Markt&Iechnik

Winfried Kassera
Frank Kassera

Ein Lehr- und Ubungshuch mit ausgewdhiten
ROM- und RAM-Routinen fir die Entwidkdung
von eigenen Assemblerprogrammen.
Alle Beispiele fir die 40er- und 80er-Serien
verwendbar.

C 64 — Programmieren in Maschinensprache

Winfried Fassera C 64 - Plfogrammieren
in Maschinensprache

Ein Lehr- und Ubungsbuch mit
ausgewiahlten ROM-und RAM-Routinen
fiir die Entwicklung

von eigenen Assemblerprogrammen

Alle Beispiele fiir die
40er- und 80er-Serien verwendbar

Markt & Technik Verlag

CIP-Kurztitelaufnahme der Deutschen Bibliothek

Kassera, Winfried:

C 64 — Programmieren in Maschinensprache : e. Lehr- u. Ubungsbuch
mit ausgew. ROM- u. RAM-Routinen fiir d. Entwicklung von eigenen
Assemblerprogrammen / Winfried Kassera ; Frank Kassera. —
Haar bei Miinchen : Markt-und-Technik, 1985.

ISBN 3-89090-168-9
NE: Kassera, Frank:

Die Informationen im vorliegenden Buch werden ohne Riicksicht auf einen eventuellen Patentschutz veroffentlicht.
Warennamen werden ohne Gewihrleistung der freien Verwendbarkeit benutzt.

Bei der Zusammenstellung von Texten und Abbildungen wurde mit grofiter Sorgfalt vorgegangen.
Trotzdem kénnen Fehler nicht vollstindig ausgeschlossen werden. Verlag, Herausgeber und Autoren kénnen
fiir fehlerhafte Angaben und deren Folgen weder eine juristische Verantwortung noch irgendeine
Haftung tibernehmen.

Fiir Verbesserungsvorschldge und Hinweise auf Fehler sind Verlag und Herausgeber dankbar.

Alle Rechte vorbehalten, auch die der fotomechanischen Wiedergabe und der Speicherung in elektronischen Medien.
Die gewerbliche Nutzung der in diesem Buch gezeigten Modelle und Arbeiten ist nicht zuldssig.

»Commodore 64« ist eine Produktbezeichnung der Commodore Biiromaschinen GmbH, Frankfurt, die ebenso wie
der Name »Commodore« Schutzrecht genieft. Der Gebrauch bzw. die Verwendung bedarf der Erlaubnis der
Schutzrechtsinhaberin.

ISBN 3-89090-168-9

© 1985 by Markt & Technik, 8013 Haar bei Miinchen
Alle Rechte vorbehalten
Einbandgestaltung: Grafikdesign Heinz Rauner
Druck: Jantsch, Giinzburg
Printed in Germany

Inhaltsverzeichnis

1 Zur Programmierung in ASSEMBLERccccceecccccccccecccceess 13
1.1 Warum nicht bei BASIC bleiben? «..iviveevveeieneeveeceennnees 15
1.2 Hinweise zum Gebrauch des Buchescceeieieieecneceaennanes 17
1.2.1 Hardware/Software-Voraussetzungen ...eeeeeveveseeoscevosees 17
1.2.2 Aufbau der Beispielprogrammeceeecveeeeoesescveassas 18
1.2.3 Noch ein guter Tip ceeeeeeeeeieeeeceeesvecsososcesanecnnneces 19

1.3 Schreibweisen - Vereinbarungencccieeieveeececcecveeees 20

2 Bewegte Bildschirmobjektecccccececcccccececcvececaccenes 23

Ein Beispiel: "Wendezeigerpinsel", ein Richtungsanzeiger 25
1 Zielsetzung c.eeeeereeeeeieneecoecesscescosnecsnscvesansens 25
2 AnschluB eines Joysticks ...eeeeeeeeerieinrenenosecnsocnsnses 26
3 Aufbau des Programms "Ol-pinsel" cesessesesssess 28
.4 ASSEMBLER-Beispiel fir "Ol-pinsel"civieeeieeneceesass 30
5 Vorbereitungen, Initialisierungenccciieeiieeeecennees 32
6 Zusammenstellung der verwendeten Labelscvevveeees. 34

2 Variieren des Modulsccveeuneennns S)
2 1 Variable Laufgeschwindigkeit ...cceveiveenieiennnn. ceee. 34
2.2.2 Bildschirmobjekte austauschen ceeeaaen B 1)
2.2.3 Bildschirmgestaltungceeeeeiiiieeeennnneeessesnaancnaae 35

.2
2.
2

2.

Abweichungen fir die 40/80XX-Gerdte ...ceeeeeene B 14
Erweiterungs- und Ubungsaufgaben B T T 37

& W

W

Erweiterung der Interrupt-Routine - ein Beispiel 39

Die IR-Routine Ceeceees e edeeeieettees ceeeeneas 41
Erzeugung eines Taktes mit der IR-Routinecvvee.. 42
Wichtige Adressen des "O4-taktmodul"civierrnnenennaes 42
Ablauf von "0O4-taktmodul" Ceceecevene cecessrecsessansess 43
ASSEMBLER-Programm "O4-taktmodul"iiieireneceennnness 43
Abstimmung des Taktes c.o.veieiieeiieeenrensnnsnnonecsncsnsnnas U4
Eine kleine Testroutine zur Bestimmung der Taktfrequenz 44
Einstellen des IRQ-Vektors ...uieeiereinneeeiennneenancnnaanns 45

.

W W W W W W W W
. . .
XX NN WN

4 Zahlen, Variablen - Formateccccceecceccccccccccccccaces 49

Rechnen mit Ganzzahlen (Integer-Zahlen) ceeeeeeaas 51
1 Rechnen mit positiven Ganzzahlenccceieeieeeenenneans 51
2 Negative Ganzzahlen ...ciieeiieeneiieeinneeeenecacnnnnaness 24
3 Subtrahieren von Integerzahlen im positiven Bereich 56

.4 Subtraktion mit beliebigen Integerzahlenccvvveeees 57
5 Hohere Rechenarten mit Integerzahleneeeiieeenninnnnn 57
6 Integermultiplikation mit INTMUL ...cceeiieenneanenneeeeess 60

4.2 Arbeiten mit reellen Zahlen ...cieieieeieeieeenenecnencenennsees 61
4.2.1 Formate fUr reelle Zahlen «.vieiiiiieieeineeineeennnnenennss 61
4.2.2 (bernehmen von gespeicherten Zahlen mit MEMFAC 63
4.2.3 Erzeugung von reellen Zahlen ...eeiiecieeeeneencnnceenneees 63

Zahlenumwandlungen ...eeeeieieeeeeereeseecsocscsososssssnssess 65
1 Integer- in Realzahlformat mit INTFLPccieeiieeeea. 65
2 Reelle Zahl in Integerzahl mit FLPINTcciiveeenieeees 65
3 Umwandlung eines Strings in eine reelle Zahl mit STRFAC ... 66

.4 Umwandlung einer Zahl in einen String mit FLPSTR 67
5
6
7

.

(A)-Inhalt in ASC-Code mit BYTHEX «.veeeervecnenceeneenens. 68
ASC-Code in Byte umwandeln mit HEXBYTcccvveeenenene.. 68
Positive Integerzahl in Realzahl mit ADRFLP 68

EoE SR L R

Umwandlungs—-ROM-Routinen (Zusammenstellung)eeveveeeeeeenee. 69

5 Arithmetik mit ROM-Routinencccccececcecccccccccccacsass 71

Durch 10 dividieren mit FDIV1Ocovvveeennn. teceeeeseneess T4
Mit 10 multiplizZieren .c.iieieeeeeeneereeeenonnneneannnsannes eee 75
Addieren des Werts 0.5 mit ADDO.5 ...cvveeuennens Ceeeerereee 75
Addieren beliebiger Zahlen mit ADD Y
Addieren beliebiger Zahlen mit M=ADDciieiiiinennenennes 76
Subtrahieren mit M=SUB ..civeeececnccecsssssscsocnsncnnssonse 77
Vorzeichenwechsel mit FACMINciiiiteireerenencesssennnaas 78
Betrag einer Zahl mit FACABSiiiiiiiiiiniieeencnnnnnnnnns 79
Multiplizieren mit M=MULTuiiiiitiiieennneenennsonncannns 79
Division mit M=DIV ...ttt iieeereeeeenesecssocsssoasesessesnsass 80
Kehrwert bilden mit M-DIViiiiieieiiiriereneeacsnnaasssass 80
Quadratwurzel ziehen mit SQRFAC ..ivieeereereeeensosnnennaaas 81
Potenzieren und Radizieren mit POTRAD ...¢vieeeeeeeanenneneass 81
Logarithmieren mit LOGNAT ...t tiiieiriieenneeeeenconannenssss 83
Exponentialrechnen mit EHOCHFciteereeeereencececannsaas 83

.
O @O\ WN

AV 2N RV N L BN Y N N N AV Y Y AV AV IV
e e e e .
— = b b
S W N - O

.
—
\n

5.16 Erzeugen einer Zufallszahl mit ZUFALL «.ceeeeeeeeeeeeeeeees.. 84

5.17 Winkelfunktionen mit SINUS, COSIN, TANG ...ceeeeeneeecccanons 85
5.18 Umkehrung der Winkelfunktionen mit ARCTANcc.0... 87
5.19 Weitere Arcusfunktionen mit ARCTANceiiiirneeenennnnnans 88
5.20 Polynomauswertung mit POLNOM cececsescccsassscasncsscsass B9
5.21 Wertetabellen fir Funktionen mit POLNOMc.ceieeeeann.. 91
5.22 Vergleichsoperationen mit CMPFACcietiierenneecnennceasss 94
5.23 Vorzeichenprifung mit SGNFAC ...ceieiieinneeeneeennecannnns . 96

Arithmetik-ROM-Routinen (Zusammenstellung) ...eveveeeeeeennnaeeess 98

6 Bildschirmoperationencccecececcccccccccecccccccccccccasalll
6.1 Ausgabe einer Integerzahl mit INTOUTc... B N1 F)
6.2 Ausgabe einer reellen Zahl mit FLPOUTcciieieenn... 103
6.3 Ausgabe eines ASCII-Zeichens mit CHROUT (BSOUT) ..ceeveunnnn. 104
6.4 Vorbereitete Zeichenausgabenccieiieiieneeneneenns105
6.5 Cursorposition festlegen ettt ertete it eee...105
6.5.1 Cursorposition C64 ...iieveeeenns N 1 15]
6.5.2 Cursorposition 40/80XX «eeeeeeen. ceeee ceeeeeaes Ceeeeneas ..106
6.6 Ausgabe eines Strings mit STROUTiiiiiieiniieenneeneennnnn 109
6.7 Umwandlung des FAC-Inhalts in einen String mit FACSTR109
6.8 Anwendung: eine PRINT USING-Routineccccciieiieaeennnn. 111
6.8.1 Ablauf-Struktur der PRINT USING-Routineccceeeee...113
6.8.2 Struktogramm zur PRINT USING-Routine creenee 118
6.8.3 ASSEMBLER-Modul "Sl-printusing" ..i.ieeeieniiiniinnnennns ee...119
6.9 Ausgabe von Hexzahlen A 3
6.9.1 Byte in der Hexform ausgeben mit BYTOUT 123
6.9.2 Vierstellige Hexzahl (Adresse) ausgeben mit ADROUT123
6.9.3 Iweli Zeichen ausgeben mit OUT2c000vuann. ceeeeeeae 124
6.10 Bewegungssimulation - eine KompaBanzeige 124
Ausgabe-Routinen (Zusammenstellung)ceeeeeeeecnnns A 5
7 Eingabe-ROM-Routinenccceeeeceececccccoccccccccccccnsesal3d
7.1 Eingabe eines Zeichens uber die Tastatur mit GETIN 137

7.2 Kinstlicher Cursor mit GETIN und CHROUT ceeeesea138

3 Zahleneingabe (reell) mit GETIN und STRFAC ...evvinnnneenns. 14l
.4 Eingabe mit BASIN ..ivveeeerererennnnns et eetee e cees..143
5 Eingabe einer Zeile mit INLINE ...cciiiiieeennenneenennnesaealdd
6 Eingabe von Hexzahlen mit HEXINB und HEXINA ceeeee..148

Eingabe-ROM-Routinen (Zusammenstellung) Ceeeteeiianea ...149

8 Verwaltung der Variablenccccceccececrcecccsccacaaasssal5l

Uberblick ber die BASIC-Variablen .eeeeeecececoacneaenss eeeeal53
1 Lage der Variablen im RAMiieiieeeieinecoeconennesanessl53
.2 Variablen-APteNn ..ceieeeeceecosceecosccsccssssssescscnsssassldl
3 Struktur der Variablencceeeeeeeccecsccescnscnnennssasldl

Einrichten einer Variableneiieereneeerescesesensnncnesealdl
1 Festlegen des Bereichsanfangs ...cceeveeieneeececaneeeeeesaal56
.2 Suchen oder Einrichten einer Variablen mit PTRVAR 158

9 Bedienung von Peripheriecccceccceccccceccccccccccccceesslbl

9.1 Datentransfer Uber den IEC- bzw. den seriellen Bus163

9.2 Umschaltungen des seriellen bzw. des (IEC)-Busv....163
9.2.1 Datenibernahme mit TALK t.veeiiirereinnnenenneennnnneannanalb
9.2.2 Datenausgabe mit LISTEN ..iceeiiitiiiiinneeeenneaeeennnnsalbb
9.2.3 Beispiel: "druckerausgabe" mit LISTEN, BSOUT, CLALL166
9.2.4 Modul "druckex": Drucker als Schreibmaschine168
9.2.5 Vorbereitung von Datenibertragungen mit OPEN171
9.2.6 Ausgabevorbereitung mit CHKOUT P v |
9.2.7 Eingabevorbereitung mit CHKIN Ceccsesevnoscns 172
9.2.8 Standard-Ein/Ausgabe herstellen mit CLRCHc.0....172
9.2.9 Dateien schlieBen mit CLALL «.ivieeeriinnnieneeneeneneneaaal?2
9.2.10 SchlieBen einer Datei mit CLOSEA und CLOSELovveenn. ee..173

9.3 Vereinfachungen zur Dateibehandlungciveeviineeneeee..173
9.4 Behandlung von Dateien - Beispiele ..ccvieiiiiienneneennneeea174

9.5 Arbeiten mit SEQ-Dateieniveeeeeeeceencececcnssossacneesal?d
9.5.1 Offnen einer DAtei «uveeeeeeeeeeenreeoencesssoescacnsanansssl?S
9.5.2 Beispiel: Schreiben mit CHKOUT und BSOUTcceeeeeees.177
9.5.3 Beispiel: SEQ-Lesen mit CHKIN und BASINccveeeene...178
9.5.4

Beispiel: SchlieBen der Datei mit CLOSEA und CLOSEL179

9.5.5 Verknipfen der SEQ-Routinencciiiiiiiiinnnnnnennees...180

9.6 REL-Dateien - Schreiben/Lesen mit OUTBUS/INBUSceevv.o...181
9.6.1 REL-Dateien auf dem C64 .uveereeeereeeeceoasenocancocenns ..181
9.6.2 REL-Dateien auf 40er- und 80er-Geraten ...eeeveeeceseeesssaa190

9.7 Laden eines Programmes mit LOAD und LOADXXccveeeeeee...196

8 Anwendung: Modul zum Nachladen von Programmencce.....197
8.1 Das Maschinenprogramm "8l-loadmodul"”ccccveee.....198
8.2 BASIC-Hilfsprogramm zur Ubernahme von Maschinenteilen199

9.
9.
9.
9.9 Modul "84-quickdirector" mit TALK, INBUS, UNTALK202

9.10 Modul "85-printdirector" (Floppy-Drucker)eeeevee....208
9.11 Direktzugriffe auf Floppy: Modul "86-fastdisk"216

Adressen und ROM-Routinen zur Ein/Ausgabeeveveieneecenns...218

10 Maschinenmodule in BASIC-Programmencccceceeccecccccecees223

10.1 (Ubernahme von BASIC-Parameterneeeeeseeeeeeeeeeeeeeeeesa225
10.2 Zeichen aus dem BASIC-Text holen mit CHRGET und CHRGOT226
10.3 Byte-Auswertung mit GETBYT und VALBYTccieiniieeeene...228
10.4 Eine Anwendung: PRINT AT-Routine mit Fehlermeldung233
10.5 Zu den Fehlermeldungen «...eeeieeeeeeneroeeeecnnannnsaceneesal35
10.6 Zur Schreibweise der BASIC-Befehlecceeeeenneennnneeesa236
10.7 Auswertung mit VAREAL ... ceiieiencereennencencnonoeosesasesallB
10.8 Auswertung mit VALKLA ..t iiieereineeeeeeennnseenssnnnansass23d

10.9 Auswertung von Integerzahlen mit VALINT und INTADR «ee239
10.10 Auswertung mit VALPAR, VALSTR, PARFLG und TYPFLG241
10.11 Ubernahme einer BASIC-Variablen mit GETVAR «.uvuevernvnnnnn. 243

10.12 Ein vielseitiges Modul: "98-onstring"”ccieveeenieeee. 244
10.13 "99-onstring" fUr 40/80XX-Gerdte ...eeeeevennenvencnneanoasss250
10.14 Verknipfen von Modulen - zwei Anwendungenceeeee....254
10.15 Modulverknipfung mit einer Sprungleistecccceveeee...258

BASIC-Text-Routinen und -adressen (Zusammenstellung)cc.0...26l

11

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10

12

12.1

12.2
12.3

—

2

[S S -
NNNNNNN

.
.
.
.
.
.
.
.
.

12
12.
12.4.1

4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

13
14
15
16

17

Diverse ROM-Hilfen - Anwendungenc.ccccecccccccccceesea265

BASIC-Start vom Maschinenprogramm aus mit RUN267
Warmstart mit MGOTO ab einer bestimmten Zeilennummer267
Startadresse einer BASIC-Zeile suchen mit BLINAD270
Umschalten von Text- auf Graphikmoduscccceeeeeeee...270
Abfrage der STOP-Taste mit STOPRY und STOPOccveveeeees.272
Sprung in den READY-Modus mit MREADY ...civeiennneenennneeas272
Verschieben von RAM-Bereichen mit TRABLOvceeeeeeeennn. 272
Abspeichern eines Datenbereichs mit MSAVE ceeeseenas274
Laden eines Programms mit veranderter Startadresse275
Speichern eines Datenblocks mit variabler Anfangsadresse ...279

ASSEMBLER-KUrzschule ..c.cccecececcccccccacsccccnsacacanannasal2B8B3

Die Register des 65XX-ProzZesSSOrS ...eeeveeeeeceececannoeesaslB5
Das Prozessor Statusregister P ..c.ceiieeiiieniiinennnenann 285
Beeinflussung der Flags durch Befehleevveveeeeeenne...285

Der Befehlssatz in ASSEMBLERc.vtiiiniiieeenneneeeee...286
Eingabebefehle (Ladebefehle) ...cevveevnnn.. cecsecseneann .287
Ausgabebefehle (Speicherbefehle) ...eeveieeeeeeeneesreess. 288
Arithmetische Verknidpfungencceeuene. Ceereceraeneann 289
Logische (bitweise) VerkniUpfungen ...eeeeeeeeeesceenesessa29]
Verschiebebefehle (bitweise) .eeeevevenenn. e eeesss292
Vergleichsbefehle ..iieuiiiiiiiiiiiiiiiieienetneenneeeneaa293
Transportbefehle zwischen den Registern294
Sprungbefehle ..iieietiiiiiiieiiiiieneeeerrennnennnnnns ceeee295
Beeinflussung der Flags des Statusregisters296

O LUCKenflUller coieeeeeeeeeereaencecocesaansancencsnsnssnnesld6b

ROM-Routinen - thematisch, mit Kurzbeschreibung297
ROM-Routinen - alphabetisch ...cccccceceecccccaceececeeessa313
Wichtige Adressen - alphabetischccccccveeeeecccccaeeee.319

Stichwortverzeichnis ...cccececccceccccccsssccccccocccnsnsesel2d

Obersicht weiterer Markt&Technik-Bicher......evveeeveeeeeeeeeae.. 328

Vorwort

Dieses Buch ist zundchst entstanden als Sammlung von Programmier-
schritten in ASSEMBLER, die sich bei der Losung von Simulations-
problemen, Bildschirmgestaltung, Textverarbeitung usw. auf COM-
MODORE-Geraten ergeben hatten. Wir haben dann den Themenkreis er-
weitert wund so gut wie alle Punkte erfaBt, die fir Maschinenpro-
gramme relevant sind.

Als Schwerpunkt hat sich dabei der Einsatz der betriebsinternen
ROM-Routinen herauskristallisiert, der die Erstellung von ASSEM-
BLER-Programmen wesentlich vereinfacht. Denn was es schon gibt,
braucht man nicht noch einmal erfinden.

Wir sagen Ihnen aber nicht nur, wo die einzelnen Einsprungadres-
sen liegen (das tun viele Verdffentlichungen), sondern erklaren
auch die Zusammenhidnge anhand von sehr einfachen bis sehr an-
spruchsvollen Beispielen. Unser Prinzip heiBit hier: Vom Einfachen
zum Schweren. Und damit ergibt sich ein methodisch sinnvoller und
fir den Leser leicht nachvollziehbarer Aufbau.

Alle vorkommenden Routinen wurden mehrfach von Frank Kassera ge-
testet wund verbessert, der zu diesem Buch auch eine Diskette fir
den C64 mit allen beschriebenen Programmen zusammengestellt hat.

Trotz aller Sorgfalt und Mihe, die wir uns beim Schreiben, Testen
und Korrigieren gegeben haben, ist es nicht ganz auszuschlieBen,
daB sich in den Text der eine oder andere Tipp- oder Druck-
fehler eingeschlichen hat, der uns trotz mehrfacher Durchsicht
entgangen ist. Wir versichern Ihnen aber, daB alle vorgestellten
Programme einwandfrei laufen: Nicht ein einziges wurde nur so
"auf Papier" entwickelt. Sollten Sie daher auf Unstimmigkeiten
stoBen, dann kénnte eventuell die Unbarmherzigkeit des Druckfeh-
lerteufels dahinterstecken. Fir einen entsprechenden Hinweis -
vielleicht schon mit einem Verbesserungsvorschlag - waren wir
Ihnen dankbar.

Winfried Kassera, Frank Kassera

1

Zur Programmierung
- in ASSEMBLER

1l Zur Programmierung in Assembler

1.1 Warum nicht bei BASIC bleiben?

Das COMMODORE-BASIC ist fur den Cé64 und bis zu den 80XX-Gerdten
nicht gerade {ppig ausgestattet. Trotzdem 1&Bt sich diese Com-
putersprache relativ einfach lernen und anwenden. Aber bald wird
der BASIC-Programmierer feststellen, daB er etliche Ideen nicht
mehr verwirklichen kann, wenn es darum geht, moglichst rasche
Ablaufe zu erzeugen. Vor allem bei der Erstellung von Spielen
und bei der Arbeit mit Dateien l&uft so manches entnervend lang-
sam ab.

Spezielle Programmiersprachen fir bestimmte Zwecke schaffen zwar
Erleichterungen, konnen aber neue Probleme aufwerfen.

Wer also gleich '"Nagel mit Kopfen" machen will, der stirzt sich
in das Abenteuer Maschinensprache und hat damit die schnellste
aller Computersprachen gewdhlt. Wem es dann noch zu langsam geht,
der braucht einen neuen Computer mit einem schnelleren Mikropro-
zessor.

Maschinensprache besteht eigentlich nur aus Zahlen, genauer ge-
sagt aus Speicherinhalten in Byteform, wobei jeder moglichen
Zahl ein Befehl zugeordnet ist, der wieder dariber entscheidet,
ob die nachste Zahl ein Befehl oder eine Speicherstelle o.a. ist.

Damit man nicht wumstandlich mit diesen sog. 0P-Codes operieren
muB, setzt man ASSEMBLER-Programme ein, die praktisch eine in-
direkte Programmierung 1in Maschinensprache erlauben, indem sie
die Befehle in abgekiirzter Form als Buchstabenfolge annehmen und
in den entsprechenden Code verwandeln.

Mit einem Disassembler-Programm kehrt man das Ganze wieder um:
Die Zahlenfolge eines Maschinenprogramms wird in abgekirzten
Befehlen dargestellt. Die Abkirzungen lassen durch ihre Zeichen-
folge den entsprechenden Befehl erkennen. Man bezeichnet sie
mit dem zungenbrecherischen Begriff "Mnemonics".

Um die folgenden Kapitel zu verstehen, sollten Sie daher neben
ordentlichen BASIC-Kenntnissen auch schon einmal ein paar er-
folgreiche Versuche in ASSEMBLER unternommen haben. Wenn nicht,

dann konnen Sie zwar so nach und nach durch die einzelnen Kapitel
hindurch Ihre Kenntnisse erweitern, werden aber an einigen Stel-
len hart kampfen missen.

Vorsichtshalber finden Sie am SchluB des Buches in Kapitel 12
eine kurze, komprimierte ASSEMBLER-Schule, die Ihnen immer dann
weiterhelfen soll, wenn Sie mit den ASSEMBLER-Befehlen und vor
allem mit den verschiedenen Adressierungen Schwierigkeiten be-
kommen sollten.

Sollten Sie jedoch noch nicht in der Lage sein, Bits und Bytes
zu unterscheiden, dann empfehlen wir Ihnen, dieses Buch noch
etwas zurickzulegen und sich erst einmal grindlich mit dem bis-
her vernachlassigten Teil Ihres Computer-Handbuchs vertraut zu
machen.

Wenn Sie aber schon ein As in BASIC sind, kommt Ihnen Ihr dort
erworbenes Wissen sicher auch bei unseren Themen sehr zugute.
Ihr BASIC-Wissen sollten Sie aber trotzdem weiter ausbauen,
denn die meisten gquten Programme bestehen aus einer gesunden
Mischung zwischen einer hoheren Sprache (BASIC ist eine) und
Maschinenteilen, die immer dort eingesetzt werden, wo schnell
und oft gearbeitet werden muB.

0ft besteht das Rahmenprogramm aus BASIC wund der harte Kern
lauft "in Maschine". O0Oder aber es werden von BASIC aus immer
wieder die notwendigen Module aufgerufen.

Wir werden uns diese Moglichkeiten im Laufe des Textes anschauen.

ZusammengefaBt: Wir werden die Verbindung zu BASIC auf keinen
Fall abreiBen lassen. Im Gegenteil: Unsere in ASSEMBLER geschrie-
benen Maschinenprogramme werden einerseits das COMMODORE-BASIC
unterstitzen und verbessern, andererseits werden die bereits vor-
handenen Routinen in Ihren ROMs unsere ASSEMBLER-Programmierung
erleichtern.

Sie werden sehen, es bereitet nicht nur Mihe, sich durch die ein-
zelnen Kapitel durchzunagen, sondern es macht auch SpaBl, mitten
in den ROM-Topf zu greifen und die herausgefischten Nisse zu
knacken.

1.2 Hinweise zum Gebrauch des Buches

1.2.1 Hardware/Sof tware-Voraussetzungen

Alle Programme, die Sie in den folgenden Kapiteln finden, sind
zunachst fir den normalen COMMODORE Cé64 geschrieben. Mit nur we-
nigen Abanderungen laufen sie fast alle auch auf den 40/80XX-Ge-
raten. Sie bendtigen dazu keinerlei Erweiterungen oder Erganzun-
gen.

Was Sie haben sollten ist also:

— das normale Grundgerat (Cé64,40XX,80XX)

- eine Floppystation (1541 bzw. 4040/8050 o0.8.)
-~ evtl. einen Joystick

- evtl. einen Drucker

Wir konnen nicht auf alle Spezialitaten des C64 eingehen. Doch
mit dem hier erworbenen Grundwissen sind Sie in der Lage, auch
Sound und Graphik in ASSEMBLER zu programmieren, da die PEEK-
und POKE-Befehle aus BASIC fir die Umsetzung in ASSEMBLER wohl
kaum mehr Schwierigkeiten bereiten dirften. Eine Unterstitzung
durch ROM-Routinen gibt es hier ohnehin (leider) nicht.

An Software bendtigen Sie auf jeden Fall ein Assembler/Disassem-
bler-Programm. Alle Ausfihrungen sind so gehalten, daB Sie auch
mit den einfachsten Versionen arbeiten konnen. Komfortabel ware
natirlich ein Editor, der Ihre Labels aufnimmt und assembliert.
Notwendig ist er aber nicht.

Es ware empfehlenswert, wenn Sie ein kommentiertes ROM-Listing
fir Ihr Gerat auftreiben konnten. Wir haben Ihnen zwar die Mihe
abgenommen, die einzelnen - auch weniger bekannten - Routinen
herauszusuchen und 2zu analysieren. Doch wenn Sie selbst nach-
vollziehen wollen, was dort geboten wird, sollten Sie dort nach-
schlagen.

Zumindest setzen wir voraus, dall Sie das entsprechende Handbuch
zu Ihrem Rechner besitzen, wo z.B. die Tabellen fir die jewei-
ligen Codes der ASCII-Zeichen, der Tastatur oder der Bildschirm-
zeichen stehen.

1.2.2 Aufbau der Beispiel-Programme

Wir haben wuns lange (berlegt, ob wir die Adressen als Dezimal-
zahlen oder als Hexzahlen schreiben sollen und haben uns fir die
ersteren entschieden, weil wir glauben, daB manchem Umsteiger die
Hexzahlen Probleme bereiten. ({Uber kurz oder lang werden Sie sich
aber trotzdem daran gewdhnen miissen.)

Wem das nicht gefallt, der findet in den Zusammenstellungen der
Routinen und Adressen alle Angaben in beiden Zahlensystemen.

An dieser Stelle sei aber doch kurz auf die Hexzahlen eingegan-
gen, da die Dezimalschreibweise eben auch Nachteile hat:

Nehmen wir an, die Zahl 17000 wird in der Form LO/HI bendtigt.
Dann erscheint sie in Dezimalschreibweise als 104/66, denn es
gilt, daB das HI-Byte den 256-fachen Wert des LO-Bytes hat:

104 + 66 mal 256 = 17000

In Hexschreibweise ware das einfacher, denn 17000 heiBt dort
$4268. Zerlegen wir in LO/HI, dann ergibt sich ganz einfach:
L0=%$68 und HI=$42.

Alle Programme sind mit entsprechenden Kommentaren versehen, die
es Ihnen ermdglichen, solche Zerlegungen nachzuvollziehen, wenn
Sie darin noch nicht so fit sind.

Dabei haben wir uns an folgendes Prinzip gehalten:

— Die ersten Programme sind am ausfihrlichsten gegliedert und be-
schrieben.

- Die wichtigsten Programme - alsoc die, an denen man viel lernen
kann - gehen auch auf Einzelheiten ein, wenn sie weiter hinten
im Buch stehen.

— Wichtige ASSEMBLER-Befehle, von denen wir wissen, daB sie nicht
gern von Anfangern verwendet werden, werden extra erlautert.

~ Fast alle Programme haben Modulcharakter. Das bedeutet, sie
laufen in jedem RAM-Bereich, ohne daB irgendwelche Adressen
verandert werden missen. Wir gehen spater naher darauf ein.

- Wir verwenden z.T. LABELs, die nicht der COMMODORE-Schreib-
weise entsprechen, wenn Sie durch deutsche Abkilirzungen ver-
standlicher wirken.

- Wichtige Stellen, Adressen, Labels usw. werden an Ort und
Stelle noch einmal wiederholt, so daB Sie nicht lange zu blat-
tern brauchen. Wenn auf umfangreichere Zusammenhdnge nicht ver-
zichtet werden kann, finden Sie einen Hinweis zum entsprechen-
den Abschnitt.

Wenn Sie nicht nur nachvollziehen wollen, was wir lhnen hier
bieten, dann sollten Sie eigene Ideen zur Problemldsung ent-
wickeln. Meist gibt es eine Fille von Moglichkeiten.

Wir haben nicht immer die beste und eleganteste ausgesucht,
sondern haben mehr Wert auf eine leichte Verstédndlichkeit der
Sachverhalte gelegt.

Wenn Sie erst einmal so weit sind, daB Sie bei dem einen oder an-
deren Programmvorschlag sagen konnen "Mensch, das ginge ja noch
viel einfacher", dann haben Sie einen Riesenschritt in die rich-
tige Richtung getan. Aber, aber, aber: Probieren Sie bitte auch
Ihre Version aus, bevor Sie sich als Meister fihlen. Denn oft
genug hat man sich zu frih gefreut und die anscheinend bessere
Losungsmoglichkeit funktioniert nicht.

Sie brauchen sich aber nicht zu gramen, uns ist es bei der Er-
stellung dieses Manuskripts genauso ergangen.

Meist sind es die Randbedingungen, die einem ganz schon Kopfzer-
brechen bereiten kdonnen. Das Hauptproblem hat in den meisten Fal-
len einen ,einfachen Algorithmus (Verfahren zur Ldsung logischer
Probleme).

1.2.3 Noch ein guter Tip

Maschinenprogramme haben die Eigenart, daB sie keine Fehler ver-
tragen. Bemihen Sie sich daher von vornherein um eine saubere und
konzentrierte Arbeitsweise. Es macht wenig Spafl, wenn ein Pro-
gramm nicht lauft, nur weil man z.B. 17268 statt 17286 eingetippt
hat.

Tickischerweise verabschiedet sich der Computer klammheimlich und
ist in vielen Fallen nur noch durch Aus- und Einschalten wieder
zum Leben zu erwecken. Unser Programm hat er natiirlich vergessen.

Beherzigen Sie daher folgenden Rat:
Jedes Programm wird zuerst abgespeichert und dann ausprobiert!
Doch nun genug der Vorreden, tauchen wir ein in das Innenleben

unseres elektronischen Sklaven. Aber passen Sie auf, daB er nicht
anfangt, Sie zu terrorisieren!!!

1.3 Schreibweisen - Vereinbarungen

Fir den Text wund die Programmbeschreibungen legen wir folgende
Vereinbarungen fest:

- Ein Label ist immer eine Adresse im ROM oder RAM des Adressbe-
reichs. Wir drucken es fett in der Form LABEL.

Beispiel: jsr FLPOUT
Bedeutung: Sprung zur Adresse (43708), mit FLPOUT=43708

— Numerische Adressangaben schreiben wir in Klammern, um sie von
Zahlen, Werten wusw. eindeutig zu unterscheiden, sofern sie
auBerhalb von ASSEMBLER-Programmen stehen.

Beispiel: ... und springen nach (17800) ...
Bedeutung: Fortfihrung des Programms bei Adresse (17800)

- Inhalte von Adressen, Adressbereichen, Registern usw. schreiben
wir in eckige Klammern.

1. Beispiel: <FAC>=20
Bedeutung: Wert des FAC ist 20

2. Beispiel: <A>=255
Bedeutung: Inhalt des (A)-Registers ist 255

- Einfache Pfeile in Programmen bedeuten eine Wenn-Dann-Folge.
Doppelpfeile bedeuten: ... dann Sprung nach ...

vergleiche (A) mit 80
richtig ===> Sprung nach (10000)
falsch ---> Ende

Beispiel: cmp #80
beq 10000
rts

we we e

~ Zerlegungen von Adressen erfolgen immer in der Reihenfolge
LO/HI, wenn nicht ausdricklich etwas anderes angegeben ist.

Beispiel: 18000=80/70=$50/46
Berechnung: 80+(70mal256)=80+17920=18000

- Bei Hexzahlen stellen wir das Zeichen '$' nur einmal voran.

Beispiel: <$20/21>
Bedeutung: Inhalt der Adressen ($20)=L0 und ($21)=HI

- Alle Programmbeispiele sind fortlaufend durchnummeriert. Der
Programmname steht in Anfihrungszeichen.

Achtung:

Alle Programmbeispiele fir den Cé4 wurden fir die neue Version
des Betriebssystems geschrieben, bei der das zusatzliche Belegen
des Bildschirm-Farbspeichers nicht mehr notwendig ist, wenn
direkt in den Bildschirmbereich geschrieben wird.

Beispiel fir die neue Version:
lda #42 ; Code fiur Zeichen "¥*"
sta 1224 ; Ausgabe auf Bildschirmadresse (1224),
also auf die 200. Stelle (1024+200)

Die alte Version erfordert folgendes Vorgehen:

lda #43 ; Zeichencode
sta 1224 ; Ausgabe auf Bildschirmadresse (1224)
ldx #2 ; Farbe Nr.2 (Beispiel fir ROT)

stx 55496 3 in Farbspeicher (55296+200)

Anmerkung: Bereich des Farbspeichers: (55296) bis (56295)

2

Bewegte Bildschirmobjekte

2 Bewegte Bildschirmob jekte

2.1 Ein Beispiel: Wendezeigerpinsel

Bei Computerspielen oder Simulationsprogrammen ist es in vielen
Fallen erforderlich, daB man Uber den Bildschirm Figuren oder
Gegenstande wie Flugzeuge, Fahrzeuge, Zeiger o.a. laufen 1aBt.
Die Steuerung dieser Objekte erfolgt dabei entweder Uber die
Tastatur (meist {ber den numerischen Teil) oder aber iiber einen
Joystick.

2.1.1 Zielsetzung

a) Ein Quadrat soll iber den Joystick nach links und nach rechts
gesteuert werden konnen.

b) Die Ausschlage dieses Quadrats sollen rechts und links be-
grenzt werden.

c) Die Geschwindigkeit der Wanderung der Rechteckfigur soll be-
einfluBt werden kGnnen.

d) Die Stellung des Quadrats muB jederzeit abfragbar sein.

Anwendungsméglichkeit:

z.B. Anzeigegerdt fir die Drehbeweqgung eines Flugzeugs (sog.
Wendezeiger). Je groBer der Ausschlag, desto hSher die Drehge-
schwindigkeit.

Das bewegliche Quadrat stellt in diesem Fall einen Zeiger (den
sog. Pinsel) dar.

Art und Lage des Programms:
reines Maschinenprogramm beginnend bei Adresse 18000.

(Die Anfangszahl ist willkiirlich gewahlt.)

Wichtige Adressen und ihre Bedeutung

Label Cé64 40/80XX .
1 '

KEY 203=%cb 151=$97 (SK:155=$9b)
Code der momentan gedriickten Taste
<203>=64 <151>=255

---> keine Taste gedriickt

DDRA 56322=$dc02 59459=$e843
Datenrichtungsregister

PADAT 56320=$dc00 (C-Port 2) 59471=%e8f4
56321=$dc01 (C-Port 1)

Adressen zur Joystickabfrage

freie Zeropage-Adressen (nicht bei Kassettenoperationen!):

163...180=%a3...b4 177...195=b1%...c3
Bandpuffer 828...1019= 826...1017=
$033c...03f7 $033a...03f9

2.1.2 AnschluB eines Joysticks

Beim C64 verwenden wir den Controll-Port 2 zum AnschluB eines
Joysticks (ohne Verzogerung).

Um den Joystick abzufragen, wird das Datenrichtungsregister
DDRA auf "Empfang" geschaltet. Das geschieht dadurch, daB
wir diese Adresse mit O belegen: <DDRA>=0. Nach dem Einschalten
ist dies ohnehin der Fall, so daB wir uns diesen Befehl eigent-
lich sparen konnen.

Die Abfrage nach der Stellung des Joysticks erfolgt lber die
Datenadresse des Ports PADAT. Beim Cé64 ist dies (56320)=
($dc00) bei Port 2.

Die Joysticks sind so gebaut, daB sie immer einen oder zwei Pins
des Control-Ports mit Masse kurzschlieBen und damit die Datenlei-
tungen auf LO legen.

Vom C-Port 2 werden die ersten 7 Bits des Datenregisters beein-
fluBt. Erfolgt kein Ausschlag, dann stehen alle Bits auf 1:
<56320> = 01111111, = 127. Das heiBt also, die Adresse
(56320) wird mit Byte 127 belegt.

Schauen wir uns die anderen Joystickausschlédge der Vollstandig-
keit halber an (Standard-Joystick):

OBEN (Nord): 01111110 = 126 (Bit O geldscht)
RE/0 (Nordost): 01110110 = 118 (Bit 0 und 3 geloscht)
RECHTS (0Ost): 01110111 = 119 (Bit 3 geldscht)
RE/UN (Sldost): 01110101 = 117 (Bit 1 und 3 geloscht)
UNTEN (Sid): 01111101 = 125 (Bit 1 geloscht)

LI/UN (Sidwest): 01111001

121 (Bit 1 und 2 geldscht)

LINKS (West): 01111011 = 123 (Bit 2 geldscht)
LI/0 (Nordwest): 01111010 = 122 (Bit O und 2 geldscht)
Feuerknopf: 01101111 = 111 (Bit 4 geldscht)

Selbstverstandlich sind auch andere Knippelversionen mit ab-
gewandelten Schaltungen moglich.

Mit einem einfachen Test lassen sich im Zweifelsfall die Joy-
stickeingaben uUberprifen:

100 ' joystickabfrage port 2 / cé4
200 print peek(56320),:goto 200

Nach dem Programmstart mit RUN bewegt man den Joystick in die
gewiinschte Richtung und erhalt die Belegung des Datenregisters.

Wir konnen jetzt brav die Joystickeingabe mit den einzelnen Byte-
Werten vergleichen, aber es geht auch schneller:

In unserem Fall erkennen wir, daB bei jeder Rechstbewegung auf
jeden Fall das Bit 3, bei jeder Linksbewegung das Bit 2 auf Null
steht.

Das vereinfacht uns spater die Abfrage nach '"rechts" oder
"links", wenn wir die Bit-Operationen "AND" oder "BIT" verwenden.
An dieser Stelle gehen wir deshalb etwas ndher auf diese Verknip-
fungen ein:

Finden wir in (56320) einen Wert vor, dann verknipfen wir ihn
mit AND #8, wum ihn zunachst auf "rechts" zu iberprifen. Das fol-
gende Beispiel nimmt an, daB 121 (li/un) aufgenommen wurde.

In Bit-Schreibweise sieht das so aus:

01111001 (=121) lda 56320
and 00001000 (= 8) and 8
Ergebnis: 00001000 (= 8)

(Bei der bitweisen Operation AND wird nur dann ein Bit auf 1 ge-
setzt, wenn beide Operatoren an dieser Stelle auf 1 stehen.)

Uberpriifen wir nun das Z-Flag, das immer dann gesetzt wird, wenn
die letzte Operation mit Null endete, dann ist es in unserem Fall
nicht gesetzt. Dies konnen wir zur Folgerung nehmen:

/-Flag nicht gesetzt ---> kein Rechtsausschlag

AnschlieBend erfolgt in gleicher Weise die Uberpriifung auf links:
01111001 (=121) lda 56320
and 00000100 (= 4) and #4
Ergebnis: 00000000 (= 0)

Daraus folgt: Z-Flag gesetzt ---> Ausschlag nach links

Bei gesetztem Z-Flag kdnnen wir mit BEQ demnach zur entsprechen-
den Routine verzweigen, da die geforderte Bedingung (Ausschlag
nach links) vorliegt. Mit BNE springen wir zur néchsten Uber-
prifung oder zum Schleifenende, um auf eine Eingabe zu warten,
die einen Rechnervorgang erfordert. '

Alle diese Operationen werden im (A)-Register durchgefihrt.

Mit AND andert sich dadurch auch der Akku-Inhalt, so daB er fir
den nachsten Vergleich nicht mehr brauchbar ist.

Die Verknipfung BIT hat diesen Nachteil nicht: Sie beeinfluBt nur
die Flags, nicht aber den (A)-Inhalt.

Im letzten Beispiel sieht das so aus:

01111001 (=121) lda 56320
bit 00000100 (= 4) 1l bit #4 1!
Ergebnis: 01111001 (=121) und Z-fFlag =1

Aber Achtung: Den Befehl BIT #4 gibt es in ASSEMBLER nicht, weil
BIT keine wunmittelbare Adressierung zul&aBt. Wir behelfen uns da-
mit, daB wir eine Adresse (in unserem Beispiel (180)) mit dem
Wert 4 belegen und bei der (berpriifung mit BIT 180 arbeiten.
Die einmalige Belegung von (180) fihren wir nicht im Hauptpro-
gramm durch, sondern in einem zugehdrigen Vorspann. Doch davon
weiter unten.

Der (A)-Inhalt kann also ohne nochmaliges Laden sofort zur néch-
sten Uberprifung ohne Einschrénkung verwendet werden.

Soweit unser kurzer Ausflug in das ASSEMBLER-Wissen. Nun wieder
zurick zu unserem Problem.

2.1.3 Aufbau des Programms "0l-pinsel"

Bevor wir ans Programmieren gehen, sollten wir uns Uber den Ab-
lauf des Programms einige Voriberlegungen notieren und die ein-
zelnen Teile wenigstens grob strukturieren.

Noch einmal zur Wiederholung: Unser Ziel ist es einen Bildschirm-
fleck gesteuert horizontal zu bewegen.

Beim C64 bietet sich dazu ein Sprite an, den wir mit Hilfe der x-
und y-Koordinaten uUber den Bildschirm laufen lassen konnen.
Es kann nicht Sinn dieses Bilchleins sein, die ganzen Graphik-

Raffinessen des C64 zu untersuchen. Aber die wesentlichen Punkte

wollen wir ansprechen:

- Das Sprite muB definiert werden. Wir missen uns auf eine Nummer
einigen und eine Farbe festlegen.

Das geschieht in einem Vorspann zum Hauptprogramm.

- Das Sprite braucht eine Startposition wund einen linken und
rechten Anschlag.

— AuBerdem kann das "Pinsel"-Sprite bei jedem Joystick-Ausschlag
in mehr oder weniger groBen Springen Uber den Bildschirm ge-
fihrt werden. Die feinste Unterteilung ist dabei der einzelne
Pixelabstand, der fast eine flieBende Bewegung erzeugt.

- Die Bewegung ist auf zwei Hauptrichtungen zu programmieren:
links = Verkleinerung der x-Koordinate
rechts = VergroBerung

— Die Haufigkeit des Ansprechens auf die Joystickeingabe ist fir
die Bewegungsgeschwindigkeit von Bedeutung. Bauen wir hier
keine "Bremse" ein, dann rast der "Pinsel" schon bei kurzem
Joystickausschlag von einer Ecke in die andere.

Man sieht, selbst an so einem einfachen Beispiel gibt es eine

ganze Reihe wichtiger Punkte zu beachten. In diesem ersten Fall

wollen wir deshalb besonders langsam vorgehen, um nicht gleich

Verstandnisschwierigkeiten zu provozieren.

Wir zergliedern nun wunser Hauptprogramm in mehrere Teile und
lassen zunachst einmal die Festlegung der Anfangszustande weg.
(Das erfolgt im nachsten Schritt.)

Teil 0l: Warteschleife

Fir die Warteschleife verwenden wir zwei Adressen (1008/1009),
die wir als Zdhler in der Reihenfolge LO/HI benitzen. Je nachdem
wie hoch wir die Grenzwerte setzen, erfolgt ein Einsprung ins
Programm. Hat der Zahler seinen vorgegebenen Wert noch nicht er-
reicht, dann wird er lediglich um 1 erhoht und wieder an den An-
fang der Warteschleife verzweigt.

In unserem Beispielprogramm verlangen wir, daB HI=10 und L0=100
ist. Es muB also bis 10 mal 256 + 100 = 2660 hoch gezahlt werden,
bevor der Sprung zum Weitermachen freigegeben wird.

Teil 02: Joystickabfrage

Das Hauptprogramm beginnt mit der Abfrage des Joysticks. Dabei
werden alle Richtungen beriicksichtigt, die eine Links- oder
Rechtsanzeige zur Folge haben konnten. Wird ein Joystickausschlag
erkannt, dann erfolgt ein Sprung zum Programmteil "Links-" oder
"Rechtsausschlag".

Teil 03: Rechtsausschlag

Zunachst erfolgt eine Priifung, ob der rechte Anschlag schon er-
reicht 1ist oder nicht.

Liegt noch kein Vollausschlag vor, dann muB sich das Sprite nach
rechts bewegen. Wir lassen ihn dabei um 4 Pixel wandern. Das ent-
spricht einer halben Cursorbreite.

Die Vervierfachung bewerkstelligen wir mit dem Assembler-Befehl
ASL, den wir zweimal hintereinander anwenden.

Natlrlich ist es eleganter, den Pinsel um nur eine Pixelbreite zu
verschieben. Aber wir wollen auch mal andere Méglichkeiten aus-
probieren.

Immer wird aber nur die x-Koordinate des Sprites verandert, die
y-Richtung bleibt konstant.

Teil 04: Linksausschlag entspricht dem Teil 03

Teil 05: Vorlaufiger AbschluB

Nach dem Verschieben des Pinsels werden die Zahler in (1008/1009)
wieder auf Null gestellt, um nicht sofort wieder eine weitere
Verschiebung auszulosen. AnschlieBend erfolgt der Sprung an den
Programmanfang.

Erweiterungen dieses Hauptteils 01 bis 05 konnen spater jederzeit
hier angefligt werden. Lediglich der Ricksprung muB ans Ende ge-
stellt werden.

2.1.4 ASSEMBLER-Beispiel fir "0l-pinsel" (C64):

HI des Zahlers laden und

auf Obergrenze uberprifen

erreicht? ja ===> LO auf Grenze prifen
18007 inc 1008 nein ---> Zahler LO erhdhen

18010 bne 18000 und falls kein Uberlauf ---> zum Anfang
18012 inc 1009 ; falls Uberlauf ---> Zahler HI erhéhen
18015 bne 18000 und unbedingt an den Anfang springen

01 18000 ldy 1009
18003 cpy #10
18005 beq 18017

we we we e we

e

18017 inc 1008 Zahler LO erhghen

18020 1dy 1008 s Zahler LO laden

18023 cpy #100 ; und mit Grenzwert vergleichen

18025 bne 18017 s nicht erreicht ===> L0 weiter erhohen
nop

.o

02 Hauptschleife

18028
18031
18033
18035
18037

lda
bit
beq
and
bne
nop

03 Ausschlag

18040
18042
18044
18046
18048
18050
18051
18052
18055
18056

lda
cmp
beq
inc
lda
asl
asl
sta
clc
bece
nop

04 Ausschlag

18059
18061
18063
18065
18067
18069
18070
18071

05 18075
18077
18080
18083
18084

Anmerkung:

Auch di
Sprite

e
2

56320
180
18059
i#8
18083

Bit
ja

Prd
ges
Spr

we we we we ee

nach rechts

189
#32
18083
189
189

53252

18075

; AUS
ber
ja

son
und
Wer
und
und

we we we we we we we e

nach links

lda 189 ; auf
cmp #4 ; pru
beq 18083 ;5 err
dec 189 ;5 AUS
lda 189 s und
asl
asl 5 e ee
sta 53252 5 neu
nop
lda #0 3 Zah
sta 1008 ; LO
sta 1009 s HI
cle
becc 18000 s und
Spritenummern
ist also das

Sprite die Nummer 0 tragt.
Das entspricht der
achte Bit ist z.B. Bit 7.

Zahl-

PADAT abfragen (Daten des C-Ports)

3 geloscht? Linksausschlag?
===> zur Linksroutine
fung von Bit 4
etzt ---> kein Rechtsausschlag ==z=>
ung zur Eingabeabfrage

SCHLAG laden
eits Vollausschlag rechts?
===> neue Eingabe abwarten
st AUSSCHLAG erhchen
laden
t verdoppeln
vervierfachen
als neue x-Koordinate nach X02
Sprung ans Ende 05

Vollausschlag links

fen
eicht ===> auf nachste Eingabe prifen
SCHLAG um eins zurick

laden

vervierfachen
e x-Koordinate nach X02

ler
und
auf Null stellen
zurick zur Warteschleife
beginnen beim Durchzahlen mit Null.

dritte mogliche Sprite, weil das erste

und Schreibweise bei den Bits. Das

Speichern Sie dieses Programm nun unter "Ol-pinsel" ab, lassen
Sie es aber noch nicht laufen, denn wie schon gesagt, sind vor
dem Start noch einige Vorbereitungen notwendig, die wir jetzt an-
packen wollen.

2.1.5 Vorbereitungen, Initialisierungen

Vor dem Start missen die Anfangszustande definiert werden. Wir
haben dabei folgende Bedingungen zu erfillen:

- Die Zahler fir die Warteschleife missen auf Null gestellt wer-
den, um ein ordnungsgemaBes Anlaufen zu gewahrleisten.

— Der Index AUSSCHLAG muB in die Mitte, also auf 18 gestellt
werden (Mitte zwischen 4 und 32).

- Als aktives Sprite wahlen wir Sprite 2 (also das 3. Sprite),
das mit Bit 2 in der Adresse (53269) aktiviert wird.

Diese Wahl ist rein willkirlich. Jedes andere Sprite ist genau
so gut geeignet.

- Die Daten von Sprite 2 legen wir ab Adresse (832) an und bele-
gen daher Adresse (2040+2) mit 13, da in 64er-Schritten nach
dem Beginn der Sprite-Bytes gefragt wird. (13 mal 64 = 832).

- Die X-Koordinate dieses Sprites belegen wir mit 98, die Y-Koor-
dinaten mit 72. Damit liegt die Mittelstellung im linken oberen
Bildschirmteil.

- Mit einer Schleife belegen wir im Wechsel 48 Bytes fir Sprite 2
mit 0,255,255. Den Rest fillen wir mit Nullen auf. Das ergibt
einen Sprite, dessen linker und unterer Rand transparent ist
und dessen rechter oberer Teil das sichtbare Quadrat darstellt.

- Als Farbe wahlen wir mit Nummer 5 ein Dunkelgriin in Adresse
(53289).

— Der AbschluB3 dieses vorlaufigen Initialisierungsprogramms bil-
det der absolute Sprung an den Anfang des Hauptprogramms, also
nach (18000).

Bezeichnen wir diesen Programmteil als "02-vorpinsel" und schauen
uns das in ASSEMBLER an:

ASSEMBLER-Beispiel zu "02-vorpinsel" (C64):

- 16000 1lda #0
16002 sta 1008
16004 sta 1009

Null
nach Zahler LO
und Zahler HI

we we e

- 16008 1lda #18
16010 sta 189

Mittelstellung
nach AUSSCHLAG

.o we

- 16012 1lda #5
16014 sta 53289

Farbe dunkelgrin
nach COLO2, Farbregister fiur Sprite 2

we e

- 16017 lda #13 ; Sprite-Pointer fir Sprite (mal 64)
16019 sta 2042 ; nach SPO2 fir Sprite 2

- 16022 1lda #72 ; Y-Koordinate (konstant)
16024 sta 53252 3 nach X02
16027 1lda #98 ; X-Koordinate (Mittelstellung)
16029 sta 53253 3 nach Y02

- 16032 1dx #47 ; Zahler fiUr 48 Bytes

16034 1lda #255 ; alle Bits gesetzt
16036 sta 832,x ;s Pixelreihe setzen
16039 dex

16040 sta 832,x
16043 1lda #0

nachstes Byte belegen
Null, also alle Bits geloscht

e ee

16045 dex
16046 sta 832,x 3 Pixelreihe loschen
16049 dex
16050 bpl 16034 ; Zahler nicht negativ ===> weitermachen
16052 1ldx #16 ; neuer Zahler fir den Rest von Sprite 2
16054 1lda #0 ; Rest

9

16056 sta 880,x
16059 dex
16060 bpl 16056

mit Nullen belegen

Zahler nicht negativ ==z> weitermachen

..

- 16062 1lda #4
16064 sta 53269
16067 sta 180

- 16070 jmp 18000

3.Bit fir Sprite 2

in SPRAKT setzen

Bit 3 in (180) setzen fir BIT-Operation
und Sprung zum Hauptprogramm "Ol-pinsel"

..

we we e

Starten wir nun endlich unser Programm (ab 16000). Es sollte
nun ein grines Quadrat auf dem Schirm erscheinen, das mit dem
Joystick nach 1links und rechts verschoben werden kann.

Passen Sie auf, wenn Sie das Programm von BASIC aus mit SYS 16000
starten: Wenn Sie die STOP-Taste nicht abfragen, kommen Sie nur
noch durch ein RESET aus dem Programm heraus.

Hoffentlich haben Sie also alle Programmteile vorher abgespei-
chert, bevor Sie ans Ausprobieren gingen? (nur 40/80XX)

2.1.6 Verwendete Labels - Zusammenstellung

Label Cé64 40/80XX .
' '

AUSSCHLAG 189=$bd 189=%bd

coLo2 53289=$d029 —==—=

Farbregister fur Sprite 2

SP02 2042=$07fa —====
Anfangsadresse der Daten von Sprite 2

X02 53252=$d004 = ——===
Y02 53253=$d005 = ———=-
x- bzw. y-Koordinaten von Sprite 2

SPRAKT 53269=$d015 —-——=
Register fir aktive Sprites (bitweise)

2.2 Variieren und Testen des "pinsel"-Programms

2.2.1 Variable Laufgeschwindigkeit

Die Geschwindigkeit, mit der Sie den Pinsel iber den Bildschirm
steuern konnen, 1aBt sich in einem breiten Bereich wahlen: von
blitzartig bis sehr langsam.

Verandern Sie dazu die CPY #...-Befehle in der Warteschleife.
Die Grobabstimmung nehmen Sie mit dem HI-Zahler aus (1009) vor,
die Feinabstimmung mit dem L0-Z&ahler aus (1008).

Am schnellsten geht es natirlich, wenn Sie beide schon beim In-
halt 0 zur Hauptroutine schicken.

2.2.2 Bildschirmob jekte austauschen

Sie konnen nun das Sprite anders gestalten und ihn als Auto,
Flugzeug oder Schiff Uber den Bildschirm jagen.

Wenn Sie auch noch die Y-Koordinate iUber den Joystick steuern,
dann steht Ihnen der ganze Bildschirm offen und noch mehr, weil
Sie auch dariber hinaus in einem nicht sichtbaren Bereich weiter-
fahren konnen. Lesen Sie dariuber in Ihrer Cé4-Literatur nach.

2.2.3 Bildschirmgestaltung

Bleiben wir noch kurz bei unserem "pinsel"-Programm.

Um die Ausschldge auch gut ablesen zu kdnnen, stellen wir noch
eine Art Skala dar, die aus drei Quadraten oberhalb des Pinsels
besteht. Das mittlere Quadrat gibt die Mittelstellung an, wenn
der Pinsel genau darunter steht. Die &auBeren Quadrate werden mit
einer Pinselbreite Abstand zum mittleren gezeichnet, so daB wir
die Richtung nun in der Einheit "Pinselbreite" ablesen kdnnen.

Wir erweitern die Initialisierungs-Routine "02-vorpinsel", indem
wir vor dem JMP 18000 folgendes einfiigen:

16071 sta 1231 rechts auBen oben
16074 sta 1232
16077 sta 1191
16080 sta 1192
16083 sta 1227
16086 sta 1228
16089 sta 1187
16092 sta 1188
16095 sta 1235
16098 sta 1236
16101 sta 1195
16104 sta 1196
- 16107 lda #13
16109 sta 55503
16112 sta 55504
16115 sta 55463
16118 sta 55464
16142 sta 55468
16145 jmp 18000 3 Sprung zum Hauptprogramm

- 16069 1lda #160 ; Code fir Cursorzeichen (revers leer)
H

rechts auBen unten

..

Mitte auBen oben

we we we

links auBen oben

rechts

-e

Farbe hellgrin
Belegung der entsprechenden Farbspeicher

e we we

Sie konnen diesen Programmteil beliebig erweitern, indem Sie ein
Gehause fur dieses Anzeigeinstrument entwerfen, einen Rahmen
zeichnen oder eine Beschriftung entwerfen.

Am SchluB steht aber immer der Sprung nach (18000).

Speichern Sie dieses Programm auf jeden Fall ab unter dem Namen
"03-vorpinsel". Wir werden es spater noch einmal zusammen mit dem
Programm "0Ol-pinsel" verwenden.

2.3 Abweichungen fiir die 40/80XX-Gerite

Wer mit den groBen Geraten arbeitet, muB leider auf die komfor-
table Sprite-Edition verzichten. Aber auch hier ist der Wendezei-
ger ohne weiteres darstellbar.

Die Warteschleife 01 bleibt erhalten wie sie vorgestellt wurde.
Beim Abfragen der Eingabe kann man die numerische Tastatur ver-
wenden, indem man die Zeropage-Adresse (151) bzw. (155) beim SK
untersucht. Ist keine Taste gedrickt, steht dort 255.

Um den Pinsel zu versetzen, nehmen wir auf der einen Seite eine
Cursorbreite weg und setzen sie auf der anderen wieder an, wenn
die Randwerte nicht lberschritten wurden.

Wir gehen davon aus, daB die Lage des Pinsels durch den Inhalt
der Zeropageadresse AUSSCHLAG = (189) indiziert ist.

Wenn der Pinsel eine Breite von 4 und eine Hohe von 2 Cursor-
flecken hat, ergibt das auf dem 80-Zeichenschirm ebenfalls
ein Quadrat.

Die Grundadressen fir die linken Seiten sind dann zum Beispiel
(33651) und (33731), fir die rechten Seiten (33654) und (33734).

Teil 03 sieht dann etwa fir den 80-Zeichenschirm so aus:

03 18054 1ldx 189 s Anschlag bei Grenze rechts
18056 cpx #39 s erreicht?
18058 beq 02
18060 lda #32
18060 sta 33651,x
18063 sta 33731,x
18066 inx
18067 1lda #160
18069 sta 33654,x
18072 sta 33734,x
18075 stx 189
18077 bne Teil 05

Leerzeichen laden

auf der linken Seite ausgeben
und eine Zeile tiefer

Stellung erhdhen

Cursorfleck laden

und rechts oben ansetzen

und eine Zeile tiefer ebenfalls
neuen AUSSCHLAG abspeichern

und Sprung zum Abschlufiteil 05

we we we we we ee

we ws e

Die "04-Linksroutine" verlauft entsprechend.

Beim Initialisieren entfallen die Spritevorbereitungen.

Die Rucksetzung der Zahler bleibt wie sie ist. Die Grundstellung
des Pinsels 1&aBt sich durch einfaches Ausgeben des Codes 160 an
die gewiinschten Stellen zeichnen.

Statt einer anderen Farbe kann man beim Aufbau der Skala-Symbole

den Code 102 ausgeben. Dann hebt sich der bewegliche Pinsel gut
von der Skala ab.

ZweckmaBigerweise schaltet man den Computer auf Graphikdarstel-
lung um, damit der Abstand zwischen den Zeilen verschwindet und
der Pinsel ein zusammenhdngendes Bild liefert.

Die Umstellung erfolgt mit JSR 57371. Siehe dazu Kapitel 11.

Der Phantasie sind mit der Blockgraphik im Gegensatz zum C64 enge
Grenzen gesetzt. Jedoch ist auch hier ein Rahmen und eine nette
Gestaltung moglich.

2.4 Erweiterungs- und ibungsaufgaben:

Probieren Sie nun Ihr Werk aus und versuchen Sie sich an allen

méglichen Anderungen:

- Legen Sie den Wendezeiger genau in die Mitte des Schirms.

- Wechseln Sie Form, GroBe oder Farben.

- Setzen Sie wunter das Pinselquadrat, das ja nur das Ende des
Zeigers bedeutet, eine angedeutete Anzeigenadel.

- Verdndern Sie die Grenzwerte.

- Lassen Sie beim Aufnehmen der Joystickwerte links und rechts
doppelt so viele Einheiten =zu wie der Pinsel auf dem Schirm
darstellen kann. Sie haben dann zwei Begrenzungen, eine sicht-
bare und eine unsichtbare.

Beim Ausschlag nach rechts ist z.B. durchaus der Wert 180 mdg-
lich, der auch 1in AUSSCHLAG abgelegt wird. Eine Anzeige er-
folgt aber z.B. nur bis 160 bei einer Mittelstellung von 140.

Es lohnt sich, hier ein biBchen zu experimentieren. Das Problem
ist Uberschaubar und fir jeden weiteren Ausbau gut geeignet.
Verzweifeln Sie nicht, wenn nicht gleich alles klappt, sondern
schalten Sie - nach dem Abspeichern natiirlich - Ihr Gerat einfach
aus und gehen Sie erst einen oder zwei Tage spater wieder an das
gleiche Problem. Sie werden erstaunt sein, wie locker Sie plotz-
lich programmieren konnen.

3

~ Erweiterung der Interrupt-Routine -
ein Beispiel

3 Erweiterung der Interrupt-Routine
- ein Beispiel-

3.1 Die IR-Routine

Die CBM-Rechner unterbrechen 60 mal in der Sekunde alle Programm-
laufe, um wichtige ROM-Routinen auszufiihren, die einen geregelten
Computerbetrieb gewdhrleisten. So wird z.B. die Tastatur abge-
fragt, die Uhr nachgestellt usw.

Voraussetzung fir die Aktivitat dieser betriebsinternen Routine
ist, daB der sog. IRQ-Vektor auf den Anfang der IR-Routine zeigt.
Dies 1ist ein Zeiger in der Zeropage, der folgende Adressen (LO/
HI) hat:

Label C64 40/80XX .
1 1

IRQVEC <788/789>=59953 <144/145>=58453
<$0314/0315>=%ea3l <$90/91>=$e455

Zeiger mit Inhalt auf den Standard-Interrupt

IRQVEC LO <788>=49 <144>=85
<$0314>=%31 <$90>=$55
LO des IRQ-Vektors

IRQVEC HI <789>=234 <145>=228
<$0315>=%ea <$91>=%e4
HI des IRQ-Vektors

Erlauterungen dazu:

IRQVEC ist ein Pointer, der auf die Einsprungadresse fir den
Standard-Interrupt zeigt. Beim C64 z.B. beginnt diese Routine ab
(59953). Das ist in LO/HI zerlegt eben 49/234. Der IRQ-Vektor
muB also in (788) den Wert 49 und in (789) den Wert 234 enthal-
ten, dann wird automatisch der normale Interrupt durchgefihrt.

Verstellt man diesen Zeiger um 3 Adressen nach oben - das wiare
beim €64 also (59956) - dann wird die STOP-Tastenabfrage ibergan-
gen. Das bedeutet, daBl man ein Programm, das mit diesem Interrupt
lauft, nicht mehr Uber die STOP-Taste abbrechen kann.

3.2 Erzeugung eines Taktes mit der IRQ-Abfrage

Zielsetzung:

Wir wollen in einem bestimmten Rhythmus ein Programm durchlaufen.
Oder anders ausgedrickt: In einem vorgegebenen Takt sollen be-
stimmte Ablaufe (z.B. Standortbestimmungen, Anzeigen usw.) aus-
gefiuhrt werden.

Fir unser folgendes Beispiel nehmen wir uns vor, daB alle 0,25s
ein Flag gesetzt wird, an Hand dessen ein Programm selbst "ent-
scheiden" kann, ob es starten soll oder nicht.

Dadurch lassen sich z.B. Bewegungsablaufe in kleine Schritte zer-
legen, so daB man jederzeit die Position o.&. mitrechnen kann.
Es 188t sich somit eine Digitalisierung erzielen, die bei fast
allen wunregelmdaBigen Vorgangen zur Analysierung der Einzelfakto-
ren erforderlich ist.

Nennen wir das daflir zustandige Programm "O04-taktmodul'.

3.3 Wichtige Adressen von "04-taktmodul"

- Wir lassen die Interrupt-Erweiterung bei (17000) beginnen.
- Als Flag verwenden wir die Adresse (1010).

Wir vereinbaren, daB wir (1010) mit 1 belegen, wenn eine Zeit von
0,25s verstrichen ist. Lauft auf Grund dieses Flags ein Programm
an, muB dieses Programm selbst dafiir sorgen, daB (1010) wieder
auf 0 zurilckgesetzt ist.

(Voraussetzung fir die Einhaltung eines gleichmidBigen Takts ist
dann, daB das dadurch gestartete Programm auch bei allen mogli-
chen Verzweigungen nie langer als 0,25s fir einen Durchlauf be-
notigt.)

Die Warteschleife lassen wir wieder Uber einen Zahler laufen,
fir den wir die Adressen (1011/1012) als LO/HI bereitstellen.
Damit haben wir wieder die Moglichkeit, unsere Taktfrequenz in
einem relativ groBen Bereich vorzuwédhlen.

3.4 Ablauf von "04-taktmodul"

0l: Warteschleife
- Erhéhen des Zahlers in (1011/1012).
- Abfrage, ob der gewinschte Wert erreicht ist.

02: Taktflag
- Setzen des Taktflags (1010) auf 1, wenn die vorgegebene
Zeit erreicht ist.

03: AbschluB
- Weitersprung zur betriebsinternen IR-Routine.

3.5 ASSSEMBLER-Programm fiir "04-taktmodul®™(Cé64):

Ol:Warteschleife:

17000 inc 1011 3 Zahler LO erhdhen

17003 bne 17008 ;3 ungleich 0 ===> weiter

17005 inc 1012 ;s sonst Zahler HI erhcohen

17008 1da 1012 s Zahler HI...

17011 cmp #0 ;3 ...mit 0 vergleichen (Beispiel!)
17013 bne 17037 ; ungleich 0 ===> weiter

17015 1da 1011 ; Zahler LO...

17018 cmp #15 ; mit 15 vergleichen (Beispiel fir 0,25s)
17020 bne 17037 3 nicht erreicht ===> weiter

17022 nop

02: Taktflag:

17023 1da #1 ; Flag

17025 sta 1010 ;3 in (1010) auf 1 setzen
17028 lda #0 ; Zahler

17030 sta 1011 3 «..L0

17033 sta 1012 3 ...und HI zuricksetzen
Teil 3:

17036 jmp 59953 3 Sprung zur CBM-IR-Routine

Wir erhalten einen 0,25s-Takt, wenn wir mit dieser Schleife war-
ten, bis der Zahler in (1011/1012) auf 0/15 steht.
Das 1aBt sich durch das angekiindigte Testprogramm Uberpriifen.

- 44 -

Ein genaueres Intervall fir exakte Rechenroutinen konnen wir auch
mit Hilfe der Stoppuhr ermitteln. Im Normalfall genlgt aber eine
Genauigkeit von 1/60 Sekunde.

3.6 Abstimmung des Taktes

Die Warteschleife (sie entspricht der des vorhergehenden Moduls)
muB immer individuell abgestimmt werden. Das geschieht mit Hilfe
des Zahlers in (1011/1012).

Wann eine Zeit von 0,25s erreicht ist, wird durch ein kleines
Testprogramm ermittelt.

Fir diesen Minitest lassen wir uns immer dann, wenn das Intervall

abgeschlossen ist, ein beliebiges Zeichen auf dem Bildschirm aus-
geben und setzen danach sofort unseren Zahler und das Flag auf O.

3.7 Eine kleine Testroutine fiir die Bestimmung der Taktfrequenz

Das folgende Programm (ab 17100) fragt zundchst eine Taste ab,
mit deren Hilfe wir den Testlauf abbrechen konnen. Danach wird
zu Beginn eines jeden Taktes der Inhalt der Adresse (165) auf dem
Bildschirm ausgegeben. Die Bildschirmadresse wird jeweils durch
das (X)-Register indiziert und vor jeder neuen Ausgabe inkremen-
tiert (um eins erhoht), so daB wir also maximal 256 hintereinan-
der liegende gleiche Zeichen zu sehen bekommen.

Dann fangt alles wieder an derselben Anfangsposition an. Damit
sich das vom Vorhergehenden unterscheidet, wechseln wir einfach
den Bildschirmcode, indem wir 1ihn ebenfalls um 1 erhdhen, wenn
die Schleife wieder von vorn beginnt. Auf diese Weise laBt sich
durch Mit- oder Abzdhlen der ausgedruckten Zeichen eine durch-
schnittliche Taktfrequenz mit guter Genauigkeit bestimmen.

Nach jeder Bildschirmausgabe muB das Taktflag zurickgesetzt
werden. Danach erfolgt wieder der Sprung an die Warteschleife
fir das Taktflag.

Das Takt-Testprogramm "test/takt" (C64)

- 17100 lda 203
17102 cmp #60 ; Stoptaste (Leertaste) gedriickt?
17104 bne 17108 3 nein ===> weiter
17106 rts 3 ja ===> Ricksprung
17107 nop
- 17108 1lda 1010
17111 beq 17100
17113 inx
17114 bne 17118
17116 inc 165
17118 1lda 165
17120 sta 1024,x
- 17123 1lda #0
17125 sta 1010 ; Flag auf O
17128 beq 17100 ; und Sprung an den Anfang der Schleife

Flag 0 ===> warten

Flag gesetzt ---> Zahler erhchen
255 Ulberschritten? nein ===> weiter
sonst Zeichencode erhdhen
Zeichencode laden

und auf Bildschirm ausgeben

we we we we e we

Wenn sie das Programm "04-taktmodul" noch im Speicher haben,
sollten Sie es jetzt zusammen mit diesem "test/takt'" abspeichern.
Nennen wir es einfach "05-takt".

Es 188t sich auf diese Weise spater bequem - auch von BASIC aus -
mit einem einzigen LOAD-Befehl einladen.

Lauffahig ist es allerdings noch nicht, da wir den Taktgeber, der
ja im Programm "O4-taktmodul" steckt, noch nicht aktiviert haben.
Er muB jetzt erst in die Interrupt-Routine integriert werden.
Es bringt also im Moment noch gar nichts, wenn Sie bei (17000)
oder (17100) starten. Gleich im nachsten Abschnitt packen wir
dieses Problem an.

3.8 Einstellen des IRQ-Vektors

Die Interrupt-Routine muB nun unser "0O4-taktmodul" durchlaufen.
Das laBt sich dadurch erreichen, daB wir den vorhin besprochenen
IRQ-Zeiger auf die Anfangsadresse dieses Programms einstellen.
17000 hat zerlegt in LO/HI die Werte 104/66. Setzen wir die nun
in die Adressen des IRQ-Zeigers IRQ-LO und IRQ-HI, dann wird

die Interrupt-Routine brav bei (17000) beginnen.

Allerdings hat die ganze Sachen noch einen kleinen Haken, der

sich aber schnell geradeklopfen 1&aBt:

Der IRQ-Zeiger 1aBt sich nicht durch einfaches '"poken'" der Zero-
page-Adressen &ndern, weil ja wdhrend dieser Durchfihrung auch
der Interrupt ausgefihrt wird. Er kann deshalb auch zwischen das
Einstellen von LO und HI des Zeigers fallen und schon stirzt der
Rechner 1ins Leere, weil er einen Interrupt-Einsprung durchfihrt,
aus dem er in der Regel nicht mehr herauskommt.

Wer den Befehl DOKE besitzt, umgeht diese Schwierigkeit und kann
den IRQ-Zeiger =z.B. mit DOKEl44,17000 auf (17000) einstellen.
Ansonsten muB vor einer Verdnderung des Vektors, die sowohl das
LO- als das HI-Byte betrifft, das "Interrupt-Disable-Flag" mit
SEI gesetzt werden. Der Interrupt bleibt also aus, der Zeiger
kann in Ruhe veridndert werden. AnschlieBend setzt man dieses
Flag wieder mit CLI zurick und ermdglicht damit den Einsprung in
die Adresse, auf die der Vektor IRQVEC zeigt.

Das folgende kleine Programm - der Wichtigkeit halber auch gleich
fir die "groBen" Gerdte gelistet - stellt den IRQ-Vektor ein.

ASSEMBLER-Beispiel "06-irqvecl7000"

C64 40/80XX
- 24500 sei sei s I-Flag setzen
- 24501 lda #104 lda #104 s LO

24503 sta 788 sta 144 ; nach IRQVEC LO

24505 1lda #66 lda #66 ; HI

24507 sta 789 sta 145 5 nach IRQVEC HI
- 24509 cli cli 3 I-Flag loschen
- 24510 jmp 17100 jmp 17100 ;5 zu "test-takt"

Jetzt konnen Sie das Programm gleich mit SYS 24500 starten.
Sie missen aber das Programm "05-takt" noch im Speicher belassen
haben.

Zunachst wird der IRQ-Vektor verstellt und dann zum Programm
"test-takt" verzweigt.

Ab sofort wird ca.60 mal pro Sekunde das Programm "04-taktmodul"
(17000) angesprungen, und der Zahler wird solange inkrementiert,
bis er die eingestellte Zahl erreicht hat.

Unabhdngig davon 1lauft das Testprogramm "test-takt" ab 17100
solange auf der Stelle, bis das Taktflag gesetzt ist. Erst wenn
hier eine 1 vorliegt, erfolgt eine Zeichenausgabe auf dem Schirm.

Nun konnen Sie die Anzahl der gesetzten Zeichen und die dazu
benctigte Zeit feststellen und Sie erhalten Ihre Taktfrequenz.

Verandern Sie mit POKE 17019,XX einmal Ihren Zahler, dann werden
Sie bald merken, daB Sie mit XX=15 recht gut einen 0,25s-Takt er-
halten.

Anmerkung:

DaB wir die Taktfrequenz von BASIC aus uberprifen, hat seinen
Grund darin, daB einige Assembler ebenfalls die Adressen des IRQ-
Zeigers verwenden, so daB eine Veranderung nicht ratsam ist.

Zusammenf assung:

Die Interrupt- Erweiterung ist nun so aufgebaut, daBl Sie den Zah-
ler beliebig einstellen kdnnen zwischen ca. 1/60 Sekunde und ca.
18 Minuten.

Jeder weitere Ausbau dieser Routine fihrt allerdings dazu, daB
etwas mehr Zeit zur Ausfihrung benotigt wird, aber in Maschinen-
sprache haben wir noch einige Reserven.

Die ganze Geschichte mit dem Taktgeber hat auch ihren Bezug zum
vorhergehenden Kapitel, wo wir einen Wendezeiger simuliert haben.
Wir sind namlich jetzt (fast) in der Lage, mit Hilfe dieses Ge-
rats die Richtung anzugeben, in die wir uns "bewegen".

Wenn wir den Ausschlag des "Pinsels" aus dem Programm "Ol-pinsel"
in regelmaBigen kurzen Abstanden untersuchen, dann 1aB8t sich da-
raus eine Richtungsédnderung berechnen.

Voraussetzung dazu ist aber, daB wir sehr schnell rechnen kdnnen.
Und das wiederum erfordert den Einsatz von Maschinenprogrammen.
In den nachsten beiden Kapiteln Nr.4 und Nr.5 werden wir uns aus-
fihrlich mit der Arithmetik befassen. Sie ist einer der Schwer-
punkte in dieser Schrift.

Doch vorher sollten Sie sich zunachst einmal an einer der folgen-
den Ubungen versuchen.

Iwischendurch muB immer wieder betont werden, daB das bloBe
Durchlesen von bereits fertigen oder schon besprochenen Program-
men nicht allzu viel Lerneffekt mit sich bringt. Mehr als in
anderen Bereichen gilt hier das alte Prinzip: Probieren - wobei
damit immer systematisches Probieren, nicht aber Herumprobieren
gemeint ist - geht Uber (oder zumindest neben) Studieren.

Aufgaben:

Erweitern Sie die Interrupt-Routine, um die Tastatur abzufragen
und z.B. beim Dricken der Taste "0" sofort ein Flag zu setzen,
das aber nach 5 Sekunden wieder geléscht wird.

Erweitern Sie die Interrupt-Routine, um die Eingaben des Joy-
sticks abzufragen und in der richtigen Reihenfolge in einem
bestimmten Adressbereich bereitzustellen (Pufferproblem!).

4

Zahlen, Variablen - Formate

4 Zahlen, Variablen - Formate

4.1 Rechnen mit Ganzzahlen (Integer-Zahlen)

Die CBM-Rechner verarbeiten Integerzahlen in Form von Zweibyte-
zahlen, die in der Reihenfolge HI/L0 den Zahlenwert darstellen.
Steht in der kleineren Adresse z.B. 10 und in der nachsthoheren
z.B. 20, dann ergibt das einen Zahlenwert von 10 mal 256 + 20 =
2580.

Der Bereich ist dadurch auf insgesamt 65535 Zahlen beschrankt
und zerfallt in einen negativen Bereich (bis -32768) und einen
positiven (bis 32767).

Bei CBM-internen Umwandlungen wund Ausgaben wird eine negative
Zahl daran erkannt, daB im HI-Byte das Bit 7 gesetzt ist, das
Byte also einen Wert von mindestens 128 hat.

Solange man nicht die CBM-eigenen Routinen fir die Ausgabe
eines Integerergebnisses verwendet, lassen sich Addition und
Subtraktion im Zwei-Byte-Verfahren von 0 bis 65535 problemlos
durchfihren.

Anders ausgedrickt: Will man ROM-Routinen zur Ausgabe verwenden,
dirfen Zwischen- oder Endergebnisse den Bereich von -32767 bis
+32767 nicht vprlassen.

Addition wund Subtraktion kdnnen in ASSEMBLER mit den Befehlen
CLC/ADC bzw. SEC/SBC im genannten Bereich durchgefihrt werden.

4.1.1 Rechnen mit positiven Ganzzahlen

Nehmen wir an, die Zahl(%) 500 steht in (17000/17001) und wir
wollen 300 addieren, was in (17002/17003) abgelegt ist.

Teil 1: Erzeugen der Integerzahlen

Dann belegen wir die Adressen (17000) bis (17003) wie folgt:
<17000>=1 3 HI von 500

<17001>=244 ; LO von 500

<17002>=1 3 HI von 300

<17003>= 44 ; LO von 300

Soll das Ergebnis der Addition 500+300 wieder in (17000/17001)
stehen, dann sieht der nachste Programmschritt so aus:

Teil 2:

Wir addieren zunachst die beiden LO-Bytes und erhalten
244+44=288. Dies 1ist jedoch in Byteform nicht mehr darstellbar,
weil nur bis 255 hochgezahlt werden kann.

Der Prozessor z&hlt zwar brav weiter, fangt dann aber nach 255
wieder mit 0 an, so daB im (A)-Register nun 32 steht. Gleichzei-
tig wird aber das C-Flag gesetzt, an dem man den "Uberlauf" er-
kennen kann.

(Daher muB vorher mit CLC das C-Flag geldscht werden.)

Teil 3:

Mit Hilfe der Flags 1&Bt sich nun feststellen, ob ein Uberlauf
stattgefunden hat oder nicht. Die Additions- bzw. Subtraktions-
befehle ADC und SBC beeinflussen:

das N-Flag (negatives Ergebnis ---> <N>=z1)

das Z-Flag (Ergebnis = O -—=> <2>=1)
das C-Flag (Uberlauf -—=> <C>=1)
das V-Flag (Bit 7 gesetzt -—=> KV>=1)

Ist das C-Flag gesetzt, was mit den Branch-Befehlen BCS und BCC
untersucht wird, dann erhohen wir die Adresse, in der das HI-Byte
des zweiten Summanden steht oder - falls wir diesen noch in un-
verdndertem Wert bendtigen - 1laden ihn in ein Register und
erhdhen dieses, bevor wir die HI-Bytes addieren.

Das Ergebnis der Addition wird irgendwo im RAM abgelegt. In un-
serem Beispiel verwenden wir dazu gleich die Adressen des ersten
Summanden (17000/17001). Allerdings missen wir uns notieren, wo
die Summe zu finden ist, wenn wir sie - z.B. zur Ausgabe auf dem
Bildschirm - wieder verwenden wollen.

Man kann dieses Mitverwalten umgehen, wenn man mit Integerva-
riablen arbeitet, die entsprechend dem BASIC-System mit zwei
Zeichen benannt sind. Allerdings kommt man dann nicht mehr mit
zwel Adressen pro Integerzahl aus, sondern braucht deren sieben.
Doch davon lesen wir spater mehr.

Zurick zu wunserem Beispiel: Zur Ausgabe auf dem Bildschirm ver-
wenden wir die ROM-Routine INTOUT, die im Kapitel "Ausgabe-
Routinen" noch ndher besprochen wird.

Vorab nur so viel: Um INTOUT zu verwenden, muB3 das LO-Byte
unseres Ergebnisses im (X)-Register, das HI-Byte im (A)-Register
stehen. Da wir wissen, wo sich unser Ergebnis befindet - namlich
in den Adressen (17000) und (17001) ist das kein Problem.

ASSEMBLER-Beispiel:"07-integadd" (C64):

Teil 1: Bereitstellen der Zahlen 500 und 300
- 17500 1da #1
17502 sta 17000 3 <17000/17001>=500
17505 sta 17002

17508 1da #244 ; und
17510 sta 17001
17513 1lda #44 3 <17002/17003>=300
17515 sta 17003
17518 nop
Teil 2: LO-Bytes addieren
- 17519 1da 17001 5 244 in (A)
17522 clc
17523 adc 17003 s 44 zum (A) addieren
17526 bcec 17531 Carry-Flag gesetzt? nein ===> Sprung

17528 inc 17000 ja===> HI-Byte von 500 erhdhen

- 17531 sta 17001 Ergebnis LO (hier 32) nach (17001)
17534 tax s und fir die Ausgabe nach (X)
17535 nop

we we ee

Teil 3: HI-Bytes addieren

- 17536 1da 17000 ; erhohtes HI-Byte nach (A)
17539 clc
17540 adc 17002 ; HI-Byte von 300 zum (A) addieren

- 17543 sta 17000 ; ... und ablegen. (Nicht notwendig, wenn
17546 nop ;3 die Zahl 800 nicht mehr gebraucht wird.

Teil 4: Ausgabe der Integerzahl

In unserem Fall ist das LO der Summe bereits mit TAX ins (X)-
Register lbertragen worden. Das HI steht noch in (A). Ist dies
nicht der Fall, dann werden die entsprechenden Bytes erst ge-
holt, bevor sie mit INTOUT ausgegeben werden konnen:

- 17547 1dx 17001
- 17550 lda 17000
- 17553 jsr 48589

LO-Byte nach (X)
HI-Byte nach (A)
ROM-Routine INTOUT gibt ab aktuellem

ws we e

Cursor die Integerzahl (X/A) aus
17556 rts 3 Ricksprung - AbschluBl dieser Routine

Achtung:
INTOUT gibt nur positive Zahlen im Bereich von 0 bis 65535 aus.

Speichern Sie das Programm unter "O7-integadd" ab und starten Sie
es mal von BASIC oder mit dem Assembler bei (17500), bei (17519),
bei (17536) und bei (17547).

Haben Sie die ausgedruckten Zahlen auch erwartet?

Wenn nicht, sollten Sie diesen Abschnitt noch einmal nachlesen.

4.1.2 Negative Ganzzahlen

Negative Ganzzahlen erkennt man daran, da das Bit 7 im HI-Byte
der Zahl gesetzt ist. Allerdings 1&dBt sich das Vorzeichen einer
Integerzahl nicht ohne weiteres durch Setzen oder Ldschen des 7.
Bits verandern.

Der Grund 1liegt darin, daB die negativen Ganzzahlen eben von O
abwarts gezahlt werden, so daB die Zahl (-1) eben als $FFFF auf-
tritt. Der groBte Betrag einer negativen Zahl liegt dann bei
$8000, also -32768.

Durch Zerlegen in LO/HI 148t sich der Wert aus der Hexdarstel-
lung ermitteln.

Beispiel:
Gesucht ist der Wert der Zahl $fea0.

Losung:
HI-Byte ist $fe, 2 Einheiten unter $00, also 2 mal -256 = -512.

LO-Byte ist $a0, also 160.
Ergebnis: $fea0=-512+160=-352

Das LO-Byte ist dabei immer positiv zu behandeln. Das HI-Byte ist
nur dann negativ, wenn es goBer oder gleich $80=128 ist. Daher
ist $7fff auch die griBte positive Integerzahl, denn wenn man nun
nochmals um 1 erhoht, erhalt man $8000, also eine negative Zahl.

Daraus ergibt sich eine Moglichkeit, das Vorzeichen zu wechseln:
Wir invertieren sowohl HI- als auch LOW-Byte der Integerzahl.
Dazu eignet sich der ASSEMBLER-Befehl EOR #255, der bitweise
die Verknipfung mit dem im (A)-Register stehenden Byte besorgt.

Das sieht dann in Bitschreibweise z.B. fiir das Byte $FA=250 so
aus:

<A> = 11111010 = 25030
EOR #255 11111111
Ergebnis: <A> = 00000101 , also 5 in (A)

Zur Erinnerung: EOR erzeugt nur bei ungleichen Bits eine 1.
Es wird also mit EOR immer der Komplementarwert auf 255 erzeugt:
In unserem Beispiel: 250+5=255

Soweit der Ausflug in die Bitverknipfung EOR, nun zurick zu den
Integerzahlen.

Angenommen, wir haben das Vorzeichen der Zahl $fea0 in (17000/
17001) zu wechseln, dann gehen wir folgendermaBen vor:

ASSEMBLER-Beispiel "08-intvorz" fir Cé64:

01 18023 1da 17000 s HI
18026 eor #255 s invertieren

18028 tax ; und vorlaufig nach (X) retten
nop
02 18030 lda 17001 LO
18033 eor #255 invertieren,

we we we e

18035 tay nach (Y) tbertragen und

18036 iny um 1 erhdhen, sonst Ergebnis falsch um 1
03 18037 bne 18040 ; neues L0=0 (Sonderfall)? nein ===> weiter

18039 inx ;3 ja -—=> HI ebenfalls um 1 erhdhen

04 18040 txa
18041 jsr 45969

endgiltiges HI nach (A)

INTFLP wandelt <Y/A> in eine FlLoat-
Point-Zahl um

FLPOUT druckt: 352

.o ee

05 18044 jsr 43708
rts

-e

Sie sehen, wir haben eine neue ROM-Routine INTFLP aufgenom-
men. Und das hat folgenden Grund:

Wie schon angedeutet, funktioniert die Ausgabe einer negativen
Ganzzahl nicht mehr mit INTOUT.

Wir konnten uns jetzt einen eigenen Algorithmus ausdenken (Fest-
stellung des Vorzeichens, Ausgabe des Vorzeichens, Ausgabe der
Zahl mit INTOUT o.&d.), belassen es aber bei der Moglichkeit, die

das Betriebssystem schon bietet:

— Zunachst wird die Integerzahl in eine sog. FlieBkommazahl umge-
wandelt, die das Vorzeichen in jedem Fall enthalt.
Dazu Ubergeben wir das LO-Byte der Zahl an (Y) und das HI-
byte an (A) und springen bei INTFLP ein.

- Diese FLP-Zahl kann durch die Routine FLPOUT ausgegeben
werden.

Probieren Sie nun die eben erarbeitete Routine aus. Vergessen Sie
aber nicht: Der zuldssige Bereich von -32768 bis 32767 darf nicht
verlassen werden!

Die scheinbare Umstandlichkeit, mit der die negativen Zahlen
verwaltet werden, hat den Vorteil, daB wir die bereits in 4.1.1
geschriebene Integeraddition nun auch auf negative Zahlen ausdeh-
nen konnen.

Einzige Bedingung ist aber: Die Ausgabe darf nicht mehr mit
INTOUT erfolgen, sondern mit INTFLP und FLPOUT.

4.1.3 Subtrahieren von Integerzahlen im positiven Bereich

Die Programmierung einer Subtraktionsaufgabe verlauft entspre-
chend der Addition, solange keine negativen Zahlen auftreten.
Auch hier kann man dann den Bereich von 0 bis 65535 ausnutzen.
Zu beachten 1ist lediglich, daB das C-Flag vor dem eigentlichen
Subtraktionsbefehl SBC gesetzt werden muB3, wenn man feststellen
will, ob man sich auch wirklich 'eins geborgt hat' oder nicht.

Wandeln wir das Additionsprogramm entsprechend um in das
Subtraktionsprogramm "09-intsub". Der erste Teil ist identisch
mit dem aus "08-integadd", den zweiten und dritten wandeln wir
ab:

ASSEMBLER-Beispiel "09-integsub" (Cé64):

Teil 2: LO-Bytes verkniipfen:

- 17519 1lda 17001
17522 sec ;s C-Flag setzen
17523 sbc 17003 ; LO-Byte von (A) subtrahieren
17526 bes 17531 ;s C-Flag noch gesetzt? ===> weiter

- 17528 dec 17002
17531 sta 17005
- 17534 tax
nop

nein ===> HI-Byte des Minuenden -1
LO-Byte ablegen in neuer Adresse
Ausgabe vorbereiten

we we e

Teil 3: HI-Bytes verkniipfen:
- 17536 1lda 17000
17539 sec
17540 sbc 17002
- 17543 sta 17004 ;s HI-Byte in neue Adresse

Teil 4: Ausgabe auf dem Bildschirm wie "O7-integadd"

Haben Sie erkannt, was diesmal anders ist?
Richtig, die beiden wurspringlichen Zahlen (Minuend und Subtra-
hend) bleiben erhalten. Der Differenzwert steht in (17004/17005).

4.1.4 Subtraktion mit beliebigen Integerzahlen

Begnigen wir wuns mit dem eingeschrankten Bereich -32768 bis
+32767, dann konnen wir die Subtraktion wie die Addition be-
handeln.

Denn mathematisch gesehen gilt: a-b = a+(-b)

Daraus leitet sich das anzuwendende Verfahren ab:
- Das Vorzeichen des Subtrahenden wird verandert.
- Nun kann eine Addition durchgefihrt werden.

Auf gabe:

Stellen Sie die bisher besprochenen Programmteile zu einem Modul
zusammen, mit dem man Integerzahlen addieren und subtrahieren
kann.

4.1.5 Hohere Rechenarten mit Integerzahlen

Multiplikation, Division, Potenzieren, Radizieren usw. lassen
sich Uber der entsprechenden Grundmenge ebenfalls mit Integer-
rechnungen durchfihren.

Da man aber 2z.B. schon bei der Division auf Nicht-Ganzzahlen
stoBt (wie z.B. bei 5/2), ist dies meist wenig sinnvoll.

Man verwendet in diesen F&dllen die reellen Zahlen.

Versuchen Sie aber trotzdem einmal, ein Integer-Multiplikations-
programm fidr ein Produkt aus zwei Faktoren zu entwerfen, das
nach folgendem Schema arbeitet:

N+z = z+z+zZ+... (n Summanden z)

Denken Sie daran, daB die Multiplikation nichts weiter ist als
eine vereinfachte Addition gleicher Summanden:
z.B. 54 = 444444444

Verdoppeln und Halbieren

Um den Inhalt eines Bytes zu verdoppeln, wird es mit dem Befehl
ASL behandelt. Dabei werden alle Bits um eine Stelle nach links
verschoben.

Aus der Zahl 6;3=000001102 wird dann 000011009=12;q

Wirde der Inhalt 255 Uberschreiten, wird das C-fFlag wieder ge-
setzt und man kann das HI-Byte einer Integerzahl entsprechend er-
hchen.

Zahlenbeispiel:

356 ist gegeben mit <17000>=1 wund <17001>=100
Gesucht: 2 mal 356 = 7

Das Ergebnis ist wieder in (17000/17001) erwilinscht.

ASSEMBLER-Beispiel "10-integdopp" (C64):

- 17600 asl 17000 3 HI verdoppeln
17603 clc
- 17604 asl 17001 ;3 LO verdoppeln
17607 bcc 17612 ; kein Ubertrag ===> weiter
17609 inc 17000 ; Ubertrag ===> HI erhdhen
17612 1da 17000 ;5 HI nach (A) und...
17615 1dx 17001 3 .. LO nach (X) fur die Ausgabe
- 17618 jsr 48589 ;5 mit INTOUT
17621 rts s Ende

Wird diese Routine mehrfach hintereinander aufgerufen, so lafBt
die in (17000/17001) bereitgestellte Zahl immer wieder verdop-
peln, bis der gewiinschte Wert erreicht ist.

Nehmen wir an, wir mochten 'mal 16' rechnen, also 4-mal verdop-
peln, dann bendotigen wir einen Zahler, der nach jedem Verdoppeln

um eins erhoht wird. Verwenden wir dazu eine freie Zeropage-
Adresse: (180) ist dafir geeignet.

Man kann auf diese Weise also recht einfach mit den 2er-Potenzen
multiplizieren:

Imal asl ---> mal 2
2mal asl ---> mal 4
3mal asl ---> mal 8
und so weiter. Aber bitte - die Grenzen beachten!

ASSEMBLER-Beispiel "ll-integpot":

Zahler in (180) auf Null stellen

(180) wird als Zahler benitzt

Beginn der Schleife: Zahler prifen
17528 cmp #4 4. Durchlauf schon durchgefihrt?
17530 beq 17540 ja ===> Ende

03 17532 inc 180 ; nein ===> Zahler erhdhen
17534 jsr 17600 ... und 'Verdoppelungs-Routine' aufrufen
17537 clc
17538 bce 17526
17540 rts

01 17522 lda #0
17524 sta 180
02 17526 1da 180

e

we we we we

.o

unbedingter Sprung zum Schleifenanfang 02

.o

Wir haben hier vorausgesetzt, daB die Verdoppelungs-Routine aus
dem letzten Abschnitt noch im RAM steht (ab 17600).

Probieren Sie dieses kleine Programm aus, indem Sie es bei 17522
aufrufen (SYS 17522 bzw. EX 17522).

Sie erhalten nach jeder Verdoppelung einen Ausdruck.

Den Bereich von -32768 bis +32768 dirfen Sie allerdings nicht
Uberschreiten. Falls man darauf nicht verzichten kann, muB man
eine Drei- oder Vier-Byte-Rechenroutine konstruieren. Die CBM-
Ausgabe-Routine funktioniert dann allerdings nicht mehr.

Das Halbieren einer Zahl wird im Prinzip ebenfalls so aufgebaut
wie das Verdoppeln. Der entsprechende Befehl LSR arbeitet ana-
log zu ASL, jedoch in die andere Richtung (logic shift right).

Aufgabe 5:
Schreiben Sie ein ASSEMBLER-Programm zur mehrfachen Halbierung
einer Integerzahl.

4.1.6 Integermultiplikation mit INTMUL

Die CBM-Routinen enthalten (zur Berechnung der Position eines
Feldelements) eine Routine zur Multiplikation zweier Integerzah-
len.

Dazu werden die beiden Faktoren F1 und F2 in LO- und HI-Bytes
zerlegt und in folgenden Registern bereitgestellt:

Faktor 1 LO/HI in (113/114) beim Cé64 (bzw (110/111) bei 40/80XX)
Faktor 2 in zwei beliebigen Adressen im Integerformat (HI/LO),
deren Anfangsadresse in (95/96) bzw. 80XX:(92/93) erwartet wird.

Faktor F2 kann also eine bereits vorhandene Integerzahl sein.
AuBerdem muB das (Y)-Register mit 1 belegt werden.

Nach Aufruf der Rechenroutine INTMUL steht das Ergebnis im
den Registern (X/A) mit (LO/HI) und kann z.B. sofort mit INTOUT
ausgegeben werden.

Beispiel:

416 mal 60 = ?

Faktor Fl: <L0>=150, <HI>=1

Faktor F2: <LO>= 60, <HI>=0

Faktor F2 soll in (20000/20001) stehen, also ab 32(L0)+78(HI)
(zur Erinnerung: 32+(78mal256)=20000)

ASSEMBLER-Beispielt "12-intmul" (Cé4):

01 10000 1da #150 3 LO von F1
10002 sta 113 s nach F1-L0
10004 1da #1 s HI von F1 nach
10006 sta 114 ; F1-HI

02 10008 lda #0 ; HI von F2
10010 sta 20000 ; nach (20000)
10013 1lda #60 5 LO von F2

10015 sta 20001 nach (20001)

03 10018 lda #78 ; HI der Anfangsadresse (20000)
10020 sta 96 nach F2AD-HI
10022 1da #32 ; LO der Anfangsadresse (20000)
10024 sta 95 s nach F2AD-LO

04 10026 1dy #1 ;3 (Y) als Zahler mit 1 belegen
10028 jsr 45900 ; INTMUL multipliziert 416 mit 60

..

.o

05 10031 jsr 48589 ; INTOUT druckt das Ergebnis: 24360
10034 rts

Wird der Definitionsbereich fiir Integerzahlen ilberschritten, dann
erfolgt die Fehlermeldung "illegal quantity error", der Rechner
geht danach in den READY-Modus.

Zusammenfassung:

Das Rechnen mit Integerzahlen erfordert schon etwas Programmier-
geschick. Es wird dort eingesetzt, wo sehr schnell gerechnet wer-
den muB. Der Nachteil: Die CBM-Rechner unterstiitzen die Integer-
operationen kaum. Fast alle Routinen missen selbst entwickelt
werden. Fir die allermeisten F&dlle sind aber derartige Hochstge-
schwindigkeiten nicht notwendig, so daB fast immer die etwas
langsameren Verknipfungen mit reellen Zahlen vdllig ausreichen.

Label Cé64 40/80XX

1 '
Fl 113/114=%$71/72 110/111=$%6f/70
F2AD (95/96)=($5f/60) (92/93)=($5c/5d)
INTMUL 45900=%b34c 50295=$%$c477

4.2 Arbeiten mit reellen Zahlen

4.2.1 Formate fir reelle Zahlen

Reelle Zahlen werden in den CBM-Rechnern in zwei Formen behan-
delt: dem Speicherformat und dem Registerformat.

Im Speicherformat wird jede relle Zahl mit 5 hintereinander lie-
genden Bytes abgelegt, wobei das erste Byte immer den Exponenten
darstellt; die nachsten vier Bytes bilden die Mantisse.

Das Registerformat unterscheidet sich vom Speicherformat dadurch,
daB in einem weiteren 6.Byte das Vorzeichenbit (Bit 7) gesetzt
wird.

Registerformatierung wird notwendig, wenn in der Zeropage die
reellen Zahlen fiir Rechenoperationen bereitgestellt werden.

Dafir sind die sog. Floatpointakkus (FAC) vorgesehen:

Label Cé64 40/80XX

97... 101=%61...66 97...101=%61...65
105...110=%$69...6¢e 102...107=$66...6b

FAC1
FAC2

Zur Variablenverwaltung wird das Speicherformat verwendet, wobei
in zwei vorangestellten Bytes der Variablenname gefihrt wird.
Insgesamt bendtigt jede reelle Variable also 7 Adressen.

Fihren wir die Verwaltung unserer Zahlen bei ASSEMBLER-Programmen
selbst, so kdnnen wir uns auf die 5 Speicherplatze der reinen
Zahl beschranken.

Beispiel (Mehr dazu in Abschnitt 8.1.3):
Die Zahl (-8) steht unter dem Variablennamen "ab" bei (10000).

Speicherformat der Variablen "ab" mit ab=-8:
(10000) (lo00l) (l0002) (1l0003) (l0004) (lo0005) (loc0é6)
65 66 132 128 0 0 0
gt "p" 4+128 (neg.)

Im Registerformat sieht das dann so aus (z.B. FACl):
(97) (98) (99) (100) (101) (102)
132 128 0 0 0 128

Der Exponent (immer zur Basis 2) wird immer um 128 erhoht abge-
legt. Das Vorzeichen "-" erkennt man in Byte 2, wenn hier ein
Wert steht, der grioBer ist als 128 (Bit 7 gesetzt).

Jeder Rechner besitzt in den ROMs eine ganze Reihe von festen
reellen Zahlen, die haufig benctigt werden.
Hier die Anfangsadressen fir einige wichtige Konstanten:

Label Cé64 40/80XX
1 '
1,00 47548=$b%bc 51954=%caf2
0,5 48913=$bf11 53477=$d0c7
0,25 58090=%e2ea 54024=%$d308
pi 44712=%aea8 48800=%beal
pi/2 58080=%e2e0 54014=%d2fe
2pi 58121=$e309 54055=$d327
sqr(2) 47579=$b9db 51985=%cbll
-0.5 47584=$b9e0 51990=%cblé
10 47865=%baf9 52271=%cc2f

Schauen Sie mal mit einem Monitor in diese Bereiche hinein, wenn
Sie wissen wollen, wie diese Realzahlen aufgebaut sind, ansonsten
braucht uns das selten zu interessieren.

Blattern Sie auch mal Ihr ROM-Listing durch, dann finden Sie wei-
tere Konstanten.

4.2.2 Ubernehmen von gespeicherten Zahlen mit MEMFAC

Zahlen, die entweder im ROM oder im RAM bereits vorhanden sind,
lassen sich auf einfache Weise in den FACl idbernehmen. Dazu
benétigen wir die Anfangsadresse der abgelegten Zahl in der Form
LO/HI und Ubertragen sie nach (A/Y). AnschlieBend erfolgt der
Aufruf von MEMFAC.

Beispiel:
Die Zahl 0.25 aus dem ROM (58090 bzw. 54024) soll in den FAC1
Ubertragen und auf dem Bildschirm ausgegeben werden.

Ablauf und ASSEMBLER-Beispiel "13-memfac" (Cé64):

01 lda #234
ldy #226

02 jsr 48034

03 jsr 43708
rts

L0 Anfangsadresse

HI Anfangsadresse von 0.25
MEMFAC bringt 0.25 nach FACI
FLPOUT druckt: 0.25

.
9
.
’
.
9
.
9

4.2.3 Erzeugen von reellen Zahlen

Jede Zahl, die nicht bereits irgendwo in den ROMs vorhanden ist,
muB erst einmal im Speicherformat dargestellt und abgelegt wer-
den.

Dazu konnte man jetzt in Kleinarbeit Exponent und Mantisse be-
rechnen und wie oben beschrieben in 5 Adressen abspeichern.
Doch wozu haben wir unseren Rechner, der das sowieso standig tut?

Iwei wichtige ROM-Routinen helfen uns dabei:

INTFLP wandelt eine Integerzahl in eine Realzahl um und legt
sie im FACl bereit. Wir kennen sie schon.

FACMEM legt den FAC 1 als reelle Zahl im Speicherformat ab.

Beispiel:
Die Zahl 10 soll als Realzahl ab 16500 gespeichert werden.

Teil 1:

Fir die ROM-Routine INTFLP muB die Integerzahl im (A)-Register
(HI der Integerzahl) wund im (Y)-Register (LO der Integerzahl)
bereitgestellt werden.

Teil 2:

Die ROM-Routine FACMEM bendtigt im (X)-Register das LO-Byte
der Anfangsadresse und im (Y)-Register das HI-Byte. Es werden
dann 5 RAM-Adressen ab der Anfangsadresse lberschrieben, die man
sich natlirlich merken muB, wenn man die Zahl wiederfinden will.
Die Zahl 10 gibt es bereits im ROM. Wir konnen also Uberprifen,
ob die folgende Routine das gleiche Ergebnis liefert.

Teil 3:
Die Ausgabe einer reellen Zahl auf dem Bildschirm erledigen wir

mit der betriebsinternen Routine FLPOUT (bereits erwahnt).

Die Startadressen dieser drei wichtigen ROM-Routinen:

Label Cé64 40/80XX .
1 '

INTFLP 45969=$b391 50364=$c4bc

FACMEM 48087=$bbd7 52493=$cd0d

FLPOUT 43708=%aabc 53133=%cf8d

Nun das ASSEMBLER-Programm, das die reelle Zahl 548 erzeugt, in
(16500)...(16504) abspeichert und ausdruckt:

ASSEMBLER-Beispiel "l4-facmem" (C64):

01 17200 lda #2
17202 1dy #36
17204 jsr 45969
17207 nop

HI von 548
L0 von 548
INTFLP wandelt Integerzahl um

e we ae

02 17208 ldx #116 L0 der Anfangsadresse
17210 1dy #64 HI der Anfangsadresse
17112 jsr 48087 ; FACMEM legt <FACl> ab
17215 nop

-e ae

03 17216 jsr 43708 ; FLPOUT druckt: 548
17219 rts

Ein Programm, das zum Rechnen diverse Konstanten bendtigt, muB
einen Vorspann haben, der diese Konstanten als reelle Zahlen in
einen reservierten Bereich ablegt.

Wenn dabei Zahlen benotigt werden, die in den ROMs nicht enthal-

ten sind, dann missen diese Werte erst berechnet werden. Wie das
funktioniert, schauen wir uns im nachsten Kapitel an.

4.3 Zahlenumwandlungen

4.3.1 Integer- in Realzahlformat mit INTFLP

Diese Umformung haben wir bereits kennengelernt. Siehe dazu Ab-
schnitte 4.1.2 und 4.2.3.
Das Betriebssystem h&dlt aber noch weitere Moglichkeiten bereit:

4.3.2 Reelle Zahl in Integerzahl mit FLPINT

Beispiel:
Die Zahl pi=3,1415... soll in eine Integerzahl umgewandelt wer-
den. Die Nachkommastellen gehen dabei selbstverstandlich verlo-

ren, sonst ware das Ergebis keine Ganzzahl.

Vorbedingung:
Die Zahl pi steht im ROM (ab 44712 bzw. 48800/80XX)

Ablauf und ASSEMBLER-Beispiel "15-flpint" (Cé64):

01 1da #168 3 Anfangsadresse LO von pi
1dy #174 3 dto. HI von pi
jsr 48034 3 MEMFAC holt pi in den FAC1

02 jsr 47095 ;5 FLPINT wandelt pi in eine Integerzahl

Das Ergebnis dieser Umwandlung sind zwei Bytes (LO/HI), die in
den Registern (Y/A) stehen. Zur Ausgabe mit INTOUT muB aber
das LOW-Byte in (X) enthalten sein. Der Befehl TYX existiert aber
nicht, so daB wir uns damit behelfen, die Zahl wieder in den FAC
zu bringen und von dort auszugeben:

03 jsr 45969
04 jsr 43708
rts

INTFLP holt Ganzzahl aus (Y/A) nach FAC1
FLPOUT gibt die Zahl aus: 3

.o we

4.3.3 Umwandlung eines Strings in eine reelle Zahl mit STRFAC

Mit Zeichenketten (Strings) kann man nicht rechnen, auch wenn sie
Zahlenformat haben. Die Routine STRFAC formt einen String in
eine reelle Zahl wum wund 1legt sie im FAC 1 bereit fir weitere
Operationen.

Dazu muB die Anfangsadresse des Strings in den Zeropageadressen
(34/35) bzw. (31/32)/80XX und die Lange des Strings im (A)-Regi-
ster stehen.

Beispiel:

Die Zahl (-110) soll iber einen String erzeugt werden.

Als Stringanfang wahlen wir die Adresse (256). Dort arbeitet nam-
lich auch das Betriebssystem mit solchen Umwandlungen.

Ablauf und ASSEMBLER-Beispiel "l6-stringfac" (Cé4):

01 lda #49 ; Code fir Ziffer 1
sta 257 ; an 2. Stelle ablegen
sta 258 3 an 3. Stelle ebenfalls 1 ablegen
lda #48 3 Code fur Ziffer O
sta 259 ; an 3. Stelle ablegen
lda #45 3 Code fir Minuszeichen
sta 256 s an 1. Stelle setzen
02 1lda #0
sta 34 ;3 Anfangsadresse STRADR-LO
lda #1
sta 35 3 nach STRADR-HI
lda #4 ; Lange des Strings nach (A)

03 jsr 47029 s STRFAC bringt String als Wert nach FAC
04 jsr 43708 ; FLPOUT druckt:-110
rts

4.3.4 Umwandlung einer Zahl in einen String mit FLPSTR

Diese Operation wird in Abschnitt 6.7 ausfihrlich beschrieben.
Hier deshalb nur kurz das Wichtigste:

Mit FACSTR wird eine Zahl, die im FACl steht, in eine Zei-
chenkette wumgeformt, die ab Adresse (256) angelegt wird. Diese
Startadresse steht dann in (A/Y).

Das Vorzeichen der Zahl steht dabei immer in (256), wobei positi-
ve Werte als erstes Zeichen ein Blank (Code 32) haben. Die erste
Ziffer der Zahl steht also in 257.

Hat die Zahl einen kleineren Wert als 0.01, wird der String als
Mantisse mit Vorzeichen und dem Exponent zur Basis 10 aufgebaut.

Beispiel:

Wir laden die Zahl pi aus dem ROM, wandeln sie in einen String um
und geben 4 Nachkommastellen auf dem Bildschirm aus. Das ent-
spricht dem BASIC-Befehl FRAC(pi,4), den die CBM-Rechner leider

nicht kennen.
Ablauf und ASSEMBLER-Beispiel "17-flpstring" (C64):

01 17250 lda #168 ;3 LO von pi
17252 1dy #174 5 HI von pi
17254 jsr 48034 s MEMFAC bringt pi nach FACI1

02 17257 jsr 48605 ;5 FLPSTR wandelt pi in String um

Zdhler auf Null setzen

Schleifenanfang z. Suche nach Dezimalpunkt
Zeichen aus dem String holen

Punkt ?

nein ---> weitersuchen

02 17260 1dx #0
17262 inx
17263 1da 256,x
17266 cmp #46
17268 bne 17262

e we we we ee

04 17270 ldy #0 3 Zahler fur Nachkommastellen plus Punkt
17272 1da 256,x s Nachkommastellen laden

17275 sta 1424,x ; und auf dem Bildschirm ausgeben

17278 inx 3 Zahler fir nachstes Zeichen

17279 iny 3 und nachste Nachkommastelle erhchen
17280 cpy #5 ;s letzte Stelle erreicht?
17282 bne 17272 5 nein ---> weiterdrucken

05 17284 rts ja =---> fertig

..

Wenn Sie jetzt bei 17250 starten, wird ordnungsgemaB .1415 ausge-
geben.

Aufgabe:

Bauen Sie diese Routine so um, daB auch das Vorzeichen mit ausge-
druckt wird.

4.3.5 (A)-Inhalt in ASC-Code mit BYTHEX (nur 40/80XX)

BYTHEX wandelt den Inhalt des (A)-Registers in die Codezahl
fir das entsprechende HEX-Zeichen um.

Beispiel:
Welcher Hexzahl entspricht Bytewert 147

Ablauf und ASSEMBLER-Beispiel "18-byte/hex" (80XX):
01 17350 lda #14 ; Bytewert 14 laden
02 17352 jsr 55098 5 BYTHEX erzeugt in (A) den HEX-Code

03 17355 sta 32768 s Kontrollausdruck: E
17358 rts

4.3.6 ASC-Code in entsprechendes Byte umwandeln mit HEXBYT

Das ist die Umkehrung zum oben besprochenen Fall 4.2.4.

Beispiel:
Suchen des Hexbyte-Codes fir Zeichen "e", also ASCII-Code 69.

Ablauf und ASSEMBLER-Beispiel "19-hex/byte" (80XX):

01 17360 lda #69 ; Code fir "e"

02 17362 jsr 55181 ;s HEXBYT erzeugt Code fir Hexzahl

03 17365 sta 32768 ; Kontrollausgabe (wie POKE32768,14): n
also war <A>=14

4.3.7 Positive Integerzahl in Realzahl mit ADRFLP

Im Gegensatz zur Routine INTFLP wird hier der Bereich von
0 bis 65535 verarbeitet. Vorzeichen werden also nicht erkannt.
Die beiden Bytes der Integerzahl HI/LO missen in (98/99) (!)

bzw. (95/96)/80XX gebracht werden. AuBerdem wird im (X)-Register
der Wert 144 verlangt und das Carry-Flag muB zur Vorbereitung ge-
setzt werden, bevor nach ADRFLP gesprungen wird.

Anmerkung:
chers. Deswegen der Label-Vorsatz ADR.

Beispiel:

Die Zahl

Der

genannte Bereich ist der Adressbereich des Spei-

34048=$8500 soll in eine reelle Zahl verwandelt werden.

Ablauf und ASSEMBLER-Beispiel "20-adrflp" (C64):

01 17300
17302
17304
17306

02 17308
17310

03 17311

04 17314

lda
sta
lda
sta

1dx
sec

Jjsr

Jmp

#0
99
#133
98

#144

48201

43708

-e we we we ee

..

.o

LO
nach FAC1+2
HI
nach FACl+l

Vorbereitung der Routine

ADRFLP wandelt in reelle Zahl um

FLPOUT druckt: 34048
mit abschlieBendem Ricksprung

Umwandlungs-ROM-Routinen

Label C64 40/80XX .
' 1

INTFLP 45969=$b391 50364=%c4bc
positive/negative Integerzahl aus (Y/A) nach FAC1
Bereich: +/-32767

ADRFLP 48201=%$bc49 52607=$%cd7f
<98=%$62> Integerzahl HI <95=$5f>
<99=%$63> Integerzahl LO <96=$60>
<X>=z144; SEC; positive Integerzahl nach FAC1
Bereich: 0 bis 65535 (Adressbereich)

FLPINT 47095=$b7f7 51501=%c92d

FLPSTR

STRFAC
mit STRADR

BYTHEX

HEXBYT

<FAC 1>(reell)---> <FAC 1>(integer),L0/HI=(Y/A)

48605=$bddd 53139=$cf93
<FAC 1> ---> Ziffernfolge ab (256), Ende=Byte O

47029=$b7b5 51435=$c8eb
<34=$22/35=$23> Stringanfang <31=$1f/32=%$20>
<A>=Stringlange; Ergebnis in FACl

----- 55098=$d73a
<A>(Byte) ---> (A)(Hex-Byte)

----- 55181=$d78d
<A>(ASC-Code) ---> (A)(Byte)

S

Arithmetik mit ROM-Routinen

S Arithmetik mit ROM-Routinen

Die CBM-Rechner haben betriebseigene ROM-Routinen fir die Durch-
fihrung arithmetischer Operationen mit reellen Zahlen.

Werden dabei zwei Zahlen verknupft, so geschieht das mit Hilfe
der beiden Floatpointakkus FACl wund FAC2, die zundchst mit den
gewinschten Zahlen geladen werden missen, bevor die Rechenroutine
angesprungen wird.

Sind die zu verknipfenden Zahlen irgendwo im ROM oder RAM bereits
als reelle Zahlen vorhanden, dann besteht auch die Modglichkeit,
mit Hilfe der Anfangsadresse den FACl1 automatisch laden zu las-
sen, wenn man die entsprechende Einsprungstelle kennt.

Ist dies nicht der Fall, dann muB der FACl zuerst geladen
werden. Erst vor dem Aufruf der Rechenroutine kann man - eben-
falls mit Hilfe der Anfangsadresse des Arguments - den FAC 2 be-
legen. Der Grund fir diese Reihenfolge ist, daB beim Laden des
FACl auch der FAC2 benitzt wird und damit eventuell vorhandene
Zahlen Uberschrieben werden.

Bei der Verwendung von LABELS werden wir ein "M" voranstellen,
wenn damit die Einsprungadresse der ROM-Routine gemeint ist, die
aus einem Speicher eine reelle Zahl in den FAC1 holt und an-
schlieBend verarbeitet ("M" wie MEMORY = Speicher).

Beispiel:

Die Routine M-ADD holt sich den zweiten Summanden aus der an-
gegebenen Adresse wund verknupft ihn mit dem ersten Summanden.
Zum Addieren mit der Routine ADD dagegen miissen die beiden
Summanden in FACl und FAC2 vorher bereitgestellt werden.

Wird durch eine Operation ein- und dieselbe Zahl veréndert (sog.
monadische Operation im Gegesatz zu den dyadischen Operationen,
bei denen zwei Zahlen verknipft werden), so geschieht das im
FACl. Eventuell werden auch die Register in bestimmter Weise ge-
setzt.

Die folgenden Beispiele sind so einfach wie méglich gehalten und
erldutern die eben genannten Vorgédnge. Zur Ubersicht finden Sie
eine Label-Liste mit den Einsprungadressen fir den Cé64 und die

40/80XX-Gerate. Fur frihere Serien sollten Sie sich eine Refe-
renzliste zulegen, die Sie bei fast allen handelsiiblichen ROM-
Listings finden.

Alle LABELS sind in der Form 'LABEL' angefihrt und bedeuten immer
die Einsprungadressen fir die mnemonisch abgekiirzte Operation.

Bei den folgenden Beispielen wurde auf die Adressierung der
ASSEMBLER-Befehle verzichtet, weil keine bedingten Springe in den
Routinen vorkommen.

Als Vorbedingung wird in den meisten Beispielen eine reelle Zahl
im RAM angenommen. Das bedeutet, daB Sie diese Zahl dort erst
einmal erzeugen missen, bevor Sie die angegebenen Routinen aufru-
fen. Wie das vor sich geht, haben wir in Abschnitt 4.2.3 mit
Hilfe eines Zahlenbeispiels gelernt. Schauen Sie also im Zwei-
felsfall diesen Teil noch einmal grindlich durch.

5.1 Durch 10 dividieren mit FDIV1O

Vorbedingung:
die reelle Zahl 36 befindet sich ab 16500 (HI=64/L0=116) im RAM.

Ablauf':

01 Die Anfangsadresse (LO/HI) wird nach (A/Y) geladen und durch
MEMFAC in den FAC1l gebracht.

02 Aufruf der Routine FDIV1O.

03 Wir speichern dann die neue Zahl 3.6 ab (16505) mit FACMEM ab,
um sie spater weiterverwenden zu kénnen.

04 Zur Kontrolle erfolgt anschlieBend die Ausgabe auf dem Bild-
schirm, da durch FACMEM der FACl nicht verandert wird.

Aber Achtung:
Nach der Bildschirmausgabe mit FLPOUT ist der Inhalt des FAC1
zerstort!

ASSEMBLER-Programm "21-facdurchl0" (Cé64):

01 lda
ldy
Jsr

02 jsr
ldx
ldy

03 jsr

04 jsr
rts

#116
#64
48034
47870
#121
64
48087
43708

wes we e

16500=116/64, also

Startadresse von Zahl 36 (LO/HI)
mit MEMFAC nach FACl bringen
mit FDIV10 durch 10 dividieren

neue Zahl 3.6 mit
FACMEM ab (16505)... abspeichern
FLPOUT bringt 3.6 auf den Schirm

5.2 Mit 10 multiplizieren

Vorbedingung: wie oben

Ablauf: wie oben, aber Aufruf der Routine 'FMAL1O'

ASSEMBLER-Programm "22-facmallO" (C64):

01 lda
ldy
jsr

02 jsr

03 1ldx
ldy
jsr

04 jsr
rts

#116
t64
48034
47842
#126
#64
48087
43708

ws we e

e we oo

Zahl 36 ...
MEMFAC
FMAL10

neue Zahl 360 aus FAC1l nach (16510)...
mit FACMEM ubertragen
Ausgabe mit FLPOUT

5.3 Addieren des Werts 0,5 mit ADDO.5

Diese Routine wird benotigt, wenn Rundungen vorzunehmen sind.

Vorbedingung: wie oben

Ablauf: wie oben, aber Aufruf der Routine ADDO.5

ASSEMBLER-Programm "23-facplus0.5" (Cé64):

01 1da #116 ; Zahl 36
ldy #64 3 nach
jsr 48034 ; FAC1 mitMEMFAC
02 jsr 47177 ; ADDO.5
?

03 jsr 43708
rts

FLPOUT bringt 36.5 auf den Bildschirm

5.4 Addieren beliebiger Zahlen mit ADD

Vorbedingungen:
Die beiden Summanden befinden sich im RAM oder ROM.
Beispiel: Zahl 36 ab (16500), Zahl 3.6 ab (16505).

Ablauf:

01 Zahl 36 nach FACl

02 Zahl 36 nach FAC2 mit MEMFC2

03 Aufruf der Routine ADD

04 Bildschirmausgabe zur Kontrolle

ASSEMBLER-Programm "24-addieren" (C64):

01 lda #121
ldy #64
jsr 48034 3 3.6 nach FAC1 mit MEMFAC
02 1lda #116
ldy #64
jsr 47756
03 jsr 47210
04 jsr 43708
rts

36 nach FAC2 mit MEMFC2
ADD
Bildschirmausgabe: 39.6

we we we

5.5 Addieren beliebiger Zahlen mit M-ADD

Der Unterschied zu ADD ist, daB FAC2 selbstandig geladen wird,
wenn die Anfangsadresse des 2. Summanden in (A/Y) mit LO/HI
steht.

Vorbedingungen: wie 5.4
Ablauf: zundchst wie oben

M-ADD ersetzt die beiden Routinen MEMFC2 und ADD.

ASSEMBLER-Programm "25-mem-addition" (C64):

01 1da #121
ldy t#64 s 3.6 nach
jsr 48034 ;5 mit MEMFAC
02 lda #116
ldy #64

M-ADD rechnet 36+3.6
FLPOUT ---> Bildschirmausgabe: 39.6

03 jsr 47207
04 jsr 43708
rts

we e

Die folgenden Routinen zum Subtrahieren, Multiplizieren und
Dividieren sowie zum Potenzieren/Radizieren kdnnen ebenfalls auf
zwei Arten durchgefihrt werden.

Wir stellen in den folgenden Beispielen aber jeweils nur eine
Variante dar. Die ENTRY-Points fir die zweite Mdglichkeit finden
Sie in der Label-Liste.

5.6 Subtrahieren mit M-SUB

Vorbedingungen:
Minuend und Subtrahend im RAM oder ROM.

Ablauf:

01 Subtrahend nach FAC 1

02 Anfangsadresse LO/HI des Minuenden nach (A/Y)
03 Aufruf von M-SUB

ASSEMBLER-Beispiel "26-mem-subtra" (C64):
01 lda #121

ldy #64 ; 3.6 nach
jsr 48034 ; mit MEMFAC

02 1lda
ldy
03 jsr
04 jsr
rts

#116
#64
47184
43708

Bei manchen

; Anfangsadresse von 36 nach (A/Y)
;5 M-SUB rechnet 36-3.6
s Bildschirmausgabe: 32.4

Rechenvorgdngen kommt es vor, daB man im FACl schon
den Minuend hat.

Subtrahiert man nun mit M-SUB, dann erhalt man

den Differenzwert mit dem umgekehrten Vorzeichen.

Mit der folgenden Routine kehrt man es wieder um.

5.7 Vorzeichenwechsel mit FACMIN

Vorbedingung:

Zahl im FACl. Im Beispiel Zahl 36.

Ablauf:

01 Zahl in den FAC laden

02 Aufruf von FACMIN

03 Abspeichern der negativen Zahl (-36 wird im n&achsten Beispiel
wieder verwendet)

ASSEMBLER-Beispiel

01 1lda
ldy
jsr

02 jsr

03 1ldx
ldy
jsr

04 jsr
rts

#116
64
48034
49076
#141
#64
48087
43708

we we e

we we e

"27-vorz-wechsel" (C64):

36 nach
FAC1 mit MEMFAC
FMINUS andert das Vorzeichen im FAC1

-36 nach (16525)...
... abspeichern mit FACMEM
Bildschirmausgabe mit FLPOUT : -36

5.8 Betrag einer Zahl mit FACABS

Vorbedingung:
Positive oder negative reelle Zahl steht im FACl (Beispiel: -36).

Ablauf:

01 Zahl -36 in FAC1l laden

02 Aufruf von FACABS erzeugt immer ein positives Vorzeichen (ab-
soluter Betrag)

ASSEMBLER-Beispiel "28-abs.betrag" (C64):

01 lda #141
ldy #64 ; -36 nach
jsr 48034 FAC1 mit MEMFAC

02 jsr 48216
03 jsr 43708
rts

FACABS erzeugt positives Vorzeichen
Bildschirmausgabe mit FLPOUT: 36

we we ee

5.9 Multiplizieren mit M-MULT

Dies entspricht in Vorbedingungen und Ablauf dem Addieren.
ASSEMBLER-Beispiel "29-mem-mult" (80XX):

01 1da #116

ldy #64 ;5 36 nach

jsr 48034 ; FAC1 mit MEMFAC
02 1lda #121

ldy #64 ; 3.6 nach

jsr 47656 ; M-MULT multipliziert MEM mit FACL
03 jsr 43708 3 Bildschirmausgabe mit FLPOUT: 129.6

rts

5.10 Division mit M-DIV

Vorbedingung:

Dividend und Divisor im ROM oder RAM.

Ablauf:

01 Divisor nach FAC1L

02 Anfangsadresse des Dividenden nach (A/Y)
03 Aufruf von M-DIV

ASSEMBLER-Beispiel "30-mem-division" (C64):

01 1lda #116
ldy #64 3 36 nach FAC1 (Divisor!)
jsr 48034 ;3 mit MEMFAC
02 lda #121
ldy #64 Adresse von 3.6 nach (A/Y) (Dividend!)

M-DIV teilt 3.6 durch 36
Bildschirmausgabe mit FLPOUT: .1

03 jsr 47887
04 jsr 43708
rts

e we we

Dies entspricht im Ablauf der Subtraktion.

Auch hier hat man oft den Dividend schon im FACl. Am besten
fihrt man nun die Division umgekehrt durch und bildet danach den
Kehrwert.

Die folgende Routine ist fir solche Falle geeignet.

5.11 Kehrwert bilden mit M-DIV

Vorbedingung:
Zahl 1 steht im ROM (ist bei allen CBM-Rechnern erfillt).

Ablauf:

01 Zahl in den FAC1 holen, z.B. 10 aus dem ROM
02 Adresse von 1 nach (A/Y)

03 Aufruf von M-DIV

ASSEMBLER-Beispiel "31-kehrwert" (C64):

01 lda #249 ; LO
1dy #186 ; HI (Anfangsadresse von 10)
jsr 48034 3 10 nach FACl mit MEMFAC
02 1da #188 ; LO
ldy #185 HI (Anfangsadresse von 1)

03 jsr 47887
04 jsr 43708
rts

M-DIV teilt 1 durch 10
Bildschirmausgabe mit FLPOUT: .1

we we e

5.12 Quadratwurzel ziehen mit SQRFAC

Dies ist eigentlich eine Sonderform des Potenzierens, das im
ndchsten Abschnitt besprochen wird.
(Der Exponent ist eben beim Quadratwurzelziehen 0.5)

Vorbedingung:
Radikand im RAM oder ROM.

Ablauf :
01 Radikand in den FAC1 laden
02 Aufruf von SQRFAC

oo

ASSEMBLER-Beispiel "32-wurzel" (Cé64):

01 lda #116

ldy #64 ; 36 nach

jsr 48034 ; FAC1 mit MEMFAC
02 jsr 49009 ; SQRFAC zieht Quadratwurzel aus FAC1
03 jsr 43708 ; FACLl auf Schirm mit FLPOUT : 6

rts

5.13 Potenzieren und Radizieren mit POTRAD

Ist der Exponent eine natlrliche Zahl, erfolgt echtes Potenzie-
ren (als vereinfachte Form der Mehrfachmultiplikation mit glei-
chen Faktoren).

Bei Exponenten der Form 1/n, mit n = natirliche Zahl ist der
Potenzwert die n-te Wurzel aus der Basis.

Negative Exponenten erzeugen zusatzlich noch den Kehrwert.

Vorbedingungen:
Die Basis steht im RAM oder ROM.
(Im Beispiel wird der Exponent erzeugt.)

Ablauf:

01 Laden der Basis in den FAC2

02 Der Exponent (hier 4) wird als Integerzahl erzeugt und als
reelle Zahl in den FAC 1 gebracht mit INTFLP.

03 Aufruf der Routine POTRAD

oo

ASSEMBLER-Beipsiel "33-potenzieren" (C64):

01 1da #116
ldy #64 ;3 36 nach FAC2
jst 47756 ; mit MEMFC2
02 lda #0
ldy #4 Zahl 4 nach FAC1
jsr 45969 mit INTFLP

POTRAD rechnet 36 hoch 4
Bildschirmausgabe mit FLPOUT : 1679616

03 jsr 49019
04 jsr 43708
rts

we we we e

Sind Basis und Exponent im ROM oder RAM vorhanden, ladt man
zuerst den Exponenten in den FACl, setzt (A/Y) auf die Anfangs-
adresse der Basis und ruft dann M-POT auf.
Der Potenzwert steht dann wieder im FAC 1.

Probieren Sie mal die Kehrwertbildung aus, indem Sie nach
INTFLP (jsr 45969) noch FMINUS aufrufen, bevor potenziert wird.

Auf diese Weise 148t sich auch der Kehrwert einer beliebigen
Zahl bilden, wenn Sie als Exponent (-1) wahlen.

5.14 Logarithmieren mit LOGNAT

Alle Logarithmen beziehen sich hier auf die Basis e. Wir rechnen
also mit dem Logarithmus naturalis.

Vorbedingung:

Der Numerus kann erzeugt werden oder im RAM oder ROM stehen.

Ablauf:

01 Erzeugen der Zahl 1000 im FAC1
02 Aufruf von LOGNAT

03 Ablegen von 1n(1000) ab (16515)

ASSEMBLER-Beispiel "34-log nat" (Cé4):

01 lda #3
ldy #232 s Zahl 1000 nach
jsr 45969 ;3 FAC1 mit INTFLP .
02 jsr 47594 ; LOGNAT bildet Logarithmus von 1000
03 ldx #131
ldy #64 ; ab (16515)
jsr 48087 ;s mit FACMEM das Eregebnis ablegen
04 jsr 43708 ; Bildschirmausgabe mit FLPOUT : 6.90775528
rts

5.15 Exponentialrechnen mit EHOCHF

Mit der folgenden Routine fihren wir die Umkehrung zum Logarith-
mieren durch wund haben gleichzeitig eine Probe, ob wir richtig
programmiert haben.

Vorbedingung:
Logarithmus steht im RAM oder ROM.

Ablauf:
01 Logarithmus in den FACl bringen.
02 Aufruf von EHOCHF

oo

ASSEMBLER-Beispiel "35-ehochfac” (C64):

01 1da #131
ldy #64 3 1nl000 nach
jsr 48034 3 FAC1 bringen mit MEMFAC
02 jsr 49133 EHOCHF rechnet e hoch (1n 1000)

..

03 1ldx #136
1dy #64 ; 1000 wird ab (16520)
jsr 48087 ; abgelegt mit FACMEM

04 jsr 43708 3 Bildschirmausgabe mit FLPOUT : 1000
rts

5.16 Erzeugen einer Zufallszahl mit ZUFALL

Zufallszahlen werden im Bereich von 0 bis 1 mit der Routine
ZUFALL erzeugt und im FAC1 abgelegt.

Damit es wuns nicht so langweilig wird, stellen wir uns das Pro-
blem, daB die Zufallszahl eine natirliche Zahl aus dem Bereich
von 0 bis 36 sein soll.

Und dieses Ergebnis soll Integer-Format haben.

Vorbedingung:
Zahl 36 ist im RAM oder ROM vorhanden.

Ablauf:

01 Erzeugen einer Zufallszahl mit ZUFALL liefert einen Wert im
FAC1l zwischen 0 und 1.

02 Wir multiplizieren diesen Wert mit 36.

03 ... und addieren 0.5 wegen der folgenden Rundung

04 durch Umwandlung in eine Integerzahl.
Diese Integerzahl-steht nun mit LO/HI in (Y/A).
Uns interessiert zwar im Moment nur das LO-Byte, wir halten
aber die Mdglichkeit fir groBere Zahlen als 255 offen und
schleppen das HI-Byte zur Ubung mit.

05 Zur Bildschirmausgabe mit INTOUT muB aber das LO-Byte in (X)
und das HI-Byte in (Y) stehen.
Den Befehl TYX (transportiere <Y> nach <X>) gibt es leider
nicht.
Wir retten daher den Akku-Inhalt <A> auf den Stack, holen <Y>
nach (A) und koénnen von hier aus <A> nach (X) Ubertragen.

06 Nun holen wir den wurspringlichen Akku-Inhalt vom Stapel und
setzen ihn in (Y) ein.
07 Jetzt gibt die Routine INTOUT die richtige Zahl aus.

ASSEMBLER-BEISPIEL "36-zufall(x)" (C64):

01 jsr 57495 s ZUFALL holt Zufallszahl nach FACl
02 lda #1llé6
ldy #64 Zahl 36 mit FAC1
jsr 47656 multiplizieren mit M-MULT
03 jsr 47177 ; ADDO.5 addiert 0.5 zu <FAC1l>
04 jsr 47095 FLPINT wandelt FAC in Integer
gleichzeitig steht das Ergebnis LO/HI in (Y/A)

we ee

..

05 pha s HI-Byte auf Stack retten
tya ; LO-Byte von (Y) nach (A) Ubertragen
tax 3 LO-Byte nach (X) bringen

06 pla ; HI-Byte vom Stack nehmen
tay 3 ...und nach (Y) Ubertragen

07 jsr 48589
rts

Bildschirmausgabe mit INTOUT: RND(36)

e

5.17 Winkelfunktionen mit SINUS, COSIN und TANG

Die interne Rechenoperation mit Winkeln erfolgt immer in der Ein-
heit RAD.
Zur Umrechnung gilt: 2pi(RAD) = 360°(DEGREE)

Im folgenden Beispiel gehen wir davon aus, daB die Gradzahl zu-
nachst in DEGREE vorliegt.

Da die ROM-Routinen fir die Winkelfunktionen ansonsten sehr ein-
fach zu handhaben sind, geben wir hintereinander die drei Haupt-
funktionswerte aus.

Dazu speichern wir den einmal ermittelten Winkel in der Einheit
RAD ab 16530 ab.

Aufgabe:

Berechnen Sie die Funktionswerte: sin369, co0s369 und tan36°
und geben Sie sie auf dem Bildschirm aus.

Vorbedingungen:

Die Zahlen 360 und 36 sind im RAM.
Zahl 2pi liegt im ROM (C64:58121; 40/80XX:54055)

Ablauf:
360 nach FACl bringen

36 durch 360 teilen ...

und mit 2pi multiplizieren

... und ab (16530) speichern. Damit steht der Winkel im Bogen-
maB fir die weiteren Operationen zur Verfigung.

Aufruf SINUS und Bildschirmausgabe

Winkel wieder nach FACl, Aufruf COSIN...

usw.

ASSEMBLER-BEISPIEL "37-winkelfunktn" (C64):

lda
ldy
jsr
lda
ldy
jsr
lda
ldy
Jjsr
ldx
ldy
jsr
jsr
jsr

lda
ldy
jsr
jsr
jsr

lda
ldy
jsr
jsr
jsr
rts

#126
t64a
48034
#116
64
47887
#9
#227
47656
#146
t64
48087
57963
43708

#146
#64
48034
57956
43708

#146
#64
48034
58036
43708

we we

.o we e -e

-e

we we we

.o

.o

360 aus (16510...) nach
FAC1 mit MEMFAC

Anfangsadresse von 36 ist (16500)
M-DIV teilt 36 durch 360

Anfangsadresse (54055) von 2pi
M-MULT' rechnet FAC 1 mal 2pi

ab (16530)... wird nun

mit FACMEM der Winkel in RAD abgelegt
SINUS berechnet sin36°

FLPOUT: 0.587785252

Winkel holen

mit MEMFAC

COSINUS berechnet cos360°
FLPOUT: 0.809016994

Winkel wieder nach FAC1
TANGENS berechnet tan369
FLPOUT: 0.726542528

5.18 Umkehrung der Winkelfunktionen mit ARCTAN

Zur Winkelbestimmung aus den trigonometrischen Funktionswerten
sin, cos, tan, cot existiert in den ROM-Routinen der CBM-Rechner
nur die Umkehrfunktion ARCTAN.

Nach Aufruf dieser Routine enthalt der FAC 1 den Winkel im Bogen-
mal.

In unserem Beispiel nehmen wir wieder die Umrechnung in DEG vor.
Dazu wollen wir arctan(0.5) berechnen wund die gefundene Gradzahl
in DEG ausgeben.

Vorbedingung:
0.5 steht im ROM (Cé64:ab(48913);40/80XX:53477).

2pi und 1 stehen ebenfalls im ROM (siehe 5.17).
360 steht im RAM bei (16510)...

Ablauf:

- Argument (0.5) in den FAC 1 bringen

~ Aufruf von 'ARCTAN': berechnet Winkel in RAD

~ Multiplikation mit 2pi und Kehrwertbildung

— Multiplikation mit 360
Damit erfolgt die Umrechnung in DEGREE:
x=360-arctan0.5/2pi

- Ablegen des Winkels fir spatere Verwendung

— Ausgabe auf dem Bildschirm

ASSEMBLER-Beispiel "38-arcus tan" (Cé64):

- lda #17
1dy #191 3 Argument 0.5 nach
jsr 48034 ; FACl mit MEMFAC
— Jjsr 58126 ;s ARCTAN rechnet arctan 0.5 in RAD
- lda #9
ldy #227 ; 2pi (Anfangsadresse)
jsr 47887 ;s M-DIV rechnet 2pi/arctan 0.5
lda #188
ldy #185 3+ 1 (Anfangsadresse)
jsr 47887 3 M-DIV bildet Kehrwert
- lda #126
1dy #64 ; 360 (aus RAM)

jsr 47656 M-MULT multipliziert FAC1 mit 360

.o

- ldx #151

ldy #64 ; Speicheranfang (16535) festlegen

Jjsr 48087 ;3 und Winkel in DEGREE mit FACMEM ablegen
- Jjsr 43708 s FLPOUT: 26.5650512

rts

5.19 Weitere Arcus-Funktionen mit ARCTAN

Zur Berechnung von arcsin(x) ist die Formel anzuwenden:
arcsin(x)=arctan(x/sqr(1-x2))
Das folgende Beispiel berechnet den Winkel zu arcsin(0.5).

Vorbedingung:
wie 5.18

Ablauf:

— Argument (hier 0.5) nach FACl und mit sich selbst multipli-

zieren. Die Potenzierroutine lohnt sich hier nicht.
- Berechnen von (1-0.52)
- Quadratwurzelziehen aus (1-0.52)

- Argument 0.5 wieder holen und durch den Wert im FACl teilen

—~ Aufruf von ARCTAN.
Damit steht arcsin(0.5) im FAC1l, allerdings im BogenmaB.
(Wenn Sie wollen, Uberprifen Sie das mit JSR 43708.)

— Zur Umrechnung in DEGREE konnen wir den letzten Teil der in
Abschnitt 5.18 besprochenen Routine verwenden. Dazu springen
wir die Adresse an, bei der die Umrechnung in die Ublichen

Gradzahlen beginnt, also den dritten Punkt.

ASSEMBLER-Beipsiel "39-arcus sinus" (C64):

- lda #17

ldy #191 s Argument 0.5

jsr 48034 ; nach FAC1 mit MEMFAC
- lda #17

ldy #191 s Anfangsadresse von 0.5

Jjsr 47656 s M=MULT rechnet 0.5 mal 0.5
— lda #188

ldy #185 ; Anfangsadresse von 1 (ROM)

jsr 47184 ; M-SUB rechnet 1-0.52

- Jsr 49009 ; SQRFAC zieht Quadratwurzel aus <FAC1>
lda #17
ldy #191 s Anfangsadresse 0.5 (ROM) setzen
jsr 47887 ; M-DIV teilt 0.5/<FACL>
- Jjsr 58126 3 ARCTAN berechnet Winkel in RAD
- ... Routine zur Umrechnung in DEGREE und Bildschirmausgabe:
als Ergebnis miBte 30 herauskommen.
rts

Aufgabe:

Erstellen Sie ein ASSEMBLER-Programm fir die Berechnung von
arccos.

Die Formel dafiir lautet: arccos(x)=arctan(sqr(1-x2)/x)

5.20 Polynomauswertung mit POLNOM

Die Betriebsroutine kann Polynome bis zum 255. Grad berechnen,
wenn in einer Tabelle im ROM oder RAM vorhanden sind:

a) der Grad des Polynoms
b) die Konstanten beginnend mit dem Koeffizienten der hochsten
Potenz

Die Anzahl der Konstanten ist dabei immer um eins hdher als der
Polynomgrad, weil das letzte Glied eines Polynoms immer das va-
riablenfreie Glied ist.

Beispiel:

4 2

agx4+azxd+arx2ea)x+ag
ist ein Polynom des 4. Grades mit den Konstanten a4 bis ag.

ag ist das variablenfreie Glied.

Zahlenbeispiel:
10x2+40.25x+10 ist ein quadratisches Polynom (2. Grad) mit den
Koeffizienten: ap=10 ; a1=0.25 ; agy=10

Ablauf und ASSEMBLER-Beispiel "40-polykon" (Cé64):

Bleiben wir bei dem Zahlenbeispiel und legen die Konstanten in
einer Tabelle an, die z.B. bei (16640)=(0/65) beginnt.
Dann muB in der ersten Adresse (16640) der Grad des Polynoms als
Byte stehen.
Das geschieht mit
01 lda #2

sta 16640

02 AnschlieBend werden die Konstanten mit Hilfe der Routine
FACMEM als reelle Zahlen abgelegt. Da jede relle Zahl finf
Adressen beansprucht, geschieht das in 5-er Abst&anden:
lda #249
1dy #186 5 a=10 (aus dem ROM)

jsr 48034 ; in den FAC1l mit MEMFAC
ldx #1
1dy #65 5 Anfangsadresse (16641) setzen
Jjsr 48087 ; FACMEM legt reelle Zahl ab
03 1ldx #11
ldy #65 ;3 10 ist noch im FACl und kann als ag nach
jsr 48087 ;

(16651...) mit FACMEM gebracht

04 Fehlt nur noch die Konstante aj=0.25, die nach (16646...)
gesetzt werden muB:

lda #234

ldy #226 ;s Anfangsadresse von 0.25 im ROM ist (58090)
jsr 48034 ;3 Argument 0.25 nach FAC1 mit MEMFAC

ldx #6 ; Anfangsadresse (16646)

ldy #65 s nach (X/Y)

jsr 48087 ; FACMEM legt 0.25 ab

rts

Kommen wir zur eigentlichen Polynom-Auswertung:

Vorbedingungen:

Polynomgrad und Konstanten missen lickenlos im RAM oder ROM sein.
(Die eben besprochene Laderoutine muB aufgerufen worden sein.)
Die Anfangsadresse dieser Tabelle muB bekannt sein (hier 16640).

Ablauf:
01 Die Beleqgung fir x wird als reelle Zahl in den FACl1 gebracht.
In unserem Beispiel ist das Argument -0.5 (steht im ROM).

02 Die Register (A/Y) missen mit LO/HI der Anfangsadresse

Konstantentabelle belegt werden.
03 Aufruf der Polynomauswertung
04 Bildschirmausgabe

ASSEMBLER-Beispiel "41-poly-wert" (Cé64):

01 lda
ldy
jsr

02 lda
ldy

03 jsr

04 jsr

Prifen wir das
y=10x2+0.25x+10

#224
#185
48034
#0
#65
57433

43708

(47584) ist

Anfangsadresse von (-0.5) aus dem ROM
MEMFAC

Beginn der Tabelle LO

; Beginn der Tabelle HI, also (16640)

s POLNOM berechnet Polynomwert

fur die Belegung x:=-0.5

FLPOUT: 12.375

ee we we ee

..

nach und nennen wir den Polynomwert y:
mit x:=-0.5 ===>

y=10(-0.5)(-0.5)+0.25(-0.5)+10

y=2.5-0.125+10

y=12.375

Aufgaben:

Lassen

Sie

ausrechnen.

Erstellen

Grades.

Sie

unserer

sich zur Ubung die Polynomwerte fir andere Argumente

ein Programm zur Berechnung von Polynomen hdheren

5.21 Wertetabellen fiur Funktionen mit POLNOM

Das Polynom-Beispiel aus 5.20 1ist nichts anderes als der Funk-
tionsterm einer Parabelgleichung.

Es lassen

werte fiur Terme hoheren Grades berechnen.

Zum Anlegen
gung in festgelegten Schritten bis zum gewinschten gréften Argu-
ment und rufen jeweils die POLNOM-Routine auf.

sich auf diese Weise selbstverstandlich die Funktions-

einer Wertetabelle gehen wir von der kleinsten Bele-

Nehmen wir an, das Intervall fir x sei -5<x<5 und die Schritt-
weite sei 0.5. Dann werden insgesamt 21 Werte gesucht.

Vorbedingungen:

- Die zugehorige Konstantentabelle steht ab (16640)...(wie 5.20).

- Fir das Argument (die Belegung) reservieren wir 5 Adressen ab
(16530) bis (16534).

- Das ASSEMBLER-Beispiel aus 5.20 verandern wir dahingehend, daB
wir die Anfangsadresse (16530)=(146/64) des variablen Arguments
nach (A/Y) zum Vorbereiten der MEMFAC-Routine laden missen.

— Ersetzen wir also in Teil 01 von "polywert"
lda #224 durch lda #146 und
ldy #185 durch 1ldy #64,
dann konnen wir "polywert" als Programmteil ibernehmen.

- Als Zahler fir die Begrenzung des Intervalls bendtigen wir eine
freie Adresse: (1000).

Ablauf:

Teil 1: Initialisierungen

- Anfangswert des Zahlers +1 setzen: <1000>=22
Die Erhohung des Zahlers um eine Einheit ist deshalb notwendig,
weil die Hauptschleife, in der jeweils der nachste Wert be-
stimmt wird, mit dem Befehl DEC 1000, also einer Erniedrigung
des Zdhlers beginnt.

- Erzeugen der Zahl -5 im FACl als Wert fir die erste Belequng.

Teil 2: Rechen- und Ausdruck-Schleife

In einer Schleife wird jeweils

— der Zahler um 1 erniedrigt und auf 0(=Ende) geprift

— das Argument ab (16530) bereitgestellt und auf dem Bildschirm
ausgegeben,

- ein Trennzeichen ausgedruckt,

— die Polynomroutine aufgerufen,
der Polynomwert ausgedruckt,

- ein Line-Feed ausgegeben,

- das Argument um 0.5 erhoht

- und zum Schleifenanfang verzweigt.

Zur Ausgabe auf dem Bildschirm verwenden wir vorab ohne nahere
Erklarungen die ROM-Routine CHROUT. Sie gibt das Byte aus,
das im (A)-Register steht. Das entspricht dem BASIC-Befehl PRINT
CHR$(A). Naheres dazu im nachsten Kapitel "Ausgabe-Routinen".

ASSEMBLER-Beispiel "42-wertetabelle" (C64):

Teil 1: Anfangswerte
- 19550 1lda #0 3 HI
19552 1dy #5 ; LO
19554 jsr 45969 ;3 INTFLP wandelt 5 in reelle Zahl
19557 jsr 49076 ;s FACMIN andert Vorzeichen ===> -5 im FAC1
19560 1da #22 ;s Schrittanzahl + 1 festlegen
19562 sta 1000 ;3 und im Z&hler (1000) als Erstwert ablegen

Teil 2: Hauptschleife
- 19565 dec 1000 3 Zahler erniedrigen
19568 beq 19624 s mit 0 vergleichen; bei 0 Sprung ans Ende

- 19570 1ldx #146 ;5 LO Anfangsadresse
19572 1dy #é64 3 HI des Arguments ab (16530)...
19574 jsr 48087 FACMEM legt Argument bereit

-e

..

- 19577 1ldy #1 (Y)-Belegung fiur Ausgabe von negativer Zahl
- 19579 jsr 48599 ; mit FPOUTX gibt Argument aus

- 19582 lda #47 ; Code fir "/"
19584 jsr 65490 ; CHROUT erzeugt auf den Bildschirm: /

"polywert": —-----mm
- 19587 1lda #146

19589 1ldy #64 ; aktuelles Argument ...
19591 jsr 48034 3 ... nach FAC1l mit MEMFAC
- 19594 1da #0 ;5 LO und
19596 1dy #65 3 HI der Adresse der Konstantentabelle

19598 jsr 57433 ; POLNOM berechnet Polynomwert mit ak-
tueller Belegung
- 19601 1ldy #1 ; (beliebige Zahl ausgeben)
19603 jsr 48599 ; mit FLPOUT gibt berechneten Wert aus
; Code fur "RETURN"
19608 jsr 65490 ; CHROUT gibt CR/Linefeed aus

- 19611 lda #1l46
19613 1dy #64 altes Argument nach FAC1 mit
19615 jsr 48034 ; MEMFAC
19618 jsr 47177 ADDO.5 addiert 0.5 zum FAC1

.o

.o

- 19621 clc
19622 bcec 19565 ; erzwungener Sprung zum Schleifenanfang

- 19624 rts
Anmerkung:
Im ersten Teil von "polywert" muB noch einmal das Argument in den

FAC geladen werden, da nach einer Ausgabe mit FLPOUT der In-
halt des FACl zerstort ist.

5.22 Vergleichsoperationen mit CMPFAC

Die Routine CMPFAC vergleicht den Inhalt von FACl mit einer
reellen Zahl, die im Speicher steht.

Dazu muB zundchst der FACl geladen werden und anschlieBend die
Anfangsadresse der Vergleichszahl nach (A/Y) gebracht werden.

Der Vergleich hat immer die Form FAC1 ? MEMORY .
Als Ergebnis dieses Vergleichs ist das (A)-Register wie folgt

belégt:

FAC1 > MEMORY ==z=z> <A>=z 1
FAClL = MEMORY ===> <KA>= O
FAC1 < MEMORY ===> <A>=255

Beispiel: Wir vergleichen die Zahlen 360 und 36, die wir schon
mehrfach benitzt haben und geben das entsprechende Zeichen (>,=
oder <) in der unteren rechten Bildschirmecke aus.

Vorbedingungen:
- Die Zahl 360 steht ab (16510),
~ die Zahl 36 ab (16500) im RAM.

Ablauf:

01 Zahl 360 in FAC1l laden

02 Anfangsadresse von 36 nach (A/Y) bringen

03 CMPFAC aufrufen

04 bei Ergebnis 0 verzweigen und "=" ausgeben, dann Ende.

05 sonst ROL im (A)-Register durchfihren

06 <C-Flag> jetzt 0, dann verzweigen und ">" ausgeben, dann Ende
07 <C-Flag> sonst 1, dann "<" ausgeben und Ende.

Erlduterung der Bit-Operation ROL (Rotation nach links):

Hier dreht es sich nur noch darum festzustellen, ob <A> =255 oder

<A>=1 ist, denn <A>=0 wurde schon geprift.

a) bei <A>=255 stehen im (A)-Register die Bits: 11111111
Der Befehl ROL schiebt nun alle Bits um eine Stelle nach links
und setzt das auf der linken Seite hinausgeschobene Bit in das
(C)-Register. In diesem Fall wird das Carry-flag also gesetzt.

b) Bei <A>=z1 stehen die Bits: 00000001.

ROL schiebt also eine Null in das (C)-Register, léscht also
das Carry-Flag.

Wir brauchen deshalb nach dem ROL-Befehl nur noch mit BCC lber-

prifen, in welchem Zustand sich das (C)-Flag befindet und erspa-

ren uns somit die umstandlicheren CMP-Befehle.

ASSEMBLER=Beispiel "43-vergleich" (Cé64):
01 19650 1lda #126

19652 1dy #64
19654 jsr 48034

360 nach

FAC1 mit MEMFAC

02 19657 lda #116 Anfangsadresse L0 von 36
19659 1ldy #64 Anfangsadresse HI von 36

03 19661 jsr 48219 ;s CMPFAC vergleicht: 360 ? 36

.o

we we e

04 19664 beq 19677 ; letzte Operation 0 (also Gleichheit)?
ja ===> Sprung

05 19666 rol ; Linksrotation in (A)
06 19667 bcec 19673 ; C-Flag geldscht (also gréBer) ===> Sprung
07 19669 1ldx #60 ;s sonst Code fir "<" laden und

19671 bne 19679 3 zum Ausgabeteil springen

06 19673 ldx #62 ;3 Code fiur ">" laden und
19675 bne 19679 5 zum Ausgabeteil springen

19677 ldx #61 ; Code fir "=" laden
08 19679 stx 2023 3 Bildschirmausgabe und
19682 rts ; Ende

Vertauschen Sie -einmal die Anfangsadressen von 360 und 36 oder
geben Sie beide Male die gleichen LO/HIs ein.

Sie sehen, wunsere Routine eignet sich nicht nur fir die beiden
Zahlen 360 und 36, sondern fur alle reellen Zahlen.

Aufgabe:

Wandeln Sie das ASSEMBLER=Beispiel so ab, daB Sie einen komplet-
ten Vergleichsausdruck (wahre Aussage) auf dem Bildschirm ausge-
ben konnen.

Anwendungsmidglichkeiten:

Bei Rechenoperationen muB in einigen F&allen vorher geprift wer-
den, ob z.B. eine Zahl den Wert 0O hat. Ist dies der Fall, dann
darf z.B. nicht durch diese Zahl dividiert werden, sonst er-
scheint "division by zero error".

5.23 Vorzeichenpriifung mit SGNFAC

Fir Winkelberechnungen im Bereich von 0 bis 3600 sind z.B. Vor-
zeichenprifungen vorzunehmen, um den Winkel mit Hilfe der
trigonometrischen Funktionen eindeutig angeben zu kdnnen.

Hat man zum Beispiel den Sinuswert und den Cosinuswert eines
Winkels, dann 1&Bt sich dieser im Bereich bis 3600 eindeutig
angeben, was mit einem einzigen Funktionswert ja nicht der Fall
ist (zum Sinuswert 0.5 lassen sich die Winkel 300 aber auch
1500 zuordnen).

Folgende Regeln aus der Schulmathematik sollten Sie sich noch
einmal in Erinnerung rufen:

Vorzeichen SINUS Vorzeichen COSINUS Winkel zwischen

plus plus 0 und 90
plus minus 90 und 180
minus minus 180 und 270
minus plus 270 und 360

Doch zuriick zu unserer ROM-Routine:
Die Routine SGNFAC prift das Vorzeichen im FACl1 wund setzt
das (A)-Register folgendermaBen:

Zahl negativ ==zz> <A> = 255
Zahl = 0 ===> <A> = 0
Zahl positiv ==z=> <A> = 1

Vorbedingung:

Die zu prifende Zahl muB im FACl stehen oder zuerst dorthin ge-

bracht werden.

Ablauf:
01 Zahl in den FAC1l dbertragen
02 Aufruf von SGNFAC
03 Uberpriifung des (A)-Registers
- dies entspricht der in 5.21 beschriebenen Prozedur -
04 und Ausgabe des entsprechenden Zeichens

ASSEMBLER-Beispiel "&44-vorzpruefen" (C64):

01 19700 lda #224
19702 1dy #185 Anfangsadresse der ROM-Zahl -0.5
19704 jsr 48034 Zahl nach FAC1 mit MEMFAC

02 19707 jsr 48171 ; SGNFAC priift Vorzeichen

e we

03 19710 beq 19723

.o

0 im (A)-Register (also Zahl weder positiv
noch negativ)? ja ===> Sprung

19712 rol ;3 Linksrotation von <A>

19713 bee 19719 ; C-Flag geléscht (also war 1 in (A))
ja ===> zur Ausgabe mit "+" springen

19715 ldx #45 ; sonst Code fir "-" laden und

19717 bne 19725 ; zum Ausgabeteil springen
19719 1dx #43 3 Code fir "+" laden und
19721 bne 19725 ; nachsten Befehl Uberspringen

04 19723 ldx #48 ; Code fir "O" laden und

19725 stx 2023 ; in der unteren rechten Bildschirmecke aus-
geben
19728 rts
Aufgaben:

Probieren Sie diese Routine auch mal mit anderen Zahlen aus, die
Sie im RAM oder ROM kennen.

Schreiben Sie eine Routine, die die Winkelfunktionen auf ihre
Vorzeichen uberprift und den richtigen Winkel im Bereich bis 360
Grad ausgibt.

Dabei dirfen die Funktionswerte nicht willkirlich gewahlt werden,
weil z.B. fur einen bestimmten Winkel Sinus- und Cosinuswerte
festliegen.

Arithmetik-ROM-Routinen

Label C64 40/80XX
1 1

ADDO.5 47177=$b849 51583=$c97f
FAC1 + 0.5 ---> FAC1

FMAL10 47842=$bae2 52248=%ccl8
FAC1 mal 10 ---> FAC1

FDIV1O 47870=%$bafe 52276=%cc34
FAC1 / 10 ---> FACl

FMINUS 49076=$bfb4 53579=%$d14b
-FAC1 ---> FAC1

FACABS 48216=$bc58 53622=$cd8e
abs(FACl1) ---> FAC1

ADD 47210=$b86a 51616=%$c9al
FAC2 + FAC1 ---> FAC1

M-ADD 47207=$b867 51613=$c9a0
MEMORY (A/Y) + FAC1 ---> FAC1

SuB 47187=$b853 51593=$c989
FAC2 - FAC1l ---> FAC1

M-SUB 47184=$b850 51590=$c986
MEMORY (A/Y) - FACl1 ---> FACl

INTMUL 45900=$b34c 50295=%$c477
<113/114>=<%$71/72> <110/111>=<%$6e/6f>
mal MEMORY
(95/96)=($5f/60) (92/93)=($5c/5d)

-~=> (X/A)

MULT 47659=%$ba2b 52065=$cb61
FAC2 mal FAC1 ---> FACl

M-MULT 47656=$ba28 52062=$cb5e
MEMORY (A/Y) mal FACl ---> FACl

DIV 47884=$bb0c 52296=%cc48

FAC 2 / FAC'1 ---> FAC 1

M-DIV 47887=$bb0f 52293=%cc45
MEMORY (A/Y) / FAC1 ---> FAC1

SQRFAC 49009=%bf71 53512=$d108
Quadratwurzel aus FACl1 ---> FAC1

POTRAD 49019=$bf7b 53522=$d112
FAC2 hoch FACl ---> FACL

M-POT 49016=$bf78 53519=$d10f
MEMORY (A/Y) hoch FACl ---> FACl

LOGNAT 47594=$b9ea 52000=%$cb20

1n(FAC1) ---> FAC1

EHOCHF 49133=%bfed 53636=$d184
e hoch FAC1 ---> FAC1
SINUS 57963=%e26b 53897=$d289

sin(FACl1) ---> FACl (BogenmaB RAD)

COSIN 57956=%e256 53890=$d282
cos(FACl) ---> FAC1l (BogenmaB RAD)

TANG 58036=%e2b4 53970=$d2d2
tan(FAC1) ---> FAC1l (BogenmaB RAD)

ARCTAN 58126=%e30e 54060=$d3c2
arctan(FACl) ---> FAC1 (BogenmaB RAD)

POLNOM 57433=%$e059 53741=%dled
Polynomwert aus Tabelle ab (A/Y) ---> FAC

1. Byte der Tabelle = Polynomgrad n

folgende Bytes enthalten die Koeffizienten ap

bis aé als reelle Zahlen in 5-er Gruppen
CMPFAC 48219=%bc5b 52625=%$cd9l

vergleicht FAC1 mit MEMORY (A/Y)

FAC < MEM ---> <A>:=255

FAC > MEM ---> <A>:= 1

FAC MEM --=> <A>:= O

SGNFAC

MEMFAC

MEMFC2

FACMEM

FACl/2

FAC2/1

ZUFALL

FLPOUT

FPOUTX

BSOUT(CHROUT)

- 100 -

48171=%bc2b 52577=%$cd61
Vorzeichen von FAC1 ---=> (A)

Mg —==> <KAD>:i= 1

Nt —e> <A>:=2255

<FAC1> = 0 ---> <A>:=0

48034=%bba2 52440=%ccd8
reelle Zahl aus MEMORY (A/Y) ---> FAC1

47756=%ba8c 52162=%cbc?2
reelle Zahl aus MEMORY (A/Y) ---> FAC2

48087=$bbd7 52493=%cd0d
FACl (reell) ---> MEMORY (X/Y)-Anfangsadresse

48143=%$bcOf 52549=%cd45

<FAC1> ---> FAC2

48124=%$bbfc 52530=%cd32

<FAC2> ---> FACl

57495=%$e097 53801=$d229
53804=%$d22c

Zufallszahl aus 0 bis 1 ---> FACI1,

abhangig von der Zeit bzw. von <A>

43708=%aabc 53133=$cf8d
Ausgabe von <A>; C64: mit anschlieBendem CR

48599=%bdd7 53133=$cf8d
Cé64: Ausgabe von <FAC> als Betrag, kein CR
Cé4: mit Vorzeichen: LDY #1 - JSR FLPOUT

65490=$ffd2 KERNAL 65490=$ffd2
Ausgabe von <A> als ASCII-Code

6

Bildschirmoperationen

- 103 -

6 Bildschirm-Operationen

6.1 Ausgabe einer Integerzahl mit INTOUT

Die ROM-Routine INTOUT gibt eine Integerzahl aus dem Bereich
-32768 bis +32767 auf den Bildschirm aus. Wir haben sie im vori-
gen Kapitel schon einmal verwendet. Hier nun die genauere Be-
schreibung dazu:

Vorbedingung:
Die Integerzahl steht zerlegt in LO- und HI-Byte in den Registern

(X) und (A).

ASSEMBLER-Beispiel "45-intout" (Cé4):

- 1lda #0 3 HI
ldx #200 ; LO

- Jjsr 48589 ; Bildschirmausgabe: 200
rts

Bei negativen Ganzzahlen ist das HI-Byte gréBer/gleich 128. Das
achte Bit ist also gesetzt.
(Siehe dazu auch ASSEMBLER-Beispiel bei 4.1.2/Teil 3.)

6.2 Ausgabe einer reellen Zahl mit FLPOUT

Reelle Zahlen konnen nur Uber den Floatpointakkumulator FACL
ausgegeben werden.

Wie diese Zahlen erzeugt werden, wurde ausfihrlich in Kapitel 4
beschrieben.

Vorbedingung:
Die auszugebende Zahl steht im FACI.

ASSEMBLER-Beispiele: Siehe Kapitel 4 und 5!

- 104 -

6.3 Ausgabe eines ASCII-Zeichens mit CHROUT(BSOUT)

Jedes der 255 Zeichen aus dem CBM-Zeichensatz kann lber das (A)-
Register ausgegeben werden. Dazu gehdren auch die nicht druckba-
ren Zeichen von 0 bis 31 und 128 bis 161, also z.B. 'RETURN',
'DEL' als Cursorsteuerzeichen usw.

Die Routine BSOUT, oft auch als CHROUT bezeichnet (von character
out), ist als Ausgabe-Routine recht vielseitig verwendbar, da
sie nicht nur fiur den Bildschirmausdruck, sondern auch fir die
Ausgabe auf den Drucker, das Floppy oder irgendein anderes Gerat
geeignet 1ist. Wir werden sie deshalb gut im Auge behalten und
bei Bedarf wieder anwenden (vor allem in Kapitel 9, das sich mit
der Peripherie befaBt).

Da BSOUT zu den haufig gebrauchten Einspriingen gehort, steht
es in einer Sprungliste am Ende des ROM-Bereichs zusammen mit
weiteren stdndig verwendeten Routinen-Anfangen (sog. KERNAL-Rou-
tinen). Diese Adressen sind sogar fiur die verschiedenen CBM-Rech-
ner zumindest teilweise gleich.

Vorbedingung:

Das auszugebende Zeichen muB im (A)-Register stehen.

ASSEMBLER-Beispiel "46-bsout/chrout" (C64 bis 80XX):

- lda #43 s Code fur '+'

Jjsr 65490 ; CHROUT druckt an momentane Cursorposition: +
- lda #13 ; Code fir RETURN

Jjsr 65490 ; CHROUT gibt Carriage Return aus
- lda #56 ;3 Code fur '8’

Jjsr 65490 s CHROUT druckt 8 an Zeilenanfang

rts

Ein Vergleich mit BASIC =zeigt, daB mit CHROUT alle Ausgaben
entsprechend dem BASIC-Befehl PRINT CHR$(X); erfolgen, so daB
auch Operationen wie die folgenden ausgefihrt werden:

Befehl C64 40/80XX .
' '

scroll up ' 17 25

scroll down 145 153

Zeile loschen 21

Zeile einfigen 149

Zeilenende ldschen 22

- 105 -

Zeilenanfang loschen 150
Fenster setzen li/ob 15
dto. re/unt 143
Textmodus ein 14 14
Graphikmodus ein 142 142

Die im Direktmodus mit den Tasten zu bedienenden Funktionen wer-
den im Programm mit dem entsprechenden ASCII-Code aufgerufen.
(Siehe Beispiel!)

6.4 Vorbereitete Zeichenausgaben

Im ROM der CBM-Rechner sind bereits Routinen vorhanden, die den
AKKU mit dem entsprechenden Code laden und sofort ausgeben.

Im AnschluB an dieses Kapitel sind die Labels mit den zugehodrigen
Anfangsadressen aufgelistet.

6.5 Cursorposition festlegen

Die bisher behandelten Routinen erzeugen immer einen Ausdruck von
der momentanen Cursorposition aus.

Fir eine gesteuerte Bildschirmgestaltung ist es aber notwendig,
eine bestimmte Position vorgeben zu konnen.

6.5.1 Cursorposition Cé64

Beim Cé64 laBt sich auf sehr angenehme Weise der Cursor an eine
bestimmte Bildschirmstelle aufsetzen, da eine eigene Berechnungs-
routine im ROM gegeben ist.

Ablauf:

- Zeilennummer in der Zeropageadresse (214) bereitstellen:
CURZEI=(214)

— Spaltennummer in CURSPA=(211) bereitstellen

— Aufruf der Routine CURPOS zur Cursorpositions-Bestimmung

- 106 -

ASSEMBLER-Beispiel "47-cursorposi" (nur Cé64):

- 1ldy #10 ; Zeile 10 (Beispiel!)
sty 214 3 nach CURZEI
- 1ldx #5 Spaltennummer 5 (Beispiel!)

stx 211 nach CURSPA
—~ Jjsr 58732 ; CURPOS setzt Cursor auf Zeile 10/Spalte 5
- 1lda #5 ; Integerzahl <HI>=5

ldx #12 H <L0>=12

jsr 48589 5 mit INTOUT zur Kontrolle ausgeben: 1292
rts

In Abschnitt 10.4 kommen wir noch einmal auf dieses Thema zu
sprechen, wenn wir von BASIC aus den Cursor mit Hilfe dieses
kleinen Maschinenprogramms setzen.

6.5.2 Cursorposition 40XX/80XX

Bei den 40/80XX-Geraten ist dieses Problem nicht ganz so einfach
zu losen, weil die Cumorsteuerung nicht Uber eine analoge Berech-
nungsroutine 1lauft. Vielmehr orientiert sich der Rechner direkt
an den Anfangsadressen der Bildschirmzeilen.

Als Beispiel schauen wir uns dieses Problem fir den CBM 8032 an.
Das Bildschirm-RAM beginnt bei 32768 = $8000.

Die Anfangsadresse der Zeile 0 (erste Zeile!) hat demnach den
Wert L0=0/HI1=$80 bzw. L0O/HI=0/128, die Zeile 1 LO/HI=80/128 usw.

Diese Anfangsadressen sind nun im ROM bereits abgelegt und zwar
getrennt als LO-Bytes der Zeilenanfange BSADLO wund in einem
weiteren Datenblock als HI-Bytes mit dem Anfang BSADHI.

Label Cé64 40/80XX
' 1

BSADLO 60656=%ecf0 59221=%e755

BSADHI 217=$d9 59246=%e7be

Beide Datenblocke umfassen je 25 Bytes, weil es eben 25 Bild-
schirmzeilen gibt.

- 107 -

Gleichzeitig wird in den Zeropage-Adressen (196) wund (197)
ein Zeiger verwaltet, der immer die Anfangsadresse LO/HI der-
jenigen Zeile enthalt, in der sich der Cursor augenblicklich be-
findet. Dabei ist es gleichgiltig, ob der Cursorfleck blinkt oder
unsichtbar bleibt.

Steht der Cursor beispielsweise irgendwo in Zeile 1 (also der
zweiten Zeile von oben), dann weist der 7<ilenpointer ZEIPTR
die Bytes 80/128 mit LO/HI auf.

Die Zeile, 1in der sich der Cursor gerade aufhadlt, wird auch noch
in der Adresse CURZEI=(216) gespeichert.

Um auch die Cursorspalte noch zu bestimmen, wird die Zeropage-
Adresse (198) mit einem Wert von O bis 79 (beim 80-Zeichen-
Schirm) belegt. Diese Zeropageadresse nennen wir CURSPA.

Wir konnen also jederzeit
a) die aktuelle Cursorposition Zeile/Spalte aus den Adressen
216 und 198 abfragen,

b) die absolute Bildschirmadresse der Cursorposition aus der
lZeilen-Anfangsadresse <196/197> plus Spaltenposition <198>
berechnen,

c) den Cursor an jede beliebige Bildschirmstelle schicken.
Leider geniigt es nicht, einfach die Adressen CURSPA und CURZEI
zu belegen.

Schauen wir uns deshalb das notwendige Verfahren einmal genauer
fir den B80XX an. Es ist auch fir den Cé64 anwendbar, aber warum
sollen wir es dort komplizierter machen, wenn es schon einmal
so einfach ging (siehe 6.5.1).

Zielsetzung:

Der Cursor soll in Zeile 12, Spalte 5 aufgesetzt werden. Das ent-
spricht der Bildschirmadresse 33733.

Vorbedingungen:

Die Zeilenanfangsadressen stehen im ROM.
8032: LO ab 59221 / HI ab 59246

C64 : LO ab 60656 / HI ab 217

- 108 -

Ablauf:

01 Spalte 5 nach Spaltenadresse (198)

02 Zeile 12 nach Zeilenadresse (216)

03 HI-Byte der Anfangsadresse der Zeile 12 nach (197)
Es muB also das 12. Byte nach dem Anfang des Zeilenadressen-
Blocks HI geholt werden.

04 dto. LO-Byte nach (196)
Wir brauchen dazu das 5. Byte nach der Anfangsadresse des

Zeilenanfang-L0-Blocks.

05 Ausgabe der Integerzahl aus (A/X) zur Kontrolle

ASSEMBLER-Beispiel "48-cursorposi" (80XX):

01 ldx #5 ; Spalte 5 nach
stx 198 ;3 leropageadresse (198)=CURSPA

02 1ldy #12 s Zeile 12
sty 216 ; nach Adresse (216)=CURZEI

03 lda 59246,y ; HI-Byte der Anfangsadresse von Zeile 12 nach (A)
sta 197 3 und in (197)=ZEIPTR-HI speichern

04 1da 59221,y ; LO-Byte der Anfangsadresse von Zeile 12 nach (A)

sta 196 ;3 und in (197)=ZEIPTR-LO speichern

<196/197> enthdlt nun den Wert 33733 in der Form LO/HI.
Nachdem auch die Spaltenposition mit <198> bereits festgelegt
ist, kann die Bildschirmausgabe erfolgen:

05 jsr 53123 ; INTOUT gibt <A/X> als Integerzahl aus.
rts

Da im (A)-Register noch 12 und im (X)-Register noch 5 steht, er-
scheint auf dem Bildschirm die Zahl 1292.

Dabei ist noch zu beachten, daB bei allen Zahlenausdrucken, reell
oder integer, ein Zeichen mehr fir das Vorzeichen bendtigt
wird. Die erste Ziffer der Zahl 1292 erscheint also in Spalte 6,
da die Zahl positiv ist und das Vorzeichen '+' nicht automatisch
ausgegeben wird. Stattdessen erscheint eben ein Blank.

- 109 -

6.6 Ausgabe eines Strings mit STROUT

Um eine Zeichenfolge auf den Bildschirm zu drucken, muB diese im
ROM oder RAM enthalten sein.

Vorbedingungen:

Die Anfangsadresse der Zeichenfolge muB bekannt sein.

Die Lange des Strings wird bendtigt.

Nehmen wir fir wunsere Demonstration an, wir wollen das Wort
'COMMODORE '~ ausgeben, das u.a. auch beim Einschalt-Reset auf dem
Bildschirm erscheint.

Beim C64 steht es im ROM ab Adresse 58494=%$e47e bzw. LO/HI=
126/228. Die Lange dieses Wortes betragt 9 Zeichen.

Ablauf:

01 Die Anfangsadresse LO/HI des Strings wird nach STRADR ge-
bracht, beim Cé64: (34/35), bei 80XX: (31/32).

02 Die Stringlange LEN kommt ins (X)-Register.

03 Die Routine STROUT gibt den String ab aktueller Cursorposition
auf dem Bildschirm aus.

ASSEMBLER-Beispiel "49-stringout” (C64):

01 1da #126 s Stringanfangsadresse LO

sta 34 3 nach STRADR-LO
lda #228 ;s Stinganfangsadresse HI
sta 35 ;3 nach STRADR-HI

02 1ldx #9 Stringlange LEN nach (X)

03 jsr 43813 STROUT gibt 9 Zeichen ab Adresse (58494) aus:
rts commodore

Probieren Sie nun mal andere Langen LEN aus. Wenn Sie z.B.
statt 9 die Zahl 12 verwenden, erhalten Sie "commodore 64".

6.7 Umwandlung des FAC-Inhalts in einen String mit FACSTR

Normalerweise besorgt die bereits besprochene Routine FLPOUT
die Umwandlung einer im FACl stehenden Zahl in einen druckbaren
String. Das ist deshalb notwendig, da die Zahl im FAC erst deco-

- 110 -

diert und als Dezimalzahl dargestellt werden muB3.

Wie sich in den nachsten Abschnitten gleich zeigen wird, ist es
aber manchmal sehr nitzlich, z.B. eine reelle Zahl zunachst in
einen String zu verwandeln, daran Formatierungsoperationen (die
der CBM nicht beherrscht) vorzunehmen und dann erst auszugeben.

Die ROM-Routine FACSTR wandelt den FACl-Inhalt in die Zif-
fernfolge des entsprechenden Zahlenwerts um und legt sie ab
Adresse 256... ab. Das letzte Zeichen dieser Folge ist immer ein
Byte O.

Unterschreitet der Zahlenwert im FACl1 den Betrag 0.0l, so er-
folgt die Umwandlung in Exponentialdarstellung.

Um bei wunbekannten Ergebnissen festzustellen, ob dies der Fall
ist, wuntersucht man die Zeropage-Adresse (94). Hier steht nach
der Umwandlung in einen String immer der Exponent zur Basis 10.
Wurde eine gewohnliche Dezimalzahl erzeugt, ist <94> = O.

(Beim 40/80XX ist das die Zeropage-Adresse (91)).

Die Routine FLPOUT benitzt also als Teilprogramme FACSTR und
STROUT.

Im folgenden Beispiel geben wir die Zahl -32768 auf diese Weise
aus.

Vorbedingung:
Die reelle Zahl -76,7041703 steht ab (58106) im ROM. (Ist beim

C64 erfullt.)

Ablauf :

01 Zahl -76,7041703 in den FACl bringen.
02 <FAC 1> in einen String umwandeln

03 Stringausgabe vorbereiten

04 Zeichenfolge -76,7 ausgeben

ASSEMBLER-Beispiel "50-flpstring" (C64):

01 1lda #250 ; L0 von Anfangsadresse (58106)
ldy #226 ;3 dto. HI
Jjsr 48034 ;5 MEMFAC holt -76,7041703 nach FAC1

02 jsr 48605 ; FLPSTR wandelt FACl in String um und legt
ihn ab 256 an.

- 111 -

03 lda #0 3 Stringanfang LO
sta 34 3 nach STRADR-LO
lda #1 3 Stringanfang HI (=1mal256)
sta 35 3 nach STRADR-HI
ldx #5 ; Stringlange 5 fir finfstellige Zahl

04 jsr 43813 ; STROUT druckt auf Bildschirm: -76,7
rts

Diese Strings, die aus der Umwandlung des FACl kommen, werden
immer mit einem 0-Byte abgeschlossen.

Die Routine STR-0 erkennt dies wund gibt automatisch nur die
Zeichen bis zum Stringende aus, so daB keine Stringlange angege-
ben werden muB. Da sich alle diese Zahlen ab Adresse (256)...
befinden, genligt es, die Register (A/Y) mit 0/l zu belegen. Die
Routine erkennt dies als Stringanfang.

Will man die Stringausgabe begrenzen, dann setzt man ein Null-
Byte hinter das gewlinschte letzte Zeichen.
Das obige Beispiel vereinfacht sich im dritten Teil wie folgt:

03 1lda #0 ; LO

ldy #1 ; HI der Anfangsadresse 256

sta 262 3 Null als Stringbegrenzer setzen
04 jsr 43806 ; STR-0

rts

6.8 Anwendung: eine PRINT USING - Routine

An dieser Stelle bietet es sich an, ein komplexeres Modul zu dis-
kutieren, das gleichzeitig den Vorteil hat, praktisch anwendbar
zu sein und eine Schwache des CBM-Betriebssystems auszumerzen.
Es handelt sich wum eine Routine, die Zahlen formatiert aus-
geben kann.

Es gibt dariber bereits eine ganze Reihe Verdffentlichungen, die
aber mehr oder weniger dirftig erlautert sind, so daB die eigent-
lichen Lernschritte fast immer in einem Wust von Zahlen und Va-
riablen untergehen.

An diesem Modul lassen sich eine Vielzahl von Problemen aufrol-
len, so daB es sich lohnt, hier etwas ldnger zu verweilen und die
eine oder andere Operation etwas genauer zu beleuchten.

- 112 -

Doch nun ans Werk:
Unsere Routine soll folgenden Forderungen genigen:

a) Die Zahl der Vorkommastellen soll frei gewahlt werden kdénnen,

b) die Zahl der Nachkommastellen ebenfalls.

c) Man kann zwischen Dezimalpunkt und Dezimalkomma wédhlen.

d) Das Vorzeichen '+' kann wahlweise mit ausgegeben werden.

e) Das Vorzeichen steht immer direkt vor der Zahl.

f) Die CBM-eigene Verstummelung der Dezimalbriche (z.B. '-.5")
wird in die ubliche Form mit einer Vorkomma-Null gebracht
(z.B. '-0.5").

Einschrankung:
Exponentialdarstellungen werden nicht formatiert.

ZusammengefaBt:
Die ausgegebenen Zahlen haben die vorher festgelegte Form:
o, . oder ..##.###.. oder +..###,##4#.. usw.

Solche Routinen sind z.B. in BASIC-Spracherweiterungen enthalten,
die sich aber nur nach dem Cracken des entprechenden Tool-Kits
fir Maschinen-Programme anzapfen lassen.

Wie man diese Module auch fir BASIC-Programme verwenden kann,
werden wir spater besprechen. Jedenfalls bleiben wir auch hier
unserem Konzept treu, das Modul so aufzubauen, daB es frei ver-
schiebbar irgendwo im RAM oder auch im EPROM arbeiten kann.

Das bedingt wieder den Verzicht auf Unterprogrammspringe mit dem
Befehl 'JSR XXXX', wenn die Adresse 'XXXX' im Modulbereich selbst
liegt.

Die folgenden Ausfiihrungen verlangen vom Leser sicherlich sehr
viel Konzentrationsvermogen, bieten 1ihm aber dafir auch einen
Einblick in ASSEMBLER-Strukturen. Und vielleicht ist der eine
oder andere Kniff doch noch unbekannt oder nicht ganz durchschaut
gewesen.

Vorbedingungen:
Wir bendtigen 6 freie Adressen als flags, Indices oder Zahler.
In unserem Beispiel werden verwendet:

(900) Zahl der festgestellten Vorkommastellen
(901) Anzahl der gewiinschten Vorkommastellen ##,...
(902) Anzahl der gewiinschten Nachkommastellen ceos it

- 113 -

(903) Stellung x des Endezeichens (Byte 0) in der Seite 1,
also 256,x

(904) Vorzeichenflag
Wird mit Code 43(+) vorbelegt, falls bei positiven Zahlen
das Vorzeichen mit ausgegeben werden soll.

(905) Flag fir Dezimalmarke
Wird mit Code 44 (,) vorbelegt, falls statt des Dezimal-
punkts ein Dezimalkomma ausgegeben werden soll.

Die auszugebende Zahl muB bereits im ROM oder RAM vorhanden
und die Anfangsadresse muBB bekannt sein.

6.8.1 Ablauf - Struktur:

Das Beispiel wird fir die Zahl 2pi durchgezogen, die beim Cé64
ab (58121)=(009/227) steht.

Das gesamte Programm 1&aB8t sich in 11 Teile gliedern.

Teil 1: Initialisierung

~ In unserem Beispiel werden das '+'-Flag, das Komma-Flag gesetzt
und die Zahl der Vorkommastellen auf 5, die der Nachkommastel-
len auf 3 festgelegt.

- Die Zahl 6.28318531 wird aus dem ROM geholt und zur Kontrolle
ausgedruckt. Dabei bleibt die Ziffernfolge ab (256).. erhalten.

- Es erfolgt ein Carriage Return mit CHROUT, um einen direkten
Vergleich zwischen dem unformatierten und formatieren Ausdruck
sichtbar zu machen.
Flags und Bytes sehen nach Teil 1 also so aus:

<900> = 0 <256> = 32 " "
<901> = 4 257> = 54 "6"
902> = 2 <258> = 46 "."
<903> = 0 <259> = 50 "2"
904> = 43 "4 <260> = 56 "8"
<905> = 44 ",V <261> = 51 "3"

<262> = 49 "1"
<263> = 56 "8"
<264> = 53 "5"
<265> = 51 "3"
<266> = 49 "1"
267> = 0

268> = 0

- 114 -

Teil 2: Dezimalpunkt suchen und Vorkommastellen feststellen

- Die hochste Adresse, in der eine Ziffer der Dezimalzahl stehen
kann, ist 266.

Wir untersuchen daher von dort aus abwarts die Zeichenfolge
nach dem Dezimalpunkt.

- Wird er gefunden, erniedrigen wir den Zahler (X) und erhalten
die momentane Zahl der Vorkommastellen, die wir nach (900) ret-
ten.

— Wird kein Punkt gefunden, dann handelt es sich bei der Zahl um
eine ganze Zahl, deren Zeichenfolge mit dem Byte 0O abschlieBt.
In diesem Fall wird Teil 3 Ubersprungen.

Teil 3: Bei Dezimalzahl Endezeichen durch Ziffer 0 ersetzen

— Das Endezeichen (Byte Null) wird - wieder mit einer Suchschlei-
fe von der Basis 257 aus - gesucht und

-~ durch die Zahl "0" ersetzt (Code 48).
AnschlieBend wird Teil 4, die Behandlung der Ganzzahlen uber-
sprungen.

Um eventuellen Verwirrungen zu begegnen:

Das Byte '0', also das Endezeichen einer Ziffernfolge ist der
Code fir den Klammeraffen.

Die Ziffer '0' hat aber den Code 48.

Winscht man die Ziffer '0', muB also der Byte-Eintrag 48 sein.

Teil 4: Vorbehandlung einer Ganzzahl

- Durchsuchen der Ziffernfolge nach dem Endezeichen (Byte 0)

- Ersetzen des Bytes 0 durch das Byte 46, also den Code fir den
Dezimalpunkt.

Das geschieht deswegen, damit man auch eine ganze Zahl (z.B. 10)

mit Nachkommastellen ausgeben kann (z.B. 10.000).

Teil 5: Neues Endezeichen setzen

- Zunachst stellen wir fest, ob sich die Zahl als Exponentialzahl
ab (256) befindet. Das prifen wir durch Abfragen der Adresse
(94) bzw. 40/80XX:(91). Hier steht ein eventueller Exponent.
Sollte dies der Fall sein, gehen wir sofort zum Teil 'Druck'.

Gleichzeitig haben wir damit schon Vorbereitungen getroffen,
falls wir spater auch exponentielle Darstellungen in Dezimalzah-
len verwandeln wollen.

- gewiinschte Nachkommastellenzahl laden
-~ Falls dies 0 sein sollte, muB das Endezeichen direkt hinter

- 115 -

die Ziffer gesetzt werden, also an Stelle des Dezimalpunkts.

- falls eine oder mehrere Nachkommastellen gebraucht werden,
addieren wir die bisherigen Vorkommastellen mit den gewlnschten
Nachkommastellen, erhohen diese Zahl um 1 wegen der Stelle fir
den Dezimalpunkt wund setzen das Endezeichen mit diesem Index
zur Basisadresse (257).

- Da wir spater diesen Index als Zahler ab (256) benotigen, er-
hohen wir ihn um 1, und weil die spater folgende Zahlschleife
mit Erniedrigen beginnt, erhdhen wir nochmals um 1 und legen
damit die Stellung des Endezeichens in (903) ab.

Beim Programmlauf sehen Flags und Bytes nun folgendermaBen aus:

<900> = 1 256> = 43 "
<901> = 4 257> = 54 "e"
<902> = 2 258> = 44 ",
<903> = 6 259> = 50 "2
<904> = 43 "4" <260> = 56 "g"
<905> = 44 M,V <261> = 0
262> = 49 "
<263> = 56 "g"
264> = 53 "sn
265> = 51 "3n
<266> = 49 "
<267> = 48 "g"
<268> = 0

Teil 6: Art der Vorzeichenausgabe

- Prifung, ob das Plusflag gesetzt ist

- wenn ja, Vorzeichen der Zahl feststellen
wenn nein, zu Teil 7 springen

- wenn Vorzeichen positiv, was durch eine Leerstelle in (256) zu
erkennen ist, diese durch '+' ersetzen,
sonst gleich zu Teil 7 springen

Teil 7: Dezimalmarke behandeln

- Prifung, ob dberhaupt Nachkommastellen gewinscht werden.
Wenn nicht, braucht ein eventueller Dezimalpunkt auch nicht
ersetzt werden.

— Sonst Prifung, ob Dezimalkomma gewiinscht wird.
Wenn ja, Punkt durch Komma ersetzen. Die Zahl der Vorkommastel-
len haben wir ja in (900) zur Verfigung.

- 1ll6 -

Teil 8: Behandlung der CBM-verstiimmelten Zahlen

- Prifung, ob die Vorkommastellenzahl 0 ist.
Das ist z.B. bei der CBM-Zahl -.5 der Fall.

- wenn ja, Endestellung nach (Y) und um 1 erniedrigen, da das
Vorzeichen bei der folgenden Verschiebung erhalten bleiben
soll.

- Alle Zeichen ab (257) um eins nach oben schieben. Damit wird
Platz fir die Vorkomma-Null geschaffen.

— Null einfigen.

- Da sich die Stellung des Endezeichens und die Zahl der Vor-
kommastellen jeweils wum 1 erhoht haben, missen diese Indices
entsprechend korrigiert werden.

Das Verschieben in der Ndhe der Zeropage bedarf noch einer Erlau-
terung:

Es ware z.B. moglich, das Vorzeichen nach (255) zu bringen und in
(256) eine Null (Code 48) zu schreiben, um damit eine Verschie-
bung ab (255) zu versuchen. Aber der entsprechende Maschinenbe-
fehl erkennt (255) als Zeropage-Adresse, so daB zum Beispiel fir
x=10 der ASSEMBLER-Befehl LDA 255,X nicht wie gewlnscht den In-
halt von (265) in das (A)-Register holt.

Vielmehr wird das entstehende HI-Byte 1 miBachtet und von 255 aus
mit O weitergezahlt. Geladen wird also wie LDA 9.

Bleibt wuns nichts anderes Ubrig, als den vorgeschlagenen Weg
oder eine Abwandlung davon zu programmieren.

Teil 9: Behandlung der Vorkommastellen

— Differenz zwischen vorhandenen und gewinschten Stellen berech-
nen.

- Bei Gleichheit zu Teil 10 (Ausdruck) springen,

- ebenfalls bei negativen Differenzen, d.h. wenn die Zahl mehr
Vorkommastellen besitzt als man vorgegeben hat.
Das kommt in etwa einer Fehlerbehandlung gleich.

~ Sonst Differenz (noch fehlende Stellen) zum Index fir Zahlende
addieren

— und Index fir (Zahlenende +1) als Zahler nach (Y) holen.

- Zeichenfolge nach oben verschieben.

Nachdem sich in unserem Beispiel die Flags nicht geandert haben,
sieht die Byte-Folge nun so aus:

- 117 -

<900> = 1 <256> = 43 "4
<901> = 4 257> = 54 "6"
<902> = 2 <258> = 44 mn
<903> = 6 <259> = 43 Ngn
<904> = 43 "y <260> = 54 "6"
<905> = 44 M," <261> = 44 "M
262> = 50 "2"
<263> = 56 "8"
264> = 0
<265> = 51 "3"
266> = 49 "1
267> = 48 "0"
<268> = 0

Teil 10: Vorkommastellenrest auffillen

Wie man sieht, sind noch Reste der alten Ziffernfolge im Spei-

cher. Wir fillen sie mit Leerstellen (Code 32) auf.

— Als Zdhler konnen wir den 'Rest' vom (X)-Register gleich wei-
terverwerten.

— und mit einer Schleife bis hinunter nach (256) alle Adressen
mit Leerzeichen belegen:

256> = 32 nwon
<257> = 32 "
<258> = 32 nwon
<259> = 43 ngn
Flags unverandert <260> = 54 Mg
261> = 44 ",
<262> = 50 "2"
<263> = 56 "8"
264> = 0
<265> = 51 "3"
266> = 49 "1
267> = 48 "Q"
<268> = 0

Als Option konnte auch mit Vorkomma-Nullen aufgefillt werden.
Es ware aber dann nochmal ein Flag, eine Abfrage und eine Ver-
setzung bzw. Belassung des Vorzeichens notwendig.

Teil 11: Ausdruck mit STR-0

- Register (A/Y) mit Anfangsadresse 0/1 belegen

— Ausgabe mit der Routine STR-0, da die Ziffernfolge auf jeden
Fall mit einem Null-Byte endet.

- 118 -

6.8.2 Struktogramm zur PRINT USING - Routine

1. Initialisierung
2. Dezimalpunkt vorhanden?
ja nein
Vorkommastellen sichern 4. Endezeichen suchen
3 Endezeichen durch Null Endezeichen durch
ersetzen Dezimalpunkt ersetzen
5. Prifung auf Exponentialdarstellung
nein (Dezimalzahl) ja
neues Endezeichen setzen und dessen Stelle speichern
6. Vorzeichenflag (+) gesetzt?
Jja nein
Vorzeichen + bei positiven Zahlen
statt des Leerzeichens speichern
7. Kommaflag (,) gesetzt?
Ja nein
Punkt gegen Komma austauschen
8. verstimmelte CBM-Dezimalzahl?
Ja nein
in die Form O.###.. bringen
9. richtige Zahl Vorkommastellen?
nein Ja
Ziffernfolge entsprechend verschieben
10. Rest mit Leerzeichen fillen

11.

Ausdruck

- 119 -

6.8.3 ASSEMBLER-Modul "5l-print using" (Cé64, 40/80XX in Klammern):

Teil 1: Initialisierung

- 18125 1da #u3 3 '+'-Zeichen setzen
18127 sta 904
18130 lda #5 ; Vorkommastellenzahl setzen, also
18132 sta 901 3 die Form +#####,.... wahlen
18135 1da #3 ;5 Nachkommastellenzahl wahlen, damit
18137 sta 902 ; endgiltige Form: +####4#,## festlegen
18140 lda #44 ;s Komma-Code setzen
18142 sta 905
18145 1lda #9 ; Anfangsadresse LO von 2pi (Beispiel)

18147 1ldy #227 ; dto. HI

18149 jsr 48034 ;3 MEMFAC holt 2pi nach FAC1

(18149 jsr 52440)

18152 jsr 43708

(18152 jsr 53133)
nop

~(18155 1da #13) ;s RETURN ausgeben mit

(18157 jsr 65490) ; CHROUT, also in nachste Zeile gehen

nop

FLPOUT druckt: 6.28318531

..

Teil 2: Dezimalpunkt suchen
- 18161 1ldx #11 3 Zahler auf 11
18163 dex ;3 Zahler -1
18164 beq 18194 ; Sprung, wenn Zdhler bei 0 angelangt ist
18166 lda 256,x Ziffernzeichen holen und
18169 cmp #46 ; auf Punkt Uberprifen
18171 bne 18163 weitersuchen, wenn kein Punkt gefunden wird

..

..

- 18173 dex Punkt gefunden ---> Zahler erniedrigen
18174 stx 900 ; jetzt ist in (X) die Anzahl der Vorkomma-
stellen, die nach (900) gerettet wird

..

Teil 3: Null bei Dezimalzahl setzen
- 18177 1ldx #11 ; Zahler wieder auf 11 setzen
18179 dex ; Zahler minus 1
18180 lda 257,x Zeichen (von 267 abwarts) laden
18183 bne 18179 ; weiter abwarts zahlen, bis im (A) eine Null
steht (dann wird das Z-Flag geloscht)
18185 1lda #48 Code fur Zahl 0 laden,
18187 sta 257,x ; dort speichern, wo die Null war
18190 bne 18213 ; und den Teil 3 Uberspringen
nop

..

.o

Teil 4:

- 18194
18196
18197
18199
18202

- 18204
18206
18209

Teil 5:

- 18213
(18213
18215

- 18217
18220

- 18222
18225
18226

- 18228
18229
18232
18233
18234
18236

nop

- 18240
18241
18242

- 120 -

Behandlung einer eventuellen Ganzzahl

ldx
dex
beq
lda
bne

lda
sta
stx

#10

18204
257, x
18196

#46
257, x
900

we we we we we

.o

..

Zahler auf 10

Zahler minus 1

Zdhler auf 0 ===> Sprung

Zeichen laden und auf Code O (Endezeichen)
durchsuchen

0 gefunden ---> Punktcode laden

und Code 0 durch Code 46 ersetzen

Zahler (X) enthalt gleichzeitig die Anzahl
der Vorkommastellen ---> retten nach (900)

Endezeichen neu setzen in Abhéngigkeit von der Zahl der
geforderten (drei) Nachkommastellen

lda
lda
bne

lda
bne

ldx
clc
bcc

clc
adc
tax
inx
lda
sta

inx
inx
stx

94
91)
18322

902
18228

900

18234

900

#0

257,x

903

.o

e we ee

we we we e

-e

..

Prifung auf eventuelle Exp.-Darstellung
durch Untersuchen des Exponenten
falls Exponent ungleich Null ===> Drucken

gewiinschte Anzahl Nachkommastellen laden
mehr als 07 ===> weiter

gleich 0 ---> Vorkommastellenzahl laden
und unbedingt die Behandlung
der Nachstellen iberspringen

Nachkommastellen + Vorkommastellen

Summe nach (X)

und um 1 erhohen wegen des Dezimalzeichens
Endezeichen

neu setzen

Z@hler wird spater ab (256) benitzt und
die Schleife beginnt mit DEX

Lange der Ziffernfolge +1 steht jetzt in
(X) und wird nach (903) gerettet

- 121 -

Teil 6: Vorzeichen festlegen

-~ 18245 1lda 904

18248 cmp #43 Vorzeichen '+' vorgeschrieben?

we e

18250 bne 18262 nein ===> weiter
- 18252 1ldx 256 3 jJa ---> Vorzeichen der Zahl holen
18255 cpx #32 5 positiv?

18257 bne 18262 ; nein ===> weiter
— 18259 sta 256 ; ja ---> Vorzeichen '+' speichern

Teil 7: Dezimalmarke setzen

- 18262 1da 902
18265 beq 18280 ; keine Nachkommastellen gewlinscht ==z==z>weiter

- 18267 1da 905
18270 cmp #44 ; Komma gewiinscht?
18272 bne 18280 3 nein ===> weiter

- 18274 1dx 900 3 Anzahl Vorkommastellen
18277 sta 257,x ; Komma statt Punkt setzten
Teil 8: Verstummelung bereinigen

18280 1dx 900
18283 bne 18311

Vorkommastellen laden

welche vorhanden ===)> weiter

- 18285 1ldy 903
18288 dey

Stellung des Endezeichens
als Zahler herrichten
- 18289 dey Schleifenbeginn zur
18290 1da 257,y Verschiebung der Zahl um 1
18293 sta 258,y ; nach oben
18296 tya 3 Schleifenende erreicht?
18297 bne 18289 3 nein ===> weiter verschieben

~ 18299 1da #48 ; Code fir O
18301 sta 257 ; hinter das Vorzeichen setzen

- 18304 inc 900
18307 inc 903
nop

Vorkommastellenzahl jetzt +1
Endezeichen jetzt +1

- 122 -

Teil 9/1: Vorkommastellen iberprifen
18314 sec ; Subtraktion vorbereiten
18315 sbc 900 s gewunschte minus vorhandene VK-Stellen

— 18318 beq 18322 keine Differenz ===> sofort Ausdruck
18320 bcs 18330 ; Differenz festgestellt ===> Ausdruck Uber-
springen und zundchst Teil 9/2 bearbeiten

..

Teil 11: Ausdruck

- 18322 1da #0 ; Zeiger (A/Y) auf
18324 1dy #1 (256) stellen

..

- 18326 jsr 43806 3 STR-0 gibt aus: 6,283
(18326 jsr 47901)
rts ; und Ende

Teil 9/2: Vorkommastellen einrichten

— 18330 clc 3 Addition vorbereiten
18331 adc 903 VK-Differenz plus bisherige Léange
18334 tax als Zahler nach (X)

e we

- 18335 1dy 903 bisherige Lange als 2.Zahler nach (Y)

.o

- 18338 dey 3 Schleifenbeginn
18339 dex ; fur
18340 lda 256,y 3 die Verschiebung
18343 sta 256,x 3 nach oben
18346 tya 3 Ende erreicht?
18347 bne 18338 3 nein ---> weiter verschieben

Teil 10: Fullzeichen
- 18349 dex
18350 lda #32
18352 sta 256,x

sonst (X) als Zahler weiterverwenden
und mit Leerzeichen
nicht belegte VK-Stellen auffillen

..

e we we we

18355 txa Endeprifung
18356 bne 18349 x>0 ===> weiter fullen
18358 beq 18322 ; x=0, also fertig ===> zum Ausdruck

Die hier im ASSEMBLER-Programm noch eingebauten NOPs lassen sich
zum Austesten des Moduls gegen RTS-Befehle umtauschen oder als
BREAK-Points verwenden.

- 123 -

Aufgabe:

Erweitern Sie die PRINT USING-Routine, so daB auch Zahlen in Ex-
ponentialdarstellung als Dezimalzahlen formatiert ausgedruckt
werden.

Aufgabe:

Wandeln Sie die PRINT USING-Routine so ab, daB mit der Formatie-
rung auch eine Rundung erfolgt.

Vorschlag:

~ Nachkommastellenzahl zunachst um 1 vergroBern

Durchlauf der PU-Routine

vor dem Ausdruck die letzte Stelle untersuchen

letzte Stelle groBer/gleich 5 ---> vorletzte erhgohen

(Achtung, wenn vorletzte gleich 9 ?!)

letzte Stelle abschneiden und zum Ausdruck ubergehen

6.9 Ausgabe von Hex-Zahlen (nur 40/80XX)

Aus dem MONITOR der CBM-Rechner (nicht Cé64) lassen sich noch ein
paar brauchbare Ausgaberoutinen stibitzen:

6.9.1 Byte in Hex-Form ausgeben mit BYTOUT

Die auszugebende Zahl muB im (A)-Register bereitgestellt werden.
Nach Aufruf der Routine BYTOUT erscheint die Zahl als zwei-
stellige Hexzahl auf dem Schirm.

Beispiel nur 40/80XX:
Die Zahl 160 soll in Hexform gebracht werden.

ASSEMBLER-Beispiel "52-byte out" (80XX):

- lda #160 ; 160 nach (A)

- Jsr 55074 ; BYTOUT wandelt 160 um in $a0

6.9.2 Vierstellige Hexzahl (Adresse) ausgeben mit ADROUT

Die Zahl muB zerlegt in LO/HI in (251/252) vorhanden sein.

- 124 -

Beispiel nur 40/80XX:
Der Zeiger in (144/145) soll als Hexzahl ausgegeben werden.

ASSEMBLER-Beispiel "53-adressout" (80XX):

- lda 144
sta 251 ; LO Ubertragen
lda 145
sta 252 ; HI Ubertragen
- Jjsr 55063 ; ADROUT gibt aus z.B.: $e455

Das ist Ubrigens der Standard-Einsprung fir
die Interrupt-Routine (IRQ).

Siehe zu diesem Thema auch Abschnitt 10.9!

6.9.3 Iwei Zeichen ausgeben mit OUT2

Iwei Zeichen - druckfahig oder auch nicht - konnen mit dem Ein-
sprung nach 0OUT2 hintereinander ausgegeben werden.

Dazu muBl das erste Zeichen - genauer gesagt, der Code des ersten
Zeichens - nach (X) und der des zweiten nach (A) gebracht werden.
Beide Zeichen werden entsprechend dem ASCII-Code ausgegeben.

Beispiel:
Nach Bildschirm CLR (Code 147) wird der Buchstabe 'X' gedruckt.

ASSEMBLER-Beispiel "S54-zwei ausgaben" (80XX):

- ldx #147 ; Code fir Bildschirm clear
lda #88 ; Code fir 'X'
- Jjsr 55089 ; OUT2 16scht Bildschirm und druckt:X

6.10 Bewegungssimulation - eine KompaBanzeige

Erinnern Sie sich noch an die Programme "Ol-pinsel" und "03-takt-
modul" aus Kapitel 27

Dort haben wir ein Anzeigegerat fir Richtungsanderungen gebaut.
Mit Hilfe dieses sog. Wendezeigers l&aB8t sich nun die KompaBrich-
tung bestimmen, wenn man einen Bewegungsvorgang simulieren will.

- 125 -

Man braucht solche Module immer dann, wenn Orientierungs- oder
Navigationsprobleme bei Fahrzeugen (Flugzeugen, Schiffen usw.)
zu losen sind.

Wir sind schon so weit gekommen, daB wir mit dem Programm "takt-
modul" eine Bewegung digitalisieren kénnen. In unserem Beispiel
haben wir eine Taktfrequenz von 4s~1 (alle 0.25s ein Takt)
gewdhlt. Diesen Wert wollen wir nun den folgenden Uberlegungen
zu Grunde legen. Jetzt sind wir namlich mit Hilfe unserer Arith-
metik- und Ausgaberoutinen in der Lage, eine Bewegung um eine
Achse zu simulieren wund die aktuelle Richtung jederzeit zu be-
stimmen und als KompaBanzeige auszugeben.

Unser Ziel:

- Mit dem Joystick (oder der Tastatur) geben wir die Richtung
vor, in die wir uns drehen wollen, aber auch die Geschwindig-
keit der Drehbewegung.

Nehmen wir einen Wert aus der Fliegerei an, dann entspricht
der Ausschlag von einer Pinselbreite des Wendezeigers einer
Drehgeschwindigkeit von 6 Grad pro Sekunde.

Eine volle Umdrehung (ein Vollkreis) dauert dann genau eine
Minute, eine halbe Umdrehung 30 Sekunden usw.

Anders ausgedrickt: In jeder Sekunde soll sich die Richtung um
plus 6 Grad - also nach rechts - verandern, wenn der Pinsel um
eine Breite nach rechts auf dem Anzeigegerat steht. Steht er
z.B. zwel volle Breiten links, dann andert sich die Richtung in
jeder Sekunde um minus 12 Grad.

- Die Richtung wird in Form einer dreistelligen Zahl als KompaB-
kurs dargestellt:
Dabei gilt: 360 = 000 = Nord

090 = Ost
180 = Sud
270 = West

Nun, konnen Sie schon vermuten, wie wir die Richtung berechnen?
— Zunachst nehmen wir als Ausgangszustand an, dafBl beim Programm-
start die Richtung Nord (=000) gegeben ist.

- Die Stellung des Wendezeigers finden wir 1in der Zeropage-
Adresse (189), wobei 18 die Mittelstellung, 4 voller Linksaus-
schlag und 32 voller Rechtsausschlag bedeutet.

Da

Fu
mi

Je

- 126 -

In vier Schritten bewegt sich der Pinsel um eine Breite nach
links oder rechts, wenn Sie das Programm "Ol-pinsel"” nicht ab-
gewandelt haben. Wir behalten diesen Wert bei (weil er auch bei
den 40/80XX-Geraten brauchbar ist).

Steht z.B. in (180) der Wert 14, dann bedeutet dies, daB eine
Linksdrehung mit genau einer Pinselbreite simuliert wird. Die
KompaBanzeige muBl also pro Sekunde um 6 Grad reduziert werden.

Um links wund rechts gleich von vornherein mit dem richtigen
Vorzeichen zu versehen, subtrahieren wir von der momentanen An-
zeige einfach den Mittelwert 18. Dazu halten wir die Zahl -18
als reelle Konstante K1 im RAM bereit.

mit ist ""geradeaus" = 0O
"l Pinselbreite rechts" = 4
"l Pinselbreite links" = -4
"2 Pinselbreiten links" = -8
usw.
r diesen Wert legen wir eine reelle Zahl an, deren Anfang wir

t STELLUNG bezeichnen.

tzt kann die eigentliche Rechnerei losgehen:

00

01

02

Initialisierungen:

Konstante K1 = -18 ab (17800=$4588)=136/69
Konstante K2 = 0.375 ab (17805=%$458d)=141/69
Konstante K3 360 ab (17810=%$4592)=146/69
Konstante K& = -360 ab (17815=$4597)=151/69

RICHTUNG 0 ab (17820=$%$459c)=156/69
STELLUNG18 = 18 in (180)=(%$b4) aus "Ol-pinsel"
Routine zum Cursoreinstellen auf Zeile 10, Spalte 30.

Subtrahieren wir von STELLUNG18, die vom Wendezeiger ge-
liefert wird, den Wert 18, dann erhalten wir die STELLUNG
des Wendezeigers in der Form, daB 0 "Mitte", negativer Wert
"links" und ein positiver Wert "rechts" bedeutet.

Bei unserer Einteilung bedeutet jeweils 1 Einheit in STELLUNG
eine Richtungsdanderung von 1,5 Grad pro Sekunde, da der
Pinsel seine Richtung in Viertelbreiten andert.

Bei einem Takt von 0.25 Sekunden &andert sich die Richtung also
um DR=0,25 mal 1,5 mal <STELLUNG>.
(DR bedeutet hier "Differenz der Richtung" pro Takt.)

03

04

05

06

.

07

- 127 -

Fassen wir die beiden ersten konstanten Faktoren zusammen,
dann erhalten wir:
DR = 0,375 mal <STELLUNG>

Die reelle Zahl 0,375 halten wir als Konstante K2 in Form
einer reellen Zahl bereit. Sie wird zu Beginn des Programms
im Initialisierungsteil erzeugt werden.

Die neue KompaBrichtung RICHTUNG ergibt sich jetzt ganz
einfach aus der alten Richtung RICHTUNG plus der Rich-
tungsanderung DR:

CRICHTUNG> + DR ----=> <RICHTUNG>

Bevor wir nun unsere gefundene Richtung auf dem Bildschirm
ausgeben, muB die berechnete Zahl RICHTUNG eventuell erst be-
reinigt werden, falls sie nicht im Bereich zwischen 0 und 360
liegt.

Nehmen wir an, die alte Richtung war 0 Grad und die Drehung
erfolgte nach links, dann liegt jetzt eine negative Zahl vor.
Andererseits wird beim Rechtsdrehen schnell der Wert 360 Uber-
schritten.

Fir diese Randbedingungen legen wir nun fest:
falls <RICHTUNG> < 0 , dann RICHTUNG = RICHTUNG + 360
falls <RICHTUNG> >360 , dann RICHTUNG = RICHTUNG - 360

Wir benotigen zum Rechnen demnach eine zweite Konstante mit
dem Wert 360. Nennen wir sie K3. Da sie nicht im ROM
steht, muBl auch sie erst als reelle Zahl erzeugt werden.
IweckmaBigerweise legen wir auch gleich eine Konstante Ka=
-360 an, denn die Addition laBt sich leichter durchfihren als
die Subtraktion.

Die bereinigte Zahl RICHTUNG legen wir dort ab, wo vorher die
alte Richtung stand, denn schon im nachsten Takt wird die neue
zur alten Richtung. Auch hier benotigen wir 5 Bytes mit der
Anfangsadresse RICHTUNG.

Die Bildschirmausgabe der Richtunyg setzen wir neben den Wende-
zeiger.

Dazu wandeln wir den Inhalt von <RICHTUNG> in einen String
um und geben ihn mit STR-0 aus, nachdem wir eine Null als
Endezeichen so gesetzt haben, daB nur eine Integerzahl zum

08

- 128 -

Ausdruck kommt.

Damit nicht eventuelle Reste des vorhergehenden Kurses zu
Falschanzeigen fihren, 1ldschen wir vorher aber grundsatzlich
die bencdtigten drei Bildschirmadressen.

Wen das damit verbundene eventuelle Flimmern stort, das nun
bei konstanter Richtung auftritt, der muB dafir sorgen, da8
in jedem Takt alte und neue Richtung verglichen werden und bei
Gleichheit eben gar kein Ausdruck erfolgt.

Sie werden mit der Ausgabe auf dem Bildschirm wahrscheinlich
noch nicht ganz zufrieden sein, weil der Druckanfang, den wir
vor jedem Ausdruck festlegen missen, immer der gleiche ist,
egal ob es sich um eine ein- oder dreistellige Zahl handelt.
Doch wie man den Cursor positioniert oder wie man eventuell
die PRINT USING-Routine einbaut, das lberlassen wir Ihnen. Wir
haben das bereits besprochen. AuBerdem ist eine Formatierung
durch den Ablauf von Teil 07 schon sehr weit vorbereitet.

ASSEMBLER-Programme "55-kompin" und "56-komprechnen" (Cé64):

00 Initialisierungen "55-kompin"

17500 1ldy #18

17502 1da #0

17504 jsr INTFLP ;3 18 in reelle Zahl

17507 ldx #136

17509 1dy #69

17511 jsr FACMEM 18 ab (17800...17804) ablegen

17514 1da 17801 ; erstes Mantissenbyte holen

17517 ora #128 ;3 und Negativbit 7 setzen

17519 sta 17801 Zahl -18 fertig
nop

17523 ldy #119

17525 lda #1

17527 jsr INTFLP 375 in reelle Zahl

17530 jsr FDIVI1O 3 durch 10 = 37.5

17533 jsr FDIV1O durch 10 3.75

17536 jsr FDIV1O 3 durch 10 = 0.375

17539 ldx #141

17541 1dy #69

17543 jsr FACMEM ; 0.375 ab (17805...17809) ablegen
nop

17547 1dy #104

17549 lda #1

17551 jsr INTFLP ; 360 in reelle Zahl

-e

.o

-e

..

17554
17556
17558

- 17562
17564
17566
17569
17571
17573
17575
17577

- 17581
17583
17585
17588
17589

- 17592
17594
17596
17598
17600

- 17603

ldx
ldy
jsr
nop
lda
ldy
jsr
lda
sta
ldx
ldy
jsr
nop
ldx
lda
sta
dex
bpl
nop
lda
sta
lda
sta
jsr
rts

#146
#69
FACMEM

#104
#1
INTFLP
#128
102
#151
#69
FACMEM

#4
#0
17820, x

17585

#30
CURSPA
#10
CURZEI
CURPOS

- 129 -

360 ab (17810...17814) ablegen

-e

360 nach FAC

..

;s Negativbit im FAC setzen

3 -360 nach (17815...17819)
s Zahler fir 5 Eintréage

; reelle Zahl 0 nach (17820...
5 ...17824)

Spalte 30 wahlen

..

Zeile 10 wiahlen
Cursor positionieren
fertig

.o we e

Fir den 40/80XX ist nur der letzte Teil abzuwandeln (siehe 6.5).

Hauptteil "56-komprechnen"

01 Links/Rechts-Stellung berechnen

- 17120
17122
17124
17127
17129
17131

ldy
lda
jsr
lda
ldy
jsr
nop

189

#0
INTFLP
#136
#69
M-ADD

.

;3 Stellung des Pinsels
3 in reelle Zahl umwandeln

; und -18 addieren (Mitte jetzt 0)

02 Stellung mit Faktor K2=0.375 multiplizieren
17135 1da #141
17137 1dy #69
17139 jsr M-MULT

nop

; mal 0.375

- 130 -

03 zur RICHTUNG addieren

17143
17145
17147

lda
ldy
jsr
nop

04 Bereich 0

0

17151
17153
17154
17156
17158
17160
17163
17164

17167
17169
17171
17174
17175
17177
17178
17180
17182

lda
rol
bcc
lda
ldy
jsr
clc
becc
nop
lda
ldy
jsr
lsr
bne
nop
lda
ldy
jsr
nop

#156
#69
M-ADD ; + alte Richtung

bis 360 fur die RICHTUNG sicherstellen

102 3 Vorzeichen des FAC laden
;s Byte 7 in C-Flag schieben
17167 ;3 positive Zahl ---> Addition lberspringen
#1l46
#69

M-ADD s sonst 360 addieren
17188 ; und 2. Uberpriifung iiberspringen

#146

#69

CMPFAC ; FAC mit 360 vergleichen

Bit 0 in C-Flag schieben

17188 ;5 nicht groBer 360 ===> weiter zu 05

..

#151
#69
M-ADD 3 zur RICHTUNG -360 addieren

5 RICHTUNG abspeichern

17188
17190
17192

ldx
ldy
jsr
nop

06 Ausdruck

17196
17199
17801
17203
17206
17207
17209

17213
17215
17217
17220

jsr
ldx
lda
jsr
dex
bne
jsr
nop
lda
ldy
jsr
jsr

#156
#69
FACMEM 5 RICHTUNG nach (17820...17824)

der Richtung als Ganzzahl
17591 ; Cursorposition

ta ; Zahler auf 4

#32 ;3 Leerzeichen laden

CHROUT ; und ausgeben

17203

17591 3 nochmal Cursorposition einstellen
#156

#69

MEMFAC ; RICHTUNG wieder nach FAC holen
FLPSTR ; und in String wandeln (ab 256...)

- 131 -

- 17223 1ldx #255 Zahler initialisieren
17225 inx Schleifenbeginn fir
17227 lda 256,x s Suche nach
17229 beq 17240 ;s Endezeichen 0 ===> Ausdruck 07
17231 cmp #46 oder Dezimalpunkt
17233 bne 17225 ;5 nicht gefunden ===> Schleifenanfang
- 17235 1lda #0 gefunden ---> Endezeichen 0 setzen
17237 sta 256,x

.o e

we

-e

07 Bildschirmausgabe
17240 jmp STR-0 3 Ausgabe ab (256) bis Zeichen O

Anmerkung zu 07: (Y) steht noch durch FLPSTR auf 1. Daher
braucht der Stringanfang (Y/A) nicht extra belegt werden, zumal
auch (A) den Wert 0 enthalt.

Speichern Sie nun diese Teile insgesamt von (17120) bis (17245)
ab. Wir konnen hier gleich die beiden Einspringe "55-kompin"
bei (17500) und "56-komprechnen" bei (17120) festhalten.

Und jetzt geht es im Baukastensystem mit den Teilen aus Kapitel 2
weiter:

SchlieBen Sie Programmteile "0l-pinsel"” und "02-vorpinsel" je-
weils mit einem RTS ab, entfernen Sie aber vorher die urspring-
lichen Verzweigungen.

Das komplette KompaBprogramm beginnt nun mit dem Setzen des IRQ-
Vektors auf (17000), wo die Routine "0O4-taktmodul" steht, die wir
ab (17000) bis (17040) unverandert ibernehmen.

Als nachstes werden die Initialisierungen fir "Ol-pinsel" und
fir "56-komprechnen" aufgerufen.

Nun beginnt die eigentliche Hauptschleife mit einer Abwandlung
seres Programms "O05-takttest":

ASSEMBLER-Programm "57-taktflag™ (Cé64):

- 17100 1lda 1010 ; Taktflag
17103 beq 17113 nicht gesetzt ===> Ende

- 17105 1lda #0 gesetzt ---> zurilcksetzen
17107 sta 1010

- 17110 jsr 17120
17113 rts

aber "100-komprechnen" anspringen
Ricksprung bei Takftlaqg = O

we oo

Nach diesem Unterprogramm folgt als nachstes der "Ol-pinsel", der

- 132 -

eventuelle Richtungsanderungen aufnimmt.

Den SchluB der Hauptschleife bildet eine kleine Abbruch-Routine,
damit wir das Programm wieder verlassen konnen. Sie fragt das
Tastatur-Byte KEY ab wund bricht bei der Leertaste ab. Damit
andere Programme wieder verninftig laufen, stellen wir den IRQ-
Vektor wieder standardmaBig auf 59953=$ea3l also 49/234=L0/HI.

ASSEMBLER-Programm "58-abbruch" (Cé64):
- 18100 lda #203 KEY
18102 cmp #60 Leertaste?
18104 beq 10109 ja ===> Abbruch
18106 jmp 24518 ; nein ===> Anfang Hauptschleife
18109 sei
18110 lda #49

we we e

18112 sta 788 ;5 IRQ-LO
18115 lda #234

18117 sta 789 ;5 IRQ-HI
18118 cli

18119 rts 3 Ende

Hier noch einmal alles auf einen Blick fir den "kompaB":

ASSEMBLER-Programm "59-kompaB":

01 IRQ-Vektor auf (17000) einstellen:
24500 sei
24501 lda #104
24503 sta 788
24506 lda #66
24508 sta 789
24511 cli

02 Initialisierungen - Vorbereitungen
24512 jsr 16000 s Unterprogramm "02-vorpinsel”
24515 jsr 17500 ;3 Unterprogramm "55-kompin"

03 Hauptschleife:
24518 jsr 17100
24521 jsr 18000
24524 jmp 18100

"57-taktflag" und "56-komprechnen"
"Ol-pinsel"”
"58-abbruch"

e we oo

Gestartet wird "kompaB" mit SYS 24500.

Wir haben die Programmteile durch groBe Licken gut getrennt.
Schieben Sie doch mal alles zur Ubung auf engsten Raum zusammen!

- 133 -

Ubrigens: Wenn alles funktioniert, haben Sie bereits das Herz-
stick eines Simulatorprogrammes fir jede Art von Drehbewegungen
in Handen. Von hier aus kdnnen Sie beliebig weiterarbeiten:

- Nehmen Sie eine bestimmte Geschwindigkeit an, mit der Sie sich
bewegen - oder noch besser: geben Sie diese Uber den Joystick
ein. Vordricken macht schneller, zurickziehen langsamer.

- Sie kd&nnen nun mit Hilfe von x/y-Koordinaten jederzeit den ak-
tuellen Standort =zu einem beliebigen Fixpunkt aus angeben.
Dazu miiBten Sie aber etwas Vektorrechnung beherrschen.

- Auch das Bewegen im dreidimensionalen Raum kann man damit her-
vorragend simulieren.

Wir wollen aber hier den Rahmen mit Spezialit&dten nicht sprengen.

Tifteln Sie ruhig selbst weiter. Es macht unheimlich SpaB - wenn
alles irgendwann einmal so klappt wie vorgesehen.

Bildschirm-Ausgabe-Routinen

Label Cé64 40/80XX

CHROUT(BSOUT) 65490=$ffd2 KERNAL 65490=$ffd2
<A> auf den Bildschirm als ASCII-Zeichen

INTOUT 48589=%bdcd 53123=%cf83
Die Integerzahl wird direkt aus (A/X) mit HI/LO auf
den Bildschirm gebracht.

CURPOS 58732=%e5bc _—
berechnet mit CURZEI und CURSPA Cursorposition

FPOUTX 48599=$bdd7 53133=%cf8d
Cé4: LDY #1 / JSR 48599

FLPOUT 43708=%aabc 53133=$%cf8d
Cé64: Ausgabe <FAC> mit anschlieBendem CR

- 134 -

FLPSTR 48605=$bddd 53139=$cf93
<FAC> ---> String ab (256)

‘STROUT 43813=$ab25 ’ 47908=$bb24
<X>=Stringlange

mit STRADR <34/35> Stringanfang <31/32>

STR-0 43806=%able 47901=%$bbld

{A/Y>=Stringadresse; Ende des Strings: Byte O

BYTOUT - 55074=%$d722
<A> --=> Hex =---> Schirm

ADROUT —-——— 55063=$d717
<251/252> ---> Hex =---> Schirm

ouT?2 -— 55089=$d731
<X> ---> Schirm, <A> ---> Schirm

Adressen

CURZEI 214=%d6 216=%$d8

CURSPA 211=$d3 198=%$c6

ZEIPTR 209/210=%$d1/d2 196/197=%c4/c5

7
Eingabe-ROM-Routinen

- 137 -

7 Eingabe-Routinen

Eingaben werden dem Computer von auBen mitgeteilt. Das bedeutet,
daB irgendwelche Gerate irgendwelche Signale schicken, die in
Byteform - also 8-bitweise - aufgenommen werden.

An dieser Stelle wollen wir nur die Standard-Eingaben besprechen.
Das sind solche, die der Rechner (Uber die Tastatur empfangen
kann. Wie man mit dem Joystick oder ausgewdhlten Tasten eine Ein-
gabe auswerten kann, haben wir auf einfache Weise im Kapitel 2
kennengelernt. Hier geht es nun um die ROM-Routinen, mit denen
man bequem Daten iber die gesamte Tastatur einlesen kann.

7.1 Eingabe eines Zeichens iiber die Tastatur

Um ein Zeichen nach einem Tastendruck in das (A)-Register zu
ibernehmen, steht die ROM-Routine GETIN zur Verfigung, die
komfortablerweise das Zeichen nicht direkt von der Tastatur
holt, sondern den Tastatur-Puffer abbaut.

Wurde kein Zeichen gefunden, so enthdlt das (A)-Register eine O.
Um zu verhindern, daB das Programm einfach weiterlauft, wenn kein
Byte Uber die Tastatur empfangen wurde, missen wir mit einer kur-
zen Schleife wieder zur GETIN-Routine verzweigen.

Erfolgte aber ein "INPUT", dann wird er im (A)-Register zur wei-
teren Behandlung bereitgestellt. Bei wunserem Beispielprogramm
geben wir das Zeichen im Bildschirmcode und mit CHROUT aus.

Beispiel:
Eine beliebige Zahl von Tastaturzeichen sollen nach (A) geholt
und ausgegeben werden.

Ablauf:

- Mehrfacher Aufruf von GETIN

- mit anschlieBendem Ausdruck
Wir geben dabei <A> zunachst mit STA XXXX einfach in den Bild-
schirmspeicher aus.
AnschlieBend verwenden wir unsere Ausgabe CHROUT.

- 138 -

ASSEMBLER-Beispiel "60-getin" (C64):

- 18043 jsr 65508 5 GETIN, ein Zeichen aus Tastatur nach (A)
18046 beq 18043 ; wieder an den Anfang gehen, wenn kein

Tastendruck erfolgte

Bildschirmzeichen fir <A> ausgeben

CHROUT gibt ASCII-Zeichen aus

- 18048 sta 1029
18051 jsr 65490

.o we

-~ 18054 bne 18043 ; zurick zum Anfang der Schleife
.. .Abbruchbedingung ...

..

18060 rts

Starten Sie nun das Programm, dann geht der Rechner erst einmal

in Wartestellung, bis Sie eine Taste driicken.
Das entsprechende Zeichen erscheint dann auf dem Bildschirm, was

noch von GETIN ausgefihrt wird. AnschlieBend erscheint aber
das Zeichen, das dem Bildschirmcode des (A)-Inhalts entpricht.
Wenn genau das Zeichen ausgegeben werden soll, das der Taste ent-
spricht, 1ist diese Art der Ausgabe nicht geeignet. Wir missen
dann z.B. CHROUT verwenden. Dann erfolgt der Ausdruck wie in
BASIC mit CHR$(A).

Wenn Sie Schwierigkeiten haben, den ASCII-Code vom Bildschirm-
Code zu unterscheiden, sollten Sie sich die entsprechenden Ver-
gleichstabellen aus Ihrem Rechnerhandbuch bereitlegen und das
eben besprochene Programmchen "60-getin" laufen lassen.

Wenn Sie eine Abbruchbedingung einbauen, kommen Sie sogar wieder
aus der Schleife heraus:

Nehmen Sie z.B. die Taste "RETURN" als Abbruchtaste her, dann er-
zeugt das in (A) den Code 13. Vergleichen wir also mit diesem
Wert und springen bei Gleichheit zum Befehl RTS.

7.2 Kunstlicher Cursor mit GETIN und BSOUT

Wenn man die GETIN-Routine beispielweise in Textprogrammen
verwenden will, sollte man auf jeden Fall wissen, an welcher
Stelle man sich im Bildschirm gerade befindet.

Die einfachste Moglichkeit ware es, das Cursor-AN/AUS-Flag zu
sezten. Das hat aber den Nachteil, daB immer wieder einzelne Cur-

- 139 -

sorflecken beim Weiterschreiben stehenbleiben, was duBerst lastig
ist.

Eine weitere Moglichkeit besteht darin, sich selbst einen Cursor
zu basteln, der die momentane Position revers darstellt.

Dazu benttigen wir Zeile und Spalte, die ja stets in der Zeropage
mitgefihrt werden.

Zur Wiederholung:

Die Anfangsadresse der Zeile steht beim Cé64 in (209/210) bzw.
beim 40/80XX in (196/197).

Die Spalte finden wir in (211) bzw. (198).

Ablauf:
01 Holen eines Zeichens in das (A)-Register
02 Die momentane Position auf jeden Fall nicht revers darstellen.
Dazu wird das Bit 7 des Codes mit AND #127 geldscht:
Beispiel:
<A> 10110000 , also 176 (Code fir rvs'O')
AND #127 01111111
Ergebnis: <A> 00110000 , also 48 (Code fir '0')
(AND erzeugt immer dann 1, wenn beide Bits 1 sind.)

03 Jetzt wird das geholte Zeichen ausgegeben. Damit erhoht sich
auch die Cursorposition um 1.
04 Die nachste Position muB nun revers ausgegeben werden.
Das geschieht mit ORA #128, also durch Setzen von Bit 7.
Beispiel:
<A> = 00110000 , also 48 (Code fir '0')
ORA #128 10000000
Ergebnis: <A> = 10110000 , also 176 (Code fir rvs'Q')
(ORA erzeugt immer eine 1, auBer wenn zwei Nullen miteinander

verkniupft werden.)
ASSEMBLER-Beispiel "6l-cursorget"” (C64) :

01 18043 jsr 65508 s GETIN holt ein Zeichen aus dem Tasta-
turpuffer nach (A)
18046 beq 18043 ; Warten auf ein anderes Zeichen auBler 0
18048 tax ; geholtes ASCII-Zeichen(!) nach (X) retten

02 18049 1dy 211
18051 1lda (209),y
18053 and #127

momentane Spalte holen
Zeichen aus dem Bildschirm holen
in Normalcode umwandeln und gleich

e we e

- 140 -

18055 sta (209),y ; wieder ausgeben

03 18057 txa geholtes Zeichen wieder nach (A) holen
18058 jsr 65490 s und ausgeben mit CHROUT

..

04 18061 1dy 211 neue Spalte holen
18063 lda (209),y ; neues Zeichen nochmal nach (A), diesmal
aber im Bildschirmcode
18065 ora #128 ; und Zeichen in (A) mit Reversflag versehen
18067 sta (209),y ; jetzt als Reverszeichen ausgeben

..

.

05 18069 bne 18043 3 unbedingter Sprung an den Schleifenanfang

Bitte beachten-Sie:

Ein einfaches Erhohen der Spaltenzahl z.B. mit INY ware nicht
sinnvoll, weil das eine Erhohung bis 255 ermdglichen wiirde,
wahrend die normale Spaltenzahl nur 40 bzw. 80 betragt.

Mit diesem Programm koénnen Sie auf dem ganzen Bildschirm nach
Herzenslust herummarschieren. Der kinstliche Cursor zeigt Ihnen
immer an, wo Sie sich gerade befinden. Allerdings blinkt er nicht
wie gewohnt, sondern erzeugt ein stehendes Bild.

Falls Sie sich gewundert haben, warum wir im ASSEMBLER-Programm
nicht gleich das geholte Zeichen mit STA(209),y ausgeben,
sollten Sie sich noch einmal vor Augen fiihren, daB GETIN das
geholte Zeichen auch gleich in den ASCII-Code umwandelt.

Dadurch konnen auch nicht druckbare Zeichen wie RETURN o.a. ver-
wendet werden.

Eine Ruckumwandlung in den Bildschirmcode ist daher nicht ange-
bracht.

Das obige Programm hat noch kein Zeichen als Abbruchkriterium
definiert wund 1&dBt 1im Ubrigen alle Eingaben zu, also auch RUN/
STOP.

Aufgabe:
Erweitern Sie das obige Programm, so daB sie mit der RETURN-Taste
aussteigen konnen.

Aufgabe: {

Verbessern Sie das Programm, so daB gleich nach dem Start ein
Cursor erscheint wund nicht erst nach Eingabe des ersten Tasten-
drucks.

- 141 -

7.3 Zahleneingabe (reell) mit GETIN und STRFAC

Um Uber die Tastatur Zahlen einzugeben und anschlieBend weiter-
verarbeiten zu konnen, ubernehmen wir die Ziffern mit GETIN,
legen sie zunachst als String ab und wandeln sie dann computer-
gerecht in eine FLP-Zahl um.

Ablauf:

- Festlegen der Anfangsadresse des Strings, in den die Ziffern
eingelesen werden sollen.
Dazu verwenden wir zwei Zeropage-Adressen (LO/HI), um spédter
die 'indirekt-indizierte Adressierung' anwenden zu konnen.

- Holen eines Zeichens mit GETIN.
AnschlieBende Ausgabe mit CHROUT.

- Ablegen des Zeichens bis zum Endezeichen RETURN (Code 13).

— Code 13 durch Code 0 (Stringende) ersetzen.

— Umwandlung des Strings in eine FLP-Zahl.

— Weiterbehandlung z.B. Ausgabe, Abspeichern o.a.

ASSEMBLER-Beispiel "62-getin-zahl" (Cé4):

- 18050 1lda #0 L0 der Stringanfangsadresse (256)

..

18052 sta 60 ; in Zeropage
18054 lda #1 ; dto. HI
18056 sta 61 ; ablegen

nop

- 18059 jsr 65508 GETIN holt ein Zeichen von Tastatur
18062 beq 18059 warten bis Zeichen im Puffer
18064 jsr 65490 ; Zeichen auf Schirm mit CHROUT

we oo

nop
- 18068 ldy #0 ; Index fir indirekte Adressierung
18070 sta (60),y ; lZeichen ablegen ab Adresse 256
18072 inc 60 ; Adresse um eins erhohen, also fir die
nachste Ziffer vorbereiten
18074 cmp #13 ; Ende der Eingabe erreicht?

18076 bne 18059 ;3 nein ===> nachstes Zeichen holen

- 18078 dec 60 ; ja ~--> Adresse wieder eins zurick
18080 lda #0 und Byte 0O -

18082 sta (60),y statt Byte 13 ablegen (Endekriterium)

e we e

- 142 -

- 18084 1lda 60 ; das ist gleichzeitig die Stringlange, die
fur STRFAC in (A) bendtigt wird
18086 ldx #0 ; LO des Stringanfangs nach (X)
18088 stx 34 nach STRADR-LO
18090 1ldx #1 HI

we ee e

18092 stx 35 nach STRADR-HI
18094 jsr 47029 ;5 STRFAC wandelt die Ziffernfolge ab
Adresse (256) in eine FLP-Zahl um
nop

- 18098 jmp 43708 Weiterverarbeitung z.B. Ausdruck

-e

Zur Wiederholung:

Der Befehl STA(60),y legt <A> in die Adresse ab, die sich aus
der Summe <60/61> plus y errechnet. Also <60>+256°<61>+y.

In unserem Beispiel ist <60>=0 wund <61>=1. Der Zahler vy
hat immer den Wert 0, so daB die erste Abspeicherung in 256 er-
folgen muB.

Durch das Erhohen von <60> mit INC 60 bereiten wir die néachste
Abspeicherung vor.

Theoretisch sind jetzt 255 Ziffern mdglich, was recht unsinnig
ist und auch gefahrlich. Denn ab (256) beginnt der Stackbereich,
der zwar von oben nach unten vollauft, sich aber auf keinen Fall
mit unserem String Uberschneiden darf.

Will man dem ganz aus dem Weg gehen, dann wahlt man eben fir die-
se Operationen einen anderen (ungefahrdeten) Bereich im RAM aus.
Wir haben das mit der indirekt-indizierten Adressierung schon
ermoglicht.

Ubrigens: Die Umwandlung erfolgt auch mit der Exponentialdar-
stellung (z.B. 0.5e-08) richtig.

Aufgabe:

Begrenzen Sie die Eingabe auf 10 Ziffern und operieren Sie in
einem anderen Bereich.

Aufgabe:

Falls Sie sich bei der Eingabe der Ziffern vertippen sollten, ha-
ben Sie bis jetzt keine Korrekturmgglichkeit. Bauen Sie eine ein,
indem Sie mit der Taste DEL nicht nur die Ziffer auf dem Bild-
schirm ldschen, sondern auch das letzte Zeichen im String ungil-
tig machen.

- 143 -

7.4 Eingabe mit BASIN

Die ROM-Routine BASIN ist eine recht universelle Eingabe-Rou-
tine, die wir weiter hinten immer wieder verwenden werden.
Sie kann von allen Gerédten Bytes aufnehmen und im (A)-Register
bereitstellen.

Es lohnt sich daher, die Systematik dieses ROM-Programms néher zu
untersuchen.

Wenn der Computer im sog. READY-Modus arbeitet, dann ist die Ta-
statur das Eingabe- und der Bildschirm das Ausgabegerat.

Ruft man nun BASIN auf, dann wird =zunachst einmal nach dem
aktiven Eingabegerdt gefragt. Die Adresse DEVIN (153) bzw.
(175) beim 80XX enthdlt den Wert Null, wenn die Eingabe iber die
Tastatur erfolgt.

Ist dies der Fall - und nur dann -, erfolgt ein Sprung zur Warte-
schleife, die auf einen Tastendruck lauert. Dort wird durch einen
blinkenden Cursor, die aktuelle Bildschirmposition angezeigt und
jede Tastatureingabe einschlieBlich aller Steuerzeichen auf dem
Bildschirm ausgegeben.

Der AbschluB erfolgt erst dann, wenn die RETURN-Taste (Code 13)
ausgelost wurde. Jetzt wird die Bildschirmzeile, in welcher der
Cursor gerade steht, auf Leerzeichen untersucht. Diese werden
ibersprungen wund ein Bildschirmzeiger wird auf das erste Zeichen
der aktuellen Zeile eingestellt. In den Akkumulator (A) kommt
der Code 13. Ein Flag, belegt mit 13 zeigt an, daB die Eingabe
beendet ist.

Ruft man nun wiederum BASIN auf, dann wird das erste Zeichen
der Zeile eingelesen, in der man die RETURN-Taste gedrickt hatte.
Weitere Aufrufe von BASIN holen Zeichen fur Zeichen die Byte-
kette in das (A)-Register. Alle eingelesenen Zeichen werden dabei
in den ASCII-Code umgewandelt, bevor sie im Akku abgelegt werden.
Als letztes Zeichen wird wieder Code 13 Ubergeben. Daran laBt
sich der AbschluB der Eingabe erkennen.

Man kann sich nun dieser Routine bedienen, wenn man iber die Ta-
statur irgendwoher vom Bildschirm eine Zeile lbernehmen will.
Dabei wird komfortablerweise aus einem Bildschirmfenster immer

- 144 -

nur die Zeile bis zum rechten Fensterrand Gbernommen, wenn man
sich mit dem Cursor vorher innerhalb des Fensters bewegt hat.

Die zu Ubernehmende Zeile braucht auch nicht vorher iber die Ta-
statur geschrieben worden sein, sondern kann schon dort gestanden
haben, bevor BASIN aufgerufen wurde. Erst nach dem Dricken
der RETURN-Taste wird die momentane Cursorzeile festgehalten.
Die uUbernommenen Zeichen konnen dann beliebig weiterverarbeitet
werden.

ZweckmédBigerweise stellt man dafir einen Pufferplatz zur Verfi-
gung, der nicht mehr als 80 Zeichen Umfang bendtigt, weil eben
nur zeilenweise eingelesen wird. Von diesem Puffer aus l&aBt sich
nach dem Einlesen alles weitere unternehmen (z.B. Zuweisung auf
eine Stringvariable, Umwandlung in eine Zahl oder andere Auswer-
tungen).

Jetzt wird es Zeit fir ein Beispiel, damit unsere Erkl&drungen
auch nachprifbar werden.

Ziel:
Eingabe eines Textes mit BASIN, Ubernahme in den Bereich ab
(10000) und Ausgabe der ersten 10 Zeichen dieses Strings.

Ablauf:

01 Z&hler fir die Ausgabe festlegen: (X)-Register

02 Aufruf von BASIN.
Erst mit RETURN wird diese Routine abgebrochen. Der Bild-
schirmzeiger stellt sich auf das erste Element der Zeile,
das kein Leerzeichen ist und holt es nach (A).

03 Zeichen aus (A) ab (10000) ablegen, wieder BASIN aufrufen,
da jetzt das nachste Zeichen aus dem Bildschirm geholt wird,
und mit erhdhtem Zahler bei 10000,x ablegen.

04 Solange Zeichen holen, bis der Code fir RETURN auftritt, dann
abbrechen.

05 10 Zeichen aus dem abgelegten String holen. Das entspricht der
BASIC-Routine LEFT$(x$,10).

ASSEMBLER-Beispiel "63-basin" (C64):
01 11000 ldx #0 ;5 Zahler initialisieren

02 11002 jsr 65487 s BASIN holt zundchst Zeichen aus der
Tastatur, nach RETURN aus dem Bilschirm

- 145 -

11005 cmp #13 ; Code fir RETURN ?
11007 beq 11015 ; ja ===> zur Ausgabe
03 11009 sta 10000,x ; nein ---> Zeichen ablegen

11012 inx 3 Zahler erhohen
04 11013 bne 11002 ; und unbedingt zu BASIN springen
05 11015 1lda #16 3 Stringanfang LO
11017 sta 34 3 nach STRADR-LO
11019 1lda #39 ; Stringanfang HI (von 10000)
11021 sta 35 ; nach STRADR-HI
11023 1ldx #10 ; Lange nach (X)

11025 jsr 43813 s STROUT gibt linke Stringseite aus
11028 rts

7.5 Eingabe einer Zeile mit INLINE

Eine ROM-Routine, die aus dem INPUT-Teil des BASIC-Systems ent-
nommen ist, arbeitet sehr komfortabel, wenn es darum geht, ganze
Zeilen Uber die Tastatur einzutippen, zu korrigieren und in eine
Zeichenkette zu lbertragen.

Es ist dies INLINE, das wiederum mehrfach das Unterprogramm
BASIN (Eingabe BASIC-Text) aufruft.

Nochmals kurz zur Routine BASIN:

Ein Zeichen wird Uber die Tastatur nach (A) geholt und in den
ASC-Code wumgewandelt. AnschlieBend erfolgt die Ausgabe Ulber den
Bildschirm. Soweit besteht Identitat mit GETIN, denn auch
BASIN ist ein Teil von dieser Routine.

Allerdings werden solange Zeichen Ubertragen, bis die Taste RE-
TURN gedruckt wird.

INLINE bedient sich durch stédndiges Aufrufen von BASIN dieses
Systems und wartet seinerseits ebenfalls auf die Taste RETURN.
Wurde Sie gedrickt, so wird die Zeile, in der momentan der Cursor
steht, vom Zeilenanfang bis zur letzten Spalte Zeichen fir Zei-
chen aus dem Bildschirm-RAM gelesen und ab Adresse (512) ab-
abgelegt.

Danach erfolgt der AbschluB der Eingabe durch Einsprung in eine
weitere ROM-Routine (FININL), wo alle Flags, Zadhler usw. wieder
initialisiert werden. Unter anderem wird auch das Ende des
Strings mit einer 0 (Byte 0!) markiert.

- 146 -

Gegeniber dem gewdhnlichen INPUT aus dem BASIC, haben wir hier
noch den Vorteil, daB wirklich jedes Zeichen, das in der Zeile
als gedrucktes Symbol darstellbar ist, auch in den String uber-
nommen wird, was ja sonst nicht der Fall ist und mit einem 'extra
ignored error' quittiert wird, wenn man z.B. ein Komma eingeben
wollte.

Ein weiteres Plus dieser Routinenkombination 1ist, daB wir uns
nicht um den Cursor kimmern missen. Er ist hier mit eingebaut und
zwar blinkend.

Die Anwendungsmdglichkeit der genannten Programmteile liegt auf
der Hand: Immer wenn irgendwelche Texte Uber die Tastatur einge-
geben werden sollen, bieten sich INLINE, BASIN und GETIN an.

Beispiel:

Eine beliebig beschriebene oder noch zu beschreibende Zeile soll
per Cursorsteuerung mit RETURN Ubernommen werden.

AnschlieBend werden die einzelnen Zeichen des Strings ab (512)
auf den Bildschirm gebracht.

Dabei 1&dBt sich noch einmal der Unterschied zwischen dem ASC-Code
und dem Bildschirmcode anschaulich vor Augen fihren.

Ablauf:

01 Vorbelegen der Adresse (512) mit dem Byte 0, weil im Falle
einer leeren Eingabe kein Endekriterium gefunden wird und ein
'string too long error' auftritt.

02 Holen der Zeichenkette bei gleichzeitigem Ausgeben der einzel-
nen Zeichen mit anschlieBendem Ablegen ab Adresse (512).

Das wird von der Routine INLINE alles auf einmal besorgt.

03 Ausgabe von "Schirm clear", wenn der AbschluB mit der Taste
RETURN erfolgt ist.

04 Laden der abgelegten ASC-Codes und Ausgabe auf den Bildschirm
mit STA XXXX.

05 Nochmaliges Laden und Ausgeben. Diesmal aber mit CHROUT.

06 Nochmaliges Ausgeben, diesmal aber mit der Routine STR-O,
die alle Zeichen bis zum Erreichen eines 0-Bytes ausgibt.

Die Punkte 04 bis 06 sind lediglich zur Wiederholung und Ubung
eingebaut. Im "Ernstfall" wird hier die gewilinschte Verarbei-
tungs-Routine stehen.

- 147 -

ASSEMBLER-Beispiel "64-inline-out" (C64):

01 18110 1da #0

02

03

04

05

06

07

18112

18115

18120
18120

18124
18126
18129
18131
18134
18135

18138
18140
18143
18145
18148
18149

18152
18154

18157
18159
18161
18164
18165

In einem

chern,

sta
jsr

lda
jsr
nop
1dx
lda
beq
sta
inx
bne
nop
ldx
lda
beq
jsr
inx
bne
nop
lda
jsr

lda
ldy
jsr
clc
bcec

512

42336

#147
65490

#0

512,x
18138
1024, x

18126
#0

512,x
18151
65490
18140

#13
65490

#0
#2
43806

18110

.
b

we ee

Endezeichen vorbelegen
INLINE holt eine ganze Zeile

Code fiur "Bildschirm clear"
Schirm loschen

Zdhler initialisieren

ein Zeichen des Strings holen
Endezeichen erreicht ==z=z> weiter

sonst ab Bildschirmanfang (C64) ausgeben
Zahler erhohen

und zuriick zum Schleifenanfang

Zahler neu setzen

ebenfalls ein Zeichen holen

falls Endezeichen in (A) ===> weiter
sonst mit CHROUT ausgeben

Zahler erhchen

und weitermachen

ein CR ausgeben (Code 13)

L0 der Stringanfangs-Adresse

dto. HI (=512) nach (Y)

Stringausgabe mit STR-0

wenn eine neue Zeile geholt werden soll

Textprogramm wird man den String natirlich erst abspei-

bevor man den nachsten holt.

Wie man ihn in eine BASIC-Variable iibernimmt, behandeln wir dem-
niachst (Kapitel 8).

- 148 -

7.6 Eingabe von Hexzahlen mit HEXINB und HEXINA (nur 40/80XX)

Aus dem Monitorteil der 80XX- und 40XX-Serien lassen sich zwei
Routinen anzapfen, die Zahleneingaben im Hex-Format ermdglichen.

Dabei nimmt HEXINB genau zwei Zeichen, also ein Byte auf und
Ubertragt es in das (A)-Register. Der Bereich ist dementsprechend
beschrankt auf $00 bis $ff, das Dollarzeichen darf nicht mit ein-
gegeben werden.

HEXINA Ubernimmt eine vierstellige Adresse in der gleichen
Weise, legt aber das Ergebnis in (251/252) mit LO/HI ab.
Der Bereich entspricht dem Adressbereich von $0000 bis $ffff.

Dazu wieder ein kleines Anwendungsbeispiel:

Zunachst soll ein Byte in Hexform eingetippt und als Dezimalzahl
ausgegeben werden. AnschlieBend geschieht das gleiche mit einer
vierstelligen Adresse.

Ablauf und ASSEMBLER-Beispiel "65-hex-eingabe" (80XX):

01 jsr 55139 HEXINB wartet auf Eingabe einer zweistelli-

gen Hexzahl und abschlieBendem RETURN

.o

02 tax ; Byte als LOW nach (X)
lda #0 3 0 als HI nach (A), damit ist die Ausgabe einer
jsr 53123 s Integerzahl mit INTOUT vorbereitet

03 jsr 55124 HEXINA wartet auf Eingabe einer vierstelli-
gen Hexzahl mit abschlieBendem RETURN
04 1ldx 251 3 LO aus (251) nach (X)

lda 252 HI aus (252) nach (Y)

jsr 53123 INTOUT druckt die Zahl dezimal

-e

.. we e

- 149 -

Eingabe-ROM-Routinen

Label Cé64 40/80XX
1 1

GETIN 65508=%ffes KERNAL 65508=%ffed
1 Zeichen --=> (A)

BASIN 65487=$ffcf KERNAL 65487=%ffcf
String ---> Schirm ---> einzeln nach (A)

INLINE 42336=$a560 46306=%b4e2
Zeile nach (512)...
nimmt bis zu 80 Zeichen auf

HEXINB —-—— 55139=$d767
Byte in Hexeingabe ---> (A)

HEXINA - 55124=$d754

Adresse(vierstellig) in Hexform ---> (251/252)

8

Verwaltung der Variablen

- 153 -

8 Verwaltung der Variablen

In Maschinenprogrammen, die mit Variablen arbeiten, muB man ent-
weder die Verwaltung dariber selbst kontrollieren - und das er-
fordert diszipliniertes Programmieren und Dokumentieren - oder
aber man bedient sich der BASIC-Routinen und UberlaBt die Organi-
sation dem Betriebssystem.

Insbesondere macht man sich dies bei der Verwendung von numeri-
schen Variablen zunutze, wenn diese nach AbschluB8 eines Maschi-
nenprogrammteils im BASIC-Programm weiterbehandelt werden sollen.
Auch umgekehrt tritt der Fall haufig ein, daB nach einem BASIC-
Vorspann, in dem etliche Variablen belegt werden, diese Werte in
einem Maschinenteil verarbeitet werden sollen.

8.1 Uberblick iiber die BASIC-Variablen

8.1.1 Lage der Variablen im RAM

Normalerweise werden die Variablen in der Reihenfolge, wie sie
anfallen, anschlieBend an das BASIC-Programm angelegt, das ab
2048 (Cé64) bzw. 1024 (40/80XX) beginnt.

Ist kein BASIC-Teil vorhanden, so finden wir in den ersten drei
Adressen (2048) bis (2050) jeweils eine 0. Die erste Variable
wird also beim C64 ab (2051), beim 40/80XX ab (1027) aufgebaut.

In der Zeropage werden stdndig Zeiger mitgefihrt, die den Beginn
und das Ende des Variablenbereichs (das ist auch gleichzeitig der
Beginn der Felder) ausweisen.

Daraus folgt zunachst einmal, daB Maschinenprogramme in den obe-
ren RAM-Bereich gelegt werden missen, wenn die Variablenverwal-
tung von den BASIC-Routinen Ubernommen werden soll. Denn der
Platzbedarf fir die Variablen wachst von unten nach oben an.
(Ausnahme bei den Strings, siehe unten!)

Beispiel:
Liegt ein Maschinenprogramm im RAM von (16000) bis (24000),
so stehen fir die Variablen die Adressen (2051) bis (15999) bzw.

beim 40/80XX (1027) bis (15999) zur Verfigung.

- 154 -

Wer unbedingt sein Maschinenprogramm im unteren RAM-Bereich haben
mochte, der muB die BASIC-Zeiger iber seine letzte Maschinen-
Adresse stellen.

8.1.2 Variablen-Arten

Im CBM-BASIC unterscheiden wir drei Variablenarten:
a) Realzahlvariablen (z.B. x1)
b) Integervariablen (z.B. x2%)
c) Stringvariablen (z.B. x3%)

Alle drei Arten konnen auch in Feldern verwendet werden. Doch
diese Verwaltung wird kaum in Maschinenprogramme ibernommen. Hier
baut man besser eigene Strukturen auf. Beschranken wir uns daher
zunachst auf einfache Variablen.

8.1.3 Struktur der Variablen

Alle Variablen belegen jeweils 7 Adressen im Speicher. Davon ent-
fallen zwei auf den Variablennamen, die restlichen 5 Stellen wer-
den unterschiedlich verwendet.

Reelle Zahlen:

Die ersten beiden Bytes enthalten den ASC-Code fir den Variablen-
namen ohne jegliche Veranderung.

Werden nur einstellige Variablennamen verwendet, so wird das
zweite fur den Namen vorgesehene Byte mit O belegt.

Anschlieflend folgen die 5 Bytes fir den codierten Wert der Zahl.

Beispiel:

Variablenname x1, Zahlenwert 2

88 49 130 O 0 0 0 ...
RS Wert 2 .

Die reelle Zahl 2 wird durch die fiinf Bytes 130/0/0/0/0 in Po-
tenzschreibweise dargestellt, wobei das erste Byte den Exponenten
durch entsprechendes Verschieben (Shiften) der nachfolgenden Man-

- 155 -

tisse angibt. Um recht/links unterscheiden zu kdnnen, geht man
von 128 (=0 Shift) aus. Ist der Exponent nun grdBer als 128, dann
erfolgt die Verlegung des Kommas nach rechts, ist er kleiner wird
das Komma nach links versetzt.

In unserem Fall bedeutet 130, daB das Komma nach zwei Stellen er-
scheint. Im Dualzahlsystem sieht das so aus: 00000010,0000....
Das Bit 1, das hier plotzlich an der zweiten Stelle erscheint,
wurde nirgendwo abgelegt, da es sich hier um eine positive Zahl
handelt. Unser Computer "denkt" sich die Mantisse also zunachst
so (er kann nur binar denken!): ,10000000... und verlegt dann
das Komma um zwei Stellen nach rechts : 10,00000....

Die Mantisse besteht aus 32 (4 mal 8) Bits, wobei das hochste
(ganz links) das Vorzeichen darstellt. Wenn es gesetzt ist,
dann ist die Zahl negativ.

Die Zahl -2 sieht also dann so aus:
130 128 O 0 0 = -00000010,0000...

Beim sog. "Normalisieren" werden die Bits der Mantisse so lange
nach links geshiftet, bis keine Vorkommanullen mehr auftreten.

‘Das mag genlgen. Man braucht sich beim Programmieren eigentlich
nicht darum kimmern, wie die reellen Zahlen aufgebaut sind. Das
kann unser Rechner besser und vor allem schneller.
Vielleicht eins noch: Die Nachkommastellen einer Dualzahl werden
nach unten genau so in Zweierpotenzen weitergerechnet, allerdings
mit negativem Exponenten.

0,1111p hat also den Wert 0+0,5+0,25+0,125+0,0675=0,9425

Integerzahlen:

In den ersten Bytes stehen wieder die Variablennamen. Damit man
die Integerzahl von einer Realzahl unterscheiden kann, wird aber
zu beiden ASC-Codes 128 addiert (Bit 7 gesetzt).

AnschlieBend folgt die Zahl in der Form HI/LO. Die restlichen
drei Stellen werden immer mit O aufgefillt.

- 156 -

Beispiel:
Variablenname x2% Zahlenwert 2

216 178 0 2 0 0 0 ...

Stringvariablen:

Bei den Strings geht es etwas komplizierter zu. In den ersten
beiden Bytes steht ebenfalls der Variablenname, allerdings wird
zur Unterscheidung nur im zweiten Namensbyte das Bit 7 gesetzt
(ASC-Code + 128).

AnschlieBend folgt aber nicht etwa die Zeichenfolge des Strings,
sondern nur eine Beschreibung, namlich die Stringlange (1 Byte)
und die Anfangsadresse des Strings (2 Bytes LO/HI). Diese drei
Bytes werden als String-Deskriptor bezeichnet.

Beispiel:
Variablenname x3$ String: "Beispiel/String"

. e e e

66 179 15 0 8 0 0 ...

Das bedeutet, daB der String 15 Zeichen lang ist und in unserem
Fall ab Adresse (0+8°256)=(2048) mit dem Byte fir "B" be-
ginnt:

<0/8> = <2048> = 194 "B"
<1/8> = <2049> = 69 "e"
<2/8> = <2050> = 73 "i"

8.2 Einrichten einer Variablen

8.2.1 Festlegen des Bereichsanfangs

Wenn nicht mit einem kombinierten BASIC-Maschinenprogramm gear-
beitet wird, empfiehlt es sich, den Variablenbereich zu Beginn
eines reinen Maschinenprogramms selbst festzulegen.

Dazu setzen wir die Zeiger "Beginn der Variablen", "Beginn der
indizierten Variablen", "Ende der Variablen" auf einen von uns
gewdhlten Wert, der in einem RAM-Bereich liegt, der ansonsten von
unserem Maschinenprogramm nicht beridhrt wird.

- 157 -

Beispiel:
Die Variablentabelle soll bei Page 10, also ab ($0a00)=(2560)
beginnen.

ASSEMBLER-Beispiel "66-basic-zeiger" (C64 und 40/80XX):

3 C64 40/80XX .
1 '
01 10000 lda #0
10002 1dy #10
02 10004 sta 45 VARTAB-LO sta 42
10006 sty 46 VARTAB-HI sta 43
03 10008 sta 47 ARYTAB-LO sta 44
10010 sty 48 ARYTAB-HI sta 45
04 10012 sta 49 VAREND-LO sta 46
10014 sty 50 VAREND-HI sta 47

Verwaltet man auch Stringvariablen, kann man das CBM-Konzept bei-
behalten, und die anfallenden Strings vom oberen RAM-Bereich her-
unterwandern lassen. Dazu muB aber das Maschinenprogramm abgesi-
chert sein, was sich mit dem Zeiger fir die RAM-Obergrenze er-
ledigen 1aBt, nennen wir ihn MAXMEM. In erweiterten BASIC-
Versionen existiert der Befehl HIMEM xxxx, mit dem man diese RAM-
Obergrenze festlegen kann.

Beispiel (Fortsetzung):
Maschinenprogramm beginnt auf Page 40, also bei ($2800)=(10240).

. Cé64 40/80XX .
1 1
05 10016 lda #0
10018 l1dy #40
06 10020 sta 55 MAXMEM-LO sta 52
10022 sty 56 MAXMEM-HI sta 53
rts

Werden nun Variablen eingerichtet, so beginnt die erste bei
Adresse (2560) und alle weiteren konnen bis einschlieBlich
(10239) aufgebaut werden. Eventuelle Strings "laufen" den Variab-
len ab (10239) nach unten entgegen. Bei Uberschneidungen wird in
BASIC ein OVERFLOW ERROR ausgegeben. In Maschinensprache hat man
selbst dafir zu sorgen, daB die benotigten Bereiche sauber ge-
trennt bleiben!

- 158 -

8.2.2 Suchen bzw. Einrichten einer Variablen mit PTRVAR

Die Routine PTRVAR durchsucht zunachst den festgelegten Varia-
blenbereich. Dazu muB der Variablenname VARNAM in den Zeropage-
adressen (69/70) beim C64 bzw.(66/67) beim 40/80XX in der Reihen-
folge LO=1l.Variablenname, HI=2.Variablenname vorgegeben werden.

Ist die Variable bereits vorhanden, dann ist das Ergebnis ein
Zeiger, der auf den Anfang der Variablen zeigt. Und zwar nicht
auf den Variablennamen, sondern gleich dahinter auf den Inhalt.
Bei Real- wund Integerzahlen, wird also direkt auf den Anfang der
Zahl selbst, bei Strings auf den Stringdeskriptor gezeigt.
Beim C64 findet man diesen Variablen-Pointer VARADR in (71/72),
beim 40/80XX in (68/69).

Wurde keine Variable gefunden, so wird hinter der letzten vorhan-
denen eine neue angelegt und mit Nullen aufgefillt. Als Ergebnis
erhalt man wie oben den Zeiger hinter den Variablenkopf.

AuBerdem ist in jedem Fall die Adresse der Variablen auch in den
Registern (A/Y) mit LO/HI zu finden, so daB eine Weiterverarbei-
tung beschleunigt durchgefihrt werden kann.

Beispiel:

Die bisher noch nicht vorhandene Variable x soll angelegt wer-
den. Der Variablenbereich beginne bei (2580), also Page 10.
Zur Uberpriifung geben wir die gefundene Anfangsadresse der Varia-
blen sowie den Variableninhalt auf dem Bildschirm aus.

Ablauf:

01 Setzen des Variablennamens VARNAM

02 Aufruf von PTRVAR

03 Retten des Variablenanfangs auf den Stack

04 Ausgabe der Variablenadresse VARADR als Integerzahl

05 Anfangsadresse der Variablen vom Stack holen und Ausgabe des
Variableninhalts als reelle Zahl.

Anmerkung:

Der Inhalt von VARADR muB deswegen auf den Stack gerettet
werden, weil durch die nachfolgende Ausgabe-Routine diese Zero-
pageadressen anderweitig verwendet werden. Da wir aber auch den
Variableninhalt zur Kontrolle ausgeben wollen (Teil 05), legen
wir den Inhalt von VARADR erst einmal auf den Stapel.

- 159 -

ASSEMBLER-Beispiel "67-vrb-zeiger":

01 1da #88 ; Code fir "x"
sta 69 ; Stelle fir 1. Namenszeichen nach VARNAM1
lda #0 3 Null, weil Variablenname nur einstellig ist
sta 70 ; Stelle fir 2. Namenszeichen nach VARNAM2
Anmerkung: Nicht verwechseln mit der Variablen xO0!

02 jsr 45287 3 PTRVAR sucht die Variable x, findet sie
nicht und legt sie neu an
03 lda 71 ; VARADR-LO
pha 3 auf den Stack retten
tax ; und nach (X) Ubertragen (wegen INTOUT)
lda 72 ; VARADR-HI
pha ; auf den Stack retten
04 jsr 48589 3 INTOUT druckt Anfangsadresse von x: 2582
05 pla ;3 HI von VARADR holen
tay 3 und nach (Y) Ubertragen
pla ; LO von VARADR nach (A) holen
jsr 48034 ;3 MEMFAC holt Inhalt von x nach FAC
jmp 43708 ;5 FLPOUT druckt x: O

Anmerkung: Die Anfangsadresse 2582 wird nur dann ausgedruckt,
wenn der Variablenanfang auf (2580) steht und x die erste verwen-
dete Variable ist.

Im RAM-Bereich sieht das nun so aus:
<2580> 88 "x"
<2581> =
<2582> =
<2583> =
<2584> =
<2585> =
<2586> =

O 0o o oo

Die Variable '"x" ist jetzt zwar angelegt, hat aber noch den Wert
Null. Will man sie nun mit einer reellen Zahl belegen, so sind
folgende Schritte notwendig:

06 Laden der gewiinschten Zahl nach FAC1
07 <71> --=> <X> LO der Anfangsadresse VARADR und

<72> ---> <Y> HI der Anfangsadresse ubertragen nach (X/Y)
08 Aufruf der Routine FACMEM

- 160 -

Das Zurickholen aus dem Speicher geschieht entsprechend:

09 <71> --=> <A> LO der Anfangsadresse und
<72> ---> <Y> HI der Anfangsadresse Ubertragen nach (A/Y)
10 Aufruf der Routine MEMFAC

Weitere Informationen zu diesem Thema finden Sie in Kapitel 10.

Label Cé64 40/80XX
1 1

PTRVAR 45287=%$b0e7 49543=%c187
sucht Variable mit 1.Name/2.Name=<VARNAM>

VARNAM1/2 (69/70)=(%$45/46) (66/67)=(%42/43)
Variablennamel/2 fir PTRVAR

VARADR (71/72)=($47/48) (68/69)=($44/45)
dort steht die Anfangsadresse LO/HI der Variablen
nach Aufruf von PTRVAR

TXTTAB (43/44)=(%$2b/2c) (40/41)=(%$28/29)
Zeiger auf Beginn des BASIC-Textes

VARTAB (45/46)=(%2d/2e) (42/43)=($3a/3b)
Zeiger auf Beginn der einfachen Variablen

ARYTAB (47/48)=$(2f/3a) (44/45)=($3c/3d)
7eiger auf Beginn der indizierten Variablen
(Felder=Arrays)

VAREND (49/50)=(%$3b/3c) (46/47)=($3e/3f)
Zeiger auf Ende der gesamten Variablentabelle

MAXMEM (55/56)=($37/38) (52/53)=(%$34/35)

Zeiger auf RAM-Obergrenze

9

Bedienung der Peripherie

- 163 -

9 Bedienung von Peripherie

9.1 Datentransfer uber den IEC- bzw. den seriellen Bus

Die Verbindung zwischen Computer und Peripherie wird bei den CBM-
Geraten meist Uber den sog.IEEE-488- oder kurz den IEC-Bus herge-
stellt. Er mindet 1in eine 24-polige Steckverbindung aus, deren
Leitungen zur Datenibertragung und -steuerung bendtigt werden.

Der Datenbus ist bei den 40/80XX-Geradten 8 Bit breit, d.h. es
kénnen gleichzeitig 8 Bits Ubertragen werden. Damit kann also ein
Byte in einem Takt ibernommen (gelesen) oder {bergeben (ge-
schrieben) werden (parallele Schnittstelle).

Im Gegensatz dazu hat der Cé64 einen seriellen Bus, an dem gewdhn-
lich das Floppy angeschlossen ist. Die Daten werden hier wesent-
lich langsamer Ubertragen, weil hier Bit fir Bit Uber die Leitung
geschoben wird. Das Ubertragene Byte muB also zundchst zerlegt
und im Empfanger wieder zusammengesetzt werden.

Wenn im folgenden Text von IEC-Bus gesprochen wird, so gilt sinn-
gemaB beim C64 das gleiche fir den seriellen Bus, weil beide
analog arbeiten. AuBerdem laBt sich der Cé64 auch auf den IEC-Bus
umristen.

9.2 Umschaltungen des seriellen bzw. des IEC-Bus

Um die gewinschten Daten auch vom richtigen Gerdt an die richtige
Stelle =zu Ubertragen, muB der Computer als "Controller" entpre-
chende Schaltungen vornehmen.

— Dazu bendtigt er in der Zeropage die Gerdtenummer GA des ange-
sprochenen Peripheriegerdts (GA heiBt auch Priméradresse),

- eine Sekunddradresse SA, mit der ein Ubertragungskanal frei-
gesetzt wird

- und eine logische Adresse (auch File-Nummer oder Dateinummer)
LA, mit deren Hilfe er Gerat und Kanal koordiniert.

- le4 -

Im einzelnen sind dies:

Label Cé64 40/80XX .
1 1

LA 184=%$b8 1logische Adresse 210=$d2

SA 185=$b9 Sekundaradresse 211=%$d3

GA 186=¢ba Gerateadresse(Pr.) 212=$%$d4

GETSA - 55599=$d92f

Wdhlt man die Sekundaradresse willkiirlich, so besteht die Gefahr,
daB der dadurch festgelegte Kanal nicht mehr frei ist. Will man
dies vermeiden, so ruft man GETSA auf. Damit wird eine freie
Sekundaradresse geholt und gleich nach SA gebracht. Das ist aber
nur ab BASIC 4.0 moglich. Beim C64 besteht diese Variante leider
nicht.

Zur Erinnerung:
Wenn keine Veranderungen vorgenommen wurden, gelten folgende
Geratenummern bei den CMB-Geraten:

= Tastatur

= Rekorder Nr.l

= RS232 Uber USER-Port bzw.40/80XX: Rekorder Nr.2
= Bildschirm

= Drucker

= Floppystation

@ &S WN~O
]

Logische Adressen sind mdglich von 1 bis 255, wobei ab 128 alle
Ausgaben mit PRINT mit einem Linefeed (Zeilenvorschub) abge-
schlossen werden.

Sekundaradressen widhlen die Datenkandle aus und konnen zunachst
von 0 bis 31 gewdhlt werden. 0 und 1 sind aber z.B. beim Floppy
reservierte Sekunddradressen fir die Lade- und Speichervorgédnge.
Intern werden die Sekundaradressen fir diverse Zwecke wieder ver-
andert. Zum Beispiel wird aus der Sekundaradresse 0 beim Laden
mit ORA #96 die Sekundaradresse 96 (siehe auch Beispiele unten).

Mit Hilfe der Sekundaradressen werden auch die einzelnen Be-
triebsarten der Peripheriegerate - vorzugsweise der Drucker - an-
gewadhlt. Das entsprechende Handbuch ist also hier zu Rate zu zie-
hen, damit es keine Fehlschaltungen gibt.

- 165 -

9.2.1 Datenubernahme mit TALK

Je nachdem, in welche Richtung der DatenfluBl laufen soll, wird
der Bus in einen besonderen Zustand versetzt.

Sollen Daten von auBen - also von Peripheriegeraten - geholt wer-
den, dann muB das entsprechende Gerat, ein Drucker oder das Flop-
py zum "Talker" (Sender) gemacht werden. Das geschieht mit der
Routine TALK.

Nun kann iber einen freien Kanal, der mit Hilfe der Sekundéar-
adresse angewahlt wird, die Ubernahme der Daten erfolgen.
Zu beachten ist, daB in der Zeropage eine Art Kontrollbyte mitge-
fihrt wird, das eventuelle Fehler bei der Dateniibertragung regi-
striert. Es ist das STATUS-Byte oder kurz STATUS. Seine Adresse
ist (144) beim C64 bzw. (150) beim 40/80XX.

Je nach Art des Fehlers wird ein Bit im Status gesetzt. Wichtig-
ste Erkennung ist das Ende einer Datei. Hier wird Bit 5 gesetzt,
STATUS hat also den Wert 64. Eine Ubertragung kann nur erfol-
gen, wenn der STATUS Null ist.

Daraus ergibt sich fir die Vorbereitung der Dateniibernahme von
einem Peripheriegerat folgende Sequenz:

ABLAUF fiir C64 (40/80XX in Klammern):

- lda #0 3 Null
sta 144 (150) ; fur STATUS
- lda 186 ; Gerateadresse GA laden
jsr 60681 (61650) ; Routine TALK
- 1lda SA ; Sekunddradresse laden
jsr 60871 (61763) ; SASENT sendet die Sekundaradresse

AnschlieBend konnen Uber den nun freigelegten Kanal vorbereitete
Daten iUbernommen werden (Beispiele siehe unten).

Nach Beendigung wird mit der Routine UNTALK der Bus wieder in
den Wartezustand versetzt:

- jsr 60911 (61878) ; UNTALK

- l66 -

9.2.2 Datenausgabe mit LISTEN

Analog zur eben besprochenen Dateniibernahme ist die -ausgabe mog-
lich:

ABLAUF fiir C64 (40/80XX in Klammern):

- lda #0 ; Null fir
sta 144 (150) ; STATUS
-~ jsr 60684 (61653) ; Routine LISTEN
— lda SA ;5 Sekundaradresse laden
jsr 60857 (61763) ; und mit SASENL senden
..... Daten ausgeben
— jsr 60926 (61881) ; Beenden mit UNLISN

Beim Cé64 ist zu beachten, daB es zum Senden der Sekundaradresse
zwei verschiedene Einspringe fir SASENX gibt. Abhangig davon,
ob die Routine TALK oder LISTEN vorausging, wird SASENT bzw.
SASENL verwendet.

9.2.3 Beispiel: "68-druckaus" mit LISTEN, BSOUT, CLALL

Der Drucker kann als Empfanger (Listener) von Daten aktiviert
werden, ohne daB ein direktes OPEN ausgegeben wird, wie es in
BASIC z.B. mit OPEN 8,4,8 geschieht.

Allerdings wird neben der Gerdtenummer auch eine logische File-
nummer benotigt.

Die zum Drucker gesendeten Bytes laufen iber den Bus zunachst in
den Drucker-Puffer (falls vorhanden) und werden von dort aus aus-
gegeben.

Dabei ist zu beachten, daB einige Druckgerate die Ausgabe auf Pa-
pier erst beginnen, wenn so viele Bytes empfangen wurden, bis
eine Druckzeile voll wird, oder bis ein Steuerzeichen eintrifft
wie z.B. Carriage Return (Code 13).

Sind alle Daten Ubertragen worden, wird der Drucker wieder deak-
tiviert mit CLALL, was auch UNLISN beinhaltet.

Im folgenden Beispiel bereiten wir den Drucker zur Ausgabe vor
und geben Bytes aus, die wir ab Adresse (20050) bereitgestellt

- 167 -~

haben. Als letztes Byte senden wir Code 13 fir CR, damit die
Ausgabe auf jeden Fall sofort erfolgt.
Die Byte-Leiste entspricht dem Text: "test-AUSDRUCK-123456"

Der AbschluB erfolgt mit CLALL (Erklarung siehe 9.2.9).

ASSEMBLER-Beispiel und Ablauf fiir "68-druckaus" (C64):

01 20000 1da #4 s Geratenummer fir den Drucker z.B. 4
20002 sta 154 3 in DEVOUT bereitstellen

02 20004 sta 186 Geratenummer, auch 4 (=Drucker) nach GA

-e

03 20006 lda #8
20008 sta 185
nop
04 20011 1lda #0 3 Null nach
20013 sta 144 STATUS

Sekundaradresse (hier 8)
in SA bereitstellen

.. e

-e

05 20015 jsr 60684 LISTEN aktiviert das angesprochene Gerat

als Empfanger (hier den Drucker)

..

06 20018 1lda 185 ;s Sekundaradresse aus SA holen
20020 jsr 60857 ; Sekundaradresse mit SASENL senden
20023 nop

07 20024 1dx #0 ; Zahler fir Ausgabe auf Null

20026 1da 20050,x ; Byte von vorbereiteter Leiste holen

20029 jsr 65490 ; und mit BSOUT ausgeben

20032 inx 3 Zahler erhohen

20033 cpx #21 ;s letztes Zeichen erreicht?

20035 bne 20026 s nein ===> weiteres Byte holen und ausgeben

08 20037 jsr 65511
20040 rts

sonst AbschluB8 mit CLALL
und Ende

we ee

Byteleiste ab (20050):

20050 B 84 69 83 84 45 193 213 211 196 210
20060 B 213 195 203 45 49 50 51 52 53 54
20070 B 13

Nach Aufruf mit SYS 20000 fangt der Drucker sofort an zu ar-
beiten und gibt anschlieBend ein CR aus.

- 168 -

Auf diese Art und Weise lassen sich natirlich auch die Steuer-
codes wund alle Umschaltungen des Druckers bewerkstelligen. Ein
Beispiel dazu finden Sie weiter hinten im dem Programm "print-
director", wo wunter anderem auch Tabulatorspriinge programmiert
werden.

Aufgabe:
Versuchen Sie, das Beispiel "druckerausgabe" so umzubauen, da8
Sie Ihren Drucker als "Schreibmaschine" verwenden konnen. Jeder
Tastendruck soll also sofort auf dem Drucker ausgegeben werden
konnen.

Selbstverstandlich ist das nicht sehr komfortabel, wenn man Texte
schreibt, die man verbessern mochte. Aber fir Mini-Schreibarbei-
ten ist das recht nitzlich. Denken Sie nur daran: Wenn man ein
Programmlisting ausgedruckt hat, mochte man gern mal etwas dazu-
schreiben ohne das Papier herauszunehmen oder das Progamm zu
wechseln.

9.2.4 Anwendung: Modul "69-druckex"

Das folgende Modul entspricht in etwa der Losung der eben ge-
stellten Aufgabe. Aber es arbeitet noch etwas komfortabler:
Nach dem Aufruf erhalt man einen blinkenden Cursor wie im READY-
Modus, mit dem man beliebig auf dem Bildschirm herumsausen kann.
Auch alle anderen Cursorsteuerungen wie INST, DEL, CLR, HOME usw.
sowie der Tabulator sind aktiv.

Nach dem Dricken der RETURN-Taste wird nun diejenige Zeile auf
dem Drucker ausgegeben, in der der Cursor gerade steht. Dabei
spielt es keine Rolle, ob der Text schon auf dem Bildschirm
vorhanden war oder gerade erst geschrieben wurde.

Probieren Sie dieses Modul aus und Sie werden es ganz sicher in
Ihr Textprogramm einbauen, denn es ist ideal zum Direktschreiben
von der Computertastatur in den Drucker.

Dafir, daB der Drucker die richtige Schrift hat, missen Sie
selbst sorgen. Sie kdnnen diese Einstellungen vorher vornehmen
oder aber das Modul '"druckex" entsprechend erweitern.

(Siehe dazu auch die Beschreibung zum Modul "printdirector" im
Abschnitt 9.10)

Haupt-ROM-Routine 1ist BASIN, die im Kapitel "Eingabe-Routi-

- 169 -

nen" erklart wurde. Zur Ausgabe verwenden wir LISTEN, BSOUT und
UNLISN.

Machen Sie sich bei dieser Gelegenheit noch einmal mit BASIN

vertraut:

- BASIN holt so lange Zeichen von der Tastatur und gibt sie
auf dem Schirm aus, bis RETURN auftritt.

- AnschlieBend wird das erste Zeichen der aktuellen Zeile in das
(A)-Register geholt. Der Bildschirm ist nun das Eingabegerét.

- Neue Aufrufe von BASIN holen nun Zeichen fir Zeichen aus
dem Bildschirm-RAM.

— Nach dem letzten Zeichen steht 13 im (A)-Register.

Um einmal eine weitere Ubliche ASSEMBLER-Programmier-Art anzubie-
ten, verwenden wir mal die reine LABEL-Schreibweise. Sie hat den
Vorteil, daB man sehr schnell in ASSEMBLER programmieren kann.
Man bendtigt aber zum Eingeben auf diese Weise einen Editor, der
die Labels aufnimmt wund beim Assembliervorgang wieder in Zahler
und Adressen umsetzt.

ASSEMBLER-Programm "69-druckex" - Labelschreibweise:

MEMADR = Anfangsadresse eines freien RAM-Bereichs zum Zwischen-
speichern der eingelesenen Zeile (max. Lange 80)

CR = 13 (RETURN)

DN = Gerdatenummer fir den Drucker

SEKADR Sekunddradresse fir Druckerbetrieb

ABBRUCH = beliebiger ASC-Code, mit dem das Programm beendet wird
z.B. Klammeraffe

Alle anderen Labels sind besprochen und stehen in der Tabelle.

00 DRUCKER EIN lda #4 ; evtl. Geratenummer des Aus-
sta DEVOUT ; gabegerats bereitstellen
01 ANFANG ldy #0 Zahler auf Null
02 EINGABE jsr BASIN
cmp #ABBRUCH
beq 06 ENDE
cmp #CR
beq 03 EINGABENDE
sta MEMADR,y
iny
bne 02 EINGABE
03 EINGABENDE sta MEMADR,y

..

- 170 -

lda #DN

sta LA

sta GA

lda SEKADR

sta SA

lda #0

sta STATUS

jsr LISTEN

lda SA

jsr SASENL

ldx #0 s Zahler auf Null
04 AUSGABE lda MEMADR, x

cmp #CR

beq 05 ABSCHLUSS

jsr OUTBUS (oder BSOUT)

inx

bne 04 AUSGABE
05 ABSCHLUSS jsr UNLISN

lda #CR

jsr BSOUT ; CR auf Bildschirm

clc

bcc 01 ANFANG
06 ENDE jsr UNLISN

lda #3

sta DEVOUT

rts
Auch dieses Modul ist frei verschiebbar, kann also in jedem
freien RAM-Bereich untergebracht werden. Es benotigt in der vor-
gestellten Form ca.80 Bytes Platz.

neue Zeile aufnehmen

.o

evt. wieder Bildschirm als

.. ee

Ausgabegerat bestimmen

Bei der Ausgabe iber den USER-Port kann es - je nach Programmie-

rung des Druckers - notwendig werden, in Teil 0l zus&tzlich das
aktive Gerat in der Zeropage DEVOUT zu notieren:

lda #4

sta DEVOUT

Im letzten Teil 06 wird dann der Bildschirm als Gerat 3 wieder in
Aktion gesetzt, bevor der Ricksprung erfolgt:

lda #3

sta DEVOUT
SchlieBt man die Ubertragung mit CLALL (siehe unten) ab, dann
wird automatisch der Bildschirm wieder als Ausgabegerat akti-
viert. Die beiden gennannten Zeilen entfallen dann.

- 171 -

9.2.5 Vorbereitung von Dateniibertragungen mit OPEN

Wenn Dateien angesprochen werden, dann erfolgt das von BASIC aus
mit dem OPEN-Befehl. Die entsprechende ROM-Routine verlangt ge-
nauso folgende Parameter wie bisher beschrieben:

- logische Adresse in LA
— Gerateadresse in GA
- Sekundaradresse in SA

Zum Ansteuern einer bestimmten Datei (z.B. auf Diskette) werden
jetzt noch bendtigt:

- Anfangsadresse in NAMADR des Dateinamens mit LO/HI

~ Lange des Dateinamens in NAMLEN

Sind die genannten Zeropageadressen belegt, dann kann die Routine
OPEN aufgerufen werden.

9.2.6 Ausgabevorbereitung mit CHKOUT

Wir brauchen wuns wum die richtigen Schaltungen nicht zu kimmern,
wenn wir die OPEN-Routine mit den eben genannten Parametern
aufgerufen haben.

Soll eine Ausgabe auf die gedffnete Datei erfolgen, dann trifft
die Routine CHKOUT die dazu notwendigen Vorbereitungen. Sie
schaltet das Peripheriegerat auf "Empfang", indem sie das STATUS-
Byte auf Null setzt, die Routine LISTEN aufruft und die rich-
tige Sekundaradresse sendet.

Kurz: Das angesprochene Gerat wird als LISTENER aktiviert, so wie
wir das im vorigen Abschnitt '"zu FuB" getan haben.

Wichtig dabei ist, daB CHKOUT nur dann wirksam werden kann,
wenn die Datei gedffnet 1ist. Dann stehen namlich in der sog.
File-Tabelle die Parameter der angesprochenen Datei. Sie werden
automatisch gefunden, wenn vor dem Aufruf von CHKOUT das X-
Register mit der logischen Adresse der jenigen Datei belegt wird,
die man ansprechen will.

- 172 -

Damit ergibt sich folgender Ablauf:

|

O0ffnen einer Datei auf das gewiinschte Gerdt mit OPEN.

Ubergeben der logischen Adresse LA ins (X)-Register, und Aufruf
der Routine CHKOUT.

- entsprechende Ausgaben wie BASIC-PRINT, also mit BSOUT o.a.
SchlieBen der Datei mit CLOSE.

9.2.7 Eingabevorbereitung mit CHKIN

Entsprechend 148t sich der Bus auch auf 'Eingabe' schalten. Das
bedeutet, daB alles was sonst Uber die Tastatur erwartet wird,
nun vom IEC-Bus aufgenommen wird. Es lieBe sich also z.B. eine
weitere Tastatur oder dhnliches iber den Bus bedienen.

Der Ablauf ist gleich wie oben. Lediglich die Routinen CHKOUT und
BSOUT missen durch CHKIN bzw. BASIN ersetzt werden.
Kurz: Das angesprochene Gerat wird als TALKER (Sender) aktiviert.

9.2.8 Standard-Ein/Ausgabe herstellen mit CLRCH

Um den Bus wieder in den Normalzustand zu versetzen, so daB die
Tastatur (Gerat 0) das Eingabegerdt und der Bildschirm (Gerat 3)
das Ausgabegerat ist (wie z.B. im READY-Modus), springen wir die
Routine CLRCH (Standardbus) an.

Eventuell noch geoffnete Dateien werden dabei allerdings nicht
automatisch geschlossen. Sie konnen aber gedffnet bleiben. Bei
mehreren Hin- und Herschaltungen des Busses muB man dabei selbst
den Uberblick behalten.

IweckmaBigerweise o6ffnet man eine Datei zu Beginn eines Programms
und schliefit sie erst vor dem Ricksprung in das aufrufende Pro-
gramm, so daBl bei der Unterprogrammtechnik keine 'file not/open'-
Fehler auftreten konnen.

9.2.9 Dateien schlieBen mit CLALL

Auch bei der Umschaltung mit CLRCH (clear chanels) bleiben die
Dateien offen. Um samtliche noch offene Files auf einmal ord-
nungsgemal abzuschlieBen, wird die Routine CLALL aufgerufen. Wir
haben sie vorhin schon ein paarmal verwendet.

- 173 -

9.2.10 SchlieBen einer Datei mit CLOSEA und CLOSEL

Entsprechend dem BASIC-CLOSE werden nicht mehr bendtigte Dateien
abgeschlossen, wenn man das (A)-Register mit der logischen
Adresse belegt und anschliefend die ROM-Routine CLOSE aufruft.
Verwaltet man nur eine einzige Datei und hat man die Zeropage-
Adresse LA (siehe oben) nicht verandert, dann kann man sich
das Laden ersparen und springt einen Befehl weiter hinten im ROM
ein bei CLOSEL. Beim Cé64 ist dies allerdings nicht mdglich.

Die CLOSE-Befehle bewirken auf jeden Fall, daB die zugeordneten
Fileparameter in der Filetabelle geldscht werden.

Daraus folgt, daB nach dem SchlieBen einer Datei die Vorberei-
tungsroutinen CHKIN oder CHKOUT nicht mehr richtig arbeiten
kénnen. Sie werden erst wieder nach dem erneuten Offnen der ge-
winschten Dateien wirksam.

9.3 Vereinfachungen zur Dateibehandlung

Wenn man in einem Programm mehrere Dateien offen halt, um sie
im Wechsel zu bearbeiten, kann man bei den CBM-Rechnern bis maxi-
mal 3 Files (80XX:10) geoffnet lassen.

Jedesmal, wenn ein Gerat angesprochen wird, missen dafir Gerate-
und Sekundaradresse sowie die logische Adresse gesetzt werden.
Nach dem OPEN-Befehl fihrt der Rechner aber selbstandig Tabellen
fir jede noch offene Datei und kann selbstdndig Geratenummer und
Sekundaradresse bereitstellen, die er anhand der logischen
Adresse findet.

Dazu stellt man die logische Adresse LA im (A)-Register bereit
und ruft zunachst die Routine SUFTAB (suche Filedaten in der
Tabelle) auf.

AnschlieBend wird durch SETTAB (setze Tabellendaten) das Be-
reitstellen von logischer Adresse (LA), Gerateadresse (GA) und
Sekundaradresse (SA) in die dafir vorgesehenen Zeropage-~Adressen
besorgt.

Nach wie vor muB aber noch das Uber die gedffnete Datei angespro-
chene Gerdt als "Talker" oder '"Listener" aktiviert werden.

Das eben besprochene Verfahren ist dem BASIC-System entnommen.

- 174 -

Erinnern Sie sich: Um z.B. den Drucker anzusprechen, befehlen
Sie OPEN 2,4,8. Spater schreiben Sie nur noch z.B. PRINT #2,...,
geben also nur nochk die logische Adresse (File-Nummer) an. Der
Rechner findet nun das richtige Gerat (Nummer 4) und den richti-
gen Befehlskanal (iber Nummer 8).

Und genau diese Such- wund Setzroutinen SUFTAB und SETTAB
verwenden wir fir unsere ASSEMBLER-Programme auch.

Entsprechendes gilt natirlich auch fir die Benitzung der Routinen
CLOSEX.

Hier zunachst die wichtigsten ROM-Routinen und Adressen:

Label Cé64 40/80XX .
) '

NAMLEN 183=%b7 209=%d1

NAMADR 187/188=%bb 218/219=%da/db

STATUS 144=%$90 150=$96

OPEN 62282=%f34a 62819=$f563

SUFTAB 62223=%f30f 61245=%f2cl

SETTAB 62239=$f31f 62157=%$f2cd

CLOSEA 62097=$f291 62178=%f2e2

CLOSEL -—- 62176=%f2e0

Gemeinsame KERNAL-Routinen:

CHKOUT 65481=$ffc9
CHKIN 65478=$ffcé
CLRCH 65484=$ffcc
CLALL 65511=$ffe7

9.4 Behandlung von Dateien

Verarbeitet werden zwei Arten von Dateien: die sog. sequentiellen
Dateien, wo die Bytes in laufender Folge geschrieben oder gelesen
werden und die sog. relativen Dateien, die einen wahlfreien Zu-
griff auf eine beliebige Stelle innerhalb des Files ermdglichen.
Programme fallen unter die Rubrik sequentiell. (Siehe auch 9.5.2)

- 175 -

AuBerhalb dieser von BASIC vorgegebenen Dateien lassen sich in
Maschinensprache beliebige andere Strukturen erstellen, was sich
aber fir den Hausgebrauch selten lohnt.

Zur Vereinfachung der Programmierarbeiten empfiehlt es sich, das
File-Konzept des Betriebssystems beizubehalten. Damit lauft die
Dateibehandlung entsprechend der BASIC-Logik ab:

- Offnen der Datei
mit logischer Adresse LA, Geradteadresse GA, Sekundaradresse
SA und dem Dateinamen FILNAM.

- Datentransfer:
Eingabe(Lesen) oder Ausgabe(Schreiben)

- SchlieBen der Datei

In den folgenden Abschnitten schauen wir uns an Hand eines Bei-

spiels diese drei Punkte genauer an und erklaren dabei den Ein-
satz der ROM-Routinen.

9.5 Arbeiten mit SEQ-Dateien

9.5.1 Offnen einer SEQ-Datei

Um eine Datei ansprechbar zu machen, missen folgende Werte uber-
geben werden:

~ Logische Adresse LA (frei zwischen 1 und 255)

— Sekunddradresse SA (von 2 bis 31)
Nummer 15 stellt den sog. Befehls-(oder Kommando-)kanal dar,
iber den die Befehle an das Disk-Operating-System gesandt
werden.
0 und 1 dagegen sind reserviert fir Laden und Speichern.

- Geratenummer GA

— Dateiname bzw. seine Lange NAMLEN und Anfangsadresse NAMADR

Wahlt man die Sekundaradresse willklirlich, so besteht die Gefahr,
daB der dadurch festgelegte Kanal nicht mehr frei ist. Will man
dies vermeiden, so ruft man GETSA auf. Damit wird eine freie
Sekundaradresse geholt und gleich nach SA gebracht (nicht Cé64).

Beim Dateinamen gilt aber zu beachten, daB er nicht nur aus dem

- 176 -

eigentlichen Namen besteht, sondern immer einen Zusatz enthalten
muB, der auf die Art des Zugriffs hinweist. Das ist deshalb er-
forderlich, weil das DO0S (Disk-Operating-System) sonst nicht
weiB, wie die Datei zu behandeln ist.

Bei den SEQ-Dateien sind folgende Angaben mdglich:

"w" (Code 87) fir erstmaliges Schreiben in die Datei (Anlegen)
"a" (Code 65) fir Weiterschreiben (wie BASIC APPEND)
"r" (Code 82) fir Lesen (read)

Zu beachten ist, daB eine bereits vorhandene Datei nicht noch
einmal mit "w" anzusprechen ist, wenn sie beschrieben werden
soll, sondern immer mit "a".

Der Name muB also folgende Form haben (Beispiel fir SEQ-Datei
mit der Bezeichnung "test"):

"O:test,w" fir Anlegen der Datei und erstmaliges Schreiben
"O:test,a" fir fortlaufendes Weiterschreiben, wobei die neuen
Daten an die bestehenden angehangt werden.

"O:test,r" fir Lesen aus der Datei, wobei immer von Beginn der
Datei an gelesen wird.

Auf diese Weise wird allerdings immer das Laufwerk 0 angespro-
chen. Will man auf Laufwerk 1 zugreifen, dann muB vor den Namen
eine 1 und ein Doppelpunkt gesetzt werden. Laufwerk 0 1aBt sich
ebenfalls auf diese Weise kennzeichnen.

Beispiel: "l:test,r" bedeutet Laufwerk 1, Datei "test" zum Lesen

Nachdem nun der Dateiname noch weitere Angaben enthalt, die der
Floppy mitgeteilt werden missen, spricht man nun von einem Be-
fehlsstring. Kirzen wir ihn ab mit BF1.

Dieser Befehlsstring wird in BASIC erst einmal zusammengebaut aus
den Parametern der BASIC-Zeile und danach ab (850) abgelegt.
Wir konnen ihn aber an jede beliebige RAM-Stelle schreiben und
haben ihn somit jederzeit griffbereit. Er wird dann auch nicht
iberschrieben, wenn z.B. eine andere Datei angesprochen wird.

- 177 -

Beispiel: Befehlsstring anlegen

Wir bereiten einen Befehlsstring ab (20580=$5084) vor mit der
Form: "O:test,w"

- 20580 48 "Q"
20581 58 "M
~ 20582 84 "t"
20583 69 "e"
20584 83 "s"
20585 84 "t"
- 20586 44 ","
20587 87 "w"

Damit hat er die Anfangsadresse NAMADR=(100/80) und die Léange
NAMLEN=8

ASSEMBLER-Beispiel "70-seq-open": (ffnen der Datei "test"
(Adressen fur Cé64)

- 20500 lda #5 ; logische Adresse LA
20502 sta 184 3 nach LA

- 20504 1lda #6 ; Sekundaradresse 6 (Beispiel!)
20506 sta 185 ;s nach SA

- 20508 1lda #8 ; Gerateadresse 8 (Floppy)

20510 sta 186 3 nach GA

- 20512 1da #100 ; LO von Befehlsstring-Anfang
20514 sta 187 ; nach NAMADR-LO
20516 lda #80 HI von Befehlsstring-Anfang
20518 sta 188 nach NAMADR-HI

- 20520 1lda #8 Lange des Befehlsstrings
20522 sta 183 nach NAMLEN

- 20524 jsr 62282 OPEN o6ffnet die Datei
20527 rts

we we we we we

9.5.2 Beispiel: Schreiben mit CHKOUT und BSOUT

01 Um in die Datei zu schreiben, missen die entsprechenden Kandle
"freigelegt" werden. Das besorgt die ROM-Routine CHKOUT.
Sie bereitet den IEC-Bus als Listener vor, sorgt dafir, daB
das richtige Gerat und die richtige Datei angesprochen werden
und die Daten den richtigen Weg nehmen.

- 178 -

Voraussetzung dafir ist, daB die gewlinschte Datei (noch) offen
ist.

Die ROM-Routine CHKOUT bendtigt im (X)-Register die logi-
sche Adresse (Filenummer). Mit deren Hilfe kann sie aus einer
in der Zeropage gefiihrten Tabelle die richtigen Zuordnungen
treffen.

02 Die Routine BSOUT, die wir schon als CHROUT kennengelernt
haben, 1ist vielseitig einsetzbar. In unserem Fall gibt sie
das im (A)-Register befindliche Zeichen (ber den aktiven
Kanal, also Uber den Bus an das Floppy aus.

03 Als AbschluB missen.die Kanale wieder in den Standard-Zustand
versetzt werden, was die Routine CLRCH besorgt. Damit ist
wieder die Tastatur als Talker und der Bildschirm als Listener
aktiv.

ASSEMBLER-Beispiel: "71-seq-write" (C64 und 80XX):

01 20530 1ldx #5 ; Filenummer (zu obigem Beispiel)
20532 jsr 65481 s CHKOUT Ausgabe-Vorbereitung
02 20535 1dy #4 ; Zahler (Beispiel) fir 4 Datenbytes
20537 1lda 20581,y ; Laden eines Zeichens
20540 jsr 65490 3 BSOUT gibt Zeichen auf BUS
20543 dey ; weiterzahlen
20544 bne 20537 s Ende erreicht? nein ---> weitere Ausgaben
03 20546 jsr 65484 s ja ---> CLRCH Standard-Ein-Ausgabe

20579 rts wieder herstellen

..

In unserem Beispiel geben wir das Wort "test", das wir vorher ab-
gelegt haben, als Datenkette aus.

Voraussetzung fir das Funktionieren dieses Teils ist natirlich,
daB der Offnungsteil aufgerufen wurde.

9.5.3 Beispiel: SEQ-Lesen mit CHKIN und BASIN

Um aus der Datei "test" zu lesen, muB sie - wie oben erwahnt -
mit dem Befehlsstring "l:test,r" gedffnet worden sein.

01 Die Routine CHKIN bereitet entsprechend die Eingabe vor.
Die Voraussetzungen sind die gleichen wie bei CHKOUT.

- 179 -
02 BASIN holt ({iber den aktiven Kanal ein Zeichen in das (A)-
Register.

03 Als AbschluB erfolgt wieder der Aufruf von CLRCH.

ASSEMBLER-Beispiel "72-seq-read" (C64 und 80XX):

01 20552 1dx #5 3 Filenummer nach (X)
20554 jsr 65478 ; CHKIN bereitet Eingabe vor

02 20557 1ldy #3 ; Zahler auf 3 (Beispiel fir 3 Daten)
20559 jsr 65487 ; BASIN holt Datenbyte nach (A)

20562 sta 899,y ; Byte ablegen

20565 dey ; weiterzahlen

20566 bne 20559 ;3 Ende erreicht? nein ===> weiter einlesen
03 20568 jsr 65484 ;3 ja ——-> CLRCH Standardzustand
04 20571 1lda #132 5 LO von (900)

20573 1ldy #3 ; HI von (900)

20575 jsr 43806 ;5 STR-0 gibt den String aus: "est"

(20575 jsr 47901)

20578 rts

Wir haben die Daten in unserem Beispiel gleich weiterverarbeitet
und zur Kontrolle ausgedruckt. Das Nullbyte als AbschluB des
Strings ist zunachst vorhanden, wenn ab (900) vorher keine ande-
ren Operationen stattgefunden haben.

9.4.4 Beispiel: SchlieBen der Datei mit CLOSEA oder CLOSEL

Wird die Datei nicht mehr gebraucht, muB sie geschlossen werden.
Dazu bendtigen wir wieder die logische Filenummer, diesmal aber
im (A)-Register. AnschlieBend erfolgt der Aufruf von CLOSE.

ASSEMBLER-Beispiel: "73-close file" (C64 und 80XX):

- 20590 1lda #5 ; Filenummer von "test"
20592 jsr 62097 ; CLOSEA
(20592 jsr 62178)
20595 rts

oder - wenn das aktuelle File aus LA geschlossen wird:
- 20590 jmp 62176 3 CLOSEL (nicht fir Cé64 geeignet)

- 180 -

9.5.5 Verkniipfen der SEQ-Routinen

Wenn Sie alle vier vorangegangenen ASSEMBLER-Programme eingegeben
haben, kénnen wir zum Ausprobieren schreiten.

Zunachst erstellen wir eine kleine Sprungleiste zum Neu-Anlegen
der SEQ-Datei '"test". Erinnern Sie sich: Das "w'" muB hinter den
Dateinamen gesetzt werden?

ASSEMBLER-Beispiele "74-seq-rout" (allgemein):

01 20600 1da #87 ; Code fir "w"
20602 sta 20587 in den Befehlsstring einbauen
20605 jsr 20500 Unterprogramm "65-seq-open"
20608 jsr 20530 Unterprogramm "66-seq-write"
20611 jmp 20590 Unterprogramm "67-close file"

e we we we

Rufen Sie SYS 20600 auf. Sie erkennen am Inhaltsverzeichnis, daB
die sequentielle Datei "test" angelegt worden ist.

Zum Weiterschreiben gehen wir &hnlich vor, allerdings ist das
Zeichen "a" im Befehlsstring erforderlich:
02 20615 lda #65 ; Code fir "a"

20517 sta 20587 3 einbauen

20520 jmp 20605 3 und zum Schreibprogramm springen
Nach dem Aufruf wird noch einmal das Wort "test" in die Datei
"test" geschrieben, so daB jetzt enthalten ist: "tsettset", weil
wir beide Male mit dem letzten Buchstaben zu schreiben angefangen
haben.
Wiederholte Aufrufe (SYS 20615 o.4.) schreiben immer wieder diese
vier Zeichen an die bereits bestehenden.

Jetzt kommt die Probe auf das Exempel: Wenn alles glatt gegangen
ist, konnen wir nun auch aus der Datei wieder alles oder einen
Teil herauslesen, wie es uns beliebt.

03 20625 lda #82 ; Code fir "r"
20627 sta 20587 in .den Befehlsstring einbauen
20630 jsr 20500 Unterprogramm "file open"
20633 jsr 20552 Unterprogramm "seq-read"
20636 jmp 20590 Unterprogramm '"close file"

e we we oo

- 181 -

Nach dem Aufruf erscheinen die Buchstaben "est", wenn "seqg-read"
unverandert Ubernommen wurde.

Probieren Sie nun mal die Programme durch mit verschiedenen Namen
und Zeichenlangen. Verwenden Sie auch mal Trennzeichen beim
Schreiben und beobachten Sie die Ausgabe!

Wenn Sie wollen, konnen Sie auch Programme auf diese Weise ab-
speichern. Allerdings sind solche Programmdateien mit "seq" ge-
kennzeichnet und konnen auch nicht mit LOAD oder DLOAD geladen
werden, weil der Zeiger am Anfang der Datei fehlt. (Siehe dazu
Kapitel 11).

Man kann allerdings solche maskierten Programme mit Hilfe der
Lese-Routine an eine beliebige Stelle laden und dann als Programm
aufrufen. Solche "iblen" Tricks sind oft Ansatzpunkte zum Schutz
gegen allzu rasche Einsicht in ein Programm.

Versuchen Sie also auch mal das Speichern und Laden auf diese
Weise!

9.6 Arbeiten mit REL-Dateien - Schreiben/Lesen mit BSOUT/BASIN

Den Vorteil, daB man auf jeden Record einer Datei - und hier wie-
der auf jede Position - zugreifen kann, konnen wir auch in Ma-
schinensprache wahrnehmen.

9.6.1 REL-Dateien auf dem Cé64

Da die meisten C64-Besitzer noch nie mit REL-Dateien gearbeitet
haben, weil das BASIC 2.0 dies nicht so ohne weiteres vorsieht,
hierzu die wichtigsten Erlauterungen:

REL-Dateien lassen sich mit Karteik&dsten vergleichen. Jede Karte
(Record) ist nummeriert (Recordnummer) und hat Platz fir eine be-
stimmte Menge an Eintragen (Recordlange = Anzahl Bytes/Record).
In jedem Karteikasten (REL-Datei) befinden sich nur Karten von
gleicher GroBe (Recordlange). Dabei ist es unerheblich, ob und
wieviele Eintrage auf den Karten vorgenommen wurden. Der Inhalt
jeder Karte (Record) kann beliebig oft beschrieben, gelesen oder

- 182 -

verandert werden. Auch neue Karten kdonnen aufgenommen werden
(max. 65535 Records).

Der Vorteil dieser REL-Dateien ist, daB wir unserem "Sekretar"
Auftrdage erteilen konnen wie:

Lies vor, was in Karte (Record) 10, ab Buchstabe (Byte) 20 steht!
oder
Andere das 23.Zeichen von Record 12: statt "w" schreibe "r"! usw.

Wenn wir wollen, konnen wir mit Hilfe von Trennzeichen (z.B.
Komma, Strichpunkt, CR, Doppelpunkt usw.) jede Zeichenfolge in
einzelne Worter zerlegen oder das Ende eines Records mit einem
Zeichen (z.B. 255) markieren und damit die Records strukturieren.

In SEQ-Dateien ist letzteres zwar auch mdglich, jedoch besteht
die ganze Datei praktisch nur aus einem einzigen Satz -allerdings
von beliebiger Lange. Beim Lesen muB man immer wieder ganz von
vorn anfangen, beim Schreiben kann man lediglich hinten etwas
dranhangen (Appendix=zAnhang). Fehler lassen sich nicht ohne wei-
teres ausbessern. Man kann hochstens die gesamte Datei noch ein-
mal abgeandert anlegen.

Damit erkennen wir den Vorteil der REL-Dateien sofort: Es ist
der Zugriff nach freier Wahl, sowohl beim Schreiben als auch beim
Lesen. Der Nachteil: Es wird mehr Platz auf der Diskette bean-
sprucht.

Die Verwendung von REL-Dateien liegt auf der Hand: Immer dann,
wenn Daten h&ufig gedndert oder ergdnzt werden missen und die
einzelnen Datensadtze durchnummeriert sein sollen.

Fir REL-Dateien gilt:
- Jeder Record kann max. 254 Zeichen fassen.
- Es sind max. 65535 Records moglich.

Das BASIC des Cé64 kennt zwar keine Befehle zur REL-Datei-Verwal-
tung. Jedoch kann das am meisten beniitzte Floppy 1541 durchaus
REL-Dateien verarbeiten.

Mit ein paar Vorbereitungen sollte es uns also gelingen, die
notwendigen Befehle zu erarbeiten und richtig anzuwenden.

Im Gegensatz zu seinen groBeren Bridern gibt es beim Cé64 ein
paar Punkte mehr zu beachten:

- 183 -

— Der Cé64 kann jeweils nur eine REL-Datei gedffnet halten. Bevor
mit einer zweiten gearbeitet wird, muB die erste ordnungsgem&B
abgeschlossen worden sein.

Das heiBt, daB wir die logische Adresse nicht variabel halten
missen. Wir legen sie fir unsere Arbeit hiermit willklirlich auf
Nr.5 fest.

- Die Befehlsstrings 1 wund 2 haben das gleiche Format wie in
9.5.1 beschrieben. Sie sollten aber beim C64 Uber zwei OPENs
ausgegeben werden.

Der 2. Befehlsstring muB aber unbedingt Gber den Befehlskanal
Nr.15 (Sekundaradresse #111) gesendet werden.
Als logische Adresse verwenden wir in unserem Beispiel Nr.2.

- Beide Eroffnungen (mit LA=5 und LA=2) sollten erst beim Ab-
schluB aller Schreib/Lese-Vorgange geschlossen werden. Wird der
Befehlskanal zu frih geschlossen, kann es Floppy-Probleme
geben.

- Zur Ein- bzw. Ausgabe der Bytes verwenden wir die Routinen
CHKIN/BASIN bzw. CHKOUT/BSOUT. Ein Zergliedern wie wir es bei
dem REL-Beispiel fir den 80XX getan haben, um moglichst viel
Zeit einzusparen (STATUS,LISTEN,SASEND,OUTBUS...) ist beim Cé64
mit etwas mehr Aufwand verbunden und spart daher so gut wie
keine Zeit mehr ein.

— Als AbschluB der Ein/Ausgaben verwenden wir CLRCH.

- Wahrend das Einrichten einer REL-Datei mit BASIC 4.0 und den
groBen Floppys automatisch mit dem Beschreiben des ersten Re-
cords problemlos ablauft, benotigt der C64 dazu eine Extra-
wurst.

Die einzelnen Datensatze, eben die sog. Records mit ihrer
festen Lange, missen auf der Diskette erst einmal angelegt wer-
den - wie das Einlegen leerer Karten in einen Sortierkasten.
Das geschieht dadurch, daB8 man in den voraussichtlich letzten
Record das Byte 255 schreibt. Das D0OS iUbernimmt als braver Se-
kretar den Rest und baut die gesamte Datei auf.

Man sollte daher allerdings im voraus wissen, wieviele Records
die Datei einmal fassen soll. Ein paar Reserve-Records schaden
beim Einrichten nicht, benotigen aber Platz auf der Diskette,

We
de
fu

In
Te

01

02

03

04

- 184 -

auch wenn sie noch nicht beschrieben wurden.

Nehmen wir an, wir wollen 100 Satze zu je 40 Zeichen verwalten.
Dann schreiben wir in den Record #100 eine 255 in das 1l.Byte.
Der Platzbedarf betragt dann 100 mal 40 = 4000 Bytes. Das macht
16 Blocke plus 1 Verwaltungsblock. Auf dem Inhaltsverzeichnis
der Diskette wird diese REL-Datei demnach mit 17 Blocken Platz-
bedarf ausgewiesen, egal ob bereits darauf geschrieben wurde
oder nicht.

Braucht man spéater mehr Platz, kann man die REL-Datei auch Uber
den letzten Satz hinaus weiterbeschreiben. Das kostet aber
immer ziemlich viel Zeit. Deshalb lohnt sich das Einrichten mit
einer genigend hohen Anzahl von Records.

Der AbschluB wird immer mit je einem CLOSE auf die logischen
Adressen der Datei (Nr.5) und des Befehlskanals (Nr.2) vorge-
nommen.

il die Verwaltung von REL-Dateien von wirklich praktischer Be-
utung ist, beschreiben wir das entsprechende ASSEMBLER-Programm
r den C64 hier sehr ausfihrlich.

sgesamt gliedert sich ein Programm fir REL-Dateien in folgende
ile:

Ausgeben des Befehlsstrings Nr.l iber die logische Adresse der
REL-Datei und einer beliebigen freien Sekundaradresse.
In unserem Beispiel: LA=5, SA=5

Ausgeben des Befehlsstrings Nr. 2 iber eine andere logische
Adresse wund die Sekundaradresse 15 fir den Befehlskanal.
In unserem Beispiel: LA=2, SA=15

Schreiben in die REL-Datei entsprechend dem 2. Befehlsstring,
der u.a. Recordnummer und Byteposition enthalt.

z.B. BF2 = 80 101 20 0 12, also wird Record #20, Byte #12 als
Anfangsposition festgesetzt, wobei die Datei mit der Sekundar-
adresse #101 (96+5) angesprochen wird.

(80 ist der Code fir "p", der das Positionieren einleitet.)

Lesen aus der REL-Datei entsprechend dem 2. Befehlsstring
analog zum Schreiben 03.

- 185 -

Die eingelesenen Bytes werden zur weiteren Verwendung erst
einmal in einen freien Bereich abgelegt.

05 Schreibroutine zum Anlegen einer neuen REL-Datei.
Sie setzt in den angegebenen letzten Record das Byte 255 auf
Platz 1 und lost damit das Einrichten der gesamten Datei aus.

z.B. BF1l="0:reldatxx,1,40" - Laufwerk, Name, Lange
BF2= 80 101 100 0 1 - "p", SA, Record #100, Byte #1

06 AbschlieBen der Dateien durch Ausgeben von CLOSE auf die bei-
den logischen Adressen.
in unserem Beispiel: CLOSE#5, CLOSE#2

Als Beispiel fir das Funktionieren unseres Programms fligen wir
noch an:

07 Stringausgabe fir die eingelesenen Bytes bis zum Auftreten
eines Bytes mit Inhalt Null.

08 Routine zum (Ubertragen der beiden Befehlsstrings 1 und 2 an
die im Programm verwendete Stelle: (900) bis (926)

09 Eine Byte-Leiste, die die beiden Befehlsstrings fir unser
Beispiel enthalt wund zwar zundchst in der Form, wie wir sie
zum Neueinrichten einer REL-Datei brauchen (siehe Punkt 05).

Alle Programmteile 01 bis 09 benotigen einschlieBlich etlicher
Orientierungs-NOPs nicht einmal 250 Bytes und passen daher auf
einen einzigen Diskettenblock.

Anmerkung:

Wir haben im folgenden Beispiel die Lange des Befehlsstrings va-
riabel gehalten, weil der Dateiname ja zwischen 1 und 16 Zeichen
lang sein kann. Die jeweils giiltige Lange setzen wir in die Zero-
pageadresse 158 und rufen sie von dort aus ab.

Wer sich diesen Luxus schenken will, kann auch mit der vorgegebe-
nen Lange von 8 Zeichen fir den Dateinamen arbeiten. Auch damit
lassen sich mehr REL-Dateien angeben, als man jemals in seinem
Leben auf Diskette bringen wird.

Ubrigens: Beim Ausprobieren des REL-Programms blinkt die Floppy
wie bei einem Fehler, wenn Sie eine REL-Datei neu anlegen. lLassen

Sie sich dadurch
wandfrei angenommen.

- 186 -

nicht verwirren, der nachste Befehl wird ein-

ASSEMBLER-Beispiel "75-reldateien" (Cé64):

01 Befehlsstring 1 mit OPEN ausgeben - REL-Datei offnen

30000
30001
30003
30005
30006
30008
30010
30012
30014
30016
30018
30020
30022
30024
30026

nop
lda
sta
nop
lda
sta
lda
sta
l1dx
stx
lda
sta
lda
sta
Jmp
nop

#5
185

#8
186
#5
184
158
183
#132
187
#3
188
62282

we we we we we

-e

e

we we we ee

.
’

Sekunddradresse 5

nach SA

GETSA ist beim Cé64 nicht moglich
Gerateadresse 8 (Floppy)

nach GA

logische Adresse

nach LA

vorbereitete Lange des l.Befehlsstrings holen
nach NAMLEN

Adresse LO des 1.BF

nach NAMADR-LO

Adresse HI des 1.BF

nach NAMADR-HI

OPEN gibt 1.Befehlsstring aus

02 Befehlsstring 2 mit OPEN ausgeben - Recordzeiger setzen

30030
30032
30034
30036
30038
30040
30042
30044
30046
30048
30050

.o

lda
sta
lda
sta
lda
sta
lda
sta
lda
sta
Jmp
nop

#5
183
#2
184
#15
185
#154
187
#3
188
62282

.
’

we we oo

we we we we

Lange des 2.Befehlsstrings nach NAMLEN

logische Adresse #2

Sekundaradresse 15 fir Kommandokanal
nach SA

Anfang LO von BF2

nach NAMADR-LO

Anfang HI von BF2

nach NAMADR-HI

Ausgabe von BF2 als Befehl mit OPEN

03 Daten in Record schreiben - Beispiel

30055 1ldx #5
30057 jsr 65481
30060 1dy #0

s we we

logische Adresse der REL-Datei nach (X)
und damit CHKOUT aufrufen
Zahler auf 0 fir Byteausgabe

- 187 -

30062 lda 19900,y ; ein Byte aus Bereich ab (19900) holen (Bsp.)
30065 beq 30075 ; beim Auftreffen auf Endezeichen 0 ===> Sprung
30067 jsr 65490 ; BSOUT gibt Zeichen auf vorbereiteten

Kanal aus

weiterzahlen

und weiterausgeben

falls Zahler 0 ===> keine Ausgabe mehr

als letztes Zeichen Byte 255

mit BSOUT ausgeben

und AbschluB mit CLRCH

30070 iny

30071 bne 30062

30073 beq 30080

30075 lda #255

30077 jsr 65490

30080 jsr 65484
.. NOp ..

we we we we we we

Anmerkung: Die Ausgabe eines Null-Bytes als AbschluB wird nicht
akzeptiert. Deswegen haben wir als Endekriterium 255 in die REL-
Datei bzw. den Record gesetzt.

04 Lesen aus einem Record - Beispiel

30085 ldx #5 3 mit logischer Adresse

30087 jsr 65478 ; und CHKIN Eingabe vorbereiten

30090 ldy #0 ; Zahler

30092 jsr 65487 ; ein Byte nach (A) mit BASIN holen

30095 sta 10000,y ; und vorlaufig ablegen

30098 bmi 30103 ; wenn Code groBler 128, also spatestens beim

Auftreten von 255 ===> aufhdren
30100 iny ;s sonst weiterzahlen
30101 bne 30092 ;5 und einlesen

30103 lda #0 ; Byte Null
30105 sta 10000,y ; als Endekriterium des eingelesenen Strings
30108 jmp 65484 ; und AbschluB mit CLRCH

Anmerkung: Das Nullbyte setzen wir als Endezeichen, damit die
spater folgende Stringausgabe mit STR-0 erfolgen kann. Die Be-
grenzung der Codenummern auf 127 ist hier willkirlich gewahlt und
kann selbstverstandlich abgeandert werden.

05 Schreiben in den letzten Record zum Neueinrichten

30130 1ldx #5 ; logische Adresse

30132 jsr 65481 3 CHKOUT

30135 lda #255 ; Byte 255 nach (A)
30137 jsr 65490 s und mit BSOUT ausgeben
30140 jmp 65484 3+ CLRCH

- 188 -

06 SchlieBen der Dateien

30115 1lda #5 ; logische Adresse der REL-Datei

30117 jsr 62097 ; CLOSEA

30120 lda #2 ;s logische Adresse der "Kommandodatei"
30122 jmp 62097 3 CLOSEA

Anmerkung: Die "Kommandodatei" ist nur zum Zwecke der Ausgabe des
Befehlsstrings 2 eroffnet worden.
07 Stringausgabe

30150 lda #16
30152 1ldy #39
30154 jmp 43806

L0 von Stringanfang 10000
HI von Stringanfang 10000
String ausgeben mit STR-0

e we ee

Anmerkung: Die Stringausgaben kann man auch verwenden, um REL-
Dateien zu beschreiben, also bei Teil 03.

08 Befehlsstringiibertragung

Beispiele fir die Befehlsstrings stehen ab (30220) bis (30246)
und werden nach (900) bis (926) Ubertragen.

30207 ldx #26 Zahleranfang

30209 lda 30220,x Zeichen aus Byte-Leiste holen

30212 sta 900,x und in Kassettenpuffer ibertragen

we we we e

30215 dex weiterzahlen
30216 bpl 30209 ;5 bis Zahler 0: Ubertragen
30218 rts ;5 Ricksprung

09 Byte-Leiste dazu:

30220 B 48 58 82 69 76 68 65 84 88 88
30230 B 44 76 44 40 0 0 0 0 0 0
30240 B 0 0 80 101 100 0 1

In diesem Fall 1ist die Byte-Leiste so hergerichtet, daB damit
die REL-Datei "reldatxx" mit der Recordlange 40 mit einem Gesamt-
umfang von 100 Records neu angelegt werden kann.

Stellen wir uns nun mit Hilfe von Sprungleisten aus diesen 9 Pro-
grammteilen die drei REL-Verwaltungsprogramme zusammen:

- 189 -

Rl Einrichten der Datei "reldatxx" mit "76-rel einricht":
Voraussetzung: Lange des l.Befehlsstrings: z.B. <158>=z14

30160 jsr 30207
30163 jsr 30000
30166 jsr 30030
30169 jsr 30130
30172 jmp 30115

we we

U 01 "BF1 ausgeben"

U 02 "BF2 ausgeben"

U 05 "letzten Record schreiben"
U 06 "close"

we we we

R2 Schreiben in die Datei "reldatxx" mit "77-rel write”":

Voraussetzung: beide Befehlsstrings im Kassettenpuffer
Lange 14 in (158)

Vorbereitung: Befehlsstring 2 nach Bedarf abandern

30175 jsr 30000 ; U 01
30178 jsr 30030 ; U 02
30181 jsr 30055 ; U 03 "Record beschreiben"
30184 jmp 30115 ;5 U 06

R3 Lesen aus der Datei "reldatxx" mit "78-rel read":
Voraussetzung: wie R2
Vorbereitung: wie R2

30190 jsr 30000 ; UDO1

30193 jsr 30030 s U 02

30196 jsr 30085 ; U 04 "Record lesen"
30199 jsr 30115 ; U 06 "close"

30202 jmp 30150 3 U 07 "Stringausgabe"

Anmerkung: Die beiden Unterprogramme 01 und 02 konnen
einem einzigen zusammengefaBt werden, dazu ist der erste
fehl durch einen JSR-Befehl zu ersetzen.

Unterprogramm 08 "Befehlsstringibertragung"

auch zu
IMP-Be-

Wie man sich solcher Programme auch von BASIC aus bedienen kann,
wird in den letzten Kapiteln an Hand von Anwendungen erklart.

Probieren Sie aber zundchst einmal an den eben vorgestellten Bei-
spielen Ihre eigenen Versionen, Verbesserungen und Erweiterungen

aus.

- 190 -

9.6.2 REL-Dateien auf 40er- und 80er-Geraten

Die "groBen" CBM-Systeme verlangen dabei folgendes Vorgehen, wie
es auch bei der BASIC-Sequenz "DOPEN DCLOSE" sichtbar wird:
(Fir den C64 gelten etwas andere Spielregeln. Siehe dazu den
vorhergehenden Abschnitt 9.6.1!)

Ablauf "rel-dateien'":

01 Initialisierungen, Sekundaradresse bereitstellen

02 Geratenummer GA, Filenummer (logische Adresse) LA, Adresse
und Lange des Dateinamens NAMADR und NAMLEN bereitstellen und
Ausgabe der Filedaten Uber den IEC-Bus an das Floppy.

Dieser Befehlsstring muB dabei folgende Daten enthalten:

Laufwerknummer, Doppelpunkt

Dateiname ohne Anflhrungszeichen

- Komma, Art der Datei (hier ein "1" fir Recordlange)

— Komma, Byte fir Recordléange (1 bis 255)

Mit diesen Angaben wird die Datei ercoffnet oder angelegt.

Die Initialisierung (Teil 0l) setzt die gewiinschten Werte.

03 Position des RECORD-Zeigers (uber den IEC-Bus an das floppy
senden. Diese Bytefolge enthalt immer 5 Zeichen:
- Code fir "p", also 80 (positionieren)
- Sekundaradresse, die zur gedffneten Datei gehort
- RECORD-Nummer LO
~ RECORD-Nummer HI
- Byte-Nummer im Record (1 bis 255)
Diese Ausgabe erfolgt iber den Befehlskanal mit der Sekundé&r-
adresse #111 (aus #15 ora #96).

04 Daten schreiben oder lesen ilber die Sekundaradresse der ge-
6ffneten Datei ({bergabe an den IEC-Bus).
Diesmal verwenden wir dazu die Routinen OUTBUS bzw.INBUS, die
nicht Uber den Sprungverteiler laufen und damit etwas weniger
Zeit benotigen.
Auch die Ausgabevorbereitung erledigen wir diesmal selbst und
erkennen dabei gleichzeitig, welche Arbeit wuns die etwas
langsamere Routine CHKOUT abnimmt:
STATUS auf Null, LISTEN ausgeben, Sekundaradresse senden.

05 AbschluB durch Deaktivieren des IEC-Bus und schlieBen der Da-
tei.

- 191 -

Beispiel: Schreiben in die REL-Datei "reldatOl"

Wir nehmen folgende Werte an:

- Recordlange 1=40

- Schreiben in Satz 1, ab Byte 20

— Logische Adresse der Datei: 1

- Laufwerk 1

~ Weiterhin nehmen wir an, daB die Bytefolge aus Teil 02 (Lauf-
werk, Name usw,) im 2.Bandpuffer ab (900=$0384) bereits einge-
richtet ist (1. Befehlsstring BF1).

— Auch die Bytefolge zur Positionierung des Recordzeigers (siehe
Ablauf 03) hat ihren festen Platz ab (922=$039a).
(2.Befehlsstring BF2 mit 5 Zeichen)

Die Inhalte der beiden Befehlsstrings kénnen sie rasch lber
BASIC oder Maschine verandern:

- Laufwerknummern Drive 0: <900>=48, Drive 1l: <900>=49
— Dateiname: ab (902) bis max.(917)
anschlieBend die Folge: 44,76,44,Recordlangenbyte
- Eingabe der RECORD-Lange (905+Lange des Namens)
-~ Eingabe der RECORD-Nummer <924/925>=L0/HI
—~ Bytenummer im RECORD (926)

Fir das folgende ASSEMBLER-Beispiel gilt:
- Die Lange des 1.Befehlsstrings muB nach (180) gebracht werden!
— Die logische Adresse muB in (182) stehen!

In BASIC wirden unsere Befehle so aussehen:
dopen#l,"reldat0l",140,dl:record#l,1,20:print#1l,"abc...":dclosetl

Der erste Befehlsstring (entspricht dopen#l,"reldat01",140,dl):

ASC-Zeichen: l : r ¢ 1 d a t 01 , 1 , (
ASC-Code: 49 58 82 69 76 68 65 B4 48 49 44 76 44 40
Lage: ab (900) eee (913)

Lange: hier 14, max. 22

Der zweite Befehlsstring (entspricht record#1,1,20):

ASC-Zeichen: p " (nd)(nd)(nd) nd=nicht druckbar
ASC-Code: 80 98 1 0 20
Lage: (922) bis (926)

Lange: immer 5

- 192 -

Die Sekundaradresse 98 ergibt sich aus #2 ora #96.

Anmerkung: Die beiden Befehlsstrings missen nicht im Bandpuffer
liegen. Sie kdnnen zum Beispiel auch direkt vor oder nach dem
Hauptprogramm liegen, was zwar eine bessere Kompaktheit bietet,
aber unser Modulkonzept stort (beim Verschieben in einen anderen
Bereich).

Im folgenden Beispiel schreiben wir in die REL-Datei Daten, die
wir zuvor ab Adresse (19900) bereitgestellt haben. Es sind
alphanumerische Zeichen, die uns spater das Testen unserer Pro-
grammteile erlauben, weil sie geordnet sind:

"0123456789:abcdefghi jklmnopgrstuvwz"
Dieser String erscheint im Teil 01 als Byte-Leiste.

ASSEMBLER-Programm "79-record/w 80" (nur 80XX/40XX):

01 19900 B 48 49 50 51 52 53 54 55 56 57
19910 B 58 65 66 67 68 69 70 71 72 73
19920 B 74 75 76 77 78 79 80 81 82 83
19930 B 84 85 86 87 88 89 90 0 0 0
19992 1da #14 ; Lange von BF1
19994 sta 180 ; nach (180) - fir unser Beispiel
19996 lda #1 ; logische Adresse fir unser Beispiel
19998 sta 182 ; nach (182) - zur Wiederverwendung

20000 jsr 55599 ;5 GETSA holt freie Sekunddradresse

02 20003 1da #8 ; Floppy-Nummer
20005 sta 212 nach Gerateadresse GA
20007 1lda 182 vorbelegte logische Adresse LA holen
20009 sta 210 nach LA bringen
20011 1dx 180 gegebene Lange des Befehlsstrings holen
20013 stx 209 und nach NAMLEN
20015 1lda #132 ; Befehlsstringl-Anfangsadresse LO
20017 sta 218 nach NAMADR-LO
20019 1lda #03 Befehlsstringl-Anfangsadresse HI
20021 sta 219 nach NAMADR-HI

we 8s we e we

..

we we oo

20023 jsr 62819 OPEN
20026 nop
03 20027 ldx #5 ; feste Lange von Befehlsstring2

20029 stx 209 nach NAMLEN
20031 1lda #154 ; Befehlsstring2-Anfangsadresse LO

-e

- 193 -

20033 sta 218
20035 lda #03
20037 sta 219
20039 lda 210
20041 jsr 62145
20044 jsr 62157
20047 1lda 211
20049 sta 923
20052 lda #111
20054 jsr 55963

nach NAMADR-LO
Befehlsstring2-Anfangsadresse HI
nach NAMADR-HI

logische Adresse LA holen

SUFTAB sucht Filedaten in Tabelle
SETTAB setzt die Tabellendaten

holt Sekundaradresse fur File

in Befehlsstring2 einbauen
Sekundaradresse 111 (Kommandokanal)
Befehlsstring2 mit BFOUT ausgeben

we we We we we we W we We we

04 20057 lda #0 ; Status
20059 sta 150 ; zuricksetzen
20061 jsr 61653 ;5 LISTEN
20064 1da 923 ;5 Sekundaradresse des Files holen

20067 jsr 61763 ;5 mit SASEND ausgeben

20070 ldx #20 3 Zahler fir Byte-Ausgabe

20072 1lda 19899,x ; Byte von Daten-Leiste laden (Beispiel !)
20075 jsr 61854 ; und mit OUTBUS ausgeben

20078 dex ;3 Zahler erniedrigen

20079 bne ; Zahler ungleich 0 ---> weiterausgeben

05 20081 jsr 61881
20084 lda 210
20086 jsr 62176
20089 rts

UNLISN

Filenummer LA

CLOSE schlieBt die Datei
Ricksprung zur aufrufenden Routine

e we we we

Noch ein paar Hinweise:

Bevor dieses Modul ab (20000) aufgerufen wird, muB die Lange des
ersten Befehlsstrings in (180) und die logische Adresse (File-
Nummer) in (182) vorliegen.

Wollen Sie zum Ausprobieren wunseres Beispiel die vorgegebenen
Werte (NAMLEN=14 und LA=5) beibehalten, dann rufen Sie SYS 19992
auf.

Denken Sie auch daran, daBl die beiden Befehlsstrings ab (900)
bzw. ab (922) zuvor eingerichtet sein missen? Von BASIC aus kann
man das mit einer DATA-Routine o.d. bewerkstelligen. Wenn sich
der Dateiname nicht mehr &ndert, installieren Sie ihn fest ab
Adresse (902).

In (20070) bis (20079) werden hier im Beispiel 20 Zeichen ausge-
geben, die ab (19900) stehen. Dieser Teil ist den jeweiligem Er-
fordernissen anzupassen.

- 194 -

Wenn Sie von BASIC aus das dopen#la,"name",d(1lw),1(rl) durchfih-
ren, springen Sie in (20027) ein. Flhren Sie auch den Befehl
record#(la),rn,rb vorher aus, springen Sie bei (20057) ein. Das
SchlieBen der Datei wird anschlieBend immer besorgt.

Schauen Sie sich dazu auch im vorigen Abschnitt das Beispiel fur
den C64 an. Es bietet weitere Varianten.

Falls Sie die Datei erst bei Bedarf schliefien wollen, bauen Sie
ab (20084) die Abfrage eines CLOSE-Flags ein und Ulberspringen den
letzten Teil, wenn es nicht gesetzt ist.

Mit dem folgenden BASIC-Programm konnen Sie die Funktionsfahig-
keit des Moduls '"record/write" testen.

Von Zeile 100 bis 950 findet das Initialisieren statt.

Rufen Sie dann das Modul mit SYS 20000 auf. Es erzeugt die REL-
datei "reldatO0Ol" wund schreibt den Record Nummer 1 ab Byte 20.

Mit RUN 1000 konnen Sie den Inhalt wieder lesen.
BASIC-Testprogramm "reltest 80":

100 rem beispiel zu modul record/w 80

200 rem befehlsstring 1 nach (900)...

300 for n=0tol3:read bf:poke900+n,bf:next n

400 rem filenummer und namlen poken

500 poke 182,1: rem file

600 poke 180,14 : rem lange des befehlsstrings 1
700 rem befehlsstring 2 nach (922)...

800 for n=0 to 4:read bf: poke922+n,bf: next n

900 data 49,58,82,69,76,68,65,84,48,49,44,76,44,40
910 data 80,98,1,0,20

950 end

1000 rem test

1100 dopen#l,"reldat0l",dl:record#l,1,20:input#l,x$:printx$
1200 dclose#l: end

Lesen aus einer REL-Datei "80-record/r80":
Um das Programm zum Lesen umzufunktionieren, missen Sie nur den
Teil 04 &ndern:

- 195 -

04 ...

+ 20061 jsr 61650 s TALK
20064 lda 923 Sekundaradresse holen
20067 jsr 61763 und mit SASEND ausgeben
20070 1ldx #0 Zahler 0 setzen
20072 jsr 61888 Byte vom IEC-Bus holen mit INBUS
20075 sta 24000, x in freiem Bereich ablegen (Beispiel !)
20078 inx Zahler erhohen
20079 cpx #20 letztes Byte eingelesen? (Beispiel !)
20081 bne 20072 5 nein ---> weiterlesen

we we we we we we ee

05 20083 jsr 61878 5 UNTALK
“ee usw.
Die restliche Verwaltung erfolgt wie oben beschrieben.

Aufgaben:
Probieren Sie diese Programmteile mit anderen Dateinamen und an-
deren Recordzeigern aus.

Zerlegen Sie das ASSEMBLER-Beispiel in die Teile:

0ffnen, leiger setzen, Schreiben, Lesen, SchlieBen
und erstellen Sie JSR-Leisten, mit denen Sie nach Belieben eine
REL-Datei bearbeiten konnen. (Siehe dazu auch Abschnitt 9.6.1!)

Adressen und ROM-Routinen zur Dateiverwaltung

Label Cé64 40/80XX

' 1
NAMLEN 183=$b7 209=%d1
NAMADR 187/188=%bb 218/219=%da/db
LA 184=$b8 210=$d2
GA 186=%ba 212=%d4
SA 185=$b9 211=%$d3
BF1 900=$0384 Anfangsadresse des l.Befehlsstrings
BF2 922=$039a dto. des 2.Befehlsstrings (Beispiel!)
GETSA —=——- 55599=$d92f
OPEN 62282=%f34a 62819=%$f563
SASENL 60857=%edb9 61763=%f143

SASENT 60871=%edc? 61763=$f143

- 196 -

SUFTAB 62223=$f30f 61245=%$f2cl
SETTAB 62239=$f31f 62157=%$f2cd
BFOUT --- (mit OPEN) 55963=$%$da%b
LISTEN 60684=%$ed0c 61653=$f0d5
QUTBUS 60893=$eddd 61854=%$f19%e
UNLISN 60926=%edfe 61881=%$f1b9
TALK 60681=$ed09 61650=%$f0d2
INBUS 60947=%$eel3 61888=$f1cO
UNTALK 60911=%edef 61878=$f1bé6
CHKOUT 65481=$ffc9
BSOUT(CHROUT) 65490=$ffd2
CHKIN 65478=%$ffcé
BASIN(CHRIN) 65487=%ffcf
CLRCH 65484=%$ffcc
CLOSEA 62097=$f291 62178=%$f2e2
CLOSEL ——— 62176=%$f2e0

Fir den C64 gilt zu beachten, daB es zwei verschiedene Routinen
zum Ausgeben der Sekunddradresse gibt: die erste (LI) wird nach
einem LISTEN gesendet, die zweite nach einem TALK (TA).

9.7 Laden eines Programmes mit LOAD oder LOADXX

Ohne das Offnen der Datei mit OPEN lassen sich sowohl Programme
wie auch Dateien laden, wenn man LOAD oder LOADXX verwendet.
Dabei spielt es keine Rolle, ob es sich um BASIC- oder Maschinen-
handelt. (LOAD ist nicht fir den Cé4 geeignet.)
Nehmen wir an, auf Diskette steht die Datei "bastest'", die mit
"prg" gekennzeichnet ist. Dann 148t sich dieses Programm wie
folgt laden:

programme

Beispiel:
O0ffnen von "bastest" wie in 9.4.1 beschrieben bis OPEN. Nun wer-
den STATUS und das sog. Load/Verify-Flag LVFLAG auf Null gesetzt.

Wird LVFLAG mit 1 belegt, erfolgt nur das "Verifying", also
die Uberpriifung, ob das abgespeicherte Programm mit dem geladenen
ibereinstimmt.

- 197 -

Ablauf:

0l....06 wie 9.4.1 (Adressen fir 40/80XX)

07 lda #0 3 Null nach
sta 150 ;s STATUS
sta 157 s LVFLAG auf "laden" stellen
08 jsr 62472 ;5 LOAD holt das Programm "bastest" in den
Arbeitsspeicher

Der Programmanfangs- und der Programmendezeiger werden dabei auf
den mit dem Programm abgespeicherten Anfang gesetzt. Bei den 80XX-
Geraten werden also (40/41) und (42/43) neu eingestellt.

Ist dies unerwinscht, weil man z.B. aus einem BASIC-Programm her-
aus ein Maschinenmodul nachladen mochte und anschlieBend mit der
nachsten BASIC-Zeile weiterfahren will, so springt man die Routi-
ne LOADXX an, die samtliche Zeiger unverandert 1&Bt.

Das folgende Beispiel ist sowohl fir Cé64 als auch fir 80XX-Gerate
geeignet (40/80XX-Adressen in Klammern):
0l...07 Vorbereiten wie vorhergehendes Beispiel
08 jsr 62648 ;5 LOADXX ladt die Datei ohne Zeiger zu ver-
(jsr 62294) andern in den Arbeitsspeicher
09 jsr 63213 ; TWAIT wartet Ubertragung ab
(jsr 63787)

Label Cé64 40/80XX .
1 !

LOAD -—- 62472=$f408

LOADXX 62648=$f4b8 62294=%$f356

TWAIT 63213=%$f6ed 63787=%$f92b

LVFLAG 147=93 157=$9d

9.8 Anwendung: Lademodul zum Nachladen von Programmen

Wie schon angedeutet, hat man von BASIC-Programmen aus z.B. Ma-
schinenmodule nachzuladen wie Spracherweiterungen, Hilfsroutinen
usw.

Hier bietet sich der Einbau eines Maschinenprogramms in das
Hauptprogramm an, so daB jederzeit die Moglichkeit besteht alles

- 198 -

Erdenkbare nachzuladen, ohne den Ablauf des Hauptprogramms abzu-
brechen oder mit Overlay-Techniken arbeiten zu missen.

9.8.1 Das Maschinenprogramm "8l-loadmodul"

Beispiel:

Nehmen wir an, wir wollen zu einem Textprogramm ein schnelles
Inhaltsverzeichnis der Disketten erstellen. Dieses Hilfsprogramm
soll "quickdirector" heiBen und auf Diskette bereitgehalten wer-
den.

(Wir werden diesen '"quickdirector" etwas spéater erarbeiten.)

Natirlich konnte dieses Programm auch iUber datas eingelesen wer-
den, was uns natirlich zu langsam ist.

Schreiben wir also entsprechend den vorangegangenen Beispielen
ein Maschinenprogramm, das dieses Laden vornimmt.

ASSEMBLER-Ladeprogramm "81-loadmodul"” (C64):

Der Kommentar ist im folgenden kurz gehalten. Sie erkennen aber
doch die Struktur?

01 1da #0
sta STATUS
sta LVFLAG
02 lda #8
sta GA
03 1ldx #82
stx NAMADR-LO
ldx #3 ; Hi- Adresse des Programmnamens
stx NAMADR-HI; also <187/188>=850
04 ldx #0
stx NAMLEN ; Vorbereiten der Lange des Namens als Platz-
halter. Die zu ladende Lange wird spater ein-
gesetzt (z.B. ldx #12).
05 jsr LOADXX ; ladt ohne Zeigerveranderung
06 jmp TWAIT ; wartet ab, bis zum Abschluf} der
Eingabe, damit nicht vorzeitig zurilickgesprungen
werden kann.
AnschlieBend erfolgt der Ricksprung.

Geratenummer (Floppy) nach GA
LO- Adresse des Programmnamens

we we

Wenn Sie dieses Programm geschrieben haben, dann steht es zum

- 199 -

Beispiel ab 30000 bis 30028. Sichern Sie nun diesen Bereich mit
HIMEM 30000 (oder mit poke 55,48:poke 56,117 bzw. bei 40/80XX:
poke52,48 und poke53,117) und springen Sie in den READY-Modus.

9.8.2 BASIC-Hilfsprogramm zur ilbernahme von Maschinenteilen

Um dieses kurze, aber hilfreiche Programm von BASIC aus zu laden,
schreiben wir uns eine kleine BASIC-Routine, die den Maschinen-
code 1in DATAs uUbernimmt, der dann vom Hauptprogramm in einen ge-
wiinschten Bereich eingelesen werden kann.

Zeilen 150-160:
Dazu lassen wir uns abfragen, welche Zeilen als DATA-Zeilen ver-

wendet werden sollen.

Zeilen 170-180:

Dann geben wir ein, wo das Ladeprogramm beginnt (Zeile 170). In
unserem Fall ware das also 30000.

SchlieBlich Ubergeben wir noch die Adresse des letzten Bytes,
in unserem Fall also 30028.

ab Zeile 190:

Im folgenden wird die Zeilennummer gedruckt und dahinter jeweils
20 Bytes sauber mit Kommata getrennt aus dem Maschinenteil aus-
gegeben.

Nach Beendigung des Durchlaufs lassen sich die DATA-Zeilen mit
RETURN als BASIC-Zeilen Ubernehmen und an geeigneter Stelle im
Hauptprogramm einbauen.

Unser Ladeprogramm steht nun also als DATAs in BASIC-Zeilen.

Das BASIC-Hilfsprogramm "82-masch-datas":

100 rem maschinenprogramm in datas

120 rem

150 input"l. DATA-BASIC-Zeile ";zl1

160 input"gewinschter Zeilenabstand ";za
170 input"l. Byte in welcher Adresse ";bl
180 input"letztes Byte in Adresse "s1b
190 printusing"#####",z1;:print" data ";
200 for i=0toll

210 print peek(bl+i)chr$(157)",";

220 if bl+i>=1b goto 300

- 200 -

230 next i

240 print peek(bl+i)

250 bl=bl+12:z1=z1+za:gotol90
300 end

Anmerkung: Wenn PRINTUSING nicht zur Verfigung steht, genigt auch
das einfache PRINT.

Mit i wvon 0 bis 14 erfolgen 15 DATA-Drucke. Nach next i steht i
auf 15. Dieses sechzehnte DATA wird als zeilenletztes ohne Komma
ausgegeben, aber mit anschlieBendem Zeilensprung.

Wen die Licken zwischen den Zeichen storen, kann den PRINT-Inhalt
auch mit mid$(str$(peek(bl+i),2) ausgeben.

Mit diesem Programm konnten Sie auch groBere Maschinenprogramme
in DATAs Ubertragen. Aber genau das wollen wir ja mit unserem
Ladeprogramm vermeiden. Eine direkte {bernahme von Diskette ist
nach wie vor unser Ziel.

Das Hauptprogramm wird eigentlich nur mit den DATA-Zeilen des
Ladeprogramms und ein paar wenigen Initialisierungen belastet,
wihrend eine indirekte DATA-Laderei erstens weit mehr Platz und
zweitens mehr Zeit bendtigt.

Nehmen wir fir unsere DATAs die Zeilen 40000 und 40010, so erhal-
ten wir mit unserem Hilfsprogramm fir den Cé64 die Zeilen

40000 data 169,0,133,144,133,147,169,8,133,186,162,82,134,187
40010 data 162,3,134,188,162,5,134,183,32,184,244,32,237,246,96

Fir den 40/80XX ergibt sich folgende Dataleiste:

40000 data 169,0,133,157,133,150,1¢69,8,133,212,162,82,134,218
40010 data 162,3,134,219,162,5,134,209,32,86,243,32,43,249,96

Diese beiden Zeilen enthalten nun also den Maschinencode des Pro-
gramms, das wir vorhin in ASSEMBLER entwickelt haben.

Mit ein paar kleinen Erganzungen kdnnen wir es nun von BASIC aus
als Modul unterbringen, wo wir wollen (bzw. wo es paBt).

Soll z.B. das Programm "lademodul" ab Adresse (30000) bis (30028)
stehen und das Programm "quickdirector" laden, dann kann das so
aussehen:

- 201 -

"83-1lademodul /B" :

40000 und 40010 wie oben

40020 '==z===z=z==z===z einlesen des moduls 'lademodul' ===z=zzz==z=z=z===
40025 bm=30000: ' beginn des moduls

40030 for n=0 to 28

40040 read a:poke bm+n,a:nexta

40050 '==z===z=z==zladen des m-programms '74-seq-rout' ====z====z==

40100 dn$="74-seq-rout":1w$="0"

40110 ln=len(dn$): 'stellt die lange des dateinamens fest

40120 for k=1 to 1ln

40130 poke 851+k, asc(mid$(dn$,k,1))

40140 next k :' legt dateinamen zeichen fir zeichen ab (852) ab

40150 poke 850, asc(1w$):poke 851, asc(":")

40151 'laufwerknummer und trennzeichen werden dem dateinamen
vorangestellt

40180 poke bm+19,1n+2

40181 'die stringlange steht als 19. maschinencode im modul und
wird jetzt mit dem richtigen wert belegt

40200 sys bm :' aufruf des lademoduls, "quickdirector" laden

Zu Zeile 40180:

Erinnern Sie sich: Wir haben vorhin im ASSEMBLER-Programm die
Dateildnge einfach mal mit dem Wert O vorbesetzt. Zahlen Sie
nach, dann werden Sie feststellen, daB dies im Maschinencode die
Stelle bm+19 ist. Mit dem POKE-Befehl bringen wir jetzt - nachdem
wir die Lange des Dateinamens kennen - den richtigen Wert ein.

Sie konnen das Modul wuniversell einsetzen, um beliebige Module
jederzeit nachzuladen. Wenn man namlich vom Hauptprogramm aus die
Variablen dn$ und 1w$ belegt, kann man sofort zu Zeile 40110
springen und das gewiinschte Programm wird sofort geladen.

Selbstverstandlich muB man aufpassen, daB man keine Uberschnei-
dungen zwischen Hauptprogramm, Lademodul und den nachzuladenden
Modulen erzeugt.

Wird in einem Programm das Lademodul mehrfach benitzt, muB es in
einem durch HIMEM o0.8. geschitzten Bereich untergebracht werden.

(In unserem Falle ware das HIMEM 30000.)

Bendtigt man es nur am Anfang eines Programms, um zusatzliche

- 202 -

Hilfsroutinen zur Verfigung zu haben, genigt es, wenn es irgendwo
zwischen BASIC~-Ende wund Stringbereich steht. Es wird dann u.U.
von Variablen oder Strings iberschrieben. Das macht aber nichts
aus.

Ubrigens: Nachdem Sie jetzt wissen, wie das Programm in BASIC
aussieht, brauchen Sie sich die Mihe mit dem ASSEMBLER-Programm
gar nicht mehr =zu machen. Es steht Ihnen ja jetzt in den beiden
DATA-Zeilen jederzeit zur Verfigung.

9.9. Modul "84-quickdirector™ mit TALK, BASIN, UNTALK

Wir werden im folgenden ein etwas ausfihrlicheres Programm be-
sprechen. Es 1ist das '"quickdirector", das wir vorhin schon er-
wahnt haben.

Was es kann? Nun, es holt das Inhaltsverzeichnis (directory)
einer Diskette und gibt es auf dem Bildschirm aus.

Nichts besonderes, werden Sie sagen, das macht der Befehl DIREC-
TORY aus BASIC auch.

Richtig, aber wunser "quickdirector" ist - wie der Name vermuten
1a88t - erstens wesentlich schneller und zweitens laufen die Da-
teinamen nicht einfach aus dem Bildschirm nach oben hinaus, son-
dern werden in zwei Spalten und maximal 25 Zeilen ausgegeben, so
daB bis zu 50 Dateien zugleich auf dem Schirm erscheinen konnen.
Mehr sind in der Regel kaum auf einer Diskette. Sollte diese
Zahl aber doch Uberschritten werden, fangt die Ausgabe wieder am
oberen Bildschirmrand an, so daB immer die letzten 50 Dateien
sichtbar sind.

Wir beschranken wuns dabei auf den jeweiligen Namen. Um moglichst
viel auf den Schirm zu bringen, rationalisieren wir weiter: Es
werden keine Anfihrungszeichen und keine Dateitypen ausgegeben,
auch die Meldung "xx blocks free" lassen wir weg.

Unm die Dateinamen einwandfrei identifizieren zu konnen, drucken
wir sie revers aus. Damit werden auch eventuelle Leerzeichen ein-
wandfrei erkannt.

- 203 -

Das waren unsere Arbeitsziele. Hier der Ablaufplan (auf ein
Struktogramm wird verzichtet):

Ablauf des "84-quickdirector" (Adressen Cé64):

Teil 1: Initialisierung

— Da nicht alle Zeichen aus dem normalen Inhaltsverzeichnis aus-
gegeben werden sollen, setzen wir ein Druckflag mit Adresse
(1000) ein, das nur bei Belegung mit 1 Zeichenausgabe zulaBt.
Initialisierung also: <1000>=0

— Wir fihren zwei Schreibzeiger in S7Z1=(97/98) und SZ2=(99/100)
zur Steuerung der Ausgabe auf dem Bildschirm.
Der erste Zeiger SZ1 enthalt immer die Bildschirmadresse, die
gerade bedruckt wird.
SZ2 dagegen wird immer auf den Anfang des auszugebenden Namens
gestellt, steht also auf dem Anfang einer Spalte in der aktuel-
len Zeile. Nennen wir SZ2 daher Spaltenanfangszeiger.
Initialisierung ("HOME"): <SZ1>=<97/98>=0/4=1024

<5722>=<99/100>=0/4=1024

- Adresse (1001) verwenden wir zur Kennzeichnung des Laufwerks
0 oder 1. Vorbelegung: <1001>=0

— Das Inhaltsverzeichnis wird intern unter dem Namen "$" gefihrt.
"$0" steht auf Laufwerk 0, "$1" entsprechend auf 1.
Die Adressen (850/851) verwenden wir zur Aufnahme einer dieser
beiden Dateinamen.
Bei der Singlefloppy 1541 lautet der Name nur "$", ist also
einstellig.

— Ansonsten wird wie Ublich belegt:

z.B. logische Filenummer <LA> = 14
Geratenummer <GA> =8
Sekundaradresse <SA> = 96

Zeiger auf Namen <NAMADR> = 850
Lange des Namens <NAMLEN> =1

Teil 2: Floppy zur Ausgabe vorbereiten

— Nach der Initialisierung kann die Datei "$" bzw. "$0" gedffnet
werden.
Bei entsprechender Anderung 1aBt sich dieses Programm natirlich
auch verwenden, um andere Dateien auszugeben (dazu Namen, Lange
usw. austauschen).

- 204 -

- Nach dem Zurlcksetzen des Status-Bytes auf 0, wird das Floppy
als "Talker" (Sender) aktiviert mit TALK.

Teil 3: Daten holen und verarbeiten
~ Holen eines Bytes vom (IEC-)Bus mit BASIN

~ Nachdem wir wuns nur fir die Tastaturzeichen interessieren,
(Code 1 bis 63), subtrahieren wir von allen Zeichen mit hdherer
Codenummer den Wert 64.
(Das 1aBt sich auch mit AND #63 erledigen.)

- Eine Ausgabe erfolgt solange nicht, bis wir auf das erste An-
fihrungszeichen stoBen.
Jetzt kann das Druckflag endlich mal auf 1 gesetzt werden und
alle folgenden Zeichen werden ausgegeben, solange bis wieder
das nachste Anfihrungszeichen (Code 34) auftaucht.

- Beim zweiten Anfihrungszeichen wird das Druckflag wieder aus-
geschaltet und die nachste Spalte vorbereitet, also der Spal-
tenanfangs-Zeiger in SZ2 um 16 erhdht.

Teil 4: Schreibzeiger wieder auf Bildschirmanfang setzen

- Wird die untere Zeile des Bildschirms erreicht, wird zunachst
geprift, ob auch schon die zweite Spalte erreicht ist.
Wenn ja, wird der Schreibanfangs-Zeiger wieder auf links oben
eingestellt.

- In jedem Fall wird der Schreibanfangs-Zeiger nach SZ1 als
Basis fir die Druck-Routine Ubertragen.

Teil 5: Loschen eventueller Voreintriage

~ Um eventuelle Eintrage ohne Reste zu lberschreiben, loschen
wir nach jeder fertig geschriebenen Datei, die nachsten 20 Zei-
chen auf dem Schirm.

Teil 6: Ausgabe

- Die eigentliche Druckroutine erzeugt zunachst einmal von jedem
Zeichen den entsprechenden REVERS-Code, gibt das Zeichen auf
dem Schirm aus und erhoht den Schreibzeiger um 1.

Teil 7: Bildschirm-Halt

— Damit auch 1langere Inhaltsverzeichnisse nicht iber den Bild-
schirm hinauslaufen konnen, bevor man sie richtig angeschaut
hat, 1legen wir die Leertaste (Tastaturcode 60 beim C64) als

- 205 -

Haltetaste und die Taste "Cursor rechts" (Code 2) als Abbruch-
méglichkeit fest.

Teil 8: AbschluB

— Zum SchluB wird geprift, ob der Status noch Null ist. Wenn
nicht, dann liegt ein Fehler vor, was eigentlich nur heiBen
kann: Datei, also Inhaltsverzeichnis ist zu Ende.

- Der AbschluB erfolgt dann, indem das Floppy wieder in den Ruhe-
stand geschickt und die Datei geschlossen wird.

Anmerkung:
Man kann auch mit einem Schreibzeiger, z.B. SZ1 auskommen,
wenn man beim Drucken den y-Index mitlaufen laBt.

Auf einem B80-Zeichen-Schirm geht es natirlich groBziligiger zu:
Man hat genligend Platz, um die Dateitypen mit ausgeben zu lassen
oder die Spaltenzahl anders zu wahlen: Bei vier Spalten hatten
wir z.B. 20 Zeichen Platz fir jede Datei und brauchten nicht so
sehr mit den Abstanden zu geizen. Richten Sie sich also Ihren
"quickdirector" her, wie Sie ihn gern hatten. Das folgende Assem-
blerprogramm soll nur Anrequng sein.

Siehe dazu auch Abschnitt 7.7!

Das ASSEMBLER-Programm "84-quickdirector" (C64):

Teil 1: Initialisieren
- 10000 1dx #0

10002 stx 1000 ; Druckflag "aus"

- 10005 stx 97 ; Bildschirmanfang LO von 1024
10007 stx 99 3 Schreibzeiger dto.
10009 ldx #4 ; dto. HI von 1024

10011 stx 98
10013 stx 100

als Bildschirmanfang
und Schreibzeiger
- 10015 1ldx #36 Code fur "$"(Dateiname)
10017 stx 850 ab (850) ablegen
(10020 1dx 1001 ; Laufwerknummer: <1001>=0 oder 1) nicht Cé4
(10023 stx 851 ; hinter den Namen setzen) nicht Cé4
. nop
- 10027 1da #14 log. Dateinummer z.B.l4
10029 sta 184 5 in LA bereitstellen
10031 lda #8 Gerateadresse 8 (Floppy)

..

we we we

e

.o

10033
10035

10037
10039
10041
10043
10045
10047
10049

Teil 2:
10051
10054
10056

Teil 3:
- 10061
10063
- 10066
10069
10071
10073
10074
- 10078
10080
10083
10085
10087
10089
10091
- 10094
10096
10097
10099
10101
10103

Teil 4:

- 10105
10107

sta
lda

sta
1da
sta
lda
sta
lda
sta

186
#96

185
#82
187
#3

188
#1

183

.o e

we we we we we e

- 206 -

in GA bereitstellen

Sekundaradresse mit gesetzten Bits 5 und 6
(oder Sekunddradresse 0)

in SA bereitstellen

LO der Anfangsadresse des Namens (ab 850)
nach NAMADR-LO und

HI nach

NAMADR-HI: (3 mal 256 + 82 = 850)

Lange des Namens (z.B. von "$")

nach NAMLEN

Floppy aktivieren

Jjsr 62282 ; OPEN &6ffnet die Datei z.B. "§"

lda #0 3 Null in das ...

sta 144 ; Status-Byte bringen

nop ...

Datenverarbeitung

ldx #14 ;3 Filenummer laden

jsr 65478 s und mit CHKIN Eingabe vorbereiten

jsr 65487 ;5 BASIN holt ein Byte aus der Datei

cmp #64 ;3 mit 64 vergleichen

bmi 10078 ; kleiner 64 ===> Sprung nach (10078)
sec ; sonst 64

sbc #64 3 subtrahieren

nop

ldy #0 ; Druckflag

cpy 1000 s ein?

beq 10143 ;3 nein ===> weiteres Byte holen

cmp #34 ; ja ===> mit Code fir GansefuB vergleichen
bne 10165 ; kein GansefuB ===> Sprung zu Teil 6
ldy #0 s GansefuB ===> Druckflag

sty 1000 ; "aus" (Dateiname zu Ende)

lda 99 ; Spaltenanfangszeiger LO

clc

adc #20 s 'um 20 erhdhen (bei 2-spaltiger Ausgabe)
sta 99 ; und ablegen

bce 10105 ; kein Uberlauf =z==> weiter

inc 100 ; sonst Spaltenanfangszeiger HI erhdhen
Spaltenanfangszeiger zuriick (falls erforderlich):
lda 100 ;s HI des aktuellen Namensanfangs

cmp #7 ; mit unterer Grenze vergleichen

10109
10111
10113
10115
10117
10119
10121
10123
10125
10127
10129
- 10133
10135
10137
10139
10141

Teil 5:

- 10143
10145
10147
10149

- 10152
10154
10156

10158
10159
10161
10162

Teil 6:
- 10165
10167
10169
10171
10173
Teil 7:

- 10175

bmi
lda
cmp
bmi
lda
sta
sta
lda
sta
sta
bne
nop
lda
sta
lda
sta
bne

10133
99
#127
10133
#0

97

99

#4

98
100
10143

99

97
100
98
10175

e we we we we

- 207 -

noch nicht erreicht ===> weiter

LO des aktuellen Namensanfangs
letzte Spalte erreicht?

nein ===> weiter

ja ---> Zeiger auf Bilschirmanfang

(wie Teil 1)

unbedingter Sprung

Schreibzeiger auf Spaltenanfang

LO

und

HI setzen

unbedingter Sprung, <A> wird nie Null

Platz schaffen vor Ausdruck eines neuen Namens

cmp
bne
ldx
stx
ldy
lda
sta

dey
bne
cle
bcc
nop

Zeichenausgabe

ora
sta
inc
bne
inc

#34
10175
#l
1000
#19
#32
(99),y

10156

10175

#128
(97),y
97
10175
98

we we e

e we we e

9

’

we we we

.o

letztes Zeichen GansefuBl, also Namensende?
nein ===> weiter

ja --=> Druckflag

auf "ein" schalten

Zahler (X) auf 19

Code fir Leerzeichen

19 mal ausgeben (Spaltenbreite zum even-
tuellen Uberschreiben freimachen)

Zahler auf Null?

nein ===> weitermachen

und unbedingter Sprung ans Ende

Reversbit setzen

und Zeichen auf den Bildschirm
Schreibzeiger um 1 erhchen

kein Uberlauf ===> Sprung

sonst HI des Schreibzeiger auch +1

Bildschirm halt

lda

203

.

9

KEY abfragen

- 208 -

10177 cmpi#2 "Cursor rechts"?
10179 beq 10189 ja ===> Ende
- 10181 cmp #60 ; Leertaste ?
10183 beg 10175 ; ===> KEY neue abfragen (warten)

we oo

Teil 8: AbschluB

10185 1lda 144 3 STATUS prifen
10187 beq 10066 gleich 0 ===> weiteres Byte holen

-~ 10189 jsr 65484 sonst mit CLRCH Floppy deaktivieren
10192 1da #14 LA laden
10194 jsr 62097 ; und mit CLOSEA Datei schlieBen
10197 rts Ricksprung zum aufrufenden Programm

we es we

.o

Nach dem Aufruf mit SYS 10000 oder einem entsprechenden Befehl,
erscheint ein 2-spaltiges Inhaltsverzeichnis von Drive O.
Wenn man sich die Moglichkeit fir beide Laufwerke vorbehalten
will, belegt man die Adressen (10002) bis (10004) mit NOP und
setzt in (1000) die Nummer fir das gewlinschte Laufwerk ein.

Abdnderungen fir den 40/80XX:

- SZ1 und SZ2 missen in freien Zeropage-Adressen liegen. Dafir
bietet sich ebenfalls ein FAC an:

- S71=(94/95) und S72=(96/97)

— NAMLEN ist 2 Zeichen lang ("$1" oder "$0")

-~ statt STATUS,TALK und SASENT kann man ab (10054) programmieren:
ldx #14 und jsr CHKIN

— Beim 80-Zeichenschirm ist eine bis zu finfspaltige Ausgabe des
Inhaltsverzeichnisses sinnvoll. Deshalb erhéht sich der Spal-
tenzeiger immer um 16 Adressen (10097).

- Um freien Platz zu schaffen, muB der Zahler bei 10152 auf 15
gesetzt werden.

— Statt CLRCH kann auch UNTALK verwendet werden.

— Zum SchlieBen der Datei kann CLOSEL mit der laufenden logischen
Adresse LA verwendet werden.

9.10 Modul "85-printdirector" (Floppy ---> Drucker)

Wie man ROM- Routinen sinnvoll einsetzen kann, sehen wir am fol-
genden Beispiel. Es ist noch etwas umfangreicher als das vorher-
gehende. Aber schlieBlich haben wir ja schon Fortschritte beim
Analysieren wund Strukturieren gemacht, so daB auch dieser "Fall"

- 209 -

nicht unlésbar sein dirfte.

Wenn Sie den "84-quickdirector" durchgearbeitet und zum fehler-
freien Laufen gebracht haben, sollten Sie den folgenden Teil ei-
gentlich (fast) problemlos mitverfolgen kdnnen.

Zundchst unsere Zielangabe:

Wir entwerfen ein ASSEMBLER-Programm, mit dem man das Inhaltsver-
zeichnis einer Diskette auf den Drucker ausgeben kann und zwar
dreispaltig, mit dem Diskettennamen als Kopf, ohne die Angaben
"Zahl der Blocke" und "xxxx blocks free'", aber mit der jeweiligen
Dateiart (prg, rel, seg, usr).

Als Drucker nehmen wir ein EPSON-Gerat an, das mit Geratenummer 4
und Sekundaradresse 8 angesprochen werden kann. Dabei lassen
wir die Moglichkeit offen, daB der Drucker am USER-Port hangt.
In letzterem Fall kann es notwendig werden, die Zeropage-Adresse
DEVOUT mit 4 zu belegen, um den Drucker als aktives Ausgabe-
gerdat zu bestimmen. Hier miBten Sie das Programm Ihren Verhalt-
nissen anpassen.

Anmerkung fir die angehenden Profis:

Wie in der Einleitung schon erwahnt, haben wir bisher nicht allzu
groBen Wert auf Sparsamkeit und Raffinesse bei der Erstellung un-
serer Programme gelegt. Nun wollen wir aber doch einmal ein paar
Feinheiten einbauen.

Da waren z.B. der Einsatz einer Byte-Leiste, aus der die Drucker-
steuerungsdaten Ubernommen werden und auch der Kniff mit dem Zwi-
schensprung, der verhindert, daB wir auf den JMP-Befehl zurick-
greifen missen und damit unser Prinzip des frei verschiebbaren
Moduls nicht beibehalten konnen.

Schauen Sie sich deshalb den Ablauf und das ASSEMBLER-Programm
so lange an, bis Sie jeden Schritt verstanden haben.

Ablauf (Grobstruktur) des "85-printdirector":
Teil 1: Initialisieren
- Drei Adressen im Kassettenpuffer werden als Flags bzw. Zahler

verwendet und erhalten einen Ausgangswert:

<900>=0 als Druckflag, das erst gesetzt wird, wenn das
erste Anfihrungszeichen gefunden wurde.

- 210 -

<1017>=1 Flag fir den Druck des Kopfes, das zuriickgesetzt
wird, sobald der Kopf (Diskettenname) gedruckt wurde.

<1018>=1 Zahler fir die Anzahl der Spalten, der zunachst
auf 1 steht, und dann auf 3 gesetzt wird.

<1003>=49 Code fir die Laufwerknummer, die auch von einem
aufrufenden Programm aus gesetzt werden kann (nicht fir Cé4).

Datei auf die Floppy offnen:

Dateiname FILNAM= "$" (40/80XX: "$0" oder "$1")

abgelegt ab NAMADR (Adresse des Dateinamens) L0/HI=82/3=850
mit der Lange <NAMLEN>=2

logische Adresse <LA>=14

Geratenummer <GA>=8

Sekunddradresse <SA>=96 (oder 0)

Drucker offnen:
Je nach Druckertyp und Druckmodus sind die Adressen zu wahlen.

z.B.: kein Name notwendig
Gerateadresse <GA>=4
logische Adresse <LA>=8
Sekundaradresse <SA>=8

Wenn der Drucker iiber den USER-Port angeschlossen ist oder wenn
Sie keine Sekundaradresse bendtigen, konnen Sie auch die Ge-
ratenummer in die Zeropageadresse DEVOUT setzen und SA mit
255 belegen.

DEVOUT ist (154)/C64 bzw. (176)/40/80XX wund enthdlt die Num-
mer des aktiven Ausgabegerats.

Sie brauchen jetzt nur noch LISTEN aufrufen und eventuell
die Sekundaradresse mit SASENL ausgeben. Ein OPEN eridbrigt
sich dann. In wunserem Beispiel fir den C64 haben wir diese
Version gewahlt.

An dieser Stelle missen Sie also das Programm lhren eigenen Er-
fordernissen anpassen.

Drucker initialisieren
Da der Drucker dreispaltig arbeiten soll, missen wir drei Tabu-
latorstops programmieren.

- 211 -

AnschlieBend wird ein Zeilenvorschub ausgegeben und der erste
TAB-Stop angesprungen.

In BASIC sieht das so aus:
print#8,chr$(27)"d"chr$(5)chr$(30)chr$(55)chr$(0);
print#8,chr$(10)chr$(9);

Der Drucker erwartet iber die logische Adresse 8 also die
Bytefolge 27,68,5,30,55,0 wund 10,9.

Diese Bytefolge legen wir in einer Leiste ab, die von (10107)
bis (10114) geht, also die genannten acht Bytes umfaBt.

Mit einer Schleife geben wir diese Steuerdaten auf den Drucker
aus.

Teil 2: Unterprogramm 'Eingabe’
- Das Inhaltsverzeichnis ist immer so angelegt, dafl 32 Bytes zu
einem Namen gehdren.

Ab dem 4. Byte steht der Name in Anfihrungszeichen, dahinter
nach Leerzeichen (zum Auffillen) die Art der Datei (z.B. 'prg'
oder 'seq').

Wir laden daher das Inhaltsverzeichnis 32-byte-weise und legen
so einen Namensblock erst einmal ab (5000) an (Beispiel!).

Teil 3: AbschluB der Ein/Ausgaben
- Die Statusvariable wird mit 64 belegt, wenn die Eingaberoutine
auf den SchluB (3 mal Code 0) stdBt.

Ist dies der Fall, dann werden die beiden Dateien fur Floppy
und Drucker geschlossen. Danach erfolgt der Ricksprung zur auf-
rufenden Routine.

Teil 4: Unterprogramm 'Ausgabe’

— Drucker als Empfanger (Listener) schalten.
Dazu setzen wir in die Zeropage-Adresse DEVOUT die Gerate-
adresse des Druckers.

- Die ersten Zeichen des Namensblocks auf Anfihrungszeichen hin
(Code 34) absuchen. Wenn gefunden, Druckflag <900> = 1 setzen

und alle Zeichen ausgeben bis einschlieBlich Dateityp.

- Nach der ersten Zeile (Diskettenname) einen Zeilenvorschub aus-

- 212 -

geben, den ersten TAB-~Stop anspringen und

den Zahler fir die Spaltenanzahl immer dann auf 3 stellen,
wenn eine neue Zeile angefangen werden muB.
AuBerdem Ausgabe eines Zeilenvorschubs und eines TABs.

Drucker deaktivieren, Druckflag wieder auf Null setzen und
iber eine IZwischenstation wieder an den Anfang der Schleife
(zur Eingabe-Routine) springen.

Der Zwischensprung ist notwendig, weil mit den Branchbefehlen
eben nur maximal 128 Adressen weit gesprungen werden kann.

Das ASSEMBLER-Programm "85-printdirector" (Cé64):

Teil 1: Initialisieren

nop
10005 1dx #0 3 Null als Flag !
10007 stx 900 3 fir Druck ein/aus
10010 1dx #1 s+ 1 als Flag
10012 stx 1017 3 fir Drucken des Kopfes (Diskettenname)
10015 stx 1018 ; als Spaltenzahler
nop
10020 lda #36
10022 sta 850
nop

Code fir '$'
nach (850) als erstes Namensbyte

[PY

10032 1da #14 ; logische Adresse

10034 sta 184 s nach LA

10036 1da #8 3 Geratenummer (Floppy)

10038 sta 186 s nach GA

10040 1lda #96 s Sekunddradresse

10042 sta 185 s nach SA

10044 1da #82 ;s LO-Byte der Anfangsadresse (850)

10046 sta 187 s nach NAMADR-LO

10048 lda #3 3 HI-Byte der Anfangsadresse (850)

10050 sta 188 ;5 nach NAMADR-HI

10052 1da #1 3 Lange des Namens

10054 sta 183 3 nach NAMLEN

10056 jsr 62282 ; und mit OPEN Datei auf das Floppy o6ffnen
nop

10060 1da #4

10062 sta 154

10064 sta 186

10066 1da #8

Gerateadresse 4

nach DEVOUT (falls erforderlich)
und GA

Sekundaradresse

we we we ee

- 213 -

10068 sta 185 ; bereitstellen in SA

(10070 sta 184 ; evtl. logische Adresse bereitstellen

10072 jsr 62282 ; und mit OPEN Datei auf den Drucker 4ffnen
nicht bei Ansprechen mit DEVOUT)

nop
- 10075 1da #0 3 Null
10077 sta 144 s nach STATUS
10079 jsr 60684 s und Drucker mit LISTEN aktivieren
10082 lda 185 s Sekunddradresse mit

10084 jsr 60857 ; SASENL ausgeben (Kanal bereitstellen)

- 10087 ldx #8 ; (X) als Zahler
10089 1lda 10106,x ; und die ab (10107) stehenden acht
10092 jsr 65490 ; Bytes mit BSOUT

10095 dex 3 ausgeben
10096 bne 10089 3 Schleifenende erreicht?
10098 nop
- 10099 jsr 63060 3 Jja ===> Drucker mit UNLISN deaktivieren
10102 clc ; und die nun folgende Byteleiste
10103 bec 10116 ; auf jeden Fall Uberspringen
nop
- <10107> = 9 ; Code fur TAB
<10108> = 10 ;3 Code fur Linefeed
<10109> = O 3 Begrenzung fir Tabulatorsetzen
<10110> = 55 ;s 3. TAB
<10111> = 30 ;s 2. TAB
<10112> = 5 ;3 1. TAB
<10113> = 68 ; Code fir "d" (Epson-System fir TABSET)
<10114> = 27 ; ESC-Code
nop

Teil 2: Unterprogramm 'Einlesen der Daten'

- 10116 lda #14 3 mit logischer Adresse und den Routinen
10118 jsr 62223 3 SUFTAB und
10121 jsr 62239 ;s SETTAB die Floppydatei ansprechen

10124 1ldx #1l4 ; logische Adresse der Floppydatei laden
10126 jsr 65478 s und mit CHKIN Eingabe vorbereiten
nop
- 10136 1dx #32 3 und 32 Bytes aus der Datei

10138 jsr 65487 ; einzeln mit BASIN holen

10141 sta 5000,x ; und z.B. von (5001) bis (5032) ablegen
10144 1da 144 STATUS prifen: Ende erreicht?

10146 bne 10157 ; ja ===> zum Teil 3 springen

10148 dex sonst Schleife weiter abarbeiten

..

-e

10149
10151
10154
10155

Teil 3:
- 10157
10159
10162
10165

Iwischenstation fur

10170
10171

Teil 4:
- 10173
10175
10177
10184
10181
10183
10185
10187
10190
10192

- 10196
10198
10201
10203
10205
10207
10210
10212

- 10214
10217
10219
10220
10223
10224

- 10226
10229
10231

bne 10138 H
jsr 65484 H
clc

bcc 10173 H

- 214 -

bis Zahler auf Null ist
mit CLRCH Standard 1/0 setzen

und Teil 3 Uberspringen

AbschluBroutine

lda #14 5 Nummer des Floppy-Files

jsr 62097 ;5 CLOSEA schlieBt Floppy-Datei
Jjsr 65511 ;5 CLALL schlieBt den Rest

rts

nop ..

clc H
becc 10116 5

den Sprungbefehl:

unbedingter Sprung
zur Eingaberoutine

Unterprogramm 'Drucken' (Ausgabe):

lda #4 3 mit Geratenummer 4

sta 154 ; DEVOUT als aktives Ausgabegerat

sta 186 ; sowie GA belegen

lda #255 ; fir unbencotigte Sekundaradresse 255
sta 185 ; nach SA

lda #0 3 Null

sta 144 ; nach STATUS

jsr 60684 3 mit LISTEN Drucker aktivieren

lda 185 ; Sekundaradresse ausgeben

jsr 60857 ; mit SASENL

nop

ldx #32 3 Zahler, um Zeichen aus dem Block zu holen
lda 5000,x ;

cmp #34 ;5 Anfihrungszeichen gefunden?

bne 10210 ; nein ---> Uberspringen der Flagsetzung
ldy #1 ;5 ja —-=> Druckflag mit 1

sty 900 ; belegen

cpx #3 s 3 Zeichen vor Blockende wird aufgehort
beq 10226 3 zu drucken

ldy 900 3 Druckflag gesetzt?

beq 10223 s nein ===> Druckerausgabe Uberspringen
nop

jsr 65490 s ansonsten Ausgabe mit. BSOUT

dex ; Zahler erniedrigen

bne 10198 ; und an den Schleifenanfang springen
ldy 1017 ; Flag fir erste Zeile (Kopf) noch gesetzt?
beq 10241 3 nein ===> Linefeed usw. lUberspringen
ldy #0 3 ja -—-> Flag zurlcksetzen

- 215 -

10233 sty 1017

10236 lda #10 ;3 Code fir Linefeed
10238 jsr 65490 ; ausgeben mit BSOUT

- 10241 dec 1018 ; Spaltenzahler um eins heruntersetzen
10244 bne 10256 ;3 Spalte gleich 0, also Zeile voll?
10246 1ldy #3 ;3 ja ---> Spalte wieder mit 3 vorbelegen

10248 sty 1018
10251 1da #10
10253 jsr 65490
10256 1da #137
10258 jsr 65490
- 10261 jsr 60926

in Spaltenzéahler

und ein Linefeed

mit BSOUT ausgeben

Code fir TAB-Sprung

ausgeben (nachste TAB-Position)
mit UNLISN Drucker deaktivieren

..

we we we

we we we e

10264 1dy #0 Druckflag
10266 sty 900 auf "nicht drucken" setzen
10269 clc 3 und unbedingter

10270 bcc 10170 3 Sprung zunachst nach 10170, von wo aus ein
Weitersprung bis zur Routine fir das Ein-
lesen des nachsten Namensblocks erfolgt

Dieses Programm kann nun mit SYS 10005 aufgerufen oder von
einem Maschinenprogramm mit JSR 10005 angesprungen werden. Es
druckt dann das Inhaltsverzeichnis der Diskette, die gerade im
Laufwerk liegt, dreispaltig aus.

Wird dieses Modul in einen anderen Bereich verschoben, muBB der
Einsprung eben entsprechend mitgeriickt werden.

Zu beachten ist hier noch, daB auch die Ladeadresse fir die Byte-
Leiste (bei 10089) nachgestellt werden muB, wenn dieses Programm
in einem anderen Bereich liegt. Wer das vermeiden mochte, der muB
die Druckerausgaben mit einer LDA/STA- Folge bewerkstelligen. Der
Platzbedarf ist dann etwas groBer, aber dafir ist uneingeschrank-
te Verschiebbarkeit gegeben.

Zur besseren (bersicht und fiir eventuelle Erweiterungen, z.B fir
den Einsatz eines Doppelfloppys, aber auch fur eventuelle Umstel-
lungen bei Verwendung eines anderen Druckers o.a. haben wir eine
ganze Reihe von NOPs gesetzt, die zum Teil Uber mehrere Adressen
gehen. Wenn Sie das Programm so Ubernehmen wollen, wie es hier
steht, dann fullen Sie bitte diese Licken vollstandig mit dem
ASSEMBLER-Befehl NOP auf.

Lauft Ihr Programm auf diese Weise einwandfrei, dann konnen Sie
alles handlich zu einem kompakten Dienstprogramm zusammenschie-

- 216 -

ben. In Sekundenschnelle erhalten Sie mit diesem Modul einen Aus-
druck Ihres Inhaltsverzeichnis, der Ihnen mit Sicherheit dazu
verhilft, die Ubersicht iiber Ihre Diskettenaufzeichnungen zu ver-
bessern.

9.11 Direktzugriffe auf Floppy — Modul "86-fastdisk" (8050)

Zum AbschluB der (IEC-)Bus-Operationen schauen wir uns noch ein
Beispiel fir die Direktzugriffsbefehle auf die Diskettenstation
an. Alle anderen Direktzugriffe werden analog ausgefiihrt. (Siehe
dazu das jeweilige Floppy-Handbuch!)

Diesmal sind vorwiegend die 40/80XX-Besitzer angeprochen, die in
den meisten Fallen mit der 8050-FLoppy oder deren Nachfolgern
arbeiten:

Untersucht man das D0OS-Listing fir die 8050-Diskettenstation, so
findet man in den Adressen (4096) bis (4098) Steuerdaten, die die
Geschwindigkeit des Gerats beeinflussen:

<4096> gibt die Zeitintervalle zwischen den einzelnen Interrupts
an und steht normalerweise auf 7 (=0.77 Millisekunden).

<4097> steuert die Lange der Motoranlaufzeit und ist mit 14 be-
legt, was 1,54 Sekunden bedeutet.

<4098> legt die Motornachlaufzeit fest mit 45, also ca. 5 Sekun-
den.

Diese Werte lassen sich nun um einiges verkirzen, so daB Sie ILhre
8050-Station auf "fast" laufen lassen konnen, ohne wesentlich an
Ubertragungssicherheit einzubiiBen.

Es empfiehlt sich aber, folgende Werte nicht zu unterschreiten,
da sonst Probleme auftreten wie standiges Ein- oder Ausschalten
des Motors bei Ladevorgangen o.8.:

<4096> = 5 3 <4097> = 1 ; <K4098> = 60
Die Nachlaufzeit muB deswegen langer werden, damit sie sich mit

dem Anlaufzeitpunkt Uberschneidet. Sonst geht die An- und Aus-
schalterei los.

- 217 -

In BASIC 188t sich dies folgendermaBen realisieren:
100 openl,8,15 : rem befehlskanal 15
110 print#1,"m-w"chr$(0)chr$(16)chr$(3)chr$(6)chr$(l)chr$(64);
120 closel

Es werden also 3 Bytes ab Speicherstelle 16/0 (=4096) in das RAM
der Floppy ubertragen.
Das entspricht der Bytefolge 77,45,87,0,16,3,6,1,64.

Zur Ubertragung in Maschinensprache braucht bei Direktzugriffen
das Gerat nur als LISTENER aktiviert werden, ein File ist nicht

notwendig. Der AbschluB erfolgt durch UNLISN.

Es werden also Uber den Befehlskanal 15 direkt Daten in den RAM-
Bereich des DOS geschrieben (hier in den Steuerdatenpuffer).

Auf diese Weise lassen sich auch die anderen Puffer des DOS-RAMs
beschreiben (z.B. mit Maschinenroutinen).

ASSEMBLER-Programm fir "86-fastdisk" (80XX/8050):

01 20000 lda #8 ; Geratenummer
20002 sta 212 ; nach GA
20004 jsr 61653 s LISTEN aktiviert Floppy als LISTENER
20007 1lda #111 ; Befehlskanal 15 + 96 als Sekundaradresse

20009 jsr 61763 ; SASEND sendet Sekundaradresse usw.

02 20012 1lda #77 ;3 Code fiur "m"
20014 jsr 61854 s OUTBUS gibt "m" aus
20017 1lda #45 ; Code fir "-"
20019 jsr 61854 ; OUTBUS
20022 1lda #87 ;3 Code fir "w"
20024 jsr 61854
20027 1da #0 ; LO der Speicheradresse (4096)
20029 jsr 61854
20032 lda #16 ;3 HI von (4096)
20034 jsr 61854
20037 lda #3 3+ Anzahl der folgenden Bytes
20039 jsr 61854
20042 lda #6 ; Intervall-Byte
20044 jsr 61854
20047 lda #1 ;3 Motoranlauf-Byte

20049 jsr 61854
20052 lda #64 ; Motornachlauf-Byte

- 218 -

20054 jsr 61854 ; OUTBUS
03 20057 jmp 61881 s UNLISN deaktiviert Bus

Man kann natirlich die 9 Bytes auch mit Hilfe einer angehangten
Byte-Leiste und einer Zahlschleife ausgeben. Aber dann verliert
man die Verschiebe-Eigenschaft des Moduls, wenn man die Start-
adresse indiziert. (Es lassen sich bloB ca. 20 Bytes sparen.)

Gibt man dieses '"fastdisk" mit SYS 20000 aus, so bleibt diese
Schnellauf-Funktion bis zum RESET der Floppy erhalten. Man merkt
die Wirkung sofort: Beim Speichern oder Laden ist das Gerdt im Nu
llda"-

Adressen und ROM-Routinen zur Ein/Ausgabe

Label Cé64 40/80XX .

LA 184=$b8 210=%$d2
logische Adresse zur Bezeichnung der Datei

SA 185=%$b9 211=%$d3
Sekundaradresse zur Kanalbereitstellung

GA 186=%ba 212=%d4
Geratenummer fir angesprochenes Gerat

DEVIN 153=$99 175=%af
Gerateadresse GA des aktiven Eingabegerits

DEVOUT 154=$9a 176=$b0
Gerateadresse des aktiven Ausgabegerats

NAMADR 187/188=%bb/bc 218/219=%$da/db
LO/HI der Anfangsadresse des Dateinamens
oder eines Befehlsstrings

NAMLEN 183=$b7 209=%d1
Adresse zur Bereitstellung der Lange des Namens

STATUS

LVFLAG

Label

- 219 -

144=$90 150=$96
Byte fiur Fehler- bzw. Ende-Erkennung der Datei
kein Fehler: <STATUS>=0

147=$93 157=$9d
Load- bzw. Verify-Flag. Laden: <LVFLAG>=0

Cé64 40/80XX

OPEN

BFOUT

LOAD

LOADXX

SUFTAB

SETTAB

CLOSEA

TWAIT

62282=%f34a 62819=$f563
offnet eine Datei mit LA,GA,SA auf ein Gerat
bei Floppy-Dateien sind NAMAD und NAMLEN notwendig

—-— 55963=$%$da9b
gibt ahnlich wie OPEN einen Befehlsstring aus
zugeordnet LA, GA, SA

-— 62472=$f408

ladt Datei oder Programm, das mit OPEN geoffnet
wurde, dazu vorher <STATUS>=z0, <LOVE>=0 setzen
Programmzeiger 'Anfang' und 'Ende' werden gesetzt

62648=%$f4b8 62294=%f356
wie LOAD, aber ohne Veranderung der Zeiger

62223=%$f30f 62145=%f2cl

stellt fir eine bereits gedffnete Datei GN,SA,LA
bereit aus der intern gefihrten Tabelle
Vorbereitung: <LA> ---> (A)

62239=$f31f 62157=$f2cd
setzt die mit SUFTAB gefundenen Parameter in die
vorgesehenen Zeropage-Adressen

62097=$f291 62178=$f2e2
schlieBt eine noch offene Datei
Vorbereitung: logische Adresse nach (LA) bringen

63213=%f6ed 63787=$f92b
verhindert vorzeitigen Ricksprung, wenn die Zen-
traleinheit schneller als das Peripheriegerat ist
(z.B. beim Laden eines Programmes notwendig)

TALK

UNTALK

LISTEN

UNLISN

GETSA

SASENL
SASENT

BSOUT (CHROUT)
QUTBUS

BASIN(CHRIN)

INBUS

- 220 -

60681=$ed09 61650=$f0d2
aktiviert das mit OPEN angesprochene Gerat als
Sender (Talker)

Vorbereitung: <STATUS>=0

60911=%edef 61878=$f1bé
versetzt den (IEC-)Bus nach TALK wieder in den neu-
tralen Zustand, Gerat wird als Talker deaktiviert

60684=%$ed0c 61653=$f0d5
aktiviert das angesprochene Gerdt als Empféanger
Vorbereitung: OPEN, <STATUS>=0

60926=%edfe 61881=$f1b9
versetzt den (IEC-)Bus nach Tatigkeit als Listener

wieder in neutralen Zustand

————— 55599=$d92f

nachste freie Sekundaradresse holen ---> SA
60857=%$edb9 61763=$f143
60871=%edc7 61763=$f143

sendet die Sekunddradresse und bereitet damit einen
Kanal fir die folgende Ein- oder Ausgabe vor.
Dieser Befehl muB also immer dem ersten INBUS oder
dem ersten OUTBUS vorangehen.

Vorbereitung: <A>=<SA>, also Akku mit Sekundar-
adresse belegen, die man eventuell aus (SA) holt

65490=$ffd2 KERNAL 65490=$ffd2
60893=%$eddd 61854=%$f19e

sendet das im (A)-Register befindliche Byte iber
den IEC-Bus auf den aktiven Kanal

Vorbereitung: OPEN, LISTEN, SASEND, <A>

65487=$ffcf KERNAL 65487=%ffcf

holt ein Zeichen nach (A) Uber aktiven Kanal.
Bei Standard-1/0: mit Bildschirmausgabe bis CR
anschlieBend erstes Zeichen in (A).

60947=%eel3 61888=%f1c0
holt Uber den (IEC-)Bus ein Byte nach (A)
vom aktiven Kanal

Vorbereitung: OPEN, TALK, SASEND

CHKOUT

CHKIN

CLRCH

CLALL

Der (IEC-)Bus

- 221 -

65481=%$ffc9 KERNAL 65481=$ffc9

leitet Ausgabe iber den (IEC-)Bus auf das angespro-
chene Gerat um (statt Schirm)

Vorbereitung: OPEN, <LA> ---> (X)

65478=$ffcé KERNAL 65478=%ffcé

Eingabe lber den (IEC-)Bus vom angesprochenen Gerat
(statt Tastatur)

Vorbereitung: OPEN, <X>=<LA>

65484=%ffcc KERNAL 65484=$ffcc

schaltet als Eingabegerat die Tastatur (GA=0) und
als Ausgabeger#dt den Bildschirm (GA=3)

schlieBt alle Kandle, aber keine Dateien

65511=%ffe7 KERNAL 65511=%$ffe7
schlieBt alle Kandle und Dateien

befindet sich in einem der Zustande LISTEN, TALK

oder Wartestellung (neutral).

10

Maschinenmodule in
BASIC-Programmen

- 225 -

10 Maschinenmodule in BASIC-Programmen

10.1 Ubernahme von BASIC-Parametern

Will man von BASIC aus ein Maschinenprogramm aufrufen, dann ge-
schieht das in der Regel mit dem Befehl SYS xxxx. Werden zur
Durchfihrung dieses "SYS-Programmes" keine festen Werte verarbei-
tet, sondern ergeben sich diese erst aus dem Verlauf des BASIC-
Programmes, dann missen diese sog. Parameter auf irgendeine
Weise vom Maschinenprogramm Ubernommen werden kdnnen.

Zur Verdeutlichung ein Beispiel:

Wir haben im Kapitel 7 eine Routine kennengelernt, die den
Bildschirm-Cursor beliebig positionieren kann. Im CBM-BASIC gibt
es keinen entsprechenden Befehl. Also bietet es sich an, ihn mit
in das BASIC zu integrieren. Bei anderen BASIC-Dialekten wird er
unter PRINT§XX,TT gefihrt, wobei XX fir die Bildschirmnummer (be-
ginnend bei O0) und TT fir einen beliebigen auszudruckenden Text
steht.

Gehen wir in gleicher Weise vor, dann heiBt das in unserem Fall,
daB wir vor jeder Abarbeitung des Maschinenmoduls den Wert XX
aus dem BASIC-Text ubernehmen missen, den Cursor dann entspre-
chend setzen und 1ins BASIC an die Stelle zurickkehren, die uns
den Ausdruck von TT erlaubt.

Wer sich mit dem Aufbau eines BASIC-Programms noch nicht so recht
auskennt, der sollte sich dies erst einmal grundlich zu Gemite
fihren. Hier wenigstens die wichtigsten Punkte, die zum Verstand-
nis dieses Kapitels notwendig sind:

- In BASIC-Programmen sind Befehle und Zeichen codiert abgespei-
chert. Nach der Zeilennummer (LO/H1) folgen Codezahlen von O bis
255. Beispielsweise hat der Befehl PRINT die Nummer 153, PRINT#
dagegen wird mit 152 verschlisselt (deswegen kann man PRINT#
nicht mit '?#' abkirzen). Diese Schlisselzahlen fir die einzel-
nen BASIC-Worter bilden den sog. Interpretercode.

— Beim Ablauf eines Programmes wird nun Zeichen fir Zeichen die-
ses BASIC-Textes von der RUN-Routine geholt und zunachst da-
rauf untersucht, ob es sich bei der Code-Nummer um einen Befehl
oder um ein sonstiges Zeichen (Zahl, Trennzeichen, String o.3.)

- 226 -

handelt. Liegt ein Befehl vor, wird die Stelle im ROM gesucht,
die diesen Befehl abarbeitet, und anschlieBend angesprungen.

- Wenn notwendiyg, werden aus dem BASIC-Text weitere Zeichen ge-
holt (eben diese Parameter) und verarbeitet. Das macht die aktive
BASIC-Routine nun selbst.

Denken wir nur daran, wenn der Befehl PRINT auftaucht. Dann wird
ja meistens auch etwas ausgedruckt, namlich das, was hinter dem
Befehl PRINT bis zu einem Trenn- oder Endezeichen folgt.

— Damit der BASIC-Interpreter auch weiB, wo er gerade im Text
ist, wird in der Zeropage ein Zeiger mitgefihrt, der immer auf
das eben behandelte BASIC-Zeichen des Programms zeigt.

- Die wichtigste BASIC-Routine ist nun die, die Zeichen fir Zei-
chen aus dem BASIC-Programm holt und den eben besprochenen Pro-
grammzeiger verwaltet. Es ist die CHRGET-Routine (von get
character), die als Unterprogramm von etlichen BASIC-Routinen be-
nitzt wird. N&amlich immer dann, wenn irgendwelche Parameter aus
dem BASIC-Text in die gerade arbeitende Interpreter-Routine iber-
nommen werden sollen.

Nun hat sich der Kreis geschlossen: Genau das wollen wir mit un-
seren Maschinenmodulen auch tun. Zapfen wir also wieder einmal
die betriebsinternen ROM-Routinen an.

10.2 Zeichen aus dem BASIC-Text holen mit CHRGOT und CHRGET

Nehmen wir an, wir wollen das Zeichen 'x' aus dem BASIC-Programm
entnehmen, das direkt hinter dem SYS-Aufruf steht.

Beispiel fir eine BASIC-Zeile:

100 x=5000 : sys 20000 x : print x

Starten Sie diese Zeile nun mit RUN, dann wird nach dem Aufruf
der SYS-Routine der Programmzeiger auf dem 'x' stehenbleiben.
Das (A)-Register enthalt jetzt den ASCII-Code fir 'x'. Wir kdnnen
ihn zur Uberpriifung mit CHROUT ausgeben.

Um auch noch zu beweisen, daB der Programmzeiger tatsachlich auf
'x' steht, rufen wir die CHRGOT-Routine auf, die immer das ak-

- 227 -

tuelle Zeichen aus dem BASIC-Text holt, ohne den Programmzeiger
weiterzustellen.

Das ASSEMBLER-Programm, das ab (19997) steht, muB nun folgender-
maBen aussehen (Adressen fir die 80XX-Serien in Klammern):

ASSEMBLER-Beispiel "87-basictext"

19997 jsr 65490 CHROUT druckt Zeichen in (A)

20000 jsr 121 CHRGOT-Routine holt das Zeichen, auf dem
(20000 jsr 118) der Programmzeiger momentan steht, nach (A)
20003 sta 1200 ; Das geholte Zeichen kann nun weiter verar-
(20003 sta 33500) ;s beitet werden, z.B. mit STA XXXX auf dem

Bildschirm ausgegeben werden.

.o ee

Der Programmzeiger steht immer noch auf dem 'x'. Wendet man nun
die CHRGET-Routine an, wird der Programmzeiger um eins erhoht,
das nachste Zeichen, also der Doppelpunkt geholt, der mit Code 58
Ubersetzt wurde. Die Fortfihrung unseres kleinen Programms be-
beweist das:

20006 jsr 115 3 CHRGET holt Trennzeichen
(20006 jsr 112)
20009 jsr 65490 ; Trennzeichen wird mit CHROUT ausgegeben

Nun steht der Zeiger nicht etwa vor dem 'P' von PRINT, sondern
vor dem Code 153, dem Code fir das gesamte Wort PRINT. Lassen
wir uns das vorfuhren:

20012 jsr 115 s CHRGET holt Code von PRINT
(20012 jsr 112)
20015 sta 2023 ; gibt re/un (A)-Inhalt aus (ein reverses y)

(20015 sta 34767) ; der ASCII-Code ist nicht druckbar

Wenn wir jetzt mit RTS ins BASIC-Programm zurickspringen, wird
nur noch x vorgefunden, was logischerweise zu einem SYNTAX ERROR
fihrt.

Setzen wir jedoch den Programmzeiger wieder um einen Schritt zu-
rick, namlich vor das PRINT, dann kann dieser Befehl von BASIC
wieder ausgefihrt werden:

20018 dec 122 ; LO des Programmzeigers um 1 zurlck
(20018 dec 119)
20020 lda 122 ;5 untersuchen, ob 0 unterschritten wurde

- 228 -

(20020 lda 119)

20022 cmp #255 ; also 255 erreicht wurde

20024 bne 20028 ; wenn nicht, nachste Zeile iberspringen
20026 dec 123 ; wenn ja, auch das HI-Byte des Programmzah-
(20026 dec 120) lers erniedrigen

20028 rts ; jetzt kann zu BASIC zurickgekehrt werden

Wenn Sie wissen wollen, wie Ihr BASIC-Programm codiert im RAM
liegt, brauchen Sie nur eine Schleife aus CHRGETs und Bildschirm-
ausgaben zu bilden, den Programmzeiger auf die gewilinschte Stelle
aufzusetzen und eine Abbruchbedingung einzubauen. Beispielsweise
werden beim Ende eines BASIC-Programms drei 0O-Bytes gesetzt.

Aufgabe:
Schreiben Sie ein Programm, das 1000 bzw. 2000 Zeichen (einen
Bildschirm voll) eines BASIC-Programms im BASIC-Code zeigt.

Label C64 40/80XX .
1 '

CHRGOT 121=%$79 118=%$76
momentanes BASIC-Zeichen ---> (A)

CHRGET 115=$73 112=$70
Zeichen aus BASIC-Text ---> (A)

PRGPTR 122/123=%$7a/7b 119/120=%$77/78
Programmzeiger LO/HI steht auf momentanem Zeichen

10.3 Byte-Auswertung mit GETBYT und VALBYT

Um die Ziffernfolge einer Zahl in den entsprechenden Wert umzu-
wandeln, bedient man sich der Routinen GETBYT wund VALBYT,
sofern der Wert der =zu Ubernehmenden Zahl zwischen 0 und 255
liegt.

Zur Klarstellung sei gesagt, daB eine im BASIC-Text als Ziffern-
folge abgelegte Zahl hier in ein einziges Byte iUbernommen wird,
wahrend im BASIC-Text ja jede Ziffer ein eigenes Byte bean-
sprucht.

- 229 -

Zur Verdeutlichung zwei Beispiele, die auch gleichzeitig etwas
Wiederholung bieten:

Beispiel 1: Auswertung mit GETBYT und Ausgabe mit STA

Nehmen wir wieder eine BASIC-Zeile an, mit der wir unsere nach-
folgende Maschinenroutine iberprifen konnen:

100 co0=20000:sysco#48,49:pokel200,48:pokel201,49

Fir einen reinen BASIC-Programmierer sieht das hochst seltsam
aus; jedoch wissen wir bereits, daB man mit dem Programmzeiger
einiges manipulieren kann.

Was soll nun in dieser Zeile passieren?

- Als erstes legen wir mit der Variablen co die Einsprungadresse
bei 20000 fir den folgenden SYS-Befehl fest.

- Nach dem Einsprung in unser Maschinenprogramm stehen die Para-
meter #48,49 bereit, wobei die Zeichen # und das Komma als
Trennzeichen fungieren. Wir kommen darauf noch zurick.

— Die Zahl 48 (genauer gesagt die Ziffernfolge 4-8) und die Zahl
49 stellen im Bildschirmcode die Zeichen "0" und "1" dar und
sollen vom Maschinenprogramm ibernommen und ausgegeben werden.

— AnschlieBend erfolgt der Ricksprung ins BASIC und wir poken
dort die gleichen Codezahlen zur Kontrolle auf den Bildschirm.

Das ASSEMBLER-Programm sieht dann so aus (80XX in Klammern):
Beispiel "88-getbyte"

- 20000 jsr 121 3 CHRGOT holt das Zeichen, auf dem der
(20000 jsr 118) Programmzeiger momentan steht
(20003 sta 33500)
20003 sta 1160 ; und gibt es auf dem Bildschirm aus.

Durch diesen letzten Befehl wissen wir, wo sich der Zeiger nach
dem SYS 20000 befindet, namlich ein Zeichen weiter auf dem Dop-
pelkreuz #.

- 20006 jsr 47003 ; GETBYT holt nun alle folgenden Zeichen,
(20006 jsr 51409) bis eine Nichtziffer oder ein Trennzeichen
auftritt, in unserem Fall bis zum Komma.

- 230 -

AnschlieBend wird der Wert der Ziffernfolge bestimmt und im (X)-
Register sowie in der 5.Stelle des FACl1l abgelegt. In unserem Fall
enthdlt das (X)-Register also den Wert 48. Geben wir ihn auf dem
Bildschirm zwei Stellen weiter aus:

20009 stx 1162 ; druckt Zeichen fir Code 48: "Q"
(20009 stx 33502)

- 20012 jsr 121 s CHRGOT holt das Zeichen, auf dem der
(20012 jsr 118) Programmzeiger steht.
20015 sta 1164 s wir erkennen, daB er auf das Komma zeigt
(20015 sta 33504)

- 20018 jsr 47003 GETBYT holt nun die nachste Ziffernfolge
(20018 jsr 51409) als Byte nach (X) und FACl+4
20021 stx 1166 druckt das entsprechende Zeichen: "1"
(20021 stx 33506)

..

e

Wir wissen schon, daB der Zeiger auf dem Trennzeichen steht, so
daB wir sofort ins BASIC-Programm zuriickkehren kdnnen:

- 20024 rts

Wenn Sie das Programm "88-getbyte" eingetippt haben, kehren Sie
am besten in den READY-Modus =zurick und geben die BASIC-Zeile
ein, die wir uns vorhin ausgedacht haben.

Nach dem Starten mit RUN erhalten Sie den Ausdruck: # 0 , 1
und darunter die gepoketen Zeichen: 0 1

Alles klar bis hierher?

Wenn ja, dann spielen Sie mal ein wenig sowohl mit der BASIC-Zei-
le, als auch mit dem ASSEMBLER-Programm.

Sie sollten hinterher folgendes erkennen:

- Als Trennzeichen konnen sich alle nichtnumerischen Zeichen ver-
wenden, so lange Sie keinen EinfluB auf die Einsprungvariable
CO haben:

Damit verbieten sich die Zeichen "+","=-","/" "<" ynd die Ver-
gleichsoperatoren "<","=" und ">".

sysco+48,49... hdatte dann einen Einsprung bei 20048 zur Folge
und wirde hinterher SYNTAX ERROR erzeugen.

— Auch mit den Klammern muB man sorgfaltig umgehen:
sysco(48) wird namlich als Einsprung beim Wert der Feldvaria-

- 231 -

blen co(48) erkannt und fihrt bei uns garantiert zu einem ILLE-
GAL QUANTITY ERROR, weil wir co(x) nicht dimensioniert haben.

- Dagegen lassen sich die Klammern durchaus folgendermaBen ver-
wenden: sysco)48(49... oder sys(co)(48),49...

- Die GETBYT-Routine stellt nach ihrem AbschluB den Zeiger
immer auf das Trennzeichen, denn dort ist sie ja schlieBlich
gelandet, um festzustellen, daB die Ziffernfolge fir den Byte-
wert zu Ende ist.

- Werden Dezimalzahlen verwendet, dann arbeitet das Programm
trotzdem normal. Es wird aber nur der Integerwert beachtet.
Sie konnen statt 48 durchaus 48.0235 eingeben. Das Ergebnis ist
das gleiche.

- Uberschreiten Sie allerdings den Wert 255.999..., dann spielt
diese ROM-Routine nicht mehr mit. (Wir lassen uns dazu aber im
nachsten Abschnitt etwas einfallen.)

Das Ergebnis ist dann wieder ein ILLEGAL QUANTITY ERROR.

Mit dem nun erworbenen Wissen 1aBt sich das nachste Beispiel
wesentlich schneller besprechen.

Beispiel 2: Byte-Auswertung mit VALBYT und Ausgabe mit CHROUT

Die entsprechende BASIC-Zeile, anhand der wir unser Maschinenpro-
gramm testen wollen, sieht fast genau so aus wie zuvor:

100 co=20000 : sys(co)1l47,35 : print"screen CLR und #"

Sie haben es erkannt: Die Einsprungadresse ist eingeklammert.

Es gibt hier kein Trennzeichen zwischen dem SYS-Aufruf und dem
ersten Parameter 147. Der Programmzeiger steht anschlieBend
auf der Ziffer "1" von 147. Die Einsprungadresse (co) wird also
von "Klammer auf" bis "Klammer zu" ausgewertet. (Auch darauf kom-
men wir noch zurick.)

Das ASSEMBLER-Programm "89-valbyte" (B80XX in Klammern):
- 20000 jsr 47006 ; VALBYT wertet ebenfalls die kommende

(20000 jsr 51412) liffernfolgye aus, beginnt aber mit dem ak-
tuellen Programmzeiger

- 232 -

Zur Erinnerung: GETBYT wirde ein Zeichen weiter beginnen, al-
so mit der Ziffer "4" von 147.

20003 txa ; der Bytewert wird nach (A) lUbertragen und

20004 jsr 65490 ;5 mit CHROUT ausgegeben, also nicht als

(20004 jsr 65490) Bildschirmcode, sondern als ASCII-Code, was
in unserem Fall dem "Bildschirm clear" ent-

spricht
- 20007 jsr 121 ; CHRGOT holt das zuletzt geholte
(20007 jsr 118) Zeichen noch einmal nach (A)

20010 sta 1162 3 Ausgabe: wie erwartet ","
(20010 sta 33502)

- 20013 jsr 47003 ; jetzt muB GETBYT angewendet werden
(20013 jsr 51409)
20016 txa
20017 jsr 65490

Ergebnis nach (A)
und Ausgabe mit CHROUT
Das ist das Zeichen '#'
- 20020 rts 5 Ricksprung zu unserer BASIC-Zeile

e e

Nach dem Aufruf der BASIC-Zeile mit RUN wird also zunachst der
Bildschirm geldscht, dann ein Komma ausgegeben und anschlieBend
ein '"#'. Zum SchluB wird der Kommentar ausgedruckt.

Zusammenfassung:

- GETBYT erhoht zunachst den Programmzeiger und holt dann die
Ziffernfolge des folgenden BASIC-Textes als Byte-Wert in das
(X)-Register und die Adresse (FACl + 4).

- VALBYT beginnt mit dem aktuellen Programmzeiger und arbeitet
ansonsten genauso wie GETBYT.

— Bei beiden Routinen steht nach dem Durchlauf der Programm-
zeiger auf dem Trennzeichen hinter der Ziffernfolge.

- Das (A)-Register enthalt den ASCII-Code dieses Zeichens.

- 233 -

Label Cé64 40/80XX
1 !

GETBYT 47003=$b79b 51409=%c8d1
Ziffernfolge ab PRGPTR+1 als Byte nach (X) und
(FACl+4)

VALBYT 47006=%b79e 51412=%c8d4
Ziffernfolge ab PRGPTR als Wert nach (X) und
(FAC1+4)

10.4 Eine Anwendung: PRINT AT-Routine mit Fehlermeldung

In Kapitel 6 haben wir besprochen, wie man den Cursor beliebig
auf dem Bildschirm positionieren kann. Wenden wir dies nun in
Verbindung mit unseren Routinen GETBYT und VALBYT an und erstel-
len ein Maschinenprogramm, das uns - von BASIC aufgerufen - zu
einer beliebigen Bildschirmadresse bringt.

Dabei legen wir folgendes Format fest:

Nach dem SYS-Aufruf folgt die Zeilennummer (0 bis 24) und an-
schlieBend, durch ein Komma getrennt, die Spaltennummer (von O
bis 39 bzw. 79)

Die BASIC-Zeile, mit der wir unser Programm austesten kdnnen,
sieht dann vielleicht so aus:

100 at=20000 : sys(at)1l3,30,"Testausdruck: ";:print"alles klar?"
Wir wollen also den Ausdruck in Zeile 13, Spalte 30 beginnen.

Aufbau und Ablauf der Routine "90-print at':

Aus der Form der Parameterschreibweise (sie entspricht dem Bei-
spiel 2 aus 10.3) ergibt sich der Einsatz der GETBYT- und VALBYT-
Routinen. :

Jetzt missen wir noch sicherstellen, daB die Zeilen- und Spalten-
zahl im zuldssigen Bereich bleibt. Das geschieht durch einen Ver-
gleich mit den oberen Grenzwerten (negative Zahlen werden sowieso
fir Byte-Eintréage nicht zugelassen). Wird einer der Definitions-
bereiche verlassen, zapfen wir die betriebsinterne Fehlermeldung
ILLEGAL QUANTITY ERROR an, die anschlieBend den READY-Modus wie-
der herstellt.

- 234 -

Vielleicht Uberrascht es Sie, daB vor dem zu druckenden String
kein PRINT-Befehl steht?

Nachdem sowieso klar ist, daB etwas ausgedruckt werden soll, be-
nitzen wir einfach den Einsprung in die PRINT-Routine schon in
unserem Maschinenmodul und sparen uns dadurch einen BASIC-Befehl.
Dazu muB aber noch das erste Zeichen des zu druckenden Ausdrucks
(in unserem Fall das erste Anfihrungszeichen) aus dem BASIC-Text
geholt werden, was aber mit CHRGET kein Problem ist.

Das ASSEMBLER-Programm "90-print at" (C64):

01 20000 jsr 47006 ; VALBYT holt die erste Ziffernfolge
nach der Klammer und wertet Sie aus. Das
Ergebnis steht als Byte in (X).
02 20003 cpx #25 3 maximale Zeilenzahl
20005 becs 20027 3 Uberschritten ===> Fehlermeldung
20007 stx 214 sonst Zeile nach CURZEI

.o

03 20009 jsr 47003 GETBYT holt nachste Ziffernfolge nach

dem Komma und legt den Wert nach (X) ab.

.o

04 20012 cpx #40 s maximale Spaltenzahl
20014 bcs 20027 3 Uberschritten ===> Fehlermeldung
20016 stx 211 ; sonst Spalte nach CURSPA

05 20018 jsr 58732 ; CURPOS setzt den Cursor
06 20021 jsr 115 CHRGET holt nachstes Zeichen nach (A),
und stellt dabei den Programmzeiger auf
das Zeichen '"' ein.
20024 jmp 43682 s BPRINT druckt den Ausdruck im BASIC-
Text, auf dessen Anfang der Programmzeiger
steht.
AnschlieBend erfolgt Ricksprung ins BASIC.
07 20027 1dx #14 Fehlernummer 14
20029 jsr 42042 3 wird mit ERROR ausgegeben (ILL. QUA..)
20032 rts Ende (READY-Modus)

-e

..

.o

Haben Sie "90-print at" (20000) eingetippt? Dann konnen Sie die
oben angefihrte BASIC-Zeile variieren wund mit RUN starten.
Wie immer, probieren Sie andere Beispiele aus:

Geben Sie ruhig mal sys(at)40,20 0.8 ein. Es muB dann die Fehler-
meldung kommen.

- 235 -

Fir die 40/80XX-Serien missen Sie "90-print at" so umbauen, wie
wir es in Kapitel 6 besprochen haben.

10.5 Ausgabe von Fehlermeldungen aus dem ROM

Die Cé64-Gerate kennen 29 solche Meldungen. Hier braucht man nur
die Nummer der Meldung in das (X)- oder (A)-Register zu laden und
die ERROR-Routine ab (42042) aufzurufen.

Im einzelnen sind dies:

1 too many files 16 out of memory

2 file open 17 undef'd statement
3 file not open 18 bad subscript

4 file not found 19 redim'd array

5 device not present 20 division by zero
6 not input file 21 illegal direct

7 not output file 22 type mismatch

8 missing filename 23 string too long

9 illegal device number 24 file data

10 next without for 25 formula too complex
11 syntax 26 can't continue

12 return without gosub 27 undef'd function
13 out of data 28 verify

14 illegal quantity 29 load

15 overflow

Der JMP nach ERROR=(42042) gibt die entsprechende Meldung aus
und schlieBt gleichzeitig alle eventuell gedffneten Kandle. Wie
in BASIC erfolgt dann auch der Programmabbruch.

Die 40/80XX-Gerate rufen ihre Fehlermeldungen mit Hilfe eines
Index auf, der ins (X)-Register geladen wird. Hier gibt es zwei
Tabellen. Die erste entspricht den oben genannten Fehlern von
Nummer 10 bis 27. Die zweite bezieht sich auf weitere Peripherie-
meldungen, wobei (X) die Belegung 0,9,14,23,32,36,45,50,61,65,77,
86,95,100,109,116,127,134,144,148,159,163,170,174,182,191,197,209
enthalten kann. Diese Arten werden mit JIMP 62895 ausgegeben.

- 236 -

Label C64 40/80XX .
' : '

ERRXX 42082=%a462 46048=$b3e0
Fehlermeldung ohne SchlieBen der Kanédle

ERROR 42042=%a43a) 46031=b3cf
Fehlertyp in (X): Index(Offset) bzw. Fehlernummer
schlieBt alle Kanale, beinhaltet aber nicht CLOSE

ERR8O - 62895=$f5af
Fehlermeldungen Peripherie (nicht Cé4)

BPRINT 43682=%aaa2 47805=%$babd
Einsprung in die PRINT-Routine, dazu Programmzeiger
auf dem ersten Zeichen des zu druckenden Ausdrucks,
alle folgenden werden selbstandig geholt, ausge-
wertet und ausgegeben.

10.6 Zur Schreibweise der BASIC-Befehle

Bisher haben wir uns um die Syntax (Schreibweise) der zu iberneh-
menden Parameter keine groBen Gedanken gemacht. In unserem Modul
ist es zundchst gleichgiltig, welche Trennzeichen wir verwenden.
Diese GroBzligigkeit kann aber manchmal ihre Ticken haben, so daB
man auch die Richtigkeit der vorgesehenen Trennzeichen Uberprifen
sollte.

Folgende ROM-Routinen stehen dafir zur Verfiigung:

Label Cé64 40/80XX - .

KLMAUF 44794=%aefa 48882=%bef2
prift, ob letztes Zeichen ein Klammer auf "(" war

KLAMZU 44791=%aef7 48479=%beef
prift, ob letztes Zeichen ein Klammer zu ")" war

KOMMA 44797=%aefd 48885=%bef 5
prift, ob letztes Zeichen ein Komma "," war
PRFZE1I 44799=%aeff 48887=%bef7

prift, ob Zeichen in (A) als letztes im BASIC-
Text stand

- 237 -

Zu beachten ist bei allen diesen Routinen, daB anschlieBend immer
ein CHRGET durchgefihrt wird, d.h. das nachste Zeichen wird ge-
holt und der Programmzeiger wird inkrementiert (um eins weiterge-
fuhrt).

Zur Byte-Auswertung wird also anschlieBend an die Trennzeichen-
Uberpriifung die Routine VALBYT eingesetzt, die ja mit dem Zeichen

anfangt, auf dem der Programmzeiger gerade steht.

Ein kleines Beispiel:

100 x=80:y=90:te=20000:systef(x,y)"test"
ASSEMBLER-Programm "91-trennzeichen" (allg.):

Folgende Labels werden zusatzlich als Beispiele verwendet:
BSX = 1200 (80XX: 33500)
BSY = 1202 (80XX: 33502)

Das sind die Bildschirmstellen fir die Kontrollausgabe.

- 20000 lda #35
20002 jsr PRFZEI

- 20005 jsr KLMAUF
20008 jsr VALBYT

Code fir #
vorhanden? nein ===> SYNTAX ERROR
"(" vorhanden?
wertet Ziffernfolge nach dem
Trennzeichen "(" aus
20011 stx BSX ;s Ausgabe des Werts als BS-Code zur Kontrolle
- 20014 jsr KOMMA s "," vorhanden?
20017 jsr VALBYT ; ja ---> Auswertung bis zum ndchsten Trenn-
zeichen mit VALBYT
20020 stx BSY s und Kontrollausgabe im Bildschirmcode
~ 20023 jsr KLAMZU ; ")" vorhanden?
20026 jmp BPRINT ; ja ===> mit BPRINT den folgenden String
auf dem Bildschirm ausgeben und zurick nach
BASIC springen

e we we e

Wenn Sie die BASIC-Zeile starten, werden Sie feststellen, daB
auch die Variablen x und y richtig ausgewertet werden. Vorausset-
zung ist aber immer noch, daB sie im Bereich von 0 bis 255 lie-
gen.

- 238 -

10.7 Auswertung mit VAREAL (Wert Realzahl)

Entsprechend der Byte-Auswertung arbeitet die Routine VAREAL.
Jetzt kann die Ziffernfolge jedoch eine beliebige Zahl sein oder
durch einen mathematischen Term dargestellt werden, der Zahlen
und/oder Variablen mit oder ohne Vorzeichen enthdlt. Wichtig ist
lediglich, daB der Wert des Gesamtterms eine reelle Zahl dar-
stellt.

Das Ergebnis wird im FAC1l abgelegt und kann von dort aus weiter-
verarbeitet werden.

Alles bisher Gesagte Uuber Trennzeichen usw. gilt nach wie vor.

Beispiel dazu:

100 x=20:y=-0.02:vr=20000 :SYSvr,x/y-(100-5000): PRINT"DM"

Ab (20000) muB nun wieder die Auswertungsroutine stehen.
Sie soll z.B. den Wert bestimmen und auf dem Bildschirm ausgeben.

ASSEMBLER-Beispiel "92-realwert" (allg.):
- 20000 jsr KOMMA s "," vorhanden?

20003 jsr 44426 s VAREAL wertet den folgenden Ausdruck
(20003 jsr 48516) bis zum Trennzeichen ":" aus und legt ihn

im FAC1 ab
- 20006 jsr FLPOUT ; druckt: 3900
20009 rts 3 Ricksprung ins BASIC

Nach der SYS-Routine wird zur Kontrolle das "DM" gedruckt, um
sicherzustellen, daB auch wieder mit dem BASIC-Programm fortge-
fahren wird.

Sie erkennen auch, daB die Klammern diesmal nicht als Trennzei-
chen fungieren, da sie ja Zeichen eines mathematischen Ausdrucks
sind. Verwenden Sie also in diesen Fallen das Komma oder den Dop-
pelpunkt, um eine saubere Trennung lhrer Parameter zu erzielen.

- 239 -

10.8 Auswertung mit VALKLA

Eine Abkirzung des -eben beschriebenen Verfahrens ist mdglich,
wenn man die Routine VALKLA (Wert eines Klammerausdrucks)
verwendet. Sie Uberprift, ob die Klammern gesetzt sind und wertet
die Zeichenfolge innerhalb der Klammern aus, wobei hier auch wei-
tere Klammerausdricke entsprechend der mathematischen Hierarchie
behandelt werden.

Beispiel:
100 k1=20000:5YSkl, (2000-(500/0.1)):print" Klammerausdruck"
Das ASSEMBLER-Programm "93-klammerwert" (allg./80XX in Klammern):

- 20000 jsr KOMMA "," vorhanden?
20003 jsr 44785 VALKLA wertet die Zeichenfolge bis zum
(20003 jsr 48873) Trennzeichen ":" aus und bringt den Wert
nach FAC1
- 20006 jsr FLPOUT ; druckt: -3000
- 20009 rts

[P

Noch einmal zur Wiederholung, weil Sie sich viel Arger ersparen
konnen: Das Komma nach der Variablen kl ist unbedingt notwendig,
weil sonst eine Startadresse kl(x) ausgewertet wird. Wir wollen
aber kein Feldelement angeben, sondern nur die Zahl 20000.

10.9 Auswertung von Integerzahlen mit VALINT und INTADR

Hatte man den Wert eines Ausdrucks gern als Integerzahl im HI/LO-
Format, bedient man sich der ROM-Routine VALINT.

Das Ergebnis wird in die 4. und 5. Stelle des FACl abgelegt,
also nach FAC+3/FAC+4, von wo es weiterbehandelt werden kann.
Im folgenden Beispiel begniigen wir uns wieder mit der Bildschirm-
ausgyabe:

Beispiel:

100 it=20000:sysit,25000-20/0.007:print" Integer"

- 240 -

ASSEMBLER-Beipsiel "94-intwert" (allg./80XX in Klammern):

- 20000 jsr KOMMA prift auf ","

- 20003 jsr 45493 VALINT wertet den Ausdruck bis zum
(20003 jsr 49888) Trennzeichen ":" aus, wandelt ihn in das

Integerformat und legt das Ergebnis in

(97/98), also (FAC1+3/FACl+4) ab.

FAC+3, also HI nach (A)

we we

- 20006 1da 100
(20006 1da 97)
20008 1ldx 101
(20008 1dx 98)
20010 jsr INTOUT
20013 rts

-e

FAC+4, also LO nach (X)

-e

druckt: 22142

..

Voraussetzung, daB keine ERROR-Meldung auftritt, ist, daB der
Gesamtwert den die Zeichenfolge vom Eintritt der Auswertung bis
zum Trennzeichen darstellt, den Integerbereich (von 0 bis
32767,...) nicht iberschreitet.

Treten Bruchzahlen auf, wird der Nachkommaanteil einfach igno-
riert, eine Fehlermeldung findet nicht statt.
Ist das Gesamtergebnis negativ, erfolgt ein ILLEGAL QUANTITY ...

Eine zweite Mdglichkeit bietet INTADR, das die Integerzahl -
wie das Label andeuten soll - in das Adressformat, also LO/HI
umwandelt.

Diese Routine stammt aus dem BASIC-System, wenn Programmzeilen-
nummern aus dem Bildschirm Ubernommen werden.

Ein kurzes Beispiel fir eine mdogliche BASIC-Zeile:

500 sys20000,32768:print" = $8000"

Das folgende ASSEMBLER-Programm Ubernimmt die Zahl 32768 als In-
tegerzahl und druckt sie aus.

ASSEMBLER-Beispiel "95-integadress" (Cé64):

- 20000 jsr KOMMA "," vorhanden ?
20003 jsr 43371 INTADR holt die Zeichenfolge nach dem
(20003 jsr 47350) Komma, wandelt sie in LO/HI um und legt sie
als Integerzahl (Adressformat) nach (20/21)
(40/80XX: nach 17/18)

ws e

- 241 -

- 20006 1ldx 20 Ubertragen von LO
(20008 sta 251) ; nach (251)
20010 1lda 21 5 und HI
(20012 sta 252) ; nach (252)
20014 jmp INTOUT ; zur Ausgabe mit INTOUT

e

Nach dem Start mit RUN 500 wird gedruckt: "32768 = $8000"

Verwendet man bei den 40/80XX-Geraten zur Ausgabe ADROUT=55063,
dann erh&dlt man die Hexzahl zur eingelesenen Dezimalzahl, wenn
wenn LO in (251) und HI in (252) steht.

10.10 Auswertung mit VALPAR, VALSTR, PARFLG und TYPFLG

Die ROM-Routine VALPAR (Wert eines beliebigen Parameters) wird
immer dann eingesetzt, wenn man zunachst nicht weiB, welcher Art
der auszuwertende Parameter ist.

Er kann ein Zahlenwert sein und hier wieder Byte, Real- oder In-
tegerzahl darstellen oder aber er tritt als String auf.

VALPAR untersucht zunachst einmal den auftretenden Parameter
und notiert sich in zwei Zeropageadressen, was fir ein Typ ihr
vorgelegt wurde:

In der einen Adresse (nennen wir sie PARFLG) steht eine O,
wenn es sich wum einen Zahlenausdruck handelt; bei einem String
wird 255 gesetzt.

Wird ein Zahlenausdruck als Integerzahl erkannt, wird in der
Adresse TYPFLG das 8.Bit gesetzt (gleich 128), andernfalls -
namlich bei einer reellen Zahl - steht hier eine O.

Die Auswertung erfolgt entsprechend den schon besprochenen Spiel-

regeln:

- Reelle Zahlenergebnisse werden im FACl abgelegt.

- Integerzahlen werden in reelle Zahlen umgewandelt und eben-
falls nach FACl gebracht. DaB es sich weiterhin um eine Inte-
gerzahl handelt, wird in TYPFLG registriert.

— Treten Strings auf, dann steht in (FACl+3/FACl+4) ein Zeiger,
der auf den entsprechenden Stringdeskriptor zeigt.

- 242 -
Die schon besprochene Routine VALKLA enth&dlt lbrigens das Pro-
gramm VALPAR und kann genau so eingesetzt werden.

Da wir schon etliche Zahlenparameter ausgewertet haben, versuchen
wir uns im folgenden Beispiel an einem String.

Beispiel:
100 x$="pytretemarap'":pa=20000:syspa,mid$(x$,3):print" "x$

ASSEMBLER-Programm "96-parwert" (C64):

- 20000 jsr KOMMA 5 pruft auf ","
20003 jsr 44446 ; VALPAR wertet die Zeichenfolge nach dem
(20003 jsr 48536) Komma bis zum Trennzeichen aus
20006 jsr 44431 s STRTYP prift PARFLG auf 255
(20006 jsr 48521)

Nachdem die Routinen VALPAR und STRTYP festgestellt haben, daB
ein String zum Auswerten vorliegt, suchen sie auch noch die
Lage des Strings im RAM. Jedoch wird dabei nicht die Zeichen-
kette selbst gesucht, sondern die Anfangsadresse des Stringde-
scriptors. Sie wird im FAC abgelegt und zwar in der 4. und 5.
Stelle, also in FAC+3 und FAC+4.

Die Adressen (100/101) enthalten nun den Zeiger auf den Stringde-
skriptor von mid$(x$%,3). Dort steht als erstes die Lange des
Strings, also 10. Holen wir uns dieses Byte ins (X)-Register:

- 20009 1dy #0
20011 lda (100),y
20013 tax

Nehmen wir - nur so zum Spall - an, wir wollen den String von hin-
ten nach vorn schreiben, dann sieht das so aus:

- 20014 iny

20015 lda (100),y ; LO der Anfangsadresse des Strings holen
20017 sta 94 und ablegen in FAC+0 (Beispiel)

20019 iny

20020 lda (l00),y
20022 sta 95
20024 txa

20025 tay ; Lange des Strings als Zahler nach (Y)

..

HI der Anfangsadresse des Strings holen
und nach FAC+1l bringen

.. oo

- 243 -

- 20026 dey ; Zahler um eins erniedrigen
20027 lda (94),y ; Zeichen aus dem String holen
20029 jsr 65490 3 und ausgeben
20032 tya 3 Zahler nach (A)
20033 bne 20025 ;s Ende erreicht? nein ===> weiter holen
20035 rts

Es ist etwas umstandlich, sich vorzustellen, daB nach dem Auswer-
ten ein Zeiger auf einen Zeiger =zeigt; aber mit etwas Ubung
klappt auch das.

Fir eine Vereinfachung sorgt die ROM-Routine VALSTR. Sie legt
namlich die tatsachliche Anfangsadresse des Strings (nicht den
Anfang des Stringpointers!) in (34/35) bzw. 80XX:(31/32) ab. Nen-
nen wir diese Zeropageadressen STRADR (von Stringadresse).

Diese Anfangsadresse steht auch noch in (X/Y) mit LO/HI; die Lan-
ge des Strings 1aBt sich dem (A)-Register entnehmen.

Um die oben besprochene BASIC-Zeile 100 genauso ablaufen zu las-
sen wie vorher, genigt jetzt folgendes ASSEMBLER-Programm:

ASSEMBLER-Beispiel "97-stringwerte” (C64/ 80XX in Klammern):

— 20000 jsr KOMMA
20003 jsr VALPAR
20006 jsr 46755 3 VALSTR holt Stringanfang nach STRADR
(20003 jsr 51125) und Stringlange nach (A)
- 20009 tay
20012 dey ...

Der Rest 1ist der gleiche wie im vorigen Programm (Ausdruck von
hinten nach vorn).

10.11 iUlbernehmen einer BASIC-Variablen mit GETVAR

Haufig treten F&dlle auf, wo man moglichst schnell - also in Ma-
schinensprache - einer BASIC-Variablen einen Wert zuweisen oder
sie anderweitig weiterverarbeiten muB.

Die ROM-Routine GETVAR entnimmt dem BASIC-Text die Variable,
untersucht sie auf numerisch (hier wieder auf integer oder reell)

- 244 -

und liefert in (A/Y) mit LO/HI die Anfangsadresse der Variablen.
Wurde die gesuchte Variable nicht gefunden (erstes Auftreten im
Programmlauf), so wird sie im Variablenspeicherbereich eingerich-
tet.

Zum AbschluB dieses Kapitels 10sen wir ein Problem, das sowohl
diese Routine GETVAR beniitzt, als auch eine Wiederholung und
Anwendung etlicher Abschnitte aus bisher Besprochenem enthalt.
AuBerdem bietet das Maschinenprogramm (selbstverstandlich wieder
in Modulform) etwas, was in BASIC nicht moglich ist:

Es liest in eine Stringvariable alle Zeichen und Zahlen ein, ohne
Ricksicht darauf, ob sie eventuelle Trennzeichen sind oder nicht.

Es handelt sich im folgenden also um eine Art INPUT-Befehl, aber
um einen sehr komfortablen: Er liest namlich von jedem angespro-
chenen Gerat ein, also vom Bildschirm, von Diskette, vom Band
oder von der Tastatur. Und das in einem Supertempo, so daB Sie
z.B. eine vollgeschriebene DIN A4-Seite in 5 oder 6 Sekunden vom
Floppy lbernehmen konnen. Versuchen Sie das mal in BASIC.

In BASIC-Spracherweiterungen sind manchmal solche Befehle enthal-
ten. Man bezahlt dafir ganz ordentliche Preise. Wir machen uns
so einen Befehl selbst. Nennen wir das Modul also "onstring"
und gehen ans Werk.

10.12 Ein vielseitiges Modul: "98-onstring"

Aufgabe des Moduls und die notwendigen Parameter:

~ Es muB ein Gerat angesprochen werden, das zuvor iber eine logi-
sche Adresse LA gedffnet wurde. (Das kann durchaus in BASIC
geschehen.)
Verwenden wir dazu - wie in BASIC auch - ein Doppelkreuz # und
dahinter die File-Nummer LA.

~ Eine Stringvariable ist notwendig, in die alle Zeichen eingele-
sen werden konnen. Nennen wir sie einfach mal x§$. .
Selbstverstandlich kann das im Gebrauch dann auch eine Feldva-
riable sein.

- 245 -

- Um eine bestimmte Anzahl Zeichen zu ibernehmen, geben wir auch
die maximale Lange des Strings an mit ML.

— SchlieBlich bringen wir als Option noch ein Abbruchkriterium
ein. Taucht der Code dieses Bytes auf, dann wird der String ab-
geschlossen. Das Abbruchzeichen selbst {bernehmen wir nicht
mehr. (Wem das nicht gef&allt, der baut diese Stelle eben ent-
sprechend um.)

- Falls dieses Modul spater noch mit anderen Spracherweiterungen
verknipft werden sollte, kennzeichnen wir es mit ON.
(Auf die Verkniupfungen kommen wir noch zuriick.)

Nehmen wir an, der Einsprung in das Modul erfolgt bei Adresse MO,
dann sieht der BASIC-Befehl in allgemeiner Form so aus:

sys(mo)(on#la,x$,ml,az)

Als Beispiel zum besseren Verstandnis:

Nehmen wir an die Einsprungadresse fir unseren Befehl sei 20001.
sys 20001 (on#3,pr$,50,46) bedeutet, daB von dem Gerat, das mit
der logischen Adresse #3 geoffnet wurde, 50 Zeichen geholt und in
die Variable PR$ eingelesen werden sollen. Tritt das Zeichen mit
dem Code 46 (also ein Punkt) auf, wird vorher abgebrochen.

Wenn das Offnen mit OPEN 3,3 erfolgte, dann werden ab der momen-
tanen Cursorposition alle Zeichen eingelesen einschlieBlich An-
fihrungszeichen, Doppelpunkt und Komma, die hinter dem Cursor
stehen.

Der Aufbau (Ablauf) des Moduls "98-ONSTRING":

01 Auf Klammer prifen und das nachste Zeichen auf den Code von ON
(145) vergleichen.

02 Ndachstes Zeichen holen und auf Code 35 von "#" vergleichen.

03 Die nachste Zeichenfolge als Byte auswerten (das ist die logi-
sche Adresse).
AnschlieBend wieder die Kommaprifung durchfihren.

04 BASIC-Variable aus dem Text lesen, die Anfangsadresse holen
und diese Anfangsadresse 1in der Zeropage zwischenspeichern.
AuBerdem noch eine Prifung durchfihren, ob es sich bei der Va-

05

06

07

08

09

10

11

12

13

14

- 246 -

riablen auch wirklich wum eine Stringvariable handelt. Sonst
gibt's spater Schrott!

(In BASIC 4 - nicht C64 - muB ein eventueller String mit dem
gleichen Namen ungiltig gemacht werden, damit die "Stringmill-
beseitigung" systemgemaf funktionieren kann.

Dazu wird am Ende eines nicht mehr benotigten Strings der sog.
"Trailer" (das sind zwei zusdtzliche Bytes) mit der String-
lange und mit dem Wert 255 belegt.)

Erneute Kommaprifung und Auswertung der nachsten Zeichenfolge
als Byte. (Das 1ist jetzt die vorgegebene Stringlange ML.)
Diese Lange in einer freien Zeropageadresse (auch jede andere
moglich) festhalten.

Das nachste Zeichen erst auf "Klammer zu" prifen; denn falls
man kein Abbruchzeichen winscht, sollte man hier den Befehl
abbrechen kénnen.

Ansonsten wird die nachste Zeichenfolge als Byte ausgewertet.
Auch die Form ASC(".") wird richtig interpretiert und mit 46
festgehalten. Das ist z.B. das Abbruchzeichen.

Den ASCII-Code in einer freien Adresse speichern.

Eingabe-Einheit mit Hilfe der Filenummer aktivieren.
Das Y-Register als Zahler mit O vorbelegen und ein Zeichen
holen. Dieses Zeichen wird - wie alle folgenden - zunachst

einmal in einem Kassettenpuffer zwischengespeichert.

Uberpriifen, ob das Abbruchzeichen vorliegt.
Wenn ja, aus der Schleife hinausspringen.

Statuysbyte (Uberprifen, ob eventuell das Ende der Datei oder
ein Fehler eingetreten ist.

Wenn nein, dberprifen, ob die maximale Lange schon erreicht
ist. Wenn nicht, weitere Zeichen holen.

Ansonsten maximale Lange speichern wund den Eingabevorgang
abschlieflen.

Nachdem alle Zeichen geholt wurden, wird der Zahler nun in je-
dem Fall nach (A) Ubertragen. Das ist nun die endgiltige

- 247 -

Stringldnge. Mit dieser in (A) kann nun der notwendige Platz-
bedarf im Stringbereich eingestellt werden. Die entsprechende
ROM-Routine heiBt STRPLZ (Stringplatz). Dazu muB die gewilinsch-
te Stringlange im Deskriptor der Variablen stehen.

Die Stringlange wird noch einmal geholt und als Zahler fir die
Einleseschleife hergerichtet: Dazu muB dieser Zahler zunéchst
einmal erhoht werden, weil die folgende Schleife sofort mit
einer Dekrementierung beginnt (Erniedrigung um 1).

15 Da wir wuns vorhin die Anfangsadresse der Stringvariablen ge-
merkt haben, kdnnen wir nun die gefundene Stringanfangsadresse
in den Deskriptor schreiben.

Damit ist die Variable endgiltig eingerichtet.

16 Schleife zum Einlesen der zwischengespeicherten Zeichen aus
dem Kassettenpuffer in den vorbereiteten Stringplatz.

(In BASIC 4.0 darf nicht vergessen werden, hinter die Zeichen-
folge des Strings die Anfangsadresse des zugehorigen Varia-
blennamens zu schreiben. Sonst kennt sich die '"carbage
collection"-Routine nicht mehr aus.)

Die Beschreibung des Ablaufplans ist diesmal absichtlich etwas
feiner gegliedert, weil es sich lohnt, anhand dieses Beispiels
den Einsatz der einzelnen ROM-Routinen wund die Eigenarten der
CBM-Stringverwaltung noch einmal einzustudieren.

Fir den Cé64 missen die eingeklammerten Teile entfallen, da dieser
noch mit dem alten BASIC 2.0 arbeitet. In diesem Dialekt gibt
es vom String selbst keinen Rickverweis auf die Anfangsadresse
der Stringvariablen.

Verwendete Adressen der Zeropage:

<163> = Filenummer aus dem BASIC-Text
<165> = Code des Abbruchzeichens
<1l66> = maximale Lange der zu holenden Zeichenkette

<167/168> = Variablenname

- 248 -~

Nun das vielseitige ASSEMBLER-Programm "98-onstring" (Cé64):

01

02

03

04

05

06

07

08

09

20000

20001
20004
20006

20008
20011
20013

20016

20019
20022

20025

20028
20031
20033

20036
20039
20042

20044
20046

20048
20051
20054
20056

20060
20062

20065
20067

rts

jsr
cmp
bne

jsr
lda
jsr

jsr

jsr
stx
nop

jsr

jsr
sta
sty
nop
jsr
jsr
stx

cmp
beq

jsr
jsr
stx
Jjsr
nop
ldx
jsr

ldy
jsr

44794
#145
20000

115
#35
44799

47006

44797
163

45195

4443)
167
168

44797
47006
166

#41
20056

44797
47006
165

44791

163
65478

#0
65508

-e

we we e -e

e

..

e e ee -e

we we as e e -e

-e

Ricksprung, falls nicht "ON" als Erken-
nungsbyte im Befehl auftritt

KLMAUF prift auf "("

nachstes Zeichen Code fur "ON"?

zurick ins BASIC, SYNTAX ERROR folgt

CHRGET holt nachstes Zeichen
Code fir "#"
PRFZEI prift, ob "#" vorhanden

VALBYT wertet nachste Zeichenfolge als
Byte aus

KOMMA prift auf ","

(X) zundchst in (163) zwischenspeichern
(X) erhielt die Filenummer von VALBYT

GETVAR holt Variable aus dem Text und
richtet sie im Variablenbereich ein
STRTYP prift auf Stringvariable
Variablenadresse L0 zwischenspeichern
und HI ebenfalls

Kommaprifung und nachstes Zeichen holen
VALBYT wertet nachste Zeichenfolge aus
das ist die maximale Lange des Strings
---> zwischenspeichern

folgt Trennzeichen ")"?

ja ===> Sprung nach 08

KOMMA-Prifung

GETBYT holt nachste Zeichenfolge/Byte
Abbruchzeichen zwischenspeichern
KLAMZU: folgt Klammer zu?

Filenummer holen
und mit CHKIN Eingabe vorbereiten

(Y) als Zahler
GETIN holt Zeichen vom aktiven Kanal
nach (A)

10

11

12

13

14

15

16

20070
20072

20074
20046
20078
20080
20083
20084
20086

20088
20090

20097
20099
20101
20103
20105
20107

20110

20112
20114
20116
20117
20119

20122
20124
20127
20129
20130
20132
20134

cmp
beq

ldx
cpx
beq
sta
iny
cpy
bne

sty
jsr
nop
lda
ldy
sta
ldx
ldy
jsr

ldy

lda
sta
iny
lda
sta
nop
ldy
lda
sta
iny
cpy
bne
rts

165
20088

144
#e4
20088
828,y

166
20067

166
65484

166

#0
(167),y
167

168
46201

#1
98
(167),y

99
(167),y

#0
828,y
(98)9)’

166
20124

-e

we @s we

-e

we we ..

b

ws we we we

.
’

- 249 -

Abbruchzeichen?
ja ===> Sprung Ende Eingabe

STATUS
auf Dateiende prifen
erreicht ===> Sprung zu Eingabe Ende

sonst Byte ablegen (Puffer)
Zahler erhghen

maximale Lange erreicht?

nein ===> zur Einlese-Schleife

Lange des geholten Strings ablegen
und mit CLRCH Eingabe abschliefien

Lange nach (A)

Index fir folgende Ausgabe = 0

neue Lange des Strings in Descriptor
Adresse der Stringvariablen LO nach (X)
dto. HI fir die Routine

STRPLZ schafft Platz fir den String

Zahler 1, weil bei 0 sonst das folgende
Byte auf die Lange des Strings gesetzt
wirde (im Descriptor)

LO der Stringanfangsadresse

in den Descriptor

Zahler +1

HI der Stringanfangsadresse

in den Descriptor

Zahler auf 0

Byte aus dem Puffer holen

und in den vorbereiteten Stringbereich
Zahler +1

maximale Lange erreicht?

nein ===> weiter schreiben

ja ---> fertig

- 250 -

Anmerkung:

Bei Strings ist sauber auseinanderzuhalten:

- der Variablenanfang, womit die Adresse LO/HI gemeint ist, die
in den Variablenbereich des RAMs - also direkt hinter den BA-
SIC-Text - zeigt. Dort steht erst der Stringdeskriptor. Der
zweistellige Name der Variablen liegt direkt davor.

- der Stringanfang, womit die Adresse LO/HI gemeint ist, die auf
den Anfang der Zeichenkette im oberen RAM-Bereich zeigt. Dieser
Stringanfang steht als 2. und 3. Byte im Stringdeskriptor. Im
ersten finden wir die tatsdchliche L&énge des Strings.

(Siehe dazu auch nochmals Abschnitt 8.

10.13 "99-onstring80" fir 40/80XX-Geridte

Um auch den 40/80XX-Besitzern nicht den SpaB zu verderben, haben
wir uns die Mihe gemacht, auch fir sie das "ONSTRING"-Modul zu
erarbeiten, weil die Verwaltung der Strings sich deutlich vom
"alten" BASIC 2.0 wunterscheidet. Um ein funktionsfahiges Modul
zu bieten, stellen wir es hier noch einmal komplett mit Kommen-
tar fur den 40/80XX vor:

ASSEMBLER-Programm "99-onstring80" (BASIC 4.0):

01 20000 rts 3 Ricksprung, falls nicht "ON" als Erken-
nungsbyte im Befehl auftritt

KLMAUF prift auf " ("

nachstes Zeichen Code fur "ON"?

zurick ins BASIC, SYNTAX ERROR folgt

20001 jsr 48882
20004 cmp #145
20006 bne 20000

.o we ee

02 20008 jsr 112 GETBYT holt nachstes Zeichen
20011 1lda #35 ; Code fir "#"
20013 jsr 48887 ;s PRFZEI prift, ob "#" vorhanden

-e

03 20016 jsr 51412 VALBYT wertet nachste Zeichenfolge als
Byte aus

20019 jsr 48885 ; KOMMA priuft auf ","

-.

04 20022 jsr 65478 3 CHKIN macht IEEE-Bus empfangsbereit
(X) enthédlt die notwendige Filenummer

05

06

07

08

09

10

20025

20028
20031
20033

20035
20037
20039
20041
20042
20043
20045
20047
20048
20050
20052
20053
20054

20056
20057
20059
20061
20063

20065
20068
20071

20073
20075
20077
20080

20082
20084

20087

20090
20092

jsr

jsr
sta
sty

ldy
lda
beq
pha
iny
lda
sta
iny
lda
sta
pla
tay
sta

iny
bne
inc
lda
sta

jsr
jsr
stx
cmp
beq
jsr
stx

ldy
jsr

sta

cpy
beq

49451

48521
70
71

#0
(70),y
20065

(70),y
31

(70),y
32

(31),y

20061
32
#255
(31)’y

48885
51412
190

#41
20082
51409
191

#0
65508

826,y

190
20107

e we we we we we we ee

..

we wa we ee

e

we we e

e ee

- 251 -

GETVAR holt Variable aus dem Text und
richtet sie im Variablenbereich ein

prift, ob Variable auch Stringvariable ist
Variablenadresse LO

und HI nach (70/71)

(Y) als Index O

Stringlange aus Deskriptor nach (A) holen
Lange 0 ===> Sprung zu Teil 07
Stringlange auf Stack retten

<Y>=1 als Zahler

LO des Stringanfangs holen

nach (31) zwischenspeichern

<Y>=z2 als Zahler

und HI des Stringanfangs holen

und nach (32) bringen

Stringlange wieder vom Stack abheben
Stringlange nun als Index nach (Y)

und als erstes Trailerbyte hinter die ur-
springliche Zeichenkette setzen

Zahler um 1 erhohen

falls der Wert von 255 auf 0 springt
HI-Byte der Stringanfangsadresse erhcohen
255 ist Zeichen fur entwerteten String
als 2. Trailerbyte setzen

Kommaprifung und nachstes Zeichen holen
VALBYT wertet nachste Zeichenfolge aus
das ist die maximale Lange des Strings

folgt Trennzeichen ")"?
ja ===> Sprung nach 09
GETBYT holt nachstes Byte
Abbruchzeichen nach (191)

(Y) als Zahler

GETIN holt Zeichen vom aktiven Kanal
nach (A)

Iwischenspeichern im Kassettenpuffer

maximale Lange erreicht?
ja ===> Sprung nach 15

11

12

13

14

15

16

20094
20096

20098
20100
20102
20103
20105

20107

20108
20110

20113
20115
20116

20117
20120
20122
20123

20126
20128
20130
20132
20133
20135
20137
20138
20140

20142
20144
20146
20148
20149
20151
20153
20155
20157

cmp
beq

lda
bne
iny
bne
1dy

tya

sta
jsr

ldy
iny
dey

lda
sta
tya
bne
nop
ldy
lda
sta
iny
lda
sta
iny
lda
sta

ldy
lda
sta
clc
inc
bce
inc
lda
sta

191
20107

150
20105

20084
#255

190
50590

190

826,y
(95),y

20116

#0
190
(70),y

95
(70),y

96
(70),y

190
70
(95)9y

95
20155
96

71
(95),y

..

we @s e

we we we e -e ..

we we e

we we we e

..

we oo

- 252 -

Abbruchzeichen in (A)?
ja ===> Sprung nach 15

Status prifen (Ende?)

ungleich 0 ===> Sprung nach 14

ansonsten Zahler erhdhen

und nachstes Zeichen holen, usw.

falls Status, also Dateiende ---> <Y>=255

Zahler, also endgiltige Lange des aufge-
nommenen Strings nach (A)

und nach (190)

STRPLZ stellt Stringplatz bereit, der
Anfang der neuen Zeichenkette befindet
sich anschlieBend in (95/96)

Stringlange holen als Zahler

und zunachst um 1 erhohen

Schleife zum Eintragen der Bytes beginnt
mit Erniedrigen des Zahlers

Zeichen aus Kassettenpuffer holen

und an vorbereiteten Platz legen
Ubertragen nach (A) nur wegen Endepriifung
Ende nicht erreicht ===> weitermachen

Index O

Lange holen

und in den Stringdeskriptor eintragen
Zdhler erhohen

L0 des Stringanfangs

in den Stringdeskriptor

Zahler erhohen

Hi des Stringanfangs

in den Stringdeskriptor

Lange wieder holen
Variablenanfang LO holen
und als erstes Trailerbyte setzen

LO des Stringanfangs erhohen

kein Uberlauf ===> eine Zeile iiberspringen
ansonsten HI des Stringanfangs erhdhen
Variablenanfang HI holen

und als 2.Trailerbyte setzen

- 253 -

17 20159 jsr 48879 ; KLAMZU prift auf ")", holt nachstes
Zeichen
20162 jmp 48054 3 AbschluB mit CLALL - Ricksprung

Test des "ONSTRING"-Moduls mit "100-testonstring":

Schreiben wir nun ein kleines BASIC-Programm, das sowchl die
Funktionstichtigkeit des Moduls als auch seine Wirkungsweise be-
statigt.

Belassen wir es zunachst im Bereich von (20000) bis (20165) und
grenzen BASIC entsprechend mit HIMEM 20000 ab.

Zunachst Uberprifen wir, ob es - wie versprochen - aus dem Bild-
schirm-RAM liest (Zeilen 100 bis 180).

AnschlieBend lesen wir ein paar Zeilen aus einer SEQ-Datei, die
wir hier mit "seqtest" benannt haben. Sie haben sicher irgendeine
solche Datei auf Diskette und konnen den entsprechenden Namen
einsetzen (Zeile 200).

Sie beherrschen BASIC sicher so gut, daB sich ein zusatzlicher
Kommentar eribrigt:

50 poke 55,0:poke56,70 poke51,0 : poke 52,70 :' himem/fretop
100 dim x$(20):0pen3,3 ' datei auf bildschirm

110 ox=20001 : ' startadresse des moduls

115 print chr$(19)"0123456789abcdefghi jklm..."chr$(19);
125 for n=0tol9 : sys (ox)(on#3,x$(n),n+1)

130 print chr$(19); : ' home

140 next n

150 print: for n=0tol9 : printx$(n) : next n : 'ausdrucke
160 print (peek(51)+256+peek(52)) : ' stringzeiger

170 for i=0to200 : next i : 'warten

180 print chr$(147);:goto 115 : ' screen clr

200 open8,8,8,"seqtest”

210 for n=1lto5

220 sys20001(on#8,x$(n),n)

230 next n

240 close 8

250 for n=1to5 : printx$(n): next n
260 end

Starten Sie nun mit RUN, dann erscheinen auf dem Bildschirm immer
groBere Teilsticke der ersten Bildschirmzeile.

- 254 -

Mit dem Ausdruck des Stringzeigers (51/52) aus der Zeropage kon-
nen Sie feststellen, daB auch die Stringmillbeseitigung einwand-
frei funktioniert: Der Zeiger nimmt einen immer kleiner werden-
den Wert an, bis er an die Grenze des Variablenbereichs stoBt.
Nach der '"carbage collection" springt er dann sofort wieder an
seine Obergrenze.

Damit Sie diese Zeigerausgabe auch verfolgen konnen, haben wir
eine kleine Warteschleife eingebaut (Zeile 155), bevor die

nachste Ausgabenserie erfolgt.

Beginnen Sie mit RUN 200, dann lauft die Diskette an und holt
die entsprechenden SEQ-Daten von der Diskette.

10.14 Verkniipfen von Modulen

Will man in einem Programm mehrere verschiedene Module aufrufen,
so ist es umstandlich, jedes einzelne mit SYSXXXX anzuspringen,
weil jedes Modul eine andere Einsprungadresse hat.

Verkettet man jedoch die bendotigten Maschinenprogramme, dann ge-
nigt eine SYS-Adresse. Voraussetzung ist, daB im Maschinenmodul
selbst der richtige Sprung zum richtigen Befehl gefunden wird.

Nehmen wir an, wir haben die beiden Module "irq" und "him" zur
Verfigung. Dann legen wir eine SYS-Adresse fest, bei der ein Ein-
sprung von BASIC aus erfolgt, z.B. (20000) und legen eine Varia-
ble dafir an: mo=20000.

Wenn "irq" ein Modul ist, das den Interruptvektor auf eine be-

stimmte Adresse setzt, z.B. auf 18000, dann sieht der BASIC-Be-
fehl etwa so aus:

sys(mo) (irq,18000)
Soll HIM ein Befehl sein, der die RAM-Obergrenze bestimmt, um
eventuelle Maschinenprogramme zu schiitzen, konnen wir vielleicht
so vorgehen:

sys(mo) (him, 18000)

Die Unterscheidung der Befehle wird also nicht lUber die SYS-

- 255 -

Adresse getroffen, sondern iber die Syntax dahinter.

Damit haben wir unser weiteres Vorgehen bereits festgelegt:

Im ersten Teil des Maschinenprogramms muBl abgefragt werden, ob
die gewilinschte Zeichenfolge des ersten Befehls existiert.

Wenn ja, wird dieses Modul abgearbeitet.

Wenn nicht, wird zum Beginn des nachsten Moduls gesprungen, wo
wiederum zuerst auf richtige Schreibweise des Befehls kontrol-
liert wird.

Man muB nicht unbedingt so streng wie das CBM-BASIC sein und
bei kleinen Fehlern gleich das Programm zum Stillstand bringen.
Vielleicht genilgt es dem einen oder anderen bei "irqg" nur auf
"ir" zu prifen oder gar bloB auf "i".

Das 1ist jedoch Geschmacksache, woriber wir hier nicht streiten
wollen.

Folgen weitere Module, wird in derselben Manier weitergepriift.
Wird auch beim letzten Modul nicht die richtige Zeichenfolge
gefunden, erfolgt der Ricksprung ins BASIC, was automatisch
einen SYNTAX ERROR o.a. auslost; denn die nachsten Zeichen sind
in aller Regel nicht BASIC-gerecht.

Schematisch 1aBt sich dieses Verfahren so darstellen:

Einsprung bei MO

Modul 1: Zeichenfolge richtig?
ja ==-=> Modul bearbeiten
nein ===> Sprung zu Modul 2
Modul 2: Zeichenfolge richtig?
ja -==> Modul 1 bearbeiten
nein ===> Sprung zu Modul 3
Modul N: Zeichenfolge des letzten Moduls richtig?

ja --=> letztes Modul bearbeiten
Ricksprung nach BASIC

1"
1]
v

nein =

- 256 -

Jetzt sollte man noch darauf achten, daB die Sprungbefehle nur
aus BRANCH-Anweisungen bestehen. Es 1aBt sich dann ohne weiteres
ein Modulpaket erzeugen, daB aus beliebig vielen - soviel der
Speicherplatz eben zulaBt - Programmteilen besteht. Dieses Paket
bringen wir dann beim entsprechenden BASIC-Programm unter, am
besten im oberen RAM-Bereich.
2

Die Module kdnnen einzeln erstellt wund abgespeichert werden.
Verknipft man mehrere miteinander, so schiebt man den ersten Be-
fehl des nachfolgenden Moduls auf das RTS des vorhergehenden.
Schauen wir uns dazu ein Beispiel an:

Modul 1: IRQ-Vektor setzen mit sys(mo)(irq,xx)

ASSEMBLER-Programm "10l-irgset" (Cé64):

- 20000 ldx 122 3 Programmzeiger LO
20002 stx 165 retten
20004 1dx 123 Programmzeiger HI
20006 stx 166 ebenso, falls nicht dieses Modul aufgerufen
werden soll

we we we

20008 jsr 44794 ; KLMAUF "(" ?
20011 cmp #73 ;s nachstes Zeichen "i" ?
20013 bne 20050 ;5 nein ===> Sprung zum SchluBiteil
- 20015 jsr 115 ;3 nachstes Zeichen holen mit CHRGET
20018 cmp #82 S
20020 bne 20050 3 nein ===> Modulende
- 20022 jsr 115 ;5 nachstes Zeichen holen
. eventuell Uberprifen (siehe oben)
20025 jsr 115 3 nachstes Zeichen holen

20028 jsr 44797 ; KOMMA "," ?

- 20031 jsr 43371 ; INTADR wertef Zeichenfolge als Integer-
zahl aus. LO/HI in (20/21)

20034 sei ; Interrupt abstellen
20035 1lda 20 s LO des neuen IRQ-Vektors
20037 sta 788 ;s nach IRQ/LO

20040 lda 21 ;5 HI

20042 sta 789 ; nach IRQ/HI

?
20045 cli s Interruptflag wieder zuriicksetzen
20046 jsr 44791 ; KLAMZU ")" ?
20049 rts s und zurick nach BASIC

- 257 -

— 20050 lda 165 s LO des Programmzeigers
20052 sta 122 ;3 hinter SYS-Aufruf stellen
20054 lda 166 s HI des Programmzeigers
20056 sta 123 ;s ebenso
20058 rts

Wenn wir das Verschieben von vornherein vermeiden wollen, dann
beginnen wir das nachste Modul HIM am besten gleich mit der
Adresse (20056). Jedes fir sich kann aber einzeln abgespeichert
werden.

Modul 2: RAM-Obergrenze festlegen mit sys(mo)(him,xx)

ASSEMBLER-Programm "102-himemset" (C64):

- 20058 lda 122 usw. wie oben (Retten des Programmzeigers)

— 20066 jsr KLMAUF ; "(" ?
20069 cmp #72 ; folgt "h" ?
20071 bne 20106 s Sprung ans Ende
... Zeichen holen und eventuelle weitere Uberprifungen ...
— 20092 jsr INTADR holt Integerzahl nach LINNUM
20095 1lda 20 LO von LINNUM
20097 sta 55 nach oberem RAM-Zeiger L0 : MAXMEM-LO

20099 lda 21 HI
20101 sta 56 nach oberem RAM-Zeiger HI: MAXMEM-HI
20103 jsr KLAMZU "y 2

e we we we we we we

20106 rts und zurick ins BASIC

Fir weitere Verknidpfungen empfiehlt es sich, auch hier den Pro-
grammzeiger zwischenzuspeichern und eine entsprechende Erganzung
wie im obigen Beispiel anzuhangen.

Werden die Module langer, so kann es vorkommen, daB die Sprung-
weite den Wert 128 iberschreitet. Um die verschiebbare Modulform
beizubehalten, sind dann Zwischenspriinge einzubauen, wie wir sie
bereits kennengelernt haben.

Baut man sich einen ganzen Befehlssatz von groBerem Umfang, so
lohnt es sich manchmal, in die freien Steckpl&dtze sog. SOFT-ROMs
einzusetzen, die den BASIC-Arbeitsspeicher nicht belasten.
(Beim C64 ist diese Moglichkeit ohnehin vorgesehen.)

- 258 -

Diese SOFTROMs haben gegeniber den EPROMs, wie sie z.B. fir die
Spracherweiterung EXBASIC im Handel sind, den entscheidenden Vor-
teil, daB sie jederzeit mit anderen Programmen (nur Maschinenpro-
grammen!) belegt werden kdnnen. Der Nachteil aber ist, daB sie
von einer Speichereinheit aus erst geladen werden missen, was je-
doch mit einem Starterprogramm - wie wir gelernt haben - auch
kein besonderes Problem ist.

10.14 Modulverkniipfung mit einer Sprungleiste

Wen es stort, daB bei jedem Einzelmodul zuerst der Programmzeiger
gerettet wund dann wieder zurickgesetzt werden muB, arbeitet am
besten mit einer Sprungleiste fir die verschiedenen Einsprung-
adressen.

Vorteil: Die Module selbst konnen stehen, wo sie wollen. Die Ein-
sprungadressen missen aber bekannt sein.
Nachteil: Eine Gesamtverschiebung ist nicht moglich.

Ein Beispiel dazu:

Nehmen wir an, unsere beiden Module "irgset" und "himemset" ste-
hen ab (10100) bzw. (10200).

Der Einsprung ins Modulpaket soll bei (10000) erfolgen. Das ist
also der SYS-Aufruf.

Jetzt wird im Sprungverteiler zuerst nach dem Buchstaben "i" ge-
fragt. Ist er nicht vorhanden, wird gleich zur zweiten Moduliber-

prifung verzweigt. Dort wird das gleiche erste Byte mit "h" ver-
glichen usw.

Erst bei Gleichheit des ersten Buchstabens wird der zweite ge-
prift. Das spart Zeit.

Genauso fahrt man fort, wenn mehrere Module hintereinander auf-
gerufen werden konnen: Erst wenn die ersten beiden Buchstaben
passen, wird der dritte Uberprift usw.

Fir umfangreiche Modulpakete kann man sich dazu auch eine Prif-
leiste ausdenken.

- 259 -

ASSEMBLER-Beispiel "103-modsprung" (allg.):

01 10000 jsr KLMAUF ; "(" ?
10003 cmp #73 ; it o7

9
10007 bne 10030 s nein ===> zur nachsten Modulprifung
10007 jsr CHRGET ; nachstes Zeichen holen
10010 cmp #82 ;3 "r" ?
10012 bne 10037 ;3 nein ===> evt. 2. Zeichen im nachsten Teil
10014 jsr CHRGET ; nachstes Zeichen holen
10017 cmp #81 s "q" ?
10019 bne 10044 s nein ===> evt. 3. Zeichen im nachsten Teil
10021 jsr CHRGET ; ndchstes Zeichen nach (A)
10024 jmp 10100 3 gefunden ---> Modul "irq" anspringen
02 10030 cmp #72 5 "h" ?
10032 bne 10054 s nein ===> Ende
10034 jsr CHRGET ; nachstes Zeichen
10037 cmp #73 3 "iv o2
10039 bne 10054 ;3 nein ===> Ende
10041 jsr CHRGET ; nachstes Zeichen
10044 cmp #77 ;3 "m" 7

10046 bne 10058 ; nein ===> Ende

10048 jsr CHRGET nachstes Zeichen nach (A)

10051 jmp 10200 gefunden ---> Modul "him" anspringen
03 10054 rts

we we we e

04 10100 jsr INTADR Modul "irg"

05 10200 jsr INTADR Modul "him"

Auf diese Weise wird allerdings auch bei der Zeichenfolge "irm"
oder "iim" ein Modul aufgerufen. Doch wenn dort nicht die richti-
gen Angaben stehen, erfolgt der SYNTAX ERROR.

Probieren Sie selbst aus, wie Sie Ihre Verknipfungen anlegen
konnen. Wir wollten Ihnen nur ein paar Anregungen geben.

Aufgaben:
Schreiben Sie je ein Modul fir die Befehle DEEK und DOKE und ver-
kniipfen Sie beide zu einer Einheit.

- 260 -

Wandeln Sie die bereits besprochene PRINTUSING-Routine entspre-
chend ab wund verknipfen Sie sie mit den bereits vorhandenen Be-
fehlen (z.B. ON#, DEEK, DOKE, PRINT AT, IRQ, HIM und weiteren).

Anmerkung:

Der Befehl DEEK(X) erzeugt aus den Adressen (X/X+l) eine Integer-
zahl fir <X>=L0 und <X+1>=HI dieses Zahlenwerts.

Zusammenfassung:

Wenn Sie auf diese Art und Weise einen Befehlssatz erstellen, der
Ihren Ansprichen gerecht wird, kdnnen Sie Ihre folgenden BASIC-
Programme recht schnell und bequem erstellen.

Einen Nachteil hat die ganze Sache noch: Ihre neuen, zusatzlichen
Erweiterungen missen alle mit SYS(MO) aufgerufen werden.
Um neue BASIC-Worte direkt zu akzeptieren, bedarf es aller-
dings einiger Umbauten und Umleitungen. Das kostet beim Programm-
lauf aber Zeit, und gerade die wollten Sie doch mit Ihren Modulen
einsparen.

Die SYS-Aufrufe der Module stellen eine brauchbare Losung dar,
eigene Befehle innerhalb eines BASIC-Programms einzusetzen.
Verknipft man die einzelnen Module, so kommt man mit einer einzi-
gen Einsprungadresse aus.

Die Syntaxprifungen koénnen von den Maschinenprogrammen selbst
ibernommen werden. Dabei bleibt es dem Programmierer freige-
gestellt, wie scharf diese Prifungen sind.

Beginnen z.B. zwei Module mit dem gleichen Buchstaben, so ist auf
jeden Fall das erste und das zweite Zeichen zu untersuchen, damit
es nicht zu Fehlinterpretationen kommt.

- 261 -

BASIC-Text-Routinen und -adressen

Label Cé64 40/80XX .
1 1

FAC1 97...102=%$61...66 94...100=%$5e...64

FAC+1/2 98/99=$62/63 95/96=$5f/60

FAC+3/4 100/101=%64/65 97/98=%$61/62

STRADR 34/35=$22/23 31/32=%$1f/20

Adresse des Stringanfangs nach VALSTR

VARADR 71/72=%47/48 68/69=%44/45
Adresse des Variablenanfangs LO/HI nach GETVAR
auch in (A/Y)

L INNUM 20/21=%$14/15 17/18=%$11/12
BASIC-Zeilennummer LO/HI

PARFLG 13=%$0d 07=%07

TYPFLG 14=$%0e 08=%08

Label Cé64 40/80XX
' '

GETBYT 47003=$b79b 51409=%$c8d1

BASIC-Text von (Programmzeiger +1) bis Trennzeichen
als Byte-Wert ---> (X)

VALBYT 47006=$b79e 51412=$c8d4
BASIC-Text von Programmzeiger bis Trennzeichen als
Byte-Wert ---> (X)

CHRGET 00115=$0073 00112=%0070
erhoht Programmzeiger, BASIC-Textzeichen ---> (A)

CHRGOT 00121=%$0079 00118=$0076
beldaBt Programmzeiger, holt noch einmal das letzte
BASIC-Textzeichen nach (A)

VAREAL 44426=%ad8a 48516=$bd84
BASIC-Text wird als reelle Zahl gemaB den Rechenre-
geln berechnet bis zum Trennzeichen ---> FAC1

VALINT

INTADR

VALPAR

VALSTR

STRADR

VALKLA

GETVAR

VARADR

GETFIP

STRPLZ

BPRINT

- 262 -

45493=$b1lb5 49888=%$c2e0
BASIC-Text wird bis Trennzeichen als Ganzzahl aus-
gewertet <FACl+3/FAC1+4>=HI/LO

43371=%$a96b 47350=$b8f6
Ziffernfolge aus BASIC-Text als Integerzahl:
<20/21>=<$14/15> LO/HI <17/18>=<$11/12>
44446=%ad%e 48536=$bd98

wertet Zeichenfolge bis Trennzeichen als Zahl oder
String aus:
Zahl ---> FACl, <PARFLG>=0, <TYPFLG>=128(integer)
oder <TYPFLG>=0(reell)
String: Zeiger auf Deskriptor = <FAC1l+3/FACl+4>
<PARFLG>=255

46755=$b6a3 51152=$c7b5
Aufruf nach VALPAR
<34/35>=<$22/23> <31/32>=<$1f/20>

Stringlange = <A>

44785=%aefl 48873=%$bee9
wertet Zeichenfolge zwischen "(" und ")" aus wie
VALPAR

45195=$b08b 49451=%cl2b

liest Zeichenfolge als Variablenname, sucht sie
oder legt sie an mit Variablenanfang LO/HI in
(71/72)=(%47/48) (68/69)=(%$44/45)

57812=%eld4) 62589=f47d

"holt Dateinamen mit eventuell vorangestellter Lauf-

werknummer, Geratenummer und eventuelle Sekundar-
adresse; setzt diese Fileparameter in die Zeropage
Standard-Interrupt-Einsprung

46197=%$b475 50590=%c59%

mit <A>=Stringladnge wird entsprechend neuer Platz
im Stringbereich "angehangt".
<FACl+l/FACl+2>=Stringanfangsadresse

43682=%$aab5 47805=%$babd
druckt Zeichenfolge ab PRGPTR als String aus, dazu
Programmzeiger auf erstes Zeichen im BASIC-Text

- 263 -~

Trennzeichen - Syntax-Routinen

KLMAUF 44794=%aefa 48882=$bef2
<A>=40 ---> kein Syntaxfehler, Programmzeiger erho-
hen und nachstes Zeichen ---> (A)

BASIC-Zeilennummer LO/HI

KLAMZU 44791=%aef7 48479=%beef
' <A>=41 (Klammer zu)? - sonst wie oben

KOMMA 44797=%aefd 48885=$bef5
<A>=44 (Komma ?) - sonst wie oben

PRFZEI 44799=%aeff 48887=$bef7
<A> beliebig - sonst wie oben
BASIC-Text von (Programmzeiger +1) bis Trennzeichen

STRTYP 44431=$ad8f 48521=$bd89
<PARFLG>=255 ---> keine Fehlermeldung, also liegt
ein String vor (nach der Auswertung mit VALPAR oder
VALSTR o0.d.)

NUMTYP 44428=%ad8c 48519=$bd87
<PARFLG>=0 ---> keine Fehlermeldung, also liegt
eine numerische Variable nach der Auswertung des
BASIC-Textes vor

ERRXX 42082=%a462 46048=$b3e0
druckt Fehlermeldung

ERROR 42042=%a43a 46031=$b3cf
druckt Fehlermeldung, dazu
Offset Fehlernummer
in (X)

Alle Kandle werden geschlossen, nicht jedoch die
eventuell offenen Dateien.

In allen F&allen, in denen der BASIC-Text die geforderten und zur
Uberpriifung vorliegenden Zeichen nicht enthdlt, erfolgt eine Feh-
lermeldung entsprechend dem CBM-System.

Mit ERROR muB man dagegen die Art der Fehlermeldung durch die
Belegung von (X) selbst wahlen.

11

Diverse ROM-Hilfen -
Anwendungen

- 267 -

11l Diverse ROM-Hilfen und Module

11.1 BASIC-Start vom Maschinenprogramm aus mit MRUN

BASIC-Programme oder -Programmteile lassen sich auch von einem
Maschinenprogramm aus starten.

Dabei unterscheiden wir zwei Moglichkeiten:

Den Kaltstart, der alle Zeiger (auch die Variablenzeiger) zurick-
setzt und den Warmstart, bei dem die Variablen erhalten bleiben.

Vor dem Start mit MRUN missen die Zeiger entsprechend einge-
stellt werden. Auch das iGbernehmen die ROM-Routinen:

KALTPT stellt die Zeiger fir einen Kaltstart,
WARMPT setzt sie fir einen Warmstart.

AnschlieBend kann die Routine MRUN aufgerufen werden.
Beispiel fiir einen Warmstart "104-warmstart" (C64/80XX):

- Jsr 42638 ; WARMPT richtet die Zeiger so ein, daB die
(jsr 46626) Variablen erhalten bleiben.

- Jjsr 42948 s MRUN startet das BASIC-Programm von der ersten
(jsr 46943) Zeile an.

11.2 Warmstart mit MGOTO ab einer bestimmten Zeilennummer

Mit MGOTO 1dBt sich ein BASIC-Programm mit einer beliebigen An-
fangszeile starten. Diese Zeilennummer muB aber existieren.
Beispielsweise ist es moglich, diese Routine einzusetzen, um eine
bestimmte Taste (oder Tastenfolge) zu einer Funktionstaste umzu-
bauen, die es erlaubt, den Programmlauf abzubrechen und an einer
vorher bestimmten Stelle, z.B. einem Menue, wieder aufzunehmen.

- 268 -

Beispiel:

Die Funktionstaste F2 so0ll so eingerichtet werden, daBl sie das
laufende BASIC-Programm abbricht und bei der BASIC-Zeile 2000
wieder aufnimmt.

Taste F2 hat die Nummer 4 und wird mit SHIFT bedient. Daher muB
auch das SHIFT-Flag SHIFLG abgefragt werden.

Ablauf von "105-goto2000":

Setzen wir den IRQ-Vektor auf den Anfang unseres Moduls, dann
missen wir damit rechnen, daB der Abbruch mitten in einer Routine
geschieht, die wiederum Unterprogramm der Interpreterschleife
ist. Das kann zu Komplikationen fihren.

01 Als erstes priifen wir deshalb, ob das Ende einer BASIC~Zeile
erreicht 1ist. Das letzte von der CHRGET-Routine geholte Zei-
chen muB eine 0 sein. Ist dies nicht der Fall, lauft der Stan-

dard-Interrupt ab (Teil 05).

02 Ist gerade ein BASIC-Zeilenende erreicht, wird geprift, ob die
Tasten SHIFT und F1l gedrickt sind.

03 Die anzuspringende Zeilennummer wird in LINNUM und vor-
sichtshalber auch in BASLIN bereitgestellt.

04 Jetzt kann die Routine MGOTO angelaufen werden.
05 Sprung zur Standard-Interrupt-Routine.

ASSEMBLER-Beispiel "105-goto2000" (C64/80XX):

01 20500 jsr 121 s CHRGOT holt das Zeichen aus dem BASIC-
(jsr 118) text, auf dem der Programmzeiger gerade
steht

20503 bne 20531 3 ungleich 0, also kein Zeilenende ==z>
Sprung zum Standard-Interrupt (05)

02 20505 1da 203
(lda 151)
20507 cmp #4
20509 bne 20531
20511 lda 654
(lda 152)
20514 beq 20531

KEY ? = welche Taste gedrickt?

-

Taste F1/F2 ? (nur Cé64)
nein ===> zu Teil 05
ja ===> SHIFT-Flag SHIFLG prifen

we we e

nicht gedrickt ===> Sprung zu Teil 5

-e

- 269 -

03 20516 lda #208
20518 sta 20
(sta 17)
20520 sta 57 s nach BASLIN-L0
(sta 54)
20522 lda #7
20524 sta 21
(sta 18)
20526 sta 58 ; und BASLIN-HI
(sta 55)
04 20528 jsr 43171 35 MGOTO unterbricht das BASIC-Programm
(jsr 47155) und beginnt wieder bei Zeile 2000

LO-Byte von 2000
nach LINNUM-LO

we we

HI von 2000
nach LINNUM-HI

we we

05 20531 jmp 59953 ; IRQ - Routine (Standard)
(jmp 58453)

Damit dieses Programm seinen Zweck erfillt, missen zwei Bedin-
gungen gegeben sein:

— Der IRQ-Vektor steht auf 20100, wo "105-goto200" beginnt.
— Die BASIC-Zeile 2000 muB vorhanden sein.

Wenn Sie das "him"-Modul noch bei (20000) stehen haben, oder den
Befehl "irq" =zur Verfligung haben, kann ein Testprogramm etwa so
aussehen:

Beispiel "106-gototest" - BASIC
100 sys20000(irq,20100)
200 print"test ";
300 goto 200
... beliebige weitere Zeilen
2000 print chr$(147)"goto 2000 erreicht"
2100 print'"test positiv"

Anmerkung:
Das Programm ist nicht hundertprozentig abgesichert gegen Fehler-
meldungen.

Wollen Sie sich nicht auf eine feste Zeilennummer beschranken,
dann programmieren Sie eben das Laden der Zeilennummer LO/HI ilber
zwel freie Adressen, die Sie beliebig belegen kdnnen. Passen Sie
aber auf, daB Sie nicht irgendwelche Zeropage-Adressen erwischen,
die fir den BASIC-Programmlauf von Bedeutung sind.

- 270 -

11.3 Startadresse einer BASIC-Zeile suchen mit BLINAD

Um die Adresse zu suchen, wo die Programmzeile mit einer bestimm-
ten Zeilennummer beginnt, belegt man wie oben die Zeropage-Adres-
sen LINNUM mit LO/HI der Zeilennummer.

Die Routine BLINAD (BASIC-Line-Adresse) sucht von Beginn des
BASIC-Textes an nach dieser Nummer.

Wird sie gefunden, steht sie anschlieBend mit LO/HI in LINAD,
ist sie nicht vorhanden, steht dort die Adresse der nachsthdheren
Zeilennummer.

ASSEMBLER-Beispiel "107-basiczeile" (C64):

- lda #48 3 LO von Zeilennummer 8240
sta 20 5 nach LINNUM-LO
lda #32 s HI von 8240
sta 21 ;3 nach LINNUM-HI
- Jjsr 42515 ;s BLINAD sucht den BASIC-Text nach dieser

(jsr 46499) ; Zeilennummer 8240 ab
Das Ergebnis steht beim Cé64 in (95/96) mit LO/HI
und beim 40/80XX in (92/93).
- lda 96 ; HI der gefundenen BASIC-Zeilennummer nach (A)
ldx 95 3 LO nach (X) zur Ausgabe mit
jmp 48589 ; INTOUT
(jmp 53123)

11.4 Umschalten von Text- und Graphikmodus

11.4.1 Text/Graphik bei den 40/80XX-Ger&aten

Schauen wir uns ausnahmsweise zunachst die Gerate mit BASIC 4.0
an, weil es hier mehrere Moglichkeiten gibt:

Im Textmodus wird normalerweise zwischen zwei aufeinanderfolgen-
den Zeilen ein Zwischenraum ausgespart, wahrend im Graphikmodus
die nachste Zeile direkt an die vorhergehende angeschlossen wird.

- 271 -

Will man nun z.B. mit Graphikzeichen arbeiten, aber nicht auf die
Abstande verzichten, dann setzt man den Textmodus mit TEXMOD
und wahlt anschlieBend den Graphikzeichensatz, indem man das
Kontroll-Register PCR mit 12 belegt:

ASSEMBLER-Beispiel "108-texmod" (80XX):

— Jjsr 57368 ; TEXMOD schaltet auf Zwischenzeilen um
lda #12 5 12 laden
sta 59468 s und Peripherie Kontroll Register damit belegen

Auch der umgekehrte Fall ist mdglich, namlich GroB/Kleinschrei-
bung ohne Zwischenraume:

ASSEMBLER-Beispiel "109-graphmod" (80XX):

- Jjsr 57371 s GRAMOD schaltet 'ohne Zwischenraume'
- lda #14 ;3 14 nach
sta 59468 ; PCR

Probieren Sie auch aus, wie man wieder in den normalen Textmodus
bzw. Graphikmodus zurickkommt!
11.4.2 Text/Graphik fiir C64

Bei den Cé4-ern entfallen die Routinen TEXMOD und GRAMOD. Es
wird nur das Peripherie-Control-Register umgeschaltet:

- lda #23 ; "text", also Klein-/GroBschrift
sta 53272 ;s nach PCR
und

- lda #21 5 "graphik", also Normalmodus Grofschrift/Graphik
sta 53272

Das entspricht den BASIC-Befehlen poke 53272,21 usw.

- 272 -

11.5 Abfrage der STOP-Taste mit STOPRY und STOPO

Zum Aktivieren der STOP-Taste auch in Maschinenprogrammen missen
entsprechende Abfragen eingebaut werden.
Das kann auf mehrere Arten geschehen:

STOPRY kehrt bei gedrickter STOP-Taste in den READY-Modus zu-
rick. Das Programm wird also abgebrochen.

STOPO setzt bei gedrickter STOP-Taste das Z-Flag (letzte Ope-
ration war gleich 0). Durch die BRANCH-Befehle BEQ oder BNE kann
nun entsprechend den Bedirfnissen des Programms eine Verzweigung
stattfinden.

11.6 Sprung in den READY-Modus mit MREADY

Das Aussteigen aus einem Maschinenprogramm geschieht durch An-
laufen der Routine MREADY.

Es erfolgt ein Abbruch des laufenden Programms mit Ubergang in
den READY-Modus und der entprechenden Bildschirmmeldung.

11.6 Verschieben von RAM-Bereichen mit TRABLO

Falls Ihr Assembler nicht bereits einen Transportbefehl zur Ver-
schiebung eines beliebigen Datenblocks hat, laBt sich die ROM-
Routine TRABLO einsetzen, die in BASIC Programmzeilen zwi-
schen bereits vorhandene schiebt bzw. den Platz dafir schafft.

Dazu missen folgende Adressen bereitgestellt werden:

BABL = Anfangsadresse des zu verschiebenden Blocks
(Beginn des alten Blocks)

EABL1 = Endadresse +1 des alten Blocks

ENBL1 = Endadresse +1 des neuen Datenbereichs

Beispiel:
Das Programm "105-goto2000", das bei (20100) beginnt und bei

- 273 -

(20135) das letzte Befehlsbyte hat, soll so verschoben werden,
daB es bei (17999) endet, also (18000)... nicht mehr berihrt.

ASSEMBLER-Beispiel "110-transblock" (C64):

L0 von 20100
nach BABL-LO
HI von 20100
nach BABL-HI

01 15000 1lda #132
15002 sta 95
15004 lda #78
15006 sta 96

ws we we e

LO von 20136(!)
nach EABL-LO

HI von 20136(!)
nach EABL-HI

02 15008 1da #168
15010 sta 90
15012 lda #78
15014 sta 91

e we we we

03 15016 lda #80 ; LO von 18000(!)
15018 sta 88 s nach ENBL1
15020 lda #70 ; HI von 18000 (!)

15022 sta 89 nach ENBL1

..

04 15024 jmp 41919 ;s TRABLO verschiebt den Block in den
Bereich (17964)....(17999)

Selbstverstandlich 188t sich auch ein Modul erstellen, dem man
die Anfangsadresse des neuen Bereichs eingibt.

Dazu muB aus den Anfangs- und Endadressen des alten Bereichs die
Blocklange errechnet werden und zur Anfangsadresse des neuen Be-
reichs addiert werden.

Ein entsprechender BASIC-Befehl konnte die Form haben:
800 sys(mo)(tr,20100,20136,17964)

Aufgabe:
Erstellen Sie ein Maschinenprogramm in Modulform, das den oben
genannten BASIC-Befehl entsprechend ausfihrt.

Bestimmt werden Sie diesen Befehl oft benitzen, wenn Sie ihn erst
einmal zur Verfigung haben. Die umstandliche "Pokerei" entfallt
dann endlich.

Wenn Ihr Assembler-Programm im RAM-Bereich liegt, haben Sie auch
oft Schwierigkeiten, weil Sie vom Assembler aus keine Programme
in den oberen RAM-Bereich verschieben konnen, ohne ihn zu ver-
nichten. Auch hier hilft das Modul "transblock".

- 274 -

11.8 Abspeichern eines Datenbereichs mit MSAVE

Um einen Programmblock - sei er nun verschoben worden oder nicht
- so abzuspeichern, daB er beim Laden wieder im selben Bereich
eingelesen wird, missen zundchst einmal Anfangs- und Endadresse
des Blocks lbergeben werden.

Erfolgt der Befehl von BASIC oder im Direktmodus, dann sind wie
iblich der Dateiname und die Gerdteadresse anzugeben.

Ein entsprechender Befehl konnte dann so ausschauen:

900 sysmo,15000,15030,"0:transblock",8

Der Ablauf des Moduls ware dann folgender:

0l Erste Integerzahl holen wund in BEGDAT (Programmanfangs-
adressen) abspeichern.

02 Zweite Integerzahl holen und in ENDDAT (Programmende-
Adressen) ebenfalls LO/HI ablegen.

03 Aufruf der Routine GETFIP, die aus dem BASIC-Text die zur
Abspeicherung notwendigen Parameter holt, namlich den Pro-
grammnamen mit eventuell vorangestellter Laufwerknummer und
die Gerateadresse.

Die entprechenden Zeropage-Adressen werden richtig belegt.

04 Aufruf der Routine MSAVE. Fir den C64 gibt man dazu eine logi-
sche Adresse an (nicht notwendig béi 40/80XX).

Das ASSEMBLER-Programm "111l-msave" (C64):

01 22000 jsr 44797 ; KOMMA "," ?
22003 jsr 43371 ; INTADR holt Integerzahl nach LINNUM
22006 1da 20 s LO der Anfangsadresse
22008 sta 193 ; nach BEGDAT-LO
22010 1lda 21 s HI der Anfangsadresse
22012 sta 194 ; nach BEGDAT-HI

- 275 -

02 22014 jsr 44797 ; KOMMA “," ?
22017 jsr 43371 ; INTADR holt 2. Integerzahl
22020 1lda 20 s LO
22022 sta 174 3 nach ENDDAT-LO
22024 lda 21 3 HI

22026 sta 175 s nach ENDDAT-HI

03 22028 jsr 44797
22031 jsr 57812

KOMMA "," ?
GETFIP holt Datei-Parameter und belegt
damit die notwendigen Adressen

we we

04 22034 lda #4 logische Adresse (Beispiel)
22036 sta 184 3 nach LA
04 22038 jsr 62954 MSAVE speichert die Datei ab auf dem
angesprochenen Gerat

..

.o

22041 rts

Es empfiehlt sich, diesmal mit Kommata als Trennzeichen zu arbei-
ten, weil das der Syntax der benitzten BASIC-Routinen entspricht.
GETFIP fihrt namlich selbst die Trennzeichenpriifungen durch.

Setzt man nun z.B. eine Klammer ")" als letztes Zeichen, dann
wird ein SYNTAX ERROR erzeugt. Mit Hilfe des Programmzeigers
konnte man das zwar vermeiden, jedoch wird dann die Routine um-
standlicher und langer. In solchen Fallen halt man sich an die
Schreibweisen, wie man sie von BASIC her gewdhnt ist. Nur so ist
ein rationeller Einsatz der ROM-Routinen erst moglich.

Aber auch hier gilt wie sonst auch: Wem das nicht gefallt, der
entwerfe seine eigenen Strukturen.

11.9 Laden eines Programms mit veranderter Startadresse

Es kommt oft genug vor, dall man ein Maschinenprogramm mit dem
Assembler erstellt und hinterher feststellen muB, daB8 man dieses
Programm gern in dem Bereich hatte, wo der Assembler vorher war.
Es ware also praktisch, wenn wir ein Modul hatten, das uns ein
Programm in einen nachtraglich bestimmten Bereich 1l&adt.

- 276 -

Normalerweise wird es von Diskette oder Band dorthin gebracht,
wo die ersten beiden Bytes der Datei hinzeigen. Sie werden mit
dem Programm abgespeichert.

Es bieten sich zwei Moglichkeiten an:

- Erstens kann man beim Abspeichern gleich den eben erwahnten
Zeiger verandern, indem man vor dem "SAVE"-Vorgang das LO/HI
der gewlnschten Anfangsadresse Uber den IEEE-Bus ausgibt und
anschlieBend verhindert, daB der momentane Programmanfang uber-
tragen wird.

Das hat aber den Nachteil, daB wir uns damit bereits auf eine
zwar neue, aber festgelegte Adresse beschranken.

Gerade das kann jedoch auch wieder ein Vorteil sein. Wir be-
sprechen dieses Modul im nadchsten Abschnitt 11.10.

~ Die zweite Moglichkeit besteht darin, erst beim Ladevorgang die
neue Anfangsadresse festzulegen.
Damit sind wir variabel und konnen unser Programm oder Modul
schieben, wohin wir wollen.

Diese zweite Art schauen wir uns etwas genauer an und erstellen
ein Modul "112-posload", das folgende BASIC-Zeile ausfihren kann:

1000 syslo,posloadlB8000,"1l:test",8
Im Klartext heiBit das:
Das Maschinenprogramm, das mit der Adresse LO beginnt, soll das
Programm "test" vom Diskettenlaufwerk 1 so laden, daB der erste

Befehl bei Adresse (18000) beginnt (Anfangsposition 18000).

Struktur und Ablauf des Moduls "112-posload":

01 Kommaprifung und Untersuchung der nachsten Zeichen auf den
Code fir POS und LOAD. Beides sind BASIC-Worter und nehmen da-
her im BASIC-Text nur je ein einziges Byte ein.

02 Nachstes Zeichen nach (A) holen und die Ziffernfolge bis zum
nachsten Komma als Integerzahl auswerten.

03 LO/HI dieser Integerzahl als Programmanfang in die entspre-
chenden Zeropageadressen ablegen.

04

05

06

07

08

09

- 277 -

Kommaprifung und die Fileparameter des Programms holen und den
richtigen Zeropageadressen zuordnen. (Keine Angst, wird alles
durch eine einzige ROM-Routine, namlich GETFIP, erledigt.)

LOAD-Flag setzen, OPEN und TALK, sowie Sekundaradresse ausge-
ben und eine logische Adresse bereitstellen.

Die Routine DIRPR prift auf den Modus wund gibt im Falle
des Direktmodus die Meldung "searching for ... " aus.

Den (IEC)-Bus aktivieren, das Floppy als TALKER aktivieren und
den richtigen Kanal anwdhlen mit der Sekundaradresse 96.

Die ersten beiden Bytes aus der Datei holen - das sind LO und
HI der urspringlichen Anfangsadresse - und vernachléassigen.

In die entsprechende Stelle der LOAD-Routine einspringen -
diesen Einsprung nennen wir MLOAD - wund TWAIT-Routine durch-
laufen.

Ricksprung zum aufrufenden Programm, also zurlick ins BASIC
hinter unsere eben eingelesenen Parameter.

Das ASSEMBLER-Programm zu "112-posload" (Cé4):

01

02

03

17000 jsr 44797
17003 jsr 121 CHRGOT holt letztes Zeichen
17006 cmp #185 war das Code fir POS ?
17008 bne 17077 ;3 nein ===> zurlck nach BASIC
(erzeugt SYNTAX ERROR)
17010 jsr 115 ; nachstes Zeichen mit CHRGET
17013 cmp #147 ; Code fir "LOAD"
17015 bne 17077 s nein ===> Ende

KOMMA ", ?

we we e

17017 jsr 115 ; CHRGET holt nachstes Zeichen nach (A)
17020 jsr 43371 ;s INTADR wertet die nachsten Zeichen als
Integerzahl aus, legt sie nach (17/18)

17023 1da 20 ; LO
17025 sta 174 s nach PRGANF
17027 lda 21 3 HI

17029 sta 175 nach PRGANF-HI

.o

- 278 -

04 17031 jsr 44797
17034 jsr 57812

KOMMA "," 7

GETFIP holt nachste Zeichenfolge und
wertet sie als File-Parameter aus, belegt
Gerate-Adresse GA usw.

we we

05 17037 1lda #0
17032 sta 147
17041 1lda #4

Loadf lag

setzen

logische Adresse wahlen

17043 sta 184 und nach LA bringen

17045 jsr 62895 DIRPR prift auf Direktmodus

17048 lda #96 ; Sekundaradresse fir Laden (=0+96)
17050 sta 185 s nach SA

we we we ee we

06 17052 jsr 62421
17055 1da 186
17057 jsr 60681
17059 lda 185
17061 jsr 60871

OPENI 6ffnet Bus mit den Filedaten
Gerateadresse laden

und Floppy (8) aktivieren mit TALK
Sekundaradresse mit

SASENT ausgeben

e we we we we

07 17065 jsr 60947 mit INBUS erstes Datei-Byte holen
(LO der alten Programmanfangsadresse)

zweites Byte holen (=Anfangsadresse HI)

..

17068 jsr 60947

.o

08 17071 jsr 62704 MLOAD 1adt das Programm mit dem neuen
Zeiger aus PRGANF (174/175)

17074 jsr 63213 s TWAIT wartet AbschluB ab

..

09 17077 rts Ende (oder Zeiger auf evt. Fehler)

Ricksprung ins BASIC

.o

Der oben angefihrte BASIC-Befehl wird sowohl im Direkt- als auch
im Programmodus richtig durchgefihrt.

Wie man leicht erkennen kann, lohnt es sich, die Maschinenpro-
gramme zur BASIC-Unterstitzung in Modulform zu schreiben, so daB
ein beliebiges Verschieben - oder wie in unserem Fall ein Laden
an eine andere Stelle - keine Probleme bereitet.

Ubrigens wird mit dem eben vorgestellten Modul keiner der BASIC-
Zeiger verstellt, so daB sofort nach Rickkehr aus der Laderoutine
der BASIC-Text weiter abgearbeitet werden kann.

Die Befehlszeile nimmt natirlich auch Variablen. Das hat den Vor-
teil, daB die Einsprungadresse in das nachgeladene Maschinenpro-

- 279 -

gramm gleich mit berechnet werden kann, falls sie nicht identisch
mit der Anfangsadresse ist.

Das Modul ist bereits mit einer Identitat - namlich mit "posload"
- gekennzeichnet wund kann daher leicht in ein Modulpaket einge-
baut werden.

Wenn Sie sich erst einmal an diesen zusatzlichen Befehl gewdhnt
haben, werden Sie ihn bei Ihrer Programmierarbeit nicht mehr mis-
sen wollen.

11.10 Datenblock mit variabler Anfangsadresse speichern

Wie in 11.9 angedeutet, kann man mit dem folgenden Modul ein Pro-
gramm oder eine beliebige Datei auch so abspeichern, daB sie beim
Laden in einem anderen Bereich erscheint als dem programmierten.
Dazu muB der Ladezeiger LDPTR der SAVE-Routine 1in der Zero-
page auf den gewinschten Wert eingestellt werden, bevor das Ab-
speichern selbst durchgefihrt wird.

Ein Beispiel zur Verdeutlichung:
Nehmen wir an, das Programm "datei" steht von (15000) bis (20000)
im RAM, soll aber spater ab (27000) benitzt werden.

Der Ladezeiger, das sind die ersten beiden Bytes einer Datei,
darf demnach beim Abspeichern von "datei" nicht mit 15000 dber-
nommen werden, sondern muB auf 27000 gestellt werden.

Bevor also die eigentliche Datei "datei" abgespeichert wird, mis-
sen die Bytes 120/105 als LO/HI = 27000 gesendet werden.

Die BASIC-Befehlszeile soll dazu so aussehen:
1100 sa=18000:syssa,possave27000,15000,20000,"1:datei",8

Das heiBt im Klartext:

Das Modul zum Abspeichern wird mit (18000) angesprungen und spei-
chert alle RAM-Daten von (15000) bis (20000) unter dem Namen
"datei" auf Diskettenlaufwerk 1 ab, wobei der Ladezeiger auf
27000 gesetzt wird.

Nach dem Laden von "datei" stehen die Daten von (27000) bis
(32000) im RAM.

- 280 -

Nachdem wir bisher alle Module sehr ausfihrlich dokumentiert ha-

ben, genigt wohl das
bung zum Verstandnis.

ASSEMBLER-Programm fir

01 18000 jsr 44797
18003 jsr 121
18006 cmp #185
18008 bne 18104
18010 jsr 115
18013 cmp #148
18015 bne 18104 H

e we we we e

.o

02 18017 jsr 115
18020 jsr 43371
18023 1da 20
18025 sta 172
18027 lda 21
18029 sta 173

.. .. ee

.o

03 18031 jsr 44797 3
18034 jsr 43371
18037 1lda 20
18039 sta 193
18041 1da 21
18043 sta 194

.o

.o

.o

04 18045 jsr 44797
18048 jsr 43371
18051 lda 20
18053 sta 174
18055 lda 21
18057 sta 175 ;

-,

05 18059 jsr 44797
18062 jsr 57812

06 18065 lda #97 ;
18067 sta 185
18069 1lda #4 3
18071 sta 184
18073 jsr 62421 3
18076 1da 186 3

..

..

ASSEMBLER-Programm mit einer Kurzbeschrei-

"113-possave" (80XX):

KOMMA "," 7

CHRGOT holt letztes Zeichen

Code fir POS ?

nein ===> Ende

nachstes Zeichen nach (A) mit CHRGET
Code fir SAVE ?

nein ===> Ende

nachstes Zeichen mit CHRGET holen
GETADR holt Integerzahl

LO als LDPTR-LO speichern
HI als LDPTR-HI speichern

KOMMA "," ?
nachste Integerzahl nach LINNUM holen

LO nach PRGANF-LO
HI nach PRGANF-HI

KOMMA "," ?
letzte Integerzahl holen

L0 nach PRGEND-LO
HI nach PRGEND-HI

KOMMA "," ?
GETFIP holt Fileparameter, setzt sie

Sekundaradresse zum Abspeichern
nach SA

logische Adresse (Beispiel)

nach LA bereitstellen

OPENI o6ffnet (IEC)-Bus
Gerateadresse aus GA laden

- 281 -

18078 jsr 60684 LISTN aktiviert Gerat als Empfanger
18081 lda 185 Sekundaradresse ausgeben
18083 jsr 60857 ; mit SASENL

we we

07 18080 lda 172 Ladezeiger LDPTR-LO holen
18088 jsr 60893 OUTBUS gibt ihn als erstes Byte aus
18091 1da 173 ; Ladezeiger LDPTR-HI holen
18093 jsr 60893 ; und als zweites Byte ausgeben

e ee

08 18096 jsr 64398 TRPSET setzt Transportzeiger fur den

Abspeichervorgang mit Hilfe von LDPTR

18099 1ldy #0 Index 0 setzen fir DATOUT

18101 jsr 63017 ;s DATOUT gibt alle Daten auf den Bus aus
von PRGANF=(193/194) bis PRGEND=(174/175)

18104 rts 3 Ricksprung ins BASIC

.o

.o

Der AbschluB der Ubertragung, also SchlieBen der Datei usw. wird
automatisch mit von der Routine DATOUT erledigt. SchlieBlich
ist das nur ein Einsprung in die CMB-Routine "SAVE" gewesen.

Falls Sie sich gewundert haben, daBl wir zur Erkennung des Moduls
nur zwei Zeichen geholt und untersucht haben: SAVE wird als Byte
mit dem Code 148, PO0OS wird als Byte mit dem Code 185 im BASIC-
Text abgelegt. Beides sind ja BASIC-Worter.

Eine Zusammenstellung der Einsprungadressen zu diesem Kapitel
finden Sie - auch fir die 40/80XX-Gerate - am Ende der ROM-
Routinen-Liste von Kapitel 13.

Wir haben Ihnen nun die Moglichkeit gegeben, sich in die Maschi-
nenprogrammierung einzuarbeiten. Sie sind nun in der Lage, alle
Ihre Programme in ASSEMBLER zu schreiben und mit Hilfe der ROM-
Routinen sehr schnell laufen zu lassen.

Sicher werden Sie immer wieder in den Listen auf den folgenden
Seiten blattern missen, aber Sie werden sicher rasch Fortschritte

sehen.

Viel SpaB!

12

ASSEMBLER-Kurzschule

- 285 -

12 ASSEMBLER-Kurzschule

12.1 Die Register des Mikroprozessors 65XX

Register Abkz. Bits
Akkumulator (A) 8
X-Register (x) 8
Y-Register (Y) 8
Programmzahler (PC) 16
Stackpointer (S) 8
Statusregister (P) 8

12.2 Das Prozessor Statusregister P

Die acht Bits (0 bis 7) haben Flag-Funktion.

Bit Flagbezeichnung Abkz. gesetzt bei

0 Carry-Flag C Ubertrag

1 Zero-Flag z Ergebnis = O

2 Interrupt disable-F1l. I Interrupt gesperrt

3 Dezimalflag D Dezimalmodus

4 Break-Flag B nach Break-Befehl

5 _— - —_—

6 Overflow-Flag v Bit 7=z1 im Ergebnis

7 Negativ-Flag N Ergebnis negativ (Bit 7)

12.3 Beeinflussung der Flags durch Befehle

C-Flag:
ADC, ASL, CLC, CMP, CPX, CPY, LSR, PLP, ROL, ROR, RTI, SBC, SEC

Z-Flag und N-Flag:
ADC, AND, ASL, BIT, CMP, CPX, CPY, DEC, DEX, DEY, EOR, INC, INX,
INY, LDA, LDX, LDY, LSR, ORA, PLA, PLP, ROL, ROR, RTI, SBC, TAX,
TAY, TSX, TXA, TYA

- 286 -
D-FLAG:
SED, CLD

B-Flag:
BRK

V-Flag:
ADC, BIT, PLP, RTS, SBC, CLV

I-Flag:
CLI, SEI

Die unterstrichenen Befehle beeinflussen direkt das entsprechende

Flag, d.h sie setzen bzw. ldschen es
Flag gesetzt: 1 Flag geloscht: O

12.4 Der Befehlssatz in ASSEMBLER

Alle ASSEMBLER-Befehle werden mit allen moglichen Adressierungs-
arten dargestellt.

Die Flagveranderungen sind bei den Beispielen nicht vollstéandig.
Sie werden nur bei den wichtigsten Operationen mit angegeben.
Ansonsten gilt die Aufstellung in Abschnitt 12.3.

Wir vereinbaren zur Beschreibung der ASSEMBLER-Befehle folgende
Abkirzungen:

#B = Byte (unmittelbar)
M = Adresse (absolut)
z = Zeropage-Adresse

<M> = Inhalt der Adresse M

<Z> = Inhalt der Zeropage-Adresse Z

M,x = Adresse M+x

M,y = Adresse M+y
{M,x> = Inhalt der Adresse (M+x)

{M,y> = Inhalt der Adresse (M+y)

(Zyx) = Adresse (Z+x/Z+1+x) ; Iweibyte-Adresse LO/HI
(Z),y = Adresse (Z/7Z+1)+y ; IZweibyte-Adresse LO/HI
<Z,x> = Inhalt von Adresse (Z+x/Z+x+1)

<Z>,y = Inhalt von Adresse (Z/Z+1)+y

<A> = Inbalt des (A)-Registers

<X> = Inhalt des (X)-Registers

<Y>
<c>
<n>
<z>

- 287 -

Inhalt des (Y)-Registers
Inhalt des C-flags
Inhalt des N-Flags
Inhalt des Z-Flags

Fir die Beispiele verwenden wir folgende Belegungen:

#8

z

M
<P>
Stapel
<20>
<21>
<50>
<60>
<61>
<70>
<5130>
<5170>
<5180>
<4110>
<A>
<X>
<Y>

2
20

= 5130
00000001 = 1

199
10
20
100
14
16
120
255
200
210
220

40
50

/oeee /oaen

12.4.1 Eingabebefehle (Ladebefehle)

Bei den einzelnen Befehlen werden alle Adressierungsarten aufge-
fuhrt, die moglich sind.

Beispielen sind die Schreibweisen in der ASSEMBLER-
Sprache nicht méglich, wenn ein Fragezeichen vorangestellt ist.

Bei den

LDA: Lade (A) mit Inhalt der angesprochenen Adresse

Flags: Z
lda #B
lda Z
lda M
lda 7Z,x
lda M, x

»N

we e

we we e

lda #2 ---> <A>=2

lda 20 ---> <A>=10

lda 5130 ---> <A>=255

lda 20,x = lda 60 ---> <A>=14

lda 5130,x = 1lda 5170 ---> <A>=200

- 288 -~

lda M,y ; lda 5130,y = lda 5180 ---> <A>=210
lda (Z,x) ; lda (20,x) ?lda <60/61> = lda 4110 ---> <A>=220
lda (Z),y ; lda (20),y = lda 5130,y = lda 5180 ---> <A>=210

"

LDX : Lade (X) mit Inhalt der angesprochenen Adresse

Flags: Z,N

ldx #B ;3 ——=> <X>=2

ldx Z ;3 —=-> <X>=10

ldx M 3 ——=> <X>=255

ldx Z,y 3 1ldx 20,y = ldx 70 ---> <X>=120

ldx M,y 5 1dx 5130,y = ldx 5180 ---> <X>=210

LDY : Lade (Y) mit Inhalt der angesprochenen Adresse

Flags: Z,N

ldy #B 3 ——=> <Y>=2

ldy 7 ; —==> <Y>=z10

ldy M 5 —==> <Y>=255

ldy Z,x ; ldy 20,x = ldy 60 —--> <Y>=14

ldy M,x ; ldy 5130,x = ldy 5170 —-—=> <Y>=200

PLA: Stapelbyte nach <A>

Flags: N,Z

pla s ——=> <A>=199

PLP : Stapelbyte nach <P>=Statusregister

Flags: wie geholtes Byte

plp ;3 ——=> <P>=199

12.4.2 Ausgabebefehle (Speicherbefehle)

STA : <A> in angesprochener Adresse abspeichern
sta Z ;3 sta 20 ---> <20>=5

sta M ; sta 5130 ---> <5130>=5

sta Z,x ;s sta 20,x = sta 60 ---> <60>=5
sta M,x ;3 sta 5130,x = sta 5170 ---> <5170>=5

- 289 -

sta M,y ; sta 5130,y = sta 5180 ---> <5180>=5
sta (Z,x) ; sta (20,x) = ?sta (60/61) = sta 4110 ---><4110>=5
sta (Z),y ; sta (20),y = ?sta (5130+50) = sta 5180 --->

<5180>=5

STX: <X> in angesprochener Adresse abspeichern

stx Z ;3 ——=> <20>=40
stx M 5 -—=> <5130>=40
stx Z,y ;5 stx 20,y = stx 70 ---> <70>=40

STY : <Y> in angesprochener Adresse abspeichern
sty Z ---> <20>=50

H
sty M s -==> <5130>=50
sty Z,x ;s sty 20,x = sty 60 ---> <60>=50

PHA: <A> auf Stapel

pha ---> Stapel 5/199/.../...

..

PHP : <P> auf Stapel

-—-> Stapel = 1/199/.../...

1

php

.o

12.4.3 Arithmetische Verkniipfungen

ADC - Addition mit <A>
Das Carryflag muB vor dem ADC-Befehl geldscht werden mit CLC.

Flags: C,Z,N

adc #B ; adc #2 ---> <A>=7

adc Z ;3 adc 20 = adc #10 ---> <A>=z15

adc M ; adc 5130 = adc #255 ---> <A>=4 <C>=1
adc Z,x 3 adc 20,x = adc 60 = adc #14 ---> <A>=19

adc M, x 3 adc 5130,x = adc 5170 = adc #200 ---> <A>=205

adc M,y 3 adc 5130,y = adc 5180 = adc #210 ---> <A>=215

adc (Z,x) ; adc (20,x) = ?adc <60/61> = adc 4110 ---> <A>=225
adc (Z),y ; adc (20),y = adc 5130,y = adc 5180 ---> <A>=215

- 290 -

SBC - Subtraktion von <A> mit Carryflag
Das Carryflag muB vor dem SBC-Befehl gesetzt werden mit SEC.

Flags: C,Z,N

sbc #B ;3 sbe #2 ---> <A>=3

sbec 7 3 sbc 20 = sbe #10 ---> <A>=251 <C>=0
sbe M 3 sbc 5130 = sbc#255 ---> <A>=6 <C>=0
sbc Z,x ;s sbc 20,x = sbc 60 = sbc #14 ---> <A>=247 <C>=0
sbc M, x ; sbe 5130,x = sbec 5170 = sbc #200 ---> <A>=61 <C>=0
sbc M,y 3 sbc 5130,y = sbc 5180 = sbc #210 ---> <A>=51 <C>=0
sbc (Z,x) ; sbc (20,x) = sbc 4110 = sbc #220 ---> <A>=41 KC>=0

sbe (Z),y ; sbe (20),y = sbc 5130,y = sbec 5180 ---> <A>=51 <C>=0

INC - Erhohung eines Speicherinhalts um 1

Flags: Z,N

inc Z ; inc 20 ---> <20>=11

inc Z,x ;5 inc 20,x ---> inc 60 ---> <60>=15

inc M 3 inc 5130 ~--> <5130>=0 <2>=1
inc M,x 3 inc 5130,x = inc 5170 ---> <5170>=201

INX - Erhohung des X-Registers um 1

Flags:Z,N
inx 3 ——--> <X>=41

INY - Erhohung des Y-Registers um 1

Flags: Z,N
iny 5 ~—=> <¥Y>=51

DEC - Erniedrigen eines Speicherinhalts um 1

Flags: Z,N

dec Z 3 dec 20 ---> <20>=9

dec Z,x ; dec 20,x = dec 60 ---> <60>=13

dec M 3 dec 5130 ---> <5130>=254

dec M,x s dec 5130,x = dec 5170 ---> <5170>=199

- 291 -

DEX - Erniedrigen des X-Registers um 1

Flags: Z,N

dex ——=> <X>=39

..

DEY - Erniedrigen des Y-Registers um 1

Flags: Z,N
dey ; ——=> <Y>=49

12.4.4 Logische (bitweise) Verkniipfungen

Die folgenden Operationen finden im (A)-Register statt.
Ausnahme: BIT beeinfluBt (A) nicht, sondern setzt nur die ent-
sprechenden Flags.

AND: land 1l =1; 1and 0 =0; 0 and 1 = 0; 0 and 0 = O
geeignet zum Loschen einzelner Bits

Flags: Z,N

and #B ;3 and #2 : 00000101 and 00000010 = 00000000
and Z 3 and 20 : 00000101 and 00001010 = 000000OCO
and Z,x ; = and 60 = and #14 : 00000101 and 00001110 = 00000100
and M ; = and #255 : 00000101 and 11111111 = 00000101
and M,x s = and 5170 : 00000101 and 11001000 = 00000000
and M,y ; = and 5180 : 00000101 and 11010010 = 00000000
and (Z,x) ; = and 4110 : 00000101 and 11011100 = 00000100
and (Z),y ; = and 5180 : 00000101 and 11010010 = 00000000

ORA :lorl=1;1lor0=1; 00rl1l=1; 00r 0 =0

Flags: Z,N

= ora 4110: 00000101 or 11011100 = 11011101
= ora 5180: 00000101 or 11010010 = 11010111

ora (Z,x)
ora (Z),y

ora #B s ora #2 : 00000101 or 00000010 = 00000111
ora Z ;3 ora 20 : 00000101 or 00001010 = 00001111
ora Z,x ;3 = ora 60 : 00000101 or 00001110 = 00001111
ora M ;3 = ora #255: 00000101 or 11111111 = 11111111
ora M,x s = ora 5170: 00000101 or 11001000 = 11001101
ora M,y ;3 = ora 5180: 00000101 or 11010010 = 11010111

5

H

- 292 —

EOR : 1 eor 1 =0; 1 eor 0 = 1; 0 eor 1 = 1; 0 eor 0 = O

Flags: Z,N

eor #2 s eor #2: 00000101 eor 00000010 = 0OCOOCO1l1l1
eor Z ; eor 20: 00000101 eor 00001010 = 00001111
eor M 3 eor #255: 00000101 eor 11111111 = 11111010
eor Z,x s = eor 60: 00000101 eor 00001110 = 00001011
eor M,x 3 = eor 5170: 00000101 eor 11001000 = 11001101
eor (Z,x) ; = eor 4110: 00000101 eor 11011100 = 11011001
eor (Z),y ; = eor 5180: 00000101 eor 11010010 = 11010111

BIT : wie AND, aber <A> bleibt erhalten

Flags: Z,N,V; <v>=Bit 6 und <n>z=Bit 7 aus adressierter Adresse
bit Z ; bit 20: 00000101 and 00001010 = 0 ---> <z>=1;<v>=0
bit M 3 bit 5130: 00000101 and 11111111 = 5 ---> <z>=0;<v>=0
12.4.5 Verschiebe-Befehle (bitweise)

Diese Befehle beeinflussen nur den angesprochenen Speicherinhalt.

ASL : alle Bits um eins nach links, Bit 7 nach <c>,
Bit 0 mit 0 auffillen

Flags: C,Z,N

asl s ?asl<A>: 00000101 ---> 000010103 <c>=0
asl Z ; asl 20: 00001010 ---> 000101005 <c»>=0
asl M ;3 asl 5130: 11111111 ---> 11111110; <c>=1
asl Z,x ;5 asl 60: 00001110 ---> 000111003 <c>=0
asl M,x ;s asl 5170: 11001000 ---> 10010000; <c>=1

LSR : alle Bits um 1 nach rechts, Bit 0 nach <c>,
Bit 7 mit 0 auffillen

Flags: C,Z,N
lsr ; ?lsr<A>: 00000101 ---> 00000010; <c>=1

lsr Z 3 lsr 20: 00001010 ---> 00000101; <c>=0
lst M 3 lsr 5130: 11111111 ---> 011111115 <c>=1
lsr Z,x ; lsr 60: 00001110 ---> 00000l11; <c>=0
lsr M,x ; lsr 5170: 11001000 ---> 01100100; <c>=0

- 293 -

ROL : Rotation mit C-Flag nach links

Flags: C,Z,N

rol s ?rol<A>: 00000101 / <c>=0 ---> 00001010 / <c>=0
rol Z s rol 20: 00001010 / <c>=0 ---> 00010100 / <c>=0
rol M s rol 5130: 11111111 / <c>=0 ---> 11111110 / <c>=1
rol Z,x 3 rol 60: 00001110 / <e>=1 ---> 00011101 / <c>=0
rol M,x ; rol 5170: 11001000 / <c>=0 ---> 10010000 / <c>=1
ROR : Rotation mit C-Flag nach rechts

Flags: C,Z,N

ror 3 ?ror<A>: 00000101 / <c>=0 ---> 00000010 / <c>=1
ror Z ;s ror 20: 00001010 / <c>=0 ---> 00000101 / <c>=0
ror M ; ror 5130: 11111111 / <c>=0 ---> 01111111 / <c>=1
ror Z,x ; ror 60: 00001110 / <e>=1 ---> 10000111 / <c>=0
ror M,x s ror 5170: 11001000 / <ec>=0 ---> 01100100 / <c>=0

12.4.6 Vergleichsbefehle

Vergleiche werden zwischen dem Register und dem angesprochenen
Byte durchgefihrt.

Das jeweilige Register bleibt unverdndert erhalten.

CMP : Vergleich Byte und <A>

Flags: C,Z,N

cmp #B ; cmp #2: 5 > 2 --=><c>=1;<n>=03<z>=0
cmp Z 5 cmp #20: 5 < 20 ---> <c>=03;<n>=1;<z>=0
cmp M 3 cmp 5130: 5 < 255 =--=> <c>=0;<n>20;<z>=0
cmp Z,x s cmp 60: 5 < 14 ---> <c>=03<n>=1;<z>=0
cmp M,x ; cmp 5170: 5 < 200 ---> <c>=0;<n>=0;<z>=0
cmp M,y s cmp 5180: 5 < 210 ---> <c>=03;<n>=0;<2z>=0
cmp (Z,x) ; cmp 4110: 5 < 220 ---> <c>=0;<n>=0;<z>=0
cmp (Z),y ; cmp 5180: 5 < 210 ---> <c>=03;<n>=03;<z>=0

CPX : Vergleich Byte und <X>

Flags: C,Z,N
cpx #B 3 cpx #2: 40 > 2 -—=> <c>=1;<n>=0;<z>=0

cpx Z H
cpx M H

cpx 20: 40 > 10
cpx 5130 40 < 255

CPY : Vergleich Byte und <Y>

Flags: C,Z,N
cpy #2 ;
cpy Z H
cpy M H

cpy #2: 50 > 2
cpy 20: 50 > 10
cpy 5130: 50 < 255

294

-—>
-—>

——=>
——>
——=>

<c>=13;<n>=0;<z>=0
<e>=03<n>=03<z>=0

<e>=1;3;<n>=0;<z>=0
<e>=13<n>=03<z>=0
<c>=03<n>=03<z>=0

12.4.7 Transportbefehle zwischen den Registern

TAX : <A> nach <X>

Flags: Z,N
tax H

<X>=5; <A>=5

TAY : <A> nach <Y>

Flags: Z,N
tay H

<Y>=5; <A>=5

TXA : <X> nach <A>

Flags: Z,N
txa H

<A>=403 <X>=40

TYA: <Y> nach <A>

Flags: Z,N
tya H

TSX: Stackpointer

Flags: Z,N
tsx H

<A>=50; <Y>=50

<S> nach <X>

<X>=255 (Beispiel fir leeren Stack)

- 295 -

TXS : <X> nach Stackpointer (S)

txs 3 <5>=40

12.4.8 Sprungbefehle

Die relativen Sprungbefehle beginnend mit "B.." (fir branch) er-
lauben Springe von maximal 128 Adressen vor oder zurick.

BEQ : Verzweige bei Z-Flag=1l
BNE : Verzweige bei Z-Flag=0

BCC : Verzweige bei C-Flag=0
nach Vergleichsbefehlen: kleiner als

BCS : Verzweige bei C-Flag=1
nach Vergleichsbefehlen: griBer als/ gleich

BMI : Verzweige bei N-Flag=1
Bit 7 bei letzter Operation gesetzt

BPL : Verzweige bei N-Flag=0
Bit 7 bei letzter Operation nicht gesetzt

BVC : Verzweige bei V-Flag=0
BVS: Verzweige bei V-Flag=1

JSR: Sprung zu Unterprogramm
Rickkehr nach RTS-Befehl

JMP : abslouter Sprung an beliebige Adresse

jmp M ; jmp 5130 ---> bei (5130) im Programmlauf weiterfahren
direkter Sprung (jump)
jmp (Z) 5 jmp (20) = jmp 4110 ---> Sprung an die Adresse, die
indirekt durch <20/21> mit LO/HI angegeben ist.

RTS : Ricksprung von einem Unterprogramm
(Programmende)

- 296 -

R T I : Ricksprung von Interrupt-Routine

BRK : Sprung zu der Adresse, die im BRK-Vektor steht

12.4.9 Beeinflussung der Flags des Statusregiters

CLC: C-Flag loschen
clc 5 ——=> <c>=0

SEC : C-Flag setzen
sec s ———> <c>=1

CLD: Dezimalflag loschen
SED: Dezimalflag setzen
CLV: Overflow-Flag (V) léschen

SEI: Interrupt-Flag setzen
sei ;3 ——=> kein Interrupt Uber IRQ-Vektor mdglich

CLI: Interruptflag loschen
cli 3 —--> Interrupt wird ausgefiihrt Gber IRQ-Vektor

12.4.10 Lickenfiller

NOP : keine Operation - weiter bei nachster Adresse

13

ROM-Routinen - thematisch,
mit Kurzbeschreibung

- 299 -

13 ROM-Routinen mit Kurzbeschreibung

Label

Cé64

40/80XX

Arithmetik

ADDO.5

FMAL10

FDIV1O

FACMIN

FACABS

ADD

M-ADD

SuB

M-SUB

INTMUL

MULT

47177=$b849
FAC1 + 0.5 ---> FAClL

47842=%bae2
FAC1 mal 10 ---> FACl

47870=%bafe
FACL / 10 ---> FAC1

49076=%bfba
-FAC1 ---> FAC1

48216=%bc58
abs(FACl) ---> FAC1

47210=$b86a
FAC2 + FACL ---> FAC1

47207=$b867
MEMORY (A/Y) + FACl --->

47187=$b853
FAC2 - FAC1 ---> FACl

47184=%$b850
MEMORY (A/Y) - FACl --->

45900=$%$b34c
<113/114>=<%$71/72> Fl
mal MEMORY
(95/96)=($5f/60) F2AD
Produktwert ---> (X/A)

47659=%$ba2b

FAC2 mal FAC1 ---> FACl

51583=$c97f

52248=$ccl8

52276=%cc34

53579=%d14b

53622=%cd8e

51616=%$c9a0

51613=$c9a0

FAC1

51593=$c989

51590=$c986 °

FAC1

50295=%$c477
<110/111>=<$6e/6f>

(92/93)=($5c/5d)

52065=$cbé6l

Label Cé64 40/80XX .
1 1

M-MULT 47656=%ba28 52062=%cb5e
MEMORY (A/Y) mal FACl1 ---> FACl

DIV 47890=%$bb12 52296=%cc48
FAC 2 / FAC 1 ---> FAC 1

M-DIV 47887=%bb0f 52293=%cc45

MEMORY (A/Y) / FAC1 ---> FACl

SQRFAC 49009=$bf71 53512=$d108
Quadratwurzel aus FAC1 ---> FACL

POTRAD 49019=%bf7b 53522=$d112
FAC2 hoch FAC1 ---> FACL

M-POT 49016=%bf78 53519=%d10f
MEMORY (A/Y) hoch FACl ---> FAC1

LOGNAT 47594=%b%ea 52000=%cb20

1In(FAC1l) ---> FAC1

EHOCHF 49133=$bfed 53636=%d184
e hoch FAC1l ---> FACI

SINUS 57963=%e26b 53897=$d289
sin{FACl1) ---> FAC1l (BogenmaB RAD)

COSIN 57956=%e264 53890=$d282
cos(FAC1) ---> FACl1 (BogenmaB RAD)

TANG 58036=%e2b4 53970=$d2d2
tan(FACl) ---> FAC1 (BogenmaB RAD)

ARCTAN 58126=%e30e 54060=%$d3c2
arctan(FACl) ---> FAC1l (BogenmaB RAD)

POLNOM 57433=%$e059 53741=%dled
Polynomwert aus Konstantentabelle ab (A/Y) ---> FAC

1. Byte der Tabelle = Polynomgrad n
folgende Bytes enthalten die Koeffizienten ap
bis ag als reelle Zahlen in S-er Gruppen

- 301 -

Label Cé64 40/80XX
1 1
CMPFAC 48219=%bc5b 52625=%$cd91
vergleicht FACLl mit MEMORY (A/Y)
FAC < MEM ---> <A>:=255
FAC > MEM ---> <A>:= 1
FAC = MEM ---> <A>:= O
SGNFAC 48171=%$bc2b 52577=%$cd61
Vorzeichen von FAC1 ---> (A)
e > KA>:= 1
M-t ——-> <A>:=255
<FAC1l> = 0 --=> <A>:=0
MEMF AC 48034=%$bba2 52440=%ccd8
reelle Zahl aus MEMORY (A/Y) ---> FAC1
MEMF C2 47756=%ba8c 52162=%$cbc2
reelle Zahl aus MEMORY (A/Y) ---> FAC2
FACMEM 48087=$bbd7 52493=%$cd0d
FAC1 (reell) ---> MEMORY (X/Y)-Anfangsadresse
FACLl/2 48143=%$bcOf 52549=$%$cd45
<FAC1l> ---> FAC2
FAC2/1 48124=%$bbfc 52530=$%$cd32
<FAC2> ---> FAC1
ZUFALL 57495=$e097 53801=$d229
53804=%$d22c
Zufallszahl aus 0 bis 1 ---> FACI1,

abhdngig von der Zeit bzw. von <A>

Umwandlungen

INTFLP

ADRFLP

45969=$b391 50364=%c4bc
positive/negative Integerzahl aus (Y/A) nach FAC1
Bereich: +32767/-32768

48201=$bc49 52607=$cd7f
<98=%$62> Integerzahl HI ~ <95=%$5f>
<99=$63> Integerzahl LO <96=%60>

- 302 -

Label Cé64 40/80XX .
1 1
<X>=144; SEC; positive Integerzahl nach FACl
Bereich: 0 bis 65535 (Adressbereich)

FLPINT 47095=$b7f7 51501=$c92d
<FAC 1>(reell)---> <FAC 1>(integer),LOW/HI=(Y/A)

FLPSTR 48605=%$bddd 53139=$cf93
<FAC 1> ---> Ziffernfolge ab (256), Ende=Byte O

STRFAC 47029=$b7b5 51435=$%c8eb
mit STRADR <34=$22/35=$23> Stringanfang <31=$1f/32=$20>
<A>=Stringlange; Ergebnis in FACl

BYTHEX 55098=$d73a —
<A>(Byte) ---> (A)(Hex-Byte)

HEXBYT 55181=$d78d -—-
<A>(ASC-Code) ---> (A)(Byte)

Bildschirm-Ausgaben

CHROUT(BSOUT) 65490=$ffd2 KERNAL 65490=$ffd2
<A> auf den Bildschirm als ASCII-Zeichen

INTOUT 48589=%$bdcd 53123=$cf83
Die Integerzahl wird direkt aus (X/A) mit LO/HI auf
den Bildschirm gebracht.

CURPQS 58732=%e56¢c -—
berechnet mit CURZEI und CURSPA Cursorposition

FPOUTX 48599=%$bdd7 53133=$cf8d
Cé4: LDY #1 / JSR 48599 53133=%cf8d
FLPOUT/CR 43708=%aabc -

C64: Ausgabe <FAC> mit anschlieBendem CR

FLPSTR 48605=$bddd 53139=$cf93
<FAC> ---> String ab (256)

STROUT 43813=%$ab25 47908=$%bb24
{X>=Stringlange
mit STRADR <34/35> Stringanfang <31/32>

- 303 -

Label Cé64 40/80XX

STR-0 43806=%able 47901=%$bbld
<A/Y>=Stringadresse; Ende des Strings: Byte O

BYTOUT - 55074=%$d722
<A> ---> Hex =---> Schirm

ADROUT -—= 55063=$d717
<251/252> ---> Hex =---> Schirm

ouT2 -—= 55089=$d731
<X> =-=> Schirm, <A> ---> Schirm

Adressen

CURZEI 214=%$d6 216=%d8
CURSPA 211=%d3 198=%cé6
ZEIPTR 209/210=%d1 196/197=%c4/c5

Eingabe-Routinen

GETIN 65508=$ffes KERNAL 65508=%ffes
1 Zeichen ---> (A)

BASIN 65487=%$ffcf KERNAL 65487=%ffcf
String ---> Schirm ---> einzeln nach (A)

INLINE 42336=$a560 46306=%b4e2
Zeile nach (512)...
nimmt bis zu 80 Zeichen auf

HEXINB -—- 55139=$d767
Byte in Hexeingabe ---> (A)

HEXINA -— 55124=$d754
Adresse(vierstellig) in Hexform ---> (251/252)

Label

- 304 -

Cé64 40/80XX

Variablen-Verwaltung

PTRVAR

VARNAM1/2

VARADR

TXTTAB

VARTAB

ARYTAB

VAREND

MAXMEM

Ein- und

OPEN

BFOUT

LOAD

45287=$b0e7 49543=%$c187
sucht Variable mit 1.Name/2.Name=<VARNAM>

(69/70)=(%$45/46) (66/67)=(%$42/43)
Variablenamel/2 fir PTRVAR

(71/72)=($47/48) (68/69)=($44/45)
dort steht die Anfangsadresse LO/HI der Variablen
nach Aufruf von PTRVAR

(43/44)=(%$2b/2c) (40/41)=(%28/29)
Zeiger auf Beginn des BASIC-Textes

(45/46)=(%2d/2e) (42/43)=($3a/3b)
Zeiger auf Beginn der einfachen Variablen

(47/48)=%$(2f/30) (44/45)=($3c/3d)
Zeiger auf Beginn der indizierten Variablen
(Felder=Arrays)

(49/50)=($31/32) (46/47)=($3e/3f)
Zeiger auf Ende der gesamten Variablentabelle

(55/56)=($37/38) (52/53)=(%$34/35)
leiger auf RAM-0Obergrenze

Ausgabe-Routinen

62282=$f34a 62819=%$f563
of fnet eine Datei mit LA,GA,SA auf ein Gerat
bei Floppy-Dateien sind NAMAD und NAMLEN notwendig

-— 55963=$da%b
gibt ahnlich wie OPEN einen Befehlsstring aus
zugeordnet LA, GA, SA

_— 62472=%$f408
ladt Datei oder Programm, das mit OPEN geoffnet
wurde, dazu vorher <STATUS>=0, <LOVE>=0 setzen

- 305 -

Label Cé64 40/80XX .

Programmzeiger 'Anfang' und 'Ende' werden gesetzt

LOADXX 62648=%$f4b8 62294=$f356
wie LOAD, aber ohne Veranderung der Zeiger

SUFTAB 62223=$f30f 62145=%f2cl
stellt fir eine bereits gedffnete Datei GN,SA,LA
bereit aus der intern gefuhrten Tabelle
Vorbereitung: <LA> ---> (A)

SETTAB 62239=$f31f 62157=%f2cd
setzt die mit SUFTAB gefundenen Parameter in die
vorgesehenen Zeropage-Adressen

CLOSEA 62097=$f291 62178=%f2e2
schlieBt eine noch offene Datei
Vorbereitung: logische Adresse nach (LA) bringen

CLOSEL —-——— 62176=$f2e0
schlieBt Datei mit LA aus (210)=LA

TWAIT 63213=$f6ed 63787=$f92b
verhindert vorzeitigen Ricksprung, wenn die Zen-
traleinheit schneller als das Peripheriegerat ist

TALK 60681=%$ed09 61650=$f0d2
aktiviert das mit OPEN angesprochene Gerat als
Sender (Talker)

Vorbereitung: <STATUS>=0

UNTALK 60911=%edef 61878=$f1bé6
versetzt den (IEC-)Bus nach TALK wieder in neutrale
Zustand, Gerat wird als Talker deaktiviert

LISTEN 60684=%$ed0c 61653=$f0d5
aktiviert das angesprochene Gerat als Empfanger
Vorbereitung: OPEN, <STATUS>=0

UNLISN 60926=%edfe 61881=$f1b9
versetzt den (IEC-)Bus nach Tatigkeit als Listener
wieder in neutralen Zustand

Label

- 306 -

Cé64 40/80XX .

GETSA

SASENL
SASENT

BSOUT (CHROUT)
QUTBUS

BASIN(CHRIN)

INBUS

CHKOUT

CHKIN

CLRCH

-— 55599=$d92f
nachste freie Sekundaradresse holen ---> SA

60857=%edb9 61763=$f143
60871=$edc? 61763=$f143

sendet die Sekundaradresse und bereitet damit einen
Kanal fir die folgende Ein- oder Ausgabe vor.
Dieser Befehl muB also immer dem ersten INBUS oder
dem ersten OUTBUS vorangehen.

Vorbereitung: <A>=<SA>, also Akku mit Sekundar-
adresse belegen, die man ebentuell aus (SA) holt

65490=$ffd2 KERNAL 65490=%ffd2
60893=%eddd 61854=%f19%e

sendet das im (A)-Register befindliche Byte Uber
den IEC-Bus auf den aktiven Kanal

Vorbereitung: OPEN, LISTEN, SASEND, <A>

65487=$ffcf KERNAL 65487=$ffcf

holt ein Zeichen nach (A) lber aktiven Kanal.
Bei Standard-1/0: mit Bildschirmausgabe bis CR
anschlieBend erstes Zeichen in (A).

60947=%eel3 61888=$f1cO
holt Uber den (IEC-)Bus ein Byte nach (A)
vom aktiven Kanal

Vorbereitung: OPEN, TALK, SASEND

65481=%$ffc9 KERNAL 65481=$ffc9

leitet Ausgabe ilber den (IEC-)Bus auf das angespro-
chene Gerdat um (statt Schirm)

Vorbereitung: OPEN, <LA> ---> (X)

65478=$ffcé KERNAL 65478=%ffcé

Eingabe iber den (IEC-)Bus vom angesprochenen Gerat
(statt Tastatur)

Vorbereitung: OPEN, <X>=<LA>

65484=%ffcc KERNAL 65484=%ffcc

schaltet als Eingabegerat die Tastatur (GA=0) und
als Ausgabegerat den Bildschirm (GA=3)

schlieBt alle Kandale, aber keine Dateien

Label

- 307 -

Cé64 40/80XX .

CLALL

Adressen

LA

SA

GA

NAMADR

NAMLEN

STATUS

LVFLAG

BASIC-Tex

CHRGET

CHRGOT

GETBYT

65511=%ffe7 KERNAL 65511=$ffe7
schlieBt alle Kanale und Dateien

zu den Ein/Ausgabe-Routinen

184=$b8 210=%$d2
logische Adresse zur Bezeichnung der Datei

185=%b9 211=$d3
Sekunddradresse zur Kanalbereitstellung

186=%ba 212=%$d4
Geratenummer fir angesprochenes Gerat

187/188=%bb/bc 218/219=%da/db
LO/HI der Anfangsadresse des Dateinamens
oder eines Befehlsstrings

183=$b7 209=%d1
Adresse zur Bereitstellung der Lange des Namens

144=%$90 150=$96
Byte fir Fehler- bzw. Ende-Erkennung der Datei
kein Fehler: <STATUS>=0

147=$93 157=$9d
Load- bzw. Verify-Flag. Laden: <LVFLAG>=0

t-Routinen und -adressen

00115=$0073 00112=%$0070
erhoht Programmzeiger, BASIC-Textzeichen ---> (A)

00121=$0079 00118=$0076
belaBt Programmzeiger, holt noch einmal das letzte
BASIC-Textzeichen nach (A)

47003=$b79b 51409=%c8d1l
BASIC-Text von (Programmzeiger +1) bis Trennzeichen
als Byte-Wert ---> (X)

- 308 -

Label Cé64 40/80XX .
' '

VALBYT 47006=$b79%e 51412=%c8d4
BASIC-Text von Programmzeiger bis Trennzeichen als
Byte-Wert ---> (X)

VAREAL 44426=%ad8a 48516=%$bd84
BASIC-Text wird als reelle Zahl gemaB den Rechenre-
geln berechnet bis zum Trennzeichen ---> FAC1

VALINT 45493=$blb5 49888=%c2e0
BASIC-Text wird bis Trennzeichen als Ganzzahl aus-
gewertet <FAC1+3/FACl+4>=HI/LO

INTADR 43371=%$a96b 47350=$b8f6
Ziffernfolge aus BASIC-Text als Integerzahl:
<20/21>=L0/HI <17/18>=L0/HI

VALPAR 44446=%ad%e 48536=$bd98
wertet Zeichenfolge bis Trennzeichen als Zahl oder
String aus:

Zahl ---> FACl, <PARFLG>=0, <TYPFLG>=128(integer)
oder <TYPFLG>=0(reell)
String: Zeiger auf Deskriptor = <FACl+3/FACl+4>
<PARFLG>=255

VALSTR 46755=%b6a3 51152=%c7b5
Aufruf nach VALPAR
<34/35> Stringanfangsadresse <31/32>
Stringlange = <A>

VALKLA 44785=%aefl 48873=$%bee9
wertet Zeichenfolge zwischen "(" und ")" aus wie
VALPAR

GETVAR 45195=$b08b 49451=%cl2b
liest Zeichenfolge als Variablenname, sucht sie
oder legt sie an
in <A/Y> und VARADR steht Variablenadresse

GETFIP 57812=%eld4 62589=f47d

holt Dateinamen mit eventuell vorangestellter Lauf-
werknummer, Geratenummer und eventuelle Sekundar-
adresse; setzt diese Fileparamater in die Zeropage

- 309 -

Label Cé64 40/80XX
1 '

STRPLZ 46197=$b475 50590=%c59%e
mit <A>=Stringlange wird entsprechend neuer Platz
im Stringbereich "angehangt".
<FACl+l1/FAC1+2>=Stringanfangsadresse

BPRINT 43982=%aaa2 47805=%$babd

druckt Zeichenfolge ab PRGPTR als String aus, dazu
PRGPTR auf Anfang des auszugebenden Ausdrucks

Trennzeichen - Syntax-Routinen

KLMAUF 44794=%aefa 48882=%bef2
<A>=40 ---> kein Syntaxfehler, Programmzeiger erho-
hen und nachstes Zeichen ---> (A)
BASIC-Zeilennummer LO/HI

KLAMZU 44791=%aef7 48479=%beef
<A>=z41 (Klammer zu)? - sonst wie oben

KOMMA 44797=%aefd 48885=%bef5
<A>=44 (Komma ?) - sonst wie oben

PRFZEI 44799=%aeff 48887=%bef7
<A> beliebig - sonst wie oben
BASIC-Text von (Programmzeiger +1) bis Trennzeichen

STRTYP 44431=%ad8f 48521=$bd89
<PARFLG>=255 ---> keine fehlermeldung, also liegt
ein String vor (nach der Auswertung mit VALPAR oder
VALSTR o0.&.)

NUMTYP 44428=%ad8c 48519=$bd87
<PARFLG>=0 ---> keine Fehlermeldung, also liegt
eine numerische Variable nach der Auswertung des
BASIC-Textes vor

ERRXX 42082=%a462 46048=$b3e0

druckt Fehlermeldung

- 310 -

Label Cé64 40/80XX .
' 1
ERRGOR 42042=%a43a 46031=$b3cf
druckt Fehlermeldung, dazu
Fehlernummer Offset
in (X)

Alle Kanale werden geschlossen, nicht jedoch die
eventuell offenen Dateien.

Adressen fir BASIC-Text-Routinen

FACL (FAC) 97...102=%$61...66 94...99=%5e...63
FAC+1/2 98/99=$62/63 95/96=%$5f/60
FAC+3/4 100/101=%$64/65 97/98=%$61/62
STRADR 34/35=$22/23 31/32=%$1f/20

Adresse des Stringanfangs nach VALSTR

VARADR 71/72=%47/48 68/69=%44/45
Adresse des Variablenanfangs LO/HI nach GETVAR

L INNUM 20/21=%$14/15 17/18=%$11/12
BASIC-Zeilennummer LO/HI

PARFLG 13=$0d 07=%07

TYPFLG 14=%0e 08=%$08

Diverse ROM-Routinen

KALTPT 43130=%a87a 47114=$b80a
setzt BASIC-Zeiger fir einen Kaltstart

WARMPT 42638=%$a68e 46626=$b622
setzt BASIC-Zeiger fir einen Warmstart

MRUN 42948=%$a7c4 46943=$b75f
startet BASIC-Programm, Zeiger vorher setzen

MGOTO 43171=$a8a3 47155=$b833
bricht Programm ab, startet bei Zeilennummer BASLIN
Zeilennummer auch nach LINNUM setzen

- 311 -

Label C64 40/80XX .
1 1

BLINAD 42515=%a613 46499=$b5a3
sucht Adresse der Zeilennummer in LINNUM, setzt sie
in LINADR mit LO/HI

TEXMOD -——— 57368=$e018
schaltet auf Textmodus um (Zwischenraume)

GRAMOD -— 57371=%e01b
schaltet auf Graphikmodus um (ohne Zwischenréume)

STOPRY 65505=%ffel KERNAL 65505=%ffel
Programmabbruch, READY-Modus

STOPO 63213=$f6ed 62261=$f335
STOP-Taste gedrickt ---> Z-Flag gesetzt

MREADY 42100=%a474 46079=$b3ff
beendet Maschinenprogramm, READY

TRABLO 41919=%a3bf 45911=$b357
verschiebt Datenblock von BABL bis EABL mit neuem
Ende auf ENBL

TRPSET 64398=%fb8e 64443=$fbbb
setzt LDPTR als Transportzeiger zum Abspeichern

DATOUT 63017=$f629 63260=$f71c
gibt mit Transportzeiger Daten auf (IEC)-Bus von
PRGANF bis PRGEND aus

DIRPR 62895=%f5af 62281=$f349
prift vor einer Standard-Meldung auf Direktmodus

IRQ 59953=$ea3l 58453=%$e455
Standard-Interrupt-Einsprung

Adressen

- 312 -

Label Cé64 40/80XX
1 '

BASLIN 57/58=%$39/3a 54/55=$36/37
laufende BASIC-Zeile

L INNUM 20/21=%$14/15 17/18=%$11/12
Zeilennummer LO/HI

LINAD 95/96=$5f/60 92/93=%$5c/5d
Ergebnis von BLINAD (Zeilennummer LO/HI)

BABL 95/96=$5f/60 92/93=%$5c/5d
Blockverschiebezeiger "Beginn des alten Blocks"

EABL1 90/91=%$5a/5b 87/88=%$57/58
Blockverschiebezeiger "Ende des alten Blocks +1"

ENBL1 88/89=$58/59 85/86=%$55/56
Blockverschiebezeiger "Ende des neuen Blocks +1"

BEGDAT 193/194=%$cl/c2 251/252=fb/fc
Datenanfangsadresse LO/HI

ENDDAT 174/175=%ae/af 201/202=%c9/ca
Datenendadresse LO/HI

LDPTR 172/173=%ac/ad 199/200=%c7/c8
Ladezeiger fur Routine DATOUT

PCR 53272=$d018 59468=%e84c
Peripherie-Control-Register
<PCR>=12 ---> Textzeichen, <PCR>=z14 ---> Graphik

IRQVEC 788/789=$0314/0315 144/145=$90/91
Interrupt-Vektor

NMIVEC 792/793=$0318/0319 148/149=$94/95
NMI-Vektor (Einsprung nach NMI-Signal)

BRKVEC 790/791=$0316/0317 146/147=$92/93

BRK-Vektor (Einspung nach BRK-Befehl)

14

ROM-Routinen - alphabetisch

Label

Cé64

315

40/80XX

Label

ADD

ADDO. 5
ADRFLP
ADROUT
ARCTAN

BASIN
BFOUT
BLINAD
BPRINT
BSOUT

BYTHEX
BYTOUT
CH