COMMODORE

Commodore Sachbuchreihe Band 1

ALLES UBER DEN
COMMODORE 64

Programmierhandbuch




COMMODORE 64 QUICK REFERENCE

EINFACHE VARIABLEN

Typ Name  Bereich

Reelle XY +1.70141183E+38
Zahl +2.93873588E +39
Ganze XY%  +32767

Zah!

Zeichen-  XY$ 0 bis 255 Zeichen

kette

Xist ein Buchstabe (A—2Z), Y ein Buchstabe oder eine Zahl (0—9).
Variablennamen kénnen aus mehr als zwei Zeichen bestehen, es
werden jedoch nur die beiden ersten erkannt.

FELDVARIABLEN

Name
Eindimensional XY(5)
Zweidimensional XY(5,5)
Dreidimensional XY(5,5,5)

Felder aus max. 11 Elementen (Index 0—10) werden automatisch
dimensioniert. Felder mit mehr als 11 Elementen mussen explizit
dimensioniert werden (DIM).

ALGEBRAISCHE OPERATOREN
= Ordnet Wert einer Variablen zu

— Negation

1 Exponentenrechnung
* Multiplikation

/ Division

+ Addition

Subtraktion

VERGLEICHS- UND LOGISCHE OPERATOREN

= Gleich
<> Ungleich
< Kleiner
> GroBer

<= Kleiner oder gleich
>=GroBer oder gleich
NOT Logisches “Nicht"
AND Logisches “Und“

OR Logisches “Oder"

Der Ausdruck ist 1, wenn er wahr ist, oder 0, wenn er falsch ist.

SYSTEMBEFEHLE

LOAD “NAME*" Laden eines Programms von Kassette

SAVE “NAME" Speichern eines Programms auf Kassette

LOAD “NAME*“,8 Laden eines Programms von Diskette

SAVE “NAME",8 Speichern eines Programms auf Diskette

VERIFY “NAME" Priifen, ob das Programm ohne Fehler gespei-
chert wurde.

RUN Programmausfiihrung

RUNxxx Programmausfiihrung beginnt bei Zeile xxx

STOP Stop der Ausfiihrung

END Beendigung der Ausfiihrung

CONT Fortsetzen der Programmausfihrung ab der
Zeile, in der das Programm unterbrochen
wurde.

PEEK(X) Wiedergabe des Inhalts von Speicherplatz X

POKE X,Y Andern des Inhalts von Speicherplatz X zu
Wert Y

SYS x0;x Sprung zur Aufiihrung eines Maschinenspra-
cheprogramms, beginnend bei xxxxx

WAIT X,Y,Z Programm wartet, bis Inhalt von Platz X, bei der
EOR-Verknupfung mit Z und AND-Verknip-
fung mit Y ungleich O ist.

USR(X) Ubergibt Wert X zu einemn Maschinensprache-
Unterprogramm

EDITIER- UND FORMATIERBEFEHLE

LIST Auflisten eines gesamten Programms

LIST A-B Auflisten von Zeile A bis Zeile B

REM Text Kommentartext kann geschrieben werden,

wird jedoch wahrend der Programmausflihrung
nicht berlcksichtigt.

TAB(X) Verwendung in der PRINT-Anweisung. Weiter-
riicken von X Positionen auf dem Bildschirm

SPC(X) Setzt X Leerzeichen in eine Zeile.

POS(X) Ubergibt derzeitige Cursorposition

CLR/HOME Cursor wird in linke obere Bildschirmecke posi-
tioniert

SHIFT CLR/HOME Bildschirm wird geloscht und Cursor in Aus-
gangsposition gebracht.
Einflgen eines Leerzeichens an derzeitiger

Cursorposition

SHIFT INST/DEL

INST/DEL Loschen des Zeichens an der derzeitigen Cur-
sorposition
CTRL Beim Einsatz mit numerischer Farbtaste Wahl

der Textfarbe. Kann in PRINT-Anweisung be-
nutzt werden.

CRSR Zur Bewegung des Cursors nach oben, unten,
links und rechts.

COMMODORE-TASTE Zusammen mit SHIFT fir die Wahl von Zeichen
der oberen/unteren Umschaltstellung und der
Graphikanzeige. Beim gemeinsamen Einsatz
mit numerischen Farbtasten Wahl der optiona-
len Textfarbe.

FELDER UND ZEICHENKETTEN

DIM A(AY,2) Setzt maximale Indizes fur A; reserviert Spei-
cherplatze fir (X+1)*(Y+1)*(Z+1)—Elemen-
te, beginnend bei A(0,0,0)

LEN (X$) Ubergibt Zeichenanzahl in X$

STR$(X) Ubergibt Zeichenwert von X, in Zeichenkette
verwandelt

VAL(X$) Ubergibt numerischen Wert von X$ bis zu er-
sten nichtnumerischen Zeichen.

CHR$(X) Ubergibt ASCII-Zeichen mit dem Code X

ASC(X$) Ubergibt ASCII-Code fiir erstes Zeichen von
X$

LEFT$(A$,X) Ubergibt die ersten X Zeichen von A$

RIGHT$(A$,X) Ubergibt die letzten X Zeichen von A$

MID$(A$,X,Y) Ubergibt Y Zeichen von A$ beginnend bei Zei-

chen X

EIN-/AUSGABEBEFEHLE

INPUT A$ OR A Zeigt "?" auf dem Bildschirm an und wartet, bis
vom Bediener eine Zeichenkette oder ein Wert
eingegeben wird.

INPUT “ABC*;A Zeigt Meldung an und wartet auf Eingabe eines

Werts. Kann auch INPUT A$ sein

Wartet auf Eingabe eines 1-Zeichenwerts; kein
RETURN erforderlich

Initialisiert einen Wertsatz, der (iber die READ-
Anweisung benutzt werden kann

Ordnet nachsten Datenwert A$ oder A zu

GET A$ oder A
DATA A,“B",C

READ A$ oder A

RESTORE Stellt Datenzeiger zuriick, um die DATA-Liste
erneut mit READ zu lesen
PRINT “A Zeigt Zeichenkette “A=" und Wert von A an,

“;" unterdriickt Leerzeichen, “," setzt Daten in
nachstes Tabulatorfeld.

PROGRAMMABLAUF
GOTO X Verzweigung zu Zeile X
IF A=3 THEN 10 Ist die Behauptung richtig, dann Ausfiihrung

des weiteren Anweisungsteils. Ist sie falsch,
Ausfihrung der nachsten Zeilennummer

FOR A=1TO 10 Fihrt alle Anweisungen zwischen FOR und

STEP 2 : NEXT NEXT aus, A geht von 1 bis 10 mit der Schritt-
weite 2. Schrittweite ist 1, wenn STEP fehlt.

NEXT A Definiert Schleifenende. A ist optional.

GOSUB 2000 Verzweigung zu Unterprogramm beginnend
bei Zeile 2000

RETURN Kennzeichnet Unterprogrammende. Rickkehr
zur Anweisung nach dem letzten GOSUB

ON X GOTO AB Verzweigung zur X-ten Zeilennummer der Li-

ste. Ist X=1, Verzweigung zu A usw.
Verzweigung zu Unterprogramm bei X-ter Zei-
lennummer der Liste.

ON X GOSUB A,B



ALLES UBER DEN
- COMMODORE 64

Programmierhandbuch

Herausgeber
Commodore Buromaschinen GmbH
Lyoner StraBe 38
6000 Frankfurt/Main 71




Copyright © Terrapin Inc. 1982, 1983 und Techn. Institut von Massachusetts.
Copyright © der deutschen Ausgabe bei Commodore Biromaschinen GmbH, Frankfurt 1984.

Das Kopieren von Software, des Handbuches, ganz oder auszugsweise, verst8t gegen das Gesetz,
sofern nicht das Einverstandnis der Urheberrechtsinhaber vorliegt.



INHALTSVERZEICHNIS

EINFOHRUNG ... ... oo IX
e Wasistallesenthalten? ...... ... ... ... ... ... ... ... ... .. X
e Wie diese Programmieranleitung zu benutzenist .............. Xl
e Hinweise zur Anwendung lhres Commodore64 . ............... Xl
® ANWENAUNG ..ottt Xl

1. BASIC PROGRAMMIERHINWEISE . ...................... 1
e Einleitung . ... 2
e Bildschirmcodes (BASIC-Zeichensatz) ....................... 2

Das Betriebssystem (OS) ......... ... ... i 2
e Programmieren von Zahlenund Variablen .................... 4
Ganze Zahlen, Gleitpunktzahlen und Zeichenketten .......... 4
Ganze Zahlen, Gleitpunktzahlen und Stringvariablen ......... T
Ganzzahlige, Gleitpunkt- und Stringfelder . ................. 8
e AusdrickeundOperatoren ........... ... . ... .. it 10
Rechenausdriicke . ........... ... .. . i 10
Rechenoperationen ........... ... ... . i 10
Vergleichsoperatoren ... ............ .. .. ... . . 12
Logische Operatoren ........... .. ... ... ... ot 13
Prioritat der Operationen . ........... .. ... .. ... .. ... 15
Zeichenkettenoperationen .. ......... ... ... . oL 17
L3111 To |- A PR oL AP SNy SPI oy EN yt SO RN A PRl A 17
® Programmiertechniken .......... .. ... .. ... ... .. 18
Datenumsetzung . . ... 18
Verwendung der Eingabeanweisung .. ..................... 18
Arbeiten mitder GET-Anweisung .. ........................ 22
Komprimieren von Basic-Programmen . .................... 24

2. BASIC-VOKABULAR ....... ... ... .. 29
®; EINfUNrUNG . 4 8emmiivie ol e v e ime o 5 sidislaamns o5 & 5,6 #a b otdh o 30
e Beschreibung der Basic-Schlisselwérter ..................... 35
e Tastatur und Merkmale des Commodore64 ................... 92
e Bildschirmeditor . ........... ... . . . e 94



GRAPHIKPROGRAMMIERUNG MIT DEM

COMMODORE 64..................... ... ... 99
e Graphikiibersicht ........ ... ... ... . .. ... . .. 100
Zeichenanzeige .. ... ...t 100
Bit-Map-Modus ........ ... ... .. 100
Sprites .. 100
e Lageder Graphikzeichen ............ .. ... ... .. .. .. .. ..... 101
WahlderVideobank ............. ... .. .. .. .. .. .. ... .. ... 101
Bildschirmspeicher ... ...... ... ... . ... ... ... ... . ... 102
Farbspeicher .. ... ... .. .. . .. .. 103
Zeichenspeicher . ....... ... ... . ... 103
e Standardzeichenmodus .............. .. ... .. ... 107
Zeichendefinitionen . ........ .. ... ... il 107
e Programmierbare Zeichen ........... .. ... .. ... .. .. .. .. ... 108
e Mehrfarbige Graphiken . ........ ... ... .. ... . i 115
Das Mehrfarben-Modus-Bit ............ ... .. ... ... ... 115
e Erweiterter Hintergrundfarbmodus .......................... 120
e Graphiken durch Bit-Mapping .............. ... ... ... ....... 121
Standard-Bit-Mapping mit hoher Auflésung .. ............... 122
Funktionsweise . ... ... ... . . 122
e Mehrfarben-Bit-Mapping .......... ... ... .. .. 127
e Kontinuierliches Verschieben ......... ... .. ... ... ... ... .. ... 128
@ SPItES ... 131
Spritedefinition . ... ... . 131
Sprite-Pointer ........ ... . 133
EinschaltenderSprites . ....... ... ... ... .. . . . 134
AusschaltenderSprites .......... ... ... .. ... e a g 135
Farben . ... .. 135
Mehrfarbenmodus . ....... ... .. 135
Waéhlen des Mehrfarbenmodus firein Sprite ................ 136
VergroBerte Sprites . ... ... .. 136
Spritepositionierung . ... ... ... 137
Zusammenfassung Uber die Spritepositionierung ... ......... 143
Sprite-Anzeigeprioritaten . . ... ... ... o o 143
Kollisionserkennung . . . ... ... 144
e Weitere Graphikmdglichkeiten . ........ ... ... ... ... ........ 149
Léschendes Bildschirms . ... .. . o 149
Rasterregister ... . . 149
Interrupt-Statusregister ......... ... .. . 149
Vorschlage fir Bildschirm-Zeichenfarbe-Kombinationen . . .. .. 151



e Programmieren von Sprites — ein anderer Aspekt .............. 152
Programmierung der Sprites in Basic — ein kurzes Programm .. 152

Komprimieren Ihrer Sprite-Programme . .. .................. 155
Positionierung der Sprites auf dem Bildschirm .............. 156
Spriteprioritaten . ... ... . 160
ZeichneneinesSprites . .......... ... . i i 161
Erstellen eines Sprites . . . Schritt fir Schritt. .. .............. 162
Bewegen der Sprites auf dem Bildschirm ................... 164
VertikalesRollen . ........ ... 165
Die Tanzmaus — ein Sprite-Programmbeispiel . .............. 166
Tabelle zum einfachen Konstruieren von Sprites .. ........... 175
Hinweise zur Spriteerstellung ............. ... ... ... ..... 176

MUSIKPROGRAMMIERUNG MIT DEM

COMMODORE 64.......... ... ... i, 181
o Einflhrung . ... ... 182
Lautstarkeregelung ........ ... .. .. ... 184
Tonfrequenzen . ...... ... ... ... 184
e Arbeiten mit mehreren Stimmen .......... ... ... oL 185
Steuern mehrerer Stimmen ........... ... . 189
e AndernderWellenformen ............c.oiiiiiiiinneeneennn. 190
Verstandnis der Wellenformen . ... ......... ... . ... ... .... 193
e Hullkurvengenerator . ............ .. ... i 194
o Filtern ... .. . e 197
e Fortschrittliche Techniken ... ... ... ... ... ... ... .......... 200
Synchronisation und Ringmodulation ..................... 205
MASCHINENSPRACHE ...................... ... ......... 207
e Wasist Maschinensprache? . .......... ... ... ... . ... ... .... 208
Wie sieht der Maschinencodeaus? ........................ 209
Einfache Liste der Speicherbelegung des Commodore 64 .. ... 210
Die Register im Mikroprozessor6510 ...................... 211
e Wie schreibt man Maschinensprache-Programme? ... .......... 213
Monitor64 .. ... . 213
e Hexadezimaldarstellung ........... ... ... . i 214
Die erste Maschinensprache-Anweisung ................... 216
Schreiben des ersten Programms . ........................ 218
o Adressierart .. ... ... 219
Zero-Page ... 219
Stapel (Stack) ... 220



Vi

® INdizZieren ... ... ... . 221
Indirektindiziert ........ ... .. .. ... 221
Indiziertindirekt ....... ... ... ... ... . 222
Verzweigungen und Uberpriifungen ....................... 223

® Unterprogramme . ....... ...ttt 224

e Hinweise firden Anfanger .......... .. .. ... .. .. .. ... ....... 226

e Vorbereitungen fiireine groBe Aufgabe . .. .................... 227

® Anweisungssatz von Mikroprozessor MCS6510 —

Alphabetische Reihenfolge . .. ............. ... .. ............ 228
Anweisungs-Adressierarten und zugehdrige Ausflihrungszeiten
(inTaktzyklen) . ... .. .. 250

e Speicherverwaltung beim Commodore64 .................... 256

O Kernal . ... e 264

e Kernal-Funktionen nach Einschalten der Stromversorgung ... ... 265
ArbeitenmitKernal .. ... ... ... ... . .. 265
Aufrufbare Kernal-Routinen . . ............................ 268
Fehlermeldungen ...... ... ... ... ... ... . ... .. 303

e Arbeiten mit MaschinenspracheundBasic .................... 304
Wo stehen Maschinensprache-Routinen? .................. 306
Wie wird Maschinensprache eingegeben? .................. 306

e Speicherbelegung des Commodore64 ....................... 308
Ein-/Ausgabeanordnung beim Commodore 64 ............... 317

EIN-/AUSGABE-ANLEITUNG .............. e 329

e EinflUhrung ... ... ... . 330

e Ausgabe aufdenBildschirm .............. ... ... .. .. ....... 330

e AusgabeaufandereGerdte .............. .. .. .. ... ... .. ... 331
AusgabezumDrucker ......... .. ... 332
Arbeiten mit Magnetbandkassetten . ........... ... ... ... 333
Datenspeicherung auf Disketten . ......................... 335

® Spiele-Ports . ... .. 336
Drehregler .. ... 339
Lichtgriffel .. ... . . . 341

e RS-232 Interface-Beschreibung ........... ... ... ... ... .. .... 341
Aligemeiner Uberblick ...................cooooiiioi.... 341
Offnen eines RS-232-Kanals . ... ............c.oiieinann. . 342
Lesen der Daten von einem RS-232-Kanal .................. 345
Ubertragen von Daten {iber einen RS-232-Kanal ............. 346
SchlieBen eines RS-232-Datenkanals ...................... 347
Basic-Programmbeispiel ........ ... ... ... .. L. 349
Zeiger fir Empfangs-/Ubertragungspuffer .................. 350



Zero-Page-Adressen und ihre Anwendung fur das

System-Interface RS-232 ............. ... ... ... ... ..., 351
Allgemeine RS-232-Speicherung . .. .............. ... ...... 351
O USerpoOrt ..o e 352
Port-Pin-Beschreibung . ... ........ .. ... 352
e DerserielleBus ............ .. . 355
Anschlisse des seriellenBusses . ......................... 356
e ErweiterungsanschluB ........ ... ... ... ... ... .. . 359
e Z-80 Mikroprozessor-Modul .......... ... ... . ... . ... .. 362
Arbeiten mit CommodoreCP/M . ............ ... . ... ...... 362
Ausflhrung . ... ... .. 363
ANHANG ... .. 365
A. Abkurzungen der Basic-Schlisselwérter .................... 366
B. Bildschirm-Anzeige-Codes ............. ... .. ... ..., 368
C. ASCH-undCHRS$-Codes .. .......covvriii i 371
D. Bildschirm-und Farbspeichermappen ...................... 374
E. Musiknotenwerte ...... ... .. ... 376
F. Literaturverzeichnis ...... ... .. ... ... . . . . . . . 380
G. Video Interface Controller (VIC)
Chip Registerbelegung . ... ....... .. .. i 383
H. Abgeleitete mathematische Funktionen .. ................... 386
I.  Steckerbelegung fur Anschlisse fur Peripheriegerdte ......... 387
J. Ubertragung von fremden Basic-Programmen auf
Commodore64BasiC .............. i 390
K. Fehlermeldungen ......... ... ... . . . . i 392
L. Datenblatt Mikroprozessor6510 ............. ... ... ... .... 394
M. 6526 Complex Interface Adapter (CIA) ........ ... ... ....... 411
N. 6566/6567 Video-Interface-Controller (VIC-Il) . ................ 429
O. 6581 Sound Interface Device (SID) Chip Specifications .. ....... 450
P, GloSSar ... e 474
INDEX ... 475

vil



-

LI TRTY O




EINFUHRUNG

Die Programmieranleitung COMMODORE 64 wurde als Hilfsmittel und Bezugs-
quelle fur all diejenigen entwickelt, die die Fahigkeiten ihres COMMODORE 64
optimal nutzen wollen. Diese Anleitung enthélt alle Informationen, die Sie zur
Erstellung von Programmen bendtigen — angefangen bei den einfachsten Beispie-
len bis hin zu komplexen Programmen. Die Programmieranleitung ist so aufge-
baut, daB sowohl ein BASIC-Anféanger als auch der erfahrene Maschinensprache-
Programmierer die erforderlichen Informationen erhalt, um eigene Programme zu
erstellen. Gleichzeitig werden Sie feststellen, wie vielseitig Inr COMMODORE 64
wirklich ist. Das vorliegende Handbuch ist nicht dazu gedacht, Ihnen die Program-
miersprache BASIC oder die Maschinensprache 6502 beizubringen. Sie finden
jedoch ein ziemlich umfangreiches Glossar mit Fachausdricken, sowie “lehrrei-
che* Hinweise. Wenn Sie noch nicht mit BASIC vertraut sind, empfehlen wir lhnen,
die Bedienungsanleitung des COMMODORE 64 durchzulesen. In dieser Anlei-
tung finden Sie eine leicht verstandliche Einfuhrung in die Programmiersprache
BASIC. Sollte das Programmieren in BASIC Ihnen danach noch Schwierigkeiten
bereiten, so schlagen Sie am Ende dieser Anleitung (oder in Anhang N in der
Bedienungsanleitung) nach, und stellen Sie anhand des Literaturverzeichnisses
fest, wo Sie die erforderlichen Informationen finden kdnnen.

Die vorliegende Programmieranieitung ist also nur als Referenz gedacht. Wie Sie
die gegebenen Informationen nun tatséchlich umsetzen, hangt davon ab, Gber
welches Know-how Sie bereits verfligen. Wenn Sie also in Sachen Programmie-
rung noch ein Anfanger sind, kdnnen Sie die in dieser Anleitung gegebenen
Informationen nur dann voll verstehen, wenn Sie lhre derzeitigen Programmier-
Kenntnisse ausweiten.

In dieser Anleitung finden Sie zahlreiche Programmier-Informationen, die leicht
verstandlich im Programmierer-Jargon geschrieben sind. Erfahrene Programmierer
finden andererseits alle Informationen, um ihren COMMODORE 64 optimal einzu-
setzen.



WAS IST ALLES ENTHALTEN?

Unser komplettes “BASIC-Lexikon® umfaBt BASIC-Befehle, Anweisungen und
Funktionen in alphabetischer Reihenfolge. Wir haben eine Ubersicht erstellt, in
der alle Worter und ihre Abkiirzungen enthalten sind. In dem folgenden Abschnitt
werden die einzelnen Begriffe genau definiert und anhand von Beispielprogram-
men ihre Anwendung beschrieben.

Wenn Sie eine Einflihrung in die Anwendung der Maschinensprache flir BASIC-
Programme benétigen, wird fiir Sie unsere Ubersicht hilfreich sein.

Ein leistungsstarker Bestandteil des Betriebssystems aller COMMODORE-Com-
puter wird KERNAL genannt. Hierdurch wird sichergestellt, daB die Programme,
die Sie heute schreiben, auch noch auf den COMMODORE-Computern von
morgen laufen kdnnen.

Der Abschnitt Uiber Ein-/Ausgabeprogrammierung zeigt Ihnen, wie Sie lhren
Computer voll nutzen kénnen. In diesem Abschnitt werden die maoglichen
Ergédnzungen beschrieben — angefangen bei Lichtstiften und Joysticks bis hin zu
Diskettenstationen, Druckern und Zusatzgeraten fir Telekommunikation (Mo-
dems).

Wir zeigen Ihnen, wie man SPRITES und Sonderzeichen programmiert. Sie
werden lernen, wie man Lauf-Bilder in hochaufldsender Farbgraphik erzeugen
kann.

Wir eréffnen lhnen die Welt der Musik-Synthese und zeigen lhnen, wie Sie
eigene Songs schreiben und Klangeffekte mit dem eingebauten Synthesizer
erzielen kdnnen.

Dem erfahrenen Programmierer zeigen wir, wie er den COMMODORE 64 mit
CP/M* und anspruchsvollen Sprachen benutzen kann.

Die Programmieranleitung COMMODORE 64 soll also ein nitzliches Werkzeug
sein, damit Thnen das zukunftige Programmieren auch wirklich SpaB macht.

* CP/M ist ein eingetragenes Warenzeichen von Digital Research; Inc.

X

EINFUHRUNG



WIE DIESE PROGRAMMIERANLEITUNG ZU BENUTZEN IST

Zur Beschreibung der Syntax (Struktur des Programmiertextes) von BASIC-Befeh-
len oder Anweisungen sowie zur Darstellung der bendtigten und frei wahlbaren
Teile der einzelnen BASIC-Schliisselwdrter werden bestimmte allgemeine Schreib-
weisen benutzt. Fir die Interpretation der Anweisungssyntax gelten folgende
Regeln:

1. BASIC-Schllsselworter werden in GroBbuchstaben dargestellt. Sie mussen
exakt an der angegebenen Stelle und genau wie in dieser Anleitung geschrieben
eingegeben werden.

2. Angaben in Anflihrungszeichen (“ “) geben variable Daten an, die von Ihnen
eingegeben werden missen. Sowohl die Anflihrungszeichen als auch die Daten
missen genau an der angegebenen Stelle eingegeben werden.

3. Punkte in eckigen Klammern ([ ]) geben einen frei wéhlbaren Parameter an. Ein
Parameter ist eine Einschréankung oder eine zusétzliche Angabe fir lhre Anwei-
sungen. Bei der Verwendung eines frei wahlbaren Parameters missen auch die
flir diesen Parameter erforderlichen Daten gegeben werden. Auslassungen (. . .)
geben an, daB eine bestimmte Angabe so oft wiederholt werden kann, wie es
eine Programmierzeile zulaBt.

4. Ist eine Angabe in ([ ]) UNTERSTRICHEN, bedeutet dies, daB diese bestimmten
Zeichen in den frei wahlbaren Parametern benutzt werden missen und genau
wie angegeben zu schreiben sind.

5. Angaben in spitzen Klammern (< >) geben variable Daten an, die von lhnen
eingegeben werden. Ein Schragstrich (/) zeigt lhnen an, daB Sie sich zwischen
mehreren Funktionen entscheiden kénnen.

SYNTAX-FORMAT-BEISPIEL.:

OPEN <logische Adresse>,<Geratenummer> [,<Adresse>], [“<lauf-
werk>: <Dateiname>] [<Modus>]"

ANWEISUNGSBEISPIELE:

10 OPEN 2,8,6,“0:LAGERBESTAND,S,W*
20 OPEN 1,1,2,“SCHECKBUCH*
30 OPEN 3,4

In der Praxis kann die Parameterfolge in lhren Anweisungen von der der Syntax-
Beispiele abweichen. Die Beispiele sind also Einzelbeispiele und sollen nicht jede
mogliche Folge zeigen, sondern lediglich alle erforderlichen und frei wéhlbaren
Parameter darstellen.

EINFUHRUNG X1



In den gegebenen Programmierbeispielen sind Worter und Operatoren durch
Leerzeichen voneinander getrennt, damit die Beispiele besser lesbar sind. Norma-
lerweise erfordert BASIC jedoch keine Leerzeichen zwischen Wortern, auBer wenn
sich durch ein Auslassen eine mehrdeutige oder falsche Syntax ergibt.
Nachfolgend werden einige der Symbole beschrieben, die in den folgenden Kapi-
teln flr verschiedene Anweisungsparameter benutzt werden. Diese Liste zeigt nicht
alle Méglichkeiten, sondern soll Ihnen lediglich zeigen, wie Syntax-Beispiele aufge-
baut sind.

SYMBOL BEISPIEL BESCHREIBUNG
<Logische Adresse> 50 Logische Dateinummer
<Gerdatenummer> 4 Hardware-Geratenummer
<Adresse> 15 Sekundéar-AdreBnummer eines

seriellen Bus-AnschluBgerats
<Laufwerk> 0 Diskettenlaufwerknummer
<Dateiname> “TEST.DATA" Name einer Daten- oder
Programmdatei
<Konstante> “ABCDEFG“ Vom Programmierer eingegebene
beliebige Daten
<Variable> X145 Ein beliebiger BASIC-Variablen-
name oder eine Konstante
<String> AB$ Eine String-Variable ist erforderlich
<Zahl> 12345 Eine numerische Variable ist
erforderlich
<Zeilennummer> 1000 Tatséchliche Programmzeilen-Nr.
<Numerisch> 1.5E4 Ganze Zahl oder Gleitpunktvariable

HINWEISE ZUR ANWENDUNG IHRES COMMODORE 64

Als Sie das erstemal an den Kauf eines Computers dachten, haben Sie sich
sicherlich gefragt: “Nun kann ich mir einen Computer leisten, aber was kann ich
denn alles mit ihm anfangen?*

Das Besondere an Ihrem COMMODORE 64 ist, daB er all das machen kann, was
SIE wollen! Er kann rechnen und flr Sie Ihren geschéftlichen oder privaten Haushalt
flhren. Sie kdnnen ihn auch fir die Textverarbeitung einsetzen. Sie kdnnen mit ihm
Aktionsspiele spielen. Sie konnen ihn singen lassen. Sie kénnen mit ihm lhre
eigenen Zeichentricks erstellen usw. Das Beste am COMMODORE 64 ist die
Tatsache, daB er sein Geld wert ist, selbst wenn Sie ihn nur fir eine der nachfolgend
aufgefiihrten Funktionen einsetzen. Der 64 ist jedoch ein vollstandiger Computer
und kann daher ALLE nachstehend aufgeflihrten Punkte ausfiihren. Und wie!

X1 EINFUHRUNG



Ubrigens konnen Sie auBerdem noch zahlreiche kreative und praktische Anregun-
gen von den oOrtlichen COMMODORE-Anwenderclubs bekommen.

ANWENDUNG

AKTIONS-SPIELE

ANZEIGEN UND
VERKAUFSFORDERUNG

TRICKFILM

BASIC-

PROGRAMMIERUNG

KALKULATIONS-
PROGRAMME

KOMPONIEREN

CP/M*

GESCHICKLICH-
KEITSUBUNGEN

BESCHREIBUNG/ERFORDERNISSE

Sie konnen richtige Spiele wie Omega Race, Gorf
und Wizard of Wor, aber auch Lernspiele be-
kommen.

SchlieBen Sie Ihren COMMODORE 64 an ein Fern-
sehgerét an, stellen Sie ihn in ein Schaufenster, und
lassen Sie bewegliche Reklame ablaufen. Natirlich
ist auch musikalische Untermalung moglich.

Mit der SPRITE-Graphik des COMMODOREs kon-
nen Sie richtige Trickfilme auf acht verschiedenen
Ebenen darstellen, so daB sich die Figuren vor- bzw.
hintereinander bewegen kénnen.

Die Bedienungsanleitung zum COMMODORE 64
sowie die BASIC-Lernkassette verschaffen Ihnen
einen guten Start.

Der COMMODORE 64 bietet Ihnen die besten Kal-
kulationsprogramme, die fir Personal-Computer
existieren.

Der COMMODORE 64 ist mit einem technisch aus-
gereiften, eingebauten Musik-Synthesizer ausgeru-
stet. Er hat drei vollstdndig programmierbare Stim-
men, verfugt Gber 9 Oktaven und 4 regelbare Wel-
lenformen. Erstellen Sie mit Hilfe der COMMODO-
RE-Musikmodule lhre eigenen Songs und erleben
Sie, welche Musik- und Klangeffekte moglich sind.

COMMODORE bietet CP/M* als Steckmodul mit
Betriebssystem auf Diskette an.

Uber die verschiedenen COMMODORE-Spiele kon-
nen Sie die Koordination von Hand/Auge sowie |hre

Geschicklichkeit trainieren.

EINFUHRUNG  XIlI



AUSBILDUNG

FREMDSPRACHEN

GRAPHIK UND KUNST

INSTRUMENTEN-
STEUERUNG

JOURNALE UND
KREATIVES SCHREIBEN

LICHTGRIFFEL-
STEUERUNG

MASCHINENCODE
PROGRAMMIERUNG

XIV  EINFUHRUNG

Schon das Arbeiten mit einem Computer an sich ist
eine Ausbildung. Die COMMODORE-Ausbildungs-
bicher enthalten allgemeine Informationen fir den
Einsatz von Computern als Bildungshilfsmittel. Fer-
ner bieten wir eine Vielzahl von Lernprogrammen
an. Die Auswahl erstreckt sich dabei von Musik Gber
Mathematik bis hin zu Kunst und Astronomie.

Der programmierbare Zeichensatz des
COMMODORE 64 ermdglicht ein Auswechseln des
Standardzeichensatzes gegen benutzerdefinierte
Fremdsprachenzeichen.

Zusétzlich zu der bereits erwahnten Sprite-Graphik-
funktion ist mit dem COMMODORE 64 die Darstel-
lung mehrfarbiger Graphiken mit hoher Auflésung,
programmierbarer Zeichen und die Kombination der
verschiedenen Graphik- und Zeichenmodi moglich.

Ihr COMMODORE 64 hat einen seriellen Bus, einen
RS-232-Port sowie einen Benutzerport flr die ver-
schiedensten speziellen Anwendungen. Als Son-
derausstattung ist auBerdem ein IEEE/488-Steck-
modul erhaltlich.

Der COMMODORE 64 bietet Ihnen ein auBerge-
wohnliches Textverarbeitungssystem, das min-
destens genauso gut und flexibel wie viele “teuere”
Word-Prozessoren ist. Naturlich kénnen Sie die In-
formationen entweder (ber eine 1541 Diskettensta-
tion oder einen Datasette™-Rekorder speichern und
spater ausdrucken lassen.

Fiur Anwendungen, die einen Lichtgriffel erfordern,
kann ein beliebiger Lichtgriffel benutzt werden, der
in den SpieleanschluBstecker des

COMMODORE 64 paBt.

Die Programmieranieitung COMMODORE 64
umfaBt auch ein Kapitel (ber Maschinensprache so-
wie einen Abschnitt Uber BASIC/Maschinencode-



Interface. Fir diejenigen, die ausfihrlichere Informa-
tionen wiinschen, haben wir auBerdem ein Literatur-
verzeichnis zusammengestelit.

LOHNLISTEN UND Der COMMODORE 64 kann flr die Handhabung

FORMULARAUSDRUCK der verschiedensten Buchungsgeschafte program-
miert werden. Mit GroB- und Kleinschreibung und
Graphiksymbolen kénnen Formulare leicht entwor-
fen und danach ausgedruckt werden.

AUSDRUCKEN Der COMMODORE 64 kann an verschiedene
Punktmatrix- und Schonschriftdrucker sowie an
Plotter angeschlossen werden.

SIMULATIONEN Durch die Computersimulationen kénnen Sie ge-
fahrliche oder teuere Experimente bei minimalem
Risiko und minimalen Kosten ausfihren.

Dies sind nur einige Beispiele dafiir, wie Sie Inren COMMODORE 64 einsetzen
kénnen. Sie werden festgestellt haben, daB der COMMODORE 64 Ihnen flr jedes
Problem eine praktische Losung bietet — bei Arbeit und Spiel, zu Hause, in der
Schule und im Bro.

Wir mochten Sie darauf hinweisen, daB unsere Kundenunterstitzung beim Kauf
eines COMMODORE-Computers ERST BEGINNT. Wir unterstiitzen und ermutigen
die Bildung von COMMODORE-Anwenderclubs auf der ganzen Welt. Diese Clubs
sind eine ausgezeichnete Informationsquelle fir alle COMMODORE-Besitzer —
dies gilt sowohl fiir den Anfanger als auch fiir unsere Profis. SchlieBlich bietet Ihnen
auch noch Ihr COMMODORE-Héandler ausreichend Unterstiitzung und Information.
Werden Sie Mitglied in einem Computer-Club, erfahren Sie Hilfe bei Computerpro-
blemen, “reden“ Sie mit anderen COMMODORE-Freunden oder empfangen Sie
topaktuelle Informationen tber neue Produkte, Software und Ausbildungsmdglich-
keiten!

EINFUHRUNG XV






KAPITEL 1

BASIC
PROGRAMMIER-
HINWEISE

e Einleitung

e Bildschirmcodes (BASIC-Zeichensatz)

e Programmieren von Zahlen und Variablen
e Ausdriicke und Operatoren

e Programmiertechniken




EINLEITUNG

In diesem Kapitel wird beschrieben, wie mit BASIC Daten gespeichert und aufberei-
tet werden. Es umfaBt folgende Punkte:

1)
2)

3)

Kurze Beschreibung der einzelnen Bauteile und Funktionen des Betriebssy-
stems sowie des Zeichensatzes vom COMMODORE 64.

Bildung von Konstanten und Variablen. Welche Variablenarten es gibt und wie
Konstante und Variablen gespeichert werden.

Richtlinien fir Rechenoperationen, Verhaltnisberechnungen, Handhabung von
Strings und logische Operationen. AuBerdem werden die Regeln zum Bilden
von Ausdriicken und die fir das Mischen von BASIC mit anderen Datentypen
erforderlichen Datenumwandlungen beschrieben.

BILDSCHIRMCODES
(BASIC-ZEICHENSATZ)

DAS BETRIEBSSYSTEM (OS)

Das Betriebssystem befindet sich in den ROMs und ist eine Kombination aus drei
getrennten, jedoch zusammengehdrigen Programm-Modulen.

1)
2)
3)

1)

2)

3)

2

BASIC-Interpreter
KERNAL
Bildschirm-Editor

Der BASIC-Interpreter ist fir die Analyse der BASIC-Anweisungssyntax ver-
antwortlich und fihrt die erforderlichen Berechnungen und/oder Datenaufberei-
tungen durch. Der BASIC-Interpreter verfligt Uber ein Vokabular von 25
“Schllsselwdrtern® mit besonderen Bedeutungen. Sowohl Schlisselwdrter als
auch Variablennamen werden durch Buchstaben und die Zahlen 0 bis 9 gebildet.
Auch bestimmte Interpunktionszeichen und Sondersymbole haben fir den
Interpreter eine Bedeutung. Die Sonderzeichen sind in Tabelle 1.1. aufgelistet.
Der KERNAL handhabt die Verwaltung auf Interrupt-Ebene (bezlglich Einzel-
heiten siehe Kapitel 5). Der KERNAL erledigt auch die tatsachliche Datenein-/
-ausgabe.

Uber den Bildschirm-Editor wird die Ausgabe auf dem Bildschirm (Fernseh-
gerat) gesteuert und der BASIC-Programmtext aufbereitet. Darliber hinaus prift
er die Eingabe Uber die Tastatur und entscheidet, ob sofort auf die eingegebe-
nen Zeichen reagiert werden soll oder ob diese zum BASIC-Interpreter weiter-
geleitet werden.

BASIC PROGRAMMIERHINWEISE



Tabelle 1.1. CMB BASIC-Zeichensatz

ZEICHEN

BEZEICHNUNG UND BESCHREIBUNG

+ |

—_— ~

%

3V A

LEERZEICHEN — trennt Schilisselworter und
Variablennamen
SEMIKOLON — wird in Variablenlisten zur Ausgabeforma-
tierung benutzt
GLEICHHEITSZEICHEN — Wertzuordnung und logische
Prifung
PLUSZEICHEN — Addition oder Verkettung von Zeichen-
ketten
MINUSZEICHEN — Subtraktion, Vorzeichen
STERNCHEN — Multiplikation
SCHRAGSTRICH — Division
AUFWARTSPFEIL — Exponentenrechnung
LINKE KLAMMER — Auswertung von Ausdricken und Funk-
tionen
RECHTE KLAMMER — Auswertung von Ausdrucken und
Funktionen
PROZENT — Bestimmt Variablennamen als ganze Zahl
“Nummer“ — Kommt vor logischer Dateinummer bei
Ein-/Ausgabeanweisungen
DOLLARZEICHEN — Bestimmt Variablenname als String
KOMMA — Wird in Variablenlisten zur Ausgabeformatierung
benutzt; trennt auBerdem Befehlsparameter
PUNKT — Dezimalpunkt bei Gleitpunktkonstanten
ANFUHRUNGSZEICHEN — SchlieBt Strings ein
DOPPELPUNKT — Trennt mehrere BASIC-Anweisungen in
einer Zeile
FRAGEZEICHEN — Abklrzung flr das Schlisselwort PRINT
KLEINER ALS — Wird bei logischen Vergleichen benutzt
GROSSER ALS — Wird bei logischen Vergleichen benutzt
Pl — Numerische Konstante 3,141592654

Das Betriebssystem ermdglicht Ihnen, auf zwei Arten mit BASIC zu arbeiten:

1) DIREKT-MODUS
2) PROGRAMM-MODUS

BASIC PROGRAMMIERHINWEISE




1) Im DIREKT-MODUS steht vor BASIC-Anweisungen keine Zeilenzahl. Sie wer-
den nach Driicken der Taste ausgefiihrt.
2) Den PROGRAMM-MODUS benutzen Sie zum Ausfuhren von Programmen.

Im PROGRAMM-MODUS muB vor jeder BASIC-Anweisung eine Zeilenzahl
stehen. In einer Programmzeile kann mehr als eine BASIC-Anweisung stehen.
Die Anzahl der Anweisungen ist jedoch begrenzt, da in eine logische Bildschirm-
zeile nur 80 Zeichen eingegeben werden kénnen. D. h., bei Uberschreitung
dieser Grenze von 80 Zeichen muB die ganze BASIC-Anweisung, die nicht
mehr in die Zeile paBt, mit einer neuen Zeilennummer in eine neue Zeile
eingegeben werden.

Der COMMODORE 64 hat zwei volistandige Zeichensatze, die Sie entweder Uber
Tastatur oder in Ihren Programmen benutzen konnen.

Den SATZ 1, der die GroBbuchstaben sowie die Zahlen 0 bis 9 umfaBt, erreicht man
ohne Driicken der Taste §JIaB . Wird die Taste gedriickt, so sind die
Graphikzeichen rechts auf der Tastenvorderseite wirksam. Wird wahrend des
Schreibens die Taste @ gedriickt, so sind die Graphikzeichen der linken Seite
wirksam. Wird eine Taste ohne Graphiksymbole zusammen mit der Taste
betéatigt, so wird das Symbol ganz oben auf dieser Taste wirksam.

In SATZ 2 stehen die Kleinbuchstaben sowie die Zahlen 0 bis 9 ohne Drucken der
Taste zur Verfiigung. Fir die GroBbuchstaben wird wahrend des Schrei-
bens die Taste gedrlckt. Auch bei diesem Satz werden die Graphiksym-
bole auf der linken Tastenvorderseite durch Driicken der Taste @ angezeigt.
Wird eine Taste ohne Graphikzeichen zusammen mit der Taste betétigt,
so werden die Symbole ganz oben auf dieser Taste wirksam.

Um von einem Zeichensatz auf den anderen umzuschalten, werden die Tasten
Q@ ud zusammen gedrickt.

PROGRAMMIEREN VON ZAHLEN UND VARIABLEN

GANZE ZAHLEN, GLEITPUNKTZAHLEN UND ZEICHENKETTEN

Konstanten sind Daten, die in den BASIC-Anweisungen enthalten sind. BASIC
benutzt diese Werte, um bei der Interpretation der Anweisungen Daten darzustel-
len. CBM BASIC kann drei verschiedene Arten von Konstanten erkennen und
verarbeiten:

4 BASIC PROGRAMMIERHINWEISE



1) GANZE ZAHLEN
2) ZAHLEN MIT GLEITPUNKT
3) ZEICHENKETTEN

GANZZAHLIGE KONSTANTEN sind ganze Zahlen (Zahlen ohne Dezimalpunkt).
Ganzzahlige Konstanten kdnnen aus dem Bereich von —32768 bis +32767 gewahit
werden. Zwischen den einzelnen Stellen stehen weder Dezimalpunkte noch Kom-
mata. Wird das Pluszeichen (+) ausgelassen, so werden die Konstanten als positive
Zahl angesehen. Nullen vor einer Konstante werden nicht berlcksichtigt und sollten
daher auch nicht benutzt werden, da sie lediglich Speicherkapazitat vergeuden und
das Programm verlangsamen. Sie flihren jedoch zu keinem Fehler. Ganze Zahlen
werden im Speicher als Zwei-Byte-Binarzahlen gespeichert. Ganzzahlige Konstan-
ten sind z. B.:

-12

8765

—32768

+44

0

—-32767

Anmerkung: In eine Zahl NIE Kommata eingeben. Z. B. wird fiir die englische Tausenderangabe
32,000 lediglich 32000 eingegeben. Durch die Verwendung eines Kommas in einer Zahl entsteht ein
Fehler, und die BASIC-Fehlermeldung ?SYNTAX ERROR wird angezeigt.

Gleitpunktkonstanten sind positive oder negative Dezimalzahlen. Ein Dezimal-
bruch wird durch einen Dezimalpunkt angezeigt. Bitte denken Sie daran, daB
Kommata NICHT zwischen Zahlen benutzt werden durfen. Wird das Pluszeichen
(+) vor einer Zahl ausgelassen, geht der COMMODORE 64 davon aus, da3 diese
Zahl positiv ist. Genau wie bei den ganzen Zahlen werden auch hier Nullen vor einer
Konstante nicht beriicksichtigt. Gleitpunktkonstanten kénnen auf zwei verschie-
dene Arten benutzt werden:

1) EINFACHE ZAHL
2) TECHNISCH-WISSENSCHAFTLICHE NOTATION

Gleitpunktkonstanten werden auf dem Bildschirm mit bis zu neun Stellen angezeigt.
Mit diesen neun Stellen kdnnen Werte zwischen —999999999. und +999999999.
dargestellt werden. Werden mehr als neun Stellen eingegeben, so wird die Zahl
entsprechend der zehnten Stelle auf- bzw. abgerundet. Ist die zehnte Stelle gréBer
oder gleich 5, wird die Zahl aufgerundet; ist sie kleiner als 5, erfolgt eine Abrundung.
Dies kann moglicherweise fir Endsummen von Bedeutung sein.

BASIC PROGRAMMIERHINWEISE 5



Gleitpunktzahlen bendétigen einen Speicherplatz von 5 Bytes und werden mit einer
Genauigkeit von 10 Stellen verarbeitet.

Beim Ausdruck bzw. bei der Anzeige werden die Zahlen jedoch auf neun Stellen
gerundet. Gleitpunktzahlen sind z. B.:

1.23
—.998877
+3.1459
JT77777
—333.
.01

Zahlen, die kleiner als .01 oder gréBer als 999999999. sind, werden in technisch-
wissenschaftlicher Notation angezeigt. Hierbei besteht eine Gleitpunktkonstante
aus drei Teilen:

1) MANTISSE
2) BUCHSTABE E
3) EXPONENT

Die Mantisse ist eine einfache Gleitpunkizahl. Der Buchstabe E zeigt Ihnen an, daB
die Zahl in exponentieller Form dargestellt wird. D. h., E bedeutet *10 (z. B.
3E3=3*1013=3000). Der Exponent gibt an, wie oft die Mantisse mit dem Faktor 10
multipliziert wird.

Sowohl Mantisse als auch Exponent sind Zahlen mit Vorzeichen (+ oder —). Fir
Exponenten gilt der Bereich von —39 bis +38. Der Exponent gibt die Stellenanzahl
an, um die der Dezimalpunkt in der Mantisse bei der Darstellung als ganze Zahl
nach links (—) oder rechts (+) verschoben wird.

Fiar BASIC gilt eine Begrenzung der Gleitpunktzahlen, selbst bei wissen-
schaftlichen Notationen: Die groBte Zahl lautet +1.70141183E+38.
Bei Berechnungen, deren Ergebnis zu einer gréBeren Zahl flihrt, wird die BASIC-
Fehlermeldung 20VERFLOW ERROR angezeigt. Die kleinste Gleitpunktzahl lautet
+2.93873588E—39, und bei Berechnungen, deren Ergebnis kleiner als dieser Wert
ist, wird Null als Ergebnis angezeigt, und es erfolgt keine Fehlermeldung. Gleit-
punktzahlen in wissenschaftlichen Notationen (sowie ihre Dezimalwerte) sind z. B.:

235.988E—3 (.235988)

2359E6 (2359000000.)
—7.09E-12 (—.00000000000709)
—3.14159E+5 (—314159.)

6 BASIC PROGRAMMIERHINWEISE



Stringkonstanten sind Gruppen von alphanumerischen Zusammensetzungen wie
Buchstaben, Zahlen und Symbolen. Wird eine Zeichenkette (String) Uber die
Tastatur eingegeben, so steht hierfir die restliche Kapazitat einer 80-Zeichen-Zeile
zur Verflgung (die NICHT von der Zeilennummer oder anderen Teilen der Anwei-
sung beansprucht wird).

Eine Stringkonstante kann Leerzeichen, Buchstaben, Zahlen, Interpunktionszei-
chen und Farb- oder Cursorsteuerzeichen in beliebiger Kombination enthalten. Hier
kdnnen zwischen Ziffern auch Kommata eingegeben werden. Das einzige Zeichen,
das innerhalb einer Zeichenkette nicht zuldssig ist, ist das Anfliihrungszeichen (“),
da durch dieses héufig Anfang und Ende einer Zeichenkette gekennzeichnet ist.
Eine Zeichenkette kann auch leer sein — d. h., keine Zeichendaten enthalten. Das
abschlieBende Anflihrungszeichen kann bei einer Zeichenkette weggelassen wer-
den, wenn dieses das letzte Zeichen in einer Zeile ist oder wenn danach ein
Doppelpunkt folgt (:). Stringkonstanten sind z. B.:

“HALLO*"
“$25,000.00"
“ZAHL DER ANGESTELLTEN*®

(Ein Leerstring)

[ Anmerkung: Um Anflihrungszeichen (“) in Zeichenketten einzuschlieBen, wird CHR$(34) benutzt.

GANZE ZAHLEN, GLEITPUNKTZAHLEN UND
STRINGVARIABLEN

Variablen stehen fur Daten in BASIC-Anweisungen. Der durch eine Variable darge-
stellte Wert kann zugeordnet werden, indem er gleich einer Konstanten gesetzt
wird. Er kann auch das Ergebnis einer Programmberechnung sein. Variablen
kdénnen wie Konstanten ganze Zahlen, Gleitpunktzahlen oder Zeichenketten
(Strings) sein.

Wird in einem Programm eine Variable verwendet, ohne daB ihr vorher ein Wert
zugeordnet wurde, erstellt der BASIC-Interpreter automatisch die Variable mit dem
Wert Null, wenn es sich um eine ganze Zahl oder eine Gleitpunktzahl handelt. Wenn
es sich um einen String handelt, wird ein Leerstring angenommen.
Variablennamen konnen eine beliebige Lange haben. Im CBM-BASIC sind jedoch
nur die ersten zwei Zeichen signifikant. D. h., bei allen Variablenbezeichnungen
muissen die ersten zwei Buchstaben unbedingt unterschiedlich sein. Variablenna-
men dirfen NICHT genau wie BASIC-Schlisselwdérter lauten, und sie dlrfen auch
keine Schlisselwdrter enthalten. Schlisselwérter umfassen alle BASIC-Befehle,
Anweisungen, Funktionsbezeichnungen und logische Operatorbezeichnungen.

BASIC PROGRAMMIERHINWEISE 7



Wird aus Versehen ein Schlisselwort inmitten eines Variablennamens benutzt, wird
auf dem Bildschirm die BASIC-Fehlermeldung 2SYNTAX ERROR angezeigt.
Variablennamen kénnen aus dem Alphabet und den Zahlen 0—9 gebildet werden.
Das erste Zeichen des Namens muB ein Buchstabe sein.

Als letztes Zeichen kénnen die Daten-Vereinbarungszeichen (%) und ($) stehen.
Das Prozentzeichen (%) gibt an, daB es sich bei der Variablen um eine ganze Zahl,
und das Dollarzeichen ($), daB es sich um eine Stringvariable handelt. Wird keines
dieser Vereinbarungszeichen benutzt, nimmt der Interpreter an, daB es sich um
eine Gleitpunktvariable handelt. Variablennamen, Wertzuordnung und Datenarten
sind z. B.:

A$="“GROSS SALES" (Stringvariable)
MTH$=“JAN“+A$ (Stringvariable)

K% =5 (Ganzzahlige Variable)
CNT%=CNT%+1 (Ganzzahlige Variable)
FP=12.5 (Gleitpunktvariable)
SUM=FP*CNT% (Gleitpunktvariable)

GANZZAHLIGE, GLEITPUNKT- UND STRINGFELDER

Ein Feld ist eine Tabelle (oder Liste) zusammengehdriger Daten mit einem einzigen
Variablennamen. Ein Feld ist also eine Folge zusammengehdriger Variablen. So
kann z. B. eine Zahlentabelle als ein solches Feld angesehen werden. Die einzel-
nen Zahlen der Tabelle werden zu einzelnen Feldelementen.

Mit Feldern 1aBt sich auf einfache Weise eine groBe Anzahl zusammengehdriger
Variablen beschreiben. Nehmen wir z. B. eine Zahlentabelle. Diese besteht aus
zehn Reihen mit jeweils 20 Zahlen. Das ergibt insgesamt 200 Zahlen. Ohne einen
gemeinsamen Feldnamen miiBten Sie fur den Aufruf jedem Wert in der Tabelle
einen eigenen Namen zuordnen. Wenn man jedoch Felder benutzt, braucht einem
Feld auch nur ein Name zugeordnet zu werden. Alle Elemente im Feld werden
durch ihre jeweilige Lage identifiziert.

Feldnamen kénnen vom Typ Ganze Zahl, Gleitpunktzahl oder String sein. Fur alle
Elemente im Feld gilt dann entsprechend dem Feldnamen der gleiche Datentyp.
Felder konnen nur eine Dimension (in einfacher Liste) oder auch mehrere Dimen-
sionen haben (stellen Sie sich ein durch Reihen und Spalten gekennzeichnetes
Gitter oder einen Rubik-Wiirfel® vor). Jedes einzelne Feldelement wird durch einen
Index (oder eine Indexvariable) identifiziert, der nach dem Feldnamen folgt und in
Klammern ( ) eingeschlossen ist.

Die Anzahl der Dimensionen eines Feldes darf theoretisch nicht gréBer als 255 sein,
und flr jede Dimension ist die Anzahl der Elemente auf 32767 beschrankt. Bei der

8 BASIC PROGRAMMIERHINWEISE



praktischen Anwendung sind die FeldgroBen jedoch durch die Speicherkapazitat
und/oder eine logische Bildschirmzeile von 80 Zeichen beschrankt.

Hat ein Feld nur eine Dimension und (berschreitet sein Indexwert nie 10 (11
Elemente: 0 bis 10), dann wird dieses Feld vom Interpreter erstellt und mit Nullen
geflllt, wenn das erste Mal auf ein beliebiges Feldelement Bezug genommen wird.
Ansonsten muB die BASIC-Anweisung DIM zur Definition von Form und GréBe des
Feldes benutzt werden.

Der fur ein Feld erforderliche Speicherbedarf 148t sich wie folgt bestimmen:

5 Bytes fiir den Feldnamen

+ 2 Bytes fiir jede Felddimension
+ 2 Bytes pro Element fiir ganze Zahlen
ODER + 5 Bytes pro Element flr Gleitpunktzahlen
ODER + 3 Bytes pro Element fur Zeichenketten
UND + 1 Byte pro Zeichen in jedem Stringelement

Beim Index kann es sich um ganzzahlige Konstanten, Variablen oder Rechenaus-
driicke handeln, bei denen das Ergebnis eine ganze Zahl ist. Getrennte Indizes
(durch Kommata getrennt) werden flr jede Felddimension benétigt. Ein Index kann
einen Wert von Null bis zur Elementanzahl in der jeweiligen Felddimension haben.
Werte auBerhalb dieses Bereichs flihren zu der BASIC-Fehlermeldung ?BAD
SUBSCRIPT. Feldnamen, Wertzuordnung und Datentyen sind z. B.:

A$(0)=“GROSS SALES*" (Stringfeld)
MTH$(K%)="“JAN* (Stringfeld)
G2%(X)=5 (Ganzzahlen Feld)
CNT%(G2%(X))=CNT%(1)—2 (Ganzzahlen Feld)
FP(12*K%)=24.8 (Gleitpunktfeld)
SUM(CNT%(1))=FP1K% (Gleitpunktfeld)

A(5)=0 (Dem flnften Element im eindimensionalen Feld mit der
Bezeichnung “A*“ wird der Wert 0 zugewiesen.)

B(5,6)=0 (Dem Element in Reihe 5 und Spalte 6 des zweidimensionalen
Feldes mit der Bezeichnung “B* wird der Wert 0 zugewiesen.)

C(1,2,3)=0 (Dem Element in Reihe 1, Spalte 2 und Tiefe 3 der dritten

Dimension mit der Bezeichnung “C* wird der Wert O zuge-
wiesen.)

BASIC PROGRAMMIERHINWEISE 9



AUSDRUCKE UND OPERATOREN

Ausdrucke werden durch Konstanten, Variablen und/oder Felder gebildet. Ein
Ausdruck kann eine einzelne Konstante, ein einfacher Wert oder eine beliebige
Feldvariable sein.

Er kann jedoch auch eine Kombination aus Konstanten, Variablen und Operatoren
sein, die einen Einzelwert ergeben sollen. Die Operatoren werden nachfolgend
erklart. Es gibt zwei verschiedene Arten von Ausdriicken:

1) RECHENAUSDRUCKE
2) STRINGS (ZEICHENKETTEN)

Ausdriicke enthalten normalerweise zwei oder mehr Daten, die Operanden genannt
werden. Die Operanden werden voneinander getrennt. Im allgemeinen wird der
Wert des Ausdrucks einem Variablennamen zugeordnet. Alle Beispiele fiir Konstan-
ten und Variablen, die bisher gegeben wurde, waren gleichzeitig auch Beispiele fir
Ausdricke.

Ein Operator ist ein spezielles Symbol, das fiir den BASIC-Interpreter in lhrem
COMMODORE 64 einen Vorgang angibt, der mit Variablen oder Konstantendaten
ausgefiihrt werden soll. Ein oder mehr Operatoren zusammen mit einer oder
mehreren Variablen und/oder Konstanten bilden einen Ausdruck. Rechen-, Ver-
gleichs- und logische Operatoren werden vom COMMODORE 64 BASIC erkannt.

RECHENAUSDRUCKE

Bei der L6sung von Rechenausdriicken ergibt sich eine ganze Zahl oder ein
Gleitpunktwert. Die Rechenoperatoren (+, —, *, /, T) werden fir Addition, Subtrak-
tion, Multiplikation, Division und Exponentialberechnungen benutzt.

RECHENOPERATIONEN

Ein Rechenoperator bestimmt eine Rechenoperation, die mit den beiden Operan-
den beidseits des Operators ausgefiihrt wird. Rechenoperationen werden unter
Verwendung von Gleitpunktzahlen ausgefiihrt. Ganze Zahlen werden zuvor in
Gleitpunktzahlen umgewandelt. Das Ergebnis wird dann wieder zuriick in eine
ganze Zahl verwandelt, wenn es einem ganzzahligen Variablennamen zugeordnet
ist.

ADDITION (+): Das Pluszeichen (+) gibt an, daB der Operand auf der rechten
Seite zu dem auf der linkan Seite addiert wird.

10 BASIC PROGRAMMIERHINWEISE



BEISPIELE:
2+2
A+B+C
X% +1
BR+10E-2

SUBTRAKTION (—): Das Minuszeichen (—) gibt an, daB der Operand auf der
rechten Seite von dem auf der linken Seite subtrahiert wird.

BEISPIELE:
4-1
100—-64
A-B
55—-142

Dieses Minuszeichen kann auch als negatives Vorzeichen benutzt werden. Dies
entspricht einer Subtraktion dieser Zahl von Null (0).

BEISPIELE:
=5
—9E4
-B
4— (—2) entspricht 4+2

MULTIPLIKATION: (*) Ein Sternchen (*) gibt an, daB der Operand auf der linken
Seite mit dem auf der rechten Seite multipliziert wird.

BEISPIELE:
100*2
50*0
A*X1
R%*14

DIVISION (/): Der Schragstrich (/) gibt an, daB der Operand auf der linken durch
den auf der rechten Seite dividiert wird.

BEISPIELE:
10/2
6400/4
A/B
4E2/XR

BASIC PROGRAMMIERHINWEISE 1



EXPONENTIALBERECHNUNG (1): Der Aufwartspfeil gibt an, daB der Operand
auf der linken Seite in die durch den Operand auf der rechten Seite (Exponent)
angegebene Potenz erhoben wird. Ist der Operand auf der rechten Seite eine 2, so
wird die Zahl auf der linken Seite zum Quadrat erhoben. Ist der Exponent eine 3, so
wird die Zahl auf der linken Seite in die dritte Potenz erhoben usw. Der Exponent
kann eine beliebige Zahl sein, solange sich beim Rechenergebnis eine zuldssige
Gleitpunktzahl ergibt.

BEISPIELE:

212 Entspricht: 2*2

213 Entspricht: 2*2*2

714 Entspricht: 7*7*7*7

ABTCD

37-2 Entspricht: 1/3*1/3
VERGLEICHSOPERATOREN
Die Vergleichsoperatoren (<, =, >, <=, >=, <>) werden hauptsachlich zum

Vergleich der Werte von zwei Operanden, aber auch zur Erzielung eines Rechener-
gebnisses benutzt. Die Vergleichsoperatoren und die logischen Operatoren (UND,
ODER und NICHT) flihren zu einer Richtig-/Falschbewertung von Ausdriicken,
wenn sie bei Vergleichen benutzt werden. Ist der im Ausdruck angegebene
Vergleich richtig, so wird dem Ergebnis die ganze Zahl —1 zugeordnet*; ist er
falsch, so wird der Wert 0 zugeordnet. Es gibt folgende Vergleichsoperatoren:

< Kleiner als

= Gleich

> GréBer als

<= Kleiner oder gleich
>=  GroBer oder gleich

<> Ungleich

* Achtung: Die Zuordnung von —1 bei einer wahren Aussage ist eine Charakteristik des COMMODORE
64.

12 BASIC PROGRAMMIERHINWEISE



BEISPIELE:

1=5-4 Richtig (—1)
14>66 Falsch (O
15<=15 Richtig (—1)

Mit Vergleichsoperatoren kénnen auch Strings verglichen werden. Bei Vergleichs-
zwecken gilt fir das Alphabet die Reihenfolge A<B<C<D usw. Strings werden
durch Bewertung des Zusammenhangs zwischen den einzelnen Zeichen von links
nach rechts verglichen (siehe Stringoperationen).

BEISPIELE:
“A“ < “B*  Richtig (—1)
UXE =Yy Falsch (0)
BB$ <> CC$

Numerische Daten kdnnen nur mit anderen numerischen Werten verglichen (oder
diesen zugeordnet) werden. Das gleiche gilt fiir den Vergleich von Strings, da sonst
die BASIC-Fehlermeldung ?TYPE MISMATCH angezeigt wird. Beim Vergleich von
numerischen Operanden wird zunachst der Wert von einem bzw. beiden Operan-
den von einer ganzen Zahl gegebenenfalls in einen Gleitpunktausdruck umgewan-
delt. Dann wird der Zusammenhang zwischen den Gleitpunktwerten entsprechend
einer Richtig-/Falschbeurteilung bewertet.

Nach allen Vergleichen erhalten Sie eine ganze Zahl, unabhangig davon, welcher
Datentyp fur den Operanden gilt (selbst wenn beides Zeichenketten sind). Aus
diesem Grund kann der Vergleich von zwei Operanden als Operand bei Berechnun-
gen benutzt werden. Das Ergebnis lautet —1 oder O und kann beliebig weiter
verwendet werden, auBer als Divisor, da eine Division durch Null unzuléassig ist.

LOGISCHE OPERATOREN

Die logischen Operatoren (AND, OR, NOT) kénnen zur Anderung der Bedeutung
von Vergleichsoperatoren oder flir Rechenergebnisse benutzt werden. Logische
Operatoren ergeben andere Ergebnisse als —1 und 0; bei der Richtig-/Falschbe-
wertung wird jedes Ergebnis, das nicht O ist, als richtig angesehen.

Die logischen Operatoren (gelegentlich auch Boole’sche Operatoren genannt)
kdnnen auch flr logische Operationen von einzelnen Binarstellen (Bits) bei zwei
Operanden benutzt werden. Wird jedoch der Operator NOT benutzt, so erfolgt die
Operation nur mit dem einen Operanden auf der rechten Seite.

Die Operanden missen ganze Zahlen (—32768 bis +32767) sein (Gleitpunktzahlen
werden in ganze Zahlen umgewandelt), und beim Ergebnis ergibt sich wieder eine
ganze Zahl.

BASIC PROGRAMMIERHINWEISE 13



Logische Operationen beziehen sich immer auf die entsprechenden Bits der beiden
Operanden. Beim logischen AND ist das Bit-Ergebnis nur 1, wenn beide Operan-
denbits 1 sind. Beim logischen OR kann das Bit-Ergebnis 1 sein, wenn nur ein
Operand 1 ist. Das logische NOT ist der entgegengesetzte Wert jedes Bits als
einzelner Operand. D. h., es bedeutet “wenn es NOT 1 ist, dann ist es 0. Wenn es
NOT 0 ist, dann ist es 1.“

Das ausschlieBende XOR hat keinen logischen Operator, sondern wird als Teil der
Anweisung WAIT ausgeflihrt. Beim ausschlieBenden ODER ist das Ergebnis O,
wenn die Bits von zwei Operanden gleich sind. Ansonsten lautet das Ergebnis 1.
Logische Operationen werden durch Anweisungsgruppen definiert, die alle zusam-
men die in Tabelle 1.2. gezeigte Boole’sche “WAHRHEITSTABELLE" bilden.

Tabelle 1.2. Boole’sche Wahrheitstabelle

Das Ergebnis der AND-Operation lautet nur 1, wenn beide Bits 1 sind:

1AND 1 =1
OAND1=0
1ANDO =0
OANDO =0

Das Ergebnis der OR-Operation lautet 1, wenn eins der Bits 1 ist:

10R1 =1
OOR1 =1
10R0=1
0OORO0=0

Durch die NOT-Operation werden alle Bits logisch komplementiert:

NOT 1
NOT 0

0
1

Il

Das ausschlieBende ODER (XOR) ist Teil der Anweisung WAIT:

1XOR1=0
1 XORO0 =1
O0XOR1 =1
0XORO0 =0

14 BASIC PROGRAMMIERHINWEISE



Die logischen Operatoren AND, OR und NOT geben eine Boole’sche Rechenope-
ration an, die mit zwei Operanden ausgefiihrt werden. Bei NOT wird nur der
Operand auf der rechten Seite berlicksichtigt. Logische Operationen (oder Boole’-
sche Rechenoperationen) werden erst ausgeflihrt, wenn alle Rechen- und Ver-
gleichsoperationen in einem Ausdruck beendet sind.

BEISPIELE:

IF A=100 AND B=100 THEN 10 (Wenn sowohl A als auch B den Wert
100 haben, ist das Ergebnis richtig)

A=96 AND 32: PRINT A (A =32)

IF A=100 OR B=100 THEN 20 (Wenn A oder B 100 ist, dann ist das
Ergebnis richtig)

A=64 OR 32: PRINT A (A = 96)

IF NOT X<Y THEN 30 (Wenn X>=Y, ist das Ergebnis richtig)

X= NOT 96 (Das Ergebnis ist —97 (Zweierkomple-

ment)

PRIORITAT DER OPERATIONEN

Bei allen Ausdriicken werden die verschiedenen Operationen entsprechend einer
festgelegten Prioritatenfolge ausgefihrt. D. h., bestimmte Operationen werden vor
anderen durchgeflihrt. Die normale Reihenfolge kann gedndert werden, indem man
zwei oder mehr Operanden in Klammern einschlieBt ( ) und so einen “Unteraus-
druck” bildet. Die Werte eines Ausdrucks in Klammern werden auf einen einzelnen
Wert reduziert, ehe die Teile auBerhalb der Klammern bearbeitet werden.

Werden in Ausdricken Klammern benutzt, so ist darauf zu achten, daB stets die
gleiche Anzahl an linken und rechten Klammern auftritt. Ansonsten wird die BASIC-
Fehlermeldung 2SYNTAX ERROR angezeigt.

Ausdriicke, die Operanden in Klammern enthalten, konnen ihrerseits auch in
Klammern eingeschlossen werden und so ganze Ausdriicke in mehreren Ebenen
bilden. Dies wird Verschachtelung genannt. Klammern kénnen in Ausdriicken auf
max. zehn Ebenen verschachtelt werden — zehn Klammersétze.

Hierbei wird die ganz innen liegende Klammer zuerst aufgeldst. Ausdriicke sind
z.B.:

BASIC PROGRAMMIERHINWEISE 15



A+B

CT1(D+E)/2
(X=CT(D+E)/2)*10)+1
GG$>HH$

JJ$+“MORE*"

K% =1 AND M<>X

K% =2 OR (A=B AND M<X)
NOT (D=E)

Der BASIC-Interpreter fiihrt normalerweise zuerst die Rechenoperationen durch.
Danach folgen Vergleichsoperationen und zuletzt logische Operationen.

Sowohl flir arithmetische als auch fir logische Operatoren gilt eine Prioritatenfolge.
Vergleichsoperatoren haben keine solche Folge und werden bei der Ausdrucksbe-
wertung von links nach rechts so ausgefiihrt, wie sie erscheinen.

Wenn fir die anderen Operatoren in einem Ausdruck keine besondere Prioritat gilt,
so werden sie von links nach rechts ausgeflihrt. Beim Auflésen einer Klammer wird
die normale Prioritatenfolge aufrechterhalten. Die Prioritat fur arithmetische und
logische Operationen wird in Tabelle 1.3., beginnend bei der ersten Prioritat,
gezeigt.

Tabelle 1.3. Prioritat von Ausdrucks-Operationen

Operator Beschreibung Beispiel
1 Exponentialrechnung BASETEXP
e Negation (negatives Vorzeichen) -A
“/ Multiplikation AB * CD
Division EF / GH
+ — Addition CNT + 2
Subtraktion JK — PQ
>=< Vergleichsoperationen A<=B
NOT Logisches Nicht NOT K%
(Ganzzahliges Zweierkomplement)
AND Logisches UND JK AND 128
OR Logisches ODER PQ OR 15

16 BASIC PROGRAMMIERHINWEISE



ZEICHENKETTENOPERATIONEN

Zeichenketten konnen mit den gleichen Vergleichsoperatoren (=, <>, <=, >=, <,
>) wie Zahlen verglichen werden. Bei dem Zeichenkettenvergleich wird jeweils ein
Zeichen (von links nach rechts) von jeder Zeichenkette genommen und jede
Zeichengrundposition vom CBM-Zeichensatz bewertet. Sind die Zeichencodes
gleich, so sind auch die Zeichen gleich. Bei abweichenden Zeichencodes ist das
Zeichen mit niedrigerer Codenummer auch niedriger im Zeichensatz.

Der Vergleich endet, wenn das Ende einer Zeichenkette erreicht ist. Stimmen alle
anderen Punkte Uberein, so ist die kiirzere Zeichenkette niedriger als die l&ngere.
Fuhrende oder nachstehende Leerzeichen sind signifikant.

Unabhangig von den Datentypen ist das Ergebnis des Vergleichs stets eine ganze
Zahl. Dies gilt selbst dann, wenn beide Operanden Zeichenketten sind. Aus diesem
Grund kann ein Vergleich von zwei Zeichenkettenoperanden als Operand bei
Berechnungen benutzt werden.

Das Ergebnis ist —1 oder 0 (richtig oder falsch) und kann beliebig eingesetzt
werden. Ausgeschlossen ist lediglich eine Division, da eine Teilung durch 0
unzulassig ist.

STRINGS

Ausdrlicke werden so behandelt, als ob ein impliziertes “<>0" folgt. D. h., wenn
ein Ausdruck richtig ist, werden die ndchsten BASIC-Anweisungen auf der gleichen
Programmzeile ausgefiihrt. Ist der Ausdruck falsch, wird der Rest der Zeile tberle-
sen und erst die nédchste Programmzeile ausgefihrt.

Genau wie mit den Zahlen kann man auch mit Stringvariablen Verknipfungen
durchfuhren. Der einzige String-Rechenoperator, der vom CBM BASIC erkannt
wird, ist ein Pluszeichen (+), das fir die Verkettung von Strings benutzt wird. Bei
der Verkettung von Strings wird die Kette auf der rechten Seite des Pluszeichens an
die auf der linken Seite angeflgt. Sie ist eine dritte Zeichenkette. Das Ergebnis kann
sofort angezeigt, beim Vergleich benutzt oder einem Variablennamen zugeordnet
werden. Wird ein String mit einem numerischen Wert verglichen (oder gleichge-
setzt) bzw. umgekehrt, so wird die BASIC-Fehlermeldung ?TYPE MISMATCH
angezeigt. Strings und Verkettungen sind z. B.:

10 A$="FILE" : B$="“NAME"

20 NAM$ = AS$ + B$ (Ergibt den String: FILENAME)
30 RES$ = “NEW “ + A$ + B$ (Ergibt den String: NEW FILENAME)

L———L Leerzeichen hier beachten.

BASIC PROGRAMMIERHINWEISE 17




PROGRAMMIERTECHNIKEN

DATENUMSETZUNG

Der CBM BASIC-Interpreter kann gegebenenfalls einen numerischen Wert von
einer ganzen Zahl in eine Gleitpunktzahl oder umgekehrt umsetzen. Hierbei gelten
folgende Regeln:

e Alle arithmetischen und Vergleichsoperationen werden im Gleitpunktformat aus-
gefuhrt. Ganze Zahlen werden vor der Verarbeitung der Ausdriicke in Gleitpunkt-
zahlen umgewandelt, und das Ergebnis wird dann wieder in eine ganze Zahl
umgesetzt. Logische Operationen wandeln ihre Operanden in ganze Zahlen um
und ergeben ein ganzzahliges Resultat.

e Wird eine numerische Variable einem numerischen Wert anderer Art gleichge-
setzt, so wird die Zahl umgesetzt und als im Variablennamen angegebener
Datentyp gespeichert.

e Wird ein Gleitpunktwert in eine ganze Zahl umgewandelt, so werden die Nach-
kommastellen abgeschnitten, und das ganzzahlige Ergebnis ist kleiner oder
gleich dem Gleitpunktwert. Liegt das Ergebnis auBerhalb des Bereichs +32767
bis —32768, wird die BASIC-Fehlermeldung 2ILLEGAL QUANTITY angezeigt.

VERWENDUNG DER EINGABEANWEISUNG

Nun wissen Sie also, was Variablen sind, und sind in der Lage, zusammen mit der
Eingabe-Anweisung INPUT zu programmieren.

Bei unserem ersten Beispiel kdnnen Sie sich eine Variable als eine Art “Speicher*
vorstellen, in den der COMMODORE 64 die gegebenen Antworten speichert. Beim
Schreiben eines Programms, bei dem ein Name eingegeben werden soll, kdnnen
Sie dem Uber die Tastatur eingegebenen Namen die Variable N$ zuordnen. Nun
wird jedesmal, wenn Sie in Ihr Programm PRINT N$ eingeben, der COMMODORE
64 automatisch den eingegebenen Namen anzeigen.

Geben Sie Uber die Tastatur des COMMODORE 64 NEW ein, und driicken Sie die
Taste RN Probieren Sie dieses Beispiel aus:

10 PRINT “IHR NAME“:INPUT N$
20 PRINT “HELLO,"“ N$

In diesem Beispiel haben Sie die Variable N benutzt, um sich daran zu erinnern, daB
diese Variable fir “NAME" steht. Das Dollarzeichen ($) zeigt dem Computer an,
daB Sie eine Stringvariable benutzen. Es muB unbedingt zwischen zwei Variablen-
arten unterschieden werden:

18 BASIC PROGRAMMIERHINWEISE



1) NUMERISCHE VARIABLE
2) STRINGVARIABLE

Sie erinnern sich sicherlich noch daran, daB numerische Variablen zum Speichern
von Zahlenwerten wie z. B. 1, 100, 4000, usw. benutzt werden. Eine numerische
Variable kann ein einzelner Buchstabe (A), zwei Buchstaben (AB), ein Buchstabe
und eine Zahl (A1) oder zwei Buchstaben und eine Zahl (AB1) sein. Durch die
Verwendung kiirzerer Variablen wird nicht soviel Speicherkapazitat vergeben. Nitz-
lich ist es auch, Buchstaben und Zahlen fiir unterschiedliche Kategorien im gleichen
Programm zu benutzen (A1, A2, A3). Wenn Sie als Antwort ganze Zahlen und nicht
Zahlen mit Dezimalpunkten winschen, brauchen Sie lediglich nach dem Variablen-
namen ein Prozentzeichen (%) einzugeben (AB%, A1%, usw.).

Nun wollen wir uns einige Beispiele ansehen, bei denen verschiedene Variablenar-
ten und Ausdriicke mit der Anweisung INPUT benutzt werden.

Eine Programmzeile wird durch Dricken der RETURN-Taste an den Computer
Ubergeben.

10 PRINT “ZAHL EINGEBEN“:INPUT A
20 PRINT A

10 PRINT “WORT EINGEBEN“:INPUT A$
20 PRINT A$

10 PRINT “ZAHL EINGEBEN*“:INPUT A
20 PRINT A “MAL 5 IST GLEICH" A*5

Anmerkung: Beispiel 3 zeigt, daB MELDUNGEN oder AUFFORDERUNGEN in Anflihrungszeichen
(“ “) stehen und die Variablen auBerhalb dieser Anfihrungszeichen liegen. Beachten Sie auch, daB in
Zeile 20 die Variable A und dann die Meldung “MAL 5 IST GLEICH" und abschlieBend die Berechnung
A*5 angezeigt wird.

Berechnungen sind in den meisten Programmen wichtig. Sie haben die Wahl, feste
Zahlen oder Variablen zu benutzen. Beim Arbeiten mit vom Benutzer vorgegebenen
Zahlen miissen jedoch numerische Variablen benutzt werden. Zunéchst wird der
Benutzer zur Eingabe von zwei Zahlen aufgefordert:

10 PRINT “2 ZAHLEN EINGEBEN“:INPUT A:INPUT B

BASIC PROGRAMMIERHINWEISE 19



BEISPIEL FUR EINEN HAUSHALTSPLAN UBER EINKUNFTE/AUSGABEN

5 FRINT ") CEIIND

FRIMT"MOMTHLY IHCOME" : IMFUT IH

FRIMT
3@ FRIMT"EMFEMSE CATEGORY 1":IMFUT EL%
A PRIMT"ESFEMSE AMOUMT": INFUT E1
3 FRIMT

6 FRIMT"EXFEMSE CATEGORY 2" IMFUT EZ2%
i FRIMT"EXPEMSE AMOUMT": INFUT EZ2
B0 PRIMT
1 PRIMT"EXFEMSE CATEGORY 3" IMFUT E3%
BE FRIMT"EXFEMSE AMOUMT" : IMFUT E3
B ORFRINT 01— CRND
E=E1+EZ+E3
EF=ETH
PRIMT"MOMTHLY IHCOME: #"IH
FRIMT"TOTAL EXFEMSES: $"E
PRIMT"EALAHCE EGUALE: #"IMH-E
FRIMT
PRINT E1$"="(E1/E1#100"% OF TOTAL EXFENSES"
RINT E2$"s @@"% OF TOTAL EXFEMSES"

"

o

AlEETN OF TOTAL EXMPFEMSES

FRINT"¥OUR EXPENSES="EF#108"% OF YOUR TOTAL
4[: "

FOR 3=1TOSOEE: HERT  FRINT
RIMT'REFEAT? o OF M2":IHFUT W#:IF ="' THEMS
© I EMD

R 571 [ vowd]

Anmerkung: IN darf nicht O sein, und E1, E2, E3 konnen NICHT alle gleichzeitig O sein.

20 BASIC PROGRAMMIERHINWEISE



Zeile(n) Beschreibung
5 Ldscht den Bildschirm

10 Anweisung PRINT/INPUT

20 Einfigen einer Leerzeile

30 Ausgabekategorie 1 = E1$

40 Ausgabebetrag = E1.

50 Einfligen einer Leerzeile

60 Ausgabekategorie 2 = E2$

70 Ausgabebetrag 2 = Es.

80 Einfigen einer Leerzeile

90 Ausgabekategorie 3 = E3$

100 Ausgabebetrag 3 = E3

110 Ldscht den Bildschirm

120 Addition der Ausgabebetrdge = E

130 Berechnung von Ausgaben/Einkiinften %
140 Anzeige des Einkommens

150 Anzeige der Gesamtausgaben

160 Anzeige von Einkommen — Ausgaben
170 Einfigen einer Leerzeile

180—200 | Zeile 180—200 berechnet, wieviel % jeder

Ausgabebetrag von den Gesamtausgaben betragt

210 Einflgen einer Leerzeile
220 Anzeige von Einkinften/Ausgaben in %
230 Warteschleife

Multiplizieren Sie nun, wie nachstehend in Zeile 20 gezeigt, zwei Zahlen miteinan-
der, um die neue Variable C zu erhalten:

20 C=A"B
Um das Ergebnis auf dem Bildschirm anzuzeigen, ist folgende Zeile einzugeben:
30 PRINT A “MAL"“ B “IST GLEICH" C

Danach RUN eingeben und die RETURN-Taste driicken. Bitte beachten Sie, daB die
Meldungen im Gegensatz zu den Variablen in Anfihrungszeichen stehen.
Nehmen wir nun an, Sie méchten ein Dollarzeichen ($) vor der durch die Variable C
gekennzeichneten Zahl. Das $ muB in Anfihrungszeichen und vor der Variablen C
angezeigt werden. Um $ in Ihr Programm einzufliigen, driicken Sie die Tasten
und (3R . In Zeile 40 geben Sie nun wie folgt ein:

BASIC PROGRAMMIERHINWEISE 21



40 PRINT “$“ C

Nun die Taste driicken, danach RUN eingeben und wieder
driicken.

Das Dollarzeichen steht in Anfihrungszeichen, da die Variable C nur eine Zahl
angibt und keine $ enthalten kann. Lautete die durch C dargestellte Zahl 100, wiirde
auf dem Bildschirm des COMMODORE 64 $ 100 angezeigt. Wurde jedoch ver-
sucht, PRINT $C ohne Anfilihrungszeichen zu benutzen, wird die Meldung
?SYNTAX ERROR angezeigt.

Ein letzter Tip: Sie kénnen eine Variable zur Darstellung eines Dollarzeichens
erstellen, durch die Sie dann $ ersetzen kdnnen, wenn Sie es mit numerischen
Variablen benutzen wollen. Z. B.:

10 Z§="8"

Immer wenn Sie jetzt ein Dollarzeichen brauchen, kénnen Sie die Stringvariable Z$
benutzen. Probieren Sie folgendes:

10 Z$="$"“:INPUT A
20 PRINT Z$A

Zeile 10 bestimmt $ als die Stringvariable Z$ und gibt danach eine Zahl A ein. In
Zeile 20 wird Z$ ($) neben A (Zahl) angezeigt.

ARBEITEN MIT DER GET-ANWEISUNG

In den meisten einfachen Programmen wird die Anweisung INPUT benutzt, um vom
Benutzer Daten zu bekommen. Bei komplexeren Anwendungen zum Schutz vor
Schreibfehlern usw. bietet Ihnen die Anweisung GET groBere Flexibilitat. Dieser
Abschnitt zeigt Ihnen, wie Sie mit der Anweisung GET umgehen missen und fur
Ihre Programme zusétzliche Bildschirm-Aufbereitungsfunktionen erzielen.

Der COMMODORE 64 hat einen Tastaturpuffer mit einer Kapazitat von 10 Zeichen.
D. h., auch wenn der Computer gerade mit einer Operation beschéftigt und daher
nicht zum Lesen lhrer Eingabe bereit ist, kdnnen Sie noch max. 10 Zeichen
eingeben, die sofort nach Beendigung der derzeitigen Operation benutzt werden.
Geben Sie als Beispiel folgendes Programm in lhren COMMODORE 64 ein:

10 TI$="000000" )
20 IF TI$ < “000015“ THEN 20

22 BASIC PROGRAMMIERHINWEISE



Geben Sie nun RUN ein, driicken Sie die Taste ([EIE. und geben Sie mit der
Tastatur wéhrend der Programmausfiihrung HELLO ein.

Bitte beachten Sie, daB ca. 15 s lang nach Beginn des Programms gar nichts
passiert. Erst dann erscheint die Meldung HELLO auf dem Bildschirm. Stellen Sie
sich vor, Sie stehen in einer Schlange vor einem Kino an. Die erste Person in dieser
Schlange ist auch die erste, die eine Karte bekommt und dann aus der Schlange
tritt. Entsprechend bekommt die letzte Person in der Schlange auch erst zuletzt die
Karte. Die Anweisung GET ist so etwas wie ein Kartenkontrolleur. Zunachst wird
geprift, ob irgendwelche Zeichen “in Schlange stehen® (d. h., ob irgendwelche
Tasten angeschlagen wurden).

Lautet die Antwort ja, dann wird dieses Zeichen der entsprechenden Variablen
zugeordnet. Wurde keine Taste gedriickt, wird der Variablen ein leerer Wert
zugeordnet.

Bitte beachten Sie hierbei unbedingt, daB stets nur 10 Zeichen in den Puffer
eingegeben werden konnen. Alle Ubrigen Zeichen werden nicht bericksichtigt.
Da die Anweisung GET auch dann weiterlauft, wenn keine Zeichen eingegeben
werden, ist es sinnvoll, diese Anweisung in eine Schleife einzugeben, so daB stets
bis zum Anschlagen einer Taste oder dem Empfang eines Zeichens wahrend des
Programms gewartet werden muB.

Nachstehend sehen Sie eine Anwendung fir die Anweisung GET. Zum L&schen
des vorherigen Programms geben Sie NEW ein und dricken auf die RETURN-
Taste.

10 GET A$ : IF A$ = ““ THEN 10

Bitte beachten Sie, daB zwischen den Anflihrungszeichen (““) in dieser Zeile KEIN
LEERZEICHEN ist. Dies zeigt einen leeren Wert (LEERSTRING) an und schickt das
Programm in einer kontinuierlichen Schleife zurlick zur Anweisung GET, bis eine
Taste angeschlagen wird. Danach wird das Programm mit der Zeile nach Zeile 10
fortgesetzt. Fligen Sie folgende Zeile in Ihr Programm ein:

100 PRINT A$;: GOTO 10

Lassen Sie nun das Programm laufen. Bitte beachten Sie, daB auf dem Bildschirm
kein Cursor M erscheint. Die von Ihnen eingegebenen Zeichen werden jedoch
auf dem Bildschirm angezeigt. Dieses zweizeilige Programm kann wie nachstehend
gezeigt als Teil eines Editor-Programms benutzt werden.

Es gibt viele Dinge, die Sie mit einem Bildschirm-Editor tun kénnen. Es kann ein
blinkender Cursor angezeigt werden. Sie kdnnen vermeiden, daB durch das Betati-
gen bestimmter Tasten wie z. B. aus Versehen der ganze Bildschirm
geldscht wird.

BASIC PROGRAMMIERHINWEISE 23



Und Sie kénnen sogar mit lhren Funktionstasten ganze Worter oder Satze darstel-
len. Folgende Programmzeilen belegen die Funktionstasten. Denken Sie daran, daB
dies lediglich ein Programmanfang ist und daB Sie das Programm ganz entspre-
chend lhren personlichen BedUrfnissen gestalten konnen.

10 GET A$ : IF A$ ="“ THEN 10

20 IF A$ = CHR$(133) THEN POKE 53280,8:GOTO 10

30 IF A$ = CHR$(134) THEN POKE 53281,4:GOTO 10

40 IF A$ = CHR$(135) THEN A$="DEAR SIR:“+CHR$(13)
50 IF A$ = CHR$(036) THEN A$="SINCERELY,“+CHR$(13)
100 PRINT A$;: GOTO 10

Die Zahlen in Klammern stammen aus der Zeichen-Code-Tabelle in Anhang C.
Diese Tabelle flhrt fir jedes Zeichen eine bestimmte Zahl auf. Die vier Funktionsta-
sten werden benutzt, um die durch die Anweisungen dargestellten Aufgaben
auszufiihren, die in jeder Zeile nach dem Wort THEN folgen. Durch Anderung der
Zahlen in den Klammern konnen Sie verschiedene Tasten belegen. Verschiedene
Anweisungen werden ausgeflhrt, wenn die Information nach der Anweisung THEN
geéndert wird.

KOMPRIMIEREN VON BASIC-PROGRAMMEN

Durch Komprimieren (engl.: crunching) kdnnen Sie die max. mégliche Anzahl an
Anweisungen in Ihrem Programm eingeben. AuBerdem kdnnen Sie hierdurch die
ProgrammgréBe reduzieren. Bei dem Schreiben von Programmen, bei denen die
Eingabe von Daten, wie z. B. Zahlen oder Text, erforderlich ist, [aBt ein kirzeres
Programm mehr Speicherkapazitat fiir die Daten ubrig.

SCHLUSSELWORTABKURZUNGEN

Eine Liste der Schliisselwortabkirzungen finden Sie in Anhang A. Mit Hilfe dieser
Abklirzungen kénnen Sie bedeutend mehr Informationen in eine Zeile eingeben.
Die am haufigsten eingesetzte Abklrzung ist das Fragezeichen (?), das die BASIC-
Abklrzung fir den Befehl PRINT ist. Bei der Auflistung eines Programms, das
Abkirzungen enthalt, zeigt der COMMODORE 64 Ihnen allerdings die Schlussel-
worter in ganzer Lange an. Enthalt eine Programmzeile mit ausgeschriebenen
Schlisselwdrtern mehr als 80 Zeichen (zwei Bildschirmzeilen) und soll geandert
werden, so muissen Sie vor der Speicherung diese Zeile neu mit Abkirzungen
eingeben. Bei Programmspeicherung werden BASIC-Schlisselwdrter vom COM-
MODORE 64 in Zeichen (Tokens) umgesetzt. Normalerweise werden Abklrzungen
nach dem Schreiben eines Programms eingefligt, wenn dieses vor der Speicherung
nicht mehr aufgelistet wird.

24 BASIC PROGRAMMIERHINWEISE



VERKLEINERN DER PROGRAMMZEILENNUMMERN

Die meisten Programmierer beginnen ihre Programme bei Zeile 10 und numerieren
die nachfolgenden Zeilen dann im Zehner-Abstand durch (d. h. 100, 110, 120). Auf
diese Weise kénnen nach der Programmentwicklung Extra-Anweisungszeilen ein-
gefugt werden (111, 112, usw.). Um das Programm kirzer zu gestalten, kénnen fir
die Zeilennummern die niedrigsten Nummern gewdéhlt werden, die méglich sind
(1, 2, 3). Denken Sie daran, daB langere Zahlen mehr Speicherkapazitat beanspru-
chen als kiirzere. So bendtigt die Zahl 100 z. B. 3 Bytes (1 Byte fir jede Ziffer), die
Zahl 1 hingegen nur 1 Byte.

EINGABE VON MEHREREN ANWEISUNGEN IN JEDE ZEILE

In eine numerierte Zeile lhres Programms kdénnen Sie mehrere Anweisungen
getrennt durch einen Doppelpunkt eingeben. Hierbei gilt lediglich die Begrenzung,
daB die Anweisungen in jeder Zeile einschlieBlich Doppelpunkten nicht die Stan-
dardzeilenlange von 80 Zeichen (berschreiten. Nachfolgend stehen zwei Pro-
grammbeispiele vor und nach der Verkirzung.

Vor der Verkiirzung Nach der Verkiirzung

10 PRINT“HELLO . . .“; 10 PRINT “HELLO .. .“;:FORT=1TO
20 FOR T=1 TO 500:NEXT 500:NEXT:PRINT“HELLO,

30 PRINT “HELLO, AGAIN . . .“ AGAIN .. .“:GOTO10

40 GOTO 10

LOSCHEN DER REM-ANWEISUNGEN

REM-Anweisungen sind eine nitzliche Hilfe, um sich selbst oder anderen Program-
mierern einen bestimmten Programmteil zu erldutern. Wenn das Programm jedoch
vollstandig und einsatzbereit ist, werden Sie diese REM-Anweisungen wahrschein-
lich nicht mehr brauchen.

Sie kdnnen daher Speicherkapazitat einsparen, indem Sie diese Anweisungen
I6schen. Soll eine Programmstruktur zukiinftig Gberarbeitet oder genau untersucht
werden, so sollten Sie eine Kopie des Programms mit den REM-Anweisungen
anfertigen.

ARBEITEN MIT VARIABLEN

Wird eine Zahl, ein Wort oder ein Satz wiederholt in Ihrem Programm benutzt, so
sollten Sie diese Worter oder Zahlen am besten in Variablen ablegen. Zahlen

BASIC PROGRAMMIERHINWEISE 25



kdnnen einfachen Buchstaben zugeordnet werden. Zur Angabe von Wértern und
Séatzen wahlen Sie Stringvariablen mit einem Buchstaben und einem Dollarzeichen.
Hier ein Beispiel:

Vor der Verkiirzung Nach der Verkiirzung

10 POKE 54296,15 10 V=54296:F=54273

20 POKE 54276,33 20 POKEV,15:POKE54276,33

30 POKE 54273,10 30 POKEF,10:POKEF,40:POKEF,70
40 POKE 54273,40 40 POKEV,0

50 POKE 54273,70
60 POKE 54296,0

ARBEITEN MIT READ- UND DATA-ANWEISUNGEN

Umfangreiche Datenmengen kdnnen einzeln eingegeben werden ... Sie haben
jedoch auch die Mdglichkeit, den Anweisungsteil des Programms zusammenzufas-
sen und alle zu bearbeitenden Daten in einer langen Liste wiederzugeben, die
DATA-Anweisung genannt wird. Auf diese Weise lassen sich besonders gut groBe
Zahlenlisten in einem Programm unterbringen.

ARBEITEN MIT FELDERN UND MATRIZEN

Mit Feldern und Matrizen kénnen, wie bei den DATA-Anweisungen, umfangreiche
Datenmengen verarbeitet werden. Der Unterschied besteht lediglich darin, daB bei
Feldern mehrdimensionale Listen mdéglich sind.

VERMEIDUNG VON LEERZEICHEN

Am einfachsten kdnnen Sie die ProgrammgroBe dadurch reduzieren, daB Sie alle
Leerzeichen vermeiden. Auch wenn in den Beispielprogrammen zur besseren
Lesbarkeit haufig Leerzeichen enthalten sind, brauchen Sie doch bei der tatsachli-
chen Programmierung keinerlei Leerzeichen und kdnnen entsprechend Speicher-
kapazitat sparen.

ARBEITEN MIT GOSUB-ROUTINEN

Wird eine bestimmte Zeile oder Anweisung wiederholt benutzt, so ist es ratsamer,
von mehreren Stellen des Programms zu dieser Zeile Uiber die GOSUB-Anweisung
zu gehen, als die ganze Zeile oder Anweisung jedesmal neu zu schreiben.

26 BASIC PROGRAMMIERHINWEISE



ARBEITEN MIT TAB UND SPC
Statt eine Zeichenposition auf dem Bildschirm iber mehrere Cursor-Befehle zu

bestimmen, ist es haufig ratsamer, hierzu die Anweisungen TAB und SPC zu
benutzen.

BASIC PROGRAMMIERHINWEISE 27



L R
i an tt

.
'
N : -
-
. N ol N
- - a 4
- " B
L - -
. .
'
. o i . i
. .
B B
- . '
. .
. -
.
r B ! B
. -
N -
L] . N
- T
" -
N v
e : o
- '
. B .
) B = '
' .
- . B =.
- .
-
. -
. - - l.- - o
- B - -
' .
o . . - N
) - . -
' ’
' - B
[ .
£ N . -
N [
r - 1
- N B
- -
B
. B - r
2
L] N o,
: » |
= i B
. N
. .
N !
1 R N I
1 @ 1 '
. \
* . .
. .
- N
. '
.
.
2
1 e
. : .
. =
- B . E
. - N ,,]
B - B B
x 1 B '
& B . d -
. Kl - - B
R
..I N
- X
1 - '
'
al! - 1
"Bl Tan




KAPITEL

BASIC-
VOKABULAR

e Einfuhrung

e BASIC-Schlusselworter,
Abklrzungen und Funktionsarten

e Beschreibung der BASIC-Schlusselwérter
(alphabetisch)

e Tastatur und Merkmale des
COMMODORE 64

e Bildschirm-Editor

29




EINFUHRUNG

In diesem Kapitel werden die CBM-BASIC-Schlusselwdrter beschrieben. Zunachst
geben wir eine leicht lesbare Liste der Schlisselwdrter mit ihren Abkirzungen und
der jeweiligen Bildschirmanzeige. Danach werden Syntax und Funktion jedes
Schllisselworts genau beschrieben und anhand von Beispielen gezeigt, wie Sie
diese Schlisselworter in Threm Programm nutzen kdnnen.

Beim COMMODORE 64 BASIC kénnen Sie die meisten Schllsselworter abkirzen.
Hierzu werden so viele Buchstaben des Schilsselworts eingegeben, wie zur
Unterscheidung von den Gbrigen Wértern erforderlich sind, und bei der Eingabe des
letzten Buchstaben oder des letzten Graphik-Zeichens die Taste gedruckt
gehalten.

Abkurzungen in Programmen sparen keinerlei Speicherkapazitat, da alle Schlussel-
worter vom BASIC-Interpreter als einzelne Zeichen (Tokens) dargestellt werden.
Bei der Auflistung eines Programms mit Abklrzungen erscheinen alle Schllssel-
worter in voll ausgeschriebener Form. Mit Hilfe von Abklrzungen kénnen mehr
Anweisungen in eine Programmzeile eingegeben werden, selbst wenn sie nicht auf
die logische Bildschirmzeile von 80 Zeichen passen. Der Bildschirm-Editor arbeitet
auf der Basis einer 80-Zeichen-Zeile. D. h., wenn in einer Zeile Abklrzungen von
mehr als 80 Zeichen benutzt werden, dann kann diese Zeile beim Auflisten nicht
editiert werden. Sie mussen daher entweder die ganze Zeile einschlieBlich sémtli-
cher Abklrzungen neu eingeben oder die eine Zeile in zwei Zeilen mit jeweils
eigener Zeilennummer unterteilen.

Tabelle 2.1. gibt eine vollstandige Liste aller Schllisselwdrter, Abkiirzungen und der
entsprechenden Bildschirmanzeige. Danach folgt eine alphabetische Beschreibung
der Anweisungen, Befehle und Funktionen, die mit lhrem COMMODORE 64
maglich sind.

Ferner werden die BASIC-Funktionen des BASIC-Interpreters erklart.

Diese integrierten Funktionen kdnnen als direkte Anweisungen oder in einem
beliebigen Programm ohne weitere Bestimmung der Funktion benutzt werden. Dies
gilt NICHT fur vom Benutzer definierte Funktionen. Das Ergebnis der integrierten
BASIC-Funktionen kann direkt ausgegeben oder einem geeigneten Variablenna-
men zugeordnet werden. Es gibt zwei verschiedene Arten von BASIC-Funktionen.

1) NUMERISCH
2) STRING (ZEICHENKETTE)

Argumente von integrierten Funktionen sind stets in Klammern eingeschlossen ( ).
Die Klammern folgen unmittelbar nach dem Funktionsschlisselwort, und es stehen
KEINE LEERZEICHEN zwischen dem letzten Buchstaben des Schliisselworts und
der linken Klammer (.

30 BASIC-VOKABULAR



Der Typ des bendtigten Arguments wird im allgemeinen durch den Datentyp des
Resultats bestimmt. Funktionen, bei denen das Ergebnis ein String ist, werden
durch ein Dollarzeichen ($) als letztem Schlisselwortbuchstaben identifiziert. In
einigen Fallen enthalten Stringfunktionen ein oder mehrere numerische Argumente.
Numerische Funktionen nehmen gegebenenfalls eine Umkehrung von ganzen
Zahlen und Gleitpunktzahlen vor. In der nachfolgenden Beschreibung wird der
Datentyp bei jeder Funktionsbezeichnung gezeigt. Die Argumenttypen werden
ebenfalls durch das Anweisungsformat gegeben.

TABELLE 2.1. COMMODORE 64 BASIC-SCHLUSSELWORTER

BEFEHL ABKURZUNG | BILDSCHIRM- FUNKTIONSTYP
DARSTELLUNG

ABS A B A (1] NUMERISCH
AND A N A

ASC A S A [v] NUMERISCH
ATN A T A ] NUMERISCH
CHR$ c H c [ ZEICHENKETTE
CLOSE cL ) cL [

CLR c L c I

CMD c M c N

CONT C 0 c [

cos keine coS NUMERISCH
DATA D A D

DEF D E D [

DIM D | D K]

BASIC-VOKABULAR

3



32

BEFEHL ABKURZUNG | BILDSCHIRM- FUNKTIONSTYP
DARSTELLUNG

END E N E |/

EXP E X E [ NUMERISCH
FN keine FN

FOR F o] F [

FRE P R F NUMERISCH
GET G E G

GET# keine GET#

GOSUB GO S GO (V]

GOTO G o) ¢ [

IF keine IF

INPUT keine INPUT
INPUT# | N |/

INT keine INT NUMERISCH
LEFT$ LE F LE 4 ZEICHENKETTE
LEN keine LEN NUMERISCH
LET L E L 3

LIST L | L K]

LOAD L o) L[]

LOG keine LOG NUMERISCH

BASIC-VOKABULAR




BEFEHL ABKURZUNG | BILDSCHIRM- FUNKTIONSTYP
DARSTELLUNG

MID$ M | M K] ZEICHENKETTE
NEW keine NEW

NEXT N E N

NOT N 0 N []

ON keine ON

OPEN 0 P o O

OR keine OR

PEEK P E P NUMERISCH
POKE P 0 P[]

POS keine POS NUMERISCH
PRINT ? ?

PRINT# P R P

READ R E R [

REM keine REM
RESTORE RE S RE |¥

RETURN RE T RE ([ ]

RIGHT$ R | R RJ ZEICHENKETTE
RND R N R [/ NUMERISCH
RUN R U R [A

BASIC-VOKABULAR

33



BEFEHL ABKURZUNG | BILDSCHIRM- FUNKTIONSTYP
DARSTELLUNG

SAVE S A S

SGN S G s [] NUMERISCH
SIN S | s K] NUMERISCH
SPC( S P s M ZEICHENKETTE
SQR S Q S NUMERISCH
STATUS ST ST NUMERISCH
STEP ST E sT H

STOP S T s []

STR$ ST R 8T (5 ZEICHENKETTE
sYs S Y s [

TAB( T A T[4 ZEICHENKETTE
TAN keine TAN NUMERISCH
THEN T H T

TIME Tl Tl NUMERISCH
TIMES$ TI$ TI$ ZEICHENKETTE
TO keine TO

USR U S U [v] NUMERISCH
VAL v A V(4] NUMERISCH
VERIFY v E v

WAIT W A W[4

34

BASIC-VOKABULAR




BESCHREIBUNG DER BASIC-SCHLUSSELWORTER
ABS

TYP: Funktion-Numerisch
FORMAT: ABS(<Ausdruck>)

Funktion: Gibt den Absolutwert einer Zahl an. Dies ist ihr Wert ohne Vorzeichen.
Der Absolutwert einer negativen Zahl ist diese Zahl multipliziert mit —1.

BEISPIELE DER ABS-FUNKTION:

10X = ABS (V)
10 PRINT ABS (X * J)
10 IF X = ABS (X) THEN PRINT “POSITIV*

AND

TYP: Operator
FORMAT: <Ausdruck> AND <Ausdruck>

Funktion: AND wird in Boole’schen Operationen zur Prifung einzelner Bits und
zur Wahrheitsprifung beider Operanden benutzt.

In der Boole'schen Algebra ist das Ergebnis einer AND-Operation nur dann 1, wenn
beide beteiligten Zahlen 1 sind. Das Ergebnis ist 0, wenn eine von beiden O ist
(falsch) oder beide 0 sind.

BEISPIELE DER 1-BIT-AND-OPERATION:

0 1 0 1
AND 0 AND 0 AND 1 AND 1
0 0 0 1

Der COMMODORE 64 fiihrt AND-Operationen bei Zahlen im Bereich von —32768
bis +32767 durch. Briiche diirfen nicht benutzt werden, und Zahlen, die auBerhalb
dieses Bereichs liegen, fuhren zur Anzeige der Fehlermeldung ?2ILLEGAL QUAN-
TITY.

Bei der Umwandlung in ein Binarformat ergibt sich ein zulassiger Bereich von 16
Bits flr jede Zahl. Entsprechende Bits werden AND-verbunden und ergeben ein 16-
Bit-Ergebnis im gleichen Bereich.

BASIC-VOKABULAR 35



BEISPIELE DER 16-BIT-AND-OPERATION:

17

AND 194

0000000000010001

AND 0000000011000010
(BINARY) 0000000000000000
(DECIMAL) 0

32007

AND 28761
0111110100000111

AND 0111000001011001
(BINARY) 0111000000000001
(DECIMAL) 28673

—241

AND 15359
1111111100001111

AND 0011101111111111
(BINARY) 0011101100001111
(DECIMAL) 15119

Bei der Richtig-/Falschbewertung einer Zahl nimmt der Computer stets an, daB die
Zahl richtig ist, wenn ihr Wert nicht O lautet. Bei der Auswertung eines Vergleichs
wird bei richtigem Ergebnis der Wert —1 und bei falschem Ergebnis der Wert 0
zugeordnet. Im Bindrformat besteht —1 aus lauter Einsen und 0 aus lauter Nullen.
Aus diesem Grund ist das Ergebnis bei der AND-Verknipfung von Richtig-/
Falschbewertungen stets richtig, wenn beliebige Bits im Ergebnis richtig sind.

BEISPIELE DER AND-VERKNUPFUNG MIT RICHTIG-/
FALSCHBEWERTUNGEN:

50 IF X=7 AND W=3 THEN GOTO 10: REM NUR WAHR, WENN SOWOHL

X=7 und W=3 WAHR SIND
60 IF A AND Q=7 THEN GOTO 10: REM WAHR, WENN A#0 und Q=7

36 BASIC-VOKABULAR



ASC

TYP: Numerisch
FORMAT: ASC ( <String> )

Funktion: Durch ASC wird eine Zahl von 0 bis 255 gegeben, die dem COMMO-
DORE ASCII-Wert des ersten Zeichens der Zeichenkette entspricht. In Anhang C
wird eine Tabelle der COMMODORE ASCII-Werte gegeben.

BEISPIELE DER ASC-FUNKTION:

10 PRINT ASC(“Z")
20 X = ASC(“ZEBRA")
30 J = ASC(J$)

Sind in der Zeichenkette keine Zeichen enthalten, wird die Fehlermeldung ?ILLE-
GAL QUANTITY angezeigt. Ist in dem oben gezeigten Beispiel J$=“*, ist die
Anwendung der ASC-Funktion nicht erlaubt. Die Anweisungen GET und GET#
lesen CHR$(0) als einen Leerstring. Um dieses Problem zu beseitigen, wird am
Ende der Folge CHR$(0) wie nachstehend gezeigt, eingeflgt.

BEISPIEL DER ASC-FUNKTION OHNE ANZEIGE DER FEHLERMELDUNG
?ILLEGAL QUANTITY:

30 J = ASC(J$ + CHR$(0))

ATN

TYP: Funktion-Numerisch
FORMAT: ATN ( <Zahl>)

Funktion: Diese mathematische Funktion gibt den Arcustangens der Zahl wieder.
Das Ergebnis ist der Winkel (in BogenmaB), dessen Tangens die gegebene Zahl ist.
Das Ergebnis liegt stets in dem Bereich von —#/2 bis +/2.

BEISPIELE DER ATN-FUNKTION:

10 PRINT ATN (0)
20 X = ATN (J) * 180/ 7 : REM UMRECHNUNG DES WINKELS IN GRAD

BASIC-VOKABULAR 37



CHR$

TYP: Zeichenkette
FORMAT: CHR$ ( <Zahl>)

Funktion: Uber diese Funktion wird ein COMMODORE ASCII-Code in sein ent-
sprechendes Zeichen umgewandelt. Eine Liste der Zeichen und ihrer entsprechen-
den Codes finden Sie in Anhang C. Die Zahl muB einen Wert zwischen O und 255
haben, da sonst die Fehlermeldung ?ILLEGAL QUANTITY angezeigt wird.

BEISPIELE DER FUNKTION CHRS$:

10 PRINT CHR$(65) : REM 65 = GROSSES A

20 A$ = CHR$(13) : REM 13 = RETURN TASTE

50 A = ASC(A$) : A$ = CHR$(A): REM UMWANDLUNG IN C64 ASCII CODE
UND UMGEKEHRT

CLOSE

TYP: Ein-/Ausgabeanweisung
FORMAT: CLOSE <logische Filenummer>

Funktion: Uber diese Anweisung kann eine beliebige Datendatei oder ein Geréte-
kanal geschlossen werden. Die Dateinummer ist hierbei die gleiche wie beim
Offnen der entsprechenden Datei oder des Gerites (siehe Anweisung OPEN im
Abschnitt “Eingabe-/Ausgabeprogrammierung”).

Beim Arbeiten mit externen Speichern wie z. B. Kassetten und Disketten wird durch
die CLOSE-Anweisung jeder Inhalt des Puffers durch das Gerat gespeichert. Wird
dies nicht ausgefihrt, so ist die Datei nur unvollstandig auf der Kassette und
unlesbar auf der Diskette. Bei anderen Geraten ist die CLOSE-Anweisung nicht
unbedingt erforderlich, sie setzt jedoch Speicherkapazitat flir weitere Dateien frei.
Bezuglich weiterer Einzelheiten schlagen Sie bitte im Handbuch des entsprechen-
den Peripheriegerats nach.

BEISPIELE DER CLOSE-ANWEISUNG:
10 CLOSE 1
20 CLOSE X
30CLOSE9™* (1 +J)

38 BASIC-VOKABULAR



CLR

TYP: Anweisung
FORMAT: CLR

Funktion: Uber diese Anweisung kann RAM-Speicher verfliigbar gemacht werden,
der benutzt wurde, jetzt aber nicht mehr gebraucht wird. Die BASIC-Programme im
Speicher bleiben unberiihrt, samtliche Variablen, Felder, GOSUB-Adressen,
FOR ... NEXT-Schleifen, vom Benutzer definierte Funktionen und Dateien werden
jedoch aus dem Speicher geldscht. Der Speicherplatz steht dann fir neue Variablen
usw. zur Verfugung.

Dateien auf Disketten oder Kassetten werden nicht richtig durch die CLR-Anwei-
sung geschlossen. Die Dateieninformationen, einschlieBlich aller nicht vollstandi-
gen Puffer, sind fir den Computer verloren. Das Disketten-Laufwerk geht immer
noch davon aus, daB die Datei offen ist. Wegen Einzelheiten siehe Anweisung
CLOSE.

BEISPIEL DER CLR-ANWEISUNG:

10 X=25
20 CLR
30 PRINT X

RUN
0

READY

CMD

TYP: Ein-/Ausgabeanweisung
FORMAT: CMD <logische Filenummer> [, String ]

Funktion: Uber diese Anweisung wird die Datenausgabe vom Bildschirm auf das
angegebene File umgeschaltet. Dieses File kann der Diskette, der Kassette, dem
Drucker oder einer Ein-/Ausgabevorrichtung, wie z. B. einem Modem, zugeordnet
sein. Die logische Filenummer muB zuvor in einer OPEN-Anweisung festgelegt
werden. Der String wird, wenn er festgelegt ist, zum File geschickt.

BASIC-VOKABULAR 39



Wenn dieser Befehl wirksam ist, werden die PRINT-Anweisungen und LIST-Befehle
nicht auf dem Bildschirm angezeigt, sondern Ubertragen den Text im gleichen
Format auf das logische File.

Damit die Ausgabe wieder auf dem Bildschirm angezeigt wird, muB der Befehl
PRINT# eine Leerzeile vom CMD-Gerat vor dem SchlieBen (CLOSE) schicken,
damit dieses nicht mehr auf die Datenlbertragung wartet (dies nennt man “Un-
listening” des Geréts).

Durch Systemfehler (wie z. B. 2SYNTAX ERROR) wird die Ausgabe wieder zurick
auf den Bildschirm geholt. Hierdurch erfolgt kein Un-listening der Geréte, so daB
danach eine Leerzeile Ubertragen werden muB. (Bezlglich Einzelheiten schlagen
Sie bitte in dem Handbuch des Druckers oder der Diskette nach.)

BEISPIELE DER CMD-ANWEISUNG:

OPEN 4,4:CMD 4, “TITLE" : LIST: REM DRUCKT PROGRAMMLISTING AUS
PRINT# 4: CLOSE 4: REM BEENDET AUSDRUCK

10 OPEN 1,1, 1, “TEST": REM ANLEGEN EINER SEQUENTIELLEN DATEI

20 CMD 1: REM AUSGABE AUF KASSETTE

30 FORL =1TO 100

40 PRINT L: REM SCHREIBT DIE ZAHLEN IN PUFFER DES KASSETTEN-
REKORDERS

50 NEXT

60 PRINT# 1: REM UNLISTEN

70 CLOSE 1: REM SCHREIBT PUFFERINHALT AUF DAS BAND, KORREK-
TER ABSCHLUSS

CONT

TYP: Befehl
FORMAT: CONT

Funktion: Uber diesen Befehl wird die Programmausfiihrung wieder gestartet, die
durch die Anweisung STOP oder END oder durch Dricken der Taste ab-
gebrochen wurde. Das Programm wird genau an der Stelle fortgesetzt, an der es
unterbrochen wurde.

Bei gestoppter Programmausfiihrung kénnen Variablen tberprift und gedndert oder
das Programm durchgesehen werden. Bei der Fehlerbeseitigung oder Uberpriifung
eines Programms kdénnen STOP-Anweisungen so gesetzt werden, daB die Uber-

40 BASIC-VOKABULAR



prifung von Variablen und des Programmablaufs moglich wird. Die Fehlermeldung
CAN’T CONTINUE erscheint, wenn das Programm abgeédndert wurde (selbst wenn
nur die Taste gedriickt wurde und der Cursor hinter einer unveranderten
Zeile stand), wenn das Programm durch einen Fehler gestoppt wurde, oder wenn
Sie vor der Eingabe von CONT zum erneuten Start des Programms einen Fehler
verursacht haben.

BEISPIEL DES CONT-BEFEHLS:

10 P1=0:C=1
20 PI=PI1+4/C—4/(C+2)
30 PRINT PI

40 C=C+4:GOTO 20

Dieses Programm berechnet den Wert von Pl. Geben Sie (iber die Tastatur RUN
ein, und dricken Sie, wenn das Programm lduft, nach kurzer Zeit die
Taste . Es erscheint folgende Anzeige:

BREAK IN 20 ‘ Anmerkung: Die Zahl kann verschieden sein

Geben Sie den Befehl PRINT C ein, um festzustellen, wie weit der COMMODORE
64 gekommen ist. Zur Wiederaufnahme des Programms benutzen Sie die Anwei-
sung CONT.

COS

TYP: Funktion
FORMAT: COS ( <Zahl> )

Funktion: Uber diese mathematische Funktion wird der Kosinus einer Zahl
berechnet, wobei diese Zahl als das BogenmaB eines Winkels aufgefaBt wird.

BEISPIELE DER COS-FUNKTION:
10 PRINT COS (0)

20 X =COS (Y *7/180) : REM UMRECHNUNG VON GRAD IN BOGEN-
MASS

BASIC-VOKABULAR 41



DATA

TYP: Anweisung
FORMAT: DATA <Konstantenliste>

Funktion: Uber die DATA-Anweisungen werden Informationen innerhalb eines
Programms gespeichert. Das Programm benutzt die Informationen uber die Anwei-
sung READ, bei der die Konstanten der Reihe nach aus den DATA-Anweisungen
ausgelesen werden.

Alle DATA-Anweisungen in einem Programm werden als kontinuierliche Liste
behandelt. Die Daten werden von links nach rechts, von der Zeile mit der niedrig-
sten Zeilennummer bis zu der mit der héchsten Zeilennummer gelesen. Wenn die
READ-Anweisung auf Daten trifft, die nicht dem erforderlichen Typ entsprechen (ist
der Typ z. B. eine Zahl und ein String wird gefunden), dann wird eine Fehlermel-
dung angezeigt.

Als Daten kdnnen beliebige Zeichen gewéhlt werden, bei bestimmten Zeichen
mussen die Daten jedoch in Anflihrungszeichen sein (“ “). Hierzu gehdéren Inter-
punktionszeichen wie z. B. Komma (,), Doppelpunkt (:), Leerstellen, Buchstaben
mit SHIFT, graphische Zeichen und Cursor-Steuerzeichen.

BEISPIELE DER DATA-ANWEISUNG:

10 DATA 1,10, 5, 8

20 DATA JOHN, PAUL, GEORGE, RINGO

30 DATA “DEAR MARY, HOW ARE YOU, LOVE, BILL*
40 DATA —-1.7E-9, 3.33

DEF FN

TYP: Anweisung
FORMAT: DEF FN <Name> ( <Variable> ) = <Ausdruck>

Funktion: Auf diese Weise wird vom Anwender eine Funktion definiert, die spéater
im Programm benutzt werden kann. Diese Funktion kann aus einer beliebigen
mathematischen Gleichung bestehen. Selbstdefinierte Funktionen sparen Spei-
cherkapazitat bei Programmen ein, bei denen eine lange Gleichung an mehreren
Stellen auftritt.

Die Gleichung muB nur einmal in der Definitionsanweisung bestimmt werden und
wird danach als abgekirzter Funktionsname aufgerufen.

42 BASIC-VOKABULAR



Der Funktionsname setzt sich aus den Buchstaben FN gefolgt von einem beliebigen
Variablennamen zusammen. Der Variablennamen kann aus ein oder zwei Zeichen
bestehen, wobei der erste ein Buchstabe und der zweite ebenfalls ein Buchstabe
oder eine Zahl ist.

BEISPIELE DER ANWEISUNG DEF FN:

10DEFFNA(X) =X +7
20DEFFNAA(X) =Y *Z
30 DEF FN A9 (Q) = INT( RND( 1)* Q+ 1)

Diese Funktion wird spater im Programm mit Hilfe des Funktionsnamens aufgeru-
fen, wobei eine Variable in Klammern steht. Der Funktionsname wird wie jede
andere Variable behandelt, und sein Wert wird automatisch berechnet.

BEISPIELE FUR FN:

40 PRINT FN A (9)
50 R = FN AA (9)
60 G = G + FN A9 (10)

In Zeile 50 in obigem Beispiel beeinfluBt die Zahl 9 in den Klammern nicht das
Funktionsergebnis, da die Funktionsdefinition in Zeile 20 nicht die Variable in
Klammern benutzt. Das Ergebnis ist Y mal Z, unabhéngig vom Wert X. In den beiden
anderen Funktionen wird das Ergebnis durch den Wert in Klammern beeinfluBt.

DIM

TYP: Anweisung
FORMAT: DIM <Variable> ( <Index> ) [, <Variable>
( <Index>)...]

Funktion: Uber diese Anweisung wird ein Feld oder eine Matrix von Variablen
bestimmt. Auf diese Weise konnen Sie den Variablennamen mit einem Index
benutzen. Der Index weist auf das benutzte Element. Der niedrigste Index eines
Feldes ist Null, und die hdchste Zahl ist die Zahl, die in der DIM-Anweisung
gegeben wird (max. 32767).

Die DIM-Anweisung muB einmal (und darf nur einmal) fir jedes Feld ausgefiihrt
werden. Bei einer erneuten Ausfiihrung dieser Zeile wird die Fehlermeldung

BASIC-VOKABULAR 43



REDIM’D ARRAY angezeigt. Aus diesem Grund fiihren die meisten Programme
alle DIM-Operationen ganz am Anfang aus.

Ein Feld kann beliebige Dimensionen und 255 verschiedene Indizes enthalten. Dies
ist lediglich durch die Kapazitat des RAM-Speichers begrenzt, die fur die Variablen
zur Verfiigung steht. Das Feld kann, wie oben gezeigt, aus normalen numerischen
Variablen, aus Zeichenketten oder ganzen Zahlen bestehen. Handelt es sich bei
den Variablen nicht um normale Zahlen, so benutzen Sie nach dem Variablennamen
das Zeichen $ oder %), um eine String- oder Ganzzahlvariable anzugeben.
Wurde fiir ein Feld, auf das im Programm Bezug genommen wurde, keine DIM-
Anweisung gegeben, so werden automatisch 11 fiir jede Dimension reserviert.

BEISPIELE DER DIM-ANWEISUNG:

10 DIM A ( 100)

20DIMZ(5,7),Y(3,4,5)

30DIM Y7% ( Q)

40 DIM PH$ (1000)

50 F (4) =9: REM ES WIRD AUTOMATISCH DIM F (10) FESTGESETZT

BERECHNUNG DES DURCH DIM BENUTZTEN SPEICHERS:

5 Bytes fur den Feldnamen

2 Bytes flur jede Dimension

2 Bytes/Element flr ganzzahlige Variablen

5 Bytes/Element fiir normale numerische Variablen
3 Bytes/Element fur Stringvariablen

1 Byte fir jedes Zeichen in jedem String

END

TYP: Anweisung
FORMAT: END

Funktion: Hierdurch wird die Programmausfiihrung beendet und die Meldung
READY angezeigt. Die Steuerung wird nun wieder an den Benutzer Gbergeben.

Ein Programm kann beliebig viele END-Anweisungen enthalten. Auch wenn es
nicht erforderlich ist, Uiberhaupt eine END-Anweisung in das Programm einzuge-
ben, wird doch eine solche Anweisung empfohlen. Die Anweisung END entspricht
der STOP-Anweisung. Der Unterschied besteht lediglich darin, daB durch STOP die

44 BASIC-VOKABULAR



Meldung BREAK IN LINE XX und durch END nur READY angezeigt wird. Bei
beiden Anweisungen ist eine Wiederaufnahme der Ausfihrung durch Eingabe des
Befehls CONT méglich.

BEISPIELE DER END-ANWEISUNG:

10 PRINT “WILLST DU DAS PROGRAMM WIRKLICH STARTEN*
20 INPUT A$

30 IF A$ = “NEIN“ THEN END

30 REM REST DES PROGRAMMS

999 END

EXP

TYP: Funktion-Numerisch
FORMAT: EXP ( <Zahl>)

Funktion: Mit dieser mathematischen Funktion wird die Konstante e (2.71828183)
in die Potenz der angegebenen Zahl erhoben. Durch einen Wert, der gréBer ist als
88.0296919 kommt es zu der Fehlermeldung 2OVERFLOW.

BEISPIELE DER EXP-FUNKTION:

10 PRINT EXP (1)
20X =Y *EXP (Z*Q)

FN

TYP: Funktion-Numerisch
FORMAT: FN <Name> ( <Zahl>)

Funktion: Diese Funktion verweist auf die zuvor mit DEF-Anweisung definierte
Funktion. Die Zahl wird eingesetzt und dann der Funktionswert berechnet. Das
Ergebnis ist ein numerischer Wert.

Diese Funktion kann in der direkten Betriebsart benutzt werden, wenn die Anwei-
sung DEF ausgefihrt wurde.

Wird FN vor der entsprechenden DEF-Anweisung ausgefiihrt, so wird der Fehler
UNDEF’D FUNCTION angezeigt.

BASIC-VOKABULAR 45



BEISPIELE DER FN-FUNKTION:

PRINTFNA (Q)
1100 J = FN J (7) + FN J (9)
9990 IF FN B7 (I+1)= 6 THEN END

FOR...TO...[STEP..]

TYP: Anweisung
FORMAT: FOR <Variable> = <Start> TO <Grenze>[STEP
<Schrittweite>]

Funktion: Dies ist eine BASIC-Anweisung, mit der Sie eine Variable als Zahler
benutzen konnen. Sie mussen bestimmte Parameter angeben: Gleitpunkt-Varia-
blen, Startwert dieser Variablen, Endwert und Schrittweite. Diese Schrittweite kann
irgendeine Gleitpunktzahl sein.

Nachstehend sehen Sie ein einfaches BASIC-Programm, das von 1 bis 10 z&hit,
jede Zahl anzeigt und mit keinen FOR-Anweisungen arbeitet:

100L =1

110 PRINT L

120L=L + 1

130 IF L <= 10 THEN 110
140 END

Nachfolgend steht das gleiche Programm, diesmal jedoch mit der FOR-Anweisung:

100 FORL =1TO 10
110 PRINT L

120 NEXT L

130 END

Wie Sie feststellen kénnen, ist das Programm kirzer und leichter verstandlich, wenn
die FOR-Anweisung benutzt wird.

Beim Ausflihren der FOR-Anweisung finden verschiedene Operationen statt. Der
<Start-Wert> wird in die vom Z&hler benutzte <Variable> eingesetzt. In obigem
Beispiel wird in L eine 1 eingesetzt.

46 BASIC-VOKABULAR



Bei Erreichen der Anweisung NEXT wird die Schrittweite zu der <Variablen>
addiert. War STEP nicht enthalten, wird die <Schrittweite> auf +1 gesetzt. Kommt
das obige Programm das erste Mal zu Zeile 120, wird 1 zu L addiert, so daB sich fir
L ein neuer Wert von 2 ergibt.

Nun wird der Wert in der <Variablen> mit der <Grenze> verglichen. Ist die
<Grenze> noch nicht erreicht, geht das Programm (weiter) zur Zeile hinter der
FOR-Anweisung. In diesem Fall ist der Wert 2 von L kleiner als die Grenze 10, so
daB das Programm in die Zeile 110 zurlck springt.

Wird die <Grenze> durch die <Variable> Uberschritten, so ist die Schleife
beendet, und das Programm setzt mit der Zeile nach der NEXT-Anweisung fort. Ist
in unserem Beispiel der Wert L=11 erreicht, also die Grenze 10 (iberschritten, wird
das Programm in Zeile 130 fortgesetzt.

Ist die <Schrittweite> positiv, muB die <Variable> die <Grenze> (iberschreiten.
Ist der Wert negativ, muB sie entsprechend kleiner als die <Grenze> sein.

|
1\ Anmerkung: Eine Schleife wird stets mindestens einmal ausgefiihrt. J

BEISPIELE FUR DIE ANWEISUNG FOR...TO...STEP...:

100 FOR L = 100 TO 0 STEP -1
100 FOR L = PI TO 6* = STEP .01
100 FOR AA=3TO3

FRE

TYP: Funktion
FORMAT: FRE ( <Variable>)

Funktion: Uber diese Funktion erfahren Sie, wieviel RAM-Kapazitat fiir Ihr Pro-
gramm und die Variablen zur Verfligung steht. Wird durch ein Programm mehr
Speicherkapazitat bendtigt als vorhanden ist, erscheint die Fehlermeldung OUT OF
MEMORY.

Die Zahl in Klammern kann einen beliebigen Wert haben und wird in der Berech-
nung nicht benutzt.

BASIC-VOKABULAR 47



Anmerkung: Ist das Ergebnis von FRE negativ, so addieren Sie 65536 zu der FRE-Zahl, um die
Anzahl der verfligbaren Bytes zu erhalten.

BEISPIELE DER FRE-FUNKTION:

PRINT FRE (0)
10 X = (FRE(K) —1000)/7
950 IF FRE (0) < 100 THEN PRINT “NOT ENOUGH ROOM*

Anmerkung: Auf folgende Weise wird Ihnen stets die derzeitig verfligbare RAM-Kapazitit angezeigt:
PRINT FRE(0) — (FRE(0)<0)* 65536

GET

TYP: Anweisung
FORMAT: GET <Variablenliste>

Funktion: Uber diese Anweisung wird jede vom Benutzer gedriickte Taste gele-
sen. Bei der Eingabe Uber die Tastatur werden die Zeichen im Tastaturpuffer des
COMMODORE 64 gespeichert. Der Puffer hat eine Kapazitat von 10 Zeichen, so
daB der Anschlag der elften und aller weiteren Tasten nicht bericksichtigt wird.
Durch Lesen eines der Zeichen mit der GET-Anweisung wird Platz fur weitere
Zeichen geschaffen.

Wenn in der GET-Anweisung numerische Daten spezifiziert werden und der
Benutzer eine andere Taste als eine Zahlentaste anschlagt, wird die Fehlermeldung
?SYNTAX ERROR angezeigt. Aus Sicherheitsgriinden sollten die Tastenan-
schlage als Zeichenketten gelesen und spater in Zahlen umgewandelt werden.
Mit der GET-Anweisung konnen einige Beschréankungen der INPUT-Anweisung
vermieden werden. Bezuglich Einzelheiten schlagen Sie bitte im Abschnitt Gber die
Verwendung der GET-Anweisung in dem Kapitel “Programmiertechniken nach.

BEISPIELE DER GET-ANWEISUNG:

10 GET A$: IF A$ = ““ THEN 10: REM WARTESCHLEIFE BIS TASTEN-
DRUCK

20 GET A$, B$, C$, D$, E$: REM LIEST 5 ZEICHEN

30 GET A, A$

48 BASIC-VOKABULAR



GET+#

TYP: Ein-/Ausgabeanweisung
FORMAT: GET+# <logische Filenummer>, <Variablenliste>

Funktion: Mit dieser Anweisung werden die Zeichen einzeln von der angegebe-
nen Datei oder dem angegebenen Gerat gelesen. Sie entspricht der GET-Anwei-
sung. Der Unterschied besteht darin, daB die Daten nicht von der Tastatur kommen.
Wird kein Zeichen empfangen, so wird die Variable einem Leerstring zugeordnet
(entspricht ““) oder einer O bei numerischen Variablen. Zeichen, die Daten in
Dateien trennen sollen, wie z. B. ein Komma (,) oder der ([ERILUI-Tastencode
(ASC-Code 13), werden wie andere Zeichen eingegeben.

Beim Arbeiten mit Gerat #3 (TV-Bildschirm) werden Uber diese Anweisung die
Zeichen einzeln vom Bildschirm gelesen. Bei jeder Verwendung von GET# bewegt
sich der Cursor um eine Position nach rechts. Das Zeichen am Ende einer logischen
Zeile wird in CHR$ (13), d. h. in den -Tastencode umgewandelt.

BEISPIELE DER ANWEISUNG GET #:

5 GET# 1, A$
10 OPEN 1, 3: GET# 1, Z7%
20 GET# 1, A, B, C$, D$

GOSuUB

TYP: Anweisung
FORMAT: GOSUB <Zeilennummer>

Funktion: Dies ist eine spezielle Form der GOTO-Anweisung. Es besteht jedoch
ein wesentlicher Unterschied. GOSUB speichert, von wo gesprungen wird. Wird die
RETURN-Anweisung (unterscheidet sich von dem Anschlag der Taste )
im Programm erreicht, springt das Programm zurlick zur Anweisung, die unmittelbar
hinter der GOSUB-Anweisung steht.

Ein Unterprogramm (GOSUB gleich GO to a SUB-routine = Sprung zum Unterpro-
gramm) wird hauptséchlich dann eingesetzt, wenn ein kleiner Programmteil von
verschiedenen Teilen des Programms benutzt wird. Durch die Verwendung von

BASIC-VOKABULAR 49



Unterprogrammen laBt sich vermeiden, daB die gleichen Zeilen standig an verschie-
denen Programmstellen wiederholt werden missen. Auf diese Weise entspricht
GOSUB auch DEF FN. Mit DEF FN konnen Sie Platz bei der Verwendung von
Gleichungen und mit GOSUB Platz durch die Vermeidung von sich standig
wiederholenden gleichen Programmteilen gewinnen. Nachstehendes Programm
arbeitet nicht mit GOSUB.

100 PRINT “DIESES PROGRAMM SCHREIBT*
110 FOR L = 1 TO 500 : NEXT

120 PRINT “LANGSAM*

130 FOR L = 1 TO 500 : NEXT

140 PRINT “ES BENUTZT EINE SCHLEIFE“
150 FOR L = 1 TO 500 : NEXT

160 PRINT “ALS VERZOGERUNG.“

170 FOR L = 1 TO 500 : NEXT

Hier ist das gleiche Programm noch einmal, diesmal jedoch mit der GOSUB-
Anweisung:

100 PRINT “DIESES PROGRAMM SCHREIBT*
110 GOSUB 200

120 PRINT “LANGSAM*

130 GOSUB 200

140 PRINT “ES BENUTZT EINE SCHLEIFE"
150 GOSUB 200

160 PRINT “ALS VERZOGERUNG."

170 GOSUB 200

180 END

200 FOR L = 1 TO 500 : NEXT

210 RETURN

Jedesmal, wenn das Programm eine GOSUB-Anweisung ausfihrt, werden Zeilen-
nummer und Position in der Programmzeile in einem speziellen Bereich, dem Stack
(= Stapel) gespeichert. Dieser Stack benutzt 256 Bytes Speicherplatz. Deshalb ist
die Datenmenge begrenzt, die im Stapel gespeichert werden kann. Aus diesem
Grund ist die Anzahl der speicherbaren Unterprogramm-Rickkehradressen auch
begrenzt. Deshalb ist besonders darauf zu achten, daB jede GOSUB-Anweisung
auf das entsprechende RETURN trifft, da sonst Speicherprobleme auftreten, obwohl
noch viele Bytes frei sind.

50 BASIC-VOKABULAR



GOTO

TYP: Anweisung
FORMAT: GOTO <Zeilennummer>
oder GO TO <Zeilennummer>

Funktion: Uber diese Anweisung kann das BASIC-Programm Zeilen auBerhalb
der numerischen Reihenfolge ausfiihren. Das Wort GOTO gefolgt von einer Zahl
laBt das Programm an die durch diese Zahl bestimmte Zeile springen.

GOTO ohne folgende Zahl entspricht GOTO 0. Die Zeilennummer muB nach dem
Wort GOTO folgen.

Mit der GOTO-Anweisung konnen unendliche Schleifen erstellt werden. Das ein-
fachste Beispiel ist eine Zeile, die eine GOTO-Anweisung fir sich selbst enthalt, wie
z.B. 10 GOTO 10. Solche Schleifen kénnen iber die Taste gestoppt
werden.

BEISPIELE DER GOTO-ANWEISUNG:

GOTO 100
10 GO TO 50
20 GOTO 999

IF...THEN...

TYP: Anweisung

FORMAT: IF <Ausdruck> THEN <Zeilennummer>
IF <Ausdruck> GOTO <Zeilennummer>
IF <Ausdruck> THEN <Anweisungen>

Funktion: Dies ist eine Anweisung, die hauptsachlich die “Intelligenz” von BASIC
ausmacht. Mit ihr kbnnen Bedingungen ausgewertet und entsprechend dem jeweili-
gen Ergebnis verschiedene MaBnahmen ergriffen werden.

Dem Wort IF folgt ein Ausdruck, der Variablen, Zeichenketten, Zahlen, Vergleiche
und logische Operatoren enthalten kann. Das Wort THEN erscheint auf der gleichen
Zeile und wird entweder von einer Zeilennummer oder einer weiteren BASIC-
Anweisung gefolgt. Ist der Ausdruck falsch, wird alles nach dem Wort THEN auf
dieser Zeile berlesen, und die Ausfiihrung wird in der néchsten Programmzeile
fortgesetzt. Bei einem richtigen Ergebnis erfolgt entweder eine Programmverzwei-

BASIC-VOKABULAR 51



gung zur Zeilennummer nach dem Wort THEN oder die Ausfiihrung der nachfolgen-
den BASIC-Anweisungen in dieser Zeile.

BEISPIEL DER ANWEISUNG IF...GOTO...:

100 INPUT “GIB EINE ZAHL EIN“; N

110 IF N <= 0 GOTO 200

120 PRINT “QUADRATWURZEL=" SQR(N)
130 GOTO 100

200 PRINT “ZAHL MUSS SEIN >0

210 GOTO 100

Bei diesem Programm wird die Quadratwurzel einer beliebigen positiven Zahl
angezeigt. Die IF-Anweisung wird hier benutzt, um die Eingabe zu Uberprifen. Ist
N <= 0 richtig, springt das Programm zu Zeile 200. Ist N 0, so wird als nachstes
Zeile 120 ausgefiihrt. Bitte beachten Sie, daB THEN GOTO nicht bei IF ... THEN
bendtigt wird. So bedeutet in Zeile 110 z. B. GOTO 200 tatsachlich THEN GOTO

200.

BEISPIEL DER ANWEISUNG IF...THEN.. .:

100 FOR L =1 TO 100

110 IF RND(1) <.5 THEN X = X+ 1 : GOTO 130
120Y =Y+ 1

130 NEXT L

140 PRINT “KOPF= “ X

150 PRINT “ZAHL= “Y

Das IF in Zeile 110 Uberpriift eine beliebige Zahl, um festzustellen, ob sie kleiner als
5 ist. Ist das Ergebnis richtig, werden alle Anweisungen nach dem Wort THEN
ausgefiihrt: Zunéchst wird 1 zu X addiert, und danach springt das Programm in die
Zeile 130. Ist das Ergebnis falsch, so geht das Programm zur néchsten Anweisung
in Zeile 120 weiter.

52 BASIC-VOKABULAR



INPUT

TYP: Anweisung
FORMAT: INPUT [“<Kommentar>*“ ;] <Variablenliste>

Funktion: Uber diese Anweisung kénnen vom Bediener Informationen in den
Computer eingegeben werden. Bei der Ausflihrung erscheint auf dem Bildschirm
ein Fragezeichen (?), und der Cursor erscheint eine Stelle rechts neben dem
Fragezeichen. Der Computer wartet nun mit blinkendem Cursor darauf, daB der
Bediener die Antwort Uber die Tastatur eingibt und danach die Taste
driickt. Nach dem Wort INPUT kann ein beliebiger Text in Anfiihrungs-
zeichen (“ “) folgen. Dieser Text erscheint auf dem Bildschirm, und danach folgt
das Fragezeichen. Nach dem Text folgt ein Semikolon (;) und der Name einer oder
mehrerer durch Kommata getrennter Variablen. Diese Variablen geben an, wo der
Computer die vom Bediener eingegebene Information speichert. Hierbei kann es
sich um beliebige Variablennamen handeln, und fir verschiedene Eingaben mis-
sen unterschiedliche Variablennamen gewahlt werden.

BEISPIELE DER INPUT-ANWEISUNG:

100 INPUT A
110 INPUT B, C, D
120 INPUT “KOMMENTAR"; E

Bei der Programmausfihrung erscheint das Fragezeichen und zeigt dem Bediener
so an, daB der COMMODORE 64 fiir Zeile 100 eine Eingabe erwartet. Jede
beliebige eingegebene Zahl wird in A eingesetzt und spéter im Programm benutzt.
Wurde als Antwort keine Zahl eingegeben, erscheint die Fehlermeldung ?REDO
FROM START, die bedeutet, daB zwar eine Zahl erwartet, jedoch ein String
empfangen wurde. Wenn der Bediener lediglich die Taste driickt, bleibt
der Variablenwert unverandert.

Nun erscheint das Fragezeichen flr Zeile 110. Wenn wir nur eine Zahl eingeben
und die Taste driicken, zeigt der COMMODORE 64 zwei Fragezeichen
(??) an, was bedeutet, daB weitere Eingaben erforderlich sind.

Geben Sie also stets so viele Eingaben wie erforderlich, getrennt durch Kommata,
ein. Werden zu viele Daten eingegeben, erscheint die Fehlermeldung ?EXTRA
IGNORED, was bedeutet, daB die Uberflissigen Werte nicht in Variablen eingege-
ben wurden.

In Zeile 120 wird das Wort KOMMENTAR vor dem Erscheinen des Fragezeichens
angezeigt. Zwischen dem KOMMENTAR und einer beliebigen Variablenliste muB
ein Semikolon stehen.

Die INPUT-Anweisung kann nie auBerhalb eines Programms benutzt werden.

BASIC-VOKABULAR 53



INPUT #

TYP: Ein-/Ausgabeanweisung
FORMAT: INPUT# <logische Filenummer> , <Variablenliste>

Funktion: Dies ist fiir gewohnlich der schnellste und einfachste Weg, um die in
einer Disketten- oder Kassetten-Datei gespeicherten Daten zu lesen. Die Daten
haben die Form von Variablen mit einer Ldnge von max. 80 Zeichen (es wird also
nicht wie bei der Anweisung GET# jeweils nur ein Zeichen gelesen). Zunachst muB
die Datei gedffnet werden. Dann kann INPUT# in die Variablen einlesen.

Der Befehl INPUT# geht davon aus, daB eine Variable beendet ist, wenn ein
RETURN-Code (CHR$ (13)), ein Komma (,), Semikolon (;) oder ein Doppelpunkt (:)
gelesen wird. Diese Zeichen kénnen gegebenenfalls in Anflihrungszeichen einge-
schlossen werden (siehe Anweisung PRINT#).

Handelt es sich beim Variablentyp um ein numerisches Zeichen und wird ein
nichtnumerisches Zeichen empfangen, so wird der Fehler BAD DATA angezeigt.
INPUT# kann Zeichenketten von max. 80 Zeichen lesen. Wird diese Zeichenanzahl
Uberschritten, dann wird die Fehlermeldung STRING TOO LONG angezeigt.
Wird Gerat #3 benutzt (Bildschirm), so liest diese Anweisung eine ganze logische
Zeile und bewegt den Cursor dann zur nachsten Zeile.

BEISPIELE DER ANWEISUNG INPUT #:

10 INPUT# 1, A
20 INPUT# 2, A$, B$

INT

TYP: Ganzzahl-Funktion
FORMAT: INT (<numerisch>)

Funktion: Gibt den ganzzahligen Wert eines Ausdrucks wieder. Ist der Ausdruck
positiv, wird der Bruch weggelassen. Ist der Ausdruck negativ, so wird bei einem
Bruch die néchstniedrigere ganze Zahl wiedergegeben.
BEISPIELE DER INT-FUNKTION:
120 PRINT INT(99.4343), INT(—12.34)
99 -13

54 BASIC-VOKABULAR



LEFTS

TYP: Stringfunktion
FORMAT: LEFT$ (<Zeichenkette>, <Ganze Zahl>)

Funktion: Gibt eine Zeichenkette wieder, die die Zeichen von der duBersten linken
Position bis zur angegebenen Zahl umfaBt. Der ganzzahlige Argumentenwert muB
im Bereich von 0 bis 255 liegen. Ist die ganze Zahl gréBer als die Zeichenketten-
lange, so wird der gesamte String wiedergegeben. Hat diese Zahl den Wert Null, so
wird ein Leerstring (Lange Null) wiedergegeben.

BEISPIELE DER FUNKTION LEFTS:
10 A$ = “COMMODORE COMPUTER*
20 B$ = LEFT$(A$,9): PRINT B$
RUN

COMMODORE

LEN

TYP: Ganzzahl-Funktion
FORMAT: LEN (<Zeichenkette>)

Funktion: Gibt die Anzahl der Zeichen in einem String wieder. Nicht angezeigte
Zeichen und Leerzeichen werden mitgezahlt.

BEISPIELE DER LEN-FUNKTION:
CC$ = “COMMODORE COMPUTER": PRINT LEN(CCS$)

18

BASIC-VOKABULAR 55



LET

TYP: Anweisung
FORMAT: [LET] <Variable> = <Ausdruck>

Funktion: Die LET-Anweisung wird benutzt, um einer Variablen einen Wert zuzu-
ordnen. Das Wort LET ist jedoch optional, und erfahrene Programmierer lassen es
daher meist aus, damit es keine Speicherkapazitit vergeudet. Das Gleichheitszei-

chen (=) allein genligt bei der Wertzuordnung eines Ausdrucks zu einem Variablen-
namen.

BEISPIELE DER LET-ANWEISUNG:

10 LET D= 12 (Dies entspricht D = 12)
20 LET E$ = “ABC*

30 F$ = “DEF*

40 SUMS$ = E$ + F$ (SUMS$ entspricht ABCDEF)

LIST

TYP: Befehl
FORMAT: LIST [[<Erste Zeile>]—[<Letzte Zeile>]]

Funktion: Mit dem LIST-Befehl konnen Sie sich Zeilen im BASIC-Programm
anschauen, die derzeitig im Speicher Inres COMMODORE 64 gespeichert sind. Auf
diese Weise kdnnen Sie den Bildschirm-Editor zum Editieren von aufgelisteten
Programmen schnell und einfach einsetzen.

Mit dem LIST-Systembefehl wird ganz oder teilweise das Programm angezeigt, das
derzeitig im Speicher abgelegt ist. LIST wird normalerweise zum Bildschirm gelei-
tet; die CMD-Anweisung kann benutzt werden, um die Ausgabe auf ein externes
Gerét, wie z. B. Drucker oder Diskette, umzuschalten. Der LIST-Befehl kann im
Programm erscheinen, nach der Ausflihrung von LIST wird jedoch stets die
Meldung READY angezeigt.

Wenn die Programmliste auf dem Bildschirm erscheint, kann das “Rollen“ des
Bildschirms von unten nach oben durch Dricken der Taste verlangsamt
werden. LIST wird durch Driicken der Taste abgebrochen.

56 BASIC-VOKABULAR



Werden keine Zeilennummern angegeben, so wird das ganze Programm aufgeli-
stet. Ist nur die erste Zeilennummer angegeben und folgte danach ein Gedanken-
strich (=), so werden diese Zeile und alle Zeilen mit groBeren Nummern aufgelistet.
Ist nur die letzte Zeilennummer angegeben und steht davor ein Gedankenstrich, so
werden alle Zeilen vom Programmanfang bis zu dieser Zeile aufgelistet. Sind beide
Zahlen angegeben, so wird der gesamte Bereich einschlieBlich dieser Zahlen
angezeigt.

BEISPIELE DES LIST-BEFEHLS:

LIST (Listet das derzeitig im Speicher befindliche
Programm auf.)

LIST 500 (Listet nur Zeile 500 auf.)

LIST 150— (Listet alle Zeilen von 150 bis zum Ende auf.)

LIST —1000 (Listet alle Zeilen von der niedrigsten bis 1000
auf.)

LIST 150—-1000 (Listet die Zeilen 150 bis einschl. 1000 auf.)

10 PRINT “THIS IS LINE 10“
20 LIST (LIST im Programmier-Modus)
30 PRINT “THIS IS LINE 30¢

LOAD

TYP: Befehl
FORMAT: LOAD [“<Programmname>*“] [,<Gerdtenummer>]
[,<Sekundéaradresse>]

Funktion: Uber die LOAD-Anweisung wird der Inhalt einer Programmdatei von
Kassette oder Diskette in den Speicher gelesen. Auf diese Weise kdnnen Sie die
geladenen Informationen benutzen oder sie &ndern. Die Gerdtenummer ist optional,
der Computer wéhlt jedoch standardmaBig 1 (Kassetteneinheit), wenn keine beson-
dere Eingabe erfolgt. Die Diskettenstation hat normalerweise die Gerdtenummer 8.
Uber den Befehl LOAD werden alle offenen Dateien geschlossen, und im Direktmo-
dus wird vor dem Lesen des Programms ein CLR durchgefiihrt. Wird LOAD inmitten

BASIC-VOKABULAR 57



eines Programms ausgefiihrt, so wird das geladene Programm automatisch gestar-
tet, d. h., Sie kdnnen LOAD benutzen, um mehrere Programme zu verketten; dabei
werden keine Variablen geldscht.

Beim Arbeiten mit Gbereinstimmenden Dateinamemustern wird die erste Datei, die
mit dem Muster Ubereinstimmt, geladen. Durch den Asterisk (“*“) wird der erste
Dateiname im Disketteninhaltsverzeichnis geladen. Existiert der benutzte Datei-
name nicht oder handelt es sich nicht um eine Programmdatei, so wird die BASIC-
Fehlermeldung ?FILE NOT FOUND angezeigt.

Beim Programmladen von Kassette kann <Programmname> ausgelassen werden.
In diesem Fall wird die nidchste Programmdatei auf der Kassette gelesen. Der
COMMODORE 64 I6scht den Bildschirm nach Driicken der Taste PLAY. Wird das
Programm gefunden, so wird die Meldung FOUND angezeigt. Nach Driicken der
Taste [€ oder nach ca. 15 s wird das Programm geladen. Wird die Leertaste
gedriickt, so wird das derzeitig gesuchte Programm Ubersprungen und versucht,
das nachste zu laden. Programme werden beim Laden ab Speicherplatz 2048,
wenn keine <Sekundéradresse> 1 benutzt wird, abgelegt. Wird mit der Sekundér-
adresse 1 gearbeitet, so wird das Programm in den Speicherplatz geladen, aus dem
es zuvor abgespeichert wurde.

BEISPIELE DES LOAD-BEFEHLS:

LOAD (Liest das nachste Programm von der
Kassette)

LOAD A$ (Benutzt fur die Suche den Namen in A$)

LOAD “*“,8 (Ladt das erste Programm von Diskette)

LOAD ““/1,1 (Sucht das erste Programm auf der Kas-

sette und ladt es zurlck in den gleichen
Speicherbereich, aus dem es abgespei-
chert wurde)

LOAD “STAR TREK“ (Ladt ein Programm von Kassette)
PRESS PLAY ON TAPE

FOUND STAR TREK

LOADING

READY.

58 BASIC-VOKABULAR



LOAD “FUN“,8 (Ladt ein Programm von Diskette)
SEARCHING FOR FUN

LOADING
READY.
LOAD “GAME ONE*“,8,1 (L&dt ein Programm in den bestimmten
SEARCHING FOR GAME ONE Speicherplatz, von dem aus das Pro-
LOADING gramm auf Diskette gespeichert worden
READY. ist)

LOG

TYP: Gleitpunktfunktion
FORMAT: LOG (<numerisch>)

Funktion: Gibt den natirlichen Logarithmus (Logarithmus der Basis e) des Argu-
ments wieder. Ist der Wert des Arguments Null oder negativ, wird die BASIC-
Fehlermeldung ?ILLEGAL QUANTITY angezeigt.

BEISPIELE DER LOG-FUNKTION:

25 PRINT LOG(45/7)
1.86075234

10 NUM = LOG(ARG)/ LOG(10) (Berechnet den Logarithmus von ARG mit
der Basis 10)

MID$

TYP: Folgefunktion
FORMAT: MID$ (<String>, <numerische Zahl A> [,<numeri-
sche Zahl B>))

Funktion: Die Funktion MID$ definiert einen Teilstring, der Teil eines gréBeren
Strings ist. Der Startpunkt des Teilstrings wird durch das Argument <numerische
Zahl A> und die Lange durch das Argument <numerische Zahl B> bestimmt.
Beide numerischen Argumente kénnen einen Wert von 0 bis 255 haben.

BASIC-VOKABULAR 59



Ist <numerische Zahl A> groBer als die Lange des <Strings>, oder ist <numeri-
sche Zahl B> Null, dann gibt MID$ einen Leerstring wieder. Wird das Argument
<numerische Zahl B> ausgelassen, nimmt der Computer an, daB die Lange des
restlichen Strings benutzt werden soll. Hat der Quellen-String weniger Zeichen als
<numerische Zahl B> vom Startpunkt bis zum Ende, dann wird der ganze Rest
dieses Strings benutzt.

BEISPIEL DER FUNKTION MIDS$:

10 A$="GOOD*
20 B$="MORNING EVENING AFTERNOON*
30 PRINT A$ + MID$(BS, 8, 8)

GOOD EVENING

NEW

TYP: Befehl
FORMAT: NEW

Funktion: Der Befehl NEW wird benutzt, um ein derzeitig im Speicher befindliches
Programm und samtliche Variablen zu I6schen. Vor der Eingabe eines neuen
Programms muB NEW in der Direktbetriebsart fiir die Speicherloschung benutzt
werden. NEW kann auch in einem Programm eingesetzt werden. Sie sollten jedoch
daran denken, daB alles, was zuvor ausgefiihrt wurde und noch immer im Compu-
terspeicher ist, geldscht wird. Dies kann sich als besonders stérend bei der
Programm-Fehlersuche erweisen.

Bitte beachten: Wird ein altes Programm nicht vor dem Schreiben eines neuen Programms geldscht,
so kann es zu einer Vermischung kommen.

BEISPIELE DES NEW-BEFEHLS:

NEW (Léscht das Programm und alle Variablen)
10 NEW (Fiihrt eine NEW-Operation durch und stoppt das Pro-
gramm)

60 BASIC-VOKABULAR



NEXT

TYP: Anweisung
FORMAT: NEXT [<Zahler>] [,<Zahler>]...

Funktion: Die NEXT-Anweisung wird mit FOR benutzt, um das Ende der Schleife
FOR ... NEXT zu bestimmen. Der <Zahler> ist der Variablenname vom Schleifen-
index, der mit FOR zum Beginn der Schleife benutzt wird. Durch eine einzelne
NEXT-Anweisung kénnen mehrere verschachtelte Schleifen abgeschlossen wer-
den, wenn danach die Variablennamen fiir jeden FOR-<Zahler> folgen. Hierzu
muB jeder Name aufgefiihrt werden, wobei der der innersten Schleife zuerst und
der der auBersten zuletzt folgt. Wird eine einzelne NEXT-Anweisung in dieser
Weise benutzt, so missen die Variablennamen durch Kommata getrennt sein.
Schleifen kdnnen auf max. neun Ebenen verschachtelt werden. Werden die Zahler-
variablen ausgelassen, erfolgt eine Inkrementierung des Zahlers, der durch die
Anweisung FOR mit der derzeitigen Ebene (der verschachtelten Schleifen) verbun-
den ist.

Bei Erreichen der NEXT-Anweisung wird zum Zahlerwert 1 oder ein optionaler
STEP-Wert addiert. Er wird dann mit einem End-Wert verglichen, um festzustellen,
ob die Schleife beendet werden soll. Eine Schleife wird beendet, wenn eine NEXT-
Anweisung gefunden wird, deren Zahlerwert gréBer als der End-Wert ist.

BEISPIELE DER NEXT-ANWEISUNG:
10 FORJ=1TO 5: FORK =10 TO 20: FORN =5 TO -5 STEP —1
20 NEXT N, K, J (Verschachtelte Schieifen)

10 FOR L =1TO 100

20 FORM =1TO 10

30 NEXT M

400 NEXT L (Beachten Sie, daB die Schleifen einander
nicht Gberschneiden)

10 FORA=1TO 10

20 FORB =1TO 20

30 NEXT

40 NEXT (Beachten Sie, daB keine Variablennamen
notig sind)

BASIC-VOKABULAR 61



NOT

TYP: Logischer Operator
FORMAT: NOT <Ausdruck>

Funktion: Der logische Operator NOT “komplementiert“ den Wert jedes Bits in
seinem einzelnen Operanden. Das Ergebnis ist ein ganzzahliges “Zweier-Komple-
ment“. Beim Arbeiten mit Gleitpunktzahlen werden die Operanden in ganze Zahlen
umgewandelt und Briiche eliminiert. Der Operator NOT kann auch bei einem
Vergleich zur Umkehrung des Richtig-/Falschwertes benutzt werden, der das
Ergebnis einer Vergleichsprifung ist. Aus diesem Grund kehrt er die Bedeutung
eines Vergleichs um. Im nachstehenden ersten Beispiel ist der Ausdruck richtig,
wenn das “Zweier-Komplement“ von “AA“ gleich “BB" und wenn “BB“ nicht
“CC" ist.

BEISPIELE DES NOT-OPERATORS:
10 IF NOT AA = BB AND NOT(BB = CC) THEN . ..

NN% = NOT 96: PRINT NN%
-97

Anmerkung: Um den Wert von NOT zu finden, benutzen Sie den Ausdruck X=(—(X+1)). (Das
Zweier-Komplement einer ganzen Zahl ist das Bit-Komplement + 1.)

ON

TYP: Anweisung
FORMAT: ON <Variable> GOTO / GOSUB <Zeilennummer>
[,<Zeilennummer>]...

Funktion: Die ON-Anweisung wird benutzt, um je nach Variablenwert zu einer von
mehreren angegebenen Zeilennummern iUberzugehen. Der Wert der Variablen liegt
im Bereich von Null bis zu der angegebenen Zeilenzahl. Ist der Wert keine ganze
Zahl, so werden die Nachkommastellen weggelassen. Ist der Variablenwert z. B. 3,
so geht das Programm durch die ON-Anweisung zu der dritten Zeilennummer in der
Liste uber. Ist der Wert einer Variablen negativ, wird die BASIC-Fehlermeldung
?ILLEGAL QUANTITY angezeigt. Ist die Zahl Null oder groBer als die Punktezahl
in der Liste, wo wird die Anweisung vom Programm einfach “Uberlesen®, und das
Programm setzt mit der Anweisung nach der ON-Anweisung fort.

62 BASIC-VOKABULAR



ON st also eine Variante der Anweisung IF... THEN ... Statt mehrere IF-
Anweisungen zu benutzen, die das Programm jeweils an eine bestimmte Zeile
schicken, kann eine ON-Anweisung eine Liste von IF-Anweisungen ersetzen. Im
nachstehenden ersten Beispiel ersetzt die erste ON-Anweisung vier Anweisungen
IF... THEN ...

BEISPIELE DER ON-ANWEISUNG:
ON —(A=7)-2*(A=3)— 3*(A<3)—4*(A>7)GOTO 400,900,1000,100
ON X GOTO 100,130,180,220
ON X+3 GOSUB 9000,20,9000
100 ON NUM GOTO 150, 300, 320, 390

500 ON SUM /2 + 1 GOSUB 50, 80, 20

OPEN

TYP: Ein-/Ausgabe-Anweisung

FORMAT: OPEN <logische Filenummer>, [<Geratenummer>]
[,<Sekundéaradresse>] [,“<Dateiname> [,<Type>]
[,<Modus>]“]

Funktion: Uber diese Anweisung wird ein Kanal fiir die Ein- und Ausgabe zu
einem Peripheriegerat gedffnet. Sie brauchen jedoch wahrscheinlich nicht alle Teile
fir jede OPEN-Anweisung. Einige OPEN-Anweisungen bendtigen lediglich zwei
Codes:

1) LOGISCHE FILENUMMER
2) GERATENUMMER

Die <logische Filenummer> ist die logische Nummer, die die Anweisungen OPEN,
CLOSE, CMD, GET#, INPUT# und PRINT#, den Dateinamen und das zu verwen-
dende Geréat miteinander in Beziehung setzt. Sie kann im Bereich von 1 bis 255
liegen.

Anmerkung: Filenummern (iber 128 haben spezielle Auswirkungen, so daB Sie lediglich Zahlen bis
127 verwenden sollten.

BASIC-VOKABULAR 63



Jedes Peripheriegerat (Drucker, Diskettenstation, Kassetteneinheit) im System hat
seine eigene Nummer, auf die es antwortet. Die <Geratenummer> wird zusammen
mit OPEN benutzt, um festzulegen, auf welchem Gerat sich die Datei befindet.
Peripheriegerdte wie z. B. Kassetteneinheiten, Diskettenstationen oder Drucker
antworten zusétzlich auf mehrere Sekundaradressen. Stellen Sie sich diese als
Codes vor, die dem Geréat mitteilen, welche Operation ausgefuhrt werden soll. Die
logische Filenummer des Geréats wird mit jeder Anweisung GET#, INPUT# und
PRINT# benutzt.

Wird die <Geratenummer> ausgelassen, nimmt der Computer automatisch an, daB
Sie Informationen zu Geratenummer 1 (ibertragen bzw. von dort empfangen wollen,
d. h., von der Datasette™. Auch der Dateiname kann ausgelassen werden. In
diesem Fall kdnnen Sie jedoch spater in Ihrem Programm die Datei nicht mit ihrem
Namen aufrufen. Beim Speichern von Dateien auf Kassetten nimmt der Computer
an, daB die <Sekundaradresse> Null (0) ist, wenn diese ausgelassen wird (eine
READ-Operation).

Der Sekundéaradressenwert eins (1) 6ffnet Kassettendateien zum Schreiben. Durch
die Sekundaradresse zwei (2) wird ein Kassettenendkennzeichen geschrieben,
wenn die Datei spater geschlossen wird. Dieses Kennzeichen verhindert, daB aus
Versehen Uber das Dateiende hinaus gelesen und somit die BASIC-Fehlermeldung
?DEVICE NOT PRESENT angezeigt wird.

Bei Disketten stehen fir Daten-Files die Sekundéradressen 2 bis 14 zur Verfligung.
Andere Zahlen haben eine besondere Bedeutung in den DOS-Befehlen. Wenn Sie
mit der Disketten-Station arbeiten, mussen Sie eine Sekundaradresse benutzen.
(Bezuglich Einzelheiten Uber die DOS-Befehle schlagen Sie bitte in Ihrem Hand-
buch der Diskettenstation nach.)

Der <Dateiname> besteht aus einem String von 1 bis 16 Zeichen. Beim
<Modus>=R werden sequentielle Dateien zum Lesen und beim <Modus>=W
zum Schreiben gedffnet.

Wird versucht, auf eine Datei vor dem Offnen zuzugreifen, so wird die BASIC-
Fehlermeldung ?FILE NOT OPEN angezeigt. Wird versucht, eine nicht existie-
rende Datei zum Lesen zu 6ffnen, so wird die Fehlermeldung ?FILE NOT FOUND
angezeigt. Wird eine Datei auf Diskette zum Schreiben geodffnet und der Dateiname
existiert bereits, dann erscheint die DOS-Fehlermeldung FILE EXISTS. Fir
Dateien auf Kassetten gibt es keinerlei Uberpriifungsmoglichkeit, so daB Sie stets
sicherstellen missen, daB die Kassette richtig eingelegt ist. Andernfalls kdnnen
bereits gespeicherte Daten versehentlich Gberschrieben werden. Wird eine bereits
gedffnete Datei neu gedffnet, so wird die BASIC-Fehlermeldung FILE OPEN
angezeigt.

64 BASIC-VOKABULAR



BEISPIELE DER OPEN-ANWEISUNGEN:

10 OPEN 2, 8, 4 “DISK-OUTPUT

SEQ, W*

10 OPEN 1, 1, 2, “TAPE-WRITE*

10 OPEN 50, 0
10 OPEN 12,3
10 OPEN 130, 4
10 OPEN 1,1, 0,
10 OPEN 1,1, 1,
10 OPEN 1, 2, 0,

10 OPEN 1, 4, 0,

10 OPEN 1, 4, 7,

10 OPEN 1, 5, 0,

10 OPEN 1, 8, 15, “COMMAND"

“NAME*
“NAME*
CHR$ (10)

“STRING*

“STRING*

“STRING*

(Offnet sequentielle Datei auf
Diskette)

(Schreiben des Dateiendekenn-
zeichens)

(Eingabe Uber die Tastatur)
(Bildschirmausgabe)
(Druckerausgabe)

(Lesen von Kassette)
(Schreiben auf Kassette)
(Kanal zu RS-232 6ffnen)

(GroBbuchstaben/Graphiken zum
Drucker senden)

(Klein-/GroBschrift zum Drucker
schicken)

(GroBbuchstaben/Graphiken zum

Drucker mit der Geratenummer #5

schicken)

(Einen Befehl zur Diskette schicken)

BASIC-VOKABULAR

65



OR

TYP: Logischer Operator
FORMAT: <Operand> OR <Operand>

Funktion: So wie Vergleichsoperatoren flir Entscheidungen hinsichtlich des Pro-
grammablaufs benutzt werden kdnnen, kdnnen logische Operatoren zwei oder
mehrere Ausdriicke miteinander verbinden und die Meldungen “richtig” oder
“falsch“ ausgeben, die danach in einer Entscheidung benutzt werden kdnnen. In
Berechnungen gibt das logische OR das Bitergebnis 1, wenn das entsprechende Bit
von einem oder beiden Operanden 1 ist. Hierdurch entsteht je nach den Operan-
denwerten als Ergebnis eine ganze Zahl. In Vergleichen wird der logische Operator
OR auch benutzt, um zwei Ausdriicke zu einem Ausdruck zu verketten. Ist einer der
Ausdricke richtig, so ist der Wert des zusammengesetzten Ausdrucks richtig (—1).
Ist in nachstehendem ersten Beispiel AA gleich BB oder ist XX gleich 20, dann ist
der Ausdruck richtig.

Logische Operatoren wandeln inre Operanden in 16-Bit ganzzahlige Zweierkomple-
mente mit Vorzeichen aus dem Bereich —32768 bis 32767 um. Liegen die Operan-
den nicht in diesem Bereich, so wird eine Fehlermeldung angezeigt. Jedes Bit des
Ergebnisses wird durch die entsprechenden Bits in den beiden Operanden be-
stimmt.

BEISPIELE DES OR-OPERATORS:

100 IF (AA = BB) OR (XX = 20) THEN . ..

230 KK% = 64 OR 32: PRINT KK% (Sie geben dies mit einem Bit-
Wert von 1000000 fur 64 und
100000 fur 32 ein.)

(Der Computer antwortet mit

dem  Bit-Wert 1100000
1100000=96.)

66 BASIC-VOKABULAR



PEEK

TYP: Ganzzahl-Funktion
FORMAT: PEEK (<numerisch>)

Funktion: Gibt eine ganze Zahl im Bereich von 0 bis 255 wieder, die aus einem
Speicherplatz gelesen wird. Der <numerische> Ausdruck ist ein Speicherplatz, der
in dem Bereich von 0 bis 65535 liegen muB. Andernfalls wird die BASIC-Fehlermel-
dung ?ILLEGAL QUANTITY angezeigt.

BEISPIELE DER PEEK-FUNKTION:

10 PRINT PEEK (53280) AND 15 (Gibt den Wert der Bildschirmrah-
menfarbe wieder.)

5 A% =PEEK(45)+PEEK(46)*256 (Gibt die Adresse der BASIC-Varia-
blentabelle wieder.)

POKE

TYP: Anweisung
FORMAT: POKE <Adresse>, <Wert>

Funktion: Die POKE-Anweisung wird benutzt, um einen 1-Byte-Binarwert (8 Bits)
in einen gegebenen Speicherplatz oder ein Ein-/Ausgaberegister zu schreiben. Die
<Adresse> ist ein arithmetischer Ausdruck, der im Bereich von 0 bis 65535 liegen
muB. Der <Wert> ist ein Ausdruck, der einer ganzen Zahl von 0 bis 255 entspre-
chen muB. Liegt einer der Werte nicht im angegebenen Bereich, wird die BASIC-
Fehlermeldung ?ILLEGAL QUANTITY angezeigt.

Die Anweisungen POKE und PEEK sind niitzlich fiir Datenspeicherung, Steuerung
der Graphikanzeige oder Gerduscherzeugung, fiir das Laden von Assembler-
Unterprogrammen und zum Ubertragen von Argumenten und Ergebnissen zu bzw.
von Assembler-Unterprogrammen. Darliber hinaus kénnen Betriebssystempara-
meter mit den PEEK-Anweisungen (iberprift oder mit den POKE-Anweisungen
verandert werden. Anhang G gibt eine komplette Liste der niitzlichen Adressen.

BASIC-VOKABULAR 67



BEISPIELE DER POKE-ANWEISUNG:

POKE 1024, 1 (Setzt ein “A“ in Bildschirmposition 1)
POKE 2040, PTR (Aktualisiert Datenzeiger-Sprite #0)
10 POKE RED, 32

20 POKE 36897, 8

2050 POKE A, B

POS

TYP: Ganzzahlige Funktion
FORMAT: POS (<Hilfsargument>)

Funktion: Teilt Ihnen die derzeitige Cursorposition mit, die natirlich in dem
Bereich von 0 (auBerst linkes Zeichen) bis 79 in einer logischen Bildschirmzeile von
80 Zeichen liegt. Da der COMMODORE 64 einen 40-Zeichen-Bildschirm hat,
beziehen sich Positionen von 40 bis 79 auf die zweite Bildschirmzeile. Das
Hilfsargument wird tberlesen.

BEISPIEL DER POS-FUNKTION:

1000 IF POS(0) >38 THEN PRINT CHR$(13)

PRINT

TYP: Anweisung
FORMAT: PRINT [<Variable>] [<,/;><Variable>]. ..

Funktion: Die PRINT-Anweisung wird normalerweise benutzt, um Daten auf dem
Bildschirm anzuzeigen. Um diese Ausgabe auf ein anderes Gerét des Systems
umzuleiten, wird die CMD-Anweisung benutzt. Die <Variable/n> in der Ausgabeli-
ste sind beliebige Ausdriicke. Ist keine Ausgabeliste vorhanden, so wird eine leere
Zeile angezeigt. Die Position jedes angezeigten Zeichens wird durch die Interpunk-
tionszeichen bestimmt, die zum Trennen der einzelnen Werte in der Ausgabeliste
benutzt werden.

68 BASIC-VOKABULAR



Die zur Verfligung stehenden Interpunktionszeichen sind Leerzeichen, Kommata
oder Semikolon. Die logische Bildschirmzeile von 80 Zeichen wird in acht Druckzo-
nen mit je 10 Zeichen unterteilt. In der Ausdrucksliste wird durch ein Komma der
nachste Wert am Anfang der nachsten Zone angezeigt. Durch ein Semikolon wird
der nachste Wert sofort nach dem vorherigen Wert angezeigt. Es gibt jedoch zwei
Ausnahmen:

1) Numerische Ausdriicke werden von einem Leerzeichen gefolgt.
2) Vor positiven Zahlen steht ein Leerzeichen.

Werden zwischen Stringkonstanten oder Variablennamen Leerzeichen oder keine
Interpunktionszeichen benutzt, so hat dies die gleiche Wirkung wie ein Semikolon.
Leerzeichen zwischen einer Zeichenkette und einem numerischen Ausdruck oder
zwischen zwei numerischen Ausdriicken stoppen jedoch die Ausgabe, ohne daB
der zweite Wert angezeigt wird.

Steht am Ende der Ausgabeliste ein Komma oder ein Semikolon, so beginnt die
nachste PRINT-Anweisung mit der Anzeige auf der gleichen Zeile und ist entspre-
chend abgetrennt. Steht am Ende der Liste kein Interpunktionszeichen, werden am
Ende der Daten ein Wagenricklauf und ein Zeilenvorschub angezeigt. Die PRINT-
Anweisung beginnt in der nachsten Zeile. Wird ihre Ausgabe auf den Bildschirm
geleitet und sind die angezeigten Daten langer als 40 Zeichen, so wird die Ausgabe
in der nachsten Bildschirmzeile fortgesetzt.

Die PRINT-Anweisung ist die BASIC-Anweisung, die am vielseitigsten eingesetzt
werden kann. Es gibt fir diese Anweisung so viele Symbole, Funktionen und
Parameter, daB man fast schon von einer eigenen, speziell zum Schreiben auf dem
Bildschirm entworfenen Sprache innerhalb von BASIC sprechen kann.

BASIC-VOKABULAR 69



BEISPIELE DER PRINT-ANWEISUNG:
1)

5X=5
10 PRINT —5*X, X—5, X+5, X15

—25 0 10 3125
2)
5 X=9

10 PRINT X;“SQUARED IS*;X*X;“AND";
20 PRINT X “CUBED IS“ X13

9 SQUARED IS 81 AND 9 CUBED IS 729
3)

90 AA$="ALPHA"“:BB$="BAKER": CC$="“CHARLIE“:DD$=“DOG":
EE$="ECHO"
100 PRINT AA$BB$;CC$DDS$,EES

ALPHABAKERCHARLIEDOG ECHO

ANFUHRUNGSZEICHEN

Wenn ein Anflihrungszeichen ( ) eingegeben ist, stoppt die Cursor-
Steuerung, und die Steuerzeichen der Cursor-Steuertasten werden angezeigt. Auf
diese Weise konnen Sie Cursorsteuerungen programmieren, da die Cursor-Funk-
tionen beim Ausdruck des Textes mit ausgefiihrt werden. Die einzige Cursor-
Steuertaste, die nicht durch diesen “Anflihrungsmodus*® beeinfluBt wird, ist die

Taste

70 BASIC-VOKABULAR



1. Cursorbewegung

Folgende Cursorsteuerungen kénnen im Anfiihrungszeichenmodus “program-
miert” werden.

TASTE ERSCHEINT ALS

1T CRSR ||

Soll das Wort HELLO diagonal von der oberen linken Bildschirmecke aus angezeigt
werden, geben Sie folgendes ein:

PRINT" (KNI H WD E S L O L G O

Dies erscheint als:

PRNT*" BHB EB@B L@ LB o

=203808

2. Unterlegte (negativ dargestelite) Zeichen

Durch gemeinsames Driicken der Tasten und @ - nach Anfiihrungs-
zeichen — wird [ angezeigt. Auf diese Weise werden jetzt alle Zeichen ahnlich
einem Negativbild unterlegt angezeigt. Um dies zu beenden, sind die Tasten
und m zu dricken (wodurch Qangezeigt wird), oder Sie geben
ein (CHR$(13)) (beenden Sie hierzu einfach die PRINT-Anweisung
ohne Semikolon oder Komma).

3. Farbsteuerungen

Durch gemeinsames Dricken der Taste oder [& mit einer der acht
Farbtasten, erscheint ein besonderes unterlegtes Zeichen in den Anfiihrungszei-
chen. Beim Ausdruck erscheint die Schrift dann in der ausgewéhlten Farbe.

BASIC-VOKABULAR 71



TASTE FARBE ERSCHEINT ALS

1] Schwarz
Cr ] 2) weip H
Rot
G0 Zyan N
a Purpur E]
om0 G iy
Blau =
Cir ] 5 Gelb
)1 ] Orange ®
E a Braun n
E Hellrot }vA{
m n Grau 1 @
E B Grau 2 m
E n Hellgrin .I
] Hellblau K
E n Grau 3 ==

Soll das Wort HELLO in Zyan und THERE in WeiB angezeigt werden, geben Sie
folgendes ein:

PRINT* @ HELLO THERE*

Dies erscheint als:

PRINT* l\] HELLO @ THERE"

72 BASIC-VOKABULAR



4. Einfigemodus

Die (ber die Taste ‘erzeugten Leerstellen haben die gleichen Eigen-
schaften wie der Anfihrungszeichen-Modus. Die Cursor- und Farbsteuerungen
erscheinen als unterlegte Zeichen. Der einzige Unterschied besteht darin,
daB / ein hervorruft.

AuBerdem flgt die Taste , die normalerweise im Anfuhrungszeichen-
Modus ein Sonderzeichen erstellt, Leerzeichen ein.

Der “Einflige-Modus“ wird durch Anschlagen der Taste oder
beendet, oder wenn so viele Zeichen eingegeben wurden, wie
Leerzeichen eingeflgt sind.

5. Weitere Sonderzeichen

Es gibt einige andere Zeichen, die fir spezielle Funktionen ausgegeben werden
kénnen, auch wenn sie nicht einfach Gber die Tastatur zur Verfligung stehen. Um
diese in Anflihrungszeichen zu setzen, missen Sie in der Zeile entsprechende
Leerstellen lassen, oder driicken und mit der Cursor-
steuertaste zurick in die Leerstelle gehen. Nun driicken Sie die
Taste und XN . um die umgekehrten Zeichen anzuzeigen, und
schlagen folgende Tasten an:

FUNKTION TASTENBETATIGUNG
0
Umschalten zu Zeichen mit SHIFT [
Umschalten zu Zeichen ohne SHIFT [N ]
Umschalttasten nicht wirksam
Umschalttasten wirksam [ 1 ]

—[=1\|=]/]

ist sowohl bei LIST als auch bei PRINT mdglich, so daB bei
Verwendung dieses Zeichens ein Editieren so gut wie unmdglich ist. Auch die
Auflistung wird merkwirdig aussehen.

BASIC-VOKABULAR 73



PRINT#

TYP: Ein-/Ausgabeanweisung
FORMAT: PRINT+# <logische Filenummer> [<Variable>}
[<,/;><Variable>]...

Funktion: Die Anweisung PRINT# wird benutzt, um Daten in eine Datei zu
schreiben. Die Nummer muB die gleiche sein wie beim Offnen der Datei. Die
Ausgabe erfolgt auf die Gerdtenummer, die in der OPEN-Anweisung benutzt wurde.
Der <Variablen-Ausdruck> der Ausgabeliste kann beliebig gewéhlt werden. Die
Interpunktionszeichen zwischen den einzelnen Werten sind die gleichen wie bei der
PRINT-Anweisung und werden auf die gleiche Weise benutzt. Die Wirkung der
Interpunktionszeichen ist jedoch aus zwei wesentlichen Griinden unterschiedlich.
Wird PRINT # bei Kassettendateien benutzt, so hat das Komma die gleiche Wirkung
wie ein Semikolon. Es ist daher stets gleich, ob Leerzeichen, Kommata, Semikolons
oder keine Interpunktionszeichen zwischen Daten benutzt werden. Die Daten
werden als kontinuierliche Zeichenkette geschrieben. Nach numerischen Daten
folgt ein Leerzeichen, und wenn sie positiv sind, steht auch vor ihnen ein Leerzei-
chen.

Wird die Liste durch keine Interpunktionszeichen beendet, so wird am Ende der
Daten ein Wagenriicklauf oder Zeilenvorschub geschrieben. Wird die Ausgabeliste
durch ein Komma oder Semikolon beendet, werden Wagenricklauf und Zeilenvor-
schub unterdriickt. Unabhangig von der Interpunktion beginnt die nachste Anwei-
sung PRINT# die Ausgabe in der nachsten verfligbaren Zeichenposition. Der
Zeilenvorschub wirkt als Stop, wenn die Anweisung INPUT# benutzt wird, und
hinterlaBt bei Ausfiihrung der néachsten Anweisung INPUT # eine leere Variable. Der
Zeilenvorschub kann entsprechend nachstehenden Beispielen unterdrickt oder
ausgeglichen werden.

Die einfachste Art, um mehr als eine Variable in eine Datei auf Kassette oder
Diskette zu schreiben, ist eine Stringvariable gleich CHR$(13) zu setzen, und
dieses beim Schreiben der Datei zwischen alle anderen Variablen zu setzen.

74 BASIC-VOKABULAR



BEISPIELE DER ANWEISUNG PRINT#:

1)

10 OPEN 1, 1, 1, “TAPE FILE" (Durch Anderung von CHR$(13) in
20 R$ = CHR$(13) CHR$(44) wird zwischen jede Va-
30 PRINT# 1,1;R$;2;R$;3;R%;4;R$;5 riable ein “,“ gesetzt. CHR$(59)
40 PRINT# 1,6 setzt ein “Semikolon" zwischen je-
50 PRINT# 1,7 de Variable.)

2)
10 CO$=CHR$(44): CR$=CHR$(13) AAA,BBB CCCDDDEEE
20 PRINT#1, “AAA“CO$“BBB*, (Wagenricklauf)

“CCC*“;"DDD";“EEE“CR$"“FFF“CRS;

30 INPUT#1, A$,BCDES$,F$ (Wagenrucklauf)

3)

5 CR$=CHR$(13) (10 Leerzeichen)AAA

10 PRINT#2, “AAA“;CR$;“BBB* BBB

20 PRINT=#2, “CCC*;

30 INPUT#2, A$,B$,DUMMY$,C$ (10 Leerzeichen)CCC

READ

TYP: Anweisung
FORMAT: READ <Variable> [,<Variable>]

Funktion: Die READ-Anweisung wird benutzt, um den Variablennamen Konstan-
ten aus den DATA-Anweisungen zuzuordnen. Die einzulesenden Daten missen
mit den angegebenen Variablentypen tibereinstimmen. Andernfalls wird die BASIC-
Fehlermeldung 2SYNTAX ERROR angezeigt.* Variablen in DATA-Eingabelisten
mussen durch Kommata getrennt werden.

Eine einzelne READ-Anweisung kann nacheinander auf eine oder mehrere DATA-
Anweisungen zugreifen (siehe DATA). Oder es kdnnen mehrere READ-Anweisun-
gen auf die gleiche DATA-Anweisung zugreifen. Werden mehr READ-Anweisungen
ausgefihrt, als die DATA-Anweisungen im Programm an Elementen enthalten, wird
die BASIC-Fehlermeldung ?0UT OF DATA angezeigt.

BASIC-VOKABULAR 75



Ist die festgelegte Variablenzahl kleiner als die Zahl der Elemente in den DATA-
Anweisungen, so setzen die folgenden READ-Anweisungen beim nachsten Daten-
element ein. (Siehe RESTORE.)

*Anmerkung: ?SYNTAX ERROR erscheint mit der Zeilennummer der DATA-Anweisung und nicht
der READ-Anweisung.

BEISPIELE DER READ-ANWEISUNG:

110 READ AB,C$
120 DATA 1,2, HELLO

100 FOR X=1 TO 10: READ A(X):NEXT

200 DATA 3.08, 5.19, 3.12, 3.98, 4.24
210 DATA 5.08, 5.55, 4.00, 3.16, 3.37

(Fullt die Variablen (Zeile 1) in Reihenfolge der gezeigten Konstanten
(Zeile 5))

1 READ CITY$,STATES, ZIP

5 DATA DENVER,COLORADO, 80211

REM

TYP: Anweisung
FORMAT: REM [<Bemerkung>]

Funktion: Uber die REM-Anweisung wird Ihr Programm bei der Auflistung ver-
standlicher. Es erinnert Sie daran, welchen Zweck Sie mit den einzelnen Pro-
grammabschnitten verfolgten. So kénnen Sie z. B. darauf hinweisen, woflr eine
Variable benutzt wird usw. Diese Bemerkung kann ein beliebiger Text, ein Wort oder
ein Zeichen einschlieBlich dem Doppelpunkt (:) oder BASIC-Schliisselworter sein.
Die REM-Anweisung und alles Folgende in der gleichen Zeilennummer werden von
BASIC Uberlesen. Die Bemerkungen werden jedoch bei der Programmauflistung
genau wie eingegeben angezeigt. Auf eine REM-Anweisung kann durch eine
GOTO- oder GOSUB-Anweisung Bezug genommen werden. Die Programmaus-
fiilhrung setzt dann mit der nachsthéheren Programmzeile fort, die eine ausfiihrbare
Anweisung enthalt.

76 BASIC-VOKABULAR



BEISPIELE DER REM-ANWEISUNG:

10 CALCULATE AVERAGE VELOCITY

20 FOR X=1 TO 20 :REM LOOP FOR TWENTY VALUES
30 SUM=SUM + VEL(X): NEXT

40 AVG=SUM/20

RESTORE

TYP: Anweisung
FORMAT: RESTORE

Funktion: BASIC stellt den internen Zeiger (Pointer) auf die nachste zu lesende
DATA-Konstante. Dieser Pointer kann in einem Programm (iber die RESTORE-
Anweisung zur ersten DATA-Konstante zuriickgestellt werden. Die RESTORE-
Anweisung kann an einer beliebigen Programmstelle benutzt werden.

BEISPIELE DER RESTORE-ANWEISUNG:

100 FOR X=1 TO 10: READ A(X): NEXT
200 RESTORE
300 FOR Y=1 TO 10: READ B(Y): NEXT

4000 DATA 3.08, 5.19, 3.12, 3.98, 4.24
4100 DATA 5.08, 5.55, 4.00, 3.16, 3.37

(Fullt die beiden Felder mit identischen Daten)

10 DATA 1,2,3,4

20 DATA 5,6,7,8

30 FOR L=1TO 8
40 READ A: PRINT A
50 NEXT

60 RESTORE

70 FOR L=1TO 8
80 READ A: PRINT A
90 NEXT

BASIC-VOKABULAR 77



RETURN

TYP: Anweisung
FORMAT: RETURN

Funktion: Die RETURN-Anweisung wird benutzt, um aus einem Unterprogramm,
das durch eine GOSUB-Anweisung aufgerufen wurde, zuriickzuspringen. Durch
RETURN wird der Rest Ihres Programms ab der Anweisung nach dem entsprechen-
den GOSUB wieder gestartet. Bei der Verschachtelung von Unterprogrammen muB
fir jedes GOSUB mindestens eine RETURN-Anweisung vorhanden sein. Ein
Unterprogramm kann beliebig viele RETURN-Anweisungen enthalten. Durch die
zuerst gelesene RETURN-Anweisung wird das Unterprogramm jedoch beendet.

BEISPIEL DER RETURN-ANWEISUNG:

10 PRINT “THIS IS THE PROGRAM*

20 GOSUB 1000

30 PRINT “PROGRAM CONTINUES*

40 GOSUB 1000

50 PRINT “MORE PROGRAM*

60 END

1000 PRINT “THIS IS THE GOSUB“:RETURN

RIGHTS

TYP: Stringfunktion
FORMAT: RIGHTS (<String>, <Ganze Zahl>)

Funktion: Uber die Funktion RIGHT$ wird ein Teilstring von der rechten Seite
einer Zeichenkette wiedergegeben. Die Lange des Teilstrings wird durch die ganze
Zahl des Argumentes bestimmt. Diese Zahl kann zwischen 0 und 255 liegen. Ist
diese Zah! Null, dann wird ein Leerstring (“ “) wiedergegeben. Ist die ganze Zahl
gréBer als die Lange des Strings, dann wird der ganze String wiedergegeben.

BEISPIEL DER FUNKTION RIGHTS:

10 MSG$ = “COMMODORE COMPUTERS*
20 PRINT RIGHT$(MSGS$,9)

RUN

COMPUTERS

78 BASIC-VOKABULAR



RND

TYP: Gleitpunktfunktion
FORMAT: RND (<numerisch>)

Funktion: RND erstellt eine Gleitpunktzahl von 0.0 bis 1.0. Der Computer erstellt
Zufallszahlen ausgehend von einer Zahl, die im Computer-Jargon “seed” (Samen)
genannt wird. Die RND-Funktion wird bei Einschalten der Stromversorgung akti-
viert. Das <numerische> Argument ist, auBer in bezug auf das Vorzeichen (positiv,
Null oder negativ), ein Hilfsargument. Ist das <numerische> Argument positiv, so
wird die gleiche “Pseudozufall“-Folge von Zahlen, angefangen bei einem gegebe-
nen Seed-Wert, wiedergegeben. Unterschiedliche Zahlenfolgen ergeben sich aus
unterschiedlichen Seeds, jede Folge kann jedoch ab der gleichen Seed-Nummer
wiederholt werden. Fir das Uberprifen von Programmen ist es sinnvoll, eine
bereits bekannte Folge von “Zufallszahlen“ zu haben.

Wird das <numerische> Argument Null gewahlt, erstellt RND eine Zahl direkt von
einer freilaufenden Hardware-Uhr, der System-“Jiffy-Clock“. Durch negative Argu-
mente gilt flir die RND-Funktion bei jedem Funktionsaufruf eine Seed-Riickstellung.

BEISPIEL DER RND-FUNKTION:

220 PRINT INT(RND(0)*50) (Wiedergabe von ganzen
Zufallszahlen 0—49)

100 X=INT(RND(1)*6)+INT(RND(1)*6)+2  (Simuliert 2 Wirfel)

100 X=INT(RND(1)*1000)+1 (Ganze Zufallszahl von 1 bis
1000)

100 X=INT(RND(1)*150)+100 (Ganze Zufallszahl von 100 bis
249)

100 X=RND(1)*(U-L)+L (Zufallszahlen zwischen oberer

(U) und unterer (L) Grenze)

BASIC-VOKABULAR 79



RUN

TYP: Befehl
FORMAT: RUN [<Zeilennummer>]

Funktion: Der Systembefehl RUN wird benutzt, um ein im Speicher befindliches
Programm auszufiihren. Uber den Befehl RUN wird vor dem Programmstart ein
CLR ausgefiihrt. Zur Vermeidung der Loschung kann das Programm durch CONT
oder GOTO anstelle von RUN wieder gestartet werden. Wird eine <Zeilennum-
mer> angegeben, so beginnt das Programm in dieser Zeile. Ansonsten beginnt der
RUN-Befehl die Ausfihrung mit der ersten Programmzeile. Dieser Befehl kann
auch innerhalb eines Programms benutzt werden. Wenn die angegebene Zeilenzahl
nicht existiert, wird die BASIC-Fehlermeldung UNDEF’D STATEMENT angezeigt.
Die Programmausfiihrung stoppt, und BASIC kehrt zum Direktmodus zurtick, wenn
eine END- oder STOP-Anweisung erreicht wird, wenn die letzte Programmzeile
beendet wird oder wenn wahrend der Ausfihrung ein BASIC-Fehler auftritt.

BEISPIELE DES RUN-BEFEHLS:

RUN (Beginnt bei der ersten Programmzeile)
RUN 500 (Beginnt bei Zeilennummer 500)
RUN X (Beginnt bei Zeile X. Wenn keine Zeile X existiert, wird die

Meldung UNDEF'D STATEMENT ERROR angezeigt.)

SAVE

TYP: Befehl
FORMAT: SAVE [“<Dateiname>“] [[<Geratenummer>]
[[<Adresse>]

Funktion: Uber den SAVE-Befehl wird das im Speicher befindliche Programm auf
Kassette oder Diskette gespeichert. Das Programm bleibt im derzeitigen Computer-
speicher auch nach diesem Zeichenvorgang noch erhalten. Der Dateityp ist PRG
(Programm). Wird die <Gerdtenummer> ausgelassen, nimmt der C 64 automatisch
an, daB das Programm auf Kassette, d. h. Gerdtenummer 1, gespeichert werden
soll. Ist die <Geratenummer> eine <8>, wird das Programm auf Diskette ge-
schrieben.

Die SAVE-Anweisung konnen Sie auch in Ihren Programmen benutzen. Die Aus-
fahrung fahrt nach Beendigung dieser Speicherung mit der nachsten Anweisung
fort.

80 BASIC-VOKABULAR



Programme auf Kassette werden automatisch doppelt gespeichert, so daB3 der
COMMODORE 64 beim erneuten Laden des Programms eine Fehleriberprifung
durchfiihren kann. Werden Programme auf Kassette gespeichert, dann wird der
<Dateiname> und die <Sekundar-Adresse> optional. Wird bei der Speicherung
ein Programmname jedoch in Anflihrungszeichen (“ “) oder durch eine Stringvaria-
ble (---$) angegeben, kann der COMMODORE 64 die einzelnen Programme
leichter finden. Wird der Dateiname ausgelassen, so ist danach kein Laden mit
Namen maglich.

Beim Speichern von Programmen auf Diskette muB der <Dateiname> angegeben
sein.

BEISPIELE DES SAVE-BEFEHLS:

SAVE (Schreiben auf Kassette ohne Namen)
SAVE “ALPHA“, 1 (Speichern auf Kassette mit Dateiname “alpha®)
SAVE “ALPHA“, 1, 2 (Speichern von “alpha“ mit Kassettenende-

Kennzeichen)

SAVE “FUN.DISK",8 (Speichern auf Diskette (Gerate-Nr. 8))

SAVE A$ (Speichern auf Kassette mit der Bezeichnung
A$)

10 SAVE “HI" (Speichern des Programms und Ubergang zur

nachsten Programmzeile)

SAVE “ME“/1,3 (Speichern im gleichen Speicherplatz und
Setzen eines Kassettenende-Kennzeichens)

BASIC-VOKABULAR 81



SGN

TYP: Ganzzahlige Funktion
FORMAT: SGN (<numerisch>)

Funktion: SGN gibt Ihnen abhéngig vom Vorzeichen des <numerischen> Argu-
ments einen ganzzahligen Wert. Ist das Argument positiv, dann ist das Ergebnis 1.

Ist das Argument O, dann ist auch das Ergebnis 0, und bei negativem Argument
lautet das Ergebnis —1.

BEISPIEL DER SGN-FUNKTION:
90 ON SGN(DV)+2 GOTO 100, 200, 300

(Sprung zu 100, wenn DV=negativ, zu 200, wenn DV=0, zu 300, wenn
DV=positiv)

SIN

TYP: Gleitpunktfunktion
FORMAT: SIN (<numerisch>)

Funktion: SIN gibt Ihnen den Sinus des <numerischen> Arguments, das in
BogenmaB anzugeben ist. Der Wert von COS(x) ist gleich SIN(x+3.14159265/2).

BEISPIEL DER SIN-FUNKTION:

235 AA = SIN(1.5): PRINT AA
.997494987

82 BASIC-VOKABULAR



SPC

TYP: Stringfunktion
FORMAT: SPC (<numerisch>)

Funktion: Mit der SPC-Funktion wird die Datenformatierung entweder als Aus-
gabe auf dem Bildschirm oder in eine logische Datei Uberpriift. Die Anzahl der durch
das <numerische> Argument angegebenen Leerstellen (SPC) wird beginnend bei
der ersten verfligbaren Position angezeigt. Fiir Bildschirm- oder Kassettendateien
liegt der Wert des Arguments zwischen 0 und 255 und fur Diskettendateien bei max.
254. Bei Druckerdateien wird automatisch ein Wagenriicklauf und Zeilenvorschub
ausgefuhrt, wenn die letzte Zeichenposition einer Zeile ein Leerzeichen ist.

BEISPIEL DER SPC-FUNKTION:

10 PRINT “RIGHT*"; “HERE &*;
20 PRINT SPC(5) “OVER"“ SPC(14) “THERE*
RUN

RIGHT HERE & OVER THERE

SQR

TYP: Gleitpunktfunktion
FORMAT: SQR (<numerisch>)

Funktion: SQR gibt lhnen den Wert der Quadratwurzel des <numerischen>
Arguments. Der Argumentenwert darf nicht negativ sein, da sonst die BASIC-
Fehlermeldung ?ILLEGAL QUANTITY angezeigt wird.

BEISPIEL DER SQR-FUNKTION:
FOR J = 2 TO 5: PRINT J*5, SQR(J * 5): NEXT
10 3.16227766
15 3.87298335
20 4.47213595

25 5
READY

BASIC-VOKABULAR 83



STATUS

TYP: Ganzzahlige Funktion
FORMAT: STATUS

Funktion: Sagt etwas Uber die letzte Ein-/Ausgabeoperation aus, die bei einer
offenen Datei durchgefiihrt wurde. Der STATUS kann von einem beliebigen Peri-

pheriegerét gelesen werden.

Das Schlisselwort STATUS (oder einfach ST) ist ein systemdefinierter Variablen-
name, in den der KERNAL den STATUS der Ein-/Ausgabeoperationen gibt. Nach-
stehend sehen Sie eine Tabelle der STATUS-Codewerte flr Kassette, Drucker,
Diskette und RS-232:

ST-Bit- |ST numerischer Lesen von Serieller | Kassette Verify
position Wert Kassette Bus and Load
Lesen/
Schreiben
0 1 Time out
Schreiben
1 2 Time out
Lesen
2 4 Kurzer Block Kurzer Block
3 8 Langer Block Langer Block
4 16 Nicht Beliebige
erkennbarer fehlende
Lesefehler Ubereinstimmung
5 32 Prifsummen- Prifsummen-
fehler fehler
6 64 Dateiende Ende der
Eingabe
7 -128 Kassetten- Gerat nicht| Kassettenende
ende vorhanden

84 BASIC-VOKABULAR



BEISPIELE DER STATUS-FUNKTION:

10 OPEN 1, 4: OPEN 2, 8, 4, “MASTER FILE,SEQ,W*

20 GOSUB 100: REM CHECK STATUS

30 INPUT#2, A$, B, C

40 IF STATUS AND 64 THEN 80: REM HANDLE END-OF-FILE
50 GOSUB 100: REM CHECK STATUS

60 PRINT#1, A$, B; C

70 GOTO 20

80 CLOSE1: CLOSE2

90 GOSUB 100: END

100 IF ST >0 THEN 9000: REM HANDLE FILE I/= ERROR
111 RETURN

STEP

TYP: Anweisung
FORMAT: [STEP <Ausdruck>]

Funktion: Das nicht notwendige STEP-Schliisselwort folgt nach der <Grenze> in
einer FOR-Anweisung. Es bestimmt einen Inkrementwert fiir die Schleifenzahler-
Variable. Als STEP-Inkrement kann ein beliebiger Wert auBer Null benutzt werden.
Wird das STEP-Schliisselwort ausgelassen, so ist der Inkrementwert +1. Wird die
NEXT-Anweisung flir eine FOR-Schleife erreicht, wird das STEP-Inkrement wirk-
sam. Der Zéhler wird gegen den Endwert Uberpriift, um festzustellen, ob die
Schleife beendet ist. (Bezliglich weiterer Einzelheiten siehe FOR-Anweisung.)

Anmerkung: Der STEP-Wert kann nicht innerhalb der Schleife gedndert werden.

BEISPIELE DER STEP-ANWEISUNG:

25 FOR XX = 2 TO 20 STEP 2 (Zehnmalige Wiederholung der
Schleife)

35 FOR ZZ = 0 TO —20 STEP -2 (Elfmalige Wiederholung der
Schleife)

BASIC-VOKABULAR 85



STOP

TYP: Anweisung
FORMAT: STOP

Funktion: Die STOP-Anweisung wird benutzt, um die Ausfiihrung des derzeitigen
Programms zu stoppen und zum Direktmodus zurlickzukehren. Die STOP-Anwei-
sung hat die gleiche Funktion wie die Betatigung der Taste (M. Auf dem
Bildschirm wird die BASIC-Fehlermeldung ?BREAK IN LINE nnnnn und danach
READY angezeigt. “nnnnn“ gibt an, in welcher Zeilennummer die Programm-
ausflhrung gestoppt wurde. Offene Dateien bleiben offen, und alle Variablen
konnen Uberprift werden. Das Fortsetzen des Programmes ist tiber die Anweisung
CONT oder GOTO maéglich.

BEISPIELE DER STOP-ANWEISUNG:
10 INPUT#1, AA, BB, CC
20 IF AA = BB AND BB = CC THEN STOP
30 STOP
(Ist die Variable AA gleich —1 und BB gleich CC, dann:)

BREAK IN LINE 20 (Fur beliebige andere Datenwerte)
BREAK IN LINE 30

STR$

TYP: Stringfunktion
FORMAT: STR$ (<numerisch>)

Funktion: STR$ wandelt das numerische Argument in einen String um. Ist das
Argument positiv oder 0, so beginnt der String mit einem Leerzeichen.

BEISPIEL DER FUNKTION STR$:

100 FLT = 1.5E4: ALPHAS$ = STR$(FLT)
110 PRINT FLT, ALPHA$

15000 15000

86 BASIC-VOKABULAR



SYS

TYP: Anweisung
FORMAT: SYS <Adresse>

Funktion: Dies ist die am weitesten verbreitete Art, ein BASIC-Programm mit
einem Maschinensprache-Programm zu kombinieren. Das Programm in Maschi-
nensprache beginnt an der durch die SYS-Anweisung angegebenen Adresse. Der
Systembefehl SYS wird entweder im Direkt- oder Programmodus benutzt, um die
Steuerung des Mikroprozessors zu einem im Speicher existierenden Maschinen-
sprache-Programm zu Ubertragen. Die Adresse wird durch einen numerischen
Ausdruck angegeben und kann an einem beliebigen RAM- oder ROM-Speicher-
platz liegen.

Wenn Sie die SYS-Anweisung benutzen, muB dieser Abschnitt des Maschinen-
sprache-Codes mit einer RTS-Anweisung (Riickkehr vom Unterprogramm) beendet
werden, damit nach Ausflihrung des Maschinensprache-Programms die BASIC-
Ausfiihrung mit der Anweisung hinter dem SYS-Befehl fortgesetzt wird.

BEISPIELE DER SYS-ANWEISUNG:
SYS 64738 (Sprung zum System-Kaltstart im ROM)

10 POKE 4400,96: SYS 4400 (Geht zum Maschinencode-Platz 4400
und kehrt sofort zurlick)

TAB

TYP: Stringfunktion
FORMAT: TAB (<numerisch>)

Funktion: Durch die TAB-Funktion wird der Cursor zu der durch das <numeri-
sche> Argument angegebenen Bildschirm-Position (gezahlt ab der duBerst linken
Position der derzeitigen Zeile) bewegt. Der Wert des Arguments kann zwischen 0
und 255 liegen. Die TAB-Funktion sollte nur mit der PRINT-Anweisung benutzt
werden, da sie zusammen mit PRINT# flr eine logische Datei unwirksam ist.

BASIC-VOKABULAR 87



BEISPIELE DER TAB-FUNKTION:

100 PRINT “NAME" TAB(25) “AMOUNT"“: PRINT
110 INPUT#1, NAMS, AMT$
120 PRINT NAM$ TAB(25) AMT$

NAME AMOUNT
G.T.JONES 25.
TAN

TYP: Gleitpunktfunktion
FORMAT: TAN (<numerisch>)

Funktion: Gibt den Tangens des <numerischen> Ausdrucks, der einen Winkel in
BogenmaB darstellt, wieder. Beim Uberlauf der TAN-Funktion wird die BASIC-
Fehlermeldung ?DIVISION BY ZERO angezeigt.

BEISPIEL DER TAN-FUNKTION:

10 XX = .785398163: YY = TAN(XX): PRINT YY
1

TIME

TYP: Numerische Funktion
FORMAT: TI

Funktion: Bei der TI-Funktion wird der Intervalltimer gelesen. Dieser Typ wird
“Jiffy Clock“ genannt. Der “Jiffy Clock“-Wert wird bei Einschalten der Stromver-
sorgung auf Null gestellt (initialisiert). Dieser 1/60-Sekunden-Intervalltimer wird
wahrend der Kassettenein-/ausgabe abgeschaltet.
BEISPIEL DER TI-FUNKTION:

10 PRINT TI/60 “SECONDS SINCE POWER UP“

88 BASIC-VOKABULAR



TIMES

TYP: Stringfunktion
FORMAT: TI$

Funktion: Der Timer arbeitet genau wie eine normale Uhr, solange das System
eingeschaltet ist. Der Hardware-Intervalltimer (oder “Jiffy Clock“) wird gelesen und
zur Aktualisierung des Werts von TI$ benutzt. Hierdurch entsteht ein Zeit-String
(TI$) von sechs Zeichen in Stunden, Minuten und Sekunden. Dem Timer kann,
&hnlich wie bei Ihrer Armbanduhr, ein beliebiger Startpunkt zugeordnet werden. Der
Wert von TI$ ist nach der Kassettenein-/ausgabe nicht mehr prézise.

BEISPIEL DER FUNKTION TI$:
1 TI$ = “000000“: FOR J=1 TO 10000: NEXT: PRINT TI$

000011

USR

TYP: Gleitpunktfunktion
FORMAT: USR (<numerisch>)

Funktion: Uber die USR-Funktion wird zu einem Maschinensprache-Unterpro-
gramm gesprungen, das vom Benutzer aufgerufen werden kann und dessen
Startadresse durch die Inhalte der Speicherplatze 785—786 angezeigt ist. Die
Startadresse wird vor dem Aufruf der USR-Funktion durch POKE-Anweisung in die
Adressen 785 und 786 eingegeben. Wurden die POKE-Anweisungen nicht durch-
gefiuhrt, so erfolgt die Fehlermeldung ?2ILLEGAL QUANTITY.

Der Wert des <numerischen> Arguments wird im Gleitpunkt-Akkumulator (Start-
adresse 97) fir die Verwendung im Assembler-Code gespeichert, und das Ergebnis
der USR-Funktion wird an diesem Platz bei der Riickkehr vom Unterprogramm zu
BASIC gespeichert.

BEISPIELE DER USR-FUNKTION:
10 B = T * SIN(Y)
20 C = USR (B/2)
30 D = USR (B/3)

BASIC-VOKABULAR 89



VAL

TYP: Numerische Funktion
FORMAT: VAL (<String>)

Funktion: Gibt den numerischen Wert eines Strings wieder. Ist das erste nicht
leere Zeichen des Strings nicht ein Pluszeichen (+), Minuszeichen (—) oder eine
Zahl, ergibt sich der Wert Null. Die String-Umsetzung wird am Ende der Zeichen-
kette, oder wenn ein Nicht-Zahlenzeichen gefunden wird, beendet (mit Ausnahme
des Dezimalpunkts oder des Exponenten e).

BEISPIEL DER VAL-FUNKTION:

10 INPUT#1, NAMS, ZIP$
20 IF VAL(ZIP$) <19400 OR VAL(ZIP$)> 96699 THEN PRINT NAM$ TAB(25)
“GREATER PHILADELPHIA®

VERIFY

TYP: Befehl
FORMAT: VERIFY [“<Datenname>*“] [,<Geratenummer>]

Funktion: Der VERIFY-Befehl wird im Direkt- oder Programm-Modus benutzt, um
die Inhalte von BASIC-Programmdateien auf Kassette oder Diskette mit dem
derzeitigen im Speicher befindlichen Programm zu vergleichen. VERIFY wird nor-
malerweise direkt nach der Speicherung (SAVE) benutzt, um sicherzustellen, daB
das Programm korrekt gespeichert wurde.

Wird die Gerdtenummer ausgelassen, gilt flir das Programm die Gerdtenummer 1
(Datasette). Wird fur Kassettendateien der Dateiname ausgelassen, so wird das
nachste auf der Kassette gefundene Programm verglichen. Fir Diskettendateien
(Gerate-Nr. 8) muB der Dateiname angegeben werden. Wird eine Abweichung vom
Programmtext festgestellt, so erscheint die BASIC-Fehlermeldung ?VERIFY
ERROR.

Ein Programmname kann entweder in Anfiihrungszeichen (“ “) oder als Stringvaria-
ble angegeben werden. VERIFY wird auch benutzt, um ein Kassettenband hinter
das letzte Programm zu spulen, so daB danach ein neues Programm abgespeichert
werden kann. Auf diese Weise wird eine Programm{berschreibung vermieden.

90 BASIC-VOKABULAR



BEISPIELE DES VERIFY-BEFEHLS:

VERIFY (Uberprift erstes Programm auf der
Kassette)

PRESS PLAY ON TAPE

OK

SEARCHING

FOUND <FILENAME>

VERIFYING

9000 SAVE “ME"“,8: (Sucht das Programm bei Gerat Nr. 8)
9010 VERIFY “ME*“,8

WAIT

TYP: Anweisung
FORMAT: WAIT <Platz>, <Maske-1> [,<Maske-2>]

Funktion: Durch die WAIT-Anweisung wird die Programm-Ausfiihrung so lange
unterbrochen, bis eine gegebene Speicheradresse ein bestimmtes Bit-Muster
erkennt. D. h., WAIT kann benutzt werden, um ein Programm so lange zu stoppen,
bis eine externe Bedingung erflllt ist. Dies erfolgt durch Uberwachung des Status
der Bits im Ein-/Ausgaberegister. Fir die Daten von WAIT kénnen beliebige
numerische Ausdriicke gewahlt werden. Diese werden jedoch in ganzzahlige Werte
umgesetzt.

Die meisten Programmierer werden nie mit dieser Anweisung arbeiten. Hierdurch
wird das Programm angehalten, bis die Bits eines bestimmten Speicherplatzes auf
eine ganz bestimmte Weise verandert werden. Diese Anweisung wird fast aus-
schlieBlich fir bestimmte Ein-/Ausgabevorgange benutzt.

Die WAIT-Anweisung nimmt den Wert im Speicherplatz und fiihrt eine logische
UND-Verknipfung mit dem Wert der Maske-1 durch. Enthalt die Anweisung eine
Maske-2, wird das Ergebnis des ersten Vorganges mit Maske-2 durch ein aus-
schlieBendes ODER verkn(ipft.

D. h., Maske-1 “filtert* beliebige Bits aus, die Sie nicht priifen wollen. Ist das Bit in
Maske-1 0, so ist das entsprechende Bit in Ihrem Ergebnis auch 0. Maske-2 dreht
die Bits um, so daB Sie sowohl Uberprifen kénnen, ob eine Bedingung erfiillt ist
oder nicht. Bits, fir die ein 0-Test ausgeflihrt werden soll, missen in der entspre-
chenden Position in Maske-2 eine 1 haben.

BASIC-VOKABULAR 91



Sind die entsprechenden Bits der Operanden von Maske-1 und Maske-2 unter-
schiedlich, so ergibt sich durch die Verknlpfung mit ausschlieBendem ODER das
Bit-Ergebnis 1. Ergibt sich bei den entsprechenden Bits das gleiche Ergebnis, so
lautet das Bit 0. Uber die WAIT-Anweisung kann eine unendliche Pause eingeflgt
werden. In diesem Fall ist eine Ruckstellung mit den Tasten und
moglich. Halten Sie die Taste gedriickt und driicken Sie
dann die Taste . In nachstehendem ersten Beispiel wird so lange
gewartet, bis an der Kassetteneinheit zur Fortsetzung des Programms eine Taste
betéatigt wird. Beim zweiten Beispiel wird gewartet, bis ein Sprite mit dem Bild-
schirmhintergrund kollidiert.

BEISPIELE DER WAIT-ANWEISUNG:

WAIT 1, 32, 32

WAIT 53273, 6, 6

WAIT 36868, 144, 16 (144 & 16 sind Masken. 144=10010000 binar
und 16=10000 bindr. Die WAIT-Anweisung
stoppt das Programm, bis Bit 7 ein oder Bit 4
aus ist.)

TASTATUR UND MERKMALE DES COMMODORE 64

Das Betriebssystem hat einen Tastaturpuffer mit einer Kapazitat von 10 Zeichen,
der die Uber die Tastatur eingegebenen Befehle so lange speichert, bis sie
ausgeflihrt werden kénnen. Dieser Puffer speichert die Tastendricke in der Reihen-
folge, in der sie eingegeben wurden. D. h., die erste Eingabe wird auch zuerst
ausgeflhrt. Folgt die zweite Tastenbetatigung z. B. ehe die erste ausgefliihrt werden
kann, so wird die zweite im Puffer gespeichert, wahrend die Ausfiihrung des ersten
Zeichens fortgefihrt wird.

Nach Abarbeitung des ersten Zeichens wird Uberprdft, ob im Puffer weitere Daten
sind. Dann wird die zweite Tastenbetdtigung ausgefiihrt. Ohne diesen Puffer
wirden bei einer schnellen Eingabe Uber die Tastatur gelegentlich Zeichen
verlorengehen.

Dies bedeutet also, daB der Puffer der Tastatur ein “Vorschreiben® erméglicht und
daB er Antworten auf INPUT-Rickfragen oder GET-Anweisungen unter Umsténden
vorwegnimmt. Bei Betatigung der Tastatur werden die entsprechenden Zeichen in
einer Datei im Puffer aufgelistet und dann entsprechend der Eingangsreihenfolge
ausgefihrt. Dadurch kann es gelegentlich zu Stérungen kommen, wenn durch eine
versehentliche Tastenbetatigung das Programm aus dem Puffer ein falsches Zei-
chen empfangt.

92 BASIC-VOKABULAR



Normalerweise stellen falsche Tastenbetédtigungen keine Probleme dar, die durch
die Taste oder die Loschtaste geléscht und daher neu
eingegeben werden konnen. Die Korrekturen werden vor dem nachsten “carriage-
return“ durchgefihrt. Wird jedoch die Taste gedriickt, ist keine Korrektur
moglich, da alle Zeichen im Puffer bis zu (und einschlieBlich) dem “carriage-return*
vor einer weiteren Korrektur ausgefiihrt werden. Um dies zu vermeiden, kann eine
Schleife benutzt werden, um den Tastaturpuffer vor dem Lesen zu I6schen.

10 GET JUNKS: IF JUNK$ <>“* THEN 10: REM EMPTY THE KEYBOARD
BUFFER

Zusétzlich zu GET und INPUT kann die Tastatur auch Uber PEEK gelesen werden,
indem aus dem Speicherplatz 197 ($00C5) der Wert der derzeitig gedriickten Taste
gelesen wird. Wird bei der Ausflihrung von PEEK keine Taste gedrickt, so wird der
Wert 64 wiedergegeben. Die numerischen Tastaturwerte, Tastensymbole und Zei-
chencodes (CHR$) werden in Anhang C gezeigt. Bei folgendem Beispiel wird
solange eine Schleife durchgeflihrt, bis eine Taste gedrickt ist. Dann wird die ganze
Zahl in ein Zeichen umgesetzt.

10 AA = PEEK(197): IF AA = 64 THEN 10
20 BB$ = CHR$(AA)

Die Tastatur ist eine Art Schaltersatz, der in eine Matrix von acht Spalten mal acht
Reihen unterteilt ist. Die Tastaturmatrix wird Uber das CIA #1 Ein-/Ausgabechip
(MOS 6526 Complex-Interface-Adapter) vom KERNAL hinsichtlich der Schalter-
stellungen abgetastet. Die Abtastung erfolgt liber zwei CIA-Register. Register #0
bei Platz 56320 ($DCO00) fiir die Spalten und Register #1 bei Platz 56321 ($DCO01)
flr die Reihen.

Die Bits 0 bis 7 von Speicherplatz 56320 entsprechen den Spalten 0 bis 7. Die Bits
0 bis 7 von Speicherplatz 56321 entsprechen den Reihen 0 bis 7. Der KERNAL
schreibt die Spaltenwerte nacheinander, liest dann die Reihenwerte und decodiert
anschlieBend die Schalterstellung in den Wert CHR$ (N) der gedriickten Taste.
Aus acht Spalten mal acht Reihen ergeben sich 64 mdgliche Werte. Wird jedoch
zuerst die Taste : . [@ oder die Taste gedriickt gehal-
ten und ein weiterer Buchstabe eingegeben, so werden zusétzliche Werte erzeugt.
Der KERNAL decodiert diese Tastaturen namlich getrennt und “merkt sich®, wenn
eine Steuertaste gedriickt wurde. Das Ergebnis dieser Tastaturabfrage wird dann in
Adresse 197 gespeichert.

BASIC-VOKABULAR 93



Die Zeichen kénnen auch direkt in den Tastaturpuffer Gber die POKE-Anweisung in
die Speicherstellen 631—-640 geschrieben werden. Diese Zeichen werden ausge-
fhrt, wenn in Adresse 198 die Anzahl der Zeichen eingegeben wird. Auf diese
Weise kdnnen Direkt-Modusbefehle automatisch durch Anzeige der Anweisungen
auf dem Bildschirm, Eingabe von RETURNS in den Puffer und Einstellung des
Zeichenzahlers ausgeflihrt werden. Im nachstehenden Beispiel listet das Programm
sich selbst auf dem Drucker auf und nimmt danach die Ausfiihrung wieder auf.

10 PRINT CHR$(147)“PRINT#1: CLOSE 1: GOTO 50“

20 POKE 631,19: POKE 632,13: POKE 633,13: POKE 198,3
30 OPEN 1,4: CMD1: LIST

40 END

50 REM PROGRAM RE-STARTS HERE

BILDSCHIRMEDITOR

Der Bildschirmeditor oder SCREEN EDITOR ist ein wirksames Hilfsmittel bei der
Aufbereitung von Programmtexten. Nachdem ein Programmteil auf dem Bildschirm
aufgelistet ist, kann man sich auf dem Bildschirm mit Hilfe der Cursorsteuertasten
und weiterer Sondertasten frei bewegen, so daB die geeigneten Anderungen
vorgenommen werden kdnnen. Wird nach Beendigung der Korrekturen einer
bestimmten Textzeile die Taste an einer beliebigen Zeilenposition
gedriickt, so liest der SCREEN EDITOR die gesamte logische Bildschirmzeile von
80 Zeichen ein.

Der Text wird dann zum Interpreter weitergegeben, gekennzeichnet und im Pro-
gramm gespeichert. Hierbei wird eine alte Zeile im Speicher durch die aufbereitete
ersetzt. Um eine zusatzliche Kopie von einer beliebigen Programmzeile zu erstel-
len, wird einfach die Zeilennummer gedndert und die Taste gedriickt.
Uberschreitet eine Programmzeile aufgrund der Verwendung von Schlisselwortab-
klirzungen 80 Zeichen, so sind die Uberschissigen Zeichen beim Aufbereiten der
Zeile verloren, da der EDITOR nur zwei physische Bildschirmzeilen liest. Aus
diesem Grund ist auch eine Eingabe von mehr als 80 Zeichen nicht moglich. Fir
praktische Anwendungen ist die Zeilenlange eines BASIC-Textes daher entspre-
chend der Bildschirmanzeige auf 80 Zeichen begrenzt.

Unter bestimmten Bedingungen behandelt der SCREEN EDITOR die Cursorsteuer-
tasten unterschiedlich zum normalen Modus. Steht der Cursor rechts neben einer
ungeraden Zah/ von Anflihrungszeichen (“), so arbeitet der Editor im QUOTE-
MODUS (Anflihrungszeichen-Modus).

94 BASIC-VOKABULAR



In diesem Modus werden Datenzeichen normal eingegeben, jedoch kann der
Cursor nicht mehr ber die Cursorsteuertasten bewegt werden. Durch Betatigung
der Cursorsteuertasten werden statt dessen Zeichen in Negativdarstellung ange-
zeigt. Das gleiche gilt flr die Farbsteuertasten. Auf diese Weise kdnnen Sie Cursor
und Farbsteuerung in Form von Strings in Ihr Programm aufnehmen. Sie werden
noch feststellen, wie nitzlich dies ist.

Wird namlich ein Text, der zwischen Anflihrungszeichen steht, auf dem Bildschirm
angezeigt, dann erfolgt automatisch die Cursorpositionierung und Farbsteuerung
als Teil des Strings. Cursorsteuerung kann in Strings z. B. so benutzt werden:

Sie geben ein — 10 PRINT “A(R)(R)B(L)(L)(L)C(R)(R)D":
REM(R)=CRSR RIGHT, (L)=CRSR LEFT

Der Computer zeigt an -  AC BD

Die einzige Cursorsteuertaste, die NICHT vom Anfihrungszeichen-Modus beein-
fluBt wird, ist die Taste . Erfolgt im Quote-Modus ein Fehler, kann nicht mit
der Taste zurlickgegangen und der Fehler Uberschrieben werden —
selbst durch Anschlagen der Taste werden umgekehrte Bildschirmzei-
chen angezeigt.

Beenden Sie statt dessen die Eingabe der Zeile durch , dann kénnen Sie
diese normal abdndern. Eine weitere Mdglichkeit ist, die Tasten
und zu driicken, wenn keine weiteren Cursorsteuerungen
in der Zeichenkette bendtigt werden. Hierdurch wird der Quote-Modus geldscht.
Die Cursorsteuertasten, die in Zeichenketten benutzt werden kdnnen, sind in
Tabelle 2.2. gezeigt.

Tabelle 2.2. Cursorsteuertasten im QUOTE-MODUS

Steuertaste Bildschirmanzeige
Cursor nach oben D
Cursor nach unten m
Cursor nach links .I
Cursor nach rechts
Léschen D
Ausgangsstellung
EinflGgen I.

BASIC-VOKABULAR 95



Wenn Sie sich NICHT im Quote-Modus befinden, werden durch gleichzeitiges
Dricken der Tasten und die Daten rechts neben dem Cursor
verschoben. So entsteht zwischen zwei Zeichen Platz fiir die Eingabe weiterer
Zeichen. Der Editor arbeitet nun solange im Einfligemodus, bis alle geoffneten
Leerstellen geflillt sind.

Auch im Einfligemodus erscheinen nach Betatigung der Cursor- und Farbsteuerta-
sten umgekehrte Zeichen. Der einzige Unterschied zeigt sich beim Driicken der
Taste ([DSIEEY . Durch wird nun ein umgekehrtes angezeigt. Die
Taste , die im Anflhrungszeichen-Modus Revers-Zeichen anzeigt, fugt
Leerzeichen ein.

Dies bedeutet, daB in einer PRINT-Anweisung L&schungen (DEL) im Gegensatz
zum Quote-Modus mdglich sind. Der Einfligemodus wird durch Driicken
der Tasten (EMIEN. und oder und
geldscht. AuBerdem wird dieser Modus geldscht, wenn alle eingefligten Leerstellen
geflllt sind. DEL-Zeichen kénnen in Zeichenketten z. B. so benutzt werden:

10 PRINT "HELLO" P

(Die obige Tastenfolge erscheint bei der Auflistung wie folgt:)
10 PRINT“HELP*

Wird nach diesem Beispiel RUN eingegeben, so wird das Wort HELP angezeigt. Die
Buchstaben LO werden namlich vor der Anzeige von P geldscht. Die Léschzeichen
in Zeichenketten gelten sowohl fiir die Anweisung LIST als auch fir PRINT. Auf
diese Weise konnen Sie alle oder einen Teil der Textzeilen “verstecken”. Die
Abénderung einer Zeile mit diesen Zeichen ist jedoch schwierig.

Es gibt noch weitere Zeichen, die fiir spezielle Funktionen angezeigt werden
kdénnen, auch wenn diese nicht ganz einfach Uber die Tastatur zur Verfigung
stehen. Um diese Zeichen in Anflihrungszeichen zu setzen, werden in der Zeile
entsprechende Leerzeichen gelassen, die Taste gedriickt und dann zur
Zeilenaufbereitung zurickgegangen.

Driicken Sie nun die Tasten und (EXEEI. um mit der Anzeige der unter-
legten Zeichen zu beginnen. Schlagen Sie die Tasten wie folgt an:

Tastenfunktion Tastenanschlag Bildschirmanzeige
GroBumschaltung RETURN [} N
Umschaltung auf Klein-/GroBschrift [~ | v ]
Umschaltung auf GroBbuchstaben/ (N ] n

Graphikzeichen

96 BASIC-VOKABULAR



Das gleichzeitige Driicken der Tasten und verursacht auf dem
Bildschirm einen “Wagenriicklauf“ und einen Zeilenvorschub, aber die Zeichen-
kette wird nicht beendet. Dies gilt sowohl fiir LIST als auch fur PRINT, so daB bei
Verwendung dieser Zeichen eine Abanderung schwierig ist. Wird fur die Ausgabe
Uber die CMD-Anweisung der Drucker gewahlt, so wird durch das unterlegte
Zeichen “N*" der Zeichensatz flr Klein-/GroBschrift und durch “N* der
Zeichensatz flir GroBbuchstaben/Graphikzeichen eingeschaltet.

Durch gleichzeitiges Driicken der Tasten und kénnen unterlegte
Bildschirmzeichen in Strings eingeschlossen werden. Auf dem Bildschirm erscheint
dann in Anfiihrungszeichen ein unterlegtes R. Auf diese Weise werden alle Zei-
chen auf dem Bildschirm unterlegt (d.h. wie ein Negativbild) angezeigt.
Um diese Ausgabe zu beenden, driicken Sie gleichzeitig die Tasten
und EXRLIEE - Nun wird ein unterlegtes Graphikzeichen angezeigt.
Numerische Daten kénnen unterlegt angezeigt werden, indem man zunéchst ein
CHR$(18) eingibt. Durch CHR$(146) oder ein “Carriage return“ wird diese umge-
kehrte Bildschirmausgabe geldscht.

BASIC-VOKABULAR 97






KAPITEL 3

GRAPHIK-
PROGRAMMIERUNG
MIT DEM
COMMODORE 64

e Graphikubersicht

e |Lage der Graphikzeichen

e Standardzeichenmodus

® Programmierbare Zeichen

e Mehrfarbengraphiken

e Erweiterter Hintergrundfarbmodus

e “Bit-Mapped“-Graphiken

e Mehrfarben-“Bit-Map-Modus*

e Rollen der Bildschirmanzeige

e Sprites

e Weitere Graphikmoglichkeiten

e Programmieren von Sprites — ein anderer
Aspekt

99




GRAPHIKUBERSICHT

Samtliche Graphikmdoglichkeiten des COMMODORE 64 basieren auf dem Video-
Interface-Chip 6567 (auch bekannt als VIC-II-Chip). Dieser Chip ermdglicht die
verschiedensten Graphikarten, einschlieBlich einer Textdarstellung von 40 Zeichen
mal 25 Zeilen, einem hoch auflésenden Display von 320 mal 200 Punkten sowie
den SPRITES, kleinen beweglichen Objekten, die das Erstellen von Spielen
wesentlich vereinfachen. Darlber hinaus kdnnen viele dieser Graphikarten auf dem
gleichen Display gemischt werden. So ist es z. B. mdglich, flr die obere Bildschirm-
halfte den Modus mit hoher Aufldsung und fur die untere Bildschirmhélfte den
Textmodus zu wahlen. SPRITES lassen sich mit allen Displayarten kombinieren. Wir
werden spater noch auf Sprites genauer eingehen. Zunachst beschaftigen wir uns
mit den Ubrigen Graphikarten.

Mit dem VIC-1I-Chip sind folgende Graphikarten méglich:

A) ZEICHENANZEIGE

1) Standardzeichen
a) ROM-Zeichen
b) RAM-programmierbare Zeichen

2) Mehrfarbige Zeichen
a) ROM-Zeichen
b) RAM-programmierbare Zeichen

3) Erweiterte Hintergrundfarbe
a) ROM-Zeichen
b) RAM-programmierbare Zeichen

B) BIT-MAP-MODUS

1) Standard-Bit-Map-Modus
2) Mehrfarben-Bit-Map-Modus

C) SPRITES

1) Standard-Sprites
2) Mehrfarben-Sprites

100 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



LAGE DER GRAPHIKZEICHEN

Zunachst einige allgemeine Informationen. Der Bildschirm des COMMODORE 64
verfugt Gber 1000 Positionen. Normalerweise beginnt der Bildschirm bei Adresse
1024 ($0400 in hexadezimaler Darstellung) und geht bis zu Adresse 2023. Jede
dieser Adressen kann 8 Bits speichern, das entspricht einer beliebigen ganzen Zahl
zwischen 0 und 255. Dem Bildschirmspeicher entspricht eine Gruppe von 1000
Adressen, die FARBSPEICHER oder FARB-RAM genannt wird. Diese beginnen
bei Platz 55296 ($D800 in hexadezimaler Darstellung) und reichen bis zu 56295.
Jede dieser Farb-RAM-Adressen speichert 4 Bits und kann daher eine beliebige
ganze Zahl von 0 bis 15 aufnehmen. Da der COMMODORE 64 lber 16 mogliche
Farben verflgt, kann man hiermit sehr gut arbeiten.

Dariiber hinaus kénnen jederzeit 256 verschiedene Zeichen angezeigt werden. Bei
der normalen Bildschirmanzeige enthalt jede der 1000 Adressen des Bildschirm-
speichers eine Code-Zahl, die dem VIC-II-Chip “sagt”, welches Zeichen an diesem
Bildschirmplatz anzuzeigen ist.

Die verschiedenen Graphikmodi werden Uber die 47 Steuerregister im VIC-II-Chip
gewahlt. Viele Graphikfunktionen lassen sich steuern, indem der richtige Wert Gber
die POKE-Anweisung in eines der Register geschrieben wird. Der VIC-II-Chip
befindet sich an den Speicherplatzen 53248 ($D000 in Hexadezimaldarstellung) bis
53294 ($DO2E).

WAHL DER VIDEO-BANK

Der VIC-1I-Chip kann gleichzeitig auf einen Speicherbereich von 16K zugreifen. Da
der COMMODORE 64 Uber einen 64K-Speicher verflgt, soll der VIC-II natlrlich
auch den ganzen Speicher “sehen” kénnen. Dies ist moglich. Es gibt vier verschie-
dene BANKS (oder Abschnitte), die flr jeweils 16K gelten. Nun muB lediglich noch
geregelt werden, auf welche dieser Abschnitte der VIC-1I-Chip zugreift. Auf diese
Weise kann der Chip die gesamte Speicherkapazitat von 64K “sehen”. Die Bank-
anwahl-Bits, die lhnen einen Zugriff auf die verschiedenen Speicherabschnitte
ermdglichen, befinden sich im COMPLEX-INTERFACE ADAPTER-CHIP #2 (CIA
#2) 6526. Uber die BASIC-Anweisungen POKE und PEEK (oder die entsprechen-
den Versionen in der Maschinensprache) wird eine Bank durch Steuerung der Bits 0
und 1 von PORT A des CIA#2 (Platz 56576 (oder $DDO00 in Hexadezimaldarstel-
lung)) gewahlt. Zur Anderung der Speicherabschnitte miissen diese zwei Bits auf
Ausgabe gesetzt sein. Dies wird anhand nachstehenden Beispiels deutlich:

POKE 56578,PEEK(56578)OR 3 :REM BITS 0 UND 1 ALS AUSGANG
SETZEN
POKE 56576,(PEEK(56576)AND 252)OR A:REM VIDEO-BANK WECHSELN

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 101



“A“ muB einen der folgenden Werte haben:

WERT | BITS |BANK | START- BEREICH DES VIC-II-CHIP
VONA PLATZ

0 00 3 49152 ($C000—$FFFF)*

1 01 2 32768 ($8000—$BFFF)

2 10 1 16384 ($4000—$7FFF)*

3 11 0 0 ($0000—$3FFF) (STANDARDWERT)

Dieses Konzept der 16K-Abschnitte spielt bei allen Anwendungen des VIC-II-Chip
eine Rolle. Sie sollten stets wissen, auf welche Bank VIC-II zeigt, da dies beeinfluBt,
von wo die Zeichendatenmuster kommen, wo sich der Bildschirm befindet, von wo
die Sprites kommen usw. Nach dem Einschalten des COMMODORE 64 gelten fur
die Bits 0 und 1 von Platz 56576 automatisch BANK 0 ($0000—$3FFF) fiir sdmtliche
Anzeigeninformationen.

*Anmerkung: Der Zeichensatz des COMMODORE 64 ist in den Banks 1 und 3 fir den VIC-1I-Chip
nicht verfligbar. (Siehe Abschnitt “Zeichenspeicher®.)

BILDSCHIRMSPEICHER

Durch POKEnN in das Kontrollregister 53272 ($D018 HEX) kann die Adresse des
Bildschirmspeichers gedndert werden. Dieses Register wird jedoch auch zur Steue-
rung des jeweils benutzten Zeichensatzes verwendet. Achten Sie daher besonders
darauf, diesen Teil des Steuerregisters nicht zu stéren. Die oberen 4 Bits steuern
den Platz des Bildschirmspeichers. Zur Bewegung des Bildschirms ist folgende
Anweisung erforderlich:

POKE53272,(PEEK(53272)AND15)ORA

102 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



Hierbei hat A einen der folgenden Werte:

LAGE*
A BITS
DEZIMAL HEXADEZIMAL
0 0000XXXX 0 $0000
16 0001 XXXX 1024 $0400 (STANDARD)
32 0010XXXX 2048 $0800
48 0011 XXXX 3072 $0C00
64 0100XXXX 4096 $1000
80 0101XXXX 5120 $1400
96 0110XXXX 6144 $1800
112 0111XXXX 7168 $1C00
128 1000XXXX 8192 $2000
144 1001 XXXX 9216 $2400
160 1010XXXX 10240 $2800
176 1011 XXXX 11264 $2C00
192 1100XXXX 12288 $3000
208 1101 XXXX 13312 $3400
224 1110XXXX 14336 $3800
240 T111XXXX 15360 $3C00
*Bitte denken Sie daran, daB die Startadresse der jeweiligen Bank des VIC-II-Chip addiert
werden muB.

FARBSPEICHER

Der Farbspeicher kann nicht verschoben werden. Er befindet sich stets an den
Platzen 55296 ($D800) bis 56295 ($DBE?7). Bildschirmspeicher (1000 Platze begin-
nend bei 1024) und Farbspeicher werden in den verschiedenen Graphikmodi
unterschiedlich benutzt. Ein in einem Modus erstelltes Bild sieht in einem anderen
Graphikmodus haufig véllig anders aus.

ZEICHENSPEICHER

Fir die Programmierung von Graphiken ist es wesentlich, von wo genau der VIC-I
die Zeicheninformation bekommt. Normalerweise erhélt der Chip die Konturen der
anzuzeigenden Zeichen vom Character-Generator-ROM. In diesem Chip werden
die Muster gespeichert, die die verschiedenen Buchstaben, Zahlen, Interpunktions-
symbole und alle anderen Zeichen der Tastatur bilden.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 103



Eines der Merkmale des COMMODORE 64 ist seine Fahigkeit, im RAM-Speicher
befindliche Muster zu benutzen. Diese RAM-Muster werden von lhnen erstellt, so
daB lhnen ein nahezu unbegrenzter Satz an Symbolen fiir Spiele, Geschaftsanwen-
dungen usw. zur Verfligung steht.

Ein normaler Zeichensatz enthéalt 256 Zeichen, bei dem jedes Zeichen durch 8
Bytes bestimmt wird. Da jedes Zeichen also 8 Bytes beansprucht, bendtigt der
komplette Zeichensatz 256*8=2K-Bytes. Da der VIC-II-Chip gleichzeitig auf 16K
zugreift, gibt es acht verschiedene Speicherplatzmdglichkeiten fiir einen vollstandi-
gen Zeichensatz. Sie brauchen natlrlich nicht immer einen ganzen Zeichensatz zu
verwenden. Er muB jedoch stets an einem der acht moglichen Startpldtze beginnen.
Die Lage des Zeichenspeichers wird durch 3 Bits vom VIC-II-Speicherregister an
Platz 53272 ($D018 HEX) kontrolliert. Die Bits 3, 2 und 1 steuern, wo sich der
Zeichensatz in 2K-Sétzen befindet. Bit O wird berlesen. Bitte denken Sie daran,
daB dies das gleiche Register ist, das auch die Lage des Bildschirmspeichers
bestimmt. Um die Lage vom Zeichenspeicher zu d@ndern, benutzen Sie folgende
BASIC-Anweisung:

POKE 53272,(PEEK(53272)AND240)OR A

Hierbei hat A einen der folgenden Werte:

WERT —— LAGE DES ZEICHENSPEICHERS*

VON A DEZIMAL : HEXADEZIMAL

0 XXXX000X 0 $0000—-$07FF

2 XXXX001X 2048 $0800—-$0FFF

4 XXXX010X 4096 $1000-$17FF ROM-IMAGE in BANK
0 & 2 (Standard)

6 XXXX011X 6144 $1800—$1FFF ROM-IMAGE in BANK

0&2
8 XXXX100X 8192 $2000—-$27FF
10 XXXX101X 10240 $2800—$2FFF
12 XXXX110X 12288 $3000—$37FF
14 XXXX111X 14336 $3800—$3FFF
*Bitte denken Sie daran, die Startadresse der Bank zu addieren. w

104 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



Das ROM-IMAGE in obiger Tabelle bezieht sich auf das Character-Generator-
ROM. Es erscheintim RAM bei obigen Platzen in Bank 0. AuBerdem erscheint es im
entsprechenden RAM an den Platzen 36864 —40959 ($9000—$9FFF) in Bank 2. Da
der VIC-II-Chip gleichzeitig nur auf 16K zugreifen kann, erscheinen die ROM-
Zeichenmuster in dem Satz, auf den gerade zugegriffen wird. Aus diesem Grund ist
das System so entwickelt, daB VIC-II davon ausgeht, daB sich die ROM-Zeichen bei
4096—8191 ($1000—$1FFF) befinden, wenn lhre Daten in Bank O sind, und bei
36864—40959 ($9000—3$9FFF) im Fall von Bank 2. Die ROM-Zeichen befinden sich
jedoch tatséchlich an den Platzen 53248—57343 ($D000—$DFFF).

Diese “Spiegelung” bezieht sich nur auf Zeichendaten, wie sie vom VIC-II-Chip
“gesehen” werden. RAM an diesen Adressen kann wie jeder andere RAM-
Speicher flr Programme, andere Daten usw. benutzt werden.

Anmerkung: Wenn diese ROM-Spiegelungen lhre eigenen Graphiken behindern, wahlen Sie mit den
BANKANWAHL-BITS eine der Banks ohne Belegung (Bank 1 oder 3). Die ROM-Muster tauchen dort
nicht auf.
ADRESSE VIC-II- INHALT
SPIEGE-
BLOCK |DEZIMAL HEX LUNG
0 53248 | DOO0—-D1FF 1000—-11FF GroBbuchstaben
53760 | D200—D3FF 1200—-13FF Graphikzeichen
54272 | D400—-D5FF 1400—15FF GroBbuchstaben in
Reversdarstellung
54784 | D600—-D7FF 1600—-17FF Graphikzeichen in
Reversdarstellung
1 55296 | D800—D9FF 1800—19FF Kleinbuchstaben
55808 | DAOO—-DBFF 1A00—1BFF | GroBbuchstaben und
Graphikzeichen
56320 | DCO0-DDFF 1C00—-1DFF | Kleinbuchstaben in
Reversdarstellung
56832 | DEOO—DFFF 1EO0—-1FFF GroBbuchstaben in
Reversdarstellung

Dem aufmerksamen Leser wird jetzt aufgefallen sein, daB die vom Zeichen-ROM
beanspruchten Platze die gleichen sind wie die der VIC-II-Chip-Steuerregister. Dies
ist méglich, da die Platze nicht gleichzeitig beansprucht werden.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 105



Bendtigt der VIC-II-Chip den Zugriff auf die Zeichendaten, so wird das ROM
eingeschaltet. In der 16K-Speicherbank, auf die der VIC-II-Chip zugreift, entsteht
die entsprechende “Spiegelung”“. Ansonsten wird dieser Bereich von den Ein-/
Ausgaberegistern beansprucht und das Zeichen-ROM kann nur vom VIC-II erreicht
werden.

Es kann jedoch passieren, daB Sie das Zeichen-ROM benétigen, und zwar dann,
wenn Sie programmierbare Zeichen benutzen wollen und eine Kopie eines Teils
vom Zeichen-ROM fiir die Zeichendefinition bendtigen. In diesem Fall missen Sie
das Ein-/Ausgaberegister aus- und das Zeichen-ROM einschalten. Dann kdnnen
Sie kopieren. Danach muB das Ein-/Ausgaberegister erneut eingeschaltet werden.
Wahrend des Kopierens (bei ausgeschalteter Ein-/Ausgabe) sind keine Unterbre-
chungen erlaubt. Fir Unterbrechungen werden némlich die Ein-/Ausgaberegister
bendtigt. Wenn Sie dies vergessen und eine Unterbrechung vornehmen, passiert
Unvorhersehbares. Die Tasteneingabe darf wahrend des Kopierens nicht gelesen
werden. Um die Tastatur und weitere normale Unterbrechungen abzuschalten, die
mit dem COMMODORE 64 mdglich sind, benutzen Sie folgende POKE-Anweisung:

POKE 56334,PEEK(56334)AND254  (Interrupt AUS)
Wenn Sie den Zugriff auf den Zeichen-ROM beendet haben und bereit fur die
~Programmfortsetzung sind, wird die Tastatur durch folgende POKE-Anweisung
wieder eingeschaltet:

POKE 56334,PEEK(56334)0OR1 (Interrupt EIN)

Durch folgende POKE-Anweisung wird die Ein-/Ausgabe ausgeschaltet und der
Zeichen-ROM eingeschaltet:

POKE 1,PEEK(1)AND251
Der Zeichen-ROM befindet sich nun an den Platzen 53248 bis 57343 ($D000—
$DFFF). Um die Ein-/Ausgabe flr den normalen Betrieb zuriick in $D000 zu

schalten, benutzen Sie folgende POKE-Anweisung:

POKE 1,PEEK(1)OR 4

106 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



STANDARDZEICHENMODUS

Beim Einschalten des COMMODORE 64 befindet sich dieser im Standardzeichen-
modus. Dies ist der Modus, in dem Sie normalerweise Programmierungen vor-
nehmen.

Zeichen konnen aus dem ROM oder dem RAM gelesen werden. Normalerweise
wird jedoch auf die Zeichen im ROM zugegriffen. Bendtigen Sie flr ein Programm
spezielle Graphikzeichen, so brauchen Sie lediglich die neuen Zeichenmuster im
RAM zu definieren und den VIC-II-Chip anzuweisen, die Zeicheninformationen von
da und nicht aus dem Zeichen-ROM zu nehmen. Dies wird im nachstehenden
Abschnitt noch genauer beschrieben.

Um Zeichen auf dem Bildschirm in Farbe anzuzeigen, greift der VIC-II-Chip auf den
Bildschirmspeicher zu, um den Zeichen-Code fir diesen Bildschirmplatz zu bestim-
men. Gleichzeitig greift er auf den Farbspeicher zu, um die Farbe fir die Zeichenan-
zeige festzulegen. Der Zeichen-Code wird vom VIC-Il in die Startadresse des
8-Byte-Satzes mit Ihrem Zeichenmuster umgesetzt. Dieser Satz befindet sich im
Zeichenspeicher.

Die Umsetzung ist nicht zu kompliziert, zur Erstellung der gewiinschten Adresse
werden jedoch verschiedene Punkte kombiniert. Zunachst wird der von lhnen bei
der POKE-Anweisung fliir den Bildschirmspeicher benutzte Zeichencode mit 8
multipliziert. Danach wird der Anfang vom Zeichenspeicher addiert (siehe Abschnitt
“Zeichenspeicher”). Nun werden die Bankanwahl-Bits bericksichtigt. Hierzu wird
die Basisadresse (siehe Abschnitt “Video-Bankwah!®) addiert. Anhand der folgen-
den einfachen Gleichung kdnnen Sie sehen, wie dies gemeint ist:

CHARACTER ADDRESS = SCREEN CODE*8+(CHARACTER
SET*2048)+(BANK*16384)

ZEICHENDEFINITIONEN

Jedes Zeichen wird aus einer Matrix von 8 mal 8 Punkten gebildet. Hierbei kdnnen
die einzelnen Punkte entweder ein- oder ausgeschaltet sein. Beim COMMODORE
64 sind die Zeichenbilder im Zeichengenerator-ROM abgelegt. Jedes Zeichen ist
hierbei als Satz von 8 Bytes gespeichert. Jedes Byte steht fir das Punktmuster
einer Reihe im Zeichen und jedes Bit fiir einen Punkt. Ein 0-Bit zeigt an, daB der
Punkt ausgeschaltet, und ein 1-Bit, daB er eingeschaltet ist.

Der Zeichenspeicher im ROM beginnt bei Platz 53248 (bei ausgeschalteter Ein-/
Ausgabe). Die ersten 8 Bytes von Platz 53248 ($D000) bis 53255 ($D007) enthalten
das Muster flir das Zeichen @, dessen Zeichencodewert im Bildschirmspeicher 0
ist.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 107



Die nachsten 8 Bytes von Platz 53256 ($D008) bis 53263 ($D00F) enthalten die
Information zur Bildung des Buchstabens A.

BELEGUNG  BINAR PEEK
- 00011000 24
Sk 00111100 60

S 01100110 102
rrees 01111110 126
o 01100110 102
el 01100110 102
-5 01100110 102
00000000 0

Jeder vollstdndige Zeichensatz beansprucht eine Speicherkapazitat von 2K (2048
Bits). Insgesamt sind 256 Zeichen enthalten, wobei jedes Zeichen 8 Bytes umfaft.
Da es insgesamt zwei Zeichensatze gibt, und zwar einen fir die GroBbuchstaben
und Graphikzeichen und den anderen fiur GroB- und Kleinbuchstaben, enthalt der
ROM-Zeichenspeicher insgesamt 4K Speicherplatze.

PROGRAMMIERBARE ZEICHEN

Da die Zeichen im ROM gespeichert sind, sieht es so aus, als ob sie fir frei
programmierbare Zeichen nicht gedndert werden kdnnten. Der Speicherplatz, der
dem VIC-II-Chip mitteilt, wo die Zeichen zu finden sind, ist jedoch ein programmier-
bares Register. Dieses kann so geandert werden, daB es auf viele Speicherbereiche
zeigt. Indem der Zeichenspeicherzeiger so geandert wird, daB er auf den RAM
zeigt, kann der Zeichensatz beliebig programmiert werden.

Soll sich lhr Zeichensatz im RAM befinden, so gibt es einige SEHR WICHTIGE
Dinge, die Sie dabei berlcksichtigen mussen. Daruber hinaus sind zwei weitere
wichtige Aspekte bei der Erstellung Ihrer eigenen Sonderzeichen zu beachten:

1) Dies ist ein Alles-oder-Nichts-Vorgang. Im allgemeinen, wenn Sie den VIC-II-
Chip angewiesen haben, die Zeicheninformationen aus dem vorbereiteten RAM-
Bereich zu nehmen, sind die Standardzeichen vom COMMODORE 64 fir Sie
nicht verfugbar. Um dieses Problem zu lésen, missen Sie alle Buchstaben,
Zahlen oder Standardgraphikzeichen vom Commodore 64 in den RAM-Speicher
kopieren, den Sie dann in lhrem Programm benutzen wollen. Hierbei kdnnen Sie
beliebige Zeichen auswéhlen und brauchen auch nicht auf die Reihenfolge zu
achten!

108 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



2) Ihr Zeichensatz benutzt denselben Speicher wie das BASIC-Programm. Da fiir
das BASIC-Programm jedoch 38K zur Verfigung stehen, ist dies meist pro-
blemlos.

Achtung: Achten Sie darauf, daB Ihr Zeichensatz nicht vom BASIC-Programm, das auch den
RAM benutzt, Gberschrieben wird.

Zwei Adressen im COMMODORE 64 diirfen nicht als Beginn des Zeichensat-
zes gewahlt werden: Adresse 0 und Adresse 2048. Der erste darf nicht benutzt
werden, da das System auf Seite 0 (0-Page) wichtige Daten speichert. Adresse
2048 ist der Beginn lhres BASIC-Programms!

Fur lhren Zeichensatz stehen jedoch noch sechs weitere Anfangspositionen zur
Verfugung.

Am besten wahlen Sie hierzu am Anfang Platz 12288 ($3000 in Hexadezimaldar-
stellung). Dies erfolgt, indem die unteren 4 Bits von Platz 53272 mit 12 gePOKEt
werden. Probieren Sie nun folgende POKE-Anweisung aus:

POKE 53272,(PEEK(53272)AND240)+12

Sofort sind alle Buchstaben vom Bildschirm verschwunden. Der Grund hierfar liegt
darin, daB bis jetzt noch kein Zeichensatz ab Adresse 12288 steht . . . nur zufallige
Bytes. Kehren Sie mit dem COMMODORE 64 durch Betédtigen der Tasten
und wieder zuriick in den Normalmodus.

Nun wollen wir Graphikzeichen erstellen. Um lhren Zeichensatz zu schiitzen,
sollten Sie die Speicherkapazitat fir BASIC reduzieren. Der Speicher in lhrem
Computer bleibt unverdndert . . . Sie haben lediglich BASIC die Anweisung gege-
ben, einen bestimmten Teil nicht zu benutzen. Tippen Sie folgendes ein:

PRINT FRE(0)— (SGN(FRE(0))<0)*65535

Die angezeigte Zahl gibt die unbenutzte Speicherkapazitdt an. Geben Sie nun
folgendes ein:

POKE 52,48:POKE56,48:CLR
uUnd nun:

PRINT FRE(0)—(SGN(FRE(0))<0)*65535

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 109



Sehen Sie die Anderung? BASIC nimmt nun an, daB weniger Speicherkapazitat zur
Verfligung steht. In diesen gewonnenen Speicherplatz kdnnen Sie nun lhren
Zeichensatz eingeben.

Als niachstes missen nun lhre Zeichen in den RAM eingegeben werden. Zu Beginn
stehen ab 12288 ($3000 in HEX) zufallige Daten. Sie miissen das Zeichenmuster in
den RAM eingeben (auf die gleiche Art wie sie im ROM gespeichert sind), damit der
VIC-II-Chip sie benutzen kann. Durch folgendes Programm werden 64 Zeichen
vom ROM in den RAM-Zeichensatz Ubertragen:

5 PRINTCHREC 1420 TREM SMITCH TO
UFFER CASE

1 G POKESS . 42 LR CREM RESERVE MEMORY
ARACTERS
ESE234, PEEK (SERE
H IMTERRUFT TIMER
El.FEEKCL PAMNDES] TREM SMITCH IM

TER

ﬂTOfii PHFEI+1239C FEER I+ B0 HERT

: CREM O BWMITOH IM I.0
"REM RESTART

PAMDEDE CREM TURM OFF

v FJ LHD

POKEnN Sie in die Adresse 53272 den Wert (PEEK(53272)AND240)+12. Nichts
passiert, stimmt’s? Fast nichts! Der COMMODORE 64 bekommt die Zeicheninfor-
mationen nun vom RAM und nicht vom ROM. Da wir jedoch die Zeichen genau vom
ROM kopiert haben, ist kein Unterschied zu sehen ... noch nicht.

Die Zeichen kdnnen nun leicht gedndert werden. Ldschen Sie den Bildschirm, und
driicken Sie die Taste @. Bewegen Sie den Cursor um einige Zeilen nach unten,
und geben Sie dann folgendes ein:

FOR | = 12288 TO 12288+7:POKE |, 255 — PEEK(l) : NEXT

Sie haben soeben ein @ in Reversdarstellung erstellt!

Hinweis: Negativ dargestellte Zeichen gehen aus den Zeichen durch Umkehrung der Bit-Muster
im Zeichenspeicher hervor.

Bewegen Sie nun den Cursor wieder zum Programmanfang, und driicken Sie die
Taste RETURN erneut, um das Zeichen noch einmal umzukehren (d. h., es wird
wieder normal). Die Tabelle der Bildschirm-Codes zeigt Ihnen, wo die einzelnen
Zeichen im RAM sind. Denken Sie daran, daB zur Speicherung jedes Zeichens 8
Speicherplatze bendtigt werden. Hier ein paar Beispiele:

110 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64




ZEICHEN BILDSCHIRM- DERZEITIGE STARTADRESSE IM RAM
CODE
@ 0 12288
A 1 12296
! 33 12552
> 62 12784

Denken Sie daran, daB wir nur die ersten 64 Zeichen genommen haben. Wird eines
der anderen Zeichen gewiinscht, so ist vorher noch etwas zu berlcksichtigen.

Was ist zu tun, wenn Sie nun Zeichennummer 154, ein umgekehrtes Z wiinschen?
Sie kdnnen das erreichen, indem Sie ein Z umkehren, oder Sie kdnnen den Satz
der umgekehrten Zeichen vom ROM kopieren oder einfach das eine Zeichen aus
dem ROM holen und ein nicht benotigtes Zeichen im RAM dadurch ersetzen.

Nehmen wir an, Sie benottigen das Zeichen > nicht mehr. Dieses Zeichen soll also
gegen das negativ dargestellte Z ausgetauscht werden. Geben Sie folgendes ein:

FOR 1=0 TO 7: POKE 12784 + |, 255—PEEK(I+12496): NEXT

Geben Sie nun ein > ein. Es erscheint als umgekehrtes Z. So oft Sie nun dieses
auch eingeben, erscheint es immer als umgekehrtes Z. (Diese Anderung betrifft
jedoch nur die Darstellung auf dem Bildschirm. Auch wenn das Zeichen wie ein
umgekehrtes Z aussieht, wirkt es in einem Programm doch immer noch als >.)
Probieren Sie das an einem Beispiel aus, bei dem dieses Zeichen bendtigt wird.
Fassen wir zusammen: Sie kdnnen nun Zeichen vom ROM in das RAM kopieren.
Sie kdnnen hierbei selbst die Zeichen auswahlen. Hinsichtlich der programmierba-
ren Zeichen fehlt lhnen also nur noch ein Punkt (und zwar der beste!) ... das
Erstellen lhrer eigenen Zeichen.

Wissen Sie noch, wie Zeichen im ROM gespeichert sind? Jedes Zeichen wird als
Gruppe von 8 Bytes gespeichert. Die Bit-Muster der Bytes geben direkt das
Zeichen wieder. Werden 8 Bytes Ubereinander angeordnet und jedes Byte als
achtstellige Bindrzahl geschrieben, so entsteht eine 8-mal-8-Matrix, die wie die
Zeichen aussieht. Ist ein Bit eine 1, so ist an diesem Platz ein Punkt. Ist ein Bit eine
0, ist an diesem Platz eine Leerstelle.

Zum Erstellen lhrer eigenen Zeichen geben Sie in den Speicher die gleiche
Bitanordnung ein. Geben Sie NEW und danach dieses Programm ein:

10 FOR | = 12448 TO 12455 : READ A: POKE |,A: NEXT
20 DATA 60, 66, 165, 129, 165, 1583, 66, 60

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 111



Geben Sie nun RUN ein. Das Programm ersetzt den Buchstaben T durch ein
“Gesicht“. Um das Gesicht zu sehen, geben Sie mehrere T’s ein. Jede Zahl in der
DATA-Anweisung in Zeile 20 ist eine Reihe in diesem Gesicht. Es gilt folgende
Matrix:

76543210 BINAR DEZIMAL

Reihe 0 .. % » 00111100 60
1 g . 01000010 66

2 " " % 10100101 165

3 " " 10000001 129

4 . . P 10100101 165

5 . . % . 10011001 153
. " . 01000010 66
Reihe 7 . o % 00111100 60

N o o A WOWN

Abb. 3.1. Arbeitsblatt fiir programmierbare Zeichen

112 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



Das Arbeitsblatt flir programmierbare Zeichen (Abb. 3.1.) hilft Ihnen beim Entwurf
Ihrer eigenen Zeichen. Das Blatt enthélt eine Matrix von 8 mal 8 mit Reihennum-
mern sowie Nummern oben Uber jeder Spalte. (Wird jede Reihe als Binarwort
gesehen, so sind die Spaltennummern die jeweiligen Werte der Bit-Position. Der
Wert 148t sich einfach als Zweierpotenz errechnen. Das linke duBerste Bit entspricht
128 oder 27, das nachste 64 oder 2° usw., bis das duBerste rechte Bit (Bit 0) erreicht
ist. Bit O entspricht 1 oder 2°.)

Geben Sie in die Matrix Uberall da ein X ein, wo in lhrem Zeichen ein Punkt
erscheinen soll. Ist das Zeichen fertig, dann kénnen Sie die DATA-Anweisung daflr
erstellen.

Beginnen Sie mit der ersten Reihe. Uberall da, wo ein X eingesetzt ist, lesen Sie die
Nummer oben an der Spalte ab (die Zweierpotenz) und notieren Sie sie. Dann
werden die Zweierpotenzen der ersten Reihe addiert. Notieren Sie diese Summe
neben der Reihe. Sie wird spater in der DATA-Anweisung benutzt, um diese Reihe
als Bitmuster wiederzugeben.

Das gleiche gilt fur die Gbrigen Reihen (1—7). Sie missen dann insgesamt 8 Zahlen
zwischen 0 und 255 haben. Liegt eine dieser Zahlen nicht innerhalb dieses
Bereiches, Uberpriifen Sie die Addition. Bei richtiger Addition mussen die Zahlen
auf jeden Fall in diesem Bereich liegen. Haben Sie weniger als 8 Zahlen, dann
haben Sie wahrscheinlich eine Reihe vergessen. Es ist durchaus korrekt, wenn
auch Nullen dabei sind. Diese 0-Reihen sind genauso wichtig wie die anderen
Zahlen.

Ersetzen Sie die Zahlen in der DATA-Anweisung in Zeile 20 durch die soeben
berechneten Zahlen und geben Sie danach RUN ein. Driicken Sie nun die Taste T.
Bei jedem Betatigen dieser Taste sehen Sie Ihr eigenes Zeichen!

Wenn lhnen dieses Zeichen noch nicht gefallt, andern Sie einfach die Zahlen in der
DATA-Anweisung, bis die Zeichendarstellung zufriedenstellend ist. Das ist alles!

Hinweis: Die vertikalen Linien in Ihren Zeichen sollten stets mindestens zwei Punkte (Bits) breit sein.
Hierdurch werden bei der Anzeige auf dem Bildschirm Farbfehler in den Zeichen vermieden.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 113



Nachfolgend sehen Sie ein Programmbeispiel mit den programmierbaren Standard-
zeichen:

18 REM #
o0 REM CRER

31 POKESE3R4, PEEK S
REM TURM OFF KE AMD I,
25 FORI=GTOGS REM CHRRACTER RAMGE TO BE COPIED

EXAMPLE 1 %

iRAMMARLE CHARACTERS
o FRDEDS  FOKEL PEEK S L DAMDREL:

R J=@ETOT REM COPY ALL 8 BYTES PER CHARACTER
AT FHH512:TG+I+ 0 PEER SR8 TRS+T 0 REM COPY A
" TE

TUREM GOTO MEST EBYTE OF CHARFCTER

s kLo ORG  PORESEZEG, PEEK CSER3400R 1  REM
T ’FH FIH 1.0 AMD KE
G FOKESZETE, CPEERE CDRETE20AMD24A 12 EEM SET CHAR
FOIMTER TO HMEM. ,f_-‘-:;:_,*m
7 FI‘IFI'HF!F‘
AR TR =
FREMT HI IMEBE .,
jmﬁl FOKE1Z2288 -‘-_‘WRHFIE‘.:‘J‘+F'T'TE.- r--ll-lrfll”;!Esz?EfEM EiTI’JF!E THE
DFATHA T MEMORY
148 HESTEYTE ' HEATCHAR: REM ALSZ0 COULD BE MEXT BEYTE.
PR

FRIMTCHESC 147 THECZES ) CHES CEE ) S
FRIMTCHREE CEL D THECES ) CHREE (S CHRE (SR

1@ REM LIME 15@ PUTE THE MEWLY DEFIMED CHARACTERED
LHJ THE ZCREEH

176 GETAF: REM WAIT FOR USER TO PRESS A KEY

128 IFAE=""THEMGOTOL7E: REM IF MO KEYE WERE FRESSED.
THEY AGETMH!
15 POKESZZTE .

208 DATA4. &, 7.5, 7,7, 2.2 REM DATA FOR CHARACTER &0
218 DATHA 32, 96, 224 lh@; 224,224,192, 192 REM DATA
FOR CHARACTER &1

228 DATA?.7.7.21,31,95, 145, 127 REM DATA FOR
CHARACTER &2

238 DATA 224,224,224, 248, 248, 248, 240, 224 ' REM DATA
FOR CHARACTER &3

24@ EMD

21 'REM RETURM TO HORMAL CHARACTERS
=‘
]

114 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



MEHRFARBIGE GRAPHIKEN

Durch die standardmaBige hochauflésende Graphik kdnnen Sie selbst Einzelpunkte
auf dem Bildschirm ansteuern. Fir jeden Punkt im Zeichenspeicher stehen zwei
Werte zur Verfliigung: 1 fir EIN und O fir AUS. Hat ein Punkt den Wert 1, so wird er
in der von Ihnen flr die jeweilige Bildschirmposition gewéhlten Farbe angezeigt. Bei
der hochauflésenden Graphik kdénnen alle Punkte innerhalb der 8-mal-8-Matrix
entweder in der Hinter- oder Vordergrundfarbe angezeigt werden. Hierdurch wird
die Farbauflésung innerhalb dieses Bereiches eingeschrénkt. So konnen z. B.
Schwierigkeiten entstehen, wenn sich zwei Linien mit verschiedenen Farben
kreuzen.

Dieses Problem wird durch den Mehrfarbenmodus geldst. Hierbei kann jeder Punkt
eine von vier Farben haben: Bildschirmfarbe (Hintergrundfarbregister #0), die
Farbe im Hintergrundregister #1, die Farbe im Hintergrundfarbregister #2 oder die
Zeichenfarbe. Die einzige Einschrankung liegt in der horizontalen Auflésung, da im
Mehrfarbenmodus jeder Punkt doppelt so breit ist wie bei Hochauflosung. Es
Uberwiegen jedoch bei weitem die vielen Vorteile des Mehrfarbenmodus.

DAS MEHRFARBEN-MODUS-BIT

Zum Einschalten des Modus fiir mehrfarbige Zeichen wird Bit 4 des Steuerregisters
des VIC-II durch folgende POKE-Anweisung bei 53270 ($D016) auf 1 gesetzt:

POKE 53270,PEEK(53270)OR 16

Zum Abschalten dieser Betriebsart wird Bit 4 an Speicherplatz 53270 durch
nachstehende POKE-Anweisung auf O gesetzt:

POKE 53270,PEEK(53270)AND 239

Der Mehrfarben-Modus wird flr jede Bildschirmstelle ein- oder ausgeschaltet, so
daB Mehrfarbengraphiken und Graphiken mit hoher Auflésung (hi-res) kombiniert
werden konnen. Dies wird Uber Bit 3 im Farbspeicher gesteuert. Der Farbspeicher
beginnt bei 55296 ($D800 HEX). Ist die Zahl im Farbspeicher kleiner als 8 (0—7), so
gilt fir die entsprechende Stelle auf dem Bildschirm Hochauflésung in der gewéahl-
ten Farbe (0—7). Ist die Zahl im Farbspeicher gréBer oder gleich 8 (von 8 bis 15),
dann wird die entsprechende Stelle im Mehrfarbenmodus angezeigt.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 115



Die Zeichenfarbe einer Bildschirm-Position kann durch eine POKE-Anweisung im
Farbspeicher gedandert werden. Durch das POKEnN einer Zahl von 0 bis 7 werden die
Zeichen in normaler Farbdarstellung angezeigt. Durch das POKEn einer Zahl
zwischen 8 und 15 gilt fiir die entsprechende Bildschirmstelle der Mehrfarbenmo-
dus. D. h., durch das Einschalten von Bit 3 im Farbspeicher wird der Mehrfarbenmo-
dus und durch Ausschalten der normale Hochauflésungsmodus gewahlt.

Gilt fur eine Bildschirmstelle der Mehrfarbenbetrieb, so wird durch die Zeichen-Bits
bestimmt, welche Farben flr die Punkte angezeigt werden. Nachstehend sehen Sie
z. B. die Darstellung des Buchstabens A und das entsprechende Bit-Muster:

DARSTELLUNG BIT-MUSTER

" 00011000
s 00111100
5 s 01100110
*rnnnn 01111110
L 01100110
. 01100110
SRS 01100110

00000000

Im normalen oder “hi-res” (d. h. hochaufldsenden Graphik)-Modus wird die Bild-
schirmfarbe bei jedem 0-Bit und die Zeichenfarbe stets da angezeigt, wo das Bit 1
ist. Beim Mehrfarbenmodus werden die Bits paarweise benutzt:

DARSTELLUNG BIT-MUSTER

AABB 00 011000

CccC 00111100
AABBAABB 01100110
AACCCCBB 01111110
AABBAABB 01100110
AABBAABB 01100110
AABBAABB 01100110

00 00 00 00

Im obigen Bildbereich werden die durch AA gekennzeichneten Stellen in der
Hintergrundfarbe #1, die durch BB gekennzeichneten Stellen in der Hintergrund-
farbe #2 und die durch CC gekennzeichneten Stellen in der Zeichenfarbe darge-
stellt. Dies wird entsprechend nachstehender Tabelle durch die Bit-Paare bestimmt:

116 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



BIT-PAAR FARBREGISTER SPEICHERPLATZ

00 Hintergrundfarbe #0 (Bildschirmfarbe) 53281 ($D021)
01 Hintergrundfarbe #1 53282 ($D022)
10 Hintergrundfarbe #2 53283 ($D023)
11 Durch die unteren 3 Bits im Farbspeicher Farbspeicher

bestimmte Farbe

Geben Sie NEW und nachstehendes Programm ein:

188 FOKESZZEL. 1:REM SET BACKGROUMD COLOR #6 TO
WHITE

118 POKES3Z2E2, 2:REM SET BACKGREOUMD COLOR #1 TO CYAH
120 FORES3282,8:REM SET BACKGROUMD COLOR #2 TO
ORAMGE

1360 POKES3278. PEEK (3327VA0R16 EEM TUREH O
MULTICOLOR MODE

148 C=12%4@56+3#253€ ' REM SET C TO POIMT TO COLOR
MEMORY

158 PRIMTCHREC147 ) " ARARARARAR"

18 FORL=8TOS

178 POKEC+L,B:REM USE MULTI BLACK

128 HEXT

Die Bildschirmfarbe ist weiB, die Zeichenfarbe schwarz, ein Farbregister zyan
(grinblau) und das andere orange.

Sie geben nicht tatséchlich Farb-Codes in die Stellen fiir die Zeichenfarbe ein,
sondern benutzen eigentlich Hinweise auf die jeweiligen Farbregister. Hierdurch
wird Speicherplatz gespart, da zwei Bits benutzt werden, um zwischen 16 bzw. 8
Farben (Hintergrund bzw. Zeichen) zu wahlen. Hierdurch werden einige raffinierte
Tricks méglich. Durch einfaches Andern eines der indirekten Register wird jeder
Punkt, der in dieser Farbe gezeichnet ist, gedndert.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 117




Alles, was in Bildschirm- und Hintergrundfarben angezeigt ist, kann daher sofort auf
dem gesamten Bildschirm geéndert werden. Nachstehend sehen Sie ein Beispiel
zur Anderung des Hintergrundfarbregisters #1:

188 POk
FULT TS

FEL PEER CTIETEIORLE  REM TURM Ok
FICTDE

11 FREIMTOHRESE 14T D CHREEC 1S,

s 1 FOR ORAMGE OF
CHERT

-2 PEM TYFE CTRL & 7 FOR BLUE COLOR

1—@ GOTO 1..

Uber die Taste B und die Farbtasten kénnen allen Zeichen, einschlieBlich den
Mehrfarbenzeichen, beliebige Farben gegeben werden. Geben Sie z. B. folgenden
Befehl ein:

POKE 53270,PEEK(53270)OR 16:PRINT “ “;: REM LT.RED/MULTI-
COLOR RED

Das Wort READY und alles Ubrige, was Sie iber die Tastatur eingeben, wird im
Mehrfarbenmodus angezeigt. Durch eine andere Farbsteuerung kénnen Sie wieder
den Normal-Modus wéhlen.

118 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



Nachstehend sehen Sie ein Programmbeispiel mit programmierbaren Mehrfarben-

zeichen:

18 REM # ESAMFLE & #

2E PLM CREATIMG NUITI COLOR PROGRAMMABLE CHARACTERS
3 4 PEEK CDERR4 2AMDEZE4  FOKEL ., PEEKC L yAMDZSL
2 UREM CHARACTER RAMGE TO BE COFIED

-BTO7  REM COPY ALL & BYTES FER CHRRACTER
Sk T rEEh-bﬂ:4o+1¢n4r- REM COFY A

HEST.T, TOREM GOTO HEXT BYTE OR FHHF"FTEF
. PDFEI PEEP|1'HP4 FOKEDEZE4, FEEK CDE2E400R 1 REM

EIAMDE4@+12REM SET CHAR

'HHHD COLDRE #8 TO BLACK
COLOR #1 TO RED
OCOLOR #2 TO

"HH CHHPHITEPS B THRL &2
YTES OF A CHRRACTER
= e TH ur CHARFACTER DRTA

VR BYTE MUMEBER: REM STORE THE

DRTA TH MEMORY
48 MEXTEYTE  CHAR:

! : P R s CHRE CEL D THREOSE ) CHRE CEZ2 0 CHRE (ST
FEM L ITHE 1EH FLUTS THE HEWLY DEFIMED CHARACTERED

DOUEER TO OPRESS A OEEY
IF MO KEYS WERE FRESSED,

ATEDAMDEIE REN

R

M TRTH FOR

SESLED B REM DATA FOR

BB, 4E, 8 REM DRTH FOR

CESLEG L3R RE A0, B REM DATA FOR

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

119



ERWEITERTER HINTERGRUNDFARBMODUS

In diesem Modus koénnen Sie fir jedes einzelne Zeichen die Farbe sowohl im
Hintergrund als auch im Vordergrund steuern. So ist es z. B. moglich, auf einem
weiBen Bildschirm ein blaues Zeichen mit gelbem Hintergrund anzuzeigen.

Fir den erweiterten Hintergrundfarbmodus stehen vier Register zur Verfigung. Fir
jedes Register kann eine der 16 Farben gewéhlt werden.

In diesem Modus wird Uber den Farbspeicher die Vordergrundfarbe festgelegt. Die
Anwendung ist die gleiche wie beim Standard-Zeichenmodus.

Beim erweiterten Modus ist die Anzahl der verschiedenen anzeigbaren Zeichen
jedoch eingeschrankt. Ist der erweiterte Farbmodus eingeschaltet, konnen nur die
ersten 64 Zeichen des Zeichen-ROM (oder die ersten 64 in Ihrem programmierba-
ren Zeichensatz) benutzt werden. Zwei Bits des Zeichen-Codes werden namlich flr
die Wahl der Hintergrundfarbe benutzt.

Der Zeichen-Code (die auf dem Bildschirm gePOKEte Zahl) vom Buchstaben A ist
eine 1. Im erweiterten Farbmodus erscheint nach dem POKEn einer 1 ein A.
Normalerweise muB nach dem POKEN von 65 das Zeichen mit dem Zeichen-Code
(CHR$) 129, also ein umgekehrtes “A“, erscheinen. Dies passiert nicht im erwei-
terten Farbmodus. Es erscheint genau das gleiche “A“ wie vorher, jedoch eine
andere Hintergrundfarbe. Entnehmen Sie die Codes der nachstehenden Tabelle:

ZEICHENCODE HINTERGRUNDFARBREGISTER
BEREICH BIT 7 BIT 6 NUMMER ADRESSE
0- 63 0 0 0 53281 ($D021)
64-127 0 1 1 53282 ($D022)
128-191 1 0 2 53283 ($D023)
192-255 1 1 3 53284 ($D024)

Zum Einschalten des erweiterten Farbmodus wird Bit 6 des VIC-II-Registers mit der
Adresse 53265 ($D011 in HEX) auf 1 gesetzt. Dies geschieht durch folgende
POKE-Anweisung:

POKE 53265, PEEK(53265)OR 64

Zum Ausschalten des erweiterten Farbmodus wird Bit 6 des VIC-II-Registers mit
der Adresse 53265 ($D011) auf O gesetzt. Hierzu dient folgende Anweisung:

POKE 53265, PEEK(53265)AND 191

120 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



GRAPHIKEN DURCH BIT-MAPPING

Beim Schreiben von Spielen, Zeichnen von Tabellen flir Geschéftsanwendungen
oder Schreiben von sonstigen Programmen werden Sie friiher oder spater Bild-
schirmdarstellungen mit hoher Auflésung benétigen.

Der COMMODORE 64 wurde genau hierfiir konstruiert: Hohe Auflésung wird durch
“Bit-Mapping“ des Bildschirms mdglich. “Bit-Mapping“ ist die Methode, bei der
jedem darstellbaren Punkt (Pixel) auf dem Bildschirm sein eigenes Bit (Platz) im
Speicher zugeordnet wird. Ist dieses Speicherbit eine 1, so ist der entsprechende
Punkt eingeschaltet. Ist das Bit 0, so ist der Punkt ausgeschaltet.

Das Arbeiten mit Graphiken mit hoher Auflosung hat jedoch einige Nachteile und
wird daher nicht immer benutzt. Zunédchst wird durch das Bit-Mapping des gesam-
ten Bildschirms erhebliche Speicherkapazitat in Anspruch genommen. Jeder Pixel
benttigt ndmlich ein Speicherbit, d. h., Sie brauchen 1 Byte flir 8 Pixel. Da jedes
Zeichen eine 8-mal-8-Matrix ist und 40 Zeilen mit 25 Zeichen vorhanden sind,
betragt die Auflésung 320 Pixel (Punkte) mal 200 Pixel fir den gesamten Bild-
schirm. Hieraus ergeben sich 64000 Punkte, von denen jeder ein Speicherbit
bendtigt. Fur ein Bit-Mapping des gesamten Bildschirms brauchen Sie also 8000
Byte.

Im allgemeinen bestehen Operationen zur Erstellung von Graphiken hoher Auflo-
sung aus mehreren kurzen, einfachen Wiederhol-Routinen. Dies ist fur diese
Zwecke meist zu BASIC ziemlich langsam. Die Maschinensprache ist jedoch am
besten flr solche kurzen, einfachen Wiederhol-Routinen geeignet. Sie soiiten die
Programme daher ganz in Maschinensprache schreiben oder in maschinensprache-
geschriebene hi-res-Routinen vom BASIC-Programm Uber den Befehl SYS aufru-
fen. Auf diese Weise kdnnen Sie sowohl die Einfachheit von BASIC als auch die
Geschwindigkeit der Maschinensprache bei Graphiken nutzen.

Alle in diesem Kapitel gegebenen Beispiele sind in BASIC. Nun zu den technischen
Details.

BIT-MAPPING ist die am weitesten verbreitete Graphiktechnik in der Computer-
welt. Dieses Verfahren wird benutzt, um Bilder mit groBem Detailreichtum zu
erstellen. Grundsétzlich zeigt der COMMODORE 64 direkt einen 8K-Speicherbe-
reich auf dem Bildschirm an, wenn er sich im Bit-Map-Modus befindet.

Im Bit-Map-Modus kénnen Sie direkt steuern, ob ein einzelner Punkt auf dem
Bildschirm an oder aus ist.

Mit dem COMMODORE 64 stehen zwei verschiedene Arten von Bit-Mapping zur
Verfugung:

1) Standard-Bit-Map-Modus (hi-res) (320 mal 200 Punktauflésung)
2) Mehrfarben-Bit-Map-Modus (160 mal 200 Punktaufldsung)

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 121



Beim Standard-Bit-Mapping ist zwar die Auflésung groBer, es stehen jedoch
weniger Farbmdglichkeiten zur Verfligung. Beim Mehrfarben-Bit-Mapping wird eine
geringere horizontale Aufldsung durch die Méglichkeit wettgemacht, eine groBere
Anzahl von Farben in einem 8-mal-8-Punktefeld unterzubringen.

STANDARD-BIT-MAPPING MIT HOHER AUFLOSUNG

Beim Standard-Bit-Mapping haben Sie eine Aufldsung von 320 mal 200 Punkten
und koénnen in jedem 8-mal-8-Punktebereich zwischen zwei Farben wéhlen. Zum
Einschalten des Bit-Mapping-Betriebs wird Bit 5 des VIC-II-Kontrollregisters in
Adresse 53265 ($D011 in HEX) auf 1 gesetzt. Dies geschieht durch folgende
POKE-Anweisung:

POKE 53265,PEEK(53265)0OR 32

Zum Abschalten dieser Betriebsart wird Bit 5 des VIC-II-Kontrollregisters in
Adresse 53265 ($D011) auf O gesetzt. Hierzu dient folgende Anweisung:

POKE 53265,PEEK(53265)AND 223

Bevor wir uns nun im einzelnen mit dem Bit-Map-Modus beschéftigen, missen wir
zuvor ein weiteres Problem Iésen: Die Plazierung des Bit-Mapping-Bereichs.

FUNKTIONSWEISE

Wenn Sie noch den Abschnitt Gber PROGRAMMIERBARE ZEICHEN in Erinnerung
haben, werden Sie sich erinnern, daB Sie das Bitmuster eines im RAM gespeicher-
ten Zeichens beliebig wahlen kdnnen. Genauso wie Sie ein auf dem Bildschirm
angezeigtes Zeichen andern kénnen, kdnnen Sie auch einen einzelnen Punkt
andern. Dies ist das Grundmerkmal von Bit-Mapping.

Der gesamte Bildschirm ist mit programmierbaren Zeichen belegt. Inre Anderungen
erfolgen direkt in dem Speicher, von dem die programmierbaren Zeichen ihre
Muster erhalten.

Jeder Platz im Bildschirmspeicher, der im Normalmodus fir die Steuerung der
Zeichenwiedergabe benutzt wurde, wird nun fur die Farbinformation herangezogen.
So wird nun durch das POKEnN einer 1 in Speicherplatz 1024 nicht mehr ein “A*
links oben auf dem Bildschirm angezeigt, sondern durch Speicherplatz 1024
werden nun die Farben der Bits in der linken oberen Ecke des Bildschirms
gesteuert.

122 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



Beim Bit-Mapping-Betrieb kommen die Farben der 1000 Bildschirmfelder nicht vom
Farbspeicher wie im Normalmodus. Die Farben werden vielmehr aus dem Bild-
schirmspeicher genommen. Die oberen vier Bits des Bildschirmspeichers legen die
Farben der Bits fest, die im Uber diesen Bildschirmspeicherplatz gesteuerten 8-mal-
8-Bereich auf 1 gesetzt sind. Die unteren vier Bits enthalten die Farben flir jedes Bit,
das auf O gesetzt ist.

BEISPIEL: Geben Sie folgendes ein:

G FORESEETE . PEER O

i FEER SRR

AORZEZCREM EMTER BIT MAF MODE

Geben Sie nun zum Ausfihren des Programms RUN ein.

Auf dem Bildschirm erscheint nichts Brauchbares, stimmt’'s? Wie der “normale“
Bildschirm, muB auch der HI-RES-Bildschirm zuvor geléscht werden. In diesem Fall
funktioniert dies leider nicht durch CLR. Sie mussen vielmehr den Speicherbereich
I6schen, den Sie fir Ihre programmierbaren Zeichen benutzen. Driicken Sie die
Tasten und und fiigen Sie dann zum Léschen des HI-RES-
Bildschirms folgende Zeilen in Ihr Programm ein:

20 FORI=BASETOBASE+TH55  FOKEL, 8 MEXT ' REM CLEAR BIT
MFF

30 FORI=1A24TOZO2E POKEL, 3 MEXT :REM SET COLOR TO
CWAH AMD EBLACE

Geben Sie nun erneut RUN ein. Der Bildschirm wird nun geldéscht und die
grinblaue Farbe (zyan) auf dem ganzen Bildschirm angezeigt werden. Nun wollen
wir einzelne Punkte auf dem HI-RES-Bildschirm ein- und ausschalten.

Um einen Punkt zu setzen (einzuschalten) oder zu loschen (auszuschalten),
missen Sie wissen, wie Sie das richtige Bit im Zeichenspeicher finden, das auf 1
gesetzt werden soll. D. h., Sie miissen das zu andernde Zeichen, die Zeichenreihe
sowie das entsprechende Bit dieser Reihe finden. Fiir diese Berechnung benétigen
Sie eine Gleichung.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 123



Wir benutzen X und Y flr die horizontale bzw. vertikale Punktposition. Der Punkt, an
dem X gleich 0 und Y gleich 0 ist, befindet sich oben links in der Anzeige. Rechts
liegende Punkte haben hohere X-Werte und alle Punkte, die darunter liegen, hohere
Y-Werte. Bit-Mapping 4Bt sich am sinnvollsten nutzen, wenn die Anzeige folgen-
dermaBen angeordnet ist:

| P ——— Wfteirssmtn s e e e e -319

B evemmen st e =

Jeder Punkt hat eine X- und eine Y-Koordinate. In diesem Koordinatensystem |aBt
sich die Lage jedes Punktes auf dem Bildschirm leicht beschreiben.
Anschaulich gesehen ist die Reihenfolge der Bytes auf dem Bildschirm wie folgt:

------ BYTEO BYTE8 BYTE16BYTE24...............BYTE312
L BYTE1 BYTE9 . : BYTE 313
o5 BYTE2 BYTE10 . : BYTE 314
W W BYTE3 BYTE11 . : BYTE 315
e BYTE4 BYTE12 . : BYTE 316
S BYTE5S BYTE13 . : BYTE 317
S BYTE6 BYTE14 . : BYTE 318

------ BYTE7 BYTE15 . : BYTE 319

------ BYTE 320 BYTE 328 BYTE 336 BYTE344 .............BYTE 632
" BYTE 321 BYTE329 . . BYTE 633
== BYTE 322 BYTE330 . . BYTE 634
N w BYTE 323 BYTE 331 . . BYTE 635
= BYTE 324 BYTE332 . . BYTE 636
£ < BYTE 325 BYTE 333 . . BYTE 637
M BYTE 326 BYTE 334 . . BYTE 638

------ BYTE 327 BYTE335 . . BYTE 639

124 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



Die programmierbaren Zeichen der Bit-MAP sind in 25 Reihen mit je 40 Spalten
angeordnet. Dies ist zwar fur den Textaufbau eine gute Methode, erschwert jedoch
das Bit-Mapping. (Fur diese Methode gibt es einen guten Grund. Siehe Abschnitt
KOMBINIERTE BETRIEBSARTEN.)
Durch nachstehende Gleichung 1aBt sich ein Punkt in der Bit-Map-Anzeige leichter
steuern:
Der Anfang des Bildschirm-Speicherbereichs wird als BASIS bezeichnet. Die
Reihenzahl (von 0 bis 24) Ihres Punkts ist:

ROW = INT(Y/8) (Es gibt 320 Bytes pro Zeile)
Die Zeichenposition dieser Zeile (von 0 bis 39) lautet:

CHAR = INT(X/8) (Es gibt 8 Bytes pro Zeichen)
Die Zeile dieser Zeichenposition (von 0 bis 7) lautet:

LINE = Y AND 7
Das Bit dieses Bytes ist:

BIT = 7—(X AND 7)

Nun setzen wir diese Gleichungen zusammen. Das Byte, in dem der Zeichenspei-
cherpunkt (X, Y) liegt, wird wie folgt berechnet:

BYTE = BASE + ROW*320+ CHAR*8 + LINE

Um ein beliebiges Bit im Gitter mit Koordinaten (X, Y) einzuschalten, verwenden Sie
diese Zeile:

POKE BYTE, PEEK(BYTE) OR 21BIT

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 125



Wir fligen diese Berechnungen in das Programm ein. In folgendem Beispiel
zeichnet der COMMODORE 64 eine Sinuskurve:

1 WAVE WILL FILL THE ZCREEH

A AL

FTT
o, PEEK CEY S 0RCETET S

Durch die Gleichung in Zeile 60 werden die Werte fiir die Sinusfunktion von +1 bis
—1in 10 bis 170 umgeéndert. In den Zeilen 70 bis 100 werden das Zeichen, die
Reihe, das Byte und zugehorige Bit berechnet. Zeile 125 signalisiert, daB das
Programm beendet ist, indem sich in der oberen linken Bildschirmecke die Farbe
andert. Durch Zeile 130 wird das Programm in eine unendliche Schieife geflihrt.
Nach dem Betrachten der Graphik driicken Sie einfach gleichzeitig die Tasten
und .

Als weiteres Beispiel wird das Sinuskurvenprogramm so geandert, daB ein Halb-
kreis angezeigt wird. Hierzu ist das Programm wie folgt abzuéndern:

HCREEM

1 “
1@ FORERY., PEEKCBY )ORCZIEL
114 HEST

Hierdurch wird im HI-RES-Bereich des Bildschirms ein Halbkreis erstellt.

Achtung: BASIC-Variablen kénnen lhren HI-RES-Bildschirm berlagern. Wenn Sie mehr Speicher-
platz bendtigen, missen Sie den Anfang von BASIC iiber den HI-RES-Bildschirmbereich legen, oder
aber Sie verschieben lhren HI-RES-Bildschirmbereich. Dieses Problem ergibt sich nicht bei der
Maschinensprache. Es tritt lediglich dann auf, wenn die Programme in BASIC geschrieben wurden.

126 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64




MEHRFARBEN-BIT-MAPPING

Wie beim Mehrfarben-Modus der Zeichen kénnen auch beim Mehrfarben-Bit-
Mapping in jedem 8-mal-8-Bereich der Bit-Map bis zu vier verschiedene Farben
angezeigt werden.

Auch hier wird die horizontale Auflésung reduziert (von 320 auf 160 Punkte).
Beim Mehrfarben-Bit-Mapping wird fir die Bit-Map ein 8K-Speicherbereich benutzt.
Sie wdhlen die Farben fliir das Mehrfarben-Bit-Mapping (1) vom Hintergrund-
Farbregister 0 (Bildschirm-Hintergrundfarbe), (2) von der Video-Matrix (die oberen
4 Bits geben eine der moglichen Farben, die unteren 4 Bits eine weitere) und (3)
vom Farbspeicher.

Zum Einschalten dieses Modus wird Bit 5 von 53265 ($D011) und Bit 4 in Adresse
53270 ($D016) auf 1 gesetzt. Dies geschieht durch folgende POKE-Anweisung:

POKE 53265,PEEK(53625)OR 32: POKE 53270,PEEK(53270)OR 16

Zum Ausschalten des Mehrfarben-Bit-Map-Modus wird Bit 5 in 53265 ($D011) und
Bit 4 in 53270 ($D016) auf O gesetzt. Hierzu dient folgende POKE-Anweisung:

POKE 53265,PEEK(53265)AND 223: POKE 53270,PEEK(53270)AND 239

Wie beim Standard-Bit-Map-Modus (HI-RES) besteht eine 1:1-Entsprechung zwi-
schen dem fiir die Anzeige benutzten 8K-Speicherbereich und der Bildschirm-
Darstellung. Die horizontalen Punkte sind jedoch immer zwei Bits breit. Jeweils
zwei Bits im Anzeigenspeicher bilden einen Punkt, der eine von vier Farben haben
kann.

BITS FARBINFORMATION KOMMT VON

00 Hintergrundfarbe #0 (Bildschirmfarbe)
01 Oberen 4 Bits des Bildschirmspeichers
10 Unteren 4 Bits des Bildschirmspeichers
11 Farbnybble (Nybble = 72 Byte = 4 Bit)

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 127



KONTINUIERLICHES VERSCHIEBEN

Uber den VIC-II-Chip ist ein einfaches “Verschieben“ (Bildschirm-Rollen) sowohl in
horizontalen als auch vertikalen Richtungen mdéglich. Das Verschieben ist eine Ein-
Pixel-Bewegung des gesamten Bildschirms in eine Richtung. Die Bewegung kann
entweder nach oben, unten, links oder rechts erfolgen. Hierdurch werden neue
Informationen angezeigt, und gleichzeitig verschwinden andere Zeichen auf der
gegenlberliegenden Seite.

Auch wenn der VIC-II-Chip lhnen viele Aufgaben abnimmt, muB dieses Verschie-
ben doch (iber ein Maschinensprache-Programm erfolgen. Uber den VIC-II-Chip
kann der Video-Bildschirm in eine beliebige von 8 horizontalen und 8 vertikalen
Positionen gebracht werden. Die Positionierung wird uber die VIC-1I-Register zum
Bildschirmrollen (genannt SCROLL-Register) gesteuert. Der VIC-II-Chip hat auch
einen 38-Spalten- und 24-Reihen-Modus. Die kleineren BildschirmgroBen geben
Ihnen einen Platz fir die neuen Daten, die beim Verschieben gebraucht werden.
Gehen Sie flr das Verschieben wie folgt vor:

1) Den Bildschirm verkleinern (der Rahmen wird breiter).

2) Das SCROLL-Register auf den Maximalwert stellen (oder auf den Minimalwert je
nach Richtung des Rollens).

3) Die neuen Daten in den geeigneten Bildschirmbereich eingeben.

4) Das SCROLL-Register vergroBern (oder verkleinern), bis es den Maximalwert
(oder Minimalwert) erreicht.

5) Zu diesem Zeitpunkt den gesamten Bildschirm um ein Zeichen in Verschiebe-
richtung rollen. Benutzen Sie hierzu lhre Maschinensprache-Routine.

6) Nun zu Schritt 2 zurlckgehen.

Um in den 38-Spalten-Modus zu gehen, wird Bit 3 von Adresse 53270 ($D016) auf
0 gesetzt. Dies geschieht durch folgende POKE-Anweisung:

POKE 53270,PEEK(53270)AND 247

Zur Riickkehr in den 40-Spalten-Modus wird Bit 3 von Adresse 53270 ($D016) auf 1
gesetzt. Hierzu dient folgende POKE-Anweisung:

POKE 53270,PEEK(53270)OR 8

Fiir den 24-Reihen-Modus wird Bit 3 von Adresse 53265 ($D011) auf O gesetzt.
Hierzu dient folgende POKE-Anweisung:

POKE 53265,PEEK(53265)AND 247

128 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



Zur Ruckkehr in den 25-Reihen-Modus wird Bit 3 von Adresse 53265 ($D011)
durch folgende POKE-Anweisung auf 1 gesetzt:

POKE 53265,PEEK(53265)OR 8

Beim Verschieben in X-Richtung muB der VIC-II-Chip in den 38-Spalten-Modus
versetzt werden. Hierdurch wird fir die neuen Daten Platz geschaffen. Beim
Verschieben nach links werden die neuen Daten rechts_eingegeben. Beim Schie-
ben nach rechts erscheinen die neuen Daten entsprechend auf der linken Seite.
Bitte beachten Sie, daB der Bildschirmspeicher noch 40 Spalten hat. Lediglich 38
sind jedoch sichtbar.

Beim Verschieben in Y-Richtung muB der VIC-II-Chip in 24-Reihen-Modus versetzt
werden. Beim Rollen nach oben werden die neuen Daten in die letzte Reihe
eingegeben. Beim Rollen nach unten erscheinen die neuen Daten entsprechend in
der ersten Reihe. Beim X-Verschieben sind unsichtbare Bereiche auf beiden
Bildschirmseiten. Beim Y-Verschieben gibt es jedoch nur einen unsichtbaren
Bereich.

Ist das Y-SCROLL-Register auf O gesetzt, dann ist die erste Zeile unsichtbar und
bereit fir neue Daten. Ist das Y-SCROLL-Register auf 7 gesetzt, so ist die letzte
Reihe unsichtbar.

Zum Rollen in X-Richtung befindet sich das SCROLL-Register in den Bits 2 bis 0
des VIC-II-Steuerregisters in Adresse 53270 ($D016 HEX).

Auch hier dlrfen auf jeden Fall nur diese Bits verandert werden. Dies geschieht
durch folgende POKE-Anweisung:

POKE 53270, (PEEK(53270)AND 248)+X

wobei X die X-Bildschirmposition 0 bis 7 ist.

Zum Rollen in Y-Richtung befindet sich das SCROLL-Register in den Bits 2 bis 0
des VIC-II-Steuerregisters in Adresse 53265 ($D011 HEX). Auch hierbei durfen
wieder nur diese Bits verandert werden. Hierzu dient folgende POKE-Anweisung:

POKE 53265, (PEEK(53265)AND 248)+Y

wobei Y die Y-Bildschirmposition O bis 7 angibt.

Um den Text von unten auf den Bildschirm zu rollen, missen die unteren 3 Bits von
Adresse 53265 von 0—7 gesetzt, weitere Daten in die abgedeckte Zeile unten auf
den Bildschirm eingegeben und danach der Vorgang wiederholt werden.

Andert man die Verschiebebits mit der Schrittweite von —1, so wird der Text in
entgegengesetzter Richtung bewegt.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 129



BEISPIEL: Textrollen vom unteren Bildschirmrand her:

18 POKESZIZES, PEEK CTREET ) AMDE4T
IHTO 24 ROW MODE

26 PPIHTFHP¥f14r'

REEM

CPRIMTCHREC LT i cHEWT
R TO THE BOTTOM

DSITION FOR 1ST SCROLL

=@ FRINTY HELLDO™

TOASTER-1

ES . CPEEK COIZET D AMDZYE ) +F
= ] TOSE  HE -

DELAY LDHP
SE HEST  GOTOE

130 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

G5, CPEEK CSREETAMDEAS 2 +7  FRINT

‘REM GO
‘REM

"REM MOWE
CREM

CREM



SPRITES

Ein SPRITE ist ein besonderer Typ von freidefinierbaren Zeichen, die an beliebiger
Stelle auf dem Bildschirm angezeigt werden kdnnen. Sprites werden direkt vom
VIC-1I-Chip verwaltet. Sie brauchen lediglich fir jedes Sprite festzulegen, “wie es
aussehen soll”, “welche Farbe es haben soll“ und “wo es auf dem Bildschirm
plaziert werden soll“. Der VIC-II-Chip erledigt fir Sie den Rest! Sprites kénnen eine
der 16 moglichen Farben haben.

Sprites kdnnen zusammen mit jedem beliebigen Graphik-Modus, Bit-Mapping,
Zeichen, Mehrfarben-Modus usw. benutzt werden. Eine Spritedefinition enthalt die
Farbe, den Modus (HI-RES oder Mehrfarben) und die Form.

Vom VIC-II-Chip kdnnen automatisch gleichzeitig jeweils 8 Sprites verwaltet wer-
den. Durch RASTER-INTERRUPT-Techniken kénnen weitere Sprites angezeigt
werden. ‘

Sprites haben folgende Merkmale:

PunktgréBe 24 mal 21 (horizontal x vertikal)

—_

)
2) Farbsteuerung fir jedes Sprite
3) Sprites im Mehrfarbenmodus
4) VergroBerung (2x) in horizontaler und/oder vertikaler Richtung
5) Wahlmdglichkeit: Sprites vor oder hinter dem Hintergrund
6) Wahl der Reihenfolge, in der die Sprites “hintereinander” angeordnet sind
7) Sprite-Kollisionserkennung
8) Kollisionserkennung zwischen Sprite und Hintergrund.

Auf diese Weise lassen sich zahlreiche Tele-Spiele einfach programmieren. Da die
Sprites durch das Betriebssystem unterstiitzt werden, kann ein gutes Spiel sogar in
BASIC geschrieben werden!

Vom VIC-II-Chip werden 8 Sprites unterstiitzt. Sie sind von 0 bis 7 numeriert. Jedes
Sprite hat seinen eigenen Speicherbereich fiir das Bitmuster, seine Positions- und
Farbregister sowie seine eigenen Bits zur Erkennung von Kollisionen und zum Ein-
und Ausschalten.

SPRITEDEFINITION

Sprites werden genau wie programmierbare Zeichen definiert. Da ein Sprite jedoch
groBer ist, werden mehr Bytes bendtigt. Jedes Sprite besteht aus 24 mal 21 oder
504 Punkten. Fir die Definition eines Sprites werden also 63 Bytes (504/8)
bendtigt.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 131



61 3IHIZY

8l 3HI3Y

L1 3HI3Y

9l 3HI3Y

S 3HI3Y

I 3HI3d

€L 3HI3Y

¢l JHIFY

L1 3HI3Y

0l 3HIZY

6 3JHI3d

3HI3d

JHIZd

JHIZd

JHIFd

JHIFd

JHIFY

N | O || O] O©]|N~]| O

JHIZY

L 3HI3Y

0 3IHIZY

9l

4

79

8¢t

8l

cg

¥9

8¢l

9l

4

¥9

8¢l

(L =Ni13)
J1d3Imlig

lid

€2

414

0c

6

8l

LL

9l

St

145

1

cl

(o]8

60

80

L0

90

S0

¥0

€0

c0

10

00

"UN-N3LIVdS

ion

t

ini

Abb. 3.2. Spritedef

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

132



Die 63 Bytes sind in 21 Reihen zu je 3 Bytes angeordnet. Eine Spritedefinition sieht
folgendermaBen aus:

BYTE O BYTE 1 BYTE 2
BYTE 3 BYTE 4 BYTE 5
BYTE 6 BYTE 7 BYTE 8
BYTE 60 BYTE 61 BYTE 62

Auch bei Betrachtung der Spritedefinition auf Bit-Ebene |aBt sich erkennen, wie
Sprites erstellt werden. (Siehe Abb. 3.2.)

Bei einem Standardsprite (HI-RES) wird jedes auf 1 gesetzte Bit in der entspre-
chenden Sprite-Vordergrundfarbe angezeigt. Jedes auf O gesetzte Bit ist transpa-
rent, so daB der dahinter liegende Wert sichtbar wird. Dies entspricht der Situation
beim Standardzeichen.

Mehrfarbige Sprites entsprechen mehrfarbigen Zeichen. Horizontal wird die Orts-
aufldsung zugunsten der Farbauflésung verschlechtert. Die Auflosung betragt 12
mal 21 Punkte (horizontal x vertikal). Jeder Punkt im Sprite wird doppelt so breit, die
Anzahl der anzeigbaren Farben im Sprite wird jedoch auf 4 erhoht.

SPRITE-POINTER

Auch wenn jedes Sprite fur die Definition nur 63 Bytes benétigt, wird doch ein
weiteres Byte am Ende jedes Sprites als Platzhalter benétigt, d. h., daB jedes Sprite
64 Bytes beansprucht. Auf diese Weise kénnen Sie leicht berechnen, wo sich Ihre
Spritedefinition im Speicher befindet, da 64 Bytes eine gerade Zahl darstellen und
im Binarsystem eine gerade Potenz.

Jedes der acht Sprites hat ein Byte, das Sprite-Pointer genannt wird. Dieser
Sprite-Pointer gibt an, wo sich die Spritedefinition im Speicher befindet. Diese acht
Bytes sind stets die letzten acht Bytes vom 1K-Bereich des Bildschirmspeichers.
Normalerweise bedeutet dies beim COMMODORE 64, daB Sie bei Adresse 2040
($07F8 in HEX) beginnen. Bei Bewegung des Bildschirms verandert sich jedoch
auch die Lage des Sprite-Pointers.

Jeder Sprite-Pointer kann eine Zahl zwischen 0 und 255 aufnehmen. Diese Zahl
zeigt auf die Definition flr das Sprite. Da jede Spritedefinition 64 Bytes bendtigt,
bedeutet dies, daB der Pointer auf jeden Platz im 16K-Speicherbereich zeigen kann,
der fir den VIC-1I-Chip zuganglich ist (da 256*64=16K).

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 133



Wenn der Sprite-Pointer #0 an Adresse 2040 z. B. die Zahl 14 enthalt, bedeutet
dies, daB Sprite 0 mit den 64 Bytes beginnend bei Adresse 14*64 = 896 beginnt,
d. h., im Kassettenpuffer. Dies wird anhand folgender Gleichung deutlich:

LOCATION = (BANK * 16384) + (SPRITE POINTER VALUE * 64)

wobei BANK einen der 16K-Speicherbereiche bezeichnet, auf die der VIC-1I-Chip
zugreifen kann und die von 0 bis 3 durchnumeriert sind.

Obige Gleichung gibt den Anfang der 64 Bytes des Spritedefinitionssatzes an.
Wenn der VIC-II-Chip auf BANK 0 oder BANK 2 zugreift, ist in einigen Speicherplat-
zen ein ROM-Image des Zeichensatzes (wie bereits erwahnt) vorhanden. Hier
kénnen keine Spritedefinitionen stehen. Werden aus irgendwelchen Grinden mehr
als 128 verschiedene Spritedefinitionen bendtigt, missen Sie eine der Banks ohne
ROM-Spiegelung benutzen (1 oder 3).

EINSCHALTEN DER SPRITES

Das VIC-II-Steuerregister in Adresse 53269 ($D015 HEX) ist das Sprite-Aktivie-
rungsregister. Jedes Sprite hat in diesem Register ein Bit, das steuert, ob das Sprite
EIN oder AUS ist. Das Register sieht folgendermaBen aus:

$D015 76543210

Um z. B. Sprite 1 einzuschalten, muB das entsprechende Bit gesetzt werden. Dies
geschieht durch folgende POKE-Anweisung:

POKE 53269,PEEK(53269)OR 2
Folgendes ist eine mehr allgemeine Anweisung:
POKE 53269,PEEK(53269)OR (21SN)

wobei SN die Spritezahl von 0 bis 7 ist.

Anmerkung: Ein Sprite wird erst sichtbar, wenn es eingeschaltet wird.

134 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



AUSSCHALTEN DER SPRITES

Ein Sprite wird ausgeschaltet, indem sein Bit im VIC-II-Steuerregister bei 53269
($D015 HEX) auf 0 gesetzt geldscht wird. Dies geschieht durch folgende POKE-
Anweisung:

POKE 53269, PEEK(53269)AND (255—21SN)

wobei SN die Spritezahl von 0 bis 7 angibt.

FARBEN

Ein Sprite kann eine der 16 Farben haben, die vom VIC-II-Chip erzeugt werden.
Jedes Sprite hat sein eigenes Sprite-Farbregister. Die Farbregister haben folgende
Adressen:

ADRESSE BESCHREIBUNG
53287 ($D027) FARBREGISTER VON SPRITE 0
53288 ($D028) FARBREGISTER VON SPRITE 1
53289 ($D029) FARBREGISTER VON SPRITE 2
53290 $D02A FARBREGISTER VON SPRITE 3

( )
53291 ( ) FARBREGISTER VON SPRITE 4
53292 ($D02C) FARBREGISTER VON SPRITE 5
53293 ( ) FARBREGISTER VON SPRITE 6
53294 ( ) FARBREGISTER VON SPRITE 7

Alle Punkte des Sprites werden in der Farbe angezeigt, die im Sprite-Farbregister
enthalten ist. Der Rest des Sprites ist transparent, so daB die hinter diesem Sprite
liegenden Werte (normalerweise der Hintergrund) angezeigt werden.

MEHRFARBENMODUS

Im Mehrfarbenmodus kann jedes Sprite max. vier verschiedene Farben haben. So
wie bei den anderen Mehrfarbenmodi ist jedoch auch hier die horizontale Auflésung
auf die Halfte reduziert, d. h., beim Arbeiten im Mehrfarbenmodus (wie bei Zeichen
im Mehrfarbenmodus) wird ein Sprite horizontal nicht mehr 24 Punkte, sondern in
12 Punkten ausgefiihrt. Jedes Punktepaar wird BITPAAR genannt. Stellen Sie sich
jedes Bitpaar (Punktepaar) als einen einzelnen Punkt in Threm Gesamtsprite vor,
wenn Sie die Farben fir die Punkte in Ihren Sprites wahlen.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 135



In nachstehender Tabelle finden Sie die Bitpaar-Kombinationen, die Sie zum
Einschalten der vier Farben flr die Sprites benétigen:

BITPAAR BESCHREIBUNG
00 TRANSPARENT, BILDSCHIRMFARBE
01 SPRITE-MEHRFARBENREGISTER #0 (53285) ($D025)
10 SPRITE-FARBENREGISTER
11 SPRITE-MEHRFARBENREGISTER #1 (53286) ($D026)

WAHLEN DES MEHRFARBENMODUS FUR EIN SPRITE

Um den Mehrfarbenmodus fiir ein Sprite zu wahlen, missen Sie das entspre-
chende VIC-II-Steuerregister in Adresse 53276 ($D01C) einschalten. Dies
geschieht durch folgende POKE-Anweisung:

POKE 53276,PEEK(53276) OR (2]SN)

wobei SN die Sprite-Nummer angibt (0 bis 7).

VERGROSSERTE SPRITES

Der VIC-1I-Chip hat die Fahigkeit, ein Sprite in vertikaler und/oder horizontaler
Richtung zu vergréBern. Bei der Ausdehnung wird jeder Punkt im Sprite zweimal so
breit oder zweimal so hoch. Die Auflésung nimmt nicht zu; das Sprite wird lediglich
groBer.

Um ein Sprite in horizontaler Richtung zu strecken, muB das entsprechende Bit im
VIC-II-Steuerregister in Adresse 53277 ($D01D HEX) eingeschaltet (auf 1 gesetzt)
werden. Durch folgende POKE-Anweisung wird ein Sprite in X-Richtung vergréBert:

POKE 53277,PEEK(53277)OR (2]SN)
wobei SN die Sprite-Nummer (0 bis 7) angibt.
Um ein Sprite in horizontaler Richtung wieder zu verkleinern, muB das entspre-
chende Bit im VIC-II-Steuerregister in Adresse 53277 ($D01D HEX) ausgeschaltet
(auf O gesetzt) werden. Durch folgende POKE-Anweisung wird ein Sprite in
X-Richtung wieder verkleinert:

POKE 53277,PEEK(53277)AND (255—27SN)

wobei SN die Sprite-Nummer von 0 bis 7 angibt.

136 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



Um ein Sprite in vertikaler Richtung zu vergroBern, muB das entsprechende Bit im
VIC-II-Steuerregister in Adresse 53271 ($D017 HEX) eingeschaltet (auf 1 gesetzt)
werden. Durch folgende POKE-Anweisung wird ein Sprite in Y-Richtung gestreckt:

POKE 53271,PEEK(53271)OR (2]SN)

wobei SN die Sprite-Nummer von 0 bis 7 angibt.

Um ein Sprite in vertikaler Richtung wieder zu verkleinern, muB das entsprechende
Bit im VIC-II-Steuerregister in Adresse 53271 ($D017 HEX) ausgeschaltet (auf O
gesetzt) werden. Durch folgende POKE-Anweisung wird ein Sprite in Y-Richtung
wieder verkleinert:

POKE 53271,PEEK(53271)AND (255—21SN)

wobei SN die Sprite-Nummer von 0 bis 7 angibt.

SPRITEPOSITIONIERUNG

Nachdem Sie ein Sprite konstruiert haben, kénnen Sie es auf dem Bildschirm
bewegen. Hierzu benutzt der COMMODORE 64 drei Positionsregister:

1) SPRITE X-POSITIONSREGISTER

2) SPRITE Y-POSITIONSREGISTER

3) HOCHSTES BIT DES X-POSITIONSREGISTERS (engl. MSB = Most significant
Bit)

Jedes Sprite hat ein X-Positionsregister, ein Y-Positionsregister und ein Bit im
MSB-X-Register. Auf diese Weise kénnen Sie die Sprites sehr genau positionieren.
Hierzu stehen 512 mégliche X- und 256 mdgliche Y-Positionen zur Verfigung.
Die X- und Y-Positionsregister “arbeiten” paarweise zusammen. Die Adressen von
X- und Y-Register erscheinen wie folgt im Speicher: Zunachst das X-Register fir
Sprite 0, dann das Y-Register fur das gleiche Sprite.

Danach folgt das X-Register und dann das Y-Register fir Sprite 1 usw.

Nach allen 16 X- und Y-Registern kommt das hochste Bit der X-Position (X MSB) in
seinem eigenen Register.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 137



Nachstehende Tabelle gibt die Adressen der einzelnen Sprite-Positionsregister an.
Sie kénnen auf diese Adressen durch POKE-Anweisungen zugreifen:

PLATZ
BESCHREIBUNG
DEZIMAL HEX.

53248 ($D000) X-POSITIONSREGISTER VON SPRITE 0
53249 ($D001) Y-POSITIONSREGISTER VON SPRITE 0
53250 ($D002) X-POSITIONSREGISTER VON SPRITE 1
53251 ($D003) Y-POSITIONSREGISTER VON SPRITE 1
53252 ($D004) X-POSITIONSREGISTER VON SPRITE 2
53253 ($D005) Y-POSITIONSREGISTER VON SPRITE 2
53254 ($D006) X-POSITIONSREGISTER VON SPRITE 3
53255 ($D007) Y-POSITIONSREGISTER VON SPRITE 3
53256 ($D008) X-POSITIONSREGISTER VON SPRITE 4
53257 ($D009) Y-POSITIONSREGISTER VON SPRITE 4
53258 ($D00A) X-POSITIONSREGISTER VON SPRITE 5
53259 ($D00B) Y-POSITIONSREGISTER VON SPRITE 5
53260 ($D00C) X-POSITIONSREGISTER VON SPRITE 6
53261 ($D00D) Y-POSITIONSREGISTER VON SPRITE 6
53262 ($DO0E) X-POSITIONSREGISTER VON SPRITE 7
53263 ($DOOF) Y-POSITIONSREGISTER VON SPRITE 7
53264 ($D010) X MSB REGISTER

Die Position eines Sprites wird von der OBEREN LINKEN ECKE des 24-mal-21-
Punktebereichs berechnet, der fir ein Sprite zur Verfligung steht. Es spielt hierbei
keine Rolle, wie viele bzw. wenige Punkte Sie flr ein Sprite benutzt haben. Auch
wenn nur ein Punkt flr das Sprite benutzt wurde und dieses in der Mitte des
Bildschirms stehen soll, missen Sie flr die Positionierung die obere linke Ecke als
Bezugspunkt verwenden.

VERTIKALE POSITIONIERUNG

Die Positionierung in horizontaler Richtung ist etwas schwieriger als die vertikale
Positionierung. Daher werden wir uns zunachst mit der vertikalen Positionierung (Y)
beschéftigen.

Es gibt 200 verschiedene Punktpositionen, die auf dem Bildschirm in Y-Richtung
programmiert werden kdnnen. Das Y-Positionsregister der Sprites kann Zahlen bis
zu 255 fassen; d. h., Sie haben ausreichend Registerplatze, um ein Sprite nach
oben und unten zu bewegen.

Ein Sprite soll jedoch auch auf dem Bildschirm erscheinen und verschwinden.
Hierzu bendtigen Sie mehr als 200 Werte.

138 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



Der erste Wert, bei dem ein Sprite von oben auf dem Bildschirm auftaucht und der
fur ein in Y-Richtung unvergréBertes Sprite gilt, ist 30. Fir ein in Y-Richtung
gestrecktes Sprite lautet dieser Wert 9 (da jeder Punkt zweimal so hoch ist und die
Ausgangsposition auch hier von der obersten linken Ecke des Sprites berechnet
wird, kann hier der entsprechende Wert kleiner sein).

Der erste Y-Wert, bei dem ein Sprite (vergréBert oder nicht) ganz auf dem
Bildschirm erscheint (alle 21 mdglichen Zeilen werden angezeigt), lautet 50.

Der letzte Y-Wert, bei dem ein unvergréBertes Sprite noch ganz auf dem Bildschirm
vorhanden ist, ist 229. Der letzte Y-Wert, bei dem ein vergréBertes Sprite noch ganz
auf dem Bildschirm erscheint, lautet 208.

Der erste Y-Wert, bei dem ein Sprite vollstdndig vom Bildschirm verschwunden ist,
ist 250.

BEISPIEL:

(m
18 PRINT"T 'REM CLEAR SCREEN
28 POKEZ@40, 13 'REM GET SPRITE @

wT REM FORE SPRITE

DHTH ;HTH ELﬂrF 1“ '1‘%r4w

G WD CREM SET BEGIMMIMG
OF WIDED CHIF

S FHVEV+ 1.1 CREM EMABLE SFRITE
1

SE FOREN4ER L CREM SET SFRITE @

COLOR

TE OFOEEN+1. 186 CREM OSET SPRITE @

WOPDETTION

28 FOREY+ 1S, 8 POKEY . 186 CREM SET SPRITE @

WOPOSTTION

HORIZONTALE POSITIONIERUNG

Positionierung in horizontaler Richtung ist komplizierter, da hier mehr als 256
Positionen zur Verfligung stehen. D. h., ein Extrabit oder neuntes Bit zur Steuerung
der X-Position wird benétigt. Durch Hinzunahme des Extrabits hat ein Sprite nun
512 mdogliche Positionen in der X-Richtung (links/rechts). Hierdurch stehen mehr
Positionen zur Verfiigung, als auf dem Bildschirm angezeigt werden kénnen. Jedes
Sprite kann eine Position von 0 bis 511 haben. Es sind jedoch lediglich die Werte
zwischen 24 und 343 auf dem Bildschirm sichtbar. Wenn die X-Position eines
Sprites groBer als 255 (auf der rechten Bildschirmseite) ist, muB das entsprechende
Bit im MSB-Register auf 1 gesetzt (eingeschaltet) sein. Wenn die X-Position eines
Sprites kleiner als 256 (z. B. auf der linken Bildschirmseite) ist, dann muB das X
MSB-Register dieses Sprites auf 0 gesetzt (ausgeschaltet) sein.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 139



(8518) ppe (ovi$) 0ZE
| |

(v4$) 06 — —-

(819) vZ (8319) 88Y
| |

—(v4$) 052

(539) 622 — ——

(ze$) 0G —-

N3HI3Y S¢
N3ILIVdS OF

HOI3d349 YH3HVvA.1HOIS

—(0as) 802

——— (2e9) 0§

(80$) g — — ——— -

|
| |
1
amivvn 8«5@@«

Abb. 3.3. Sprite

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

140



‘AL dwoy inoAk 10} SpJepue}S UOISSIWSUBI} UOISIAS|8) UBdlIBWY YLION,

(4v1$) g8

|
|
|
|
|
|

(949) 9p2- — — —
(139) 622—- — — —

(989) g — —

©08) gh————— ——

|

|

I

|
(4v1$) GE¢

(L€1S) LIE

(419) L€
|

N31VvdS ve
N3LTVdS 8€

HOI3H39 Y3dVvg1HOIS

|
(4119 282

|
I
[
I
|
I

(419) L€

(031$) 08Y
|

— — (949) 9p2

- — (009 vOZ

— — — — (989) p§

— — -— (129) €¢

(208) 2

Positioniertabelle

141

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



Die Bits 0 bis 7 vom X MSB-Register entsprechen den Sprites 0 bis 7.
Durch folgendes Programm wird ein Sprite Uber den Bildschirm bewegt:

BEISPIEL:

2T LED T HEWT

Beim Bewegen von vergréBerten Sprites auf die linke Bildschirmseite in X-Richtung
soll zu Beginn der Bewegung das Sprite auf der rechten Seite nicht sichtbar sein.
Ein erweitertes Sprite ist namlich groBer als der verfligbare Platz auf der linken
Bildschirmseite.

BEISPIEL:

Die Tabellen in Abbildung 3.3. erklaren die Spritepositionierung. Damit konnen Sie
jedes Sprite beliebig positionieren. Durch Bewegung eines Sprites um jeweils eine
einzelne Punktposition wird eine runde freie Bewegung maglich.

142 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



ZUSAMMENFASSUNG UBER DIE SPRITEPOSITIONIERUNG

UnvergrdBerte Sprites sind im 40-Spalten-mal-25-Reihen-Modus innerhalb folgen-
der Parameter zumindest teilweise sichtbar:

1<=X<=2343
< =Y< =249

Im 38-Spalten-Modus andern sich die X-Parameter wie folgt:
8<=X< =233

Im 24-Reihen-Modus dndern sich die Y-Parameter wie folgt:
M <=Y< =245

VergroBerte Sprites sind innerhalb folgender Parameter im 40-Spalten-mal-25-
Reihen-Modus sichtbar:

489 > = X < = 343
9> =Y < =249
Im 38-Spalten-Modus andern sich die X-Parameter wie folgt:
496 > = X < = 334
Im 24-Reihen-Modus andern sich die Y-Parameter wie folgt:
183<=Y< =245

SPRITE-ANZEIGEPRIORITATEN

Die Wege der verschiedenen Sprites kénnen sich kreuzen. Darliber hinaus kdnnen
sich Sprites vor oder hinter anderen Objekten auf dem Bildschirm bewegen. Durch
diese rdumliche Darstellung kdnnen Sie bei Spielen einen dreidimensionalen Effekt
erzeugen. Die Prioritdt zwischen den einzelnen Sprites ist festgelegt. Sprite O hat
dabei die oberste, Sprite 1 die ndchste Prioritdt usw., so daB Sprite 7 entsprechend
die niedrigste Prioritdt hat. D. h., wenn Sprite 1 und Sprite 6 einander kreuzen, so
erscheint Sprite 1 vor Sprite 6.

Soll ein Sprite also im Bildvordergrund erscheinen, so muB es eine niedrigere Zahl
erhalten als das, das im Hintergrund erscheinen soll.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 143



Anmerkung: Ein “Fenstereffekt” ist moglich. Hat ein Sprite mit hdherer Prioritat “Locher* (Bereiche,
in denen die Punkte nicht auf 1 eingeschaltet sind), so scheinen Sprites mit niedrigerer Prioritat durch.
Das gleiche gilt fir Sprites und Hintergrunddaten.

Das Prioritatsverhaltnis zwischen Sprites und Bildschirmhintergrund wird durch das
entsprechende Register in Adresse 53275 ($D01B) gesteuert. In diesem Register
hat jedes Sprite ein Bit. Ist das Bit 0, so hat das entsprechende Sprite eine hdhere
Prioritat als der Bildschirmhintergrund; d. h., das Sprite erscheint vor den Hinter-
grunddaten. Ist das Bit 1, so hat der Hintergrund Prioritdt gegeniber dem Sprite.
Dieses erscheint dann hinter den Hintergrunddaten.

KOLLISIONSERKENNUNG

Einer der interessanteren Aspekte des VIC-II-Chips ist die Mdglichkeit der Kolli-
sionserkennung. Kollisionen kdnnen zwischen den verschiedenen Sprites oder
Sprite und einem bestimmten Hintergrund erkannt werden. Zu einer Kollision
kommt es, wenn ein “nicht-0“-Teil eines Sprites einen “nicht-0“-Teil eines weite-
ren Sprites oder eines Bildschirmzeichens Uberlappt.

KOLLISION ZWISCHEN EINZELNEN SPRITES

Eine Kollision zwischen einzelnen Sprites wird vom Computer erkannt oder im
entsprechenden Register an Adresse 53278 ($D01E HEX) im VIC-II-Chip-Steuer-
register gekennzeichnet. In diesem Register hat jedes Sprite ein Bit. Ist dieses Bit 1,
dann ist das Sprite an einer Kollision beteiligt. Die Bits in diesem Register bleiben
bis zum Lesen (PEEK-Anweisung) gesetzt. Nach dem Lesen wird das Register
automatisch geldscht. Der Wert sollte daher besser in einer Variablen gespeichert
werden, bis er verarbeitet wird.

Anmerkung: Kollisionen konnen auch dann auftreten, wenn Sprites ausgeschaltet sind. j

KOLLISION ZWISCHEN SPRITES UND DATEN

Eine Kollision zwischen einem Sprite und Daten wird im entsprechenden Register in
Adresse 53279 ($D01F HEX) des VIC-II-Chip-Steuerregisters festgestellt. In die-
sem Register hat jedes Sprite ein Bit. Ist dieses Bit eine 1, dann ist dieses Sprite an
einer Kollision beteiligt. Die Bits in diesem Register bleiben bis zum Lesen (PEEK-
Anweisung) gesetzt. Nach dem Lesen wird das Register automatisch geldscht. Der
Wert sollte daher in einer Variablen gespeichert werden, bis er verarbeitet wird.

Anmerkung: Der MULTI-COLOR-Wert 01 wird bei Kollisionen als transparent angesehen, auch wenn
er auf dem Bildschirm sichtbar ist. Beim Erstellen eines Hintergrunds sollte daher all das, was nicht zu
einer Kollision fihren darf, im Mehrfarbenmodus auf 01 gesetzt werden.

144 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



18 FEM SPRITE EXAMFLE 1...

28 REM THE HOT AIR BALLOOH
ggr¥lc=13m4a96:25m THIS IS WHERE THE YIC REGISTERS

GIN

35 POKEWIC+Z1,1:REM EMABLE SPRITE @
gFIPDVEJII+uq,141REM SET BACKGROUWD COLOR TO LIGHT
LIE

37 POKEWIC+Z3,1:REM EXPAND SFRITE @ IM ¥

33 POKEYIC+23,1:REM EXFAND SFRITE 8 IN ¥
40 POKEZ@40, 192 REM SET SFRITE @°5 POIMTER

188 POKEVIC+@, 18@:REM SET SFRITE B°5 » POSITION
139 POKEVIC+1,10@ REM SET SPRITE 275 ¥ POSITION
226 FOKEYIC+33,1:REM SET SPRITE 8% COLOR

256 FORW=BTOE3:REM BYTE COUMTER WITH SPRITE LOOF
280 FEADA:REM READ IM A BYTE

210 POKE192#64+Y,F:REM STORE THE DATA IM SPRITE
FARERA

328 WEXTY:REM CLOSE LOOP

338 D=1 Dv=]

348 K=PEEK(VIC):REM LODK AT SPRITE 875 % FOSITION

350 Y=PEEK (YIC+1)  REM LOOK AT JPPITE 55 ¥ POSITION
366 IFY=SE0RY=28ETHEND?=-DY REM IF ' 15 OM THE
EDGE OF THE....

7@ REM SCREEM, THEM REVERSE DELTH Y

350 1F4=D4RHDEPEER | WIC+HLE I AMD] ) =ATHEMD K== : REM 1F
SFRITE I5....

398 REM TOUCHING THE LEFT EDGE (¥=24 AMD THE MSE
FOR SFRITE @& IS @), REVERSE IT
486 1F4=4@AHD(FEEK (Y IC+1E)AND1 1=1 THEMDX=~D% : REM IF
SPRITE IS....

418 REM TOUCHIMG THE RIGHT EDGE (#=4B AMD THE MSE
FOR SFRITE @ IS5 1, REVERSE IT

20 IF#=255ANDDY=1THENA=-1 51TE=1

433 REM SWITCH TO OTHER SIDE OF THE SCREEM

448 IF#=BRNIDY=-1THEHA=256 : 51 DE=0

45@ REM SWITCH TO OTHER SIDE OF THE SCREEM

460 W=w+D4:REM ADD DELTA # TO X

478 ¥=AAMDZES REM MAKE SURE % 1S IM ALLOWED RAMGE

458 Y=Y+DY REM ADD DELTA Y TO ¥

453 FOKEVIC+16,SIDE

438 PDhEFIF-f FEM FUT HEW ¥ VALUE IMTO SPRITE 8°F
W OPOSITION

Sl PﬂVE”II+1J919EH FUT HEMW % WALUE IMTO SPRITE
B85 Y POSITION

28 GOTO248

£00 FEM ##44%% SFRITE DATH $%*##

18 DATHES, 127.8. 1',..J ]_"-':0:,;',. D235, _iu.:"" HeEdl. 229
BB DATAT.E17.248,7., 2 249 TRl V248, T, 231229
G308 DATAZ., 255, 224, 3.2 I.J-._F'q' -”"":l' laf 1. 127,54
a4l DFATHL, 2,564,808, 156, 128,84, 1."‘.‘:.!1.:'.’H@.~|.JJGJUI| a8
B30 DATAB.E2.8.8,62, 0,0, 62.8,0,22.0,8

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

145



El SPRITE EXAMPLE Z...
REM THE HOT AIR BALLOOH AGAIH
”IF La#daRE REM THIS 15 WHERE THE VIO REGISTERS

SO AMD 1 IH Y
OB OAMD 1 IM H
FOIMTER
H OFOIMTER
5 FOIMTER
FOTHTER
FOTHTER
FOIHMTER
wWOPOETTION
ITION

‘F:ITE r/q

SET

175 PRINT"&'TABC 1S " THIS IS TWO HIRES SFRITES";

TOF OF ERCH OTHER"
=MORET HPFITL i i FUCITIHH

] ”PPITE
FM THF START OF ’HF LOCF THAT

WITH SFRITE LOOF

A THL DATH IM SPRITE AREMA

AT SPRITE @75 ¥ POSITION
1 I_l_|l_l¥ “RITE QEITION
HEMI'W=-Ti ‘REM IF 7 18 OM THE

b THEM REVERSE DELTH W
FAMD FEER OV IO TEDFMDL b= THEMD S =~15  REM IF

] FEH‘TﬂHLHIHH THE LEFT EDGE. THEM REVERSE IT

146 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



SO DA LEDAMDY b THEM D=~ T REM TF

AHT EDGE. THEW REVERIZE IT
1:5 DL

s

A OWALUE IHMTO SPRITE 6%
GREM PUT MER = WALDE THTO SPRITE
WoOREM FUT OMEM Y OVWALLE THTO SPRITE

:V?HEH FLIT  HE

WOWALLUE THTO SPRITE

v I P T A v B v
S21 EEL LIRS B 1 129,128, 1,
b L v R O e B N i

JELIEDA.8,8,0,80,84,3.8, 42,

18 REM SFRITE EXAMPLE 3...
28 REM THE HOT AIR GORF

@ WIC=S3248 REM THIS IS5 WHERE THE YIC REGISTERS
BEGIM

25 POKEWIC+21.1:'REM EMABLE SFRITE @

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

147



36 FOKEVIC+ES, 14:REM SET BACKGROUMD COLOR TO LIGHT
BLUE

&7 FOKEN
A POk
42 FOKE

EXFAMD SFRITE @ IM W
EXFAMD SPRITE @ IM ¥
SET SFRITE 8°S FOIMTER
TURM OH MULTICOLOR

SET MULTICOLOR @

SET MULTICOLOR 1

CREM SET SFRITE @°85 ® POSITION
REM SET SFRITE 875 5

REM SET SFRITE 87
‘REM EYTE COUMTER WITH
g 1 REFD IM A EYTE

rnmc1h::D+T.H:REm STORE THE DRATA IM SFPRITE AREF
Y REM CLOSE LOOF

M LOOE AT SPRITE @7
REM LOOK AT SFRITE 2 [
THEHDY =-D% tBEM IF % 12 OM THE

PH‘ITIHH

5 FEH THHFHIHH THE LEFT EDGE. THEMW RE
IFAMD FEER OV IO+ 1E AR D=L THEMTN

THE RIGHT EDGE. THEM REVERSE IT
SFHDDH=1THEH =1 : SIDE=1
IE OF THE SCREEM
CSIDE=H
SIDE OF THE SCREEN
T REM ADD DELTA ¥ TO ¥

D255 REM MAKE SURE # IS IM ALLOWED RAMGE
+D%YREM ADD DELTA ¥ TO W
EVIC+16, S1DE
EVIC.® REM PUT HEM ¥ VALUE INTO SPRITE 875

IITCH TO OTHER

L TOREM PUT OMEM YO OVALUE IHTO SFRITE
TIUH
?E MHEREM GET A KEY FROM THE KE
21 IFFE="1" THEMFOREY TC+28, 1 REM

LT TOOL O
IFH "H"THLHFHIE”ILi:?.B REM USER ZELECTED

lebd, 1@, 17@, 1ERA, 42,
JITELLTE, LVE, 17,
SATELSE L 1TE 42, 1T,

DATFS,

148 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



WEITERE GRAPHIKMOGLICHKEITEN

WEGBLENDEN DES BILDSCHIRMS

Uber Bit 4 des VIC-II-Steuerregisters wird das Wegblenden des Bildschirms
gesteuert. Es befindet sich im Steuerregister an Adresse 53265 ($D011). Ist dieses
Bit eingeschaltet (d. h. auf 1 gesetzt), dann ist der Bildschirm normal. Ist Bit 4 auf 0
gesetzt (AUS), dann nimmt der gesamte Bildschirm die Rahmenfarbe an.

Durch folgende POKE-Anweisung wird der Bildschirm weggeblendet. Die Daten
gehen nicht verloren, sie werden lediglich nicht mehr angezeigt.

POKE 53265,PEEK(53265)AND 239
Zur Rucksetzung des Bildschirms dient folgende POKE-Anweisung:

POKE 53265,PEEK(53265)OR 16

Anmerkung: Durch Ausschalten des Bildschirms wird der Prozessor etwas beschleunigt, d. h., auch
die Programmausfiihrung erfolgt etwas schneller.

RASTERREGISTER

Das Rasterregister befindet sich im VIC-II-Chip an Adresse 53266 ($D012). Das
Rasterregister hat einen doppelten Zweck. Beim Lesen des Registers werden die
unteren 8 Bits der derzeitigen Rasterposition wiedergegeben. Die Rasterposition
des signifikantesten Bits ist im Registerplatz 53265 ($D011). Sie kénnen das
Rasterregister benutzen, um das Bildschirmflackern zu reduzieren. Anderungen der
Bildschirmanzeige sollen vorgenommen werden, wenn das Raster nicht im sichtba-
ren Anzeigebereich liegt, d. h., wenn die Punktpositionen zwischen 51 und 251
liegen. :

Nach dem Zuordnen des Rasterregisters (einschl. MSB) wird die zugeordnete Zahl
flr den Rastervergleich gespeichert. Ist der tatsachliche Rasterwert gleich der Zahl
des Rasterregisters, so wird ein Bit im VIC-II-Chip-Interrupt-Register 53273
($D019) auf 1 gesetzt (EIN).

Anmerkung: Wird das richtige Interrupt-Bit wirksam auf 1 gesetzt, so kommt es zu einem Interrupt
(IRQ).

INTERRUPT-STATUSREGISTER

Das Interrupt-Statusregister zeigt den derzeitigen Status einer beliebigen Interrupt-
maglichkeit. Der derzeitige Status von Bit 2 des Interrupt-Registers ist eine 1, wenn

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 149



es zu einer Kollision zwischen zwei Sprites kommt. Das gleiche gilt in 1: 1-
Entsprechung fir die in nachstehender Tabelle aufgefiihrten Bits 0 bis 3. Auch Bit 7
wird bei einem Interrupt auf 1 gesetzt.

Das Interrupt-Statusregister befindet sich an Speicherplatz 53273 ($D019) und
sieht wie folgt aus:

SCHALTER BIT# BESCHREIBUNG
IRST 0 Gesetzt, wenn derzeitiger Rasterwert gleich gespeichertem
Rasterwert.
IMDC 1 Gesetzt durch eine Kollision zwischen Sprite und einem
Zeichen auf dem Bildschirm, Zurlckstellung durch RESET.
IMMC 2 Gesetzt durch eine Kollision zwischen zwei Sprites,

Zuruckstellung durch RESET.
ILP Gesetzt bei negativer Flanke am Lightpen-Eingang.
IRQ 7 Wird gesetzt, wenn eines der Bits #0 bis 3 gesetzt ist.

w

Nach dem Setzen eines Interrupt-Bits ist dieses “latched” und muB durch Schrei-
ben einer 1 fur dieses Bit im Interrupt-Register geldscht werden (= RESET).
Hierdurch kann der Interrupt selektiv ohne die Speicherung der anderen Interrupt-
Bits gehandhabt werden.

Das INTERRUPT-AKTIVIERUNGSREGISTER befindet sich in Adresse 53274
(3D01A). Dieses Register hat das gleiche Format wie das Interrupt-Statusregister.
Wenn das entsprechende Bit im Interrupt-Aktivierungsregister nicht auf 1 gesetzt
ist, wird von dieser Quelle kein Interrupt angefordert. Das Interrupt-Statusregister
kann noch immer abgerufen werden, es werden jedoch keine Interrupts erzeugt.
Um eine Interrupt-Anforderung wirksam zu machen, muB das entsprechende
Interrupt-Aktivierungsbit (wie in obiger Tabelle gezeigt) auf 1 gesetzt sein.

Uber diese Interrupt-Struktur kénnen Betriebsarten mit geteiltem Bildschirm
benutzt werden. So kann z. B. fir die eine Halfte des Bildschirms Bit-Mapping, flr
eine Halfte Text, mehr als 8 Sprites gleichzeitig usw. benutzt werden. Die Interrupts
mussen nur richtig gehandhabt werden. Soll die obere Bildschirmhalfte z. B. im Bit-
Mapping und die untere mit Text dargestellt werden, muB lediglich das Raster-
Vergleichsregister (wie bereits erklart) fir die untere Bildschirmhalfte gesetzt sein.
Bei einem Interrupt muB der VIC-1I-Chip die Zeichen aus dem ROM nehmen; dann
wird das Raster-Vergleichsregister fir einen Interrupt am oberen Bildschirmrand
eingestellt. Wenn es dort zu einem Interrupt kommt, muB der VIC-II-Chip die
Zeichen aus dem RAM (Bit-Mapping) nehmen.

Auf die gleiche Weise kdnnen auch mehr als 8 Sprites angezeigt werden. Hierzu ist
BASIC jedoch leider nicht schnell genug. Beim Arbeiten mit Anzeigeinterrupts
sollten Sie also die Maschinensprache wahlen.

150 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



VORSCHLAGE FUR BILDSCHIRM-ZEICHENFARBE-

KOMBINATIONEN

Bei Farbfernsehgeraten gibt es Einschrankungen hinsichtlich der Féahigkeit,
bestimmte Farben nebeneinander anzuzeigen. Bestimmte Kombinationen von Bild-
schirm und Zeichenfarben flihren zu unscharfen Bildern. Die nachstehende Tabelle
zeigt Ihnen, welche Farbkombinationen Sie besser vermeiden sollten und welche

Farben gut miteinander kombiniert werden kénnen.

BILDSCHIRMFARBE

10
11
12
13
14
15

ZEICHENFARBE

1 6 7 8 10 11 12 13 14 15
® X ® o ® ® [ J [ J ® ®
X o X ® [ ] ® ® X ® ®
[ J X [ J ® ® X X X X ®
X ® X X X ® X X [ ] X
[ J X X X X X X X X @
[ X X X X ® X e X [
[ ] X X X X X X ([ ] [ J ®
X ® X [ [ J [ J [ J X X X
® X ® X X X X X X [
® X ® [ ] ® X X X X ®
® X [ J X X X X X X ®
® X [ J X X X [ ] [ ] [ ] ®
® ® X X X ® X X X [ ]
X [ J X X X ® X X X X
® ® X X X ® X X X [
® ® X X [ [ ] ® X [ ] X

e = GUT

e = ANNEHMBAR

X = SCHLECHT

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

151



PROGRAMMIEREN VON SPRITES —
EIN ANDERER ASPEKT

Allen, die Schwierigkeiten mit Graphiken haben, werden Sprites in diesem Kapitel
auf etwas einfachere Weise erklart.

PROGRAMMIERUNG DER SPRITES IN BASIC — EIN KURZES
PROGRAMM

Es gibt mindestens drei verschiedene BASIC-Programmiertechniken zum Erstellen
von Graphikbildern und Zeichentrickfilmen mit dem COMMODORE 64. Sie konnen
den computereigenen Graphikzeichensatz (siehe Seite 376) benutzen. Sie konnen
in lhren eigenen Zeichen (siehe Seite 108) programmieren oder, die beste Méglich-
keit . . . die in den Computer eingebauten “Sprite-Graphiken* benutzen.

Damit Sie sehen, wie einfach dies ist, zeigen wir Ihnen hier ein kurzes Programm fur
die Erstellung von Sprites in BASIC:

e
18 PRINT"TIY

G FORES, 255 MESET

Dieses Programm enthélt die Hauptbestandteile, die Sie beim Einstellen von Sprites
benotigen. Die POKE-Zahlen stammen aus der Spritetabelle auf Seite 176. Dieses
Programm definiert das erste Sprite — Sprite 0 — als weiBes Quadrat auf dem
Bildschirm. Wir wollen das Programm nun Zeile fur Zeile erklaren:

ZEILE 10 |6scht den Bildschirm.

ZEILE 20 setzt den “Sprite-Zeiger“ auf die Speicherstelle, aus der der COMMO-
DORE 64 die Spritedaten lesen soll. Sprite 0 wird auf 2040, Sprite 1 auf 2041, Sprite
2 auf 2042 usw. und Sprite 7 auf 2047 gesetzt. Durch Verwendung der nachfolgen-
den Zeile anstelle von Zeile 20 kdnnen alle 8 Sprite-Zeiger auf 13 gesetzt werden:

FOR SP=2040T02047:POKE SP,13:NEXT SP

ZEILE 30 schreibt das erste Sprite (Sprite 0) in 63 Bytes des RAM-Speichers des
COMMODORE 64 beginnend bei Adresse 832 (jedes Sprite bendtigt 63 Bytes des

152 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



Speichers). Das erste Sprite (Sprite 0) wird in den Speicherplatzen 832 bis 894
abgespeichert.

ZEILE 40 setzt die Variable “V* gleich 53248, der Startadresse des VIDEO-
CHIPS. Durch diese Eingabe konnen wir die Formel (V + Zahl) fir Spriteeingaben
benutzen. Wir benutzen diese Formel beim POKEn von Spriteeingaben, da sie
Speicherkapazitat einspart und das Arbeiten mit kleineren Zahlen ermdglicht. So
haben wir z. B. in Zeile 50 POKE V + 21 eingegeben. Dies entspricht der Eingabe
von POKE 53248 + 21 oder 53269. V + 21 benétigt jedoch weniger Platz als 53269
und |aBt sich leichter merken.

ZEILE 50 aktiviert Sprite 0. Es gibt 8 Sprites mit der Zahl 0 bis 7. Zum Einschalten
der einzelnen Sprites oder einer Kombination von Sprites missen Sie lediglich
POKE V + 21 gefolgt von einer Zahl zwischen O (Ausschalten aller Sprites) und 255
(Einschalten aller 8 Sprites) eingeben. Durch das POKEnN folgender Zahlen kdnnen
ein oder mehrere Sprites eingeschaltet werden:

ALL ON | SPRITEO | SPRITE1 | SPRITE2 | SPRITE3| SPRITE4| SPRITES| SPRITE6| SPRITE7 | ALL OFF
V+21,255(V+21,1 | V+21,2 | V+21,4 | V+21,8 | V+21,16(V+21,32| V+21,64|V+21,128| V+21,0

Durch POKE V + 21,1 wird Sprite 0 eingeschaltet. POKE V + 21,128 schaltet Sprite
7 ein. Es kann auch eine Spritekombination eingeschaltet werden. So wird z. B.
durch POKE V + 21,129 sowohl Sprite 0 als auch Sprite 7 durch Addition.der beiden
Einschaltzahlen (1 + 128) eingeschaltet. (Siehe Spritetabelle, Seite 176.)

ZEILE 60 legt die Farbe von Sprite O fest. Es gibt 16 mogliche Spritefarben, die von
0 (Schwarz) bis 15 (Grau) numeriert sind. Jedes Sprite bendtigt fir die Farbe eine
unterschiedliche POKE-Anweisung von V + 39 bis V + 46. POKE V + 39,1 gibt
Sprite 0 die Farbe WeiB. Durch POKE V + 46,15 erhalt Sprite 7 die Farbe Grau
(bezuglich weiterer Einzelheiten siehe Spritetabelle).

Beim Erstellen eines Sprites bleibt dieses so lange im Speicher erhalten bis es neu
definiert oder der Computer abgeschaltet wird. Auf diese Weise kann Farbe,
Position und Form des Sprites im Direktmodus gedndert werden. Dies ist beson-
ders sinnvoll beim Editieren.

Fihren Sie z. B. obiges Programm aus und geben Sie danach diese Zeile im
Direktmodus (ohne Zeilennummer) ein. Danach driicken Sie die Taste :

POKE V+39,8

Das Sprite auf dem Bildschirm ist nun ORANGE. Versuchen Sie das POKEn einer
anderen Zahl zwischen 0 und 15. Es wird eine andere Spritefarbe erscheinen. Da

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 153



dies im Direktmodus erfolgte, wird das Sprite beim Ausfiihren des Programms
wieder die urspringliche Farbe (WeiB) haben.

ZEILE 70 bestimmt die horizontale oder “X*"-Position des Sprites auf dem Bild-
schirm. Diese Zahl legt die Position der OBEREN LINKEN ECKE des Sprites fest.
Die externe linke Position, die Sie auf dem Bildschirm sehen kdnnen, ist die Position
Nr. 24, auch wenn Sie das Sprite tUber den Bildschirmrand hinaus auf Position Nr. 0
bewegen kdnnen.

ZEILE 80 bestimmt die vertikale oder “Y*“-Position des Sprites. In diesem Pro-
gramm plazierten wir das Sprite an die X-Position 24 und Y-Position 100. Probieren
Sie eine andere Position aus. Geben Sie dazu folgende POKE-Anweisung im
Direktmodus ein und driicken Sie danach :

POKE V,24:POKE V+1,50

Hierdurch wird das Sprite in die obere linke Bildschirmecke gesetzt. Um das Sprite
in die untere linke Ecke zu bewegen, geben Sie folgendes ein:

POKE V,24:POKE V+1,229

Jede Zahl von 832 bis 895 im Speicherbereich von Sprite O reprasentiert einen Satz
von 8 Pixel, wobei drei 8-Pixel-Satze eine horizontale Reihe des Sprites darstellen.
Die Schleife in Zeile 30 gibt dem Computer die Anweisung POKE 832,255, wodurch
die ersten 8 Pixel “ausgefiillt“ werden, und danach werden durch POKE 833,255
die nichsten 8 Pixel ebenfalls “ausgefillt” usw. bis zu Adresse 894, der die letzte
Gruppe von 8 Pixel in der unteren rechten Spriteecke angibt.

Damit Sie besser sehen, wie dies funktioniert, versuchen Sie folgendes im Direkt-
betrieb und beachten Sie, daB die zweite Gruppe der 8 Pixel geldscht wird:

POKE 833,0 (zum Zurlicksetzen lber die Tastatur POKE 833,255 oder RUN
eingeben)

Durch folgende Zeile, die Sie in Ihr Programm aufnehmen kdnnen, wird die Mitte
des erstellten Sprites geldscht:

90 FOR A=836 TO 891 STEP 3:POKE A,0:NEXT A

Denken Sie daran, daB die Pixel, aus denen die Sprites aufgebaut sind, in Satzen
von acht gruppiert sind. Diese Zeile 16scht die 5. Gruppe von 8 Pixel (Satz 836) und
jeden dritten Satz bis zu Satz 890. Versuchen Sie, andere Zahlen in die Adressen
von 832 bis 894 zu POKEN. Mit 255 erzeugen Sie Blocke, die durch O geldscht
werden kdnnen.

154 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



KOMPRIMIEREN IHRER SPRITE-PROGRAMME

Nun noch einen nitzlichen Tip zum Komprimieren: Das oben beschriebene Programm ist zwar bereits
ziemlich kurz, kann jedoch durch “Komprimieren® noch kiirzer gestaltet werden. In unserem Beispiel
zeigten wir die Spriteeingaben in verschiedenen Programmzeilen, so daB Sie sehen kénnen, was im
Programm passiert. Bei der tatsdchlichen Anwendung wird ein guter Programmierer dieses Programm
als ZWEIZEILEN-PROGRAMM schreiben, indem er es wie folgt komprimiert:

10PRINTCHR$(147):V=53248:POKEV +21,1:POKE2040,13:POKEV +39,1
20FORS=832T0894:POKES,255:NEXT:POKEV,24:POKEV +1,100

Bezuglich weiterer Einzelheiten Uber das Komprimieren von Programmen und somit das Einsparen von
Speicherkapazitit siehe Seite 24.

BILDSCHIRM
Pa A
X POSITION = HORIZO
- |
<<
O
s
o
L
>
1l
Z
o
'—
) A
g /
>
~—L | /

L

/

Fir dieses Sprite hier muB sowohl die X-Position (horizontal) als auch die Y-Position
(vertikal) angegeben werden, damit es auf dem Bildschirm angezeigt wird.

Abb. 3.4. Der Bildschirm ist in ein Gitter aus X- und Y-Koordinaten unterteilt.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 155




POSITIONIERUNG DER SPRITES AUF DEM BILDSCHIRM

Der gesamte Bildschirm ist wie ein Koordinatensystem in X- und Y-Koordinaten
unterteilt. Die X-Koordinate ist die horizontale Position und die Y-Koordinate die
vertikale Position auf dem Bildschirm (siehe Abb. 3.4.).

Um die Sprites auf dem Bildschirm zu positionieren, missen zwei Eingaben — X-
und Y-Position — gePOKEt werden. Auf diese Weise erfahrt der Computer, wo sich
die obere linke Ecke des Sprites auf dem Bildschirm befinden soll. Bitte denken Sie
daran, daB ein Sprite aus 504 einzelnen Pixels (24 horizontal mal 21 vertikal)
besteht. Beim POKEN eines Sprites in die obere linke Bildschirmecke wird dieses
als graphische Darstellung mit 24 horizontalen und 21 vertikalen Pixels angezeigt.
Die Anzeige beginnt hierbei in der von Ihnen definierten X-Y-Position. Die Anzeige
des Sprites basiert stets auf der oberen linken Ecke, auch wenn Sie flir das gesamte
Sprite lediglich einen kleinen Teil des 24-mal-21-Pixel-Spritebereichs benutzen.
Die Funktionsweise der X-Y-Positionierung kdnnen Sie dem nachstehenden Dia-
gramm (Abb. 3.5.) entnehmen. Dieses zeigt die X- und Y-Zahlen in Zusammenhang
mit der Bildschirmanzeige. Bitte beachten Sie, daB der graue Bereich im Diagramm
den sichtbaren Bildschirmteil und der weiBe Bereich den Teil auBerhalb des
Bildschirms angibt.

X-POSITIONEN VON 0 BIS 255,
DANN: POKE V + 16,1 UND 5
~——— NEUE WERTE VON 0 BIS 91—b—
|

X = 255, Y = 50 POKE V+16, 1 AND
I X =6

=65, = 50
=231,Y = 50 | \

Y-POSITIONEN VON
0 BIS 255

e
[

7
X =24,Y = 250 POKE V+16, 1 AND
X =65 Y = 229

Abb. 3.5. Bestimmung der X-Y-Spritepositionen

156 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



Um ein Sprite an der gewdhlten Stelle anzuzeigen, mussen Sie die X- und
Y-Eingaben fur jedes Sprite POKEN . . . denken Sie daran, daB jedes Sprite seine
eigene X- und Y-POKE-Anweisung hat. Nachstehend sehen Sie die X- und Y-Ein-
gaben fir alle 8 Sprites:

ZUM SETZEN DER X-Y-SPRITEPOSITIONEN POKEN SIE DIESE WERTE

SPRITEO | SPRITE1 | SPRITE2 | SPRITE3 | SPRITE4 | SPRITE5S | SPRITE6 SPRITE7

SET X V,X V42X V+4,X V+6,X V+8,X V+10,X | V+12,X | V+14,X
SET Y V+1,Y | V+3Y V+5,Y V+7,Y V+9,Y VHI11,Y | V+13,Y | V+I5)Y
RIGHTX [ V+16,1 | V+16,2 | V+16,4 | V+16,8 V416,16 | V+16,32| V+16,64 | V+16,128

POKEN EINER X-POSITION: Die moglichen X-Werte sind, gezahlt von links nach
rechts, 0 bis 255. Die Werte O bis 23 plazieren alles oder einen Teil des Sprites
auBerhalb des sichtbaren Bereichs auf der linken Bildschirmseite — die Werte 24 bis
255 zeigen das Sprite im sichtbaren Bereich bis zur 255. Position an (beziglich
Einzelheiten (iber die Eingabe auBerhalb der 255. X-Position siehe nachstehenden
Abschnitt). Um ein Sprite in eine dieser Positionen zu plazieren, geben Sie lediglich
die X-Positions-POKE-Anweisung fiir das benutzte Sprite ein. Um z. B. Sprite 1 an
die duBerst linke X-Position im sichtbaren Bereich zu POKEN, geben Sie folgendes
ein: POKE V + 2,24,

X-Werte auBerhalb der 255. Position: Um Uber die 255. Position des Bild-
schirms hinaus zu gelangen, benétigen Sie eine zweite POKE-Anweisung. Norma-
lerweise geht die horizontale Numerierung (X) Uber die 255. Position bis zu 256,
257 usw. hinaus. Da die Register jedoch nur 8 Bit enthalten, mussen wir ein
“zweites Register” erstellen, um auf die rechte Bildschirmseite zu gelangen. Die
X-Numerierung beginnt hier wieder mit 0. Um also Uber die X-Position 255 hinaus
zu gelangen, ist POKE 5 + 16 sowie eine Zahl (abhangig vom Sprite) erforderlich.
Hierdurch erhalten Sie 64 zusatzliche X-Positionen (numeriert von O bis 65) im
sichtbaren Bereich auf der rechten Bildschirmseite. (Sie kdnnen den rechten
X-Wert tatsachlich bis auf 255 POKER.)

POKEN EINER Y-POSITION: Die moglichen Y-Werte sind O bis 255 und werden
von oben nach unten gezahlt. Durch die Werte 0 bis 49 wird das Sprite ganz oder
teilweise auBerhalb des sichtbaren Bereichs oben am Bildschirm angezeigt. Mit den
Werten 50 bis 259 befindet sich das Sprite im sichtbaren Bereich. Durch die Werte
230 bis 255 wird das Sprite ganz oder teilweise aus dem sichtbaren Bereich
hinausbewegt.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 157



Wir wollen uns nun mit X-Y-Positionierung beschaftigen und nehmen hierzu Sprite
1 als Beispiel. Geben Sie folgendes Programm ein:

ﬁ/m CLR/HOME
TN e E D FOREWSZL 2 POREZaS L 13
: POKES, 5% : HEXT

Dieses einfache Programm zeigt Sprite 1 als Késtchen an und setzt es in die obere
linke Bildschirmecke. Andern Sie die Zeile 40 nun wie folgt:

40 POKE V+3,229

Hierdurch wird das Sprite in die untere linke Bildschirmecke bewegt. Nun wollen wir
die rechte X-Grenze des Sprites iiberpriifen: Andern Sie Zeile 30 wie folgt:

30 POKE V+2,255

Hierdurch wird das Sprite nach rechts bewegt. Es erreicht jedoch die rechte
X-Grenze, die durch 255 festgelegt ist. An diesem Punkt muB das hdchste Bit in
Register 16 gesetzt sein. D. h., Sie missen POKE V + 16 sowie eine Zahl
eingeben, die in der rechten “X“-Spalte in der X-Y-POKE-Tabelle angezeigt wird.
Auf diese Weise wird der X-Positionszéhler bei der 256. Pixel-Position auf dem
Bildschirm neu gestartet. Andern Sie Zeile 30 wie folgt:

30 POKE V+16, PEEK(V+16)OR 2:POKE V+2,0

Durch POKE V + 16,2 wird das hochste Bit der X-Position flr Sprite 1 gesetzt und
bei der 256. Pixel-Position auf dem Bildschirm ein neuer 0-Punkt gesetzt. Durch
POKE V + 2,0 wird das Sprite an der neuen 0-Position, die nun auf den 256. Pixel
gesetzt ist, angezeigt.

Um zurtick zur linken Bildschirmseite zu gelangen, muB das hdchste Bit des
X-Positionszadhlers auf 0 gesetzt werden. Geben Sie hierzu fir Sprite 1 folgendes
ein:

POKE V+16, PEEK(V+16)AND 253
Fassen wir nun zusammen, wie die X-Positionierung funktioniert: Die X-Position

flr ein beliebiges Sprite wird mit einer Zahl von 0 bis 255 gePOKEt. Fur Positionen
rechts von der 255. Position auf dem Bildschirm benétigen Sie eine zuséatzliche

158 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



Anweisung POKE (V + 16), durch die das hochste Bit der X-Position gesetzt und
die Zahlung beim 256. Pixel auf dem Bildschirm erneut bei O gestartet wird.
Durch diese POKE-Anweisung beginnt die X-Numerierung ab der 256. Position
erneut bei 0. (Beispiel: POKE V+16, PEEK(V+16) OR 1 und POKE V,1 miissen
enthalten sein, um Sprite 0 an die 257. Position auf dem Bildschirm zu setzen.) Um
zurlick zur linken X-Position zu gelangen, missen Sie wieder “umschalten®.
Geben Sie hierzu POKE V+16, PEEK(V+16)AND 254 ein.

POSITIONIEREN MEHRERER SPRITES AUF DEM BILDSCHIRM

Nachstehend sehen Sie ein Programm, das 3 verschiedene Sprites (0, 1 und 2) in
verschiedenen Farben definiert und in verschiedenen Positionen auf dem Bild-
schirm darstellt:

R FOKES, 255 MEST

Der Einfachheit halber sind alle drei Sprites als durchgehende Quadrate definiert,
die ihre Daten alle aus demselben Speicherbereich erhalten. Wichtig ist hierbei, wie
alle drei Sprites positioniert werden. Das weiBe Sprite 0 befindet sich in der oberen
linken Ecke. Das gelbe Sprite 1 in der unteren Ecke, jedoch halb auBerhalb des
Bildschirms. Denken Sie daran, 24 ist die duBerste linke X-Position im sichtbaren
Bereich . . . durch eine X-Position unter 24 wird das Sprite ganz oder teilweise aus
dem Bildschirm “hinausgeschoben®. Wir haben hier die X-Position 12 benutzt, so
daB die Halfte des Sprites auBerhalb des Bildschirms liegt. Das orangene Sprite 2
liegt an der rechten X-Grenze (Position 255) ... Wenn Sie nun aber ein Sprite
anzeigen wollen, das im Bereich rechts von der X-Position 255 liegt?

ANZEIGE EINES SPRITES AUSSERHALB DER 255. X-POSITION

Um ein Sprite auBerhalb der 255. X-Position anzuzeigen, ist eine besondere POKE-
Anweisung erforderlich. Diese setzt das hdchste Bit der X-Position und beginnt bei
der 256. Pixel-Position auf dem Bildschirm. Das funktioniert folgendermaBen:
Geben Sie zunachst POKE V + 16 mit der Zah! fiir das Sprite, das Sie benutzen, ein
(Uberprufen Sie die rechte X-Reihe “RIGHT X" in der Tabelle X-Y . .. wir benutzen
Sprite 0). Nun ordnen wir eine X-Position zu. Hierbei missen wir darauf achten, daB
der X-Zahler ab der 256. Bildschirmposition wieder bei 0 beginnt. Andern Sie Zeile
50 wie folgt:

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 159



50 POKE V+16,1:POKE V,24:POKE V+1,75

Durch diese Zeile wird V + 16 mit der Zahl gePOKEt, die zum “Offnen* der rechten
Bildschirmseite benétigt wird. Die neue X-Position 24 flr Sprite 0 beginnt nun 24
Pixel rechts neben der Position 255. Um die rechte Bildschirmkante zu Gberprifen,
andern Sie Zeile 60 wie folgt:

60 POKE V+16,1:POKE V,65:POKE V+1,75

Probieren Sie die Eingaben in der Spritetabelle aus, damit Sie die Eingaben
herausfinden, die flr die Positionierung und Bewegung der Sprites auf dem
Bildschirm erforderlich sind. Auch das Kapitel Gber “Bewegen von Sprites“ wird
Ihnen bei der Spritepositionierung helfen.

SPRITEPRIORITATEN

Verschiedene Sprites kdnnen sich vor- bzw. hintereinander auf dem Bildschirm
bewegen. Dieser dreidimensionale Effekt wird durch die Spriteprioritaten erzielt, die
bestimmen, welches Sprite bei einer eventuellen Uberdeckung auf dem Bildschirm
Vorrang gegenltber dem anderen hat.

Die Regelung, “wer zuerst kommt, mahlt zuerst*, gilt auch hier: Das Sprite mit der
niedrigeren Zahl hat automatisch Prioritat Gber Sprites mit héheren Zahlen. Werden
z. B. Sprite 0 und Sprite 1 an der gleichen Stelle des Bildschirms angezeigt, so
erscheint Sprite 0 vor Sprite 1. Sprite 0 hat daher stets Vorrang vor allen anderen
Sprites, da es dasjenige mit der niedrigsten Zahl ist. Sprite 1 hat Prioritat Gber die
Sprites 2 bis 7, Sprite 2 Vorrang vor den Sprites 3 bis 7 usw. Sprite 7 (das letzte
Sprite) hat die niedrigste Prioritat und wird daher bei einer Uberdeckung stets hinter
allen anderen Sprites erscheinen.

Andern Sie die Zeilen 50, 60 und 70 des Programms wie folgt:

1@ FRINTYE" S y=53
FIIFM = I-LDIT['I

SEEEAZTOSRS  PORES, 255 HEXT
FOREM., 13 HEST

Sie missen nun ein weiBes Sprite (iber einem gelben Sprite sehen und Uber diesen
beiden muB ein orangenes Sprite angezeigt sein. Nun wissen Sie, wie die Priorita-
ten gesetzt sind, und konnen die Sprites beliebig bewegen. Dies hilft bei der
Programmierung von Trickfilmen.

160 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



ZEICHNEN EINES SPRITES

Das Zeichnen eines COMMODORE-Sprites verlauft genauso wie das Ausmalen
eines Malbuchs. Jedes Sprite besteht aus winzigen Punkten, die Pixel genannt
werden. Um ein Sprite zu zeichnen, brauchen Sie lediglich einige der Pixel
“auszumalen”.

Sehen Sie sich das nachstehende Gitter in Abb. 3.6. an. So sieht ein leeres Sprite
aus:

N —
A O

Abb. 3.6. Gitter fiir die Spriteerstellung

Jedes kleine “Késtchen stellt ein Pixel im Sprite dar. Es gibt 24 horizontale mal 21
vertikale oder insgesamt 504 Pixel pro Sprite. Um dem Sprite nun eine bestimmte
Form zu geben, missen Sie diese Pixel mit einem speziellen Programm ausma-
len ... Wie kdnnen jedoch mehr als 500 Pixel gesteuert werden? Hierbei kann
Ihnen die Computerprogrammierung helfen. Sie miissen nicht 504 einzelne Zahlen,
sondern lediglich 63 Zahlen fiir jedes Sprite eingeben. Das funktioniert folgender-
maBen . . .

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 161



ERSTELLEN EINES SPRITES . .. SCHRITT FUR SCHRITT

Um die Erstellung von Sprites fiir Sie so einfach wie mdglich darzustellen, wollen
wir das Ganze schrittweise erklaren.

SCHRITT 1:

Schreiben Sie das Sprite-Erstellungs-Programm wie hier gezeigt auf ein Stlick
Papier . . . bitte beachten Sie, daB in Zeile 100 ein Abschnitt mit DATAs beginnt, der
die 63 Zahlen fur die Spriteerstellung enthalt.

MG HERT

’32169 412 1128643216‘8 4|2|1128{64(32(16|8| 4|21

128 64

SCHRITT 2:

Malen Sie die Pixel im Gitter auf Seite 161 aus (oder nehmen Sie ein Blatt
Millimeterpapier . . . denken Sie daran, daB ein Sprite aus 24 horizontalen mal 21
vertikalen Kastchen besteht). Benutzen Sie einen Bleistift und driicken Sie nicht zu
fest auf, damit Sie dieses Gitter wieder benutzen kénnen (oder machen Sie sich
einige Fotokopien des Gitters). Sie kdnnen beliebige Bilder erstellen. Am Anfang
wollen wir jedoch als Beispiel einen einfachen Kasten zeichnen.

162 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



SCHRITT 3:

Sehen Sie sich die ersten ACHT Pixel an. Uber jeder Spalte von Pixels steht eine
Zahl (128, 64, 32, 16, 8, 4, 2, 1). Die besondere Art der Addition, die wir benutzen
wollen, stammt aus der BINAR-ARITHMETIK, die bei Computern oft verwendet
wird. Nachstehend sehen Sie genau die ersten acht Pixel in der oberen linken
Spriteecke:

SCHRITT 4:

Addieren Sie die Zahlen der ersten ausgemalten Pixel. Die erste Gruppe der acht
Pixel ist vollstandig ausgemalt, so daB sich eine Summe von 255 ergibt.

SCHRITT 5:

Geben Sie diese Zahl als ERSTE DATA-ANWEISUNG in Zeile 100 des Sprite-
Erstellungsprogramms ein. Geben Sie 255 fiir die zweite und dritte Achtergruppe
ein.

SCHRITT 6:

Sehen Sie sich die ERSTEN ACHT PIXEL IN DER ZWEITEN SPRITE-REIHE an.
Addieren Sie die Werte der ausgemalten Pixel. Da in unserem Beispiel nur ein Pixel
ausgemalt ist, ergibt sich die Summe 128. Geben Sie diesen Wert als erste
Datenzahl in Zeile 101 ein.

SCHRITT 7:

Addieren Sie die Werte der nachsten Gruppe von acht Pixels (die Summe ist 0, da
hier alle Pixel leer sind). Geben Sie diese Zahl in Zeile 101 ein. Nun nehmen wir uns
die néchste Gruppe vor und flihren das gleiche fiir alle Achtergruppen durch (es gibt

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 163



drei Gruppen pro Reihe und insgesamt 21 Reihen). Es ergibt sich also eine
Gesamtanzahl von 63. Jede Zahl gibt eine Gruppe zu je acht Pixel an, und 63
Gruppen mit acht Pixel ergeben insgesamt 504 vollstandig unabhangige Pixel. Das
Programm |aBt sich vielleicht noch besser wie folgt erklaren. Jede Programmzeile
stellt eine Reihe im Sprite dar. Jede der drei Zahlen in jeder Reihe steht fir eine
Gruppe mit je acht Pixel. Und jede Zahl weist den Computer an, welches Pixel
ausgemalt und welches leer sein soll.

SCHRITT 8:

KOMPRIMIEREN SIE DAS PROGRAMM. HIERZU WERDEN DIE DATA-ANWEI-
SUNGEN ENTSPRECHEND NACHSTEHENDEM BEISPIELPROGRAMM ZUSAM-
MENGEFASST. Beachten Sie, daB Sie das Spriteprogramm zunéchst auf ein Blatt
Papier schreiben sollten. Das hat einen guten Grund. Die DATA-Anweisungszeilen
100 bis 120 im Programm in Schritt 1 sollen Ihnen lediglich zeigen, welche Zahl zu
welcher Pixelgruppe lhres Sprites gehort. Das endgtltige Programm wird wie folgt
komprimiert:

PR W T RGP

i SladEs .
JE .l. 21 s :
DATRLZE, 6. 1 SlEEaE. 1. L1 EED, 205, 255

A = LB

BEWEGEN DER SPRITES AUF DEM BILDSCHIRM

Jetzt ist das Sprite fertig, und wir kdnnen es nun zu interessanten Dingen benutzen.
Um das Sprite Uber den Bildschirm zu bewegen, fligen Sie folgende zwei Zeilen in
lhr Programm ein:

50 POKE V+5,100:FOR X=24T0255:POKE V+4,X:NEXT:POKE V+16,4
55 FOR X=0T0O65:POKE V+4,X:NEXT X:POKE V+16,0:GOTO 50

Durch ZEILE 50 wird die Y-Position bei 100 gePOKEt (probieren Sie auch 50 oder
229 aus). Dann wird eine FOR . . .NEXT-Schleife aufgebaut, durch die das Sprite
nacheinander in die X-Position 0 bis 255 gePOKEt wird. Beim Erreichen der 255.
Position wird das MSB gePOKEt (POKE V + 16,2), das zum Erreichen des rechten
Bildschirmrandes bendtigt wird.

164 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



ZEILE 55 enthalt ebenfalls eine FOR . . .NEXT-Schleife, durch die das Sprite in die
letzten 65 Bildschirmpositionen gePOKEt wird. Bitte beachten Sie, daB der X-Wert
auf 0 zurlickgestellt wurde. Da Sie jedoch das hochste Bit der X-Position gesetzt
hatten (POKE V + 16,2), beginnt X auf der rechten Bildschirmseite.

Diese Zeile wird immer wieder durchlaufen (GOTO 50). Soll das Sprite sich nur
einmal Uber den Bildschirm bewegen und dann verschwinden, nehmen Sie GOTO
50 einfach heraus.

Nachstehend sehen Sie eine Zeile, durch die das Sprite vor- und zuriickbewegt
wird:

50 POKE V+5,100:FOR X=24T0255:POKE V+4 X:NEXT: POKE
V+16,4:FOR X=0TO65: POKE V+4,X: NEXT X

55 FOR X=65TO0 STEP—-1:POKE V+4,X:NEXT:POKE V+16,0: FOR
X=255T024 STEP—1: POKE V+4 X:NEXT

60 GOTO 50

Sehen Sie, wie dieses Programm funktioniert? Es ist das gleiche wie das vorherige.
Nur wird hier beim Erreichen der rechten Bildschirmseite das Programm stets
umgekehrt, so daB das Sprite sich wieder in die andere Richtung bewegt. Dies wird
durch STEP-1 bewirkt. Das Programm wird angewiesen, das Sprite in die X-Werte
von 65 bis 0 auf der rechten Bildschirmseite und dann von 155 bis 0 auf der linken
Bildschirmseite zu POKEn. Hierbei wird jeweils um den Schritt —1 zurlickge-
gangen.

VERTIKALES ROLLEN
Diese Art der Spritebewegung wird “ROLLEN" genannt. Um das Sprite auf diese
Weise nach oben oder unten in die Y-Position zu bewegen, brauchen Sie lediglich

eine Zeile. Loschen Sie die Zeilen 50 und 55, indem Sie die Zeilennummern
eingeben und danach driicken.

50 ( (ETE )
55 ( (G )

Geben Sie nun ZEILE 50 wie folgt ein:

50 POKE V+4,24:FOR Y=0T0255:POKE V+5,Y:NEXT

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 165



DIE TANZMAUS — EIN SPRITE-PROGRAMMBEISPIEL

Gelegentlich sind die in Programmieranleitungen beschriebenen Techniken nur
schwer zu verstehen. Aus diesem Grund haben wir ein Spriteprogramm erstellt, das
wir “Michaels Tanzmaus“ nennen. Dieses Programm benutzt drei verschiedene
Sprites in einem Zeichentrick mit Gerauscheffekten. Damit Sie genau verstehen,
wie dieses Programm funktioniert, haben wir jeden Befehl erklart:

DElE T POKES+24, 15 FOKES, 226 POKES+ 1, &2 POKES+S,

15 PO 2,215

18 FOEKES+7. 120 POKES+S, 188 POKES+12, 15 POKES+12, 213
/HOME

FHFE“+71J1

e

< F’F'IHT THEC LG " AT AM THE DAMCIHG MOLsE ! a"

A lEs,
182 DATAHZ1

EERIE U8 T I e ey B e e St Bt 08 Bl Sl £
= I -

RETLRH

166 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



ZEILE 5:

S=54272

POKES +24,15

POKES,220

POKES+1,68

POKES+5,15

POKES+6,215

ZEILE 10:

POKES+7,120
POKES+8,100
POKES+12,15

POKES+13,215

ZEILE 15:

PRINT*
"

V=53248

POKEV+21,1

Setzt die Variable S gleich 54272, also der Anfangs-
speicheradresse des SOUND CHIP. Statt nun einen
direkten Speicherplatz zu POKEn, werden wir ab jetzt
POKE S plus einen Wert eingeben.

Entspricht POKE 54296,15. Hierdurch wird die héch-
ste Lautstérke eingestellt.

Entspricht POKE 54272,220. Setzt das Low Byte
(LOW FREQUENCY) in Stimme 1 fur eine Note, die
ungefahr dem hohen C in Oktave 6 entspricht.
Entspricht POKE 54273,68. Jetzt das High Byte in
Stimme 1 fur eine Note, die etwa dem hohen C in
Oktave 6 entspricht.

Entspricht POKE 54277,15. Setzt das Attack/Decay
far Stimme 1 und besteht in diesem Fall aus dem
max. Abklingpegel ohne Einsetzen. Hierdurch ent-
steht der Echo-Effekt.

Entspricht POKE 54278,215. Setzt das Sustain/
Release fiir Stimme 1 (215 stellt eine Kombination
zwischen Sustain- und Releasezeit dar).

Entspricht POKE 54279,120. Setzt “High Frequency*
far Stimme 2.

Entspricht POKE 54280,100. Setzt “Low Frequency*
far Stimme 2.

Entspricht POKE 54284,15. Setzt Attack/Decay flr
Stimme 2 auf den gleichen Pegel wie fur Stimme 1.

Entspricht POKE 54285,215. Setzt das Sustain/
Release fir Stimme 2 auf den gleichen Pegel wie fur
Stimme 1.

Ldscht den Bildschirm bei Programmbeginn.
Definiert die Variable “V*“ als Startadresse des VIC-
Chip, der die Sprites steuert. Von nun an werden alle
Spriteplatze als V plus einen Wert definiert.

Schaltet die Spritenummer 1 ein (Aktivierung).

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 167



ZEILE 20:

FORS1=12288
TO 12350

READ Q1

POKES1,Q1

NEXT

In diesem Zeichentrick benutzen wir ein Sprite
(Sprite 0). Wir werden jedoch DREI verschiedene
Spritedaten fir die Definition von drei unterschiedli-
chen Formen benutzen. Flr den Zeichentrick schal-
ten wir die Zeiger fur Sprite 0 auf drei verschiedene
Speicherpléatze, in denen die Daten fur die Definition
der unterschiedlichen Formen gespeichert sind. Das-
selbe Sprite wird hintereinander schnell in drei ver-
schiedenen Formen definiert. Hierdurch entsteht der
Tanzmaustrickfilm. Sie kbnnen Dutzende von Sprite-
formen in DATA-Anweisungen benutzen und diese
Formen mit einem oder mehreren Sprites benutzen.
Sie brauchen daher nicht ein Sprite auf eine Form zu
begrenzen (und umgekehrt). Ein Sprite kann viele
verschiedene Formen haben, indem einfach die Poin-
ter fur dieses Sprite auf verschiedene Adressen zei-
gen. In den Speicherplatzen sind dann die Spriteda-
ten der verschiedenen Formen gespeichert. Diese
Zeile bedeutet, daB wir die Date fur die “Spriteform 1*
in die Speicherplatze 12288 bis 12350 eingegeben
haben.

Liest nacheinander 63 Zahlen der DATA-Anweisung,
beginnend bei Zeile 100. Q1 ist ein beliebiger Varia-
blenname. Es kdnnte auch A, Z1 oder eine andere
numerische Variable benutzt werden.

POKEt die erste Zahl der DATA-Anweisungen (erstes
“Q1 ist 30) in den ersten Speicherplatz (12288). Ent-
spricht POKE 12288,30.

Weist den Computer an, die Befehle zwischen den
Teilen FOR und NEXT der Schleife auszufiihren.
(READ Q1 und POKES1,Q1 mit den NEXT-Zahlen).
D. h., durch die NEXT-Anweisung liest der Computer
NEXT Q1 von den DATA-Anweisungen. NEXT Q1 ist 0.
AuBerdem wird S1 um 1 erhéht, dies entspricht
12289. Das Ergebnis ist POKE12289,0 . . . durch den
NEXT-Befehl wird die Schleife bis zu den letzten
Werten der Serie durchgefuhrt, also bis zu POKE
12350,0.

168 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



ZEILE 25:

FORS2=12352
TO 12414

READQ2

POKES2,Q2

NEXT

ZEILE 30:

FORS3=12416
TO 12478
READQ3
POKES3,Q3
NEXT

ZEILE 35:

POKEV+39,15
POKEV+1,68

Die zweite Form von Sprite 0 wird durch die DATAs
definiert, die in die Adressen 12352 bis 12414
geschrieben werden. Bitte beachten Sie, daB3 Adresse
12351 Ubersprungen wird. Dies ist der 64. Platz der
Definition der ersten Spritegruppe. Er enthélt jedoch
keine Spritedaten. Beachten Sie bei der Sprite-
definition, daB 64 Platze benutzt werden. Spritedaten
werden jedoch nur in die ersten 63 Platze gePOKEt.
Liest die 63 Zahlen, die nach der Zahl der ersten
Spriteform folgen. Durch diese READ-Anweisung
wird die nachste Zahl im DATA-Bereich gesucht, und
63 Zahlen werden nacheinander gelesen.

Hierdurch wird das Datum (Q2) in die Speicherplatze
(S2) fur unsere zweite Spriteform gePOKEt, die bei
Adresse 12352 beginnt.

Entspricht Zeile 20.

Die dritte Form von Sprite 0 wird durch die DATAs in
den Adressen 12416 bis 12478 definiert.

Liest nacheinander die letzten 63 Zahlen als Q3.
POKEt diese Zahlen in die Platze 12416 bis 12478.
Entspricht den Zeilen 20 und 25.

Setzt fur Sprite 0 die Farbe hellgrau.

Setzt die obere rechte Ecke des Spritequadrats in die
Vertikalposition 68 (Y). Zum Vergleich: Position 50 ist
die obere linke Y-Eck-Position auf dem sichtbaren
Bildschirm.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 169



ZEILE 40:

PRINTTAB(160)

‘

| AM THE DANCING
MOUSE!

©a -

ZEILE 45:

P=192

ZEILE 50:

FORX=0TO347
STEP3

Hierdurch wird der Cursor um 160 Leerstellen ab der
oberen linken Bildschirmecke versetzt — dies ent-
spricht vier Reihen. Hierdurch beginnt die PRINT-
Meldung in der 5. Zeile auf dem Bildschirm.

Die Tasten und gleichzeitig dricken.
Geschielt dies innerhalb von Anfihrungszeichen, so
erscheint ein “umgekehrtes E“. Hierdurch wird die
Farbe aller nachfolgenden Eingaben WeiB.

Dies ist eine einfache PRINT-Anweisung.

Hierdurch wird die Farbe nach Ende der PRINT-
Anweisung von Schwarz auf Hellblau geéndert. Durch
gleichzeitiges Drucken der Tasten @ und in-
nerhalb von Anfuhrungszeichen wird eine “negativ
dargestellte Raute” angezeigt.

Setzt die Variable P gleich 192. Die Zahl 192 ist der zu
benutzende Zeiger. In diesem Fall wird Sprite 0 aus
den Speicherplatzen ausgelesen, die ab Adresse
12288 beginnen. Durch “Verstellen“ des Zeigers auf
die Adressen der beiden anderen Spriteformen kann
mit nur einem Sprite ein Trickfilm mit drei verschie-
denen Formen erstellt werden.

Bewegt das Sprite von Position 0 bis Position 347 in
3er-Schritten (hierdurch entsteht schnelle Bewe-

gung).

170 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



ZEILE 55:

RX=INT(X/256)

LX=X—-RX*256

ZEILE 60:

POKEV,LX

POKEV+16,RX

ZEILE 70:

IFP=192THEN
GOSUB200

RX ist der ganzzahlige Anteil von X/256, was bedeu-
tet, daB RX auf 0 gerundet wird, wenn X kleiner als
256 ist, und auf 1, wenn X die Position 256 erreicht.
Wir werden RX gleich fir die Anweisung POKE V +
16 mit einer 0 oder 1 benutzen, um die rechte Bild-
schirmseite “einzuschalten”.

Wenn sich das Sprite an der X-Position 0 befindet,
sieht die Gleichung wie folgt aus: LX=0 — (0 mal 256)
= 0. Wenn sich das Sprite an der X-Position 1 befin-
det, sieht die Gleichung wie folgt aus: LX=1 — (0 mal
256) = 1. Wenn sich das Sprite an der X-Position 256
befindet, sieht die Gleichung so aus: LX=256 — (1
mal 256) = 0. Hierdurch wird X zurlck auf 0 gesetzt.
Dies ist erforderlich, wenn die Bewegung bis zum
rechten Rand reichen soll (POKE V + 16,1).

Mit der Anweisung POKE V wird die horizontale Posi-
tion (X) von Sprite 0 auf den Bildschirm gesteuert.
(Siehe Spritetabelle auf Seite 176.) Wie oben gezeigt,
andert sich der Wert von LX (horizontale Spriteposi-
tion) von 0 bis 255. Wenn er 255 erreicht, wird er
automatisch aufgrund der Gleichung LX in Zeile 55
auf 0 zurlickgestellt.

Durch POKE V + 16 wird stets die rechte Bildschirm-
seite nach Erreichen der Position 256 eingeschaltet,
um die horizontalen Positionierungskoordinaten auf
0 zurickzustellen. RX ist entweder 0 oder 1, je nach
der durch die Gleichung RX in Zeile 55 bestimmten
Spriteposition.

Ist der Sprite-Pointer auf 192 gesetzt (erste Sprite-
form), dann wird die Wellenformsteuerung des ersten
Gerduscheffekts in Zeile 200 auf 129 und 128 gesetzt.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 171



ZEILE 75:

IFP=193THEN
GOSUB300

ZEILE 80:

POKE2040,P

FORT=1TO60:

NEXT

ZEILE 85:

P=P+1

IFP>194THEN
P=192

ZEILE 90:

172

NEXTX

Ist der Sprite-Pointer auf 193 (zweite Spriteform)
gesetzt, dann wird die Wellenformsteuerung fiir den
zweiten Gerduscheffekt (Stimme 2) auf 124 und 128
in Zeile 300 gesetzt.

Setzt den Sprite-Pointer auf Adresse 192 (erinnern
Sie sich noch an P=192 in Zeile 45? P wird nun hier
benutzt).

Eine einfache Zeitverzdégerungs-Schleife, die die
Geschwindigkeit festlegt, mit der die Maus tanzt.
(Probieren Sie eine hdhere bzw. geringere Geschwin-
digkeit durch Erhéhung/Reduzierung der Zahl 60
aus.)

Nun erhéhen wir den Zeigerwert, indem wir den Ori-
ginalwert P um 1 erhéhen.

Wir wollen das Sprite nur auf drei AdreBbereiche
zeigen lassen. 192 zeigt auf die Adressen 12288 bis
12350, 193 auf die Adressen 12352 bis 12414 und 194
auf die Adressen 12416 bis 12478. Diese Zeile weist
den Computer an, P zuruck auf 192 zu setzen, sobald
P 195 wird. Auf diese Weise kann P nie wirklich 195
werden. P ist 192, 193, 194 und wird dann zurlck auf
192 gesetzt. Der Zeiger zeigt nacheinander auf die
drei Spriteformen in den drei 64-Byte-Gruppen der
AdreBbereiche mit den Daten.

Nachdem das Sprite eine der drei durch die DATAs
bestimmten Formen erhalten hat, kann es sich uber
den Bildschirm bewegen. Es Uberspringt jeweils drei
X-Positionen (und bewegt sich nicht ruhig um jeweils
eine Position weiter, was auch madglich ist). Hier-
durch tanzt die Maus schneller tiber den Bildschirm.
NEXT X schlieBt die Schleife FOR . .. X in Zeile 50 ab.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



ZEILE 95:

END

ZEILEN 100—-109:

DATA

ZEILE 200:

POKES+4,129

POKES+4,128

RETURN

Beendet das Programm, wenn das Sprite sich aus
dem Bildschirm hinaus bewegt.

Die Spriteformen werden nacheinander aus den
DATA-Anweisungen gelesen. Zunéachst werden die 63
Zahlen, die die Spriteform 1 enthalten, gelesen,
danach die 63 Zahlen fiir Spriteform 2 und dann fur
Spriteform 3. Die Daten werden in die drei aufeinan-
derfolgenden AdreBbereiche gelesen. Nach dem Ein-
lesen in diese Adressen braucht Sprite 0 lediglich
noch auf die drei Speicherplatze zu zeigen. Das
Sprite nimmt dann automatisch die entsprechende
Form an. Da es auf diese Weise nacheinander ent-
sprechend den Daten in den drei Speicheradressen
unterschiedliche Formen annimmt, kdnnen wir einen
Trickfilmeffekt erzeugen. Wenn Sie wissen wollen,
wie diese Zahlen das einzelne Sprite beeinflussen,
veréndern Sie die ersten drei Zahlen in den Zeilen 100
bis 255. Bezlglich weiterer Einzelheiten schlagen Sie
bitte im Abschnitt Gber die Definition der Spritefor-
men nach.

Die auf 129 gesetzte Wellenformsteuerung schaltet
den Gerauscheffekt ein.

Die auf 128 gesetzte Wellenformsteuerung schaltet
den Gerduscheffekt aus.

L&Bt das Programm zu Zeile 70 zurlickspringen,
nachdem die Eingaben fur die Wellenformsteuerung
geandert wurden.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 173



ZEILE 300:

POKES+11,129 Die auf 129 gesetzte Wellenformsteuerung schaltet
den Gerauscheffekt ein.

POKES+11,128 Die auf 128 gesetzte Wellenformsteuerung schaltet
den Gerauscheffekt aus.

RETURN L&aBt das Programm zurlck zum Ende von Zeile 75

zurlickspringen.

174 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



TABELLE ZUM EINFACHEN KONSTRUIEREN VON SPRITES

(zweite Farbe)

SPRITE | SPRITE | SPRITE | SPRITE | SPRITE | SPRITE | SPRITE | SPRITE
0 1 2 3 4 5 6 7

Sprite einschalten V+21,1 [ V+21,2 | V4+21,4 | V+21,8 |V+21,16|V+21,32|V+21,64|V+21,128
Speichern im 2040, 2041, 2042, 2043, 2044, 2045, 2046, 2047,
AdreBbereich 192 193 194 195 196 197 198 199
(Zeiger setzen)
Platze fur 12288 12352 12416 12480 12544 12608 12672 12736
Sprite-Pixels to to to to to to to to
(12288-12798) 12350 12414 12478 12542 12606 12670 12734 | 12798
Spritefarbe V+39,C | V4+40,C | V4+41,C | V+42,C | V+43,C | V+44,C | V+45,C | V+46,C
Linke X-Position V+0,X | V42X | V44X | V+6X | V+8X | V+10,X | V+12X | V+14,X
setzen (0—-255)
Rechte X-Position V+16,1 | V+16,2 | V+16,4 | V+16,8 |V+16,16|V+16,32|V+ 16,64 |V+16,128
setzen (0—255) V+0,X [ V+2X | V+4X | V+6X |V+8X |V+10X |V+12X |V+14X
Y-Position setzen V+1Y V+3,Y V+5Y V+7,Y V+9)Y | V+11,Y | V+13,Y | V+15,Y
Sprite horizontal (X) | V+29,1 | V+29,2 | V+29,4 | V+29,8 |V+29,16|V+29,32|V+29,64 |V+29,128
vergroBern
Sprite vertikal (Y) V+23,1 | V4+23,2 | V+23,4 | V+23,8 |V+23,16|V+23,32| V+23,64 |V+23,128
vergroBern
Setzen des V+28,1 | V+28,2 | V+28,4 | V+28,8 |V+28,16|V+28,32|V+28,64|V+28,128
Mehrfarbenmodus
Mehrfarbe 1 V+37,C | v+37,C | V+37,C | V+37,C | V+37,C | V+37,C | V+37,C | V+37,C
(erste Farbe)
Mehrfarbe 2 V+38,C | V+38,C | V+38,C | V+38,C | V+38,C | V+38,C | V+38,C | V+38,C

Setzen der
Sprite-Prioritaten

Die Sprites mit der niedrigeren Zahl haben stets Vorrang vor den Sprites mit der
hoheren Zahl. So hat z. B. Sprite 0 Vorrang vor allen anderen Sprites und Sprite 7
die letzte Prioritdt. Sprites mit niedrigeren Zahlen erscheinen daher stets vor
Sprites mit hdheren Zahlen.

Kollision
(zwischen Sprites)

V+30

IF PEEK(V+30)ANDX=X THEN [action]

Kollision
(zwischen Sprites
und Hintergrund)

V+31

IF PEEK(V+31)ANDX=X THEN [action]

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 175



HINWEISE ZUR SPRITE-ERSTELLUNG

Verschiedene Sprite-Speicher-Zeiger und Speicheradressen bei Verwen-
dung des Kassettenpuffers

Wenn Sie 1 bis 3 Sprites benutzen,
konnen Sie die Speicherplatze im Kas-
settenpuffer (832 bis 1023) benutzen.
Sprite-Pixel-Adressen fur | 832 896 960 Bei mehr als 3 Sprites empfehlen wir
Speicherblocke 13—15 bis 894 bis 958 bis 1022 | jedoch, die Plitze 12288 bis 12798

(siehe Tabelle) zu benutzen.

Speichern im AdreBbereich | SPRITE 0 | SPRITE 1 | SPRITE 2
(Zeiger setzen) 2040,13 2041,14 2042,15

EINSCHALTEN DER SPRITES:

Durch POKE V+21 ,X (X = Zahl aus der Tabelle) konnen Sie jedes beliebige Sprite
einschalten. Durch Einschalten von nur einem Sprite werden jedoch andere Sprites
ausgeschaltet. Um zwei oder mehrere Sprites einzuschalten, missen die Zahlen
der betreffenden Sprites addiert werden. (Durch POKE V+21,6 werden z. B. die
Sprites 1 und 2 eingeschaltet.) Nachstehend wird erklart, wie Sie ein Sprite ein- und
ausschalten kénnen, ohne andere Sprites zu beeintrachtigen (besonders nutzlich
bei Trickfilmen).

BEISPIEL:

Um nur Sprite 0 auszuschalten, geben Sie ein: POKE V+21, PEEK
V+21AND(255—1). Andern Sie die Zahl 1 in (255—1) in 1,2,4,8,16,32,64 oder 128
um (fir die Sprites 0 bis 7). Um das Sprite wieder einzuschalten und nicht die
bereits eingeschalteten Ubrigen Sprites zu beeinflussen, geben Sie POKE V+21,
PEEK(V+21)OR 1 ein und &ndern Sie OR 1 in OR 2 (Sprite 2), =R 4 (Sprite 3) usw.
um.

X-POSITIONSWERTE AUSSERHALB VON 255:

X-Positionen reichen von 0 bis 255 ... und beginnen dann wieder bei 0. Um ein
Sprite Uber die X-Position 255 hinaus bis an den rechten Bildschirmrand zu
bewegen, ist zundchst die Anweisung POKE V+16 erforderlich. Dann wird ein
neuer X-Wert von 0 bis 63 gePOKEt, der das Sprite in eine der X-Positionen auf der
rechten Bildschirmseite setzt. Um zurlck zu den Positionen 0 bis 255 zu gelangen,
ist POKE V+16,0 und das POKEn eines X-Werts zwischen 0 und 255 erforderlich.

176 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



Y-POSITIONSWERTE:

Y-Positionen gehen von 0 bis 255. Hierbei liegt O bis 49 (ber dem OBEREN
Bildschirmrand, 50 bis 229 IM sichtbaren Bereich und 230 bis 255 AUSSERHALB
des unteren Bildschirmrandes.

SPRITEFARBEN:
Damit Sprite 0 weiB wird, geben Sie folgendes ein: POKE V+39,1 (benutzen Sie die

FARB-POKE-EINGABE in der vorstehenden Tabelle sowie die nachstehenden
Farb-Codes):

0—SCHWARZ 4—PURPUR 8—0ORANGE 12—MITTELGRAU
1-WEISS 5—GRUN 9—-BRAUN 13—HELLGRUN
2—ROT 6—BLAU 10—HELLROT 14—HELLBLAU
3—ZYAN 7—GELB 11-DUNKELGRAU 15—HELLGRAU

SPEICHERPLATZ:

Fir jedes Sprite mlssen Sie einen getrennten 64-Byte-Satz im Computerspeicher
“reservieren". Hiervon werden 63 Bytes fiir die Spritedaten benutzt. Die nachste-
hend gezeigten Speicherbereiche entsprechen den Spritezeigern in obiger Tabelle.
Jedes Sprite kann entsprechend lhren Winschen definiert werden. Wenn alle
Sprites gleich sein sollen, miissen sie auf die gleichen Spritedaten zeigen.

VERSCHIEDENE SPRITEZEIGER-EINGABEN:

Diese Spritezeiger-Eingaben sind NUR ALS EMPFEHLUNGEN zu verstehen.

Achtung: Sie kénnen Spritezeiger beliebig im RAM-Speicher setzen. Werden sie
jedoch zu “niedrig” im Speicher gesetzt, kann ein langes BASIC-Programm lhre
Spritedaten Uberschreiben oder umgekehrt. Um ein besonders langes BASIC-
Programm vor einer Uberschreibung durch Spritedaten oder umgekehrt zu schiit-
zen, kdnnen die Sprites in einem hdheren Speicherbereich abgelegt werden (z. B.
2040, 192 fir Sprite 0 an den Platzen 12288 bis 12350 ... 2041, 193 an den
Platzen 12352 bis 12414 flr Sprite 1 usw.). Durch geschickte Wahl der Speicher-
adressen, aus denen die Sprites ihre Daten empfangen, kdnnen Sie 64 verschie-
dene Sprites sowie ein ansehnliches BASIC-Programm zusammen benutzen.

Definieren Sie hierflr verschiedene Spriteformen in lhren DATA-Anweisungen und
definieren Sie dann ein bestimmtes Sprite neu, indem Sie den “Zeiger"” so dndern,
daB flr das betreffende Sprite verschiedene Speicherbereiche mit verschiedenen
Spritebilddaten benutzt werden. Sehen Sie sich hierzu auch das Programm “Tanz-

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 177



maus® an. Sollen zwei oder mehrere Sprites die gleiche Form haben (Sie kdnnen
immer noch Position und Farbe jedes Sprites &ndern), benutzen Sie den gleichen
Spritezeiger und damit den gleichen Speicherbereich fiir die betreffenden Sprites
(So kénnen z. B. die Sprites 0 und 1 auf den gleichen Speicherplatz zeigen. Hierzu
dient die Anweisung POKE 2040,192 und POKE 2041,192).

PRIORITATEN:

Prioritdt bedeutet, daB ein Sprite vor oder hinter einem anderen Sprite auf dem
Bildschirm angezeigt wird. Sprites mit hdherer Prioritat erscheinen stets vor (bzw.
Uber) den Sprites mit niedrigerer Prioritat. Hierbei haben Sprites mit niedrigerer Zahl
stets den Vorrang vor solchen mit hoherer Zahl. D. h., Sprite 0 hat Prioritat (iber alle
anderen Sprites und Sprite 7 die niedrigste Prioritdt. Entsprechend hat Sprite 1
Vorrang vor den Sprites 2 bis 7. Befinden sich zwei Sprites in der gleichen
Bildschirmposition gegeben, so erscheint das mit der héheren Prioritat vor dem mit
der niedrigeren. Das Sprite mit der niedrigeren Prioritat ist entweder verdeckt oder
“scheint durch®.

ARBEITEN IM MEHRFARBENMODUS:

Sie kdnnen mehrfarbige Sprites erstellen. Im Mehrfarbenmodus miissen Sie jedoch
statt einzelner Punkte in Ihrem Spritebild stets Pixel-Paare benutzen (d. h., jeder
farbige “Punkt” oder “Block” im Sprite besteht aus mindestens zwei nebeneinan-
der liegenden Pixels). Es stehen vier Farben zur Auswahl: Spritefarbe (siehe obige
Tabelle), Hilfsfarbe 1, Hilfsfarbe 2 und “Hintergrundfarbe” (die Hintergrundfarbe
wird durch eine 0-Eingabe angewahlt. In diesem Fall scheint der Hintergrund
durch.). Betrachten Sie einen horizontalen 8-Pixel-Satz in einem Spritemuster. Je
nachdem, ob das linke, rechte oder beide Pixel ausgefillt sind, wird die Farbe jedes
Pixel-Paares bestimmt.

[]j HINTERGRUND (Wenn beide Pixel leer (0) sind, scheint die Bildschirm-
farbe durch.)

MEHRFARBIG 1 (Wenn das rechte Pixel in einem Pixel-Paar ausgefllt
ist, werden beide in der Hilfsfarbe 1 dargestellt.)

SPRITEFARBE (Wenn das linke Pixel in einem Pixel-Paar ausgemalt ist,
haben beide die Spritefarbe.)

MEHRFARBIG 2 (Wenn beide Pixel in einem Pixel-Paar ausgemalt sind,
werden beide in der Hilfsfarbe 2 dargestellt.)

178 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



Sehen Sie sich die nachstehende horizontale 8-Pixel-Reihe an. Nach dem oben
Gesagten erscheinen die ersten zwei Pixel in der Hintergrundfarbe, die zweiten in
der Hilfsfarbe 1, und fiir die dritten zwei Pixel gilt die Spritefarbe. Die vierten zwei
Pixel erscheinen in der Hilfsfarbe 2. Die Farbe der einzelnen Pixel-Paare hangt also
davon ab, welche Bits in dem Paar ausgemalt und welche leer sind. Wenn Sie
festgelegt haben, welche Farben Sie fir die einzelnen Pixel-Paare wiinschen,
mussen die Werte der ausgemalten Pixel im 8-Pixel-Satz addiert und danach diese
Zahl in den geeigneten Speicherplatz gePOKEt werden. Ist z. B. die nachstehende
8-Pixel-Reihe die erste Reihe in einem Sprite, die bei Speicherplatz 832 beginnt, so
lautet der Wert der ausgemalten Pixel 164+8+2+4+1 = 27. Es gilt also folgende
Anweisung: POKE 832,27.

27

——
16 + 8 +2 +1
|128i64|32|16|s|4|2|1|

Sieht im Sprite wie folgt aus

Hintergrund- Hilfs- Sprite- Hilfs-
farbe farbe 1 farbe farbe 2

KOLLISION:

In dieser Zeile wird geprift, ob ein bestimmtes Sprite mit irgendeinem anderen
Sprite kollidiert.

X entspricht 1 fiir Sprite 0, 2 fiir Sprite 1, 4 flr Sprite 2, 8 fiir Sprite 3, 16 fur Sprite 4,
32 flr Sprite 5, 64 fiir Sprite 6 und 128 flr Sprite 7.

Uber folgende Zeile kdnnen Sie erkennen, ob Sprites miteinander kollidiert haben:
IF PEEK(V+30)ANDX=XTHEN (hier Aktion eingeben).

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 179



BENUTZEN VON GRAPHIKZEICHEN IN DATENANWEISUNGEN:

Folgendes Programm ermdglicht Ihnen die Erstellung eines Sprites mit leeren und
ausgemalten Kreisen ( B ) in DATA-Anweisungen. Die in die Sprite-
Datenregister gePOKEten Sprites und Zahlen werden angezeigt.

DETA"
HETA"

DATA"

DATH"

o dEbRRhRE B

1/a:uii
1|| FF "[HT" r F'IJF‘I BTOEZ  PORESZZAT1 . @ HEST

DATA" LT !
DHTA" A 0 o "
DATH" (LD LIy "
DHTA" L1111 LT !

DATA" DRRbe HOH IR "
TETAR" LI LI L !
DAETA" 80 o o o o o o O "
DATHA" LLLL L L]} "

DRATHE" B AEREEEE B i
TFTA" T T '
TATA" T i
TETA" " TR .
DATH" v o® W i
TIFETA" o W "
TIFTF" CTTIL "
TFTA" T b
TATA" I "

b "

1 FOREN+ L 108 POKEY+E1, 1

AT T=80 FORJ=ATOT : B=@
JAo="a"THEME=1

HEST (FRIMTT.  POKESHZ+ T#E+K, T
FRIMT: H 3
A0 RETLRMH

180 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64



KAPITEL I

MUSIK-
PROGRAMMIERUNG
MIT DEM
COMMODORE 64

e Einleitung
Lautstarkenregelung
Tonfrequenzen
e Arbeiten mit mehreren Stimmen
e Andern der Wellenformen
e Hullkurvengenerator
e Filtern
e Fortschrittliche Techniken
e Synchronisation und Ringmodulation




EINFUHRUNG

Ihr COMMODORE-Computer ist mit einem hochentwickelten elektronischen
Musiksynthesizer ausgerustet. Er verfugt Uber drei Stimmen, ist vollstandig adres-
sierbar, ATTACK/DECAY/SUSTAIN/RELEASE (ADSR), Filtern, Modulation und
“weiBes Rauschen" sind einstellbar. Diese Funktionen stehen Ihnen direkt Gber
wenige, einfache BASIC- und/oder Assembler-Anweisungen und -Funktionen zur
Verfligung. Auf diese Weise konnen Sie komplexe Gerauscheffekte und Songs mit
relativ einfachen Programmen erzielen.

In diesem Kapitel werden alle Méglichkeiten des Chip 6581 “SID", dem Gerausch-
und Musiksynthesizer lhres COMMODORE-Computers beschrieben. Es werden
sowohl Theorie als auch die praktischen Aspekte beschrieben. Sie mussen weder
ein erfahrener Programmierer noch ein Musikexperte sein, um mit dem Musiksyn-
thesizer erstaunliche Ergebnisse zu erzielen. Sie werden hier zahlreiche Program-
mierbeispiele mit detaillierten Erkldrungen finden.

Der Tongenerator wird durch POKE-Anweisungen in die entsprechenden Speicher-
platze gesteuert. Die einzelnen Adressen sind in Anhang O aufgelistet. Die ver-
schiedenen Konzepte werden wir schrittweise erklaren. Sie werden danach in der
Lage sein, nahezu unendlich viele verschiedene Gerdusche zu erzeugen und
selbstandig mit dem Musiksynthesizer zu experimentieren.

Jeder Abschnitt dieses Kapitels beginnt mit einem Beispiel, dieses wird dann Zeile
fir Zeile genau beschrieben. Auf diese Weise sehen Sie, wie die einzelnen
Funktionen richtig eingesetzt werden. Die technischen Erlduterungen kénnen Sie
durchlesen, wenn Sie wissen wollen, was tatsachlich passiert.

Wichtig bei den Musikprogrammen ist die POKE-Anweisung. Durch POKE wird in
dem betreffenden Speicherplatz (MEM) ein festgelegter Wert (NUM) geschrieben.

POKE MEM,NUM

182 MUSIKPROGRAMMIERUNG



Die fur die Musiksynthese benutzten Speicherplatze (MEM) beginnen beim COM-
MODORE 64 bei 54272 ($D400). Beim Arbeiten mit den 6581 (SID) Chip-Registern
mussen Sie wissen, was in den POKE-Speicherpldatzen 54272 bis einschlieBlich
54296 steht. Es ist jedoch auch mdglich, zum Arbeiten mit diesen Adressen sich
lediglich 54272 zu merken und danach eine Zahl von 0 bis 27 zu addieren. Auf diese
Weise ist ein POKEnN aller Speicherplatze von 54272 bis 54296 des SID-Chips
maoglich. In den POKE-Anweisungen diirfen die Zahlen (NUM) 0 bis einschlieBlich
255 benutzt werden.

Wenn Sie bereits Erfahrung auf dem Gebiet der Musik haben, konnen Sie auch
noch die PEEK-Funktion nutzen. PEEK ist eine Funktion, mit der der derzeitige Wert
ermittelt werden kann, der im angezeigten Speicherplatz steht.

X=PEEK(MEM)

Der Wert der Variablen X wird gleich dem derzeitigen Inhalt des Speicherplatzes
MEM gesetzt.

Naturlich beinhalten lhre Programme weitere BASIC-Befehle, die jedoch im
Abschnitt “BASIC-ANWEISUNGEN" dieses Handbuchs erklart sind.

Wir wollen nun anfangen und ein einfacheres Programm, das nur eine der drei
Stimmen benutzt, ausprobieren. Geben Sie Uber die Tastatur NEW, dann dieses
Programm und dann RUN ein. Speichern Sie das Programm danach auf der
DATASSETTE ™1 oder Diskette.

PROGRAMMBEISPIEL 1:

BHERT  REM CLERAR SOUMIE CHIF

CREM SET WOLUME TO

A FTLHJ:IHF', LF.DR
e IFHF’EITHEHE_HD

MUSIKPROGRAMMIERUNG 183



Das soeben eingegebene Programm wird nun Zeile fir Zeile beschrieben. Lesen
Sie dies durch, wenn Sie bestimmte Programmteile nicht genau verstanden haben.

BESCHREIBUNG DER EINZELNEN ZEILEN VON PROGRAMMBEISPIEL 1:

Zeile(n) Beschreibung
5 S Anfangsadresse des Sound-Chip.
10 Loschen aller Sound-Chip-Register.
20 Eingabe von ATTACK/DECAY (Anstieg/Abfall) fir Stimme 1
(A=0, D=9).
Eingabe fiir SUSTAIN/RELEASE (Dauer/Ausklingen) von Stimme 1
(S=0, R=0).
30 Lautstarke auf Maximum.
40 Lesen “hohe Frequenz*“, “niedrige Frequenz*, Dauer der Note.
50 Ist “hohe Frequenz* kleiner als 0, dann ist die Melodie zu Ende.
60 POKERN von hoher und niedriger Frequenz fir Stimme 1.
70 Gate flr Sagezahnwellenform fir Stimme 1.
80 Zeitschleife fur Dauer der Note.
90 Auslosen der Sagezahnwellenform flr Stimme 1.
100 Rickkehr zur nachsten Note.
110—180 | Songdaten: hohe Frequenz, niedrige Frequenz, Dauer der einzel-
nen Noten (Anzahl der Durchléaufe).
190 Letzte Melodienote; die drei “—1" zeigen das Ende der Melodie an.
LAUTSTARKEREGELUNG

Das Chip-Register 24 enthélt die Gesamtlautstirkeregelung. Die Lautstarke kann
auf einen beliebigen Wert zwischen 0 und 15 eingestellt werden. Die anderen vier
Bits werden spater beschrieben. Jetzt brauchen Sie bloB zu wissen, daB fir
Lautstarke die Werte 0 bis 15 gelten. Schauen Sie sich Zeile 30 im Programmbei-
spiel 1 an.

TONFREQUENZEN

Tone entstehen durch Wellenbewegung der Luft. Stellen Sie sich vor, Sie werfen
einen Stein ins Wasser und beobachten dann, wie die Wellen von innen nach auBen
verlaufen.

Wenn solche Wellen in der Luft entstehen, kdnnen wir sie héren. Die Sekundenzahl
fir einen Wellenzyklus (n = Anzahl der Sekunden) erhalten wir, indem wir die Zeit

184 MUSIKPROGRAMMIERUNG



zwischen einer Wellenspitze zur nachsten messen. Der Kehrwert dieser Zahl (1/n)
gibt Thnen die Zyklen pro Sekunde an. Zyklen pro Sekunde sind besser als
Frequenz bekannt. Die Tonhéhe wird anhand der Frequenz bestimmt. Der Tonge-
nerator des COMMODORE-Computers benutzt zwei Adressen zur Frequenzbe-
stimmung. Die Frequenzwerte, die Sie flr acht Oktaven benétigen, sind im Anhang
E aufgelistet.

Fur eine nicht in dieser Tabelle aufgefliihrte Frequenz benutzen Sie “F,,"“ (Fre-
guenzausgabe) sowie nachstehende Gleichung zur Darstellung der Frequenz (F,)
des gewunschten Tons. Denken Sie daran, daB jede Note zwei Angaben, “hohe*
und “niedrige® Frequenz, bendtigt.

Fn = Fou/.06097

Wenn Sie herausgefunden haben, wie F, fiir lhre “neue” Note lautet, kdnnen Sie
nun die Werte fur hohe und niedrige Frequenz fur diese Note erstellen. Hierzu wird
F. zunachst abgerundet, so daB keine Stellen mehr rechts neben dem Dezimal-
punkt stehen. Sie haben nun eine ganze Zahl. Nun wird der Anteil der hohen
Frequenz (Fn) anhand der Gleichung F,=F,/256 und der der niedrigen Frequenz
(Fio) durch Fo=F,—(256*F;) bestimmt.

Sie haben nun bereits mit einer Computerstimme gespielt. Wenn Sie wollen,
kénnen Sie nun lhre Lieblingsmelodie programmieren und Dirigent lhres eigenen
Computerorchesters werden.

ARBEITEN MIT MEHREREN STIMMEN

Der COMMODORE-Computer verflgt (iber drei unabhéngig steuerbare Stimmen
(Oszillatoren). Im ersten Programmbeispiel haben wir nur eine dieser Stimmen
benutzt. Spater werden Sie noch lernen, wie die Klangfarben der einzelnen
Stimmen gedndert werden kdnnen. Nun sollen aber erst einmal alle drei Stimmen
fur uns singen.

Dieses Programm zeigt lhnen, wie Noten flir das Computerorchester lbersetzt
werden. Geben Sie es ein, und speichern Sie es danach auf DATASSETTE™ oder
Diskette. Vor der Eingabe dieses Programms unbedingt NEW eingeben.

MUSIKPROGRAMMIERUNG 185



PROGRAMMBEISPIEL 2:

18 S=34272 FORL=5TOS+24  POKEL . B HEAT

28 DIMHGCZ, 2880, L0z, 2880 . 002, 208

3@ DIMFGC112

48 Y(Bu=17 10 (1 =65 W Zi=32

58 FOKES+1@, 3 FOKES+EZ. 128 FOKES+23, 244

el FORI=ATO11:READFGCT ) HEXT

1868 FORK=ATOZ

118 I=8

128 READHM

138 IFHM=BTHEMZ5E

14@ WA=Y (KD WB=kA-1 IFMMCETHEMMM=<MHM WA= =
138 DRX=HMS128 0CK=(HM-128%DRN /16

led MT=HM-128%0RE-16%00H

178 FR=FLCHT )

138 IFOCH=FTHEHZB6

198 FORJ=cTOOCKSTER-1  FR=FR/Z: MEAT

208 HFX=FR./ 256  LFL=FR-256%HF

218 IFDRX=1THEMH (K, To=HF%: Lok, To=LFu: Cok, Io=WA:
I=I+1:G0TO128

228 FORJ=1TODRN-1 tHOK, To=HFW Lok, Tr=lF Cok, Tr=kA:
I=I+1 :HESXT

238 HOKL, TosHFX Lok, To=LFi: COK, To=WE

246 I=I1+1:G0TO126

238 IFIZIMTHEMIM=I

268 HEAT

SR8 FOKES+S, 6 FOKES+E, 248
218 PORES+12, 85 POKES+12, 153
G923 FORES+19, 18 POKES+28, 1
938 FOKES+24,3

S48 FORI=GTOIM

258 FORKES, Lo, To POKES+?, Lol I POKES+14,LC2, 1)
TEE FORES+1.HOB, I FOKES+8, HOL, I POKES+15, HOZ, 1)
578 POKES+4, Co@, I POKES+LL, 001, T PORES+12, 002, I
SRR FORT=1TORE HEXT HEAT

2968 FORT=1TOZ@@  HMEXT ' POKES+24, 6
£08 DATA34234, 36376, 28539, 488756
18 DATA42253, 45230,
2B DATAS4EAZ., 57743, ¢

1818 DATAR1S18. 587, 532
1oz20 DATALBSY, 553, 585
18268 DATR1GAER, 585, 231, 23
1a4a DATARIE1SE, 534, 596, 554, 52
18358 DATHLEL1E, 387, 585, 331, 326
188 DATALEET

=1
laas DATAT24, 524, 594, 5

19339 DATHE

2BERE DATASER, 585, 5873 £3

2816 DATA1G11., 583, " T

2820 DATH1IZE, 1593,

28328 DATAZZE, 327, 3 S, ST ELEED

186 MUSIKPROGRAMMIERUNG



2

ZET7E

ZB50

25E9

2ERE DATASET . 5668, 5

3018 DHTHI Ql ﬁﬁ?

AEZ2E A9

SaEa DHTH‘U4 1{1 1%

2848 DHTHJIB SRE, B1E

ZA5@ DATALSEE, 382, 567,35

2Be0 DATAZE, 2173, 297

38768 DATALISEES, 587, 3HB;n11 283
3880 DATAZ8E, 389, 286, 288

2@38 DATALSYT, 259, 295, 306, 218,311, 284
2188 DATASEZ, 546, 1575

2995 DATAE

Programmbeispiel 2 wird nun Zeile fir Zeile erklart. Nun interessiert uns, wie die

drei Stimmen gesteuert werden.

ERKLARUNG VON PROGRAMMBEISPIEL 2:

Zeile(n) Beschreibung

10 Setzen von S als Sound-Chip-Startadresse und Loschen aller
Sound-Chipregister.

20 Dimensionieren der Felder fir die Toninformation, 1/16-Takt pro
Element.

30 Dimensionieren des Felds fir die Basisfrequenzen der einzelnen
Noten.

40 Speichern des Wellenform-Steuerbytes fiir die einzelnen Stimmen.

50 Impulsbreite fir Stimme 2 eingeben.

Obere Grenzfrequenz fir Filter eingeben.

60 Einlesen der Basisfrequenz der einzelnen Noten.
100 Beginn der Decodier-Schleife der einzelnen Stimmen.
110 Pointer-Initialisierung auf Steuerfeld.
120 Lesen der codierten Note.
130 Ist die codierte Note 0, dann nachste Stimme.
140 Wellenformsteuerung der Stimme.
Bei Pause, Wellenformsteuerung auf 1 setzen.
150 Decodieren von Dauer und Oktave.
160 Note decodieren.

Eingabe von Filterresonanz und Filter von Stimme 3.

MUSIKPROGRAMMIERUNG



Zeile(n) Beschreibung
170 Basisfrequenz fur diese Note lesen.
180 Wenn hochste Oktave, Schieife fir Division Gberspringen.
190 Basisfrequenz fortgesetzt durch 2 dividieren.
200 Bytes fur “hohe Frequenz* und “niedrige Frequenz* lesen.
210 Wenn 16. Note, Steuerfeld setzen: hohe Frequenz, niedrige
Frequenz und Wellenformsteuerung (Stimme ein).
220 Fir alle Schlage auBer dem letzten Steuerfeld eingeben:
hohe Frequenz, niedrige Frequenz, Wellenformsteuerung
(Stimme ein).
230 Fir letzten Schlag in Steuerfeld eingeben: Hochfrequenz, Niedrig-
frequenz, Wellenformsteuerung (Stimme aus).
240 Pointer auf Steuerfeld um 1 erhéhen. Nachste Note lesen.
250 Wenn langer als zuvor, Parameter /M rickstellen.
260 Zurtcksprung fur nachste Stimme.
500 ATTACK/DECAY fir Stimme 1 eingeben (A = 0, D = 0).
SUSTAIN/RELEASE fiir Stimme 1 eingeben (S = 15, R = 0).
510 ATTACK/DECAY fiur Stimme 2 eingeben (A = 5, D = 5).
SUSTAIN/RELEASE fiir Stimme 2 eingeben (S = 8, R = 5).
520 ATTACK/DECAY fur Stimme 3 eingeben (A = 0, D = 10).
SUSTAIN/RELEASE fiir Stimme 3 eingeben (S = 12, R = 5).
530 Lautstarke 15 eingeben, TiefpaBfilter ein.
540 Schleifenbeginn jedes 1/16-Taktes.
550 POKE der niedrigen Frequenz vom Steuerfeld fir alle Stimmen.
560 POKE der hohen Frequenz vom Steuerfeld fir alle Stimmen.
570 POKE der Wellenformsteuerung vom Steuerfeld fir alle Stimmen.
580 Zeitschleife fur 1/16-Takt und Ricksprung fir ndchsten 1/16-Takt.
590 Pause, dann Lautstarke abschalten.
600-620 Basisfrequenzdaten.
1000-1999 | Daten fir Stimme 1.
2000-2999 | Daten fiir Stimme 2.
3000-3999 | Daten fiir Stimme 3.

188 MUSIKPROGRAMMIERUNG




Die in den DATA-Anweisungen verwendeten Werte ergeben sich aus der Noten-
tabelle in Anhang E und nachstehender Tabelle:

NOTENTYP DAUER
1/16 128
1/8 256
Punktiert 1/8 384
1/4 512
1/4+1/16 640
Punktiert 1/4 768
1/2 1024
1/2+1/16 1152
1/2+1/8 1280
Punktiert 1/2 1536
Ganz 2048

Die Notenzahl der Notentabelle wird zu obiger Dauer addiert. Dann kann jede Note
mit nur einer Nummer eingegeben werden, die dann von lhrem Programm deco-
diert wird. Dies ist nur eine Art der Notencodierung. Sie kénnen auch eine Methode
wahlen, die Sie fur gunstiger halten. Eine Note wird anhand folgender Gleichung
codiert:

1) Dauer (in 16tel eines Taktes) multipliziert mit 8.

2) Das Ergebnis von 1) wird zu der gewahlten Oktave addiert (0—7).
3) Das Ergebnis von 2) wird dann mit 16 multipliziert.

4) Die gewdhite Note (0—11) zu dem Ergebnis von 3) addieren.

Das heift:
(((D*8)+0) *16)+N)

Wobei D=Dauer, O=0ktave und N=Note.
Durch Verwendung eines negativen Werts fir die Dauer (1/16 eines Taktes * 128)
wird eine Pause programmiert.

STEUERN MEHRERER STIMMEN

Wenn Sie mehrere Stimmen verwenden wollen, missen Sie diese zeitlich mitein-
ander koordinieren. In diesem Programm wird das wie folgt geldst:

1) Teilung jedes Taktes in 16 Teile.
2) Speicherung der Inhalte der einzelnen Taktteile in drei getrennte Felder.

MUSIKPROGRAMMIERUNG 189



Die Bytes der hohen und niedrigen Frequenz werden durch Division der Frequenz
der hochsten Oktave durch 2 (Zeile 180 und 190) berechnet. Das Byte fir
Wellenformsteuerung ist ein Startsignal fiir den Beginn einer Note oder das Halten
einer bereits gespielten Note. Es ist auch das Endsignal fir eine Note. Die
Wellenformwahl wird einmal fir jede Stimme in Zeile 40 durchgefihrt.

Auch dies ist nur eine der Moglichkeiten, wie Sie mehrere Stimmen steuern
kdnnen. Sie konnen |hre eigene Methode erfinden. Sie sollten jedoch nun in der
Lage sein, ein Notenblatt zu nehmen und die Noten der drei Stimmen herauszu-
finden.

ANDERN DER WELLENFORMEN

Die Klangfarbe eines Tones wird hauptséachlich durch seine Wellenform bestimmt.
Wenn Sie einen Kieselstein ins Wasser werfen, dann verteilen sich die Wellen
gleichmaBig Uber den Teich. Diese Wellen sehen fast wie die erste Wellenform aus,
mit der wir uns befassen wollen: der sinusférmigen Welle, kurz Sinuswelle genannt
(siehe nachstehende Abbildung).

Damit wir die praktische Anwendung nicht aus dem Auge verlieren, nehmen wir
wieder das erste Programmbeispiel und untersuchen die unterschiedlichen Wellen-
formen. Die Anderungen kénnen Sie namlich leichter horen, wenn wir zunachst nur
eine Stimme benutzen. Laden Sie das erste Musikprogramm von der DATAS-
SETTE™ oder von der Diskette und fiihren Sie es aus. Dieses Programm arbeitet
mit der Sagezahnwelle (siehe nachstehende Abbildung).

190 MUSIKPROGRAMMIERUNG



Andern Sie den Notenstartwert in Zeile 70 von 33 in 17 und den Notenstopwert in
Zeile 90 von 32 in 16 um. Das Programm muB nun folgendermaBen aussehen:

PROGRAMMBEISPIEL 3 (BEISPIEL 1, VERANDERT):

Loa B HERT

3

TTODE  HE:

ki, 16 FORT=1TOSE  HEXT
G b

TATAZ
TFTH

Starten Sie nun das Programm.
Beachten Sie, daB3 die Soundqualitdt nun anders ist, der Ton klingt nun viel hohler.

Wir haben némlich die Sagezahnwelle in eine Dreieckswelle umgewandelt (siehe
nachstehende Abbildung).

MUSIKPROGRAMMIERUNG 191



Die dritte Wellenform wird variable Pulswelle genannt (siehe nachstehende Abbil-
dung).

Puls-
breite

Dies ist eine Rechteckwelle, bei der Sie die Ldnge des Impulszyklus bestimmen
kénnen. Hierzu bestimmen Sie die Wellenhdhe. Fir Stimme 1 geschieht dies mit
den Registern 2 und 3: Register 2 enthélt das niederwertige Byte der Pulsbreite
(Low = O bis 255). Register 3 enthalt die oberen vier Bits (H,, = 0 bis 15).
Zusammen geben diese Register eine 12-Bit-Zahl flr Ihre Pulsbreite an, die Sie
anhand folgender Gleichung bestimmen kdnnen:

PW, = Hy*256 + Loy
Die Pulsbreite wird durch folgende Gleichung bestimmt:
PWout = (PW,/40.95) %
Hat PW, den Wert 2048, dann ergibt sich eine Rechteckwelle. Dies bedeutet, daB
Register 2 (L,) gleich 0 und Register 3 (Hp,,) gleich 8 ist.
Flgen Sie nun in lhr Programm diese Zeile ein:

15 POKES+3,8:POKES+2,0

Andern Sie dann den Startwert in Zeile 70 in 65 und den Stopwert in Zeile 90 in 64
um. Fiihren Sie dann das Programm aus. Andern Sie nun die Pulsbreite (Register 3
in Zeile 15) von 8 in 1 um. Merken Sie den wesentlichen Unterschied in der
Klangfarbe?

Eine weitere Wellenform, die erzeugt werden kann, ist ein weiBes Rauschen (siehe
nachstehende Abbildung).

192 MUSIKPROGRAMMIERUNG



Es wird meistens fir Gerauscheffekte usw. benutzt. Um zu horen, wie es klingt,
andern Sie den Startwert in Zeile 70 auf 129 und den Stopwert in Zeile 90 auf 128
um.

VERSTANDNIS DER WELLENFORMEN

Eine gespielte Note besteht aus einer Grundfrequenz sowie den Oberwellen.

Die Grundfrequenz bestimmt die Tonhohe. Oberwellen sind Sinuswellen mit Fre-
guenzen, die ein ganzzahliges Vielfaches der Grundfrequenz sind. Eine Tonwelle
besteht aus der Grundfrequenz und allen Oberwellen.

¢ RESULTIERENDE WELLE
GRUNDFREQUENZ (1. OBERWELLE)

2. OBERWELLE 3 OBERWELLE

Theoretisch kann man sagen, daB die Grundfrequenz die Oberwelle Nr. 1 ist. Die
Frequenz der zweiten Oberwelle entspricht zweimal der Grundfrequenz, die der
dritten Oberwelle dreimal der Grundfrequenz usw. Die Anteile der einzelnen
Oberwellen eines Tones bestimmen die Klangfarbe.

Ein akustisches Instrument wie z. B. eine Gitarre oder Violine hat eine komplizierte
Oberwellenstruktur. Die Oberwellenstruktur kann sich auch beim Spielen einer
einzelnen Note &ndern. Sie haben nun bereits mit Wellenformen des COMMO-
DORE-Synthesizers gespielt. Wir wollen uns nun anschauen, welche Rolle die
Oberwellen bei Dreiecks-, Sdgezahn- und Rechteckwellen spielen.

Eine Dreieckswelle enthalt lediglich ungerade Oberwellen. Der Anteil jeder Ober-
welle ist proportional zum Kehrwert des Quadrats der Oberwellenzahl. Die Ober-
welle Nr. 3 ist also 1/9 leiser als Oberwelle Nr. 1, denn Oberwelle Nr. 3 zum Quadrat
ist 9 (3x3), und der Kehrwert von 9 lautet 1/9.

Das entspricht der Beobachtung, daB eine Dreieckswelle einer Sinuswelle dhnlich
ist.

Sagezahnwellen enthalten alle Oberwellen. Der Anteil jeder Oberwelle ist proportio-
nal zum Kehrwert der Oberwellenzahl. So ist die Oberwelle Nr. 2 z. B. einhalbmal so
laut wie Oberwelle Nr. 1.

MUSIKPROGRAMMIERUNG 193



Die symmetrische Rechteckwelle enthdlt ungerade Oberwellen proportional zum
Kehrwert der Oberwellenzahl. Andere Rechteckwellen haben verschiedene Ober-
welleninhalte. Durch Anderung der Pulsbreite kann die Klangfarbe einer Rechteck-
welle enorm geéndert werden.

Durch sorgféltige Wahl der Wellenform kdnnen Sie mit einer Oberwellenstruktur
beginnen, die fast so aussieht wie die des Tones, den Sie erzielen mdchten. Zur
Verfeinerung des Tons kénnen Sie eine weitere Funktion des COMMODORE 64
benutzen, die “Filtern“ genannt und spéater noch beschrieben wird.

HULLKURVENGENERATOR

Die Lautstarke eines Tons dndert sich ab dem Moment, ab dem Sie den Ton zuerst
horen, bis er so schwach wird, daB Sie ihn schlieBlich nicht mehr horen kdnnen.
Wenn ein Ton beginnt, so steigt er von der Null-Lautstarke bis zu Spitzenlautstérke.
Dies nennt man ATTACK. Dann féllt er von der Spitze wieder zur mittleren
Lautstarke ab. Dies nennt man DECAY. Der mittlere Bereich wird durch den
SUSTAIN-Pegel beschrieben. SchlieBlich fallt die Note vom SUSTAIN-Pegel wie-
der auf Null-Lautstdrke ab. Dies nennt man RELEASE. Die vier Phasen einer Note
werden nachstehend dargestellt:

SUSTAIN-
Pegel

|
ATTtt\CK SUST"AIN
DECAY RELEASE
Die oben erwdhnten Punkte bestimmen die verschiedenen Qualitdten und Ein-
schrankungen der einzelnen Noten.
Die Parameter ATTACK/DECAY/SUSTAIN/RELEASE werden kurz ADSR genannt.
Sie kénnen durch Benutzen eines Satzes von Speicherpldtzen im Sound-Chip
gesteuert werden. Zunichst laden Sie wieder das erste Programmbeispiel, fihren
es aus und merken sich, wie es klingt. Andern Sie Zeile 20 des Programms dann
wie folgt:

194 MUSIKPROGRAMMIERUNG



PROGRAMMBEISPIEL 4 (BEISPIEL 1, AUFBEREITET):

LB HEST

FUP.E!:':i s LF

2 MERT
2 FORT=1TOSE: HEXT

50 DATALS, &

Register 5 und 6 definieren ADSR flr Stimme 1. ATTACK ist das obere Nybble von
Register 5. Nybble ist ein halbes Byte, d. h. die unteren vier oder oberen vier Bits in
jedem Register. DECAY ist das untere Nybble. Sie kdnnen flir ATTACK eine
beliebige Zahl zwischen 0 und 15 wahlen, sie mit 16 multiplizieren und dann far
DECAY eine beliebige Zahl zwischen O und 15 addieren. Die Werte, die diesen

Zahlen entsprechen, werden nachstehend aufgefihrt.

SUSTAIN-Pegel ist das obere Nybble von Register 6. 0 bis 15 stehen zur Verfi-
gung. Hierdurch wird bestimmt, welchem Anteil der SUSTAIN-Pegel entspricht. Die

RELEASE-Rate ist das untere Nybble von Register 6.

Nachstehend finden Sie die Bedeutungen der Werte fur ATTACK, DECAY und

RELEASE:

MUSIKPROGRAMMIERUNG

195



WERT ATTACK DECAY/RELEASE
(ZEIT/ZYKLUS) (ZEIT/ZYKLUS)
0 2 ms 6 ms
1 8 ms 24 ms
2 16 ms 48 ms
3 24 ms 72 ms
4 38 ms 114 ms
5 56 ms 168 ms
6 68 ms 204 ms
7 80 ms 240 ms
8 100 ms 300 ms
9 250 ms 750 ms
10 500 ms 15s
11 800 ms 24 s
12 1s 3s
13 3s 9s
14 5s 15s
15 8s 24 s

Nachfolgend sehen Sie einige Einstellungen, die Sie in dem Programmbeispiel
ausprobieren konnen. Probieren Sie diese aus und experimentieren Sie. Die
Vielzahl an méglichen Ténen ist erstaunlich! Um den Ton einer Geige zu erzeugen,
andern Sie Zeile 20 wie folgt:

20 POKES+5,88:POKES+6,89:REM A=5;D=8;S=5;R=9

Andern Sie die Wellenform in eine Dreieckswellenform um, und schon bekommen
Sie durch folgende Zeilen das Gerdusch eines Xylophons.

20 POKES+5,9:POKES+6,9:REM A=0;D=9;S=0;R=9
70 POKES+4,17
90 POKES+4,16: FORT=1TO50:NEXT

Andern Sie die Wellenform nun in eine Rechteckwelle um, und erzeugen Sie durch
folgende Zeilen einen Klavierklang.

15 POKES +3,8:POKES+2,0

20 POKES+5,9:POKES+6,0: REM A=0;D=9;S=0;R=0
70 POKES+4,65

90 POKES+4,64:FORT=1TO50:NEXT

196 MUSIKPROGRAMMIERUNG



Die aufregendsten Gerdusche sind jedoch die, die nur der Synthesizer erzeugen
kann, also keine Nachahmung akustischer Instrumente. Probieren Sie z. B. fol-
gendes:

20 POKES+5,144:POKES+6,243:REM A=9;D=0;S=15;R=3

FILTERN

Der Oberwellengehalt einer Wellenform kann durch Verwendung eines Filters
verandert werden. Der SID ist mit drei verschiedenen Filtern ausgerustet. Sie
kdnnen unabhéngig voneinander oder auch kombiniert benutzt werden. Wir neh-
men wieder unser einfaches Programmbeispiel und geben verschiedene Filter-
steuerungen ein.

Fligen Sie Zeile 15 in das Programm ein, um die Grenzfrequenz des Filters
einzugeben. Die Grenzfrequenz ist der Filterbezugspunkt. Die obere und untere
Grenzfrequenz wird in Register 21 und 22 eingegeben. Um den Filter fiir Stimme 1
einzuschalten, Register 23 POKEnN.

Nun Zeile 30 andern, um anzuzeigen, daB ein HochpaBfilter benutzt wird (siehe
SID-Registerverzeichnis).

PROGRAMMBEISPIEL 5 (BEISPIEL 1, AUFBEREITET):

1%
e
pedx] FHI-“'E”'+
4R REFDHF, LF TR

5@ IFHFCETHEMEMD

1] 3 +l HF FRORES ., LF
TEOF s
Qi FORT= lTﬂDP HEXT

S8 FOKES+4, 22 FORT=1TO5E : HEXT

1@ GOTOSE

11ﬂ DATHES . 177 .8 28,214,258

28 DATH 177, '5"'.—. 177,258
DATH 17 214,125
DATAZE. 3 T 258

S DRTALS. &3 250, 1:-'.- r;.:‘,. 25
DATAZL 154, &3, 24, 62, 63
188 DATAZE. 177, :'SFL 24,83, 125

12@ DATAL?, &2, 256, -1, -1, -1

MUSIKPROGRAMMIERUNG 197



Probieren Sie dieses Programm nun aus. Beachten Sie, daB die niedrigeren Tone
leiser sind und blechern klingen. Der Grund hierfir liegt darin, daB Sie einen
HochpaBfilter benutzen, der Frequenzen unterhalb der Grenzfrequenz dampft.
Der SID des COMMODORE-Computers hat drei verschiedene Filter. Wir haben den
HochpaBfilter benutzt. Frequenzen bei oder iber der Grenzfrequenz werden durch-
gelassen, die unter der Grenzfrequenz jedoch gedampft.

()]
n
<
wal
T
(@)
o
e |
[m]

GRENZ-

|
FREQUENZ

Der SID hat auch einen TiefpaBfilter. Wie der Name schon sagt, 148t dieser Filter alle
Frequenzen unter der Grenzfrequenz durch und dampft die dariberliegenden ab.

%)
%)
<
-
I
o
o
)
=)
GRENZ-
|
FREQUENZ

SchlieBlich hat Chip SID auch noch einen BandpaBfilter, der nur ein schmales
Frequenzband um die Grenzfrequenz herum durchldBt und alle anderen Frequen-
zen dampft.

198 MUSIKPROGRAMMIERUNG



DURCHLASS

GRENZ-
|

FREQUENZ

Hoch- und TiefpaBfilter kbnnen miteinander kombiniert werden, so daB eine Band-
sperre entsteht, bei der nur die Grenzfrequenz gedampft wird.

—

DURCHLASS

GRENZ-
|

FREQUENZ

Zusétzlich zur gesamten Lautstérkenregelung bestimmt Register 24 auch noch,
welche Filterart Sie benutzen wollen. Bit 6 steuert den HochpaBfilter (0 = aus, 1 =
ein), Bit 5 den Bandfilter und Bit 4 den TiefpaBfilter. Die unteren drei Bits der
Grenzfrequenz werden durch Register 21 (L) bestimmt (Ls = 0 bis 7). Die acht Bits
der oberen Grenzfrequenz hingegen werden durch Register 22 (H) bestimmt (H
= 0 bis 255).

Durch den Einsatz der Filter kann die Oberwellenstruktur jeder Wellenform geéndert
werden. Sie kénnen also stets den Ton erzielen, den Sie mOchten. Zusétzlich zur
Filterung kann auch noch durch die ADSR-Hillkurve ein interessanter Effekt erzielt
werden.

MUSIKPROGRAMMIERUNG 199



FORTSCHRITTLICHE TECHNIKEN

Eine dynamische Anderung der Parameter des SID wahrend einer Note zur
Erzielung von interessanten und originellen Effekten ist moglich. Hierzu stehen
digitalisierte Ausgaben vom Oszillator 3 und Hillkurvengeber 3 in den Registern 27
bzw. 28 zur Verfligung.

Die Ausgabe von Oszillator 3 (Register 27) hangt direkt mit der gewahlten Wellen-
form zusammen. Wurde die Sagezahnwelle von Oszillator 3 gewahlt, dann liefert
dieses Register eine Serie von inkrementierten (schrittweise erhdhten) Zahlen von
0 bis 255. Die Rate wird hierbei durch die Frequenz von Oszillator 3 bestimmt.
Wurde die Dreieckswelle gewahlt, dann wachst die Ausgabe von 0 bis 255 an und
nimmt wieder bis auf 0 ab. Wurde die Pulswelle gewéhlt, dann springt die Ausgabe
zwischen 0 und 255 hin und her. Durch Wahl des Rauschgenerators wird schlieBlich
eine Anzahl von Zufalls-Zahlen angegeben. Wird Oszillator 3 flir Modulation
benutzt, soll die Ausgabe normalerweise NICHT horbar sein. Durch das Setzen von
Bit 7 von Register 24 wird die Audio-Ausgabe von Stimme 3 abgeschaltet. Register
27 gibt stets die sich andernde Oszillatorausgabe wieder und wird nicht durch den
Hullkurvengeber (ADSR) beeinfluBt.

Register 25 ermdglicht Ihnen den Zugriff auf die Ausgabe des Hullkurvengebers
von Oszillator 3. Hierbei gilt das gleiche wie bei der Ausgabe von Oszillator 3. Um
dieses Register auslesen zu kénnen, muB zundchst der Oszillator eingeschaltet
werden.

Vibrato (eine schnelle Frequenzénderung) kann erzielt werden, indem man die
Ausgabe von Oszillator 3 zu der Frequenz eines anderen Oszillators addiert. Dies
wird im Programmbeispiel 6 gezeigt.

200 MUSIKPROGRAMMIERUNG



PROGRAMMBEISPIEL 6:

v';"“"
FI lFL ATOZ4  POKES+L. @ HEXT
+3.8
+5 41 FORES+E, 89
+14,- 117
+1E, 16
+2d, 143

20 RERDFR, DR
28 IFFR=BTHEMEMD

186 FOKES+4, 65

118 FORT=1TODR#S

120 FO=FR+PEEK 732

15 LR =F ORANDESS
S48, LF | POKES+1 ) HF

15 D ES+d, G
FEA GOTOSe
1 DATA4E1T. 2. 518%. 2, 5487

=18 DFTASS C L EAET L DL R 4
28 DRTAZ4E 1z 0, o
1 DATAL 14,__,55,:,3 o

e

EEn DATRAS, 6

Dieses Programm wird nachstehend Zeile fiir Zeile erkléart.

MUSIKPROGRAMMIERUNG

201



ERKLARUNG VON PROGRAMMBEISPIEL 6:

Zeile(n) Beschreibung
10 Eingabe von S als Soundchip-Startadresse.
20 Ldschen aller Soundchipregister.
30 Eingabe der Impulsbreite fir Stimme 1.
40 Eingabe von ATTACK/DECAY flr Stimme 1 (A=2, D=9).
Eingabe von SUSTAIN/RELEASE fir Stimme 1 (S=5, R=9).
50 Eingabe der niedrigen Frequenz fir Stimme 3.
60 Eingabe der Dreieckswelle fur Stimme 3.
70 Eingabe der Lautstérke 15, Abschalten der Audioausgabe von
Stimme 3.
80 Lesen der Frequenz und Dauer der Note.
90 Ist die Frequenz gleich 0, dann Stop.
100 POKE Start-Impulswellenformsteuerung, Stimme 1.
110 Start-Zeitschleife fir Dauer.
120 Neue Frequenz von Oszillatorausgang 3 lesen.
130 Hohe und niedrige Frequenz lesen.
140 POKE Hoch- und Niedrigfrequenz fir Stimme 1.
150 Ende der Zeitschleife.
160 POKE Stop-Impulswellenformsteuerung, Stimme 1.
170 Zurlck zur néchsten Note.
500-550 | Frequenzen und Notenlangen des Musikstucks.
560 Nullen zeigen Ende des Stlicks an.

Durch dynamische Effekte kénnen auBerdem auch noch eine Vielzahl an Gerausch-
effekten erzielt werden. Folgendes Sirenenprogramm &ndert z. B. dynamisch die
Frequenzausgabe von Oszillator 1, indem es die Ausgabe der Dreieckswellenform
von Oszillator 3 benutzt.

202 MUSIKPROGRAMMIERUNG



PROGRAMMBEISPIEL 7:

TOZ4  FOKES+L , @ HEXT
14,5

]

Dieses Programm wird nachstehend Zeile fiir Zeile erklart.

ERKLARUNG VON PROGRAMMBEISPIEL 7:

Zeile(n) Beschreibung
10 Eingabe von S als Soundchip-Startadresse.
20 Loschen der Soundchipregister.
30 Eingabe der niedrigen Frequenz fir Stimme 3.
40 Eingabe der Dreieckswelle fur Stimme 3.
50 Eingabe der Impulsbreite fiir Stimme 1.
60 Eingabe von Lautstarke 15, Abschalten der Audioausgabe von
Stimme 3.
70 Eingabe von ATTACK/DECAY fir Stimme 1 (S=15, R=0).
80 POKE Start-Impulswellenformsteuerung fir Stimme 1.
90 Eingabe der niedrigsten Frequenz flr Sirene.
100 Beginn der Zeitschleife.
110 Neue Frequenz mit Oszillatorausgabe 3 lesen.
120 Hohe und niedrige Frequenzen lesen.
130 POKE hohe und niedrige Frequenzen flir Stimme 1.
140 Ende der Zeitschleife.
150 Abschalten der Lautstarke.

Die Rauschwellenform kann zur Erzeugung verschiedener Gerauscheffekte benutzt
werden. Dieses Beispiel ahmt durch Verwendung einer gefilterten Rauschwellen-
form ein Handeklatschen nach:

MUSIKPROGRAMMIERUNG 203



PROGRAMMBEISPIEL 8:

28 FORL=BTO24: POKES+L, 8 HEXT
A FOKES+0, 240 POKES+1, 33

G Fid
FOKES

FOKES+24, 75
a6 FORM=1TOLS
20 FOKES+4, 129

B MEXT  FOKES+4, 128
FRIEWT  HERT

108 FORT=1T0Z
118 FORT=1T
120 FOKES+24, 0

Dieses Beispiel wird nun Zeile fiir Zeile erklart.

ERKLARUNG VON PROGRAMMBEISPIEL 8:

Zeile(n) Beschreibung
10 Eingabe von S als Soundchip-Startadresse.
20 Loéschen aller Soundchipregister.
30 Eingabe von hoher und niedriger Frequenz fiir Stimme 1.
40 Eingabe von ATTACK/DECAY fiur Stimme 1 (A=0, D=8).
50 Eingabe der oberen Grenzfrequenz fir Filter.
60 Filter fir Stimme 1 einschalten.
70 Eingabe von Lautstarke 15, HochpaBfilter.
80 Zahlt 15 Handeklatschen.
90 Eingabe fur Anfang der Rauschwellenformsteuerung.
100 Warten, dann Stop der Rauschwellenformsteuerung.
110 Warten, dann néchstes Klatschen.
120 Lautstarke abschalten.

204 MUSIKPROGRAMMIERUNG



SYNCHRONISATION UND RINGMODULATION

Der 6581 SID ermdglicht Ihnen die Erstellung von komplexeren Oberwellenstruktu-
ren durch Synchronisierung und Ringmodulation zweier Stimmen.
Synchronisierung ist im wesentlichen eine logische UND-Verbindung zweier Wel-
lenformen. Ist eine dieser Wellenformen 0, dann ist die Ausgabe 0.

Durch folgendes Programmbeispiel wird ein Moskito nachgeahmt:

PROGRAMMBEISPIEL 9:

Das Programm wird nun Zeile fir Zeile erklart.

ERKLARUNG VON PROGRAMMBEISPIEL 9:

Zeile(n) Beschreibung

10 Eingabe von S als Soundchip-Startadresse.

20 Léschen der Soundchipregister.

30 Eingabe der hohen Frequenz fir Stimme 1.

40 Eingabe von ATTACK/DECAY fir Stimme 1 (A=13, D=11).

50 Eingabe der hohen Frequenz fir Stimme 3.

60 Eingabe von Lautstarke 15.

70 Eingabe flr Beginn der Dreiecks-/Synchronwellenformsteuerung

fur Stimme 1.

80 Zeitschleife.

90 Stop der Dreiecks-/Synchronwellenformsteuerung fir Stimme 1.
100 Warten, dann Lautstérke abschalten.

Synchronisation wird in Zeile 70 eingeschaltet, in der die Bits 0, 1 und 4 von
Register 4 gesetzt werden. Bit 1 schaltet die Synchronisation zwischen Stimme 1
und Stimme 3 ein. Die Bits 0 und 4 dienen wie gewohnlich der Austastung von
Stimme 1 und dem Setzen der Dreieckswellenform.

MUSIKPROGRAMMIERUNG 205



Bei der Ringmodulation (fir Stimme 1 durch Setzen von Bit 3 des Registers 4 in
Zeile 70) wird die Dreiecksausgabe von Oszillator 1 durch eine “ringmodulierte
Kombination von Oszillator 1 und 3 ersetzt. Hierdurch entsteht eine nicht-harmoni-
sche Oberwellenstruktur, mit der z. B. Klingel- oder Gonggerausche nachgeahmt
werden kénnen. Durch folgendes Programm wird ein Glockenspiel imitiert:

PROGRAMMBEISPIEL 10:

15
012 POk

Das Programm wird nun Zeile fur Zeile erklart.

ERKLARUNG VON PROGRAMMBEISPIEL 10:

Zeile(n) Beschreibung

10 Setzen von S als Soundchip-Startadresse.

20 Loschen der Soundchipregister.

30 Setzen der hohen Frequenz fir Stimme 1.

40 Setzen von ATTACK/DECAY flr Stimme 1 (A=0, D=9).

50 Setzen der hohen Frequenz fir Stimme 3.

60 Setzen von Lautstéarke 15.

70 Zahlen der Klingelimpulse, Setzen von Start fur Dreieck, Ring-
modulation, Wellenformsteuerung fur Stimme 1.

80 Zeitschleife, Stop der Dreieckswellenform, Ringmodulation.

90 Zeitschleife, nachster Klingelimpuls.

Die Effekte, die Sie durch Setzen der Parameter des SID des COMMODORE 64
erzielen konnen, sind zahllos und breit gefdchert. Nur durch Experimentieren
kdnnen Sie die Einsatzmdglichkeiten des Gerates herausfinden und schétzen-
lernen. Die in diesem Kapitel gegebenen Beispiele stellen wirklich nur die oberste
Spitze eines Eisbergs dar.

206 MUSIKPROGRAMMIERUNG



KAPITEL

MASCHINEN-
SPRACHE

Was ist Maschinensprache?

Wie schreibt man Programme in
Maschinensprache?
Hexadezimaldarstellung

Adressierart

Indizieren

Unterprogramme

Hinweise fur den Anféanger
Vorbereitungen fir eine groBe Aufgabe
Befehlssatz des Mikroprozessors MCS6510
Speicherverwaltung beim

COMMODORE 64

KERNAL

KERNAL-Funktionen nach Einschalten der
Stromversorgung

Arbeiten mit Maschinensprache und BASIC
COMMODORE 64-Memory Map
(Speicherbelegung)

207




WAS IST MASCHINENSPRACHE?

Das Herz jedes Mikrocomputers ist ein Mikroprozessor. Hierbei handelt es sich um
einen Spezial-Mikro-Chip, der das “Gehirn“ des Computers ausmacht. Der COM-
MODORE 64 bildet hierbei keine Ausnahme. Jeder Mikroprozessor versteht seine
speziellen Befehle, die man unter dem Begriff Maschinensprache zusammenfaft.
Maschinensprache ist die einzige Programmiersprache, die Ihr COMMODORE 64
versteht. Es ist sozusagen die Muttersprache der Maschine.

Wenn Maschinensprache die einzige Sprache ist, die der COMMODORE 64
verstehen kann, wie kann er dann die CBM-BASIC-Programmiersprache verste-
hen? CBM-BASIC ist nicht die Maschinensprache vom COMMODORE 64. Wie
kann der COMMODORE 64 dann BASIC-Anweisungen wie z. B. PRINT und GOTO
verstehen?

Um diese Frage zu beantworten, missen wir zunéchst einmal klarlegen, was im
COMMODORE 64 passiert. AuBer dem Gehirn, dem Mikroprozessor des COMMO-
DORE 64, gibt es noch das Maschinensprache-Programm, das in einem speziellen
Speicher abgelegt ist und nicht gedndert werden kann. Und, was weitaus wichtiger
ist, es verschwindet nicht beim Abschalten des Geréts so wie von Ihnen geschrie-
bene Programme. Dieses Maschinenprogramm wird BETRIEBSSYSTEM genannt.
Der COMMODORE 64 weiB nach dem Einschalten, was er zu tun hat, weil das
BETRIEBSSYSTEM automatisch startet.

208 MASCHINENSPRACHE



Das BETRIEBSSYSTEM “organisiert* den Speicherbereich flr die verschiedenen
Aufgaben. AuBerdem erkennt es, welche Tasten Sie auf der Tastatur angeschlagen
haben, und zeigt diese auf dem Bildschirm an. Das BETRIEBSSYSTEM ist noch fur
zahlreiche weitere Funktionen zustandig. Das BETRIEBSSYSTEM kann man sich
also als eine Art “Intelligenz und Personlichkeit* des COMMODORE 64 vorstellen.
Nach dem Einschalten des Gerats Ubernimmt das BETRIEBSSYSTEM also die
Kontrolle. Nach Erledigung seiner Aufgabe zeigt es an:

READY.
|

Das BETRIEBSSYSTEM des COMMODORE 64 ermdglicht Ihnen danach eine
Eingabe Uber die Tastatur und ein Arbeiten mit dem Bildschirm-Editor. Der Bild-
schirm-Editor ermdglicht ein Bewegen des Cursors, Ldschen, Einfligen usw. und ist
nur ein kleiner Teil des gesamten Betriebssystems.

Alle in CBM-BASIC zur Verfligung stehenden Befehle werden einfach durch ein
weiteres umfassendes Maschinensprache-Programm erkannt. Dieses umfangrei-
che Programm flihrt dann je nach BASIC-Befehl den entsprechenden Teil Maschi-
nensprache aus. Dieses Programm nennt man BASIC-INTERPRETER, da es die
Befehle nacheinander interpretiert, bis es auf einen nicht zu verstehenden Befehl
trifft. Dann wird die vertraute Meldung angezeigt:

?SYNTAX ERROR

READY.
B

WIE SIEHT DER MASCHINENCODE AUS?

Zum Andern von Speicherplitzen miissen Sie mit den PEEK- und POKE-Anwei-
sungen von CBM-BASIC vertraut sein. Sie haben diese sicherlich schon fir die
Graphikdarstellung sowie fiir Soundeffekte benutzt. Jeder Speicherplatz wird durch
eine eigene Nummer gekennzeichnet. Diese Nummer ist auch als “Adresse” eines
Speicherplatzes bekannt. Wenn Sie sich den Speicher des COMMODORE 64 als
eine StraBe mit mehreren Hausern vorstellen, dann ist die Zahl an jeder Tur die
Adresse. Nun wollen wir feststellen, welche Hauser fir welche Zwecke benutzt
werden.

MASCHINENSPRACHE 209



EINFACHE LISTE DER SPEICHERBELEGUNG DES
COMMODORE 64

ADRESSE

BESCHREIBUNG

0&1

2
bis:
1023

1024
bis:
2039

2040
bis:
2047

2048
bis:
40959

40960
bis:
49151

49152
bis:
53247

53248
bis:
53294

55296
bis:
56296

56320
bis:
57343
57344
bis:
65535

6510-Register

Speicheranfang
Vom Betriebssystem beanspruchter Speicher

Bildschirmspeicher

SPRITE-Pointer

Dies ist Ihr Speicher. Hier sind |lhre BASIC- und/oder

Maschinensprachenprogramme gespeichert.

8K-CBM-BASIC-Interpreter

Besonderer RAM-Programmbereich

VIC-II-Register

Farb-RAM

Ein-/Ausgaberegister

8K-CBM-KERNAL-Betriebssystem

210 MASCHINENSPRACHE




Keine Sorge, wenn Sie jetzt noch nicht richtig die Beschreibung der einzelnen
Speicherteile verstehen. Dies wird spater noch genau behandelt.
Maschinensprache-Programme bestehen aus Anweisungen mit oder ohne Operan-
den (Parameter). Jede Anweisung benétigt einen Speicherplatz, und in den ein oder
zwei Adressen hinter der Anweisung ist der Operand enthalten.

In Thren BASIC-Programmen bendtigen Wérter wie z. B. PRINT und GOTO nur je
einen Speicherplatz (und nicht etwa einen Speicherplatz fir jedes einzelne Zei-
chen). Der Inhalt des Speicherplatzes, der ein bestimmtes BASIC-Schlisselwort
darstellt, wird “token“ genannt. In der Maschinensprache gibt es verschiedene
“tokens*“ fur die verschiedenen Anweisungen, die ebenfalls nur ein Byte beanspru-
chen (Speicherplatz = Byte).

Maschinensprache-Anweisungen sind sehr einfach. Aus diesem Grund kann man
mit einer einzelnen Anweisung auch nicht sehr viel anfangen. Durch Maschinen-
sprache-Anweisungen wird entweder der Inhalt eines Speicherplatzes oder eines
der internen Register im Mikroprozessor geandert. Diese internen Register bilden
die Grundlage der Maschinensprache.

DIE REGISTER IM MIKROPROZESSOR 6510
AKKUMULATOR

Das ist DAS Register des Mikroprozessors. Durch verschiedene Maschinenspra-
che-Anweisungen kénnen Sie den Inhalt eines Speicherplatzes im Akkumulator
abspeichern, den Akkumulatorinhalt in einen anderen Speicherplatz kopieren, die
Akkumulatorinhalte oder die Registerinhalte direkt und ohne Beeinflussung anderer
Speicherplatze andern. Der Akkumulator ist auBerdem das einzige Register, in dem
Rechenoperationen ausgefiihrt werden kénnen.

INDEXREGISTER X

Dies ist ein sehr wichtiges Register. Es gibt Anweisungen fir nahezu alle Operatio-
nen, die mit dem Akkumulator mdéglich sind. Es gibt jedoch auch Anweisungen, die
nur flir das X-Register wirksam sind. Die verschiedenen Maschinensprache-Anwei-
sungen ermdglichen lhnen ein Kopieren eines Speicherplatzinhalts in das X-Regi-
ster, ein Kopieren des X-Registerinhalts in einen Speicherplatz sowie die direkte
Anderung des X- und anderer Register ohne Beeinflussung anderer Speicher-
platze.

MASCHINENSPRACHE 211



INDEXREGISTER Y

Dies ist ebenfalls ein sehr wichtiges Register. Es gibt Anweisungen fiir nahezu alle
Operationen, die mit dem Akkumulator und dem X-Register mdglich sind. Es gibt
jedoch auch Anweisungen, die nur fir Register Y wirksam sind.

Verschiedene Maschinensprache-Anweisungen ermoglichen lhnen ein Kopieren
eines Speicherplatzinhaltes in Register Y, das Kopieren des Y-Registerinhalts in
einen Speicherplatz sowie die direkte Anderung des Y- oder anderer Register ohne
Beeinflussung der Ubrigen Speicherplatze.

STATUSREGISTER

Dieses Register besteht aus acht “Flags” (Flag = Anzeige, ob ein Ereignis
eingetreten ist oder nicht).

PROGRAMMZAHLER

Dieser enthalt die Adresse der derzeitig ausgeflihrten Maschinensprache-Anwei-
sung. Da das Betriebssystem beim COMMODORE 64 (und Gbrigens auch bei allen
anderen Computern) standig aktiv ist, andert sich auch der Programmzéhler standig.
Er kann nur zusammen mit dem Mikroprozessor gestoppt werden.

STAPELZEIGER (STACKPOINTER)

Dieses Register enthélt die Adresse des ersten freien Stapelplatzes. Der Stapel
(Stack) wird flr die temporare Speicherung von Maschinensprache-Programmen
sowie vom Computer beansprucht.

EIN-/AUSGABEPORT

Dieses Register belegt die Speicherplatze 0 (Datenrichtungs-Register) und 1
(Datenregister). Es handelt sich um ein 8-Bit-Ein-/Ausgabeport. Beim COMMO-
DORE 64 wird dieses Register zur Speicherverwaltung benutzt. Der Chip kann dann
mehr als 64 K RAM- und ROM-Speicherkapazitat kontrollieren.

Die Einzelheiten dieser Register werden hier nicht erklart. Dies erfolgt spéater bei
Erklarung der jeweiligen Funktionsweise.

212 MASCHINENSPRACHE



WIE SCHREIBT MAN MASCHINENSPRACHE-
PROGRAMME?

Da der COMMODORE 64 nicht die Méglichkeit zum Schreiben und Editieren von
Maschinensprache-Programmen bietet, missen Sie hierzu entweder ein Programm
benutzen oder selbst ein BASIC-Programm schreiben, das Ihnen das Schreiben in
Maschinensprache ermdglicht.

Die am weitesten verbreitete Methode zum Schreiben von Maschinensprache-
Programmen sind Assembler-Programme. Diese Software-Pakete ermdglichen
Ihnen das Schreiben von Maschinensprache-Anweisungen in standardmaBigem
Mnemonik-Format. Hierdurch lassen sich Programme in Maschinensprache
wesentlich leichter lesen als eine komplizierte Zahlenreihe. Wir fassen zusammen:
Ein Programm, das lhnen das Schreiben von Maschinensprache-Programmen im
Mnemonik-Format ermdéglicht, wird Assembler genannt. Entsprechend nennt man
ein Programm, bei dem ein Maschinensprache-Programm im Mnemonik-Format
angezeigt wird, Disassembler. Fir den COMMODORE 64 steht eine Diskette mit
einem Maschinensprache-Monitor (mit Assembler/Disassembler usw.) zur Verfu-

gung:

MONITOR 64

Diese Diskette MONITOR 64, die Sie bei lhrem COMMODORE-Handler bekom-
men, enthalt ein Programm, das Ihnen den Ubergang von CBM-BASIC in die
Maschinensprache ermdglicht. Auf diese Weise kann der Inhalt der internen Regi-
ster des Mikroprozessors 6510 sowie einzelne Speicherbereiche auf dem Bild-
schirm angezeigt und mit Hilfe des Bildschirm-Editors aufbereitet werden. AuBer-
dem gehoren hierzu Assembler, Disassembler sowie weitere Funktionen, die Ihnen
das Schreiben und Editieren von Maschinensprache-Programmen erleichtern. Sie
muissen nicht unbedingt einen Assembler zum Schreiben in Maschinensprache
benutzen, er erleichtert Ihnen diese Aufgabe jedoch wesentlich. Fiir das Schreiben
von Programmen in Maschinensprache empfehlen wir mit Nachdruck den Kauf
eines Assemblers, da Sie sonst das Maschinensprache-Programm in den Speicher
POKEN mussen.

In dieser Anleitung werden ab jetzt die Beispiele in dem Format von MONITOR 64
gegeben. Fast alle Assembler-Formate sind gleich. Aus diesem Grund werden die
hier gezeigten Maschinensprache-Beispiele wahrscheinlich mit beliebigen
Assemblern kompatibel sein. Bevor wir jedoch weitere Merkmale von MONITOR 64
besprechen, mlssen wir zunachst das Hexadezimal-Zahlensystem erklaren.

MASCHINENSPRACHE 213



HEXADEZIMALDARSTELLUNG

Die Hexadezimaldarstellung wird von den meisten Maschinensprache-Programmie-
rern benutzt, wenn es sich um eine Zahl oder Adresse im Maschinensprache-
Programm handelt.

Einige Assembler erlauben den Bezug auf Adressen und Zahlen in Dezimaldarstel-
lung (Basis 10), Binardarstellung (Basis 2) oder sogar Oktal (Basis 8). Natrlich ist
auch die Hexadezimaldarstellung (Basis 16) (oder, wie viele einfach sagen, “Hex")
moglich. Der Assembler Gbernimmt flr Sie die Umwandlungen.
Hexadezimaldarstellung sieht zunachst kompliziert aus, wird jedoch, wie die mei-
sten Dinge, nach etwas Ubung schnell verstandlich.

Dezimalzahlen (Zehnersystem, also Basis 10) sind Zahlen aus dem Bereich von 0
bis 9. Bindrzahlen (Basis 2) haben Ziffern von 0 bis 1. Die gréBte Ziffer ist immer
gleich der Basis minus 1. DIES GILT FUR ALLE ZAHLENBASEN. Entsprechend
mussen Hexadezimalzahlen Ziffern zwischen 0 und 15 haben. Fir die Zahlen 10 bis
15 stehen jedoch keine einstelligen Ziffern zur Verfligung. Aus diesem Grund
werden statt dessen die ersten sechs Buchstaben des Alphabets benutzt:

DEZIMAL HEXADEZIMAL BINAR
0 0 00000000
1 1 00000001
2 2 00000010
3 3 00000011
4 4 00000100
5 5 00000101
6 6 00000110
7 7 00000111
8 8 00001000
9 9 00001001

10 A 00001010
11 B 00001011
12 C 00001100
13 D 00001101
14 E 00001110
15 F 00001111
16 10 00010000

Nachstehend sehen Sie ein weiteres Beispiel, wie eine Dezimalzahl (Basis 10)
aufgebaut wird:

214 MASCHINENSPRACHE



Basis mit

steigender Potenz: ....... 10° 10* 10" 10°
Entspricht: .. ............ 1000 100 10 1
Bei 4569 (Basis 10) 4 5 6 9

=(4%1000)+ (5% 100)+(6x10)+ (9% 1)

Nun wollen wir uns ansehen, wie die Basis 16 (Hexadezimalzahl) entsteht:

Basis mit

steigender Potenz: ....... 16°  16° 16" 16°
Entspricht: . ............. 4096 256 16 1
Bei 11D9 (Basis 16) 1 1 D 9

=1X4096+1x2564+13x16+9%1
Daher ist 4569 (Basis 10) = 11D9 (Basis 16).

Adressierbare Speicherplatze liegen zwischen 0—65535 (wie bereits erlautert).
Dieser Bereich lautet in Hexadezimaldarstellung O—FFFF.

Normalerweise steht vor Hexadezimalzahlen ein Dollarzeichen ($). Auf diese Weise
wird es von Dezimalzahlen unterschieden. Wir wollen uns nun mit MONITOR 64
einige Hexadezimalzahlen anschauen, indem wir den Inhalt eines Speicherplatzes
anzeigen lassen. Geben Sie folgendes uber die Tastatur ein:

BE
PC SR AC XR YR SP
.; 0401 32 04 5E 00 F6 (Kann unterschiedlich sein)

Wird nun
.M 0000 0020 (and press ).

eingegeben und RETURN gedriickt, sehen Sie Reihen von neun Hexadezimalzah-
len. Die erste vierstellige Zahl ist die Adresse des ersten in dieser Reihe gezeigten
Speicherbytes. Die anderen acht Zahlen sind die Speicherplatzinhalte, beginnend
bei der Startadresse.

Sie sollten tatsachlich lernen, hexadezimal zu “denken”. Dies ist nicht allzu
schwierig, da Sie sich keine Gedanken (ber die Rickumwandlung in Dezimaldar-
stellung machen missen.

Wenn Sie z. B. sagen, ein bestimmter Wert ist bei $14ED anstatt 5357 gespeichert,
so sollte dies fir Sie keinen Unterschied machen.

MASCHINENSPRACHE 215



DIE ERSTE MASCHINENSPRACHE-ANWEISUNG
LDA — SPEICHERUBERTRAGUNG ZUM AKKUMULATOR

Bei der Assembler-Sprache 6510 sind Mnemoniks stets drei Zeichen. LDA bedeu-
tet “...zum Akkumulator Gbertragen“. Was in den Akkumulator geladen werden
soll, wird durch den/die Parameter der entsprechenden Anweisung bestimmt. Der
Assembler “weiB“, welcher Befehl durch die einzelnen Mnemoniks dargestellt ist.
Beim “Assemblieren einer Anweisung werden einfach die entsprechenden Zah-
lencodes und die entsprechenden Parameter in den Speicher (ab der angegebenen
Adresse) geladen.

Einige Assembler zeigen Fehlermeldungen oder Warnungen an, wenn Sie einen
Ausdruck assemblieren wollen, der bei diesem Assembler oder beim Mikroprozes-
sor 6510 nicht moglich ist.

Wird vor den Parameter der Anweisung das Symbol “#"“ gesetzt, so bedeutet dies,
daB in das in der Anweisung angegebene Register der hinter “#" stehende Wert
geladen werden soll. Z. B.:

LDA #$05

Durch diese Anweisung wird $05 (Dezimal 5) in das Akkumulatorregister geladen.
Der Assembler 1adt in die entsprechende Adresse fiir diese Anweisung $A9 (gleich
Zahlencode fir diese besondere Anweisung in dieser Betriebsart). $05 wird in den
nachsten Platz nach dem Platz mit der Anweisung ($A9) geladen.

Steht vor einem Anweisungsparameter ein “#", d. h., ist der Parameter ein “Wert*®
und nicht ein Verweis auf einen Speicherplatz oder ein Register, dann benutzt man
den Unmittelbar-Modus. Hierzu wollen wir den Vergleich mit einem anderen Modus
machen:

Soll der Inhalt von Speicherplatz $102E in den Akkumulator geladen werden,
benutzen Sie den “Absolut-Modus*” der Anweisung:

LDA $102E

Der Assembler kann zwischen den zwei verschiedenen Modi unterscheiden, da
beim letzteren vor dem Parameter kein “#" steht. Der Mikroprozessor 6510 kann
zwischen dem Unmittelbar- und dem Absolut-Modus der LDA-Anweisung unter-
scheiden, da diese unterschiedliche Zahlencodes haben. Die Zahlencodes fiir LDA
im Sofort-Betrieb lauten $A9 und im Absolut-Betrieb $AD.

Aus den Mnemoniks von Anweisungen ergibt sich normalerweise bereits, was
diese Anweisungen bedeuten. Was, glauben Sie, bedeutet z. B. LDX?

Wer hat da gesagt “Lade Register X mit. . .“? Sie sind Klassenbester.

216 MASCHINENSPRACHE



Aber auch wer dies nicht gleich wuBte, braucht sich keine Sorgen zu machen. Zum
Erlernen der Maschinensprache braucht man Geduld.

Die verschiedenen internen Register kann man sich als spezielle Speicherplatze
vorstellen. In ihnen kann namlich auch ein Byte abgespeichert werden. Wir brau-
chen das Binar-Zahlensystem (Basis 2) nicht zu erkldren, da hierflr die gleichen
Prinzipien wie bei der Hexadezimal- und Dezimaldarstellung gelten. Ein “Bit* ist
jedoch eine Binarstelle, und acht Bits ergeben ein Byte! Die max. mogliche Zahl in
einem Byte ist daher die groBtmogliche achtstellige Bindrzahl. Diese Zahl ist
11111111 (binar), was $FF (hexadezimal) oder 255 (dezimal) entspricht. Sie haben
sich sicherlich schon gewundert, warum in einem Speicherplatz nur Zahlen von 0
bis 255 eingegeben werden koénnen. Versuchen Sie, POKE 7680,260 (BASIC-
Anweisung “die Zahl 260 in den Speicherplatz 7680 speichern®), weiB der BASIC-
Interpreter, daB nur die Zahlen 0 bis 255 zuléssig sind, und der COMMODORE 64
zeigt dann an:

?ILLEGAL QUANTITY ERROR

READY.
@

Wenn ein Byte auf $FF (hex) begrenzt ist, wie wird dann der AdreBparameter in der
Absolut-Anweisung “LDA$102E" im Speicher ausgedrickt? Er wird in zwei Bytes
abgelegt (da er nattrlich nicht in eines paBt). Die unteren (rechten) zwei Stellen der
Hexadezimaladresse bilden das “untere Byte* der Adresse (Low Byte). Entspre-
chend bilden die oberen (auBerst linken) zwei Stellen das “obere Byte* (High Byte).
Fir den 6510 missen die Adressen zunachst durch das untere und danach durch
das obere Byte angegeben werden. Die Anweisung “LDA$102E“ wird also im
Speicher durch drei aufeinanderfolgende Werte dargestellt.

$AD, $2E, $10

Nun missen Sie nur noch eine weitere Anweisung lernen, und Sie kénnen Ihr
erstes Programm schreiben. Diese Anweisung ist BRK. Eine genaue Erklarung
dieser Anweisung finden Sie im “Programmierhandbuch zum M.O.S. 6502"“. Sie
kénnen sich dies nun als END-Anweisung in Maschinensprache vorstellen.

Wenn wir mit MONITOR 64 ein Programm schreiben und die BRK-Anweisung am
Ende eingeben, kehrt das Programm nach der Ausfilihrung in den Monitor zuriick.
Dies passiert nicht, wenn Ihr Programm einen Fehler enthalt oder wenn die BRK-
Anweisung nicht erreicht wird.

MASCHINENSPRACHE 217



SCHREIBEN DES ERSTEN PROGRAMMS
Wenn Sie schon utber die POKE-Anweisung in BASIC Zeichen auf den Bildschirm
gebracht haben, werden Sie wissen, daB die Zeichen-Codes zum POKER sich von
den CBM-ASCII-Zeichenwerten unterscheiden. Geben Sie z.B.:

PRINT ASC(“A")
ein und driicken , dann antwortet der COMMODORE 64 mit:

65

READY.
i}

Um jedoch auf den Bildschirm ein “A“ zu POKEn (Code = 1), wird folgendes
eingegeben:

Zum Léschen des Bildschirms

POKE 1024, 1 (und ) (1024 ist der Bildschirmspeicheranfang)
Das “P* der POKE-Anweisung muB nun ein “A*“ sein.
Nun wollen wir dies in Maschinensprache probieren. Geben Sie folgendes im
MONITOR 64 ein:
(Der Cursor muB nun neben einem “Punkt” blinken.)

A 1400 LDA #$01 (und driicken)
Der COMMODORE 64 zeigt an:

.A 1400 LDA #8$01
A1402 B

Uber die Tastatur eingeben:

A 1402 STA $0400

218 MASCHINENSPRACHE



(Uber die STA-Anweisung wird der Akkumulatorinhalt an einen bestimmten Spei-
cherplatz gespeichert.)
Der COMMODORE 64 zeigt nun an:

A 1405 W

Geben Sie nun folgendes ein:
.A 1405 BRK

Den Bildschirm léschen und
G 1400

eingeben.

Das “G*“ muB sich nun in “A“ verwandeln.

Und schon haben Sie lhr erstes Programm in Maschinensprache geschrieben.
Durch dieses Programm wird ein Zeichen “A“ in den ersten Bildschirmspeicher-
platz geladen.

Wir wollen uns nun mit weiteren Anweisungen und Funktionsweisen befassen.

ADRESSIERART

ZERO-PAGE

Wie bereits erklart, werden Absolutadressen durch ein oberes und unteres Byte
ausgedriickt. Das obere Byte bezeichnet man oft auch als Speicherseite (Page).
Z. B. ist Adresse $1637 in Seite $16 (22), $0277 in Seite $02 (2). Es gibt jedoch
noch eine besondere Art der Adressierung, die Zero-Page-Adressierung. Wie der
Name bereits besagt, bezieht es sich auf das Adressieren von Speicherplédtzen auf
der Zero-Page (Seite Null).

Diese Adressen haben daher STETS ein oberes Byte null. Die Zero-Page-Adressie-
rung bendtigt daher zur Beschreibung der Adresse lediglich ein Byte, und nicht wie
bei der Absolut-Adressierung zwei Bytes. Die Zero-Page-Adressierung weist den
Mikroprozessor an, die obere Adresse als null anzusehen. Durch diese Adressierart
ist daher ein Bezug auf Speicherplatze moglich, deren Adressen zwischen $0000
und $00FF liegen. Dies scheint jetzt noch nicht allzu wichtig zu sein, Sie werden das
Prinzip der Zero-Page-Adressierung jedoch bald brauchen.

MASCHINENSPRACHE 219



STAPEL (STACK)

Der Mikroprozessor 6510 hat einen Stack. Dieser wird flr die temporére Speiche-
rung vom Programmierer und auch vom Mikroprozessor selber benutzt. Er “merkt
sich" z. B. auch bestimmte Reihenfolgen. Die GOSUB-Anweisung in BASIC, die
den Aufruf eines Unterprogramms ermdglicht, muB sich z. B. die Aufrufebene
merken. Erfolgt dann im Unterprogramm die RETURN-Anweisung, dann weiB der
BASIC-Interpreter, an welche Stelle er zuriickgehen und die Ausfihrung fortsetzen
muB. Wird die GOSUB-Anweisung in einem Programm vom BASIC-Interpreter
gelesen, dann gibt er seine derzeitige Position vor dem Ubergang zum Unterpro-
gramm in den Stack ein. Bei der Ausfuhrung von RETURN wird diese Information
wieder vom Stack gelesen.

Der Interpreter weiB3 also nun, an welcher Stelle er sich vor dem Unterprogramm-
Aufruf befunden hat. Der Interpreter arbeitet z. B. mit der PHA-Anweisung (Spei-
cherung des Akkumulators im Stackregister) und mit PLA (Speicherung eines
Stackwerts im Akkumulator). Auch das Statusregister kann auf diese Weise tber die
Anweisungen PHP bzw. PLP gespeichert werden. Der Stack ist 256 Byte lang und
befindet sich auf Speicherseite 1. Er liegt im Adressenbereich von $0100 bis $01FF.
Er wird riickwérts verwaltet, d. h., die erste Position im Stack liegt bei $01FF und die
letzte bei $0100. Ein weiteres Register im Mikroprozessor 6510 nennt man Stapel-
zeiger (Stackpointer). Dieser zeigt stets auf den nachsten verfligbaren Stapelplatz.
Eine Eingabe erfolgt daher stets in den Stapelplatz, auf den der Stapelzeiger zeigt.
Der Zeiger wird dann zur néchsten Position (in Ruckwaértsrichtung) bewegt. Wird
eine Information vom Speicher abgerufen, dann wird der Stapelzeiger inkremen-
tiert, und das vom Zeiger angegebene Byte wird in das jeweilige Register gesetzt.
Nun haben wir also unmittelbare, Zero-Page- und Absolut-Anweisungen behandelt.
Dabei haben wir uns auch schon ein biBchen mit der implizierten Adressierung
beschéftigt. Hierunter versteht man, daB eine Information durch die Anweisung
selbst impliziert wird, d. h., auf welche Register, Kennzeichen und Speicher sich die
Anweisung bezieht. Die behandelten Beispiele sind PHA, PLA, PHP und PLP, die
sich auf Stapelverarbeitung, Akkumulator bzw. Statusregister beziehen.,

Anmerkung: Nachfolgend steht X fiir X-Register, A flir Akkumulator, Y flr Y-Indexregister, S fir
Stapelzeiger und P fiir Prozessorstatus.

220 MASCHINENSPRACHE



INDIZIEREN

Das Indizieren ist beim Arbeiten mit dem Mikroprozessor 6510 von auBerordentli-
cher Bedeutung. Hierunter versteht man das “Erstellen einer Adresse aus einer
Basisadresse plus Inhalt von X- oder Y-Indexregister*.

Enthalt X z. B. $05 und der Mikroprozessor fiihrt eine LDA-Anweisung im “absolu-
ten X-indizierten Modus* mit der Basisadresse (z. B. $9000) durch, dann lautet der
tatsachliche Platz, der in Register A geladen wird, $9000 + $05 = $9005. Das
Mnemonik-Format einer absoluten indizierten Anweisung entspricht dem einer
absoluten Anweisung. Der Unterschied liegt lediglich darin, daB die Indexangabe
“X* oder “,Y* zur Adresse addiert wird.

BEISPIEL:
LDA $9000,X

Beim Mikroprozessor 6510 stehen fur die Adressierung die Methoden absolut
indiziert, Zero-Page-indiziert, indirekt indiziert sowie indiziert indirekt zur Verfi-

gung.

INDIREKT INDIZIERT

Hierbei ist als Index nur das Y-Register moglich. Die tatsdchliche Adresse darf nurin
der Zero-Page liegen, und die Anweisungsart nennt man indirekt, weil die Zero-
Page-Adresse der Anweisung das untere Byte der tatsidchlichen Adresse und das
darauffolgende Byte das obere Byte enthélt.

BEISPIEL:

Nehmen wir z. B. an, daB Adresse $01 $45 und Adresse $02 $1E enthalt. Wenn die
Anweisung zum Laden des Akkumulators im indirekt indizierten Modus ausgefiihrt
und die angegebene Zero-Page-Adresse $01 ist, dann lautet die tatsachliche
Adresse:

Niederwertiges Byte=Inhalt von $01
Hoéherwertiges Byte = Inhalt von $02
Y-Register = $00

Die tatsachliche Adresse ist also $1E45 + Y = $1E45.
Dieser Modus enthélt-in der Tat ein indirektes Prinzip, auch wenn dies zunachst nur

schwer zu verstehen ist.

MASCHINENSPRACHE 221



INDIZIERT INDIREKT

Hierbei kann nur das X-Register als Index benutzt werden. Hierbei gilt das gleiche
wie bei der indirekten Indizierung, auBer daB hierbei die Zero-Page-Adresse des
Zeigers indiziert wird und nicht die tatsachliche Basisadresse. Aus diesem Grund ist
die tatsachliche Basisadresse auch wirklich diese Adresse, da der Index bereits fir
die indirekte Indizierung benutzt wurde. Die indizierte indirekte Adressierung wiirde
oft benutzt, wenn sich eine Tabelle mit indirekten Zeigern auf der Zero-Page
befindet und das X-Register dann den zu benutzenden indirekten Zeiger angeben
wdrde.

BEISPIEL:

Nehmen wir an, Adresse $02 enthalt $45 und Adresse $03 $10. Wird die Anwei-
sung zum Laden des Akkumulators im indiziert indirekten Betrieb ausgefihrt und ist
die angegebene Zero-Page-Adresse $02, dann lautet die tatséchliche Adresse:

Niederwertiges Byte= Inhalt von ($02 + X)
Hoherwertiges Byte = Inhalt von ($03 + X)
X-Register = $00

Der tatsachliche Zeiger zeigt daher auf = $02 + X = $02.

Die tatsachliche Adresse ist daher die indirekte Adresse in $02, also $1045.

Das Prinzip wird schon durch die Bezeichnung dieses Modus beschrieben, auch
wenn dies zunachst nur schwer zu verstehen ist. Wir wollen das Problem von einer
anderen Seite betrachten:

LDA #$00 — load low order actual base address
STA $06 — set the low byte of the indirect address
LDA #$16 — load high order indirect address

STA $07 — set the high byte of the indirect address
LDX #$05 — set the indirect index (X)

LDA ($01,X) — load indirectly indexed by X

Anmerkung: Von diesen beiden indirekten Adressierarten wird am haufigsten die erste (indirekt
indiziert) benutzt.

222 MASCHINENSPRACHE




VERZWEIGUNGEN UND UBERPRUFUNGEN

Ein weiteres wichtiges Prinzip der Maschinensprache ist die Moglichkeit, bestimmte
Bedingungen zu uberprifen und zu erkennen. Dies entspricht der Struktur “IF . ..
THEN, IF ... GOTO" in CBM-BASIC.

Die verschiedenen “flags” im Statusregister werden durch die Anweisungen unter-
schiedlich beeinfluBt. Ein Flag wird z. B. gesetzt, wenn eine Anweisung als Ergebnis
eine Null hat und wird geldscht, wenn das Ergebnis ungleich nullist. Die Anweisung

LDA #$00

fihrt zum Setzen eines “Nullergebnis “-Flags, da durch die Anweisung eine Null in
den Akkumulator geladen wird.

Es gibt eine Gruppe von Anweisungen, durch die es bei bestimmten Bedingungen
zu einer Verzweigung zu einem anderen Programmteil kommt. Eine Verzweigungs-
anweisung ist z. B. BEQ (Verzweigung, wenn das Ergebnis gleich 0). Eine Verzwei-
gung erfolgt, wenn die Bedingung erfillt ist. Ist die Bedingung nicht erflllt, wird das
Programm mit der nachsten Anweisung fortgesetzt. Es erfolgt keine Verzweigung
durch das Ergebnis der vorherigen Anweisung(en), sondern eine interne Uberpri-
fung des Statusregisters. Wie bereits erwédhnt, befindet sich im Statusregister das
“Nullergebnis “-Flag. Durch die BEQ-Anweisung erfolgt eine Verzweigung, wenn
dieses Flag (Z) gesetzt ist. FUr jede Verzweigungsanweisung gibt es ein entspre-
chendes Gegenstlick. Das Gegenstiick fur BEQ lautet z. B. BNE (Verzweigung,
wenn das Ergebnis ungleich 0, d. h. wenn Z nicht gesetzt ist).

Die Indexregister haben eine Anzahl zugehdriger Anweisungen, durch die ihre
Inhalte gedndert werden. Durch die Anweisung INX wird z. B. das X-Indexregister
inkrementiert. Enthalt das X-Indexregister vor der Inkrementierung $FF (max.
Anzahl flr das X-Register), dann erfolgt ein Sprung zuriick zu 0. Soll ein Programm
solange fortgesetzt werden, bis die Inkrementierung des X-Index erfolgte, so kann
flr diese “Schleife” also die BNE-Anweisung benutzt werden.

Das Gegenstilick zu INX ist DEX, also das Dekrement des X-Indexregisters. Ist das
X-Indexregister 0, dann erfolgt durch DEX ein Sprung zu $FF. Entsprechend gelten
INY und DEY fir das Y-Indexregister.

Wenn das Programm nun aber nicht warten soll, bis X oder Y=0 sind (bzw. nicht 0
sind)? Hierfir gibt es die Vergleichsanweisungen CPX und CPY, mit denen der
Maschinensprache-Programmierer die Indexregister mit bestimmten Werten und
sogar den Inhalten von Speicherplatzen Uberprifen kann. Wollen Sie z. B. sehen,
ob das X-Register $40 enthélt, benutzen Sie folgende Anweisung:

MASCHINENSPRACHE 223



CPX #$40 — Vergleiche X mit “WERT" $40.

BEQ — Verzweigung zu einer anderen Programmstelle, wenn
(andere diese Bedingung erfullt ist.

Programm-

stelle)

Die Vergleichs- und Verzweigungsanweisungen spielen eine wichtige Rolle bei
jedem Maschinensprache-Programm.

Beim MONITOR 64 ist der in einer Verzweigungsanweisung angegebene Operand
die Adresse des Programmteils, zu dem gegebenenfalls eine Verzweigung erfolgt.
Der Operand gibt jedoch lediglich die Sprungweite an, durch die man von der
derzeitigen Programmposition zur angegebenen Adresse gelangt. Die Sprungweite
kann maximal 1 Byte umfassen, so daB der mdgliche Bereich fir eine Verzwei-
gungsanweisung beschrankt ist. Eine Verzweigung kann 127 Bytes vorwarts bzw.
128 rickwarts erfolgen.

Anmerkung: Hieraus ergibt sich ein Gesamtbereich von 255 Bytes, der natiirlich dem max. Wertebe-
reich eines Bytes entspricht.

MONITOR 64 zeigt Ihnen, wenn Sie bei der Verzweigung den Bereich iberschrei-
ten. Er kann diese Anweisung namlich nicht assemblieren. Darliber brauchen Sie
sich jedoch jetzt keine Sorgen zu machen, denn mit solchen Verzweigungen
werden Sie sich vorldufig noch nicht beschéftigen. Die Verzweigung ist eine
“schnelle® Anweisung der Maschinensprache, da die Verschiebung gegen eine
Absolutadresse erfolgt. MONITOR 64 ermdglicht die Eingabe einer Absolutadresse
und berechnet dann die korrekte Verschiebung. Dies ist nur einer von vielen
Vorteilen des Arbeitens mit einem Assembler.

Anmerkung: Es kann nicht jede einzelne Verzweigungsanweisung behandelt werden. Beziglich
weiterer Einzelheiten siehe Literaturverzeichnis in Anhang F.

UNTERPROGRAMME

In Maschinensprache kdnnen Sie (genau wie beim Arbeiten mit BASIC) Unterpro-
gramme aufrufen. Die entsprechende Anweisung lautet JSR (Sprung zum Unter-
programm), gefolgt von der angegebenen Absolutadresse.

Das Betriebssystem enthalt ein Maschinensprache-Unterprogramm, durch das ein
Zeichen auf dem Bildschirm angezeigt wird. Der CBM-ASCII-Code des Zeichens
muB vor dem Aufruf im Akkumulator enthalten sein. Die Adresse dieses Unterpro-
gramms lautet $FFD2.

224 MASCHINENSPRACHE



Um “HI“ auf dem Bildschirm anzuzeigen, ist folgendes Programm nétig:

.A 1400 LDA #%48 — Laden des CBM-ASCII-Codes von “H".

.A 1402 JSR $FFD2 — Anzeigen.

A 1405 LDA #$49 — Laden des CBM-ASCII-Codes von “I*.

.A 1407 JSR $FFD2 — Dieses auch anzeigen.

.A 140A LDA #$0D — Eine Zeilenschaltung anzeigen.

.A 140C JSR $FFD2

.A 140F BRK — Ruckkehr zu MONITOR 64.

.G 1400 — Anzeige von “HI* und Ruckkehr zu
MONITOR 64.

Dieses Programm zum Anzeigen eines Zeichens ist Teil der KERNAL-Sprungta-
belle. JMP entspricht der BASIC-Anweisung GOTO. Hierbei erfolgt ein Sprung zur
angegebenen Absolutadresse. Der KERNAL besteht aus einer langen Liste von
Standard-Unterprogrammen, Uber die sédmtliche Ein- und Ausgaben beim COMMO-
DORE 64 gesteuert werden. Jede Eingabe in KERNAL springt zu einem Unterpro-
gramm im Betriebssystem. Diese “Sprungtabelle” liegt zwischen den Speicherpléat-
zen $FF84 und $FFF5 im Betriebssystem. Eine genaue Erklarung finden Sie im
Abschnitt “KERNAL*“ dieses Handbuchs. Um zu zeigen, wie einfach und leistungs-
stark der KERNAL ist, wollen wir hier jedoch einige Programmbeispiele behandeln.
Die soeben gelernten Methoden wollen wir nun in einem anderen Programm
benutzen. Dies erleichtert Ihnen, die Anweisungen im Zusammenhang zu sehen:
Uber dieses Programm wird das Alphabet mit Hilfe einer KERNAL-Routine ange-
zeigt. Die einzige neue Anweisung lautet TXA (Ubertragung vom X-Register zum
Akkumulator).

.A 1400 LDX #$41 X = CBM-ASCII von “A*.

A 1402 TXA - A=X

.A 1403 JSR $FFD2 — Zeichen anzeigen.

A 1406 INX — Zahlung des nichtadressierbaren
Hilfsspeichers.

.A 1407 CPX #$5B — Haben wir “Z* uberschritten?

.A 1409 BNE $1402 — Nein, zurlickgehen und fortsetzen.

.A 140B BRK — Ja, Ruckkehr zu MONITOR 64.

MASCHINENSPRACHE 225



Damit der COMMODORE 64 das Alphabet anzeigt, geben Sie folgenden Befehl ein:
.G 1400

Die Kommentare neben dem Programm erklédren Programmablauf und Logik. Ein
Programm sollten Sie zun&chst auf Papier schreiben und danach in mdglichst
kleinen Teilen ausprobieren.

HINWEISE FUR DEN ANFANGER

Maschinensprache erlernt man am besten, indem man sich Maschinensprache-
Programme von anderen anschaut. Solche Programme werden sténdig in Zeitun-
gen und Zeitschriften verdffentlicht. Beschaftigen Sie sich mit dem Programm, auch
wenn dieses sich auf einen anderen Computer bezieht, der mit dem Mikroprozessor
6510 (oder 6502) arbeitet. Vergewissern Sie sich, ob Sie den Code verstehen. Dies
erfordert Ausdauer, besonders wenn es sich um eine lhnen noch nicht bekannte
Technik handelt. Dies kann sich als duBerst miihsam erweisen, bei ausreichender
Geduld gehen Sie doch als Sieger hervor.

Nachdem Sie andere Maschinensprache-Programme angesehen haben, MUSSEN
Sie unbedingt eigene schreiben. Hierbei kann es sich um Dienstprogramme fur Ihr
BASIC-Programm oder um ein reines Maschinensprache-Programm handein.

Sie sollten auch die entweder in dem Computer oder in einem Programm verfligba-
ren Hilfsmittel benutzen, die Ihnen beim Schreiben, Aufbereiten sowie Uberprifen
von Maschinensprache-Programmen helfen. Als Beispiel dient hier der KERNAL,
der Ihnen die Tastenabfrage, Textanzeige, Steuerung von Peripherie-Geréten wie
z. B. Diskettenstation, Drucker, Modem usw., Speicherverwaltung und Bildschirm-
steuerung ermoglicht. Der KERNAL ist duBerst leistungsstark, und seine Benutzung
kann daher mit Nachdruck empfohlen werden (siehe “KERNAL" Seite 264).

Vorteile der Maschinensprache beim Programm-Schreiben:

1. Geschwindigkeit — Maschinensprache ist hundert- und manchmal auch tau-
sendmal schneller als z. B. BASIC.

2. Sicherheit — Ein Maschinensprache-Programm ist sozusagen “idiotensicher®,
d. h. der Benutzer kann nur das ausflhren, was das Programm erlaubt. Bei
BASIC kann der Benutzer den BASIC-Interpreter z. B. dadurch “aussteigen
lassen*, daB er eine 0 eingibt. Das kann u. U. zu folgender Anzeige fuhren:

226 MASCHINENSPRACHE



?DIVISION BY ZERO ERROR IN LINE 830

READY.
|

Der Computer kann also nur dann voll genutzt werden, wenn man Maschinenspra-
che-Programme benutzt.

VORBEREITUNGEN FUR EINE GROSSE AUFGABE

Wenn man eine groBe Aufgabe in Maschinensprache vorbereitet, so wurden meist
schon eine Menge Dinge unbewuBt durchdacht. Sie Uberlegen, wie bestimmte
Vorgénge in Maschinensprache ausgefihrt werden. Ganz zu Beginn sollten Sie das
Programm zunachst auf ein Blatt Papier schreiben. Benutzen Sie Blockschaltbilder
des Speichers, Funktionsmodule des erforderlichen Codes sowie einen Programm-
ablauf.

Nehmen wir an, Sie wollen ein Roulette-Spiel in Maschinensprache schreiben. Dies
kdnnte wie folgt entworfen werden:

Titel anzeigen.

Fragen, ob der Spieler Anleitungen braucht.

JA — anzeigen — geh zum Start.

NEIN — geh zum Start.

Beginn der Initialisierung.

HAUPTanzeige, Roulette-Tisch.

Wetteinsatze annehmen.

Rad drehen.

Rad verlangsamen und anhalten.

Wetteinsatze uberprifen und Ergebnis feststellen.
Spieler informieren.

Hat der Spieler noch Geld?

JA — Kehr zur Hauptanzeige zuruck.

NEIN — Spieler informieren und Rickkehr zum Start.

Dies ist der Hauptentwurf. Diese einzelnen Bausteine kdnnen dann noch weiter
unterteilt werden. Ein groBes Problem wird also in immer kleinere Teile unterteilt.
Auf diese Weise kdnnen Sie sich auch an zunéchst unlésbar erscheinende Pro-
bleme heranwagen.

Hier hilft jedoch nur eines: Uben, (ben, (iben.

MASCHINENSPRACHE 227



ANWEISUNGSSATZ VOM MIKROPROZESSOR

ADC Mit Ubertrag addieren
AND Logisches UND
ASL Verschiebung um ein Bit nach links

BCC Verzweigen bei geloschtem Ubertrag
BCS \Verzweigen bei gesetztem Ubertrag
BEQ \Verzweigen falls Ergebnis Null

BIT  Speicherbits testen

BMI  Verzweigen falls Ergebnis negativ

BNE Verzweigen falls Ergebnis ungleich Null
BPL Verzweigen falls Ergebnis positiv

BRK Unterbrechung

BVC Verzweigen falls kein Uberlauf

BVS Verzweigen bei Uberlauf

CLC Loschen des Ubertrag-Flags

CLD Loéschen des Dezimal-Modus

CLI Loschen des Interrupt-Disable-Bits

CLV  Loschen des Uberlauf-Flags

CMP Vergleich von Speicher und Akkumulator
CPX Vergleich von Speicher und Register X
CPY  \Vergleich von Speicher und Register Y

DEC Speicherdekrementierung um 1
DEX Dekrementierung von Register X um 1
DEY Dekrementierung von Register Y um 1

EOR “Exklusiv-oder“-Vergleich von Speicher und
Akkumulator

INC  Speicherinkrementierung um 1
INX Inkrementierung von Register X um 1
INY Inkrementierung von Register Y um 1

JMP  Sprung zu neuem Speicherplatz
JSR  Sprung zu Unterprogramm

228 MASCHINENSPRACHE



MCS6510 — ALPHABETISCHE REIHENFOLGE

LDA
LDX
LDY
LSR

NOP
ORA

PHA
PHP
PLA
PLP

ROL
ROR

RTI
RTS

SBC

SEC
SED
SEI

STA
STX
STY

TAX
TAY
TSX
TXA
TXS
TYA

Speicherubertragung zum Akkumulator
Speicheribertragung zu Register X
Speicherlbertragung zu Register Y
Verschiebung um 1 Bit nach rechts

Keine Operation

ODER-Verknupfung von Speicher und Akkumulator

Speicherung des Akkumulators im Stapelregister

Speicherung des Prozessorstatus im Stapel
Akkumulator vom Stapel holen
Prozessorstatus vom Stapel holen

Rotiere um 1 Bit nach links (Speicher oder
Akkumulator)

Rotiere um 1 Bit nach rechts (Speicher oder
Akkumulator)

Ruickkehr von Programmunterbrechung
Ruckkehr vom Unterprogramm

Speicher mit Ubertrag vom Akkumulator
subtrahieren

Ubertragungsflag setzen
Dezimalmodus einschalten
Unterbrechungsmaske setzen
Akkumulator in Speicher ablegen
Register X in Speicher ablegen
Register Y in Speicher ablegen

Akkumulator abspeichern in Register X
Akkumulator abspeichern in Register Y
Stapelzeiger S in Register X Gbertragen
Ubertragung von Register X zum Akkumulator
Ubertragung von Register X zum Stapelzeiger
Ubertragung von Register Y zum Akkumulator

MASCHINENSPRACHE

229



Nachfolgende Angaben beziehen sich auf die folgende Zusammenfassung:

Akkumulator

Indexregister

Speicher
Prozessorstatus-Register
Stapelzeiger

Wechsel

Kein Wechsel

Addieren

Logisches UND

Subtrahieren

Logisches ausschlieBendes ODER
Ubertragung vom Stapel
Ubertragung zum Stapel
Ubertragung zu

Ubertragung von

Logisches ODER

Programmzahler

Programmzahler, héherwertiges Byte
Programmzahler, niederwertiges Byte
OPERAND

Unmittelbare Adressierung

Anmerkung: Am Anfang jeder Tabelle steht in Klammern eine Referenznummer
(Ref: XX), die das jeweilige Kapitel im “Programmierhandbuch zum MOS 650 2*

angibt.

230

MASCHINENSPRACHE



ADC Mit Ubertrag addieren ADC
Ablauf: A+ M+ C—A,C NzC Il DYV
(Ref: 2.2.1) A
Eelinssiain Assembler- OP- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
unmittelbar ADC # Oper 69 2 2
Zero-Page ADC Oper 65 2 3
Zero-Page, X ADC Oper, X 75 2 4
Absolut ADC Oper 6D 3 4
Absolut, X ADC Oper, X 7D 3 4*
Absolut, Y ADC Oper, Y 79 3 4*
(Indirekt, X) ADC (Oper, X) 61 2 6
(Indirekt), Y ADC (Oper), Y 71 2 5*
* 1 addieren, wenn Seitengrenze Uberschritten wird.
AND Logisches UND AND
Logisches UND zum Akkumulator
Ablauf: AAM— A NzC 1 DYV
(Ref: 2.2.3.0) AR
P Assembler- OP- Anzahl der{Anzahl der
Sprachenformat Code Bytes Zyklen
unmittelbar AND # Oper 29 2 2
Zero-Page AND Oper 25 2 3
Zero-Page, X AND Oper, X 35 2 4
Absolut AND Oper 2D 3 4
Absolut, X AND Oper, X 3D 3 4*
Absolut, Y AND Oper, Y 39 3 4*
(Indirekt, X) AND (Oper, X) 21 2 6
(Indirekt), Y AND (Oper), Y 31 2 5

* 1 addieren, wenn Seitengrenze uberschritten wird.

MASCHINENSPRACHE 231



ASL Verschiebung nach links um 1 Bit ASL

Ablauf: C —[7]6]5]4[3]2]1][0] <@ NzCl1 DYV
(Ref: 10.2) AR
Adressierart Assembler- OP- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Akkumulator ASL A gA 1 2
Zero-Page ASL Oper @6 2 5
Zero-Page, X ASL Oper, X 16 2 6
Absolut ASL Oper gE 3 6
Absolut, X ASL Oper, X 1E 3 7
BCC Verzweigung bei geléschtem Ubertrag BCC
Ablauf: Verzweigung bei C = @ NZC I DV
(Ref: 4113 T
Y — Assembler- OP-  |Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Relativ BCC Oper 9 2 2*

* 1 addieren bei Verzweigung auf der gleichen Seite.
* 2 addieren bei Verzweigung auf unterschiedlichen Seiten.

BCS Verzweigung bei gesetztem Ubertrag BCS
Ablauf: Verzweigung bei C = 1 NZC I DV
(Ref: 4114 T T 7 7
P Assembler- OP- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Relativ BCS Oper B@ 2 2*

* 1 addieren bei Verzweigung auf der gleichen Seite.
* 2 addieren, wenn Verzweigung auf der nachsten Seite auftritt.

232 MASCHINENSPRACHE



BEQ

Verzweigung falls Ergebnis Null
Ablauf: Verzweigung bei Z = 1

(Ref: 4.1.1.5)
PrTR— Assembler- OP- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Relativ BEQ Oper F@ 2 2%
* 1 addieren, wenn Verzweigung auf der gleichen Seite.
* 2 addieren, bei Verzweigung zur nachsten Seite.
BIT Speicherbits testen BIT
Ablauf: AAM, M;—> N, Mg— V
Bit 6 und 7 werden zum Statusregister lbertragen. Ist das NZC I DYV
Ergebnis von A A M null, dannistZ = 1, andernfallsistZ=@. M; / — — — M
(Ref: 4.2.1.1)
Y Assembler- OP-  |Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Zero-Page BIT Oper 24 2 3
Absolut BIT Oper 2C 3 4
BMI Verzweigung bei Minusresultat BMI
Ablauf: Verzweigung bei N = 1 NZC I DV
(Ref:4.11.1y T T 7
AeiPasatunari Assembler- OP-  |Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Relativ BMI Oper 30 2 2"

* 1 addieren, bei Verzweigung auf der gleichen Seite.
* 2 addieren, bei Verzweigung auf verschiedenen Seiten.

MASCHINENSPRACHE 233



BNE Verzweigung falls Ergebnis ungleich Null BNE
Ablauf: Verzweigung beiZ =0 NZC | DV
(Ref: 4116) 7 T 7
Adrenatons Assembler- OP-  |Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Relativ BNE Oper D@ 2 2%
* 1 addieren, bei Verzweigung auf der gleichen Seite.
* 2 addieren, bei Verzweigung auf verschiedenen Seiten.
BPL Verzweigung bei Plusresultat BPL
Ablauf: Verzweigung bei N = @ NzZC I DV
(Ref: 4112 =~ — — 7 7 7
P - Assembler- OP- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Relativ BPL Oper 10 2 2%
* 1 addieren, bei Verzweigung auf der gleichen Seite.
* 2 addieren, bei Verzweigung auf verschiedenen Seiten.
BRK Unterbrechung BRK
Ablauf: Abbruch PC +2 | P | NzZC I DV
(Ref: 9.11) - -t --
PR — Assembler- or- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Impliziert BRK 0]} 1 7

1. Ein BRK-Befehl kann nicht durch Setzen von | maskiert werden.

234 MASCHINENSPRACHE



BVC Verzweigung falls kein Uberlauf BVC

Ablauf: Verzweigung bei V = 0 NZCI DV
(Ref: 4118 7 7 7 7
PR ——— Assembler- OP-  |Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Relativ BVC Oper 50 2 2%

* 1 addieren, bei Verzweigung auf der gleichen Seite.
* 2 addieren, bei Verzweigung auf unterschiedlichen Seiten.

BVS Verzweigung bei Uberlauf BVS
Ablauf: Verzweigung bei V = 1 NZC I DV
(Ref:4117) T T T T 7
; Assembler- OP- Anzahl der|Anzahl der
Adressierart
Sprachenformat Code Bytes Zyklen
Relativ BVS Oper 70 2 2%

* 1 addieren, bei Verzweigung auf der gleichen Seite.
* 2 addieren, bei Verzweigung auf unterschiedlichen Seiten.

CLC Léschen des Ubertrag-Flags CLC
Ablauf: @ — C NzCI DV
(Ref: 3.0.2) -~ f---
Btesisieary Assembler- OP- Anzahl der{Anzahl der
Sprachenformat Code Bytes Zyklen
Impliziert CLC 18 1 2

MASCHINENSPRACHE 235




CLD Léschen des Dezimal-Modus CLD
Ablauf: @ — D NzZC I DV
(Ref: 3.3.2) -0 -
Adressierart Assembler- OP- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Impliziert CLD D8 1 2
CLl Léschen des Interrupt-Disable-Bits CLI
Ablauf: @ — | NzZC I DV
(Ref: 3.2.2) i A
Adressierart Assembler- OP- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Impliziert CLI 58 1 2
CLV Léschen des Uberlauf-Flags CLV
Ablauf: @ —V NZC I DV
(Ref:36.1) 7 7 g
P — Assembler- OP- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Impliziert CLv B8 1 2

236 MASCHINENSPRACHE




CMP Vergleichen von Speicher und Akkumulator CMP
Ablauf: A—M NZC I DV
(Ref: 4.2.1) AR A
Adressierart Assembler- OP- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Unmittelbar CMP # Oper C9 2 2
Zero-Page CMP Oper C5 2 <)
Zero-Page, X CMP Oper, X D5 2 4
Absolut CMP Oper CD 3 4
Absolut, X CMP Oper, X DD 3 4*
Absolut, Y CMP Oper, Y D9 3 4*
(Indirekt, X) CMP (Oper, X) C1 2 6
(Indirekt), Y CMP (Oper), Y D1 2 Bt
* 1 addieren, wenn Seite tberschritten wird.
CPX Vergleich von Speicher und Register X CPX
Ablauf: X —M NZC I DV
(Ref: 7.8) SRR
Adressierart Assembler- OP- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Unmittelbar CPX #Oper EQ 2 2
Zero-Page CPX Oper E4 2 3
Absolut CPX Oper EC 3 4
CPY Vergleich von Speicher und Register Y CPY
Ablauf: Y =M NZC I DV
(Ref: 7.9) A e
e — Assembler- OP- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Unmittelbar CPY # Oper (0] 2 2
Zero-Page CPY Oper C4 2 3
Absolut CPY Oper CcC 3 4

MASCHINENSPRACHE 237



DEC Speicherdekrementierung um 1 DEC
Ablauf: M= 1—>M NzZC I DV
(Ref: 10.7) s
R Car— Assembler- OP-  |Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Zero-Page DEC Oper C6 2 5
Zero-Page, X DEC Oper, X D6 2 6
Absolut DEC Oper CE 3 3
Absolut, X DEC Oper, X DE 3 7
DEX Dekrementierung von Register X um 1 DEX
Ablauf: X—1—X NZC I DV
(Ref: 7.6) S
Bipessinean Assembler- OP- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Impliziert DEX CA 1 2
DEY Dekrementierung von Register Y um 1 DEY
Ablauf: Y-1—Y NzZC I DV
(Ref: 7.7) AR
Adressierart Assembler- OP-  |Anzahl der[Anzahl der
Sprachenformat Code Bytes Zyklen
Impliziert DEY 88 1 2

238 MASCHINENSPRACHE



EOR “Exklusiv-oder“-Vergleich von Speicher und Akkumulator - EOR
Ablauf: A¥M— A NZC 1l DYV
(Ref: 2.2.3.2) AR
Adressierart Assembler- OP-  |Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Unmittelbar EOR # Oper 49 2 2
Zero-Page EOR Oper 45 2 3
Zero-Page, X EOR Oper, X 55 2 4
Absolut EOR Oper 4D 3 4
Absolut, X EOR Oper, X 5D 3 4*
Absolut, Y EOR Oper, Y 59 3 4*
(Indirekt, X) EOR (Oper, X) 41 2 6
(Indirekt), Y EOR (Oper), Y 51 2 5*
* 1 addieren, wenn Seite iberschritten wird.
INC Speicherinkrementierung um 1 |NC
Ablauf: M +1—>M NzC 1l DYV
(Ref: 10.6) s oo
Py — Assembler- OP-  |Anzahl der{Anzahl der
Sprachenformat Code Bytes Zyklen
Zero-Page INC Oper E6 2 5
Zero-Page, X INC Oper, X F6 2 6
Absolut INC Oper EE 3 6
Absolut, X INC Oper, X FE 3 7
INX Inkrementierung von Register X um 1 INX
Ablauf: X + 1— X NzZC 1l DYV
(Ref: 7.4) A
Adressierart Assembler- OP- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Impliziert INX E8 1 2

MASCHINENSPRACHE 239



INY Inkrementierung von Register Y um 1 INY

Ablauf: Y + 1—Y NZC Il DYV
(Ref: 7.5) S
Adfessierart Assembler- OP-  |Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Impliziert INY C8 1 2
JMP Sprung zu neuem Speicherplatz JMP
Ablauf: (PC + 1) — PCL NZC Il DV
(PC+2)—PCH - = - - -
(Ref: 4.0.2; Ref: 9.8.1)
P — Assembler- OP- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Absolut JMP Oper 4C 3 3
Indirekt JMP (Oper) 6C 3 5
JSR Sprung zu neuer Speicherriickkehradresse JSR
Ablauf: PC + 2 |, (PC + 1) = PCL NZC I DV
(PC+2)—»PCH - = = - - -
(Ref: 8.1)
Adressierart Assembler- OP-  |Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Absolut JSR Oper 20 3 6

240 MASCHINENSPRACHE




LDA Speicheriibertragung zum Akkumulator LDA
Ablauf: M— A NZC I DV
(Ref: 2.1.1) AR
P — Assembler- OP-  |Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Unmittelbar LDA # Oper A9 2 2
Zero-Page LDA Oper A5 2 3
Zero-Page, X LDA Oper, X B5 2 4
Absolut LDA Oper AD 3 4
Absolut, X LDA Oper, X BD 3 4*
Absolut, Y LDA Oper, Y B9 3 4*
(Indirekt, X) LDA (Oper, X) Al 2 6
(Indirekt), Y LDA (Oper), Y B1 2 By
* 1 addieren, wenn Seite (iberschritten wird.
LDX Speicheribertragung zu Register X LDX
Ablauf: M— X NzZC I DV
(Ref: 7.0) R
Bl Assembler- OP- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Unmittelbar LDX # Oper A2 2 2
Zero-Page LDX Oper A6 2 3
Zero-Page, Y LDX Oper, Y B6 2 4
Absolut LDX Oper AE 3 4
Absolut, Y LDX Oper, Y BE 3 4*

* 1 addieren, wenn Seite Uberschritten wird.

MASCHINENSPRACHE 241



LDY Speicheribertragung zu Register Y LDY

Ablauf: M —'Y NzZC I DV

(Ref: 7.1) A

Y — Assembler- OP- Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Unmittelbar LDY  # Oper A 2 2
Zero-Page LDY Oper A4 2 3
Zero-Page, X LDY Oper, X B4 2 4
Absolut LDY Oper AC 3 4
Absolut, X LDY Oper, X BC 3 4*

* 1 addieren, wenn Seite (iberschritten wird.

LSR Verschiebung um 1 Bit nach rechts LSR
(Speicher oder Akkumulator)

Ablaut: @ — [7]6]5[4[3]2[1]0]—C NZC 1DV
(Ref: 10.1) 6V ---
P r— Assembler- OP- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Akkumulator LSR A 4A 1 2
Zero-Page LSR Oper 46 2 5
Zero-Page, X LSR Oper, X 56 2 6
Absolut LSR Oper 4E 3 6
Absolut, X LSR Oper, X 5E 3 7
NOP Keine Operation NOP
Ablauf: Keine Operation (2 Zyklen) NZC | DV
diladeire Assembler- OP-  |Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Impliziert NOP EA 1 2

242 MASCHINENSPRACHE



ORA ODER-Verkniipfung von Speicher und Akkumulator ORA

Ablauf: AYM— A NZC I DV

(Ref: 2.2.3.1) AR

Adressierart Assembler- OP- Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Unmittelbar ORA # Oper 79 2 2
Zero-Page ORA Oper 5 2 3
Zero-Page, X ORA Oper, X 15 2 4
Absolut ORA Oper gD 3 4
Absolut, X ORA Oper, X 1D 3 4*
Absolut, Y . ORA Oper, Y 19 3 4*
(Indirekt, X) ORA (Oper, X) g1 2 6
(Indirekt), Y ORA (Oper), Y 11 2 5

* 1 addieren, wenn Seite Uberschritten wird.

PHA Speicherung des Akkumulators im Stapelregister PHA
Ablauf: A | NzZC I DV
(Ref: 85
N Assembler- OoP- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Impliziert PHA 48 1 3
PHP Speicherung des Prozessorstatus im Stapel PHP
Ablauf: P | NzC Il DV
(Ref:811) T T
P —_— Assembler- OP-  |Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Impliziert PHP 78 1 3

MASCHINENSPRACHE 243



PLA Akkumulator vom Stapel holen PLA

Ablauf: A 1 NzZC 1l DV
(Ref: 8.6) S s
YT — Assembler- OP-  |Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Impliziert PLA 68 1 4
PLP Prozessorstatus vom Stapel holen PLP
Ablauf: P 1 NzZC I DV
(Ref: 8.12) Vom Stapel
Aipasim Assembler- OP- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Impliziert PLP 28 1 4

ROL Rotiere um 1 Bit nach links (Speicher oder Akkumulator) ROL

+— M oder A NzC I DYV
Ablauf:
" L-[7Te[s 4 a2 ]o]/C] < S
(Ref: 10.3)
P Assembler- OP- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen

Akkumulator ROL A 2A 1 2
Zero-Page ROL Oper 26 2 5
Zero-Page, X ROL Oper, X 36 2 6
Absolut ROL Oper 2E 3 6
Absolut, X ROL Oper, X 3E 3 7

244 MASCHINENSPRACHE




ROR Rotiere um 1 Bit nach rechts (Speicher oder Akkumulator) ROR

NZzZC 1| DV
Ablauf: 7|6|5|4|3|2|1|m—| SV - - =

(Ref: 10.4)
P Assembler- OP-  |Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Akkumulator ROR A B6A 1 2
Zero-Page ROR Oper 66 2 5
Zero-Page, X ROR Oper, X 76 2 6
Absolut ROR Oper 6E 3 6
Absolut, X ROR Oper, X 7E 3 7
RTI Riickkehr von Programmunterbrechung RTI
Ablauf: P T PC 1 NZCI DV
(Ref: 9.6) Vom Stapel
P ——— Assembler- OP- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Impliziert RTI 40 1 6
RTS Rtickkehr vom Unterprogramm RTS
Ablauf: PC 1, PC + 1— PC NZC Il DV
(Ref:820 7 7 T 7 7
Acireesslerent Assembler- OP- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Impliziert RTS 60 1 6

MASCHINENSPRACHE 245




SBC Speicherung und Ubertragung vom Akkumulator subtrahieren

SBC

Ablauf: A=M—-C— A NZC | DV
Anmerkung: C = Ubertrag JJ VS - =Y
(Ref: 2.2.2)

P, Assembler- OP- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Unmittelbar SBC # Oper E9 2 2
Zero-Page SBC Oper E5 2 3
Zero-Page, X SBC Oper, X F5 2 4
Absolut SBC Oper ED 3 4
Absolut, X SBC Oper, X FD 3 4*
Absolut, Y SBC Oper, Y F9 3 4*
(Indirekt, X) SBC (Oper, X) E1 2 6
(Indirekt), Y SBC (Oper), Y F1 2 5%
* 1 addieren, wenn Seite Uberschritten wird.
Jbertragungsflag setzen
SEC Ub fl SEC
Ablauf: 1— C NZC I DV
(Ref: 3.0.1) ==bk==-=
. Assembler- OP- Anzahl der|Anzahl der
Adressierart
Sprachenformat Code Bytes Zyklen
Impliziert SEC 38 1 2
SED Dezimalmodus einschalten SED
Ablauf: 1— D NZC I DV
(Ref: 3.3.1) e
. Assembler- OP-  |Anzahl der|Anzahl der
Adressierart
Sprachenformat Code Bytes Zyklen
Impliziert SED F8 1 2

246 MASCHINENSPRACHE



SEl Unterbrechungsmaske setzen SE'
Ablauf: 1—1 NzZC Il DV
(Ref: 3.2.1) ===1 ==
PO S—-— Assembler- OP- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Impliziert SEI 78 1 2
STA Akkumulator in Speicher ablegen STA
Ablauf: A— M NzZC I DV
(Ref:21.2y T 77
. Assembler- OP- Anzahl der|Anzahl der
Adressierart
Sprachenformat Code Bytes Zyklen
Zero-Page STA Oper 85 2 3
Zero-Page, X STA Oper, X 95 2 4
Absolut STA Oper 8D 3 4
Absolut, X STA Oper, X 9D 3 5
Absolut, Y STA Oper, Y 99 3 5
(Indirekt, X) STA (Oper, X) 81 2 6
(Indirekt), Y STA (Opern), Y 91 2 6
STX Register X in Speicher ablegen STX
Ablauf: X— M NzZC I DV
(Ref:720 T T 77
P Assembler- OP- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Zero-Page STX Oper 86 2 3
Zero-Page, Y STX Oper, Y 96 2 4
Absolut STX Oper 8E 8 4

MASCHINENSPRACHE 247



STY

Register Y in Speicher ablegen

Ablauf: Y - M NZC I DV
(Ret:73 T~ T 7 T 7 7
Adressiarart Assembler- OP- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Zero-Page STY Oper 84 2 3
Zero-Page, X STY Oper, X 94 2 4
Absolut STY Oper 8C 3 4
TAX Akkumulator abspeichern in Register X TAX
Ablauf: A— X NZC | DV
(Ref: 7.11) S
Adressierart Assembler- OP-  |Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Impliziert TAX AA 1 2
TAY Akkumulator abspeichern in Register Y TAY
Ablauf: A=Y NZC I DV
(Ref: 7.13) R
Adressierart Assembler- OP- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Impliziert TAY A8 1 2

248 MASCHINENSPRACHE



TSX Stapelzeiger in Register X tibertragen TSX
Ablauf: S— X NZC | DV
(Ref: 8.9) L Bt
P — Assembler- OP- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Impliziert TSX BA 1 2
TXA Ubertragung von Register X zum Akkumulator TXA
Ablauf: X — A NZC I DYV
(Ref: 7.12) Vs m oo
Avivaseim Assembler- OP- Anzahl der{Anzahl der
Sprachenformat Code Bytes Zyklen
Impliziert TXA 8A 1 2
TXS Ubertragung von Register X zum Stapelzeiger TXS
Ablauf: X — S NZC I DV
(Ref:88 T T 77
P —— Assembler- OP- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Impliziert TXS 9A 1 2
TYA Ubertragung von Register Y zum Akkumulator TYA
Ablauf: Y — A NZC | DV
(Ref: 7.14) s m oo
P — Assembler- OP- Anzahl der|Anzahl der
Sprachenformat Code Bytes Zyklen
Impliziert TYA 98 1 2

MASCHINENSPRACHE

249




ANWEISUNGS-ADRESSIERARTEN UND ZUGEHORIGE

Akkumulator
Zero-Page, Y
Absolut, X
Absolut, Y
Impliziert
Relativ
(Indirekt, X)
(Indirekt), Y
Absolut Indirekt

ADC
AND
ASL . . . = = =
BCC . . . . . . . . . 2.
BCS . . . . . . . . . 2%,
BE@Q . . . . . . . . 2.
BIT S N
sBmi . . . . . . . . . 2.
BNE . . . . . oo 27
BPL . . . . . . . . . 27,
BRK . . . . . . <« . « . .
Bvec . . . . . . . . 2.
Bvs . . . . . . . . 2.
cLc . . . : .
CLD
CLI
CLv
CMP
CPX
CPY
DEC . . . 2 o g
DEX -. . . . .« W . 2
pey . . . . . . . . 2 . . .
EOR . 2 4* 4 . . 6 5
INC . . . s 4 = 2 »
IN\ . . . . . . . .2

INY . . . . . . . . 2 . . . .
M . . . . . 3 . . . . . . b

* Einen Zyklus addieren, wenn die Indizierung eine Seite Uberschreitet.
** Einen Zyklus bei Verzweigung addieren, einen weiteren addieren, wenn

| Unmittelbar

o & »| Zero-Page, X
e
*  *
[e)Ne)]
a1,
* Ok

o ww| Zero-Page
o~ | Absolut

N -
NhA D
* %

NN NN

vl 6 E

NN
awWwww-
(o) I A S

aw
SN
(o3

250 MASCHINENSPRACHE



AUSFUHRUNGSZEITEN (IN TAKTZYKLEN)

JSR
LDA
LDX
LDY
LSR
NOP
ORA
PHA
PHP
PLA
PLP
ROL
ROR
RTI
RTS
SBC
SEC
SED
SEI
STA
STX
STY
TAX
TAY
TSX
TXA
TXS
TYA

L x> 8
T 8888 x»>_. XZFE
2o 3535358 >% %S
SESSSR3333E 553
S99 8L EREEZ
6 . . .
2 3 4 . 4 4 4% 5*
2 3 . 4 4 . 4 .
. 2 3 4 4 4%
2 5 6 6 7 .
2 3 4 4 4% 4* 6 b5*
3
3
4
. .. L. 4
2 5 ©6 6 7
2 5 6 6 7 .
6
2 3 4 4 4% 4* 6 5*
. 2 .
2
. .. .2 .
3 4 . 4 5 5 6 6
3 . 4 4 . . .
3 4 4 .
2
2
2
2
2
2

die Verzweigung die Seitengrenze Uberschreitet.

MASCHINENSPRACHE 251



ulo}
g1

@2
@3
g4
@5
76
g7
78
79
oA
7B
gC
@D
gE
gF
10
11

12
13

14

15
16
17
18
19

1A
1B
1C
1D
1E
1F

252

BRK

ORA — (Indirekt, X)
Kinftige Erweiterung
Kinftige Erweiterung
Kinftige Erweiterung
ORA — Zero-Page
ASL — Zero-Page
Kiinftige Erweiterung
PHP

ORA — Unmittelbar
ASL — Akkumulator
Kinftige Erweiterung
Kiinftige Erweiterung
ORA — Absolut

ASL — Absolut
Kinftige Erweiterung
BPL

ORA — (Indirekt), Y
Kinftige Erweiterung
Kinftige Erweiterung
Kinftige Erweiterung
ORA — Zero-Page, X
ASL — Zero-Page, X
Kinftige Erweiterung
CLC

ORA — Absolut, Y
Kinftige Erweiterung
Kunftige Erweiterung
Kunftige Erweiterung
ORA — Absolut, X
ASL — Absolut, X

Kinftige Erweiterung

MASCHINENSPRACHE

20
21

22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
3¢
31

32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

JSR

AND (Indirekt, X)
Klnftige Erweiterung
Kunftige Erweiterung
BIT — Zero-Page
AND — Zero-Page
ROL — Zero-Page
Kinftige Erweiterung
PLP

AND — Unmittelbar
ROL — Akkumulator
Klnftige Erweiterung
BIT — Absolut

AND — Absolut

ROL — Absolut
Kinftige Erweiterung
BMI

AND — (Indirekt), Y
Kunftige Erweiterung
Kunftige Erweiterung
Kunftige Erweiterung
AND — Zero-Page, X
ROL — Zero-Page, X
Kinftige Erweiterung
SEC

AND — Absolut, Y
Kinftige Erweiterung
Kinftige Erweiterung
Klnftige Erweiterung
AND — Absolut, X
ROL — Absolut, X

Kinftige Erweiterung



49
41

42
43

44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51

52
53
54
55
56
57
58
59
5A
58
5C
5D
5E
5F

RTI

EOR — (Indirekt, X)
Kunftige Erweiterung
Knftige Erweiterung
Klinftige Erweiterung
EOR — Zero-Page
LSR — Zero-Page
Kiinftige Erweiterung
PHA

EOR — Unmittelbar
LSR — Akkumulator
Kinftige Erweiterung
JMP — Unmittelbar
EOR — Unmittelbar
LSR — Unmittelbar
Kinftige Erweiterung
BVC

EOR — (Indirekt), Y
Kunftige Erweiterung
Kunftige Erweiterung
Kunftige Erweiterung
EOR — Zero-Page, X
LSR — Zero-Page, X
Kinftige Erweiterung
CLl

EOR — Absolut, Y
Kinftige Erweiterung
Kinftige Erweiterung
Kinftige Erweiterung
EOR — Absolut, X
LSR — Absolut, X

Kinftige Erweiterung

60
61

62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71

72
73

74

75

76
77

78

79

7A
7B
7C
7D
7E
7F

RTS

ADC — (Indirekt, X)
Kinftige Erweiterung
Kunftige Erweiterung
Kunftige Erweiterung
ADC — Zero-Page
ROR — Zero-Page
Kinftige Erweiterung
PLA

ADC — Unmittelbar
ROR — Akkumulator
Kunftige Erweiterung
JMP — Indirekt

ADC — Absolut

ROR — Absolut
Kinftige Erweiterung
BVS

ADC — (Indirekt), Y
Kunftige Erweiterung
Kinftige Erweiterung
Kinftige Erweiterung
ADC — Zero-Page, X
ROR — Zero-Page, X
Kinftige Erweiterung
SEl

ADC — Absolut, Y
Kinftige Erweiterung
Kinftige Erweiterung
Kunftige Erweiterung
ADC — Absolut, X
ROR — Absolut, X
Kunftige Erweiterung

MASCHINENSPRACHE



80
81

82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F
99
91

92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F

254

Kinftige Erweiterung
STA — (Indirekt, X)
Kinftige Erweiterung
Kunftige Erweiterung
STY — Zero-Page
STA — Zero-Page
STX — Zero-Page
Kunftige Erweiterung
DEY

Kunftige Erweiterung
TXA

Kunftige Erweiterung
STY — Absolut

STA — Absolut

STX — Absolut
Kunftige Erweiterung
BCC

STA — (Indirekt), Y
Kunftige Erweiterung
Kunftige Erweiterung
STY — Zero-Page, X
STA — Zero-Page, X
STX — Zero-Page, Y
Kunftige Erweiterung
TYA

STA — Absolut, Y
TXS

Kunftige Erweiterung
Kinftige Erweiterung
STA — Absolut, X
Kinftige Erweiterung

Kinftige Erweiterung

MASCHINENSPRACHE

Ag
Al

A2
A3

A4
A5
A6
A7
A8
A9

AA
AB
AC
AD
AE
AF
BY
B1

B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF

LDY — Unmittelbar
LDA — (Indirekt, X)
LDX — Unmittelbar
Kinftige Erweiterung
LDY — Zero-Page
LDA — Zero-Page
LDX — Zero-Page
Kinftige Erweiterung
TAY

LDA — Unmittelbar
TAX

Kinftige Erweiterung
LDY — Unmittelbar
LDA — Unmittelbar
LDX — Unmittelbar
Kinftige Erweiterung
BCC

LDA — (Indirekt), Y
Kunftige Erweiterung
Kiinftige Erweiterung
LDY — Zero-Page, X
LDA — Zero-Page, X
LDX — Zero-Page, Y
Kunftige Erweiterung
CLv

LDA — Absolut, Y
TSX

Kinftige Erweiterung
LDY — Absolut, X
LDA — Absolut, X
LDX — Absolut, Y

Kinftige Erweiterung



co
C1

(072
C3
C4
C5
Cé
Cc7
C8
C9
CA
CB
CcC
CD
CE
CF
Dg
D1

D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF

CPY — Unmittelbar
CPM — (Indirekt, X)
Klnftige Erweiterung
Kunftige Erweiterung
CPY — Zero-Page
CMP — Zero-Page
DEC — Zero-Page
Kunftige Erweiterung
INY

CMP — Unmittelbar
DEX

Kinftige Erweiterung
CPY — Absolut
CMP — Absolut

DEC — Absolut
Kinftige Erweiterung
BNE
CMP — (Indirekt), Y
Kunftige Erweiterung
Kinftige Erweiterung
Kinftige Erweiterung
CMP — Zero-Page, X
DEC — Zero-Page, X
Klnftige Erweiterung
CLD

CMP — Absolut, Y
Kunftige Erweiterung
Kunftige Erweiterung
Kinftige Erweiterung
CMP — Absolut, X
DEC — Absolut, X

Kunftige Erweiterung

EQ
E1
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
Fo
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF

CPX — Unmittelbar
SBC — (Indirekt, X)
Kinftige Erweiterung
Kinftige Erweiterung
CPX — Zero-Page
SBC — Zero-Page
INC — Zero-Page
Kinftige Erweiterung
INX

SBC — Unmittelbar
NOP

Kinftige Erweiterung
CPX — Absolut

SBC — Absolut

INC — Absolut
Kunftige Erweiterung
BEQ

SBC — (Indirekt), Y
Kinftige Erweiterung
Kinftige Erweiterung
Kinftige Erweiterung
SBC — Zero-Page, X
INC — Zero-Page, X
Kinftige Erweiterung
SED

SBC — Absolut, Y
Kunftige Erweiterung
Kunftige Erweiterung
Kinftige Erweiterung
SBC — Absolut, X
INC — Absolut, X

Kinftige Erweiterung

MASCHINENSPRACHE

255



SPEICHERVERWALTUNG BEIM COMMODORE 64

Der COMMODORE 64 besitzt 64K-Byte RAM. Darlber hinaus hat er 20K-Byte
ROM, in dem BASIC, Betriebssystem und Standardzeichensatz gespeichert sind.
AuBerdem hat er Zugriff auf Ein-/Ausgabevorrichtungen und benutzt dazu 4K-
Speicherkapazitat. Wie ist dies alles mit einem Computer mit 16-Bit-AdreB-Bus
maoglich, der normalerweise nur 64K adressieren kann?

Das Geheimnis liegt im 6510-Prozessor-Chip selbst. Der Chip hat ein Ein-/
Ausgabeport. Uber diesen Port wird gesteuert, ob RAM, ROM oder Ein-/Ausgabe
in bestimmten Speicherabschnitten erscheint. Er dient auch der Steuerung der
Datasette™, so daB nur die geeigneten Bits veréndert werden dlrfen.

Der Ein-/Ausgabeport des 6510 belegt Adresse 1. Das Datenrichtungsregister fur
diesen Port liegt im Speicherplatz 0. Der Port wird genau wie andere Ein-/
Ausgabeports des Systems gesteuert. Das Datenrichtungsregister steuert, ob ein
bestimmtes Bit eine Eingabe oder eine Ausgabe ist. Die tatséchliche Datenlbertra-
gung erfolgt Gber den Port selbst.

Die Positionen im Kontrollregister des 6510 sind wie folgt definiert:

NAME BIT RICHTUNG BESCHREIBUNG
LORAM 0 AUSGABE Steuerung: RAM/ROM von
$A000—$BFFF (BASIC)
HIRAM 1 AUSGABE Steuerung: RAM/ROM von
$E000—$FFF (KERNAL)
CHAREN 2 AUSGABE Steuerung: Ein-/Ausgabe/
ROM von $D000—$DFFF
3 AUSGABE Kassettenschreibleitung
4 EINGABE Kassettenschalter
5 AUSGABE Kassettenmotorsteuerung

Der richtige Wert fir das Datenrichtungsregister lautet wie folgt:

BITS 56 4 3 2 1 0
10 1 1 1 1

(wobei 1 flir Ausgabe und O fiir Eingabe steht).

256 MASCHINENSPRACHE



Das entspricht dem Dezimalwert 47. Der COMMODORE 64 setzt automatisch das
Datenrichtungsregister auf diesen Wert.

Die Steuerbits (Steuerleitungen) fihren im allgemeinen die in ihrer Beschreibung
angegebenen Funktionen aus. Fir einen bestimmten Speicheraufbau werden die
Steuerbits jedoch gelegentlich miteinander kombiniert.

LORAM (Bit 0) ist ein Steuerbit, mit dem der 8K-Byte-BASIC-ROM in den und aus
dem Mikroprozessor-AdreB-Bereich geschaltet wird. Normalerweise gilt HIGH fir
dieses Bit bei BASIC-Betrieb. Ist dieses Bit LOW programmiert, verschwindet der
BASIC-ROM aus dem Speicher und wird durch 8K-Bytes-RAM von $A000 bis
$BFFF ersetzt.

HIRAM (Bit 1) ist eine Art Steuerleitung, mit der der 8K-Byte-KERNAL-ROM in den
und aus dem Mikroprozessor-AdreB-Bereich geschaltet wird. Normalerweise ist
diese Leitung im BASIC-Betrieb HIGH. Ist diese Leitung LOW programmiert, so
verschwindet der KERNAL-ROM aus dem Speicher und wird durch 8K-Byte vom
RAM von $E000 bis $FFFF ersetzt.

CHAREN (Bit 2) wird nur benutzt, um den 4K-Byte-Zeichengenerator-ROM in den
oder aus dem Mikroprozessor-AdreB-Bereich zu schalten. Vom Prozessor aus
gesehen, benutzt der Zeichen-ROM den gleichen AdreB-Bereich wie die Ein-/
Ausgabe-Register ($D000—$DFFF). Wenn die CHAREN-Leitung auf 1 gesetzt ist
(Normaleinstellung), dann erscheinen die Ein-/Ausgabe-Register im Mikroprozes-
sor-AdreB-Bereich, und der Zeichen-ROM ist nicht zuganglich. Wird der CHAREN-
Bit auf 0 gesetzt, erscheint der Zeichen-ROM. Nun sind die Ein-/Ausgabe-Register
nicht zuganglich. (Der Mikroprozessor muB lediglich auf den Zeichen-ROM zugrei-
fen, wenn der Zeichensatz vom ROM ins RAM gebracht wird. Dies erfordert
besondere Umsicht. .. siehe Abschnitt “Programmierbare Zeichen® im Kapitel
“Graphik*).

CHAREN kann durch andere Steuerzeichen in bestimmten Speicheranordnungen
unwirksam gemacht werden. CHAREN beeinfluBt keine Speicheranordnungen
ohne Ein-/Ausgabe-Register. Statt dessen erscheint von $D000 bis $DFFF der
RAM.

Anmerkung: Bei jeder Speicherverteilung, die ROM enthilt, werden die Daten beim Schreiben
(POKE) in einer ROM-Adresse in den RAM “unter” dem ROM gespeichert. Die Daten werden also in
den “versteckten“ RAM geschrieben. Auf diese Weise ist ein Bildschirm mit hoher Auflésung unter
dem ROM méglich und kann (ohne vorherige Ubertragung in den Prozessor-AdreBraum) geéndert
werden. Beim Lesen einer ROM-Adresse wird natlrlich aus dem ROM und nicht aus dem “versteck-
ten” RAM gelesen.

MASCHINENSPRACHE 257



SPEICHERMAPPE VOM COMMODORE 64

8K-KERNAL-ROM
E000-FFFF ODER
RAM
4K-EIN-/AUSGABE,
D00O-DFFF | RAM- ODER ZEICHEN-ROM
C000-CFFF 4K-RAM
8K-BASIC-ROM,
A000-BFFF gg'!\zﬂR
ROM-MODUL
8K-RAM
8000-9FFF ROMO—[R/IEORDUL
4000-7FFF 16K-RAM
0000-3FFF 16K-RAM
EIN-/AUSGABE IM DETAIL
D000—-D3FF VIC (Videosteuerung) 1K-Byte
D400—-D7FF SID (Musik-Synthesizer) 1K-Byte
D800—-DBFF Farb-RAM 1K-Nybble
DCO0—-DCFF CIA1 (Tastatur) 256 Bytes
DDO0—-DDFF CIA2 (Serieller Bus-User-Port/RS-232) 256 Bytes
DEOO—DEFF Offener Ein-/AusgabeanschluB3 #1 (CP/M) 256 Bytes

DFOO—-DFFF Offener Ein-/AusgabeanschluB #2 (Diskette) 256 Bytes

258 MASCHINENSPRACHE



Die beiden offenen Ein-/Ausgabeanschlisse dienen der allgemeinen Ein-/Aus-
gabe, speziellen Ein-/Ausgabemodulen (z. B. IEEE) und wurden flir den Z-80-
Modul (CP/M Option) sowie fiir den AnschluB an ein schnelles Diskettensystem mit
glnstigem Kosten-Leistungs-Verhaltnis entwickelt.

Dieses System sorgt fir den “Automatikstart® des Programms bei Verwendung
eines COMMODORE 64-Erweiterungsmoduls. Wenn die ersten neun Bytes des
Modul-ROMs beginnend bei Adresse 32768 ($8000) bestimmte Daten enthalten,
wird das ROM-Programm gestartet. Die ersten zwei Bytes missen den Kaltstart-
Vektor fur das Programm enthalten. Die néachsten zwei Bytes in 32770 ($8002)
enthalten den Warmstartvektor. Die folgenden 3 Bytes mussen die Buchstaben
CBM enthalten, wobei fur jeden Buchstaben Bit 7 gesetzt ist. Die letzten zwei Bytes
missen die Ziffern “80“ in COMMODORE ASCII sein.

SPEICHERBELEGUNGEN DES COMMODORE 64
In den folgenden Schemata sind die mdglichen Speicheranordnungen fir den

COMMODORE 64, der jeweilige Status der Leitungen und die entsprechende
Verwendung der einzelnen Speicherverteilung aufgefihrt.

X = NICHT BERUCKSICHTIGEN
0 = NIEDRIG
8K-KERNAL-ROM 1 = HOCH
- 4K-EIN-/AUSGABE ey o)
=EIN= HIRAM =1
pooo 4K-RAM (PUFFER) e =1
C000 EXROM =1
8K-BASIC-ROM
A000
8K-RAM
8000
16K-RAM
4000
16K-RAM
Dies ist die Standard-BASIC-Speicherverteilung
mit BASIC 2.0 und 38 KB durchgehenden
0000 Benutzer-RAM.

MASCHINENSPRACHE 259



260

E000
D000
C000

8000

4000

0000

E000
D000
C000

‘8000

4000

0000

8K-RAM

4K-EIN-/AUSGABE

4K-RAM

16K-RAM

16K-RAM

16K-RAM

8K-KERNAL-ROM

4K-EIN-/AUSGABE

4K-RAM

16K-RAM

16K-RAM

16K-RAM

MASCHINENSPRACHE

X = NICHT BERUCKSICHTIGEN
0 = NIEDRIG

1 = HOCH
LORAM =1
HIRAM =0
GAME =1
EXROM =X
oder

LORAM =1
HIRAM =0
GAME =0

(In dieser Speicherkonfiguration ist der Zeichen-
ROM fiir die CPU nicht zuganglich.)
EXROM =0

In dieser Konfiguration gibt es 60K-RAM
sowie Ein-/Ausgaberegister. Der Besitzer muB
seine eigenen Ein-/Ausgabetreiber-Routinen
schreiben.

X = NICHT BERUCKSICHTIGEN
0 = NIEDRIG

1 = HOCH
LORAM
HIRAM
GAME
EXROM

o

X == O

Diese Konfiguration ist fir das Arbeiten mit
ladbaren Sprachen (einschl. CP/M) gedacht
und hat 52K durchgehenden Benutzer-RAM,
Ein-/Ausgaberegister und Ein-/Ausgabetreiber-
Routinen.



C000

8000

4000

0000

EO00

D000

C000

A000

8000

4000

0000

16K-RAM

16K-RAM

16K-RAM

16K-RAM

8K-KERNAL-ROM

4K-EIN-/AUSGABE

4K-RAM (PUFFER)

8K-BASIC-ROM

8K-ROM KASSETTE
(BASIC-ERWEITERUNG)

16K-RAM

16K-RAM

X = NICHT BERUCKSICHTIGEN
0 = NIEDRIG
1 = HOCH

LORAM
HIRAM
GAME
EXROM
oder
LORAM
HIRAM
GAME
EXROM

o

I

Diese Konfiguration erlaubt einen Zugrift

auf den gesamten RAM-Bereich von 64K-Byte.

Fir jede Ein-/Ausgabe missen die
Ein-/Ausgabe-Speicherbereiche zuriick in den
ProzeBadreBbereich geschaltet werden.

NICHT BERUCKSICHTIGEN
NIEDRIG
1 = HOCH
LORAM
HIRAM
GAME
EXROM

X
0

o
B 6 =ik

Dies ist der Standardaufbau eines BASIC-
Systems mit BASIC-Erweiterungs-ROM.
Diese Konfiguration hat 32K durchgehenden
Benutzer-RAM und erlaubt eine
BASIC-Erweiterung von bis zu 8K-Byte.

MASCHINENSPRACHE

261



262

8K-KERNAL-ROM
E000
4K-EIN-/AUSGABE
D000
4K-RAM (PUFFER)
C000
8K-ROM (KASSETTE)
A000
8K-RAM
8000
16K-RAM
4000
16K-RAM
0000
8K-KERNAL-ROM
E000
4K-EIN-/AUSGABE
D000
4K-RAM (PUFFER)
C000
16K-ROM (KASSETTE)
8000
16K-RAM
4000
16K-RAM
0000

MASCHINENSPRACHE

X = NICHT BERUCKSICHTIGEN
0 = NIEDRIG

1 = HOCH

LORAM =0

HIRAM =1

GAME =0

EXROM =0

Diese Konfiguration hat 40K durchgehenden
Benutzer-RAM und bis zu 8K-Byte flir

einen ROM-AnschluB fiir besondere
ROM-Anwendungen, die kein BASIC erfordern.

X = NICHT BERUCKSICHTIGEN
0 = NIEDRIG
1 = HOCH

LORAM
HIRAM
GAME
EXROM

o nn
OO ==

Diese Konfiguration hat 32K durchgehenden
Benutzer-RAM und bis zu 16K-Byte fur

einen ROM-AnschluB fiir besondere
ROM-Anwendungen, die kein BASIC erfordern
(Textverarbeitung, andere Sprachen usw.).



E000

D000

C000

A000

8000

4000

1000
0000

8K-KASSETTEN-ROM

4K-EIN-/AUSGABE

4K OFFEN

8K OFFEN

8K-KASSETTEN-ROM

16K OFFEN

12K OFFEN

4K-RAM

X = NICHT BERUCKSICHTIGEN
0 = NIEDRIG
1 = HOCH

LORAM
HIRAM
GAME
EXROM

=g

nmnn

Dies ist die ULTIMAX-Videospiel-Speicher-
konfiguration. Beachten Sie, daB als

2K “Erweiterungs-RAM* fiir den ULTIMAX
gegebenenfalls der RAM des

Commodore 64 verwendet wird und der RAM
im Modul ignoriert wird.

MASCHINENSPRACHE

263



KERNAL

Auf dem Mikrocomputer-Sektor gibt es eine Frage, die Programmierer immer
wieder beschaftigt: Was tun, wenn das Computer-Betriebssystem von der Herstel-
lerfirma geandert wird? Langwierig erstellte Maschinensprache-Programme funktio-
nieren moglicherweise nicht mehr und missen grundlegend gedndert werden. Um
dieses Problem zu mindern, hat COMMODORE ein Prinzip entwickelt, um Program-
mierern die Arbeit zu erleichtern. Es handelt sich hierbei um den sog. KERNAL. Im
wesentlichen ist KERNAL eine Standard-SPRUNGTABELLE fir Eingabe, Ausgabe
und Speicherverwaltungsprogramme im Betriebssystem. Bei einer Verbesserung
des Systems kdnnen die Platze der einzelnen Programme im ROM sich &ndern. Die
KERNAL-SPRUNGTABELLE wird jedoch auch stets entsprechend geandert.
Wenn lhre Maschinensprache-Programme die Betriebssystemroutinen nur Gber
den KERNAL benutzen, so kdnnen sie gegebenenfalls wesentlich einfacher gestal-
tet werden.

Der KERNAL ist das Betriebssystem des COMMODORE 64. Uber ihn werden
samtliche Eingaben, Ausgaben sowie die Speicherverwaltung gesteuert.

Um lhre Maschinensprache-Programme zu vereinfachen und sicherzustellen, daB
die Programme aufgrund einer kinftigen Verbesserung des Betriebssystems vom
COMMODORE 64 nicht veralten, enthalt der KERNAL eine Sprungtabelle. Durch
die 39 Ein-/Ausgabe-Routinen und weitere Hilfsprogramme, die Uber diese Tabelle
erreichbar sind, kénnen Sie nicht nur Zeit sparen, sondern Ihre Programme von
einem COMMODORE-Computer an den anderen anpassen.

Die Sprungtabelle befindet sich auf der letzten Speicherseite (Page) des gesamten
AdreBraums.

Um die KERNAL-Sprungtabelle zu benutzen, geben Sie zunachst die erforderlichen
Parameter flr die KERNAL-Routine ein. Dann springen Sie Uber die JSR-Anwei-
sung an die geeignete Stelle in die KERNAL-Sprungtabelle. Nach Beendigung der
Routine ubertragt der KERNAL die Steuerung wieder Ihrem Maschinensprache-
Programm. Je nach verwendeter KERNAL-Routine werden Parameter durch
bestimmte Register in Ihr Programm zurlickgegeben. Die jeweiligen Adressen der
einzelnen KERNAL-Routinen finden Sie in den Beschreibungen der KERNAL-
Unterprogramme. '

Warum benutzt man die Sprungtabelle Uberhaupt? Warum springt man nicht direkt
in das entsprechende KERNAL-Unterprogramm? Das ist eine gute Frage. Die
Sprungtabelle wird benutzt, damit lhre Maschinensprache-Programme auch dann
funktionieren, wenn der KERNAL oder der BASIC-Interpreter gedndert werden. In
klinftigen Betriebssystemen kdnnen die Speicherplatze der einzelnen Routinen an
unterschiedlichen Positionen im AdreBbereich liegen . . . Die Sprungtabelle arbeitet
jedoch immer noch richtig!

264 MASCHINENSPRACHE



KERNAL-FUNKTIONEN NACH EINSCHALTEN
DER STROMVERSORGUNG

1) Nach Einschalten der Stromversorgung wird durch den KERNAL zunachst der
Stapelzeiger riickgesetzt und danach der Dezimalmodus geldscht.

2) Dann prift KERNAL, ob in Adresse $8000 HEX (32768 in Dezimaldarstellung)
ein ROM mit Automatikstart vorhanden ist. Ist dieses vorhanden, dann wird die
normale Initialisierung unterbrochen und die Steuerung dem im ROM abgeleg-
ten Code Ubertragen. Ist ein solches ROM nicht vorhanden, wird die normale
Systeminitialisierung fortgesetzt.

3) Als nachstes initialisiert der KERNAL alle Ein-/Ausgabe-Vorrichtungen. Der
serielle Bus wird initialisiert. Die beiden Chips 6526 CIA werden fur die Tastatur-
Abfrage auf die geeigneten Werte gesetzt und der 60-Hz-Timer aktiviert. Der
SID wird geléscht. Die BASIC-Speicherkonfiguration wird gewahlt und der
Kassettenmotor abgeschaltet.

4) Als nachstes flhrt der KERNAL einen RAM-Test durch und setzt oben und unten
die Speicherzeiger. Auch die Zero-Page wird initialisiert und der Kassettenpuffer
eingerichtet.

Die RAM-Test-Routine ist ein nicht Idschender Test, der bei Adresse $0300
beginnt und dann in aufsteigender Reihenfolge arbeitet. Der obere RAM-Zeiger
wird gesetzt, wenn der Test auf die erste Nicht-RAM-Adresse trifft. Der untere
Speicherzeiger wird stets auf $0800 und der Bildschirm stets auf $0400 gesetzt.

5) AbschlieBend fihrt der KERNAL folgende Funktionen aus: Die Ein-/Ausgabe-
vektoren werden auf die Standardwerte gesetzt. Der Bildschirm wird dann
geldscht und alle Bildschirm-Editor-Variablen riickgestellt. Fir den BASIC-Start
wird dann die indirekte Adresse in $A000 benutzt.

ARBEITEN MIT KERNAL

Beim Schreiben von Programmen in Maschinensprache ist es oft empfehlenswert,
Betriebssystem-Routinen zu benutzen. Diese umfassen Ein-/Ausgabe, Zugriff auf
den System-Taktgeber, Speicherverwaltung und &hnliche Funktionen. Es ist Uber-
flissig, diese Routinen standig neu zu schreiben. Durch den einfachen Zugriff auf
das Betriebssystem wird daher das Programmieren in Maschinensprache beschleu-
nigt.

Wie bereits erwahnt, stellt der KERNAL eine Sprungtabelle dar. Diese ist lediglich
eine Ansammlung von JMP-Anweisungen zu zahlreichen Betriebssystem-Routi-
nen.

MASCHINENSPRACHE 265



Um mit einer KERNAL-Routine zu arbeiten, missen Sie zunachst alle flr diese
Routine erforderlichen Vorbereitungen treffen. Wenn eine Routine z. B. zunachst
den Aufruf einer anderen KERNAL-Routine erfordert, dann missen Sie diese
aufrufen. Setzt die Routine die Eingabe einer Zahl in den Akkumulator voraus, dann
muB diese Zahl auch eingegeben sein. Werden die Bedingungen nicht erfillt, dann
konnen die Routinen natlrlich auch nicht richtig arbeiten.

Nach dem Durchflihren sdmtlicher Vorbereitungen rufen Sie die Routine Uber die
JSR-Anweisung auf. Alle zugénglichen KERNAL-Routinen sind wie Unterpro-
gramme aufgebaut und missen mit einer RTS-Anweisung enden. Wenn die KER-
NAL-Routine die entsprechende Aufgabe beendet hat, wird die Steuerung bei der
Anweisung nach JSR wieder lhrem Programm Ubertragen.

Viele KERNAL-Routinen zeigen bei Stérungen Fehler-Codes im Statuswort oder
Akkumulator an. Fir gutes Programmieren und einen Erfolg der Maschinensprache-
Programme dirfen diese Fehlerriickgaben nicht auBer acht gelassen werden, da
sonst das Ubrige Programm zerstort werden kann.

Dies ist alles, was Sie beim Arbeiten mit KERNAL zu tun haben. Gehen Sie einfach
wie folgt vor:

1) Einrichten
2) Routinenaufruf
3) Fehlerbehandlung

Folgende Konventionen werden bei der Beschreibung von KERNAL-Routinen
benutzt:

FUNKTIONSNAME: Bezeichnung der Kernal-Routine.

— AUFRUFADRESSE: Dies ist die Aufrufadresse der KERNAL-Routine in Hexa-
dezimaldarstellung.

— KOMMUNIKATIONS-REGISTER: Unter dieser Uberschrift aufgefiinrte Regi-
ster werden zur Ubertragung von Parametern zu bzw. von KERNAL-Routinen
benutzt.

— VORBEREITUNGS-ROUTINEN: Bei bestimmten KERNAL-Routinen ist zuvor
eine Dateneingabe erforderlich. Die erforderlichen Routinen werden hier aufge-
fuhrt.

266 MASCHINENSPRACHE



FEHLERMELDUNGEN: Ist nach dem Abarbeiten einer KERNAL-Routine das
CARRY-Flag gesetzt, so zeigt dies an, daB bei der Verarbeitung ein Fehler
festgestellt wurde. Die Fehlerzahl ist im Akkumulator enthalten.

— STAPELBEDAREF: Dies ist die tatséchliche Anzahl an Stapel-Bytes, die von der
KERNAL-Routine benutzt werden.

— BETROFFENE REGISTER: Alle von KERNAL-Routinen benutzte Register
werden hier aufgeflhrt.

— BESCHREIBUNG: Hier finden Sie eine kurze Funktionsbeschreibung der
KERNAL-Routine.

Nachstehend werden die KERNAL-Routinen aufgelistet.

MASCHINENSPRACHE 267



AUFRUFBARE KERNAL-ROUTINEN

268 MASCHINENSPRACHE

ADRESSE
NAME HEXA- DEZIMAL FUNKTION
DEZIMAL

ACPTR $FFA5 65445 Byte-Eingabe zum seriellen Port

CHKIN $FFC6 65478 Kanal far Eingabe 6ffnen

CHKOUT $FFC9 65481 Kanal fur Ausgabe 6ffnen

CHRIN $FFCF 65487 Zeicheneingabe

CHROUT $FFD2 65490 Zeichenausgabe

ClouT $FFA8 65448 Byte-Ausgabe Uber den seriellen
Bus

CINT $FF81 65409 Bildschirm-Editor-Initialisierung

CLALL $FFE7 65511 SchlieBen aller Kanale und
Dateien

CLOSE $FFC3 65475 SchlieBen einer bestimmten
logischen Datei

CLRCHN $FFCC 65484 SchlieBen der Ein- und
Ausgabekanéle

GETIN $FFE4 65508 Zeichen aus Tastaturpuffer lesen

IOBASE $FFF3 65523 BasisadreB-Rickmeldung der
Ein-/Ausgabegeréte

IOINIT $FF84 65412 Ein-/Ausgabeinitialisierung

LISTEN $FFB1 65457 LISTEN-Befehl fir Gerate am
seriellen Bus

LOAD $FFD5 65493 RAM laden von Peripherie

MEMBOT $FFSC 65436 Unteren Speicherzeiger
lesen/setzen

MEMTOP $FF99 65433 Oberen Speicherzeiger
lesen/setzen

OPEN $FFCO 65472 Offnen einer logischen Datei

PLOT $FFFO 65520 X-, Y-Cursorposition lesen/setzen




ADRESSE

NAME HEXA- DEZIMAL FUNKTION
DEZIMAL

RAMTAS $FF87 65415 RAM initialisieren, Kassettenpuffer
einrichten, Bildschirm auf $0400
setzen

RDTIM $FFDE 65502 Uhrzeit lesen

READST $FFB7 65463 Ein-/Ausgabestatuswort lesen

RESTOR $FF8A 65418 Standard Ein-/Ausgabevektoren
ruckstellen

SAVE $FFD8 65496 RAM-Inhalt auf Peripheriegerat
abspeichern

SCNKEY $FFIF 65439 Tastatur abfragen

SCREEN $FFED 65517 X-, Y-Bildschirmaufbau ermitteln

SECOND $FFI3 65427 Sekundédradresse nach LISTEN
Ubertragen

SETLFS $FFBA 65466 Logische, erste und
Sekundéaradresse setzen

SETMSG $FF90 65424 KERNAL-Meldungen steuern

SETNAM $FFBD 65469 Dateinamen festlegen

SETTIM $FFDB 65499 Uhrzeit setzen

SETTMO $FFA2 65442 Zeitsperre fir seriellen Bus setzen

STOP $FFE 65505 Stop-Taste abfragen

TALK $FFB4 65460 TALK-Befehl fir Gerate am
seriellen Bus

TKSA $FF96 65430 Sekundaradresse nach TALK
Ubertragen

UDTIM $FFEA 65514 Uhrzeit inkrementieren

UNLSN $FFAE 65454 UNLISTEN-Befehl fir seriellen
Bus

UNTLK $FFAB 65451 UNTALK-Befehl flr seriellen Bus

VECTOR $FF8D 65421 Abspeichern von RAM

MASCHINENSPRACHE 269



B-1. Funktionsname: ACPTR

Zweck: Daten vom seriellen Bus lesen
Aufrufadresse: $FFA5 (HEX) 65445 (Dezimal)
Kommunikationsregister: .A
Vorbereitungsroutinen: TALK, TKSA
Fehlerrickmeldungen: Siehe READST
Stapelbedarf: 13

BeeinfluBte Register: .A, .X

Beschreibung: Diese Routine benutzen Sie, wenn Sie Informationen von einem
Gerét am seriellen Bus, wie z. B. einer Diskette lesen wollen. Diese Routine liest
direkt ein Datenbyte vom seriellen Bus. Dieses Datum wird in den Akkumulator
Ubertragen. Als Vorbereitung muB zunachst die TALK-Routine aufgerufen werden.
Uber diese erhalt der serielle Bus den Befehl fiir die Bus-Datentibertragung.
Wenn die Eingabevorrichtung einen Sekundéarbefehl erfordert, muB dieser vor dem
Aufruf Gber die KERNAL-Routine TKSA (bertragen werden. Fehler werden im
Statuswort rickgemeldet. Zum Lesen des Statusworts wird die READST-Routine
benutzt.

Vorgehensweise:

0) Gerat am seriellen Bus fir die Datenlibertragung zum COMMODORE 64 vorbe-
reiten. (KERNAL-Routinen, TALK und TKSA benutzen.)

1) Diese Routine aufrufen (liber JSR).

2) Daten speichern oder benutzen.

BEISPIEL:
;GET A BYTE FROM THE BUS

JSR ACPTR
STA DATA

270 MASCHINENSPRACHE



B-2. Funktionsname: CHKIN

Zweck: Kanal fur Eingabe 6ffnen
Aufrufadresse: $FFC6 (HEX) 65478 (Dezimal)
Kommunikationsregister: .X
Vorbereitungsroutinen: (OPEN)
Fehlerriickmeldung:

Stapelbedarf: Keiner

BeeinfluBte Register: .A, .X

Beschreibung: Jede Uber die KERNAL-Routine OPEN gedffnete logische Datei
kann Gber diese Routine als Eingabekanal definiert werden. Natlrlich muB es sich
dabei um ein Eingabegerat handeln, da es sonst zu einem Fehler kommt und die
Routine unterbrochen wird.

Werden die Daten nicht iber die Tastatur eingegeben, dann muB diese Routine vor
dem Arbeiten mit den KERNAL-Routinen CHRIN oder GETIN fiir die Dateneingabe
zuvor aufgerufen werden. Soll die Eingabe Uber die Tastatur erfolgen und sind keine
weiteren Eingabekanale gedffnet, dann wird diese Routine und die OPEN-Routine
nicht bendotigt.

Wird diese Routine mit einem Gerat am seriellen Bus benutzt, dann wird tber den
Bus automatisch die Talk-Adresse (und die Sekundaradresse, wenn eine solche
durch die OPEN-Routine festgelegt wurde) ibertragen.

Vorgehensweise:

0) Logische Datei 6ffnen (gegebenenfalls dazugehotrige Beschreibung durch-
lesen).

1) Register .X mit der Nummer der zu verwendenden logischen Datei laden.

2) Diese Routine aufrufen (Uber JSR).

Mdégliche Fehler:

#3: Datei nicht offen.

#5: Gerat nicht vorhanden.

#6: Datei ist keine Eingabedatei.

BEISPIEL:

; PREPARE FOR INPUT FROM LOGICAL FILE 2
LDX #2
JSR CHKIN

MASCHINENSPRACHE 27



B-3. Funktionsname: CHKOUT

Zweck: Kanal fir Ausgabe 6ffnen
Aufrufadresse: $FFC9 (HEX) 65481 (Dezimal)
Kommunikationsregister: .X
Vorbereitungsroutinen: (OPEN)
Fehlerrickmeldungen: 0,3,5,7 (siehe READST)
Stapelbedarf: 4+

BeeinfluBte Register: .A, .X

Beschreibung: Eine (ber die KERNAL-Routine OPEN erstellte logische Datei-
nummer kann als Ausgabekanal definiert werden. Natirlich muB es sich hierbei um
ein Ausgabegerat handeln, da es sonst zu einem Fehler kommt und die Routine
unterbrochen wird.

Ehe Daten zu einem Ausgabegerét Ubertragen werden, ist ein Aufruf dieser Routine
erforderlich. Es sei denn, Sie wollen den Bildschirm des COMMODORE 64 als
Ausgabegeréat benutzen. Wird eine Bildschirmausgabe gewlnscht und ist noch kein
anderer Ausgabekanal definiert, dann werden diese Routine und die OPEN-Routine
nicht bendtigt.

Beim Offnen des Kanals zum seriellen Bus Ubertragt diese Routine automatisch die
durch die OPEN-Routine festgelegte LISTEN-Adresse (und gegebenenfalls eine
Sekundaradresse).

Vorgehensweise:

Denken Sie daran: Diese Routine wird nicht zum Ubertragen von Daten auf den Bildschirm bendétigt.

0) Eine logische Dateinummer, eine LISTEN-Adresse und eine Sekundéradresse
(falls erforderlich) tiber die KERNAL-Routine OPEN festlegen.

1) Register .X mit der in der OPEN-Anweisung benutzten logischen Dateinummer
laden.

2) Diese Routine aufrufen (iber JSR).

BEISPIEL:

LDX #3 ;DEFINE LOGICAL FILE 3 AS AN OUTPUT CHANNEL
JSR CHKOUT

Maogliche Fehler:

#3: Datei nicht offen.
#5: Gerat nicht vorhanden.
#7: Keine Ausgabedatei.

272 MASCHINENSPRACHE



B-4. Funktionsname: CHRIN

Zweck: Zeicheneingabe

Aufrufadresse: $FFCF (HEX) 65487 (Dezimal)
Kommunikationsregister: .A
Vorbereitungsroutinen: (OPEN, CHKIN)
Fehlerrickmeldungen: 0 (siehe READST)
Stapelbedarf: 7+

BeeinfluBte Register: .A, .X

Beschreibung: Uber diese Routine wird ein Datenbyte von dem (iber die KER-
NAL-Routine CHKIN bereits als Eingabekanal festgelegten Kanal gelesen. Wurde
CHKIN nicht zur Definition eines weiteren Eingabekanals benutzt, dann wird davon
ausgegangen, daB samtliche Daten uber die Tastatur eingegeben wurden. Das
Datenbyte wird in den Akkumulator Ubertragen. Nach dem Aufruf bleibt der Kanal
offen.

Eingaben (ber die Tastatur werden auf besondere Weise gehandhabt. Zunachst
wird der Cursor eingeschaltet und blinkt so lange, bis ein CR (carriage return)
eingegeben wird. Alle Zeichen in der Zeile (max. 88 Zeichen) werden im BASIC-
Eingabepuffer gespeichert. Diese Zeichen kdénnen einzeln aufgerufen werden,
indem man diese Routine fir jedes einzelne Zeichen aufruft. Nach dem “carriage
return“ wird die gesamte Zeile verarbeitet. Beim nachfolgenden Aufruf dieser
Routine beginnt der gleiche Vorgang wieder von vorn, d. h., mit einem Blinken des
Cursors.

Vorgehensweise:

VON DER TASTATUR

1) Ein Datenbyte durch diese Routine aufrufen.

2) Datenbyte speichern.

3) Prifen, ob es sich um das letzte Datenbyte handelt (ist es ein CR?).
4) Wenn nicht, bei Schritt 1) fortsetzen.

BEISPIEL:

LDY #$00 ;PREPARE THE .Y REGISTER TO STORE THE DATA
RD JSR CHRIN
STA DATA)Y  ;STORE THE YTH DATA BYTE IN THE YTH
;LOCATION IN THE DATA AREA.

INY
CMP #CR ;1S IT A CARRIAGE RETURN?
BNE RD ;NO, GET ANOTHER DATA BYTE

MASCHINENSPRACHE 273



BEISPIEL:

JSR CHRIN
STA DATA

VON ANDERER PERIPHERIE

0) KERNAL-Routinen OPEN und CHKIN benutzen.
1) Diese Routine aufrufen (liber JSR).

2) Daten speichern.

BEISPIEL:

JSR CHRIN
STA DATA

B-5. Funktionsname: CHROUT

Zweck: Zeichenausgabe

Aufrufadresse: $FFD2 (HEX) 65490 (Dezimal)
Kommunikationsregister: .A
Vorbereitungsroutinen: (CHKOUT, OPEN)
FehlerrGckmeldungen: O (siehe READST)
Stapelbedarf: 8+

BeeinfluBte Register: .A

Beschreibung: Uber diese Routine wird ein Zeichen zu einem bereits gedffneten
Kanal ausgegeben. Vor dem Aufruf dieser Routine den Ausgabekanal durch die
KERNAL-Routinen OPEN und CHKOUT bestimmen. Wird dieser Aufruf ausgelas-
sen, dann erfolgt die Dateniibertragung zum Standard-Ausgabegerat (Nummer 3,
Bildschirm). Das auszugebende Datenbyte wird in den Akkumulator Gibertragen und
diese Routine aufgerufen. Die Daten werden dann zum angegebenen Ausgabege-
rét Ubertragen. Nach dem Aufruf bleibt der Kanal gedffnet.

Anmerkung: Besondere Vorsicht ist geboten, wenn diese Routine fiir die Dateniibertragung zu einem
speziellen Gerét am seriellen Bus benutzt wird, da alle Daten zu allen offenen Bus-Ausgabekanalen
Ubertragen werden. Ist dies nicht erwiinscht, missen alle Ausgabekanile des Serienbusses bis auf den
gewinschten Kanal durch die KERNAL-Routine CLRCHN geschlossen werden.

274 MASCHINENSPRACHE



Vorgehensweise:

0) Gegebenenfalls KERNAL-Routine CHKOUT benutzen (siehe obige Beschrei-
bung).

1) Auszugebende Daten in den Akkumulator laden.

2) Diese Routine aufrufen.

BEISPIEL:

;DUPLICATE THE BASIC INSTRUCTION CMD 4,“A*;

LDX #4 ;LOGICAL FILE #4
JSR CHKOUT ;OPEN CHANNEL OUT
LDA #'A’

JSR CHROUT ;SEND CHARACTER

B-6. Funktionsname: CIOUT

Zweck: Byte-Ausgabe Uber den seriellen Bus
Aufrufadresse: $FFA8 (HEX) 65448 (Dezimal)
Kommunikationsregister: .A
Vorbereitungsroutinen: LISTEN, (SECOND)
Fehlerriickmeldungen: Siehe READST
Stapelbedarf: 5

BeeinfiuBte Register: Keine

Beschreibung: Diese Routine wird fir die Informationsiibertragung zu einem
Gerét am seriellen Bus benutzt. Durch Aufruf dieser Routine wird ein Datenbyte auf
den seriellen Bus mit “handshake*” (ibertragen. Vor dem Aufruf muB die KERNAL-
Routine LISTEN benutzt werden, um das Gerat am seriellen Bus fir den Datenemp-
fang vorzubereiten. (Wird eine Sekundéradresse bendtigt, dann muB diese iiber die
KERNAL-Routine SECOND Ubertragen werden.)

Der Akkumulator wird dann mit einem Byte geladen, das als Datum Uber den
seriellen Bus (ibertragen wird. Eine Vorrichtung muB fir den Datenempfang bereit
sein, da sonst das Statuswort ein “timeout” meldet. Bei dieser Routine wird stets
ein Zeichen zwischengespeichert. Wird die KERNAL-Routine UNLSN zur Beendi-
gung der Datenlibertragung aufgerufen, so wird das im Puffer befindliche Zeichen
mit einem EOI Ubertragen. Dann wird der Befehl UNLSN zum Gerét tbertragen.

MASCHINENSPRACHE 275



Vorgehensweise:

0) KERNAL-Routine LISTEN (und gegebenenfalls SECOND) benutzen.
1) Ein Datenbyte in den Akkumulator laden.
2) Zur Ubertragung des Datenbytes diese Routine aufrufen.

BEISPIEL:

LDA #X ;SEND AN X TO THE SERIAL BUS
JSR CIOUT

B-7. Funktionsname: CINT

Zweck: Initialisierung von Bildschirmeditor und Video-Chip 6567
Aufrufadresse: $FF81 (HEX) 65409 (Dezimal)
Kommunikationsregister: Keine

Vorbereitungsroutinen: Keine

Fehlerrickmeldungen: Keine

Stapelbedarf: 4

BeeinfluBte Register: A, X, .Y

Beschreibung: Uber diese Routine wird der Video-Steuerchip 6567 im COMMO-
DORE 64 initialisiert. Auch der KERNAL-Bildschirmeditor wird initialisiert. Diese
Routine kann Uber ein Programm-Modul des COMMODORE 64 aufgerufen werden.
Vorgehensweise:

1) Diese Routine aufrufen.

BEISPIEL:

JSR CINT
JMP RUN ;BEGIN EXECUTION

276 MASCHINENSPRACHE



B-8. Funktionsname: CLALL

Zweck: SchlieBen samtlicher Dateien
Aufrufadresse: $FFE7 (HEX) 65511 (Dezimal)
Kommunikationsregister: Keine
Vorbereitungsroutinen: Keine
Fehlerrickmeldungen: Keine

Stapelbedarf: 11

BeeinfluBte Register: A, .X

Beschreibung: Uber diese Routine werden alle offenen Dateien geschlossen.
Beim Aufruf werden die Zeiger in der Tabelle der offenen Dateien riickgestellt und
alle Dateien geschlossen. Die Routine CLRCHN wird automatisch zur Rickstellung
der Ein-/Ausgabekanéle aufgerufen.

Vorgehensweise:

1) Diese Routine aufrufen.

BEISPIEL:

JSR CLALL ;CLOSE ALL FILES AND SELECT DEFAULT I/O CHANNELS
JMP RUN ;BEGIN EXECUTION

B-9. Funktionsname: CLOSE

Zweck: SchlieBen einer logischen Datei
Aufrufadresse: $FFC3 (HEX) 65475 (Dezimal)
Kommunikationsregister: .A
Vorbereitungsroutinen: Keine
Fehlerrickmeldungen: 0,240 (siehe READST)
Stapelbedarf: 2+

BeeinfluBte Register: A, X, .Y

Beschreibung: Diese Routine wird zum SchlieBen einer logischen Datei benutzt,
nachdem alle Ein-/Ausgaben in bezug auf diese Datei beendet sind. Die Routine
wird aufgerufen, nachdem der Akkumulator mit der entsprechenden logischen
Dateinummer geladen wurde (gleiche Nummer, die beim Offnen der Datei iiber die
Routine OPEN benutzt wurde).

Vorgehensweise:

1) Entsprechende logische Dateinummer in den Akkumulator laden.
2) Diese Routine aufrufen.

MASCHINENSPRACHE 277



BEISPIEL:

;CLOSE 15
LDA #15
JSR CLOSE

B-10. Funktionsname: CLRCHN

Zweck: Loschen von Ein-/Ausgabekanélen
Aufrufadresse: $FFCC (HEX) 65484 (Dezimal)
Kommunikationsregister: Keine
Vorbereitungsroutinen: Keine
Fehlerrickmeldungen:

Stapelbedarf: 9

BeeinfluBte Register: .A, .X

Beschreibung: Diese Routine wird zum Ldschen aller offenen Kandle und zur
Ruckstellung der Ein-/Ausgabekanéle auf die Standardwerte aufgerufen. Normaler-
weise erfolgt der Aufruf nach Offnen anderer Ein-/Ausgabekanéle (z. B. Kassette
oder Diskette) und Beendigung der entsprechenden Ein-/Ausgaben. Die Standard-
Eingabegeratenummer ist O (Tastatur). Das Standardausgabegerat ist 3 (Bild-
schirm).

Ist einer der zu schlieBenden Kandle der serielle Bus, so wird zunachst zum
Léschen des Eingabekanals ein UNTALK-Signal oder zum Ldschen des Ausgabe-
kanals ein UNLISTEN-Signal Ubertragen. Wird diese Routine nicht aufgerufen (und
bleiben die Serienbus-AnschluBgerate empfangsbereit), dann kénnen mehrere
Geréte die gleichen Daten vom COMMODORE 64 gleichzeitig empfangen. Hier-
durch konnte z. B. der Drucker fur die Ausgabe und die Diskette fur den Datenemp-
fang eingesetzt werden. Auf diese Weise kann eine Diskettendatei direkt ausge-
druckt werden.

Beim Ausfliihren der KERNAL-Routine CLALL wird diese Routine automatisch
aufgerufen.

Vorgehensweise:
1) Diese Routine Uber die JSR-Anweisung aufrufen.
BEISPIEL:

JSR CLRCHN

278 MASCHINENSPRACHE



B-11. Funktionsname: GETIN

Zweck: Ein Zeichen lesen

Aufrufadresse: $FFE4 (HEX) 65508 (Dezimal)
Kommunikationsregister: .A
Vorbereitungsroutinen: CHKIN, OPEN
Fehlerriickmeldungen: Siehe READST
Stapelbedarf: 7+

BeeinfluBte Register: .A (.X, .Y)

Beschreibung: Handelt es sich bei dem Kanal um die Tastatur, dann nimmt dieses
Unterprogramm ein Zeichen aus dem Tastaturpuffer und Gbertragt es als ACII-Wert
in den Akkumulator. Ist der Puffer leer, dann wird der Wert 0 in den Akkumulator
Ubertragen. Zeichen werden automatisch durch eine Tastatur-Abfrageroutine, die
die Routine SCNKEY aufruft, in eine “Warteschlange“ Gibertragen. Im Tastaturpuffer
kénnen max. 10 Zeichen gespeichert sein. Ist der Puffer geflillt, dann werden das
11. und alle weiteren Zeichen solange Uberlesen, bis mind. 1 Zeichen aus der
Warteschlange entfernt wurde.

Handelt es sich bei dem Kanal um RS-232, dann wird nur Register .A benutzt und
ein einzelnes Zeichen wiedergegeben. Zum Uberprifen siehe READST. Handelt es
sich bei dem Kanal um den seriellen Bus, die Kassette oder den Bildschirm, dann
rufen Sie die BASIN-Routine auf.

Vorgehensweise:
1) Diese Routine Uber eine JSR-Anweisung aufrufen.
2) Prifen, ob im Akkumulator eine O gespeichert ist (leerer Puffer).
3) Daten verarbeiten.
BEISPIEL:
;WAIT FOR A CHARACTER
WAIT JSR GETIN

CMP #0
BEQ WAIT

MASCHINENSPRACHE 279



B-12. Funktionsname: IOBASE

Zweck: Festlegen des Ein-/Ausgabe-Speicherbereichs
Aufrufadresse: $FFF3 (HEX) 65523 (Dezimal)
Kommunikationsregister: .X, .Y
Vorbereitungsroutinen: Keine

Fehlerrickmeldungen:

Stapelbedarf: 2

BeeinfluBte Register: .X, .Y

Beschreibung: Uber diese Routine werden im X- und Y-Register nieder- und
hoherwertige Bytes der Adresse des Speicherabschnitts abgespeichert, in dem
sich die Ein-/Ausgaberegister befinden. Diese Adresse kann dann zusammen mit
relativen Adressen fiir den Zugriff auf die Ein-/Ausgaberegister des COMMODORE
64 benutzt werden. Register .X enthalt das untere AdreBbyte, Register .Y das obere
AdreBbyte.

Durch diese Routine wird Kompatibilitat zwischen dem COMMODORE 64, VC-20
und kiinftigen Modellen des COMMODORE 64 gewahrleistet. Werden die Ein-/
Ausgaberegister fiir ein Maschinenspracheprogramm durch Aufruf dieser Routine
gesetzt, dann sind sie auch mit kinftigen Versionen des COMMODORE 64, was
KERNAL und BASIC angeht, kompatibel.

Vorgehensweise:

1) Diese Routine ber die JSR-Anweisung aufrufen.

2) Das Register .X und .Y in aufeinanderfolgenden Platzen speichern.
3) Die Verschiebung in Register .Y laden.

4) Auf diesen Ein-/Ausgabeplatz zugreifen.

BEISPIEL:

:SET THE DATA DIRECTION REGISTER OF THE USER PORT TO 0 (INPUT)
JSR IOBASE

STX POINT ;SET BASE REGISTERS

STY POINT+1

LDY #2

LDA #0 ;OFFSET FOR DDR OF THE USER PORT

STA (POINT), Y ;SET DDR TO 0

280 MASCHINENSPRACHE



B-13. Funktionsname: IOINIT

Zweck: Initialisieren von Ein-/Ausgabegeraten
Aufrufadresse: $FF84 (HEX) 65412 (Dezimal)
Kommunikationsregister: Keine
Vorbereitungsroutinen: Keine
Fehlerrickmeldungen:

Stapelbedarf: Keiner

BeeinfluBte Register: .A, X, .Y

Beschreibung: Uber diese Routine werden alle Ein-/Ausgabevorrichtungen und
Routinen initialisiert. Sie wird normalerweise als Teil der Initialisierung eines Pro-
grammoduls des COMMODORE 64 aufgerufen.

BEISPIEL:

JSR IOINIT

B-14. Funktionsname: LISTEN

Zweck: LISTEN-Befehl fiir ein Gerat am seriellen Bus
Aufrufadresse: $FFB1 (HEX) 65457 (Dezimal)
Kommunikationsregister: A

Vorbereitungsroutinen: Keine

Fehlerrickmeldungen: Siehe READST

Stapelbedarf: Keiner

BeeinfluBte Register: A

Beschreibung: Uber diese Routine wird Gerit am seriellen Bus fiir den Daten-
empfang vorbereitet. Eine Gerdtenummer zwischen 0 und 31 wird vor dem Aufruf
dieser Routine in den Akkumulator geladen. Uber die LISTEN-Anweisung wird die
Zahl Bit flr Bit ODER-verkniipft und in eine LISTEN-Adresse umgewandelt. Dieses
Datum wird dann als Befehl ber den seriellen Bus iibertragen. Das angegebene
Gerét ist dann fir den Datenempfang bereit.

Vorgehensweise:

1) Die gewlnschte Gerdtenummer in den Akkumulator laden.
2) Diese Routine Uber die JSR-Anweisung aufrufen.

MASCHINENSPRACHE 281



BEISPIEL:

;COMMAND DEVICE #8 TO LISTEN
LDA #8
JSR LISTEN

B-15. Funktionsname: LOAD

Zweck: RAM laden von Peripherie
Aufrufadresse: $FFD5 (HEX) 65493 (Dezimal)
Kommunikationsregister: A, X, .Y
Vorbereitungsroutinen: SETLFS, SETNAM
Fehlerrickmeldungen: 0,4,5,8,5, READST
Stapelbedarf: Keiner

BeeinfluBte Register: A, X, .Y

Beschreibung: Uber diese Routine werden Datenbytes direkt von einem beliebi-
gen Eingabegerét in den Speicher des COMMODORE 64 geladen. Sie kann auch
flr einen Vergleich der vom Gerdt stammenden Daten mit denen im Speicher
benutzt werden, wahrend die im RAM gespeicherten Daten unverdndert bleiben
(VERIFY).

Zum Laden wird der Akkumulator (.A) auf 0 und fir VERIFY auf 1 gesetzt. Wird ein
OPEN auf das Eingabegerat mit der Sekundéradresse (SA) 0 eingegeben, dann
wird die Ladeadresse ignoriert. In diesem Fall missen die Register .X und .Y die
Startadresse enthalten. Wird die Sekundéaradresse 1, 0 oder 2 gewdhlt, dann
werden die Daten ab der durch die Ladeadresse gegebenen Position in den
Speicher geladen. Diese Routine ermittelt die Adresse des obersten benutzten
RAM-Platzes.

Vor dem Aufruf dieser Routine missen die KERNAL-Routinen SETLFS und
SETNAM aufgerufen werden.

Anmerkung: Ein LOAD Uber Tastatur (0), RS-232 (2) oder Bildschirm (3) ist nicht méglich.

Vorgehensweise:

0) Routine SETLFS und SETNAM aufrufen. Wird ein verschobenes Laden
gewiinscht, Routine SETLFS zum Ubertragen der Sekundaradresse 0 benutzen.

1) Register .A zum Laden auf 0 und zum Uberprifen auf 1 setzen.

2) Wird Laden an eine bestimmte Adresse gewlnscht, missen Register .X und .Y
auf die Lade-Startadresse gesetzt sein.

3) Die Routine Uber die JSR-Anweisung aufrufen.

282 MASCHINENSPRACHE



BEISPIEL:

;LOAD A FILE FROM TAPE

LDA
LDX
LDY
JSR
LDA

LDX

LDY
JSR
LDA
LDX
LDY
JSR
STX
STY
JMP
NAME BYT
NAME 1 :

#DEVICE1 ;SET DEVICE NUMBER
#FILENO ;SET LOGICAL FILE NUMBER
CMD1 ;SET SECONDARY ADDRESS
SETLFS

#NAME1-NAME  ;LOAD .A WITH NUMBER OF
;CHARACTERS IN FILE NAME

#<NAME ;LOAD .X AND .Y WITH
;ADDRESS OF

#>NAME ;FILE NAME

SETNAM

#0 ;SET FLAG FOR A LOAD

#$FF ;ALTERNATE START

#SFF

LOAD

VARTAB ;END OF LOAD

VARTAB+1

START

'FILE NAME’

B-16. Funktionsname: MEMBOT

Zweck: Setzen des Zeigers fur das untere Speicherende
Aufrufadresse: $FFIC (HEX) 65436 (Dezimal)
Kommunikationsregister: .X, .Y

Vorbereitungsroutinen: Keine

Fehlerrickmeldungen: Keine

Stapelbedarf: Keiner

BeeinfluBte Register: .X, .Y

Beschreibung: Diese Routine wird zum Setzen des unteren Speicherzeigers
benutzt. Ist beim Aufruf dieser Routine das Akkumulator-Ubertragsbit gesetzt, dann
wird der Zeiger des untersten RAM-Bytes im Register .X und .Y wiedergegeben.
Beim nicht erweiterten COMMODORE 64 ist der Zeigeranfangswert $0800 (2048
Dezimal). Ist beim Aufruf dieser Routine das Akkumulator-Ubertragsbit geldscht
(=0), dann werden die Werte des Register .X und .Y zum nieder- bzw. héherwerti-

gen Byte des Zeigers, der den RAM-Anfang festlegt, Ubertragen.

MASCHINENSPRACHE



Vorgehensweise:

LESEN DES RAM-ANFANGS
1) Ubertrags-Flag setzen.
2) Diese Routine aufrufen.

SETZEN DES SPEICHERANFANGS
1) Ubertrags-Flag I6schen.
2) Diese Routine aufrufen.

BEISPIEL:

;MOVE BOTTOM OF MEMORY UP 1 PAGE

SEC ;READ MEMORY BOTTOM

JSR MEMBOT

INY

CLC ;SET MEMORY BOTTOM TO NEW VALUE
JSR MEMBOT

B-17. Funktionsname: MEMTOP

Zweck: Setzen des Zeigers fur das obere Speicherende
Aufrufadresse: $FF99 (HEX) 65433 (Dezimal)
Kommunikationsregister: .X, .Y

Vorbereitungsroutinen: Keine

Fehlerrickmeldungen: Keine

Stapelbedarf: 2

BeeinfluBte Register: X, .Y

Beschreibung: Uber diese Routine wird das RAM-Ende gesetzt. Ist beim Aufruf
dieser Routine das Akkumulator-Ubertragsbit gesetzt, dann wird der Zeiger des
RAM-Endes in das Register .X und .Y geladen. Ist beim Aufruf dieser Routine das
Akkumulator-Ubertragsbit geléscht, dann werden die Inhalte von Register .X und .Y
in den Speicherendezeiger geladen und so die Speicherendposition geandert.

BEISPIEL:

;DEALLOCATE THE RS-232 BUFFER

SEC

JSR MEMTOP ;READ TOP OF MEMORY
DEX

CLC

JSR MEMTOP ;SET NEW TOP OF MEMORY

284 MASCHINENSPRACHE



B-18. Funktionsname: OPEN

Zweck: Offnen einer logischen Datei
Aufrufadresse: $FFCO (HEX) 65472 (Dezimal)
Kommunikationsregister: Keine
Vorbereitungsroutinen: SETLFS, SETNAM
Fehlerrickmeldungen: 1,2,4,5,6,240, READST
Stapelbedarf: Keiner

BeeinfluBte Register: A, X, .Y

Beschreibung: Uber diese Routine kann eine logische Datei gedffnet werden.
Nach Einrichten einer logischen Datei kann diese fir Ein-/Ausgaben benutzt
werden. Bei den meisten KERNAL-Ein-/Ausgaberoutinen wird diese Routine zum
Erstellen der entsprechenden logischen Dateien aufgerufen. Fir die Verwendung
dieser Routine sind keine Parameter erforderlich, es miissen jedoch die KERNAL-
Routinen SETLFS und SETNAM zuvor aufgerufen werden.

Vorgehensweise:

0) Routine SETLFS benutzen.
1) Routine SETNAM benutzen.
2) Diese Routine aufrufen.

BEISPIEL.:
Dies ist eine Implementierung der BASIC-Anweisung: OPEN 15,8,15,“1/0“.

LDA #NAME2-NAME ;LENGTH OF FILE NAME FOR SETLFS
LDY #>NAME ;ADDRESS OF FILE NAME
LDX #<NAME
JSR SETNAM
LDA #15
LDX #8
LDY #15
JSR SETLFS
JSR OPEN
NAME  .BYT 'l/O’
NAME2

MASCHINENSPRACHE 285



B-19. Funktionsname: PLOT

Zweck: Cursorposition lesen/setzen
Aufrufadresse: $FFFO (HEX) 65520 (Dezimal)
Kommunikationsregister: A, X, .Y
Vorbereitungsroutinen: Keine
Fehlerrickmeldungen: Keine

Stapelbedarf: 2

BeeinfluBte Register: A, X, .Y

Beschreibung: Ist beim Aufruf dieser Routine das Akkumulator-Ubertrag-Flag
gesetzt, dann wird die derzeitige Cursorposition auf dem Bildschirm (in X-/Y-
Koordinaten) in Register .Y und .X geladen. Y ist die Spaltennummer des Cursor-
platzes (0—79) und X die Reihennummer (0—24). Ist beim Aufruf das Ubertragsbit
geldscht, dann bewegt sich der Cursor in die durch XY gegebene Position
(entsprechend Register .Y und .X).

Vorgehensweise:

LESEN DER CURSORPOSITION

1) Ubertrags-Flag setzen.

2) Diese Routine aufrufen.

3) X- und Y-Position aus Register .X bzw. .Y lesen.

SETZEN DER CURSORPOSITION

1) Ubertrags-Flag Iéschen.

2) In Register .Y und .X die gewunschte Cursorposition schreiben.
3) Diese Routine aufrufen.

BEISPIEL:

; MOVE THE CURSOR TO ROW 10, COLUMN 5 (5,10)
LDX #10

LDY #5

CLC

JSR PLOT

286 MASCHINENSPRACHE



B-20. Funktionsname: RAMTAS

Zweck: RAM-Test

Aufrufadresse: $FF87 (HEX) 654 %5 (Dezimal)
Kommunikationsregister: .A, X, .Y
Vorbereitungsroutinen: Keine
Fehlerrickmeldungen: Keine

Stapelbedarf: 2

BeeinfluBte Register: .A, .X.,.Y

Beschreibung: Uber diese Routine wird der RAM getestet und der obere bzw.
untere Speicherzeiger gesetzt. AuBerdem werden die Speicherplatze $0000 bis
$0101 und $0200 bis $03FF geldscht. AuBerdem wird der Kassettenpuffer initiali-
siert und der Bildschirmanfang auf $0400 gesetzt. Normalerweise wird diese
Routine als Teil der Initialisierung eines Programmoduls des COMMODORE 64
aufgerufen.

BEISPIEL:
JSR RAMTAS

B-21. Funktionsname: RDTIM

Zweck: Systemtaktgeber lesen
Aufrufadresse: $FFDE (HEX) 65502 (Dezimal)
Kommunikationsregister: A, X, .Y
Vorbereitungsroutinen: Keine
Fehlerriickmeldungen: Keine

Stapelbedarf: 2

BeeinfluBte Register: A, X, .Y

Beschreibung: Diese Routine wird zum Lesen des Systemtaktgebers benutzt.
Die Auflésung betragt hierbei 1/60 s. Durch die Routine werden 3 Bytes ermittelt.
Der Akkumulator enthélt das signifikanteste (h6chste) Byte, das X-Indexregister das
nachste signifikante Byte und das Y-Indexregister das am wenigsten signifikante
Byte.

BEISPIEL:

JSR RDTIM
STY TIME
STX TIME+1
STA TIME+2

TIME *=*+3

MASCHINENSPRACHE 287



B-22. Funktionsname: READST

Zweck: Statuswort lesen

Aufrufadresse: $FFB7 (HEX) 65463 (Dezimal)
Kommunikationsregister: .A
Vorbereitungsroutinen: Keine
Fehlerrickmeldungen: Keine

Stapelbedarf: 2

BeeinfluBte Register: .A

Beschreibung: Uber diese Routine wird der derzeitige Status der Ein-/Ausgabe-
gerate im Akkumulator abgelegt. Diese Routine wird normalerweise nach neuer
Kommunikation mit einem Ein-/Ausgabegerat aufgerufen. Sie gibt Ihnen Informatio-
nen Uber den Geréatestatus oder Fehler, die wahrend der Ein-/Ausgabe aufgetreten
sind.

Die in den Akkumulator Ubertragenen Bits enthalten folgende Informationen: (Siehe

nachstehende Tabelle).

KASSETTE
ST SERIELLEN UBER-
Al NUMERI- LESEN VON BUS/ PRUFEN
BlFE SCHER KASSETTE | SCHREIBEN/ (VERIFY)
POSITION|  \weRT LESEN + LADEN
(LOAD)
0 1 Zeitsperre
(timeout)
Schreiben
1 2 Zeitsperre
(timeout)
Lesen
2 4 Kurzer Satz Kurzer Satz
2 8 Langer Satz Langer Satz
4 16 Nicht Nicht
korrigierbarer korrigierbarer
Lesefehler Lesefehler
5 32 Prifsummen- Prifsummen-
fehler fehler
6 64 Dateiende EOI-Leitung
7 —128 Bandende Gerét nicht Bandende
vorhanden

288 MASCHINENSPRACHE




Vorgehensweise:

1) Diese Routine aufrufen.
2) Programminformation in Register .A decodieren.

BEISPIEL:
;CHECK FOR END OF FILE DURING READ
JSR READST
AND #64 ;CHECK EOF BIT (EOF=END OF FILE)
BNE EOF ;BRANCH ON EOF

B-23. Funktionsname: RESTOR

Zweck: Normalzustand des Systems einstellen
Aufrufadresse: $FF8A (HEX) 65418 (Dezimal)
Vorbereitungsroutinen: Keine
Fehlerrickmeldungen: Keine

Stapelbedarf: 2

BeeinfluBte Register: A, X, .Y

Beschreibung: Uber diese Routine werden die Standardwerte samtlicher vom
KERNAL, von BASIC-Routinen und vom Interrupt benutzten Systemvektoren riick-
gestellt. Uber die KERNAL-Routine VECTOR kénnen die einzelnen Systemvekto-
ren gelesen und aufbereitet werden.

Vorgehensweise:

1) Diese Routine aufrufen.

BEISPIEL:

JSR RESTOR

B-24. Funktionsname: SAVE

Zweck: Ubertragen des Speicherinhalts auf ein entsprechendes Gerat
Aufrufadresse: $FFD8 (HEX) 65496 (Dezimal)
Kommunikationsregister: A, X, .Y

Vorbereitungsroutinen: SETLFS, SETNAM

Fehlerrickmeldungen: 5,8,9, READST

Stapelbedarf: Keiner

BeeinfluBte Register: A, X, .Y

MASCHINENSPRACHE 289



Beschreibung: Uber diese Routine wird ein Speicherbereich auf einem externen
Speichermedium abgespeichert. Der Speicher wird ab der durch den Akkumulator
festgelegten indirekten Adresse auf Seite 0 bis zu der in den Registern .X und .Y
abgelegten Adresse abgespeichert. Er wird zu einer logischen Datei eines Ein-/
Ausgabegerates Ubertragen. Vor dem Aufruf dieser Routine sind die Routinen
SETLFS und SETNAM zu verwenden. Zum Sichern auf Gerat Nr. 1 (Datassette™)
ist jedoch kein Dateiname erforderlich. Wird versucht, auf eine andere Vorrichtung
ohne Dateiname zu speichern, kommt es zu einem Fehler.

Anmerkung: Es ist nicht moglich, auf Gerdt Nr. O (Tastatur), 2 (RS-232) und 3 (Bildschirm) zu
speichern, da sonst eine Fehlermeldung erfolgt und die Speicherung gestoppt wird.

Vorgehensweise:

0) Routine SETLFS und SETNAM ausfiihren (wenn nicht auf Band oder Dateiname
gespeichert werden soll).

1) Zwei aufeinanderfolgende Platze der Zero-Page mit dem Zeiger laden, der auf
den Anfang des abzuspeichernden Bereichs zeigt (standardméaBig kommt beim
6502 das niederwertige Byte zuerst und danach das hdherwertige Byte).

2) Die Adresse des Zeigers in der Zero-Page in den Akkumulator laden.

3) Das niederwertige Byte bzw. das héherwertige Byte der Endadresse des abzu-
speichernden Bereiches in Register .X und .Y laden.

4) Diese Routine aufrufen.

BEISPIEL:
LDA #1 ;DEVICE=1:CASSETTE
JSR SETLFS
LDA #0 ;NO FILE NAME
JSR SETNAM
LDA PROG ;LOAD START ADDRESS OF SAVE
STA TXTTAB ; (LOW BYTE)
LDA PROG+1
STA TXTTAB+1 ; (HIGH BYTE)
LDX VARTAB ;LOAD .X WITH LOW BYTE OF END OF SAVE
LDY VARTAB+1 ;LOAD .Y WITH HIGH BYTE

LDA #<TXTTAB ;LOAD ACCUMULATOR WITH PAGE 0 OFFSET
JSR SAVE

290 MASCHINENSPRACHE



B-25. Funktionsname: SCNKEY

Zweck: Abfrage der Tastatur

Aufrufadresse: $FFIF (HEX) 65439 (Dezimal)
Kommunikationsregister: Keine
Vorbereitungsroutinen: |OINIT
Fehlerrickmeldungen: Keine

Stapelbedarf: 5

BeeinfluBte Register: A, X, .Y

Beschreibung: Uber diese Routine wird die Tastatur des COMMODORE 64
abgefragt und so festgestellt, ob und wenn ja, welche Tasten gedrickt wurden. Dies
ist die gleiche Routine, die bei jedem Interrupt aufgerufen wird. Nach Driicken einer
Taste wird der entsprechende ASCII-Wert in den Tastaturpuffer geschrieben.
Diese Routine wird nur aufgerufen, wenn die normale IRQ-Unterbrechung (ibergan-
gen wird.

Vorgehensweise:

1) Diese Routine aufrufen.

BEISPIEL:
GET JSR SCNKEY ;SCAN KEYBOARD
JSR GETIN ;GET CHARACTER
CMP #0 ;IS 1T NULL?
BEQ GET ;YES ... SCAN AGAIN

JSR CHROUT  ;PRINT IT

B-26. Funktionsname: SCREEN

Zweck: Ermitteln des Bildschirmformats
Aufrufadresse: $FFED (HEX) 65517 (Dezimal)
Kommunikationsregister: .X, .Y
Vorbereitungsroutinen: Keine

Stapelbedarf: 2

BeeinfluBte Register: .X, .Y

Beschreibung: Diese Routine gibt das Bildschirmformat wieder, z. B. 40 Spalten
in .X und 25 Zeilen in .Y. Sie kann benutzt werden, um zu bestimmen, auf welcher
Maschine ein Programm lduft. Diese Funktion wurde fir den COMMODORE 64
eingeflihrt, um Ihre Programme leichter mit anderen Geréaten kompatibel machen zu
kénnen.

MASCHINENSPRACHE 291



Vorgehensweise:

1) Diese Routine aufrufen.

BEISPIEL:

JSR SCREEN
STX MAXCOL
STY MAXROW

B-27. Funktionsname: SECOND

Zweck: Ubertragen der Sekundaradresse fur LISTEN
Aufrufadresse: $FF93 (HEX) 65427 (Dezimal)
Kommunikationsregister: .A

Vorbereitungsroutinen: LISTEN
Fehlerrickmeldungen: Siehe READST

Stapelbedarf: 8

BeeinfluBte Register: .A

Beschreibung: Uber diese Routine wird eine Sekundédradresse nach Aufruf der
LISTEN-Routine zu einem Ein-/Ausgabegerét Ubertragen. Das Gerat ist danach
empfangsbereit. Diese Routine kann nicht zur Ubertragung einer Sekundéradresse
nach dem Aufruf der TALK-Routine benutzt werden.

Eine Sekundaradresse wird normalerweise zur Ubertragung von zusatzlichen Infor-
mationen vor der Ein-/Ausgabe benutzt.

Vorgehensweise:

1) Zu lbertragende Sekundaradresse in den Akkumulator laden.
2) Diese Routine aufrufen.

BEISPIEL:

:ADDRESS DEVICE #8 WITH COMMAND (SECONDARY ADDRESS) #15
LDA #8

JSR LISTEN

LDA #15

JSR SECOND

292 MASCHINENSPRACHE



B-28. Funktionsname: SETLFS

Zweck: Einrichten einer logischen Datei
Aufrufadresse: $FFBA (HEX) 65466 (Dezimal)
Kommunikationsregister: .A, .X,.Y
Vorbereitungsroutinen: Keine
Fehlerrickmeldungen: Keine

Stapelbedarf: 2

BeeinfluBte Register: Keine

Beschreibung: Uber diese Routine wird die logische Dateinummer, Gerite-
adresse und eine Sekundaradresse (Befehlsnummer) fiir andere KERNAL-Routi-
nen eingerichtet.

Die logische Dateinummer wird vom System als eine Art Schliissel fiir die durch die
OPEN-Routinen erstellte Dateitabelle benutzt. Fiir die Geriteadressen stehen die
Zahlen 0 bis 31 zur Verfiigung. Die entsprechenden Codes der Peripherie-Gerite
beim COMMODORE 64 lauten wie folgt:

ADRESSE VORRICHTUNG

Tastatur

Datassette™ #1

RS-232C

Bildschirmanzeige

Drucker am seriellen Bus
Diskettenstation am seriellen Bus

0B WN-—= O

Eine Geratenummer von 4 oder dariiber bezieht sich automatisch auf Gerate am
seriellen Bus.
Ein Geratebefehl wird als Sekundéradresse Uber den seriellen Bus (bertragen,
nachdem die Gerdtenummer wahrend des seriellen Handshakes (ibertragen wurde.
Wird keine Sekundéaradresse ubertragen, dann muB Indexregister .Y auf 255
gesetzt sein.

Vorgehensweise:
1) Logische Dateinummer in den Akkumulator laden.

2) Geratenummer in Index .X laden.
3) Befehl in Index .Y laden.

MASCHINENSPRACHE 293



BEISPIEL:

FOR LOGICAL FILE 32, DEVICE #4, AND NO COMMAND:
LDA #32

LDX #4

LDY #255

JSR SETLFS

B-29. Funktionsname: SETMSG

Zweck: Ausgabe von Systemmeldungen
Aufrufadresse: $FF90 (HEX) 65424 (Dezimal)
Kommunikationsregister: .A
Vorbereitungsroutinen: Keine
Fehlerrickmeldungen: Keine

Stapelbedarf: 2

BeeinfluBte Register: .A

Beschreibung: Durch diese Routine werden Anzeigen von Fehler- und Steuer-
meldungen uber den KERNAL gesteuert. Bei Aufruf der Routine werden je nach
Inhalt des Akkumulators Fehler oder Steuermeldungen angezeigt. Eine Fehlermel-
dung ist z. B. FILE NOT FOUND. PRESS PLAY ON CASSETTE ist z. B. eine
Steuermeldung.

Bit 6 und 7 bestimmen, woher die Meldungen kommen. Ist Bit 7 1 gesetzt, dann
wird eine der Fehlermeldungen vom KERNAL angezeigt. Ist Bit 6 gesetzt, dann
werden Steuermeldungen angezeigt.

Vorgehensweise:

1) Den Akkumulator auf den gewunschten Wert setzen.
2) Diese Routine aufrufen.

BEISPIEL:

LDA #$40

JSR SETMSG ;TURN ON CONTROL MESSAGES
LDA #$80

JSR SETMSG ;TURN ON ERROR MESSAGES

LDA #0

JSR SETMSG ;TURN OFF ALL KERNAL MESSAGES

294 MASCHINENSPRACHE



B-30. Funktionsname: SETNAM

Zweck: Festlegen des Dateinamens
Aufrufadresse: $FFBD (HEX) 65469 (Dezimal)
Kommunikationsregister: .A, .X, .Y
Vorbereitungsroutinen: Keine

Stapelbedarf: Keiner

BeeinfluBte Register: Keine

Beschreibung: Uber diese Routine werden die Dateinamen fiir die Routinen
OPEN, SAVE oder LOAD festgelegt. Die Dateinamenlange wird in den Akkumulator
geladen. Die Adresse des Dateinamens wird in die Register .X und .Y geladen. Fir
6502 gilt standardméBig das Format niederwertiges Byte/hdherwertiges Byte. Die
Adresse kann eine beliebige glltige Systemspeicheradresse sein, ab der der
Dateiname als String gespeichert ist. Wird kein Dateiname gewd{inscht, wird der
Akkumulator auf 0 gesetzt (0-Dateilédnge). In diesem Fall konnen die Register .X und
.Y auf eine beliebige Speicheradresse gesetzt werden.

Vorgehensweise:

1) Lange des Dateinamens in den Akkumulator laden.

)
2) Niederwertiges AdreBbyte des Dateinamens in Indexregister .X laden.
3) Hoherwertiges AdreBbyte in Indexregister .Y laden.
4) Diese Routine aufrufen.
BEISPIEL:
LDA #NAME2-NAME ;LOAD LENGTH OF FILE NAME
LDX #<NAME ;LOAD ADDRESS OF FILE NAME
LDY #>NAME
JSR SETNAM

B-31. Funktionsname: SETTIM

Zweck: Systemtaktgeber setzen
Aufrufadresse: $FFDB (HEX) 65499 (Dezimal)
Kommunikationsregister: .A, .X, .Y
Vorbereitungsroutinen: Keine
Fehlerriickmeldungen: Keine

Stapelbedarf: 2

BeeinfluBte Register: Keine

MASCHINENSPRACHE 295



Beschreibung: Eine Uhr wird alle 1/60 s (=1"jiffy") von einer Interrupt-Routine
aktualisiert. Die Uhr ist 3 Bytes “lang”, so daB sie bis zu 5184000 “jiffies” (24
Stunden) anzeigen kann. Dann erfolgt die Rickstellung auf 0. Vor dem Aufruf dieser
Routine muB in den Akkumulator das signifikanteste Byte, in Indexregister .X das
néchste signifikante Byte und in Indexregister .Y das am wenigsten signifikante Byte
der Ausgangs-Zeiteinstellung (in jiffies) eingegeben werden.

Vorgehensweise:

1) Das signifikanteste Byte der 3-Byte-Zahl in den Akkumulator laden.
2) Das nachste Byte in Register .X laden.
3) Das am wenigsten signifikante Byte in Register .Y laden.
4) Diese Routine aufrufen.
BEISPIEL:
;SET THE CLOCK TO 10 MINUTES = 3600 JIFFIES
LDA #0 ; MOST SIGNIFICANT
LDA #>3600
LDY #<3600 ; LEAST SIGNIFICANT
JSR SETTIM

B-32. Funktionsname: SETTMO

Zweck: Setzen des Timeout-Flags fiir den IEEE-Bus
Aufrufadresse: $FFA2 (HEX) 65442 (Dezimal)
Kommunikationsregister: .A

Vorbereitungsroutinen: Keine
Fehlerrickmeldungen: Keine

Stapelbedarf: 2

BeeinfluBte Register: Keine

Anmerkung: Diese Routine wird ausschlieBlich mit einer zusétzlichen |IEEE-Karte benutzt!

Beschreibung: Durch diese Routine wird das Timeout-Flag fir den IEEE-Bus
gesetzt. Ist dieses Kennzeichen gesetzt, dann wartet der COMMODORE 64 64ms
auf die Meldung eines Gerats am IEEE-Port. Antwortet das Gerat nicht auf das DAV-
Signal (glltige Datenadresse) des COMMODORE 64 innerhalb dieses Zeitraums,
dann erkennt der Computer eine Fehlerbedingung und verldBt die Handshake-
Sequenz. Ist beim Aufruf dieser Routine Bit 7 im Akkumulator auf O gesetzt, dann
sind Timeouts wirksam. Entsprechend sind Timeouts unwirksam, wenn Bit 7 auf 1
gesetzt ist.

296 MASCHINENSPRACHE



|IEEE-Karte.

Anmerkung: Der COMMODORE 64 benutzt diese Timeout-Routine nur im Zusammenhang mit der

Vorgehensweise:

SETZEN DES TIMEOUT-FLAGS
1) Bit 7 des Akkumulators auf O setzen.
2) Diese Routine aufrufen.

RUCKSTELLEN DES TIMEOUT-FLAGS
1) Bit 7 des Akkumulators auf 1 setzen.
2) Diese Routine aufrufen.

BEISPIEL:

;DISABLE TIMEOUT
LDA #0
JSR SETTMO

B-33. Funktionsname: STOP

Zweck: Abfrage der -Taste
Aufrufadresse: $FFE1 (HEX) 65505 (Dezimal)
Kommunikationsregister: .A
Vorbereitungsroutinen: Keine
Fehlerrickmeldungen: Keine

Stapelbedarf: Keiner

BeeinfluBte Register: A, .X.

Beschreibung: Wurde wahrend eines UDTIM-Aufrufs die
gedrickt, dann wird nach Aufruf dieser Routine das Z-Flag gesetzt. Darliber hinaus
werden die Kanéle auf die Standardwerte zuriickgesetzt. Alle anderen Flags bleiben
unverandert. War die -Taste nicht gedrickt, enthadlt der Akkumulator 1
Byte, das die letzte Reihe der Tastatur-Abfrage wiedergibt. Auf diese Weise kann
der Bediener auch priifen, ob bestimmte andere Tasten gedriickt wurden.

Vorgehensweise:

0) Vor dieser Routine muB UDTIM aufgerufen werden.

1) Diese Routine aufrufen.
2) Auf O-Flag hin uberprifen.

MASCHINENSPRACHE

-Taste

297




BEISPIEL:

JSR UDTIM  ;SCAN FOR STOP

JSR STOP
BNE *+5 ;KEY NOT DOWN
JMP READY ;=...STOP

B-34. Funktionsname: TALK

Zweck: TALK-Befehl fir ein Gerat am seriellen Bus
Aufrufadresse: $FFB4 (HEX) 65460 (Dezimal)
Kommunikationsregister: .A

Vorbereitungsroutinen: Keine
Fehlerrickmeldungen: Siehe READST
Stapelbedarf: 8

BeeinfluBte Register: .A

Beschreibung: Um mit dieser Routine zu arbeiten, muB zunachst eine Gerate-
nummer zwischen 0 und 31 in den Akkumulator geladen werden. Nach dem Aufruf
wird dann Bit fur Bit durch diese Routine ODER-verknlpft, um die Gerdtenummer in
eine TALK-Adresse umzuwandeln. Dieses Datum wird dann als Befehl uber den
seriellen Bus Ubertragen.

Vorgehensweise:

1) Geratenummer in den Akkumulator laden.
2) Diese Routine aufrufen.

BEISPIEL:
;COMMAND DEVICE #4 TO TALK

LDA #4
JSR TALK

298 MASCHINENSPRACHE



B-35. Funktionsname: TKSA

Zweck: Ubertragen einer Sekundéaradresse zu einem Gerét, das den TALK-Befehl
erhalten hat

Aufrufadresse: $FF96 (HEX) 65430 (Dezimal)

Kommunikationsregister: .A

Vorbereitungsroutinen: TALK

Fehlerrickmeldungen: Siehe READST

Stapelbedarf: 8

BeeinfluBte Register: .A

Beschreibung: Diese Routine lbertrégt eine Sekundéradresse Uber den Serien-
bus zu einem TALK-Geréat. Beim Aufruf dieser Routine muB im Akkumulator eine
Zahl zwischen 0 und 31 geladen sein. Diese Zahl wird dann als Sekundar-
AdreBbefehl uber den seriellen Bus gesandt. Zuvor ist unbedingt die TALK-Routine
aufzurufen. TKSA ist nicht nach LISTEN wirksam.

Vorgehensweise:

0) TALK-Routine benutzen.
1) Sekundaradresse in den Akkumulator laden.
2) Diese Routine aufrufen.

BEISPIEL:

;TELL DEVICE #4 TO TALK WITH COMMAND #7
LDA #4

JSR TALK

LDA #7

JSR TALKSA

B-36. Funktionsname: UDTIM

Zweck: Aktualisierung des Systemtaktgebers
Aufrufadresse: $FFEA (HEX) 65514 (Dezimal)
Kommunikationsregister: Keine
Vorbereitungsroutinen: Keine
Fehlerriickmeldungen: Keine

Stapelbedarf: 2

BeeinfluBte Register: .A, .X

MASCHINENSPRACHE 299



Beschreibung: Uber diese Routine wird die Systemuhr aktualisiert. Normaler-
weise wird sie alle 1/60 s von der normalen KERNAL-Interrupt-Routine aufgerufen.
Arbeitet das Benutzer-Programm mit eigenen Interrupts, dann muB zur Zeitaktuali-
sierung diese Routine aufgerufen werden.

Soll weiterhin die Taste wirksam bleiben, dann muB die ([@fIg-Tasten-
routine aufgerufen werden.

Vorgehensweise:
1) Diese Routine aufrufen.
BEISPIEL:
JSR UDTIM
B-37. Funktionsname: UNLSN

Zweck: Ubertragung eines UNLISTEN-Befehls
Aufrufadresse: $FFAE (HEX) 65454 (Dezimal)
Kommunikationsregister: Keine
Vorbereitungsroutinen: Keine
Fehlerrickmeldungen: Siehe READST
Stapelbedarf: 8

BeeinfluBte Register: .A

Beschreibung: Uber diese Routine erhalten alle Gerate am seriellen Bus den
Befehl, den Datenempfang vom COMMODORE 64 zu beenden. Durch Aufruf
dieser Routine wird ein UNLISTEN-Befehl Uber den seriellen Bus Ubertragen.
Hierbei werden nur die Gerate beeinfluBt, die zuvor einen LISTEN-Befehl erhalten
haben. Normalerweise wird diese Routine benutzt, nachdem der COMMODORE 64
die Datenlibertragung zu einem externen Gerat beendet hat. Nach dem UNLISTEN-
Befehl sind die Gerate nicht mehr an den seriellen Bus angeschlossen und stehen
fur andere Zwecke zur Verfligung.

Vorgehensweise:
1) Diese Routine aufrufen.
BEISPIEL:

JSR UNLSN

300 MASCHINENSPRACHE



B-38. Funktionsname: UNTLK

Zweck: Ubertragung eines UNTALK-Befehls
Aufrufadresse: $FFAB (HEX) 65451 (Dezimal)
Kommunikationsregister: Keine
Vorbereitungsroutinen: Keine
Fehlerrickmeldungen: Sienhe READST
Stapelbedarf: 8

BeeinfluBte Register: .A

Beschreibung: Uber diese Routine wird ein UNTALK-Befehl iber den seriellen
Bus ubertragen. Alle Befehle, die zuvor einen TALK-Befehl erhalten hatten, been-
den dann die Datenlbertragung.

Vorgehensweise:
1) Diese Routine aufrufen.
BEISPIEL:
JSR UNTLK
B-39. Funktionsname: VECTOR

Zweck: Verwaltung der RAM-Vektoren
Aufrufadresse: $FF8D (HEX) 65421 (Dezimal)
Kommunikationsregister: .X, .Y
Vorbereitungsroutinen: Keine
Fehlerrickmeldungen: Keine

Stapelbedarf: 2

BeeinfluBte Register: A, X, .Y

Beschreibung: Diese Routine verwaltet alle im RAM gespeicherten Sprungvekto-
ren. Ist beim Aufruf dieser Routine das Akkumulator-Ubertragsbit gesetzt, dann wird
der derzeitige Inhalt der RAM-Vektoren in einer Liste gespeichert, deren Adresse
durch die Inhalte der Register .X und .Y gegeben ist.

Ist beim Aufruf der Routine der Ubertrag geléscht, dann wird die durch Register .X
und .Y in ihrer Lage gegebene Liste auf die System-RAM-Vektoren iibertragen.

Anmerkung: Beim Arbeiten mit dieser Routine ist duBerste Vorsicht geboten. Zunachst solite der
gesamte Vektor-Inhalt in den Benutzerbereich gelesen, die gewiinschten Vektoren geindert und
danach dieser Inhalt zurlick in die Systemvektoren Ubertragen werden.

MASCHINENSPRACHE 301



Vorgehensweise:

LESEN DER SYSTEM-RAM-VEKTOREN

1) Ubertrag setzen.

2) Register .X und .Y auf die gewlinschte Vektor-Adresse zeigen lassen.
3) Diese Routine aufrufen.

LADEN DER SYSTEM-RAM-VEKTOREN

1) Ubertragsbit I6schen.

2) Register .X und .Y auf die zu ladende RAM-AdreB-Vektorliste zeigen lassen.
3) Diese Routine aufrufen.

BEISPIEL:

;CHANGE THE INPUT ROUTINES TO NEW SYSTEM
LDX #<USER

LDY #>USER

SEC

JSR VECTOR ;READ OLD VECTORS
LDA #<MYINP  ;CHANGE INPUT

STA USER+10

LDA #>MYINP

STA USER+11

LDX #<USER

LDY #>USER

CLC

JSR VECTOR ;ALTER SYSTEM

USER *="+26

302 MASCHINENSPRACHE



FEHLERMELDUNGEN

Nachstehend finden Sie eine Liste der Fehlermeldungen, die beim Arbeiten mit den
KERNAL-Routinen auftreten kdnnen. Kommt es zu einem dieser Fehler, dann wird
das Ubertragsbit des Akkumulators gesetzt und die Zahl der Fehlermeldungen in
den Akkumulator Gbertragen.

Anmerkung: Einige KERNAL-Ein-/Ausgaberoutinen arbeiten nicht mit diesen Codes der Fehlermel-
dungen. Die Fehler werden statt dessen durch die KERNAL-Routine READST identifiziert.

NUMMER

BEDEUTUNG

o

© oo ~NOOBWN -

240

Routine durch -Taste beendet
Zu viele offene Dateien

Datei bereits offen

Datei nicht offen

Datei nicht gefunden

Gerét nicht vorhanden

Keine Eingabe-Datei

Keine Ausgabe-Datei

Dateiname fehit

Unzuléssige Geratenummer
Speicherende verandert (RS-232C)

MASCHINENSPRACHE 303



ARBEITEN MIT MASCHINENSPRACHE UND BASIC

Es

gibt verschiedene Arten, wie beim COMMODORE 64 BASIC UND MASCHI-

NENSPRACHE benutzt werden konnen. Hierzu gehéren CBM-BASIC-Sonderan-
weisungen sowie spezielle Adressen. Um auf der Grundlage von BASIC beim
COMMODORE 64 die Maschinensprache-Routinen zu benutzen, gibt es finf
verschiedene Mdglichkeiten.

1)

304

1) BASIC-Anweisung SYS

2) BASIC-Funktion USR

3) Anderung eines RAM-Ein-/Ausgabevektors
4) Anderung eines RAM-Unterbrechungsvektors
5) Anderung der CHRGET-Routine

Durch die BASIC-Anweisung SYS X erfolgt ein Sprung zum Maschinenspra-
che-Unterprogramm bei Adresse X. Diese Routine muB mit einer RTS-Anwei-
sung (Ruckkehr vom Unterprogramm) enden. Hierdurch wird die Kontrolle
wieder an BASIC Ubertragen. Parameter werden normalerweise zwischen
Maschinensprache-Routine und BASIC-Programme Uber die BASIC-Anweisun-
gen PEEK und POKE sowie die entsprechenden Maschinensprache-Befehle
Ubertragen.

SYS ist ein sehr wirksamer Befehl, um BASIC mit Maschinensprache zu
kombinieren. Die Parameteriibertragung wird durch PEEK und POKE erleichtert.
Ein Programm kann mehrere SYS-Anweisungen fiir unterschiedliche (oder fur
dasselbe) Maschinensprache-Programm enthalten.

Durch die BASIC-Funktion USR(X) wird die Steuerung zum Maschinensprache-
Unterprogramm Ubertragen, das sich an der in den Speicherplatzen 785 und 786
gespeicherten Adresse befindet. (Die Adresse ist entsprechend dem Standard-
Format niederwertiges Byte/hdherwertiges Byte gespeichert.) Der Wert X wird
tber den Gleitpunktakkumulator #1, der bei Adresse $61 beginnt (siehe Spei-
cherbelegung fiir weitere Einzelheiten), zum Maschinensprache-Unterpro-
gramm Ubertragen. Durch Eingabe in den Gleitpunkt-Akkumulator kann ein Wert
zuriick zum BASIC-Programm (bergeben werden. Die Maschinensprache-
Routine muB fiir die Rickkehr zu BASIC mit einer RTS-Anweisung enden.
Alle Ein-/Ausgaben oder BASIC-Routinen, auf die die Vektor-Tabelle von Seite
3 (siehe ADRESSIERARTEN, ZERO-PAGE) zugreift, kénnen durch Benutzer-
Code verschoben oder geandert werden. Jeder 2-Byte-Vektor besteht aus einer
niederwertigen und einer hoherwertigen Byte-Adresse, die vom Betriebssystem
benutzt wird.

MASCHINENSPRACHE



4)

Vektoren kénnen am zuverlassigsten liber die KERNAL-Vektor-Routine geén-
dert werden. Einzelne Vektoren lassen sich jedoch auch durch POKE-Anwei-
sungen andern. Ein neuer Vektor zeigt auf eine vom Benutzer vorbereitete
Routine, die die Standardsystem-Routine ersetzen oder erweitern soll. Bei
Ausfiihrung des geeigneten BASIC-Befehls wird die Benutzer-Routine ausge-
fihrt. Ist danach eine Ausfiihrung der normalen System-Routine erforderlich,
dann muB das Programm zu der Adresse springen (JMP), die zuvor im Vektor
enthalten war. Anderenfalls muB die Routine am Ende eine RTS-Anweisung
enthalten, um die Steuerung zuriick an BASIC zu ubertragen.

Der Hardware-Interrupt-Vektor (IRQ) kann geandert werden. Alle 1/60 s
Ubertrégt das Betriebssystem die Steuerung der durch diesen Vektor bestimm-
ten Routine. Der KERNAL benutzt dies normalerweise zur Zeitberechnung, zur
Abfrage der Tastatur usw. Wird diese Technik eingesetzt, dann sollten Sie stets
die Steuerung der normalen IRQ-Routine Ubertragen, wenn nicht die Aus-
tausch-Routine zur Handhabung des CIA-Chips vorbereitet wurde. (Denken Sie
daran, daB die Routine mit RTI (Rickkehr vom Interrupt) enden muB, wenn das
CIA durch diese Routine kontrolliert wird.)

Diese Methode ist sehr nitzlich flir Aufgaben, die gleichzeitig mit einem BASIC-
Programm ablaufen sollen. Sie ist jedoch die schwierigste.

Anmerkung: VOR ANDERUNG DIESES VEKTORS MUSS DER INTERRUPT ABGESCHALTET
WERDEN.

BASIC benutzt die CHRGET-Routine, um jedes einzelne Zeichen oder
“tokens*” zu lesen.

Auf diese Weise kdnnen leicht neue BASIC-Befehle hinzugefligt werden. Natir-
lich muB jeder neue Befehl liber eine vom Benutzer geschriebene Maschinen-
sprache-Unterroutine ausgefihrt werden. Am einfachsten ist die Angabe eines
Zeichens (z. B. @), das vor jedem neuen Befehl stehen wird. Die neue Routine
CHRGET sucht nach diesem Sonderzeichen. Ist dies nicht vorhanden, dann wird
die Steuerung zur normalen BASIC-Routine CHRGET (bertragen. Wird das
Sonderzeichen jedoch gefunden, dann wird der neue Befehl durch Ihr Maschi-
nensprache-Programm interpretiert und ausgefihrt. Hierdurch wird vermieden,
daB sich die Ausflihrungszeit durch die Suche nach zusatzlichen Befehlen
verzogert. Diese Technik nennt man haufig auch “wedge*“.

MASCHINENSPRACHE 305



WO STEHEN MASCHINENSPRACHE-ROUTINEN?

Beim COMMODORE 64 liegt der beste Platz fiir Maschinensprache-Routinen bei
$CO000 bis $CFFF, vorausgesetzt, diese Routinen sind kiirzer als 4K-Byte. Dieser
Speicherbereich wird nicht durch BASIC beeinfluBt.

Kann oder soll das Maschinensprache-Programm aus irgendeinem Grund nicht an
Platz $C000 stehen (z. B. wenn die Routine langer als 4K-Byte ist), dann muB ein
gewisser Bereich am Anfang des BASIC-Speichers flir die Routine reserviert
werden. Das obere Speicherende liegt normalerweise bei $9FFF. Es kann Uber die
KERNAL-Routine MEMTOP oder durch folgende BASIC-Anweisungen geandert
werden:

10 POKE51,L:POKE5S2,H:POKES5,L:POKES6,H:CLR

Hierbei kennzeichnen H und L den héher- und niederwertigen Byte des neuen
Speicherendes. Um z. B. den Bereich von $9000 bis $9FFF fiir die Maschinenspra-
che zu reservieren, geben Sie folgendes ein:

10 POKES51,0:POKES52,144:POKES5,0:POKES6,144:CLR

WIE WIRD MASCHINENSPRACHE EINGEGEBEN?

Es gibt drei verschiedene Arten, um Maschinensprache-Programme zu einem
BASIC-Programm hinzuzufligen:

1) DATA-ANWEISUNGEN:

Maschinensprache-Routinen lassen sich in DATA-Anweisungen ablegen und kon-
nen zu Beginn des Programms in den Speicher gePOKEt werden. Dies ist die
einfachste Methode. Es brauchen nicht extra Programmteile abgespeichert zu
werden. Auch die Fehlersuche ist relativ einfach. Der Nachteil liegt jedoch darin, daB
mehr Speicherkapazitdt bendétigt wird und daB das POKEn des Programms einige
Zeit dauert. Diese Methode eignet sich daher nur fur kleinere Routinen.

306 MASCHINENSPRACHE



BEISPIEL:

10 RESTORE:FORX=1TO9:READA:POKE12*4096+X,A:NEXT

BASIC PROGRAM

1000 DATA 161,1,204,204,204,204,204,204,96

2) MASCHINENSPRACHE-MONITOR (MONITOR 64):

Uber dieses Programm kénnen Sie ein Programm entweder in hexadezimalen oder
symbolischen Codes (Mnemonics) eingeben und den Speicherbereich, der das
Programm enthalt, auf Kassette oder Diskette abspeichern. Vorteile sind hierbei die
leichtere Eingabe von Maschinensprache-Programmen, Fehlerbeseitigungs-Funk-
tionen sowie ein bedeutend schnelleres Abspeichern und Laden. Von Nachteil ist
jedoch, daB zu Beginn die Maschinensprache-Routine stets ber ein BASIC-
Programm von Kassette oder von Diskette geladen werden muB. (Beziiglich
weiterer Einzelheiten iber MONITOR 64 siehe Kapitel “Maschinensprache*.)

BEISPIEL:

Nachstehend sehen Sie ein BASIC-Programmbeispiel, das eine durch MONITOR
64 vorbereitete Maschinensprache-Routine benutzt. Die Routine muB dazu auf
Kassette gespeichert vorliegen.

10 IF FLAG=1 THEN 20

15 FLAG=1:LOAD “MACHINE LANGUAGE ROUTINE NAME*“,1,1
20

REST OF BASIC PROGRAM

3) ASSEMBLER

Die Vorteile sind @hnlich wie bei der Verwendung eines Maschinensprache-Moni-
tors. Die Programme lassen sich jedoch sogar noch leichter eingeben.

MASCHINENSPRACHE 307



SPEICHERBELEGUNG DES COMMODORE 64

308 MASCHINENSPRACHE

MARKE ADRESSE ADRESSE
(LABEL) (HEX) (DE2) BESCHREIBUNG

D6510 0000 0 6510 Datenrichtungsregister

P6510 0001 1 6510 8-Bit-Ein-/Ausgabe-
register

0002 2 Nicht benutzt

ADRAY1 0003-0004 34 Sprungvektor: Umwandlung
Gleitpunktzahl/Ganze Zahl

ADRAY 2 0005-0006 5-6 Sprungvektor: Umwandlung
Ganze Zahl/Gleitpunktzahl

CHARAC 0007 7 Suchzeichen

ENDCHR 0008 8 Flag: Suchen nach einem
Anflihrungszeichen am Ende
eines Strings

TRMPOS 0009 9 Bildschirmspalte ab letztem TAB

VERCK 000A 10 0 = LOAD, 1 = VERIFY

COUNT 000B 11 Eingabepufferzeiger, Anzahl

/ der Elemente

DIMFLG 000C 12 Flag: Standard-Felddimensio-
nierung

VALTYP 000D 13 Datentyp: $FF = String,
$00 = Numerisch

INTFLG 000E 14 Datentyp: $80 = Ganze Zahl,
$00 = Gleitpunktzahl

GARBFL 000F 15 Flag: DATAs lesen/LIST auf-
listen “garbage collection®

SUBFLG 0010 16 Flag: Benutzerfunktionsaufruf

INPFLG 0011 17 Flag: $00 = INPUT,
$40 = GET, $98 = READ

TANSGN 0012 18 Flag: Vorzeichen des TAN/Flag
fur Gleichheit bei Vergleich

0013 19 Flag: INPUT-Kommentar

LINNUM 0014-0015 20-21 Ganzzahliger Wert

TEMPPT 0016 22 Zeiger: Temporarer Stringstapel

LASTPT 0017-0018 23-24 Letzte Stringadresse

TEMPST 0019-0021 25-33 Stapel fiir temporare Strings

INDEX 0022—-0025 34-37 Bereich fur Hilfszeiger




MARKE ADRESSE ADRESSE BESCHREIBUNG
(LABEL) (HEX) (DEZ)

RESHO 0026—002A 38—42 Gleitpunktergebnis der
Multiplikation

TXTTAB 002B—002C | 4344 Zeiger: Anfang BASIC-Text

VARTAB 002D—002E | 4546 Zeiger: Anfang BASIC-Variablen

ARYTAB 002F-0030 4748 Zeiger: Anfang BASIC-Felder

STREND 0031-0032 49-50 Zeiger: Ende BASIC-Felder
(+1)

FRETOP 0033-0034 51-52 Zeiger: Anfang der String-
Speicherung

FRESPC 0035-0036 53-54 Hilfszeiger fur Strings

MEMSIZ 0037-0038 55-56 Zeiger: Oberste BASIC-Adresse

CURLIN 0039—-003A 57-58 Derzeitige BASIC-Zeilen-
nummer

OLDLIN 003B-003C | 59-60 Vorherige BASIC-Zeilennummer

OLDTXT 003D—003E | 61-62 Zeiger: BASIC-Anweisung fur
CONT

DATLIN 003F-0040 63—-64 Derzeitige DATA-Zeilennummer

DATPTR 0041-0042 65-66 Zeiger: Derzeitige DATA-
Adresse

INPPTR 0043-0044 67-68 Vektor: INPUT-Routine

VARNAM 0045-0046 69-70 Derzeitiger BASIC-Variablen-
name

VARPNT 0047-0048 71-72 Adresse der aktuellen Variablen

FORPNT 0049—-004A 73-74 Variablenzeiger flir FOR/NEXT

004B—-0060 75-96 Zwischenspeicher fiir BASIC-

Zeiger/Daten

FACEXP 0061 97 Gleitpunktakkumulator #1:
Exponent

FACHO 0062-0065 98-101 Gleitpunktakkumulator # 1:
Mantisse

FACSGN 0066 102 Gleitpunktakkumulator #1:
Vorzeichen

SGNFLG 0067 103 Zeiger: Polynomauswertung

BITS 0068 104 Gleitpunktakkumulator #1:
Uberlauf

ARGEXP 0069 105 Gleitpunktakkumulator #2:

Exponent

MASCHINENSPRACHE 309



310 MASCHINENSPRACHE

MARKE ADRESSE ADRESSE
(LABEL) (HEX) (DE2) BESCHREIBUNG

ARGHO 006A—006D 106-109 Gleitpunktakkumulator #2:
Mantisse

ARGSGN 006E 110 Gleitpunktakkumulator #2:
Vorzeichen

ARISGN 006F 111 Ergebnis des Vorzeichen-

vergleichs: Akku # 1 Akku #2

FACOV 0070 112 Gleitpunktakkumulator #1:
Niederwertige Stelle
(Rundung)

FBUFPT 0071--0072 113-114 Zeiger: Kassettenpuffer

CHRGET 0073-008A 115-138 Unterroutine: Nachstes Byte
vom BASIC-Text lesen

CHRGOT 0079 121 Erneutes Lesen des gleichen
Text-Bytes

TXTPTR 007A-007B 122-123 Zeiger: Derzeitiges Byte des
BASIC-Textes

RNDX 008B—008F 139-143 Eingangswert der RND-
Funktion

STATUS 0090 144 KERNAL-Ein-/Ausgabestatus-
wort: ST

STKEY 0091 145 Flag: STOP-Taste/RVS-Taste

SVXT 0092 146 Zeit-Konstante fur Kassette

VERCK 0093 147 Flag: 0 = LOAD, 1 = VERIFY

C3PO 0094 148 Flag: serieller Bus —Zeichen im
Puffer

BSOUR 0095 149 Zeichen im Puffer fur seriellen
Bus

SYNO 0096 150 Kassetten SYNC.-Nr. (EOT von
Kassette empfangen)

0097 151 Temporare Datenadresse

LDTND 0098 152 Anzahl der offenen Dateien/
Dateitabellen-Index

DFLTN 0099 153 Standard-Eingabegerat (0)

DFLTO 009A 154 Standard-Ausgabegerat (CMD)
3)

PRTY 009B 155 Paritatsbyte vom Band

DPSW 009C 156 Flag: Byte empfangen




MARKE ADRESSE ADRESSE
(LABEL) (HEX) (DE2) BESCHREIBUNG

MSGFLG 009D 157 Flag: $80 = Direktmodus,
$00 = Programm

PTR1 009E 158 Bandfehler/Zeichenpuffer

PTR2 009F 159 Bandfehler korrigiert

TIME 00A0—00A2 160-162 Echtzeituhr (ca.) 1/60 s

00A3-00A4 163—-164 Temporérer Datenbereich

CNTDN 00A5 165 Kassetten Sync.: Abwarts-
zahlung beim Schreiben

BUFPNT 00A6 166 Zeiger: Kassettenpuffer

INBIT 00A7 167 RS-232-Eingabebits/Kassette
temp.

BITCI 00A8 168 RS-232-Eingabebit-Zahlung/
Kassette temp.

RINONE 00A9 169 RS-232 Flag: Startbit-
Uberpriifung

RIDATA 00AA 170 RS-232-Eingabebyte-Puffer/
Kassette temp.

RIPRTY 00AB 171 RS-232-Eingabeparitat/
Kassette, Zéhlung

SAL 00AC-00AD | 172-173 Zeiger: Kassettenpuffer/Bild-
schirm scrollen

EAL O00AE-00AF | 174-175 Kassettenende/Programmende

CMPO 00B0-00B1 176-177 Kassetten-Zeit-Konstante

TAPEA1 00B2-00B3 178-179 Zeiger: Anfang des Kassetten-
puffers

BITTS 00B4 180 RS-232 nachstes Bit zum
Scrollen/Kassette temp.

NXTBIT 00B5 181 RS-232 Nachstes zu Uber-
tragendes Bit/Kassetten-
kennzeichen EOT

RODATA 00B6 182 RS-232 Bytepuffer

FNLEN 00B7 183 Léange der aktuellen Datei-
namen

LA 00B8 184 Logische Dateinummer

SA 00B9 185 Aktuelle Sekundaradresse

FA 00BA 186 Aktuelle Geratenummer

FNADR 00BB-00BC | 187-188 Zeiger: Aktueller Dateiname

MASCHINENSPRACHE 311



312 MASCHINENSPRACHE

MARKE ADRESSE ADRESSE
(LABEL) (HEX) (DE2) BESCHREIBUNG

ROPRTY 00BD 189 RS-232 Paritat/Kassette, temp.

FSBLK 00BE 190 Anzahl der zum Lesen/
Schreiben verbleibenden
Blocks

MYCH 00BF 191 Serieller Puffer

CAS1 00CO 192 Kassettenmotor-Flag

STAL 00C1-00C2 193-194 Ein-/Ausgabestartadresse

MEMUSS 00C3-00C4 195-196 Zeiger auf Vektoradressen des
KERNAL

LSTX 00C5 197 Derzeitig gedrickte Taste:
CHR$(n); 0 = Keine Taste

NDX 00C6 198 Anzahl der Zeichen im Tastatur-
puffer (Warteschlange)

RVS 00C7 199 Flag: Ausdruck negativer
Zeichen—1 = ja, 0 = nein

INDX 00C8 200 Zeiger: Ende der logischen
Zeile fir Eingabe

LXSP 00C9-00CA | 201-202 Cursor X/Y-Position fiir Eingabe

SFDX 00CB 203 Flag: Gedrickte Taste

BLNSW ooCC 204 Cursor an/aus: (0 = blinkender
Cursor)

BLNCT 00CD 205 Zahler fir blinkenden Cursor

GDBLN 00CE 206 Zeichen fir Cursorposition

BLNON 00CF 207 Flag: Cursor in Blinkphase

CRSW 00DO 208 Flag: INPUT oder GET uber
Tastatur

PNT 00D1-00D2 | 209-210 Zeiger: Derzeitige Bildschirm-
zeile

PNTR 00D3 211 Cursorspalte in derzeitiger Zeile

QTSW 00D4 212 Flag: Editor im Anfihrungs-
zeichen-Modus, $00 = NEIN

LNMX 00D5 213 Physische Bildschirmzeilen-
lange

TBLX 00D6 214 Zeile, in der sich Cursor befindet

00D7 215 Temporarer Datenbereich

INSRT 00D8 216 Flag: Einfllgemodus,

>0 = Anzahl der Einfligungen




MARKE ADRESSE ADRESSE BESCHREIBUNG
(LABEL) (HEX) (DEZ)

LDTBH1 00D9-00F2 217-242 Bildschirmzeilen-Verknupfungs-
tabelle/Editor temp.

USER O0OF3—-00F4 243-244 Zeiger: Derzeitiger Farb-RAM
des Bildschirms

KEYTAB 00F5—-00F6 245-246 Vektor: Tastatur Decodiertabelle

RIBUF 00F7-00F8 247-248 RS-232-Eingabepuffer-Zeiger

ROBUF 00F9—-00FA 249-250 RS-232-Ausgabepuffer-Zeiger

FREKZP OOFB-OOFE | 251-254 Freier Platz in der Zero-Page
flr Betriebssystem

BASZPT 00FF 255 Temp. BASIC-Datenbereich

0100-01FF 256-511 Stapelspeicher des Mikro-
prozessors
0100—-010A 256266 Arbeitsbereich Umwandlung

Gleitpunkt in ASCII

BAD 0100-013E 256-318 Bandfehler

BUF 0200-0258 512-600 System-Eingabepuffer

LAT 0259-0262 601-610 KERNAL-Tabelle: Aktive
logische Dateinummern

FAT 0263-026C 611-620 KERNAL-Tabelle: Gerate-Nr.
fur jede Datei

SAT 026D-0276 621-630 KERNAL-Tabelle: Sekundar-
adresse jeder Datei

KEYD 0277-0280 631-640 Tastaturpuffer (Warteschlange)
(FIFO)

MEMSTR 0281-0282 641-642 Zeiger: Startadresse des RAM
fur Betriebssystem

MEMSIZ 0283-0284 643644 Zeiger: Ende des RAM fir
Betriebssystem

TIMOUT 0285 645 Flag: Zeitliberschreitung auf
IEEE-Bus

COLOR 0286 646 Derzeitiger Zeichenfarbcode

GDCOL 0287 647 Hintergrundfarbe unter Cursor

HIBASE 0288 648 Bildschirmspeicher-Anfang
(Page)

XMAX 0289 649 GroBe des Tastaturpuffers

RPTFLG 028A 650 Flag: Tastenwiederholung,

$80 = Wiederholen

MASCHINENSPRACHE 313



314 MASCHINENSPRACHE

MARKE ADRESSE ADRESSE
(LABEL) (HEX) (DEZ) BESCHREIBUNG
KOUNT 028B 651 Zahlgeschwindigkeit fur
Wiederholen
DELAY 028C 652 Zahler fur Wiederholungs-
verzdégerung
SHFLAG 028D 653 Flag: Taste SHIFT/Taste CTRL/
C = Taste
LSTSHF 028E 654 Letztes SHIFT-Muster der
Tastatur
KEYLOG 028F-0290 655-656 Zeiger auf Tastatur-Decodier-
tabelle
MODE 0291 657 Flag: $80 = SHIFT unwirksam,
$00 = wirksam
AUTODN 0292 658 Flag: Automatisches Scrollen
(abwarts), 0 = EIN;
#0 = AUS
M51CTR 0293 659 RS-232: 6551 Kontrollregister
M51CDR 0294 660 RS-232: 6551 Befehlsregister
M51AJB 0295-0296 661-662 RS-232 nicht Standard (Bit-Zeit)
RSSTAT 0297 663 RS-232: 6551 Statusregister
BITNUM 0298 664 RS-232 Anzahl der noch zu
Ubertragenden Bits
BAUDOF 0299-029A 665—666 RS-232 Baud-Rate: Full Bit
Time (us)
RIDBE 029B 667 RS-232 Eingabepuffer-Ende
RIDBS 029C 668 RS-232 Eingabepuffer-Anfang
(Page)
RODBS 029D 669 RS-232 Ausgabepuffer-Anfang
(Page)
RODBE 029E 670 RS-232 Ausgabepuffer-Ende
IRQTMP 029F-02A0 671-672 Enthalt IRQ-Vektor wahrend
Kassetten-Ein-/Ausgabe
ENABL 02A1 673 RS-232
02A2 674 Temp. Speicherung fur Lesen
von Kassette
02A3 675 Temp Storage For Cassette
Read
02A4 676 Temp D1IRQ Indicator For




MARKE ADRESSE ADRESSE
(LABEL) (HEX) (DEZ) BESCHREIBUNG
02A5 677 Cassette Read
02A6 678 Temp For Line Index
PAL/NTSC Flag, 0 = NTSC,
02A7-02FF 679-767 1= PAL
IERROR 0300-0301 768-769 Vektor: BASIC-Fehlermeldung
anzeigen
IMAIN 0302-0303 770-771 Vektor: BASIC-Warmstart
ICRNCH 0304-0305 772-773 Vektor: BASIC-Text in Token
umwandeln
IQPLOP 0306-0307 774-775 Vektor: BASIC-Text listen
IGONE 0308-0309 776777 Vektor: BASIC-Befehl ausfuihren
IEVAL 030A-030B 778-779 Vektor: BASIC-Tokens-
Auswertung
SAREG 030C 780 Speicher fiir 6502 .A-Register
SXREG 030D 781 Speicher fiir 6502 .X-Register
SYREG 030E 782 Speicher fir 6502 .Y-Register
SPREG 030F 783 Speicher fir SP6502 SP-
Register
USRPOK 0310 784 USR-Sprung
USRADD 0311-0312 785786 USR-Adresse niederwertiges
Byte/hdherwertiges Byte
0313 787 Nicht benutzt
CINV 0314-0315 788-789 Vektor: Hardware Interrupt
(IRQ) (EA31)
CBINV 0316-0317 790-791 Vektor: BRK-Interrupt (FE66)
NMINV 0318-0319 792-793 Vektor: Nicht maskierbarer
Interrupt (NMI) (FE47)
IOPEN 031A-031B 794-795 KERNAL OPEN-Routine-Vektor
ICLOSE 031C-031D | 796-797 KERNAL CLOSE-Routine-
Vektor
ICHKIN 031E-031F 798-799 KERNAL CHKIN-Routine-Vektor
ICKOUT 0320-0321 800-801 KERNAL CHKOUT-Routine-
Vektor
ICLRCH 0322-0323 802-803 KERNAL CLRCHN-Routine-
Vektor
IBASIN 0324-0325 804-805 KERNAL CHRIN-Routine-

Vektor

MASCHINENSPRACHE 315

Unused



MARKE ADRESSE ADRESSE
(LABEL) (HEX) (DE2) BESCHREIBUNG
IBSOUT 0326-0327 806-807 KERNAL CHROUT-Routine-
Vektor
ISTOP 0328-0329 808-809 KERNAL STOP-Routine-Vektor
IGETIN 032A-032B 810-811 KERNAL GETIN-Routine-
Vektor
ICLALL 032C-032D | 812-813 KERNAL CLALL-Routine-
Vektor
USRCMD 032E-032F 814-815 Benutzer-IRQ
ILOAD 0330-0331 816-817 KERNAL LOAD-Routine-Vektor
ISAVE 0332-0333 818-819 KERNAL SAVE-Routine-Vektor
0334-033B 820-827 Nicht benutzt
TBUFFR 033C-03FB | 828-1019 Kassettenpuffer
03FC-03FF 1020-1023 Nicht benutzt
VICSCN 0400-07FF 1024-2047 1024 Byte Bildschirmspeicher-
Bereich
0400-07E7 1024-2023 Video-Matrix:
25 Zeilen x 40 Zeichen
07F8-07FF 2040-2047 Sprite-Datenzeiger
0800-9FFF 2048—40959 | Normaler BASIC-Programm-
bereich
8000-9FFF 32768—-40959 | VSP-ROM-8192 Bytes
(Optional)
AOO0-BFFF | 40960—49151| BASIC-ROM-8192 Bytes
(oder 8K-RAM)
C000-CFFF | 49152-53247 | RAM-4096 Bytes
DO00-DFFF | 53248-57343 | Ein-/Ausgabegerat und Farb-
RAM oder Zeichengenerator-
ROM oder RAM-4096 Bytes
EOO00-FFFF | 57344-65535| KERNAL ROM-8192 Bytes

(oder 8K-RAM)

316 MASCHINENSPRACHE




EIN-/AUSGABEANORDNUNG BEIM COMMODORE 64

HEXA-

DEZIMAL DEZIMAL BITS BESCHREIBUNG
0000 0 7-0 MOS 6510 Datenrichtungs-
register (xx101111)
Bit = 1: Ausgabe,
Bit = 0: Eingabe
X = Spielt keine Rolle
0001 1 MOS 6510 Mikroprozessor
Ein-Chip
Ein-/Ausgabeport
0 /LORAM-Signal (0 = BASIC-
ROM ausschalten)
1 /HIRAM-Signal (0 = KERNAL-
ROM ausschalten)
2 /CHARAM-Signal (0 = Zeichen-
ROM ausschalten)
3 Kassettendaten-Ausgabeleitung
4 Kassettenschalter
1 = Schalter geschlossen
5 Kassetten-Motorsteuerung
0=EIN, 1 = AUS
67 Nicht belegt
D000-D02E | 53248-54271 MOS 6566 VIDEO-
INTERFACESTEUERUNG
(VIC)
D000 53248 Sprite 0, Position X
D001 53249 Sprite 0, Position Y
D002 53250 Sprite 1, Position X
D003 53251 Sprite 1, Position Y
D004 53252 Sprite 2, Position X
D005 53253 Sprite 2, Position Y
D006 53254 Sprite 3, Position X
D007 53255 Sprite 3, Position Y
D008 53256 Sprite 4, Position X
D009 53257 Sprite 4, Position Y
DOOA 53258 Sprite 5, Position X
D00B 53259 Sprite 5, Position Y
D00C 53260 Sprite 6, Position X

MASCHINENSPRACHE 317



HEXA-
DEZIMAL

DEZIMAL

BITS

BESCHREIBUNG

DOOD
DOOE
DOOF
D010

DO11

D012
D013
D014

D015
D016

D017

D018

53261
53262
53263
53264

53265

53266
53267
53268

53269
53270

53271

53272

318 MASCHINENSPRACHE

2-0

7-6

74

Sprite 6, Position Y
Sprite 7, Position X
Sprite 7, Position Y
Sprites 0-7, Position X
(msb der X-Koordinate)
VIC-Steuerregister
Raster-Vergleich: (Bit 8)
Siehe 53266
Erweiterter Farbtext-Modus:
1= Einschalten
Bit-Map-Modus:
1 = Einschalten
Bildschirm I6schen:
0 = Ldschen
Wahl von 24/25 Reihen Text-
anzeige: 1 = 25 Reihen
Rollen zur Y-Punktposition
(0-7)
Leseraster/Schreibraster
Wert flir Vergleich IRQ
Lichtgriffel, Position X
Lichtgriffel, Position Y
Sprite-Anzeige: 1 = Einschalten
VIC-Steuerregister
Nicht benutzt
DIESES BIT STETS AUF
0 SETZEN!
Mehrfarbenmodus:
1 = Einschalten
(Text oder Bit-Mappe)
Wahl von 38/40 Spalten Text-
anzeige: 1 = 40 Zeichen
Rollen zu Position X
Sprites 0—7 vergroBern
2 x vertikal (Y)
VIC-Speicher-Steuerregister
Video-Matrix-Basisadresse




HEXA-

DEZIMAL DEZIMAL BITS BESCHREIBUNG
3-1 Zeichengenerator-Basisadresse
D019 53273 VIC-Interrupt-Flag (Bit = 1:
Einschalten des IRQ)
7 Beliebige VIC-IRQ-Bedingung
setzen
3 IRQ-Flag wird durch Lichtgriffel
getriggert
2 IRQ-Flag fiir Sprite-Kollision
1 IRQ-Flag fiir Sprite-/Hinter-
grundkollision
0 IRQ-Flag fir Rastervergleich
DO1A 53274 IRQ-Maskenregister:
1 = Interrupt einschalten
DO1B 53275 Sprite-/Hintergrund-Anzeige-
prioritat: 1 = Sprite
Do1C 53276 Sprites 0—7 Mehrfarbenmodus
gewahlt: 1 = Mehrfarben-
modus
DO01D 53277 Sprites 0—7, vergroBern
2 x horizontal (X)
DO1E 53278 Sprite-Kollisionserkennung
DO1F 53279 Sprite-/Hintergrundkollisions-
Erkennung
D020 53280 Rahmenfarbe
D021 53281 Hintergrundfarbe 0
D022 53282 Hintergrundfarbe 1
D023 53283 Hintergrundfarbe 2
D024 53284 Hintergrundfarbe 3
D025 53285 Sprite-Mehrfarbenregister 0
D026 53286 Sprite-Mehrfarbenregister 1
D027 53287 Farbe von Sprite 0
D028 53288 Farbe von Sprite 1
D029 53289 Farbe von Sprite 2
D02A 53290 Farbe von Sprite 3
Do2B 53291 Farbe von Sprite 4
D02C 53292 Farbe von Sprite 5
D02D 53293 Farbe von Sprite 6

MASCHINENSPRACHE 319



HEXA-
DEZIMAL

DEZIMAL

BITS

BESCHREIBUNG

DO2E
D400-D7FF

D400

D401

D402

D403

D404

D405

53294
54272-55295

54272

54273

54274

54275

54276

54277

320 MASCHINENSPRACHE

7-4
3-0

74

3-0

Farbe von Sprite 7

MOS 6581 SOUND-
INTERFACE-DEVICE (SID)

Stimme 1: Frequenzsteuerung —
Unteres Byte

Stimme 1: Frequenzsteuerung —
Oberes Byte

Stimme 1: Pulswellen-Breite —
Unteres Byte

Nicht benutzt

Stimme 1: Pulswellen-Breite —
Oberes Nybble

Stimme 1: Steuerregister

Gerauschwellenform wahlen,
1=Ein

Pulswellenform wahlen, 1 = Ein

Sagezahnwellenform wahlen,
1=Ein

Dreieckswellenform wahlen,
1=Ein

Testbit: 1 = Oszillator 1
abschalten

Oszillator 1 mit Oszillator-
ausgabe 3 ringmodulieren,
1=Ein

Ostzillator 1 mit Oszillator 3
synchronisieren, 1 = Ein

GATE-Bit: 1 = Beginn von
ATTACK/DECAY/SUSTAIN,
0 = Start des RELEASE-
Abschnitts

Hullkurvengeber 1: Steuerung
des ATTACK-/DECAY-Zyklus

Wahl der ATTACK-Zyklusdauer:
0-15

Wahl der DECAY-Zyklusdauer:
0-15




HEXA-
DEZIMAL

DEZIMAL

BITS

BESCHREIBUNG

D406

D407

D408

D409

D40A

D40B

54278

54279

54280

54281

54282

54283

74

3-0

7-4
3-0

Hdllkurvengeber 1: Steuerung
des SUSTAIN-/RELEASE-
Zyklus

Wahl des SUSTAIN-Pegels:
0-15

Wahl der RELEASE-Dauer:
0-15

Stimme 2: Frequenzsteuerung —
Unteres Byte

Stimme 2: Frequenzsteuerung —
Oberes Byte

Stimme 2: Pulswellen-Breite —
Unteres Byte

Nicht benutzt

Stimme 2: Pulswellen-Breite —
Oberes Nybble

Stimme 2: Steuerregister

Wahl der Gerauschwellenform,
1=Ein

Wahl der Pulswellenform,

1 =Ein

Wahl der Sagezahnwellenform,
1 =Ein

Wabhl der Dreieckswellenform,
1 =Ein

Testbit: 1 = Oszillator 2
ausschalten

Oszillator 2 mit Oszillator-
ausgabe 1 ringmodulieren,
1=Ein

Oszillator 2 mit Oszillator-
frequenz 1 synchronisieren,
1=Ein

GATE-Bit: 1 = Beginn von
ATTACK/DECAY/SUSTAIN,
0 = Start des RELEASE-
Abschnitts

MASCHINENSPRACHE 321



HEXA-
DEZIMAL

DEZIMAL

BITS

BESCHREIBUNG

D40C

D40D

D40E

D40F

D410

D411

D412

54284

54285

54286

54287

54288

54289

54290

322 MASCHINENSPRACHE

74

7-4

3-0

7-4
3-0

Hdllkurvengeber 2: Steuerung
des ATTACK-/DECAY-Zyklus

Wahl der ATTACK-Dauer: 0-15

Wahl der DECAY-Dauer: 0—15

Hllkurvengeber 2: Steuerung
SUSTAIN-/RELEASE-Zyklus

Wahl des SUSTAIN-Pegels:
0-15

Wahl der RELEASE-Dauer:
0-15

Stimme 3: Frequenzsteuerung —
Unteres Byte

Stimme 3: Frequenzsteuerung —
Oberes Byte

Stimme 3: Pulswellen-Breite —
Unteres Byte

Nicht benutzt

Stimme 3: Pulswellen-Breite —
Oberes Nybble

Stimme 3: Steuerregister

Wahl der Gerauschwellenform,
1 = Ein

Wahl der Impulswellenform,
1 = Ein

Wahl der Sagezahnwellenform,
1 = Ein

Wahl der Dreieckswellenform,
1 =Ein

Testbit: 1 = Oszillator 3
ausschalten

Ostzillator 3 mit Oszillator-
ausgabe?2 ringmodulieren,
1=Ein

Ostzillator 3 mit Oszillator-
frequenz 2 synchronisieren,
1=Ein




HEXA-
DEZIMAL

DEZIMAL

BITS

BESCHREIBUNG

D413

D414

D415

D416

D417

D418

54291

54292

54293

54294

54295

54296

74
3-0

7-4

3-0

74

GATE-Bit: 1 = Beginn von
ATTACK/DECAY/SUSTAIN,
0 = Start des RELEASE-
Abschnitts

Hdallkurvengeber 3: Steuerung
des ATTACK-/DECAY-Zyklus

Wahl der ATTACK-Dauer: 0-15

Wahl der DECAY-Dauer: 0—15

Hullkurvengeber 3: Steuerung
des SUSTAIN-/RELEASE-
Zyklus

Wahl des SUSTAIN-Pegels:
0-15

Wahl der RELEASE-Dauer:
0-15

Filtergrenzfrequenz: Unteres
Nybble (Bits 2-0)

Filtergrenzfrequenz: Oberes
Byte

Filterresonanz-Steuerung/
Stimmeneingabe-Steuerung

Wahl der Filterresonanz: 0-15

Externe Filtereingabe:
1 =Ja, 0 = Nein

Ausgabe von Stimme 3 filtern:
1=Ja, 0 = Nein

Ausgabe von Stimme 2 filtern:
1 =Ja, 0 = Nein

Ausgabe von Stimme 1 filtern:
1=Ja, 0 = Nein

Filtermodus und Lautstéarke
wéhlen

Ausgabe von Stimme 3
abschalten: 1 = AUS,
0=EIN

HochpaBfiltermodus wahlen:
1= Ein

MASCHINENSPRACHE 323



HEXA-
DEZIMAL

DEZIMAL

BITS

BESCHREIBUNG

D419

D41A

D41B

D41C

D500-D7FF
D800-DBFF
DC00-DCFF

DCO00

DCO1

54297

54298

54299

54230

54528-55295
55296-56319
56320-56575

56320

56321

324 MASCHINENSPRACHE

3-0

Wahl des Bandfiltermodus:

1 =Ein
Wahl des TiefpaBfiltermodus:

1 = Ein
Wahl der Lautstarke: 0—-15
Analog-/Digitalwandler:

Drehregler 1 (0-255)
Analog-/Digitalwandler:

Drehregler 2 (0—255)
Oszillator 3, Zufallszahlen-

Generator
Ausgabe von Hullkurvengeber 3
SID-Images
Farb-RAM (Nybbles)

MOS 6562 Komplexes
Interfaceadapter (CIA) #1
Datenport A (Tastatur, Steuer-
knuppel, Drehregler, Licht-

griffel)

Nummer der Tastaturspalte fir

Tastatur-Abfrage
Drehregler Port A/B

(01 = Port A, 10 = Port B)
Steuerkniippel A Feuerknopf:

1 = Feuer
Drehregler-Feuerkndpfe
Steuerknuppel-Richtung (0—-15)
Daten-Port B (Tastatur, Steuer-

knuppel, Drehregler):

Spielport 1
Nummer der Tastatur-Reihe fur

Tastaturabfrage
Timer B: Impulsausgabe
Timer A: Impulsausgabe
Steuerknuippel Feuerknopf 1:

1 = Feuer
Drehregler-Feuerknopf




HEXA-

DEZIMAL
DEZIMAL BITS BESCHREIBUNG

3-0 Steuerkniippel-Richtung
DCO02 56322 Datenrichtungsregister — Port A
(56320)
DCO03 56323 Datenrichtungsregister — Port A
(56321)
DCO04 56324 Timer A: Unteres Byte
DCO05 56325 Timer A: Oberes Byte
DCO06 56326 Timer B: Unteres Byte
DCo7 - 56327 Timer B: Oberes Byte
DCO08 56328 Tageszeituhr: 1/10 s
DCO09 56329 Tageszeituhr: Sekunden
DCOA 56330 Tageszeituhr: Minuten
DCoB 56331 Tageszeituhr: Stunden + Flag
AM/PM (Bit 7)
DCOC 56332 Serieller Bus Ein-/Ausgabe-
datenpuffer
DCOD 56333 CIA-Interrupt-Steuerregister
7 IRQ-Flag (1 = Auftreten von
IRQ)/Ldschflag setzen
4 Flag 1 IRQ (Lesen von
Kassette/serieller Bus
SRQ-Eingabe)
Serieller Bus (Interrupt)
Tageszeituhr-Interrupt
Timer B-Interrupt
Timer A-Interrupt
DCOE 56334 CIA-Steuerregister A
7 Tageszeituhr-Frequenz:
1=50Hz 0=60Hz
6 Serieller Bus Ein-/Ausgabe-
modus: 1 = Ausgabe,
0 = Eingabe
5 Timer A: 1 = CNT-Signale,
0 = System-Uhr 02
Force Load Timer A: 1 = Ja
3 Modus von Timer A: 1 = one-
shot, 0 = kontinuierlich

O =N W

N

MASCHINENSPRACHE 325



HEXA-
DEZIMAL

DEZIMAL

BITS

BESCHREIBUNG

DCOF

DDO00-DDFF

DDO00

56335

56576-56831

56576

326 MASCHINENSPRACHE

6-5

4-0

Ausgabemodus von Timer A
zu PB6: 1 = Toggle,

0 = Impuls
Ausgabe von Timer A an PB6:

1 =Ja, 0 = Nein
Start/Stop von Timer A:

1 = Start, 0 = Stop
CIA-Steuerregister B
Alarm/TOD-Uhr:

1 = Alarm, 0 = Takt
Wahl des Modus von Timer B:

00 = Taktimpuls von System

02 zahlen

01 = Positive CNT-Uber-

gange zahlen

10 = Underflow-Impulse von

Timer A zahlen
11 = Underflows von Timer A
zahlen, wenn CNT
positiv
Entspricht CIA-Steuer-

register A —fir Timer B
MOS 6526 Komplexes Inter-

faceadapter (CIA) #2
Datenport A (serieller Bus,

RS-232, VIC-Speicher-

steuerung)

Serieller Bus-Dateneingabe
Serieller Bus-Impulseingabe
Serieller Bus-Datenausgabe
Serieller Bus-Impulsausgabe
Serieller Bus-ATN-Signal-
ausgabe
RS-232-Datenausgabe

(User-Port)

VIC-Chip Bank-select

(Standard = 11)




HEXA-
DEZIMAL

DEZIMAL

BITS

BESCHREIBUNG

DDO1

DD02

DDO03

DDO04
DDO05
DDO06
DDO07
DDO08
DDO09
DDOA
DDOB

DDOC

DDOD

DDOE

56577

56578

56579

56580
56581
56582
56583
56584
56585
56586
56587

56588

56589

56590

= NDNWH,OLO N

Datenport B
(User-Port, RS-232)
RS-232 Datensatz bereit
RS-232 Clear to send
User
RS-232 Carrier Detect
RS-232 Ring Indicator
RS-232 Daten-Terminal
RS-232 Request to send
RS-232 Received
Datenrichtungs-Register —
Port A
Datenrichtungs-Register —
Port B
Timer A: Unteres Byte
Timer A: Oberes Byte
Timer B: Unteres Byte
Timer B: Oberes Byte
Tageszeituhr: /10 s
Tageszeituhr: Sekunden
Tageszeituhr: Minuten
Tageszeituhr: Stunden + Flag
AM/PM (Bit 7)
Serieller Bus Ein-/Ausgabe-
datenpuffer
C’IA-Interruptsteuerregister
NMI-Flag
(1 = Auftreten eines NMI)/
Ldschflag setzen
Flag 1 NMI
(RS-232 Received Data
Input)
Interrupt-Serieller Bus
Timer B-Interrupt
Timer A-Interrupt
CIA-Steuerregister A
TOD-F: 1 = 50 Hz, 0 = 60 Hz

MASCHINENSPRACHE 327



HEXA-

DEZIMAL DEZIMAL

BITS

BESCHREIBUNG

DDOF 56591

DEOO-DEFF | 56832-57087

DFOO-DFFF | 57088-57343

N

Serieller Bus Ein-/Ausgabe-
modus: 1 = Ausgabe,

0 = Eingabe
Timer A: 1 = CNT-Signale,

0 = System-Uhr 02
Force Load Timer A: A = Ja
Modus von Timer A:

1 = one-shot,

0 = kontinuierlich
Ausgabemodus von Timer A zu

PB6: 1 = Toggle, 0 = Impuls
Ausgabe von Timer A an PB6:

1 =Ja, 0 = Nein
Start/Stop von Timer A:

1 = Start, 0 = Stop
CIA-Steuerregister B
Alarm/TOD-Clock:

1 = Alarm, 0 = Clock
Wahl von Timermodus B:

00 = Impulse von System 02

zéhlen

01 = Positive CNT-Uber-

gange zahlen

10 = Underflowimpulse von

Timer A zahlen
11 = Underflows von Timer A
zéhlen, wenn CNT
positiv
Entspricht CIA-Steuer-

register A —fur Timer B
Reserviert flr kiinftige

Ein-/Ausgabeerweiterungen
Reserviert fur kiinftige

Ein-/Ausgabeerweiterungen

328 MASCHINENSPRACHE




KAPITEL 6

EIN-/AUSGABE-
ANLEITUNG

e Einfuhrung

e Ausgabe auf den Bildschirm

e Ausgabe auf andere Gerate

e Spiele-Ports

e RS-232-Interface-Beschreibung
e User-Port

e Der serielle Bus

e Erweiterungsport

e Z-80-Mikroprozessor-Modul

329




EINFUHRUNG

Computer zeichnen sich durch drei Hauptfunktionen aus: Sie kdnnen rechnen,
Entscheidungen treffen und kommunizieren. Die Rechenfunktion 1aBt sich hierbei
wahrscheinlich am einfachsten programmieren. Wir sind mit den meisten mathema-
tischen Regeln vertraut. Entscheidungen zu treffen, ist auch nicht allzu schwierig, da
es nur wenige logische Regeln gibt.

Die komplexeste Funktion ist die Kommunikation, da diese am wenigsten genauen
Regeln unterliegt. Dies ist nicht etwa auf ein Versehen bei der Konstruktion des
Computers zurlickzuflihren. Die Regeln sind vielmehr so flexibel, daB praktisch auf
viele Arten kommuniziert werden kann. Die einzige Regel heiBt: Die Informationen
mussen stets so (ibertragen werden, daB sie der Empfanger auch verstehen kann.

AUSGABE AUF DEN BILDSCHIRM

Die einfachste Form der Ausgabe ist die BASIC-Anweisung PRINT. Durch PRINT
wird als Ausgabegerét der Bildschirm benutzt. Das “Eingabegerat” sind Ihre Augen,
da sie die Bildschirminformation lesen.

Bei der Anzeige auf dem Bildschirm besteht die Hauptaufgabe darin, die Informatio-
nen so zu formatieren, daB sie leicht lesbar sind. Spielen Sie hier ein biBchen den
Graphiker oder Designer, benutzen Sie Farben, Uberdenken Sie die Anordnung der
einzelnen Buchstaben, wahlen Sie GroB- und Kleinbuchstaben oder auch Graphik-
zeichen, um die Information am besten darzustellen. Denken Sie daran: auch bei
einem noch so raffinierten Programm missen Sie doch in der Lage sein, das
Ergebnis zu verstehen.

Die PRINT-Anweisung benutzt bestimmte Zeichen-Codes als “Befehle”, mit denen
der Cursor gesteuert wird. Uber die Taste [ZR3 kann eigentlich nichts auf dem
Bildschirm angezeigt werden. Sie &ndert lediglich die Cursorposition. Uber weitere
Befehle wird die Farbe geandert, der Bildschirm geléscht und Leerstellen eingefligt
bzw. geléscht. Die Taste hat die Zeichen-Code-Nr. 13 (CHRS$). Diese
Codes sind in einer Tabelle in Anhang C dargestellt.

Es gibt noch zwei weitere Funktionen in BASIC, die zusammen mit der PRINT-
Anweisung verwendet werden. Durch TAB wird der Cursor in eine Position
gebracht, die einen vorgegebenen Abstand vom linken Bildschirmrand hat, SPC
bewegt den Cursor von der derzeitigen Position um eine gegebene Anzahl Leer-
stellen nach rechts.

Interpunktionszeichen in der PRINT-Anweisung trennen und formatieren die Infor-
mation. Durch das Semikolon (;) werden zwei Ausdriicke ohne Leerzeichen vonein-
ander getrennt. Ist das Semikolon das letzte Zeichen in einer Zeile, so bleibt der
Cursor hinter dem zuletzt angezeigten Zeichen und geht nicht in die nachste Zeile

330 EIN-/AUSGABE-ANLEITUNG



Uber. Es unterdriickt das RETURN, das normalerweise am Ende einer Zeile steht. -
Durch das Komma (,) werden die Daten in Spalten dargestellt. Der Bildschirm des
COMMODORE 64 hat vier Spalten mit je 10 Zeichen. Wenn der Computer ein
Komma “PRINTED", bewegt sich der Cursor nach rechts zum Anfang der nachsten
Spalte. Nach der letzten Spalte der Zeile geht der Cursor in die nachste Zeile. Auch
hier wird, wenn es sich um das letzte Zeichen in einer Zeile handelt, RETURN
unterdrtckt.

Anflhrungszeichen (“ “) trennen Text von Variablen. Das erste Anflihrungszeichen
in einer Zeile kennzeichnet den Anfang des Textbereichs und das nachste Anflih-
rungszeichen das entsprechende Ende. Ubrigens ist am Zeilenende kein abschlie-
Bendes Anfiihrungszeichen erforderlich.

Durch den RETURN-Code (CHR$ (13)) wird der Cursor in die nachste logische
Bildschirmzeile bewegt. Es muB nicht immer unbedingt die néchste Zeile sein. Wird
Uber das Zeilenende hinaus geschrieben, so wird die Zeile mit der nachsten Zeile
verbunden. Der Computer weiB, daB beide Zeilen in Wirklichkeit eine einzelne,
lange Zeile sind. Diese Verbindungen werden in der “/ine-link-Tabelle “ festgehal-
ten (bezugl. Einzelheiten siehe Speicherbelegung).

Eine logische Zeile kann bis zu zwei Bildschirmzeilen lang sein, je nachdem, was
eingegeben wurde. Die logische Zeile am Bildschirmanfang bestimmt, ob der
Bildschirm um ein oder zwei Zeilen “gescrollt wird.

Es gibt noch andere Mdglichkeiten, um den Bildschirm als Ausgabegerat zu
benutzen. In dem Kapitel iber Graphiken wird beschrieben, wie man Graphiken
erzeugen und Uber den Bildschirm bewegen kann. Im Abschnitt iber den VIC-Chip
wird beschrieben, wie man die Bildschirm- und Rahmenfarben und GréBen &ndern
kann. Das Kapitel Gber den Sound-Synthesizer zeigt Innen schlieBlich, wie man mit
dem TV-Lautsprecher Klangeffekte und Musik erzeugt.

AUSGABE AUF ANDERE GERATE

Oft ist es erforderlich, daB Ausgaben nicht auf den Bildschirm, sondern auf andere
Gerate wie z. B. Kassettendecks, Drucker, Diskettenstationen oder Modems erfol-
gen. Uber die BASIC-Anweisung OPEN wird ein “Kanal“ fiir die Kommunikation mit
diesen Geréten erstellt. Ist dieser Kanal gedffnet, dann werden Uber die Anweisung
PRINT# Zeichen zu diesem Gerét Ubertragen.

BEISPIEL FUR DIE ANWEISUNGEN OPEN UND PRINT #:
100 OPEN 4, 4: PRINT# 4, “WRITING ON PRINTER*
110 OPEN 3, 8, 3, “0:DIKS-FILE,S,W*: PRINT# 3, “SEND TO DISK"
120 OPEN 1, 1, 1, “TAPE-FILE“: PRINT# 1, “WRITE ON TAPE*
130 OPEN 2, 2, 0, CHR$(10): PRINT# 2, “SEND TO MODEM*“

EIN-/AUSGABE-ANLEITUNG 331



Die OPEN-Anweisung ist flr die einzelnen Gerate leicht unterschiedlich. Die
Parameter dieser Anweisung fir das jeweilige Gerat werden in der nachstehenden
Tabelle gegeben.

Tabelle fiir die OPEN-Anweisung:
FORMAT: OPEN Dateinummer, Geréteadresse, Sekundaradresse, String

" GERATE- =
GERAT ADRESSE SEKUNDARADRESSE STRING
CASSETTE 1 0 = Eingabe Dateiname
1 = Ausgabe
2 = Ausgabe mit EOT
MODEM 2 0 Steuerregister
SCREEN 3 0,1
PRINTER 4 oder 5 0 = GroBschrift/ Text wird angezeigt
Graphikzeichen
7 = GroB-/
Kleinschrift
DISK 8 bis 11 2—14 = Datenkanal Laufwerknummer,
Dateiname, Dateityp,
Befehl lesen/
schreiben
15 = Befehlskanal

AUSGABE ZUM DRUCKER

Der Drucker ist eine ahnliche Ausgabevorrichtung wie der Bildschirm. Die Haupt-
aufgabe fir Sie besteht hierbei darin, ein leicht lesbares Format zu erstellen. Hierbei
stehen Ihnen negative (weiB auf schwarz darstellbare) Zeichen, Zeichen in doppel-
ter Breite, GroB- und Kleinbuchstaben sowie programmierbare Graphikzeichen zur
Verfligung.

Durch die OPEN-Anweisung wird der erforderliche Kanal zum Drucker geoffnet.
AuBerdem wird durch diese Anweisung angegeben, welcher Zeichensatz benutzt
wird: entweder GroBbuchstaben und Graphikzeichen oder Zeichen GroB- und
Kleinbuchstaben.

332 EIN-/AUSGABE-ANLEITUNG



BEISPIELE FUR DIE OPEN-ANWEISUNG BEI DER AUSGABE AUF EINEN
DRUCKER:

OPEN 1, 4: REM UPPER CASE/GRAPHICS
OPEN 1, 4, 7: REM UPPER AND LOWER CASE

Beim Ausdruck mit einem Zeichensatz kdnnen einzelne Zeilen mit dem anderen
Zeichensatz erstellt werden. Wurden GroBbuchstaben und Graphikzeichen benutzt,
dann erfolgt die Umschaltung auf den anderen Zeichensatz, d. h. GroB- und
Kleinbuchstaben durch (CHR$(17)). In der umgekehrten Richtung erfolgt die
Umschaltung durch (CHR$(145)).

Andere Drucker-Sonderfunktionen werden (ber Zeichencodes gesteuert. Diese
Codes werden genau wie andere Zeichen durch PRINT# (ibermittelt.

Tabelle der Drucker-Steuerzeichencodes:

CODE CHR$ ZWECK
10 Zeilenvorschub
13 RETURN ZEILENSCHALTUNG (automatischer Zeilenvor-
schub bei CBM-Druckern) -
14 Beginn des Zeichenausdrucks in doppelter Breite
15 Ende des Zeichenausdrucks in doppelter Breite
18 Beginn des Ausdrucks negativ dargestellter Zeichen
146 Ende des Ausdrucks negativ dargestellter Zeichen
17 Umschalten auf GroB- und Kleinschrift
145 Umschalten auf GroBschrift/Graphik
27 Bewegung zur angegebenen Punktposition
8 Beginn des Graphikmodus
26 Wiederholung der Graphikdaten

Bezlglich weiterer Einzelheiten Uber die Befehls-Codes siehe Bedienungsanlei-
tung des jeweiligen COMMODORE-Druckers.

ARBEITEN MIT MAGNETBANDKASSETTEN

Kassetten haben eine fast unbegrenzte Daten-Speicherkapazitit. Je langer hierbei
das Kassettenband ist, desto mehr Informationen konnen gespeichert werden.
Kassetten sind jedoch ziemlich langsam. Je mehr Daten abgespeichert sind, desto
langer braucht man, um eine Information zu finden.

EIN-/AUSGABE-ANLEITUNG 333



Dieser Zeitfaktor muB daher bei der Kassettenspeicherung vom Programmierer auf
ein MindestmaB beschrénkt werden. Im allgemeinen wird die gesamte Kassetten-
Datendatei in den RAM gelesen, dann verarbeitet und danach wieder zuriick auf
Kassette geschrieben. Auf diese Weise kénnen die Daten sortiert, aufbereitet und
Uberpriift werden. Allerdings wird hierdurch die DateigroBe durch die verfigbare
RAM-Kapazitat begrenzt.

Ist die Datendatei langer als der verflighare RAM-Bereich, dann sollten Sie mit einer
Disketten-Station arbeiten. Hierbei kénnen Daten in jeder beliebigen Position auf
der Diskette gelesen werden, ohne daB zuvor ein Lesen der (brigen Daten
erforderlich ist. Alte Daten lassen sich ohne Beeintrédchtigung der restlichen Datei
Uberschreiben. Aus diesem Grund werden Disketten im Geschaftsbereich z. B. flr
Buchfuhrungen und AdreBkarteien benutzt.

Durch die Anweisung PRINT# werden Daten genau wie durch PRINT formatiert.
Auch die Interpunktion ist hierbei gleich. Denken Sie jedoch daran, daB Sie nun
nicht mehr mit dem Bildschirm arbeiten. Beim Formatieren missen Sie also stets an
die Anweisung INPUT# denken.

Nehmen wir die Anweisung PRINT# 1, A$, B$, C$. Beim Arbeiten mit dem
Bildschirm wird durch die Kommata zwischen den Variablen genug Platz geschaf-
fen, um diese in Spalten mit je 10 Zeichen zu unterteilen. Bei einer Kassette werden
1 bis 10 Leerzeichen eingefligt, je nach Lange der Zeichenkette. Hierdurch wird
Speicherkapazitat verschwendet.

Wesentlich schlimmer wirkt sich dies jedoch aus, wenn die Zeichenketten durch die
Anweisung INPUT # gelesen werden. Die Anweisung INPUT 1#, A$, B$, C$ findet
keine Daten fiir B$ und C$. A$ enthalt alle drei Variablen und die Leerzeichen
dazwischen ab. Was passiert? FolgendermaBen sieht die Datei auf der Kassette
aus:

A$="DOG":B$="CAT“:C$="TREE*
PRINT# 1, A$, B$, C$

Ein geeignetes Begrenzungszeichen auf der Kassette ware z. B. ein Komma (,)
oder RETURN. Der ([[BIIM -Code wird automatisch ans Ende einer PRINT-
Anweisung oder von PRINT# gesetzt. Um diesen Code zwischen die einzelnen
Punkte zu setzen, kann man z. B. nur ein Datum PRINT#-Anweisung benutzen.
Besser ist jedoch, dem CHR$(13) oder dem Komma eine Variable zuzuordnen. Die
Anweisung fur letztere Moglichkeit ist R$="“,“:PRINT# 1, A$ R$ B$ R$ CS.
Zwischen den Variablennamen dirfen keine Kommata oder andere Interpunktions-
zeichen verwendet werden; da der COMMODORE 64 sie auch so unterscheidet,
kann auf diese Weise nur Kapazitat verschwendet werden.

334 EIN-/AUSGABE-ANLEITUNG



Eine richtige Kassetten-Datei sieht z. B. wie folgt aus:

12345678910111213
DOG,CAT, TR E E RETURN

Durch die Anweisung GET# wird jeweils ein Zeichen der auf Kassette gespeicher-
ten Daten gelesen. Jedes Zeichen, einschlieBlich RETURN-Code und anderen
Interpunktionszeichen wird empfangen. Der Code CHR$(0) wird als Leerstring und
nicht als Zeichenstring mit dem Code O empfangen.

Wird versucht, die ASC-Funktion bei einem Leerstring anzuwenden, dann erscheint
die Fehlermeldung ILLEGAL QUANTITY ERROR.

Zur Uberpriifung der Kassettendaten wird normalerweise die Zeile GET# 1, A$: A=
ASC(A$) in Programmen benutzt. Zur Vermeidung von Fehlermeldungen sollte die
Zeile wie folgt gedndert werden: GET#1, A$: A= ASC( A$+ CHR$(0)). CHR$(0)
am Ende macht Leerstrings “unschadlich“, beeinfluBt jedoch nicht die ASC-
Funktion, wenn A$ andere Zeichen enthélt.

DATENSPEICHERUNG AUF DISKETTEN

Auf Disketten sind drei verschiedene Arten der Datenspeicherung mdglich.
Sequentielle Dateien entsprechen denen auf Kassette, es kdnnen jedoch mehrere
gleichzeitig benutzt werden. Relative Dateien ermdglichen ein Organisieren der
Daten in Sétzen (Records) und ein Lesen und Andern der einzelnen Sétze innerhalb
der Datei. Bei Random-Dateien schlieBlich ist ein Arbeiten mit an beliebiger
Diskettenstelle gespeicherten Daten moglich. Diese Daten sind in Abschnitten mit
je 256 Bytes zusammengefaBt, die man Blocke nennt.

Die Einschrankungen beim Arbeiten mit der Anweisung PRINT# sind in dem
Abschnitt “Arbeiten mit Kassetten* beschrieben. Die gleichen Uberlegungen tref-
fen auch bei Disketten zu. Zum Abtrennen der einzelnen Daten wird RETURN oder
ein Komma benétigt. Durch die Anweisung GET# wird CHR$(0) auch hier als leere
Zeichenkette gelesen.

Relative und Random-Dateien arbeiten beide mit getrennten Daten und “Befehlska-
nalen“. Die auf Diskette geschriebenen Daten gehen durch den Datenkanal und
werden in den temporéren Pufferspeicher des Disketten-RAMs geschrieben. Wenn
ein Satz oder Block komplett ist, wird Gber den Befehlskanal ein Befehl Gibertragen,
der angibt, wohin die Daten geschrieben werden sollen. Dann wird der gesamte
Puffer geschrieben.

Bei Anwendungen, die die Verarbeitung groBer Datenmengen erfordern, werden
relative Diskettendateien verwendet. Dies erfordert am wenigsten Zeit und 1aBt dem
Programmierer ein HochstmaB an Flexibilitét. Eine vollstdndige Programmieranlei-
tung fir Diskettendateien finden Sie im Handbuch der Diskettenstation.

EIN-/AUSGABE-ANLEITUNG 335



SPIELE-PORTS

Der COMMODORE 64 hat zwei 9-Pin-Spiele-Ports, die die Verwendung von
Steuerknippeln, Drehreglern oder Lichtgriffeln ermdglichen. Jeder Port ist entwe-
der fiir einen Steuerkniippel oder zwei Drehregler geeignet. Fur spezielle Graphik-
steuerungen usw. kann (nur in Port A) ein Lichtgriffel verwendet werden. In diesem
Kapitel werden wir Innen Beispiele daflir zeigen, wie Sie sowohl Steuerkniippel als
auch Drehregler Uber BASIC und Maschinensprache benutzen kdnnen.

Der Steuerknippel wird an CIA #1 angeschlossen (MOS 6526). Dieser Ein-/
Ausgabechip ist auch fir die Feuerkndpfe an den Drehreglern und die Tastatur-
Abfrage verantwortlich. Der 6526 CIA-Chip hat 16 Register in den Speicherplatzen
56320 bis einschlieBlich 56335 ($DCO0 bis $DCOF). Die Daten von Port A finden
Sie in Adresse 56320 (DC00) und von Port B in 56321 ($CDO01).

Ein Steuerknuppel hat fiinf unterschiedliche Schalter, von denen vier fur die
Richtung und einer als Feuerknopf benutzt wird. Die Steuerknuppel-Schalter sind
wie folgt angeordnet:

(Oben)

FEUER

(Schalter 4)  AUFWARTS
(Schalter 0)

LINKS } RECHTS

(Schalter 2) (Schalter 3)

ABWARTS
(Schalter 1)

Diese Schalter entsprechen den unteren 5 Bits des Inhalts der Adresse 56320 oder
56321. Ein Bit ist auf 1 gesetzt, wenn eine Richtung nicht gewahlt oder der
Feuerknopf nicht gedrickt wurde.

Wird der Feuerknopf gedriickt, dann wird das Bit (in diesem Fall Bit 4) auf O gesetzt.
Um den Steuerkniippel von BASIC abzufragen, wird folgendes Unterprogramm
benutzt:

336 EIN-/AUSGABE-ANLEITUNG



18 FORK=ATOL1E:REM SET UF DIRECTION STRIMG

20 READDRECK Y HERT

IIHTHII n . I|I.||| 3 II o |I N "n N IIL‘J" . " l.,."‘dll

['”:’T':III|E:L'JII a nn N |IE|I N IIr,JElI . n E:E n

S8 FRIMTGOING, .. "

60 GOSUELOE:REM READ THE JOYSTICK

65 IFDR$CIV)=""THEMEE REM CHECK IF A DIRECTION WAS
CHOSEH

7@ OFRIMTDRECIVI ;" "5 REM OUTPUT WHICH DIRECTIOM
88 IFFR=16THEMEE  REM CHECK IF FIRE BUTTON WAS
PLISHED

DA PRIMT" w2 GO TG
108 JV=FEEK(SES20 REM GET JOwSTICK YALUE

118 FR=JYANDIE:REM FORM FIRE BUTTON STATUS

28 Ty=15~-CIYAND1S ) 'REM FORM DIRECTIOM YALUE

130 RETLRN

Anmerkung: Fiir den zweiten Steuerknippel JV = PEEK (56321) setzen.

Die Werte fiir JV entsprechen diesen Richtungen:

JV ENTSPRICHT RICHTUNG
0 KEINE
1 AUFWARTS
2 ABWARTS
3 j—
4 LINKS
5 AUFWARTS & LINKS
6 ABWARTS & LINKS
7 p—
8 RECHTS
9 AUFWARTS & RECHTS
10 ABWARTS & RECHTS

EIN-/AUSGABE-ANLEITUNG

337



Folgendes kurzes Maschineri-Code-Programm erflillt die gleiche Aufgabe:

1866 PAGE CJOYSTICK.S.52  JOWSTICK - BUTTOM READ
PﬂHTIHE

1818

1826 'HHTHWP ~ BILL HIMDORFF

1E2E

16848 Bn~¥|11H

1856 =#0111

1EEE e

1876 DIRR LOA #DCoa ; CGET IMPUT FROM FORT

FoOrLY S

1926 DIRRE  LDY #2 JTHIS ROUTIME READE AMI

DECODES THE

18 LI @ S JYETICKAF IREBUTTOM

IHFHT TATH IM

1188 SREOH JTHE ACCUMULATOR. THIS

LEAST STGHMIFICAMT

11| BCS DIRS S RBITS COMTAIM THE

SWITCH CLOSURE

1128 TEY SIMFORMATION. IF A SHMITCH
LOCLOSED THEM IT

1128 DIRE LR A JPEODUCES A ZEROQ BIT. IF
1 EWMITOH IS OPER THER

114@ BECH DUIRL JIT PRODUCES A ORE BIT.

THE JOWITICE DIR-

1158 THY JECTIOMNE ARE RIGHT. LEFT.

FORWARD .,  BRACKWARD

1168 DIRL  LER A iBITE=RIGHT, BIT2=LEFT,
EIT1=ERACKUARD,
1178 BCS DJIRE iBITE=FORMARD AMD
EIT4=FIRE BUTTOM.
DE¥ SAT RTS TIME DX AND DY
75 COMPLIMENT
ER iDIRECTION MUMEERS I.E.

iME=1 CMOVE RIGHT ., Dias—
S D= OO W CHAMGE D,
sDY=1 CHMOVE DOMH SCREEMD .
STHE FORMARD JOWETICK

5 JTO MOWE LUF THE SCREEHM
THE BRI PHHPI

RTE SPOSITION TO MOVE TkMH

HT BTE TIME THE CARERY FLAG COMTAIMS THE FIRE
BHTTHH SETATE.
i IF C=1 THEM BUTTOM HOT PRESSED. IF C=0 THEHM

338 EIN-/AUSGABE-ANLEITUNG



DREHREGLER

Ein Paar Drehregler wird am Chip CIA #1 und SID (MOS 6581 Sound-Interface-
Vorrichtung) (ber ein Spiele-Port angeschlossen. Der Drehregler-Wert wird tiber
die SID-Register 54297 ($D419) und 54298 ($D41A) gelesen. DREHREGLER
SIND NICHT ABSOLUT ZUVERLASSIG, WENN SIE NUR VON BASIC ABGE-
FRAGT WERDEN!!! Am besten benutzt man die Drehregler mit folgendem Maschi-

nensprache-Programm . . .

ThID

E4E FPORTA=$DCEEA
1 CILDPH EDCEE

oL
ETHA
A ETHE
SISk A5
1 J.4|"'| FIOLED
1158 LI
R TR i
11as FILREDE

#1

OME FAIR CCOMDITION & 15T3

1ive SET
11E60 LIFA CTIDRRA

OF DIE
£l ETH BUFFER
LIIA

ETA CIDDRFA
LIRS e
FIOLEDL
124@ STH FORTH
PHFﬂLr'
LI
FOLRTE

I
TEY
EFL.

LDA 51
=TH

o o o e e
i FOUR PADDLE READ ROUTIME

C FUTHOR, = BiLi HItDEREE

LOG TOYSTIORS

AR AL

PFOR FOUR PRADDLES

JEMTREY POIMT FOR

SJGET CURREMT WALLE

CEENVETT MlEY

SADDRESS AOPRIRE OF

JMETT A WHTLE

SEET M OWALUE

SGET Y WALLUE

EIN-/AUSGABE-ANLEITUNG

(SYS von BASIC, danach PEEK der von dem Unterpro-
gramm benutzten Speicherplétze).

339



124@  LDA PORTA (TIME TO READ
TLE FIRE BUTTOME
ORF ##50 SMAKE 1T THE SAME

'I

] |"'<1 I_’THFI JEIT 2 IS5 PDL H.
oIE PDL Y

LLIF 4k

DE" SALL PRTRS DORET

BRL OFPILREDL S0

LIA BLUFFER

=TH CIDDRA JRESTORE FRENMIOUS
OF DR
LIDA FORTHA+ L SFOR ZHD PRIE -
STH BTHE JBIT 2 I POL #.
FOL ™

Die Drehregler kénnen notfalls durch folgendes BASIC-Programm
werden:

18 Cm=]2%4@55 REM SET PADDLE ROUTIME START
11 REM FORE IM THE FADDLE READIMG ROUTIHE
3 REMADA : FOREC+T P HEST

! CRLL THE FADDLE ROUTIME
EEF*F-F"""T? REM SET PADIDLE OHE WALUE
] ’ . . " " TL’-“:‘ "
THREE "
Foue "

AT 2 4R F‘IHT F'FII'DLE WHALUES
EH F‘F‘IHT FIRE EIH"TI A STATUE
HT:FRINT"FIRE A ":S1."FIRE B " 52

HE FURM= L TOSE HEST  REM WATIT A WHILE

SE FRIMT"Z"CPRIMNT  GOTO 289 REEM CLEARR SCUREEM AMD DO
AT
(I EH flﬂTll FI.]F FFC HIHE F{‘IDE FOIT THE

i FEE141,6.0133, 169,152, 141,

41,8, 280, 1aE, 128 2EE. T
EO1ETLEO1RR1ITE., 220, 5,128,

SAFEALIRE 11 E,2ER1TE,

14“ Ill‘lTHr SlEE,ea, 08

340 EIN-/AUSGABE-ANLEITUNG

abgefragt



LICHTGRIFFEL

Der Lichtgriffeleingang LEGT die derzeitige Bildschirmposition in einem Register-
paar (LPX, LPY) ab. Das X-Positionsregister 19 (#13) enthalt die 8 MSB der
X-Position zum Ubergangszeitpunkt. Da die X-Position durch einen 512-Statuszéh-
ler (9 Bits) definiert wird, ist eine Auflésung von zwei Punkten in horizontaler
Richtung moglich. Ahnlich wird die Y-Position in Register 20 ($14) abgelegt. 8 Bits
erlauben hier jedoch eine Einzel-Rasteraufldsung innerhalb der sichtbaren Anzeige.
Der Lichtgriffel kann nur einmal pro Einzel-Bild ausgelassen werden, alle nachfol-
genden Abfragen innerhalb des gleichen Bildes bleiben unbericksichtigt.

RS-232-INTERFACE-BESCHREIBUNG

ALLGEMEINER UBERBLICK

Der COMMODORE 64 hat ein eingebautes RS-232-Interface zum AnschluB an ein
beliebiges RS-232-Modem, einen Drucker oder eine andere Vorrichtung. Um ein
solches Geréat an den COMMODORE 64 anzuschlieBen, brauchen Sie lediglich ein
entsprechendes Kabel und ein klein wenig Programmierung.

RS-232 vom COMMODORE 64 ist entsprechend dem Standard-RS-232-Format
eingerichtet. Die Spannungen haben jedoch TTL-Pegel (0 bis 5V) und liegen nicht,
wie normalerweise, im —12V bis +12V-Bereich. Im Bedarfsfall muB ein Interface
zwischen dem COMMODORE 64 und dem RS-232-Gerét die Spannungen umwan-
deln. Dies leistet z. B. das COMMODORE-RS-232-Interface-Modul.

Auf die RS-232-Interface-Software kann Uber BASIC oder den KERNAL (fur
Maschinensprache-Programmierung) zugegriffen werden.

RS-232 arbeitet mit normalen BASIC-Befehlen: OPEN, CLOSE, CMD, INPUT#,
GET#, PRINT# und die reservierte Variable ST. INPUT# und GET# lesen Daten
vom Empfangspuffer, PRINT# und CMD geben die Daten hingegen in den Ubertra-
gungspuffer.

Die Anwendung dieser Befehle wird spater in diesem Kapitel noch anhand von
Beispielen beschrieben.

Die RS-232-KERNAL-Routinen werden durch die 6526 CIA #2-Timer und Inter-
rupts gesteuert. Der Chip 6526 erzeugt NMI-Anforderungen (nicht maskierbarer
Interrupt) fir die RS-232-Verarbeitung.

EIN-/AUSGABE-ANLEITUNG 341



Hierdurch wird eine RS-232-Hintergrundverarbeitung wéhrend BASIC und Maschi-
nensprache-Programmen mdglich. Routinen des KERNAL, der Kassette und des
seriellen Busses sind so abgesichert, daB keine Storungen wahrend der Datenspei-
cherung oder Ubertragung durch NMIs méglich sind, die durch die RS-232-Routine
erzeugt wurden. Wenn der Kassettenport oder der serielle Bus aktiv sind, ist kein
Datenempfang durch RS-232-Vorrichtungen moglich.

Das RS-232-Interface vom COMMODORE 64 hat zwei Puffer, damit beim Empfang
oder der Ubertragung von RS-232-Informationen keine Daten verlorengehen.

Die RS-232-KERNAL-Puffer bestehen aus zwei FIFO-Puffern (first in/first out-
Puffer), die jeweils 256 Bytes lang sind und sich am oberen Speicherende befinden.
Durch das Offnen eines RS-232-Kanals werden automatisch 512 Bytes des Spei-
chers flr diese Puffer reserviert. Sollte nicht genug Platz hinter dem Ende des
BASIC-Programms vorhanden sein, wird keine Fehlermeldung angezeigt und das
Programmende daher zerstért. SEIEN SIE DAHER VORSICHTIG!

Diese Puffer werden automatisch durch die CLOSE-Befehle geldscht.

OFFNEN EINES RS-232-KANALS

Es darf nur stets ein RS-232-Kanal offen sein; durch eine zweite OPEN-Anweisung
werden die Puffer-Zeiger rickgestellt. Alle Zeichen, die entweder im Ausgangs-
oder im Eingangspuffer sind, werden geldscht.

Das Dateiname-Feld kann maximal vier Zeichen enthalten. Die ersten beiden sind
Steuer- und Befehlsregisterzeichen, die nachsten zwei sind fir kiinftige Systemop-
tionen reserviert. Auf diese Weise kann man Baud-Rate, Paritdt und andere Optio-
nen wahlen.

Die Eingabe in das Steuerregister wird nicht auf eine nicht-implementierte Baud-
Rate Uberprift. Durch eine unzuldssige Eingabe ergibt sich fir die Systemausgabe
eine extrem lange Rate (unter 50 Baud).

BASIC-SYNTAX:

OPEN 1fn,2,0,“<Steuerregister><Befehisregister><Option, niedrige Baud-
Rate><Option, hohe Baud-Rate>*

Lfn — Fir die logische Dateinummer (Ifn) kann eine beliebige Zahl zwischen 1 und
255 gewahlt werden. Beachten Sie jedoch, daB bei einer logischen Dateinummer
Uber 127 nach einer Zeilenschaltung auch ein Zeilenvorschub erfolgt.

342 EIN-/AUSGABE-ANLEITUNG



AEE

BAUDRATE
BENUTZERRATE
01000 |NcHT IMPLEMENTIERT
STOP-BITS 00|01 50 BAUD
0-1 STOP-BITS I S S
1-2 STOP-BITS 0101111 110
0(11]0|0 134.5
01|01 150
oj1(1|0 300
WORTLANGE
011 1|1 600
BIT DATEN-
615 WORTLANGE 1107010 | 1200
0|0 8 BITS 110]0] 1| (1800) 2400
01 7 BITS 110|1]0| 2400
110 6 BITS 110111 3600 NI |
111 5 BITS 11110| 0| 4800 NN
111101 7200 [N1]
NICHT BENUTZT —
111]1]10]| 9600 (N1]
111111119200 [N1]

Abb. 6.1. Steuerregisterbelegung

<Steuerregister> — Dies ist ein Ein-Byte-Zeichen (siehe Abb. 6.1. Steuerregi-
sterbelegung), durch das die Eingabe der Baud-Rate festgelegt wird. Sind die
unteren vier Bits der Baud-Rate null (0), dann werden durch <Option, Baud-
low><<Option, Baud-high> folgende Raten angegeben:

<Option, Baud-low>=<Systemfrequenz/Rate/2—100—
<Option, Baud-high>*256
<Option, Baud-high>=INT((Systemfrequenz/Rate/2—100)/256

EIN-/AUSGABE-ANLEITUNG 343



REIRE

PARITY OPTIONS

BIT|BIT|BIT
71615 OPERATIONS
0 PARITY DISABLED, NONE
GENERATED/RECEIVED
olol1 ODD PARITY
RECEIVER/TRANSMITTER
ol 111 EVEN PARITY
RECEIVER/TRANSMITTER
110 | 1 [MARK TRANSMITTED
PARITY CHECK DISABLED
111 | 1 |SPACE TRANSMITTED
PARITY CHECK DISABLED
DUPLEX

0-FULL DUPLEX
1-HALF DUPLEX

Obige Formeln basieren auf folgender Grundlage:

Systemfrequenz

UNUSED

UNUSED

UNUSED

Abb. 6.2. Befehlsregisterbelegung

HANDSHAKE

0-3 LINE
1-X LINE

1,02273E6 NTSC (North American TV standard)
0,98525E6 PAL (Britische und Europaische TV-Norm)

<Befehlsregister> — Dies ist ein Ein-Byte-Zeichen (siehe Abb. 6.2., Befehlsregi-

sterbelegung), das weitere Terminal-Parameter festlegt. Dieses Zeichen ist nicht

erforderlich.

344 EIN-/AUSGABE-ANLEITUNG



KERNALEINGABE:

OPEN ($FFCO0) (Siehe KERNAL-Spezifikation bezliglich weiterer Einzelheiten tber
Eingabebedingungen und -anweisungen.)

Wichtiger Hinweis: |In einem Basic-Programm muB der OPEN-Befehl RS-232 vor der Erstellung von
Variablen oder Feldern ausgefiihrt werden, da nach dem Offnen eines RS-232-Kanals automatisch ein
CLR ausgefihrt wird (dies liegt an der Reservierung von 512 Bytes am oberen Speicherende). Denken
Sie auch daran, daB das Programm zerstért wird, wenn diese 512 Bytes bei der OPEN-Anweisung nicht
zur Verfligung stehen.

LESEN DER DATEN VON EINEM RS-232-KANAL

Beim Lesen von Daten von diesem Kanal speichert der Empfangspuffer des
COMMODORE 64 255 Zeichen, ehe es zu einem Puffer-Uberlauf kommt. Dies
wird im RS-232-Statuswort (ST in BASIC oder RSSTAT in Maschinensprache)
angezeigt. Bei einem Uberlauf gehen alles iiberzahligen Zeichen verloren. Der
Puffer sollte daher stets so frei wie moglich gehalten werden.

Ist ein schneller Empfang von RS-232-Daten gewdinscht (dies ist mit BASIC nur
begrenzt mdglich, besonders bei der “Garbage collection” kann es zu einem
Uberlauf des Eingangspuffers kommen), dann missen hierzu Maschinensprache-
Routinen benutzt werden.

BASIC-SYNTAX:

Empfohlen: GET#lfn, <String>
NICHT empfohlen: INPUT#lfn, <Variablenliste>

KERNAL-EINGABEN:

CHKIN ($FFC6) — Bezlglich weiterer Einzelheiten Gber Ein- und Ausgabebedin-
gungen siehe Speicherbelegung.

GETIN ($FFE4) — Bezlglich weiterer Einzelheiten ber Ein- und Ausgabebedin-
gung siehe Speicherbelegung.

CHRIN ($FFCF) — Bezlglich weiterer Einzelheiten Uber Ein- und Ausgabebedin-
gung siehe Speicherbelegung.

EIN-/AUSGABE-ANLEITUNG 345



Anmerkungen: Ist ein Wort kiirzer als 8 Bit, dann wird allen nicht benutzten Bits der Wert 0
zugeordnet. Findet GET# keine Daten im Puffer, dann wird das Zeichen “* (eine Null) ausgegeben.
Wird INPUT # benutzt, dann wartet das System so lange, bis ein Nicht-Nullzeichen und danach ein CR
empfangen wird. Aus diesem Grund werden die Routinen INPUT# und CHRIN NICHT empfohlen.
Routine CHKIN verwaltet das X-Draht-Handshake, das dem EIA-Standard (August 1979) fur RS-232-C-
Interfaces entspricht. (Die Leitungen fur RTS, CTS und DCD sind beim COMMODORE 64 wie bei
einem Datenterminal angeordnet.)

UBERTRAGEN VON DATEN UBER EINEN RS-232-KANAL

Beim Ubertragen von Daten kann der Ausgabepuffer maximal 255 Zeichen spei-
chern. Das System wartet in der Routine CHROUT so lange, bis die Ubertragung
ermoglicht oder die Tasten und gedriickt werden, um das
System Uber einen WARMSTART zurickzusetzen.

BASIC-SYNTAX:

CMD Ifn — entspricht den BASIC-Spezifikationen
PRINT#lfn, <Variablenliste>

KERNAL-EINGABEN:

CHKOUT ($FFC9) — Beziiglich weiterer Einzelheiten iiber Ein- und Ausgabebedin-
gungen siehe Speicherbelegung.

CHROUT ($FFD2) — Beziiglich weiterer Einzelheiten Uber Eingabebedingungen
siehe Speicherbelegung.

346 EIN-/AUSGABE-ANLEITUNG



Wichtige Hinweise: Der Ausgabekanal enthdlt keine Verzégerung flir CR. Dies bedeutet, daB ein
normaler RS-232-Drucker nicht richtig ausdrucken kann, wenn nicht eine Verzégerung (die den
COMMODORE 64 warten 1aBt) oder ein interner Puffer implementiert sind. Dies kann leicht per
Programm erfolgen. Bei der Implementierung eines CTS-Kontakts (X-Draht-Handshake) wird der Puffer
des COMMODORE 64 gefiillt und stoppt dann weitere Ausgaben, bis die Ubertragung durch das RS-
232-Gerat ermoglicht wird. X-Draht-Handshake ist eine Handshake-Routine, die fiir das Ubertragen
und Empfangen von Daten mehrere Leitungen benutzt.

Die Routine CHKOUT regelt das X-Draht-Handshake, das dem EIA-Standard (August 1979) fir RS-
232-C-Interfaces entspricht. Die Leitungen RTS, CTS und DCD sind beim COMMODORE wie bei
einem Datenterminal implementiert.

SCHLIESSEN EINES RS-232-DATENKANALS

Nach dem SchlieBen einer RS-232-Datei werden alle Daten im Puffer geidscht
(unabhéngig davon, ob sie Ubertragen oder ausgedruckt wurden), der gesamte RS-
232-Ubertragungs- und Empfangsbetrieb gestoppt, RTS und Ubertragungsdaten-
leitungen (S,u) auf H-Pegel gesetzt und beide RS-232-Puffer geldscht.

BASIC-SYNTAX:
CLOSE Ifn

KERNAL-EINGABE:

CLOSE ($FFC3) — bezlglich weiterer Einzelheiten tber Ein- und Ausgabebedin-
gung siehe Speicherbelegung.

Anmerkung: Vor dem SchlieBen eines Kanals stets sicherstellen, daB alle Daten ibertragen wurden.
Hierzu gilt folgende BASIC-Anweisung:

100 SS=ST: IF(SS=0 OR SS=8) THEN 100
110 CLOSE Ifn

EIN-/AUSGABE-ANLEITUNG 347



348

Tabelle 6.1. User-Port-Lines

(6526 DEVICE #2 Loc.

$DDO0—$DDOF)

il e DESCRIPTION EIA ABV by MODES
ID ID ouT
C PBO | RECEIVED DATA (BB) Sin IN 12
D PB1 |REQUEST TO SEND (CA) RTS ouT | 1*2
E PB2 | DATA TERMINAL READY | (CD) DTR OouT 1%2
F PB3 |RING INDICATOR (CE) RI IN 3
H PB4 | RECEIVED LINE SIGNAL |/ (CF) DCD IN 2
J PB5 | UNASSIGNED () XXX IN 3
K PB6 |CLEAR TO SEND /(CB) CTS IN 2
L PB7 |DATA SET READY (CQO) DSR IN 2
B |FLAG2 | RECEIVED DATA (BB) Sin IN 12
M PA2 | TRANSMITTED DATA “(BA) Sout ouT 12
A | GND |PROTECTIVE GROUND | (AA) GND 12
N | GND |SIGNAL GROUND (AB) GND 123
Erklarung:

1) 3-LEITUNGS-INTERFACE (S, Souty GND)
2) X-LEITUNGS-INTERFACE
3) NUR FUR BENUTZER (nicht benutzt/nicht implementiert)
* DieseLeitungenwerdenwahrenddes 3-Drahtmodusauf “High* gelegt.

[7] [6] [5] [4] [3] [2] 1]

[0] (Machine Lang.—RSSTAT
:—PARITY ERROR BIT
. _FRAMING ERROR BIT

i RECEIVER BUFFER OVERRUN BIT

RECEIVER BUFFER—EMPTY

(USE TO TEST AFTER A GET#)

CTS SIGNAL MISSING BIT
UNUSED BIT

DSR SIGNAL MISSING BIT
BREAK DETECTED BIT

Abb. 6.3. RS-232-Statusregister

EIN-/AUSGABE-ANLEITUNG




Anmerkungen: |st Bit = 0, dann wurde kein Fehler erkannt.
Das RS-232-Statusregister kann von BASIC Uber die Variable ST gelesen werden.

Variable zuzuordnen. Z. B.:

SR=ST: REM ASSIGNS ST TO SR

externe Ein-/Ausgabe war.

Wird ST uber BASIC oder die KERNAL-Routine READST gelesen, dann wird das RS-232-Statuswort
beim Programmende geldscht. Soll das Statuswort mehrfach benutzt werden, dann ist ST einer anderen

Der RS-232-Status wird nur gelesen (und geléscht), wenn der RS-232-Kanal die zuletzt benutzte

BASIC-PROGRAMMBEISPIEL

18 REM THIZ PROGRAM SEMDE AMD RECEIVES DATH
TOAFROM A SILEWT P86

11 REM TERMIMAL MODIFIED FOR FPET ASCII

28 REM TI SILEMT v@@ SET-UP: 288 BRUD., 7-BIT ASCII.
MARE., FARITY.

21 REM FULL DUPLE

28 EEM SAME SET-UP AT COMPUTER LSIMG 2-LIME
IMTERFACE

188 OPEM 2, 2.2, CHE$ (84320 +CHRECZ2+1ZE0 CREN OPEH
THE CHAMMEL

118 GET#2, A% KEM TURM O THE RECEIYER CHAMHEL
CTOBS A MULLY

288 REM MAIM LOOP

£18 GET B#:REM GET FROM COMPUTER KEYROARD

228 IF BCx"" THEW FRIMT#Z.B#: 'REM IF A KEY
PRESSED, SEMD TO TERMIMAL

238 GET#2,C$:REM GET A KEY FROM THE TERMIMAL

248 FRIMT B#:C%)REM FRIMT ALL IMPUTES TO COMPUTER
SCREEM

238 SR=35T7: IF SR=@ 0OF SR=32 THEW 266 REM CHECK
ETATUS, IF GOOD THEMW COMTIHUE

338 REM ERROFE REPORTIMG

318 PRIMT "ERROR: "

328 IF SR AMD 1 THEM PRIMT “"PARITY"

38 IF SR AMD 2 THEW PEIMT “"FRAME"

248 IF SR AMD 4 THEM PRIMT "RECEIYER BUFFER FULL"
358 IF SR AMD 128 THEWM PRIMT "EREAK"

288 IF CPEERCETE) AMD 1) THEM 36@:REM WAIT UMTIL
ALL CHARS TRAHSMITTED

278 CLOSE 2 EMD

EIN-/AUSGABE-ANLEITUNG

349



18 FEM THIZ PREOGREAM SEMDE AMD RECEIVES TRUE ASCII
DATH

188 OFEM 5,2, 3, CHE$OE)
118 DIM FRCZ55), TROZ35)

SEE FOR J=32 TO &4 THCIy=T HEAT

210 THol32=12 Th 2 =8 RY=12:CT=@

228 FOR J=&3 TO 58 E=T+32: Thi =k HEST
238 FOR J=81 TO 335 THcJi=J NEXT

248 FOR J=1823 TO 218 K=J-128: THoI =k HEAT
258 TrildEir=1:Th{133=16

268 FOR J=@ TO 255

27 K=ThoT)

220 IF KCRATHEM FROK =T Frok+1280=]
298 HEST
268 PRIMT " "CHREEC147)

318 GETH#S., A%

228 IF AfF=""0R ST 20 THEM 266

3EH FREIMT " "CHR# FriCHRECFROASCORE N D)

248 IF FRCASCORED i=24 THEMW POKEZ1Z. @

358 GOTD 3168

FRIMTCHRE RN 0" "CHRECLEY ) CHRESO 14680 0 1 GET A%
IF A" THEMPRIMTHS, CHES CTHORSCORAE 30 )
CT=CT+1

IF CT=8 THEMCT=E:RM=]04~FRY

GOTOE1E

L

B L O
= 0 g) ~ i
B AR A TR

ZEIGER FUR EMPFANGS-/UBERTRAGUNGSPUFFER

$00F7—RIBUF — Ein Zwei-Byte-Zeiger zur Empfangspuffer-Basisadresse.
$00F9—ROBUF — Ein Zwei-Byte-Zeiger zur Ubertragungspuffer-Basisadresse.

Die beiden obigen Adressen werden durch die KERNAL-Routine OPEN bereitge-
stellt, wobei jede auf einen anderen 256-Byte-Puffer zeigt. Die Zuordnung wird
annulliert, indem man in die héherwertigen Bytes ($00F8 und $00FA) Uber die
KERNAL-Eingabe CLOSE eine Null schreibt. Die Zuordnung bzw. Annullierung
kann auch durch Maschinensprache-Programme erfolgen, wobei der/die erforderli-
chen Puffer erstellt oder geléscht werden. Beim Arbeiten mit einem Maschinenspra-
che-Programm, das diese Puffer zuordnet, stets darauf achten, daB die Zeiger auf
dem oberen Speicherende stehen. Dies gilt besonders dann, wenn gleichzeitig
BASIC-Programme abgearbeitet werden sollen.

350 EIN-/AUSGABE-ANLEITUNG



ZERO-PAGE-ADRESSEN UND IHRE ANWENDUNG FUR DAS
SYSTEM-INTERFACE RS-232

$00A7—INBIT — Empfanger Temp. Speicherung des Eingangsbits
$00A8—BITCI — Empfanger-Bitzahlung EIN

$00A9—RINONE — Empfinger-Flag Startbit-Priifung
$00AA—RIDATA — Empfanger-Bytepuffer/Assemblierplatz
$00AB—RIPRTY — Empfanger-Paritatsbit-Speicherung
$00B4—BITTS — Ubertrager-Bit-Zahlung AUS

$00B5—NXTBIT — Ubertrager, nichstes zu libertragendes Bit
$00B6—RODATA — Ubertrager-Byte»Puffer/DisassemblierpIatz

Die obigen Zero-Page-Adressen sind lediglich als Hilfsmittel fiir die Erklarung der
zugehorigen ROUTINEN gedacht. Sie kénnen nicht direkt Gber BASIC- oder
KERNAL-Programme benutzt werden, um RS-232-Funktionen auszufiihren. Hierzu
sind die System-Routinen RS-232 einzusetzen.

ADRESSEN, DIE NICHT IN DER ZERO-PAGE ENTHALTEN
SIND UND IHRE ANWENDUNG FUR DAS SYSTEM-INTERFACE
RS-232

Allgemeine RS-232-Speicherung:

$0293—M51CTR — Pseudo-Steuerregister 6551 (siehe Abb. 6.1.)

$0294—M51COR — Pseudo-Befehlsregister 6551 (siehe Abb. 6.2.)

$0295—M51AJB — Zwei Bytes nach dem Steuer- und Befehlsregister im Dateina-
menfeld. Diese Platze enthalten die Baud-Rate fiir den Anfang des Bit-
Tests wahrend des Interface-Betriebs, in dem wiederum die Baud-Rate
berechnet wird.

$0297—RSSTAT — Statusregister RS-232 (siehe Abb. 6.3.)

$0298—BITNUM — Anzahl der zu Ubertragenden/empfangenden Bits.

$0299—BAUDOF — Zwei Bytes, die der Zeit einer Bitzelle entsprechen. (Basierend
auf Systemuhr/Baud-Rate.)

$029B—RIDBE — Byteindex zum Ende des Empfinger-FIFO-Puffers.

$029C—RIDBS — Byteindex zum Anfang des Empfanger-FIFO-Puffers.

$029D—RODBS — Byteindex zum Anfang des Ubertragungs-FIFO-Puffers.

$029E—RODBE — Byteindex zum Ende des Ubertragungs-FIFO-Puffers.

$02A1—ENABL — Verzégert derzeitig aktive Interrupts im CIA #2 ICR. Ist Bit 4
eingeschaltet, wartet das System auf das “Receiver Edge“. Ist Bit 1
eingeschaltet, dann empfangt das System Daten. Ist Bit 0 eingeschaltet,
Ubertragt das System Daten.

EIN-/AUSGABE-ANLEITUNG 351



USERPORT

Uber den Userport kann der COMMODORE 64 an die AuBenwelt angeschlossen
werden. Durch Verwendung der Uber diesen Port zur Verfugung stehenden Leitun-
gen konnen Sie den COMMODORE 64 an einen Drucker, ein Modem und sogar an
einen anderen Computer anschlieBen.

Der Port des COMMODORE 64 wird direkt an einen der Chips 6526 CIA ange-
schlossen. Durch Programmierung kann der CIA an zahlreiche andere Geréte
angeschlossen werden.

PORT PIN DESCRIPTION

1 2 3 456 7 8 9 101112

RS

A BCDEFHJIKLMN

PORT-PIN-BESCHREIBUNG

PIN
Beschreibung Anmerkungen

Oberseite

1 GROUND

2 +5V (Max. 100 mA)

3 RESET Durch Erdung dieses Pins fuhrt der
COMMODORE 64 einen Kaltstart aus. Auch die
Zeiger auf ein BASIC-Programm werden zurdck-
gestellt, der Speicher jedoch nicht geldscht.
Gleichzeitig wird ein RESET-Signal an die
Peripherie-Gerate gegeben.

4 CNTH1 Zahlereingang des seriellen Ports vom CIA #1
(CIA 6526-Datenblatt)

5 SP1 Serieller Port vom CIA #1 (siehe CIA 6526-
Datenblatt)

352 EIN-/AUSGABE-ANLEITUNG




PIN

Beschreibung Anmerkungen
Oberseite
8 PC2 Handshake-Leitung vom CIA =2 (siehe
CIA 6526-Datenblatt)
9 SERIAL ATN | Dieser AnschluB ist mit der ATN-Leitung des
seriellen Busses verbunden.

10 9 VAC+phase | Direkt an den Transformator des COMMODORE
11 9 VAC—phase | 64 angeschlossen (max. 50 mA).
12 GND

Unterseite
A GND Beim COMMODORE 64 ist der Port B des CIA
B FLAG 2 # 1-Chips frei verfigbar. Neben Ein-/Ausgabe-
C PBO leitungen stehen zwei Handshake-Leitungen
D PB1 zur Verfigung. Die Ein-/Ausgabeleitung von
E PB2 Port B wird Gber zwei Adressen gesteuert. Die
F PB3 eine Adresse ist der Port selbst und liegt bei
H PB4 56577 ($DDO01in HEX). Auf diese Adresse
J PB5 konnen Sie die Befehle PEEK (Eingabe) und
K PB6 POKE (Ausgabe) anwenden. Jede der 8 Ein-/
L PB7 Ausgabeleitungen kann entweder als Eingabe-
M PA2 oder Ausgabeleitung definiert werden. Hierzu
N GND wird das Datenrichtungsregister entsprechend

eingestellt.

EIN-/AUSGABE-ANLEITUNG 353




Das DATENRICHTUNGS-REGISTER liegt bei Adresse 56579 ($DD03 in HEX).
Jede der acht Port-Leitungen hat ein Bit im 8-Bit-Datenrichtungs-Register (Data
Direction Register = DDR), liber das gesteuert wird, ob es sich um eine Eingabe-
oder Ausgabeleitung handelt. Ist das Bitim DDR eine 1, dann ist die entsprechende
Port-Leitung eine Ausgabeleitung. Ist das Bit auf O gesetzt, dann handelt es sich um
eine Eingabeleitung. Ist z. B. Bit 3 des DDR auf 1 gesetzt, dann ist Port-Leitung 3
eine Ausgabeleitung. Ein weiteres Beispiel:

Das DDR ist wie folgt eingestellt:

BIT#:76543210
WERT: 00111000

Die Leitungen 5, 4 und 3 sind Ausgabeleitungen, da diese Bits auf 1 gesetzt sind.
Bei den restlichen Leitungen handelt es sich um Eingabeleitungen, da deren Bits
auf O gesetzt sind.

Zum PEEKen oder POKEnN des Userports muB sowohl das Datenrichtungs-Register
als auch das Port-Register selbst benutzt werden. Die in dem Beispiel gegebenen
Zahlen mussen vor der Verwendung in Dezimalzahien umgewandelt werden.

2 +2°+22=32+ 16 + 8 =56
(16 = 274=2%x2x2x2, 8§ = 213=2X2x%2)

Die Ubrigen zwei Leitungen, FLAG1 und PA2, unterscheiden sich von den restli-
chen Benutzer-Port-Leitungen. Diese zwei Leitungen werden hauptsachlich fir das
“Handshaking” eingesetzt und mdissen anders programmiert werden, als die
Leitungen des Port B. Bei der Kommunikation zwischen zwei Geraten ist ein
Handshaking-Betrieb erforderlich. Da der Datenaustausch bei den beiden Geraten
verschieden lang dauern kann, ist es erforderlich, daB ein Gerét weiB, in welchem
Zustand sich das andere gerade befindet. Auch wenn beide Ubertragungsrichtun-
gen gleich schnell sind, ist ein Handshake-Betrieb erforderlich, um anzuzeigen,
wann Daten (bertragen werden sollen und ob sie empfangen wurden. Leitung
FLAG2 hat besondere Eigenschaften, durch die sie sich besonders flr diesen
Zweck eignet.

FLAG?2 ist ein flir negative Flanken sensitiver Eingang, der als allgemeiner Interrupt-
eingang benutzt werden kann. Jede negative Flanke auf der FLAG-Leitung setzt das
FLAG-Interruptbit. Ist der FLAG-Interrupt zugelassen, dann flhrt dies zu einer
INTERRUPT REQUEST (IRQ).

354 EIN-/AUSGABE-ANLEITUNG



Ist der Flag-Interrupt nicht zugelassen, so kann eine eingetroffene negative Flanke
durch Abfrage des Interrupt-Flag-Registers erkannt werden.

PA2 ist Bit 2 von Port A des CIA. Es wird genau wie andere Bits dieses Ports
gesteuert. Der Port befindet sich in Adresse 65576 ($DD00). Das Datenrichtungs-
Register befindet sich in Adresse 56578 ($DD02).

Weitere Einzelheiten Uber den 6526 entnehmen Sie bitte Anhang M.

DER SERIELLE BUS

Uber den seriellen Bus kann der COMMODORE 64 mit anderen Geraten wie z. B.
der VC-1541-Disketten-Station und dem VC-1525-Graphikdrucker kommunizieren.
Der Vorteil dieses seriellen Busses liegt darin, daB bis zu 5 Gerate angeschlossen
werden konnen. Es gibt verschiedene Funktionen, die am seriellen Bus mdglich
sind — “control”, “talk” und “listen®.

Ein als “CONTROLLER* fungierendes Gerat steuert die Kommunikation am seriel-
len Bus. Ein TALKER sendet Daten auf den Bus. Ein LISTENER empfangt Daten
vom Bus.

Der COMMODORE 64 ist der CONTROLLER. Er kann auch TALKER sein, z. B. bei
der Ubertragung von Daten zum Drucker oder LISTENER (z. B. beim Laden eines
Programms von Diskette). Andere Gerate kénnen entweder LISTENER (der DRUK-
KER), TALKER oder beides (die DISKETTENSTATION) sein. AusschlieBlich der
COMMODORE 64 ist CONTROLLER.

Alle an den seriellen Bus angeschlossenen Gerate empfangen samtliche tber den
Bus ubertragenen Daten. Damit der COMMODORE 64 die Daten zum gewiinschten
Ziel ibertragen kann, hat jedes Geréat eine Bus-Adresse. Durch Verwendung dieser
Gerate-Adresse kann der COMMODORE 64 den Zugriff auf den Bus steuern. Die
Adressen 4 bis 31 stehen zur Verfligung.

Der COMMODORE 64 kann ein bestimmtes Gerét anweisen, zu senden oder zu
empfangen. Wenn ein Gerat diesen TALK-Befehl vom COMMODORE 64 erhalt,
beginnt es mit der Datenausgabe Uber den Serienbus. Empfangt ein Gerat den
LISTEN-Befehl vom COMMODORE 64, dann bereitet sich dieses Geréat auf den
Datenempfang vor (vom COMMODORE 64 oder einem anderen Gerét, das an den
Bus angeschlossen ist). Gleichzeitig kann jeweils nur ein Gerat Uber den Bus
Ubertragen, da es sonst zu einer Datenkollision kommt und das System zusammen-
bricht. Eine beliebige Anzahl an Geraten kann jedoch gleichzeitig die Daten emp-
fangen.

EIN-/AUSGABE-ANLEITUNG 355



STANDARD-ADRESSEN AUF DEM SERIELLEN BUS

NUMMER GERAT
4 oder 5 VC-1525 GRAPHIKDRUCKER
8 VC-1541 DISKETTENSTATION

Andere Geréteadressen sind mdglich. Jedes Gerét hat seine eigene Adresse.
Bestimmte Gerate (wie z. B. der COMMODORE 64-Drucker) bieten dem Anwender
die Mdglichkeit, zwischen zwei Adressen zu wahlen.

Uber die SEKUNDARADRESSE kann der COMMODORE 64 Betriebsinformationen
zu einem Gerat Ubertragen. Z. B. um einen Kanal zum Drucker zu 6ffnen und einen
Text in GroB-/Kleinschrift auszudrucken, benutzen Sie folgende Anweisung:

OPEN 14,7

wobei

1 logische Dateinummer (Nummer, zu der die Ausgabe PRINT# erfolgt)

4 Druckeradresse

7 gleich SEKUNDARADRESSE, die dem Drucker mitteilt, daB der GroB-Klein-
schrift-Modus gewéhlt ist.

Der serielle Bus verwendet 6 Leitungen — 3 Eingabe- und 3 Ausgabeleitungen.
Die 3 Eingabeleitungen Ubertragen Daten-, Steuer- und Timing-Signale zum COM-
MODORE 64. Die 3 Ausgabeleitungen (ibertragen Daten-, Steuer- und Timing-
signale zu externen Geraten, die an den seriellen Bus angeschlossen sind.

ANSCHLUSSE DES SERIELLEN BUSSES

PIN BEZEICHNUNG

SERIAL SRQ IN

GND

SERIAL ATN IN/OUT
SERIAL CLK IN/OUT
SERIAL DATA IN/OUT
NO CONNECTION

D OB W=

356 EIN-/AUSGABE-ANLEITUNG



SERIAL SRQ IN: (SERIAL SERVICE REQUEST IN)

Jedes an den seriellen Bus angeschlossene Gerat kann dieses Signal auf Low
ziehen, um den COMMODORE 64 auf sich aufmerksam zu machen (siehe Abb.
6.4.).

NORMAL
y-—— BYTE SENT UNDER ATTENTION (TO DEVICES) | —DATA BYTES

m iy
Ly

>
3
z

ehhihina
~TaAT | TNe P |4+ Ty —~{Trb-

o T | [ HUEIEUEEE |

_r T
”L" DATA VALID l‘ F
LISTENER READY-FOR-DATA LISTENER DATA-ACCEPTED
END-OR-IDENTIFY HANDSHAKE (LAST BYTE IN MESSAGE)
ATN
TALKER READY-TO-SEND TALKER SENDING
}
CLOCK
|._.L.TBB TS—IL [Ty

o WEEH L L J
MSB
“JTH LTYE’ITEl*L——ﬁTRY Te *—’rTFR
LISTENER READY-FOR-DATA
EOI-TIMEOUT HANDSHAKE SYSTEM LINE
LISTENER READY-FOR-DATA RELEASE
TALK-ATTENTION TURN AROUND (TALKER=>LISTENER TO LISTENER<=TALKER)

ATN J DEVICE ACKNOWLEDGES IT IS NOW TALKER
’ TALKER READY-TO-SEND

CLOCK TNE

*lTRh TDC|TDA|’ NI4Ty
pata  |4|]s]|s]l7] T1K EIIIIBI
vSs | I MSB
[Te TH _’lTF

READY FOR DATA
BECOMES LISTENER, CLOCK = HIGH, DATA LOW

Abb. 6.4.

EIN-/AUSGABE-ANLEITUNG 357



SERIAL ATN IN/OUT: (SERIAL ATTENTION IN/OUT)

Der COMMODORE 64 benutzt dieses Signal, um eine Befehlsfolge fir ein an den
seriellen Bus angeschlossenes Gerat zu beginnen. Setzt der COMMODORE 64
dieses Signal auf Low, dann warten alle an den Bus angeschlossenen Geréte auf
eine vom COMMODORE 64 zu sendende Adresse. Das adressierte Gerat antwortet
innerhalb eines festgelegten Zeitraums — anderenfalls nimmt der COMMODORE
64 an, daB das Gerat mit der speziellen Adresse nicht an den Bus angeschlossen

ist, und gibt die Fehlermeldung im Statuswort aus (siehe Abb. 6.4.).

358

TALKER READY-TO-SEND

1 TALKER SENDING

Tg TNE
l TNe N +Ty | ~Teg~ |\ [Ty
AUEEEEE L
i LS8 vse |
=l DATA VALID ~ITe I Thl-

LISTENER READY-FOR-DATA

LISTENER DATA-ACCEPTED

SERIENBUS TIMING

Description Symbol Min. Typ. Max
ATN RESPONSE (REQUIRED)' TAT - — 1000us
LISTENER HOLD OFF Ty 0 — =3
NON-EOI RESPONSE TO RFD? TNE - 40us | 200us
BIT SET-UP TALKER* Tg 20ps | 70us -
DATA VALID Ty 20us 20us -
FRAME HANDSHAKES Te 0 20ps | 1000us
FRAME TO RELEASE OF ATN TR 20us — —
BETWEEN BYTES TIME Tes — — —
EOI RESPONSE TIME Tyg | 200ps | 250us -
EOI RESPONSE HOLD TIME Tg 60us — —_
TALKER RESPONSE LIMIT TRy 0 30us 60us
BYTE-ACKNOWLEDGE* TepR 20pus J 30us —

Notes:

1. If maximum time exceeded, device not present error.

2. If maximum time exceeded, EOI response required.
3. If maximum time exceeded, frame error.

4.Ty and Tpg minimum must be 60us for external device to be a talker.

EIN-/AUSGABE-ANLEITUNG



SERIAL CLK IN/OUT: (SERIAL CLOCK IN/OUT)

Dieses Signal wird fiir das “timing“ der Datenlbertragung tber den seriellen Bus
benutzt (siehe Abb. 6.4.).

SERIAL DATA IN/OUT:

Die Datenlibertragung uber diese Leitung des seriellen Busses geschieht Bit-seriell
(siehe Abb. 6.4.).

ERWEITERUNGSANSCHLUSS

Der ErweiterungsanschluB ist als 44-Pin-Steckverbinder (22/22) ausgebildet. Wenn
Sie vor dem COMMODORE 64 stehen, liegt der ErweiterungsanschluB ganz rechts
auf der Computer-Rickseite. Um diesen AnschluB zu benutzen, ist ein entspre-
chender 44-Pin-Stecker erforderlich.

Dieser AnschluB wird flr Erweiterungen des COMMODORE 64 benétigt, die den
Zugriff auf den AdreB- oder Datenbus des Computers erfordern. Bei der Verwen-
dung des Erweiterungsbusses ist vorsichtig vorzugehen, da der COMMODORE 64
sonst beschédigt werden kann.

Der ErweiterungsanschluB ist wie folgt belegt:

2221201918 17161514131211109 8 7 6 5 4 3 2 1

ZYXWVUTSRPNMLKJHFEDCSBA

EIN-/AUSGABE-ANLEITUNG 359



Folgende Signale sind an diesem AnschluB verfligbar:

NAME PIN BEZEICHNUNG

GND 1 Erdung

+5VDC 2 (User-Port und Steckmodule dirfen zusammen nicht

+5VDC 3 mehr als 450 mA verbrauchen.)

IRQ 4 Interrupt-Request-Leitung zum 6510 (Aktiv-L-Pegel)

R/W 5 | Lesen/Schreiben

DOT

CLOCK 6 | 8,18 MHz Video-Dot-Clock

701 7 | Ein-/Ausgabe-Bereich 1 bei $DEO0-$DFFF (Aktiv-L-Pegel
LS TTL-Ausgang)

GAME 8 | Aktiv-L-Pegel LS TTL-Eingang

EXROM 9 | Aktiv-L-Pegel LS TTL-Eingang

1702 10 Ein-/Ausgabesatz 2 bei $DFO0-$DFFF (Aktiv-L-Pegel LS
TTL-Ausgang)

ROML 11 Ausdekodierter 8K-RAM/ROM-Bereich bei $8000
(Aktiv-L-Pegel LS TTL-Ausgang)

BA 12 | Bus-Available Signal vom VIC-Chip 6569 (nicht gepuffert,
max. 1 LS TTL-Last)

DMA 13 | Direct-Memory-Access-Request-Leitung (Aktiv-L-
Eingang, LSTTL)

D7 14 | Datenbus-Bit 7 |

D6 15 Datenbus-Bit 6

D5 16 Datenbus-Bit 5

D4 17 Datenbus-Bit 4 .

D3 18 Datenbus-Bit 3 nicht gepuffert, max. 1 LS TTL-Last

D2 19 Datenbus-Bit 2

D1 20 Datenbus-Bit 1

Do 21 Datenbus-Bit 0

GND 22 Erdung

GND A

ROMH B Ausdekodierter 8K-RAM/ROM-Bereich bei $E000
(Aktiv-L-Pegel LS TTL-Ausgang)

RESET C 6510 RESET-AnschluB (Aktiv-L)

NMI D 6510 not Maskable Interrupt (Aktiv-L)

@2 E Phase 2 Systemclock

360 EIN-/AUSGABE-ANLEITUNG




NAME PIN BEZEICHNUNG
A15 F | AdreBbus Bit 15
Al4 H AdreBbus Bit 14
A13 J AdreBbus Bit 13
Al2 K AdreBbus Bit 12
A1 L AdreBbus Bit 11
A10 M AdreBbus Bit 10
A9 N AdreBbus Bit 9
ﬁg : ﬁgiggzz S:E 3 r nicht gepuffert, max. 1 LS TTL-Last
A6 S AdreBbus Bit 6
A5 T AdreBbus Bit 5
A4 U AdreBbus Bit 4
A3 Vv AdreBbus Bit 3
A2 W AdreBbus Bit 2
Al X AdreBbus Bit 1
A0 Y AdreBbus Bit 0
GND Z Erdung
Ein Strich Uber dem Signalnamen bedeutet Aktiv-L

Einige der wichtigsten Leitungen des Erweiterungsanschlusses werden nachfol-
gend beschrieben:

Die Pins 1, 22, A und Z sind geerdet.

An Pin 6 liegt das Signal DOT CLOCK an. Uber dieses Signal von 7,88 MHz erfolgt
die gesamte Systemzeitsteuerung.

Pin 12 ist das BA-Signal (Bus-available) des VIC-Chip. Diese Leitung geht 3 Zyklen
des Systemtaktes (@2) bevor der VIC-Chip den System-Bus vollstdndig uber-
nimmt, auf Low. Dies gilt so lange, wie Anzeigeinformationen vom VIC-Chip
abgerufen werden.

Pin 13 ist die DMA-Leitung (DIRECT MEMORY ACCESS-Leitung). Ist diese
Leitung auf Low, so befinden sich AdreBbus, Datenbus und Read-/Writeleitung des
Prozessors 6510 im hochohmigen Zustand. Auf diese Weise kann ein externer
Prozessor die Steuerung des Systembusses Ubernehmen. Diese Leitung sollte nur
auf Low gelegt werden, wahrend der #2-Taktgeber L-Pegel hat. Da der VIC-Chip
weiterhin Anzeige-DMA ausfiihrt, muB3 der externe Prozessor auBerdem mit der
Zeitsteuerung des VIC-Chips Ubereinstimmen. (Siehe Timing-Diagramm des VIC-
Chip.) Diese Leitung liegt beim COMMODORE 64 auf H-Pegel.

EIN-/AUSGABE-ANLEITUNG 361




Z-80 MIKROPROZESSOR-MODUL

Beim Lesen dieses Buches und Arbeiten mit lhrem Computer werden Sie festge-
stellt haben, wie vielseitig Ihr COMMODORE 64 wirklich ist. Noch wirkungsvoller
zeigt er sich jedoch bei der Kombination mit Peripheriegeréten. Peripheriegeréate
sind z. B. Datassette, Diskettenstationen, Drucker und Modems. Diese Gerate
lassen sich (iber die verschiedenen Ports auf der Rickseite des COMMODORE 64
anschlieBen.

COMMODORE-Peripheriegerate zeichnen sich besonders dadurch aus, daB sie
“intelligent” sind, d. h., sie bendtigen keinerlei RAM-Speicherkapazitat. Sie kdnnen
also den 64K-Speicher des COMMODORE 64 voll ausnutzen.

Ein weiterer Vorteil des COMMODORE 64 besteht darin, daB die meisten Pro-
gramme, die Sie heute schreiben, auch noch mit den Geréten von morgen kompati-
bel sind. Dies liegt zum Teil am sinnvollen Aufbau des Betriebssystems (OS).
Eins kann das Betriebssystem des COMMODORE jedoch nicht: Ihre Programme fr
die Computer einer anderen Herstellerfirma kompatibel machen.

Da der COMMODORE 64 jedoch so einfach zu handhaben ist, werden Sie erst gar
nicht daran denken, ein anderes Gerat zu benutzen. Fir die Félle, in denen ein
Anwender jedoch Software benutzen mdchte, die nicht im Format des COMMO-
DORE 64 zur Verfligung steht, haben wir ein COMMODORE-CP/M®-Modul entwik-
kelt.

CP/M® ist kein “computerabhéngiges” Betriebssystem. Vielmehr wird fir das
Betriebssystem Speicherplatz verwendet, der normalerweise flir die Programmie-
rung benutzt wird. Dies hat Vor- und Nachteile. Die Nachteile liegen darin, daB die
Programme kiirzer als bei Verwendung des eingebauten Betriebssystems sein
missen. Dariiber hinaus kann nicht mit den Bildschirm-Editierfunktionen des COM-
MODORE 64 gearbeitet werden. Von Vorteil ist jedoch, daB sie nun wesentlich mehr
Software speziell fiir CP/M® und den Mikroprozessor Z-80 benutzen kdnnen und
daB die Uber dieses CP/M®-Betriebssystem geschriebenen Programme auf belie-
bige andere Computer Ubertragen und dort ausgefihrt werden kdnnen, die mit
CP/M® und Z-80-Karte ausgeristet sind.

Bei den meisten Computern mit Z-80-Mikroprozessor muB die Z-80-Karte ubrigens
im Gerat eingebaut werden. Hierbei ist besonders vorsichtig vorzugehen, da leicht
die empfindliche Schaltung beschadigt wird. Beim COMMODORE-Steckmodul
CP/M® ist dies nicht erforderlich, da es schnell und einfach an der Rickseite
Ihres COMMODORE 64 aufgesteckt wird.

ARBEITEN MIT COMMODORE CP/M®

Mit dem COMMODORE-Modul Z-80 kénnen Sie fur einen Z-80-Mikroprozessor
entworfene Programme auf Ihrem COMMODORE 64 laufen lassen. Zur Z-80-Karte
gehort auch eine Diskette mit dem COMMODORE-CP/M®-Betriebssystem.

362 EIN-/AUSGABE-ANLEITUNG



AUSFUHRUNG
Zur Ausfihrung von CP/M®:

1) CP/M®-Programm von der Diskette laden.
2) Uber die Tastatur RUN eingeben.

3) -Taste driicken.

Beim COMMODORE 64 sind 64K-Byte RAM durch den Prozessor 6510 oder 48K-
Byte RAM durch den Prozessor Z-80 erreichbar. Ein Schalten zwischen diesen
beiden Prozessoren ist moglich, sie kénnen jedoch nicht gleichzeitig in ein und
demselben Programm benutzt werden. Das Umschalten wird durch die raffinierte
Timing-Technik des COMMODORE 64 méglich.

Nachfolgend sehen Sie die Speicheradressen-Verschiebung fir das Z-80-Modul.
Bitte beachten Sie, daB durch Hinzufiigen von 4096 Bytes zu den von CP/M®
benutzten Speicherplatzen sich die Speicheradressen des normalen Betriebssy-
stems des COMMODORE 64 ergeben. Die Speicheradressen von Z-80 und 6510
stehen in folgendem Zusammenhang:

ADRESSEN, Z-80 ADRESSEN, 6510
DEZIMAL HEXADEZIMAL DEZIMAL HEXADEZIMAL

0000—-4095 0000—OFFF 4096—-8191 1000—1FFF

4096—-8191 1000— 1FFF 8192-12287 2000—-2FFF

819212287 2000—2FFF 12288-16383 3000—-3FFF
12288-16383 3000—3FFF 16384—-20479 4000—4FFF
16384-20479 4000—4FFF 20480—-24575 5000—-5FFF
20480—-24575 5000—5FFF 24576—-28671 6000—6FFF
24576-28671 6000—6FFF 28672-32767 7000—-7FFF
28672-32767 7000—7FFF 32768—-36863 8000—8FFF
32768-36863 8000—8FFF 36864—-40959 9000—-9FFF
36864—-40959 9000—9FFF 40960—-45055 A000—AFFF
40960—-45055 A000—-AFFF 45056—-49151 BOOO—BFFF
45056—49151 BOOO—BFFF 49152-53247 C000—CFFF
49152-53247 C000—CFFF 53248-57343 DO00O—DFFF
53248-57343 DO00—DFFF 57344—-61439 EO00—EFFF
57344—-61439 EOOO—EFFF 61440—-65535 FOOO—FFFF
61440—-65535 FOOO—FFFF 0000—-4095 0000—OFFF

EIN-/AUSGABE-ANLEITUNG

363



Um den Z-80 einzuschalten und den 6510 auszuschalten, geben Sie folgendes
Programm ein:

1@ REM THIZ i 0 BE LSED WITH THE Z28 CARD
(5 REM‘IT FIRST ST0 DATA AT #1E0E

EMOTHEM IT TURME OFF THE &518 IRGCE AMD EMABLES
THE Z86 CARD.  THE 288 CARD MUST BE TURMED

Exl Tﬂ REEMFEBLE THE EE1E SYETEM,

FREM STORE 2 I

1 READ E FEH LET SIEE OF 288 CODE TO BE MOVED
! 5 AR T REM MOVE CODE

5 LIMEH

BEN Tiron EHid

24@ EMT

ECTION
ED

L LAMGURGE CODE DRTH S
OF DATH TO BE FA
T

DR 228 CARD REQUIRE:S

i IHITH II
Qe TIME

HT
RS HERE
J'vghrh4” FET LD HL s CLDCET IO Ok
L. THCREMEMT THAT LOCATION
O OFF DFTH HERE
T LI Pk
COREM LD CHMI LA TS0 LOTET TOM
T

ﬁHTH
FEM

TETH
T
DFTE
TETH

155

Beziglich weiterer Einzelheiten tber COMMODORE CP/M® und den Mikroprozes-
sor Z-80 fragen Sie bitte Inren COMMODORE-Héandler.

364 EIN-/AUSGABE-ANLEITUNG



ANHANG

365




ANHANG A

ABKURZUNGEN DER BASIC-SCHLUSSELWORTER

Zur Zeitersparnis kdnnen bei der Eingabe von Programmen und Befehlen beim
COMMODORE 64 die meisten BASIC-Schlisselwdrter abgekirzt werden. Die
Abklrzung fir PRINT ist z. B. ein Fragezeichen. Die Ubrigen Worter werden wie
folgt abgekdrzt: Eingabe des ersten bzw. der ersten zwei Buchstaben, danach der
nachste Buchstabe mit SHIFT-Taste. Werden Abklrzungen in Programmzeilen
benutzt, dann erscheint das Schllsselwort bei der Auflistung in ausgeschriebener

Form.
Bild- Bild-

Abkiir- schirm- Abkiir- schirm-
Befehl zung anzeige Befehl zung anzeige
ABS A 8 A[]] END E N e [/
AND A N A EXP E X E
Asc  AEMs Av) FN NONE FN
ATN A B 1 Al FOR F & o F ]
CHR$ C H c[] FRE F EE R Fd
cost cEmEo <[] GET Y st I3 ¢ [
CLR c EmE . c GET#  NONE GET#
cwvo c EE@m N cosue GOEIERS  Go[V]
conm c Bmo <[] coro cEmo o [J
cos  NONE cos IF NONE IF
pATA D ElED A D INPUT  NONE INPUT
DEF o EEe o INPUT# | N1
om o G AN INT NONE INT

366 Anhang A




Bild- Bild-
Abkiir- schirm- Abkiir- schirm-

Befehl  zung anzeige Befehl  zung anzeige
teFrs L AR F e RIGHTS R [EIGED ! RN
LEN NONE LEN RND R ElE N R[]
LET W e | L RUN R S U R[A
LIST [ shir N SAVE s & A s [#]
a0 LEEo [ son  sEmc s
LOG  NONE LOG SIN Y shirr N
mios  METER | mR] SPC( s BE s
NEW  NONE NEW SQR S Q s @
NexT N I e N STATUS ST ST
ot NEBo N[ ster STEED E sTH]
ON NONE ON sToP s T s
oreN  OED P o] st STEEEAR ST
OR NONE OR sYs S v o s[]
PEEK P &S ¢ P TAB( T EE A T (4]
POKE ¥ sHiFT e} P[] TAN NONE TAN
POS NONE POS hen T BER H T[]
PRINT 2 ? TIME i Tl
PRINT# P (BB R P ] TIME$  TI$ TI$
Reab R ED ¢ R USR v EIED s u (]
REM NONE REM VAL VEE A v [4
RESTORE RE [EXED S RE [¥] veriry v [EHED E v
RETURN  RE (IR T Re([[] [war  wEDRE A w4

Anhang A

367



ANHANG B

BILDSCHIRM-ANZEIGE-CODES

Nachfolgend werden samtliche Zeichen aufgelistet, die mit den Zeichensétzen des
COMMODORE 64 moglich sind. In der Tabelle wird gezeigt, welche Zahlen fur ein
gewlinschtes Zeichen in den Bildschirmspeicher (Platze 1024—-2023) gePOKEt
werden mussen. AuBerdem sehen Sie, welches Zeichen einer vom Bildschirm
gePEEKten Zahl entspricht.

Es stehen zwei Zeichensatze zur Verfugung, von denen jeweils einer gewéhit
werden kann. D. h., bei der Anzeige von Zeichen eines Satzes ist der andere Satz
“nicht wirksam. Zum Umschalten der Zeichensétze werden gleichzeitig die Tasten
und [§ gedriickt.

Bei BASIC wird durch POKE 53272,21 in den GroBschrift-Graphik-Modus und
durch POKE 53272,23 in den Klein-GroBschrift-Modus umgeschaltet.

Alle in der Tabelle gezeigten Zahlen kdnnen negativ dargestellt werden. Den
entsprechenden AdreB-Code erhdlt man, indem zu den gezeigten Werten 128
addiert wird. Soll ein ausgefillter Kreis in Bildschirmadresse 1504 dargestellt
werden, dann POKEn Sie den Code flr den Kreis (81) in Adresse 1504: POKE
1504,81.

Fur die Farbsteuerung der einzelnen auf dem Bildschirm angezeigten Zeichen
existiert ein entsprechender Speicherbereich (Adressen 55296—56295). Um die
Farbe des Kreises z. B. in Gelb zu dndern (Farb-Code 7), wird der Farb-Code in den
entsprechenden Speicherplatz (55776) gePOKEt: POKE 55776,7.

Die vollstandigen Bildschirm- und Farbspeicherbelegungen sowie die Farb-Codes
finden Sie in Anhang D.

BILDSCHIRM-CODES

SATZ1 SATZ2 POKE | SATZ1 SATZ2 POKE | SATZ1 SATZ2 POKE
@ 0 C c 3 F f 6
A a 1 D d 4 G g 7
B b 2 E e 5 H h 8

368 Anhang B



w
m B 85 BB RIENRIRLERRPPPEB I I3 S8 &
~N
Fl «<moowuwuor->-x2103z00a0Cnk>D>3XxX>N
(7]
-
N r &
s MEI0ODOC8ANNONNUO0OeORUNX OB HE
¥
N ™
Sl 5 8 T IIILLLHTITBLLNBIBELBBEE83I
N
i
<
(7]
-
N
M%&,().+-_ -~ O r-r N O F O O N O O -<=>?E
(7]
w
N
8|l o2 - 2T 22C P2 I3 NI LERNIIIBS-N 8IS 8
N
m.l.l.kllmnopqutUVWXyz
@ w
. 2
Bl -5 x a5 z00 0 @0k >D>3X>N—wu—« |[BE- * o
()]

369

Anhang B



370

SATZ1 SATZ2 POKE | SATZ1 SATZ2 POKE | SATZ1 SATZ2 POKE
il o3 | P 105 | [ 17
B e | [ 106 | [N 118
N o5 | (B w07 | O 119

%6 | (o 108 | ™ 120
L o7 | (4 100 | o 121
- 9% | H] 10 | [ 122
M 9 [ [J 1M | @l 123
O 100 | 4 112 | M 124
J 101 | 13 | H] 125
B 102 | 4 14 | M) 126
] 103 | H] 115 | Mg 127
el 104 | 116

Anhang B

Die Codes 128—258 sind die umgekehrten Bilder von 0—127.



ANHANG C

ASCII- UND CHR$-CODES

In diesem Anhang werden fiir alle X-Werte gezeigt, welche Zeichen bei der Anzeige
PRINT CHR$ (X) erscheinen. AuBerdem finden Sie hier die tiber PRINT ASC (“X")
mdglichen Werte, wobei X ein beliebiges einzugebendes Zeichen ist. Dies ist
besonders niitzlich bei der Auswertung von in einer GET-Anweisung empfangenen
Zeichen, der Umwandlung von Zeichen der oberen/unteren Umschaltstellung
sowie der Anzeige von Zeichen-Befehlen (z. B. Umschaltung zu Zeichen der
oberen/unteren Umschaltstellung), die nicht in Anfiihrungszeichen stehen kénnen.

ANZEIGE CHR$ | ANZEIGE CHR$ | ANZEIGE CHR$ | ANZEIGE CHRS$
0 17 “ 34 3 51
1 m 18 # 35 4 52
2 19| $ 36 5 53
3 20| % 37 6 54
4 21 & 38 7 55
£ 5 22 . 39 8 56
6 23 ( 40 9 57
7 24 ) 41 ; 58
wiksar (EEE (98 25 | - 42 ;59
wirksam (SR (G 9 26 4 43 < 60
10 27 . 44 = 61 -
| fm 28 - 45 3 62
12 s 29 . 46 ? 63
3 A 30 / 47 @ 64
14 | M 3 0 48 A 65
15 32 1 49 B 66
16 ! 33 2 50 C 67

Anhang C 37



372

ANZEIGE CHR$ | ANZEIGE CHR$ | ANZEIGE CHR$ | ANZEIGE CHR$
D 68 97 126 | HH 158
E 69 | [[] 98 | N 127 | g 156
F 0 | H 99 128 157
G | 5 100 | oange 120 | [EE 158
H 72 | & 101 130 | BB 159

I 73 |5 102 131 160
J 74 | [ 103 132 | ] 16
K 75 | [] 104 | 1 133 | [ 162
L 76 | K] 105 | 3 134 | [] 163
M 77 | [N 106 | 15 135 L] 1e4
N 78 | F] 107 | 7 13| [J 165
o 79 | I 108 | 2 137 B 166
P g0 | N 109 | fa 138 L] 1e7
Q 81 | [/ 110 | 6 139 B 168
R 82 | [ 1M1 | 8 140 | P 169
s 83 | [] 112 | G 1 41 (1 170
T 84 113 142 | [H 17
u 85 | ] 114 143 | (W 172
Vv g6 | (v 15 | M 144 | [H 173
W 87 | [J 116 145 | R] 174
X 88 | [A 17 | B 146 | b 175
Y 89 | X 118 | B 47| B 176
z 90 119 148 B o177

[ 91 120 | A4 149 | 178
£ 92 | [ 121 X 1s0 Hl 179

] 93 | (¢ 122 | O 151 L] 180

1 9 | HH 123 | #4152 | BRTY
— 95 | B 124 | [ 13| [B 1e2
H e | 125 | & 154 M 183

Anhang C




ANZEIGE CHRS$ | ANZEIGE CHR$ | ANZEIGE CHR$ | ANZEIGE CHR$
M tes | [J 186 |[M 188 | M g0
e 85 | @] 187 [ H] 180 | Mg 4o

CODES 192-223 SAME AS 96-127
CODES 224-254 SAME AS 160-190
CODE 255 SAME AS 126

Anhang C

373



ANHANG D

BILDSCHIRM- UND FARBSPEICHERMAPPEN

In der nachstehenden Tabelle finden Sie die flr die Bildschirm-Zeichensteuerung
verantwortlichen Speicherplitze, die Platze zur Anderung einzelner Zeichen-Far-
ben sowie Zeichen-Farb-Codes.

BILDSCHIRM-SPEICHERBELEGUNG

SPALTE
0 10 20 30 39
1063
1024 — 0
1064
1104
1144
1184
1224
1264
1304
1344 -
1384
1424 UL
1464 I
1504 m
1544
1584
1624
1664
1704
1744
1784
1824 20
1864
1904
1944
1984 24
4
2023

374 Anhang D



Zum Andern einer Zeichenfarbe mussen folgende Werte in einen Farbspeicher-
Platz gePOKEt werden:

0 SCHWARZ 8 ORANGE

1 WEISS 9 BRAUN

2 ROT 10 HELLROT
3 ZYAN 11 GRAU 1

4 PURPUR 12 GRAU 2

5 GRUN 13 HELLGRUN
6 BLAU 14 HELLBLAU
7 GELB 15 GRAU 3

Um z. B. die Farbe eines Zeichens oben links auf dem Bildschirm in Rot umzuan-
dern, geben Sie folgendes ein: POKE 55296,2.

FARBSPEICHERBELEGUNG

SPALTE
0 10 20 30 39
55335

55296 —= 0
55336
55376
55416
55456
55496
55536
55576
55616
55656
55696 10
55736
55776
55816 ;
55856 ]
55896
55936
55976
56016
56056
56096

56136 o
56176
56216
56256 2

3HI3Y

4
56295

Anhang D 375



ANHANG E

MUSIKNOTENWERTE

In diesem Anhang finden Sie eine vollstdndige Liste der Noten, zugehdrigen
Frequenzen und Frequenzparameter und der Werte, die in die Register FREQ HI
und FREQ LO des Klangchips gePOKEt werden missen, um den gewlinschten Ton
Zu erzeugen.

376

NOTE OKTAVE DEZIMAL HI LOW
0 C-0 278 1 22
1 C#-0 295 1 39
2 D-0 313 1 57
3 D#-0 331 1 75
4 E-0 351 1 95
5 F-0 372 1 116
6 F#-0 394 1 138
7 G-0 417 1 161
8 G#-0 442 1 186
9 A-0 468 1 212

10 A#-0 496 1 240
11 H-0 526 2 14
12 C-1 557 2 45
13 C#-1 590 2 78
14 D-1 625 2 113
15 D#-1 662 2 150
16 E—-1 702 2 190
17 F-1 743 2 231
18 F#-1 788 3 20
19 G-1 834 3 66
20 G#-1 884 3 116
21 A-1 937 3 169
22 A#—1 992 3 224
23 H-1 1051 4 27
24 Cc-2 1114 4 90

Anhang E




NOTE OKTAVE DEZIMAL HI LOW
25 C#-2 1180 4 156
26 D-2 1250 4 226
27 D#-2 1325 5 45
28 E-2 1403 5 123
29 F-2 1487 5 207
30 F#-2 1575 6 39
31 G-2 1669 6 133
32 G#-2 1768 6 232
33 A=-2 1873 7 81
34 A#-2 1985 7 193
35 H-2 2103 8 55
36 C-3 2228 8 180
37 C#-3 2360 9 56
38 D-3 2500 9 196
39 D#-3 2649 10 89
40 E-3 2807 10 247
41 F-3 2974 11 158
42 F#-3 3150 12 78
43 G-3 3338 13 10
44 G#-3 3536 13 208
45 A-3 3746 14 162
46 A#-3 3969 15 129
47 H-3 4205 16 109
48 C-4 4455 17 103
49 C#-4 4720 18 112
50 D-4 5001 19 137
51 D#-4 5298 20 178
52 E-4 5613 21 237
53 F—4 5947 23 59
54 F#—4 6301 24 157
55 G-4 6676 26 20
56 G#—4 7072 27 160
57 A-4 7493 29 69
58 A#—4 7939 31 3
59 H—-4 8411 32 219
60 C-5 8911 34 207
61 C#-5 9441 36 225
62 D-5 10002 39 18
63 D#-5 10597 41 101

Anhang E

377



NOTE OKTAVE DEZIMAL HI LOW
64 E-5 11227 43 219
65 F—5 11894 46 118
66 F#-5 12602 49 58
67 G-5 13351 52 39
68 G#-5 14145 55 65
69 A-5 14986 58 138
70 A#-5 15877 62 5
71 H-5 16821 65 181
72 C-6 17821 69 157
73 C#-6 18881 73 193
74 D-6 20004 78 36
75 D#-6 21193 82 201
76 E-6 22454 87 182
77 F-6 23789 92 237
78 F#—6 25203 98 115
79 G-6 26702 104 78
80 G#-6 28290 110 130
81 A-6 29972 117 20
82 A#—6 31754 124 10
83 H—6 33642 131 106
84 Cc-7 35643 139 59
85 C#-7 37762 147 130
86 D-7 40008 156 72
87 D#-7 42387 165 147
88 E-7 44907 175 107
89 F=7 47578 185 218
90 F#-7 50407 196 231
91 G-7 53404 208 156
92 G#-7 56580 221 4
93 A-7 59944 234 40
94 A#=7 63508 248 20

Sie sind nicht an die Werte dieser Tabelle gebunden! Wenn Sie mehrere Stimmen
benutzen, sollten Sie sogar bewuBt die zweite und dritte Stimme etwas , verstim-
men*“, d. h. das Lo-Byte aus der Tabelle leicht (!) abédndern. Sie bekommen so
einen volleren Klang.

378 Anhang E



FILTEREINSTELLUNGEN

Adresse

Inhalt

54293
54294
54295

54296

Resonanz (Bits 4—7)
Filter, Stimme 3 (Bit 2)
Filter, Stimme 2 (Bit 1)
Filter, Stimme 1 (Bit 0)
HochpaB (Bit 6)
BandpaB (Bit 5)
TiefpaB (Bit 4)
Lautstérke (Bits 0—3)

Grenzfrequenz, Low Byte (0—7)
Grenzfrequenz, High Byte (0—255)

Anhang E

379




ANHANG F

LITERATURVERZEICHNIS

Addison-Wesley

Compute

Cowbay Computing

Creative Computing

Dilithium Press

Faulk Baker Associates

Hayden Book Co.

Howard W. Sams

380 Anhang F

“BASIC and the Personal Computer“, Dwyer and
Critchfield

“Compute’s First Book of PET/CBM*

“Feed me, I'm Your PET Computer®, Carol Alexander
“Looking good with your PET", Carol Alexander
“Teacher's PET — Plans, Quizzes, and Answers*

“Getting Acquainted With Your VIC 20, T. Hartnell

“BASIC Basic-English Dictionary for the PET", Larry
Noonan
“PET NASIC*, Tom Rugg and Phil Feldman

“MOS Programming Manual“, MOS Technology

“BASIC From the Ground UP*, David E. Simon

“| Speak BASIC to My PET*, Aubrey Jones, jr.
“Library of PET Subroutines*”, Nick Hampshire

“PET Graphics®, Nick Hampshire

“BASIC conversions Handbook, Apple, TRS-80, and
PET*, David A. Brain, Phillip R. Oviatt, Paul J. Paquin,
and Chandler P. Stone

“The Howard W. Sams Crash Course in Microcompu-
ters”, Louis E. Frenzel, jr.

“Mostly BASIC: Application for your PET", Howard
Berenbon

“PET Interfacing”, James N. Downey and Steven M.
Rogers

“VIC 20 Programmer’s Reference Guide"“, A. Finkel,
P. Higginbottom, N. Harris, and M. Tomczyk



Little, Brown & Co.

McGraw-Hill

Osborne/McGraw-Hill

P. C. Publications

Prentice-Hall

Reston Publishing Co.

“Computer Games for Business, Schools, and
Homes*, J. Victor Nagigian, and William S. Hodges
“The Computer Tutor: Learning Activities for Homes
and Schools”, Gary W. Orwig, University of Central
Florida, and William S. Hodges

“Hands-On BASIC With a PET", Herbert D. Peckman
“Home and Office Use of VisiCalc“, D. Castlewitz,
and L. Chisauki

“PET/CBM Personal Computer Guide“, Carroll S.
Donahue

“PET Fun and Games*, R. Jeffries and G. Fisher
“PET and the IEEE", A. Osborne and C. Donahue
“Some Common BASIC Programms for the OET*",
L. Poole, M. Borchers, and C. Donahue

“Osborne CP/M User Guide“, Thom Hogan

“CBM Professional Computer Guide*

“The PET Personal Guide*“

“The 8086 Book", Russell Rector and George Alexy

“Beginning Self-Teaching Computer Lessons*

“The PET Personal Computer for Beginners",
S. Dunn and V. Morgan

“PET and the IEEE 488 Bus (GPIB)“, Eugene Fisher
and C. W. Jensen

“PET BASIC — Training Your PET Computer”, Ramon
Zamora, Wm. F. Carrie, and B. Allbrecht

“PET Games and Recreation”, M. Ogelsby, L. Lind-
sey, and D. Kunkin

“PET BASIC", Richard Huskell

“VIC Games and Recreation*

Anhang F 381



Telmas Courseware “BASIC and the Personal Computer”, T. A. Dwyer,
and M. Critchfield

Total Information Services  “Understanding Your PET/CBM, Vol. 1, BASIC Pro-
gramming“
“Understanding Your VIC*", David Schultz

In den COMMODORE-Zeitschriften finden Sie die aktuellsten Informationen Uber
lhren COMMODORE 64. Hiervon mochten wir die folgenden zwei besonders
empfehlen:

COMMODORE — Die Mikrocomputer-Zeitschrift erscheint zweimal monatlich und
kann abonniert werden ($25,00 fir ein Jahr).

POWER/PLAY — Diese vierteljghrlich erscheinende Home-Computer-Zeitschrift
kann ebenfalls abonniert werden ($15,00 pro Jahr).

382 Anhang F



ANHANG G

VIC-CHIP REGISTERBELEGUNG

Register #
Dec Hex|DB7 | DB6| DB5| DB4 | DB3 | DB2 | DB1| DBO
0 0 |sox7 SOXO |SPRITE 0 X
Component
1 1 [S0Y7 SOYO |SPRITEO Y
Component
2 2 [SIX7 SIXO |SPRITE 1 X
3 3 s1v7 SIYO [SPRITE 1Y
4 4 ls2x7 S2X0 [SPRITE 2 X
5 5 s2v7 S2Y0 |SPRITE 2 Y
6 6 Is3x7 S3X0 | SPRITE 3 X
77 837 S3Y0 [SPRITE 3 Y
8 8 [s4x7 S4X0 |SPRITE 4 X
9 9 [sav7 S4YO [SPRITE 4 Y
10 A [s5X7 S5X0 |SPRITE 5 X
1 B [s5V7 S5Y0 [SPRITE 5 Y
12 C [s6X7 S6X0 [SPRITE 6 X
13 D [s6v7 S6Y0 |SPRITE 6 Y
14 E [S7X7 S7X0 |SPRITE 7 X
Component
15 F [s7v7 S7Y0 |SPRITE 7 Y
Component
16 10 [S7X8 | S6X8| S5X8| S4X8 | S3X8 | $2X8 | S1X8| SOX8 |MSB of X
COORD.
17 11 [RCB | ECM | BMM | BLNK | RSEL |YSCL2 |YSCLI|YSCLO |y, SCROU
18 12 |RC7 | RC6 | RC5 | RC4 | RC3 | RC2 |RCI | RCO |RASTER
19 13 |Px7 LPXO [LIGHT PEN X
20 14 LPY7 LPYO [LIGHT PEN Y

Anhang G

383



Register #
Dec Hex

DB7

DB6

DB5

DB4

DB3

DB2

DB1

DBO

21 15

22 16

23 17

24

25

26

27

28

29

30

31

SE7

SEO

SPRITE
ENABLE
(ON/OFF)

N.C.

N.C.

RST

MCM

CSEL

XSCL2

XSCL1

XSCLO

X SCROLL
MODE

SEXY7

SEXYO

SPRITE
EXPAND Y

VS13

VS12

VS11

VS10

CBI13

CB12

CB11

N.C.

SCREEN and

Character
Memory Base
Address

IRQ

N.C.

N.C.

N.C.

LPIRQ

1SSC

ISBC

RIRQ

Interrupt
Request’s

N.C.

N.C.

N.C.

N.C.

MLPI

MISSC

MISBC

MRIRQ)

Interrupt
Request
MASKS

BSP7

BSPO

Background-
Sprite
PRIORITY

SCM7

SCMO

MULTICOLOR
SPRITE
SELECT

SEXX7

SEXXO|

SPRITE
EXPAND X

SSC7|

S$SCO

Sprite-Sprite
COLLISION

SBC7

SBCO

Sprite-
Background
COLLISION

384

Anhang F




COLOR CODES DEC HEX COLOR
32 20 |0 0 BLACK EXT 1 EXTERIOR COL
33 21 1 ] WHITE BKGDO
34 22 |2° 2 RED BKGDI1
35 23 (3 3 CYAN BKGD2
36 24 |4 4 PURPLE BKGD3
37 25 |5 5 GREEN SMC 0 SPRITE

MULTICOLOR 0
38 26 |6 6 BLUE SMC 1 1
39 27 |7 7 YELLOW SocoL SPRITE 0 COLOR
40 28 |8 8 ORANGE s1coL ]
41 29 |9 9 BROWN s2coL 2
42 2A (10 A LT RED s3coL 3
43 2B |1 B GRAY 1 s4coL 4
44  2C |12 C GRAY 2 S5COL 5
45 2D |13 D LT GREEN S6COL 6
46  2E |14 E LT BLUE s7coL 7
15 F GRAY 3

Anmerkung: Im Mehrfarben-Zeichenmodus kdnnen nur die Farben 0—7 benutzt werden.

Anhang F

385



ANHANG H

ABGELEITETE MATHEMATISCHE FUNKTIONEN

Funktionen, die in Commodore-64-Basic nicht vordefiniert sind, kénnen mit Hilfe
der folgenden Formel berechnet werden:

FUNKTION BASIC-ENTSPRECHUNG
SECANT SEC(X)=1/COS(X)
COSECANT CSC(X)=1/SIN(X)
COTANGENT COT(X)=1/TAN(X)
INVERSE SINE ARCSIN(X)=ATN(X/SQR(—X*X+1))
INVERSE COSINE ARCCOS(X)=—ATN(X/SQR
(—=X*X +1)) +7/2
INVERSE SECANT ARCSEC(X)=ATN(X/SQR(X*X—1))
INVERSE COSECANT ARCCSC(X)=ATN(X/SQR(X*X—1))
+(SGN(X)—1*7/2
INVERSE COTANGENT ARCOT(X)=ATN(X)+7/2
HYPERBOLIC SINE SINH(X)= (EXP(X)— EXP(—X))/2
HYPERBOLIC COSINE COSH(X)= (EXP(X)+EXP(—X))/2
HYPERBOLIC TANGENT TANH(X)=EXP(— X)/(EXP(x)+ EXP
(—X)*2+1
HYPERBOLIC SECANT SECH(X)= 2/(EXP(X)+ EXP(—X))
HYPERBOLIC COSECANT CSCH(X)=2/(EXP(X)—EXP(— X))
HYPERBOLIC COTANGENT COTH(X)=EXP(— X)/(EXP(X)
—EXP(—X))*2+1
INVERSE HYPERBOLIC SINE ARCSINH(X)=LOG(X+ SQR(X*X+ 1))
INVERSE HYPERBOLIC COSINE ARCCOSH(X)=LOG(X+SQR(X*X—1))
INVERSE HYPERBOLIC TANGENT ARCTANH(X)=LOG((1+ X)/(1 —X))/2
INVERSE HYPERBOLIC SECANT ARCSECH(X)=LOG((SQR
(—X*X+1)+1/X)
INVERSE HYPERBOLIC COSECANT ARCCSCH(X)=LOG((SGN(X)*SQR
(X*X+1/x)
INVERSE HYPERBOLIC COTAN- ARCCOTH(X)=LOG((X+ 1)/(X—1))/2
GENT

386 Anhang H



ANHANG |

STECKERBELEGUNG DER ANSCHLUSSE FUR
PERIPHERIEGERATE

Dieser Anhang soll lhnen zeigen, wie welches Gerat wo an den COMMODORE 64
angeschiossen werden kann.

1) Steuereingénge flir Spiele

2) Modul-Steckplatz
3) Audio/Video

Control Port 1

sl
5

Signal

Bemerkung

JOYAO
JOYA1
JOYA2
JOYAS3

POT AY**

BUTTON A/LP*

+5V
GND

POT AX**

OONOUTHWN =

MAX. 100 mA

Control Port 2

el
5

Signal

Bemerkung

JOYBO
JOYB1
JOYB2
JOYB3
POT BY**
BUTTON B
+5V
GND
POT BX**

OCONOOAWN —

MAX. 100 mA

4) Serieller E/A (Disk/Drucker)
5) Kassette
6) User Port

@0
~ O
® QO
© 0

*) Button = Feuerknopf am LP = Light pen.
**) POT = Paddle Potentiometer

Anhang | 387



Modul-Steckplatz

Pin Signal
22 GND
21 CDO
20 CD1
19 CcDh2
18 CD3
17 CD4
16 CD5
15 CD6
14 CD7
13 DMA
12 BA
11 ROML
10 /02
9 EXROM
8 GAME
& 1701
6 Dot Clock
5 CR/W
4 IRQ
| +5V
2 +5V
1 GND

2221201918 17161514131211109 8 7 6 5 4 3 2 1

ZYXWVUTSRPNMLKJHFEDCSBA

Audio/Video

=
5

Signal
LUMINANCE
GND
AUDIO OUT
VIDEO OUT
AUDIO IN
CHROMINANCE
NICHT ANGESCHLOSSEN
NICHT ANGESCHLOSSEN

ONOOTHWN =

Serielle E/A

Pin Signal
SERIAL SRQIN

GND

SERIAL ATN IN/OUT
SERIAL CLK IN/OUT
SERIAL DATA IN/OUT
RESET

DO wWN —

388 Anhang |

Signal

PWOUMMNICAFZZ TVINAC<S X <N -:—‘;’




Cassette

Pin Signal
A-1 GND

B-2 +5V

C-3 CASSETTE MOTOR
D-4 CASSETTE READ
E-5 CASSETTE WRITE
F-6 CASSETTE SENSE

User Port

Pin Signal Bemerkung

GND
+5V MAX. 100 mA
RESET
CNT1

SP1

CNT2

SP2

PC2

SER. ATN IN
9 VAC MAX. 100 mA
9 VAC MAX. 100 mA
GND
GND
FLAG2
PBO
PB1
PB2
PB3
PB4
PB5
PB6
PB7
PA2
GND

ZErXRCITMOOTI>[I500~No 0TS W=

1 2 3 456 7 8 9 101112

—A RS aanaaannn

A BCDEFHUJKLMN

123 456

A BCDEF

Anhang |

389



ANHANG J

UBERTRAGUNG VON FREMDEN BASIC-
PROGRAMMEN AUF COMMODORE-64-BASIC

Besitzen Sie Programme, die in einer anderen BASIC-Version als COMMODORE-
BASIC geschrieben wurden, werden einige kleinere Anpassungen nétig sein, bevor
sie auf dem COMMODORE 64 laufen k&nnen. Wir geben lhnen nun einige Tips, die
die Anpassung leichter machen.

Dimensionen von Strings

Entfernen Sie alle Statements, die die Ldnge eines Strings festlegen. Ein Befehl wie
etwa DIM A$(1,J), der ein Stringarray fiir J Elemente der Lange | dimensioniert, muB
in das COMMODORE-BASIC-Statement DIM A$(J) abgeédndert werden.

Einige BASIC-Versionen benutzen ein Komma (,) oder Kaufmanns-Und (&) zur
Verknipfung von Strings. Diese missen in ein Plus-Zeichen (+) geandert werden,
das in COMMODORE-BASIC der entsprechende Operator zur Stringverknipfung
ist.

Im BASIC des COMMODORE 64 dienen die Funktionen MID$, RIGHT$ und LEFT$
der Erzeugung von Teilstrings. Formen wie A$(l) zur Ansprache des I-ten Zeichens
in String A$ oder A$(l,J) zur Gewinnung des Teilstrings von A$ von Position | bis J
mussen wie folgt gedndert werden:

sonstiges BASIC COMMODORE-64-BASIC
AS(l) = X$ A$ = LEFT$(AS,1—1)+X$+MID$(AS,1+1)
A$(l,J) = X$ A$ = LEFT$(AS,I—1)+X$+MID$(A$,J+1)

Mehrfache Zuweisungen

Um die Variablen B und C gleichzeitig auf Null zu setzen, erlauben einige BASIC-
Versionen Statements der Form:

10 LET B=C=0

390 Anhang J



COMMODORE-64-BASIC wiirde das zweite Gleichheitszeichen als logischen
Operator interpretieren. Falls dann C=0 ware, wirde B=—1. Schreiben Sie statt
dessen zwei Befehle:

10 B=0: C=0

Mehrfache Anweisungen

Einige BASIC-Versionen benutzen den Schrégstrich riickwéarts (\) um mehrere
Statements in einer Zeile voneinander zu trennen. In COMMODORE-64-BASIC
werden alle Anweisungen durch einen Doppelpunkt (:) voneinander getrennt.

MAT-Funktionen

Programme, die die in einigen BASIC-Versionen vorratigen MAT-Funktionen fiir
Matrizenoperationen verwenden, missen umgeschrieben werden, indem diese
Funktionen mit Hilfe von FOR . .. NEXT-Schleifen nachgebildet werden.

Anhang J 391



ANHANG K

FEHLERMELDUNGEN

Dieser Anhang enthélt eine vollstdndige Liste der Fehlermeldungen des COMMO-
DORE 64 zusammen mit einer Beschreibung der Ursachen.

BAD DATA Von einem File wurden String-Daten gelesen, das Programm erwar-
tete jedoch numerische Daten.

BAD SUBSCRIPT Das Programm versuchte, ein Element des Arrays anzuspre-
chen, dessen Nummer auBerhalb des in der DIM-Anweisung vorgegebenen
Bereichs liegt.

CAN’T CONTINUE Der Befehl CONT arbeitet nicht, wenn ein Programm nicht
vorher mit RUN gestartet war, ein Fehler auftrat oder eine Zeile gedndert wurde.

DEVICE NOT PRESENT Das angesprochene E/A-Gerat war nicht verfugbar bei
OPEN, CLOSE, CMD, PRINT#, INPUT# oder GET#.

DIVISION BY ZERO Division durch Null ist mathematisch undefiniert und nicht
erlaubt.

EXTRA IGNORED Nach Aufforderung durch INPUT wurden zu viele Daten einge-
geben. Nur die ersten wurden bericksichtigt.

FILE NOT FOUND Suchen Sie ein File auf Band, dann wurde eine END-OF-
TAPE-Markierung gefunden. Suchen Sie ein File auf der Diskette, dann existiert ein
File dieses Namens nicht.

FILE NOT OPEN Das mit CMD, PRINT#, INPUT#, GET+# angesprochene File
muB zuerst mit OPEN gedffnet werden.

FILE OPEN Sie versuchten ein File zu 6ffnen und benutzten dazu eine logische
Filenummer, die bereits vergeben war.

FORMULA TOO COMPLEX Der Stringausdruck sollte in wenigstens zwei Teile
aufgespalten werden, damit das System ihn bearbeiten kann.

ILLEGAL DIRECT INPUT kann nur innerhalb eines Programms benutzt werden
und nicht im Direktmodus.

ILLEGAL QUANTITY Eine Zahl, die als Argument einer Funktion oder einer
Anweisung benutzt wurde, liegt auBerhalb des erlaubten Bereichs.

LOAD Es gibt ein Problem mit dem Programm auf der Kassette.

NEXT WITHOUT FOR Entweder wurden einige Schleifen nicht korrekt verschach-

telt oder eine bei NEXT angegebene Variable entspricht nicht der bei FOR verwen-
deten.

392 Anhang K



NOT INPUT FILE Es wurde versucht, mit INPUT# oder GET# Daten von einem
File zu lesen, das nur zur Ausgabe bestimmt ist.

NOT OUTPUT FILE Sie versuchten Daten durch PRINT# an ein File zu senden,
das nur zum Lesen gedffnet wurde.

OUT OF DATA Eine READ-Anweisung wurde ausgefiihrt, es gibt aber keine Daten
in einer DATA-Zeile, die noch nicht mit READ gelesen wurden.

OUT OF MEMORY Es ist kein RAM-Bereich mehr fir Programm oder Variablen
verflgbar. Dieser Fehler kann auch auftreten, wenn zu viele FOR . . . NEXT-Schlei-
fen oder Unterprogramme ineinander geschachtelt oder zu viele Klammern gebdffnet
wurden.

OVERFLOW Das Ergebnis einer Rechnung ist groBer als die groBte erlaubte Zahl
(1.70141183 E + 38).

REDIM’D ARRAY Ein Array kann nur einmal DIMensioniert werden. Wird eine
Array-Variable aufgerufen, bevor sie DIMensioniert wurde, flihrt der Rechner eine
automatische DIM-Operation aus, wobei die Dimension auf zehn gesetzt wird. Jede
folgende DIM-Anweisung wird dann diesen Fehler verursachen.

REDO FROM START String-Zeichen wurden eingegeben, wéhrend ein INPUT-
Statement numerische Eingabe erwartete. Tippen Sie einfach die korrekten Einga-
ben noch einmal, und das Programm wird von selbst fortfahren.

RETURN WITHOUT GOSUB Eine RETURN-Anweisung wurde entdeckt, aber
kein GOSUB-Befehl wurde vorher gegeben.

STRING TOO LONG Ein String kann hdchstens 255 Zeichen enthalten.

SYNTAX Eine Anweisung kann vom COMMODORE 64 nicht erkannt werden. Sie
haben eine Klammer vergessen oder zuviel angegeben, ein Schlisselwort falsch
eingetippt usw.

TYPE MISMATCH Dieser Fehler tritt auf, wenn Sie eine Zahl statt eines Strings
verwenden und umgekehrt.

UNDEF’D FUNCTION Sie nehmen Bezug auf eine selbst definierte Funktion, die
noch nicht im DEF FN angelegt wurde oder deren Definitions-Zeile vom Programm
noch nicht durchlaufen wurde.

UNDEF’'D STATEMENT Eine nicht existente Zeilennummer wurde mit GOTO,
GOSUB oder RUN angesprochen.

VERIFY Das Programm auf Band oder Diskette stimmt nicht mit dem Programm im
Speicher Uberein.

Anhang K 393



ANHANG L

DATENBLATT MIKROPROZESSOR 6510
BESCHREIBUNG

Die 6510-Familie ist ein Mikrocomputersystem, das imstande ist, viele Probleme
aus dem Bereich der Mikrocomputer und Peripheriegerate mit minimalen Kosten zu
I6sen. Ein 8-Bit bidirektionaler 1/0-Port befindet sich “on chip“, dessen Ausgabere-
gister unter Adresse 0000 und dessen Daten-Richtungsregister bei Adresse 0001
erreichbar sind. Das 1/0-Port ist Bit flr Bit programmierbar.

Der Tri-state 16-Bit AdreBbus ermdglicht auf einfache Weise DMA und den Zugriff
mehrerer CPU auf ein und denselben Speicher.

Die interne Prozessorarchitektur ist identisch mit der des MOS TECHNOLOGY
6502, um die Software kompatibel zu machen.

BESONDERHEITEN DES 6510:

8-Bit bidirektionaler 1/0-Port

5 Volt Versorgungsspannung
8-Bit Datenlange

56 Befehle

Dezimale und bindre Arithmetik
13 Adressierungsarten
Absolute indirekte Adressierung
Programmierbarer Stackzeiger
Variable Stacklange
Interruptmaoglichkeiten

65K Bytes adressierbar

Direkt Memory Access (DMA)
Bus-compatibel zum M6800
“Pipeline* Architektur

1-MHz und 2-MHz Takt

394 Anhang L



Aq
As
Aes

A7

PIN-ANORDNUNG

Halslfzllslellell~ella]l~]l«][~][-]

14

15

1EI|

-
J

[sllz]=]l

-/

6510

w S
[Le]]e]

38

37

36

35

34

[l Jle [ [ ][=]]

29

[z ]]

27

26

5

24

23

22

21

Lels]l]lx]{s]]

DB,

Po

As

Aqq

GND

Anhang L

395



396

k::> DIRECTION Py---P,
REGISTER T T
PERIPHERAL PERIPHERAL
OUPUT K  INTERFACE
<= REGISTER BUFFER
AEC
— M B
] I INDEX IEJ
INTERRUPT
A REGISTER TERAY
- —
1
A, - - INDEX
REGISTER
X
A, = 1 =
@
<
A o |
bl 2 REGISTER
[ !
A < & - g
2 fed
— = INSTRUCTION]
A0 - % Z ECODE
ALY
A %J L k= ®, OUT
[a]
A < — |z
- — <
e 3 ACCUMULATOR : TIMING
2 2 A (2] conTroL
e A &
¥ £ T
w
Ap<q ¥ H = I
I oo IN
0
A" - F f‘"J PCH
3 C:J PROCESSOR
2 ki STATUS
A12 - 4 REGISTER
NPUT
< DATA
LATCH
Ay = - s} ]
1——»9/\/\/
Ay, = - | I
nEE: g |
1 R
Au _{—4
11} AE IYYYYY
> D,
LEGEND 0
> D,
ﬁ = 8BIT LINE ~» D, DATA
—» D, BUS
> D,
I = 1BITUINE O,
—» D,

Anhang L

6510 BLOCK-DIAGRAMM



MERKMALE DES 6510

RATING SYMBOL VALUE UNIT
SUPPLY VOLTAGE Vee —0.3to +7.0 Vpe
INPUT VOLTAGE Vin —0.3to +7.0 Voe
OPERATING TEMPERATURE Ta 0to +70 °C
STORAGE TEMPERATURE Tsta —55 to +150 °C

Anmerkung: Dieses Gerat ist gegen Schaden durch Hochspannung oder elektrische Felder
geschitzt; Spannungen iber dem angegebenen max. Nennwert sollten jedoch nicht angelegt werden.

ELEKTRISCHE EIGENSCHAFTEN
(Vec = 5,0V +/— 5%, Vss = 0, T, = 0° bis +70° C)

CHARACTERISTIC SBYOML- MIN. TYP. MAX. UNIT
Input High Voltage
b1, Dacin Vi |Vec — 0.2 — |Vee + 1.0V| Ve
Input High Voltage
RES, Py-P; IRQ, Data Vgs + 2.0 — — Voe
Input Low Voltage
_4’1, ¢2(in)___ Vi [Vss — 0.3 — | Vgs + 0.2 | V¢
RES, Py-P; IRQ, Data e — | Vgs + 0.8 | Vpc

Input Leakage Current
(Vin = 0to 5.25V, Vgc = 5.25V)
Logic lin — — 2.5 A
b1, Daiin) — — 100 MHA

Three State (Off State) Input Current
(Vin = 0.4 to 2.4V, Ve = 5.25V)
Data Lines lts) = — 10 MA

Output High Voltage
(low = —100pApe, Voo = 4.75V)
Data, A0-A15, R/W, Py-P, Wiy | Viag & 20 | = — Vioe

Anhang L 397




CHARACTERISTIC SYM; MIN. [TYP. MAX. ‘UNIT
BOL |
Out Low Voltage
(lo. = 1.6mApc, Vec = 4.75V)

Data, A0-A15, R/W, Py-P, VoL e — | Vgs + 0.4 | Vpe
Power Supply Current lec — 125 mA
Capacitance C pF

Vin = 0, To = 25°C, f = 1MHz)

Logic, Po-P; Cin — — 10

Data — —_— 15

AO-A15, R/IW Cout — — 12

b, Co, — 30 50

b, Co, — 50 80

CLOCK TIMING

1‘ - I "7*TCYC T ”7’4’{
A ——
i

Vee — 0.2V -0.2v
1IN ce EVCC
1
1
- Tp = To] = i
Vg —0.2V
6y IN | !
Tele ’TR:‘ PIHo, !
= Trws — THRW ] f‘
- 0V 2.0V
RIW ’ \
Tha = =
ADDRESS
FROM >< 3‘;& ><
MPU T
[ TADS e — Tpapw =
< TEDR »|
DATA 2A0V7
FROM
0.8V
MEMORY o—  Tacc - ’i Tosu ™™ = Tur
Teosu
PERIPHERAL
DATA
Taes
ADDRESS Vec—02v
ENABLE TIMING FOR READING DATA FROM
CONTROL MEMORY OR PERIPHERALS

398 Anhang L



CLOCK TIMING

| Teve
_PWH¢,
'4——— 1
Voo —-0.2v d Vec—-0.2V
#1IN ; i
0.2V i
~ Tor ool [ |
Ve —0.2V / |
1 ]
#2 IN 0.2V f |« PWHg, ;—_E_____
el —>Tgie :
< Taws >
RIW \koAsv /
e T b
AL
ADDRESS 2.0v
FROM >< 0.8V
MPU
; Tosuy
[ s >
DATA A 2'OV/
FROM 08V
MEMORY fenms, 2= et Thw
——Tppw
PERIPHERAL
DATA
=
ADDRESS Ve —0.2V
ENABLE [ FOR WRITING DATA TO
CONTROL TININS B

MEMORY OR PERIPHERALS

Anhang L

399



su 00€ — — G/S — . oov) awi| ss8d0y ppay Alowaw

su 051 001 s 00¢ 001 — sav) 80G9 wouy dwi] dnjag ssauppy

su 0S1 00l — 00¢€ 00l — SMH) || 80G9 wouy dwi] dnisg d4IA/POIY

SLINN | ‘XVW | “dAl ‘NIW || XYW | "dAL | ‘NIW | TOSWAS DILSIILOVIVHD
ONIWIL ZHW T ONIWIL ZHW 1 (1Ll = avOo1) ONIWIL 3LRIM/aVvIY

su — — 0 — — 0 a (AT°0 10 painsoaw)

$)Y20|D usamiaq awil AojeQq

su Gl — — or4 —_— — Y1 41 |(AZ°0 — 99A 01 AZ°0 wouy painsoay)

dwi esiy ‘awiy |4

su — — GeT — — 0LV | TPHMd 2P (AT'0 — °°A o painspay)

su — — Slz = — 0y | LPHMd L¢P Y4PIM 3s|nd 320[D

su - — 00S — — 0001 | 949 awiy 9PAD

SLINN | XYW | "dAL | 'NIW | XYW | ‘dAl | 'NIW | T089WAS DILSRIILOVIVHD

ONIWIL ZHW T ONIWIL ZHWL ONIWIL XD01D

(0:02—:0 =YL ‘A 0 = SSA ‘%S F A 0‘G = °°A\) NILIVHOSNIDIT FHOSIHINI T3

N3L4VHOSN3OI3-SM

Anhang L

400



su 09 09 $3v) swi) dnjag s|qouj ssaippy
su — — 00¢€ nsad) awi] dnjag pypg |PJaydiisy
sm 1 — — mad ) p!joA pyoQ |P4oydiad o}
uoyisunly aaupbau gg ‘swi) Aojeg

su — — o€l ELTE uonisupi} dalisod g o4
uoyisunly aaupbau My ‘dwi) ApjeQ

su — — 00¢ nsa; uoljisupi} aAlpbau
TP o4 pypA pypQg ‘swi) ApjeQg

su G6E — — Ha3) SNQ uoO pI|PA DO O4
uonisupl} aaisod zg ‘swi Aojaq

su — — o8l M3av ) uoisupuy daiisod z¢g
0} pl|PA ssalppy ‘awi] ApjaQg

su (013 ol — o€ (o]} MEH ) Swil PI°H M/Y
su (01% ol — o€ ol VHL Swl] PIOH ssaippy
a4 00l S/ — 00¢ 0S5t — sany 0169 wouy swi) dnidg oipQ
SH (01 ol — o€ oL MH) SiUM-sWi] pP|OH bipg
su — — HH) pray-awi| p|OH ©PiPQg
su 05 = — | ool ! poued awi) Aijiqpig pieg

401

Anhang L



SIGNALBESCHREIBUNG

TAKT (@1, @2)

Die CPU 6510 bendtigt einen sich nicht berlappenden Zweiphasentakt, der den
Pegel V¢ hat.

ADRESSBUS (A;—A+s5)
Diese Ausgange sind TTL-kompatibel (1 Standardeingang + 103 pF).

DATENBUS (Do—D»)

Diese 8 Pins Ubermitteln die Daten von der CPU zum Speicher (oder anderen
Bausteinen) und umgekehrt. Es sind Tristate-Buffer, die TTL-Standard + 103 pF
treiben kdnnen.

RESET (RES):

Dieser Eingang wird benutzt, um den Prozessor nach dem Einschalten zu starten
oder (im Betrieb) in einen definierten Zustand zu bringen. Liegt dieser Eingang auf
L-Pegel, kann der Prozessor nicht ein- oder ausgeben. Wenn auf diesen Eingang
eine positive Flanke geschaltet wird, beginnt der Prozessor mit der Reset-Prozedur.
Nach einer Systeminitialisierungszeit von 6 Taktzyklen wird das Interruptflag
gesetzt, und der Prozessor ladt den Programmzéhler mit dem Inhalt der Adresse
$FFFC und $FFFD. Wenn nach dem Einschalten V. 4,75 V erreicht, muB RESET
noch 2 Taktzyklen auf Low gehalten werden. Wéahrend dieser Zeit wird R/W gultig.
Wenn RESET dann auf H geschaltet wird, beginnt der oben beschriebene Zyklus.

INTERRUPT REQUEST (IRQ):

Wenn dieser TTL-Eingang nach Low geschaltet wird, beginnt der Prozessor mit
einer Interruptroutine, nachdem er den vor dem IRQ-Befehl gliltigen Befehl abgear-
beitet hat. Dann wird das Interruptflag im Flagregister gepruft. Falls das Interruptflag
nicht gesetzt ist, beginnt der Prozessor mit der Interruptroutine. Der Programmzéh-
ler und das Flagregister werden im Stack gespeichert.

Dann setzt der Prozessor das Interruptflag, damit derselbe Interrupt nicht noch
einmal bearbeitet wird. Am Ende dieses Ablaufs wird der Programmzahler mit dem
Inhalt von Adresse FFFE (Low-Byte) und FFFF (High-Byte) geladen.

402 Anhang L



ADRESS ENABLE CONTROL (AEC):

Der AdreBbus ist nur giltig, wenn AEC auf High geschaltet ist. Wenn AEC Low
geschaltet ist, befinden sich die AdreBausgange im hochohmigen Zustand (Tri-
state). Dies erleichtert den direkten Speicherzugriff (DMA) und ermdglicht Multipro-
zessorsysteme.

1/0 PORT (P,—P>)

6 Pins werden als Port genutzt, durch den Daten direkt an Peripheriegerate
geschickt werden konnen. Das Datenregister ist im RAM unter Adresse 0000
erreichbar. Die Ausgénge konnen einen Standard-TTL-Eingang und 130 pF treiben.

READ/WRITE (R/W):

Der Ausgang liegt immer auf High, er ist nur Low, wenn der Prozessor Daten in den
Speicher oder in einen Peripheriebaustein schreiben will.

ADRESSIERARTEN

IMPLIZIERTE ADRESSIERUNG:
Dies ist ein 1-Byte-Befehl, der eine Operation in der CPU bvewirkt.

UNMITTELBARE ADRESSIERUNG:

Das auf den Befehl folgende Byte ist der Operand, es wird keine weitere Adresse
bendtigt.

ABSOLUTE ADRESSIERUNG:

Hier stellt das 2. Byte das Low-Byte, das 3. Byte das High-Byte der resultierenden
Adresse dar. Diese Art der Adressierung erlaubt den Zugriff auf den gesamten
Speicher von 64 KB.

ZERO-PAGE-ADRESSIERUNG:

Diese Art erlaubt eine kirzere Codierung und damit eine schnellere Ausfuhrung.
Das 2. Byte des Befehis stellt das Low-Byte dar, das High-Byte wird als 0000
angenommen.

Anhang L 403



INDIZIERTE ZERO-PAGE-ADRESSIERUNG:

Diese Adressierungsart benutzt die Indexregister. Die resultierende Adresse wird
errechnet, indem das 2. Byte des Befehls zum Indexregister X oder Y addiert wird.
Dies ist eine Zero-Page-Adresse, es wird kein Ubertrag zum High-Byte addiert,
Pages werden also nicht Uberschritten.

INDIZIERTE ABSOLUTE ADRESSIERUNG:

Diese Art wird im Zusammenhang mit den Indexregistern X oder Y benutzt. Die
resultierende Adresse wird durch Addition des Inhaltes der Register X oder Y zum
2. Byte des Befehls gebildet. Wenn nétig, wird ein Ubertrag zum 3. Byte, dem High-
Byte, gebildet. Diese Art der Adressierung ermdglicht es, jede Speicherstelle zu
erreichen und durch Indexregisteroperationen beliebige Datenfelder mit einer
Basisadresse zu erreichen.

RELATIVE ADRESSIERUNG:

Diese Art wird nur im Zusammenhang mit Verzweigungsbefehlen gebraucht und
bestimmt die Zieladresse des Sprunges. Das 2. Byte des Befehls ist ein Offset, der
zu dem Low-Byte des Programmzahlers addiert wird, wenn der Sprung ausgefihrt
werden soll. Die Zieladresse kann 128 Stellen niedriger oder 127 Stellen hdher als
die Adresse des nachsten Befehls sein.

INDIZIERT-INDIREKTE ADRESSIERUNG:

Hier wird das 2. Byte des Befehls zum Inhalt des X-Indexregisters ohne Carry
addiert. Das Ergebnis bestimmt eine Speicherstelle in der Zero-Page, wo sich das
Low-Byte der resultierenden Adresse befindet. Das High-Byte befindet sich in der
nachsten Speicherstelle. Beide Speicherstellen mussen sich in der Zero-Page
befinden.

INDIREKT-INDIZIERTE ADRESSIERUNG:

Hier bestimmt das 2. Byte des Befehls eine Speicherstelle in der Zero-Page.

Der Inhalt wird zum Inhalt des Y-Indexregisters addiert, das Ergebnis ist das Low-
Byte der resultierenden Adresse. Der Ubertrag dieser Addition wird zum Inhalt der
nachsten Speicherstelle addiert, das Ergebnis ist das High-Byte der echten
Adresse.

404 Anhang L



ABSOLUT-INDIREKTE ADRESSIERUNG:

Das 2. Byte des Befehls ist das Low-Byte, das 3. Byte das High-Byte einer
Speicheradresse, in der sich das Low-Byte der echten Adresse befindet. Das High-
Byte der echten Adresse befindet sich auf dem néchsten Speicherplatz. Diese
Adresse wird in den Programmzé&hler geladen.

ANWEISUNGSSATZ —
ALPHABETISCHE REIHENFOLGE

ADC Add Memory to Accumulator with Carry
AND “AND"“ Memory with Accumulator
ASL Shift Left One Bit (Memory or Accumulator)

BCC Branch on Carry Clear
BCS Branch on Carry Set
BEQ Branch on Result Zero

BIT Test Bits in Memory with Accumulator
BMiI Branch on Result Minus
BNE Branch on Result not Zero

BPL Branch on Result Plus
BRK Force Break

BVC Branch on Overflow Clear
BVS Branch on Overflow Set

CLC Clear Carry Flag

CLD Clear Decimal Mode

CLI Clear Interrupt Disable Bit

CLv Clear Overflow Flag

CMP Compare Memory and Accumulator
CPX Compare Memory and Index X
CPY Compare Memory and Index Y

DEC Decrement Memory by One
DEX Decrement Index X by One
DEY Decrement Index Y by One

EOR “Exclusive-OR" Memory with Accumulator

Anhang L 405



INC
INX
INY

JMP
JSR

LDA
LDX
LDY
LSR

NOP

ORA

PHA
PHP
PLA
PLP

ROL
ROR
RTI

RTS

SBC
SEC
SED
SEI

STA
STX
STY

TAX
TAY
TSX
TXA
TXS
TYA

406

Increment Memory by One
Increment Index X by One
Increment Index Y by One

Jump to New Location
Jump to New Location Saving Return Address

Load Accumulator with Memory

Load Index X with Memory

Load Index Y with Memory

Shift One Bit Right (Memory or Accumulator)

No Operation
“OR" Memory with Accumulator

Push Accumulator on Stack
Push Processor Status on Stack
Pull Accumulator from Stack
Pull Processor Status from Stack

Rotate One Bit Left (Memory or Accumulator)
Rotate One Bit Right (Memory or Accumulator)
Return from Interrupt

Return from Subroutine

Subtract Memory from Accumulator with Borrow
Set Carry Flag

Set Decimal Mode

Set Interrupt Disable Status

Store Accumulator in Memory

Store Index X in Memory

Store Index Y in Memory

Transfer Accumulator to Index X
Transfer Accumulator to Index Y
Transfer Stack Pointer to Index X
Transfer Index X to Accumulator
Transfer Index X to Stack Register
Transfer Index Y to Accumulator

Anhang L



PROGRAMMIERBEISPIEL

7 0
[ A ] ACCUMULATOR A
7 0
[ Y ] INDEXREGISTER Y
[ X ] INDEXREGISTER X
15 7 0
[ PCH 1 PCL | PROGRAMCOUNTER  “PC"
87 0
] S '] STACKPOINTER “g"
7 0
[N]V] [B][p][1]Z[C] PROCESSORSTATUS REG "P"
CARRY 1 = TRUE
L ZERO 1 = RESULT ZERO
L IRQ DISABLE 1 = DISABLE

L DECIMAL MODE 1 = TRUE
—% BRK COMMAND

- OVERFLOW 1 = TRUE
> NEGATIVE 1 = NEG

Anhang L 407



ANWEISUNGSSATZ — OP-SCHLUSSEL, AUSFUHRUNGSZEIT,

= e e o A A 69 ag| Sv[€e | v |av] 6v| (1) VN val
IIIIII 9 |0z gns dwnr (g ‘b1 eag) dsr
IIIIII € |oy "0071 M3N OL dNNr dir
= — — oA z AL+ A ANI
e —— z X+1L+X XNI
—-———— L|3d|e |9 G |93|€ |9 |33 WL+ W ONI
- — 65 v (as 4 S v |ay 6r| ) VWAV 403
= = A A z A= L—A A3a
[ z X+ L-X x3a
— == a2 A 30 ¢ |G |90]€ |9 |39 W~L-W 03a
[T z|¢|vo|€|v [0 2 09) W-A AdO
—_———as c|€|¥3|€| ¥ |03 03 W-X XdO
=== == A A A 60 ad| 2 |€ [80]|€ | v |ag| ¢ 69| (1) W-v dWO
0 ——— — — Lle A0 A0
== 1§ —— — Lz 1-0 110
0 = — NE a-o a1
——_—0 — — Lz 0+0 010
IIIIII z |oL @ L =A NO HONVHE SAg
IIIIII Z los @ 0=A NO HONVHE oAg
== L ——'— (1 "014 299) He8
IIIIII 2 |0k @ 0 =N NO HONVHE 1d9
IIIIII 2 Joa @) 0=2Z NO HONVHE ang
IIIIII oe @ +=N NO HONVHE INg
N— — — ~Lp 144 ¥ |02, WYY 118
IIIIII Z o4 @ =2 NO HONVHS 038
IIIIII Z |og| 1 =0 NO HONvYHE sSo8
IIIIIII z loe @) 0=0 NO HONVHE 008
———a A~ APREDNKS Z |V 90|€ | 9 |30 -0 7o sv
—_——— — a4 6c|€ |y |ag| e Se v |ae 62| (1) V- WVY anv
S — = s 6L|€|v|aLlz S9 ¥ |a9 Z (69 1) (b)) V=O+W+VY oav
Ad Il 9ZN 40| do| # do| # N |dO 40| # | N |dO! N [|dO] ! o

$300J NOILIGNOD aMBIRY | A sy X'sav |x ‘wndoy | ebed 0197z ainjosqy SNOILONYLSNI

Anhang L

408



SPEICHERANFORDERUNGEN

'S3000 dO paulapun jo asn ay} 1o} Aljiqel| swnsse jouued dNOYD HOLONANODINIS IHOAOWWOD 310N

S31A8 ON # "1INS3H 0Y3Z HO4 A3XO3HO 38 LSNIN HOLYTINWNOOY

S370A0 ON N HO 3AISNT1OX3 A HILNIOd YOVLS H3d AHOWIW SW QITVYANI SI D¥14 Z 3GOW TYWID3A NI i (v)

9 118 AHOW3W W HO A $S34AAV 3AIL03443 H3d AHOW3IW W ‘MOHHO8 = LON AHHVO (€)
£ 119 AHOW3W ‘W anNv v HOLVYINWNOOV vV ‘39Vd LN3434410 OL SHNOOO HONVHE 41 .N.. OL Z aav

Q314IQ0W LON — 1ovdians - AX3ANI A ‘39DVd JWVS OL SHNODOO HONVHSE 4 0l + aav (@)

a3141a0W _~ aay + X X3ANI X J3SSOHO SI AHYANNOS 39Vd 41 .N,, OL | aav (1)

= = = 1|z |86 VA VAL
llllll 1|2 |ve S—X SXL
— == A A 1|z |v8 VX VX1
— = = Al A Lz ve X=S XSL
———— Lz |sv A=V AVL
= e =t AL A L |2 |vv] XV XYL
IIIIII z|v|v6 z|e|v8|e|v |08 W=A ALS
|||||| z|v |9 z|elo8le|v |38 W+X X1S
IIIIII € |G (66| |G |aslz |y |s6[z |9 [16]z |9 |18 z|els8le|v|as N~V V1S
—= | — — = Lz 8L [ 138
e 1|z |ed a-t a3s
-—— =1 == Lz se o~1 03s
A==~ €|v(ed|e|vade | v |Sd|[e s |1d[2 |9 13 c|e|s3|e|v|a3jz |z 63| W v=0-W-V 08S
IIIIIII L {9 |09 aNns NHLH (¢ ‘614 99g) S1d
(a3yois3y) L9 |oy LNI NH1Y (1 614 983) 11

[ ——— € |23z |9 |oL L |z |volz|s|99fe |9 |39 ——— 0y Hoy
——— A s e|2|3¢f[z |9 |oe L |z |ve|z |G |9g|€ |9 |32 (500 o) 104
(a340.1s34) Ly |82 d=Sw S+1L+S dd
— = = A L | ¥ |89 v—SW S+1+8 vid
IIIIII L|€ |80 S+1-§ SW~d dHd
|||||| L ¢ |8y S~L-S Sn—v VHd
———— A e|v|etfe|v|atfe|v|st[z]s [tz ]9 |10 z|eso|e|v|aolz |z |60 VWAV V4O
IIIIII L2 |va NOILYH3dO ON dON
——— 40 €]2[3S|z |9 |9 L |2 vz |G [or[e|9[3r o-{0 730 Hs1
=== — A €|v|og|z |y |ra z|elpv|e|v ov|e |z |ov] W A=W AQ1
— ——— -~ ~|Z|v|98 €|v|38 zlelov|e v [av|e |z fev] @ X~W Xa1l

A Q| O Z N|#|N|dO|# |N|dO|# |N [dO| # |N [dO| # [N |dO|# | N |dO| # | N |dO| # |N |[dO[ # | N |dO| # | N |dO| # | N |dO| # Z_mO # | N |dO| ! do W

S3000 NOILIONOD| A ‘ebed ‘z| 10ampuj | annejdy | A 'sqy X 'sqy |x ‘ebed ‘z| A (puj) X (pul) | payduw ‘wnody [abed 0187 | 8INjosqy |ajepawiw)| SNOILONYLSNI

409

Anhang L



6510 SPEICHER-KONFIGURATION

FFFF
ADRESSIERBARER
W EXTERNER
P SPEICHER P
/ // /(
0200
O1FF STACKPOINTER
01FF < "|\TIALISIERT
T l STACK l
l PAGE 1
0100
OOFF
A PAGE 0
l (Zero-Page)
l AUSGABE-REGISTER 0001 .
Fir internen
Ein-/A be-Port
DATENRICHTUNGS-REGISTER 0000 (j n-/Ausgabe-ror

Dadurch, daB das Datenregister des 1/0-Ports in der Zero-Page liegt, werden die
vorteilhaften Zero-Page-Adressierungsarten noch verstarkt.

Indem die I/0-Pins durch das Datenrichtungsregister als Eingénge geschaltet
werden, hat der Benutzer die Mdglichkeit, den Inhalt des Speicherplatzes 0001
durch Peripheriegeréte zu verdndern. Diese Mdglichkeit im Zusammenhang mit den
Adressierungsbefehlen flir die Zero-Page erschlieBt neue und ungewdhnlich viel-
seitige Programmierungstechniken, die es noch nicht gab.

ACHTUNG:

Der Baustein ist gegen statische Aufladung geschiitzt, trotzdem sollten Vorkehrun-
gen getroffen werden, damit die Grenzwerte nicht berschritten werden.

410 Anhang L



ANHANG M

6526 COMPLEX INTERFACE ADAPTER (CIA)
BESCHREIBUNG

Der Baustein 6526 ist ein Interface-Adapter, mit dem 65XX-Bus kompatibel, mit
flexiblem Timing und diversen Ein-/Ausgabemdglichkeiten.

BESONDERHEITEN

e 16 einzeln programmierbare Ein-/Ausgabeleitungen

8- oder 16-Bit-Datentransport mit Handshaking-Betrieb beim Lesen oder
Schreiben

2 unabhéngige, verknlpfbare 16-Bit-Intervalltimer
24-Stunden-(AM/PM)-Zeituhr mit programmierbarem Alarm
8-Bit-Schieberegister flir serielle Ein-/Ausgabe

2 TTL-Eingénge kénnen gespeist werden

CMOS-kompatibel

1- oder 2-MHz-Takt

BESTELLUNGSHINWEISE
MXS 6526

MXS 6526

Frequenzbereich
Kein Suffix = 1 MHz
A =2 MHz

Packet-Bezeichner
C = Keramik
P = Plastik

Anhang M 411



412

Anhang M

PAg

PA3

PA,

PAg

PA;

PBy

PB4

PB,

PBj

PB,

PBsg

PBg

PB;

TOD

Vee

PIN-ANORDNUNG

A\
1 4o|
2 39
— —
3 38
— —
4 37
5 36
6 35
7 34
—] —
8 33
I 9 32
— —
16 6526 -
11 30
SR— e s
12 29
— —
13 28
— —
14 27
= —
15 26
16 25
] B
18 23
B 22
20 21 l

CNT

SP

RS,

DB,

DB,

DB,

DB

DBg

DB;

b2

FLAG

RIW



6526
BLOCKSCHALTBILD

Do-D7

O

DATA BUS BUFFERS

N
|
PA
P | purrens [ > PAOPA7
sP SERIAL —
SP<—>1 gurren [“ | ponr C
00RA
CNT CNT — auﬁen > PC
BUFFER
PB
S B PRB | BUFFERS :>PBo-PB7
100 o Toy
TOD BUFFER -
008

]

.
] TIMER B
] e
T | ces
s T
FLAG BUFFER [
| | —
— —>1 TIMER A
= "0 INT/ I
IRQ BUFFER MASK /—\__—__
CRA

CHIP ACCESS CONTROL

HHMH

R/W @2 CS RS3 RS2 RS1 RSO RES

Anhang M 413



MAX. NENNWERTE

Versorgungsspannung Ve -0,3Vbis +7,0V
Ein-/Ausgangsspannung Vi -0,3Vbis+7,0V
Betriebstemperatur Top 0° C bis70° C
Lagertemperatur Tsrg —55° C bis 150° C

Alle Eingdnge haben Schutzschaltungen, um Schaden durch hohe statische Entla-
dungen zu vermeiden. Spannungen Uberhalb der zuldssigen Grenzwerte sollten
jedoch nur wenn unbedingt notwendig und mit &uBerster Vorsicht angelegt werden.

KOMMENTAR

Spannungen, die Uber den angegebenen max. Nennwerten liegen, kénnen zu
Schaden oder Beschadigungen des Gerats fuhren. Unter “max. Nennwerte“ sind
nur Spannungswerte aufgefiihrt. Wird das Gerat mit hoheren als angegebenen
Spannungen betrieben oder werden Uber einen langeren Zeitraum die max. Nenn-
werte gewahlt, kann dies die Geratezuverlassigkeit beeintrachtigen.

ELEKTRISCHE EIGENSCHAFTEN
(Vcc + 5%, vSs =0 V, TA = 0—70° C)

CHARACTERISTIC SYMBOLU MIN. TYP.| MAX.| UNIT
Input High Voltage Vi |+2.4] — Vee \%
Input Low Voltage Vi. |—0.3] — — \%
Input Leakage Current; Iin — 1.0 2.5 A
V|N=VSS +5V

(Tob, R/W, FLAG, 2,

RES, RS0-RS3, CS)

414 Anhang M



CHARACTERISTIC SYMBOL| MIN.| TYP. | MAX. |UNIT
Port Input Pull-up Resistance Rep 3.1 50 | — KQ
Output Leakage Current for lrsi — |*1.0|£10.0| nA
High Impedance State (Three
Sfofe); VIN = 4V to 24V,’
(DBO-DB7, SP, CNT, IRQ)
OUprf ngh Volfage VOH +2.4 e Vcc \"
Vec=MIN, loap <
—200pA (PAO—PA7, PC
PBO—PB7, DBO—DB7)
Output Low Voltage Voo | — | — |+0.40| V
Vcc= MIN, ILOAD < 3.2 mA
Output High Current (Sourcing); lon |—200—1000, — A
Vou > 2.4V (PAO—PA7,
PBO-PB7, PC, DBO-DB7
Output Low Current (Sinking); loL 3.2 — —_ mA
VoL < .4V (PA0-PA7, PC,
PBO—PB7, DBO—DB7?)
Input Capacitance Cn | — 7 10 pf
Output Capacitance Cout | — 7 10 pf
Power Supply Current lec | — 70 100 | mA

Anhang M 415



fe— Sq,

HA;

L &— HMY | SMY | —=

il

——ih l— HAV —»  sav,

VI

e SOM 3

(

ad; .

o

A

MID; >

4 —] e MHO,
OADy

Y

WNIWVHOVIA-ONINIL-GI3HHIS 9259

g

08a-.80
NI v1iva

%]

0SY-€SH

SO

1NO viva
TWYH3HdIH3d

LNdNI 29

Anhang M

416



jmoh Pt

l&——— OOV | ———]

VEI1iNN
(/7 7777]
—> - SMY |
/l P— HMH | ¢ 00 —» vlll
Y C
ﬁ'l:l Hav sav; .
\“ SOM | '/||l|

Y

"M

Sd)

WWVHOVIA-ONINIL-3S31 9259

080-.80
1NO vivad

MWH

0SH-£Sy

s

NI LHOd

LNdNI 29

417

Anhang M



6526 PINBELEGUNG

@2-TAKTEINGANG

TTL-kompatibler Takteingang zur Steuerung der internen Funktionen und ein
Timing-Bezug fir die Kommunikation mit dem Systemdatenbus.

CS-CHIP SELECT

Der Baustein reagiert nur dann auf die Steuereingange RS und R/W, wenn dieser
Eingang auf Low und der Takt auf High liegt.

R/W READ/WRITE

Das R/W-Signal wird normalerweise vom Prozessor erzeugt und kontrolliert die
Richtung des Datentransportes. R/W = High bedeutet, daB die Daten aus dem 6526
gelesen werden kdnnen, bei Low kénnen Daten hineingeschrieben werden.

RS3-RS0-AdreBeingdnge

Damit werden die internen Register angesprochen (siehe Registerbelegung Seite
420).

DB7-BD0-Datenbus, Ein-/Ausgénge

Diese Pins verbinden den Chip mit dem Systemdatenbus und sind hochohmig,
auBer wenn CS Low, R/W und 02 High liegen, um Daten aus dem 6526 zu lesen.
Dann sind die Datenausgangsbuffer aktiviert und Gbertragen die Daten vom ausge-
wahlten Register an den Bus.

TRQ INTERRUPT REQUEST AUSGANG

Dies ist ein “open-drain“-Ausgang, der normalerweise mit dem Interrupteingang
des Prozessors verbunden ist. Durch den externen Pullup-Widerstand ist es
moglich, mehrere TRQ-Ausginge miteinander zu verbinden. Wie dieser Ausgang
aktiviert (auf Low gezogen) werden kann, wird im Folgenden noch beschrieben.

418 Anhang M



RES RESET-EINGANG

Wenn dieser Eingang Low-Pegel hat, werden alle internen Register geldscht. Die
Ports werden als Eingdnge und die Portregister auf Null geschaltet (obwohl die Ports
durch die Pullup-Widerstéande als High gelesen werden wiirden). Die Intervalltimer-
register werden auf Null und die Latches auf Eins gesetzt. Alle anderen Register
werden auf Null gesetzt.

6526 TIMING-CHARAKTERISTIKEN

1MHz 2MHz
Symbol | Characteristic MIN | MAX MIN MAX Unit
$2 Clock
Teve  |Cycle Time 1000 | 20,000 | 500 | 20,000 | ns
Tr, Te |Rise and Fall Time — 25 — 25 ns
Tchw |Clock Pulse Width
(High) 420 10,000 | 200 10,000 ns
Tciw | Clock Pulse Width
(Low) 420 10,000 | 200 10,000 ns
Write Cycle
Tep Output Delay
From ¢2 — 1000 — 500 ns
Twes CS low
while ¢2 high 420 — 200 — ns
Taps |Address Setup Time | O — 0 — ns
Tapn |Address Hold Time 10 — 5 — ns
Trws |R/W Setup Time 0 — 0 —_ ns
Tawn |R/W Hold Time 0 — 0 — ns
Tos Data Bus Setup
Time 150 — 75 — ns
Tou Data Bus Hold Time | 0 — 0 — ns
Read Cycle
Tps Port Setup Time 300 — 150 — ns
Twes(2)|CS low
while ¢2 high 420 — 20 — ns
Taps |Address Setup Time | O - 0 — ns
Tapn |Address Hold Time 10 — 5 —_— ns
Trws |R/W Setup Time 0 — 0 — ns
Tewn |R/W Hold Time 0 — 0 —_ ns

Anhang M 419



max and Vo min on outputs.
2—Twcs is measured from the later of ¢2 high or CS low. CS must be low at
least until the end of ¢2 high.
3—Tco is measured from the later of ¢2 high or CS low.

1MHz 2MHz

Symbol | Characteristic MIN [ MAX MIN MAX Unit
Tacc |Data Access from

RS3-RSO — 550 — 275 ns
Tco(3) [Data Access from

[ — 320 | — 150 ns
Tor Data Release Time 50 — 25 —— ns
NOTES: 1 —All timings are referenced from V,. max and V,; min on inputs and Vg,

Valid data is available only after the later of Tace or Teo.

REGISTERBELEGUNG

RS3| RS2 | RS1| RSO| REG NAME

0 0 0 0 0 |PRA PERIPHERAL DATA REG A

0 0 0 1 1 |PRB PERIPHERAL DATA REG B

0 0 1 0 2 |DDRA DATA DIRECTION REG A

0 0 1 1 3 |DDRB DATA DIRECTION REG B

0 1 0 0 4 |TALO TIMER A LOW REGISTER

0 1 0 1 5 |TAHI TIMER A HIGH REGISTER

0 1 1 0 6 |TB LO TIMER B LOW REGISTER

0 1 1 1 7 |TB HI TIMER B HIGH REGISTER

1 0 0 0 8 |TOD10THS | 10THS OF SECONDS REGISTER
1 0 0 1 9 |TOD SEC SECONDS REGISTER

1 0 1 0| A [TOD MIN | MINUTES REGISTER

1 0 1 1 B |TOD HR HOURS—AM/PM REGISTER

1 1 0 0 C |SDR SERIAL DATA REGISTER

1 1 0 1 D |ICR INTERRUPT CONTROL REGISTER
1 1 1 0 E |CRA CONTROL REG A

1 1 1 1 F |CRB CONTROL REG B

420 Anhang M




FUNKTIONSBESCHREIBUNG

Ein-/Ausgangsports (PRA, PRB, DDRA, DDRB)

Jeder der beiden Ports A und B bestehen aus einem 8-Bit-Datenregister (PRA bzw.
PRB) und einem Datenrichtungsregister (DDRA bzw. DDRB). Ist eines der Bits im
DDR Eins gesetzt, wird das entsprechende Bit im PR ausgegeben; ist das Bit im
DDR Null, wird das entsprechende Bit als Eingang geschaltet. Beim Lesen stellt das
PR das am Ausgang (PAO-PA7, PB0-PB7) glltige Bit dar, unabhéngig davon, ob der
betreffende Pin als Ausgang oder Eingang geschaltet ist. Beide Ports sind sowohl
TTL- als auch CMOS-kompatibel (durch aktive und passive Pullup-Elemente) und
kénnen zwei TTL-Einheiten treiben. Zusétzlich zur normalen Funktion Gbernehmen
PB6 und PB7 die Funktion eines Intervalltimer-Ausgangs.

Handshaking

Dieses Datenibertragungsverfahren kann durch Benutzung des Ausgangs PC und
des Eingangs FLAG realisiert werden. PC wird fiir einen Taktzyklus Low geschaltet,
wenn in PRB ein- oder ausgelesen wurde. Dieses Signal kann also als “data
ready“- oder “data accepted“-Signal fir PRB benutzt werden. (Bei 16-Bit-Daten-
Gbertragungen [mit PRA und PRB] wiirde also PRA zuerst gelesen werden). Der
FLAG-Eingang reagiert auf negative Flanken. Mit ihm kann das PC-Signal von
einem anderen 6526 empfangen werden, oder er wird als Interrupteingang benutzt.
Jede negative Flanke an FLAG setzt das Flag-Interrupt-Bit 4.

REG| NAME D, |Ds |Ds | Dy | Dy | D, | D, | D,
0 PRA PA, |PAs |PAs |PA, |PA; |PA, |PA, |PA,
1 PRB PB, |PBs |PBs |PB, |PB; |PB, |PB, |PB,
2 DDRA DPA, |DPAs | DPAs | DPA, | DPA, | DPA, | DPA, | DPA,
3 DDRB DPB, |DPBg |DPB; | DPB, | DPB, | DPB, | DPB, | DPB,

INTERVALL-TIMER (TIMER A, TIMER B)

Beide bestehen aus je einem 16-Bit-Intervalltimer (nur Lesen) und einem 16-Bit-
Latch (nur Schreiben). Beim Schreiben werden die Daten in das Latch geschrieben,
wahrend beim Lesen der Inhalt des Intervalltimers angezeigt wird. Die Timer
kénnen sowohl unabhéngig voneinander als auch zusammen benutzt werden. Die
verschiedenen Betriebsarten erlauben Zeitverzégerungen, variable Impulslingen,
Impulsfolgen und Signale unterschiedlicher Frequenz.

Anhang M 421



Mit dem Eingang CNT kdnnen die Zahler externe Impulse zéhlen und Frequenzen,
Impulslangen und Verzdgerungszeiten messen. Jeder Z&hler hat ein eigenes
Kontrollregister zur unabhangigen Uberwachung folgender Funktionen:

START/STOP

Ein Kontrollbit (cb) ermdglicht dem Prozessor, den Zahler zu jeder Zeit zu starten
und zu stoppen.

PB ON/OFF

Ein Kontrollbit steuert die Ausgabe des Zahleruberlaufs an Port B (PB6 fur Timer A,
PB7 fir Timer B). Dieses Bit Uberschreibt das DDRB-Kontrollbit und schaltet den
entsprechenden Pin auf Ausgang.

TOGGLE/PULSE

Ein Kontrollbit bestimmt die Art des Ausgangssignals, das an Port B erscheint. Am
Ende jedes Zahlerzyklus (underflow) kann der Ausgang entweder von Low nach
High und umgekehrt wechseln, oder ein einzelner positiver Impuls (Lénge: 1
Taktzyklus @2) erzeugt werden. Der Toggle-Ausgang wird auf High gesetzt, wenn
der Zahler gestartet wird. Durch RES auf Low gesetzt.

ONE SHOT/CONTINUOUS

Ein Kontrollbit wahlt eine der beiden Betriebsarten. Im One-Shot-Modus wird von
dem Wert im Latch bis Null gezahlt, ein Interrupt erzeugt, der Wert erneut geladen
und der Zahler gestoppt. Im Continuous-Modus wird nicht gestoppt, sondern dieser
Vorgang kontinuierlich wiederholt.

FORCE LOAD

Dieses Strobe-Bit erzwingt, daB der Inhalt des Latches in den Zeitzahler geladen
wird, unabhangig davon, ob der Zahler lauft oder nicht.

422 Anhang M



INPUT-MODE

Kontrollbits erlauben die Auswahl des Taktes, der zur Dekrementierung des Zahlers
benutzt wird. Timer A kann @2-Taktimpulse oder externe Impulse tber CNT z&hlen.
Timer B kann zuséatzlich “underflow“-Impulse des Timers A zahlen. Zusétzlich
besteht eine Steuermdglichkeit tiber den Pin CNT. Der Inhalt des Latches wird bei
jedem Zahlerunterlauf, “force load“ oder nach einem Schreiben des H-Byte des
Latches (bei angehaltenem Zahler) in den Zéhler Gbernommen. Wenn der Z&hler
|auft, bewirkt das Schreiben des H-Bytes nur ein Laden des Latches, kein Laden
des Zahlers.

LESEN (TIMER)
REG NAME

4 TALO | TAL | TALs | TALs | TAL, | TALs | TAL, | TAL, | TAL
5 TA HI | TAH,| TAHg | TAHs | TAH, | TAH;| TAH, | TAH,| TAH,
6 TB LO | TBL, | TBL | TBLs |TBLy | TBLs| TBL, | TBL, | TBL,
7 TB HI | TBH, | TBHg | TBHs | TBH, | TBH3 | TBH, | TBH,| TBH,

SCHREIBEN (VORTEILER)
REG NAME

4 TA LO | PAL, |PALs |PALs |PAL, |PAL; | PAL, | PAL, | PAL,
5 TA HI | PAH, |PAHg | PAHs | PAH, | PAH, | PAH,| PAH,| PAH,
6 TB LO | PBL, |PBLs |PBLs |PBL, |PBLs |PBL, |PBL, | PBL,
7 TB HI | PBH, |PBHg |PBHs |PBH, |PBH, | PBH, | PBH, | PBH,

UHRZEIT (TOD — Time Of Day)

Die TOD-Clock ist ein spezieller Zahler fiir Echtzeitanwendungen. Sie besteht aus
einer 24-Stunden-Uhr mit einer Auflésung von 1/10-Sekunden. Sie ist in 4 Register
aufgeteilt:

1/10-Sekunden,

Sekunden,

Minuten,

Stunden.

Das AM/PM-Flag ist das MSB des Stundenregisters, um das Lesen zu vereinfa-
chen. Jedes Register wird im BCD-Code gelesen, damit die Konvertierung fur das

Anhang M 423



Betreiben von Anzeigegeréten vereinfacht wird. Die Uhr benétigt einen Takt mit 50
Hz oder 60 Hz (programmierbar) mit TTL-Pegel. Ein programmierbarer ALARM st
dafiir vorgesehen, einen Interrupt zu einer bestimmten Zeit auszulésen. Die zuge-
horigen Register liegen auf den gleichen Adressen wie die Register der Uhr, der
Zugriff auf die ALARM-Register erfolgt Uber ein Bit im Kontrollregister. In die
ALARM-Register kann nur geschrieben werden; ein Leseimpuls auf die Adressen
der TOD-Register ergibt immer die Zeit, unabhéngig vom Zustand des ALARM-
Kontrollbits.

Um die Zeit zu lesen oder zu setzen, muB eine bestimmte Reihenfolge eingehalten
werden. TOD wird automatisch gestoppt, wenn ein Schreibimpuls flr die Stunden-
register glltig wird, und wird erst wieder gestartet, nachdem in die 1/10-Sekunden-
Register geschrieben wurde. Dies stellt sicher, daB TOD immer mit der gewlnsch-
ten Zeit gestartet wird. Da ein Ubertrag von einem Register zum néchsten sich auch
wahrend eines Lesezyklus ereignen kdnnte, werden wahrend eines Lesezyklus alle
Registerinhalte konstant gehalten (gelatcht). Alle vier Register werden gespeichert,
sobald die Stunden gelesen werden, und bleiben gespeichert, bis die 1/10-
Sekunden gelesen wurden. Erst danach zeigen die Register die aktuellen Werte.
Wenn nur ein Register gelesen werden soll, gibt es kein Problem mit dem Ubertrag.
Das Register kann sofort gelesen werden. Nach dem Stunden-Register muB aber
immer das 1/10-Sekunden-Register gelesen werden, um die Verriegelung aufzu-
heben.

LESEN

REG  NAME

8 |TOD10THS|0 | © 0 | 0 | Tg | Te | T | Ty
9 |TOD SEC |0 | SHe | SH, | SHy | SLg | SLs | SL, | SL
A |TOD MIN |0 | MH, | MH, | MH, | ML | MLy | ML, | ML,
B |[TODHR |PM |0 |O HH | HLs | HLs | HL, | HL,
SCHREIBEN

CRB;=0 TOD

CRB,=1 ALARM
(Gleiches Format wie LESEN)

424 Anhang M



SERIELLER PORT (SDR)

Dies ist ein gebuffertes, synchrones, 8 Bit breites Schieberegistersystem. Ein
Kontrollbit wahlt entweder Ein-/oder Ausgabemodus. Im Eingabemodus werden die
Daten vom Pin SP, gesteuert durch positive Taktflanken am Pin CNT, in ein
Schieberegister geschoben. Nach 8 Impulsen am Eingang CNT werden die Daten in
das serielle Datenregister ibernommen, und ein Interrupt wird erzeugt. Wird dieser
Port als Ausgang benutzt, bestimmt Timer A die Baudrate. Die Daten werden mit 1/2
der Underflowrate von Timer A an Pin SP herausgeschoben. Die groBte mdégliche
Baudrate ist @2/4; sie wird aber durch Kabelkapazitaten und der Geschwindigkeit,
mit der der Empféanger auf den Dateneingang reagiert, begrenzt.

Die Ubertragung beginnt, nachdem in das serielle Datenregister geschrieben wurde
(vorausgesetzt, Timer A lauft im Modus CONTINUOUS). Das Taktsignal von Timer
A erscheint als Ausgangssignal an Pin CNT. Die Daten aus dem seriellen Datenregi-
ster werden in das Schieberegister Ubernommen und ausgegeben, wenn an CNT
ein Impuls erscheint. Die Ausgabe wird mit der negativen Flanke von CNT glltig und
bleibt giltig bis zur ndchsten negativen Flanke. Nach 8 Impulsen an Pin CNT wird
ein Interrupt erzeugt, um anzuzeigen, daB die ndchsten Daten Ubertragen werden
konnen. Falls das serielle Datenregister vor diesem Interrupt mit neuen Daten
geladen wurde, werden diese automatisch in das Schieberegister geladen, und die
Ubertragung wird fortgesetzt. Falls also der Prozessor das Schieberegister rechtzei-
tig nachladt, ist die Ubertragung kontinuierlich. Wenn keine Daten mehr (ibertragen
werden sollen, erscheint nach 8 Impulsen an CNT an diesem Ausgang ein H-Pegel,
und Pin SP bleibt auf dem Pegel, der dem zuletzt Ubertragenen Bit entspricht.
SDR gibt zuerst das MSB aus, diese Reihenfolge sollte auch bei der Eingabe
verwendet werden. Weil die benutzten Pins bidirektional sind, kénnen viele 6526-
Bausteine auf einen seriellen Bus zusammengeschaltet werden, wobei einer der
Bausteine als Master, der Daten und Takt ausgibt, und alle anderen als Slaves
fungieren. Deshalb sind diese Pins “open-drain®-Schaltungen. Die Vorschrift fur
Verteilung von Master-/Slavefunktion kann tUber den seriellen Bus oder spezielle
Leitungen Ubertragen werden.

REG NAME

C | SDR S, | Se | Ss | Se | Ss | S2 | St | Se

Anhang M 425



INTERRUPT CONTROL (ICR)

Es gibt 5 moégliche Quellen fir einen Interrupt: Underflow von Timer A oder B; TOD
ALARM; serieller Port voll/leer und FLAG.

Die Maskier- und Interruptinformationen sind in einem Register zusammengefaBt.
Das INTERRUPTKONTROLLREGISTER besteht aus einem Maskenregister, in das
nur hineingeschrieben werden kann, und einem Datenregister, das nur gelesen
werden kann. Jeder Interrupt setzt ein entsprechendes Bit im Datenregister. Wird
der Interrupt durch das Maskenregister nicht gesperrt, wird das MSB des Datenregi-
sters gesetzt (IR-Bit) und der Pin TRQ Low geschaltet. Sind mehrere 6526 zusam-
mengeschaltet, kdnnen die IR-Bits abgefragt werden, um festzustellen, welcher
Baustein den Interrupt ausgeldst hat. Nachdem das Datenregister gelesen wurde,
wird es geldscht und TRQ High gelegt. Da das Datenregister unabhangig vom
Maskenregister gesetzt wird und jedes Interruptbit einzeln maskiert werden kann,
um einen Interrupt zu verhindern, ist es mdglich, Interruptanforderungen und
ausgeflhrte Interrupts zu mischen.

Wenn das Bit IR abgefragt wird, wird das Datenregister geldscht, die Informationen
mussen also vom Benutzer gerettet werden.

Das Maskenregister ermdglicht eine einfache Steuerung der Maskierung. Wenn
man in das Register schreibt und das 7. Bit der geschriebenen Daten (SET/CLEAR)
0 ist, werden alle Bits, die 1 gesetzt sind, geléscht, wahrend die Bits, die 0 sind,
nicht beeinfluBt werden. Falls das 7. Bit der geschriebenen Daten 1 ist, wird jedes
Maskierungsbit, das 1 ist, gesetzt, wahrend diejenigen, die 0 sind, nicht berihrt
werden. Damit IR gesetzt werden und ein Interrupt ausgeldst werden kann, muB das
korrespondierende Maskierungsbit gesetzt sein.

LESEN (INT DATA)
REG NAME

D ICR IR 0 0 FLG | SP | ALRM|TB | TA

SCHREIBEN (INT MASK)
REG NAME

D | ICR s/IC | x X FLG | SP | ALRM|TB | TA

426 Anhang M



STEUERREGISTER

Der 6526 hat zwei Steuerregister: CRA und CRB. CRA ist mit TIMER A und CRB mit
TIMER B verbunden. Es gilt folgendes Registerformat:

CRA:

Bit Name

0 START

1 PBON

2 OUTMODE
3 RUNMODE
4 LOAD

5 INMODE

6 SPMODE
7 TODIN
CRB:

Bit Name

5,6 INMODE

7 ALARM

Funktion

1=START TIMER A, 0=STOP TIMER A. Dieses Bit wird
automatisch riickgestellt, wenn es im one-shot-mode zu
einem Unterlauf kommt.

1=TIMER AUSGABE A liegt an PB6 an, 0=PB6 Normalbe-
trieb.

1=TOGGLE, 0=PULS

1=0NE-SHOT, 0=KONTINUIERLICH

1=FORCE LOAD (dies ist eine STROBE-Eingabe. Es erfolgt
keine Datenspeicherung, Bit 4 liest stets eine 0, und das
Schreiben einer 0 hat keinen EinfluB).

1=TIMER A zihlt positive CNT-Ubergiange, 0=TIMER A
zahlt @2-Impulse.

1=AUSGABE SERIELLER PORT, 0=SERIELLER PORT
(externer Taktgeber erforderlich).

1=50-Hz-clock am TOD-Pin ergibt korrekte Uhrzeit.
0=60-Hz-clock am TOD-Pin ergibt korrekte Uhrzeit.

Funktion

(Bits CRBO—CRB4 entsprechen CRA0O—CRA4 von TIMER
B. Bit 1 steuert jedoch die TIMER-Ausgabe B auf PB7.)
Bits CRB5 und CRB6 wahlen eine der vier Eingabemodi von
TIMER B:

CRB6 CRB5

0 0 TIMER B zahlt @2-Impulse.

0 1 TIMER B zahlt positive CNT-Uber-
gange.

1 0 TIMER B zahlt Unterlauf-Impulse
von TIMER A.

1 1 TIMER B zahlt Unterlauf-Impulse
von TIMER A, wahrend CNT
H-Pegel hat.

1=ALARM setzen durch Schreiben in TOD-Register,
0=TOD-clock setzen durch Schreiben in TOD-Register.

Anhang M 427



TOD SP IN RUN ourt
REG NAME IN MODE MODE LOAD MODE MODE PB ON  START

E CRA 0=60Hz [ 0=INPUT | 0=¢2 1=FORCE | 0=CONT.| 0=PULSE | 0=PB4OFF | 0=STOP
LOAD
1=50Hz | 1=OUTPUT| 1=CNT | (STROBE) | 1=0.S. | 1=TOGGLE| 1=PBs ON | 1=START
| - TA |
RUN our
REG NAME ALARM IN MODE LOAD MODE MODE PB ON  START
F CRB 0=TOD 0| o0=¢2 1=FORCE | 0=CONT.| 0=PULSE | 0=PB, OFF | 0=STOP
1 1=CNT LOAD
1] o=TA
Jo= 1 1=CNT-TA | (STROBE) | 1=0.S. | 1=TOGGLE | 1=PB, ON |1=START
ALARM
| B I

Alle nicht benutzten Register-Bits werden durch das Schreiben nicht beeinfluBt und
beim Lesen auf Null gesetzt.

Anderungen vorbehalten. COMMODORE SEMICONDUCTOR GROUP iibernimmt keinerlei Verant-
wortung flr Schaden, die aus der Anwendung der hier beschriebenen Produkte oder Schaltungen
entsteht. Es werden keinerlei Lizenzen hinsichtlich der Patentrechte oder anderer Rechte erteilt.

428 Anhang M



ANHANG N

6566/6567 VIDEO-INTERFACE-CONTROLLER (VIC-lI)
CHIP SPECIFICATIONS

Beschreibung

Die Bausteine 6566 und 6567 sind Mehrzweck-Farb-Video-Bausteine sowohl! fiir
den Einsatz in Computer-Videoterminals als auch in Videospielen. Sie enthalten 47
Kontrollregister, auf die Uber einen normalen 8-Bit-Mikroprozessorbus (65XX)
zugegriffen werden kann, und kénnen auf bis zu 16KB RAM zugreifen, um Videoin-
formationen abzulegen.

Im Folgenden werden die verschiedenen Betriebsarten und deren Optionen be-
schrieben.

ZEICHENDARSTELLUNGSMODUS

In dieser Betriebsart holt der Baustein Characterzeiger aus dem VIDEO-MATRIX-
Bereich des Speichers und Ubersetzt diese in die Adresse der Punktmatrix des
Zeichens, welche sich in dem 2048 Byte groBen CHARACTER-BASE-Bereich des
Speichers befindet. Die Videomatrix umfaBt 1000 aufeinanderfolgende Speicher-
platze, welche alle einen 8-Bit-Characterzeiger enthalten. Die Plazierung der Video-
matrix im Speicher wird durch VM13-VM10 in Register 24 ($18) festgelegt. Diese 4
Bit bilden die 4 MSB der Videomatrixadresse. Die 10 unteren Bits werden von
einem internen Zahler bereitgestellt, der die 1000 Zeichenspeicherplatze durch-
zahlt. Man beachte, daB die Bausteine nur 14 AdreBausgange haben, deshalb ist
zusatzliche Systemhardware notwendig, um den gesamten Speicherbereich des
Systems ansprechen zu kdnnen.

ZEICHENZEIGERADRESSE
A13| A12| A11] A10[A09 |A0B | A07 | A06 | A05 | A04 |A03 | A02 | A01 | A00

VM]3‘VM12|VM] 1|VM1o|vc9 |vcs l vcz ‘vco lvcs Ivc4 |vc3 | vc2 | vl | vCo

Anhang N 429



Die 8 Bit langen Characterzeiger erlauben, daB bis zu 256 verschiedene Zeichen
gleichzeitig verflgbar sind. Jedes Zeichen ist im Character-Base-Bereich als 8x8-
Punktematrix in 8 aufeinanderfolgenden Bytes abgelegt. Die Plazierung der Charac-
ter-Base wird durch CB13-CB11 im Register 24 ($18) festgelegt, diese bilden die 3
MSB der Adresse. Die 11 unteren Bits werden aus dem Characterzeiger (8 Bit) aus
der Videomatrix, der ein bestimmtes Zeichen definiert, und einem 3-Bit-Rasterzéh-
ler (RC2-RCO0), der eines der 8 Zeichenbytes auswahlt, gebildet. Die resultierenden
Zeichen werden in 25 Zeilen zu jeweils 40 Zeichen zusammengefaBt. Zusatzlich
zum Characterzeiger gehdrt zu jeder Stelle der Videomatrix ein 4-Bit-FARBNYBBLE
(der Videomatrixspeicher muB also 12 Bit breit sein), welcher eine von 16 verschie-
denen Farben fir jedes Zeichen einzeln auswahlt.

ZEICHENDATENADRESSE
A13| A12| A11]A10| A09 | A0S | Ao7| A06|A05|A04|A03| Ao2| AO1 |Aoo

CB]31CBIZ|CBH!D7 | Dé6 l D5 | D4 l D3 | D2 |Dl |DO l RC2| RC1 ‘RCO

Betriebsart “STANDARDZEICHEN“ (MCM=BMM=ECM=0)

In dieser Betriebsart werden die 8 aufeinanderfolgenden Bits der Character Base
direkt als die 8 Zeilen des Zeichens dargestellt. Bei einer O wird die Hintergrund-
farbe #0 (aus Register 33 ($21)), bei einer 1 die Farbe, die durch das Farbnybble
bestimmt wird, dargestellt (siehe Farbcodetabelle).

FUNKTION ZEICHENBIT FARBANZEIGE
Hintergrund 0 Hintergrundfarbe #0 (Register 33 ($21))
Vordergrund 1 Durch 4-Bit-Farbnybble gewahlte Farbe

Somit hat jedes Zeichen eine Farbe (festgelegt durch das Farbnybble), und
alle Zeichen haben die gleiche Hintergrundfarbe.

430 Anhang N



Betriebsart “MEHRFARBIGE ZEICHEN“
(MCM=1, BMM=ECM=0)

Diese Betriebsart ermdglicht es, vierfarbige Zeichen mit geringer Aufldsung darzu-
stellen. Sie wird eingeschaltet, wenn das Bit MCM in Register 22 ($16) 1 gesetzt
wird, wodurch die in der Character Base gespeicherten Daten unterschiedlich
interpretiert werden. Ist das MSB des Farbnybbles 0, wird das Zeichen wie bei der
Betriebsart “Standardzeichen® dargestellt. Dies erlaubt es, die beiden Betriebsar-
ten zu mischen, es sind jedoch nur die 8 ersten Farben darstellbar. Wenn das MSB
des Farbnybbles 1 ist (falls MCM:MSB(CM)=1), werden immer je 2 Bits folgender-
maBen interpretiert:

CHARACTER
FUNCTION BIT PAIR COLOR DISPLAYED
Background 00 Background #0 Color
(register 33 ($21))
Background 01 Background #1 Color
(register 34 ($22))
Foreground 10 Background #2 Color
(register 35 ($23))
Foreground 11 Color specified by 3 LSB
of color nybble

Da immer 2 Bits bendtigt werden, um einen Punkt zu beschreiben, wird das Zeichen
jetzt als 4x8-Punktematrix dargestellt, wobei jeder Punkt doppelt so breit ist wie im
Normalbetrieb. Man beachte, daB jedes Zeichenfeld jetzt 4 Farben beinhalten kann,
2 als Vordergrund, 2 als Hintergrund (siehe MOB-Prioritat).

Betriebsart “ERWEITERTE FARBE“ (ECM=1, BMM=MCM=0)

Diese Betriebsart erlaubt es, fur jedes einzelne Zeichen mit einer Auflésung von
8x8 Punkten eine von 4 Hintergrundfarben auszuwéhlen. Diese Betriebsart wird
eingeschaltet, wenn das Bit ECM des Registers 17 ($11) 1 gesetzt wird. Die
Punktmatrix des Zeichens wird genauso wie bei der Betriebsart “Standardzeichen”
dargestellt (durch eine 1 wird die durch das Farbnybble bestimmte Vordergrund-
farbe dargestellt), aber die 2 MSB des Characterzeigers bestimmen die Hinter-
grundfarbe des Zeichens nach folgendem Schema:

Anhang N 431



CHARACTERZEIGER -
MSB-PAAR HINTERGRUND-FARBE FUR BIT 0
00 Hintergrundfarbe #0 (Register 33 ($21))
01 Hintergrundfarbe #1 (Register 34 ($22))
10 Hintergrundfarbe #2 (Register 35 ($23))
11 Hintergrundfarbe #3 (Register 36 ($24))

Da die 2 MSB des Characterzeigers zur Auswahl der Hintergrundfarbe gebraucht
werden, kdnnen nur noch 64 verschiedene Zeichen dargestellt werden. Der Bau-
stein interpretiert CB10 und CB9 unabhangig vom Characterzeiger als 0, so daB nur
die ersten 64 Zeichen dargestellt werden kdnnen.

In dieser Betriebsart kann fiir jedes Zeichen eine der 16 Vordergrundfarben und
eine von 4 verfligbaren Hintergrundfarben bestimmt werden.

Anmerkung: Die beiden Betriebsarten “Mehrfarbige Zeichen“ und “Erweiterte Farbe“ sollten nicht
gleichzeitig eingeschaltet werden.

BIT MAP MODUS

In dieser Betriebsart holt der Baustein Daten auf eine andere Art und Weise aus
dem Speicher und stellt sie so dar, daB eine direkte Beziehung zwischen dem
dargestellten Punkt und dem Bitim Speicher besteht. Diese Betriebsart verflgt Gber
eine Auflésung von 320 Punkten horizontal und 200 Punkten vertikal. Sie wird
eingeschaltet, indem das Bit BMM im Register 17 ($11) 1 gesetzt wird. Auf die
Videomatrix wird noch genauso wie bei der Zeichendarstellung zugegriffen, aber ihr
Inhalt wird jetzt nicht mehr als Characterzeiger, sondern als Farbinformation inter-
pretiert. Der Videomatrixzahler wird als Adresse benutzt, um die Daten fir die
Darstellung der Punkte aus dem 8000 Byte umfassenden Anzeigespeicher zu
holen. Die Adresse ist folgendermaBen zusammengesetzt:

A1ﬂA12|A11|A10|Ao9]Aoa|A07|A06|A05|A04|A03!A02|A01|A00

cslﬂvc9\vcs‘vc7‘VC6‘vcs\vc4[vc3‘vc2‘vc1‘vco‘kczlkc1|kco

432 Anhang N



VCx bezeichnet den Ausgang des Videomatrixzahlers, RCx den Rasterlinienzahler,
und CB13 stammt aus Register 24 ($18). Der Videomatrixzahler wahlt fir 8
Rasterlinien die gleichen Speicherplatze an, wahrend der Rasterzahler nach jeder
horizontalen Zeile um 1 erh6éht wird. Nachdem die 8. Zeile geschrieben ist, wahlt der
Videomatrixzahler die nachsten 40 Speicherplatze an. Aus dieser Adressierungsart
resultiert, daB immer 8 aufeinanderfolgende Speicherplatze eine 8x8-Punktematrix
auf dem Bildschirm bilden.

Betriebsart “STANDARD BIT MAP“ (BMM=1, MCM=0)

Hierbei wird die Farbinformation nur aus den Daten der Videomatrix abgeleitet (der
Farbnybble wird nicht beachtet). Die 8-Bit-Daten aus der Videomatrix werden in 2
4-Bit-Daten aufgeteilt, wodurch es mdglich wird, 2 verschiedene Farben in jeder
8x8-Punktematrix darzustellen. Wenn ein Bit des Anzeigespeichers 0 ist, erscheint
der Punkt in der Farbe, die durch die unteren 4 Bit definiert wird. Wenn das Bit 1 ist,
wird der Punkt in der Farbe gesetzt, die durch die oberen 4 Bit des entsprechenden
Datenwortes in der Videomatrix festgelegt wird.

BIT ANZEIGEFARBE
0 Unteres Nybble des Videomatrix-Zeigers
1 Oberes Nybble des Videomatrix-Zeigers

“MEHRFARBIGE DARSTELLUNG“ (BMM=MCM=1)

Diese Betriebsart wird eingeschaltet, indem das Bit MCM im Register 22 ($16) und
das Bit BMM im Register 17 ($11) 1 gesetzt werden. Sie benutzt dieselbe Ansteue-
rung des Speichers wie die Standardbetriebsart, interpretiert die Daten jedoch
anders. Je zwei Bits werden zusammengefaBt und nach folgendem Schema
ausgewertet:

BIT-PAAR ANZEIGEFARBE
00 Hintergrundfarbe #0 (Register 33 ($21))
01 Oberes Nybble des Videomatrix-Zeigers
10 Unteres Nybble des Videomatrix-Zeigers
11 Videomatrix-Farbnybble

Anhang N 433



Man beachte, daB das Farbnybble bei dieser Betriebsart benutzt wird. Da immer 2
Bit benétigt werden, um die Farbe eines Punktes zu bestimmen, sind die Punkte
doppelt so breit wie in der Standardbetriebsart; es kénnen also nur 160 Punkte
horizontal und 200 Punkte vertikal dargestellt werden. Wenn man diese Betriebsart
nutzt, kdnnen also 3 voneinander unabhangig ausgewahlte Farben fiir jede 8x8-
Punktematrix zusatzlich zur Hintergrundfarbe auf dem Bildschirm dargestellt
werden.

DARSTELLUNG VON BEWEGLICHEN OBJEKTEN

Bewegliche Objekte (engl. movable objekt block, MOB) sind eine spezielle Art von
Zeichen, die an jedem beliebigen Ort des Bildschirms unabhéngig von der 8x8-
Punktematrix erzeugt werden kénnen. Bis zu 8 MOBs konnen gleichzeitig erzeugt
werden, jedes wird durch 63 Bytes im Speicher beschrieben und als Anordnung
von 24x21 Punkten dargestellt (s.u.). Eine Anzahl von Sonderfunktionen macht die
MOBs besonders fiir Videospiele und -graphiken interessant.

MOB-ANZEIGEBLOCK

BYTE BYTE BYTE
00 01 02
03 04 05
57 58 59
60 61 62

MOB EINSCHALTEN

Jeder MOB kann einzeln durch Setzen des entsprechenden Bits MnE im Register
21 ($15) auf dem Bildschirm dargestellt werden. Wenn das entsprechende Bit O ist,
ist der MOB nicht nur abgeschaltet, er wird auch bei der Ausfiihrung der MOB-
Sonderfunktionen nicht berlicksichtigt.

434 Anhang N



POSITION

Die Lage des MOB auf dem Bildschirm wird durch die X- und Y-Koordinaten mit
einer Aufldsung von 512 Punkten horizontal und 256 Punkten vertikal bestimmt, die
in den entsprechenden Registern abgelegt sind. Dabei beziehen sich die Koordina-
ten auf den linken oberen Punkt des MOB. Wenn X zwischen 23 und 347 ($17—
$157) und Y zwischen 50 und 249 ($32—$F9) liegt, ist der MOB sichtbar. Da der
MOB nicht in jeder Position sichtbar ist, kann er Gbergangslos vom Bildschirm
verschwinden und wieder erscheinen.

FARBE

Zur Festlegung der Farbe hat jeder MOB ein eigenes 4-Bit-Register. Es gibt zwei
Betriebsarten:

Normale Darstellung (MnMC=0)

In dieser Betriebsart ist der MOB an den Stellen, wo eine O geschrieben ist,
durchsichtig, es erscheint also die Hintergrundfarbe. Eine 1 bewirkt, daB die Farbe
erscheint, die durch das Farbregister bestimmt wird.

Mehrfarbige MOBs (MnMC=1)

Jeder MOB kann unabhéngig von den anderen mehrfarbig gestaltet werden, indem
das entsprechende Bit MnMC im Register 28 ($1C) 1 gesetzt wird. Dann werden die
Datenbits des MOBs paarweise folgendermaBen interpretiert:

BIT PAIR | COLOR DISPLAYED

00 Transparent

01 MOB Multi-color #0 (register 37 ($25))
10 MOB Color (registers 39-46 ($27-$2E))
1 MOB Multi-color #1 (register 38 ($26))

Da immer zwei Bits bendtigt werden, um einen Punkt zu bestimmen, wird die
Auflosung auf 12x21 Punkte reduziert; da die Punkte aber doppelt so breit gezeich-
net werden, andert sich die GréBe des MOBs nicht.

Man beachte, daB bis zu 3 verschiedene Farben pro MOB zur Verfligung stehen,
aber 2 Farben fiir alle mehrfarbigen MOBs giiltig sind.

Anhang N 435



VERGROSSERUNG

Jeder MOB kann einzeln um den Faktor 2 in beiden Richtungen vergréBert werden.
Zwei Register enthalten die Kontrollbits flr die VergroBerung:

REGISTER]| FUNCTION

23 ($17) |Horizontal expand MnXE—"1"=expand; “0"”=normal
29 ($1D) |Vertical expand MnYE—"1"”=expand; 0" =normal

Wenn die MOBs vergréBert werden, findet keine Verbesserung der Auflésung statt.
Die 24x21-(bzw. 12x21)-Punktematrix wird nur entsprechend vergroBert (der klein-
ste Punkt eines MOBs kann also in der mehrfarbigen Darstellung bis zu viermal
groBer erscheinen).

PRIORITAT

Die Prioritat des MOBs in bezug auf andere auf dem Bildschirm dargestellte
Informationen kann fur jedes MOB einzeln durch Setzen des entsprechenden Bits
(MnDP) im Register 27 ($1B) beeinfluBt werden:

REG BIT I PRIORITY TO CHARACTER OR BIT MAP DATA
0 Non-transparent MOB data will be displayed (MOB in front)
1 Non-transparent MOB data will be displayed only instead of

Bkgd #0 or multi-color bit pair 01 (MOB behind)

MOB — DISPLAY DATA PRIORITY

MnDP = 1 MnDP = 0
MOBn Foreground
Foreground MOBnN

Background Background

436 Anhang N



Untereinander haben die MOBs eine feste Rangfolge, wobei MOB 0 den hochsten
und MOB 7 den niedrigsten Rang besitzen. Wenn Punkte von 2 MOBs (ausgenom-
men transparente Punkte) zusammenfallen, werden immer die des MOBs mit der
niedrigsten Nummer dargestelit.

ERKENNEN VON KOLLISIONEN

Zwei Arten von Berthrungen werden erkannt: die Berihrung zweier MOBs und die
Uberlappung eines MOBs mit einer anderen dargestellten Information:

MOB-MOB-Beriihrung:

Eine Berlihrung zweier MOBs findet statt, wenn die nichttransparenten Teile zweier
MOBs an der gleichen Stelle abgebildet werden sollen (die Beriihrung transparenter
Teile hat keine Folgen). Dann werden die Bits MnM flr die beiden beteiligten MOB
im Register 30 ($1E) 1 gesetzt. Diese bleiben gesetzt, bis das Register ausgelesen
wird, dann werden alle Bits automatisch O gesetzt. Berlihrungen werden auch dann
festgestellt, wenn sich die MOBs auBerhalb des Bildschirms befinden.
Uberlappung mit anderen Informationen:

Wenn ein MOB einen Bildpunkt berihrt, der nicht in der Hintergrundfarbe darge-
stellt wird, wird im Register 31 ($1F) das entsprechende Bit MnD 1 gesetzt.
Transparente Teile des MOB spielen auch hier keine Rolle. Fiir spezielle Anwen-
dungen wird auch die Uberlappung mit dem Datenpaar 01 (Mehrfarbige Darstellung)
nicht als Kollision erkannt. Auf diese Weise kénnen Daten dargestellt werden, ohne
daB diese EinfluB auf das Erkennen von Beriihrungen haben.

Eine solche Berlihrung zwischen einem MOB und einer anderen, auf dem Bild-
schirm dargestellten Information kann auch auBerhalb des Bildschirms in der
horizontalen Richtung stattfinden, wenn eine gdltige Information durch “scrolling”
(s.u.) auBerhalb des Bildschirms gelangt ist.

Die zustdndigen Interruptlatches werden gesetzt, sobald in dem betreffenden
Register das erste Bit gesetzt wird. Sobald ein Bit in dem Register gesetzt ist, wird
durch nachfolgende Berlihrungen kein Interruptflag mehr gesetzt, bis das betref-
fende Register durch Auslesen geldscht wurde.

Anhang N 437



MOB-SPEICHERZUGRIFF

Die Daten fir jeden MOB werden in 63 aufeinanderfolgenden Bytes im Speicher
abgelegt. Die 8 Blocks werden durch 8 MOB-Zeiger definiert, die am Ende der
Videomatrix abgelegt sind. Da die Videomatrix nur 1000 Bytes benétigt, ist es
maoglich, von Platz 1016—1023 der Videomatrix die MOB-Zeiger 0—7 abzulegen.
Dieser 8 Bit lange Zeiger bildet zusammen mit dem 6 Bit langen MOB-Bytezahler
(um 63 verschiedene Bytes zu adressieren) eine 14 Bit lange Adresse.

A13|A12|AT1 |A101A09|A08|Ao7|A06|A05|A04|A03|A02|A01 | A00
MP7|MP6|MP5’MP4‘MP3~MP2|MP]lMPOlMCS‘MC4|MC3|MC2‘MCIIMCO

MPx bezeichnet die Bits des MOB-Zeigers und MCx die des MOB-Bytezahlers, die
intern erzeugt werden. Die MOB-Zeiger werden am Ende jeder Videozeile eingele-
sen. Wenn der Inhalt eines Y-Registers mit dem des Rasterlinienzahlers Uberein-
stimmt, beginnt der Zugriff auf die Daten des zugehérigen MOB. Der MOB-
Bytezéhler durchlauft automatisch die 63 Bytes und stellt immer 3 Bytes in jeder
Zeile dar.

SONSTIGE MERKMALE

BILDSCHIRM ABSCHALTEN

Der Bildschirm kann abgeschaltet werden, indem das Bit DEN in Register 17 ($11)
“0“ gesetzt wird. Dann erscheint der gesamte Bildschirm in der Farbe, die durch
Register 32 ($20) festgelegt wird. Dann wird nur die erste Phase des Speicherzu-
griffs benotigt, wodurch der Systembus vollstdndig dem Prozessor zur Verfigung
steht. Allerdings greift der VIC noch auf MOB-Daten zu, wenn diese nicht abge-
schaltet sind.

DEN muB fur normalen Videobetrieb 1 gesetzt sein.

438 Anhang N



AUSWAHL DER REIHEN UND SPALTEN

Das normale Anzeigeformat besteht aus 25 Reihen zu je 40 Zeichen. Fir Spezialan-
wendungen kann das Anzeigefenster auf 24 Reihen zu 38 Zeichen reduziert
werden. Dies hat keinen EinfluB auf die GroBe der dargestellten Zeichen, auBer, daB
Zeichen, die vorher an die Begrenzung stieBen, jetzt von dieser Uberdeckt werden.
Diese Betriebsart wird durch 2 Bits gesteuert: RSEL aus Register 17 ($11) und
CSEL aus Register 22 ($16). Sie haben folgende Bedeutung:

RSEL NUMBER OF ROWS I CSEL  NUMBER OF COLUMNS

0 24 rows 0 38 columns
1 25 rows 1 40 columns

Normalerweise wird man das gréBere Fenster benutzen, das kleinere wird haupt-
s&chlich in Verbindung mit “scrolling” benutzt.

SCROLLING

Die Anzeige kann jeweils um eine Zeichenstelle in horizontaler und vertikaler
Richtung verschoben werden. Wenn dies in Verbindung'mit dem kleineren Anzei-
geformat benutzt wird, kann eine leichte Schwenkbewegung der Anzeige durchge-
fuhrt werden, wahrend der Systemspeicher nur aktualisiert zu werden braucht,
wenn eine neue Zeile oder Spalte geschrieben werden muB. “Scrolling” kann auch
dazu benutzt werden, um eine feste Anzeige im Fenster zu zentrieren.

BITS | REGISTER l FUNCTION
X2,X1,X0 l 22 ($16) l Horizontal Position
Y2,Y1,Y0 17 ($11) Vertical Position

LIGHT PEN

Bei einer negativen Flanke am Lightpen-Eingang wird die gerade gliltige Bildschirm-
position in das Registerpaar 19 (LPX) und 20 (LPY) geschrieben. Da in Register 19
nur die 8 MSB der X-Position gespeichert werden, insgesamt aber 516 verschie-
dene Positionen unterschieden werden muBten (dazu bendtigte man 9 Bits), betragt
die Aufldsung in der X-Position nur 2 Punkte.

In der Y-Richtung reichen die 8 Bit zur Aufldsung des Bildschirms aus. Das
Lightpen-Register kann nur einmal pro Bilddurchlauf getriggert werden, mehrmali-
ges Triggern hat keinen EinfluB. Deshalb muB man das Lightpen-Register einige
Male abfragen, bevor man den Lightpen auf den Bildschirm richtet (die Anzahl der
Abfragen hangt von den Eigenschaften des Griffels ab).

Anhang N 439



RASTERREGISTER

Dieses Register hat 2 Funktionen: Wenn dieses Register gelesen wird, erscheinen
die 8 unteren Bit der z. Z. gliltigen Rasterposition (das MSB —RC8— steht in
Register 17 ($11)). Dies kann man dazu benutzen, um den Inhalt der Anzeige ohne
Flackern zu &ndern, indem die Anderung auBerhalb des sichtbaren Bereichs
vorgenommen wird. Der sichtbare Bereich liegt zwischen Raster 51 und 251
($033—$0FB). Wenn in das Register geschrieben wird (einschlieBlich RC8), wird
der Wert flir einen internen Vergleich gespeichert. Wird der gespeicherte Wert
erreicht, wird das Rasterinterruptflag gesetzt (Register 25).

INTERRUPTREGISTER

Das Interruptregister (Register 25($19)) zeigt den Status der 4 Interruptquellen. Ein
Bit wird 1 gesetzt, wenn die entsprechende Interruptquelle einen Interrupt verlangt.
In der Tabelle sind die 4 Bits und die zugehdrigen Quellen aufgefiihrt.

LATCH|ENABLE
BIT BIT WHEN SET

IRST ERST  |Set when (raster count) = (stored raster count)

IMDC |EMDC |Set by MOB—DATA collision register (first collision only)
IMMC |EMMC [Set by MOB—MOB collision register (first collision only)
ILP ELP Set by negative transition of LP input (once per frame)
IRQ Set high by latch set and enabled (invert of IRQ/ output)

Damit ein Interrupt durchgefiihrt und der Ausgang IRQ 0 gesetzt werden kann, muB
das entsprechende Bit in Register 26 ($1A) (Interrupt enable) 1 gesetzt werden.
Wenn ein Interruptbit gesetzt ist, wird es erst geléscht, wenn an dieser Stelle eine 1
geschrieben wird. Dadurch wird eine beliebige Abarbeitung der Interrupts ermdg-
licht, ohne daB Speicherplatze oder Software zur Erhaltung der Interrupt-Informa-
tion bendtigt wird.

REFRESH FUR DYNAMISCHE RAMS

Im Baustein ist eine Schaltung eingebaut, die den Refresh dynamischer RAMs
kontrolliert. Nach jeder Rasterlinie werden 5 8-Bit-Zeilenadressen zur Auffrischung
der RAMs erzeugt, wodurch garantiert ist, daB bei Speicherorganisation von 128
Reihen zu 512 Speicherplatzen jede Reihe mindestens alle 2 ms aufgefrischt wird
(bei 256x256 organisierten Speichern alle 3,66 ms). Da der Refreshimpuls wahrend
der 1. Phase des Systemtaktes erzeugt wird, beeinfluBt er andere Bausteine
(Prozessor, 1/0-Port etc.) auf dem 65XX-Systembus nicht.

440 Anhang N



Der Baustein erzeugt auch RAS- und CAS-Signale, die normalerweise direkt mit
den dynamischen RAMs verbunden sind, und zwar wéhrend der 2. Phase des
Systemtaktes und fir jeden Videospeicherzugriff (einschlieBlich Refresh), so daB
keine externe Takterzeugung notwendig ist.

RESET

Das Reset-Bit (RES) in Register 22 ($16) wird fir den normalen Betrieb nicht
bendtigt. Es sollte demzufolge bei der Initialisierung des Video-Chips auf 0 gesetzt
werden. Wenn das Bit auf 1 gesetzt wird, unterbricht der Video-Chip seine Funktion
einschlieBlich Video-Ausgangssignal, Refresh fiir die dynamischen RAMs und
System-Bus-Zugriff.

FUNKTIONSWEISE DES 6566/6567

Der Videobaustein 6566/6567 arbeitet auf besondere Art und Weise mit dem
Systembus. Da die 65XX-Familie nur wahrend der 2. Phase des Taktes (High) auf
den Bus zugreift, benutzt der Videobaustein den Bus normalerweise nur wahrend
der 1. Phase des Taktes. Deshalb stdren solche Operationen wie Refresh oder der
Zugriff auf Zeichendaten den Prozessor nicht und beeinflussen nicht dessen
Arbeitsgeschwindigkeit. Der Baustein stellt alle Kontrollsignale zur Verfugung, die
bendtigt werden, um diese Aufteilung des Busses aufrechtzuerhalten.

Der Videobaustein liefert das Signal AEC (Address enable control), das die AdreB-
treiber des Prozessors hochohmig schaltet, damit der Videochip auf den Bus
zugreifen kann. AEC ist aktiv, wenn der Ausgang O geschaltet ist, somit kann der
Ausgang direkt an die AEC-Eingange der 65XX-Familie gelegt werden.
Normalerweise ist dieses Signal nur wahrend der 1. Phase des Taktes gliltig, so daB
der Prozessor nicht gestort wird. Aufgrund dieser zeitlichen Aufteilung missen alle
Speicherzugriffe in der halben Zykluszeit durchgefiihrt werden. Da der Videochip
einen 1-MHz-Takt liefert, missen alle Speicherzyklen wie Adresseanlegen, Daten-
zugriff und Datentransport zu den lesenden Bausteinen in 500 ms erledigt sein.
Einige Funktionen des Bausteins erfordern mehr Daten, als wahrend der 1. Takt-
phase gelesen werden kdnnen, so z. B. der Zugriff auf Characterzeiger in der
Videomatrix und das Lesen der MOB-Daten, wenn diese dargestellt werden sollen.
Dann muB ein Zugriff des Prozessors auf den Bus verhindert und auch wahrend der
2. Taktphase gelesen werden. Dies wird durch das Signal BA (Bus available)
erreicht. Dieses Signal ist normalerweise 1, es wird jedoch wahrend der 1. Takt-
phase auf 0 gelegt, um zu zeigen, daB der Videochip wahrend der 2. Taktphase auf

Anhang N 441



den Bus zugreifen will. Dann bleiben dem Prozessor noch drei 2. Taktphasen, um
laufende Speicherzugriffe abzuschlieBen. Wéahrend der vierten 2. Taktphase, nach-
dem BA auf Low geschaltet wurde, bleibt AEC auf Low, damit der Videochip die
Daten holen kann. '

Der Ausgang BA ist normalerweise mit den Eingdngen RDY der anderen 65XX-
Bausteine verbunden. Der Zugriff auf Characterzeiger geschieht alle 8 Rasterlinien
innerhalb des Anzeigefensters und erfordert 40 aufeinanderfolgende Zugriffe wah-
rend der 2. Taktphase, um die Videomatrixzeiger zu holen. Das Einlesen der MOB-
Daten erfordert folgende 4 Speicherzugriffe:

PHASE| DATA | CONDITION
1 MOB Pointer Every raster
2 |MOB Byte 1 Each raster while MOB is displayed
1 MOB Byte 2 Each raster while MOB is displayed
2 |MOB Byte 3 Each raster while MOB is displayed

Die MOB-Zeiger werden nach jeder Zeile wahrend der 1. Taktphase gelesen. Falls
erforderlich, werden zusétzliche Zyklen zum Einlesen der MOB-Daten benutzt. Alle
notwendigen Signale zur Steuerung des Busses werden also von dem Videochip
zur Verfligung gestellt.

SPEICHERANSTEUERUNG

Die zwei Versionen des Bausteins unterscheiden sich in der Art und Weise, wie sie
die Adressen anlegen. 6566 hat 13 vollstandig dekodierte Adressen, die direkt mit
den Adressen des Systembusses verbunden werden konnen.

Die Adressen von Baustein 6567 werden gemultiplext, um sie direkt mit den
Adressen von dynamischen 64K RAMs verbinden zu kénnen. Die Adressen AOO—
A06 sind an den Ausgangen A00—A06 gultig, wenn der Ausgang RAS Low
geschaltet ist, wahrend die Adressen A08—A013 an den Ausgangen A00—A05
erscheinen, wenn CAS Low geschaltet wird. Die Ausgange A07—A11 an diesem
Baustein sind statische AdreBausgange, die mit einem ROM (2Kx8) verbunden
werden konnen (dann missen die unteren Adressen zwischengespeichert
werden).

442 Anhang N



SCHNITTSTELLE ZUM PROZESSOR

Abgesehen von den speziellen, oben beschriebenen Speicherzugriffen kann auf
die Register des Bausteins genauso wie bei jedem anderen Peripheriebaustein
zugegriffen werden. Folgende Signale stehen fir die Schnittstelle mit dem Prozes-
sor zur Verfigung:

DATENBUS (DB7—DBO0)

Dies ist ein bidirektionaler Datenport, der von den Signalen an den Pins CS, RW und
Phase O kontrolliert wird. Auf den Datenbus kann nur zugegriffen werden, wenn
AEC=Phase0=1 und CA=0 gilt.

CHIP SELECT (CS/)

Wenn dieser Pin Low gelegt wird, kann man in Verbindung mit dem Signal RW und
den Adressen auf die Register des Bausteins zugreifen. Dieser Eingang wird nur
beachtet, wenn AEC=Phase0=1 gilt.

READ/WRITE (R/W)

Mit diesem Eingang wird in Verbindung mit CS die Richtung des Datenflusses
festgelegt. Bei RW=1 werden Daten aus dem angewahlten Register auf den
Datenbus geschrieben, ist RW=0, ist der DatenfluB umgekehrt.

ADRESSBUS (A05—A00)

Die Anschliisse AO—A5 sind bidirektional. Wenn der Prozessor auf den Videochip
zugreift, sind es AdreBeingange, und die angelegte Bitkombination wéhlt eines der
Register an (siehe Tabelle).

CLOCK OUT (Phase 0)

An diesem Ausgang erscheint der 1-MHz-Takt fir den Prozessor. Alle Systemope-
rationen beziehen sich auf diesen Takt, der aus dem 8-MHz-Takt durch Teilung
gewonnen wird.

INTERRUPT (IRQ/)

Dieser Ausgang wird Low gelegt, wenn von einer eingeschalteten Interruptquelle
ein Interrupt ausgeldst wird. Es ist ein “open-drain“-Ausgang, der einen externen
pull-up-Widerstand ben6tigt.

Anhang N 443



VIDEOANSCHLUSS

Das Videosignal der Bausteine besteht aus zwei getrennten Signalen, die extern
gemischt werden missen. SYNC/LUM beinhaltet alle Videoinformationen wie hori-
zontale und vertikale Synchronisierung und die Hell-/Dunkelsteuerung, und ist ein
“open-drain“-Ausgang, der einen externen pull-up-Widerstand benétigt. COLOR
enthélt alle Farbinformationen, auch den Farbhilfstrager, und ist ein “open-source*-
Ausgang, der einen externen Widerstand von 1000 Ohm gegen Masse benétigt.
Nach geeigneter Mischung dieser Signale kann das resultierende Signal einen
Videomonitor oder mit einem entsprechenden Modulator einen normalen Fernseher
ansteuern.

ZUSAMMENFASSUNG DER BUS-AKTIVITATEN BEIM 6566/6567

AEC PHO cs/ R/W ACTION

PHASE 1 FETCH, REFRESH

PHASE 2 FETCH (PROCESSOR OFF)
NO ACTION

WRITE TO SELECTED REGISTER
READ FROM SELECTED REGISTER
NO ACTION

0
0
1
1
1
1

0
1
0
1
1
1

— O O X X X
X — O X X X

444 Anhang N



DBg

DBs

DB,

DBj

DB,

DB,

DB,

IRQ/

LP

cs/

RIW

BA

COLOR

S/ILUM

AEC

PHq

RAS/

CAS/

PIN-ANORDNUNG

/
1 40
2 39
—
3 38
4 37
— | |
5 36
6 35
— —
’ =
8 33
— Ema—
—
rg— 32
e s .
10
i 6567 il
1" 30
et oot
— —
12 29
— —
13 28
14 27
15 26
16 25
- -
17 24
18 23
19 22
_— —_—
20 21 |

(Multiplex-Adressen in Klammern)

DB,

DBqg

DB1g

DBy4

Ag

A7

Ag (1)

As(Aq3)

As(A12)

Ag(A11)

Az(A10)

A4(Ag)

Ao(Ag)

Aqq

PHIN

PHCL

Anhang N

445



DBg

DBj

DB,

DBj4

DB,

DB,

DBy

IRQ/

LP

cs/

RIW

BA

Vbb

COLOR

S/ILUM

AEC

PHg

PHIN

PHCOL

Vss

446 Anhang N

PIN-ANORDNUNG

-/
1 40
— —
2 39
— S
3 38
4 a7
5 36 I
6 35
— —
7 34
8 33
9 32
31
I e 6566 .
1 30
12 29
|| ||
13 28 I
14 27
— —
15 26
16 25
— —
17 24
|
18 =3
19 22
20 21

DB,

DBg

DBqy

DBy

DB

Ag

Ag

A7

As

Ay

Az

Az

Ao



pupdxa-A gOW JAOW  JALW  JAZW  JAEW  JAPW  JASW  JA9W  JALW (Z1%) €z
IRETREEIN 0X LX ZX 13SD WOW Sy — — 91$) 2T
9|qpu3 gOwW Jow W 3TW IEW Irw Isw Iow IUW (L) 1T

A udd b OAd1 LAd1  TAd1  €Ad1  PAd1  SAd1  9AdT  ZAd] (r1g) oz

X udd 4ybr1 IXd1  ZXd1  EXd1l  FXd1  SXd1  9Xd1  ZXd1  8Xdl (€Lg) 61
19ys16a4 Jaysoy 003 o) Ao} ) 140k ! *fo)] 923 LD (e¢L$) 8l
INETREEIN 0A LA TA 13y NIg wwd  wD3 823 (LLg) £t
uoiisod-x Jo gSW  8XOW 8XLW 8XZW 8XEW 8XYW 8XSW 8X9W  8XIW (oLg) 9t
uomisod-A £ dOW  OA9W  LAZW  TALW  EALW  VALW  SAIW  QALW  LALW (40%) st
uoisod-X / GOW OXIW LXZW TXIW EXIW  PXIW  SXIW  9XIW  LXIW (30%) vl
uoisod-A 9 GOW 0A9W  LAGW  ZA9W  EA9W VAW  GAOW  QA9W  ZA9W (@og) €1
uoisod-X 9 GOW OX9W LX9W TX9W EXIW PVX9W GXIW  9XOW  LX9W (00%) 2l
uoyisod-A G GOW  OASW  LASW ZASW EASW PASW GASW  QASW  ZASW (a0$) 1L
uontsod-X G GOW OXSW LXSW TXSW EXSW PXSW GXSW 9XSW /XSW (vo$) ol
uoyisod-A ¥ GOW  OAYW  LAYW TAPW  EAVW  VAYW  SAYW  9APW  ZAYW (60%) 60
uoisod-x ¥ GOW OXYW LXPW ZXYW EXPW  PXPW  SXPW  OXPW  LXYW (80%) 80
uoisod-A € GOW OAEW LAEW ZAEW EAEW VAEW GAEW QAEW  LAEW (£0%) L0
uoyisod-X £ GOW OXEW LXEW TXEW EXEW PXEW GXEW 9XEW LXEW (90%) 90
uoisod-A 7 GOW  0AZW  LATW ZAZW EATW VAZW SATW 9ATW  LATW (S0%) SO
uowisod-x 7 GOW OXZW LXZW TZXIW EXTW PXTW GSXTW 9XIW  LXTW (¥0$) v0
uowisod-A | GOW  OALW  LALW ZALW EALW VALW SALW  9ALW ZALW (€0%$) €0
uomsod-x | GOW OXIW LXIW ZXIW EXIW PXIW SXIW 9XIW ZXLW (zo$) 2o
uowisod-A 0 GOW OAOW LAOW ZAOW EAOW VAOW GAOW  9AOW  ZAOW (10%) 10
uowisod-X 0 gOW OXOW LXOW ZXOW EXOW PXOW SXOW 9XOW  ZXOW (00%) 00
NOILdI¥DS3Ia oga (K:[4] z9d £€9d vad 1< [e} 9dd A:[q] ss3yaav

ONNO3IT3aHILSIDIYH

447

Anhang N



" b, USBUNSST 8|l UGINE B4 WBSBIP Ul 1YBISSq gN|YoSUY LISy gep ‘Ue 1619z Yo uig :Bunyiowuy

10100 £ GOW 0D/IW IDLW  TOLIW  E€DLW — — e — (3C$) o9y

100D 9 OW 0D9W LO9W ZDO9W  €D9W — = == — (az$) sy

1010 G GOW O0DSW IDSW TOSW  €DSW — — — — (oz$) vy

J010D ¥ GOW O0DFW  LDVYW  ZOYW  EDPW — = — — (az$) v

J0j0D € GOW 0DEW IDEW TDEW  EDEW — e — — (ve$) ey

J0j0) 7 GOW 0DZW IDZTW TDZW  €DTW — — e — (6T%) v

010D | GOW O0DIW IDIW  ZDIW  €DIW — — —= — (8¢%) ov
J0j0) 0 GOW 0D0W LDOW ZD0W  €D0W — — e — (zT$) 68€

L# d0/0ounW GOW OLWW LIWW ZLWW ELWW — — — — (92$) 8¢
0# 4do[o2u|nW gOW O0OWW LOWW CTOWW E0WW — e — — (ST$) Lg
1010) ¢# pbyg  0D€d 1Dgd ¢oe€d  €D¢gd s = — — (reg) 9¢
J0j0) z# pBYg  0D2Z9d 1Dgd ¢dZd  €Ded — — — s (eT$) s¢
10100 |# pByg  0D19 1Dl9 Zdld  €Dld — = — — (Tes) ve
10j0D O# pPBYg 0009 1D09 ¢d0d €004 — — — — (1z$) €¢
10]0D JoLdIx] 003 103 z01 €03 — — = — (144>
uoisi|loD VIva-dOW  Aaow  dlw  aIzw  dew  avw  asw  aew  aiw d1$) Le
uoisijoD gOW-90W  WOW  WLW  WZW  WEW WKW  WSW  WOW  WIW 3Ly o
puodxa-X gOW IXOW 3IXIW 3IXZW 3IXEW IXPW  3IXSW IX9W  IXLW (ag) ot

[8S Jo[0dHInW GOW DWOW DWIW DWZW DWEW DWYW DWSW DWOW DWIW (oL$) s
Aioud vIva-90W ddOW ddLW  ddgW ddeEW davW  dASW  da9w  daZw (aL$) <sc
tdnusgup 9iqouz  1S¥3  DgW3  DWWA d13 . — — — (vig) 9t
19ys169y 1dnuisyu) 1S31 29wl Dwwi d1l —~— — — x| (61%) sz
siauiod Alowasyy — 119D ZlgD €190 OLWA LIWA ZIWA ELWA (8L$) ve
NOI1d1¥Ds3a oad K:[dl zaa €4a yaqa ¢ad 944 490 ssIyaav

DNNODITIGHILSIOIY

Anhang N

448



FARB-CODES

D4 D3 D1 DO HEX DEC COLOR
0 0 0 0 0 0 BLACK

0 0 0 1 1 1 WHITE

0 0 1 0 2 2 RED

0 0 1 1 3 3 CYAN

0 1 0 0 4 4 PURPLE

0 1 0 1 5 5 GREEN

0 1 1 0 6 6 BLUE

0 1 1 1 7 7 YELLOW

1 0 0 0 8 8 ORANGE

1 0 0 1 9 9 BROWN

1 0 1 0 A 10 LT RED

1 0 1 1 B 11 DARK GREY
1 1 0 0 C 12 MED GREY
1 1 0 1 D 13 LT GREEN
1 1 1 0 E 14 LT BLUE

1 1 1 1 F 15 LT GREY

Anhang N

449



ANHANG O

6581 SOUND INTERFACE DEVICE (SID)
CHIP SPECIFICATIONS

KONZEPT

Der SID 6581 ist ein dreistimmiger, elektronischer Musik-/Gerduschgenerator,
buskompatibel mit der Prozessorfamilie 65XX und ahnlichen Prozessoren. Die
Tonfrequenz kann ebenso wie Klang und Lautstédrke in einem weiten Bereich mit
hoher Genauigkeit eingestellt werden. Spezielle Schaltkreise verringern die nétige
Software, was den Einsatz in Heimcomputern und preiswerten Musikinstrumenten
ermaoglicht.

BESONDERHEITEN

e 3 Tongeneratoren, 0—4 kHz
e 4 Kurvenformen pro Generator wahlbar:
Sinus, Dreieck, Rechteck (einstellbar) oder Rauschen
e 3 Amplitudenmodulatoren, jeweils 48 dB
e 3 Hillkurvengeneratoren
exponentieller Kurvenverlauf
Anstiegszeit: 2 ms—8 s
Abfallzeit: 6 ms—24 s
Sustain-(Halte-)Pegel: 0—max. Lautstérke
Ausklingzeit: 6 ms—24 s
e Synchronisierung der Oszillatoren
e Ringmodulation
e Programmierbare Filter
Eck- bzw. Mittenfrequenz: 30 Hz—12 kHz
Abfall: 12 dB/Oktave
TiefpaB, BandpaB, HochpaB oder Notchfilter

450 Anhang O



Gesamtlautstarkeeinstellung

Zufallsgenerator

AnschluBmaoglichkeit fir 2 Potentiometer

Audioeingang

CAP4a

CAP4g
CAPyA

CAP,g

2

R/W

Ao
A
Az
As
Ag

GND

=
S

Hallsl=lsllelell~follall=]fel~]l-]

PIN-ANORDNUNG

-/

6581
SID

28

|

27

IR |3

24

Il

23

Il

22

N

20

Il

19

Lz ]l=]l=]]

b
[$,]

L:

Vop
AUDIO OUT
EXTIN
Vee
POT X
POTY
D7

De

Ds

Dy

D3

D2

D4

Anhang O

451



algaLIvHOSMO019-1859

X 10d — s10d }e+—— A 10d
NI LX3 —>
€ HOLVHINID A“v
3d013AN3
———o
l
4 LSRN == Vv
— 5 ¢ m_m__mu—_u._ € HOLVHINID
. L WHOJIAYM
oo anmion = S r /4OLYT119S0
<, anLndwy | L1~ | T
pr Z HOLVHINID
& [ [ | 3d4073AN3
d1
gv <] sq v
z m__mTom,__ = [ACLELED)
Za 4OLYINAOW WHOJ3IAVM AH
b — 4 | Fanurdwy L1 | HoLvmioso
gy —————————
g ETR[E] N~ WUBNAS
dV3 ﬁ
S LY Eob&wuww A__H
34013
o=/
L L m@m_._,.__ L1 yolvyanao
WHO4IAYM
L | /40LV1110S0
0NLdAY | L~ L
WH/ONAS

SH3d44ng viva

TOHLNOD SS3J0JV dIHD

‘g
%
Sa
k(e
€q
¢a

0a

Anhang O

452



BESCHREIBUNG

Der 6581 hat 3 Stimmen, die voneinander unabhadngig, miteinander oder mit
externen Audioquellen kombiniert eingesetzt werden kdnnen. Jede Stimme besteht
aus einem Tongenerator, einem Hillkurvengenerator und einem Amplitudengene-
rator. Die Tonhohe kann Uber einen weiten Bereich eingestellt werden. Der Genera-
tor produziert 4 Kurvenformen mit der eingestellten Frequenz. Mit den jeweiligen
harmonischen Obertonen jeder Kurvenform 148t sich die Klangfarbe beeinflussen.
Die Dynamik der Lautstdrke wird vom Amplitudengenerator eingestellt, welcher
wiederum vom Hullkurvengenerator beeinfluBt wird. Wenn er angesteuert wird,
entsteht eine Hullkurve mit programmierbarer Anstiegs- und Abfallzeit. Zuséatzlich
zu den 3 Stimmen gibt es noch ein programmierbares Filter, mit dem es mdglich ist,
komplexe, dynamische Klangfarben herzustellen (subtraktive Synthese).

SID erlaubt dem Prozessor, die Veranderungen am Ausgang des 3. Generators und
den 3. Hillkurvengenerator zu lesen. Diese Ausgange kdnnen dazu benutzt wer-
den, dem Prozessor die notwendigen Informationen zur Steuerung eines Vibrato,
Wobbelgenerators, durchstimmbaren Filters etc. zu liefern. Der dritte Oszillator
kann auch als Zufallsgenerator fiir Spiele benutzt werden. Zwei A/D-Umsetzer sind
fur den AnschluB von zwei Potentiometern vorgesehen. Diese kdnnen als
“PADDLE" in einem Spiel oder zur Steuerung in einem Musiksynthesizer benutzt
werden. Der SID kann externe Audiosignale verarbeiten, wodurch mehrere SIDs zu
einer sogenannten “Daisy chain® oder einem polyphonen System zusammenge-
schaltet werden konnen.

SID-KONTROLLREGISTER

Es gibt 29 8-Bit-Register im SID, die die Klangerzeugung steuern. Hierbei handelt
es sich um Nur-Schreib- oder Nur-Leseregister, die in Tabelle 1 aufgelistet sind.

Anhang O 453



Tabelle 1 SID-Registerbelegung

ATINO-Qv3H
ATINO-Qv3H
AINO-Qv3Y
ATINO-aQv3Y

ATINO-31IHM
ATINO-3LIHM
ATINO-3L1IHM
ATINO-3LIHM

ATINO-3LIEM
ATINO-3LIHM
AINO-3LIHM
AINO-3LIHM
ATINO-311IHM
ATNO-3LIEM
AINO-3LiHM

ATINO-3LIHM
AINO-3LIHM
ATNO-3LIEM
ATINO-3LIHM
ATNO-3LIHM
ATNO-3LIEM
ATNO-3LIEM

ATINO-3LIHM
ATINO-3LIHM
ATINO-3LIHM
AINO-3LIHM
ATINO-3LIEM
ATINO-3LIHM
ATNO-3LIEM

3dAL
934

EAN3
WOQNVH/£0s0
A 1od

X 10d

osIN
1OA/3AOW
1714534

IH 04

0104

R IE]
3SV3T3HINIVLISNS
AVOIA/NMOVLLY
934 TOHLNOO
IH Md

01 Md

IH 03Y4
0710344

€ @910
3SVIIWINIVLISNS
AVO3A/NOVLLY
934 TOHLNOD
IH Md

01 Md

IH D3Y4
0710344

z 8210
3SYIIH/NIVLSNS
AVOIAMOVILY
934 T0HLNOD
IH Md

01Md

IH D3Y4

010344
| @910
3WVN 934

] '3 3 £3 E] 53 93 3
% ‘o o) o (o) S0 %0 ‘o
OAd ‘Ad °Ad EAd YAd Sad 9Ad ‘Ad
L %d 'xd xd Exd xd Sxd °xd xd
%10A | oA | “r0A | Er0A dl d9 dH 440 €
bAd {2 amd | e 4d | x3ald | Os3M 's3y | %34 | fs3m
€04 vod So4 %4 ‘o4 804 604 Olog
%04 ‘o4 %04 =— - - - —
%1y | 's1d | %y | fsy | Onus | 'Nis | eNis | ENUS
%x0a | *aoa | Zaoa | faoa LY | MY | Sy | Sy
31vD | ONAS | SO 1S31 [ \V | LA~ | LY | 3sioN
Smd Smd Omd | Hmd - — = —
Omd ‘md ‘md emd "md Smd Md ‘md
mu_ mu_ o—u_ :m N—u m—u q—m m—u_
04 'y 1zl €5 vy 54 o 43
97 | 's1d | %W | fsd | Onus | 'NLS | ONISs | ENis
%x0a | ‘Aoa | Zaoa | fA0a | Oiv | 'wiv | Siuv [ Syuv
alvo [ oNas | SO | 1saL | NA/ [~ | U | 3sion
8md Smd | O%md Hmd - — — —
Omd ‘md ‘md €md Ymd Smd md ‘md
wu mu owm ——u_ N—u_ m—u v—u. m—m
04 4 2] €3 &) 54 4 =)
%1y | ‘s | %1y | fsod | ONIS | 'NIS | °NIS | ONIS
%40a | ‘'Aoa | Zxoa | fa0a | Ouv | wuv | v | Sy
31vo [ oNAs | JOW T is3at | NAV [ LA~ | Uu | 3sion
"mMd_| Smd | %md | ''md = = - -
md ‘Md | md Emd 'Md | SMd | Md | ‘md
mu mu oru :u N—u_ n—u v—u mpu
04 ‘4 o 2] vy 4 9 44
0q %) 2q €q vq Sq 9g 1q
viva

Ot
a
Vi
(3

8L
L
9l
Sh

143
€L
c
L
ol
40
30

ao
20
a0
vo
60
80

90
S0
¥0
€0
<0

00

(X3H)
#934

o +~-o o - o - o - o - o -

-0 0O r o -

o+~ o - o - o

Oy

o - - o

o - - o

-0 0o~ o o -+ 0O -+~ O

oo+~ - 0o o ~

o o o -~

- 0o oo -« - - 0o o o o« - - -0

© o o - =~

0
2y
ssayaay

o o o -~ - - - -

O - = = - = -+~ 0o o ooo

©O o o ©o o o o

© 0o o oo o o OO v = v - - -

© ©o 0o oo o o

8¢
yx4
9
S¢

¥Z
€C
[44

oc
64
8l
L
9l
Gt
Vi

€l
ch
L
ot

O - N ™ W ©

Anhang O

454



KONTROLLREGISTER

GENERATOR 1
FREQUENZ LOW/FREQUENZ HIGH (00,01)

Zusammen stellen diese Register ein 16-Bit-Wort dar, welches die Frequenz des 1.
Oszillators nach folgender Gleichung festlegt:

Fout = (Fn*Fex/16777216)Hz = (F,*0,0587214734)Hz

Fn ist die 16-Bit-Zahl aus den Registern, F. ist der Systemtakt, der am Eingang @2
anliegt.
Dadurch kann die Tonhdhe ohne wahrnehmbare Tonschritte durchgestimmt
werden.

PW LO/PW HI (02,03)

Diese Register bilden eine 12-Bit-Zahl (Bit 4—7 von PW HI werden nicht genutzt),
welche das Tastverhéltnis des Rechteckgenerators 1 bestimmt. Das Verhéltnis
errechnet sich wie folgt:

PWout = (PW,/40,95)%

PW, ist hier die 12-Bit-Zahl in den PW-Registern. Das Tastverhaltnis kann so ohne
wahrnehmbare Schritte verdndert werden. Diese Register haben nur dann einen
horbaren Effekt, wenn der Rechteckgenerator 1 eingeschaltet ist. Wenn in den
Registern 0 oder 4095 steht, entsteht ein DC-Signal, 2048 ergibt dagegen ein
Rechteck mit 50% Tastverhaltnis.

KONTROLLREGISTER (04)

Dieses Register enthélt 8 Kontrollbits:

GATE (Bit 0)

Steuert den Hullkurvengenerator. Wenn es 1 gesetzt ist, beginnt der Zyklus Attack/
Decay/Sustain. Wenn es 0 gesetzt wird, beginnt der Zyklus Release (genauere
Erklarung im Kapitel Hullkurvengenerator).

Anhang O 455



SYNC (Bit 1)

Wenn dieses Bit 1 gesetzt ist, wird die Frequenz des Generators 1 mit der Frequenz
des Generators 3 synchronisiert (“Hard-Sync*-Effekte).

Wenn die Frequenz des Generators 1 unter Beriicksichtigung der Frequenz des
Generators 3 variiert wird, entsteht eine groBe Zahl komplexer harmonischer
Strukturen. Wenn Sync funktionieren soll, muB die Frequenz des dritten Generators
kleiner als die des ersten Generators sein (nicht 0). Keine anderen Parameter der 3.
Stimme beeinflussen Sync.

RING MOD (Bit 2)

Wenn dieses Bit 1 gesetzt ist, wird der Dreieckgenerator der 1. Stimme durch eine
mit Frequenz 1 und 3 ringmodulierte Spannung ersetzt. Wenn jetzt die Frequenz 1
verdndert wird, entstehen nichtharmonische Obertdne, welche fur Klingel- oder
Gonggerausche und Spezialeffekte gebraucht werden. Hierfir muB bei Generator 1
Dreieck und bei Generator 3 eine Frequenz grdBer als Null eingestellt sein. Andere
Parameter der 3. Stimme haben keine Wirkung.

TEST (Bit 3)

Wenn dieses Bit 1 gesetzt ist, wird der 1. Generator zurlickgesetzt und auf 0
gehalten, bis das Testbit geldscht ist. Der Rauschgenerator ist abgestellt, und der
Rechteckgenerator wird auf DC gehalten. Zwar wird dieses Bit normalerweise flr
Testzwecke benutzt, es kann jedoch Generator 1 auch mit externen Ereignissen
synchronisieren (kompliziertere Kurvenformen, Realzeit-Verarbeitung).

BIT 4

Wenn dieses Bit gesetzt ist, ist der Dreieckgenerator eingeschaltet. Diese Kurven-
form ist arm an Oberténen und hat einen weichen, einer Fléte ahnlichen Charakter.

BIT 5

Wenn dieses Bit gesetzt ist, ist der Sdgezahngenerator eingeschaltet. Dieser ist
reich an geraden und ungeraden Obertdnen und ergibt einen breiten, an Blechbla-
ser erinnernden Klang.

456 Anhang O



BIT 6

Wenn dieses Bit gesetzt ist, ist der Rechteckgenerator ausgewahlt. Der Obertonan-
teil kann durch das Tastverhéltnis eingestellt werden, die Mdglichkeiten reichen
vom hellen, hohlen Rechteckklang bis zum nasalen, schrillen Klang kurzer Impulse.
Wenn das Tastverhdltnis beim Spielen verdndert wird, entsteht ein “pashing“-
Effekt, der den Eindruck einer Bewegung erweckt. Schnelles Hin- und Herschalten
zwischen verschiedenen Tastverhdltnissen kann interessante Sequenzen er-
zeugen.

BIT 7

Wenn dieses Bit gesetzt ist, ist der Rauschgenerator eingeschaltet.

Dieser produziert Rauschen, das die Klangfarbe vom tiefen Rumpeln bis zum
zischenden weiBen Rauschen durch die Frequenzeinstellung des Generators 1
verandern kann. Rauschen braucht man, um Explosionen, Gewehrschiisse, Diisen-
jager, Wind und ahnliche Gerdusche zu erzeugen, oder flir Trommeln und Becken.
Indem man die Frequenz beim Spielen verdndert, kann man Stlirme nachbilden.
Obwohl einer dieser Generatoren eingeschaltet sein muB, um die 1. Stimme am
Ausgang erklingen zu lassen, ist es nicht notwendig, die einzelnen Generatoren
auszuschalten, um die Stimme abzustellen. Die Lautstdrke wird nur durch den
Hullkurvengenerator bestimmt.

Bemerkung: Die Oszillatorausginge konnen nicht addiert werden. Wenn mehr als ein Oszillator
eingeschaltet ist, wird das Ergebnis eine logische “Und“-Verknlpfung der Kurvenform sein. Obwohl
damit neue Kurvenformen erzeugt werden kdnnen, sollte dies vorsichtig benutzt werden. Wenn
Rauschen eingeschaltet ist und zusétzlich eine Kurvenform eingeschaltet wird, verstummt das Rau-
| schen, bis das Testbild zurlickgesetzt oder der Pin 5 (RES) Low geschaltet wird.

ATTACK/DECAY (05)

Bit 4—7 wahit eine von 16 mdéglichen Anstiegszeiten (Attack) fir den Hillkurvenge-
nerator der 1. Stimme. Dies bestimmt, wie schnell der Ausgang auf volle Lautstarke
anschwillt, wenn der Hullkurvengenerator eingeschaltet wird (Gate).

Bit 0 bis 3 wahlen eine von 16 mdglichen Abschwellzeiten (Decay) aus. Diese Zeit
gibt an, wie schnell die Lautstarke vom Spitzenwert auf den ausgewahlten Haltepe-
gel (Sustain) abfallt.

Anhang O 457




SUSTAIN/RELEASE (06)

Bit 4—7 wahlt einen von 16 méglichen Halte-(Sustain-)Pegeln des Huillkurvengene-
rators aus. Diese Phase folgt dem Abfall, der Pegel wird gehalten, solange das
Gatebit gesetzt ist. Der Pegel kann von Stille (0) bis zur Spitzenlautstarke (16) linear
eingestellt werden. Ein Wert von 8 wiirde demnach der halben Lautstirke, die beim
Anstieg (Attack) erreicht wird, entsprechen.

Mit Bit 0—3 kann eine der 16 Ausklingarten gewahit werden. Der Ausklingzyklus
folgt der Haltezeit, wenn das Gatebit zuriickgesetzt wird. Dann fillt die Lautstarke
vom Haltepegel auf Null in der eingestellten Zeit. Die Ausklingzeiten mit den Werten
0—16 sind identisch mit den Abfallzeiten 0—16.

Bemerkung: Der geschilderte Ablauf kann ohne Einschrinkung jederzeit durch das Gatebit verindert
werden. Wenn das Gatebit z. B. zuriickgesetzt wird, bevor die Anschlagszeit abgelaufen ist, beginnt
sofort bei dem erreichten Pegel die Ausklingzeit. Wenn jetzt das Gatebit wieder gesetzt wird, beginnt
sofort eine neue Anstiegszeit bei dem jetzt erreichten Pegel. Dadurch kénnen komplizierte Amplituden-
verldufe durch Realzeitprogrammierung erzeugt werden.

Tabelle 2 Hiillkurvenraten

WERT ANSTIEGSRATE ABKLING/ABFALLRATE
DEZIMAL (HEX) (Takt/Zyklus) (Takt/Zyklus)
0 (0) 2 ms 6 ms
1 Q)] 8 ms 24 ms
2 (2) 16 ms 48 ms
3 (3) 24 ms 72 ms
4 (4) 38 ms 114 ms
5 (5) 56 ms 168 ms
6 (6) 68 ms 204 ms
7 (7) 80 ms 240 ms
8 (8) 100 ms 300 ms
9 9) 250 ms 750 ms
10 (A) 500 ms 1.5
11 (B) 800 ms 2.4
12 (@) 1s 3s
13 (D) 3s 9s
14 (E) 5s 15 s
15 (F) 8s 24 s

458 Anhang O



Bemerkung zur Tabelle: Die angegebenen Werte beziehen sich auf eine Taktfrequenz von 1 MHz.
Wenn die Taktfrequenz abweicht, missen die Werte mit 1 MHz/F(clk) multipliziert werden.

Die angegebenen Zeiten beziehen sich auf die Zeit, die bendtigt wird, um den Zyklus abzuschlieBen.
Eine Anstiegszeit von 16 ms (Wert 2) bedeutet z. B., daB die Lautstarke nach 16 ms von Pegel 0 den
Spitzenwert erreicht. Die Abfall-/Ausklingzeiten beziehen sich auf die Zeit, die bendtigt wird, um vom
Spitzenwert auf Null zu sinken.

STIMME 2

Die Register $07—$0D kontrollieren die Stimme 2 und haben die gleiche Funktion
wie die Register 00—06, mit folgenden Ausnahmen:

1) SYNC synchronisiert den Generator 2 mit Generator 1.
2) RING MOD ersetzt die Dreieckspannung durch die ringmodulierte Kombination
der Generatoren 1 und 2.

STIMME 3

Die Register $0E—$14 haben fir die 3. Stimme die gleiche Funktion wie die
Register 00—06, mit folgenden Ausnahmen:

1) SYNC synchronisiert Generator 3 mit Generator 2.
2) RING MOD ersetzt die Dreieckspannung durch ringmodulierte Kombination der
Generatoren 2 und 3.

Wenn man einen Ton ansprechen will, muB man also Frequenz, Kurvenform,
Effekte (SYNC, RING MOD) und Hullkurve bestimmen. Dann kann man den Ton
jederzeit mit dem Gatebit abrufen. Der Ton halt solange an, bis das Gatebit
zurlickgesetzt wird. Jede Stimme kann einzeln, mit unterschiedlichen Parametern
oder mit anderen Stimmen zusammen benutzt werden, um eine einzelne, kraftige
Stimme zu erhalten. Dabei kann eine leichte Verstimmung der Oszillatoren unter-
einander oder die Stimmung in musikalischen Intervallen einen wirkungsvollen
Effekt ergeben.

Anhang O 459



FILTERREGISTER

FC LO/FC HI (Register $15,$16)

Diese Register bilden zusammen eine 11-Bit-Zahl (Bit 3—7 des Registers FC LO
werden nicht genutzt). Diese bestimmt linear die Mitten- bzw. Eckfrequenz, sie
kann von 30 Hz bis 12 kHz eingestellt werden.

RES/FILT (Register $17)

Bit 4—7 dieses Registers bestimmen die Resonanz des Filters. Dieser Effekt hebt
die Frequenzen in der Nahe der Eckfrequenz an, dadurch ergibt sich ein scharferer
Klang. Es kénnen 16 verschiedene Einstellungen vorgenommen werden (linear von
0 bis 16). Bit 0—3 legt fest, welches Signal gefiltert wird:

FILT 1 (Bit 0):

Eine 0 in diesem Register bedeutet, daB die Stimme 1 ohne Veranderung auf den
Audioausgang geschaltet wird (Bypass). Wenn es gesetzt ist, wird die 1. Stimme
gefiltert, ihr Obertonanteil veréndert sich.

FILT 2 (Bit 1):

Gleiche Wirkung wie Bit O fir die 2. Stimme.

FILT 3 (Bit 2):
Gleiche Wirkung wie Bit O fiir die 3. Stimme.

FILTEX (Bit 3):
Gleiche Wirkung wie Bit O flir den Audioeingang.

MODE/VOL (Register $18)
Bits 4—7 bestimmen verschiedene Filter- und Ausgabearten:

LP (Bit 4): Wenn dieses Bit gesetzt ist, ist der TiefpaB eingeschaltet, d. h. alle
Frequenzen unterhalb der Eckfrequenz bleiben unverandert, alle Frequenzen ober-
halb werden mit 12 dB/Oktave abgeschwdécht. Es entstehen volle Kldnge.

460 Anhang O



BP (Bit 5):

Das gleiche flir den BandpaB. Alle Frequenzen unter und oberhalb der Mittenfre-
quenz werden mit 6 dB/Oktave abgeschwécht. Es entstehen offene, diinne Klédnge.

HP (Bit 6):

Das gleiche fur den HochpaB. Alle Frequenzen oberhalb der Eckfrequenz bleiben
unverandert, unterhalb werden sie mit 12 dB/Oktave abgeschwacht. Es entstehen
summende und blecherne Klange.

3 OFF (Bit 7):

Eins gesetzt, trennt dieses Bit die 3. Stimme vom Audioausgang ab. Wenn man
Stimme 3 am Filter vorbei schaltet (mit FILT 3=0) und 3 OFF gesetzt ist, wird die 3.
Stimme nicht auf den Ausgang geschaltet, kann aber zur Modulation der anderen
Stimmen benutzt werden.

Bemerkung: Die Filter kdnnen zusammengeschaltet werden. Z. B. ergibt LP zusammen mit HP ein
Notchfilter (Bandsperre). Damit der Filtereffekt horbar wird, muB ein Filter eingeschaltet sein und eine
Stimme durch das Filter gefiihrt werden. Das Filter ist vielleicht das wichtigste Element im SID, da es
durch die subtraktive Synthese viele Klangmdglichkeiten schafft (das Filter entzieht dem obertonrei-
chen Eingangssignal bestimmte Frequenzen). Gute Ergebnisse erzielt man, wenn man die Eck- bzw.
Mittenfrequenz wahrend des Spielens variiert.

VOL 0—VOL 3 (Bit 0—3):

Hiermit wird die Gesamtlautstarke zwischen 0 (leise) und 15 (laut) in linearen Stufen
eingestellt. Hiermit kann die Lautstidrke beim Zusammenschalten mehrerer Chips
abgestimmt oder Effekte wie Tremolo erzeugt werden. Bei VOL=0 ist der Ausgang
stumm.

WEITERE EIGENSCHAFTEN
POTX (Register $19)

Dieses Register erlaubt dem Prozessor, die Position eines Potentiometers, das an
Pin 24 angeschlossen ist, in Schritten von O bei kleinstem Widerstand bis 255 bei
vollem Widerstand zu erkennen. Das Ergebnis liegt immer vor und wird alle 512
Takte erneuert.

POTY (Register $1A)

Das gleiche fir ein zweites Potentiometer (an Pin 23).

Anhang O 461



0SC 3/RANDOM (Register $1B)

Dieses Register erlaubt dem Prozessor, die 8 oberen Bits des Ausgangs von
Oszillator 3 zu lesen. Die Art der Ziffernfolge, die entsteht, ist direkt mit der
Kurvenform verknipft. Beim Sagezahn wéachst die Zahlenfolge von 0 bis 255, um
dann wieder bei 0 zu beginnen. Beim Dreieck wéchst die Zahl von 0 bis 255, um
dann von 255 bis 0 zu fallen. Beim Rechteck springt die Zahl zwischen 0 und 255
hin und her. Beim Rauschen wird eine Kette von Zufallszahlen erzeugt, deshalb
kann dieses Register auch als Zufallszahlengenerator benutzt werden. Es gibt viele
Anwendungsmoglichkeiten fir dieses Register, die wichtigste ist vielleicht die
Steuerung von Modulationen. Die Zahlen, die erzeugt werden, kénnen per Software
zum Inhalt der Oszillator- oder Filterfrequenzregister addiert werden etc. So kénnen
viele dynamische Effekte erzeugt werden: Sirenen, indem OSC3 (S&gezahn) zum
Frequenzregister eines anderen Oszillators addiert wird. Vibrato entsteht, wenn
OSC3 (Dreieck, 7 Hz) zum Frequenzregister einer anderen Stimme addiert wird.
Dabei sollte der Audioausgang der 3. Stimme abgeschaltet sein (30FF=1).

ENV 3 (Register $1C)

Im Prinzip das gleiche wie OSC3, es wird jedoch der Ausgang des Hullkurvengene-
rators 3 gelesen. Die Zahlen konnen z. B. zum Inhalt des Filterfrequenzregisters
addiert werden, es entstehen sog. “Harmonische Hillkurven® und Wahwah-
Effekte. “Phasing“ entsteht, wenn dieser Ausgang zum Frequenzregister eines
Oszillators addiert wird. Um dieses Signal zu erzeugen, muB das Gatebit geschaltet
werden. Der Ausgang OSC3 spiegelt immer die Verdnderungen am Ausgang des 3.
Oszillators wider, er wird nicht vom Hullkurvengenerator beeinfluBt.

PINBESCHREIBUNG

CAP1A, CAP1B, (Pins 1, 2)/ CAP2A, CAP2B (Pins 3, 4):

Hier sollten zwei Kondensatoren flir das programmierbare Filter angeschlossen
werden. C1 und C2 sollten i. A. 2200 pf haben und aus Polystyrene bestehen.
Wenn mehrere SIDs zusammen arbeiten sollen, sollten die Kapazitdten abgegli-
chen werden.

Der Frequenzbereich (normalerweise 30 Hz bis 12 kHz) kann auf spezielle Pro-
bleme zugeschnitten werden. So kann z. B. die obere Eckfrequenz beschnitten
werden, um eine bessere Kontrolle iber die unteren Frequenzen zu erhalten.

462 Anhang O



Die obere Eckfrequenz kann nach folgender Gleichung errechnet werden:
FCmax = 0,000026/C

C ist die Kapazitat. Der Filterbereich erstreckt sich 9 Oktaven nach unten.

RES (Pin 5):

Reseteingang (TTL-Pegel) fir den SID. Wenn dieser 10 Takte Low geschaltet ist,
sind alle internen Register auf Null zurlickgesetzt und der Audioausgang stumm. Er
ist normalerweise mit der Resetleitung des Prozessors oder einer Einschaltlogik
verbunden.

@2 (Pin 6):

Takteingang des SID (TTL-Pegel). Alle Parameter beziehen sich auf diesen Takt, er
steuert auch den Datentransport zwischen CPU und SID: Daten kdnnen nur dann
transportiert werden, wenn @2 High liest (somit ist @2 flir den Datentransport eine
Art Chip Select). Normalerweise ist @2 mit dem Systemtakt verbunden, dessen
Frequenz ungefahr 1 MHz betragen sollte.

R/W:

Dieser TTL-Eingang steuert den Datentransport. Liegt High an, kann der Prozessor
Daten auslesen, bei Low Daten in ein Register schreiben.

CS:

Dieser TTL-Eingang steuert den Datentransport, er muB Low sein, damit ein
Transport stattfinden kann: Es kann nur gelesen werden, wenn CS=Low, 02=High
und R/W=High ist. Geschrieben werden kann nur, wenn CS=Low, 02=High und
R/W=Low ist. Normalerweise ist dieser Eingang mit einer Dekodierschaltung
verbunden, um den SID im gesamten AdreBbereich plazieren zu kénnen.

A0—A4:

Mit diesen TTL-Eingédngen kann eines der 29 Register ausgewahlt werden. Es
konnten 32 Register angesprochen werden, 3 Adressen sind jedoch nicht belegt.
Wenn dort geschrieben werden soll, wird dies ignoriert, beim Lesen werden
ungliltige Daten gelesen. Die Anschlisse werden mit den entsprechenden Adres-
senleitungen des Prozessors verbunden, um den SID genauso ansprechen zu
kdnnen wie einen Speicher.

Anhang O 463



GND:

Um beste Ergebnisse zu erzielen, sollte der SID eine vom Digitalteil getrennte
Erdleitung erhalten.

D0—-D7:

Diese bidirektionalen Leitungen werden zum Datentransport benutzt (TTL-Pegel,
kénnen als Ausgang 2 TTL-Eingédnge treiben). Sie sind hochohmig, wenn der SID
nicht angesprochen wird oder vom Prozessor in den SID geschrieben wird. Beim
Lesen werden sie durchgeschaltet und Ubermitteln die Daten an den Prozessor. Sie
werden mit dem Datenbus verbunden.

POTX,POTY:

Dies sind die Eingénge der A/D-Umsetzer, mit denen die Stellung der Potentiome-
ter digitalisiert werden kann. Der UmsetzungsprozeB hangt von der Kapazitat ab, die
vom Pin nach GND geschaltet ist und Uber das Potentiometer von +V,; gespeist
wird. Die Werte missen folgender Gleichung entsprechen:

R*C = 0,00047

R ist der max. Widerstand des Potentiometers und C die Kapazitat.

Je gréBer die Kapazitat ist, um so kleiner muB R sein. Empfohlen werden: C =
1000 pF; R=470 kOhm. POTX und POTY kdnnen unterschiediiche Werte fir R und
C aufweisen, solange die Gleichung erflllt ist.

Vee:

Auch fiir die Spannungsversorgung (+5 V) sollte eine separate Leitung zur Verfi-
gung stehen und ein Blockkondensator dicht am SID plaziert werden.

EXT IN:

Dieser Analogeingang erlaubt es, externe Signale mit dem Ausgangssignal des SID
zu mischen oder sie zu filtern. Typische Quellen sind Gesang, Gitarre und Orgel.
Der Eingangswiderstand betrdgt 100 kOhm. Der Eingang hat einen Offset von 6 V
und kann bis zu 3 Vp-p verarbeiten.

464 Anhang O



Deshalb sollte der Eingang mit einem Elektrolytkondensator von 1000—10000 nF
entkoppelt werden. Mit FILTEX = 0 kénnen viele SIDs zusammengeschaltet
werden (Verstarkung = 1), die Anzahl wird nur durch den Gerduschspannungs-
pegel im Ausgangssignal begrenzt.

Der Gesamtlautstarkeregler wirkt auch auf diesen Eingang.

AUDIO OUT:

Dieser Ausgang (Open-source) umfaBt die 3 Stimmen, den Filter und den externen
Eingang. Der Pegel wird durch den Gesamtlautstarkeregler bestimmt und erreicht
max. 2 Vp-p bei einem Offset von 6 V. Es muB ein Widerstand (1 kOhm) gegen
Masse geschaltet werden, und ein Elektrolytkondensator von 1000—10000 nF sollte
den Ausgang entkoppeln.

VDD:

Auch hier sollte eine separate Leitung vorgesehen werden (+12 V).

MERKMALE VON 6581 SID

ABSOLUTE MAX. NENNWERTE

NENNWERT SYMBOL WERT EINHEIT
Versorgungsspannung Vop —0,3 bis +17 VvDC
Versorgungsspannung Vce —0,3 bis +7 VDC
Eingangsspannung (analog) | Vina —0,3 bis +17 VDC
Eingangsspannung (digital) Vind —0,3 bis +7 VDC
Betriebstemperatur Ta 0 bis 70 °C
Lagertemperatur Tsta —55 bis +150 °C

Anhang O 465



(DAA vz=HOoNA

v = . 00z HOj ‘Buidinog ‘/a-0qQ) twaun) ybiy indino
(Vw g g=ppo| |

JdA ) — anNo T0A ‘xow="9A {/a-0Q) abpyjop mo7 ndinO
(v 00Z=pPO] |

J4A | £'0=PA] — vz HOA ‘'uiw =% ‘/a-0q) abpyjop ybiH indino

JAA ¥'Z2—v 0="A uauun) aboyoaq yndu|

vl ol — = 181y (xow =997 /a-0qQ) (40) 3poig-934y]
(DaA S—0="A ‘v¥v—-0OV

v ST — = =t ‘SO ‘M/Y ‘29 ‘STY) tuaun) aboyoa7 ynduj

D2dA 80 — £0— TA (£a-04Q ‘vv—ov abpyjop mo1 induj

JdA oA == 4 HIA ‘SO ‘M/Y ‘29 ‘ST) abojjop ybiy induj

SLINN| XYW dAl NIW |[108WAS DILSIILOVAVHD

(0,02 siq 0="1

%S F OaA S="°A

‘%S F O0A 2L=""A) NILIVHISNIDI3 IHOSIHINI T3

Anhang O

466



Mw | 000l 009 — 94 (1o401) uoupdissiq 1omog
vw (oo]} 0L = 99) (®3A) waun) Aiddng samoy
vyw ST 0z = aq) (99p) wauin) Addng samog
JVA 0°¢C gl o'l U0 S3DIOA |V
JVA 90 S0 v°0 :U0 92I10A dUQ
DaA €9 9 LS oA (Xow=awn|oA ‘poO|
OJ L ‘LnO o1anv) 8bpyjop ndinQ olpny
JVA € S0 ==
DaA €9 9 LS YA (NI 1X3) aboyjoA indu| oipny
(0% = 0S1 ool | (NI 1X3) souppadw) sndu)
v = — 00S 1od) (ALOd ‘XL1Od) fusaind Hyuig 1od
DaA — 2PN — 109A (ALOd ‘X10d) abpyjop 19661 404
(£a—0a ‘vv—-ov
4d oL — — o) ‘SO 'M/S ‘TP 'S3Y) 9oupydpdo) 4ndul
(DaA ¥'0="°A
vw — — e 10 ‘Bunjuis ‘/a-o0q) aund moq indino

467

Anhang O



6581 SID-TIMING

Ag-Ag

Do-D;

|

.

RIW Vi

*Tacc Wird nach dem letzten Auftreten von @2, TS, A;—A, gemessen.

LESEZYKLUS
SYMBOL NAME MIN | TYP MAX |UNITS
Teve Clock Cycle Time 1 — 20 us
T Clock High Pulse Width 450 | 500 |10,000 ns
Tr,Te Clock Rise/Fall Time — — 25 ns
Trs Read Set-Up Time 0 — o ns
Tru Read Hold Time 0 — e ns
Tacc Access Time — — 300 ns
Tan Address Hold Time 10 — — ns
Teh Chip Select Hold Time 0 — e ns
Ton Data Hold Time 20 — — ns
468 Anhang O




=\

‘ E T
~ I
NMRARRY s
TAWSH [F— Tan
Ag-Ag 1' X
._.‘LTCH
cs AN /
}‘*TVD‘-H‘—'*TDH
Do-D;
“Tw wird nach dem letzten Auftreten von @2, CS, R/W gemessen.
SCHREIBZYKLUS
SYMBOL NAME MIN TYP MAX UNITS
Tw Write Pulse Width 300 e — ns
TwH Write Hold Time 0 —— — ns
Taws Address Set-up Time 0 e —— ns
Tan Address Hold Time 10 e — ns
Tcu Chip Select Hold Time 0 — — ns
Tvo Valid Data 80 — — ns
Tow Data Hold Time 10 — — ns

Anhang O

469



SID TONLEITER

Im Anhang E sind alle Werte aufgelistet, die in die Frequenzregister eingeschrieben
werden mussen, um die Téne einer “wohltemperierten® Tonleiter zu erhalten.
Diese besteht aus einer Oktave mit 12 Halbschritten: C, D, E, F, G, A, H, C und C#,
D#, F#, G#, A#. Die Frequenz jedes Halbtones |aBt sich durch Multiplikation der
Frequenz des vorigen Halbtones mit der 12. Wurzel aus 2 errechnen. Der Tabelle
liegt ein Systemtakt von 1,02 MHz zugrunde. Fur andere Taktfrequenzen muB man
die bei den Frequenzregistern angegebene Umrechnung anwenden. Die angege-
bene Stimmung bezieht sich auf A4 = 440 Hz. Es ist mdglich, eine andere
Stimmung zu verwenden oder diese Tonfolge umzustellen.

Obwohl dies eine einfache und schnelle Methode ist, die Tonleiter zu programmie-
ren, werden allein zur Speicherung dieser Tabelle 192 Bytes bendtigt. Diese
Verschwendung des Speicherplatzes kann durch einen Algorithmus umgangen
werden, mit dem die Notenwerte berechnet werden kénnen. Da eine Oktave die
Verdoppelung der Frequenz bedeutet, brauchen nur die 12 Notenwerte einer
Oktave gespeichert zu werden. Wenn diese 12 Eingaben (24 Bytes) aus den
Werten flr die 8. Oktave bestehen (C7—H7), kann der Wert flir jede beliebige Note
errechnet werden, indem die Frequenz des entsprechenden Tones der 8. Oktave
flr jede Oktave Unterschied einmal durch 2 geteilt wird. Eine Division durch 2 istin
bindrer Darstellung eine Verschiebung um ein Bit nach rechts. Deshalb kann die
Berechnung durch eine einfache Routine durchgefiihrt werden. Obwohl die Fre-
quenz von H7 von dem Oszillator nicht gebildet werden kann, sollte sie zur
Berechnung in die Tabelle aufgenommen werden.

Fur jeden Ton muB nun festgelegt werden, um welchen Halbton es sich handelt und
in welcher Oktave er erklingen soll. Da man 4 Bit braucht, um 1 von 12 Halbténen zu
wahlen, und 3 Bit, um eine von 8 Oktaven zu bestimmen, reicht ein Byte aus. Die
unteren 4 Bit bestimmen z. B. den Halbton (sie adressieren einen Platz der Tabelle)
und die oberen 4 Bit, um wieviel Stellen der Tabellenwert nach rechts verschoben
werden muB.

470 Anhang O



SID HULLKURVENGENERATOR

HULLKURVENGENERATOR

Der vierteilige ADSR (Attack, Decay, Sustain, Release) hat sich in der elektroni-
schen Musik als optimaler KompromiB zwischen Flexibilitdt und einfacher Bedie-
nung erwiesen. Passende Wahl der Parameter erlaubt es, eine Vielzahl von Instru-
menten nachzuahmen.

Die Geige ist ein gutes Beispiel fir ein Instrument mit lang anhaltendem Ton: Er
schwillt langsam an, erreicht eine Spitzenlautstarke und fallt dann auf einen niedri-
geren Wert ab. Der Geiger kann diesen Ton lange halten, um ihn dann langsam
ausklingen zu lassen. Ein “SchnappschuB“ dieser Hillkurve zeigt dieses Bild:

S
~—A 4—[‘ D SUSTAIN R""

PERIOD

PEAK AMPLITUDE —

INTERMEDIATE
LEVEL

ZERO AMPLITUDE
Diese Hiullkurve kann folgendermaBen nachgebildet werden:

ATTACK: 10 (3A) 500 ms A s
DECAY: 8 300 ms
SUSTAIN: 10 ($A)

RELEASE: ¢ 750 ms m

Man beachte, daB der Ton solange anhalt, bis das Gatebit zurlickgesetzt wird. Mit
wenigen Anderungen kann diese Hiillkurve fir Blech- und Holzblasinstrumente und
alle Streichinstrumente verwendet werden.

Eine ganz andere Hiullkurve besitzen Schlag- und Tasteninstrumente. Die Hullkurve
von Schlaginstrumenten wird von einem nahezu augenblicklichen Anstieg und
einem darauf folgenden Abfall bestimmt, diese Instrumente kénnen den Ton nicht
auf einer konstanten Lautstarke halten. Eine Trommel erreicht in dem Moment, in
dem sie angeschlagen wird, ihre volle Lautstarke, um dann schnell auszuklingen.

Anhang O 47



Die typische Hullkurve eines Beckens wird hier gezeigt:

ATTACK: O 2ms N
DECAY: 9 750ms .

SUSTAIN: O

RELEASE: 9

750ms GATE T

Man beachte, daB der Ton vollkommen ausklingt, obwohl das Gatebit nicht zurlick-
gesetzt wird.

Der Amplitudenverlauf von Klavieren ist komplizierter, er kann aber mit dem ADSR
leicht erzeugt werden. Der Ton erreicht seine volle Lautstarke, wenn die Taste
angeschlagen wird, und beginnt dann abzuschwellen. Wenn die Taste losgelassen
wird, wird der Ton durch die Mechanik abgedampft. Diese Hullkurve ist hier

dargestellt:
2 ms o
750 ms g B

6 ms GATE

Man beachte, daB der Ton abklingt, bis das Gatebit zurlickgesetzt und dann
abgestellt wird.

Die einfachste Hullkurve ist die einer Orgel: Solange eine Taste gedriickt ist, hat der
Ton volle Lautstarke und wird sofort abgestellt, wenn die Taste wieder losgelassen
wird.

Diese Hullkurve ist hier dargestellt:

ATTACK:
DECAY:
SUSTAIN:
RELEASE:

O O v o

ATTACK: © 2 ms . "
DECAY: O 6 ms

SUSTAIN: 15 ($F)

RELEASE: 0 6 ms J L

472 Anhang O



Die wirkliche Stirke des SID liegt aber in der Erzeugung kinstlicher Kiange. Der
ADSR kann Hiuillkurven erzeugen, die bei keinem Instrument vorkommen. Ein gutes
Beispiel ist hierfir die “Rlckwarts“-Hullkurve. Sie wird von einem langsamen
Anstieg und einem scharfen Abfall bestimmt, was so klingt, als hatte man das
Instrument auf Tonband aufgenommen und wiirde die Aufnahme riickwarts abspie-
len. Sie sieht folgendermaBen aus:

S

ATTACK: 10 (3A) 500 ms N .
DECAY: 0 6 ms

SUSTAIN: 15 ($F)

RELEASE: 3 72 ms Gm

Viele bemerkenswerte Klange entstehen, wenn der Hullkurvenverlauf des einen
Instrumentes mit dem Klang eines anderen kombiniert wird. Dadurch entstehen
Klange, die bekannten Instrumenten dhneln, aber irgendwie fremd klingen. Da
Klange im allgemeinen subjektiv empfunden werden, muB man mit verschiedenen
Klangfarben und Hiillkurven experimentieren, bis man den gewlnschten Klang
erhalt.

TYPISCHE 6581/SID-ANWENDUNG

+12V +5V

1.0 MHz T T
AUDIO

0
Vv v,
F capy ce ELECTROLYTIC ~ OUT
AUDIO OUT Il f>
2200 pF - Q
cLock RESET | pOLYSTRENE 0 S
B CIRCUIT CIRCUIT — .
[ CAP2a AUDIO
l 2200 pF ELECTROLYTIC N
P —
it 7
Voo TN POLYSTYRENE EXTIN 3 @)
CAP2g 1.0 uF x
RES AES =
0 OUT o) POT X
W 6581 470 ko
RI l
" v SIp| I 1000 pF

l

An
' ADDRESS DECODING 55 PADDLES
OR ADDRESS LINE
A5 POT Y
470 kQ
1000 pF

esox L
MPU Ay Ag I
Az A3 =
Az Az

D.

Ay A .7

Ao Ao N

.

r GND Do

»

07
.
.
.

Do

—&

Anhang O 473



ANHANG P

GLOSSAR

ADSR
ATTACK

Binar

Boole’scher Operator

Byte

CHROMA-Rauschen

CIA
DDR
DECAY

Dezimal
e
Hillkurve

FIFO
Hexadezimal
Ganze Zahl
Jiffy-Uhr

NMI

Oktal
Operand

oS

Pixel
Warteschlange
Register
RELEASE

ROM

SID
Vorzeichenzahlen
Index

SUSTAIN

Syntax
Abschneiden
VIC-II
Video-Bildschirm

474 Anhang P

Anstieg-/Abkling-/Halte-/Abfallhillkurve

Rate, mit der eine Musiknote die Spitzenlautstarke
erreicht (Anstieg)

Zahlensystem mit der Basis 2

Logischer Operator

Speicherplatz

Farbverzerrung

Komplex-Interface-Adapter

Datenrichtungsregister

Rate, mit der eine Musiknote von der Spitzenlautstar-
ke bis zum Haltepegel abfallt (Abklingen)
Zahlensystem mit der Basis 10

Mathematische Konstante (ca. 2,71828173)
Lautstarkenkontur einer Note (ber einen bestimmten
Zeitraum

Zuerst eingegeben/Zuerst ausgeben

Zahlensystem mit der Basis 16

Zahl ohne Dezimalpunkt

Hardware-Intervall-Timer

Nicht maskierbare Unterbrechung

Zahlensystem mit der Basis 8

Parameter

Betriebssystem

Auflésepunkt auf dem Bildschirm

Einzel-Dateileitung

Besonderer Speicherplatz

Rate, mit der eine Musiknote vom Haltepegel bis auf
die Null-Lautstarke abfallt (Abfall)

Nur-Lesespeicher

Sound-Interface-Vorrichtung

Positive oder negative Zahlen

Indexvariable

Lautstarkepegel zum Halten einer Musiknote
Programm-Satzstruktur

Auslassen (nicht gerundet)

Video-Interface-Chip

Fernsehgerat



INDEX

6566/6567 Funktionsweise, 441
6581 SID, Merkmale von, 465

ABS, 35

ACPTR, 270

ADC, 231

ADDRESS ENABLE CONTROL, 403
ADRESSBUS, 402, 443

AND, 15, 35, 231

ACS, 37

ASCII-Code, 371

ASL, 232

ATN, 37

ATTACK, 182 ff.

ATTACK/DECAY, 457

Addition, 10

Adressierart, 219

Adressierung, Zero-Page-, 403
Adressierung, absolut-indirekte, 405
Adressierung, absolute, 403
Adressierung, implizierte, 403
Adressierung, indirekt-indizierte, 404
Adressierung, indiziert-indirekte, 404
Adressierung, indizierte Zero-Page-, 404
Adressierung, indizierte absolute, 404
Adressierung, relative, 404
Adressierung, unmiitelbare, 403
Akkumulator, 211
Anflihrungszeichen, XI, 70, 331
Anweisungs-Adressierarten, 228
Anweisungssatz, 405
Anweisungssatz MCS6510, 228
Anweisungssyntax, X|
Anwendungshinweise, Xl|
Assembler, 307

Ausdruck, 10

Ausgabeport, 215

BAD DATA, 392

BAD SUBSCRIPT, 392
BASIC-Schlisselworter, XI
BCC, 232

BCS, 232

BEQ, 233

BIT, 233

BIT 4, 456

BIT 5, 456

BIT 6, 457

BIT 7, 457

BMI, 233

BNE, 234

BPL, 234

BRK, 234

BVS, 235

Bandpagfilter, 198
Basic-Interpreter, 2, 16
Basic-Schliisselwort, 31, 35
Basic-Schllsselwdrter, Abkirzung der, 366
Basic-Zeichensatz, 3
Befehlsregisterbelegung, 344
Betriebssystem, 2, 208, 264
Bildschirm-Anzeigecode, 368
Bildschirm-Code, 368
Bildschirm-Editor, 2, 12, 23, 94
Bildschirm-Rollen, 128
Bildschirm-Zeichenfarbe-Kombination, 151
Bildschirmausgabe, 330
Bildschirmcodes, 2
Bildschirmeditor, 94
Bildschirmléschen, 149
Bildschirmspeicher, 102

Bit Map Modus, 100, 432
Bit-Map-Modus, Mehrfarben-, 122
Bit-Map-Modus, Standard-, 122
Bit-Mapping, 121

Boole’sche Wahrheitstabelle, 14

CAN'T CONTINUE, 392
CHAREN, 257

CHIP SELECT, 443
CHKIN, 271

CHKOUT, 272

CHRS$, 38

CHR$-Code, 371
CHRIN, 273

CHROUT, 274

CINT, 276

CIOUT, 275

CLALL, 277

CLC, 235

CLD, 236

CLI, 236

CLOCK OUT, 443
CLOSE, 38, 277

CLR, 39

CLRCHN, 278

CLV, 236

CMD, 39

CMP, 237
COMMODORE CP/MR, 362 ff.
CONT, 40

COS, 41

CPX, 237

CPY, 237

Complex Interface Adapter 6526, 411
Control Port 1, 387
Control Port 2, 387

Index

475



Cursor, 71

DATA, 26, 42, 306
DATASSETTE™, 185, 256
DATENBUS, 443

DEC, 238

DECAY, 182 ff.

DEF FN, 42

DEVICE NOT PRESENT, 392
DEX, 238

DEY, 238

DIVISION BY ZERO, 392
DMA-Leitung, 361

DIM, 43

Datenumsetzung, 18
Direkt-Modus, 3
Disketten-Datenspeicherung, 335
Division, 11

Drehregler, 339

Dreieckswelle, 193
Dreieckswellenform, 202
Drucker-Steuerzeichencodes, 333

END, 44

EOR, 239

EXP, 45

EXTRA IGNORED, 392
Eckige Klammern, XI
Ein-/Ausgabe, 258
Ein-/Ausgabeanordnung, 317
Einfligemodus, 73
Einfuhrung, IX
Eingabeanweisung, 18
Eingabeport, 212
Empfangspuffer, 350
Erweiterte Farbe, Betriebsart, 431

Erweiterter Hintergrundfarbomodus, 120

ErweiterungsanschluB3, 359
Exponent, 6
Exponentialberechnung, 12

FILE NOT FOUND, 392

FILE NOT OPEN, 392

FILE OPEN, 392

FN, 45

FOR, 46

FORCE LOAD, 422

FORMULA TOO COMPLEX, 392
FRE, 47

FREQUENZ LOW/FREQUENZ HIGH, 455

Farbspeicher, 103
Farbspeicherbelegung, 375
Farbspeichermappe, 374
Farbsteuerung, 71
Fehlermeldungen, 309, 352
Felder, 9, 26
Filtereinstellung, 379

476 Index

Filterregister, 460

Flag, 223

Fremde Basic-Programme — COMMODORE 64
Basic, 390

GET, 22, 23, 48

GETIN, 279

GOSUB, 26, 49

GOTO, 51

Ganze Zahl, 4, 7
Generator 1, 455
Gleitpunktzahl, 4, 7, 18
Glossar, 474
Graphikmoglichkeiten, 149
GraphikUlbersicht, 100
Graphikzeichen, 109
Graphikzeichen, Lage der, 101

HIRAM, 257

Handshaking, 421
Hexadezimaldarstellung, 214
HochpabBfilter, 199
Hullkurvengeber, 200
Hullkurvengenerator, 194

1/0-PORT, 403

IF, 51

ILLEGAL DIRECT INPUT, 392
ILLEGAL QUANTITY, 392
INC, 239

INPUT, 19

INPUT, 53

INPUT-MODE, 423

INT, 54

INTERRUPT, 443
INTERRUPT CONTROL, 426
INTERRUPT REQUEST, 402
INX, 239

INY, 240

IOBASE, 280

IOINIT, 281

IRQ, 305

Index, 9

Indexregister, 223
Indexregister X, 211
Indexregister Y, 212

Indirekt indiziert, 221
Indizieren, 221

Indiziert indirekt, 222
Interface RS-232, 341
Interrupt-Aktivierungsregister, 150
Interrupt-Statusregister, 149
Interruptregister, 440
Intervall-Timer, 421

JMP, 240
JSR, 240, 266



Kanal RS-232, 342 NEXT WITHOUT FOR, 392

Kernal, 2, 264 NOP, 242
Kernal-Routine, 268 ff. NOT, 14, 62
Kollision zwischen Sprites und Daten, 144 NOT INPUT FILE, 393
Kollision zwischen einzelnen Sprites, 144 NOT OUTPUT FILE, 393
Kollisionserkennung, 144 Normal-Modus, 118
Komprimieren, 24, 155 Numerische Variable, 19
Kontrollregister, 256, 455

ON, 62
LDA, 216, 241 ONE SHOT/CONTINUOQUS, 422
LDX, 241 OP-Schlissel, 408
LDY, 242 OPEN, 63, 285, 331
LEFT$, 55 OR, 14, 66
LEN, 55 ORA, 243
LESEN (TIMER), 423 OUT OF DATA, 393
LET, 56 OUT OF MEMORY, 393
LIST, 56 OVERFLOW, 393
LISTEN, 275, 281 Oberwelle, 193 ff.
LOAD, 57, 282, 392 Operator, 10
LOG, 59
LORAM, 257 PB ON/OFF, 422
LSR, 242 PEEK, 67
Lautstarkeregelung, 184 PHA, 243
Lese-Timing-Diagramm, 417 PHP, 243
Lichtgriffel, 336, 341 PLA, 244
Light Pen, 439 PLOT, 286
Listener, 356 PLP, 244
Literaturverzeichnis, 380 POKE, 67
Logische Operatoren, 13 POS, 68

PRINT, 68, 330
MEMBOT, 283 PRINT#, 74, 331
MEMTOP, 284 PW LO/PW HI, 455
MID$, 59 Peripheriegerat, COMMODORE-, 362
MOB, 434 ff. Pinbelegung 6526, 418
Magnetbandkassette, 333 Pixel, 121
Mantisse, 6 Port-Pin-Beschreibung, 352
Maschinencode, 209 Positionierung, horizontale, 139
Maschinensprache, 208 Positionierung, vertikale, 138
Maschinensprache + Basic, 304 Prioritat der Operationen, 15, 16
Maschinensprache-Monitor, 307 Programm-Modus, 4
Maschinensprache-Programme, 213 Programmierbare Zeichen, 108
Maschinensprache-Routine, 306 Programmieren von Zahlen und Variablen, 4
Mathematische Funktionen, abgeleitete, 386 Programmiertechniken, 18
Matrize, 26 Programmzéhler, 212
Mehrfarben-Bit-Mapping, 127 Prozessor-Schnittstelle, 443
Mehrfarben-Modus, 115, 135 Puffer, 92
Mehrfarbige Graphiken, 115
Mikroprozessor 6510, 397 QUOTE-Modus, 95
Mikroprozessor-Modul Z-80, 362
Modul-Steckplatz, 388 RAMTAS, 287
Monitor 45, 213, 224, 307 RDTIM, 287
Multiplikation, 11 READ, 26, 75
Musiknotenwerte, 376 READ/WRITE, 403, 443
Musiksynthesizer, 182 READST, 288

REDIM'D ARRAY, 393
NEW, 60 REDO FROM START, 393
NEXT, 61 RELEASE, 182 ff.

Index 477



REM, 21, 76

RESET, 402, 440
RESTOR, 289
RESTORE, 77
RETURN, 78, 331
RETURN WITHOUT GOSUB, 393
RIGHTS, 78

RING MOD, 456

RND, 79

ROL, 244

ROR, 245

RTI, 245

RTS, 245

RUN, 80
Rasterregister, 149, 440
Rauschgenerator, 200
Rauschwellenform, 203
Rechenausdruck, 10
Rechenoperation, 10
Rechteckwelle, 194
Refresh, 440

Register, 211
Ringmodulation, 205

SAVE, 80, 289

SBC, 246

SCHREIBEN (VORTEILER), 423
SCNKEY, 291

SCREEN, 291

SDR, 425

SEC, 246

SECOND, 292

SED, 246

SEl, 247

SERIAL ATN IN/OUT, 358
SERIAL CLK IN/OUT, 359
SERIAL DATA IN/OUT, 359
SERIAL SRQ IN, 357
SETLFS, 293

SETMISG, 294

SETTIM, 295

SETTMO, 296

SETNAM, 295

SGN, 82

SID, 450
SID-Hillenkurvengenerator, 471
SID-Kontrollregister, 453
SID-Registerbelegung, 454
SID-Timing 6581, 468
SID-Tonleiter, 470

SIN, 82

SPC, 27, 83

SQR, 83

STA, 247

START/STOP, 422
STATUS, 84

STEP, 85

478 Index

STOP, 86, 297

STR$, 86

STRING TOO LONG, 393

STX, 247

STY, 248

SUSTAIN, 182 ff.
SUSTAIN/RELEASE, 468

SYNC, 456

SYNTAX, 393

SYS, 87

SYS X, 304

Sagezahnwelle, 191
Schlisselwort, 30
Schlisselwortabkirzung, 24
Schrégstrich, XI
Schreib-Timing-Diagramm 6526, 416
Scrolling, 439

Sekundéradresse, 356

Serieller Bus, 356

Serieller Port, 425
Sonderzeichen, 73

Sound Interface Device 6581, 450
Speicher-Konfiguration 6510, 410
Speicheranforderung, 409
Speicherbelegung, 210, 259, 308
Speichermappe, 258
Speicherplatz, 210
Speicherverwaltung, 256
Spiegelung, 105

Spiele-Port, 336

Spitze Klammer, XI|

Sprite, 100

Sprite, vergroBert, 136
Sprite-Anzeigeprioritat, 143
Sprite-Erstellung, 162 ff.
Sprite-Pointer, 133
Sprite-Positionierung, 137, 139, 143
Sprite-Programmierung, 139
Sprite-Zeichnen, 144
Spritedefinition, 131
Spriteprioritat, 160

Sprites, 131

Sprungtabelle, 264

Stack, 219

Stackpointer, 212
Standard-Bit-Mapping, 122
Standardzeichen-Betriebsart, 430
Standardzeichenmodus, 107
Stapel, 220

Stapelzeiger, 212, 265
Statusregister, 212
Statusregister RS-232, 348
Steckerbelegung, 387
Steuerknlppel, 336
Steuerregister CRA/CRB, 427
Steuerregisterbelegung, 343
Stimme, 459



String, 7, 17
Stringkonstante, 7
Stringvariable, 7, 19
Subtraktion, 11
Symbolbeschreibung, Xl
Synchronisation, 205
Syntax, X|
Syntax-Format, XI|
System-Ram-Vektor, 301

TAB, 27, 87

TAKT, 402

TALK, 298

TAN, 88

TAX, 248

TAY, 248

TEST, 456

TIME, 88

TIMES, 89

TKSA, 299

TOD, 423
TOGGLE/PULSE, 422
TSX, 249

TXA, 249

TXS, 249

TYA, 249

TYPE MISMATCH, 393
Talker, 356

Tastatur, 92
TiefpaBfilter, 198
Timeout-Flag, 296
Timing-Charakteristiken 6526, 419
Token, 211
Tonfrequenzen, 184
Tongenerator, 182

UDTIM, 299
UNDEF'D FUNCTION, 393
UNDEF'D STATEMENT, 393

UNLST, 300

UNTLK, 301

USR, 89

USR(X), 304
Uberpriifung, 223
Ubertragungspuffer, 350
Unterlegte Zeichen, 71
Unterprogramm, 224
Unterstreichung, XI
User Port, 352, 389

VAL, 90

VECTOR, 301

VERIFY, 90, 393
VIC-Chip-Registerbelegung, 383

Variable, 18, 19, 25

Variablenname, 8

Vergleichsoperatoren, 12

Verkleinern der Programmzeilennummer, 25
Verschachtelung, 15

Verschieben, kontinuierliches, 128
Verzweigung, 223

Video-Bank, 101
Video-Interface-Controller 6566/6567, 429
VideoanschluB, 444

Vibrato, 200

WAIT, 91
Wellenform, Andern der, 190

Zeichenanzeige, 100
Zeichendarstellungsmodus, 429
Zeichendefinition, 107
Zeichenketten, 4, 514
Zeichenkettenoperationen, 17
Zeichenspeicher, 103
Zero-Page, 219
Zero-Page-Adressen, 351

Index

479









WAS IST ALLES ENTHALTEN?

Unser komplettes ,BASIC-Lexikon* umfaBt
BASIC-Befehle, Anweisungen und Funktionen in
alphabetischer Reihenfolge. Wir haben eine Uber-
sichterstellt, in der alle Worter und ihre Abkurzungen
enthalten sind. In dem folgenden Abschnitt werden
die einzelnen Begriffe genau definiert und anhand
von Beispielprogrammen ihre Anwendung be-
schrieben.

Wenn Sie eine Einfihrung in die Anwendung der
Maschinensprache fir BASIC-Programme beno-
tigen, wird fiir Sie unsere Ubersicht hilfreich sein.

Ein leistungsstarker Bestandteil des Betriebs-
systems aller COMMODORE-Computer  wird
KERNAL genannt. Hierdurch wird sichergestellt,
daB alle Programme, die Sie heute schreiben, auch
noch " auf den COMMODORE-Computern von
morgen laufen kénnen.

Der Abschnitt tber Ein-/Ausgabeprogrammie-
rung zeigt Ihnen, wie Sie lhren Computer voll nutzen
kénnen. In diesem Abschnitt werden die moglichen
Erganzungen beschrieben — angefangen bei Licht-
stiften und Joysticks bis hin zu Diskettenstationen,
DruckernundZusatzgeraten flr Telekommunikation
(Modems).

Wir zeigen lhnen, wie man SPRITES und Sonder-
zeichen programmiert. Sie werden lernen, wie man
Lauf-Bilder in hochauflosender Farbgraphik erzeu-
gen kann.

Wir er6ffnen Ihnen die Welt der Musik-Synthese
und zeigen Ihnen, wie Sie eigene Songs schreiben
und Klangeffekte mit dem eingebauten Synthesizer
erzielen konnen.

Dem erfahrenen Programmierer zeigen wir, wie

er den COMMODORE 64 mit weiteren anspruchs-
vollen Sprachen nutzen kann.
Das Programmierhandbuch COMMODORE 64 soll
also ein nutzliches Werkzeug sein, damit Ihnen das
zuklnftige Programmieren auch wirklich SpaB
macht.

C:

Commodore

Commodore GmbH
Lyoner StraBe 38
D-6000 Frankfurt/M. 71

Commodore AG
Aeschenvorstadt 57
CH-4010 Basel

Commodore GmbH
Kinskygasse 40—44
A-1232 Wien

Nachdruck, auch auszugsweise, nur mit schriftlicher Genehmigung von Commodore.
Artikel-Nr. 556420/1.85  Anderungen vorbehalten  ISBN 3-89133-000-6



