
Markt&Technik 

Winfried Kassera 
Frank Kassera 

Ein Lehr- und Übungsbuch mit ausgewählten 
ROM- und RAM-Routinen für die Entwicklung 

von eigenen Assemblerprogrammen. 
Alle Beispiele für die 40er- und 80er-Serien 

OT ANT  





C 64 - Programmieren in Maschinensprache





Min red Kassera C 64 - Pro erammieren 
in Maschinensprache 

Ein Lehr- und Ubungsbuch mit 
ausgewählten ROM- und RAM-Routinen 
für die Entwicklung 
von eigenen Assemblerprogrammen 

Alle Beispiele für die 
40er- und 80er-Serien verwendbar 

  Markt & Technik Verlag



CIP-Kurztitelaufnahme der Deutschen Bibliothek 

Kassera, Winfried: 

C 64 — Programmieren in Maschinensprache : e. Lehr- u. Übungsbuch 

mit ausgew. ROM- u. RAM-Routinen für d. Entwicklung von eigenen 

Assemblerprogrammen / Winfried Kassera ; Frank Kassera. — 
Haar bei München : Markt-und-Technik, 1985. 

ISBN 3-89090-168-9 

NE: Kassera, Frank: 

Die Informationen im vorliegenden Buch werden ohne Rücksicht auf einen eventuellen Patentschutz veröffentlicht. 
Warennamen werden ohne Gewährleistung der freien Verwendbarkeit benutzt. 

Bei der Zusammenstellung von Texten und Abbildungen wurde mit größter Sorgfalt vorgegangen. 

Trotzdem können Fehler nicht vollständig ausgeschlossen werden. Verlag, Herausgeber und Autoren können 

für fehlerhafte Angaben und deren Folgen weder eine juristische Verantwortung noch irgendeine 

Haftung übernehmen. 
Für Verbesserungsvorschläge und Hinweise auf Fehler sind Verlag und Herausgeber dankbar. 

Alle Rechte vorbehalten, auch die der fotomechanischen Wiedergabe und der Speicherung in elektronischen Medien. 

Die gewerbliche Nutzung der in diesem Buch gezeigten Modelle und Arbeiten ist nicht zulässig. 

»Commodore 64« ist eine Produktbezeichnung der Commodore Büromaschinen GmbH, Frankfurt, die ebenso wie 

der Name »Commodore« Schutzrecht genießt. Der Gebrauch bzw. die Verwendung bedarf der Erlaubnis der 

Schutzrechtsinhaberin. 

ISBN 3-89090-168-9 

© 1985 by Markt & Technik, 8013 Haar bei München 

Alle Rechte vorbehalten 

Einbandgestaltung: Grafikdesign Heinz Rauner 

Druck: Jantsch, Günzburg 

Printed in Germany



Inhaltsverzeichnis 

"
P
u
r
 

| 
m
 

2 

1.3 

\w
 

W
e
l
w
 

k
w
 
N
O
N
 

K
a
 

oe
 

e 
e 

@
#
 

#
@
®
 
 
@
 

@ 

O
n
 
W
Y
 
F
W
D
 

Hr 

a 

l 

2. 

2. 

2. 

1 

2 

3 

Zur Programmierung in ASSEMBLER ..cccccccccccccccscsccccccece LF 

Warum nicht bei BASIC bleiben? .... cc cree cen e svc ccccccccceee LD 

Hinweise zum Gebrauch des BUChES ....ceesecccccvees oo... 17 

Hardware/Software-Voraussetzungen weescscccccsscsecscsevees 17 

Aufbau der Beispielprogramme ......ccecevesccsvccccccscee 18 

Noch ein guter Tip coc cccccccncccesrcccccscccccssccsccscseee 19 

Schreibweisen - Vereinbarungen ...scceeeeoeeeseesenrenenennee 2O 

Bewegte Bildschirmob jekte ...cccccccccccccccccccccccccescsceee LD 

Ein Beispiel: "Wendezeigerpinsel", ein Richtungsanzeiger .... 25 

Zielsetzung eeeoeeee#c§#e*enseseeoeesvteeeeesvee@etseteeeoeeevseeeeveeeeweeewet¢teeee @ 25 

Anschluß eines Joysticks 2... ccc cece cc ccc ccrscececees ... 26 

Aufbau des Programms "Ol-pinsel" ..... cece ee eee coc cesesevee 2G 

ASSEMBLER-Beispiel für "Ol-pinsel!" ... ccc cree ewe e ees v vee JU 

Vorbereitungen, Initialisierungen ...........6- cece ew ene . 32 

Zusammenstellung der verwendeten Labels ...........2.- .. 34 

Varileren des ModulS .....ccccccccccoee Cees errr reer ese acceuee 34 

Variable Laufgeschwindigkeit .....cc.crc000. cece eee cece. 34 

Bildschirmobjekte austauSChen 2... cece crcccccccvece coceecee J4 

Bildschirmgestaltung ....... oe .... . cece cece wens 35 

Abweichungen fur die 40/80XX-Gerate ........ cece eee eee .. 36 

Erweiterungs- und Übungsaufgaben eee ee eee eee eee eeeeeees 37 

Erweiterung der Interrupt-Routine — ein Beispiel ............ 39 

Die IR-Routine .. 0. 0 000% ... 1. 1 01 001 0 0101000. “oo .....0 eee . e . 41 

Erzeugung eines Taktes mit der [R-Routine ..........00- u... 42 

Wichtige Adressen des "04-taktmodul" ..... Cece e rece cere cre eens 42 

Ablauf von "04-taktmodul" ..... u... cece eee cene come were seee 43 

ASSEMBLER=-Programm "04—-taktmodul" .......... Cece ence ern. ... 43 

Abstimmung des Taktes ..... Cece ce meee ec eens Cee e rece ec ccene ~- 44 

Eine kleine Testroutine zur Bestimmung der Taktfrequenz ..... 44 

Einstellen des IRQ-Vektors 2... ccc ccc ccc c ccc cc cece cece secee 45



4 Zahlen, Variablen — Formate ...cccccccccccccccccccsccccccccces 49 

4.1 Rechnen mit Ganzzahlen (Integer-—Zahlen) ....ceeeccevccsvececs a1 

4.1.1 Rechnen mit positiven Ganzzahlen ...... cece ccc ccccccvccce . 51 

4.1.2 Negative Ganzzahlen 2... cree ccc cccccvccccesvrvcecescccvece D4 

4.1.3 Subtrahieren von Integerzahlen im positiven Bereich ....... 56 

4.1.4 Subtraktion mit beliebigen Integerzahlen ........ ee ceeeeee 537 

4.1.5 Höhere Rechenarten mit Integerzahlen ......c cee cee ccccccvee 57 

4.1.6 Integermultiplikation mit INTMUL 2.2... cece rere rer cc cer veee 60 

4.2 Arbeiten mit reellen Zahlen 2... cece reece erence nce vec vcvevcece 6l. 

4.2.1 Formate für reelle Zahlen ...... 2. cceeecccccccves cece ee ee 61 

4.2.2 Ubernehmen von gespeicherten Zahlen mit MEMFAC .......+se-- 63 

4.2.3 Erzeugung von reellen Zahlen .......seecccccccces emcee eens 63 

4.3 Zahlenumwandlungen 2... ccc vcvvscccoes een rennen nenn 65 

4.3.1 Integer- in Realzahlformat mit INTFLP ......... cee ccwceeee 65 

4.3.2 Reelle Zahl in Integerzahl mit FLPINT 2... cece ere eecae 65 

4.3.3 Umwandlung eines Strings in eine reelle Zahl mit STRFAC ... 66 

4.3.4 Umwandlung einer Zahl in einen String mit FLPSTR .......... 67 

4.3.5 (A)-Inhalt in ASC-Code mit BYTHEX „oereeeeeeseererenenne nee 68 

4.3.6 ASC-Code in Byte umwandeln mit HEXBYT .... sv eceeeeeeeenen ne 68 

4.3.7 Positive Integerzahl in Realzahl mit ADRFLP ............... 68 

Umwandlungs-ROM-Routinen (Zusammenstellung) .....ceecccccccccovees 69 

> Arithmetik mit ROM-Routinen 2.2... ccc cccccccccccccccccccccceee 71 

5.1 Durch 10 dividieren mit FDIV1O 2... ccc ccc cree cece ccc cen nec aee 74 

5.2 Mit 10 multiplizieren cece ewww ccc c ren re nner nsencecsessssseese 75 

5.3 Addieren des Werts 0.5 mit ADDO.5 ...... ccc ec cc cc ee eee cee eee 75 

2-4 Addieren beliebiger Zahlen mit ADD .... creer e cere cece cvnvvcce 76 

5.5 Addieren beliebiger Zahlen mit M-ADD .......- cee reevccccvces 76 

5.6 Subtrahieren Mit M-SUB 2... cece ccc cc cc rere cere r ener nance cervves 77 

5.7 Vorzeichenwechsel mit FACMIN .. cece cccccccccrcnevevvccccvccs 78 

5.8 Betrag einer Zahl mit FACABS 2... ccc ccc cr cece ccc ccccnvcccene 79 

5.9 Multiplizieren mit M-MULT 2... cece ccc nnn ence ccc c nner vcccece 79 

5.10 Division mit M-DIV wc. ccc wcrc ccc cnc ccc ccc ccc ccrenenvcecccceces 80 

5.11 Kehrwert bilden mit M-DIV ... cece c ccc c cece errr vv vrvvvccccvees 80 

5.12 Quadratwurzel ziehen mit SQRFAC ..ccccccccvecsccveccecsvcces . 81 

5.13 Potenzieren und Radizieren mit POTRAD ......vveeeeeeeeeernnn. 81 

5.14 Logarithmieren mit, LOGNAT 2... errr e cc crc vec cc ccvcccsvecccnee 8 3 

5.15 Exponentialrechnen mit EHÜCHF 2... ce ccc cree ccc cence cere cc cnne 83



5.16 Erzeugen einer Zufallszahl mit ZUFALL 2... cc cee cee cee eee ee eens 84 

59-17 Winkelfunktionen mit SINUS, COSIN, TANG 2... ccc eee eee eee een eee 85 

5.18 Umkehrung der Winkelfunktionen mit ARCTAN ..ccereneeceeeecvess 87 

5.19 Weitere Arcusfunktionen mit ARCTAN 2... c cece ccccvvvevccccccces 88 

5.20 Polynomauswertung mit POLNDM 2... cece ccc c cece cer r cnr vcccccens 89 

5.21 Wertetabellen fur Funktionen mit POLNOM 2.2... cece ween ccncces 91 

5.22 Vergleichsoperationen mit CMPFAC 2... cece cece cc enn ncn v ec vcces 94 

5.23 Vorzeichenprufung mit SGNFAC 2... cc cece ern nec c cc cccccccsccns 96 

Arithmetik-ROM-Routinen (Zusammenstellung) ...ccececccccsccccccecs 98 

6 Bildschirmoperationen cccccccccccccccccccccccccccsccccccccceelOl 

6.1 Ausgabe einer Integerzahl mit INTOUT ............. cece ev oon 103 

6.2 Ausgabe einer reellen Zahl mit FLPOUT ..........2. ee eee wenn 103 

6.3 Ausgabe eines ASCII-Zeichens mit CHROUT (BSOUT) ............. 104 

6.4 Vorbereitete Zeichenausgaben 2... ce ceerecevevvccvccvcccvecces 105 

.>5 Cursorposition festlegen 2... eee r ccc ccc ner rr errr ncn rncccevecs 105 

.5.1 CUPrSOrpOSItiON C64 Lowe weer cern c nc evervenvevevvccccvevves 105 

6.5.2 Cursorposition 40/8OXX cove wcccccccnccccscreccrssesccesecens 106 

6.6 Ausgabe eines Strings mit STROUT 2... ce eee cece eee er eee eee 109 

6.7 Umwandlung des FAC-Inhalts in einen String mit FACSTR ....... 109 

6.8 Anwendung: eine PRINT USING-Routine 2.2... cece eee rev eee ccone 111 

6.8.1 Ablauf-Struktur der PRINT USING—Routine ........-. ce ewees 113 

6.8.2 Struktogramm zur PRINT USING-Routine 2... ccc cece cece eee c nee 118 

6.8.3 ASSEMBLER-Modul "5l-printusing" ...c cece eee ccc ccc cccccccecs 119 

6.9 Ausgabe von Hexzahlen ...... 2c ccc crn rr cece ccc cerccccccens 123 

6.9.1 Byte in der Hexform ausgeben mit BYTOUT ................... 123 

6.9.2 Vierstellige Hexzahl (Adresse) ausgeben mit ADROUT ........ 123 

6.9.3 Zwei Zeichen ausgeben mit QUIZ 2... cece eer c ence e rere ccc vnce 124 

6.10 Bewegungssimulation - eine Kompaßanzeige .......cc ce cceecvees 124 

Ausgabe-Routinen (Zusammenstellung) ....»ceeeererereeereree nern une 133 

7 Eingabe-ROM-Routinen ........ .. ... ..e...e.ee...—.......,,..,,.0.,—. .....135 

7.1 Eingabe eines Zeichens über die Tastatur mit GETIN .......... 137 

7.2 Künstlicher Cursor mit GETIN und CHROUT 2... ec ccc ce eee eee eee 138



7.3 Zahleneingabe (reell) mit GETIN und STRFAC ......... cee wewees 141 

7.4 Eingabe mit BASIN ..oocccceceeeeee ee nenne 143 

7.5 Eingabe einer Zeile mit INLINE 2... ccc cw ccc cw ccc cece ccc cc ccce 145 

7.6 Eingabe von Hexzahlen mit HEXINB und HEXINA ....--. 2c ee weees 148 

Eingabe-ROM-Routinen (Zusammenstellung) ..... Cece cere cee cen eeeee 149 

8 Verwaltung der Variablen ......cccccccccccccccccccccccccccee celal 

8.1 Uberblick iiber die BASIC-Variablen ...... ccc cece eee e eee e eee 153 
8.1.1 Lage der Variablen im RAM ......ee eee ewer nv ccne cece 0. 153 

8.1.2 Variablen-Arten ....ss2cceeeeeeeeeee een rer e rer nenenn nee 154 

8.1.3 Struktur der Variablen ..... een nn. 154 

8.2 Einrichten einer Variablen .......ccccecccrcccccces eee e ee eee 154 

8.2.1 Festlegen des Bereichsanfangs ...... eee e ccc ees sss esessssee 156 

8.2.2 Suchen oder Einrichten einer Variablen mit PIRVAR ......... 158 

9 Bedienung von Peripherie 2... ccccccccccccccccccccccccccccccce el Gl 

9.1 Datentransfer uber den IEC- bzw. den seriellen Bus .......... 163 

9.2 Umschaltungen des seriellen bzw. des (IEC)-Bus .......... ....163 

9.2.1 Datenübernahme mit TALK „ve seeeeeree rer n ne 165 

9.2.2 Datenausgabe mit LISTEN ....oercoreeeeerreeeen nennen nenne 166 

9.2.3 Beispiel: "druckerausgabe" mit LISTEN, BSOUT, CLALL ....... 166 

9.2.4 Modul "druckex": Drucker als Schreibmaschine ...........4.. 168 

9.2.5 Vorbereitung von Datenubertragungen mit OPEN ...........08. 171 

9.2.6 Ausgabevorbereitung mit CHKOUT 2... cece cece cence cece reserves 171 

9.2.7 Eingabevorbereitung mit CHKIN 2... ccc ccc ccc cc cece cree eves 172 

9.2.8 Standard-Ein/Ausgabe herstellen mit CLRCH ................. 172 

9.2.9 Dateien schlieBen mit CLALL 2... ccc ec ccc errr ncn nace cece eee 172 

9.2.10 SchlieBen einer Datei mit CLOSEA und CLOSEL ............... 173 

9.3 Vereinfachungen zur Dateibehandlung ......ccceccccccceveccces 173 

9.4 Behandlung von Dateien —- Beispiele 2... cece ccc c cece cere ccvee 174 

9.5 Arbeiten mit SEQ-DatEien wee ccc cccccccccncccscccscsccccvecees 175 

9.5.1 Öffnen einer Datei .............-- wee cece reece eee eee e ences 175 
9.5.2 Beispiel: Schreiben mit CHKOUT und BSQUT ...............26.% 177 

9.3.3 Beispiel: SEQ-Lesen mit CHKIN und BASIN .......2cccccccceee 178 

9.5.4 Beispiel: SchlieBen der Datei mit CLOSEA und CLOSEL ....... 179



9.5.5 Verknüpfen der SEQ—Routinen 2... ccecresceccccecces cece cee eee 180 

9.6 REL-Dateien - Schreiben/Lesen mit OUTBUS/INBUS ...... cee cece 181 

9.6.1 REL-Dateien auf dem C64 ..... cece eee eer err ere cees eee scene 181 

9.6.2 REL-Dateien auf 40er- und 80er-Geraten ......... .oeeeeeeen..1l90 

9.7 Laden eines Programmes mit LOAD und LOADXX ........... ...0...196 

9.8 Anwendung: Modul zum Nachladen von Programmen ...... cee eee ..197 

9.8.1 Das Maschinenprogramm "Bl-loadmodul" ........ ccc ce ccnceeess 198 

9.8.2 BASIC-Hilfsprogramm zur Übernahme von Maschinenteilen .....199 

9.9 Modul "84~quickdirector" mit TALK, INBUS, UNTALK ............ 202 

9.10 Modul "85-printdirector" (Floppy-Drucker) .......ceeecccceees 208 

9.11 Direktzugriffe auf Floppy: Modul "86-fastdisk" .............. 216 

Adressen und ROM-Routinen zur Ein/Ausgabe ........... ccc cece eee ..218 

10 Maschinenmodule in BASIC-Programmen .....cccccccccccccccccsel2 2) 

10.1 Übernahme von BASIC-Parametern ...... ren enne cece ee eee 2-225 

10.2 Zeichen aus dem BASIC-Text holen mit CHRGET und CHRGOT .....226 

10.3 Byte-Auswertung mit GETBYT und VALBYT .........c cee cee ones ..228 

10.4 Eine Anwendung: PRINT AT-Routine mit Fehlermeldung ...... 22 255 

10.5 Zu den Fehlermeldungen 2... cece ccccccsvvvvevccccccsverscceee 235 

10.6 Zur Schreibweise der BASIC-Befehle ..... cece reer eee e eevee ..236 

10.7 Auswertung mit VAREAL ...... u... rennen nen eee eee e258 

10.8 Auswertung mit VALKLA wc ccc ccc ccc ccc cere nec cr rece cccccccens 239 

10.9 Auswertung von Integerzahlen mit VALINF und INTADR ......... 239 

10.10 Auswertung mit VALPAR, VALSTR, PARFLG und TYPFLG ........ ...241 

10.11 Übernahme einer BASIC-Variablen mit GETVAR .........-2-eeee- 243 
10.12 Ein vielseitiges Modul: "98-onstring” ........ceceeee ccc cece 244 

10.13 "99-onstring" fur 40/80XX-Gerate ...........2.. cece ewes eeeee 250 

10.14 Verknüpfen von Modulen — zwei Anwendungen ......-.seccccceee 254 

10.15 Modulverknüpfung mit einer Sprungleiste ........cececccces ..258 

BASIC-Text-Routinen und -adressen (Zusammenstellung) ......-..e0e. 261



11 

ll. 

11.2 

ll. 

11.4 

11.5 

11.6 

11.7 

11.8 

11.9 

11.10 

eu
 

NO
 

a
o
 

N
D
)
 

.o
 

© 

D 
m 

bt
 

No
 

Ww 

~— NO
 

>
 

NO
 

fa
r)

 

i)
 

_
 

No
 

ar
 

NO
 

ji
 

NO
 

m
 

NO
 

pun
s 

NO
 

an
 

NO
 

££
 
F
P
F
 

F
H
F
 
F
K
L
 

SL
 

Oo
 
O
N
 
W
W
 
F
W
D
 

_
 

NO
 

a
 

N
 

—
 

13 

14 

15 

16 

17 

10 

Diverse ROM-Hilfen — Anwendungen ....-ccccccccccccccccccces e L609 

BASIC-Start vom Maschinenprogramm aus mit RUN .....2c.eeeeee 26/ 

Warmstart mit MGOTO ab einer bestimmten Zeilennummer ....... 267 

Startadresse einer BASIC-Zeile suchen mit BLINAD ........... 270 

Umschalten von Text- auf Graphikmodus .......ccccccccccccves 270 

Abfrage der STOP-Taste mit STOPRY und STOPO ................ 272 

Sprung in den READY-Modus mit MREADY ......ccc ccc cccccrecces 272 

Verschieben von RAM-Bereichen mit TRABLO .....vsccceeeeennee 272 

Abspeichern eines Datenbereichs mit MSAVE .......ccceeccccee 274 

Laden eines Programms mit veranderter Startadresse ......... 275 

Speichern eines Datenblocks mit variabler Anfangsadresse ...279 

ASSEMBLER-Kurzschule ........... ccc ccc cc ccc ccc cc cccce on.... 283 

Die Register des 65XX-PrTozesSSOTS ...veerereeeererernerennn nn 285 

Das Prozessor Statusregister P .....osceereeeeeeeeenenereenne 285 

Beeinflussung der Flags durch Befehle ......vscecceeeeeennne 285 

Der Befehlssatz in ASSEMBLER 2... ccc ccc cere crc c crn vcccvvccce 286 

Eingabebefehle (Ladebefehle) ....ccececccccccnccccccccvees 287 

Ausgabebefehle (Speicherbefehle) .....cccceccccrccsvescees 288 

Arithmetische Verknüpfungen 2... cr erecccccccrerecrcrecccccs 289 

Logische (bitweise) Verknüpfungen ......cccccccccvecceceee 291 

Verschiebebefehle (bitweise) ... ccc cec ween cers ccc cccccevee 292 

Vergleichsbefehle 2... ccc recccccvcncveccccccce cece ccc eens 293 

Transportbefehle zwischen den Registern 2... cc eee cesevvece 294 

Sprungbefehle 2... ccc wc ncnnccc ccs ncccvccrvccesesvsecesceces 295 

Beeinflussung der Flags des Statusregisters .............6. 296 

O Luckenfuller .......... Cem m me ccc re emcee ere cece eee wccces 296 

ROM-Routinen -— thematisch, mit Kurzbeschreibung ............297 

ROM-Routinen - alphabetisch 2... cccccccccccccccccccccccsece ILD 

Wichtige Adressen - alphabetisch ....-....o.o..o..000.0......319 

StichwortverZeicChniS ...ccccwccccccccccccccccccccccccccccccce dae 

Übersicht weiterer Markt&Technik-Biicher.......cccccee .



Vorwort 

Dieses Buch ist zunächst entstanden als Sammlung von Programmier- 

schritten in ASSEMBLER, die sich bei der Lösung von Simulations- 

problemen, Bildschirmgestaltung, Textverarbeitung usw. auf COM- 

MODORE-Geräten ergeben hatten. Wir haben dann den Themenkreis er- 

weitert und so gut wie alle Punkte erfaßt, die für Maschinenpro- 

gramme relevant sind. 

Als Schwerpunkt hat sich dabei der Einsatz der betriebsinternen 

ROM-Routinen herauskristallisiert, der die Erstellung von ASSEM- 

BLER-Programmen wesentlich vereinfacht. Denn was es schon gibt, 

braucht man nicht noch einmal erfinden. 

Wir sagen Ihnen aber nicht nur, wo die einzelnen Einsprungadres- 

sen liegen (das tun viele Veröffentlichungen), sondern erklären 

auch die Zusammenhänge anhand von sehr einfachen bis sehr an- 

spruchsvollen Beispielen. Unser Prinzip heißt hier: Vom Einfachen 

zum Schweren. Und damit ergibt sich ein methodisch sinnvoller und 

für den Leser leicht nachvollziehbarer Aufbau. 

Alle vorkommenden Routinen wurden mehrfach von Frank Kassera ge- 

testet und verbessert, der zu diesem Buch auch eine Diskette für 

den C64 mit allen beschriebenen Programmen zusammengestellt hat. 

Trotz aller Sorgfalt und Mühe, die wir uns beim Schreiben, Testen 

und Korrigieren gegeben haben, ist es nicht ganz auszuschließen, 

daß sich in den Text der eine oder andere Jipp- oder Druck- 

fehler eingeschlichen hat, der uns trotz mehrfacher Durchsicht 

entgangen ist. Wir versichern Ihnen aber, daß alle vorgestellten 

Programme einwandfrei laufen: Nicht ein einziges wurde nur so 

"auf Papier" entwickelt. Sollten Sie daher auf Unstimmigkeiten 

stoßen, dann könnte eventuell die Unbarmherzigkeit des Druckfeh- 

lerteufels dahinterstecken. Für einen entsprechenden Hinweis - 

vielleicht schon mit einem Verbesserungsvorschlag - wären wir 

Ihnen dankbar. 

Winfried Kassera, Frank Kassera





1 
Zur Programmierung 

In ASSEMBLER





1 Zur Programmierung in Assembler 

1.1 Warum nicht bei BASIC bleiben? 
  

Das COMMODORE-BASIC ist für den (64 und bis zu den 80XX-Geräten 

nicht gerade üppig ausgestattet. Trotzdem läßt sich diese Conm- 

putersprache relativ einfach lernen und anwenden. Aber bald wird 

der BASIC-Programmierer feststellen, daß er etliche Ideen nicht 

mehr verwirklichen kann, wenn es darum geht, möglichst rasche 

Abläufe zu erzeugen. Vor allem bei der Erstellung von Spielen 

und bei der Arbeit mit Dateien läuft so manches entnervend lang- 

sam ab. 

Spezielle Programmiersprachen für bestimmte Zwecke schaffen zwar 

Erleichterungen, können aber neue Probleme aufwerfen. 

Wer also gleich "Nägel mit Köpfen" machen will, der stürzt sich 

in das Abenteuer Maschinensprache und hat damit die schnellste 

aller Computersprachen gewählt. Wem es dann noch zu langsam geht, 

der braucht einen neuen Computer mit einem schnelleren Mikropro- 

zessor. 

Maschinensprache besteht eigentlich nur aus Zahlen, genauer ge- 

sagt aus Speicherinhalten in Byteform, wobei jeder möglichen 

Zahl ein Befehl zugeordnet ist, der wieder darüber entscheidet, 

ob die nächste Zahl ein Befehl oder eine Speicherstelle o.ä. ist. 

Damit man nicht umständlich mit diesen sog. OP-Codes operieren 

muß, setzt man ASSEMBLER-Programme ein, die praktisch eine in- 

direkte Programmierung in Maschinensprache erlauben, indem sie 

die Befehle in abgekürzter Form als Buchstabenfolge annehmen und 

in den entsprechenden Code verwandeln. 

Mit einem Disassembler-Programm kehrt man das Ganze wieder um: 

Die Zahlenfolge eines Maschinenprogramms wird in abgekürzten 

Befehlen dargestellt. Die Abkürzungen lassen durch ihre Zeichen- 

folge den entsprechenden Befehl erkennen. Man bezeichnet sie 

mit dem zungenbrecherischen Begriff "Mnemonics". 

Um die folgenden Kapitel zu verstehen, sollten Sie daher neben 

ordentlichen BASIC-Kenntnissen auch schon einmal ein paar er- 

folgreiche Versuche in ASSEMBLER unternommen haben. Wenn nicht,



dann können Sie zwar so nach und nach durch die einzelnen Kapitel 

hindurch Ihre Kenntnisse erweitern, werden aber an einigen Stel- 

len hart kämpfen müssen. 

Vorsichtshalber finden Sie am Schluß des Buches in Kapitel 12 

eine kurze, komprimierte ASSEMBLER-Schule, die Ihnen immer dann 

weiterhelfen soll, wenn Sie mit den ASSEMBLER-Befehlen und vor 

allem mit den verschiedenen Adressierungen Schwierigkeiten be- 

kommen sollten. 

Sollten Sie jedoch noch nicht in der Lage sein, Bits und Bytes 

zu unterscheiden, dann empfehlen wir Ihnen, dieses Buch noch 

etwas zurückzulegen und sich erst einmal gründlich mit dem bis- 

her vernachlässigten Teil Ihres Computer-Handbuchs vertraut zu 

machen. 

Wenn Sie aber schon ein As in BASIC sind, kommt Ihnen Ihr dort 

erworbenes Wissen sicher auch bei unseren Themen sehr zugute. 

Ihr BASIC-Wissen sollten Sie aber trotzdem weiter ausbauen, 

denn die meisten guten Programme bestehen aus einer gesunden 

Mischung zwischen einer höheren Sprache (BASIC ist eine) und 

Maschinenteilen, die immer dort eingesetzt werden, wo schnell 

und oft gearbeitet werden muß. 

Oft besteht das Rahmenprogramm aus BASIC und der harte Kern 

lauft "in Maschine". Oder aber es werden von BASIC aus immer 

wieder die notwendigen Module aufgerufen. 

wir werden uns diese Möglichkeiten im Laufe des Textes anschauen. 

Zusammengefaßt: Wir werden die Verbindung zu BASIC auf keinen 

Fall abreißen lassen. Im Gegenteil: Unsere in ASSEMBLER geschrie- 

benen Maschinenprogramme werden einerseits das COMMODORE-BASIC 

unterstützen und verbessern, andererseits werden die bereits vor- 

handenen Routinen in Ihren ROMs unsere ASSEMBLER-Programmierung 

erleichtern. 

Sie werden sehen, es bereitet nicht nur Mühe, sich durch die ein- 

zelnen Kapitel durchzunagen, sondern es macht auch Spaß, mitten 

in den ROM-Topf zu greifen und die herausgefischten Nüsse zu 

knacken.



1.2 Hinweise zum Gebrauch des Buches 

1.2.1 Hardware/Software-Voraussetzungen 

Alle Programme, die Sie in den folgenden Kapiteln finden, sind 

zunächst für den normalen COMMODORE C64 geschrieben. Mit nur we- 

nigen Abänderungen laufen sie fast alle auch auf den 40/80XX-Ge- 

räten. Sie benötigen dazu keinerlei Erweiterungen oder Ergänzun- 

gen. 

Was Sie haben sollten ist also: 

-— das normale Grundgerät ([64,40XX,80XX) 

- eine Floppystation (1541 bzw. 4040/8050 o.ä.) 

-— evtl. einen Joystick 

-— evtl. einen Drucker 

Wir können nicht auf alle Spezialitäten des (64 eingehen. Doch 

mit dem hier erworbenen Grundwissen sind Sie in der Lage, auch 

Sound und Graphik in ASSEMBLER zu programmieren, da die PEEK- 

und POKE-Befehle aus BASIC für die Umsetzung in ASSEMBLER wohl 

kaum mehr Schwierigkeiten bereiten dürften. Eine Unterstützung 

durch ROM-Routinen gibt es hier ohnehin (leider) nicht. 

An Software benötigen Sie auf jeden Fall ein Assembler/Disassem- 

bler-Programm. Alle Ausführungen sind so gehalten, daß Sie auch 

mit den einfachsten Versionen arbeiten können. Komfortabel wäre 

natürlich ein Editor, der Ihre Labels aufnimmt und assembliert. 

Notwendig ist er aber nicht. 

Es ware empfehlenswert, wenn Sie ein kommentiertes ROM-Listing 

für Ihr Gerät auftreiben könnten. Wir haben Ihnen zwar die Mühe 

abgenommen, die einzelnen - auch weniger bekannten - Routinen 

herauszusuchen und zu analysieren. Doch wenn Sie selbst nach- 

vollziehen wollen, was dort geboten wird, sollten Sie dort nach- 

schlagen. 

Zumindest setzen wir voraus, daß Sie das entsprechende Handbuch 

zu Ihrem Rechner besitzen, wo z.B. die Tabellen für die jewei- 

ligen Codes der ASCII-Zeichen, der Tastatur oder der Bildschirm- 

zeichen stehen.



1.2.2 Aufbau der Beispiel-Programme 

Wir haben uns lange überlegt, ob wir die Adressen als Dezimal- 

zahlen oder als Hexzahlen schreiben sollen und haben uns für die 

ersteren entschieden, weil wir glauben, daß manchem Unsteiger die 

Hexzahlen Probleme bereiten. (Über kurz oder lang werden Sie sich 

aber trotzdem daran gewöhnen müssen.) 

Wem das nicht gefällt, der findet in den Zusammenstellungen der 

Routinen und Adressen alle Angaben in beiden Zahlensystemen. 

An dieser Stelle sei aber doch kurz auf die Hexzahlen eingegan- 

gen, da die Dezimalschreibweise eben auch Nachteile hat: 

Nehmen wir an, die Zahl 17000 wird in der Form LO/HI benötigt. 

Dann erscheint sie in Dezimalschreibweise als 104/66, denn es 

gilt, daß das HI-Byte den 256-fachen Wert des LO-Bytes hat: 

104 + 66 mal 256 = 17000 

In Hexschreibweise ware das einfacher, denn 17000 heißt dort 

$4268. Zerlegen wir in LO/HI, dann ergibt sich ganz einfach: 

L0=-$68 und HI=$42. 

Alle Programme sind mit entsprechenden Kommentaren versehen, die 

es Ihnen ermöglichen, solche Zerlegungen nachzuvollziehen, wenn 

Sie darin noch nicht so fit sind. 

Dabei haben wir uns an folgendes Prinzip gehalten: 

- Die ersten Programme sind am ausführlichsten gegliedert und be- 

schrieben. 

- Die wichtigsten Programme - also die, an denen man viel lernen 

kann - gehen auch auf Einzelheiten ein, wenn sie weiter hinten 

im Buch stehen. 

- Wichtige ASSEMBLER-Befehle, von denen wir wissen, daß sie nicht 

gern von Anfängern verwendet werden, werden extra erläutert. 

- Fast alle Programme haben Modulcharakter. Das bedeutet, sie 

laufen in jedem RAM-Bereich, ohne daß irgendwelche Adressen 

verändert werden müssen. Wir gehen später näher darauf ein.



- Wir verwenden z.T. LABELS, die nicht der COMMODORE-Schreib- 

weise entsprechen, wenn Sie durch deutsche Abkürzungen ver- 

ständlicher wirken. 

- Wichtige Stellen, Adressen, Labels usw. werden an Ort und 

Stelle noch einmal wiederholt, so daß Sie nicht lange zu blät- 

tern brauchen. Wenn auf umfangreichere Zusammenhänge nicht ver- 

zichtet werden kann, finden Sie einen Hinweis zum entsprechen- 

den Abschnitt. 

Wenn Sie nicht nur nachvollziehen wollen, was wir Ihnen hier 

bieten, dann sollten Sie eigene Ideen zur Problemlösung ent- 

wickeln. Meist gibt es eine fülle von Möglichkeiten. 

Wir haben nicht immer die beste und eleganteste ausgesucht, 

sondern haben mehr Wert auf eine leichte Verständlichkeit der 

Sachverhalte gelegt. 

Wenn Sie erst einmal so weit sind, daß Sie bei dem einen oder an- 

deren Programmvorschlag sagen können "Mensch, das ginge ja noch 

viel einfacher", dann haben Sie einen Riesenschritt in die rich- 

tige Richtung getan. Aber, aber, aber: Probieren Sie bitte auch 

Ihre Version aus, bevor Sie sich als Meister fühlen. Denn oft 

genug hat man sich zu früh gefreut und die anscheinend bessere 

Lösungsmöglichkeit funktioniert nicht. 

Sie brauchen sich aber nicht zu grämen, uns ist es bei der Er- 

stellung dieses Manuskripts genauso ergangen. 

Meist sind es die Randbedingungen, die einem ganz schön Kopfzer- 

brechen bereiten können. Das Hauptproblem hat in den meisten Fäl- 

len einen einfachen Algorithmus (Verfahren zur Lösung logischer 

Probleme). 

1.2.3 Noch ein guter Tip 

Maschinenprogramme haben die Eigenart, daß sie keine Fehler ver- 

tragen. Bemühen Sie sich daher von vornherein um eine saubere und 

konzentrierte Arbeitsweise. Es macht wenig Spaß, wenn ein Pro- 

gramm nicht läuft, nur weil man z.B. 17268 statt 17286 eingetippt 

hat. 

Tückischerweise verabschiedet sich der Computer klammheimlich und 

ist in vielen Fällen nur noch durch Aus- und Einschalten wieder 

zum Leben zu erwecken. Unser Programm hat er natürlich vergessen.



Beherzigen Sie daher folgenden Rat: 

Jedes Programm wird zuerst abgespeichert und dann ausprobiert! 

Doch nun genug der Vorreden, tauchen wir ein in das Innenleben 

unseres elektronischen Sklaven. Aber passen Sie auf, daß er nicht 

anfängt, Sie zu terrorisieren!!! 

1.3 Schreibweisen - Vereinbarungen   

Für den Text und die Programmbeschreibungen legen wir folgende 

Vereinbarungen fest: 

- Ein Label ist immer eine Adresse im ROM oder RAM des Adressbe- 

reichs. Wir drucken es fett in der Form LABEL. 

Beispiel: jsr FLPOUT 

Bedeutung: Sprung zur Adresse (43708), mit FLPOUT=43708 

-— Numerische Adressangaben schreiben wir in Klammern, um sie von 

Zahlen, Werten usw. eindeutig zu unterscheiden, sofern sie 

außerhalb von ASSEMBLER-Programmen stehen. 

Beispiel: ... und springen nach (17800) ... 

Bedeutung: Fortführung des Programms bei Adresse (17800) 

- Inhalte von Adressen, Adressbereichen, Registern usw. schreiben 

wir in eckige Klammern. 

l. Beispiel: <FAC>=20 

Bedeutung: Wert des FAC ist 20 

2. Beispiel: <A>=255 

. Bedeutung: Inhalt des (A)-Registers ist 255 

-— Einfache Pfeile in Programmen bedeuten eine Wenn-Dann-Folge. 

Doppelpfeile bedeuten: ... dann Sprung nach ... 

Beispiel: cmp #80 ; vergleiche (A) mit 80 

beq 10000 ; richtig ===> Sprung nach (10000) 

rts ; falsch ---> Ende



- Zerlegungen von Adressen erfolgen immer in der Reihenfolge 

LO/HI, wenn nicht ausdrücklich etwas anderes angegeben ist. 

Beispiel: 18000=80/70=$50/46 

Berechnung: 80+(70mal256)=80+17920=18000 

- Bei Hexzahlen stellen wir das Zeichen '$' nur einmal voran. 

Beispiel: <$20/21> 

Bedeutung: Inhalt der Adressen ($20)=L0 und ($21)=HIl 

- Alle Programmbeispiele sind fortlaufend durchnumnmeriert. Der 

Programmname steht in Anführungszeichen. 

Achtung: 

Alle Programmbeispiele für den C64 wurden für die neue Version 

des Betriebssystems geschrieben, bei der das zusätzliche Belegen 

des Bildschirm-Farbspeichers nicht mehr notwendig ist, wenn 

direkt in den Bildschirmbereich geschrieben wird. 

Beispiel für die neue Version: 

lda #42 ; Code für Zeichen "*" 

sta 1224 ; Ausgabe auf Bildschirmadresse (1224), 

also auf die 200. Stelle (1024+200) 

Die alte Version erfordert folgendes Vorgehen: 

lda #43 ; Zeichencode 

sta 1224 ; Ausgabe auf Bildschirmadresse (1224) 

ldx #2 ; Farbe Nr.2 (Beispiel für ROT) 

stx 55496 ; in Farbspeicher (55296+200) 

Anmerkung: Bereich des Farbspeichers: (55296) bis (56295)





2 
Bewegte Bildschirmobjekte





2 Bewegte Bildschirmobjekte 

2.1 Ein Beispiel: Wendezeigerpinsel 
  

Bei Computerspielen oder Simulationsprogrammen ist es in vielen 

Fallen erforderlich, daß man über den Bildschirm Figuren oder 

Gegenstände wie Flugzeuge, Fahrzeuge, Zeiger o.ä. laufen läßt. 

Die Steuerung dieser Objekte erfolgt dabei entweder über die 

Tastatur (meist über den numerischen Teil) oder aber über einen 

Joystick. 

2.1.1 Zielsetzung 

a) Ein Quadrat soll über den Joystick nach links und nach rechts 

gesteuert werden können. 

b) Die Ausschläge dieses Quadrats sollen rechts und links be- 

grenzt werden. 

c) Die Geschwindigkeit der Wanderung der Rechteckfigur soll be- 

einflußt werden können. 

d) Die Stellung des Quadrats muß jederzeit abfragbar sein. 

Anwendungsmöglichkeit: 

z.B. Anzeigegerät für die Drehbewegung eines Flugzeugs (sog. 

Wendezeiger). Je größer der Ausschlag, desto höher die Drehge- 

schwindigkeit. 

Das bewegliche Quadrat stellt in diesem Fall einen Zeiger (den 

sog. Pinsel) dar. 

Art und Lage des Programms: 

reines Maschinenprogramm beginnend bei Adresse 18000. 

(Die Anfangszahl ist willkürlich gewählt.) 

Wichtige Adressen und ihre Bedeutung 

  

Label C64 40/80XX 
' t 

KEY 203=$cb 151=$97 (SK:155=$9b) 

Code der momentan gedrückten Taste 

<203>=64 <151>=255 

---> keine Taste gedrückt



DDRA 56322=$dc02 59459=$e843 

Datenrichtungsregister 

PADAT 56320=$dc00 (C-Port 2) 59471=$e8f4 

56321=$dce0l (C-Port 1) 

Adressen zur Joystickabfrage 

freie Zeropage-Adressen (nicht bei Kassettenoperationen! ): 

163...180=$a3...b4 177...195=bl$...c3 

Bandpuffer 828...1019= 826...1017= 

$033c...03f7 $033a...03f9 

2.1.2 Anschluß eines Joysticks 

Beim (64 verwenden wir den Controll-Port 2 zum Änschluß eines 

Joysticks (ohne Verzögerung). 

Um den Joystick abzufragen, wird das Datenrichtungsregister 

DDRA auf "Empfang" geschaltet. Das geschieht dadurch, daß 

wir diese Adresse mit O belegen: <DDRA>=0. Nach dem Einschalten 

ist dies ohnehin der fall, so daß wir uns diesen Befehl eigent- 

lich sparen können. 

Die Abfrage nach der Stellung des Joysticks erfolgt über die 

Datenadresse des Ports PADAT. Beim C64 ist dies (56320)= 

($dc00) bei Port 2. 

Die Joysticks sind so gebaut, daß sie immer einen oder zwei Pins 

des Control-Ports mit Masse kurzschließen und damit die Datenlei- 

tungen auf LO legen. 

Vom C-Port 2 werden die ersten 7 Bits des Datenregisters beein- 

flußt. Erfolgt kein Ausschlag, dann stehen alle Bits auf 1: 

<56320> = Olllllllg = 127. Das heißt also, die Adresse 

(56320) wird mit Byte 127 belegt. 

Schauen wir uns die anderen Joystickausschlage der Vollstandig- 

keit halber an (Standard-Joystick): 

OBEN (Nord): 01111110 = 126 (Bit O gelöscht) 

RE/O (Nordost): 01110110 = 118 (Bit O und 3 gelöscht) 

RECHTS (Ost): 01110111 = 119 (Bit 3 gelöscht) 

RE/UN (Südost): 01110101 = 117 (Bit 1 und 3 gelöscht) 

UNTEN (Süd): 01111101 = 125 (Bit 1 gelöscht)



LI/UN (Südwest): 01111001 = 121 (Bit 1 und 2 gelöscht) 

LINKS (West): 01111011 = 123 (Bit 2 geldscht) 

LI/O (Nordwest): 01111010 = 122 (Bit O und 2 geldscht) 

Feuerknopf : 01101111 = 111 (Bit 4 gelöscht) 

Selbstverständlich sind auch andere Knüppelversionen mit ab- 

gewandelten Schaltungen möglich. 

Mit einem einfachen Test lassen sich im Zweifelsfall die Joy- 

stickeingaben überprüfen: 

100 ' joystickabfrage port 2 / c64 

200 print peek(56320),:goto 200 

Nach dem Programmstart mit RUN bewegt man den Joystick in die 

gewünschte Richtung und erhält die Belegung des Datenregisters. 

Wir können jetzt brav die Joystickeingabe mit den einzelnen Byte- 

Werten vergleichen, aber es geht auch schneller: 

In unserem Fall erkennen wir, daß bei jeder Rechstbewegung auf 

jeden Fall das Bit 3, bei jeder Linksbewegung das Bit 2 auf Null 

steht. 

Das vereinfacht uns später die Abfrage nach "rechts" oder 

"links", wenn wir die Bit-Operationen "AND" oder "BIT" verwenden. 

An dieser Stelle gehen wir deshalb etwas näher auf diese Verknüp- 

fungen ein: 

Finden wir in (56320) einen Wert vor, dann verknüpfen wir ihn 

mit AND #8, um ihn zunächst auf "rechts" zu überprüfen. Das fol- 

gende Beispiel nimmt an, daß 121 (li/un) aufgenommen wurde. 

In Bit-Schreibweise sieht das so aus: 

  

01111001 (=121) lda 56320 

and 00001000 (= 8) and #8 

Ergebnis: 00001000 (= 8) 

(Bei der bitweisen Operation AND wird nur dann ein Bit auf 1 ge- 

setzt, wenn beide Operatoren an dieser Stelle auf 1 stehen.) 

Überprüfen wir nun das Z-Flag, das immer dann gesetzt wird, wenn 

die letzte Operation mit Null endete, dann ist es in unserem fall 

nicht gesetzt. Dies können wir zur Folgerung nehmen: 

Z-Flag nicht gesetzt ---> kein Rechtsausschlag 

Anschließend erfolgt in gleicher Weise die Überprüfung auf links: 

01111001 (=121) lda 56320 

and 00000100 (= 4) and #4 

Ergebnis: 00000000 (= 0) 
 



Daraus folgt: Z-Flag gesetzt ---> Ausschlag nach links 

Bei gesetztem /-Flag können wir mit BEQ demnach zur entsprechen- 

den Routine verzweigen, da die geforderte Bedingung (Ausschlag 

nach links) vorliegt. Mit BNE springen wir zur nächsten Über- 

prüfung oder zum Schleifenende, um auf eine Eingabe zu warten, 

die einen Rechnervorgang erfordert. | 

Alle diese Operationen werden im (A)-Register durchgeführt. 

Mit AND ändert sich dadurch auch der Akku-Inhalt, so daß er für 

den nächsten Vergleich nicht mehr brauchbar ist. 

Die Verknüpfung BIT hat diesen Nachteil nicht: Sie beeinflußt nur 

die Flags, nicht aber den (A)-Inhalt. 

Im letzten Beispiel sieht das so aus: 

  

01111001 (=121) lda 563520 

bit 00000100 (= 4) 1! bit #4 !! 
Ergebnis: 01111001 (=121) und Z-Flag = 1 

Aber Achtung: Den Befehl BIT #4 gibt es in ASSEMBLER nicht, weil 

BIT keine unmittelbare Adressierung zuläßt. Wir behelfen uns da- 

mit, daß wir eine Adresse (in unserem Beispiel (180)) mit dem 

Wert 4 belegen und bei der Überprüfung mit BIT 180 arbeiten. 

Die einmalige Belegung von (180) führen wir nicht im Hauptpro- 

gramm durch, sondern in einem zugehörigen Vorspann. Doch davon 

weiter unten. 

Der (A)-Inhalt kann also ohne nochmaliges Laden sofort zur näch- 

sten Überprüfung ohne Einschränkung verwendet werden. 

Soweit unser kurzer Ausflug in das ASSEMBLER-Wissen. Nun wieder 

zurück zu unserem Problem. 

2.1.3 Aufbau des Programms "Ol-pinsel" 

Bevor wir ans Programmieren gehen, sollten wir uns über den Ab- 

lauf des Programms einige Vorüberlegungen notieren und die ein- 

zelnen Teile wenigstens grob strukturieren. 

Noch einmal zur Wiederholung: Unser Ziel ist es einen Bildschirm- 

fleck gesteuert horizontal zu bewegen. 

Beim C64 bietet sich dazu ein Sprite an, den wir mit Hilfe der x- 

und y-Koordinaten über den Bildschirm laufen lassen können. 

Es kann nicht Sinn dieses Büchleins sein, die ganzen Graphik-



Raffinessen des (64 zu untersuchen. Aber die wesentlichen Punkte 

wollen wir ansprechen: 

- Das Sprite muß definiert werden. Wir müssen uns auf eine Nummer 

einigen und eine farbe festlegen. 

Das geschieht in einem Vorspann zum Hauptprogramm. 

- Das Sprite braucht eine Startposition und einen linken und 

rechten Anschlag. 

-— Außerdem kann das "Pinsel"-Sprite bei jedem Joystick-Ausschlag 

in mehr oder weniger großen Sprüngen über den Bildschirm ge- 

führt werden. Die feinste Unterteilung ist dabei der einzelne 

Pixelabstand, der fast eine fließende Bewegung erzeugt. 

- Die Bewegung ist auf zwei Hauptrichtungen zu programmieren: 

links = Verkleinerung der x-Koordinate 

rechts = Vergrößerung 

-— Die Häufigkeit des Ansprechens auf die Joystickeingabe ist für 

die Bewegungsgeschwindigkeit von Bedeutung. Bauen wir hier 

keine "Bremse" ein, dann rast der "Pinsel!" schon bei kurzem 

Joystickausschlag von einer Ecke in die andere. 

Man sieht, selbst an so einem einfachen Beispiel gibt es eine 

ganze Reihe wichtiger Punkte zu beachten. In diesem ersten Fall 

wollen wir deshalb besonders langsam vorgehen, um nicht gleich 

Verständnisschwierigkeiten zu provozieren. 

Wir zergliedern nun unser Hauptprogramm in mehrere Teile und 

lassen zunächst einmal die Festlegung der Anfangszustände weg. 

(Das erfolgt im nächsten Schritt.) 

Teil Ol: Warteschleife 

Fur die Warteschleife verwenden wir zwei Adressen (1008/1009), 

die wir als Zähler in der Reihenfolge LO/HI benützen. Je nachdem 

wie hoch wir die Grenzwerte setzen, erfolgt ein Einsprung ins 

Programm. Hat der Zähler seinen vorgegebenen Wert noch nicht er- 

reicht, dann wird er lediglich um 1 erhöht und wieder an den An- 

fang der Warteschleife verzweigt. 

In unserem Beispielprogramm verlängen wir, daB HI=10 und LO=100 

ist. Es muß also bis 10 mal 256 + 100 = 2660 hoch gezählt werden, 

bevor der Sprung zum Weitermachen freigegeben wird. 

Teil 02: Joystickabfrage 

Das Hauptprogramm beginnt mit der Abfrage des Joysticks. Dabei 

werden alle Richtungen berücksichtigt, die eine Links- oder 

Rechtsanzeige zur Folge haben könnten. Wird ein Joystickausschlag 

erkannt, dann erfolgt ein Sprung zum Programmteil "Links-'" oder 

"Rechtsausschlag".



Teil 03: Rechtsausschlag 

Zunächst erfolgt eine Prüfung, ob der rechte Anschlag schon er- 

reicht ist oder nicht. 

Liegt noch kein Vollausschlag vor, dann muß sich das Sprite nach 

rechts bewegen. Wir lassen ihn dabei um 4 Pixel wandern. Das ent- 

spricht einer halben Cursorbreite. 

Die Vervierfachung bewerkstelligen wir mit dem Assembler-Befehl 

ASL, den wir zweimal hintereinander anwenden. 

Natürlich ist es eleganter, den Pinsel um nur eine Pixelbreite zu 

verschieben. Aber wir wollen auch mal andere Möglichkeiten aus- 

probieren. 

Immer wird aber nur die x-Koordinate des Sprites verändert, die 

y-Richtung bleibt konstant. 

Teil 04: Linksausschlag entspricht dem Teil 03 

Teil 05: Vorläufiger Abschluß 

Nach dem Verschieben des Pinsels werden die Zähler in (1008/1009) 

wieder auf Null gestellt, um nicht sofort wieder eine weitere 

Verschiebung auszulösen. Anschließend erfolgt der Sprung an den 

Programmanfang. 

Erweiterungen dieses Hauptteils Ol bis 05 können später jederzeit 

hier angefügt werden. Lediglich der Rücksprung muß ans Ende ge- 

stellt werden. 

2.1.4 ASSEMBLER-Beispiel für "Ol-pinsel" (C64): 
  

Ol 18000 ldy 1009 ; HI des Zahlers laden und 

18003 cpy #10 ; auf Obergrenze überprüfen 

18005 beg 18017 ; erreicht? ja ===> LO auf Grenze prufen 

18007 inc 1008 3; nein ---> Zähler LO erhöhen 

18010 bne 18000 ; und falls kein Überlauf ---> zum Anfang 
18012 inc 1009 ; falls Überlauf ---> Zähler HI erhöhen 

18015 bne 18000 ; und unbedingt an den Anfang springen 

18017 inc 1008 ; Zahler LO erhohen 

18020 Idy 1008 ; Zahler LO laden 

18023 cpy #100 ; und mit Grenzwert vergleichen 

18025 bne 18017 s nicht erreicht ===> LO weiter erhöhen 

nop



02 Hauptschleife 

18028 lda 56320 ; PADAT abfragen (Daten des C-Ports) 

18031 bit 180 ; Bit 3 gelöscht? Linksausschlag? 

18033 beq 18059 3 ja ===> zur Linksroutine 

18035 and #8 ; Prüfung von Bit 4 

18037 bne 18083 ; gesetzt ---> kein Rechtsausschlag ===> 

nop Sprung zur Eingabeabfrage 

D3 Ausschlag nach rechts 

18040 lda 189 ; AUSSCHLAG laden 

18042 cmp #32 ; bereits Vollausschlag rechts? 

18044 beq 18083 ;s ja ===> neue Eingabe abwarten 

18046 inc 189 ;s sonst AUSSCHLAG erhöhen 

18048 Ilda 189 ; und laden 

18050 asl ; Wert verdoppeln 

18051 asl 5... vervierfachen 

18052 sta 53252 ; und als neue x-Koordinate nach X02 

18055 clc ; und Sprung ans Ende 05 

18056 bcc 18075 

nop 

04 Ausschlag nach links 

18059 lda 189 ; auf Vollausschlag links 

18061 cmp #4 ; prüfen 

18063 beq 18083 ;s erreicht ===> auf nächste Eingabe prüfen 

18065 dec 189 ; AUSSCHLAG um eins zurück 

18067 lda 189 ; und laden 

18069 asl 

18070 asl 3; ee. vervierfachen 

18071 sta 53252 ; neue x-Koordinate nach X02 

nop 

05 18075 lda #0 ; Zahler 

18077 sta 1008 ; LO und 

18080 sta 1009 ; HI auf Null stellen 

18083 clc 

18084 bcc 18000 ; und zurück zur Warteschleife 

Anmerkung: 

Auch die Spritenummern beginnen beim Durchzählen mit Null. 

Sprite 2 ist also das dritte mögliche Sprite, weil das erste 

Sprite die Nummer O tragt. 

Das entspricht der Zähl- und Schreibweise bei den Bits. Das 

achte Bit ist z.B. Bit 7.



Speichern Sie dieses Programm nun unter "Ol-pinsel" ab, lassen 

Sie es aber noch nicht laufen, denn wie schon gesagt, sind vor 

dem Start noch einige Vorbereitungen notwendig, die wir jetzt an- 

packen wollen. 

2.1.5 Vorbereitungen, Initialisierungen 

Vor dem Start müssen die Anfangszustände definiert werden. Wir 

haben dabei folgende Bedingungen zu erfüllen: 

- Die Zähler für die Warteschleife müssen auf Null gestellt wer- 

den, um ein ordnungsgemäßes Anlaufen zu gewährleisten. 

-— Der Index AUSSCHLAG muß in die Mitte, also auf 18 gestellt 

werden (Mitte zwischen 4 und 32). 

- Als aktives Sprite wählen wir Sprite 2 (also das 3. Sprite), 

das mit Bit 2 in der Adresse (53269) aktiviert wird. 

Diese Wahl ist rein willkürlich. Jedes andere Sprite ist genau 

so gut geeignet. 

- Die Daten von Sprite 2 legen wir ab Adresse (832) an und bele- 

gen daher Adresse (2040+2) mit 13, da in 64er-Schritten nach 

dem Beginn der Sprite-Bytes gefragt wird. (13 mal 64 = 832). 

- Die X-Koordinate dieses Sprites belegen wir mit 98, die Y-Koor- 

dinaten mit 72. Damit liegt die Mittelstellung im linken oberen 

Bildschirmteil. 

-— Mit einer Schleife belegen wir im Wechsel 48 Bytes für Sprite 2 

mit 0,255,255. Den Rest füllen wir mit Nullen auf. Das ergibt 

einen Sprite, dessen linker und unterer Rand transparent ist 

und dessen rechter oberer Teil das sichtbare Quadrat darstellt. 

-— Als Farbe wählen wir mit Nummer 5 ein Dunkelgrün in Adresse 

(53289). 

-— Der Abschluß dieses vorläufigen Initialisierungsprogramms bil- 

det der absolute Sprung an den Anfang des Hauptprogramms, also 

nach (18000). 

Bezeichnen wir diesen Programmteil als "O2-vorpinsel" und schauen 

uns das in ASSEMBLER an: 

ASSEMBLER-Beispiel zu "02-vorpinsel" (C64):   

- 16000 lda #0 ; Null 

16002 sta 1008 ; nach Zahler LO 

16004 sta 1009 ; und Zahler HI



- 16008 lda #18 ; Mittelstellung 

16010 sta 189 ; nach AUSSCHLAG 

- 16012 lda #5 ; Farbe dunkelgrün 

16014 sta 53289 ; nach COLO2, Farbregister fur Sprite 2 

16017 1da #13 ; Sprite-Pointer fiir Sprite (mal 64) 

16019 sta 2042 ; nach SPO2 fur Sprite 2 

- 16022 lda #72 ; Y-Koordinate (konstant) 

16024 sta 53252 ; nach X02 

16027 lda #98 ; X-Koordinate (Mittelstellung) 

16029 sta 53253 ; nach YO2 

16032 Idx #47 ; Zahler fur 48 Bytes 

16034 lda #255 ; alle Bits gesetzt 

16036 sta 832,x ; Pixelreihe setzen 

16039 dex 

16040 sta 832,x ; nächstes Byte belegen 

16043 lda #0 ; Null, also alle Bits geloscht 

16045 dex 

16046 sta 832,x ; Pixelreihe loschen 

16049 dex 

16050 bpl 16034 ; Zahler nicht negativ ===> weitermachen 

16052 Idx #16 ; neuer Zahler fur den Rest von Sprite 2 

16054 lda #0 ; Rest 

16056 sta 880,x ; mit Nullen belegen 

16059 dex 

16060 bpl 16056 ; Zähler nicht negativ ===> weitermachen 

- 16062 lda #4 ; 3.Bit fur Sprite 2 

16064 sta 53269 ; in SPRAKT setzen 

16067 sta 180 ; Bit 3 in (180) setzen für BIT-Operation 

- 16070 jmp 18000 ; und Sprung zum Hauptprogramm "Ol-pinsel" 

Starten wir nun endlich unser Programm (ab 16000). Es sollte 

nun ein grünes Quadrat auf dem Schirm erscheinen, das mit dem 

Joystick nach links und rechts verschoben werden kann. 

Passen Sie auf, wenn Sie das Programm von BASIC aus mit SYS 16000 

starten: Wenn Sie die STOP-Taste nicht abfragen, kommen Sie nur 

noch durch ein RESET aus dem Programm heraus. 

Hoffentlich haben Sie also alle Programmteile vorher abgespei- 

chert, bevor Sie ans Ausprobieren gingen? (nur 40/80XX)



2.1.6 Verwendete Labels - Zusammenstellung 

  

Label C64 | 40/80XX 
t t 

AUSSCHLAG 189=$bd 189=$bd 

COLO2 53289-$d029 nun 

Farbregister für Sprite 2 

SPO2 2042=$07fa a 

Anfangsadresse der Daten von Sprite 2 

X02 53252=$d004 

YO2 53253=$d005 nm 

x- bzw. y-Koordinaten von Sprite 2 

SPRAKT 53269=$d0O1lS eee 

Register für aktive Sprites (bitweise) 

2.2 Variieren und Testen des "pinsel"-Programms 

2.2.1 Variable Laufgeschwindigkeit 

Die Geschwindigkeit, mit der Sie den Pinsel über den Bildschirm 

steuern können, läßt sich in einem breiten Bereich wählen: von 

blitzartig bis sehr langsam. 

Verändern Sie dazu die CPY #...-Befehle in der Warteschleife. 

Die Grobabstimmung nehmen Sie mit dem HI-Zähler aus (1009) vor, 

die Feinabstimmung mit dem LO-Zähler aus (1008). 

Am schnellsten geht es natürlich, wenn Sie beide schon beim In- 

halt O zur Hauptroutine schicken. 

2.2.2 Bildschirmobjekte austauschen 

Sie können nun das Sprite anders gestalten und ihn als Auto, 

Flugzeug oder Schiff über den Bildschirm jagen. 

Wenn Sie auch noch die Y-Koordinate über den Joystick steuern, 

dann steht Ihnen der ganze Bildschirm offen und noch mehr, weil 

Sie auch darüber hinaus in einem nicht sichtbaren Bereich weiter- 

fahren können. Lesen Sie darüber in Ihrer C64-Literatur nach.



2.2.3 Bildschirmgestaltung 

Bleiben wir noch kurz bei unserem "pinsel"-Programm. 

Um die Ausschläge auch gut ablesen zu können, stellen wir noch 

eine Art Skala dar, die aus drei Quadraten oberhalb des Pinsels 

besteht. Das mittlere Quadrat gibt die Mittelstellung an, wenn 

der Pinsel genau darunter steht. Die äußeren Quadrate werden mit 

einer Pinselbreite Abstand zum mittleren gezeichnet, so daß wir 

die Richtung nun in der Einheit "Pinselbreite' ablesen können. 

Wir erweitern die Initialisierungs-Routine "O2-vorpinsel", indem 

wir vor dem JMP 18000 folgendes einfügen: 

- 16069 lda #160 ; Code fur Cursorzeichen (revers leer) 

16071 sta 1231 ; rechts auBen oben 

16074 sta 1232 

16077 sta 1191 ; rechts auBen unten 

16080 sta 1192 

16083 sta 1227 ; Mitte außen oben 

16086 sta 1228 ; 

16089 sta 1187 ;s links außen oben 

16092 sta 1188 

16095 sta 1235 ; rechts 

16098 sta 1236 

16101 sta 1195 

16104 sta 1196 

- 16107 lda #13 ; Farbe hellgrun 

16109 sta 55503 ; Belegung der entsprechenden farbspeicher 

16112 sta 55504 ; 

16115 sta 55463 

16118 sta 55464 

16142 sta 55468 

16145 jmp 18000 ; Sprung zum Hauptprogramm 

Sie können diesen Programmteil beliebig erweitern, indem Sie ein 

Gehäuse für dieses Anzeigeinstrument entwerfen, einen Rahmen 

zeichnen oder eine Beschriftung entwerfen. 

Am Schluß steht aber immer der Sprung nach (18000). 

Speichern Sie dieses Programm auf jeden Fall ab unter dem Namen 

"03-vorpinsel". Wir werden es später noch einmal zusammen mit dem 

Programm "Ol-pinsel" verwenden.



2.3 Abweichungen für die 40/80XX-Gerate 

Wer mit den großen Geräten arbeitet, muß leider auf die komfor- 

table Sprite-Edition verzichten. Aber auch hier ist der Wendezei- 

ger ohne weiteres darstellbar. 

Die Warteschleife Ol bleibt erhalten wie sie vorgestellt wurde. 

Beim Abfragen der Eingabe kann man die numerische Tastatur ver- 

wenden, indem man die Zeropage-Adresse (151) bzw. (155) beim SK 

untersucht. Ist keine Taste gedruckt, steht dort 255. 

Um den Pinsel zu versetzen, nehmen wir auf der einen Seite eine 

Cursorbreite weg und setzen sie auf der anderen wieder an, wenn 

die Randwerte nicht überschritten wurden. 

Wir gehen davon aus, daß die Lage des Pinsels durch den Inhalt 

der Zeropageadresse AUSSCHLAG = (189) indiziert ist. 

Wenn der Pinsel eine Breite von 4 und eine Höhe von 2 Cursor- 

flecken hat, ergibt das auf dem 80-Zeichenschirm ebenfalls 

ein Quadrat. 

Die Grundadressen für die linken Seiten sind dann zum Beispiel 

(33651) und (33731), für die rechten Seiten (33654) und (33734). 

Teil 03 sieht dann etwa für den 8O-Zeichenschirm so aus: 

03 18054 ldx 189 ; Anschlag bei Grenze rechts 

18056 cpx #39 ; erreicht? 

18058 beq 02 

18060 lda #32 ; Leerzeichen laden 

18060 sta 33651,x ; auf der linken Seite ausgeben 

18063 sta 33731,x ; und eine Zeile tiefer 

18066 inx ; Stellung erhöhen 

18067 lda #160 ; Cursorfleck laden 

18069 sta 353654,x ; und rechts oben ansetzen 

18072 sta 33734,x ; und eine Zeile tiefer ebenfalls 

18075 stx 189 ; neuen AUSSCHLAG abspeichern 

18077 bne Teil 05 ; und Sprung zum Abschlußteil 05 

Die "04-Linksroutine" verläuft entsprechend. 

Beim Initialisieren entfallen die Spritevorbereitungen. 

Die Rücksetzung der Zähler bleibt wie sie ist. Die Grundstellung 

des Pinsels läßt sich durch einfaches Ausgeben des Codes 160 an 

die gewünschten Stellen zeichnen. 

Statt einer anderen farbe kann man beim Aufbau der Skala-Symbole



den Code 102 ausgeben. Dann hebt sich der bewegliche Pinsel gut 

von der Skala ab. 

Zweckmäßigerweise schaltet man den Computer auf Graphikdarstel- 

lung um, damit der Abstand zwischen den Zeilen verschwindet und 

der Pinsel ein zusammenhängendes Bild liefert. 

Die Umstellung erfolgt mit JSR 57371. Siehe dazu Kapitel 11. 

Der Phantasie sind mit der Blockgraphik im Gegensatz zum C64 enge 

Grenzen gesetzt. Jedoch ist auch hier ein Rahmen und eine nette 

Gestaltung möglich. 

2.4 Erweiterungs- und Übungsaufgaben: 
  

Probieren Sie nun Ihr Werk aus und versuchen Sie sich an allen 

möglichen Änderungen: 

- Legen Sie den Wendezeiger genau in die Mitte des Schirns. 

- Wechseln Sie Form, Größe oder Farben. 

-— Setzen Sie unter das Pinselquadrat, das ja nur das Ende des 

Zeigers bedeutet, eine angedeutete Anzeigenadel. 

-— Verändern Sie die Grenzwerte. 

-— Lassen Sie beim Aufnehmen der Joystickwerte links und rechts 

doppelt so viele Einheiten zu wie der Pinsel auf dem Schirm 

darstellen kann. Sie haben dann zwei Begrenzungen, eine sicht- 

bare und eine unsichtbare. 

Beim Ausschlag nach rechts ist z.B. durchaus der Wert 180 mög- 

lich, der auch in AUSSCHLAG abgelegt wird. Eine Anzeige er- 

folgt aber z.B. nur bis 160 bei einer Mittelstellung von 140. 

Es lohnt sich, hier ein bißchen zu experimentieren. Das Problem 

ist überschaubar und für jeden weiteren Ausbau gut geeignet. 

Verzweifeln Sie nicht, wenn nicht gleich alles klappt, sondern 

schalten Sie - nach dem Abspeichern natürlich - Ihr Gerät einfach 

aus und gehen Sie erst einen oder zwei Tage später wieder an das 

gleiche Problem. Sie werden erstaunt sein, wie locker Sie plötz- 

lich programmieren können.





3 
_ Erweiterung der Interrupt-Routine - | 

ein Beispiel





3 Erweiterung der Interrupt-Routine 

- ein Beispiel- 

3.1 Die IR-Routine 
  

Die CBM-Rechner unterbrechen 60 mal in der Sekunde alle Programm- 

läufe, um wichtige ROM-Routinen auszuführen, die einen geregelten 

Computerbetrieb gewährleisten. So wird z.B. die Tastatur abge- 

fragt, die Uhr nachgestellt usw. 

Voraussetzung für die Aktivität dieser betriebsinternen Routine 

ist, daß der sog. IRQ-Vektor auf den Anfang der IR-Routine zeigt. 

Dies ist ein Zeiger in der Zeropage, der folgende Adressen (LO/ 

HI) hat: 

  Label C64 40 /80XxX 
! ' 

IRQVEC <788/789>=59953 <144/145>=58453 
<$0314/0315>=$ea3l <$90/91>=$e455 
Zeiger mit Inhalt auf den Standard-Interrupt 

IRQVEC LO <788>=49 <144>=85 

<$0314>=$31 <$90>=$55 

LO des IRQ-Vektors 

IRQVEC HI <789>=234 <145>=228 

<$0315>=$ea <$91>=$e4 

HI des IRQ-Vektors 

Erlauterungen dazu: 

IRQVEC ist ein Pointer, der auf die Einsprungadresse für den 

Standard-Interrupt zeigt. Beim (64 z.B. beginnt diese Routine ab 

(59953). Das ist in LO/HI zerlegt eben 49/234. Der IRQ-Vektor 

muß also in (788) den Wert 49 und in (789) den Wert 234 enthal- 

ten, dann wird automatisch der normale Interrupt durchgeführt. 

Verstellt man diesen Zeiger um 3 Adressen nach oben - das wäre 

beim C64 also (59956) - dann wird die STOP-Tastenabfrage übergan- 

gen. Das bedeutet, daß man ein Programm, das mit diesem Interrupt 

lauft, nicht mehr über die STOP-Taste abbrechen kann.



3.2 Erzeugung eines Taktes mit der IRQ-Abfrage 
  

Zielsetzung: 
  

Wir wollen in einem bestimmten Rhythmus ein Programm durchlaufen. 

Oder anders ausgedrückt: In einem vorgegebenen Takt sollen be- 

stimmte Abläufe (z.B. Standortbestimmungen, Anzeigen usw.) aus- 

geführt werden. 

Für unser folgendes Beispiel nehmen wir uns vor, daß alle 0,25s 

ein Flag gesetzt wird, an Hand dessen ein Programm selbst "ent- 

scheiden" kann, ob es starten soll oder nicht. 

Dadurch lassen sich z.B. Bewegungsabläufe in kleine Schritte zer- 

legen, so daß man jederzeit die Position o.ä. mitrechnen kann. 

Es laßt sich somit eine Digitalisierung erzielen, die bei fast 

allen unregelmäßigen Vorgängen zur Analysierung der Einzelfakto- 

ren erforderlich ist. 

Nennen wir das dafür zuständige Programm "04-taktmodul". 

3.3 Wichtige Adressen von "04—taktmodul" 
  

- Wir lassen die Interrupt-Erweiterung bei (17000) beginnen. 

- Als Flag verwenden wir die Adresse (1010). 

Wir vereinbaren, daß wir (1010) mit 1 belegen, wenn eine Zeit von 

0,25s verstrichen ist. Läuft auf Grund dieses Flags ein Programm 

an, muß dieses Programm selbst dafür sorgen, daß (1010) wieder 

auf O zurückgesetzt ist. 

(Voraussetzung für die Einhaltung eines gleichmäßigen Takts ist 

dann, daß das dadurch gestartete Programm auch bei allen mögli- 

chen Verzweigungen nie länger als 0,25s für einen Durchlauf be- 

nötigt.) 

Die Warteschleife lassen wir wieder über einen Zähler laufen, 

für den wir die Adressen (1011/1012) als LO/HI bereitstellen. 

Damit haben wir wieder die Möglichkeit, unsere Taktfrequenz in 

einem relativ großen Bereich vorzuwählen.



3.4 Ablauf von "04-taktmodul" 
  

Ol: Warteschleife 

- Erhöhen des Zählers in (1011/1012). 

- Abfrage, ob der gewünschte Wert erreicht ist. 

02: Taktflag 

- Setzen des Taktflags (1010) auf 1, wenn die vorgegebene 

Zeit erreicht ist. 

03: Abschluß 

- Weitersprung zur betriebsinternen IR-Routine. 

3.5 ASSSEMBLER-Programm für "04-taktmodul"(C64): 
  

Ol:Warteschleife: 

17000 inc 1011 ; Zahler LO erhohen 

17003 bne 17008 ; ungleich O ===> weiter 

17005 inc 1012 ;s sonst Zähler HI erhöhen 

17008 lda 1012 ; Zahler HI... 

17011 cmp #0 ; ...mit O vergleichen (Beispiel!) 

17013 bne 17037 ; ungleich O ===> weiter 

17015 lda 1011 ; Zahler LO... 

17018 cmp #15 ;s mit 15 vergleichen (Beispiel für 0,25s) 

17020 bne 17037 s nicht erreicht ===> weiter 

17022 nop 

02: Taktflag: 

17023 lda #1 ; Flag 

17025 sta 1010 ; in (1010) auf 1 setzen 

17028 lda #0 ; Zahler 

17030 sta 1011 3; «LO 

17033 sta 1012 3 ..eund HI zurucksetzen 

Teil 3: 

17036 jmp 59953 ; Sprung zur CBM-IR-Routine 

Wir erhalten einen 0,25s-Takt, wenn wir mit dieser Schleife war- 

ten, bis der Zähler in (1011/1012) auf 0/15 steht. 

Das laßt sich durch das angekündigte Testprogramm überprüfen.



~ 44 - 

Ein genaueres Intervall fur exakte Rechenroutinen konnen wir auch 

mit Hilfe der Stoppuhr ermitteln. Im Normalfall genugt aber eine 

Genauigkeit von 1/60 Sekunde. 

3.6 Abstimmung des Taktes   

Die Warteschleife (sie entspricht der des vorhergehenden Moduls) 

muß immer individuell abgestimmt werden. Das geschieht mit Hilfe 

des Zählers in (1011/1012). 

Wann eine Zeit von 0,25s erreicht ist, wird durch ein kleines 

Testprogramm ermittelt. 

Für diesen Minitest lassen wir uns immer dann, wenn das Intervall 

abgeschlossen ist, ein beliebiges Zeichen auf dem Bildschirm aus- 

geben und setzen danach sofort unseren Zähler und das Flag auf 0. 

3.7 Eine kleine Testroutine für die Bestimmung der Taktfrequenz 
  

Das folgende Programm (ab 17100) fragt zunächst eine Taste ab, 

mit deren Hilfe wir den Testlauf abbrechen können. Danach wird 

zu Beginn eines jeden Taktes der Inhalt der Adresse (165) auf dem 

Bildschirm ausgegeben. Die Bildschirmadresse wird jeweils durch 

das (X)-Register indiziert und vor jeder neuen Ausgabe inkremen- 

tiert (um eins erhöht), so daß wir also maximal 256 hintereinan- 

der liegende gleiche Zeichen zu sehen bekommen. 

Dann fängt alles wieder an derselben Anfangsposition an. Damit 

sich das vom Vorhergehenden unterscheidet, wechseln wir einfach 

den Bildschirmcode, indem wir ihn ebenfalls um 1 erhöhen, wenn 

die Schleife wieder von vorn beginnt. Auf diese Weise läßt sich 

durch Mit- oder Abzählen der ausgedruckten Zeichen eine durch- 

schnittliche Taktfrequenz mit guter Genauigkeit bestimmen. 

Nach jeder Bildschirmausgabe muß das Taktflag zurückgesetzt 

werden. Danach erfolgt wieder der Sprung an die Warteschleife 

für das Taktflag.



Das Takt-Testprogramm "test/takt" (C64) 

- 17100 lda 203 

17102 cmp #60 ; Stoptaste (Leertaste) gedrückt? 

17104 bne 17108 s nein ===> weiter 

17106 rts | ; ja ===> Rücksprung 

17107 nop 

- 17108 lda 1010 

17111 beg 17100 ; Flag O ===> warten 

17113 inx ; Flag gesetzt ---> Zähler erhöhen 

17114 bne 17118 ; 255 überschritten? nein ===> weiter 

17116 inc 165 ; sonst Zeichencode erhöhen 

17118 lda 165 ; Zeichencode laden 

17120 sta 1024,x ; und auf Bildschirm ausgeben 

- 17123 lda #0 

17125 sta 1010 ; Flag auf O 

17128 beg 17100 ; und Sprung an den Anfang der Schleife 

Wenn sie das Programm "04-taktmodul" noch im Speicher haben, 

sollten Sie es jetzt zusammen mit diesem "test/takt" abspeichern. 

Nennen wir es einfach "05-takt". 

Es läßt sich auf diese Weise später bequem - auch von BASIC aus - 

mit einem einzigen LDAD-Befehl einladen. 

Lauffahig ist es allerdings noch nicht, da wir den Taktgeber, der 

ja im Programm "04-taktmodul" steckt, noch nicht aktiviert haben. 

Er muß jetzt erst in die Interrupt-Routine integriert werden. 

Es bringt also im Moment noch gar nichts, wenn Sie bei (17000) 

oder (17100) starten. Gleich im nächsten Abschnitt packen wir 

dieses Problem an. 

3.8 Einstellen des IRQ-Vektors 
  

Die Interrupt-Routine muß nun unser "04-taktmodul" durchlaufen. 

Das läßt sich dadurch erreichen, daß wir den vorhin besprochenen 

IRQ-Zeiger auf die Anfangsadresse dieses Programms einstellen. 

17000 hat zerlegt in LO/HI die Werte 104/66. Setzen wir die nun 

in die Adressen des IRQ-Zeigers IRQ-LO und IRQ-HI, dann wird 

die Interrupt-Routine brav bei (17000) beginnen. 

Allerdings hat die ganze Sachen noch einen kleinen Haken, der



sich aber schnell geradeklopfen läßt: 

Der IRQ-Zeiger läßt sich nicht durch einfaches "poken" der Zero- 

page-Adressen ändern, weil ja während dieser Durchführung auch 

der Interrupt ausgeführt wird. Er kann deshalb auch zwischen das 

Einstellen von LO und HI des Zeigers fallen und schon stürzt der 

Rechner ins Leere, weil er einen Interrupt-Einsprung durchführt, 

aus dem er in der Regel nicht mehr herauskommt. 

Wer den Befehl DOKE besitzt, umgeht diese Schwierigkeit und kann 

den IRQ-Zeiger z.B. mit DOKE144,17000 auf (17000) einstellen. 

Ansonsten muß vor einer Veränderung des Vektors, die sowohl das 

LO- als das HI-Byte betrifft, das "Interrupt-Disable-Flag" mit 

SEI gesetzt werden. Der Interrupt bleibt also aus, der Zeiger 

kann in Ruhe verändert werden. Anschließend setzt man dieses 

Flag wieder mit CLI zurück und ermöglicht damit den Einsprung in 

die Adresse, auf die der Vektor IRQVEC zeigt. 

Das folgende kleine Proaramm - der Wichtigkeit halber auch gleich 

für die "großen" Geräte gelistet - stellt den IRQ-Vektor ein. 

ASSEMBLER-Beispiel "06-irqvec17000" 

  

C64 40/80XX 

- 24500 sei sel ; I-Flag setzen 

~ 24501 Ilda #104 Ida #104 ; LO 

24503 sta 788 — sta 144 ; nach IRQVEC LO 

24505 lda #66 lda #66 ; HI 

24507 sta 789 sta 145 ; nach IRQVEC HI 

- 24509 cli cli ; I-Flag löschen 

~ 24510 jmp 17100 jmp 17100 ; zu "test-takt" 

Jetzt können Sie das Programm gleich mit SYS 24500 starten. 

Sie müssen aber das Programm "O5-takt" noch im Speicher belassen 

haben. 

Zunächst wird der IRQ-Vektor verstellt und dann zum Programm 

"test-takt" verzweigt. 

Ab sofort wird ca.60 mal pro Sekunde das Programm "O4-taktmodul" 

(17000) angesprungen, und der Zähler wird solange inkrementiert, 

bis er die eingestellte Zahl erreicht hat. 

Unabhängig davon läuft das Testprogramm "test-takt" ab 17100 

solange auf der Stelle, bis das Taktflag gesetzt ist. Erst wenn 

hier eine 1 vorliegt, erfolgt eine Zeichenausgabe auf dem Schirm.



Nun können Sie die Anzahl der gesetzten Zeichen und die dazu 

benötigte Zeit feststellen und Sie erhalten Ihre Taktfrequenz. 

Verändern Sie mit POKE 17019,XX einmal Ihren Zähler, dann werden 

Sie bald merken, daß Sie mit XX=15 recht gut einen 0,25s-Takt er- 

halten. 

Anmerkung: 

Daß wir die Taktfrequenz von BASIC aus überprüfen, hat seinen 

Grund darin, daß einige Assembler ebenfalls die Adressen des IRQ- 

Zeigers verwenden, so daß eine Veränderung nicht ratsam ist. 

Zusammenfassung:   

Die Interrupt- Erweiterung ist nun so aufgebaut, daß Sie den Zäh- 

ler beliebig einstellen können zwischen ca. 1/60 Sekunde und ca. 

18 Minuten. 

Jeder weitere Ausbau dieser Routine führt allerdings dazu, daß 

etwas mehr Zeit zur Ausführung benötigt wird, aber in Maschinen- 

sprache haben wir noch einige Reserven. 

Die ganze Geschichte mit dem Taktgeber hat auch ihren Bezug zum 

vorhergehenden Kapitel, wo wir einen Wendezeiger simuliert haben. 

Wir sind nämlich jetzt (fast) in der Lage, mit Hilfe dieses Ge- 

rats die Richtung anzugeben, in die wir uns "bewegen". 

Wenn wir den Ausschlag des "Pinsels" aus dem Programm "Ol-pinsel" 

in regelmäßigen kurzen Abständen untersuchen, dann läßt sich da- 

raus eine Richtungsänderung berechnen. 

Voraussetzung dazu ist aber, daß wir sehr schnell rechnen können. 

Und das wiederum erfordert den Einsatz von Maschinenprogrammen. 

In den nächsten beiden Kapiteln Nr.4 und Nr.5 werden wir uns aus- 

führlich mit der Arithmetik befassen. Sie ist einer der Schwer- 

punkte in dieser Schrift. 

Doch vorher sollten Sie sich zunächst einmal an einer der folgen- 

den Übungen versuchen. 

Zwischendurch muß immer wieder betont werden, daß das bloße 

Durchlesen von bereits fertigen oder schon besprochenen Program- 

men nicht allzu viel Lerneffekt mit sich bringt. Mehr als in 

anderen Bereichen gilt hier das alte Prinzip: Probieren - wobei 

damit immer systematisches Probieren, nicht aber Herumprobieren 

gemeint ist - geht über (oder zumindest neben) Studieren.



Aufgaben: 

Erweitern Sie die Interrupt-Routine, um die Tastatur abzufragen 

und z.B. beim Drücken der Taste "0" sofort ein Flag zu setzen, 

das aber nach 5 Sekunden wieder gelöscht wird. 

Erweitern Sie die Interrupt-Routine, um die Eingaben des Joy- 

sticks abzufragen und in der richtigen Reihenfolge in einem 

bestimmten Adressbereich bereitzustellen (Pufferproblem!).



4 
Zahlen, Variablen — Formate





4 Zahlen, Variablen - Formate 

4.1 Rechnen mit Ganzzahlen (Integer-Zahlen) 
  

Die CBM-Rechner verarbeiten Integerzahlen in Form von Zweibyte- 

zahlen, die in der Reihenfolge HI/LO den Zahlenwert darstellen. 

Steht in der kleineren Adresse z.B. 10 und in der nächsthöheren 

z.B. 20, dann ergibt das einen Zahlenwert von 10 mal 256 + 20 = 

2580. 

Der Bereich ist dadurch auf insgesamt 65535 Zahlen beschränkt 

und zerfällt in einen negativen Bereich (bis -32768) und einen 

positiven (bis 32767). 

Bei CBM-internen Umwandlungen und Ausgaben wird eine negative 

Zahl daran erkannt, daß im HI-Byte das Bit 7 gesetzt ist, das 

Byte also einen Wert von mindestens 128 hat. 

Solange man nicht die CBM-eigenen Routinen für die Ausgabe 

eines Integerergebnisses verwendet, lassen sich Addition und 

Subtraktion im Zwei-Byte-Verfahren von O0 bis 65535 problemlos 

durchführen. | 

Anders ausgedrückt: Will man ROM-Routinen zur Ausgabe verwenden, 

dürfen Zwischen- oder Endergebnisse den Bereich von -32767 bis 

+52767 nicht verlassen. 

Addition und Subtraktion können in ASSEMBLER mit den Befehlen 

CLC/ADC bzw. SEC/SBC im genannten Bereich durchgeführt werden. 

4.1.1 Rechnen mit positiven Ganzzahlen 

Nehmen wir an, die Zahl(%) 500 steht in (17000/17001) und wir 

wollen 300 addieren, was in (17002/17003) abgelegt ist. 

Teil 1: Erzeugen der Integerzahlen 

Dann belegen wir die Adressen (17000) bis (17003) wie folgt: 

<17000>=1 ; HI von 500 

<17001>=244 ; LO von 500 

<17002>=1 ; HI von 300 

<17003>= 44 3; LO von 300 

 



Soll das Ergebnis der Addition 500+300 wieder in (17000/17001) 

stehen, dann sieht der nächste Programmschritt so aus: 

Teil 2: 

Wir addieren zunächst die beiden LÜ-Bytes und erhalten 

244+44=288. Dies ist jedoch in Byteform nicht mehr darstellbar, 

weil nur bis 255 hochgezählt werden kann. 

Der Prozessor zählt zwar brav weiter, fängt dann aber nach 255 

wieder mit O an, so daß im (A)-Register nun 32 steht. Gleichzei- 

tig wird aber das C-Flag gesetzt, an dem man den "Überlauf" er- 

kennen kann. 

(Daher muß vorher mit CLC das C-Flag gelöscht werden.) 

Teil 3: 

Mit Hilfe der Flags läßt sich nun feststellen, ob ein Überlauf 

stattgefunden hat oder nicht. Die Additions- bzw. Subtraktions- 

befehle ADC und SBC beeinflussen: 

das N-Flag (negatives Ergebnis ---> <N>=1l) 

das Z-Flag (Ergebnis = 0 ---> <Z>=1) 

das C-Flag (Uberlauf ---> <C>=]) 
das V-Flag (Bit 7 gesetzt ---> <V>=1) 

Ist das C-Flag gesetzt, was mit den Branch-Befehlen BCS und BCC 

untersucht wird, dann erhohen wir die Adresse, in der das HI-Byte 

des zweiten Summanden steht oder - falls wir diesen noch in un- 

verändertem Wert benötigen - laden ihn in ein Register und 

erhöhen dieses, bevor wir die HI-Bytes addieren. 

Das Ergebnis der Addition wird irgendwo im RAM abgelegt. In un- 

serem Beispiel verwenden wir dazu gleich die Adressen des ersten 

Summanden (17000/17001). Allerdings müssen wir uns notieren, wo 

die Summe zu finden ist, wenn wir sie - z.B. zur Ausgabe auf dem 

Bildschirm - wieder verwenden wollen. 

Man kann dieses Mitverwalten umgehen, wenn man mit Integerva- 

riablen arbeitet, die entsprechend dem BASIC-System mit zwei 

Zeichen benannt sind. Allerdings kommt man dann nicht mehr mit 

zwei Adressen pro Integerzahl aus, sondern braucht deren sieben. 

Doch davon lesen wir später mehr. 

Zurück zu unserem Beispiel: Zur Ausgabe auf dem Bildschirm ver- 

wenden wir die ROM-Routine INTOUT, die im Kapitel "Ausgabe- 

Routinen" noch näher besprochen wird.



Vorab nur so viel: Um INTOUT zu verwenden, muß das LO-Byte 

unseres Ergebnisses im (X)-Register, das HI-Byte im (A)-Register 

stehen. Da wir wissen, wo sich unser Ergebnis befindet - nämlich 

in den Adressen (17000) und (17001) ist das kein Problem. 

ASSEMBLER-Beispiel:"07-integadd" (C64): 

Teil 1: Bereitstellen der Zahlen 500 und 300 

- 17500 lda #1 

17502 sta 17000 ; <17000/17001>=500 

17505 sta 17002 

17508 lda #244 ; und 

17510 sta 17001 

17513 lda #44 ; <17002/17003>=300 

17515 sta 17003 

17518 nop 

Teil 2: LO-Bytes addieren 

— 17519 lda 17001 ; 244 in (A) 

17522 cle 

17523 ade 17003 ;s 44 zum (A) addieren 

17526 bee 17531 ; Carry-Flag gesetzt? nein ===> Sprung 

17528 inc 17000 ; jaz==> HI-Byte von 500 erhohen 

- 17531 sta 17001 ; Ergebnis LO (hier 32) nach (17001) 

17534 tax ; und für die Ausgabe nach (X) 

17535 nop 

Teil 3: HI-Bytes addieren 

- 17536 lda 17000 ; erhöhtes HI-Byte nach (A) 

17539 clc 

17540 adc 17002 ; HI-Byte von 300 zum (A) addieren 

- 17543 sta 17000 3 ... und ablegen. (Nicht notwendig, wenn 

17546 nop ;s die Zahl 800 nicht mehr gebraucht wird. 

Teil 4: Ausgabe der Integerzahl 

In unserem Fall ist das LO der Summe bereits mit TAX ins (X)- 

Register übertragen worden. Das HI steht noch in (A). Ist dies 

nicht der fall, dann werden die entsprechenden Bytes erst ge- 

holt, bevor sie mit INTOUT ausgegeben werden können: 

- 17547 ldx 17001 ; LO-Byte nach (X) 

- 17550 lda 17000 ; HI-Byte nach (A) 

-— 17553 jsr 48589 ; ROM-Routine INTOUT gibt ab aktuellem



Cursor die Integerzahl (X/A) aus 

17556 rts ; Rücksprung - Abschluß dieser Routine 

Achtung: 

INTOUT gibt nur positive Zahlen im Bereich von DO bis 65535 aus. 

Speichern Sie das Programm unter "O7/-integadd" ab und starten Sie 

es mal von BASIC oder mit dem Assembler bei (17500), bei (17519), 

bei (17536) und bei (17547). 

Haben Sie die ausgedruckten Zahlen auch erwartet? 

Wenn nicht, sollten Sie diesen Abschnitt noch einmal nachlesen. 

4.1.2 Negative Ganzzahlen 

Negative Ganzzahlen erkennt man daran, daß das Bit 7 im HI-Byte 

der Zahl gesetzt ist. Allerdings läßt sich das Vorzeichen einer 

Integerzahl nicht ohne weiteres durch Setzen oder Löschen des 7. 

Bits verändern. 

Der Grund liegt darin, daß die negativen Ganzzahlen eben von OQ 

abwärts gezählt werden, so daß die Zahl (-1) eben als $FFFF auf- 

tritt. Der größte Betrag einer negativen Zahl liegt dann bei 

$8000, also -32768. 

Durch Zerlegen in LO/HI läßt sich der Wert aus der Hexdarstel- 

lung ermitteln. 

Beispiel: 

Gesucht ist der Wert der Zahl $feal. 

Lösung: 

HI-Byte ist $fe, 2 Einheiten unter $00, also 2 mal -256 = -512. 

LO-Byte ist $a0, also 160. 

Ergebnis: $fea0=-512+160=-352 

Das LO-Byte ist dabei immer positiv zu behandeln. Das HI-Byte ist 

nur dann negativ, wenn es gößer oder gleich $80=128 ist. Daher 

ist $7fff auch die größte positive Integerzahl, denn wenn man nun 

nochmals um 1 erhöht, erhält man $8000, also eine negative Zahl. 

Daraus ergibt sich eine Möglichkeit, das Vorzeichen zu wechseln: 

Wir invertieren sowohl HI- als auch LOW-Byte der Integerzahl. 

Dazu eignet sich der ASSEMBLER-Befehl EOR #255, der bitweise 

die Verknüpfung mit dem im (A)-Register stehenden Byte besorgt.



Das sieht dann in Bitschreibweise z.B. für das Byte $FA=250 so 

aus: 

<A> 11111010 = 250j9 

EOR #255 11111111 

Ergebnis: <A> 00000101 » also 5 in (A) 
  

Zur Erinnerung: EOR erzeugt nur bei ungleichen Bits eine ]. 

Es wird also mit EOR immer der Komplementärwert auf 255 erzeugt: 

In unserem Beispiel: 250+5=255 

Soweit der Ausflug in die Bitverknüpfung EOR, nun zurück zu den 

Integerzahlen. 

Angenommen, wir haben das Vorzeichen der Zahl $fea0 in (17000/ 

17001) zu wechseln, dann gehen wir folgendermaßen vor: 

ASSEMBLER-Beispiel “O8-intvorz" fur C64: 

01 18023 lda 17000 ; HI 

18026 eor #255 ;s invertieren 

18028 tax ; und vorläufig nach (X) retten 

nop 

02 18030 lda 17001 ; LO 

18033 eor #255 ; invertieren, 

18035 tay ; nach (Y) übertragen und 

18036 iny ; um 1 erhöhen, sonst Ergebnis falsch um | 

03 18037 bne 18040 s neues LO=0 (Sonderfall)? nein ===> weiter 

18039 inx ;s ja ---> HI ebenfalls um 1 erhöhen 

04 18040 txa ; endgültiges HI nach (A) 
18041 jsr 45969 ; INTFLP wandelt <Y/A> in eine FLoat- 

Point-Zahl um 

05 18044 jsr 43708 ; FLPOUT druckt: 352 

rts 

Sie sehen, wir haben eine neue ROM-Routine INTFLP aufgenom- 

men. Und das hat folgenden Grund: 

Wie schon angedeutet, funktioniert die Ausgabe einer negativen 

Ganzzahl nicht mehr mit INTOUT. 

Wir könnten uns jetzt einen eigenen Algorithmus ausdenken (Fest- 

stellung des Vorzeichens, Ausgabe des Vorzeichens, Ausgabe der 

Zahl mit INTOUT o.ä.), belassen es aber bei der Möglichkeit, die



das Betriebssystem schon bietet: 

— Zunächst wird die Integerzahl in eine sog. Fließkommazahl umge- 

wandelt, die das Vorzeichen in jedem Fall enthält. 

Dazu übergeben wir das LO-Byte der Zahl an (Y) und das HI- 

byte an (A) und springen bei INTFLP ein. 

- Diese FLP-Zahl kann durch die Routine FLPOUT ausgegeben 

werden. | 

Probieren Sie nun die eben erarbeitete Routine aus. Vergessen Sie 

aber nicht: Der zulässige Bereich von -32768 bis 32767 darf nicht 

verlassen werden! 

Die scheinbare Umständlichkeit, mit der die negativen Zahlen 

verwaltet werden, hat den Vorteil, daß wir die bereits in 4.1.1 

geschriebene Integeraddition nun auch auf negative Zahlen ausdeh- 

nen können. 

Einzige Bedingung ist aber: Die Ausgabe darf nicht mehr mit 

INTOUT erfolgen, sondern mit INTFLP und FLPOUT. 

4.1.3 Subtrahieren von Integerzahlen im positiven Bereich 

Die Programmierung einer Subtraktionsaufgabe verläuft entspre- 

chend der Addition, solange keine negativen Zahlen auftreten. 

Auch hier kann man dann den Bereich von O bis 65535 ausnutzen. 

Zu beachten ist lediglich, daß das C-Flag vor dem eigentlichen 

Subtraktionsbefehl SBC gesetzt werden muß, wenn man feststellen 

will, ob man sich auch wirklich "eins geborgt hat' oder nicht. 

Wandeln wir das Additionsprogramm entsprechend um in das 

Subtraktionsprogramm "09-intsub". Der erste Teil ist identisch 

mit dem aus "Q8-integadd", den zweiten und dritten wandeln wir 

ab: 

ASSEMBLER-Beispiel "09-integsub" (C64): 

Teil 2: LO-Bytes verknupfen: 

— 17519 lda 17001 

17522 sec ; C-Flag setzen 

17523 sbc 17003 ; LO-Byte von (A) subtrahieren 

17526 bes 17531 ; C-Flag noch gesetzt? ===> weiter



- 17528 dec 17002 ; nein ===> HI-Byte des Minuenden -1 

17531 sta 17005 ; LO-Byte ablegen in neuer Adresse 

-— 17534 tax ; Ausgabe vorbereiten 

nop 

Teil 3: HI-Bytes verknüpfen: 

- 17536 lda 17000 

17539 sec 

17540 sbe 17002 

- 17543 sta 17004 ; HI-Byte in neue Adresse 

Teil 4: Ausgabe auf dem Bildschirm wie "07-integadd" 

Haben Sie erkannt, was diesmal anders ist? 

Richtig, die beiden ursprünglichen Zahlen (Minuend und Subtra- 

hend) bleiben erhalten. Der Differenzwert steht in (17004/17005). 

4.1.4 Subtraktion mit beliebigen Integerzahlen 

Begnügen wir uns mit dem eingeschränkten Bereich -32768 bis 

+3276/, dann können wir die Subtraktion wie die Addition be- 

handeln. 

Denn mathematisch gesehen gilt: a-b = a+(-b) 

Daraus leitet sich das anzuwendende Verfahren ab: 

- Das Vorzeichen des Subtrahenden wird verändert. 

- Nun kann eine Addition durchgeführt werden. 

Aufgabe: 

Stellen Sie die bisher besprochenen Programmteile zu einem Modul 

zusammen, mit dem man Integerzahlen addieren und subtrahieren 

kann. 

4.1.5 Höhere Rechenarten mit Integerzahlen 

Multiplikation, Division, Potenzieren, Radizieren usw. lassen 

sich über der entsprechenden Grundmenge ebenfalls mit Integer- 

rechnungen durchführen. 

Da man aber z.B. schon bei der Division auf Nicht-Ganzzahlen 

stößt (wie z.B. bei 5/2), ist dies meist wenig sinnvoll. 

Man verwendet in diesen fällen die reellen Zahlen.



Versuchen Sie aber trotzdem einmal, ein Integer-Multiplikations- 

programm für ein Produkt aus zwei Faktoren zu entwerfen, das 

nach foolgendem Schema arbeitet: 

Nez = Z+Z+Z+... (nm Summanden z) 

Denken Sie daran, daß die Multiplikation nichts weiter ist als 

eine vereinfachte Addition gleicher Summanden: 

z.B. 5°4 = 4+4+4+4+4 

Verdoppeln und Halbieren 

Um den Inhalt eines Bytes zu verdoppeln, wird es mit dem Befehl 

ASL behandelt. Dabei werden alle Bits um eine Stelle nach links 

verschoben. 

Aus der Zahl 6]9=-000001105 wird dann 0000110037=12j9 

würde der Inhalt 255 überschreiten, wird das C-Flag wieder ge- 

setzt und man kann das HI-Byte einer Integerzahl entsprechend er- 

höhen. 

Zahlenbeispiel: 

356 ist gegeben mit <17000>=1 und <17001>=100 
Gesucht: 2 mal 356 = ? 

Das Ergebnis ist wieder in (17000/17001) erwünscht. 

  

ASSEMBLER-Beispiel "10-integdopp" (C64): 

- 17600 asl 17000 ; HI verdoppeln 

17603 cle 

- 17604 asl 17001 ; LO verdoppeln 

17607 bee 17612 ; kein Ubertrag ===> weiter 

17609 inc 17000 ; Ubertrag ===> HI erhöhen 
17612 lda 17000 ; HI nach (A) und... 

17615 ldx 17001 3... LO nach (X) für die Ausgabe 

- 17618 jsr 48589 ; mit INTOUT 

17621 rts ; Ende 

Wird diese Routine mehrfach hintereinander aufgerufen, so laßt 

die in (17000/17001) bereitgestellte Zahl immer wieder verdop- 

peln, bis der gewünschte NWert erreicht ist. 

Nehmen wir an, wir möchten 'mal 16' rechnen, also 4-mal verdop- 

peln, dann benötigen wir einen Zähler, der nach jedem Verdoppeln



um eins erhöht wird. Verwenden wir dazu eine freie Zeropage- 

Adresse: (180) ist dafür geeignet. 

Man kann auf diese Weise also recht einfach mit den 2er-Potenzen 

multiplizieren: 

lmal asl ---> mal 2 

2mal asl ---> mal 4 

3mal asl ---> mal 8 

und so weiter. Aber bitte - die Grenzen beachten! 

ASSEMBLER-Beispiel "1l1l-integpot": 

O01 17522 1lda #0 ; Zahler in (180) auf Null stellen 

17524 sta 180 ; (180) wird als Zahler benittzt 

02 17526 lda 180 ; Beginn der Schleife: Zähler prüfen 

17528 cmp #4 ; 4. Durchlauf schon durchgeführt? 

17530 beq 17540 ; ja ===> Ende 

03 17532 inc 180 ;s nein ===> Zähler erhöhen 

17534 jsr 17600 5... und 'Verdoppelungs-Routine' aufrufen 

17537 clc 

17538 bcc 17526 ; unbedingter Sprung zum Schleifenanfang O02 

17540 rts 

Wir haben hier vorausgesetzt, daß die Verdoppelungs-Routine aus 

dem letzten Abschnitt noch im RAM steht (ab 17600). 

Probieren Sie dieses kleine Programm aus, indem Sie es bei 17522 

aufrufen (SYS 17522 bzw. EX 17522). 

Sie erhalten nach jeder Verdoppelung einen Ausdruck. 

Den Bereich von -32768 bis +32768 dürfen Sie allerdings nicht 

überschreiten. falls man darauf nicht verzichten kann, muß man 

eine Drei- oder Vier-Byte-Rechenroutine konstruieren. Die CBM- 

Ausgabe-Routine funktioniert dann allerdings nicht mehr. 

Das Halbieren einer Zahl wird im Prinzip ebenfalls so aufgebaut 

wie das Verdoppeln. Der entsprechende Befehl LSR arbeitet ana- 

log zu ASL, jedoch in die andere Richtung (logic shift right). 

Aufgabe 5: 

Schreiben Sie ein ASSEMBLER-Programm zur mehrfachen Halbierung 

einer Integerzahl.



4.1.6 Integermultiplikation mit INTMUL 

Die CBM-Routinen 

Feldelements) 

len. 

Dazu 

zerlegt 

Faktor 1 

Faktor 2in 

deren 

Faktor 

Außerdem muß das (Y)-Register mit 1 belegt werden. 

werden 

und 

LO/HI in (113/114) beim C64 (bzw (110/111) bei 40/80XX) 

Adressen im Integerformat (HI/LD), 

Anfangsadresse in (95/96) bzw. 80XX: (92/93) erwartet wird. 

F2 

die 

in 

zwel 

kann 

enthalten 

eine Routine zur Multiplikation zweier Integerzah- 

beiden 

folgenden 

beliebigen 

(zur 

Registern 

eine bereits vorhandene Integerzahl sein. 

Berechnung der Position eines 

Faktoren Fl und F2 in LO- und HI-Bytes 

bereitgestellt: 

Nach Aufruf 

den Registern 

INTMUL steht 

mit (LO/HI) und kann z.B. 

der Rechenroutine 

(X/A) 
ausgegeben werden. 

das Ergebnis im 

sofort mit INTOUT 

Beispiel: 

416 mal 60 = ? 

Faktor Fl: <LO>=150, <HI>=1 

Faktor F2: <LO>= 60, <HI>=0 

Faktor F2 soll in (20000/20001) stehen, also ab 32(LO)+78(HI) 

(zur Erinnerung: 32+(78mal256)=20000) 

ASSEMBLER-Beispielt "12-intmul" (C64): 

Ol 10000 lda #150 LO von Fl 

10002 sta 113 nach F1-LO 

10004 lda #1 HI von Fl nach 

10006 sta 114 F1-HI 

02 10008 lda #0 ; HI von F2 

10010 sta 20000 nach (20000) 
10013 lda #60 LO von F2 

10015 sta 20001 nach (20001) 

03 10018 lda #78 ; HI der Anfangsadresse (20000) 

10020 sta 96 nach F2AD-HI 

10022 lda #32 LO der Anfangsadresse (20000) 

10024 sta 95 nach F2AD-LO 

04 10026 ldy #1 (Y) als Zähler mit 1 belegen 

10028 jsr 45900 INTMUL multipliziert 416 mit 60



05 10031 jsr 48589 ; INTOUT druckt das Ergebnis: 24360 

10034 rts 

Wird der Definitionsbereich für Integerzahlen überschritten, dann 

erfolgt die Fehlermeldung "illegal quantity error", der Rechner 

geht danach in den READY-Modus. 

Zusammenfassung: 

Das Rechnen mit Integerzahlen erfordert schon etwas Programmier- 

geschick. Es wird dort eingesetzt, wo sehr schnell gerechnet wer- 

den muß. Der Nachteil: Die CBM-Rechner unterstützen die Integer- 

operationen kaum. Fast alle Routinen müssen selbst entwickelt 

werden. für die allermeisten fälle sind aber derartige Höchstge- 

schwindigkeiten nicht notwendig, so daß fast immer die etwas 

langsameren Verknüpfungen mit reellen Zahlen völlig ausreichen. 

  Label C64 40/80 xX xX 
{ r 

Fl 113/114=$71/72 110/111=$6f/70 

F2AD (95/96)=($5f/60) (92/93)=($5c/5d) 

INTMUL 45900=$b34c 50295-$$c477 

4.2 Arbeiten mit reellen Zahlen   

4.2.1 Formate für reelle Zahlen 

Reelle Zahlen werden in den CBM-Rechnern in zwei Formen behan- 

delt: dem Speicherformat und dem Registerformat. 

Im Speicherformat wird jede relle Zahl mit 5 hintereinander lie- 

genden Bytes abgelegt, wobei das erste Byte immer den Exponenten 

darstellt; die nächsten vier Bytes bilden die Mantisse. 

Das Registerformat unterscheidet sich vom Speicherformat dadurch, 

daß in einem weiteren 6.Byte das Vorzeichenbit (Bit 7) gesetzt 

wird. 

Registerformatierung wird notwendig, wenn in der Zeropage die 

reellen Zahlen für Rechenoperationen bereitgestellt werden. 

Dafür sind die sog. Floatpointakkus (FAC) vorgesehen:



Label C64 4O/BOXX 
! ' 

FACIL : 97... 101=$61...66 97...101=$61...65 

FAC2 : 105...110=$69...6e 102...107=$66...6b 

Zur Variablenverwaltung wird das Speicherformat verwendet, wobei 

in zwei vorangestellten Bytes der Variablenname geführt wird. 

Insgesamt benötigt jede reelle Variable also 7 Adressen. 

Führen wir die Verwaltung unserer Zahlen bei ASSEMBLER-Programmen 

selbst, so können wir uns auf die 5 Speicherplätze der reinen 

Zahl beschränken. 

Beispiel (Mehr dazu in Abschnitt 8.1.3): 

Die Zahl (-8) steht unter dem Variablennamen "ab" bei (10000). 
  

Speicherformat der Variablen "ab" mit ab=-B: 

(10000) (10001) (10002) (10003) (10004) (10005) (10006) 
65 66 132 128 0 0 0 

"al "b" 4+128 (neg.) 

Im Registerformat sieht das dann so aus (z.B. FAC1): 

(97) (98) (99) (100) (101) (102) 

132 128 0 0 0 128 

Der Exponent (immer zur Basis 2) wird immer um 128 erhöht abge- 

legt. Das Vorzeichen "-' erkennt man in Byte 2, wenn hier ein 

Wert steht, der größer ist als 128 (Bit 7 gesetzt). 

Jeder Rechner besitzt in den ROMs eine ganze Reihe von festen 

reellen Zahlen, die häufig benötigt werden. 

Hier die Anfangsadressen für einige wichtige Konstanten: 

  

Label C64 40/80XxX 
' ' 

1,00 47548=$b9bc 51954=$caf2 
0,5 48913=$bf 11 53477=$d0c7 

0,25 58090=$e2ea 54024= $4308 
pi 44712=$aea8 48800=$bea0 

pi/2 58080=$e2e0 54014=$d2fe 
2pi 58121=$e309 54055=$d327 
sqr(2) 47579=$b9db 51985=$cbll 
-0.5 47584=$b9e0 51990=$cblé 
10 47865=$baf9 52271=$cc2f



Schauen Sie mal mit einem Monitor in diese Bereiche hinein, wenn 

Sie wissen wollen, wie diese Realzahlen aufgebaut sind, ansonsten 

braucht uns das selten zu interessieren. 

Blättern Sie auch mal Ihr ROM-Listing durch, dann finden Sie wei- 

tere Konstanten. 

4.2.2 Übernehmen von gespeicherten Zahlen mit MEMFAC 

Zahlen, die entweder im ROM oder im RAM bereits vorhanden sind, 

lassen sich auf einfache Weise in den FAC]l übernehmen. Dazu 

benötigen wir die Anfangsadresse der abgelegten Zahl in der Form 

LO/HI und übertragen sie nach (A/Y). Anschließend erfolgt der 

Aufruf von MEMFAC. 

Beispiel: 

Die Zahl 0.25 aus dem ROM (58090 bzw. 54024) soll in den FACI 

übertragen und auf dem Bildschirm ausgegeben werden. 

Ablauf und ASSEMBLER-Beispiel "13-memfac" (C64): 

01 lda #234 ; LO Anfangsadresse 

ldy #226 ; HI Anfangsadresse von 0.25 

02 jsr 48034 ; MEMFAC bringt 0.25 nach FACIL 

03 jsr 43708 ; FLPOUT druckt: 0.25 

rts 

4.2.3 Erzeugen von reellen Zahlen 

Jede Zahl, die nicht bereits irgendwo in den ROMs vorhanden ist, 

muß erst einmal im Speicherformat dargestellt und abgelegt wer- 

den. 

Dazu könnte man jetzt in Kleinarbeit Exponent und Mantisse be- 

rechnen und wie oben beschrieben in 5 Adressen abspeichern. 

Doch wozu haben wir unseren Rechner, der das sowieso ständig tut? 

Zwei wichtige ROM-Routinen helfen uns dabei: 

INTIFLP wandelt eine Integerzahl in eine Realzahl um und legt 

sie im FAC1l bereit. Wir kennen sie schon. 

FACMEM legt den FAC 1 als reelle Zahl im Speicherformat ab.



Beispiel: 

Die Zahl 10 soll als Realzahl ab 16500 gespeichert werden. 

Teil 1: 

Für die ROM-Routine INTFLP muß die Integerzahl im (A)-Register 

(HI der Integerzahl) und im (Y)-Register (LO der Integerzahl) 

bereitgestellt werden. 

Teil 2: 

Die ROM-Routine FACMEM benötigt im (X)-Register das LO-Byte 

der Anfangsadresse und im (Y)-Register das HI-Byte. Es werden 

dann 5 RAM-Adressen ab der Anfangsadresse überschrieben, die man 

sich natürlich merken muß, wenn man die Zahl wiederfinden will. 

Die Zahl 10 gibt es bereits im ROM. Wir können also überprüfen, 

ob die folgende Routine das gleiche Ergebnis liefert. 

Teil 3: 

Die Ausgabe einer reellen Zahl auf dem Bildschirm erledigen wir 

mit der betriebsinternen Routine FLPOUT (bereits erwähnt). 

Die Startadressen dieser drei wichtigen ROM-Routinen: 

  

Label C64 40/80XX 
! ' 

INTFLP 45969=$b391 50364=$c4bc 
FACMEM 48087=$bbd7 5249 3=$cd0d 
FLPOUT 43708=$aabc 53133=$cf 8d 

Nun das ASSEMBLER-Programm, das die reelle Zahl 548 erzeugt, in 

(16500)...(16504) abspeichert und ausdruckt: 

ASSEMBLER-Beispiel "14-facmem" (C64): 

01 17200 lda #2 ; HI von 548 

17202 ldy #36 ; LO von 548 

17204 jsr 45969 ; INTFLP wandelt Integerzahl um 

17207 nop 

02 17208 ldx #116 ; LO der Anfangsadresse 

17210 ldy #64 ; HI der Anfangsadresse 

17112 jsr 48087 ; FACMEM legt <FAC1> ab 

17215 nop 

03 17216 jsr 43708 ;s FLPOUT druckt: 548 

17219 rts



Ein Programm, das zum Rechnen diverse Konstanten benötigt, muß 

einen Vorspann haben, der diese Konstanten als reelle Zahlen.in 

einen reservierten Bereich ablegt. 

Wenn dabei Zahlen benötigt werden, die in den ROMs nicht enthal- 

ten sind, dann müssen diese Werte erst berechnet werden. Wie das 

funktioniert, schauen wir uns im nächsten Kapitel an. 

4.3 Zahlenumwandlungen 
  

4.3.1 Integer- in Realzahlformat mit INTFLP 

Diese Umformung haben wir bereits kennengelernt. Siehe dazu Ab- 

schnitte 4.1.2 und 4.2.3. 

Das Betriebssystem hält aber noch weitere Möglichkeiten bereit: 

4.3.2 Reelle Zahl in Integerzahl mit FLPINT 

Beispiel: 

Die Zahl pi=3,1415... soll in eine Integerzahl umgewandelt wer- 

den. Die Nachkommastellen gehen dabei selbstverständlich verlo- 

ren, sonst wäre das Ergebis keine Ganzzahl. 

Vorbedingung: 

Die Zahl pi steht im ROM (ab 44712 bzw. 48800/80XX) 
  

Ablauf und ASSEMBLER-Beispiel "15-flpint" (C64): 

Ol lda #168 ; Anfangsadresse LO von pi 

ldy #174 ; dto. HI von pi 

jsr 48034 ; MEMFAC holt pi in den FACIL 

02 jsr 47095 ; FLPINT wandelt pi in eine Integerzahl 

Das Ergebnis dieser Umwandlung sind zwei Bytes (LO/HI), die in 

den Registern (Y/A) stehen. Zur Ausgabe mit INTOUT muß aber 

das LOW-Byte in (X) enthalten sein. Der Befehl TYX existiert aber 

nicht, so daß wir uns damit behelfen, die Zahl wieder in den FAC 

zu bringen und von dort auszugeben:



03 jsr 45969 ;s INTFLP holt Ganzzahl aus (Y/A) nach FAC1 

04 jsr 43708 ;s FLPOUT gibt die Zahl aus: 3 

rts 

4.3.3 Umwandlung eines Strings in eine reelle Zahl mit STRFAC 

Mit Zeichenketten (Strings) kann man nicht rechnen, auch wenn sie 

Zahlenformat haben. Die Routine STRFAC formt einen String in 

eine reelle Zahl um und legt sie im FAC 1 bereit für weitere 

Operationen. 

Dazu muß die Anfangsadresse des Strings in den Zeropageadressen 

(34/35) bzw. (31/32)/80XX und die Länge des Strings im (A)-Regi- 

ster stehen. 

Beispiel: 

Die Zahl (-110) soll über einen String erzeugt werden. 

Als Stringanfang wählen wir die Adresse (256). Dort arbeitet näm- 

lich auch das Betriebssystem mit solchen Umwandlungen. 

Ablauf und ASSEMBLER-Beispiel "16-stringfac" (C64): 

Ol lda #49 ; Code fur Ziffer 1 

sta 25/7 ; an 2. Stelle ablegen 

sta 258 ; an 3. Stelle ebenfalls 1 ablegen 

lda #48 ; Code für Ziffer OQ 

sta 259 ; an 3. Stelle ablegen 

lda #45 ; Code fur Minuszeichen 

Sta 256 ; an l. Stelle setzen 

02 lda #0 

sta 34 ; Anfangsadresse STRADR-LO 

lda #1 

Sta 35 ; nach STRADR-HI 

lda #4 ; Lange des Strings nach (A) 

03 jsr 47029 ; STRFAC bringt String als Wert nach FAC 

04 jsr 43708 ; FLPOUT druckt:-110 

rts



4.3.4 Umwandlung einer Zahl in einen String mit FLPSTR 

Diese Operation wird in Abschnitt 6.7 ausführlich beschrieben. 

Hier deshalb nur kurz das Wichtigste: 

Mit FACSTR wird eine Zahl, die im FAC1 steht, in eine Zei- 

chenkette umgeformt, die ab Adresse (256) angelegt wird. Diese 

Startadresse steht dann in (A/Y). 

Das Vorzeichen der Zahl steht dabei immer in (256), wobei positi- 

ve Werte als erstes Zeichen ein Blank (Code 32) haben. Die erste 

Ziffer der Zahl steht also in 257. 

Hat die Zahl einen kleineren Wert als 0.01, wird der String als 

Mantisse mit Vorzeichen und dem Exponent zur Basis 10 aufgebaut. 

Beispiel: 

Wir laden die Zahl pi aus dem ROM, wandeln sie in einen String um 

und geben 4 Nachkommastellen auf dem Bildschirm aus. Das ent- 

spricht dem BASIC-Befehl FRAC(pi,4), den die CBM-Rechner leider 

nicht kennen. 

Ablauf und ASSEMBLER-Beispiel "17-flpstring" (C64): 

01 17250 lda #168 ; LO von pi 

17252 ldy #174 ; HI von pi 

17254 jsr 48034 ; MEMFAC bringt pi nach FACI 

02 17257 jsr 48605 ; FLPSTR wandelt pi in String um 

02 17260 ldx #0 ;s Zähler auf Null setzen 

17262 inx ; Schleifenanfang z. Suche nach Dezimalpunkt 

17263 lda 256,x ; Zeichen aus dem String holen 

17266 cmp #46 ; Punkt ? 

17268 bne 17262 ;s nein ---> weitersuchen 

04 17270 ldy #0 ; Zähler für Nachkommastellen plus Punkt 

17272 lda 256,x ; Nachkommastellen laden 

17275 sta 1424,x ; und auf dem Bildschirm ausgeben 

17278 inx ; Zähler für nächstes Zeichen 

17279 iny ;s und nächste Nachkommastelle erhöhen 

17280 cpy #5 ; letzte Stelle erreicht? 

17282 bne 17272 s nein ---> weiterdrucken 

05 17284 rts ; ja ---> fertig



Wenn Sie jetzt bei 17250 starten, wird ordnungsgemäß .1415 ausge- 

geben. 

Aufgabe: 

Bauen Sie diese Routine so um, daß auch das Vorzeichen mit ausge- 

druckt wird. 

4.3.5 (A)-Inhalt in ASC-Code mit BYTHEX (nur 40/80XX) 

BYTHEX wandelt den Inhalt des (A)-Registers in die Codezahl 

für das entsprechende HEX-Zeichen um. 

Beispiel: 

Welcher Hexzahl entspricht Bytewert 14? 

Ablauf und ASSEMBLER-Beispiel "18-byte/hex" (80XX): 

01 17350 Ida #14 ; Bytewert 14 laden 

02 17352 jsr 55098 ; BYTHEX erzeugt in (A) den HEX-Code 

03 17355 sta 32768 ; Kontrollausdruck: E 

17358 rts 

4.3.6 ASC-Code in entsprechendes Byte umwandeln mit HEXBYT 

Das ist die Umkehrung zum oben besprochenen Fall 4.2.4. 

Beispiel: 

Suchen des Hexbyte-Codes für Zeichen "e", also ASCII-Code 69. 

Ablauf und ASSEMBLER-Beispiel "19-hex/byte" (80XX): 

01 17360 lda #69 ; Code fur "e" 

02 17362 jsr 55181 ; HEXBYT erzeugt Code für Hexzahl 

03 17365 sta 32768 ; Kontrollausgabe (wie POKE32768,14): n 

also war <A>=14 

4.3.7 Positive Integerzahl in Realzahl mit ADRFLP 

Im Gegensatz zur Routine INTFLP wird hier der Bereich von 

D bis 65535 verarbeitet. Vorzeichen werden also nicht erkannt. 

Die beiden Bytes der Integerzahl HI/LO müssen in (98/99) (!)



bzw. (95/96)/80XX gebracht werden. Außerdem wird im (X)-Register 

der Wert 144 verlangt und das Carry-Flag muß zur Vorbereitung ge- 

setzt werden, bevor nach ADRFLP gesprungen wird. 

Anmerkung: Der genannte Bereich ist der Adressbereich des Spei- 

chers. Deswegen der Label-Vorsatz ADR. 

Beispiel: 

Die Zahl 34048=$8500 soll in eine reelle Zahl verwandelt werden. 

Ablauf und ASSEMBLER-Beispiel "20-adrflp" (C64): 

Ol 17300 lda #0 3; LO 

17302 sta 99 ;s nach FACI1+2 

17304 lda #133 ; HI 

17306 sta 98 ; nach FAC1+l 

02 17308 ldx #144 ; Vorbereitung der Routine 

17310 sec 

03 17311 jsr 48201 ; ADRFLP wandelt in reelle Zahl um 

04 17314 jmp 43708 ; FLPOUT druckt: 34048 

mit abschließendem Rücksprung 

Umwandlungs-ROM-Routinen 

Label C64 40/80X xX 
' ! 

INTFLP 45969=$b391 50364=$c4bc 
positive/negative Integerzahl aus (Y/A) nach FAC] 

Bereich: +/-32767 

  

ADRFLP 48201=$bc49 52607=$cd7f 
<98=$62> Integerzahl HI <95=$5f> 

<99=$63> Integerzahl LO <96=$60> 

<X>=144; SEC; positive Integerzahl nach FAC1 

Bereich: O bis 65535 (Adressbereich) 

FLPINT 47095=$b7f 7 51501=$c92d



<FAC 1>(reell)---> <FAC 1>(integer),LO/HI=(Y/A) 

FLPSTR 48605=$bddd 53139=$cf93 

<FAC 1> ---> Ziffernfolge ab (256), Ende=Byte O 

STRFAC 47029=$b7b5 51435=$c8eb 

mit STRADR <34=$22/35=$23> Stringanfang <31=$1f/32=$20> 

<A>=Stringlange; Ergebnis in FACIL 

BYTHEX = =--=== 55098=$d73a 

<A>( Byte) ---> (A)(Hex-Byte) 

HEXBYT 2 — ----- 55181=$d78d 

<A>(ASC-Code) ---> (A) (Byte)



I 
Arithmetik mit ROM-Routinen





5 Arithmetik mit ROM-Routinen 

Die CBM-Rechner haben betriebseigene ROM-Routinen für die Durch- 

führung arithmetischer Operationen mit reellen Zahlen. 

Werden dabei zwei Zahlen verknüpft, so geschieht das mit Hilfe 

der beiden Floatpointakkus FAC1l und FAC2, die zunächst mit den 

gewünschten Zahlen geladen werden müssen, bevor die Rechenroutine 

angesprungen wird. 

Sind die zu verknüpfenden Zahlen irgendwo im ROM oder RAM bereits 

als reelle Zahlen vorhanden, dann besteht auch die Möglichkeit, 

mit Hilfe der Anfangsadresse den FAC] automatisch laden zu las- 

sen, wenn man die entsprechende Einsprungstelle kennt. 

Ist dies nicht der fall, dann muß der FACIl zuerst geladen 

werden. Erst vor dem Aufruf der Rechenroutine kann man - eben- 

falls mit Hilfe der Anfangsadresse des Arguments - den FAC 2 be- 

legen. Der Grund für diese Reihenfolge ist, daß beim Laden des 

FACL auch der FAC2 benützt wird und damit eventuell vorhandene 

Zahlen überschrieben werden. 

Bei der Verwendung von LABELS werden wir ein "M" voranstellen, 

wenn damit die Einsprungadresse der ROM-Routine gemeint ist, die 

aus einem Speicher eine reelle Zahl in den FAC] holt und an- 

schlieBend verarbeitet ("M" wie MEMORY = Speicher). 

Beispiel: 

Die Routine M-ADD holt sich den zweiten Summanden aus der an- 

gegebenen Adresse und verknüpft ihn mit dem ersten Summanden. 

Zum Addieren mit der Routine ADD dagegen müssen die beiden 

summanden in FACI und FAC2 vorher bereitgestellt werden. 

Wird durch eine Operation ein- und dieselbe Zahl verändert (sog. 

monadische Operation im Gegesatz zu den dyadischen Operationen, 

bei denen zwei Zahlen verknüpft werden), so geschieht das im 

FACl. Eventuell werden auch die Register in bestimmter Weise ge- 

setzt. 

Die folgenden Beispiele sind so einfach wie möglich gehalten und 

erläutern die eben genannten Vorgänge. Zur Übersicht finden Sie 

eine Label-Liste mit den Einsprungadressen fur den C64 und die



40/80XX-Geräte. Für frühere Serien sollten Sie sich eine Refe- 

renzliste zulegen, die Sie bei fast allen handelsüblichen ROM- 

Listings finden. 

Alle LABELS sind in der Form 'LABEL' angeführt und bedeuten immer 

die Einsprungadressen für die mnemonisch abgekürzte Operation. 

Bei den folgenden Beispielen wurde auf die Adressierung der 

ASSEMBLER-Befehle verzichtet, weil keine bedingten Sprünge in den 

Routinen vorkommen. 

Als Vorbedingung wird in den meisten Beispielen eine reelle Zahl 

im RAM angenommen. Das bedeutet, daß Sie diese Zahl dort erst 

einmal erzeugen müssen, bevor Sie die angegebenen Routinen aufru- 

fen. Wie das vor sich geht, haben wir in Abschnitt 4.2.3 mit 

Hilfe eines Zahlenbeispiels gelernt. Schauen Sie also im Zwei- 

felsfall diesen Teil noch einmal gründlich durch. 

5.1 Durch 10 dividieren mit FDIVI1O 
  

Vorbedingung:   
die reelle Zahl 36 befindet sich ab 16500 (HI=64/L0=116) im RAM. 

Ablauf: 

Ol Die Anfangsadresse (LO/HI) wird nach (A/Y) geladen und durch 

MEMFAC in den FAC1l gebracht. 

02 Aufruf der Routine FDIVI10. 

03 Wir speichern dann die neue Zahl 3.6 ab (16505) mit FACMEM ab, 

um sie später weiterverwenden zu können. 

04 Zur Kontrolle erfolgt anschließend die Ausgabe auf dem Bild- 

schirm, da durch FACMEM der FAC] nicht verändert wird. 

Aber Achtung: 

Nach der Bildschirmausgabe mit FLPOUT ist der Inhalt des FACI 

zerstort!



ASSEMBLER-Programm "21l-facdurch10" (C64): 

Ol lida 

ldy 

jsr 

02 jsr 

ldx 

ldy 

03 jsr 

04 jsr 

rts 

#116 

#64 

48034 

47870 

#121 

#64 

48087 

43708 

; 16500=116/64, also 

Startadresse von Zahl 36 (LO/HI) 

; mit MEMFAC nach FAC1l bringen 

s mit FDIV1O durch 10 dividieren 

; neue Zahl 3.6 mit 

; FACMEM ab (16505)... abspeichern 

; FLPOUT bringt 3.6 auf den Schirm 

5.2 Mit 10 multiplizieren 
  

Vorbedingung: wie oben   
Ablauf: wie oben, aber Aufruf der Routine 'FMALI1O' 

ASSEMBLER-Programm "22-facmall0" (C64): 

Ol lda 

ldy 

jsr 

02 jsr 

03 ldx 

ldy 

jsr 

04 jsr 

rts 

#116 

#64 

48034 

47842 

#126 

#64 

48087 

43708 

; Zahl 36... 

; MEMFAC 

; FMAL1O 

; neue Zahl 360 aus FAC1 nach (16510)... 

; mit FACMEM übertragen 

; Ausgabe mit FLPOUT 

5.3 Addieren des Werts 0,5 mit ADDO.5 
  

Diese Routine wird benötigt, wenn Rundungen vorzunehmen sind. 

Vorbedingung: wie oben 
  

Ablauf: wie oben, aber Aufruf der Routine ADDO.5



ASSEMBLER-Programm "23-facplus0.5" (C64): 

Ol lda #116 ; Zahl 36 

ldy #64 ; nach 

jsr 48034 ; FACL mitMEMFAC 

02 jsr 47177 ; ADDO.5 

03 jsr 43708 ; FLPOUT bringt 36.5 auf den Bildschirm 

rts 

5.4 Addieren beliebiger Zahlen mit ADD 
  

Vorbedingungen: 

Die beiden Summanden befinden sich im RAM oder ROM. 

Beispiel: Zahl 36 ab (16500), Zahl 3.6 ab (16505). 

  

Ablauf: 

01 Zahl 36 nach FACI 

02 Zahl 36 nach FAC2 mit MEMFC2 

03 Aufruf der Routine ADD 

04 Bildschirmausgabe zur Kontrolle 

ASSEMBLER-Programm "24-addieren" (C64): 

01 lda #121 

ldy #64 

jsr 48034 ; 3.6 nach FAC] mit MEMFAC 

02 1da #116 

ldy #64 

jsr 47756 ; 36 nach FAC2 mit MEMFC2 

03 jsr 47210 ; ADD 

04 jsr 43708 ; Bildschirmausgabe: 39.6 

rts 

5.5 Addieren beliebiger Zahlen mit M-ADD 
  

Der Unterschied zu ADD ist, daß FAC2 selbständig geladen wird, 

wenn die Anfangsadresse des 2. Summanden in (A/Y) mit LO/HI 

steht.



Vorbedingungen: wie 5.4 

Ablauf: zunächst wie oben 

  

M-ADD ersetzt die beiden Routinen MEMFC2 und ADD. 

ASSEMBLER-Programm "25-mem-addition" (C64): 

Ol lda #121 

ldy #64 ; 3.6 nach 

jsr 48034 ; mit MEMFAC 

02 lda #116 

ldy #64 

03 jsr 47207 ;s M-ADD rechnet 36+3.6 

04 jsr 43708 ; FLPOUT ---> Bildschirmausgabe: 39.6 

rts 

Die folgenden Routinen zum Subtrahieren, Multiplizieren und 

Dividieren sowie zum Potenzieren/Radizieren konnen ebenfalls auf 

zwei Arten durchgefuhrt werden. 

Wir stellen in den folgenden Beispielen aber jeweils nur eine 

Variante dar. Die ENTRY-Points für die zweite Möglichkeit finden 

Sie in der Label-Liste. 

5.6 Subtrahieren mit M-SUB 
  

Vorbedingungen: 

Minuend und Subtrahend im RAM oder ROM. 

  

Ablauf: 

Ol Subtrahend nach FAC 1 

02 Anfangsadresse LO/HI des Minuenden nach (A/Y) 

03 Aufruf von M-SUB 

ASSEMBLER-Beispiel "26-mem-subtra" (C64): 

Ol lda #121 

ldy #64 ; 3.6 nach 

jsr 48034 ; mit MEMFAC



02 lda #116 

ldy #64 ; Anfangsadresse von 36 nach (A/Y) 

03 jsr 47184 ; M-SUB rechnet 36-3.6 

04 jsr 43708 ; Bildschirmausgabe: 32.4 

rts 

Bei manchen Rechenvorgangen kommt es vor, daß man im FAC1 schon 

den Minuend hat. Subtrahiert man nun mit M-SUB, dann erhalt man 

den Differenzwert mit dem umgekehrten Vorzeichen. 

Mit der folgenden Routine kehrt man es wieder um. 

5.7 Vorzeichenwechsel mit FACMIN 
  

Vorbedingung: 

Zahl im FAC1l. Im Beispiel Zahl 36. 
  

Ablauf: 

Ol Zahl in den FAC laden 

O2 Aufruf von FACMIN 

03 Abspeichern der negativen Zahl (-36 wird im nächsten Beispiel 

wieder verwendet) 

ASSEMBLER-Beispiel "27-vorz-wechsel" (C64): 

Ol lda #116 

ldy #64 ; 36 nach 

jsr 48034 ; FAC1l mit MEMFAC 

02 jsr 49076 ; FMINUS ändert das Vorzeichen im FACI 

03 Idx #141 
ldy #64 ; -36 nach (16525)... 

jsr 48087 ; ... abspeichern mit FACMEM 

04 jsr 43708 ; Bildschirmausgabe mit FLPOUT : -36 

rts



5.8 Betrag einer Zahl mit FACABS 
  

Vorbedingung:   
Positive oder negative reelle Zahl steht im FACl (Beispiel: -36). 

Ablauf: 

01 Zahl -36 in FACIL laden 

02 Aufruf von FACABS erzeugt immer ein positives Vorzeichen (ab- 

soluter Betrag) 

ASSEMBLER-Beispiel "28-abs.betrag" (C64): 

Ol lda #141 

ldy #64 ; -36 nach 

jsr 48034 ; FACL mit MEMFAC 

02 jsr 48216 ; FACABS erzeugt positives Vorzeichen 

03 jsr 43708 ; Bildschirmausgabe mit FLPOUT: 36 

rts 

9-9 Multiplizieren mit M-MULT   

Dies entspricht in Vorbedingungen und Ablauf dem Addieren. 

ASSEMBLER-Beispiel "29-mem-mult" (80XX): 

Ol lda #116 

ldy #64 ; 36 nach 

jsr 48034 ; FACL mit MEMFAC 

02 lda #121 

ldy #64 ; 3.6 nach 

jsr 47656 ; M-MULT multipliziert MEM mit FAC] 

03 jsr 43708 ; Bildschirmausgabe mit FLPOUT: 129.6 

rts



5.10 Division mit M-DIV 
  

Vorbedingung: 

Dividend und Divisor im ROM oder RAM. 
  

Ablauf: 

G1 Divisor nach FACL 

02 Anfangsadresse des Dividenden nach (A/Y) 

03 Aufruf von M-DIV 

ASSEMBLER-Beispiel "30-mem-division" (C64): 

Ol lda #116 

ldy #64 ; 36 nach FAC] (Divisor! ) 

jsr 48034 ; mit MEMFAC 

02 lda #121 

ldy #64 ; Adresse von 3.6 nach (A/Y) (Dividend! ) 

03 jsr 47887 ; M-DIV teilt 3.6 durch 36 

04 jsr 43708 ; Bildschirmausgabe mit FLPOUT: .1 

rts 

Dies entspricht im Ablauf der Subtraktion. 

Auch hier hat man oft den Dividend schon im FAC1L. Am besten 

fuhrt man nun die Division umgekehrt durch und bildet danach den 

Kehrwert. 

Die folgende Routine ist fur solche Falle geeignet. 

5.11 Kehrwert bilden mit M-DIV 
  

Vorbedingung: 

Zahl 1 steht im ROM (ist bei allen CBM-Rechnern erfüllt). 
  

Ablauf: 

01 Zahl in den FAC1 holen, z.B. 10 aus dem ROM 

02 Adresse von 1 nach (A/Y) 

03 Aufruf von M-DIV



ASSEMBLER-Beispiel "31-kehrwert" (C64): 

Ol Ida #249 ; LO 
ldy #186 ; HI (Anfangsadresse von 10) 

jsr 48034 ; 10 nach FAC] mit MEMFAC 

02 lda #188 ; LO 
ldy #185 ; HI (Anfangsadresse von 1) 

03 jsr 47887 ; M-DIV teilt 1 durch 10 

04 jsr 43708 ; Bildschirmausgabe mit FLPOUT: .1 

rts 

5.12 Quadratwurzel ziehen mit SQRFAC 
  

Dies ist eigentlich eine Sonderform des Potenzierens, das im 

nächsten Abschnitt besprochen wird. 

(Der Exponent ist eben beim Quadratwurzelziehen 0.5) 

Vorbedingung: 

Radikand im RAM oder ROM. 
  

Ablauf: 

Ol Radikand in den FAC1 laden 

02 Aufruf von SQRFAC 

ASSEMBLER-Beispiel "32-wurzel" (C64): 

01 lda #116 

ldy #64 ; 36 nach 

jsr 48034 ; FAC] mit MEMFAC 

02 jsr 49009 ; SQRFAC zieht Quadratwurzel aus FACI 

03 jsr 43708 ; FAC] auf Schirm mit FLPOUT : 6 

rts 

5.13 Potenzieren und Radizieren mit POTRAD 
  

Ist der Exponent eine naturliche Zahl, erfolgt echtes Potenzie- 

ren (als vereinfachte Form der Mehrfachmultiplikation mit glei- 

chen Faktoren). 

Bei Exponenten der Form 1l/n, mit n = natürliche Zahl ist der 

Potenzwert die n-te Wurzel aus der Basis. 

Negative Exponenten erzeugen zusätzlich noch den Kehrwert.



Vorbedingungen: 

Die Basis steht im RAM oder ROM. 

(Im Beispiel wird der Exponent erzeugt.) 

  

Ablauf: 

Ol Laden der Basis in den FAC2 

O2 Der Exponent (hier 4) wird als Integerzahl erzeugt und als 

reelle Zahl in den FAC 1 gebracht mit INTFLP. 

03 Aufruf der Routine POTRAD 

ASSEMBLER-Beipsiel "33-potenzieren" (C64): 

Ol ida #116 

ldy #64 ; 36 nach FAC2 

jst 47756 ; mit MEMFC2 

O2 lda #0 

ldy #4 ; Zahl 4 nach FACL 

jsr 45969 ; mit INTFLP 

03 jsr 49019 ; POTRAD rechnet 36 hoch 4 

04 jsr 43708 ; Bildschirmausgabe mit FLPOUT : 1679616 

rts 

Sind Basis und Exponent im ROM oder RAM vorhanden, lädt man 

zuerst den Exponenten in den FAC], setzt (A/Y) auf die Anfangs- 

adresse der Basis und ruft dann M-POT auf. 

Der Potenzwert steht dann wieder im FAC 1. 

Probieren Sie mal die Kehrwertbildung aus, indem Sie nach 

INTFLP (jsr 45969) noch FMINUS aufrufen, bevor potenziert wird. 

Auf diese Weise läßt sich auch der Kehrwert einer beliebigen 

Zahl bilden, wenn Sie als Exponent (-1) wahlen.



5.14 Logarithmieren mit LOGNAT 
  

Alle Logarithmen beziehen sich hier auf die Basis e. Wir rechnen 

also mit dem Logarithmus naturalis. 

Vorbedingung: 

Der Numerus kann erzeugt werden oder im RAM oder ROM stehen. 
  

Ablauf: 

01 Erzeugen der Zahl 1000 im FAC1I 

02 Aufruf von LOGNAT 

03 Ablegen von 1n(1000) ab (16515) 

ASSEMBLER-Beispiel "34-log nat" (C64): 

Ol lda #3 

ldy #232 ; Zahl 1000 nach 

jsr 45969 ; FACL mit INTFLP | 

02 jsr 47594 ; LOGNAT bildet Logarithmus von 1000 

03 ldx #131 

ldy #64 ; ab (16515) 

jsr 48087 ; mit FACMEM das Eregebnis ablegen 

04 jsr 43708 ; Bildschirmausgabe mit FLPOUT : 6.90775528 

rts 

3.15 Exponentialrechnen mit EHOCHF 
  

Mit der folgenden Routine führen wir die Umkehrung zum Logarith- 

mieren durch und haben gleichzeitig eine Probe, ob wir richtig 

programmiert haben. 

Vorbedingung: 

Logarithmus steht im RAM oder ROM. 
  

Ablauf: 

Ol Logarithmus in den FAC1 bringen. 

02 Aufruf von EHOCHF



ASSEMBLER-Beispiel "35-ehochfac" (C64): 

Ol lda #131 

ldy #64 ; 1nl000 nach 

jsr 48034 ;s FAC1l bringen mit MEMFAC 

02 jsr 49133 ; EHOCHF rechnet e hoch (1n 1000) 

03 ldx #136 

ldy #64 ; 1000 wird ab (16520) 

jst 48087 ; abgelegt mit FACMEM 

04 jsr 43708 ; Bildschirmausgabe mit FLPOUT : 1000 

rts 

5.16 Erzeugen einer Zufallszahl mit ZUFALL 
  

Zufallszahlen werden im Bereich von 0 bis 1 mit der Routine 

ZUFALL erzeugt und im FAC1l abgelegt. 

Damit es uns nicht so langweilig wird, stellen wir uns das Pro- 

blem, daß die Zufallszahl eine natürliche Zahl aus dem Bereich 

von 0 bis 36 sein soll. 

Und dieses Ergebnis soll Integer-Format haben. 

Vorbedingung: 

Zahl 36 ist im RAM oder ROM vorhanden. 

  

Ablauf: 

0l Erzeugen einer Zufallszahl mit ZUFALL liefert einen Wert im 

FACL zwischen QO und ]. 

02 Wir multiplizieren diesen Wert mit 36. 

03 ... und addieren 0.5 wegen der folgenden Rundung 

04 durch Umwandlung in eine Integerzahl. 

Diese Integerzahl:-steht nun mit LO/HI in (Y/A). 

Uns interessiert zwar im Moment nur das LO-Byte, wir halten 

aber die Möglichkeit für größere Zahlen als 255 offen und 

schleppen das HI-Byte zur Übung mit. 

05 Zur Bildschirmausgabe mit INTOUT muß aber das LO-Byte in (X) 

und das HI-Byte in (Y) stehen. 

Den Befehl TYX (transportiere <Y> nach <X> ) gibt es leider 

nicht. 

Wir retten daher den Akku-Inhalt <A> auf den Stack, holen <Y> 

nach (A) und können von hier aus <A> nach (X) übertragen.



06 Nun holen wir den ursprünglichen Akku-Inhalt vom Stapel und 

setzen ihn in (Y) ein. 

07 Jetzt gibt die Routine INTOUT die richtige Zahl aus. 

ASSEMBLER-BEISPIEL "36-zufall(x)" (C64): 

Ol jsr 57495 ; ZUFALL holt Zufallszahl nach FAC1 

02 Ilda #116 

ldy #64 ; Zahl 36 mit FACIL 

jsr 47656 ; multiplizieren mit M-MULT 

03 jsr 47177 ; ADDO.5 addiert 0.5 zu <FAC1> 

04 jsr 47095 ; FLPINT wandelt FAC in Integer 

gleichzeitig steht das Ergebnis LO/HI in (Y/A) 

05 pha ; HI-Byte auf Stack retten 

tya ; LO-Byte von (Y) nach (A) übertragen 

tax ; LO-Byte nach (X) bringen 

06 pla ; HI-Byte vom Stack nehmen 

tay ; ...und nach (Y) übertragen 

07 jsr 48589 ; Bildschirmausgabe mit INTOUT: RND(36) 

rts 

5.17 Winkelfunktionen mit SINUS, COSIN und TANG   

Die interne Rechenoperation mit Winkeln erfolgt immer in der Ein- 

heit RAD. 

Zur Umrechnung gilt: 2pi(RAD) = 360°(DEGREE) 

Im folgenden Beispiel gehen wir davon aus, daß die Gradzahl zu- 

nächst in DEGREE vorliegt. 

Da die ROM-Routinen für die Winkelfunktionen ansonsten sehr ein- 

fach zu handhaben sind, geben wir hintereinander die drei Haupt- 

funktionswerte aus. 

Dazu speichern wir den einmal ermittelten Winkel in der Einheit 

RAD ab 16530 ab. 

Auf gabe: 

Berechnen Sie die Funktionswerte: sin369, cos360 und tan36° 

und geben Sie sie auf dem Bildschirm aus.



Vorbedingungen:   
Die Zahlen 360 und 36 sind im RAM. 

Zahl 2pi liegt im ROM (C64:58121; 40/80XX:54055) 

Ablauf: 

- 360 nach FACI bringen 

- 36 durch 360 teilen ... 

. und mit 2pi multiplizieren 

. und ab (16530) speichern. Damit steht der Winkel im Bogen- 

maß für die weiteren Operationen zur Verfügung. 

Aufruf SINUS und Bildschirmausgabe 

Winkel wieder nach FAC], Aufruf COSIN... 

- USW. 

ASSEMBLER-BEISPIEL "37-winkelfunktn" (C64): 

~ lda 

ldy 

jsr 

- lda 

ldy 

jsr 

- lda 

ldy 

jsr 

~ ldx 

ldy 

jsr 

- jsr 

- jsr 

- lda 

ldy 

jsvr 

- jsr 

- jsr 

- lda 

ldy 

jsr 

- jsr 

- jsr 

rts 

#126 

#64 

48034 

#116 

#64 

47887 

#9 

#227 

47656 

#146 

#64 

48087 

21963 

43708 

#146 

#64 

48034 

21956 

43708 

#146 

#64 

48034 

28036 

43708 

; FLPOUT: 

360 aus (16510...) nach 

s FACL mit MEMFAC 

; Anfangsadresse von 36 ist (16500) 

; M-DIV teilt 36 durch 360 

; Anfangsadresse (54055) von 2pi 

; M-MULT' rechnet FAC 1 mal 2pi 

ab (16530)... wird nun 

; mit FACMEM der Winkel in RAD abgelegt 

SINUS berechnet sin36° 

0.587785252 

s Winkel holen 

s mit MEMFAC 

COSINUS berechnet cos362 

; FLPOUT: 0.809016994 

s Winkel wieder nach FACIL 

TANGENS berechnet tan36°® 

; FLPOUT: 0.726542528



5.18 Umkehrung der Winkelfunktionen mit ARCTAN 
  

Zur Winkelbestimmung aus den trigonometrischen Funktionswerten 

sin, cos, tan, cot existiert in den ROM-Routinen der CBM-Rechner 

nur die Umkehrfunktion ARCTAN. 

Nach Aufruf dieser Routine enthält der FAC 1 den Winkel im Bogen- 

maß. 

In unserem Beispiel nehmen wir wieder die Umrechnung in DEG vor. 

Dazu wollen wir arctan(0.5) berechnen und die gefundene Gradzahl 

in DEG ausgeben. 

Vorbedingung: 

0.5 steht im ROM (C64:ab(48913);40/80XX:53477). 

2pi und 1 stehen ebenfalls im ROM (siehe 5.17). 

360 steht im RAM bei (16510)... 

  

Ablauf: 

- Argument (0.5) in den FAC 1 bringen 

-— Aufruf von '"ARCTAN': berechnet Winkel in RAD 

- Multiplikation mit 2pi und Kehrwertbildung 

- Multiplikation mit 360 

Damit erfolgt die Umrechnung in DEGREE: 

x=360°arctan0.5/2pi 

— Ablegen des Winkels für spätere Verwendung 

— Ausgabe auf dem Bildschirm 

ASSEMBLER~Beispiel "38-arcus tan" (C64): 

-— lda #17 

ldy #191 ; Argument 0.5 nach 

jsr 48034 ; FAC] mit MEMFAC 

- jsr 58126 ; ARCTAN rechnet arctan 0.5 in RAD 

- lda #9 

ldy #227 ; 2pi (Anfangsadresse) 

jsr 47887 ; M-DIV rechnet 2pi/arctan 0.5 

lda #188 

ldy #185 ; 1 (Anfangsadresse) 

jsr 47887 ; M-DIV bildet Kehrwert 

- lda #126 

ldy #64 ; 360 (aus RAM) 

jsr 47656 ; M-MULT multipliziert FACI1l mit 360



— ldx #151 

ldy #64 ; Speicheranfang (16535) festlegen 

jsr 48087 ;s und Winkel in DEGREE mit FACMEM ablegen 

- jsr 43708 3; FLPOUT: 26.5650512 

rts 

5.19 Weitere Arcus-Funktionen mit ARCTAN   

Zur Berechnung von arcsin(x) ist die Formel anzuwenden: 

arcsin(x)=arctan(x/sqr(1-x2) ) 

Das folgende Beispiel berechnet den Winkel zu arcsin(0.5). 

Vorbedingung: 

wie 5.18 
  

Ablauf: 

-— Argument (hier 0.5) nach FACI und mit sich selbst multipli- 

zieren. Die Potenzierroutine lohnt sich hier nicht. 

- Berechnen von (1-0.52) 

- Quadratwurzelziehen aus (1-0.52) 

-— Argument 0.5 wieder holen und durch den Wert im FAC] teilen 

— Aufruf von ARCTAN. 

Damit steht arcsin(0.5) im FACl, allerdings im BogenmaB. 

(Wenn Sie wollen, überprüfen Sie das mit JSR 43708.) 

— Zur Umrechnung in DEGREE können wir den letzten Teil der in 

Abschnitt 5.18 besprochenen Routine verwenden. Dazu springen 

wir die Adresse an, bei der die Umrechnung in die üblichen 

Gradzahlen beginnt, also den dritten Punkt. 

ASSEMBLER-Beipsiel "39-arcus sinus" (C64): 

- lda #17 

ldy #191 ; Argument 0.5 

jsr 48034 ; nach FAC] mit MEMFAC 

- lda #17 

ldy #191 ; Anfangsadresse von 0.5 

jst 47656 ; M-MULT rechnet 0.5 mal 0.5 

— lda #188 

ldy #185 ; Anfangsadresse von 1 (ROM) 

jsr 47184 ; M-SUB rechnet 1-0.52



- jsr 49009 ; SQRFAC zieht Quadratwurzel aus <FACI1> 

lda #17 

ldy #191 ; Anfangsadresse 0.5 (ROM) setzen 

jsr 47887 ; M-DIV teilt 0.5/<FAC1> 

- jsr 58126 ; ARCTAN berechnet Winkel in RAD 

—- ... Routine zur Umrechnung in DEGREE und Bildschirmausgabe: 

als Ergebnis müßte 30 herauskommen. 

rts 

Aufgabe: 

Erstellen Sie ein ASSEMBLER-Programm für die Berechnung von 

arccos. 

Die Formel dafür lautet: arccos(x)=arctan(sqr(1-x2)/x) 

5.20 Polynomauswertung mit POLNOM   

Die Betriebsroutine kann Polynome bis zum 255. Grad berechnen, 

wenn in einer Tabelle im ROM oder RAM vorhanden sind: 

a) der Grad des Polynoms 

b) die Konstanten beginnend mit dem Koeffizienten der höchsten 

Potenz 

Die Anzahl der Konstanten ist dabei immer um eins höher als der 

Polynomgrad, weil das letzte Glied eines Polynoms immer das va- 

riablenfreie Glied ist. 

Beispiel: 

auxt+azx?+a9x2+a]x+ag 

ist ein Polynom des 4. Grades mit den Konstanten a, bis a,. 

ag ist das variablenfreie Glied. 

Zahlenbeispiel: 

10x2+0.25x+10 ist ein quadratisches Polynom (2. Grad) mit den 

Koeffizienten: a2=10 ; a]=0.253 ; a,=10 

 



Ablauf und ASSEMBLER-Beispiel "40-polykon" (C64): 

Bleiben wir bei dem Zahlenbeispiel und legen die Konstanten in 

einer Tabelle an, die z.B. bei (16640)=(0/65) beginnt. 

Dann muß in der ersten Adresse (16640) der Grad des Polynoms als 

Byte stehen. 

Das geschieht mit 

Ol lda #2 

sta 16640 

D2 Anschließend werden die Konstanten mit Hilfe der Routine 

FACMEM als reelle Zahlen abgelegt. Da jede relle Zahl fünf 

Adressen beansprucht, geschieht das in 5-er Abständen: 

lda #249 

ldy #186 ; a2=10 (aus dem ROM) 

jst 48034 ; in den FAC] mit MEMFAC 

ldx #1 

ldy #65 ; Anfangsadresse (16641) setzen 

jsr 48087 ;s FACMEM legt reelle Zahl ab 

O03 ldx #11 

ldy #65 ; 10 ist noch im FAC] und kann als ag nach 

jsr 48087 ; (16651...) mit FACMEM gebracht 

04 Fehlt nur noch die Konstante aj=0.25, die nach (16646...) 

gesetzt werden muß: 

lda #234 

ldy #226 ; Anfangsadresse von 0.25 im ROM ist (58090) 

jsr 48034 ; Argument 0.25 nach FACI mit MEMFAC 

ldx #6 ; Anfangsadresse (16646) 

ldy #65 ; nach (X/Y) 

jsr 48087 ; FACMEM legt 0.25 ab 

rts 

Kommen wir zur eigentlichen Polynom-Auswertung: 

Vorbedingungen: 

Polynomgrad und Konstanten müssen lückenlos im RAM oder ROM sein. 

(Die eben besprochene Laderoutine muß aufgerufen worden sein.) 

Die Anfangsadresse dieser Tabelle muß bekannt sein (hier 16640). 

  

Ablauf: 

01 Die Belegung für x wird als reelle Zahl in den FAC]1 gebracht. 

In unserem Beispiel ist das Argument -0.5 (steht im ROM).



02 Die Register (A/Y) müssen mit LO/HI der Anfangsadresse unserer 

Konstantentabelle belegt werden. 

03 Aufruf der Polynomauswertung 

04 Bildschirmausgabe 

ASSEMBLER-Beispiel "41-poly-wert" (C64): 

Ol lda #224 ; (47584) ist 

ldy #185 ; Anfangsadresse von (-0.5) aus dem ROM 

jsr 48034  ; MEMFAC 
02 lda #0 ; Beginn der Tabelle LO 

ldy #65 ; Beginn der Tabelle HI, also (16640) 

03 jsr 57433 ; POLNOM berechnet Polynomwert 

für die Belegung x:=-0D.>5 

04 jsr 43708 ; FLPOUT: 12.375 

Prüfen wir das nach und nennen wir den Polynomwert y: 

y=10x2+0.25x+10 mit x:=-0.5 ===> 
y=10(-0.5)(-0.5)+0.25(-0.5)+10 

y=2.5-0.125+10 

y=12.375 

Aufgaben: 

Lassen Sie sich zur Übung die Polynomwerte für andere Argumente 

ausrechnen. 

Erstellen Sie ein Programm zur Berechnung von Polynomen höheren 

Grades. 

5.21 Wertetabellen für Funktionen mit POLNOM   

Das Polynom-Beispiel aus 5.20 ist nichts anderes als der Funk- 

tionsterm einer Parabelgleichung. 

Es lassen sich auf diese Weise selbstverständlich die fFunktions- 

werte für Terme höheren Grades berechnen. 

Zum Anlegen einer Wertetabelle gehen wir von der kleinsten Bele- 

gung in festgelegten Schritten bis zum gewünschten größten Argu- 

ment und rufen jeweils die POLNOM-Routine auf.



Nehmen wir an, das Intervall für x sei -5<x<5 und die Schritt- 

weite sei 0.5. Dann werden insgesamt 21 Werte gesucht. 

Vorbedingungen: 

- Die zugehörige Konstantentabelle steht ab (16640)...(wie 5.20). 

- Für das Argument (die Belegung) reservieren wir 5 Adressen ab 

(16530) bis (16534). 

— Das ASSEMBLER-Beispiel aus 5.20 verändern wir dahingehend, daß 

wir die Anfangsadresse (16530)=(146/64) des variablen Arguments 

nach (A/Y) zum Vorbereiten der MEMFAC-Routine laden müssen. 

-— Ersetzen wir also in Teil Ol von "polywert" 

lda #224 durch lda #146 und 

ldy #185 durch ldy #64, 

dann konnen wir "polywert" als Programmteil ubernehmen. 

  

- Als Zahler fur die Begrenzung des Intervalls benötigen wir eine 

freie Adresse: (1000). 

Ablauf: 

Teil 1: Initialisierungen 

-— Anfangswert des Zählers +1 setzen: <1000>=22 

Die Erhöhung des Zählers um eine Einheit ist deshalb notwendig, 

weil die Hauptschleife, in der jeweils der nächste Wert be- 

stimmt wird, mit dem Befehl DEC 1000, also einer Erniedrigung 

des Zählers beginnt. 

-— Erzeugen der Zahl -5 im FAC]l als Wert für die erste Belegung. 

Teil 2: Rechen- und Ausdruck-Schleife 

In einer Schleife wird jeweils 

- der Zähler um 1 erniedrigt und auf O(=Ende) geprüft 

~ das Argument ab (16530) bereitgestellt und auf dem Bildschirm 

ausgegeben, 

-— ein Trennzeichen ausgedruckt, 

— die Polynomroutine aufgerufen, 

der Polynomwert ausgedruckt, 

-— ein Line-Feed ausgegeben, 

— das Argument um 0.5 erhöht 

- und zum Schleifenanfang verzweigt. 

Zur Ausgabe auf dem Bildschirm verwenden wir vorab ohne nähere 

Erklärungen die ROM-Routine CHROUT. Sie gibt das Byte aus, 

das im (A)-Register steht. Das entspricht dem BASIC-Befehl PRINT 

CHR$(A). Näheres dazu im nächsten Kapitel "Ausgabe-Routinen".



ASSEMBLER-Beispiel "42-wertetabelle" (C64): 

Teil 1: 

19550 

19552 

19554 

19557 

19560 

19562 

Teil 2: 

"nolywert": 

19565 

19568 

19570 

19572 

19574 

19577 

19579 

19582 

19584 

19587 

19589 

19591 

19594 

19596 

19598 

19601 

19603 

HI 

LO 

INTFLP wandelt 5 in reelle Zahl 

FACMIN ändert Vorzeichen ===> -5 im FAC]I 

Schrittanzahl + 1 festlegen 

und im Zähler (1000) als Erstwert ablegen 

Zähler erniedrigen 

mit O vergleichen; bei O Sprung ans Ende 

LO Anfangsadresse 

HI des Arguments ab (16530)... 

FACMEM legt Argument bereit 

(Y)-Belegung für Ausgabe von negativer Zahl 

mit FPOUTX gibt Argument aus 

Code für "/" 

CHROUT erzeugt auf den Bildschirm: / 

aktuelles Argument 

nach FAC] mit MEMFAC 

LO und 

HI der Adresse der Konstantentabelle 

POLNOM berechnet Polynomwert mit ak- 

tueller Belegung 

(beliebige Zahl ausgeben) 

mit FLPOUT gibt berechneten Wert aus 

me Gm Em ame min WE SEE (EAN WERE ORT ees SD GENE GED GED GUE cme IRS Geter tee come came MA (MEN: SEEN GES ORD GEE CEU Midi AMD (EM AAN GD uD ne) SE RO DD ED SE I RE Ge GED MED SD SUED RE MA ARMEE (ib MENGEN CARE oe oe ge ome we 

Anf angswerte 

lda #0 ; 

ldy #5 ; 

jsr 45969 ; 

jsr 49076 ; 

lda #22 ; 

sta 1000 ; 

Hauptschleife 

dec 1000 ; 

beq 19624 ; 

ldx #146 ; 

ldy #64 ; 

jsr 48087 ; 

ldy #1 ; 

jsr 48599 ; 

lda #47 ; 

jsr 65490 ; 

lda #146 

ldy #64 ; 

jsr 48034 ; 

lda #0 ; 

ldy #65 ; 

jsr 57433 ; 

ldy #1 ; 

jsr 48599 ; 

Ida #13 ; 

jst 65490 ; 

lda #146 

ldy #64 ; 

jst 48034 ; 

jsr 47177 ; 

Code für "RETURN" 

CHROUT gibt CR/Linefeed aus 

altes Argument nach FAC] mit 

MEMF AC 

ADDO.5 addiert 0.5 zum FACIL



- 19621 cle 

19622 bee 19565 3 erzwungener Sprung zum Schleifenanfang 

- 19624 rts 

Anmerkung: 

Im ersten Teil von "polywert" muß noch einmal das Argument in den 

FAC geladen werden, da nach einer Ausgabe mit FLPOUT der In- 

halt des FAC]1 zerstört ist. 

5.22 Vergleichsoperationen mit CMPF AC   

Die Routine CMPFAC vergleicht den Inhalt von FACI1 mit einer 

reellen Zahl, die im Speicher steht. 

Dazu muß zunächst der FAC1 geladen werden und anschließend die 

Anfangsadresse der Vergleichszahl nach (A/Y) gebracht werden. 

Der Vergleich hat immer die Form FAC1l ? MEMORY 

Als Ergebnis dieses Vergleichs ist das (A)-Register wie folgt 

belegt: 
FACL > MEMORY ===> <A>= 1 

FAC] = MEMORY ===> <A>d= 0 
FACL < MEMORY ===> <A>=255 

Beispiel: Wir vergleichen die Zahlen 360 und 36, die wir schon 

mehrfach benützt haben und geben das entsprechende Zeichen (>,= 

oder <) in der unteren rechten Bildschirmecke aus. 

Vorbedingungen: 

- Die Zahl 360 steht ab (16510), 

- die Zahl 36 ab (16500) im RAM. 

  

Ablauf: 

Ol Zahl 360 in FAC1l laden 

02 Anfangsadresse von 36 nach (A/Y) bringen 

03 CMPFAC aufrufen 

04 bei Ergebnis O verzweigen und "=" ausgeben, dann Ende. 

05 sonst ROL im (A)-Register durchführen 

06 <C-Flag> jetzt 0, dann verzweigen und ">" ausgeben, dann. Ende 

07 <C-Flag> sonst 1, dann "<" ausgeben und Ende.



Erläuterung der Bit-Operation ROL (Rotation nach links): 

Hier dreht es sich nur noch darum festzustellen, ob <A> =255 oder 

<A>=1 ist, denn <A>=0 wurde schon geprüft. 

a) bei <A>=255 stehen im (A)-Register die Bits: 11111111 

Der Befehl ROL schiebt nun alle Bits um eine Stelle nach links 

und setzt das auf der linken Seite hinausgeschobene Bit in das 

(C)-Register. In diesem Fall wird das Carry-Flag also gesetzt. 

b) Bei <A>=1 stehen die Bits: 00000001. 

ROL schiebt also eine Null in das (C)-Register, löscht also 

das Carry-Flag. 

Wir brauchen deshalb nach dem ROL-Befehl nur noch mit BCC uber- 

prüfen, in welchem Zustand sich das (C)-Flag befindet und erspa- 

ren uns somit die umständlicheren CMP-Befehle. 

ASSEMBLER=Beispiel "43-vergleich" (C64): 

01 19650 lda #126 

19652 ldy #64 ; 360 nach 

19654 jsr 48034 ; FAC1l mit MEMFAC 

02 19657 lda #116 ; Anfangsadresse LO von 36 

19659 ldy #64 ; Anfangsadresse HI von 36 

03 19661 jsr 48219 ; CMPFAC vergleicht: 360 ? 36 

04 19664 beq 19677 ; letzte Operation O (also Gleichheit)? 

ja ===> Sprung 

05 19666 rol ; Linksrotation in (A) 

06 19667 bce 19673 ; C-Flag gelöscht (also größer) ===> Sprung 

O7 19669 ldx #60 ; sonst Code fur "<" laden und 

19671 bne 19679 ; zum Ausgabeteil springen 

06 19673 ldx #62 ; Code fur ">" laden und 

19675 bne 19679 ; zum Ausgabeteil springen 

19677 Idx #61 ; Code fur "=" laden 

08 19679 stx 2023 ; Bildschirmausgabe und 

19682 rts ; Ende 

Vertauschen Sie einmal die Anfangsadressen von 360 und 36 oder 

geben Sie beide Male die gleichen LO/HIs ein. 

Sie sehen, unsere Routine eignet sich nicht nur fur die beiden 

Zahlen 360 und 36, sondern fur alle reellen Zahlen.



Aufgabe: 

Wandeln Sie das ASSEMBLER=Beispiel so ab, daß Sie einen komplet- 

ten Vergleichsausdruck (wahre Aussage) auf dem Bildschirm ausge- 

ben können. 

Anwendungsmöglichkeiten: 

Bei Rechenoperationen muß win einigen Fällen vorher geprüft wer- 

den, ob z.B. eine Zahl den Wert O hat. Ist dies der Fall, dann 

darf z.B. nicht durch diese Zahl dividiert werden, sonst er- 

scheint "division by zero error". 

5.23 Vorzeichenprüfung mit SGNFAC 
  

Für Winkelberechnungen im Bereich von O bis 3600 sind z.B. Vor- 

zeichenprüfungen vorzunehmen, um den Winkel mit Hilfe der 

trigonometrischen Funktionen eindeutig angeben zu können. 

Hat man zum Beispiel den Sinuswert und den Cosinuswert eines 

Winkels, dann läßt sich dieser im Bereich bis 3600 eindeutig 
angeben, was mit einem einzigen Funktionswert ja nicht der Fall 

ist (zum Sinuswert 0.5 lassen sich die Winkel 300 aber auch 

1500 zuordnen). 

Folgende Regeln aus der Schulmathematik sollten Sie sich noch 

einmal in Erinnerung rufen: 

Vorzeichen SINUS Vorzeichen COSINUS Winkel zwischen 
  

plus plus D und 90 

plus minus 90 und 180 

minus minus 180 und 270 

minus plus 270 und 360 

Doch zurück zu unserer ROM-Routine: 

Die Routine SGNFAC prüft das Vorzeichen im FAC]l und setzt 

das (A)-Register folgendermaßen: 

Zahl negativ ===> <AD = 255 

Zahl = O ===> <ADdD = 0 

Zahl positiv ===> <AD = 1 

Vorbedingung: 

Die zu prüfende Zahl muB im FAC] stehen oder zuerst dorthin ge- 
 



bracht werden. 

Ablauf: 

01 Zahl in den FAC1 übertragen 

02 Aufruf von SGNFAC 

03 Überprüfung des (A)-Registers 

- dies entspricht der in 5.21 beschriebenen Prozedur - 

D4 und Ausgabe des entsprechenden Zeichens 

ASSEMBLER-Beispiel "44-vorzpruefen" (C64): 

O01 19700 lda #224 | 

19702 ldy #185 ; Anfangsadresse der ROM-Zahl -0.5 

19704 jsr 48034 ; Zahl nach FACI]1 mit MEMFAC 

02 19707 jsr 48171 ; SGNFAC prüft Vorzeichen 

03 19710 beq 19723 ; O im (A)-Register (also Zahl weder positiv 

noch negativ)? ja ===> Sprung 

19712 rol ; Linksrotation von <A> 

19713 bee 19719 3; C-Flag gelöscht (also war 1 in (A)) 

ja ===> zur Ausgabe mit "+" springen 

19715 ldx #45 ; sonst Code fur "-" laden und 

19717 bne 19725 ; zum Ausgabeteil springen 

19719 ldx #43 ; Code fur "+" laden und 

19721 bne 19725 ; nächsten Befehl überspringen 

04 19723 ldx #48 ; Code für "0" laden und 

19725 stx 2023 ; in der unteren rechten Bildschirmecke aus- 

geben 

19728 rts 

Aufgaben: 

Probieren Sie diese Routine auch mal mit anderen Zahlen aus, die 

Sie im RAM oder ROM kennen. 

Schreiben Sie eine Routine, die die Winkelfunktionen auf ihre 

Vorzeichen überprüft und den richtigen Winkel im Bereich bis 360 

Grad ausgibt. 

Dabei dürfen die Funktionswerte nicht willkürlich gewählt werden, 

weil z.B. für einen bestimmten Winkel Sinus- und Cosinuswerte 

festliegen.



Arithmetik-ROM-Routinen 

  

Label C64 40/80XxX 
' ' 

ADDO.5 47177=$b849 51583=-$c97f 

FAC] + 0.5 ---> FACI 

FMAL1O 47842=$bae2 52248-$cc18 

FAC] mal 10 ---> FACI1 

FDIV10 47870-$bafe 52276=$cc34 

FAC] / 10 ---> FACI 

FMINUS 49076-$bfb4 53579=-$dl4b 

-FAC1L ---> FACIL 

FACABS 48216=$bc58 53622-$cd8e 

abs(FACl) ---> FACL 

ADD 47210=$b86a 51616=-$c9a0 

FAC2 + FACL ---> FACI 

M-ADD 47207=$b867 51613=-$c9a0 

MEMORY (A/Y) + FAC1l ---> FACIL 

SUB 47187=$b853 51593=$c989 

FAC2 - FACl ---> FACI 

M-SUB 47184=$b850 51590=$c986 

MEMORY (A/Y) - FAC] ---> FACI1 

INTMUL 45900=$b34c 50295=$c477 

<113/114>=<$71/72> <110/111>=<$6e/6f> 

mal MEMORY 

(95/96)-($5f/60) (92/93)=($5c/5d) 

---> (X/A) 

MULT 47659=$ba2b 52065=$cbél 

FAC2 mal FACl ---> FACI 

M-MULT 47656=$ba28 52062=$cb5e 

MEMORY (A/Y) mal FACl ---> FACI1 

DIV 47884=$bbOc 52296=$cc48 

FAC 2 / FAC 1 ---> FAC 1



M-DIV 

SQRFAC 

POTRAD © 

M-POT 

LOGNAT 

EHOCHF 

SINUS 

COSIN 

TANG 

ARCTAN 

POLNOM 

CMPFAC 

47887=$bbOf 

MEMORY (A/Y) / FAC1 ---> FAC1 

52293=$cc45 

49009=$bf 71 53512=$d108 

Quadratwurzel aus FAC] ---> FACIL 

49019=$bf 7b 

FAC2 hoch FACL ---> FACIL 

53522=$d112 

49016=$bf78 53519-$d10f 

MEMORY (A/Y) hoch FAC1 ---> FAC1 

47594=$b9ea 

In(FAC1) ~--> FAC] 

52000=$cb20 

49133=$bfed 

e hoch FACL ---> FACIL 

53636=$d184 

57963=$e26b 53897=$d289 

sin(FAC1) ---> FAC1 (Bogenmaß RAD) 

57956=$e256 53890=$d282 

cos(FACl) ---> FAC1l (Bogenmaß RAD) 

58036=-$e2b4 53970=$d2d2 

tan(FAC1l) ---> FAC1 (BogenmaB RAD) 

58126=$e30e 54060=$d3c2 

arctan(FACl) ---> FAC1 (BogenmaB RAD) 

57433=$e059 53741=$dled 

Polynomwert aus Tabelle ab (A/Y) ---> FAC 

l. Byte der Tabelle = Polynomgrad n 

folgende Bytes enthalten die Koeffizienten a, 

bis af) als reelle Zahlen in 5-er Gruppen 

48219=$be5b 52625=$cd91 

vergleicht FAC1l mit MEMORY (A/Y) 

FAC < MEM ---> <A>:=255 

FAC > MEM ---> <A>: 1 

FAC MEM ---> <A>: 0



SGNFAC 

MEMF AC 

MEMFC2 

FACMEM 

FAC1/2 

FAC2/1 

ZUFALL 

FLPOUT 

FPOUTX 

BSOUT(CHROUT) 

- 100 - 

48171=$bc2b 52577=$cd6l 

Vorzeichen von FAC1 ---> (A) 

Mam ---3 <Ads= 1 

Wo 0 =--) <A>:=2255 

<FACI> = 0 ---> <A>:=0 

48034=$bba2 52440=$ccd8 

reelle Zahl aus MEMORY (A/Y) ---> FACL 

47756=$ba8c 52162=$cbc2 

reelle Zahl aus MEMORY (A/Y) ---> FAC2 

48087=$bbd7 52493=$cd0d 

FAC] (reell) ---> MEMORY (X/Y)-Anfangsadresse 

48143=$bcOf 52549=$cd45 

<FAC1> ---> FAC2 

48124=$bbfc 52530=$cd32 

<FAC2> ---> FACI 

57495=$e097 53801=$d229 

53804=$d22c 

Zufallszahl aus O bis 1 <---> FACI, 

abhangig von der Zeit bzw. von <A> 

43708=$aabc 53133=$cf 8d 

Ausgabe von <A>; C64: mit anschließendem CR 

48599=$bdd7 53133=$cf 8d 

C64: Ausgabe von <FAC> als Betrag, kein CR 

C64: mit Vorzeichen: LDY #1 - JSR FLPOUT 

65490-$ffd2 KERNAL 65490-$ffd2 

Ausgabe von <A> als ASCII-Code



6 
Bildschirmoperationen





- 103 - 

6 Bildschirm-Operationen 

6.1 Ausgabe einer Integerzahl mit INTOUT 
  

Die ROM-Routine INTOUT gibt eine Integerzahl aus dem Bereich 

-32768 bis +32767 auf den Bildschirm aus. Wir haben sie im vori- 

gen Kapitel schon einmal verwendet. Hier nun die genauere Be- 

schreibung dazu: 

Vorbedingung: 

Die Integerzahl steht zerlegt in LO- und HI-Byte in den Registern 

(X) und (A). 

  

ASSEMBLER-Beispiel "45-intout" (C64): 

- lda #0 ; HI 

ldx #200 ; LO 

-— jsr 48589 ; Bildschirmausgabe: 200 

rts 

Bei negativen Ganzzahlen ist das HI-Byte größer/gleich 128. Das 

achte Bit ist also gesetzt. 

(Siehe dazu auch ASSEMBLER-Beispiel bei 4.1.2/Teil 3.) 

6.2 Ausgabe einer reellen Zahl mit FLPOUT 
  

Reelle Zahlen können nur über den Floatpointakkumulator FACI 

ausgegeben werden. 

Wie diese Zahlen erzeugt werden, wurde ausführlich in Kapitel 4 

beschrieben. 

Vorbedingung: 

Die auszuyebende Zahl steht im FAC]I. 
  

ASSEMBLER-Beispiele: Siehe Kapitel 4 und 5!  



- 104 - 

6.3 Ausgabe eines ASCII-Zeichens mit CHROUT(BSOUT) 

Jedes der 255 Zeichen aus dem CBM-Zeichensatz kann über das (A)- 

Register ausgegeben werden. Dazu gehören auch die nicht druckba- 

ren Zeichen von 0 bis 31 und 128 bis 161, also z.B. 'RETURN', 

'DEL' als Cursorsteuerzeichen usw. 

Die Routine BSOUT, oft auch als ECHROUT bezeichnet (von character 

out), ist als Ausgabe-Routine recht vielseitig verwendbar, da 

sie nicht nur für den Bildschirmausdruck, sondern auch für die 

Ausgabe auf den Drucker, das Floppy oder irgendein anderes Gerät 

geeignet ist. Wir werden sie deshalb gut im Auge behalten und 

bei Bedarf wieder anwenden (vor allem in Kapitel 9, das sich mit 

der Peripherie befaßt). 

Da BSOUT zu den häufig gebrauchten Einsprüngen gehört, steht 

es in einer Sprungliste am Ende des ROM-Bereichs zusammen mit 

weiteren ständig verwendeten Routinen-Anfängen (sog. KERNAL-Rou- 

tinen). Diese Adressen sind sogar für die verschiedenen CBM-Rech- 

ner zumindest teilweise gleich. 

Vorbedingung: 

Das auszugebende Zeichen muß im (A)-Register stehen. 
  

ASSEMBLER-Beispiel "46-bsout/chrout" (C64 bis 80XX): 

-— lda #43 ; Code fur '+' 

jsr 65490 ; CHROUT druckt an momentane Cursorposition: + 

- lda #13 ; Code fur RETURN 

jsr 65490 ; CHROUT gibt Carriage Return aus 

- lda #56 ; Code fur '8' 

jsr 65490 ; CHROUT druckt 8 an Zeilenanfang 

rts 

Ein Vergleich mit BASIC zeigt, daß mit CHROUT alle Ausgaben 

entsprechend dem BASIC-Befehl PRINT CHR$(X); erfolgen, so daß 

auch Operationen wie die folgenden ausgeführt werden: 

  

Befehl C64 40/80XxX 
' ! 

scroll up | 17 25 

scroll down 145 153 

Zeile loschen 21 

Zeile einfügen 149 

Zeilenende löschen 22



- 105 - 

Zeilenanfang löschen 150 

Fenster setzen li/ob 15 

dto. re/unt 143 

Textmodus ein 14 14 

Graphikmodus ein 142 | 142 

Die im Direktmodus mit den Tasten zu bedienenden Funktionen wer- 

den im Programm mit dem entsprechenden ASCII-Code aufgerufen. 

(Siehe Beispiel!) 

6.4 Vorbereitete Zeichenausgaben   

Im ROM der CBM-Rechner sind bereits Routinen vorhanden, die den 

AKKU mit dem entsprechenden Code laden und sofort ausgeben. 

Im Anschluß an dieses Kapitel sind die Labels mit den zugehörigen 

Anfangsadressen aufgelistet. 

6.5 Cursorposition festlegen   

Die bisher behandelten Routinen erzeugen immer einen Ausdruck von 

der momentanen Cursorposition aus. 

Für eine gesteuerte Bildschirmgestaltung ist es aber notwendig, 

eine bestimmte Position vorgeben zu können. 

6.5.1 Cursorposition C64 

Beim C64 laBt sich auf sehr angenehme Weise der Cursor an eine 

bestimmte Bildschirmstelle aufsetzen, da eine eigene Berechnungs- 

routine im ROM gegeben ist. 

Ablauf: 

— Zeilennummer in der Zeropageadresse (214) bereitstellen: 

CURZEI=(214) 

— Spaltennummer in CURSPA=(211) bereitstellen 

— Aufruf der Routine CURPOS zur Cursorpositions-Bestimmung



- 106 - 

ASSEMBLER-Beispiel "47-cursorposi" (nur C64): 

— ldy #10 ; Zeile 10 (Beispiel!) 

sty 214 ; nach CURZEI 

— ldx #5 ; Spaltennummer 5 (Beispiel!) 

stx 211 ; nach CURSPA 

- jsr 58732 ; CURPOS setzt Cursor auf Zeile 10/Spalte 5 

- lda #5 ; Integerzahl <HI>=5 

ldx #12 ; <LO>=12 

jsr 48589 ; mit INTOUT zur Kontrolle ausgeben: 1292 

rts 

In Abschnitt 10.4 kommen wir noch einmal auf dieses Thema zu 

sprechen, wenn wir von BASIC aus den Cursor mit Hilfe dieses 

kleinen Maschinenprogramms setzen. 

6.5.2 Cursorposition 40XX/80XX 

Bei den 40/80XX-Geraten ist dieses Problem nicht ganz so einfach 

zu lösen, weil die Cumworsteuerung nicht über eine analoge Berech- 

nungsroutine läuft. Vielmehr orientiert sich der Rechner direkt 

an den Anfangsadressen der Bildschirmzeilen. 

Als Beispiel schauen wir uns dieses Problem für den CBM 8032 an. 

Das Bildschirm-RAM beginnt bei 32768 = $8000. 

Die Anfangsadresse der Zeile 0 (erste Zeile!) hat demnach den 

Wert LO=O/HI=$80 bzw. LO/HI=0/128, die Zeile 1 LO/HI=80/128 usw. 

Diese Anfangsadressen sind nun im ROM bereits abgelegt und zwar 

getrennt als LO-Bytes der Zeilenanfänge BSADLO und in einem 

weiteren Datenblock als HI-Bytes mit dem Anfang BSADHI. 

  

Label C64 40 /80XX 
' ! 

BSADLO 60656=$ecfO 59221=$e755 
BSADHI 217=$d9 59246=$e7be 

Beide Datenblocke umfassen je 25 Bytes, weil es eben 25 Bild- 

schirmzeilen gibt.



- 107 - 

Gleichzeitig wird in den Zeropage-Adressen (196) und (197) 

ein Zeiger verwaltet, der immer die Anfangsadresse LO/HI der- 

jenigen Zeile enthält, in der sich der Cursor augenblicklich be- 

findet. Dabei ist es gleichgültig, ob der Cursorfleck blinkt oder 

unsichtbar bleibt. 

Steht der Cursor beispielsweise irgendwo in Zeile 1 (also der 

zweiten Zeile von oben), dann weist der 7silenpointer ZEIPTR 

die Bytes 80/128 mit LO/HI auf. 

Die Zeile, in der sich der Cursor gerade aufhält, wird auch noch 

in der Adresse CURZEI=(216) gespeichert. 

Um auch die Cursorspalte noch zu bestimmen, wird die Zeropage- 

Adresse (198) mit einem Wert von 0 bis 79 (beim 80-Zeichen- 

Schirm) belegt. Diese Zeropageadresse nennen wir CURSPA. 

Wir können also jederzeit 

a) die aktuelle Cursorposition Zeile/Spalte aus den Adressen 

216 und 198 abfragen, 

b) die absolute Bildschirmadresse der Cursorposition aus der 

Zeilen-Anfangsadresse <196/197> plus Spaltenposition <198> 

berechnen, 

c) den Cursor an jede beliebige Bildschirmstelle schicken. 

Leider genügt es nicht, einfach die Adressen CURSPA und CURZEI 

zu belegen. 

Schauen wir uns deshalb das notwendige Verfahren einmal genauer 

für den 80XX an. Es ist auch für den C64 anwendbar, aber warum 

sollen wir es dort komplizierter machen, wenn es schon einmal 

so einfach ging (siehe 6.5.1). 

Zielsetzung:   
Der Cursor soll in Zeile 12, Spalte 5 aufgesetzt werden. Das ent- 

spricht der Bildschirmadresse 33733. 

Vorbedingungen:   
Die Zeilenanfangsadressen stehen im ROM. 

8032: LO ab 59221 / HI ab 59246 

C64 : LO ab 60656 / HI ab 217



- 108 - 

Ablauf: 

01 Spalte 5 nach Spaltenadresse (198) 

02 Zeile 12 nach Zeilenadresse (216) 

03 HI-Byte der Anfangsadresse der Zeile 12 nach (197) 

Es muß also das 12. Byte nach dem Anfang des Zeilenadressen- 

Blocks HI geholt werden. 

04 dto. LO-Byte nach (196) 

Wir brauchen dazu das 5. Byte nach der Anfangsadresse des 

Zeilenanfang-LO-Blocks. 

05 Ausgabe der Integerzahl aus (A/X) zur Kontrolle 

ASSEMBLER-Beispiel "48-cursorposi" (80XX): 

Ol ldx #5 ; Spalte 5 nach 

stx 198 ; Zeropageadresse (198)=CURSPA 

02 ldy #12 ; Zeile 12 
sty 216 ; nach Adresse (216)=CURZEI 

03 lda 59246,y ; HI-Byte der Anfangsadresse von Zeile 12 nach (A) 

sta 197 ; und in (197)=ZEIPTR-HI speichern 

04 lda 59221,y ; LO-Byte der Anfangsadresse von Zeile 12 nach (A) 

sta 196 ; und in (197)=ZEIPTR-LO speichern 

<196/197> enthält nun den Wert 33733 in der Form LO/HI. 

Nachdem auch die Spaltenposition mit <198> bereits festgelegt 

ist, kann die Bildschirmausgabe erfolgen: 

05 jsr 53123 ; INTOUT gibt <A/X> als Integerzahl aus. 

rts 

Da im (A)-Register noch 12 und im (X)-Register noch 5 steht, er- 

scheint auf dem Bildschirm die Zahl 1292. 

Dabei ist noch zu beachten, daß bei allen Zahlenausdrucken, reell 

oder integer, ein Zeichen mehr für das Vorzeichen benötigt 

wird. Die erste Ziffer der Zahl 1292 erscheint also in Spalte 6, 

da die Zahl positiv ist und das Vorzeichen '+' nicht automatisch 

ausgegeben wird. Stattdessen erscheint eben ein Blank.



- 109 - 

6.6 Ausgabe eines Strings mit STROUT 
  

Um eine Zeichenfolge auf den Bildschirm zu drucken, muß diese im 

ROM oder RAM enthalten sein. 

Vorbedingungen: 
  

Die Anfangsadresse der Zeichenfolge muß bekannt sein. 

Die Länge des Strings wird benötigt. 

Nehmen wir für unsere Demonstration an, wir wollen das Wort 

'COMMODORE' ausgeben, das u.a. auch beim Einschalt-Reset auf dem 

Bildschirm erscheint. 

Beim C64 steht es im ROM ab Adresse 58494=$e47e bzw. LO/HI= 

126/228. Die Lange dieses Wortes betragt 9 Zeichen. 

Ablauf: 

Ol Die Anfangsadresse LO/HI des Strings wird nach STRADR ge- 

bracht, beim C64: (34/35), bei 80XX: (31/32). 

02 Die Stringlänge LEN kommt ins (X)-Register. 

03 Die Routine STROUT gibt den String ab aktueller Cursorposition 

auf dem Bildschirm aus. 

ASSEMBLER-Beispiel "49-stringout" (C64): 

Ol lda #126 ; Stringanfangsadresse LO 

sta 34 ; nach STRADR-LO 

lda #228 ; Stinganfangsadresse HI 

sta 35 ; nach STRADR-HI 

02 ldx #9 ; Stringlänge LEN nach (X) 

03 jsr 43813 ; STROUT gibt 9 Zeichen ab Adresse (58494) aus: 

rts commodore 

Probieren Sie nun mal andere Langen LEN aus. Wenn Sie z.B. 

statt 9 die Zahl 12 verwenden, erhalten Sie "commodore 64". 

6.7 Umwandlung des FAC-Inhalts in einen String mit FACSTR 
  

Normalerweise besorgt die bereits besprochene Routine FLPOUT 

die Umwandlung einer im FAC1l stehenden Zahl in einen druckbaren 

String. Das ist deshalb notwendig, da die Zahl im FAC erst deco-



- 110 - 

diert und als Dezimalzahl dargestellt werden muß. 

Wie sich in den nächsten Abschnitten gleich zeigen wird, ist es 

aber manchmal sehr nützlich, z.B. eine reelle Zahl zunächst in 

einen String zu verwandeln, daran Formatierungsoperationen (die 

der CBM nicht beherrscht) vorzunehmen und dann erst auszugeben. 

Die ROM-Routine FACSTR wandelt den FAC]1-Inhalt in die Zif- 

fernfolge des entsprechenden Zahlenwerts um und legt sie ab 

Adresse 256... ab. Das letzte Zeichen dieser folge ist immer ein 

Byte 0. 

Unterschreitet der Zahlenwert im FACIL den Betrag 0.0l, so er- 

folgt die Umwandlung in Exponentialdarstellung. 

Um bei unbekannten Ergebnissen festzustellen, ob dies der Fall 

ist, untersucht man die Zeropage-Adresse (94). Hier steht nach 

der Umwandlung in einen String immer der Exponent zur Basis 10. 

Wurde eine gewöhnliche Dezimalzahl erzeugt, ist <94) = 0. 

(Beim 40/80XX ist das die Zeropage-Adresse (91) ). 

Die Routine FLPOUT benützt also als Teilprogramme FACSTR und 

STROUT. 

Im folgenden Beispiel geben wir die Zahl -32768 auf diese Weise 

aus. 

Vorbedingung: 

Die reelle Zahl -76,7041703 steht ab (58106) im ROM. (Ist beim 

C64 erfüllt.) 

  

Ablauf: 

O01 Zahl -76,7041703 in den FACI1 bringen. 

02 <FAC 1> in einen String umwandeln 

03 Stringausgabe vorbereiten 

04 Zeichenfolge -76,7 ausgeben 

ASSEMBLER-Beispiel "50-flpstring" (C64): 

Ol lda #250 ; LO von Anfangsadresse (58106) 

ldy #226 ; dto. HI 
jsr 48034 ; MEMFAC holt -76,7041703 nach FACl 

02 jsr 48605 ;s FLPSTR wandelt FAC]l in String um und legt 

ihn ab 256 an.



- 111 - 

03 lda #0 ; Stringanfang LO 

sta 34 ; nach STRADR-LO 

lda #1 ; Stringanfang HI (=1mal256) 

sta 35 ; nach STRADR-HI 

ldx #5 ; Stringlange 5 fur funfstellige Zahl 

04 jsr 43813 ; STROUT druckt auf Bildschirm: -76,7 

rts 

Diese Strings, die aus der Umwandlung des FAC1 kommen, werden 

immer mit einem O-Byte abgeschlossen. 

Die Routine STR-O erkennt dies und gibt automatisch nur die 

Zeichen bis zum Stringende aus, so daß keine Stringlänge angege- 

ben werden muß. Da sich alle diese Zahlen ab Adresse (256)... 

befinden, genügt es, die Register (A/Y) mit 0/1 zu belegen. Die 

Routine erkennt dies als Stringanfang. 

Will man die Stringausgabe begrenzen, dann setzt man ein Null- 

Byte hinter das gewünschte letzte Zeichen. 

Das obige Beispiel vereinfacht sich im dritten Teil wie folgt: 

03 lda #0 ; LO 

ldy #1 ; HI der Anfangsadresse 256 

sta 262 ; Null als Stringbegrenzer setzen 

04 jsr 43806 ; STR-O 

rts 

6.8 Anwendung: eine PRINT USING - Routine 
  

An dieser Stelle bietet es sich an, ein komplexeres Modul zu dis- 

kutieren, das gleichzeitig den Vorteil hat, praktisch anwendbar 

zu sein und eine Schwäche des CBM-Betriebssystems auszumerzen. 

Es handelt sich um eine Routine, die Zahlen formatiert aus- 

geben kann. 

Es gibt darüber bereits eine ganze Reihe Veröffentlichungen, die 

aber mehr oder weniger dürftig erläutert sind, so daß die eigent- 

lichen Lernschritte fast immer in einem Wust von Zahlen und Va- 

riablen untergehen. 

An diesem Modul lassen sich eine Vielzahl von Problemen aufrol- 

len, so daß es sich lohnt, hier etwas länger zu verweilen und die 

eine oder andere Operation etwas genauer zu beleuchten.



- 112 - 

Doch nun ans Werk: 

Unsere Routine soll folgenden Forderungen genugen: 
  

a) Die Zahl der Vorkommastellen soll frei gewählt werden können, 

b) die Zahl der Nachkommastellen ebenfalls. 

c) Man kann zwischen Dezimalpunkt und Dezimalkomma wählen. 

d) Das Vorzeichen '+' kann wahlweise mit ausgegeben werden. 

e) Das Vorzeichen steht immer direkt vor der Zahl. 

f) Die CBM-eigene Verstümmelung der Dezimalbrüche (z.B. '-.5') 

wird in die übliche Form mit einer Vorkomma-Null gebracht 

(z.B. '-0.5'). 

Einschränkung: 

Exponentialdarstellungen werden nicht formatiert. 
  

Zusammengefaßt: 

Die ausgegebenen Zahlen haben die vorher festgelegte Form: 

tn. oder ..##.###.. oder +..###,###.. USW. 

  

Solche Routinen sind z.B. in BASIC-Spracherweiterungen enthalten, 

die sich aber nur nach dem Cracken des entprechenden Tool-Kits 

für Maschinen-Programme anzapfen lassen. 

Wie man diese Module auch für BASIC-Programme verwenden kann, 

werden wir später besprechen. Jedenfalls bleiben wir auch hier 

unserem Konzept treu, das Modul so aufzubauen, daß es frei ver- 

schiebbar irgendwo im RAM oder auch im EPROM arbeiten kann. 

Das bedingt wieder den Verzicht auf Unterprogrammsprünge mit dem 

Befehl 'JSR XXXX', wenn die Adresse 'XXXX' im Modulbereich selbst 

liegt. 

Die folgenden Ausführungen verlangen vom Leser sicherlich sehr 

viel Konzentrationsvermögen, bieten ihm aber dafür auch einen 

Einblick in ASSEMBLER-Strukturen. Und vielleicht ist der eine 

oder andere Kniff doch noch unbekannt oder nicht ganz durchschaut 

gewesen. 

Vorbedingungen: 

Wir benötigen 6 freie Adressen als flags, Indices oder Zähler. 

In unserem Beispiel werden verwendet: 

  

(900) Zahl der festgestellten Vorkommastellen 

(901) Anzahl der gewünschten Vorkommastellen ##,... 

(902) Anzahl der gewünschten Nachkommastellen te



- 113 - 

(903) Stellung x des Endezeichens (Byte 0) in der Seite |, 

also 256,x 

(904) Vorzeichenflag 

Wird mit Code 43(+) vorbelegt, falls bei positiven Zahlen 

das Vorzeichen mit ausgegeben werden soll. 

(905) Flag für Dezimalmarke 

Wird mit Code 44 (,) vorbelegt, falls statt des Dezimal- 

punkts ein Dezimalkomma ausgegeben werden soll. 

Zahl muß bereits im ROM 

und die Anfangsadresse muß bekannt sein. 

Die auszugebende oder RAM vorhanden 

6.8.1 Ablauf — Struktur: 

Das Beispiel wird für die 

ab (58121)=(009/227) steht. 

Zahl 2pi durchgezogen, die beim (64 

Das gesamte Programm läßt sich in 11 Teile gliedern. 

Teil 1: Initialisierung 

~ In unserem Beispiel werden das '+'-Flag, das Komma-fFlag gesetzt 

und die Zahl der Vorkommastellen auf 5, die der Nachkommastel- 

len auf 3 festgelegt. 

- Die Zahl 6.28318531 wird aus dem ROM geholt und zur Kontrolle 

ausgedruckt. Dabei bleibt die Ziffernfolge ab (256).. 

- Es erfolgt 

Vergleich 

erhalten. 

Carriage Return mit CHROUT, um einen direkten 

zwischen dem unformatierten und formatieren Ausdruck 

sichtbar zu machen. 

ein 

Flags und Bytes sehen nach Teil 1 also so aus: 

<900> = 0 <256> = 32 "" 
<901> = 4 <257> = 54 "6" 
<902> = 2 <258> = 46 "." 
<903> = O <259> = 50 "2" 
<904> = 43 "4" <260> = 56 "8" 
6905> = 44 "0 <261> = 51 "3" 

<262> = 49 "\" 
263> = 56 "g" 
264> = 53 "5" 
<265> = 51 "3" 
(266> = 49 "|" 
<267> = 0 
<268> = 0



- 1la - 

Teil 2: Dezimalpunkt suchen und Vorkommastellen feststellen 

-— Die höchste Adresse, in der eine Ziffer der Dezimalzahl stehen 

kann, ist 266. 

Wir untersuchen daher von dort aus abwärts die Zeichenfolge 

nach dem Dezimalpunkt. 

-— Wird er gefunden, erniedrigen wir den Zähler (X) und erhalten 

die momentane Zahl der Vorkommastellen, die wir nach (900) ret- 

ten. 

-— Wird kein Punkt gefunden, dann handelt es sich bei der Zahl um 

eine ganze Zahl, deren Zeichenfolge mit dem Byte O abschließt. 

In diesem fall wird Teil 3 übersprungen. 

Teil 3: Bei Dezimalzahl Endezeichen durch Ziffer U ersetzen 

- Das Endezeichen (Byte Null) wird - wieder mit einer Suchschlei- 

fe von der Basis 257 aus - gesucht und 

- durch die Zahl "O0" ersetzt (Code 48). 

Anschließend wird Teil 4, die Behandlung der Ganzzahlen über- 

sprungen. 

Um eventuellen Verwirrungen zu begegnen: 

Das Byte '0', also das Endezeichen einer Ziffernfolge ist der 

Code für den Klammeraffen. 

Die Ziffer '0' hat aber den Code 48. 

Wunscht man die Ziffer '0', muß also der Byte-Eintrag 48 sein. 

Teil 4: Vorbehandlung einer Ganzzahl 

- Durchsuchen der Ziffernfolge nach dem Endezeichen (Byte 0) 

- Ersetzen des Bytes QO durch das Byte 46, also den Code fur den 

Dezimalpunkt. 

Das geschieht deswegen, damit man auch eine ganze Zahl (z.B. 10) 

mit Nachkommastellen ausgeben kann (z.B. 10.000). 

Teil 5: Neues Endezeichen setzen 

- Zunächst stellen wir fest, ob sich die Zahl als Exponentialzahl 

ab (256) befindet. Das prüfen wir durch Abfragen der Adresse 

(94) bzw. 40/80XX: (91). Hier steht ein eventueller Exponent. 

Sollte dies der Fall sein, gehen wir sofort zum Teil 'Druck'. 

Gleichzeitig haben wir damit schon Vorbereitungen getroffen, 

falls wir später auch exponentielle Darstellungen in Dezimalzah- 

len verwandeln wollen. 

- gewünschte Nachkommastellenzahl laden 

~ Falls dies O sein sollte, muß das Endezeichen direkt hinter



- 115 - 

die Ziffer 

-— falls eine Nachkommastellen gebraucht werden, 

addieren wir die bisherigen Vorkommastellen mit den gewünschten 

erhöhen diese Zahl um 1 wegen der Stelle für 

gesetzt werden, also an Stelle des Dezimalpunkts. 

oder mehrere 

Nachkommastellen, 

den Dezimalpunkt und setzen das Endezeichen mit diesem Index 

zur Basisadresse (257). 

- Da wir später 

höhen 

mit 

diesen Index als Zähler ab (256) benötigen, er- 

wir ihn um 1, und weil die später folgende Zählschleife 

Erniedrigen beginnt, erhöhen wir nochmals um 1 und legen 

damit die Stellung des Endezeichens in (903) ab. 

Beim Programmlauf sehen Flags und Bytes nun folgendermaßen aus: 

<900> = 1 <256> = 43 mat 

<90l> = 4 <257/> = 54 "6" 

<902> = 2 <258> = 44 wt 

<9035> = 6 €<259> = 50 "2" 

<904> = 43 "+" <260> = 56 "gn 

<905> = 44 "," <261> = 0 

<262> = 49 my" 

<2635> = 56 "gn 

<264> = 53 "5" 

<265> = 51 "3" 

<266> = 49 my 

<26/> = 48 "go" 

<268> = 0 

Teil 6: Art der Vorzeichenausgabe 

-— Prüfung, ob das Plusflag gesetzt ist 

- wenn ja, Vorzeichen der Zahl feststellen 

wenn nein, zu Teil 7 springen 

- wenn Vorzeichen positiv, was durch eine Leerstelle in (256) zu 

erkennen ist, diese durch '+' ersetzen, 

sonst gleich zu Teil 7 springen 

Teil 7: Dezimalmarke behandeln 

- Prüfung, ob überhaupt Nachkommastellen gewünscht werden. 

braucht 

ersetzt werden. 

Wenn nicht, ein eventueller Dezimalpunkt auch nicht 

-— Sonst Prüfung, ob Dezimalkomma gewünscht wird. 

Wenn ja, Punkt durch Komma ersetzen. Die Zahl der Vorkommastel- 

len haben wir ja in (900) zur Verfügung.



- 116 - 

Teil 8: Behandlung der CBM-verstummelten Zahlen 

- Prüfung, ob die Vorkommastellenzahl O ist. 

Das ist z.B. bei der CBM-Zahl -.5 der Fall. 

- wenn ja, Endestellung nach (Y) und um 1 erniedrigen, da das 

Vorzeichen bei der folgenden Verschiebung erhalten bleiben 

soll. 

-— Alle Zeichen ab (257) um eins nach oben schieben. Damit wird 

Platz für die Vorkomma-Null geschaffen. 

- Null einfügen. 

-— Da sich die Stellung des Endezeichens und die Zahl der Vor- 

kommastellen jeweils um 1 erhöht haben, müssen diese Indices 

entsprechend korrigiert werden. 

Das Verschieben in der Nähe der Zeropage bedarf noch einer Erläu- 

terung: 

Es wäre z.B. möglich, das Vorzeichen nach (255) zu bringen und in 

(256) eine Null (Code 48) zu schreiben, um damit eine Verschie- 

bung ab (255) zu versuchen. Aber der entsprechende Maschinenbe- 

fehl erkennt (255) als Zeropage-Adresse, so daß zum Beispiel für 

x=10 der ASSEMBLER-Befehl LDA 255,X nicht wie gewünscht den In- 

halt von (265) in das (A)-Register holt. 

Vielmehr wird das entstehende HI-Byte 1 mißachtet und von 255 aus 

mit O weitergezahlt. Geladen wird also wie LDA 9. 

Bleibt uns nichts anderes übrig, als den vorgeschlagenen Weg 

oder eine Abwandlung davon zu programmieren. 

Teil 9: Behandlung der Vorkommastellen 

- Differenz zwischen vorhandenen und gewünschten Stellen berech- 

nen. 

- Bei Gleichheit zu Teil 10 (Ausdruck) springen, 

- ebenfalls bei negativen Differenzen, d.h. wenn die Zahl mehr 

Vorkommastellen besitzt als man vorgegeben hat. 

Das kommt in etwa einer Fehlerbehandlung gleich. 

- Sonst Differenz (noch fehlende Stellen) zum Index für Zahlende 

addieren 

- und Index für (Zahlenende +1) als Zähler nach (Y) holen. 

— Zeichenfolge nach oben verschieben. 

Nachdem sich in unserem Beispiel die Flags nicht geändert haben, 

sieht die Byte-Folge nun so aus:



117 

<900> = l <256> 453 "+" 

<901l> = 4 <257> 54 "6" 

<902> = 2 <258> 44 "," 

<903> = 6 <259> = 43 "4" 

<904> = 43 "4" <260> = 54 "6" 

<905> = 44 "," <261> = 44 "," 

<262> = >50 "2" 

<263> = 56 "8" 

<264> = 0 

<265> = 51 "3" 

<266> = 49 "\" 

<267> = 48 "0" 

<268> = 0 

Teil 10: Vorkommastellenrest auffüllen 

sieht, sind noch Reste der alten Ziffernfolge im Spei- 

cher. Wir füllen sie mit Leerstellen (Code 32) auf. 

Wie man 

-— Als Zähler können wir den 'Rest' vom (X)-Register gleich wei- 

terverwerten. 

- und mit einer Schleife bis hinunter nach (256) alle Adressen 

mit Leerzeichen belegen: 

<256> = 32 tt" 

<257> = 32 " " 

<258> = 32 th" 

<259> = 43 4" 

Flags unverandert <260> = 54 "6" 

<261> = 44 "," 

<262> = >50 "2" 

<263> = 56 "8" 

<264> = 0 

<265> = 51 "3" 

<266> = 49 "]" 

<26/> = 48 "0" 

<268> = 0 

Als Option könnte auch mit Vorkomma-Nullen aufgefüllt werden. 

Es ware aber dann nochmal ein Flag, eine Abfrage und eine Ver- 

setzung bzw. Belassung des Vorzeichens notwendig. 

Teil 11: Ausdruck mit STR-O 

- Register (A/Y) mit Anfangsadresse 0/1 belegen 

- Ausgabe mit Routine STR-O, da die Ziffernfolge auf jeden 

Fall mit einem Null-Byte endet. 

der



- 118 

6.8.2 Struktogramm zur PRINT USING — Routine 

  

  

    

l. Initialisierung 

2. Dezimalpunkt vorhanden? 

Ja nein 

Vorkommastellen sichern 4. Endezeichen suchen 

    
3.] Endezeichen durch Null 

  
Endezeichen durch 

  

    
  

    

    

    
    

    
    

    
  

ersetzen Dezimalpunkt ersetzen 

>. Prüfung auf Exponentialdarstellung 

nein (Dezimalzahl) ja 

neues Endezeichen setzen und dessen Stelle speichern 

6. Vorzeichenflag (+) gesetzt? 

Ja nein 

Vorzeichen + bei positiven Zahlen 

statt des Leerzeichens speichern 

7. Kommaflag (,) gesetzt? 

ja nein 

Punkt gegen Komma austauschen 

8. verstümmelte CBM-Dezimalzahl? 

ja nein 

in die Form O.###.. bringen 

9. richtige Zahl Vorkommastellen? 

nein ja 

Ziffernfolge entsprechend verschieben 

10. Rest mit Leerzeichen füllen         ll. Ausdruck      



- 119 - 

6.8.3 ASSEMBLER-Modul "51-print using" (C64, 40/80XX in Klammern): 

Teil 1: 

— 18125 

18127 

18130 

18132 

18135 

18137 

18140 

18142 

18145 

18147 

18149 

(18149 

18152 

(18152 

-(18155 

(18157 

Teil 2: 

~ 18161 

18163 

18164 

18166 

18169 

18171 

- 18173 

18174 

Teil 3: 

- 18177 

18179 

18180 

18183 

18185 

18187 

18190 

Initialisierung 

lda #43 '+'-Zeichen setzen 

sta 904 

lda #5 ; Vorkommastellenzahl setzen, also 

sta 901 ; die Form +#####,.... wählen 

lda #3 ; Nachkommastellenzahl wählen, damit 

sta 902 ; endgültige Form: +##4#4#4#,4#4# festlegen 

lda #44 ; Komma-Code setzen 

sta 905 

lda #9 ; Anfangsadresse LO von 2pi (Beispiel) 

ldy #227 ; dto. HI 

jsr 48034 ; MEMFAC holt 2pi nach FACIL 

jsr 52440) 

jsr 43708 ; FLPOUT druckt: 6.28318531 

jsr 53133) 

nop 

lda #13) ; RETURN ausgeben mit 

jsr 65490) ; CHROUT, also in nächste Zeile gehen 

nop 

Dezimalpunkt suchen 

ldx 

dex 

beq 

lda 

cmp 

bne 

dex 

stx 

#11 

18194 

256,x 

#46 

18163 

900 

5 Zahler auf 11 

Zähler -1 

Sprung, wenn Zähler bei 0 angelangt ist 

Ziffernzeichen holen und 

auf Punkt überprüfen 

weitersuchen, wenn kein Punkt gefunden wird 

Punkt gefunden ---> Zähler erniedrigen 

jetzt ist in (X) die Anzahl der Vorkomma- 

stellen, die nach (900) gerettet wird 

Null bei Dezimalzahl setzen 

ldx 

dex 

lda 

bne 

lda 

sta 

bne 

nop 

#11 

257,x 

18179 

#48 

257,x 

18213 

. 

9 Zahler wieder auf 11 setzen 

Zähler minus | 

Zeichen (von 267 abwärts) laden 

weiter abwärts zählen, bis im (A) eine Null 

steht (dann wird das Z-Flag gelöscht) 

Code für Zahl DO laden, 

dort speichern, wo die Null war 

und den Teil 3 überspringen



Teil 4: 

— 18194 

18196 

18197 

18199 

18202 

— 18204 

18206 

18209 

- 120 - 

Behandlung einer eventuellen Ganzzahl 

ldx 

dex 

beq 

lda 

bne 

lda 

sta 

stx 

#10 

18204 

257,% 

18196 

#46 

257,x 

900 

e 

9 Zahler auf 10 

Zahler minus 1 

Zähler auf 0 ===> Sprung 

Zeichen laden und auf Code O (Endezeichen) 

durchsuchen 

DO gefunden ---> Punktcode laden 

und Code O durch Code 46 ersetzen 

Zahler (X) enthalt gleichzeitig die Anzahl 

der Vorkommastellen ---> retten nach (900) 

Teil 5: Endezeichen neu setzen in Abhangigkeit von der Zahl der 

geforderten (drei) Nachkommastellen 

- 18213 

(18213 

18215 

— 18217 

18220 

- 18222 

18225 

18226 

— 18228 

18229 

18232 

18233 

18234 

18236 

nop 

— 18240 

18241 

18242 

lda 

lda 

bne 

lda 

bne 

ldx 

cle 

bec 

cle 

adc 

tax 

inx 

lda 

sta 

inx 

inx 

stx 

94 

91) 

18322 

902 

18228 

900 

18234 

900 

#0 

257,x 

903 

Prüfung auf eventuelle Exp.-Darstellung 

durch Untersuchen des Exponenten 

falls Exponent ungleich Null ===> Drucken 

gewünschte Anzahl Nachkommastellen laden 

mehr als 0? ===> weiter 

gleich U ---> Vorkommastellenzahl laden 

und unbedingt die Behandlung 

der Nachstellen überspringen 

Nachkommastellen + Vorkommastellen 

Summe nach (X) 

und um 1 erhöhen wegen des Dezimalzeichens 

Endezeichen 

neu setzen 

Zähler wird später ab (256) benützt und 

die Schleife beginnt mit DEX 

Länge der Ziffernfolge +1 steht jetzt in 

(X) und wird nach (903) gerettet



Teil 6: 

— 18245 

18248 

18250 

— 18252 

18255 

18257 

— 18259 

Teil 7: 

— 18262 

18265 

— 18267 

18270 

18272 

— 18274 

18277 

Teil 8: 

— 18280 

18283 

- 18285 

18288 

- 18289 

18290 

18293 

18296 

18297 

— 18299 

18301 

- 18304 

18307 

- 121 - 

Vorzeichen festlegen 

Ida 904 

cmp #43 ; Vorzeichen '+' vorgeschrieben? 

bne 18262 ; nein ===> weiter 

ldx 256 ; Ja ---> Vorzeichen der Zahl holen 

cpx #32 ; positiv? 

bne 18262 s nein ===> weiter 

sta 256 3; ja ---> Vorzeichen '+' speichern 

Dezimalmarke setzen 

Ida 902 

beq 18280 ; keine Nachkommastellen gewünscht ===>weiter 

Ida 905 

cmp #44 ; Komma gewünscht? 

bne 18280 ; nein ===> weiter 

Idx 900 . ; Anzahl Vorkommastellen 

sta 257,x ; Komma statt Punkt setzten 

Verstümmelung bereinigen 

ldx 900 ; Vorkommastellen laden 

bne 18311 ; welche vorhanden ===> weiter 

ldy 903 ; Stellung des Endezeichens 

dey ; als Zähler herrichten 

dey ; Schleifenbeginn zur 

lda 257,y ; Verschiebung der Zahl um 1 

sta 258,y ; nach oben 

tya ; Schleifenende erreicht? 

bne 18289 ;s nein ===> weiter verschieben 

lda #48 ; Code fur O 

sta 257 ; hinter das Vorzeichen setzen 

inc 900 ; Vorkommastellenzahl jetzt +1 

inc 903 ; Endezeichen jetzt +l 

nop



- 122 - 

Teil 9/1: Vorkommastellen überprüfen 

18314 sec 

18315 sbc 

5 

900 ; 

- 18318 beq 18322 ; 
18320 bcs 18330 ; 

Teil ll: Ausdruck 

18322 lda 
18324 ldy 

18326 jsr 
(18326 jsr 

rts 

#0 ; 

#1 ; 

43806 5; 
47901) 

Subtraktion vorbereiten 

gewünschte minus vorhandene VK-Stellen 

keine Differenz ===> sofort Ausdruck 

Differenz festgestellt ===> Ausdruck über- 

springen und zunächst Teil 9/2 bearbeiten 

Zeiger (A/Y) auf 

(256) stellen 

STR-O gibt aus: 6,283 

und Ende 

Teil 9/2: Vorkommastellen einrichten 

18330 clc 

18331 adc 

18334 tax 

18335 ldy 

18338 dey 

18339 dex 

18340 lda 

18343 sta 

18346 tya 

18347 bne 

903 ; 

903 ; 

; 

3 

236,y 5 
256,x ; 

9 

18338 ; 

Teil 10: Füllzeichen 

18349 dex 
18350 lda 
18352 sta 
18355 txa 
18356 bne 
18358 beq 

Die hier im 

zum Austesten 

#32 ; 

256,x ; 

3 

18349 ; 

18322 ; 

Addition vorbereiten 

VK-Differenz plus bisherige Lange 

als Zahler nach (X) 

bisherige Lange als 2.Zahler nach (Y) 

Schleif enbeginn 

fur 

die Verschiebung 

nach oben 

Ende erreicht? 

nein ---> weiter verschieben 

sonst (X) als Zahler weiterverwenden 

und mit Leerzeichen 

nicht belegte VK-Stellen auffullen 

Endeprufung 

x>0 ===> weiter füllen 

x-0, also fertig ===> zum Ausdruck 

ASSEMBLER-Programm noch eingebauten NOPs lassen sich 

des Moduls gegen RTS-Befehle umtauschen oder als 

BREAK-Points verwenden.



- 123 - 

Auf gabe: 

Erweitern Sie die PRINT USING-Routine, so daß auch Zahlen in Ex- 

ponentialdarstellung als Dezimalzahlen formatiert ausgedruckt 

werden. 

Aufgabe: 

Wandeln Sie die PRINT USING-Routine so ab, daß mit der Formatie- 

rung auch eine Rundung erfolgt. 

Vorschlag: 

— Nachkommastellenzahl zunächst um 1 vergrößern 

Durchlauf der PU-Routine 

-— vor dem Ausdruck die letzte Stelle untersuchen 

letzte Stelle größer/gleich 5 ---> vorletzte erhöhen 

(Achtung, wenn vorletzte gleich 9 ?!) 

letzte Stelle abschneiden und zum Ausdruck übergehen 

6.9 Ausgabe von Hex-Zahlen (nur 40/80XX) 
  

Aus dem MONITOR der CBM-Rechner (nicht C64) lassen sich noch ein 

paar brauchbare Ausgaberoutinen stibitzen: 

6.9.1 Byte in Hex-Form ausgeben mit BYTOUT 

Die auszugebende Zahl muß im (A)-Register bereitgestellt werden. 

Nach Aufruf der Routine BYTOUT erscheint die Zahl als zwei- 

stellige Hexzahl auf dem Schirm. 

Beispiel nur 40/BOXX: 

Die Zahl 160 soll in Hexform gebracht werden, 
  

ASSEMBLER-Beispiel "52-byte out" (80XX): 

— lda #160 ; 160 nach (A) 

- jsr 55074 ; BYTOUT wandelt 160 um in $a0 

6.9.2 Vierstellige Hexzahl (Adresse) ausgeben mit ADROUT 

Die Zahl muß zerlegt in LO/HI in (251/252) vorhanden sein.



- 124 - 

Beispiel nur 40/80%X: 

Der Zeiger in (144/145) soll als Hexzahl ausgegeben werden. 
  

ASSEMBLER-Beispiel "53-adressout" (80XX): 

~ lda 144 

sta 25] ; LO ubertragen 

Ilda 145 

sta 252 ; HI ubertragen 

- jsr 55063 ; ADROUT gibt aus z.B.: $e455 

Das ist übrigens der Standard-Einsprung für 

die Interrupt-Routine (IRQ). 

Siehe zu diesem Thema auch Abschnitt 10.9! 

6.9.3 Zwei Zeichen ausgeben mit OUT2 

Zwei Zeichen - druckfähig oder auch nicht - können mit dem Ein- 

sprung nach OUT2 hintereinander ausgegeben werden. 

Dazu muß das erste Zeichen - genauer gesagt, der Code des ersten 

Zeichens - nach (X) und der des zweiten nach (A) gebracht werden. 

Beide Zeichen werden entsprechend dem ASCII-Code ausgegeben. 

Beispiel: 

Nach Bildschirm CLR (Code 147) wird der Buchstabe 'X' gedruckt. 

ASSEMBLER-Beispiel "54-zwei ausgaben" (80XX): 

— ldx #147 ; Code fur Bildschirm clear 

lda #88 ; Code fur 'X' 

- jsr 55089 ; OUT2 loscht Bildschirm und druckt:X 

6.10 Bewegungssimulation — eine Kompaßanzeige   

Erinnern Sie sich noch an die Programme "Ol-pinsel" und "03-takt- 

modul" aus Kapitel 2? 

Dort haben wir ein Anzeigegerät für Richtungsänderungen gebaut. 

Mit Hilfe dieses sog. Wendezeigers läßt sich nun die Kompaßrich- 

tung bestimmen, wenn man einen Bewegungsvorgang simulieren will.



- 125 - 

Man braucht solche Module immer dann, wenn Orientierungs- oder 

Navigationsprobleme bei Fahrzeugen (Flugzeugen, Schiffen usw.) 

zu lösen sind. 

Wir sind schon so weit gekommen, daß wir mit dem Programm "takt- 

modul" eine Bewegung digitalisieren können. In unserem Beispiel 

haben wir eine Taktfrequenz von 4s-l (alle 0.25s ein Takt) 

gewählt. Diesen Wert wollen wir nun den folgenden Überlegungen 

zu Grunde legen. Jetzt sind wir nämlich mit Hilfe unserer Arith- 

metik- und Ausgaberoutinen in der Lage, eine Bewegung um eine 

Achse zu simulieren und die aktuelle Richtung jederzeit zu be- 

stimmen und als Kompaßanzeige auszugeben. 

Unser Ziel: 

-— Mit dem Joystick (oder der Tastatur) geben wir die Richtung 

vor, in die wir uns drehen wollen, aber auch die Geschwindig- 

keit der Drehbewegung. 

Nehmen wir einen Wert aus der fFliegerei an, dann entspricht 

der Ausschlag von einer Pinselbreite des Wendezeigers einer 

Drehgeschwindigkeit von 6 Grad pro Sekunde. 

Eine volle Umdrehung (ein Vollkreis) dauert dann genau eine 

Minute, eine halbe Umdrehung 30 Sekunden usw. 

Anders ausgedrückt: In jeder Sekunde soll sich die Richtung um 

plus 6 Grad - also nach rechts - verändern, wenn der Pinsel um 

eine Breite nach rechts auf dem Anzeigegerät steht. Steht er 

z.B. zwei volle Breiten links, dann ändert sich die Richtung in 

jeder Sekunde um minus 12 Grad. 

-— Die Richtung wird in Form einer dreistelligen Zahl als Kompaß- 

kurs dargestellt: 

Dabei gilt: 360 = 000 = Nord 

090 = Ust 

180 = Sud 

2/0 = West 

Nun, können Sie schon vermuten, wie wir die Richtung berechnen? 

-— Zunächst nehmen wir als Ausgangszustand an, daß beim Proyramm- 

start die Richtung Nord (=000) gegeben ist. 

- Die Stellung des Wendezeigers finden wir in der Zeropage- 

Adresse (189), wobei 18 die Mittelstellung, 4 voller Linksaus- 

schlag und 32 voller Rechtsausschlag bedeutet.



- 126 - 

- In vier Schritten bewegt sich der Pinsel um eine Breite nach 

links oder rechts, wenn Sie das Programm "Ol-pinsel" nicht ab- 

gewandelt haben. Wir behalten diesen Wert bei (weil er auch bei 

den 40/80XX-Geräten brauchbar ist). 

Steht z.B. in (180) der Wert 14, dann bedeutet dies, daß eine 

Linksdrehung mit genau einer Pinselbreite simuliert wird. Die 

Kompaßanzeige muß also pro Sekunde um 6 Grad reduziert werden. 

- Um links und rechts gleich von vornherein mit dem richtigen 

Vorzeichen zu versehen, subtrahieren wir von der momentanen An- 

zeige einfach den Mittelwert 18. Dazu halten wir die Zahl -18 

als reelle Konstante Kl im RAM bereit. 

Damit ist "geradeaus" = 0 

"1 Pinselbreite rechts" = 4 

"] Pinselbreite links" = -4 

"2 Pinselbreiten links" = -8 

USW. 

Für diesen Wert legen wir eine reelle Zahl an, deren Anfang wir 

mit STELLUNG bezeichnen. 

Jetzt kann die eigentliche Rechnerei losgehen:   

00 Initialisierungen: 

Konstante Kl = -18 ab (17800=$4588)=136/69 

Konstante K2 = 0.375 ab (17805=$458d)=141/69 

Konstante K3 = 360 ab (17810=$4592)=146/69 

Konstante K4 = -360 ab (17815=$4597)=151/69 

RICHTUNG 0 ab (17820=$459c)=156/69 

STELLUNG18 = 18 in (180)=($b4) aus "Ol-pinsel" 

Routine zum Cursoreinstellen auf Zeile 10, Spalte 30. 

Ol Subtrahieren wir von STELLUNG18, die vom Wendezeiger ge- 

liefert wird, den Wert 18, dann erhalten wir die STELLUNG 

des Wendezeigers in der Form, daB O "Mitte", negativer Wert 

"links" und ein positiver Wert "rechts" bedeutet. 

Bei unserer Einteilung bedeutet jeweils 1 Einheit in STELLUNG 

eine Richtungsänderung von 1,5 Grad pro Sekunde, da der 

Pinsel seine Richtung in Viertelbreiten ändert. 

02 Bei einem Takt von 0.25 Sekunden ändert sich die Richtung also 

um DR=0,25 mal 1,5 mal <STELLUNG>. 

(DR bedeutet hier "Differenz der Richtung" pro Takt.)



03 

04 

05 

06 

07 

- 127 - 

Fassen wir die beiden ersten konstanten Faktoren zusammen, 

dann erhalten wir: 

DR = 0,375 mal <STELLUNG> 

Die reelle Zahl 0,375 halten wir als Konstante K2 in Form 

einer reellen Zahl bereit. Sie wird zu Beginn des Programms 

im Initialisierungsteil erzeugt werden. 

Die neue Kompaßrichtung RICHTUNG ergibt sich jetzt ganz 

einfach aus der alten Richtung RICHTUNG plus der Rich- 

tungsänderung DR: 

<RICHTUNG> + DR ----> <RICHTUNG> 

Bevor wir nun unsere gefundene Richtung auf dem Bildschirm 

ausgeben, muß die berechnete Zahl RICHTUNG eventuell erst be- 

reinigt werden, falls sie nicht im Bereich zwischen O und 360 

liegt. 

Nehmen wir an, die alte Richtung war O Grad und die Drehung 

erfolgte nach links, dann liegt jetzt eine negative Zahl vor. 

Andererseits wird beim Rechtsdrehen schnell der Wert 360 über- 

schritten. 

Für diese Randbedingungen legen wir nun fest: 

falls <RICHTUNG> < 0 ,„ dann RICHTUNG = RICHTUNG + 360 

falls <RICHTUNG> >360 , dann RICHTUNG = RICHTUNG - 360 

Wir benötigen zum Rechnen demnach eine zweite Konstante mit 

dem Wert 360. Nennen wir sie K3. Da sie nicht im ROM 

steht, muß auch sie erst als reelle Zahl erzeugt werden. 

ZweckmaBigerweise legen wir auch gleich eine Konstante K4= 

-360 an, denn die Addition laßt sich leichter durchführen als 

die Subtraktion. 

Die bereinigte Zahl RICHTUNG legen wir dort ab, wo vorher die 

alte Richtung stand, denn schon im nächsten Takt wird die neue 

zur alten Richtung. Auch hier benötigen wir 5 Bytes mit der 

Anfangsadresse RICHTUNG. 

Die Bildschirmausgabe der Richtung setzen wir neben den Wende- 

zeiger. 

Dazu wandeln wir den Inhalt von <RICHTUNG> in einen String 

um und geben ihn mit STR-O aus, nachdem wir eine Null als 

Endezeichen so gesetzt haben, daß nur eine Integerzahl zum



08 

- 128 - 

Ausdruck kommt. 

Damit nicht eventuelle Reste des vorhergehenden Kurses zu 

Falschanzeigen führen, löschen wir vorher aber grundsätzlich 

die benötigten drei Bildschirmadressen. 

Wen das damit verbundene eventuelle Flimmern stört, das nun 

bei konstanter Richtung auftritt, der muß dafür sorgen, daß 

in jedem Takt alte und neue Richtung verglichen werden und bei 

Gleichheit eben gar kein Ausdruck erfolgt. 

Sie werden mit der Ausgabe auf dem Bildschirm wahrscheinlich 

noch nicht ganz zufrieden sein, weil der Druckanfang, den wir 

vor jedem Ausdruck festlegen müssen, immer der gleiche ist, 

egal ob es sich um eine ein- oder dreistellige Zahl handelt. 

Doch wie man den Cursor positioniert oder wie man eventuell 

die PRINT USING-Routine einbaut, das überlassen wir Ihnen. Wir 

haben das bereits besprochen. Außerdem ist eine Formatierung 

durch den Ablauf von Teil 07 schon sehr weit vorbereitet. 

ASSEMBLER-Programme "55-kompin" und "56-komprechnen" (C64): 

00 Initialisierungen "55-kompin" 

17500 ldy #18 

17502 lda #0 

17504 jsr INTFLP ; 18 in reelle Zahl 

17507 Idx #136 

17509 ldy #69 
17511 jsr FACMEM ; 18 ab (17800...17804) ablegen 

17514 lda 17801 ; erstes Mantissenbyte holen 

17517 ora #128 ;s und Negativbit 7 setzen 

17519 sta 17801 ; Zahl -18 fertig 

nop 

17523 ldy #119 
17525 lda #1 
17527 jsr INIFLP ; 375 in reelle Zahl 
17530 jsr FDIV10 ; durch 10 = 37.5 

17533 jsr FDIV1O ; durch 10 = 3.75 

17536 jsr FDIV10 ; durch 10 = 0.375 

17539 1dx #141 

17541 ldy #69 

17543 jsr FACMEM ; 0.375 ab (17805...17809) ablegen 

nop 

17547 ldy #104 

17549 lda #1 

17551 jsr INTFLP ; 360 in reelle Zahl



17554 

17556 

17558 

17562 
17564 
17566 
17569 
17571 
17573 
17575 
17577 

17581 

17583 

17585 

17588 

17589 

17592 

17594 

17596 

17598 

17600 

17603 

ldx 

ldy 

jst 

nop 

lda 

ldy 

jsr 

lda 

sta 

ldx 

ldy 

jst 

nop 

ldx 

lda 

sta 

dex 

bpl 

nop 

lda 

sta 

lda 

sta 

jsr 

rts 

#146 

#69 

FACMEM 

#104 

#1 

INTFLP 

#128 

102 

#151 

#69 

FACMEM 

#4 

#0 

17820, x 

17585 

#30 

CURSPA 

#10 

CURZEI 

CURPOS 

- 129 - 

; 360 ab (17810...17814) ablegen 

; 360 nach FAC 

; Negativbit im FAC setzen 

; -360 nach (17815...17819) 

; Zahler fur 5 Eintrage 

;s reelle Zahl O nach (17820... 

5 ...17824) 

; Spalte 30 wählen 

; Zeile 10 wählen 

; Cursor positionieren 

; fertig 

Für den 40/80XX ist nur der letzte Teil abzuwandeln (siehe 6.5). 

Hauptteil "56-komprechnen" 

01 Links/Rechts-Stellung berechnen 

17120 

17122 

17124 

17127 

17129 

17131 

ldy 

tda 

jsr 

lda 

ldy 

jsr 

nop 

189 

#0 

INTFLP 

#136 

#69 

M-ADD 

’ 

; Stellung des Pinsels 

; in reelle Zahl umwandeln 

; und -18 addieren (Mitte jetzt 0) 

02 Stellung mit Faktor K2=0.375 multiplizieren 

17135 lda #141 

17137 ldy #69 

17139 jsr M-MULT 
nop 

; mal 0.375



03 zur RICHTUNG addieren 

04 

17143 

17145 

17147 

Bereich O 

17151 

17153 

17154 

17156 

17158 

17160 

17163 

17164 

17167 

17169 

17171 

17174 

17175 

17177 

17178 

17180 

17182 

lda 

ldy 

jst 

nop 

lda 

rol 

bec 

lda 

ldy 

jsr 

cle 

bec 

nop 

lda 

ldy 

jsr 

lsr 

bne 

nop 

lda 

ldy 

jst 

nop 

#156 

#69 

M-ADD . 

9 

- 130 - 

+ alte Richtung 

bis 360 fur die RICHTUNG sicherstellen 

102 

17167 

#146 

#69 

M-ADD 

17188 

#146 

#69 

CMPFAC 

17188 

#151 

#69 

M-ADD 

. 
9 

. 
9 

e 

9 

. 

9 

05 RICHTUNG abspeichern 

17188 ldx #156 

17190 

17192 

ldy 

jsr 

nop 

06 Ausdruck 

17196 

17199 

17801 

17203 

17206 

17207 

17209 

17213 

17215 

17217 
17220 

jsr 

ldx 

lda 

jst 

dex 

bne 

jsr 

nop 

lda 

ldy 

jsr 

jsr 

#69 

FACMEM 3 

Vorzeichen des FAC laden 

Byte 7 in C-Flag schieben 

positive Zahl ---> Addition überspringen 

sonst 360 addieren 

und 2. Überprüfung überspringen 

FAC mit 360 vergleichen 

Bit 0 in C-Flag schieben 

nicht größer 360 ===> weiter zu 05 

zur RICHTUNG -360 addieren 

RICHTUNG nach (17820...17824) 

der Richtung als Ganzzahl 

17591 

#4 

#32 

CHROUT 

17203 

17591 

#156 

#69 

MEMF AC 

FLPSTR 

. 

3 

. 

’ 

e 

9 

e 

3 

Cursorposition 

Zahler auf 4 

Leerzeichen laden 

und ausgeben 

nochmal Cursorposition einstellen 

RICHTUNG wieder nach FAC holen 

und in String wandeln (ab 256...)



- 131 - 

-— 17223 ldx #255 ; Zahler initialisieren 

17225 inx ; Schleifenbeginn fur 

17227 lda 256,~x ; Suche nach 

17229 beq 17240 s Endezeichen O ===> Ausdruck 07 

17231 cmp #46 ; oder Dezimalpunkt 

17233 bne 17225 ; nicht gefunden ===> Schleifenanfang 

- 17235 lda #0 ; gefunden ---> Endezeichen O setzen 

17237 sta 256,x 

07 Bildschirmausgabe 

17240 jmp STR-N ; Ausgabe ab (256) bis Zeichen O 

Anmerkung zu 07: (Y) steht noch durch FLPSTR auf 1. Daher 

braucht der Stringanfang (Y/A) nicht extra belegt werden, zumal 

auch (A) den Wert O enthält. 

Speichern Sie nun diese Teile insgesamt von (17120) bis (17245) 

ab. Wir können hier gleich die beiden Einsprünge "55-kompin"!" 

bei (17500) und "56-komprechnen" bei (17120) festhalten. 

Und jetzt geht es im Baukastensystem mit den Teilen aus Kapitel 2 

weiter: 

Schließen Sie Programmteile "Ol-pinsel" und "O2-vorpinsel" je- 

weils mit einem RTS ab, entfernen Sie aber vorher die ursprüng- 

lichen Verzweigungen. 

Das komplette Kompaßprogramm beginnt nun mit dem Setzen des IRQ- 

Vektors auf (17000), wo die Routine "04-taktmodul" steht, die wir 

ab (17000) bis (17040) unverändert übernehmen. 

Als nächstes werden die Initialisierungen fur "Ol-pinsel" und 

für "56-komprechnen" aufgerufen. 

Nun beginnt die eigentliche Hauptschleife mit einer Abwandlung 

seres Programms "O5-takttest": 

ASSEMBLER-Programm "57-taktflag" (C64): 

- 17100 Ida 1010 ; Taktflag 

17103 beg 17113 ; nicht gesetzt ===> Ende 

- 17105 lda #0 ; gesetzt ---> zurücksetzen 

17107 sta 1010 

- 17110 jsr 17120 ; aber "100-komprechnen" anspringen 

17113 rts ; Rücksprung bei Takftlag = O 

Nach diesem Unterprogramm folgt als nächstes der "Ol-pinsel", der



- 132 - 

eventuelle Richtungsänderungen aufnimmt. 

Den Schluß der Hauptschleife bildet eine kleine Abbruch-Routine, 

damit wir das Programm wieder verlassen können. Sie fragt das 

Tastatur-Byte KEY ab und bricht bei der Leertaste ab. Damit 

andere Programme wieder vernünftig laufen, stellen wir den IRQ- 

Vektor wieder standardmäßig auf 59953=$ea3l also 49/234=LO/HI. 

ASSEMBLER-Programm "58-abbruch" (C64): 

-— 18100 Ida #203 ; KEY 

18102 cmp #60 ; Leertaste? 

18104 beq 10109 3; ja ===> Abbruch 

18106 jmp 24518 ; nein ===> Anfang Hauptschleife 

18109 sei 

18110 lda #49 

18112 sta 788 ; IRQ-LO 

18115 lda #234 

18117 sta 789 ; IRQ-HI 

18118 cli 

18119 rts ; Ende 

Hier noch einmal alles auf einen Blick für den "kompaß": 

ASSEMBLER-Programm "59-kompaß": 
  

Ol IRQ-Vektor auf (17000) einstellen: 

24500 sei 

24501 lda #104 

24503 sta 788 

24506 lda #66 

24508 sta 789 

24511 cli 

02 Initialisierungen - Vorbereitungen 

24512 jsr 16000 ; Unterprogramm "02-vorpinsel" 

24515 jsr 17500 ; Unterprogramm "55-kompin" 

03 Hauptschleife: 

24518 jsr 17100 ; "S7-taktflag" und "56-komprechnen" 

24521 jsr 18000 ; "Ol-pinsel" 

24524 jmp 18100 ; "58-abbruch" 

Gestartet wird "kompaß" mit SYS 24500. 

Wir haben die Programmteile durch große Lücken gut getrennt. 

Schieben Sie doch mal alles zur Übung auf engsten Raum zusammen!



- 133 - 

Übrigens: Wenn alles funktioniert, haben Sie bereits das Herz- 

stück eines Simulatorprogrammes für jede Art von Drehbewegungen 

in Handen. Von hier aus können Sie beliebig weiterarbeiten: 

-— Nehmen Sie eine bestimmte Geschwindigkeit an, mit der Sie sich 

bewegen - oder noch besser: geben Sie diese über den Joystick 

ein. Vordrücken macht schneller, zurückziehen langsamer. 

- Sie können nun mit Hilfe von x/y-Koordinaten jederzeit den ak- 

tuellen Standort zu einem beliebigen Fixpunkt aus angeben. 

Dazu müßten Sie aber etwas Vektorrechnung beherrschen. 

— Auch das Bewegen im dreidimensionalen Raum kann man damit her- 

vorragend simulieren. 

Wir wollen aber hier den Rahmen mit Spezialitäten nicht sprengen. 

Tüfteln Sie ruhig selbst weiter. Es macht unheimlich Spaß - wenn 

alles irgendwann einmal so klappt wie vorgesehen. 

Bildschirm-Ausgabe-Routinen 

Label C64 40/80XX 
{ ! 

CHROUT(BSOUT) 65490=$ffd2 KERNAL 65490=$ffd2 

<A> auf den Bildschirm als ASCII-Zeichen 

INTOUT 48589=$bdcd 53123=$cf 83 

Die Integerzahl wird direkt aus (A/X) mit HI/LO auf 

den Bildschirm gebracht. 

CURPOS 58732=$e5bc --- 

berechnet mit CURZEI und CURSPA Cursorposition 

FPOUTX 48599=$bdd7 53133=$cf 8d 

C64: LDY #1 / JSR 48599 

FLPOUT 43708=$aabc 53133=$cf 8d 

C64: Ausgabe <FAC> mit anschlieBendem CR



- 134 - 

FLPSTR 48605=$bddd 53139-$cf93 

<FAC> ---> String ab (256) 

‘STROUT 43813=$ab25 | 47908=$bb24 

<X>=Stringlange 

mit STRADR <34/35> Stringanfang <31/32> 

STR-O 43806=$able 47901=$bbld 

<A/Y>=Stringadresse; Ende des Strings: Byte O 

BYTOUT -_- 55074=$d722 

<A> ---> Hex ---> Schirm 

ADROUT -~- 55063=$d717 

<251/252> ---> Hex ---> Schirm 

OUT2 --- 55089=$d731 

<X> ---> Schirm, <A> ---> Schirm 

Adressen 

CURZEI 214=$d6 216=$d8 

CURSPA 211=$d3 198=$c6 

ZEIPTR 209/210=$d1/d2 196/197=$c4/c5



7 
Eingabe-ROM-Routinen





- 137 - 

7 Eingabe-Routinen 

Eingaben werden dem Computer von auBen mitgeteilt. Das bedeutet, 

daB irgendwelche Gerate irgendwelche Signale schicken, die in 

Byteform - also 8-bitweise - aufgenommen werden. 

An dieser Stelle wollen wir nur die Standard-Eingaben besprechen. 

Das sind solche, die der Rechner über die Tastatur empfangen 

kann. Wie man mit dem Joystick oder ausgewählten Tasten eine Ein- 

gabe auswerten kann, haben wir auf einfache Weise im Kapitel 2 

kennengelernt. Hier geht es nun um die ROM-Routinen, mit denen 

man bequem Daten über die gesamte Tastatur einlesen kann. 

7.1 Eingabe eines Zeichens über die Tastatur 

Um ein Zeichen nach einem Tastendruck in das (A)-Register zu 

übernehmen, steht die ROM-Routine GETIN zur Verfügung, die 

komfortablerweise das Zeichen nicht direkt von der Tastatur 

holt, sondern den Tastatur-Puffer abbaut. 

Wurde kein Zeichen gefunden, so enthält das (A)-Register eine 0. 

Um zu verhindern, daß das Programm einfach weiterläuft, wenn kein 

Byte über die Tastatur empfangen wurde, müssen wir mit einer kur- 

zen Schleife wieder zur GETIN-Routine verzweigen. 

Erfolgte aber ein "INPUT", dann wird er im (A)-Register zur wei- 

teren Behandlung bereitgestellt. Bei unserem Beispielprogramm 

geben wir das Zeichen im Bildschirmcode und mit CHROUT aus. 

Beispiel: 

Eine beliebige Zahl von Tastaturzeichen sollen nach (A) geholt 

und ausgegeben werden. 

Ablauf: 

- Mehrfacher Aufruf von GETIN 

-— mit anschließendem Ausdruck 

Wir geben dabei <A> zunächst mit STA XXXX einfach in den Bild- 

schirmspeicher aus. 

Anschließend verwenden wir unsere Ausgabe CHROUT.



- 138 - 

ASSEMBLER-Beispiel "60-getin" (C64): 

- 18043 jsr 65508 ; GETIN, ein Zeichen aus Tastatur nach (A) 
18046 beq 18043 ; wieder an den Anfang gehen, wenn kein 

Tastendruck erfolgte 

- 18048 sta 1029 ; Bildschirmzeichen für <A> ausgeben 

18051 jsr 65490 ; CHROUT gibt ASCII-Zeichen aus 

- 18054 bne 18043 ; zurück zum Anfang der Schleife 

3; ...Abbruchbedingung 

18060 rts 

Starten Sie nun das Programm, dann geht der Rechner erst einmal 

in Wartestellung, bis Sie eine Taste drücken. 
Das entsprechende Zeichen erscheint dann auf dem Bildschirm, was 

noch von GETIN ausgeführt wird. Anschließend erscheint aber 

das Zeichen, das dem Bildschirmcode des (A)-Inhalts entpricht. 

Wenn genau das Zeichen ausgegeben werden soll, das der Taste ent- 

spricht, ist diese Art der Ausgabe nicht geeignet. Wir müssen 

dann z.B. CHROUT verwenden. Dann erfolgt der Ausdruck wie in 

BASIC mit CHR$(A). 

Wenn Sie Schwierigkeiten haben, den ASCII-Code vom Bildschirm- 

Code zu unterscheiden, sollten Sie sich die entsprechenden Ver- 

gleichstabellen aus Ihrem Rechnerhandbuch bereitlegen und das 

eben besprochene Progrämmchen "60-getin" laufen lassen. 

Wenn Sie eine Abbruchbedingung einbauen, kommen Sie sogar wieder 

aus der Schleife heraus: 

Nehmen Sie z.B. die Taste "RETURN" als Abbruchtaste her, dann er- 

zeugt das in (A) den Code 13. Vergleichen wir also mit diesem 

Wert und springen bei Gleichheit zum Befehl RTS. 

7.2 Künstlicher Cursor mit GETIN und BSOUT 

Wenn man die GETIN-Routine beispielweise in Textprogrammen 

verwenden will, sollte man auf jeden Fall wissen, an welcher 

Stelle man sich im Bildschirm gerade befindet. 

Die einfachste Möglichkeit wäre es, das Cursor-AN/AUS-Flag zu 

sezten. Das hat aber den Nachteil, daß immer wieder einzelne Cur-



- 139 - 

sorflecken beim Weiterschreiben stehenbleiben, was äußerst lästig 

ist. 

Eine weitere Möglichkeit besteht darin, sich selbst einen Cursor 

zu basteln, der die momentane Position revers darstellt. 

Dazu benötigen wir Zeile und Spalte, die ja stets in der Zeropage 

mitgeführt werden. 

Zur Wiederholung: 

Die Anfangsadresse der Zeile steht beim C64 in (209/210) bzw. 

beim 40/80XX in (196/197). 

Die Spalte finden wir in (211) bzw. (198). 

  

Ablauf: 

01 Holen eines Zeichens in das (A)-Register 

02 Die momentane Position auf jeden Fall nicht revers darstellen. 

Dazu wird das Bit 7 des Codes mit AND #127 gelöscht: 

Beispiel: 

<A> = 10110000 , also 176 (Code fiir rvs'O') 

AND #127 o1lllllı 

Ergebnis: <A> = 00110000 , also 48 (Code für '0') 

(AND erzeugt immer dann 1, wenn beide Bits 1 sind.) 

  

03 Jetzt wird das geholte Zeichen ausgegeben. Damit erhöht sich 

auch die Cursorposition um l. 

04 Die nächste Position muß nun revers ausgegeben werden. 

Das geschieht mit ORA #128, also durch Setzen von Bit 7. 

Beispiel: 

<A> = 00110000 , also 48 (Code fiir '0') 

ORA #128 10000000 

Ergebnis: <A> = 10110000 , also 176 (Code für rvs'0') 

(ORA erzeugt immer eine 1, außer wenn zwei Nullen miteinander 

  

verknüpft werden.) 

ASSEMBLER-Beispiel "6l-cursorget" (C64) : 

01 18043 jsr 65508 ; GETIN holt ein Zeichen aus dem Tasta- 

turpuffer nach (A) 

18046 beq 18043 ; Warten auf ein anderes Zeichen auBer O 

18048 tax ; geholtes ASCII-Zeichen(!) nach (X) retten 

02 18049 Idy 211 ; momentane Spalte holen 

18051 lda (209),y 3; Zeichen aus dem Bildschirm holen 

18053 and #127 ; in Normalcode umwandeln und gleich



- 140 - 

18055 sta (209),y ; wieder ausgeben 

03 18057 txa ; geholtes Zeichen wieder nach (A) holen 

18058 jsr 65490 ; und ausgeben mit CHROUT 

04 18061 ldy 211 ; neue Spalte holen 

18063 lda (209),y 3; neues Zeichen nochmal nach (A), diesmal 

aber im Bildschirmcode 

18065 ora #128 ; und Zeichen in (A) mit Reversflag versehen 

18067 sta (209),y ; jetzt als Reverszeichen ausgeben 

05 18069 bne 18043 ; unbedingter Sprung an den Schleifenanfang 

Bitte beachten: Sie: 

Ein einfaches Erhöhen der Spaltenzahl z.B. mit INY wäre nicht 

sinnvoll, weil das eine Erhöhung bis 255 ermöglichen würde, 

während die normale Spaltenzahl nur 40 bzw. 80 beträgt. 

  

Mit diesem Programm können Sie auf dem ganzen Bildschirm nach 

Herzenslust herummarschieren. Der künstliche Cursor zeigt Ihnen 

immer an, wo Sie sich gerade befinden. Allerdings blinkt er nicht 

wie gewohnt, sondern erzeugt ein stehendes Bild. 

Falls Sie sich gewundert haben, warum wir im ASSEMBLER-Programm 

nicht gleich das geholte Zeichen mit STA(209),y ausgeben, 

sollten Sie sich noch einmal vor Augen führen, daß GETIN das 

geholte Zeichen auch gleich in den ASCII-Code umwandelt. 

Dadurch können auch nicht druckbare Zeichen wie RETURN o.ä. ver- 

wendet werden. 

Eine Rückumwandlung in den Bildschirmcode ist daher nicht ange- 

bracht. 

Das obige Programm hat noch kein Zeichen als Abbruchkriterium 

definiert und läßt im übrigen alle Eingaben zu, also auch RUN/ 

STOP. 

Aufgabe: 

Erweitern Sie das obige Programm, so daß sie mit der RETURN-Taste 

aussteigen können. 

Aufgabe: & 

Verbessern Sie das Programm, so daB gleich nach dem Start ein 

Cursor erscheint und nicht erst nach Eingabe des ersten Tasten- 

drucks.



- 141 - 

7.3 Zahleneingabe (reell) mit GETIN und STRFAC 

Um uber die 

verarbeiten 

legen sie 

Tastatur Zahlen einzugeben und anschließend weiter- 

die Ziffern mit GETIN, 

zunächst als String ab und wandeln sie dann computer- 

zu können, übernehmen wir 

gerecht in eine FLP-Zahl um. 

Ablauf: 

Festlegen der Anfangsadresse des Strings, 

eingelesen werden sollen. 

Dazu verwenden 

die 'indirekt-indizierte Adressierung' anwenden zu können. 

Holen eines Zeichens mit GETIN. 

AnschlieBende Ausgabe mit CHROUT. 

Ablegen des Zeichens bis zum Endezeichen RETURN (Code 13). 

Code 13 durch Code O (Stringende) ersetzen. 

Umwandlung des Strings in eine FLP-Zahl. 

Weiterbehandlung z.B. Ausgabe, Abspeichern o.4. 

ASSEMBLER-Beispiel "62-getin-zahl" (C64): 

18050 

18052 

18054 

18056 

18059 

18062 

18064 

18068 

18070 

18072 

18074 

18076 

18078 

18080 

18082 

lda 

sta 

lda 

sta 

nop 

jsr 

beq 

jsr 

nop 

ldy 

sta 

ine 

cmp 

bne 

dec 

lda 

sta 

#0 

60 

#1 

61 

65508 

18059 

65490 

#0 

(60),y 
60 

#13 

18059 

60 

#0 

(60),y 

LO der Stringanfangsadresse (256) 

in Zeropage 

dto. HI 

ablegen 

GETIN holt ein Zeichen von Tastatur 

s warten bis Zeichen im Puffer 

Zeichen auf Schirm mit CHROUT 

Index für indirekte Adressierung 

Zeichen ablegen ab Adresse 256 

Adresse um eins erhöhen, also für die 

nächste Ziffer vorbereiten 

Ende der Eingabe erreicht? 

; nein ===> nächstes Zeichen holen 

Ja ---> Adresse wieder eins zurück 

und Byte O “ 

statt Byte 13 ablegen (Endekriterium) 

in den die Ziffern 

zwei Zeropage-Adressen (LO/HI), um später



- 142 - 

- 18084 lda 60 ; das ist gleichzeitig die Stringlange, die 

für STRFAC in (A) benötigt wird 

18086 ldx #0 ; LO des Stringanfangs nach (X) 

18088 stx 34 ; nach STRADR-LO 

18090 ldx #1 ; HI 

18092 stx 35 ; nach STRADR-HI 

18094 jsr 47029 ; STRFAC wandelt die Ziffernfolge ab 

Adresse (256) in eine FLP-Zahl um 

nop 

~- 18098 jmp 43708 ; Weiterverarbeitung z.B. Ausdruck 

Zur Wiederholung: 

Der Befehl STA(60),y legt <A> in die Adresse ab, die sich aus 

der Summe <60/61> plus y errechnet. Also <60>+256°<6l1>+4y. 

In unserem Beispiel ist <60>=0 und <6l>=1. Der Zähler y 

hat immer den Wert 0, so daß die erste Abspeicherung in 256 er- 

folgen muß. 

Durch das Erhöhen von <60> mit INC 60 bereiten wir die nächste 

Abspeicherung vor. 

  

Theoretisch sind jetzt 255 Ziffern möglich, was recht unsinnig 

ist und auch gefährlich. Denn ab (256) beginnt der Stackbereich, 

der zwar von oben nach unten volläuft, sich aber auf keinen Fall 

mit unserem String überschneiden darf. 

Will man dem ganz aus dem Weg gehen, dann wählt man eben für die- 

se Operationen einen anderen (ungefährdeten) Bereich im RAM aus. 

Wir haben das mit der windirekt-indizierten Adressierung schon 

ermöglicht. 

Übrigens: Die Umwandlung erfolgt auch mit der Exponentialdar- 

stellung (z.B. 0.5e-08) richtig. 

Aufgabe: 

Begrenzen Sie die Eingabe auf 10 Ziffern und operieren Sie in 

einem anderen Bereich. 

Aufgabe: 

Falls Sie sich bei der Eingabe der Ziffern vertippen sollten, ha- 

ben Sie bis jetzt keine Korrekturmöglichkeit. Bauen Sie eine ein, 

indem Sie mit der Taste DEL nicht nur die Ziffer auf dem Bild- 

schirm löschen, sondern auch das letzte Zeichen im String ungül- 

tig machen.



- 143 - 

7.4 Eingabe mit BASIN 
  

Die ROM-Routine BASIN ist eine Techt universelle Eingabe-Rou- 

tine, die wir weiter hinten immer wieder verwenden werden. 

Sie kann von allen Geräten Bytes aufnehmen und im (A)-Register 

bereitstellen. 

Es lohnt sich daher, die Systematik dieses ROM-Programms näher zu 

untersuchen. 

Wenn der Computer im sog. READY-Modus arbeitet, dann ist die Ta- 

statur das Eingabe- und der Bildschirm das Ausgabegerat. 

Ruft man nun BASIN auf, dann wird zunächst einmal nach dem 

aktiven Eingabegerät gefragt. Die Adresse DEVIN (153) bzw. 

(175) beim 80%XX enthält den Wert Null, wenn die Eingabe über die 

Tastatur erfolgt. 

Ist dies der Fall - und nur dann -, erfolgt ein Sprung zur Warte- 

schleife, die auf einen Tastendruck lauert. Dort wird durch einen 

blinkenden Cursor, die aktuelle Bildschirmposition angezeigt und 

jede Tastatureingabe einschließlich aller Steuerzeichen auf dem 

Bildschirm ausgegeben. 

Der Abschluß erfolgt erst dann, wenn die RETURN-Taste (Code 13) 

ausgelöst wurde. Jetzt wird die Bildschirmzeile, in welcher der 

Cursor gerade steht, auf Leerzeichen untersucht. Diese werden 

übersprungen und ein Bildschirmzeiger wird auf das erste Zeichen 

der aktuellen Zeile eingestellt. In den Akkumulator (A) kommt 

der Code 13. Ein Flag, belegt mit 13 zeigt an, daß die Eingabe 

beendet ist. 

Ruft man nun wiederum BASIN auf, dann wird das erste Zeichen 

der Zeile eingelesen, in der man die RETURN-Taste gedrückt hatte. 

Weitere Aufrufe von BASIN holen Zeichen für Zeichen die Byte- 

kette in das (A)-Register. Alle eingelesenen Zeichen werden dabei 

in den ASCII-Code umgewandelt, bevor sie im Akku abgelegt werden. 

Als letztes Zeichen wird wieder Code 13 übergeben. Daran läßt 

sich der Abschluß der Eingabe erkennen. 

Man kann sich nun dieser Routine bedienen, wenn man über die Ja- 

statur irgendwoher vom Bildschirm eine Zeile übernehmen will. 

Dabei wird komfortablerweise aus einem Bildschirmfenster immer



- 144 - 

nur die Zeile bis zum rechten Fensterrand übernommen, wenn man 

sich mit dem Cursor vorher innerhalb des Fensters bewegt hat. 

Die zu übernehmende Zeile braucht auch nicht vorher uber die Ta- 

statur geschrieben worden sein, sondern kann schon dort gestanden 

haben, bevor BASIN aufgerufen wurde. Erst nach dem Drücken 

der RETURN-Taste wird die momentane Cursorzeile festgehalten. 

Die übernommenen Zeichen können dann beliebig weiterverarbeitet 

werden. 

Zweckmäßigerweise stellt man dafür einen Pufferplatz zur Verfü- 

gung, der nicht mehr als 80 Zeichen Umfang benötigt, weil eben 

nur zeilenweise eingelesen wird. Von diesem Puffer aus läßt sich 

nach dem Einlesen alles weitere unternehmen (z.B. Zuweisung auf 

eine Stringvariable, Umwandlung in eine Zahl oder andere Auswer- 

tungen). 

Jetzt wird es Zeit für ein Beispiel, damit unsere Erklärungen 

auch nachprüfbar werden. 

Ziel: 

Eingabe eines Textes mit BASIN, Übernahme in den Bereich ab 

(10000) und Ausgabe der ersten 10 Zeichen dieses Strings. 

Ablauf: 

Ol Zähler für die Ausgabe festlegen: (X)-Register 

02 Aufruf von BASIN. 

Erst mit RETURN wird diese Routine abgebrochen. Der Bild- 

schirmzeiger stellt sich auf das erste Element der Zeile, 

das kein Leerzeichen ist und holt es nach (A). 

03 Zeichen aus (A) ab (10000) ablegen, wieder BASIN aufrufen, 

da jetzt das nächste Zeichen aus dem Bildschirm geholt wird, 

und mit erhöhtem Zähler bei 10000,x ablegen. 

04 Solange Zeichen holen, bis der Code für RETURN auftritt, dann 

abbrechen. 

05 10 Zeichen aus dem abgelegten String holen. Das entspricht der 

BASIC-Routine LEFT$(x$,10). 

ASSEMBLER-Beispiel "63-basin" (C64): 

Ol 11000 ldx #0 ; Zahler initialisieren 

02 11002 jsr 65487 ; BASIN holt zunachst Zeichen aus der 

Tastatur, nach RETURN aus dem Bilschirm



- 145 - 

11005 cmp #13 ; Code fur RETURN ? 

11007 beg 11015 ; ja ===> zur Ausgabe 

03 11009 sta 10000,x ; nein ---> Zeichen ablegen 

11012 inx ; Zahler erhöhen 

04 11013 bne 11002 ;s und unbedingt zu BASIN springen 

05 11015 lda #16 ; Stringanfang LO 

11017 sta 34 ; nach STRADR-LO 

11019 lda #39 ; Stringanfang HI (von 10000) 

11021 sta 35 ; nach STRADR-HI 

11023 ldx #10 ; Länge nach (X) 

11025 jsr 43813 ; STROUT gibt linke Stringseite aus 

11028 rts 

7.5 Eingabe einer Zeile mit INLINE 
  

Eine ROM-Routine, die aus dem INPUT-Teil des BASIC-Systems ent- 

nommen ist, arbeitet sehr komfortabel, wenn es darum geht, ganze 

Zeilen über die Tastatur einzutippen, zu korrigieren und in eine 

Zeichenkette zu übertragen. 

Es ist dies INLINE, das wiederum mehrfach das Unterprogramm 

BASIN (Eingabe BASIC-Text) aufruft. 

Nochmals kurz zur Routine BASIN: 

Ein Zeichen wird über die Tastatur nach (A) geholt und in den 

ASC-Code umgewandelt. Anschließend erfolgt die Ausgabe über den 

Bildschirm. Soweit besteht Identität mit GETIN, denn auch 

BASIN ist ein Teil von dieser Routine. 

Allerdings werden solange Zeichen übertragen, bis die Taste RE- 

TURN gedrückt wird. 

INLINE bedient sich durch ständiges Aufrufen von BASIN dieses 

Systems und wartet seinerseits ebenfalls auf die Taste RETURN. 

Wurde Sie gedrückt, so wird die Zeile, in der momentan der Cursor 

steht, vom Zeilenanfang bis zur letzten Spalte Zeichen für Zei- 

chen aus dem Bildschirm-RAM gelesen und ab Adresse (512) ab- 

abgelegt. 

Danach erfolgt der Abschluß der Eingabe durch Einsprung in eine 

weitere ROM-Routine (FININL), wo alle Flags, Zähler usw. wieder 

initialisiert werden. Unter anderem wird auch das Ende des 

Strings mit einer O (Byte 0!) markiert.



- 146 - 

Gegenüber dem gewöhnlichen INPUT aus dem BASIC, haben wir hier 

noch den Vorteil, daß wirklich jedes Zeichen, das in der Zeile 

als gedrucktes Symbol darstellbar ist, auch in den String über- 

nommen wird, was ja sonst nicht der Fall ist und mit einem ‘extra 

ignored error' quittiert wird, wenn man z.B. ein Komma eingeben 

wollte. 

Ein weiteres Plus dieser Routinenkombination ist, daß wir uns 

nicht um den Cursor kümmern müssen. Er ist hier mit eingebaut und 

zwar blinkend. 

Die Anwendungsmöglichkeit der genannten Programmteile liegt auf 

der Hand: Immer wenn irgendwelche Texte über die Tastatur einge- 

geben werden sollen, bieten sich INLINE, BASIN und GETIN an. 

Beispiel: 

Eine beliebig beschriebene oder noch zu beschreibende Zeile soll 

per Cursorsteuerung mit RETURN übernommen werden. 

Anschließend werden die einzelnen Zeichen des Strings ab (512) 

auf den Bildschirm gebracht. 

Dabei läßt sich noch einmal der Unterschied zwischen dem ASC-Code 

und dem Bildschirmcode anschaulich vor Augen führen. 

Ablauf: 

O01 Vorbelegen der Adresse (512) mit dem Byte 0, weil im Falle 

einer leeren Eingabe kein Endekriterium gefunden wird und ein 

'string too long error' auftritt. 

02 Holen der Zeichenkette bei gleichzeitigem Ausgeben der einzel- 

nen Zeichen mit anschließendem Ablegen ab Adresse (512). 

Das wird von der Routine INLINE alles auf einmal besorgt. 

03 Ausgabe von "Schirm clear", wenn der Abschluß mit der Taste 

RETURN erfolgt ist. 

04 Laden der abgelegten ASC-Codes und Ausgabe auf den Bildschirm 

mit STA XXXX. 

05 Nochmaliges Laden und Ausgeben. Diesmal aber mit CHROUT. 

06 Nochmaliges Ausgeben, diesmal aber mit der Routine STR-O, 

die alle Zeichen bis zum Erreichen eines O-Bytes ausgibt. 

Die Punkte 04 bis 06 sind lediglich zur Wiederholung und Ubung 

eingebaut. Im "Ernstfall" wird hier die gewünschte Verarbei- 

tungs-Routine stehen.



ASSEMBLER-Beispiel "64-inline-out" 

01 18110 lda #0 

02 

03 

04 

05 

06 

07 

18112 

18115 

18120 

18120 

18124 

18126 

18129 

18131 

18134 

18135 

18138 

18140 

18143 

18145 

18148 

18149 

18152 

18154 

18157 

18159 

18161 

18164 

18165 

sta 

jsr 

lda 

jsr 

nop 

1 dx 

lda 

beq 

sta 

inx 

bne 

nop 

1 dx 

lda 

beg 

jsr 

inx 

bne 

nop 

lda 

jsr 

lda 

ldy 

jsr 

cle 

bec 

512 

42336 

#147 

65490 

#0 

512,x 

18138 

1024,x 

18126 

#0 

512,x 

18151 

65490 

18140 

#13 

65490 

#0 

#2 

43806 

18110 

e 

3 

3 
e 

3 

3 

- 147 - 

(C64): 

Endezeichen vorbelegen 

INLINE holt eine ganze Zeile 

Code fur "Bildschirm clear" 

Schirm loschen 

Zahler initialisieren 

ein Zeichen des Strings holen 

Endezeichen erreicht ===> weiter 

sonst ab Bildschirmanfang (C64) ausgeben 

Zahler erhohen 

und zuruck zum Schleif enanf ang 

Zahler neu setzen 

ebenfalls ein Zeichen holen 

falls Endezeichen in (A 

sonst mit CHROUT ausgeben 

Zahler erhohen 

===> weiter 

und weitermachen 

ein CR ausgeben (Code 13) 

LO der Stringanfangs-Adresse 

dto. HI (=512) nach (Y) 

Stringausgabe mit STR-O 

wenn eine neue Zeile geholt werden soll 

In einem Textprogramm wird man den String natürlich erst abspei- 

chern, bevor man den nächsten holt. 

Wie man ihn in eine BASIC-Variable übernimmt, 

nächst (Kapitel 8). 

behandeln wir dem-



- 148 - 

7.6 Eingabe von Hexzahlen mit HEXINB und HEXINA (nur 40/80XX) 
  

Aus dem Monitorteil der 80XX- und 40XX-Serien lassen sich zwei 

Routinen anzapfen, die Zahleneingaben im Hex-Format ermöglichen. 

Dabei nimmt HEXINB genau zwei Zeichen, also ein Byte auf und 

überträgt es in das (A)-Register. Der Bereich ist dementsprechend 

beschränkt auf $00 bis $ff, das Dollarzeichen darf nicht mit ein- 

gegeben werden. 

HEXINA übernimmt eine vierstellige Adresse in der gleıchen 

Weise, legt aber das Ergebnis in (251/252) mit LO/HI ab. 

Der Bereich entspricht dem Adressbereich von $0000 bis $ffff. 

Dazu wieder ein kleines Anwendungsbeispiel: 
  

Zunachst soll ein Byte in Hexform eingetippt und als Dezimalzahl 

ausgegeben werden. AnschlieBend geschieht das gleiche mit einer 

vierstelligen Adresse. 

Ablauf und ASSEMBLER-Beispiel "65-hex-eingabe" (80XX): 

Ol jsr 55139 ; HEXINB wartet auf Eingabe einer zweistelli- 

gen Hexzahl und abschlieBendem RETURN 

02 tax ; Byte als LOW nach (X) 

lda #0 ; O als HI nach (A), damit ist die Ausgabe einer 

jsr 53123 ; Integerzahl mit INTOUT vorbereitet 

03 jsr 55124 ; HEXINA wartet auf Eingabe einer vierstelli- 

gen Hexzahl mit abschließendem RETURN 

04 ldx 251 ; LO aus (251) nach (X) 

lda 252 ; HI aus (252) nach (Y) 

jsr 53123 ; INTOUT druckt die Zahl dezimal



- 149 - 

Eingabe-ROM-Routinen 

  

Label C64 4WO/BOXX 
' ' 

GETIN 65508=$ffe4 KERNAL 65508=$ffe4 

l Zeichen ---> (A) 

BASIN 65487=$ffcef KERNAL 65487=$f fcf 

String ---> Schirm ---> einzeln nach (A) 

INL INE 42336=$a560 46306=$b4e2 

Zeile nach (512)... 

nimmt bis zu 80 Zeichen auf 

HEX INB --- 55139=$d767 

Byte in Hexeingabe ---> (A) 

HEXINA ~-- 55124=$d754 
Adresse(vierstellig) in Hexform ---> (251/252)





8 
Verwaltung der Variablen





- 153 - 

8 Verwaltung der Variablen 

In Maschinenprogrammen, die mit Variablen arbeiten, muß man ent- 

weder die Verwaltung darüber selbst kontrollieren - und das er- 

fordert diszipliniertes Programmieren und Dokumentieren - oder 

aber man bedient sich der BASIC-Routinen und überläßt die Organi- 

sation dem Betriebssystem. 

Insbesondere macht man sich dies bei der Verwendung von numeri- 

schen Variablen zunutze, wenn diese nach Abschluß eines Maschi- 

nenprogrammteils im BASIC-Programm weiterbehandelt werden sollen. 

Auch umgekehrt tritt der Fall häufig ein, daß nach einem BASIC- 

Vorspann, in dem etliche Variablen belegt werden, diese Werte in 

einem Maschinenteil verarbeitet werden sollen. 

8.1 Überblick über die BASIC-Variablen 

8.1.1 Lage der Variablen im RAM 

Normalerweise werden die Variablen in der Reihenfolge, wie sie 

anfallen, anschließend an das BASIC-Programm angelegt, das ab 

2048 (C64) bzw. 1024 (40/80XX) beginnt. 

Ist kein BASIC-Teil vorhanden, so finden wir in den ersten drei 

Adressen (2048) bis (2050) jeweils eine 0. Die erste Variable 

wird also beim C64 ab (2051), beim 40/80XX ab (1027) aufgebaut. 

In der Zeropage werden ständig Zeiger mitgeführt, die den Beginn 

und das Ende des Variablenbereichs (das ist auch gleichzeitig der 

Beginn der Felder) ausweisen. 

Daraus folgt zunächst einmal, daß Maschinenprogramme in den obe- 

ren RAM-Bereich gelegt werden müssen, wenn die Variablenverwal- 

tung von den BASIC-Routinen übernommen werden soll. Denn der 

Platzbedarf für die Variablen wächst von unten nach oben an. 

(Ausnahme bei den Strings, siehe unten!) 

Beispiel: 

Liegt ein Maschinenprogramm im RAM von (16000) bis (24000), 

so stehen für die Variablen die Adressen (2051) bis (15999) bzw. 

beim 40/80XX (1027) bis (15999) zur Verfügung.



- 154 - 

Wer unbedingt sein Maschinenprogramm im unteren RAM-Bereich haben 

möchte, der muß die BASIC-Zeiger über seine letzte Maschinen- 

Adresse stellen. 

8.1.2 Variablen-Arten 

Im CBM-BASIC unterscheiden wir drei Variablenarten: 

a) Realzahlvariablen (z.B. xl) 

b) Integervariablen (z.B. x2%) 

c) Stringvariablen (z.B. x3$) 

Alle drei Arten können auch in Feldern verwendet werden. Doch 

diese Verwaltung wird kaum in Maschinenprogramme übernommen. Hier 

baut man besser eigene Strukturen auf. Beschränken wir uns daher 

zunächst auf einfache Variablen. 

8.1.3 Struktur der Variablen 

Alle Variablen belegen jeweils 7 Adressen im Speicher. Davon ent- 

fallen zwei auf den Variablennamen, die restlichen 5 Stellen wer- 

den unterschiedlich verwendet. 

Reelle Zahlen: 

Die ersten beiden Bytes enthalten den ASC-Code für den Variablen- 

namen ohne jegliche Veränderung. 

Werden nur einstellige Variablennamen verwendet, so wird das 

zweite für den Namen vorgesehene Byte mit O0 belegt. 

Anschließend folgen die 5 Bytes für den codierten Nert der Zahl. 

Beispiel: 

Variablenname xl, Zahlenwert 2 

  

88 49130 0 0 0 0 
ron, Wert 2 
  

Die reelle Zahl 2 wird durch die fünf Bytes 130/0/0/0/0 in Po- 

tenzschreibweise dargestellt, wobei das erste Byte den Exponenten 

durch entsprechendes Verschieben (Shiften) der nachfolgenden Man-



- 155 - 

tisse angibt. Um recht/links unterscheiden zu können, geht man 

von 128 (=0 Shift) aus. Ist der Exponent nun größer als 128, dann 

erfolgt die Verlegung des Kommas nach rechts, ist er kleiner wird 

das Komma nach links versetzt. 

In unserem Fall bedeutet 130, daß das Komma nach zwei Stellen er- 

scheint. Im Dualzahlsystem sieht das so aus: O0000010,0000.... 

Das Bit 1, das hier plötzlich an der zweiten Stelle erscheint, 

wurde nirgendwo abgelegt, da es sich hier um eine positive Zahl 

handelt. Unser Computer "denkt" sich die Mantisse also zunächst 

so (er kann nur binär denken!): ,10000000... und verlegt dann 

das Komma um zwei Stellen nach rechts : 10,00000.... 

Die Mantisse besteht aus 32 (4 mal 8) Bits, wobei das höchste 

(ganz links) das Vorzeichen darstellt. Wenn es gesetzt ist, 

dann ist die Zahl negativ. 

Die Zahl -2 sieht also dann so aus: 

130 128 OQ 0 0 = -00000010,0000... 

Beim sog. "Normalisieren" werden die Bits der Mantisse so lange 

nach links geshiftet, bis keine Vorkommanullen mehr auftreten. 

‘Das mag genügen. Man braucht sich beim Programmieren eigentlich 

nicht darum kümmern, wie die reellen Zahlen aufgebaut sind. Das 

kann unser Rechner besser und vor allem schneller. 

Vielleicht eins noch: Die Nachkommastellen einer Dualzahl werden 

nach unten genau so in Zweierpotenzen weitergerechnet, allerdings 

mit negativem Exponenten. 

0,111152 hat also den Wert 0+0,5+0,25+0,125+0,0675=0,9425 

Integerzahlen: 

In den ersten Bytes stehen wieder die Variablennamen. Damit man 

die Integerzahl von einer Realzahl unterscheiden kann, wird aber 

zu beiden ASC-Codes 128 addiert (Bit 7 gesetzt). 

Anschließend folgt die Zahl in der Form HI/LO. Die restlichen 

drei Stellen werden immer mit O aufgefüllt.



- 156 - 

Beispiel: 

Variablenname x2% Zahlenwert 2 

  

216 178 0 2 0 0 0 
  

Stringvariablen: 

Bei den Strings geht es etwas komplizierter zu. In den ersten 

beiden Bytes steht ebenfalls der Variablenname, allerdings wird 

zur Unterscheidung nur im zweiten Namensbyte das Bit 7 gesetzt 

(ASC-Code + 128). 

Anschließend folgt aber nicht etwa die Zeichenfolge des Strings, 

sondern nur eine Beschreibung, nämlich die Stringlange (1 Byte) 

und die Anfangsadresse des Strings (2 Bytes LO/HI). Diese drei 

Bytes werden als String-Deskriptor bezeichnet. 

Beispiel: 

Variablenname x3$ String: "Beispiel/String" 

  

66 179 15 0 8 0 0 

Das bedeutet, daß der String 15 Zeichen lang ist und in unserem 

Fall ab Adresse (0+8°256)=(2048) mit dem Byte für "B" be- 

ginnt: 

<0/8> = <2048> = 194 "B" 

<1/8> = <2049> = 69 "e" 

<2/8> = <2050> = 73 "i" 

8.2 Einrichten einer Variablen 

8.2.1 Festlegen des Bereichsanfangs 

Wenn nicht mit einem kombinierten BASIC-Maschinenprogramm gear- 

beitet wird, empfiehlt es sich, den Variablenbereich zu Beginn 

eines reinen Maschinenprogramms selbst festzulegen. 

Dazu setzen wir die Zeiger "Beginn der Variablen", "Beginn der 

indizierten Variablen", "Ende der Variablen" auf einen von uns 

gewählten Wert, der in einem RAM-Bereich liegt, der ansonsten von 

unserem Maschinenprogramm nicht berührt wird.



- 157 - 

Beispiel: 

Die Variablentabelle soll bei Page 10, also ab ($0a00)=(2560) 

beginnen. 

ASSEMBLER-Beispiel "66-basic-zeiger" (C64 und 40/80XX): 

  

C64 40/80XxX 
' ! 

01 10000 lda #0 

10002 ldy #10 

02 10004 Sta 45 VARTAB-LO sta 42 

10006 sty 46 VARTAB-HI sta 43 

03 10008 sta 47 ARYTAB-LO sta 44 

10010 sty 48 ARYTAB-HI sta 45 

04 10012 sta 49 VAREND-LO sta 46 

10014 sty 50 VAREND-HI sta 47 

Verwaltet man auch Stringvariablen, kann man das CBM-Konzept bei- 

behalten, und die anfallenden Strings vom oberen RAM-Bereich her- 

unterwandern lassen. Dazu muß aber das Maschinenprogramm abgesi- 

chert sein, was sich mit dem Zeiger für die RAM-Obergrenze er- 

ledigen läßt, nennen wir ihn MAXMEM. In erweiterten BASIC- 

Versionen existiert der Befehl HIMEM xxxx, mit dem man diese RAM- 

Dbergrenze festlegen kann. 

Beispiel (Fortsetzung): 

Maschinenprogramm beginnt auf Page 40, also bei ($2800)=(10240). 
  

  

C64 40/80X xX 

' ' 

05 10016 lda #0 

10018 ldy #40 

06 10020 sta 55 MAXMEM-LO sta 52 

10022 sty 56 MAXMEM-HI sta 53 

rts 

Werden nun Variablen eingerichtet, so beginnt die erste bei 

Adresse (2560) und alle weiteren können bis einschließlich 

(10239) aufgebaut werden. Eventuelle Strings "laufen" den Variab- 

len ab (10239) nach unten entgegen. Bei Überschneidungen wird in 
BASIC ein OVERFLOW ERROR ausgegeben. In Maschinensprache hat man 

selbst dafür zu sorgen, daß die benötigten Bereiche sauber ge- 

trennt bleiben!



- 158 - 

8.2.2 Suchen bzw. Einrichten einer Variablen mit PTRVAR 

Die Routine PTRVAR durchsucht zunächst den festgelegten Varia- 

blenbereich. Dazu muß der Variablenname VARNAM in den Zeropage- 

adressen (69/70) beim C64 bzw. (66/67) beim 40/80XX in der Reihen- 

folge LO=1.Variablenname, HlI=2.Variablenname vorgegeben werden. 

Ist die Variable bereits vorhanden, dann ist das Ergebnis ein 

Zeiger, der auf den Anfang der Variablen zeigt. Und zwar nicht 

auf den Variablennamen, sondern gleich dahinter auf den Inhalt. 

Bei Real- und Integerzahlen, wird also direkt auf den Anfang der 

Zahl selbst, bei Strings auf den Stringdeskriptor gezeigt. 

Beim C64 findet man diesen Variablen-Pointer VARADR in (71/72), 

beim 40/80XX in (68/69). 

Wurde keine Variable gefunden, so wird hinter der letzten vorhan- 

denen eine neue angelegt und mit Nullen aufgefüllt. Als Ergebnis 

erhält man wie oben den Zeiger hinter den Variablenkopf. 

Außerdem ist in jedem Fall die Adresse der Variablen auch in den 

Registern (A/Y) mit LO/HI zu finden, so daß eine Weiterverarbei- 

tung beschleunigt durchgeführt werden kann. 

Beispiel: 

Die bisher noch nicht vorhandene Variable x soll angelegt wer- 

den. Der Variablenbereich beginne bei (2580), also Page 10. 

Zur Überprüfung geben wir die gefundene Anfangsadresse der Varia- 

blen sowie den Variableninhalt auf dem Bildschirm aus. 

Ablauf: 

01 Setzen des Variablennamens VARNAM 

02 Aufruf von PTRVAR 

03 Retten des Variablenanfangs auf den Stack 

04 Ausgabe der Variablenadresse VARADR als Integerzahl 

05 Anfangsadresse der Variablen vom Stack holen und Ausgabe des 

Variableninhalts als reelle Zahl. 

Anmerkung: 

Der Inhalt von VARADR muß deswegen auf den Stack gerettet 

werden, weil durch die nachfolgende Ausgabe-Routine diese Zero- 

pageadressen anderweitig verwendet werden. Da wir aber auch den 

Variableninhalt zur Kontrolle ausgeben wollen (Teil 05), legen 

wir, den Inhalt von VARADR erst einmal auf den Stapel.



- 159 - 

ASSEMBLER-Beispiel "67-vrb-zeiger": 

Ol ida #88 ; Code fur "x" 

sta 69 ; Stelle fur 1. Namenszeichen nach VARNAM1 

lda #0 ; Null, weil Variablenname nur einstellig ist 

sta 70 ; Stelle fur 2. Namenszeichen nach VARNAM2 

Anmerkung: Nicht verwechseln mit der Variablen xO! 

02 jsr 45287 ; PTRVAR sucht die Variable x, findet sie 

nicht und legt sie neu an 

03 Ilda 71 ; VARADR-LO 

pha ; auf den Stack retten 

tax ; und nach (X) übertragen (wegen INTOUT) 

lda 72 ; VARADR-HI 

pha ; auf den Stack retten 

04 jsr 48589 ; INTOUT druckt Anfangsadresse von x: 2582 

05 pla ; HI von VARADR holen 

tay ; und nach (Y) übertragen 

pla ; LO von VARADR nach (A) holen 

jsr 48034 ; MEMFAC holt Inhalt von x nach FAC 

jmp 43708 3 FLPOUT druckt x: O 

Anmerkung: Die Anfangsadresse 2582 wird nur dann ausgedruckt, 

wenn der Variablenanfang auf (2580) steht und x die erste verwen- 

dete Variable ist. 

Im RAM-Bereich sieht das nun so aus: 

<2580> = 88 "x" 

<2581> = O 

<2582> = O 

<2583> = O 

<2584> = O 

<2585> = OD 

<2586> = O 

Die Variable "x" ist jetzt zwar angelegt, hat aber noch den Wert 

Null. Will man sie nun mit einer reellen Zahl belegen, so sind 

folgende Schritte notwendig: 

O6 Laden der gewunschten Zahl nach FACIL 

07 <71> ---> <X> LO der Anfangsadresse VARADR und 

<72> ---> <Y> HI der Anfangsadresse übertragen nach (X/Y) 

08 Aufruf der Routine FACMEM



- i60 - 

Das Zuruckholen aus dem Speicher geschieht entsprechend: 

09 <71> ---> <A> LO der Anfangsadresse und 

<72> ---> <Y> HI der Anfangsadresse übertragen nach (A/Y) 

10 Aufruf der Routine MEMFAC 

Weitere Informationen zu diesem Thema finden Sie in Kapitel 10. 

  Label C64 40/80XxX 
' ' 

PTRVAR 45287=$b0e7 49543=$c187 
sucht Variable mit 1.Name/2.Name=<VARNAM> 

VARNAM1/2 (69/70) =($45/46) (66/67 )=($42/43) 

Variablennamel/2 fur PTRVAR 

VARADR (71/72)=($47/48 ) (68/69 )=($44/45) 

dort steht die Anfangsadresse LO/HI der Variablen 

nach Aufruf von PTRVAR 

TXTTAB (43/44)=($2b/2c) (40/41 )=($28/29) 

Zeiger auf Beginn des BASIC-Textes 

VARTAB (45/46) =($2d/2e) (42/43) =($3a/3b) 

Zeiger auf Beginn der einfachen Variablen 

ARYTAB (47/48) =$(2f/3a) (44/45) =($3c/3d) 

7eiger auf Beginn der indizierten Variablen 

(Felder=Arrays) 

VAREND (49/50) =($3b/3c) (46/47) =($3e/3f ) 

Zeiger auf Ende der gesamten Variablentabelle 

MAXMEM (55/56) =($37/38) (52/53)=($34/35) 
Zeiger auf RAM-Obergrenze



9 
Bedienung der Peripherie





- 163 - 

9 Bedienung von Peripherie 

9.1 Datentransfer über den IEC- bzw. den seriellen Bus 
  

Die Verbindung zwischen Computer und Peripherie wird bei den CBM- 

Geräten meist über den sog.IEEE-488- oder kurz den IEC-Bus herge- 

stellt. Er mündet in eine 24-polige Steckverbindung aus, deren 

Leitungen zur Datenübertragung und -steuerung benötigt werden. 

Der Datenbus ist bei den 40/80XX-Geräten 8 Bit breit, d.h. es 

können gleichzeitig 8 Bits übertragen werden. Damit kann also ein 

Byte in einem Takt übernommen (gelesen) oder übergeben (ge- 

schrieben) werden (parallele Schnittstelle). 

Im Gegensatz dazu hat der (64 einen seriellen Bus, an dem gewöhn- 

lich das Floppy angeschlossen ist. Die Daten werden hier wesent- 

lich langsamer übertragen, weil hier Bit für Bit über die Leitung 

geschoben wird. Das übertragene Byte muß also zunächst zerlegt 

und im Empfänger wieder zusammengesetzt werden. 

Wenn im folgenden Text von IEC-Bus gesprochen wird, so gilt sinn- 

gemäß beim C64 das gleiche für den seriellen Bus, weil beide 

analog arbeiten. Außerdem läßt sich der (64 auch auf den IEC-Bus 

umrüsten. 

9.2 Umschaltungen des seriellen bzw. des IEC-Bus 
  

Um die gewünschten Daten auch vom richtigen Gerät an die richtige 

Stelle zu übertragen, muß der Computer als "Controller" entpre- 

chende Schaltungen vornehmen. 

- Dazu benötigt er in der Zeropage die Gerätenummer GA des ange- 

sprochenen Peripheriegeräts (GA heißt auch Primäradresse), 

- eine Sekundäradresse SA, mit der ein Übertragungskanal frei- 

gesetzt wird 

- und eine logische Adresse (auch File-Nummer oder Dateinummer) 

LA, mit deren Hilfe er Gerät und Kanal koordiniert.



- 164 - 

Im einzelnen sind dies: 

  

Label C64 40/80XxX 

' ' 

LA 184=$b8 logische Adresse 210=$d2 

SA 185-$b9 Sekundäradresse 211-$d3 

GA 186=$ba Geräteadresse(Pr.) 212=$d4 

GETSA -- 55599=-$d92f 

Wahlt man die Sekundäradresse willkürlich, so besteht die Gefahr, 

daß der dadurch festgelegte Kanal nicht mehr frei ist. Will man 

dies vermeiden, so ruft man GETSA auf. Damit wird eine freie 

Sekundäradresse geholt und gleich nach SA gebracht. Das ist aber 

nur ab BASIC 4.0 möglich. Beim C64 besteht diese Variante leider 

nicht. 

Zur Erinnerung: 

Wenn keine Veränderungen vorgenommen wurden, gelten folgende 

Geratenummern bei den CMB-Geraten: 

  

= Tastatur 

= Rekorder Nr.l 

= RS232 Uber USER-Port bzw.40/80XX: Rekorder Nr.2 

= Bildschirm 

= Drucker 

= Floppystation O
r
 
W
N
 

F&F 
DO 

t 

Logische Adressen sind möglich von 1 bis 255, wobei ab 128 alle 

Ausgaben mit PRINT mit einem Linefeed (Zeilenvorschub) abge- 

schlossen werden. 

Sekundäradressen wählen die Datenkanäle aus und können zunächst 

von 0 bis 31 gewählt werden. O und 1 sind aber z.B. beim Floppy 

reservierte Sekundäradressen für die Lade- und Speichervorgänge. 

Intern werden die Sekundäradressen für diverse Zwecke wieder ver- 

ändert. Zum Beispiel wird aus der Sekundaradresse O beim Laden 

mit ORA #96 die Sekundäradresse 96 (siehe auch Beispiele unten). 

Mit Hilfe der Sekundäradressen werden auch die einzelnen Be- 

triebsarten der Peripheriegeräte - vorzugsweise der Drucker - an- 

gewählt. Das entsprechende Handbuch ist also hier zu Rate zu zZie- 

hen, damit es keine Fehlschaltungen gibt.



- 165 - 

9.2.1 Datenübernahme mit TALK 

Je nachdem, in welche Richtung der Datenfluß laufen soll, wird 

der Bus in einen besonderen Zustand versetzt. 

Sollen Daten von außen - also von Peripheriegeräten - geholt wer- 

den, dann muß das entsprechende Gerät, ein Drucker oder das Flop- 

py zum "Talker" (Sender) gemacht werden. Das geschieht mit der 

Routine TALK. 

Nun kann über einen freien Kanal, der mit Hilfe der Sekundär- 

adresse angewählt wird, die Übernahme der Daten erfolgen. 

Zu beachten ist, daß in der Zeropage eine Art Kontrollbyte mitge- 

führt wird, das eventuelle Fehler bei der Datenübertragung regi- 

striert. Es ist das STATUS-Byte oder kurz STATUS. Seine Adresse 

ist (144) beim C64 bzw. (150) beim 40/80XX. 

Je nach Art des Fehlers wird ein Bit im Status gesetzt. Wichtig- 

ste Erkennung ist das Ende einer Datei. Hier wird Bit 5 gesetzt, 

STATUS hat also den Wert 64. Eine Ubertragung kann nur erfol- 

gen, wenn der STATUS Null ist. 

Daraus ergibt sich für die Vorbereitung der Datenübernahme von 

einem Peripheriegerät folgende Sequenz: 

ABLAUF für C64 (40/80XX in Klammern): 

-— lda #0 ; Null 

sta 144 (150) ; für STATUS 

- lda 186 ; Gerdteadresse GA laden 

jsr 60681 (61650) ; Routine TALK 

- lda SA ; Sekundaradresse laden 

jst 60871 (61763) ; SASENT sendet die Sekundäradresse 

Anschließend können über den nun freigelegten Kanal vorbereitete 

Daten übernommen werden (Beispiele siehe unten). 

Nach Beendigung wird mit der Routine UNTALK der Bus wieder in 

den Wartezustand versetzt: 

-— jsr 60911 (61878) ; UNTALK



- 166 - 

9.2.2 Datenausgabe mit LISTEN 

Analog zur eben besprochenen Datenübernahme ist die -ausgabe mög- 

lich: 

ABLAUF für C64 (40/80XX in Klammern): 

- lda #0 ; Null fur 

sta 144 (150) ; STATUS 

- jsr 60684 (61653) ; Routine LISTEN 

— lda SA ; Sekundaradresse laden 

jsr 60857 (61763) ; und mit SASENL senden 

|... Daten ausgeben ...... 

- jsr 60926 (61881) ; Beenden mit UNLISN 

Beim C64 ist zu beachten, daß es zum Senden der Sekundaradresse 

zwei verschiedene Einsprünge für SASENX gibt. Abhängig davon, 

ob die Routine TALK oder LISTEN vorausging, wird SASENT bzw. 

SASENL verwendet. 

9.2.3 Beispiel: "68-druckaus" mit LISTEN, BSOUT, CLALL 

Der Drucker kann als Empfänger (Listener) von Daten aktiviert 

werden, ohne daß ein direktes OPEN ausgegeben wird, wie es in 

BASIC z.B. mit OPEN 8,4,8 geschieht. 

Allerdings wird neben der Gerätenummer auch eine logische File- 

nummer benötigt. 

Die zum Drucker gesendeten Bytes laufen über den Bus zunächst in 

den Drucker-Puffer (falls vorhanden) und werden von dort aus aus- 

gegeben. 

Dabei ist zu beachten, daß einige Druckgeräte die Ausgabe auf Pa- 

pier erst beginnen, wenn so viele Bytes empfangen wurden, bis 

eine Druckzeile voll wird, oder bis ein Steuerzeichen eintrifft 

wie z.B. Carriage Return (Code 13). 

Sind alle Daten übertragen worden, wird der Drucker wieder deak- 

tiviert mit CLALL, was auch UNLISN beinhaltet. 

Im folgenden Beispiel bereiten wir den Drucker zur Ausgabe vor 

und geben Bytes aus, die wir ab Adresse (20050) bereitgestellt



— 16/7 - 

haben. Als letztes Byte senden wir Code 13 für CR, damit die 

Ausgabe auf jeden Fall sofort erfolgt. 

Die Byte-Leiste entspricht dem Text: "test-AUSDRUCK-123456" 

Der Abschluß erfolgt mit CLALL (Erklärung siehe 9.2.9). 

ASSEMBLER-Beispiel und Ablauf für "68-druckaus" (C64): 

01 20000 lda #4 ; Gerätenummer für den Drucker z.B. 4 

20002 sta 154 ;s in DEVOUT bereitstellen 

02 20004 sta 186 ; Gerätenummer, auch 4 (=Drucker) nach GA 

03 20006 Ida #8 ; Sekundäradresse (hier 8) 

20008 sta 185 ; in SA bereitstellen 

nop 

04 20011 lda #0 ; Null nach 

20013 sta 144 ; STATUS 

05 20015 jsr 60684 ; LISTEN aktiviert das angesprochene Gerät 

als Empfänger (hier den Drucker) 

06 20018 lda 185 ;s Sekundäradresse aus SA holen 

20020 jsr 60857 ; Sekundäradresse mit SASENL senden 

20023 nop 

07 20024 ldx #0 ; Zahler fur Ausgabe auf Null 

20026 lda 20050,x ; Byte von vorbereiteter Leiste holen 

20029 jsr 65490 ; und mit BSOUT ausgeben 

20032 inx ; Zahler erhohen 

20033 cpx #21 ; letztes Zeichen erreicht? 

20035 bne 20026 ; nein ===> weiteres Byte holen und ausgeben 

08 20037 jsr 65511 ; sonst AbschluB mit CLALL 

20040 rts ; und Ende 

Byteleiste ab (20050): 

20050 B 84 69 83 84 45 193 213 211 196 210 

20060 B 213 195 203 45 49 >0 51 52 D3 54 

20070 B 13 

Nach Aufruf mit SYS 20000 fängt der Drucker sofort an zu ar- 

beiten und gibt anschließend ein CR aus.



- 168 - 

Auf diese Art und Weise lassen sich natürlich auch die Steuer- 

codes und alle Umschaltungen des Druckers bewerkstelligen. Ein 

Beispiel dazu finden Sie weiter hinten im dem Programm "print- 

director", wo unter anderem auch Tabulatorsprünge programmiert 

werden. 

Aufgabe: 

Versuchen Sie, das Beispiel "druckerausgabe" so umzubauen, daß 

Sie Ihren Drucker als "Schreibmaschine" verwenden können. Jeder 

Tastendruck soll also sofort auf dem Drucker ausgegeben werden 

können. 

Selbstverständlich ist das nicht sehr komfortabel, wenn man Texte 

schreibt, die man verbessern möchte. Aber für Mini-Schreibarbei- 

ten ist das recht nützlich. Denken Sie nur daran: Wenn man ein 

Programmlisting ausgedruckt hat, möchte man gern mal etwas dazu- 

schreiben ohne das Papier herauszunehmen oder das Progamm zu 

wechseln. 

9.2.4 Anwendung: Modul "69-druckex" 

Das folgende Modul entspricht in etwa der Lösung der eben ge- 

stellten Aufgabe. Aber es arbeitet noch etwas komfortabler: 

Nach dem Aufruf erhält man einen blinkenden Cursor wie im READY- 

Modus, mit dem man beliebig auf dem Bildschirm herumsausen kann. 

Auch alle anderen Cursorsteuerungen wie INST, DEL, CLR, HOME usw. 

sowie der Tabulator sind aktiv. 

Nach dem Drücken der RETURN-Taste wird nun diejenige Zeile auf 

dem Drucker ausgegeben, in der der Cursor gerade steht. Dabei 

spielt es keine Rolle, ob der Text schon auf dem Bildschirm 

vorhanden war oder gerade erst geschrieben wurde. 

Probieren Sie dieses Modul aus und Sie werden es ganz sicher in 

Ihr Textprogramm einbauen, denn es ist ideal zum Direktschreiben 

von der Computertastatur in den Drucker. 

Dafür, daß der Drucker die richtige Schrift hat, müssen Sie 

selbst sorgen. Sie können diese Einstellungen vorher vornehmen 

oder aber das Modul "druckex" entsprechend erweitern. 

(Siehe dazu auch die Beschreibung zum Modul "printdirector" im 

Abschnitt 9.10) 
Haupt-ROM-Routine ist BASIN, die im Kapitel "Eingabe-Routi-



- 169 - 

nen" erklärt wurde. Zur Ausgabe verwenden wir LISTEN, BSOUT und 

UNLISN. 

Machen Sie sich bei dieser Gelegenheit noch einmal mit BASIN 

vertraut: 

- BASIN holt so lange Zeichen von der Tastatur und gibt sie 

auf dem Schirm aus, bis RETURN auftritt. 

- Anschließend wird das erste Zeichen der aktuellen Zeile in das 

(A)-Register geholt. Der Bildschirm ist nun das Eingabegerät. 

- Neue Aufrufe von BASIN holen nun Zeichen für Zeichen aus 

dem Bildschirm-RAM. 

- Nach dem letzten Zeichen steht 13 im (A)-Register. 

Um einmal eine weitere übliche ASSEMBLER-Programmier-Art anzubie- 

ten, verwenden wir mal die reine LABEL-Schreibweise. Sie hat den 

Vorteil, daß man sehr schnell in ASSEMBLER programmieren kann. 

Man benötigt aber zum Eingeben auf diese Weise einen Editor, der 

die Labels aufnimmt und beim Assembliervorgang wieder in Zahlen 

und Adressen umsetzt. 

ASSEMBLER-Programm "69-druckex'" - Labelschreibweise: 

MEMADR Anfangsadresse eines freien RAM-Bereichs zum Zwischen- 

speichern der eingelesenen Zeile (max. Länge 80) 

CR = 13 (RETURN) 
DN = Gerätenummer für den Drucker 

SEKADR = Sekundäradresse für Druckerbetrieb 

ABBRUCH = beliebiger ASC-Code, mit dem das Programm beendet wird 

z.B. Klammeraffe 

Alle anderen Labels sind besprochen und stehen in der Tabelle. 

00 DRUCKER EIN lda #4 ; evtl. Gerätenummer des Aus- 

sta DEVOUT ; gabegeräts bereitstellen 

01 ANFANG ldy #0 ;‚ Zähler auf Null 

02 EINGABE jsr BASIN 

cmp #ABBRUCH 

beq 06 ENDE 

cmp #CR 

beq 03 EINGABENDE 

sta MEMADR,y 

iny 

bne 02 EINGABE 

03 EINGABENDE sta MEMADR,y



- 170 - 

lda #DN 

sta LA 

sta GA 

lda SEKADR 

sta SA 

lda #0 

sta STATUS 

jsr LISTEN 

lda SA 

jsr SASENL 

ldx #0 ; Zähler auf Null 

D4 AUSGABE lda MEMADR,x 

cmp #CR 

beq 05 ABSCHLUSS 

jsr OUTBUS (oder BSOUT) 

inx 

bne 04 AUSGABE 

05 ABSCHLUSS jsr UNLISN 

Ilda #CR 

jsr BSOUT ; CR auf Bildschirm 

cle 

bec O1 ANFANG ; neue Zeile aufnehmen 

06 ENDE jsr UNLISN 

lda #3 ;s evt. wieder Bildschirm als 

sta DEVOUT ; Ausgabegerät bestimmen 

rts 

Auch dieses Modul ist frei verschiebbar, kann also in jedem 

freien RAM-Bereich untergebracht werden. Es benötigt in der vor- 

gestellten Form ca.80 Bytes Platz. 

Bei der Ausgabe über den USER-Port kann es - je nach Programmie- 

rung des Druckers - notwendig werden, in Teil Ol zusätzlich das 

aktive Gerät in der Zeropage DEVOUT zu notieren: 

lda #4 

sta DEVOUT 

Im letzten Teil 06 wird dann der Bildschirm als Gerät 3 wieder in 

Aktion gesetzt, bevor der Rücksprung erfolgt: 

lda #3 

sta DEVOUT 

Schließt man die Übertragung mit CLALL (siehe unten) ab, dann 

wird automatisch der Bildschirm wieder als Ausgabegerät akti- 

viert. Die beiden gennannten Zeilen entfallen dann.



- 171 - 

9.2.5 Vorbereitung von Datenübertragungen mit OPEN 

Wenn Dateien angesprochen werden, dann erfolgt das von BASIC aus 

mit dem OPEN-Befehl. Die entsprechende ROM-Routine verlangt ge- 

nauso folgende Parameter wie bisher beschrieben: 

- logische Adresse in LA 

-— Geräteadresse in GA 

- Sekundäradresse in SA 

Zum Ansteuern einer bestimmten Datei (z.B. auf Diskette) werden 

jetzt noch benötigt: 

- Anfangsadresse in NAMADR des Dateinamens mit LO/HI 

- Länge des Dateinamens in NAMLEN 

sind die genannten Zeropageadressen belegt, dann kann die Routine 

OPEN aufgerufen werden. 

9.2.6 Ausgabevorbereitung mit CHKOUT 

Wir brauchen uns um die richtigen Schaltungen nicht zu kümmern, 

wenn wir die DOPEN-Routine mit den eben genannten Parametern 

aufgerufen haben. 

Soll eine Ausgabe auf die geöffnete Datei erfolgen, dann trifft 

die Routine CHKOUT die dazu notwendigen Vorbereitungen. Sie 

schaltet das Peripheriegerät auf "Empfang", indem sie das STATUS- 

Byte auf Null setzt, die Routine LISTEN aufruft und die rich- 

tige Sekundäradresse sendet. 

Kurz: Das angesprochene Gerät wird als LISTENER aktiviert, so wie 

wir das im vorigen Abschnitt "zu Fuß" getan haben. 

Wichtig dabei ist, daß CHKOUT nur dann wirksam werden kann, 

wenn die Datei geöffnet ist. Dann stehen nämlich in der sog. 

File-Tabelle die Parameter der angesprochenen Datei. Sie werden 

automatisch gefunden, wenn vor dem Aufruf von CHKOUT das X- 

Register mit der logischen Adresse derjenigen Datei belegt wird, 

die man ansprechen will.



- 172 - 

Damit ergibt sich folgender Ablauf: 

- Öffnen einer Datei auf das gewünschte Gerät mit OPEN. 

- Übergeben der logischen Adresse LA ins (X)-Register, und Aufruf 

der Routine CHKOUT. 

- entsprechende Ausgaben wie BASIC-PRINT, also mit BSOUT o.ä. 

- Schließen der Datei mit CLOSE. 

9.2.7 Eingabevorbereitung mit CHKIN 

Entsprechend läßt sich der Bus auch auf "Eingabe! schalten. Das 

bedeutet, daß alles was sonst über die Tastatur erwartet wird, 

nun vom IEC-Bus aufgenommen wird. Es ließe sich also z.B. eine 

weitere Tastatur oder ähnliches über den Bus bedienen. 

Der Ablauf ist gleich wie oben. Lediglich die Routinen ECHKOUT und 

BSOUT müssen durch CHKIN bzw. BASIN ersetzt werden. 

Kurz: Das angesprochene Gerät wird als TALKER (Sender) aktiviert. 

9.2.8 Standard-Ein/Ausgabe herstellen mit CLRCH 

Um den Bus wieder in den Normalzustand zu versetzen, so daß die 

Tastatur (Gerät O0) das Eingabegerät und der Bildschirm (Gerät 3) 

das Ausgabegerät ist (wie z.B. im READY-Modus), springen wir die 

Routine CLRCH (Standardbus) an. 

Eventuell noch geöffnete Dateien werden dabei allerdings nicht 

automatisch geschlossen. Sie können aber geöffnet bleiben. Bei 

mehreren Hin- und Herschaltungen des Busses muß man dabei selbst 

den Überblick behalten. 
Zweckmäßigerweise öffnet man eine Datei zu Beginn eines Programms 

und schließt sie erst vor dem Rücksprung in das aufrufende Pro- 

gramm, so daß bei der Unterprogrammtechnik keine 'file not/open'- 

Fehler auftreten können. 

9.2.9 Dateien schließen mit CLALL 

Auch bei der Umschaltung mit CLRCH (clear chanels) bleiben die 

Dateien offen. Um sämtliche noch offene Files auf einmal ord- 

nungsgemäß abzuschließen, wird die Routine CLALL aufgerufen. Wir 

haben sie vorhin schon ein paarmal verwendet.



- 173 - 

9.2.10 Schließen einer Datei mit CLOSEA und CLOSEL 

Entsprechend dem BASIC-CLOSE werden nicht mehr benötigte Dateien 

abgeschlossen, wenn man das (A)-Register mit der logischen 

Adresse belegt und anschließend die ROM-Routine ELOSE aufruft. 

Verwaltet man nur eine einzige Datei und hat man die Zeropage- 

Adresse LA (siehe oben) nicht verändert, dann kann man sich 

das Laden ersparen und springt einen Befehl weiter hinten im ROM 

ein bei CLOSEL. Beim C64 ist dies allerdings nicht möglich. 

Die CLOSE-Befehle bewirken auf jeden Fall, daß die zugeordneten 

Fileparameter in der Filetabelle gelöscht werden. 

Daraus folgt, daß nach dem Schließen einer Datei die Vorberei- 

tungsroutinen CHKIN oder CHKOUT nicht mehr richtig arbeiten 

können. Sie werden erst wieder nach dem erneuten Öffnen der ge- 

wünschten Dateien wirksam. 

9.3 Vereinfachungen zur Dateibehandlung 
  

Wenn man in einem Programm mehrere Dateien offen hält, um sie 

im Wechsel zu bearbeiten, kann man bei den CBM-Rechnern bis maxi- 

mal 3 Files (80XX:10) geöffnet lassen. 

Jedesmal, wenn ein Gerät angesprochen wird, müssen dafür Geräte- 

und Sekundäradresse sowie die logische Adresse gesetzt werden. 

Nach dem OPEN-Befehl führt der Rechner aber selbständig Tabellen 

für jede noch offene Datei und kann selbständig Gerätenummer und 

Sekundäradresse bereitstellen, die er anhand der logischen 

Adresse findet. 

Dazu stellt man die logische Adresse LA im (A)-Register bereit 

und ruft zunächst die Routine SUFTAB (suche Filedaten in der 

Tabelle) auf. 

Anschließend wird durch SETTAB (setze Tabellendaten) das Be- 

reitstellen von logischer Adresse (LA), Geräteadresse (GA) und 

Sekundäradresse (SA) in die dafür vorgesehenen Zeropage-Adressen 

besorgt. 

Nach wie vor muß aber noch das über die geöffnete Datei angespro- 

chene Gerat als "Talker" oder "Listener" aktiviert werden. 

Das eben besprochene Verfahren ist dem BASIC-System entnommen.



Erinnern sich: Um z.B. den Drucker anzusprechen, befehlen 

Sie OPEN 2,4,8. Später schreiben Sie nur noch z.B. PRINT #2,..., 

geben nur noch die logische Adresse (File-Nummer) an. Der 

Rechner 

174 - 

gen Befehlskanal (über Nummer 8). 

Setzroutinen SUFTAB 

verwenden wir für unsere ASSEMBLER-Programme auch. 

Und genau 

Entsprechendes gilt natürlich auch für die Benützung der Routinen 

CLOSEX. 

Hier zunächst die wichtigsten ROM-Routinen und Adressen: 

diese Such- 

findet nun das richtige Gerät (Nummer 4) und den richti- 

  

und SETTAB 

Label C64 40/80XxX 
1 ! 

NAMLEN 183=$b7 209=$d1 

NAMADR 187/188=$bb 218/219-$da/db 

STATUS 144=$90 150=$96 

OPEN 62282-$f 34a 62819=$f 563 

SUF TAB 62223=$f 30f 61245=$f2cl 

SETTAB 62239-$f31f 62157=$f2cd 

CLOSEA 62097=$f 291 62178=$f 2e2 

CLOSEL — 62176=$f 2e0 

Gemeinsame KERNAL-Routinen: 

CHKOUT 65481=$ffc9 

CHKIN 65478=$ffc6 

CLRCH 65484=$ffcc 

CLALL 65511=$ffe7 

9.4 Behandlung von Dateien   

Verarbeitet werden zwei Arten von Dateien: die sog. sequentiellen 

Dateien, wo die Bytes in laufender Folge geschrieben oder gelesen 

werden und die sog. relativen Dateien, die einen wahlfreien Zu- 

griff auf eine beliebige Stelle innerhalb des files ermöglichen. 

Programme fallen unter die Rubrik sequentiell. (Siehe auch 9.5.2)



- 175 - 

Außerhalb dieser von BASIC vorgegebenen Dateien lassen sich in 

Maschinensprache beliebige andere Strukturen erstellen, was sich 

aber für den Hausgebrauch selten lohnt. 

Zur Vereinfachung der Programmierarbeiten empfiehlt es sich, das 

File-Konzept des Betriebssystems beizubehalten. Damit läuft die 

Dateibehandlung entsprechend der BASIC-Logik ab: 

- Öffnen der Datei 

mit logischer Adresse LA, Gerateadresse GA, Sekundaradresse 

SA und dem Dateinamen FILNAM. 

— Datentransfer: 

Eingabe(Lesen) oder Ausgabe(Schreiben) 

-— Schließen der Datei 

In den folgenden Abschnitten schauen wir uns an Hand eines Bei- 

spiels diese drei Punkte genauer an und erklären dabei den Ein- 

satz der ROM-Routinen. 

9.5 Arbeiten mit SEQ-Dateien 
  

9.5.1 Öffnen einer SEQ-Datei 

Um eine Datei ansprechbar zu machen, müssen folgende Werte über- 

geben werden: 

- Logische Adresse LA (frei zwischen 1 und 255) 

— Sekundäradresse SA (von 2 bis 31) 

Nummer 15 stellt den sog. Befehls-(oder Kommando-)kanal dar, 

über den die Befehle an das Disk-Operating-System gesandt 

werden. 

D und 1 dagegen sind reserviert für Laden und Speichern. 

- Geratenummer GA 

-— Dateiname bzw. seine Länge NAMLEN und Anfangsadresse NAMADR 

wählt man die Sekundäradresse willkürlich, so besteht die Gefahr, 

daß der dadurch festgelegte Kanal nicht mehr frei ist. Will man 

dies vermeiden, so ruft man GETSA auf. Damit wird eine freie 

Sekundäradresse geholt und gleich nach SA gebracht (nicht (64). 

Beim Dateinamen gilt aber zu beachten, daß er nicht nur aus dem



- 176 - 

eigentlichen Namen besteht, sondern immer einen Zusatz enthalten 

muß, der auf die Art des Zugriffs hinweist. Das ist deshalb er- 

forderlich, weil das DOS (Disk-Operating-System) sonst nicht 

weiß, wie die Datei zu behandeln ist. 

Bei den SEQ-Dateien sind folgende Angaben möglich: 

"w" (Code 87) für erstmaliges Schreiben in die Datei (Anlegen) 

"a" (Code 65) fur Weiterschreiben (wie BASIC APPEND) 

"r'! (Code 82) für Lesen (read) 

Zu beachten ist, daß eine bereits vorhandene Datei nicht noch 

einmal mit "w" anzusprechen ist, wenn sie beschrieben werden 

soll, sondern immer mit "a". 

Der Name muß also folgende Form haben (Beispiel für SEQ-Datei 

mit der Bezeichnung "test"): 

"O:test,w" für Anlegen der Datei und erstmaliges Schreiben 

"Ostest,a" für fortlaufendes Weiterschreiben, wobei die neuen 

Daten an die bestehenden angehängt werden. 

"O:test,r" für Lesen aus der Datei, wobei immer von Beginn der 

Datei an gelesen wird. 

Auf diese Weise wird allerdings immer das Laufwerk Ü angespro- 

chen. Will man auf Laufwerk 1 zugreifen, dann muß vor den Namen 

eine 1 und ein Doppelpunkt gesetzt werden. Laufwerk DO laßt sich 

ebenfalls auf diese Weise kennzeichnen. 

Beispiel: "l:test,r" bedeutet Laufwerk 1, Datei "test" zum Lesen 

Nachdem nun der Dateiname noch weitere Angaben enthält, die der 

Floppy mitgeteilt werden müssen, spricht man nun von einem Be- 

fehlsstring. Kürzen wir ihn ab mit BFl. 

Dieser Befehlsstring wird in BASIC erst einmal zusammengebaut aus 

den Parametern der BASIC-Zeile und danach ab (850) abgelegt. 

Wir können ihn aber an jede beliebige RAM-Stelle schreiben und 

haben ihn somit jederzeit griffbereit. Er wird dann auch nicht 

überschrieben, wenn z.B. eine andere Datei angesprochen wird.



177 

Beispiel: Befehlsstring anlegen 
  

Wir bereiten 

Form: "O:tes 

-— 20580 48 

20581 58 

- 20582 84 

20583 69 

20584 83 

20585 84 

- 20586 44 

20587 87 

Damit hat er 

NAMLEN=8 

ASSEMBLER-Beispiel 

ein 

t,w" 

pn 

nga 

Well 

Non 

men 

m u 
’ 

My 

die 

en Befehlsstring ab (20580=$5084) vor mit der 

Anfangsadresse NAMADR=(100/80) und die Länge 

"70-seqg-open": Öffnen der Datei "test" 
  

(Adressen fur C64) 

20500 

20502 

20504 

20506 

20508 

20510 

20512 

20514 

20516 

20518 

20520 

20522 

20524 

20527 

lda 

sta 

lda 

sta 

lda 

sta 

lda 

sta 

lda 

sta 

lda 

sta 

jsr 

rts 

#5 

184 

it 6 

185 

#8 

186 

#100 

187 

#80 

188 

#8 

183 

62282 

. 

9 

e 

3 

. 
3 

9 

, 

logische Adresse LA 

nach LA 

Sekundäradresse 6 (Beispiel!) 

nach SA 

Geräteadresse 8 (Floppy) 

nach GA 

LO von Befehlsstring-Anfang 

nach NAMADR-LO 

HI von Befehlsstring-Anfang 

nach NAMADR-HI 

Lange des Befehlsstrings 

nach NAMLEN 

OPEN öffnet die Datei 

9.5.2 Beispiel: Schreiben mit CHKOUT und BSOUT 
  

Ol Um in die Datei zu schreiben, müssen die entsprechenden Kanäle 

"freigele 

sie 

das 

bere 

und die 

gt" 

itet 

Date 

werden.. 

den 

n den 

Das besorgt die ROM-Routine CHKOUT. 

IEC-Bus als Listener vor, sorgt dafur, daB 

richtige Gerat und die richtige Datei angesprochen werden 

richtigen Weg nehmen.



- 178 - 

Voraussetzung dafür ist, daß die gewünschte Datei (noch) offen 

ist. 

Die ROM-Routine CHKOUT benötigt im (X)-Register die logi- 

sche Adresse (Filenummer). Mit deren Hilfe kann sie aus einer 

in der Zeropage geführten Tabelle die richtigen Zuordnungen 

treffen. 

02 Die Routine BSOUT, die wir schon als CHROUT kennengelernt 

haben, ist vielseitig einsetzbar. In unserem Fall gibt sie 

das im (A)-Register befindliche Zeichen über den aktiven 

Kanal, also über den Bus an das Floppy aus. 

03 Als Abschluß müssen die Kanäle wieder in den Standard-Zustand 

versetzt werden, was die Routine ELRCH besorgt. Damit ist 

wieder die Tastatur als Talker und der Bildschirm als Listener 

aktiv. 

ASSEMBLER-Beispiel: "7l-seq-write" (C64 und 80XX): 

01 20530 ldx #5 ; Filenummer (zu obigem Beispiel) 

20532 jsr 65481 ; CHKOUT Ausgabe-Vorbereitung 

02 20535 ldy #4 ; Zahler (Beispiel) fiir 4 Datenbytes 

20537 lda 20581,y ; Laden eines Zeichens 

20540 jsr 65490 ; BSOUT gibt Zeichen auf BUS 

20543 dey ; weiterzahlen 

20544 bne 20537 ; Ende erreicht? nein ---> weitere Ausgaben 

03 20546 jsr 65484 ; ja ---> CLRCH Standard-Ein-Ausgabe 

20579 rts ; wieder herstellen 

In unserem Beispiel geben wir das Wort "test", das wir vorher ab- 

gelegt haben, als Datenkette aus. 

Voraussetzung für das Funktionieren dieses Teils ist natürlich, 

daß der Öffnungsteil aufgerufen wurde. 

9.5.3 Beispiel: SEQ-Lesen mit CHKIN und BASIN 

Um aus der Datei "test" zu lesen, muß sie - wie oben erwähnt - 

mit dem Befehlsstring "l:test,r" geöffnet worden sein. 

Ol Die Routine CHKIN bereitet entsprechend die Eingabe vor. 

Die Voraussetzungen sind die gleichen wie bei CHKOUT.



- 179 - 

02 BASIN holt über den aktiven Kanal ein Zeichen in das (A)- 

Register. 

03 Als Abschluß erfolgt wieder der Aufruf von CLRCH. 

ASSEMBLER-Beispiel "72-seq-read" (C64 und 80XX): 

01 20552 ldx #5 ; Filenummer nach (X) 

20554 jsr 65478 ; CHKIN bereitet Eingabe vor 

02 20557 ldy #3 ; Zähler auf 3 (Beispiel für 3 Daten) 

20559 jsr 65487 ; BASIN holt Datenbyte nach (A) 

20562 sta 899,y ; Byte ablegen 

20565 dey ; weiterzahlen 

20566 bne 20559 ; Ende erreicht? nein ===> weiter einlesen 

03 20568 jsr 65484 ; ja ---> CLRCH Standardzustand 

04 20571 lda #132 ; LO von (900) 

20573 ldy #3 ; HI von (900) 

20575 jsr 43806 ; STR-O gibt den String aus: "est" 

(20575 jsr 47901) 

20578 rts 

Wir haben die Daten in unserem Beispiel gleich weiterverarbeitet 

und zur Kontrolle ausgedruckt. Das Nullbyte als Abschluß des 

Strings ist zunächst vorhanden, wenn ab (900) vorher keine ande- 

ren Operationen stattgefunden haben. 

9.4.4 Beispiel: Schließen der Datei mit CLOSEA oder ECLOSEL 
  

Wird die Datei nicht mehr gebraucht, muß sie geschlossen werden. 

Dazu benötigen wir wieder die logische filenummer, diesmal aber 

im (A)-Register. Anschließend erfolgt der Aufruf von CLOSE. 

ASSEMBLER-Beispiel: "73-close file" (C64 und 80XX): 

— 20590 lda #5 ; Filenummer von "test" 

20592 jsr 62097 ; CLOSEA 

(20592 jsr 62178) 

20595 rts 

oder - wenn das aktuelle File aus LA geschlossen wird: 

- 20590 jmp 62176 ; CLOSEL (nicht für (64 geeignet)



- 180 - 

9.5.5 Verknüpfen der SEQ-Routinen 
  

Wenn Sie alle vier vorangegangenen ASSEMBLER-Programme eingegeben 

haben, können wir zum Ausprobieren schreiten. 

Zunächst erstellen wir eine kleine Sprungleiste zum Neu-Anlegen 

der SEQ-Datei "test". Erinnern Sie sich: Das "w" muß hinter den 

Dateinamen gesetzt werden? 

ASSEMBLER-Beispiele "74-seq-rout" (allgemein): 

01 20600 1da #87 ; Code fur "w" 

20602 sta 20587 ;s in den Befehlsstring einbauen 

20605 jsr 20500 ; Unterprogramm "65-seq-open" 

20608 jsr 20530 ; Unterprogramm "66-seq-write" 

20611 jmp 20590 ; Unterprogramm "67/-close file" 

Rufen Sie SYS 20600 auf. Sie erkennen am Inhaltsverzeichnis, daß 

die sequentielle Datei "test" angelegt worden ist. 

Zum Weiterschreiben gehen wir ähnlich vor, allerdings ist das 

Zeichen "a" im Befehlsstring erforderlich: 

02 20615 lda #65 ; Code fur "a" 

20517 sta 20587 s einbauen 

20520 jmp 20605 ;s und zum Schreibprogramm springen 

Nach dem Aufruf wird noch einmal das Wort "test" in die Datei 

"test" geschrieben, so daß jetzt enthalten ist: "tsettset", weil 

wir beide Male mit dem letzten Buchstaben zu schreiben angefangen 

haben. 

Wiederholte Aufrufe (SYS 20615 o.ä.) schreiben immer wieder diese 

vier Zeichen an die bereits bestehenden. 

Jetzt kommt die Probe auf das Exempel: Wenn alles glatt gegangen 

ist, können wir nun auch aus der Datei wieder alles oder einen 

Teil herauslesen, wie es uns beliebt. 

03 20625 Ida #82 ; Code für "r" 

20627 sta 20587 ; in.den Befehlsstring einbauen 

20630 jsr 20500 ; Unterprogramm "file open" 

20633 jsr 20552 ; Unterprogramm "seq-read" 

20636 jmp 20590 ; Unterprogramm "close file"



- 181 - 

Nach dem Aufruf erscheinen die Buchstaben "est", wenn "seg-read" 

unverändert übernommen wurde. 

Probieren Sie nun mal die Programme durch mit verschiedenen Namen 

und Zeichenlängen. Verwenden Sie auch mal Trennzeichen beim 

Schreiben und beobachten Sie die Ausgabe! 

Wenn Sie wollen, können Sie auch Programme auf diese Weise ab- 

speichern. Allerdings sind solche Programmdateien mit "seq" ge- 

kennzeichnet und können auch nicht mit LOAD oder DLOAD geladen 

werden, weil der Zeiger am Anfang der Datei fehlt. (Siehe dazu 

Kapitel 11). 

Man kann allerdings solche maskierten Programme mit Hilfe der 

Lese-Routine an eine beliebige Stelle laden und dann als Programm 

aufrufen. Solche "üblen" Tricks sind oft Ansatzpunkte zum Schutz 

gegen allzu rasche Einsicht in ein Programm. 

Versuchen Sie also auch mal das Speichern und Laden auf diese 

Weise! 

9.6 Arbeiten mit REL-Dateien - Schreiben/Lesen mit BSOUT/BASIN 

Den Vorteil, daß man auf jeden Record einer Datei - und hier wie- 

der auf jede Position - zugreifen kann, können wir auch in Ma- 

schinensprache wahrnehmen. 

9.6.1 REL-Dateien auf dem C64 

Da die meisten L(64-Besitzer noch nie mit REL-Dateien gearbeitet 

haben, weil das BASIC 2.0 dies nicht so ohne weiteres vorsieht, 

hierzu die wichtigsten Erläuterungen: 

REL-Dateien lassen sich mit Karteikästen vergleichen. Jede Karte 

(Record) ist nummeriert (Recordnummer) und hat Platz für eine be- 

stimmte Menge an Einträgen (Recordlänge = Anzahl Bytes/Record). 

In jedem Karteikasten (REL-Datei) befinden sich nur Karten von 

gleicher Größe (Recordlänge). Dabei ist es unerheblich, ob und 

wieviele Einträge auf den Karten vorgenommen wurden. Der Inhalt 

jeder Karte (Record) kann beliebig oft beschrieben, gelesen oder



- 182 - 

verändert werden. Auch neue Karten können aufgenommen werden 

(max. 65535 Records). 

Der Vorteil dieser REL-Dateien ist, daß wir unserem "Sekretär" 

Aufträge erteilen können wie: 

Lies vor, was in Karte (Record) 10, ab Buchstabe (Byte) 20 steht! 

oder 

Ändere das 23.Zeichen von Record 12: statt "w" schreibe "r"! usw. 

Wenn wir wollen, können wir mit Hilfe von Trennzeichen (z.B. 

Komma, Strichpunkt, CR, Doppelpunkt usw.) jede Zeichenfolge in 

einzelne Wörter zerlegen oder das Ende eines Records mit einem 

Zeichen (z.B. 255) markieren und damit die Records strukturieren. 

In SEQ-Dateien ist letzteres zwar auch möglich, jedoch besteht 

die ganze Datei praktisch nur aus einem einzigen Satz -allerdings 

von beliebiger Länge. Beim Lesen muß man immer wieder ganz von 

vorn anfangen, beim Schreiben kann man lediglich hinten etwas 

dranhängen (Appendix=Anhang). Fehler lassen sich nicht ohne wei- 

teres ausbessern. Man kann höchstens die gesamte Datei noch ein- 

mal abgeändert anlegen. 

Damit erkennen wir den Vorteil der REL-Dateien sofort: Es ist 

der Zugriff nach freier Wahl, sowohl beim Schreiben als auch beim 

Lesen. Der Nachteil: Es wird mehr Platz auf der Diskette bean- 

sprucht. 

Die Verwendung von REL-Dateien liegt auf der Hand: Immer dann, 

wenn Daten häufig geändert oder ergänzt werden müssen und die 

einzelnen Datensätze durchnummeriert sein sollen. 

Für REL-Dateien gilt: 

- Jeder Record kann max. 254 Zeichen fassen. 

-— Es sind max. 65535 Records möglich. 

Das BASIC des C64 kennt zwar keine Befehle zur REL-Datei-Verwal- 

tung. Jedoch kann das am meisten benützte Floppy 1541 durchaus 

REL-Dateien verarbeiten. 

Mit ein paar Vorbereitungen sollte es uns also gelingen, die 

notwendigen Befehle zu erarbeiten und richtig anzuwenden. 

Im Gegensatz zu seinen größeren Brüdern gibt es beim (64 ein 

paar Punkte mehr zu beachten:



- 183 - 

- Der C64 kann jeweils nur eine REL-Datei geöffnet halten. Bevor 

mit einer zweiten gearbeitet wird, muß die erste ordnungsgemäß 

abgeschlossen worden sein. 

Das heißt, daß wir die logische Adresse nicht variabel halten 

müssen. Wir legen sie für unsere Arbeit hiermit willkürlich auf 

Nr.5 fest. 

- Die Befehlsstrings 1 und 2 haben das gleiche Format wie in 

9.5.1 beschrieben. Sie sollten aber beim (64 über zwei OPENs 

ausgegeben werden. 

Der 2. Befehlsstring muß aber unbedingt über den Befehlskanal 

Nr.15 (Sekundäradresse #111) gesendet werden. 

Als logische Adresse verwenden wir in unserem Beispiel Nr.2. 

- Beide Eröffnungen (mit LA=5 und LA=2) sollten erst beim Ab- 

schluß aller Schreib/Lese-Vorgänge geschlossen werden. Wird der 

Befehlskanal zu früh geschlossen, kann es Floppy-Probleme 

geben. 

-— Zur Ein- bzw. Ausgabe der Bytes verwenden wir die Routinen 

CHKIN/BASIN bzw. CHKOUT/BSOUT. Ein Zergliedern wie wir es bei 

dem REL-Beispiel für den 80XX getan haben, um möglichst viel 

Zeit einzusparen (STATUS,LISTEN,SASEND,OUTBUS...) ist beim C64 

mit etwas mehr Aufwand verbunden und spart daher so gut wie 

keine Zeit mehr ein. 

- Als Abschluß der Ein/Ausgaben verwenden wir CLRCH. 

-— Während das Einrichten einer REL-Datei mit BASIC 4.0 und den 

großen Floppys automatisch mit dem Beschreiben des ersten Re- 

cords problemlos abläuft, benötigt der C64 dazu eine Extra- 

wurst. 

Die einzelnen Datensatze, eben die sog. Records mit ihrer 

festen Länge, müssen auf der Diskette erst einmal angelegt wer- 

den - wie das Einlegen leerer Karten in einen Sortierkasten. 

Das geschieht dadurch, daß man in den voraussichtlich letzten 

Record das Byte 255 schreibt. Das DOS übernimmt als braver Se- 

kretär den Rest und baut die gesamte Datei auf. 

Man sollte daher allerdings im voraus wissen, wieviele Records 

die Datei einmal fassen soll. Ein paar Reserve-Records schaden 

beim Einrichten nicht, benötigen aber Platz auf der Diskette,



We 

de 

fü 

In 

- 184 - 

auch wenn sie noch nicht beschrieben wurden. 

Nehmen wir an, wir wollen 100 Sätze zu je 40 Zeichen verwalten. 

Dann schreiben wir in den Record #100 eine 255 in das 1.Byte. 

Der Platzbedarf beträgt dann 100 mal 40 = 4000 Bytes. Das macht 

16 Blöcke plus 1 Verwaltungsblock. Auf dem Inhaltsverzeichnis 

der Diskette wird diese REL-Datei demnach mit 17 Blöcken Platz- 

bedarf ausgewiesen, egal ob bereits darauf geschrieben wurde 

oder nicht. 

Braucht man später mehr Platz, kann man die REL-Datei auch über 

den letzten Satz hinaus weiterbeschreiben. Das kostet aber 

immer ziemlich viel Zeit. Deshalb lohnt sich das Einrichten mit 

einer genügend hohen Anzahl von Records. 

Der Abschluß wird immer mit je einem CLOSE auf die logischen 

Adressen der Datei (Nr.5) und des Befehlskanals (Nr.2) vorge- 

nommen. 

il die Verwaltung von REL-Dateien von wirklich praktischer Be- 

utung ist, beschreiben wir das entsprechende ASSEMBLER-Programm 

r den C64 hier sehr ausführlich. 

sgesamt gliedert sich ein Programm für REL-Dateien in folgende 

Teile: 

Ol 

02 

03 

04 

Ausgeben des Befehlsstrings Nr.1l über die logische Adresse der 

REL-Datei und einer beliebigen freien Sekundäradresse. 

In unserem Beispiel: LA=5, S5A=5 

Ausgeben des Befehlsstrings Nr. 2 über eine andere logische 

Adresse und die Sekundäradresse 15 für den Befehlskanal. 

In unserem Beispiel: LA=2, SA=15 

Schreiben in die REL-Datei entsprechend dem 2. Befehlsstring, 

der u.a. Recordnummer und Byteposition enthält. 

z.B. BF2 = 80 101 20 0 12, also wird Record #20, Byte #12 als 

Anfangsposition festgesetzt, wobei die Datei mit der Sekundär- 

adresse #101 (96+5) angesprochen wird. 

(80 ist der Code für "p", der das Positionieren einleitet.) 

Lesen aus der REL-Datei entsprechend dem 2. Befehlsstring 

analog zum Schreiben 03.



- 185 - 

Die eingelesenen Bytes werden zur weiteren Verwendung erst 

einmal in einen freien Bereich abgelegt. 

05 Schreibroutine zum Anlegen einer neuen REL-Datei. 

Sie setzt in den angegebenen letzten Record das Byte 255 auf 

Platz 1 und löst damit das Einrichten der gesamten Datei aus. 

z.B. BFl="O:reldatxx,1,40" - Laufwerk, Name, Länge 

BF2= 80 101 100 0 1 - "p", SA, Record #100, Byte #1 

06 Abschließen der Dateien durch Ausgeben von CLOSE auf die bei- 

den logischen Adressen. 

in unserem Beispiel: CLOSE#5, CLOSE#2 

Als Beispiel für das funktionieren unseres Programms fügen wir 

noch an: 

07 Stringausgabe für die eingelesenen Bytes bis zum Auftreten 

eines Bytes mit Inhalt Null. 

08 Routine zum Übertragen der beiden Befehlsstrings 1 und 2 an 

die im Programm verwendete Stelle: (900) bis (926) 

09 Eine Byte-Leiste, die die beiden Befehlsstrings für unser 

Beispiel enthält und zwar zunächst in der Form, wie wir sie 

zum Neueinrichten einer REL-Datei brauchen (siehe Punkt 05). 

Alle Programmteile 01 bis 09 benötigen einschließlich etlicher 

Orientierungs-NOPs nicht einmal 250 Bytes und passen daher auf 

einen einzigen Diskettenblock. 

Anmerkung: 

Wir haben im folgenden Beispiel die Länge des Befehlsstrings va- 

riabel gehalten, weil der Dateiname ja zwischen 1 und 16 Zeichen 

lang sein kann. Die jeweils gültige Länge setzen wir in die Zero- 

pageadresse 158 und rufen sie von dort aus ab. 

Wer sich diesen Luxus schenken will, kann auch mit der vorgegebe- 

nen Länge von 8 Zeichen für den Dateinamen arbeiten. Auch damit 

lassen sich mehr REL-Dateien angeben, als man jemals in seinem 

Leben auf Diskette bringen wird. 

Übrigens: Beim Ausprobieren des REL-Programms blinkt die Floppy 

wie bei einem fehler, wenn Sie eine REL-Datei neu anlegen. Lassen



- 186 - 

Sie sich dadurch nicht verwirren, der nächste Befehl wird ein- 

wandfrei angenommen. 

ASSEMBLER-Beispiel "75-reldateien" (C64): 

01 Befehlsstring 1 mit OPEN ausgeben - REL-Datei öffnen 

30000 nop 

30001 Iida #5 ; Sekundaradresse 5 

30003 sta 185 ; nach SA 

30005 nop ; GETSA ist beim C64 nicht moglich 

30006 lda #8 ; Gerdteadresse 8 (Floppy) 

30008 sta 186 ; nach GA 

30010 Ida #5 ; logische Adresse 

30012 sta 184 ; nach LA 

30014 ldx 158 ; vorbereitete Lange des 1.Befehlsstrings holen 

30016 stx 183 ; nach NAMLEN 

30018 lda #132 ; Adresse LO des 1.BF 

30020 sta 187 ; nach NAMADR-LO 

30022 lda #3 ; Adresse HI des 1.BF 

30024 sta 188 ; nach NAMADR-HI 

30026 jmp 62282 ; OPEN gibt 1.Befehlsstring aus 

nop 

02 Befehlsstring 2 mit OPEN ausgeben - Recordzeiger setzen 

30030 lda #5 

30032 sta 183 ; Lange des 2.Befehlsstrings nach NAMLEN 

30034 lda #2 

30036 sta 184 ; logische Adresse #2 

30038 Ilda #15 ; Sekundaradresse 15 fur Kommandokanal 

30040 sta 185 ; nach SA 

30042 lda #154 ; Anfang LO von BF2 

30044 sta 187 ; nach NAMADR-LO 

30046 lda #3 ; Anfang HI von BF2 

30048 sta 188 ; nach NAMADR-HI 

30050 jmp 62282 ; Ausgabe von BF2 als Befehl mit OPEN 

- nop .. 

03 Daten in Record schreiben - Beispiel 

30055 ldx #5 ; logische Adresse der REL-Datei nach (X) 

30057 jsr 65481 ;s und damit CHKOUT aufrufen 

30060 ldy #0 ; Zahler auf O fur Byteausgabe



30062 

30065 

30067 

30070 

30071 

30073 

30075 

30077 

30080 

lda 

beq 

jsr 

19900, y 
30075 
65490 

iny 

30062 

30080 

#255 

65490 

65484 

bne 

beq 

lda 

jst 

jst 

- nop 

Anmerkung: 

akzeptiert. 

Die 

° 
3 

. 
9 

e 

? 

- 187 - 

ein Byte aus Bereich ab (19900) holen (Bsp.) 

beim Auftreffen auf Endezeichen O ===> Sprung 

BSOUT gibt Zeichen auf vorbereiteten 

Kanal aus 

weiterzahlen 

und weiterausgeben 

falls Zahler O ===> keine Ausgabe mehr 

als letztes Zeichen Byte 255 

mit BSOUT ausgeben 

und AbschluB mit CLRCH 

Ausgabe eines Null-Bytes als Abschluß wird nicht 

Deswegen haben wir als Endekriterium 255 in die REL- 

Datei bzw. den Record gesetzt. 

04 Lesen aus einem Record - Beispiel 

30085 

30087 

30090 

30092 

30095 

50098 

30100 

30101 

30103 

30105 

30108 

Anmerkung: 

spater 

ldx 

jsr 

ldy 

jsr 

sta 

bmi 

#5 

65478 
#0 

65487 
10000, y 
30103 

iny 

bne 

lda 

sta 

Jmp 

30092 
#0 

10000, y 
65484 

Das 

folgende 

e 

3 

. 

9 

9 

es 

9 

. 

9 

® 

; 

3 
e 

’ 
e 

3 

Nullbyte 

Stringausgabe 

mit logischer Adresse 

und CHKIN Eingabe vorbereiten 

Zahler 

ein Byte nach (A) mit BASIN holen 

und vorlaufig ablegen 

wenn Code groBer 128, also spatestens beim 

Auftreten von 255 

sonst weiterzahlen 

===> aufhoren 

und einlesen 

Byte Null 

als Endekriterium des eingelesenen Strings 

und AbschluB mit CLRCH 

wir als Endezeichen, damit die 

mit STR-O erfolgen kann. Die Be- 

setzen 

grenzung der Codenummern auf 127 ist hier willkürlich gewählt und 

kann selbstverständlich abgeändert werden. 

05 Schreiben in den 

30130 

30132 

30135 

30137 

30140 

ldx #5 

jsr 65481 

lda #255 

jsr 65490 

jmp 65484 

. 

9 

letzten Record zum Neueinrichten 

logische Adresse 

CHKOUT 

Byte 255 nach (A) 

und mit BSOUT ausgeben 

CLRCH



- 188 - 

06 Schließen der Dateien 

30115 lda #5 ; logische Adresse der REL-Datei 

30117 jsr 62097 ; CLOSEA 

30120 lda #2 ; logische Adresse der "Kommandodatei" 

30122 jmp 62097 ; CLOSEA 

Anmerkung: Die "Kommandodatei" ist nur zum Zwecke der Ausgabe des 

Befehlsstrings 2 eröffnet worden. 

07 Stringausgabe 

30150 1da #16 ; LO von Stringanfang 10000 

30152 ldy #39 ; HI von Stringanfang 10000 

30154 jmp 43806 ; String ausgeben mit STR-O 

Anmerkung: Die Stringausgaben kann man auch verwenden, um REL- 

Dateien zu beschreiben, also bei Teil 03. 

08 Befehlsstringübertragung 

Beispiele für die Befehlsstrings stehen ab (30220) bis (30246) 

und werden nach (900) bis (926) übertragen. 

30207 ldx #26 ; Zahleranfang 

30209 Ilda 30220,x ; Zeichen aus Byte-Leiste holen 

30212 sta 900,x ; und in Kassettenpuffer übertragen 

30215 dex ; weiterzahlen 

30216 bpl 30209 ; bis Zähler 0: übertragen 

30218 rts ; Rücksprung 

09 Byte-Leiste dazu: 

30220 B 48 >8 82 69 76 68 65 84 88 88 

30230 B 44 16 44 40 0 0 0 0 0 0 

30240 B 0 0 80 101 100 0 1 

In diesem Fall ist die Byte-Leiste so hergerichtet, daB damit 

die REL-Datei "reldatxx" mit der Recordlänge 40 mit einem Gesamt- 

umfang von 100 Records neu angelegt werden kann. 

Stellen wir uns nun mit Hilfe von Sprungleisten aus diesen 9 Pro- 

grammteilen die drei REL-Verwaltungsprogramme zusammen:



- 189 - 

Rl1 Einrichten der Datei "reldatxx" mit "76-rel einricht": 

Voraussetzung: Länge des l1.Befehlsstrings: z.B. <158>=14 

30160 jsr 30207 3; Unterprogramm 08 "Befehlsstringubertragung" 

50163 jsr 30000 ; U Ol "BFl ausgeben" 

30166 jsr 30030 ; U 02 "BF2 ausgeben" 

30169 jsr 30130 ; U 05 "letzten Record schreiben" 

30172 jmp 30115 ; U 06 "close" 

R2 Schreiben in die Datei "reldatxx" mit "77-rel write": 

Voraussetzung: beide Befehlsstrings im Kassettenpuffer 

Länge 14 in (158) 

Vorbereitung: Befehlsstring 2 nach Bedarf abändern 

30175 jsr 30000 ; U Ol 

30178 jsr 30030 ; U 02 

30181 jsr 30055 ; U 03 "Record beschreiben" 

30184 jmp 30115 ; U 06 

R3 Lesen aus der Datei "reldatxx" mit "78-rel read": 

Voraussetzung: wie R2 

Vorbereitung: wie R2 

01 

02 

04 "Record lesen" 

06 "close" 

07 "Stringausgabe" 

30190 jsr 30000 ; 

30193 jsr 30030 ; 

30196 jsr 30085 ; 

30199 jsr 30115 ; 

30202 jmp 30150 ; c
c
c
 ec 

fe 

Anmerkung: Die beiden Unterprogramme Ol und 02 können auch zu 

einem einzigen zusammengefaßt werden, dazu ist der erste JMP-Be- 

fehl durch einen JSR-Befehl zu ersetzen. 

Wie man sich solcher Programme auch von BASIC aus bedienen kann, 

wird in den letzten Kapiteln an Hand von Anwendungen erklärt. 

Probieren Sie aber zunächst einmal an den eben vorgestellten Bei- 

spielen Ihre eigenen Versionen, Verbesserungen und Erweiterungen 

aus.



- 190 - 

9.6.2 REL-Dateien auf 40er- und 80er-Geräten 

Die "großen" CBM-Systeme verlangen dabei folgendes Vorgehen, wie 

es auch bei der BASIC-Sequenz "DOPEN .... DELOSE" sichtbar wird: 

(Für den C64 gelten etwas andere Spielregeln. Siehe dazu den 

vorhergehenden Abschnitt 9.6.1!) 

Ablauf "rel-dateien": 
  

01 Initialisierungen, Sekundäradresse bereitstellen 

02 Gerätenummer GA, Filenummer (logische Adresse) LA, Adresse 

und Länge des Dateinamens NAMADR und NAMLEN bereitstellen und 

Ausgabe der Filedaten uber den IEC-Bus an das Floppy. 

Dieser Befehlsstring muß dabei folgende Daten enthalten: 

- Laufwerknummer, Doppelpunkt 

- Dateiname ohne Anführungszeichen 

- Komma, Art der Datei (hier ein "1" für Recordlänge) 

- Komma, . Byte für Recordlänge (1 bis 255) 

Mit diesen Angaben wird die Datei eröffnet oder angelegt. 

Die Initialisierung (Teil Ol) setzt die gewünschten Werte. 

03 Position des RECORD-Zeigers über den IEC-Bus an das Floppy 

senden. Diese Bytefolge enthält immer 5 Zeichen: 

- Code für "p", also 80 (positionieren) 

-— Sekundaradresse, die zur geöffneten Datei gehört 

-— RECORD-Nummer LO 

— RECORD-Nummer HI 

- Byte-Nummer im Record (1 bis 255) 

Diese Ausgabe erfolgt über den Befehlskanal mit der Sekundär- 

adresse #111 (aus #15 ora #96). 

04 Daten schreiben oder lesen über die Sekundäradresse der ge- 

öffneten Datei (Übergabe an den IEC-Bus). 

Diesmal verwenden wir dazu die Routinen OUTBUS bzw.INBUS, die 

nicht über den Sprungverteiler laufen und damit etwas weniger 

Zeit benötigen. 

Auch die Ausgabevorbereitung erledigen wir diesmal selbst und 

erkennen dabei gleichzeitig, welche Arbeit uns die etwas 

langsamere Routine CHKOUT abnimmt: 

STATUS auf Null, LISTEN ausgeben, Sekundäradresse senden. 

05 Abschluß durch Deaktivieren des IEC-Bus und schließen der Da- 

tei.



- 191 - 

Beispiel: Schreiben in die REL-Datei "reldatül" 
  

wir nehmen folgende Nerte an: 

- Recordlänge 1=40 

-— Schreiben in Satz 1, ab Byte 20 

— Logische Adresse der Datei: 1] 

-— Laufwerk 1 

-— Weiterhin nehmen wir an, daß die Bytefolge aus Teil 02 (Lauf- 

werk, Name usw,) im 2.Bandpuffer ab (900=$0384) bereits einge- 

richtet ist (1. Befehlsstring BFl). 

-— Auch die Bytefolge zur Positionierung des Recordzeigers (siehe 

Ablauf 03) hat ihren festen Platz ab (922=$039a). 

(2.Befehlsstring BF2 mit 5 Zeichen) 

Die Inhalte der beiden Befehlsstrings können sie rasch über 

BASIC oder Maschine verändern: 

Laufwerknummern Drive 0: <900>=48, Drive 1: <900>=49 

- Dateiname: ab (902) bis max.(917) 

anschließend die Folge: 44,76,44,Recordlängenbyte 

- Eingabe der RECORD-Länge (905+Länge des Namens) 

- Eingabe der RECORD-Nummer <924/925>=L0/HI 

- Bytenummer im RECORD (926) 

Für das folgende ASSEMBLER-Beispiel gilt: 

- Die Länge des 1.Befehlsstrings muß nach (180) gebracht werden! 

- Die logische Adresse muß in (182) stehen! 

In BASIC wurden unsere Befehle so aussehen: 

dopen#l,"reldatOl",140,dl:record#1,1,20:print#1,"abc...":dclose#l 
  

Der erste Befehlsstring (entspricht dopen#1l,"reldatOl",140,dl): 
  

ASC-Zeichen: ll: re e|1] cd ato 11,1  ,C 

ASC-Code: 49 58 82 69 76 68 65 84 48 49 44 76 44 40 

Lage: ab (900) une (913) 

Lange: hier 14, max. 22 

Der zweite Befehlsstring (entspricht record#l,1,20): 
  

ASC-Zeichen: p " (nd) (nd) (nd) nd=nicht druckbar 

ASC-Code: 80 98 ] 0 20 

Lage: (922) bis (926) 

Lange: immer 5



- 192 - 

Die Sekundäradresse 98 ergibt sich aus #2 ora #96. 

Anmerkung: Die beiden Befehlsstrings müssen nicht im Bandpuffer 

liegen. Sie können zum Beispiel auch direkt vor oder nach dem 

Hauptprogramm liegen, was zwar eine bessere Kompaktheit bietet, 

aber unser Modulkonzept stört (beim Verschieben in einen anderen 

Bereich). 

Im folgenden Beispiel schreiben wir in die REL-Datei Daten, die 

wir zuvor ab Adresse (19900) bereitgestellt haben. Es sind 

alphanumerische Zeichen, die uns später das Testen unserer Pro- 

grammteile erlauben, weil sie geordnet sind: 

"0123456789: abcdefghi jklmnopgrstuvwz" 

Dieser String erscheint im Teil Ol als Byte-Leiste. 

ASSEMBLER-Programm "79-record/w 80"(nur 80XX/40XX): 

01 19900 B 48 49 50 51 52 53 54 55 56 57 

19910 B 58 65 66 6/7 68 69 70 71 72 73 

19920 B 74 75 76 77 78 79 80 8l 82 83 

19930 B 84 85 86 87 88 89 90 0 0 0 

19992 lda #14 ; Lange von BFl 

19994 sta 180 ; nach (180) - fur unser Beispiel 

19996 lda #1 ; logische Adresse für unser Beispiel 
19998 sta 182 s nach (182) - zur Wiederverwendung 

20000 jsr 55599 ; GETSA holt freie Sekundäradresse 

02 20003 lda #8 ; Floppy-Nummer 

20005 sta 212 ; nach Gerateadresse GA 

20007 lda 182 ; vorbelegte logische Adresse LA holen 

20009 sta 210 ; nach LA bringen 

20011 ldx 180 ; gegebene Lange des Befehlsstrings holen 

20013 stx 209 ; und nach NAMLEN 

20015 lda #132 ; Befehlsstringl-Anf angsadresse LO 

20017 sta 218 ; mach NAMADR-LO 

20019 lda #03 ; Befehlsstringl-Anfangsadresse HI 

20021 sta 219 ; nach NAMADR-HI 

20023 jsr 62819 ; OPEN 

20026 nop 

03 20027 ldx #5 ; feste Lange von Befehlsstring2 

20029 stx 209 ; nach NAMLEN 

20031 Ilda #154 ; Befehlsstring2-Anfangsadresse LO



- 193 - 

20033 sta 218 ; nach NAMADR-LO 

20035 lda #03 ; Befehlsstring2-Anfangsadresse HI 

20037 sta 219 ; nach NAMADR-HI 

20039 lda 210 ; logische Adresse LA holen 

20041 jsr 62145 ; SUFTAB sucht Filedaten in Tabelle 

20044 jsr 62157 ; SETTAB setzt die Tabellendaten 

20047 Ilda 211 ; holt Sekundaradresse fur File 

20049 sta 923 ; in Befehlsstring2 einbauen 

20052 lda #111 ; Sekundäradresse 111 (Kommandokanal ) 

20054 jsr 55963 ; Befehlsstring2 mit BFOUT ausgeben 

04 20057 lda #0 ; Status 

20059 sta 150 s zurücksetzen 

20061 jsr 61653 ; LISTEN 

20064 Ilda 923 ; Sekundaradresse des Files holen 

20067 jsr 61763 ; mit SASEND ausgeben 

20070 Idx #20 ; Zahler fur Byte-Ausgabe 

20072 lda 19899,x ; Byte von Daten-Leiste laden (Beispiel !) 

20075 jsr 61854 ; und mit QUTBUS ausgeben 

20078 dex ; Zahler erniedrigen 

20079 bne ; Zahler ungleich O ---> weiterausgeben 

05 20081 jsr 61881 ; UNLISN 

20084 lda 210 ; Filenummer LA 

20086 jsr 62176 ; CLOSE schließt die Datei 

20089 rts ; Rücksprung zur aufrufenden Routine 

Noch ein paar Hinweise: 

Bevor dieses Modul ab (20000) aufgerufen wird, muß die Länge des 

ersten Befehlsstrings in (180) und die logische Adresse (File- 

Nummer) in (182) vorliegen. 

Wollen Sie zum Ausprobieren unseres Beispiel die vorgegebenen 

Werte (NAMLEN=14 und LA=5) beibehalten, dann rufen Sie SYS 19992 

auf. 

Denken Sie auch daran, daß die beiden Befehlsstrings ab (900) 

bzw. ab (922) zuvor eingerichtet sein müssen? Von BASIC aus kann 

man das mit einer DATA-Routine o.ä. bewerkstelligen. Wenn sich 

der Dateiname nicht mehr ändert, installieren Sie ihn fest ab 

Adresse (902). 

In (20070) bis (20079) werden hier im Beispiel 20 Zeichen ausge- 

geben, die ab (19900) stehen. Dieser Teil ist den jeweiligen Er- 

fordernissen anzupassen,



- 194 - 

Wenn Sie von BASIC aus das dopen#la,"name",d(lw),1(rl) durchfith- 

ren, springen Sie in (20027) ein. Führen Sie auch den Befehl 

record#(la),rn,rb vorher aus, springen Sie bei (20057) ein. Das 

SchlieBen der Datei wird anschlieBend immer besorgt. 

Schauen Sie sich dazu auch im vorigen Abschnitt das Beispiel fir 

den C64 an. Es bietet weitere Varianten. 

Falls Sie die Datei erst bei Bedarf schlieBen wollen, bauen Sie 

ab (20084) die Abfrage eines CLOSE-Flags ein und überspringen den 

letzten Teil, wenn es nicht gesetzt ist. 

Mit dem folgenden BASIC-Programm können Sie die Funktionsfähig- 

keit des Moduls "record/write" testen. 

Von Zeile 100 bis 950 findet das Initialisieren statt. 

Rufen Sie dann das Modul mit SYS 20000 auf. Es erzeugt die REL- 

datei "reldatOl" und schreibt den Record Nummer 1 ab Byte 20. 

Mit RUN 1000 konnen Sie den Inhalt wieder lesen. 

BASIC-Testprogramm "reltest 80": 

100 rem beispiel zu modul record/w 80 

200 rem befehlsstring 1 nach (900)... 

300 for n=Otol3:read bf:poke900+n,bf:next n 

400 rem filenummer und namlen poken 

500 poke 182,1: rem file 

600 poke 180,14 : rem länge des befehlsstrings 1 

700 rem befehlsstring 2 nach (922)... 

800 for n=O to 4:read bf: poke922+n,bf: next n 

900 data 49,58,82,69,76,68,65,84,48,49,44,76,44,40 

910 data 80,98,1,0,20 

950 end 

1000 rem test 

1100 dopen#l,"reldatOl",dl:record#1,1,20:input#1,x$:printx$ 

1200 dcelose#l: end 

Lesen aus einer REL-Datei "80-record/r80": 

Um das Programm zum Lesen umzufunktionieren, müssen Sie nur den 

Teil 04 ändern:



- 195 - 

04 . 

+ 20061 jsr 61650 ; TALK 

20064 lda 923 ; Sekundaradresse holen 

20067 jsr 61763 ; und mit SASEND ausgeben 

20070 1dx #0 ; Zähler O setzen 

20072 jsr 61888 ; Byte vom IEC-Bus holen mit INBUS 

20075 sta 24000,x ; in freiem Bereich ablegen (Beispiel !) 

20078 inx ;s Zahler erhöhen 

20079 cpx #20 ; letztes Byte eingelesen? (Beispiel !) 

20081 bne 20072 ;s nein ---?> weiterlesen 

05 20083 jsr 61878 ; UNTALK 

eee USW. 

Die restliche Verwaltung erfolgt wie oben beschrieben. 

Aufgaben: 

Probieren Sie diese Programmteile mit anderen Dateinamen und an- 

deren Recordzeigern aus. 

Zerlegen Sie das ASSEMBLER-Beispiel in die Teile: 

Öffnen, Zeiger setzen, Schreiben, Lesen, Schließen 

und erstellen Sie JSR-Leisten, mit denen Sie nach Belieben eine 

REL-Datei bearbeiten können. (Siehe dazu auch Abschnitt 9.6.1!) 

Adressen und ROM-Routinen zur Dateiverwaltung 

  

Label C64 40/80XxX 
' ! 

NAMLEN 183=$b7 209=$dl 

NAMADR 187/188=$bb 218/219=$da/db 
LA 184=$b8 210=$d2 

GA 186=$ba 212=$d4 

SA 185=$b9 211=$d3 

BFIl 900=$0384 Anfangsadresse des 1.Befehlsstrings 

BF 2 922=$039a dto. des 2.Befehlsstrings (Beispiel!) 

GETSA en 55599=$d92F 

OPEN 62282=$f 34a 62819=$f 563 
SASENL 60857=$edb9 61763=$f143 

SASENT 60871=$edc7 61763=$f143



- 196 - 

SUFTAB 62223=$f 30f 61245=$f2cl 

SETTAB 62239=$f 31f 62157=$f2cd 

BFOUT --- (mit OPEN) 55963=$da9b 

LISTEN 60684=$ed0c 61653=$f0d5 

QUTBUS 60893=$eddd 61854=$f19e 

UNLISN 60926=$edfe 61881=$f1b9 

TALK 60681=$ed09 61650=$f Od2 

INBUS 60947=$eel3 61888=$f1lcO 

UNTALK 60911=$edef 61878=$f 1b6 

CHKOUT 65481=$ffc9 

BSOUT(CHROUT) 65490=$ffd2 

CHKIN 65478=$ffc6 

BASIN(CHRIN) 65487=$ffcf 

CLRCH 65484-$f fee 

CLOSEA 62097=$f 291 62178=$f 2e2 

CLOSEL ---- 62176=$f 2e0 

Für den C64 gilt zu beachten, daß es zwei verschiedene Routinen 

zum Ausgeben der Sekundäradresse gibt: die erste (LI) wird nach 

einem LISTEN gesendet, die zweite nach einem TALK (TA). 

9.7 Laden eines Programmes mit LOAD oder LOADXX 
  

Ohne das Offnen der Datei mit OPEN lassen sich sowohl Programme 

wie auch Dateien laden, LOAD oder LOADXX verwendet. 

Dabei spielt es keine Rolle, ob es sich um BASIC- oder Maschinen- 

wenn man 

programme handelt. (LOAD ist nicht für den C64 geeignet.) 

Nehmen wir an, auf Diskette steht die Datei "bastest", die mit 

"prg" gekennzeichnet ist. Dann läßt sich dieses Programm wie 

folgt laden: 

Beispiel: 

Öffnen von "bastest" wie in 9.4.1 beschrieben bis OPEN. Nun wer- 

den STATUS und das sog. Load/Verify-Flag LVFLAG auf Null gesetzt. 

wird LVFLAG mit 1 belegt, 

die Überprüfung, ob das abgespeicherte Programm mit dem geladenen 

übereinstimmt. 

erfolgt nur das "Verifying", also



- 197 - 

Ablauf: 

01....06 wie 9.4.1 (Adressen für 40/80XX) 

07 1da #0 ; Null nach 

sta 150 ; STATUS 

sta 157 ; LVFLAG auf "laden" stellen 

08 jsr 62472 ; LOAD holt das Programm "bastest" in den 

Arbeitsspeicher 

Der Programmanfangs- und der Programmendezeiger werden dabei auf 

den mit dem Programm abgespeicherten Anfang gesetzt. Bei den 80XX- 

Geräten werden also (40/41) und (42/43) neu eingestellt. 

Ist dies unerwünscht, weil man z.B. aus einem BASIC-Programm her- 

aus ein Maschinenmodul nachladen möchte und anschließend mit der 

nächsten BASIC-Zeile weiterfahren will, so springt man die Routi- 

ne LOADXX an, die sämtliche Zeiger unverändert läßt. 

Das folgende Beispiel ist sowohl für (64 als auch für 80XX-Gerate 

geeignet (40/80XX-Adressen in Klammern): 

01...07 Vorbereiten wie vorhergehendes Beispiel 

08 jsr 62648 ; LOADXX lädt die Datei ohne Zeiger zu ver- 

(jsr 62294) andern in den Arbeitsspeicher 

09 jsr 63213 ; TWAIT wartet Übertragung ab 

(jsr 63787) 

  Label C64 40/80XxX 
' ! 

LOAD oe 62472-$f 408 

LOADXX 62648=-=$f 4b8 62294= $f 356 

TWAIT 63213-$f6ed 63787=$f92b 

LVFLAG 147=93 157=$9d 

9.8 Anwendung: Lademodul zum Nachladen von Programmen   

Wie schon angedeutet, hat man von BASIC-Programmen aus z.B. Ma- 

schinenmodule nachzuladen wie Spracherweiterungen, Hilfsroutinen 

USW. 

Hier bietet sich der Einbau eines Maschinenprogramms in das 

Hauptprogramm an, so daß jederzeit die Möglichkeit besteht alles



- 198 - 

Erdenkbare nachzuladen, ohne den Ablauf des Hauptprogramms abzu- 

brechen oder mit Overlay-Techniken arbeiten zu müssen. 

9.8.1 Das Maschinenprogramm "81l-loadmodul" 

Beispiel: 

Nehmen wir an, wir wollen zu einem Textprogramm ein schnelles 

Inhaltsverzeichnis der Disketten erstellen. Dieses Hilfsprogramm 

soll "quickdirector'" heißen und auf Diskette bereitgehalten wer- 

den. 

(Wir werden diesen "quickdirector" etwas später erarbeiten.) 

Natürlich könnte dieses Programm auch über datas eingelesen wer- 

den, was uns natürlich zu langsam ist. 

Schreiben wir also entsprechend den vorangegangenen Beispielen 

ein Maschinenprogramm, das dieses Laden vornimmt. 

ASSEMBLER-Ladeprogramm "81-loadmodul" (C64): 

Der Kommentar ist im folgenden kurz gehalten. Sie erkennen aber 

doch die Struktur? 

Ol lda #0 

sta STATUS 

sta LVFLAG 

02 lda #8 

sta GA ; Gerätenummer (Floppy) nach GA 

03 ldx #82 ; LO- Adresse des Programmnamens 

stx NAMADR-LO 

ldx #3 ; Hi- Adresse des Programmnamens 

stx NAMADR-HI; also <187/188>=850 

04 1dx #0 

stx NAMLEN ; Vorbereiten der Länge des Namens als Platz- 

halter. Die zu ladende Länge wird später ein- 

gesetzt (z.B. ldx #12). 

05 jsr LOADXX ; lädt ohne Zeigerveränderung 

06 jmp TWAIT ; wartet ab, bis zum Abschluß der 

Eingabe, damit nicht vorzeitig zurückgesprungen 

werden kann. 

Anschließend erfolgt der Rücksprung. 

Wenn Sie dieses Programm geschrieben haben, dann steht es zum



- 199 - 

Beispiel ab 30000 bis 30028. Sichern Sie nun diesen Bereich mit 

HIMEM 30000 (oder mit poke 55,48:poke 56,117 bzw. bei 40/80XX: 

poke52,48 und poke53,117) und springen Sie in den READY-Modus. 

9.8.2 BASIC-Hilfsprogramm zur Übernahme von Maschinenteilen 

Um dieses kurze, aber hilfreiche Programm von BASIC aus zu laden, 

schreiben wir uns eine kleine BASIC-Routine, die den Maschinen- 

code in DATAs übernimmt, der dann vom Hauptprogramm in einen ge- 

wünschten Bereich eingelesen werden kann. 

Zeilen 150-160: 

Dazu lassen wir uns abfragen, welche Zeilen als DATA-Zeilen ver- 
  

wendet werden sollen. 

Zeilen 170-180: 

Dann geben wir ein, wo das Ladeprogramm beginnt (Zeile 170). In 
  

unserem Fall wäre das also 30000. 

Schließlich übergeben wir noch die Adresse des letzten Bytes, 

in unserem fall also 30028. 

ab Zeile 190: 

Im folgenden wird die Zeilennummer gedruckt und dahinter jeweils 

20 Bytes sauber mit Kommata getrennt aus dem Maschinenteil aus- 

gegeben. 

  

Nach Beendigung des Durchlaufs lassen sich die DATA-Zeilen mit 

RETURN als BASIC-Zeilen übernehmen und an geeigneter Stelle im 

Hauptprogramm einbauen. 

Unser Ladeprogramm steht nun also als DATAs in BASIC-Zeilen. 

Das BASIC-Hilfsprogramm "82-masch-datas": 
  

100 rem maschinenprogramm in datas 

120 rem 

150 input'"l. DATA-BASIC-Zeile "35z1 

160 input"gewunschter Zeilenabstand "3za 

170 input'"l. Byte in welcher Adresse ";bl 

180 input"letztes Byte in Adresse "slb 

190 printusing'"###4##",zl;:print" data "; 

200 for i=Otoll 

210 print peek(bl+i)chr$(157)","; 

220 if bl+i>=1b goto 300



- 200 - 

230 next i 

240 print peek(bl+i) 

250 bl=bl+12:zl=zl+za:gotol90 

300 end 

Anmerkung: Wenn PRINTUSING nicht zur Verfügung steht, genügt auch 

das einfache PRINT. 

Mit i von O0 bis 14 erfolgen 15 DATA-Drucke. Nach next i steht i 

auf 15. Dieses sechzehnte DATA wird als zeilenletztes ohne Komma 

ausgegeben, aber mit anschließendem Zeilensprung. 

Wen die Lücken zwischen den Zeichen stören, kann den PRINT-Inhalt 

auch mit mid$(str$(peek(bl+i),2) ausgeben. 

Mit diesem Programm könnten Sie auch größere Maschinenprogramme 

in DATAs übertragen. Aber genau das wollen wir ja mit unserem 

Ladeprogramm vermeiden. Eine direkte Übernahme von Diskette ist 

nach wie vor unser Ziel. 

Das Hauptprogramm wird eigentlich nur mit den DATA-Zeilen des 

Ladeprogramms und ein paar wenigen lnitialisierungen belastet, 

während eine indirekte DATA-Laderei erstens weit mehr Platz und 

zweitens mehr Zeit benötigt. 

Nehmen wir für unsere DATAs die Zeilen 40000 und 40010, so erhal- 

ten wir mit unserem Hilfsprogramm für den (64 die Zeilen 

40000 data 169,0,153,144,1533,147,169,8,133,186,162,82,134,187 

40010 data 162,3,134,188,162,5,154,183,32,184,244,32,237,246,96 

Für den 40/80XX ergibt sich folgende Dataleiste: 

40000 data 169,0,133,157,133,150,169,8,133,212,162,82,134,218 
40010 data 162,3,134,219,162,5,134,209,32,86,243,32,43,249,96 

Diese beiden Zeilen enthalten nun also den Maschinencode des Pro- 

gramms, das wir vorhin in ASSEMBLER entwickelt haben. 

Mit ein paar kleinen Ergänzungen können wir es nun von BASIC aus 

als Modul unterbringen, wo wir wollen (bzw. wo es paßt). 

Soll z.B. das Programm "lademodul" ab Adresse (30000) bis (30028) 

stehen und das Programm "quickdirector" laden, dann kann das so 

aussehen:



- 201 - 

"83-lademodul/B": 

40000 und 40010 wie oben 

40020 '============ einlesen des moduls 'lademodul' =======2====== 

40025 bm=30000: ' beginn des moduls 

40030 for n=0 to 28 

40040 read a:poke bm+n,a:nexta 

40050 '=========1laden des m-programms '74-seq-Tout' =========== 

40100 dn$="74-seq-rout":lw$="0" 

40110 In=len(dn$): "stellt die länge des dateinamens fest 

40120 for k=l to In 

40130 poke 851+k, asc(mid$(dn$,k,1)) 

40140 next k :' legt dateinamen zeichen für zeichen ab (852) ab 

40150 poke 850, asc(lw$):poke 851, asc(":") 

40151 'laufwerknummer und trennzeichen werden dem dateinamen 

vorangestellt 

40180 poke bm+19,1n+2 

40181 'die stringlänge steht als 19. maschinencode im modul und 

wird jetzt mit dem richtigen wert belegt 

40200 sys bm :' aufruf des lademoduls, "quickdirector" laden 

Zu Zeile 40180: 

Erinnern 

Dateilange 

nach, 

Sie sich: Wir 

einfach mal mit dem Wert O vorbesetzt. 

wir die Länge des Dateinamens kennen - den richtigen Nert ein. 

Sie können 

jederzeit nachzuladen. Wenn man nämlich vom Hauptprogramm aus die 

Variablen 

das Modul 

dn$ und 1w$ belegt, 

springen und das gewünschte Programm wird sofort geladen. 

Selbstverständlich 

dungen 

muß 

zwischen 

Modulen erzeugt. 

Wird 

einem 

(In unserem 

Benötigt 

in einem Programm das Lademodul mehrfach benützt, muß es in 

durch HIMEM o.ä. geschützten Bereich untergebracht werden. 

Falle wäre das HIMEM 30000.) 

man es nur 

haben vorhin im ASSEMBLER-Programm die 

Zahlen Sie 

dann werden Sie feststellen, daB dies im Maschinencode die 

Stelle bm+19 ist. Mit dem POKE-Befehl bringen wir jetzt - nachdem 

universell einsetzen, um beliebige Module 

kann man sofort zu Zeile 40110 

man aufpassen, daß man keine Uberschnei- 

Hauptprogramm, Lademodul und den nachzuladenden 

am Anfang eines Programms, um zusatzliche



- 202 - 

Hilfsroutinen zur Verfügung zu haben, genügt es, wenn es irgendwo 

zwischen BASIC-Ende und Stringbereich steht. Es wird dann u.U. 

von Variablen oder Strings uberschrieben. Das macht aber nichts 

aus. 

Ubrigens: Nachdem Sie jetzt wissen, wie das Programm in BASIC 

aussieht, brauchen Sie sich die Mühe mit dem ASSEMBLER-Programm 

gar nicht mehr zu machen. Es steht Ihnen ja jetzt in den beiden 

DATA-Zeilen jederzeit zur Verfügung. 

9.9. Modul "84-quickdirector" mit TALK, BASIN, UNTALK 
  

Wir werden im folgenden ein etwas ausführlicheres Programm be- 

sprechen. Es ist das "quickdirector", das wir vorhin schon er- 

wähnt haben. 

Was es kann? Nun, es holt das Inhaltsverzeichnis (directory) 

einer Diskette und gibt es auf dem Bildschirm aus. 

Nichts besonderes, werden Sie sagen, das macht der Befehl DIREC- 

TORY aus BASIC auch. 

Richtig, aber unser "quickdirector" ist - wie der Name vermuten 

läßt - erstens wesentlich schneller und zweitens laufen die Da- 

teinamen nicht einfach aus dem Bildschirm nach oben hinaus, son- 

dern werden in zwei Spalten und maximal 25 Zeilen ausgegeben, so 

daß bis zu 50 Dateien zugleich auf dem Schirm erscheinen können. 

Mehr sind in der Regel kaum auf einer Diskette. Sollte diese 

Zahl aber doch überschritten werden, fängt die Ausgabe wieder am 

oberen Bildschirmrand an, so daß immer die letzten 50 Dateien 

sichtbar sind. 

Wir beschränken uns dabei auf den jeweiligen Namen. Um möglichst 

viel auf den Schirm zu bringen, rationalisieren wir weiter: Es 

werden keine Anführungszeichen und keine Dateitypen ausgegeben, 

auch die Meldung "xx blocks free" lassen wir weg. 

Um die Dateinamen einwandfrei identifizieren zu können, drucken 

wir sie rTevers aus. Damit werden auch eventuelle Leerzeichen ein- 

wandfrei erkannt.



- 203 - 

Das waren unsere Arbeitsziele. Hier der Ablaufplan (auf ein 

Struktogramm wird verzichtet): 

Ablauf des "84-quickdirector" (Adressen C64): 

Teil 1: Initialisierung 

- Da nicht alle Zeichen aus dem normalen Inhaltsverzeichnis aus- 

gegeben werden sollen, setzen wir ein Druckflag mit Adresse 

(1000) ein, das nur bei Belegung mit 1 Zeichenausgabe zuläßt. 

Initialisierung also: <1000>=0 

- Wir führen zwei Schreibzeiger in 5Z1=2(97/98) und SZ2=(99/100) 

zur Steuerung der Ausgabe auf dem Bildschirm. 

Der erste Zeiger SZ]l enthalt immer die Bildschirmadresse, die 

gerade bedruckt wird. 

SZ2 dagegen wird immer auf den Anfang des auszugebenden Namens 

gestellt, steht also auf dem Anfang einer Spalte in der aktuel- 

len Zeile. Nennen wir SZ2 daher Spaltenanfangszeiger. 

Initialisierung ("HOME"): <SZ1>=<97/98>=0/4=1024 

<572>=<99/100>=0/4=1024 

- Adresse (1001) verwenden wir zur Kennzeichnung des Laufwerks 

D oder 1. Vorbelegung: <1001>=0 

- Das Inhaltsverzeichnis wird intern unter dem Namen "$" geführt. 

"$0'" steht auf Laufwerk 0, "$1" entsprechend auf 1. 

Die Adressen (850/851) verwenden wir zur Aufnahme einer dieser 

beiden Dateinamen. 

Bei der Singlefloppy 1541 lautet der Name nur "$", ist also 

einstellig. 

-— Ansonsten wird wie üblich belegt: 

z.B. logische Filenummer <LA> = 14 

Gerätenummer <GA> = 8 

Sekundaradresse <SA> = 96 

Zeiger auf Namen <NAMADR> = 850 

Lange des Namens <NAMLEN> H aa
! 

Teil 2: Floppy zur Ausgabe vorbereiten 

- Nach der Initialisierung kann die Datei "$" bzw. "$0" geöffnet 

werden. 

Bei entsprechender Änderung läßt sich dieses Programm natürlich 

auch verwenden, um andere Dateien auszugeben (dazu Namen, Länge 

usw. austauschen).



- 204 - 

-— Nach dem Zurücksetzen des Status-Bytes auf 0, wird das Floppy 

als "Talker" (Sender) aktiviert mit TALK. 

Teil 3: Daten holen und verarbeiten 

- Holen eines Bytes vom (IEC-)Bus mit BASIN 

— Nachdem wir uns nur für die Tastaturzeichen interessieren, 

(Code 1 bis 63), subtrahieren wir von allen Zeichen mit höherer 

Codenummer den Wert 64. 

(Das läßt sich auch mit AND #63 erledigen.) 

-— Eine Ausgabe erfolgt solange nicht, bis wir auf das erste An- 

führungszeichen stoßen. 

Jetzt kann das Druckflag endlich mal auf 1 gesetzt werden und 

alle folgenden Zeichen werden ausgegeben, solange bis wieder 

das nächste Anführungszeichen (Code 34) auftaucht. 

-— Beim zweiten Anführungszeichen wird das Druckflag wieder aus- 

geschaltet und die nächste Spalte vorbereitet, also der Spal- 

tenanfangs-Zeiger in SZ2 um 16 erhöht. 

Teil 4: Schreibzeiger wieder auf Bildschirmanfang setzen 

-— Wird die untere Zeile des Bildschirms erreicht, wird zunächst 

geprüft, ob auch schon die zweite Spalte erreicht ist. 

Wenn ja, wird der Schreibanfangs-Zeiger wieder auf links oben 

eingestellt. 

- In jedem Fall wird der Schreibanfangs-Zeiger nach SZl1 als 

Basis für die Druck-Routine übertragen. 

Teil 5: Löschen eventueller Voreinträge 

~ Um eventuelle Einträge ohne Reste zu überschreiben, löschen 

wir nach jeder fertig geschriebenen Datei, die nächsten 20 Zei- 

chen auf dem Schirm. 

Teil 6: Ausgabe 

- Die eigentliche Druckroutine erzeugt zunächst einmal von jedem 

Zeichen den entsprechenden REVERS-Code, gibt das Zeichen auf 

dem Schirm aus und erhöht den Schreibzeiger um |. 

Teil 7: Bildschirm-Halt 

-— Damit auch längere Inhaltsverzeichnisse nicht über den Bild- 

schirm hinauslaufen können, bevor man sie richtig angeschaut 

hat, legen wir die Leertaste (Tastaturcode 60 beim C64) als



- 205 - 

Haltetaste und die Taste "Cursor rechts" (Code 2) als Abbruch- 

moglichkeit fest. 

Teil 8: AbschluB 

—- Zum Schluß wird geprüft, ob der Status noch Null ist. Wenn 

nicht, dann liegt ein Fehler vor, was eigentlich nur heißen 

kann: Datei, also Inhaltsverzeichnis ist zu Ende. 

- Der Abschluß erfolgt dann, indem das Floppy wieder in den Ruhe- 

stand geschickt und die Datei geschlossen wird. 

Anmerkung: 

Man kann auch mit einem Schreibzeiger, z.B. SZ1l auskommen, 

wenn man beim Drucken den y-Index mitlaufen läßt. 

Auf einem 80-Zeichen-Schirm geht es natürlich großzügiger zu: 

Man hat genügend Platz, um die Dateitypen mit ausgeben zu lassen 

oder die Spaltenzahl anders zu wählen: Bei vier Spalten hätten 

wir z.B. 20 Zeichen Platz für jede Datei und brauchten nicht so 

sehr mit den Abständen zu geizen. Richten Sie sich also Ihren 

"auickdirector" her, wie Sie ihn gern hätten. Das folgende Assem- 

blerprogramm soll nur Anregung sein. 

Siehe dazu auch Abschnitt 7.7! 

Das ASSEMBLER-Programm "84-quickdirector" (C64): 

Teil 1: Initialisieren 

- 10000 ldx #0 

10002 stx 1000 ; Druckflag "aus" 

- 10005 stx 97 ; Bildschirmanfang LO von 1024 

10007 stx 99 ; Schreibzeiger dto. 

10009 ldx #4 ; dto. HI von 1024 

10011 stx 98 ; als Bildschirmanfang 

10013 stx 100 ; und Schreibzeiger 

- 10015 1dx #36 ; Code für "$"(Dateiname) 

10017 stx 850 ; ab (850) ablegen 

( 10020 ldx 1001 ; Laufwerknummer: <1001>=0 oder 1) nicht C64 

( 10023 stx 851 ; hinter den Namen setzen) nicht C64 

wee nop 

- 10027 lda #14 ; log. Dateinummer z.B.14 

10029 sta 184 ; in LA bereitstellen 

10031 lda #8 ; Geräteadresse 8 (Floppy)



- 206 - 

10033 sta 186 s in GA bereitstellen 

10035 lda #96 ; Sekundaradresse mit gesetzten Bits 5 und 6 

(oder Sekundäradresse 0) 

10037 sta 185 ; in SA bereitstellen 

10039 lda #82 ; LO der Anfangsadresse des Namens (ab 850) 

10041 sta 187 ; nach NAMADR-LO und 

10043 Ilda #3 ; HI nach 

10045 sta 188 s NAMADR-HI: (3 mal 256 + 82 = 850) 

10047 lda #1 ; Länge des Namens (z.B. von "$") 

10049 sta 183 ; nach NAMLEN 

Teil 2: Floppy aktivieren 

10051 jsr 62282 ; OPEN öffnet die Datei z.B. "$" 

10054 Ida #0 ; Null in das ... 

10056 sta 144 ; Status-Byte bringen 

nop ... 

Teil 3: Datenverarbeitung 

- 10061 Idx #14 ; Filenummer laden 

10063 jsr 65478 ; und mit CHKIN Eingabe vorbereiten 

- 10066 jsr 65487 ; BASIN holt ein Byte aus der Datei 

10069 cmp #64 ; mit 64 vergleichen 

10071 bmi 10078 ; kleiner 64 ===> Sprung nach (10078) 

10073 sec ; sonst 64 

10074 sbc #64 ; subtrahieren 

... nop 

- 10078 ldy #0 ; Druckflag 

10080 cpy 1000 ; ein? 

10083 beq 10143 ; nein ===> weiteres Byte holen 

10085 cmp #34 ; ja ===> mit Code für Gänsefuß vergleichen 

10087 bne 10165 ; kein Gänsefuß ===> Sprung zu Teil 6 

10089 ldy #0 ; GansefuB ===> Druckflag 

10091 sty 1000 ; "aus" (Dateiname zu Ende) 

- 10094 lda 99 ; Spaltenanfangszeiger LO 

10096 clc 

10097 ade #20 ; um 20 erhöhen (bei 2-spaltiger Ausgabe) 

10099 sta 99 ; und ablegen 

10101 bcc 10105 ; kein Überlauf ===> weiter 

10103 inc 100 ; sonst Spaltenanfangszeiger HI erhöhen 

Teil 4: Spaltenanfangszeiger zurück (falls erforderlich): 

- 10105 l1da 100 ; HI des aktuellen Namensanfangs 

10107 cmp #7 ; mit unterer Grenze vergleichen



10109 

10111 

10113 

10115 

10117 

10119 

10121 

10123 

10125 

10127 

10129 

— 10133 

10135 

10137 

10139 

10141 

Teil 5: 

- 10143 

10145 

10147 

10149 

- 10152 

10154 

10156 

10158 

10159 

10161 

10162 

Teil 6: 

- 10165 

10167 

10169 

10171 

10173 

Teil 7: 

- 10175 

bmi 

lda 

cmp 

bmi 

lda 

sta 

sta 

lda 

sta 

sta 

bne 

nop 

lda 

sta 

lda 

sta 

bne 

10133 

99 

#127 

10133 

#0 

97 

99 

#4 

98 

100 

10143 

99 

97 

100 

98 

10175 

- 207 - 

3; noch nicht erreicht ===> weiter 

; LO des aktuellen Namensanfangs 

; letzte Spalte erreicht? 

s nein ===> weiter 

; ja ---> Zeiger auf Bilschirmanfang 

(wie Teil 1) 

; unbedingter Sprung 

; Schreibzeiger auf Spaltenanfang 

; LO 

3; und 

; HI setzen 

; unbedingter Sprung, <A> wird nie Null 

Platz schaffen vor Ausdruck eines neuen Namens 

cmp #34 ; letztes Zeichen GansefuB, also Namensende? 

bne 10175 s nein ===> weiter 

ldx #1 3; ja ---> Druckflag 

stx 1000 ; auf "ein" schalten 

ldy #19 ; Zahler (X) auf 19 

lda #32 ;s Code für Leerzeichen 

sta (99),y ; 19 mal ausgeben (Spaltenbreite zum even- 

tuellen Überschreiben freimachen) 

dey ; Zähler auf Null? 

bne 10156 s nein ===> weitermachen 

clc 

bee 10175 ; und unbedingter Sprung ans Ende 

nop 

Zeichenausgabe 

ora #128 ; Reversbit setzen 

sta (97),y 3 und Zeichen auf den Bildschirm 

inc 97 ; Schreibzeiger um 1 erhohen 

bne 10175 ; kein Uberlauf ===> Sprung 

inc 98 ; sonst HI des Schreibzeiger auch +l 

Bildschirm halt 

Ilda 203 ; KEY abfragen



- 208 - 

10177 cmp#2 ; "Cursor rechts"? 

10179 beq 10189 3 ja ===> Ende 

- 10181 cmp #60 ; Leertaste ? 

10183 beq 10175 ; ===> KEY neue abfragen (warten) 

Teil 8: Abschluß 

10185 lda 144 ; STATUS prufen 

10187 beq 10066 ; gleich DO ===> weiteres Byte holen 

-— 10189 jsr 65484 ; sonst mit ECLRCH Floppy deaktivieren 

10192 lda #14 ; LA laden 

10194 jsr 62097 ; und mit CLOSEA Datei schlieBen 

10197 rts ; Rücksprung zum aufrufenden Programm 

Nach dem Aufruf mit SYS 10000 oder einem entsprechenden Befehl, 

erscheint ein 2-spaltiges Inhaltsverzeichnis von Drive 0. 

Wenn man sich die Möglichkeit für beide Laufwerke vorbehalten 

will, belegt man die Adressen (10002) bis (10004) mit NOP und 

setzt in (1000) die Nummer für das gewünschte Laufwerk ein. 

Abänderungen für den 40/80XX: 

- SZ1 und $22 müssen in freien Zeropage-Adressen liegen. Dafür 

bietet sich ebenfalls ein FAC an: 

- $Z1=(94/95) und SZ2=(96/97) 

- NAMLEN ist 2 Zeichen lang ("$1" oder "$0") 

— statt STATUS,TALK und SASENT kann man ab (10054) programmieren: 

ldx #14 und jsr CHKIN 

-— Beim 80-Zeichenschirm ist eine bis zu fünfspaltige Ausgabe des 

Inhaltsverzeichnisses sinnvoll. Deshalb erhöht sich der Spal- 

tenzeiger immer um 16 Adressen (10097). 

- Um freien Platz zu schaffen, muß der Zähler bei 10152 auf 15 

gesetzt werden. 

— Statt CLRCH kann auch UNTALK verwendet werden. 

—- Zum Schließen der Datei kann CLOSEL mit der laufenden logischen 

Adresse LA verwendet werden. 

  

9.10 Modul "85-printdirector" (Floppy ---> Drucker) 
  

Wie man ROM- Routinen sinnvoll einsetzen kann, sehen wir am fol- 

genden Beispiel. Es ist noch etwas umfangreicher als das vorher- 

gehende. Aber schließlich haben wir ja schon Fortschritte beim 

Analysieren und Strukturieren gemacht, so daß auch dieser "Fall"



nicht unlösbar sein dürfte. 

Wenn Sie den "84-quickdirector" durchgearbeitet und zum fehler- 

freien Laufen gebracht haben, sollten Sie den folgenden Teil ei- 

gentlich (fast) problemlos mitverfolgen können. 

Zunächst unsere Zielangabe:   

Wir entwerfen ein ASSEMBLER-Programm, mit dem man das Inhaltsver- 

zeichnis einer Diskette auf den Drucker ausgeben kann und zwar 

dreispaltig, mit dem Diskettennamen als Kopf, ohne die Angaben 

"Zahl der Blöcke" und "xxxx blocks free", aber mit der jeweiligen 

Dateiart (prg, rel, seq, usr). 

Als Drucker nehmen wir ein EPSON-Gerat an, das mit Geratenummer 4 

und Sekundäradresse 8 angesprochen werden kann. Dabei lassen 

wir die Möglichkeit offen, daß der Drucker am USER-Port hängt. 

In letzterem Fall kann es notwendig werden, die Zeropage-Adresse 

DEVOUT mit 4 zu belegen, um den Drucker als aktives Ausgabe- 

gerät zu bestimmen. Hier müßten Sie das Programm Ihren Verhält- 

nissen anpassen. 

Anmerkung für die angehenden Profis: 

Wie in der Einleitung schon erwähnt, haben wir bisher nicht allzu 

großen Wert auf Sparsamkeit und Raffinesse bei der Erstellung un- 

serer Programme gelegt. Nun wollen wir aber doch einmal ein paar 

Feinheiten einbauen. 

Da waren z.B. der Einsatz einer Byte-Leiste, aus der die Drucker- 

steuerungsdaten übernommen werden und auch der Kniff mit dem Zwi- 

schensprung, der verhindert, daß wir auf den JMP-Befehl zurück- 

greifen müssen und damit unser Prinzip des frei verschiebbaren 

Moduls nicht beibehalten können. 

Schauen Sie sich deshalb den Ablauf und das ASSEMBLER-Programm 

so lange an, bis Sie jeden Schritt verstanden haben. 

Ablauf (Grobstruktur) des "85-printdirector": 

Teil 1: Initialisieren 

- Drei Adressen im Kassettenpuffer werden als Flags bzw. Zähler 

verwendet und erhalten einen Ausgangswert: 

<900>=0 als Druckflag, das erst gesetzt wird, wenn das 

erste Anfuhrungszeichen gefunden wurde.



- 210 - 

<1017>=1 Flag für den Druck des Kopfes, das zurückgesetzt 

wird, sobald der Kopf (Diskettenname) gedruckt wurde. 

<1018>=1 Zähler für die Anzahl der Spalten, der zunächst 

auf ] steht, und dann auf 3 gesetzt wird. 

<1003>=49 Code für die Laufwerknummer, die auch von einem 

aufrufenden Programm aus gesetzt werden kann (nicht für (64). 

Datei auf die Floppy öffnen: 

Dateiname FILNAM= "$" (40/80XX: "$0" oder "$1") 

abgelegt ab NAMADR (Adresse des Dateinamens) LO/HI=82/3=850 

mit der Lange <NAMLEN>=2 

logische Adresse <LA>=14 

Geratenummer <GA>=8 

Sekundaradresse <SA>=96 (oder 0) 

Drucker öffnen: 

Je nach Druckertyp und Druckmodus sind die Adressen zu wählen. 

z.B.: kein Name notwendig 

Geräteadresse <GA>=4 

logische Adresse <LA>=8 

Sekundäradresse <SA>=8 

Wenn der Drucker über den USER-Port angeschlossen ist oder wenn 

Sie keine Sekundäradresse benötigen, können Sie auch die Ge- 

rätenummer in die Zeropageadresse DEVOUT setzen und SA mit 

255 belegen. 

DEVOUT ist (154)/C64 bzw. (176)/40/80XX und enthält die Num- 

mer des aktiven Ausgabegeräts. 

Sie brauchen jetzt nur noch LISTEN aufrufen und eventuell 

die Sekundäradresse mit SASENL ausgeben. Ein OPEN erübrigt 

sich dann. In unserem Beispiel fur den C64 haben wir diese 

Version gewahlt. 

An dieser Stelle müssen Sie also das Programm Ihren eigenen Er- 

fordernissen anpassen. 

Drucker initialisieren 

Da der Drucker dreispaltig arbeiten soll, müssen wir drei Tabu- 

latorstops programmieren.



- 211 - 

Anschließend wird ein Zeilenvorschub ausgegeben und der erste 

TAB-Stop angesprungen. 

In BASIC sieht das so aus: 

print#8,chr$(27)"d"chr$(5)chr$(30)chr$(55)chr$(0); 

print#8,chr$(10)chr$(9); 

Der Drucker erwartet über die logische Adresse 8 also die 

Bytefolge 27,68,5,30,55,0 und 10,9. 

Diese Bytefolge legen wir in einer Leiste ab, die von (10107) 

bis (10114) geht, also die genannten acht Bytes umfaßt. 

Mit einer Schleife geben wir diese Steuerdaten auf den Drucker 

aus. 

Teil 2: Unterprogramm 'Eingabe' 

- Das Inhaltsverzeichnis ist immer so angelegt, daß 32 Bytes zu 

einem Namen gehören. 

Ab dem 4. Byte steht der Name in Anführungszeichen, dahinter 

nach Leerzeichen (zum Auffüllen) die Art der Datei (z.B. 'prg' 

oder 'seq'). 

Wir laden daher das Inhaltsverzeichnis 32-byte-weise und legen 

so einen Namensblock erst einmal ab (5000) an (Beispiel!). 

Teil 3: Abschluß der Ein/Ausgaben 

- Die Statusvariable wird mit 64 belegt, wenn die Eingaberoutine 

auf den Schluß (3 mal Code QO) stößt. 

Ist dies der Fall, dann werden die beiden Dateien für Floppy 

und Drucker geschlossen. Danach erfolgt der Rücksprung zur auf- 

rufenden Routine. 

Teil 4: Unterprogramm 'Ausgabe' 

~ Drucker als Empfänger (Listener) schalten. 

Dazu setzen wir in die Zeropage-Adresse DEVOUT die Geräte- 

adresse des Druckers. 

- Die ersten Zeichen des Namensblocks auf Anführungszeichen hin 

(Code 34) absuchen. Wenn gefunden, Druckflag <900> = 1 setzen 

und alle Zeichen ausgeben bis einschließlich Dateityp. 

- Nach der ersten Zeile (Diskettenname) einen Zeilenvorschub aus-



- 212 - 

geben, den ersten TAB-Stop anspringen und 

den Zähler für die Spaltenanzahl immer dann auf 3 stellen, 

wenn eine neue Zeile angefangen werden muß. 

Außerdem Ausgabe eines Zeilenvorschubs und eines TABs. 

Drucker deaktivieren, Druckflag wieder auf Null setzen und 

über eine Zwischenstation wieder an den Anfang der Schleife 

(zur Eingabe-Routine) springen. 

Der Zwischensprung ist notwendig, weil mit den Branchbefehlen 

eben nur maximal 128 Adressen weit gesprungen werden kann. 

Das ASSEMBLER-Programm "85—printdirector" (C64): 

Teil 1: Initialisieren 

amb nop 

10005 1dx #0 ; Null als Flag ' 

10007 stx 900 für Druck ein/aus 

10010 ldx #1 1 als Flag 

10012 stx 1017 für Drucken des Kopfes (Diskettenname) 

10015 stx 1018 ; als Spaltenzähler 

n
e
 

w
e
 

w
e
 

nop 

10020 lda #36 ; Code für '$' 

10022 sta 850 ; nach (850) als erstes Namensbyte 

nop 

10032 lda #14 ; logische Adresse 
10034 sta 184 ; nach LA 

10036 lda #8 ; Gerätenummer (Floppy) 

10038 sta 186 nach GA 

10040 lda #96 ; Sekundäradresse 

10042 sta 185 ; nach SA 

10044 lda #82 

10046 sta 187 

10048 lda #3 

LO-Byte der Anfangsadresse (850) 

nach NAMADR-LO 

HI-Byte der Anfangsadresse (850) 

w
w
e
 

w
e
 

‘
w
e
 

10050 sta 188 ; nach NAMADR-HI 

10052 lda #1 ; Länge des Namens 

10054 sta 183 ; nach NAMLEN 

10056 jsr 62282 ; und mit OPEN Datei auf das Floppy offnen 

nop 

10060 Ida #4 ; Geräteadresse 4 

10062 sta 154 ; nach DEVOUT (falls erforderlich) 

10064 sta 186 ; und GA 

10066 lda #8 3 Sekundäradresse



10068 

(10070 

10072 

- 10075 

10077 

10079 

10082 

10084 

— 10087 

10089 

10092 

10095 

10096 

10098 

— 10099 

10102 

10103 

- <10107> 

sta 

sta 

jsr 

nop 

lda 

sta 

jsr 

lda 

jsr 

ldx 

lda 

Jsr 

dex 

bne 

nop 

jst 

cle 

bec 

nop 

<10108> = 

<10109> = 

<10110> = 

<101l11> = 

<10112> = 

<10113> = 

<10114> = 

Teil 2: 

- 10116 

10118 

10121 

10124 

10126 

- 10136 

10138 

10141 

10144 

10146 

10148 

nop 

185 

184 

62282 

#0 
144 
60684 
185 
60857 

#8 

10106,x 

65490 

10089 

63060 

10116 

10 

22 

30 

68 

27 

e 

9 

e 

9 

$ 

. 
9 

. 
3 

Unterprogramm 

lda 

jsr 

jsr 

ldx 

jsr 

nop 

ldx 

jsr 

sta 

lda 

bne 

dex 

#14 

62223 

62239 

#14 
65478 

#32 

65487 

2000, x 

144 

10157 

@ 

9 

® 
9 

. 
3 

e 

3 

e 

$ 

9 

. 
9 

w
o
 

- 213 - 

bereitstellen in SA 

evtl. logische Adresse bereitstellen 

und mit OPEN Datei auf den Drucker öffnen 

nicht bei Ansprechen mit DEVOUT) 

Null 

nach STATUS 

und Drucker mit LISTEN aktivieren 

Sekundäradresse mit 

SASENL ausgeben (Kanal bereitstellen) 

(X) als Zähler 

und die ab (10107) stehenden acht 

Bytes mit BSOUT 

ausgeben 

Schleifenende erreicht? 

ja ===> Drucker mit UNLISN deaktivieren 

und die nun folgende Byteleiste 

auf jeden Fall überspringen 

Code für TAB 

Code für Linefeed 

Begrenzung für Tabulatorsetzen 

3. TAB 

2. TAB 

l. TAB 

Code für "d" (Epson-System für TABSET) 

ESC-Code 

'Einlesen der Daten! 

mit logischer Adresse und den Routinen 

SUFTAB und 

SETTAB die Floppydatei ansprechen 

logische Adresse der Floppydatei laden 

und mit CHKIN Eingabe vorbereiten 

und 32 Bytes aus der Datei 

einzeln mit BASIN holen 

und z.B. von (5001) bis (5032) ablegen 

STATUS prüfen: Ende erreicht? 

ja ===> zum Teil 3 springen 

sonst Schleife weiter abarbeiten



10149 

10151 

10154 

10155 

Teil 3: 

- 10157 

10159 

10162 

10165 

- 214 - 

bne 10138 ; bis Zahler auf Null ist 

jsr 65484 ; mit CLRCH Standard 1/0 setzen 

clc 

bee 10173 ; und Teil 3 überspringen 

Abschlußroutine 

lda #14 ; Nummer des Floppy-Files 

jsr 62097 ; CLOSEA schließt Floppy-Datei 

jsr 65511 ;s CLALL schließt den Rest 

rts 

. nop 

Zwischenstation für den Sprungbefehl: 

10170 

10171 

Teil 4: 

- 10173 

10175 

10177 

10184 

10181 

10183 

10185 

10187 

10190 

10192 

10196 

10198 

10201 

10203 

10205 

10207 

10210 

10212 

10214 

10217 

10219 

10220 

10223 

10224 

10226 

10229 

10231 

cle ; unbedingter Sprung 

bec 10116 ; zur Eingaberoutine 

Unterprogramm 'Drucken' (Ausgabe): 

lda #4 ;s mit Geratenummer 4 

sta 154 ; DEVOUT als aktives Ausgabegerat 

sta 186 ; sowie GA belegen 

lda #255 ; fur unbenotigte Sekundaradresse 255 

sta 185 ; nach SA 

lda #0 ; Null 

sta 144 ; nach STATUS 

jsr 60684 ; mit LISTEN Drucker aktivieren 

lda 185 ; Sekundaradresse ausgeben 

jsr 60857 ; mit SASENL 

nop 

ldx #32 ;s Zahler, um Zeichen aus dem Block zu holen 

lda 5000,x =; 

cmp #34 ; Anführungszeichen gefunden? 

bne 10210 ; nein ---> überspringen der flagsetzung 

ldy #1 ; Ja ---> Druckflag mit 1 

sty 900 ; belegen 

cpx #3 ; 3 Zeichen vor Blockende wird aufgehört 

beq 10226 ; zu drucken 

ldy 900 3; Druckflag gesetzt? 

beq 10223 ; nein ===> Druckerausgabe überspringen 

nop 

jsr 65490 ; ansonsten Ausgabe mit. BSOUT 

dex ; Zahler erniedrigen 

bne 10198 ; und an den Schleifenanfang springen 

ldy 1017 ; Flag für erste Zeile (Kopf) noch gesetzt? 

beq 10241 ; nein ===> Linefeed usw. überspringen 

ldy #0 ; ja ---> Flag zurücksetzen



- 215 - 

10233 sty 1017 | 

10236 lda #10 Code für Linefeed 

10238 jsr 65490 ausgeben mit BSOUT 

10241 dec 1018 Spaltenzähler um eins heruntersetzen 

10244 bne 10256 Spalte gleich 0, also Zeile voll? 

10246 ldy #3 ja ---> Spalte wieder mit 3 vorbelegen 

10248 sty 1018 in Spaltenzähler 

10251 lda #10 und ein Linefeed 

10253 jsr 65490 ; mit BSOUT ausgeben 

10256 lda #137 ; Code fur TAB-Sprung 

10258 jsr 65490 ausgeben (nächste TAB-Position) 

10261 jsr 60926 ; mit UNLISN Drucker deaktivieren 

10264 ldy #0 Druckflag 

10266 sty 900 auf "nicht drucken" setzen 

10269 cle und unbedingter 

10270 bee 10170 ; Sprung zunachst nach 10170, von wo aus ein 

Weitersprung bis zur Routine fur das Ein- 

lesen des nachsten Namensblocks erfolgt 

Dieses Programm kann nun mit SYS 10005 aufgerufen oder von 

einem Maschinenprogramm mit JSR 10005 angesprungen werden. Es 

druckt dann das Inhaltsverzeichnis der Diskette, die gerade im 

Laufwerk liegt, dreispaltig aus. 

Modul 

Einsprung eben entsprechend mitgeruckt werden. 

Wird dieses in einen anderen Bereich verschoben, muß der 

Zu beachten ist hier noch, daß auch die Ladeadresse für die Byte- 

Leiste (bei 10089) nachgestellt werden muß, wenn dieses Programm 

in einem anderen Bereich liegt. Wer das vermeiden möchte, der muß 

die Druckerausgaben mit einer LDA/STA- Folge bewerkstelligen. Der 

Platzbedarf ist dann etwas größer, aber dafür ist uneingeschränk- 

te Verschiebbarkeit gegeben. 

Zur besseren Übersicht und für eventuelle Erweiterungen, z.B für 

den Einsatz eines Doppelfloppys, aber auch für eventuelle Umstel- 

lungen bei Verwendung eines anderen Druckers o.ä. haben wir eine 

ganze Reihe von NOPs gesetzt, die zum Teil über mehrere Adressen 

gehen. Sie das Programm so übernehmen wollen, wie es hier 

steht, dann füllen Sie bitte diese Lücken vollständig mit dem 

ASSEMBLER-Befehl NOP auf. 

Wenn 

Lauft 

alles 

Ihr Programm auf diese Weise einwandfrei, dann konnen Sie 

handlich zu einem kompakten Dienstprogramm zusammenschie-



- 216 - 

ben. In Sekundenschnelle erhalten Sie mit diesem Modul einen Aus- 

druck Ihres Inhaltsverzeichnis, der Ihnen mit Sicherheit dazu 

verhilft, die Übersicht über Ihre Diskettenaufzeichnungen zu ver- 

bessern. 

9.11 Direktzugriffe auf Floppy - Modul "86-fastdisk" (8050) 
  

Zum Abschluß der (IEC-)Bus-Operationen schauen wir uns noch ein 

Beispiel für die Direktzugriffsbefehle auf die Diskettenstation 

an. Alle anderen Direktzugriffe werden analog ausgeführt. (Siehe 

dazu das jeweilige Floppy-Handbuch! ) 

Diesmal sind vorwiegend die 40/80XX-Besitzer angeprochen, die in 

den meisten Fallen mit der 8050-FLoppy oder deren Nachfolgern 

arbeiten: 

Untersucht man das DOS-Listing fur die 8050-Diskettenstation, so 

findet man in den Adressen (4096) bis (4098) Steuerdaten, die die 

Geschwindigkeit des Geräts beeinflussen: 

<4096> gibt die Zeitintervalle zwischen den einzelnen Interrupts 

an und steht normalerweise auf 7 (=0.77 Millisekunden). 

<4097> steuert die Länge der Motoranlaufzeit und ist mit 14 be- 

legt, was 1,54 Sekunden bedeutet. 

<4098> legt die Motornachlaufzeit fest mit 45, also ca. 5 Sekun- 

den. 

Diese Werte lassen sich nun um einiges verkürzen, so daß Sie Ihre 

8050-Station auf "fast" laufen lassen können, ohne wesentlich an 

Übertragungssicherheit einzubüßen. 

Es empfiehlt sich aber, folgende Werte nicht zu unterschreiten, 

da sonst Probleme auftreten wie ständiges Ein- oder Ausschalten 

des Motors bei Ladevorgängen 0o.a.: 

<4096> = 5 3 <4097> = 1 = 3 =<4098> = 60 

Die Nachlaufzeit muß deswegen länger werden, damit sie sich mit 

dem Anlaufzeitpunkt überschneidet. Sonst geht die An- und Aus- 

schalterei los.



- 217 - 

In BASIC laBt sich dies folgendermaBen realisieren: 

100 openl,8,15 : rem befehlskanal 15 

110 print#1,"m-w"chr$(0)chr$(16)chr$(3)chr$(6)chr$(1)chr$(64) ; 

120 closel 

Es werden also 3 Bytes ab Speicherstelle 16/0 (=4096) in das RAM 

der Floppy ubertragen. 

Das entspricht der Bytefolge 77,45,87,0,16,3,6,1,64. 

Zur Übertragung in Maschinensprache braucht bei Direktzugriffen 

das Gerät nur als LISTENER aktiviert werden, ein file ist nicht 

notwendig. Der Abschluß erfolgt durch UNLISN. 

Es werden also über den Befehlskanal 15 direkt Daten in den RAM- 

Bereich des DOS geschrieben (hier in den Steuerdatenpuffer). 

Auf diese Weise lassen sich auch die anderen Puffer des DOS-RAMs 

beschreiben (z.B. mit Maschinenroutinen). 

ASSEMBLER-Programm für "86-fastdisk" (80XX/8050): 

01 20000 Iida #8 ; Geratenummer 

20002 sta 212 ; nach GA 

20004 jsr 61653 ; LISTEN aktiviert Floppy als LISTENER 

20007 lda #111 ; Befehlskanal 15 + 96 als Sekundaradresse 

20009 jsr 61763 ; SASEND sendet Sekundaradresse usw. 

02 20012 lda #77 ; Code für "m" 

20014 jsr 61854 ; OUTBUS gibt "m" aus 

20017 Ilda #45 ; Code fur "-" 

20019 jsr 61854 ; DUTBUS 

20022 lda #87 ; Code für "w" 

20024 jsr 61854 

20027 lda #0 ; LO der Speicheradresse (4096) 

20029 jsr 61854 

20032 lda #16 ; HI von (4096) 

20034 jsr 61854 

20037 lda #3 ; Anzahl der folgenden Bytes 

20039 jsr 61854 

20042 lda #6 ; Intervall-Byte 

20044 jsr 61854 

20047 Ilda #1 ; Motoranlauf-Byte 

20049 jsr 61854 

20052 lda #64 ; Motornachlauf~Byte



- 218 - 

20054 jsr 61854 ; OUTBUS 

03 20057 jmp 61881 ; UNLISN deaktiviert Bus 

Man kann natürlich die 9 Bytes auch mit Hilfe einer angehängten 

Byte-Leiste und einer Zählschleife ausgeben. Aber dann verliert 

man die Verschiebe-Eigenschaft des Moduls, wenn man die Start- 

adresse indiziert. (Es lassen sich bloß ca. 20 Bytes sparen.) 

Gibt man dieses "fastdisk" mit SYS 20000 aus, so bleibt diese 

Schnellauf-Funktion bis zum RESET der Floppy erhalten. Man merkt 

die Wirkung sofort: Beim Speichern oder Laden ist das Gerät im Nu 
"dal . 

Adressen und ROM-Routinen zur Ein/Ausgabe 

Label C64 40/80XxX 

LA 184=$b8 210=$d2 

logische Adresse zur Bezeichnung der Datei 

SA 185=$b9 211=$d3 
Sekundäradresse zur Kanalbereitstellung 

GA 186=$ba 212=$d4 
Geratenummer fur angesprochenes Gerat 

DEVIN 153=$99 175=$af 

Gerateadresse GA des aktiven Eingabegerats 

DEVOUT 154=$9a 176=$b0 

Gerateadresse des aktiven Ausgabegerats 

NAMADR 187/188=$bb/be 218/219=$da/db 

LO/HI der Anfangsadresse des Dateinamens 

oder eines Befehlsstrings 

NAMLEN 183=$b7 209=$dl 

Adresse zur Bereitstellung der Länge des Namens



STATUS 

LVFLAG 

Label 

- 219 - 

144=$90 150=$96 

Byte für Fehler- bzw. Ende-Erkennung der Datei 

kein Fehler: <STATUS>=0 

147=$93 157=$9d 

Load- bzw. Verify-Flag. Laden: <LVFLAG>=0 

C64 40/80XxX 
  

OPEN 

BF OUT 

LOAD 

LOADXX 

SUF TAB 

SETTAB 

CLOSEA 

TWAIT 

' ' 

62282=$f 34a 62819=$f 563 

offnet eine Datei mit LA,GA,SA auf ein Gerat 

bei Floppy-Dateien sind NAMAD und NAMLEN notwendig 

--- 55963=$da9b 

gibt ahnlich wie OPEN einen Befehlsstring aus 

zugeordnet LA, GA, SA 

--- 62472=$f 408 

lädt Datei oder Programm, das mit OPEN geöffnet 

wurde, dazu vorher <STATUS>=0, <LOVE>=0D setzen 

Programmzeiger "Anfang! und 'Ende' werden gesetzt 

62648=$f 4b8 62294=$f 356 
wie LOAD, aber ohne Veranderung der Zeiger 

62223=$f 30f 62145=$f 2cl 
stellt fur eine bereits geoffnete Datei GN,SA,LA 

bereit aus der intern gefuhrten Tabelle 

Vorbereitung: <LA> ---> (A) 

62239=$f31f 62157=$f 2cd 
setzt die mit SUFTAB gefundenen Parameter in die 

vorgesehenen Zeropage-Adressen 

62097=$f291 62178=$f2e2 

schließt eine noch offene Datei 

Vorbereitung: logische Adresse nach (LA) bringen 

63213=$f6ed 63787=$f92b 
verhindert vorzeitigen Rücksprung, wenn die Zen- 

traleinheit schneller als das Peripheriegerät ist 

(z.B. beim Laden eines Programmes notwendig)



TALK 

UNTALK 

LISTEN 

UNLISN 

GETSA 

SASENL 

SASENT 

BSOUT (CHROUT) 

OUTBUS 

BASIN(CHRIN) 

INBUS 

- 220 - 

60681=$ed09 61650=$f 0d2 

aktiviert das mit OPEN angesprochene Gerat als 

Sender (Talker) 

Vorbereitung: <STATUS>=0 

60911=$edef 61878=$f 1b6 

versetzt den (IEC-)Bus nach TALK wieder in den neu- 

tralen Zustand, Gerat wird als Talker deaktiviert 

60684=$ed0c 61653=$f0d5 

aktiviert das angesprochene Gerät als Empfänger 

Vorbereitung: OPEN, <STATUS>=D 

60926=$edfe 61881=$f1b9 

versetzt den (IEC-)Bus nach Tätigkeit als Listener 

wieder in neutralen Zustand 

-- 55599-$d92f 

nächste freie Sekundäradresse holen ---> SA 

60857=$edb9 61763=$f143 

60871=$edc7 61763=$f143 

sendet die Sekundäradresse und bereitet damit einen 

Kanal für die folgende Ein- oder Ausgabe vor. 

Dieser Befehl muß also immer dem ersten INBUS oder 

dem ersten QUIBUS vorangehen. 

Vorbereitung: <A>=<SA>, also Akku mit Sekundar- 

adresse belegen, die man eventuell aus (SA) holt 

65490=$f fd2 KERNAL 65490=$f fd2 

60893=$eddd 61854=$f19e 

sendet das im (A)-Register befindliche Byte uber 

den IEC-Bus auf den aktiven Kanal 

Vorbereitung: OPEN, LISTEN, SASEND, <A» 

65487=$ffecf KERNAL 65487=$ffef 

holt ein Zeichen nach (A) Uber aktiven Kanal. 

Bei Standard-I/0: mit Bildschirmausgabe bis CR 

anschlieBend erstes Zeichen in (A). 

60947=$eel3 61888=$f1lcO 

holt über den (IEC-)Bus ein Byte nach (A) 

vom aktiven Kanal 

Vorbereitung: OPEN, TALK, SASEND



CHKOUT 

CHKIN 

CLRCH 

CLALL 

Der (IEC-)Bus 

- 221 - 

65481=$ffc9 KERNAL 65481=$ffc9 

leitet Ausgabe über den (IEC-)Bus auf das angespro- 

chene Gerät um (statt Schirm) 

Vorbereitung: OPEN, <LA> ---> (X) 

65478=$ffc6 KERNAL 65478=$ffc6 

Eingabe über den (IEC-)Bus vom angesprochenen Gerät 

(statt Tastatur) 

Vorbereitung: OPEN, <X>=<LA> 

654B4=$ffcc KERNAL 65484=$ffcc 
schaltet als Eingabegerät die Tastatur (GA=0) und 

als Ausgabegerät den Bildschirm (GA=3) 

schließt alle Kanäle, aber keine Dateien 

655ll=$ffe7 KERNAL 65511=$ffe7 

schließt alle Kanale und Dateien 

befindet sich in einem der Zustände LISTEN, TALK 

oder Wartestellung (neutral).





10 
Maschinenmodule in 

BASIC-Programmen





- 225 - 

10 Maschinenmodule in BASIC-Programmen 

10.1 Übernahme von BASIC-Parametern 
  

Will man von BASIC aus ein Maschinenprogramm aufrufen, dann ge- 

schieht das in der Regel mit dem Befehl SYS xxxx. Werden zur 

Durchführung dieses "SYS-Programmes" keine festen Werte verarbei- 

tet, sondern ergeben sich diese erst aus dem Verlauf des BASIC- 

Programmes, dann müssen diese sog. Parameter auf irgendeine 

Weise vom Maschinenprogramm übernommen werden können. 

Zur Verdeutlichung ein Beispiel: 

Wir haben im Kapitel 7 eine Routine kennengelernt, die den 

Bildschirm-Cursor beliebig positionieren kann. Im CBM-BASIC gibt 

es keinen entsprechenden Befehl. Also bietet es sich an, ihn mit 

in das BASIC zu integrieren. Bei anderen BASIC-Dialekten wird er 

unter PRINTSXX,TT geführt, wobei XX für die Bildschirmnummer (be- 

ginnend bei 0) und TT für einen beliebigen auszudruckenden Text 

steht. 

Gehen wir in gleicher Weise vor, dann heißt das in unserem Fall, 

daß wir vor jeder Abarbeitung des Maschinenmoduls den Wert XX 

aus dem BASIC-Text übernehmen müssen, den Cursor dann entspre- 

chend setzen und ins BASIC an die Stelle zurückkehren, die uns 

den Ausdruck von TT erlaubt. 

Wer sich mit dem Aufbau eines BASIC-Programms noch nicht so recht 

auskennt, der sollte sich dies erst einmal gründlich zu Gemüte 

führen. Hier wenigstens die wichtigsten Punkte, die zum Verständ- 

nis dieses Kapitels notwendig sind: 

- In BASIC-Programmen sind Befehle und Zeichen codiert abgespei- 

chert. Nach der Zeilennummer (LO/HIl) folgen Codezahlen von O bis 

255. Beispielsweise hat der Befehl PRINT die Nummer 153, PRINT# 

dagegen wird mit 152 verschlüsselt (deswegen kann man PRINT# 

nicht mit '?#' abkürzen). Diese Schlüsselzahlen für die einzel- 

nen BASIC-Wörter bilden den sog. Interpretercode. 

— Beim Ablauf eines Programmes wird nun Zeichen für Zeichen die- 

ses BASIC-Textes von der RUN-Routine geholt und zunächst da- 

rauf untersucht, ob es sich bei der Code-Nummer um einen Befehl 

oder um ein sonstiges Zeichen (Zahl, Trennzeichen, String o.a.)



- 226 - 

handelt. Liegt ein Befehl vor, wird die Stelle im ROM gesucht, 

die diesen Befehl abarbeitet, und anschließend angesprungen. 

- Wenn notwendig, werden aus dem BASIC-Text weitere Zeichen ge- 

holt (eben diese Parameter) und verarbeitet. Das macht die aktive 

BASIC-Routine nun selbst. 

Denken wir nur daran, wenn der Befehl PRINT auftaucht. Dann wird 

ja meistens auch etwas ausgedruckt, nämlich das, was hinter dem 

Befehl PRINT bis zu einem Trenn- oder Endezeichen folgt. 

-— Damit der BASIC-Interpreter auch weiß, wo er gerade im Text 

ist, wird in der Zeropage ein Zeiger mitgeführt, der immer auf 

das eben behandelte BASIC-Zeichen des Programms zeigt. 

- Die wichtigste BASIC-Routine ist nun die, die Zeichen für Zei- 

chen aus dem BASIC-Programm holt und den eben besprochenen Pro- 

grammzeiger verwaltet. Es ist die CHRGET-Routine (von get 

character), die als Unterprogramm von etlichen BASIC-Routinen be- 

nützt wird. Nämlich immer dann, wenn irgendwelche Parameter aus 

dem BASIC-Text in die gerade arbeitende Interpreter-Routine über- 

nommen werden sollen. 

Nun hat sich der Kreis geschlossen: Genau das wollen wir mit un- 

seren Maschinenmodulen auch tun. Zapfen wir also wieder einmal 

die betriebsinternen ROM-Routinen an. 

10.2 Zeichen aus dem BASIC-Text holen mit CHRGOT und CHRGET 
  

Nehmen wir an, wir wollen das Zeichen 'x' aus dem BASIC-Programm 

entnehmen, das direkt hinter dem 5YS-Aufruf steht. 

Beispiel für eine BASIC-Zeile: 
  

100 x=5000 : sys 20000 x : print x 

Starten Sie diese Zeile nun mit RUN, dann wird nach dem Aufruf 

der SYS-Routine der Programmzeiger auf dem 'x' stehenbleiben. 

Das (A)-Register enthält jetzt den ASCII-Code für 'x'. Wir können 

ihn zur Überprüfung mit CHROUT ausgeben. 

Um auch noch zu beweisen, daß der Programmzeiger tatsächlich auf 

'x' steht, rufen wir die CHRGOT-Routine auf, die immer das ak-



- 227 - 

tuelle Zeichen aus dem BASIC-Text holt, ohne den Programmzeiger 

weiterzustellen. 

Das ASSEMBLER-Programm, das ab (19997) steht, muß nun folgender- 

maßen aussehen (Adressen für die 80XX-Serien in Klammern): 

ASSEMBLER-Beispiel "87-basictext" 

19997 jsr 65490 s CHROUT druckt Zeichen in (A) 

20000 jsr 121 ; CHRGOT-Routine holt das Zeichen, auf dem 

(20000 jsr 118) der Programmzeiger momentan steht, nach (A) 

20003 sta 1200 ; Das geholte Zeichen kann nun weiter verar- 

(20003 sta 33500) ; beitet werden, z.B. mit STA XXXX auf dem 

Bildschirm ausgegeben werden. 

Der Programmzeiger steht immer noch auf dem 'x'. Wendet man nun 

die CHRGET-Routine an, wird der Programmzeiger um eins erhoht, 

das nachste Zeichen, also der Doppelpunkt geholt, der mit Code 58 

übersetzt wurde. Die Fortführung unseres kleinen Programms be- 

beweist das: 

20006 jsr 115 ; CHRGET holt Trennzeichen 

(20006 jsr 112) 

20009 jsr 65490 ; Trennzeichen wird mit CHROUT ausgegeben 

Nun steht der Zeiger nicht etwa vor dem 'P' von PRINT, sondern 

vor dem Code 153, dem Code für das gesamte Wort PRINT. Lassen 

wir uns das vorführen: 

20012 jsr 115 ; CHRGET holt Code von PRINT 

(20012 jsr 112) 

20015 sta 2023 ; gibt re/un (A)-Inhalt aus (ein reverses y) 

(20015 sta 34767) ; der ASCII-Code ist nicht druckbar 

Wenn wir jetzt mit RIS ins BASIC-Programm zurückspringen, wird 

nur noch x vorgefunden, was logischerweise zu einem SYNTAX ERROR 

führt. 

Setzen wir jedoch den Programmzeiger wieder um einen Schritt zu- 

rück, nämlich vor das PRINT, dann kann dieser Befehl von BASIC 

wieder ausgeführt werden: 

20018 dec 122 ; LO des Programmzeiygers um 1 zurück 

(20018 dec 119) 

20020 Ilda 122 ; untersuchen, ob O unterschritten wurde



- 228 - 

(20020 lda 119) 

20022 cmp #255 ; also 255 erreicht wurde 

20024 bne 20028 ; wenn nicht, nächste Zeile überspringen 

20026 dec 123 ; wenn ja, auch das HI-Byte des Programmzäh- 

(20026 dec 120) lers erniedrigen 

20028 rts ; jetzt kann zu BASIC zurückgekehrt werden 

Wenn Sie wissen wollen, wie Ihr BASIC-Programm codiert im RAM 

liegt, brauchen Sie nur eine Schleife aus CHRGETs und Bildschirm- 

ausgaben zu bilden, den Programmzeiger auf die gewünschte Stelle 

aufzusetzen und eine Abbruchbedingung einzubauen. Beispielsweise 

werden beim Ende eines BASIC-Programms drei D-Bytes gesetzt. 

Aufgabe: 

Schreiben Sie ein Programm, das 1000 bzw. 2000 Zeichen (einen 

Bildschirm voll) eines BASIC-Programms im BASIC-Code zeigt. 

Label C64 40/80XxX 

’ ' 

CHRGOT 121=$79 118=$76 

momentanes BASIC-Zeichen ---> (A) 

  

CHRGET 115=$73 112=$70 

| Zeichen aus BASIC-Text ---> (A) 

PRGPTR 122/123=$7a/7b 119/120=$77/78 

Programmzeiger LO/HI steht auf momentanem Zeichen 

10.3 Byte-Auswertung mit GETBYT und VALBYT   

Um die Ziffernfolge einer Zahl in den entsprechenden Wert umzu- 

wandeln, bedient man sich der Routinen GETBYT und VALBYT, 

sofern der Wert der zu übernehmenden Zahl zwischen 0 und 255 

liegt. 

Zur Klarstellung sei gesagt, daß eine im BASIC-Text als Ziffern- 

folge abgelegte Zahl hier in ein einziges Byte übernommen wird, 

während im BASIC-Text ja jede Ziffer ein eigenes Byte bean- 

sprucht.



- 229 - 

Zur Verdeutlichung zwei Beispiele, die auch gleichzeitig etwas 

Wiederholung bieten: 

Beispiel 1: Auswertung mit GETBYT und Ausgabe mit STA 
  

Nehmen wir wieder eine BASIC-Zeile an, mit der wir unsere nach- 

folgende Maschinenroutine überprüfen können: 

100 co=20000:sysco#48,49:pokel200,48:pokel201,49 

Für einen reinen BASIC-Programmierer sieht das höchst seltsam 

aus; jedoch wissen wir bereits, daß man mit dem Programmzeiger 

einiges manipulieren kann. 

Was soll nun in dieser Zeile passieren? 

- Als erstes legen wir mit der Variablen co die kEinsprungadresse 

bei 20000 für den folgenden SYS-Befehl fest. 

-— Nach dem Einsprung in unser Maschinenprogramm stehen die Para- 

meter #48,49 bereit, wobei die Zeichen # und das Komma als 

Trennzeichen fungieren. Wir kommen darauf noch zurück. 

- Die Zahl 48 (genauer gesagt die Ziffernfolge 4-8) und die Zahl 

49 stellen im Bildschirmcode die Zeichen "O0" und "1" dar und 

sollen vom Maschinenprogramm übernommen und ausgegeben werden. 

- Anschließend erfolgt der Rücksprung ins BASIC und wir poken 

dort die gleichen Codezahlen zur Kontrolle auf den Bildschirm. 

Das ASSEMBLER-Programm sieht dann so aus (80XX in Klammern): 

Beispiel "88-getbyte" 

- 20000 jsr 121 ; CHRGOT holt das Zeichen, auf dem der 

(20000 jsr 118) Programmzeiger momentan steht 

(20003 sta 33500) 
20003 sta 1160 ; und gibt es auf dem Bildschirm aus. 

Durch diesen letzten Befehl wissen wir, wo sich der Zeiger nach 

dem SYS 20000 befindet, nämlich ein Zeichen weiter auf dem Dop- 

pelkreuz #. 

- 20006 jsr 47003 ; GETBYT holt nun alle folgenden Zeichen, 

(20006 jsr 51409) bis eine Nichtziffer oder ein Trennzeichen 

auftritt, in unserem Fall bis zum Komma.



- 230 - 

AnschlieBend wird der Wert der Ziffernfolge bestimmt und im (X)- 

Register sowie in der 5.Stelle des FAC1l abgelegt. In unserem Fall 

enthält das (X)-Register also den Wert 48. Geben wir ihn auf dem 

Bildschirm zwei Stellen weiter aus: 

20009 stx 1162 ; druckt Zeichen für Code 48: "0" 

(20009 stx 33502) 
- 20012 jsr 121 ; CHRGOT holt das Zeichen, auf dem der 

(20012 jsr 118) Programmzeiger steht. 

20015 sta 1164 ; wir erkennen, daß er auf das Komma zeigt 

(20015 sta 33504) 

- 20018 jsr 47003 ; GETBYT holt nun die nächste Ziffernfolge 

(20018 jsr 51409) als Byte nach (X) und FAC1+4 

20021 stx 1166 ; druckt das entsprechende Zeichen: "1" 

(20021 stx 33506) 

Wir wissen schon, daß der Zeiger auf dem Trennzeichen steht, so 

daß wir sofort ins BASIC-Programm zurückkehren können: 

- 20024 rts 

Wenn Sie das Programm "88-getbyte'" eingetippt haben, kehren Sie 

am besten in den READY-Modus zurück und geben die BASIC-Zeile 

ein, die wir uns vorhin ausgedacht haben. 

Nach dem Starten mit RUN erhalten Sie den Ausdruck: # 0, 1 

und darunter die gepoketen Zeichen: 0 1 

Alles klar bis hierher? 

Wenn ja, dann spielen Sie mal ein wenig sowohl mit der BASIC-Zei- 

le, als auch mit dem ASSEMBLER-Programm. 

Sie sollten hinterher folgendes erkennen: 

- Als Trennzeichen können sich alle nichtnumerischen Zeichen ver- 

wenden, so lange Sie keinen Einfluß auf die Einsprungvariable 

CO haben: 

Damit verbieten sich die Zeichen "+","-","/","-" und die Ver- 

gleichsoperatoren "<","=" und ">". 

sysco+48,49... hätte dann einen Einsprung bei 20048 zur Folge 

und würde hinterher SYNTAX ERROR erzeugen. 

— Auch mit den Klammern muß man sorgfältig umgehen: 

sysco(48) wird nämlich als Einsprung beim Wert der Feldvaria-



- 231 - 

blen co(48) erkannt und führt bei uns garantiert zu einem ILLE- 

GAL QUANTITY ERROR, weil wir co(x) nicht dimensioniert haben. 

- Dagegen lassen sich die Klammern durchaus folgendermaßen ver- 

wenden: sysco)48(49... oder sys(co)(48),49... 

- Die GETBYT-Routine stellt nach ihrem Abschluß den Zeiger 

immer auf das Trennzeichen, denn dort ist sie ja schließlich 

gelandet, um festzustellen, daß die Ziffernfolge für den Byte- 

wert zu Ende ist. 

- Werden Dezimalzahlen verwendet, dann arbeitet das Programm 

trotzdem normal. Es wird aber nur der Integerwert beachtet. 

Sie können statt 48 durchaus 48.0235 eingeben. Das Ergebnis ist 

das gleiche. 

- Überschreiten Sie allerdings den Wert 255.999..., dann spielt 

diese ROM-Routine nicht mehr mit. (Wir lassen uns dazu aber im 

nächsten Abschnitt etwas einfallen.) 

Das Ergebnis ist dann wieder ein ILLEGAL QUANTITY ERROR. 

Mit dem nun erworbenen Wissen läßt sich das nächste Beispiel 

wesentlich schneller besprechen. 

Beispiel 2: Byte-Auswertung mit VALBYT und Ausgabe mit CHROUT 
  

Die entsprechende BASIC-Zeile, anhand der wir unser Maschinenpro- 

gramm testen wollen, sieht fast genau so aus wie zuvor: 

100 co=20000 : sys(co)147,35 : print"screen CLR und #" 

Sie haben es erkannt: Die Einsprungadresse ist eingeklammert. 

Es gibt hier kein Trennzeichen zwischen dem SYS-Aufruf und dem 

ersten Parameter 147. Der Programmzeiger steht anschließend 

auf der Ziffer "1" von 147. Die Einsprungadresse (co) wird also 

von "Klammer auf" bis "Klammer zu" ausgewertet. (Auch darauf kom- 

men wir noch zurück.) 

Das ASSEMBLER-Programm "89-valbyte'" (80XX in Klammern): 

- 20000 jsr 47006 ; VALBYT wertet ebenfalls die kommende 

(20000 jsr 51412) Ziffernfolge aus, beginnt aber mit dem ak- 

tuellen Programmzeiger



- 232 - 

Zur Erinnerung: GETBYT würde ein Zeichen weiter beginnen, al- 

so mit der Ziffer "4" von 147. 

20003 txa ; der Bytewert wird nach (A) übertragen und 

20004 jsr 65490 ; mit CHROUT ausgegeben, also nicht als 

(20004 jsr 65490) Bildschirmcode, sondern als ASCII-Code, was 

in unserem fall dem "Bildschirm clear" ent- 

spricht 

-— 20007 jsr 121 ; CHRGOT holt das zuletzt geholte 

(20007 jsr 118) Zeichen noch einmal nach (A) 

20010 sta 1162 ; Ausgabe: wie erwartet "," 

(20010 sta 33502) 

-— 20013 jsr 47003 ; jetzt muß GETBYT angewendet werden 

(20013 jsr 51409) 

20016 txa ; Ergebnis nach (A) 

20017 jsr 65490 ; und Ausgabe mit CHROUT 

Das ist das Zeichen '#' 

- 20020 rts ; Rucksprung zu unserer BASIC-Zeile 

Nach dem Aufruf der BASIC-Zeile mit RUN wird also zunächst der 

Bildschirm gelöscht, dann ein Komma ausgegeben und anschließend 

ein '#'. Zum Schluß wird der Kommentar ausgedruckt. 

Zusammenfassung: 
  

- GETBYT erhöht zunächst den Programmzeiger und holt dann die 

Ziffernfolge des folgenden BASIC-Textes als Byte-Wert in das 

(X)-Register und die Adresse (FAC1 + 4). 

- VALBYT beginnt mit dem aktuellen Programmzeiger und arbeitet 

ansonsten genauso wie GETBYT. 

- Bei beiden Routinen steht nach dem Durchlauf der Programnm- 

zeiger auf dem Trennzeichen hinter der Ziffernfolge. 

- Das (A)-Register enthält den ASCII-Code dieses Zeichens.



- 233 - 

  

Label C64 40/80X xX 
' t 

GETBYT 47003=$b79b | 51409=$c8dl 

Ziffernfolge ab PRGPTR+1 als Byte nach (X) und 

(FAC1+4) 

VALBYT 47006=$b79e 51412=$c8d4 

Ziffernfolge ab PRGPTR als Wert nach (X) und 

(FAC1+4) 

10.4 Eine Anwendung: PRINT AT-Routine mit Fehlermeldung 
  

In Kapitel 6 haben wir besprochen, wie man den Cursor beliebig 

auf dem Bildschirm positionieren kann. Wenden wir dies nun in 

Verbindung mit unseren Routinen GETBYT und VALBYT an und erstel- 

len ein Maschinenprogramm, das uns - von BASIC aufgerufen - zu 

einer beliebigen Bildschirmadresse bringt. 

Dabei legen wir folgendes Format fest: 

Nach dem SYS-Aufruf folgt die Zeilennummer (0 bis 24) und an- 

schlieBend, durch ein Komma getrennt, die Spaltennummer (von O 

bis 39 bzw. 79) 

Die BASIC-Zeile, mit der wir unser Programm austesten können, 

sieht dann vielleicht so aus: 

100 at=20000 : sys(at)13,30,"Testausdruck: "3:print"alles klar?" 

Wir wollen also den Ausdruck in Zeile 13, Spalte 30 beginnen. 

Aufbau und Ablauf der Routine "90-print at": 
  

Aus der Form der Parameterschreibweise (sie entspricht dem Bei- 

spiel 2 aus 10.3) ergibt sich der Einsatz der GETBYT- und VALBYT- 

Routinen. : 

Jetzt mussen wir noch sicherstellen, daB die Zeilen- und Spalten- 

zahl im zulassigen Bereich bleibt. Das geschieht durch einen Ver- 

gleich mit den oberen Grenzwerten (negative Zahlen werden sowieso 

fur Byte-Eintrage nicht zugelassen). Wird einer der Definitions- 

bereiche verlassen, zapfen wir die betriebsinterne fehlermeldung 

ILLEGAL QUANTITY ERROR an, die anschließend den READY-Modus wie- 

der herstellt.



- 234 - 

Vielleicht überrascht es Sie, daß vor dem zu druckenden String 

kein PRINT-Befehl steht? 

Nachdem sowieso klar ist, daß etwas ausgedruckt werden soll, be- 

nutzen wir einfach den Einsprung in die PRINT-Routine schon in 

unserem Maschinenmodul und sparen uns dadurch einen BASIC-Befehl. 

Dazu muß aber noch das erste Zeichen des zu druckenden Ausdrucks 

(in unserem Fall das erste Anführungszeichen) aus dem BASIC-Text 

geholt werden, was aber mit CHRGET kein Problem ist. 

Das ASSEMBLER-Programm "90-print at" (C64): 

01 20000 jsr 47006 ; VALBYT holt die erste Ziffernfolge 

nach der Klammer und wertet Sie aus. Das 

Ergebnis steht als Byte in (X). 

02 20003 cpx #25 ; maximale Zeilenzahl 

20005 bes 20027 ; überschritten ===> Fehlermeldung 

20007 stx 214 ; sonst Zeile nach CURZEI 

03 20009 jsr 47003 ; GETBYT holt nächste Ziffernfolge nach 

dem Komma und legt den Wert nach (X) ab. 

04 20012 cpx #40 ; maximale Spaltenzahl 

20014 bcs 20027 ; überschritten ===> Fehlermeldung 

20016 stx 211 ; sonst Spalte nach CURSPA 

05 20018 jsr 58732 ; CURPOS setzt den Cursor 

06 20021 jsr 115 ; CHRGET holt nächstes Zeichen nach (A), 

und stellt dabei den Programmzeiger auf 

das Zeichen '"' ein. 

20024 jmp 43682 ; BPRINT druckt den Ausdruck im BASIC- 

Text, auf dessen Anfang der Programmzeiger 

steht. 

Anschließend erfolgt Rücksprung ins BASIC. 

07 20027 ldx #14 ; Fehlernummer 14 

20029 jsr 42042 ; wird mit ERROR ausgegeben (ILL. QUA..) 

20032 rts s Ende (READY-Modus ) 

Haben Sie "90-print at" (20000) eingetippt? Dann können Sie die 

oben angeführte BASIC-Zeile variieren und mit RUN starten. 

Wie immer, probieren Sie andere Beispiele aus: 

Geben Sie ruhig mal sys(at)40,20 o.ä ein. Es muß dann die Fehler- 

meldung kommen.



- 235 - 

Für die 40/80XX-Serien müssen Sie "90-print at" so umbauen, wie 

wir es in Kapitel 6 besprochen haben. 

10.5 Ausgabe von Fehlermeldungen aus dem ROM 
  

Die C64-Geräte kennen 29 solche Meldungen. Hier braucht man nur 

die Nummer der Meldung in das (X)- oder (A)-Register zu laden und 

die ERROR-Routine ab (42042) aufzurufen. 

Im einzelnen sind dies: 

l too many files 16 out of memory 

2 file open 17 undef'd statement 

3 file not open 18 bad subscript 

4 file not found 19 redim'd array 

> device not present 20 division by zero 

6 not input file 21 illegal direct 

7 not output file 22 type mismatch 

8 missing filename 23 string too long 

9 illegal device number 24 file data 

10 next without for 25 formula too complex 

ll syntax 26 can't continue 

12 return without gosub 27 undef'd function 

13 out of data 28 verify 

14 illegal quantity 29 load 

15 overflow 

Der JMP nach ERROR=(42042) gibt die entsprechende Meldung aus 

und schließt gleichzeitig alle eventuell geöffneten Kanäle. Wie 

in BASIC erfolgt dann auch der Programmabbruch. 

Die 40/80XX-Geräte rufen ihre Fehlermeldungen mit Hilfe eines 

Index auf, der ins (X)-Register geladen wird. Hier gibt es zwei 

Tabellen. Die erste entspricht den oben genannten Fehlern von 

Nummer 10 bis 27. Die zweite bezieht sich auf weitere Peripherie- 

meldungen, wobei (X) die Belegung 0,9,14,23,32,36,45,50,61,65, 77, 

86,95,100,109,116,127,134,144,148,159,163,170,174,182,191,197,209 

enthalten kann. Diese Arten werden mit JMP 62895 ausgegeben.



- 236 - 

Label C64 40/80XX . 
' ! 

ERRXX 42082=$a462 46048=$b3e0 

Fehlermeldung ohne Schließen der Kanäle 

  

ERROR 42042=$a43a 46031=b3cf 

Fehlertyp in (X): Index(Offset) bzw. Fehlernummer 

schlieBt alle Kanale, beinhaltet aber nicht CLOSE 

ERR80 --- 62895=$f Saf 
Fehlermeldungen Peripherie (nicht C64) 

BPRINT 43682=$aaa2 47805=$babd 

Einsprung in die PRINT-Routine, dazu Programmzeiger 

auf dem ersten Zeichen des zu druckenden Ausdrucks, 

alle folgenden werden selbständig geholt, ausge- 

wertet und ausgegeben. 

10.6 Zur Schreibweise der BASIC-Befehle 

Bisher haben wir uns um die Syntax (Schreibweise) der zu überneh- 

menden Parameter keine großen Gedanken gemacht. In unserem Modul 

ist es zunächst gleichgültig, welche Trennzeichen wir verwenden. 

Diese Großzügigkeit kann aber manchmal ihre Tücken haben, so daß 

man auch die Richtigkeit der vorgesehenen Trennzeichen überprüfen 

sollte. 

Folgende ROM-Routinen stehen dafür zur Verfügung: 

Label C64 40/80XxX 

KLMAUF 44794=$aefa 48882=$bef 2 

pruft, ob letztes Zeichen ein Klammer auf "(" war 

KLAMZU 44791=$aef7 48479=$beef 

prüft, ob letztes Zeichen ein Klammer zu ")" war 

KOMMA 44797=$aefd 48885=$bef 5 

prüft, ob letztes Zeichen ein Komma "," war 

PRFZEI 44799=$aeff 48887=$bef 7 

pruft, ob Zeichen in (A) als letztes im BASIC- 

Text stand



- 237 - 

Zu beachten ist bei allen diesen Routinen, daß anschließend immer 

ein CHRGET durchgeführt wird, d.h. das nächste Zeichen wird ge- 

holt und der Programmzeiger wird inkrementiert (um eins weiterge- 

führt). 

Zur Byte-Auswertung wird also anschließend an die Trennzeichen- 

Überprüfung die Routine VALBYT eingesetzt, die ja mit dem Zeichen 

anfängt, auf dem der Programmzeiger gerade steht. 

Ein kleines Beispiel: 
  

100 x=80:y=90:te=20000:syste#(x,y) "test" 

ASSEMBLER-Programm "9l-trennzeichen" (allg.): 

Folgende Labels werden zusatzlich als Beispiele verwendet: 

BSX = 1200 (80XX: 33500) 
BSY = 1202 (80XX: 33502) 

Das sind die Bildschirmstellen für die Kontrollausgabe. 

- 20000 Ilda #35 ; Code für # 

20002 jsr PRFZEI ; vorhanden? nein ===> SYNTAX ERROR 

- 20005 jsr KLMAUF ; "(" vorhanden? 

20008 jsr VALBYT ; wertet Ziffernfolge nach dem 

Trennzeichen "(" aus 

20011 stx BSX ; Ausgabe des Werts als BS-Code zur Kontrolle 

-— 20014 jsr KOMMA ; "," vorhanden? 

20017 jsr VALBYT ; ja ---> Auswertung bis zum nachsten Trenn- 

zeichen mit VALBYT 

20020 stx BSY ; und Kontrollausgabe im Bildschirmcode 

- 20023 jsr KLAMZU ; ")" vorhanden? 

20026 jmp BPRINT ; ja ===> mit BPRINT den folgenden String 

auf dem Bildschirm ausgeben und zurück nach 

BASIC springen 

Wenn Sie die BASIC-Zeile starten, werden Sie feststellen, daß 

auch die Variablen x und y richtig ausgewertet werden. Vorausset- 

zung ist aber immer noch, daB sie im Bereich von O bis 255 lie- 

gen.



10.7 Auswertung mit VAREAL (Wert Realzahl ) 
  

Entsprechend der Byte-Auswertung arbeitet die Routine VAREAL. 

Jetzt kann die Ziffernfolge jedoch eine beliebige Zahl sein oder 

durch einen mathematischen Term dargestellt werden, der Zahlen 

und/oder Variablen mit oder ohne Vorzeichen enthält. Wichtig ist 

lediglich, daß der Wert des Gesamtterms eine reelle Zahl dar- 

stellt. 

Das Ergebnis wird im FAC1l abgelegt und kann von dort aus weiter- 

verarbeitet werden. 

Alles bisher Gesagte über Trennzeichen usw. gilt nach wie vor. 

Beispiel dazu:   

100 x=20:y=-0.02:vr=20000 :SYSvr,x/y-(100-5000): PRINT"DM" 

Ab (20000) muß nun wieder die Auswertungsroutine stehen. 

Sie soll z.B. den Wert bestimmen und auf dem Bildschirm ausgeben. 

ASSEMBLER-Beispiel "92-realwert" (allg.): 

- 20000 jsr KOMMA ; "," vorhanden? 

20003 jsr 44426 ; VAREAL wertet den folgenden Ausdruck 

(20003 jsr 48516) bis zum Trennzeichen ":" aus und legt ihn 

im FAC1l ab 

- 20006 jsr FLPOUT ; druckt: 3900 

20009 rts ; Rücksprung ins BASIC 

Nach der SYS-Routine wird zur Kontrolle das "DM" gedruckt, um 

sicherzustellen, daß auch wieder mit dem BASIC-Programm fortge- 

fahren wird. 

Sie erkennen auch, daß die Klammern diesmal nicht als Trennzei- 

chen fungieren, da sie ja Zeichen eines mathematischen Ausdrucks 

sind. Verwenden Sie also in diesen fällen das Komma oder den Dop- 

pelpunkt, um eine saubere Trennung Ihrer Parameter zu erzielen.



- 239 - 

10.8 Auswertung mit VALKLA 
  

Eine Abkürzung des eben beschriebenen Verfahrens ist möglich, 

wenn man die Routine VALKLA (Wert eines Klammerausdrucks) 

verwendet. Sie überprüft, ob die Klammern gesetzt sind und wertet 

die Zeichenfolge innerhalb der Klammern aus, wobei hier auch wei- 

tere Klammerausdrücke entsprechend der mathematischen Hierarchie 

behandelt werden. 

Beispiel: 

100 k1=20000:5YSk1, (2000-(500/0.1)):print" Klammerausdruck" 

Das ASSEMBLER-Programm "93-klammerwert'" (allg./80XX in Klammern): 

- 20000 jsr KOMMA ; "," vorhanden? 

20003 jsr 44785 ; VALKLA wertet die Zeichenfolge bis zum 

(20003 jsr 48873) Trennzeichen ":" aus und bringt den Wert 

nach FACIL 

- 20006 jsr FLPOUT ; druckt: -3000 

- 20009 rts 

Noch einmal zur Wiederholung, weil Sie sich viel Ärger ersparen 

können: Das Komma nach der Variablen kl ist unbedingt notwendig, 

weil sonst eine Startadresse kl(x) ausgewertet wird. Wir wollen 

aber kein Feldelement angeben, sondern nur die Zahl 20000. 

10.9 Auswertung von Integerzahlen mit VALINT und INTADR 
  

Hätte man den Wert eines Ausdrucks gern als Integerzahl im HI/LO- 

Format, bedient man sich der ROM-Routine VALINT. 

Das Ergebnis wird in die 4. und 5. Stelle des FAC1l abgelegt, 

also nach FAC+3/FAC+4, von wo es weiterbehandelt werden kann. 

Im folgenden Beispiel begnügen wir uns wieder mit der Bildschirm- 

ausyabe: 

Beispiel: 

100 it=20000:sysit,25000-20/0.007:print" Integer"



- 240 - 

ASSEMBLER-Beipsiel "94-intwert" (allg./BOXX in Klammern): 

- 20000 jsr KOMMA ; prüft auf "," 

- 20003 jsr 45493 3 VALINT wertet den Ausdruck bis zum 

(20003 jsr 49888) Trennzeichen ":" aus, wandelt ihn in das 

Integerformat und legt das Ergebnis in 

(97/98), also (FAC1+3/FAC1+4) ab. 

- 20006 lida 100 ; FAC+3, also HI nach (A) 

(20006 lda 97) 

20008 ldx 101 s FAC+4, also LO nach (X) 

(20008 ldx 98) 

20010 jsr INTOUT ; druckt: 22142 

20013 rts 

Voraussetzung, daß keine ERROR-Meldung auftritt, ist, daß der 

Gesamtwert den die Zeichenfolge vom Eintritt der Auswertung bis 

zum Trennzeichen darstellt, den Integerbereich (von 0 bis 

32767,... ) nicht überschreitet. 

Treten Bruchzahlen auf, wird der Nachkommaanteil einfach igno- 

riert, eine Fehlermeldung findet nicht statt. 

Ist das Gesamtergebnis negativ, erfolgt ein ILLEGAL QUANTITY 

Eine zweite Möglichkeit bietet INTADR, das die Integerzahl - 

wie das Label andeuten soll - in das Adressformat, also LO/HI 

umwandelt. 

Diese Routine stammt aus dem BASIC-System, wenn Programmzeilen- 

nummern aus dem Bildschirm übernommen werden. 

Ein kurzes Beispiel für eine mögliche BASIC-Zeile: 
  

500 sys20000,32768:print" = $8000" 

Das folgende ASSEMBLER-Programm übernimmt die Zahl 32768 als In- 

tegerzahl und druckt sie aus. 

ASSEMBLER-Beispiel "95-integadress" (C64): 

- 20000 jsr KOMMA ; "," vorhanden ? 

20003 jsr 43371 ; INTADR holt die Zeichenfolge nach dem 

(20003 jsr 47350) Komma, wandelt sie in LO/HI um und legt sie 

als Integerzahl (Adressformat) nach (20/21) 

(40/80XX: nach 17/18)



- 241 - 

-— 20006 ldx 20 ; Ubertragen von LO 

(20008 sta 251) ; nach (251) 

20010 lda 21 ; und HI 

(20012 sta 252) ; nach (252) 

20014 jmp INTOUT ; zur Ausgabe mit INTOUT 

Nach dem Start mit RUN 500 wird gedruckt: "32768 = $8000" 

Verwendet man bei den 40/80XX-Geräten zur Ausgabe ADROUT=55063, 

dann erhält man die Hexzahl zur eingelesenen Dezimalzahl, wenn 

wenn LO in (251) und HI in (252) steht. 

10.10 Auswertung mit VALPAR, VALSTR, PARFLG und TYPFLG 

Die ROM-Routine VALPAR (Wert eines beliebigen Parameters) wird 

immer dann eingesetzt, wenn man zunächst nicht weiß, welcher Art 

der auszuwertende Parameter ist. 

Er kann ein Zahlenwert sein und hier wieder Byte, Real- oder In- 

tegerzahl darstellen oder aber er tritt als String auf. 

VALPAR untersucht zunachst einmal den auftretenden Parameter 

und notiert sich in zwei Zeropageadressen, was für ein Typ ihr 

vorgelegt wurde: 

In der einen Adresse (nennen wir sie PARFLG) steht eine 0, 

wenn es sich um einen Zahlenausdruck handelt; bei einem String 

wird 255 gesetzt. 

Wird ein Zahlenausdruck als Integerzahl erkannt, wird in der 

Adresse TYPFLG das 8.Bit gesetzt (gleich 128), andernfalls - 

namlich bei einer reellen Zahl - steht hier eine O. 

Die Auswertung erfolgt entsprechend den schon besprochenen Spiel- 

regeln: 

- Reelle Zahlenergebnisse werden im FAC1l abgelegt. 

- Integerzahlen werden in reelle Zahlen umgewandelt und eben- 

falls nach FACI1 gebracht. Daß es sich weiterhin um eine Inte- 

gerzahl handelt, wird in TYPFLG registriert. 

- Treten Strings auf, dann steht in (FAC1+3/FAC1+4) ein Zeiger, 

der auf den entsprechenden Stringdeskriptor zeigt.



- 242 - 

Die schon besprochene Routine VALKLA enthalt ubrigens das Pro- 

gramm VALPAR und kann genau so eingesetzt werden. 

Da wir schon etliche Zahlenparameter ausgewertet haben, versuchen 

wir uns im folgenden Beispiel an einem String. 

Beispiel: 

100 x$="pytretemarap":pa=20000:syspa,mid$(x$,3):print" '"'x$ 

ASSEMBLER-Programm "96-parwert" (C64): 

- 20000 jsr KOMMA ; prüft auf "," 

20003 jsr 44446 ; VALPAR wertet die Zeichenfolge nach dem 

(20003 jsr 48536) Komma bis zum Trennzeichen aus 

20006 jsr 44431 ;s STRTYP prüft PARFLG auf 255 

(20006 jsr 48521) 

Nachdem die Routinen VALPAR und STRIYP festgestellt haben, daß 

ein String zum Auswerten vorliegt, suchen sie auch noch die 

Lage des Strings im RAM. Jedoch wird dabei nicht die Zeichen- 

kette selbst gesucht, sondern die Anfangsadresse des Stringde- 

scriptors. Sie wird im FAC abgelegt und zwar in der 4. und 5. 

Stelle, also in FAC+3 und FAC+4A. 

Die Adressen (100/101) enthalten nun den Zeiger auf den Stringde- 

skriptor von mid$(x$,3). Dort steht als erstes die Länge des 

Strings, also 10. Holen wir uns dieses Byte ins (X)-Register: 

- 20009 Idy #0 
20011 lda (100),y 
20013 tax 

Nehmen wir - nur so zum Spaß - an, wir wollen den String von hin- 

ten nach vorn schreiben, dann sieht das so aus: 

- 20014 iny 

20015 lda (100),y 3; LO der Anfangsadresse des Strings holen 

20017 sta 94 ; und ablegen in FAC+O (Beispiel) 

20019 iny 

20020 lda (100),y ; HI der Anfangsadresse des Strings holen 

20022 sta 95 ; und nach FAC+1l bringen 

20024 txa 

20025 tay ; Länge des Strings als Zähler nach (Y)



- 243 - 

~- 20026 dey ; Zahler um eins erniedrigen 

20027 lda (94),y ; Zeichen aus dem String holen 

20029 jsr 65490 ; und ausgeben 

20032 tya ; Zähler nach (A) 

20033 bne 20025 ;s Ende erreicht? nein ===> weiter holen 

20035 rts 

Es ist etwas umständlich, sich vorzustellen, daß nach dem Auswer- 

ten ein Zeiger auf einen Zeiger zeigt; aber mit etwas Übung 

klappt auch das. 

Für eine Vereinfachung sorgt die ROM-Routine VALSTR. Sie legt 

nämlich die tatsächliche Anfangsadresse des Strings (nicht den 

Anfang des Stringpointers!) in (34/35) bzw. 80XX:(31/32) ab. Nen- 

nen wir diese Zeropageadressen STRADR (von Stringadresse). 

Diese Anfangsadresse steht auch noch in (X/Y) mit LO/HI; die Län- 

ge des Strings läßt sich dem (A)-Register entnehmen. 

Um die oben besprochene BASIC-Zeile 100 genauso ablaufen zu las- 

sen wie vorher, genügt jetzt folgendes ASSEMBLER-Programm: 

ASSEMBLER-Beispiel "97-stringwerte" (C64/ 8OXX in Klammern): 

— 20000 jsr KOMMA 

20003 jsr VALPAR 

20006 jsr 46755 ; VALSTR holt Stringanfang nach STRADR 

(20003 jsr 51125) und Stringlänge nach (A) 

- 20009 tay 

20012 dey 

Der Rest ist der gleiche wie im vorigen Programm (Ausdruck von 

hinten nach vorn). 

10.11 Übernehmen einer BASIC-Variablen mit GETVAR 
  

Haufig treten Fälle auf, wo man möglichst schnell - also in Ma- 

schinensprache - einer BASIC-Variablen einen Wert zuweisen oder 

sie anderweitig weiterverarbeiten muß. 

Die ROM-Routine GETVAR entnimmt dem BASIC-Text die Variable, 

untersucht sie auf numerisch (hier wieder auf integer oder reell)



- 244 - 

und liefert in (A/Y) mit LO/HI die Anfangsadresse der Variablen. 

Wurde die gesuchte Variable nicht gefunden (erstes Auftreten im 

Programmlauf), so wird sie im Variablenspeicherbereich eingerich- 

tet. 

Zum Abschluß dieses Kapitels lösen wir ein Problem, das sowohl 

diese Routine GETVAR benützt, als auch eine Wiederholung und 

Anwendung etlicher Abschnitte aus bisher Besprochenem enthält. 

Außerdem bietet das Maschinenprogramm (selbstverständlich wieder 

in Modulform) etwas, was in BASIC nicht möglich ist: 

Es liest in eine Stringvariable alle Zeichen und Zahlen ein, ohne 

Rücksicht darauf, ob sie eventuelle Trennzeichen sind oder nicht. 

Es handelt sich im folgenden also um eine Art INPUT-Befehl, aber 

um einen sehr komfortablen: Er liest nämlich von jedem angespro- 

chenen Gerät ein, also vom Bildschirm, von Diskette, vom Band 

oder von der Tastatur. Und das in einem Supertempo, so daß Sie 

z.B. eine vollgeschriebene DIN A4-Seite in 5 oder 6 Sekunden vom 

Floppy übernehmen können. Versuchen Sie das mal in BASIC. 

In BASIC-Spracherweiterungen sind manchmal solche Befehle enthal- 

ten. Man bezahlt dafür ganz ordentliche Preise. Wir machen uns 

so einen Befehl selbst. Nennen wir das Modul also "onstring" 

und gehen ans Werk. 

10.12 Ein vielseitiges Modul: "98-onstring" 
  

Aufgabe des Moduls und die notwendigen Parameter: 
  

-— Es muß ein Gerät angesprochen werden, das zuvor über eine logi- 

sche Adresse LA geöffnet wurde. (Das kann durchaus in BASIC 

geschehen.) 

Verwenden wir dazu - wie in BASIC auch - ein Doppelkreuz # und 

dahinter die File-Nummer LA. 

-— Eine Stringvariable ist notwendig, in die alle Zeichen eingele- 

sen werden können. Nennen wir sie einfach mal x$. 

Selbstverständlich kann das im Gebrauch dann auch eine Feldva- 

riable sein.



- 245 - 

- Um eine bestimmte Anzahl Zeichen zu übernehmen, geben wir auch 

die maximale Länge des Strings an mit ML. 

-— Schließlich bringen wir als Option noch ein Abbruchkriterium 

ein. Taucht der Code dieses Bytes auf, dann wird der String ab- 

geschlossen. Das Abbruchzeichen selbst übernehmen wir nicht 

mehr. (Wem das nicht gefällt, der baut diese Stelle eben ent- 

sprechend um.) 

- Falls dieses Modul später noch mit anderen Spracherweiterungen 

verknüpft werden sollte, kennzeichnen wir es mit ON. 

(Auf die Verknüpfungen kommen wir noch zurück.) 

Nehmen wir an, der Einsprung in das Modul erfolgt bei Adresse MO, 

dann sieht der BASIC-Befehl in allgemeiner Form so aus: 

sys(mo)(on#la,x$,ml,az) 

Als Beispiel zum besseren Verständnis: 

Nehmen wir an die Einsprungadresse für unseren Befehl sei 20001. 

sys 20001 (on#3,pr$,50,46) bedeutet, daß von dem Gerät, das mit 

der logischen Adresse #3 geöffnet wurde, 50 Zeichen geholt und in 

die Variable PR$ eingelesen werden sollen. Tritt das Zeichen mit 

dem Code 46 (also ein Punkt) auf, wird vorher abgebrochen. 

Wenn das Öffnen mit OPEN 3,3 erfolgte, dann werden ab der momen- 

tanen Cursorposition alle Zeichen eingelesen einschließlich An- 

fuhrungszeichen, Doppelpunkt und Komma, die hinter dem Cursor 

stehen. 

Der Aufbau (Ablauf) des Moduls '"98-ONSTRING": 
  

Ol Auf Klammer prüfen und das nächste Zeichen auf den Code von ON 

(145) vergleichen. 

02 Nächstes Zeichen holen und auf Code 35 von "#" vergleichen. 

03 Die nächste Zeichenfolge als Byte auswerten (das ist die logi- 

sche Adresse). 

Anschließend wieder die Kommaprüfung durchführen. 

04 BASIC-Variable aus dem Text lesen, die Anfangsadresse holen 

und diese Anfangsadresse in der Zeropage zwischenspeichern. 

Außerdem noch eine Prüfung durchführen, ob es sich bei der Va-



05 

06 

07 

08 

09 

10 

11 

12 

13 

14 

- 246 - 

riablen auch wirklich um eine Stringvariable handelt. Sonst 

gibt's später Schrott! 

(In BASIC 4 - nicht C64 - muß ein eventueller String mit dem 

gleichen Namen ungültig gemacht werden, damit die "Stringmüll- 

beseitigung" systemgemäß funktionieren kann. 

Dazu wird am Ende eines nicht mehr benötigten Strings der sog. 

"Trailer" (das sind zwei zusätzliche Bytes) mit der String- 

länge und mit dem Wert 255 belegt.) 

Erneute Kommaprüfung und Auswertung der nächsten Zeichenfolge 

als Byte. (Das ist jetzt die vorgegebene Stringlänge ML.) 

Diese Länge in einer freien Zeropageadresse (auch jede andere 

möglich) festhalten. 

Das nächste Zeichen erst auf "Klammer zu" prüfen; denn falls 

man kein Abbruchzeichen wünscht, sollte man hier den Befehl 

abbrechen können. 

Ansonsten wird die nächste Zeichenfolge als Byte ausgewertet. 

Auch die Form ASC(".") wird richtig interpretiert und mit 46 

festgehalten. Das ist z.B. das Abbruchzeichen. 

Den ASCII-Code in einer freien Adresse speichern. 

Eingabe-Einheit mit Hilfe der Filenummer aktivieren. 

Das Y-Register als Zähler mit O vorbelegen und ein Zeichen 

holen. Dieses Zeichen wird - wie alle folgenden - zunächst 

einmal in einem Kassettenpuffer zwischengespeichert. 

Überprüfen, ob das Abbruchzeichen vorliegt. 

Wenn ja, aus der Schleife hinausspringen. 

Statusbyte überprüfen, ob eventuell das Ende der Datei oder 

ein Fehler eingetreten ist. 

Wenn nein, überprüfen, ob die maximale Länge schon erreicht 

ist. Wenn nicht, weitere Zeichen holen. 

Ansonsten maximale Länge speichern und den Eingabevorgang 

abschließen. 

Nachdem alle Zeichen geholt wurden, wird der Zähler nun in je- 

dem Fall nach (A) übertragen. Das ist nun die endgültige



- 247 - 

Stringlange. Mit dieser in (A) kann nun der notwendige Platz- 

bedarf im Stringbereich eingestellt werden. Die entsprechende 

ROM-Routine heißt STRPLZ (Stringplatz). Dazu muß die gewünsch- 

te Stringlänge im Deskriptor der Variablen stehen. 

Die Stringlänge wird noch einmal geholt und als Zähler für die 

Einleseschleife hergerichtet: Dazu muß dieser Zähler zunächst 

einmal erhöht werden, weil die folgende Schleife sofort mit 

einer Dekrementierung beginnt (Erniedrigung um 1). 

15 Da wir uns vorhin die Anfangsadresse der Stringvariablen ge- 

merkt haben, können wir nun die gefundene Stringanfangsadresse 

in den Deskriptor schreiben. 

Damit ist die Variable endgültig eingerichtet. 

16 Schleife zum Einlesen der zwischengespeicherten Zeichen aus 

dem Kassettenpuffer in den vorbereiteten Stringplatz. 

(In BASIC 4.0 darf nicht vergessen werden, hinter die Zeichen- 

folge des Strings die Anfangsadresse des zugehörigen Varia- 

blennamens zu schreiben. Sonst kennt sich die "carbage 

collection"-Routine nicht mehr aus.) 

Die Beschreibung des Ablaufplans ist diesmal absichtlich etwas 

feiner gegliedert, weil es sich lohnt, anhand dieses Beispiels 

den Einsatz der einzelnen ROM-Routinen und die Eigenarten der 

CBM-Stringverwaltung noch einmal einzustudieren. 

Fur den C64 müssen die eingeklammerten Teile entfallen, da dieser 

noch mit dem alten BASIC 2.0 arbeitet. In diesem Dialekt gibt 

es vom String selbst keinen Rückverweis auf die Anfangsadresse 

der Stringvariablen. 

Verwendete Adressen der Zeropage: 
  

<163> = Filenummer aus dem BASIC-Text 

<165> = Code des Abbruchzeichens 

<166> = maximale Lange der zu holenden Zeichenkette 

<167/168> = Variablenname



- 248 - 

Nun das vielseitige ASSEMBLER-Programm "98-onstring" (C64): 
  

ol 

02 

03 

04 

05 

06 

07 

08 

09 

20000 

20001 

20004 

20006 

20008 

20011 

20013 

20016 

20019 

20022 

20025 

20028 

20031 

20033 

20036 

20039 

20042 

20044 

20046 

20048 

20051 

20054 

20056 

20060 

20062 

20065 

20067 

rts 

jsr 

cmp 

bne 

jsr 

lda 

jsr 

jsr 

jsr 

stx 

nop 

jsr 

jsr 

sta 

sty 

nop 

jsr 

jsr 

stx 

cmp 

beq 

jsr 

jsr 

stx 

jsr 

nop 

1 dx 

jsr 

ldy 

jsr 

44794 

#145 

20000 

115 

#35 

44799 

47006 

44797 

163 

45195 

4443] 

167 

168 

44797 

47006 

166 

#41 

20056 

44797 

47006 

165 

44791 

163 

65478 

#0 

65508 

Rucksprung, falls nicht "ON" als Erken- 

nungsbyte im Befehl auftritt 

KLMAUF prüft auf "(" 

nachstes Zeichen Code fur "ON"? 

zuruck ins BASIC, SYNTAX ERROR folgt 

CHRGET holt nächstes Zeichen 

Code fur "#" 

PRFZEI pruft, ob "#" vorhanden 

VALBYT wertet nachste Zeichenfolge als 

Byte aus 

KOMMA pruft auf "," 

(X) zunächst in (163) zwischenspeichern 

(X) erhielt die Filenummer von VALBYT 

GETVAR holt Variable aus dem Text und 

richtet sie im Variablenbereich ein 

STRTYP prüft auf Stringvariable 

Variablenadresse LO zwischenspeichern 

und HI ebenfalls 

Kommaprufung und nachstes Zeichen holen 

VALBYT wertet nachste Zeichenfolge aus 

das ist die maximale Lange des Strings 

---> zwischenspeichern 

folgt Trennzeichen ")"? 

ja ===> Sprung nach 08 

KOMMA-Pruf ung 

GETBYT holt nachste Zeichenfolge/Byte 

Abbruchzeichen zwischenspeichern 

KLAMZU: folgt Klammer zu? 

Filenummer holen 

und mit CHKIN Eingabe vorbereiten 

(Y) als Zahler 

GETIN holt Zeichen vom aktiven Kanal 

nach (A)



10 

1l 

12 

13 

14 

15 

16 

20070 

20072 

20074 

20046 

20078 

20080 

20083 

20084 

20086 

20088 

20090 

20097 

20099 

20101 

20103 

20105 

20107 

20110 

20112 

20114 

20116 

20117 

20119 

20122 

20124 

20127 

20129 

20130 

20132 

20134 

cmp 

beq 

ldx 

CPX 

beq 

sta 

iny 

cpy 

bne 

sty 

jsr 

nop 

lda 

ldy 

sta 

ldx 

ldy 

jsr 

ldy 

lda 

sta 

iny 

lda 

sta 

nop 

ldy 

lda 

sta 

iny 

Cpy 

bne 

rts 

165 

20088 

144 

#64 

20088 

828,y 

166 

20067 

166 

65484 

166 

#0 

(167),y 

167 

168 

46201 

#1 

98 

(167),y 

99 

(167),y 

#0 

828,y 

(98),y 

166 

20124 

° 

3 

e 

9 

® 

9 

e 

9 

° 

3 

5 

. 
U 

e 

9 

9 

. 

9 

’ 

- 249 - 

Abbruchzeichen? 

ja ===> Sprung Ende Eingabe 

STATUS 

auf Dateiende prufen 

erreicht ===> Sprung zu Eingabe Ende 

sonst Byte ablegen (Puffer) 

Zahler erhohen 

maximale Lange erreicht? 

nein ===> zur Einlese-Schleife 

Lange des geholten Strings ablegen 

und mit ELRECH Eingabe abschließen 

Länge nach (A) 

Index für folgende Ausgabe = OD 

neue Länge des Strings in Descriptor 

Adresse der Stringvariablen LO nach (X) 

dto. HI für die Routine 

STRPLZ schafft Platz für den String 

Zähler 1, weil bei O sonst das folgende 

Byte auf die Länge des Strings gesetzt 

würde (im Descriptor) 

LO der 

in den 

Zähler 

HI der 

in den 

Stringanfangsadresse 

Descriptor 

+1 

Stringanf angsadresse 

Descriptor 

Zahler auf O 

Byte aus dem Puffer holen 

und in den vorbereiteten Stringbereich 

Zahler +1 

maximale Lange erreicht? 

nein ===> weiter schreiben 

ja ---> fertig



- 250 - 

Anmerkung: 

Bei Strings ist sauber auseinanderzuhalten: 

womit die Adresse LO/HI gemeint ist, die 

in den Variablenbereich des RAMs - also direkt hinter den BA- 

SIC-Text - zeigt. Dort steht erst der Stringdeskriptor. Der 

zweistellige Name der Variablen liegt direkt davor. 

- der Variablenanfang, 

-— der Stringanfang, womit die Adresse LO/HI gemeint ist, die auf 

den Anfang der Zeichenkette im oberen RAM-Bereich zeigt. Dieser 

Stringanfang steht 

ersten finden wir die tatsächliche Länge des Strings. 

(Siehe dazu auch nochmals Abschnitt 8. 

als 2. und 3. Byte im Stringdeskriptor. Im 

10.13 "99-onstring80" für 40/80XX-Gerate 
  

den 40/80XX-Besitzern nicht den Spaß zu verderben, haben 

Mühe gemacht, auch für sie das "ONSTRING"-Modul zu 

erarbeiten, weil der Strings sich deutlich vom 

"alten" BASIC 2.0 unterscheidet. Um ein funktionsfähiges Modul 

zu bieten, stellen wir es hier noch einmal komplett mit Kommen- 

tar für den 40/80XX vor: 

Um auch 

wir uns die 

die Verwaltung 

ASSEMBLER-Programm "99-onstring80" (BASIC 4.0): 

01 20000 rts ; Rucksprung, falls nicht "ON" als Erken- 

nungsbyte im Befehl auftritt 

20001 jsr 48882 KLMAUF prift auf "(" 

20004 cmp #145 nachstes Zeichen Code fur "ON"? 

20006 bne 20000 zuruck ins BASIC, SYNTAX ERROR folgt 

02 20008 jsr 112 GETBYT holt nachstes Zeichen 

20011 lda #35 Code fur "#" 

20013 jsr 48887 PRFZEI pruft, ob "#" vorhanden 

03 20016 jsr 51412 VALBYT wertet nachste Zeichenfolge als 

Byte aus 

20019 jsr 48885 KOMMA pruft auf "," 

04 20022 jsr 65478 CHKIN macht IEEE-Bus empfangsbereit 

(X) enthält die notwendige Filenummer



05 

06 

07 

08 

09 

10 

20025 

20028 

20031 

20033 

20035 

20037 

20039 

20041 

20042 

20043 

20045 

20047 

20048 

20050 

20052 

20053 

20054 

20056 

20057 

20059 

20061 

20063 

20065 

20068 

20071 

20073 

20075 

20077 

20080 

20082 

20084 

20087 

20090 

20092 

jsv 

jsr 

sta 

sty 

ldy 

lda 

beq 

pha 

iny 

lda 

sta 

iny 

lda 

sta 

pla 

tay 

sta 

iny 

bne 

inc 

lda 

sta 

jsr 

jsr 

stx 

cmp 

beg 

jsr 

stx 

ldy 

jsr 

sta 

Cpy 
beq 

49451 

48521 

70 

71 

#0 

(70),y 
20065 

(70),y 

3] 

(70),y 
32 

(31),y 

20061 
32 
#255 

(31),y 

48885 

91412 

190 

#41 

20082 

21409 

191 

#0 

65508 

826, y 

190 

20107 

- 251 - 

GETVAR holt Variable aus dem Text und 

richtet sie im Variablenbereich ein 

pruft, ob Variable auch Stringvariable ist 

Variablenadresse LO 

: und HI nach (70/71) 

(Y) als Index 0 

Stringlänge aus Deskriptor nach (A) holen 

Lange O0 ===> Sprung zu Teil 07 

Stringlänge auf Stack retten 

<Y>=zl als Zähler 

LO des Stringanfangs holen 

; nach (31) zwischenspeichern 

<Y>=2 als Zähler 

; und HI des Stringanfangs holen 

; und nach (32) bringen 

Stringlänge wieder vom Stack abheben 

Stringlänge nun als Index nach (Y) 

und als erstes Trailerbyte hinter die ur- 

sprüngliche Zeichenkette setzen 

Zähler um 1 erhöhen 

falls der Wert von 255 auf O springt 

HI-Byte der Stringanfangsadresse erhöhen 

255 ist Zeichen für entwerteten String 

als 2. Trailerbyte setzen 

;s Kommaprüfung und nächstes Zeichen holen 

VALBYT wertet nächste Zeichenfolge aus 

; das ist die maximale Länge des Strings 

folgt Trennzeichen ")"? 

Ja ===> Sprung nach 09 

GETBYT holt nächstes Byte 

s Abbruchzeichen nach (191) 

(Y) als Zahler 

* GETIN holt Zeichen vom aktiven Kanal 

nach (A) 

Zwischenspeichern im Kassettenpuffer 

; maximale Länge erreicht? 

ja ===> Sprung nach 15



11 

12 

13 

14 

15 

16 

20094 

20096 

20098 

20100 

20102 

20103 

20105 

20107 

20108 

20110 

20113 

20115 

20116 

20117 

20120 

20122 

20123 

20126 

20128 

20130 

20132 

20133 

20135 

20137 

20138 

20140 

20142 

20144 

20146 

20148 

20149 

20151 

20153 

20155 

20157 

cmp 

beq 

lda 

bne 

iny 

bne 

ldy 

tya 

sta 

jsr 

ldy 

iny 

dey 

lda 

sta 

tya 

bne 

nop 

ldy 

lda 

sta 

iny 

lda 

sta 

iny 

lda 

Sta 

ldy 

lda 

sta 

cle 

inc 

bec 

inc 

lda 

sta 

191 

20107 

150 

20105 

20084 

#255 

190 

20590 

190 

826,y 

(95),y 

20116 

#0 

190 

(70),y 

95 

(70),y 

96 

(70),y 

190 

70 

(95),y 

95 

20155 

96 

71 

(95),y 

5 

- 252 - 

Abbruchzeichen in (A)? 

ja ===> Sprung nach 15 

Status prüfen (Ende?) 

ungleich 0 ===> Sprung nach 14 

ansonsten Zähler erhöhen 

und nächstes Zeichen holen, 

falls Status, 

USW. 

also Dateiende ---> <Y>=255 

Zähler, also endgültige Länge des aufge- 

nommenen Strings nach (A) 

und nach (190) 

STRPLZ stellt Stringplatz bereit, der 

Anfang der neuen Zeichenkette befindet 

sich anschließend in (95/96) 

Stringlänge holen als Zähler 

und zunächst um 1 erhöhen 

Schleife zum Eintragen der Bytes beginnt 

mit Erniedrigen des Zählers 

Zeichen aus Kassettenpuffer holen 

und an vorbereiteten Platz legen 

Übertragen nach (A) nur wegen Endeprüfung 

Ende nicht erreicht ===> weitermachen 

Index O 

Länge holen 

und in 

Zähler 

LO des 

in den 

Zähler 

Hi des 

in den 

den Stringdeskriptor eintragen 

erhöhen 

Stringanfangs 

Stringdeskriptor 

erhöhen 

Stringanfangs 

Stringdeskriptor 

Länge wieder holen 

Variablenanfang LO holen 

und als erstes Trailerbyte setzen 

LO des Stringanfangs erhöhen 

kein Überlauf ===> eine Zeile überspringen 

ansonsten HI des Stringanfangs erhöhen 

Variablenanfang HI holen 

und als 2.Trailerbyte setzen



- 253 - 

17 20159 jsr 48879 ; KLAMZU prift auf ")", holt nachstes 

Zeichen 

20162 jmp 48054 ; AbschluB mit CLALL - Rücksprung 

Test des "ONSTRING"-Moduls mit "100-testonstring": 
  

Schreiben wir nun ein kleines BASIC-Programm, das sowohl die 

Funktionstüchtigkeit des Moduls als auch seine Wirkungsweise be- 

stätigt. 

Belassen wir es zunächst im Bereich von (20000) bis (20165) und 

grenzen BASIC entsprechend mit HIMEM 20000 ab. 

Zunächst überprüfen wir, ob es - wie versprochen - aus dem Bild- 

schirm-RAM liest (Zeilen 100 bis 180). 

Anschließend lesen wir ein paar Zeilen aus einer SEQ-Datei, die 

wir hier mit "segtest'" benannt haben. Sie haben sicher irgendeine 

solche Datei auf Diskette und können den entsprechenden Namen 

einsetzen (Zeile 200). 

Sie beherrschen BASIC sicher so gut, daß sich ein zusätzlicher 

Kommentar erübrigt: 

50 poke 55,0:poke56,70 : poke51,0 : poke 52,70 :' himem/fretop 

100 dim x$(20):open3,3 : ' datei auf bildschirm 

110 ox=20001 : ' startadresse des moduls 

115 print chr$(19)"0123456789abcedefghijklm..."chr$(19); 

125 for n=Otol9 : sys (ox) (on#3,x$(n),n+1) 

130 print chr$(19); : ' home 

140 next n 

150 print: for n=Otol9 : printx$(n) : next n : 'ausdrucke 

160 print (peek(51)+256:peek(52)) : ' stringzeiger 

170 for i=0t0200 : next i : "warten 

180 print chr$(147);:goto 115 : ' screen clr 

200 open8,8,8,"seqtest" 

210 for n=ltod 

220 sys20001(on#8,x$(n),n) 

230 next n 

240 close 8 

250 for n=lto5 : printx$(n): next n 

260 end 

Starten Sie nun mit RUN, dann erscheinen auf dem Bildschirm immer 

größere Teilstücke der ersten Bildschirmzeile.



- 254 - 

Mit dem Ausdruck des Stringzeigers (51/52) aus der Zeropage kön- 

nen Sie feststellen, daß auch die Stringmüllbeseitigung einwand- 

frei funktioniert: Der Zeiger nimmt einen immer kleiner werden- 

den Wert an, bis er an die Grenze des Variablenbereichs stößt. 

Nach der "carbage collection" springt er dann sofort wieder an 

seine Übergrenze. 

Damit Sie diese Zeigerausgabe auch verfolgen können, haben wir 

eine kleine Warteschleife eingebaut (Zeile 155), bevor die 

nächste Ausgabenserie erfolgt. 

Beginnen Sie mit RUN 200, dann läuft die Diskette an und holt 

die entsprechenden SEQ-Daten von der Diskette. 

10.14 Verknüpfen von Modulen   

Will man in einem Programm mehrere verschiedene Module aufrufen, 

so ist es umständlich, jedes einzelne mit SYSXXXX anzuspringen, 

weil jedes Modul eine andere Einsprungadresse hat. 

Verkettet man jedoch die benötigten Maschinenprogramme, dann ge- 

nugt eine SYS-Adresse. Voraussetzung ist, daß im Maschinenmodul 

selbst der richtige Sprung zum richtigen Befehl gefunden wird. 

Nehmen wir an, wir haben die beiden Module "irg" und "him" zur 

Verfügung. Dann legen wir eine SYS-Adresse fest, bei der ein Ein- 

sprung von BASIC aus erfolgt, z.B. (20000) und legen eine Varia- 

ble dafür an: mo=20000. 

Wenn "irqg" ein Modul ist, das den Interruptvektor auf eine be- 

stimmte Adresse setzt, z.B. auf 18000, dann sieht der BASIC-Be- 

fehl etwa so aus: 

sys(mo)(irq,18000) 

soll HIM ein Befehl sein, der die RAM-Obergrenze bestimmt, um 

eventuelle Maschinenprogramme zu schützen, können wir vielleicht 

so vorgehen: 

sys(mo) (him, 18000) 

Die Unterscheidung der Befehle wird also nicht uber die SYS-



- 255 - 

Adresse getroffen, sondern über die Syntax dahinter. 

Damit haben wir unser weiteres Vorgehen bereits festgelegt: 

Im ersten Teil des Maschinenprogramms muß abgefragt werden, ob 

die gewünschte Zeichenfolge des ersten Befehls existiert. 

Wenn ja, wird dieses Modul abgearbeitet. 

Wenn nicht, wird zum Beginn des nächsten Moduls gesprungen, wo 

wiederum zuerst auf richtige Schreibweise des Befehls kontrol- 

liert wird. 

Man muß nicht unbedingt so streng wie das CBM-BASIC sein und 

bei kleinen Fehlern gleich das Programm zum Stillstand bringen. 

Vielleicht genügt es dem einen oder anderen bei "irg" nur auf 

"ir" zu prüfen oder gar bloß auf "i". 

Das ist jedoch Geschmacksache, worüber wir hier nicht streiten 

wollen. 

Folgen weitere Module, wird in derselben Manier weitergeprüft. 

Wird auch beim letzten Modul nicht die richtige Zeichenfolge 

gefunden, erfolgt der Rücksprung ins BASIC, was automatisch 

einen SYNTAX ERROR o.a. auslöst; denn die nächsten Zeichen sind 

in aller Regel nicht BASIC-gerecht. 

Schematisch laßt sich dieses Verfahren so darstellen: 
  

Einsprung bei MO 

Modul l: Zeichenfolge richtig? 

ja ---> Modul bearbeiten 

nein ===> Sprung zu Modul 2 

Modul 2: Zeichenfolge richtig? 

ja ---> Modul 1 bearbeiten 

nein ===> Sprung zu Modul 3 

Modul N: Zeichenfolge des letzten Moduls richtig? 

ja ---> letztes Modul bearbeiten 

nein ===> Rücksprung nach BASIC



- 256 - 

Jetzt sollte man noch darauf achten, daß die Sprungbefehle nur 

aus BRANCH-Anweisungen bestehen. Es läßt sich dann ohne weiteres 

ein Modulpaket erzeugen, daß aus beliebig vielen - soviel der 

Speicherplatz eben zuläßt - Programmteilen besteht. Dieses Paket 

bringen wir dann beim entsprechenden BASIC-Programm unter, am 

besten im oberen RAM-Bereich. 

? 

Die Module können einzeln erstellt und abgespeichert werden. 

Verknüpft man mehrere miteinander, so schiebt man den ersten Be- 

fehl des nachfolgenden Moduls auf das RTS des vorhergehenden. 

Schauen wir uns dazu ein Beispiel an: 

Modul 1: IRQ-Vektor setzen mit sys(mo)(irq,xx) 

ASSEMBLER-Programm "1l0l-irgset" (C64):   

- 20000 1dx 122 ; Programmzeiger LO 

20002 stx 165 ; Tetten 

20004 ldx 123 ; Programmzeiger HI 

20006 stx 166 ; ebenso, falls nicht dieses Modul aufgerufen 

werden soll 

20008 jsr 44794 s KLMAUF "(" ? 

20011 cmp #73 ;s nächstes Zeichen "i" ? 

20013 bne 20050 ; nein ===> Sprung zum Schlußteil 

- 20015 jsr 115 ; nächstes Zeichen holen mit CHRGET 

20018 cmp #82 ; "tr"? 

20020 bne 20050 ;s nein ===> Modulende 

- 20022 jsr 115 ; nächstes Zeichen holen 

ee eventuell Uberprufen (siehe oben) 

20025 jsr 115 ; nachstes Zeichen holen 

20028 jsr 44797 ; KOMMA "," ? 

- 200351 jsr 43371 ; INTADR wertet Zeichenfolge als Integer- 

zahl aus. LO/HI in (20/21) 

20034 sei ; Interrupt abstellen 

20035 lda 20 ; LO des neuen IRQ-Vektors 

20037 sta 788 ; nach IRQ/LO 

20040 lda 21 ; HI 

20042 sta 789 ; nach IRQ/HI 

20045 cli ; Interruptflag wieder zurücksetzen 

20046 jsr 44791 ; KLAMZU ")'" ? 

20049 rts ;s und zurück nach BASIC



- 257 - 

- 20050 Ilda 165 ; LO des Programmzeigers 

20052 sta 122 ;s hinter SYS-Aufruf stellen 

20054 lda 166 ; HI des Programmzeigers 

20056 sta 123 ;s ebenso 

20058 rts 

Wenn wir das Verschieben von vornherein vermeiden wollen, dann 

beginnen wir das nächste Modul HIM am besten gleich mit der 

Adresse (20056). Jedes für sich kann aber einzeln abgespeichert 

werden. 

Modul 2: RAM-Obergrenze festlegen mit sys(mo)(him,xx) 

ASSEMBLER-Programm "102-himemset" (C64): 
  

- 20058 lda 122 .... usw. wie oben (Retten des Programmzeigers) 

- 20066 jsr KLMAUF ; "(" ? 

20069 cmp #72 ; folgt "h" ? 

20071 bne 20106 ; Sprung ans Ende 

... Zeichen holen und eventuelle weitere Überprüfungen ... 

- 20092 jsr INTADR ; holt Integerzahl nach LINNUM 

20095 Ida 20 ; LO von LINNUM 

20097 sta 55 ; nach oberem RAM-Zeiger LO : MAXMEM-LO 

20099 lda 21 ; HI 

20101 sta 56 ; nach oberem RAM-Zeiger HI: MAXMEM-HI 

20103 jsr KLAMZU ; ")" ? 

20106 rts ;s und zurück ins BASIC 

Für weitere Verknüpfungen empfiehlt es sich, auch hier den Pro- 

grammzeiger zwischenzuspeichern und eine entsprechende Ergänzung 

wie im obigen Beispiel anzuhängen. 

Werden die Module länger, so kann es vorkommen, daß die Sprung- 

weite den Wert 128 überschreitet. Um die verschiebbare Modulform 

beizubehalten, sind dann Zwischensprünge einzubauen, wie wir sie 

bereits kennengelernt haben. 

Baut man sich einen ganzen Befehlssatz von größerem Umfang, so 

lohnt es sich manchmal, in die freien Steckplätze sog. SOfF T-ROMs 

einzusetzen, die den BASIC-Arbeitsspeicher nicht belasten. 

(Beim C64 ist diese Möglichkeit ohnehin vorgesehen.)



- 258 - 

Diese SOFTROMs haben gegenüber den EPROMs, wie sie z.B. für die 

Spracherweiterung EXBASIC im Handel sind, den entscheidenden Vor- 

teil, daß sie jederzeit mit anderen Programmen (nur Maschinenpro- 

grammen!) belegt werden können. Der Nachteil aber ist, daß sie 

von einer Speichereinheit aus erst geladen werden müssen, was je- 

doch mit einem Starterprogramm - wie wir gelernt haben - auch 

kein besonderes Problem ist. 

10.14 Modulverknüpfung mit einer Sprungleiste 
  

Wen es stört, daß bei jedem Einzelmodul zuerst der Programmzeiger 

gerettet und dann wieder zurückgesetzt werden muß, arbeitet am 

besten mit einer Sprungleiste für die verschiedenen Einsprung- 

adressen. 

Vorteil: Die Module selbst können stehen, wo sie wollen. Die Ein- 

sprungadressen müssen aber bekannt sein. 

Nachteil: Eine Gesamtverschiebung ist nicht möglich. 

Ein Beispiel dazu: 

Nehmen wir an, unsere beiden Module "irgset" und "himemset" ste- 

hen ab (10100) bzw. (10200). 

Der Einsprung ins Modulpaket soll bei (10000) erfolgen. Das ist 

also der SYS-Aufruf. 

Jetzt wird im Sprungverteiler zuerst nach dem Buchstaben "i" ge- 

fragt. Ist er nicht vorhanden, wird gleich zur zweiten Modulüber- 

prüfung verzweigt. Dort wird das gleiche erste Byte mit "h" ver- 

| glichen usw. 

Erst bei Gleichheit des ersten Buchstabens wird der zweite ge- 

prüft. Das spart Zeit. 

Genauso fährt man fort, wenn mehrere Module hintereinander auf- 

gerufen werden können: Erst wenn die ersten beiden Buchstaben 

passen, wird der dritte überprüft usw. 

Für umfangreiche Modulpakete kann man sich dazu auch eine Prüf- 

leiste ausdenken.



- 259 - 

ASSEMBLER-Beispiel "103-modsprung" (allg.): 

01 10000 jsr KLMAUF ; "(" ? 

10003 cmp #73 ; "1" ? 

10007 bne 10030 ; nein ===> zur nächsten Modulprüfung 

10007 jsr CHRGET ; nächstes Zeichen holen 

10010 cmp #82 ; "r= 2 

10012 bne 10037 3; nein ===> evt. 2. Zeichen im nachsten Teil 

10014 jsr CHRGET ; nächstes Zeichen holen 

10017 cmp #81 ; "a" ? 

10019 bne 10044 ;s nein ===> evt. 3. Zeichen im nächsten Teil 

10021 jsr CHRGET ; nächstes Zeichen nach (A) 

10024 jmp 10100 ; gefunden ---> Modul "irg" anspringen 

02 10030 cmp #72 ; "h" ? 

10032 bne 10054 ; nein ===> Ende 

10034 jsr CHRGET ; nachstes Zeichen 

10037 cmp #73 ; "i" ? 

10039 bne 10054 ; nein ===> Ende 

10041 jsr CHRGET ; nächstes Zeichen 

10044 cmp #77 ; "m"? 

10046 bne 10058 nein ===> Ende 

10048 jsr CHRGET ; nächstes Zeichen nach (A) 

10051 jmp 10200 ; gefunden ---> Modul "him" anspringen 

03 10054 rts ; 

04 10100 jsr INTADR .... Modul "irg" 

05 10200 jsr INTADR .... Modul "him" 

Auf diese Weise wird allerdings auch bei der Zeichenfolge "irm" 

oder "iim" ein Modul aufgerufen. Doch wenn dort nicht die richti- 

gen Angaben stehen, erfolgt der SYNTAX ERROR. 

Probieren Sie selbst aus, wie Sie Ihre Verknüpfungen anlegen 

können. Wir wollten Ihnen nur ein paar Anregungen geben. 

Aufgaben: 

Schreiben Sie je ein Modul für die Befehle DEEK und DOKE und ver- 

knüpfen Sie beide zu einer Einheit.



- 260 - 

Wandeln Sie die bereits besprochene PRINTUSING-Routine entspre- 

chend ab und verknüpfen Sie sie mit den bereits vorhandenen Be- 

fehlen (z.B. ON#, DEEK, DOKE, PRINT AT, IRQ, HIM und weiteren). 

Anmerkung: 

Der Befehl DEEK(X) erzeugt aus den Adressen (X/X+1) eine Integer- 

zahl für <X>=L0 und <X+1l>=HI dieses Zahlenwerts. 

Zusammenfassung: 
  

Wenn Sie auf diese Art und Weise einen Befehlssatz erstellen, der 

Ihren Ansprüchen gerecht wird, können Sie Ihre folgenden BASIC- 

Programme recht schnell und bequem erstellen. 

Einen Nachteil hat die ganze Sache noch: Ihre neuen, zusätzlichen 

Erweiterungen müssen alle mit SYS(MO) aufgerufen werden. 

Um neue BASIC-Worte direkt zu akzeptieren, bedarf es aller- 

dings einiger Umbauten und Umleitungen. Das kostet beim Programm- 

lauf aber Zeit, und gerade die wollten Sie doch mit Ihren Modulen 

einsparen. 

Die SYS-Aufrufe der Module stellen eine brauchbare Lösung dar, 

eigene Befehle innerhalb eines BASIC-Programms einzusetzen. 

Verknüpft man die einzelnen Module, so kommt man mit einer einzi- 

gen Einsprungadresse aus. 

Die Syntaxprüfungen können von den Maschinenprogrammen selbst 

übernommen werden. Dabei bleibt es dem Programmierer freige- 

gestellt, wie scharf diese Prüfungen sind. 

Beginnen z.B. zwei Module mit dem gleichen Buchstaben, so ist auf 

jeden Fall das erste und das zweite Zeichen zu untersuchen, damit 

es nicht zu Fehlinterpretationen kommt.



- 261 - 

  

BASIC-Text-Routinen und -adressen 

Label C64 40/80XxX 
' 1 

FACIL 97...102=$61...66 94...100=$5e...64 

FAC+1/2 98/99=$62/63 95/96=$5f /60 

FAC+3/4 100/101=$64/65 97/98=$61/62 

STRADR 34/35=$22/23 31/32=$1f/20 

Adresse des Stringanfangs nach VALSTR 

  

VARADR 71/72=$47/48 68/69=$44/45 

Adresse des Variablenanfangs LO/HI nach GETVAR 

auch in (A/Y) 

LINNUM 20/21=$14/15 17/18=$11/12 

BASIC-Zeilennummer LO/HI 

PARFLG 13=$0d 07=$07 

TYPFLG 14=$0e 08=$08 

Label C64 40/80XxX 
' ' 

GETBYT 47003=$b79b 51409=$c8d1 

BASIC-Text von (Programmzeiger +1) bis Trennzeichen 

als Byte-Wert ---> (X) 

VALBYT 47006=$b79e 51412=$c8d4 

BASIC-Text von Programmzeiger bis Trennzeichen als 

Byte-Wert ---> (X) 

CHRGET 00115=$0073 00112=$0070 

erhöht Programmzeiger, BASIC-Textzeichen ---> (A) 

CHRGOT 00121=$0079 00118=$0076 

belaBt Programmzeiger, holt noch einmal das letzte 

BASIC-Textzeichen nach (A) 

VAREAL 44426=$ad8a 48516=$bd84 

BASIC-Text wird als reelle Zahl gemäß den Rechenre- 

geln berechnet bis zum Trennzeichen ---> FAC]



VALINT 

INTADR 

VALPAR 

VALSTR 

STRADR 

VALKLA 

GETVAR 

VARADR 

GETFIP 

STRPLZ 

BPRINT 

- 262 - 

45493=¢$blb5 49888=$c2e0 

BASIC-Text wird bis Trennzeichen als Ganzzahl aus- 

gewertet <FAC1+3/FAC1+4>=HI/LO 

43371=$a96b 47350=$b8f6 

Ziffernfolge aus BASIC-Text als Integerzahl: 

<20/21>=<$14/15> LO/HI <17/18>=<$11/12> 

44446=$ad9e 48536=$bd98 
wertet Zeichenfolge bis Trennzeichen als Zahl oder 

string aus: 

Zahl ---> FAC1, <PARFLG>=0, <TYPFLG>=128( integer) 

oder <TYPFLG>=0(reell) 

String: Zeiger auf Deskriptor = <FAC1+3/FAC1+4> 

<PARFLG>=255 

46755=$b6a3 51152=$c7b5 

Aufruf nach VALPAR 

£34/35>=<$22/23> <31/32>=<$1f/20> 

Stringlänge = <A> 

44785=$aefl 48873=$bee9 

wertet Zeichenfolge zwischen "(" und ")" aus wie 

VALPAR 

45195=$b08b 49451=$c12b 
liest Zeichenfolge als Variablenname, sucht sie 

oder legt sie an mit Variablenanfang LO/HI in 

(71/72)=($47/48) (68/69)=($44/45) 

57812=$eld4 . 62589=f47d 

‘holt Dateinamen mit eventuell vorangestellter Lauf- 

werknummer, Gerätenummer und eventuelle Sekundär- 

adresse; setzt diese fileparameter in die Zeropage 

Standard-Interrupt-Einsprung 

46197=$b475 50590=$c59e 

mit <A>=Stringlange wird entsprechend neuer Platz 

im Stringbereich "angehangt". 

<FACL+1/F AC1+2>=Stringanf angsadresse 

43682=$aab5 47805=$babd 

druckt Zeichenfolge ab PRGPTR als String aus, dazu 

Programmzeiger auf erstes Zeichen im BASIC-Text



- 263 - 

Trennzeichen - Syntax-Routinen 
  

KLMAUF 44794=$aefa 48882=$bef 2 

<A>=40 ---> kein Syntaxfehler, Programmzeiger erho- 

hen und nächstes Zeichen ---> (A) 

BASIC-Zeilennummer LO/HI 

KLAMZU 44791=$aef7 48479=$beef 

| <A>=41l (Klammer zu)? - sonst wie oben 

KOMMA 44797=$aefd 48885=$bef5 

<A>=44 (Komma ?) - sonst wie oben 

PRFZEI 44799=$aeff 48887=$bef 7 

<A> beliebig - sonst wie oben 

BASIC-Text von (Programmzeiger +1) bis Trennzeichen 

STRTYP 44431=$ad8f 48521=$bd89 

<PARFLG>=255 ---> keine Fehlermeldung, also liegt 

ein String vor (nach der Auswertung mit VALPAR oder 

VALSTR o.ä.) 

NUMTYP 44428=$ad8c 48519=$bd87 

<PARFLG>=0 ---> keine Fehlermeldung, also liegt 

eine numerische Variable nach der Auswertung des 

BASIC-Textes vor 

ERRXX 42082=$a462 46048=$b3e0 

druckt Fehlermeldung 

ERROR 42042=$a43a 46031=$b3cf 

druckt Fehlermeldung, dazu 

Offset Fehlernummer 

in (X) 
Alle Kanale werden geschlossen, nicht jedoch die 

eventuell offenen Dateien. 

In allen Fällen, in denen der BASIC-Text die geforderten und zur 

Überprüfung vorliegenden Zeichen nicht enthält, erfolgt eine Feh- 

lermeldung entsprechend dem CBM-System. 

Mit ERROR muß man dagegen die Art der Fehlermeldung durch die 

Belegung von (X) selbst wählen.





11 
Diverse ROM-Hilien — 

Anwendungen





- 26/7 - 

ll Diverse ROM-Hilfen und Module 

11.1 BASIC-Start vom Maschinenprogramm aus mit MRUN 
  

BASIC-Programme oder -Programmteile lassen sich auch von einem 

Maschinenprogramm aus starten. 

Dabei unterscheiden wir zwei Möglichkeiten: 

Den Kaltstart, der alle Zeiger (auch die Variablenzeiger) zurück- 

setzt und den Warmstart, bei dem die Variablen erhalten bleiben. 

Vor dem Start mit MRUN müssen die Zeiger entsprechend einge- 

stellt werden. Auch das übernehmen die ROM-Routinen: 

KALTPT stellt die Zeiger fur einen Kaltstart, 

WARMPT setzt sie fur einen Warmstart. 

AnschlieBend kann die Routine MRUN aufgerufen werden. 

Beispiel für einen Warmstart "104-warmstart" (C64/80XX): 

-— jsr 42638 ; WARMPT richtet die Zeiger so ein, daB die 

(jsr 46626) Variablen erhalten bleiben. 

- jsr 42948 ; MRUN startet das BASIC-Programm von der ersten 

(jsr 46943) Zeile an. 

11.2 Warmstart mit MGOTO ab einer bestimmten Zeilennummer 
  

Mit MGOTO läßt sich ein BASIC-Programm mit einer beliebigen An- 

fangszeile starten. Diese Zeilennummer muß aber existieren. 

Beispielsweise ist es möglich, diese Routine einzusetzen, um eine 

bestimmte Taste (oder Tastenfolge) zu einer Funktionstaste umzu- 

bauen, die es erlaubt, den Programmlauf abzubrechen und an einer 

vorher bestimmten Stelle, z.B. einem Menue, wieder auf zunehmen.



- 268 - 

Beispiel: 

Die Funktionstaste F2 soll so eingerichtet werden, daß sie das 

laufende BASIC-Programm abbricht und bei der BASIC-Zeile 2000 

wieder aufnimmt. 

Taste F2 hat die Nummer 4 und wird mit SHIFT bedient. Daher muß 

auch das SHIFT-Flag SHIFLG abgefragt werden. 

Ablauf von "105-goto2000": 
  

setzen wir den IRQ-Vektor auf den Anfang unseres Moduls, dann 

müssen wir damit rechnen, daß der Abbruch mitten in einer Routine 

geschieht, die wiederum Unterprogramm der Interpreterschleife 

ist. Das kann zu Komplikationen führen. 

Ol Als erstes prüfen wir deshalb, ob das Ende einer BASIC-Zeile 

erreicht ist. Das letzte von der CHRGET-Routine geholte Zei- 

chen muß eine O sein. Ist dies nicht der Fall, läuft der Stan- 

dard-Interrupt ab (Teil 05). 

02 Ist gerade ein BASIC-Zeilenende erreicht, wird geprüft, ob die 

Tasten SHIFT und Fl gedrückt sind. 

03 Die anzuspringende Zeilennummer wird in LINNUM und vor- 

sichtshalber auch in BASLIN bereitgestellt. 

04 Jetzt kann die Routine MGOTD angelaufen werden. 

05 Sprung zur Standard-Interrupt-Routine. 

ASSEMBLER-Beispiel "105-goto2000" (C64/80XX): 

01 20500 jsr 121 ; CHRGOT holt das Zeichen aus dem BASIC- 

(jsr 118) text, auf dem der Programmzeiger gerade 

steht 

20503 bne 20531 ; ungleich 0, also kein Zeilenende ===> 

Sprung zum Standard-Interrupt (05) 

02 20505 lda 203 

(lda 151) 
20507 cmp #4 Taste F1/F2 ? (nur C64) 

20509 bne 20531 3; nein ===> zu Teil 05 

20511 lda 654 ja ---> SHIFT-Flag SHIFLG prufen 

(lda 152) 
20514 beq 20531 ; nicht gedrückt ===> Sprung zu Teil 5 

KEY ? = welche Taste gedrückt? 

w
e
 

w
e
 

w
e



- 269 - 

03 20516 lda #208 ; LO-Byte von 2000 

20518 sta 20 ; nach LINNUM-LO 

(sta 17) 

20520 sta 5/7 ; nach BASLIN-LO 

(sta 54) 

20522 lda #7 ; HI von 2000 

20524 sta 21 ; nach LINNUM-HI 

(sta 18) 

20526 sta 58 ; und BASLIN-HI 

(sta 55) 

04 20528 jsr 43171 ; MGOTO unterbricht das BASIC-Programm 

(jsr 47155) und beginnt wieder bei Zeile 2000 

05 20531 jmp 59953 ; IRQ - Routine (Standard) 

(jmp 58453) 

Damit dieses Programm seinen Zweck erfüllt, müssen zwei Bedin- 

gungen gegeben sein: 

- Der IRQ-Vektor steht auf 20100, wo "105-goto200" beginnt. 

—- Die BASIC-Zeile 2000 muß vorhanden sein. 

Wenn Sie das "him"-Modul noch bei (20000) stehen haben, oder den 

Befehl "irg" zur Verfügung haben, kann ein Testprogramm etwa so 

aussehen: 

Beispiel '"106-gototest'" - BASIC 

100 sys20000(irg, 20100) 

200 print'test "; 

300 goto 200 

. beliebige weitere Zeilen 

2000 print chr$(147)"goto 2000 erreicht" 

2100 print"test positiv" 

  

Anmerkung: 

Das Programm ist nicht hundertprozentig abgesichert gegen fehler- 

meldungen. 

Wollen Sie sich nicht auf eine feste Zeilennummer beschränken, 

dann programmieren Sie eben das Laden der Zeilennummer LO/HI über 

zwei freie Adressen, die Sie beliebig belegen können. Passen Sie 

aber auf, daß Sie nicht irgendwelche Zeropage-Adressen erwischen, 

die für den BASIC-Programmlauf von Bedeutung sind.



- 2/0 - 

11.3 Startadresse einer BASIC-Zeile suchen mit BLINAD   

Um die Adresse zu suchen, wo die Programmzeile mit einer bestimn- 

ten Zeilennummer beginnt, belegt man wie oben die Zeropage-Adres- 

sen LINNUM mit LO/HI der Zeilennummer. 

Die Routine BLINAD (BASIC-Line-Adresse) sucht von Beginn des 

BASIC-Textes an nach dieser Nummer. 

Wird sie gefunden, steht sie anschlieBend mit LO/HI in LINAD, 

ist sie nicht vorhanden, steht dort die Adresse der nachsthoheren 

Zeilennummer. 

ASSEMBLER-Beispiel "107-basiczeile" (C64): 

- lda #48 ; LO von Zeilennummer 8240 

sta 20 ; nach LINNUM-LO 

lda #32 ; HI von 8240 

sta 21 ; nach LINNUM-HI 

- jsr 42515 ; BLINAD sucht den BASIC-Text nach dieser 

(jsr 46499) ; Zeilennummer 8240 ab 

Das Ergebnis steht beim C64 in (95/96) mit LO/HI 

und beim 40/80XX in (92/93). 

- lda 96 ; HI der gefundenen BASIC-Zeilennummer nach (A) 

ldx 95 ; LO nach (X) zur Ausgabe mit 

jmp 48589 ; INTOUT 

(jmp 53123) 

11.4 Umschalten von Text- und Graphikmodus   

11.4.1 Text/Graphik bei den 40/80XX-Geräten 

Schauen wir uns ausnahmsweise zunächst die Geräte mit BASIC 4.0 

an, weil es hier mehrere Möglichkeiten gibt: 

Im Textmodus wird normalerweise zwischen zwei aufeinanderfolgen- 

den Zeilen ein Zwischenraum ausgespart, während im Graphikmodus 

die nächste Zeile direkt an die vorhergehende angeschlossen wird.



- 271 - 

Will man nun z.B. mit Graphikzeichen arbeiten, aber nicht auf die 

Abstände verzichten, dann setzt man den Textmodus mit TEXMOD 

und wählt anschließend den Graphikzeichensatz, indem man das 

Kontroll-Register PCR mit 12 belegt: 

ASSEMBLER-Beispiel '"108-texmod" (80XX): 

- jsr 57368 ; TEXMOD schaltet auf Zwischenzeilen um 

lda #12 ; 12 laden 

sta 59468 ; und Peripherie Kontroll Register damit belegen 

Auch der umgekehrte Fall ist möglich, nämlich Groß/Kleinschrei- 

bung ohne Zwischenräume: 

ASSEMBLER-Beispiel "109-graphmod" (80XX): 

-— jsr 57371 ; GRAMOD schaltet "ohne Zwischenräume' 

- lda #14 ; 14 nach 

sta 59468 ; PCR 

Probieren Sie auch aus, wie man wieder in den normalen Textmodus 

bzw. Graphikmodus zuruckkommt ! 

11.4.2 Text/Graphik fiir C64 

Bei den C64-ern entfallen die Routinen TEXMOD und GRAMOD. Es 

wird nur das Peripherie-Control-Register umgeschaltet: 

- lda #23 ;s "text", also Klein-/Großschrift 

sta 53272 ; nach PCR 

und 

-— lda #21 ; "graphik", also Normalmodus GroBschrift/Graphik 

sta 53272 

Das entspricht den BASIC-Befehlen poke 53272,21 usw.



- 272 - 

11.5 Abfrage der STOP-Taste mit STOPRY und STOPO 
  

Zum Aktivieren der STOP-Taste auch in Maschinenprogrammen müssen 

entsprechende Abfragen eingebaut werden. 

Das kann auf mehrere Arten geschehen: 

STOPRY kehrt bei gedrückter STOP-Taste in den READY-Modus zu- 

rück. Das Programm wird also abgebrochen. 

STOPO setzt bei gedrückter STOP-Taste das Z-Flag (letzte Ope- 

ration war gleich 0). Durch die BRANCH-Befehle BEQ oder BNE kann 

nun entsprechend den Bedurfnissen des Programms eine Verzweigung 

stattfinden. 

11.6 Sprung in den READY-Modus mit MREADY 
  

Das Aussteigen aus einem Maschinenprogramm geschieht durch An- 

laufen der Routine MREADY. 

Es erfolgt ein Abbruch des laufenden Programms mit Übergang in 

den READY-Modus und der entprechenden Bildschirmmeldung. 

11.6 Verschieben von RAM-Bereichen mit TRABLO 
  

Falls Ihr Assembler nicht bereits einen Transportbefehl zur Ver- 

schiebung eines beliebigen Datenblocks hat, läßt sich die ROM- 

Routine TRABLO einsetzen, die in BASIC Programmzeilen zwi- 

schen bereits vorhandene schiebt bzw. den Platz dafür schafft. 

Dazu müssen folgende Adressen bereitgestellt werden: 

BABL = Anfangsadresse des zu verschiebenden Blocks 

(Beginn des alten Blocks) 

EABL1 Endadresse +l des alten Blocks 

ENBL1 = Endadresse +1 des neuen Datenbereichs 

Beispiel: 

Das Programm "105-goto2000", das bei (20100) beginnt und bei



- 2/3 - 

(20135) das letzte Befehlsbyte hat, soll so verschoben werden, 

daß es bei (17999) endet, also (18000)... nicht mehr berührt. 

ASSEMBLER-Beispiel "110-transblock" (C64): 

01 15000 1da #132 ; LO von 20100 

15002 sta 95 ; nach BABL-LO 

15004 lda #78 ; HI von 20100 

15006 sta 96 ; nach BABL-HI 

02 15008 lda #168 ; LO von 20136(!) 

15010 sta 90 ; nach EABL-LO 

15012 lda #78 s HI von 20136(!) 

15014 sta 91 ; nach EABL-HI 

03 15016 lda_ #80 ; LO von 18000(!) 

15018 sta 88 ; nach ENBLI 

15020 lda #70 ; HI von 18000 (!) 

15022 sta 89 ; nach ENBLI 

04 15024 jmp 41919 ; TRABLO verschiebt den Block in den 

Bereich (17964)....(17999) 

Selbstverständlich läßt sich auch ein Modul erstellen, dem man 

die Anfangsadresse des neuen Bereichs eingibt. 

Dazu muß aus den Anfangs- und Endadressen des alten Bereichs die 

Blocklänge errechnet werden und zur Anfangsadresse des neuen Be- 

reichs addiert werden. 

Ein entsprechender BASIC-Befehl könnte die Form haben: 

800 sys(mo)(tr,20100,20136,17964) 

Aufgabe: 

Erstellen Sie ein Maschinenprogramm in Modulform, das den oben 

genannten BASIC-Befehl entsprechend ausführt. 

Bestimmt werden Sie diesen Befehl oft benützen, wenn Sie ihn erst 

einmal zur Verfügung haben. Die umständliche "Pokerei' entfällt 

dann endlich. 

Wenn Ihr Assembler-Programm im RAM-Bereich liegt, haben Sie auch 

oft Schwierigkeiten, weil Sie vom Assembler aus keine Programme 

in den oberen RAM-Bereich verschieben können, ohne ihn zu ver- 

nichten. Auch hier hilft das Modul "transblock".



- 274 - 

11.8 Abspeichern eines Datenbereichs mit MSAVE 
  

Um einen Programmblock - sei er nun verschoben worden oder nicht 

- so abzuspeichern, daß er beim Laden wieder im selben Bereich 

eingelesen wird, müssen zunächst einmal Anfangs- und Endadresse 

des Blocks übergeben werden. 

Erfolgt der Befehl von BASIC oder im Direktmodus, dann sind wie 

üblich der Dateiname und die Geräteadresse anzugeben. 

Ein entsprechender Befehl könnte dann so ausschauen: 

900 sysmo,15000,15030,"0:transblock", 8 

Der Ablauf des Moduls ware dann folgender: 

Ol Erste Integerzahl holen und in BEGDAT (Programmanfangs- 

adressen) abspeichern. 

02 Zweite Integerzahl holen und in ENDDAT (Programmende- 

Adressen) ebenfalls LO/HI ablegen. 

03 Aufruf der Routine GETFIP, die aus dem BASIC-Text die zur 

Abspeicherung notwendigen Parameter holt, nämlich den Pro- 

grammnamen mit eventuell vorangestellter Laufwerknummer und 

die Geräteadresse. 

Die entprechenden Zeropage-Adressen werden richtig belegt. 

04 Aufruf der Routine MSAVE. Für den C64 gibt man dazu eine logi- 

sche Adresse an (nicht notwendig bei 40/80XX). 

Das ASSEMBLER-Programm "1lll-msave" (C64): 

01 22000 jsr 44797 ; KOMMA "," ? 

22003 jsr 43371 ; INTADR holt Integerzahl nach LINNUM 

22006 lda 20 ; LO der Anfangsadresse 

22008 sta 193 ; nach BEGDAT-LO 

22010 lda 21 ; HI der Anfangsadresse 

22012 sta 194 ; nach BEGDAT-HI



02 

03 

04 

04 

22014 

22017 

22020 

22022 

22024 

22026 

22028 

22031 

22034 

22036 

22038 

22041 

jsr 

jsr 

lda 

sta 

lda 

sta 

jsr 

jsr 

lda 

sta 

jsr 

rts 

- 275 - 

44797 ; KOMMA "," ? 

43371 ; INTADR holt 2. Integerzahl 
20 LO 

174 nach ENDDAT-LO 

21 ; HI 

175 nach ENDDAT-HI 

44797 ; KOMMA "," 7? 

27812 ; GETFIP holt Datei-Parameter und belegt 

damit die notwendigen Adressen 

#4 logische Adresse (Beispiel) 

184 ; nach LA 

62954 ; MSAVE speichert die Datei ab auf dem 

angesprochenen Gerät 

Es empfiehlt sich, diesmal mit Kommata als Trennzeichen zu arbei- 

ten, weil das der Syntax der benützten BASIC-Routinen entspricht. 

GETFIP führt nämlich selbst die Trennzeichenprüfungen durch. 

Setzt 

wird 

könnte 

ständlicher 

Schreibweisen, 

man nun 

ein SYNTAX 

man 

und 

z.B. 

ERROR 

das zwar vermeiden, 

länger. 

eine Klammer '")" als letztes Zeichen, dann 

Mit 

jedoch wird dann die Routine um- 

erzeugt. Hilfe des Programmzeigers 

In solchen Fällen halt man sich an die 

wie man sie von BASIC her gewöhnt ist. Nur so ist 

ein rationeller Einsatz der ROM-Routinen erst möglich. 

Aber auch hier gilt wie sonst auch: Wem das nicht gefällt, der 

entwerfe seine eigenen Strukturen. 

11.9 Laden eines Programms mit veränderter Startadresse   

Es 

Assembler 

kommt 

Programm 

Es ware 

oft genug 

erstellt und hinterher feststellen muB, 

vor, daß man ein Maschinenprogramm mit dem 

daß man dieses 

gern in dem Bereich hätte, wo der Assembler vorher war. 

also praktisch, wenn wir ein Modul hätten, das uns ein 

Programm in einen nachträglich bestimmten Bereich lädt.



- 276 - 

Normalerweise wird es von Diskette oder Band dorthin gebracht, 

wo die ersten beiden Bytes der Datei hinzeigen. Sie werden mit 

dem Programm abgespeichert. 

Es bieten sich zwei Möglichkeiten an: 

-— Erstens kann man beim Abspeichern gleich den eben erwähnten 

Zeiger verändern, indem man vor dem "SAVE"-Vorgang das LO/HI 

der gewünschten Anfangsadresse über den IEEE-Bus ausgibt und 

anschließend verhindert, daß der momentane Programmanfang über- 

tragen wird. 

Das hat aber den Nachteil, daß wir uns damit bereits auf eine 

zwar neue, aber festgelegte Adresse beschränken. 

Gerade das kann jedoch auch wieder ein Vorteil sein. Wir be- 

sprechen dieses Modul im nächsten Abschnitt 11.10. 

-— Die zweite Möglichkeit besteht darin, erst beim Ladevorgang die 

neue Anfangsadresse festzulegen. 

Damit sind wir variabel und können unser Programm oder Modul 

schieben, wohin wir wollen. 

Diese zweite Art schauen wir uns etwas genauer an und erstellen 

ein Modul "1l12-posload'", das folgende BASIC-Zeile ausführen kann: 

1000 syslo,posload18000,"1:test",8 

Im Klartext heißt das: 

Das Maschinenprogramm, das mit der Adresse LO beginnt, soll das 

Programm "test" vom Diskettenlaufwerk 1 so laden, daß der erste 

Befehl bei Adresse (18000) beginnt (Anfangsposition 18000). 

Struktur und Ablauf des Moduls "112-posload": 
  

Ol Kommaprufung und Untersuchung der nächsten Zeichen auf den 

Code für POS und LOAD. Beides sind BASIC-Wörter und nehmen da- 

her im BASIC-Text nur je ein einziges Byte ein. 

02 Nächstes Zeichen nach (A) holen und die Ziffernfolge bis zum 

nächsten Komma als Integerzahl auswerten. 

03 LO/HI dieser Integerzahl als Programmanfang in die entspre- 

chenden Zeropageadressen ablegen.



04 

05 

06 

07 

08 

09 

- 277 - 

Kommaprüfung und die Fileparameter des Programms holen und den 

richtigen Zeropageadressen zuordnen. (Keine Angst, wird alles 

durch eine einzige ROM-Routine, nämlich GETFIP, erledigt.) 

LOAD-Flag setzen, OPEN und TALK, sowie Sekundaradresse ausge- 

ben und eine logische Adresse bereitstellen. 

Die Routine DIRPR prüft auf den Modus und gibt im Falle 

des Direktmodus die Meldung "searching for ... " aus. 

Den (IEC)-Bus aktivieren, das Floppy als TALKER aktivieren und 

den richtigen Kanal anwählen mit der Sekundäradresse 96. 

Die erster beiden Bytes aus der Datei holen - das sind LO und 

HI der ursprünglichen Anfangsadresse - und vernachlässigen. 

Stelle 

Einsprung nennen wir MLOAD - 

der LOAD-Routine einspringen - 

und TWAIT-Routine durch- 

In die entsprechende 

diesen 

laufen. 

also zurück ins BASIC Rücksprung aufrufenden 

hinter unsere eben eingelesenen Parameter. 

zum Programm, 

Das ASSEMBLER-Programm zu "112-posload" (C64): 

Ol 

02 

03 

17000 jsr 44797 ; KOMMA "," ? 

17003 jsr 121 ; CHRGOT holt letztes Zeichen 

17006 cmp #185 ; war das Code fur POS ? 

17008 bne 17077 ; nein ===> zurück nach BASIC 

(erzeugt SYNTAX ERROR) 

17010 jsr 115 ;‚ nächstes Zeichen mit CHRGET 

17013 cmp #147 ; Code für "LOAD" 

17015 bne 17077 ; nein ===> Ende 

17017 jsr 115 ; CHRGET holt nächstes Zeichen nach (A) 

17020 jsr 43371 ; INTADR wertet die nachsten Zeichen als 

Integerzahl aus, legt sie nach (17/18) 

17023 lda 20 ; LO 

17025 sta 174 ; nach PRGANF 

17027 lda 21 ; HI 

17029 sta 175 ; nach PRGANF-HI



- 278 - 

04 17031 jsr 44797 ; KOMMA "," ? 

17034 jsr 57812 ; GETFIP holt nachste Zeichenfolge und 

wertet sie als File-Parameter aus, belegt 

Geräte-Adresse GA usw. 

05 17037 lda #0 ; Loadflag 

17032 sta 147 ; setzen 

17041 lda #4 ; logische Adresse wahlen 

17043 sta 184 ;s und nach LA bringen 

17045 jsr 62895 ; DIRPR prüft auf Direktmodus 

17048 lda #96 ; Sekunddradresse fiir Laden (=0+96) 

17050 sta 185 ; nach SA 

06 17052 jsr 62421 ; OPENI of fnet Bus mit den Filedaten 

17055 lda 186 ; Gerateadresse laden 

17057 jsr 60681 ; und Floppy (8) aktivieren mit TALK 

17059 Ida 185 ; Sekundaradresse mit 

17061 jsr 60871 ; SASENT ausgeben 

07 17065 jsr 60947 ; mit INBUS erstes Datei-Byte holen 

(LO der alten Programmanf angsadresse) 

17068 jsr 60947 ; zweites Byte holen (=Anfangsadresse HI) 

08 17071 jsr 62704 ; MLOAD lädt das Programm mit dem neuen 

Zeiger aus PRGANF (174/175) 

17074 jsr 63213 ; TWAIT wartet AbschluB ab 

09 17077 rts ; Ende (oder Zeiger auf evt. Fehler) 

Rücksprung ins BASIC 

Der oben angeführte BASIC-Befehl wird sowohl im Direkt- als auch 

im Programmodus richtig durchgeführt. 

Wie man leicht erkennen kann, lohnt es sich, die Maschinenpro- 

gramme zur BASIC-Unterstützung in Modulform zu schreiben, so daß 

ein beliebiges Verschieben - oder wie in unserem fall ein Laden 

an eine andere Stelle - keine Probleme bereitet. 

Übrigens wird mit dem eben vorgestellten Modul keiner der BASIC- 

Zeiger verstellt, so daß sofort nach Rückkehr aus der Laderoutine 

der BASIC-Text weiter abgearbeitet werden kann. 

Die Befehlszeile nimmt natürlich auch Variablen. Das hat den Vor- 

teil, daß die Einsprungadresse in das nachgeladene Maschinenpro-



- 279 - 

gramm gleich mit berechnet werden kann, falls sie nicht identisch 

mit der Anfangsadresse ist. 

Das Modul ist bereits mit einer Identität - nämlich mit "posload" 

- gekennzeichnet und kann daher leicht in ein Modulpaket einge- 

baut werden. 

Wenn Sie sich erst einmal an diesen zusätzlichen Befehl gewöhnt 

haben, werden Sie ihn bei Ihrer Programmierarbeit nicht mehr mis- 

sen wollen. 

11.10 Datenblock mit variabler Anfangsadresse speichern 

Wie in 11.9 angedeutet, kann man mit dem folgenden Modul ein Pro- 

gramm oder eine beliebige Datei auch so abspeichern, daß sie beim 

Laden in einem anderen Bereich erscheint als dem programmierten. 

Dazu muß der Ladezeiger LDPTR der SAVE-Routine in der Zero- 

page auf den gewünschten Wert eingestellt werden, bevor das Ab- 

speichern selbst durchgeführt wird. 

Ein Beispiel zur Verdeutlichung: 

Nehmen wir an, das Programm "datei" steht von (15000) bis (20000) 

im RAM, soll aber später ab (27000) benützt werden. 

  

Der Ladezeiger, das sind die ersten beiden Bytes einer Datei, 

darf demnach beim Abspeichern von "datei" nicht mit 15000 über- 

nommen werden, sondern muß auf 27000 gestellt werden. 

Bevor also die eigentliche Datei "datei" abgespeichert wird, müs- 

sen die Bytes 120/105 als LO/HI = 27000 gesendet werden. 

Die BASIC-Befehlszeile soll dazu so aussehen: 

1100 saz=18000:syssa,possave27000, 15000, 20000,"1:datei",8 

Das heiBt im Klartext: 

Das Modul zum Abspeichern wird mit (18000) angesprungen und spei- 

chert alle RAM-Daten von (15000) bis (20000) unter dem Namen 

"datei" auf Diskettenlaufwerk 1 ab, wobei der Ladezeiger auf 

27000 gesetzt wird. 

Nach dem Laden von "datei" stehen die Daten von (27000) bis 

(32000) im RAM.



Nachdem 

ben, 

bung zum Verständnis. 

ASSEMBLER-Programm für 

Ol 

02 

03 

04 

05 

06 

18000 

18003 

18006 

18008 

18010 

18013 

18015 

18017 

18020 

18023 

18025 

18027 

18029 

18031 

18034 

18037 

18039 

18041 

18043 

18045 

18048 

18051 

18053 

18055 

18057 

18059 

18062 

18065 

18067 

18069 

18071 

18073 

18076 

- 280 - 

wir bisher alle Module sehr ausfuhrlich dokumentiert ha- 

wohl das ASSEMBLER-Programm mit einer Kurzbeschrei- genügt 

jsr 

jst 

cmp 

bne 

jsr 

cmp 

bne 

jsr 

jsr 

lda 

sta 

lda 

sta 

jsr 

jsr 

lda 

sta 

lda 

sta 

jsr 

jsr 

lda 

sta 

lda 

sta 

jsr 

jsr 

lda 

sta 

lda 

sta 

jsr 

lda 

44797 

121 

#185 

18104 

115 

#148 

18104 

115 
43371 
20 
172 
21 
173 

44797 

43371 

20 

193 

21 

194 

44797 

43371 

20 

174 

21 

175 

44797 

97812 

#97 

185 

#4 

184 

62421 

186 

"113-possave" (80%XX): 

; KOMMA "," ? 

CHRGOT holt letztes Zeichen 

s Code fur POS ? 

nein ===> Ende 

: nächstes Zeichen nach (A) mit CHRGET 

Code für SAVE ? 

:s nein ===> Ende 

nächstes Zeichen mit CHRGET holen 

GETADR holt Integerzahl 

LO als LDPTR-LO speichern 

HI als LDPTR-HI speichern 

KOMMA "," ? 

nachste Integerzahl nach LINNUM holen 

LO nach PRGANF-LO 

HI nach PRGANF-HI 

; KOMMA "," ? 

letzte Integerzahl holen 

LO nach PRGEND-LO 

HI nach PRGEND-HI 

; KOMMA "," ? 

GETFIP holt Fileparameter, setzt sie 

Sekundaradresse 

nach SA 

logische Adresse (Beispiel) 

nach LA bereitstellen 

OPENI öffnet (IEC)-Bus 

zum Abspeichern 

: Gerateadresse aus GA laden



- 281 - 

18078 jsr 60684 ; LISTN aktiviert Gerat als Empfanger 

18081 lda 185 ; Sekundaradresse ausgeben 

18083 jsr 60857 ; mit SASENL 

07 18080 lda 172 ; Ladezeiger LDPTR-LO holen 

18088 jsr 60893 ; OUTBUS gibt ihn als erstes Byte aus 

18091 lda 173 ; Ladezeiger LDPTR-HI holen 

18093 jsr 60893 ; und als zweites Byte ausgeben 

08 18096 jsr 64398 ; TRPSET setzt Transportzeiger für den 

Abspeichervorgang mit Hilfe von LDPTR 

18099 ldy #0 ; Index 0 setzen für DATOUT 

18101 jsr 63017 ; DATOUT gibt alle Daten auf den Bus aus 

von PRGANF=(193/194) bis PRGEND=(174/175) 
18104 rts ; Rucksprung ins BASIC 

Der Abschluß der Übertragung, also Schließen der Datei usw. wird 

automatisch mit von der Routine DATOUT erledigt. Schließlich 

ist das nur ein Einsprung in die CMB-Routine "SAVE" gewesen. 

Falls Sie sich gewundert haben, daß wir zur Erkennung des Moduls 

nur zwei Zeichen geholt und untersucht haben: SAVE wird als Byte 

mit dem Code 148, POS wird als Byte mit dem Code 185 im BASIC- 

Text abgelegt. Beides sind ja BASIC-Wörter. 

Eine Zusammenstellung der Einsprungadressen zu diesem Kapitel 

finden Sie - auch für die 40/80XX-Gerate - am Ende der ROM- 

Routinen-Liste von Kapitel 13. 

Wir haben Ihnen nun die Möglichkeit gegeben, sich in die Maschi- 

nenprogrammierung einzuarbeiten. Sie sind nun in der Lage, alle 

Ihre Programme in ASSEMBLER zu schreiben und mit Hilfe der ROM- 

Routinen sehr schnell laufen zu lassen. 

Sicher werden Sie immer wieder in den Listen auf den folgenden 

Seiten blättern müssen, aber Sie werden sicher rasch Fortschritte 

sehen. 

Viel Spaß!





12 
ASSEMBLER-Kurzschule





- 285 

12 ASSEMBLER-Kurzschule 

12.1 Die Register des Mikroprozessors 65XX   

  

  

  

Register Abkz. Bits 

Akkumulator (A) 8 

X-Register (X) 8 

Y-Register (Y) 8 

Programmzähler (PC) 16 

Stackpointer (5) 8 

Statusregister (P) 8 

12.2 Das Prozessor Statusregister P 

Die acht Bits (0 bis 7) haben Flag-Funktion. 

Bit F lagbezeichnung Abkz. gesetzt bei 

0 Carry-Flag C Übertrag 
1 Zero-F lag 2 Ergebnis = 0 

2 Interrupt disable-Fl. I Interrupt gesperrt 

3 Dezimalf lag D Dezimalmodus 

4 Break—-F lag B nach Break-Befehl 

5 --- - --- 

6 Overf low-F lag V Bit 7=1 im Ergebnis 

7 Negativ-Flag N Ergebnis negativ (Bit 7) 

12.3 Beeinflussung der Flags durch Befehle 
  

C-Flag: 

ADC, ASL, CLC, CMP, CPX, CPY, LSR, 

Z-Flag und N-F lag: 

ADC, AND, ASL, BIT, CMP, CPX, CPY, 

INY, LDA, LDX, LDY, LSR, ORA, PLA, 

TAY, TSX, TXA, TYA 

PLP, ROL, ROR, RTI, SBC, SEC 

DEC, DEX, DEY, EOR, INC, INX, 

PLP, ROL, ROR, RTI, SBC, TAX,



- 286 - 

D-FLAG: 
SED, CLD 

B-Flag: 

BRK 

V-Flag: 

ADC, BIT, PLP, RTS, SBC, CLV 

I-Flag: 

CLI, SEI 

Die unterstrichenen Befehle beeinflussen direkt das entsprechende 

Flag, d.h sie setzen bzw. löschen es 

Flag gesetzt: 1 Flag gelöscht: O 

12.4 Der Befehlssatz in ASSEMBLER 
  

Alle ASSEMBLER-Befehle werden mit allen möglichen Adressierungs- 

arten dargestellt. 

Die Flagveränderungen sind bei den Beispielen nicht vollständig. 

Sie werden nur bei den wichtigsten Operationen mit angegeben. 

Ansonsten gilt die Aufstellung in Abschnitt 12.3. 

Wir vereinbaren zur Beschreibung der ASSEMBLER-Befehle folgende 

Abkürzungen: 

#B = Byte (unmittelbar) 

M = Adresse (absolut) 

Z = Zeropage-Adresse 

<M> = Inhalt der Adresse M 

<Z> = Inhalt der Zeropage-Adresse Z 

M,x = Adresse M+x 

M,y = Adresse M+y 

<M,x> = Inhalt der Adresse (M+x) 

<M,y> = Inhalt der Adresse (M+y) 

(Z,x) = Adresse (Z+x/Z+l+x) 3; Zweibyte-Adresse LO/HI 

(Z),y = Adresse (Z/Z+l)+y ; Zweibyte-Adresse LO/HI 

<Z,x> = Inhalt von Adresse (Z+x/Z+x+l) 

<Z>,y = Inhalt von Adresse (Z/Z+l)+y 

<A> = Inhalt des (A)-Registers 

<X> = Inhalt des (X)-Registers



- 287 - 

<Y> = Inhalt des (Y)-Registers 

<c> = Inhalt des C-Flags 

<n> = Inhalt des N-Flags 

<z> = Inhalt des 7-Flags 

Fur die Beispiele verwenden wir folgende Belegungen: 

#B = 2 

Z = 20 

M = 5130 

<P> = 00000001 = 1 

Stapel = 199 / 2... / ae. 

<20> = 10 

<21> = 20 

<50> = 100 

<60> - 14 

<61> = 16 

<70> = 120 

<5130> = 255 

<5170> = 200 

<5180> = 210 

<4110> = 220 

<A> = 5 

<X> = 40 

<Y> = 50 

12.4.1 Eingabebefehle (Ladebefehle) 

Bei den einzelnen Befehlen werden alle Adressierungsarten aufge- 

führt, die möglich sind. 

Bei den Beispielen sind die Schreibweisen in der ASSEMBLER- 

Sprache nicht möglich, wenn ein Fragezeichen vorangestellt ist. 

LDA: Lade (A) mit Inhalt der angesprochenen Adresse 

Flags: Z,N 

lda #B ‚ Ida #2 ---> <A>=2 
lda Z ; lda 20 ---> <A>=10 
lda M ; Ida 5130 ---> <A>=255 
lda Z,x ; Ida 20,x = Ilda 60 ---> <A>=14 
lda M,x ; lda 5130,x = lda 5170 ---> <A>=200



lda M,y 

lda (Z,x) 

lda (Z),y 

LDX : Lade 

Flags: Z,N 

ldx #B 

ldx 2 

ldx M 

ldx Z,y 

ldx M,y 

L DY: Lade 

Flags: Z,N 

ldy #B 

ldy Z 

ldy M 

ldy Z,x 

ldy M,x 

(Y) 

. 

? 

w
e
 

- 288 - 

lda 5130,y = lda 5180 ---> <A>=210 
lda (20,x) = ?lda <60/61> = lda 4110 ---> <A>=220 
lda (20),y = lda 5130,y = lda 5180 ---> <A>=210 

mit Inhalt der angesprochenen Adresse 

---2 <X?=2 

---> <X>=10 

---> <X>=255 

ldx 20,y = 1dx 70 ---> <X>=120 

ldx 5130,y = Idx 5180 ---> <X>=210 

mit Inhalt der angesprochenen Adresse 

---) <Y>=2 

---> <Y>=10 

---2 <Y>=255 

ldy 20,x = ldy 60 ---> <Y>=14 

ldy 5130,x = Ildy 5170 ---> <Y>=200 

PLA: Stapelbyte nach <A> 

Flags: N,Z 

pla ; -—--> <A>=199 

PLP: Stapelbyte nach <P>=Statusregister 

Flags: wie geholtes Byte 

---> <P>=199 plp ; 

12.4.2 Ausgabebefehle (Speicherbefehle) 

STAs: <A> in angesprochener Adresse abspeichern 

sta Z ; 

sta M ; 

sta /,x ; 

sta M,x ; 

sta 20 ---> <20>=5 

sta 5130 ---> <5130>=5 

sta 20,x = sta 60 ---> <60>=5 

sta 5130,x = sta 5170 ---> <5170>=5



- 289 - 

sta M,y ; sta 5130,y = sta 5180 ---> <5180>=5 

sta (Z,x) 3; sta (20,x) ?sta (60/61) = sta 4110 ---><4110>=5 

sta (Z),y 3; sta (20),y = ?sta (5130+50) = sta 5180 ---> 

<5180>=5 

5STX = <X> in angesprochener Adresse abspeichern 

stx Z 3 ~--> <20>=40 

stx M ; ---> <5130>=40 

stx Z,y ; stx 20,y = stx 70 ---> <70>=40 

S TY: <Y¥> in angesprochener Adresse abspeichern 

sty Z ; ---> <20>=50 

sty M ; ---> <5130>=50 

sty Z,x 3; sty 20,x = sty 60 ---> <60>=50 

PHA: <A> auf Stapel 

pha ; ---> Stapel = 5/199/.../... 

PHP: <P> auf Stapel 

php 3 ---> Stapel = 1/199/.../... 

12.4.3 Arithmetische Verknüpfungen 

ADC - Addition mit <A> 

Das Carryflag muß vor dem ADC-Befehl gelöscht werden mit CLC. 

Flags: C,Z,N 

adc #B s adc #2 ---> <A>=7 

adc Z ; adc 20 = adc #10 ---> <A>=15 

adc M s adc 5130 = adc #255 ---> <A>=4 <C>=1 

adc /,x ; adc 20,x = ade 60 = adc #14 ---> <A>=19 

ade M,x ; adc 5130,x = ade 5170 = ade #200 ---> <A>=205 

adc M,y ; adc 5130,y = ade 5180 = ade #210 ---> <A>=215 

ade (Z,x) 3; ade (20,x) = ?ade <60/61> = ade 4110 ---> <A>=225 

ade (Z),y 3 ade (20),y = ade 5130,y = ade 5180 ---> <A>=215



- 290 - 

SBC - Subtraktion von <A> mit Carryflag 

Das Carryflag muß vor dem SBC-Befehl gesetzt werden mit SEC. 

Flags: C,Z,N 

sbc #B ; sbc #2 ---> <A>=3 

sbe Z 3 sbe 20 = sbe #10 ---> <A>=251 <C>=0 

sbc M ; sbe 5130 = sbc#255 ---> <A>=6 <C>=0 

sbc Z,x ; sbe 20,x = sbc 60 = sbe #14 ---> <A>=247 <C>=0 

sbc M,x ; sbc 5130,x = sbe 5170 = sbc #200 ---> <A>=61 <C>=0 

sbc M,y ; sbc 5130,y = sbc 5180 = sbe #210 ---> <A>=51 <C>=0 

sbc (Z,x) 3 sbe (20,x) = sbc 4110 = sbc #220 ---> <A>=41 <C>=0 
sbc (Z),y 3; sbe (20),y = sbe 5130,y = sbe 5180 ---> <A>=51 <€>=0 

INC - Erhöhung eines Speicherinhalts um 1 

Flags: Z,N 

inc Z 3; inc 20 ---> <20>=11 

inc Z,x s inc 20,x ---> inc 60 ---> <60>=15 

inc M 3; inc 5130 ~--> <5130>=0 <Z>=1 

inc M,x 3 inc 5130,x = ine 5170 ---> <5170>=201 

INX - Erhöhung des X-Registers um 1 

Flags:Z,N 

inx 3 —-—--) <X>=41 

INY - Erhöhung des Y-Registers wm 1 

Flags: Z,N 

iny $s ---> Y>=5l 

DEC - Erniedrigen eines Speicherinhalts um 1 

Flags: Z,N 

dec Z ; dec 20 ---> <20>=9 

dec Z,x ; dec 20,x = dec 60 ---> <60>=13 

dec M ; dec 5130 ---> <51350>=254 

dec M,x ;s dec 5130,x = dec 5170 ---> <5170>=199



DEX 

-— 291 

- Erniedrigen des X-Registers um 1 

Flags: Z,N 

dex 

DEY 

Flags: Z,N 

dey 

5 ---> <X>=39 

- Erniedrigen des Y-Registers um 1 

. 

3 ---) <Y>z49 

12.4.4 Logische (bitweise) Verknüpfungen 

Die folgenden Operationen finden im (A)-Register statt. 

Ausnahme: BIT beeinflußt (A) nicht, sondern setzt nur die ent- 

sprechenden Flags. 

AND: 

Flags: Z,N 

and 

and 

and 

and 

and 

and 

and 

and 

ORA 

Flag 

ora 

ora 

ora 

ora 

ora 

ora 

ora 

ora 

#B 

Z 

Z,x 

M 

M,x 

M,y 

(Z,x) 

(Z),y 

: lor 

Ss: 

#B 

Z 

Z,x 

M 

M,x 

M,y 

(Z,x) 
(Z),y 

Z,N 

e 

3 

e 

’ 

e 

’ 

e 

9 

e 

9 

and #2 : 

and 20 : 

= and 

= and 

= and 

= and 

= and 

= and 

60 = 

#255 : 

5170 : 

5180 

4110 : 

5180 : 

00000101 and 00000010 

00000101 and 00001010 

and #14 : 

00000101 

00000101 

: 00000101 

00000101 

00000101 

l and 1 = 1; l and 0 = 0; OD andl = 

geeignet zum Löschen einzelner Bits 

0 e 
9 0 and O = O 

00000101 and 00001110 

and 

and 

and 

and 

and 

llllilill 

11001000 

11010010 

11011100 

11010010 

= 00000101 

= 00000000 

= 00000000 

= 00000100 

= 00000000 

1=1; 1or0=1; Dor1=:1;00r0=0 

ora #2: 

ora 20 : 

= ora 

= ora 

= ora 

= ora 

= ora 

= OTa 

60 : 

#255: 

5170: 

5180: 

4110: 

5180: 

00000101 

00000101 

00000101 

00000101 

00000101 

00000101 

00000101 

00000101 

or 

or 

or 

or 

or 

or 

or 

or 

00000010 
00001010 
00001110 
11111111 
11001000 
11010010 
11011100 
11010010 

00000111 

00001111 

00001111 

11111111 

11001101 

11010111 

11011101 

11010111 

= 00000000 

= 00000000 

00000100



= 292 

EOR : 1 eor 1 = O; 1 eor O = 1; O eor 1 = 13; O eor O = O 

Flags: 

eor #2 s eor #2: 00000101 eor 00000010 = 00000111 

eor Z ; eor 20: 00000101 eor 00001010 = 00001111 

eor M ;s eor #255: 00000101 eor 11111111 = 11111010 

eor Z,x ; = eor 60: 00000101 eor 00001110 = 00001011 

eor M,x ; = eor 5170: 00000101 eor 11001000 = 11001101 

eor (Z,x) 3; = eor 4110: 00000101 eor 11011100 = 11011001 

eor (Z),y 3 = eor 5180: 00000101 eor 11010010 = 11010111 

BIT : wie AND, aber <A> bleibt erhalten 

Flags: Z,N,V; <v>=Bit 6 und <n>=Bit 7 aus adressierter Adresse 

bit Z ; bit 20: 00000101 and 00001010 = O ---> <z>=1;<v>=0 

bit M ; bit 5130: 00000101 and 11111111 = 5 ---> <z>=0;<v>=0 

12.4.5 Verschiebe-Befehle (bitweise) 

Diese Befehle beeinflussen nur den angesprochenen Speicherinhalt. 

ASL: alle Bits um eins nach links, Bit 7 nach <o), 

Bit O mit O auffullen 

Flags: C,Z,N 

asl ; ?asl<A>: 00000101 ---> 00001010; <c>=0 

asl Z ; asl 20: 00001010 ---> 00010100; <c>=0 

asl M ; asl 5130: 11111111 ---> 11111110; <c>=1l 

asl Z,x ; asl 60: 00001110 ---> 00011100; <c>=0 

asl M,x ; asl 5170: 11001000 ---> 10010000; <c>=l 

LSR : alle Bits um 1 nach rechts, Bit O nach <c>, 

Bit 7 mit O auffüllen 

Flags: C,Z,N 

lsr ; ?lsr<A>: 00000101 ---> 00000010; <c>=l 

Isr Z ; lsr 20: 00001010 ---> 00000101; <c>=0 

lsr M s lsr 5130: 11111111 ---> Olllll1l1; <c>=1 

lsr /2,x ; lsr 60: 00001110 ---> 00000111; <c>=0 

lsr M,x ; lsr 5170: 11001000 ---> 01100100; <c>=0



- 293 

ROL: Rotation mit C-Flag nach links 

Flags: C,Z,N 

rol ; ?rol<A>: 00000101 / <c>=0 ---> 00001010 / <c>=0 

rol Z ; rol 20: 00001010 / <c>=0 ---> 00010100 / <c>=0 

rol M ; rol 5130: 11111111 / <c>=0 ---> 11111110 / <c>=l 

rol Z,x ; rol 60: 00001110 / <c>=1l ---> 00011101 / <c>=0 

rol M,x ; rol 5170: 11001000 / <c>=0 ---> 10010000 / <c>=1 

ROR : Rotation mit C-flag nach rechts 

Flags: C,Z,N 

ror ; ?ror<A>: 00000101 / <c>=0 ---> 00000010 / <c>=l 

ror Z ; ror 20: 00001010 / <c>=0 ---> 00000101 / <c>=0 

ror M ;s ror 5130: 11111111 / <c>=0 ---> Ollll1l11 / <c>=1l 

ror Z,x ; ror 60: 00001110 / <c>=1 ---> 10000111 / <c>=0 

ror M,x ; ror 5170: 11001000 / <c>=0 ---> 01100100 / <c>=0 

12.4.6 Vergleichsbefehle 

Vergleiche werden zwischen dem Register und 

Byte durchgefuhrt. 

Das jeweilige Register bleibt unverandert erhalten. 

dem angesprochenen 

CMP : Vergleich Byte und <A> 

Flags: C,Z,N 

cmp #B ; cmp #2: 5 > 2 ---> <c>=13<n>=0;3;<z>=0 

cmp Z ;s cmp #20: 5 < 20 ---> <c?=0;<n?=1l;<z>=0 

cmp M ;s cmp 5130: 5 < 255 ---> <c>=0;<n?=20;<z>=0 

cmp Z,x ; cmp 60: 5 < 14 ---> <c?=0;<n>=1l;<z>=0 

cmp M,x s cmp 5170: 5 < 200 ---> <c?=0;<n?>=0;<zZ>=0 

cmp M,y ;s cmp 5180: 5 < 210 ---> <c>=0;<n>=0;<z>=D 

cmp (Z,x) 3 cmp 4110: 5 < 220 ---> <c>=03<n>=03<z>=0 

cmp (Z),y 3 cmp 5180: 5 < 210 ---> <c>=03<n>=0;<z>=0 

CPX : Vergleich Byte und <X> 

Flags: C,Z,N 

cpx #B s cpx #2: 40 > 2 ---> <ced=13<n>=03<z>=0



- 294 - 

cpx 2 ; cpx 20: 40 > 10 ---> <c?>=l;<n>=0;<zZ>=0 

cpx M ; cpx 5130 40 < 255 ---> <c>=0;<n>=0;<z>=0 

CPY : Vergleich Byte und <Y> 

Flags: C,Z,N 

cpy #2 ; cpy #2: 50 > 20 ===> <e>=13<n>=03<z>=0 

cpy Z ; cpy 20: 50 > 10) ---> <cd=l3<n>=03<z>=0 

cpy M ; cpy 5130: 50 < 255 ---> <c?=0;<n?>=0;<z>=0 

12.4.7 Transportbefehle zwischen den Registern 

TAX: <A> nach <X> 

Flags: Z,N 

tax s <X>=53 <Ad=5 

TAY: <A> nach <Y> 

Flags: Z,N 

tay s <Y>=z5; <A>=5 

TXA: <X> nach <A> 

Flags: Z,N 

txa 3 <A>=403 <X>=40 

TYA: <Y> nach <A> 

Flags: Z,N 

tya 3 <A>=503 <Y>=50 

TSX: Stackpointer <S> nach <X> 

Flags: Z,N 

tsx s <X>=255 (Beispiel fiir leeren Stack)



- 295 - 

TXS: <X> nach Stackpointer (S) 

txs : <S>=40 

12.4.8 Sprungbefehle 

Die relativen Sprungbefehle beginnend mit "B.." (für branch) er- 

lauben Sprünge von maximal 128 Adressen vor oder zurück. 

BEQ : Verzweige bei Z-Flag=l 

BNE: Verzweige bei Z-Flag=0 

BCC: Verzweige bei C-Flag=-0 

nach Vergleichsbefehlen: kleiner als 

BCS: Verzweige bei C-Flag=1 

nach Vergleichsbefehlen: groBer als/ gleich 

BMI: Verzweige bei N-Flag=1 

Bit 7 bei letzter Operation gesetzt 

BPL: Verzweige bei N-Flag=0 

Bit 7 bei letzter Operation nicht gesetzt 

BVC: Verzweige bei V-Flag=0 

BVS: Verzweige bei V-Flag=1 

JSR: Sprung zu Unterprogramm 

Rückkehr nach RTS-Befehl 

JMP : abslouter Sprung an beliebige Adresse 

jmp M ; jmp 5130 ---> bei (5130) im Programmlauf weiterfahren 

direkter Sprung ( jump) 

jmp (Z) 3 jmp (20) = jmp 4110 ---> Sprung an die Adresse, die 

indirekt durch <20/21> mit LO/HI angegeben ist. 

RTS: Rucksprung von einem Unterprogramm 

(Programmende)



- 296 - 

RT I: Rücksprung von Interrupt-Routine 

BRK : Sprung zu der Adresse, die im BRK-Vektor steht 

12.4.9 Beeinflussung der Flags des Statusregiters 

CLC: C-Flag löschen 

clc ; =--?> <cr=0 

SEC: C-Flag setzen 

sec ; ---?> <c>=l 

CLO: Dezimalflag löschen 

SED: Dezimalflag setzen 

CLV: Overflow-Flag (V) löschen 

SEI: Interrupt-Flag setzen 

sei ; ---> kein Interrupt über IRQ-Vektor möglich 

CLI: Interruptflag loschen 

cli 3; ---> Interrupt wird ausgeführt über IRQ-Vektor 

12.4.10 Luckenfuller 

NOP: keine Operation - weiter bei nächster Adresse



13 
ROM-Routinen - thematisch, 

mit Kurzbeschreibung





13 ROM-Routinen mit 

Label 

Arithmeti 

ADDO.>5 

FMAL1O 

FDIV1O 

FACMIN 

FACABS 

ADD 

M-ADD 

SUB 

M-SUB 

INTMUL 

MULT 

- 299 - 

C64 

47177=$b849 

---> FACI FAC] + 0.5 

47842=$bae2 

FAC] mal 10 ---> FAC1 

47870=$bafe 

FAC1 / 10 ---> FACI 

49076=$bfb4 

-FACL ---> FACIL 

48216=$bc58 
abs(FACl) ---> FAC1 

47210=$b86a 

FAC2 + FACL ---> FACI 

47207=$b867 
MEMORY (A/Y) + FACL ---> 

47187=$b853 
FAC2 - FACL ---> FACIL 

47184=$b850 

MEMORY (A/Y) - FACl ---> 

45900=$b34c 

<113/114>=<$71/72> 

mal MEMORY 

(95/96)=($5f/60) F 2AD 

Produktwert ---> (X/A) 

Fl 

47659=$ba2b 

FAC2 mal FACIL ---> FACIL 

Kurzbeschreibung 

40/80XxX 

51583=$c97f 

52248=$cc18 

52276=$cc34 

53579=$d14b 

53622=$cd8e 

51616=$c9a0 

51613=-$c9a0 

FACIL 

51593=$c989 

51590=$c986 

FACIL 

50295=$c477 

<110/111>=<$6e/6f > 

(92/93 )=($5c/5d) 

52065=$cb6l



  

Label C64 40/8QXxX 

! t 

M-MULT 47656-$ba28 52062=$cb5e 

MEMORY (A/Y) mal FACi ---> FACI 

DIV 47890-$bbl2 52296=$cc48 

FAC 2 / FAC1 ---> FAC 1 

M-DIV 47887=$bbOf 52293=$cc45 

MEMORY (A/Y) / FAC1L ---> FACIL 

SORFAC 49009=$bf 71 53512=$d108 

Quadratwurzel aus FACi ---> FACI 

POTRAD 49019=$bf7b 53522=$d112 

FAC2 hoch FACL ---> FACI 

M-POT 49016=$bf 78 53519=$d10f 

MEMORY (A/Y) hoch FAC1 ---> FACIL 

LOGNAT 47594=$b9ea 52000=$cb20 

In(FACl) ---> FACI 

EHOCHF 49133=$bfed 53636=$d184 

e hoch FAC1l1 ---> FACI 

SINUS 57963-$e26b 53897=$d289 

sin(FAC1) ---> FAC1 (BogenmaB RAD) 

COSIN 57956=-$e264 55890=$d282 

cos(FACl) ---> FAC1 (Bogenmaß RAD) 

TANG 58036-$e2b4 53970=$d2d2 

tan(FAC1) ---> FAC1 (Bogenmaß RAD) 

ARCTAN 58126-$e30e 54060=$d3c2 

arctan(FACl) ---> FAC1 (BoqenmaB RAD) 

POLNOM 57433=$e059 53741=$dled 

Polynomwert aus Konstantentabelle ab (A/Y) ---> FAC 

l. Byte der Tabelle = Polynomgrad n 

folgende Bytes enthalten die Koeffizienten a, 

bis ag als reelle Zahlen in 5-er Gruppen



  

Label C64 40/80XxX 

i] { 

CMPFAC 48219=$bc5b 52625=$cd91 

vergleicht FAC1l mit MEMORY (A/Y) 

FAC < MEM ---> <A>:=255 

FAC > MEM ---> <Ads= 1 

FAC = MEM ---> <ADd:= 0 

SGNF AC 48171=$bc2b 52577=$cd6l 

Vorzeichen von FACl ---> (A) 

myt  ---> <A>:= 1 

"N  _---)> <A>:=255 

<FAC1l> = D ---> <AD:=0 

MEMF AC 48034=$bba2 52440=$ccd8 

reelle Zahl aus MEMORY (A/Y) ---> FACI1 

MEMF C2 47756=$ba8c 52162=$cbc2 

reelle Zahl aus MEMORY (A/Y) ---> FAC2 

FACMEM 48087=$bbd7 52493-$cd0d 

FAC] (reell) ---> MEMORY (X/Y)-Anfangsadresse 

FAC1/2 48143=$bcOf 52549=$cd45 

<FAC1> ---> FAC2 

FAC2/1 48124=$bbfc 52530=$cd32 

<FAC2> ---> FACIL] 

ZUFALL 57495=$e097 53801=$d229 

53804=$d22c 

Zufallszahl aus O bis 1 ---> FACI, 

abhangig von der Zeit bzw. von <A> 

Umwandlungen 

INTFLP 

ADRFLP 

45969=$b391 50364=-$c4bc 

positive/negative Integerzahl aus (Y/A) nach FAC1 

Bereich: +32767/-32768 

48201=$bc49 52607=$cd7f 

<98=$62> Integerzahl HI <95=$5f> 

<99=$63> Integerzahl LO <96=$60>



- 302 - 

  

Label C64 40/80XX 
' ' . 

<X>=144; SECs; positive Integerzahl nach FACIL 

Bereich: O bis 65535 (Adressbereich) 

FLPINT 47095=$b7f 7 51501=$c92d 

<FAC 1>(reell)---> <FAC 1>(integer),LOW/HI=(Y/A) 

FLPSTR 48605=$bddd 53139=$cf 93 

<FAC 1> ---> Ziffernfolge ab (256), Ende=Byte O 

STRFAC 47029=$b7b5 51435=$c8eb 

mit STRADR <34=$22/35=$23> Stringanfang <3l=$1f/32=$20> 
<A>=Stringlange; Ergebnis in FACI1 

BY THE X 55098=$d73a --- 

<A>(Byte) ---> (A) (Hex-Byte) 

HEXBYT 55181=$d78d --- 

<A>(ASC-Code) ---> (A)(Byte) 

Bildschirm-Ausgaben 

CHROUT (BSOUT ) 

INTOUT 

CURPOS 

F POUTX 

FLPOUT/CR 

FLPSTR 

STROUT 

mit STRADR 

65490=$ffd2 KERNAL 65490=$f fd2 

<A> auf den Bildschirm als ASCII-Zeichen 

48589-$bdcd 53123=$cf 83 

Die Integerzahl wird direkt aus (X/A) mit LO/HI auf 

den Bildschirm gebracht. 

58732=$e56c --- 

berechnet mit CURZEI und CURSPA Cursorposition 

48599=$bdd7 53133=$cf 8d 

C64: LDY #1 / JSR 48599 53133=$cf 8d 

43708=$aabc --- 

064: Ausgabe <FAC> mit anschließendem CR 

48605=$bddd 

<FAC> ---> String ab (256) 

53139=$cf93 

43813=$ab25 

<X>=Stringlange 

<34/35> 

47908=$bb24 

Stringanfang <31/32>



- 303 - 

  

Label C64 40/80 XxX 
' ' 

STR-G 43806=$able 47901=$bbld 

<A/Y>=Stringadresse; Ende des Strings: Byte O 

BY TOUT --- 55074=$d722 

<A> ---> Hex ---> Schirm 

ADROUT --- 55063=$d717 

<251/252> ---> Hex ---> Schirm 

OUT2 --- 55089=$d731 

Adressen 

CURZEI 

CURSPA 

ZEIPTR 

<X> ---> Schirm, <A> ---> Schirm 

214=$d6 216=$d8 

211=$d3 198=$c6 

209/210=$d1 196/197=$c4/c5 

Eingabe-Routinen 

GETIN 

BASIN 

INLINE 

HEXINB 

HEXINA 

65508=$ffe4 KERNAL 65508=$ffe4 

l Zeichen ---> (A) 

65487=$f fcf KERNAL 65487=$f fcf 

String ---> Schirm ---> einzeln nach (A) 

42336-$a560 46306=$b4e2 

Zeile nach (512)... | 

nimmt bis zu BO Zeichen auf 

--- 55139=$d767 

Byte in Hexeingabe ---> (A) 

--- 55124=$d754 

Adresse(vierstellig) in Hexform ---> (251/252)



Label 

- 304 - 

C64 40/80X xX 
  

Variablen-Verwaltung 

PTRVAR 

VARNAM1/2 

VARADR 

TXTTAB 

VARTAB 

ARYTAB 

VAREND 

MAXMEM 

Ein- 

OPEN 

BFOUT 

LOAD 

und 

45287=$b0e7 49543=$c187 

sucht Variable mit 1.Name/2.Name=<VARNAM> 

(69/70 )=($45/46) (66/67 )=($42/43) 

Variablenamel/2 fiir PTRVAR 

(71/72)=($47/48) (68/69 )=($44/45) 

dort steht die Anfangsadresse LO/HI der Variablen 

nach Aufruf von PTRVAR 

(43/44)=($2b/2c) (40/41)=($28/29) 

Zeiger auf Beginn des BASIC-Textes 

(45/46)=($2d/2e) (42/43)=($3a/3b) 

Zeiger auf Beginn der einfachen Variablen 

(47/48) =$(2f/30) (44/45) =($3c/3d) 

Zeiger auf Beginn der indizierten Variablen 

(Felder=Arrays) 

(49/50) =($31/32) (46/47) =($3e/3F ) 
Zeiger auf Ende der gesamten Variablentabelle 

(55/56) =($37/38) (52/53) =($34/35) 
Zeiger auf RAM-Obergrenze 

Ausgabe-Routinen 

62282=$f 34a 62819=$f563 

offnet eine Datei mit LA,GA,SA auf ein Gerat 

bei Floppy-Dateien sind NAMAD und NAMLEN notwendig 

--- 55963=$da9b 

gibt ahnlich wie OPEN einen Befehlsstring aus 

zugeordnet LA, GA, SA 

_-- 62472=$f408 

ladt Datei oder Programm, das mit OPEN geöffnet 

wurde, dazu vorher <STATUS>=0, <LOVE>=D setzen



- 305 - 

  

Label C64 40/80XxX 
t t 

Programmzeiger 'Anfang' und 'Ende' werden gesetzt 

LOADXX 62648=$f4b8 62294=$f 356 
wie LOAD, aber ohne Veranderung der Zeiger 

SUF TAB 62223=$f 30f 62145=$f 2cl 

stellt fur eine bereits geoffnete Datei GN,SA,LA 

bereit aus der intern gefuhrten Tabelle 

Vorbereitung: <LA> ---> (A) 

SETTAB 62239z=$f 31f 62157=$f 2cd 

setzt die mit SUFTAB gefundenen Parameter in die 

vorgesehenen Zeropage-Adressen 

CLOSEA 62097=$f 291 62178=$f 2e2 

schlieBt eine noch offene Datei 

Vorbereitung: logische Adresse nach (LA) bringen 

CLOSEL --— 62176=$f 2e0 

schlieBt Datei mit LA aus (210)=LA 

TWAIT 63213=$f6ed 63787=$f92b 

verhindert vorzeitigen Rucksprung, wenn die Zen- 

traleinheit schneller als das Peripheriegerat ist 

TALK 60681=$ed09 61650=$f 0d2 
aktiviert das mit OPEN angesprochene Gerat als 

Sender (Talker) 

Vorbereitung: <STATUS>=0 

UNTALK 60911=$edef 61878=$f1b6 

versetzt den (IEC-)Bus nach TALK wieder in neutrale 

Zustand, Gerät wird als Talker deaktiviert 

LISTEN 60684=$ed0c 61653=$f0d5 

aktiviert das angesprochene Gerät als Empfänger 

Vorbereitung: OPEN, <STATUS>=0 

UNLISN 60926=$edfe 61881=$f 1b9 
versetzt den (IEC-)Bus nach Tatigkeit als Listener 

wieder in neutralen Zustand



Label 

GETSA 

SASENL 

SASENT 

BSOUT(CHROUT) 

OUTBUS 

BASIN(CHRIN) 

INBUS 

CHKOUT 

CHKIN 

CLRCH 

- 306 - 

C64 40/80XxX . 
t t 

--- 55599=$d92F 

nachste freie Sekundaradresse holen ---> SA 

60857=$edb9 61763=$f 143 

60871=$edc7 61763=$f143 

sendet die Sekundaradresse und bereitet damit einen 

Kanal fur die folgende Ein- oder Ausgabe vor. 

Dieser Befehl muß also immer dem ersten INBUS oder 

dem ersten QUTBUS vorangehen. 

Vorbereitung: <A>=<SA>, also Akku mit Sekundar- 

adresse belegen, die man ebentuell aus (SA) holt 

65490=$f fd2 KERNAL 65490=$f fd2 
6089 3=$eddd 61854=$f19e 

sendet das im (A)-Register befindliche Byte Uber 

den IEC-Bus auf den aktiven Kanal 

Vorbereitung: OPEN, LISTEN, SASEND, <A> 

65487=$ffcf KERNAL 65487=$ffcf 

holt ein Zeichen nach (A) über aktiven Kanal. 

Bei Standard-I/0: mit Bildschirmausgabe bis CR 

anschlieBend erstes Zeichen in (A). 

60947=$eel3 61888=$f 1cO 
holt Uber den (IEC-)Bus ein Byte nach (A) 

vom aktiven Kanal 

Vorbereitung: OPEN, TALK, SASEND 

65481=$ffc9 KERNAL 65481=$ffc9 

leitet Ausgabe Uber den (IEC-)Bus auf das angespro- 

chene Gerät um (statt Schirm) 

Vorbereitung: OPEN, <LA> ---> (X) 

65478=$ffc6 KERNAL 65478=$ffc6 

Eingabe über den (IEC-)Bus vom angesprochenen Gerät 

(statt Tastatur) 

Vorbereitung: OPEN, <X>=<LA> 

65484=$ffcc KERNAL 65484=$ffcc 

schaltet als Eingabegerät die Tastatur (GA=0) und 

als Ausgabegerät den Bildschirm (GA=3) 

schließt alle Kanäle, aber keine Dateien



Label 

- 307 - 

C64 40/80XxX 
  

CLALL 

Adressen 

LA 

SA 

GA 

NAMADR 

NAMLEN 

STATUS 

LVFLAG 

BAS IC-Tex 

CHRGET 

CHRGOT 

GETBYT 

655ll=$ffe7 KERNAL 65511=$ffe7 

schließt alle Kanäle und Dateien 

zu den Ein/Ausgabe-Routinen 

184=$b8 210=$d2 
logische Adresse zur Bezeichnung der Datei 

185=$b9 211=$d3 

Sekundaradresse zur Kanalbereitstellung 

186=$ba 212=$d4 

Gerätenummer für angesprochenes Gerät 

187/188=$bb/bc 218/219=$da/db 

LO/HI der Anfangsadresse des Dateinamens 

oder eines Befehlsstrings 

183=$b7 209=$dl 

Adresse zur Bereitstellung der Lange des Namens 

144=$90 150=$96 

Byte fur Fehler- bzw. Ende-Erkennung der Datei 

kein Fehler: <STATUS>=0 

147=$93 157=$9d 
Load- bzw. Verify-Flag. Laden: <LVFLAG>=0 

t-Routinen und -adressen 

00115=$0073 00112=$0070 

erhöht Programmzeiger, BASIC-Textzeichen ---> (A) 

00121=$0079 00118=$0076 
belaBt Programmzeiger, holt noch einmal das letzte 

BASIC-Textzeichen nach (A) 

47003=$b79b 51409=$c8d1 

BASIC-Text von (Programmzeiger +l) bis Trennzeichen 

als Byte-Wert ---> (X)



- 308 - 

  

Label C64 40/80XxX 
' ' 

VALBYT 47006=$b79e 51412=$c8d4 

BASIC-Text von Programmzeiger bis Trennzeichen als 

Byte-Wert ---> (X) 

VAREAL 44426=$ad8a 48516=$bd84 

BASIC-Text wird als reelle Zahl gemaB den Rechenre- 

geln berechnet bis zum Trennzeichen ---> FACI 

VALINT 45493=$b1b5 49888=$c2e0 

BASIC-Text wird bis Trennzeichen als Ganzzahl aus- 

gewertet <FAC1+3/FAC1+4>=HI/LO 

INTADR 43371=$a96b 47350=$b8fé 
Ziffernfolge aus BASIC-Text als Integerzahl: 

<20/21>=LO/HI <17/18>=LO/HI 

VALPAR 44446=$ad9e 48536=$bd98 

wertet Zeichenfolge bis Trennzeichen als Zahl oder 

String aus: 

Zahl ---> FAC1, <PARFLG>=0, <TYPFLG>=128(integer) 

oder <TYPFLG>=0(reell) 

String: Zeiger auf Deskriptor = <FAC1+3/FAC1+4> 

<PARFLG>=255 

VALSTR 46755=$b6a3 51152=$c7b5 

Aufruf nach VALPAR 

<34/35> Stringanfangsadresse <31/32> 

Stringlange = <A> 

VALKLA 44785=$aefl 48873=$bee9 

wertet Zeichenfolge zwischen "(" und ")" aus wie 

VALPAR 

GETVAR 45195=$b08b 49451=$cl2b 

liest Zeichenfolge als Variablenname, sucht sie 

oder legt sie an 

in <A/Y> und VARADR steht Variablenadresse 

GETFIP 57812=$eld4 62589=f47d 

holt Dateinamen mit eventuell vorangestellter Lauf- 

werknummer, Geratenummer und eventuelle Sekundar- 

adresse; setzt diese Fileparamater in die Zeropage



- 309 - 

  

Label C64 | 40/80X xX 
' ' 

STRPLZ 46197=$b475 50590=$c59e 

mit <A>=Stringlange wird entsprechend neuer Platz 

im Stringbereich "angehangt". 

<FAC1+1/FAC1+2>=Stringanfangsadresse 

BPRINT 43982=$aaa2 47805=$babd 

druckt Zeichenfolge ab PRGPTR als String aus, dazu 

PRGPTR auf Anfang des auszugebenden Ausdrucks 

  

Trennzeichen - Syntax-Routinen 

KLMAUF 44794=$aefa 48882=$bef 2 

<A>=40 ---> kein Syntaxfehler, Programmzeiger erho- 

hen und nächstes Zeichen ---> (A) 

BASIC-Zeilennummer LO/HI 

KLAMZU 4479 1=$aef7 48479=$beef - 

<A>=41 (Klammer zu)? - sonst wie oben 

KOMMA 44797=$aefd 48885=$bef5 

<A>=44 (Komma ?) - sonst wie oben 

PRFZEI 44799 =$aeff 48887=$bef 7 

<A> beliebig - sonst wie oben 

BASIC-Text von (Programmzeiger +1) bis Trennzeichen 

STRTYP 44431=$ad8f 48521=$bd89 

<PARFLG>=255 ---> keine Fehlermeldung, also liegt 

ein String vor (nach der Auswertung mit VALPAR oder 

VALSTR 0.8.) 

NUMTYP 44428=$ad8c 48519=$bd87 
<PARFLG>=0 ---> keine Fehlermeldung, also liegt 

eine numerische Variable nach der Auswertung des 

BASIC-Textes vor 

ERRXX 42082=$a462 46048= $b 3e0 
druckt Fehlermeldung



- 310 - 

  

Label C64 4O/BOXX 

' I 

ERROR 42042=$a43a 46031=$b3cf 

druckt Fehlermeldung, dazu 

Fehlernummer Offset 

in (X) 

Adressen 

FAC] (FAC) 

FAC+1/2 

FAC+3/4 

STRADR 

VARADR 

LINNUM 

PARFLG 

TYPFLG 

Diverse R 

KALTPT 

WARMPT 

MRUN 

MGOTO 

Alle Kanale werden geschlossen, nicht jedoch die 

eventuell offenen Dateien. 

für BASIC-Text-Routinen 

97...102=$61...66 94...99=$5e...63 

98/99=$62/63 95/96=$5f /60 

100/101=$64/65 97/98=$61/62 

34/35=$22/23 31/32=$1f/20 

Adresse des Stringanfangs nach VALSTR 

71/72=$47/48 68/69=$44/45 

Adresse des Variablenanfangs LO/HI nach GETVAR 

20/21=$14/15 17/18=$11/12 

BASIC-Zeilennummer LO/HI 

13=$0d 07=$07 

14=$0e 08=$08 

OM-Routinen 

43130=$a87a 47114=$b80a 

setzt BASIC-Zeiger für einen Kaltstart 

42638=$a68e 46626=$b622 
setzt BASIC-Zeiger fur einen Warmstart 

42948=$a7c4 46943=$b75f 

startet BASIC-Programm, Zeiger vorher setzen 

43171=$a8a3 47155=$b833 

bricht Programm ab, startet bei Zeilennummer BASLIN 

Zeilennummer auch nach LINNUM setzen



- 311 - 

  

Label C64 40/80X xX 
! ' 

BLINAD 42515=$a613 46499=$b5a3 
sucht Adresse der Zeilennummer in LINNUM, setzt sie 

in LINADR mit LO/HI 

TEXMOD --- 57368=$e018 
schaltet auf Textmodus um (Zwischenräume ) 

GRAMOD --- 57371=$e01b 

schaltet auf Graphikmodus um (ohne Zwischenraume ) 

STOPRY 65505=$ffel KERNAL 65505=$ffel 

Programmabbruch, READY-Modus 

STOPO 63213=$f6ed 62261=$f 335 
STOP-Taste gedrückt ---> /-Flag gesetzt 

MREADY 42100=$a474 46079=$b3ff 

beendet Maschinenprogramm, READY 

TRABLO 41919=$a3bf 45911=$b357 

verschiebt Datenblock von BABL bis EABL mit neuem 

Ende auf ENBL 

TRPSET 64398=$fb8e 64443=$f bbb 

setzt LDPTR als Transportzeiger zum Abspeichern 

DATOUT 63017=$f 629 63260=$f 71c 

gibt mit Transportzeiger Daten auf (IEC)-Bus von 

PRGANF bis PRGEND aus 

DIRPR 62895=$f Saf 62281=$f 349 

pruft vor einer Standard-Meldung auf Direktmodus 

IRQ 59953=$ea3l 58453=$e455 

Standard-Interrupt-Einsprung



Adressen 

- 312 - 

  

Label C64 40/80XxX 
' ' 

BASLIN 57/58=$39/3a 54/55=$36/37 

laufende BASIC-Zeile 

LINNUM 20/21=$14/15 17/18=$11/12 

Zeilennummer LO/HI 

LINAD 95/96=$5f/60 92/93=$5c/5d 

Ergebnis von BLINAD (Zeilennummer LO/HI) 

BABL 95/96=$5f/60 92/93=$5c/5d 

Blockverschiebezeiger "Beginn des alten Blocks" 

EABL1 90/91=$5a/5b 87/88=$57/58 

Blockverschiebezeiger "Ende des alten Blocks +1" 

ENBL1 88/89=$58/59 85/86=$55/56 
Blockverschiebezeiger "Ende des neuen Blocks +1" 

BEGDAT 193/194=$c1/c2 251/252=fb/fc 

Datenanfangsadresse LO/HI 

ENDDAT 174/175=$ae/af 201/202=$c9/ca 

Datenendadresse LO/HI 

LDPTR 172/173=$ac/ad 199/200=$c7/c8 
Ladezeiger für Routine DATOUT 

PCR 53272=$d018 59468=$e84c 

Peripherie-Control-Register 

<PCR>=12 ---> Textzeichen, <PCR>=14 ---> Graphik 

IRQVEC 788/789=$0314/0315 144/145=$90/91 

Interrupt-Vektor 

NMIVEC 792/793=2$0318/0319 148/149=$94/95 

NMI-Vektor (Einsprung nach NMI-Signal) 

BRKVEC 790/791=$0316/0317 146/147=$92/93 

BRK-Vektor (Einspung nach BRK-Befehl)



14 
ROM-Routinen - alphabetisch





Label C64 

315 

40/80 XxX Label 
  

ADD 

ADDO. 5 

ADRFLP 

ADROUT 

ARCTAN 

BASIN 

BFOUT 

BLINAD 

BPRINT 

BSOUT 

BYTHEX 

BYTOUT 

CHKIN 

CHKOUT 

CHRGET 

CHRGOT 

CHROUT 

CLALL 

CLOSE 

CLOSEA 

CLOSEL 

CLRCH 

CMPFAC 

COSIN 

CURPOS 

DATOUT 

DIRPR 

DIV 

EHOCHF 

ERRBO 

ERROR 

ERRXX 

FAC1/2 

FAC2/1 

FACABS 

47210=$b86a 

47177=$b849 

48201=$bc49 

58126=$e30e 

65487=$f fcf 

42515=$a613 

43682=$aaa2 

65490=$ffd2 

65478=$f fcé 

65481=-$f fc9 

115=$73 

121=$0079 

65490=$f fd2 

65511=$ffe7 

65475=$ffc3 

62097=$f291 

65484=$ffec 

48219=$bc5b 

57956=$e264 

58732=$e56c 

63017=$f 629 

62895=$f Saf 

47890=$bb12 

49133=$bfed 

42042=$a43a 

42082=$a462 

48143=$bc0f 

48124=$bbfc 

48216=$bc58 

KERNAL 

KERNAL 

KERNAL 

KERNAL 

KERNAL 

51616=$c9a0 

51583=-$c97f 

52607=$cd7f 

55063=$d717 

54060=$d3c2 

65487=$ffecf 

55963=$da9b 

46499=$b5a3 

47805=$babd 

65490=$ffd2 

55098=$d73a 

55074=$d722 

65478=$ffc6 

65481=$ffc9 

112=$70 

118=$0076 

65490=$f fd2 

65511=$ffe7 

65475=$ffc3 

62178-$f2e2 

62176=$f 2e0 

65484=$ffec 

52625=$cd91 

53890=$d282 

63260=$f71lc 

62281=$f 349 

52296=-$cc48 

53636=$d184 

62895=$f5af 

46031=$b3cf 

46048=$b3e0 

52549=$cd45 

52530=$cd32 

53622=$cd8e 

ADD 

ADDO.5 

ADRFLP 

ADROUT 

ARCTAN 

BASIN 

BFOUT 

BLINAD 

BPRINT 

BSOUT 

BY THE X 

BYTOUT 

CHKIN 

CHKOUT 

CHRGET 

CHRGOT 

CHROUT 

CLALL 

CLOSE 

CLOSEA 

CLOSEL 

CLRCH 

CMPF AC 

COSIN 

CURPOS 

DATOUT 

DIRPR 

DIV 

EHOCHF 

ERR80O 

ERROR 

ERRXX 

FAC1/2 

FAC2/1 

FACABS



Label 

FACMEM 

FACMIN 

FDIVIO 

FLPINT 

FLPOUT 

FLPSTR 

FMALIO 

FPOUTX 

GETBYT 

GETFIP 

GETIN 

GETSA 

GETVAR 

GRAMOD 

HEXBYT 

HEXINA 

HEXINB 

INBUS 

INLINE 

INTADR 

INTFLP 

INTMUL 

INTOUT 

IRQ 

IRVEC-LO 

IRVEQ-HI 

KALTPT 

KLAMZU 

KLMAUF 

KOMMA 

LISTEN 

LOAD 

LOADXX 

LOGNAT 

M-ADD 

C64 
! 

48087=$bbd7 

49076=$bfb4 

47870=$bafe 

47095=$b7f7 

43708=$aabc 

48605=$bddd 

47842=$bae2 

48599=$bdd7 

47003=$b79b 

57812=$eld4 

65508=$ffe4 

45195=$b08b 

60947=$eel 3 

42336=$a560 

43371=$a96b 

45969=$b391 

45900=$b34c 

48589=$bdcd 

59953=$ea3l 

788=$0314 

799=$0315 

43130=$a87a 

44791=$aef7 

44794=$aefa 

44797=$aefd 

60684=$ed0c 

62648=$f 4b8 

47594=$b9ea 

47207=$b867 

316 

40/80XxX 
' 

52493=$cd0d 
53579=$d14b 
52276=$cc34 
51501=$c92d 
53133=$¢cf 8d 

53139=$cf93 

52248-$ccl8 

51409=$c8dl 

62589=$f47d 

65508=$ffe4 

55599-$d92f 

49451=$c12b 

57371l=$e0lb 

55181=$d78d 

55124=$d754 

55139=$d767 

61888=$f 1lc0 

46306=$b4e2 

47350=$b8f 6 

50364=$c4bc 

50295=$c477 

53123=$cf 83 

58453=$e455 

144=$90 

145=$91 

47114=$b80a 

48479=$beef 

48882=$bef 2 

48885=$bef 5 

61653=$f0d5 

62472-$f408 

62294=$f 356 

52000=$cb20 

51613=-$c9a0 

Label 

FACMEM 

FACMIN 

FDIV1O 

FLPINT 

FLPOUT 

FLPSTR 

FMAL1O 

FPOUTX 

GETBYT 

GETFIP 

GETIN 

GETSA 

GETVAR 

GRAMOD 

HEXBYT 

HEXINA 

HEXINB 

INBUS 

INLINE 

INTADR 

INTFLP 

INTMUL 

INTOUT 

IRQ 

IRVEC-LO 

IRVEQ-HI 
KALTPT 

KLAMZU 

KLMAUF 

KOMMA 

LISTEN 

LOAD 

LOADXX 

LOGNAT 

M-ADD



Label C64 

317 

40/80XxX Label   

M-DIV 

M=-MULT 

M-POT 

M-SUB 

MEMF AC 

MEMFC2 

MGOTO 

MREADY 

MRUN 

MULT 

NUMTYP 

OPEN 

DUT2 

DUTBUS 

PGRPTR 

POLNOM 

POTRAD 

PRFZEI 

PTRVAR 

SASEND 

SASENL 

SASENT 

SETTAB 

SGNFAC 

SINUS 

SQRFAC 

STOPO 

STOPRY 

STR-O 

STRADR 

STRFAC 

STROUT 

STRPLZ 

STRTYP 

SUB 

47887=$bbO0f 

47656=$ba28 

49016=$bf78 

47184=$b850 

48034=$bba2 

47756=$ba8c 

43171=$a8a3 

42100=$a474 

42948=$a7c4 

47659=$ba2b 

44428=$ad8c 

62282=$f 34a 

60893=$eddd 

122/123=$7a/7b 

57433=$e059 

49019=$bf7b 

44799=$aef Ff 

45287=$b0e7 

60857=$edb9 
60871=$edc7 
62239=$f31f 
48171=$bc2b 
57963=$e26b 

49009=$bf 71 

63213=$f6ed 

65505=$ffel 

43806=$able 

34/35=$22/23 

47029=$b7bd 

43813=$ab25 

46197=$b475 

44431=$ad8f 

47187=$b853 

KERNAL 

52293=$cc45 

52062=$cb5e 

53519=$d1l0f 

51590=$c986 

52440=$ccd8 

52162=$cbc2 

47155=$b833 

46079=$b3ff 

46943=-$b75f 

52065=$cb6l 

48519=$bd87 

62819=$f 563 

55089=$d731 

61854=$f19e 

119/120=$77/78 

53741=$dled 
53522=$d112 
48887=$bef 7 

49543=$c187 
61763=$f 143 

62157=$¢f 2cd 

52577=$cd6l 

53897=$d289 

53512=$d108 

62261=$f 335 

65505=$ffel 

47901=$bbld 

31/32=$1f/20 

51435=$c8eb 

47908=$bb24 

50590=$c59e 

48521=$bd89 

51593=$c989 

M-DIV 

M-MULT 

M-POT 

M-SUB 

MEMF AC 

MEMFC2 

MGOTO 

MREADY 

MRUN 

MULT 

NUMTYP 

OPEN 

DUT2 

OUTBUS 

PGRPTR 

POLNOM 

POTRAD 

PRFZEI 

PTRVAR 

SASEND 

SASENL 

SASENT 

SETTAB 

SGNFAC 

SINUS 

SQRFAC 

STOPO 

STOPRY 

STR-O 

STRADR 

STRF AC 

STROUT 

STRPLZ 

STRTYP 

SUB



Label C64 

318 

40/80 XxX Label 
  

SUF TAB 

TALK 

TANG 

TEXMOD 

TRABLO 

TRPSET 

TWAIT 

UNLISN 

UNTALK 

VALBYT 

VALINT 

VALKLA 

VALPAR 

VALSTR 

VARADR 

VAREAL 

VARNAM 

WARMPT 

ZUFALL 

62223=-$f 30f 

60681=$ed09 

58036=$e2b4 

41919=$a3bf 

64398=$f b8e 

63213=$f6ed 

60926=$edfe 

60911=-$edef 

47006=$b79e 

45493-$b1b5 

44785=$aefl 

44446=$ad9e 

46755=$b6a3 

71/72=$47/48 

44426=$ad8a 

69/70=$45/46 

42638=$a68e 

57495=$e097 

t 

62145=$f 2cl 

61650=$f Od2 

53970=$d2d2 

57368=$e018 

45911=$b357 

64443=$fbbb 
63787=$f 92b 
61881=$f1b9 
61878=$f 1b6 
51412=$c8d4 

49888=$c2e0 

48873=$bee9 

48536=$bd98 

51152=$c7b5 

68/69=$44/45 

48516=$bd84 

66/67=$42/43 

46626=$b622 

53801=$d229 

SUF TAB 

TALK 

TANG 

TEXMOD 

TRABLO 

TRPSET 

TWAIT 

UNLISN 

UNTALK 

VALBYT 

VALINT 

VALKLA 

VALPAR 

VALSTR 

VARADR 

VAREAL 

VARNAM 

WARMPT 

ZUFALL



15 
Wichtige Adressen - alphabetisch





- 321 

  

Label C64 40/80XxX Label 

ARYTAB 47/48=$2f/30 44/45=$3c/3d ARYTAB 

BABL 95/96=$5f/60 92/93=$5c/5d BABL 

BASLIN 57/58=$39/3a 54/55=$36/37 BASLIN 

BEGDAT 193/194=$cl/c2 251/252=$fb/fe BEGDAT 

BRKVEC 790/791=$0316/0317 146/147=$92/93 BRKVEC 

BSADHI 217=$d9 59246=$e76e BSADHI 

BSADLO 60656=$ecfO 59221=$e755 BSADLO 

CURSPA 211=$d3 198=$c6 CURSPA 

CURZE I 214=$d6 216=$d8 CURZEI 

DEVIN 153=$99 175=$af DEVIN 

DE VOUT 154=$9a 176=$b0 DE VOUT 

EABL1 90/91=$5a/5b 87/88=$57/58 EABL1 

ENBL1 88/89=$58/59 85/86=$55/56 ENBL1 

ENDDAT 174/175=$ae/af 201/202=$c9/ca ENDDAT 

EXPON 94=$5e 91=$5b EXPON 

Fl (intmul) 113/114=$71/72 LO/HI 110/111=$6e/6f Fi 

F2AD 95/96=$5f/60 92/93=$5c/5d F2AD 

FAC1 97..101=$61..65 94. .99=$5e/63 FACL 

FAC2 105..109=$69..6d 102..107=$66/6b FAC2 

GA 186=$ba 212=$d4 GA 

IRQVEC 788/789=$0314/0315 144/145=$90/91 IRQVEC 

KEY 203=$cb 151=$97 KEY 

KEY(SK) 155=$9b KEY (SK) 

LA 184=$b8 210=$d2 LA 

LDPTR 172/173=$ac/ad 199/200=$c7/c8 LDPTR 

LINAD 95/96=$5f /60 92/93=$5c/5d LINAD 

LINNUM 20/21=$14/15 17/18=$11/12 LINNUM 

LINNUM 57/58=$39/3a 17/17=$11/12 L INNUM 

LVFLAG 147=$93 157=$9d LVFLAG 

MAXMEM 55/56=$37/38 52/53=$34/35 MAXMEM 

NAMAD 187/188=$bb/bc 218/219=$d/db NAMAD 

NAMLEN 183=$b7 209=$¢dl1 NAMLEN 

NMIVEC 792/793=$0318/0319 148/149=$94/95 NMIVEC 

PADAT 56320=$dc00 (CP2) 59471=$e8f4 PADAT 

PADAT2 56321-$dc0l (CPI) PADAT2



- 322 

  

Label C64 40/80XxX Label 

PARFLG 13=$0d 07=$07 PARFLG 

PCR 53272=$d018 59468=$e84c PCR 

PGRPTR 122/123=$7a/7b 119/120=$77/78 PGRPTR 

PORTA 56577=$dd0l 59459=$e843 PORTA 

Reelle Zahlen: 

RZ -0.5 224/185=$e0/b9 022/203=$16/cb RZ -0.5 

RZ 0.5 17/191=$11/bf 199/208=$c7/d0 RZ 0.5 

RZ 1.00 188/185=$bc/b9 242/202=$f2/ca RZ 1.00 

RZ 0.25 234/226=$ea/e2 08/211=$08/d3 RZ 0.25 

RZ 10 249/186=$f9/ba 047/204=$2f/cc RZ 10 

RZ 2pi 009/227=$09/e3 039/211=$27/d3 RZ 2pi 

RZ pi 168/174=$a8/ae 160/190=$a0/be RZ pi 

RZ pi/2 224/226=$e0/e6 254/210=$f e/d2 RZ pi/2 

RZ SQR(2) 219/185=$db/b9 017/203=$11/cb RZ SQR(2) 

SA 185=$b9 211=$d3 SA 

SHIFLG 654=$028e 152=$98 SHIFLG 

STATUS 144=$90 150=$96 STATUS 

STRADR 34/35=$22/23 31/32=$1f/20 STRADR 

TXTTAB 43/44=$2b/2c 40/41=$28/29 TXTTAB 

TYPFLG 14=$0e 08=$08 TYPFLG 

USRVEC 785/786=$0311/0312 01/02=$01/02 USRVEC 

VARADR 71/72=$47/48 68/69=$44/45 VARADR 

VAREND 49/50=$3b/3c 46/47=$3e/3f VAREND 

VARNAM 69/70=$45/46 66/67=$42/43 VARNAM 

VARTAB 45/46=$2d/2e 42/43=$3a/3b VARTAB 

ZEIPTR 209/210=$d1/d2 196/197=$c4/c5 ZEIPTR



- 323 - 

Adressen zur Spriteverwaltung (nur C64) 

SPOO bis 

SPO7 

SPRAKT 

COLOO bis 

COLD? 

MUCOLO 

MUCOLI 

MUCOLR 

EXPHOR 

EXPVER 

X00 

YOO 

X07 

YO7 

X-MSB 

KOLLSS 

KOLLSD 

2040=$07f8 bis 

2047=$07ff 
Sprite-Pointer fur Sprite OO bis Sprite 07 

53269=d015 

Spriteadtivierungsregister (bitweise) 

53287=$d027 bis 
53294=$d010 

Farbregister der Sprites OO bis 07 

53285=$d025 Mehrfarbenregister O 

53286=$d026 -Mehrfarbenregister 1 

53276=$d0lc Mehrfarben-Steuer-Register 

53277=$dOld Horizontal-Vergrößerungs-Register 

53271=$d017 Vertikal-Vergrößerungs-Register 

53248=$d000 und 

53249=$d001 Sprite-Koordinaten x/y für SPOO 

53262=$d00e 

53263=$d00f Sprite-Koordinaten x/y für SPO7 

53264=$d010 fur x>255 Bit setzen 

53278=$d0le Kollisionserkennung Sprites (Bits) 

53279=$dolf Kollision Sprites/Daten (Bits)





16 Stichwortverzeichnis 

ADC 

ADD 

Addieren 

Adresse 

ADRFLP 

ADROUT 

AND 2 

arithm. Verknüpfung 

ASU 
ASSEMBLER 

Ausgabebefehle 

BASIC-Text 

BASIC-Zeile 

BASIC-Zeiger 

BASIN 
Befehlssatz 

Befehlsstring 

BEQ 

Bewegungssimultaion 

BIT 

Bits 

BLINAD 

Blocktransport 

BNE 

BSOUT 

Bus 

BYTEHEX 

BYTOUT 

C-Flag 

CHKIN 

CHKOUT 

CHRGET 

CHRGOT 

CHROUT 

CLALL 

CLI 

CLOSE. 

CLRCH 

Cursorposition 

- 325 

D1 f 

73f 

51,289 

20 

69 

123f 

7,139,139,291 

289ff 

30,58f,292 
15f,286ff 

288f 

225ff 

268 

157 

l143ff 

286ff 

L76f f 

28 

L24ff 

27 

>4 

270 

272f 

28 

104f 

L635f fF 

68 

123 

92,357,285 

172f 

171f,177f 

226f 

226f 

92,104f,138ff 

167,172 

46 

73,179 

172,178 

105ff 

Data 

Datei 

DDRA 

DEVIN 

DEVOUT 

Direktzugriff 

Disassembler 

Dividieren 

Drucker 

EHOCHF 

Eingabebefehle 

EOR 

Exponent 

ERROR 

FAC 

FACABS 

FACMEM 

FACMIN 

FACSTR 

fastdisk 

FDIV1O 

Fehlermeldung 

Flag 

F lagbeeinf lussung 

Floppy 

FLPINT 

FLPOUT 

FLPSTR 

FMALI1D 

GA 

Geräteadresse 

GETBYT 

GETFIP 

GETIN 

GETVAR 

Halbieren 

HEXBYT 

199f 

L71f Ff 

26 

143 

209,210 

216 

15 

74f 

168f Ff 

83f 

287f 

S4f 5292 

114,120,154f 

235 

61f,73 

19 

64 

78 

109 

2leff 

74f 

233ff 

113,42f,285,296 
285,296 

205,208f,216 

65f 

25,64,103, 105f 

6/7 

Ye) 

163f 
164ff 

228f , 232 
274 

137f f 
243f 

Saf 

68



HEXINA 

HEXINB 

Hexzahlen 

HI 

HIMEM 

IEC-Bus 

INBUS 

INLINE 

INTADR 

Integerzahlen 

Interpreter 

Interrupt 

INTFLP 

INTMUL 

INTOUT 

IRQ 

IRQ-VEKTOR 

Joystick 

Kompaßanzeige 

Konstante (ROM) 

Koordinaten 

künstlicher Cursor 

LA 

Label 

Laden 

LISTEN 

LO 

LOADXX 

Logartihmieren 

log. Verknüpfungen 

LOGNAT 

LSR 

LVFLAG 

Lückenfüller 

M-ADD 

M-DIV 

M-MULT 

M-SUB 

Maschinensprache 

- 326 

148 

148 

18,21 

18,56 

257f ,257F 

163f 
190 

145,145ff 
240 

Slff,155f 
225 
41 

55,63 
60 

53,103,52f,103 
41,256,269 
41,45f,256 

25,26f 

124ff 

62f 

29 

L38fF 

163f 

20 

196ff,275f,287 

166 

18,56 

197 

85 

291,163ff 

83 

>9 

196f 

296 

77 

80f 

19 

77f 

15f 

MEMF AC 

MGOTO 

Modul 

Modulverknüpfung 

MRUN 

MSAVE 

Multiplizieren 

N-Flag 

negative Ganzzahlen 

ONSTRING 

OPEN 

DRA 

DUT2 

DUTBUS 

PADAT 

PARFLAG 

PCR 

Parameter 

Peripherie 

Pixel 

POLNOM 

Polynom-Auswertung 

positive Ganzzahlen 

posload 

possave 

Potenzieren 

print-using 

print at 

printdirector 

PTRVAR 

Quadratwurzel 

quickdirektor 

Realzahl-Addition 

Rechnen 

Record 

reelle Zahlen 

Registerformat 

REL-Dateien 

Richtungen 

63 

26/ff 

254uff 

254f f 

26/7 

274 

60f 

92,285 

Surf 

244f Ff 

171 

139,139,291 

124 

190 

26 

241f 

271 

225f 

L65ff 

33 

B9F fF 

89f fF 

Sirff 

276f f 

279ff 

8lf,82 

lilff 

233ff 

208f f 

158f 

8l 

202ff 

75ff 
73ff,128f,289 

181ff 

l5aff 

61f,285,285 

181ff 

25f,125f



ROL 

ROR 

SA 

SASEN. 

SBC 

SEI 

Sekundaradresse 

SEQ-Dateien 

SETTAB 

SHFLAG 

Spalte 

Speicher 

Speicherformat 

Sprite 

Sprungbefehle 

Sprungleiste 

STATUS 

Statusregister 

STOPO 

STOPRY 

STR-O 

STRF AC 

Stringvariable 

STROUT 

STRPLZ 

Struktogramm 

Subtrahieren 

SUFTAB 

Syntax 

Takt 

TALK 

Tastatur 

- 327 

95,293,293 

293 

163f 

166 

51f,56 

46 

L63f Ff 

175 

173 

268 

105f 

274f 

61,279f , 288 

28ff, 31,31, 33 

295 

258ff,180 

165 

285 

272 

272 

111,117 

66,141 

156 

109 

247 

118 

56, 77,290 

173 

236ff,236ff 

42,125,42ff,131f 

165 

137f 

test onstring 2535f 

testtakt 4uf 

Trailer 246 

Transport 294 

TYPFLG 241f 

UNTALK 165 

USERPORT 170 

VALBYT 231f,232 

VALINT 239f 

VALKLA 239 

VALPAR 241f 

VALSTR 243 

VARADR 158f 

VAREAL 238 

Variable anlegen 153f 

VARNAM 158f 

Verdoppeln 58 

Vergleich 94f,293f,293 

Verschiebe-Befehl 292f,272f 

Vorzeichenprüfung 96f 

Warmstart 267 

Warteschleife 29,42, 34,42f 

Winkelfunktionen ssff 

Wurzelziehen 81 

Z-Flag 2/f,52,285 

Zahleneingabe 141f 

Zeiger 46,157,203f,226ff 

Zeropage 150f,247,269 

Zufallszahl 84f



  

Bet 

    

GEOS für den C128 (englisch) 
Der neue Betriebssystemstandard - in der Originalversion für den C128. GEOS 
64 wurde an den 128er-Modus des C128 angepaßt und kann sowohl die 
doppelte Auflösung als auch den größeren Speicher nutzen. Unterstützt werden 
am RGB-Eingang angeschlossene Monitore (80 Zeichen), sowie die üblichen 
PAL-Monitore und Fernsehapparate. Ansonsten gelten die leistungsmerkmale 
von GEOS 64. 
Hardware-Anforderung: 
C128, Floppy 1541, 1570 oder 1571, Joy- 
stick oder Maus 153). 
51/-Zoll-Diskette 
Bestell-Nr. 50328 DM 119,— 

GEOS für den C 128 
(deutsch) 
Bestell-Nr. 50327 DM 119,— 

Deskpack 1/GeoDex fir 
den C64/C128 (deutsch) 
Deskpack 1/GeoDex: die nützlichen 
Zusatzprogramme für GEOS Graphics- 
Grabber! Ubertragt Grafiken von Print ' 
Shop, Print Master und Newsroom zur 
Anwendung mit GeoPaint und GeoWrite. 
leistungsumtang: Icon Editor - erstellt 
und verändert Icons nach Ihren Vorstellun- 
gen. GeoDex - Adreß- und Notizbuch 
mit Modemunterstützung. GeoMerge - 
Suchen nach Adreßgruppen aus GeoDex 
sowie Erstellen von Formbriefen und listen. 
Blackjack - das klassische Glücksspiel. 
Kalender. 
Hardware-Anforderungen: 
C64 oder C128, Floppy 1541, 1570 oder 
1571, Joystick. 
Software-Anforderung: GEOS 64. 

  

CK1" 
FOUR NEWADPRICATIONS FOR USE WITH OBOS       

    
   

LR En COMMOBY, ou od,   

GEOS, Version 1.3, für den C64/C 128 (deutsch) 
Der neve Betriebssystemstandard fiir Commodore 64. leistungsumfang: Desk- 
Top - das Grafikinterface zum GEOS-Betriebssystem. Schauen Sie sich die 
Dateien als Icons oder im Textmodus an. Automatisches Sortieren von Dateien 
nach Alphabet, Größe, Typ oder Datum der letzten Änderung ist kein Problem. 
Dateien kopieren, löschen und Disketten formatieren ist natürlich enthalten. 

GeoPaint: ein umfangreiches Zeichenpro- 
  

  

gramm in Farbe mit 14 verschiedenen 
Grafiktools, 32 Pinselstärken, 32 verschie- 
denen Mustern. GeMrrite: ein einfaches, 
leichtbedienbares Textprogramm. Desk- 
Accessories: Wecker, Notizblock, Taschen- 
rechner. 
Hardware-Anforderungen: 
C64 oder C128 (64er-Modus), Floppy 
1541, 1570 oder 1571, Joystick. 
Bestell-Nr. 50320 DM59,— 
Update von älteren englischen Versionen 
auf die neue deutsche Version 1.3. Erhältlich 
direkt beim Markt&Technik-Buchverlag 
ge en Einsendung des Originalprodukts 

egen Vorauskasse. * 
DM 39, - 

  

  

  

Beste I-Nr. 50320U 

Fontpack 1 für den 
C641C128 (deutsch) 
Die unentbehrliche Utility für GEOS- 
Benutzer! Fontpack | wurde fir die GEOS- 
Applikationen GeoPaint und GeoWrite 
entwickelt und enthält 20 neue, außerge- 
wöhnliche Schriftarten, die jeden Anwen- 
der begeistern werden. 
Hardware-Anforderunge 
C64 oder C128, Floppy 154), 1570 oder 
1571, Joystick. 
Software-Anforderungen: GEOS 64 

  

ee CEC OMIA TOA HL ft ANDI Art rt Bl   
    

    
    

        

  

Bestell-Nr. 50322 DM69,—" sit: a Bestell-Nr. 50321 DM49,— 

geoWirite Workshop für den Geofile für den C64/C128 GeoCalc für den C641C 128 
C64/C12 Bestell-Nr. 50324 DM89,-—" Bestell-Nr. 50325 DM89,— 
Bestell-Nr. os DM 89,— 
ET * Unverbindliche Preisempfehlung 

In Vorbereitung: 

GeoWrite Workshop 128 
Bestell-Nr. 50329 ca. DM 119,— 

Geofile 128 
Bestell-Nr. 50330 ca. DM 119,— Produkte e erhalten 

GeoCalc 128 . . arkt Techn Inändler, In in den 
Bestell-Nr. 50331 ca. DM 119,—* Markt&dechnik Sie bei pee ngeschäfte en user. 

Zeitschriften - Bücher engen n der W& 

71
12
41
 . Software - Schulung 7 

Markt &Technik Verlag AG, Buchverlag, Hans-Pinsel-Strabe 2, 8013 Haar bei München, Telefon (089) 4613-0 

    
   

  

    

Bestellungen im Ausland bitte an: SCHWEIZ: Markt&Technik Vertriebs AG, Kollerstrasse 3, CH-6300 Zug, Telefon (042) 415656 - ÖSTERREICH: Rudolf lechner & Sohn, 
HeizwerkstraBe 10, A-1232 Wien, Telefon (0222) 677526 - Ueberreuter Media Verlagsges. mbH (Großhandel), Laudongasse 29, A-1082 Wien, Telefon (0222) 48 1543-0.



  

Commodore-Sachbücher 

  

      

   

   

    
   

Ei BS. 

Commodore Commodore 
Sachbuch Sachbuch 

  

    

Commodore 
Sachbuch 

  

Florian Miiller - Thorsten Petrowski 

    

  

Beschreibung der CP/M-Betehie & Struktur von CP/M 
& CP/M-Dateian & Programmieren unter CP/ 

(Turbo-Pascal, Microsoft-Basic} 

  

2. ubernrbeitele Auflage     
Prof. Dr. W.-J. Becker 
C128 - 
Alles über CP/M 3.0 
1986, 299 Seiten 
Eine fundierte Einführung 
in die Anwendung des 

Commodore Sachbuchreihe 
Alles uber den C64 
2. Auflage 1986, 514 Seiten 
Dieses umfangreiche 
Grundlagenbuch zum C64 
enthalt neben einem Basic- 

        

  
      

Lexikon alle Informationen Ar die deutsche GLO Vereen on Betriebssystems CP/M 30 
und Tips, die der Spezialist Mit Beschreibung aller erhältlichen GEOS-Applikationen. bzw. CP/M Plus auf dem 

zur Grafik- und Musikpro- Commodore 128. 
grammierung benötigt. Ein Bestell-Nr. 90370 
Kapitel beschäftigt sich mit ISBN 3-89090-370-3 
der Programmierung in soppelveng besciae 8 2: DM 52,- 
Maschinensprache und der mt vielen GEOS-Unitios (sFr 47.80/6S 405,60) 
Einbindung von Maschinen- 
sprache-Routinen in Basic- | . 
Programme. In diesem " ‚Listing 

. . 1986, 456 Seiten 
Zusammenhang erfahren F. Müller/T. Petrowski Das umfassende Buch über Dieses kommentierte 
Sie auch alles über einen Alles über GEOS Anwendung und Program- ROM-Listing umfaßt das 
wichtigen Bestandteil des Version 1.3 mierung der grafischen Betriebss son des C128 
Betriebssystems aller Anwendungs-, Benutzeroberflache GEOS. den M onitor des C128 
Commodore-Computer, Programmier- und Bestell-Nr 90570, sowie das Basic 70 von 
das »Kernal«. Systemhandbuch ISBN 3-89090-570-6 Microsoft | 
Bestell-Nr. 90379 1987, 532 Seiten, DM 49,- Bestell-Nr 90212 
ISBN 3-89090-379-7 inklusive Diskette (sFr 45,10/6S 382,20) ISBN 3.89090-24 9X 
DM 59,- 

DM 58,- 
(sFr 54,30/0S 460,20) (sFr 53.40/68 452,40) 

' _ mje Produkte ernatten 
Markt&dechnik = | “Snore ViarKic&lecninl me a lungen 

© Zeitschriften - Bücher oder or Warenhauset 
= _ Software » Schulung — 

Markt&Technik Verlag AG, Buchverlag, Hans-Pinsel-Straße 2, 8013 Haar bei München, Telefon (089) 4613-0 

    



    
  

a "Ws 
3D-Konstruktion mit 
GIGA-CAD Plus 
auf dem €64/C128 

  
S. Vilsmeier 
3D-Konstruktion mit GIGA- 
CAD Plus auf dem C64/C 128 
1986, 370 Seiten, inkl. 2 Disk. 
Mit GIGA-CAD kénnen Compu- 
tergrafiken von besonderer 
Raumlichkeit und Faszination 

geschaffen werden. GIGA-CAD 
Plus ist schneller und einfacher 

zu bedienen, die Benutzerober- 
flache wurde verbessert und 

der Befehlssatz erweitert. Die 
Eingabe erfolgt in erster Linie 
über den Joystick. Hardware- 
Anforderung: C 64 mit Floppy 
1541 oder C 128 (im 64er- 
Modus), Fernseher oder Moni- 
tor, Joystick und Commodore- 
oder Epson-kompatibler Drucker. 
@ Das verbesserte GIGA-CAD- 
Programm mit neuen Features 
wie erweitertem Befehlssatz und 
bis zu 10mal schneller liegt dem 
Buch im Floppy-1541-Format bei. 
Best.-Nr. 90409 
ISBN 3-89090-409-2 
DM 49,- 
(sFr 45,10/68 382,20) 

70
63
58
 

  

  

emt Sri 

Gas 

  
H. Haber! 

Mini-CAD mit Hi-Eddi plus auf 
dem C64/C 128 
1986, 230 Seiten, inkl. Diskette 
Auf der beiliegenden Diskette 
findet der Leser das vollstan- 
dige Zeichenprogramm »Hi- 
Eddi«, mit dem das komfortable 
Erstellen von technischen Zeich- 
nungen, Plänen oder Diagram- 
men ebenso möglich ist wie 

das Malen von farbigen Bildern, 
Entwurf und Ausdruck von 
Glückwunschkarten, Schildern, 
ja sogar von bewegten Sequen- 
zen (kleine Trickfilme, Schau- 
fenster-Werbung). 
@ Wer sagt, daB CAD auf 
dem C64 nicht möglich ist?! 
Best.-Nr. 90136 
ISBN 3-89090-136-0 
DM 48,- 
(sFr 44,20/6S 374,40) 

  

Markt&lechnik 

   
  

Markt&Technik 

Das umfassende Handbuch für die Textverarbeitung 

mit Vizawrite 64. Für Einatelger und Profis,   
B.Bornemann-Jeske 
Vizawrite-Buch für den 
C64/C 128 
1987, 228 Seiten 
Mit dem »Vizawrite-Buch« liegt 
erstmals ein vollständiges und 
detailliertes Arbeitsbuch für den 
Anfänger und den professionel- 
len Anwender zur Textver- 

arbeitung auf dem C64/C 128 
vor. Die Grundlagenkapitel füh- 
ren Sie anhand kurzer Ubungs- 
aufgaben in die elementaren 
Funktionen des Systems ein. 
Das Kapitel für Fortgeschrittene 
zeigt Ihnen jede Programmfunk- 
tion im Detail. Zahlreiche prakti- 
sche Tips aus verschiedenen 

Anwendungsbereichen ermögli- 
chen Ihnen die optimale Nut- 
zung Ihres Textverarbeitungssy- 
stems. 
Best.-Nr. 90231 
ISBN 3-89090-231-6 
DM 49,- 
(sFr 45,10/68 382,20) 

  

Zeitschriften - Bücher    
  

Software - Schulung    
  

    

ln 

Markt& lec, 
Si „Fachges( 

in Comput Fachabteilungen 

oder "der Warenhäuset 

  

Mes All, 
KUNSTLICHEN INTELLIGENZ      

O.Hartwig 
Experimente zur Künstlichen 
Intelligenz mit C64/C 128 
1987, 248 Seiten 
Sind Maschinen intelligent? 
Können Computer denken? 
Erschließen Sie sich eines der 
interessantesten Gebiete der 
modernen Computerforschung! 
Anhand zahlreicher Programme 
erfahren Sie hier die Möglichkei- 
ten der Künstlichen Intelligenz, 
speziell auf dem C64 und dem 
C128. Der Schwerpunkt des 
Buches liegt auf der Praxis. Alle 
Kl-Techniken werden durch 
anschauliche Programme vor- 
gestellt, die sofort nachvollzieh- 
bar sind. Zusätzlich erhalten Sie 
jede Menge Anregungen zu 
eigenen Experimenten. Die KI- 
Programme können ohne weite- 
res in eigene Programme inte- 
griert werden. 
Best.-Nr. 90472 
ISBN 3-89090-472-6 
DM 49, 
(SFr 45,10/6S 382,20) 

       

    

oe 

i du 
halten 

Produk
te er 

hair 
Buchhän

deer. 

escnait
en 

Markt&Technik Verlag AG, Buchverlag, Hans-Pinsel-Straße 2, 8013 Haar bei München, Telefon (089) 4613-0



    

   
  

  
M. Hegenbarth/R. Trierscheid 
BASIC-Grundkurs 
mit dem C64 
1985, 377 Seiten 
Kein rein theoretisch ausgeleg- 

ter BASIC-Kurs, sondern praxis- 
nah auf den C64 zugeschnit- 
ten. Auch der Computerneuling 
kann mit diesem Buch lernen, 
mit seinem C64 in BASIC zu 
arbeiten, und wird auf die 

Besonderheiten seines Compu- 
ters hingewiesen. Der leichtver- 
standliche, lockere Stil und die 
gute logische Gliederung der 
Kapitel unterstützen dies. 
Erwähnenswert ist ein Kapitel, 
das die Kommunikation zweier 
C64 beschreibt, der Anhang, in 
dem-eine Liste nützlicher PEEKSs, 
POKEs und SYS und noch 
vieles mehr enthalten ist. 
@ Fir den Lesertyp, der beim 
Lernen auch noch Spaß haben 
möchte. 
Best.-Nr. 90361 
ISBN 3-89090-361-4 
DM 44,- 
(sFr 40,50/68 343,20) 

70
63

59
 

  

nit dem 

  
F. Matthes 
Pascal mit dem C64 
1986, 215 Seiten, inkl. Diskette 
Buch und Compiler ermögli- 
chen jedem Besitzer eines C64 
den Einstieg in die moderne 
Programmiersprache Pascal. 
Der Compiler akzeptiert den 
gesamten Sprachumfang mit 
einigen Erweiterungen. Er bildet 
mit einem sehr komfortablen 

Full-Screen-Editor eine schnelle 
Einheit, so daß der Programm- 
entwicklungsaufwand minimal 
ist. Ubersetzte Programme lau- 
fen ohne weitere Hilfspro- 
gramme auf jedem C64, nutzen 
den gesamten Programmspei- 
cher des C64 und sind 3-4mal 
schneller als vergleichbare Pro- 
gramme in BASIC. Dem Buch 
liegt ein leistungsfähiges Pascal- 
System mit einigen Pascal-Pro- 
grammen auf Diskette bei. 
Best.-Nr. 90222 
ISBN 3-89090-222-7 
DM 52,- 
(sFr 47.80/68 405,60) 

  

Markt&dechnik 

  

  

     
W. Kassera/F. Kassera 
C64-Programmieren in 
Maschinensprache 
Der Aufschwung im Program- 
mieren stellt sich ein, wenn Sie 
die betriebssysteminternen 
ROM-Routinen kennen, über 
ihre Funktionsweise und ihr 
Zusammenspiel informiert sind. 
Und Sie müssen die Maschi- 
nensprache Ihres C64 beherr- 
schen. Beides ermöglicht Ihnen 
dieses Buch. Es zeigt, wie Sie 
bewegte Bildschirmobjekte pro- 
grammieren, die Interrupt- 
Routine des Systems erweitern, 
die Arithmetik-Routinen im ROM 
und deren Datentypen beherr- 
schen, und alles, was Sie über 
Ein-/Ausgabe, BASIC-Variable 
und andere wichtige Themen 
wissen müssen. 

Best.-Nr. 90168 
ISBN 3-89090-168-9 
DM 52 
(sFr 4780/68 405,60) 

   

  

  
Zeitschriften - Bücher       
Software - Schulung   

  

  

rkt& Tec 
Nee bei Ihr 

     

    
H.Ponnath 

C64: Wunderland der Grafik 
1985, 232 Seiten, inkl. Diskette 
Der Autor legt beim Leser ein 

solides Fundament an Wissen, 
und er tut dies auf so unterhalt- 
same Art, daß Sie bestens 
gerüstet sind, um so interes- 
sante Aufgaben wie die Pro- 
grammierung hochauflösender 
zwei- und dreidimensionaler 

Grafiken anzugehen. Mit Sprites 
zu jonglieren ist für Sie bald 
kein Problem mehr, aber auch 
das vertrackte Verdeckungs- 
problem bei dreidimensionaler 
Grafik kriegen Sie jetzt endlich 
in den Griff. Finden Sie heraus, 
was wirklich im Grafik-Chip 
Ihres C64 steckt! 
@ Eine lesenswerte und 
kenntnisreiche Einführung in 

dieses hochinteressante Thema 
von einem sachkundigen Auto- 
ren; mit allen Beispielen auf 
beigefügter Diskette. 
Best.-Nr. 90363 
ISBN 3-89090-363-0 
DM 49,- 
(SFr 45,10/6S 382,20) 

     

  

; kte erhalten 
nik Prod adler, 
\ Fa eschäften 

Eachabteilungen 
Warenh Auser. 

Markt&Technik Verlag AG, Buchverlag, Hans-Pinsel-Straße 2, 8013 Haar bei München, Telefon (089) 4613-0



   

      

C Spiele 
sammiun 

Lassen Sie sich in eine 

      

abenteuerliche Spielewelt entführen! 
Alles, was Sie brauchen, ist ein C64 oder ein 
C 128, beiliegende Spielediskette - und schon 
kann die Reise losgehen. Beweisen Sie Ihre 
Joystick-Künste, indem Sie sicher den Weg aus 
dem Labyrinth finden! Bewahren Sie 
Ihren kühlen Kopf in aufregenden 
Actionszenen! Zeigen Sie Ihre 
Fähigkeiten als Börsenmakler in 
lebensnahen Wirtschattssimula- 
tionen! Mit den 15 spannenden 
Spielen, der ausführlichen 
Anleitung sowie den farbigen 
Bildschirmfotos ist Ihnen ein 
fantastisches Spielvergnügen 
gewiß. 
Aus dem Inhalt: 
Balliard: Eintallswinkel 
= Ausfallswinkel. Wer 
das nicht befolgt, hat es 
schwer bei dieser Mi- 
schung aus Tennis und | 
Billard. | 
The Way: Zu verschlungenen Pfaden 
gesellen sich Geldsdcke und bése Geister, die OE 
es zu bekämpfen gilt. Vager 3: Joystickprofis 
mit ungetrübtem Visierblick und Trefferinstinkt 
können ihr Punktekonto schwer mit Abschub- 
prämien beladen. 

   Markt&fechnik 
Zeitschriften » Bücher Gesamte 7 

        

      

   

  

   
   

   

      

     

Firebug: Hoffentlich fängt Ihr Joystick nicht 
ebenfalls Feuer, wenn es heißt, die wertvollen 
Koffer aus dem brennenden Haus des Profes- 
sors zu erwischen. Pirat: Taktik, Timing und 
gute Navigationskenntnisse sind Voraussetzung 

für ein bis zu 25 Jahre langes Piratenleben. 
Wirtschaftsmanager: 

Simulation aus den höchsten 
Etagen der Wirtschaft, nicht 
1000 Stück, sondern ganze 
Firmen gehen Uber den »laden- 

tisch«. Vier gewinnt: Einfach, 
aber gerade deshalb ein Spiel, 

das schnell zu Erfolgserlebnissen 
führt. Brainstorm: Mastermind 

stand Pate für dieses vielseitige Denk- 
spiel. Hypra-Chess: Spielen Sie 
Schach gegen einen C64 und außer- 
dem die Spiele Maze, Schiffe ver- 
senken, Handel, Börse, Vier in 

vier und Magic-Cubs. 

Hardware-Anforderungen: C 64 
oder C 128 bzw. C 128D (ö4er-Modus), 

Floppy 1541, 1570 oder 1571 und Joystick. 
Best.-Nr. 90429, ISBN 3-89090-429-7 

DM 39,=" (sr 35,90/6S 304,20) 
*Unverbindliche Preisempfehlung. 

  

71
11
25
/2
 

Software - Schulung _—   
Markt&Technik Verlag AG. Buchverlaa. Hans-Pinsel-Straße ?. 8013 Haar hei München Telefon (089) AA13-0



  

      
  

  

    

  

  

      
  

  
    

  

  

  6° 

  

    

  

J   

  

  

   
5 

64er- 

  

Langspiel-Diskette 
ACHTUNG! 
Computer-Freaks aufgepabt: 
32 Spitzen-Musikprogramme aus 
dem 64’er-Musik-Programmier- 
wettbewerb auf einer Diskette mit 
komfortablem lademenü. Von Pop 
bis Klassik ist für jeden Musik- 
geschmack etwas dabei: Shades, 
This is not America, Invention Nr. 
13, Mondscheinsonate, You can 
win if you want, Der Clou, Für 
Elise, The pink Panther und viele 
mehr. 

Hardware-Antorderungen: 
Commodore 64 oder Commo- 
dore 128 im C-64-Modus, Floppy- 
Station 1541, 1570 oder 1571 

Ein »Muß« 
fir jeden 64'er-Fan! 

70
62
29
-2
 

  

   
Markt&echnik 
C64-Software 

  

  
Best.-Nr. 39630 

DM 39,90” 
(sFr 34,90*/6S 399 -*} 
* Unverbindliche Preisempfehlung 

  

  
Zeitschriften - Bücher   
Software - Schulung   

       

  

Einmalig in 
der Computergeschichte: 
® Alle Musikstücke werden in 
Stereoqualitat auf einer hochwerti- 
gen Kassette mit Rauschunter- 
drückung mitgeliefert! 
© Eineinhalb Stunden erstklas- 
sige Computermusik! 
@ Klang umwertend! 

Lieferumfang: 
| Diskette beidseitig bespielt mit 32 
Musikstücken 
] Kassette mit allen Musikstücken in 
Stereoqualität für handelsübliche 
Kassettenrecorder oder Stereoan- 

lagen 

  

         
      

     

  

Anik-Softw< 
Markt Ble halte 

rOOUR'Y | en 
Fachobtellunee U    

Markt&Technik Verlag AG, Buchverlag, Hans-Pinsel-Straße 2, 8013 Haar bei München, Telefon (089) 4613-0



    

dBASE Il, das meistverkaufte 
Programm unter den Daten- 
banksystemen, gibt es jetzt im 
CP/M-Modus für den C 128. 
Es eröffnet Ihnen optimale 
Möglichkeiten der Daten- und 
Dateihandhabung. Einfach 
und schnell können Daten- 
strukturen definiert, benutzt 
und geändert werden. Der 
Datenzugriff erfolgt sequen- 
tiell oder nach frei wählbaren 
Kriterien, die integrierte Kom- 
mandosprache ermöglicht 
den Aufbau kompletter An- 
wendungen wie Finanzbuch- 
haltung, Lagerverwaltung, 
Betriebsabrechnung usw. 

Lieferumfang: 
e ÖOriginalhandbuch von 

Ashton-Tate 
e Beschreibung der 
Commodore-128-PC- 
spezifischen Version 

Hardware-Anforderungen: 
Commodore 128 PC, 
Diskettenlaufwerk, 
80-Zeichen-Monitor, 
beliebiger Commodore- 
Drucker oder ein Drucker 
mit Centronics-Schnittstelle 
über Userport 

71
13
22
 

Version 2.41 

  

  

Markt&technik 
128er-Software 

dBASE 

  

     AN ASHTON TATE 

fur den 
Commodore 128 PC 

5% -Diskette 
im Floppy 1541-Format   

Bestell-Nr. 50303 

DM 199,- 
(SFr 178-"/6S 1890-* 

    
ser In I) 

      Markt&dechnik 
Zeitschriften - Bücher 
Software - Schulung 

  
  
  

aBASE I 
für Commodore 128/128D 

  

Und dazu die 
weiterführende 
Literatur: 
  

Markt&Technik 

EL 

Rdn 
Commodore 128 PC 
Finfükrung in die Progmmamierias 
er Rome tere ET TEN En   

    Dr. P Albrecht 
dBASE Il für den 
Commodore 128 PC 
Dieses klassische Einfüh- 
rungs- und Nachschlage- 
werk begleitet Sie mit 
nützlichen Hinweisen bei 
Ihrer täglichen Arbeit mit 
dBASE Il. 
Bestell-Nr. 90189, 
ISBN 3-89090-189-1 
DM 49,- 
(sFr 45,10/6S 382,20) 

  

Markt&Technik Verlag AG, Buchverlag, Hans-Pinsel-Straße 2, 8013 Haar bei München, Telefon (089) 4613-0



Bitte schneiden Sie diesen Coupon aus, und schicken Sie ihn in einem Kuvert an: 
Markt&Technik Verlag AG, Buch Hans-Pinsel-Strabe 2, 8013 Haar 

          

     

        

    

    

Vom Einsteigerbuch für deh 1- | | 
puter-Neuling über professionelle Programmierhand- 
bücher bis hin zum Elektronikbuch bieten wir Ihnen inter- 
essante und topaktuelle Titel für 

Heim- oder Personalcom- _ 

p
f
l
i
c
h
t
e
n
 

un
s 
zu
r 

  e Apple-Computer e Atafi-Computer e Commodore 
64/128/16/116/Plus 4 e Schneider-Computer e IBM-PC, 
XT und Kompatible | | 
sowie zu den Fachbereichen Programmiersprachen ® 
Betriebssysteme (CP/M, MS-DOS, Unix, Z80) © Textver- 
arbeitung e Datenbanksysteme ® Tabellenkalkulation ® 
Integrierte Software ® Mikroprozessoren e Schulungen. 
Außerdem finden Sie professionelle Spitzen-Programme 
in unserem preiswerten Software-Angebot für Amiga, — 
Atari ST, Commodore 128, |28D, 64, 16, für Schneider 
Computer und für IBM-PCs und Kompatible! 
Fordern Sie mit dem nebenstehenden Coupon unser 
neuestes Gesamtverzeichnis und unsere Programmser- 
vice-Übersichten an, mithilfleichen Utilities, professionel- 
len Anwendungen oder packenden Computerspielen! 

  se
rv

ic
e-

An
ge

bo
te

s 
au
s 

de
r 

Ze
it
- 

sc
hr

if
t   

DI
Ei
ne
 
Üb
er
si
ch
t 

Ih
re
s 

Pr
og

ra
mm

- 
C
h
r
 
ne

ue
st

es
 
Ge

sa
mi

ve
rz

ei
ch

ni
s 

_ 
fü

rf
ol

ge
nd

e/
n 
Co
mp
ut
er
: 

DI
 A
uß

er
de

m 
in
te
re
ss
ie
re
 

ic
h 

mi
ch
 

Bi
tt

e 
sc

hi
ck

en
 

Si
e 

mi
r:

 

  

  

      Markt&ffech 
Zeitschriften - Bücher. 

Software ; Schulung a 

Markt&Technik Verlag AG, Bu¢hverlag, Hans-Pinsel-Strabe 2, 
8013 Haar bei Moncheh, Telefon (089) 4613-0 

  
    

01
3 

Ha
ar

 
be

i 
Mü
nc
he
n 

70
90
05
           ‚=

 
Un

te
rn

eh
me

ns
be

re
ic

h 
Bu
ch
ve
rl
ag
 

- 
Ma
rk
t&
Te
ch
ni
k 
Ve
rl
ag
 

AG
 

     | 
[ 
| 
|



iM Ir les I 

für Commodore 128/128D 
Wenn Sie die zeitraubende 
manuelle Verwaltung tabel- 
larischer Aufstellungen mit 
Bleistift, Radiergummi und 
Rechenmaschine satt 
haben, dann ist MULTI- 
PLAN, das System zur 
Bearbeitung »elektronischer 
Datenblätter«, genau das 
richtige für Sie! Das benut- 
zerfreundliche und leistungs- 
fähige Tabellenkalkulations- 
programm kann bei allen 
Analyse- und Planungs- 
berechnungen eingesetzt 
werden wie zum Beispiel 
Budgetplanungen, Produkt- 
kalkulationen, Personalko- 
sten usw. Spezielle Forma- 
tierungs-, Aufbereitungs- 
und Druckanweisungen 
ermdglichen auBerdem 
optimal aufbereitete Prasen- 
tationsunterlagen! 

5',"Diskette für den 
Commodore 128 PC. 

Hardware-Anforderungen: 
Commodore 128 PC, 
Diskettenlaufwerk, 
80-Zeichen-Monitor, 
beliebiger Commodore- 
Drucker oder ein Drucker 
mit Centronics-Schnittstelle 

7
0
5
3
2
3
 

  

  

Markt&dechnik 
128er-Software 

MICRSSOFT. 
MULTIPLAN. 

für den 
Commodore 128 PC 

5," -Diskette 
im Floppy 1541-Format   

Bestell-Nr. 50203 

DM 199,= 
(SFr 178/0S 1890-) 
* Unverbindliche Preisempfehlung. 

  

    
Markt&lechnik 

Zeitschriften - Bücher 
Software - Schulung 

  
  
  

  

wat’ nt 

sie DE x 

\ 

Und dazu die 
weiterfuhrende 
Literatur: 

   

  

MULTIPLAN 
Timi 

Commodore 128 PC 
Professionelles Planen und Kalkulleren 

mit dem Commodore 128 PC,   
Dr. P Albrecht 
Multiplan für den 
Commodore 128PC 
1985, 226 Seiten 
Mit diesem Buch werden 
Sie Ihre Tabellenkalkulation 
ohne Probleme in den 
Griff bekommen. Als Nach- 
schlagewerk leistet es auch 
dem Profi nützliche Dienste. 
Bestell-Nr. MT 836 
ISBN 3-89090-187-5 
DM 49,- 
(sFr 4510/65 382,20) 

   
     

n xe et 
eproduh “A get em Bu 

    

N 
     

Markt&Technik Verlag AG, Buchverlag, Hans-Pinsel-Straße 2, 8013 Haar bei München, Telefon (089) 4613-0





C64 - Programmieren in 
Maschinensprache 

Wer schon einige Zeit in BASIC programmiert hat, 

wird bald an die Grenzen dieser Computersprache 

stoßen: Rechnen, Auswerten, Datenübertragungen, 

Simulationen, das alles läuft manchmal unerträglich 

langsam ab, und eine ganze Reihe von Problemen ist 

daher aus Zeitgründen nicht oder nur unbefrie- 

digend lösbar. 

Auch mit anderen Sprachen gibt es diese Schwierig- 

keiten. Warum also nicht gleich in ASSEMBLER 

arbeiten, das den Einsatz der Maschinensprache 

ermöglicht, mit der direkt auf das Herz des Compu- 
ters zugegriffen werden kann? 

Hat man sich erst einmal mit ASSEMBLER vertraut 

gemacht, dann stehen auch die betriebsinternen 

ROM-Routinen zur Verfügung, die sich rasch und 

effektiv einsetzen lassen, wenn man weiß, wo sie 

liegen und wie sie vorbereitet werden müssen. 

WINFRIED KASSERA 

Jahrgang 1942, ver- 

heiratet, zwei Söhne. 

Lehrer an der Real- 

schule Neu-Ulm. Ab 

1982 Einführung von 

COMMODORE-Gera- 

ten für das Fach Infor- 

matik. Dadurch inten- 

sive Beschäftigung mit 

diesen Rechnern. In 

der Freizeit leiden- 

schaftlicher Flieger mit Lizenzen für Motor- und 

Segelflugzeuge. Seit 1966 auch Fluglehrer und spä- 

ter Prüfer. Für den Einsatz in der Ausbildung der Luft- 

fahrer Entwicklung von Simulationsprogrammen-als 

Maschinenprogramme für die 65er-Prozessoren. 

Lehrbuch für Segelflieger »Flug ohne Motor« bereits 

in der 8. Auflage. Tätigkeiten als Übersetzer und Lek- 

tor für Luftfahrtbücher. 

  

Wir zeigen in diesem Buch den COMMODORE 

C 64-, den 40er- und den 80er-Besitzern in weit 

über 100 ASSEMBLER-Beispielen mit vielKommen- 

tar und Hintergrundinformation 

e wie man Maschinenprogramme schreibt 

® wie man mit vorhandenen Routinen rechnet und 

textet 

@ wie man Drucker und Floppy bedient 

@ wie man BASIC- und Maschinenprogramme 

verknupft 

@ wie man eigene Befehle in Modulform erstellt. 

Sie brauchen dazu nicht stundenlang Ihr ROM- 

Listing nach den passenden Einsprüngen und 

Adressen zu durchsuchen. Das haben wir hier für 

Sie erledigt. 

Wenn Sie ernsthaft in ASSEMBLER programmieren 

wollen, finden Sie für Ihr COMMODORE-Gerät mit 

diesem Buch das richtige Nachschlagewerk. 

FRANK KASSERA 

Jahrgang 1969, Ge- 

burtsort Ulm. Grund- 

schulbesuch von 1975 
bis 1979. Eintritt in das 
Ilertal-Gymnasium von 

Vöhringen 1979. Mehr- 

fache Auszeichnungen 

als Klassen- und Schulbester. 1981 Einstieg in die 

Computerwelt, zunächst in BASIC, dann in ASSEM- 

BLER. Besonderer Schulverdienst beim Aufbau des 

Faches Informatik. Mitarbeit bei verschiedenen Pro- 

grammentwicklungen in BASIC und ASSEMBLER 

für COMMODORE-Systeme Umsetzung von 

40/80er-Maschinenprogrammen auf den C64. 

Weitere Hobbies: Musik, Schwimmen. 

  

  

©) 
Markt&dechnik [| _0   

ISB N 3-89090-168-9 

681 

DM 52- 
SFr. 47,80 

4 "001057"901 6S 405,60


