ihnen helfen, die Fehler in
einem Programm rasch und ohne Mühe zu finden. Das nennen wir Debugging.

Syntaxfehler

Fangen wir an mit den Fehlern, die erstmals dann auftreten, wenn Sie ein
Programm fahren. Beispiel: Nehmen wir an, Sie schreiben irgendwo in einem
Ihrer Programme

59 FOR1=1-7

weil Sie vergessen haben, daß man in einer FOR-Schleife die Werte durch ein
“TO” trennen muß. Der 64 nimmt das nun geduldig an, wenn Sie es eingeben,
aber beim Lauf des Programms erhalten Sie die Meldung:

SYNTAX ERROR IN 50

Mit anderen Worten: Dem 64 behagt die grammatikalische Konstrukion der
Anweisung in Zeile 5@ nicht. Das ist ganz so, als würde ich sagen: ‘64, er nicht
verstehen diese Anweisung!” Sie würden Einwände gegen meine Syntax erhe-
ben! Der einzige Unterschied ist der, daß Sie meine ungrammatikalische Mittei-
lung begreifen würden, der 64 sich aber gar nicht die Mühe macht, Zeile 50 zu
verstehen. Er wirft sie, wie wir gesehen haben, einfach hinaus.

Fehler dieser Art unterlaufen besonders häufig, wenn Sie eine Program-
miersprache erlernen, und es ist sehr ärgerlich, ein Programm von sechzig Zeilen
mit zehn FOR-Anweisungen einzugeben, um dann beim Lauf zu erfahren, daß
Sie den Aufbau einer FOR-Anweisung falsch in Erinnerung haben und sie nun
alle ändern müssen. Sie sollten es sich also zur Gewohnheit machen, nach
jeweils zwei, drei eingetippten Zeilen RUN zu geben. Unvollständige Pro-
gramme verhalten sich freilich nicht sinnvoll, und Sie können sogar Fehlermel-
dungen erhalten, die wieder verschwinden, wenn der nächste Teil eingegeben
wird, aber in diesem Stadium kommt es für Sie nur darauf an, die Syntaxfehler
zu entdecken, bevor Ihnen zu viele davon unterlaufen.

55

Die fehlerhafte Zeile ändern

Sobald Sie den Fehler entdeckt haben, wollen Sie die Anweisung ändern. Am
einfachsten geht das, wenn Sie die Zeile neu eingeben. (Wohlgemerkt: Wenn
Sie eine Zeile ganz entfernen wollen, schreiben Sie einfach die Zeilennummer,
gefolgt von RETURN.) Der Haken dabei ist natürlich der, daß die Zeile recht
lang sein kann und es als Zeitvergeudung erscheint, die ganze Tipperei mit
vielleicht nur einer einzigen Anderung wiederholen zu müssen.

Der 64 bedient Sie mit einem Zditor, um dieses Problem zu bewältigen. Er
ist sehr leistungstark und erfordert wie vieles in dieser Art ein wenig Übung,
bevor Sie richtig damit umgehen können.

Sorgen Sie als erstes dafür, daß die Zeile, die Sie ändern wollen, irgendwo
auf dem Bildschirm erscheint, an welcher Stelle, ist ganz gleichgültig. Wenn das
nicht der Fall ist, schreiben Sie (in unserem Beispiel) LIST 59.

Benützen Sie nun die beiden Cursortasten (am Keyboard unten rechts)
dazu, den Cursor auf die “5” zu bewegen, also:

50 FORN=1-7

Dazu halten Sie die SHIFT-Taste gedrückt und drücken gleichzeitig die innere
Cursortaste. Wenn Sie die Taste nur für ein, zwei Sekunden drücken, sehen Sie
den Cursor eine Zeile höherklettern. Drücken Sie die Taste längere Zeit nieder,
dann wiederholt sich der Vorgang auf einmal sehr rasch, und Sie werden
feststellen, daß Sie, bis Sie Übung bekommen haben, über das Ziel hinausschie-
Ren. Macht nichts; um am Bildschirm wieder herunterzukommen, drücken Sie
einfach die Taste, diesmal aber ohne SHIFT.

Betätigen Sie nun die andere Cursortaste (ohne SHIFT), um den Cursor
die Zeile entlangzubewegen, bis er auf dem - ist: |

50 FORN=1-7

Tippen Sie “T”. Es tritt an die Stelle des -:

50 FORN=1T7

Wenn Sie nun ''O” tippen, ersetzt es die 7, was in diesem Fall keine große Rolle
spielen wurde, weil Sie die Ziffer einfach noch einmal tippen konnten, aber wie
sähe es aus, wenn danach noch 2® weitere Zeichen kamen? Der 64 verschafft
uns einen Weg, das Problem heimlich zu umgehen: Wir können eine Zeile
dadurch erweitern, daß Stellen eingeschoben werden, die man dann über-
schreiben kann. An der Tastatur oben rechts befindet sich eine /nsert- (Ein-
schub) -Taste INST. Beachten Sie, daß das die obere Tastenhälfte betrifft, so daß
Sie dazu SHIFT betätigen müssen, weil sonst mit DEL gelöscht wird.

Steht der Cursor so, wie oben angegeben, und Sie drücken INST, entsteht
zwischen "T” und “7” eine freie Stelle:

56 FORN=1T[LJ7

wo Sie das ''O” jetzt hineinsetzen können:

50 FORN=1TO7

56

Drücken Sie dann noch RETURN, und die Sache hat sich.
Das Ganze zu beschreiben, hat natürlich viel länger gedauert, als es zu

tun, vor allem dann, wenn man ein bißchen Übung hat.

Aufgabe 1

Hier ein paar Beispiele für Sie zum Üben. In jedem findet sich ein Syntaxfehler.
Versuchen Sie alle Anweisungen einzugeben, herauszufinden, worin der Fehler
besteht, und mit dem Editor den Fehler dann zu entfernen. Schreiben Sie
schließlich RUN, um sich zu vergewissern, daß keine ?SYNTAX ERROR-
Meldung mehr kommt. (Sie erhalten vielleicht eine andere Meldung, aber hier
befassen wir uns zunächst nur mit Syntaxfehlern.)

o
n

P
W
N

77
 20 INPUTA

30 B*C=F

40 INPUT “GIB EINEN WERT EIN”, V

50 IFP=1:PRINT”P=1".

60 A=3;B=7;C=10

70 TOP=4

Losungen

Aufgabe 7

Das müßte lauten:

20 INPUTA

Führen Sie, um es abzuändern, den Cursor auf ‘“M”, schreiben Sie N’
und drucken Sie RETURN. Einfach!

Das ist verkehrt herum. Es muß heißen:

30 F=B*C

In einem solchen Fall geht es vermutlich schneller, die Zeile neu zu
schreiben, statt den Editor zu verwenden. Zur Übung trotzdem:
Führen Sie den Cursor auf "B’ und fügen Sie zwei Leerstellen ein. Tippen
Sie “F=" hinein. Führen Sie anschließend den Cursor am "'F’ des Zeilen-
endes vorbei, entfernen Sie “F” und “=” mit DEL. Drücken Sie, wie
gewohnt, RETURN. |

Das Trennzeichen Komma muß ein Strichpunkt sein:

40 INPUT “GIB EINEN WERT EIN”; V

Also wird schlicht getauscht, wie in Beispiel 1.

5/

4. Das muß lauten:

50 IFP=1THEN PRINT "p = 1"

(siehe Kapitel 11), so daß Sie das "=" durch ”T” ersetzen, drei Leerstellen
einfügen und “HEN” hineinschreiben müssen.

5. Die Strichpunkte müssen Doppelpunkte sein, also schlicht austauschen.

6. Da werden Sie vermutlich überfordert sein. Auf Anhieb ist nichts dagegen
einzuwenden, “TOP” als Variablennamen zu verwenden, aber leider ent-
halt er am Anfang das BASIC-Schlüsselwort “TO” (wie bei FOR N = 1
TO 20) - siehe Kapitel 8. Der 64 gerät also in Verwirrung, weil er Sinn in
einer Anweisung sucht, die mit TO” beginnt und er als erstes ein "FOR"
erwartet.
Sie müssen den Variablennamen ändern, vielleicht zu “MAX”.
Das Problem kommt ziemlich oft vor, und es ist gut, darauf zu achten, weil
es viel Verwirrung stiften kann. Sobald Sie ohne erkennbaren Grund einen
Syntaxfehler zu sehen bekommen, versuchen Sie die Variablennamen zu
ändern!

Hinweis: Wenn Sie ausgebessert haben, wird der Cursor vermutlich nicht in
einer leeren Zeile stehen. Wenn Sie RUN schreiben, ersetzen Sie dann die ersten
drei Zeichen in der Zeile, so daß, wenn die Zeile, zum Beispiel, lautete:

READY

dort nun

RUNDY

steht. Wenn Sie RETURN drücken, versucht BASIC zu verstehen, was RUNDY
sein soll, was nicht geht, so daß Sie wieder eine Fehlermeldung einfangen. Am
besten löscht man nach abgeschlossener Ausbesserung den Bildschirm.

58

11 Verzweigen

Manchmal muß der Computer verschiedene Aufgaben unter ver-
schiedenen Bedingungen ausführen. Dazu nutzt man Verzweigun-
gen.

Wir haben zwei Befehle mit Auswirkungen auf die Reihenfolge kennengelernt,
in welcher der Computer Befehle ausführt, nämlich GOTO, der ihn einfach zu
einer bestimmten Zeile, und FOR... NEXT, der ihn durch eine regelmäßige
Schleife schickt. Die beiden sind für Programme, die unter verschiedenen
Bedingungen verschieden reagieren müssen, ein bißchen zu regelmäßig.

Daß das Programm sich entsprechend den Bedingungen verzweigt, läßt
sich unter anderem mit dem Befehl

IF... THEN...

erreichen.
Hier ein Beispiel:

Bankkonto

Das ist ein ganz einfaches Beispiel für ein “Praxis’’-Programm. Es berechnet
Ihren Kontostand, wenn Sie den vorherigen Stand angeben und Ihre Einkünfte
und Ausgaben Posten für Posten aufführen. Damit es einfach bleibt, habe ich
mir keine Gedanken über die Position der Eingabemeldungen gemacht; Sie
können, wenn Sie Lust haben, hier Ordnung schaffen.

10 PRINT CHRS (147)

20 PRINT "BISHERIGER KONTOSTAND”:

30 INPUTB |
49 PRINT "FUEHRE AUSGABEN AUF”
50 INPUTA

60 IFD < @ THEN 90

7@ LETB=B-A

80 GOTO 50

99 PRINT "FUEHRE EINNAHMEN AUF”

108 INPUTE

119 IFE < @ THEN 140

120 LETB=BteE

59

130 GOTO 19

140 PRINT "DERZEITIGER KONTOSTAND [_]"; B

Die entscheidenden Zeilen hier sind 69 und 119. Um zu sehen, wie sie wirken,
müssen Sie wissen, daß das Zeichen < weniger als bedeutet. Die Bedingung D
< @ bedeutet also: "D ist kleiner als Null’. Das ist keine Zahl, hat also keinen
numerischen Wert; es ist eine logische Feststellung, die entweder wahr oder
falsch sein kann (je nachdem, ob D wirklich kleiner ist als Null oder nicht).
Beispiel:

3 < Q ist falsch

-7 < Qist wahr

Eine typische IF... -THEN-Anweisung hat die Form

IF Bedingung THEN Befehl

‚Ist die Bedingung wahr, wird der Befehl ausgeführt. Ist sie aber falsch, geht das
Programm zur nächsten Zeile. Zeile 69 schickt das Programm also dann zu Zeile
90, wenn D negativ, aber zur nächsten, Zeile 70, wenn D positiv ist.

Sehen wir uns an, wie das geht. Bis Zeile 5@ sollte alles klar sein. Nehmen
wir an, Sie haben drei Ausgaben (Barzahlungen) von 15, 7 und 11 Pfund (oder
Dollar, wenn Ihnen das lieber ist — beim heutigen Wechselkurs wird der Unter-
schied bald nicht mehr zu sehen sein). Wenn Sie das erstemal aufgefordert
werden, D einzugeben, teilen Sie dem Computer den ersten Betrag mit.

?15

Da D < falsch ist, geht das Programm weiter zu den Zeilen 70 und 89, die es
zu einer neuen Eingabe in Zeile 5® zurückschicken. Sie liefern also den zweiten
Betrag:

?7

und dann den dritten:

?5

aber der Computer giert immer noch nach einer Eingabe:

?

also müssen Sie etwas tun. Nun kommt D < ® zu seinem Recht. Geben Sie
einen negativen Wert ein (—1 bietet sich an). Jetzt geht das Programm zu Zeile
90, weil D < ® wahr ist. Der ganze Ablauf wiederholt sich, jetzt für Einkünfte
(eingehende Beträge); und die Eingabe hort auf, wenn Sie wieder —1 beisteu-
ern. Der Gebrauch eines sinnlosen Werts wie -1, um eine Verzweigung zu
steuern, ist ein üblicher Kniff; wir sagen, —1 diene als Begrenzer, weil er dem
Computer "Ende der Eingabeliste” signalisiert.

Inzwischen haben die Zeilen 70 und 12@ Abhebungen abgezogen und
Eingänge hinzuaddiert, so daß er endgültige Kontostand in Erscheinung tritt.

60

Aufgabe 7

Schreiben Sie ein Programm zur Addierung der Preise einer Einkaufsliste und
verwenden Sie einen Begrenzer — 1, um das Ende der Eingaben anzuzeigen.

Aufgabe 2

Schreiben Sie ein Programm zur Eingabe einer Zahl, das anzeigen soll, ob sie
kleiner als 190, gleich 19@ oder größer als 10@ ist. (Hinweis: > bedeutet
“großer als’.)

Größenrelationen von Zahlen

Es gibt eine ganze Reihe von Symbolen für die Feststellung, ob eine Zahl größer
ist als eine andere oder gleich oder anders oder was auch immer. Hier eine
vollständige Liste mit Beispielen.

= gleich (3 = 3 wahr; 3 = 4 falsch)

> größer als (3 > 2 wahr; 3 > 4 falsch)

< kleiner als a (3 < 4 wahr; 3 < 2 falsch)

< > nicht gleich (3 <> A wahr; 3 < >3 falsch)

> = größer als oder gleich (3>=3,3 >= 2 wahr; 3 >= 4 falsch)

<= kleiner als oder gleich (3 <=3,3 <= 4 wahr; 3 <= 2 falsch)

Logik
Die Befehlsworter

AND

OR

können dazu verwendet werden, Bedingungen zu verknüpfen. Wenn c und d
Bedingungen sind, dann ist c AND d wahr, falls c und d beide wahr sind.
Demnach ist

X > @ANDX < 3

nur wahr, wenn X größer ist als ® und auch kleiner als 3. Bei ganzen Zahlen X
bedeutet das, X muß 1 oder 2 sein; bei Dezimalzahlen (über die ich noch nicht
gesprochen habe), läßt das erheblich mehr Möglichkeiten zu.

61

Ebenso ist c OR d wahr, falls entweder c oder d wahr ist (oder möglicher-
weise beide). Also bedeutet

X<5ORX=5

dasselbe wieX <= 5.
Schließlich sollte ich noch den logischen Befehl

NOT

erwähnen, der wahr in falsch verwandelt und umgekehrt.

Bedingte Sprünge

Ein gangiger Gebrauch von IF... THEN ist der, das Programm zu einer neuen
Zeile umzuleiten, nämlich so:

830 IFX = YTHEN 999

840 beliebig...

Das nennt man einen bedingten Sprung.
Nach THEN folgt ein (stillschweigendes) GOTO. Eigentlich sollte es

heißen IF X = Y THEN GOTO 990. Der Kürze halber wird das GOTO aber
weggelassen.

Bedingte Zuweisungen

Eine andere Möglichkeit ist die, einer Variablen verschiedene Werte je nach
Wahrheit oder Falschheit einer Bedingung zu geben:

8990 IFX=YTHENK= 77

990 IFX <> YTHENLETK = 99

wonach K 77 ist, wenn X = Y, und 99, wenn nicht. Das LET kann, wie üblich,
weggelassen werden.

Aufgabe 3

Die Verkaufssteuer für eine Ware hängt wie folgt von der steuerlichen Einstu-
fung ab:

Tarif 1 (Erziehung) 2%

Tarif 2 (Kinderprodukte) 5%

Tarif 3 (Staatsverwendung) 9%

Tarif 4 (alles übrige) 15%

62

Schreiben Sie ein Programm, das den Steuertarif als Eingabe annimmt und den
Prozentsatz der Steuer anzeigt.

Lösungen

Aufgabe 7

10 PRINT CHR$ (147)

20 PRINT “EINKAUFSLISTE”

30 INPUTX

40 IFX <@THEN79

50 SUMME = SUMME + X

60 GOTO 30

70 PRINT “GESAMTBETRAG”; SUMME

Aufgabe 2

10 PRINT CHRS$ (147)

20 INPUTN

30 IFN < 100 THEN PRINT "KLEINER ALS 100”

40 IFN = 100 THEN PRINT "GLEICH 100”

50 IFN > 100 THEN PRINT “GROESSER ALS 100”

Aufgabe 3

19 PRINT CHRS (147)

20 INPUT "STEUERTARIF”;S

39 IFS <10ORS > 4THEN 20

40 IFS =1 THEN PRINT “2% ERZIEHUNGSTARIF”

5@ IFS = 2 THEN PRINT "5% KINDERTARIF”

69 IFS =3 THEN PRINT "0% STAATSTARIF”

70 IFS =4THEN PRINT "15% - PECH GEHABT!”

Nur zum Spaß habe ich bei Zeile 30 eine Narrensicherung eingebaut, das heißt,
gegen unsinnige Eingaben geschützt.

63

12 Binare Zahlen

Computer verarbeiten Zahlen nicht nach unserer gewohnten Dezi-
malschreibweise, sondern auf eine Art, die für elektronische Schal-
tungen besser geeignet ist. Es ist ein bißchen so, als zähle man mit
den Füßen, statt mit den Fingern.

Man braucht kein mathematischer Experte zu sein, um beim 64 Binärzahlen
richtig zu nutzen, aber ein paar Grundgedanken sind unentbehrlich. Beispiels-
weise kann man ohne Binärzahlen keine Spritegrafik erzeugen. Wir müssen also
ein bißchen früher, als uns eigentlich lieb ist, in den Computer hineinsteigen
und uns damit befassen, was er in Wahrheit macht. Dann mal ran.

Normalerweise befassen wir uns mit Zahlen auf Zehnergrundlage. Wenn
ich die Zahl 3814 schreibe, verstehen wir darunter alle die Zusammensetzung

3x1000+8x100+1x10+4x1

und wir können erkennen, daß wir, um einen “Stellenwert” von rechts weiter-
zukommen, einfach mit Zehn multiplizieren. Wir sagen, die Zahl beruhe auf der
Basis Zehn.

Weil wir das schon so lange tun, wie wir denken können, fällt die Erkennt-
nis schwer, daß es noch andere, völlig vernünftige Wege gibt, dieselbe Aufgabe
zu bewältigen. Die ersten Computerkonstrukteure kamen jedenfalls nicht dar-
auf; sie verwendeten bei ihren Maschinen Zehnerdarstellungen und gerieten in
böse Schwierigkeiten. Meistens rührten sie daher, daß elektronische Verstärker
sich nicht bei allen Signalen, die man eingeben möchte, gleich verhalten.
Beispiel: Ein Verstärker, der sein Eingabesignal verdoppeln soll, mag das bei
Eingaben von 1, 2, 3 und 4 Einheiten durchaus tun, aber dann beginnt er
“abzuflachen”, so daß eine Eingabe von 5 zu einer Ausgabe von nur 9.6, 6 zu
10.8 führt und man den Unterschied in der Ausgabe bei Eingaben von 8 und 9
kaum noch unterscheiden kann.

Legen Sie eine Musikkassette in Ihren preiswert erworbenen Recorder
und drehen Sie die Lautstärke ganz auf. Hören Sie die Verzerrung bei den lauten
Stellen? Das ist dieselbe Wirkung. \

Die Computerkonstrukteure der Anfangszeit hörten keine Verzerrung; sie
stellten nur fest, daß die Maschinen manchmal nicht zwischen Ziffern unter-
scheiden konnten, bei einem Computer eine aussichtslose Sache. Sie mußten
also ihre Zahlendarstellung neu überdenken, um sie dem anzupassen, was die
Elektronikgeister am besten konnten.

Das Einfachste, was man mit einem elektrischen Signal machen kann, ist,
es an- oder abzuschalten; die Ziffern ® (ein) und 1 (aus) lassen sich also
befriedigend darstellen. Verzerrung spielt keine Rolle mehr. Alles bleibt klar, ob
ein Signal vorhanden ist oder nicht, ohne Rücksicht auf irgendeine Verzerrung.
Aber können wir denn ein Zahlensystem aufbauen, das sich nur auf ® und 1
stützt:

| Allerdings. Bei einer Zahl auf Zehnerbasis ist die größtmögliche Ziffer 9.
Tut man 1 zu 9 hinzu, erhält man 1® - stattgefunden hat ein Übertrag. Wir
können jede Zahl mit jeder anderen Basis schreiben, die uns behagt, und die

64

größtmögliche Ziffer wird stets um 1 niedriger sein als die Basis. Bei Basis 2 ist
die größte Ziffer 1, also enthält eine Zahl auf Basis 2 (oder binäre Zahl) nur
jeweils ® und 1.

Und die Stellenwerte? Bei Basis Zehn erhielten wir sie, wenn wir (rechts)
bei 1 anfingen und jedesmal, wenn wir eine Stelle nach links gingen, mit 1®
multiplizierten. Bei einer Binärzahl beginnen wir auch mit 1, multiplizieren aber
jedesmal, wenn wir nach links gehen, mit 2.

So kann beispielsweise die Binärzahl 1191 auf folgende Weise in Basis
Zehn umgewandelt werden.

1191

| > x 1 ——

1 x >

o
h

S&
S

=

Umgekehrt läßt sich ebenso leicht umwandeln; nehmen wir als Beispiel 25.
Wenn wir die binären Stellenwerte

32 16 8 4 2 1

niederschreiben und links beginnen, ist klar, daß wir eine 16 brauchen, so daß
9 übrigbleibt, bestehend aus 8 und 1. 25 ist also:

0 1 1 0 0 1

Jede binare Ziffer (® oder 1) wird ein Bit (von binary digit) genannt.

Bytes

Ein Byte ist eine Binärzahl von 8 Ziffern, beispielsweise 11900191 (dezimal also
197). Die Dezimalwerte von Bytes gehen von ® bis 255. Beim 64 können
Speicherplätze genau ein Byte aufnehmen, daher ihre Bedeutung. (Das liegt
daran, daß der 64 ein sogenannter 8 Bit-Mikroprozessor ist; kompliziertere
Geräte haben größere Speicherplätze, aber das kostet!) Anhang 1 liefert die
Dezimal- und Binärwerte aller 256 möglichen Bytes. Mit dem nächsten Pro-
gramm können Sie ein Byte eingeben und genau verfolgen, wie es in Dezimal
umgewandelt wird.

10 DIMB (8)

20 SUMME =®

30 PRINT CHRS (147)

40 INPUT "GIB EINE BINAERZAHL EIN”; BS

50 IFLEN (BS) <> 8THEN 40

65

60

70

80
90

100
110

120

130
140

150
160

170

180
190

200
210

220

230
240

250

260
270

PRINT CHRS (147)

PRINT “UM DIE ZAHL []"; BS; "DJ IN DEZIMAL”

PRINT “UMZUWANDELN, WIRD SO VERFAHREN: ”

PRINT

FORT=1TO8

S=21(8-T)

B (T) = VAL (MIDS (BS, T, 1))

PRINT B (T); TAB (3); "X"; S; TAB (10); "=";

IFB(T) =9THEN PRINT“LI OOO"

IF B (T) =1 ANDT > 1 THEN PRINT “1”:

IF B (T) =1 ANDT > 4 THEN PRINT "L]”;

IF B (T) =1 THEN PRINT “LJ DT"; S

SUMME = SUMME + B(T)+S

NEXTT

PRINT “[17 x Grafik-D + SHIFT]”

PRINT “GESAMT TI OD GO O=- 00

IFSUMME < 190 THEN PRINT "DT";

IFSUMME < 19 THEN PRINT "DJ";

PRINT SUMME

PRINT “[17 x Grafik-D + SHIFT]”

PRINT

PRINT

Bits ın Bytes

Wir möchten uns manchmal auf, sagen wir, das fünfte Bit des Bytes 11019101
beziehen. Meinen wir damit aber das fünfte von links oder das fünfte von rechts?
Darauf kommt es an; das eine ist ®, das andere 1. Um Verwirrung zu vermeiden,
übernehmen wir eine Standardnumerierung von ® bis 7, die von rechts nach
links verläuft. (Sinnvoll ist das aus mathematischen Gründen, siehe unten.)
Also so:

Bitnummer —————> 7 6 5 4 3 2 1 N)

Wert

66

Nun können wir von “Bit 4 des Bytes 11019191” sprechen, und es gibt keine
Mißverständnisse.

Der Grund für diese Numerierung ist, daß die bedeutsamsten Bits, das
heißt, jene, die zum Dezimalwert die größte Menge beitragen, die höchsten
Nummern haben. Eine “1” in Bit 7 trägt zum Wert 128 bei, eine 1" in Bit 6 liefert
64, und so weiter bis hinunter zu Bit ®, das dürftige 1 beisteuert. Bit K liefert also
2K, das ist die Kte Potenz von 2. (In BASIC wird das 27K geschrieben.)

Hohe und niedrige Bytes

Ein Byte kann Zahlen nur bis zu 255 aufnehmen, aber viele wichtige Zahlen
(beispielsweise Zeilennummern und Maschinenadressen) können größer sein.
Wenn wir zwei Bytes kombinieren, können wir bis 65535 kommen. Angenom-
men, zwei aufeinanderfolgende Bytes enthalten die Zahlen N und H, dann wird
der Wert behandelt als

N + 256*H

Wir nennen N das niedrige Byte und H das hohe Byte. So würde die Zahl

2500 = 196 + 9 * 256

gespeichert werden als

niedriges Byte hohes Byte

bint — | 11000100 | | 90001001
dezimal — 196 9

Im Grunde wird die Zahl damit als eine zweiziffrige Zahl mit Basis 256 behan-
delt! Diese Art von Zahlendarstellung wird etwa im SID-Klangchip verwendet
(Kapitel 30). Bei einer allgemeinen Zahl X zwischen ® und 65535 sind die
beiden Bytes:

hohes Byte H = INT (X/256)

niedriges Byte N = X - 256 * H = X - 256 * INT (X/256)

(INT bedeutet "Ganzzahliger- oder /ntegertei/ von’’.) Ebenso kann ein Einzel-
byte dazu verwendet werden, zwei 4 Bit-Zahlen zwischen F und G (zwischen
® und 15) aufzunehmen, indem 16 * F + G gespeichert wird:

1090190901901; = 165

67

Ist der Bytewert X, dann haben wir:

F = INT (X/16)

G=X-16*F=X- 16 * INT (X/16) \

Die Umhullende Kurve (ASDR) tm SID verwendet diese Methode, statt überall
halbe Bytes zu vergeuden. (Ein halbes Byte wird im "Reference Guide” manch-
mal ein Nybble genannt.)

Speicherbelegung

Die Größe von Computerspeichern wird gewöhnlich in Kilobytes gemessen. Ein
Kilobyte umfaßt 1024 Bytes (was also nah genug bei 190@ liegt). Ein nackter”
64 hat 65536 Bytes oder 64 Kilobytes (64K) Speicher, aber rund 26 K sind
reserviert vom System, so daß Ihnen zum Spielen 38K bleiben. Um genau zu
sein, 38911 Bytes.
Während Sie ein Programm schreiben, wird Speicherplatz verbraucht.

Auch Variablenwerte erfordern Platz. Es kann oft nützlich sein, zu wissen,
wieviel Speicherplatz noch frei ist.

Um das festzustellen, verwenden Sie den Befehl

PRINT FRE (9)

Ist das Ergebnis positiv, wird die Zahl der freien Bytes genannt. Ist es negativ,
versuchen Sie es noch einmal mit:

PRINT 65536 + FRE (®)

und erhalten jetzt den richtigen Wert. Es ist eine Eigenheit des FRE-Befehls, daß
das vorkommt, noch dazu eine recht alberne, aber das läßt sich mühelos behe-
ben. Wenn FRE einen negativen Wert meldet, haben Sie auf jeden Fall minde-
stens noch 32K freien Speicherplatz. In einem Programm könnten Sie verwen-
den:

10800 F=FRE(®):IFF< @ THEN F = F + 65536

10910 PRINT F;" BYTES FREI”

Byte-Logik

Man kann mit Binärzahlen Arithmetik betreiben, entweder direkt oder durch
Umwandlung in Dezimalzahlen und zurück. Man kann aber auch /ogische
Operationen AND und OR ausführen. Vielleicht möchten Sie raten, wie die
Lösung von

185 OR 143

lautet? Wären Sie auf 189 gekommen? Warten Sie auf die Erklärung.

68

Es gibt einen Zusammenhang zwischen Byte-Logik und gewöhnlicher
Logik, gestützt auf eine Auffassung, wobei eine Ziffer einen Wahrheitswert
erhält:

® bedeutet “falsch”

1 bedeutet "wahr

Dann wirken bei einziffrigen Zahlen die logischen Operatoren OR und AND so:

DAND®=-® @OROQ=9@

@ AND 1=9@ @ OR 1=1

1 AND @=90 1 OR @=1

1 AND 1 = 1 1 OR 1=1

Das heißt: p AND q ist wahr (Wert 1) nur dann, wenn p und q beide wahr sind;
p OR qist wahr, vorausgesetzt, p ist wahr oder q ist wahr oder beide sind es. Das
stimmt mit den üblichen Regeln der Logik überein.

Dieser Gedanke gilt auch für Folgen von Binarziffern. Wir führen die
Operation an jeder Stelle der Folge der Reihe nach aus. Um etwa

19111001 OR 19010190

zu berechnen, nehmen wir die Ziffern der Reihe nach so:

erste zweite
Zahl Zahl Lösung

Bit 7 nn 1 OR 1 = 1

Bit 6 > N) OR 1) = Ö

Bit 5 > 1 OR Ö = 1

Bit 4 > 1 OR 1 = 1

Bit 3 > 1 OR 1) = 1

Bit 2 > iy OR 1 = 1

Bit 1 > N) OR | = 0

Bit ® ~ 1 OR @ = 1

Dann lesen wir die Antwort ab:

10111901 OR 11900101900 = 10111191

In der Dezimalschreibweise wird das, wie ich vorhin erklart habe, zu

185 OR 148 = 189 |
| 69

Ebenso ergibt 185 AND 148:

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

70

S
O
N

W

F
a
o

N

a
ER

En

En

ER

En

Ze

AND

AND

AND

AND

AND

AND

AND

AND 2
9
.
9
8

2
9

9

->

il

2
8
2
9
9
0
8
5
9
0
9
8
9

-

8

—

Hier ist die Antwort also 10919900 oder dezimal 144.
Das nächste Programm hilft Ihnen vielleicht, diese

üben, damit der Grundgedanke sich einprägt.

19

20

30

40

50

60

70

80

90

100

110

120

130
140

150

160

170

180

PRINT CHRS$ (147)

INPUT “ERSTE ZAHL SCHREIBEN”; A

IFA <@ORA > 255 THEN 20

INPUT " AND’ ODER ‘OR’ SCHREIBEN”: X$

IF X$ <> “AND” AND X$ <> “OR” THEN 40

INPUT "ZWEITE ZAHL SCHREIBEN”; B

IFB <Q@ORB > 255 THEN 60

PRINT: PRINT

PRINT TAB (5); A; TAB (25);

C = A: GOSUB 509: PRINT K$

PRINT

PRINT TAB (5); B; TAB (25)

C = B: GOSUB 509: PRINT K$

PRINT TAB (25); "[8 x Grafik-» + SHIFT]”

IF X$ = “AND” THEN C = AANDB

IFX$ = “OR” THENC=AORB

GOSUB 509

PRINT TAB (5); A; X$; B

Berechnungen zu

190 PRINT TAB (25); K$

200 PRINT TAB (25); “[8 x Grafik-* + SHIFT]”

210 PRINT TAB (6);

220 PRINT “IST IN DEZIMAL”; C

239 END

500 REM BINAER-DEZIMAL-UMWANDLUNG CIN K$

5190 K$="":Z=C

520 FORT=1TO8

530 CH =INT (C/2)

540 IF2*CH=CTHENK$="0"+K$

550 IF2*CH <> CTHENK$= "1" +K$

569 C=CH

570 NEXTT

580 C=Z:RETURN

Die Grafikzeichen in den Zeilen 140 und 20@ sind 8mal das Zeichen auf Taste
*, wenn SHIFT gedrückt wird. Der GOSUB-Befehl ist noch nicht erklärt; siehe
Kapitel 14. Er entspricht einem GOTO mit variablem Rückkehr-GOTO am Ende,
verwendet, um irgendeine Unteraufgabe zu erfüllen - hier die Umwandlung von
C in eine Binärzahl, die als String K$ gespeichert wird. Zerbrechen Sie sich
darüber jetzt nicht den Kopf.

| Das Programm hat drei Eingaben: die erste Zahl, die Wahl von AND oder
OR, und die zweite Zahl.

Systemvariable setzen

Sie werden sich wohl fragen, was das alles nutzen soll. Das taucht auf, wenn wir
den Computer in einen bestimmten “Gemutszustand” versetzen müssen, indem
wir den Inhalt eines geeigneten Speicherplatzes verändern. Das System ver-
wendet manchmal die Binärziffern an bestimmten Plätzen (Systemvariable
genannt) als Flaggen — das heißt, als Signale, die bestimmen, ob gewisse
Einträge in Gebrauch sind oder nicht. Man kann sich ein Byte als eine Folge von
acht kleinen Schaltern vorstellen, wobei @ "aus’” oder "Flagge unten” und 1
“ein” oder "Flagge oben” bedeuten. Siehe Abbildung 12.1, die versucht, Flag-
gen und Schalter gleichzeitig darzustellen.

71

@ = Aus) N))

. Abbildung 12.1
Ein Byte gleicht einer Reihe von acht Schaltern oder Flaggen, die sich jeweils in einem von zwei

Zuständen befinden können.

Angenommen, wir möchten Bit 2 auf “Ein” schalten, gleichgültig, worauf es
schon gesetzt ist, und die anderen Schalter in Ruhe lassen. Wenn wir wußten,
daß Schalter 2 aus ist, wäre es einfach: Man addiert zum Binärwert 4:

190111091 + 00000100 = 10111191

Bit 2 abgeschaltet Bit 2 eingeschaltet

Fein! Aber nehmen wir an, wir wissen nicht, wie der Schalter gesetzt ist? 4 zu
addieren, konnte schlimm werden, denn:

10111101 + 00000109 = 11900901

Bit 2 eingeschaltet Hoppla Bit 2 abgeschaltet!

und was noch schlimmer ist, Bits 5, 4, 3 sind ebenfalls abgeschaltet, Bit 6 haben
wir eingeschaltet. Es ist so, als wäre der Computer ein Auto, und wir hätten
versucht, die Scheinwerfer einzuschalten, sie statt dessen aber ausgeschaltet,
obwohl sie schon brannten, den Motor abgestellt, die Parkleuchten und die
Richtungsblinker abgeschaltet — und die Hupe angestellt. Nicht das Ideale.
. Das Problem sind die Übertragsziffern. Wir brauchen eine Operation, die
nur Bit 2 betrifft und es ungeachtet seines momentanen Wertes auf 1 setzt.
Wenn Sie eine Ziffer durch OR mit ® verknüpfen, bleibt sie bekanntermaßen
gleich, und wenn Sie durch OR mit 1 verknüpfen, wird daraus 1. (Prüfen Sie das
anhand der obigen Tabelle nach.) Wenn wir also ein Byte durch OR mit
200001 OO verknüpfen, bleiben alle seine Bits gleich, bis auf Bit 2, das zu 1 wird.
Kurz gesagt, |

pqrstuvw OR 90000199 = parstivw

72

für alle Werte ®, 1 von p, g,... w. Da wir diese Operation auf OR in Dezimal
setzen können, heißt das, daß

XOR 4

dasselbe ist wie X, mit Bit 2 aber eingeschaltet.
Ebenso müssen wir, um Bit 2 auf ® zu setzen, alle anderen aber unveran-

dert zu lassen, die Zahl durch AND mit 11111911 (251 dezimal) verbinden. Das
liegt daran, daß p AND 1 = p, und zwar immer, dagegen p AND @ = @. (Es ist
kein Zufall, daß 251 = 255 — 4, aber nur Mathematiker sollten versuchen, hinter
den Grund zu kommen.)

Ich werde diese Methode weiter unten gelegentlich verwenden müssen.
Sie brauchen sie in diesen Einzelheiten nicht zu verstehen, um den Anweisun-
gen folgen zu können (jetzt sagt er uns das! Stohn, jaul), aber es trägt dazu bei,
das klarzumachen, was sonst sinnloses Gefasel wäre. Vor allem sollen Sie sich
einprägen, daß eine Programmzeile wie

Y=XOR4

kein Anzeichen fur schlechtes Korrekturlesen ist; sie ergibt durchaus Sinn. Und
man darf wetten, daß sie an irgendeinem Speicherplatz Bit 2 einschaltet.

Aufgabe 1

(Nehmen Sie diese nicht allzu ernst, aber vielleicht trägt sie dazu bei, die
Verwendung von Bits als Flaggen für die Art zu erklären, wie das System
arbeitet.) Der (erfundene, aber berüchtigte) Mikro Storch 37 verwendet eine
Variable namens SCHALTER, um einige seiner wahlweise käuflichen Periphe-
riegeräte wie folgt zu steuern:

Bit 765432 1 @ Inhalt 1/0

> Kaffee ein/aus

— Toaster ein/aus

— Tür auf/zu

— Katze rein/raus

— Geschirrspüler ein/aus

— Kühlschrank ein/aus

> Gartenschlauch ein/aus

— Heizung ein/aus

Sie wissen nicht, worauf die Bits gesetzt sind, aber Sie wollen die Katze
hinaustun. Welchen Befehl geben Sie?

73

Lösung

Aufgabe 1

Bit 3 steuert die Katze, und 11119111 ist 247 dezimal, also bewirkt

SCHALTER = SCHALTER AND 247

das Gewünschte. Miaaauuuu!

14

13 PEEK und POKE

Jeder Platz im Commodore 64-Speicher hat seine eigene Adreßbe-
nennung. Durch Veranderung des Inhalts geeigneter Speicher-
plätze können Sie den Computer veranlassen, eine ganze Reihe von
Aufgaben zu erfüllen. Zwei Befehle zeigen Ihnen, was an einer
bestimmten Adresse gespeichert ist, und wie Sie es ändern können.

Beim Programmieren in BASIC können Sie in der Regel dem Computer den
Großteil der Arbeit überlassen, und Fragen wie: "Wo im Speicher ist das eigent-
lich abgelegt?” bekummern den Programmierer nicht. Sobald Sie aber die
fortgeschritteneren Einrichtungen des 64 nutzen wollen, etwa Farbe und Klang,
die über Standard-BASIC hinausgehen, erlangen solche Fragen Bedeutung.
Der 64 ist Anfängern gegenüber nicht so entgegenkommend wie manches
andere Gerät, und verlangt vom Programmierer, daß er eine große Menge
Organisationsdetails im Kopf behält. Wenn Sie sich aber die Mühe machen, ein
paar einfache Grundideen zu beherrschen, reagiert der Computer als Ausgleich
dafür viel schneller auf Ihre Befehle. Sie können sogar einfach die untenstehen-
den Befehle haargenau abschreiben und die erwähnten Einrichtungen nutzen,
ohne eigentlich zu wissen, was Sie tun. Sollte Ihnen dieses Kapitel also zu
anstrengend vorkommen, dann überblättern Sie es und kommen Sie später
darauf zurück. Wie bei den meisten Aufgaben wird das Dasein aber erheblich
erleichtert, wenn Sie nicht nur das Wie der Befehle verstanden haben, sondern
auch das Warum der Gründe.

Speicheraufbau

Der Computerspeicher ist außerordentlich starr und systematisch aufgebaut.
Jeder Speicherplatz erhält eine feste Nummer, seine Adresse. Beim 64 gehen
die Adressen von ® bis 63535. Jede Adresse enthält eine Zahl zwischen ® und
255 (den Informationswert eines einzelnen Zeichens). Diese Zahl ist nun in
Binärschreibweise als ein String von acht Nullen oder Einsen gespeichert, so
daß jede Adresse ein einzelnes Byte enthält. Fürmanche Zwecke genügtes, sich
die Zahl als eine gewöhnliche Dezimalgröße vorzustellen, und zunächst halte
ich es hier so.

Der Computer verfügt über zwei Speicherarten:

1. ROM (Read Only Memory = Nur-Lese- oder Festspeicher), der sein
Betriebssystem enthält, die eingebauten Arbeitsanweisungen, durch die
er funktioniert.

2. RAM (Random Acces Memory — Speicher mit wahlfreiem Zugriff), der
das speichert, was geändert werden kann: BASIC-Programm, Bild-
schirmdisplays, Notizblock für Berechnungen, und so weiter.

15

Verändern können Sie den Inhalt von RAM, aber nicht von ROM. Wenn Sie im
Speicher herumwuhlen, können Sie also schlimmstenfalls den Computer in
einen Zustand versetzen, der ein Rücksetzen erfordert; an diesem Punkt müssen
Sie ihn kurz abschalten. Sie verlieren den Inhalt von RAM, richten aber keinen
dauernden Schaden an, so daß Sie unbesorgt experimentieren dürfen, ohne
sich Sorgen darüber zu machen, was Sie dem Gerät antun könnten.

Beispielsweise sehen die letzten zehn Bytes von ROM aus wie Tabelle
13.1, und im 64 sind noch viele Tausend Bytes Information mehr untergebracht.
Wenn der Computer arbeitet, sausen all die kleinen Nullen und Einsen im
Inneren wie Ameisen durcheinander (na schön, die Einser sind Ameisen, die
Nullen Nicht- Ameisen), bis sie da landen, wo Sie, der Programmierer (und die
Leute, die das ROM-Programm geschrieben haben) das wünschen. Erfaßt Sie
nicht Ehrfurcht und Demut bei dem Gedanken, Herrschaft über Leben und Tod
so vieler Ameisen zu besitzen?

Tabelle 13.1

Adresse Inhalt

binär dezimal

65526 0190190010 82
65527 01010019 82

65528 01000919 66
65529 010119001 89
65530 01000011 67
65531 11111119 254
65532 111900010 226
65533 11111100 252

65534 01001000 72
65535 11111111 255

PEEK

Der Befehl, mit dem Sie in einen Speicherplatz blicken und erkennen (aber nicht
verändern) können, was sich dort befindet, heißt:

PEEK

Um etwa den Inhalt von Adresse 65535 zu finden, geben Sie

PRINT PEEK (65535)

ein. Auftauchen sollte die Zahl 255; wenn nicht, habe ich Sie angelogen.
Mit folgendem Programm (das im Verlauf des Kapitels noch ergänzt wird,

daher die sonderbaren Zeilennummern) können Sie durch PEEK einen Blick in
jeden beliebigen Speicherteil werfen:

76

1ß REM PEEKING ROUTINE

20 INPUT “ADRESSE FUER START”; AD: IF AD < 9 OR AD >

65535 THEN 20

30 H=®

60 P = PEEK (AD)

90 PRINT AD: TAB (8); P; TAB (16);

100 IF P <320RP > 127 AND P < 160 THEN PRINT “CTRL”;

110 IFP > 31 ANDP < 1280R P > 159 THEN PRINT CHR$ (P);

120 PRINTTAB (24);

130 IFP > 191 THEN PRINT "+";

140 PRINT

230 AD= AD +1: IF AD > 63535 THEN STOP

240 H=H+1:IFH < 20 THEN 69

250 GET AS: IF A$ = “” THEN 250

260 IF A$="“S" THEN STOP

270 GOTO 39

Fahren Sie das mit RUN und geben Sie 65526 ein, wenn die Startadresse
verlangt wird. Sie sollten den Inhalt der letzten zehn Speicherplatze im ROM,
wie oben aufgefuhrt, erhalten (ohne die Binarversion, aber mit einer Zusatzko-
lonne, die das Zeichen angibt, dessen Code die von PEEK erkannte Zahl ist). Da
habe ich sie her.

Allgemein konnen Sie jeden beliebigen Startwert eingeben; das Pro-
gramm ist mit einer Narrensicherung ausgestattet, um eine Eingabe zwischen @
und 65535 sicherzustellen. Sie erhalten eine Seite’ Display. Drucken Sie Taste
“S” zum Anhalten und irgendeine beliebige Taste fur die nächste Seite. Konzen-
trieren Sie sich auf die Zahlen in den ersten beiden Kolonnen, die Adressen und
ihren Inhalt; die dritte Kolonne erkläre ich unten.

Die konkreten Zahlen hier ergeben für Sie wohl nicht viel Sinn. Begreif-
lich — sie sind im eigenen privaten und persönlichen Maschinencode des
651@-Mikroprozessorchips geschrieben. Es würde ein weiteres Buch (etwa
den “Reference Guide’) erfordern, Sie hier auch nur auf den Weg zu bringen.
Wenn Sie aber immer wieder eine Taste für eine neue Seite drücken, wird Ihnen
immerhin klar werden, daß im Inneren Ihres Computers enorm viel Information
steckt. Manches davon erkennen Sie vielleicht sogar:

Aufgabe 1

Fahren Sie das obige Programm mit RUN und geben Sie 41118 ein, dann
wiederholen Sie das Ganze mit 41374. Welchen Bereich des Speichers haben
Sie vor sich? |

71

Narziß schlagt wieder zu

Der Legende nach verliebte Narziß sich in sein eigenes Spiegelbild in einer
Quelle und wurde in eine Blume verwandelt (ein Racheakt von Artemis, als
Narziß eine Nymphe namens Echo nicht zu schätzen wußte). Ich riskiere das-
selbe Schicksal, wenn ich nun die PEEK-Routine mit PEEK auf sich selbst
blicken lasse!

BASIC-Programme werden normalerweise beginnend bei Adresse 2048
gespeichert (außer, Sie jonglieren mit den richtigen RAM-Bits, um das zu
ändern, wobei ich davon ausgehe, daß Sie das nicht getan haben; wenn Sie
wissen, wie man den BASIC-Zeiger verändert, brauchen Sie dieses Kapitel
ohnehin nicht zu lesen). Wenn Sie die Routine mit RUN fahren und 2048
eingeben, erhalten Sie auf der ersten Displayseite:

Adresse Inhalt/Dezimal Zeichen

2048 i) CTRL
2049 23 CTRL
2050 8 CTRL
2051 10 CTRL
2052 N) CTRL
2053 143 CTRL
2054 32 (Leerstelle)
2055 80 P
2056 69 E
2057 69 E
2058 75 K
2059 73 |
2060 78 N
2061 71 G
2062 32 (Leerstelle)
2063 82 R
2064 79 O
2065 85 U
2066 84 T
2067 73 |
2068 78 N
2069 69 E

(Streng genommen, stehen die beiden letzten Zeilen auf der zweiten Seite des
Displays, und Sie mussen eine Taste drücken, um sie zu sehen — zusammen mit
anderen Einträgen. Aber ich brauche sie der Ordnung halber.)

Die dritte Kolonne verwandelt die im Speicherplatz enthaltene Zahl in das
entsprechende Zeichen (siehe Handbuch, Anhang F, S. 135-137). Manche
Zeichen haben seltsame Auswirkungen auf das Display, wenn Sie versuchen,
sie mit PRINT anzuzeigen, und aus diesem Grund habe ich dafür gesorgt, daß
stattdessen CTRL (“control”) angezeigt wird. Bei Codes von mehr als 191 steht
ein ”+"-Zeichen, weil sie dieselben Zeichen ergeben wie bestimmte kleinere
Zahlen. Wenn Sie weiter nachforschen, wird Ihnen außerdem auffallen, daß
Code 34 eine höchst eigenartige Anzeige ergibt, die zu erklären der Platz fehlt.
Im übrigen ist sie harmlos.

78

Nicht alles in der Tabelle ergibt auf Anhieb Sinn, aber die Überschrift
PEEKING ROUTINE können Sie ganz deutlich sehen. Wenn Sie weitergehen zu
späteren Seiten des Displays, stoßen Sie auf andere Teile des Programms, die
augenblicklich erkennbar sind, vermischt mit weniger einleuchtendem Material.
Das Unklare codiert die Zeilennummern auf nicht gerade durchsichtige Weise
oder verdichtet die BASIC-Schlüsselwörter zu 1 Byte-Codes, um Speicherplatz
zu sparen. So steht etwa 143 an Speicherplatz 2053 für REM. Jawohl, Herr-
schaften, das Programm ist im Computer wirklich gespeichert, und wenn Sie an
der richtigen Stelle nachgucken, können Sie es sehen.

Hmmmm... bis jetzt noch nichts Blumiges zu merken. Dafür etwas
anderes...

POKE

Sie können das Programm nicht nur sehen, sondern sogar verändern. Geben Sie
diese direkten Befehle ein:

POKE 2058,86

POKE 2060,83

POKE 2061,72

Lassen Sie sich mit LIST das Programm zeigen. Sieht aus wie vorher? Nicht
ganz; beim REM steht jetzt

PEEVISH ROUTINE

Wenn Sie die Routine mit RUN noch einmal fahren und auch hier bei 2048
beginnen, können Sie sehen, was vorgegangen ist: Bei den Adressen 2058,
2060 und 2061 ist der Inhalt der Codes für V, S, H, statt für K, N, G verändert
worden. Mit dem POKE-Befehl können Sie also ein bestimmtes Byte an einer
bestimmten Adresse in einen Speicherplatz setzen.

Aufgabe 2

Verändern Sie PEEKING ROUTINE mit zwei POKE-Befehlen in PARKING
ROUTINE. |

Jetzt habe ich Pandoras Büchse aber ganz aufgemacht. Wenn Sie nach Belie-
ben mit POKE in Speicherplätze einzugreifen vermögen, können Sie alles ver-
ändern, was Sie wollen, vorausgesetzt, Sie wissen, wo es sich befindet, und es
ist nicht sicher im ROM verwahrt. Die nützlichen Adressen können Sie aus dem
“Reference Guide” erfahren — ich werde in späteren Kapiteln nicht wenige
erwähnen. Jedenfalls können Sie nach Herzenslust mit PEEK in der ganzen
Speicherkarte herumfuhrwerken, und wenn Sie die Lust nach einem gelegent-
lichen POKE anwandelt, tun Sie sich keinen Zwang an. Nur eine Warnung:
Wahllose POKE-Versuche bringen selten viel ein; man muß vom System einiges
verstehen, bevor man daran herumbasteln kann, ganz wie bei einem Auto.

79

Bildschirmfarben

Als eine Einführung in die POKErei, die von außen her das Betriebssystem nutzt,
wollen wir uns die Bildschirmfarben ansehen. Ständig sind drei Farben vorhan-
den: Der Rand (Border) des Bildschirmbereichs, die Hintergrundfarbe auf dem
Schirm (die ich Paper nennen werde), und die Farbe des angezeigten Zeichens
(/nk). Sie können die Inkfarbe mit der CTRL- Taste verändern (siehe Handbuch,
S.1®)... aber wie ändern Sie Paper und Border?

Die Codes fur die Steuerung dieser Farben sind in zwei Plätzen gespei-
chert:

53280 Borderfarbe

53281 Paperfarbe

und fur Ink gibt es auch einen:

646 laufende Inkfarbe

den Sie statt der CTRL-Methode verwenden können. Soll etwas verändert
werden, brauchen Sie in der Adresse mit POKE nur den erforderlichen Farbcode
einzugeben. Die Farbcodes sind:

D Schwarz 8 Orange
1 Weiß 9 Braun
2 Rot 1® Hellrot
3 Cyan 11 Dunkelgrau
4 Purpur 12 Mittelgrau
5 Grün 13 Hellgrün
6 Blau 14 Hellblau
7 Gelb 15 Hellgrau

So liefert zum Beispiel

POKE 53289, 9 einen braunen Rand

POKE 53281, 4 purpurnen Hintergrund

POKE 646,11 dunkelgraue Inkfarbe

Die Paper- und Borderveränderungen wirken sich sofort auf den ganzen Bild-
schirm aus. Die Inkveränderung betrifft aber nur neu angezeigte Zeichen; die
alten bleiben so, wie sie waren.

Der Zeichensatz

Als Schlußschnörkel will ich Ihnen zeigen, wo der 64 die Information speichert,
um seine Zeichen hervorzubringen. Damit das Programm aber funktioniert,
müssen zwei knifflige Punkte berücksichtigt werden.

80

Der erste: Die Zeicheninformation kann nur dannrichtig gesehen werden,
wenn die Zahlen binär geschrieben sind, weil jedes binäre "1" einen winzigen
Punkt auf dem Bildschirm bestimmt und das Zeichen aus diesen Punkten
aufgebaut ist. Ich muß also eine Routine zur Binarumwandlung aus Kapitel 12
einfugen.

Der zweite Haken: Die Adressen für den Zeichensatz sind zwar durchaus
leicht erreichbar — laut “Reference Guide” gehen sie von 53248 bis 57343 —
aber wenn Sie dort mit PEEK hineingehen, finden Sie die richtige Information
nicht! Der 64 ist ein kompliziertes Ding und schiebt im Speicher Inhalte je nach
seinen Bedürfnissen herum. Er jongliert sogar mit Adreßbezeichnungen, so daß
eine gegebene Adresse mehr als eine Bedeutung haben kann, je nach dem
"Gemütszustand”, in dem die Maschine sich gerade befindet.

In ihrem normalen Zustand beziehen die obigen Adressen sich ganz und
gar nicht auf den ROM-Zeichensatz, sondern auf einen RAM-Bereich, der fur
Input/Output verwendet wird. Der 64 kann aber durch ein bißchen POKErei
dazu bewogen werden, diese Adressen dem ROM anzuhangen. Zusatzliches
Poking ist notig, um wahrenddessen das Keyboard abzuschalten, weil sonst die
schlimmsten Dinge passieren können. Sobald man mit dem PEEKen fertig ist,
muß die Maschine natürlich wieder in ihren Normalzustand versetzt werden,
damit sie wie gewohnt arbeiten kann. Hört sich ein bißchen umständlich an, ist
aber mein Problem, nicht Ihres, ja? Tun müssen Sie also folgendes:

Fügen Sie der PEEKING ROUTINE oben folgende Zeilen ein:

40 POKE 56334, PEEK (56334) AND 254

50 POKE1, PEEK (1) AND 251

70 POKE1, PEEK (1) OR4

80 POKE 56334, PEEK (56334) OR 1

Das ist das Umschalten im Speicher. Zeile 40 unterbindet Unterbrechungen
(das Keyboard); 5® holt die Information über den Zeichensatz an ihren Platz; 7®
schiebt sie wieder hinaus; und 890 ermöglicht wieder Unterbrechungen. Dann
die Umwandlung in Binar:

149 PRINT TAB (28);

150 BS=""

160 FORS=1TO8

170 PH = INT (P/2)

180 IF P=2+* PH THEN BS = CHR$ (46) + BS

199 IFP <> 2*PH THEN B$ = CHRS (166) + BS

200 P=PH

210 NEXTS

220 PRINT B$

81

Beachten Sie, daß die neue Zeile 140 die vorherige überschreibt. Ändern Sie
schließlich Zeile 240 so ab, daß sie lautet:

240 H=H+1:IFH < 20 THEN 4®

Fahren Sie mit RUN und geben Sie als Startadresse 53248 ein. Sie sehen die
Formen der Zeichen, A, B, C,... an der rechten Randseite auftauchen. Statt ®
und 1 zu verwenden, habe ich versucht, die Formen dadurch deutlicher hervor-
zuheben, daß ich einen Punkt und ein kariertes Quadrat verwendet habe —
Zeichen 46 und 166, daher die Zeilen 180 und 190 im Programm. Wenn Sie ®
und 1 vorziehen, ändern Sie diese Zeilen ab zu:

180 IFP=2*PHTHEN B$ = "0" + BS

199 IFP <> 2*PHTHEN B$ = "1" + BS

Abbildung 13.1
Zeichendaten, aus dem ROM entwendet.

Die verschiedenen Zeichenarten werden gespeichert, beginnend an den fol-
genden Adressen:

53248 Großbuchstaben
53760 Grafik
54272 Großbuchstaben in Negativschrift

(Paper und Ink vertauscht)
54784 Grafik in Negativschrift
55296 Kleinbuchstaben
55808 Großbuchstaben und Grafik
56320 Kleinbuchstaben in Negativschrift
56832 Großbuchstaben und Grafik in Negativschrift

82

Ein bestimmtes Maß an Wiederholung tritt wegen der Art auf, wie der 64 zwei
verschiedene Zeichensatze verwendet (Handbuch, Anhang E, S. 132-134). |

Sie können die Zeicheninformation in Programmen verwenden - bei-
spielsweise, um Zeichen in Großform anzuzeigen. Verwenden Sie jedesmal,
wenn Sie das tun, die Zeilen 49, 50, 70, 80 aus dem obigen Programm. Sie
können sogar selbst neue Zeichensätze entwerfen... aber das ist für dieses
Buch zu hoch. Schlagen Sie also nach im “Reference Guide”, S. 107-113.

Lösungen

Aufgabe 1

Eine Tabelle von BASIC-Schlüsselwörtern.
Eine Tabelle von Fehlermeldungen. Das letzte Zeichen in jedem Schlus-
selwort und in jeder Meldung ist verändert worden, um eine Markierung
zu liefern, die dem Computer zeigt, wo das Wort aufhört. Drücken Sie
COMMODORE + SHIFT und fahren Sie das Programm erneut. Nun
stehen die Wörter in Kleinschrift und die Merkzeichen in Großschrift. Der
Gebrauch solcher Merkzeichen ist ein listiger Kniff, um Speicherplatz zu
sparen.

D

—

Aufgabe 2

POKE 2056,65

POKE 2057,82

83

14 Subroutinen (Unterprogramme)

Wenn Sie feststellen, daß Sie immer wieder dieselben Codeteile mit
kleinen Abwandlungen schreiben, oder wenn Ihnen zu entfallen
beginnt, was Teile eines Programms eigentlich leisten sollen, dann
könnten Subroutinen angebracht sein.

Oft wird innerhalb eines Programms eine bestimmte Folge von Befehlen mehr-
mals verwendet. Es kann Ihnen gelingen, durch überlegte Verwendung von
GOTO-Befehlen das wiederholte Schreiben der Sequenz zu vermeiden, aber
das genügt nicht immer. Der Befehl

GOSUB

ist wie ein GOTO, das "weiß, wo es herkommt”. Bei der Begegnung mit einem
anderen Befehl:

RETURN

springt das Programm zu der Zeile nach der jeweiligen GOSUB-Zeile zurück,
von der es zunächst ausgegangen war.

Dem GOSUB muß eine Zeilennummer folgen, etwa

GOSUB 1000

Damit wird das Programm zu der Folge von Befehlen geschickt, die mit Zeile
100® beginnen (genau wie bei GOTO 1900@). Der Teil des Programms, der
zwischen Zeile 1000 und dem RETURN-Befehl liegt, wird als Subroutine
bezeichnet, und man spricht davon, daß sie vom GOSUB-Befehl aufgerufen
wird. Eine Subroutine ist also eine Art "Miniprogramm’”, das innerhalb eines
größeren Programms eine bestimmte Aufgabe erfüllen soll.

Für die Verwendung von Subroutinen gibt es mindestens zwei gute
Gründe:

1. Sie vermeiden unnötige Wiederholung und führen zu kurzen und effekti-
ven Programmen.

2. Sie erlauben dem Programmierer, ein Programm in leicht zu erfassenden
Teilen zu strukturieren, wodurch Testen und Debugging einfacher wird.

Es lohnt, sich bald an Subroutinen zu gewohnen, vor allem beim 64, wo viele
Standardmoglichkeiten am besten durch die Entwicklung effektiver Subrouti-
nen genutzt werden.

Beispiel: Die Veränderung der Hintergrundfarbe (Paper). Ein Minipro-
gramm dafur hat die Form:

3000 REM PAPERFARBE

3919 -POKE 53281, PAPER

84

Hier ist PAPER eine Variable, die je nach der gewünschten Farbe im Bereich
0-15 gesetzt wird (siehe Kapitel 13). Um das als Subroutine nutzen zu können,
müssen Sie eine zusätzliche Zeile anfügen:

3020 RETURN

Jetzt können Sie statt eines Befehls POKE 53281 etc. einen GOSUB 3000-Be-
fehl verwenden, was zu größerer Klarheit führt. Nehmen wir als Beispiel an, Sie
wollen Farbveränderungen dazu verwenden, den Reiz eines Werbedisplays zu
steigern. Dann könnten Sie ungefähr so verfahren:

1099 REM HAUPTPROGRAMM

110 PRINT CHR$ (147) [Schirm löschen, Cursor home]

12@ PRINT: PRINT: PRINT [3 leere Zeilen]

138 PRINT TAB (10); "BIRKHAEUSER VERLAG”

148 PRINT

150 PAPER = 2: GOSUB 3000 [Paper rot]

160 PRINT TAB (5); "COMPUTERKATALOG NOVEMBER 1987”

170 PRINT

180 PAPER = 4: GOSUB 3000 [Paper purpur] |

198 PRINT “CRAY 1 - PROGRAMMIEREN LEICHT GEMACHT"

200 PRINT

210 PAPER = 7: GOSUB 3000 [Paper gelb]

220 PRINT “SPIELE AUF IHREM VAX”

230 PRINT

240 PAPER = 8: GOSUB 3000 [Paper orange]

250 PRINT "COMPILERGENERATOREN

FUER BLUTIGE ANFAENGER"”

260 PRINT

270 PAPER = 13: GOSUB 300@ [Paper heligriin]

280 GOTO 100 [fang von vorne an]

Der Hauptpunkt, der begriffen werden muß: Begegnet das Programm einem
GOSUB, sagen wir, dem in Zeile 150, dann springt es zur angesprochenen Zeile
(hier 3009) und führt Befehle aus, bis es auf RETURN stößt, um anschließend
zur nächsten Zeile nach 150 zu springen, das ist also Zeile 169. Diese Wirkung
könnten Sie nun auch erreichen, wenn Sie

150 PAPER = 2: GOTO 3999

85

.. verwenden und das RETURN verändern zu:

3020 GOTO 169

Aber... sobald Sie Zeile 180 erreichen, das nächste GOSUB 3000, schickt das
RETURN Sie zurück zu Zeile 199, so daß die abgeänderte Zeile (302®) nicht das
Richtige leisten würde. Ebenso kehrt das GOSUB in Zeile 21® durch RETURN
zu Zeile 220 zurück, das GOSUB in Zeile 249 zu Zeile 250, und das GOSUB in
Zeile 270 zu Zeile 280. Das ist der entscheidende Unterschied zwischen GO-
SUB und GOTO, und dadurch ist GOSUB als Befehl viel leistungsfähiger.

Korrektur

Wenn Sie versuchen, das obige Programm wirklich zu fahren, werden Sie
feststellen, daß alles ganz schnell abläuft, so daß die Werbung nahezu unleser-
lich ist. Das geht natürlich nicht; wir müssen den Ablauf dadurch verlangsamen,
daß wir an den angemessenen Stellen Pausen einfügen. Das geht gut mit einer
zusätzlichen Subroutine:

2000 REM PAUSE ETWA 2 SEKUNDEN

2019 FORT = 1 TO 1509

2020 NEXTT

2030 RETURN

Nun können wir diese Subroutine jedesmal aufrufen, wenn wir eine Pause
wollen:

145 GOSUB 2000

175 GOSUB 2000

205 GOSUB 2000

235 GOSUB 2000

265 GOSUB 2000

Diese Art, eine Subroutine zu verwenden, um nachtraglich zusatzliche Befehle
einzufugen, wird als Korrekturroutine bezeichnet. Sie belegt eine weitere Me-
thode, die Vielseitigkeit des GOSUB-Befehls zu nutzen.

Programmstruktur |

Die Grundstruktur des Programms sieht jetzt aus wie Abbildung 14.1. Es gibt
eine ""Hauptrichtung‘’ im Programmfluß mit wiederholten Abschweifungen zu
den Subroutinen.

86

| —

| Zeig 1.Meldung an |

u GOSUB 2000 _
__GOSUB 1906 —— m

RETURN |

Zeig 2.Meldung an |

| __ GOSUB 2000 _
_GOSUB100 =|] ——~F A J -

RETURN |

| Zeig 3.Meldung an |

| GOSUB2U _
_ GOSUB 1008 RETURN —

RETURN |

| Zeig 4.Meldung an |

GOSUB 2000 _

__ GOSUB 1000 [~~ RETURN —
RETURN |

| Zeig5.Meldung an |

u GOSUB 2000 _
- GOSUB aia | RETURN |

RETURN L_ - geh zurück zum Anfang -

Abbildung 14.7
Steuerfluß im Werbeprogramm. Beachten Sie die wiederholten Aufrufe der beiden Subroutinen und

die verschiedenen Rücksprungpositionen.

Das Vorrecht der Weiblichkeit...

...ist, ihren Sinn zu ändern (heißt es). Angenommen, Sie kommen zu der
Meinung, die Borderfarbe sollte sich verändern und der Paperfarbe entspre-
chen. Wenn Sie jede Farbveränderung mit POKE 53281,2 und so weiter direkt
geschrieben hätten, müßten Sie eine Menge POKE 5328@,2 einfügen, um das
Programm hinzubringen. Mit Subroutinen leistet aber eine einzige Zeile das-
selbe:

3015 POKE 53289, PAPER

87

Aufgabe 7

Damit es wirklich ordentlich wird, sollten Sie auch die Borderfarbe auf Dunkel-
blau setzen. Tun Sie das.

Top-down-Prinzip

Ein weiterer Vorteil von Subroutinen ist der, daß man mit ihnen ein Programm
“top-down” (also von oben nach unten) entwerfen kann. Das heißt, grob
gesprochen, man schiebt die Verfeinerungen für später auf. "Wer die Mark nicht
ehrt, ist den Pfennig nicht wert... ., wie es im Sprichwort nicht heißt... aber

. der Rat ist trotzdem besser. Nehmen wir das obige Beispiel, tun wir so, als hätten
wir es nicht so angefangen, wie es der Fall war, und wenden wir das Top-
down-Prinzip an. Sie werden sehen, daß das Ergebnis unauffällig subtile ver-
bessert wird.

Erstes Anliegen: Die wesentlichen Unteraufgaben bestimmen. Mir fallen
auf Anhieb drei ein:

1. Eine Meldung anzeigen.
2. Pause.
3. Farbe von Paper (und/oder) Border ändern.

Diese werden jeweils fünfmal verwendet. Wir beschließen also, drei Subrouti-
nen zu schreiben, um sie zu bewältigen:

1000 REM ZEIG MELDUNG AN

(etwas, um eine Meldung MS anzuzeigen) — 1. Subroutine

???? RETURN —_

2000 REM PAUSE

(etwas für rund 2 Sekunden Pause) — 2. Subroutine

???? RETURN _ |

3000 REM PAPERFARBE u

(etwas, um die Paperfarbe zu der von

einer Variablen PAPER bestimmten — 3. Subroutine

zu verandern)

???? RETURN _

Hier ist 2??? eine Zeilennummer, die festzulegen ist, sobald wir die Subroutinen
konkret schreiben. Vorerst brauchen wir aber nur darauf zu achten, welche
Variablen sie verwenden werden.

88

Wir müssen außerdem den Computer in die richtigen Startbedingungen
versetzen (Bildschirm löschen, Cursor home, etc.):

4. Initialisiere System.

Wir brauchen also eine vierte Subroutine:

4000 REM INITIALISIEREN _

(etwas, um die erforderlichen Bedingungen

zu schaffen) — 4. Subroutine

277? RETURN | |

Das Hauptprogramm

Version 7

Das Hauptprogramm nimmt nun die Form an:

100

110

120

130

140

150

160

179

180

190

200

210

220

230

240

250

260

270

REM HAUPTPROGRAMM

GOSUB 4000 [initialisieren]

Ms = “BIRKHAEUSER VERLAG”

GOSUB 1000 [1. Meldung anz.]

GOSUB 2000 [Pause]

PAPER = 2: GOSUB 3000 [Paper rot]

Ms = "COMPUTERKATALOG NOVEMBER 1987"

GOSUB 1000 . [2. Meldung anz.]
GOSUB 2000 [Pause]

PAPER = 4: GOSUB 3000 [Paper purpur]

Ms = “CRAY 1 - PROGRAMMIEREN LEICHT GEMACHT”

GOSUB 1000 [3. Meldung anz.]

GOSUB 2000 [Pause]

PAPER = 7: GOSUB 3000 _ [Paper gelb]

Ms = “SPIELE AUF IHREM VAX” |

GOSUB 10900 — [4. Meldung anz.]

GOSUB 2000 [Pause]

PAPER = 8: GOSUB 3000 [Paper orange]

89

280 Ms = "COMPILERGENERATOREN FUER BLUTIGE

ANFAENGER”

290 GOSUB 1000 [5. Meldung anz.]

300 GOSUB 2000 [Pause]

310 PAPER = 13: GOSUB 3000 [Paper hellgrün]

320 GOTO 100 [das Ganze wieder-

holen]

Version 2

Wir haben diese Subroutinen noch nicht geschrieben . . . aber bevor wir es tun,
ist jetzt ziemlich klar, da& das Hauptprogramm nicht vollkommen befriedigt. Es
enthalt viele Wiederholungen — derselbe Ablauf wird funfmal wiederholt, es
andern sich nur Meldungen und Farbcodes. Ware da eine Schleife nicht effek-
tiver?

Allerdings — aber nur, wenn wir Arrays verwenden, von denen wir bis
Kapitel 25 offiziell nichts wissen. Das heißt, fünf Variable

Ms (1) Ms (2) Ms (3) Ms (4) Ms (5)

enthalten die Meldungen, und .

P (1) P (2) P (3) P (4) P (5)

die Paperfarben. Läuft der Schleifenzähler S von 1 bis 5, dann können wir uns
auf die Variable S im Programm beziehen als M$ (S) oder P (S). Die tatsächli-
chen Werte dieser Variablen müssen natürlich irgendwo gesetzt werden - ein
geeigneter Platz ist innerhalb der Subroutine /nitialisieren. Jetzt haben wir also:

109 REM HAUPTPROGRAMM

119 GOSUB 4000 [initialisieren]

120 FORS=1T05

130 M$= Ms (S) GOSUB 1000 [zeig Meldung S an]

149 GOSUB 2000 [Pause]

150 PAPER = P (S): GOSUB 3000 [Paper auf Farbe S]

160 NEXTS [zurück zur Schleife]

170 GOSUB 2000 [Pause]

180 PRINT CHR$ (147) [Schirm leer/Cursor home]

199 GOTO 120 [das Ganze wiederholen]

Beachten Sie, daß nach Zeile 199 nicht erneut initialisiert werden muß; wir
verwenden GOTO 10® nicht.

90

Nun haben wir eine sehr klare Vorstellung von der ganzen Programm-
struktur - aber von den Subroutinen haben wir immer noch keine geschrieben!
Das ist der große Vorteil des Top-down-Prinzips: Wir müßten im anderen Fall
alle diese Programmteile ebenfalls schreiben, und das Ganze wäre wohl durch-
einandergeraten. Schlimmer noch, die gesamte Aufgabe würde viel ab-
schreckender wirken und unser Selbstvertrauen beschädigen. Wie lautet Jones’
Erstes Computergesetz? "Verschiebe nie auf morgen, was du übermorgen
kannst besorgen.” :

In diesem Geiste:

Aufgabe 2

Schreiben Sie die Subroutinen in den Zeilen 1009, 2000, 3000 und 4009, die
noch benötigt werden, damit das Werbeprogramm läuft, und probieren Sie es
anschließend aus.

Aufgabe 3

Erfinden Sie sieben zusätzliche naheliegende Buchtitel für das Birkhäuser-
Angebot 1987 im Computershop, und wandeln Sie das Programm ab, um sie in
den Katalog aufzunehmen.

Lösungen

Aufgabe 1

Fügen Sie eine Zeile ein:

115 POKE 53280,6

Aufgabe 2

Die Subroutinen lauten:

1000 REM DISPLAYMELDUNG

1019 PRINT [leere Zeile]

1020 PRINT M$ [Meldung]

1030 RETURN

2000 REM PAUSE VON ETWA 2 SEKUNDEN

201® FORT = TO 1500 [""Tunix’-

2020 NEXTT Schleife]

2030 RETURN

91

3999

3010

3020

4000

4019

4020

4930

4040

4050

4060

4200
4210
4220

4230
4249

4400
4410
4420

REM PAPERFARBE

POKE 53281, PAPER

RETURN

REM INITIALISIEREN

DIM Ms (5): DIM P (5) [Dimensionierungsarrays, Kap. 25]

Ms (1) = "BIRKHAEUSER VERLAG”

Ms (2) = “COMPUTERSHOP-KATALOG NOVEMBER 1987”

Ms (3) = “CRAY 1 - PROGRAMMIEREN LEICHT GEMACHT”

Ms (4) = “SPIELE FUER IHREN VAX-COMPUTER”

Ms (5) = "COMPILERGENERATOREN FUER BLUTIGE

ANFAENGER"”

P(1)=2

P(2)=4

P(3)=7

P(4)=8.

P (5) = 13

PRINT CHRS (147) [Schirm leer/Cursor home]

POKE 646,9 [Ink schwarz]

RETURN |

Die fehlenden Zeilennummern in Subroutine 4000 sollen Platz lassen für die
dritte Aufgabe und haben keine Bedeutung.

Aufgabe 3

Verändern Sie die Schleifengröße:

1280 FORS=1TO12

Verändern Sie die Arraygrößen (Einzelheiten in Kapitel 25):

40910 DIMMs (12): DIM P (12)

Fugen Sie zusatzliche Titel und Farben ein:

4070

92

Ms (6) = “REALTIME-STEUERUNG VON RAUMFAEHREN

MIT DEM VIC-20”

4080

4090

4100

4119

4120

4130

4250

4260

4270

4280

4290

4300

4310

Ms (7) = “TIPS ZUM UMGANG MIT DEM UNIX-BETRIEBS-

SYSTEM FUER DIE JUNGE BRAUT”

Ms (8) = "WIE BAUT MAN VLSI-SCHALTUNGEN AUS ALTEN

STREICHHOELZERN?”

Ms (9) = "COMMODORE 256- PROGRAMMIEREN NICHT SO

LEICHT GEMACHT”

Ms (10) = "MASCHINENCODEPROGRAMME FUER NUME-

RISCH GESTEUERTE TOASTER”

Ms (11) = “EINE EINFUEHRUNG IN DAS NETZSYSTEM SPIEL

UND SPASS”

Ms (12) = “LOGO FUER SYSTEMANALYTIKER”

P(6)=3

P(7)=19

P(8)=5

P (9) = 14

P (10) =15

P(11) =9

P (12) =6

Beachten Sie ubrigens, wie leicht es ware, die Farben in dem nach obiger Art
strukturierten Programm zu ändern. Man müßte lediglich die Zuteilungen der
Variablen P (1)-P (12) abändern. Ebenso könnten die Buchtitel geändert
werden, ohne daß am Hauptprogramm etwas verändert werden müßte.

93

15 Debugging II

Debugging I befaßte sich mit Fehlern in der “Grammatik”. Eine
Anweisung kann aber grammatikalisch völlig in Ordnung sein und
in einem Programm trotzdem Unsinn hervorrufen.

Laufzeitfehler

Der 64 weist Sie auf Syntaxfehler zwar erst dann hin, wenn Sie RUN tippen,
aber im Prinzip könnte er es schon vorher tun, weil er eine Anweisung nur
durchzugehen braucht, um zu erkennen, daß etwas nicht in Ordnung ist. Es gibt
aber andere Arten von Fehlern, die auf keinen Fall zu erkennen sind, bevor das
Programm gefahren wird. Man nennt sie Laufzeitfehler.

Hier ein simples Beispiel:

10 FORP=11T020

20 N=5/(5-P)

30 PRINTN

40 NEXTP

Fahren Sie das. Sie werden feststellen, daß es ganz brav losgeht und die Werte

1.25

1.66666667

2.5

5

liefert, dann aber mit einer Fehlermeldung aufwartet:

? DIVISION BY ZERO ERROR IN 29

Was ist da passiert? Die Meldung teilt uns mit, daß dem 64 an Zeile 20 etwas
unangenehm aufgefallen ist, die da lautet:

10 N=5/(5-P)

An der Anweisung selbst kann es allerdings nicht liegen, weil sie schon viermal
ausgeführt wurde und die obigen vier Zahlen hervorbrachte. Es muß also mit
dem Wert von P zusammenhängen, das einzige, was sich verändert. Schreiben
Sie "PRINT P’” (oder, damit es rascher geht, auch nur "?P’”). Der Bildschirm
zeigt "5°.

94

Der Computer versucht also auszurechnen:

5 5

5 —5 "y

und kann das nicht, weil das Ergebnis eine Zahl wäre, größer, als Sie sich
vorstellen mögen, und so groß der Speicher des 64 auch ist, sie könnte er doch
nicht aufnehmen. Der 64 nimmt also sehr vernünftig Notiz, sobald Sie irgend-
eine Zahl durch Null teilen wollen, und fängt erst gar nicht damit an, sondern
teilt Ihnen lieber mit, daß es hier krankt.

Dieser Fehler kann in viel weniger auffälliger Weise auftreten. Wie wäre es
damit?

30 INPUTP,O,R

40 A=(P+Q-R)/(5+(P-R)*(P-R)-2*O)

Probieren Sie 7, 15 und 2 als Werte für P,Q und R und warten Sie ab!

Aufgabe 1

Welche Werte in den folgenden Beispielen würden die Meldung “Teilung durch
Null” hervorrufen?

1. A=7IK(B-C)

R=P+0/(2*P-O)

M=R+2/(R*R+R*R*R)

Losung

Aufgabe 7

Sie können davon kommen, wenn Sie alle Variablen in diesen Beispielen auf
Null setzen, aber andere Möglichkeiten sind: |

1. B und C gleich setzen.
2. OQ doppelt so groß setzen wie P, etwa O = 7,p = 3.5
3. R = -1 setzen.

Sie konnen (und sollten) stets das Auftauchen der Meldung verhindern, wenn
Sie einen eigenen Test einfugen. Bei Beispiel 1 oben konnten Sie beispielsweise
schreiben:

20 INPUTB,C

30 D=B-C

40 !IFD=Q@THEN PRINT "GEHT NICHT. NOCH EINMAL”; GOTO 20

50 A=7/D

95

16 Strings

Der Postbote klopft an die Tür. Ein Brief für Sie. Ein sehr persönlicher. "Lieber
Herr Wagenschmalz”, heißt es da, "Sie sind unter den Bewohnern von Hinter-

Man kann C omputer dazu bewegen, nicht nur Zahlen, sondern
auch Wörter und andere Arten symbolischer Schreibweise zu ver-
arbeiten.

dorfhagen ausgewählt worden und erhalten völlig kostenlos...”
Sehr erfreulich. Die alte Frau Schnaufberger nebenan hat aber den glei-

chen Brief bekommen, wie auch jeder andere Einwohner von Hinterdorfhagen
nebst dem gesamten Sprengel.

Das geht so.

10

20

30

40

50

60

70

80

90

199

110

120

130

140

150

160

170

96

INPUT “WIE IST IHR NAME”; NS

INPUT

PRINT

PRINT”

PRINT *

PRINT *

PRINT ”

PRINT ”

PRINT”

PRINT

PRINT”

PRINT‘

PRINT

PRINT

PRINT

“IN WELCHER STADT LEBEN SIE”; T$
CHR$ (147)
LIEBER HERR []"; NS
[] DE SIE PERSOENLICH SIND HIER IN [[]"; TS
AUSGEWAEHLT WORDEN UND ERHALTEN”
VON UNS GRATIS UND OHNE KOSTEN (*)”
EINEN GROSSARTIGEN NASEN-”
BEFESTIGUNGSRING, VERGOLDET.”
‘WIR SIND SICHER, HERR []"; NS
DASS SIE AM SELBIGEN BALDIGST”
‘HERUMGEFUEHRT WERDEN KOENNEN.”
“T] (1 © MIT DEN FREUNDLICHSTEN GRUESSEN”
"71 O © GO] 0TTOBALD K. BEUTELSCHNEIDER”
“T] DO OD VERTRIEB FUER LUKRATIVE

NEUIGKEITEN”

PRINT

PRINT = VERSANDGEBUEHREN DM 892,—"

Fahren Sie das und suchen Sie sich Eingaben aus:

WAGENSCHMALZ

HINTERDORFHAGEN

ZECKERWETTEL

SCHLAFHAUSEN

und so weiter. Probieren Sie andere Namen und Orte aus. Na...
Nun stellen Sie sich vor, daß dieses Programm automatisch mit Namen

und Adressen aus einer Datenbank gefüttert wird und in der Stunde Tausende
von Briefen hinausgehen.

Abgesehen davon, wie albern das Ganze wirkt, ist das Interessante daran,
daß keinerlei Rechenarbeit stattfindet. Es wird nur gespeichert und ein bißchen
mit geschriebenem Text herumgespielt. Der Computer bewältigt das, weil er
nicht nur Zahlen, sondern auch Strings speichern kann. Das ist es, was diese
Dollarzeichen $ signalisieren, obschon tn diesem Zusammenhang noch eine
naheliegendere Verbindung zu bestehen scheint.

In Kapitel 8 habe ich Strings und Stringvariable schon vorgestellt. Jetzt
will ich Ihnen zeigen, wie man damit umgeht.

Verkettung

... ein hochgestochenes Wort fur “aneinanderfugen”. Wenn Sie zwei Strings
aneinanderkleben wollen, schreiben Sie ein +-Zeichen dazwischen. Beispiel:

PRINT “HOT” + “DOG”

was.ergibt:

HOTDOG

Beachten Sie die Reihenfolge: “DOG” + “HOT” ergibt “DOGHOT”. Beachten
Sie außerdem, daß die Anführungsstriche nicht Bestandteil des Strings sind.
Wenn ein String angezeigt oder auf andere Weise verarbeitet wird, sind die
Anführungsstriche nur da, um Anfang und Ende zu bezeichnen.

Man kann mehrere Strings auf folgende Weise kombinieren:

10 INPUT BS, Cs

20 PRINT BS + B$+Cs

Was geschieht, wenn Sie als Eingaben:

BS = “B” Cs = "C"

BS = “KO” C$ = “SNUSS”

BS = "DU, L]” C$ = “NUR DU ALLEIN”

nehmen? Warum?

97

Kommt eine bestimmte Folge von Zeichen (und dazu gehören auch
Grafikzeichen) in einem Programm mehrmals vor, dann empfinden Sie es viel-
leicht als lohnend, sie einer Stringvariablen zuzuteilen.

Die Länge eines Strings

Der Befehl

LEN

liefert die Länge eines Strings — das heißt, die Anzahl der darin enthaltenen
Zeichen. Beispiele:

LEN (“FIDO”) =4

LEN (“E£LELELELELE’) = 11

LEN (“2+2=5")=5
LEN”) =0

ars

wobei ", der /eere String, ein String ohne Zeichen ist. Um allgemein die Lange
des Strings K$ zu finden, schreiben Sie:

LEN (K$)

Probieren Sie, um das zu testen, folgendes Programm aus:

10 INPUT “STRING”; K$

20 PRINT KS$S;"[_| HAT LAENGE”; LEN (KS)

39 GOTO 19

Erklärt sich eigentlich von selbst.

~Wortumkehrung

Das nachste Programm nimmt als Eingabe Buchstaben fur Buchstaben ein Wort
an und nutzt die Stringverkettung, um dieses Wort hervorzubringen, aber ver-
kehrt herum. (Mit fortgeschritteneren Befehlen wie MIDS, LEFT$, RIGHTS
könnte man das ganze Wort auf einmal eingeben, aber der Einfachheit halber
gehe ich hier Buchstaben für Buchstaben vor. Im nächsten Kapitel finden Sie
weitere Einzelheiten.)

18 INPUT "ERSTER BUCHSTABE"; F$

20 INPUT "NAECHSTER BUCHSTABE”; N$

30 IFN$S = "0" THEN 60

98

40 FS=NS$+ FS

50 GOTO 29

60 PRINT CHR$ (147)

70 PRINT FS

Um der Eingabe in Zeile 20 ein Ende zu machen, geben Sie keinen Buchstaben
ein, sondern “0”.

Um zu sehen, wie das funktioniert, nehmen Sie das Wort “GARTEN”. In
Zeile 10 geben wir den ersten Buchstaben “G” ein, also wird F$ auf ‘“G” gesetzt.
In Zeile 20 geben wir den nächsten Buchstaben ‘’A” ein. Zeile 49 verwandelt F$
nun in:

NS + FS= "A" 4°G" = "AG"

und Zeile 5® schickt uns zurück zu 20, um einen weiteren Buchstaben zu holen,
diesmal ''R”. F$ wird damit zu

NS + F$="R" + "AG" = “RAG”

und so weiter:

TT": F§ = N$ + FS = “T" + “RAG” = “TRAG”

Eingabe "E”: FS = N$ + F$ = "E” + “TRAG” = “ETRAG”

N’: F$= N$ + F$ = “N" + “ETRAG” = "NETRAG”

Eingabe ''ß": Programm springt zu Zeile 60 und zeigt "NETRAG” an.

Eingabe “T”:

Eingabe “N’

Das Entscheidende ist die Reihenfolge, in der die Strings in Zeile 49 zusammen-
gefügt werden. Was geschieht, wenn Sie stattdessen

aD FS=FS+ NS

schreiben?

Aufgabe 1

Es gibt ein Spiel mit Wörtern, bei dem der erste Spieler einen einfachen Satz
bildet wie:

GESTERN SAH ICH EINEN PAVIAN

Der nächste Spieler hängt dem Pavian ein beschreibendes Eigenschaftswort an:

GESTERN SAH ICH EINEN ROSA PAVIAN

Der nächste steuert wieder ein Adjektiv bei:

GESTERN SAH ICH EINEN WILDEN ROSA PAVIAN

99

und so weiter. Der Satz wird immer länger (bis jemand nicht mehr weiß, wo das
Wort hineingehört), und sieht am Ende vielleicht so aus:

GESTERN SAH ICH EINEN BEDENKENREICHEN FAULEN LEICHT-

GLAEUBIGEN ERFRISCHENDEN RIESIGEN BESONDERS VER-

STAERKTEN MISSGELAUNTEN KUNSTSTOFFGEFUTTERTEN HER-

VORRAGENDEN WILDEN ROSA PAVIAN

oder so in der Art.
Schreiben Sie ein Programm, mit dem die Spieler solche Sätze dadurch

aufbauen können, daß sie bei jedem Schritt ein zusätzliches Adjektiv einfügen.

Lösung

Aufgabe 7

10 Y$= "GESTERN SAH ICH EINEN []”

20 BS= "PAVIAN”

30 As=""

40 PRINT Y$ + B$ + A$

50 INPUT "ADJEKTIV?"; Is

60 As=I$+"[]" + AS

70 GOTO 49

100

17 Substrings

Wenn Sie Teile eines Strings als Substrings herausnehmen, können
Sie Wörter manipulieren. Sie finden hier Beispiele für Schüttelreime
und ein Programm, das Ihnen mitteilt, auf welchen Wochentag Ihr
Geburtstag fiel.

Im vorigen Kapitel habe ich den Gedanken eines Strings von Zeichen vorge-
stellt. Jetzt komme ich auf die Befehle

LEFT$

RIGHTS

MIDS

mit denen Sie Teile eines Strings auswählen können — sogenannte Substrings.
Für den Umgang mit Strings allgemein sind das sehr nützliche Befehle.

Links, rechts und Mitte

Um die linke Seite eines Strings zu wählen, verwenden Sie den Befehl

LEFTS (X$; N)

was die linken N Zeichen des Strings XS liefert. Beispiel:

18 LETX$ = "LANDSCHAFTSMALEREI”

20 LET Y$ = LEFTS (XS, 4)

30 PRINTYS

erbringt LAND. Ebenso gibt es einen Befehl fur die rechten N Zeichen:

RIGHTS (XS, N)

und

10 LET X$ = "LANDSCHAFTSMALEREI”

20 LET Y$ = RIGHTS (XS, 2)

30 PRINT YS

ergibt El. (Ubrigens sind diese LET-Anfange eine Sache der freien Wahl und
konnen genau wie bei Zuteilungen fur numerische Variablen weggelassen
werden.)

101

Schließlich kommt in diesem Zusammenhang noch der Befehl:

MID$ (X$, M, N)

der die N Zeichen von X$ ab Position M liefert. Für M gibt es eine Einschrän-
kung: Es muß größer sein als ®. Läßt man N weg, wird alles ab M erfaßt. Im
obigen Programm heißt es dann:

20 LET YS = MIDS (XS, 5, 6)

und Sie haben SCHAFT.
Eine typische Verwendungsart dieser Methode ist die, den Wochentag mit

einer Ziffer von 1—7, beginnend ab Sonntag, anzuzeigen:

10 WS = "SOMODIMIDOFRSA”
20 INPUT "WELCHER TAG”: T
30 Y$ = MIDS (WS,2 « T — 1,2)
40 PRINT Y$

Das 2 * T — 1 liefert die richtigen Startpositionen 1, 3, 5, 7,9, 11 und 13 in WS.

Aufgabe 7

Verwenden Sie einen String "JANFEBMAR ... DEZ”, um ein ähnliches Pro-
gramm zu schreiben, das mit einer Zahl von 1-12 den Monat anzeigt.

Strings und Zahlen

Der String “493” und die Zahl 493 werden vom Computer verschieden aufge-
faßt. Das fallt Ihnen vielleicht nicht auf, wenn Sie sie nur anzeigen.

PRINT 493

PRINT "493°

liefern dasselbe Ergebnis. Nun probieren Sie:

PRINT 493 + 7

PRINT “493” + 7

PRINT “493” + 7”

Sie werden feststellen, daß Sie drei verschiedene Ergebnisse erhalten:

500

? TYPE MISMATCH ERROR

4937

102

Im ersten Fall werden die Zahlen einfach addiert.
Im zweiten wird versucht, einen String zu einer Zahl zu addieren, was

einfach nicht geht. Einen String statt einer Zahl zu verwenden und umgekehrt,
ruft jedesmal diese Fehlermeldung hervor.

Im dritten Fall werden die Strings “493” und 7” verkettet, zu "4937"
zusammengesetzt und ohne Anführung angezeigt.

Das kann sehr nützlich sein, weil man mit Strings Dinge tun kann, die bei
Zahlen nicht so leicht fallen. Um beispielsweise die erste Ziffer von 987654321
zu finden, brauchen Sie nur LEFT$ (“987654321"',1). Mit arithmetischen Me-
thoden geht das viel schwerer. Das Ergebnis wäre jedoch ein String “9” und
nicht die Zahl 9. Vielleicht wollen Sie mit dieser 9 jetzt ein bißchen Arithmetik
treiben. Und zwar wie?

Ein String, der die Form einer Zahl hat (in Anführungsstrichen) kann in
eine echte Zahl verwandelt werden durch das Befehlswort

VAL

(fur "value”’ = Wert). Demnach ist

VAL ("9")

die Zahl 9. Probieren Sie

PRINT VAL ("493") + VAL ("7")

dann können Sie sehen, daß es wirklich funktioniert.
Es gibt einen ähnlichen Befehl

STR$

der umgekehrt wirkt. Er verwandelt eine Zahl in einen String. Beispiel:

STR$ (7751) ist "7751"

Beispiele dazu finden Sie in Kapitel 34, Lösungen, Aufgabe 1.

Schuttelreime

Der Schüttelreim lebt davon, daß die Anfangskonsonanten eines Reimpaars
vertauscht werden und dadurch einen überraschenden neuen Sinn ergeben.

Durch Stringmanipulation kann man das mit dem Computer bewältigen.
Ob die Ergebnisse komisch sind oder nicht, ist erstens eine Geschmacksfrage,
und zweitens hängt es vom Anwender ab. Das Programm hat dazu keine
Meinung.

Verfassen wir ein Programm dafür.

10 INPUT "ERSTES WORT”; AS

20 INPUT "ZWEITES WORT”; BS

30 PS = LEFTS (A$,1)

103

40

50

60

70

80

90

100

Fahren Sie das und geben Sie in den Zeilen 19 und 20 "GELBER" und "SE-
HEN” ein.

Zeile 39 nimmt den ersten Buchstaben links von "GELBER", also P$ =
“E", Zeile AD nimmt vom Zeichen 2 an alles mit und macht O$ zu "ELBER”. Zeile

O$ = MIDS (A$,2)

R$ = LEFTS (BS$,1)

S$ = MIDS (B$,2)

PRINT A$ + "DJ" + BS

PRINT “WIRD ALS SCHUETTELREIM”

PRINT R$ + O$ + “[]" + P$ + S$

GOTO 10

50 hängt R$ = ""G” an, Zeile 60 liefert "EHEN”.
Zeile 7 und 89 setzen das ursprüngliche Wort wieder zusammen, und

Zeile 90 zeigt an:

“S" + "ELBER” + "[_]” + "G" + "EHEN" = SELBER GEHEN

was eigentlich gar nicht so schlecht ist, wenn man es genau bedenkt.

Tagfinder

Dieses Programm nimmt als Eingabe ein Datum an (Tag Nummer T, Monat M,
Jahr J) und berechnet, welcher Wochentag es ist.

10

20

30

40

50

60

70

80

90

100

119

120

104

AS = 033614625035"
Bs = "SOMODIMIDOFRSA”
INPUT “TAG”; T
INPUT “MONAT”: M
INPUT “JAHR”; J
PRINT “DER TAG IST";
Z=J-1
C = INT (Z/4) — INT (Z/10®) + INT (Z/400)
X=J+T+C+ VAL (MIDS (A$,M,1)) -1
IFM > 2AND (J=4+*INT (J/4)) AND
J<> 199 * INT (J/190) OR J = 400 * INT (J/400)

THENX=X+1
X =X — 7+ INT (X/7)
PRINT MIDS (B$,2 «X + 1,2)

Schreiben Sie das sehr genau ab, vor allem die Klammer in Zeile 199. Fahren Sie
es und geben Sie (versuchsweise) 24 für T, 9 für M und 1945 für N ein. (Also
den 24. September 1945). Sie mussen das vollständige Jahr eingeben, nicht
bloß 45, sonst liefert das Programm die falsche Antwort. Sie sollten erhalten

DER TAG IST MO

für Montag. Probieren Sie es mit dem heutigen Datum. Mit Ihrem Geburtstag.
Stellen Sie fest, an welchem Datum Goethe gestorben ist, und versuchen Sie es
damit.

Zeile 19 speichert die "monatlichen Korrekturzahlen” in dichter Form als
Einzelstring.

Zeile 20 baut den oben beschriebenen ""Wochentags”-String auf.
Zeilen 30-69 sind Eingabe/Ausgabe-Anweisungen, nichts Ungewöhnli-

ches. |
Zeilen 80-109 führen eine komplizierte Berechnung aus, die Schaltjahre

und die "monatlichen Korrekturen” berücksichtigt. Beachten Sie die Verwen-
dung von VAL und MIDS$ in Zeile 99; hier wird die Ziffer M in A$ gefunden und
in eine Zahl verwandelt.

Zeile 11@ liefert eine Zahl im Bereich ®-6 fur den Wochentag (statt der
oben zur Erläuterung verwendeten 1-7) und Zeile 12® zeigt den Tag an, wobei
es MIDS bei BS verwendet.

Die Uhr

Der 64 hat eine eingebaute Uhr - ja, sogar mehrere! Mit BASIC konnen Sie zwei
Standardvariable nutzen: |

Tl

TIS

Die erste ist eine numerische Variable, und ihr Wert beträgt 6@mal die Zahl der
Sekunden, die abgelaufen sind, seitdem der Computer eingeschaltet wurde. Die
zweite ist eine Stringvariable; sie gibt die Zeit in Stunden, Minuten und Sekun-
den an. Beispiel:

021143 = 2 Stunden, 11 Minuten, 43 Sekunden

150422 = 15 Stunden, 4 Minuten, 22 Sekunden

TI$ kann jederzeit auf Null zurückgesetzt werden mit

TIS = "P00009”

dann zählt die Uhr die von diesem Augenblick an abgelaufene Zeit. Tl kann auf
diese Weise nicht zuruckgesetzt werden. Ich erwahne die beiden hier, weil TI$
eine Stringvariable ist und mit ein bi&chen Stringmanipulation zu mehr Entge-
genkommen veranlaßt werden kann.

105

10 PRINT CHRS (147)

20 AS=TIS

30 PRINT LEFTS (A$,2); "TJ STUNDEN []”; MIDS (As, 3, 2);

“T] MINUTEN [J"; RIGHTS (A$,2); “[]] SEKUNDEN”

49 GOTO 29

Jetzt haben Sie eine Uhr auf dem Bildschirm. Sie rollt ab wie verrückt, also
möchten Sie vielleicht einfügen:

25 PRINTCHRS (19);

Beachten Sie, daß sie nicht regelmäßig im Sekundentakt läuft; das liegt am
zeitlichen Ablauf des Zyklus. Ein paar Werte werden weggelassen, weil die Uhr
nicht im richtigen Augenblick gelesen wird. Aber die Zeit stimmt trotzdem.

Eine Ergänzung, die sich bei jedem Programm empfiehlt, ist eine Routine,
mit der die abgelaufene Zeit angezeigt wird. Schreiben Sie gleich zu Anfang:

1 TIS = "000000"

Dann Ihr Programm. Aber statt STOP geben Sie (sagen wir) GOTO 10000 ein
und fugen an:

10000 AS=TIS

10010 GET BS: IF BS = "" THEN 10010 [Pause für das Drücken einer

Taste]

10020 PRINT "ABGELAUFENE GESAMTZEIT BETRAEGT”

10030 PRINT LEFTS (AS, 2); "| STUNDEN [_]”; MIDS (AS, 3, 2);

“T-] MINUTEN [_]"; RIGHTS (AS, 2); "[LJ] SEKUNDEN”

10040 STOP

Losung

Aufgabe 1

10 Ms = "JANFEBMARAPRMAIJUNJULAUGSEPOKTNOVDEZ"
20 INPUT "WELCHER MONAT”; M
30 J$ = MIDS (M$,3*M - 2,3)
40 PRINT JS

106

18 ASCII-Codes

Jedes Zeichen hat seine eigene Codenummer. Damit können Sie
prüfen, was für eine Art Zeichen es ist, oder von einem Code in den
anderen verwandeln. Ein Anwendungsgebiet wäre das Morsen.

ASCII heißt “American Standard Code for Information Interchange” (amerika-
nischer Standardcode für Informationsaustausch) und entspricht seinem Na-
men ziemlich genau. Als eingebürgertes System für die Codierung von Zeichen
als Zahlen ist es schon lange vorhanden.

Wenn Sie den Code eines Zeichens K$ finden wollen, verlangen Sie:

ASC (KS)

Hier ein Testprogramm:

1@ INPUT K$

2@ PRINT ASC (KS)

39 GOTO 19

Die ASCII-Codes sind aufgeführt im Handbuch auf den Seiten 135-37. Die —
Zeichen 9-31 sind Steuerzeichen und werden vom Betriebssystem verwendet.
Die Zeichen 96-127 sind Grafikzeichen.

Um festzustellen, welches Zeichen einem gegebenen Code C entspricht,
verwendet man einen Befehl, den wir schon oft gesehen haben:

CHR$ (C)

Hier ein Analog- Testprogramm:

10 INPUTC

20 PRINTCHRS (C)

30 GOTO10

Probieren Sie verschiedene Zahlen zwischen ® und 255 aus. Von ® bis 31
erhalten Sie seltsame Ergebnisse, weil das System sie nicht anzeigt, sondern
ihnen gehorcht! |

Eine der üblichen Anwendungen der ASCII-Codes ist die Prufung, ob ein
Zeichen zu einer bestimmten Art gehört. Nehmen wir an, das Zeichen sei K$. So
ergibt sich aus

IF ASC (KS) > 47 AND ASC (KS) < 58...

107

daß K$ eine Einzelziffer ist. Ebenso:

IF ASC (K$) > 64 AND ASC (K$) < 91...

dann ist K$ ein Großbuchstabe. Und

IFASC (K$) > 95 ANDASC (K$) < 128...

dann ist es ein Grafikzeichen. Und so weiter.

Aufgabe 1

Schreiben Sie ein Programm, das nach Eingabe eines Strings die einzel-

nen ASCII-Codes ausgibt.

Morsecode-Generator

Das folgende Programm nimmt eine Eingabe an und zeigt sie in Morsecode an:

10 DIMAS (26)
20 AS(1)=".—"
30 AS (2) ="-...
40 A$ (3) ="~.-.”
50 AS$(4)="-..
60 A$ (5) =.”
70 AS (6) ="..-.”
80 As(T)="--.”
99 AS(8)="....”

100 A$(9)=".."
119 AS (10) =".---"
120 As(11)="-.-
130 A$(12)=".-..”
140 As (13) ="-—"
150 A$(14) ="—.”
160 As (15) = "---”
170 As(16)=".--.”
180 As (17)="--.-"

108

199 A$(18) =".-.”
200 As(19)="..."
210 As (20) = "—"
220 A$(21)="..—"
230 A$(22)="...-"
249 A$ (23) =".-~”
250 A$ (24) ="—-..—”
260 A$(25) ="-.-—"
270 As (26) ="—-..”

Das setzte nur die Codes für die Buchstaben A-Z hintereinander als Stringarray;
vielleicht fallen Ihnen weniger langweilige Methoden dafür ein. Nun zum
Programm selbst:

300 INPUT "MITTEILUNG EINGEBEN”; M$

310 PRINT CHRS (147)

320 FORI=1TOLEN (M$)

330 C=ASC (MID$ (Ms, I, 1))

340 IFC <320RC > 32 AND C < 650RC > 90 THEN 380

350 C=C-64

360 IFC < @ THEN FOR J = 1 TO 200: NEXT J: PRINT

370 IFC > @ THEN PRINT CHRS (C + 64), A$ (C)

380 NEXTI

399 STOP

Zeile 309 erhält die Mitteilung zum Verschlüsseln. Zeilen 320 und 38@ setzen
eine Schleife, um die Mitteilung Zeichen für Zeichen abzusuchen; Zeile 330
findet das Zeichen |. Zeile 340 achtet darauf, daß es entweder ein Leerraum oder
ein Buchstabe ist und beachtet es im anderen Fall nicht. Zeile 35® zieht von
seinem ASCII-Code 64 ab, so daß A 1 wird, B 2, und so weiter. (Achtung:
Leerraum wird jetzt zu 32-64, was negativ ist; siehe unten).

Zeile 360 fügt eine Verzögerung ein, wenn das Zeichen eine Leerstelle ist,
um Wörter zu trennen, und zeigt eine Leere Zeile an.

Zeile 379 zeigt den Buchstaben der Mitteilung und seine Form in Morse-
zeichen an (entnommen aus dem Array AS).

Im Augenblick haben wir etwas leicht Ungewohntes: stummes Morsen.
Verwendet man den SID-Klangchip im 64, kann man auch die zugehörigen
Geräusche erzeugen; dazu Aufgabe 2 in Kapitel 39.

109

110

Lösung

Aufgabe 1

19

20

30

40

50

INPUT “STRING”; S$

FOR! =1 TO LEN (Ss)

K$ = MID $ (SS, 1,1)

PRINT ASC (KS)

NEXT |

19 Bildschirm- und Farbspeicher

Die Information, die erforderlich ist, um das TV-Bildschirmdisplay
hervorzubringen, ist in zwei Speicherbereichen enthalten. Diese
sind dem Programmierer direkt zugänglich und können genutzt
werden, um das Display zu steuern.

In Kapitel 7 habe ich erwähnt, daß man sich das TV-Schirmdisplay als aus 25
Reihen zu je 40 Zeichen bestehend vorstellen kann, und daß die Reihen übli-
cherweise von ®-24 und die Spalten von 9-39 numeriert werden. Abbildung
19.1 zeigt diese Anordnung. Beachten Sie, daß sie genau 1009 (= 25 x 40)
Zeichen umfaßt. Jedes Zeichen kann durch seinen Code als ein Einzelbyte
Information bestimmt werden. Aus diesem Grund verwundert es nicht, einen
Speicherbereich von 199@ Adressen Größe vorzufinden, der diese gesamte
Information enthält.

Spaltennummer >
ti tıı111ı112a2222222223339333333 3

0123456 7890123456 7890123456 7899123456789

55296 —> 0
55336 1.

55376 2
55416 3
55456 4

55496 5
55536 6
55576 7 3

@ 55616 8 ©
R 55656 a>
ad 55696 . 10 ©
3 55736 1 3
< 55776 2 2

55816 3 3
55856 14
55896 15 3
55936 . is 2
55976 47
56016 18 |
56056 19
56096 20
56136 21
56176 22
56216 23
56256 24

56295

Abbildung 19.1
Aufbau des Bildschirmspeichers ahmt den des Bildschirms selbst nach.

111

Bildschirmspeicher

Der betreffende Speicherbereich beginnt bei Adresse 1924 und endet bei 2023.
Er wird Bildschirmspeicher oder Video-RAM genannt. Nun hat ein Computer-
speicher von Natur aus keine rechteckige Form, wie Abbildung 19.1 sie zeigt;
praktisch ist alles in einer einzigen langen Reihe von Adressen angelegt. In
diesem Fall verlaufen die Adressen den Reihen entlang und bewegen sich erst
dann eine Spalte tiefer, wenn eine Reihe aufhört — so, als lase man in einem
Buch. Anders ausgedrückt: Die oberste Reihe des Bildschirms ist gespeichert in
den Adressen

1924 1025 1026 1027

1962 1963

Die nachste Reihe (Reihe 1) in:

1064 1065 1066 1067

1162 1193

und so weiter, mit dem Ende in Reihe 24 und:

1984 1985 1986 1987

2022 2023

Die allgemeine Regel: Reihe R, Spalte C entspricht der Adresse:

1024 +40*R +C

Wollen wir also auf dem Bildschirm in Reihe R, Spalte C ein bestimmtes Zeichen
anzeigen, brauchen wir nur mit einem geeigneten Code über POKE in diese
Adresse hineinzugehen: |

POKE 1024 + 40 »R + C, Code für Zeichen

Es gibt zwei kleine Haken.

1. Der erforderliche Code ist nicht der ASCII-Code, sondern der in Anhang
E des Handbuchs, S. 132, aufgeführte. Grob gesprochen, handelt es sich
um den ASCII-Code minus 64 für Buchstaben (und ein paar andere),
minus 32 für Grafikzeichen, und unangetastet für Zahlen.

2. Es gibt konkret zwei Zeichensätze, die Sie anzeigen können. Satz 1 hat
Großschrift, Satz 2 Kleinschrift. Um sie zu wählen, müssen Sie mit POKE
in die Systemvariable 53272 heineingehen:

Satz 1: POKE 53272,20

Satz 2: POKE 53272,22

112

Wenn Sie nicht versucht haben, den verwendeten Satz zu ändern, wird es
Satz 1 mit Großbuchstaben sein. Ich schlage vor, daß Sie zunächst bei
Satz 1 bleiben, bis Sie die Grundbegriffe verstanden haben.

POKE zum Bildschirm

Angenommen, wir möchten in Reihe 12, Spalte 20, nah beim Mittelpunkt des
Bildschirms, einen Ball anzeigen. Die Adresse lautet:

1024 + 40 + 12 + 20 = 1524

und der Code für den Ball (Anhang E des Handbuchs):

81

Sie brauchen also die Anweisung

POKE 1524,81

Versuchen Sie das als direkten Befehl. Drücken Sie vorher RUN/STOP + RE-
STORE.

Hat sich irgend etwas getan?
Nein. Das ist ein bißchen merkwürdig, weil entsprechend dem Hand-

buch, S. 64 oben, ein weißer Ball auf dem Bildschirm erscheinen sollte. Dem
Handbuch kann man sonst durchaus vertrauen, aber diesmal ist es ausge-
rutscht. Auf dem Schirm ist sogar wirklich ein Ball, aber Sie können ihn nicht
sehen, weil er nicht weiß ist, sondern blau! Verändern Sie die PAPER-FARBE
durch

POKE 53281,7

Der Bildschirm wird gelb, und da ist der Ball!
Jetzt können Sie experimentieren. Probieren Sie

POKE 1525,81

und Sie sehen einen zweiten (blauen) Ball.

Aufgabe 7

Welche POKE-Anweisungen benötigt man, um anzuzeigen:

1. Das Zeichen M in Reihe 7, Spalte 9?
2. Das Zeichen für Kreuz (Treff) aus einem Kartenspiel in Reihe 29,

Spalte 32?
3. Das Zeichen (pi) in Reihe 11, Spalte 8?

(Gehen Sie davon aus, daß Sie im Zeichensatz 1 sind.)

113

"PRINT AT’-Subroutine

Ich möchte ein bestimmtes Zeichen an einer bestimmten Position auf dem
Bildschirm öfter anzeigen. Manche Versionen von BASIC haben einen PRINT
AT-Befehl, der das mühelos bewältigt, wie

PRINTAT10,15,°Z7 (*)

Die Version von BASIC im 64 dagegen (manchmal, falls ich das aussprechen
darf, ein bißchen dürftig) läßt das nicht zu. Wie behilft man sich? Man schreibt
eine Standard-Subroutine, die das leistet. Ich setze sie in Zeile 10099, vor allem
deshalb, weil das eine viel höhere Zahl ist, als Sie in der Regel verwenden, so
daß nichts anderes gestört wird, was Sie schreiben. Genauso mache ich es bei
allen anderen nützlichen Unterprogrammen — natürlich mit jeweils anderen
Zeilennummern. Auf diese Weise baue ich eine Bibliothek von nützlichen Sub-
routinen auf. Das erweitert die Fähigkeiten des 64 ganz erheblich und erspart
viel Routinearbeit.

Es ist ein guter Grundsatz, Subroutinen möglichst a//gemein zu halten. So
wäre es beispielsweise sinnlos, eine Subroutine zu verfassen, die in einer
gewünschten Reihe vonSpalte ‘X’ anzeigt, wenn ein bißchen zusätzliche Uber-
legung Sie jedes gewünschte Zeichen anzeigen läßt. Diese Routine erfordert
drei Datenposten:

REIHE = die Reihennummer

CLM = die Spaltennummer

CDE = den Zeichencode

Hier ist sie:

10000 REM PRINT AT REIHE, CLM, CDE

10010 POKE 1924 + 40 * REIHE + CLM, CDE

10020 RETURN

Ich habe ausgefallene Variablennamen gewählt, um mögliche Uberschneidun-
gen mit einem anderen Programm zu verhindern.

Sie können das genauso verwenden wie ein PRINT AT. Beispiel: Da der
Code für ‘Z’ 26 ist, können Sie die Wirkung von (*) oben erzielen durch
Verwendung von:

REIHE = 10: CLM = 15: CDE = 26: GOSUB 10000

Was zu schreiben nicht viel langer dauert.
Beachten Sie das Format: Teilen Sie die in der Subroutine verwendeten

Variablen zu und rufen Sie mit GOSUB auf. Variable, die in einer Subroutine
verwendet werden, bezeichnet man oft als zugeteilte Parameter. Sie müssen sie
immer auf die richtigen Werte setzen, bevor Sie die Subroutine aufrufen. Oft
berechnet eine Subroutine die Werte anderer Variablen; das sind die von der
Subroutine gelieferten Parameter.

114

Beispiel: Der Umwandlungsroutine binar/dezimal in Zeile 50@ des Pro-
gramms auf Seite 71 wird der Parameter C zugeteilt, sie liefert KS.

Achten Sie darauf, daß die Namen, die Sie für solche Variablen verwen-
den, nicht irgendwo in Ihrem Programm mit anderer Bedeutung verwendet
werden; das kann Schwierigkeiten geben!

Das schnelle +

Ich präsentiere jetzt einen Computerklassiker, die Grundlage vieler früher Spiel-
hallen-Videogeräte, und eine ausgezeichnete Einführung für bewegte Grafik
und die Verwendung von Verzweigungsbefehlen.

Geben Sie zuerst ab Zeile 10009 die obige PRINT AT-Subroutine ein.
Dann fügen Sie an:

10 PRINT CHR$ (147): POKE 53281,7
20 C=2:R=3
30 H=1:V=1
40 REIHE = R: CLM = C: CDE = 35: GOSUB 10000
50 C=C+H:R=R+V
60 IFC =QORC =39THENH =-H
70 IFR=QORR = 24THENV =-V

80 GOTO 49

Wenn Sie das fahren, zieht mit großer Geschwindigkeit eine Folge von '#'-Zei-
chen über den Bildschirm und prallt an den Rändern ab. Der Pralleffekt wird
erzielt durch die Zeilen 60 und 70. Die Grundlage: C, R sind die laufende
Position des bewegten +, H, V die Veränderungen, die für die nächste Position
in C und R gemacht werden müssen (H für horizontal, V für vertikal). Anfangs
sind H und V 1, so daß das # abwarts und nach rechts läuft, aber jedesmal,
wenn es an einen Rand stoßt, kehren H oder V die Richtung um. Beachten Sie
die Verwendung der Subroutine in Zeile 40.

Die Bewegungsillusion ist ziemlich stark, wird aber verdorben durch den
nachgezogenen + -Schwanz. Um der Illusion aufzuhelfen, können wir jedes +
loschen, sobald das nächste geplottet ist. Zuerst mussen wir uns an seine
Position erinnern:

45 C®=C:RO=R |

Wenn C und R sich in Zeile 50 dann ändern, tun C® und R@ es nicht. Nachdem
wir in Zeile 4D das neue + geplottet haben, löschen wir das alte (durch Anzeige
eines Leerraums, Code 32). Eine gute Stelle (das Löschen so lange wie möglich
verzögern, damit das Bild nicht so flackert) ist in Zeile 75:

75 REIHE = R@: CLM = CO: CDE = 32: GOSUB 19000

115

Und los geht es!
Statt eines einzelnen # wollen wir einen ganzen Wurm haben, der aus

vier # hintereinander besteht. Das können Sie erreichen, wenn Sie eine Art
‘Verzogerungszeile’ einfügen, wo die PRINT-Position für die Löschung schritt-
weise in der Zeile weitergereicht und endlich danach gehandelt wird. Löschen
Sie die obige Zeile 45 und ersetzen Sie sie durch:

42 CQ@=C1:RQ= RI

44 C1 =C2:R1 = R2

46 C2=C3:R2 = R3

48 C3=C:R3=R

Wenn Sie dahinterkommen, wie die Verzögerungen wirken, werden Sie über-
haupt keine Schwierigkeiten haben mit

Aufgabe 2

Ersetzen Sie die Zeilen 42-48 durch sieben Zeilen, die einen 7gliedrigen + -
Wurm erzeugen.

Farbspeicher

Kehren wir jetzt zurück zu dem Ausrutscher im Handbuch. Passiert war Folgen-
des: Das Zeichen wurde zwar angezeigt — aber in der falschen Farbe, die zufällig
auch die PAPER-Farbe war! Das ist ein bedauerliches Merkmal (ein Merkmal ist
ein Fehler, der sich nicht beseitigen läßt), aber man kann es umgehen, wenn wir
die Farben selbst steuern. Oben habe ich geschwindelt, als ich zu Beginn die
PAPER-Farbe veränderte, was ohnehin keine schlechte Idee ist. Sie können die
Farbe von Zeichen aber dadurch steuern, daß Sie mit POKE geeignete Codes in
einen anderen Speicherbereich eingeben, den Farbspeicher oder Farb-RAM.
Der Speicherbereich beginnt jetzt bei Adresse 55296 und endet bei 56295 und
entspricht dem Bildschirm genauso wie der Bildschirmspeicher: Reihe @ ist
enthalten in den Adressen:

55296 55297 55298 55299

55334 55335

und so weiter, siehe Abbildung 19.2. Der Farbcode fur Reihe R, Spalte C ist also
enthalten in Adresse:

55296 + 49*R+C

Leeren Sie den Schirm, geben Sie wie zuvor ein:

POKE 1524,81

116

und warten Sie, während nichts geschieht. Dann schreiben Sie:

POKE 55796,5

und bekommen einen grünen Ball zu sehen. Die Farbcodes entsprechen denen
in Kapitel 13, also bedeutet 5 ‘grün’. Und die Farbadresse, die Reihe 12, Spalte
29 entspricht, ist:

55296 + 40 + 12 + 20 = 55796

also das, was wir verwendet haben.
Moral: Wenn man in den Bildschirmspeicher mit POKE ein Zeichen ein-

gibt, dann auch gleichzeitig seine Farbe in den Farbspeicher.

Spaltennummer —
1441747 97 711 7322 2222222208383888308* «3 33 3 «83

0123456789801234567890123456789012345678 9

1924 — 0
1964 1.
1194 2
1144 3
1184 4
1224 5
1264 6

1394 7
D 1344 g I
(9) &
[4 p) 1384

9 =

D 1424 09
DO 1464 15

<C 1584 12 3
1544 3 E

1584 14 3
1624 15 3
1664 ig ©
1704 “47
1744 18 |
1784 19
1824 20
1864 21
1994 | 22
1944 23
1984 24

2023

Abbildung 19.2
Aufbau des Farbspeichers entspricht genau dem des Bildschirmspeichers, verwendet aber andere

Adressen.

Aufgabe 3

Wie Aufgabe 1, aber die Farben nun wie folgt:

1. Rot
2. Hellgrün
3. Weiß

Sie können auch die PRINT AT-Subroutine verändern, um die Farbe zu setzen:
Verwenden Sie einfach eine Variable CR für den Farbcode und fügen Sie die
Zeile ein:

10015 POKE 55296 + 40 * REIHE + CLM, CR

117

Wenn Sie vergessen, den Wert von CR zu setzen, erhalten Sie als Vorgabewert
Q, also schwarz.

Hier ein Beispiel fur eine verbesserte PRINT AT-Routine in Gebrauch:

10

20

30

40

50

PRINT CHR$ (147)

FORT=@TO15

REIHE=T+2:CLM=T+2:CDE=T +1: CR=T: GOSUB 19000

NEXTT

GOTO 50

Fügen Sie die Zeilen 10000, 19019, 10015 und 10020 aneinander und fahren
Sie. Geben Sie STOP, um das Programm anzuhalten; Zeile 5® verhindert, daß
eine Fehlermeldung das Display verdirbt.

Dynamische Wortumkehrung

Als ein längeres Beispiel hier ein Programm, das ein Wort von bis zu 21 Zeichen
annimmt und es durch Bewegung der Buchstaben auf dem Bildschirm umkehrt:

100 DIMXS (21)

119

120

130

PRINT CHR$ (147)

PRINT “SCHREIB DAS UMZUKEHRENDE WORT”

PRINT

149 INPUT WS

1590 WL=LEN (WS)

160

170

180

IF WL = 2 * INT (WL/2) THEN WL = WL + 1: W$ = WS + "DJ"
WH = (WL-1)/2
FOR T = 1 TO WL: X$ (T) = MID$ (WS, T, 1): NEXT T

200 REM WORT ANZEIGEN

210 PRINT CHR$ (147)

220 R=12

230 FORT=1TOWL

249 C=19-WH +T: C$ = X$ (T): GOSUB 2000

250 NEXTT

300 REM ERSTER TEIL ROTATION

310 FORS=1TOWH

118

320

330

340

350

360

370

400

410

420

430

440

450

460

470

500

510

520

530

540

550

560

570

600

610

620

630

640

650

660

679

680

FORT =STOWH

C=20+T:R=S+11:C$="[]": GOSUB 2000

R=R+1: C$ =X$(C + WH-19): GOSUB 2000

C = 20-T:R=13-S: C$ = "TI": GOSUB 2000

R = R-—1: C$ = X$ (WH + C-—19): GOSUB 2000

NEXT T: NEXT S

REM ZWEITER TEIL ROTATION

FOR S = 1 TO WH

FORT=1TOS

C=19-WH + S:R = 11 -WH + T: C$ = "[]": GOSUB 2000

C=C+1:C$=Xs$ (T): GOSUB 2000

C = 21 +WH-S:R =13 + WH-T: C$ = “[_]": GOSUB 2000

C = C—1: C$ = X$ (WL+ 1—T): GOSUB 2000

NEXT T: NEXT S

REM DRITTER TEIL ROTATION

FORS =1TOWH

FORT=1TOWH+1-S

R=11-WH+T:C=19+S:C$="[_]"; GOSUB 2000

C=C+1:C$=X$ (T): GOSUB 2000

C = 21-S:R=13 + WH-T: C$ = “[]": GOSUB 2000

C = C—1: C$ = X$ (WL + 1-T): GOSUB 2000

NEXT T: NEXT S

REM VIERTER TEIL ROTATION

FOR S =1TOWH

FORT=1TOS

R= 13 +WH-S:C = 19-WH + TT: C$="[]": GOSUB 2000

R=R-1:C$=X$ (WL + 1-T): GOSUB 2000

R=11-WH +S:C = 21 + WH-T: C$ ="): GOSUB 2000
R = R + 1: C$ = X$ (T): GOSUB 2000

NEXT T: NEXT S

STOP

119

2000

2019

2020

2030

2040

2050

REM PRINT AT R, C, C$

CD = ASC (CS)

IF CD > 64 THEN CD = CD-64

POKE 1024 + 49*R+C,CD

POKE 55296 + 490*R+C,7

RETURN

Ich werde nicht erklären, wie das im einzelnen funktioniert, weil das umstand-
liche Berechnungen darüber betrifft, wo jedes einzelne Zeichen hinkommt.
Beachten Sie aber die wiederholte Verwendung der Subroutine. Das ist eine
Abwandlung unseres gewöhnlichen PRINT AT-Unterprogramms; das Zeichen
wird direkt angenommen, der Code umgewandelt. Mehr über ASC in Kapitel
18.

Lösungen

Aufgabe 1

POKE 1024 + 40 * 7 + 9, 13 oder POKE 1313, 13

2. POKE1024 + 40 « 20 + 32, 88 oder POKE 1696, 88

3. POKE1024 + 40 *11 + 8, 94 oder POKE 1472, 94

| Aufgabe 2

Löschen Sie die Zeilen 42-48 und fügen Sie ein:

41 C@=C1:R@= RI

42 C1 =C2:R1 = R2

43 C2 =C3:R2=R3

44 C3=C4:R3 = R4

45 C4=Cb5: R4= R5

46 C5=C6: R5= R6

47 C6=C:R6=R

Offensichtlich muß es Methoden geben, das auf flottere Weise zu erreichen,
indem man dem Computer die ganze Arbeit überläßt. Lesen Sie über Arrays
nach (Kapitel 25) und versuchen Sie das Programm zu verbessern.

120

Aufgabe 3

Ergänzen Sie die POKE-Anweisungen in Aufgabe 1 um

1. POKE 55296 + 40 * 7 + 9, 2 oder POKE 55585, 2

2. POKE 55296 + 40 * 20 + 32, 13 oder POKE 55968, 13

3. POKE 55296 + 40 * 11 + 8, 1 oder POKE 55744, 1

121

20 Tonbandkassetten

Mit einem Spezial-Kassettenrecorder können Sie Programme auf
Band sichern und sie später neu laden, wenn Sie sie wieder ver-
wenden wollen. Das geht so:

Wenn Sie ein Programm geschrieben haben, das etwas Hübsches leistet, und
Sie besonders zufrieden mit ihm (und sich selbst) sind, wollen Sie es nicht
jedesmal wieder eintippen müssen, falls Sie es jemandem zeigen oder es selbst
benützen wollen. Sobald Sie den 64 aber abschalten, verliert er sein Gedächt-
nis. (Das tun alle Heimcomputer. Sie verwenden ein Speichersystem namens
Dynamite RAM, das Strom braucht, um zu laufen.)

Oder falls Ihnen beim Schreiben eines längeren Programms die Zeit
ausgeht oder Sie bei der Entwicklung vorübergehend steckenbleiben, wollen
Sie beim nachstenmal nicht noch einmal alles eingeben müssen.

Sie können den Computer nicht gut ununterbrochen eingeschaltet las-
sen. Stattdessen übertragen Sie das Programm auf Tonband, und zwar mit dem
Befehl:

SAVE

Ein zweiter Befehl

LOAD

holt das Zeug wieder vom Band und bringt es zurück in den 64. Freilich ist ein
bißchen mehr dran, daher dieses Kapitel.

Das Kassettengerät

Sie brauchen ein Spezial-Kassettengerät. Normale Kassettenrecorder, wie sie
überall angeboten werden, funktionieren nicht - ihnen fehlen die erforderlichen
Anschlüsse und Bedienungsknöpfe. Das Gerät ist ein C2N Cassette Unit, er-
hältlich bei Ihrem Commodore-Händler. Es läuft bei den CIV-, PET-, und
CBM-Modellen ebenso wie beim 64. Angeschlossen wird es an der Rückseite
des 64. Ein Schlitz im entsprechenden Stecker sorgt dafür, daß er nicht falsch
eingeschoben werden kann.

Warnung: Stellen Sie den Stromanschluß auf OFF, bevor Sie
den Kassettenrecorder einschalten, weil Sie sonst den Com-
puter beschädigen. Lösen Sie den Recorderanschluß auch
nicht, solange er unter Strom steht.

122

Mein Kassettenrecorder war mit einem Erdanschluß ausgestattet. Zu benötigen
scheint man den nicht, aber erkundigen Sie sich, wenn Sie unsicher sind, bei
Ihrem Händler. |

Der 64 übernimmt den größten Teil der Steuerung für den Recorder selbst,
aber ein paar Knöpfe mussen Sie drucken. Es lohnt vielleicht, im Umriß zu
erklären, was sich abspielen wird, weil einige der Befehle dann mehr Sinn
ergeben.

Es geht darum, daß der Computer die Programmzeichen in eine Folge von
akustischen Signalen umwandelt, die sich anhören wie Morsezeichen in Hoch-
geschwindigkeit. Diese werden auf Tonband aufgezeichnet, so, wie Sie es mit
einem Musikstück tun wurden. Wenn Sie dann wieder laden möchten, werden
diese Signale in den Computer zurückgeladen.

Auf dem Vorspannband der Kassette aus Kunststoff können Sie kein
Programm speichern; sie können keines zurückladen, das nicht aufgezeich-
net wurde oder sich an der falschen Stelle befindet; und Sie können versehent-
lich ein aufgezeichnetes Programm löschen, wenn Sie auf demselben Band-
abschnitt ein anderes sichern. Also aufpassen!

Vorsichtsmaßnahmen

Um die besten Ergebnisse zu erzielen und das Dasein zu erleichtern:

1. Achten Sie darauf, daß Sie alles richtig zusammengeschlossen haben.
2. Sorgen Sie dafür, daß alles an den Strom angeschlossen und eingeschal-

tet ist. Vergewissern Sie sich, daß der Kassettenrecorder läuft.
3. Reinigen und entmagnetisieren Sie Ton- und Loschkopf Ihres Recorders.

Das sind die beiden kleinen Metallblocke, an denen das Tonband ent-
langlauft. Magnetische Teilchen an diesen Stellen können die Aufzeich-
nungsqualität beeinträchtigen und zu Schwierigkeiten führen.

4. Verwenden Sie eine Bandkassette guter Qualität. Eine Computerkassette
C12 oder C15 ist ideal, eine C30 mittlerer Qualität müßte aber genügen.
Spottbillige Bänder funktionieren vielleicht, aber sie halten nicht lange
und hinterlassen beim Lauf häufig Magnetteilchen, so daß oft gereinigt
werden muß.

5, Verwenden Sie kein Band von mehr als 30 Minuten Lange, weil das dem
Kassettengerat schaden kann.

6. Spulen Sie die Kassette zum Anfang zuruck, damit Sie wissen, wo Sie
sind. Verwenden Sie ein Band, auf dem sonst nichts aufgezeichnet ist
(damit Sie leicht hören können, was vorgeht).

7. Lassen Sie das Band vorlaufen, bis der Vorspann durch ist. Dort aufzu-
zeichnen, hat keinen Sinn; es geht nicht.

SAVE testen

Geben Sie ein einfaches Testprogramm ein, meinetwegen:

10 PRINT “EINFACHES TESTPROGRAMM’"

20 GOTO 1®

123

oder was Ihnen sonst einfällt. Dann schreiben Sie:

SAVE “FRED”

und drücken RETURN. Auf dem Bildschirm erscheint die Meldung:

PRESS RECORD & PLAY ON TAPE

Drücken Sie also Aufnahme- und Wiedergabetasten des Recorders. (Ganz fest:
Achten Sie darauf, daß die Tasten richtig eingerastet sind, bevor Sie loslassen,
sonst mussen Sie noch einmal anfangen.)

Der Bildschirm wird nun für einige Sekunden leer. Der Kassettenrecorder
fangt von selbst an zu laufen, tut das eine Weile und bleibt stehen. Es erscheint
die Meldung:

SAVING FRED

READY

Das war’s! Ihr Programm befindet sich jetzt auf dem Magnetband, und zwar
unter dem Namen FRED.

LOAD testen

Spulen Sie das Band zum Anfang zurück und schreiben Sie NEW, um das
Programm aus dem Speicher zu entfernen. Das geschieht nur, damit wir sicher
sein können, daß das Band wirklich das Programm enthält.

Tippen Sie:

LOAD “FRED”

und drücken Sie RETURN. Die Meldung lautet nun:

PRESS PLAY ON TAPE

Drücken Sie die Taste Wiedergabe am Recorder. Das Band läuft wieder und hält
nach einer Weile an (nur Geduld!).

OK

SEARCHING FOR FRED

FOUND FRED

Nach einer Pause (die Sie durch Druck auf die COMMODORE-Taste abkürzen
können) lauft das Band weiter, und wenn alles gut ist,bleibt es mit der Schluß-
meldung stehen:

LOADING

READY

124

Sie können das Programm jetzt mit LIST anzeigen lassen, um nachzuprüfen, ob
es wirklich wieder im Speicher ist, und es wie gewohnt mit RUN fahren.

Programmnamen

Warum SAVE "FRED” und LOAD "FRED'’? Was hat der arme alte Fred damit zu
tun?

Ein Programm auf Band soll einen Namen erhalten, damit es von irgend-
welchen anderen auf demselben Band zu unterscheiden ist. Der Name kann
beliebig sein und bis zu 16 Zeichen umfassen. Erlaubte Programmnamen sind
also:

FRED

MARTHA

PROG1

+ + 4b 4 H+ A < > DD7.

SAVE ohne Namen sichert das Programm einfach auf Band; SAVE, gefolgt von
einem Namen in Anfuhrungszeichen, sichert zusatzlich einen ‘Kopfblock’, der
den Namen enthält und später gefunden werden kann. LOAD ohne Namen lädt
einfach das erste Programm, das auf Band gefunden wird. LOAD, gefolgt von
einem Namen in Anfuhrungszeichen, sucht, bis es den entsprechenden Kopf-
block findet, und ladt dann das Programm.

Der Grund, warum man Namen auf diese Weise verwendet, ist der, daß
Sie mehrere Programme mit verschiedenen Namen auf einem Band aufzeichnen
und dann jenes laden können, das Sie ausgewählt haben. Sichern Sie, um das
zu beobachten, mehrere Testprogramme unter verschiedenen Namen mit SAVE
hinteinander (achten Sie aber darauf, nicht eines auf das vorherige aufzuspie-
len):

SAVE “TEST1”

SAVE “TEST2”

SAVE “TEST3”

(Die Programme konnen alle gleich sein, wenn Sie wollen; aber Sie sehen
vielleicht eher ein, da& es klappt, wenn sie unterscheidbar sind.)

Spulen Sie das Band zuruck und schreiben Sie dann:

LOAD “TEST3”

Die übliche Meldung.

PRESS PLAYON TAPE

125

erscheint; halten Sie sich daran. Warten Sie. Das Band beginnt zu laufen, der
Bildschirm wird leer, das Band bleibt stehen, und die Meldung

SEARCHING FOR TEST3

FOUND TEST1

erscheint. Es gibt eine lange Pause (abzukürzen durch Druck auf die COMMO-
DORE-Taste), dann geht es weiter... und diesmal kommt:

SEARCHING FOR TEST3

FOUND TEST1

FOUND TEST2

Endlich wird TEST3 gefunden und wie gewohnt geladen.

VERIFY

Dieser Befehl wirkt genau wie ein LOAD, nur lädt er das Programm nicht in den
Computer, sondern vergleicht es mit dem, was sich schon im Speicher befindet.
Die Meldungen und der Ablauf der Ereignisse bleiben im Grunde gleich. Der
Hauptzweck von VERIFY ist die Prüfung, ob ein Programm wirklich gesichert
worden ist. Also SAVE, zurückspulen, VERIFY.

Der Kassettenspieler hat einen eingebauten Bandzähler; mit ihm können
Sie feststellen, wo auf dem Band Sie sich befinden. Es ist eine ausgezeichnete
Idee, auf der Karte in der Kassettenbox eine Liste der Programme und Bandzah-
len zu führen.

Aber was ist, wenn Sie das vergessen haben und herausfinden wollen,
was sich auf einem Band befindet... . ohne jedoch ein Programm zu stören, das
sich schon im Computer befindet? Ein Versuch mit LOAD ist sinnlos; Sie
könnten Erfolg haben und das verlieren, was schon im Computer ist.

Der Kniff: Man verwendet

VERIFY “NICHTS”

wobei NICHTS fur irgendeinen Namen steht, den Sie nicht fur ein Programm
verwenden. Der Computer sucht dann nach NICHTS und zeigt dabei auf dem
Bildschirm eine Liste aller Programme, die sich auf dem Band befinden:

SEARCHING FOR NICHTS

FOUND FRED

FOUND MARTHA

FOUND CRAYSIMULATOR

FOUND SCHACHPROGRAMM

etc.

Sie konnen sich bei jeder Stufe die Bandzahlen notieren.

126

Software im Handel

Sie konnen Programme kaufen, die schon auf Band aufgezeichnet sind. Der
Ladevorgang bei ihnen ist derselbe wie bei den von Ihnen gesicherten Program-
men. Spulen Sie die Kassette zum Anfang zurück und schreiben Sie LOAD.
(Wenn das Programm einen Namen hat, sollten Sie ihn aus der beigegebenen
Dokumentation erfahren, zusammen mit irgendwelchen besonderen Lade-
instruktionen; aber einfaches LOAD müßte immer genügen.) Haben Sie Ge-
duld, weil die Hersteller oft lange Bandabschnitte vor dem Programm leer-
lassen.

Schutz gegen Löschen

Hi-Fi-Experten kennen sich da aus, aber Leute, die einen Kassettenspieler
eigens für den Computer gekauft haben, vielleicht nicht. Sie können eine
Kassette gegen Löschen (durch versehentliches Drücken von RECORD) schüt-
zen, wenn Sie am Kassettenrand der Bandseite gegenüber ein Plastikplättchen
entfernen. Bei einer beliebigen Seite nach oben schützt das linke Plättchen
diese Seite. Brechen Sie es mit einem kleinen Schraubenzieher oder einem
ähnlichen Instrument heraus. |

Wenn Sie auf einem geschützten Band aufnehmen wollen, kleben Sie
einfach ein Stückchen Klebeband über das Loch, wo das Plättchen war.

Im Handel angebotene Kassetten werden in der Regel mit Löchern an-
stelle der Plättchen geliefert.

Programme ketten

Wenn ein Programm geladen ist, müssen Sie immer noch RUN schreiben, um es
zu fahren. Sie können LOAD aber auch von innerhalb eines Programms ver-
wenden. In diesem Fall lauft das geladene Programm automatisch.

Sie können also auf Band eine Kette von Programmen aufbauen, viel-
leicht so:

PROG1: 1%

20

59090 LOAD "PROG2"

PROG2: 10 |

20

7000 LOAD "PROG3”

127

PROG3 10

20

8962 LOAD “PROG4”

und so weiter. Laden Sie PROG1 mit LOAD per Hand und fahren Sie mit RUN;
der Rest läuft automatisch. Beispielsweise könnten Sie ein Videospiel ‘Golf’
betreiben. PROG1 betrifft das erste Loch, PROG2 das zweite, und so weiter; Sie
erreichen die Zeile, die das nächste Programm lädt, nur, wenn Sie den Ball ins
Loch befördern. Bei komplizierter Grafik, die zuviel Platz erfordert, als daß die
ganze Folge von Programmen gleichzeitig aufgenommen werden könnte, er-
weitert das den Bereich des Möglichen.

Fur andere Verwendungen von Bandkassetten siehe Kapitel 34 zu Files.
Hinweis: Für den Commodore 64 wie auch für den VC 20 gibt es jetzt

auch Diskettenlaufwerke.

128

21 Debugging III

Bleistift und Papier haben immer noch ihren Nutzen...

Schreibtischtests

Häufig sind Laufzeitfehler nicht so leicht zu finden wie die in "Debugging II”.
Wenn Sie nicht gleich erkennen können, was nicht stimmt, müssen Sie den
Code sorgfältig und systematisch durchgehen. Das kann eine sehr mühsame
Sache sein, aber wenn Sie sich eisern daran halten, ist der Erfolg beinahe
garantiert.

Ich will die Methode fur den "Schreibtischtest” eines Programms an
einem Beispiel erläutern. Wir stellen uns vor, Sie hätten den folgenden Pro-
grammcode in einem Zeitschriftenartikel gefunden:

10 INPUT “NAECHSTE ZAHL EINGEBEN”; N
20 IFN>@THENS=S+N:C=C+I:GOTO10

30 PRINT "MITTEL IST”; S/C
40 INPUT “WEITERE DATEN (J/N)”; O$
50 IFO$S="J"THEN 10

und der dazugehörige Text teilt Ihnen mit, Sie würden das Mittel einer Reihe
positiver Zahlen erhalten, beendet mit Null. Mit anderen Worten: Sie könnten
eingeben

NAECHSTE ZAHL EINGEBEN? 3

NAECHSTE ZAHL EINGEBEN? 4

NAECHSTE ZAHL EINGEBEN? 5

NAECHSTE ZAHL EINGEBEN? ®

und die Meldung erhalten

MITTEL IST 4

(Die Null gehort nicht zu den Daten; sie ist der Begrenzer, siehe Kapitel 11.) Das
Programm wird den Anwender dann fragen, ob er es mit einer neuen Daten-
menge versuchen will:

WEITERE DATEN (J/N)?

"Wenn Sie auf diese Frage “J” eingeben, fangt das Programm von vorne an und
verlangt erneut eine Folge von Zahlen.

129

Wenn Sie das Programm eingeben und mit den Zahlen 3, 4, 5 und ®
fahren, werden Sie feststellen, daß es nicht funktioniert. Es nimmt die Zahlen
wie erwartet an, aber sobald Sie die Null eingegeben haben, sturzt es mit der
Meldung ab:

?DIVISION BY ZERO ERROR IN 30

Der Nullteiler-Damon hat wieder zugeschlagen!
Um nun festzustellen, was der dumme Computer angestellt hat, tun Sie

so, als wären Sie die Maschine, und gehorchen sklavisch den Programmanwei-
sungen, wie der Computer es täte. Sie weisen nach, wie die verschiedenen
Werte, die das Programm verarbeitet, sich in einer Tabelle folgender Art verän-
dern:

Zeile Nr. S N C | Verzweigung

Dieses Programm enthält nur vier Variable: S, N, C und |. Während jede Zeile
ausgefuhrt wird, tragen Sie die Zeilennummer ein, die neuen Werte von S, N, C
und | (falls sie in dieser Zeile verändert werden) und, wenn die Anweisung ein
IF... THEN ist, in die Spalte ““Verzweigung” einen Haken, falls ein Sprung
stattfindet, sonst ein Kreuz.

Bevor wir aber anfangen, tut der 64 noch eines, sobald Sie RUN tippen,
‚nämlich, alle Variablen auf Null zu setzen, so daß die Tabelle zu Beginn so
aussieht: /

Zeile Nr. S N C | Verzweigung

Wir wollen das Programm mit den Zahlen 3, 4, 5 und ® testen. Die erste Zeile 1®
ist ausgeführt, 3 wird an N weitergegeben, also:

Zeile Nr. S N C | Verzweigung

0 0 0 0
19 3

130

Bei Zeile 20 ist N größer als ®, also wird die 3 zu S addiert, I(®) zu C, und die
Verzweigung zu Zeile 1® findet statt:

Zeile Nr. S N C | Verzweigung

0 0 0
10 3
20 3 d V

Wenn wir das fortsetzen, erhalten wir:

Zeile Nr. S |; N C | Verzweigung _

0)))
10 3
20 3) |
10 4 V
20 7 0
10 5 V
20 12)
10 N) V
20
30 x

Wir konnen also erkennen, warum der Fehler aufgetreten ist. Aus der Tabelle
ergeben sich Hinweise darauf, wie jede Variable sich verandert. sehen Sie sich
zuerst Spalte N an. Wir sehen die eingegebenen 3, 4, 5 und @ der Reihe nach in
Erscheinung treten, was den Erwartungen entspricht. S ist schon interessanter.
Hier sehen wir, wie die Summe der Zahlen in N langsam entsteht. Zuerst
erscheint die 3, dann 7 (3 + 4), dann 12 (3 + 4+ 5). Und was ist mit C los? Dort
ist absolut nichts los! Da drei Zahlen eingegeben wurden, sollte das Mittel 12/3
= 4 betragen, also müßte C 3 sein. Der Grund, weshalb C bei Null bleibt, ist in
Wahrheit der, daß ihm immer wieder I zuaddiert wird und | auf Null festgelegt
ist. Angenommen, | wäre ein Schreibfehler für 1? Dann sähe die Tabelle so aus:

Zeile Nr. S C Verzweigung

9

20 3

| 7

2

N

<
<

<

20 1

Se

a
fF

W
S
/
|
2
Z

30 Print 12/3=4

131

Jetzt sehen die Dinge vielversprechend aus. Zeile 20 wird redigiert, aus dem “|”
eine 1’ gemacht, und mit RUN gefahren. Geben Sie wie vorher 3, 4, 5, Q ein,
angezeigt wird 4. Nun geben Sie “J”, wenn Sie gefragt werden, ob: weitere
Daten kommen, und versuchen Sie es mit 19, 20, 30, ®. Das Programm zeigt die
Lösung 12 an, was seltsam ist, weil das Mittel von 19, 20 und 30 nämlich 29 ist!

Logikfehler

Das ist nun ein Beispiel für eine neue Art von Fehler — einen logischen Fehler.
Das Programm leistet etwas und schließt seine Aufgabe ab, ohne daß dem 64
etwas auffiele, aber was immer das Programm auch gemacht haben mag, es hat
nicht das Mittel aus 19, 20 und 30 genommmen.

Fahren wir mit dem Schreibtischtest also fort, um festzustellen, was
schiefgegangen ist. Die bisherige Arbeit zu wiederholen, hat wenig Sinn, also
brauchen wir nur festzuhalten, daß, wenn wir Zeile 40 erreichen, S = 12,N = @
und C = 3. Außerdem brauchen wir nun die Stringvariable O$:

Zeile Nr. S N C QS Verzweigung

40 12 ") 3 J
>
10 10
20 22 4 V

Weiter, glaube ich, brauchen wir nicht zu gehen, um das Problem zu erkennen.
Da S zu Beginn 12 ist, wird es 22, obwohl es nur 19, und C zu 4, wo es 1 sein
sollte. Anders ausgedruckt: Der 64 hat die erste Folge von Werten nicht verges-
sen, als er die zweite verarbeitete, wird also ausrechnen:

(3+4+5+10 +20 + 30)/6=12

Jetzt ist das leicht zu beheben. Wir fügen einfach eine Zeile 5 ein:

5 S=9:C=9

und verändern Zeile 5@ zu: »

50 IFQ$= “J” THEN 5

Mit welcher Wahrscheinlichkeit treten Fehler dieser Art auf? Nun ja, Schreibfeh-
ler von der Art | fur 1, 2 fur Z sind ziemlich haufig (wenn auch nicht in diesem
Buch, wie ich hoffe), und selbst wenn der Fehler nicht auf der gedruckten Seite
steht, ist die Wahrscheinlichkeit groß, daß Ihnen bei der Eingabe eines Pro-
gramms gelegentlich unbemerkt ein Ubertragungsfehler unterläuft. Selbst
wenn Sie ein eigenes Programm schreiben, werden Sie sich wundern, wie oft
Sie den Namen einer Variablen vergessen und die falsche verwenden oder sogar
dieselbe Variable für zwei verschiedene Dinge verwenden. Sie sollten vorsichtig
sein und sich die Namen aller Variablen und ihrer Funktion gleich zu Beginn
aufschreiben; aber so, wie der Mensch nun einmal gebaut ist...

132

Der zweite Fehler zeigt zwei wichtige Dinge. Erstens: Obwohl BASIC
dadurch von Nutzen zu sein versucht, daß es Variable auf Null initialisiert, ohne
daß Sie das verlangen müssen, ist das doch kein reiner Segen. Obwohl man es
vielleicht nicht muß, sollte man zu Beginn eines Programms alle Variablen
festlegen, weil damit die Möglichkeit eines solchen Fehlers vermieden wird. Ich
meine nicht, daß Ihnen ein derart banaler Fehler unterlaufen könnte, aber wenn
man ein Programm verfaßt, das sich mit einer bestimmten Datenmenge befaßt,
und es erst später ändert, damit es viele Datenmengen verarbeiten kann, läßt
sich schon begreifen, daß die Initialisierung übersehen wird.

Zweitens zeigt er, wie sorgfältig Sie beim Testen eines Programms vorge-
hen müssen. Wenn ein Programm bei einer bestimmten Datenmenge läuft,
dürfen Sie sich noch nicht zu der Schlußfolgerung verleiten lassen, das würde
auch bei jeder anderen geschehen. Zu diesem Thema habe ich in den Kapiteln
26 und 29 noch mehr zu sagen.

Aufgabe 1

Hier ein Beispiel für Sie, an dem Sie Ihr Können erproben können. Das folgende
Programm soll eine Folge von positiven Werten (Null bis 1990) annehmen und
am Ende den größten und kleinsten gelesenen Wert anzeigen. Als Begrenzer
wird eine negative Zahl verwendet. Beispiel: Wenn die Daten 8, 4, 3, 9, -1
lauten, sollte das Programm demnach anzeigen

9 3

Einen Hinweis gebe ich Ihnen - man muß nach zwei Fehlern suchen.

10 MAX=0:MIN=9

20 INPUTN

30 IFN < MINTHEN MIN=N

49 IFN > MAXTHEN MAX = N

50 IFN < @ THEN PRINT MAX, MIN: END

69 GOTO 20

133

Lösung

Aufgabe 1

Bei meinem Beispiel sieht der Schreibtischtest so aus:

Zeile Nr. MAX MIN N Verzweigung

50 Print 9, —1

Der größte Wert wird also richtig angezeigt, der kleinste dagegen nicht. Wenn
wir uns die MAX-Spalte ansehen, können wir erkennen, wie das Programm
arbeiten soll. Jedesmal, wenn ein Wert größer als der in MAX erscheint, ersetzt
er den laufenden Wert in MAX. MIN sollte sich natürlich ebenso verhalten, so
daß dort zuerst 8, dann 4, dann 3 auftauchen sollten. In MIN geht aber keine
Veränderung vor, bis —1 eingegeben wird, was aber gar nichts bewirken soll,
weil das ja nur ein Begrenzer ist!

Der Grund, warum keine neuen Werte in MIN gesetzt werden: Der kleinste
mögliche Wert (Null) ist dort schon enthalten. MIN sollte vielmehr mit einem
sehr großen Wert beginnen, damit der erste erscheinende Wert ihn ersetzt, denn
der neue Wert muß kleiner sein. Da als der größtmögliche Wert 1000 bekannt ist,
geht alles, was größer ist. Zeile 19 muß also lauten:

10 MAX = @: MIN = 1901

134

Nun müssen wir verhindern, daß das begrenzende -1 nach MIN gelangt. Kein
Problem. Wir müssen fragen, ob die Dateneingabe beendet ist, bevor wir versu-
chen, den Wert nach MAX oder MIN zu übertragen. Zeile 5® sollte also gelöscht
und als Zeile 25 neu geschrieben werden.

135

22 Zufallszahlen

Sogar ein Computer kann unberechenbar sein!

Bei manchen Programmen möchte man, daß der Computer sich unberechenbar
verhält. Der 64 verfügt über einen Befehl, der "Zufalls”-Zahlen hervorbringt,
und diese können Sie verwenden, wenn der Computer etwas tun soll, Sie aber
vorher nicht wissen wollen, was er macht. Besonders nützlich ist das bel
Spielen. Wieviele Spiele kennen Sie, bei denen gewürfelt oder eine Karte
gezogen wird?

Der Befehl für Zufallszahlen ist

RND

gefolgt von einer Zahl in Klammern.
Damit Sie einen Begriff davon bekommen, was dieser Befehl leistet,

schreiben Sie ab und fahren Sie:

10 INPUTN

20 FORT=1TO1®

30 PRINTRND (N)

40 NEXTT

50 GOTO 19

Geben Sie für N zuerst 1 ein. Sie erhalten zehn Dezimalzahlen zwischen ® und
1 ohne erkennbare Anordnung. Nehmen Sie noch einmal 1. Sie erhalten wieder
zehn Zahlen, noch immer ohne jede Ordnung.
4 Nehmen Sie jetzt @. Wieder erhalten Sie zehn beliebige Zahlen zwischen

und 1.
Jetzt nehmen Sie —2. Sie erhalten eine Zahl, die sich zehnmal wiederholt.
Die allgemeine Folge von RND (N) ist nämlich:

1. Ist N positiv, erzeugt RND (N) Zufallszahlen zwischen ® und 1 (® kann
vorkommen, 1 nicht.) Das geschieht allerdings auf "wiederholbare”
Weise.

2. Ist N Null, so liefert RND (@) eine Zufallszahl, bestimmt durch die Ge-
samtzeit, die seit dem Einschalten des Computers abgelaufen ist. In einem
gewissen Sinn geht es nicht zufälliger!

3. Ist N negativ, erzeugt RND (N) eine bestimmte "Zufalls’’-zahl, die von N
abhängt. |

Ich schlage vor, daß Sie Punkt 3 ganz beiseite lassen. Er wird meist für Debug-
ging verwendet und steht in Verbindung mit dem konkreten Prozeß, durch den
die "Zufalls”-Zahlen erzeugt werden. (Sie sind nicht wirklich zufällig, unter-
stellt, daß das Wort überhaupt etwas zu bedeuten hat, aber der Prozeß, der sie

136

hervorbringt, gesteuert von einer Zahl, die Keim genannt wird, ist darauf ausge-
richtet, für die meisten praktischen Zwecke ungeordnete Ergebnisse zu erzeu-
gen.) Der einzige Befehl, den Sie wohl je brauchen werden, ist:

RND (9)

und bei dem bleibe ich von jetzt an. |

Würfel, Spielkarten und Glücksspieleinrichtungen

Halt mal, da klopft es an die Tür... Nein, Herr Inspektor, ich habe keine
Spielklublizenz... Na gut, wenn Sie darauf bestehen, andere ich die Uber-
schrift des Abschnitts ab zu

Zufallsereignisse

Mann! Aber nun zur Sache. Wenn Sie einen Würfel rollen, liefert er zufällige
Zahlen zwischen 1 und 6. Der ‘"Würfel”” im 64 liefert Zahlen zwischen ® und 1,
die Dezimalzahlen sein können. Ein bißchen mathematische Jongleurkunst ist
also angebracht.

Hier eine typische Liste von zufälligen Zahlen des 64 (in der ersten
Spalte) zusammen mit dem, was geschieht, wenn Sie mit 6 multiplizieren.

RND(®) | 6* RND(Q)
.131137465 | .78682479
80924873 | 4.85549238
846447204 | 5.07868323
.5691965711 | 5.04921935
.26800113 | 3.55179427

Multiplikation mit 6 dehnt also den Zahlenbereich von ®-1 zu @-6 aus. Ein
Schritt in die richtige Richtung. Der nachste besteht darin, die Dezimalpunkte
loszuwerden. Der Befehl |

INT

ersetzt eine Zahl durch ihren /ntegerteil, die größte ganze Zahl, die nicht größer
ist als sie. Bei positiven Zahlen ist dies der Teil vor dem Dezimalpunkt, bei
negativen Zahlen um 1 kleiner. Beispiel:

INT (4.85549238) = 4

INT (-3.131592) = -4

Steht vor dem Dezimalpunkt nichts, gibt INT ® (bei positiven Zahlen). Wenn wir
aus der rechten Spalte also INT-Werte nehmen, erhalten wir die Zahlenfolge:

0 4 5 5 3

137

was für Würfelspiele fast schon richtig ist. Der einzige Haken: Sie gehen von ®
bis 5, statt von 1 bis 6. Wir fügen also 1 hinzu:

1 5 6 6 4

was genau richtig ist. Alles zusammengenommen, erzeugt

INT (6*RND (®)) + 1

wie ein Würfel im Bereich 1-6 zufällige ganze Zahlen.

Aufgabe 1

Welche Befehle würden Sie verwenden, um zufällige ganze Zahlen hervorzu-
bringen entsprechend:

Einem Paket von 52 Spielkarten?
Einer einzelnen Farbe von 13 Spielkarten?
Einem Domino aus einem vollständigen Satz von 28 Steinen?
Einem Geburtstag in einem Nichtschaltjahr?
Einer Zahl zwischen 19 und 99 (beide eingeschlossen) ? O

P
W
N
>

Frequenzdiagramm

Hier ein Programm von halbwegs ernster Art. Es wirft 150 Würfel und hält fest,
wie oft jede Zahl erscheint.

10 PRINT CHR$ (147)

20 POKE 53281,0

30 POKE 53289,9

AQ POKE 646,1

50 FORR=1TO6

60 REIHE=3*R:CLM=9@: CDE = 48+ R: CR = 1: GOSUB 10000

70 NEXTR

80 FORT=1TO 159

99 W=INT(6*RND (9) +1)

1098 C(w)=C(W) +1

119 IFC(W) > 38 THEN STOP

120 REIHE=3*W: CLM=C(W) + 2: CDE= 160: CR=W+1:

GOSUB 10099

138

130 NEXTT

149 GOTO 130

10000 REM PRINTAT

10010 POKE 1024 + 40 * REIHE + CLM, CDE

10015 POKE 55296 + 40 « REIHE + CLM, CR

10020 RETURN

Zeilen 10-40 leeren den Bildschirm und setzen die Farben. Die Anzahl, wie oft
der Würfel die Zahl 1, 2, 3, 4, 5, 6 gezeigt hat, wird in sechs Variablen C(1), C(2),
C(3), C(4), C(5), C(6) festgehalten. Ich habe ein bißchen geschwindelt, weil
diese Variablenliste das ist, was man ein Array nennt, ich aber erst in Kapitel 25
zu Arrays komme. Egal, was gemeint ist, wird deutlich.

Zeilen 50-70 zeigen die Zahlen 1-6 in einer Kolonne an. Das 48+R
erzeugt lediglich die Zeichen für 1-6, deren Bildschirmcodes (siehe Anhang E .
des Handbuchs) 49-54 sind. Beachten Sie den Gebrauch der PRINT-AT-
Subroutine ab Zeile 10000.

Zeilen 80 und 13® werfen den Würfel 15Qmal..
Zeile 19@ erhöht die Zählung für den jeweiligen Wurf.
Zeile 120 zeigt in der Zeile mit der Zahl W auf dem Bildschirm einen Block

Farbe an. Zeile 11® verhindert lediglich Probleme, wenn die Anzeigeposition
vom rechten Bildschirmrand wandert.

Beachten Sie, wie die Balken wachsen; auch wenn bei einem Lauf eine
Zahl im Vorsprung sein mag, auf die Dauer gleicht sich das aus. Der Würfel ist
fair:

Losung

Aufgabe 7

INT (52 * RND (@)) + 1
INT (13 * RND (@)) + 1
INT (28 * RND (@)) + 1
INT (365 + RND (®)) + 1
INT (98 « RND (®)) + 10, weil 99 « RND (@) von @ bis 89 geht, die
Addition von 1® also den Bereich 10-99 liefert. die 99 habe ich erhalten
durch Abzählen des Bereichs 99 — 10 = 89 plus eins am Ende, dann mit
der 19 eingeregelt.

O
I
R
W
N
>

Es könnte sein, daß Sie erwogen haben, das Dominoproblem (Nr. 3) durch INT
(7* RND (®)) zu bewältigen, um Punkte ®-6 zu erzeugen, mit ® fur einen leeren
(halben) Dominostein. Tun Sie das zweimal, behalten Sie aber nur Paare M, N,
für die gilt M < = N, sonst bekommen Sie die nicht-doppelten Dominosteine
wie zweimal, einmal so und einmal als , die doppelten
aber nur einmal, was die Wahrscheinlichkeit verändert.

139

23 PET-Grafik

Der 64 ist ausgestattet mit einem enormen Bereich von Grafikzei-
chen, die man dazu benützen kann, auf dem Schirm Bilder aufzu-
bauen.

Es kann Ihnen kaum entgangen sein, daß der 64 neben Buchstaben und Zahlen
auch Grafikzeichen anzeigen kann. Diese sind vom Keyboard aus zugänglich
und stehen auf der Vorderseite der Tasten. Das rechte Zeichen wird bedient
durch SHIFT, das linke durch die COMMODORE-Taste. Die Zeichen, ein wil-
der, aber vielseitiger Haufen, stammen noch vom Commodore PET-Computer,
daher diese Kapitelüberschrift.

Was den Computer angeht, ist ein PET-Grafikzeichen wie jedes andere
auch, auf dieselbe Weise mit PRINT anzuzeigen, über seinen ASCII-Code
zugänglich und mit POKE zum Bildschirm zu bringen.

Für Verfasser von Büchern stellen die Grafikzeichen ein Problem dar: Im
Satzbestand der Normaldruckerei sind sie nicht zu finden. Außerdem sind sie oft
schwer zu unterscheiden (wie Sie feststellen werden, wenn Sie sich gedruckte
Programme in Zeitschriften ansehen). Wir brauchen also eine Übereinkunft, um
sie besprechen zu können.

Nehmen Sie Taste A. Links befindet sich ein Grafikzeichen in der Art eines
kleinen rechten Winkels, rechts das Symbol einer Pik. Ich bezeichne sie der
Reihe nach als

gAc (Grafik-A + COMMODORE-Taste)

gAs (Grafik-A + SHIFT-Taste)

und ebenso bei anderen Tasten.

Gitterkonstruktion

Sie können auf einem Gitter aus PET-Grafik Bilder aufbauen. Beispielsweise
zeigt Abbildung 23.1 den Versuch, ein Auto zu zeichnen.

Abbildung 23.7
Pet-Grafikentwurf für ein Auto

140

Die verwendeten Zeichen sind:

CI gNs gOs gOs gOs gMs [| U

QGNs [] gYce gYc gYc gYc gYc gPs

gZc gCs gWs gCs gCs gCs gWs gCs

Wir könnten also den Wagen etwa so auf den Bildschirm zeichnen:

10 PRINT CHR$(147)

20 PRINT: PRINT: PRINT

39 PRINT TAB(15); "L] gNs gOs gOs gOs gMs L] L]”

49 PRINT TAB(15); “gNs [| gYc gYc gYc gYc gYc gPs”

50 PRINT TAB(15); “gZc gCs GWs gCs gCs gCs gWs gCs”

690 GOTO 69

Aufgabe 7

Entwerfen Sie eine Lok mit einem angehangten Waggon. Zeigen Sie den Zug
auf dem Bildschirm.

Bewegte Grafik

Vielleicht ist Ihnen der Gedanke gekommen, man könnte das Auto in Bewe-
gung versetzen, wenn bei der Anzeige verschiedene TAB-Werte eingegeben
werden. Ungefähr so:

19

20

30

40

50

60

70

80

PRINT CHR$(147)

FORC=@TO 30

PRINT CHRS$(19)

PRINT: PRINT: PRINT

PRINT TAB(C); "[_] gNs gOs gOs gOs gMs [_] [_]”

PRINT TAB(C); "gNs [|] gYc gYc gYc gYc gYc gPs”

PRINT TAB(C); ““gZc gCs gWs gCs gCs gCs gWs gCs”

NEXT C

Versuchen Sie es. Irgend etwas stimmt nicht ganz! Wir hinterlassen einen
Rattenschwanz von Autos.

141

Das Problem: Wir haben vergessen, das vorige Auto zu löschen, wenn wir
das neue anzeigen. Sie könnten Zeile 30 verändern zu:

30 PRINT CHR$(147)

aber das empfehle ich nicht, weil der Bildschirm zu stark flackert.
Eine bessere Methode ist die, das Auto mit einem "unsichtbaren

Schwanz’ von Leerstellen auszustatten, der vorige Autos auslöscht. Sie brau-
chen nur die Zeilen 50-70 umzuschreiben und vor jeden String von Grafikzei-
chen eine zusätzliche Leerstelle zu setzen:

50 PRINTTAB(C); "[] [] gNs gOs gOs gOs gMs [] [_]”"

60 PRINT TAB(C); "[] gNs [_] gYc gYc gYc gYc gYc gPs”

79 PRINT TAB(C); "[_J gZc gCs gWs gCs gCs gCs gWs gCs”

Jetzt ist alles in Ordnung.

Aufgabe 2

Das Auto soll von Spalte 30 zu Spalte ® zurückstoßen. (Hinweis: Sie brauchen
einen "unsichtbaren Bug” statt einen Schwanz.)

Verwendung von Stringvariablen

Wenn Sie auf diese Weise eine Folge von Grafikzeichen anzeigen mussen, ist es
viel besser, sie als Stringvariable zu setzen. Hier etwa ein Programm, bei dem
zwei Autos ein Rennen gegeneinander austragen.

10 PRINT CHRS(147)

20 C1=0:C2=0:C=%

30 As="[_][JgNsgOs gOs gOs gMs”

Ad B$="[| gNs[_] gYc gYc gYc gYc gYc gPs”

50 Cs=‘"[| gZc gCs gWs gCs gCs gCs g“Ws gCs”

60 R = 8: GOSUB 1000

70 R = 16: GOSUB 1000

89 N-=INT (1+ 2* RND (9))
90 IFN=1THENC1=C1+1:R=8:C=C1

100 IFN =2 THEN C2 = C2+1:R=16:C = C2

119 GOSUB 1900

1280 IF C1 = 30 THEN PRINT CHRS(19); "AUTO 1 SIEGT”: STOP

142

130 IFC2 = 30 THEN PRINT CHR$(19); "AUTO 2 SIEGT”: STOP

149 GOTO 80

1000 PRINT CHRS(19);

1010 FORT =1 TOR: PRINT: NEXT T

1020 PRINT TAB(C); AS

1030 PRINT TAB(C); BS

1040 PRINT TAB(C); C$

1050 RETURN

In Zeile 199@ beginnt eine Subroutine, die in Reihe R, Spalte C ein Auto anzeigt.
Anfangs sind die Spaltennummern C1 und C2 für Autos 1 und 2 noch 9), die
Reihen 8, 16. Zeile 80 entscheidet zufällig, welches Auto sich bewegt: 90-119
bewegen es; 120-130 prüfen, welches gewonnen hat.

Aufgabe 3

Schreiben Sie das Programm so um, daß Auto 1 rot und Auto 2 grün angezeigt
wird. (Hinweis: PRINT CHR$(28) erzeugt Ink rot, PRINT CHR$(3@) Ink grün.)

Lösungen

Aufgabe 1

10 PRINT CHRS$(147)

20 A$="gAcgCsgCs gCs gSc [_] gOsgYc g-s [|] L] [J gNc g-s”

39 BS="g-sgtc[] g+cg-s[] gPs |] gEcg-sg-sg-sgZcgls”

40 C$="g-sGWRgOcgRcegosSAMTRAKg-s”

50 Ds = "gZc gWs gCs gWs gXc [_| gCs gOs gCs gCs gOs gCs gOs
gXc"

60 FORT=11707: PRINT: NEXT T

70 PRINT TAB(8); AS

80 PRINT TAB(8); BS

90 PRINT TAB(8); C$

190 PRINT TAB(8); D$

119 GOTO110

143

Beachten Sie, wie in Zeile 4® Textzeichen (G WR, etc.) und Grafik gemischt
werden.

Aufgabe 2

10 PRINT CHRS$(147)

20 FORC=30TO @ STEP -1

30 PRINT CHRS$(19)

40 PRINT: PRINT: PRINT

50 PRINT TAB(C); "[_|] gNs gOs gOs gOs gMs [_] [] LJ”

60 PRINT TAB(C); "gNs L] gYc gYc gYc gYc gYc gPs [_|”

70 PRINT TAB(C); "gZc gCs gWs gCs gCs gCs g“Ws gCs [_|"

80 NEXTC

In Zeile 50 brauchen Sie am rechten Ende nur einen Leerraum; warum?

Aufgabe 3

Fügen Sie eine Zeile ein:

1915 PRINT CHR$(26 + 2*N)

und schreiben Sie diese Zeilen um:

60 R=8:N = 1: GOSUB 1000

70 R= 16: N = 2: GOSUB 1000

144

24 Keyboardsteuerung

Der Computer kann angewiesen werden, das Keyboard abzusu-
chen und je nachdem, was er vorfindet, auf verschiedene Weise zu
reagieren. Ein Anwendungsgebiet: Die Steuerung bewegter Grafik.

Der Haken bei einem INPUT-Befehl ist der, daß er alles aufhält, bis die Eingabe
erfolgt ist. Stellen Sie sich ein Videospiel vor, bei dem alles stehenbleibt, bis Sie
die Tasten drucken... Würde nicht viel Spaß machen! Der Befehl

GET

weist den Computer an, die Tastatur abzusuchen und festzustellen, was ge-
drückt wird. Das Ergebnis wird in irgendeiner von Ihnen gewählten String-
variablen gespeichert. Wenn Sie A$ verwenden wollen, sähe das Format so aus:

GET A$

(hübsch zum Merken: hol nen String, nicht? Na ja, schon gut.)

Hier ein einfaches Testprogramm:

10 PRINT CHRS(147)

20 GETAS

30 PRINT “SIE DRUECKTEN TASTE [_]"; A$

49 GOTO 20

Eine endlose Linie von Mitteilungen saust vorbei, aber wenn Sie eine Taste
drücken, etwa “Z’’, sehen Sie auch das Z vorbeirasen, ebenso bei den anderen
Tasten. |

Der Grund für soviel Aktion: Wenn Sie keine Taste drücken, setzt der
Computer AS auf den leeren String “’’ und macht trotzdem weiter. Um das zu
umgehen, fügen Sie ein:

25 IFA$="" THEN 20

Jetzt sitzt er in einer kleinen Schleife und wartet darauf, daß Sie eine Taste
drücken; schon viel friedlicher! Experimentieren Sie. Probieren Sie die RE-
TURN-Taste (durch die das Display um eine Zeile weiterspringt: RETURN wirkt
wie NEWLINE). Versuchen Sie es mit CTRL-Tasten, etwa mit CTRL + 5.

Bewegte Grafik

Führen wir die Idee einen Schritt weiter und verwenden wir die Tasten dazu,
Grafik zu steuern. Kehren wir zu unserem Auto aus Kapitel 23 zurück. Nehmen

145

wir an, wir wollen es, wenn wir Taste ““V” drücken, eine Stelle vorwärts-, wenn
wir "R’’ drücken, eine Stelle ruckwartsbewegen. Das geht so:

19

20

30

49

50

60

79

80

90

100

119

120

1000

1919

1020

1930

1949

1050

PRINT CHRS(147)

C=15

AS = "[_] [.] gNs gOs gOs gOs gMs [_]”

BS = “[_] gNs [_] gYc gYc gYc gYc gYc gPs [_]”

Cs = "[_] gZc gCs gWs gCs gCs gCs gWs gCs [_|”’

R = 12: GOSUB 1000

GET GS AS ist schon verwendet!

IF G$="V" THENC=C+1

IF GS = "R” THENC=C-1

IFC < @THENC=9

IF C > 29 THEN C = 29

GOTO 60 |

PRINT CHR$(19);

FOR T = 1 TO R: PRINT: NEXT T

PRINT TAB(C); AS

PRINT TAB(C); BS

PRINT TAB(C); C$

RETURN

Die Spalte, in der das Auto angezeigt wird, ist in Variable C enthalten. Zeilen 80
und 9@ passen C je nach der gedrückten Taste an. Zeilen 100 und 11® schützen
vor dem Verlassen des Bildschirms.

Beachten Sie den unsichtbaren Bug ebenso wie den unsichtbaren
Schwanz in den Zeilen 30-50. Das Auto kann sich ebensogut in der einen wie
in der anderen Richtung bewegen.

Aufgabe 1

Schreiben Sie das Programm so um, daß das Auto sich nicht nur seitlich,
sondern auf dem Bildschirm auch auf- und abwärts bewegt, und zwar mit den
Taste "O” und U”. (Bilden Sie, wenn Sie wollen, die Grafik zu einem Hub-
schrauber um.)

146

Dummer Puffer

GET hat einen Haken, der damit zusammenhängt, wie das Keyboard gelesen
wird, wenn es in Gebrauch ist. Es gibt einen Keyboardpuffer von bis zu 1®
Zeichen, und auf Druck einer Taste wird das Ergebnis (falls Platz ist) im Puffer
gespeichert. Die Folge: Wenn Sie mehrere Tasten drücken (wie das in der Hitze
des Gefechts schon vorkommen kann), werden Sie alle gespeichert und be-
folgt.

Wenn Sie das sehen wollen, verlangsamen Sie das fahrende Auto durch
Anfugen einer Verzögerung:

115 FORT = 1 TO 1000: NEXTT

Fahren Sie das Programm jetzt und drucken Sie mehrmals schnell auf ““V"’. Sie
werden sehen, wie das Auto sich bewegt, erneut bewegt und weiter bewegt, bis
der Pufferspeicher leer ist. Tippen Sie schnell! VRVRVR und warten Sie: das
Auto bewegt sich hin und her.

Um diese Eigenheit des Computers zu überwinden, können Sie die Länge
des Keyboardpuffers steuern mit einem Befehl:

POKE 649,1

was thn so setzt, daß er nur noch ein Zeichen aufnehmen kann. (Für N Zeichen
nehmen Sie POKE 649,N). Probieren Sie das durch Hinzufügen einer Zeile:

5 POKE 649,1

Jetzt ruft Mehrfachdruck auf Tasten nur noch eine Bewegung hervor - die der
nach dem vorherigen GET erstmals gedrückten Taste.

Automatische Wiederholung

Sie werden außerdem feststellen, daß, sobald Sie eine Taste gedruckt halten, der
GET-Befehl das nicht mehr zur Kenntnis nimmt. Er liest eine Taste und beachtet
sie dann nicht mehr, bis diese Taste losgelassen wird. Sie können das Auto also
nicht einfach dadurch schnell vorwärtsbewegen, daß Sie “V" ständig gedruckt
halten. Oft wollen Sie aber genau das.

Das Geheimnis ist die Systemvariable in Adresse 197, die eine (sonderbar
codierte) Version der derzeit niedergedrückten Taste enthält. Geben Sie dieses
kleine Programm ein:

2000 PRINT PEEK (197)

2010 GOTO 2000

Und jetzt RUN 2990. Eine Kolonne 64 läuft den Bildschirm hinunter. Drucken
Sie eine Taste, meinetwegen "A", und halten Sie sie unten; aus der Zahl wird 19.
Versuchen Sie es mit anderen Tasten. Sie werden sehen, daß jede ein anderes
Ergebnis bringt. Dierichtigen Zahlen sind in Anhang 7 aufgeführt; essind weder
ASCII-, noch Bildschirmcodes, sondern etwas vollig anderes!

147

Der Code fur "V” ist 31, für ”R” 17. Wenn wir unser Automobil also
automatisch wiederholen lassen wollen, können wir so vorgehen:

Löschen Sie Zeile 115. Schreiben Sie 70-90 so um:

70 A= PEEK (197)

80 IFA=31 THENC=C+A

90 IFA=17THENC=C-1

Geben Sie nun wieder RUN, halten Sie die Tasten V oder R gedrückt und
beobachten Sie die sofortige Reaktion.

Die Funktionstasten

Sie haben sich vielleicht gefragt, wozu die vier großen, auffälligen Tasten auf der
rechten Keyboardseite dienen mögen. Das Handbuch nennt sie "programmier-
bare Funktionstasten” und erwähnt sie anschließend mit keinem Wort mehr.

Es sind in Wahrheit acht Tasten, ohne Umschaltung:

f1 f3 f5 f7

und mit SHIFT:

f2 f4 f6 f8

In Wirklichkeit sind sie nur “Attrappen’-Tasten, die von einem GET-Befehl
gelesen werden können. Eine echte "programmierbare’ Taste würde sofort
reagieren, sobald sie mit einer vom Anwender eingegebenen Standardroutine
gedrückt wird; aber diese Tasten reagieren nur, wenn Sie selbst eine GET-
Anweisung programmieren. Innerhalb des Commodore-BASIC werden Sie
echte Programmierbarkeit leider nicht erreichen können. Mit den Funktionsta-
sten haben Sie aber wenigstens Standardpositionen zur Verfügung, die den
ganzen Kram "drückt man Taste “Z” oder "K”, um die fremde Raumflotte zu
zerblasen” überflüssig machen.

Die ASCII-Codes für die Funktionstasten (siehe Kapitel 18) sind:

f1 133

f2 137

f3 134

f4 138

f5 135

f6 139

f7 136

f8 140

148

Eine Art, etwa Taste f5 zu verwenden, ist also diese:

150 GET AS: IF AS = CHR$(135) THEN und so weiter...

Eine andere Methode ist die, den Zitiermodus zu benützen (Kapitel 7):

150 GET AS: IF A$ = "[Taste f5 drücken]” THEN...

Nehmen wir zum Beispiel an, Sie möchten, wenn Sie Taste f5 drücken, den
Bildschirm löschen. Dann könnten Sie verwenden:

150 GET AS: IF A$ = “[Taste f5]” THEN PRINT CHRS$(147)

Geben Sie das ein und fahren Sie mit RUN, wenn Sie wollen; drucken Sie f5.
Geschieht etwas? Nur, wenn Sie sehr schnell sind, weil f5 nur in Betrieb ist,
solange der GET-Befehl ausgeführt wird. Fügen Sie ein

169 GOTO 159

dann wird es besser...
Der zivilisierte Weg, mit diesen Tasten umzugehen, ist der, Subroutinen zu

schreiben, etwa:

15000 GET AS: IF A$ = “[Taste f5]"” THEN PRINT CHR$(147)

15019 RETURN

An strategischen Stellen verstreuen Sie dann GOSUB 159@Q-Befehle in Ihrem
Programm, so daß es ständig Taste f5 prüft. Beispielsweise können Sie ein
solches GOSUB in die innerste Schleife eines Mehrschleifensystems setzen.

Insoweit, als die Funktionstasten groß und leicht zu finden sind, ist das
eine ausgezeichnete Methode. Denken Sie aber daran, daß Taste f5 nichts
leistet, was Sie auf dieselbe Art nicht auch mit irgendeiner anderen Taste, etwa
"Z’,tun könnten.

Aufgabe 2

Schreiben Sie eine Routine, die eine Tabelle von Quadraten zwischen 1 und
1 Million anzeigt und, wenn Sie Taste f7 drucken, die PAPER-Farbe schritt-
weise von 0-15 wandern läßt.

Lösungen

Aufgabe 7

Geben Sie dem Auto zunächst oben und unten einen unsichtbaren Rand:

25 D$="f10x LJ)”

55 ES="[10xL]]”

149

Nun lassen Sie sie anzeigen:

1015 PRINT TAB (C); DS

1945 PRINT TAB (C); ES

Dann erweitern Sie den Bereich der Keyboardabfrage:

92 IFGS="O" THENR=R~—1

93 IFG$=“U" THENR=R+1

und schutzen Sie:

9 IFR<@THENR=9

96 IFR>18THEN R=18

Schließlich teilen Sie Zeile 6@ auf in:

55 R=12

69 GOSUB 1000

Fur die Hubschraubergrafik zeigt Abbildung 24.1 einen Vorschlag. Das fuhrt zu:

30 A$S="[]gCsgCs gRe gCs gCs [J |”

40 B$="[]gUsgOs gOs gYc gMs gPc gQs [_|”

50 Cs=“[] gJs gCs gWs gCs gCs gCs gKs [_]”

" Abbildung 24.1
PET-Grafik-Entwurf für einen Hubschrauber

150

Aufgabe 2

10 PRINT CHRS$(147)

20 CL=9

30 FORT = 1 TO 1000000

48 PRINTT,T*T

50 GOSUB 5999

60 NEXTT

70 STOP

5000 GET AS

5010 IFAS <> "[Taste f7]" THEN RETURN

5020 POKE 53281, CL

5030 CL=CL+1:IFCL=16THENCL=®

5049 RETURN

151

25 Arrays

Computerprogramme erfordern oft Informationslisten: Zahlen oder
Wörter. Eine Art, solche Listen zu speichern, nutzt Arrays.

Ein Array ist im Grunde eine numerierte Liste von Einzelposten, wie eine
Wäscheliste:

1. Socken
2. Hemd
3. Kissenbezug
4. Pullover

Wenn jemand Posten 3 braucht, kann er/sie in der Liste nachsehen, was das sei
(hier also ein Kissenbezug). Es gibt zwei Arten von Arrays: numerische Arrays
und Stringarrays.

Nehmen wir an, wir wollen im Computer eine Liste der zwolf Monate im
Jahr in Reihenfolge speichern. Monatsnamen sind Strings, also verwenden wir
ein Stringarray.

(Die Regeln fur Arraynamen entsprechen denen fur Variablennamen. Nur
die beiden ersten Buchstaben zahlen.)

Als erstes müssen wir dem Computer mitteilen, wie lang die Liste sein
wird. Das nennt man "das Array dimensionieren”, und es geschieht durch einen
Befehl

DIM

in dieser Art:

10 DIM MONATS (12)

Streng genommen, kämen Sie auch mit 11 statt 12 durch, weil (aus Gründen,
auf die ich hier nicht eingehen will) Arrays im 64 ab ® gezählt werden: Ein wie
oben auf 12 dimensioniertes Array hat die Einträge ®, 1, 2, 3, 4, 5, 6, 7, 8, 9,19,
11, 12 - insgesamt dreizehn! Der Verwirrung entgeht man am besten dadurch,
daß man den ®-Eintrag nicht beachtet.

Als nächstes müssen Sie dem Computer mitteilen, was die 12 Eintragun-
gen sind:

20 MONATS (1) = “JANUAR”

39 MONATS (2) = "FEBRUAR"

130 MONATS (12) = “DEZEMBER”

Ich habe Punkte verwendet, aber Sie müssen alle zwölf Monate eingeben. Pech
für Sie. Sie können sich jetzt auf jeden beliebigen Eintrag im Array beziehen,

152

wenn Sie den Namen des Arrays verwenden, gefolgt von der Postennummer in
Klammern. Beispiel:

MONATS (7)

erweist sich als “JULI”, und so weiter.
Um also einen beliebigen Monat anzeigen zu lassen, könnten Sie die

Zeilen anfügen:

140 INPUT "ZAHL DES MONATS”; N

150 PRINT MONATS (N)

Ebenso können Sie numerische Arrays aufbauen:

10 DIM ALICE (509)

mit Eintragungen:

ALICE (®) oft am besten ignoriert, aber nicht immer

ALICE (1)

ALICE (2)

ALICE (509)

Arrays nehmen rasch viel Speicherplatz in Anspruch. Wenn Sie ein großes Array
haben, dessen Einträge /nteger sind (also keine Dezimal-, sondern ganze Zah-
len) können Sie Platz sparen, indem Sie /ntegervariable verwenden; nähere
Einzelheiten in Kapitel 3®. Eine Integervariable ist wie eine gewöhnliche nume-
rische Variable, aber dem Namen muß ein %-Zeichen folgen:

DIM ALICE% (500)

Multidimensionale Arrays

Multidimensionale Arrays funktionieren ganz ahnlich, aber die Eintrage bilden
eine Art Tabelle. Bei, sagen wir, zwei Dimensionen:

DIM ALICE (7, 4)

besteht die Tabelle aus sieben Reihen und vier Spalten. Das heißt, eigentlich aus
acht Reihen und fünf Spalten, weil eine zusätzliche Reihe ® und Spalte ®
eingeschlossen sind, genau wie im eindimensionalen Fall:

153

ALICE (0,0) | ALICE (0,1) ALICE (®, 2) ALICE (®, 3) ALICE (9, 4)
ALICE (1,0) | ALICE (1,1) ALICE (1,2) ALICE (1,3) ALICE (1, 4)
ALICE (2,0) | ALICE (2,1) ALICE (2, 2) ALICE (2, 3) ALICE (2, 4)
ALICE (3,0) | ALICE (3,1) ALICE (3, 2) ALICE (3, 3) ALICE (3, 4)
ALICE (4,0) | ALICE (4,1) ALICE (4, 2) ALICE (4, 3) ALICE (4, 4)
ALICE (5,0) | ALICE (5,1) ALICE (5, 2) ALICE (5, 3) ALICE (5, 4)
ALICE (6,0) | ALICE (6,1) ALICE (6, 2) ALICE (6, 3) ALICE (6, 4)
ALICE (7,0) | ALICE (7,1) ALICE (7, 2) ALICE (7, 3) ALICE (7, 4)

Die Zeilen teilen das Material bei Reihe oder Spalte ® ab, was man am besten oft
unbeachtet läßt... je nachdem. Der Eintrag in Reihe REIHE und Spalte
SPALTE ist:

ALICE (REIHE, SPALTE)

Sie können auch ein zweidimensionales Stringarray verwenden:

DIM ALICES (7, 4)

dessen Einträge Strings sind, nicht Zahlen.
Arrays sind sehr nützliche Einrichtungen, weil enorm viel Information auf

natürliche Weise in tabellarischer Form vorkommt. Sie brauchen nur an ein
Telefonbuch zu denken:

Name Adresse Telefonamt Nummer

Franz Bauer Marktgasse 23 Basel 555555
Karl Huber Hauptplatz 8 Dorfen 4242
Otto Schenk Goethestraße 46 München 2323712

~ Marie Murks Odenwaldplatz 9 Frankfurt 104767

Auf diese Weise aufgeteilt, konnen Sie sich das als Vierspalten-Stringarray
vorstellen. (Die Telefonnummern müßten als Strings betrachtet werden, weil
man Strings und Zahlen in einem Array nicht mischen darf.)

Spielkarten zeichnen

Ich will vorführen, wie nützlich Arrays sein können, wenn man ein Programm
entwickelt, das auf dem Bildschirm ein Pokerblatt (5 Karten) zeigen soll. Um
das Programmlisting in Grenzen zu halten, nehme ich ein paar Vereinfachungen
vor:

1. Nur Karten von As bis 19 sind erlaubt; keine Figuren — oder Bilderkarten.
(Im Prinzip ist es nicht schwierig, diese herzustellen; entwerfen Sie sie
einfach mit PET-Grafik. Das Abfassen ist aber langwierig, so daß ich es
hier unterlasse, wo es das Grundsätzliche überdeckt.)

2. Jede Karte wird zufällig ausgewählt und kein Versuch unternommen,
festzustellen, ob dieselbe Karte zweimal vorkommt. Siehe Aufgabe 1, wie
das umgangen werden kann.

154

Na gut, sieht schwierig aus, also gehen wir "top down” vor. Die Grundschritte
werden sein:

Zufällige Karte auswählen

Zufällige Farbe auswählen

Karte an geeigneter Stelle auf den Bildschirm zeichnen

Für 5 Karten der Reihe nach wiederholen

Das Hauptproblem wird offenkundig sein, eine Karte zu ziehen, also konzen-
triere ich mich zunächst darauf.

Wir werden Symbole für Herz, Treff, Karo und Pik brauchen; kein Problem
— PET-Grafik. Auch der Kartenrand kann mit PET-Grafik gezeichnet werden.
Schwierig wird es wohl bei der Anordnung der Symbole. Ich strebe ein befrie-
digendes Ergebnis an, aber keines, das so gut aussieht wie eine echte Spielkarte.

Nachdem ich ein paar Vorstellungen auf Papier ausprobiert hatte, be-
schloß ich, für die Symbole, angeordnet wie in Abbildung 25.1, ein Normalgit-
ter zu verwenden.

Spalte ————»>

0 1 2 3 4

7 BEE

Reihe _
3

\\ N
|. 4 \ besetzte Zellen

LL
x

_

a

9

Abbildung 25.1
Normalgitter für Spielkartenpunkte

Es gibt 11 mögliche Stellen, wo Symbole hinkommen können, im Bild nume-
riert. Beispielsweise können Sie eine gute Pik-Drei erzielen, wenn Sie an die
Stellen 3, 6, 9 je ein Pikzeichen setzen.

155

Für jeden Wert der Kartennummer 1-1® muß ich also festlegen, we/che
dieser Zellen besetzt werden soll. Ich verwende für die Kartennummer eine
Variable KARTE, die von 1 bis 10 reicht. Wenn ich auf die Byte-Logik zurück-
greife, kann ich jedem Wert von KARTE einen String von 11 Bits aus ® oder 1
zuteilen - eine ® am Platz K bedeutet, daß Zelle K in Abbildung 25.1 leergelassen
wird, eine 1, daß das Farbensymbol dort vorhanden ist. KARTE = 3 entspricht
also der Folge 901901091990, wo 1 nur an den Stellen 3, 6, 9 auftaucht. Das ist
eine gute Idee, weil ich alle zehn Folgen in einem Stringarray C$ unterbringen
kann.

Da das Gesamtlisting ziemlich lang ist, liefere ich es Ihnen Stück fur
Stück, und Sie können das Ganze eingeben, wie Sie wollen - ich schlage vor,
ebenfalls Stück für Stück. Bis jetzt führt meine Vorstellung zu:

100 DIMCS (19)

119 CS(1) = "PP000100009”

120 CS$(2) = "9919900001 00"

130 CS(3) = "00190190199"

140 C$(4) = "11999090011"
150 C$(5) = "11000199011"

160 CS8(6) = "110119990011"

170 C$(7) = "11100011911"

180 CS8(8) = "11190011111"

190 CS(9) = "11011111911" |

200 CS(10) = 11111011111”

Anzeigepositionen

Bis jetzt schon und gut, aber diese Zellen besetzen recht unregelmäßig ange-
ordnete Positionen. Ich kann das umgehen, wenn ich Reihe und Spalte für eine
gegebene Zelle K als den Eintrag K von numerischen Arrays R und C speichere.
Abgelesen von Abbildung 25.1 ergibt das:

250 DIM R(11): DIM C(11)

260 R(1)=0:C(1) =9
270 R(2)=0:C(2) =4
280 R(3) = 2:C(3) =2

290 R(4) =4:C(4) =9
300 R(5) =4:C(5) =4
310 R(6) =5:C(6) =2

156

320 R(7)=6:C(7)=®

330 R(8) =6:C(8) =4

349 R(9) =8:C(9) = 2

350 R(10) = 10:C(10) =9

360 R(11)=10:C(11) =4

Farben

Ich numeriere die vier Kartenfarben so:

Herz
Treff
Karo
Pik P

W
N
>

Also: Die Bildschirm-POKE-Werte fur die vier entsprechenden Grafiksymbole
sind 83, 88, 89, 65. Wieder unregelmäßig. Wir verwenden deshalb ein anderes
numerisches Array S, um sie aufzunehmen:

400 S(1) = 83: S(2) = 88: S(3) = 90: S(4) = 65

(S hat nur vier Einträge, also spare ich mir die Mühe des Dimensionierens.)
Herz und Karo sind rote Farben, die anderen schwarz. Die Farbcodes ®

(schwarz) und 2 (rot) leisten das, und wir können sie in einem Array K unter-
bringen:

410 K(1) = 2: K(2) = @: K(3) = 2: K(4) = @

Hauptprogramm

Nun zur Sache. Um das Dasein zu vereinfachen, wollen wir damit anfangen,
auszuarbeiten, wie e/ne Karte entsteht, deren Symbolgitter (Abbildung 25.1)
angezeigt wird mit ihrer oberen Ecke an Reihe REIHE und Spalte CLM (allge-
mein denken, ja?). Im Augenblick setze ich REIHE auf 5 und CLM auf 7, aber
das wird sich später ändern, wenn wir das ganze Programm in eine Schleife
setzen, um ein Blatt von fünf Karten zu erzielen.

Als erstes wählen wir Zufallswerte für KARTE und FARBE:

500 KARTE = 1 + INT (1@* RND (@))

510 FARBE = 1 + INT (4* RND (0))

Dann setzen wir REIHE und CLM:

520 REIHE=5

530 CLM=7

157

Nun finden wir Symbolcode und Farbcode für die Kartenfarbe:

540 SCD=S (FARBE): KR = K (FARBE)

Als nächstes zeichnen wir die Karte. Da wir noch nicht wissen, wie wir das
machen, verwende ich eine Subroutine:

550 GOSUB 2000: REM ZEICHNE KARTE

und fur den Augenblick:

569 STOP

Die Subroutine Zeichne-eine- Karte

Wir haben in Abbildung 25.1 11 Zellen, jede entsprechend einem möglichen
“Punkt” auf der Karte. Wir mussen also alle 11 Positionen im String C$ (KARTE)
absuchen und, wenn wir eine 1 sehen, an der richtigen Stelle einen Punkt
zeichnen.

2000 REM PUNKT SUCHEN

2019 FORX=1TO11

2020 Us = MIDS (C$ (KARTE), X, 1)

2030 IF US = “0 THEN 2050

2049 GOSUB 3000: REM PUNKT ZEICHNEN

2050 NEXTX

2060 RETURN

Wird schon... Nun zum Punktezeichnen:

3000 REM PUNKT ZEICHNEN

3019 RC = REIHE + R (X): CC = CLM + C (X)

3020 POKE 1024 + 40 * RC + CC,SCD

3030 POKE 55296 + 40* RC + CC, KR

3049 RETURN

Wenn Sie das mit RUN fahren, werden Sie erstens feststellen, daß wir den
Bildschirm leeren und die Farbe wählen sollten, und außerdem, daß die Karte
keinen Rand hat. Die Initialisierung ist einfach:

19 POKE53281,7
20 PRINT CHR$ (147)

158

Darstellung verbessern

Um der Karte einen Rand zu geben sowie Farbe und Wert dafür zu schreiben,
brauchen wir noch eine weitere Subroutine:

545 GOSUB 4000: REM UMRANDUNG KARTE

Ich kann das Schlimme nicht länger vor mir herschieben - also los.

4000 REM UMRANDUNG KARTE

4010 PRINT CHRs (19);

4020 FOR Y=1TOREIHE -3: PRINT: NEXT Y

4030 C@=CLM-4 |

4940 PRINT TAB (CQ); "gUs [11 malg * s] gls”

4050 FORY=1TO15

4060 PRINT TAB (CQ); "g-s[11x[J]g - s”

4070 NEXTY

4080 PRINT TAB (CQ); "gJys [11 mal g * s] gKs”

Das liefert die Umrandungen. Beachten Sie die Grafikzeichen: g * s ist Grafik *
plus SHIFT, g - s ist Grafik — plus SHIFT.

Nun Farbe und Wert:

4100 PRINT CHR$(19);

4119 FOR Y =1 TO REIHE -2: PRINT: NEXT Y

4120 PRINT TAB (CLM -3); KARTE

413@ PRINT TAB (CLM -3); CHR$ (SCD + 32)

4140 RETURN

Das SCD + 32 dient dazu, von Bildschirm-POKE-Codes in ASCII umzuwan-
deln. Die verschiedenen CLM —4, CLM —3, etc. wurden durch Herumprobieren
gefunden (was lange dauerte); bilden Sie sich nicht ein, es ginge immer so glatt,
wie es im Buch steht!

Ein ganzes Blatt

Nachdem das läuft und entfehlert ist — sieht recht hübsch aus, nicht wahr? —
konnen wir jetzt in die Schleife setzen, um funf Karten zu zeichnen.

159

Löschen Sie Zeilen 520, 530 und 56@. Fügen Sie ein:

490 FORZ=1TO5

520 REIHE=5+Z:CLM=5+4*Z

560 NEXTZ

570 GOTO 579

Das war's.

Abbildung 25.2 ,
Das Endergebnis: Ein Pokerblatt.

Aufgabe 1

Fügen Sie eine Routine ein, die jede Zufallsauswahl von Karte und Farbe

überprüft, um sich zu vergewissern, daß sie nicht schon einmal vorgekommen

ist, und es in diesem Fall erneut versucht. (Ein Blatt mit zwei Pik-As in einer

Pokerrunde würde den Gegenspielern kaum behagen .. .)

Die nächste Aufgabe bekommt von mir keine Nummer, weil ich die Zeit nicht

aufwenden will, die für eine gute Erklärung erforderlich wäre. Aber trotzdem:

Überlegen Sie sich, wie Sie Figurenkarten zeichnen würden.

160

Lösung

Wir müssen ein Array aufbauen und jede neue Karte samt Farbe damit verglei-
chen. Hier ist eine Methode.

511 FORW=1TOZ

512 IFF(W) = KARTEANDG (W) = FARBE THEN 50

513 NEXTW

514 F(Z) = KARTE: G (Z) = FARBE

Das speichert die Werte für KARTE in Array F, FARBE in G. Da sie nur 5 Posten
lang sind, brauchen F und G nicht dimensioniert zu werden.

Streng genommen ist es ungut, aus einer Schleife zu springen. Wir sollten
also lieber eine Flagge setzen, auf die nach Schleifenende reagiert wird:

512. IFF(W) = KARTE AND G (W) = FARBE THEN FLAGGE = 1

515 IF FLAGGE = 1 THEN FLAGGE = 9: GOTO 5000

516 FLAGGE = 9

Aber das ist schon ein bißchen pedantisch.

161

26 Debugging IV

Wie man Computer veranlaßt, Fehler selbst zu beseitigen!

In Debugging Ill sprach ich vom ‘Schreibtischtest’ eines Programms — auf dem
Papier den Fluß der Befehle nachverfolgen. Der Hauptnachteil bei dieser Me-
thode ist, daß der Anwender - also Sie — die ganze Arbeit allein tun muß. Der 64
hockt behaglich da und läßt Sie wissen, er habe keine Ahnung, wovon Sie
reden, oder, noch schlimmer, liefert nur falsche Antworten. Es wird Zeit, ihn an
die Arbeit zu schicken, dafür ist er schließlich da.

Man kann ihn dazu bringen, selbst einen "Trockenlauf’ zu veranstalten.
Sehen wir uns zum Beispiel noch einmal Aufgabe 1 aus Debugging III an:

10 MAX=@:MIN=@
20 INPUTN
30 IFN <MINTHEN MIN =N
Ad IFN > MAXTHEN MAX =N_.

50 IFN < @THEN PRINT MAX, MIN: END

60 GOTO 20

Das soll Hochst- und Mindestwert einer Reihe von Eingaben finden. Tut es aber
nicht! Den (die) Fehler eruiert man nun so: Fugen Sie eine Zeile 5 ein, um die
Tabellenuberschriften und in jeder Zeile die Zeilennummer und jeden Wert, der
sich tn dieser Zeile andert, in den entsprechenden Spalten anzuzeigen:

5 PRINT “LN [J] [I CG} MAX LILI MN TO UNO OD UL

VERZWEIGUNG”
10 MAX = 0: MIN = @: PRINT "10"; TAB (5) ; MAX; TAB (19); MIN

20 INPUTN: PRINT “20”; TAB (15); N

30 IFN < MINTHEN MIN = N: PRINT "30"; TAB (19); MIN

40 IFN > MAX THEN MAX = N: PRINT “40”; TAB (5); MAX

50 IFN < @ THEN PRINT MAX, MIN: END

60 PRINT "69"; TAB (29); “V": GOTO 20

Der TAB-Befehl sorgt lediglich dafür, daß in der entsprechenden Bildschirm-
spalte angezeigt wird. Die Form der daraus entstehenden Tabelle ist von der auf
dem Papier ein bißchen verschieden. Zeilen, in denen keine Veränderung ein-
tritt, werden nicht aufgeführt, aber dadurch wird das Ganze eher übersichtli-
cher. Ein ernsteres Problem ist, daß die Eingabe-Anforderungen und -werte die

162

Tabelle auseinanderreißen. Im Idealfall sollten die beiden Arten von Ausgabe an
verschiedene Stellen geschickt werden. Beispielsweise könnte die Tabelle über
einen Drucker, oder, wenn Sie keinen haben, über Kassettenband ausgegeben
werden. Das erfordert eine Kenntnis des File-Systems im 64, und ich komme auf
dieses Problem zurück, wenn ich in Kapitel 34 Dateien besprochen habe. Falls
Sie keinen Drucker besitzen, haben Sie vielleicht den Wunsch, bei der Zahl der
angezeigten Werte sparsam zu verfahren. Beispiel: In diesem Fall wird es ver-
mutlich schon genügen, die Werte in MAX und MIN am Ende jeder Schleife zu
kennen. Es wäre also ausreichend, dem Programm nur eine Zeile 55 einzufügen:

55 PRINT MAX, MIN

Sie mochten die Variablen vielleicht verandern, um sie bei verschiedenen Test-
laufen zu untersuchen. Ein guter Kniff ist der, in eine PRINT-Anweisung, die Sie
lahmlegen wollen, ein REM einzufugen, also:

55 REM PRINT MAX, MIN

Da Zeile 55 jetzt eine Bemerkung ist, beachtet der Computer sie nicht. Wenn Sie
sie spater wieder brauchen, erspart Ihnen das, die Zeile neu schreiben zu
mussen — Sie brauchen nur das REM zu loschen.

Der 64 kann uns also mitteilen, wie seine Variablen sich verandern. Er
konnte noch zwei nutzliche Dinge tun:

1. Er könnte uns sagen, welche Zeilen er ausführt und in welcher Reihen-
folge.

2. Er könnte uns sagen, wie oft er bestimmte Zeilen oder Codeblöcke aus-
führt.

Ablaufuberwachung

Die einfachste Methode, den Weg zu verfolgen, den ein Programm nimmt, ist
die, in jede Zeile eine PRINT-Anweisung einzufugen, die einfach die ausge-
fuhrten Zeilennummern anzeigt. Das Maximum/Minimum-Programm sahe
dann so aus:

19 PRINT’< 10>": MAX=9@: MIN =9@

20 PRINT "< 20 >": INPUT N

30 PRINT ’< 30>": IFN < MINTHEN MIN=N

40 PRINT"<49 >": IFN > MAX THEN MAX =N

50 PRINT “< 50 >":1F N < @ THEN PRINT MAX, MIN: END

60 PRINT “< 69 >": GOTO 20

Ich habe die angezeigten Zeilennummern in Winkelklammern gesetzt, damit
man sie nicht mit den vom Programm ausgegebenen Zahlen verwechseln kann.
Sie sollen nicht den Kopf verlieren.

163

Beachten Sie, daß der verfolgte Teil der Zeile stets zuerst auftaucht.
Normalerweise ist die Reihenfolge unwichtig, aber wenn ich Zeile 3@ so abge-
faßt hätte:

30 IF N < MIN THEN MIN = N: PRINT “< 30 >”

wurde das PRINT nur dann ausgeführt werden, wenn N kleiner ware als MIN,
die Verfolgung wäre also unvollständig.

Ablaufüberwachungen können verwirrender sein als nutzvoll, wenn man
sie unbekummert und wahllos anwendet. Man muß bei jeder Debuggingme-
thode darauf achten, vernünftige Fragen:zu stellen, und den Computer dann
veranlassen, die Antworten auf genau diese Fragen zu liefern. Es hat keinen
Sinn, einen kompletten Test anzustellen, wenn Sie eigentlich nur wissen wol-
len, ob eine bestimmte Variable jemals den Wert 25 erreicht. Je mehr Daten Sie
sich vom Gerät anzeigen lassen, desto länger brauchen Sie für die Analyse. Bei
Ablaufüberwachungen ist es genauso. Wenn Sie sicher sind, daß ein bestimm-
ter Codeblock richtig ausgeführt wird, warum ihn protokollieren? Im großen
und ganzen werden wir uns damit befassen, ein Programm in der Umgebung
von Verzweigungen zu überwachen.

Hier ein Beispiel. Wir schreiben einen Codeteil, der einen Tag des Monats
für Verwendung an anderer Stelle in einem Programm annimmt. Es empfiehlt
sich, den eingegebenen Wert zu prüfen, um dafür zu sorgen, daß er im Bereich
1-31 liegt. Wir könnten kompliziertere Tests anstellen, um zu prüfen, daß der
Wert nicht größer ist als 29, wenn es sich um den Februar handelt, und so weiter,
bleiben hier aber bei den einfachsten Verfahren.

Unser erster Versuch könnte lauten:

50 INPUT “GIB TAG DES MONATS EIN”; T

60 IFT > @MORT < 32 THEN 200

70 PRINT "GIBT ES NICHT”

80 GOTO 50

:200 REM HIER FUER GUELTIGEN TAG

Das Programm verhält sich nicht richtig, also könnten wir so umschreiben:

60 PRINT “< 60 >":IFT > @ORT < 32 THEN 200

80 PRINT "< 89 >": GOTO 59

200 PRINT "< 200 >": REM HIER FUER GUELTIGEN TAG

um den verdächtigen Code aufzuspüren.
Wenn wir das fahren, stellen wir fest, daß, gleichgültig, welcher Wert für

T eingegeben wird, der Ablauf stets so erscheint:

60

200

164

Zeile 7® kann nicht erreicht werden. Zeile 6® hätte so lauten müssen:

60 IFT > @ANDT < 32 THEN 200

Wenn Sie es sich genau überlegen, ist nämlich jede Zeile entweder größer als ®
oder kleiner als 32! |

Verwechslungen von AND und OR kommen nicht selten vor, wenn man
nicht genau nachdenkt. Schlampereien verzeiht der Computer aber nicht.

Programmprofile |

Ein Programmprofil zeigt, wie oft jede Zeile eines Programms ausgefuhrt wor-
den ist. Wie üblich ist das des Guten zuviel, und wir sollten uns genau uberle-
gen, welche Teile eines Programms im Profil dargestellt werden müssen. Neh-
men wir an, wir wollen in Erfahrung bringen, wie oft Zeile 420 eines bestimmten
Programms ausgeführt wird. Wir setzen zu Beginn des Programms eine Zählung
auf ® und inkrementieren jedesmal um 1, wenn Zeile 420 durchlaufen wird:

5 PZ=9@

420 A=A+(P-1)
421 PZ=PZ+1

809 PRINT PZ

819 STOP

Sehen wir uns ein konkretes Beispiel an. Das folgende Programm soll im
Höchstfall 2@ Werte, begrenzt durch Null, annehmen und sie in aufsteigender
Reihenfolge ordnen. Lautet die Eingabefolge also:

3

N

PR

2
-
0

sollte herauskommen:

165.

Die Null sollte nicht erscheinen, weil sie nur ein Begrenzer ist.

10 DIMA(20)

20 FORP=11T0 29

30 INPUT A(P)

40 IFA(P) = @ THEN 60

50 NEXT P

69 N=P

65 F=9@

70 FORP=1TON

80 IFA(P) < A(P + 1) THEN 130

90 T=A(P)

100 A(P) =A(P +1)

110 A(P+1)=T

120 F=1

130 NEXTP

149 IFF=1THEN 65

150 FORP=1TON

169 PRINT A(P)

170 NEXTP

Das Programm leistet nicht ganz, was es sollte. (Geben Sie ein und probieren
Sie es aus.) Vielmehr gerät es in eine Endlosschleife.

Wo also mit dem Suchen anfangen? Die erste Schleife (20-59) sieht ganz
harmlos aus, die letzte (150-179) zeigt lediglich den Arrayinhalt an. Demnach
erscheint es angebracht, sich mit der Schleife von 79 bis 13® zu befassen. Aus
Zeile 80 wird klar, daß manchmal alle Anweisungen in der Schleife ausgeführt
werden, manchmal die von 9® bis 120 nicht beachtet werden. Wir nehmen also
zwei Profilzählungen vor, Z1 und Z2. Sie zählen, wie oft in die Schleife einge-
treten und wie oft der letzte Teil der Schleife ausgeführt wird.

Das können wir erreichen mit:

67 Z1=90

68 Z2=90

75 Z1=21+1

166

125 Z2=Z2+1

132 PRINT Z1, Z2

Weil wir schon dabei sind, können wir ebensogut den Inhalt des Arrays am Ende
jeder Schleife anzeigen lassen; es liegt nahe, daß im Inneren Zahlen umge-
schaufelt un

134

135

136

137

138

d nur sehr wenige andere Variable verwendet werden. Demnach:

FORQ=1TON [weil 1 TO N der betroffene Arrayteil

zu sein scheint)

PRINT A(Q);

NEXT QO

PRINT

FOR X = 1 TO 200: NEXT X [Pause]

Probieren wir ein paar Datensätze aus, um zu sehen, was passiert. Wenn wir
eingeben:

3

o
n
o

—

0
9

0

erhalten wir:

6 4

316500

6 4

130056

6 2

199356

6 2

001356

6 2

001356

167

6 1

001356

6 1

001356

und so weiter, bis unendlich.
Die Werte scheinen zwar in die Reihenfolge zu kommen, aber die ‘8’

haben wir verloren, und wo kommt plötzlich das Nullenpaar her? Außerdem
. geht das Problem beharrlich sechsmal durch die Hauptschleife, aber die Durch-
läufe in der Unterschleife nehmen ständig ab, bis sie 1 erreichen, wo sie bleiben.

Eine der Nullen ist offenkundig der Begrenzer, die andere ein Element des
Arrays, das nicht während des Laufs gesetzt, sondern durch das System auf Null
initialisiert wird. Anders ausgedrückt: Das Programm behandelt zwei Werte
zuviel. Schreiben wir die Zeile 60 also um:

69 N=P-2

und versuchen wir es noch einmal. Die Hoffnung wahret ewiglich... Wir
erhalten:

4 2

3165

4 2

1356

4 0

1356

1

3

5

6

Immerhin ein gewisser Fortschritt — wir sind die Nullen losgeworden. Aber
unsere 8 haben wir immer noch nicht wieder.

- Schwer zu erkennen, wo sie verlorengegangen sein kann. Vielleicht ist sie
noch da und wird nur nicht angezeigt. Wo zeigen wir sie mit PRINT an? In den
Zeilen 150-170. Der Bereich 1 TO N muß zu klein sein. Erhöhen wir ihn um 1:

159 FORP=1TON +1

Und weil wir schon dabei sind: Die Uberwachung in Zeile 134 wird wohl
dieselben Probleme haben. Das beheben wir auch gleich:

134 FORQ=1TON+1

Je nun, Freunde, laßt es uns noch einmal versuchen...

168

Diesmal erhalten wir (bei denselben Daten):

4 2

31658

4 2

13568

4 90

13568

1

3

5

6

8

Prima! Wir haben es geschafft. Jetzt klappt alles. Wirklich? Probieren wir:

1

2
N

0

0

Diesmal erhalten wir:

4 3

32155

4 3

21355

4 2

12355

4 1

12355

4 1

12355

169

4 1

12355

etc.

Das Programm liefert die richtige Antwort, kommt aber nie aus der Schleife
heraus. Uns fällt auf, daß Z2 in diesem Fall nie auf Null kommt. Man darf also
davon ausgehen, daß dadurch das Programm abgeschlossen wird.

nn entscheidet, ob das Programm in die Unterschleife eintritt oder nicht?
Zeile 80:

80 IFA(P) <A(P+1) THEN 130

Der Unterschied zwischen den beiden Datensätzen ist der, daß der zweite zwei
identische Werte enthält. Da 5 nicht kleiner ist als 5, wird die Unterschleife
jedesmal ausgeführt, sobald die beiden 5 auftauchen. Deshalb geht das Pro-
gramm stets einmal durch die Unterschleife. Vielleicht sollte die Frage lauten:

80 IFA(P) <= A(P +1) THEN 130

Diesmal funktioniert alles.

4 2

32155

4 2

21355

4 1

12355

4 9

12355

1

2

3

5

5

Jetzt lauft es wie geschmiert, und wir konnen die Testzeichen herausnehmen.
Ich hoffe, ich habe hier ein paar wichtige Punkte veranschaulichen kon-

nen. Erstens mußten wir nicht genau wissen, wie die Prozedur verläuft. Wenn
Sie diesen Abschnitt sorgfältig durchgearbeitet haben, wird sie inzwischen
ziemlich klar sein, und ein paar Schreibtischtests würden Sie vermutlich davon
überzeugen, daß Sie sie begriffen haben. (Schreibtischtests tragen sehr dazu
bei, Computerprozeduren zu begreifen. Ich habe bei unklarem Code — von

170

fremder Hand, versteht sich - oft bis zu einem Dutzend Tests angestellt, bis mir
richtig klar wurde, was sich abspielte.) Zweitens neigt man, wenn ein Pro-
gramm das erstemal erfolgreich ist, stets zu dem Glauben, nun sei die Arbeit
getan und man könne sich in der Eckkneipe rasch ein Glas gönnen. Wir wir
gesehen haben, ist die Arbeit nicht getan, weil es andere Datensätze geben
kann, bei denen das Programm versagt; abgesehen davon, hat die Kneipe schon
vor eineinhalb Stunden zugemacht, falls Ihnen die Zeit beim Codeverfassen so
schnell vergeht wie mir.

171

2/ Datenlisten

Es gibt zweckmäßigere Methoden, eine Vielzahl von Variablen zu
definieren, als sehr ähnlich geartete Programmzeilen in Mengen
einzugeben.

Wenn Sie dieses Buch durchblättern, wird Ihnen auffallen, daß ein großer Teil
der Programme lange Folgen von Zahlen oder Strings zu betreffen scheint. Oft
sind diese in Arrays gespeichert. Kapitel 25 ist ein extremes Beispiel. Soweit die
angebliche Stärke eines Computers darin besteht, ähnlich geartete Befehle
ohne menschlichen Eingriff oft auszuführen, muß es gewiß einen besseren Weg
geben, als diese fast gleich lautenden Zeilen vom Programmierer mühsam
eintippen zu lassen. Die Zahlen und Strings freilich müssen auf irgendeine
Weise eingegeben werden, weil der 64 keine Gedanken lesen kann.

Es gibt einen Weg. Er verwendet den Befehl

DATA

um die Zahlenliste aufzubauen, und

READ

um Zahlen gebrauchsbereit von der Liste zu holen.
Die Posten in einer DATA-Anweisung können sowohl Zahlen als auch

Strings sein, und Sie dürfen die beiden nach Belieben mischen. Allerdings
müssen Sie dafür sorgen, daß in jeder READ-Anweisung die richtige Art Vari-
able verwendet wird. Wenn

READ X

auf einen String stößt, bewirkt es nichts; Sie müßten den String mit.

READ X$

einer Stringvariablen zuteilen. Beispiel: Hier ein Programm, das den Beginn
einer Liste bundesdeutscher Lander und ihrer Bevölkerungszahlen (in 1000)
anzeigt:

18 PRINT CHRS(147)

20 DATA BAYERN, 19644, BREMEN, 757, BERLIN, 2139,

HESSEN, 5461

39 FORT=1TO4

40 READ LS, BEV

50 PRINT LS, BEV

60 NEXTT

172

Sie können, wenn Sie wollen, Strings in Anführungszeichen setzen oder auch
nicht — in einer DATA-Liste spielt das keine Rolle. Man kann also auch “BRE-
MEN” etc. nehmen. Ein String, der Kommas enthält, muß in Anführungsstri-
chen stehen.

Aufgabe 1

Hier ist eine Liste der ersten fünf Präsidenten der Vereinigten Staaten mit ihren
Amtszeiten. Schreiben Sie ein Programm, das DATA-Listen verwendet, um die
Information anzuzeigen.

George Washington 1789-1797

John Adams 1797-1801

Thomas Jefferson 1801-1809

_ James Madison 1809-1817

James Monroe 1817-1825

Planetensuche

Mit einer DATA-Liste können Sie mehr tun, als sie nur anzuzeigen! Beispiels-
weise können sie darin nach einem bestimmten Eintrag suchen:

19 DATA MERKUR, 58, VENUS, 198

20 DATA ERDE, 150, MARS, 228

30 DATA JUPITER, 778, SATURN, 1427

49 DATA URANUS, 2870, NEPTUN, 4997, PLUTO, 5900

5@ INPUT "WELCHER PLANET”; PLANETS

69 FORG=1TO9Q

70 READ XS, Y

80 IF X$ = PLANETS THEN 10@

99 NEXTG

100 PRINT XS; "LJISTVON DER SONNE”

118 PRINT Y; "LJMILLIONEN KILOMETER”

120 PRINT “LJENTFERNT.”

Zeilen 10-49 führen die Daten auf. Auf den Namen des Planeten folgt seine
Entfernung (in Millionen Kilometer) zur Sonne. Die Schleife von Zeile 5@ bis 90
sucht die Datenliste nach einem bestimmten Planeten ab, dessen Namen sie in
Zeile 5@ eingeben. Wenn er gefunden ist, geht das Programm zu Zeilen 100-
120, die das Gewünschte an Information anzeigen.

173

(Zur Beachtung: Sie müssen PLANETS genauso eingeben, wie aufge-
führt, also keine zusätzlichen Leerstellen etc., sonst verläßt das Programm die
Schleife, ohne Ihre Eingabe entdeckt zu haben, und zeigt die Daten für Pluto an.
(Warum gerade für Pluto?)

Wenn Sie ins Reisebüro oder zum Flugschalter gehen und man Ihren
Namen eingibt, um zu prüfen, ob Ihr Flug gebucht ist, verwendet man eine
(kompliziertere) Version dieser Art von Datensuche. Diese Datenliste ist natür-
lich riesengro&, und der Hauptaufwand an Programmierkönnen dient der nar-
rensicheren Verarbeitung enormer Datenmengen.

RESTORE

Manchmal wollen Sie vielleicht in einem Programm dieselbe Datenliste mehr-
mals verwenden. Hier ein sehr simpler Fall. Was geht vor?

10 DATA FRED

20 READ X$

30 PRINT X$

49 GOTO 20

Das erste FRED wird angezeigt - dann kommt die Meldung OUT OF DATA. Der
Computer weiß nicht, daß er die ursprüngliche Datenliste wiederverwenden
soll.

Um ihm das zu sagen, verwenden Sie das Wort

RESTORE

Fugen Sie eine Zeile

35 RESTORE

an, dann konnen sie es sehen. RESTORE schickt den ‘Zeiger’ zur laufenden
Position in der Datenliste zuruck, an den Anfang.

Losung

Aufgabe 7

10 DATA GEORGE WASHINGTON, 1789, 1797,

JOHN ADAMS, 1797, 1801
20 DATA THOMAS JEFFERSON, 1801, 1899,

JAMES MADISON, 1899, 1817
30 DATA JAMES MONROE, 1817, 1825

174

49

50

60

70

80

PRINT CHRS(147)

FORN=1TO5

READ NAMES, D1, D2

PRINT NAMES, D1; “BIS”; D2

NEXT N

175

28 Sprites

Eine anregende und ungewohnliche Eigenschaft des Commodore
64 ist seine Fähigkeit, überall auf den Bildschirm große Grafik-
blöcke zu zeichnen und zu bewegen. Sie können sich überlappen,
Zusammenstöße lassen sich feststellen.

Sprites oder MOBs (Moveable Object Blocks, dt. etwa Bewegliche Block-
objekte) sind mittelgroße Grafikgebilde, die von einem eigenen VIP-Chip ver-
arbeitet werden. Man kann sie nach Wunsch des Programmierers auf dem
Bildschirm bewegen. Sie können zur Grundlage vieler hübscher Spiele und
Displays gemacht werden. Ganz einfach ist der Umgang mit ihnen aber nicht.
Dieses Kapitel hat zum Ziel, einige der Grundgedanken darzustellen, jedenfalls
soviel, daß Sie selbst Sprites einsetzen können.

Spriteaufbau

Die Information, die ein Sprite definiert, besteht aus einem 21 x 24 Punkte
großen Gitter, dessen Zellen entweder leer oder geschwärzt sind. Beispiels-
weise zeigt Abbildung 28.1 ein Sprite in Form eines ‘Raumkreuzers’.

1171914941 7 «47 «21 42 2 2 2 Bytes
9013123456 7890901293456 789981 2 83 r + 1

0 | Ö 9 9
1 | Ö +) d

2 | 0 @ N)
3 | G g @

4 Ö 1) 1)

5 1 248 9
6 1 224 g
7 a 60 192 1)

8 717 292 112
9 135 255 255

16 255 255 252

11 127 255 240

12 63 255 192

13 127 254. g
14 63 249 d

15 127 12 09
16 14 g @

17 | 6) 0

18 | 6 0 0
19 | 9 0 0
20 | oe 9 0

Abbildung 28.1
Raumkreuzer auf einem Spritegitter, und die entsprechenden Daten, von Binär in Dezimal umgewan-

delt.

176

Diese leeren oder ausgefüllten Zellen müssen in eine Folge von Zahlen umge-
wandelt und an der entsprechenden Stelle gespeichert werden (siehe unten).
Dazu ersetzt man jede leere Zelle durch eine ®, jede volle Zelle durch eine 1, wie
in Abbildung 28.1. Teilen Sie jede Reihe von 24 Ziffern in drei Abschnitte zu je
8 Ziffern auf. Beispielsweise zerfällt Reihe 8 der Abbildung folgendermaßen:

09000111 11901910 01119000

Sie sehen aus wie Binarbytes . .. und genau das ist der Sinn. Umgewandelt in
Dezimalzahlen werden daraus |

1 202 112°

Man kann sich jede Reihe des Sprites demnach als eine Folge von drei Dezi-
malzahlen (zwischen ® und 255) vorstellen. Die Zahlen für das gesamte Sprite
sind neben Abbildung 28.1 aufgeführt, und gelesen werden sie der Reihe nach
von oben links nach unten rechts, also die drei Bytes für Reihe ®, dann die drei
für Reihe 1 und so weiter bis Reihe 20. Das ergibt insgesamt 63 Zahlen.

Sie können Ihr Sprite auf kariertem Papier entwerfen und die Zahlen aus
der Tabelle in Anhang 1 entnehmen, aber wäre es nicht viel hübscher, wenn man
die ganze Arbeit dem Computer aufhalsen könnte?

Computerunterstutzte Spritekonstruktionen

Hier ein ziemlich einfaches Programm. Damit können Sie auf dem Bildschirm
ein Sprite zeichnen und die Datenliste generieren. Um das Listing in Grenzen zu
halten, sind verschiedene mögliche Verbesserungen weggelassen worden. Falls
Sie den Wunsch haben, das aufzumöbeln, bitte gern!

10 POKE 53289, 4

20 PRINT CHRS$(147);

30 FORS=9TO 29

40 IFS=8+INT(S/8) THEN PRINT

[24 - Zeichen]

50 IFS< > 8*INT(S/8) THEN PRINT

60 NEXTS

100 DIM S(29, 23)

119 FORR=0TO20

120 FORC=9TO23

130 CDE = 63: GOSUB 1000

149 GETAS

177

150 IFAS < > "0" ANDA$ < > "1" THEN 149
160 IFAS =” THEN S(R,C) = 0: CDE = 32: GOSUB 1999
170 IFAS= "1" THEN S(R,C) = 1: CDE = 102: GOSUB 1000
180 NEXTC
199 NEXTR
200 POKE 53289, 3
210 GETAS:IFAS < > "N" AND AS < > “J” THEN 210

220 IF A$ = “N” THEN POKE 53280, 4: GOTO 110
250 PRINT CHRS$(19): |

260 FORR=9TO2®
270 FORX=@TO16STEP8

280 V=90

290 FORC=@TO7
300 IFS(R,X+C)=1THENV=V+2?t(7-C)
310 NEXTC
320 PRINT TAB(24 + X/2); V;
330 NEXTX
340 PRINT
350 NEXTR

360 GOTO 360
1000 REM PRINT AT
1010 POKE 1924 +40*R + C,CDE
1020 POKE 55296 + 49*R+C,3
1030 RETURN

Fahren Sie das mit RUN. Der Rand wird pupurrot, aus Gründen, die gleich
klarwerden. Sie erhalten ein 21 x 24 großes Gitter aus Punkten und Strichen, in
Abschnitte 8 x 8 aufgeteilt, damit es praktischer ist. Oben links steht ein ?-Zei-
chen. Wenn Sie '1’.drücken, wird es ersetzt durch ein kariertes Muster, bei '®'
durch eine Leerstelle. Dann bewegt es sich um eine Stelle vorwärts. So können
sie weitermachen und einen Block oder eine Leerstelle plotten, bis das ganze
Gitter ausgefüllt ist. |

An diesem Punkt wird der Rand cyanfarben, um Sie daran zu erinnern,
daß Sie eine Taste drücken müssen. (Für eine Meldung bleibt nicht viel Platz,
deshalb ist das ein günstiger Ausweg.) ‘J’ für ‘Ja’ teilt dem Programm mit, daß
es fortfahren soll; ‘N’ für ‘Nein’ bedeutet, daß Sie einen Fehler gemacht haben

178

und es noch einmal versuchen wollen. (Beim zweiten Lauf müssen sie alle ®
und 1 noch einmal eingaben; hier wäre eine Verbesserung möglich.)

Der Computer listet dann automatisch an der rechten Seite die Daten für
die Reihen auf. Notieren Sie sich die auf einem Blatt Papier. (Oder lassen Sie sie
vom Drucker ausdrucken oder kopieren Sie in eine Datei auf Kassette, siehe
Kapitel 34.)

Abbildung 28.2
Das Sprite-Aufbauprogramm in Aktion.

Die Sprite- Register

Fur die Sprites sind eigene Speicherbereiche reserviert. Die Adressen beginnen
bei 53248 (was ich aus praktischen Erwägungen von jetzt an V nenne) und
enden bei 53294. Nicht alle sind für einen Anfänger von Nutzen, und ich lasse
die ausgefalleneren weg. Zusätzlich gibt es in den Adressen 2040-2047 noch
mehrere Zeiger, die dem Computer mitteilen, wo er die 63 Bytes Grafikdaten
suchen soll, die zur Definierung jedes Sprites gebraucht werden. Ich beschreibe
sie gleich ausführlicher, hier zunächst ein rascher Überblick.

Spritepositionen: Adressen V bis V + 15 enthalten Spaltennummer (oder
x-Koordinate in hochauflösender Grafik) und Reihennummer (Y-Koordinate)
für jedes der acht Sprites. Diese Zahlen gehen von ®-255. Jede ist als ein Byte
in einer Einzeladresse gespeichert.

Versetzungsflagge: Die acht Bits eines Einzelbytes in Adresse V + 16 definieren
eine Versetzung an der X-Koordinate (Spaltennummer) nachrechts. Ist Bit Kauf
1 gesetzt, wird die Spaltennummer um 256 erhöht. Das ist erforderlich, um
Sprites zur rechten Bildschirmseite zu befördern.

179

Aktivieren/Sperren: Die acht Bits eines Einzelbytes in Adresse V + 21 aktivieren
das Sprite K (schalten esein), wenn Bit K auf 1 gesetzt ist, und sperren (schalten
es ab), wenn Bit K ® ist.

Vertikal erweitern: Die acht Bits eines Einzelbytes in Adresse V + 23 erweitern
das Sprite K auf doppelte Höhe, wenn Bit K 1 ist.

Horizontal erweitern: Ebenso erweitern die acht Bits in Adresse V + 29 Sprite K
auf doppelte Breite, wenn Bit K 1 ist.

Kollisionsflagge: Wenn zwei Sprites 'zusammenstoßen’, werden die entspre-
chenden Bits in diesem Register auf 1 gesetzt.

Farben: Jede Adresse V + 39 bis V + 46 enthält den Farbcode (wie in Kapitel
13 von @ bis 15) für ein Sprite.

Datenzeiger: Adressen 2040 bis 2047 (oberes Ende des Farb-RAM) enthalten
Zeiger zu den Startadressen der Daten für die Sprites ® bis 7 der Reihe nach.
Wenn der Zeiger K den Wert PTR hat, beginnt die Adresse für die Daten bei
64*PTR. Wir wollen das den PTR-Speicherb/ock nennen, von 64*PTR bis
64*PTR +63. Damit können Sie überall in den ersten 16 348 Bytes RAM Sprites
definieren. Es gibt Methoden, auch die anderen 49 512 Bytes zu verwenden,
aber sie sind ziemlich umständlich, siehe ‘Reference Guide’, S. 101 und 133. Sie
können aber nicht einfach Sprites in jede beliebige Adresse setzen; das
BASIC-System demoliert die Daten. Siehe unten die empfohlenen Adressen.)

Die Adressen für die Steuerung von Sprites sind zusammengefaßt in den Tabel-
len 28.1 und 28.2, zur besseren Bequemlichkeit als Anhang 2 wiederholt. Zur
Bedeutung der weggelassenen Adressen siehe ‘Reference Guide’, S. 131-181.
Das sind 5® Seiten; ich sage ja, mit Sprites ist es nicht ganz so einfach!

Tabelle 28.1 Sprite-Datenträger

Adesse Inhalt

2040 Datenzeiger Sprite ®
2041 Datenzeiger Sprite 1
2042 Datenzeiger Sprite 2
2043 Datenzeiger Sprite 3
2044 Datenzeiger Sprite 4
2045 Datenzeiger Sprite 5
2046 Datenzeiger Sprite 6
2047 Datenzeiger Sprite 7

180

Tabelle 28.2 Sprite-Register

V = 53248 @ = Startadresse des Registerbereichs

Adresse Inhalt Funktion

V+Q Spaltennummer Sprite @
V+1 Reihennummer Sprite ®
V+2 Spaltennummer Sprite 1
V+3 Reihennummer Sprite 1
V+4 Spaltennummer Sprite 2
V+5 Reihennummer Sprite 2
V+6 Spaltennummer Sprite 3
V+7 Reihennummer Sprite 3 Spritepositionen
V+8 Spaltennummer Sprite 4
V+9 Reihennummer Sprite 4
V+10 Spaltennummer Sprite 5
V+11 Reihennummer Sprite 5
V+12 Spaltennummer Sprite 6
V+13 Reihennummer Sprite 6
V+14 Spaltennummer Sprite 7
V+15 Reihennummer Sprite 7

V+ 16 |Sp7|Sp6|Sp5|Sp4|Sp3|Sp2 |Sp1 |Sp®| Versetzungsflagge
V+ 21 |Sp7|Sp6|Sp5/Sp4 |Sp3|Sp2|Sp1 |Sp@ |} Aktivieren/Sperren
V + 23 |Sp7/|Sp6|Sp5/|Sp4 |Sp3|Sp2|Sp1 |SpQ@ | erweitern vertikal
V + 29 |Sp7/Sp6/|Sp5|Sp4 |Sp3/|Sp2 |Sp1 |Sp®| erweitern horizontal
V + 30 |Sp7|Sp6|Sp5|Sp4|Sp3|Sp2|Sp1 |Sp@| Kollisionsflagge

V + 39 Farbcode Sprite ®
V+40 Farbcode Sprite 1
V+41 Farbcode Sprite 2
V+ 42 Farbcode Sprite 3 Farben
V+ 43 Farbcode Sprite 4
V+ 44 Farbcode Sprite 5
V+ 45 Farbcode Sprite 6
V+ 46 Farbcode Sprite 7

Sprite-Koordinaten

Reihe: 09-255

Spalte: @-511 (Versetzungsflagge eingeschlossen)

Sprite-Reihen- und Spaltennummern können in den folgenden Bereichen lie-

181

Das ist viel größer als der Bildschirmbereich, der 20@ Reihen und 320 Spalten
umfaßt. Der 64 nutzt das und läßt zu, daß sie Sprites außerhalb des Bildschirms
in Position bringen und unbehindert weiterbewegen. Die Beziehung zwischen
Sprite-Koordinaten und Bildschirm ist Abbildung 28.3 zu entnehmen.

d 23 24 343 344 511

29

39

Reihe

229

236

255

Abbildung 28.3
Koordinatengitter fur Sprite.

Beachten Sie, da& Reihen- und Spaltennummern eines Sprites die Position der
oberen linken Ecke des 21 x 24-Gitters sind, das es definiert. In Programmen
mussen Sie das berucksichtigen. Bei erweiterten Sprites bleibt es die linke obere
Gitterecke. |

Ein Sprite aufbauen

Um ein Sprite auf den Bildschirm zu bekommen, müssen wir:

Die Daten für seine Form definieren.
Den Zeiger dorthin setzen, wo die Daten gespeichert sind.
Die Daten mit POKE an Ort und Stelle bringen.
Das Sprite aktivieren. |
Die Farbe des Sprites bestimmen.
Reihen- und Spaltennummern für das Sprite einsetzen O

O
P
W
N
D
»

Nehmen wir das Raumkreuzer-Sprite von weiter oben und bauen wir es als
Sprite 1 auf. Dazu brauchen wir:

19

190

119

120

130

140

200

210

220

230

240

250

260

270

280

V = 53248

DATA 9, 9,9, 9, 9,9, 9,9, 9, 9, 9, 9, 9, 0, D

DATA 1, 248, ®, 1, 224, 0, 60, 192, ®, 7, 202, 112, 135, 255, 255

DATA 255, 255, 252, 127, 255, 240, 63, 255, 192,127,254,

DATA 63, 240, 0, 127, 192, 9,14, 9,9, 9, 9, 0, 0, 0, 0

DATA 9, 9, 9, 9, 9, @

POKE 2041,13 [Sprite 1-Zeiger auf 13. Block]

FOR G = 0T0 62
READ H [lies Daten]

POKE 832 + G, H [mit POKE in Block:

beachten 832 = 64*13]

NEXT G

POKE V + 21,2 [Sprite 1 aktivieren]

POKE V + 4Q, 7 [Sprite 1 gelb]

POKE V + 2,100 [Sprite in Spalte 100]

POKE V + 3,190 [Sprite 1 in Reihe 100]

Geben Sie das sorgfältig ein und fahren sie mit RUN. Sie sollten, wie ge-
wünscht, den Raumkreuzer in Gelb sehen.

Sie können mit der Veränderung der Positionen durch direkte Befehle
experimentieren.

POKE V + 2,119

bewegt es nach rechts,

POKE V + 3, 90

nach oben; durch

POKEV + 40,5

wird es grün. Versuchen Sie andere Werte und sehen Sie sich an, was geschieht.

183

Bewegung

Um das Sprite zu bewegen, brauchen wir nur laufend die Reihen- und Spalten-
nummern zu verändern. Beispiel: Löschen Sie 279 und 28® oben und fügen Sie
die Schleife an:

1000 X=0:Y= 70

1010 POKEV +2, X: POKEV + 3, Y

1020 X=X+3IFX > 255 THEN X= @

1100 GOTO 1010

Der Raumkreuzer bewegt sich jetzt wiederholt von links nach rechts uber den
Bildschirm. Beachten Sie, daß er nicht die ganze Strecke zurücklegt; das liegt
daran, daß wir dazu die Spaltennummer größer setzen müssen als 255. Siehe
weiter unten, weil hier eine kleine Komplikation auftritt.

Erweiterung

Für einen Raumkreuzer ist das Ding ja wirklich ein bißchen kurz und plump.
Keine Sorge, wir können ihn horizontal dehnen durch die zusätzliche Zeile:

290 POKEV+ 29,2

Das erweitert Sprite 1, aber keine anderen, weil 2 in Binär = 09000019 ist, also
nur Bit 1 auf 1 gesetzt wird. Sieht schon besser aus, nicht?

Um thn auch noch vertikal auszudehnen, fugen Sie hinzu:

300 POKEV + 23,2

Die Erweiterungen verdoppeln die Größe in der jeweiligen Richtung. Beachten
Sie, wie die Grafik gröber wird, wenn Sie das tun. Sie wird zusammengesetzt
aus denselben Daten, aber mit Pixelblocken 2x 1,1 x 2 oder 2 x 2.

Ich mag große, dicke Raumkreuzer nicht, also löschen wir 30@ wieder.
Nur zum Spaß, um Ihnen die Art von Effekt zu zeigen, den Sie anstreben

können, fügen Sie das der Bewegungsschleife an:

10930 POKEV + 29,2*INT (2*RND(Q))

10940 POKEV + 23,2*INT (2*RND(Q))

Nun verandert er die Form in zufalliger Weise ganz rasch. Wenn Sie auch noch
die Farbe verandern wollen, schreiben Sie dazu:

1050 POKEV + 40, 16*RND(®)

Lustig ... aber es lenkt ab, also löschen wir 1030-1050 wieder.

184

Keyboard-Steuerung

Wenn wir innerhalb der Schleife ein GET verwenden, können wir die Bewegung
vom Keyboard aus beeinflussen.

1030 GET AS

1949 IFAS= "0" THEN Y = Y-4

1950 IFAS=“"“U" THENY=Y+4

Nun geht der Raumkreuzer am Bildschirm nach oben, wenn Sie ‘O’, und nach
unten, wenn Sie ‘U’ drücken. Offensichtlich könnten viel kompliziertere Posi-
tionsveränderungen bewirkt werden, aber das veranschaulicht die Möglichkei-
ten.

Um die Vorgänge zu beschleunigen, ersetzen Sie dasX + 3in 1020 durch
X + 6 oder X + 1® (schnellere Bewegung verläuft auch ruckhafter):

1020 X=X+6:1FX > 255 THEN X = @

Bewegung uber den ganzen Bildschirm

Es wird Zeit, sich mit dem Problem zu befassen, wie das Sprite auf der rechten
Seite des Bildschirms in Position gebracht wird, uber Spalte 255 hinaus.

Hier wird die Versetzungsflagge in V + 16 genutzt. Wenn Bit K davon 1 ist,
wird die Spaltennummer von Sprite K um 256 erhöht. Wir schreiben 19019 also
folgendermaßen um:

1010 POKEV+3,Y

10911 IFX > 255 THEN OF = 1

1012 IFOF=@ THEN POKE V + 16, (PEEK V + 16)) AND 253

1013 IF OF = 1 THEN POKE V + 16, (PEEK (V + 16)) OR2

1014 POKEV + 2, X-OF*256 |

1015 OF=9@

Nehmen Sie diese Veränderung vor und schreiben Sie Zeile 1920 um:

1020 X=X+6:1FX > 350 THEN X = @

Nun befahrt der Raumkreuzer auf seinen Reisen den ganzen Bildschirm.

Sprite-Prioritat

Wenn sich zwei Sprites überschneiden, scheint das mit der kleinsten Nummer
dem anderen aufzuliegen. Das Sprite ‘darunter’ ist aber durch alle ‘Locher’ im
oberen sichtbar, so, wie man es auch im richtigen leben erwarten wurde.

185

fbauen. Dieselbe Um das auszuprobieren, will ich ein zweites Sprite au
outine (zunächst ist das gut für die Übung, aber später will ich einen besseren
eg empfehlen, wenn Sie viele Sprites verwenden möchten).

400 DATAQ, 255, ®, 3, 255, 192, 15, 195, 249, 63, ®, 252, 255, @, 255

419 DATA63, 9, 252, 127, 195, 254, 31, 255, 248, 3, 255, 192

420 DATAQ, 255, ®, 0, 195, ®, 1,129, 128, 3, ®, 192, 6, ®, 96

430 DATA15, ®, 240, 15, 0, 240, 7,129, 224, 3, 195, 192

440 DATA1, 231,128, ®, ©, ®, 31, 255, 248

500 POKE 2049, 14 [Sprite Ö-Zeiger zum 14. Block]

519 FORG=@TO62

520 READH

530 POKE896+G,H [Block 14: 896 = 64*14]

540 NEXTG

Um Sprite ® ebenso zu aktivieren wie Sprite 1, müssen wir Zeile 250 oben

umschreiben zu:

250 POKEV+ 21,3

LON OT OWLS 2%
PE PAS ED ONE ro 69 9 ERTL Syoxaneses PEPSI OXIKE DK.

Soke ersteren “rar x 4 vere « EEE TOTEN:
see 2 ALOXEXSALORD AMET CROMARGLE VEY OTN

bx BER Soeexa caters
> EREEETER a 20832 ICH SS ecccscord RL

3 BOOKA COG rex ee SOROS OXON LA A:Ke D re ‘ ORTE RT
35 PAEALDL KFA KOXOKS OxOxTA LO BREUER, RE BREE PEST BEREITEN 08 Dee a“ MEN FORFRE

EOSTSKERVEHIRTESCHONG 3 yes Ssersct o% 3 Sagheatgvervhuant ae ILONSEI SEIS.
rer x ee LHERSR HOY Satan een ans ee cats 5438 DER, re 90 vo

> © segs SaNaasAS oto SL
2 None He SEEN BRERUBCENS Eee
328. TEILEN FENDER EMU AYAKORO EY Resxdacene Soe rare

> ORME. ae vires See Recess + $ ken 2" sates oe
bays

anyenexe:
2% BER Vases Serene WR

YORK vontevgrew LEEONAA COCR SE ROKS BEKO vax exongov
3° xo MER

322% 2 x
> BROKER FE

RORRaX WERTEN
et OREXWAKORI OY. pwavencaeone er INDX WALD IANERERGE
von daverervanenearerontan ww vor BERSEEL

EHRE FESNESTTEREREE N RvOKG ©. cen anea eran AY AXOnO gv ONE 3 EBERLE EEE IATILTORT 4 PIIERT ESSR REN SELRTEITERITER
PRRSIHHOFT TEE Ie. > 2 TR oxeneeN x SSR SOE REASON EINE

RaNoRuaKones . = Bar“ EROTIC,
ER
RER

PaRSL0x R54 er Sate Eee,
PRICES EIER Fr epee

Roxonsoconeteoey
DHEA EAS U

EEE, WEITERER
VAN ARGO ONO EIKO:

EEE
KOLAR COE

Dayo KARE EM ONES LEI
oe REEL PK OKO EEO: JEM OXG stores NO GRANALR FeO Br eet

Severe MONS
semeane nee
pops onanioxe st ov

Ro

So: OX KENTON OD oes
“getevextuxensees IE ERSTER FERNE

ROPERS TEN: ua eRe RENTS OMORP ETON x BIETER SIEH FER ATTIE HT
RERETFERTEERTE ELOLTIROKS Kerr
ERDE IKT. OXI RCO ROWE en Renee Mest
BETTEN ORY OKO KML ROE ROEOD HYD

srerbev exe rvexaKoe ord. praneaaroreaens Ba Ons 9 LOAN DORAN GKAREXO 4 GA ERBE UROHTR cere vabarnyenoeverene otoLaKaKTOv OKs: LAR PRT GMOS ESS oxexvaxonsaronseapeneny sencrone . “eee weeds ass LSD: HAN AEERTER STETTEN wrinedsrren EEE
ERS AK WAKAO RROD

ERS EREREES OXSACOXGKY Er OK nor N RE Lone LAG HNPNT OR Dee. Neo none ee ee KoKORVOKORDONEKOATENSMOE LO
+ “easreiarnw Mer On Ate Woy har AEH CHORINANAOLDG EN

- Araxoatevoruryox

RI Maes
at RR ELTERN 2:
KO ah oe 2

Kaen f soyranotene ws > ES een Se vers ESKOM en
MEARONDETONORTAROKPOVELEKE IHK xravoneaepennny canoer KORREKTE ANETTE ORIN A SS

Abbildung 28.4 ,
Sprite-Prioritat: Eines liegt ‘auf’ dem anderen.

weil 3 in Binär 990000111 ist, die Bits 1 und Q also auf 1 gesetzt sind. Nun fahren
wir fort:

560 POKEV + 39,5 [Sprite grün]

570 POKEV,120 [Sprite ® in Spalte 120]

580 POKEV+1,9 [Sprite ® in Reihe 95]

590 POKEV+ 29,3 [Sprites ®, 1 horizontal erweitern]

600 POKEV + 23, 1 [Sprite ® vertikal erweitern]

Nun RUN und mit den Tasten ‘O’ und ‘U’ den Raumkreuzer fliegen lassen
im — na Ja, All. Sehen Sie, wie er sich dahinterzuschieben scheint? Das liegt
daran, das das grüne Gebilde (Sprite ®) Priorität gegenüber dem Kreuzer hat
(Sprite 1).

Angenommen, wir möchten diese Priorität ändern. Dann können wir das Grüne
Gebilde zu Sprite 2, nicht ® machen. Das erfordert folgende Änderung:

500 POKE 2942,14

250 POKEV + 21,6 [6 = 00000119]

569 POKEV+ 41,5

570 POKEV+ 4,120

580 POKEV+ 5,95

599 POKEV + 29,6

600 POKEV + 23,4

Probieren Sie es — der Raumkreuzer schiebt sich jetzt davor, nicht dahinter.

Verwendung derselben Daten für mehrere Sprites

Wir können mehr als ein Sprite dadurch auf dieselben Daten setzen, daß wir
zwei oder mehr Zeiger auf gleichen Wert festlegen. Nehmen wir an, wir haben
Sprite 1 und 2 wie oben aufgebaut, wollen aber nun, daß Sprite @ ein Schwarzes
Gebilde (ebenfalls doppelter Größe) an einer anderen Stelle sei. Das können
wir. Wir aktivieren alle drei Sprites, indem wir 250 erneut umschreiben:

250 POKEV + 21,7 [7 = 00000111]

Nun Sprite ® aufbauen:

700 POKE 2949, 14 [Daten für Sprite ® vom selben Block, 14]

| [Sprite ® schwarz]

770 POKEV, 70 Sprite ® in Spalte 7@

187

780 POKEV + 1,124 Sprite ® in Reihe 124

790 POKEV + 29,7 alle 3 Sprites horizontal gedehnt

800 POKEV + 23,5 nur ® und 2 horizontal

Wenn Sie jetzt mit RUN fahren, finden Sie zwei Gebilde und einen Raumkreu-
zer.

Abbildung 28.5
Dieselben Daten für ein zusätzliches Sprite

Aufgabe 1

Schreiben Sie das Programm so um, daß Sprite 3 als zweiter Raumkreuzer von
derselben Form, aber in Rot, erscheint; er soll mit dem gelben auf gleicher Höhe
fliegen, aber 20 Reihen tiefer auf dem Bildschirm

Kollisionserkennung

Jetzt wollen wir herauszufinden versuchen, ob es einen Zusammenstoß mit
Sprite 2 gibt. Die Zusammenstöße werden erkannt durch die Flaggen im Regi-
ster V + 30. Wenn zwei Sprites zusammenstoßen, werden diese beiden Bits auf
1 gesetzt. Beispiel: Wenn Sprite 1 und 2 zusammenstoßen, enthält V + 3®

09000110 = 6

Der Wert wird bei Jedem Zusammenstoß aktualisiert. Wenn Sie mit PEEK in diese
Adresse hineingehen, wird der Inhalt automatisch auf ® zurückgesetzt.

188

Um zu sehen, ob Sprite 2 ein anderes. Sprite gerammt hat, müssen wir
Bit 2 des Registers prüfen; das geschieht durch den Befehl

IF (PEEK (V + 30) AND 4) = 4 THEN hates gekracht.. .

Wir können einen Kollisionstest bei Zeile 10@@ so in die Schleife setzen:

1925 GOSUB 2000

2000 REM KOLLISIONSTEST FUER SPRITE 2

2010 IF (PEEK (V+3Q0) AND 4) = 4 THEN POKE 53289, X-7*INT (X/7)

2020 RETURN

Dadurch blinkt der Rand (wieso?), wenn der Zusammenstoß eintritt.
Fahren Sie das Programm und überprüfen Sie, daß der Rand blinkt, wenn

Sprite 1 mit Sprite 2 zusammenstokt.
Sie können sich sogar damit amüsieren, dauernd mit PEEK in V + 30

hineinzusehen, um festzustellen, was dort los ist:

2015 PRINT PEEK (V + 30)

Das trägt dazu bei, noch einen wichtigen Punkt darzulegen: Das Sprite-Display
ist von dem üblichen Text auf dem Bildschirm ganz unabhängig, und Sie
können beides gleichzeitig haben. Sie werden eine Kolonne von Zahlen sehen,
in der Regel ®, aber die Zahlen wechseln, so oft zwei Sprites sich berühren.
Vergewissern Sie sich, daß ihr Bitmuster dem richtigen Spritepaar entspricht:

3 = 00000011, wenn Sprite 1 mit Sprite ® zusammenstößt

6 = 00900119, wenn Sprite 1 mit Sprite 2 zusammenstößt

Aufgabe 2

Welche Zahl erscheint in V + 39, wenn:

1. Sprite 5 mit Sprite 7 zusammenstößt?
2. Sprite 2 mit Sprite 4 zusammenstößt?
3. Sprite 6 mit Sprite 3 zusammenstößt?

Aufgabe 3

Versuchen Sie das V + 3@ in Zeilen 2019 und 2015 zu V + 31 abzuändern. Der
Rand blinkt ab und zu immer noch. Wann? Was geht da vor?

189

Das ist erst der Anfang

Das ist ein langes Kapitel gewesen, dabei haben wir die Oberfläche kaum
angekratzt. Sie können beispielsweise vielfarbige Sprites erzeugen. Der Platz
geht aber zu Ende, und ich hoffe, Sie haben genug Anregungen erhalten, um ©
auch so genug beschäftigt zu sein. Sobald Sie das beherrschen, was ich Ihnen
über den Umgang mit Sprites erzählt habe, können Sie zusätzliche Möglichkei-
ten im ‘Reference Guide’ erkunden.

Verbesserungen

Statt jedes Sprite ‘von Hand’ aufzubauen, erscheint es Ihnen vielleicht besser,
eine Folge von Subroutinen für den Umgang mit Sprites zu schreiben und diese
zu verwenden. Anhang 3 führt ein paar Grundprogramme auf.

Wo man Sprite-Daten speichert

Für drei oder weniger Sprites können Sie Blocks 13, 14 und 15 verwenden. Sie
liegen im Kassettenpuffer, einem Speicherbereich, der nur benutzt wird, wenn
der Kassettenrecorder angeschlossen ist. Dort kann man Sprites also ungefahr-
det speichern. Leider ist er nicht lang genug, um alle acht 64 Byte-Blocks
aufzunehmen. Wenn Sie nicht ein sehr langes BASIC-Programm haben, emp-
fiehlt der ‘Reference Guide’ die Blöcke 192-199. Wenn Sie mehr wissen moch-
ten, sollten Sie sich auch hier an den ‘Reference Guide’ halten.

Grand Prix

Das ist alles graue Theorie. Aus diesem Grund hier ein verhältnismäßig ein-
faches, aber vollständiges Spielprogramm, das Umgang mit Sprites beinhaltet.
Es gehört zu den gängigen Erscheinungen des Marktes: Auf einer Rennbahn
steht ein Auto, die Rennbahn rollt vorbei. Hier das Listing — es nutzt mehrere
Kniffe, die wir uns in vorangegangenen Kapiteln angeeignet haben.

10 PRINT CHRS(147)

20 PRINT “GRAND PRIX”

39 GOSUB 19000: REM SPRITE AUFBAUEN

49 PRINT

50 INPUT "STUFE: 1 BIS 5”; D

60 IFD<1ORD> 5THEN 50

70 L=9+D:R=31-D

80 PRINT CHR$(147)

99 FORT=1TO15

190

100 PRINTTAB (L); “gWc g+c”;

TAB (R); "g+tegOc” [Rand der Straße]

119 NEXTT

120 TIS = “900000" [Uhr stellen]

130 POKEV + 31,0

200 PRINT TAB (L); “gWeg+c";

TAB (R); “g + c gQc” [neuer Straßenrand]

219 Q=INT (3*RND(Q))-1

220 IFL+Q<@Q@ORR+Q> 38 THENO= 9

230 L=L+Q:R=R+Q0

240 GOSUB 2000: REM LIES KEYBOARD

250 GOTO 209

1000 REM SPRITE

1010 V = 53248 |

1020 DATA G, 126, 0, 0, 255, ®, 49, 255, 140, 49, 255, 140

1030 DATA 63, 255, 252, 49, 255, 204, 49, 255, 204, 3, 255, 192

1040 DATA 3, 255, 192, 3, 255, 192, 3, 255, 192, 3, 255, 192

1050 DATA 3, 255, 192, 3, 255, 192, 49, 255, 140, 49, 255, 14@

1060 DATA 63, 255, 252, 49, 255, 140, 48, 255, 12, ®, 126, ®

1070 DATA®, 24,0

1080 POKE 2041, 13 [Sprite 1 in Block 13]

1999 FORG=@TO62

1199 READH

1110 POKE 832+ G,H [Sprite in Block 13 setzen]

112@ NEXTG

1130 POKEV + 21,2 [Sprite 1 aktivieren]

1149 POKEV + 4@, 7 [gelb farben]

1150 POKEV + 23,2 [vertikal erweitern]

1160 POKEV + 29, 2 | [horizontal erweitern]

1170 X = 168 [horizontale Koordinate]

1180 POKEV + 2,X: POKE V + 3,10@ [in Position bringen]

1199 RETURN

191

192

2000

2010

2020

2030

2040

2050

2060

3000

3010

3020

3030

3040

3050

3060

4000

4010

4920

4030

4040

4050

4060

4070

4080

4090

4100

4119

4120

REM LIES KEYBOARD

P = PEEK (197) [zuletzt gedruckte Taste]

IF P = 47 THEN X = X-3 [nach links, wenn < gedr.]

IF P= 44 THENX=X+3 [nach rechts, wenn > gedr.]

GOSUB 3000: REM SPRITE BEWEGEN

IF (PEEK (V + 31) AND 2) =

2 THEN 4000 [Unfalltest]

RETURN

REM SPRITE SEITWAERTS BEWEGEN

IF X > 255 THEN OF = 1

POKE V + 2, X-256*OF

IF OF = @ THEN POKE V + 16, @

IF OF = 1 THEN POKE V + 16, 2

OF=9

RETURN

REM FINISH

Ms = TIS [Uhr ablesen]

FORN=1 TO 25

POKE 53281, 15*RND (®) [Bildschirm blinken]

NEXT N

POKE 53281, 6 [Schirm wieder blau]

PRINT CHR$(19)

PRINT: PRINT

PRINT “gTc[2mal]”’

PRINT "UNFALL NACH”

PRINT VAL (LEFTS (MS, 2));

“STUNDENLILILIEIZIO)”

PRINT VAL (MIDS (MS, 3, 2));

“MINUTENLJCILIO)” [Gesamtfahrzeit]

PRINT VAL (RIGHTS (M$,2));

“SEKUNDEN JD ICICI”

4130 PRINT “g@c [12mal]”

4149 STOP

Wenn Sie das fahren, werden Sie aufgefordert, die Schwierigkeitsstufe zu
wählen. 1 ist leicht, 5 schwer. Im Zweifel beginnen Sie bei 1 und arbeiten sich
hoch.

Das Spiel beginnt, sobald Sie nach dieser Eingabe RETURN drücken.
(Falls Sie das überrascht, fügen sie ein:

85 FORT = 1 TO 2000: NEXTT

damit Sie Zeit zum Überlegen haben.)
Drücken Sie Taste [_] für Bewegung nach links und Taste [_] für Bewe-

gung nach rechts. Versuchen Sie den Straßenrand zu meiden. Das Programm
verwendet Kollisionserkennung von Hintergrundsprites (siehe Lösung zu Auf-
gabe 3). |

Lösungen

Aufgabe 1

Fugen Sie dem Programm diese Zeilen an:

850 POKE 2943, 13

860 POKEV + 42,2

um Zeiger und Farbe zu setzen. Schreiben Sie vorangehende Zeilen um, um alle
vier Sprites zu aktivieren und die Erweiterungen richtig zu erzielen:

250 POKEV + 21,15

798 POKEV + 29,15

und nun die Schleife abändern:

1019 POKEV+3, Y: POKEV +7, Y +20

1912 IFOF=1THEN POKEV + 16, (PEEK (V + 16)) OR 1®

1013 IF OF = @ THEN POKE V + 16, (PEEK (V + 16)) AND 245

1914 POKEV + 2, X-OF*256: POKE V + 6, X-OF*256

Aufgabe 2

1. 10100000 = 160

2. 900101900 = 20

019001000 = 72

193

Aufgabe 3

Der Rand blinkt, wenn das Sprite mit /ext zusammenstößt. Register V + 31 setzt
bei Kollisionen zwischen Sprites und Text Bit K auf 1, sobald Sprite K mit Text
zusammenstößt. Seite 154 des Handbuchs beschreibt das als ‘Sprite-Hinter-
grund-Kollision’, ein eher verwirrender Begriff; es muß heißen ‘Sprite-
Vordergrund-Kollision’. Ebenso muß es bei Register V + 27 im Handbuch statt
‘Hintergrund-Sprite-Prioritat’ ‘Sprite-Vordergrund-Prioritat’ heißen. Bit K ent-
scheidet dann, ob Sprite K auf oder unter Text dargestellt wird.

194

29 Debugging V

Lauft das Programm wirklich?

Wie beweisen wir schlüssig, daß ein Programm genau das leistet, wozu es
geschrieben worden ist? Ich möchte hier nicht philosophisch werden (wir sind
auf dem besten Weg dazu), aber grob gesprochen ist das so ähnlich, als wolle
man von einem Astronomen wissen, ob morgen die Sonne aufgehen wird.
Wenn er sehr pedantisch ist, erwidert er vielleicht, die Erde flöge nun schon sehr
lange Zeit um die Sonne, und wir wären mit einer Reihe von physikalischen
Gesetzen vertraut, die darauf hindeuten, daß sie das regelmäßig weiterhin zu
tun gedenke, weshalb man einiges darauf verwetten dürfe, es werde auch
morgen noch der Fall sein; er würde aber hinzufügen, daß er nicht wissen
könne, ob unsere physikalischen Gesetze auch richtig seien und das, was wir
Jahrtausende lang beobachtet haben, nicht vielleicht die äußere Erscheinung
eines viel komplexeren Gesetzes sei, dessen Wirkung morgen darin bestehen
könne, die Richtung der Erddrehung umzukehren oder den Erdball ganz aus
seiner Bahn zu führen.

Versteckte Fehler

Analog gibt es, weil ein Programm sich bei den ersten tausend Sätzen von
Dateneingaben richtig verhält, keine absolute Garantie dafür, daß es beim
tausendunderstenmal auch klappt. Vielmehr treten Fehler oft monate- oder
sogar jahrelang nicht in Erscheinung, nachdem ein Programm erfolgreich ab-
geschlossen und bei Dutzenden oder sogar Hunderten von Anlässen problem-
los gefahren worden ist. Eigentlich kein Wunder; schließlich sind es gerade die
am seltensten auftretenden Bedingungen, die ein Programmierer am leichtesten
übersieht.

Hier ein Beispiel:
Wir schreiben eine Folge von Programmen für die E-Werke Magerhausen zur
Verwaltung ihrer Kundenkonten. Wir erfahren, daß es zwei Tarife gibt, A und B.
Bei Tarif A bezahlt der Kunde eine Vierteljahrespauschale von 150 Mark und pro
Verbrauchseinheit 4 Pfennig. Bei Tarif B fällt die Pauschale weg, die Einheit
kostet 7 Pfennig. Wir schreiben also einen Code solcher Art:

199 INPUT TS

105 INPUT EINHEITEN

119 IFTS= "A" THEN 300

120 IF TS ="B" THEN 140

130 GOTO 5000

149 RECHNUNG = 7 * EINHEITEN/100

195

150 PRINT RECHNUNG

169 GOTO 19®

300 RECHNUNG = 150 + 4 * EINHEITEN/10@

3190 PRINT RECHNUNG

. 320 GOTO 199

5000 PRINT “UNGUELTIGER TARIF”

5010 STOP

Schön. Ich weiß, der Code könnte effektiver sein, und wir würden mehr Infor-
mationen benötigen, etwa Namen und Kontonummer des Kunden, aber der
Sinn wird schon klar. |

Wir testen also das Programm, es läuft glatt, und wir entfernen uns mit
den gemurmelten Worten, eigentlich sei es doch eine Schande, daß wir mit
unseren glänzenden Gaben derart lächerliche Programme verfassen müßten.

Und es läuft auch wunderbar, jahrelang, bis eines schönen Tages eine
Rechnung über DM @.0@ ausgedruckt wird. Das fällt natürlich keinem Men-
schen auf, weil es eine Rechnung unter Tausenden ist, die vermutlich ohnehin
automatisch kuvertiert werden. Der Empfänger wundert sich über die Rech-
nung und ist wahrscheinlich belustigt, weil sie wieder einmal beweist, wie blöd
Computer doch sind; er sieht aber keinen Anlaß, etwas zu unternehmen und
wirft die Rechnung in den Papierkorb. Leider haben wir in derselben Folge ein
Programm verfaßt, mit dem das Absendedatum jeder Rechnung gespeichert
wird. Falls keine Bestätigung eingeht, daß die Rechnung innerhalb von 28
Tagen beglichen worden ist, geht eine letzte Mahnung hinaus. Diesmal ist der
Empfänger eher verärgert als belustigt, wirft aber auch diese Rechnung weg.
Von nun an geht's bergab. Die Routine, mit der die Frist zwischen Rechnungs-
datum und Zahlungseingang überwacht wird, weist die Betriebsabteilung an,
dem Kunden den Strom abzuschalten, falls er nach 60 Tagen immer noch nicht
bezahlt hat.

Was ist passiert? Ganz einfach! Der Kunde ist ein Rentner, der sich die
billigen Touristikangebote zunutzegemacht und den ganzen Winter in Mallorca
verbracht hat. Er war knapp über drei Monate außer Landes und hat für einen
ganzen Berechnungszeitraum keinen Strom verbraucht. Außerdem ist er ein
sparsamer Stromverbraucher, zahlt also nach Tarif B. Deshalb hat das System
eine Aufforderung abgeschickt, Null Mark zu entrichten. Freilich kann das nicht
oft vorkommen, weil nur wenige Menschen so lange von zu Hause fort sind und
auch nicht sehr viele Leute Tarif B wählen dürften. Damit das Problem auftreten
kann, muß der Kunde beiden Bedingungen entsprechen.

Einmal entdeckt, ist der Fehler leicht zu beheben:

145 IFRECHNUNG = @ THEN 199

so daß die PRINT-Anweisung umgangen wird. Dieses Problem soll bei einem
frühen Computersystem aufgetaucht sein, aber es kann sich auch um eine
Legende handeln. Auf jeden Fall scheint es mir deutlich zu zeigen, daß ein
Fehler fast ewig schlummern kann.

196 |

Die Moral: Wenn Sie Daten erfinden, um ein Programm zu testen, tun Sie
das nicht aufs Geratewohl. Wählen Sie Werte in und bei Verzweigungswerten
im Programm. Wenn es in einer Anweisung heißt

305 IFU < 30 THEN 400

fahren Sie einen Test mit U bei 29.999, einen mit U = 30 und einen mit U =
30.001. Sie könnten auch gemeint haben:

305 IFU < =30 THEN 400

Wenn Sie nur mit U = 15 und U = 16ß testen, fällt Ihnen der Fehler nicht auf.
Wählen Sie Testdaten so aus, daß zu irgendeinem Zeitpunkt jeder Ab-

schnitt des Programms ausgeführt wird. Und naturlich mussen Sie genau wis-
sen, wie die Antwort für jeden Satz Testdaten auszufallen hat.

197

30 Klang und Musik

Laut Commodore bedeutet die Abkürzung SID für den Klangchip
‘Sound Interface Device’. Nach meinem Gefühl steht sie für 'Syd-
ney Opera House’ und ist nur falsch geschrieben.

Sie haben VIC kennengelernt, der, wie wir sehen konnten, bemerkenswerte
Dinge beim Bildschirmdisplay bewirkt. Jetzt möchte ich Ihnen SID vorstellen,
der sich nicht lumpen läßt, sondern den 64 in ein Musikinstrument oder sogar
in einen annehmbaren Synthesizer verwandelt. . |

SID mitzuteilen, was Sie tun wollen, besitzt viel Ahnlichkeit mit den
Anweisungen für VIC. Das heißt, SID hat eine Anzahl von Registern, in die Sie
mit POKE hineingehen können. Jedes Register bestimmt eine andere Eigen-
schaft des Tones, der erzeugt werden soll.

Wir sollten uns zu Beginn überlegen, welche Eigenschaften eines Tons
ihn für ein bestimmtes Instrument charakterisieren. Beispielsweise können wir
den Unterschied zwischen dem eingestrichenen C auf eine Gitarre und demsel-
ben Ton auf einer Orgel leicht erkennen. Warum?

reine Sinuswelle
keine Obertone -

Sagezahn

dreieckig

Puls

Abbildung 30.7
Die vier Wellengrundformen.

198

Nun, erstens gibt es die Zusammensetzung der Frequenzen innerhalb der Note.
Ich will hier nicht auf die Physik der Tonerzeugung eingehen, aber ganz kurz:
Bei jedem Ton wird eine Tongrundfrequenz zusammen mit Obertönen erzeugt,
die Vielfache der Grundfrequenz sind. Zahl und relative Lautstärke dieser Ober-
töne (verglichen mit dem Grundton) verleihen dem Ton einen Klang, der für das
Instrument charakteristisch ist. Wenn wir uns diese Frequenzen kombiniert
vorstellen, ergibt sich eine bestimmte Wellenform, die auf einem Oszillographen
wie Abbildung 30.1 aussehen könnte.

Würden Sie SID aber nur mitteilen, wie er die Frequenzen eines Gitarren-
tons erzeugen soll, würde das Ergebnis kaum nach einer Gitarre klingen. Das
liegt daran, daß eine zweite Eigenschaft zu berücksichtigen ist. Die Lautstärke
des Tones verändert sich beim Spiel. Beispielsweise beginnt bei einer Orgel der
Ton leise, weil in der Pfeife nicht viel Luft ist, aber wenn sie sich verstärkt, nimmt
der Ton an Lautstärke zu. Bei einer Gitarre ist es umgekehrt; der Ton ist unmit-
telbar nach dem Zupfen der Saite am lautesten, dann verklingt er langsam, falls
er vom Gitarristen nicht bewußt gedämpft wird. Ein Saxophonist kann einen
Ton, den zu spielen er beginnt, durchhalten, solange sein Atem reicht. Und so
weiter. |

Aus alledem ergibt sich deutlich, daß die Produktion der richtigen Eigen-
schaften (oder Hu//kurve) eines Tons aus mehreren Stufen besteht.

SID kennt vier davon:

1. Anschlag (Atack): Die Geschwindigkeit, mit der vom Beginn des Tones
an die höchste Lautstärke erreicht wird.
Abschwellen (Decay): Das Tempo, mit dem die Lautstärke von diesem
Scheitelpunkt hinabfallt zum:
Halten (Sustain): Der Lautstärkepegel, der dann gehalten wird, bis der
Ton nicht mehr gespielt wird.
Ausklingen (Release): Das Tempo, mit dem der Ton verklingt, wenn er
nicht mehr gespielt wird.

P
Ww
W

N

A

Lautstarke Abschwellen

Halten

Anschlag Ausklingen

>
Zeit

Abbildung 30.2
Die vier Stufen einer ADSR-Hullkurve.

(ADSR = Attack, Decay, Sustain, Release)

All das erlaubt Ihnen allerhand Raffinessen, aber wie gewohnt, je leistungsstar-
ker etwas ist, desto vorsichtiger muß man damit umgehen, und desto mehr muß
man wissen.

199

Wir fangen also mit sehr begrenzten Zielen an und erweitern unseren
Horizont nur langsam.

Die erste Aufgabe ist die, einen musikalischen Ton zu erzeugen und dann
Töne aneinanderzureihen, damit sie eine Melodie bilden. Ob das dann nach
Klavier oder Orgel klingt, ist im Augenblick belanglos.

Offensichtlich wäre es praktisch, musikalisch gesprochen (einigerma-
ßen) konventionell zu denken. Ich möchte vom ‘eingestrichenen C’ oder ‘F +’
und so reden. Aus Rücksicht auf die numerische Beschaffenheit von BASIC
definieren wir jeden Ton als Zahlenpaar, das den Ton und seine Oktave bezeich-
net. Wir nennen die mittlere Oktave ® und ‘C’ Ton @. Die mittlere Oktave wird
also geschrieben wie in Tabelle 30.1.

Tabelle 30.1

Ton Oktave Notenschreibweise

")) C
1 N) C+ (oder Dd)
2 1) D
3 N) D+ (oder Ed)
4 1) E
5 1) F
6 N) F+ (oder Gb)
7 1) G
8 1) G+ (oder Ad)
9 ") A

10 1) A+ (oder B oder Hd)
11 N) H

1) 1 C (eine Oktave höher)

Auf diese Weise reichen die verfügbaren Oktaven von —4 (der niedrigsten) bis 3
(der höchsten).

Jetzt brauchen wir einen Zusammenhang zwischen dieser Schreibweise
und den Frequenzen, die mit POKE in die entsprechenden Register von SID
eingegeben werden müssen.

Die Frequenzintervalle zwischen Noten in der Musik des Abendlandes
beruhen auf der sogenannten diatonischen Skala. (Diatonisch heißt ‘in Ton-
intervallen’ und hat nichts zu tun mit der Vertonung von Diapositiven.) Leider
sind die Verhältnisse zwischen aufeinanderfolgenden Tönen nicht immer
gleich. Die Komponisten im 18. Jahrhundert kamen dahinter, daß das hieß, sie
könnten die Tonart nicht wechseln, und erfanden deshalb die ‘gleichschwe-
bende Temperatur’, die nah herankommt.

Das geht so: Um von einem Ton in einer Oktave zum gleichen in einer
anderen zu gelangen, multipliziert man mit zwei. (Das gilt fur beide Tonleitern.)
Da es in jeder Oktave zwölf Töne gibt, muß man, um die Verhältnisse zwischen
aufeinanderfolgenden Tönen gleichzuhalten, mit 2 ? (1/12) multiplizieren, um
von einem Ton zum nachsten zu gelangen.

Nun ergibt sich, daß die Frequenz für das eingestrichene C 4291 ist. Wir
brauchen also eine Subroutine, die einen Noten- und Oktavwert annimmt (NTE
und OCT), 4291 mal 2 hoch irgendwas multipliziert und einen angemessenen

200

Wert liefert, der in die Frequenzregister von SID gesteckt werden kann. Register
Mehrzahl? Wieso mehr als eines? Nun, es gibt mehr als 256 verschiedene Töne,
also bestimmen zwei Bytes (die ich H% und L%, für High (hohes) und Low
(niedriges) Byte nenne), die Frequenz. |

Also los: |

10900 F=4291 +21 OCT [für die richtige Oktave]

10910 IFNTE > @ THEN [mit2? (1/12) für jeden Ton

F = F* 27 .9833333333: uber C multiplizieren]

NTE = NTE-1: GOTO 1919

1920 FI=INT (F+ 0.5) ~ [F aufrunden und Integerteil

nehmen]

1930 H% = FI/256: L% = FI - 256 * H% die zwei Bytes erzeugen

1040 RETURN

Die %-Zeichen an H% und L% verwundern Sie vielleicht. Es gibt zwei Möglich-
keiten, im Computer Zahlen zu speichern: Fließpunkt (Dezimalzahlen wie
7.443) und /nteger (ganze Zahlen wie 7). Integervariable erfordern im Speicher
weniger Platz. Wenn Sie dem Namen einer Variablen oder einen Array das
%-Zeichen anhängen, weisen Sie den Computer an, sie als ganze Zahlen zu
behandeln. Das müssen Sie aber im ganzen Programm tun, denn der Computer
behandelt H und H% als verschiedene Variable. |

Jetzt zum Hauptprogramm. Ich kann mir die Registeradressen von SID
nie merken, beginne also damit, daß ich diejenigen, die ich brauche, Variablen
zuteile:

10 VOL = 54296: FH = 54273: FL = 54272: WFM = 54276: AD =

54277: SR = 54278

‘VOL’ setzt die Lautstärke für den ganzen Chip auf einen Wert zwischen ® und
15. FH und FL sind die hohen und niedrigen Bytes der Frequenz. WFM ist die
Wellenform. AD und SR sind die Anschlag/Abschwell- und Halten/Ausklang-
Teile der Hüllkurve.

Die Berechnung anzustellen, während die Musik spielt, ist nicht prak-
tisch; das dauert zu lange. Wir setzen also Arrays, berechnen die verlangten
Werte, speichern sie und spielen die Melodie erst am Schluß.

20 DIMH%(200), L%(200), D(209)

H% und L% sind die hohen und niedrigen Bytes der Frequenzwerte, D ist die
Dauer des Tons. Ich lasse maximal 201 Tone zu, aber Sie könnten natürlich Platz
fur mehr vorsehen.

Wir gehen davon aus, daß wir eine DATA-Liste von Noten haben, mit
denen wir arbeiten konnen, jede bestehend aus Noten-, Oktav- und Dauerwer-
ten. Eine Dauer von ® soll als Begrenzer dienen.

201

Wir können also eine Schleife setzen, die Noten liest, notwendige Um-
wandlungen vornimmt und die Arrays lädt:

49 P=9

50 READ NTE, OCT,D

55 IFD=@THEN 199

60 GOSUB 1000: REM GET H%, L%

70 H%(P) = H%: L%(P) = L%: D(P) =D

80 P=P+1

99 GOTO 59

Jetzt die Melodie spielen. Zuerst setzen wir einen Tempowert, damit die Ge-
schwindigkeit, mit der die Melodie gespielt wird, verändert werden kann. Dann
setzen wir die anderen Register:

198 INPUT "TEMPO"; TE

102 INPUT "AD, SR”;A,S

1094 POKEAD, A: POKESR,S

196 INPUT "WELLENFORM'"; W

108 POKEWFM,W

118 POKE VOL, 15

Die Reihenfolge der Ereignisse hier ist bedeutsam. Besonders WFM muß aus
Gründen, auf die ich später komme, nach AD und SR gesetzt werden.

Jetzt gehen wir durch eine Schleife, geben die Arraywerte mit POKE in die
Frequenzregister ein und verzögern das Abspielen des nächsten Tons entspre-
chend: Ä

115 P=®

120 POKE FH, H%(P): POKE FL, L%(P)

130 FORN=1TOD(P) * TE: NEXT

148 P=P+1

158 IFD(P) = @ THEN POKE VOL, @: END

169 GOTO 129

Beachten Sie, daß die Verzögerung in 130 von TE abhängt. Je größer TE, desto
langsamer wird die Melodie gespielt. Die in D konkret verwendeten Zahlen
spielen deshalb keine Rolle, solange das Verhältnis zwischen ihnen richtig ist.
TE können Sie jederzeit auf angemessene Weise anpassen. Beachten Sie außer-
dem, daß VOL am Ende auf Null gesetzt wird, weil der letzte Ton sonst endlos
lange ausgehalten wird.

202

Probieren Sie es jetzt. Schreiben Sie:

2000 DATA1,®,2

2010 DATAQ,9,

Versuchen Sie es mit folgenden Parametern:
und RUN.

TEMPO = 200

AD, SR = 9,240

WELLENFORM = 17

Sie sollten in der mittleren Oktave ein C# erhalten, das orgelähnlich klingt.
Lassen Sie Zeile 200@, wie sie dasteht, und fügen Sie an:

2019

2020

2030

2049

2050

2060

2070

2080

2090

2100

2119

2120

2130

2140

2150

2160

2170

2180

2190

2200

2210

DATA 1, @, 2

DATA 5, @, 2

DATA5, 9, 2 |

DATA 3, 0, 2

DATA 1, @, 2

DATA 6, @, 2

DATA 6, @, 2

DATA 5, @, 2

DATA 3, 9, 2

DATA 5, , 2

DATA 8, @, 2

DATA 8, @, 2

DATA 7, @, 2

DATA 8, 9, 4

DATA 5, @, 2

DATA 19, @, 3

DATA 8, 9, 1.

DATA 6, @, 2

DATA 5, @, 2

DATA 3, @, 2

DATA 1, @, 2

203

2220 DATA®, Q, 2

2230 DATAS, @, 2

2240 DATA3, 9, 2

2250 DATA, @, 2

2260 DATA1,0,2

2279 DATA®Q, @, 2

2280 DATA1,0,4

2290 DATAB,0,0

RUN, und dieselben Werte wie zuvor. Das paßt vielleicht ganz gut, wenn Sie
Ihren 64 zu Weihnachten bekommen haben!

Mein eigentlicher Grund für diese Wahl ist aber der, daß die meisten Töne
von gleicher Länge und in derselben Oktave sind, so daß das leicht zu bewälti-
gen ist. Man kann das (‘While Shepherds Watched Their Flocks’ heißt das
schöne Lied) auch von Notenblättern abschreiben, aber ich habe es durch
Herumprobieren herausgebracht. (Was heißt da, das merkt man?)

Aufgabe 1

Verändern Sie die DATA-Liste in diesem Programm, damit es den Refrain von
‘Don't Cry for Me, Argentina’ spielt.

Harmonik

SID ist viel schlauer, als ich bisher zugegeben habe.
Als erstes können wir mehr als eine Stimme spielen (sogar bis zu drei), die

sich voneinander völlig unabhängig entfalten können.
Um das vorzuführen, probieren wir ein bißchen mit Zweiklängen. Da

gleichzeitig zwei Töne gespielt werden, bauen Sie Zeile 20 um:

20 DIM H%(299,2), L%(200,2), D(200) -

(Der Einfachtheit halber unterstellen wir, daß beide Töne dieselbe Dauer ha-
ben.) Jede DATA-Anweisung enthält nun also fünf Werte:

Ton (Stimme 1), Oktave (Stimme 1), Dauer, Ton (Stimme 2),

Oktave (Stimme 2) |

In Zeile 50 wollen wir die ersten drei davon haben, also bleibt sie gleich, wie
auch die Zeilen 55 und 69, aber in Zeile 70 müssen die Ergebnisse in die erste
Spalte der Arrays gesetzt werden:

70 H%(P,1) = H%: L%(P,1) = D(P) =D

204

Nun mussen wir den zweiten Ton holen und die Berechnungen bei ihm wieder-
holen, aber das Ergebnis gehört in die zweite Spalte der Arrays:

75 READ NTE, OCT

76 GOSUB 19000

77 H%(P,2) = H%: L%(P,2) = L%

Alle vorher fur Stimme 1 gesetzten Register mussen jetzt auch fur Stimme 2
gesetzt werden. Praktischerweise befinden sich alle Register fur die zweite
Stimme 7 uber den entsprechenden Registern fur Stimme 1. Ubrigens sind die
Register fur die dritte Stimme 14 uber den Werten fur Stimme 1. Siehe An-
hang 4, der eine kurze Zusammenfassung von SID-Registern enthält.

Der Codeblock, der die Register setzt, sieht also nun etwa so aus:

100 INPUT “TEMPO”: TE wie vorher

102 INPUT "AD, SR(1)"; A,S

104 POKE AD, A: POKESR,S

105 INPUT "AD, SR(2)"; A, S: POKE AD + 7, A: POKESR + 7,S

106 INPUT "WELLENFORM(1)"; W1: POKE WFM, W1

108 INPUT "WELLENFORM (2); W2: POKE WFM + 7,W2

Zeile 120 wird zu:

120 POKE FH, H%(P, 1): POKE FL, L%(P, 1)

und wir brauchen eine Zeile 125 für die Harmonik:

125 POKEFH + 7, H%(P, 2): POKE FL + 7, L%(P, 2)

Im übrigen bleibt das Programm, wie es war. Sämtliche DATA-Anweisungen
verändern sich natürlich:

2000 DATA5,®,1,5,®

2019 DATA 1,9,1,5,®

2020 DATA3,9,1,5,0

2030 DATA5,@, 1,5,

2040 DATA8,®,1,5,®

2050 DATA 6, 9, 1,5,

2060 DATA 6, 0, 1,6,

2070 DATA 19,9, 1,6, 0

2080 DATA 8,0,1,6,®

205

2090 DATA8,9,1,8,9
2199 DATA1,1,1,8,9
2119 DATAQ,1,1,8,9
2120 DATA1,1,1,8,9
2130 DATA8,9,1,8, 0
2140 DATAS5,9,1,8, 0
2150 DATA1,9,1,6, 0
2160 DATA3,9,1,6,9
2170 DATA5, 0, 1,6, 0
2180 DATAG,9,1,5,9
2190 DATA8,9,1,5,9
2200 DATA19,9,1,5,0
2210 DATA8,@,1,5,9
2220 DATA6,@,1,5,9
2230 DATA5,0,1,5,0
2240 DATA3,9,1,1,9
2250 DATA5,9,1,1,9
2260 DATA1,9,1,1,9
2270 DATAB,0,1,0,0
2280 DATA1,9,1,0,0
2290 DATA3,9,1,9,9
2300 DATA8,-1,1,9,0
2310 DATAQ,@,1,9,0
2320 DATA3,0,1,9,®
2330 DATA6, 9,1,0,0
2349 DATA5,9,1,9,0
2350 DATA3,9,1,9,9
2360 DATA5,9@,1,5,9
2370 DATA1,9,1,5,9
2380 DATA3,@,1,5,9
2390 DATA5,9,1,5,0

206

2400 DATA8, 9,1, 5,@

2410 DATA6G, @, 1,5, @

2420 DATAG, 9, 1,6, 9

2430 DATA19, 9, 1,6,

2440 DATA8, 9, 1,6,

2450 DATA8, @,1,8, 9

2460 DATA1,1,1,8,0

2470 DATAB,1,1,8,®

2480 DATA1,1,1,8,®

2490 DATA38,0,1,8,®

2500 DATAS5, @, 1,8, @

2519 DATA1, 9,1, 6,0

2520 DATA3, 9, 1,6, 0

2530 DATA5, @, 1,6,

2540 DATA19@,-1,1, 5, @

2550 DATA8, 9,1, 5, @

2560 DATA 6, @, 1,5, @

2570 DATA5, @, 1,5, @

2580 DATA3, 9,1, 5,

2590 DATA1,9,1, 5,0

2600 DATA8,-1,1,9,9

2619 DATA1,9@, 1,9,

2620 DATA®Q,9@, 1,9, 0

2630 DATA 1,0,6,1,®

2640 DATA®Q,9, 9, 9,0

Fahren Sie das mit RUN und nehmen Sie fur den Anfang dieselben Parameter
wie vorher fur beide Stimmen. Sie sollten horen ‘Jesus, du des Menschen
Freude’ von J. S. Bach. (Nicht Johann Sebastian, sondern sein wenig bekann-
ter Sohn Jones Stewart Bach, der dafür bekannt war, daß ihm seine Harmonik
immer ein bi&chen durcheinandergeriet.)

Um den Klang ein bißchen zu ‘verbreitern’, schreiben Sie Zeile 75 um:

75 READ NTE, OCT: OCT = OCT 1

207

Nun läuft die Harmonik eine Oktave unter der Melodie. Klingt doch recht
hübsch, oder?

Verändern Sie als nächstes die Wellenform für die Melodie (Stimme 1).
Verwenden Sie 33 statt 17. Der Unterschied im Klangcharakter ist auffällig.

Bis jetzt bin ich der Aufgabe ausgewichen, an den ASDR-Werten herum-
zubasteln, aber nun haben wir eine ausreichende Grundlage, um zuversichtlich
mit ihnen umgehen zu können. Die Anschlag- und Abschwellwerte sind in den
beiden Hälften eines 8 Bit-Reigsters (siehe Kapitel 12) so enthalten:

Anschlag Abschwellen

Je größer die Zahl in beiden, desto länger die Anschlags- (oder Abschwell) pe-
riode. Der höchste Anschlag ist also 1111 (= 15 Dezimal). Da sich das in der
linken Hälfte des Bytes befindet, ist es in Wirklichkeit das 16fache (= 24@). Ein
ziemlich rascher Abschwellwert wäre 0011, die Dezimalentsprechung für diese
Kombination 243.

Die Werte für Halten und Ausklingen sind ähnlich organisiert:

Halten Ausklingen

Der höchste Wert für das Halten ist somit 240 (dezimal).
Die Werte, die ich bisher verwendet habe, liefern schnellsten Anschlag,

schnellstes Abschwellen für den lautesten Haltewert, gefolgt vom raschesten
Ausklingen. In Wahrheit gibt es kein Abschwellen, weil der Haltewert dafür
sorgt, daß die höchste Lautstärke beibehalten wird. Wenn man hinhört, merkt
man das.

Verwirrender ist, daß man nicht hören kann, wie die Töne abgeschaltet
werden. Vom einen zum anderen findet ein glatter Übergang statt.

Der Grund: Der Wert für das Halten wird endlos beibehalten, bis Bit ® des
Wellenform-Steuerregisters (WFM) auf Null zurückgesetzt wird. Die Bitmuster
der Wellenform, die wir bis jetzt benützt haben, sind 18 (binär 9001901) und
33 (binar 90100991), die beide Bit @ auf 1 setzen. Deshalb ist es wichtig, ADSR
vor WFM zu setzen. Sobald Bit ® von WFM gesetzt ist, können Sie mit ADSR
ohne Auswirkungen anstellen, was Sie wollen. Dies alles bedeutet, daß der
einzige Weg, den Ausklingteil des Zyklus auszulösen, der ist, mit POKE in WFM
eine ® einzugeben. Dann müssen Sie den gewünschten Wellenform-Wert mit
POKE neu eingeben, bevor Sie versuchen, den nächsten Ton zu spielen.

Um das also auszuprobieren, lassen Sie die Unterharmonik in Ruhe und
schreiben Zeile 120 so um:

120 POKE WFM, W1: POKE FH, H%(P, 1): POKE FL, L%(P, 1)

208

Wir wollen den entsprechenden Harmonieton im selben Augenblick beginnen
(oder so nah wie möglich daran), also bleibt Zeile 125 unverändert, aber nun
mussen wir nach einer passenden Verzögerung die Melodie abschalten:

127 FORN =1TOD(P) * MD: NEXT: POKE WFM, ®

Das unterstellt natürlich, daß für MD (Melodieverzögerung) ein Wert beige-
steuert worden ist. Da wir vermutlich die Verzögerung in der Melodie und das
Tempo getrennt ändern wollen, wäre es vernünftig, beide einzugeben; dann
sähe Zeile 1009 so aus:

109 INPUT “TEMPO”; TE: INPUT “MELODIEVERZOEGERUNG”; MD

Die Verzögerung in Zeile 13® ist jetzt zu lang; die Schleife sollte TE-MDmal
ausgeführt werden:

130 FORN=1TOD(P) * (TE-ND): NEXT

Fahren Sie das und probieren Sie die folgenden Werte aus:

TEMPO? 180

MELODIE? 180 [damit beide Tone gleich lang dauern]

AD SR (1)? 9, ®

AD, SR (2)? 0,240

WELLENFORM (1)? 33
WELLENFORM (2)? 17

Nun lassen Sie die Melodie von einem Cembalo spielen, eine Orgel steuert die
Harmonik bei! (Na ja, ein bißchen Phantasie muß man schon mitbringen!)

Andere Instrumente

Sie können mit Wellenform- und ADSR-Werten in zufälliger Weise spielen und
recht erstaunliche Ergebnisse erzielen. Wenn Sie aber ein bestimmtes Instru-
ment nachahmen wollen, müssen Sie ein paar Dinge im Gedächtnis behalten.

Wellenform 17 (‘Dreieck’) besitzt den ziemlich reinen Klang, den man mit
Orgel, Flöte oder Glocke verbindet.

Wellenform 33 (‘Sagezahn’) hat etwas Schwirrendes an sich. Daher die
Verwendung fur Cembalo.

Es gibt noch eine andere Wellenform, von der wir noch gar nicht gespro-
chen haben. Ihr Wert ist 65, und sie erzeugt Pulse, die durch Setzen eines 2
Byte-Registers in der Schwingung verändert werden können. Für Stimme 1 ist
das niedrige Byte 54274, das hohe Byte 54275. Probieren Sie aus:

POKE 54274,255: POKE 54275,®

209

a Sie das Programm erneut und setzen Sie Wellenform 1 auf 65, ADSR 1
auf 9,0.

Das schwirrt noch mehr, nicht? Das Handbuch behauptet, es sei ein
Klavier, aber ich meine, man braucht schon eine Riesenphantasie, um darauf zu
kommen. Ein Instrument, das ebenfalls schwirrt, ist jedoch die Gitarre. Können
wir berechnen, wie die Hüllkurve für einen Gitarrenton aussehen müßte?

Geht ganz leicht, wenn man überlegt. Die Saite wird geschlagen (oder
gezupft) und erzeugt unmittelbar danach den lautesten Klang. Der Anschlag ist
also schnell (®). Der Ton wird nun mit der Zeit leiser, so daß das Abschwellen
ziemlich lange dauert, sagen wir 10. Der AD-Wert ist also ® * 16 + 10 = 19.
Halten gibt es nicht, und das Ausklingen können wir rasch besorgen (weil es
keinen Unterschied macht), also SR = ®.

Probieren Sie das. Ich denke, Sie werden Gitarrenartiges hören. Verrin-
gern Sie den AD-Wert ein bißchen (6? 4?). Sie werden feststellen, daß der Ton,
wie erwartet, gedämpft ist und Sie einen Banjo- oder Ukuleleklang erhalten.

Wie wäre es mit einer Glocke? In Begriffen der Hüllkurve besteht viel
Ähnlichkeit mit einer Gitarre, weil der Ton von seinem Scheitelpunkt, der sofort
nach dem Schlagen auftritt, langsam abschwillt. Der Klang ist aber reiner.
Versuchen Sie also Wellenform 17 mit AD = 19, SR = @. Das Ergebnis läßt sehr
an eine Glocke denken, aber das fällt Ihnen vielleicht nicht auf, bis Sie ein sehr
langsames Tempo wählen, um den Ton ausklingen zu lassen.

Aufgabe 2

Das Morseprogramm in Kapitel 18 zeigte nur die Punkte und Striche an. Es wäre
viel interessanter, zusätzlich die angemessenen Geräusche zu erzeugen. Schrei-
ben Sie das Programm entsprechend um.

(Verwenden Sie für Punkte und Striche denselben Ton, aber die Strich-
tone sollen dreimal so lang sein wie die Punkttöne.)

Lösungen

Aufgabe 1

Die folgenden DATA-Anweisungen genügen (andere sind natürlich möglich,
wenn Sie eine andere Tonart bevorzugen):

2000 DATA 7,0,4

2010 DATA7,0,2

2020 DATA 7,0,2

2030 DATA7,®,4

2040 DATA8,0,2

2050 DATA19,9,2

2060 DATAQ,1,2

2070 DATA19,9,8

210

2080 DATA19, @, 2

2090 DATAQ,1,4

2100 DATAQ,1,2

2119 DATA19@, @, 2

2120 DATA3,1,6

2130 DATA19, @, 2

2149 DATA8,90,4

2150 DATA7,@,4

2160 DATA7,9@,3

2170 DATA8,0,3

2180 DATA19, @, 2

2199 DATA5,0,8

2200 DATA5, 0,3

2210 DATA7,0,3

2220 DATA8,0,3

2230 DATA3, 9,10

2240 DATA3,0,2

2250 DATA5,®@, 2

2260 DATA3, 0,2

2270 DATA7,0,4

2280 DATA10,9,6

2299 DATA 10,-1,2

2300 DATA 19,-1,2

2310 DATA 19,-1,2

2320 DATAQ,@,4

2330 DATA3, 0,6

2340 DATAQ,9,@

Hier taucht ein kleines Problem auf. Da manche der aufeinanderfolgenden Tone
gleich sind, konnen Sie das Ende des einen vom Anfang des nachsten Tones
nicht unterscheiden — er wird einfach durchgehalten.

Wenn Sie den ganzen Abschnitt uber Harmonik gelesen haben, werden
Sie einen Weg sehen, jeden Ton bewußt abzuschalten, damit man die Tone
getrennt hort. (Sie müssen die Zeilen 120 und 13@ ändern.)

211

Aufgabe 2

Zuerst die SID-Register wie gewohnt initialisieren:

5 VOL = 54296: FH = 54273: FL = 54272: WFM = 54276.

AD = 54277: SR = 54278

Das Morseprogramm selbst bleibt unverändert, mit zwei Ausnahmen:

1.

212

Fügen Sie Zeilen 280, 290 und 295 ein:

280

290

295

INPUT "GIB NOTE, OKTAVE EIN”; NTE, OCT

GOSUB 1000

POKE FH, H%: POKE FL, L%: POKE VOL, 15:

POKE AD, ®: POKE SR, 249

Die Subroutine ab Zeile 190@ ist natürlich jene, die eine Frequenz nach
den eingegebenen musikalischen Werten berechnet. Schreiben Sie ab
von Seite 201.
Rufen Sie in Zeile 379 eine Subroutine auf, um den Klang zu erzeugen:

370 IF C > @ THEN PRINT CHR$ (C + 64), A$ (C): GOSUB 5099

Das bringt eine neue Subroutine ins Spiel, die so aussieht:

5999

5010

5020

5039

5040

5059

5060

K$ = AS (C)

T=1

L$ = MIDS (KS, T, 1)

IF L$ = "." THEN POKE WFM, 17: FOR D = @

TO 190: NEXT D: POKE WFM, @

IF L$ = "-" THEN POKE WFM, 17: FOR D = @

TO 300: NEXT D: POKE WFM, @

IFLS=" “ORT =4THEN RETURN

T=T+ 1: GOTO 5020

31 Programmplanung

Beim Entwurf eines Programms erleichtert man sich das Dasein oft,
wenn man den richtigen Weg wählt, Information im Computer
darzustellen. Als Beispiel hier ein Programm, das ‘Nullen und
Kreuze’ spielt. |

In Kapitel 14 haben wir uns ein Programm angesehen, wo es von Nutzen war,
die beteiligten Subroutinen regelmäßig zu strukturieren. Befassen wir uns nun
mit einem, in dem das Programm nicht nur strukturierte Subroutinen, sondern
auch strukturierte Daten besitzt.

Es geht darum, den Computer zu veranlassen, daß er auf eine vernünftige
Weise mit einem menschlichen Gegner ‘Nullen und Kreuze’ spielt (eine Art
‘Muhlespiel’ auf Papier). Ich wähle das, weil die Regeln sehr einfach sind: In ein
Gitter von 3x 3 Feldern setzen die Spieler abwechselnd O oder X. Wer als erster
drei Zeichen in einer Reihe hat, ist Sieger. Es fällt leicht, sich von Fragen der
Spielstrategie ablenken zu lassen und komplizierte Routinen erdenken zu wol-
len, um die besten Züge zu bestimmen, aber ein bißchen Nachdenken vorher
zahlt sich später aus. Zu Beginn muß klar entschieden werden, wie Spielfeld
und Spielstand dargestellt werden sollen.

Das Spielfeld

Eine typische Spielsituation sieht etwa so aus:

X O

X X

O

Darstellen kann man sie etwa dadurch, daß man die Zellen so numeriert:

1 2 3

4 5 6

7 8 9

und dann eine Liste davon anfertigt, was jede Zelle enthält:

1 X

2 O

3

213

4 X

5 _

6 X

7 O

8 _

9 _

Ein Gedankenstrich bedeutet hier eine leere Zelle. Die Symbole X, O, — ersetzt
man durch einen numerierten Code:

Ersetze X durch 1
Ersetze O durch —1
Ersetze — durch ®

(Sie werden später sehen, warum ich gerade diese Zahlen wähle. Im Augenblick
ist es nur eine Meinung, ausgelöst durch ein Gefühl für Symmetrie.) Der
Spielstand auf dem Feld wird also zu einem Array BD:

BD

O
O
N

D
O
R
O
N

—

So oft der Spielstand sich ändert, verändern sich auch die Einträge in BD, so daß
beispielsweise BD (5) stets den Inhalt der mittleren Zelle des Feldes speichert.

Sie fragen sich vielleicht, warum das besser sein soll als ein Array BD$, das
die O- und X-Zeichen als Strings enthalt. Nur Geduld, alles kommt an den Tag.

Eine Position bewerten

Das nachste Problem: Wie konnen wir den Computer zu vernunftigen Zugen
zwingen? Es hat keinen Sinn, ihn zufallig spielen zu lassen — stehen beispiels-
weise in einer Reihe zwei X, so muß er sperren. (Ich gehe durchwegs davon aus,
daß der 64 den O-Part spielt.) Wir brauchen also eine Methode, den Spielstand
auf irgendeine Weise zu bewerten, das heißt, mögliche Züge abzuwägen.

Wir schaffen ein zweites Array namens EV, das Information über den
laufenden Stand jeder Reihe, Spalte und Diagonale enthält. Insgesamt gibt es
davon acht:

214

4 5 6

TN 4 { { 8
1-> 1 2 3

2—- 4 5 6

3 7 8 9

Wenn wir diese Methode, Reihen, Spalten und Diagonale zu numerieren, ver-
wenden, ermitteln wir EV so:

EV
|

1 N) = BD(1) + BD(2) + BD(3) oberste Reihe
2 2 = BD(4) + BD(5) + BD(6) zweite Reihe
3 | -1 = BD(7) + BD(8) + BD(9) dritte Reihe
4 1 = BD(1) + BD(4) + BD(7) linke Spalte
5 | 1 = BD(2) + BD(5) + BD(8) mittlere Spalte
6 1 = BD(3) + BD(6) + BD(9) rechte Spalte
7 1 = BD(1) + BD(5) + BD(9) vordere Diagonale
8 | -1 = BD(3) + BD(5) + BD(7) hintere Diagonale

Die in EV gezeigten Werte sind die für den konkreten Spielstand oben, und wir
sehen, daß sie uns Hinweise auf vernünftige Züge geben. Beachten Sie, daß
jeder Wert in EV einfach die Summe der Einträge in BD für die betreffende Reihe
etc. ist. Das ist ein Grund, die Position nicht in einem Stringarray festzuhalten.
Aber warum die Summe verwenden?

Sehen Sie sich als erstes EV (2) an, das 2 enthält. Das kann nur gesche-
hen, wenn in dieser Reihe zwei X stehen und kein O die Reihe sperrt. Zwei X und
ein O werden nämlich eine Summe 1 + 1 + (-1) = 1 ergeben, nicht 2. Siehe EV
(4), wo genau das stattfindet.

Der springende Punkt ist also der: Wenn irgendwo in EV eine +2 steht,
könnte X einen Gewinnzug machen (falls der betreffende Spieler an der Reihe
ist). Ebenso bedeutet ein Eintrag —2 in EV, daß O einen Gewinnzug machen
könnte. Eintrag-3 bedeutet, daß O soeben gewonnen hat, Eintrag +3, daß X der
Sieger ist.

Übrig bleiben die kniffligeren Fälle, wo EV 1,-1 oder ® enthält, aber wir
sehen, daß wir uns darüber den Kopf nicht zu zerbrechen brauchen, weil sie
‘entscheidenden’ Punkten im taktischen Spiel nicht entsprechen.

215

Programmstruktur

Die Gesamtstruktur des Programms wird so aussehen:

Subroutine
Funktion Beginn Zeile

Feld initialisieren 1000
Feld anzeigen 2000

— Zug des menschlichen Spielers holen 3000
Feld anzeigen 2000 [erneut]
Auf Spielende prüfen ADDO
Computerzug 5000
Feld anzeigen 2000 [erneut]

— Auf Spielende prüfen 4000 [erneut]

Ein paar davon müssen weiter aufgegliedert werden. Beispielsweise muß die
‘Spielende’-Prufroutine das EV-Array erzeugen und dann nach Ergebnissen
von 3 und -3 suchen. Sind keine vorhanden, muß sie feststellen, ob das Spiel
unentschieden ausgegangen ist, indem sie prüft, ob in BD noch Nullen vorhan-
den sind. Wenn nicht, sind alle Quadrate verbraucht worden.

Auf Spielende prüfen (4000)

Spielfeld bewerten (6000)

Wenn in EV-3 vorhanden, siegt der Computer: END

Wenn in EV 3 vorhanden, siegt der Mensch: END
Wenn in BD keine Nullen, Spiel unentschieden: END RETURN

(Rufen Sie sich in Erinnerung, daß der 64 stets O spielt. Es ist nicht schwer, das
so abzuändern, daß er je nach Laune X oder O spielt, aber das führt Komplika-
tionen ein, die von der Hauptsache ablenken.)

Wie steht es nun mit der Routine ‘Computerzug’? Nun, um vernünftig zu
spielen, muß er den Spielstand kennen; er wird also damit beginnen, daß er die
Routine ‘Spielfeld bewerten’ aufruft. Dann sucht er in EV nach —2. Findet er das,
weiß er, daß er mit dem nächsten Zug gewinnen kann und es keinen Sinn hat,
weiterzusuchen. Im anderen Fall sucht er nach 2, weil das eine Bedrohung
darstellt, der begegnet werden kann. Es sei denn, daß 2 zweimal vorhanden
ware, weil X dann im nächsten Durchgang gewinnen kann, gleichgültig, was O
tut. (In Wirklichkeit stimmt das nicht ganz; es kann sein, daß die beiden X-Rei-
hen sich überschneiden und O beide mit einem Zug zu sperren vermag. Das
kann allerdings nur vorkommen, wenn bei einem vorherigen Zug X schon zwei
Zeichen in einer Reihe hatte... so daß der Computer gezwungen gewesen
wäre, zu sperren, weil er das Spiel andernfalls einen Zug früher ohnehin schon
verloren hätte. Anders ausgedrückt: Die Strategie des Computers sorgt dafür,
daß diese Möglichkeit in Wahrheit nie eintritt!)

Wenn es keinen Gewinnzug gibt und keine Drohung abgeblockt werden
muß, spielt der Computer einen Zufallszug. (Mit anderen Worten: Er blickt nur

216

einen Zug voraus. Man könnte weitsichtigere Strategien entwickeln, aber für
dieses Spiel sind sie kaum erforderlich.)

Computerzug (5000)

Spielfeld bewerten (6000)

Wenn in EV -2 vorhanden, Siegeszug (70900): RETURN

Wenn in E zweimal 2 vorhanden, dann aufgeben: END

Wenn in EV eine 2 vorhanden, dann sperren (8000): RETURN

Zufallszug spielen (9009)

RETURN

Wir haben jetzt in der nächstniedrigen Schicht mehrere Routinen erfunden.
"Spielfeld bewerten’ ist sehr leicht zu schreiben, und ich sage dazu nichts mehr,
bis ich den Code dafür liefere. Siegzug sieht so aus:

Siegzug (7000)

Zufallszug spielen (9900)

Spielfeld bewerten (69000)

Wenn EV -3 enthält, RETURN

Zurücknehmen (10009)

Der Sinn: Da wir Siegzug überhaupt erreicht haben, muß es einen solchen
geben. Wir könnten eine Routine schreiben, um ihn direkt zu finden, aber es ist
einfacher und geht in der Praxis genauso schnell, bloß einen Zufallszug zu
spielen und das Spielfeld erneut zu bewerten. Wenn EV -3 enthält, hat der
Computer gewonnen. Wenn nicht, war es der falsche Zug; also nehmen wir ihn
zurück (das heißt, wir geben BD seinen vorherigen Zustand zurück) und versu-
chenesnoch einmal. |

‘Sperren’ ist ganz ähnlich.

Sperren (8000)

Zufallszug spielen (9000)

Spielfeld bewerten (6000)
Wenn EV nicht 2 enthält, RETURN

Zurücknehmen (19999)

Alle übrigen Routinen sind ohne die Erfindung weiterer Subroutinen direkt
codiert. Jetzt können wir also endlich mit BASIC loslegen!

217

Der Code

Das Hauptprogramm schreibt sich von selbst:

5 DIM BD(9): DIM EV(8)

10 GOSUB 1000: REM SPIELFELD INITIALISIEREN

20 GOSUB 2000: REM ANZEIGEN

30 GOSUB 3000: REM ZUG HOLEN

49 GOSUB 2000: REM ANZEIGEN

50 GOSUB 4000: REM AUF SPIELENDE PRUEFEN

60 GOSUB 5000: REM COMPUTERZUG

70 GOSUB 2000: REM ANZEIGEN

80 GOSUB 4000: REM AUF SPIELENDE PRUEFEN

99 GOTO 30

Die /nitialisierungsroutine ist einfach:

1990 FORP=1TO9

1919 BD(P)=9

1020 NEXT P

1030 RETURN

Sie fragen sich vielleicht: "Warum die ganze Mühe, wenn das DIM doch alles
auf Null setzt?”, und das ist gewiß eine gute Frage. Allerdings gibt es eine
Anwort darauf: Sicherheit. Unter den Aufgaben sind solche, die mehrere Spiel-
partien hintereinander betreffen, und Sie müßten zwischen den Spielen BD auf
Null zurücksetzen. So etwas vergißt sich sehr leicht, wenn man an einem
Programm herumbastelt, und man initialisiert üblicherweise Variable, ohne zu
früheren Werten irgend etwas zu unterstellen.

Hier die Anzeigeroutine:

2009 FORP=1TOY

2010 IF BD(P) = 1 THEN PRINT "X";

2020 IF BD(P) = -1 THEN PRINT "O0";

2030 IFBD(P) = @ THEN PRINT ".";

2040 IFINT(P/3) = P/3 THEN PRINT

2050 NEXT P

2060 PRINT: PRINT

2070 RETURN

218

Auch das verträgt einen Kommentar. Das BD-Array wird abgesucht nach 1, —1
und ®, und diese werden in X, O und Punkte umgewandelt. Wir möchten aber,
daß die drei ersten Werte in derselben Zeile stehen; aus diesem Grund folgen auf
jedes PRINT Strichpunkte, um zu verhindern, daß auf neue Zeilen umgesprun-
gen wird. Wir brauchen aber eine Methode, eine Newline zu erzwingen, wenn
O = 3, 6 oder 9 ist, weil sonst das Spielfeld angezeigt werden würde als

xX X .X.XO

und nicht als

XO.

X . X

OÖ.

Das ist die Funktion von Zeile 2040. Wenn P 3 ist, dann INT(P/3) = 1, was
dasselbe ist wie P/3. Ebenso sind beide, wenn P 6 oder 9 ist, 2 beziehungsweise
3. Ist aber etwa P = 4, dann INT (P/3) = 1, aber P/3 ist 1.3333. Nur wenn P ein
Vielfaches von 3 ist, sind P/3 und INT(P/3) gleich. (Siehe Kapitel 22). Wir
erhalten neue Zeilen also nur für P = 3, 6 und 9.

Ich hätte natürlich den Drückeberger spielen und schreiben können:

2040 IEP=30RP=6O0RP=9THEN PRINT

aber der Kniff mit INT ist vielseitiger anwendbar.
Es wird Ihnen aufgefallen sein, daß diese Routine ein bißchen primitiv ist.

Sie erhalten Anzeigen wie:

O X

X O

Und das Display ist an die linke Bildschirmseite gequetscht.
Wenn das ganze Programm zufriedenstellend lauft, mochten Sie diese

Routine vielleicht durch eine andere ersetzen, die das vertrautere Format liefert.
PET-Grafik wurde da viel nutzen. Das ist ubrigens eine der schonen Seiten
dabei, Programme auf diese Weise in Subroutinen zu strukturieren. Sie können
eine Subroutine herausziehen und durch eine verbesserte oder andersartige
Version ersetzen — und Sie können (ziemlich) sicher sein, daß sich das auf
andere Programme nicht nachteilig auswirkt, weil es keine GOTO-Befehle gibt,
die mehr als eine Subroutine beeinflussen. (Freilich muß man weiterhin darauf
achten, keine Variablennamen zu gebrauchen, die sich gegenseitig ins Gehege
kommen können.)

219

Der Zug des menschlichen Spielers ist ebenfalls leicht zu codieren:

3000 INPUT “GIB ZUG EIN”; P

3010 IFBD(P) < > @ THEN PRINT

"DIESES QUADRAT IST BESETZT": GOTO 300%

3020 BD (P) =1

3030 RETURN

Der Zug wird eingegeben als eine Zahl 1-9. Als erstes testen wir das angemes-
sene Element von BD. Ist es nicht Null, dann steht dort also schon etwas, wir
sagen das und springen zurück, um einen gültigen Zug zu verlangen. Im ande-
ren Fall setzen wir das Element von BD auf 1 (für eine X), weil der Mensch an
der Reihe ist. ‘Auf Spielende prüfen’ hält sich ziemlich genau an sein obiges
Gerüst: |

4000 GOSUB 6099

4019 FORP=1TO8

4020 IFEV(P) =-3 THEN PRINT “ICH GEWINNE”: END

4930 IFEV(P) = 3 THEN PRINT "DU GEWINNST”: END

4040 NEXTP

4050 FORP=1TO9

4060 IF BD(P) =® THEN RETURN

4070 NEXTP

4080 PRINT “UNENTSCHIEDEN”: END

Ebenso die Routine ‘Computerzug’:

5000 GOSUB 6000
5010 MT=®

5020 FORP=1TO8

5030 IFEV(P) =-2 THEN GOSUB 7000: RETURN

5040 IFEV(P) = 2 THEN MT = MT +1

5050 NEXTP

5060 {FMT = 2 THEN PRINT “AUCH GUT. ANGEBERI!”: END

5070 IF MT = 1 THEN GOSUB 8000: RETURN

5080 GOSUB 9000

5099 RETURN

220

Ebenfalls leicht fällt "Spielfeld bewerten’:

6000 EV(1) = BD(1) + BD(2) + BD(3)

6010 EV(2) = BD(4) + BD(5) + BD(6)

6020 EV(3) = BD(7) + BD(8) + BD(9)

6030 EV(4) = BD(1) + BD(4) + BD(7)

6040 EV(5) = BD(2) + BD(5) + BD(8)

6050 EV(6) = BD(3) + BD(6) + BD(9)

6060 EV(7) = BD(1) + BD(5) + BD(9)

6070 EV(8) = BD(3) + BD(5) + BD(7)

6080 RETURN

| Offenkundig sind hier Muster, die man dazu verwenden könnte, in Schleifen zu
berechnen, oder Sie verwenden geeignete DATA-Listen... aber die Mühe
lohnt eigentlich nicht.

Uber ‘Siegzug’ ist nicht viel zu sagen:

7000 GOSUB 9000

7019 GOSUB 6000

7020 FORP=1TO8

7030 IFEV(P) =-3 THEN RETURN

7049 NEXT P

7050 GOSUB 10000

7969 GOTO 7000

Und ‘Sperren’ ist ziemlich ähnlich, sieht man davon ab, daß eine Flagge F für die
Entscheidung verwendet wird, ob noch eine 2 vorhanden ist:

8000 GOSUB 9000
8010 GOSUB 6000

8020 F=9

8030 FORP=1TO8
8040 IFEV(P) =2THENF=1
8050 NEXTP
8060 IF F=@THEN RETURN

8070 GOSUB 10000
8080 GOTO 8000

221

Beachten Sie, daß das RETURN von dieser Routine in Zeile 8069 steht. Da wir
wissen, daß es einen Sperrzug gibt, wird der Computer ihn schließlich finden:
Die Flagge bleibt bei ®, und der Rücksprung von der Subroutine erfolgt, wie es
sich gehört.

Hier ‘Zufallszug’:

9000 CM=8*RND (PB) +1

9010 IF BD(CM) < > 0 THEN 9000

9020 BD(CM) =-1

9030 RETURN

Warum ein Zufallszug? Warum nicht einfach P von 1 bis 9 laufen lassen? Das
konnten Sie auch tun, aber die Reaktion des Computers ware dann vollig
voraussehbar. Bei einem Spiel vermeidet man das besser.

‘Zurucknehmen’ erweist sich als das Einfachste überhaupt:

19900 BD(CM) =®
10010 RETURN

Und damit hat sich die Sache! Das Programm hat sich beinahe von selbst
geschrieben — nach der harten, langen Arbeit, die fur den Aufbau der Struktur
aufgewendet worden ist. Was ein kompliziertes Durcheinander von unleserli-
chen Hieroglyphen hatte werden konnen, entpuppt sich als lediglich eine
Handvoll kurzer, klarer Subroutinen, erganzt durch eine noch ubersichtlichere
Steuerroutine, die sie miteinander verbindet. Und Sie haben jetzt einen vernünf-
tigen Gegenspieler.

Aber... das ließe sich noch verbessern. (Wie immer. Das ist der Grund,
warum fast jedes Programm und fast jeder Computer sich als Ausgabe 3.7 Ib
vorstellt. Das ursprüngliche Modell wird verbessert, weil Sie, nachdem es läuft,
endlich begriffen haben, worum es bei dem Problem in Wirklichkeit geht — und
warum Ihre Lösung nicht so gut war, wie Sie dachten.) Ich habe schon empfoh-
len, das Display zu verbessern. Hier ein paar andere Vorschläge.

Aufgabe 1

Spieler O (der Computer) beginnt stets im Nachteil, weil er erst an zweiter Stelle
zieht. (Man kann bei diesem Spiel nachweisen, daß das wirklich ein Nachteil ist;
bei manchen Spielen trifft das nicht zu!) Seine Verteidigung sollte deshalb
möglichst hieb- und stichfest gemacht werden. Vor allem sollte er, wenn er
kann, jedesmal das Mittelquadrat (Nummer 5) besetzen. ‘Computerzug’ sollte
deshalb so umgeschrieben werden, daß das geschieht (vorausgesetzt, es be-
steht keine Bedrohung oder eine Gewinnposition.) Tun Sie das.

Aufgabe 2

Im Augenblick wird nur eine Partie gespielt, dann müssen Sie wieder RUN
geben. Andern Sie das Programm so ab, daß eine Folge von Partien gespielt und
Buch geführt wird.

222

Aufgabe 3

Veranlassen Sie, daß X und O abwechselnd beginnen, aber, wenn O gewinnt,
X das nächste Spiel beginnt, und umgekehrt.

Lösungen

Aufgabe 1

So, wie die Routine ‘Computerzug’ dasteht (5009), wird, sobald entschieden
ist, daß keine Gewinn- oder Sperrzuge zu machen sind, ein Zufallszug getan
mit: |

5080 GOSUB 9009

Kurz zuvor sollten Sie deshalb einen Test einschieben, um zu prüfen, ob Quadrat
5 unbesetzt ist, und falls ja, dort spielen:

5075 IF BD(5) = @ THEN BD(5) = -1: RETURN

Aufgabe 2

Sie brauchen zwei neue Variable XSCRE und OSCRE (und DR, um die Unent-
schieden zu zählen, wenn Sie das wollen), die zu Anfang auf ® gesetzt werden.
Gleichzeitig kann eine Spielende-Flagge gesetzt werden:

4 XSCRE = @: OSCRE = @: DR = @: EOG =@

(Auch hier zur Sicherheit: Sie könnten diese Initialisierung weglassen, aber...)
Nun müssen Sie alle END-Anweisungen ändern. Bei einem Sieg für den

Computer geht OSCRE um 1 höher, EOG wird auf 1 gesetzt. Bei einem Sieg des
menschlichen Spielers wird XSCRE um 1 inkrementiert und EOG auf 1 gesetzt.
Bei einem Unentschieden wird DR inkrementiert und EOG auf 1 gesetzt.

Aus 4920, 4939 und 4080 werden also:

4020 IFEV(P) =-3 THEN PRINT "ICH GEWINNE”:

OSCRE = OSCRE + 1: EOG = 1: RETURN

4030 IFEV(P) =3THEN PRINT “DU GEWINNST”:

XSCRE = XSCRE + 1: EOG = 1: RETURN

4080 PRINT “UNENTSCHIEDEN”: DR = DR +1:

EOG = 1: RETURN

Übrigens wird Zeile 4939 nie ausgeführt, weder im Original noch in dieser
Abwandlung! Warum nicht?

223

Es gibt noch eine Stelle, wo das Spiel zu Ende gehen kann, in der Routine
‘Sperren’, wo der Computer eingesehen hat, daß er unterlegen ist und aufgibt
(nicht gerade begeistert). Zeile 5069 verändert sich deshalb zu:

5060 IF MT = 2 THEN PRINT "AUCH GUT. ANGEBER!”:

XSCRE = XSCRE + 1: EOG = 1: RETURN

Nun wird EOG im Hauptprogramm getestet:

55 IFEOG = 1 THEN GOSUB 11900

85 IFEOG = 1 THEN GOSUB 11009

und dann bei 11®®® eine Subroutine geschrieben, die sich erkundigt, ob der
Spieler noch eine Partie wünscht, und, falls nicht, den Endstand anzeigt.

11000 INPUT “NOCH EIN SPIEL? (J/N)”; OS
11010 IF Q$= “J” THEN EOG = @: GOSUB 1009: RETURN
11020 PRINT “ENDSTAND”

11030 PRINT"IXTE:";XSCRE"DTO ae ; OSCRE:
“DJ UNENTSCHIEDEN [1]: DJ”; DR

11049 END

Vergessen Sie nicht, die Spielende- Flagge zuruckzusetzen und das Spielfeld auf
Zeile 1191@ neu zu initialisieren!

Wenn Sie das fahren, werden Sie feststellen, daß es einen heimlichen
(nun, halbwegs heimlichen) Fehler enthält. A//e Spielende- Bedingungen hat-
ten in der Subroutine ab Zeile 499@ behandelt werden müssen. So hat sich in
der nächsten Routine in Zeile 5060, eine Macke eingeschlichen. Sie hatte
eigentlich so verfaßt werden müssen, daß sie eine Flagge zurückbringt, die von
der Routine ab 4000 aufgenommen wird. Nachdem ich Sie aber in diese
Klemme gebracht habe, kommen wir am schnellsten wieder heraus, wenn wir
die Display-Routine abschalten, falls EOG = 1:

2000 IF EOG = 1 THEN RETURN
2005 FORP=1TO09

Aufgabe 3

Es wird Ihnen aufgefallen sein, daß sie schon gelöst ist! Da X und O abwech-
selnd spielen und ein neues Spiel in die Schleife dort wieder eintritt, wo sie
verlassen wurde, macht, wenn X den letzten Zug einer Partie getan hat, O den
ersten der nächsten. Das heißt, die Spielanfänge wechseln in einer Folge von
Unentschieden ab (weil ein Unentschieden 9 Züge umfaßt), aber O fängt an,
wenn X das letzte Spiel gewonnen hat, und umgekehrt.

224

32 Hochauflösende Grafik

Das Handbuch erwähnt davon zwar nichts, aber Sie können neben
der groben PET-Grafik mit dem 64 auch sehr feine Grafik zeichnen.
Das kostet zwar ein bißchen Mühe, aber sie lohnt sich!

Jede Zeichenzelle des TV-Displays besteht in Wahrheit aus einem Quadrat von
8 x 8 winzigen Zellen oder Pixe/n, mit denen das Zeichen (tief innen in der
Elektronik) aufgebaut wird. Dadurch, daß Sie direkten Zugang zu diesen Zellen
gewinnen, können Sie auf dem Hi-res-Bildschirm (hochauflösend) grafische
Displays zeichnen. Das heißt, Sie haben ein Display von 25 x 8 = 200 Reihen
und 40 x 8 = 320 Spalten zur Verfügung. Das ist fast dasselbe Numerierungs-
system wie bei den Sprites, aber beschränkt auf den Bildschirmbereich (siehe
Abbildung 32.1).

1) Spaltennummer ———> 319

} N |
1) > t+ ? HHtH44

tt | “tH
un ce | | H Be |

t |
1 E fl | muaue

Reihen- ie | TH
nummer \ |

eine Textzelle |

|

|

foil

u }

 vt-------------------- preecseprseecese: sree
UH cet

4 rua |

eine Hi-res-Zelle
an Position X, Y

szecndae Hh

He nM
HH
li awl

199 — HH HH

Abbildung 32.1
Struktur des hochauflösenden Bildschirms.

225

Hochauflösender Modus

Weil Hi-res für Anfänger ein bißchen schwierig ist, gebe ich Ihnen drei wichtige
Subroutinen, die Sie abschreiben und in BASIC-Programmen verwenden kön-
nen.

1. schalten auf hochauflösenden Modus und setzen eines Bildschirmspei-
cherbereichs; |

2. plotten eines Pixels an einer gewählten Position;
3. ziehen einer Linie zwischen zwei gewählten Pixeln.

Um den Computer in hochauflösenden Modus umzuschalten, müssen wir Bit
5 von Adresse 53265 auf 1 setzen (siehe den ‘Reference Guide’, S. 123). Das
geschieht durch den Befehl:

POKE 53265, PEEK (53265) OR 32

der so funktioniert, wie Kapitel 12 das erklärt. Außerdem muß Speicherplatz für
die Bildschirmdisplaydaten reserviert, dieser Platz freigemacht und es müssen
Farben zugeteilt werden. Die folgende Routine setzt den Bildschirmspeicher-
bereich auf Adresse 8192:

11008 REM HI-RES INITIALISIERUNG

11919 POKE 53265, PEEK(53265) OR 32

1192@ POKE 53272, PEEK(53272) OR 8

11030 BM = 8192

11049 FORU=BMTO BM + 7999

11950 POKEU,®

11960 NEXT U

11070 FOR U = 1024 TO 2023

11080 POKEU, 13

11098 NEXT U

11108 RETURN

Fahren Sie das. Zuerst erhalten Sie ein Durcheinander, dann wird der Schirm
leer mit vorwiegend schwarzem Hintergrund, aber mit einigen farbigen Kleck-
sen, wo der Text gewesen ist; zuletzt wird alles hellgrün. (Verändern Sie das 13
in Zeile 11080 zu 16 + INK + PAPER, wo INK und PAPER die Farbcodes sind,
die Sie wünschen. Dieses Programm liefert INK schwarz auf PAPER hellgrün.)

Beachten Sie, daß das Freimachen des Bildschirmspeichers ziemlich
langsam vor sich geht. Bei BASIC dauert es etwa 20 Sekunden. Eine Maschi-
nencode-Routine würde das im Nu bewältigen, aber das ist eine andere Ge-
schichte!

226

PLOT

Abbildung 32.2
Wenn der hochauflösende Bildschirm erstmals gesetzt wird, sieht er so aus. Er muß von Daten

freigemacht werden, bevor er für Grafik verwendet werden kann.

Die Hi-res Spalten und Reihen bestimmen ein System von Koordinaten auf dem
Bildschirm, wie Abbildung 32.1 es zeigt. Die Hauptaufgabe ist die, eine Routine
zu schreiben, die ein Einzelpixel an Position (X, Y) PLOT, das heißt, in Spalte X,
Reihe Y. Wenn wir solche Plots kombinieren, können wir Linien, Kurven oder
sogar ganze Regionen zeichnen.

Die nächste Routine plottet ein Einzelpixel in Reihe Y, Spalte X. Sie geht
davon aus, daß Y zwischen ® und 199, X zwischen ® und 329 liegt.

12000 REM PLOTX,Y

12010 BY = BM + 320 * INT (Y/8) + 8 * INT (X/8) + (Y AND 7)

12020 BT=7-(XAND 7)

12030 POKE BY, PEEK (BY) OR (21 BT)

12040 RETURN

Aufgabe 1

Schützen Sie die obige Subroutine so, daß nur zulässige Eingaben für X und Y
angenommen werden.

227

Wie funktioniert das?

Dieser Abschnitt gerät ein bißchen theoretisch. Sie können ihn also überblät-
tern und später darauf zurückkommen.

Jedes Byte im Hi-res-Bildschirmspeicher enthält Daten für eine Reihe
von 8 x 1-Pixel auf dem hochauflösenden Bildschirm. Eine binäre ® bedeutet
‘kein Punkt hier’, eine 1 ‘setze hier einen Punkt‘. Beispielsweise liefert das Byte
10110191 somit die in Abbildung 32.3 gezeigte Wirkung.

NH EEE
1

Pixel mit Biteinteilung.

Y

Wenn Sie die Systemvariable in Adresse 53265 auf hochauflosenden Modus
setzen, wird der Computer vom Betriebssystem angewiesen, die Daten auf diese
Weise zu interpretieren. Das nennt man biteingeteilte Grafik.

die Adressen für unseren hochauflösenden Bildschirmspeicher entspre-
chen den tatsächlichen Bildschirmpositionen in Tabelle 32.1.

Tabelle 32.1

Spalten-
nummer
niedrig

N) 1 2 39 + auflösend

Reihen- @ 8182 8200 8208 ... 8504 7 Reihen-
nummer 1 8193 8201 8209 ... 8505 nummer
hoch- 2 8194 8202 8210 ... 8506 niedrig-
auflösend 3 8195 8203 8211 ... 8507 | @ auflösend

| 4 8196 8204 8212 ... 8508 |
5 8197 8205 8213 ... 8509
6 8198 8206 8214 ... 8510
7 8199 8207 8215 ... 8511 _

8 8512 8520 ... a Lee
9 8513 8521 ... on nn

10 8514 8522 ... nn nn
11 8515 8523 ... _— nn — 1
12 8516 8524 ... on nn
13 8517 8525
14 8518 8526 ... _— as
15 8519 8527 ... as Lee

228

Jede Zeichenzelle, die im Bildschirmspeicher einer Adresse zu entsprechen
pflegte, entspricht also nun acht Adressen, einem Speicherblock von acht Bytes
Länge. Die Blöcke sind in derselben Reihenfolge angeordnet wie die Zellen im
Bildschirmspeicher - zuerst die niedrigauflösenden Reihen entlanggehen und
nach Spalte 39 eine Reihe hinunterspringen.

Angenommen, wir möchten in die linke obere Ecke eine Diagonallinie
von 5 Pixel Länge setzen. Die Adressen und Inhalte nehmen die Form von
Abbildung 32.4 an.

Adresse Inhalte Dezimal

-8192 / o|o / 128

8193 19 { 64

8194 ale 4 32

8195 219 -\ 16

8196 o|o|- } 8

—)/
I T >

Abbildung 32.4
Pixel für eine Diagonallinie zusammensetzen.

Dieses Programm sollte das also bewältigen:

10 GOSUB 11000 | [Hi-res-Subroutine eingeben]

20 POKE 8192, 128

30 POKE 8193, 64

40 POKE 8194, 32

50 POKE 8195, 16

60 POKE 8196, 8

70 GOTO 70

Probieren Sie es aus.
Dieselbe Methode allgemein:

1. . Die in Frage kommende Adresse finden.
2. Mit POKE den erforderlichen Wert eingeben, um das gewünschte Bild-

schirmdisplay zu erzielen.

Da wir nichts löschen wollen, was sich schon auf dem Bildschirm befindet,
müssen wir unterstellen, daß die Adresse einen Wert enthalten kann, der nicht

229

Null ist. Dazu müssen wir den Inhalt mit dem neuen Wert in OR-Verbindung
bringen, wie in Kapitel 12.

Zeile 1201® berechnet die richtige Adresse.
Zeile 12020 berechnet den Wert, der mit POKE eingegeben werden muß,

um ein neues Pixel zu plotten.
Zeile 12039 stellt die OR-Verbindung mit dem vorhandenen Inhalt wieder

her und setzt das Ergebnis mit POKE wieder hinein.
Weitere Einzelheiten im ‘Reference Guide’, S. 125.

Spirale

Hier ein Beispiel dafür, wie man diese Routinen nutzt.

19 GOSUB 11009

20 FORT=1TO 1900
30 X=160 +T*SIN (T/10)/10
40 Y=100 +T*COS (T/19)/10

--50- -GOSUB 12000
60 NEXTT
70 GOTO 79

Vergessen Sie die beiden obigen Subroutinen nicht! Dieses Programm hier
nutzt die trigonometrischen Funktionen SIN und COS, um die Spirale zu zeich-
nen.

Wenn Sie sich am Ergebnis lange genug ergötzt haben, drücken Sie
RUN/STOP + RESTORE.

Abbildung 32.5
Eine Spirale aus 1000 geplotteten Bits.

230

DRAW

Die nächste Aufgabe ist die, eine Routine zu entwickeln, die eine (ziemlich)
gerade Linie zwischen Punkten mit den Koordinaten (A, B) und (C, D) wie in
Abbildung 32.6 zeichnet.

Das wird ein bißchen mathematisch, so daß ich auf die Feinheiten nicht
eingehe. Auf jeden Fall kommt dabei heraus:

13000

13010

13029

13030

13040

13050

13060

13070

13080

13090

13100

13110

13120

13130

13140

13150

13200

13210

13220

13230

REM DRAW (A, B) TO (C, D)

IFA > CTHEN AQ =C:C=A:A=AQ: BO = D:D = B: B= BO

CA=C-A:DB=D-B

IF CA = @ THEN 13100

IF DB < = CAAND DB > =-CA THEN 13200

S = SGN(DB)

FORV=@TODBSTEPS

X = V+ CA/DB +A: Y = V + B: GOSUB 12000

NEXT V

RETURN

IF DB = 9 THEN RETURN

S = SGN(DB)

FORV=BTODSTEPS

X = A: Y = V: GOSUB 12000

NEXT V

RETURN

FORV=@TOCA |

Y=\V*DB/CA + B:X=V + A: GOSUB 12000

NEXT V

RETURN

Das SGN in 13050 und 13119 ist die Vorzeichenfunktion. SGN (J) ist 1, wenn
J > 0,0, wenn J = 9, und-1, wenn J < ®. Der Rest ist Koordinationsgeometrie.

231

319

i)

—
-
—
—
—
—
-
+
]

>

--

-
--

-
-

-
--

-
-
-
-
]
0

D (C,D)

199

Abbildung 32.6
Eine Linie zwischen zwei Punkten zeichnen.

Speichen

Dieses Programm zeichnet Radiallinien in Speichenart.

10 GOSUB 11000

20 FORT=1TO3P®

30 A= 160: B = 199

40 C = 160 + 90 + COS(x * T/15)

50 D = 19% + 90 + SIN(r * T/15)

60 GOSUB 13000

70 NEXTT

80 GOTO 89

Verändern Sie das 3® in Zeile 2@ zu (meinetwegen) 2@ oder 40, wenn es
weniger oder mehr Speichen werden sollen. Vergessen sie nicht, daß auch die
Standardroutinen bei 11900, 12000 und 13000 eingegeben werden müssen!

232

Vielecke

Hier noch ein Programm:

10

20 GOSUB 11900

INPUT "ZAHL DER SE ITEN”; N

@ FORT=@TON-1

49 U=T+1

50 A=160 + 90 *

69 B=100+90«

70 C=160+ 90+

80 D=100+ 90«

99 GOSUB 13000

100 NEXTT

110 GOTO119 ©

Versuchen Sie das der Reihe nach mit N = 5, 6, 7
RUN/STOP + RESTORE.

say rearrxencovonenys
ee LEITETE

EEE
EEREERT,
2E0R%Y SERIE
BER

RrimE
BERERR Se

ch
EIHEHRTENER
TIERE Sokorceo BESERUSEURN

Lax OA OER LI KOON ENTE ‘

. VOAGLLOV OS:
Sax EEE RTEH SE OKT

seas x.

eats
SE Aazaesr Reononeaeesoe
SEE FREE

COS(2

SIN(2 * a * T/N)

"= TIN)

COS(2 * 2 * U/N)

SIN (2 * x * U/N)

Er LANAI REKEN EN LON
LAGIRPREDROWOASRE PV OREROROD

*aNOM EEGs
RER

GE Cette
vo!

Racstsaee
ieee

enpenre
Se PRAMS PAD ORONO KD

seynetacanereovencayaneoneenercorecbanoneer gery ee
EEE tesecomcenaserecssecontecsineh es

LEER Er oY gree Ra aN OF (A Pee HT
CEPR RORD KEIN 5 CAIRO He

SER PADMORE COMED nad SERATTRENDER
PERL, DOLL ab Absansqceecbecbern
LORIN OY PAA RPK ROK OWL OAL

ee

TEE
EEE

ERDE onen
RER

ER
es Senne
VRSROHERNUN AS TIEREN

INRA LO PR OSES FO

Ar,
EPAKIKOKE
ET

RETTET
Seat aarepcetentt

omen

OSES GEILER :
EROTIK"

PARK OOO ONY OMORIO KE”

EEE NIEREN

ye
3

bee

er
rear

EEE PL
en en RCE B

sone EAN NERNERS OCEANUS ELAR SETS
ee Beevers conser?
LEERE

EEEEERTEN vor ER
ER

ARTEN,
Be rer SEE

NEERTEKONREEN
ESTER

Seren

Re N ER SER SEE.

Abbildung 32.7
Speichen.

PMO EMT LOK OND KY Dv Oe
DER, RENT late

rer LOX MYMGAROX OMI REDKING
> ceosepe ey eaoepebenenesuipeorboniics BES
a en (SST CPTERSL SPE POAT AN SON
KORO OR:

zu fahren. Nach jedem

Or Ont AD.
RER SEEN UEDENTER rn

RYOKO OILY:

Reece Sp Teeonts Cito TEE TEPITT RIM
peeks ssece en

2 BIER
SECTERSRERERENN RE

RISEERSENFNERE xox N str eney ey ß
NEIEEEREN ERROR EDEN LG? HPLOMOARI NG ROO S OY

SeeonSteyererextstens ores: ADELE ANAK OEEA penetrate penesorys OXOXOLETREEAGRER -
< PRRORORYIAD + Romoanes SERANGOON: XOKOGRG RAR rer « aughepraene nema nla ER FERESSSNEETE KENT ITE
En a ED

1 Abwesceon
ORO

REKTOR

Lauf

Computerkunst

Zum Schluß ein Programm, das Zufallsvielecke zeichnet, bis Sie es durch Druck
auf Taste 'S’ anhalten

10 GOSUB 11000
20 CX=30 + 260 * RND(P): CY = 30 + 140 + RND(@)

30 RAD = 20* RND(@) +5
50 N=INT(4+6* RND(Q)) |
69 FORT=@TON-1
7 U=T+1

80 A=CX+RAD*«COS(2*x*T/N)
99 B=CY+RAD+SIN(2*n*T/N)

100 C=CX+RAD+COS(2*n*UN)
110 D=CY+RAD+SIN(2*r* U/N)
120 GOSUB 13000

130 NEXTT
140 GETAS:IFA$ < > “S” THEN 20
150 GOTO 15®

Sie brauchen trotzdem RUN/STOP + RESTORE, um ganz aufzuhören.

ave ER
ER

SEERSEN xe BANA
RENNEN

FE TNEETE ee

Abbildung 32.8
Computerkunst mit Zufallsvielecken.

234

Aufgabe 2

Schreiben Sie ein Programm, um in hochauflösendem Modus ein Rechteck mit
den Spaltennummern XL und XR für die linken und rechten Seiten und den
beiden Zahlen YT, YB für Ober- und Unterseite zu zeichnen.

Lösungen

Aufgabe 1

Fügen Sie die Zeilen an:

12002 IFX < @ORX > 319 THEN FLAGGE = 1: RETURN

12004 IFY < @ORY > 199 THEN FLAGGE = 1: RETURN

Fügen Sie dann in Ihr Hauptprogramm einige Zeilen ein, um die Flagge aufzu-
nehmen, (vielleicht) eine Fehlermeldung anzuzeigen und X und Y in dieser
Richtung neu zu definieren:

764 IFFLAGGE = 1 THEN PRINT "HOPPLA, VOM BILDSCHIRM

GERUTSCHT”: FLAGGE = 9:

GOTO (dorthin, wo X und Y gesetzt sind)

etc.

Es hängt vom Programm ab.

Aufgabe 2

19 INPUT "LINKE SPALTE”; XL

20 INPUT "RECHTE SPALTE”; XR

30 INPUT "OBERE REIHE”; YO

40 INPUT "UNTERE REIHE”; YU

50 GOSUB 11000

6@ A=XL:B = YO; C = XR: D = YO: GOSUB 13000

70 A=XR:B = YU: C = XR: D = YO: GOSUB 13000

80 A=XR:B = YU:C = XL: D = YU: GOSUB 13000

99 A=xXL:B = YO:C = XL: D = YU: GOSUB 13000

109 GOTO 100

Ich habe mir nicht die Mühe gemacht, die INPUT-Anweisungen zu schützen;
Sie konnen das, wenn Sie wollen, leicht nachholen.

235

33 Debugging VI

Manchmal sind Zahlen, die gleich aussehen, gar nicht gleich!

Abrundungsfehler

Die Art von Fehlern, nach denen wir bisher suchten, stammten von uns selbst
und waren, einmal erkannt, verhältnismäßig leicht zu beheben. Es gibt einen
anderen Fehler, der durch den Aufbau des Computers selbst entsteht. Das ist
kein Konstruktionsfehler, sondern eine Folge dessen, wie alle Computer ange-
legt sind. Er wird bedingt durch die Art der Genauigkeit, mit der Computer
Zahlen speichern. Wenn wir uns überlegen, wie Zahlen normalerweise festge-
halten werden, liegt nahe, daß es für die Anzahl der Ziffern, die zu bewältigen
sind, eine Grenze gibt. Ein Auto-Tachometer, beispielsweise, kann nur 5 Ziffern
bewältigen, weil er nur fünf ‘Fenster’ hat. Beim Computer ist es genauso. Jede
Zahl kann nicht mehr besetzen als eine festgelegte Zahl von ‘Fenstern’. Nicht
jedes Fenster steht aber für eine Dezimalziffer. Der interne Maschinencode für
Computer ist ganz anders angelegt, als wir uns Zahlen vorstellen; mit den
grausigen Einzelheiten will ich Sie nicht langweilen. Die Tatsache, daß von
Natur aus Ungenauigkeit besteht und eine Codeumwandlung angewendet
wird, bedeutet, daß die äußere Darstellung einer Zahl (wie sie auf dem Bild-
schirm erscheint) durchaus nicht dieselbe sein muß wie die innere Darstellung.
Ich will das, was ich meine, durch ein Beispiel mit Logarithmen der Schulzeit
erläutern. Wenn Sie 2 mit 2 logarithmisch multiplizieren, erhalten Sie:

Zahl log

2 0.3019

2 0.3019
3.999 | 0.6020 +

also 2 x 2 = 3.9991!
Die Kombination der Tatsache, daß Logarithmen nur auf 4 Stellen genau

sind (das heißt, nur 4 Fenster besetzen dürfen), und daß eine Codeumwand-
lung stattfindet (Zahl in Logarithmus, Logarithmus zurück in Zahl), erzeugt die
Ungenauigkeit.

Hier ein Programm, das dieselbe Art von Problem hervorruft:

18 FORP=1TO1®

20 S=SOR(P)

30 O=St2
40 IF P < > QTHENPRINTP,O
50 NEXTP

Nehmen Sie den Fall, wo P = 9. In Zeile 20 wird die Wurzel gezogen, also S =
3. Wir erheben S in Zeile 30 ins Quadrat, also O = 9, wie P. P wird O natürlich

236

immer gleich sein, weil der Rechenvorgang des Wurzelziehens aus dem Quadrat
gefolgt vom Erheben ins Quadrat dorthin zurückführen muß, wo man herge-
kommen ist. Zeile 4@ ist demnach unsinnig, weil P sich von O nie unterscheidet.
Es wird also nichts angezeigt.

Oder doch? Fahren Sie das Programm einmal. Sie erhalten:

3.3

5 5.00000001

6 6.00000001

7 7.90000091

9 9.90000001

19 19

Das ist allerdings ein Uberaus seltsames Ergebnis, weil der Computer nicht nur
Werte anzeigt und damit behauptet, sie waren verschieden, sondern sie auch
noch so anzeigt, als waren sie gleich! Was passiert ist? Die verwickelten mathe-
matischen Prozesse haben zu kleinen Ungenauigkeiten in der internen Zahlen-
darstellung gefuhrt, die verantwortlich sind fur die Unterschiede zwischen P
und Q. Ungenauigkeiten treten aber auch auf, wenn das interne Format ent-
schlüsselt wird zu den auf dem Bildschirm angezeigten Dezimalzahlen, so daß
sie Identisch zu sein scheinen, obwohl der Computer steif und fest behauptet,
sie wären es nicht. Bei manchen Werten sind die internen Codes in der Tat
identisch — etwa bei 8.

Diese Art von Fehler kann außerordentlich verwirrend sein, und manch- .
mal bleibt nur der Ausweg, in die IF-Anweisung einen kleinen Fehler einzu-
bauen, also:

IF ABS(P—Q) < 0.0001 THEN...

Die ABS-Funktion ist notwendig, weil OQ größer sein könnte als P und das
Resultat dann negativ wäre, demnach kleiner als 9.0001, obwohl sein Wert sehr
groß sein könnte (-30 ist kleiner als 0.0001!) Das ABS schneidet das Minus-
zeichen ab.

Potenzen

Rundungsfehler treten besonders häufig auf, wenn Sie für die Potenz N einer
Zahl

TTN

verwenden. Probieren Sie Folgendes:

19 FORT=1TO1®
20 PRINTT*T,Tt2
30 NEXTT

237

Seltsames findet statt bei T = 7 und 9, namlich Rundung. Wenn Sie (sagen wir)
die fünfte Potenz einer ganzen Zahl berechnen wollen, verwenden Sie zutref-
fender:

T*-T*T*T+T

statt

| T15

T?T N wird nämlich berechnet als

EXP (N « LOG (T))

(fur diejenigen, die mit Exponenten und Logarithmen vertraut sind).
Beispiel: Sie suchen nach ganzzahligen Lösungen A, B, C der Gleichung:

A? + B? = C?

Sie könnten in Versuchung geraten, es so zu probieren:

19 FORA=1T019
20 FORB=1T019
30 C=SOR(At2+Bt2)
40 IFC = INT (C) THEN PRINT A, B, C
50 NEXTB
69 NEXTC

Das scheitert klaglich, weil es keine Lösungen findet, obwohl (beispielsweise)
3, 4, 5 eine Lösung in dem abgesuchten Bereich wäre. Der Sünder ist der
Rundungsfehler. Der Fehler mit T kann beseitigt werden, wenn man A f 2 und
B?T2durchA*A undB « Bersetzt. Das SOR schafft schon mehr Probleme, aber
ein Ausweg ware:

10 FORA=1TO1®

20 FORB=1TO1®

30 C=INT(SOR (A *A+B+B))

40 IFA*A+B*B=CTHEN PRINTA,B,C

50 NEXTB

60 NEXTA

Das funktioniert, zum Teil deswegen, weil SOR zu hoch zu schatzen scheint. Als
zusätzliche Sicherheit fügen Sie ein:

45 IFA*A+B*B=(C+1)*(C+1) THEN PRINTA, B,C + 1

238

für den Fall, daß INT etwas abgerundet hat, das ein bißchen kleiner ist als eine
ganze Zahl.

(Das ist, mathematisch gesehen, ohnehin eine höchst unzweckmäßige
Weise, sich mit dem Problem auseinanderzusetzen, aber der Fehler kommt so
häufig vor, daß er Erwähnung verdient.)

Integervariable A%, B%, C% können die Erfolgsaussicht ebenfalls verbes-
sern — aber nicht bei Fehlern von zu niedriger Schätzung.

239

34 Files (Dateien)

Der Speicher des 64 mag für die meisten Zwecke recht groß er-
scheinen, aber er reicht nicht immer aus. Wenn man sehr große
Datenmengen oder kleine Mengen für Spezialzwecke zu verarbei-
ten hat, sind zusätzliche Speicherarten notig.

Zu den Dingen, die Computer besonders gut können, gehört, große Datenmen-
gen zu speichern und durchzugehen. Aber wie machen sie das? Schließlich hat
der Speicher des Commodore 64 nur um die 39000 Bytes (Zeichen) Speicher-
platz, und das reicht nicht weit, wenn Sie die Werke Goethes speichern oder
einen Katalog für ein großes Kunstmuseum aufstellen wollen.

Diese Seite enthält rund 18®® Zeichen (3® Zeilen zu je 69 Anschlägen,
Leerräume mitgerechnet). Der 64 könnte auf einmal also rund 22 Seiten dieses
Buches aufnehmen. Und das, bevor wir den Speicherplatz abgezogen haben,
den das Programm für die Analyse der Daten besetzt — es ist sogar noch
schlimmer, als es den Anschein hat!

Dazu kommt noch ein Problem: Die Daten werden nur gespeichert, so-
lange der Computer eingeschaltet ist, also müßten wir den 64 für 22 Seiten
‘Faust’ (oder sonst irgend etwas) reservieren und nie mehr abschalten.

Das ist ohne Zweifel unsinnig; es muß einen besseren Weg geben. Was
wir brauchen, ist ein Datenspeicher, der nichtfluchtig ist (soll heißen, der nicht
die Sinne verliert, wenn man ihm den Strom abschaltet). Mit einem solchen
Speichersystem sind wir bereits gut vertraut: Tonbandkassetten. Der einzige
Unterschied: Wir möchten es dazu verwenden, Daten zu speichern, während
wir ihn vorher nur für die Aufzeichnung von Programmen genutzt haben.

Kassettendateien

Ein Datensatz, der als Einheit auf Band festgehalten wird, heißt File oder Datei.
Sie können sich, wenn Sie wollen, auch ein Programm als File vorstellen, und
so, wie wir Programmen Namen geben, benennen wir auch Datenfiles.

Wenn wir ein Programm sichern, schreiben wir etwa:

SAVE “FRED”

Das hat zwei Wirkungen. Zuerst wird der Dateiname ‘FRED’ auf das Band
geschrieben, dann das Programm. |

Wenn Sie Daten auf ein Kassettenfile ausgeben möchten, sind diese
beiden Schritte ebenfalls notwendig, aber sie geschehen gleichzeitig. Mit an-
deren Worten: Sie müssen zuerst einen Befehl geben, der die Datei benennt, und
dann einen zweiten, der ihr Daten einliest.

Um eine Datei zu benennen, schreiben Sie:

OPEN 1, 1,1, “FRED”

240

Das ‘1, 1, 1° bedarf einer Erklärung. Das erste ‘1° ist eine Filenummer (oder
Kanalnummer), und Sie können dafur jeden beliebigen Wert nehmen. Ich habe
sie ‘1° genannt, weil sie die erste ist, die ich vergebe. Die zweite ‘1’ bezeichnet
das verwendete Gerät. Das ist ‘1’ fur einen Kasettenrecorder, ‘4’ für einen
Drucker, ‘8’ für ein Diskettenlaufwerk, und so weiter. Diese Werte können Sie
nicht ändern. Sie sind vom System festgelegt. Das dritte '1' teilt dem System mit,
ob vom Gerät gelesen oder in dieses etwas geschrieben werden soll. (Es hat für
verschiedene Geräte verschiedene Bedeutung, aber da wir hier nur von Kaset-
tenrecordern sprechen, will ich die Dinge nicht dadurch komplizieren, daß ich
seine Bedeutung für andere Peripherie mitteile.)

Die allgemeine Form einer OPEN-Anweisung somit nur bei Kassetten
lautet:

OPEN CH, 1, /O, “FNAME”
' T a

u Dateiname

~ = Eingabedatei
(es wird abgelesen)
1 = Ausgabedatei
(es wird geschrieben)

definiert Kassette

willkurliche Kanalnummer

Gut. Probieren Sie zum Anfang:

10 CH=5
20 OPEN CH, 1,1, “FRED”
30 FORN=1TO1P
49 PRINT# CH,N
50 PRINTN

69 NEXTN

70 CLOSECH

Zeile 20 benennt die Datei ‘FRED’ und bestimmt einen Ausgabekanal (5) dafür.
Zeile 40 schreibt die Zahlen 1 bis 19 in den Kanal und damit in die Datei (FRED),
die damit in Verbindung gebracht wird. Beachten Sie die Form dieser Anwei-
sung. Sie ist wie eine gewöhnliche PRINT-Anweisung, bis auf das ‘+ CH’, das
die Wirkung hat, die Ausgabe zu Kanal 5 zu steuern. Als nächstes (Zeile 5Q)
werden die Zahlen auf dem Bildschirm angezeigt. Nach dem Ende der Schleife
wird die Datei geschlossen (Zeile 70). Sie bemerken, daß der Dateiname nur in
der OPEN-Anweisung erwähnt wird. Überall sonst wird lediglich die Kanal-
nummer angegeben.

241

Wenn sie das fahren, erhalten Sie die Aufforderung:

PRESS RECORD & PLAY ON TAPE

Sorgen Sie dafür, daß eine Kassette eingelegt ist und drücken Sie RECORD und
PLAY gleichzeitig. Achten Sie genau auf den Bildschirm. Sie sehen, daß er leer
wird und die Kassette automatisch läuft. Während dieser Zeit gehorcht der
Computer Zeile 20 und schreibt den Dateinamen auf einen ‘Kopfblock’ des
Tonbands. Dann leuchtet kurz ein Bildschirmdisplay auf, während die Zahlen
1 bis 19 angezeigt werden. Während dieser kurzen Zeit bleibt das Band stehen!
Der Schirm wird wieder leer, das Band läuft weiter, das Display wird schließlich
wiederhergestellt und die Kassette bleibt stehen.

Wenn Sie es sich recht überlegen, ist das ja merkwürdig. Die Anweisun-
gen für die Ausgabe zum Band sind schließlich mit denen verwoben, die das
Display anzeigen, so daß man annehmen möchte, das Band liefe weiter, wäh-
rend die Zahlen auf dem Sichtgerät angezeigt werden. Der Grund für dieses
seltsame Verhalten ist der, daß der Computer Ihnen nicht wirklich gehorcht,
wenn Sie verlangen, er solle einen Wert an eine Datei ausgeben. Er speichert ihn
vorübergehend in einem Speicherbereich, der Puffer genannt wird, bis er soviel
Daten hat, daß es lohnt, sie auf das Kassettenband zu übertragen (das heißt,
wenn der Puffer voll ist). Nun füllen die Zahlen 1 bis 19 den Pufferspeicher nicht
völlig. Sollten Sie also nichts weiter unternehmen, würden auf das Band über-
haupt keine Daten gelangen! Dazu ist die CLOSE-Anweisung in Zeile 7@ da. Sie
teilt dem 64 mit, daß in die mit Kanal CH verbundene Datei keine weiteren Daten
mehr geschrieben werden sollen, er also ausgeben muß, was er gerade im Puffer
hat. Das nennt man den ‘Puffer leeren‘.

SchreibenSie Zeile 30 um zu

39 FORN=1 TO 200

und fahren Sie wieder mit RUN. Jetzt werden Sie die Pufferorganisation sehr
deutlich sehen, weil mehrere Puffer voll Daten zu ubertragen sind und Sie
zwischen den Ubertragungen der einzelnen Blocke Displays geliefert bekom-
men.

Das Band sieht also so ähnlich aus, wie Abbildung 34.1 es zeigt:

Lucken zwischen
| Blöcken

y |

Dateiname Daten- Daten- Daten- letzter
block 1 block 2 block 3 Datenblock

t

-erzeugt von erzeugt von erzeugt
OPEN-Anweisung PRINT* -Anweisungen von CLOSE-

Anweisung
Abbildung 34.1

Struktur einer Datei auf Kassette.

242

Für Sie, den Anwender, spielt im einzelnen nichts davon eine Rolle, solange Sie
nicht vergessen, nach Beendigung einer Ausgabe in eine Datei eine CLOSE-
Anweisung anzufügen; rechnen Sie einfach nicht damit, daß die Kassette sofort
nach jeder PRINT+-Anweisung zu laufen beginnt. Wenn Sie wissen, was
wirklich vorgeht, werden Ihnen weniger Fehler unterlaufen - oder schlimmsten-
falls werden Sie Ihnen erklärlich sein, wenn sie passieren. (Das ist ein bißchen
wie beim Autofahren: Sie brauchen nicht zu wissen, wie ein Getriebe funktio-
niert, um den Gang zu wechseln — aber es erklärt, warum das Schalten lohnt,
und es erklärt auch das gräßliche Knirschen, das manchmal auftritt, wenn Sie
das Kupplungspedal.nicht.richtig.durchgedrückt.haben.) -

Die Datei lesen

Nun wollen wir sehen, ob wir die Daten auch wieder von der Kassette holen
konnen. Fugen Sie diesen Zeilen an:

80 END | |

108 OPENCH, 1,0, "FRED” [Öffne Kanal 5 für Ablesen aus ‘FRED’]

119 INPUT# CH, A

120 PRINTA

130 IFA < > 200 THEN 119

Spulen Sie die Kassette zurück und fahren Sie mit GOTO 10@ (nicht RUN 109
— Sie verlieren sonst den Wert in CH). Sie werden aufgefordert, das Band mit
PLAY laufen zu lassen, und das System sucht nach dem Kopfblock mit ‘FRED’.
Sobald es Erfolg gehabt hat, sieht es sich sofort einer Aufforderung gegenüber,
vom Band abzulesen (Zeile 119), so daß auf der Stelle ein zweiter Block gelesen
wird. Nun wird der erste Block Zahlen angezeigt, dann der nächste Block
gelesen, und so weiter, bis die Zahl 20@ gelesen wird, wo das Programm in den
Abgrund kippt und stehenbleibt.

Ich habe vorgeschlagen, Programme im Speicher gleichzeitig zu ‘lesen’
und ‘schreiben’, damit Sie mit diesen Vorstellungen mühelos experimentieren
können und irgendwelche Anfangsprobleme nicht zu katastrophal werden.
Beispielsweise kommen Sie vielleicht dahinter, daß Sie versuchen, auf Vor-
spannband zu schreiben, wenn Sie vergessen haben, die Kassette vor dem
Einlegen in den Recorder vorzuspulen. In diesem Fall ist der Kopfblock nicht
gesichert, und die Leseroutine kann ihn nicht finden, also müssen Sie den
ganzen Ablauf wiederholen.

Anwendung: Geburtstage

Das ist ja nun alles hochinteressant, aber ist es auch nützlich? Doch, ja, und das
in mehr als einer Beziehung. Ein Beispiel: Nehmen wir an, der Computer soll
einige verwickelte mathematische Aufgaben bewältigen, die mehrere Stunden
in Anspruch nehmen. Klar, daß Sie nicht vor dem Ding sitzenbleiben wollen, bis
endlich die Antwort geliefert wird, aber wenn Sie nicht gerade einen Drucker

243

haben, müßten Sie das tun, zumindest dann, wenn die Gefahr besteht, daß die
Werte, die Sie brauchen, durch spätere Ausgaben vom Bildschirm gescrollt
werden. Die Alternative ist die, die Ausgabe in eine Datei zu bewirken, damit Sie
lesen können, wann sie Zeit haben. Und selbst wenn Sie einen Drucker besit-
zen, kann sich die Methode lohnen, wenn ein langes Programm über Nacht
laufen soll. Es kann höchst ärgerlich sein, wenn zwischen Mitternacht und 6
Uhr morgens ein lauter Drucker alle 20 Minuten losrattert.

Eine viel alltäglichere Verwendung von Dateien ist die, einen organisier-
ten Vorrat an alphabetischen wie numerischen Daten anzulegen. Zum Beispiel
möchten Sie vielleicht eine Adressliste aller Ihrer Freunde und Bekannten haben
- ein computerisiertes Adreßbuch, wenn Sie so wollen. Offensichtlich müssen
Sie Namen, Adressen und Rufnummern festhalten, aber es wäre hübsch, auch
noch zusätzliche Informationen zu besitzen, etwa die, ob Sie normalerweise
einer bestimmten Person zum Geburtstag oder zu Weihnachten eine Glück-
wunschkarte oder auch ein Geschenk schicken. Wenn Sie Geburtstagsge-
schenke schicken, wird es nützlich sein, auch Geburtsdaten in die Datei aufzu-
nehmen. Auf diese Weise sollten wir Programme schreiben können, die in der
Datei nach Personen suchen, denen Sie beispielsweise im März irgendeinen
Geburtstagsgruß senden. Nie mehr kann es vorkommen, daß sie irgendeinen
Geburtstag vergessen! |

Aber das kommt später. Unsere erste Aufgabe ist die, für die Datei zu
sorgen. Jede Person hat einen Eintrag, der besteht aus:

Name

Adresse

Geburtsdatum

Einzelheiten zu Geschenk und Glückwunschkarte

Wir nennen das einen Datensatz. (Um die Dinge zu vereinfachen, wollen wir
Rufnummern und dergleichen hier vergessen.) Jeden der darin enthaltenen
Posten, etwa die Adresse, nennen wir ein Datenfeld.

Die beiden ersten Felder stellen keine Probleme dar. Wir müssen aber ein
Standardformat für das Geburtsdatum festlegen und dabei bleiben. Schließlich
hat es keinen Sinn, dem Computer aufzutragen, er möge nach NOV suchen, —
wenn die Monate als Zahlen abgespeichert sind, so daß er eigentlich nach 11
suchen müßte.

Überhaupt wird es am einfachsten sein, Zahlen zu verwenden, so daß

020960

bedeutet:

02 2.

09 September (Monat 9)

60 196@ (das 19 lassen Sie weg)

Außerdem brauchen wir eine geeignete Methode, die Gluckwunschinforma-
tion zu codieren. Dafür gibt es viele Möglichkeiten. Wie wäre es, sie zu nume-
rieren, etwa so:

244

Karte zum Geburtstag 1

Geschenk zum Geburtstag 2

Karte zu Weihnachten 3

Geschenk zu Weihnachten 4

so daß der Code 13 lautet, wenn Sie jemandem zum Geburtstag und zu Weih-
nachten eine Karte schicken, aber keine Geschenke.

Ein Programm folgender Art würde die Datei erzeugen:

5 CH =1:KAS =1: IN = @: AUS = 1
10 OPEN CH, KAS, AUS, "MLIST”
20 INPUT "NAME”;NS
30 PRINT+ CH, NS
Ad INPUT “ADRESSE”: AD$
50 PRINT+ CH, AD$
60 INPUT “GEBURTSDATUM”: BD$
70 PRINT# CH, BD$
80 INPUT “GLUECKWUNSCHCODES", G$
99 PRINT+# CH, G$ |

100 INPUT “WEITERE DATEN (J/N)”; OS
110 IFQS="J" THEN 20
115 PRINT4 CH, “*** +”
120 CLOSE KAS
130 END

Obwohl der Code sehr einfach erscheint, sind ein paar Bemerkungen ange-
bracht.

Erstens ist es verlockend, a//e Felder einzugeben und dann zu schreiben:

PRINT + CH, NS, ADS, BD$, G$

Der Haken dabei: PRINT + ruft genau dieselbe Wirkung bei der Datei hervor wie
PRINT beim Bildschirm. Wenn also N$ = “HUGO”, ADS = HAUBENGASSE 48
OSTHOFEN”, BD$ = “119737” und G$ = “3”, haben Sie in der Datei:

HUGO HAUBENGASSE 48 OSTHOFEN 110737 3

(dazu diverse Leerstellen zwischendrin). Wenn Sie das zurückzuholen versu-
chen mit

INPUT+ CH, N$, ADS, BDS, G$

245

geht es nicht. Der ganze Datensatz wird nach N$ übertragen, weil die Felder
nicht durch Kommas getrennt sind, was INPUT erwartet.

Sie könnten die Kommas bewußt einstreuen:

PRINT +, CH, NS; ","; ADS; ","; BD$; ","; G$

aber ich finde das häßlich und ziehe getrennte PRINT + -Anweisungen vor.
Zweitens durfen aus denselben Gründen keine Kommas in den Adreßfel-

dern stehen. Ä
Drittens: Beachten Sie, daß die letzten beiden Felder zwar Zahlen sind, ich

sie aber wie Strings behandelt habe. Den Grund werden Sie später erkennen.
Viertens: Sehen Sie sich Zeile 115 an. Sie schreibt an das Ende der Datei

einen Begrenzer (* * * *), und zwar in das 'Namens’-Feld des Satzes nach dem
letzten eingegebenen. Wir brauchen das, um zu bestimmen, ob schon die ganze
Datei gelesen worden ist, wenn wir sie absuchen.

Sehen Sie sich schließlich Zeile 5 an. Ich habe sie dazu benützt, sinnvolle
Abkürzungen für die Dateioperationen zu definieren, die normalerweise von
Zahlen angezeigt werden. Beispielsweise kann ich jetzt in einer OPEN-
Anweisung statt ‘1° ‘AUS’ schreiben, um anzuzeigen, daß in die Datei geschrie-
ben werden soll. Das kommt sprachlich der Anweisung ‘Offne einen Kanal fur
Kassette zur Ausgabe’ näher als ‘OPEN 1,1,1...’

Aufgabe 1

Zur Zeitmuß der Anwender sich die Glückwunschcodes noch merken. Ersetzen
Sie Zeile 80 durch:

80 GOSUB 1909

und schreiben Sie in Zeile 1000 eine Subroutine, die dem Anwender eine Reihe
von Fragen stellt wie:

HAST DU EINE GEBURTSTAGSKARTE GESCHICKT?

und G$ automatisch erzeugt.

Die Datei absuchen

Wir möchten Fragen beantworten können wie: "An welche Geburtstage muß
ich mich im Juni erinnern und was muß ich den Leuten schicken?” Schreiben
wir also zunächst ein Programm, das genau dies leistet. Es wird uns einige
Hinweise darauf liefern, wie wir es später allgemeiner fassen können.

Als erstes müssen wir die Datei öffnen:

5 CH =1:KAS = 1: IN = @: AUS = 1

10 OPEN CH, KAS, IN, “MLIST”

und dann einen Datensatz lesen:

246

20 INPUT# CH, N$

25 IFNS="*** +" THEN END [auf Begrenzer prüfen]

30 INPUT+ AD$

40 INPUT# CH, BD$

50 INPUT# CH, G$

Nun wird festgestellt ob dieser Datensatz für uns von Interesse ist:

60 IFMID$ (BDS, 2, 2) = "96" THEN GOSUB 500: REM HAB EINEN

Mit anderen Worten: Ist der Geburtsmonat Juni? Ich verwende MIDS (siehe
Kapitel 17), um die mittleren beiden Zeichen von BD$ auszuwählen und sie mit
(6 zu vergleichen. Deshalb habe ich das Geburtsdatum im Stringformat genom-
men. Es ist viel einfacher, die Mitte eines Strings als mehrere Ziffern einer Zahl
auszuwählen. Und ich kann ihn oder Teile davon mit VAL (Kapitel 17) jederzeit
in Zahlen zurückverwandeln, wenn es sein muß. Haben wir jemanden gefun-
den, der im Juni geboren ist, wird die Steuerung der Subroutine ab 5®®
übertragen, und darüber zerbrechen wir uns später den Kopf.

Nun den nächsten Datensatz holen:

70 GOTO 20

Die Hab-einen -Routine

Nun zur Subroutine. Wir müssen G$ durchgehen auf der Suche nach 1 (Karte)
und 2 (Geschenk) oder beidem.

500 FLAGGE=@
510 FORP=1T04
520 IF MID$ (GS, P, 1) = "1" THEN FLAGGE = 1: PRINT “KARTE”
530 IF MIDS (GS, P, 1) = “2 THEN FLAGGE = 1: PRINT “GE-

SCHENK” |
540 NEXTP
550 IF FLAGGE = @ THEN RETURN
560 PRINT
570 PRINTNS
580 PRINT ADS
590 PRINT: PRINT
600 RETURN

247

Wir gehen GS auf der Suche nach ‘1’ oder ‘2’ durch. Wenn wir ‘1’ finden, wird
KARTE angezeigt, bei 2 GESCHENK. In beiden Fallen wird eine Flagge auf 1
gesetzt, die ursprunglich Null war. Wenn wir also aus der Schleife kommen und
die Flagge immer noch Null ist, wissen wir, daß wir den Geburtstag dieser
Person nicht berücksichtigen, so daß es keinen Sinn hat, Namen und Adresse
anzuzeigen. Daher Zeile 550, die dafür sorgt, daß wir es nicht tun. Ist die Flagge

- aber auf 1 gesetzt, schicken wir ihm oder ihr etwas; das Programm macht also
weiter und zeigt Namen und Adresse in geeignetem Format an, bevor es zuruck-
springt.

Aufgabe 2

Wandeln Sie diese Routine so ab, daß sie fur jeden Monat verwendet werden
kann.

Aufgabe 3

Schreiben Sie eine Routine, die Weihnachtskarten und -geschenke bewaltigt
und veranlassen Sie den Computer, Ihnen mitzuteilen, wieviele Weihnachtskar-
ten Sie kaufen müssen.

Die Ausgabedatei wechseln

Wenn Sie eine PRINT-Anweisung geben, geht das System normalerweise
davon aus, Sie wünschen die Ausgabe auf dem Bildschirm des Sichtgeräts. Wie
wir gesehen haben, können Daten dadurch, daß die Form einer PRINT-
Anweisung geändert wird, zu jedem gewünschten Gerät geschickt werden.
Was ich aber noch nicht erklärt habe, ist, daß Daten sogar ohne Anderung der
ganzen PRINT-Anweisungen umgelenkt werden können.

Das geschieht mit dem CMD-Befehl, dessen Grundform lautet:

CMD Kanal

Wenn ich schreibe:

CMD5

schaltet das die Ausgabe vom Bildschirm zum Kanal 5. Kanal 5 muß natürlich
vorher in einer OPEN-Anweisung errichtet worden sein, etwa durch

OPEN 5, KAS, AUS, “BILDSCHIRMABZUG” [unterstellt, daß KAS und

AUS wie vorher auf 1 ge-

setzt sind]

Nun werden alle ursprunglich fur den Bildschirm bestimmten Daten auf die
Kassette ubertragen. Die einzigen Ausnahmen sind Fehlermeldungen, die nach
wie vor auf dem Bildschirm erscheinen.

248

Um das System in seinen ursprünglichen Zustand (das heißt, Ausgabe
auf den Bildschirm) zurückzuversetzen, wird zuerst eine Nullzeile (mit anderen
Worten, einfach eine Newline) zur Datei ausgegeben: |

PRINT#5

und die Datei dann geschlossen:

CLOSE 5

Hier tritt eine kleine Seltsamkeit auf. Man möchte annehmen, man werde statt
"PRINT + 5’ einfach ‘PRINT’ schreiben können, weil zu Kanal 5 ohnehin Daten
ausgegeben werden, aber das kann man nicht. Fragen Sie mich nicht nach dem
Grund.

Aufgabe 4

Erinnern Sie sich an die Ablaufüberwachung und Profile in Debugging IV? Es
gibt einen Weg, eine Ablaufüberwachung so zu verwenden, daß sie ein Profil
liefert.

Das geht so: Schreiben Sie das Programm unter Einschluß von Uberwa-
chungsanweisungen wie in Debugging IV, geben Sie die Überwachungsaus-
gaben aber zum Kassettenrecorder aus. Die <- und > -Zeichen um die Zeilen-
nummern lassen Sie dabei weg. Sie sind nicht nötig, weil die Überwachungs-
einzelheiten jetzt zu einem anderen Platz als der normalen Ausgabe gehen und
das Dasein beim nächsten Schritt außerdem ein bißchen schwieriger wird.

Der nächste Schritt: Schreiben Sie ein Programm, das eine Zeilennummer
anfordert, dann die Datei liest, die Sie eben geschaffen haben, und zählt, wie oft
diese Zeilennummer vorkommt. Zeigen Sie diesen Wert an, dann wissen Sie, wie
oft die entsprechende Anweisung ausgeführt worden ist!

Lösungen

Aufgabe 1

1000 G$="": REM G$ IST ZU ANFANG AUF NULL GESETZT
1010 INPUT "SCHICKST DU EINE GEBURTSTAGSKARTE?

(J/N)”; OS
1020 IFO$S= "J"THENG$=G$ + "1"
1030 INPUT "SCHICKST DU EIN GEBURTSTAGSGESCHENK?

(JIN)”; GS
1040 IFQ$="J" THEN G$ = G$+ "2" |
1950 INPUT SCHICKST DU EINE WEIHNACHTSKARTE? (J/N)”; QS

249

1060 IFO$="J" THEN GS = G$ + "3"

1970 INPUT "SCHICKST DU EIN WEIHNACHTSGESCHENK?

(J/N)"; QS

1980 IF O$ = "J" THEN G$ = G$ + "4"

1999 RETURN

Sehen Sie, wie G$ schrittweise aufgebaut wird?
Die Ähnlichkeit der Fragen und die Wirkung auf G$ sollten eine Alterna-

tive nahelegen. Wie wäre es, wenn wir zu Beginn des Programms das folgende
Stringarray aufbauen:

BCS

GEBURTSTAGSKARTE
GEBURTSTAGSGESCHENK
WEIHNACHTSKARTE
WEIHNACHTSGESCHENK B

O
N

Dann konnten wir schreiben:

1000 Gs _ tn

10910 FORP=1TO4

1020 PRINT "SCHICKST DU EIN/EINE[|"; BC$ (P):

1030 INPUT Qs

1040 IFO$= "J" THEN G$ = GS + STR$ (P)

1050 NEXTP

1960 RETURN

Beachten Sie, daß wir in Zeile 1949 mit STR$ P in seine Stringentsprechung
verwandeln mussen.

In diesem Fall lohnt die Mühe eigentlich nicht, weil die drei ersparten
Zeilen mehr als ausgeglichen werden, wenn wir BC$ setzen. Gibt es aber
mehrere zusätzliche Bedingungen, dann wäre das eine geeignete Methode.

Aufgabe 2

Das einfachste ist, eine zusätzliche Zeile einzubauen: |

15 INPUT “GIB MONAT ALS ZAHL VON ZWEI ZIFFERN EIN”; MTHS

und Zeile 69 umzuschreiben:

60 IF MIDS (BD$, 2,2) = MTH$ THEN GOSUB 500

250

Noch besser: Sie könnten gegen zufällige Eingabe einer Einzelziffer (etwa 5
statt 95) schützen mit:

16 IFLEN (MTH$) = 1 THEN MTHS = "0" + MTH$

Aufgabe 3

Hier brauchen wir keine Dateninformation, also wird aus Zeile 60:

60 GOSUB 500

und 52@ und 530 verändern sich zu:

520 IF MIDS (GS, P, 1) = "3" THEN NK = NK + 1: FLAGGE = 1:

PRINT “KARTE” |

530 IF MIDS (GS, P, 1) = "4” THEN FLAGGE = 1: PRINT "GE-

SCHENK”

Jedesmal, wenn eine Weihnachtskarte verlangt ist, wird eine Variable namens
NK um 1 erhöht, so daß wir sicherheitshalber fur den Anfang auf Null setzen
sollten.:

6 NK=9@

Und am Ende mussen wir anzeigen:

75 PRINT "ZAHL DER ERFORDERLICHEN KARTEN:”; NK

Aufgabe 4

Ihr Originalprogramm muß eine Datei zuteilen:

10 OPEN 3, KAS, AUS, “UEBERWACHUNG” [unterstellt, daß KAS

und AUS wie vorher

definiert sind

und dann in jeder Anweisung, die verfolgt werden soll, PRINT 4+ 3 enthalten:

150 PRINT#,3, 150": REM DIESE ANWEISUNG VERFOLGEN

Ans Ende des Programms, aber bevor die Datei geschlossen wird, schreiben Sie
einen geeigneten Begrenzer für die Datei:

800 PRINT# 3, "-1”

819 CLOSE3

820 END

251

Um das Profil einer bestimmten Zeile zu erhalten, könnten Sie schreiben:

10

20

30

40

50

60

70

IN = @: KAS = 1: ZAEHLUNG = @

OPEN 5, KAS, IN, “UEBERWACHUNG”

INPUT "GEWUENSCHTE ZEILENNUMMER’T; N

INPUT 5, N

IF N < @ THEN PRINT ZAEHLUNG: END

IF L= N THEN ZAEHLUNG = ZAEHLUNG + 1

GOTO 49

Einfach und praktisch!
Sie konnten das erweitern, um das Profil einer Anzahl von Zeilen zu

erhalten, ohne das Band zuruckspulen zu mussen. Sie brauchen dafur ein Array,
das die für das Profil vorgesehenen Zeilen festhält, Zeile 3® wird zu einer
Schleife, in die alle gewünschten Zeilennummern eingegeben werden, und
Zeile 60 zum Aufruf einer Subroutine, die das Array nach einer Entsprechung
absucht.

Den Code überlasse ich Ihnen.

252

Anhang 1
Byteumwandlung Binar/Dezimal

Dezi- Dezi- Dezi- Dezi-
Binär mal Binär mal Binär mal Binär mal

00000000 | © | 00100000} 32 | 019000000! 64 | 011900000; 96

00000001 1 | 90190001 | 33 | 019000001 | 65 | 01100001 | 97

00000010; 2 | 001900010} 34 | 019000019 | 66 | 01100010} 98

09000011 3 | 00100011 | 35 | 01900011 | 67 | 011900011 | 99

00909001900! 4 | 00100100) 36 | 019901900} 68 | 01100100 | 100

09900191 5 | 00190101 | 37 | 019000101 | 69 | 01100101 | 101

009000119} 6 | 00100110] 38 | 91900110} 70 | 01190110 | 102

00000111 7 | 90100111 | 39 | 01000111 | 71 | 01100111 | 103

00001000! 8 | 00101000) 40 | 0190019000 | 72 | 01101000 | 104

90001001 9 | 00101001 | 41 | 01001901 | 73 | 011901901 | 195

00001010] 10 | 00101019) 42 | 01001010) 74 | 01101019 | 106

00001011 | 11 | 00101011 | 43 | 019001011 | 75 | 01101011 | 107

00001100 | 12. | 90101100) 44 | 019001100 | 76 | 01101100 | 108
90001101 | 13 | 00101101 | 45 | 010901101 | 77 | 01101101 | 109

00001110 | 14 | 00101110 | 46 | 01001110 | 78 | 01101110 | 110

00001111 | 15 | 90101111 | 47 | 01001111 | 79 | 01191111 | 111

000190000 | 16 | 001190000 | 48 | 01019000 | 80 | 011190000 | 112

00010001 | 17 | 00119001 | 49 | 01019001 | 81 | 01110001 | 113

0090190010] 18 | 00110010 | 50 | 01010010 | 82 | 01110010 | 114
00010011 | 19 | 00110011 | 51 | 01010011 | 83 | 01110011 | 115

00010100 | 20 | 001101900! 52 | 01010100 | 84 | 01110100 | 116
00010101 | 21 | 00110101 | 53 | 01010101 | 85 | 01110191 | 117

00010110 | 22 | 00110110] 54 | 01010110! 86 | 01119110} 118

000190111 | 23 | 90110111 | 55 | 01010111; 87 | 01119111 | 119

90011900 | 24 | 00111000} 56 | 91011000 | 88 | 01111000 | 120

00011001 | 25 | 00111001 | 57 | 01011001 | 89 | 01111991 | 121

00011010} 26 | 00111010! 58 | 1011019 | 90 | 01111010 | 122

00011011 | 27 | 90111911 | 59 | 01011011 | 91 | 91111911 | 123

00011100 | 28 | 00111100] 60 | 91011190 | 92 | 01111100 | 124

90011101 | 29 | 00111101 | 61 | 01011101 | 93 | 01111101 | 125

00011110 | 30 | 00111110! 62 | 01011110] 94 | 01111119 | 126

90011111 | 31 | 00111111 | 63 | 01011111 | 95 | 1111111 | 127

253

Binär
Dezi-
mal Binar

Dezi-
mal Binar

Dezi-
mal Binar

Dezi-

mal

19990000

100009991

19900010

19900011

19000190

199000101

199001190

19900111

10001000

10001001

10001919
10001011

199001100
10001191

10001110

10001111

100199000

19019001

19010010
10010011

10019100
10010101

10010110

10010111

10011900

199011001
10011010

10011011

10011190

10011191

10011110

10011111

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

10100000

1019000901

10100010
1010001 1

10190100

10190101

10100110
10109111

10101000

10101001

191919019

19101011

190191199

10191191

10191119

10101111

10110000
19119091

10119019

190119911

10110100
10110191

190119119

10110111

19111999

10111001

19111919

190111911

10111100

10111101

10111110

10111111

160

161

162

163

164

165

166

167

168

169

1790

171

172

173

174

175

176

177

178

179

180

181

182

183
184

185

186

187

188

189

190

191

11900000

11000001

119000010
11900011 |

11900100
11999191
11000119

11000111

11001000
11001001
11001010
11001011
11001100
11901191
11901110
11901111

11010000
11019001
11910919
11910011

11010100
11010101

11010110
11910111
11011000
1190119001

11011010
11911911
11911199
11911191
119011119
11911111

192
193
194
195
196
197
198
199

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

11190000
11109991

111090019

111900911

11100100
111909191

11190119

11190111

11191000

111901991

111901010

11191011

11101100

11101101

11191110

11191111

11119000@-

11119001

11119010

11119011

11110199

11119191

11119119

11119111

11111000

11111991

11111919

11111911

11111199

11111191

11111119

11111111

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

251
252
253
254
255

254

Anhang 2
Sprite- Register, leicht gemacht

Adresse Inhalt Funktion

V+@ Spaltennummer Sprite ®
V+1 Reihennummer Sprite ®
V+2 Spaltennummer Sprite 1
V+3 Reihennummer Sprite 1
V+4 Spaltennummer Sprite 2
V+5 Reihennummer Sprite 2
V+6 Spaltennummer Sprite 3
V+7 Reihennummer Sprite 3 Spritepositionen
V+8 Spaltennummer Sprite 4
V+9 Reihennummer Sprite 4
V+10 Spaltennummer Sprite 5
V+11 Reihennummer Sprite 5
V+12 Spaltennummer Sprite 6
V+13 Reihennummer Sprite 6
V+14 Spaltennummer Sprite 7
V+15 Reihennummer Sprite 7

V+ 16 |Sp7|Sp6|Sp5|Sp4|Sp3|Sp2 |Sp1 |Sp@ | Versetzungsflagge
V+ 21 |Sp7|Sp6|Sp5|Sp4|Sp3|Sp2 |Sp1 |Sp®| Aktivieren/Sperren
V+23|Sp7|Sp6!Sp5|Sp4|Sp3|Sp2|Sp1 |Sp®| erweitern vertikal
V+291|Sp7|Sp6|Sp5|Sp4|Sp3!Sp2|Sp1 |Sp®| erweitern horizontal
V + 30 |Sp7|Sp6|Sp5|Sp4|Sp3|Sp21|Sp1 |Sp®| Kollisionsflagge

V+ 39 Farbcode Sprite ®
V+40 Farbcode Sprite 1
V+41 Farbcode Sprite 2
V+42 Farbcode Sprite 3 Farben
V+43 Farbcode Sprite 4
V+ 44 Farbcode Sprite 5
V+ 45 Farbcode Sprite 6
V+ 46 Farbcode Sprite 7

2040 Zeiger Sprite ®
2041 Zeiger Sprite 1
2042 Zeiger Sprite 2
2043 Zeiger Sprite 3 Zeiger
2044 Zeiger Sprite 4
2045 Zeiger Sprite 5
2046 Zeiger Sprite 6
2047 Zeiger Sprite 7

255

Anhang 3
Bibliothek von Sprite-Subroutinen
Diese Sammlung von Routinen soll den Umgang mit Sprites erleichtern. Sie
sollten aus dem Hauptprogramm mit GOSUB aufgerufen werden, nachdem die
notwendigen Parameter gesetzt sind. Wie immer ist V = 53248 die Startadresse
der Sprite-Register.

Zeiger für Sprite K auf PTR setzen

20000 POKE 2040 = K, PTR

20010 RETURN

Daten für Sprite K mit POKE in PTR-Block abspeichern

20199 FORG=@TO62 |

20119 READH

20120 POKE64* PTR+G,H

20130 NEXTG

20140 RETURN

(Diese Routine unterstellt, daß die erforderlichen DATA-Anweisungen im
Hauptprogramm gegeben sind.)

Sprite K einschalten

20200 POKEV + 21, (PEEK (V+ 21)) OR27 K

20210 RETURN

Sprite K abschalten

20300 POKEV + 21, (PEEK (V + 21)) AND (255-2 f K)

20319 RETURN

Sprite K auf Farbe CR setzen

20400 POKEV+39+K,CR

20410 RETURN

Sprite K in Reihe Y, Spalte X setzen

20500 POKEV+2+K+1,Y

20510 IFX > 255 THEN OF = 1

20520 POKEV+2* K, X—256* OF

256

20530 IF OF = 1 THEN POKE V + 16, PEEK(V + 16) OR2}K

20549 IFOF=@THEN POKEV + 16, PEEK(V + 16) AND (255-27 K)

20550 OF=9@ -

20569 RETURN

Sprite K in horizontaler Richtung erweitern

20600 POKEV + 29, PEEK (V + 29) OR2TK

20610 RETURN

Sprite K in horizontaler Richtung zusammenziehen

20700 POKEV + 29, PEEK (V + 29) AND (255-27 K)

20710 RETURN

Sprite K in vertikaler Richtung erweitern

20800 POKEV + 23, PEEK (V + 23) OR2TK

20810 RETURN

Sprite K in vertikaler Richtung zusammenziehen

209900 POKEV + 23, PEEK (V + 23) AND (255-2 f K)

29919 RETURN

Zusammenstoß von Sprite K mit anderem Sprite feststellen

21000 IF (PEEK (V + 30) AND 27 K) = 2 fT K THEN GOSUB 30000

21019 RETURN

(30000 ist eine Subroutine, die eingreift, wenn der Zusammenstoß stattfindet.)

Zusammenstoß zwischen Sprite K und L feststellen

21100 IF (PEEK (V +30) AND (2¢K+2?TL))=27K+2TLTHEN

30099

21119 RETURN

Zusammenstoß zwischen Sprite K und Text feststellen

21200 IF (PEEK (V + 31) AND 2T K) =2T K THEN 30000

21219 RETURN

257

Anhang 4
Klangchip- Register,
einfach gemacht
S = 54272

Adresse

Stimme | Stimme | Stimme
1 2 Inhalt Funktion

S+ß | S+ 7 | S+14 Niedriges Frequenzbyte Tonhöhe

S+1 S+ 8 | S+15 Hohes Frequenzbyte setzen

Niedriges Pulsbyte Art der
S+2 | S+ 9 | S+16 (nur Puls-Wellenform) Puls-Wellenform

Hohes Pulsbyte setzen
S+3 | S+10 | S+17 (nur Puls-Wellenform)

Wellenform-Code* ‘Instrument’
St+4 S+11 | S+18 wählen

4 Bit- 4 Bit- Anschlag/
S+5 | S+12 | S+19 Anschlag- Abschwell-| Abschwellen

wert wert

4 Bit 4 Bit Halten/
S+6 | S+13 | S+26 Halte- Ausklang- | Ausklingen

wert wert

$+24 Lautstärke (0-15) Lautstärke

* Wellenform- Codes:
17: Dreieck
33: Sägezahn
65: Puls

129: Rauschen

258

Anhang 5
Speicherkarte Commodore 64
Das ist ein einfacher Führer zu den Hauptabschnitten des Commodore 64-Spei-
chers. Weitere Einzelheiten siehe Anhang 6 und ‘Reference Guide’. Beachten
Sie, daß manche Abschnitte mehr als eine Verwendung haben, was vom Zu-
sammenhang und davon abhängt, wie manche Systemvariable gesetzt sind.

Adressen Inhalt

0-827 Verwendung durch System
828-1023 Kassettenpuffer + ungenutzter Platz
1024-2023 Bildschirmspeicher (Video-RAM)
2040-2047 .Datenzeiger für Sprites
2048-40959 Normaler Programmplatz für BASIC
40960-49151 BASIC ROM (bei PEEK) oder 8K RAM
49152-53247 AK RAM
53248-57343 Input/Output-Geräte und Farbspeicher

oder Zeichen-ROM (siehe Kapitel 13)
oder AK RAM

53248-54271 VIC-Chip (Sprites + Videodisplay)
54272-55295 SID-Chip (Klang)
55296-56319 Farbspeicher
53620-56575 CIA-Chip * 1 (Schnittstellen zu Zusatzgerat) -
56576-56831 CIA-Chip * 2
56832-57343 Reserviert für künftige I/O- Erweiterung

57344-65535 KERNAL*ROM (bei PEEK) oder 8K RAM

* KERNAL ist das zentrale Betriebssystem, so angelegt, da& geschriebene
Programme, die es verwenden, mit kunftigen Modellen des Computers kompa-
tibel sein werden.

259

Anhang 6
Einige nutzliche Systemvariable
Das ist eine Auswahl von Adressen, die das Betriebssystem verwendet, und die
in nützlicher Weise mit PEEK oder POKE angegangen werden können. Eine
vollständige Beschreibung findet sich im ‘Reference Guide’.

Name Adesse Funktion

TXTTAB 43-44 Zeiger zu Start von BASIC-Textbereich
VARTAB 45-46 Zeiger zu Beginn von BASIC-Variablen
ARYTAB 47-48 Zeiger zu Beginn von BASIC-Arrays
STREND 49-50 Zeiger zu Ende von BASIC-Arrays + 1
FRETOP 51-52 Zeiger zu Unterseite Stringspeicherung
CURLIN 57-58 Laufende BASIC-Zeilennummer
OLDLIN 59-60 Zuletzt ausgeführte BASIC-Zeilennummer
DATLIN 63-64 Laufende DATA-Zeilennummer
FBUFPT 113-114 Zeiger zu Kassettenpuffer
RNDX 139-143 Keimwert für RND-Funktion
LSTX 197 Code der zuletzt gedrückten Taste”
USER 243-244 Zeiger zu Farb-RAM
COLOR 646 Laufende INK-Farbe
XMAX 649 Größe des Keyboard-Puffers

53265 (Bit5) Bit-Modus einschalten (Kapitel 32)
53280 Border-Farbe
53281 PAPER-Farbe

* Codes siehe Anhang 7

Hinweis: Die meisten Adressen umfassen zwei Bytes. Wenn sie sich in den
Adressen X und X+1 befinden, ist der gespeichterte Wert:

PEEK(X)+256*PEEK(X+1)

(niedriges Byte als erstes, hohes Byte als zweites). Beispiel: Die Adresse für den
Beginn des BASIC-Textbereichs ist:

PEEK(43) +256*PEEK(44)

260

Anhang /
Keyboard-Abfragecodes
Aufgeführt ist der Inhalt von Adresse 197, wenn eine beliebige Taste gedrückt
wird. Mit PEEK(197) kann die gerade niedergedrückte Taste unter Umgehung
des Keyboardpuffers festgestellt werden.

Taste Code Taste Code Taste Code

(keine) 64 @ 46 T 22
* 49 A 10 U 30
+ 40 B 28 V 31
, 47 C 20 W 9
— 43 D 18 X 23

44 E ‚14 Y 25
/ 55 F 21 Z 12
Ö 35 G 26 RETURN 1
1 56 H 29 CLR/HOME| 51
2 59 | 33 INST/DEL (N)
3 8 J 34 CRSR | 7
4 11 K 37 CRSR > - 2
5 16 L 42 - 57
6 19 M 36 f1 4
7 24 N 39 f3 5
8 27 O 38 f5 6
9 32 P 41 f7 3

45 (6) 62 £ 48
; 50 R 17 Leertaste | 6®
= 53 S 13

261

Programmregister

abgelaufene Zeit 106
ASCII-Werte 107
Auto 141
automatische Post 96

automatische Programmprofile 251
Autorennen 142

Bandwurmsätze 100
Bankkonto 59
bewegter Raumkreuzer
binar > dezimal 65
binare Logik 70
Blinker 17

184

Computerkunst 234
Cursorsteuerung 43

Datei absuchen 246
Dateierzeugung 245
Don’t Cry For Me, Argentina 210
DRAW-Unterprogramm 231
dynamische Wortumkehrung 118

Einkaufsliste 63

farbige Quadrate 151
freier Speicherplatz 68
Frequenzdiagramm 138

Grand Prix 190

Hi-Res-Initialisierung 226
Hubschrauber 150

Jesus, Du Des Menschen Freude 205

Kakutani 147
Kaufhaus 49
Keyboardabfrage 147

malsieben 30
Max und Min 162
Mittelwerte 129
Morsecode 108
Morsen mit Ton 212

Note — Frequenz —
Unterprogramm 201

Nullen und Kreuze 213

Papierfarbe - Unterprogramm 84
Peeking-Routine 77
Planetensuche 173

262

PLOT X,Y - Unterprogramm
PEINT AT- Unterprogramm

Rechtecke 235

schnelles # 115
Schüttelreime 103
Speichen 232
Spielkarten 154
Spirale 230
Sprite abschalten —

Unterprogramm
Sprite einschalten —

Unterprogramm 254
Sprite erweitern —

Unterprogramm 255
Sprite zusammenziehen —

Unterprogramm 255
Spritedaten speichern —

Unterprogramm 254
Spritefarben setzen —

Unterprogramm 254
Spritekollision erkennen —

Unterprogramm 255
Spritekonstruktionen 177

Spriteposition setzen —
Unterprogramm 255

Spritezeiger setzen —
Unterprogramm 254

Steuertarif 63

254

Tagfinder 104
Telefonnummern 53

Uhr 106
US-Präsidenten 174

Vielecke 233

Werbung 89

227
114

While Shepherds Watched Their
Flocks 203

Wortumkehrung 98
Würmer 17

Register allgemein

Ablaufüberwachung 163
ABS 237
ADSR 208
AND 61,68
arithmetische Operationen

(+ = */7) 20
Arrays 90,103
ASC 107
ASCII-Codes 107

Bildschirmspeicher 112
Bit 65
Byte 65

CHRS 107,42
CLOSE 241
CLR/HOME-Taste 12
CMD 248
COMMODORE-Taste 12,13
CONT 24
CTRL-Taste 15

Cursortasten 13

DATA 172
Datenfeld 244
Datensatz 244
DIM 92,152

Editor 56
END 27

Farben 80
Farbspeicher 116
FOR 30
FRE 68
Funktionstasten 16, 148

GET 145
GOSUB 84
GOTO 23
Grundfrequenz 199

Harmonik 204
hochauflosende Grafik 225
hochauflosender Bildschirm-

speicher 228
Hullkurve 199

IF 59
INPUT 50
INPUT + 243
INST/DEL-Taste 14, 56

INT 67
Integer 153

Kanal 241
Keyboardpuffer 147
Keyboardsteuerung 145

Leertaste 16
LEFTS 101
LEN 98
LET 47
LIST 25
LOAD 122

Mehrfachbefehle 27
MIDS 101 |
multidimensionale Arrays 153

NEW 17,26
NEXT 30
NOT 62
Notenschreibweise 200
numerische Variable 45

OPEN 240
OR 61,68

Pause 34
PEEK 75
POKE 75
PRINT 23,36
PRINT + 241
Programmprofile 165
Programmverkettung 127

READ . 172
REM 23
RESTORE 174
RESTORE-Taste 14
RETURN 84
RETURN-Taste 14
RIGHTS 101
RND 136
RUN 23
RUN/STOP-Taste 14, 24
Rundungsfehler 236

SAVE 122
SGN 231
SHIFT-Taste 13
Sprite-Datenspeicherung 190
Sprite-Kollision 188 |
Sprite-Priorität 185

263

Sprite-Register 179
Sprites 176
STEP 33
Steuerzeichen 41
STOP 27
STR$ 103
Stringvariable 45,97
Stringverkettung 97

TAB 40
THEN 59
TI,TI$ 105
TO 30

VAL 103
VERIFY 126

Zeichensatz 80
Zitiermodus 41
;,ın PRINT-Anweisungen 38

264

Ob Sie nun Neuling sind in der Computerei und
sich den C64 als ersten Computer erstanden
haben, oder von einer kleineren Maschine zu
ihm aufsteigen: Dieses Buch hier ist die
srundlegende Einführung in BASIC auf dem
Commodore 64.

Sie finden

— Strings
— Arrays
— Klang und Musik
— Sprites
— Hochauflösende Grafik

Viele Programme sind gebrauchsfertig
aufgelistet, etwa

— Planetensuche

— Schüttelreime
— Grand Prix

— Morsecode

Auf der ernsthafteren Seite führt Sie eine
einmalige Kapitelserie in Fehlersuchtechniken
ein, aber auch der Umgang mit Dateien und die
Gestaltung von Programmen werden gründlich
behandelt.
Der umfangreiche Anhangteil enthält Tabellen
für Binär/Dezimal-Umwandlungen,
Spriteregister, Klangchipregister und einen Plan
der Speicheraufteilung. Aufgaben mit Antworten
am Ende jeden Kapitels werden Ihnen helfen, am
Ball zu bleiben.

ISBN 3-7643-1588-1

