
COMMODORE

Commodore Sachbuchreihe Band 1

 Programmierhandbuch

COMMODORE 64 QUICK REFERENCE

EINFACHE VARIABLEN
Typ Name Bereich
Reelle XY +1.70141183E+38

Zahl +2.93873588E +39
Ganze XY% +32767
Zahl
Zeichen- XY$ 0 bis 255 Zeichen
kette

X ist ein Buchstabe (A—Z), Y ein Buchstabe oder eine Zahl (0-9).

Variablennamen können aus mehr als zwei Zeichen bestehen, es

werden jedoch nur die beiden ersten erkannt.

FELDVARIABLEN

Eindimensional

Zweidimensional

Dreidimensional

Name

XY(5)

XY(5,5)

XY(5,5;5)

Felder aus max. 11 Elementen (Index 0— 10) werden automatisch

dimensioniert. Felder mit mehr als 11 Elementen müssen explizit

dimensioniert werden (DIM).

ALGEBRAISCHE OPERATOREN
= Ordnet Wert einer Variablen zu

Negation
T Exponentenrechnung
* Multiplikation
/ Division
+ Addition
— Subtraktion

VERGLEICHS- UND LOGISCHE OPERATOREN
= Gleich

<> Ungleich
< Kleiner

> GroBer
<= Kleiner oder gleich
>= Größer oder gleich
NOT Logisches "Nicht“
AND Logisches “Und“
OR Logisches “Oder“

Der Ausdruck ist 1, wenn er wahr ist, oder 0, wenn er falsch ist.

SYSTEMBEFEHLE
LOAD "NAME"
SAVE "NAME"
LOAD "NAME" ,8
SAVE “NAME“,8
VERIFY "NAME"

RUN

RUNxxx

STOP

END
CONT

PEEK(X)
POKE X,Y

SYS Xxxxx

WAIT X,Y,Z

USR(X)

Laden eines Programms von Kassette
Speichern eines Programms auf Kassette
Laden eines Programms von Diskette
Speichern eines Programms auf Diskette
Prufen, ob das Programm ohne Fehler gespei-
chert wurde.
Programmausfuhrung
Programmausfuhrung beginnt bei Zeile xxx
Stop der Ausführung
Beendigung der Ausführung
Fortsetzen der Programmausführung ab der
Zeile, in der das Programm unterbrochen
wurde.
Wiedergabe des Inhalts von Speicherplatz X

Ändern des Inhalts von Speicherplatz X zu
Wer Y
Sprung zur Auführung eines Maschinenspra-
cheprogramms, beginnend bei xxxxx
Programm wartet, bis Inhalt von Platz X, bei der
EOR-Verknüpfung mit Z und AND-Verknüp-
fung mit Y ungleich 0 ist.
Übergibt Wert X zu einem Maschinensprache-
Unterprogramm

EDITIER- UND FORMATIERBEFEHLE
LIST
LIST A-B
REM Text

Auflisten eines gesamten Programms
Auflisten von Zeile A bis Zeile B
Kommentartext kann geschrieben werden,
wird jedoch während der Programmausführung
nicht berücksichtigt.

TAB(X)

SPC(X)
POS(X)
CLR/HOME

SHIFT CLR/HOME

SHIFT INST/DEL

INST/DEL

CTRL

CRSR

Verwendung in der PRINT-Anweisung. Weiter-
rücken von X Positionen auf dem Bildschirm.
Setzt X Leerzeichen in eine Zeile.
Übergibt derzeitige Cursorposition
Cursor wird in linke obere Bildschirmecke posi-
tioniert.
Bildschirm wird gelöscht und Cursor in Aus-
gangsposition gebracht.
Einfügen eines Leerzeichens an derzeitiger
Cursorposition
Löschen des Zeichens an der derzeitigen Cur-
sorposition
Beim Einsatz mit numerischer Farbtaste Wahl
der Textfarbe. Kann in PRINT-Anweisung be- .
nutzt werden.
Zur Bewegung des Cursors nach oben, unten,
links und rechts.

COMMODORE-TASTE Zusammen mit SHIFT für die Wahl von Zeichen

der oberen/unteren Umschaltstellung und der
Graphikanzeige. Beim gemeinsamen Einsatz
mit numerischen Farbtasten Wahl der optiona-
len Textfarbe.

FELDER UND ZEICHENKETTEN
DIM A(A,Y,Z)

LEN (X$)
STR$(X)

VAL(X$)

CHR$(X)
ASC(X$)

LEFT$(A$,X)
RIGHT$(A$,X)
MID$(A$, X,Y)

Setzt maximale Indizes für A; reserviert Spei-
cherplätze für (X+1)*(Y+1)*(Z+1)-Elemen-

te, beginnend bei A(0,0,0)

Übergibt Zeichenanzahl in X$
Übergibt Zeichenwert von X, in Zeichenkette
verwandelt
Übergibt numerischen Wert von X$ bis zu er-
sten nichtnumerischen Zeichen.
Übergibt ASCII-Zeichen mit dem Code X
Übergibt ASCII-Code für erstes Zeichen von
X$
Ubergibt die ersten X Zeichen von A$
Ubergibt die letzten X Zeichen von A$
Ubergibt Y Zeichen von A$ beginnend bei Zei-
chen X

EIN-/AUSGABEBEFEHLE
INPUT A$ OR A

INPUT “ABC“:A

GET A$ oder A

DATA A,“B",C

READ A$ oder A

Zeigt “?“ auf dem Bildschirm an und wartet, bis
vom Bediener eine Zeichenkette oder ein Wert
eingegeben wird.
Zeigt Meldung an und wartet auf Eingabe eines
Werts. Kann auch INPUT A$ sein
Wartet auf Eingabe eines 1-Zeichenwerts; kein
RETURN erforderlich
Initialisiert einen Wertsatz, der über die READ-
Anweisung benutzt werden kann
Ordnet nächsten Datenwert A$ oder A zu

RESTORE Stellt Datenzeiger zurück, um die DATA-Liste
erneut mit READ zu lesen

PRINT "A=";A Zeigt Zeichenkette “A=“ und Wert von A an,
“;“ unterdrückt Leerzeichen, “,“ setzt Daten in
nächstes Tabulatorfeld.

PROGRAMMABLAUF
GOTO X Verzweigung zu Zeile X
IF A=3 THEN 10 Ist die Behauptung richtig, dann Ausfuhrung

des weiteren Anweisungsteils. Ist sie falsch,
Ausfuhrung der nachsten Zeilennummer

FOR A=1 TO 10 Fuhrt alle Anweisungen zwischen FOR und
STEP 2 : NEXT NEXT aus, A geht von 1 bis 10 mit der Schritt-

weite 2. Schrittweite ist 1, wenn STEP fehlt.
NEXT A Definiert Schleifenende. A ist optional.
GOSUB 2000 Verzweigung zu Unterprogramm beginnend

bei Zeile 2000
RETURN Kennzeichnet Unterprogrammende. Ruckkehr

zur Anweisung nach dem letzten GOSUB
ON X GOTO A,B Verzweigung zur X-ten Zeilennummer der Li-

ON X GOSUB A,B
ste. Ist X=1, Verzweigung zu A usw.
Verzweigung zu Unterprogramm bei X-ter Zei-
lennummer der Liste.

ALLES ÜBER DEN
COMMODORE 64

Programmierhandbuch

Herausgeber

(@foyanlantelele)a=m =1eice)aat-txevalia(-ameiaalelml

Lyoner Straße 383

6000 Frankfurt/Main 71

Copyright © Terrapin Inc. 1982, 1983 und Techn. Institut von Massachusetts.
Copyright © der deutschen Ausgabe bei Commodore Büromaschinen GmbH, Frankfurt 1984.

Das Kopieren von Software, des Handbuches, ganz oder auszugsweise, verstößt gegen das Gesetz,

sofern nicht das Einverständnis der Urheberrechtsinhaber vorliegt.

INHALTSVERZEICHNIS

EINFÜHRUNG0006- een gas tae! IX
e Was istallesenthalten? 0.20.0 ee X

® Wie diese Programmieranleitung zu benutzenist Xl

e Hinweise zur Anwendung Ihres Commodore 64 XII

@ Anwendung 2.6. ce kee belgie see ee tere ene eee ee XI

1. BASIC PROGRAMMIERHINWEISE....................... 1
e Einleitung......... 22cm cc ee 2

e Bildschirmcodes (BASIC-Zeichensatz)- 22222 2

Das Betriebssystem (OS) 222 2neeeee een 2

e Programmieren von Zahlen und Variablen 4

Ganze Zahlen, Gleitpunktzahlen und Zeichenketten 4

Ganze Zahlen, Gleitpunktzahlen und Stringvariablen 7

Ganzzahlige, Gleitpunkt- und Stringfelder 8

e Ausdrücke und Operatoren 0.000 c eee rennen 10

Rechenausdrücke 22222 2neee nero es 10

Rechenoperationen 000 eee es 10

Vergleichsoperalören See sur ee ans ee 12

Logische Operatoren 0.00 e eee ee ees eid ee 13

Priorität der Operationen 0.00. ee es 15

Zeichenkettenoperationen 2.00. eee ee 17

TS a a we anne ike Ye an ee ann mn een 17

e Programmiertechniken 0... 0... ees 18

Datenumsetzung 0.0 ee 18

Verwendung der Eingabeanweisung...................506. 18

Arbeiten mit der GET-Anweisung.......... 22.220 22

Komprimieren von Basic-Programmen2065 24

2. BASIC-VOKABULAR 0.2.0.0. c eee eee 29
©: EINTUNFUNG octaves ke od we an nn at Se ee ee 30

e Beschreibung der Basic-Schlüsselwörter0.. 35

e Tastatur und Merkmale des Commodore 64 a gee oe te de 92

e Bildschirmeditor 0.0... 00 cc ee 94

GRAPHIKPROGRAMMIERUNG MIT DEM
COMMODORE 64.................. 000.0 99
e Graphikübersicht ©... 0.0... 0... eee eee eae 100

ZeichenanZeige 1... ee ee ees 100

Bit-Map-Modus 0... cc eee eee 100

SpriteS 2... ee ee eee eee eee ae 100

e Lage der Graphikzeichen 0.0.00 ccc cee eee 101

Wahl der Videobank moon 101

Bildschirmspeicher........... 0.00000 e eee eee eee eae 102

 Farbspeicher 0.0.0... nn 103

Zeichenspeicher:: 2 cc onen 103

e Standardzeichenmodus 0.0 eee 107

Zeichendefinitionen 0.0.0.0. 0 eee 107

e Programmierbare Zeichen 0.0.00 cece eee eee 108

e Mehrfarbige Graphiken 0.0... ccc ee eee 115

Das Mehrfarben-Modus-Bit 0... 00 00 eee eee 115

e Erweiterter Hintergrundfarbmodus000005. 120

e Graphiken durch Bit-Mapping 0.0000 c eee 121

Standard-Bit-Mapping mit hoher Aufldsung................. 122

Funktionsweise 22cm onen ee en 122

e Mehrfarben-Bit-Mapping 0.0.00 cee rennen 127

e Kontinuierliches Verschieben Leena eeeese. 128

@ Sprites 2... ee ee ee eee ee 131

Spritedefinition ... 0.0... eee 131

Sprite-Pointer 2.0... eee eee 133

Einschalten der Sprites 0.0.0.0. ee eee 134

Ausschalten der Sprites 0.0.00 eee en en 135

Farben 2... ce ee ee ee eens 135

Mehrfarbenmodus 0.0.00 cc eee ee 135

Wahlen des Mehrfarbenmodus fur ein Sprite 136

Vergrößerte Sprites... 0... ee ene 136

Spritepositionierung 0... eee 197

Zusammenfassung über die Spritepositionierung 143

Sprite-Anzeigeprioritäten 2222 ccneeeeeeree ee 143

Kollisionserkennung......: 22222 muessen een en 144

e Weitere Graphikmoglichkeiten............ 0.0.00... cee eee 149

Löschen des Bildschirms0 0.000. ce eee cee eee 149

Rasterregister 2.0.0... . 0 ee eee eee ee 149

Interrupt-Statusregister eo eee wows wwe wee en ee 149

Vorschläge für Bildschirm-Zeichenfarbe-Kombinationen 151

e Programmieren von Sprites — einanderer Aspekt 152

Programmierung der Sprites in Basic — ein kurzes Programm .. 152

Komprimieren Ihrer Sprite-Programme................0005. 159

Positionierung der Spritesauf demBildschirm 156

Spriteprioritäten: 2222 eeeeeeeerenee es 160

Zeichneneines Sprites: 222m eee nee es 161

Erstellen eines Sprites... Schritt für Schritt... 162

Bewegen der Sprites auf dem Bildschirm 164

Vertikales Rollen.......... ee ee 165

Die Tanzmaus — ein Sprite-Programmbeispiel............... 166

Tabelle zum einfachen Konstruieren von Sprites 175

Hinweise zur Spriteerstellung 0.0.0: ee eee 176

MUSIKPROGRAMMIERUNG MIT DEM
COMMODORE 64............... 0.00... c ccs 181
e Einführung.......... 0... cc eee 182

Lautstarkeregelung:: 000: eee 184

Tonfrequenzen 2... ee 184

e Arbeiten mit mehreren Stimmen0 00: eee eee eee 185

Steuern mehrerer Stimmen 00000: eee 189

e Ändern der Wellenformen 00.0 0c ce ee eens 190
Verständnis der Wellenformen.............0 0000 cece eens 193

e Hullkurvengenerator 0.0.0. eee 194

© Filtern 0... ee 197

e Fortschrittliche Techniken 0... eee eee eee 200

Synchronisation und Ringmodulation005. 205

MASCHINENSPRACHE 00.0 cece 207
e Was ist Maschinensprache? 0.0.00 cee nenn 208

Wie sieht der Maschinencode aus?2--0000- 209

Einfache Liste der Speicherbelegung des Commodore 64 210

Die Register im Mikroprozessor65104.. 211

e Wie schreibt man Maschinensprache-Programme? 213

Monitor 64 2.0... eee eee eens 213

e Hexadezimaldarstellung 0... cee 214

Die erste Maschinensprache-Anweisung++4.- 216

Schreiben des ersten Programms00000 eee eee 218

e Adressierart 0.0.0... eee ee eee 219

Zero-Page .. 1... eee ee es 219

Stapel (Stack) 0.0.0... ccc eee ee 220

Vi

Indirektindiziert 0.0... 0... ee eee ee 221

Indiziert indirekt .. 0... 0.0... eee 222

Verzweigungen und Überprüfungen0.00- 223

e Unterprogramme 2... . 0. ce rennen 224

e Hinweise fürden Anfänger 0.0.00. eee 226

e Vorbereitungen fur eine große Aufgabe....................... 227

e Anweisungssatz von Mikroprozessor MCS6510 —

Alphabetische Reihenfolge............... 00. e eee eee eee es 228

Anweisungs-Adressierarten und zugehörige Ausführungszeiten

(in Taktzyklen) 2.22.2222 220er een 250

e Speicherverwaltung beim Commodore 64 22222. 256

© Kernal .. 0... eee eee een nn 264

e Kernal-Funktionen nach Einschalten der Stromversorgung 265

Arbeiten mit Kernal0.0 0.0.0... cc rennen 265

Aufrufbare Kernal-Routinen 0.0.0.0 0 cece nn 268

Fehlermeldungen 000: c eee eee eee eee 303

e Arbeiten mit Maschinensprache und Basic 304

Wo stehen Maschinensprache-Routinen? 306

Wie wird Maschinensprache eingegeben? 306

e Speicherbelegung des Commodore 64200000. 308

Ein-/Ausgabeanordnung beim Commodore 64............... 317

EIN-/AUSGABE-ANLEITUNG hace eee eee nae 329
e EinfUhrung 0.0. eee eens 330

e Ausgabe auf den Bildschirm...: 22:2 cn 0.0.00 cece ee eee 330

e Ausgabe aufandere Geräte 0... . ccc en 331

Ausgabe zum Drucker 0.0... c cece eee ern 332

Arbeiten mit Magnetbandkassetten.....................0.4. 333

Datenspeicherung auf Disketten 0.000000 335

e Spiele-Ports 0.0.0. eee eee eee 336

Drehregler 0.0... 0c ccc teenies 339

Lichtgriffel ... 2.2.2... cee eee 341

e RS-232 Interface-Beschreibung 00.0 c eee ee eee 341

Allgemeiner Überblick0. nennen 341
Öffnen eines RS-232-Kanals....... zone 342
Lesen der Daten von einem RS-232-Kanal 345

Übertragen von Daten über einen RS-232-Kanal 346

Schließen eines RS-232-Datenkanals 22222222220. 347

Basic-Programmbeispiel 0.000. c cece eee eee 349

Zeiger fur Empfangs-/Ubertragungspuffer 350

Zero-Page-Adressen und ihre Anwendung für das

System-Interface RS-232 .. 0... 0... ee eee 351

Allgemeine RS-232-Speicherung 0.0000 e eae 351

© Userport ... 0.0... ee eee eee ees 352

Port-Pin-Beschreibung0. 0. eee ee es 352

e Derserielle BUS 0.0.0.0... ccc eee ees 355

Anschlüsse des seriellen Busses0.000 eee ues 356

e Erweiterungsanschluß 0.0... cc eee ees 359

e Z-80 Mikroprozessor-Modul 0.0... ee eee 362

Arbeiten mit Commodore CP/M 0.000 cece eee 362

Ausführung 0... ccc eee eee eee 363

ANHANG0..0. 00000 ce eet e ees 365
A. Abkürzungen der Basic-Schlüsselwörter-... 366

B. Bildschirm-Anzeige-Codes0 cee eee eee 368

C. ASCII- und CHR$-Codes................. DE SERIE ARE 371

D. Bildschirm- und Farbspeichermappen-.. 374

E. Musiknotenwerte 0000: cece nennen 376

F. Literaturverzeichnis 0000 cc eee eee nennen 380

G. Video Interface Controller (VIC)

Chip Registerbelegung............. 0.0.0 cee eee eee 383

H. Abgeleitete mathematische Funktionen0000. 386

I. Steckerbelegung für Anschlüsse für Peripheriegeräte 387

J. Übertragung von fremden Basic-Programmen auf

Commodore 64 BaSic 00. cc nennen 390

K. Fehlermeldungen 0.0000 ccc eee eee 392

L. Datenblatt Mikroprozessor651000000 20a 394

M. 6526 Complex Interface Adapter (CIA)205. 411

N. 6566/6567 Video-Interface-Controller (VIC-Il) 429

O. 6581 Sound Interface Device (SID) Chip Specifications......... 450

P. Glossar 2... 0. ee eee eee eens 474

INDEX .. 000. ct eee n ence eens 475

Vil

=

I

“

=

+

A ”

.

=

oF

*

’

s

a

=

=

©

=

7

rm

x “

4

a =

4
3

EINFUHRUNG

Die Programmieranleitung COMMODORE 64 wurde als Hilfsmittel und Bezugs-

quelle für all diejenigen entwickelt, die die Fähigkeiten ihres COMMODORE 64

optimal nutzen wollen. Diese Anleitung enthält alle Informationen, die Sie zur

Erstellung von Programmen benötigen — angefangen bei den einfachsten Beispie-

len bis hin zu komplexen Programmen. Die Programmieranleitung ist so aufge-

baut, daß sowohl ein BASIC-Anfänger als auch der erfahrene Maschinensprache-

Programmierer die erforderlichen Informationen erhält, um eigene Programme zu

erstellen. Gleichzeitig werden Sie feststellen, wie vielseitig Ihr COMMODORE 64

wirklich ist. Das vorliegende Handbuch ist nicht dazu gedacht, Ihnen die Program-

miersprache BASIC oder die Maschinensprache 6502 beizubringen. Sie finden

jedoch ein ziemlich umfangreiches Glossar mit Fachausdrücken, sowie “lehrrei-

che“ Hinweise. Wenn Sie noch nicht mit BASIC vertraut sind, empfehlen wir Ihnen,

die Bedienungsanleitung des COMMODORE 64 durchzulesen. In dieser Anlei-

tung finden Sie eine leicht verständliche Einführung in die Programmiersprache

BASIC. Sollte das Programmieren in BASIC Ihnen danach noch Schwierigkeiten

bereiten, so schlagen Sie am Ende dieser Anleitung (oder in Anhang N in der

Bedienungsanleitung) nach, und stellen Sie anhand des Literaturverzeichnisses

fest, wo Sie die erforderlichen Informationen finden können.

Die vorliegende Programmiieranleitung ist also nur als Referenz gedacht. Wie Sie

die gegebenen Informationen nun tatsächlich umsetzen, hängt davon ab, über

welches Know-how Sie bereits verfügen. Wenn Sie also in Sachen Programmie-

rung noch ein Anfänger sind, können Sie die in dieser Anleitung gegebenen

Informationen nur dann voll verstehen, wenn Sie Ihre derzeitigen Programmier-

Kenntnisse ausweiten.

In dieser Anleitung finden Sie zahlreiche Programmier-Informationen, die leicht

verständlich im Programmierer-Jargon geschrieben sind. Erfahrene Programmierer

finden andererseits alle Informationen, um ihren COMMODORE 64 optimal einzu-

setzen.

WAS IST ALLES ENTHALTEN?

Unser komplettes “BASIC-Lexikon“ umfaßt BASIC-Befehle, Anweisungen und

Funktionen in alphabetischer Reihenfolge. Wir haben eine Übersicht erstellt, in

der alle Wörter und ihre Abkürzungen enthalten sind. In dem folgenden Abschnitt

werden die einzelnen Begriffe genau definiert und anhand von Beispielprogram-

men ihre Anwendung beschrieben.

Wenn Sie eine Einführung in die Anwendung der Maschinensprache für BASIC-

Programme benötigen, wird für Sie unsere Übersicht hilfreich sein.

Ein leistungsstarker Bestandteil des Betriebssystems aller COMMODORE-Com-

puter wird KERNAL genannt. Hierdurch wird sichergestellt, daß die Programme,

die Sie heute schreiben, auch noch auf den COMMODORE-Computern von

morgen laufen können.

Der Abschnitt über Ein-/Ausgabeprogrammierung zeigt Ihnen, wie Sie Ihren

Computer voll nutzen können. In diesem Abschnitt werden die möglichen

Ergänzungen beschrieben — angefangen bei Lichtstiften und Joysticks bis hin zu

Diskettenstationen, Druckern und Zusatzgeräten für Telekommunikation (Mo-

dems).

Wir zeigen Ihnen, wie man SPRITES und Sonderzeichen programmiert. Sie

werden lernen, wie man Lauf-Bilder in hochauflösender Farbgraphik erzeugen

Kann.

Wir eröffnen Ihnen die Welt der Musik-Synthese und zeigen Ihnen, wie Sie

eigene Songs schreiben und Klangeffekte mit dem eingebauten Synthesizer

erzielen können.

Dem erfahrenen Programmierer zeigen wir, wie er den COMMODORE 64 mit

CP/M* und anspruchsvollen Sprachen benutzen kann.

Die Programmieranleitung COMMODORE 64 soll also ein nützliches Werkzeug

sein, damit Ihnen das zukünftige Programmieren auch wirklich Spaß macht.

* CP/M ist ein eingetragenes Warenzeichen von Digital Research; Inc.

x EINFÜHRUNG

WIE DIESE PROGRAMMIERANLEITUNG ZU BENUTZEN IST

Zur Beschreibung der Syntax (Struktur des Programmiertextes) von BASIC-Befeh-

len oder Anweisungen sowie zur Darstellung der benotigten und frei wahlbaren

Teile der einzelnen BASIC-Schlüsselwörter werden bestimmte allgemeine Schreib-

weisen benutzt. Für die Interpretation der Anweisungssyntax gelten folgende

Regeln:

1. BASIC-Schlüsselwörter werden in Großbuchstaben dargestellt. Sie müssen

exakt an der angegebenen Stelle und genau wie in dieser Anleitung geschrieben

eingegeben werden.

2. Angaben in Anführungszeichen (“ “) geben variable Daten an, die von Ihnen

eingegeben werden müssen. Sowohl die Anführungszeichen als auch die Daten

mussen genau an der angegebenen Stelle eingegeben werden.

3. Punkte in eckigen Klammern ([]) geben einen frei wählbaren Parameter an. Ein

Parameter ist eine Einschränkung oder eine zusätzliche Angabe für Ihre Anwei-

sungen. Bei der Verwendung eines frei wählbaren Parameters müssen auch die

für diesen Parameter erforderlichen Daten gegeben werden. Auslassungen (. . .)

geben an, daß eine bestimmte Angabe so oft wiederholt werden kann, wie es

eine Programmierzeile zuläßt.

4. Ist eine Angabe in ([]) UNTERSTRICHEN, bedeutet dies, daß diese bestimmten

Zeichen in den frei wählbaren Parametern benutzt werden müssen und genau

wie angegeben zu schreiben sind. |
5. Angaben in spitzen Klammern (<>) geben variable Daten an, die von Ihnen

eingegeben werden. Ein Schrägstrich (/) zeigt Ihnen an, daß Sie sich zwischen

mehreren Funktionen entscheiden können.

SYNTAX-FORMAT-BEISPIEL:

OPEN <logische Adresse>,<Gerätenummer> [,.<Adresse>], ["<Lauf-

werk>: <Dateiname>] [<Modus>]"

ANWEISUNGSBEISPIELE:

10 OPEN 2,8,6,"0:LAGERBESTAND,S,W“

20 OPEN 1,1,2,“SCHECKBUCH“

30 OPEN 3,4

In der Praxis kann die Parameterfolge in Ihren Anweisungen von der der Syntax-

Beispiele abweichen. Die Beispiele sind also Einzelbeispiele und sollen nicht jede

mögliche Folge zeigen, sondern lediglich alle erforderlichen und frei wählbaren

Parameter darstellen.

EINFÜHRUNG Xl

In den gegebenen Programmierbeispielen sind Wörter und Operatoren durch

Leerzeichen voneinander getrennt, damit die Beispiele besser lesbar sind. Norma-

lerweise erfordert BASIC jedoch keine Leerzeichen zwischen Wörtern, außer wenn

sich durch ein Auslassen eine mehrdeutige oder falsche Syntax ergibt.

Nachfolgend werden einige der Symbole beschrieben, die in den folgenden Kapi-

teln für verschiedene Anweisungsparameter benutzt werden. Diese Liste zeigt nicht

alle Moglichkeiten, sondern soll Ihnen lediglich zeigen, wie Syntax-Beispiele aufge-

baut sind.

SYMBOL BEISPIEL BESCHREIBUNG

<Logische Adresse> 50 Logische Dateinummer

<Geratenummer> 4 Hardware-Geratenummer

<Adresse> 15 Sekundar-AdreBnummer eines

. seriellen Bus-Anschlußgeräts

<Laufwerk> 0 Diskettenlaufwerknummer

<Dateiname> “TEST.DATA*“ Name einer Daten- oder

Ä Programmdatei

<Konstante> "ABCDEFG“ Vom Programmierer eingegebene

beliebige Daten

<Variable> X145 Ein beliebiger BASIC-Variablen-

name oder eine Konstante

<String> AB$ Eine String-Variable ist erforderlich

<Zahl> 12345 Eine numerische Variable ist

erforderlich

<Zeilennummer> 1000 Tatsächliche Programmzeilen-Nr.

<Numerisch> 1.5E4 Ganze Zahl oder Gleitpunktvariable

HINWEISE ZUR ANWENDUNG IHRES COMMODORE 64

Als Sie das erstemal an den Kauf eines Computers dachten, haben Sie sich

sicherlich gefragt: “Nun kann ich mir einen Computer leisten, aber was kann ich

denn alles mit ihm anfangen?“

Das Besondere an Ihrem COMMODORE 64 ist, daß er all das machen kann, was

SIE wollen! Er kann rechnen und für Sie Ihren geschäftlichen oder privaten Haushalt

führen. Sie können ihn auch für die Textverarbeitung einsetzen. Sie können mit ihm

Aktionsspiele spielen. Sie können ihn singen lassen. Sie können mit ihm Ihre

eigenen Zeichentricks erstellen usw. Das Beste am COMMODORE 64 ist die

Tatsache, daß er sein Geld wert ist, selbst wenn Sie ihn nur für eine der nachfolgend

aufgeführten Funktionen einsetzen. Der 64 ist jedoch ein vollständiger Computer

und kann daher ALLE nachstehend aufgeführten Punkte ausführen. Und wie!

XII EINFUHRUNG

Übrigens können Sie außerdem noch zahlreiche kreative und praktische Anregun-

gen von den örtlichen COMMODORE-Anwenderclubs bekommen.

ANWENDUNG

AKTIONS-SPIELE

ANZEIGEN UND

VERKAUFSFÖRDERUNG

TRICKFILM

BASIC-

PROGRAMMIERUNG

KALKULATIONS-

PROGRAMME

KOMPONIEREN

CP/M*

GESCHICKLICH-

KEITSUBUNGEN

BESCHREIBUNG/ERFORDERNISSE

Sie können richtige Spiele wie Omega Race, Gort

und Wizard of Wor, aber auch Lernspiele be-

kommen.

Schließen Sie Ihren COMMODORE 64 an ein Fern-

sehgerät an, stellen Sie ihn in ein Schaufenster, und

lassen Sie bewegliche Reklame ablaufen. Natürlich

ist auch musikalische Untermalung möglich.

Mit der SPRITE-Graphik des COMMODOREs kön-

nen Sie richtige Trickfilme auf acht verschiedenen

Ebenen darstellen, so daß sich die Figuren vor- bzw.

hintereinander bewegen können.

Die Bedienungsanleitung zum COMMODORE 64

sowie die BASIC-Lernkassette verschaffen Ihnen

einen guten Start.

Der COMMODORE 64 bietet Ihnen die besten Kal-

kulationsprogramme, die für Personal-Computer

existieren.

Der COMMODORE 64 ist mit einem technisch aus-

gereiften, eingebauten Musik-Synthesizer ausgerü-

stet. Er hat drei vollständig programmierbare Stim-

men, verfügt über 9 Oktaven und 4 regelbare Wel-

lenformen. Erstellen Sie mit Hilfe der COMMODO-

RE-Musikmodule Ihre eigenen Songs und erleben

Sie, welche Musik- und Klangeffekte möglich sind.

COMMODORE bietet CP/M* als Steckmodul mit

Betriebssystem auf Diskette an.

Über die verschiedenen COMMODORE-Spiele kön-

nen Sie die Koordination von Hand/Auge sowie Ihre

Geschicklichkeit trainieren.

EINFÜHRUNG x

AUSBILDUNG

FREMDSPRACHEN

GRAPHIK UND KUNST

INSTRUMENTEN-

STEUERUNG

JOURNALE UND

KREATIVES SCHREIBEN

LICHTGRIFFEL-

STEUERUNG

MASCHINENCODE

PROGRAMMIERUNG

XIV EINFUHRUNG

Schon das Arbeiten mit einem Computer an sich ist

eine Ausbildung. Die COMMODORE-Ausbildungs-

bucher enthalten allgemeine Informationen fur den

Einsatz von Computern als Bildungshilfsmittel. Fer-

ner bieten wir eine Vielzahl von Lernprogrammen

an. Die Auswahl erstreckt sich dabei von Musik über

Mathematik bis hin zu Kunst und Astronomie.

Der programmierbare Zeichensatz des

COMMODORE 64 ermöglicht ein Auswechseln des

Standardzeichensatzes gegen benutzerdefinierte

Fremdsprachenzeichen.

Zusätzlich zu der bereits erwähnten Sprite-Graphik-

funktion ist mit dem COMMODORE 64 die Darstel-

lung mehrfarbiger Graphiken mit hoher Auflösung,

programmierbarer Zeichen und die Kombination der

verschiedenen Graphik- und Zeichenmodi möglich.

Ihr COMMODORE 64 hat einen seriellen Bus, einen

RS-232-Port sowie einen Benutzerport für die ver-

schiedensten speziellen Anwendungen. Als Son-

derausstattung ist außerdem ein IEEE/488-Steck-

modul erhältlich.

Der COMMODORE 64 bietet Ihnen ein außerge-

wöhnliches Textverarbeitungssystem, das min-

destens genauso gut und flexibel wie viele "teuere“

Word-Prozessoren ist. Natürlich können Sie die In-

formationen entweder über eine 1541 Diskettensta-

tion oder einen Datasette™-Rekorder speichern und

später ausdrucken lassen.

Für Anwendungen, die einen Lichtgriffel erfordern,

Kann ein beliebiger Lichtgriffel benutzt werden, der

in den Spieleanschlußstecker des

COMMODORE 64 paßt.

Die Programmieranleitung COMMODORE 64

umfaßt auch ein Kapitel über Maschinensprache so-

wie einen Abschnitt über BASIC/Maschinencode-

Interface. Für diejenigen, die ausführlichere Informa-

tionen wünschen, haben wir außerdem ein Literatur-

verzeichnis zusammengestellt.

LOHNLISTEN UND Der COMMODORE 64 kann für die Handhabung

FORMULARAUSDRUCK der verschiedensten Buchungsgeschäfte program-

miert werden. Mit Groß- und Kleinschreibung und

Graphiksymbolen können Formulare leicht entwor-

fen und danach ausgedruckt werden.

AUSDRUCKEN Der COMMODORE 64 kann an verschiedene

Punktmatrix- und Schönschriftdrucker sowie an

Plotter angeschlossen werden.

_SIMULATIONEN Durch die Computersimulationen können Sie ge-

fahrliche oder teuere Experimente bei minimalem

Risiko und minimalen Kosten ausfuhren.

Dies sind nur einige Beispiele dafür, wie Sie Ihren COMMODORE 64 einsetzen

können. Sie werden festgestellt haben, daß der COMMODORE 64 Ihnen für jedes

Problem eine praktische Lösung bietet — bei Arbeit und Spiel, zu Hause, in der

Schule und im Büro.

Wir möchten Sie darauf hinweisen, daß unsere Kundenunterstützung beim Kauf

eines COMMODORE-Computers ERST BEGINNT. Wir unterstützen und ermutigen

die Bildung von COMMODORE-Anwenderclubs auf der ganzen Welt. Diese Clubs

sind eine ausgezeichnete Informationsquelle für alle COMMODORE-Besitzer —

dies gilt sowohl für den Anfänger als auch für unsere Profis. Schließlich bietet Ihnen

auch noch Ihr COMMODORE-Händler ausreichend Unterstützung und Information.

Werden Sie Mitglied in einem Computer-Club, erfahren Sie Hilfe bei Computerpro-

blemen, “reden“ Sie mit anderen COMMODORE-Freunden oder empfangen Sie

topaktuelle Informationen über neue Produkte, Software und Ausbildungsmoglich-

keiten!

EINFÜHRUNG XV

KAPITEL 1

BASIC
PROGRAMMIER-

HINWEISE
e Einleitung

e Bildschirmcodes (BASIC-Zeichensatz)

e Programmieren von Zahlen und Variablen

Norte [d07e1,<-WUlTo @) ol-1¢- 10) 4-18)

e Programmiertechniken

EINLEITUNG

In diesem Kapitel wird beschrieben, wie mit BASIC Daten gespeichert und aufberei-

tet werden. Es umfaßt folgende Punkte:

1) Kurze Beschreibung der einzelnen Bauteile und Funktionen des Betriebssy-

stems sowie des Zeichensatzes vom COMMODORE 64.

2) Bildung von Konstanten und Variablen. Welche Variablenarten es gibt und wie

Konstante und Variablen gespeichert werden.

3) Richtlinien für Rechenoperationen, Verhältnisberechnungen, Handhabung von

Strings und logische Operationen. Außerdem werden die Regeln zum Bilden

von Ausdrücken und die für das Mischen von BASIC mit anderen Datentypen

erforderlichen Datenumwandlungen beschrieben.

BILDSCHIRMCODES
(BASIC-ZEICHENSATZ)

DAS BETRIEBSSYSTEM (OS)

Das Betriebssystem befindet sich in den ROMs und ist eine Kombination aus drei

getrennten, jedoch zusammengehörigen Programm-Modulen.

1) BASIC-Interpreter

2) KERNAL

3) Bildschirm-Editor

1) Der BASIC-Interpreter ist für die Analyse der BASIC-Anweisungssyntax ver-

antwortlich und führt die erforderlichen Berechnungen und/oder Datenaufberei-

tungen durch. Der BASIC-Interpreter verfügt über ein Vokabular von 25

“Schlüsselwörtern“ mit besonderen Bedeutungen. Sowohl Schlüsselwörter als

auch Variablennamen werden durch Buchstaben und die Zahlen O bis 9 gebildet.

Auch bestimmte Interpunktionszeichen und Sondersymbole haben für den

Interpreter eine Bedeutung. Die Sonderzeichen sind in Tabelle 1.1. aufgelistet.

2) Der KERNAL handhabt die Verwaltung auf Interrupt-Ebene (bezüglich Einzel-

heiten siehe Kapitel 5). Der KERNAL erledigt auch die tatsächliche Datenein-/

-ausgabe.

3) Über den Bildschirm-Editor wird die Ausgabe auf dem Bildschirm (Fernseh-

gerät) gesteuert und der BASIC-Programmtext aufbereitet. Darüber hinaus prüft

er die Eingabe über die Tastatur und entscheidet, ob sofort auf die eingegebe-

nen Zeichen reagiert werden soll oder ob diese zum BASIC-Interpreter weiter-

geleitet werden.

2 BASIC PROGRAMMIERHINWEISE

Tabelle 1.1. CMB BASIC-Zeichensatz

ZEICHEN BEZEICHNUNG UND BESCHREIBUNG

z
n

—

%

a
V
A

LEERZEICHEN — trennt Schlüsselwörter und

Variablennamen

SEMIKOLON — wird in Variablenlisten zur Ausgabeforma-

tierung benutzt

GLEICHHEITSZEICHEN — Wertzuordnung und logische

Prüfung

PLUSZEICHEN — Addition oder Verkettung von Zeichen-

Ketten

MINUSZEICHEN — Subtraktion, Vorzeichen

STERNCHEN — Multiplikation

SCHRÄGSTRICH - Division

AUFWARTSPFEIL — Exponentenrechnung

LINKE KLAMMER — Auswertung von Ausdrucken und Funk-

tionen

RECHTE KLAMMER — Auswertung von Ausdrucken und

| Funktionen

PROZENT — Bestimmt Variablennamen als ganze Zahl

“Nummer“ — Kommt vor logischer Dateinummer bei

Ein-/Ausgabeanweisungen

DOLLARZEICHEN — Bestimmt Variablenname als String

KOMMA — Wird in Variablenlisten zur Ausgabeformatierung

benutzt; trennt außerdem Befehlsparameter

PUNKT — Dezimalpunkt bei Gleitpunktkonstanten

ANFÜHRUNGSZEICHEN - Schließt Strings ein

DOPPELPUNKT — Trennt mehrere BASIC-Anweisungen in

einer Zeile

FRAGEZEICHEN — Abkürzung für das Schlüsselwort PRINT

KLEINER ALS — Wird bei logischen Vergleichen benutzt

GRÖSSER ALS — Wird bei logischen Vergleichen benutzt

Pl — Numerische Konstante 3,141592654

Das Betriebssystem ermöglicht Ihnen, auf zwei Arten mit BASIC zu arbeiten:

1) DIREKT-MODUS

2) PROGRAMM-MODUS

BASIC PROGRAMMIERHINWEISE

1) Im DIREKT-MODUS steht vor BASIC-Anweisungen keine Zeilenzahl. Sie wer-

den nach Drücken der Taste ausgeführt.
2) Den PROGRAMM-MODUS benutzen Sie zum Ausführen von Programmen.

Im PROGRAMM-MODUS muß vor jeder BASIC-Anweisung eine Zeilenzahl

stehen. In einer Programmzeile kann mehr als eine BASIC-Anweisung stehen.

Die Anzahl der Anweisungen ist jedoch begrenzt, da in eine logische Bildschirm-

zeile nur 80 Zeichen eingegeben werden können. D.h., bei Überschreitung

dieser Grenze von 80 Zeichen muß die ganze BASIC-Anweisung, die nicht

mehr in die Zeile paßt, mit einer neuen Zeilennummer in eine neue Zeile

eingegeben werden.

Der COMMODORE 64 hat zwei vollständige Zeichensätze, die Sie entweder über

Tastatur oder in Ihren Programmen benutzen Können.

Den SATZ 1, der die Großbuchstaben sowie die Zahlen O bis 9 umfaßt, erreicht man

ohne Drücken der Taste 3. Wird die Taste gedrückt, so sind die
Graphikzeichen rechts auf der Tastenvorderseite wirksam. Wird während des

Schreibens die Taste (9 gedrückt, so sind die Graphikzeichen der linken Seite

wirksam. Wird eine Taste ohne Graphiksymbole zusammen mit der Taste

betätigt, so wird das Symbol ganz oben auf dieser Taste wirksam.

In SATZ 2 stehen die Kleinbuchstaben sowie die Zahlen O bis 9 ohne Drücken der

Taste zur Verfügung. Für die Großbuchstaben wird während des Schrei-

bens die Taste gedrückt. Auch bei diesem Satz werden die Graphiksym-
bole auf der linken Tastenvorderseite durch Drücken der Taste Ce) angezeigt.

Wird eine Taste ohne Graphikzeichen zusammen mit der Taste AB betätigt,
so werden die Symbole ganz oben auf dieser Taste wirksam.

Um von einem Zeichensatz auf den anderen umzuschalten, werden die Tasten

(3 und zusammen gedrückt.

PROGRAMMIEREN VON ZAHLEN UND VARIABLEN

GANZE ZAHLEN, GLEITPUNKTZAHLEN UND ZEICHENKETTEN

Konstanten sind Daten, die in den BASIC-Anweisungen enthalten sind. BASIC

benutzt diese Werte, um bei der Interpretation der Anweisungen Daten darzustel-

len. CBM BASIC kann drei verschiedene Arten von Konstanten erkennen und

verarbeiten:

4 BASIC PROGRAMMIERHINWEISE

1) GANZE ZAHLEN

2) ZAHLEN MIT GLEITPUNKT

3) ZEICHENKETTEN

GANZZAHLIGE KONSTANTEN sind ganze Zahlen (Zahlen ohne Dezimalpunkt).

Ganzzahlige Konstanten können aus dem Bereich von —32768 bis +32767 gewählt

werden. Zwischen den einzelnen Stellen stehen weder Dezimalpunkte noch Kom-

mata. Wird das Pluszeichen (+) ausgelassen, so werden die Konstanten als positive

Zahl angesehen. Nullen vor einer Konstante werden nicht berücksichtigt und sollten

daher auch nicht benutzt werden, da sie lediglich Speicherkapazität vergeuden und

das Programm verlangsamen. Sie führen jedoch zu keinem Fehler. Ganze Zahlen

werden im Speicher als Zwei-Byte-Binärzahlen gespeichert. Ganzzahlige Konstan-

ten sind z. B.:

=e

8765

Anmerkung: In eine Zahl NIE Kommata eingeben. Z. B. wird für die englische Tausenderangabe

32,000 lediglich 32000 eingegeben. Durch die Verwendung eines Kommas in einer Zahl entsteht ein

Fehler, und die BASIC-Fehlermeldung ?SYNTAX ERROR wird angezeigt.

Gleitpunktkonstanten sind positive oder negative Dezimalzahlen. Ein Dezimal-

bruch wird durch einen Dezimalpunkt angezeigt. Bitte denken Sie daran, daß

Kommata NICHT zwischen Zahlen benutzt werden dürfen. Wird das Pluszeichen

(+) vor einer Zahl ausgelassen, geht der COMMODORE 64 davon aus, daß diese

Zahl positiv ist. Genau wie bei den ganzen Zahlen werden auch hier Nullen vor einer

Konstante nicht berücksichtigt. Gleitpunktkonstanten können auf zwei verschie-

dene Arten benutzt werden:

1) EINFACHE ZAHL

2) TECHNISCH-WISSENSCHAFTLICHE NOTATION

Gleitpunktkonstanten werden auf dem Bildschirm mit bis zu neun Stellen angezeigt.

Mit diesen neun Stellen können Werte zwischen —999999999. und +999999999.

dargestellt werden. Werden mehr als neun Stellen eingegeben, so wird die Zahl

entsprechend der zehnten Stelle auf- bzw. abgerundet. Ist die zehnte Stelle größer

oder gleich 5, wird die Zahl aufgerundet; ist sie kleiner als 5, erfolgt eine Abrundung.

Dies kann möglicherweise für Endsummen von Bedeutung sein.

BASIC PROGRAMMIERHINWEISE 5

Gleitpunktzahlen benötigen einen Speicherplatz von 5 Bytes und werden mit einer

Genauigkeit von 10 Stellen verarbeitet.

Beim Ausdruck bzw. bei der Anzeige werden die Zahlen jedoch auf neun Stellen

gerundet. Gleitpunktzahlen sind z. B.:

1.23

—.998877

+3.1459

TTTTTTT

— 333.

.01

Zahlen, die kleiner als .01 oder größer als 999999999. sind, werden in technisch-

wissenschaftlicher Notation angezeigt. Hierbei besteht eine Gleitpunktkonstante

aus drei Teilen:

1) MANTISSE

2) BUCHSTABE E

3) EXPONENT

Die Mantisse ist eine einfache Gleitpunktzahl. Der Buchstabe E zeigt Ihnen an, daß

die Zahl in exponentieller Form dargestellt wird. D.h., E bedeutet *10 (z.B.

3E3=3*1073=3000). Der Exponent git an, wie oft die Mantisse mit dem Faktor 10

multipliziert wird.

Sowohl Mantisse als auch Exponent sind Zahlen mit Vorzeichen (+ oder —). Fur

Exponenten gilt der Bereich von —39 bis +38. Der Exponent gibt die Stellenanzahl

an, um die der Dezimalpunkt in der Mantisse bei der Darstellung als ganze Zahl

nach links (—) oder rechts (+) verschoben wird.

Fur BASIC gilt eine Begrenzung der Gleitpunktzahlen, selbst bei wissen-

schaftlichen Notationen: Die größte Zahl lautet +1.70141183E+38.

Bei Berechnungen, deren Ergebnis zu einer größeren Zahl führt, wird die BASIC-

Fehlermeldung ?OVERFLOW ERROR angezeigt. Die kleinste Gleitpunktzahl lautet

+2.93873588E—39, und bei Berechnungen, deren Ergebnis kleiner als dieser Wert

ist, wird Null als Ergebnis angezeigt, und es erfolgt keine Fehlermeldung. Gleit-

punktzahlen in wissenschaftlichen Notationen (sowie ihre Dezimalwerte) sind z. B.:

235.988E—3 (.235988)

2359E6 (2359000000.)

-T.09E-12 (—.00000000000709)

—3.14159E+5 (—314159.)

6 BASIC PROGRAMMIERHINWEISE

Stringkonstanten sind Gruppen von alphanumerischen Zusammensetzungen wie

Buchstaben, Zahlen und Symbolen. Wird eine Zeichenkette (String) über die

Tastatur eingegeben, so steht hierfür die restliche Kapazität einer 80-Zeichen-Zeile

zur Verfügung (die NICHT von der Zeilennummer oder anderen Teilen der Anwei-

sung beansprucht wird).

Eine Stringkonstante kann Leerzeichen, Buchstaben, Zahlen, Interpunktionszei-

chen und Farb- oder Cursorsteuerzeichen in beliebiger Kombination enthalten. Hier

können zwischen Ziffern auch Kommata eingegeben werden. Das einzige Zeichen,

das innerhalb einer Zeichenkette nicht zulässig ist, ist das Anführungszeichen (“),

da durch dieses häufig Anfang und Ende einer Zeichenkette gekennzeichnet ist.

Eine Zeichenkette kann auch leer sein — d. h., keine Zeichendaten enthalten. Das

abschließende Anführungszeichen kann bei einer Zeichenkette weggelassen wer-

den, wenn dieses das letzte Zeichen in einer Zeile ist oder wenn danach ein

Doppelpunkt folgt (:). Stringkonstanten sind z. B.:

me 1}

“HALLO

“$25,000.00 “

“ZAHL DER ANGESTELLTEN"

(Ein Leerstring)

Anmerkung: Um Anführungszeichen (“) in Zeichenketten einzuschlieBen, wird CHR$(34) benutzt.

GANZE ZAHLEN, GLEITPUNKTZAHLEN UND
STRINGVARIABLEN

Variablen stehen für Daten in BASIC-Anweisungen. Der durch eine Variable darge-

stellte Wert kann zugeordnet werden, indem er gleich einer Konstanten gesetzt

wird. Er kann auch das Ergebnis einer Programmberechnung sein. Variablen

können wie Konstanten ganze Zahlen, Gleitpunktzahlen oder Zeichenketten

(Strings) sein.

Wird in einem Programm eine Variable verwendet, ohne daß ihr vorher ein Wert

zugeordnet wurde, erstellt der BASIC-Interpreter automatisch die Variable mit dem

Wert Null, wenn es sich um eine ganze Zahl oder eine Gleitpunktzahl handelt. Wenn

es sich um einen String handelt, wird ein Leerstring angenommen.

Variablennamen können eine beliebige Länge haben. Im CBM-BASIC sind jedoch

nur die ersten zwei Zeichen signifikant. D. h., bei allen Variablenbezeichnungen

müssen die ersten zwei Buchstaben unbedingt unterschiedlich sein. Variablenna-

men dürfen NICHT genau wie BASIC-Schlüsselwörter lauten, und sie dürfen auch

keine Schlüsselwörter enthalten. Schlüsselwörter umfassen alle BASIC-Befehle,

Anweisungen, Funktionsbezeichnungen und logische Operatorbezeichnungen.

BASIC PROGRAMMIERHINWEISE 7

Wird aus Versehen ein Schlüsselwort inmitten eines Variablennamens benutzt, wird

auf dem Bildschirm die BASIC-Fehlermeldung ?SYNTAX ERROR angezeigt.

Variablennamen können aus dem Alphabet und den Zahlen O—9 gebildet werden.

Das erste Zeichen des Namens muß ein Buchstabe sein.

Als letztes Zeichen können die Daten-Vereinbarungszeichen (%) und ($) stehen.

Das Prozentzeichen (%) gibt an, daß es sich bei der Variablen um eine ganze Zahl,

und das Dollarzeichen ($), daß es sich um eine Stringvariable handelt. Wird keines

dieser Vereinbarungszeichen benutzt, nimmt der Interpreter an, daß es sich um

eine Gleitpunktvariable handelt. Variablennamen, Wertzuordnung und Datenarten

sind z. B.:

A$="GROSS SALES“ (Stringvariable)

MTH$=“JAN“+A$ (Stringvariable)

(K%=5 Ganzzahlige Variable)

CNT%=CNT% +1 (Ganzzahlige Variable)

FP=12.5 (Gleitpunktvariable)

SUM=FP*CNT% (Gleitpunktvariable)

GANZZAHLIGE, GLEITPUNKT- UND STRINGFELDER

Ein Feld ist eine Tabelle (oder Liste) zusammengehöriger Daten mit einem einzigen

Variablennamen. Ein Feld ist also eine Folge zusammengehöriger Variablen. So

kann z. B. eine Zahlentabelle als ein solches Feld angesehen werden. Die einzel-

nen Zahlen der Tabelle werden zu einzelnen Feldelementen.

Mit Feldern läßt sich auf einfache Weise eine große Anzahl zusammengehöriger

Variablen beschreiben. Nehmen wir z. B. eine Zahlentabelle. Diese besteht aus

zehn Reihen mit jeweils 20 Zahlen. Das ergibt insgesamt 200 Zahlen. Ohne einen

gemeinsamen Feldnamen müßten Sie für den Aufruf jedem Wert in der Tabelle

einen eigenen Namen zuordnen. Wenn man jedoch Felder benutzt, braucht einem

Feld auch nur ein Name zugeordnet zu werden. Alle Elemente im Feld werden

durch ihre jeweilige Lage identifiziert.

Feldnamen können vom Typ Ganze Zahl, Gleitpunktzahl oder String sein. Für alle

Elemente im Feld gilt dann entsprechend dem Feldnamen der gleiche Datentyp.

Felder können nur eine Dimension (in einfacher Liste) oder auch mehrere Dimen-

sionen haben (stellen Sie sich ein durch Reihen und Spalten gekennzeichnetes

Gitter oder einen Rubik-Würfel® vor). Jedes einzelne Feldelement wird durch einen

Index (oder eine Indexvariable) identifiziert, der nach dem Feldnamen folgt und in

Klammern () eingeschlossen ist.

Die Anzahl der Dimensionen eines Feldes darf theoretisch nicht größer als 255 sein,

und für jede Dimension ist die Anzahl der Elemente auf 32767 beschränkt. Bei der

8 BASIC PROGRAMMIERHINWEISE

praktischen Anwendung sind die Feldgrößen jedoch durch die Speicherkapazität

und/oder eine logische Bildschirmzeile von 80 Zeichen beschränkt.

Hat ein Feld nur eine Dimension und überschreitet sein Indexwert nie 10 (11

Elemente: O bis 10), dann wird dieses Feld vom Interpreter erstellt und mit Nullen

gefüllt, wenn das erste Mal auf ein beliebiges Feldelement Bezug genommen wird.

Ansonsten muß die BASIC-Anweisung DIM zur Definition von Form und Größe des

Feldes benutzt werden.

Der für ein Feld erforderliche Speicherbedarf läßt sich wie folgt bestimmen:

5 Bytes für den Feldnamen

+ 2 Bytes für jede Felddimension

+ 2 Bytes pro Element für ganze Zahlen

ODER + 5 Bytes pro Element für Gleitpunktzahlen

ODER + 3 Bytes pro Element für Zeichenketten

UND + 1 Byte pro Zeichen in jedem Stringelement

Beim Index kann es sich um ganzzahlige Konstanten, Variablen oder Rechenaus-

drücke handeln, bei denen das Ergebnis eine ganze Zahl ist. Getrennte Indizes

(durch Kommata getrennt) werden für jede Felddimension benötigt. Ein Index kann

einen Wert von Null bis zur Elementanzahl in der jeweiligen Felddimension haben.

Werte außerhalb dieses Bereichs führen zu der BASIC-Fehlermeldung ?BAD

SUBSCRIPT. Feldnamen, Wertzuordnung und Datentyen sind z. B.:

A$(0)="GROSS SALES“ (Stringfeld)

MTH$(K%)= “JAN “ (Stringfeld)

G2%(X)=5 (Ganzzahlen Feld)

CNT %(G2%(X))=CNT%(1)—2 (Ganzzahlen Feld)

FP(12*K%)=24.8 (Gleitpunktfeld)

SUM(CNT%(1))=FPTK% (Gleitpunktfeld)

A(5)=0 (Dem funften Element im eindimensionalen Feld mit der

Bezeichnung “A“ wird der Wert O zugewiesen.)

B(5,6)=0 (Dem Element in Reihe 5 und Spalte 6 des zweidimensionalen

Feldes mit der Bezeichnung “B“ wird der Wert O zugewiesen.)

C(1,2,3)=0 (Dem Element in Reihe 1, Spalte 2 und Tiefe 3 der dritten

Dimension mit der Bezeichnung “C“ wird der Wert O zuge-

wiesen.)

BASIC PROGRAMMIERHINWEISE 9

AUSDRUCKE UND OPERATOREN

Ausdrucke werden durch Konstanten, Variablen und/oder Felder gebildet. Ein

Ausdruck kann eine einzelne Konstante, ein einfacher Wert oder eine beliebige

Feldvariable sein.

Er kann jedoch auch eine Kombination aus Konstanten, Variablen und Operatoren

sein, die einen Einzelwert ergeben sollen. Die Operatoren werden nachfolgend

erklart. Es gibt zwei verschiedene Arten von Ausdrucken: |

1) RECHENAUSDRÜCKE

2) STRINGS (ZEICHENKETTEN)

Ausdrücke enthalten normalerweise zwei oder mehr Daten, die Operanden genannt

werden. Die Operanden werden voneinander getrennt. Im allgemeinen wird der

Wert des Ausdrucks einem Variablennamen zugeordnet. Alle Beispiele für Konstan-

ten und Variablen, die bisher gegeben wurde, waren gleichzeitig auch Beispiele für

Ausdrücke.

Ein Operator ist ein spezielles Symbol, das für den BASIC-Interpreter in Ihrem

COMMODORE 64 einen Vorgang angibt, der mit Variablen oder Konstantendaten

ausgeführt werden soll. Ein oder mehr Operatoren zusammen mit einer oder

mehreren Variablen und/oder Konstanten bilden einen Ausdruck. Rechen-, Ver-

gleichs- und logische Operatoren werden vom COMMODORE 64 BASIC erkannt.

RECHENAUSDRÜCKE

Bei der Lösung von Rechenausdrücken ergibt sich eine ganze Zahl oder ein

Gleitpunktwert. Die Rechenoperatoren (+, —, *, /, T) werden für Addition, Subtrak-

tion, Multiplikation, Division und Exponentialberechnungen benutzt.

RECHENOPERATIONEN

Ein Rechenoperator bestimmt eine Rechenoperation, die mit den beiden Operan-

den beidseits des Operators ausgeführt wird. Rechenoperationen werden unter

Verwendung von Gleitpunktzahlen ausgeführt. Ganze Zahlen werden zuvor in

Gleitpunktzahlen umgewandelt. Das Ergebnis wird dann wieder zurück in eine

ganze Zahl verwandelt, wenn es einem ganzzahligen Variablennamen zugeordnet

ist.

ADDITION (+): Das Pluszeichen (+) gibt an, daß der Operand auf der rechten

Seite zu dem auf der linkan Seite addiert wird.

10 BASIC PROGRAMMIERHINWEISE

BEISPIELE:

2+2

A+B+C

X% +1

BR+10E-2

SUBTRAKTION (—): Das Minuszeichen (—) gibt an, daß der Operand auf der

rechten Seite von dem auf der linken Seite subtrahiert wird.

BEISPIELE:

4—1

100-64

A-B

55-142

Dieses Minuszeichen kann auch als negatives Vorzeichen benutzt werden. Dies

entspricht einer Subtraktion dieser Zahl von Null (0).

BEISPIELE:

4— (—2) entspricht 4+2

MULTIPLIKATION: (*) Ein Sternchen (*) gibt an, daß der Operand auf der linken

Seite mit dem auf der rechten Seite multipliziert wird.

BEISPIELE:

100*2

50*0

A*X1

R%*14

DIVISION (/): Der Schragstrich (/) gibt an, daB der Operand auf der linken durch

den auf der rechten Seite dividiert wird.

BEISPIELE:

10/2

6400/4

A/B

4E2/XR

BASIC PROGRAMMIERHINWEISE 11

EXPONENTIALBERECHNUNG (1): Der Aufwärtspfeil gibt an, daß der Operand

auf der linken Seite in die durch den Operand auf der rechten Seite (Exponent)

angegebene Potenz erhoben wird. Ist der Operand auf der rechten Seite eine 2, so

wird die Zahl auf der linken Seite zum Quadrat erhoben. Ist der Exponent eine 3, so

wird die Zahl auf der linken Seite in die dritte Potenz erhoben usw. Der Exponent

kann eine beliebige Zahl sein, solange sich beim Rechenergebnis eine zulässige

Gleitpunktzahl ergibt.

BEISPIELE:

212 Entspricht: 2*2
273 Entspricht: 2*2*2
774 Entspricht: 7*7*7*7

ABTCD

31-2 Entspricht: 1/3*1/3

VERGLEICHSOPERATOREN

Die Vergleichsoperatoren (<, =, >, <=, >=, <>) werden hauptsächlich zum

Vergleich der Werte von zwei Operanden, aber auch zur Erzielung eines Rechener-

gebnisses benutzt. Die Vergleichsoperatoren und die logischen Operatoren (UND,

ODER und NICHT) führen zu einer Richtig-/Falschbewertung von Ausdrücken,

wenn sie bei Vergleichen benutzt werden. Ist der im Ausdruck angegebene

Vergleich richtig, so wird dem Ergebnis die ganze Zahl —1 zugeordnet”; ist er

falsch, so wird der Wert O zugeordnet. Es gibt folgende Vergleichsoperatoren:

< Kleiner als

= Gleich

> Größer als

<= Kleiner oder gleich

>= Größer oder gleich

<> Ungleich

* Achtung: Die Zuordnung von —1 bei einer wahren Aussage ist eine Charakteristik des COMMODORE

64.

12 BASIC PROGRAMMIERHINWEISE

BEISPIELE:
1=5-4 Richtig (—1)

14>66 Falsch (0)

15<=15 Richtig (—1)

Mit Vergleichsoperatoren können auch Strings verglichen werden. Bei Vergleichs-

zwecken gilt für das Alphabet die Reihenfolge A<B<C<D usw. Strings werden

durch Bewertung des Zusammenhangs zwischen den einzelnen Zeichen von links

nach rechts verglichen (siehe Stringoperationen).

BEISPIELE: |

“A < “BS Richtig (—1)

"KX" = “YY" Falsch (0)

BB$ <> CC$

Numerische Daten können nur mit anderen numerischen Werten verglichen (oder

diesen zugeordnet) werden. Das gleiche gilt für den Vergleich von Strings, da sonst

die BASIC-Fehlermeldung ?TYPE MISMATCH angezeigt wird. Beim Vergleich von

numerischen Operanden wird zunächst der Wert von einem bzw. beiden Operan-

den von einer ganzen Zahl gegebenenfalls in einen Gleitpunktausdruck umgewan-

delt. Dann wird der Zusammenhang zwischen den Gleitpunktwerten entsprechend

einer Richtig-/Falschbeurteilung bewertet.

Nach allen Vergleichen erhalten Sie eine ganze Zahl, unabhängig davon, welcher

Datentyp für den Operanden gilt (selbst wenn beides Zeichenketten sind). Aus

diesem Grund kann der Vergleich von zwei Operanden als Operand bei Berechnun-

gen benutzt werden. Das Ergebnis lautet —1 oder O und kann beliebig weiter

verwendet werden, außer als Divisor, da eine Division durch Null unzulässig ist.

LOGISCHE OPERATOREN

Die logischen Operatoren (AND, OR, NOT) können zur Änderung der Bedeutung

von Vergleichsoperatoren oder für Rechenergebnisse benutzt werden. Logische

Operatoren ergeben andere Ergebnisse als —1 und 0; bei der Richtig-/Falschbe-

wertung wird jedes Ergebnis, das nicht 0 ist, als richtig angesehen.

Die logischen Operatoren (gelegentlich auch Boole’sche Operatoren genannt)

können auch für logische Operationen von einzelnen Binärstellen (Bits) bei zwei

Operanden benutzt werden. Wird jedoch der Operator NOT benutzt, so erfolgt die

Operation nur mit dem einen Operanden auf der rechten Seite.

Die Operanden müssen ganze Zahlen (-32768 bis +32767) sein (Gleitpunktzahlen

werden in ganze Zahlen umgewandelt), und beim Ergebnis ergibt sich wieder eine

ganze Zahl.

BASIC PROGRAMMIERHINWEISE 13

Logische Operationen beziehen sich immer auf die entsprechenden Bits der beiden

Operanden. Beim logischen AND ist das Bit-Ergebnis nur 1, wenn beide Operan-

denbits 1 sind. Beim logischen OR kann das Bit-Ergebnis 1 sein, wenn nur ein

Operand 1 ist. Das logische NOT ist der entgegengesetzte Wert jedes Bits als

einzelner Operand. D. h., es bedeutet “wenn es NOT 1 ist, dann ist es 0. Wenn es

NOT 0 ist, dann ist es 1.“

Das ausschlieBende XOR hat keinen logischen Operator, sondern wird als Teil der

Anweisung WAIT ausgefuhrt. Beim ausschlieBenden ODER ist das Ergebnis 0,

wenn die Bits von zwei Operanden gleich sind. Ansonsten lautet das Ergebnis 1.

Logische Operationen werden durch Anweisungsgruppen definiert, die alle zusam-

men die in Tabelle 1.2. gezeigte Boole’sche “WAHRHEITSTABELLE“ bilden.

Tabelle 1.2. Boole’sche Wahrheitstabelle

Das Ergebnis der AND-Operation lautet nur 1, wenn beide Bits 1 sind:

1 AND 1 = 1

O AND 1 =0

1 AND 0 = 0

O AND 0 = 0

Das Ergebnis der OR-Operation lautet 1, wenn eins der Bits 1 ist:

1OR1=1

OOR1=1

1ORO=1

0ORO=O

Durch die NOT-Operation werden alle Bits logisch komplementiert:

NOT 1=0

NOT 0 = 1

Das ausschlieBende ODER (XOR) ist Teil der Anweisung WAIT:

1 XOR 1 = 0

1 XORO = 1

OXOR 1 = 1

O XOR 0 = 0
14 BASIC PROGRAMMIERHINWEISE

Die logischen Operatoren AND, OR und NOT geben eine Boole’sche Rechenope-

ration an, die mit zwei Operanden ausgeführt werden. Bei NOT wird nur der

Operand auf der rechten Seite berücksichtigt. Logische Operationen (oder Boole’-

sche Rechenoperationen) werden erst ausgeführt, wenn alle Rechen- und Ver-

gleichsoperationen in einem Ausdruck beendet sind.

BEISPIELE:

IF A=100 AND B=100 THEN 10 (Wenn sowohl A als auch B den Wert

100 haben, ist das Ergebnis richtig)

A=96 AND 32: PRINT A (A = 32)

IF A=100 OR B=100 THEN 20 (Wenn A oder B 100 ist, dann ist das

Ergebnis richtig)

A=64 OR 32: PRINT A (A = 96)

IF NOT X<Y THEN 30 (Wenn X>=Y, ist das Ergebnis richtig)

X= NOT 96 (Das Ergebnis ist —97 (Zweierkomple-

ment)

PRIORITAT DER OPERATIONEN

Bei allen Ausdrucken werden die verschiedenen Operationen entsprechend einer

festgelegten Prioritatenfolge ausgefuhrt. D. h., bestimmte Operationen werden vor

anderen durchgeführt. Die normale Reihenfolge kann geändert werden, indem man

zwei oder mehr Operanden in Klammern einschließt () und so einen “Unteraus-

druck“ bildet. Die Werte eines Ausdrucks in Klammern werden auf einen einzelnen

Wert reduziert, ehe die Teile außerhalb der Klammern bearbeitet werden.

Werden in Ausdrücken Klammern benutzt, so ist darauf zu achten, daß stets die

gleiche Anzahl an linken und rechten Klammern auftritt. Ansonsten wird die BASIC-

Fehlermeldung ?SYNTAX ERROR angezeigt.

Ausdrücke, die Operanden in Klammern enthalten, können ihrerseits auch in

Klammern eingeschlossen werden und so ganze Ausdrücke in mehreren Ebenen

bilden. Dies wird Verschachtelung genannt. Klammern können in Ausdrücken auf

max. zehn Ebenen verschachtelt werden — zehn Klammersätze.

Hierbei wird die ganz innen liegende Klammer zuerst aufgelöst. Ausdrücke sind

z. B.:

BASIC PROGRAMMIERHINWEISE 15

A+B
CHD+E)/2
((X—C}(D+E)/2)*10)+1
GG$>HH$
JJ$+ “MORE
K%=1 AND M<>X
K%=2 OR (A=B AND M<X)
NOT (D=E)

Der BASIC-Interpreter führt normalerweise zuerst die Rechenoperationen durch.

Danach folgen Vergleichsoperationen und zuletzt logische Operationen.

Sowohl für arithmetische als auch für logische Operatoren gilt eine Prioritätenfolge.

Vergleichsoperatoren haben keine solche Folge und werden bei der Ausdrucksbe-

wertung von links nach rechts so ausgeführt, wie sie erscheinen.

Wenn für die anderen Operatoren in einem Ausdruck keine besondere Priorität gilt,

so werden sie von links nach rechts ausgeführt. Beim Auflösen einer Klammer wird

die normale Prioritätenfolge aufrechterhalten. Die Priorität für arithmetische und

logische Operationen wird in Tabelle 1.3., beginnend bei der ersten Priorität,

gezeigt.

Tabelle 1.3. Priorität von Ausdrucks-Operationen

Operator Beschreibung Beispiel

T Exponentialrechnung BASETEXP

— Negation (negatives Vorzeichen) — A

“/ Multiplikation AB * CD

Division EF / GH

+ — Addition CNT + 2

Subtraktion JK — PQ

>= < Vergleichsoperationen A<=B

NOT Logisches Nicht NOT K%

(Ganzzahliges Zweierkomplement)

AND Logisches UND JK AND 128

OR Logisches ODER PQ OR 15

16 BASIC PROGRAMMIERHINWEISE

ZEICHENKETTENOPERATIONEN

Zeichenketten können mit den gleichen Vergleichsoperatoren (=, <>, <=, >=, <,

>) wie Zahlen verglichen werden. Bei dem Zeichenkettenvergleich wird jeweils ein

Zeichen (von links nach rechts) von jeder Zeichenkette genommen und jede

Zeichengrundposition vom CBM-Zeichensatz bewertet. Sind die Zeichencodes

gleich, so sind auch die Zeichen gleich. Bei abweichenden Zeichencodes ist das

Zeichen mit niedrigerer Codenummer auch niedriger im Zeichensatz.

Der Vergleich endet, wenn das Ende einer Zeichenkette erreicht ist. Stimmen alle

anderen Punkte überein, so ist die kürzere Zeichenkette niedriger als die längere.

Führende oder nachstehende Leerzeichen sind signifikant.

Unabhängig von den Datentypen ist das Ergebnis des Vergleichs stets eine ganze

Zahl. Dies gilt selbst dann, wenn beide Operanden Zeichenketten sind. Aus diesem

Grund kann ein Vergleich von zwei Zeichenkettenoperanden als Operand bei

Berechnungen benutzt werden.

Das Ergebnis ist —1 oder O (richtig oder falsch) und kann beliebig eingesetzt

werden. Ausgeschlossen ist lediglich eine Division, da eine Teilung durch O

unzulässig ist.

STRINGS

Ausdrücke werden so behandelt, als ob ein impliziertes “<>0“ folgt. D. h., wenn

ein Ausdruck richtig ist, werden die nächsten BASIC-Anweisungen auf der gleichen

Programmzeile ausgeführt. Ist der Ausdruck falsch, wird der Rest der Zeile überle-

sen und erst die nächste Programmzeile ausgeführt.

Genau wie mit den Zahlen kann man auch mit Stringvariablen Verknüpfungen

durchführen. Der einzige String-Rechenoperator, der vom CBM BASIC erkannt

wird, ist ein Pluszeichen (+), das für die Verkettung von Strings benutzt wird. Bei

der Verkettung von Strings wird die Kette auf der rechten Seite des Pluszeichens an

die auf der linken Seite angefügt. Sie ist eine dritte Zeichenkette. Das Ergebnis kann

sofort angezeigt, beim Vergleich benutzt oder einem Variablennamen zugeordnet

werden. Wird ein String mit einem numerischen Wert verglichen (oder gleichge-

setzt) bzw. umgekehrt, so wird die BASIC-Fehlermeldung ?TYPE MISMATCH

angezeigt. Strings und Verkettungen sind z. B.:

10 A$=“FILE“ : B$=“NAME“

20 NAM$ = A$ + B$ (Ergibt den String: FILENAME)

30 RES$ = “NEW “+ A$ + B$ (Ergibt den String: NEW FILENAME)

 | Leerzeichen hier beachten.

BASIC PROGRAMMIERHINWEISE 17

PROGRAMMIERTECHNIKEN

DATENUMSETZUNG

Der CBM BASIC-Interpreter kann gegebenenfalls einen numerischen Wert von

einer ganzen Zahl in eine Gleitpunktzahl oder umgekehrt umsetzen. Hierbei gelten

folgende Regeln:

e Alle arithmetischen und Vergleichsoperationen werden im Gleitpunktformat aus-

geführt. Ganze Zahlen werden vor der Verarbeitung der Ausdrücke in Gleitpunkt-

zahlen umgewandelt, und das Ergebnis wird dann wieder in eine ganze Zahl

umgesetzt. Logische Operationen wandeln ihre Operanden in ganze Zahlen um

und ergeben ein ganzzahliges Resultat.

e Wird eine numerische Variable einem numerischen Wert anderer Art gleichge-

setzt, so wird die Zahl umgesetzt und als im Variablennamen angegebener

Datentyp gespeichert.

e Wird ein Gleitpunktwert in eine ganze Zahl umgewandelt, so werden die Nach-

kommastellen abgeschnitten, und das ganzzahlige Ergebnis ist kleiner oder

gleich dem Gleitpunktwert. Liegt das Ergebnis außerhalb des Bereichs +32767

bis -32768, wird die BASIC-Fehlermeldung ?ILLEGAL QUANTITY angezeigt.

VERWENDUNG DER EINGABEANWEISUNG

Nun wissen Sie also, was Variablen sind, und sind in der Lage, zusammen mit der

Eingabe-Anweisung INPUT zu programmieren.

Bei unserem ersten Beispiel können Sie sich eine Variable als eine Art “Speicher“

vorstellen, in den der COMMODORE 64 die gegebenen Antworten speichert. Beim

Schreiben eines Programms, bei dem ein Name eingegeben werden soll, können

Sie dem über die Tastatur eingegebenen Namen die Variable N$ zuordnen. Nun

wird jedesmal, wenn Sie in Ihr Programm PRINT N$ eingeben, der COMMODORE

64 automatisch den eingegebenen Namen anzeigen.

Geben Sie über die Tastatur des COMMODORE 64 NEW ein, und drücken Sie die

Taste WEITE. Probieren Sie dieses Beispiel aus:

10 PRINT “IHR NAME“:INPUT N$

20 PRINT “HELLO,“ N$

In diesem Beispiel haben Sie die Variable N benutzt, um sich daran zu erinnern, daß

diese Variable für “NAME“ steht. Das Dollarzeichen ($) zeigt dem Computer an,

daß Sie eine Stringvariable benutzen. Es muß unbedingt zwischen zwei Variablen-

arten unterschieden werden:

18 BASIC PROGRAMMIERHINWEISE

1) NUMERISCHE VARIABLE

2) STRINGVARIABLE

Sie erinnern sich sicherlich noch daran, daß numerische Variablen zum Speichern

von Zahlenwerten wie z. B. 1, 100, 4000, usw. benutzt werden. Eine numerische

Variable kann ein einzelner Buchstabe (A), zwei Buchstaben (AB), ein Buchstabe

und eine Zahl (A1) oder zwei Buchstaben und eine Zahl (AB1) sein. Durch die

Verwendung kürzerer Variablen wird nicht soviel Speicherkapazität vergeben. Nütz-

lich ist es auch, Buchstaben und Zahlen für unterschiedliche Kategorien im gleichen

Programm zu benutzen (A1, A2, A3). Wenn Sie als Antwort ganze Zahlen und nicht

Zahlen mit Dezimalpunkten wünschen, brauchen Sie lediglich nach dem Variablen-

namen ein Prozentzeichen (%) einzugeben (AB%, A1%, usw.).

Nun wollen wir uns einige Beispiele ansehen, bei denen verschiedene Variablenar-

ten und Ausdrücke mit der Anweisung INPUT benutzt werden.

Eine Programmzeile wird durch Drücken der RETURN-Taste an den Computer

übergeben.

10 PRINT “ZAHL EINGEBEN“:INPUT A

20 PRINT A

10 PRINT “WORT EINGEBEN“:INPUT A$

20 PRINT A$

10 PRINT “ZAHL EINGEBEN“:INPUT A

20 PRINT A “MAL 5 IST GLEICH“ A*5

Anmerkung: Beispiel 3 zeigt, daß MELDUNGEN oder AUFFORDERUNGEN in Anführungszeichen

(“ “) stehen und die Variablen außerhalb dieser Anführungszeichen liegen. Beachten Sie auch, daß in

Zeile 20 die Variable A und dann die Meldung “MAL 5 IST GLEICH“ und abschließend die Berechnung

A*5 angezeigt wird.
Berechnungen sind in den meisten Programmen wichtig. Sie haben die Wahl, feste

Zahlen oder Variablen zu benutzen. Beim Arbeiten mit vom Benutzer vorgegebenen

Zahlen müssen jedoch numerische Variablen benutzt werden. Zunächst wird der

Benutzer zur Eingabe von zwei Zahlen aufgefordert:

10 PRINT “2 ZAHLEN EINGEBEN“:INPUT A:INPUT B

BASIC PROGRAMMIERHINWEISE 19

BEISPIEL FÜR EINEN HAUSHALTSPLAN ÜBER EINKÜNFTE/AUSGABEN

= PRINT "oy (Silas GEG
1@ PRIHT’ MONTHLY IMCOME": THPUT IH
2a PRINT
sa PRINTEXPENSE CATEGORY 1":IHFUT Ei$
4a FRIMT!ESPEHSE AMOUHNT":IHFUT Ed
= FRIHT
GQ PRINT 'EXPEMSE CATEGORY 2" :IMPUT E2%
7A FPRIMT EXPENSE AMOUNT": [HPUT ES
Sa PRIHT
Sa FRIHT"EXPEHSE CATEGORY 3": IHPUT Eat
LOG FRIHT"EXPEHSE AMOUHT":IMPUT ES
L1G PRINT "cl RB OR
120 EE 1+ES+E
120 EP=E 1H
140 PRINT"MOHTHLT IMCOME: #° IH
{SA FRINT"TOTAL EXPEHSES: #"E
ad PRINT" BALAHCE EQUALS: #" IH-E
{7a PRIHT
[Sa PRINT E1#"="<E1-E2#100"% OF TOTAL EXPEHNSES"
(GQ FRIHT E2$"=" (ESE #1G0"% OF TOTAL EXPEMSES"
S00 PRINTERS "=" (ESE cee" e OF TOTAL EXPEHSES"
D160 PRIHT
238 FRIMT SOUR EXPENSES="EP#1@G"™ OF YOUR TOTAL
TAICCME "
za FOR = 1 TOSGGG: HEMT PRIM
S40 PRINT REPEAT? Co OR Ao" DHPUT Soe: TF Ste" THENS
250 PRIHT "END

Be ser Pour owe

| Anmerkung: IN darf nicht O sein, und E1, E2, E3 können NICHT alle gleichzeitig O sein.

20 BASIC PROGRAMMIERHINWEISE

Zeile(n) Beschreibung

5 Loscht den Bildschirm

10 Anweisung PRINT/INPUT

20 Einfugen einer Leerzeile

30 Ausgabekategorie 1 = E1$

40 Ausgabebetrag = E1.

50 Einfugen einer Leerzeile

60 Ausgabekategorie 2 = E2$

70 Ausgabebetrag 2 = Es.

80 Einfügen einer Leerzeile

90 Ausgabekategorie 3 = E3$

100 Ausgabebetrag 3 = E3

110 Löscht den Bildschirm

120 Addition der Ausgabebeträge = E

130 Berechnung von Ausgaben/Einkünften %

140 Anzeige des Einkommens

150 Anzeige der Gesamtausgaben

160 Anzeige von Einkommen — Ausgaben

170 Einfügen einer Leerzeile

180-200 | Zeile 180-200 berechnet, wieviel % jeder

Ausgabebetrag von den Gesamtausgaben beträgt

210 Einfügen einer Leerzeile

220 Anzeige von Einkünften/Ausgaben in %

230 Warteschleife
Multiplizieren Sie nun, wie nachstehend in Zeile 20 gezeigt, zwei Zahlen miteinan-

der, um die neue Variable C zu erhalten:

20 C=A*B

Um das Ergebnis auf dem Bildschirm anzuzeigen, ist folgende Zeile einzugeben:

30 PRINT A “MAL“ B “IST GLEICH“ C

Danach RUN eingeben und die RETURN-Taste drücken. Bitte beachten Sie, daß die

Meldungen im Gegensatz zu den Variablen in Anführungszeichen stehen.

Nehmen wir nun an, Sie möchten ein Dollarzeichen ($) vor der durch die Variable C

gekennzeichneten Zahl. Das $ muß in Anführungszeichen und vor der Variablen ©

angezeigt werden. Um $ in Ihr Programm einzufügen, drücken Sie die Tasten

und BEE. In Zeile 40 geben Sie nun wie folgt ein:

BASIC PROGRAMMIERHINWEISE 21

40 PRINT “$“ C

Nun die Taste drücken, danach RUN eingeben und wieder
drücken. |

Das Dollarzeichen steht in Anführungszeichen, da die Variable C nur eine Zahl

angibt und keine $ enthalten kann. Lautete die durch C dargestellte Zahl 100, würde

auf dem Bildschirm des COMMODORE 64 $ 100 angezeigt. Wurde jedoch ver-

sucht, PRINT $C ohne Anführungszeichen zu benützen, wird die Meldung

?SYNTAX ERROR angezeigt.

Ein letzter Tip: Sie können eine Variable zur Darstellung eines Dollarzeichens

erstellen, durch die Sie dann $ ersetzen können, wenn Sie es mit numerischen

Variablen benutzen wollen. Z. B.:

10 Z$="$“

Immer wenn Sie jetzt ein Dollarzeichen brauchen, können Sie die Stringvariable Z$

benutzen. Probieren Sie folgendes:

10 Z$="$":INPUT A

20 PRINT Z$A

Zeile 10 bestimmt $ als die Stringvariable Z$ und gibt danach eine Zahl A ein. In

Zeile 20 wird Z$ ($) neben A (Zahl) angezeigt.

ARBEITEN MIT DER GET-ANWEISUNG

In den meisten einfachen Programmen wird die Anweisung INPUT benutzt, um vom

Benutzer Daten zu bekommen. Bei komplexeren Anwendungen zum Schutz vor

Schreibfehlern usw. bietet Ihnen die Anweisung GET größere Flexibilität. Dieser

Abschnitt zeigt Ihnen, wie Sie mit der Anweisung GET umgehen müssen und für

Ihre Programme zusätzliche Bildschirm-Aufbereitungsfunktionen erzielen.

Der COMMODORE 64 hat einen Tastaturpuffer mit einer Kapazität von 10 Zeichen.

D. h., auch wenn der Computer gerade mit einer Operation beschäftigt und daher

nicht zum Lesen Ihrer Eingabe bereit ist, können Sie noch max. 10 Zeichen

eingeben, die sofort nach Beendigung der derzeitigen Operation benutzt werden.

Geben Sie als Beispiel folgendes Programm in Ihren COMMODORE 64 ein:

10 TI$="000000“

20 IF TI$ < “000015“ THEN 20

22 BASIC PROGRAMMIERHINWEISE

Geben Sie nun RUN ein, drücken Sie die Taste WEI, und geben Sie mit der

Tastatur wahrend der Programmausfuhrung HELLO ein.

Bitte beachten Sie, daß ca. 15 s lang nach Beginn des Programms gar nichts

passiert. Erst dann erscheint die Meldung HELLO auf dem Bildschirm. Stellen Sie

sich vor, Sie stehen in einer Schlange vor einem Kino an. Die erste Person in dieser

Schlange ist auch die erste, die eine Karte bekommt und dann aus der Schlange

tritt. Entsprechend bekommt die letzte Person in der Schlange auch erst zuletzt die

Karte. Die Anweisung GET ist so etwas wie ein Kartenkontrolleur. Zunächst wird

geprüft, ob irgendwelche Zeichen “in Schlange stehen“ (d. h., ob irgendwelche

Tasten angeschlagen wurden).

Lautet die Antwort ja, dann wird dieses Zeichen der entsprechenden Variablen

zugeordnet. Wurde keine Taste gedrückt, wird der Variablen ein leerer Wert

zugeordnet.

Bitte beachten Sie hierbei unbedingt, daß stets nur 10 Zeichen in den Puffer

eingegeben werden können. Alle übrigen Zeichen werden nicht berücksichtigt.

Da die Anweisung GET auch dann weiterläuft, wenn keine Zeichen eingegeben

werden, ist es sinnvoll, diese Anweisung in eine Schleife einzugeben, so daß stets

bis zum Anschlagen einer Taste oder dem Empfang eines Zeichens während des

Programms gewartet werden muß.

Nachstehend sehen Sie eine Anwendung für die Anweisung GET. Zum Löschen

des vorherigen Programms geben Sie NEW ein und drücken auf die RETURN-

Taste.

10 GET A$: IF A$ = ““ THEN 10

Bitte beachten Sie, daß zwischen den Anführungszeichen (““) in dieser Zeile KEIN

LEERZEICHEN ist. Dies zeigt einen leeren Wert (LEERSTRING) an und schickt das

Programm in einer kontinuierlichen Schleife zurück zur Anweisung GET, bis eine

Taste angeschlagen wird. Danach wird das Programm mit der Zeile nach Zeile 10

fortgesetzt. Fügen Sie folgende Zeile in Ihr Programm ein:

100 PRINT A$;: GOTO 10

Lassen Sie nun das Programm laufen. Bitte beachten Sie, daß auf dem Bildschirm

kein Cursor M erscheint. Die von Ihnen eingegebenen Zeichen werden jedoch

auf dem Bildschirm angezeigt. Dieses zweizeilige Programm kann wie nachstehend

gezeigt als Teil eines Editor-Programms benutzt werden.

Es gibt viele Dinge, die Sie mit einem Bildschirm-Editor tun können. Es kann ein

blinkender Cursor angezeigt werden. Sie können vermeiden, daß durch das Betati-

gen bestimmter Tasten wie z. B. aus Versehen der ganze Bildschirm
gelöscht wird.

BASIC PROGRAMMIERHINWEISE 23

Und Sie können sogar mit Ihren Funktionstasten ganze Wörter oder Sätze darstel-

len. Folgende Programmzeilen belegen die Funktionstasten. Denken Sie daran, daß

dies lediglich ein Programmanfang ist und daß Sie das Programm ganz entspre-

chend Ihren persönlichen Bedürfnissen gestalten können.

10 GET A$: IF A$ =““ THEN 10

20 IF A$ = CHR$(133) THEN POKE 53280,8:GOTO 10

30 IF A$ = CHR$(134) THEN POKE 53281,4:GOTO 10

40 IF A$ = CHR$(135) THEN A$=“DEAR SIR:“+CHR$(13)

50 IF A$ = CHR$(036) THEN A$="SINCERELY,“+CHR$(13)

100 PRINT A$;: GOTO 10

Die Zahlen in Klammern stammen aus der Zeichen-Code-Tabelle in Anhang C.

Diese Tabelle führt für jedes Zeichen eine bestimmte Zahl auf. Die vier Funktionsta-

sten werden benutzt, um die durch die Anweisungen dargestellten Aufgaben

auszuführen, die in jeder Zeile nach dem Wort THEN folgen. Durch Änderung der

Zahlen in den Klammern können Sie verschiedene Tasten belegen. Verschiedene

Anweisungen werden ausgeführt, wenn die Information nach der Anweisung THEN

geändert wird.

KOMPRIMIEREN VON BASIC-PROGRAMMEN

Durch Komprimieren (engl.: crunching) können Sie die max. mögliche Anzahl an

Anweisungen in Ihrem Programm eingeben. Außerdem können Sie hierdurch die

Programmgröße reduzieren. Bei dem Schreiben von Programmen, bei denen die

Eingabe von Daten, wie z. B. Zahlen oder Text, erforderlich ist, läßt ein kürzeres

Programm mehr Speicherkapazität für die Daten übrig.

SCHLÜSSELWORTABKÜRZUNGEN

Eine Liste der Schlüsselwortabkürzungen finden Sie in Anhang A. Mit Hilfe dieser

Abkürzungen können Sie bedeutend mehr Informationen in eine Zeile eingeben.

Die am häufigsten eingesetzte Abkürzung ist das Fragezeichen (?), das die BASIC-

Abkürzung für den Befehl PRINT ist. Bei der Auflistung eines Programms, das

Abkürzungen enthält, zeigt der COMMODORE 64 Ihnen allerdings die Schlüssel-

wörter in ganzer Länge an. Enthält eine Programmzeile mit ausgeschriebenen

Schlüsselwörtern mehr als 80 Zeichen (zwei Bildschirmzeilen) und soll geändert

werden, so müssen Sie vor der Speicherung diese Zeile neu mit Abkürzungen

eingeben. Bei Programmspeicherung werden BASIC-Schlüsselwörter vom COM-

MODORE 64 in Zeichen (Tokens) umgesetzt. Normalerweise werden Abkürzungen

nach dem Schreiben eines Programms eingefügt, wenn dieses vor der Speicherung

nicht mehr aufgelistet wird.

24 BASIC PROGRAMMIERHINWEISE

VERKLEINERN DER PROGRAMMZEILENNUMMERN

Die meisten Programmierer beginnen ihre Programme bei Zeile 10 und numerieren

die nachfolgenden Zeilen dann im Zehner-Abstand durch (d. h. 100, 110, 120). Auf

diese Weise können nach der Programmentwicklung Extra-Anweisungszeilen ein-

gefügt werden (111, 112, usw.). Um das Programm kürzer zu gestalten, können für

die Zeilennummern die niedrigsten Nummern gewählt werden, die möglich sind

(1, 2, 3). Denken Sie daran, daß längere Zahlen mehr Speicherkapazität beanspru-

chen als kürzere. So benötigt die Zahl 100 z. B. 3 Bytes (1 Byte für jede Ziffer), die

Zahl 1 hingegen nur 1 Byte.

EINGABE VON MEHREREN ANWEISUNGEN IN JEDE ZEILE

In eine numerierte Zeile Ihres Programms können Sie mehrere Anweisungen

getrennt durch einen Doppelpunkt eingeben. Hierbei gilt lediglich die Begrenzung,

daß die Anweisungen in jeder Zeile einschließlich Doppelpunkten nicht die Stan-

dardzeilenlänge von 80 Zeichen überschreiten. Nachfolgend stehen zwei Pro-

grammbeispiele vor und nach der Verkürzung.

Vor der Verkürzung Nach der Verkürzung

10 PRINT"HELLO.. .“; 10 PRINT “HELLO .. .“;:FORT=1TO

20 FOR T=1 TO 500:NEXT 500:NEXT:PRINT “HELLO,

30 PRINT “HELLO, AGAIN...“ AGAIN .. .“:GOTO10

40 GOTO 10

LOSCHEN DER REM-ANWEISUNGEN

REM-Anweisungen sind eine nützliche Hilfe, um sich selbst oder anderen Program-

mierern einen bestimmten Programmteil zu erlautern. Wenn das Programm jedoch

vollständig und einsatzbereit ist, werden Sie diese REM-Anweisungen wahrschein-

lich nicht mehr brauchen.

Sie können daher Speicherkapazität einsparen, indem Sie diese Anweisungen

löschen. Soll eine Programmstruktur zukünftig überarbeitet oder genau untersucht

werden, so sollten Sie eine Kopie des Programms mit den REM-Anweisungen

anfertigen.

ARBEITEN MIT VARIABLEN

Wird eine Zahl, ein Wort oder ein Satz wiederholt in Ihrem Programm benutzt, so

sollten Sie diese Wörter oder Zahlen am besten in Variablen ablegen. Zahlen

BASIC PROGRAMMIERHINWEISE 25

können einfachen Buchstaben zugeordnet werden. Zur Angabe von Wörtern und

Sätzen wählen Sie Stringvariablen mit einem Buchstaben und einem Dollarzeichen.

Hier ein Beispiel:

Vor der Verkürzung Nach der Verkürzung

10 POKE 54296,15 10 V=54296:F=54273

20 POKE 54276,33 20 POKEV,15:POKE54276,33

30 POKE 54273,10 30 POKEF,10:POKEF,40:POKEF,70

40 POKE 54273,40 40 POKEV,0

50 POKE 54273,70

60 POKE 54296,0

ARBEITEN MIT READ- UND DATA-ANWEISUNGEN

Umfangreiche Datenmengen können einzeln eingegeben werden... Sie haben

jedoch auch die Möglichkeit, den Anweisungsteil des Programms zusammenzufas-

sen und alle zu bearbeitenden Daten in einer langen Liste wiederzugeben, die

DATA-Anweisung genannt wird. Auf diese Weise lassen sich besonders gut große

Zahlenlisten in einem Programm unterbringen.

ARBEITEN MIT FELDERN UND MATRIZEN

Mit Feldern und Matrizen können, wie bei den DATA-Anweisungen, umfangreiche

Datenmengen verarbeitet werden. Der Unterschied besteht lediglich darin, daß bei

Feldern mehrdimensionale Listen möglich sind.

VERMEIDUNG VON LEERZEICHEN

Am einfachsten können Sie die Programmgröße dadurch reduzieren, daß Sie alle

Leerzeichen vermeiden. Auch wenn in den Beispielprogrammen zur besseren

Lesbarkeit häufig Leerzeichen enthalten sind, brauchen Sie doch bei der tatsächli-

chen Programmierung keinerlei Leerzeichen und können entsprechend Speicher-

kapazität sparen.

ARBEITEN MIT GOSUB-ROUTINEN

Wird eine bestimmte Zeile oder Anweisung wiederholt benutzt, so ist es ratsamer,

von mehreren Stellen des Programms zu dieser Zeile über die GOSUB-Anweisung

zu gehen, als die ganze Zeile oder Anweisung jedesmal neu zu schreiben.

26 BASIC PROGRAMMIERHINWEISE

ARBEITEN MIT TAB UND SPC

Statt eine Zeichenposition auf dem Bildschirm Uber mehrere Cursor-Befehle Zu bestimmen, ist es haufig ratsamer, hierzu die Anweisungen TAB und SPC ZU
benutzen.

BASIC PROGRAMMIERHINWEISE 27

. a . ee ae Ze 7 = Pe oes

Tr oa oF hi Pu
\ Bu iz .

ER es Fr
E u :

o*
\ . ®

a © m
7 . « \ z

¥

. ae

i

”

D
»

4 i

* , ww '

= . e j v

1 E . “7 4 a . \

i as 4
. E = aos nr 0 hy #
u i ha ee : — ~ fr

2 N ee yok?
ED m # u

KAPITEL

 BASIC-
VOKABULAR

e Einführung

e BASIC-Schlüsselwörter,
[01,401 748 1aToT-Ja m 51 ale Mi me lal airevart-lac-ia

e Beschreibung der BASIC-Schlüsselwörter

(alphabetisch)

e Tastatur und Merkmale des

COMMODORE 64

e Bildschirm-Editor
29

EINFUHRUNG

In diesem Kapitel werden die CBM-BASIC-Schlüsselwörter beschrieben. Zunächst

geben wir eine leicht lesbare Liste der Schlüsselwörter mit ihren Abkürzungen und

der jeweiligen Bildschirmanzeige. Danach werden Syntax und Funktion jedes

Schlüsselworts genau beschrieben und anhand von Beispielen gezeigt, wie Sie

diese Schlüsselwörter in Ihrem Programm nutzen können.

Beim COMMODORE 64 BASIC können Sie die meisten Schlüsselwörter abkürzen.

Hierzu werden so viele Buchstaben des Schlüsselworts eingegeben, wie zur

Unterscheidung von den übrigen Wörtern erforderlich sind, und bei der Eingabe des

letzten Buchstaben oder des letzten Graphik-Zeichens die Taste SB gedrückt
gehalten.

Abkürzungen in Programmen sparen keinerlei Speicherkapazität, da alle Schlüssel-

wörter vom BASIC-Interpreter als einzelne Zeichen (Tokens) dargestellt werden.

Bei der Auflistung eines Programms mit Abkürzungen erscheinen alle Schlüssel-

wörter in voll ausgeschriebener Form. Mit Hilfe von Abkürzungen können mehr

Anweisungen in eine Programmzeile eingegeben werden, selbst wenn sie nicht auf

die logische Bildschirmzeile von 80 Zeichen passen. Der Bildschirm-Editor arbeitet

auf der Basis einer 80-Zeichen-Zeile. D. h., wenn in einer Zeile Abkürzungen von

mehr als 80 Zeichen benutzt werden, dann kann diese Zeile beim Auflisten nicht

editiert werden. Sie müssen daher entweder die ganze Zeile einschließlich sämtli-

cher Abkürzungen neu eingeben oder die eine Zeile in zwei Zeilen mit jeweils

eigener Zeilennummer unterteilen.

Tabelle 2.1. gibt eine vollständige Liste aller Schlüsselwörter, Abkürzungen und der

entsprechenden Bildschirmanzeige. Danach folgt eine alphabetische Beschreibung

der Anweisungen, Befehle und Funktionen, die mit Ihrem COMMODORE 64

möglich sind.

Ferner werden die BASIC-Funktionen des BASIC-Interpreters erklärt.

Diese integrierten Funktionen können als direkte Anweisungen oder in einem

beliebigen Programm ohne weitere Bestimmung der Funktion benutzt werden. Dies

gilt NICHT für vom Benutzer definierte Funktionen. Das Ergebnis der integrierten

BASIC-Funktionen kann direkt ausgegeben oder einem geeigneten Variablenna-

men zugeordnet werden. Es gibt zwei verschiedene Arten von BASIC-Funktionen.

1) NUMERISCH

2) STRING (ZEICHENKETTE)

Argumente von integrierten Funktionen sind stets in Klammern eingeschlossen ().

Die Klammern folgen unmittelbar nach dem Funktionsschlüsselwort, und es stehen

KEINE LEERZEICHEN zwischen dem letzten Buchstaben des Schlüsselworts und

der linken Klammer (.

30 BASIC-VOKABULAR

Der Typ des benötigten Arguments wird im allgemeinen durch den Datentyp des

Resultats bestimmt. Funktionen, bei denen das Ergebnis ein String ist, werden

durch ein Dollarzeichen ($) als letztem Schlüsselwortbuchstaben identifiziert. In

einigen Fällen enthalten Stringfunktionen ein oder mehrere numerische Argumente.

Numerische Funktionen nehmen gegebenenfalls eine Umkehrung von ganzen

Zahlen und Gleitpunktzahlen vor. In der nachfolgenden Beschreibung wird der

Datentyp bei jeder Funktionsbezeichnung gezeigt. Die Argumenttypen werden

ebenfalls durch das Anweisungsformat gegeben.

TABELLE 2.1. COMMODORE 64 BASIC-SCHLÜSSELWÖRTER

BEFEHL ABKÜRZUNG | BILDSCHIRM- FUNKTIONSTYP
DARSTELLUNG

ABS A B A T NUMERISCH

AND A N AN

ASC A S A [¥| NUMERISCH

ATN A T A NUMERISCH

CHR$ C H c [] ZEICHENKETTE

CLOSE CL O cL [

CLR C L c LJ

CMD C M cN

CONT C O c N

COs keine COs NUMERISCH

DATA D A D

DEF D E DB FT

DIM D | DR]

BASIC-VOKABULAR

31

32

BEFEHL ABKÜRZUNG | BILDSCHIRM- FUNKTIONSTYP
DARSTELLUNG

END E N EY

EXP E X E NUMERISCH

FN Keine FN

FOR F O FM

FRE F R F LJ NUMERISCH

GET G E GF

GET # keine GET#

GOSUB GO S Go W

GOTO G O GN]

IF keine IF

INPUT keine INPUT

INPUT# | N iY

INT keine INT NUMERISCH

LEFT$ LE F LE 4 ZEICHENKETTE

LEN keine LEN NUMERISCH

LET L E ı DO

LIST L | LW]

LOAD L O Lf]

LOG keine LOG NUMERISCH
BASIC-VOKABULAR

BEFEHL | ABKÜRZUNG | BILDSCHIRM- FUNKTIONSTYP
DARSTELLUNG

MID$ M | M A] ZEICHENKETTE

NEW keine NEW

NEXT N E N M

NOT N O N []

ON keine ON

OPEN O P of]

OR keine OR

PEEK P E p 4 NUMERISCH

POKE P O PN

POS keine POS NUMERISCH

PRINT ? ?

PRINT# F R PL]

READ R = RA

REM keine REM

RESTORE RE S RE [¥|

RETURN RE T RE {| |

RIGHT$ R | Rh ZEICHENKETTE

RND R N RN NUMERISCH

RUN R U R [7
BASIC-VOKABULAR

33

BEFEHL ABKURZUNG | BILDSCHIRM- FUNKTIONSTYP
DARSTELLUNG

SAVE S A S

SGN S G s fq] NUMERISCH

SIN S | sh] NUMERISCH

SPC(S P s 7 ZEICHENKETTE

SQR S Q s @ NUMERISCH

STATUS ST ST NUMERISCH

STEP ST E sT FF

STOP S T s [|

STR$ ST R st HJ ZEICHENKETTE

SYS S Y s []

TAB(T A T [4] ZEICHENKETTE

TAN keine TAN NUMERISCH

THEN T H tT [I

TIME TI TI NUMERISCH

TIME$ TI$ TI$ ZEICHENKETTE

TO keine TO

USR U S uU [¥] | NUMERISCH

VAL V A V NUMERISCH

VERIFY V E ‚A

WAIT w Big A W
34 BASIC-VOKABULAR

BESCHREIBUNG DER BASIC-SCHLUSSELWORTER

ABS |

TYP: Funktion-Numerisch

FORMAT: ABS(<Ausdruck>)

Funktion: Gibt den Absolutwert einer Zahl an. Dies ist ihr Wert ohne Vorzeichen.

Der Absolutwert einer negativen Zahl ist diese Zahl multipliziert mit —1.

BEISPIELE DER ABS-FUNKTION:

10 X = ABS(Y)
10 PRINT ABS (X*J)
10 IF X = ABS (X) THEN PRINT “POSITIV“

AND

TYP: Operator
FORMAT: <Ausdruck> AND <Ausdruck>

Funktion: AND wird in Boole’schen Operationen zur Prüfung einzelner Bits und

zur Wahrheitsprüfung beider Operanden benutzt.

In der Boole’schen Algebra ist das Ergebnis einer AND-Operation nur dann 1, wenn

beide beteiligten Zahlen 1 sind. Das Ergebnis ist 0, wenn eine von beiden O ist

(falsch) oder beide O sind.

BEISPIELE DER 1-BIT-AND-OPERATION:

0 1 0 1

AND 0 AND 0 AND 1 AND 1

0 0 0 1

Der COMMODORE 64 führt AND-Operationen bei Zahlen im Bereich von —32768

bis +32767 durch. Brüche dürfen nicht benutzt werden, und Zahlen, die außerhalb

dieses Bereichs liegen, führen zur Anzeige der Fehlermeldung ?ILLEGAL QUAN-

TITY.

Bei der Umwandlung in ein Binärformat ergibt sich ein zulässiger Bereich von 16

Bits für jede Zahl. Entsprechende Bits werden AND-verbunden und ergeben ein 16-

Bit-Ergebnis im gleichen Bereich.

BASIC-VOKABULAR 35

BEISPIELE DER 16-BIT-AND-OPERATION:

17

AND 194

0000000000010001

AND 000000001 1000010

(BINARY) 0000000000000000

(DECIMAL) 0

32007
AND 28761

01111101000001 11
AND 0111000001011001

(BINARY) 0111000000000001
(DECIMAL) 28673

—241

AND 15359

1111111100001111

AND 0011101111111111

(BINARY) 0011101100001111

(DECIMAL) 15119

Bei der Richtig-/Falschbewertung einer Zahl nimmt der Computer stets an, daß die

Zahl richtig ist, wenn ihr Wert nicht O lautet. Bei der Auswertung eines Vergleichs

wird bei richtigem Ergebnis der Wert —1 und bei falschem Ergebnis der Wert O

zugeordnet. Im Binärformat besteht — 1 aus lauter Einsen und O aus lauter Nullen.

Aus diesem Grund ist das Ergebnis bei der AND-Verknüpfung von Richtig-/

Falschbewertungen stets richtig, wenn beliebige Bits im Ergebnis richtig sind.

BEISPIELE DER AND-VERKNÜPFUNG MIT RICHTIG-/

FALSCHBEWERTUNGEN:

50 IF X=7 AND W=3 THEN GOTO 10: REM NUR WAHR, WENN SOWOHL

X=7 und W=3 WAHR SIND

60 IFA AND Q=7 THEN GOTO 10: REM WAHR, WENN A#0 und Q=7

36 BASIC-VOKABULAR

ASC

TYP: Numerisch

FORMAT: ASC (<String>)

Funktion: Durch ASC wird eine Zahl von O bis 255 gegeben, die dem COMMO-

DORE ASCII-Wert des ersten Zeichens der Zeichenkette entspricht. In Anhang C

wird eine Tabelle der COMMODORE ASCII-Werte gegeben.

BEISPIELE DER ASC-FUNKTION:

10 PRINT ASC("Z“)
20 X = ASC("ZEBRA“)
30 J = ASC(J$)

Sind in der Zeichenkette keine Zeichen enthalten, wird die Fehlermeldung ?ILLE-

GAL QUANTITY angezeigt. Ist in dem oben gezeigten Beispiel J$=““, ist die

Anwendung der ASC-Funktion nicht erlaubt. Die Anweisungen GET und GET#

lesen CHR$(0) als einen Leerstring. Um dieses Problem zu beseitigen, wird am

Ende der Folge CHR$(0) wie nachstehend gezeigt, eingefügt.

BEISPIEL DER ASC-FUNKTION OHNE ANZEIGE DER FEHLERMELDUNG

?ILLEGAL QUANTITY:

30 J = ASC(J$ + CHR$(0))

ATN

TYP: Funktion-Numerisch

FORMAT: ATN (<Zahl>)

Funktion: Diese mathematische Funktion gibt den Arcustangens der Zahl wieder.

Das Ergebnis ist der Winkel (in Bogenmaß), dessen Tangens die gegebene Zahl ist.

Das Ergebnis liegt stets in dem Bereich von —7/2 bis +7/2.

BEISPIELE DER ATN-FUNKTION:

10 PRINT ATN (0)

20 X = ATN (J) * 180 / 7 : REM UMRECHNUNG DES WINKELS IN GRAD

BASIC-VOKABULAR 37

CHR$

TYP: Zeichenkette

FORMAT: CHR$ (<Zahl>)

Funktion: Uber diese Funktion wird ein COMMODORE ASCII-Code in sein ent-

sprechendes Zeichen umgewandelt. Eine Liste der Zeichen und ihrer entsprechen-

den Codes finden Sie in Anhang C. Die Zahl muß einen Wert zwischen O und 255

haben, da sonst die Fehlermeldung ?ILLEGAL QUANTITY angezeigt wird.

BEISPIELE DER FUNKTION CHRS:

10 PRINT CHR$(65) : REM 65 = GROSSES A

20 A$ = CHR$(13) : REM 13 = RETURN TASTE

50 A = ASC(A$) : A$ = CHR$(A): REM UMWANDLUNG IN C64 ASCII CODE

UND UMGEKEHRT

CLOSE

TYP: Ein-/Ausgabeanweisung
FORMAT: CLOSE <logische Filenummer>

Funktion: Uber diese Anweisung kann eine beliebige Datendatei oder ein Gerate-

kanal geschlossen werden. Die Dateinummer ist hierbei die gleiche wie beim

Öffnen der entsprechenden Datei oder des Gerätes (siehe Anweisung OPEN im

Abschnitt “Eingabe-/Ausgabeprogrammierung“).

Beim Arbeiten mit externen Speichern wie z. B. Kassetten und Disketten wird durch

die CLOSE-Anweisung jeder Inhalt des Puffers durch das Gerät gespeichert. Wird

dies nicht ausgeführt, so ist die Datei nur unvollständig auf der Kassette und

unlesbar auf der Diskette. Bei anderen Geräten ist die CLOSE-Anweisung nicht

unbedingt erforderlich, sie setzt jedoch Speicherkapazität für weitere Dateien frei.

Bezüglich weiterer Einzelheiten schlagen Sie bitte im Handbuch des entsprechen-

den Peripheriegeräts nach.

BEISPIELE DER CLOSE-ANWEISUNG:

10 CLOSE 1

20 CLOSE X

30 CLOSE 9*(1+J)

38 BASIC-VOKABULAR

CLR

TYP: Anweisung
FORMAT: CLR

Funktion: Über diese Anweisung kann RAM-Speicher verfügbar gemacht werden,

der benutzt wurde, jetzt aber nicht mehr gebraucht wird. Die BASIC-Programme im

Speicher bleiben unberührt, sämtliche Variablen, Felder, GOSUB-Adressen,

FOR... NEXT-Schleifen, vom Benutzer definierte Funktionen und Dateien werden

jedoch aus dem Speicher gelöscht. Der Speicherplatz steht dann für neue Variablen

usw. zur Verfügung.

Dateien auf Disketten oder Kassetten werden nicht richtig durch die CLR-Anwei-

sung geschlossen. Die Dateieninformationen, einschließlich aller nicht vollständi-

gen Puffer, sind für den Computer verloren. Das Disketten-Laufwerk geht immer

noch davon aus, daß die Datei offen ist. Wegen Einzelheiten siehe Anweisung

CLOSE.

BEISPIEL DER CLR-ANWEISUNG:

10 X=25

20 CLR

30 PRINT X

RUN

0

READY

CMD

TYP: Ein-/Ausgabeanweisung
FORMAT: CMD <logische Filenummer> [, String]

Funktion: Uber diese Anweisung wird die Datenausgabe vom Bildschirm auf das

angegebene File umgeschaltet. Dieses File kann der Diskette, der Kassette, dem

Drucker oder einer Ein-/Ausgabevorrichtung, wie z. B. einem Modem, zugeordnet

sein. Die logische Filenummer muB zuvor in einer OPEN-Anweisung festgelegt

werden. Der String wird, wenn er festgelegt ist, zum File geschickt.

BASIC-VOKABULAR 39

Wenn dieser Befehl wirksam ist, werden die PRINT-Anweisungen und LIST-Befehle

nicht auf dem Bildschirm angezeigt, sondern übertragen den Text im gleichen

Format auf das logische File.

Damit die Ausgabe wieder auf dem Bildschirm angezeigt wird, muß der Befehl

PRINT# eine Leerzeile vom CMD-Gerät vor dem Schließen (CLOSE) schicken,

damit dieses nicht mehr auf die Datenübertragung wartet (dies nennt man “Un-

listening“ des Geräts).

Durch Systemfehler (wie z. B. ?SYNTAX ERROR) wird die Ausgabe wieder zurück

auf den Bildschirm geholt. Hierdurch erfolgt kein Un-listening der Geräte, so daß

danach eine Leerzeile übertragen werden muß. (Bezüglich Einzelheiten schlagen

Sie bitte in dem Handbuch des Druckers oder der Diskette nach.)

BEISPIELE DER CMD-ANWEISUNG:

OPEN 4, 4: CMD 4, “TITLE“ : LIST: REM DRUCKT PROGRAMMLISTING AUS

PRINT# 4: CLOSE 4: REM BEENDET AUSDRUCK

10 OPEN 1, 1, 1, “TEST“: REM ANLEGEN EINER SEQUENTIELLEN DATEI

20 CMD 1: REM AUSGABE AUF KASSETTE

30 FOR L = 1 TO 100

40 PRINT L: REM SCHREIBT DIE ZAHLEN IN PUFFER DES KASSETTEN-

REKORDERS

50 NEXT

60 PRINT# 1: REM UNLISTEN

70 CLOSE 1: REM SCHREIBT PUFFERINHALT AUF DAS BAND, KORREK-

TER ABSCHLUSS

CONT

TYP: Befehl

FORMAT: CONT

Funktion: Uber diesen Befehl wird die Programmausführung wieder gestartet, die

durch die Anweisung STOP oder END oder durch Driicken der Taste ab-
gebrochen wurde. Das Programm wird genau an der Stelle fortgesetzt, an der es

unterbrochen wurde.

Bei gestoppter Programmausführung können Variablen überprüft und geändert oder

das Programm durchgesehen werden. Bei der Fehlerbeseitigung oder Überprüfung

eines Programms können STOP-Anweisungen so gesetzt werden, daß die Über-

40 BASIC-VOKABULAR

prüfung von Variablen und des Programmablaufs möglich wird. Die Fehlermeldung

CAN’T CONTINUE erscheint, wenn das Programm abgeändert wurde (selbst wenn

nur die Taste gedrückt wurde und der Cursor hinter einer unveränderten

Zeile stand), wenn das Programm durch einen Fehler gestoppt wurde, oder wenn

Sie vor der Eingabe von CONT zum erneuten Start des Programms einen Fehler

verursacht haben.

BEISPIEL DES CONT-BEFEHLS:

10 PI=0:C=1
20 PI=PI+4/C-4/(C+2)
30 PRINT PI
40 C=C+4:GOTO 20

Dieses Programm berechnet den Wert von Pl. Geben Sie über die Tastatur RUN

ein, und drücken Sie, wenn das Programm läuft, nach kurzer Zeit die

Taste . Es erscheint folgende Anzeige:

BREAK IN 20 | Anmerkung: Die Zahl kann verschieden sein

Geben Sie den Befehl PRINT C ein, um festzustellen, wie weit der COMMODORE

64 gekommen ist. Zur Wiederaufnahme des Programms benutzen Sie die Anwei-

sung CONT.

COS

TYP: Funktion

FORMAT: COS (<Zahl>)

Funktion: Über diese mathematische Funktion wird der Kosinus einer Zahl

berechnet, wobei diese Zahl als das Bogenmaß eines Winkels aufgefaßt wird.

BEISPIELE DER COS-FUNKTION:

10 PRINT COS (0)
20 X = COS (Y * 7/ 180) : REM UMRECHNUNG VON GRAD IN BOGEN-

MASS

BASIC-VOKABULAR 41

DATA

TYP: Anweisung
FORMAT: DATA <Konstantenliste>

Funktion: Uber die DATA-Anweisungen werden Informationen innerhalb eines

Programms gespeichert. Das Programm benutzt die Informationen über die Anwei-

sung READ, bei der die Konstanten der Reihe nach aus den DATA-Anweisungen

ausgelesen werden.

Alle DATA-Anweisungen in einem Programm werden als kontinuierliche Liste

behandelt. Die Daten werden von links nach rechts, von der Zeile mit der niedrig-

sten Zeilennummer bis zu der mit der höchsten Zeilennummer gelesen. Wenn die

READ-Anweisung auf Daten trifft, die nicht dem erforderlichen Typ entsprechen (ist

der Typ z.B. eine Zahl und ein String wird gefunden), dann wird eine Fehlermel-

dung angezeigt.

Als Daten können beliebige Zeichen gewählt werden, bei bestimmten Zeichen

müssen die Daten jedoch in Anführungszeichen sein (“ “). Hierzu gehören Inter-

punktionszeichen wie z. B. Komma (,), Doppelpunkt (:), Leerstellen, Buchstaben

mit SHIFT, graphische Zeichen und Cursor-Steuerzeichen.

BEISPIELE DER DATA-ANWEISUNG:

10 DATA 1, 10, 5, 8

20 DATA JOHN, PAUL, GEORGE, RINGO

30 DATA “DEAR MARY, HOW ARE YOU, LOVE, BILL“

40 DATA -1.7E-9, 3.33

DEF FN

TYP: Anweisung
FORMAT: DEF FN <Name> (<Variable>) = <Ausdruck>

Funktion: Auf diese Weise wird vom Anwender eine Funktion definiert, die spater

im Programm benutzt werden kann. Diese Funktion kann aus einer beliebigen

mathematischen Gleichung bestehen. Selbstdefinierte Funktionen sparen Spei-

cherkapazitat bei Programmen ein, bei denen eine lange Gleichung an mehreren

Stellen auftritt.

Die Gleichung muB nur einmal in der Definitionsanweisung bestimmt werden und

wird danach als abgekürzter Funktionsname aufgerufen.

42 BASIC-VOKABULAR

Der Funktionsname setzt sich aus den Buchstaben FN gefolgt von einem beliebigen

Variablennamen zusammen. Der Variablennamen kann aus ein oder zwei Zeichen

bestehen, wobei der erste ein Buchstabe und der zweite ebenfalls ein Buchstabe

oder eine Zahl ist.

BEISPIELE DER ANWEISUNG DEF FN:

10 DEF FN A(X) =X +7
20 DEF FN AA (X) = Y*Z
30 DEF FN AQ (Q) = INT(RND(1)* Q+ 1)

Diese Funktion wird spater im Programm mit Hilfe des Funktionsnamens aufgeru-

fen, wobei eine Variable in Klammern steht. Der Funktionsname wird wie jede

andere Variable behandelt, und sein Wert wird automatisch berechnet.

BEISPIELE FUR FN:

40 PRINT FN A (9)
50 R = FN AA (9)
60 G = G + FN AQ (10)

In Zeile 50 in obigem Beispiel beeinflußt die Zahl 9 in den Klammern nicht das

Funktionsergebnis, da die Funktionsdefinition in Zeile 20 nicht die Variable in

Klammern benutzt. Das Ergebnis ist Y mal Z, unabhängig vom Wert X. In den beiden

anderen Funktionen wird das Ergebnis durch den Wert in Klammern beeinflußt.

DIM

TYP: Anweisung
FORMAT: DIM <Variable> (<Index>) [, <Variable>

(<Index>)...]

Funktion: Über diese Anweisung wird ein Feld oder eine Matrix von Variablen

bestimmt. Auf diese Weise können Sie den Variablennamen mit einem Index

benutzen. Der Index weist auf das benutzte Element. Der niedrigste Index eines

Feldes ist Null, und die höchste Zahl ist die Zahl, die in der DIM-Anweisung

gegeben wird (max. 32767).

Die DIM-Anweisung muß einmal (und darf nur einmal) für jedes Feld ausgeführt

werden. Bei einer erneuten Ausführung dieser Zeile wird die Fehlermeldung

BASIC-VOKABULAR 43

REDIM’D ARRAY angezeigt. Aus diesem Grund führen die meisten Programme

alle DIM-Operationen ganz am Anfang aus.

Ein Feld kann beliebige Dimensionen und 255 verschiedene Indizes enthalten. Dies

ist lediglich durch die Kapazität des RAM-Speichers begrenzt, die für die Variablen

zur Verfügung steht. Das Feld kann, wie oben gezeigt, aus normalen numerischen

Variablen, aus Zeichenketten oder ganzen Zahlen bestehen. Handelt es sich bei

den Variablen nicht um normale Zahlen, so benutzen Sie nach dem Variablennamen

das Zeichen $ oder %, um eine String- oder Ganzzahlvariable anzugeben.

Wurde für ein Feld, auf das im Programm Bezug genommen wurde, keine DIM-

Anweisung gegeben, so werden automatisch 11 für jede Dimension reserviert.

BEISPIELE DER DIM-ANWEISUNG:

10 DIM A (100)
20 DIMZ(5,7),Y (3, 4,5)
30 DIM Y7% (Q)
40 DIM PH$ (1000)

50 F (4) =9: REM ES WIRD AUTOMATISCH DIM F (10) FESTGESETZT

BERECHNUNG DES DURCH DIM BENUTZTEN SPEICHERS:

5 Bytes für den Feldnamen

2 Bytes für jede Dimension

2 Bytes/Element für ganzzahlige Variablen

5 Bytes/Element für normale numerische Variablen

3 Bytes/Element für Stringvariablen

1 Byte für jedes Zeichen in jedem String

END

TYP: Anweisung
FORMAT: END

Funktion: Hierdurch wird die Programmausführung beendet und die Meldung

READY angezeigt. Die Steuerung wird nun wieder an den Benutzer übergeben.

Ein Programm kann beliebig viele END-Anweisungen enthalten. Auch wenn es

nicht erforderlich ist, überhaupt eine END-Anweisung in das Programm einzuge-

ben, wird doch eine solche Anweisung empfohlen. Die Anweisung END entspricht

der STOP-Anweisung. Der Unterschied besteht lediglich darin, daß durch STOP die

44 BASIC-VOKABULAR

Meldung BREAK IN LINE XX und durch END nur READY angezeigt wird. Bei

beiden Anweisungen ist eine Wiederaufnahme der Ausfuhrung durch Eingabe des

Befehls CONT moglich.

BEISPIELE DER END-ANWEISUNG:

10 PRINT “WILLST DU DAS PROGRAMM WIRKLICH STARTEN“

20 INPUT A$
30 IF A$ = “NEIN“ THEN END

30 REM REST DES PROGRAMMS

999 END

EXP

TYP: Funktion-Numerisch

FORMAT: EXP (<Zahl>)

Funktion: Mit dieser mathematischen Funktion wird die Konstante e (2.71828183)

in die Potenz der angegebenen Zahl erhoben. Durch einen Wert, der größer ist als

88.0296919 kommt es zu der Fehlermeldung ?OVERFLOW.

BEISPIELE DER EXP-FUNKTION:

10 PRINT EXP (1)

20 X = Y * EXP (Z* Q)

FN

TYP: Funktion-Numerisch

FORMAT: FN <Name> (<Zahl>)

Funktion: Diese Funktion verweist auf die zuvor mit DEF-Anweisung definierte

Funktion. Die Zahl wird eingesetzt und dann der Funktionswert berechnet. Das

Ergebnis ist ein numerischer Wert.

Diese Funktion kann in der direkten Betriebsart benutzt werden, wenn die Anwei-

sung DEF ausgefuhrt wurde.

Wird FN vor der entsprechenden DEF-Anweisung ausgefuhrt, so wird der Fehler

UNDEF’D FUNCTION angezeigt.

BASIC-VOKABULAR 45

BEISPIELE DER FN-FUNKTION:

PRINT FNA(Q)
1100 J = FN J (7) + FNJ (9)
9990 IF FN B7 (I+1)= 6 THEN END

FOR...TO...[STEP..]

TYP: Anweisung
FORMAT: FOR <Variable> = <Start> TO <Grenze>[STEP

<Schrittweite>]

Funktion: Dies ist eine BASIC-Anweisung, mit der Sie eine Variable als Zähler

benutzen können. Sie müssen bestimmte Parameter angeben: Gleitpunkt-Varia-

blen, Startwert dieser Variablen, Endwert und Schrittweite. Diese Schrittweite kann

irgendeine Gleitpunktzahl sein.

Nachstehend sehen Sie ein einfaches BASIC-Programm, das von 1 bis 10 zählt,

jede Zahl anzeigt und mit keinen FOR-Anweisungen arbeitet:

100 L = 1

110 PRINT L

120 L=L+1

130 IF L <= 10 THEN 110

140 END

Nachfolgend steht das gleiche Programm, diesmal jedoch mit der FOR-Anweisung:

100 FOR L = 1 TO 10

110 PRINT L

120 NEXT L

130 END

Wie Sie feststellen können, ist das Programm kürzer und leichter verständlich, wenn

die FOR-Anweisung benutzt wird.

Beim Ausführen der FOR-Anweisung finden verschiedene Operationen statt. Der

<Start-Wert> wird in die vom Zähler benutzte <Variable> eingesetzt. In obigem

Beispiel wird in L eine 1 eingesetzt.

46 BASIC-VOKABULAR

Bei Erreichen der Anweisung NEXT wird die Schrittweite zu der <Variablen>

addiert. War STEP nicht enthalten, wird die <Schrittweite> auf +1 gesetzt. Kommt

das obige Programm das erste Mal zu Zeile 120, wird 1 zu L addiert, so daß sich für

L ein neuer Wert von 2 ergibt.

Nun wird der Wert in der <Variablen> mit der <Grenze> verglichen. Ist die

<Grenze> noch nicht erreicht, geht das Programm (weiter) zur Zeile hinter der

FOR-Anweisung. In diesem Fall ist der Wert 2 von L kleiner als die Grenze 10, so

daß das Programm in die Zeile 110 zurück springt.

Wird die <Grenze> durch die <Variable> überschritten, so ist die Schleife

beendet, und das Programm setzt mit der Zeile nach der NEXT-Anweisung fort. Ist

in unserem Beispiel der Wert L=11 erreicht, also die Grenze 10 überschritten, wird

das Programm in Zeile 130 fortgesetzt.

Ist die <Schrittweite> positiv, muß die <Variable> die <Grenze> überschreiten.

Ist der Wert negativ, muß sie entsprechend kleiner als die <Grenze> sein.

Anmerkung: Eine Schleife wird stets mindestens einmal ausgeführt.

BEISPIELE FÜR DIE ANWEISUNG FOR...TO...STEP...:

100 FOR L = 100 TO O STEP -1

100 FOR L = PI TO 6* m STEP .01

100 FORAA=3TO3

FRE

TYP: Funktion

FORMAT: FRE (<Variable>)

Funktion: Über diese Funktion erfahren Sie, wieviel RAM-Kapazität für Ihr Pro-

gramm und die Variablen zur Verfügung steht. Wird durch ein Programm mehr

Speicherkapazität benötigt als vorhanden ist, erscheint die Fehlermeldung OUT OF

MEMORY.

Die Zahl in Klammern kann einen beliebigen Wert haben und wird in der Berech-

nung nicht benutzt.

BASIC-VOKABULAR 47

Anmerkung: Ist das Ergebnis von FRE negativ, so addieren Sie 65536 zu der FRE-Zahl, um die

Anzahl der verfügbaren Bytes zu erhalten.

BEISPIELE DER FRE-FUNKTION:

PRINT FRE (0)
10 X = (FRE(K)- 1000)/7
950 IF FRE (0) < 100 THEN PRINT “NOT ENOUGH ROOM“

Anmerkung: Auf folgende Weise wird Ihnen stets die derzeitig verfügbare RAM-Kapazitat angezeigt:

PRINT FRE(0) — (FRE(0)<O0)* 65536

GET

TYP: Anweisung
FORMAT: GET <Variablenliste>

Funktion: Über diese Anweisung wird jede vom Benutzer gedrückte Taste gele-

sen. Bei der Eingabe über die Tastatur werden die Zeichen im Tastaturpuffer des

COMMODORE 64 gespeichert. Der Puffer hat eine Kapazität von 10 Zeichen, so

daß der Anschlag der elften und aller weiteren Tasten nicht berücksichtigt wird.

Durch Lesen eines der Zeichen mit der GET-Anweisung wird Platz für weitere

Zeichen geschaffen.

Wenn in der GET-Anweisung numerische Daten spezifiziert werden und der

Benutzer eine andere Taste als eine Zahlentaste anschlägt, wird die Fehlermeldung

?SYNTAX ERROR angezeigt. Aus Sicherheitsgründen sollten die Tastenan-

schläge als Zeichenketten gelesen und später in Zahlen umgewandelt werden.

Mit der GET-Anweisung können einige Beschränkungen der INPUT-Anweisung

vermieden werden. Bezüglich Einzelheiten schlagen Sie bitte im Abschnitt über die

Verwendung der GET-Anweisung in dem Kapitel “Programmiertechniken“ nach.

BEISPIELE DER GET-ANWEISUNG:

10 GET A$: IF A$ = ““ THEN 10: REM WARTESCHLEIFE BIS TASTEN-

DRUCK

20 GET A$, BS, C$, D$, E$: REM LIEST 5 ZEICHEN

30 GET A, A$

48 BASIC-VOKABULAR

GET#

TYP: Ein-/Ausgabeanweisung
FORMAT: GET# <logische Filenummer>, <Variablenliste>

Funktion: Mit dieser Anweisung werden die Zeichen einzeln von der angegebe-

nen Datei oder dem angegebenen Gerat gelesen. Sie entspricht der GET-Anwei-

sung. Der Unterschied besteht darin, daB die Daten nicht von der Tastatur kommen.

Wird kein Zeichen empfangen, so wird die Variable einem Leerstring zugeordnet

(entspricht ““) oder einer O bei numerischen Variablen. Zeichen, die Daten in

Dateien trennen sollen, wie z. B. ein Komma (,) oder der WEITE -Tastencode
(ASC-Code 13), werden wie andere Zeichen eingegeben.

Beim Arbeiten mit Gerät #3 (TV-Bildschirm) werden über diese Anweisung die

Zeichen einzeln vom Bildschirm gelesen. Bei jeder Verwendung von GET # bewegt

sich der Cursor um eine Position nach rechts. Das Zeichen am Ende einer logischen

Zeile wird in CHR$ (13), d. h. in den -Tastencode umgewandelt.

BEISPIELE DER ANWEISUNG GET#:

5 GET# 1, AS

10 OPEN 1, 3: GET# 1, Z7$

20 GET# 1, A, B, C$, D$

GOSUB

TYP: Anweisung
FORMAT: GOSUB <Zeilennummer>

Funktion: Dies ist eine spezielle Form der GOTO-Anweisung. Es besteht jedoch

ein wesentlicher Unterschied. GOSUB speichert, von wo gesprungen wird. Wird die

RETURN-Anweisung (unterscheidet sich von dem Anschlag der Taste)
im Programm erreicht, springt das Programm zurück zur Anweisung, die unmittelbar

hinter der GOSUB-Anweisung steht.

Ein Unterprogramm (GOSUB gleich GO to a SUB-routine = Sprung zum Unterpro-

gramm) wird hauptsächlich dann eingesetzt, wenn ein kleiner Programmteil von

verschiedenen Teilen des Programms benutzt wird. Durch die Verwendung von

BASIC-VOKABULAR 49

Unterprogrammen läßt sich vermeiden, daß die gleichen Zeilen ständig an verschie-

denen Programmstellen wiederholt werden müssen. Auf diese Weise entspricht

GOSUB auch DEF FN. Mit DEF FN können Sie Platz bei der Verwendung von

Gleichungen und mit GOSUB Platz durch die Vermeidung von sich ständig

wiederholenden gleichen Programmteilen gewinnen. Nachstehendes Programm

arbeitet nicht mit GOSUB.

100 PRINT “DIESES PROGRAMM SCHREIBT“
110 FOR L = 1 TO 500 : NEXT
120 PRINT “LANGSAM“
130 FOR L = 1 TO 500 : NEXT
140 PRINT “ES BENUTZT EINE SCHLEIFE“
150 FOR L = 1 TO 500 : NEXT
160 PRINT “ALS VERZÖGERUNG .“
170 FOR L = 1 TO 500 : NEXT

Hier ist das gleiche Programm noch einmal, diesmal jedoch mit der GOSUB-

Anweisung:

100 PRINT “DIESES PROGRAMM SCHREIBT“

110 GOSUB 200

120 PRINT “LANGSAM

130 GOSUB 200

140 PRINT “ES BENUTZT EINE SCHLEIFE"

150 GOSUB 200

160 PRINT “ALS VERZÖGERUNG.“

170 GOSUB 200

180 END

200 FOR L = 1 TO 500 : NEXT

210 RETURN

Jedesmal, wenn das Programm eine GOSUB-Anweisung ausführt, werden Zeilen-

nummer und Position in der Programmzeile in einem speziellen Bereich, dem Stack

(= Stapel) gespeichert. Dieser Stack benutzt 256 Bytes Speicherplatz. Deshalb ist

die Datenmenge begrenzt, die im Stapel gespeichert werden kann. Aus diesem

Grund ist die Anzahl der speicherbaren Unterprogramm-Rückkehradressen auch

begrenzt. Deshalb ist besonders darauf zu achten, daß jede GOSUB-Anweisung

auf das entsprechende RETURN trifft, da sonst Speicherprobleme auftreten, obwohl

noch viele Bytes frei sind.

50 BASIC-VOKABULAR

GOTO

TYP: Anweisung
FORMAT: GOTO <Zeilennummer>

oder GO TO <Zeilennummer>

Funktion: Uber diese Anweisung kann das BASIC-Programm Zeilen auBerhalb

der numerischen Reihenfolge ausführen. Das Wort GOTO gefolgt von einer Zahl

läßt das Programm an die durch diese Zahl bestimmte Zeile springen.

GOTO ohne folgende Zahl entspricht GOTO 0. Die Zeilennummer muß nach dem

Wort GOTO folgen.

Mit der GOTO-Anweisung können unendliche Schleifen erstellt werden. Das ein-

fachste Beispiel ist eine Zeile, die eine GOTO-Anweisung für sich selbst enthält, wie

z.B. 10 GOTO 10. Solche Schleifen können über die Taste gestoppt
werden.

BEISPIELE DER GOTO-ANWEISUNG:

GOTO 100

10 GO TO 50

20 GOTO 999

IF... THEN...

TYP: Anweisung
FORMAT: IF <Ausdruck> THEN <Zeilennummer>

IF <Ausdruck> GOTO <Zeilennummer>
IF <Ausdruck> THEN <Anweisungen>

Funktion: Dies ist eine Anweisung, die hauptsächlich die “Intelligenz“ von BASIC

ausmacht. Mit ihr können Bedingungen ausgewertet und entsprechend dem jeweili-

gen Ergebnis verschiedene Maßnahmen ergriffen werden.

Dem Wort IF folgt ein Ausdruck, der Variablen, Zeichenketten, Zahlen, Vergleiche

und logische Operatoren enthalten kann. Das Wort THEN erscheint auf der gleichen

Zeile und wird entweder von einer Zeilennummer oder einer weiteren BASIC-

Anweisung gefolgt. Ist der Ausdruck falsch, wird alles nach dem Wort THEN auf

dieser Zeile überlesen, und die Ausführung wird in der nächsten Programmzeile

fortgesetzt. Bei einem richtigen Ergebnis erfolgt entweder eine Programmverzwei-

BASIC-VOKABULAR 51

gung zur Zeilennummer nach dem Wort THEN oder die Ausfuhrung der nachfolgen-

den BASIC-Anweisungen in dieser Zeile.

BEISPIEL DER ANWEISUNG IF...GOTO...:

100 INPUT “GIB EINE ZAHL EIN; N

110 IF N <= 0 GOTO 200

120 PRINT “QUADRATWURZEL=“ SQR(N)

130 GOTO 100

200 PRINT “ZAHL MUSS SEIN >0°

210 GOTO 100

Bei diesem Programm wird die Quadratwurzel einer beliebigen positiven Zahl

angezeigt. Die IF-Anweisung wird hier benutzt, um die Eingabe zu überprüfen. Ist

N <= 0 richtig, springt das Programm zu Zeile 200. Ist N 0, so wird als nächstes

Zeile 120 ausgeführt. Bitte beachten Sie, daß THEN GOTO nicht bei IF... THEN

benötigt wird. So bedeutet in Zeile 110 z.B. GOTO 200 tatsächlich THEN GOTO

200.

BEISPIEL DER ANWEISUNG IF... THEN...:

100 FOR L = 1 TO 100

110 IF RND(1) <.5 THEN X = X+ 1: GOTO 130

120Y=Y+1

130 NEXT L

140 PRINT “KOPF= "X

150 PRINT “ZAHL= “ Y

Das IF in Zeile 110 überprüft eine beliebige Zahl, um festzustellen, ob sie kleiner als

‚5 ist. Ist das Ergebnis richtig, werden alle Anweisungen nach dem Wort THEN

ausgeführt: Zunächst wird 1 zu X addiert, und danach springt das Programm in die

Zeile 130. Ist das Ergebnis falsch, so geht das Programm zur nächsten Anweisung

in Zeile 120 weiter.

52 BASIC-VOKABULAR

INPUT

TYP: Anweisung
FORMAT: INPUT [“<Kommentar>“ ;] <Variablenliste>

Funktion: Über diese Anweisung können vom Bediener Informationen in den

Computer eingegeben werden. Bei der Ausführung erscheint auf dem Bildschirm

ein Fragezeichen (?), und der Cursor erscheint eine Stelle rechts neben dem

Fragezeichen. Der Computer wartet nun mit blinkendem Cursor darauf, daß der

Bediener die Antwort über die Tastatur eingibt und danach die Taste

drückt. Nach dem Wort INPUT kann ein beliebiger Text in Anführungs-
zeichen (“ “) folgen. Dieser Text erscheint auf dem Bildschirm, und danach folgt

das Fragezeichen. Nach dem Text folgt ein Semikolon (;) und der Name einer oder

mehrerer durch Kommata getrennter Variablen. Diese Variablen geben an, wo der

Computer die vom Bediener eingegebene Information speichert. Hierbei kann es

sich um beliebige Variablennamen handeln, und für verschiedene Eingaben müs-

sen unterschiedliche Variablennamen gewählt werden.

BEISPIELE DER INPUT-ANWEISUNG:

100 INPUT A

110 INPUT B, C, D

120 INPUT “KOMMENTAR*; E

Bei der Programmausführung erscheint das Fragezeichen und zeigt dem Bediener

so an, daß der COMMODORE 64 für Zeile 100 eine Eingabe erwartet. Jede

beliebige eingegebene Zahl wird in A eingesetzt und später im Programm benutzt.

Wurde als Antwort keine Zahl eingegeben, erscheint die Fehlermeldung ?REDO

FROM START, die bedeutet, daß zwar eine Zahl erwartet, jedoch ein String

empfangen wurde. Wenn der Bediener lediglich die Taste drückt, bleibt
der Variablenwert unverändert.

Nun erscheint das Fragezeichen für Zeile 110. Wenn wir nur eine Zahl eingeben

und die Taste drücken, zeigt der COMMODORE 64 zwei Fragezeichen

(??) an, was bedeutet, daß weitere Eingaben erforderlich sind.

Geben Sie also stets so viele Eingaben wie erforderlich, getrennt durch Kommata,

ein. Werden zu viele Daten eingegeben, erscheint die Fehlermeldung ?EXTRA

IGNORED, was bedeutet, daß die überflüssigen Werte nicht in Variablen eingege-

ben wurden.

In Zeile 120 wird das Wort KOMMENTAR vor dem Erscheinen des Fragezeichens

angezeigt. Zwischen dem KOMMENTAR und einer beliebigen Variablenliste muß

ein Semikolon stehen.

Die INPUT-Anweisung kann nie außerhalb eines Programms benutzt werden.

BASIC-VOKABULAR 53

INPUT #

TYP: Ein-/Ausgabeanweisung
FORMAT: INPUT # <logische Filenummer> , <Variablenliste>

Funktion: Dies ist für gewöhnlich der schnellste und einfachste Weg, um die in

einer Disketten- oder Kassetten-Datei gespeicherten Daten zu lesen. Die Daten

haben die Form von Variablen mit einer Lange von max. 80 Zeichen (es wird also

nicht wie bei der Anweisung GET# jeweils nur ein Zeichen gelesen). Zunächst muß

die Datei geöffnet werden. Dann kann INPUT# in die Variablen einlesen.

Der Befehl INPUT# geht davon aus, daß eine Variable beendet ist, wenn ein

RETURN-Code (CHR$ (13)), ein Komma (,), Semikolon (;) oder ein Doppelpunkt (:)

gelesen wird. Diese Zeichen können gegebenenfalls in Anführungszeichen einge-

schlossen werden (siehe Anweisung PRINT#).

Handelt es sich beim Variablentyp um ein numerisches Zeichen und wird ein

nichtnumerisches Zeichen empfangen, so wird der Fehler BAD DATA angezeigt.

INPUT# kann Zeichenketten von max. 80 Zeichen lesen. Wird diese Zeichenanzahl

überschritten, dann wird die Fehlermeldung STRING TOO LONG angezeigt.

Wird Gerät #3 benutzt (Bildschirm), so liest diese Anweisung eine ganze logische

Zeile und bewegt den Cursor dann zur nächsten Zelle.

BEISPIELE DER ANWEISUNG INPUT#:

10 INPUT# 1, A

20 INPUT# 2, A$, B$

INT

TYP: Ganzzahl-Funktion
FORMAT: INT (<numerisch>)

Funktion: Gibt den ganzzahligen Wert eines Ausdrucks wieder. Ist der Ausdruck

positiv, wird der Bruch weggelassen. Ist der Ausdruck negativ, so wird bei einem

Bruch die nächstniedrigere ganze Zahl wiedergegeben.

BEISPIELE DER INT-FUNKTION:

120 PRINT INT(99.4343), INT(— 12.34)

99 —13

54 BASIC-VOKABULAR

LEFTS$

TYP: Stringfunktion
FORMAT: LEFT$ (<Zeichenkette>, <Ganze Zahl>)

Funktion: Gibt eine Zeichenkette wieder, die die Zeichen von der äußersten linken

Position bis zur angegebenen Zahl umfaßt. Der ganzzahlige Argumentenwert muß

im Bereich von 0 bis 255 liegen. Ist die ganze Zahl größer als die Zeichenketten-

länge, so wird der gesamte String wiedergegeben. Hat diese Zahl den Wert Null, so

wird ein Leerstring (Länge Null) wiedergegeben.

BEISPIELE DER FUNKTION LEFTS:

10 A$ = “COMMODORE COMPUTER“

20 BS = LEFT$(A$,9): PRINT B$

RUN

COMMODORE

LEN

TYP: Ganzzahl-Funktion

FORMAT: LEN (<Zeichenkette>)

Funktion: Gibt die Anzahl der Zeichen in einem String wieder. Nicht angezeigte

Zeichen und Leerzeichen werden mitgezählt.

BEISPIELE DER LEN-FUNKTION:

CC$ = “COMMODORE COMPUTER“: PRINT LEN(CC$)

18

BASIC-VOKABULAR 55

LET

TYP: Anweisung
FORMAT: [LET] <Variable> = <Ausdruck>

Funktion: Die LET-Anweisung wird benutzt, um einer Variablen einen Wert zuzu-
ordnen. Das Wort LET ist jedoch optional, und erfahrene Programmierer lassen es
daher meist aus, damit es keine Speicherkapazitat vergeudet. Das Gleichheitszei-
chen (=) allein genugt bei der Wertzuordnung eines Ausdrucks zu einem Variablen-
namen.

BEISPIELE DER LET-ANWEISUNG:

10 LET D= 12 (Dies entspricht D = 12)

20 LET E$ = “ABC“

30 F$ = “DEF“

40 SUM$ = E$ + F$ (SUM$ entspricht ABCDEF)

LIST

TYP: Befehl
FORMAT: LIST [[<Erste Zeile>]—[<Letzte Zeile>]]

Funktion: Mit dem LIST-Befehl können Sie sich Zeilen im BASIC-Programm

anschauen, die derzeitig im Speicher Ihres COMMODORE 64 gespeichert sind. Auf

diese Weise können Sie den Bildschirm-Editor zum Editieren von aufgelisteten

Programmen schnell und einfach einsetzen.

Mit dem LIST-Systembefehl wird ganz oder teilweise das Programm angezeigt, das

derzeitig im Speicher abgelegt ist. LIST wird normalerweise zum Bildschirm gelei-

tet; die CMD-Anweisung kann benutzt werden, um die Ausgabe auf ein externes

Gerät, wie z. B. Drucker oder Diskette, umzuschalten. Der LIST-Befehl kann im

Programm erscheinen, nach der Ausführung von LIST wird jedoch stets die

Meldung READY angezeigt.

Wenn die Programmliste auf dem Bildschirm erscheint, kann das “Rollen“ des

Bildschirms von unten nach oben durch Drücken der Taste verlangsamt
werden. LIST wird durch Drücken der Taste abgebrochen.

56 BASIC-VOKABULAR

Werden keine Zeilennummern angegeben, so wird das ganze Programm aufgeli-

Stet. Ist nur die erste Zeilennummer angegeben und folgte danach ein Gedanken-

strich (—), so werden diese Zeile und alle Zeilen mit größeren Nummern aufgelistet.

Ist nur die letzte Zeilennummer angegeben und steht davor ein Gedankenstrich, so

werden alle Zeilen vom Programmanfang bis zu dieser Zeile aufgelistet. Sind beide

Zahlen angegeben, so wird der gesamte Bereich einschließlich dieser Zahlen

angezeigt.

BEISPIELE DES LIST-BEFEHLS:

LIST (Listet das derzeitig im Speicher befindliche

Programm auf.)

LIST 500 (Listet nur Zeile 500 auf.)

LIST 150— (Listet alle Zeilen von 150 bis zum Ende auf.)

LIST — 1000 (Listet alle Zeilen von der niedrigsten bis 1000

auf.)

LIST 150-1000 (Listet die Zeilen 150 bis einschl. 1000 auf.)

10 PRINT “THIS IS LINE 10“

20 LIST (LIST im Programmier-Modus)

30 PRINT “THIS IS LINE 30“

LOAD

TYP: Befehl
FORMAT: LOAD [“<Programmname>“] [,<Geratenummer>]

[,<Sekundaradresse>]

Funktion: Uber die LOAD-Anweisung wird der Inhalt einer Programmdatei von

Kassette oder Diskette in den Speicher gelesen. Auf diese Weise können Sie die

geladenen Informationen benutzen oder sie andern. Die Geratenummer ist optional,

der Computer wählt jedoch standardmäßig 1 (Kassetteneinheit), wenn keine beson-

dere Eingabe erfolgt. Die Diskettenstation hat normalerweise die Geratenummer 8.

Uber den Befehl LOAD werden alle offenen Dateien geschlossen, und im Direktmo-

dus wird vor dem Lesen des Programms ein CLR durchgeführt. Wird LOAD inmitten

BASIC-VOKABULAR 57

eines Programms ausgeführt, so wird das geladene Programm automatisch gestar-

tet, d. h., Sie können LOAD benutzen, um mehrere Programme zu verketten; dabei

werden keine Variablen gelöscht.

Beim Arbeiten mit übereinstimmenden Dateinamemustern wird die erste Datei, die

mit dem Muster übereinstimmt, geladen. Durch den Asterisk (“*“) wird der erste

Dateiname im Disketteninhaltsverzeichnis geladen. Existiert der benutzte Datei-

name nicht oder handelt es sich nicht um eine Programmdatei, so wird die BASIC-

Fehlermeldung ?FILE NOT FOUND angezeigt.

Beim Programmladen von Kassette kann <Programmname> ausgelassen werden.

In diesem Fall wird die nächste Programmdatei auf der Kassette gelesen. Der

COMMODORE 64 löscht den Bildschirm nach Drücken der Taste PLAY. Wird das

Programm gefunden, so wird die Meldung FOUND angezeigt. Nach Drücken der

Taste [&$ oder nach ca. 15 s wird das Programm geladen. Wird die Leertaste

gedrückt, so wird das derzeitig gesuchte Programm übersprungen und versucht,

das nächste zu laden. Programme werden beim Laden ab Speicherplatz 2048,

wenn keine <Sekundäradresse> 1 benutzt wird, abgelegt. Wird mit der Sekundär-

adresse 1 gearbeitet, so wird das Programm in den Speicherplatz geladen, aus dem

es zuvor abgespeichert wurde.

BEISPIELE DES LOAD-BEFEHLS:

LOAD (Liest das nächste Programm von der

Kassette)

LOAD A$ (Benutzt für die Suche den Namen in A$)

LOAD “*",8 (Lädt das erste Programm von Diskette)

LOAD ““ 1,1 (Sucht das erste Programm auf der Kas-

sette und lädt es zurück in den gleichen

Speicherbereich, aus dem es abgespei-

chert wurde)

LOAD “STAR TREK“ (Ladt ein Programm von Kassette)

PRESS PLAY ON TAPE

FOUND STAR TREK

LOADING

READY.

58 BASIC-VOKABULAR

LOAD “FUN“,8 (Lädt ein Programm von Diskette)
SEARCHING FOR FUN
LOADING

READY.

LOAD “GAME ONE“ ‚8,1 (Lädt ein Programm in den bestimmten
SEARCHING FOR GAME ONE Speicherplatz, von dem aus das Pro-
LOADING gramm auf Diskette gespeichert worden
READY. ist)

LOG

TYP: Gleitpunktfunktion
FORMAT: LOG (<numerisch>)

Funktion: Gibt den natürlichen Logarithmus (Logarithmus der Basis e) des Argu-
ments wieder. Ist der Wert des Arguments Null oder negativ, wird die BASIC-
Fehlermeldung ILLEGAL QUANTITY angezeigt.

BEISPIELE DER LOG-FUNKTION:

25 PRINT LOG(45/7)
1.86075234

10 NUM = LOG(ARG) / LOG(10) (Berechnet den Logarithmus von ARG mit
der Basis 10)

MID$

TYP: Folgefunktion
FORMAT: MID$ (<String>, <numerische Zahl A> [,<numeri-

sche Zahl B>])

Funktion: Die Funktion MID$ definiert einen Teilstring, der Teil eines größeren
Strings ist. Der Startpunkt des Teilstrings wird durch das Argument <numerische
Zahl A> und die Länge durch das Argument <numerische Zahl B> bestimmt.
Beide numerischen Argumente können einen Wert von O bis 255 haben.

BASIC-VOKABULAR 59

Ist <numerische Zahl A> größer als die Länge des <Strings>, oder ist <numeri-

sche Zahl B> Null, dann gibt MID$ einen Leerstring wieder. Wird das Argument

<numerische Zahl B> ausgelassen, nimmt der Computer an, daß die Länge des

restlichen Strings benutzt werden soll. Hat der Quellen-String weniger Zeichen als

<numerische Zahl B> vom Startpunkt bis zum Ende, dann wird der ganze Rest

dieses Strings benutzt.

BEISPIEL DER FUNKTION MIDS:

10 A$="GOOD“

20 B$=“MORNING EVENING AFTERNOON"

30 PRINT A$ + MID$(B$, 8, 8)

GOOD EVENING

NEW

TYP: Befehl

FORMAT: NEW

Funktion: Der Befehl NEW wird benutzt, um ein derzeitig im Speicher befindliches

Programm und sämtliche Variablen zu löschen. Vor der Eingabe eines neuen

Programms muß NEW in der Direktbetriebsart für die Speicherlöschung benutzt

werden. NEW kann auch in einem Programm eingesetzt werden. Sie sollten jedoch

daran denken, daß alles, was zuvor ausgeführt wurde und noch immer im Compu-

terspeicher ist, gelöscht wird. Dies kann sich als besonders störend bei der

Programm-Fehlersuche erweisen.

Bitte beachten: Wird ein altes Programm nicht vor dem Schreiben eines neuen Programms gelöscht,

so kann es zu einer Vermischung kommen.

BEISPIELE DES NEW-BEFEHLS:

NEW (Löscht das Programm und alle Variablen)

10 NEW (Führt eine NEW-Operation durch und stoppt das Pro-

gramm)

60 BASIC-VOKABULAR

NEXT

TYP: Anweisung
FORMAT: NEXT [<Zähler>] [,<Zahler>]...

Funktion: Die NEXT-Anweisung wird mit FOR benutzt, um das Ende der Schleife

FOR... NEXT zu bestimmen. Der <Zähler> ist der Variablenname vom Schleifen-

index, der mit FOR zum Beginn der Schleife benutzt wird. Durch eine einzelne

NEXT-Anweisung können mehrere verschachtelte Schleifen abgeschlossen wer-

den, wenn danach die Variablennamen für jeden FOR-<Zähler> folgen. Hierzu

muß jeder Name aufgeführt werden, wobei der der innersten Schleife zuerst und

der der äußersten zuletzt folgt. Wird eine einzelne NEXT-Anweisung in dieser

Weise benutzt, so müssen die Variablennamen durch Kommata getrennt sein.

Schleifen können auf max. neun Ebenen verschachtelt werden. Werden die Zähler-

variablen ausgelassen, erfolgt eine Inkrementierung des Zählers, der durch die

Anweisung FOR mit der derzeitigen Ebene (der verschachtelten Schleifen) verbun-

den ist.

Bei Erreichen der NEXT-Anweisung wird zum Zählerwert 1 oder ein optionaler

STEP-Wert addiert. Er wird dann mit einem End-Wert verglichen, um festzustellen,

ob die Schleife beendet werden soll. Eine Schleife wird beendet, wenn eine NEXT-

Anweisung gefunden wird, deren Zählerwert größer als der End-Wert ist.

BEISPIELE DER NEXT-ANWEISUNG:

10 FORJ=1 TO 5: FORK = 10 TO 20: FOR N = 5 TO —5 STEP -1

20 NEXT N, K, J (Verschachtelte Schleifen)

10 FOR L = 1 TO 100

20 FOR M = 1 TO 10

30 NEXT M

400 NEXT L (Beachten Sie, daß die Schleifen einander

nicht überschneiden)

10 FOR A = 1 TO 10

20 FOR B = 1 TO 20

30 NEXT

40 NEXT (Beachten Sie, daB keine Variablennamen

notig sind)

BASIC-VOKABULAR 61

NOT

TYP: Logischer Operator
FORMAT: NOT <Ausdruck>

Funktion: Der logische Operator NOT “komplementiert“ den Wert jedes Bits in

seinem einzelnen Operanden. Das Ergebnis ist ein ganzzahliges “Zweier-Komple-

ment“. Beim Arbeiten mit Gleitpunktzahlen werden die Operanden in ganze Zahlen

umgewandelt und Brüche eliminiert. Der Operator NOT kann auch bei einem

Vergleich zur Umkehrung des Richtig-/Falschwertes benutzt werden, der das

Ergebnis einer Vergleichsprüfung ist. Aus diesem Grund kehrt er die Bedeutung

eines Vergleichs um. Im nachstehenden ersten Beispiel ist der Ausdruck richtig,

wenn das “Zweier-Komplement“ von “AA“ gleich “BB“ und wenn "BB nicht

“CC* ist.

BEISPIELE DES NOT-OPERATORS:

10 IF NOT AA = BB AND NOT(BB = CC) THEN...
NN% = NOT 96: PRINT NN%

—-97

Anmerkung: Um den Wert von NOT zu finden, benutzen Sie den Ausdruck X=(-(X+1)). (Das

Zweier-Komplement einer ganzen Zahl ist das Bit-Komplement + 1.)

ON

TYP: Anweisung
FORMAT: ON <Variable> GOTO / GOSUB <Zeilennummer>

[,<Zeilennummer>]....

Funktion: Die ON-Anweisung wird benutzt, um je nach Variablenwert zu einer von

mehreren angegebenen Zeilennummern überzugehen. Der Wert der Variablen liegt

im Bereich von Null bis zu der angegebenen Zeilenzahl. Ist der Wert keine ganze

Zahl, so werden die Nachkommastellen weggelassen. Ist der Variablenwert z. B. 3,

so geht das Programm durch die ON-Anweisung zu der dritten Zeilennummer in der

Liste über. Ist der Wert einer Variablen negativ, wird die BASIC-Fehlermeldung

?ILLEGAL QUANTITY angezeigt. Ist die Zahl Null oder größer als die Punktezahl

in der Liste, wo wird die Anweisung vom Programm einfach “überlesen”, und das

Programm setzt mit der Anweisung nach der ON-Anweisung fort.

62 BASIC-VOKABULAR

ON ist also eine Variante der Anweisung IF... THEN... Statt mehrere IF-

Anweisungen zu benutzen, die das Programm jeweils an eine bestimmte Zeile

schicken, kann eine ON-Anweisung eine Liste von IF-Anweisungen ersetzen. Im

nachstehenden ersten Beispiel ersetzt die erste ON-Anweisung vier Anweisungen

IF... THEN...

BEISPIELE DER ON-ANWEISUNG:

ON —(A=7)—2*(A=3)— 3*(A<3)—4*(A>7)GOTO 400,900,1000,100

ON X GOTO 100,130,180,220

ON X+3 GOSUB 9000,20,9000

100 ON NUM GOTO 150, 300, 320, 390

500 ON SUM / 2 + 1 GOSUB 50, 80, 20

OPEN

TYP: Ein-/Ausgabe-Anweisung
FORMAT: OPEN <logische Filenummer>, [<Geratenummer>]

[.<Sekundaradresse>] [,“<Dateiname> [,<Type>]
[.<Modus>]“]

Funktion: Uber diese Anweisung wird ein Kanal für die Ein- und Ausgabe zu

einem Peripheriegerät geöffnet. Sie brauchen jedoch wahrscheinlich nicht alle Teile

für jede OPEN-Anweisung. Einige OPEN-Anweisungen benötigen lediglich zwei

Codes:

1) LOGISCHE FILENUMMER

2) GERÄTENUMMER

Die <logische Filenummer> ist die logische Nummer, die die Anweisungen OPEN,

CLOSE, CMD, GET#, INPUT# und PRINT#, den Dateinamen und das zu verwen-

dende Gerät miteinander in Beziehung setzt. Sie kann im Bereich von 1 bis 255

liegen.

Anmerkung: Filenummern über 128 haben spezielle Auswirkungen, so daß Sie lediglich Zahlen bis

127 verwenden sollten.

BASIC-VOKABULAR 63

Jedes Peripheriegerät (Drucker, Diskettenstation, Kassetteneinheit) im System hat

seine eigene Nummer, auf die es antwortet. Die <Gerätenummer> wird zusammen

mit OPEN benutzt, um festzulegen, auf welchem Gerät sich die Datei befindet.

Peripheriegeräte wie z. B. Kassetteneinheiten, Diskettenstationen oder Drucker

antworten zusätzlich auf mehrere Sekundäradressen. Stellen Sie sich diese als

Codes vor, die dem Gerät mitteilen, welche Operation ausgeführt werden soll. Die

logische Filenummer des Geräts wird mit jeder Anweisung GET#, INPUT# und

PRINT# benutzt.

Wird die <Gerätenummer> ausgelassen, nimmt der Computer automatisch an, daß

Sie Informationen zu Gerätenummer 1 übertragen bzw. von dort empfangen wollen,

d.h., von der Datasette™. Auch der Dateiname kann ausgelassen werden. In

diesem Fall können Sie jedoch später in Ihrem Programm die Datei nicht mit ihrem

Namen aufrufen. Beim Speichern von Dateien auf Kassetten nimmt der Computer

an, daß die <Sekundäradresse> Null (0) ist, wenn diese ausgelassen wird (eine

READ-Operation). |

Der Sekundäradressenwert eins (1) öffnet Kassettendateien zum Schreiben. Durch

die Sekundäradresse zwei (2) wird ein Kassettenendkennzeichen geschrieben,

wenn die Datei später geschlossen wird. Dieses Kennzeichen verhindert, daß aus

Versehen über das Dateiende hinaus gelesen und somit die BASIC-Fehlermeldung

?DEVICE NOT PRESENT angezeigt wird.

Bei Disketten stehen für Daten-Files die Sekundäradressen 2 bis 14 zur Verfügung.

Andere Zahlen haben eine besondere Bedeutung in den DOS-Befehlen. Wenn Sie

mit der Disketten-Station arbeiten, müssen Sie eine Sekundäradresse benutzen.

(Bezüglich Einzelheiten über die DOS-Befehle schlagen Sie bitte in Ihrem Hand-

buch der Diskettenstation nach.)

Der <Dateiname> besteht aus einem String von 1 bis 16 Zeichen. Beim

<Modus>=R werden sequentielle Dateien zum Lesen und beim <Modus>=W

zum Schreiben geöffnet.

Wird versucht, auf eine Datei vor dem Öffnen zuzugreifen, so wird die BASIC-

Fehlermeldung ?FILE NOT OPEN angezeigt. Wird versucht, eine nicht existie-

rende Datei zum Lesen zu Öffnen, so wird die Fehlermeldung ?FILE NOT FOUND

angezeigt. Wird eine Datei auf Diskette zum Schreiben geöffnet und der Dateiname

existiert bereits, dann erscheint die DOS-Fehlermeldung FILE EXISTS. Für

Dateien auf Kassetten gibt es keinerlei Überprüfungsmöglichkeit, so daß Sie stets

sicherstellen müssen, daß die Kassette richtig eingelegt ist. Andernfalls können

bereits gespeicherte Daten versehentlich überschrieben werden. Wird eine bereits

geöffnete Datei neu geöffnet, so wird die BASIC-Fehlermeidung FILE OPEN

angezeigt.

64 BASIC-VOKABULAR

BEISPIELE DER OPEN-ANWEISUNGEN:

10 OPEN 2, 8, 4 “DISK-OUTPUT

SEQ, W“

10 OPEN 1, 1, 2, “TAPE-WRITE“

10 OPEN 50, 0

10 OPEN 12, 3

10 OPEN 130, 4

10 OPEN 1, 1, 0,

10 OPEN 1, 1, 1,

10 OPEN 1, 2, 0,

10 OPEN 1, 4, 0,

10 OPEN 1, 4, 7,

10 OPEN 1, 5, 0,

10 OPEN 1, 8, 15, "COMMAND“

“NAME“

“NAME“

CHR$ (10)

“STRING“

“STRING“

“STRING*“

(Offnet sequentielle Datei auf
Diskette)

(Schreiben des Dateiendekenn-

zeichens)

(Eingabe uber die Tastatur)

(Bildschirmausgabe)

(Druckerausgabe)

(Lesen von Kassette)

(Schreiben auf Kassette)

(Kanal zu RS-232 öffnen)

(GroBbuchstaben/Graphiken zum

Drucker senden)

(Klein-/GroBschrift zum Drucker

schicken)

(GroBbuchstaben/Graphiken zum

Drucker mit der Gerätenummer #5

schicken)

(Einen Befehl zur Diskette schicken)

BASIC-VOKABULAR 65

OR

TYP: Logischer Operator
FORMAT: <Operand> OR <Operand>

Funktion: So wie Vergleichsoperatoren für Entscheidungen hinsichtlich des Pro-

grammablaufs benutzt werden können, können logische Operatoren zwei oder

mehrere Ausdrücke miteinander verbinden und die Meldungen “richtig” oder

“falsch“ ausgeben, die danach in einer Entscheidung benutzt werden können. In

Berechnungen gibt das logische OR das Bitergebnis 1, wenn das entsprechende Bit

von einem oder beiden Operanden 1 ist. Hierdurch entsteht je nach den Operan-

denwerten als Ergebnis eine ganze Zahl. In Vergleichen wird der logische Operator

OR auch benutzt, um zwei Ausdrücke zu einem Ausdruck zu verketten. Ist einer der

Ausdrücke richtig, so ist der Wert des zusammengesetzten Ausdrucks richtig (—1).

Ist in nachstehendem ersten Beispiel AA gleich BB oder ist XX gleich 20, dann ist

der Ausdruck richtig.

Logische Operatoren wandeln ihre Operanden in 16-Bit ganzzahlige Zweierkomple-

mente mit Vorzeichen aus dem Bereich —32768 bis 32767 um. Liegen die Operan-

den nicht in diesem Bereich, so wird eine Fehlermeldung angezeigt. Jedes Bit des

Ergebnisses wird durch die entsprechenden Bits in den beiden Operanden be-

stimmt.

BEISPIELE DES OR-OPERATORS:

100 IF (AA = BB) OR (XX = 20) THEN...

230 KK% = 64 OR 32: PRINT KK% (Sie geben dies mit einem Bit-

Wert von 1000000 für 64 und

100000 fur 32 ein.)

(Der Computer antwortet mit

dem Bit-Wert 1100000.

1100000=96.)

66 BASIC-VOKABULAR

PEEK

TYP: Ganzzahl-Funktion

FORMAT: PEEK (<numerisch>)

Funktion: Gibt eine ganze Zahl im Bereich von 0 bis 255 wieder, die aus einem
Speicherplatz gelesen wird. Der <numerische> Ausdruck ist ein Speicherplatz, der
in dem Bereich von O bis 65535 liegen muß. Andernfalls wird die BASIC-Fehlermel-
dung ?ILLEGAL QUANTITY angezeigt.

BEISPIELE DER PEEK-FUNKTION:

10 PRINT PEEK (53280) AND 15 (Gibt den Wert der Bildschirmrah-
menfarbe wieder.)

5 A%=PEEK(45)+PEEK(46)*256 (Gibt die Adresse der BASIC-Varia-

blentabelle wieder.)

POKE

TYP: Anweisung
FORMAT: POKE <Adresse>, <Wert>

Funktion: Die POKE-Anweisung wird benutzt, um einen 1-Byte-Binarwert (8 Bits)
in einen gegebenen Speicherplatz oder ein Ein-/Ausgaberegister zu schreiben. Die
<Adresse> ist ein arithmetischer Ausdruck, der im Bereich von 0 bis 65535 liegen
muß. Der <Wert> ist ein Ausdruck, der einer ganzen Zahl von 0 bis 255 entspre-
chen muß. Liegt einer der Werte nicht im angegebenen Bereich, wird die BASIC-

Fehlermeldung ?ILLEGAL QUANTITY angezeigt.
Die Anweisungen POKE und PEEK sind nützlich für Datenspeicherung, Steuerung
der Graphikanzeige oder Geräuscherzeugung, für das Laden von Assembler-
Unterprogrammen und zum Übertragen von Argumenten und Ergebnissen zu bzw.
von Assembler-Unterprogrammen. Darüber hinaus können Betriebssystempara-
meter mit den PEEK-Anweisungen überprüft oder mit den POKE-Anweisungen
verändert werden. Anhang G gibt eine komplette Liste der nützlichen Adressen.

BASIC-VOKABULAR 67

BEISPIELE DER POKE-ANWEISUNG:

POKE 1024, 1 (Setzt ein “A“ in Bildschirmposition 1)

POKE 2040, PTR (Aktualisiert Datenzeiger-Sprite #0)

10 POKE RED, 32

20 POKE 36897, 8

2050 POKE A, B

POS

TYP: Ganzzahlige Funktion
FORMAT: POS (<Hilfsargument>)

Funktion: Teilt Ihnen die derzeitige Cursorposition mit, die naturlich in dem

Bereich von 0 (auBerst linkes Zeichen) bis 79 in einer logischen Bildschirmzeile von

80 Zeichen liegt. Da der COMMODORE 64 einen 40-Zeichen-Bildschirm hat,

beziehen sich Positionen von 40 bis 79 auf die zweite Bildschirmzeile. Das

Hilfsargument wird überlesen.

BEISPIEL DER POS-FUNKTION:

1000 IF POS(0) >38 THEN PRINT CHR$(13)

PRINT

TYP: Anweisung
FORMAT: PRINT [<Variable>] [<,/;><Variable>]...

Funktion: Die PRINT-Anweisung wird normalerweise benutzt, um Daten auf dem

Bildschirm anzuzeigen. Um diese Ausgabe auf ein anderes Gerät des Systems

umzuleiten, wird die CMD-Anweisung benutzt. Die <Variable/n> in der Ausgabeli-

ste sind beliebige Ausdrücke. Ist keine Ausgabeliste vorhanden, so wird eine leere

Zeile angezeigt. Die Position jedes angezeigten Zeichens wird durch die Interpunk-

tionszeichen bestimmt, die zum Trennen der einzelnen Werte in der Ausgabeliste

benutzt werden. Ä

68 BASIC-VOKABULAR

Die zur Verfugung stehenden Interpunktionszeichen sind Leerzeichen, Kommata

oder Semikolon. Die logische Bildschirmzeile von 80 Zeichen wird in acht Druckzo-

nen mit je 10 Zeichen unterteilt. In der Ausdrucksliste wird durch ein Komma der

nachste Wert am Anfang der nachsten Zone angezeigt. Durch ein Semikolon wird

der nachste Wert sofort nach dem vorherigen Wert angezeigt. Es gibt jedoch zwei

Ausnahmen:

1) Numerische Ausdrücke werden von einem Leerzeichen gefolgt.

2) Vor positiven Zahlen steht ein Leerzeichen.

Werden zwischen Stringkonstanten oder Variablennamen Leerzeichen oder keine

Interpunktionszeichen benutzt, so hat dies die gleiche Wirkung wie ein Semikolon.

Leerzeichen zwischen einer Zeichenkette und einem numerischen Ausdruck oder

zwischen zwei numerischen Ausdrücken stoppen jedoch die Ausgabe, ohne daß

der zweite Wert angezeigt wird.

Steht am Ende der Ausgabeliste ein Komma oder ein Semikolon, so beginnt die

nächste PRINT-Anweisung mit der Anzeige auf der gleichen Zeile und ist entspre-

chend abgetrennt. Steht am Ende der Liste kein Interpunktionszeichen, werden am

Ende der Daten ein Wagenrücklauf und ein Zeilenvorschub angezeigt. Die PRINT-

Anweisung beginnt in der nächsten Zeile. Wird ihre Ausgabe auf den Bildschirm

geleitet und sind die angezeigten Daten länger als 40 Zeichen, so wird die Ausgabe

in der nächsten Bildschirmzeile fortgesetzt.

Die PRINT-Anweisung ist die BASIC-Anweisung, die am vielseitigsten eingesetzt

werden kann. Es gibt für diese Anweisung so viele Symbole, Funktionen und

Parameter, daß man fast schon von einer eigenen, speziell zum Schreiben auf dem

Bildschirm entworfenen Sprache innerhalb von BASIC sprechen kann.

BASIC-VOKABULAR 69

BEISPIELE DER PRINT-ANWEISUNG:

1)

5X=5

10 PRINT —5*X, X-5, X+5, X75

—25 0 10 3125

2)

5 X=9

10 PRINT X;“SQUARED IS“ ;X*X;" AND“;

20 PRINT X “CUBED IS“ XT3

9 SQUARED IS 81 AND 9 CUBED IS 729

3)

90 AA$="ALPHA“:BB$="BAKER“: CC$=“CHARLIE“:DD$=“DOG":

EE$="ECHO“

100 PRINT AABB;CCDD,EE$

ALPHABAKERCHARLIEDOG ECHO

ANFÜHRUNGSZEICHEN

Wenn ein Anführungszeichen (+) eingegeben ist, stoppt die Cursor-
Steuerung, und die Steuerzeichen der Cursor-Steuertasten werden angezeigt. Auf

diese Weise können Sie Cursorsteuerungen programmieren, da die Cursor-Funk-

tionen beim Ausdruck des Textes mit ausgeführt werden. Die einzige Cursor-

Steuertaste, die nicht durch diesen “Anführungsmodus“ beeinflußt wird, ist die

Taste Miwa

70 BASIC-VOKABULAR

1. Cursorbewegung

Folgende Cursorsteuerungen können im Anführungszeichenmodus “program-
miert“ werden.

TASTE ERSCHEINT ALS

IT ers ||

Soll das Wort HELLO diagonal von der oberen linken Bildschirmecke aus angezeigt

werden, geben Sie folgendes ein:

me
be
(
E
C

PRINT“ (QI H GE) E EN ı N ı DE 0°
Dies erscheint als:

PRNBHB EB LB.LB or:

2. Unterlegte (negativ dargestellte) Zeichen

Durch gemeinsames Drücken der Tasten und 9 - nach Anführungs-
zeichen — wird (J angezeigt. Auf diese Weise werden jetzt alle Zeichen ähnlich
einem Negativbild unterlegt angezeigt. Um dies zu beenden, sind die Tasten

und 9 zu drücken (wodurch || angezeigt wird), oder Sie geben

ein (CHR$(13)) (beenden Sie hierzu einfach die PRINT-Anweisung
ohne Semikolon oder Komma).

3. Farbsteuerungen

Durch gemeinsames Drücken der Taste Qi oder [& mit einer der acht
Farbtasten, erscheint ein besonderes unterlegtes Zeichen in den Anführungszei-

chen. Beim Ausdruck erscheint die Schrift dann in der ausgewählten Farbe.

BASIC-VOKABULAR 71

TASTE FARBE ERSCHEINT ALS

a Schwarz

Weiß 23

in
ef‘ Zyan T

Kr Purpur hl

o Grün ay
Blau =
Geb

G| Ki Orange rs

Cz 2, Braun un

Cz Hellrot x

[Ge ER Grau 1 ©

Ge 5 Grau 2 | Fe |

Che Hellgrün u

Cz! Hellblau >

Cx Pe Grau 3 an

Soll das Wort HELLO in Zyan und THERE in WeiB angezeigt werden, geben Sie

folgendes ein:

PRINT“ EB HELLO THERE“

Dies erscheint als:

PRINT“ BX} HELLO @@ THERE“

72 BASIC-VOKABULAR

4. Einfugemodus

Die Uber die Taste ‚erzeugten Leerstellen haben die gleichen Eigen-
schaften wie der Anführungszeichen-Modus. Die Cursor- und Farbsteuerungen

erscheinen als unterlegte Zeichen. Der einzige Unterschied besteht darin,

daß / ein hervorruft.
Außerdem fügt die Taste. , die normalerweise im Anführungszeichen-
Modus ein Sonderzeichen erstellt, Leerzeichen ein.

Der “Einfüge-Modus“ wird durch Anschlagen der Taste oder
beendet, oder wenn so viele Zeichen eingegeben wurden, wie

Leerzeichen eingefügt sind.

5. Weitere Sonderzeichen

Es gibt einige andere Zeichen, die für spezielle Funktionen ausgegeben werden

können, auch wenn sie nicht einfach über die Tastatur zur Verfügung stehen. Um

diese in Anführungszeichen zu setzen, müssen Sie in der Zeile entsprechende

Leerstellen lassen, oder drücken und mit der Cursor-
steuertaste zurück in die Leerstelle gehen. Nun drücken Sie die

Taste und (QR. um die umgekehrten Zeichen anzuzeigen, und

schlagen folgende Tasten an:

FUNKTION TASTENBETÄTIGUNG

3 0 N
Umschalten zu Zeichen mit SHIFT {J
Umschalten zu Zeichen ohne SHIFT (ili IN
Umschalttasten nicht wirksam

Umschalttasten wirksam: en

ist sowohl bei LIST als auch bei PRINT möglich, so daß bei
Verwendung dieses Zeichens ein Editieren so gut wie unmöglich ist. Auch die

Auflistung wird merkwürdig aussehen.

BASIC-VOKABULAR 73

PRINT#

TYP: Ein-/Ausgabeanweisung
FORMAT: PRINT# <logische Filenummer> [<Variable>]

[<,/;><Variable>]...

Funktion: Die Anweisung PRINT# wird benutzt, um Daten in eine Datei zu

schreiben. Die Nummer muß die gleiche sein wie beim Öffnen der Datei. Die

Ausgabe erfolgt auf die Gerätenummer, die in der OPEN-Anweisung benutzt wurde.

Der <Variablen-Ausdruck> der Ausgabeliste kann beliebig gewählt werden. Die

Interpunktionszeichen zwischen den einzelnen Werten sind die gleichen wie bei der

PRINT-Anweisung und werden auf die gleiche Weise benutzt. Die Wirkung der

Interpunktionszeichen ist jedoch aus zwei wesentlichen Gründen unterschiedlich.

Wird PRINT# bei Kassettendateien benutzt, so hat das Komma die gleiche Wirkung

wie ein Semikolon. Es ist daher stets gleich, ob Leerzeichen, Kommata, Semikolons

oder keine Interpunktionszeichen zwischen Daten benutzt werden. Die Daten

werden als kontinuierliche Zeichenkette geschrieben. Nach numerischen Daten

folgt ein Leerzeichen, und wenn sie positiv sind, steht auch vor ihnen ein Leerzei-

chen.

Wird die Liste durch keine Interpunktionszeichen beendet, so wird am Ende der

Daten ein Wagenrücklauf oder Zeilenvorschub geschrieben. Wird die Ausgabeliste

durch ein Komma oder Semikolon beendet, werden Wagenrücklauf und Zeilenvor-

schub unterdrückt. Unabhängig von der Interpunktion beginnt die nächste Anwei-

sung PRINT# die Ausgabe in der nächsten verfügbaren Zeichenposition. Der

Zeilenvorschub wirkt als Stop, wenn die Anweisung INPUT# benutzt wird, und

hinterläßt bei Ausführung der nächsten Anweisung INPUT # eine leere Variable. Der

Zeilenvorschub kann entsprechend nachstehenden Beispielen unterdrückt oder

ausgeglichen werden.

Die einfachste Art, um mehr als eine Variable in eine Datei auf Kassette oder

Diskette zu schreiben, ist eine Stringvariable gleich CHR$(13) zu setzen, und

dieses beim Schreiben der Datei zwischen alle anderen Variablen zu setzen.

74 BASIC-VOKABULAR

BEISPIELE DER ANWEISUNG PRINT#+#:

1)

10 OPEN 1, 1, 1, “TAPE FILE“ (Durch Änderung von CHR$(13) in

20 R$ = CHR$(13) CHR$(44) wird zwischen jede Va-

30 PRINT # 1,1;R$;2;R$;3;R$;4;R$;5 riable ein “,“ gesetzt. CHR$(59)

40 PRINT# 1,6 setzt ein “Semikolon“ zwischen je-

50 PRINT# 1,7 de Variable.)

2)

10 CO$=CHR$(44): CR$=CHR$(13) AAA,BBB CCCDDDEEE

20 PRINT#1, “AAA“CO$“BBB“, (Wagenrücklauf)

“CCC“;“DDD* ;“EEE“CR$“FFF“CR$;

30 INPUT#1, A$,BCDE$,F$ (Wagenrücklauf)

3)

5 CR$=CHR$(13) (10 Leerzeichen)AAA

10 PRINT#2, “AAA“;CR$;“BBB“ BBB

20 PRINT#2, “CCC*;

30 INPUT#2, A$,B$,DUMMY$,C$ (10 Leerzeichen)CCC

READ

TYP: Anweisung
FORMAT: READ <Variabie> [,<Variable>]

Funktion: Die READ-Anweisung wird benutzt, um den Variablennamen Konstan-

ten aus den DATA-Anweisungen zuzuordnen. Die einzulesenden Daten mussen

mit den angegebenen Variablentypen Ubereinstimmen. Andernfalls wird die BASIC-

Fehlermeldung ?SYNTAX ERROR angezeigt.* Variablen in DATA-Eingabelisten

mussen durch Kommata getrennt werden.

Eine einzelne READ-Anweisung kann nacheinander auf eine oder mehrere DATA-

Anweisungen zugreifen (siehe DATA). Oder es konnen mehrere READ-Anweisun-

gen auf die gleiche DATA-Anweisung zugreifen. Werden mehr READ-Anweisungen

ausgeführt, als die DATA-Anweisungen im Programm an Elementen enthalten, wird

die BASIC-Fehlermeldung ?OUT OF DATA angezeigt.

BASIC-VOKABULAR 75

Ist die festgelegte Variablenzahl kleiner als die Zahl der Elemente in den DATA-

Anweisungen, so setzen die folgenden READ-Anweisungen beim nachsten Daten-

element ein. (Siehe RESTORE.)

*Anmerkung: ?SYNTAX ERROR erscheint mit der Zeilennummer der DATA-Anweisung und nicht

der READ-Anweisung.

BEISPIELE DER READ-ANWEISUNG:

110 READ A,B,C$

120 DATA 1,2,HELLO

100 FOR X=1 TO 10: READ A(X):NEXT

200 DATA 3.08, 5.19, 3.12, 3.98, 4.24

210 DATA 5.08, 5.55, 4.00, 3.16, 3.37

(Füllt die Variablen (Zeile 1) in Reihenfolge der gezeigten Konstanten

(Zeile 5))

1 READ CITY$,STATE$,ZIP

5 DATA DENVER,COLORADO, 80211

REM

TYP: Anweisung
FORMAT: REM [<Bemerkung>]

Funktion: Über die REM-Anweisung wird Ihr Programm bei der Auflistung ver-

ständlicher. Es erinnert Sie daran, welchen Zweck Sie mit den einzelnen Pro-

grammabschnitten verfolgten. So können Sie z. B. darauf hinweisen, wofür eine

Variable benutzt wird usw. Diese Bemerkung kann ein beliebiger Text, ein Wort oder

ein Zeichen einschließlich dem Doppelpunkt (:) oder BASIC-Schlüsselwörter sein.

Die REM-Anweisung und alles Folgende in der gleichen Zeilennummer werden von

BASIC überlesen. Die Bemerkungen werden jedoch bei der Programmauflistung

genau wie eingegeben angezeigt. Auf eine REM-Anweisung kann durch eine

GOTO- oder GOSUB-Anweisung Bezug genommen werden. Die Programmaus-

führung setzt dann mit der nächsthöheren Programmzeile fort, die eine ausführbare

Anweisung enthält.

76 BASIC-VOKABULAR

BEISPIELE DER REM-ANWEISUNG:

10 CALCULATE AVERAGE VELOCITY
20 FOR X=1 TO 20 :REM LOOP FOR TWENTY VALUES
30 SUM=SUM + VEL(X): NEXT
40 AVG=SUM/20

RESTORE

TYP: Anweisung
FORMAT: RESTORE

Funktion: BASIC stellt den internen Zeiger (Pointer) auf die nächste zu lesende

DATA-Konstante. Dieser Pointer kann in einem Programm über die RESTORE-

Anweisung zur ersten DATA-Konstante zurückgestellt werden. Die RESTORE-

Anweisung kann an einer beliebigen Programmstelle benutzt werden.

BEISPIELE DER RESTORE-ANWEISUNG:

100 FOR X=1 TO 10: READ A(X): NEXT

200 RESTORE

300 FOR Y=1 TO 10: READ B(Y): NEXT

4000 DATA 3.08, 5.19, 3.12, 3.98, 4.24

4100 DATA 5.08, 5.55, 4.00, 3.16, 3.37

(Füllt die beiden Felder mit identischen Daten)

10 DATA 1,2,3,4

20 DATA 5,6,7,8

30 FOR L=1 TO 8

40 READ A: PRINT A

50 NEXT

60 RESTORE

70 FOR L=1 TO 8

80 READ A: PRINT A

90 NEXT

BASIC-VOKABULAR 77

RETURN

TYP: Anweisung
FORMAT: RETURN

Funktion: Die RETURN-Anweisung wird benutzt, um aus einem Unterprogramm,

das durch eine GOSUB-Anweisung aufgerufen wurde, zurückzuspringen. Durch

RETURN wird der Rest Ihres Programms ab der Anweisung nach dem entsprechen-

den GOSUB wieder gestartet. Bei der Verschachtelung von Unterprogrammen muß

für jedes GOSUB mindestens eine RETURN-Anweisung vorhanden sein. Ein

Unterprogramm kann beliebig viele RETURN-Anweisungen enthalten. Durch die

zuerst gelesene RETURN-Anweisung wird das Unterprogramm jedoch beendet.

BEISPIEL DER RETURN-ANWEISUNG:

10 PRINT “THIS IS THE PROGRAM“

20 GOSUB 1000

30 PRINT “PROGRAM CONTINUES“

40 GOSUB 1000

50 PRINT “MORE PROGRAM“

60 END
1000 PRINT “THIS IS THE GOSUB“:RETURN

RIGHTS

TYP: Stringfunktion
FORMAT: RIGHTS (<String>, <Ganze Zahl>)

Funktion: Über die Funktion RIGHT$ wird ein Teilstring von der rechten Seite

einer Zeichenkette wiedergegeben. Die Länge des Teilstrings wird durch die ganze

Zahl des Argumentes bestimmt. Diese Zahl kann zwischen O und 255 liegen. Ist

diese Zahl Null, dann wird ein Leerstring (“ “) wiedergegeben. Ist die ganze Zahl

größer als die Länge des Strings, dann wird der ganze String wiedergegeben.

BEISPIEL DER FUNKTION RIGHTS:

10 MSG$ = “COMMODORE COMPUTERS"

20 PRINT RIGHT$(MSG$,9)

RUN

COMPUTERS

78 BASIC-VOKABULAR

RND

TYP: Gleitpunktfunktion
FORMAT: RND (<numerisch>)

Funktion: RND erstellt eine Gleitpunktzahl von 0.0 bis 1.0. Der Computer erstellt

Zufallszahlen ausgehend von einer Zahl, die im Computer-Jargon “seed“ (Samen)

genannt wird. Die RND-Funktion wird bei Einschalten der Stromversorgung akti-

viert. Das <numerische> Argument ist, außer in bezug auf das Vorzeichen (positiv,

Null oder negativ), ein Hilfsargument. Ist das <numerische> Argument positiv, so

wird die gleiche “Pseudozufall“-Folge von Zahlen, angefangen bei einem gegebe-

nen Seed-Wert, wiedergegeben. Unterschiedliche Zahlenfolgen ergeben sich aus

unterschiedlichen Seeds, jede Folge kann jedoch ab der gleichen Seed-Nummer

wiederholt werden. Für das Überprüfen von Programmen ist es sinnvoll, eine

bereits bekannte Folge von “Zufallszahlen“ zu haben.

Wird das <numerische> Argument Null gewählt, erstellt RND eine Zahl direkt von

einer freilaufenden Hardware-Uhr, der System-"Jiffy-Clock“. Durch negative Argu-

mente gilt für die RND-Funktion bei jedem Funktionsaufruf eine Seed-Rückstellung.

BEISPIEL DER RND-FUNKTION:

220 PRINT INT(RND(0)*50) (Wiedergabe von ganzen

Zufallszahlen 0-49)

100 X=INT(RND(1)*6)+INT(RND(1)*6)+2 (Simuliert 2 Würfel)

100 X=INT(RND(1)*1000)+1 (Ganze Zufallszahl von 1 bis

1000)

100 X=INT(RND(1)*150)+100 (Ganze Zufallszahl von 100 bis

249)

100 X=RND(1)*(U—L)+L (Zufallszahlen zwischen oberer

(U) und unterer (L) Grenze)

BASIC-VOKABULAR 79

RUN

TYP: Befehl
FORMAT: RUN [<Zeilennummer>]

Funktion: Der Systembefehl RUN wird benutzt, um ein im Speicher befindliches

Programm auszuführen. Uber den Befehl RUN wird vor dem Programmstart ein

CLR ausgeführt. Zur Vermeidung der Löschung kann das Programm durch CONT

oder GOTO anstelle von RUN wieder gestartet werden. Wird eine <Zeilennum-

mer> angegeben, so beginnt das Programm in dieser Zeile. Ansonsten beginnt der

RUN-Befehl die Ausführung mit der ersten Programmzeile. Dieser Befehl kann

auch innerhalb eines Programms benutzt werden. Wenn die angegebene Zeilenzahl

nicht existiert, wird die BASIC-Fehlermeldung UNDEF’D STATEMENT angezeigt.

Die Programmausführung stoppt, und BASIC kehrt zum Direktmodus zurück, wenn

eine END- oder STOP-Anweisung erreicht wird, wenn die letzte Programmzeile

beendet wird oder wenn während der Ausführung ein BASIC-Fehler auftritt.

BEISPIELE DES RUN-BEFEHLS:

RUN (Beginnt bei der ersten Programmzeile)

RUN 500 (Beginnt bei Zeilennummer 500)

RUN X (Beginnt bei Zeile X. Wenn keine Zeile X existiert, wird die

Meldung UNDEF’D STATEMENT ERROR angezeigt.)

SAVE

TYP: Befehl
FORMAT: SAVE [“<Dateiname>“] [,<Geratenummer>]

[.<Adresse>]

Funktion: Über den SAVE-Befehl wird das im Speicher befindliche Programm auf

Kassette oder Diskette gespeichert. Das Programm bleibt im derzeitigen Computer-

speicher auch nach diesem Zeichenvorgang noch erhalten. Der Dateityp ist PRG

(Programm). Wird die <Geratenummer> ausgelassen, nimmt der C 64 automatisch

an, daß das Programm auf Kassette, d. h. Gerätenummer 1, gespeichert werden

soll. Ist die <Gerätenummer> eine <8>, wird das Programm auf Diskette ge-

schrieben.

Die SAVE-Anweisung können Sie auch in Ihren Programmen benutzen. Die Aus-

führung fährt nach Beendigung dieser Speicherung mit der nächsten Anweisung

fort.

80 BASIC-VOKABULAR

Programme auf Kassette werden automatisch doppelt gespeichert, so daß der

COMMODORE 64 beim erneuten Laden des Programms eine Fehlerüberprüfung

durchführen kann. Werden Programme auf Kassette gespeichert, dann wird der

<Dateiname> und die <Sekundär-Adresse> optional. Wird bei der Speicherung

ein Programmname jedoch in Anführungszeichen (“ “) oder durch eine Stringvaria-

ble (---$) angegeben, kann der COMMODORE 64 die einzelnen Programme

leichter finden. Wird der Dateiname ausgelassen, so ist danach kein Laden mit

Namen möglich.

Beim Speichern von Programmen auf Diskette muß der <Dateiname> angegeben

sein.

BEISPIELE DES SAVE-BEFEHLS:

SAVE (Schreiben auf Kassette ohne Namen)

SAVE "ALPHA“, 1 (Speichern auf Kassette mit Dateiname “alpha‘)

SAVE “ALPHA“, 1, 2 (Speichern von “alpha“ mit Kassettenende-

Kennzeichen)

SAVE "FUN.DISK“,8 (Speichern auf Diskette (Geräte-Nr. 8))

SAVE A$ (Speichern auf Kassette mit der Bezeichnung

A$)

10 SAVE “HI (Speichern des Programms und Ubergang zur

nächsten Programmzeile)

SAVE “ME“,1,3 (Speichern im gleichen Speicherplatz und

Setzen eines Kassettenende-Kennzeichens)

BASIC-VOKABULAR 81 _

SGN

TYP: Ganzzahlige Funktion
FORMAT: SGN (<numerisch>)

Funktion: SGN gibt Ihnen abhangig vom Vorzeichen des <numerischen> Argu-
ments einen ganzzahligen Wert. Ist das Argument positiv, dann ist das Ergebnis 1.
Ist das Argument 0, dann ist auch das Ergebnis 0, und bei negativem Argument
lautet das Ergebnis —1.

BEISPIEL DER SGN-FUNKTION:

90 ON SGN(DV)+2 GOTO 100, 200, 300

(Sprung zu 100, wenn DV=negativ, zu 200, wenn DV=0, zu 300, wenn
DV=positiv)

SIN

TYP: Gleitpunktfunktion
FORMAT: SIN (<numerisch>)

Funktion: SIN gibt Ihnen den Sinus des <numerischen> Arguments, das in
Bogenmaß anzugeben ist. Der Wert von COS(x) ist gleich SIN(x+3.14159265/2).

BEISPIEL DER SIN-FUNKTION:

235 AA = SIN(1.5): PRINT AA

.997494987

82 BASIC-VOKABULAR

SPC

TYP: Stringfunktion
FORMAT: SPC (<numerisch>)

Funktion: Mit der SPC-Funktion wird die Datenformatierung entweder als Aus-

gabe auf dem Bildschirm oder in eine logische Datei überprüft. Die Anzahl der durch

das <numerische> Argument angegebenen Leerstellen (SPC) wird beginnend bei

der ersten verfügbaren Position angezeigt. Für Bildschirm- oder Kassettendateien

liegt der Wert des Arguments zwischen 0 und 255 und für Diskettendateien bei max.

254. Bei Druckerdateien wird automatisch ein Wagenrücklauf und Zeilenvorschub

ausgeführt, wenn die letzte Zeichenposition einer Zeile ein Leerzeichen ist.

BEISPIEL DER SPC-FUNKTION:

10 PRINT “RIGHT; “HERE &“;

20 PRINT SPC(5) “OVER“ SPC(14) “THERE“

RUN

RIGHT HERE & OVER THERE

SQR

TYP: Gleitpunktfunktion
FORMAT: SQR (<numerisch>)

Funktion: SQR gibt Ihnen den Wert der Quadratwurzel des <numerischen>

Arguments. Der Argumentenwert darf nicht negativ sein, da sonst die BASIC-

Fehlermeldung ?ILLEGAL QUANTITY angezeigt wird.

BEISPIEL DER SQR-FUNKTION:

FOR J = 2 TO 5: PRINT J*5, SQR(J * 5): NEXT

10 3.16227766

15 3.87298335

20 4.47213595

25 fs)

READY

BASIC-VOKABULAR 83

STATUS

TYP: Ganzzahlige Funktion
FORMAT: STATUS

Funktion: Sagt etwas über die letzte Ein-/Ausgabeoperation aus, die bei einer

offenen Datei durchgeführt wurde. Der STATUS kann von einem beliebigen Peri-

pheriegerät gelesen werden.

Das Schlüsselwort STATUS (oder einfach ST) ist ein systemdefinierter Variablen-

name, in den der KERNAL den STATUS der Ein-/Ausgabeoperationen gibt. Nach-

stehend sehen Sie eine Tabelle der STATUS-Codewerte für Kassette, Drucker,

Diskette und RS-232:

ST-Bit- |ST numerischer Lesen von Serieller | Kassette Verify

position Wert Kassette Bus and Load

Lesen/

Schreiben

0 1 Time out

Schreiben

1 2 Time out

Lesen

2 4 Kurzer Block Kurzer Block

3 8 Langer Block Langer Block

4 16 Nicht Beliebige

erkennbarer fehlende

Lesefehler Ubereinstimmung

5 | 32 Prüfsummen- Prüfsummen-

fehler | fehler

6 64 Dateiende Ende der

Eingabe

7 —128 Kassetten- Gerät nicht] Kassettenende

ende vorhanden
84 BASIC-VOKABULAR

BEISPIELE DER STATUS-FUNKTION:

10 OPEN 1, 4: OPEN 2, 8, 4, “MASTER FILE,SEQ,W“

20 GOSUB 100: REM CHECK STATUS

30 INPUT #2, A$, B, C

40 IF STATUS AND 64 THEN 80: REM HANDLE END-OF-FILE

50 GOSUB 100: REM CHECK STATUS

60 PRINT #1, A$, B; C

70 GOTO 20

80 CLOSE1: CLOSE2

90 GOSUB 100: END

100 IF ST >0 THEN 9000: REM HANDLE FILE I/= ERROR
111 RETURN

STEP

TYP: Anweisung
FORMAT: [STEP <Ausdruck>]

Funktion: Das nicht notwendige STEP-Schlüsselwort folgt nach der <Grenze> in

einer FOR-Anweisung. Es bestimmt einen Inkrementwert für die Schleifenzahler-

Variable. Als STEP-Inkrement kann ein beliebiger Wert auBer Null benutzt werden.

Wird das STEP-Schlüsselwort ausgelassen, so ist der Inkrementwert +1. Wird die

NEXT-Anweisung für eine FOR-Schleife erreicht, wird das STEP-Inkrement wirk-

sam. Der Zähler wird gegen den Endwert überprüft, um festzustellen, ob die

Schleife beendet ist. (Bezüglich weiterer Einzelheiten siehe FOR-Anweisung.)

| Anmerkung: Der STEP-Wert kann nicht innerhalb der Schleife geändert werden. |

BEISPIELE DER STEP-ANWEISUNG:

25 FOR XX = 2 TO 20 STEP 2 (Zehnmalige Wiederholung der

Schleife)

35 FOR ZZ = 0 TO —20 STEP —2 (Elfmalige Wiederholung der

Schleife)

BASIC-VOKABULAR 85

STOP

TYP: Anweisung
FORMAT: STOP

Funktion: Die STOP-Anweisung wird benutzt, um die Ausführung des derzeitigen

Programms zu stoppen und zum Direktmodus zurückzukehren. Die STOP-Anwei-

sung hat die gleiche Funktion wie die Betätigung der Taste GING. Auf dem

Bildschirm wird die BASIC-Fehlermeldung ?BREAK IN LINE nnnnn und danach

READY angezeigt. “nnnnn“ gibt an, in welcher Zeilennummer die Programm-

ausfuhrung gestoppt wurde. Offene Dateien bleiben offen, und alle Variablen

können überprüft werden. Das Fortsetzen des Programmes ist über die Anweisung

CONT oder GOTO möglich.

BEISPIELE DER STOP-ANWEISUNG:

10 INPUT#1, AA, BB, CC

20 IF AA = BB AND BB = CC THEN STOP

30 STOP

(Ist die Variable AA gleich —1 und BB gleich CC, dann:)

BREAK IN LINE 20 (Fur beliebige andere Datenwerte)

BREAK IN LINE 30

STR$

TYP: Stringfunktion
FORMAT: STR$ (<numerisch>)

Funktion: STR$ wandelt das numerische Argument in einen String um. Ist das

Argument positiv oder 0, so beginnt der String mit einem Leerzeichen.

BEISPIEL DER FUNKTION STRS$:

100 FLT = 1.5E4: ALPHA$ = STR$(FLT)
110 PRINT FLT, ALPHA$

15000 15000

86 BASIC-VOKABULAR

SYS

TYP: Anweisung
FORMAT: SYS <Adresse>

Funktion: Dies ist die am weitesten verbreitete Art, ein BASIC-Programm mit

einem Maschinensprache-Programm zu kombinieren. Das Programm in Maschi-

nensprache beginnt an der durch die SYS-Anweisung angegebenen Adresse. Der

Systembefehl SYS wird entweder im Direkt- oder Programmodus benutzt, um die

Steuerung des Mikroprozessors zu einem im Speicher existierenden Maschinen-

sprache-Programm zu übertragen. Die Adresse wird durch einen numerischen

Ausdruck angegeben und kann an einem beliebigen RAM- oder ROM-Speicher-

platz liegen.

Wenn Sie die SYS-Anweisung benutzen, muß dieser Abschnitt des Maschinen-

sprache-Codes mit einer RTS-Anweisung (Rückkehr vom Unterprogramm) beendet

werden, damit nach Ausführung des Maschinensprache-Programms die BASIC-

Ausführung mit der Anweisung hinter dem SYS-Befehl fortgesetzt wird.

BEISPIELE DER SYS-ANWEISUNG:

SYS 64738 (Sprung zum System-Kaltstart im ROM)

10 POKE 4400,96: SYS 4400 (Geht zum Maschinencode-Platz 4400

und kehrt sofort zurück)

TAB

TYP: Stringfunktion
FORMAT: TAB (<numerisch>)

Funktion: Durch die TAB-Funktion wird der Cursor zu der durch das <numeri-

sche> Argument angegebenen Bildschirm-Position (gezählt ab der äußerst linken

Position der derzeitigen Zeile) bewegt. Der Wert des Arguments kann zwischen O

und 255 liegen. Die TAB-Funktion sollte nur mit der PRINT-Anweisung benutzt

werden, da sie zusammen mit PRINT# für eine logische Datei unwirksam ist.

BASIC-VOKABULAR 87

BEISPIELE DER TAB-FUNKTION:

100 PRINT “NAME“ TAB(25) “AMOUNT“: PRINT

110 INPUT#1, NAM$, AMT$

120 PRINT NAM$ TAB(25) AMT$

NAME | AMOUNT

G.T.JONES 25.

TAN

TYP: Gleitpunktfunktion
FORMAT: TAN (<numerisch>)

Funktion: Gibt den Tangens des <numerischen> Ausdrucks, der einen Winkel in

Bogenmaß darstellt, wieder. Beim Uberlauf der TAN-Funktion wird die BASIC-

Fehlermeldung ?DIVISION BY ZERO angezeigt.

BEISPIEL DER TAN-FUNKTION:

10 XX = .785398163: YY = TAN(XX): PRINT YY
1

TIME

TYP: Numerische Funktion

FORMAT: TI

Funktion: Bei der Tl-Funktion wird der Intervalltimer gelesen. Dieser Typ wird

“Jiffy Clock“ genannt. Der “Jiffy Clock“-Wert wird bei Einschalten der Stromver-

sorgung auf Null gestellt (initialisiert). Dieser 1/60-Sekunden-Intervalltimer wird

während der Kassettenein-/ausgabe abgeschaltet.

BEISPIEL DER TI-FUNKTION:

10 PRINT TI/60 “SECONDS SINCE POWER UP“

88 BASIC-VOKABULAR

TIMES

TYP: Stringfunktion
FORMAT: TI$

Funktion: Der Timer arbeitet genau wie eine normale Uhr, solange das System

eingeschaltet ist. Der Hardware-Intervalltimer (oder “Jiffy Clock“) wird gelesen und

zur Aktualisierung des Werts von TI$ benutzt. Hierdurch entsteht ein Zeit-String

(TI$) von sechs Zeichen in Stunden, Minuten und Sekunden. Dem Timer kann,

ähnlich wie bei Ihrer Armbanduhr, ein beliebiger Startpunkt zugeordnet werden. Der

Wert von TI$ ist nach der Kassettenein-/ausgabe nicht mehr präzise.

BEISPIEL DER FUNKTION TIS:

1 TIS = “000000“: FOR J=1 TO 10000: NEXT: PRINT TI$

000011

USR

TYP: Gleitpunktfunktion
FORMAT: USR (<numerisch>)

Funktion: Über die USR-Funktion wird zu einem Maschinensprache-Unterpro-

gramm gesprungen, das vom Benutzer aufgerufen werden kann und dessen

Startadresse durch die Inhalte der Speicherplätze 785-786 angezeigt ist. Die

Startadresse wird vor dem Aufruf der USR-Funktion durch POKE-Anweisung in die

Adressen 785 und 786 eingegeben. Wurden die POKE-Anweisungen nicht durch-

geführt, so erfolgt die Fehlermeldung ?ILLEGAL QUANTITY.

Der Wert des <numerischen> Arguments wird im Gleitpunkt-Akkumulator (Start-

adresse 97) für die Verwendung im Assembler-Code gespeichert, und das Ergebnis

der USR-Funktion wird an diesem Platz bei der Rückkehr vom Unterprogramm zu

BASIC gespeichert. |

BEISPIELE DER USR-FUNKTION:

10B = T*SIN(Y)

20 C = USR (B/2)

30 D = USR (B/3)

BASIC-VOKABULAR 89

VAL

TYP: Numerische Funktion

FORMAT: VAL (<String>)

Funktion: Gibt den numerischen Wert eines Strings wieder. Ist das erste nicht

leere Zeichen des Strings nicht ein Pluszeichen (+), Minuszeichen (—) oder eine

Zahl, ergibt sich der Wert Null. Die String-Umsetzung wird am Ende der Zeichen-

kette, oder wenn ein Nicht-Zahlenzeichen gefunden wird, beendet (mit Ausnahme

des Dezimalpunkts oder des Exponenten e).

BEISPIEL DER VAL-FUNKTION:

10 INPUT#1, NAM$, ZIP$

20 IF VAL(ZIP$) <19400 OR VAL(ZIP$)> 96699 THEN PRINT NAM$ TAB(25)

“GREATER PHILADELPHIA“

VERIFY

TYP: Befehl
FORMAT: VERIFY [“<Datenname>“] [,<Geratenummer>]

Funktion: Der VERIFY-Befehl wird im Direkt- oder Programm-Modus benutzt, um

die Inhalte von BASIC-Programmdateien auf Kassette oder Diskette mit dem

derzeitigen im Speicher befindlichen Programm zu vergleichen. VERIFY wird nor-

malerweise direkt nach der Speicherung (SAVE) benutzt, um sicherzustellen, daß

das Programm korrekt gespeichert wurde.

Wird die Gerätenummer ausgelassen, gilt für das Programm die Gerätenummer 1

(Datasette). Wird für Kassettendateien der Dateiname ausgelassen, so wird das

nächste auf der Kassette gefundene Programm verglichen. Für Diskettendateien

(Geräte-Nr. 8) muß der Dateiname angegeben werden. Wird eine Abweichung vom

Programmtext festgestellt, so erscheint die BASIC-Fehlermeldung ?VERIFY

ERROR.

Ein Programmname kann entweder in Anführungszeichen (“ “) oder als Stringvaria-

ble angegeben werden. VERIFY wird auch benutzt, um ein Kassettenband hinter

das letzte Programm zu spulen, so daß danach ein neues Programm abgespeichert

werden kann. Auf diese Weise wird eine Programmüberschreibung vermieden.

90 BASIC-VOKABULAR

BEISPIELE DES VERIFY-BEFEHLS:

VERIFY (Überprüft erstes Programm auf der
Kassette)

PRESS PLAY ON TAPE

OK

SEARCHING

FOUND <FILENAME>

VERIFYING

9000 SAVE "ME" 8: (Sucht das Programm bei Gerät Nr. 8)

9010 VERIFY “ME“,8

WAIT

TYP: Anweisung
FORMAT: WAIT <Platz>, <Maske-1> [,<Maske-2>]

Funktion: Durch die WAIT-Anweisung wird die Programm-Ausführung so lange

unterbrochen, bis eine gegebene Speicheradresse ein bestimmtes Bit-Muster

erkennt. D. h., WAIT kann benutzt werden, um ein Programm so lange zu stoppen,

bis eine externe Bedingung erfüllt ist. Dies erfolgt durch Überwachung des Status

der Bits im Ein-/Ausgaberegister. Für die Daten von WAIT können beliebige

numerische Ausdrücke gewählt werden. Diese werden jedoch in ganzzahlige Werte

umgesetzt.

Die meisten Programmierer werden nie mit dieser Anweisung arbeiten. Hierdurch

wird das Programm angehalten, bis die Bits eines bestimmten Speicherplatzes auf

eine ganz bestimmte Weise verändert werden. Diese Anweisung wird fast aus-

schließlich für bestimmte Ein-/Ausgabevorgänge benutzt.

Die WAIT-Anweisung nimmt den Wert im Speicherplatz und führt eine logische

UND-Verknüpfung mit dem Wert der Maske-1 durch. Enthält die Anweisung eine

Maske-2, wird das Ergebnis des ersten Vorganges mit Maske-2 durch ein aus-
schlieBendes ODER verknüpft.

D. h., Maske-1 “filtert“ beliebige Bits aus, die Sie nicht prüfen wollen. Ist das Bit in

Maske-1 0, so ist das entsprechende Bit in Ihrem Ergebnis auch 0. Maske-2 dreht

die Bits um, so daß Sie sowohl überprüfen können, ob eine Bedingung erfüllt ist

oder nicht. Bits, für die ein O-Test ausgeführt werden soll, müssen in der entspre-

chenden Position in Maske-2 eine 1 haben.

BASIC-VOKABULAR 91

Sind die entsprechenden Bits der Operanden von Maske-1 und Maske-2 unter-

schiedlich, so ergibt sich durch die Verknüpfung mit ausschlieBendem ODER das

Bit-Ergebnis 1. Ergibt sich bei den entsprechenden Bits das gleiche Ergebnis, so

lautet das Bit 0. Uber die WAIT-Anweisung kann eine unendliche Pause eingefügt

werden. In diesem Fall ist eine Rückstellung mit den Tasten und
möglich. Halten Sie die Taste gedrückt und drücken Sie

dann die Taste . In nachstehendem ersten Beispiel wird so lange

gewartet, bis an der Kassetteneinheit zur Fortsetzung des Programms eine Taste

betätigt wird. Beim zweiten Beispiel wird gewartet, bis ein Sprite mit dem Bild-

schirmhintergrund kollidiert.

BEISPIELE DER WAIT-ANWEISUNG:

WAIT 1, 32, 32

WAIT 53273, 6, 6

WAIT 36868, 144, 16 (144 & 16 sind Masken. 144=10010000 binär

und 16=10000 binär. Die WAIT-Anweisung

stoppt das Programm, bis Bit 7 ein oder Bit 4

aus ist.)

TASTATUR UND MERKMALE DES COMMODORE 64
Das Betriebssystem hat einen Tastaturpuffer mit einer Kapazität von 10 Zeichen,

der die über die Tastatur eingegebenen Befehle so lange speichert, bis sie

ausgeführt werden können. Dieser Puffer speichert die Tastendrücke in der Reihen-

folge, in der sie eingegeben wurden. D.h., die erste Eingabe wird auch zuerst

ausgeführt. Folgt die zweite Tastenbetätigung z. B. ehe die erste ausgeführt werden

Kann, so wird die zweite im Puffer gespeichert, während die Ausführung des ersten

Zeichens fortgeführt wird.

Nach Abarbeitung des ersten Zeichens wird überprüft, ob im Puffer weitere Daten

sind. Dann wird die zweite Tastenbetätigung ausgeführt. Ohne diesen Puffer

würden bei einer schnellen Eingabe über die Tastatur gelegentlich Zeichen

verlorengehen.

Dies bedeutet also, daß der Puffer der Tastatur ein “Vorschreiben“ ermöglicht und

daß er Antworten auf INPUT-Rückfragen oder GET-Anweisungen unter Umständen

vorwegnimmt. Bei Betätigung der Tastatur werden die entsprechenden Zeichen in

einer Datei im Puffer aufgelistet und dann entsprechend der Eingangsreihenfolge

ausgeführt. Dadurch kann es gelegentlich zu Störungen kommen, wenn durch eine

versehentliche Tastenbetätigung das Programm aus dem Puffer ein falsches Zei-

chen empfängt.

92 BASIC-VOKABULAR

Normalerweise stellen falsche Tastenbetatigungen keine Probleme dar, die durch

die Taste oder die Löschtaste gelöscht und daher neu
eingegeben werden können. Die Korrekturen werden vor dem nächsten “carriage-

return“ durchgeführt. Wird jedoch die Taste gedrückt, ist keine Korrektur
möglich, da alle Zeichen im Puffer bis zu (und einschließlich) dem “carriage-return “

vor einer weiteren Korrektur ausgeführt werden. Um dies zu vermeiden, kann eine

Schleife benutzt werden, um den Tastaturpuffer vor dem Lesen zu löschen.

10 GET JUNK$: IF JUNK$ <>““ THEN 10: REM EMPTY THE KEYBOARD

BUFFER

Zusätzlich zu GET und INPUT kann die Tastatur auch über PEEK gelesen werden,

indem aus dem Speicherplatz 197 ($00C5) der Wert der derzeitig gedrückten Taste

gelesen wird. Wird bei der Ausführung von PEEK keine Taste gedrückt, so wird der

Wert 64 wiedergegeben. Die numerischen Tastaturwerte, Tastensymbole und Zei-

chencodes (CHR$) werden in Anhang C gezeigt. Bei folgendem Beispiel wird

solange eine Schleife durchgeführt, bis eine Taste gedrückt ist. Dann wird die ganze

Zahl in ein Zeichen umgesetzt.

10 AA = PEEK(197): IF AA = 64 THEN 10

20 BB$ = CHR$(AA)

Die Tastatur ist eine Art Schaltersatz, der in eine Matrix von acht Spalten mal acht

Reihen unterteilt ist. Die Tastaturmatrix wird über das CIA #1 Ein-/Ausgabechip

(MOS 6526 Complex-Interface-Adapter) vom KERNAL hinsichtlich der Schalter-

stellungen abgetastet. Die Abtastung erfolgt über zwei CIA-Register. Register #0

bei Platz 56320 ($DCO0) für die Spalten und Register #1 bei Platz 56321 ($DC01)

für die Reihen.

Die Bits O bis 7 von Speicherplatz 56320 entsprechen den Spalten 0 bis 7. Die Bits

O bis 7 von Speicherplatz 56321 entsprechen den Reihen O bis 7. Der KERNAL

schreibt die Spaltenwerte nacheinander, liest dann die Reihenwerte und decodiert

anschließend die Schalterstellung in den Wert CHR$ (N) der gedrückten Taste.

Aus acht Spalten mal acht Reihen ergeben sich 64 mögliche Werte. Wird jedoch

zuerst die Taste , (@ oder die Taste gedrückt gehal-

ten und ein weiterer Buchstabe eingegeben, so werden zusätzliche Werte erzeugt.

Der KERNAL decodiert diese Tastaturen nämlich getrennt und “merkt sich“, wenn

eine Steuertaste gedrückt wurde. Das Ergebnis dieser Tastaturabfrage wird dann in

Adresse 197 gespeichert.

BASIC-VOKABULAR 93

Die Zeichen können auch direkt in den Tastaturpuffer uber die POKE-Anweisung in

die Speicherstellen 631—640 geschrieben werden. Diese Zeichen werden ausge-

führt, wenn in Adresse 198 die Anzahl der Zeichen eingegeben wird. Auf diese

Weise können Direkt-Modusbefehle automatisch durch Anzeige der Anweisungen

auf dem Bildschirm, Eingabe von RETURNS in den Puffer und Einstellung des

Zeichenzählers ausgeführt werden. Im nachstehenden Beispiel listet das Programm

sich selbst auf dem Drucker auf und nimmt danach die Ausführung wieder auf.

10 PRINT CHR$(147)“PRINT#1: CLOSE 1: GOTO 50“

20 POKE 631,19: POKE 632,13: POKE 633,13: POKE 198,3

30 OPEN 1,4: CMD1: LIST

40 END

50 REM PROGRAM RE-STARTS HERE

BILDSCHIRMEDITOR

Der Bildschirmeditor oder SCREEN EDITOR ist ein wirksames Hilfsmittel bei der

Aufbereitung von Programmtexten. Nachdem ein Programmteil auf dem Bildschirm

aufgelistet ist, kann man sich auf dem Bildschirm mit Hilfe der Cursorsteuertasten

und weiterer Sondertasten frei bewegen, so daß die geeigneten Änderungen

vorgenommen werden können. Wird nach Beendigung der Korrekturen einer

bestimmten Textzeile die Taste an einer beliebigen Zeilenposition

gedrückt, so liest der SCREEN EDITOR die gesamte logische Bildschirmzeile von

80 Zeichen ein.

Der Text wird dann zum Interpreter weitergegeben, gekennzeichnet und im Pro-

gramm gespeichert. Hierbei wird eine alte Zeile im Speicher durch die aufbereitete

ersetzt. Um eine zusätzliche Kopie von einer beliebigen Programmzeile zu erstel-

len, wird einfach die Zeilennummer geändert und die Taste gedrückt.
Überschreitet eine Programmzeile aufgrund der Verwendung von Schlüsselwortab-

kürzungen 80 Zeichen, so sind die überschüssigen Zeichen beim Aufbereiten der

Zeile verloren, da der EDITOR nur zwei physische Bildschirmzeilen liest. Aus

diesem Grund ist auch eine Eingabe von mehr als 80 Zeichen nicht möglich. Für

praktische Anwendungen ist die Zeilenlänge eines BASIC-Textes daher entspre-

chend der Bildschirmanzeige auf 80 Zeichen begrenzt.

Unter bestimmten Bedingungen behandelt der SCREEN EDITOR die Cursorsteuer-

tasten unterschiedlich zum normalen Modus. Steht der Cursor rechts neben einer

ungeraden Zahl von Anführungszeichen (“), so arbeitet der Editor im QUOTE-

MODUS (Anführungszeichen-Modus).

94 BASIC-VOKABULAR

In diesem Modus werden Datenzeichen normal eingegeben, jedoch kann der

Cursor nicht mehr über die Cursorsteuertasten bewegt werden. Durch Betätigung

der Cursorsteuertasten werden statt dessen Zeichen in Negativdarstellung ange-

zeigt. Das gleiche gilt für die Farbsteuertasten. Auf diese Weise können Sie Cursor

und Farbsteuerung in Form von Strings in Ihr Programm aufnehmen. Sie werden

noch feststellen, wie nützlich dies ist.

Wird nämlich ein Text, der zwischen Anführungszeichen steht, auf dem Bildschirm

angezeigt, dann erfolgt automatisch die Cursorpositionierung und Farbsteuerung

als Teil des Strings. Cursorsteuerung kann in Strings z. B. so benutzt werden:

Sie geben ein > 10 PRINT “A(R)(R)B(L)(L)(L)C(R)(R)D“:
REM(R)=CRSR RIGHT, (L)=CRSR LEFT

Der Computer zeigtan— AC BD

Die einzige Cursorsteuertaste, die NICHT vom Anfuhrungszeichen-Modus beein-

flußt wird, ist die Taste . Erfolgt im Quote-Modus ein Fehler, kann nicht mit

der Taste zurückgegangen und der Fehler überschrieben werden —
selbst durch Anschlagen der Taste werden umgekehrte Bildschirmzei-

chen angezeigt.

Beenden Sie statt dessen die Eingabe der Zeile durch , dann können Sie
diese normal abändern. Eine weitere Möglichkeit ist, die Tasten

und zu drücken, wenn keine weiteren Cursorsteuerungen
in der Zeichenkette benötigt werden. Hierdurch wird der Quote-Modus gelöscht.

Die Cursorsteuertasten, die in Zeichenketten benutzt werden können, sind in

Tabelle 2.2. gezeigt.

Tabelle 2.2. Cursorsteuertasten im QUOTE-MODUS

Steuertaste Bildschirmanzeige

Cursor nach oben ()]

Cursor nach unten Q

Cursor nach links =]

Cursor nach rechts CRSR> ORSRS)
Löschen %

Ausgangsstellung

Einfügen ee

BASIC-VOKABULAR 95

Wenn Sie sich NICHT im Quote-Modus befinden, werden durch gleichzeitiges

Drücken der Tasten und die Daten rechts neben dem Cursor
verschoben. So entsteht zwischen zwei Zeichen Platz für die Eingabe weiterer

Zeichen. Der Editor arbeitet nun solange im Einfügemodus, bis alle geöffneten

Leerstellen gefüllt sind.

Auch im Einfügemodus erscheinen nach Betätigung der Cursor- und Farbsteuerta-

sten umgekehrte Zeichen. Der einzige Unterschied zeigt sich beim Drücken der

Taste MIZEB. Durch wird nun ein umgekehrtes angezeigt. Die
Taste MUB. die im Anführungszeichen-Modus Revers-Zeichen anzeigt, fügt

Leerzeichen ein.

Dies bedeutet, daß in einer PRINT-Anweisung Löschungen (DEL) im Gegensatz

zum Quote-Modus möglich sind. Der Einfügemodus wird durch Drücken

der Tasten EI. und oder und
gelöscht. Außerdem wird dieser Modus gelöscht, wenn alle eingefügten Leerstellen

gefüllt sind. DEL-Zeichen können in Zeichenketten z. B. so benutzt werden:

10 PRINT “HELLO Coe] oc Ya
(Die obige Tastenfolge erscheint bei der Auflistung wie folgt:)

10 PRINT“HELP“

Wird nach diesem Beispiel RUN eingegeben, so wird das Wort HELP angezeigt. Die

Buchstaben LO werden nämlich vor der Anzeige von P gelöscht. Die Löschzeichen

in Zeichenketten gelten sowohl für die Anweisung LIST als auch für PRINT. Auf

diese Weise können Sie alle oder einen Teil der Textzeilen “verstecken”. Die

Abänderung einer Zeile mit diesen Zeichen ist jedoch schwierig.

Es gibt noch weitere Zeichen, die für spezielle Funktionen angezeigt werden

können, auch wenn diese nicht ganz einfach über die Tastatur zur Verfügung

stehen. Um diese Zeichen in Anführungszeichen zu setzen, werden in der Zeile

entsprechende Leerzeichen gelassen, die Taste gedrückt und dann zur
Zeilenaufbereitung zurückgegangen.

Drücken Sie nun die Tasten und EXT. um mit der Anzeige der unter-
legten Zeichen zu beginnen. Schlagen Sie die Tasten wie folgt an:

Tastenfunktion Tastenanschlag Bildschirmanzeige

Großumschaltung RETURN IM EN
Umschaltung auf Klein-/Großschrift EN | rN |
Umschaltung auf GroBbuchstaben/ EN | 3 DA

Graphikzeichen

96 BASIC-VOKABULAR

Das gleichzeitige Drücken der Tasten und verursacht auf dem
Bildschirm einen “Wagenrücklauf“ und einen Zeilenvorschub, aber die Zeichen-

kette wird nicht beendet. Dies gilt sowohl fur LIST als auch für PRINT, so daB bei —

Verwendung dieser Zeichen eine Abänderung schwierig ist. Wird für die Ausgabe

über die CMD-Anweisung der Drucker gewählt, so wird durch das unterlegte

Zeichen “N“ der Zeichensatz für Klein-/GroBschrift und durch “N” der

Zeichensatz für Großbuchstaben/Graphikzeichen eingeschaltet.

Durch gleichzeitiges Drücken der Tasten und können unterlegte
Bildschirmzeichen in Strings eingeschlossen werden. Auf dem Bildschirm erscheint

dann in Anführungszeichen ein unterlegtes R. Auf diese Weise werden alle Zei-

chen auf dem Bildschirm unterlegt (d.h. wie ein Negativbild) angezeigt.

Um diese Ausgabe zu beenden, drücken Sie gleichzeitig die Tasten

und QR. Nun wird ein unterlegtes Graphikzeichen angezeigt.
Numerische Daten können unterlegt angezeigt werden, indem man zunächst ein

CHR$(18) eingibt. Durch CHR$(146) oder ein “Carriage return“ wird diese umge-

kehrte Bildschirmausgabe gelöscht.

BASIC-VOKABULAR 97

oy = “ % eg BEG . - i : R . : a a < . = se 5 + 2 E a ay PER é . . *
_— EEE 5 : BE ws a, fe =, ae . = Te 7 be) ow = PL : :

; 3 e om ae = 5 x Da : E > ' ot ae % t ie 7 Pi x

7 2 Le * od ” = oe we 7 = a - R ® : R 4 “a E u 5 . “ . = .
Pa wed “2 En .

7 : . = 7 7 Ly 7 i 7 £ a.
7 E 2. mg s « re ne z SR 7 : i. . . 2 : \

; ns, \ = 8 ns mes a u = = \ : “. u ; : E . u: DE nas | 3 \ . : ' « ? . _ a « : : = be \ : Par Ä A ,
:

.
“

. * .

3 E s :

A, 5 © : :
*

wu X, P 4

1

.

+i! a,
a

7 7 .. 7 u
.

var y E \

:
r

= ‘ . . a
=

7 \

= ‘ #
a

7
ke :

= & P +. =

B ws ze * 2

5 45 7 i Fun \
5 :

@ a: 6 E -

KAPITEL 3

GRAPHIK-
PROGRAMMIERUNG

MIT DEM
(ie) | Nle)nle] =] =m

.e Graphikübersicht

ee BEE Tet- elle ie:Telall,94-1fei st-Ie

e Standardzeichenmodus

e Programmierbare Zeichen

U T1eTaF-Tgel-Ialeig:1elail.c-Ie

e Erweiterter Hintergrundfarbmodus

_ @ “Bit-Mapped“-Graphiken

e Mehrfarben-“Bit-Map-Modus“

e Rollen der Bildschirmanzeige

e Sprites

e Weitere Graphikmöglichkeiten

e Programmieren von Sprites — ein anderer

PANS} @=1,4

99

GRAPHIKUBERSICHT

Sämtliche Graphikmöglichkeiten des COMMODORE 64 basieren auf dem Video-

Interface-Chip 6567 (auch bekannt als VIC-II-Chip). Dieser Chip ermöglicht die

verschiedensten Graphikarten, einschließlich einer Textdarstellung von 40 Zeichen

mal 25 Zeilen, einem hoch auflösenden Display von 320 mal 200 Punkten sowie

den SPRITES, kleinen beweglichen Objekten, die das Erstellen von Spielen

wesentlich vereinfachen. Darüber hinaus können viele dieser Graphikarten auf dem

gleichen Display gemischt werden. So ist es z. B. möglich, für die obere Bildschirm-

hälfte den Modus mit hoher Auflösung und für die untere Bildschirmhälfte den

Textmodus zu wählen. SPRITES lassen sich mit allen Displayarten kombinieren. Wir

werden später noch auf Sprites genauer eingehen. Zunächst beschäftigen wir uns

mit den übrigen Graphikarten.

Mit dem VIC-II-Chip sind folgende Graphikarten möglich:

A) ZEICHENANZEIGE

1) Standardzeichen
a) ROM-Zeichen
b) RAM-programmierbare Zeichen

2) Mehrfarbige Zeichen
a) ROM-Zeichen
b) RAM-programmierbare Zeichen

3) Erweiterte Hintergrundfarbe
a) ROM-Zeichen
b) RAM-programmierbare Zeichen

B) BIT-MAP-MODUS

1) Standard-Bit-Map-Modus
2) Mehrfarben-Bit-Map-Modus

C) SPRITES

1) Standard-Sprites
2) Mehrfarben-Sprites

100 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

LAGE DER GRAPHIKZEICHEN

Zunachst einige allgemeine Informationen. Der Bildschirm des COMMODORE 64

verfügt über 1000 Positionen. Normalerweise beginnt der Bildschirm bei Adresse

1024 ($0400 in hexadezimaler Darstellung) und geht bis zu Adresse 2023. Jede

dieser Adressen kann 8 Bits speichern, das entspricht einer beliebigen ganzen Zahl

zwischen O und 255. Dem Bildschirmspeicher entspricht eine Gruppe von 1000

Adressen, die FARBSPEICHER oder FARB-RAM genannt wird. Diese beginnen

bei Platz 55296 ($D800 in hexadezimaler Darstellung) und reichen bis zu 56295.

Jede dieser Farb-RAM-Adressen speichert 4 Bits und kann daher eine beliebige

ganze Zahl von 0 bis 15 aufnehmen. Da der COMMODORE 64 über 16 mögliche

Farben verfügt, kann man hiermit sehr gut arbeiten.

Darüber hinaus können jederzeit 256 verschiedene Zeichen angezeigt werden. Bei

der normalen Bildschirmanzeige enthält jede der 1000 Adressen des Bildschirm-

speichers eine Code-Zahl, die dem VIC-II-Chip “sagt”, welches Zeichen an diesem

Bildschirmplatz anzuzeigen ist.

Die verschiedenen Graphikmodi werden über die 47 Steuerregister im VIC-II-Chip

gewählt. Viele Graphikfunktionen lassen sich steuern, indem der richtige Wert über

die POKE-Anweisung in eines der Register geschrieben wird. Der VIC-II-Chip

befindet sich an den Speicherplätzen 53248 ($D000 in Hexadezimaldarstellung) bis

53294 ($DO2E).

WAHL DER VIDEO-BANK

Der VIC-II-Chip kann gleichzeitig auf einen Speicherbereich von 16K zugreifen. Da

der COMMODORE 64 über einen 64K-Speicher verfügt, soll der VIC-I| natürlich

auch den ganzen Speicher “sehen” können. Dies ist möglich. Es gibt vier verschie-

dene BANKS (oder Abschnitte), die für jeweils 16K gelten. Nun muß lediglich noch

geregelt werden, auf welche dieser Abschnitte der VIC-Il-Chip zugreift. Auf diese

Weise kann der Chip die gesamte Speicherkapazität von 64K “sehen“. Die Bank-

anwahl-Bits, die Ihnen einen Zugriff auf die verschiedenen Speicherabschnitte

ermöglichen, befinden sich im COMPLEX-INTERFACE ADAPTER-CHIP #2 (CIA

#2) 6526. Über die BASIC-Anweisungen POKE und PEEK (oder die entsprechen-

den Versionen in der Maschinensprache) wird eine Bank durch Steuerung der Bits 0

und 1 von PORT A des CIA#2 (Platz 56576 (oder $DDO0 in Hexadezimaldarstel-

lung)) gewählt. Zur Änderung der Speicherabschnitte müssen diese zwei Bits auf

Ausgabe gesetzt sein. Dies wird anhand nachstehenden Beispiels deutlich:

POKE 56578,PEEK(56578)OR 3 :REM BITS 0 UND 1 ALS AUSGANG

SETZEN

POKE 56576,(PEEK(56576)AND 252)OR A:REM VIDEO-BANK WECHSELN

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 101

“A“ muB einen der folgenden Werte haben:

WERT | BITS |BANK | START- BEREICH DES VIC-II-CHIP

VONA PLATZ |

0 00 3 49152 ($C000--$FFFF)*

1 01 2 32768 ($8000-$BFFF)

2 10 1 16384 ($4000—$7FFF)*

3 11 0 0 ($0000-$3FFF) (STANDARDWERT)
Dieses Konzept der 16K-Abschnitte spielt bei allen Anwendungen des VIC-II-Chip

eine Rolle. Sie sollten stets wissen, auf welche Bank VIC-II zeigt, da dies beeinflußt,

von wo die Zeichendatenmuster kommen, wo sich der Bildschirm befindet, von wo

die Sprites kommen usw. Nach dem Einschalten des COMMODORE 64 gelten fur

die Bits O und 1 von Platz 56576 automatisch BANK 0 ($0000-$3FFF) für sämtliche

Anzeigeninformationen.

*Anmerkung: Der Zeichensatz des COMMODORE 64 ist in den Banks 1 und 3 für den VIC-II-Chip

nicht verfügbar. (Siehe Abschnitt “Zeichenspeicher“.)

BILDSCHIRMSPEICHER

Durch POKEn in das Kontrollregister 53272 ($D018 HEX) kann die Adresse des

Bildschirmspeichers geändert werden. Dieses Register wird jedoch auch zur Steue-

rung des jeweils benutzten Zeichensatzes verwendet. Achten Sie daher besonders

darauf, diesen Teil des Steuerregisters nicht zu stören. Die oberen 4 Bits steuern

den Platz des Bildschirmspeichers. Zur Bewegung des Bildschirms ist folgende

Anweisung erforderlich:

POKE53272,(PEEK(53272)AND15)ORA

102 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

Hierbei hat A einen der folgenden Werte:

LAGE*
A BITS

DEZIMAL HEXADEZIMAL

0 OOOOXXXX 0 $0000

16 0001 XXXX 1024 $0400 (STANDARD)

32 0010XXXX 2048 $0800

48 0011XXXX S072 $0C00

64 0100XXXX 4096 $1000

80 0101XXXX 5120 $1400

96 0110XXXX 6144 $1800

112 O111XXXX 7168 $1C00

128 1 0OOOXXXX 8192 $2000

144 1001 XXXX 9216 $2400

160 1010XXXX 10240 $2800

176 1011XXXX 11264 $2C00

192 11 O00XXXX 12288 $3000

208 1101 XXXX 13312 $3400

224 1110XXXX 14336 $3800

240 1111XXXX 15360 $3C00

*Bitte denken Sie daran, daß die Startadresse der jeweiligen Bank des VIC-II-Chip addiert
werden muß.

FARBSPEICHER

Der Farbspeicher kann nicht verschoben werden. Er befindet sich stets an den

Plätzen 55296 ($D800) bis 56295 ($DBE7). Bildschirmspeicher (1000 Plätze begin-

nend bei 1024) und Farbspeicher werden in den verschiedenen Graphikmodi

unterschiedlich benutzt. Ein in einem Modus erstelltes Bild sieht in einem anderen

Graphikmodus häufig völlig anders aus.

ZEICHENSPEICHER

Für die Programmierung von Graphiken ist es wesentlich, von wo genau der VIC-II

die Zeicheninformation bekommt. Normalerweise erhält der Chip die Konturen der

anzuzeigenden Zeichen vom Character-Generator-ROM. In diesem Chip werden

die Muster gespeichert, die die verschiedenen Buchstaben, Zahlen, Interpunktions-

symbole und alle anderen Zeichen der Tastatur bilden.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 103

Eines der Merkmale des COMMODORE 64 ist seine Fähigkeit, im RAM-Speicher

befindliche Muster zu benutzen. Diese RAM-Muster werden von Ihnen erstellt, so

daß Ihnen ein nahezu unbegrenzter Satz an Symbolen für Spiele, Geschäftsanwen-

dungen usw. zur Verfügung steht. |

Ein normaler Zeichensatz enthält 256 Zeichen, bei dem jedes Zeichen durch 8

Bytes bestimmt wird. Da jedes Zeichen also 8 Bytes beansprucht, benötigt der

komplette Zeichensatz 256*8=2K-Bytes. Da der VIC-II-Chip gleichzeitig auf 16K

zugreift, gibt es acht verschiedene Speicherplatzmöglichkeiten für einen vollständi-

gen Zeichensatz. Sie brauchen natürlich nicht immer einen ganzen Zeichensatz zu

verwenden. Er muß jedoch stets an einem der acht möglichen Startplätze beginnen.

Die Lage des Zeichenspeichers wird durch 3 Bits vom VIC-Il-Speicherregister an

Platz 53272 ($D018 HEX) kontrolliert. Die Bits 3, 2 und 1 steuern, wo sich der

Zeichensatz in 2K-Sätzen befindet. Bit O wird überlesen. Bitte denken Sie daran,

daß dies das gleiche Register ist, das auch die Lage des Bildschirmspeichers

bestimmt. Um die Lage vom Zeichenspeicher zu ändern, benutzen Sie folgende

BASIC-Anweisung:

POKE 53272,(PEEK(53272)AND240)OR A

Hierbei hat A einen der folgenden Werte:

WERT me LAGE DES ZEICHENSPEICHERS*

VONA DEZIMAL HEXADEZIMAL

0 XXXX000X 0 $0000-$07FF

2 XXXX001X 2048 $0800—$0FFF

4 XXXX010X 4096 $1000-$17FF ROM-IMAGE in BANK

0 & 2 (Standard)

6 XXXX011X 6144 $1800—$1FFF ROM-IMAGE in BANK

0&2

8 XXXX100X 8192 $2000—$27FF

10 XXXX101X 10240 $2800—$2FFF

12 XXXX110X 12288 $3000-$37FF

14 XXXX111X 14336 $3800—$3FFF

*Bitte denken Sie daran, die Startadresse der Bank zu addieren. |

104 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

Das ROM-IMAGE in obiger Tabelle bezieht sich auf das Character-Generator-

ROM. Es erscheint im RAM bei obigen Platzen in Bank 0. AuBerdem erscheint es im

entsprechenden RAM an den Plätzen 36864-40959 ($9000-$9FFF) in Bank 2. Da

der VIC-II-Chip gleichzeitig nur auf 16K zugreifen kann, erscheinen die ROM-

Zeichenmuster in dem Satz, auf den gerade zugegriffen wird. Aus diesem Grund ist

das System so entwickelt, daß VIC-Il davon ausgeht, daß sich die ROM-Zeichen bei

4096-8191 ($1000-$1FFF) befinden, wenn Ihre Daten in Bank O sind, und bei

36864 —40959 ($9000—$9FFF) im Fall von Bank 2. Die ROM-Zeichen befinden sich

jedoch tatsächlich an den Plätzen 53248-57343 ($D000-$DFFF).

Diese “Spiegelung“ bezieht sich nur auf Zeichendaten, wie sie vom VIC-II-Chip

“gesehen” werden. RAM an diesen Adressen kann wie jeder andere RAM-

Speicher für Programme, andere Daten usw. benutzt werden.

Anmerkung: Wenn diese ROM-Spiegelungen Ihre eigenen Graphiken behindern, wählen Sie mitden

BANKANWAHL-BITS eine der Banks ohne Belegung (Bank 1 oder 3). Die ROM-Muster tauchen dort

nicht auf.

ADRESSE VIC-I- INHALT
SPIEGE-

BLOCK | DEZIMAL HEX LUNG

0 53248 | DOOO—D1FF 1000-11FF | Großbuchstaben

53760 | D200—D3FF 1200-13FF | Graphikzeichen

54272 | D400-D5FF 1400-15FF | Großbuchstaben in

Reversdarstellung

54784 | D600-D7FF 1600-17FF | Graphikzeichen in —

Reversdarstellung

1 55296 | D800—D9FF 1800-19FF Kleinbuchstaben

55808 | DAOO—DBFF 1AO0-1BFF | Großbuchstaben und

Graphikzeichen

56320 | DC00-DDFF 1C00-1DFF | Kleinbuchstaben in

Reversdarstellung

56832 | DEOO-DFFF 1EOO-—1FFF | Großbuchstaben in

| Reversdarstellung

Dem aufmerksamen Leser wird jetzt aufgefallen sein, daß die vom Zeichen-ROM

beanspruchten Plätze die gleichen sind wie die der VIC-II-Chip-Steuerregister. Dies

ist möglich, da die Plätze nicht gleichzeitig beansprucht werden.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 105

Benötigt der VIC-II-Chip den Zugriff auf die Zeichendaten, so wird das ROM

eingeschaltet. In der 16K-Speicherbank, auf die der VIC-II-Chip zugreift, entsteht

die entsprechende “Spiegelung“. Ansonsten wird dieser Bereich von den Ein-/

Ausgaberegistern beansprucht und das Zeichen-ROM kann nur vom VIC-II erreicht

werden.

Es kann jedoch passieren, daß Sie das Zeichen-ROM benötigen, und zwar dann,

wenn Sie programmierbare Zeichen benutzen wollen und eine Kopie eines Teils

vom Zeichen-ROM für die Zeichendefinition benötigen. In diesem Fall müssen Sie

das Ein-/Ausgaberegister aus- und das Zeichen-ROM einschalten. Dann können

Sie kopieren. Danach muß das Ein-/Ausgaberegister erneut eingeschaltet werden.

Während des Kopierens (bei ausgeschalteter Ein-/Ausgabe) sind keine Unterbre-

chungen erlaubt. Für Unterbrechungen werden nämlich die Ein-/Ausgaberegister

benötigt. Wenn Sie dies vergessen und eine Unterbrechung vornehmen, passiert

Unvorhersehbares. Die Tasteneingabe darf während des Kopierens nicht gelesen

werden. Um die Tastatur und weitere normale Unterbrechungen abzuschalten, die

mit dem COMMODORE 64 möglich sind, benutzen Sie folgende POKE-Anweisung:

POKE 56334,PEEK(56334)AND254 (Interrupt AUS)

Wenn Sie den Zugriff auf den Zeichen-ROM beendet haben und bereit fur die

-Programmfortsetzung sind, wird die Tastatur durch folgende POKE-Anweisung

wieder eingeschaltet:

POKE 56334,PEEK(56334)OR1 (Interrupt EIN)

Durch folgende POKE-Anweisung wird die Ein-/Ausgabe ausgeschaltet und der

Zeichen-ROM eingeschaltet:

POKE 1,PEEK(1)AND251

Der Zeichen-ROM befindet sich nun an den Plätzen 53248 bis 57343 ($D000-

$DFFF). Um die Ein-/Ausgabe für den normalen Betrieb zurück in $DO00 zu

schalten, benutzen Sie folgende POKE-Anweisung:

POKE 1,PEEK(1)OR 4

106 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

STANDARDZEICHENMODUS

Beim Einschalten des COMMODORE 64 befindet sich dieser im Standardzeichen-

modus. Dies ist der Modus, in dem Sie normalerweise Programmierungen vor-

nehmen.

Zeichen können aus dem ROM oder dem RAM gelesen werden. Normalerweise

wird jedoch auf die Zeichen im ROM zugegriffen. Benotigen Sie fur ein Programm

spezielle Graphikzeichen, so brauchen Sie lediglich die neuen Zeichenmuster im

RAM zu definieren und den VIC-II-Chip anzuweisen, die Zeicheninformationen von

. da und nicht aus dem Zeichen-ROM zu nehmen. Dies wird im nachstehenden

Abschnitt noch genauer beschrieben.

Um Zeichen auf dem Bildschirm in Farbe anzuzeigen, greift der VIC-II-Chip auf den

Bildschirmspeicher zu, um den Zeichen-Code für diesen Bildschirmplatz zu bestim-

men. Gleichzeitig greift er auf den Farbspeicher zu, um die Farbe für die Zeichenan-

zeige festzulegen. Der Zeichen-Code wird vom VIC-Il in die Startadresse des

8-Byte-Satzes mit Ihrem Zeichenmuster umgesetzt. Dieser Satz befindet sich im

Zeichenspeicher.

Die Umsetzung ist nicht zu kompliziert, zur Erstellung der gewünschten Adresse

werden jedoch verschiedene Punkte kombiniert. Zunächst wird der von Ihnen bei

der POKE-Anweisung für den Bildschirmspeicher benutzte Zeichencode mit 8

multipliziert. Danach wird der Anfang vom Zeichenspeicher addiert (siehe Abschnitt

“Zeichenspeicher“). Nun werden die Bankanwahl-Bits berücksichtigt. Hierzu wird

die Basisadresse (siehe Abschnitt “Video-Bankwahl“) addiert. Anhand der folgen-

den einfachen Gleichung können Sie sehen, wie dies gemeint ist:

CHARACTER ADDRESS = SCREEN CODE*’8+(CHARACTER

SET*2048) +(BANK*16384)

ZEICHENDEFINITIONEN

Jedes Zeichen wird aus einer Matrix von 8 mal 8 Punkten gebildet. Hierbei können

die einzelnen Punkte entweder ein- oder ausgeschaltet sein. Beim COMMODORE

64 sind die Zeichenbilder im Zeichengenerator-ROM abgelegt. Jedes Zeichen ist

hierbei als Satz von 8 Bytes gespeichert. Jedes Byte steht für das Punktmuster

einer Reihe im Zeichen und jedes Bit für einen Punkt. Ein O-Bit zeigt an, daß der

Punkt ausgeschaltet, und ein 1-Bit, daß er eingeschaltet ist.

Der Zeichenspeicher im ROM beginnt bei Platz 53248 (bei ausgeschalteter Ein-/

Ausgabe). Die ersten 8 Bytes von Platz 53248 ($D000) bis 53255 ($D007) enthalten

das Muster für das Zeichen @, dessen Zeichencodewert im Bildschirmspeicher O

ist. |

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 107

Die nächsten 8 Bytes von Platz 53256 ($D008) bis 53263 ($DOOF) enthalten die

Information zur Bildung des Buchstabens A.

BELEGUNG BINÄR PEEK

** 00011000 24
x 00111100 60
el 01100110 102
ah ik 01111110 126
um Me 01100110 | 102
a Be 01100110 102
u. m: 01100110 102

00000000 0

Jeder vollstandige Zeichensatz beansprucht eine Speicherkapazitat von 2K (2048

Bits). Insgesamt sind 256 Zeichen enthalten, wobei jedes Zeichen 8 Bytes umfaßt.

Da es insgesamt zwei Zeichensätze gibt, und zwar einen fur die GroBbuchstaben

und Graphikzeichen und den anderen für Groß- und Kleinbuchstaben, enthält der

ROM-Zeichenspeicher insgesamt 4K Speicherplätze.

PROGRAMMIERBARE ZEICHEN

Da die Zeichen im ROM gespeichert sind, sieht es so aus, als ob sie für frei

programmierbare Zeichen nicht geändert werden könnten. Der Speicherplatz, der

dem VIC-II-Chip mitteilt, wo die Zeichen zu finden sind, ist jedoch ein programmier-

bares Register. Dieses kann so geändert werden, daß es auf viele Speicherbereiche

zeigt. Indem der Zeichenspeicherzeiger so geändert wird, daß er auf den RAM

zeigt, kann der Zeichensatz beliebig programmiert werden.

Soll sich Ihr Zeichensatz im RAM befinden, so gibt es einige SEHR WICHTIGE

Dinge, die Sie dabei berücksichtigen müssen. Darüber hinaus sind zwei weitere

wichtige Aspekte bei der Erstellung Ihrer eigenen Sonderzeichen zu beachten:

1) Dies ist ein Alles-oder-Nichts-Vorgang. Im allgemeinen, wenn Sie den VIC-II-

Chip angewiesen haben, die Zeicheninformationen aus dem vorbereiteten RAM-

Bereich zu nehmen, sind die Standardzeichen vom COMMODORE 64 für Sie

nicht verfügbar. Um dieses Problem zu lösen, müssen Sie alle Buchstaben,

Zahlen oder Standardgraphikzeichen vom Commodore 64 in den RAM-Speicher

kopieren, den Sie dann in Ihrem Programm benutzen wollen. Hierbei können Sie

beliebige Zeichen auswählen und brauchen auch nicht auf die Reihenfolge zu

achten!

108 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

2) Ihr Zeichensatz benutzt denselben Speicher wie das BASIC-Programm. Da für

das BASIC-Programm jedoch 38K zur Verfügung stehen, ist dies meist pro-

blemlos.

Achtung: Achten Sie darauf, daß Ihr Zeichensatz nicht vom BASIC-Programm, das auch den

RAM benutzt, überschrieben wird.

Zwei Adressen im COMMODORE 64 dürfen nicht als Beginn des Zeichensat-

zes gewählt werden: Adresse 0 und Adresse 2048. Der erste darf nicht benutzt

werden, da das System auf Seite O (0-Page) wichtige Daten speichert. Adresse

2048 ist der Beginn Ihres BASIC-Programms!

Für Ihren Zeichensatz stehen jedoch noch sechs weitere Anfangspositionen zur

Verfügung.

Am besten wählen Sie hierzu am Anfang Platz 12288 ($3000 in Hexadezimaldar-

stellung). Dies erfolgt, indem die unteren 4 Bits von Platz 53272 mit 12 gePOKEt

werden. Probieren Sie nun folgende POKE-Anweisung aus:

POKE 53272, (PEEK(53272)AND240) +12

Sofort sind alle Buchstaben vom Bildschirm verschwunden. Der Grund hierfür liegt

darin, daß bis jetzt noch kein Zeichensatz ab Adresse 12288 steht... nur zufällige

Bytes. Kehren Sie mit dem COMMODORE 64 durch Betätigen der Tasten

und wieder zurück in den Normalmodus.
Nun wollen wir Graphikzeichen erstellen. Um Ihren Zeichensatz zu schützen,

sollten Sie die Speicherkapazität für BASIC reduzieren. Der Speicher in Ihrem

Computer bleibt unverändert... Sie haben lediglich BASIC die Anweisung gege-

ben, einen bestimmten Teil nicht zu benutzen. Tippen Sie folgendes ein:

PRINT FRE(0)—(SGN(FRE(0))<0)*65535

Die angezeigte Zahl gibt die unbenutzte Speicherkapazität an. Geben Sie nun

folgendes ein:

POKE 52,48:POKE56,48:CLR

Und nun:

PRINT FRE(0)—(SGN(FRE(0))<0)*65535

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 109

Sehen Sie die Anderung? BASIC nimmt nun an, daB weniger Speicherkapazitat zur

Verfügung steht. In diesen gewonnenen Speicherplatz können Sie nun Ihren

Zeichensatz eingeben.

Als nächstes müssen nun Ihre Zeichen in den RAM eingegeben werden. Zu Beginn

stehen ab 12288 ($3000 in HEX) zufällige Daten. Sie müssen das Zeichenmuster in

den RAM eingeben (auf die gleiche Art wie sie im ROM gespeichert sind), damit der

VIC-II-Chip sie benutzen kann. Durch folgendes Programm werden 64 Zeichen

vom ROM in den RAM-Zeichensatz übertragen:

5 FRINTCHRECIEEN :REM SWITCH TO
UPPER CASE
14 POKES2, 48: PÜKESS. 42° CLR REM RESERVE MEMORY
FÜR CHARACTERS
20 POKESS334,PEEKCS6334 AMDZS4 REM TURN OFF
KEYSCAM INTERRUPT TIMER
ag POKEL. PEEK CL ADS 1 ‘REM SWITCH IH
CHARACTER

4c FORI=@TO0511:POKEI+1 2288. PEERS 14522489 : NEXT
SC POKEL. PEEKS 120R4 ‘REM EMITCH IM Tet
68 POKESSS34. PEEK (38334 00R1 ‘REM RESTART
KEYSCAN INTERRUPT TIMER
va END

POKEn Sie in die Adresse 53272 den Wert (PEEK(53272)AND240)+12. Nichts

passiert, stimmt’s? Fast nichts! Der COMMODORE 64 bekommt die Zeicheninfor-

mationen nun vom RAM und nicht vom ROM. Da wir jedoch die Zeichen genau vom

ROM kopiert haben, ist kein Unterschied zu sehen... noch nicht.

Die Zeichen können nun leicht geändert werden. Löschen Sie den Bildschirm, und

drücken Sie die Taste @. Bewegen Sie den Cursor um einige Zeilen nach unten,

und geben Sie dann folgendes ein:

FOR I = 12288 TO 12288+7:POKE |, 255 — PEEK(I) : NEXT

Sie haben soeben ein @ in Reversdarstellung erstellt!

Hinweis: Negativ dargestellte Zeichen gehen aus den Zeichen durch Umkehrung der Bit-Muster
im Zeichenspeicher hervor.

Bewegen Sie nun den Cursor wieder zum Programmanfang, und drucken Sie die

Taste RETURN erneut, um das Zeichen noch einmal umzukehren (d. h., es wird

wieder normal). Die Tabelle der Bildschirm-Codes zeigt Ihnen, wo die einzelnen

Zeichen im RAM sind. Denken Sie daran, daß zur Speicherung jedes Zeichens 8

Speicherplätze benötigt werden. Hier ein paar Beispiele:

110 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

ZEICHEN BILDSCHIRM- DERZEITIGE STARTADRESSE IM RAM

CODE

@ 0 12288

A 1 12296

33 12582

= 62 12784

Denken Sie daran, daß wir nur die ersten 64 Zeichen genommen haben. Wird eines

der anderen Zeichen gewünscht, so ist vorher noch etwas zu berücksichtigen.

Was ist zu tun, wenn Sie nun Zeichennummer 154, ein umgekehrtes Z wünschen?

Sie können das erreichen, indem Sie ein Z umkehren, oder Sie können den Satz

der umgekehrten Zeichen vom ROM kopieren oder einfach das eine Zeichen aus

dem ROM holen und ein nicht benötigtes Zeichen im RAM dadurch ersetzen.

Nehmen wir an, Sie benötigen das Zeichen > nicht mehr. Dieses Zeichen soll also

gegen das negativ dargestellte Z ausgetauscht werden. Geben Sie folgendes ein:

FOR I=0 TO 7: POKE 12784 + |, 255—PEEK(I+12496): NEXT

Geben Sie nun ein > ein. Es erscheint als umgekehrtes Z. So oft Sie nun dieses

auch eingeben, erscheint es immer als umgekehrtes Z. (Diese Änderung betrifft

jedoch nur die Darstellung auf dem Bildschirm. Auch wenn das Zeichen wie ein

umgekehrtes Z aussieht, wirkt es in einem Programm doch immer noch als >.)

Probieren Sie das an einem Beispiel aus, bei dem dieses Zeichen benötigt wird.

Fassen wir zusammen: Sie können nun Zeichen vom ROM in das RAM kopieren.

Sie können hierbei selbst die Zeichen auswählen. Hinsichtlich der programmierba-

ren Zeichen fehlt Ihnen also nur noch ein Punkt (und zwar der beste!)... das

Erstellen Ihrer eigenen Zeichen.

Wissen Sie noch, wie Zeichen im ROM gespeichert sind? Jedes Zeichen wird als

Gruppe von 8 Bytes gespeichert. Die Bit-Muster der Bytes geben direkt das

Zeichen wieder. Werden 8 Bytes übereinander angeordnet und jedes Byte als

achtstellige Binärzahl geschrieben, so entsteht eine 8-mal-8-Matrix, die wie die

Zeichen aussieht. Ist ein Bit eine 1, so ist an diesem Platz ein Punkt. Ist ein Bit eine

0, ist an diesem Platz eine Leerstelle.

Zum Erstellen Ihrer eigenen Zeichen geben Sie in den Speicher die gleiche

Bitanordnung ein. Geben Sie NEW und danach dieses Programm ein:

10 FOR | = 12448 TO 12455 : READ A: POKE I,A: NEXT

20 DATA 60, 66, 165, 129, 165, 153, 66, 60

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 111

Geben Sie nun RUN ein. Das Programm ersetzt den Buchstaben T durch ein

“Gesicht“. Um das Gesicht zu sehen, geben Sie mehrere T’s ein. Jede Zahl in der

DATA-Anweisung in Zeile 20 ist eine Reihe in diesem Gesicht. Es gilt folgende

Matrix:

76543210 BINÄR DEZIMAL

Reihe 0 kok %* 00111100 60
1 x R 01000010 66
2 A : - 2 10100101 165
3 R R 10000001 129
4 x x ae 10100101 165
5 ; or . 10011001 153

6 . . 01000010 66
Reihe 7 ee x 00111100 60

N
n

OO

oO

2

WW

BP
D

Abb. 3.1. Arbeitsblatt für programmierbare Zeichen

112 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

Das Arbeitsblatt für programmierbare Zeichen (Abb. 3.1.) hilft Ihnen beim Entwurf

Ihrer eigenen Zeichen. Das Blatt enthält eine Matrix von 8 mal 8 mit Reihennum-

mern sowie Nummern oben über jeder Spalte. (Wird jede Reihe als Binärwort

gesehen, so sind die Spaltennummern die jeweiligen Werte der Bit-Position. Der

Wert läßt sich einfach als Zweierpotenz errechnen. Das linke äußerste Bit entspricht

128 oder 2’, das nächste 64 oder 2° usw., bis das äußerste rechte Bit (Bit 0) erreicht

ist. Bit O entspricht 1 oder 2°.)

Geben Sie in die Matrix überall da ein X ein, wo in Ihrem Zeichen ein Punkt

erscheinen soll. Ist das Zeichen fertig, dann können Sie die DATA-Anweisung dafür

erstellen.

Beginnen Sie mit der ersten Reihe. Überall da, wo ein X eingesetzt ist, lesen Sie die

Nummer oben an der Spalte ab (die Zweierpotenz) und notieren Sie sie. Dann

werden die Zweierpotenzen der ersten Reihe addiert. Notieren Sie diese Summe

neben der Reihe. Sie wird später in der DATA-Anweisung benutzt, um diese Reihe

als Bitmuster wiederzugeben.

Das gleiche gilt für die übrigen Reihen (1—7). Sie müssen dann insgesamt 8 Zahlen

zwischen O und 255 haben. Liegt eine dieser Zahlen nicht innerhalb dieses

Bereiches, überprüfen Sie die Addition. Bei richtiger Addition müssen die Zahlen

auf jeden Fall in diesem Bereich liegen. Haben Sie weniger als 8 Zahlen, dann

haben Sie wahrscheinlich eine Reihe vergessen. Es ist durchaus korrekt, wenn

auch Nullen dabei sind. Diese O-Reihen sind genauso wichtig wie die anderen

Zahlen.

Ersetzen Sie die Zahlen in der DATA-Anweisung in Zeile 20 durch die soeben

berechneten Zahlen und geben Sie danach RUN ein. Drücken Sie nun die Taste T.

Bei jedem Betätigen dieser Taste sehen Sie Ihr eigenes Zeichen!

Wenn Ihnen dieses Zeichen noch nicht gefällt, ändern Sie einfach die Zahlen in der

DATA-Anweisung, bis die Zeichendarstellung zufriedenstellend ist. Das ist alles!

Hinweis: Die vertikalen Linien in Ihren Zeichen sollten stets mindestens zwei Punkte (Bits) breit sein.

Hierdurch werden bei der Anzeige auf dem Bildschirm Farbfehler in den Zeichen vermieden.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 113

Nachfolgend sehen Sie ein Programmbeispiel mit den programmierbaren Standard-

zeichen:

1a REM # EXAMPLE 1%

=a REM CREATIHG PROGRAMMABLE CHARACTERS
=) PORES ESS. PEER CSE SS4 AM DES POR EL, PEER LOADS 1
RE TUR OFF EE AMD Teo
aa FOR TSG TOES REM CHARACTER RAMGE To BE COFTED
Fran mon
= FORTE TOP OREM COPY ALL = BYTES FER CHARACTER
a7 PORE Lees Tet, PEEK C S348 + TST REPT IR YF
EYTE
Sa MEA TOC HMER TIC REM GOTO HEMT BYTE OF CHARACTER

a PORE LS PEER CLS OR4 PORK ESeS34. PEER Seo 34 ORL RET
TURE OH TAO AWD KE
a POKES Sere. CPEER CESS PS IAMDe46o4+1.2° REM SET CHAR
FOIHTER TO Mer. Laces

BG FQRCHAR=G8 TOES: REM FEOGRERAM CHARACTERS 6 THR eo
Si FORE YTEeR TOP REM DO ALL 5 BYTES CF A CHARACTER
Lag REAL! HUMBER REM READ IH ISTH OF CHARACTER DATA
128 PORE LAGE 4+ SEHR + Be TE HUMBER REM STORE THE
TTA IHM Propet! |
148 HESTEYTE OMESTCOHAR REM ALO COULD BE HEAT EFTE.
er

1524 PRIMTEHREOLFFOTREL EEE OCHRE EEG
155 FPRIMT OCHRE (61 Oo TABS SE OCHRE COO CHE EI
lad REM LIME 152 PUTS THE HEULT DEFINED CHARACTERS
Uh THE SCREEH
ira GETAFE REM WAIT FOR USER TO PRESS A KEY
188 TFAS=""THEMGOTOLF SE REM IF MO KEYS WERE FRESSED,
Ther AGA!

1224 POKES Sere. 21° REM BETURH TO MHORMAL CHARACTERS
268 TATA4. 6.7.5, 7,753. 3° REM DATA FOR CHARACTER 62
214 TATH 32.96, 224.160. 224,224,192.192:° REM DATA
FOR CHARACTER ©1
22a TATA. 7aPe Ss S31. 95.140, 127° REM DATA FOR
CHRRATTER ec
2a TATA seh. ed Sod Sho, 248, 245, 248, 224 REM DATA
FOR CHARACTER 3
244 EMT

114 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

MEHRFARBIGE GRAPHIKEN

Durch die standardmäßige hochauflösende Graphik können Sie selbst Einzelpunkte

auf dem Bildschirm ansteuern. Für jeden Punkt im Zeichenspeicher stehen zwei

Werte zur Verfügung: 1 für EIN und O für AUS. Hat ein Punkt den Wert 1, so wird er

in der von Ihnen für die jeweilige Bildschirmposition gewählten Farbe angezeigt. Bei

der hochauflösenden Graphik können alle Punkte innerhalb der 8-mal-8-Matrix

entweder in der Hinter- oder Vordergrundfarbe angezeigt werden. Hierdurch wird

die Farbauflösung innerhalb dieses Bereiches eingeschränkt. So können z.B.

Schwierigkeiten entstehen, wenn sich zwei Linien mit verschiedenen Farben

Kreuzen.

Dieses Problem wird durch den Mehrfarbenmodus gelöst. Hierbei kann jeder Punkt

eine von vier Farben haben: Bildschirmfarbe (Hintergrundfarbregister #0), die

Farbe im Hintergrundregister #1, die Farbe im Hintergrundfarbregister #2 oder die

Zeichenfarbe. Die einzige Einschränkung liegt in der horizontalen Auflösung, da im

Mehrfarbenmodus jeder Punkt doppelt so breit ist wie bei Hochauflösung. Es

überwiegen jedoch bei weitem die vielen Vorteile des Mehrfarbenmodus.

DAS MEHRFARBEN-MODUS-BIT

Zum Einschalten des Modus für mehrfarbige Zeichen wird Bit 4 des Steuerregisters

des VIC-II durch folgende POKE-Anweisung bei 53270 ($D016) auf 1 gesetzt:

POKE 53270,PEEK(53270)OR 16

Zum Abschalten dieser Betriebsart wird Bit 4 an SPeIcnerplälz 53270 durch

nachstehende POKE-Anweisung auf 0 gesetzt:

POKE 53270,PEEK(53270)AND 239

Der Mehrfarben-Modus wird für jede Bildschirmstelle ein- oder ausgeschaltet, so

daß Mehrfarbengraphiken und Graphiken mit hoher Auflösung (hi-res) kombiniert

werden können. Dies wird über Bit 3 im Farbspeicher gesteuert. Der Farbspeicher

beginnt bei 55296 ($D800 HEX). Ist die Zahl im Farbspeicher kleiner als 8 (0-7), so

gilt für die entsprechende Stelle auf dem Bildschirm Hochauflösung in der gewähl-

ten Farbe (0-7). Ist die Zahl im Farbspeicher größer oder gleich 8 (von 8 bis 15),

dann wird die entsprechende Stelle im Mehrfarbenmodus angezeigt.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 115

Die Zeichenfarbe einer Bildschirm-Position kann durch eine POKE-Anweisung im

Farbspeicher geändert werden. Durch das POKEn einer Zahl von 0 bis 7 werden die

Zeichen in normaler Farbdarstellung angezeigt. Durch das POKEn einer Zahl

zwischen 8 und 15 gilt fur die entsprechende Bildschirmstelle der Mehrfarbenmo-

dus. D. h., durch das Einschalten von Bit 3 im Farbspeicher wird der Mehrfarbenmo-

dus und durch Ausschalten der normale Hochauflösungsmodus gewählt.

Gilt für eine Bildschirmstelle der Mehrfarbenbetrieb, so wird durch die Zeichen-Bits

bestimmt, welche Farben für die Punkte angezeigt werden. Nachstehend sehen Sie

z. B. die Darstellung des Buchstabens A und das entsprechende Bit-Muster:

DARSTELLUNG BIT-MUSTER

“= 00011000

...r 00111100

“x ** 01100110

abel 01111110

nr 01100110

“x ** 01100110

_ = 01100110

00000000

Im normalen oder “hi-res“ (d. h. hochauflösenden Graphik)-Modus wird die Bild-

schirmfarbe bei jedem O-Bit und die Zeichenfarbe stets da angezeigt, wo das Bit 1

ist. Beim Mehrfarbenmodus werden die Bits paarweise benutzt:

DARSTELLUNG BIT-MUSTER

AABB 00 01 10 00

CCCC 00 11 11 00

AABBAABB 011001 10

AACCCCBB 01111110

AABBAABB 011001 10

AABBAABB 011001 10

AABBAABB 011001 10

00 00 00 00

Im obigen Bildbereich werden die durch AA gekennzeichneten Stellen in der

Hintergrundfarbe #1, die durch BB gekennzeichneten Stellen in der Hintergrund-

farbe #2 und die durch CC gekennzeichneten Stellen in der Zeichenfarbe darge-

stellt. Dies wird entsprechend nachstehender Tabelle durch die Bit-Paare bestimmt:

116 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

BIT-PAAR FARBREGISTER SPEICHERPLATZ

00 Hintergrundfarbe #0 (Bildschirmfarbe) 53281 ($D021)
01 Hintergrundfarbe #1 53282 ($D022)
10 Hintergrundfarbe #2 53283 ($D023)
11 Durch die unteren 3 Bits im Farbspeicher Farbspeicher bestimmte Farbe

Geben Sie NEW und nachstehendes Programm ein:

164 POKES S261.1:REM SET BACKGROUND COLOR #3 To
WHITE
lif POKES 3232. 2°REM SET BACKGROUND COLOR #1 TO CYAH
120 POKES 3293.3°REM SET BACKGROUND COLOR #2 TO
ORAMGE
139 FOKES3270. PEER CSS27°@00R16° REM TURK CH
MULTICOLOR MÜDE
149 C= 1Se40396+0#256:REM SET C TO POINT TO COLOR
MEM ORs
158 PRIMTCHRE« 1472" ARARARAARAR"
led FORL=0TOS
ira FPOKEC+LI6° REM USE MULTI BLACK
1e8Q@ HEAT

Die Bildschirmfarbe ist weiB, die Zeichenfarbe schwarz, ein Farbregister zyan
(grunblau) und das andere orange.

Sie geben nicht tatsächlich Farb-Codes in die Stellen für die Zeichenfarbe ein,
sondern benutzen eigentlich Hinweise auf die jeweiligen Farbregister. Hierdurch
wird Speicherplatz gespart, da zwei Bits benutzt werden, um zwischen 16 bzw. 8
Farben (Hintergrund bzw. Zeichen) zu wählen. Hierdurch werden einige raffinierte
Tricks möglich. Durch einfaches Ändern eines der indirekten Register wird jeder

Punkt, der in dieser Farbe gezeichnet ist, geändert.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 117

Alles, was in Bildschirm- und Hintergrundfarben angezeigt ist, kann daher sofort auf

dem gesamten Bildschirm geändert werden. Nachstehend sehen Sie ein Beispiel

zur Änderung des Hintergrundfarbregisters #1:

LG PORES S27 PEER CSSS° a5 0R 1G REM TURH OH
MOT DOL MODE
Lia FRIMTCOMRE © 14? OCHRE 12

1

Leth PRINT AR OREM TYPE C= © 1 FOR ORANGE DR
MULTICOLOR BLACK eee
1232 FORL=L TOSS PRT TCHR CRE ooo MEST

125 FOR T= 1 TO: ‘= vi

142 PRINT oi” | a. TYRE CTRL & 7 FÜR m BLE COL
CHANGE
145 POR T= 1 TOSee : WERT

152 FR ITAT SHIT A REY

lée GETAE: IP REe "THEM LG

LPe Be TAT CRA doe eS

132 PORE SEE.

136 GOTO ee

Uber die Taste (4 und die Farbtasten können allen Zeichen, einschließlich den
Mehrfarbenzeichen, beliebige Farben gegeben werden. Geben Sie z. B. folgenden
Befehl ein:

POKE 53270,PEEK(53270)OR 16:PRINT “ “;: REM LT.RED/MULTI-
COLOR RED |

Das Wort READY und alles übrige, was Sie über die Tastatur eingeben, wird im

Mehrfarbenmodus angezeigt. Durch eine andere Farbsteuerung können Sie wieder

den Normal-Modus wählen.

118 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

Nachstehend sehen Sie ein Programmbeispiel mit programmierbaren Mehrfarben-

zeichen:

Le REM # EXAMPLE 2%
za REM CREATING MULTI COLOR PROGRAMMABLE CHARACTERS
1 PORE Se6334. PEER CSG334 AMDS54 PORE LL. PEERS LOAMDeS 1
So FOR CSA TOes REM CHARACTER RAMGE TO BE COPIED

From Ron

a FORJ=ATOTIREM COPY ALL & BYTES PER CHARACTER
37 FORE LSSSS+T#o+ PEER SSe45+ Deseo OREM CORY A
EYTE

Se BEAT. DO REM GOTO HET BYTE OR CHARACTER
BS PORE LS PEERS LOOR4: PORESe S34. PEER Se o34 ORL REM
TURE OM Tem AMD RE

did PORES Sera. (PEER Soe re AN De4eo+) 2° REM SET CHAR
FOIMTER TO Met. 12255
sa PORES Se rel PEER OC SSS reo Le

=, PORES SSE REM SET BACKGROUND COLOR #e TO BLACK
we PORES SSS. 2° REM SET BACKGROUND COLOR #1 TO RED
See FOR ES SSS. REM SET BACK GROUMD COLOR #2 TO
Pcl on

BE FP ORICAAR SEATS REM FROGEAD CHARACTERS SE THR 6S

Sa FOREYTES@To? REM DO ALL & BYTES OF A CHARACTER
1A READMUMEER REM READ TASTH OF CHARACTER DATA

LEG PORE LS2a5+ (SCHR + BYTE. NUMBER REM STORE THE

TATRA DM O MEMORY

Lee MES TESTE. CHRP

1 Sieh
PRINT! THE CSS 9 CHEE CE BE SCHR E Ce Lo THES SS OCHRE C Git IHRE 0 ECS

Lee Ref LINE laa PUTS THE MEW DEFTIHED CHARACTERS

Qn THE SERBREH |

1a GETRE REM WAIT FOR USER TO PRESS A KE'T

Loe TFA! "THEM Pe REM IF MO KEYS WERE FRESSED.

TR’! AGAIN

LSE PORES Sere. ZU PORES SSP e. PEER SS Se PRO AMD SS: REM

RR TRL TO MORAL CMAP TE RS

SAR DATA SS. SP. el. 29.5, SESS REM DATA FOR

CHARA TER 63

ele TATHGE. Pe Se Ll LLP Se SL SS REM TATA FOR

HARRI TER bd

eek! DATE GP oe. le. S46. 8 REM DAT FOR

AARADT SR ee
2G DAV FREIE LER ce. Geb, Sh PARLE RET DATA FOR

CHARA TER eo

meee EMT

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 119

ERWEITERTER HINTERGRUNDFARBMODUS

In diesem Modus können Sie für jedes einzelne Zeichen die Farbe sowohl im

Hintergrund als auch im Vordergrund steuern. So ist es z. B. möglich, auf einem

weißen Bildschirm ein blaues Zeichen mit gelbem Hintergrund anzuzeigen.

Für den erweiterten Hintergrundfarbmodus stehen vier Register zur Verfügung. Für

jedes Register kann eine der 16 Farben gewählt werden.

In diesem Modus wird über den Farbspeicher die Vordergrundfarbe festgelegt. Die

Anwendung ist die gleiche wie beim Standard-Zeichenmodus.

Beim erweiterten Modus ist die Anzahl der verschiedenen anzeigbaren Zeichen

jedoch eingeschränkt. Ist der erweiterte Faromodus eingeschaltet, können nur die

ersten 64 Zeichen des Zeichen-ROM (oder die ersten 64 in Ihrem programmierba-

ren Zeichensatz) benutzt werden. Zwei Bits des Zeichen-Codes werden nämlich für

die Wahl der Hintergrundfarbe benutzt.

Der Zeichen-Code (die auf dem Bildschirm gePOKEte Zahl) vom Buchstaben A ist

eine 1. Im erweiterten Farbmodus erscheint nach dem POKEn einer 1 ein A.

Normalerweise muß nach dem POKEn von 65 das Zeichen mit dem Zeichen-Code

(CHR$) 129, also ein umgekehrtes “A“, erscheinen. Dies passiert nicht im erwei-

terten Farbmodus. Es erscheint genau das gleiche “A“ wie vorher, jedoch eine

andere Hintergrundfarbe. Entnehmen Sie die Codes der nachstehenden Tabelle:

ZEICHENCODE HINTERGRUNDFARBREGISTER

BEREICH BIT7 BIT 6 NUMMER ADRESSE

0- 63 0 0 0 53281 ($D021)

64-127 0 1 41 53282 ($D022)

128-191 1 0 2 53283 ($D023)

192-255 1 1 3 53284 ($D024)

Zum Einschalten des erweiterten Farbmodus wird Bit 6 des VIC-II-Registers mit der

Adresse 53265 ($D011 in HEX) auf 1 gesetzt. Dies geschieht durch folgende

POKE-Anweisung:

POKE 53265, PEEK(53265)OR 64

Zum Ausschalten des erweiterten Farbmodus wird Bit 6 des VIC-II-Registers mit

der Adresse 53265 ($D011) auf O gesetzt. Hierzu dient folgende Anweisung:

POKE 53265, PEEK(53265)AND 191

120 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

GRAPHIKEN DURCH BIT-MAPPING

Beim Schreiben von Spielen, Zeichnen von Tabellen fur Geschaftsanwendungen

oder Schreiben von sonstigen Programmen werden Sie fruher oder spater Bild-

schirmdarstellungen mit hoher Auflösung benötigen.

Der COMMODORE 64 wurde genau hierfür konstruiert: Hohe Auflösung wird durch

“Bit-Mapping“ des Bildschirms möglich. “Bit-Mapping“ ist die Methode, bei der

jedem darstellbaren Punkt (Pixel) auf dem Bildschirm sein eigenes Bit (Platz) im

Speicher zugeordnet wird. Ist dieses Speicherbit eine 1, so ist der entsprechende

Punkt eingeschaltet. Ist das Bit 0, so ist der Punkt ausgeschaltet. |

Das Arbeiten mit Graphiken mit hoher Auflösung hat jedoch einige Nachteile und

wird daher nicht immer benutzt. Zunächst wird durch das Bit-Mapping des gesam-

ten Bildschirms erhebliche Speicherkapazität in Anspruch genommen. Jeder Pixel

benötigt nämlich ein Speicherbit, d. h., Sie brauchen 1 Byte für 8 Pixel. Da jedes

Zeichen eine 8-mal-8-Matrix ist und 40 Zeilen mit 25 Zeichen vorhanden sind,

beträgt die Auflösung 320 Pixel (Punkte) mal 200 Pixel für den gesamten Bild-

schirm. Hieraus ergeben sich 64000 Punkte, von denen jeder ein Speicherbit

benötigt. Für ein Bit-Mapping des gesamten Bildschirms brauchen Sie also 8000

Byte. |

Im allgemeinen bestehen Operationen zur Erstellung von Graphiken hoher Auflö-

sung aus mehreren kurzen, einfachen Wiederhol-Routinen. Dies ist für diese

Zwecke meist zu BASIC ziemlich langsam. Die Maschinensprache ist jedoch am

besten für solche kurzen, einfachen Wiederhol-Routinen geeignet. Sie soilten die

Programme daher ganz in Maschinensprache schreiben oder in maschinensprache-

geschriebene hi-res-Routinen vom BASIC-Programm über den Befehl SYS aufru-

fen. Auf diese Weise können Sie sowohl die Einfachheit von BASIC als auch die

Geschwindigkeit der Maschinensprache bei Graphiken nutzen.

Alle in diesem Kapitel gegebenen Beispiele sind in BASIC. Nun zu den technischen

Details.

BIT-MAPPING ist die am weitesten verbreitete Graphiktechnik in der Computer-

welt. Dieses Verfahren wird benutzt, um Bilder mit großem Detailreichtum zu

erstellen. Grundsätzlich zeigt der COMMODORE 64 direkt einen 8K-Speicherbe-

reich auf dem Bildschirm an, wenn er sich im Bit-Map-Modus befindet.

Im Bit-Map-Modus können Sie direkt steuern, ob ein einzelner Punkt auf dem

Bildschirm an oder aus ist.

Mit dem COMMODORE 64 stehen zwei verschiedene Arten von Bit-Mapping zur

Verfügung:

1) Standard-Bit-Map-Modus (hi-res) (320 mal 200 Punktauflösung)

2) Mehrfarben-Bit-Map-Modus (160 mal 200 Punktauflösung)

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 121

Beim Standard-Bit-Mapping ist zwar die Auflösung größer, es stehen jedoch

weniger Farbmöglichkeiten zur Verfügung. Beim Mehrfarben-Bit-Mapping wird eine

geringere horizontale Auflösung durch die Möglichkeit wettgemacht, eine größere

Anzahl von Farben in einem 8-mal-8-Punktefeld unterzubringen.

STANDARD-BIT-MAPPING MIT HOHER AUFLÖSUNG

Beim Standard-Bit-Mapping haben Sie eine Auflösung von 320 mal 200 Punkten

und können in jedem 8-mal-8-Punktebereich zwischen zwei Farben wählen. Zum

Einschalten des Bit-Mapping-Betriebs wird Bit 5 des VIC-II-Kontrollregisters in

Adresse 53265 ($D011 in HEX) auf 1 gesetzt. Dies geschieht durch folgende

POKE-Anweisung: | |

POKE 53265,PEEK(53265)OR 32

Zum Abschalten dieser Betriebsart wird Bit 5 des VIC-II-Kontrollregisters in

Adresse 53265 ($D011) auf 0 gesetzt. Hierzu dient folgende Anweisung:

POKE 53265,PEEK(53265)AND 223

Bevor wir uns nun im einzelnen mit dem Bit-Map-Modus beschäftigen, müssen wir

zuvor ein weiteres Problem lösen: Die Plazierung des Bit-Mapping-Bereichs.

FUNKTIONSWEISE

Wenn Sie noch den Abschnitt über PROGRAMMIERBARE ZEICHEN in Erinnerung

haben, werden Sie sich erinnern, daß Sie das Bitmuster eines im RAM gespeicher-

ten Zeichens beliebig wählen können. Genauso wie Sie ein auf dem Bildschirm

angezeigtes Zeichen ändern können, können Sie auch einen einzelnen Punkt

ändern. Dies ist das Grundmerkmal von Bit-Mapping.

Der gesamte Bildschirm ist mit programmierbaren Zeichen belegt. Ihre Änderungen

erfolgen direkt in dem Speicher, von dem die programmierbaren Zeichen ihre

Muster erhalten.

Jeder Platz im Bildschirmspeicher, der im Normalmodus für die Steuerung der

Zeichenwiedergabe benutzt wurde, wird nun für die Farbinformation herangezogen.

So wird nun durch das POKEn einer 1 in Speicherplatz 1024 nicht mehr ein “A“

links oben auf dem Bildschirm angezeigt, sondern durch Speicherplatz 1024

werden nun die Farben der Bits in der linken oberen Ecke des Bildschirms

gesteuert.

122 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

Beim Bit-Mapping-Betrieb kommen die Farben der 1000 Bildschirmfelder nicht vom

Farbspeicher wie im Normalmodus. Die Farben werden vielmehr aus dem Bild-

schirmspeicher genommen. Die oberen vier Bits des Bildschirmspeichers legen die

Farben der Bits fest, die im über diesen Bildschirmspeicherplatz gesteuerten 8-mal-

8-Bereich auf 1 gesetzt sind. Die unteren vier Bits enthalten die Farben für jedes Bit,

das auf O gesetzt ist.

BEISPIEL: Geben Sie folgendes ein:

= BASE 2e4ooe FOKESSETE, PEEROSSZTEDÖRSO REM PUT BIT
Mar AT ioe

12 PORE ISS. PEER OC SSSES ORS: REM ENTER BIT MAP MODE

Geben Sie nun zum Ausfuhren des Programms RUN ein.

Auf dem Bildschirm erscheint nichts Brauchbares, stimmt’s? Wie der “normale“

Bildschirm, muß auch der HI-RES-Bildschirm zuvor gelöscht werden. In diesem Fall ‚

funktioniert dies leider nicht durch CLR. Sie müssen vielmehr den Speicherbereich

löschen, den Sie für Ihre programmierbaren Zeichen benutzen. Drücken Sie die

Tasten und und fügen Sie dann zum Löschen des HI-RES-
Bildschirms folgende Zeilen in Ihr Programm ein:

24 FORI=ERSETIERZEHTPODSFOKETD ECMERT:REM CLEAR BIT
MAF
36 FORT =1Lee4TOfbes (POKES S°MERT OREM SET COLOR TO
CVA AHD BLACK

Geben Sie nun erneut RUN ein. Der Bildschirm wird nun geloscht und die

grunblaue Farbe (zyan) auf dem ganzen Bildschirm angezeigt werden. Nun wollen

wir einzelne Punkte auf dem HI-RES-Bildschirm ein- und ausschalten.

Um einen Punkt zu setzen (einzuschalten) oder zu löschen (auszuschalten),

müssen Sie wissen, wie Sie das richtige Bit im Zeichenspeicher finden, das auf 1

gesetzt werden soll. D. h., Sie müssen das zu ändernde Zeichen, die Zeichenreihe

sowie das entsprechende Bit dieser Reihe finden. Für diese Berechnung benötigen
Sie eine Gleichung.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 123

Wir benutzen X und Y fur die horizontale bzw. vertikale Punktposition. Der Punkt, an

dem X gleich O und Y gleich 0 ist, befindet sich oben links in der Anzeige. Rechts

liegende Punkte haben höhere X-Werte und alle Punkte, die darunter liegen, höhere

Y-Werte. Bit-Mapping läßt sich am sinnvollsten nutzen, wenn die Anzeige folgen-

dermaßen angeordnet ist:

a -319

Sam nme es ne i en a mn SEE =

Jeder Punkt hat eine X- und eine Y-Koordinate. In diesem Koordinatensystem laBt

sich die Lage jedes Punktes auf dem Bildschirm leicht beschreiben.

Anschaulich gesehen ist die Reihenfolge der Bytes auf dem Bildschirm wie folgt:

— BYTEO BYTE8 BYTE16BYTE24...............BYTE 312
u BYTE1 BYTE9 BYTE 313
u = BYTE2 BYTE10 BYTE 314
ty Ww BYTE3 BYTE11 BYTE 315
en = BYTE4 BYTE12 BYTE 316
coe BYTE5 BYTE13 BYTE 317
5 BYTE6 BYTE 14 BYTE 318

— BYTE7 BYTE15 BYTE 319

— BYTE 320 BYTE 328 BYTE 336 BYTE 344.............BYTE 632
AT BYTE 321 BYTE 329 BYTE 633
=> BYTE 322 BYTE 330 BYTE 634
N uU BYTE 323 BYTE 331 BYTE 635
= I BYTE 324 BYTE 332 BYTE 636
=F BYTE 325 BYTE 333 BYTE 637
Ps BYTE 326 BYTE 334 BYTE 638

a BYTE 327 BYTE 335 BYTE 639

124 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

Die programmierbaren Zeichen der Bit-MAP sind in 25 Reihen mit je 40 Spalten

angeordnet. Dies ist zwar fur den Textaufbau eine gute Methode, erschwert jedoch

das Bit-Mapping. (Fur diese Methode gibt es einen guten Grund. Siehe Abschnitt

KOMBINIERTE BETRIEBSARTEN.)

Durch nachstehende Gleichung läßt sich ein Punkt in der Bit-Map-Anzeige leichter

steuern:

Der Anfang des Bildschirm-Speicherbereichs wird als BASIS bezeichnet. Die

Reihenzahl (von O bis 24) Ihres Punkts ist:

ROW = INT(Y/8) (Es gibt 320 Bytes pro Zeile)

Die Zeichenposition dieser Zeile (von O bis 39) lautet:

CHAR = INT(X/8) (Es gibt 8 Bytes pro Zeichen)

Die Zeile dieser Zeichenposition (von O bis 7) lautet:

LINE = YAND 7

Das Bit dieses Bytes ist:

BIT = 7-(X AND 7)

Nun setzen wir diese Gleichungen zusammen. Das Byte, in dem der Zeichenspei-

cherpunkt (X, Y) liegt, wird wie folgt berechnet:

BYTE = BASE + ROW*320+ CHAR*8 + LINE

Um ein beliebiges Bit im Gitter mit Koordinaten (X, Y) einzuschalten, verwenden Sie

diese Zeile:

POKE BYTE, PEEK(BYTE) OR 2TBIT

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 125

Wir fügen diese Berechnungen in das Programm ein. In folgendem Beispiel

zeichnet der COMMODORE 64 eine Sinuskurve:

za PORK@ETOSLSS TER. S REM WAYE WILL FILL THE OSEREEH
EI We THT CSS EES THM Cee DE 3
rel CH IAT Ceo
me le DT Coo
a LM YAM oe
Se Er oe hea el ee e+ Lo
LAG BLS? ire 3

Lit PUKEBY, PEEK CES ORCS TEI 3

122 HEATH

125 PORE Lae. 1%

Lae GoTo. Se

Durch die Gleichung in Zeile 60 werden die Werte fur die Sinusfunktion von +1 bis

—1 in 10 bis 170 umgeändert. In den Zeilen 70 bis 100 werden das Zeichen, die

Reihe, das Byte und zugehörige Bit berechnet. Zeile 125 signalisiert, daß das

Programm beendet ist, indem sich in der oberen linken Bildschirmecke die Farbe

ändert. Durch Zeile 130 wird das Programm in eine unendliche Schleife geführt.

Nach dem Betrachten der Graphik drücken Sie einfach gleichzeitig die Tasten

und
Als weiteres Beispiel wird das Sinuskurvenprogramm so geändert, daß ein Halb-

Kreis angezeigt wird. Hierzu ist das Programm wie folgt abzuändern:

el FÜR“ =ATIIER:REN TO HALF THE SCREEN

Eh vi=1gg+SaR LESE ees a
Een wae ad Pie SO TSE Aner Me

El FORV=YTOVSSTERH er

Tel CH= TNT Ge Inn
zn Peli DI TE

ei Mer IND?

= Ey RRS ee Se Re aE oe hs

1 zz El: aan T mead rhe 1417"; A

112 FOr EB PEEKS BY OOR ca TBI 2
114 HEAT

Hierdurch wird im HI-RES-Bereich des Bildschirms ein Halbkreis erstellt.

Achtung: BASIC-Variablen können Ihren HI-RES-Bildschirm überlagern. Wenn Sie mehr Speicher-

"platz benötigen, müssen Sie den Anfang von BASIC über den HI-RES-Bildschirmbereich legen, oder

aber Sie verschieben Ihren HI-RES-Bildschirmbereich. Dieses Problem ergibt sich nicht bei der

Maschinensprache. Es tritt lediglich dann auf, wenn die Programme in BASIC geschrieben wurden.

126 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

MEHRFARBEN-BIT-MAPPING

Wie beim Mehrfarben-Modus der Zeichen können auch beim Mehrfarben-Bit-

Mapping in jedem 8-mal-8-Bereich der Bit-Map bis zu vier verschiedene Farben

angezeigt werden.

Auch hier wird die horizontale Auflösung reduziert (von 320 auf 160 Punkte).

Beim Mehrfarben-Bit-Mapping wird für die Bit-Map ein 8K-Speicherbereich benutzt.

Sie wählen die Farben für das Mehrfarben-Bit-Mapping (1) vom Hintergrund-

Farbregister O (Bildschirm-Hintergrundfarbe), (2) von der Video-Matrix (die oberen

4 Bits geben eine der möglichen Farben, die unteren 4 Bits eine weitere) und (3)

vom Farbspeicher.

Zum Einschalten dieses Modus wird Bit 5 von 53265 ($D011) und Bit 4 in Adresse

53270 ($D016) auf 1 gesetzt. Dies geschieht durch folgende POKE-Anweisung:

POKE 53265, PEEK(53625)OR 32: POKE 53270,PEEK(53270)OR 16

Zum Ausschalten des Mehrfarben-Bit-Map-Modus wird Bit 5 in 53265 ($D011) und

Bit 4 in 53270 ($D016) auf 0 gesetzt. Hierzu dient folgende POKE-Anweisung:

POKE 53265,PEEK(53265)AND 223: POKE 53270,PEEK(53270)AND 239

Wie beim Standard-Bit-Map-Modus (HI-RES) besteht eine 1:1-Entsprechung zwi-

schen dem für die Anzeige benutzten 8K-Speicherbereich und der Bildschirm-

Darstellung. Die horizontalen Punkte sind jedoch immer zwei Bits breit. Jeweils

zwei Bits im Anzeigenspeicher bilden einen Punkt, der eine von vier Farben haben

Kann.

BITS FARBINFORMATION KOMMT VON

00 Hintergrundfarbe #0 (Bildschirmfarbe)

01 Oberen 4 Bits des Bildschirmspeichers

10 Unteren 4 Bits des Bildschirmspeichers

11 Farbnybble (Nybble = % Byte = 4 Bit)

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 127

KONTINUIERLICHES VERSCHIEBEN

Über den VIC-II-Chip ist ein einfaches “Verschieben“ (Bildschirm-Rollen) sowohl in

horizontalen als auch vertikalen Richtungen möglich. Das Verschieben ist eine Ein-

Pixel-Bewegung des gesamten Bildschirms in eine Richtung. Die Bewegung kann

entweder nach oben, unten, links oder rechts erfolgen. Hierdurch werden neue

Informationen angezeigt, und gleichzeitig verschwinden andere Zeichen auf der

gegenüberliegenden Seite.

Auch wenn der VIC-II-Chip Ihnen viele Aufgaben abnimmt, muß dieses Verschie-

ben doch über ein Maschinensprache-Programm erfolgen. Uber den VIC-II-Chip

kann der Video-Bildschirm in eine beliebige von 8 horizontalen und 8 vertikalen

Positionen gebracht werden. Die Positionierung wird über die VIC-Il-Register zum

Bildschirmrollen (genannt SCROLL-Register) gesteuert. Der VIC-II-Chip hat auch

einen 38-Spalten- und 24-Reihen-Modus. Die kleineren Bildschirmgrößen geben

Ihnen einen Platz für die neuen Daten, die beim Verschieben gebraucht werden.

Gehen Sie für das Verschieben wie folgt vor:

1) Den Bildschirm verkleinern (der Rahmen wird breiter).

2) Das SCROLL-Register auf den Maximalwert stellen (oder auf den Minimalwert je

nach Richtung des Rollens).

3) Die neuen Daten in den geeigneten Bildschirmbereich eingeben.

4) Das SCROLL-Register vergrößern (oder verkleinern), bis es den Maximalwert

(oder Minimalwert) erreicht.

5) Zu diesem Zeitpunkt den gesamten Bildschirm um ein Zeichen in Verschiebe-

richtung rollen. Benutzen Sie hierzu Ihre Maschinensprache-Routine.

6) Nun zu Schritt 2 zurückgehen.

Um in den 38-Spalten-Modus zu gehen, wird Bit 3 von Adresse 53270 ($D016) auf

O gesetzt. Dies geschieht durch folgende POKE-Anweisung:

POKE 53270,PEEK(53270)AND 247

Zur Rückkehr in den 40-Spalten-Modus wird Bit 3 von Adresse 53270 ($D016) auf 1

gesetzt. Hierzu dient folgende POKE-Anweisung:

POKE 53270,PEEK(53270)OR 8

Für den 24-Reihen-Modus wird Bit 3 von Adresse 53265 ($D011) auf O gesetzt.

Hierzu dient folgende POKE-Anweisung:

POKE 53265,PEEK(53265)AND 247

128 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

Zur Rückkehr in den 25-Reihen-Modus wird Bit 3 von Adresse 53265 ($D011)

durch folgende POKE-Anweisung auf 1 gesetzt:

POKE 53265,PEEK(53265)OR 8

Beim Verschieben in X-Richtung muß der VIC-II-Chip in den 38-Spalten-Modus

versetzt werden. Hierdurch wird für die neuen Daten Platz geschaffen. Beim

Verschieben nach links werden die neuen Daten rechts.eingegeben. Beim Schie-

ben nach rechts erscheinen die neuen Daten entsprechend auf der linken Seite.

Bitte beachten Sie, daß der Bildschirmspeicher noch 40 Spalten hat. Lediglich 38

sind jedoch sichtbar.

Beim Verschieben in Y-Richtung muß der VIC-II-Chip in 24-Reihen-Modus versetzt

werden. Beim Rollen nach oben werden die neuen Daten in die letzte Reihe

eingegeben. Beim Rollen nach unten erscheinen die neuen Daten entsprechend in

der ersten Reihe. Beim X-Verschieben sind unsichtbare Bereiche auf beiden

Bildschirmseiten. Beim Y-Verschieben gibt es jedoch nur einen unsichtbaren

Bereich.

Ist das Y-SCROLL-Register auf O gesetzt, dann ist die erste Zeile unsichtbar und

bereit für neue Daten. Ist das Y-SCROLL-Register auf 7 gesetzt, so ist die letzte

Reihe unsichtbar.

Zum Rollen in X-Richtung befindet sich das SCROLL-Register in den Bits 2 bis O

des VIC-Il-Steuerregisters in Adresse 53270 ($D016 HEX).

Auch hier dürfen auf jeden Fall nur diese Bits verändert werden. Dies geschieht

durch folgende POKE-Anweisung:

POKE 53270, (PEEK(53270)AND 248)+X

wobei X die X-Bildschirmposition O bis 7 ist.

Zum Rollen in Y-Richtung befindet sich das SCROLL-Register in den Bits 2 bis O

des VIC-Il-Steuerregisters in Adresse 53265 ($D011 HEX). Auch hierbei dürfen

wieder nur diese Bits verändert werden. Hierzu dient folgende POKE-Anweisung:

POKE 53265, (PEEK(53265)AND 248)+Y

wobei Y die Y-Bildschirmposition O bis 7 angibt.

Um den Text von unten auf den Bildschirm zu rollen, müssen die unteren 3 Bits von

Adresse 53265 von 0-7 gesetzt, weitere Daten in die abgedeckte Zeile unten auf

den Bildschirm eingegeben und danach der Vorgang wiederholt werden.

Ändert man die Verschiebebits mit der Schrittweite von —1, so wird der Text in

entgegengesetzter Richtung bewegt.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 129

BEISPIEL: Textrollen vom unteren Bildschirmrand her:

1a FOEES32ES. FEERNSTERSORANDEHT REM GO

THTO 24 BOM MODE
za FRIMTEHREE 1475 : REE TA

CLEAR THE SCREEM
aa FORHK=1T0e4 > FPR IMTCHRE! 1? os oHEAT REM MOVE

THE CURSOR TO THE BOTTOM
40 POKES S268, (PEER CSSS65 9AMTS459+P7 PR THT REM

POSITION FÜR 15T SCROLL
za ere TT" ELL

GE FORPSE TOASTER 1

a FOKRESS253. (PEEKS S3265 »AMDS45 9 HF

aa FORA 1 TOS HEAT REM

DELAY LOOF

za HEAT GOTO4e

130 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

SPRITES

Ein SPRITE ist ein besonderer Typ von freidefinierbaren Zeichen, die an beliebiger

Stelle auf dem Bildschirm angezeigt werden können. Sprites werden direkt vom

VIC-II-Chip verwaltet. Sie brauchen lediglich für jedes Sprite festzulegen, “wie es

aussehen soll“, “welche Farbe es haben soll“ und “wo es auf dem Bildschirm

plaziert werden soll“. Der VIC-II-Chip erledigt für Sie den Rest! Sprites können eine

der 16 möglichen Farben haben.

Sprites können zusammen mit jedem beliebigen Graphik-Modus, Bit-Mapping,

Zeichen, Mehrfarben-Modus usw. benutzt werden. Eine Spritedefinition enthält die

Farbe, den Modus (HI-RES oder Mehrfarben) und die Form.

Vom VIC-II-Chip können automatisch gleichzeitig jeweils 8 Sprites verwaltet wer-

den. Durch RASTER-INTERRUPT-Techniken können weitere Sprites angezeigt

werden. |

Sprites haben folgende Merkmale:

1) Punktgröße 24 mal 21 (horizontal x vertikal)

2) Farbsteuerung für jedes Sprite

3) Sprites im Mehrfarbenmodus

4) Vergrößerung (2x) in horizontaler und/oder vertikaler Richtung

5) Wahlmöglichkeit: Sprites vor oder hinter dem Hintergrund

6) Wahl der Reihenfolge, in der die Sprites “hintereinander” angeordnet sind

7) Sprite-Kollisionserkennung

8) Kollisionserkennung zwischen Sprite und Hintergrund.

Auf diese Weise lassen sich zahlreiche Tele-Spiele einfach programmieren. Da die

Sprites durch das Betriebssystem unterstützt werden, kann ein gutes Spiel sogar in

BASIC geschrieben werden! |

Vom VIC-II-Chip werden 8 Sprites unterstützt. Sie sind von O bis 7 numeriert. Jedes

Sprite hat seinen eigenen Speicherbereich für das Bitmuster, seine Positions- und

Farbregister sowie seine eigenen Bits zur Erkennung von Kollisionen und zum Ein-

und Ausschalten.

SPRITEDEFINITION

Sprites werden genau wie programmierbare Zeichen definiert. Da ein Sprite jedoch

größer ist, werden mehr Bytes benötigt. Jedes Sprite besteht aus 24 mal 21 oder

504 Punkten. Fur die Definition eines Sprites werden also 63 Bytes (504/8)

benötigt. |

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 131

6+
SHISY

8
SHISY

Zt
3HI34

9,
SHISY

St
3HI34

vl
SHISY

&l
SHISY

e+
SHISY

LL
3HI3a

OF
SHISY

6
JHI3U

ähliael

JHI34

JHI34

JHI3U

S
H
I

JHla8

nI|a|I|vIınjJ|o|I N | ©

SHISY

JHI34

S
H
I

al
of

v9
sc

9
ce

v9
8cl

91
ce

v9
sch

(L
=

NI3)

3
1
4
3
M
L
I
E

Lid

oo

CG
Oc

6l
gl

Zi
9 Sk

vi
el

sl
Ol

60
80

90
SO

vO
cO

Ae
LO

00
‘
U
N
-
N
A
L
W
d
S

inition Abb. 3.2. Spritedef

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 132

Die 63 Bytes sind in 21 Reihen zu je 3 Bytes angeordnet. Eine Spritedefinition sieht

folgendermaßen aus:

BYTE O BYTE I] BYTE 2

BYTE 3 BYTE 4 BYTE 5

BYTE 6 BYTE 7 BYTE 8

BYTE 60 BYTE 61 BYTE 62

Auch bei Betrachtung der Spritedefinition auf Bit-Ebene laBt sich erkennen, wie

Sprites erstellt werden. (Siehe Abb. 3.2.)

Bei einem Standardsprite (HI-RES) wird jedes auf 1 gesetzte Bit in der entspre-

chenden Sprite-Vordergrundfarbe angezeigt. Jedes auf 0 gesetzte Bit ist transpa-

rent, so daß der dahinter liegende Wert sichtbar wird. Dies entspricht der Situation

beim Standardzeichen.

Mehrfarbige Sprites entsprechen mehrfarbigen Zeichen. Horizontal wird die Orts-

auflösung zugunsten der Farbauflösung verschlechtert. Die Auflösung beträgt 12

mal 21 Punkte (horizontal x vertikal). Jeder Punkt im Sprite wird doppelt so breit, die

Anzahl der anzeigbaren Farben im Sprite wird jedoch auf 4 erhöht.

SPRITE-POINTER

Auch wenn jedes Sprite für die Definition nur 63 Bytes benötigt, wird doch ein

weiteres Byte am Ende jedes Sprites als Platzhalter benötigt, d. h., daß jedes Sprite

64 Bytes beansprucht. Auf diese Weise können Sie leicht berechnen, wo sich Ihre

Spritedefinition im Speicher befindet, da 64 Bytes eine gerade Zahl darstellen und

im Binärsystem eine gerade Potenz.

Jedes der acht Sprites hat ein Byte, das Sprite-Pointer genannt wird. Dieser

Sprite-Pointer gibt an, wo sich die Spritedefinition im Speicher befindet. Diese acht

Bytes sind stets die letzten acht Bytes vom 1K-Bereich des Bildschirmspeichers.

Normalerweise bedeutet dies beim COMMODORE 64, daß Sie bei Adresse 2040

($07F8 in HEX) beginnen. Bei Bewegung des Bildschirms verändert sich jedoch

auch die Lage des Sprite-Pointers.

Jeder Sprite-Pointer kann eine Zahl zwischen O und 255 aufnehmen. Diese Zahl

zeigt auf die Definition für das Sprite. Da jede Spritedefinition 64 Bytes benötigt,

bedeutet dies, daß der Pointer auf jeden Platz im 16K-Speicherbereich zeigen kann,

der fur den VIC-II-Chip zugänglich ist (da 256*64=16k).

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 133

Wenn der Sprite-Pointer #0 an Adresse 2040 z.B. die Zahl 14 enthält, bedeutet

dies, daß Sprite O mit den 64 Bytes beginnend bei Adresse 14*64 = 896 beginnt,

d. h., im Kassettenpuffer. Dies wird anhand folgender Gleichung deutlich:

LOCATION = (BANK * 16384) + (SPRITE POINTER VALUE * 64)

wobei BANK einen der 16K-Speicherbereiche bezeichnet, auf die der VIC-II-Chip

zugreifen kann und die von O bis 3 durchnumeriert sind.

Obige Gleichung gibt den Anfang der 64 Bytes des Spritedefinitionssatzes an.

Wenn der VIC-II-Chip auf BANK 0 oder BANK 2 zugreift, ist in einigen Speicherplat-

zen ein ROM-Image des Zeichensatzes (wie bereits erwähnt) vorhanden. Hier

können keine Spritedefinitionen stehen. Werden aus irgendwelchen Gründen mehr

als 128 verschiedene Spritedefinitionen benötigt, müssen Sie eine der Banks ohne

ROM-Spiegelung benutzen (1 oder 3).

EINSCHALTEN DER SPRITES

Das VIC-Il-Steuerregister in Adresse 53269 ($D015 HEX) ist das Sprite-Aktivie-

rungsregister. Jedes Sprite hat in diesem Register ein Bit, das steuert, ob das Sprite

EIN oder AUS ist. Das Register sieht folgendermaßen aus:

$D015 76543210

Um z. B. Sprite 1 einzuschalten, muß das entsprechende Bit gesetzt werden. Dies

geschieht durch folgende POKE-Anweisung:

POKE 53269,PEEK(53269)OR 2

Folgendes ist eine mehr allgemeine Anweisung:

POKE 53269,PEEK(53269)OR (27SN)

wobei SN die Spritezahl von O bis 7 ist.

Anmerkung: Ein Sprite wird erst sichtbar, wenn es eingeschaltet wird.

134 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

AUSSCHALTEN DER SPRITES

Ein Sprite wird ausgeschaltet, indem sein Bit im VIC-Il-Steuerregister bei 53269

($D015 HEX) auf 0 gesetzt gelöscht wird. Dies geschieht durch folgende POKE-

Anweisung:

POKE 53269, PEEK(53269)AND (255-27SN)

wobei SN die Spritezahl von O bis 7 angibt.

FARBEN

Ein Sprite kann eine der 16 Farben haben, die vom VIC-II-Chip erzeugt werden.

Jedes Sprite hat sein eigenes Sprite-Farbregister. Die Farbregister haben folgende

Adressen:

ADRESSE BESCHREIBUNG

53287 ($D027) FARBREGISTER VON SPRITE 0

53288 ($D028) FARBREGISTER VON SPRITE 1

53289 ($D029) FARBREGISTER VON SPRITE 2

53290 () FARBREGISTER VON SPRITE 3

53291 () FARBREGISTER VON SPRITE 4

53292 ($D02C) FARBREGISTER VON SPRITE 5

53293 () FARBREGISTER VON SPRITE 6

53294 () FARBREGISTER VON SPRITE 7
Alle Punkte des Sprites werden in der Farbe angezeigt, die im Sprite-Farbregister

enthalten ist. Der Rest des Sprites ist transparent, so daß die hinter diesem Sprite

liegenden Werte (normalerweise der Hintergrund) angezeigt werden.

MEHRFARBENMODUS

Im Mehrfarbenmodus kann jedes Sprite max. vier verschiedene Farben haben. So

wie bei den anderen Mehrfarbenmodi ist jedoch auch hier die horizontale Auflösung

auf die Hälfte reduziert, d. h., beim Arbeiten im Mehrfarbenmodus (wie bei Zeichen

im Mehrfarbenmodus) wird ein Sprite horizontal nicht mehr 24 Punkte, sondern in

12 Punkten ausgeführt. Jedes Punktepaar wird BITPAAR genannt. Stellen Sie sich

jedes Bitpaar (Punktepaar) als einen einzelnen Punkt in Ihrem Gesamtsprite vor,

wenn Sie die Farben für die Punkte in Ihren Sprites wählen.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 135

In nachstehender Tabelle finden Sie die Bitpaar-Kombinationen, die Sie zum

Einschalten der vier Farben fur die Sprites benotigen:

BITPAAR BESCHREIBUNG

00 TRANSPARENT, BILDSCHIRMFARBE

01 SPRITE-MEHRFARBENREGISTER #0 (53285) ($D025)

10 SPRITE-FARBENREGISTER

11 SPRITE-MEHRFARBENREGISTER #1 (53286) ($D026)

WÄHLEN DES MEHRFARBENMODUS FÜR EIN SPRITE

Um den Mehrfarbenmodus für ein Sprite zu wählen, müssen Sie das entspre-

chende VIC-II-Steuerregister in Adresse 53276 ($D01C) einschalten. Dies

geschieht durch folgende POKE-Anweisung:

POKE 53276,PEEK(53276) OR (21SN)

wobei SN die Sprite-Nummer angibt (0 bis 7).

VERGRÖSSERTE SPRITES

Der VIC-II-Chip hat die Fähigkeit, ein Sprite in vertikaler und/oder horizontaler

Richtung zu vergrößern. Bei der Ausdehnung wird jeder Punkt im Sprite zweimal so

breit oder zweimal so hoch. Die Auflösung nimmt nicht zu; das Sprite wird lediglich

größer.

Um ein Sprite in horizontaler Richtung zu strecken, muß das entsprechende Bit im

VIC-Il-Steuerregister in Adresse 53277 ($D01D HEX) eingeschaltet (auf 1 gesetzt)

werden. Durch folgende POKE-Anweisung wird ein Sprite in X-Richtung vergrößert:

POKE 53277,PEEK(53277)OR (27SN)

wobei SN die Sprite-Nummer (0 bis 7) angibt.

Um ein Sprite in horizontaler Richtung wieder zu verkleinern, muß das entspre-

chende Bit im VIC-II-Steuerregister in Adresse 53277 ($DO1D HEX) ausgeschaltet

(auf O gesetzt) werden. Durch folgende POKE-Anweisung wird ein Sprite in

X-Richtung wieder verkleinert:

POKE 53277,PEEK(53277)AND (255-2TSN)

wobei SN die Sprite-Nummer von 0 bis 7 angibt.

136 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

Um ein Sprite in vertikaler Richtung zu vergrößern, muß das entsprechende Bit im

VIC-II-Steuerregister in Adresse 53271 ($D017 HEX) eingeschaltet (auf 1 gesetzt)

werden. Durch folgende POKE-Anweisung wird ein Sprite in Y-Richtung gestreckt:

POKE 53271,PEEK(53271)OR (21SN)

wobei SN die Sprite-Nummer von O bis 7 angibt.

Um ein Sprite in vertikaler Richtung wieder zu verkleinern, muß das entsprechende

Bit im VIC-Il-Steuerregister in Adresse 53271 ($D017 HEX) ausgeschaltet (auf O

gesetzt) werden. Durch folgende POKE-Anweisung wird ein Sprite in Y-Richtung

wieder verkleinert:

POKE 53271,PEEK(53271)AND (255—27SN)

wobei SN die Sprite-Nummer von O bis 7 angibt.

SPRITEPOSITIONIERUNG

Nachdem Sie ein Sprite konstruiert haben, können Sie es auf dem Bildschirm

bewegen. Hierzu benutzt der COMMODORE 64 drei Positionsregister:

1) SPRITE X-POSITIONSREGISTER

2) SPRITE Y-POSITIONSREGISTER

3) HÖCHSTES BIT DES X-POSITIONSREGISTERS (engl. MSB = Most significant

Bit)

Jedes Sprite hat ein X-Positionsregister, ein Y-Positionsregister und ein Bit im

MSB-X-Register. Auf diese Weise können Sie die Sprites sehr genau positionieren.

Hierzu stehen 512 mögliche X- und 256 mögliche Y-Positionen zur Verfügung.

Die X- und Y-Positionsregister “arbeiten“ paarweise zusammen. Die Adressen von

X- und Y-Register erscheinen wie folgt im Speicher: Zunächst das X-Register für

Sprite 0, dann das Y-Register für das gleiche Sprite.

Danach folgt das X-Register und dann das Y-Register für Sprite 1 usw.

Nach allen 16 X- und Y-Registern kommt das höchste Bit der X-Position (X MSB) in

seinem eigenen Register.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 137

Nachstehende Tabelle gibt die Adressen der einzelnen Sprite-Positionsregister an.

Sie können auf diese Adressen durch POKE-Anweisungen zugreifen:

PLATZ
BESCHREIBUNG

DEZIMAL HEX.

53248 ($D000) X-POSITIONSREGISTER VON SPRITE O

53249 ($D001) Y-POSITIONSREGISTER VON SPRITE 0

93250 ($D002) X-POSITIONSREGISTER VON SPRITE 1

93251 ($D003) Y-POSITIONSREGISTER VON SPRITE 1

53252 ($D004) X-POSITIONSREGISTER VON SPRITE 2

53253 ($D005) Y-POSITIONSREGISTER VON SPRITE 2

53254 ($D006) X-POSITIONSREGISTER VON SPRITE 3

93255 ($D007) Y-POSITIONSREGISTER VON SPRITE 3

53256 ($D008) X-POSITIONSREGISTER VON SPRITE 4

53257 ($D009) Y-POSITIONSREGISTER VON SPRITE 4

53258 ($DOOA) X-POSITIONSREGISTER VON SPRITE 5

53259 ($DOOB) Y-POSITIONSREGISTER VON SPRITE 5

53260 ($DO0C) X-POSITIONSREGISTER VON SPRITE 6

53261 ($DOOD) Y-POSITIONSREGISTER VON SPRITE 6

53262 ($DOOE) X-POSITIONSREGISTER VON SPRITE 7

53263 ($DOOF) Y-POSITIONSREGISTER VON SPRITE 7

53264 ($D010) X MSB REGISTER
Die Position eines Sprites wird von der OBEREN LINKEN ECKE des 24-mal-21-

Punktebereichs berechnet, der für ein Sprite zur Verfügung steht. Es spielt hierbei

keine Rolle, wie viele bzw. wenige Punkte Sie für ein Sprite benutzt haben. Auch

wenn nur ein Punkt für das Sprite benutzt wurde und dieses in der Mitte des

Bildschirms stehen soll, müssen Sie für die Positionierung die obere linke Ecke als

Bezugspunkt verwenden. |

VERTIKALE POSITIONIERUNG

Die Positionierung in horizontaler Richtung ist etwas schwieriger als die vertikale

Positionierung. Daher werden wir uns zunächst mit der vertikalen Positionierung (Y)

beschäftigen.

Es gibt 200 verschiedene Punktpositionen, die auf dem Bildschirm in Y-Richtung

programmiert werden können. Das Y-Positionsregister der Sprites kann Zahlen bis

zu 255 fassen; d.h., Sie haben ausreichend Registerplatze, um ein Sprite nach

oben und unten zu bewegen.

Ein Sprite soll jedoch auch auf dem Bildschirm erscheinen und verschwinden.

Hierzu benötigen Sie mehr als 200 Werte.

138 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

Der erste Wert, bei dem ein Sprite von oben auf dem Bildschirm auftaucht und der

für ein in Y-Richtung unvergrößertes Sprite gilt, ist 30. Für ein in Y-Richtung

gestrecktes Sprite lautet dieser Wert 9 (da jeder Punkt zweimal so hoch ist und die

Ausgangsposition auch hier von der obersten linken Ecke des Sprites berechnet

wird, kann hier der entsprechende Wert kleiner sein).

Der erste Y-Wert, bei dem ein Sprite (vergrößert oder nicht) ganz auf dem

Bildschirm erscheint (alle 21 möglichen Zeilen werden angezeigt), lautet 50.

Der letzte Y-Wert, bei dem ein unvergrößertes Sprite noch ganz auf dem Bildschirm

vorhanden ist, ist 229. Der letzte Y-Wert, bei dem ein vergrößertes Sprite noch ganz

auf dem Bildschirm erscheint, lautet 208.

Der erste Y-Wert, bei dem ein Sprite vollständig vom Bildschirm verschwunden ist,

ist 250.

BEISPIEL:

„em
{a PRINT" st" REM CLEAR SCREEN
26 POKEZA4E, 13 :REM GET SPRITE @
DATA FROM BOCK 13
SE FOR TSR TORS FOKESFE+TL, 129: HExXT REM FORE SPRITE

DATA INTO BLOCK LS ol Sweet

a Wire (REM SET BEGIMNMIHG

OF W"IDEN CHIF
za FOREW+HEL1.A REM EHRELE SFRHITE

1

Be PORE WAS 1 (REM SET SPEITE &

COL Ce

Fe PORE 41. Lee (REM SET SFRITE &

Y POST T IO

SA PORKEVW+16.8° PORE. Tae (REM SET SPRITE 8

m FOSTTIOM

HORIZONTALE POSITIONIERUNG

Positionierung in horizontaler Richtung ist komplizierter, da hier mehr als 256

Positionen zur Verfügung stehen. D. h., ein Extrabit oder neuntes Bit zur Steuerung

der X-Position wird benötigt. Durch Hinzunahme des Extrabits hat ein Sprite nun

512 mögliche Positionen in der X-Richtung (links/rechts). Hierdurch stehen mehr

Positionen zur Verfügung, als auf dem Bildschirm angezeigt werden können. Jedes

Sprite kann eine Position von O bis 511 haben. Es sind jedoch lediglich die Werte

zwischen 24 und 343 auf dem Bildschirm sichtbar. Wenn die X-Position eines

Sprites größer als 255 (auf der rechten Bildschirmseite) ist, muß das entsprechende

Bit im MSB-Register auf 1 gesetzt (eingeschaltet) sein. Wenn die X-Position eines

Sprites kleiner als 256 (z. B. auf der linken Bildschirmseite) ist, dann muß das X

MSB-Register dieses Sprites auf O gesetzt (ausgeschaltet) sein.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 139

(8St$)
pre

(Ovts)
OZE

|
|

(81$)
92

(g41$)
88b

|
| —(v4$)

092

(was)
092

—
—-

(sas)
622

—
--

(zes)
OS

--

NSHI3U4
Se

NAL
WVd$

OV

H
O
1
3
4
3
9

Y
A
Y
V
E
L
H
O
I
S

—(0a$)
802

—
—

—
(z£$)

OS

8089
8-

-—
—

-
-

-
|

|
|

|

|
|

(8s1$)
pre

(8218)
962

Abb. 3.3. Sprite

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 140

"AL
@WOY

INOA
10}

Spsepue}S
LOISSIWSUBI}

UOISIA9|9}
LEOLOWIY

Y
O
N
,

(4v1$)
SEE

(948)
9bp7-

—
—

—

(Las)
G
7
Z
-

—

—
—

(Es)

pS
—

—

008)
ZI
-
—
-
-
-
-
-
-

| | | |
(4v1$)

SEE

(ze1s)
LIE

|

NAL
WdS

ve

N
A
L
1
V
d
S

8€

HO139389
Y
A
Y
V
E
L
H
O
I
S

(419)
LE |

|
(4tt$)

282
(44S)

LE

(031$)
08%

—

—
(94$)

992

—
—

(99$)
p0Z

—
—
—
-
—

(9€$)
pS

—
—

——
(28)

€€

(208)
2

Positioniertabelle

141 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

Die Bits O bis 7 vom X MSB-Register entsprechen den Sprites O bis 7.

Durch folgendes Programm wird ein Sprite über den Bildschirm bewegt:

BEISPIEL:

_ mum
1G PRINT" cf
za PORE SEME, 1
Se FORT S=8TOGe FORESSe+0. 12S MEAT
a Walsh

ie FOREN +S 1 l
ei FÜREWHSSA

a FOREW+L. LEN
za FOR TSe TOs ai

SQ Hee IMT Tae oo Lae Tee

LEM Ries Le SPCIKEW+ LS. He NEXT

Beim Bewegen von vergrößerten Sprites auf die linke Bildschirmseite in X-Richtung

soll zu Beginn der Bewegung das Sprite auf der rechten Seite nicht sichtbar sein.

Ein erweitertes Sprite ist nämlich größer als der verfügbare Platz auf der linken

Bildschirmseite.

BEISPIEL:

ia FR TMT oo
2H FORE SEE. 13
kl egttn SAT OSS: POKESS2+ 0. 1250 HEXT
ae ile ze: DR ee! hin

eked FOKEV+E + 1
BE PORE eS LI POHEW+HZE. LI’ FOKEVTEZ

il POREU»L. 100
Eat es

cone Liste THT OI ASS Lee Tek
Jae) Paes Las) PORE yt LE En. He

Lig Tele]: TF T2319 T PES PT =)

Lek DP OARSSOR TSO TOS

Die Tabellen in Abbildung 3.3. erklaren die Spritepositionierung. Damit konnen Sie

jedes Sprite beliebig positionieren. Durch Bewegung eines Sprites um jeweils eine

einzelne Punktposition wird eine runde freie Bewegung moglich.

142 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

ZUSAMMENFASSUNG UBER DIE SPRITEPOSITIONIERUNG

Unvergrößerte Sprites sind im 40-Spalten-mal-25-Reihen-Modus innerhalb folgen-

der Parameter zumindest teilweise sichtbar:

1< =X < = 343

30 <=Y< = 249

Im 38-Spalten-Modus ändern sich die X-Parameter wie folgt:

8<=X< = 334

Im 24-Reihen-Modus ändern sich die Y-Parameter wie folgt:

34< =Y < = 245

Vergrößerte Sprites sind innerhalb folgender Parameter im 40-Spalten-mal-25-

Reihen-Modus sichtbar:

489 > =X < = 343

9>=Y< = 249

Im 38-Spalten-Modus andern sich die X-Parameter wie folgt:

496 > = X < = 334

Im 24-Reihen-Modus ändern sich die Y-Parameter wie folgt:

13<=Y< = 245

SPRITE-ANZEIGEPRIORITATEN

Die Wege der verschiedenen Sprites können sich kreuzen. Darüber hinaus können

sich Sprites vor oder hinter anderen Objekten auf dem Bildschirm bewegen. Durch

diese räumliche Darstellung können Sie bei Spielen einen dreidimensionalen Effekt

erzeugen. Die Priorität zwischen den einzelnen Sprites ist festgelegt. Sprite O hat

dabei die oberste, Sprite 1 die nächste Priorität usw., so daß Sprite 7 entsprechend

die niedrigste Priorität hat. D. h., wenn Sprite 1 und Sprite 6 einander kreuzen, so

erscheint Sprite 1 vor Sprite 6.

Soll ein Sprite also im Bildvordergrund erscheinen, so muß es eine niedrigere Zahl

erhalten als das, das im Hintergrund erscheinen soll.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 143

Anmerkung: Ein “Fenstereffekt“ ist möglich. Hat ein Sprite mit höherer Priorität "Löcher" (Bereiche,

in denen die Punkte nicht auf 1 eingeschaltet sind), so scheinen Sprites mit niedrigerer Priorität durch.

Das gleiche gilt für Sprites und Hintergrunddaten.

Das Prioritätsverhältnis zwischen Sprites und Bildschirmhintergrund wird durch das

entsprechende Register in Adresse 53275 ($D01B) gesteuert. In diesem Register

hat jedes Sprite ein Bit. Ist das Bit 0, so hat das entsprechende Sprite eine höhere

Priorität als der Bildschirmhintergrund; d. h., das Sprite erscheint vor den Hinter-

grunddaten. Ist das Bit 1, so hat der Hintergrund Priorität gegenüber dem Sprite.

Dieses erscheint dann hinter den Hintergrunddaten.

KOLLISIONSERKENNUNG

Einer der interessanteren Aspekte des VIC-II-Chips ist die Möglichkeit der Kolli-

sionserkennung. Kollisionen können zwischen den verschiedenen Sprites oder

Sprite und einem bestimmten Hintergrund erkannt werden. Zu einer Kollision

kommt es, wenn ein “nicht-O“-Teil eines Sprites einen “nicht-0“-Teil eines weite-

ren Sprites oder eines Bildschirmzeichens überlappt.

KOLLISION ZWISCHEN EINZELNEN SPRITES

Eine Kollision zwischen einzelnen Sprites wird vom Computer erkannt oder im

entsprechenden Register an Adresse 53278 ($DO1E HEX) im VIC-Il-Chip-Steuer-

register gekennzeichnet. In diesem Register hat jedes Sprite ein Bit. Ist dieses Bit 1,

dann ist das Sprite an einer Kollision beteiligt. Die Bits in diesem Register bleiben

bis zum Lesen (PEEK-Anweisung) gesetzt. Nach dem Lesen wird das Register

automatisch gelöscht. Der Wert sollte daher besser in einer Variablen gespeichert

werden, bis er verarbeitet wird.

Anmerkung: Kollisionen können auch dann auftreten, wenn Sprites ausgeschaltet sind. |

KOLLISION ZWISCHEN SPRITES UND DATEN

Eine Kollision zwischen einem Sprite und Daten wird im entsprechenden Register in

Adresse 53279 ($D01F HEX) des VIC-II-Chip-Steuerregisters festgestellt. In die-

sem Register hat jedes Sprite ein Bit. Ist dieses Bit eine 1, dann ist dieses Sprite an

einer Kollision beteiligt. Die Bits in diesem Register bleiben bis zum Lesen (PEEK-

Anweisung) gesetzt. Nach dem Lesen wird das Register automatisch gelöscht. Der

Wert sollte daher in einer Variablen gespeichert werden, bis er verarbeitet wird.

Anmerkung: Der MULTI-COLOR-Wert 01 wird bei Kollisionen als transparent angesehen, auch wenn

er auf dem Bildschirm sichtbar ist. Beim Erstellen eines Hintergrunds sollte daher all das, was nicht zu

einer Kollision führen darf, im Mehrfarbenmodus auf 01 gesetzt werden.

144 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

la FEM SPRITE E#AMFLE 1...

2H REM THE HOT AIR EALLOOH

+ a LaNaBSEEREN THIS IS WHERE THE IC REGISTERS
EGIH

oo POREWIC+21,1:°REM EMABLE SPRITE A

iy POREVIC+S3,14° REM SET BACKGROUHD COLOR TO LIGHT
(LUE

or POREWIC+23,1° REM EXPAHD SPRITE A IH "Tr

ao FPOKEVIC+29,1°REM EXFAHD SPRITE @ IM ¥

44 PÜKEZB4A, 12: REM SET SFRITE #5 ie

126 FOKEVIC+@.100° REM SET SFEITE @°S # POSITION

136 POKEVIC+1,100°REM SET SPRITE ars # FOSITIOM

eld POKEVIC+SS.1°REMN SET SPRITE 8°S COLOR

258 FORY=87 O63 > REM BYTE COUMTER WITH SPRITE LOOP
246 FERDA:REM READ IN A BYTE

216 PORE1S2¢6447,AR°REM STORE THE DATA IH SFRITE
AREA

228 HES TY OREM CLOSE LOOP
2330 Us =1:Dr=]

298 »=FEEKCHICH REM LOOK AT SPRITE @° ‘ POSITION

SoM Y=PEERKCVIC+L oO REM LOOK AT SPRITE a 5 Y FOSITION

252 IFY=3G0R'=2G8THEMDY=-D REM IF 7 IS CH THE
EDGE OF THE,

ora REM SCREEN, THEM REVERSE DELTA 'r

Se TF MSS4AMDCPEEK CVIC+ iS 0 AMD1 oO =A@THEMDKS-D4 REM IF
SFRITE IS....

238 KEM TOUCHIHMG THE LEFT EGE ¢k=24 AND THE MSE
FUR SFRITE EIS Ei. REVERSE IT

dag TF e=44AMDCPEEKCVIC+1 639 RH01 0=1THEMDKS=-Dx REM IF

SPRITE IS... :

4189 REM TOUCHING THE RIGHT EIGE ¢K=4a AMD THE Mek

FOR SPRITE @ TS 15, REVERSE IT

«el IFA=2SSAHDDs=1 THENA=-1 SITES 1

438 REM SWITCH TO OTHER SIDE OF THE SCREEH

449 IFs=BARHDDA=-1THEHH 2256: SIDES A

456 REM SWITCH TO OTHER SIDE OF THE =CREEH

4660 S=K+0K REM ADD DELTA # TO %

47H ASAMD2S 5 (REM MARE SURE % IS IH ALLOWED RAHGE

44 Wall+Ty REM ADD DELTA YY To
in url, SIDE

+98 POKEVICO 4° REM FUT HEM & VALUE IHMTO SPRITE acs
POSIT IOM

510 POKEVIC+ IY REM PUT HEM Y VALUE INTO SPRITE
43 Y FOSITIOH
39 GOTÜS4E
Bad REM same ee. DATA ann
G1 UATHA 2? 8. 1.255.192, 5,255, 224,2, 231.224
bell DATAP eles 240,7, 223 ‚240. ? sede, 240, feel etd
634 DATA, 255, 224, 3,255,224, 2,955), L6G. 1.12%. 64
646 DRATAL. 62.64,.6,156,126,60,156,128.8,.73,6,8,73.8
Esel DATA. 62.4, 8,62,0,8.62.8.8.28,8,8

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 145

12 REM SPRITE EXAMPLE 2...
kl REM THE HOT ALR BALLOOM AGAIH
SQ VICeLoe4eoe (REM THIS IS WHERE THE VIC REGISTERS
BEGIN
oe POUREM DT C+e le GS REM EMABLE SPRITES @ THRU 5
25 FOREVIC+S 2. 14° REM SET BACK GROUHD COLOR To LIGHT

BLUE
a? POKEMIC+ES. 2° REM EXPAMD SPRITES @ AWD 1 TH 4
Se FOREVIOC+S oS REM EXPAT SPRITES @ AMD 1 IM %
42 POREZO4E. 192° REM SET SPRITE @°S POINTER
Se PURE Sel LoS REM SET SPRITE BOTH TER
BE FORE See. Los REM SET SFRITE FOIHTER
PE PORES. LSS REM SET SPRITE BO LH TER
eel FORE Zee LoS REM SET SPRITE POTHTER
ag PORES. LoS REM SET SPRITE 5°5 FOIMTER
1a POR EVI C+. Se REM SET SFRITE 2°5 & POSITION

{i
R
Z
i

fy

re

I

n
o

zy

u‘
~

a

r
r

m
y

£
2

i
v

Li FOREWICHS. SS REM SET SPRITE 2°53 Yo POSITION
leh FOKEVIC+&. 63: REM SET SPRITE 2°5 = FOSITIOH
132 POKEVIC4?. 58: REM SET SPRITE S°S 4 POSITION
{42 POKEVIC+8, LAOS REM SET SPRITE 4°5 4 POSITION
L3G POKEVIC+S. SG:REM SET SPRITE 4°S 4 POSITION
L6G FOKEWICHLE, 1@0°REM SET SPRITE 5°S % POSITION
LP POREVIC+LL,5¢°REM SET SPRITE S°5 7 POSITION

[2]
175 PRINT 0 TABCIS2 "THIS 18 THO HIRES SPRITES":

B sve Tour /Home
176 PRIMTTABCSS 3 "GM TOP OF EACH OTHER"
180 FÜKEVICHEN, 1@6°REM SET SPRITE a¢S POSITION

,
19 POKEVIC+HL. LOG: REM SET SPRITE @-S 7 POSITION
S80 POREVIC+E. LOG: REM SET SPRITE i°S 4 POSITION‘
210 POKEVIC+S. 18a°REM SET SPRITE 1°S 7 POSITION
228 POKEVIC+S9. 1: REM SET SPRITE @°S COLOR
2a0 POREVICe41. 1°REM SET SPRITE 2°S COLOR
240 POKEVIC+4S. 1° REM SET SPRITE 4° COLOR
250 POKEVIC+4@.8:° REM SET SPRITE COU CFE
258 POKEVIC+d2. &:° REM SET SPRITE 2°5 COLOR
270 POKEVIC+H4d4.6:REM SET SPRITE 575 COLOR
280 FORM=192 70193: REM THE START OF THE LOOP THAT
DEFINES THE SPRITES
293 FORYSOTOS2° REM BYTE COUNTER WITH SPRITE Loop
S80 READACREM READ TH A BYTE
S10 POKEMMG4+4. FO REM STORE THE DATA IM SPRITE AREA
S28 HEMT HREM CLOSE LOOPS
220 Tied Drei
240 H=PEEKCYICO REM LOOK AT SPRITE @°S = POSITION
35@ T=PEEKONICHLSSREM LOOK AT SPRITE aes 4 POSITION
S60 [Pye SRY s2Ge THEME =—DY REM IF IS CH THE
EDGE OF THE...
375 REM SCREEN. THEN REVERSE DELTA 'r |
S88 IF M=24 ANDO PEER CWIC+I G2 AMDL 2 =@THENDM=<De REM IF
SPRITE TS...
SS REM TOUCHING THE LEFT EDGE, THEM REVERSE IT

3
3

t
i
e

io

i
f

ii

146 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

aa TF Sere TC PEER OW T+ DE OAM = THEM De sDle REM TF

SPRITE “TS...
418 REM TOUCHING THE RIGHT EOS THEM KENERSE IT

+22 IFR=255rHDDasl THe ae 1 ST Des

az REM SMITCH TO OTHER SITE UF THE SCREEH

‘ce Tsi3HDINee- 1 THEM eee ST DES et

+ REM SMITE TO OTHER SITE OF THE SCREEN

EA Bee-eTe REM ADD DELTA & TO &

47S B= HANTSSS REM MAKE SURE & DS IM ALLOWED RAGE

ASA Ya OREM ALD TEL TAH Yo To ty

425 PORMEVIC+1 6. SIDE
450 POREW II ROREM FUT HEN OH WALUE IMTOO SPRITE @ “th

« POST Ion
GG POKEVIC+Z. 8° REM PUT MEM of VALUE IMT SPRITE
175 eH POSITIOH
BE PCIE Tid REPT PUT MEM SY MALU TMT SPRITE

Bes yf Ras TT LOM

Boe POREV ICS OREM FUT HEM SY WALUE THT SPRITE

Te Yt FOSITIOH
SS OT Sete

BEN RED see SPRITE DA TR Ska

GLA TATA, 22.8.5, 13S, 1928. 7.24, 224.7, 56,224, 14, 126,

112.14: 12m. 112: 1A ERS LE

Be TITTEN Pe ote eh. Be LEE EL LIE,
Bi SG Gh Be
BSE TATAG. Fe, 6.8, 8. 8. eee Se Bde Be Seb a,
cf. Kl th El

E46 DATE ERDE LEE Be SSL eB LoS Bol LE. LEI, 1.

eS. 125.1. 125, 125

BS TATAL. 129.12: 0.12. LEE

64.2. 58, 64.1.8, 128
Se TATAL Bie 8. SS. Be Las. EEE

oy Set. is a

I. ch „ ie j) Kl j [> rm]

1a REM SPRITE EXAMPLE 3...
za REM THE HOT AIF GORF
za WIC=53245:REM THIS IS WHERE THE VIC REGISTERS
BEGIH
== POKEVIC+21.1° REM ENABLE SPRITE 0

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

ET POKEWIC+SS, 14° REM SET BACKGROUND COLOR TO LIGHT

BLUE
a7 FOKEWICHEE.
Beh Fük EM TC gS ot

42 POKEZO4@) 1

1: REM EXFAMD SPREITE @ IM ‘7

I:REM EXPAMD SPRITE @ IM #

z:’kEM SET SPRITE @°5 FOIMTER

Sl Serie L:’RKEmM TURM OH MULTICOLOR

BEE FOREWIC+#S Ps PREM SET MULTICOLGr &

Te POkEWICHIS, 4: REM SET MULTICOLOR 1

132 FPOKEVIC+E, 1G REM SET SPRITE @°5 & PO=ITIOH

ad FOKEVIC4+L Lee REM SET SFREITE @°8 Sf POSITIOH

222 FOREVIC+S93. 2° REM SET SPRITE 273 COLOR

238 FOR YSaTOES REM BYTE COUNTER WITH SPRITE LOOrF

SG RERDASREM RERD IM fl BYTE
11a POREl228047 A: REM STORE THE DATA IHM SFRITE AREA

See MEST SO REM CLOSE LOCr

Mk Das]: b=

S48 SPEER CVWICO REM LOOK AT SPRITE @° 5 & POSITION

ASE WePEER OWIT+ 1] OREM LOOK AT SPRITE gi Yo POSITTIOM

aaa [FY SSe0R=Ses THEM sty Ren TF Yo oT OM THE

ETIGE OF THE...

Aria REM SCREEN. THEM REVERSE DELTA '

Se TF Se 24AN DCP EER OVI C+ esa) oH THEM Dee Ds REM

IF SPRITE IS...

290 REM TOUCHING THE LEFT EDGE. THEM FENERSE I-T

aa TFS =GAWTC PEER CY IC+ Lec AMD 1 oe 1 THEM Deeb BEP TF
SPRITE Ta nn

LIE Ren TOUCHING THE RIGHT EDGE. THEM FEVERSE IT

SEE [FP ee2S5AHN00e= 1 THEM 1: SIDES]
El REM SWITCH TO OTHER SITE OF a IT REET

44 TPR =GQanDDh=— 1 THEME ese STE

Dia REM SWITCH TO OTHER SIDE oF THE SCREEN

SEE eb De: REM ADT DELTA # To

$7 S=SAMTSSS OREM MAKE SURE = TS IM ALLOWED RRAMGE

“PSE ite Dy REM ADD DELTA Y TO"

455 FOREVIC+ Le. SIDE

ASG POREVIC. A REM PUT HEM Os WALUE INTO SEED TE fs

m POST TIO

SLE POREWIC+¢ YO REP PUT HEM Yo WALUE DATO SPRITE

Bos Yt POST TICK

Sel GETRE REM GET A KEY FROM THE KEYEOQRED

Sel [TFRAF]"M"THEMPOREVIC+eo. 1° REM USER SELECTED

MILT ToL Cake |

Sane IFAF="H"THEHNFÖOREWICHZE. 8° REM USER SELECTED

HIGH RE SOLUT TO
an GOTOS4e

Ei RES Sooke SPRITE wre i

BLE TATA. Ba ds Lea. ares “f Tel LA. LTE Lee. te:

{Pre Tee. dl. TS, Lee, Es aan. 166

BSE TATALES. E25. lee Leas. SSS Lee Tre. LE. LEN LTE,
LTE. FE Tre. Pe. ire. ire. ire. LIFE

BSE TATAHL eS. LTE. Les. LES SE. Lee. TPE SE. Tre EL FEN,

Lec. 1a. hen en Mel.
eh TATE Et

s

U

id
’

A

148 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

WEITERE GRAPHIKMOGLICHKEITEN

WEGBLENDEN DES BILDSCHIRMS

Uber Bit 4 des VIC-II-Steuerregisters wird das Wegblenden des Bildschirms

gesteuert. Es befindet sich im Steuerregister an Adresse 53265 ($D011). Ist dieses

Bit eingeschaltet (d. h. auf 1 gesetzt), dann ist der Bildschirm normal. Ist Bit 4 auf O

gesetzt (AUS), dann nimmt der gesamte Bildschirm die Rahmenfarbe an.

Durch folgende POKE-Anweisung wird der Bildschirm weggeblendet. Die Daten

gehen nicht verloren, sie werden lediglich nicht mehr angezeigt.

POKE 53265,PEEK(53265)AND 239

Zur Rücksetzung des Bildschirms dient folgende POKE-Anweisung:

POKE 53265,PEEK(53265)OR 16

Anmerkung: Durch Ausschalten des Bildschirms wird der Prozessor etwas beschleunigt, d. h., auch

die Programmausführung erfolgt etwas schneller.

RASTERREGISTER

Das Rasterregister befindet sich im VIC-II-Chip an Adresse 53266 ($D012). Das

Rasterregister hat einen doppelten Zweck. Beim Lesen des Registers werden die

unteren 8 Bits der derzeitigen Rasterposition wiedergegeben. Die Rasterposition

des signifikantesten Bits ist im Registerplatz 53265 ($D011). Sie können das

Rasterregister benutzen, um das Bildschirmflackern zu reduzieren. Änderungen der

Bildschirmanzeige sollen vorgenommen werden, wenn das Raster nicht im sichtba-

ren Anzeigebereich liegt, d. h., wenn die Punktpositionen zwischen 51 und 251

liegen.

Nach dem Zuordnen des Rasterregisters (einschl. MSB) wird die zugeordnete Zahl

für den Rastervergleich gespeichert. Ist der tatsächliche Rasterwert gleich der Zahl

des Rasterregisters, so wird ein Bit im VIC-II-Chip-Interrupt-Register 53273

($D019) auf 1 gesetzt (EIN).

Anmerkung: Wird das richtige Interrupt-Bit wirksam auf 1 gesetzt, so kommt es zu einem Interrupt

(IRQ).

INTERRUPT-STATUSREGISTER

Das Interrupt-Statusregister zeigt den derzeitigen Status einer beliebigen Interrupt-

möglichkeit. Der derzeitige Status von Bit 2 des Interrupt-Registers ist eine 1, wenn

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 149

es zu einer Kollision zwischen zwei Sprites kommt. Das gleiche gilt in 1: 1-

Entsprechung fur die in nachstehender Tabelle aufgeführten Bits 0 bis 3. Auch Bit 7

wird bei einem Interrupt auf 1 gesetzt.

Das Interrupt-Statusregister befindet sich an Speicherplatz 53273 ($D019) und

sieht wie folgt aus:

SCHALTER BIT# BESCHREIBUNG

IRST 0 Gesetzt, wenn derzeitiger Rasterwert gleich gespeichertem

Rasterwert.

IMDC 1 Gesetzt durch eine Kollision zwischen Sprite und einem

Zeichen auf dem Bildschirm, Zurückstellung durch RESET.

IMMC 2 Gesetzt durch eine Kollision zwischen zwei Sprites,

Zurückstellung durch RESET.

ILP Gesetzt bei negativer Flanke am Lightpen-Eingang.

IRQ 7 Wird gesetzt, wenn eines der Bits #0 bis 3 gesetzt ist.

oO

Nach dem Setzen eines Interrupt-Bits ist dieses “latched“ und muB durch Schrei-

ben einer 1 für dieses Bit im Interrupt-Register gelöscht werden (= RESET).

Hierdurch kann der Interrupt selektiv ohne die Speicherung der anderen Interrupt-

Bits gehandhabt werden.
Das INTERRUPT-AKTIVIERUNGSREGISTER befindet sich in Adresse 53274

($DO1A). Dieses Register hat das gleiche Format wie das Interrupt-Statusregister.

Wenn das entsprechende Bit im Interrupt-Aktivierungsregister nicht auf 1 gesetzt

ist, wird von dieser Quelle kein Interrupt angefordert. Das Interrupt-Statusregister

kann noch immer abgerufen werden, es werden jedoch keine Interrupts erzeugt.

Um eine Interrupt-Anforderung wirksam zu machen, muß das entsprechende

Interrupt-Aktivierungsbit (wie in obiger Tabelle gezeigt) auf 1 gesetzt sein.

Über diese Interrupt-Struktur können Betriebsarten mit geteiltem Bildschirm

benutzt werden. So kann z.B. für die eine Hälfte des Bildschirms Bit-Mapping, für

eine Hälfte Text, mehr als 8 Sprites gleichzeitig usw. benutzt werden. Die Interrupts

müssen nur richtig gehandhabt werden. Soll die obere Bildschirmhälfte z. B. im Bit-

Mapping und die untere mit Text dargestellt werden, muß lediglich das Raster-

Vergleichsregister (wie bereits erklärt) für die untere Bildschirmhälfte gesetzt sein.

Bei einem Interrupt muß der VIC-II-Chip die Zeichen aus dem ROM nehmen; dann

wird das Raster-Vergleichsregister für einen Interrupt am oberen Bildschirmrand

eingestellt. Wenn es dort zu einem Interrupt kommt, muß der VIC-II-Chip die

Zeichen aus dem RAM (Bit-Mapping) nehmen.

Auf die gleiche Weise können auch mehr als 8 Sprites angezeigt werden. Hierzu ist

BASIC jedoch leider nicht schnell genug. Beim Arbeiten mit Anzeigeinterrupts

sollten Sie also die Maschinensprache wählen.

150 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

VORSCHLAGE FUR BILDSCHIRM-ZEICHENFARBE-
KOMBINATIONEN

Bei Farbfernsehgeräten gibt es Einschränkungen hinsichtlich der Fähigkeit,

bestimmte Farben nebeneinander anzuzeigen. Bestimmte Kombinationen von Bild-

schirm und Zeichenfarben führen zu unscharfen Bildern. Die nachstehende Tabelle

zeigt Ihnen, welche Farbkombinationen Sie besser vermeiden sollten und welche

Farben gut miteinander kombiniert werden können.

B
I
L
D
S
C
H
I
R
M
F
A
R
B
E

ZEICHENFARBE

1 2 3 4 5 6 7 8 10 11 12 13 14 15

eı x|eoe|e|eoe;ixı ee e vo o| e|e ei @/| @

xie|ix/Ieie|jieoe|xıo ei ei e|ix|e|ie

@®;x|x]e@ej;x {x]e]| e @®;xixix|x]|e

xIix|IxIx|Ie|e|ıx|x x | @;x}]x}]e] x

@®;xix{txitxitx|x dix xIıx|IxIx|Ix|Ieo

e x|ie|x|IixIxIx1Ix xIiıe | x|ie|ix|ıe

e x|e|ix|iıx|I|x|Iıx|x x | x | xX eo e|e

xIie ix |I|x|Ix|Ie|ıx]|ı0 e|le|ie|ıix|Ix|Ix

eı e|ıx|ix|Iix|Ix|®e|x xIx|IxIıxIıx| @

e x|ıx|IxIxIx|e| eo ei xI|ıx|x|x|I oe

e e|ix|IxIxIxIı®e|x xIx|IxIxIıx| @

e x|ie|ix|ıxIx|I®e|x x |x }e|]e|] @| e

e oe ıx|ıxIixI®e|x|x x|Iie|x|IxIıx])ı @

xIix I xIix|le|j|e|ıx|x xIie|x|Ix|Ix|Ix

e|lx|ieIix|ix|Ie|x|x xIe | xı xIx|Io

e|le|x|ıeoe|o ° x | xX ®;e;e;x |e} x

GUT

ANNEHMBAR

SCHLECHT

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 151

PROGRAMMIEREN VON SPRITES —
EIN ANDERER ASPEKT

Allen, die Schwierigkeiten mit Graphiken haben, werden Sprites in diesem Kapitel

auf etwas einfachere Weise erklärt.

PROGRAMMIERUNG DER SPRITES IN BASIC — EIN KURZES
PROGRAMM

Es gibt mindestens drei verschiedene BASIC-Programmiertechniken zum Erstellen

von Graphikbildern und Zeichentrickfilmen mit dem COMMODORE 64. Sie können

den computereigenen Graphikzeichensatz (siehe Seite 376) benutzen. Sie können

in Ihren eigenen Zeichen (siehe Seite 108) programmieren oder, die beste Möglich-

keit... die in den Computer eingebauten “Sprite-Graphiken“ benutzen.

Damit Sie sehen, wie einfach dies ist, zeigen wir Ihnen hier ein kurzes Programm für

die Erstellung von Sprites in BASIC:

_ Si OEE
Lis RTT"
za PORE SEE. LE
SE FOR SeO32 TOS Se+62 PORES. 252 MET

hel Weich
Biel FORE et ls 1
6G FOREW+ 33. 1
TE FÜHREN. 4

Se PORE + 1. Lee

Dieses Programm enthalt die Hauptbestandteile, die Sie beim Einstellen von Sprites

benötigen. Die POKE-Zahlen stammen aus der Spritetabelle auf Seite 176. Dieses

Programm definiert das erste Sprite — Sprite O — als weißes Quadrat auf dem

Bildschirm. Wir wollen das Programm nun Zeile fur Zeile erklaren:

ZEILE 10 löscht den Bildschirm.

ZEILE 20 setzt den “Sprite-Zeiger“ auf die Speicherstelle, aus der der COMMO-

DORE 64 die Spritedaten lesen soll. Sprite O wird auf 2040, Sprite 1 auf 2041, Sprite

2 auf 2042 usw. und Sprite 7 auf 2047 gesetzt. Durch Verwendung der nachfolgen-

den Zeile anstelle von Zeile 20 können alle 8 Sprite-Zeiger auf 13 gesetzt werden:

FOR SP=2040T02047:POKE SP,13:NEXT SP

ZEILE 30 schreibt das erste Sprite (Sprite 0) in 63 Bytes des RAM-Speichers des

COMMODORE 64 beginnend bei Adresse 832 (jedes Sprite bendtigt 63 Bytes des

152 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

Speichers). Das erste Sprite (Sprite 0) wird in den Speicherplätzen 832 bis 894

abgespeichert.

ZEILE 40 setzt die Variable “V“ gleich 53248, der Startadresse des VIDEO-

CHIPS. Durch diese Eingabe können wir die Formel (V + Zahl) für Spriteeingaben

benutzen. Wir benutzen diese Formel beim POKEn von Spriteeingaben, da sie

Speicherkapazität einspart und das Arbeiten mit kleineren Zahlen ermöglicht. So

haben wir z. B. in Zeile 50 POKE V + 21 eingegeben. Dies entspricht der Eingabe

von POKE 53248 + 21 oder 53269. V + 21 benötigt jedoch weniger Platz als 53269

und läßt sich leichter merken.

ZEILE 50 aktiviert Sprite 0. Es gibt 8 Sprites mit der Zahl O bis 7. Zum Einschalten

der einzelnen Sprites oder einer Kombination von Sprites müssen Sie lediglich

POKE V + 21 gefolgt von einer Zahl zwischen O (Ausschalten aller Sprites) und 255

(Einschalten aller 8 Sprites) eingeben. Durch das POKEn folgender Zahlen können

ein oder mehrere Sprites eingeschaltet werden:

ALL ON | SPRITEO | SPRITE! | SPRITE2 | SPRITE3| SPRITEA | SPRITES | SPRITE6 | SPRITE7 | ALL OFF

V+21,255| V+21,1 | V+21,2 | V+21,4 | V+21,8 | V+21,16| V+21,32| V+21,64|V+21,128| V+21,0

Durch POKE V + 21,1 wird Sprite O eingeschaltet. POKE V + 21,128 schaltet Sprite

7 ein. Es kann auch eine Spritekombination eingeschaltet werden. So wird z.B.

durch POKE V + 21,129 sowohl Sprite O als auch Sprite 7 durch Addition.der beiden

Einschaltzahlen (1 + 128) eingeschaltet. (Siehe Spritetabelle, Seite 176.)

ZEILE 60 legt die Farbe von Sprite O fest. Es gibt 16 mögliche Spritefarben, die von

0 (Schwarz) bis 15 (Grau) numeriert sind. Jedes Sprite benötigt für die Farbe eine

unterschiedliche POKE-Anweisung von V + 39 bis V + 46. POKE V + 39,1 gibt

Sprite O die Farbe Weiß. Durch POKE V + 46,15 erhält Sprite 7 die Farbe Grau

(bezüglich weiterer Einzelheiten siehe Spritetabelle).

Beim Erstellen eines Sprites bleibt dieses so lange im Speicher erhalten, bis es neu

definiert oder der Computer abgeschaltet wird. Auf diese Weise kann Farbe,

Position und Form des Sprites im Direktmodus geändert werden. Dies ist beson-

ders sinnvoll beim Editieren.

Führen Sie z.B. obiges Programm aus und geben Sie danach diese Zeile im

Direktmodus (ohne Zeilennummer) ein. Danach drücken Sie die Taste 7

POKE V+39,8

Das Sprite auf dem Bildschirm ist nun ORANGE. Versuchen Sie das POKEn einer

anderen Zahl zwischen O und 15. Es wird eine andere Spritefarbe erscheinen. Da

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 153

dies im Direktmodus erfolgte, wird das Sprite beim Ausführen des Programms

wieder die ursprüngliche Farbe (Weiß) haben.

ZEILE 70 bestimmt die horizontale oder “X“-Position des Sprites auf dem Bild-

schirm. Diese Zahl legt die Position der OBEREN LINKEN ECKE des Sprites fest.

Die externe linke Position, die Sie auf dem Bildschirm sehen können, ist die Position

Nr. 24, auch wenn Sie das Sprite über den Bildschirmrand hinaus auf Position Nr. O

bewegen können.

ZEILE 80 bestimmt die vertikale oder “Y“-Position des Sprites. In diesem Pro-

gramm plazierten wir das Sprite an die X-Position 24 und Y-Position 100. Probieren

Sie eine andere Position aus. Geben Sie dazu folgende POKE-Anweisung im

Direktmodus ein und drücken Sie danach :

POKE V,24:POKE V+1,50

Hierdurch wird das Sprite in die obere linke Bildschirmecke gesetzt. Um das Sprite

in die untere linke Ecke zu bewegen, geben Sie folgendes ein:

POKE V,24:POKE V+1,229

Jede Zahl von 832 bis 895 im Speicherbereich von Sprite O repräsentiert einen Satz

von 8 Pixel, wobei drei 8-Pixel-Sätze eine horizontale Reihe des Sprites darstellen.

Die Schleife in Zeile 30 gibt dem Computer die Anweisung POKE 832,255, wodurch

die ersten 8 Pixel “ausgefüllt” werden, und danach werden durch POKE 833,255

die nächsten 8 Pixel ebenfalls “ausgefüllt“ usw. bis zu Adresse 894, der die letzte

Gruppe von 8 Pixel in der unteren rechten Spriteecke angibt.

Damit Sie besser sehen, wie dies funktioniert, versuchen Sie folgendes im Direkt-

betrieb und beachten Sie, daß die zweite Gruppe der 8 Pixel gelöscht wird:

POKE 833,0 (zum Zurücksetzen über die Tastatur POKE 833,255 oder RUN

| eingeben)

Durch folgende Zeile, die Sie in Ihr Programm aufnehmen können, wird die Mitte

des erstellten Sprites gelöscht:

90 FOR A=836 TO 891 STEP 3:POKE A,0:NEXT A

Denken Sie daran, daß die Pixel, aus denen die Sprites aufgebaut sind, in Sätzen

von acht gruppiert sind. Diese Zeile löscht die 5. Gruppe von 8 Pixel (Satz 836) und

jeden dritten Satz bis zu Satz 890. Versuchen Sie, andere Zahlen in die Adressen

von 832 bis 894 zu POKEn. Mit 255 erzeugen Sie Blöcke, die durch O gelöscht

werden können.

154 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

KOMPRIMIEREN IHRER SPRITE-PROGRAMME

Nun noch einen nützlichen Tip zum Komprimieren: Das oben beschriebene Programm ist zwar bereits
ziemlich kurz, kann jedoch durch “Komprimieren“ noch kürzer gestaltet werden. In unserem Beispiel

zeigten wir die Spriteeingaben in verschiedenen Programmzeilen, so daß Sie sehen können, was im
Programm passiert. Bei der tatsächlichen Anwendung wird ein guter Programmierer dieses Programm
als ZWEIZEILEN-PROGRAMM schreiben, indem er es wie folgt komprimiert:

10PRINTCHR$(147):V=53248:POKEV +21,1:POKE2040,13:POKEV-+39 1
20FORS=832T0894:POKES,255:NEXT:POKEV,24:POKEV+1,100

Bezüglich weiterer Einzelheiten über das Komprimieren von Programmen und somit das Einsparen von

Speicherkapazität siehe Seite 24.

BILDSCHIRM

De m

X POSITION = HORIZONTAL »

u
<x
O
>

rc
Lu
>

Al

z BE
bo

7 / Y)

/
fl /

/ —
L

/

Für dieses Sprite hier muß sowohl die X-Position (horizontal) als auch die Y-Position
(vertikal) angegeben werden, damit es auf dem Bildschirm angezeigt wird.

Abb. 3.4. Der Bildschirm ist in ein Gitter aus X- und Y-Koordinaten unterteilt.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 155

POSITIONIERUNG DER SPRITES AUF DEM BILDSCHIRM

Der gesamte Bildschirm ist wie ein Koordinatensystem in X- und Y-Koordinaten

unterteilt. Die X-Koordinate ist die horizontale Position und die Y-Koordinate die

vertikale Position auf dem Bildschirm (siehe Abb. 3.4.).

Um die Sprites auf dem Bildschirm zu positionieren, müssen zwei Eingaben — X-

und Y-Position — gePOKEt werden. Auf diese Weise erfährt der Computer, wo sich

die obere linke Ecke des Sprites auf dem Bildschirm befinden soll. Bitte denken Sie

daran, daß ein Sprite aus 504 einzelnen Pixels (24 horizontal mal 21 vertikal)

besteht. Beim POKEn eines Sprites in die obere linke Bildschirmecke wird dieses

als graphische Darstellung mit 24 horizontalen und 21 vertikalen Pixels angezeigt.

Die Anzeige beginnt hierbei in der von Ihnen definierten X-Y-Position. Die Anzeige

des Sprites basiert stets auf der oberen linken Ecke, auch wenn Sie für das gesamte

Sprite lediglich einen kleinen Teil des 24-mal-21-Pixel-Spritebereichs benutzen.

Die Funktionsweise der X-Y-Positionierung können Sie dem nachstehenden Dia-

gramm (Abb. 3.5.) entnehmen. Dieses zeigt die X- und Y-Zahlen in Zusammenhang

mit der Bildschirmanzeige. Bitte beachten Sie, daß der graue Bereich im Diagramm

den sichtbaren Bildschirmteil und der weiße Bereich den Teil außerhalb des

Bildschirms angibt.

X-POSITIONEN VON 0 BIS 255,
| DANN: POKE V + 16,1 UND 35;
+ NEUE WERTE VON 0 BIS 91 .

X = 255, Y = 50 | POKE V+16, 1 AND

50-|-—

Y
-
P
O
S
I
T
I
O
N
E
N

VO

N

0
BI
S

25
5

7
X=24,Y = 250 POKE V +16, 1 AND

X = 65, Y = 229

Abb. 3.5. Bestimmung der X-Y-Spritepositionen

156 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

Um ein Sprite an der gewählten Stelle anzuzeigen, müssen Sie die X- und

Y-Eingaben für jedes Sprite POKEn... denken Sie daran, daß jedes Sprite seine

eigene X- und Y-POKE-Anweisung hat. Nachstehend sehen Sie die X- und Y-Ein-

gaben für alle 8 Sprites:

ZUM SETZEN DER X-Y-SPRITEPOSITIONEN POKEN SIE DIESE WERTE

SPRITEO | SPRITE! SPRITE2 SPRITE3 SPRITE4 | SPRITES | SPRITE6 SPRITE7

SET X VX V+2,X V+4,X V+6,X V+8,X V+10,X | V+12,X | V+14,X

SETY V+1,Y [V+3,Y V+5,¥ V+7,Y V+9,Y V+11,Y | V+13,Y | V+15,Y

RIGHTX | V+16,1 | V+16,2 | V+16,4 | V+16,8 V+16,16 | V+16,32 | V+16,64 | V+16,128
POKEN EINER X-POSITION: Die möglichen X-Werte sind, gezählt von links nach

rechts, O bis 255. Die Werte O bis 23 plazieren alles oder einen Teil des Sprites

außerhalb des sichtbaren Bereichs auf der linken Bildschirmseite — die Werte 24 bis

255 zeigen das Sprite im sichtbaren Bereich bis zur 255. Position an (bezüglich

Einzelheiten über die Eingabe außerhalb der 255. X-Position siehe nachstehenden

Abschnitt). Um ein Sprite in eine dieser Positionen zu plazieren, geben Sie lediglich

die X-Positions-POKE-Anweisung für das benutzte Sprite ein. Um z. B. Sprite 1 an

die äußerst linke X-Position im sichtbaren Bereich zu POKEn, geben Sie folgendes

ein: POKE V + 2,24. |

X-Werte außerhalb der 255. Position: Um über die 255. Position des Bild-

schirms hinaus zu gelangen, benötigen Sie eine zweite POKE-Anweisung. Norma-

lerweise geht die horizontale Numerierung (X) Uber die 255. Position bis zu 256,

257 usw. hinaus. Da die Register jedoch nur 8 Bit enthalten, müssen wir ein

“zweites Register“ erstellen, um auf die rechte Bildschirmseite zu gelangen. Die

X-Numerierung beginnt hier wieder mit O0. Um also über die X-Position 255 hinaus

zu gelangen, ist POKE 5 + 16 sowie eine Zahl (abhängig vom Sprite) erforderlich.

Hierdurch erhalten Sie 64 zusätzliche X-Positionen (numeriert von O bis 65) im

sichtbaren Bereich auf der rechten Bildschirmseite. (Sie können den rechten

X-Wert tatsächlich bis auf 255 POKEn.)

POKEN EINER Y-POSITION: Die möglichen Y-Werte sind O bis 255 und werden

von oben nach unten gezählt. Durch die Werte O bis 49 wird das Sprite ganz oder

teilweise außerhalb des sichtbaren Bereichs oben am Bildschirm angezeigt. Mit den

Werten 50 bis 259 befindet sich das Sprite im sichtbaren Bereich. Durch die Werte

230 bis 255 wird das Sprite ganz oder teilweise aus dem sichtbaren Bereich

hinausbewegt.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 157

Wir wollen uns nun mit X-Y-Positionierung beschäftigen und nehmen hierzu Sprite

1 als Beispiel. Geben Sie folgendes Programm ein:

Le PRIM TM! Weekes PORE HZ. ZI RPOKESE4 LS 12
Fire: TOSS PORES. aS HEART

za PORE +e 7?

aa PORE its ett
46 POREW+S. Be

Dieses einfache Programm zeigt Sprite 1 als Kastchen an und setzt es in die obere

linke Bildschirmecke. Andern Sie die Zeile 40 nun wie folgt:

40 POKE V+3,229

Hierdurch wird das Sprite in die untere linke Bildschirmecke bewegt. Nun wollen wir

die rechte X-Grenze des Sprites überprüfen: Ändern Sie Zeile 30 wie folgt:

30 POKE V+2,255

Hierdurch wird das Sprite nach rechts bewegt. Es erreicht jedoch die rechte

X-Grenze, die durch 255 festgelegt ist. An diesem Punkt muß das höchste Bit in

Register 16 gesetzt sein. D.h., Sie müssen POKE V + 16 sowie eine Zahl

eingeben, die in der rechten “X“-Spalte in der X-Y-POKE-Tabelle angezeigt wird.

Auf diese Weise wird der X-Positionszähler bei der 256. Pixel-Position auf dem

Bildschirm neu gestartet. Ändern Sie Zeile 30 wie folgt:

30 POKE V+16, PEEK(V+16)OR 2:POKE V+2,0

Durch POKE V + 16,2 wird das hochste Bit der X-Position fur Sprite 1 gesetzt und

bei der 256. Pixel-Position auf dem Bildschirm ein neuer O-Punkt gesetzt. Durch

POKE V + 2,0 wird das Sprite an der neuen O-Position, die nun auf den 256. Pixel

gesetzt ist, angezeigt.

Um zurück zur linken Bildschirmseite zu gelangen, muß das höchste Bit des

X-Positionszahlers auf 0 gesetzt werden. Geben Sie hierzu für Sprite 1 folgendes

ein:

POKE V+16, PEEK(V+16)AND 253

Fassen wir nun zusammen, wie die X-Positionierung funktioniert: Die X-Position

für ein beliebiges Sprite wird mit einer Zahl von O bis 255 gePOKEt. Für Positionen

rechts von der 255. Position auf dem Bildschirm benötigen Sie eine zusätzliche

158 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

Anweisung POKE (V + 16), durch die das höchste Bit der X-Position gesetzt und

die Zahlung beim 256. Pixel auf dem Bildschirm erneut bei O gestartet wird.

Durch diese POKE-Anweisung beginnt die X-Numerierung ab der 256. Position

erneut bei 0. (Beispiel: POKE V+16, PEEK(V+16) OR 1 und POKE V,1 müssen

enthalten sein, um Sprite O an die 257. Position auf dem Bildschirm zu setzen.) Um

zurück zur linken X-Position zu gelangen, müssen Sie wieder “umschalten“.

Geben Sie hierzu POKE V+16, PEEK(V+16)AND 254 ein.

POSITIONIEREN MEHRERER SPRITES AUF DEM BILDSCHIRM

Nachstehend sehen Sie ein Programm, das 3 verschiedene Sprites (0, 1 und 2) in

verschiedenen Farben definiert und in verschiedenen Positionen auf dem Bild-

schirm darstellt:

LE FRIHTITMeE3245 POR Seas TOSS PORES, 255 HEMT

Sa FORT 204 ATOS042 (PORK EP LE MET

a POHREWHEL. 7

AQ POKEW+33. 1° POKEV+40, 7: POKEW+4 1.3
za PORE 24 PORE + 1. Be

Ge PORE Di POR EAS. So

Pl PORE +b ZIEHE ROR EY +S SE

#3

Der Einfachheit halber sind alle drei Sprites als durchgehende Quadrate definiert,

die ihre Daten alle aus demselben Speicherbereich erhalten. Wichtig ist hierbei, wie

alle drei Sprites positioniert werden. Das weiße Sprite O befindet sich in der oberen

linken Ecke. Das gelbe Sprite 1 in der unteren Ecke, jedoch halb außerhalb des

Bildschirms. Denken Sie daran, 24 ist die äußerste linke X-Position im sichtbaren

Bereich... durch eine X-Position unter 24 wird das Sprite ganz oder teilweise aus

dem Bildschirm “hinausgeschoben“. Wir haben hier die X-Position 12 benutzt, so

daß die Hälfte des Sprites außerhalb des Bildschirms liegt. Das orangene Sprite 2

liegt an der rechten X-Grenze (Position 255)... Wenn Sie nun aber ein Sprite

anzeigen wollen, das im Bereich rechts von der X-Position 255 liegt?

ANZEIGE EINES SPRITES AUSSERHALB DER 255. X-POSITION

Um ein Sprite außerhalb der 255. X-Position anzuzeigen, ist eine besondere POKE-

Anweisung erforderlich. Diese setzt das höchste Bit der X-Position und beginnt bei

der 256. Pixel-Position auf dem Bildschirm. Das funktioniert folgendermaßen:

Geben Sie zunächst POKE V + 16 mit der Zahl für das Sprite, das Sie benutzen, ein

(überprüfen Sie die rechte X-Reihe “RIGHT X“ in der Tabelle X-Y.... wir benutzen

Sprite O). Nun ordnen wir eine X-Position zu. Hierbei müssen wir darauf achten, daß

der X-Zahler ab der 256. Bildschirmposition wieder bei 0 beginnt. Ändern Sie Zeile

50 wie folgt:

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 159

50 POKE V+16,1:POKE V,24:POKE V+1,75

Durch diese Zeile wird V + 16 mit der Zahl gePOKEt, die zum “Öffnen“ der rechten

Bildschirmseite benötigt wird. Die neue X-Position 24 für Sprite O beginnt nun 24

Pixel rechts neben der Position 255. Um die rechte Bildschirmkante zu überprüfen,

ändern Sie Zeile 60 wie folgt:

60 POKE V+16,1:POKE V,65:POKE V+1,75

Probieren Sie die Eingaben in der Spritetabelle aus, damit Sie die Eingaben

herausfinden, die fur die Positionierung und Bewegung der Sprites auf dem

Bildschirm erforderlich sind. Auch das Kapitel über “Bewegen von Sprites“ wird

Ihnen bei der Spritepositionierung helfen.

SPRITEPRIORITÄTEN

Verschiedene Sprites können sich vor- bzw. hintereinander auf dem Bildschirm

bewegen. Dieser dreidimensionale Effekt wird durch die Spriteprioritäten erzielt, die

bestimmen, welches Sprite bei einer eventuellen Überdeckung auf dem Bildschirm

Vorrang gegenüber dem anderen hat.

Die Regelung, “wer zuerst kommt, mahlt zuerst“, gilt auch hier: Das Sprite mit der

niedrigeren Zahl hat automatisch Priorität Uber Sprites mit höheren Zahlen. Werden

z.B. Sprite O und Sprite 1 an der gleichen Stelle des Bildschirms angezeigt, so

erscheint Sprite O vor Sprite 1. Sprite O hat daher stets Vorrang vor allen anderen

Sprites, da es dasjenige mit der niedrigsten Zahl ist. Sprite 1 hat Prioritat Uber die

Sprites 2 bis 7, Sprite 2 Vorrang vor den Sprites 3 bis 7 usw. Sprite 7 (das letzte

Sprite) hat die niedrigste Prioritat und wird daher bei einer Uberdeckung stets hinter

allen anderen Sprites erscheinen.

Andern Sie die Zeilen 50, 60 und 70 des Programms wie folgt:

12 FREIHTUTW=53245 POR SsoseTOooS POKES. 235° HEAT

kel a Tipe fe] se 20h. alla 225 POREM. Las HEAT

aa PORE +t 1.
AAG Pokey ae 1: FOKEN+SE, TO POREW+41. 4
a PE a ate Re PIKE Erle,
Gel a, er FÜKEN+Z ee
Te PORE +e beh PORE +E PE

Sie mussen nun ein weiBes Sprite Uber einem gelben Sprite sehen und uber diesen

beiden muB ein orangenes Sprite angezeigt sein. Nun wissen Sie, wie die Priorita-

ten gesetzt sind, und können die Sprites beliebig bewegen. Dies hilft bei der

Programmierung von Trickfilmen.

160 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

ZEICHNEN EINES SPRITES

Das Zeichnen eines COMMODORE-Sprites verläuft genauso wie das Ausmalen
eines Malbuchs. Jedes Sprite besteht aus winzigen Punkten, die Pixel genannt
werden. Um ein Sprite zu zeichnen, brauchen Sie lediglich einige der Pixel
“auszumalen“.

Sehen Sie sich das nachstehende Gitter in Abb. 3.6. an. So sieht ein leeres Sprite
aus:

Abb. 3.6. Gitter für die Spriteerstellung

Jedes kleine “Kästchen“ stellt ein Pixel im Sprite dar. Es gibt 24 horizontale mal 21

vertikale oder insgesamt 504 Pixel pro Sprite. Um dem Sprite nun eine bestimmte

Form zu geben, müssen Sie diese Pixel mit einem speziellen Programm ausma-

len... Wie können jedoch mehr als 500 Pixel gesteuert werden? Hierbei kann

Ihnen die Computerprogrammierung helfen. Sie müssen nicht 504 einzelne Zahlen,

sondern lediglich 63 Zahlen für jedes Sprite eingeben. Das funktioniert folgender-

maßen...

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 161

ERSTELLEN EINES SPRITES ... SCHRITT FÜR SCHRITT

Um die Erstellung von Sprites für Sie so einfach wie möglich darzustellen, wollen

wir das Ganze schrittweise erklären.

SCHRITT 1:

Schreiben Sie das Sprite-Erstellungs-Programm wie hier gezeigt auf ein Stück

Papier... bitte beachten Sie, daß in Zeile 100 ein Abschnitt mit DATAs beginnt, der

die 63 Zahlen für die Spriteerstellung enthält.

ig fol POKES S280, 5° POKESS201. 6

aa TATASSS, 23S. 2 — be

1@1 DATALSS, 8. 1

{as DATALSS. a. I ———

133 DATA Se. a. 1—

Lite} TIT RL beh iy 1

Vas TATA L debs Gd

Vite THAT RL bet et

127 TTR ibe Bed

Lae DATA. ad
LES TATA bes Gy fd

1
1

|

l

1

1
1

1

Lie DATA L eb. gh. |]

112 DTA 1 te. a. 1
Let DTA Let 1, |] ———
12 DATE Leb. ii |

it DATALSS. |
 15 DATALZE ED.

16 DATAIEE.E. 1——
17 DATALE&.@,1———
18 DATALSE. 2. 4
13 DATALSE. €
Po al, Ve a Ri Er aot al 1

SCHRITT 2:

Malen Sie die Pixel im Gitter auf Seite 161 aus (oder nehmen Sie ein Blatt

Millimeterpapier ... denken Sie daran, daß ein Sprite aus 24 horizontalen mal 21

vertikalen Kästchen besteht). Benutzen Sie einen Bleistift und drücken Sie nicht zu

fest auf, damit Sie dieses Gitter wieder benutzen können (oder machen Sie sich

einige Fotokopien des Gitters). Sie können beliebige Bilder erstellen. Am Anfang

wollen wir jedoch als Beispiel einen einfachen Kasten zeichnen.

162 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

SCHRITT 3:

Sehen Sie sich die ersten ACHT Pixel an. Uber jeder Spalte von Pixels steht eine

Zahl (128, 64, 32, 16, 8, 4, 2, 1). Die besondere Art der Addition, die wir benutzen

wollen, stammt aus der BINAR-ARITHMETIK, die bei Computern oft verwendet

wird. Nachstehend sehen Sie genau die ersten acht Pixel in der oberen linken

Spriteecke:

SCHRITT 4:

Addieren Sie die Zahlen der ersten ausgemalten Pixel. Die erste Gruppe der acht

Pixel ist vollständig ausgemalt, so daß sich eine Summe von 255 ergibt.

SCHRITT 5:

Geben Sie diese Zahl als ERSTE DATA-ANWEISUNG in Zeile 100 des Sprite-

Erstellungsprogramms ein. Geben Sie 255 fur die zweite und dritte Achtergruppe

ein.

SCHRITT 6:

sehen Sie sich die ERSTEN ACHT PIXEL IN DER ZWEITEN SPRITE-REIHE an.

Addieren Sie die Werte der ausgemalten Pixel. Da in unserem Beispiel nur ein Pixel

ausgemalt ist, ergibt sich die Summe 128. Geben Sie diesen Wert als erste

Datenzahl in Zeile 101 ein.

1618|4]|2]|1

SCHRITT 7:

Addieren Sie die Werte der nächsten Gruppe von acht Pixels (die Summe ist 0, da

hier alle Pixel leer sind). Geben Sie diese Zahl in Zeile 101 ein. Nun nehmen wir uns

die nächste Gruppe vor und führen das gleiche für alle Achtergruppen durch (es gibt

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 163

drei Gruppen pro Reihe und insgesamt 21 Reihen). Es ergibt sich also eine

Gesamtanzahl von 63. Jede Zahl gibt eine Gruppe zu je acht Pixel an, und 63

Gruppen mit acht Pixel ergeben insgesamt 504 vollständig unabhängige Pixel. Das

Programm läßt sich vielleicht noch besser wie folgt erklären. Jede Programmzeile

stellt eine Reihe im Sprite dar. Jede der drei Zahlen in jeder Reihe steht für eine

Gruppe mit je acht Pixel. Und jede Zahl weist den Computer an, welches Pixel

ausgemalt und welches leer sein soll.

SCHRITT 8:

KOMPRIMIEREN SIE DAS PROGRAMM. HIERZU WERDEN DIE DATA-ANWEI-

SUNGEN ENTSPRECHEND NACHSTEHENDEM BEISPIELPROGRAMM ZUSAM-

MENGEFASST. Beachten Sie, daß Sie das Spriteprogramm zunächst auf ein Blatt

Papier schreiben sollten. Das hat einen guten Grund. Die DATA-Anweisungszeilen

100 bis 120 im Programm in Schritt 1 sollen Ihnen lediglich zeigen, welche Zahl zu

welcher Pixelgruppe Ihres Sprites gehört. Das endgültige Programm wird wie folgt

komprimiert:

ie PRIMT Sa Eee m: PFOKEREZEL.
ze zei PCIE Bett,

aa PORES SSE am PORESeMAS. 13

46 POR TORS READ: PORES SoS+h sO NEST

Lae TATASES . 55,255, 122.2. 1. 18.6.1. 280 Ka La Leb il,

Lede Gt. Lo deeb En Lo deb ee 1
Led aie ee Mal. L44.k, Lid. Pu d44.@.1, 144.801,
L448. IS Lee Gd. Lae. GL
LEE DATAL2S,0, 1.128.) 1. dec Ls 128.0. Lees eho obra
SAA MSG y= Ae PORES SS5 oe PORE SSeS 0

BEWEGEN DER SPRITES AUF DEM BILDSCHIRM

Jetzt ist das Sprite fertig, und wir können es nun zu interessanten Dingen benutzen.

Um das Sprite über den Bildschirm zu bewegen, fügen Sie folgende zwei Zeilen in

Ihr Programm ein:

50 POKE V+5,100:FOR X=24T0255:POKE V+4,X:NEXT:POKE V+16,4

55 FOR X=0T065:POKE V+4,X:NEXT X:POKE V+16,0:GOTO 50

Durch ZEILE 50 wird die Y-Position bei 100 gePOKEt (probieren Sie auch 50 oder

229 aus). Dann wird eine FOR. ..NEXT-Schleife aufgebaut, durch die das Sprite

nacheinander in die X-Position O bis 255 gePOKEt wird. Beim Erreichen der 255.

Position wird das MSB gePOKEt (POKE V + 16,2), das zum Erreichen des rechten

Bildschirmrandes benötigt wird.

164 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

ZEILE 55 enthält ebenfalls eine FOR... .NEXT-Schleife, durch die das Sprite in die

letzten 65 Bildschirmpositionen gePOKEt wird. Bitte beachten Sie, daß der X-Wert

auf O zurückgestellt wurde. Da Sie jedoch das höchste Bit der X-Position gesetzt

hatten (POKE V + 16,2), beginnt X auf der rechten Bildschirmseite.

Diese Zeile wird immer wieder durchlaufen (GOTO 50). Soll das Sprite sich nur

einmal über den Bildschirm bewegen und dann verschwinden, nehmen Sie GOTO

50 einfach heraus.

Nachstehend sehen Sie eine Zeile, durch die das Sprite vor- und zurückbewegt

wird:

50 POKE V+5,100:FOR X=24T0255:POKE V+4,X:NEXT: POKE

V+16,4:FOR X=0T065: POKE V+4,X: NEXT X

55 FOR X=65T00 STEP-1:POKE V+4,X:NEXT:POKE V+16,0: FOR

X=255T024 STEP-1: POKE V+4,X:NEXT

60 GOTO 50 |

Sehen Sie, wie dieses Programm funktioniert? Es ist das gleiche wie das vorherige.

Nur wird hier beim Erreichen der rechten Bildschirmseite das Programm stets

umgekehrt, so daß das Sprite sich wieder in die andere Richtung bewegt. Dies wird

durch STEP-1 bewirkt. Das Programm wird angewiesen, das Sprite in die X-Werte

von 65 bis O auf der rechten Bildschirmseite und dann von 155 bis O auf der linken

Bildschirmseite zu POKEn. Hierbei wird jeweils um den Schritt —1 zurückge-

gangen.

VERTIKALES ROLLEN

Diese Art der Spritebewegung wird “ROLLEN“ genannt. Um das Sprite auf diese

Weise nach oben oder unten in die Y-Position zu bewegen, brauchen Sie lediglich

eine Zeile. Löschen Sie die Zeilen 50 und 55, indem Sie die Zeilennummern

eingeben und danach drücken.

50 (EI)
5 () 5

Geben Sie nun ZEILE 50 wie folgt ein:

50 POKE V+4,24:FOR Y=0T0255:POKE V+5,Y:NEXT

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 165

DIE TANZMAUS — EIN SPRITE-PROGRAMMBEISPIEL

Gelegentlich sind die in Programmieranleitungen beschriebenen Techniken nur

schwer zu verstehen. Aus diesem Grund haben wir ein Spriteprogramm erstellt, das

wir “Michaels Tanzmaus“ nennen. Dieses Programm benutzt drei verschiedene

Sprites in einem Zeichentrick mit Geräuscheffekten. Damit Sie genau verstehen,

wie dieses Programm funktioniert, haben wir jeden Befehl erklärt:

5 3=54272: POKES+24. 15: POKES. 220: POKES+L ES POKES+S,
15 POKES#S, 215
1@ POKES+7. 120: POKES+8. 100: FOKES+12. 15: POKES+13.215

A GE
15 PRINT VeSa24e POKEV+21. 1
20 FORSI*122887012350°READGL POKES. 01 °MEXT
25 FORSZ=123592T012414 README: POKESS. 2° MEST
@ FORSI=12418T 012478: READOS : POKES. 03! NEXT

35 POKEV+39. 15° POKEV+1, 68
Bony} au

40 PRINTTARCLG@2 "ST AM THE DANCING MOLISE!"
45 Pride
Sg FORM=QTOS4 STEPS
55 RMS INT CMAM25G 0 | LHe Ree SS
SO POKEN LEO POKEV+16. Re
7A IFP=132THENSDEUEZER
73 IF P=] 92 THENGOSUESOE
Sa POKERO40, Po PORT=1 TOG: MET
23 Peed: TEPE LS THEMP Ss 1 oo
aa HET
a5 EMT
aa DATASE. @. 126,63. 0,252. 127. 129.254. 127129, oe,
(27.189, 254, 127. 255, 254
Led Date EEE SL LSP Ss See Loe LS EEE LEE,

3,189. 198) le 28h 128) 1.255.0
142 DATASL. S350. 124. tS ID,
294.7. 1,198.1. 198.8, 5,192.0
[G2 DATASE. G. 120.63. 0. S52. 127. 129. 284, 127, 128. B84,
(27.185. 254, 127, 235, 254
(G4 DATHS2, 255.859, 31,221,248. 3.221.192, 1,255,128,
3,255,192, 1,195.128.1.831.3 CE es

125 Se ee ee ge eu eee ea tee
“ey Set. ds Les. tat. Po 125,55

LE DATA, [Ie G3. G DE. LT, 128, oe oa ese,

Pe 4,127, 255, 254
ja DATOS, 295.292. 21.221.248.3,221,192.1.255. 134.
3.188, SE LEE lL SSS, a

i
s
t

Lee DATA. 255. EEE Syd. 2
LAS DATA. 14. 8. Sele Le eh, Se Pde LIEGE EI EN:
u 1

SHG PORE S+. DSS PORES ee TSS RE TURE
HE POKES+14, 129: POKES 1 Lets: RE TURE

166 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

ZEILE 5:

S=54272

POKES+24,15

POKES ,220

POKES +1,68

POKES +5,15

POKES+6,215

ZEILE 10:

POKES+7,120

POKES +8,100

POKES+12,15

POKES+13,215

ZEILE 15:

PRINT“

V=53248

POKEV+21,1

Setzt die Variable S gleich 54272, also der Anfangs-

speicheradresse des SOUND CHIP. Statt nun einen

direkten Speicherplatz zu POKEn, werden wir ab jetzt

POKE S plus einen Wert eingeben.

Entspricht POKE 54296,15. Hierdurch wird die höch-

ste Lautstärke eingestellt.

Entspricht POKE 54272,220. Setzt das Low Byte

(LOW FREQUENCY) in Stimme 1 für eine Note, die

ungefähr dem hohen C in Oktave 6 entspricht.

Entspricht POKE 54273,68. Jetzt das High Byte in

Stimme 1 für eine Note, die etwa dem hohen C in

Oktave 6 entspricht.

Entspricht POKE 54277,15. Setzt das Attack/Decay

für Stimme 1 und besteht in diesem Fall aus dem
max. Abklingpegel ohne Einsetzen. Hierdurch ent-

steht der Echo-Effekt.

Entspricht POKE 54278,215. Setzt das Sustain/

Release für Stimme 1 (215 stellt eine Kombination

zwischen Sustain- und Releasezeit dar).

Entspricht POKE 54279,120. Setzt “High Frequency”

für Stimme 2.

Entspricht POKE 54280,100. Setzt “Low Frequency”

für Stimme 2.

Entspricht POKE 54284,15. Setzt Attack/Decay für

Stimme 2 auf den gleichen Pegel wie für Stimme 1.

Entspricht POKE 54285,215. Setzt das Sustain/

Release für Stimme 2 auf den gleichen Pegel wie für

Stimme 1.

Löscht den Bildschirm bei Programmbeginn.

Definiert die Variable “V“ als Startadresse des VIC-

Chip, der die Sprites steuert. Von nun an werden alle

Spriteplätze als V plus einen Wert definiert.

Schaltet die Spritenummer 1 ein (Aktivierung).

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 167

ZEILE 20:

FORS1=12288

TO 12350

READ Q1

POKES1,Q1

NEXT

In diesem Zeichentrick benutzen wir ein Sprite

(Sprite 0). Wir werden jedoch DREI verschiedene

Spritedaten für die Definition von drei unterschiedli-

chen Formen benutzen. Für den Zeichentrick schal-

ten wir die Zeiger für Sprite O auf drei verschiedene

Speicherplätze, in denen die Daten für die Definition

der unterschiedlichen Formen gespeichert sind. Das-

selbe Sprite wird hintereinander schnell in drei ver-

schiedenen Formen definiert. Hierdurch entsteht der

Tanzmaustrickfilm. Sie können Dutzende von Sprite-

formen in DATA-Anweisungen benutzen und diese

Formen mit einem oder mehreren Sprites benutzen.

Sie brauchen daher nicht ein Sprite auf eine Form zu

begrenzen (und umgekehrt). Ein Sprite kann viele

verschiedene Formen haben, indem einfach die Poin-

ter für dieses Sprite auf verschiedene Adressen zei-

gen. In den Speicherplätzen sind dann die Spriteda-

ten der verschiedenen Formen gespeichert. Diese

Zeile bedeutet, daß wir die Date für die “Spriteform 1“

in die Speicherplätze 12288 bis 12350 eingegeben

haben.

Liest nacheinander 63 Zahlen der DATA-Anweisung,

beginnend bei Zeile 100. Q1 ist ein beliebiger Varia-

blenname. Es könnte auch A, Z1 oder eine andere

numerische Variable benutzt werden.

POKEt die erste Zahl der DATA-Anweisungen (erstes

“Q1 ist 30) in den ersten Speicherplatz (12288). Ent-

spricht POKE 12288,30.

Weist den Computer an, die Befehle zwischen den

Teilen FOR und NEXT der Schleife auszuführen.

(READ Q1 und POKES1,Q1 mit den NEXT-Zahlen).

D. h., durch die NEXT-Anweisung liest der Computer

NEXT Q1 von den DATA-Anweisungen. NEXT Q1 ist 0.

Außerdem wird Si um 1 erhöht, dies entspricht

12289. Das Ergebnis ist POKE12289,0... durch den

NEXT-Befehl wird die Schleife bis zu den letzten

Werten der Serie durchgeführt, also bis zu POKE

12350,0.

168 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

ZEILE 25:

FORS2=12352

TO 12414

READQ2

POKES2,Q2

NEXT

ZEILE 30:

FORS3=12416

TO 12478

READQ3

POKES3,Q3

NEXT

ZEILE 35:

POKEV+39,15

POKEV +1,68

Die zweite Form von Sprite 0 wird durch die DATAs

definiert, die in die Adressen 12352 bis 12414

geschrieben werden. Bitte beachten Sie, daß Adresse

12351 übersprungen wird. Dies ist der 64. Platz der

Definition der ersten Spritegruppe. Er enthält jedoch

keine Spritedaten. Beachten Sie bei der Sprite-

definition, daß 64 Plätze benutzt werden. Spritedaten

werden jedoch nur in die ersten 63 Plätze gePOKEt.

Liest die 63 Zahlen, die nach der Zahl der ersten

Spriteform folgen. Durch diese READ-Anweisung

wird die nächste Zahl im DATA-Bereich gesucht, und

63 Zahlen werden nacheinander gelesen.

Hierdurch wird das Datum (Q2) in die Speicherplatze

(S2) für unsere zweite Spriteform gePOKEt, die bei

Adresse 12352 beginnt.

Entspricht Zeile 20.

Die dritte Form von Sprite 0 wird durch die DATAs in

den Adressen 12416 bis 12478 definiert.

Liest nacheinander die letzten 63 Zahlen als 03.

POKEt diese Zahlen in die Plätze 12416 bis 12478.

Entspricht den Zeilen 20 und 25.

Setzt fur Sprite O die Farbe hellgrau.

Setzt die obere rechte Ecke des Spritequadratsin die

Vertikalposition 68 (Y). Zum Vergleich: Position 50 ist

die obere linke Y-Eck-Position auf dem sichtbaren

Bildschirm.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 169

ZEILE 40:

PRINTTAB(160)

‘=

| AM THE DANCING

MOUSE!

Go °

ZEILE 45:

P=192

ZEILE 50:

FORX=0T0347

STEP3

Hierdurch wird der Cursor um 160 Leerstellen ab der

oberen linken Bildschirmecke versetzt — dies ent-

spricht vier Reihen. Hierdurch beginnt die PRINT-

Meldung in der 5. Zeile auf dem Bildschirm.

Die Tasten und gleichzeitig drücken.
Geschieht dies innerhalb von Anführungszeichen, so

erscheint ein “umgekehrtes E“. Hierdurch wird die

Farbe aller nachfolgenden Eingaben Weiß.

Dies ist eine einfache PRINT-Anweisung.

Hierdurch wird die Farbe nach Ende der PRINT-

Anweisung von Schwarz auf Hellblau geändert. Durch

gleichzeitiges Drücken der Tasten [& und in-
nerhalb von Anführungszeichen wird eine “negativ

dargestellte Raute“ angezeigt.

Setzt die Variable P gleich 192. Die Zahl 192 ist der zu

benutzende Zeiger. In diesem Fall wird Sprite 0 aus

den Speicherplätzen ausgelesen, die ab Adresse

12288 beginnen. Durch “Verstellen“ des Zeigers auf

die Adressen der beiden anderen Spriteformen kann

mit nur einem Sprite ein Trickfilm mit drei verschie-

denen Formen erstellt werden.

Bewegt das Sprite von Position 0 bis Position 347 in

3er-Schritten (hierdurch entsteht schnelle Bewe-

gung).

170 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

ZEILE 55:

RX=INT(X/256)

LX=X—RX*256

ZEILE 60:

POKEV,LX

POKEV+16,RX

ZEILE 70:

IFP=192THEN

GOSUB200

RX ist der ganzzahlige Anteil von X/256, was bedeu-

tet, daß RX auf 0 gerundet wird, wenn X kleiner als

256 ist, und auf 1, wenn X die Position 256 erreicht.

Wir werden RX gleich fur die Anweisung POKE V +

16 mit einer 0 oder 1 benutzen, um die rechte Bild-

schirmseite “einzuschalten“.

Wenn sich das Sprite an der X-Position 0 befindet,

sieht die Gleichung wie folgt aus: LX=0 — (0 mal 256)

= 0. Wenn sich das Sprite an der X-Position 1 befin-

det, sieht die Gleichung wie folgt aus: LX=1 — (O mal

256) = 1. Wenn sich das Sprite an der X-Position 256

befindet, sieht die Gleichung so aus: LX=256 — (1

mal 256) = 0. Hierdurch wird X zurück auf O gesetzt.

Dies ist erforderlich, wenn die Bewegung bis zum

rechten Rand reichen soll (POKE V + 16,1).

Mit der Anweisung POKE V wird die horizontale Posi-

tion (X) von Sprite O auf den Bildschirm gesteuert.

(Siehe Spritetabelle auf Seite 176.) Wie oben gezeigt,

ändert sich der Wert von LX (horizontale Spriteposi-

tion) von O bis 255. Wenn er 255 erreicht, wird er

automatisch aufgrund der Gleichung LX in Zeile 55

auf O zurückgestellt.

Durch POKE V + 16 wird stets die rechte Bildschirm-

seite nach Erreichen der Position 256 eingeschaltet,

um die horizontalen Positionierungskoordinaten auf

O zurückzustellen. RX ist entweder 0 oder 1, je nach

der durch die Gleichung RX in Zeile 55 bestimmten

Spriteposition.

Ist der Sprite-Pointer auf 192 gesetzt (erste Sprite-

form), dann wird die Wellenformsteuerung desersten

Geräuscheffekts in Zeile 200 auf 129 und 128 gesetzt.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 171

ZEILE 75:

IFP=193THEN

GOSUB300

ZEILE 80:

POKE2040,P

FORT=1TO60:

NEXT

ZEILE 85:

P=P+1

IFP>194THEN
P=192

ZEILE 90:

172

NEXTX

Ist der Sprite-Pointer auf 193 (zweite Spriteform)

gesetzt, dann wird die Wellenformsteuerung für den

zweiten Geräuscheffekt (Stimme 2) auf 124 und 128

in Zeile 300 gesetzt.

Setzt den Sprite-Pointer auf Adresse 192 (erinnern

Sie sich noch an P=192 in Zeile 45? P wird nun hier

benutzt).

Eine einfache Zeitverzögerungs-Schleife, die die

Geschwindigkeit festlegt, mit der die Maus tanzt.

(Probieren Sie eine höhere bzw. geringere Geschwin-

digkeit durch Erhöhung/Reduzierung der Zahl 60

aus.)

Nun erhöhen wir den Zeigerwert, indem wir den Ori-

ginalwert P um 1 erhöhen.

Wir wollen das Sprite nur auf drei Adreßbereiche

zeigen lassen. 192 zeigt auf die Adressen 12288 bis

12350, 193 auf die Adressen 12352 bis 12414 und 194

auf die Adressen 12416 bis 12478. Diese Zeile weist

den Computer an, P zurück auf 192 zu setzen, sobald

P 195 wird. Auf diese Weise kann P nie wirklich 195

werden. P ist 192, 193, 194 und wird dann zurück auf

192 gesetzt. Der Zeiger zeigt nacheinander auf die

drei Spriteformen in den drei 64-Byte-Gruppen der

Adreßbereiche mit den Daten.

Nachdem das Sprite eine der drei durch die DATAs

bestimmten Formen erhalten hat, kann es sich über

den Bildschirm bewegen. Es überspringt jeweils drei

X-Positionen (und bewegt sich nicht ruhig um jeweils

eine Position weiter, was auch möglich ist). Hier-

durch tanzt die Maus schneller über den Bildschirm.

NEXT X schließt die Schleife FOR... Xin Zeile 50 ab.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

ZEILE 95:

END

ZEILEN 100-109:

DATA

ZEILE 200:

POKES+4,129

POKES+4,128

RETURN

Beendet das Programm, wenn das Sprite sich aus

dem Bildschirm hinaus bewegt.

Die Spriteformen werden nacheinander aus den

DATA-Anweisungen gelesen. Zunächst werden die 63

Zahlen, die die Spriteform 1 enthalten, gelesen,

danach die 63 Zahlen für Spriteform 2 und dann für

Spriteform 3. Die Daten werden in die drei aufeinan-

derfolgenden Adreßbereiche gelesen. Nach dem Ein-

lesen in diese Adressen braucht Sprite O lediglich

noch auf die drei Speicherplätze zu zeigen. Das

Sprite nimmt dann automatisch die entsprechende

Form an. Da es auf diese Weise nacheinander ent-

sprechend den Daten in den drei Speicheradressen

unterschiedliche Formen annimmt, können wir einen

Trickfilmeffekt erzeugen. Wenn Sie wissen wollen,

wie diese Zahlen das einzelne Sprite beeinflussen,

verändern Sie die ersten drei Zahlen in den Zeilen 100

bis 255. Bezüglich weiterer Einzelheiten schlagen Sie

bitte im Abschnitt über die Definition der Spritefor-

men nach.

Die auf 129 gesetzte Wellenformsteuerung schaltet

den Geräuscheffekt ein.

Die auf 128 gesetzte Wellenformsteuerung schaltet

den Geräuscheffekt aus.

LaBt das Programm zu Zeile 70 zurückspringen,

nachdem die Eingaben für die Wellenformsteuerung

geändert wurden.

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 173

ZEILE 300:

POKES+11,129 Die auf 129 gesetzte Wellenformsteuerung schaltet

den Gerauscheffekt ein.

POKES+11,128 Die auf 128 gesetzte Wellenformsteuerung schaltet

den Gerauscheffekt aus.

RETURN Läßt das Programm zurück zum Ende von Zeile 75

zurückspringen.

174 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

TABELLE ZUM EINFACHEN KONSTRUIEREN VON SPRITES

SPRITE | SPRITE | SPRITE | SPRITE | SPRITE | SPRITE | SPRITE | SPRITE

0 1 2 3 4 5 6 7

Sprite einschalten V+21,1 | V+21,2 | V+21,4 | V+21,8 |V+21,16| V+21,32| V+21,64 |V+21,128

Speichern im 2040, 2041, 2042, 2043, 2044, 2045, 2046, 2047,

Adreßbereich 192 193 194 195 196 197 198 199

(Zeiger setzen)

Plätze für 12288 12352 12416 12480 12544 12608 12672 | 12736

Sprite-Pixels to to to to to to to to

(12288-12798) 12350 12414 12478 12542 12606 12670 12734 12798

Spritefarbe | V+39,C | V+40,C | V+41,C | V+42,C | V+43,C | V+44,C | V+45,C | V+46,C

Linke X-Position V+0,X | V+2,X | V+4,X | V+6,X | V+8,X | V+10,X | V+12,X | V+14,X

setzen (0-255)

Rechte X-Position V+16,1 | V+16,2 | V+16,4 | V+16,8 |V+16,16 | V+ 16,32] V+ 16,64 |V+ 16,128

setzen (0-255) V+0,X | V+2,X | V+4,X | V+6,X |V+8,X 1V+10,X 1V+12,X |V+14,x

Y-Position setzen V+1Y | V+3,Y | V+5,Y | V+7Y | V+9,Y | V+11,Y | V+13,Y | V+15,Y

Sprite horizontal (X) | V+29,1 | V+29,2 | V+29,4 | V+29,8 | V+29,16| V+29,32]| V+ 29,64 |V+ 29,128

vergrößern

Sprite vertikal (Y) V+23,1 | V+23,2 | V+23,4 | V+23,8 | V+23,16 | V+23,32 | V+23,64 |V+ 23,128

vergrößern

Setzen des V+28,1 | V+28,2 | V+28,4 | V+28,8 | V+28,16| V+28,32| V+28,64 |V+ 28,128

Mehrfarbenmodus

Mehrfarbe 1 V+37,C | V+37,C | V+37,C | V+37,C | V+37,C V+37,C V+37,C | V+37,C

(erste Farbe)

Mehrfarbe 2 V+38,C | V+38,C | V+38,C | V+38,C | V+38,C | V+38,C | V+38,C | V+38,C

(zweite Farbe)

Setzen der

Sprite-Prioritäten

Die Sprites mit der niedrigeren Zahl haben stets Vorrang vor den Sprites mit der

höheren Zahl. So hat z. B. Sprite O Vorrang vor allen anderen Sprites und Sprite 7

die letzte Priorität. Sprites mit niedrigeren Zahlen erscheinen daher stets vor

Sprites mit höheren Zahlen.

Kollision

(zwischen Sprites) V+30 IF PEEK(V+30)ANDX=X THEN [action]
 Kollision

(zwischen Sprites

und Hintergrund) V+31 IF PEEK(V+31)ANDX=X THEN [action]

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 175

HINWEISE ZUR SPRITE-ERSTELLUNG

Verschiedene Sprite-Speicher-Zeiger und Speicheradressen bei Verwen-

dung des Kassettenpuffers

Wenn Sie 1 bis 3 Sprites benutzen,
Speichern im Adreßbereich | SPRITE O | SPRITE 1 | SPRITE 2 . oo. , ys

Zei ; 2040.13 0041.14 0042 15 können Sie die Speicherplätze im Kas-

Zeiger seiZeh) / / ®_| settenpuffer (832 bis 1023) benutzen.
Sprite-Pixel-Adressen für 832 896 960 Bei mehr als 3 Sprites empfehlen wir

Speicherblocke 13—15 bis 894 bis 958 bis 1022 | jedoch, die Plätze 12288 bis 12798

(siehe Tabelle) zu benutzen.

EINSCHALTEN DER SPRITES:

Durch POKE V+21 ,X (X = Zahl aus der Tabelle) können Sie jedes beliebige Sprite

einschalten. Durch Einschalten von nur einem Sprite werden jedoch andere Sprites

ausgeschaltet. Um zwei oder mehrere Sprites einzuschalten, müssen die Zahlen

der betreffenden Sprites addiert werden. (Durch POKE V+21,6 werden z.B. die

Sprites 1 und 2 eingeschaltet.) Nachstehend wird erklärt, wie Sie ein Sprite ein- und

ausschalten können, ohne andere Sprites zu beeinträchtigen (besonders nützlich

bei Trickfilmen).

BEISPIEL:

Um nur Sprite O auszuschalten, geben Sie ein: POKE V+21, PEEK

V+21AND(255-1). Ändern Sie die Zahl 1 in (255-1) in 1,2,4,8,16,32,64 oder 128

um (für die Sprites O bis 7). Um das Sprite wieder einzuschalten und nicht die

bereits eingeschalteten übrigen Sprites zu beeinflussen, geben Sie POKE V+21,

PEEK(V+21)OR 1 ein und ändern Sie OR 1 in OR 2 (Sprite 2), =R 4 (Sprite 3) usw.

um.

X-POSITIONSWERTE AUSSERHALB VON 255:

X-Positionen reichen von O bis 255... und beginnen dann wieder bei 0. Um ein

Sprite über die X-Position 255 hinaus bis an den rechten Bildschirmrand zu

bewegen, ist zunächst die Anweisung POKE V+16 erforderlich. Dann wird ein

neuer X-Wert von O bis 63 gePOKEt, der das Sprite in eine der X-Positionen auf der

rechten Bildschirmseite setzt. Um zurück zu den Positionen 0 bis 255 zu gelangen,

ist POKE V+16,0 und das POKEn eines X-Werts zwischen O und 255 erforderlich.

176 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

Y-POSITIONSWERTE:

Y-Positionen gehen von O bis 255. Hierbei liegt O bis 49 über dem OBEREN

Bildschirmrand, 50 bis 229 IM sichtbaren Bereich und 230 bis 255 AUSSERHALB

des unteren Bildschirmrandes.

SPRITEFARBEN:

Damit Sprite 0 weiß wird, geben Sie folgendes ein: POKE V+39,1 (benutzen Sie die

FARB-POKE-EINGABE in der vorstehenden Tabelle sowie die nachstehenden

Farb-Codes):

O—-SCHWARZ 4—PURPUR 8-ORANGE 12—MITTELGRAU

1-WEISS 5—GRUN 9-BRAUN 13—HELLGRUN

2-ROT 6-BLAU 10-HELLROT 14—HELLBLAU

3—ZYAN /=GELB 11-DUNKELGRAU 15-HELLGRAU

SPEICHERPLATZ:

Für jedes Sprite müssen Sie einen getrennten 64-Byte-Satz im Computerspeicher

“reservieren“. Hiervon werden 63 Bytes für die Spritedaten benutzt. Die nachste-

hend gezeigten Speicherbereiche entsprechen den Spritezeigern in obiger Tabelle.

Jedes Sprite kann entsprechend Ihren Wünschen definiert werden. Wenn alle

Sprites gleich sein sollen, müssen sie auf die gleichen Spritedaten zeigen.

VERSCHIEDENE SPRITEZEIGER-EINGABEN:

Diese Spritezeiger-Eingaben sind NUR ALS EMPFEHLUNGEN zu verstehen.

Achtung: Sie können Spritezeiger beliebig im RAM-Speicher setzen. Werden sie

jedoch zu “niedrig“ im Speicher gesetzt, kann ein langes BASIC-Programm Ihre

Spritedaten überschreiben oder umgekehrt. Um ein besonders langes BASIC-

Programm vor einer Überschreibung durch Spritedaten oder umgekehrt zu schüt-

zen, können die Sprites in einem höheren Speicherbereich abgelegt werden (z.B.

2040, 192 für Sprite O an den Plätzen 12288 bis 12350... 2041, 193 an den

Plätzen 12352 bis 12414 für Sprite 1 usw.). Durch geschickte Wahl der Speicher-

adressen, aus denen die Sprites ihre Daten empfangen, können Sie 64 verschie-

dene Sprites sowie ein ansehnliches BASIC-Programm zusammen benutzen.

Definieren Sie hierfür verschiedene Spriteformen in Ihren DATA-Anweisungen und

definieren Sie dann ein bestimmtes Sprite neu, indem Sie den “Zeiger“ soändern,

daß für das betreffende Sprite verschiedene Speicherbereiche mit verschiedenen

Spritebilddaten benutzt werden. Sehen Sie sich hierzu auch das Programm “Tanz-

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 177

maus“ an. Sollen zwei oder mehrere Sprites die gleiche Form haben (Sie können

immer noch Position und Farbe jedes Sprites ändern), benutzen Sie den gleichen

Spritezeiger und damit den gleichen Speicherbereich für die betreffenden Sprites

(So können z. B. die Sprites O und 1 auf den gleichen Speicherplatz zeigen. Hierzu

dient die Anweisung POKE 2040,192 und POKE 2041,192).

PRIORITÄTEN:

Priorität bedeutet, daß ein Sprite vor oder hinter einem anderen Sprite auf dem

Bildschirm angezeigt wird. Sprites mit höherer Priorität erscheinen stets vor (bzw.

über) den Sprites mit niedrigerer Priorität. Hierbei haben Sprites mit niedrigerer Zahl

stets den Vorrang vor solchen mit höherer Zahl. D. h., Sprite O hat Priorität über alle

anderen Sprites und Sprite 7 die niedrigste Priorität. Entsprechend hat Sprite 1

Vorrang vor den Sprites 2 bis 7. Befinden sich zwei Sprites in der gleichen

Bildschirmposition gegeben, so erscheint das mit der höheren Priorität vor dem mit

der niedrigeren. Das Sprite mit der niedrigeren Priorität ist entweder verdeckt oder

“scheint durch“.

ARBEITEN IM MEHRFARBENMODUS:

Sie können mehrfarbige Sprites erstellen. Im Mehrfarbenmodus müssen Sie jedoch

statt einzelner Punkte in Ihrem Spritebild stets Pixel-Paare benutzen (d. h., jeder

farbige “Punkt” oder “Block” im Sprite besteht aus mindestens zwei nebeneinan-

der liegenden Pixels). Es stehen vier Farben zur Auswahl: Spritefarbe (siehe obige

Tabelle), Hilfsfarbe 1, Hilfsfarbe 2 und “Hintergrundfarbe“ (die Hintergrundfarbe

wird durch eine O-Eingabe angewählt. In diesem Fall scheint der Hintergrund

durch.). Betrachten Sie einen horizontalen 8-Pixel-Satz in einem Spritemuster. Je

nachdem, ob das linke, rechte oder beide Pixel ausgefüllt sind, wird die Farbe jedes

Pixel-Paares bestimmt.

| |] HINTERGRUND (Wenn beide Pixel leer (0) sind, scheint die Bildschirm-
farbe durch.)

MEHRFARBIG 1 (Wenn das rechte Pixel in einem Pixel-Paar ausgefüllt

ist, werden beide in der Hilfsfarbe 1 dargestellt.)

| SPRITEFARBE (Wenn das linke Pixel in einem Pixel-Paar ausgemalt ist,

haben beide die Spritefarbe.)

.i MEHRFARBIG 2 (Wenn beide Pixel in einem Pixel-Paar ausgemalt sind,
werden beide in der Hilfsfarbe 2 dargestellt.)

178 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

Sehen Sie sich die nachstehende horizontale 8-Pixel-Reihe an. Nach dem oben

Gesagten erscheinen die ersten zwei Pixel in der Hintergrundfarbe, die zweiten in

der Hilfsfarbe 1, und für die dritten zwei Pixel gilt die Spritefarbe. Die vierten zwei

Pixel erscheinen in der Hilfsfarbe 2. Die Farbe der einzelnen Pixel-Paare hängt also

davon ab, welche Bits in dem Paar ausgemalt und welche leer sind. Wenn Sie

festgelegt haben, welche Farben Sie für die einzelnen Pixel-Paare wünschen,

müssen die Werte der ausgemalten Pixel im 8-Pixel-Satz addiert und danach diese

Zahl in den geeigneten Speicherplatz gePOKEt werden. Ist z. B. die nachstehende

8-Pixel-Reihe die erste Reihe in einem Sprite, die bei Speicherplatz 832 beginnt, so

lautet der Wert der ausgemalten Pixel 16+8+2+1 = 27. Es gilt also folgende

Anweisung: POKE 832,27.

27

T a N

16+8+2+1

| 12 | 64 | 2j | 8 | 4 | 2 | 7 |

Sieht im Sprite wie folgt aus

Hintergrund- Hilfs- Sprite- Hilfs-

farbe farbe 1 farbe farbe 2

KOLLISION:

In dieser Zeile wird geprüft, ob ein bestimmtes Sprite mit irgendeinem anderen

Sprite kollidiert.

X entspricht 1 für Sprite 0, 2 für Sprite 1, 4 für Sprite 2, 8 für Sprite 3, 16 für Sprite 4,

32 für Sprite 5, 64 für Sprite 6 und 128 für Sprite 7.

Über folgende Zeile können Sie erkennen, ob Sprites miteinander kollidiert haben:

IF PEEK(V+30)ANDX=XTHEN (hier Aktion eingeben).

GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64 179

BENUTZEN VON GRAPHIKZEICHEN IN DATENANWEISUNGEN:

Folgendes Programm ermöglicht Ihnen die Erstellung eines Sprites mit leeren und

ausgemalten Kreisen (EB) in DATA-Anweisungen. Die in die Sprite-
Datenregister gePOKEten Sprites und Zahlen werden angezeigt.

18 PRINTS : FORL=0T063: POKESS32+1. 0° NEXT
‘toe Sone” urn thee” une “vee! ‘ese

„32 EMD
aoa

RAEI |

ALIENS

Elze}

aan sa ea Bak

ESLENZUNENE

eee

Pon ad Sa be

Ponape

EAE IE

El

Piel Li

Eel Ls

EL | +f

Plait | 5

Ried | ee

BEL?

EN

EEE]

oS | Pe)

DATA"

DATA"

DATA"

TATRA"

LTR"

TATA"

DATA"

DATA"

DATRH"

TAIT"

TATE"

DATA"

DATA"

TATA"

TATRA"

DATA"

TATA"

Date"

DATA"

DATA"

DATA"

TIP LLL "

an aa RR Rg a "

PEP "

a oo ah at i a hai "

SL TOT u 70T "

Hoeae he Seong "

DT DT DT 77 "

BU a a a oS a a a a "

aA aa ol RR HE rT "

a "

yo DT lh ath “

I "

i I I 1 I ® "

De fon oo 7
LL: u "

| & "

oo & "

a Be BS "

ae ee "

P| En

ib a itp 7

BELA einzel PORE. SE PORE + 1. LEE POREV+e1. 1:
PORE ost 24 PORE SEE. 12
EELS FOREN +e. LO ROREW+2o 1
za FOR THBTOSE: READAS FORE eeTOe : Tee FOR Je TO? Bei
SL LRM LDCS. Tee 1 Loe" ae" THEME = 1
ELSE TeT+bee toro MEST ORR IMT (POKESSS+ Tea+k. T:
MEST FR TMT + MET
ERE RE TURE

180 GRAPHIKPROGRAMMIERUNG MIT DEM COMMODORE 64

KAPITEL A

-MUSIK-
PROGRAMMIERUNG
MIT DEM

~COMMODORE 64
e Einleitung

Lautstarkenregelung

Bolahagsvelel-1ap4-ia)

—@ Arbeiten mit mehreren Stimmen

e Ändern der Wellenformen

e Hüllkurvengenerator

e Filtern

e Fortschrittliche Techniken

re) 2aleialcevalisy-lerolamelaremntiale|aarererenr-lareye

EINFUHRUNG

lhr COMMODORE-Computer ist mit einem hochentwickelten elektronischen

Musiksynthesizer ausgerüstet. Er verfügt über drei Stimmen, ist vollständig adres-

sierbar, ATTACK/DECAY/SUSTAIN/RELEASE (ADSR), Filtern, Modulation und

“weißes Rauschen“ sind einstellbar. Diese Funktionen stehen Ihnen direkt über

wenige, einfache BASIC- und/oder Assembler-Anweisungen und -Funktionen zur

Verfügung. Auf diese Weise können Sie komplexe Geräuscheffekte und Songs mit

relativ einfachen Programmen erzielen.

In diesem Kapitel werden alle Möglichkeiten des Chip 6581 “SID“, dem Geräusch-

und Musiksynthesizer Ihres COMMODORE-Computers beschrieben. Es werden

sowohl Theorie als auch die praktischen Aspekte beschrieben. Sie müssen weder

ein erfahrener Programmierer noch ein Musikexperte sein, um mit dem Musiksyn-

thesizer erstaunliche Ergebnisse zu erzielen. Sie werden hier zahlreiche Program-

mierbeispiele mit detaillierten Erklärungen finden.

Der Tongenerator wird durch POKE-Anweisungen in die entsprechenden Speicher-

plätze gesteuert. Die einzelnen Adressen sind in Anhang O aufgelistet. Die ver-

schiedenen Konzepte werden wir schrittweise erklären. Sie werden danach in der

Lage sein, nahezu unendlich viele verschiedene Geräusche zu erzeugen und

selbständig mit dem Musiksynthesizer zu experimentieren.

Jeder Abschnitt dieses Kapitels beginnt mit einem Beispiel, dieses wird dann Zeile

für Zeile genau beschrieben. Auf diese Weise sehen Sie, wie die einzelnen

Funktionen richtig eingesetzt werden. Die technischen Erläuterungen können Sie

durchlesen, wenn Sie wissen wollen, was tatsächlich passiert.

Wichtig bei den Musikprogrammen ist die POKE-Anweisung. Durch POKE wird in

dem betreffenden Speicherplatz (MEM) ein festgelegter Wert (NUM) geschrieben.

POKE MEM,NUM

182 MUSIKPROGRAMMIERUNG

Die fur die Musiksynthese benutzten Speicherplatze (MEM) beginnen beim COM-

MODORE 64 bei 54272 ($D400). Beim Arbeiten mit den 6581 (SID) Chip-Registern

mussen Sie wissen, was in den POKE-Speicherplatzen 54272 bis einschlieBlich

54296 steht. Es ist jedoch auch möglich, zum Arbeiten mit diesen Adressen sich

lediglich 54272 zu merken und danach eine Zahl von O bis 27 zu addieren. Auf diese

Weise ist ein POKEn aller Speicherplätze von 54272 bis 54296 des SID-Chips

möglich. In den POKE-Anweisungen dürfen die Zahlen (NUM) O bis einschließlich

255 benutzt werden.

Wenn Sie bereits Erfahrung auf dem Gebiet der Musik haben, können Sie auch

noch die PEEK-Funktion nutzen. PEEK ist eine Funktion, mit der der derzeitige Wert

ermittelt werden kann, der im angezeigten Speicherplatz steht.

X=PEEK(MEM)

Der Wert der Variablen X wird gleich dem derzeitigen Inhalt des Speicherplatzes

MEM gesetzt.

Natürlich beinhalten Ihre Programme weitere BASIC-Befehle, die jedoch im

Abschnitt “BASIC-ANWEISUNGEN" dieses Handbuchs erklärt sind.

Wir wollen nun anfangen und ein einfacheres Programm, das nur eine der drei

Stimmen benutzt, ausprobieren. Geben Sie über die Tastatur NEW, dann dieses

Programm und dann RUN ein. Speichern Sie das Programm danach auf der

DATASSETTE ™1 oder Diskette.

PROGRAMMBEISPIEL 1:

ee
14 FORL@STOS+24: POKEL. @°HEXT REM CLEAR SOUND CHIP
za POKES+S. S:POKES+S. & |
ad FOKES+24. 15 ‘REM SET VOLUME To
mets Celie
4G READHF. LF. DR
S@ [FHF C@THEMEME!
6@ POKES+1.HF POKES. LF
ra POKES+4. 33
sa FORT = 1 TOUR: HEMT
aa POKES+4, $2: FORT=1TOSECHENST
Lae GOTO
118 DATASS, 177. 258.28, 214.250
120 DATASS. 177.258, 25. 177. 250
130 DATASS. 177. 125. 28.214, 125
146 DATARS, $4,750. 25,177. 250
SO DATASE. 214.258, 19.63. 250
16@ DATA1P. 63, 250. 19,63, 250
{Fa DATASL. 134.63, 24,63, 63
188 DATASS. 17T She. 24.63.1235
128 DATALS. 63, SE —Ly-tsd

MUSIKPROGRAMMIERUNG 183

Das soeben eingegebene Programm wird nun Zeile fur Zeile beschrieben. Lesen

Sie dies durch, wenn Sie bestimmte Programmteile nicht genau verstanden haben.

BESCHREIBUNG DER EINZELNEN ZEILEN VON PROGRAMMBEISPIEL 1:

Zeile(n) Beschreibung

3) S Anfangsadresse des Sound-Chip.

10 Löschen aller Sound-Chip-Register.

20 Eingabe von ATTACK/DECAY (Anstieg/Abfall) für Stimme 1

(A=0, D=9).

Eingabe für SUSTAIN/RELEASE (Dauer/Ausklingen) von Stimme 1

(S=0, R=0).

30 Lautstärke auf Maximum.

40 Lesen “hohe Frequenz“, “niedrige Frequenz“, Dauer der Note.

50 Ist “hohe Frequenz“ kleiner als 0, dann ist die Melodie zu Ende.

60 POKEn von hoher und niedriger Frequenz für Stimme 1.

70 Gate für Sägezahnwellenform für Stimme 1.

80 Zeitschleife für Dauer der Note.

90 Auslösen der Sägezahnwellenform für Stimme 1.

100 Rückkehr zur nächsten Note.

110-180 | Songdaten: hohe Frequenz, niedrige Frequenz, Dauer der einzel-

nen Noten (Anzahl der Durchläufe).

190 Letzte Melodienote; die drei “—1“ zeigen das Ende der Melodie an.

LAUTSTÄRKEREGELUNG

Das Chip-Register 24 enthält die Gesamtlautstärkeregelung. Die Lautstärke kann

auf einen beliebigen Wert zwischen O und 15 eingestellt werden. Die anderen vier

Bits werden später beschrieben. Jetzt brauchen Sie bloß zu wissen, daß für

Lautstärke die Werte O bis 15 gelten. Schauen Sie sich Zeile 30 im Programmbei-

spiel 1 an.

TONFREQUENZEN

Töne entstehen durch Wellenbewegung der Luft. Stellen Sie sich vor, Sie werfen

einen Stein ins Wasser und beobachten dann, wie die Wellen von innen nach außen

verlaufen.

Wenn solche Wellen in der Luft entstehen, können wir sie hören. Die Sekundenzahl

für einen Wellenzyklus (n = Anzahl der Sekunden) erhalten wir, indem wir die Zeit

184 MUSIKPROGRAMMIERUNG

zwischen einer Wellenspitze zur nächsten messen. Der Kehrwert dieser Zahl (1/n)

gibt Ihnen die Zyklen pro Sekunde an. Zyklen pro Sekunde sind besser als

Frequenz bekannt. Die Tonhöhe wird anhand der Frequenz bestimmt. Der Tonge-

nerator des COMMODORE-Computers benutzt zwei Adressen zur Frequenzbe-

stimmung. Die Frequenzwerte, die Sie für acht Oktaven benötigen, sind im Anhang

E aufgelistet.

Fur eine nicht in dieser Tabelle aufgeführte Frequenz benutzen Sie “Four (Fre-

quenzausgabe) sowie nachstehende Gleichung zur Darstellung der Frequenz (F,)

des gewünschten Tons. Denken Sie daran, daß jede Note zwei Angaben, “hohe“

und “niedrige” Frequenz, benötigt.

Fr = Four/.06097

Wenn Sie herausgefunden haben, wie F, für Ihre “neue“ Note lautet, können Sie

nun die Werte für hohe und niedrige Frequenz für diese Note erstellen. Hierzu wird

F, zunächst abgerundet, so daß keine Stellen mehr rechts neben dem Dezimal-

punkt stehen. Sie haben nun eine ganze Zahl. Nun wird der Anteil der hohen

Frequenz (F,;) anhand der Gleichung F,i=F,/256 und der der niedrigen Frequenz

(Fo) durch F,p>=F,—(256* F,;) bestimmt.

Sie haben nun bereits mit einer Computerstimme gespielt. Wenn Sie wollen,

können Sie nun Ihre Lieblingsmelodie programmieren und Dirigent Ihres eigenen

Computerorchesters werden.

ARBEITEN MIT MEHREREN STIMMEN

Der COMMODORE-Computer verfügt über drei unabhängig steuerbare Stimmen

(Oszillatoren). Im ersten Programmbeispiel haben wir nur eine dieser Stimmen

benutzt. Später werden Sie noch lernen, wie die Klangfarben der einzelnen

Stimmen geändert werden können. Nun sollen aber erst einmal alle drei Stimmen

für uns singen.

Dieses Programm zeigt Ihnen, wie Noten für das Computerorchester übersetzt

werden. Geben Sie es ein, und speichern Sie es danach auf DATASSETTE™ oder

Diskette. Vor der Eingabe dieses Programms unbedingt NEW eingeben.

MUSIKPROGRAMMIERUNG 185

PROGRAMMBEISPIEL 2:

1A Sei4ere FORLESTOS+24 : POREL 3: HEAT
ziel DIMHE2,2009.,L02,208), Cid, 2084
sa DIMFÜCIL>

Kan DES DEE IE EEE
FORES+14,¢: POKES+22. PORE Stat 244
FOR T=HTO11: READFoS To: NEXT
FORK =@T Oz
I=
rERDHM
IFHM=BTHEHZSE
WAS CK WB=WA 1 TPE, ST HEMMMM MM: ASG: WE=E
DRAtRHMe 128: OCa= HM lesen “16
HT=HMN-123#8IRR-16#05%
FR=FECHTE
IFOLA=7THEHZAG

n
p

ju
r

er
)

as

i

| al
ll

co
ol

cu
ll

ee
d

co
ol

co
ol

oo
t

tS

OE

—~
)
1

oA

Gt

f
h
e

in

SM

G
M
M

G
M

Gi

w
m

p
e

136 FORJ=6TOOCHSTEP=1 FRE Ret MEAT
eM HF ASF R256 : LPS R256 #HF
el IFDRH=1THEMHCK, DIEHFZILCK, D2SLE RICK. Diehl:
I=1+1:G0TO128
220 FORIT=1TODRS-1:HCK, DI=HFRILCH,
I=1+1:NEKT
aH Heck, DosHF es : u L=L FEC OCK, Dose

ToslPa Clk. Dasha:

240
rae) 4)

I=1+1:60T012

TETSEM EN INET
26H MEAT
„Aa FOKES+S. 8° POKES+E. 248
1 PÜKES+12. 85 :POKES+13, Liss
we FORE S+19, 1b: POKEStTEE. 1a?
238 FOKES+24. 3

Lh

p
e

o
y

CU

e
o

er

Rs

G
E

in

O
S

I
I
I

G
e

i
i
n

T
y

Mi

G
M

EN
KE
N

EN

EN

ET

to

m
m

Po

RO

fe
a

RQ

ee

ee

Re

ee

ee

r
e

i
h

ih
n

oh

©
 ©

FORI=ATOIM
PORES LOW. To PORES+?. 001. DE: FOR

FPOKES+4, (0A, To:
FORTS 17088 NEXT NEXT
FOR T=1 702k: HET > POKES+24 sf
DATAS4334. 36376. 38539. 46538
DATA4+ 3259 | SO GE yo Led

t
e

DATA S4382. 57°43 61176, 64516
DATASS4, 394,594, 396, 396
URATRIEIS. 337, 392.587. 3635. 331202365
IATR1O97 553.595. SSS. SS See. See
DATALGbS, Seas) ar. 334, Sa4. SoS
QATALE1S. 594,596. 594. 592. 357
IATHIEIE. 327,525, 351. 356.84). S27
DATARIERT
DAT Ae
DATAIES. 395, 922,393. 327, 329
DATAI611. 585,585, 578. 978,975
DATAIS6. 198. 5520 326. 57S
DATASe6 HET BET. Ber DEF. BEE SPE,

MUSIKPROGRAMMIERUNG

Str1l4.L(2.12
PÜKES+1.H69, 15 FOKES+3, HE, TO: POKES+13. HL, 13

POKES+L1i.Ccl. To - PORES+1 3.002. 05

ek} 1% Sale be ties see Sed, Se, See
2054 DATAS29. SET. 120.385
2a DATA22T, 329,387 , 231. 229
eH’ DATA 22S. S28, LER, SPs, Ed
SMS DATA S24. Sees 387,505, 1ER
2333 DATHS
SHWE DATA? S66. 567. 2A SHG SS Le
2416 DATALSS 1. Ser Sli. 31a, 567
2620 TATASHE. 344, 299. See
3930 DATASE4. 171. 17E, She. 291. 551. 386.5
2640 DATAS1O. 386. 318. 306.295, 257.2599. 3
3050 DATAISS6, 562,567,310, 215,311
3229 DATASES. 313.297 .
S078 DATALSS6. 367. 568.211. 589
3038 DATA 208. 309, 246.305
3038 DATA1LS77. 2S. 295. 366. 212.311. 2
lad DATASee. S46. 1575
2299 TATA

Programmbeispiel 2 wird nun Zeile für Zeile erklärt. Nun interessiert uns, wie die

drei Stimmen gesteuert werden.

ERKLÄRUNG VON PROGRAMMBEISPIEL 2:

Zeile(n) Beschreibung

10 Setzen von S als Sound-Chip-Startadresse und Löschen aller

Sound-Chipregister.

20 Dimensionieren der Felder für die Toninformation, 1/16-Takt pro

Element.

30 Dimensionieren des Felds fur die Basisfrequenzen der einzelnen

Noten.

40 Speichern des Wellenform-Steuerbytes für die einzelnen Stimmen.

50 Impulsbreite für Stimme 2 eingeben.

Obere Grenzfrequenz für Filter eingeben.

Eingabe von Filterresonanz und Filter von Stimme 3.

60 Einlesen der Basisfrequenz der einzelnen Noten.

100 Beginn der Decodier-Schleife der einzelnen Stimmen.

110 Pointer-Initialisierung auf Steuerfeld.

120 Lesen der codierten Note.

130 Ist die codierte Note 0, dann nächste Stimme.

140 Wellenformsteuerung der Stimme.

Bei Pause, Wellenformsteuerung auf 1 setzen.

150 Decodieren von Dauer und Oktave.

160 Note decodieren.

MUSIKPROGRAMMIERUNG

187

Zeile(n) Beschreibung

170 Basisfrequenz für diese Note lesen.

180 Wenn höchste Oktave, Schleife für Division überspringen.

190 Basisfrequenz fortgesetzt durch 2 dividieren.

200 Bytes für “hohe Frequenz“ und “niedrige Frequenz“ lesen.

210 Wenn 16. Note, Steuerfeld setzen: hohe Frequenz, niedrige

Frequenz und Wellenformsteuerung (Stimme ein).

220 Für alle Schläge außer dem letzten Steuerfeld eingeben:

hohe Frequenz, niedrige Frequenz, Wellenformsteuerung

(Stimme ein).

230 Für letzten Schlag in Steuerfeld eingeben: Hochfrequenz, Niedrig-

frequenz, Wellenformsteuerung (Stimme aus).

240 Pointer auf Steuerfeld um 1 erhöhen. Nächste Note lesen.

250 Wenn länger als zuvor, Parameter /M rückstellen.

260 Zurücksprung für nächste Stimme.

500 ATTACK/DECAY für Stimme 1 eingeben (A = 0, D = 0).

SUSTAIN/RELEASE für Stimme 1 eingeben (S = 15, R =D).

510 ATTACK/DECAY fur Stimme 2 eingeben (A = 5, D = 5).

SUSTAIN/RELEASE fur Stimme 2 eingeben (S = 8, R = 5).

520 ATTACK/DECAY für Stimme 3 eingeben (A = 0, D = 10).

SUSTAIN/RELEASE fur Stimme 3 eingeben (S = 12, R = 5).

530 Lautstärke 15 eingeben, Tiefpaßfilter ein.

540 Schleifenbeginn jedes 1/16-Taktes.

550 POKE der niedrigen Frequenz vom Steuerfeld für alle Stimmen.

560 POKE der hohen Frequenz vom Steuerfeld für alle Stimmen.

570 POKE der Wellenformsteuerung vom Steuerfeld für alle Stimmen.

580 Zeitschleife für 1/16-Takt und Rücksprung für nächsten 1/16-Takt.

590 Pause, dann Lautstärke abschalten.

600-620 Basisfrequenzdaten.

1000-1999 | Daten für Stimme 1.

2000-2999 | Daten für Stimme 2.

3000-3999 | Daten für Stimme 3.

188 MUSIKPROGRAMMIERUNG

Die in den DATA-Anweisungen verwendeten Werte ergeben sich aus der Noten-

tabelle in Anhang E und nachstehender Tabelle:

NOTENTYP DAUER

1/16 128

1/8 256

Punktiert 1/8 384

1/4 512

1/4+1/16 640

Punktiert 1/4 768

1/2 1024

1/2+1/16 1152

1/2+1/8 1280

Punktiert 1/2 1536

Ganz 2048
Die Notenzahl der Notentabelle wird zu obiger Dauer addiert. Dann kann jede Note

mit nur einer Nummer eingegeben werden, die dann von Ihrem Programm deco-

diert wird. Dies ist nur eine Art der Notencodierung. Sie können auch eine Methode

wählen, die Sie für günstiger halten. Eine Note wird anhand folgender Gleichung

codiert: |

1) Dauer (in 16tel eines Taktes) multipliziert mit 8.

2) Das Ergebnis von 1) wird zu der gewählten Oktave addiert (0-7).

3) Das Ergebnis von 2) wird dann mit 16 multipliziert.

4) Die gewählte Note (0-11) zu dem Ergebnis von 3) addieren.

Das heißt:

((((D*8)+0) *16)+N)

Wobei D=Dauer, O=Oktave und N=Note.

Durch Verwendung eines negativen Werts für die Dauer (1/16 eines Taktes * 128)

wird eine Pause programmiert.

STEUERN MEHRERER STIMMEN

Wenn Sie mehrere Stimmen verwenden wollen, müssen Sie diese zeitlich mitein-

ander koordinieren. In diesem Programm wird das wie folgt gelöst:

1) Teilung jedes Taktes in 16 Teile.

2) Speicherung der Inhalte der einzelnen Taktteile in drei getrennte Felder.

MUSIKPROGRAMMIERUNG 189

Die Bytes der hohen und niedrigen Frequenz werden durch Division der Frequenz

der höchsten Oktave durch 2 (Zeile 180 und 190) berechnet. Das Byte für

Wellenformsteuerung ist ein Startsignal für den Beginn einer Note oder das Halten

einer bereits gespielten Note. Es ist auch das Endsignal für eine Note. Die

Wellenformwahl wird einmal für jede Stimme in Zeile 40 durchgeführt.

Auch dies ist nur eine der Möglichkeiten, wie Sie mehrere Stimmen steuern

können. Sie können Ihre eigene Methode erfinden. Sie sollten jedoch nun in der

Lage sein, ein Notenblatt zu nehmen und die Noten der drei Stimmen herauszu-

finden.

ÄNDERN DER WELLENFORMEN

Die Klangfarbe eines Tones wird hauptsächlich durch seine Wellenform bestimmt.

Wenn Sie einen Kieselstein ins Wasser werfen, dann verteilen sich die Wellen

gleichmäßig über den Teich. Diese Wellen sehen fast wie die erste Wellenform aus,

mit der wir uns befassen wollen: der sinusförmigen Welle, kurz Sinuswelle genannt

(siehe nachstehende Abbildung).

Damit wir die praktische Anwendung nicht aus dem Auge verlieren, nehmen wir

wieder das erste Programmbeispiel und untersuchen die unterschiedlichen Wellen-

formen. Die Änderungen können Sie nämlich leichter hören, wenn wir zunächst nur

eine Stimme benutzen. Laden Sie das erste Musikprogramm von der DATAS-

SETTE™ oder von der Diskette und führen Sie es aus. Dieses Programm arbeitet

mit der Sägezahnwelle (siehe nachstehende Abbildung).

190 MUSIKPROGRAMMIERUNG

Ändern Sie den Notenstartwert in Zeile 70 von 33 in 17 und den Notenstopwert in

Zeile 90 von 32 in 16 um. Das Programm muß nun folgendermaßen aussehen:

PROGRAMMBEISPIEL 3 (BEISPIEL 1, VERÄNDERT):

ee lh eat

13 FOR eS TOS+ Seb ROR EL. @ MEIST

2a PORE S+3 SO PORES +e) &

za PORES +e 15

43 FERDHF.LF. DR

SA IFHRZETHEHEHD
Ge POKRES+ 1. HF PORES LF

TE PORES +b 17

Se FR T= 1 TOD ¢ MEST

SE PORES +h. 12 POR T= 1 TOS HES T
{aa GUTO<E

Lie DT leo LPP ces ea ot

{268 DATAHSS.. 177. She, 28, 17

Tae TATASE IPP LSE Be. eid. tes

146 TATASS, De. PRE SS Pe Se

1a TATASS. 214. 256 Lo eS, See

Lae TATALS. GS Se Toe. 2

ra TATASL. S44 ne

LSE TATASS. 17T. SS Seb es 125

138 TATA S ES, 23m banda

Starten Sie nun das Programm. |

Beachten Sie, daß die Soundqualitat nun anders ist, der Ton klingt nun viel hohler.

Wir haben nämlich die Sägezahnwelle in eine Dreieckswelle umgewandelt (siehe

nachstehende Abbildung).

MUSIKPROGRAMMIERUNG 191

Die dritte Wellenform wird variable Pulswelle genannt (siehe nachstehende Abbil-

dung).

Puls-

breite

Dies ist eine Rechteckwelle, bei der Sie die Länge des Impulszyklus bestimmen

können. Hierzu bestimmen Sie die Wellenhöhe. Für Stimme 1 geschieht dies mit

den Registern 2 und 3: Register 2 enthält das niederwertige Byte der Pulsbreite

(Low = O bis 255). Register 3 enthält die oberen vier Bits (Hpy = 0 bis 15).

Zusammen geben diese Register eine 12-Bit-Zahl für Ihre Pulsbreite an, die Sie

anhand folgender Gleichung bestimmen können:

PW, = How” 256 + Low

Die Pulsbreite wird durch folgende Gleichung bestimmt:

PWour = (PW,/40.95) %

Hat PW,, den Wert 2048, dann ergibt sich eine Rechteckwelle. Dies bedeutet, daß

Register 2 (Low) gleich O und Register 3 (H,w) gleich 8 ist.

Fügen Sie nun in Ihr Programm diese Zeile ein:

15 POKES+3 8:POKES+2,0

Ändern Sie dann den Startwert in Zeile 70 in 65 und den Stopwert in Zeile 90 in 64

um. Führen Sie dann das Programm aus. Ändern Sie nun die Pulsbreite (Register 3

in Zeile 15) von 8 in 1 um. Merken Sie den wesentlichen Unterschied in der

Klangfarbe?

Eine weitere Wellenform, die erzeugt werden kann, ist ein weißes Rauschen (siehe

nachstehende Abbildung).

192 MUSIKPROGRAMMIERUNG

Es wird meistens fur Geräuscheffekte usw. benutzt. Um zu hören, wie es klingt,

ändern Sie den Startwert in Zeile 70 auf 129 und den Stopwert in Zeile 90 auf 128

um.

VERSTÄNDNIS DER WELLENFORMEN

Eine gespielte Note besteht aus einer Grundfrequenz sowie den Oberwellen.

Die Grundfrequenz bestimmt die Tonhöhe. Oberwellen sind Sinuswellen mit Fre-

quenzen, die ein ganzzahliges Vielfaches der Grundfrequenz sind. Eine Tonwelle

besteht aus der Grundfrequenz und allen Oberwellen.

+ RESULTIERENDE WELLE

GRUNDFREQUENZ (1. OBERWELLE)

2. OBERWELLE 3 OBERWELLE

Theoretisch kann man sagen, daß die Grundfrequenz die Oberwelle Nr. 1 ist. Die

Frequenz der zweiten Oberwelle entspricht zweimal der Grundfrequenz, die der

dritten Oberwelle dreimal der Grundfrequenz usw. Die Anteile der einzelnen

Oberwellen eines Tones bestimmen die Klangfarbe.

Ein akustisches Instrument wie z. B. eine Gitarre oder Violine hat eine komplizierte

Oberwellenstruktur. Die Oberwellenstruktur kann sich auch beim Spielen einer

einzelnen Note ändern. Sie haben nun bereits mit Wellenformen des COMMO-

DORE-Synthesizers gespielt. Wir wollen uns nun anschauen, welche Rolle die

Oberwellen bei Dreiecks-, Sägezahn- und Rechteckwellen spielen.

Eine Dreieckswelle enthält lediglich ungerade Oberwellen. Der Anteil jeder Ober-

welle ist proportional zum Kehrwert des Quadrats der Oberwellenzahl. Die Ober-

welle Nr. 3 ist also 1/9 leiser als Oberwelle Nr. 1, denn Oberwelle Nr. 3 zum Quadrat

ist 9 (3x3), und der Kehrwert von 9 lautet 1/9.

Das entspricht der Beobachtung, daß eine Dreieckswelle einer Sinuswelle ähnlich

ist.

Sägezahnwellen enthalten alle Oberwellen. Der Anteil jeder Oberwelle ist proportio-

nal zum Kehrwert der Oberwellenzahl. So ist die Oberwelle Nr. 2z. B. einhalbmal so

laut wie Oberwelle Nr. 1.

MUSIKPROGRAMMIERUNG 193

Die symmetrische Rechteckwelle enthält ungerade Oberwellen proportional zum

Kehrwert der Oberwellenzahl. Andere Rechteckwellen haben verschiedene Ober-

welleninhalte. Durch Änderung der Pulsbreite kann die Klangfarbe einer Rechteck-

welle enorm geändert werden.

Durch sorgfältige Wahl der Wellenform können Sie mit einer Oberwellenstruktur

beginnen, die fast so aussieht wie die des Tones, den Sie erzielen möchten. Zur

Verfeinerung des Tons können Sie eine weitere Funktion des COMMODORE 64

benutzen, die “Filtern“ genannt und später noch beschrieben wird.

HÜLLKURVENGENERATOR

Die Lautstärke eines Tons ändert sich ab dem Moment, ab dem Sie den Ton zuerst

hören, bis er so schwach wird, daß Sie ihn schließlich nicht mehr hören können.

Wenn ein Ton beginnt, so steigt er von der Null-Lautstärke bis zu Spitzenlautstärke.

Dies nennt man ATTACK. Dann fällt er von der Spitze wieder zur mittleren

Lautstärke ab. Dies nennt man DECAY. Der mittlere Bereich wird durch den

SUSTAIN-Pegel beschrieben. Schließlich fällt die Note vom SUSTAIN-Pegel wie-

der auf Null-Lautstärke ab. Dies nennt man RELEASE. Die vier Phasen einer Note

werden nachstehend dargestellt:

SUSTAIN-
Pegel ! \

PA DY er >
ATTACK | SUSTAIN. |

DECAY RELEASE

Die oben erwahnten Punkte bestimmen die verschiedenen Qualitaten und Ein-

schrankungen der einzelnen Noten.

Die Parameter ATTACK/DECAY/SUSTAIN/RELEASE werden kurz ADSR genannt.

Sie können durch Benutzen eines Satzes von Speicherplatzen im Sound-Chip

gesteuert werden. Zunächst laden Sie wieder das erste Programmbeispiel, führen

es aus und merken sich, wie es klingt. Ändern Sie Zeile 20 des Programms dann

wie folgt:

194 MUSIKPROGRAMMIERUNG

PROGRAMMBEISPIEL 4 (BEISPIEL 1, AUFBEREITET):

Fo Beten

1a FORL=>TO: te 24 FOKEL. A HES T

SM PORE S+5 . Se PGR ES +e 195
“el por Esta, 15

42 REATHF. LE. OP
ea [FHF C@THEHEND
6@ POKES+1.HF : POKES. LF
78 POKES+4. 33
30 FORT=1TODR : NEXT
za FORE Sth Se FOR T=. TOS HEART
122 GT ee

Lid TATHSS 117. Se SS. old, S38

122 DATA, LP? 238. SS Pr. Se
132 DATHZS 177. 125.85: Sid, 125

144 DAT SS. Se. PSE SS LPP See

LSE DATA. 214. S36, 19, 83, 25

tee TATALS. 62. ZIEL, 62. ek

170 DATAZ1» 154, can a ES
{SQ TATAHSS. 177. 258, 24. sks La

138 TATALS. @3. 25 El, oa} gy =]

Register 5 und 6 definieren ADSR fur Stimme 1. ATTACK ist das obere Nybble von

Register 5. Nybble ist ein halbes Byte, d. h. die unteren vier oder oberen vier Bits in

jedem Register. DECAY ist das untere Nybble. Sie können fur ATTACK eine

beliebige Zahl zwischen O und 15 wählen, sie mit 16 multiplizieren und dann fur

DECAY eine beliebige Zahl zwischen O und 15 addieren. Die Werte, die diesen

Zahlen entsprechen, werden nachstehend aufgeführt.

SUSTAIN-Pegel ist das obere Nybble von Register 6. 0 bis 15 stehen zur Verfu-

gung. Hierdurch wird bestimmt, welchem Anteil der SUSTAIN-Pegel entspricht. Die

RELEASE-Rate ist das untere Nybble von Register 6.

Nachstehend finden Sie die Bedeutungen der Werte für ATTACK, DECAY und

RELEASE:

MUSIKPROGRAMMIERUNG 195

WERT ATTACK DECAY/RELEASE

(ZEIT/ZYKLUS) (ZEIT/ZYKLUS)

O 2ms 6 ms

1 8 ms 24 ms

2 16 ms 48 ms

3 24 ms 72 ms

4 38 ms 114 ms

5 56 ms 168 ms

6 68 ms 204 ms

7 80 ms 240 ms

8 100 ms 300 ms

9 250 ms 750 ms

10 500 ms 1.58

11 800 ms 245s

12 1s 35

13 3S 9s

14 5S 15s

15 8s 24s
Nachfolgend sehen Sie einige Einstellungen, die Sie in dem Programmbeispiel

ausprobieren können. Probieren Sie diese aus und experimentieren Sie. Die

Vielzahl an möglichen Tönen ist erstaunlich! Um den Ton einer Geige zu erzeugen,

ändern Sie Zeile 20 wie folgt:

20 POKES+5,88:POKES+6,89:REM A=5;D=8;S=5;R=9

Andern Sie die Wellenform in eine Dreieckswellenform um, und schon bekommen

Sie durch folgende Zeilen das Gerausch eines Xylophons.

20 POKES+5,9:POKES+6,9:REM A=0;D=9;S=0;R=9

70 POKES+4,17

90 POKES+4,16: FORT=1TO50:NEXT

Andern Sie die Wellenform nun in eine Rechteckwelle um, und erzeugen Sie durch

folgende Zeilen einen Klavierklang.

15 POKES+3,8:POKES+2,0

20 POKES+5,9:POKES+6,0: REM A=0;D=9;S=0;R=0

70 POKES+4,65

90 POKES +4,64:FORT=1TO50:NEXT

196 MUSIKPROGRAMMIERUNG

Die aufregendsten Geräusche sind jedoch die, die nur der Synthesizer erzeugen

kann, also keine Nachahmung akustischer Instrumente. Probieren Sie z.B. fol-

gendes:

20 POKES+5,144:POKES+6,243:REM A=9;D=0;S=15;R=3

FILTERN

Der Oberwellengehalt einer Wellenform kann durch Verwendung eines Filters

verandert werden. Der SID ist mit drei verschiedenen Filtern ausgerustet. Sie

können unabhängig voneinander oder auch kombiniert benutzt werden. Wir neh-

men wieder unser einfaches Programmbeispiel und geben verschiedene Filter-

steuerungen ein.

Fügen Sie Zeile 15 in das Programm ein, um die Grenzfrequenz des Filters

einzugeben. Die Grenzfrequenz ist der Filterbezugspunkt. Die obere und untere

Grenzfreauenz wird in Register 21 und 22 eingegeben. Um den Filter für Stimme 1

einzuschalten, Register 23 POKEn.

Nun Zeile 30 ändern, um anzuzeigen, daß ein Hochpafßfilter benutzt wird (siehe

SID-Registerverzeichnis).

PROGRAMMBEISPIEL 5 (BEISPIEL 1, AUFBEREITET):

Seep re

1a FÜR Les Tost POR EL a MEST

12 PORES+2e. LZE FORES+21. 6° POKES+25, 1

za PORE S+S3. oo POKES +e 8
aa PORES +e. Po

AG BERDHFS LF. DR

Ell TIFHRZETHEHEHTD

6H PORES+ 1. AHF POKES. LF
TE PORES +e, os ee

SM FOR T= 1 TOD > HEX T

ag FOKES+4,. 32°F 0R7T=1 7058: MEST
Tae GÜTE

116 TATHES 177. Se, 28. 214, 250

124 DATHSS. TP re. Se, 25, 177.250

{SG TATAHSS 177. 125, Se 214: 125

146 DATASS. 94. PSG. 23 LPP. Ske

1524 TATA. EI 1S. 63. She

16 DATALS. 62. 258. 19.63. 258

178 DATAZ1. 14. 65,24, 63,63
186 TATASS. 177. 23h, 24.65, 12

198 DATA. 63, Zelle

MUSIKPROGRAMMIERUNG 197

Probieren Sie dieses Programm nun aus. Beachten Sie, daB die niedrigeren Tone

leiser sind und blechern klingen. Der Grund hierfür liegt darin, daß Sie einen

Hochpaßfilter benutzen, der Frequenzen unterhalb der Grenzfrequenz dämpft.

Der SID des COMMODORE-Computers hat drei verschiedene Filter. Wir haben den

Hochpaßfilter benutzt. Frequenzen bei oder über der Grenzfrequenz werden durch-

gelassen, die unter der Grenzfrequenz jedoch gedämpft.

D
U
R
C
H
L
A
S
S

GRENZ-
|

FREQUENZ

Der SID hat auch einen Tiefpaßfilter. Wie der Name schon sagt, läßt dieser Filter alle

Frequenzen unter der Grenzfrequenz durch und dämpft die darüberliegenden ab.

”
”
<
ail
I
O a
>
m)

GRENZ-
|

FREQUENZ

Schließlich hat Chip SID auch noch einen Bandpaßfilter, der nur ein schmales

Frequenzband um die Grenzfrequenz herum durchläßt und alle anderen Frequen-

zen dämpft.

198 MUSIKPROGRAMMIERUNG

D
U
R
C
H
L
A
S
S

 GRENZ-
|

FREQUENZ

Hoch- und Tiefpaßfilter können miteinander kombiniert werden, so daß eine Band-

sperre entsteht, bei der nur die Grenzfrequenz gedämpft wird.

u)
(dp) 5 N

O
om
=
O

GRENZ-
|

FREQUENZ

Zusätzlich zur gesamten Lautstärkenregelung bestimmt Register 24 auch noch,

welche Filterart Sie benutzen wollen. Bit 6 steuert den Hochpaßfilter (0 = aus, 1 =

ein), Bit 5 den Bandfilter und Bit 4 den Tiefpaßfilter. Die unteren drei Bits der

Grenzfrequenz werden durch Register 21 (L«) bestimmt (L« = O bis 7). Die acht Bits

der oberen Grenzfrequenz hingegen werden durch Register 22 (H.) bestimmt (He+

= 0 bis 255).

Durch den Einsatz der Filter kann die Oberwellenstruktur jeder Wellenform geandert

werden. Sie können also stets den Ton erzielen, den Sie möchten. Zusätzlich zur

Filterung kann auch noch durch die ADSR-Hüllkurve ein interessanter Effekt erzielt

werden.

MUSIKPROGRAMMIERUNG 199

FORTSCHRITTLICHE TECHNIKEN

Eine dynamische Änderung der Parameter des SID während einer Note zur

Erzielung von interessanten und originellen Effekten ist möglich. Hierzu stehen

digitalisierte Ausgaben vom Oszillator 3 und Hullkurvengeber 3 in den Registern 27

bzw. 28 zur Verfügung.

Die Ausgabe von Oszillator 3 (Register 27) hängt direkt mit der gewählten Wellen-

form zusammen. Wurde die Sägezahnwelle von Oszillator 3 gewählt, dann liefert

dieses Register eine Serie von inkrementierten (schrittweise erhöhten) Zahlen von

O bis 255. Die Rate wird hierbei durch die Frequenz von Oszillator 3 bestimmt.

Wurde die Dreieckswelle gewählt, dann wächst die Ausgabe von 0 bis 255 an und

nimmt wieder bis auf O ab. Wurde die Pulswelle gewählt, dann springt die Ausgabe

zwischen O und 255 hin und her. Durch Wahl des Rauschgenerators wird schließlich

eine Anzahl von Zufalls-Zahlen angegeben. Wird Oszillator 3 für Modulation

benutzt, soll die Ausgabe normalerweise NICHT hörbar sein. Durch das Setzen von

Bit 7 von Register 24 wird die Audio-Ausgabe von Stimme 3 abgeschaltet. Register

27 gibt stets die sich ändernde Oszillatorausgabe wieder und wird nicht durch den

Hüllkurvengeber (ADSR) beeinflußt.

Register 25 ermöglicht Ihnen den Zugriff auf die Ausgabe des Hüllkurvengebers

von Oszillator 3. Hierbei gilt das gleiche wie bei der Ausgabe von Oszillator 3. Um

dieses Register auslesen zu können, muß zunächst der Oszillator eingeschaltet

werden. |

Vibrato (eine schnelle Frequenzänderung) kann erzielt werden, indem man die

Ausgabe von Oszillator 3 zu der Frequenz eines anderen Oszillators addiert. Dies

wird im Programmbeispiel 6 gezeigt.

200 MUSIKPROGRAMMIERUNG

PROGRAMMBEISPIEL 6:

1a Se S422
Sa FORLAGTOS4: FP OKES+L., @: HET

EI

Ag
el
Ele

7a
mile

“al

Lee)

PORES +2. 8 |

PORES+3. 41: FOKES+6, ao
PORES+14.117
PORES+18. 16
POKES +24. 143
READE ke. DR
IFFR=8THENMEMT
POR ES+4. 65
FORT=1TODR# 2

FO=FR+F EER CS+o7 0S
HF = THT CP OAM 236 9 LPP AAS SS
PORE S+@. LF POKES+ 1. HF
HET
Pree S++. Ge}
GOTISa
TATA4E 17,2,5103 PERL 1
TATASS Ss eh, BE eb

aa DATAS 407.4, 850. 12, Bed

aa DATAHIGSer. 2. Lesl4. 2. 8385.2
+2 TATAS6 34,4. La oo eee

A QATASe S44. 855.12

TIT Pact set

Dieses Programm wird nachstehend Zeile fur Zeile erklart.

MUSIKPROGRAMMIERUNG 201

ERKLARUNG VON PROGRAMMBEISPIEL 6:

Zeile(n) Beschreibung

10 Eingabe von S als Soundchip-Startadresse.

20 Löschen aller Soundchipregister.

30 Eingabe der Impulsbreite für Stimme 1.

40 Eingabe von ATTACK/DECAY für Stimme 1 (A=2, D=9).

Eingabe von SUSTAIN/RELEASE für Stimme 1 (S=5, R=9).

50 Eingabe der niedrigen Frequenz für Stimme 3.

60 Eingabe der Dreieckswelle für Stimme 3.

70 Eingabe der Lautstärke 15, Abschalten der Audioausgabe von

Stimme 3. |

80 Lesen der Frequenz und Dauer der Note.

90 Ist die Frequenz gleich 0, dann Stop.

100 POKE Start-Impulswellenformsteuerung, Stimme 1.

110 Start-Zeitschleife für Dauer.

120 Neue Frequenz von Oszillatorausgang 3 lesen.

130 Hohe und niedrige Frequenz lesen.

140 POKE Hoch- und Niedrigfrequenz für Stimme 1.

150 Ende der Zeitschleife.

160 POKE Stop-Impulswellenformsteuerung, Stimme 1.

170 Zurück zur nächsten Note.

500-550 | Frequenzen und Notenlängen des Musikstücks.

560 Nullen zeigen Ende des Stücks an.

Durch dynamische Effekte können außerdem auch noch eine Vielzahl an Geräusch-

effekten erzielt werden. Folgendes Sirenenprogramm ändert z. B. dynamisch die

Frequenzausgabe von Oszillator 1, indem es die Ausgabe der Dreieckswellenform

von Oszillator 3 benutzt.

202 MUSIKPROGRAMMIERUNG

PROGRAMMBEISPIEL 7:

1a tomer

mel FORL=ETOE FORESHL . ECHEST

aa PORES +14.

hal FOKES+lE, 16

mil Poe tad i
Biel PORES +e Le
Fe PORES +6, ane
Sel PITRE Ss He. 6!

mod are md

LAE FOR T= 1 TOS

11a FPO] F R+PEER CS +27 9 eS,

128 HES THT OPO M28 LP el ee

TSE FOR E+E LR ROR ES» Lo HE

142 MEET

LEG ROR Ete iteh Gi

Dieses Programm wird nachstehend Zeile fur Zeile erklart.

ERKLARUNG VON PROGRAMMBEISPIEL 7:

Zeile(n) Beschreibung

10 Eingabe von S als Soundchip-Startadresse.

20 Loschen der Soundchipregister.

30 Eingabe der niedrigen Frequenz fur Stimme 3.

40 Eingabe der Dreieckswelle fur Stimme 3.

50 Eingabe der Impulsbreite fur Stimme 1.

60 Eingabe von Lautstärke 15, Abschalten der Audioausgabe von

Stimme 3.

70 Eingabe von ATTACK/DECAY für Stimme 1 (S=15, R=0).

80 POKE Start-Impulswellenformsteuerung für Stimme 1.

90 Eingabe der niedrigsten Frequenz für Sirene.

100 Beginn der Zeitschleife.

110 Neue Frequenz mit Oszillatorausgabe 3 lesen.

120 Hohe und niedrige Frequenzen lesen.

130 POKE hohe und niedrige Frequenzen für Stimme 1.

140 Ende der Zeitschleife.

150 Abschalten der Lautstärke.

Die Rauschwellenform kann zur Erzeugung verschiedener Geräuscheffekte benutzt

werden. Dieses Beispiel ahmt durch Verwendung einer gefilterten Rauschwellen-

form ein Händeklatschen nach:

MUSIKPROGRAMMIERUNG 203

PROGRAMMBEISPIEL 8:

.., oon, w:o

ld Seitz
a FORL=ATOzE PORKES+L. EC HEMT

SE FORES+HE. 248 PORE S+ 1. a3

46 PORE S+3 oi
SE FORE Sto. Let
GE PORE See I
ra FORE S+e4. 7S!
Se FORM=1TOLS
aa PORE S++, las

112 FORT#1TOS0: MEKT : NEXT
120 FOKES+24,

Dieses Beispiel wird nun Zeile fur Zeile erklart.

ERKLARUNG VON PROGRAMMBEISPIEL 8:

Zeile(n) Beschreibung

10 Eingabe von S als Soundchip-Startadresse.

20 Loschen aller Soundchipregister. |

30 Eingabe von hoher und niedriger Frequenz für Stimme 1.

40 Eingabe von ATTACK/DECAY für Stimme 1 (A=0, D=8).

50 Eingabe der oberen Grenzfrequenz für Filter.

60 Filter für Stimme 1 einschalten.

70 Eingabe von Lautstärke 15, Hochpaßfilter.

80 Zählt 15 Händeklatschen.

90 Eingabe für Anfang der Rauschwellenformsteuerung.

100 Warten, dann Stop der Rauschwellenformsteuerung.

110 Warten, dann nächstes Klatschen.

120 Lautstärke abschalten.

204 MUSIKPROGRAMMIERUNG

SYNCHRONISATION UND RINGMODULATION

Der 6581 SID ermöglicht Ihnen die Erstellung von komplexeren Oberwellenstruktu-

ren durch Synchronisierung und Ringmodulation zweier Stimmen.

Synchronisierung ist im wesentlichen eine logische UND-Verbindung zweier Wel-

lenformen. Ist eine dieser Wellenformen 0, dann ist die Ausgabe 0.

Durch folgendes Programmbeispiel wird ein Moskito nachgeahmt:

PROGRAMMBEISPIEL 9:

1a 8954272
28 FORL=ATOS4:POKES+L.BCHEHT
a8 POKES+1, 100
4a POKES+5, 215
Sia PORES+ 15, 28
ga POKES+24. LE
7a POKES+4.19
Sa FOR T= 1 TOSGGG : HEMT
aa POKES+4, 13
1G0 FORT#1TO1GG8 > HEAT: POKES+24. 0

8

Das Programm wird nun Zeile fur Zeile erklart.

ERKLARUNG VON PROGRAMMBEISPIEL 9:

Zeile(n) Beschreibung

10 Eingabe von S als Soundchip-Startadresse.

20 Loschen der Soundchipregister.

30 Eingabe der hohen Frequenz fur Stimme 1.

40 Eingabe von ATTACK/DECAY für Stimme 1 (A=13, D=11).

50 Eingabe der hohen Frequenz für Stimme 3.

60 Eingabe von Lautstärke 15.

70 Eingabe für Beginn der Dreiecks-/Synchronwellenformsteuerung

für Stimme 1.

80 Zeitschleife.

90 Stop der Dreiecks-/Synchronwellenformsteuerung für Stimme 1.

100 Warten, dann Lautstärke abschalten.

Synchronisation wird in Zeile 70 eingeschaltet, in der die Bits 0, 1 und 4 von

Register 4 gesetzt werden. Bit 1 schaltet die Synchronisation zwischen Stimme 1

und Stimme 3 ein. Die Bits O und 4 dienen wie gewöhnlich der Austastung von

Stimme 1 und dem Setzen der Dreieckswellenform.

MUSIKPROGRAMMIERUNG 205

Bei der Ringmodulation (für Stimme 1 durch Setzen von Bit 3 des Registers 4 in

Zeile 70) wird die Dreiecksausgabe von Oszillator 1 durch eine “ringmodulierte “

Kombination von Oszillator 1 und 3 ersetzt. Hierdurch entsteht eine nicht-harmoni-

sche Oberwellenstruktur, mit der z. B. Klingel- oder Gonggeräusche nachgeahmt

werden können. Durch folgendes Programm wird ein Glockenspiel imitiert:

PROGRAMMBEISPIEL 10:

18 Seitz

26 FPORLSHATOS4 PORES +L a WERT

El PORES AL 125

na PORE St. 5
Bel PORES + 1a Se

Be FORE Sea. 1S

a FPORLELTOLS FORE S+4. 21

SA FORT=1 TOLER: HEART POKES re 28

2a FR T= 1 TO Eee MEE To ME T

Das Programm wird nun Zeile fur Zeile erklart.

ERKLARUNG VON PROGRAMMBEISPIEL 10:

Zeile(n) Beschreibung

10 Setzen von S als Soundchip-Startadresse.

20 Löschen der Soundchipregister.

30 Setzen der hohen Frequenz fur Stimme 1.

40 Setzen von ATTACK/DECAY für Stimme 1 (A=0, D=9).

50 Setzen der hohen Frequenz für Stimme 3.

60 Setzen von Lautstärke 15.

70 Zählen der Klingelimpulse, Setzen von Start für Dreieck, Ring-

modulation, Wellenformsteuerung für Stimme 1.

80 Zeitschleife, Stop der Dreieckswellenform, Ringmodulation.

90 Zeitschleife, nächster Klingelimpuls.

Die Effekte, die Sie durch Setzen der Parameter des SID des COMMODORE 64

erzielen können, sind zahllos und breit gefächert. Nur durch Experimentieren

können Sie die Einsatzmöglichkeiten des Gerätes herausfinden und schätzen-

lernen. Die in diesem Kapitel gegebenen Beispiele stellen wirklich nur die oberste

Spitze eines Eisbergs dar.

206 MUSIKPROGRAMMIERUNG

KAPITEL

_ MASCHINEN-
SPRACHE

WETS) anette altatclatsielectelal-W,

Wie schreibt man Programme in

WERT al ral sl ats) ol a=\elal=as |

Hexadezimaldarstellung

Adressierart |

Indizieren

Olah (=1g eo) geyele-Vanlaal=

Hinweise fur den Anfanger |

Vorbereitungen fur eine groBe Aufgabe

Befehlssatz des Mikroprozessors MCS6510

Speicherverwaltung beim

COMMODORE 64

KERNAL

KERNAL-Funktionen nach Einschalten der

Stromversorgung

Arbeiten mit Maschinensprache und BASIC

COMMODORE 64-Memory Map

(Speicherbelegung) |

207

WAS IST MASCHINENSPRACHE?

Das Herz jedes Mikrocomputers ist ein Mikroprozessor. Hierbei handelt es sich um

einen Spezial-Mikro-Chip, der das “Gehirn“ des Computers ausmacht. Der COM-

MODORE 64 bildet hierbei keine Ausnahme. Jeder Mikroprozessor versteht seine

speziellen Befehle, die man unter dem Begriff Maschinensprache zusammenfaßt.

Maschinensprache ist die einzige Programmiersprache, die Ihr COMMODORE 64

versteht. Es ist sozusagen die Muttersprache der Maschine.

Wenn Maschinensprache die einzige Sprache ist, die der COMMODORE 64

verstehen kann, wie kann er dann die CBM-BASIC-Programmiersprache verste-

hen? CBM-BASIC ist nicht die Maschinensprache vom COMMODORE 64. Wie

kann der COMMODORE 64 dann BASIC-Anweisungen wie z. B. PRINT und GOTO

verstehen?

Um diese Frage zu beantworten, müssen wir zunächst einmal klarlegen, was im

COMMODORE 64 passiert. Außer dem Gehirn, dem Mikroprozessor des COMMO-

DORE 64, gibt es noch das Maschinensprache-Programm, das in einem speziellen

Speicher abgelegt ist und nicht geändert werden kann. Und, was weitaus wichtiger

ist, es verschwindet nicht beim Abschalten des Geräts so wie von Ihnen geschrie-

bene Programme. Dieses Maschinenprogramm wird BETRIEBSSYSTEM genannt.

Der COMMODORE 64 weiß nach dem Einschalten, was er zu tun hat, weil das

BETRIEBSSYSTEM automatisch startet.

208 MASCHINENSPRACHE

Das BETRIEBSSYSTEM “organisiert“ den Speicherbereich fur die verschiedenen

Aufgaben. Außerdem erkennt es, welche Tasten Sie auf der Tastatur angeschlagen

haben, und zeigt diese auf dem Bildschirm an. Das BETRIEBSSYSTEM ist noch für

zahlreiche weitere Funktionen zuständig. Das BETRIEBSSYSTEM kann man sich

also als eine Art “Intelligenz und Persönlichkeit“ des COMMODORE 64 vorstellen.

Nach dem Einschalten des Geräts übernimmt das BETRIEBSSYSTEM also die

Kontrolle. Nach Erledigung seiner Aufgabe zeigt es an:

READY.

ue

Das BETRIEBSSYSTEM des COMMODORE 64 ermöglicht Ihnen danach eine

Eingabe über die Tastatur und ein Arbeiten mit dem Bildschirm-Editor. Der Bild-

schirm-Editor ermöglicht ein Bewegen des Cursors, Löschen, Einfügen usw. und ist

nur ein kleiner Teil des gesamten Betriebssystems.

Alle in CBM-BASIC zur Verfügung stehenden Befehle werden einfach durch ein

weiteres umfassendes Maschinensprache-Programm erkannt. Dieses umfangrei-

che Programm führt dann je nach BASIC-Befehl den entsprechenden Teil Maschi-

nensprache aus. Dieses Programm nennt man BASIC-INTERPRETER, da es die

Befehle nacheinander interpretiert, bis es auf einen nicht zu verstehenden Befehl

trifft. Dann wird die vertraute Meldung angezeigt:

?SYNTAX ERROR

READY.

Bi

WIE SIEHT DER MASCHINENCODE AUS?

Zum Ändern von Speicherplätzen müssen Sie mit den PEEK- und POKE-Anwei-

sungen von CBM-BASIC vertraut sein. Sie haben diese sicherlich schon für die

Graphikdarstellung sowie für Soundeffekte benutzt. Jeder Speicherplatz wird durch

eine eigene Nummer gekennzeichnet. Diese Nummer ist auch als “Adresse” eines

Speicherplatzes bekannt. Wenn Sie sich den Speicher des COMMODORE 64 als

eine Straße mit mehreren Häusern vorstellen, dann ist die Zahl an jeder Tür die

Adresse. Nun wollen wir feststellen, welche Häuser für welche Zwecke benutzt

werden.

MASCHINENSPRACHE 209

EINFACHE LISTE DER SPEICHERBELEGUNG DES
COMMODORE 64

ADRESSE BESCHREIBUNG

0&1

2

bis:

1023

1024

bis:

2039

2040

bis:

2047

2048

bis:

40959

40960

bis:

49151

49152

bis:

53247

53248

bis:

53294

55296

bis:

56296

56320

bis:

57343

57344

bis:

69505

6510-Register

Speicheranfang

Vom Betriebssystem beanspruchter Speicher

Bildschirmspeicher

SPRITE-Pointer

Dies ist Ihr Speicher. Hier sind Ihre BASIC- und/oder

Maschinensprachenprogramme gespeichert.

8K-CBM-BASIC-Interpreter

Besonderer RAM-Programmbereich

VIC-II-Register

Farb-RAM

Ein-/Ausgaberegister

8K-CBM-KERNAL-Betriebssystem

210 MASCHINENSPRACHE

Keine Sorge, wenn Sie jetzt noch nicht richtig die Beschreibung der einzelnen

Speicherteile verstehen. Dies wird spater noch genau behandelt.

Maschinensprache-Programme bestehen aus Anweisungen mit oder ohne Operan-

den (Parameter). Jede Anweisung benötigt einen Speicherplatz, und in den ein oder

zwei Adressen hinter der Anweisung ist der Operand enthalten.

In Ihren BASIC-Programmen benötigen Wörter wie z. B. PRINT und GOTO nur je

einen Speicherplatz (und nicht etwa einen Speicherplatz für jedes einzelne Zei-

chen). Der Inhalt des Speicherplatzes, der ein bestimmtes BASIC-Schlüsselwort

darstellt, wird “token“ genannt. In der Maschinensprache gibt es verschiedene

“tokens“ für die verschiedenen Anweisungen, die ebenfalls nur ein Byte beanspru-

chen (Speicherplatz = Byte). |
Maschinensprache-Anweisungen sind sehr einfach. Aus diesem Grund kann man

mit einer einzelnen Anweisung auch nicht sehr viel anfangen. Durch Maschinen-

sprache-Anweisungen wird entweder der Inhalt eines Speicherplatzes oder eines

der internen Register im Mikroprozessor geändert. Diese internen Register bilden

die Grundlage der Maschinensprache.

DIE REGISTER IM MIKROPROZESSOR 6510

AKKUMULATOR

Das ist DAS Register des Mikroprozessors. Durch verschiedene Maschinenspra-

che-Anweisungen können Sie den Inhalt eines Speicherplatzes im Akkumulator

abspeichern, den Akkumulatorinhalt in einen anderen Speicherplatz kopieren, die

Akkumulatorinhalte oder die Registerinhalte direkt und ohne Beeinflussung anderer

Speicherplätze ändern. Der Akkumulator ist außerdem das einzige Register, indem

Rechenoperationen ausgeführt werden können.

INDEXREGISTER X

Dies ist ein sehr wichtiges Register. Es gibt Anweisungen für nahezu alle Operatio-

nen, die mit dem Akkumulator möglich sind. Es gibt jedoch auch Anweisungen, die

nur für das X-Register wirksam sind. Die verschiedenen Maschinensprache-Anwei-

sungen ermöglichen Ihnen ein Kopieren eines Speicherplatzinhalts in das X-Regi-

ster, ein Kopieren des X-Registerinhalts in einen Speicherplatz sowie die direkte

Änderung des X- und anderer Register ohne Beeinflussung anderer Speicher-

plätze.

MASCHINENSPRACHE 211

INDEXREGISTER Y

Dies ist ebenfalls ein sehr wichtiges Register. Es gibt Anweisungen für nahezu alle

Operationen, die mit dem Akkumulator und dem X-Register möglich sind. Es gibt

jedoch auch Anweisungen, die nur für Register Y wirksam sind.

Verschiedene Maschinensprache-Anweisungen ermöglichen Ihnen ein Kopieren

eines Speicherplatzinhaltes in Register Y, das Kopieren des Y-Registerinhalts in

einen Speicherplatz sowie die direkte Änderung des Y- oder anderer Register ohne

Beeinflussung der übrigen Speicherplätze.

STATUSREGISTER

Dieses Register besteht aus acht “Flags” (Flag = Anzeige, ob ein Ereignis

eingetreten ist oder nicht).

PROGRAMMZÄHLER

Dieser enthält die Adresse der derzeitig ausgeführten Maschinensprache-Anwei-

sung. Da das Betriebssystem beim COMMODORE 64 (und übrigens auch bei allen

anderen Computern) ständig aktiv ist, ändert sich auch der Programmzahler ständig.

Er kann nur zusammen mit dem Mikroprozessor gestoppt werden.

STAPELZEIGER (STACKPOINTER)

Dieses Register enthält die Adresse des ersten freien Stapelplatzes. Der Stapel

(Stack) wird für die temporäre Speicherung von Maschinensprache-Programmen

sowie vom Computer beansprucht.

EIN-/AUSGABEPORT

Dieses Register belegt die Speicherplätze O (Datenrichtungs-Register) und 1

(Datenregister). Es handelt sich um ein 8-Bit-Ein-/Ausgabeport. Beim COMMO-

DORE 64 wird dieses Register zur Speicherverwaltung benutzt. Der Chip kann dann

mehr als 64 K RAM- und ROM-Speicherkapazitat kontrollieren.

Die Einzelheiten dieser Register werden hier nicht erklärt. Dies erfolgt später bei —

Erklärung der jeweiligen Funktionsweise.

212 MASCHINENSPRACHE

WIE SCHREIBT MAN MASCHINENSPRACHE-
PROGRAMME?

Da der COMMODORE 64 nicht die Möglichkeit zum Schreiben und Editieren von

Maschinensprache-Programmen bietet, müssen Sie hierzu entweder ein Programm

benutzen oder selbst ein BASIC-Programm schreiben, das Ihnen das Schreiben in

Maschinensprache ermöglicht.

Die am weitesten verbreitete Methode zum Schreiben von Maschinensprache-

Programmen sind Assembler-Programme. Diese Software-Pakete ermöglichen

Ihnen das Schreiben von Maschinensprache-Anweisungen in standardmäßigem

Mnemonik-Format. Hierdurch lassen sich Programme in Maschinensprache

wesentlich leichter lesen als eine komplizierte Zahlenreihe. Wir fassen zusammen:

Ein Programm, das Ihnen das Schreiben von Maschinensprache-Programmen im

Mnemonik-Format ermöglicht, wird Assembler genannt. Entsprechend nennt man

ein Programm, bei dem ein Maschinensprache-Programm im Mnemonik-Format

angezeigt wird, Disassembler. Für den COMMODORE 64 steht eine Diskette mit

einem Maschinensprache-Monitor (mit Assembler/Disassembler usw.) zur Verfü-

gung:

MONITOR 64

Diese Diskette MONITOR 64, die Sie bei Ihrem COMMODORE-Händler bekom-

men, enthält ein Programm, das Ihnen den Übergang von CBM-BASIC in die

Maschinensprache ermöglicht. Auf diese Weise kann der Inhalt der internen Regi-

ster des Mikroprozessors 6510 sowie einzelne Speicherbereiche auf dem Bild-

schirm angezeigt und mit Hilfe des Bildschirm-Editors aufbereitet werden. Außer-

dem gehören hierzu Assembler, Disassembler sowie weitere Funktionen, die Ihnen

das Schreiben und Editieren von Maschinensprache-Programmen erleichtern. Sie

müssen nicht unbedingt einen Assembler zum Schreiben in Maschinensprache

benutzen, er erleichtert Ihnen diese Aufgabe jedoch wesentlich. Für das Schreiben

von Programmen in Maschinensprache empfehlen wir mit Nachdruck den Kauf

eines Assemblers, da Sie sonst das Maschinensprache-Programm in den Speicher

POKEn müssen.

In dieser Anleitung werden ab jetzt die Beispiele in dem Format von MONITOR 64

gegeben. Fast alle Assembler-Formate sind gleich. Aus diesem Grund werden die

hier gezeigten Maschinensprache-Beispiele wahrscheinlich mit beliebigen

Assemblern kompatibel sein. Bevor wir jedoch weitere Merkmale von MONITOR 64

besprechen, müssen wir zunächst das Hexadezimal-Zahlensystem erklären.

MASCHINENSPRACHE 213

HEXADEZIMALDARSTELLUNG

Die Hexadezimaldarstellung wird von den meisten Maschinensprache-Programmie-

rern benutzt, wenn es sich um eine Zahl oder Adresse im Maschinensprache-

Programm handelt.

Einige Assembler erlauben den Bezug auf Adressen und Zahlen in Dezimaldarstel-

lung (Basis 10), Binärdarstellung (Basis 2) oder sogar Oktal (Basis 8). Natürlich ist

auch die Hexadezimaldarstellung (Basis 16) (oder, wie viele einfach sagen, “Hex“)

möglich. Der Assembler übernimmt für Sie die Umwandlungen.

Hexadezimaldarstellung sieht zunächst kompliziert aus, wird jedoch, wie die mei-

sten Dinge, nach etwas Übung schnell verständlich.

Dezimalzahlen (Zehnersystem, also Basis 10) sind Zahlen aus dem Bereich von O

bis 9. Binärzahlen (Basis 2) haben Ziffern von O bis 1. Die größte Ziffer ist immer

gleich der Basis minus 1. DIES GILT FÜR ALLE ZAHLENBASEN. Entsprechend

müssen Hexadezimalzahlen Ziffern zwischen O und 15 haben. Für die Zahlen 10 bis

15 stehen jedoch keine einstelligen Ziffern zur Verfügung. Aus diesem Grund

werden statt dessen die ersten sechs Buchstaben des Alphabets benutzt:

DEZIMAL HEXADEZIMAL BINÄR

00000000

00000001

00000010

0000001 1

00000100

00000101

00000110

00000111

00001000

00001001

00001010

00001011

00001100

00001101

00001110

00001111

00010000

—

o
O
O
O
N
S
N
O

VI

P
@
O
D
P
M
D

+
O

—

m
h

o
n
m
o

u
>

o
e
 e

ı9

n
n

PP

w
m

-

oo

—
 e
k

ok
,

ot

o
f
.

i

m
o

P
D

Nachstehend sehen Sie ein weiteres Beispiel, wie eine Dezimalzahl (Basis 10)

aufgebaut wird:

214 MASCHINENSPRACHE

Basis mit

steigender Potenz: 10° 10° 10' 10°

Entspricht: 1000 100 10 1

Bei 4569 (Basis 10) 4 5 6 9

=(4x1000)+(5x100)+(6x10)+(9x 1)

Nun wollen wir uns ansehen, wie die Basis 16 (Hexadezimalzahl) entsteht:

Basis mit

steigender Potenz: 16° 16° 16' 16°

Entspricht: 4096 256 16 1

Bei 11D9 (Basis 16) 1 1 D 9

=1x4096+1x256+13x16+9x 1

Daher ist 4569 (Basis 10) = 11D9 (Basis 16).

Adressierbare Speicherplätze liegen zwischen 0-65535 (wie bereits erläutert).

Dieser Bereich lautet in Hexadezimaldarstellung O—FFFF.

Normalerweise steht vor Hexadezimalzahlen ein Dollarzeichen ($). Auf diese Weise

wird es von Dezimalzahlen unterschieden. Wir wollen uns nun mit MONITOR 64

einige Hexadezimalzahlen anschauen, indem wir den Inhalt eines Speicherplatzes

anzeigen lassen. Geben Sie folgendes über die Tastatur ein:

Ba

PC SR AC XR YR SP

.. 0401 32 04 5E 00 F6 (Kann unterschiedlich sein)

Wird nun

.M 0000 0020 (and press).

eingegeben und RETURN gedrückt, sehen Sie Reihen von neun Hexadezimalzah-

len. Die erste vierstellige Zahl ist die Adresse des ersten in dieser Reihe gezeigten

Speicherbytes. Die anderen acht Zahlen sind die Speicherplatzinhalte, beginnend

bei der Startadresse.

Sie sollten tatsächlich lernen, hexadezimal zu “denken“. Dies ist nicht allzu

schwierig, da Sie sich keine Gedanken über die Rückumwandlung in Dezimaldar-

stellung machen müssen.

Wenn Sie z. B. sagen, ein bestimmter Wert ist bei $14ED anstatt 5357 gespeichert,

so sollte dies für Sie keinen Unterschied machen.

MASCHINENSPRACHE 215

DIE ERSTE MASCHINENSPRACHE-ANWEISUNG

LDA — SPEICHERUBERTRAGUNG ZUM AKKUMULATOR

Bei der Assembler-Sprache 6510 sind Mnemoniks stets drei Zeichen. LDA bedeu-

tet “... zum Akkumulator übertragen“. Was in den Akkumulator geladen werden

soll, wird durch den/die Parameter der entsprechenden Anweisung bestimmt. Der

Assembler “weiß“, welcher Befehl durch die einzelnen Mnemoniks dargestellt ist.

Beim “Assemblieren“ einer Anweisung werden einfach die entsprechenden Zah-

lencodes und die entsprechenden Parameter in den Speicher (ab der angegebenen

Adresse) geladen.

Einige Assembler zeigen Fehlermeldungen oder Warnungen an, wenn Sie einen

Ausdruck assemblieren wollen, der bei diesem Assembler oder beim Mikroprozes-

sor 6510 nicht möglich ist.

Wird vor den Parameter der Anweisung das Symbol “#“ gesetzt, so bedeutet dies,

daß in das in der Anweisung angegebene Register der hinter “#" stehende Wert

geladen werden soll. Z. B.:

LDA #$05 + Ge)

Durch diese Anweisung wird $05 (Dezimal 5) in das Akkumulatorregister geladen.

Der Assembler lädt in die entsprechende Adresse für diese Anweisung $AS9 (gleich

Zahlencode für diese besondere Anweisung in dieser Betriebsart). $05 wird in den

nächsten Platz nach dem Platz mit der Anweisung ($A9) geladen.

Steht vor einem Anweisungsparameter ein “#", d. h., ist der Parameter ein “Wert”

und nicht ein Verweis auf einen Speicherplatz oder ein Register, dann benutzt man

den Unmittelbar-Modus. Hierzu wollen wir den Vergleich mit einem anderen Modus

machen:

Soll der Inhalt von Speicherplatz $102E in den Akkumulator geladen werden,

benutzen Sie den “Absolut-Modus“ der Anweisung:

LDA $102E

Der Assembler kann zwischen den zwei verschiedenen Modi unterscheiden, da

beim letzteren vor dem Parameter kein “#" steht. Der Mikroprozessor 6510 kann

zwischen dem Unmittelbar- und dem Absolut-Modus der LDA-Anweisung unter-

scheiden, da diese unterschiedliche Zahlencodes haben. Die Zahlencodes für LDA

im Sofort-Betrieb lauten $A9 und im Absolut-Betrieb $AD.

Aus den Mnemoniks von Anweisungen ergibt sich normalerweise bereits, was

diese Anweisungen bedeuten. Was, glauben Sie, bedeutet z. B. LDX?

Wer hat da gesagt “Lade Register X mit. . .“? Sie sind Klassenbester.

216 MASCHINENSPRACHE

Aber auch wer dies nicht gleich wußte, braucht sich keine Sorgen zu machen. Zum

Erlernen der Maschinensprache braucht man Geduld.

Die verschiedenen internen Register kann man sich als spezielle Speicherplätze

vorstellen. In ihnen kann nämlich auch ein Byte abgespeichert werden. Wir brau-

chen das Binär-Zahlensystem (Basis 2) nicht zu erklären, da hierfür die gleichen

Prinzipien wie bei der Hexadezimal- und Dezimaldarstellung gelten. Ein “Bit“ ist

jedoch eine Binärstelle, und acht Bits ergeben ein Byte! Die max. mögliche Zahl in

einem Byte ist daher die größtmögliche achtstellige Binärzahl. Diese Zahl ist

11111111 (binär), was $FF (hexadezimal) oder 255 (dezimal) entspricht. Sie haben

sich sicherlich schon gewundert, warum in einem Speicherplatz nur Zahlen von O

bis 255 eingegeben werden können. Versuchen Sie, POKE 7680,260 (BASIC-

Anweisung “die Zahl 260 in den Speicherplatz 7680 speichern“), weiß der BASIC-

Interpreter, daß nur die Zahlen O bis 255 zulässig sind, und der COMMODORE 64

zeigt dann an:

?ILLEGAL QUANTITY ERROR

READY.

=

Wenn ein Byte auf $FF (hex) begrenzt ist, wie wird dann der Adreßparameter in der

Absolut-Anweisung “LDA$102E“ im Speicher ausgedrückt? Er wird in zwei Bytes

abgelegt (da er natürlich nicht in eines paßt). Die unteren (rechten) zwei Stellen der

Hexadezimaladresse bilden das “untere Byte“ der Adresse (Low Byte). Entspre-

chend bilden die oberen (äußerst linken) zwei Stellen das “obere Byte“ (High Byte).

Für den 6510 müssen die Adressen zunächst durch das untere und danach durch

das obere Byte angegeben werden. Die Anweisung “LDA$102E“ wird also im

Speicher durch drei aufeinanderfolgende Werte dargestellt.

$AD, $2E, $10

Nun müssen Sie nur noch eine weitere Anweisung lernen, und Sie können Ihr

erstes Programm schreiben. Diese Anweisung ist BRK. Eine genaue Erklärung

dieser Anweisung finden Sie im “Programmierhandbuch zum M.O.S. 6502“. Sie

können sich dies nun als END-Anweisung in Maschinensprache vorstellen.

Wenn wir mit MONITOR 64 ein Programm schreiben und die BRK-Anweisung am

Ende eingeben, kehrt das Programm nach der Ausführung in den Monitor zurück.

Dies passiert nicht, wenn Ihr Programm einen Fehler enthält oder wenn die BRK-

Anweisung nicht erreicht wird.

MASCHINENSPRACHE 217

SCHREIBEN DES ERSTEN PROGRAMMS

Wenn Sie schon uber die POKE-Anweisung in BASIC Zeichen auf den Bildschirm

gebracht haben, werden Sie wissen, daß die Zeichen-Codes zum POKEn sich von

den CBM-ASCll-Zeichenwerten unterscheiden. Geben Sie z.B.:

PRINT ASC(“A“)

ein und driicken , dann antwortet der COMMODORE 64 mit:

65

READY.

=

Um jedoch auf den Bildschirm ein “A“ zu POKEn (Code = 1), wird folgendes

eingegeben:

Zum Löschen des Bildschirms

POKE 1024, 1 (und) (1024 ist der Bildschirmspeicheranfang)

Das “P“ der POKE-Anweisung muß nun ein “A“ sein.

Nun wollen wir dies in Maschinensprache probieren. Geben Sie folgendes im

MONITOR 64 ein:

(Der Cursor muß nun neben einem “Punkt“ blinken.)

A 1400 LDA #$01 (und drücken)

Der COMMODORE 64 zeigt an:

A 1400 LDA #$01

A 1402 5

Uber die Tastatur eingeben:

‚A 1402 STA $0400

218 MASCHINENSPRACHE

(Uber die STA-Anweisung wird der Akkumulatorinhalt an einen bestimmten Spei-

cherplatz gespeichert.)

Der COMMODORE 64 zeigt nun an:

A 1405 @

Geben Sie nun folgendes ein:

A 1405 BRK

Den Bildschirm loschen und

G 1400

eingeben.

Das “G“ muß sich nun in “A“ verwandeln.

Und schon haben Sie Ihr erstes Programm in Maschinensprache geschrieben.

Durch dieses Programm wird ein Zeichen “A“ in den ersten Bildschirmspeicher-

platz geladen.

Wir wollen uns nun mit weiteren Anweisungen und Funktionsweisen befassen.

ADRESSIERART

ZERO-PAGE

Wie bereits erklärt, werden Absolutadressen durch ein oberes und unteres Byte

ausgedrückt. Das obere Byte bezeichnet man oft auch als Speicherseite (Page).

Z. B. ist Adresse $1637 in Seite $16 (22), $0277 in Seite $02 (2). Es gibt jedoch

noch eine besondere Art der Adressierung, die Zero-Page-Adressierung. Wie der

Name bereits besagt, bezieht es sich auf das Adressieren von Speicherplätzen auf

der Zero-Page (Seite Null).

Diese Adressen haben daher STETS ein oberes Byte null. Die Zero-Page-Adressie-

rung benötigt daher zur Beschreibung der Adresse lediglich ein Byte, und nicht wie

bei der Absolut-Adressierung zwei Bytes. Die Zero-Page-Adressierung weist den

Mikroprozessor an, die obere Adresse als null anzusehen. Durch diese Adressierart

ist daher ein Bezug auf Speicherplätze möglich, deren Adressen zwischen $0000

und $00FF liegen. Dies scheint jetzt noch nicht allzu wichtig zu sein, Sie werden das

Prinzip der Zero-Page-Adressierung jedoch bald brauchen.

MASCHINENSPRACHE 219

STAPEL (STACK)

Der Mikroprozessor 6510 hat einen Stack. Dieser wird für die temporäre Speiche-

rung vom Programmierer und auch vom Mikroprozessor selber benutzt. Er "merkt

sich“ z. B. auch bestimmte Reihenfolgen. Die GOSUB-Anweisung in BASIC, die

den Aufruf eines Unterprogramms ermöglicht, muß sich z. B. die Aufrufebene

merken. Erfolgt dann im Unterprogramm die RETURN-Anweisung, dann weiß der

BASIC-Interpreter, an welche Stelle er zurückgehen und die Ausführung fortsetzen

muß. Wird die GOSUB-Anweisung in einem Programm vom BASIC-Interpreter

gelesen, dann gibt er seine derzeitige Position vor dem Übergang zum Unterpro-

gramm in den Stack ein. Bei der Ausführung von RETURN wird diese Information

wieder vom Stack gelesen.

Der Interpreter weiß also nun, an welcher Stelle er sich vor dem Unterprogramm-

Aufruf befunden hat. Der Interpreter arbeitet z. B. mit der PHA-Anweisung (Spei-

cherung des Akkumulators im Stackregister) und mit PLA (Speicherung eines

Stackwerts im Akkumulator). Auch das Statusregister kann auf diese Weise über die

Anweisungen PHP bzw. PLP gespeichert werden. Der Stack ist 256 Byte lang und

befindet sich auf Speicherseite 1. Er liegt im Adressenbereich von $0100 bis $O1FF.

Er wird rückwärts verwaltet, d. h., die erste Position im Stack liegt bei $01FF und die

letzte bei $0100. Ein weiteres Register im Mikroprozessor 6510 nennt man Stapel-

zeiger (Stackpointer). Dieser zeigt stets auf den nächsten verfügbaren Stapelplatz.

Eine Eingabe erfolgt daher stets in den Stapelplatz, auf den der Stapelzeiger zeigt.

Der Zeiger wird dann zur nächsten Position (in Rückwärtsrichtung) bewegt. Wird

eine Information vom Speicher abgerufen, dann wird der Stapelzeiger inkremen-

tiert, und das vom Zeiger angegebene Byte wird in das jeweilige Register gesetzt.

Nun haben wir also unmittelbare, Zero-Page- und Absolut-Anweisungen behandelt.

Dabei haben wir uns auch schon ein bißchen mit der implizierten Adressierung

beschäftigt. Hierunter versteht man, daß eine Information durch die Anweisung

selbst impliziert wird, d. h., auf welche Register, Kennzeichen und Speicher sich die

Anweisung bezieht. Die behandelten Beispiele sind PHA, PLA, PHP und PLP, die

sich auf Stapelverarbeitung, Akkumulator bzw. Statusregister beziehen.

Anmerkung: Nachfolgend steht X für X-Register, A für Akkumulator, Y für Y-Indexregister, S für

Stapelzeiger und P für Prozessorstatus.

220 MASCHINENSPRACHE

INDIZIEREN

Das Indizieren ist beim Arbeiten mit dem Mikroprozessor 6510 von außerordentli-

cher Bedeutung. Hierunter versteht man das “Erstellen einer Adresse aus einer

Basisadresse plus Inhalt von X- oder Y-Indexregister“.

Enthält X z. B. $05 und der Mikroprozessor führt eine LDA-Anweisung im “absolu-

ten X-indizierten Modus“ mit der Basisadresse (z. B. $9000) durch, dann lautet der

tatsächliche Platz, der in Register A geladen wird, $9000 + $05 = $9005. Das

Mnemonik-Format einer absoluten indizierten Anweisung entspricht dem einer

absoluten Anweisung. Der Unterschied liegt lediglich darin, daß die Indexangabe

“ X“ oder “,Y“ zur Adresse addiert wird.

BEISPIEL:

LDA $9000,X

Beim Mikroprozessor 6510 stehen fur die Adressierung die Methoden absolut

indiziert, Zero-Page-indiziert, indirekt indiziert sowie indiziert indirekt zur Verfu-

gung.

INDIREKT INDIZIERT

Hierbei ist als Index nur das Y-Register möglich. Die tatsächliche Adresse darf nur in

der Zero-Page liegen, und die Anweisungsart nennt man indirekt, weil die Zero-

Page-Adresse der Anweisung das untere Byte der tatsächlichen Adresse und das

darauffolgende Byte das obere Byte enthält.

BEISPIEL:

Nehmen wir z. B. an, daß Adresse $01 $45 und Adresse $02 $1E enthält. Wenn die

Anweisung zum Laden des Akkumulators im indirekt indizierten Modus ausgeführt

und die angegebene Zero-Page-Adresse $01 ist, dann lautet die tatsächliche

Adresse:

Niederwertiges Byte= Inhalt von $01

Höherwertiges Byte = Inhalt von $02

Y-Register = $00

Die tatsachliche Adresse ist also $1E45 + Y = $1E45.

Dieser Modus enthalt-in der Tat ein indirektes Prinzip, auch wenn dies zunächst nur

schwer zu verstehen ist.

MASCHINENSPRACHE 221

INDIZIERT INDIREKT

Hierbei kann nur das X-Register als Index benutzt werden. Hierbei gilt das gleiche

wie bei der indirekten Indizierung, außer daß hierbei die Zero-Page-Adresse des

Zeigers indiziert wird und nicht die tatsächliche Basisadresse. Aus diesem Grund ist

die tatsächliche Basisadresse auch wirklich diese Adresse, da der Index bereits für

die indirekte Indizierung benutzt wurde. Die indizierte indirekte Adressierung würde

oft benutzt, wenn sich eine Tabelle mit indirekten Zeigern auf der Zero-Page

befindet und das X-Register dann den zu benutzenden indirekten Zeiger angeben

würde. |

BEISPIEL:

Nehmen wir an, Adresse $02 enthält $45 und Adresse $03 $10. Wird die Anwei-

sung zum Laden des Akkumulators im indiziert indirekten Betrieb ausgeführt und ist

die angegebene Zero-Page-Adresse $02, dann lautet die tatsächliche Adresse:

Niederwertiges Byte= Inhalt von ($02 + X)

Höherwertiges Byte = Inhalt von ($03 + X)

X-Register = $00

Der tatsächliche Zeiger zeigt daher auf = $02 + X = $02.

Die tatsächliche Adresse ist daher die indirekte Adresse in $02, also $1045.

Das Prinzip wird schon durch die Bezeichnung dieses Modus beschrieben, auch

wenn dies zunächst nur schwer zu verstehen ist. Wir wollen das Problem von einer

anderen Seite betrachten:

LDA #$00 — load low order actual base address

STA $06 — set the low byte of the indirect address

LDA #$16 — load high order indirect address

STA $07 — set the high byte of the indirect address

LDX #$05 — set the indirect index (X)

LDA ($01,X) — load indirectly indexed by X

Anmerkung: Von diesen beiden indirekten Adressierarten wird am häufigsten die erste (indirekt

indiziert) benutzt.

222 MASCHINENSPRACHE

VERZWEIGUNGEN UND ÜBERPRÜFUNGEN

Ein weiteres wichtiges Prinzip der Maschinensprache ist die Möglichkeit, bestimmte

Bedingungen zu überprüfen und zu erkennen. Dies entspricht der Struktur “IF...

THEN, IF ... GOTO“ in CBM-BASIC.

Die verschiedenen “flags“ im Statusregister werden durch die Anweisungen unter-

schiedlich beeinflußt. Ein Flag wird z. B. gesetzt, wenn eine Anweisung als Ergebnis

eine Null hat und wird gelöscht, wenn das Ergebnis ungleich null ist. Die Anweisung

LDA #$00

führt zum Setzen eines “Nullergebnis “-Flags, da durch die Anweisung eine Null in

den Akkumulator geladen wird.

Es gibt eine Gruppe von Anweisungen, durch die es bei bestimmten Bedingungen

zu einer Verzweigung zu einem anderen Programmteil kommt. Eine Verzweigungs-

anweisung ist z. B. BEQ (Verzweigung, wenn das Ergebnis gleich 0). Eine Verzwei-

gung erfolgt, wenn die Bedingung erfüllt ist. Ist die Bedingung nicht erfüllt, wird das

Programm mit der nächsten Anweisung fortgesetzt. Es erfolgt keine Verzweigung

durch das Ergebnis der vorherigen Anweisung(en), sondern eine interne Überprü-

fung des Statusregisters. Wie bereits erwähnt, befindet sich im Statusregister das

“Nullergebnis “-Flag. Durch die BEQ-Anweisung erfolgt eine Verzweigung, wenn

dieses Flag (Z) gesetzt ist. Für jede Verzweigungsanweisung gibt es ein entspre-

chendes Gegenstück. Das Gegenstück für BEQ lautet z. B. BNE (Verzweigung,

wenn das Ergebnis ungleich 0, d. h. wenn Z nicht gesetzt ist).

Die Indexregister haben eine Anzahl zugehöriger Anweisungen, durch die ihre

Inhalte geändert werden. Durch die Anweisung INX wird z. B. das X-Indexregister

inkrementiert. Enthält das X-Indexregister vor der Inkrementierung $FF (max.

Anzahl für das X-Register), dann erfolgt ein Sprung zurück zu O. Soll ein Programm

solange fortgesetzt werden, bis die Inkrementierung des X-Index erfolgte, so kann

für diese “Schleife“ also die BNE-Anweisung benutzt werden.

Das Gegenstück zu INX ist DEX, also das Dekrement des X-Indexregisters. Ist das

X-Indexregister 0, dann erfolgt durch DEX ein Sprung zu $FF. Entsprechend gelten

INY und DEY für das Y-Indexregister.
Wenn das Programm nun aber nicht warten soll, bis X oder Y=O sind (bzw. nicht O

sind)? Hierfür gibt es die Vergleichsanweisungen CPX und CPY, mit denen der

Maschinensprache-Programmierer die Indexregister mit bestimmten Werten und

sogar den Inhalten von Speicherplätzen überprüfen kann. Wollen Sie z. B. sehen,

ob das X-Register $40 enthält, benutzen Sie folgende Anweisung:

MASCHINENSPRACHE 223

CPX #$40 — Vergleiche X mit “WERT“ $40.

BEQ — Verzweigung zu einer anderen Programmstelle, wenn

(andere diese Bedingung erfüllt ist.

Programm-

stelle)

Die Vergleichs- und Verzweigungsanweisungen spielen eine wichtige Rolle bei

jedem Maschinensprache-Programm.

Beim MONITOR 64 ist der in einer Verzweigungsanweisung angegebene Operand

die Adresse des Programmteils, zu dem gegebenenfalls eine Verzweigung erfolgt.

Der Operand gibt jedoch lediglich die Sprungweite an, durch die man von der

derzeitigen Programmposition zur angegebenen Adresse gelangt. Die Sprungweite

kann maximal 1 Byte umfassen, so daß der mögliche Bereich für eine Verzwei-

gungsanweisung beschränkt ist. Eine Verzweigung kann 127 Bytes vorwärts bzw.

128 rückwärts erfolgen.

Anmerkung: Hieraus ergibt sich ein Gesamtbereich von 255 Bytes, der natürlich dem max. Wertebe-

reich eines Bytes entspricht.

MONITOR 64 zeigt Ihnen, wenn Sie bei der Verzweigung den Bereich überschrei-

ten. Er kann diese Anweisung nämlich nicht assemblieren. Darüber brauchen Sie

sich jedoch jetzt keine Sorgen zu machen, denn mit solchen Verzweigungen

werden Sie sich vorläufig noch nicht beschäftigen. Die Verzweigung ist eine

“schnelle” Anweisung der Maschinensprache, da die Verschiebung gegen eine

Absolutadresse erfolgt. MONITOR 64 ermöglicht die Eingabe einer Absolutadresse

und berechnet dann die korrekte Verschiebung. Dies ist nur einer von vielen

Vorteilen des Arbeitens mit einem Assembler.

Anmerkung: Es kann nicht jede einzelne Verzweigungsanweisung behandelt werden. Bezüglich

weiterer Einzelheiten siehe Literaturverzeichnis in Anhang F.

UNTERPROGRAMME

In Maschinensprache können Sie (genau wie beim Arbeiten mit BASIC) Unterpro-

gramme aufrufen. Die entsprechende Anweisung lautet JSR (Sprung zum Unter-

programm), gefolgt von der angegebenen Absolutadresse.

Das Betriebssystem enthält ein Maschinensprache-Unterprogramm, durch das ein

Zeichen auf dem Bildschirm angezeigt wird. Der CBM-ASCII-Code des Zeichens

muß vor dem Aufruf im Akkumulator enthalten sein. Die Adresse dieses Unterpro-

gramms lautet $FFD2.

224 MASCHINENSPRACHE

Um “HI“ auf dem Bildschirm anzuzeigen, ist folgendes Programm notig:

A 1400 LDA #$48 — Laden des CBM-ASCII-Codes von “H“.

AA 1402 JSR $FFD2 — Anzeigen.

‚A 1405 LDA #$49 — Laden des CBM-ASCII-Codes von “I“.

‚A 1407 JSR $FFD2 — Dieses auch anzeigen.

‚A 140A LDA #$0D — Eine Zeilenschaltung anzeigen.

‚A 140C JSR $FFD2

‚A 140F BRK — Rückkehr zu MONITOR 64.

.G 1400 — Anzeige von “HI” und Rückkehr zu

MONITOR 64.

Dieses Programm zum Anzeigen eines Zeichens ist Teil der KERNAL-Sprungta-

belle. JMP entspricht der BASIC-Anweisung GOTO. Hierbei erfolgt ein Sprung zur

angegebenen Absolutadresse. Der KERNAL besteht aus einer langen Liste von

Standard-Unterprogrammen, über die sämtliche Ein- und Ausgaben beim COMMO-

DORE 64 gesteuert werden. Jede Eingabe in KERNAL springt zu einem Unterpro-

gramm im Betriebssystem. Diese “Sprungtabelle“ liegt zwischen den Speicherplät-

zen $FF84 und $FFF5 im Betriebssystem. Eine genaue Erklärung finden Sie im

Abschnitt “KERNAL“ dieses Handbuchs. Um zu zeigen, wie einfach und leistungs-

stark der KERNAL ist, wollen wir hier jedoch einige Programmbeispiele behandeln.

Die soeben gelernten Methoden wollen wir nun in einem anderen Programm

benutzen. Dies erleichtert Ihnen, die Anweisungen im Zusammenhang zu sehen:

Über dieses Programm wird das Alphabet mit Hilfe einer KERNAL-Routine ange-

zeigt. Die einzige neue Anweisung lautet TXA (Übertragung vom X-Register zum

Akkumulator).

‚A 1400 LDX #841 X = CBM-ASCII von TA”.

‚A 1402 TXA — A=X.

A 1403 JSR $FFD2 — Zeichen anzeigen.
‚A 1406 INX — Zählung des nichtadressierbaren

Hilfsspeichers.

‚A 1407 CPX #$5B — Haben wir “Z“ überschritten?

‚A 1409 BNE $1402 — Nein, zuruckgehen und fortsetzen.

‚A 140B BRK — Ja, Rückkehr zu MONITOR 64.

MASCHINENSPRACHE 225

Damit der COMMODORE 64 das Alphabet anzeigt, geben Sie folgenden Befehl ein:

.G 1400

Die Kommentare neben dem Programm erklaren Programmablauf und Logik. Ein

Programm sollten Sie zunächst auf Papier schreiben und danach in möglichst

kleinen Teilen ausprobieren.

HINWEISE FÜR DEN ANFÄNGER

Maschinensprache erlernt man am besten, indem man sich Maschinensprache-

Programme von anderen anschaut. Solche Programme werden ständig in Zeitun-

gen und Zeitschriften veröffentlicht. Beschäftigen Sie sich mit dem Programm, auch

wenn dieses sich auf einen anderen Computer bezieht, der mit dem Mikroprozessor

6510 (oder 6502) arbeitet. Vergewissern Sie sich, ob Sie den Code verstehen. Dies

erfordert Ausdauer, besonders wenn es sich um eine Ihnen noch nicht bekannte

Technik handelt. Dies kann sich als äußerst mühsam erweisen, bei ausreichender

Geduld gehen Sie doch als Sieger hervor.

Nachdem Sie andere Maschinensprache-Programme angesehen haben, MÜSSEN

Sie unbedingt eigene schreiben. Hierbei kann es sich um Dienstprogramme für Ihr

BASIC-Programm oder um ein reines Maschinensprache-Programm handeln.

Sie sollten auch die entweder in dem Computer oder in einem Programm verfügba-

ren Hilfsmittel benutzen, die Ihnen beim Schreiben, Aufbereiten sowie Überprüfen

von Maschinensprache-Programmen helfen. Als Beispiel dient hier der KERNAL,

der Ihnen die Tastenabfrage, Textanzeige, Steuerung von Peripherie-Geräten wie

z. B. Diskettenstation, Drucker, Modem usw., Speicherverwaltung und Bildschirm-

steuerung ermöglicht. Der KERNAL ist äußerst leistungsstark, und seine Benutzung

kann daher mit Nachdruck empfohlen werden (siehe “KERNAL“ Seite 264).

Vorteile der Maschinensprache beim Programm-Schreiben:

1. Geschwindigkeit — Maschinensprache ist hundert- und manchmal auch tau-

sendmal schneller als z. B. BASIC.

2. Sicherheit — Ein Maschinensprache-Programm ist sozusagen “idiotensicher“,

d.h. der Benutzer kann nur das ausführen, was das Programm erlaubt. Bei

BASIC kann der Benutzer den BASIC-Interpreter z. B. dadurch “aussteigen

lassen“, daß er eine O eingibt. Das kann u. U. zu folgender Anzeige führen:

226 MASCHINENSPRACHE

?DIVISION BY ZERO ERROR IN LINE 830

READY.

=

Der Computer kann also nur dann voll genutzt werden, wenn man Maschinenspra-

che-Programme benutzt.

VORBEREITUNGEN FÜR EINE GROSSE AUFGABE

Wenn man eine große Aufgabe in Maschinensprache vorbereitet, so wurden meist

schon eine Menge Dinge unbewußt durchdacht. Sie überlegen, wie bestimmte

Vorgänge in Maschinensprache ausgeführt werden. Ganz zu Beginn sollten Sie das

Programm zunächst auf ein Blatt Papier schreiben. Benutzen Sie Blockschaltbilder

des Speichers, Funktionsmodule des erforderlichen Codes sowie einen Programm-

ablauf.

Nehmen wir an, Sie wollen ein Roulette-Spiel in Maschinensprache schreiben. Dies

könnte wie folgt entworfen werden:

Titel anzeigen.

Fragen, ob der Spieler Anleitungen braucht.

JA — anzeigen — geh zum Start.

NEIN — geh zum Start.

Beginn der Initialisierung.

HAUPTanzeige, Roulette-Tisch.

Wetteinsätze annehmen.

Rad drehen.

Rad verlangsamen und anhalten.

Wetteinsätze überprüfen und Ergebnis feststellen.

Spieler informieren.

Hat der Spieler noch Geld?

JA — Kehr zur Hauptanzeige zurück.

NEIN — Spieler informieren und Rückkehr zum Start.

Dies ist der Hauptentwurf. Diese einzelnen Bausteine können dann noch weiter

unterteilt werden. Ein großes Problem wird also in immer kleinere Teile unterteilt.

Auf diese Weise können Sie sich auch an zunächst unlösbar erscheinende Pro-

bleme heranwagen.

Hier hilft jedoch nur eines: Üben, üben, üben.

MASCHINENSPRACHE 227

ANWEISUNGSSATZ VOM MIKROPROZESSOR

ADC Mit Übertrag addieren
AND Logisches UND
ASL Verschiebung um ein Bit nach links

BCC Verzweigen bei gelöschtem Übertrag
BCS Verzweigen bei gesetztem Übertrag
BEQ Verzweigen falls Ergebnis Null
BIT Speicherbits testen
BMI vVerzweigen falls Ergebnis negativ
BNE Verzweigen falls Ergebnis ungleich Null
BPL Verzweigen falls Ergebnis positiv
BRK Unterbrechung
BVC Verzweigen falls kein Überlauf
BVS Verzweigen bei Überlauf

CLC Löschen des Ubertrag-Flags
CLD Löschen des Dezimal-Modus
CLI Löschen des Interrupt-Disable-Bits
CLV Löschen des Uberlauf-Flags
CMP Vergleich von Speicher und Akkumulator
CPX Vergleich von Speicher und Register X
CPY Vergleich von Speicher und Register Y

DEC Speicherdekrementierung um 1
DEX Dekrementierung von Register X um 1
DEY Dekrementierung von Register Y um 1

EOR “Exklusiv-oder“-Vergleich von Speicher und
Akkumulator

INC = Speicherinkrementierung um 1
INX Inkrementierung von Register X um 1
INY Inkrementierung von Register Y um 1

JMP Sprung zu neuem Speicherplatz
JSR Sprung zu Unterprogramm

228 MASCHINENSPRACHE

MCS6510 - ALPHABETISCHE REIHENFOLGE

LDA
LDX
LDY
LSR

NOP

ORA

PHA
PHP
PLA
PLP

ROL

ROR

RTI
RTS

SBC

SEC
SED
SEI
STA
STX
STY

TAX
TAY
TSX
TXA
TXS
TYA

Speicherübertragung zum Akkumulator
Speicherubertragung zu Register X
Speicherübertragung zu Register Y
Verschiebung um 1 Bit nach rechts

Keine Operation

ODER-Verknupfung von Speicher und Akkumulator

Speicherung des Akkumulators im Stapelregister
Speicherung des Prozessorstatus im Stapel
Akkumulator vom Stapel holen
Prozessorstatus vom Stapel holen

Rotiere um 1 Bit nach links (Speicher oder
Akkumulator)
Rotiere um 1 Bit nach rechts (Speicher oder
Akkumulator)
Ruckkehr von Programmunterbrechung
Ruckkehr vom Unterprogramm

Speicher mit Ubertrag vom Akkumulator
subtrahieren
Ubertragungsflag setzen
Dezimalmodus einschalten
Unterbrechungsmaske setzen
Akkumulator in Speicher ablegen
Register X in Speicher ablegen
Register Y in Speicher ablegen

Akkumulator abspeichern in Register X
Akkumulator abspeichern in Register Y
Stapelzeiger S in Register X übertragen
Ubertragung von Register X zum Akkumulator
Ubertragung von Register X zum Stapelzeiger
Ubertragung von Register Y zum Akkumulator

MASCHINENSPRACHE 229

Nachfolgende Angaben beziehen sich auf die folgende Zusammenfassung:

Akkumulator

Indexregister

Speicher

Prozessorstatus-Register

Stapelzeiger

Wechsel

Kein Wechsel

Addieren

Logisches UND

Subtrahieren

Logisches ausschließendes ODER

Übertragung vom Stapel

Übertragung zum Stapel

Übertragung zu

Übertragung von

Logisches ODER

Programmzähler

Programmzahler, höherwertiges Byte

Programmzahler, niederwertiges Byte

OPERAND

Unmittelbare Adressierung

Anmerkung: Am Anfang jeder Tabelle steht in Klammern eine Referenznummer

(Ref: XX), die das jeweilige Kapitel im “Programmierhandbuch zum MOS 650 2°“

angibt.

230 MASCHINENSPRACHE

ADC Mit Übertrag addieren ADC

Ablauf: A+ M+C—>A,C N2Z2CtODV

(Ref: 2.2.1) vvv aay

Agtessierad Assembler- OP- |Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

unmittelbar ADC # Oper 69 2 2

Zero-Page ADC Oper 65 2 3

Zero-Page, X ADC Oper, X 75 2 4

Absolut ADC Oper 6D 3 4

Absolut, X ADC Oper, X 7D 3 4*

Absolut, Y ADC Oper, Y 79 3 4*

(Indirekt, X) ADC (Oper, X) 61 2 6

(Indirekt), Y ADC (Oper), Y 71 2 5*

* 1 addieren, wenn Seitengrenze überschritten wird.

AND Logisches UND AND
Logisches UND zum Akkumulator

Ablauf: AAM—>A NZC I DV

(Ref: 2.2.3.0) vv aa

, Assembler- OP- — {Anzahl der|Anzahl der
Adressierart

Sprachenformat Code Bytes Zyklen

unmittelbar AND # Oper 29 2 2

Zero-Page AND Oper 25 2 3

Zero-Page, X AND Oper, X 35 2 4

Absolut AND Oper 2D 3 4

Absolut, X AND Oper, X 3D 3 4*

Absolut, Y AND Oper, Y 39 3 4*

(Indirekt, X) AND (Oper, X) 21 2 6

(Indirekt), Y AND (Oper), Y Si 2 5

* 1 addieren, wenn Seitengrenze überschritten wird.

MASCHINENSPRACHE 231

ASL Verschiebung nach links um 1 Bit ASL

Ablauf: C -17]6]514]3]2]1]o0]<@ NZClDY
(Ref: 10.2) vvyvr >=

Adressierart Assembler- OP- Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Akkumulator ASL A DA 1 2

Zero-Page ASL Oper 06 2 5

Zero-Page, X ASL Oper, X 16 2 6

Absolut ASL Oper DE 3 6

Absolut, X ASL Oper, X 1E 3 7

BCC Verzweigung bei gelöschtem Übertrag BCC

Ablauf: Verzweigung bei C = @ NZC I DV

(Ref:4.1.1.3) 00

Adressierart Assembler- OP- Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Relativ BCC Oper 99 2 2*
* 1 addieren bei Verzweigung auf der gleichen Seite.

* 2 addieren bei Verzweigung auf unterschiedlichen Seiten.

BCS Verzweigung bei gesetztem Ubertrag BCS

Ablauf: Verzweigung bei C = 1 NZ CI DV

(Re:

herzesiärarf Assembler- OP- Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Relativ BCS Oper BP 2 ae
* 1 addieren bei Verzweigung auf der gleichen Seite.

* 2 addieren, wenn Verzweigung auf der nachsten Seite auftritt.

232 MASCHINENSPRACHE

BEQ Verzweigung falls Ergebnis Null

Ablauf: Verzweigung bei Z = 1

(Ref: 4.1.1.5)

Acressiarayi Assembler- OP- = {Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Relativ BEQ Oper FQ 2 2*

* 1 addieren, wenn Verzweigung auf der gleichen Seite.

* 2 addieren, bei Verzweigung zur nachsten Seite.

BIT Speicherbits testen BIT

Ablauf: AA M, M7 N, Mp V

Bit 6 und 7 werden zum Statusregister übertragen. Ist das N2Z2CiDYV

Ergebnis von AA M null, dann ist Z = 1, andernfallsist2 =@. M7 / — — — Me

(Ref: 4.2.1.1)

. Assembler- OP- |Anzahl der|Anzahl der
Adressierart

Sprachenformat Code Bytes Zyklen

Zero-Page BIT Oper 24 2 3

Absolut BIT Oper 2C 3 4

BMI Verzweigung bei Minusresultat BMI

Ablauf: Verzweigung bei N = 1 N2Z2CtlODV

(Ref:4.4.4.4) 00

. Assembler- OP- — {Anzahl der|Anzahl der
Adressierart

Sprachenformat Code Bytes Zyklen

Relativ BMI Oper 30 2 2*

* 1 addieren, bei Verzweigung auf der gleichen Seite.

* 2 addieren, bei Verzweigung auf verschiedenen Seiten.

MASCHINENSPRACHE 233

BNE Verzweigung falls Ergebnis ungleich Null

Ablauf: Verzweigung bei Z = 0 NZC I DV

(Refi4.14.16) 000

Assembler- OP- Anzahl der|Anzahl der
Adressierart

| Sprachenformat Code Bytes Zyklen

Relativ BNE Oper DQ 2 2*

* 1 addieren, bei Verzweigung auf der gleichen Seite.

* 2 addieren, bei Verzweigung auf verschiedenen Seiten.

BPL Verzweigung bei Plusresultat BPL

Ablauf: Verzweigung bei N = @ NZ C I DV

(Rei: a1.)

Adressierart Assembler- OP- Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Relativ BPL Oper 19 2 o*

* 1 addieren, bei Verzweigung auf der gleichen Seite.

* 2 addieren, bei Verzweigung auf verschiedenen Seiten.

BRK Unterbrechung BRK

Ablauf: Abbruch PC + 2| P | N2Z2CitHODV

(Ref: 9.11) ~ oo TS

Adressierart Assembler- Op- Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Impliziert BRK 00 1 7

1. Ein BRK-Befehl kann nicht durch Setzen von | maskiert werden.

234 MASCHINENSPRACHE

BVC Verzweigung falls kein Uberlauf BVC

Ablauf: Verzweigung bei V = 0 N2Z4CtODV

(Refi4.1.1.8)

Adressierart Assembler- OP- 1Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Relativ BVC Oper 50 2 2*

* 1 addieren, bei Verzweigung auf der gleichen Seite.

* 2 addieren, bei Verzweigung auf unterschiedlichen Seiten.

BVS Verzweigung bei Überlauf BVS

Ablauf: Verzweigung bei V = 1 NZ CI DV

(Ref:4.0.4.7) 0

Adressierart Assembler- OP- — {Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Relativ BVS Oper 70 2 2

* 1 addieren, bei Verzweigung auf der gleichen Seite.

* 2 addieren, bei Verzweigung auf unterschiedlichen Seiten.

CLC Löschen des Ubertrag-Flags CLC

Ablauf: 8 > C NZCIDV

(Ref: 3.0.2) = HD nei

Adressierart Assembler- OP- — {Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Impliziert CLC 18 1 2

MASCHINENSPRACHE 235

CLD Loschen des Dezimal-Modus CLD

Ablauf: @ > D NZCI DV

(Ref: 3.3.2) Fe

Adressierart Assembler- OP- Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Impliziert CLD D8 1 2

CLI Löschen des Interrupt-Disable-Bits CLI

Ablauf: @ = | NZC I DV

(Ref: 3.2.2) ee

Adressierart Assembler- OP- Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Impliziert CLI 58 1 2

CLV Löschen des Überlauf-Flags CLV

Ablauf: @ > V NZC I DV

(Ref:3.6.1) 2 2 2 2 2 2 2 22 ?

Adressierart Assembler- OP- Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Impliziert CLV B8 1 2

236 MASCHINENSPRACHE

CMP Vergleichen von Speicher und Akkumulator

Ablauf: A—M NZC I DV

(Ref: 4.2.1) vvv >> =

Adressierart Assembler- OP- Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Unmittelbar CMP # Oper C9 2 2

Zero-Page CMP Oper 05 2 3

Zero-Page, X CMP Oper, X D5 2 4

Absolut CMP Oper CD 3 4

Absolut, X CMP Oper, X DD 3 4*

Absolut, Y CMP Oper, Y D9 3 4*

(Indirekt, X) CMP (Oper, X) C1 2 6

(Indirekt), Y CMP (Oper), Y D1 2 5°

* 1 addieren, wenn Seite überschritten wird.

CPX Vergleich von Speicher und Register X CPX

Ablauf: X —M NZ CI DV

(Ref: 7.8) ee

Adirsssiärarf Assembler- OP- Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Unmittelbar CPX # Oper EQ 2 2

Zero-Page CPX Oper E4 2 ©

Absolut CPX Oper EC 3 4

CPY Vergleich von Speicher und Register Y CPY

Ablauf: Y—M NZC I DV

(Ref: 7.9) vvv >> =

Aarsaslarart Assembler- OP- Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Unmittelbar CPY # Oper Ce 2 2

Zero-Page CPY Oper C4 2 3

Absolut CPY Oper CC 3 4

MASCHINENSPRACHE 237

DEC Speicherdekrementierung um 1 DEC

Ablauf: M—1—M N2Z2CtlODV

(Ref: 10.7) ne

Adressierart Assembler- OP- {Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Zero-Page DEC Oper C6 2 5

Zero-Page, X DEC Oper, X D6 2 6

Absolut DEC Oper CE 3 3

Absolut, X DEC Oper, X DE 3 7

DEX Dekrementierung von Register X um 1 DEX

Ablauf: X-1—>X NZC I DV

(Ref: 7.6) En

Adressierart Assembler- OP- |Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Impliziert DEX CA 1 Z

DEY Dekrementierung von Register Y um 1 DEY

Ablauf: Y-1— Y NZC I DV

(Ref: 7.7) viva

Adressierart Assembler- OP- {Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Impliziert DEY 88 1 2

238 MASCHINENSPRACHE

EOR “Exklusiv-oder“-Vergleich von Speicher und Akkumulator . EOR

Ablauf: AYM—A NZ CI DV

(Ref: 2.2.3.2) ER

Adressierart Assembler- OP- Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Unmittelbar EOR # Oper 49 2 2

Zero-Page EOR Oper 45 2 2

Zero-Page, X EOR Oper, X 55 2 4

Absolut EOR Oper 4D 3 4

Absolut, X EOR Oper, X 5D 3 4*

Absolut, Y EOR Oper, Y 29 3 4*

(Indirekt, X) EOR (Oper, X) 41 2 6

(Indirekt), Y EOR (Oper), Y 51 2 5*

* 1 addieren, wenn Seite überschritten wird.

INC Speicherinkrementierung um 1 INC

Ablauf: M+ 1>M NZ CI DV

(Ref: 10.6) a

. Assembler- OP- Anzahl der|Anzahl der
Adressierart

Sprachenformat Code Bytes Zyklen

Zero-Page INC Oper E6 2 5

Zero-Page, X INC Oper, X F6 2 6

Absolut INC Oper EE 3 6

Absolut, X INC Oper, X FE 3 7

INX Inkrementierung von Register X um 1 INX

Ablauf: X + 1— X NZ CI DV

(Ref: 7.4) a nn

, Assembler- OP- Anzahl der|Anzahl der
Adressierart

Sprachenformat Code Bytes Zyklen

Impliziert INX E8 1 2

MASCHINENSPRACHE 239

INY Inkrementierung von Register Y um 1 INY

Ablauf: Y+1—>Y | NZC I DV

(Ref: 7.5) vv >>>

Adressierart Assembler- OP- — {Anzahl der] Anzahl der

Sprachenformat Code Bytes Zyklen

Impliziert INY C8 1 2

JMP Sprung zu neuem Speicherplatz JMP

Ablauf: (PC + 1) —> PCL NZC I DV

(PC +2)3PCH 3

(Ref: 4.0.2: Ref: 9.8.1)

Adressierart Assembler- OP- Anzahl der| Anzahl der

Sprachenformat Code Bytes Zyklen

Absolut JMP Oper 4C 3 3

Indirekt JMP (Oper) 6C 3 5

JSR Sprung zu neuer Speicherrückkehradresse JSR

Ablauf: PC + 2), (PC + 1)— PCL NZ CI DV

(PCO+2)>PCH nn nn

(Ref: 8.1)

Adressierart Assembler- OP- Anzahl der| Anzahl der

Sprachenformat Code Bytes Zyklen

Absolut JSR Oper 20 3 6

240 MASCHINENSPRACHE

LDA Speicherübertragung zum Akkumulator LDA
Ablauf: M>A NZ CI DV

(Ref: 2.1.1) a ns

Adressierart Assembler- OP- — |Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Unmittelbar LDA # Oper AQ 2 2

Zero-Page LDA Oper ADS 2 3

Zero-Page, X LDA Oper, X BS 2 4

Absolut LDA Oper AD 3 4

Absolut, X LDA Oper, X BD 3 4*

Absolut, Y LDA Oper, Y B9 3 4*

(Indirekt, X) LDA (Oper, X) Al 2 6

(Indirekt), Y LDA (Oper), Y B1 2 a

* 1 addieren, wenn Seite überschritten wird.

LDX Speicherübertragung zu Register X LDX

Ablauf: M>X NZC I DV

(Ref: 7.0) viva

Aeressisrart Assembler- OP- Anzahl der! Anzahl der

Sprachenformat Code Bytes Zyklen

Unmittelbar LDX # Oper A2 2 2

Zero-Page LDX Oper A6 2 3

Zero-Page, Y LDX Oper, Y B6 2 4

Absolut LDX Oper AE 3 4

Absolut, Y LDX Oper, Y BE 3 4*

* 1 addieren, wenn Seite überschritten wird.

MASCHINENSPRACHE 241

LDY Speicherübertragung zu Register Y LDY

Ablauf: M— Y NZC I DV

(Ref: 7.1) vy ma

Adressierart Assembler- OP- |Anzahl der| Anzahl der

| Sprachenformat Code Bytes Zyklen

Unmittelbar LDY # Oper AG 2 2
Zero-Page LDY Oper A4 2 3

Zero-Page, X LDY Oper, X B4 2 4

Absolut LDY Oper AC 3 4

Absolut, X LDY Oper, X BC 3 4*

* 1 addieren, wenn Seite überschritten wird.

LSR Verschiebung um 7 Bit nach rechts LSR

(Speicher oder Akkumulator)

Ablauf: 8 > [7|6|514|3|2]1]0|>cC NZCIODV

(Ref: 10.1) Ov v---

körsssierarl Assembler- OP- Anzahl der| Anzahl der

Sprachenformat Code Bytes Zyklen

Akkumulator LSR A 4A 1 2

Zero-Page LSR Oper 46 2 5

Zero-Page, X LSR Oper, X 56 2 6

Absolut LSR Oper 4E 3 6

Absolut, X LSR Oper, X SE 3 7

NOP Keine Operation NOP

Ablauf: Keine Operation (2 Zyklen) NZC I DV

Adressierart Assembler- OP- — |Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Impliziert NOP EA 1 2

242 MASCHINENSPRACHE

ORA ODER-Verknüpfung von Speicher und Akkumulator ORA

Ablauf: AV/M>A NZC I DV

(Ref: 2.2.3.1) a ns

, Assembler- OP- Anzahl der|Anzahl der
Adressierart

Sprachenformat Code Bytes Zyklen

Unmittelbar ORA # Oper 09 2 2

Zero-Page | ORA Oper 05 2 3

Zero-Page, X ORA Oper, X 15 2 4

Absolut ORA Oper DD 3 4

Absolut, X ORA Oper, X 1D 3 4*

Absolut, Y ORA Oper, Y 19 3 4*

(Indirekt, X) ORA (Oper, X) 01 2 6

(Indirekt), Y ORA (Oper), Y 11 2 5

* 1 addieren, wenn Seite überschritten wird.

PHA Speicherung des Akkumulators im Stapelregister PHA

Ablauf: A | NZCI DV

(Te 8.5) 0

Aersssierar Assembler- OP- Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Impliziert PHA 48 1 3

PHP Speicherung des Prozessorstatus im Stapel PHP

Ablauf: P | NZ CI DV

(Te 0 0

Adırsssibrart Assembler- OP- {Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Impliziert PHP 08 1 3
MASCHINENSPRACHE 243

PLA Akkumulator vom Stapel holen PLA

Ablauf: AT NZ CI DV

(Ref: 8.6) a

Adressierart Assembler- OP- {Anzahl der| Anzahl der

Sprachenformat Code Bytes Zyklen

Impliziert PLA 68 1 A

PLP Prozessorstatus vom Stapel holen PLP

Ablauf: PT NZ CI DV

(Ref: 8.12) vom Stapel

Adressierart Assembler- OP- Anzahl der| Anzahl der

Sprachenformat Code Bytes Zyklen

Impliziert PLP 28 1 4

ROL Rotiere um 1 Bit nach links (Speicher oder Akkumulator) ROL

F 7 M oder A NZCI DV
Ablauf:

“LE 1zIelslalsT2I1lel-/<- viv vy >
(Ref: 10.3)

Adressierart Assembler- OP- —_|Anzahl der[Anzahl der

Sprachenformat Code Bytes Zyklen

Akkumulator ROL A 2A 1 2

Zero-Page ROL Oper 26 2 5

Zero-Page, X ROL Oper, X 36 2 6

Absolut ROL Oper 2E 3 6

Absolut, X ROL Oper, X SE S ri

244 MASCHINENSPRACHE

ROR Rotiere um 1 Bit nach rechts (Speicher oder Akkumulator) ROR

NZ CI DV

aviaut: Le} 7] e[s]a a [2 L5H Jv y---
(Ref: 10.4)

. Assembler- OP- — {Anzahl der} Anzahl der
Adressierart

Sprachenformat Code Bytes Zyklen

Akkumulator ROR A 6A 1 2

Zero-Page ROR Oper 66 2 5

Zero-Page, X ROR Oper, X 76 2 6

Absolut ROR Oper BE 3 6

Absolut, X ROR Oper, X TE 3 7

RTI Rückkehr von Programmunterbrechung RTI

Ablauf: PTPCT NZ CI DV

(Ref: 9.6) Vom Stapel

Assembler- OP- Anzahl der|Anzahl der
Adressierart

Sprachenformat Code Bytes Zyklen

Impliziert RTI AQ 1 6

RTS Ruckkehr vom Unterprogramm RTS

Ablauf: PC 7, PC + 1— PC NZCI DV

(Ref:8.2) 2 2 2

Adressierart Assembler- OP- Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Impliziert RTS 60 1 6

MASCHINENSPRACHE 245

SBC Speicherung und Übertragung vom Akkumulator subtrahieren SBC

Ablauf: A-M-C>A NZ CI DV

Anmerkung: C = Übertrag YY--Y

(Ref: 2.2.2)

Adressierart Assembler- OP- |Anzahl der| Anzahl der

Sprachenformat Code Bytes Zyklen

Unmittelbar SBC # Oper EQ 2 2

Zero-Page SBC Oper Ed 2 3

Zero-Page, X SBC Oper, X F5 2 4

Absolut SBC Oper ED 3 4

Absolut, X SBC Oper, X FD 3 4*

Absolut, Y SBC Oper, Y F9 3 4*

(Indirekt, X) SBC (Oper, X) E1 2 6

(Indirekt), Y SBC (Oper), Y F1 2 5*

* 1 addieren, wenn Seite überschritten wird.

SEC Übertragungsflag setzen SEC

Ablauf: 1>C NZ CI DV

(Ref: 3.0.1) leo

Assembler- OP- Anzahl der) Anzahl der
Adressierart

Sprachenformat Code Bytes Zyklen

Impliziert SEC 38 1 2

SED Dezimalmodus einschalten SED

Ablauf: 1— D NZ CI DV

(Ref: 3.3.1) oc te

Assembler- OP- {Anzahl der|Anzahl der
Adressierart

Sprachenformat Code Bytes Zyklen

Impliziert SED F8 1 2

246 MASCHINENSPRACHE

SEI Unterbrechungsmaske setzen SEI

Ablauf: 1— | NZC I DV

(Ref: 3.2.1) 7 Te

Adressierart Assembler- OP- Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Impliziert SEI 78 1 2

STA Akkumulator in Speicher ablegen STA

Ablauf: A>M NZCI DV

(Re:

Adressierart Assembler- OP- Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Zero-Page STA Oper 85 2 3

Zero-Page, X STA Oper, X 95 2 4

Absolut STA Oper 8D 3 4

Absolut, X STA Oper, X 9D 3 >)

Absolut, Y STA Oper, Y 99 3 =

(Indirekt, X) STA (Oper, X) 81 Z 6

(Indirekt), Y STA (Oper), Y 91 2 6

STX Register X in Speicher ablegen STX

Ablauf: X= M NZCI DV

(Refi7.2) 00

Adressierart Assembler- OP- Anzahl der|Anzahl der

Sprachenformat Code Bytes | Zyklen

Zero-Page STX Oper 86 2 3

Zero-Page, Y STX Oper, Y 96 2 4

Absolut STX Oper 8E 3 4

MASCHINENSPRACHE 247

STY Register Y in Speicher ablegen

Ablauf: Y>M NZ CI DV

(Rt:

Assembler- OP- {Anzahl der} Anzahl der Adressierart
Sprachenformat Code Bytes Zyklen

Zero-Page STY Oper 84 2 3
Zero-Page, X STY Oper, X 94 2 4
Absolut STY Oper 8C 3 4

TAX Akkumulator abspeichern in Register X TAX
Ablauf: A — X NZ CI DV

(Ref: 7.11) a >

Adirässiiersrt Assembler- OP- {Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Impliziert TAX AA 1 2

TAY Akkumulator abspeichern in Register Y TAY
Ablauf: A>Y NZC I DM

(Ref: 7.13) viva >

Adressierart Assembler- OP- {Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Impliziert TAY A8 1 2

248 MASCHINENSPRACHE

TSX Stapelzeiger in Register X ubertragen TSX

Ablauf: S— X N2Z2CtlODYV

(Ref: 8.9) viva

Adressierarf Assembler- OP- Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Impliziert TSX BA 1 2

TXA Ubertragung von Register X zum Akkumulator TXA

Ablauf: X > A NZ CI DV

(Ref: 7.12) viva

Adressierart Assembler- OP- Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Impliziert TXA 8A 1 2

TXS Übertragung von Register X zum Stapelzeiger TXS

Ablauf: X > $ NZ CI DV

(Re:

Adressierari Assembler- OP- Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Impliziert TXS 9A 1 2

TYA Übertragung von Register Yzum Akkumulator TYA

Ablauf: Y>A NZC I DV

(Ref: 7.14) a

Adressierart Assembler- OP- Anzahl der|Anzahl der

Sprachenformat Code Bytes Zyklen

Impliziert TYA 98 1 2

MASCHINENSPRACHE 249

ANWEISUNGS-ADRESSIERARTEN UND ZUGEHORIGE

A
k
k
u
m
u
l
a
t
o
r

Ze
ro

-P
ag

e,

Y

Ab
so
lu
t,

X

Ab
so
lu
t,

Y

Im
pl
iz
ie
rt

Re
la

ti
v

(I
nd

ir
ek

t,

X)

(I
nd

ir
ek

t)
,

Y

Ab
so
lu
t

In
di
re
kt

ro
n}

U
n
m
i
t
t
e
l
b
a
r

w
w
w
]

Ze
ro
-P
ag
e

oO
)

o
o

+
*

O
A

Z
e
r
o
-
P
a
g
e
,

X

o
A
A
!

A
b
s
o
l
u
t

> Ww

m

NO

N
A
A

+
+

=

+
+

BCC... .
BCS...)
BEQ

BMI... . . 2
BNE... .
BPL

BVC
BVS . . . wg

© L

D
N
D
N
D
M

O oO

x

N
P

PO

W
W
W

O
R
A
L
:

= ©)

V
W
 °

op)

O
s

N

NV.
MP.
* Einen Zyklus addieren, wenn die Indizierung eine Seite überschreitet.

** Einen Zyklus bei Verzweigung addieren, einen weiteren addieren, wenn
250 MASCHINENSPRACHE

AUSFÜHRUNGSZEITEN (IN TAKTZYKLEN)

=. x > ©
83888 >. X28
E22242.53533%>25$%3
sEe2e22e8323 23335353
<OoONNNZeZeECEER

JSR 0 6 2.
LDA 2 3 4 . 4 4* 4. . 6 5.
LDX 2 3. 4 4 . 4
LDY 2 3 4 4 4
LSR 2 5 6 6 7
NOP on ow . 2 ,
ORA 2 3 4 4 4* 4 ., 6 5°
PHA 3
PHP 3
PLA 4
PLP. 4
ROL 2 56 6 7
ROR 2 5 6 6 7
RTI , 6
RTS , 6 ,
SBC 2 3 4 4 4* 4. 6 5*
SEC , 2
SED 2
SEI 2
STA 3 4 455 6 6
STX 3.4 4
STY 3 4 A
TAX 2
TAY 2
TSX 2
TXA 2
TXS 2
TYA 2

die Verzweigung die Seitengrenze überschreitet.

MASCHINENSPRACHE 251

QO

01

G2

03

04

05

06

Q7

08

09

DA

dB

BC

OD

DE

OF

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

1E

1F

252

BRK

ORA - (Indirekt, X)

Künftige Erweiterung

Künftige Erweiterung

Künftige Erweiterung

ORA - Zero-Page

ASL — Zero-Page

Kunftige Erweiterung

PHP

ORA — Unmittelbar

ASL — Akkumulator

Kunftige Erweiterung

Kunftige Erweiterung

ORA — Absolut

ASL — Absolut

Kunftige Erweiterung

BPL

ORA - (Indirekt), Y

Kunftige Erweiterung

Kunftige Erweiterung

Kunftige Erweiterung

ORA — Zero-Page, X

ASL — Zero-Page, X

Kunftige Erweiterung

CLC

ORA — Absolut, Y

Kunftige Erweiterung

Kunftige Erweiterung

Kunftige Erweiterung

ORA — Absolut, X

ASL — Absolut, X

Kunftige Erweiterung

MASCHINENSPRACHE

20

21

22

23

24

25

26

27

28

29

DA

2B

2C

2D

DE

OF

30

31

32

33

34

35

36

37

38

39

3A

3B

3C

3D

SE

SF

JSR

AND (Indirekt, X)

Künftige Erweiterung

Künftige Erweiterung

BIT - Zero-Page

AND - Zero-Page

ROL — Zero-Page

Kunftige Erweiterung

PLP

AND — Unmittelbar

ROL — Akkumulator

Kunftige Erweiterung

BIT — Absolut

AND — Absolut

ROL — Absolut

Kunftige Erweiterung

BMI

AND - (Indirekt), Y

Kunftige Erweiterung

Kunftige Erweiterung

Kunftige Erweiterung

AND — Zero-Page, X

ROL — Zero-Page, X

Kunftige Erweiterung

SEC

AND — Absolut, Y

Kunftige Erweiterung

Kunftige Erweiterung

Kunftige Erweiterung

AND — Absolut, X

ROL — Absolut, X

Kunftige Erweiterung

40

41

42

43

44

45

46

47

48

49

AA

4B

4C

4D

4E

AF

50

51

52

53

54

55

56

57

58

59

5A

5B

5C

5D

5E

5F

RT|

EOR - (Indirekt, X)

Künftige Erweiterung

Künftige Erweiterung

Künftige Erweiterung

EOR - Zero-Page

LSR — Zero-Page

Kunftige Erweiterung

PHA

EOR — Unmittelbar

LSR — Akkumulator

Kunftige Erweiterung

JMP — Unmittelbar

EOR — Unmittelbar

LSR — Unmittelbar

Kunftige Erweiterung

BVC

EOR - (Indirekt), Y

Kunftige Erweiterung

Kunftige Erweiterung

Künftige Erweiterung

EOR — Zero-Page, X

LSR — Zero-Page, X

Künftige Erweiterung

CLI

EOR — Absolut, Y

Kunftige Erweiterung

Kunftige Erweiterung

Kunftige Erweiterung

EOR — Absolut, X

LSR — Absolut, X

Kunftige Erweiterung

6

61

62

63

64

65

66

67

68

69

6A

6B

6C

6D

6E

6F

7@

71

72

73

74

75

76

77

78

79

7A

7B

7C

7D

7E

7F

RTS

ADC - (Indirekt, X)

Kunftige Erweiterung

Kunftige Erweiterung

Kunftige Erweiterung

ADC — Zero-Page

ROR — Zero-Page

Künftige Erweiterung

PLA

ADC — Unmittelbar

ROR — Akkumulator

Kunftige Erweiterung

JMP — Indirekt

ADC — Absolut

ROR — Absolut

Kunftige Erweiterung

BVS

ADC - (Indirekt), Y

Künftige Erweiterung

Kunftige Erweiterung

Kunftige Erweiterung

ADC — Zero-Page, X

ROR — Zero-Page, X

Kunftige Erweiterung

SEI

ADC — Absolut, Y

Künftige Erweiterung

Künftige Erweiterung

Künftige Erweiterung

ADC — Absolut, X

ROR — Absolut, X

Künftige Erweiterung

MASCHINENSPRACHE 253

80

81
82
83
84
85
86
87
88
89
BA
8B
8C
8D
8E
8F
90

91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
OF
OF

254

Kunftige Erweiterung

STA — (Indirekt, X)

Kunftige Erweiterung

Künftige Erweiterung

STY — Zero-Page

STA — Zero-Page

STX — Zero-Page

Kunftige Erweiterung

DEY

Kunftige Erweiterung

TXA

Kunftige Erweiterung

STY — Absolut

STA — Absolut

STX — Absolut

Kunftige Erweiterung

BCC

STA — (Indirekt), Y

Kunftige Erweiterung

Kunftige Erweiterung

STY — Zero-Page, X

STA — Zero-Page, X

STX — Zero-Page, Y

Kunftige Erweiterung

TYA

STA — Absolut, Y

TXS

Kunftige Erweiterung

Kunftige Erweiterung

STA — Absolut, X

Kunftige Erweiterung

Kunftige Erweiterung

MASCHINENSPRACHE

AG

A

A2

A3

A4

A5

AG

AT

A8

AQ

AA

AB

AC

AD

AE

AF

BO

Bi

B2

B3

B4

B5

B6

B7

B8

BQ

BA

BB

BC

BD

BE

BF

LDY — Unmittelbar

LDA — (Indirekt, X)

LDX — Unmittelbar

Kunftige Erweiterung

LDY — Zero-Page

LDA — Zero-Page

LDX — Zero-Page

Kunftige Erweiterung

TAY

LDA — Unmittelbar

TAX

Kunftige Erweiterung

LDY — Unmittelbar

LDA — Unmittelbar

LDX — Unmittelbar

Kunftige Erweiterung

BCC

LDA — (Indirekt), Y

Künftige Erweiterung

Kunftige Erweiterung

LDY — Zero-Page, X

LDA — Zero-Page, X

LDX — Zero-Page, Y

Kunftige Erweiterung

CLV

LDA — Absolut, Y

TSX

Künftige Erweiterung

LDY — Absolut, X

LDA — Absolut, X

LDX — Absolut, Y

Kunftige Erweiterung

CO

C1

C2

C3

C4

C5

C6

C7

C8

Cg

CA

CB

CC

CD

CE

CF

DG

D1

D2

D3

D4

Bhs:

D6

D7

D8

DI

DA

DB

DC

DD

DE

DF

CPY — Unmittelbar

CPM — (Indirekt, X)

Künftige Erweiterung

Künftige Erweiterung

CPY — Zero-Page

CMP — Zero-Page

DEC — Zero-Page

Künftige Erweiterung

INY

CMP — Unmittelbar

DEX

Kunftige Erweiterung

CPY — Absolut

CMP — Absolut

DEC — Absolut

Kunftige Erweiterung

BNE |

CMP — (Indirekt), Y

Künftige Erweiterung

Künftige Erweiterung

Künftige Erweiterung

CMP - Zero-Page, X

DEC - Zero-Page, X

Künftige Erweiterung

CLD

CMP - Absolut, Y

Kunftige Erweiterung

Kunftige Erweiterung

Kunftige Erweiterung

CMP — Absolut, X

DEC — Absolut, X

Kunftige Erweiterung

Ed

E1
E2
E3
E4
E5
E6
E7
E8
EQ
EA
EB
EC
ED
FE
EF
FO

Ft
F2
F3
FA
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF

CPX — Unmittelbar

SBC - (Indirekt, X)

Künftige Erweiterung

Künftige Erweiterung

CPX — Zero-Page

SBC — Zero-Page

INC — Zero-Page

Kunftige Erweiterung

INX

SBC — Unmittelbar

NOP

Kunftige Erweiterung

CPX — Absolut

SBC — Absolut

INC — Absolut

Kunftige Erweiterung

BEQ

SBC — (Indirekt), Y

Kunftige Erweiterung

Kunftige Erweiterung

Kunftige Erweiterung

SBC — Zero-Page, X

INC — Zero-Page, X

Kunftige Erweiterung

SED

SBC — Absolut, Y

Kunftige Erweiterung

Kunftige Erweiterung

Kunftige Erweiterung

SBC — Absolut, X

INC — Absolut, X

Kunftige Erweiterung

MASCHINENSPRACHE 255

SPEICHERVERWALTUNG BEIM COMMODORE 64

Der COMMODORE 64 besitzt 64K-Byte RAM. Daruber hinaus hat er 20K-Byte

ROM, in dem BASIC, Betriebssystem und Standardzeichensatz gespeichert sind.

Außerdem hat er Zugriff auf Ein-/Ausgabevorrichtungen und benutzt dazu 4K-

Speicherkapazität. Wie ist dies alles mit einem Computer mit 16-Bit-Adreß-Bus

möglich, der normalerweise nur 64K adressieren kann?

Das Geheimnis liegt im 6510-Prozessor-Chip selbst. Der Chip hat ein Ein-/

Ausgabeport. Über diesen Port wird gesteuert, ob RAM, ROM oder Ein-/Ausgabe

in bestimmten Speicherabschnitten erscheint. Er dient auch der Steuerung der

Datasette™, so daß nur die geeigneten Bits verändert werden dürfen.

Der Ein-/Ausgabeport des 6510 belegt Adresse 1. Das Datenrichtungsregister für

diesen Port liegt im Speicherplatz 0. Der Port wird genau wie andere Ein-/

Ausgabeports des Systems gesteuert. Das Datenrichtungsregister steuert, ob ein

bestimmtes Bit eine Eingabe oder eine Ausgabe ist. Die tatsächliche Datenübertra-

gung erfolgt über den Port selbst.

Die Positionen im Kontrollregister des 6510 sind wie folgt definiert:

NAME BIT RICHTUNG BESCHREIBUNG

LORAM 0 AUSGABE Steuerung: RAM/ROM von

$A000-$BFFF (BASIC)

HIRAM 1 AUSGABE Steuerung: RAM/ROM von

$E000-$FFF (KERNAL)

CHAREN 2 AUSGABE Steuerung: Ein-/Ausgabe/

ROM von $D000-$DFFF

3 AUSGABE Kassettenschreibleitung

4 EINGABE Kassettenschalter

5 AUSGABE Kassettenmotorsteuerung

Der richtige Wert für das Datenrichtungsregister lautet wie folgt:

BITS 5 4 3 2 1 =O

107117174

(wobei 1 für Ausgabe und O0 für Eingabe steht).

256 MASCHINENSPRACHE

Das entspricht dem Dezimalwert 47. Der COMMODORE 64 setzt automatisch das

Datenrichtungsregister auf diesen Wert.

Die Steuerbits (Steuerleitungen) führen im allgemeinen die in ihrer Beschreibung

angegebenen Funktionen aus. Fur einen bestimmten Speicheraufbau werden die

Steuerbits jedoch gelegentlich miteinander kombiniert.

LORAM (Bit 0) ist ein Steuerbit, mit dem der 8K-Byte-BASIC-ROM in den und aus

dem Mikroprozessor-Adreß-Bereich geschaltet wird. Normalerweise gilt HIGH für

dieses Bit bei BASIC-Betrieb. Ist dieses Bit LOW programmiert, verschwindet der

BASIC-ROM aus dem Speicher und wird durch 8K-Bytes-RAM von $A000 bis

$BFFF ersetzt.

HIRAM (Bit 1) ist eine Art Steuerleitung, mit der der 8K-Byte-KERNAL-ROM in den

und aus dem Mikroprozessor-Adreß-Bereich geschaltet wird. Normalerweise ist

diese Leitung im BASIC-Betrieb HIGH. Ist diese Leitung LOW programmiert, so

verschwindet der KERNAL-ROM aus dem Speicher und wird durch 8K-Byte vom

RAM von $E000 bis $FFFF ersetzt.

CHAREN (Bit 2) wird nur benutzt, um den 4K-Byte-Zeichengenerator-ROM in den

oder aus dem Mikroprozessor-Adreß-Bereich zu schalten. Vom Prozessor aus

gesehen, benutzt der Zeichen-ROM den gleichen Adreß-Bereich wie die Ein-/

Ausgabe-Register ($D0O00-$DFFF). Wenn die CHAREN-Leitung auf 1 gesetzt ist

(Normaleinstellung), dann erscheinen die Ein-/Ausgabe-Register im Mikroprozes-

sor-Adreß-Bereich, und der Zeichen-ROM ist nicht zugänglich. Wird der CHAREN-

Bit auf O gesetzt, erscheint der Zeichen-ROM. Nun sind die Ein-/Ausgabe-Register

nicht zugänglich. (Der Mikroprozessor muß lediglich auf den Zeichen-ROM zugrei-

fen, wenn der Zeichensatz vom ROM ins RAM gebracht wird. Dies erfordert

besondere Umsicht... siehe Abschnitt “Programmierbare Zeichen“ im Kapitel

“Graphik“).

CHAREN kann durch andere Steuerzeichen in bestimmten Speicheranordnungen

unwirksam gemacht werden. CHAREN beeinflußt keine Speicheranordnungen

ohne Ein-/Ausgabe-Register. Statt dessen erscheint von $DO00 bis $DFFF der

RAM.

Anmerkung: Bei jeder Speicherverteilung, die ROM enthält, werden die Daten beim Schreiben

(POKE) in einer ROM-Adresse in den RAM “unter“ dem ROM gespeichert. Die Daten werden also in

den “versteckten“ RAM geschrieben. Auf diese Weise ist ein Bildschirm mit hoher Auflösung unter

dem ROM möglich und kann (ohne vorherige Übertragung in den Prozessor-Adreßraum) geändert

werden. Beim Lesen einer ROM-Adresse wird natürlich aus dem ROM und nicht aus dem “versteck-

ten“ RAM gelesen.

MASCHINENSPRACHE 257

SPEICHERMAPPE VOM COMMODORE 64

8K-KERNAL-ROM

EO00-FFFF Oel:
RAM

4K-EIN-/AUSGABE,
DO00-DFFF RAM- ODER ZEICHEN-ROM

C000-CFFF AK-RAM

8K-BASIC-ROM,
RAM-

A000-BFFF ODER

ROM-MODUL

8K-RAM
ODER 8000-9FFF ROM-MODUL

4000-7F FF URAN

0000-3FFF HENEBEN

EIN-/AUSGABE IM DETAIL

D000—-DSFF

D400—D7FF

D800-DBFF

DCO0-DCFF

DDOO—DDFF

DEOO-DEFF

DFOO-DFFF

VIC (Videosteuerung)

SID (Musik-Synthesizer)

Farb-RAM

CIA1 (Tastatur)

CIA2 (Serieller Bus-User-Port/RS-232)

Offener Ein-/Ausgabeanschluß #1 (CP/M)

Offener Ein-/Ausgabeanschluß #2 (Diskette)

258 MASCHINENSPRACHE

1K-Byte

1K-Byte

1K-Nybble

256 Bytes

256 Bytes

256 Bytes

256 Bytes

Die beiden offenen Ein-/Ausgabeanschlüsse dienen der allgemeinen Ein-/Aus-

gabe, speziellen Ein-/Ausgabemodulen (z. B. IEEE) und wurden für den Z-80-

Modul (CP/M Option) sowie für den Anschluß an ein schnelles Diskettensystem mit

günstigem Kosten-Leistungs-Verhältnis entwickelt.

Dieses System sorgt für den “Automatikstart“ des Programms bei Verwendung

eines COMMODORE 64-Erweiterungsmoduls. Wenn die ersten neun Bytes des

Modul-ROMs beginnend bei Adresse 32768 ($8000) bestimmte Daten enthalten,

wird das ROM-Programm gestartet. Die ersten zwei Bytes müssen den Kaltstart-

Vektor für das Programm enthalten. Die nächsten zwei Bytes in 32770 ($8002)

enthalten den Warmstartvektor. Die folgenden 3 Bytes müssen die Buchstaben

CBM enthalten, wobei für jeden Buchstaben Bit 7 gesetzt ist. Die letzten zwei Bytes

müssen die Ziffern “80° in COMMODORE ASCII sein.

SPEICHERBELEGUNGEN DES COMMODORE 64

In den folgenden Schemata sind die möglichen Speicheranordnungen für den

COMMODORE 64, der jeweilige Status der Leitungen und die entsprechende

Verwendung der einzelnen Speicherverteilung aufgeführt.

X = NICHT BERÜCKSICHTIGEN
0 = NIEDRIG

8K-KERNAL-ROM 1 = HOCH

— 4K-EIN-/AUSGABE ees, ur - - HIRAM = 1

en 4K-RAM (PUFFER) =

8K-BASIC-ROM

AOOO

8K-RAM

8000

16K-RAM

4000

16K-RAM

Dies ist die Standard-BASIC-Speicherverteilung
mit BASIC 2.0 und 38 KB durchgehenden

0000 Benutzer-RAM.

MASCHINENSPRACHE 259

260

E000

D000

C000

8000

4000

0000

E000

DOOO

C000

8000

4000

0000

8K-RAM

4K-EIN-/AUSGABE

4K-RAM

16K-RAM

16K-RAM

 16K-RAM

8K-KERNAL-ROM

4K-EIN-/AUSGABE

AK-RAM

16K-RAM

16K-RAM

 16K-RAM

MASCHINENSPRACHE

NICHT BERÜCKSICHTIGEN
NIEDRIG
HOCH

LORAM
HIRAM

GAME
EXROM
oder
LORAM
HIRAM
GAME =
(In dieser Speicherkonfiguration ist der Zeichen-
ROM für die CPU nicht zugänglich.)
EXROM =0

X
0
1

Ho
u

ue
dl

<
~
-
O
-

1

0
0

In dieser Konfiguration gibt es 60K-RAM
sowie Ein-/Ausgaberegister. Der Besitzer muß
seine eigenen Ein-/Ausgabetreiber-Routinen
schreiben.

NICHT BERÜCKSICHTIGEN
NIEDRIG
HOCH

X
0
1

LORAM
HIRAM
GAME
EXROM Ho

w
i

Ul

Diese Konfiguration ist fur das Arbeiten mit
ladbaren Sprachen (einschl. CP/M) gedacht
und hat 52K durchgehenden Benutzer-RAM,
Ein-/Ausgaberegister und Ein-/Ausgabetreiber-
Routinen.

C000

8000

4000

0000

E000

DOOO

C000

A000

8000

4000

0000

16K-RAM

16K-RAM

16K-RAM

 16K-RAM

8K-KERNAL-ROM

AK-EIN-/AUSGABE

4K-RAM (PUFFER)

8K-BASIC-ROM

8K-ROM KASSETTE
(BASIC-ERWEITERUNG)

16K-RAM

 16K-RAM

X = NICHT BERÜCKSICHTIGEN
0 = NIEDRIG

en I > =

Ho
u

wi
l

9)

> = m

Ho
u

Ut

O
X
O
O

x
-
0
0

Diese Konfiguration erlaubt einen Zugriff
auf den gesamten RAM-Bereich von 64K-Byte.
Für jede Ein-/Ausgabe müssen die
Ein-/Ausgabe-Speicherbereiche zurück in den
Prozeßadreßbereich geschaltet werden.

X = NICHT BERÜCKSICHTIGEN
0 = NIEDRIG
1 = HOCH

LORAM
HIRAM
GAME
EXROM o

O

Dies ist der Standardaufbau eines BASIC-
Systems mit BASIC-Erweiterungs-ROM.
Diese Konfiguration hat 32K durchgehenden
Benutzer-RAM und erlaubt eine
BASIC-Erweiterung von bis zu 8K-Byte.

MASCHINENSPRACHE 261

262

E000

DOOO

C000

A000

8000

4000

0000

E000

DOOO

C000

8000

4000

0000

8K-KERNAL-ROM

4K-EIN-/AUSGABE

4K-RAM (PUFFER)

8K-ROM (KASSETTE)

8K-RAM

16K-RAM

 16K-RAM

8K-KERNAL-ROM

4K-EIN-/AUSGABE

4K-RAM (PUFFER)

16K-ROM (KASSETTE)

16K-RAM

 16K-RAM

MASCHINENSPRACHE

X=

0 = NIEDRIG
1=

Diese Konfiguration hat 40K durchgehenden
Benutzer-RAM und bis zu 8K-Byte für
einen ROM-Anschluß für besondere
ROM-Anwendungen, die kein BASIC erfordern.

o
o

Diese Konfiguration hat 32K durchgehenden
Benutzer-RAM und bis zu 16K-Byte fur
einen ROM-Anschluß für besondere
ROM-Anwendungen, die kein BASIC erfordern
(Textverarbeitung, andere Sprachen usw.).

EOOO

DOOO

C000

A000

8000

4000

1000

0000

8K-KASSETTEN-ROM

4K-EIN-/AUSGABE

4K OFFEN

8K OFFEN

8K-KASSETTEN-ROM

16K OFFEN

12K OFFEN

 4K-RAM

X = NICHT BERUCKSICHTIGEN
QO = NIEDRIG
1 = HOCH

LORAM
HIRAM
GAME
EXROM m

O
o
O
x
x

Dies ist die ULTIMAX-Videospiel-Speicher-
konfiguration. Beachten Sie, daß als
2K “Erweiterungs-RAM“ für den ULTIMAX
gegebenenfalls der RAM des
Commodore 64 verwendet wird und der RAM
im Modul ignoriert wird.

MASCHINENSPRACHE 263

KERNAL

Auf dem Mikrocomputer-Sektor gibt es eine Frage, die Programmierer immer

wieder beschaftigt: Was tun, wenn das Computer-Betriebssystem von der Herstel-

lerfirma geandert wird? Langwierig erstellte Maschinensprache-Programme funktio-

nieren möglicherweise nicht mehr und müssen grundlegend geändert werden. Um

dieses Problem zu mindern, hat COMMODORE ein Prinzip entwickelt, um Program-

mierern die Arbeit zu erleichtern. Es handelt sich hierbei um den sog. KERNAL. Im

wesentlichen ist KERNAL eine Standard-SPRUNGTABELLE für Eingabe, Ausgabe

und Speicherverwaltungsprogramme im Betriebssystem. Bei einer Verbesserung

des Systems können die Plätze der einzelnen Programme im ROM sich ändern. Die

KERNAL-SPRUNGTABELLE wird jedoch auch stets entsprechend geändert.

Wenn Ihre Maschinensprache-Programme die Betriebssystemroutinen nur über

den KERNAL benutzen, so können sie gegebenenfalls wesentlich einfacher gestal-

tet werden.

Der KERNAL ist das Betriebssystem des COMMODORE 64. Über ihn werden

sämtliche Eingaben, Ausgaben sowie die Speicherverwaltung gesteuert.

Um Ihre Maschinensprache-Programme zu vereinfachen und sicherzustellen, daß

die Programme aufgrund einer künftigen Verbesserung des Betriebssystems vom

COMMODORE 64 nicht veralten, enthält der KERNAL eine Sprungtabelle. Durch

die 39 Ein-/Ausgabe-Routinen und weitere Hilfsprogramme, die über diese Tabelle

erreichbar sind, können Sie nicht nur Zeit sparen, sondern Ihre Programme von

einem COMMODORE-Computer an den anderen anpassen.

Die Sprungtabelle befindet sich auf der letzten Speicherseite (Page) des gesamten

Adreßraums.

Um die KERNAL-Sprungtabelle zu benutzen, geben Sie zunächst die erforderlichen

Parameter für die KERNAL-Routine ein. Dann springen Sie über die JSR-Anwei-

sung an die geeignete Stelle in die KERNAL-Sprungtabelle. Nach Beendigung der

Routine überträgt der KERNAL die Steuerung wieder Ihrem Maschinensprache-

Programm. Je nach verwendeter KERNAL-Routine werden Parameter durch

bestimmte Register in Ihr Programm zurückgegeben. Die jeweiligen Adressen der

einzelnen KERNAL-Routinen finden Sie in den Beschreibungen der KERNAL-

Unterprogramme. |
Warum benutzt man die Sprungtabelle überhaupt? Warum springt man nicht direkt

in das entsprechende KERNAL-Unterprogramm? Das ist eine gute Frage. Die

Sprungtabelle wird benutzt, damit Ihre Maschinensprache-Programme auch dann

funktionieren, wenn der KERNAL oder der BASIC-Interpreter geändert werden. In

künftigen Betriebssystemen können die Speicherplätze der einzelnen Routinen an

unterschiedlichen Positionen im Adreßbereich liegen . . . Die Sprungtabelle arbeitet

jedoch immer noch richtig!

264 MASCHINENSPRACHE

KERNAL-FUNKTIONEN NACH EINSCHALTEN
DER STROMVERSORGUNG

1) Nach Einschalten der Stromversorgung wird durch den KERNAL zunächst der

Stapelzeiger rückgesetzt und danach der Dezimalmodus gelöscht.

2) Dann prüft KERNAL, ob in Adresse $8000 HEX (32768 in Dezimaldarstellung)

ein ROM mit Automatikstart vorhanden ist. Ist dieses vorhanden, dann wird die

normale Initialisierung unterbrochen und die Steuerung dem im ROM abgeleg-

ten Code übertragen. Ist ein solches ROM nicht vorhanden, wird die normale

Systeminitialisierung fortgesetzt.

3) Als nächstes initialisiert der KERNAL alle Ein-/Ausgabe-Vorrichtungen. Der

serielle Bus wird initialisiert. Die beiden Chips 6526 CIA werden für die Tastatur-

Abfrage auf die geeigneten Werte gesetzt und der 60-Hz-Timer aktiviert. Der

SID wird gelöscht. Die BASIC-Speicherkonfiguration wird gewählt und der

Kassettenmotor abgeschaltet.

4) Als nächstes führt der KERNAL einen RAM-Test durch und setzt oben und unten

die Speicherzeiger. Auch die Zero-Page wird initialisiert und der Kassettenpuffer

eingerichtet.

Die RAM-Test-Routine ist ein nicht löschender Test, der bei Adresse $0300

beginnt und dann in aufsteigender Reihenfolge arbeitet. Der obere RAM-Zeiger

wird gesetzt, wenn der Test auf die erste Nicht-RAM-Adresse trifft. Der untere

Speicherzeiger wird stets auf $0800 und der Bildschirm stets auf $0400 gesetzt.

5) Abschließend führt der KERNAL folgende Funktionen aus: Die Ein-/Ausgabe-

vektoren werden auf die Standardwerte gesetzt. Der Bildschirm wird dann

gelöscht und alle Bildschirm-Editor-Variablen rückgestellt. Für den BASIC-Start

wird dann die indirekte Adresse in $A000 benutzt.

ARBEITEN MIT KERNAL

Beim Schreiben von Programmen in Maschinensprache ist es oft empfehlenswert,

Betriebssystem-Routinen zu benutzen. Diese umfassen Ein-/Ausgabe, Zugriff auf

den System-Taktgeber, Speicherverwaltung und ähnliche Funktionen. Es ist über-

flüssig, diese Routinen ständig neu zu schreiben. Durch den einfachen Zugriff auf

das Betriebssystem wird daher das Programmieren in Maschinensprache beschleu-

nigt.

Wie bereits erwähnt, stellt der KERNAL eine Sprungtabelle dar. Diese ist lediglich

eine Ansammlung von JMP-Anweisungen zu zahlreichen Betriebssystem-Routi-

nen.

MASCHINENSPRACHE 265

Um mit einer KERNAL-Routine zu arbeiten, müssen Sie zunächst alle fur diese

Routine erforderlichen Vorbereitungen treffen. Wenn eine Routine z. B. zunachst

den Aufruf einer anderen KERNAL-Routine erfordert, dann mussen Sie diese

aufrufen. Setzt die Routine die Eingabe einer Zahl in den Akkumulator voraus, dann

muß diese Zahl auch eingegeben sein. Werden die Bedingungen nicht erfüllt, dann

können die Routinen natürlich auch nicht richtig arbeiten.

Nach dem Durchführen sämtlicher Vorbereitungen rufen Sie die Routine über die

JSR-Anweisung auf. Alle zugänglichen KERNAL-Routinen sind wie Unterpro-

gramme aufgebaut und müssen mit einer RTS-Anweisung enden. Wenn die KER-

NAL-Routine die entsprechende Aufgabe beendet hat, wird die Steuerung bei der

Anweisung nach JSR wieder Ihrem Programm übertragen.

Viele KERNAL-Routinen zeigen bei Störungen Fehler-Codes im Statuswort oder

Akkumulator an. Für gutes Programmieren und einen Erfolg der Maschinensprache-

Programme dürfen diese Fehlerrückgaben nicht außer acht gelassen werden, da

sonst das übrige Programm zerstört werden kann.

Dies ist alles, was Sie beim Arbeiten mit KERNAL zu tun haben. Gehen Sie einfach

wie folgt vor:

1) Einrichten

2) Routinenaufruf

3) Fehlerbehandlung

Folgende Konventionen werden bei der Beschreibung von KERNAL-Routinen

benutzt:

— FUNKTIONSNAME: Bezeichnung der Kernal-Routine.

— AUFRUFADRESSE: Dies ist die Aufrufadresse der KERNAL-Routine in Hexa-

dezimaldarstellung.

— KOMMUNIKATIONS-REGISTER: Unter dieser Überschrift aufgeführte Regi-

ster werden zur Übertragung von Parametern zu bzw. von KERNAL-Routinen

benutzt.

— VORBEREITUNGS-ROUTINEN: Bei bestimmten KERNAL-Routinen ist zuvor

eine Dateneingabe erforderlich. Die erforderlichen Routinen werden hier aufge-

führt.

266 MASCHINENSPRACHE

FEHLERMELDUNGEN: Ist nach dem Abarbeiten einer KERNAL-Routine das

CARRY-Flag gesetzt, so zeigt dies an, daß bei der Verarbeitung ein Fehler

festgestellt wurde. Die Fehlerzahl ist im Akkumulator enthalten.

— STAPELBEDARF: Dies ist die tatsachliche Anzahl an Stapel-Bytes, die von der

KERNAL-Routine benutzt werden.

— BETROFFENE REGISTER: Alle von KERNAL-Routinen benutzte Register

werden hier aufgeführt.

— BESCHREIBUNG: Hier finden Sie eine kurze Funktionsbeschreibung der

KERNAL-Routine.

Nachstehend werden die KERNAL-Routinen aufgelistet.

MASCHINENSPRACHE 267

AUFRUFBARE KERNAL-ROUTINEN

ADRESSE

NAME HEXA- DEZIMAL FUNKTION

DEZIMAL

ACPTR $FFA5 65445 Byte-Eingabe zum seriellen Port

CHKIN $FFC6 65478 Kanal für Eingabe öffnen

CHKOUT $FFC9 65481 Kanal für Ausgabe Öffnen

CHRIN $FFOF 65487 Zeicheneingabe

CHROUT $FFD2 65490 Zeichenausgabe

CIOUT $FFA8 65448 Byte-Ausgabe Uber den seriellen

Bus

CINT $FF81 65409 Bildschirm-Editor-Initialisierung

CLALL $FFE7 65511 Schließen aller Kanäle und

Dateien

CLOSE $FFC3 65475 SchlieBen einer bestimmten

logischen Datei

CLRCHN $FFCC 65484 SchlieBen der Ein- und

Ausgabekanäle

GETIN $FFE4 65508 Zeichen aus Tastaturpuffer lesen

IOBASE $FFF3 65523 Basisadreß-Rückmeldung der

Ein-/Ausgabegeräte

IOINIT $FF84 65412 Ein-/Ausgabeinitialisierung

LISTEN SFFBI 65457 LISTEN-Befehl fur Gerate am

seriellen Bus

LOAD $FFD5 65493 RAM laden von Peripherie

MEMBOT SFFSC 65436 Unteren Speicherzeiger

lesen/setzen

MEMTOP $FF99 65433 Oberen Speicherzeiger

lesen/setzen

OPEN $FFCO 65472 Öffnen einer logischen Datei
PLOT $FFFO 65520 X-, Y-Cursorposition lesen/setzen

268 MASCHINENSPRACHE

ADRESSE

NAME HEXA- DEZIMAL FUNKTION

DEZIMAL

RAMTAS $FF87 65415 RAM initialisieren, Kassettenpuffer

einrichten, Bildschirm auf $0400

setzen

RDTIM $FFDE 65502 Uhrzeit lesen

READST $FFB7 65463 Ein-/Ausgabestatuswort lesen

RESTOR $FF8A 65418 Standard Ein-/Ausgabevektoren

ruckstellen

SAVE $FFD8 65496 RAM-Inhalt auf Peripheriegerat

abspeichern

SCNKEY $FFYF 65439 Tastatur abfragen

SCREEN $FFED 65517 X-, Y-Bildschirmaufbau ermitteln

SECOND $FF93 65427 Sekundaradresse nach LISTEN

übertragen

SETLFS $FFBA 65466 Logische, erste und

Sekundäradresse setzen

SETMSG $FF9O 65424 KERNAL-Meldungen steuern

SETNAM $FFBD 65469 Dateinamen festlegen

SETTIM $FFDB 65499 Uhrzeit setzen

SETTMO $FFA2 65442 Zeitsperre für seriellen Bus setzen

STOP $FFE1 65505 Stop-Taste abfragen

TALK $FFB4 65460 TALK-Befehl fur Gerate am

seriellen Bus

TKSA $FF96 65430 Sekundaradresse nach TALK

übertragen

UDTIM $FFEA 65514 Uhrzeit inkrementieren

UNLSN $FFAE 65454 UNLISTEN-Befehl für seriellen

Bus

UNTLK $FFAB 65451 UNTALK-Befehl für seriellen Bus

VECTOR $FF8D 65421 Abspeichern von RAM

MASCHINENSPRACHE 269

B-1. Funktionsname: ACPTR

Zweck: Daten vom seriellen Bus lesen

Aufrufadresse: $FFA5 (HEX) 65445 (Dezimal)

Kommunikationsregister: .A

Vorbereitungsroutinen: TALK, TKSA

Fehlerrückmeldungen: Siehe READST

Stapelbedarf: 13

Beeinflußte Register: .A, .X

Beschreibung: Diese Routine benutzen Sie, wenn Sie Informationen von einem

Gerät am seriellen Bus, wie z. B. einer Diskette lesen wollen. Diese Routine liest

direkt ein Datenbyte vom seriellen Bus. Dieses Datum wird in den Akkumulator

übertragen. Als Vorbereitung muß zunächst die TALK-Routine aufgerufen werden.

Über diese erhält der serielle Bus den Befehl für die Bus-Datenübertragung.

Wenn die Eingabevorrichtung einen Sekundärbefehl erfordert, muß dieser vor dem

Aufruf über die KERNAL-Routine TKSA übertragen werden. Fehler werden im

Statuswort rückgemeldet. Zum Lesen des Statusworts wird die READST-Routine
benutzt.

Vorgehensweise:

0) Gerät am seriellen Bus für die Datenübertragung zum COMMODORE 64 vorbe-

reiten. (KERNAL-Routinen, TALK und TKSA benutzen.)

1) Diese Routine aufrufen (über JSR).

2) Daten speichern oder benutzen.

BEISPIEL:

-GET A BYTE FROM THE BUS
JSR ACPTR

STA DATA

270 MASCHINENSPRACHE

B-2. Funktionsname: CHKIN

Zweck: Kanal für Eingabe Öffnen

Aufrufadresse: $FFC6 (HEX) 65478 (Dezimal)

Kommunikationsregister: .X

Vorbereitungsroutinen: (OPEN)

Fehlerrückmeldung:

Stapelbedarf: Keiner

Beeinflußte Register: .A, .X

Beschreibung: Jede über die KERNAL-Routine OPEN geöffnete logische Datei

kann über diese Routine als Eingabekanal definiert werden. Natürlich muß es sich

dabei um ein Eingabegerät handeln, da es sonst zu einem Fehler kommt und die

Routine unterbrochen wird.

Werden die Daten nicht über die Tastatur eingegeben, dann muß diese Routine vor

dem Arbeiten mit den KERNAL-Routinen CHRIN oder GETIN für die Dateneingabe

zuvor aufgerufen werden. Soll die Eingabe über die Tastatur erfolgen und sind keine

weiteren Eingabekanäle geöffnet, dann wird diese Routine und die OPEN-Routine

nicht benötigt.

Wird diese Routine mit einem Gerät am seriellen Bus benutzt, dann wird über den

Bus automatisch die Talk-Adresse (und die Sekundäradresse, wenn eine solche

durch die OPEN-Routine festgelegt wurde) übertragen.

Vorgehensweise:

0) Logische Datei öffnen (gegebenenfalls dazugehörige Beschreibung durch-

lesen).

1) Register .X mit der Nummer der zu verwendenden logischen Datei laden.

2) Diese Routine aufrufen (über JSR).

Mögliche Fehler:

#3: Datei nicht offen.

#5: Gerät nicht vorhanden.

#6: Datei ist keine Eingabedatei.

BEISPIEL:

; PREPARE FOR INPUT FROM LOGICAL FILE 2

LDX #2
JSR CHKIN

MASCHINENSPRACHE 271

B-3. Funktionsname: CHKOUT

Zweck: Kanal fur Ausgabe offnen

Aufrufadresse: $FFC9 (HEX) 65481 (Dezimal)

Kommunikationsregister: .X

Vorbereitungsroutinen: (OPEN)
Fehlerrückmeldungen: 0,3,5,7 (siehe READST)
Stapelbedarf: 4+

Beeinflußte Register: .A, .X

Beschreibung: Eine Uber die KERNAL-Routine OPEN erstellte logische Datei-

nummer kann als Ausgabekanal definiert werden. Naturlich muB es sich hierbei um

ein Ausgabegerat handeln, da es sonst zu einem Fehler kommt und die Routine

unterbrochen wird.

Ehe Daten zu einem Ausgabegerat übertragen werden, ist ein Aufruf dieser Routine

erforderlich. Es sei denn, Sie wollen den Bildschirm des COMMODORE 64 als

Ausgabegerät benutzen. Wird eine Bildschirmausgabe gewünscht und ist noch kein

anderer Ausgabekanal definiert, dann werden diese Routine und die OPEN-Routine

nicht benötigt.

Beim Offnen des Kanals zum seriellen Bus Ubertragt diese Routine automatisch die

durch die OPEN-Routine festgelegte LISTEN-Adresse (und gegebenenfalls eine

Sekundäradresse).

Vorgehensweise:

Denken Sie daran: Diese Routine wird nicht zum Übertragen von Daten auf den Bildschirm benötigt.

QO) Eine logische Dateinummer, eine LISTEN-Adresse und eine Sekundäradresse

(falls erforderlich) über die KERNAL-Routine OPEN festlegen.

1) Register .X mit der in der OPEN-Anweisung benutzten logischen Dateinummer

laden.

2) Diese Routine aufrufen (über JSR).

BEISPIEL:

LDX #3 ‘DEFINE LOGICAL FILE 3 AS AN OUTPUT CHANNEL

JSR CHKOUT

Mögliche Fehler:

#3: Datei nicht offen.

#5: Gerät nicht vorhanden.

#7: Keine Ausgabedatei.

272 MASCHINENSPRACHE

B-4. Funktionsname: CHRIN

Zweck: Zeicheneingabe

Aufrufadresse: $FFCF (HEX) 65487 (Dezimal)

Kommunikationsregister: .A

Vorbereitungsroutinen: (OPEN, CHKIN)

Fehlerruckmeldungen: O (siehe READST)

Stapelbedarf: 7+

BeeinfluBte Register: .A, .X

Beschreibung: Über diese Routine wird ein Datenbyte von dem über die KER-

NAL-Routine CHKIN bereits als Eingabekanal festgelegten Kanal gelesen. Wurde

CHKIN nicht zur Definition eines weiteren Eingabekanals benutzt, dann wird davon

ausgegangen, daB samtliche Daten Uber die Tastatur eingegeben wurden. Das

Datenbyte wird in den Akkumulator ubertragen. Nach dem Aufruf bleibt der Kanal

offen.

Eingaben über die Tastatur werden auf besondere Weise gehandhabt. Zunächst

wird der Cursor eingeschaltet und blinkt so lange, bis ein CR (carriage return)

eingegeben wird. Alle Zeichen in der Zeile (max. 88 Zeichen) werden im BASIC-

Eingabepuffer gespeichert. Diese Zeichen können einzeln aufgerufen werden,

indem man diese Routine für jedes einzelne Zeichen aufruft. Nach dem “carriage

return“ wird die gesamte Zeile verarbeitet. Beim nachfolgenden Aufruf dieser

Routine beginnt der gleiche Vorgang wieder von vorn, d. h., mit einem Blinken des

Cursors.

Vorgehensweise:

VON DER TASTATUR

1) Ein Datenbyte durch diese Routine aufrufen.

2) Datenbyte speichern.

3) Prüfen, ob es sich um das letzte Datenbyte handelt (ist es ein CR?).

4) Wenn nicht, bei Schritt 1) fortsetzen.

BEISPIEL:

LDY #$00 ‚PREPARE THE .Y REGISTER TO STORE THE DATA

RD JSR CHRIN

STA DATA,Y ‚STORE THE YTH DATA BYTE IN THE YTH

;LOCATION IN THE DATA AREA.

INY

CMP #CR IS IT A CARRIAGE RETURN?

BNE RD ;‚NO, GET ANOTHER DATA BYTE

MASCHINENSPRACHE 273

BEISPIEL:

JSR CHRIN

STA DATA

VON ANDERER PERIPHERIE

0) KERNAL-Routinen OPEN und CHKIN benutzen.

1) Diese Routine aufrufen (über JSR).

2) Daten speichern.

BEISPIEL:

JSR CHRIN

STA DATA

B-5. Funktionsname: CHROUT

Zweck: Zeichenausgabe

Aufrufadresse: $FFD2 (HEX) 65490 (Dezimal)

Kommunikationsregister: .A

Vorbereitungsroutinen: (CHKOUT, OPEN)

Fehlerrückmeldungen: O (siehe READST)

Stapelbedarf: 8+

Beeinflußte Register: .A

Beschreibung: Über diese Routine wird ein Zeichen zu einem bereits geöffneten

Kanal ausgegeben. Vor dem Aufruf dieser Routine den Ausgabekanal durch die

KERNAL-Routinen OPEN und CHKOUT bestimmen. Wird dieser Aufruf ausgelas-

sen, dann erfolgt die Datenübertragung zum Standard-Ausgabegerät (Nummer 3,

Bildschirm). Das auszugebende Datenbyte wird in den Akkumulator übertragen und

diese Routine aufgerufen. Die Daten werden dann zum angegebenen Ausgabege-

rät übertragen. Nach dem Aufruf bleibt der Kanal geöffnet.

Anmerkung: Besondere Vorsicht ist geboten, wenn diese Routine für die Datenübertragung zu einem
speziellen Gerät am seriellen Bus benutzt wird, da alle Daten zu allen offenen Bus-Ausgabekanälen

übertragen werden. Ist dies nicht erwünscht, müssen alle Ausgabekanäle des Serienbusses bis auf den

gewünschten Kanal durch die KERNAL-Routine CLRCHN geschlossen werden.

274 MASCHINENSPRACHE

Vorgehensweise:

0) Gegebenenfalls KERNAL-Routine CHKOUT benutzen (siehe obige Beschrei-

bung).

1) Auszugebende Daten in den Akkumulator laden.

2) Diese Routine aufrufen.

BEISPIEL:

;‚DUPLICATE THE BASIC INSTRUCTION CMD 4," A“;

LDX #4 ;LOGICAL FILE #4

JSR CHKOUT | ‚OPEN CHANNEL OUT

LDA #’A’

JSR CHROUT ‚SEND CHARACTER

B-6. Funktionsname: CIOUT

Zweck: Byte-Ausgabe über den seriellen Bus

Aufrufadresse: $FFA8 (HEX) 65448 (Dezimal)

Kommunikationsregister: .A

Vorbereitungsroutinen: LISTEN, (SECOND)

Fehlerruckmeldungen: Siehe READST

Stapelbedarf: 5

BeeinfiuBte Register: Keine

Beschreibung: Diese Routine wird für die Informationsübertragung zu einem

Gerät am seriellen Bus benutzt. Durch Aufruf dieser Routine wird ein Datenbyte auf

den seriellen Bus mit “handshake“ übertragen. Vor dem Aufruf muß die KERNAL-

Routine LISTEN benutzt werden, um das Gerät am seriellen Bus für den Datenemp-

fang vorzubereiten. (Wird eine Sekundäradresse benötigt, dann muß diese über die

KERNAL-Routine SECOND übertragen werden.)

Der Akkumulator wird dann mit einem Byte geladen, das als Datum über den

seriellen Bus übertragen wird. Eine Vorrichtung muß für den Datenempfang bereit

sein, da sonst das Statuswort ein “timeout“ meldet. Bei dieser Routine wird stets

ein Zeichen zwischengespeichert. Wird die KERNAL-Routine UNLSN zur Beendi-

gung der Datenübertragung aufgerufen, so wird das im Puffer befindliche Zeichen

mit einem EOl übertragen. Dann wird der Befehl UNLSN zum Gerät übertragen.

MASCHINENSPRACHE 275

Vorgehensweise:

0) KERNAL-Routine LISTEN (und gegebenenfalls SECOND) benutzen.

1) Ein Datenbyte in den Akkumulator laden.

2) Zur Übertragung des Datenbytes diese Routine aufrufen.

BEISPIEL:

LDA #X ‘SEND AN X TO THE SERIAL BUS

JSR CIOUT

B-7. Funktionsname: CINT

Zweck: Initialisierung von Bildschirmeditor und Video-Chip 6567

Aufrufadresse: $FF81 (HEX) 65409 (Dezimal)

Kommunikationsregister: Keine

Vorbereitungsroutinen: Keine

Fehlerruckmeldungen: Keine

Stapelbedarf: 4

BeeinfluBte Register: .A, .X, .Y

Beschreibung: Uber diese Routine wird der Video-Steuerchip 6567 im COMMO-

DORE 64 initialisiert. Auch der KERNAL-Bildschirmeditor wird initialisiert. Diese

Routine kann über ein Programm-Modul des COMMODORE 64 aufgerufen werden.

Vorgehensweise:

1) Diese Routine aufrufen.

BEISPIEL:

JSR CINT
JMP RUN ‚;BEGIN EXECUTION

276 MASCHINENSPRACHE

B-8. Funktionsname: CLALL

Zweck: Schließen sämtlicher Dateien

Aufrufadresse: $FFE7 (HEX) 65511 (Dezimal)

Kommunikationsregister: Keine

Vorbereitungsroutinen: Keine

Fehlerrückmeldungen: Keine

Stapelbedarf: 11

Beeinflußte Register: .A, .X

Beschreibung: Über diese Routine werden alle offenen Dateien geschlossen.

Beim Aufruf werden die Zeiger in der Tabelle der offenen Dateien rückgestellt und

alle Dateien geschlossen. Die Routine CLRCHN wird automatisch zur Rückstellung

der Ein-/Ausgabekanäle aufgerufen.

Vorgehensweise:

1) Diese Routine aufrufen.

BEISPIEL:

JSR CLALL ;CLOSE ALL FILES AND SELECT DEFAULT I/O CHANNELS

JMP RUN ;BEGIN EXECUTION

B-9. Funktionsname: CLOSE

Zweck: SchlieBen einer logischen Datei

Aufrufadresse: $FFC3 (HEX) 65475 (Dezimal)

Kommunikationsregister: .A

Vorbereitungsroutinen: Keine

Fehlerruckmeldungen: 0,240 (siehe READST)

Stapelbedarf: 2+

Beeinflußte Register: .A, .X, .Y

Beschreibung: Diese Routine wird zum SchlieBen einer logischen Datei benutzt,

nachdem alle Ein-/Ausgaben in bezug auf diese Datei beendet sind. Die Routine

wird aufgerufen, nachdem der Akkumulator mit der entsprechenden logischen

Dateinummer geladen wurde (gleiche Nummer, die beim Öffnen der Datei über die

Routine OPEN benutzt wurde).

Vorgehensweise:

1) Entsprechende logische Dateinummer in den Akkumulator laden.

2) Diese Routine aufrufen.

MASCHINENSPRACHE 277

BEISPIEL:

;CLOSE 15

LDA #15

JSR CLOSE

B-10. Funktionsname: CLRCHN

Zweck: Löschen von Ein-/Ausgabekanälen

Aufrufadresse: $FFCC (HEX) 65484 (Dezimal)

Kommunikationsregister: Keine

Vorbereitungsroutinen: Keine
Fehlerrückmeldungen:

Stapelbedarf: 9

Beeinflußte Register: .A, .X

Beschreibung: Diese Routine wird zum Löschen aller offenen Kanäle und zur

Rückstellung der Ein-/Ausgabekanäle auf die Standardwerte aufgerufen. Normaler-

weise erfolgt der Aufruf nach Öffnen anderer Ein-/Ausgabekanäle (z. B. Kassette

oder Diskette) und Beendigung der entsprechenden Ein-/Ausgaben. Die Standard-

Eingabegerätenummer ist O (Tastatur). Das Standardausgabegerät ist 3 (Bild-

schirm).

Ist einer der zu schließenden Kanäle der serielle Bus, so wird zunächst zum

Löschen des Eingabekanals ein UNTALK-Signal oder zum Löschen des Ausgabe-

kanals ein UNLISTEN-Signal übertragen. Wird diese Routine nicht aufgerufen (und

bleiben die Serienbus-Anschlußgeräte empfangsbereit), dann können mehrere

Geräte die gleichen Daten vom COMMODORE 64 gleichzeitig empfangen. Hier-

durch könnte z. B. der Drucker für die Ausgabe und die Diskette für den Datenemp-

fang eingesetzt werden. Auf diese Weise kann eine Diskettendatei direkt ausge-

druckt werden.

Beim Ausführen der KERNAL-Routine CLALL wird diese Routine automatisch

aufgerufen.

Vorgehensweise:

1) Diese Routine über die JSR-Anweisung aufrufen.

BEISPIEL:

JSR CLRCHN

278 MASCHINENSPRACHE

B-11. Funktionsname: GETIN

Zweck: Ein Zeichen lesen

Aufrufadresse: $FFE4 (HEX) 65508 (Dezimal)

Kommunikationsregister: .A

Vorbereitungsroutinen: CHKIN, OPEN

Fehlerruckmeldungen: Siehe READST

Stapelbedarf: 7+

BeeinfluBte Register: .A (.X, .Y)

Beschreibung: Handelt es sich bei dem Kanal um die Tastatur, dann nimmt dieses

Unterprogramm ein Zeichen aus dem Tastaturpuffer und überträgt es als ACII-Wert

in den Akkumulator. Ist der Puffer leer, dann wird der Wert O in den Akkumulator

übertragen. Zeichen werden automatisch durch eine Tastatur-Abfrageroutine, die

die Routine SCNKEY aufruft, in eine “Warteschlange“ übertragen. Im Tastaturpuffer

können max. 10 Zeichen gespeichert sein. Ist der Puffer gefüllt, dann werden das

11. und alle weiteren Zeichen solange überlesen, bis mind. 1 Zeichen aus der

Warteschlange entfernt wurde.

Handelt es sich bei dem Kanal um RS-232, dann wird nur Register .A benutzt und

ein einzelnes Zeichen wiedergegeben. Zum Überprüfen siehe READST. Handelt es

sich bei dem Kanal um den seriellen Bus, die Kassette oder den Bildschirm, dann

rufen Sie die BASIN-Routine auf.

Vorgehensweise:

1) Diese Routine über eine JSR-Anweisung aufrufen.

2) Prüfen, ob im Akkumulator eine O gespeichert ist (leerer Puffer).

3) Daten verarbeiten.

BEISPIEL:

‚WAIT FOR A CHARACTER

WAIT JSR GETIN

CMP #0

BEQ WAIT

MASCHINENSPRACHE 279

B-12. Funktionsname: IOBASE

Zweck: Festlegen des Ein-/Ausgabe-Speicherbereichs

Aufrufadresse: $FFF3 (HEX) 65523 (Dezimal)

Kommunikationsregister: .X, .Y

Vorbereitungsroutinen: Keine

Fehlerrückmeldungen:

Stapelbedarf: 2

Beeinflußte Register: .X, .Y

Beschreibung: Über diese Routine werden im X- und Y-Register nieder- und

höherwertige Bytes der Adresse des Speicherabschnitts abgespeichert, in dem

sich die Ein-/Ausgaberegister befinden. Diese Adresse kann dann zusammen mit

relativen Adressen für den Zugriff auf die Ein-/Ausgaberegister des COMMODORE

64 benutzt werden. Register .X enthält das untere Adreßbyte, Register .Y das obere

Adreßbyte.

Durch diese Routine wird Kompatibilität zwischen dem COMMODORE 64, VC-20

und künftigen Modellen des COMMODORE 64 gewährleistet. Werden die Ein-/

Ausgaberegister für ein Maschinenspracheprogramm durch Aufruf dieser Routine

gesetzt, dann sind sie auch mit künftigen Versionen des COMMODORE 64, was

KERNAL und BASIC angeht, kompatibel.

Vorgehensweise:

1) Diese Routine über die JSR-Anweisung aufrufen.

2) Das Register .X und .Y in aufeinanderfolgenden Plätzen speichern.

3) Die Verschiebung in Register .Y laden.

4) Auf diesen Ein-/Ausgabeplatz zugreifen.

BEISPIEL:

‘SET THE DATA DIRECTION REGISTER OF THE USER PORT TO 0 (INPUT)

JSR IOBASE

STX POINT ‘SET BASE REGISTERS

STY POINT+1

LDY #2

LDA #0 ‚OFFSET FOR DDR OF THE USER PORT

STA (POINT), Y ;SET DDR TO 0

280 MASCHINENSPRACHE

B-13. Funktionsname: IOINIT

Zweck: Initialisieren von Ein-/Ausgabegeraten

Aufrufadresse: $FF84 (HEX) 65412 (Dezimal)

Kommunikationsregister: Keine

Vorbereitungsroutinen: Keine

Fehlerruckmeldungen:

Stapelbedarf: Keiner

BeeinfluBte Register: .A, .X, .Y

Beschreibung: Uber diese Routine werden alle Ein-/Ausgabevorrichtungen und

Routinen initialisiert. Sie wird normalerweise als Teil der Initialisierung eines Pro-

grammoduls des COMMODORE 64 aufgerufen.

BEISPIEL:

JSR IOINIT

B-14. Funktionsname: LISTEN

Zweck: LISTEN-Befehl für ein Gerät am seriellen Bus

Aufrufadresse: $FFB1 (HEX) 65457 (Dezimal)

Kommunikationsregister: ‚A

Vorbereitungsroutinen: Keine

Fehlerruckmeldungen: Siehe READST

Stapelbedarf: Keiner

BeeinfluBte Register: .A

Beschreibung: Uber diese Routine wird Gerät am seriellen Bus für den Daten-

empfang vorbereitet. Eine Geratenummer zwischen 0 und 31 wird vor dem Aufruf

dieser Routine in den Akkumulator geladen. Uber die LISTEN-Anweisung wird die

Zahl Bit für Bit ODER-verknüpft und in eine LISTEN-Adresse umgewandelt. Dieses

Datum wird dann als Befehl über den seriellen Bus übertragen. Das angegebene

Gerät ist dann für den Datenempfang bereit.

Vorgehensweise:

1) Die gewünschte Gerätenummer in den Akkumulator laden.

2) Diese Routine über die JSR-Anweisung aufrufen.

MASCHINENSPRACHE 281

BEISPIEL:

‚COMMAND DEVICE #8 TO LISTEN

LDA #8

JSR LISTEN

B-15. Funktionsname: LOAD

Zweck: RAM laden von Peripherie

Aufrufadresse: $FFD5 (HEX) 65493 (Dezimal)

Kommunikationsregister: .A, .X, .Y

Vorbereitungsroutinen: SETLFS, SETNAM

Fehlerruckmeldungen: 0,4,5,8,5, READST

Stapelbedarf: Keiner

Beeinflußte Register: .A, .X, .Y

Beschreibung: Uber diese Routine werden Datenbytes direkt von einem beliebi-

gen Eingabegerät in den Speicher des COMMODORE 64 geladen. Sie kann auch

fur einen Vergleich der vom Gerat stammenden Daten mit denen im Speicher

benutzt werden, wahrend die im RAM gespeicherten Daten unverandert bleiben

(VERIFY).

Zum Laden wird der Akkumulator (.A) auf O und fur VERIFY auf 1 gesetzt. Wird ein

OPEN auf das Eingabegerat mit der Sekundaradresse (SA) 0 eingegeben, dann

wird die Ladeadresse ignoriert. In diesem Fall müssen die Register .X und .Y die

Startadresse enthalten. Wird die Sekundäradresse 1, 0 oder 2 gewählt, dann

werden die Daten ab der durch die Ladeadresse gegebenen Position in den

Speicher geladen. Diese Routine ermittelt die Adresse des obersten benutzten

RAM-Platzes.

Vor dem Aufruf dieser Routine müssen die KERNAL-Routinen SETLFS und

SETNAM aufgerufen werden.

Anmerkung: Ein LOAD über Tastatur (0), RS-232 (2) oder Bildschirm (3) ist nicht möglich.

Vorgehensweise:

0) Routine SETLFS und SETNAM aufrufen. Wird ein verschobenes Laden

gewünscht, Routine SETLFS zum Übertragen der Sekundaradresse 0 benutzen.

1) Register .A zum Laden auf 0 und zum Überprüfen auf 1 setzen.

2) Wird Laden an eine bestimmte Adresse gewünscht, müssen Register .X und .Y

auf die Lade-Startadresse gesetzt sein.

3) Die Routine über die JSR-Anweisung aufrufen.

282 MASCHINENSPRACHE

BEISPIEL:

‘LOAD A FILE FROM TAPE

LDA

LDX

LDY

JSR

LDA

LDX

LDY

JSR

LDA

LDX

LDY

JSR

STX

STY

JMP

NAME .BYT

NAME 1

#DEVICE1 ‚SET DEVICE NUMBER

#FILENO ‚SET LOGICAL FILE NUMBER

CMD1 ‚SET SECONDARY ADDRESS

SETLFS

#NAMEI-NAME ;LOAD .A WITH NUMBER OF

‚CHARACTERS IN FILE NAME

#<NAME ;LOAD .X AND .Y WITH
‚;ADDRESS OF

#>NAME ;FILE NAME
SETNAM
#0 ‘SET FLAG FOR A LOAD
#$FF “ALTERNATE START
#$FF
LOAD
VARTAB ;END OF LOAD
VARTAB+1
START
'FILE NAME’

B-16. Funktionsname: MEMBOT

Zweck: Setzen des Zeigers für das untere Speicherende

Aufrufadresse: $FF9C (HEX) 65436 (Dezimal)

Kommunikationsregister: .X, .Y

Vorbereitungsroutinen: Keine

Fehlerruckmeldungen: Keine

Stapelbedarf: Keiner

Beeinflußte Register: .X, .Y

Beschreibung: Diese Routine wird zum Setzen des unteren Speicherzeigers

benutzt. Ist beim Aufruf dieser Routine das Akkumulator-Ubertragsbit gesetzt, dann

wird der Zeiger des untersten RAM-Bytes im Register .X und .Y wiedergegeben.

Beim nicht erweiterten COMMODORE 64 ist der Zeigeranfangswert $0800 (2048

Dezimal). Ist beim Aufruf dieser Routine das Akkumulator-Ubertragsbit gelöscht

(=0), dann werden die Werte des Register .X und .Y zum nieder- bzw. höherwerii-

gen Byte des Zeigers, der den RAM-Anfang festlegt, übertragen.

MASCHINENSPRACHE

Vorgehensweise:

LESEN DES RAM-ANFANGS

1) Übertrags-Flag setzen.
2) Diese Routine aufrufen.

SETZEN DES SPEICHERANFANGS

1) Übertrags-Flag löschen.
2) Diese Routine aufrufen.

BEISPIEL:

‚MOVE BOTTOM OF MEMORY UP 1 PAGE

SEC ;READ MEMORY BOTTOM

JSR MEMBOT

INY

CLC ‘SET MEMORY BOTTOM TO NEW VALUE

JSR MEMBOT

B-17. Funktionsname: MEMTOP

Zweck: Setzen des Zeigers fur das obere Speicherende

Aufrufadresse: $FF99 (HEX) 65433 (Dezimal)

Kommunikationsregister: .X, .Y

Vorbereitungsroutinen: Keine

Fehlerruckmeldungen: Keine

Stapelbedarf: 2

BeeinfluBte Register: .X, .Y

Beschreibung: Uber diese Routine wird das RAM-Ende gesetzt. Ist beim Aufruf

dieser Routine das Akkumulator-Ubertragsbit gesetzt, dann wird der Zeiger des

RAM-Endes in das Register .X und .Y geladen. Ist beim Aufruf dieser Routine das

Akkumulator-Ubertragsbit gelöscht, dann werden die Inhalte von Register .X und .Y

in den Speicherendezeiger geladen und so die Speicherendposition geandert.

BEISPIEL:

-DEALLOCATE THE RS-232 BUFFER
SEC
JSR MEMTOP ;READ TOP OF MEMORY
DEX
CLC |
JSR MEMTOP ;SET NEW TOP OF MEMORY

284 MASCHINENSPRACHE

B-18. Funktionsname: OPEN

Zweck: Öffnen einer logischen Datei

Aufrufadresse: $FFCO (HEX) 65472 (Dezimal)

Kommunikationsregister: Keine

Vorbereitungsroutinen: SETLFS, SETNAM

Fehlerrückmeldungen: 1,2,4,5,6,240, READST

Stapelbedarf: Keiner

Beeinflußte Register: .A, .X, .Y

Beschreibung: Über diese Routine kann eine logische Datei geöffnet werden.

Nach Einrichten einer logischen Datei kann diese für Ein-/Ausgaben benutzt

werden. Bei den meisten KERNAL-Ein-/Ausgaberoutinen wird diese Routine zum

Erstellen der entsprechenden logischen Dateien aufgerufen. Für die Verwendung

dieser Routine sind keine Parameter erforderlich, es müssen jedoch die KERNAL-

Routinen SETLFS und SETNAM zuvor aufgerufen werden.

Vorgehensweise:

0) Routine SETLFS benutzen.

1) Routine SETNAM benutzen.

2) Diese Routine aufrufen.

BEISPIEL:

Dies ist eine Implementierung der BASIC-Anweisung: OPEN 15,8,15,"/O“.

LDA #NAME2-NAME ;LENGTH OF FILE NAME FOR SETLFS

LDY #>NAME ‚ADDRESS OF FILE NAME

LDX #<NAME

JSR SETNAM

LDA #15

LDX #8

LDY #15

JSR SETLFS

JSR OPEN

NAME .BYT ‘I/O’

NAME2

MASCHINENSPRACHE 285

B-19. Funktionsname: PLOT

Zweck: Cursorposition lesen/setzen

Aufrufadresse: $FFFO (HEX) 65520 (Dezimal)

Kommunikationsregister: .A, .X, .Y |

Vorbereitungsroutinen: Keine

Fehlerrückmeldungen: Keine

Stapelbedarf: 2

Beeinflußte Register: .A, .X, .Y

Beschreibung: Ist beim Aufruf dieser Routine das Akkumulator-Übertrag-Flag

gesetzt, dann wird die derzeitige Cursorposition auf dem Bildschirm (in X-/Y-

Koordinaten) in Register .Y und .X geladen. Y ist die Spaltennummer des Cursor-

platzes (0-79) und X die Reihennummer (0-24). Ist beim Aufruf das Ubertragsbit

gelöscht, dann bewegt sich der Cursor in die durch X,Y gegebene Position

(entsprechend Register .Y und .X).

Vorgehensweise:

LESEN DER CURSORPOSITION

1) Übertrags-Flag setzen.

2) Diese Routine aufrufen.

3) X- und Y-Position aus Register .X bzw. .Y lesen.

SETZEN DER CURSORPOSITION

1) Übertrags-Flag löschen.
2) In Register .Y und .X die gewünschte Cursorposition schreiben.

3) Diese Routine aufrufen.

BEISPIEL:

; MOVE THE CURSOR TO ROW 10, COLUMN 5 (5,10)

LDX #10

LDY #5

CLC

JSR PLOT

286 MASCHINENSPRACHE

B-20. Funktionsname: RAMTAS

Zweck: RAM-Test

Aufrufadresse: $FF87 (HEX) 65445 (Dezimal)

Kommunikationsregister: .A, .X, .Y

Vorbereitungsroutinen: Keine

Fehlerruckmeldungen: Keine

Stapelbedarf: 2

Beeinflußte Register: .A, .X., .Y

Beschreibung: Uber diese Routine wird der RAM getestet und der obere bzw.

untere Speicherzeiger gesetzt. AuBerdem werden die Speicherplatze $0000 bis

$0101 und $0200 bis $03FF gelöscht. Außerdem wird der Kassettenpuffer initiali-

siert und der Bildschirmanfang auf $0400 gesetzt. Normalerweise wird diese

Routine als Teil der Initialisierung eines Programmoduls des COMMODORE 64

aufgerufen.

BEISPIEL:

JSR RAMTAS

B-21. Funktionsname: RDTIM _

Zweck: Systemtaktgeber lesen

Aufrufadresse: $FFDE (HEX) 65502 (Dezimal)

Kommunikationsregister: .A, .X, .Y

Vorbereitungsroutinen: Keine

Fehlerruckmeldungen: Keine

Stapelbedarf: 2

BeeinfluBte Register: .A, .X, .Y

Beschreibung: Diese Routine wird zum Lesen des Systemtaktgebers benutzt.

Die Auflösung beträgt hierbei 1/60 s. Durch die Routine werden 3 Bytes ermittelt.

Der Akkumulator enthält das signifikanteste (höchste) Byte, das X-Indexregister das

nächste signifikante Byte und das Y-Indexregister das am wenigsten signifikante
Byte.

BEISPIEL:

JSR RDTIM

STY TIME

STX TIME+1

STA TIME+2

TIME *=*+3

MASCHINENSPRACHE 287

B-22. Funktionsname: READST

Zweck: Statuswort lesen

Aufrufadresse: $FFB7 (HEX) 65463 (Dezimal)

Kommunikationsregister: „A

Vorbereitungsroutinen: Keine

Fehlerrückmeldungen: Keine

Stapelbedarf: 2

Beeinflußte Register: ‚A

Beschreibung: Über diese Routine wird der derzeitige Status der Ein-/Ausgabe-

geräte im Akkumulator abgelegt. Diese Routine wird normalerweise nach neuer

Kommunikation mit einem Ein-/Ausgabegerät aufgerufen. Sie gibt Ihnen Informatio-

nen über den Gerätestatus oder Fehler, die während der Ein-/Ausgabe aufgetreten

sind.

Die in den Akkumulator übertragenen Bits enthalten folgende Informationen: (Siehe

nachstehende Tabelle).

KASSETTE

ST SERIELLEN ÜBER-
ST NUMERI- | LESEN VON BUS/ PRÜFEN

BIT- SCHER KASSETTE SCHREIBEN/ (VERIFY)

POSITION WERT LESEN + LADEN

(LOAD)

0 1 Zeitsperre

(timeout)

Schreiben

1 2 Zeitsperre

(timeout)

Lesen

2 4 Kurzer Satz Kurzer Satz

2 8 Langer Satz Langer Satz

4 16 Nicht Nicht

korrigierbarer korrigierbarer

Lesefehler Lesefehler

5 32 Prufsummen- Prufsummen-

fehler fehler

6 64 Dateiende EOl-Leitung

f —128 Bandende Gerat nicht Bandende

vorhanden
288 _MASCHINENSPRACHE

Vorgehensweise:

1) Diese Routine aufrufen.

2) Programminformation in Register .A decodieren.

BEISPIEL:

‚CHECK FOR END OF FILE DURING READ

JSR READST

AND #64 ‚CHECK EOF BIT (EOF=END OF FILE)

BNE EOF ;BRANCH ON EOF

B-23. Funktionsname: RESTOR

Zweck: Normalzustand des Systems einstellen

Aufrufadresse: $FF8A (HEX) 65418 (Dezimal)

Vorbereitungsroutinen: Keine

Fehlerruckmeldungen: Keine

Stapelbedarf: 2

BeeinfluBte Register: .A, .X, .Y

Beschreibung: Uber diese Routine werden die Standardwerte sämtlicher vom

KERNAL, von BASIC-Routinen und vom Interrupt benutzten Systemvektoren rück-

gestellt. Über die KERNAL-Routine VECTOR können die einzelnen Systemvekto-

ren gelesen und aufbereitet werden.

Vorgehensweise:

1) Diese Routine aufrufen.

BEISPIEL:

JSR RESTOR

B-24. Funktionsname: SAVE

Zweck: Übertragen des Speicherinhalts auf ein entsprechendes Gerät

Aufrufadresse: $FFD8 (HEX) 65496 (Dezimal)

Kommunikationsregister: .A, .X, .Y

Vorbereitungsroutinen: SETLFS, SETNAM

Fehlerruckmeldungen: 5,8,9, READST

Stapelbedarf: Keiner

BeeinfluBte Register: .A, .X, .Y

MASCHINENSPRACHE 289

Beschreibung: Uber diese Routine wird ein Speicherbereich auf einem externen

Speichermedium abgespeichert. Der Speicher wird ab der durch den Akkumulator

festgelegten indirekten Adresse auf Seite O bis zu der in den Registern .X und .Y

abgelegten Adresse abgespeichert. Er wird zu einer logischen Datei eines Ein-/

Ausgabegerates ubertragen. Vor dem Aufruf dieser Routine sind die Routinen

SETLFS und SETNAM zu verwenden. Zum Sichern auf Gerät Nr. 1 (Datassette™)

ist jedoch kein Dateiname erforderlich. Wird versucht, auf eine andere Vorrichtung

ohne Dateiname zu speichern, kommt es zu einem Fehler.

Anmerkung: Es ist nicht möglich, auf Gerät Nr. O (Tastatur), 2 (RS-232) und 3 (Bildschirm) zu

speichern, da sonst eine Fehlermeldung erfolgt und die Speicherung gestoppt wird.

Vorgehensweise:

0) Routine SETLFS und SETNAM ausführen (wenn nicht auf Band oder Dateiname

gespeichert werden soll).

1) Zwei aufeinanderfolgende Plätze der Zero-Page mit dem Zeiger laden, der auf

den Anfang des abzuspeichernden Bereichs zeigt (standardmäßig kommt beim

6502 das niederwertige Byte zuerst und danach das höherwertige Byte).

2) Die Adresse des Zeigers in der Zero-Page in den Akkumulator laden.

3) Das niederwertige Byte bzw. das höherwertige Byte der Endadresse des abzu-

speichernden Bereiches in Register .X und .Y laden.

4) Diese Routine aufrufen.

BEISPIEL:

LDA #1 :DEVICE=1:CASSETTE
JSR SETLFS ~
LDA #0 ‘NO FILE NAME
JSR SETNAM
LDA PROG ‘LOAD START ADDRESS OF SAVE
STA TXTTAB : (LOW BYTE)
LDA PROG+1
STA TXTTAB+1 ; (HIGH BYTE)
LDX VARTAB -LOAD .X WITH LOW BYTE OF END OF SAVE
LDY VARTAB+1 -LOAD .Y WITH HIGH BYTE
LDA #<TXTTAB -LOAD ACCUMULATOR WITH PAGE 0 OFFSET
JSR SAVE

290 MASCHINENSPRACHE

B-25. Funktionsname: SCNKEY

Zweck: Abfrage der Tastatur

Aufrufadresse: $FF9F (HEX) 65439 (Dezimal)

Kommunikationsregister: Keine

Vorbereitungsroutinen: IOINIT

Fehlerrückmeldungen: Keine

Stapelbedarf: 5

Beeinflußte Register: .A, .X, .Y

Beschreibung: Über diese Routine wird die Tastatur des COMMODORE 64

abgefragt und so festgestellt, ob und wenn ja, welche Tasten gedrückt wurden. Dies

ist die gleiche Routine, die bei jedem Interrupt aufgerufen wird. Nach Drücken einer

Taste wird der entsprechende ASCIl-Wert in den Tastaturpuffer geschrieben.

Diese Routine wird nur aufgerufen, wenn die normale IRQ-Unterbrechung übergan-

gen wird.

Vorgehensweise:

1) Diese Routine aufrufen.

BEISPIEL:

GET JSRSCNKEY ;SCAN KEYBOARD

JSR GETIN ‚GET CHARACTER

CMP #0 ‚IS IT NULL?

BEQ GET ‚YES... SCAN AGAIN

JSR CHROUT _ ;PRINT IT

B-26. Funktionsname: SCREEN

Zweck: Ermitteln des Bildschirmformats

Aufrufadresse: $FFED (HEX) 65517 (Dezimal)

Kommunikationsregister: .X, .Y

Vorbereitungsroutinen: Keine

Stapelbedarf: 2

BeeinfluBte Register: .X, .Y

Beschreibung: Diese Routine gibt das Bildschirmformat wieder, z. B. 40 Spalten

in .X und 25 Zeilen in .Y. Sie kann benutzt werden, um zu bestimmen, auf welcher

Maschine ein Programm läuft. Diese Funktion wurde für den COMMODORE 64

eingeführt, um Ihre Programme leichter mit anderen Geräten kompatibel machen zu

können.

MASCHINENSPRACHE 291

Vorgehensweise:

1) Diese Routine aufrufen.

BEISPIEL:

JSR SCREEN

STX MAXCOL

STY MAXROW

B-27. Funktionsname: SECOND

Zweck: Übertragen der Sekundäradresse für LISTEN

Aufrufadresse: $FF93 (HEX) 65427 (Dezimal)

Kommunikationsregister: .A

Vorbereitungsroutinen: LISTEN

Fehlerruckmeldungen: Siehe READST

Stapelbedarf: 8

Beeinflußte Register: .A

Beschreibung: Über diese Routine wird eine Sekundäradresse nach Aufruf der

LISTEN-Routine zu einem Ein-/Ausgabegerät übertragen. Das Gerät ist danach

empfangsbereit. Diese Routine kann nicht zur Übertragung einer Sekundäradresse

nach dem Aufruf der TALK-Routine benutzt werden.

Eine Sekundäradresse wird normalerweise zur Übertragung von zusätzlichen Infor-

mationen vor der Ein-/Ausgabe benutzt.

Vorgehensweise:

1) Zu übertragende Sekundäradresse in den Akkumulator laden.

2) Diese Routine aufrufen.

BEISPIEL:

‘ADDRESS DEVICE #8 WITH COMMAND (SECONDARY ADDRESS) #15

LDA #8

JSR LISTEN

LDA #15

JSR SECOND

292 MASCHINENSPRACHE

B-28. Funktionsname: SETLFS

Zweck: Einrichten einer logischen Datei

Aufrufadresse: $FFBA (HEX) 65466 (Dezimal)

Kommunikationsregister: .A, .X, .Y

Vorbereitungsroutinen: Keine

Fehlerrückmeldungen: Keine

Stapelbedarf: 2

Beeinflußte Register: Keine

Beschreibung: Über diese Routine wird die logische Dateinummer, Geräte-

adresse und eine Sekundäradresse (Befehlsnummer) für andere KERNAL-Routi-

nen eingerichtet. |

Die logische Dateinummer wird vom System als eine Art Schlüssel für die durch die

OPEN-Routinen erstellte Dateitabelle benutzt. Für die Geräteadressen stehen die

Zahlen O bis 31 zur Verfügung. Die entsprechenden Codes der Peripherie-Geräte

beim COMMODORE 64 lauten wie folgt:

ADRESSE VORRICHTUNG

Tastatur

Datassette™ #1

RS-232C

Bildschirmanzeige

Drucker am seriellen Bus

Diskettenstation am seriellen Bus o
O
.

P
@
o
M

—
©

Eine Gerätenummer von 4 oder darüber bezieht sich automatisch auf Geräte am

seriellen Bus.

Ein Gerätebefehl wird als Sekundäradresse über den seriellen Bus übertragen,

nachdem die Gerätenummer während des seriellen Handshakes übertragen wurde.

Wird keine Sekundäradresse übertragen, dann muß Indexregister .Y auf 255
gesetzt sein.

Vorgehensweise:

1) Logische Dateinummer in den Akkumulator laden.

2) Gerätenummer in Index .X laden.

3) Befehl in Index .Y laden.

MASCHINENSPRACHE 293

BEISPIEL:

FOR LOGICAL FILE 32, DEVICE #4, AND NO COMMAND:

LDA #32

LDX #4

LDY #255

JSR SETLFS

B-29. Funktionsname: SETMSG

Zweck: Ausgabe von Systemmeldungen

Aufrufadresse: $FF90 (HEX) 65424 (Dezimal)

Kommunikationsregister: .A

Vorbereitungsroutinen: Keine

Fehlerruckmeldungen: Keine

Stapelbedarf: 2

BeeinfluBte Register: .A

Beschreibung: Durch diese Routine werden Anzeigen von Fehler- und Steuer-

meldungen uber den KERNAL gesteuert. Bei Aufruf der Routine werden je nach

Inhalt des Akkumulators Fehler oder Steuermeldungen angezeigt. Eine Fehlermel-

dung ist z.B. FILE NOT FOUND. PRESS PLAY ON CASSETTE ist z.B. eine

Steuermeldung.

Bit 6 und 7 bestimmen, woher die Meldungen kommen. Ist Bit 7 1 gesetzt, dann

wird eine der Fehlermeldungen vom KERNAL angezeigt. Ist Bit 6 gesetzt, dann

werden Steuermeldungen angezeigt.

Vorgehensweise:

1) Den Akkumulator auf den gewünschten Wert setzen.

2) Diese Routine aufrufen.

BEISPIEL:

LDA #$40

JSR SETMSG ‚TURN ON CONTROL MESSAGES

LDA #$80

JSR SETMSG ‚TURN ON ERROR MESSAGES

LDA #0

JSR SETMSG ‚TURN OFF ALL KERNAL MESSAGES

294 MASCHINENSPRACHE

B-30. Funktionsname: SETNAM

Zweck: Festlegen des Dateinamens

Aufrufadresse: $FFBD (HEX) 65469 (Dezimal)

Kommunikationsregister: .A, .X, .Y

Vorbereitungsroutinen: Keine

Stapelbedarf: Keiner

BeeinfluBte Register: Keine

Beschreibung: Uber diese Routine werden die Dateinamen für die Routinen

OPEN, SAVE oder LOAD festgelegt. Die Dateinamenlange wird in den Akkumulator

geladen. Die Adresse des Dateinamens wird in die Register .X und .Y geladen. Fur

6502 gilt standardmäßig das Format niederwertiges Byte/höherwertiges Byte. Die

Adresse kann eine beliebige gültige Systemspeicheradresse sein, ab der der

Dateiname als String gespeichert ist. Wird kein Dateiname gewünscht, wird der

Akkumulator auf 0 gesetzt (O-Dateilänge). In diesem Fall können die Register .X und

.Y auf eine beliebige Speicheradresse gesetzt werden.

Vorgehensweise:

1) Länge des Dateinamens in den Akkumulator laden.)
2) Niederwertiges Adreßbyte des Dateinamens in Indexregister .X laden.

3) Höherwertiges Adreßbyte in Indexregister .Y laden.

4) Diese Routine aufrufen.

BEISPIEL:

LDA #NAME2-NAME ;LOAD LENGTH OF FILE NAME

LDX #<NAME ‚LOAD ADDRESS OF FILE NAME

LDY #>NAME

JSR SETNAM

B-31. Funktionsname: SETTIM

Zweck: Systemtaktgeber setzen

Aufrufadresse: $FFDB (HEX) 65499 (Dezimal)

Kommunikationsregister: .A, .X, .Y

Vorbereitungsroutinen: Keine

Fehlerrückmeldungen: Keine

Stapelbedarf: 2

Beeinflußte Register: Keine

MASCHINENSPRACHE 295

Beschreibung: Eine Uhr wird alle 1/60 s (=1“jiffy“) von einer Interrupt-Routine

aktualisiert. Die Uhr ist 3 Bytes “lang“, so daß sie bis zu 5184000 “jiffies“ (24

Stunden) anzeigen kann. Dann erfolgt die Rückstellung auf 0. Vor dem Aufruf dieser

Routine muß in den Akkumulator das signifikanteste Byte, in Indexregister .X das

nächste signifikante Byte und in Indexregister .Y das am wenigsten signifikante Byte

der Ausgangs-Zeiteinstellung (in jiffies) eingegeben werden.

Vorgehensweise:

1) Das signifikanteste Byte der 3-Byte-Zahl in den Akkumulator laden.

2) Das nächste Byte in Register .X laden.

3) Das am wenigsten signifikante Byte in Register .Y laden.

4) Diese Routine aufrufen.

BEISPIEL:

‚SET THE CLOCK TO 10 MINUTES = 3600 JIFFIES

LDA #0 ; MOST SIGNIFICANT

LDA #>3600

LDY #<3600 ; LEAST SIGNIFICANT

JSR SETTIM

B-32. Funktionsname: SETTMO

Zweck: Setzen des Timeout-Flags fur den IEEE-Bus

Aufrufadresse: $FFA2 (HEX) 65442 (Dezimal)

Kommunikationsregister: .A

Vorbereitungsroutinen: Keine

Fehlerruckmeldungen: Keine

Stapelbedarf: 2

BeeinfluBte Register: Keine

Anmerkung: Diese Routine wird ausschlieBlich mit einer zusatzlichen IEEE-Karte benutzt! |

Beschreibung: Durch diese Routine wird das Timeout-Flag fur den IEEE-Bus

gesetzt. Ist dieses Kennzeichen gesetzt, dann wartet der COMMODORE 64 64ms

auf die Meldung eines Geräts am IEEE-Port. Antwortet das Gerät nicht auf das DAV-

Signal (gültige Datenadresse) des COMMODORE 64 innerhalb dieses Zeitraums,

dann erkennt der Computer eine Fehlerbedingung und verläßt die Handshake-

Sequenz. Ist beim Aufruf dieser Routine Bit 7 im Akkumulator auf O0 gesetzt, dann

sind Timeouts wirksam. Entsprechend sind Timeouts unwirksam, wenn Bit 7 auf 1

gesetzt ist.

296 MASCHINENSPRACHE

IEEE-Karte.
Anmerkung: Der COMMODORE 64 benutzt diese Timeout-Routine nur im Zusammenhang mit der

Vorgehensweise:

SETZEN DES TIMEOUT-FLAGS

1) Bit 7 des Akkumulators auf O setzen.

2) Diese Routine aufrufen.

RUCKSTELLEN DES TIMEOUT-FLAGS

1) Bit 7 des Akkumulators auf 1 setzen.

2) Diese Routine aufrufen.

BEISPIEL:

‚DISABLE TIMEOUT

LDA #0

JSR SETTMO

B-33. Funktionsname: STOP

Zweck: Abfrage der -Taste
Aufrufadresse: $FFE1 (HEX) 65505 (Dezimal)

Kommunikationsregister: .A

Vorbereitungsroutinen: Keine

Fehlerruckmeldungen: Keine

Stapelbedarf: Keiner

Beeinflußte Register: .A, .X.

Beschreibung: Wurde während eines UDTIM-Aufrufs die
gedrückt, dann wird nach Aufruf dieser Routine das Z-Flag gesetzt. Darüber hinaus

werden die Kanäle auf die Standardwerte zurückgesetzt. Alle anderen Flags bleiben

unverändert. War die -Taste nicht gedrückt, enthält der Akkumulator 1
Byte, das die letzte Reihe der Tastatur-Abfrage wiedergibt. Auf diese Weise kann

der Bediener auch prüfen, ob bestimmte andere Tasten gedrückt wurden.

Vorgehensweise:

0) Vor dieser Routine muß UDTIM aufgerufen werden.

1) Diese Routine aufrufen.
2) Auf O-Flag hin überprüfen.

MASCHINENSPRACHE

-Taste

297

BEISPIEL:

JSR UDTIM ;SCAN FOR STOP

JSR STOP

BNE *+5 ‚KEY NOT DOWN

JMP READY ;=...STOP

B-34. Funktionsname: TALK

Zweck: TALK-Befehl fur ein Gerat am seriellen Bus

Aufrufadresse: $FFB4 (HEX) 65460 (Dezimal)

Kommunikationsregister: .A

Vorbereitungsroutinen: Keine

Fehlerruckmeldungen: Siehe READST

Stapelbedarf: 8

BeeinfluBte Register: .A

Beschreibung: Um mit dieser Routine zu arbeiten, muß zunächst eine Gerate-

nummer zwischen O und 31 in den Akkumulator geladen werden. Nach dem Aufruf

wird dann Bit für Bit durch diese Routine ODER-verknupft, um die Geratenummer in

eine TALK-Adresse umzuwandeln. Dieses Datum wird dann als Befehl uber den

seriellen Bus übertragen.

Vorgehensweise:

1) Gerätenummer in den Akkumulator laden.

2) Diese Routine aufrufen.

BEISPIEL:

‚COMMAND DEVICE #4 TO TALK

LDA #4

JSR TALK

298 MASCHINENSPRACHE

B-35. Funktionsname: TKSA

Zweck: Übertragen einer Sekundäradresse zu einem Gerät, das den TALK-Befehl

erhalten hat |

Aufrufadresse: $FF96 (HEX) 65430 (Dezimal)

Kommunikationsregister: .A

Vorbereitungsroutinen: TALK

Fehlerrückmeldungen: Siehe READST

Stapelbedarf: 8

Beeinflußte Register: .A

Beschreibung: Diese Routine überträgt eine Sekundäradresse über den Serien-

bus zu einem TALK-Gerät. Beim Aufruf dieser Routine muß im Akkumulator eine

Zahl zwischen 0 und 31 geladen sein. Diese Zahl wird dann als Sekundär-

Adreßbefehl über den seriellen Bus gesandt. Zuvor ist unbedingt die TALK-Routine

aufzurufen. TKSA ist nicht nach LISTEN wirksam.

Vorgehensweise:

0) TALK-Routine benutzen.

1) Sekundäradresse in den Akkumulator laden.

2) Diese Routine aufrufen.

BEISPIEL:

‚TELL DEVICE #4 TO TALK WITH COMMAND #7

LDA #4

JSR TALK

LDA #7

JSR TALKSA

B-36. Funktionsname: UDTIM

Zweck: Aktualisierung des Systemtaktgebers

Aufrufadresse: $FFEA (HEX) 65514 (Dezimal)

Kommunikationsregister: Keine

Vorbereitungsroutinen: Keine

Fehlerrückmeldungen: Keine

Stapelbedarf: 2

Beeinflußte Register: .A, .X

MASCHINENSPRACHE 299

Beschreibung: Uber diese Routine wird die Systemuhr aktualisiert. Normaler-

weise wird sie alle 1/60 s von der normalen KERNAL-Interrupt-Routine aufgerufen.

Arbeitet das Benutzer-Programm mit eigenen Interrupts, dann muB zur Zeitaktuali-

sierung diese Routine En werden.

Soll weiterhin die Taste wirksam bleiben, dann muß die -Tasten-
routine aufgerufen werden.

Vorgehensweise:

1) Diese Routine aufrufen.

BEISPIEL:

JSR UDTIM

B-37. Funktionsname: UNLSN

Zweck: Übertragung eines UNLISTEN-Befehls
Aufrufadresse: $FFAE (HEX) 65454 (Dezimal)

Kommunikationsregister: Keine

Vorbereitungsroutinen: Keine

Fehlerrückmeldungen: Siehe READST

Stapelbedarf: 8

Beeinflußte Register: .A

Beschreibung: Über diese Routine erhalten alle Geräte am seriellen Bus den

Befehl, den Datenempfang vom COMMODORE 64 zu beenden. Durch Aufruf

dieser Routine wird ein UNLISTEN-Befehl über den seriellen Bus übertragen.

Hierbei werden nur die Geräte beeinflußt, die zuvor einen LISTEN-Befehl erhalten

haben. Normalerweise wird diese Routine benutzt, nachdem der COMMODORE 64

die Datenübertragung zu einem externen Gerät beendet hat. Nach dem UNLISTEN-

Befehl sind die Geräte nicht mehr an den seriellen Bus angeschlossen und stehen

für andere Zwecke zur Verfügung.

Vorgehensweise:

1) Diese Routine aufrufen.

BEISPIEL:

JSR UNLSN

300 MASCHINENSPRACHE

B-38. Funktionsname: UNTLK

Zweck: Übertragung eines UNTALK-Befehls

Aufrufadresse: $FFAB (HEX) 65451 (Dezimal)

Kommunikationsregister: Keine

Vorbereitungsroutinen: Keine

Fehlerrückmeldungen: Siehe READST

Stapelbedarf: 8

Beeinflußte Register: .A

Beschreibung: Über diese Routine wird ein UNTALK-Befehl über den seriellen
Bus übertragen. Alle Befehle, die zuvor einen TALK-Befehl erhalten hatten, been-
den dann die Datenübertragung.

Vorgehensweise:

1) Diese Routine aufrufen.

BEISPIEL:

JSR UNTLK

B-39. Funktionsname: VECTOR

Zweck: Verwaltung der RAM-Vektoren

Aufrufadresse: $FF8D (HEX) 65421 (Dezimal)

Kommunikationsregister: .X, .Y

Vorbereitungsroutinen: Keine

Fehlerrückmeldungen: Keine

Stapelbedarf: 2

Beeinflußte Register: .A, .X, .Y

Beschreibung: Diese Routine verwaltet alle im RAM gespeicherten Sprungvekto-

ren. Ist beim Aufruf dieser Routine das Akkumulator-Übertragsbit gesetzt, dann wird

der derzeitige Inhalt der RAM-Vektoren in einer Liste gespeichert, deren Adresse

durch die Inhalte der Register .X und .Y gegeben ist.

Ist beim Aufruf der Routine der Übertrag gelöscht, dann wird die durch Register .X

und .Y in ihrer Lage gegebene Liste auf die System-RAM-Vektoren übertragen.

Anmerkung: Beim Arbeiten mit dieser Routine ist äußerste Vorsicht geboten. Zunächst sollte der

gesamte Vektor-Inhalt in den Benutzerbereich gelesen, die gewünschten Vektoren geändert und

danach dieser Inhalt zurück in die Systemvektoren übertragen werden.

MASCHINENSPRACHE 301

Vorgehensweise:

LESEN DER SYSTEM-RAM-VEKTOREN

1) Ubertrag setzen.
2) Register .X und .Y auf die gewunschte Vektor-Adresse zeigen lassen.

3) Diese Routine aufrufen.

LADEN DER SYSTEM-RAM-VEKTOREN

1) Ubertragsbit löschen.

2) Register .X und .Y auf die zu ladende RAM-Adreß-Vektorliste zeigen lassen.

3) Diese Routine aufrufen. |

BEISPIEL:

‚CHANGE THE INPUT ROUTINES TO NEW SYSTEM

LDX #<USER

LDY #>USER

SEC

JSR VECTOR ‚READ OLD VECTORS

LDA #<MYINP = ;CHANGE INPUT

STA USER+10

LDA #>MYINP

STA USER+11

LDX #<USER

LDY #>USER

CLC

JSR VECTOR ‚ALTER SYSTEM

USER *=*+26

302 MASCHINENSPRACHE

FEHLERMELDUNGEN

Nachstehend finden Sie eine Liste der Fehlermeldungen, die beim Arbeiten mit den

KERNAL-Routinen auftreten können. Kommt es zu einem dieser Fehler, dann wird

das Übertragsbit des Akkumulators gesetzt und die Zahl der Fehlermeldungen in

den Akkumulator übertragen.

Anmerkung: Einige KERNAL-Ein-/Ausgaberoutinen arbeiten nicht mit diesen Codes der Fehlermel-

dungen. Die Fehler werden statt dessen durch die KERNAL-Routine READST identifiziert.

NUMMER BEDEUTUNG

Routine durch -Taste beendet

Zu viele offene Dateien

Datei bereits offen

Datei nicht offen

Datei nicht gefunden

Gerät nicht vorhanden

Keine Eingabe-Datei

Keine Ausgabe-Datei

Dateiname fehlt

Unzulässige Gerätenummer

240 Speicherende verändert (RS-232C)

oO

o
o

ıs
ıo
9

Vi

P
Q
w
@
n
r
n
 —

MASCHINENSPRACHE 303

ARBEITEN MIT MASCHINENSPRACHE UND BASIC

Es gibt verschiedene Arten, wie beim COMMODORE 64 BASIC UND MASCHI-

NENSPRACHE benutzt werden können. Hierzu gehören CBM-BASIC-Sonderan-

weisungen sowie spezielle Adressen. Um auf der Grundlage von BASIC beim

COMMODORE 64 die Maschinensprache-Routinen zu benutzen, gibt es fünf

verschiedene Möglichkeiten.

1)

2)

3)

304

1) BASIC-Anweisung SYS

2) BASIC-Funktion USR

3) Anderung eines RAM-Ein-/Ausgabevektors

4) Anderung eines RAM-Unterbrechungsvektors

5) Anderung der CHRGET-Routine

Durch die BASIC-Anweisung SYS X erfolgt ein Sprung zum Maschinenspra-

che-Unterprogramm bei Adresse X. Diese Routine muB mit einer RTS-Anwei-

sung (Rückkehr vom Unterprogramm) enden. Hierdurch wird die Kontrolle

wieder an BASIC übertragen. Parameter werden normalerweise zwischen

Maschinensprache-Routine und BASIC-Programme über die BASIC-Anweisun-

gen PEEK und POKE sowie die entsprechenden Maschinensprache-Befehle

übertragen.

SYS ist ein sehr wirksamer Befehl, um BASIC mit Maschinensprache zu

kombinieren. Die Parameterübertragung wird durch PEEK und POKE erleichtert.

Ein Programm kann mehrere SYS-Anweisungen für unterschiedliche (oder für

dasselbe) Maschinensprache-Programm enthalten.

Durch die BASIC-Funktion USR(X) wird die Steuerung zum Maschinensprache-

Unterprogramm übertragen, das sich an der in den Speicherplätzen 785 und 786

gespeicherten Adresse befindet. (Die Adresse ist entsprechend dem Standard-

Format niederwertiges Byte/höherwertiges Byte gespeichert.) Der Wert X wird

über den Gleitpunktakkumulator #1, der bei Adresse $61 beginnt (siehe Spei-

cherbelegung für weitere Einzelheiten), zum Maschinensprache-Unterpro-

gramm übertragen. Durch Eingabe in den Gleitpunkt-Akkumulator kann ein Wert

zurück zum BASIC-Programm übergeben werden. Die Maschinensprache-

Routine muß für die Rückkehr zu BASIC mit einer RTS-Anweisung enden.

Alle Ein-/Ausgaben oder BASIC-Routinen, auf die die Vektor-Tabelle von Seite

3 (siehe ADRESSIERARTEN, ZERO-PAGE) zugreift, können durch Benutzer-

Code verschoben oder geändert werden. Jeder 2-Byte-Vektor besteht aus einer

niederwertigen und einer höherwertigen Byte-Adresse, die vom Betriebssystem

benutzt wird.

MASCHINENSPRACHE

4)

>)

Vektoren können am zuverlässigsten über die KERNAL-Vektor-Routine geän-

dert werden. Einzelne Vektoren lassen sich jedoch auch durch POKE-Anwei-

sungen ändern. Ein neuer Vektor zeigt auf eine vom Benutzer vorbereitete

Routine, die die Standardsystem-Routine ersetzen oder erweitern soll. Bei

Ausführung des geeigneten BASIC-Befehls wird die Benutzer-Routine ausge-

führt. Ist danach eine Ausführung der normalen System-Routine erforderlich,

dann muß das Programm zu der Adresse springen (JUMP), die zuvor im Vektor

enthalten war. Anderenfalls muß die Routine am Ende eine RTS-Anweisung

enthalten, um die Steuerung zurück an BASIC zu übertragen.

Der Hardware-Interrupt-Vektor (IRQ) kann geändert werden. Alle 1/60 s

überträgt das Betriebssystem die Steuerung der durch diesen Vektor bestimm-

ten Routine. Der KERNAL benutzt dies normalerweise zur Zeitberechnung, zur

Abfrage der Tastatur usw. Wird diese Technik eingesetzt, dann sollten Sie stets

die Steuerung der normalen IRQ-Routine übertragen, wenn nicht die Aus-

tausch-Routine zur Handhabung des CIA-Chips vorbereitet wurde. (Denken Sie

daran, daß die Routine mit RTI (Rückkehr vom Interrupt) enden muß, wenn das

CIA durch diese Routine kontrolliert wird.)

Diese Methode ist sehr nützlich für Aufgaben, die gleichzeitig mit einem BASIC-

Programm ablaufen sollen. Sie ist jedoch die schwierigste.

Anmerkung: VOR ÄNDERUNG DIESES VEKTORS MUSS DER INTERRUPT ABGESCHALTET

WERDEN.

BASIC benutzt die CHRGET-Routine, um jedes einzelne Zeichen oder

“tokens“ zu lesen.

Auf diese Weise können leicht neue BASIC-Befehle hinzugefügt werden. Natür-

lich muß jeder neue Befehl über eine vom Benutzer geschriebene Maschinen-

sprache-Unterroutine ausgeführt werden. Am einfachsten ist die Angabe eines

Zeichens (z. B. @), das vor jedem neuen Befehl stehen wird. Die neue Routine

CHRGET sucht nach diesem Sonderzeichen. Ist dies nicht vorhanden, dann wird

die Steuerung zur normalen BASIC-Routine CHRGET übertragen. Wird das

Sonderzeichen jedoch gefunden, dann wird der neue Befehl durch Ihr Maschi-

nensprache-Programm interpretiert und ausgeführt. Hierdurch wird vermieden,

daß sich die Ausführungszeit durch die Suche nach zusätzlichen Befehlen

verzögert. Diese Technik nennt man häufig auch “wedge“.

MASCHINENSPRACHE 305

WO STEHEN MASCHINENSPRACHE-ROUTINEN?

Beim COMMODORE 64 liegt der beste Platz fur Maschinensprache-Routinen bei

$C000 bis $CFFF, vorausgesetzt, diese Routinen sind kürzer als 4K-Byte. Dieser

Speicherbereich wird nicht durch BASIC beeinfluBt.

Kann oder soll das Maschinensprache-Programm aus irgendeinem Grund nicht an

Platz $C000 stehen (z. B. wenn die Routine länger als 4K-Byte ist), dann muß ein

gewisser Bereich am Anfang des BASIC-Speichers für die Routine reserviert

werden. Das obere Speicherende liegt normalerweise bei $9FFF. Es kann über die

KERNAL-Routine MEMTOP oder durch folgende BASIC-Anweisungen geändert

werden:

10 POKES5S1,L:POKE52,H:POKE55,L:POKE56,H:CLR

Hierbei kennzeichnen H und L den höher- und niederwertigen Byte des neuen

Speicherendes. Um z. B. den Bereich von $9000 bis $9FFF für die Maschinenspra-

che zu reservieren, geben Sie folgendes ein:

10 POKE51,0:POKE52,144:POKE55,0:POKE56,144:CLR

WIE WIRD MASCHINENSPRACHE EINGEGEBEN?

Es gibt drei verschiedene Arten, um Maschinensprache-Programme zu einem

BASIC-Programm hinzuzufugen:

1) DATA-ANWEISUNGEN:

Maschinensprache-Routinen lassen sich in DATA-Anweisungen ablegen und kon-

nen zu Beginn des Programms in den Speicher gePOKEt werden. Dies ist die

einfachste Methode. Es brauchen nicht extra Programmteile abgespeichert zu

werden. Auch die Fehlersuche ist relativ einfach. Der Nachteil liegt jedoch darin, daB

mehr Speicherkapazität benötigt wird und daß das POKEn des Programms einige

Zeit dauert. Diese Methode eignet sich daher nur für kleinere Routinen.

306 MASCHINENSPRACHE

BEISPIEL:

10 RESTORE:FORX=1T09:READA:POKE12*4096+X,A:NEXT

BASIC PROGRAM

1000 DATA 161,1,204,204,204,204,204,204,96

2) MASCHINENSPRACHE-MONITOR (MONITOR 64):

Über dieses Programm können Sie ein Programm entweder in hexadezimalen oder

symbolischen Codes (Mnemonics) eingeben und den Speicherbereich, der das

Programm enthält, auf Kassette oder Diskette abspeichern. Vorteile sind hierbei die

leichtere Eingabe von Maschinensprache-Programmen, Fehlerbeseitigungs-Funk-

tionen sowie ein bedeutend schnelleres Abspeichern und Laden. Von Nachteil ist

jedoch, daß zu Beginn die Maschinensprache-Routine stets über ein BASIC-

Programm von Kassette oder von Diskette geladen werden muß. (Bezüglich

weiterer Einzelheiten über MONITOR 64 siehe Kapitel “Maschinensprache“.)

BEISPIEL:

Nachstehend sehen Sie ein BASIC-Programmbeispiel, das eine durch MONITOR

64 vorbereitete Maschinensprache-Routine benutzt. Die Routine muß dazu auf

Kassette gespeichert vorliegen.

10 IF FLAG=1 THEN 20

15 FLAG=1:LOAD “MACHINE LANGUAGE ROUTINE NAME“ 1,1

20

REST OF BASIC PROGRAM

3) ASSEMBLER

Die Vorteile sind ähnlich wie bei der Verwendung eines Maschinensprache-Moni-

tors. Die Programme lassen sich jedoch sogar noch leichter eingeben.

MASCHINENSPRACHE 307

SPEICHERBELEGUNG DES COMMODORE 64

308 MASCHINENSPRACHE

MARKE ADRESSE ADRESSE
(LABEL) (HEX) (DEZ) BESCHREIBUNG

D6510 0000 0 6510 Datenrichtungsregister

P6510 0001 1 6510 8-Bit-Ein-/Ausgabe-

register

0002 2 Nicht benutzt

ADRAY 1 0003-0004 34 Sprungvektor: Umwandlung

Gleitpunktzahl/Ganze Zahl

ADRAY 2 0005—0006 5—6 Sprungvektor: Umwandlung

Ganze Zahl/Gleitpunktzahl

CHARAC 0007 7 Suchzeichen

ENDCHR 0008 8 Flag: Suchen nach einem

Anfuhrungszeichen am Ende

eines Strings

TRMPOS 0009 9 Bildschirmspalte ab letztem TAB

VERCK 000A 10 0 = LOAD, 1 = VERIFY

COUNT 000B 11 Eingabepufferzeiger, Anzahl

/ der Elemente

DIMFLG 000C 12 Flag: Standard-Felddimensio-

nierung

VALTYP 000D 13 Datentyp: $FF = String,

| $00 = Numerisch
INTFLG OOOE 14 Datentyp: $80 = Ganze Zahl,

$00 = Gleitpunktzahl

GARBFL OOOF 15 Flag: DATAs lesen/LIST auf-

listen “garbage collection”

SUBFLG 0010 16 Flag: Benutzerfunktionsaufruf

INPFLG 0011 17 Flag: $00 = INPUT,

$40 = GET, $98 = READ

TANSGN 0012 18 Flag: Vorzeichen des TAN/Flag

fur Gleichheit bei Vergleich

0013 19 Flag: INPUT-Kommentar

LINNUM 0014-0015 | 20-21 Ganzzahliger Wert

TEMPPT 0016 22 Zeiger: Temporärer Stringstapel

LASTPT 0017-0018 23-24 Letzte Stringadresse

TEMPST 0019-0021 25-33 Stapel für temporäre Strings

INDEX 0022-0025 34-37 Bereich für Hilfszeiger

MARKE ADRESSE ADRESSE BESCHREIBUNG

(LABEL) (HEX) (DEZ)

RESHO 0026-002A 38-42 Gleitpunktergebnis der

Multiplikation

TXTTAB 002B-002C | 43-44 Zeiger: Anfang BASIC-Text

VARTAB 002D-O02E | 45-46 Zeiger: Anfang BASIC-Variablen

ARYTAB 002F—0030 47-48 Zeiger: Anfang BASIC-Felder

STREND 0031-0032 49-50 Zeiger: Ende BASIC-Felder

(+1)
FRETOP 0033-0034 51-52 Zeiger: Anfang der String-

Speicherung

FRESPC 0035-0036 53-54 Hilfszeiger für Strings

MEMSIZ 0037-0038 55-56 Zeiger: Oberste BASIC-Adresse

CURLIN 0039-003A 57-58 Derzeitige BASIC-Zeilen-

nummer

OLDLIN 003B-003C 59-60 Vorherige BASIC-Zeilennummer

OLDTXT 003D-O03E | 61-62 Zeiger: BASIC-Anweisung für

CONT

DATLIN 003F-0040 63-64 Derzeitige DATA-Zeilennummer

DATPTR 0041-0042 65-66 Zeiger: Derzeitige DATA-

Adresse

INPPTR 0043-0044 67-68 Vektor: INPUT-Routine

VARNAM 0045-0046 69-70 Derzeitiger BASIC-Variablen-

name

VARPNT 0047-0048 71-72 Adresse der aktuellen Variablen

FORPNT 0049--004A 73-74 Variablenzeiger fur FOR/NEXT

004B-0060 75-96 Zwischenspeicher für BASIC-

| Zeiger/Daten

FACEXP 0061 97 Gleitpunktakkumulator # 1:

Exponent

FACHO 0062—0065 98-101 Gleitpunktakkumulator #1:

Mantisse

FACSGN 0066 102 Gleitpunktakkumulator #1:

Vorzeichen

SGNFLG 0067 103 Zeiger: Polynomauswertung

BITS 0068 104 Gleitpunktakkumulator #1:

Überlauf

ARGEXP 0069 105 Gleitpunktakkumulator #2: Exponent
MASCHINENSPRACHE 309

310

MARKE ADRESSE ADRESSE
(LABEL) (HEX) (DEZ) BESCHREIBUNG

ARGHO OO6A—006D 106-109 Gleitpunktakkumulator #2:

| Mantisse

ARGSGN OO6E 110 Gleitpunktakkumulator #2:

Vorzeichen

ARISGN OO6F 111 Ergebnis des Vorzeichen-

vergleichs: Akku #1 Akku #2

FACOV 0070 112 Gleitpunktakkumulator # 1:

Niederwertige Stelle

(Rundung)

FBUFPT 007 1--0072 113-114 Zeiger: Kassettenpuffer

CHRGET 0073-008A 115-138 Unterroutine: Nächstes Byte

vom BASIC-Text lesen

CHRGOT 0079 121 Erneutes Lesen des gleichen

Text-Bytes

TXTPTR 007A-007B 122-123 Zeiger: Derzeitiges Byte des

BASIC-Textes

RNDX 008B-O08F 139-143 Eingangswert der RND-

Funktion

STATUS 0090 144 KERNAL-Ein-/Ausgabestatus-

wort: ST

STKEY 0091 145 Flag: STOP-Taste/RVS-Taste

SVXT 0092 146 Zeit-Konstante für Kassette

VERCK 0093 147 Flag: 0 = LOAD, 1 = VERIFY

C3PO 0094 148 Flag: serieller Bus — Zeichen im

Puffer

BSOUR 0095 149 Zeichen im Puffer für seriellen

Bus

SYNO 0096 150 Kassetten SYNC.-Nr. (EOT von

| Kassette empfangen)
0097 151 Temporäre Datenadresse

LDTND 0098 152 Anzahl der offenen Dateien/

Dateitabellen-Index

DFLTN 0099 153 Standard-Eingabegerat (0)

DFLTO 009A 154 Standard-Ausgabegerät (CMD)

(3)
PRTY 009B 155 Paritatsbyte vom Band

DPSW 009C 156 Flag: Byte empfangen
MASCHINENSPRACHE

MARKE ADRESSE ADRESSE
(LABEL) (HEX) (DEZ) BESCHREIBUNG

MSGFLG 009D 157 Flag: $80 = Direktmodus,

$00 = Programm

PTR1 009E 158 Bandfehler/Zeichenpuffer

PTR2 009F 159 Bandfehler korrigiert

TIME 00A0-00A2 160-162 Echtzeituhr (ca.) 1/60 s

00A3-00A4 163-164 Temporärer Datenbereich

CNTDN 00A5 165 Kassetten Sync.: Abwärts-

zählung beim Schreiben

BUFPNT 00A6 166 Zeiger: Kassettenpuffer

INBIT 00A7 167 RS-232-Eingabebits/Kassette

temp.

BITCI 00A8 168 RS-232-Eingabebit-Zählung/

Kassette temp.

RINONE 00A9 169 RS-232 Flag: Startbit-

überprüfung

RIDATA 00AA 170 RS-232-Eingabebyte-Puffer/

Kassette temp.

RIPRTY 00AB 171 RS-232-Eingabeparität/

Kassette, Zählung

SAL OOAC—OOAD | 172-173 Zeiger: Kassettenpuffer/Bild-

schirm scrollen

EAL OOAE—OOAF 174-175 Kassettenende/Programmende

CMPO 00BO-O0B1 176-177 Kassetten-Zeit-Konstante

TAPE1 00B2-00B3 178-179 Zeiger: Anfang des Kassetten-

puffers

BITTS 00B4 180 RS-232 nächstes Bit zum

Scrollen/Kassette temp.

NXTBIT 00B5 181 RS-232 Nächstes zu uber-

tragendes Bit/Kassetten-

kennzeichen EOT

RODATA 00B6 182 RS-232 Bytepuffer

FNLEN 00B7 183 Länge der aktuellen Datei-

namen

LA OOB8 184 Logische Dateinummer

SA 00B9 185 Aktuelle Sekundäradresse

FA OOBA 186 Aktuelle Geratenummer

FNADR 00BB-O0BC | 187-188 Zeiger: Aktueller Dateiname

MASCHINENSPRACHE 311

312 MASCHINENSPRACHE

MARKE ADRESSE ADRESSE
(LABEL) (HEX) (DEZ) BESCHREIBUNG

ROPRTY OOBD 189 RS-232 Paritat/Kassette, temp.

FSBLK OOBE 190 Anzahl der zum Lesen/

Schreiben verbleibenden

Blocks

MYCH OOBF 191 Serieller Puffer

CAS1 00CO 192 Kassettenmotor-Flag

STAL 00C1—00C2 193-194 Ein-/Ausgabestartadresse

MEMUSS 0063-0004 195-196 Zeiger auf Vektoradressen des

KERNAL

LSTX 0005 197 Derzeitig gedrückte Taste:

CHR$(n); 0 = Keine Taste

NDX 00C6 198 Anzahl der Zeichen im Tastatur-

puffer (Warteschlange)

RVS 0007 199 Flag: Ausdruck negativer

Zeichen — 1 = ja, O = nein

INDX 00C8 200 Zeiger: Ende der logischen

Zeile fur Eingabe

LXSP 00C9-00CA | 201-202 Cursor X/Y-Position für Eingabe

SFDX 00CB 203 Flag: Gedrückte Taste

BLNSW 00CC 204 Cursor an/aus: (0 = blinkender

Cursor)

BLNCT 00CD 205 Zähler für blinkenden Cursor

GDBLN OOCE 206 Zeichen fur Cursorposition

BLNON OOCF 207 Flag: Cursor in Blinkphase

CRSW 00DO 208 Flag: INPUT oder GET über

Tastatur

PNT 00D1-00D2 | 209-210 Zeiger: Derzeitige Bildschirm-

zeile

PNTR 00D3 211 Cursorspalte in derzeitiger Zeile

QTSW 00D4 212 Flag: Editor im Anfuhrungs-

zeichen-Modus, $00 = NEIN

LNMX 00D5 213 Physische Bildschirmzeilen-

| länge
TBLX 00D6 214 Zeile, in der sich Cursor befindet

00D7 215 Temporärer Datenbereich

INSRT 00D8 216 Flag: Einfügemodus,

>0 = Anzahl der Einfügungen

MARKE ADRESSE ADRESSE BESCHREIBUNG

(LABEL) (HEX) (DEZ)

LDTB1 00D9-O0F2 217-242 Bildschirmzeilen-Verknüpfungs-

tabelle/Editor temp.

USER OOF3—O00F4 243-244 Zeiger: Derzeitiger Farb-RAM

des Bildschirms

KEYTAB OOF5—OOF6 | 245-246 Vektor: Tastatur Decodiertabelle

RIBUF OOF7—O0F8 247-248 RS-232-Eingabepuffer-Zeiger

ROBUF OOF9—O0FA 249-250 RS-232-Ausgabepuffer-Zeiger

FREKZP OOFB—OOFE 251-254 Freier Platz in der Zero-Page

für Betriebssystem

BASZPT OOFF 255 Temp. BASIC-Datenbereich

0100-01FF 256-511 Stapelspeicher des Mikro-

prozessors

0100-010A 256-266 Arbeitsbereich Umwandlung

Gleitpunkt in ASCII

BAD 0100-013E 256-318 Bandfehler

BUF 0200-0258 512-600 System-Eingabepuffer

LAT 0259-0262 601-610 KERNAL-Tabelle: Aktive

logische Dateinummern

FAT 0263-026C 611-620 KERNAL-Tabelle: Geräte-Nr.

für jede Datei

SAT 026D-0276 621-630 KERNAL-Tabelle: Sekundär-

adresse jeder Datei

KEYD 0277-0280 631-640 Tastaturpuffer (Warteschlange)

(FIFO)

MEMSTR 0281-0282 641-642 Zeiger: Startadresse des RAM

für Betriebssystem

MEMSIZ 0283-0284 643-644 Zeiger: Ende des RAM für

Betriebssystem

TIMOUT 0285 645 Flag: Zeitüberschreitung auf

IEEE-Bus

COLOR 0286 646 Derzeitiger Zeichenfarbcode

GDCOL 0287 647 Hintergrundfarbe unter Cursor

HIBASE 0288 648 Bildschirmspeicher-Anfang

(Page)
XMAX 0289 649 Größe des Tastaturpuffers

RPTFLG 028A 650 Flag: Tastenwiederholung, $80 = Wiederholen
MASCHINENSPRACHE 313

314 MASCHINENSPRACHE

MARKE ADRESSE ADRESSE
(LABEL) (HEX) (DEZ) BESCHREIBUNG

KOUNT 028B 651 Zählgeschwindigkeit für

Wiederholen

DELAY 028C 652 Zähler für Wiederholungs-

verzögerung

SHFLAG 028D 653 Flag: Taste SHIFT/Taste CTRL/

C = Taste

LSTSHF 028E 654 Letztes SHIFT-Muster der

Tastatur

KEYLOG 028F-0290 655-656 Zeiger auf Tastatur-Decodier-

tabelle

MODE 0291 657 Flag: $80 = SHIFT unwirksam,

$00 = wirksam

AUTODN 0292 658 Flag: Automatisches Scrollen

(abwärts), O = EIN;

#0 = AUS

M51CTR 0293 659 RS-232: 6551 Kontrollregister

M51CDR 0294 660 RS-232: 6551 Befehlsregister

M51AJB 0295-0296 661-662 RS-232 nicht Standard (Bit-Zeit)

RSSTAT 0297 663 RS-232: 6551 Statusregister

BITNUM 0298 664 RS-232 Anzahl der noch zu

übertragenden Bits

BAUDOF 0299-029A 665-666 RS-232 Baud-Rate: Full Bit

Time (us)

RIDBE 029B 667 RS-232 Eingabepuffer-Ende

RIDBS 029C 668 RS-232 Eingabepuffer-Anfang

(Page)
RODBS 029D 669 RS-232 Ausgabepuffer-Anfang

(Page)

RODBE 029E 670 RS-232 Ausgabepuffer-Ende

IRQTMP 029F—02A0 671-672 Enthalt IRQ-Vektor wahrend

Kassetten-Ein-/Ausgabe

ENABL 02A1 673 RS-232

02A2 674 Temp. Speicherung fur Lesen

von Kassette

02A3 675 Temp Storage For Cassette

Read

02A4 676 Temp D1IRQ Indicator For

MARKE ADRESSE ADRESSE
(LABEL) (HEX) (DEZ) BESCHREIBUNG

02A5 677 Cassette Read

02A6 678 Temp For Line Index

PAL/NTSC Flag, 0 = NTSC,

02A7—02FF 679-767 1 = PAL

IERROR 0300-030 1 768-769 Vektor: BASIC-Fehlermeldung

anzeigen

IMAIN 0302-0303 770-771 Vektor: BASIC-Warmstart

ICRNCH 0304-0305 772-773 Vektor: BASIC-Text in Token

umwandeln

IQPLOP 0306-0307 774-775 Vektor: BASIC-Text listen

IGONE 0308-0309 776-777 Vektor: BASIC-Befehl ausführen

IEVAL 030A-030B 778-779 Vektor: BASIC-Tokens-

Auswertung

SAREG 030C 780 Speicher für 6502 .A-Register

SXREG 030D 781 Speicher für 6502 .X-Register

SYREG 030E 782 Speicher für 6502 .Y-Register

SPREG 030F 783 Speicher fur SP6502 SP-

Register

USRPOK 0310 784 USR-Sprung

USRADD 0311-0312 785-786 USR-Adresse niederwertiges

Byte/höherwertiges Byte

0313 787 Nicht benutzt

CINV 0314-0315 788-789 Vektor: Hardware Interrupt

(IRQ) (EA31)

CBINV 0316-0317 790-791 Vektor: BRK-Interrupt (FE66)

NMINV 0318-0319 792-793 Vektor: Nicht maskierbarer

| Interrupt (NMI) (FE47)

IOPEN 031A-031B 794-795 | KERNAL OPEN-Routine-Vektor

ICLOSE 031C-031D | 796-797 KERNAL CLOSE-Routine-
| Vektor

ICHKIN 031E—031F 798-799 KERNAL CHKIN-Routine-Vektor

ICKOUT 0320-0321 800-801 KERNAL CHKOUT-Routine-

Vektor

ICLRCH 0322-0323 802-803 KERNAL CLRCHN-Routine-

| Vektor

IBASIN 0324-0325 804-805 KERNAL CHRIN-Routine- Vektor -
MASCHINENSPRACHE 315

U
n
u
s
e
d

MARKE ADRESSE ADRESSE
(LABEL) (HEX) (DEZ) BESCHREIBUNG

IBSOUT 0326-0327 806-807 KERNAL CHROUT-Routine-

Vektor

ISTOP 0328-0329 808-809 KERNAL STOP-Routine-Vektor

IGETIN 032A-032B 810-811 KERNAL GETIN-Routine-

Vektor

ICLALL 032C-032D | 812-813 KERNAL CLALL-Routine-

Vektor

USRCMD 032E—032F 814-815 Benutzer-IRQ

ILOAD 0330-0331 816-817 KERNAL LOAD-Routine-Vektor

ISAVE 0332-0333 818-819 KERNAL SAVE-Routine-Vektor

0334-033B 820-827 Nicht benutzt

TBUFFR 033C—03FB 828-1019 Kassettenpuffer

O3FC-O3FF 1020-1023 Nicht benutzt

VICSCN 0400-07FF 1024-2047 1024 Byte Bildschirmspeicher-

Bereich

0400-07E7 1024-2023 Video-Matrix:

25 Zeilen x 40 Zeichen

07F8-07FF 2040-2047 Sprite-Datenzeiger

0800-9FFF 2048-40959 | Normaler BASIC-Programm-

bereich

8000-9FFF 32768-40959 | VSP-ROM-8192 Bytes

(Optional)

AO00-BFFF | 40960-49151 | BASIC-ROM-8192 Bytes

(oder 8K-RAM)

C000-CFFF | 49152-53247 | RAM-4096 Bytes

DO00-DFFF | 53248-57343 | Ein-/Ausgabegerät und Farb-

RAM oder Zeichengenerator-

ROM oder RAM-4096 Bytes

E000-FFFF | 57344-65535 | KERNAL ROM-8192 Bytes (oder 8K-RAM)

316 MASCHINENSPRACHE

EIN-/AUSGABEANORDNUNG BEIM COMMODORE 64

HEXA-

DEZIMAL DEZIMAL BITS BESCHREIBUNG

0000 0 7-0 MOS 6510 Datenrichtungs-

register (xx101111)

Bit = 1: Ausgabe,

Bit = 0: Eingabe

X = Spielt keine Rolle

0001 1 MOS 6510 Mikroprozessor

Ein-Chip

Ein-/Ausgabeport

0 /LORAM-Signal (0 = BASIC-

ROM ausschalten)

1 /HIRAM-Signal (0 = KERNAL-

ROM ausschalten)

2 /CHARAM-Signal (0 = Zeichen-

ROM ausschalten)

3 Kassettendaten-Ausgabeleitung

4 Kassettenschalter

1 = Schalter geschlossen

5 - Kassetten-Motorsteuerung

0 = EIN, 1 = AUS

6-7 Nicht belegt

DO00-DO2E | 53248-54271 MOS 6566 VIDEO-

INTERFACESTEUERUNG

(VIC)

DOOO 53248 Sprite 0, Position X

D001 53249 Sprite 0, Position Y

D002 53250 Sprite 1, Position X

D003 53251 Sprite 1, Position Y

D004 53252 Sprite 2, Position X

D005 53253 Sprite 2, Position Y

D006 53254 Sprite 3, Position X

D007 53255 Sprite 3, Position Y

D008 53256 Sprite 4, Position X

DOOY9 53257 Sprite 4, Position Y

DOOA 53258 Sprite 5, Position X

DOOB 53259 Sprite 5, Position Y

DOOC 53260 Sprite 6, Position X
MASCHINENSPRACHE 317

HEXA-

DEZIMAL
DEZIMAL BITS BESCHREIBUNG

DOOD

DOOE

DOOF

DO10

DO11

DO12

DO13

DO 14

DO15

DO16

DO17

D018

53261

53262

53263

53264

53265

53266

53267

53268

53269

53270

53271

53272

318 MASCHINENSPRACHE

2-0

7-6

7-4

Sprite 6, Position Y

Sprite 7, Position X

Sprite 7, Position Y

Sprites 0-7, Position X

(msb der X-Koordinate)

VIC-Steuerregister

Raster-Vergleich: (Bit 8)

Siehe 53266

Erweiterter Farbtext-Modus:

1= Einschalten

Bit-Map-Modus:

1 = Einschalten

Bildschirm loschen:

0 = Löschen

Wahl von 24/25 Reihen Text-

anzeige: 1 = 25 Reihen

Rollen zur Y-Punktposition

(0-7)
Leseraster/Schreibraster

Wert für Vergleich IRQ

Lichtgriffel, Position X

Lichtgriffel, Position Y

Sprite-Anzeige: 1 = Einschalten

VIC-Steuerregister

Nicht benutzt

DIESES BIT STETS AUF

0 SETZEN!

Mehrfarbenmodus:

1 = Einschalten

(Text oder Bit-Mappe)

Wahl von 38/40 Spalten Text-

anzeige: 1 = 40 Zeichen

Rollen zu Position X

Sprites 0-7 vergrößern

2 x vertikal (Y)

VIC-Speicher-Steuerregister

Video-Matrix-Basisadresse

HEXA-

DEZIMAL DEZIMAL BITS BESCHREIBUNG

3-1 Zeichengenerator-Basisadresse

DO019 53213 VIC-Interrupt-Flag (Bit = 1:

Einschalten des IRQ)

7 Beliebige VIC-IRQ-Bedingung

setzen

3 IRQ-Flag wird durch Lichtgriffel

getriggert

2 IRQ-Flag für Sprite-Kollision

1 IRQ-Flag für Sprite-/Hinter-

grundkollision

0 IRQ-Flag für Rastervergleich

DO1A 53274 IRQ-Maskenregister:

1 = Interrupt einschalten

DO1B 53275 Sprite-/Hintergrund-Anzeige-

priorität: 1 = Sprite

DO1C 53276 Sprites 0-7 Mehrfarbenmodus

gewählt: 1 = Mehrfarben-

modus

DO1D 53277 Sprites 0-7, vergrößern

2 x horizontal (X)

DO1E 53278 Sprite-Kollisionserkennung

DO1F 53279 Sprite-/Hintergrundkollisions-

Erkennung

DO20 53280 Rahmenfarbe

D021 5328 1 Hintergrundfarbe 0

DO22 53282 Hintergrundfarbe 1

DO23 53283 Hintergrundfarbe 2

D024 53284 Hintergrundfarbe 3

D025 53285 Sprite-Mehrfarbenregister O

D026 53286 Sprite-Mehrfarbenregister 1

D027 53287 Farbe von Sprite 0

D028 53288 Farbe von Sprite 1

D029 53289 Farbe von Sprite 2

DO2A 53290 Farbe von Sprite 3

DO2B 53291 Farbe von Sprite 4

DO2C 53292 Farbe von Sprite 5

DO2D 53293 Farbe von Sprite 6
MASCHINENSPRACHE 319

HEXA-

DEZIMAL
DEZIMAL BITS BESCHREIBUNG

DO2E

D400-D7FF

D400

D401

D402

D403

D404

D405

53294

94272-55295

54272

54273

54274

54275

54276

54277

320 MASCHINENSPRACHE

3-0

oO
)

74

3-0

Farbe von Sprite 7

MOS 6581 SOUND-

INTERFACE-DEVICE (SID)
Stimme 1: Frequenzsteuerung —

Unteres Byte

Stimme 1: Frequenzsteuerung —

Oberes Byte

Stimme 1: Pulswellen-Breite —

Unteres Byte

Nicht benutzt

Stimme 1: Pulswellen-Breite —

Oberes Nybble

Stimme 1: Steuerregister

Geräuschwellenform wählen,

1 = Ein

Pulswellenform wahlen, 1 = Ein

Sägezahnwellenform wählen,

1 = Ein

Dreieckswellenform wahlen,

1 = Ein

Testbit: 1 = Oszillator 1

abschalten

Oszillator 1 mit Oszillator-

ausgabe 3 ringmodulieren,

1 = Ein

Oszillator 1 mit Oszillator 3

synchronisieren, 1 = Ein

GATE-Bit: 1 = Beginn von

ATTACK/DECAY/SUSTAIN,

0 = Start des RELEASE-

Abschnitts

Hullkurvengeber 1: Steuerung

des ATTACK-/DECAY-Zyklus

Wahl der ATTACK-Zyklusdauer:

0-15

Wahl der DECAY-Zyklusdauer:

0-15

HEXA-

DEZIMAL
DEZIMAL BITS BESCHREIBUNG

D406

D407

D408

D409

D40A

D40B

54278

54279

54280

54281

54282

54283

74

3-0

Hüllkurvengeber 1: Steuerung

des SUSTAIN-/RELEASE-

Zyklus |

Wahl des SUSTAIN-Pegels:

0-15

Wahl der RELEASE-Dauer:

0-15

Stimme 2: Frequenzsteuerung —

Unteres Byte

Stimme 2: Frequenzsteuerung —

Oberes Byte

Stimme 2: Pulswellen-Breite —

Unteres Byte

Nicht benutzt

Stimme 2: Pulswellen-Breite —

Oberes Nybble

Stimme 2: Steuerregister

Wahl der Geräuschwellenform,

1=Ein

Wahl der Pulswellenform,

1=Ein

Wahl der Sägezahnwellenform,

1=Ein

Wahl der Dreieckswellenform,

1=Ein

Testbit: 1 = Oszillator 2

ausschalten

Oszillator 2 mit Oszillator-

ausgabe 1 ringmodulieren,

1 = Ein

Oszillator 2 mit Oszillator-

frequenz 1 synchronisieren,

1 = Ein

GATE-Bit: 1 = Beginn von

AT TACK/DECAY/SUSTAIN,

0 = Start des RELEASE-

Abschnitts
MASCHINENSPRACHE 321

HEXA-

DEZIMAL
DEZIMAL BITS BESCHREIBUNG

D40C

D40D

D40E

D40F

D410

D411

D412

54284

54285

54286

54287

54288

94289

54290

322 MASCHINENSPRACHE

74

3-0

7-4

3-0

3-0

Hullkurvengeber 2: Steuerung

des AT TACK-/DECAY-Zyklus

Wahl der ATTACK-Dauer: 0-15

Wahl der DECAY-Dauer: 0-15

Hüllkurvengeber 2: Steuerung

SUSTAIN-/RELEASE-Zyklus

Wahl des SUSTAIN-Pegels:

0-15

Wahl der RELEASE-Dauer:

0-15

Stimme 3: Frequenzsteuerung —

Unteres Byte

Stimme 3: Frequenzsteuerung —

Oberes Byte

Stimme 3: Pulswellen-Breite —

Unteres Byte

Nicht benutzt

Stimme 3: Pulswellen-Breite —

Oberes Nybble

Stimme 3: Steuerregister

Wahl der Geräuschwellenform,

1 = Ein

Wahl der Impulswellenform,

1= Ein

Wahl der Sagezahnwellenform,

1 = Ein

Wahl der Dreieckswellenform,

1 = Ein

Testbit: 1 = Oszillator 3

ausschalten

Oszillator 3 mit Oszillator-

ausgabe2 ringmodulieren,

1 = Ein

Oszillator 3 mit Oszillator-

frequenz 2 synchronisieren,

1 = Ein

HEXA-

DEZIMAL
DEZIMAL BITS BESCHREIBUNG

D413

D414

D415

D416

D417

D418

54291

54292

54293

54294

54295

54296

7-4

3-0

7-4

7-4

GATE-Bit: 1 = Beginn von

ATTACK/DECAY/SUSTAIN,

0 = Start des RELEASE-

Abschnitts

Hüllkurvengeber 3: Steuerung

des ATTACK-/DECAY-Zyklus

Wahl der ATTACK-Dauer: 0-15

Wahl der DECAY-Dauer: 0-15

Hüllkurvengeber 3: Steuerung

des SUSTAIN-/RELEASE-

Zyklus

Wahl des SUSTAIN-Pegels:

0-15

Wahl der RELEASE-Dauer:

0-15

Filtergrenzfrequenz: Unteres

Nybble (Bits 2-0)

Filtergrenzfrequenz: Oberes

Byte

Filterresonanz-Steuerung/

Stimmeneingabe-Steuerung

Wahl der Filterresonanz: 0-15

Externe Filtereingabe:

1 = Ja, 0 = Nein

Ausgabe von Stimme 3 filtern:

1=Ja,0 = Nein

Ausgabe von Stimme 2 filtern:

1 = Ja, 0 = Nein

Ausgabe von Stimme 1 filtern:

1 = Ja, O = Nein

Filtermodus und Lautstarke

wahlen

Ausgabe von Stimme 3

abschalten: 1 = AUS,

O=EIN

Hochpaßfiltermodus wählen:

1 = Ein
MASCHINENSPRACHE 323

HEXA-

DEZIMAL
DEZIMAL BITS BESCHREIBUNG

D419

D41A

D41B

D41C

D500-D7FF

D800-DBFF

DC00-DCFF

DCOO

DCO1

54297

54298

54299

54230

54528-55295

55296-56319

56320-56575

56320

56321

324 MASCHINENSPRACHE

3-0

Wahl des Bandfiltermodus:

1=Ein

Wahl des Tiefpaßfiltermodus:

1 = Ein

Wahl der Lautstärke: 0-15

Analog-/Digitalwandler:

Drehregler 1 (0-255)

Analog-/Digitalwandler:

Drehregler 2 (0-255)

Oszillator 3, Zufallszahlen-

Generator

Ausgabe von Hüllkurvengeber 3

SID-Images

Farb-RAM (Nybbles)

MOS 6562 Komplexes

Interfaceadapter (CIA) #1

Datenport A (Tastatur, Steuer-

knuppel, Drehregler, Licht-

griffel)

Nummer der Tastaturspalte fur

Tastatur-Abfrage

Drehregler Port A/B

(01 = Port A, 10 = Port B)

Steuerknüppel A Feuerknopf:

1 = Feuer

Drehregler-Feuerknöpfe

Steuerknüppel-Richtung (0-15)

Daten-Port B (Tastatur, Steuer-

knüppel, Drehregler):

Spielport 1

Nummer der Tastatur-Reihe für

Tastaturabfrage

Timer B: Impulsausgabe

Timer A: Impulsausgabe

Steuerknüppel Feuerknopf 1:

1 = Feuer

Drehregler-Feuerknopf

HEXA-

DEZIMAL
DEZIMAL BITS BESCHREIBUNG

DCO2

DCO3

DC04

DC05

DC06

DCO7 -

DC08

DC09

DCOA

| DCOB

DCOC

DCOD

DCOE

56322

56323

56324

56325

56326

56327

56328

56329

56330

56331

56332

56333

56334

3-0

O

—
MD

W

Steuerknüppel-Richtung

Datenrichtungsregister — Port A

(56320)

Datenrichtungsregister — Port A

(56321)

Timer A: Unteres Byte

Timer A: Oberes Byte

Timer B: Unteres Byte

Timer B: Oberes Byte

Tageszeituhr: 1/10 s

Tageszeituhr: Sekunden

Tageszeituhr: Minuten

Tageszeituhr: Stunden + Flag

AM/PM (Bit 7)

Serieller Bus Ein-/Ausgabe-

datenpuffer

CIA-Interrupt-Steuerregister
IRQ-Flag (1 = Auftreten von

IRQ)/Löschflag setzen

Flag 1 IRQ (Lesen von

Kassette/serieller Bus

SRQ-Eingabe)

Serieller Bus (Interrupt)

Tageszeituhr-Interrupt

Timer B-Interrupt

Timer A-Interrupt

ClA-Steuerregister A

Tageszeituhr-Frequenz:

1 = 50 Hz, 0 = 60 Hz

Serieller Bus Ein-/Ausgabe-

modus: 1 = Ausgabe,

O = Eingabe

Timer A: 1 = CNT-Signale,

0 = System-Uhr 02

Force Load Timer A: 1 = Ja

Modus von Timer A: 1 = one-

shot, 0 = kontinuierlich
MASCHINENSPRACHE 325

HEXA-
DEZIMAL DEZIMAL BITS BESCHREIBUNG

DCOF 56335

DDOO—DDFF | 56576-56831

DDOO 56576

326 MASCHINENSPRACHE

6-5

4-0

Ausgabemodus von Timer A

zu PB6: 1 = Toggle,

0 = Impuls

Ausgabe von Timer A an PB6:

1 = Ja,0 = Nein

Start/Stop von Timer A:

1 = Start, O = Stop

CIA-Steuerregister B

Alarm/TOD-Uhr:

1 = Alarm, O = Takt

Wahl des Modus von Timer B:

00 = Taktimpuls von System

02 zählen

01 = Positive CNT-Uber-

gänge zählen

10 = Underflow-Impulse von

Timer A zählen

11 = Underflows von Timer A

zählen, wenn CNT

positiv

Entspricht CIA-Steuer-

register A—fur Timer B

MOS 6526 Komplexes Inter-

faceadapter (CIA) #2

Datenport A (serieller Bus,

RS-232, VIC-Speicher-

steuerung)

Serieller Bus-Dateneingabe

Serieller Bus-Impulseingabe

Serieller Bus-Datenausgabe

Serieller Bus-Impulsausgabe

Serieller Bus-ATN-Signal-

ausgabe

RS-232-Datenausgabe

(User-Port)

VIC-Chip Bank-select

(Standard = 11)

HEXA-

DEZIMAL
DEZIMAL BITS BESCHREIBUNG

DDO1

DDO2

DDO3

DDO4

DDO5

DDO6

DDO7

DDO8

DDO9

DDOA

DDOB

DDOC

DDOD

DDOE

56577

56578

56579

56580

56581

56582

56583

56584

56585

56586

56587

36588

56589

56590

O
-
F
A
N
W

F
O
O
D

N

Datenport B

(User-Port, RS-232)

RS-232 Datensatz bereit

RS-232 Clear to send

User

RS-232 Carrier Detect

RS-232 Ring Indicator

RS-232 Daten-Terminal

RS-232 Request to send

RS-232 Received

Datenrichtungs-Register —

Port A

Datenrichtungs-Register —

Port B

Timer A: Unteres Byte ©

Timer A: Oberes Byte

Timer B: Unteres Byte

Timer B: Oberes Byte

Tageszeitunr: 1/10 s

Tageszeituhr: Sekunden

Tageszeituhr: Minuten

Tageszeituhr: Stunden + Flag

AM/PM (Bit 7)

Serieller Bus Ein-/Ausgabe-

datenpuffer

CIA-Interruptsteuerregister

NMI-Flag

(1 = Auftreten eines NMI)/

Löschflag setzen

Flag 1 NMI

(RS-232 Received Data

Input)

Interrupt-Serieller Bus

Timer B-Interrupt

Timer A-Interrupt

ClA-Steuerregister A

TOD-F: 1 = 50 Hz, 0 = 60 Hz
MASCHINENSPRACHE 327

HEXA-

DEZIMAL
DEZIMAL BITS BESCHREIBUNG

DDOF

DEOO-DEFF

DFOO-DFFF
56591

56832-57087

57088-57343

PD

6-5

4-0

Serieller Bus Ein-/Ausgabe-

modus: 1 = Ausgabe,

0 = Eingabe
Timer A: 1 = CNT-Signale,

0 = System-Uhr 02

Force Load Timer A: A = Ja

Modus von Timer A:

1 = one-shot,

0 = kontinuierlich

Ausgabemodus von Timer A zu

PB6: 1 = Toggle, 0 = Impuls

Ausgabe von Timer A an PB6:

1 = Ja, 0 = Nein

Start/Stop von Timer A:

1 = Start, 0 = Stop

ClA-Steuerregister B

Alarm/TOD-Clock:

1 = Alarm, 0 = Clock

Wahl von Timermodus B:

00 = Impulse von System 02

zahlen

01 = Positive CNT-Uber-

gange zahlen

10 = Underflowimpulse von

Timer A zählen

11 = Underflows von Timer A

zahlen, wenn CNT

positiv

Entspricht CIA-Steuer-

register A- für Timer B

Reserviert für künftige

Ein-/Ausgabeerweiterungen
Reserviert für künftige

Ein-/Ausgabeerweiterungen

328 MASCHINENSPRACHE

KAPITEL 6

SINS7 Ue \ =) =
ANLEITUNG

e Einführung

u VSETer:1oi-w- li wol-Taw=jllekTejaiigen

e Ausgabe auf andere Geräte

e Spiele-Ports

e RS-232-Interface-Beschreibung

e User-Port

e Der serielle Bus

e Erweiterungsport

e Z-80-Mikroprozessor-Modul

329

EINFÜHRUNG

Computer zeichnen sich durch drei Hauptfunktionen aus: Sie können rechnen,

Entscheidungen treffen und kommunizieren. Die Rechenfunktion läßt sich hierbei

wahrscheinlich am einfachsten programmieren. Wir sind mit den meisten mathema-

tischen Regeln vertraut. Entscheidungen zu treffen, ist auch nicht allzu schwierig, da

es nur wenige logische Regeln gibt.

Die komplexeste Funktion ist die Kommunikation, da diese am wenigsten genauen

Regeln unterliegt. Dies ist nicht etwa auf ein Versehen bei der Konstruktion des

Computers zurückzuführen. Die Regeln sind vielmehr so flexibel, daß praktisch auf

viele Arten kommuniziert werden kann. Die einzige Regel heißt: Die Informationen

müssen stets so übertragen werden, daß sie der Empfänger auch verstehen kann.

AUSGABE AUF DEN BILDSCHIRM

Die einfachste Form der Ausgabe ist die BASIC-Anweisung PRINT. Durch PRINT

wird als Ausgabegerat der Bildschirm benutzt. Das “Eingabegerät sind Ihre Augen,

da sie die Bildschirminformation lesen.

Bei der Anzeige auf dem Bildschirm besteht die Hauptaufgabe darin, die Informatio-

nen so zu formatieren, daß sie leicht lesbar sind. Spielen Sie hier ein bißchen den

Graphiker oder Designer, benutzen Sie Farben, überdenken Sie die Anordnung der

einzelnen Buchstaben, wählen Sie Groß- und Kleinbuchstaben oder auch Graphik-

zeichen, um die Information am besten darzustellen. Denken Sie daran: auch bei

einem noch so raffinierten Programm müssen Sie doch in der Lage sein, das

Ergebnis zu verstehen.

Die PRINT-Anweisung benutzt bestimmte Zeichen-Codes als “Befehle”, mit denen

der Cursor gesteuert wird. Über die Taste EB kann eigentlich nichts auf dem

Bildschirm angezeigt werden. Sie ändert lediglich die Cursorposition. Über weitere

Befehle wird die Farbe geändert, der Bildschirm gelöscht und Leerstellen eingefügt

bzw. gelöscht. Die Taste hat die Zeichen-Code-Nr. 13 (CHR$). Diese
Codes sind in einer Tabelle in Anhang © dargestellt.

Es gibt noch zwei weitere Funktionen in BASIC, die zusammen mit der PRINT-

Anweisung verwendet werden. Durch TAB wird der Cursor in eine Position

gebracht, die einen vorgegebenen Abstand vom linken Bildschirmrand hat, SPC

bewegt den Cursor von der derzeitigen Position um eine gegebene Anzahl Leer-

stellen nach rechts.

Interpunktionszeichen in der PRINT-Anweisung trennen und formatieren die Infor-

mation. Durch das Semikolon (;) werden zwei Ausdrücke ohne Leerzeichen vonein-

ander getrennt. Ist das Semikolon das letzte Zeichen in einer Zeile, so bleibt der

Cursor hinter dem zuletzt angezeigten Zeichen und geht nicht in die nächste Zeile

330 EIN-/AUSGABE-ANLEITUNG

über. Es unterdrückt das RETURN, das normalerweise am Ende einer Zeile steht. -

Durch das Komma (,) werden die Daten in Spalten dargestellt. Der Bildschirm des

COMMODORE 64 hat vier Spalten mit je 10 Zeichen. Wenn der Computer ein

Komma “PRINTED“, bewegt sich der Cursor nach rechts zum Anfang der nächsten

Spalte. Nach der letzten Spalte der Zeile geht der Cursor in die nächste Zeile. Auch

hier wird, wenn es sich um das letzte Zeichen in einer Zeile handelt, RETURN

unterdrückt.

Anführungszeichen (“ “) trennen Text von Variablen. Das erste Anführungszeichen

in einer Zeile kennzeichnet den Anfang des Textbereichs und das nächste Anfüh-

rungszeichen das entsprechende Ende. Übrigens ist am Zeilenende kein abschlie-

Bendes Anführungszeichen erforderlich.

Durch den RETURN-Code (CHR$ (13)) wird der Cursor in die nächste logische

Bildschirmzeile bewegt. Es muß nicht immer unbedingt die nächste Zeile sein. Wird

über das Zeilenende hinaus geschrieben, so wird die Zeile mit der nächsten Zeile

verbunden. Der Computer weiß, daß beide Zeilen in Wirklichkeit eine einzelne,

lange Zeile sind. Diese Verbindungen werden in der “line-link-Tabelle“ festgehal-

ten (bezügl. Einzelheiten siehe Speicherbelegung).

Eine logische Zeile kann bis zu zwei Bildschirmzeilen lang sein, je nachdem, was

eingegeben wurde. Die logische Zeile am Bildschirmanfang bestimmt, ob der

Bildschirm um ein oder zwei Zeilen “gescrollt" wird.

Es gibt noch andere Möglichkeiten, um den Bildschirm als Ausgabegerät zu

benutzen. In dem Kapitel über Graphiken wird beschrieben, wie man Graphiken

erzeugen und über den Bildschirm bewegen kann. Im Abschnitt über den VIC-Chip

wird beschrieben, wie man die Bildschirm- und Rahmenfarben und Größen ändern

kann. Das Kapitel über den Sound-Synthesizer zeigt Ihnen schließlich, wie man mit

dem TV-Lautsprecher Klangeffekte und Musik erzeugt.

AUSGABE AUF ANDERE GERÄTE
Oft ist es erforderlich, daß Ausgaben nicht auf den Bildschirm, sondern auf andere

Geräte wie z. B. Kassettendecks, Drucker, Diskettenstationen oder Modems erfol-

gen. Uber die BASIC-Anweisung OPEN wird ein “Kanal“ für die Kommunikation mit

diesen Geräten erstellt. Ist dieser Kanal geöffnet, dann werden über die Anweisung

PRINT# Zeichen zu diesem Gerät übertragen.

BEISPIEL FÜR DIE ANWEISUNGEN OPEN UND PRINT#:
100 OPEN 4, 4: PRINT# 4, “WRITING ON PRINTER“

110 OPEN 3, 8, 3, “0:DIKS-FILE,S,W“: PRINT# 3, “SEND TO DISK“

120 OPEN 1, 1, 1, “TAPE-FILE“: PRINT# 1, “WRITE ON TAPE“

130 OPEN 2, 2, 0, CHR$(10): PRINT# 2, “SEND TO MODEM“

EIN-/AUSGABE-ANLEITUNG 331

Die OPEN-Anweisung ist für die einzelnen Geräte leicht unterschiedlich. Die

Parameter dieser Anweisung für das jeweilige Gerät werden in der nachstehenden

Tabelle gegeben.

Tabelle für die OPEN-Anweisung:

FORMAT: OPEN Dateinummer, Geräteadresse, Sekundäradresse, String

u GERATE- .
GERAT ADRESSE SEKUNDARADRESSE STRING

CASSETTE 1 O = Eingabe Dateiname

1 = Ausgabe

2 = Ausgabe mit EOT

MODEM 2 0 Steuerregister

SCREEN 3 0,1

PRINTER 4 oder 5 O = Großschrift/ Text wird angezeigt

Graphikzeichen

7 = GroB-/

Kleinschrift

DISK 8 bis 11 2—14 = Datenkanal Laufwerknummer,

Dateiname, Dateityp,

Befehl lesen/

schreiben

15 = Befehlskanal
AUSGABE ZUM DRUCKER

Der Drucker ist eine ähnliche Ausgabevorrichtung wie der Bildschirm. Die Haupt-

aufgabe für Sie besteht hierbei darin, ein leicht lesbares Format zu erstellen. Hierbei

stehen Ihnen negative (weiß auf schwarz darstellbare) Zeichen, Zeichen in doppel-

ter Breite, GroB- und Kleinbuchstaben sowie programmierbare Graphikzeichen zur

Verfügung.

Durch die OPEN-Anweisung wird der erforderliche Kanal zum Drucker geöffnet.

Außerdem wird durch diese Anweisung angegeben, welcher Zeichensatz benutzt

wird: entweder Großbuchstaben und Graphikzeichen oder Zeichen Groß- und

Kleinbuchstaben.

332 EIN-/AUSGABE-ANLEITUNG

BEISPIELE FÜR DIE OPEN-ANWEISUNG BEI DER AUSGABE AUF EINEN

DRUCKER:

OPEN 1, 4: REM UPPER CASE/GRAPHICS

OPEN 1, 4, 7: REM UPPER AND LOWER CASE

Beim Ausdruck mit einem Zeichensatz können einzelne Zeilen mit dem anderen

Zeichensatz erstellt werden. Wurden Großbuchstaben und Graphikzeichen benutzt,

dann erfolgt die Umschaltung auf den anderen Zeichensatz, d.h. Groß- und

Kleinbuchstaben durch (CHR$(17)). In der umgekehrten Richtung erfolgt die

Umschaltung durch (CHR$(145)).

Andere Drucker-Sonderfunktionen werden über Zeichencodes gesteuert. Diese

Codes werden genau wie andere Zeichen durch PRINT# übermittelt.

Tabelle der Drucker-Steuerzeichencodes:

CODE CHR$ ZWECK

10 Zeilenvorschub |

13 RETURN ZEILENSCHALTUNG (automatischer Zeilenvor-

schub bei CBM-Druckern) -

14 Beginn des Zeichenausdrucks in doppelter Breite

15 Ende des Zeichenausdrucks in doppelter Breite

18 Beginn des Ausdrucks negativ dargestellter Zeichen

146 Ende des Ausdrucks negativ dargestellter Zeichen

17 Umschalten auf Groß- und Kleinschrift

145 Umschalten auf Großschrift/Graphik

27 Bewegung zur angegebenen Punktposition

8 Beginn des Graphikmodus

26 Wiederholung der Graphikdaten

Bezüglich weiterer Einzelheiten über die Befehls-Codes siehe Bedienungsanlei-

tung des jeweiligen COMMODORE-Druckers.

ARBEITEN MIT MAGNETBANDKASSETTEN

Kassetten haben eine fast unbegrenzte Daten-Speicherkapazität. Je länger hierbei

das Kassettenband ist, desto mehr Informationen können gespeichert werden.

Kassetten sind jedoch ziemlich langsam. Je mehr Daten abgespeichert sind, desto

länger braucht man, um eine Information zu finden.

EIN-/AUSGABE-ANLEITUNG 333

Dieser Zeitfaktor muß daher bei der Kassettenspeicherung vom Programmierer auf

ein Mindestmaß beschränkt werden. Im allgemeinen wird die gesamte Kassetten-

Datendatei in den RAM gelesen, dann verarbeitet und danach wieder zurück auf

Kassette geschrieben. Auf diese Weise können die Daten sortiert, aufbereitet und

überprüft werden. Allerdings wird hierdurch die Dateigröße durch die verfügbare

RAM-Kapazitat begrenzt.

Ist die Datendatei länger als der verfügbare RAM-Bereich, dann sollten Sie mit einer

Disketten-Station arbeiten. Hierbei können Daten in jeder beliebigen Position auf

der Diskette gelesen werden, ohne daß zuvor ein Lesen der übrigen Daten

erforderlich ist. Alte Daten lassen sich ohne Beeinträchtigung der restlichen Datei

überschreiben. Aus diesem Grund werden Disketten im Geschäftsbereich z. B. für

Buchführungen und Adreßkarteien benutzt.

Durch die Anweisung PRINT# werden Daten genau wie durch PRINT formatiert.

Auch die Interpunktion ist hierbei gleich. Denken Sie jedoch daran, daß Sie nun

nicht mehr mit dem Bildschirm arbeiten. Beim Formatieren müssen Sie also stets an

die Anweisung INPUT# denken. |

Nehmen wir die Anweisung PRINT# 1, A$, B$, C$. Beim Arbeiten mit dem

Bildschirm wird durch die Kommata zwischen den Variablen genug Platz geschaf-

fen, um diese in Spalten mit je 10 Zeichen zu unterteilen. Bei einer Kassette werden

1 bis 10 Leerzeichen eingefügt, je nach Länge der Zeichenkette. Hierdurch wird

Speicherkapazität verschwendet.

Wesentlich schlimmer wirkt sich dies jedoch aus, wenn die Zeichenketten durch die

Anweisung INPUT # gelesen werden. Die Anweisung INPUT 1#, A$, B$, C$ findet

keine Daten für B$ und C$. A$ enthält alle drei Variablen und die Leerzeichen

dazwischen ab. Was passiert? Folgendermaßen sieht die Datei auf der Kassette

aus:

A$="DOG“:B$="CAT“:C$="TREE“
PRINT# 1, A$, B$, C$

Ein geeignetes Begrenzungszeichen auf der Kassette wäre z.B. ein Komma (,)

oder RETURN. Der -Code wird automatisch ans Ende einer PRINT-
Anweisung oder von PRINT# gesetzt. Um diesen Code zwischen die einzelnen

Punkte zu setzen, kann man z.B. nur ein Datum PRINT#-Anweisung benutzen.

Besser ist jedoch, dem CHR$(13) oder dem Komma eine Variable zuzuordnen. Die

Anweisung für letztere Möglichkeit ist R$6=“,“:PRINT# 1, A$ R$ BS R$ C$.

Zwischen den Variablennamen dürfen keine Kommata oder andere Interpunktions-

zeichen verwendet werden; da der COMMODORE 64 sie auch so unterscheidet,

kann auf diese Weise nur Kapazität verschwendet werden.

334 EIN/AUSGABE-ANLEITUNG

Eine richtige Kassetten-Datei sieht z. B. wie folgt aus:

12345678910111213

DOG ,CAT,TRE E RETURN

Durch die Anweisung GET # wird jeweils ein Zeichen der auf Kassette gespeicher-

ten Daten gelesen. Jedes Zeichen, einschließlich RETURN-Code und anderen

Interpunktionszeichen wird empfangen. Der Code CHR§(0) wird als Leerstring und

nicht als Zeichenstring mit dem Code 0 empfangen.

Wird versucht, die ASC-Funktion bei einem Leerstring anzuwenden, dann erscheint

die Fehlermeldung ILLEGAL QUANTITY ERROR.

Zur Überprüfung der Kassettendaten wird normalerweise die Zeile GET# 1, A$: A=

ASC(A$) in Programmen benutzt. Zur Vermeidung von Fehlermeldungen sollte die

Zeile wie folgt geändert werden: GET#1, A$: A= ASC(A$+ CHR$(0)). CHR$(0)

am Ende macht Leerstrings “unschädlich”, beeinflußt jedoch nicht die ASC-

Funktion, wenn A$ andere Zeichen enthält.

DATENSPEICHERUNG AUF DISKETTEN

Auf Disketten sind drei verschiedene Arten der Datenspeicherung möglich.

Sequentielle Dateien entsprechen denen auf Kassette, es können jedoch mehrere

gleichzeitig benutzt werden. Relative Dateien ermöglichen ein Organisieren der

Daten in Sätzen (Records) und ein Lesen und Ändern der einzelnen Sätze innerhalb

der Datei. Bei Random-Dateien schließlich ist ein Arbeiten mit an beliebiger

Diskettenstelle gespeicherten Daten möglich. Diese Daten sind in Abschnitten mit

je 256 Bytes zusammengefaßt, die man Blöcke nennt.

Die Einschränkungen beim Arbeiten mit der Anweisung PRINT# sind in dem

Abschnitt “Arbeiten mit Kassetten“ beschrieben. Die gleichen Überlegungen tref-

fen auch bei Disketten zu. Zum Abtrennen der einzelnen Daten wird RETURN oder

ein Komma benötigt. Durch die Anweisung GET# wird CHR§(0) auch hier als leere

Zeichenkette gelesen.

Relative und Random-Dateien arbeiten beide mit getrennten Daten und “Befehlska-

nälen“. Die auf Diskette geschriebenen Daten gehen durch den Datenkanal und

werden in den temporären Pufferspeicher des Disketten-RAMs geschrieben. Wenn

ein Satz oder Block komplett ist, wird über den Befehlskanal ein Befehl übertragen,

der angibt, wohin die Daten geschrieben werden sollen. Dann wird der gesamte

Puffer geschrieben.

Bei Anwendungen, die die Verarbeitung großer Datenmengen erfordern, werden

relative Diskettendateien verwendet. Dies erfordert am wenigsten Zeit und läßt dem

Programmierer ein Höchstmaß an Flexibilität. Eine vollständige Programmieranlei-

tung für Diskettendateien finden Sie im Handbuch der Diskettenstation.

EIN-/AUSGABE-ANLEITUNG 335

SPIELE-PORTS

Der COMMODORE 64 hat zwei 9-Pin-Spiele-Ports, die die Verwendung von

Steuerknüppeln, Drehreglern oder Lichtgriffeln ermöglichen. Jeder Port ist entwe-

der für einen Steuerknüppel oder zwei Drehregler geeignet. Fur spezielle Graphik-

steuerungen usw. kann (nur in Port A) ein Lichtgriffel verwendet werden. In diesem

Kapitel werden wir Ihnen Beispiele dafür zeigen, wie Sie sowohl Steuerknuppel als

auch Drehregler über BASIC und Maschinensprache benutzen können.

Der Steuerknüppel wird an CIA #1 angeschlossen (MOS 6526). Dieser Ein-/

Ausgabechip ist auch für die Feuerknöpfe an den Drehreglern und die Tastatur-

Abfrage verantwortlich. Der 6526 CIA-Chip hat 16 Register in den Speicherplätzen

56320 bis einschließlich 56335 ($DC00 bis $DCOF). Die Daten von Port A finden

Sie in Adresse 56320 (DC00) und von Port B in 56321 ($CDO1).

Ein Steuerknüppel hat fünf unterschiedliche Schalter, von denen vier für die

Richtung und einer als Feuerknopf benutzt wird. Die Steuerknüppel-Schalter sind

wie folgt angeordnet:

(Oben)

FEUER

(Schalter 4) AUFWÄRTS
(Schalter 0)

LINKS | RECHTS
(Schalter 2) | (Schalter 3)

ABWÄRTS

(Schalter 1)

Diese Schalter entsprechen den unteren 5 Bits des Inhalts der Adresse 56320 oder

56321. Ein Bit ist auf 1 gesetzt, wenn eine Richtung nicht gewählt oder der

Feuerknopf nicht gedrückt wurde.

Wird der Feuerknopf gedrückt, dann wird das Bit (in diesem Fall Bit 4) auf O gesetzt.

Um den Steuerknüppel von BASIC abzufragen, wird folgendes Unterprogramm

benutzt:

336 EIN/AUSGABE-ANLEITUNG

1a FORK S8TOLE REM SET UF DIRECTION STRING

26 REATIORE CKO MET
EI TATA" iB] j pp" r nun j mn j mye j n RIO

46 TATA SW VE UAE Se
Sa FRI T GOING. a G

SA GOSUBT EE REM READ THE JOYSTICK

Go IFDRE Toe" "THEMSE REM CHECK IF A DIRECTION WAS
CHCesE

va PRIMTORA WON OREM OUTPUT WHICH DIRECTION
Sg TFRR=LETHEMEe REM CHECK IF FIFE BUTTOM WAS

FPUSHET

aa PRIM" = I Fe! E III GOT Cee

lM IV=ePEER CSeSee0 (REM GET JOYSTICK VALUE

Lig FReJIVAMDLE : REM FORM FIRE BUTTOM STATUS

128 Tv L3—CIVAMDLS oO REP FORM DIRECTION “VALUE
123 RE TLR

Anmerkung: Für den zweiten Steuerknüppel JV = PEEK (56321) setzen.

Die Werte für JV entsprechen diesen Richtungen:

JV ENTSPRICHT RICHTUNG

KEINE

AUFWÄRTS

ABWÄRTS

LINKS

AUFWÄRTS & LINKS

ABWÄRTS & LINKS

RECHTS

AUFWÄRTS & RECHTS

ABWÄRTS & RECHTS O
O
O

N
N
D

TI

P
O
D

-
—
-
O

s
y

EIN-/AUSGABE-ANLEITUNG 337

Folgendes kurzes Maschinen-Code-Programm erfüllt die gleiche Aufgabe:

aa „FAGE “JOYSTICK.8“S5 JOWrWSTICE - BUTTON READ
ROUT THE
Lele

Lease AUTHOR ~ BILL HIHDORFF
Lease

‘| Glee Di MELT

1252 Dyve#Ci ti
LEE eS

Lara TIRE LOA #0Cee a GET INPUT FROM FORT

A CH

1asa DIERE II #8 : THIS ROUTINE FEADS AMT

TECITES THE

Lease Lin a i JOYSTICK AF IREBUTTOH
THELIT DATA IM

1 Lok A THE ACCUMULATOR. THIS

LEAST STGHIFICAHMT

1118 BCS DIR ‚= BITS COHTAIM THE

SWITCH ELCSRE

1120 Te STHFORMATICM, IF A SWITCH

Ts CLOSED THEM IT

Lise Dee Lok A JFRODUCES A ZERO BIT. IF
FOSWMITCH TS OPEHM THEM

1148 ECS DIE JIT FROQDUCES A OWE BIT.
THE JOYSTICK DIR-

1158 IH! SECTIONS ARE RIGHT, LEFT,
FORWARD. BACKWARD

1iée DREI > FA :BITS*KRIGHT. BITZ=LEFT.

EITL=ERCHUREN.

1172 BCs DIke SBITH=FORWARD AMD

EIT4=FIRE BUTTOM.

Lice DEY ‚AT RTS TIME Dx AMD Dy

COHTAIH 2s COMPLITMEHT

Lise DIRS Lik Pl : DIREUTIOH MUMBERS ILE.

$F Rae]. Fae. FEL=L.

12a Et DI: ‚De=]l CMHOWE RIGHT. Dew-i1

MOVE LEFT 2.

1:18 Ike Da=d CMO & CHAMNGE?

Tre] COVE UF SCREEM 2 .

1220 DIRS L=R #1 D's] “MOVE DOW SCHREEHD:

Trek CMO 7 EHRANGE>

1230 STs TMs : THE FORWARD JOYSTICK

ere DT TOM LÜRRES POMDS

12h ST Ir : TO MOVE UF THE SCREEN

AMT THE BACKHART

Lhe RT ‚:FOSITIOH TO MOVE DOM

L2Pre oAT RTS TIME THE CARRY FLAG OCOHTAIMS THE FIRE
BUTTOM STATE.
Lace so TF Gel THEM BUTTOM MOT FRESSED. IF C=6 THEM
Piles se.
Lane:

{oe . EMD

338 EIN/AUSGABE-ANLEITUNG

DREHREGLER

Ein Paar Drehregler wird am Chip CIA #1 und SID (MOS 6581 Sound-Interface-
Vorrichtung) über ein Spiele-Port angeschlossen. Der Drehregler-Wert wird über
die SID-Register 54297 ($D419) und 54298 ($D41A) gelesen. DREHREGLER
SIND NICHT ABSOLUT ZUVERLÄSSIG, WENN SIE NUR VON BASIC ABGE-
FRAGT WERDEN!!! Am besten benutzt man die Drehregler mit folgendem Maschi-
nensprache-Programm ... (SYS von BASIC, danach PEEK der von dem Unterpro-
gramm benutzten Speicherplätze).

{ace
1 BEE ee a i ae ee ke eee eae Se ae Ske She Se ee ae ae Sh ka aA ele ae ae af Se Se i ae ae Se ee ode

Lee
FOR T
Laze

i* FOUR PADDLE REAL
KIN

"ar ALSO BE USED

2 ARE EN Ze ee ee ee See ee Se ee Se ae ae ae ae ake Sl aa ae eke eS oe al le de ae sae

{esl

1a
LESE
{ Bet

tere
1G

1a

Libel

1118

1122

1130

1148
1158
Me THO ARAL

1166
CME F
Live
1180
me TT

1130
1200
1218
THFLIT
zz
LESE

1248
FADDL
La
1258

„AUTHOR = BILL HIMDORFF
FORTA=EDDER

CITTRASF0CeS

[£04 Ae

debi 1 Ge
ELIFFER:
Fila We

a)
He

Diets aise
ET aes

E THE es
ie EAE

Ft Fe Dl
Lies

FTL De)
AIR CCOMDITIOM &

SET
TF

Fe
TF
LTA
TA

1.

PDL re Dl 1

= TF
ES

Ly

FILRIE

Hör

DE

BFL.

TR

TF

LOR

= TR

tit
+]

+t 1

CDOT RR

BUF FEF
HEI

i A a

HE SHE

POR TF

HEINE

PIM RDS!
SID+2S
FOLK.H
SID+2E
For.

Ae TLE
:FOR FOUR PADDLES

:EHTREY POIHT FOR

SET GURREMT WALUE

SSAVVE TT Abe

SET FORT A FOR

ADDRESS A OPATE OF

AWADT A OMHILE

SET BO VALUE

{GET VALLE

EIN-/AUSGABE-ANLEITUNG 339

1348 LOA FORTA : TIME TO BEAT
FROoOoLE FIRE EUTTOHS
Le Ser FES :MAKE TT THEOSAME
ASS OTHER FAIR
{See STA ETH BIT 2 IS FOL &,
BIT 3 Ts FOL '
Lore LO Fe
1a IE“ ‚All FAIRE GOMES

{32 BEL POLE TY VHC
1 hee LIA BUFFER
lid STA CITA (RESTORE PREM TOs
ALLE OF DDR
1428 or CRE TR ‚FÜR ZMD FAIR -
L428 STA ETHE sBIT 2 IS FDL =.
BEIT 3 IS FOL "
14a LI
1458 RT:
14€6 » EMT

Die Drehregler können notfalls durch folgendes BASIC-Programm

werden:

13 Geiz} REM SET PADDLE EOUNTINE START
11 REM PORE TH THE FADDLE READING ROUTIHE
12 a, HAT OES READA POREC+ To A MEAT
za oon: RET es THE FADDLE ROUT IME
„El ne PEER (C4257 2° REM SET PADDLE OWE WALUE
di FE=PEREKRt (42283: REM " " Thiol "
ial PE=PEEKCC42533 REM " 5 THREE "
BE F4=PFEER OCS REM" " Falk"
el REM FREAD FIRE BUTTON STATUS
Be S1LSPRER CC+261 0 SeePEER CH
7k PRINTP 1s PE PS Po REM FRIMT PADDLE WALUES
Ye REM PRINT FIRE BUTTOM STATUS
fo PRINT OPRIHT FIRE A USS). "FIRE B "ose
Set FORM | Tose MEST REM WAIT A MHILE

AB fou none
SE FRITS! ORR IMT GOTO 2a REM CLEAR SCREEM AMD DO
Mal

Se REM DATA FOR MACHINE CODE ROUT IME
tae DATA Gets Ls Lethe DAS. ets el, 41.8, 133., 169.192.1741,

wall el ‘Lest

110 DHTHLES, 41,8. 226.160. 128, 234.1058. 16. She. ira,
Zus EL. LS
Lek DATAL 19%, 172.26, 212, 157.3. 193, LPS, gee. a. 128,
141.0, 105
138 TATALES. 64.282. le. fee iPS eo FE ld. ZELTE
Le gk, 14
146 TATA, Tos. Ge. Se

340 EIN-/AUSGABE-ANLEITUNG

abgefragt

LICHTGRIFFEL

Der Lichtgriffeleingang LEGT die derzeitige Bildschirmposition in einem Register-

paar (LPX, LPY) ab. Das X-Positionsregister 19 (#13) enthält die 8 MSB der

X-Position zum Übergangszeitpunkt. Da die X-Position durch einen 512-Statuszäh-

ler (9 Bits) definiert wird, ist eine Auflösung von zwei Punkten in horizontaler

Richtung möglich. Ähnlich wird die Y-Position in Register 20 ($14) abgelegt. 8 Bits

erlauben hier jedoch eine Einzel-Rasterauflösung innerhalb der sichtbaren Anzeige.

Der Lichtgriffel kann nur einmal pro Einzel-Bild ausgelassen werden, alle nachfol-

genden Abfragen innerhalb des gleichen Bildes bleiben unberücksichtigt.

RS-232-INTERFACE-BESCHREIBUNG

ALLGEMEINER ÜBERBLICK

Der COMMODORE 64 hat ein eingebautes RS-232-Interface zum Anschluß an ein

beliebiges RS-232-Modem, einen Drucker oder eine andere Vorrichtung. Um ein

solches Gerät an den COMMODORE 64 anzuschließen, brauchen Sie lediglich ein

entsprechendes Kabel und ein klein wenig Programmierung.

RS-232 vom COMMODORE 64 ist entsprechend dem Standard-RS-232-Format

eingerichtet. Die Spannungen haben jedoch TTL-Pegel (0 bis 5V) und liegen nicht,

wie normalerweise, im — 12V bis +12V-Bereich. Im Bedarfsfall muß ein Interface

zwischen dem COMMODORE 64 und dem RS-232-Gerät die Spannungen umwan-

deln. Dies leistet z. B. das COMMODORE-RS-232-Interface-Modul.

Auf die RS-232-Interface-Software kann über BASIC oder den KERNAL (für

Maschinensprache-Programmierung) zugegriffen werden.

RS-232 arbeitet mit normalen BASIC-Befehlen: OPEN, CLOSE, CMD, INPUT#,

GET#, PRINT# und die reservierte Variable ST. INPUT# und GET# lesen Daten

vom Empfangspuffer, PRINT# und CMD geben die Daten hingegen in den Ubertra-

gungspuffer.

Die Anwendung dieser Befehle wird später in diesem Kapitel noch anhand von

Beispielen beschrieben.

Die RS-232-KERNAL-Routinen werden durch die 6526 CIA #2-Timer und Inter-

rupts gesteuert. Der Chip 6526 erzeugt NMI-Anforderungen (nicht maskierbarer

Interrupt) für die RS-232-Verarbeitung.

EIN/AUSGABE-ANLEITUNG 341

Hierdurch wird eine RS-232-Hintergrundverarbeitung wahrend BASIC und Maschi-

nensprache-Programmen moglich. Routinen des KERNAL, der Kassette und des

seriellen Busses sind so abgesichert, daB keine Storungen wahrend der Datenspei-

cherung oder Übertragung durch NMIs möglich sind, die durch die RS-232-Routine

erzeugt wurden. Wenn der Kassettenport oder der serielle Bus aktiv sind, ist kein

Datenempfang durch RS-232-Vorrichtungen moglich.

Das RS-232-Interface vom COMMODORE 64 hat zwei Puffer, damit beim Empfang

oder der Übertragung von RS-232-Informationen keine Daten verlorengehen.

Die RS-232-KERNAL-Puffer bestehen aus zwei FIFO-Puffern (first in/first out-

Puffer), die jeweils 256 Bytes lang sind und sich am oberen Speicherende befinden.

Durch das Öffnen eines RS-232-Kanals werden automatisch 512 Bytes des Spei-

chers für diese Puffer reserviert. Sollte nicht genug Platz hinter dem Ende des

BASIC-Programms vorhanden sein, wird keine Fehlermeldung angezeigt und das

Programmende daher zerstört. SEIEN SIE DAHER VORSICHTIG!

Diese Puffer werden automatisch durch die CLOSE-Befehle gelöscht.

ÖFFNEN EINES RS-232-KANALS

Es darf nur stets ein RS-232-Kanal offen sein; durch eine zweite OPEN-Anweisung

werden die Puffer-Zeiger rückgestellt. Alle Zeichen, die entweder im Ausgangs-

oder im Eingangspuffer sind, werden gelöscht.

Das Dateiname-Feld kann maximal vier Zeichen enthalten. Die ersten beiden sind

Steuer- und Befehlsregisterzeichen, die nächsten zwei sind für künftige Systemop-

tionen reserviert. Auf diese Weise kann man Baud-Rate, Parität und andere Optio-

nen wählen.

Die Eingabe in das Steuerregister wird nicht auf eine nicht-implementierte Baud-

Rate überprüft. Durch eine unzulässige Eingabe ergibt sich für die Systemausgabe

eine extrem lange Rate (unter 50 Baud).

BASIC-SYNTAX:

OPEN _ /fn,2,0,“<Steuerregister><Befehisregister><Option, niedrige Baud-

Rate><Option, hohe Baud-Rate>"

Lfn — Fur die logische Dateinummer (Ifn) kann eine beliebige Zahl zwischen 1 und

255 gewählt werden. Beachten Sie jedoch, daß bei einer logischen Dateinummer

über 127 nach einer Zeilenschaltung auch ein Zeilenvorschub erfolgt.

342 EIN-/AUSGABE-ANLEITUNG

8G & BAG

BAUDRATE

BENUTZERRATE
0 [0 | 0} 0 |NICHT IMPLEMENTIERT

STOP-BITS = 0!010114 50 BAUD

O-1 STOP-BITS 0,9} 1) 9 ">
1-2 STOP-BITS olo!1!4 110

0!:1!0I0 134.5

0111/10114 150

0/1I1|0 300

WORTLÄNGE
01111114 600

BIT DATEN-
615 WORTLANGE 1;0;0;]0 1200

010 8 BITS 1!010|1 (1800) 2400

0; 1 7 BITS 11/0/1110 2400

1/0 6 BITS 1/01/1414] 3600 INI]

1/4 5 BITS 1/1/0101] 4800 iN}

111/0/11 7200 INI]
NICHT BENUTZT —

1!1)1I0 9600 [N1]

1/414] 1 | 19200 INI]

Abb. 6.1. Steuerregisterbelegung

<Steuerregister> — Dies ist ein Ein-Byte-Zeichen (siehe Abb. 6.1. Steuerregi-

sterbelegung), durch das die Eingabe der Baud-Rate festgelegt wird. Sind die

unteren vier Bits der Baud-Rate null (0), dann werden durch <Option, Baud-

low><Option, Baud-high> folgende Raten angegeben:

<Option, Baud-low>=<Systemfrequenz/Rate/2— 100—

<Option, Baud-high>*256

<Option, Baud-high>=INT((Systemfrequenz/Rate/2—100)/256

EIN-/AUSGABE-ANLEITUNG 343

ELSE

 PARITY OPTIONS — HANDSHAKE

BIT|BIT
ov 615 OPERATIONS 0-3 LINE

PARITY DISABLED, NONE 1-X LINE
GENERATED/RECEIVED
ODD PARITY
RECEIVER/TRANSMITTER

EVEN PARITY
RECEIVER/TRANSMITTER

1/014 MARK TRANSMITTED
PARITY CHECK DISABLED

SPACE TRANSMITTED
PARITY CHECK DISABLED

0

 DUPLEX

0-FULL DUPLEX

1-HALF DUPLEX

 UNUSED UNUSED UNUSED

Abb. 6.2. Befehlsregisterbelegung

Obige Formeln basieren auf folgender Grundlage:

Systemfrequenz 1,02273E6 NTSC (North American TV standard)

0,98525E6 PAL (Britische und Europäische TV-Norm)

<Befehlsregister> — Dies ist ein Ein-Byte-Zeichen (siehe Abb. 6.2., Befehlsregi-

sterbelegung), das weitere Terminal-Parameter festlegt. Dieses Zeichen ist nicht

erforderlich.

344 EIN/AUSGABE-ANLEITUNG

KERNALEINGABE:

OPEN ($FFCO) (Siehe KERNAL-Spezifikation bezüglich weiterer Einzelheiten uber

Eingabebedingungen und -anweisungen.)

Wichtiger Hinweis: |n einem Basic-Programm muß der OPEN-Befehl RS-232 vor der Erstellung von

Variablen oder Feldern ausgeführt werden, da nach dem Öffnen eines RS-232-Kanals automatisch ein

CLR ausgeführt wird (dies liegt an der Reservierung von 512 Bytes am oberen Speicherende). Denken

Sie auch daran, daß das Programm zerstört wird, wenn diese 512 Bytes bei der OPEN-Anweisung nicht

zur Verfügung stehen.
LESEN DER DATEN VON EINEM RS-232-KANAL

Beim Lesen von Daten von diesem Kanal speichert der Empfangspuffer des

COMMODORE 64 255 Zeichen, ehe es zu einem Puffer-Überlauf kommt. Dies

wird im RS-232-Statuswort (ST in BASIC oder RSSTAT in Maschinensprache)

angezeigt. Bei einem Überlauf gehen alles überzähligen Zeichen verloren. Der

Puffer sollte daher stets so frei wie möglich gehalten werden.

Ist ein schneller Empfang von RS-232-Daten gewünscht (dies ist mit BASIC nur

begrenzt möglich, besonders bei der “Garbage collection“ kann es zu einem

Überlauf des Eingangspuffers kommen), dann müssen hierzu Maschinensprache-

Routinen benutzt werden.

BASIC-SYNTAX:

Empfohlen: GET#lfn, <String>

NICHT empfohlen: INPUT#lfn, <Variablenliste>

KERNAL-EINGABEN:

CHKIN ($FFC6) — Bezüglich weiterer Einzelheiten über Ein- und Ausgabebedin-

gungen siehe Speicherbelegung.

GETIN ($FFE4) — Bezüglich weiterer Einzelheiten über Ein- und Ausgabebedin-

gung siehe Speicherbelegung.

CHRIN ($FFCF) — Bezüglich weiterer Einzelheiten über Ein- und Ausgabebedin-

gung siehe Speicherbelegung.

EIN-/AUSGABE-ANLEITUNG 345

Anmerkungen: Ist ein Wort kürzer als 8 Bit, dann wird allen nicht benutzten Bits der Wert 0

zugeordnet. Findet GET# keine Daten im Puffer, dann wird das Zeichen ““ (eine Null) ausgegeben.

Wird INPUT# benutzt, dann wartet das System so lange, bis ein Nicht-Nullzeichen und danach ein CR

empfangen wird. Aus diesem Grund werden die Routinen INPUT# und CHRIN NICHT empfohlen.

Routine CHKIN verwaltet das X-Draht-Handshake, das dem EIA-Standard (August 1979) für RS-232-C-

Interfaces entspricht. (Die Leitungen für RTS, CTS und DCD sind beim COMMODORE 64 wie bei

einem Datenterminal angeordnet.)

ÜBERTRAGEN VON DATEN ÜBER EINEN RS-232-KANAL

Beim Übertragen von Daten kann der Ausgabepuffer maximal 255 Zeichen spei-

chern. Das System wartet in der Routine CHROUT so lange, bis die Übertragung

ermöglicht oder die Tasten und gedrückt werden, um das
System über einen WARMSTART zurückzusetzen.

BASIC-SYNTAX:

CMD Ifn — entspricht den BASIC-Spezifikationen

PRINT#lfn, <Variablenliste>

KERNAL-EINGABEN:

CHKOUT ($FFC9) — Bezüglich weiterer Einzelheiten über Ein- und Ausgabebedin-

gungen siehe Speicherbelegung.
CHROUT ($FFD2) — Bezüglich weiterer Einzelheiten über Eingabebedingungen

siehe Speicherbelegung.

346 EIN-/AUSGABE-ANLEITUNG

Wichtige Hinweise: Der Ausgabekanal enthält keine Verzögerung für CR. Dies bedeutet, daß ein

normaler RS-232-Drucker nicht richtig ausdrucken kann, wenn nicht eine Verzögerung (die den

COMMODORE 64 warten läßt) oder ein interner Puffer implementiert sind. Dies kann leicht per

Programm erfolgen. Bei der Implementierung eines CTS-Kontakts (X-Draht-Handshake) wird der Puffer

des COMMODORE 64 gefüllt und stoppt dann weitere Ausgaben, bis die Übertragung durch das RS-

232-Gerät ermöglicht wird. X-Draht-Handshake ist eine Handshake-Routine, die für das Übertragen

und Empfangen von Daten mehrere Leitungen benutzt.

Die Routine CHKOUT regelt das X-Draht-Handshake, das dem EIA-Standard (August 1979) für RS-

232-C-Interfaces entspricht. Die Leitungen RTS, CTS und DCD sind beim COMMODORE wie bei

einem Datenterminal implementiert.
SCHLIESSEN EINES RS-232-DATENKANALS

Nach dem Schließen einer RS-232-Datei werden alle Daten im Puffer gelöscht

(unabhängig davon, ob sie übertragen oder ausgedruckt wurden), der gesamte RS-

232-Übertragungs- und Empfangsbetrieb gestoppt, RTS und Übertragungsdaten-

leitungen (Sout) auf H-Pegel gesetzt und beide RS-232-Puffer gelöscht.

BASIC-SYNTAX:

CLOSE Ifn

KERNAL-EINGABE:

CLOSE ($FFC3) — bezüglich weiterer Einzelheiten über Ein- und Ausgabebedin-

gung siehe Speicherbelegung.

Anmerkung: Vor dem Schließen eines Kanals stets sicherstellen, daß alle Daten übertragen wurden.

Hierzu gilt folgende BASIC-Anweisung:

100 SS=ST: IF(SS=0 OR SS=8) THEN 100

110 CLOSE Ifn

EIN/AUSGABE-ANLEITUNG 347

348

Tabelle 6.1. User-Port-Lines

(6526 DEVICE #2 Loc. $DD00-$DDOF)

FIN Bes DESCRIPTION EIA ABV IN/ MODES
ID ID OUT

C PBO | RECEIVED DATA (BB) Sin IN 1 2

D PBI |REQUEST TO SEND (CA) RTS OUT | 1*2

E PB2 |DATA TERMINAL READY | (CD) DTR OUT 172

F PB3 | RING INDICATOR (CE) RI IN 3

H PB4 |RECEIVED LINE SIGNAL |: (CF) DCD IN 2

J PB5 | UNASSIGNED () XXX IN 3

K PB6 | CLEAR TO SEND (CB) CTS IN 2

L PB7 |DATA SET READY (CC) DSR IN 2

B |FLAG2 | RECEIVED DATA (BB) Sin IN 12

M PA2 | TRANSMITTED DATA (BA) Sout OUT 1 2

A GND | PROTECTIVE GROUND (AA) GND 12

N GND |SIGNAL GROUND (AB) GND 123

Erklärung:

1) 3-LEITUNGS-INTERFACE (Sin, Sour, GND)

2) X-LEITUNGS-INTERFACE

3) NUR FUR BENUTZER (nicht benutzt/nicht implementiert)

* Diese Leitungen werden wahrend des 3-Drahtmodus auf “ High" gelegt.

[7] 6 5] i 31 [2] [1] [0] (Machine Lang. —RSSTAT

a : :_PARITY ERROR BIT

FRAMING ERROR BIT

RECEIVER BUFFER OVERRUN BIT

RECEIVER BUFFER—EMPTY

(USE TO TEST AFTER A GET#)

CTS SIGNAL MISSING BIT

UNUSED BIT

DSR SIGNAL MISSING BIT

BREAK DETECTED BIT

Abb. 6.3. RS-232-Statusregister

EIN-/AUSGABE-ANLEITUNG

Anmerkungen: Ist Bit = 0, dann wurde kein Fehler erkannt.

Das RS-232-Statusregister kann von BASIC über die Variable ST gelesen werden.

Variable zuzuordnen. Z. B.:

SR=ST: REM ASSIGNS ST TO SR

 externe Ein-/Ausgabe war.

Wird ST über BASIC oder die KERNAL-Routine READST gelesen, dann wird das RS-232-Statuswort

beim Programmende gelöscht. Soll das Statuswort mehrfach benutzt werden, dann ist ST einer anderen

Der RS-232-Status wird nur gelesen (und gelöscht), wenn der RS-232-Kanal die zuletzt benutzte

BASIC-PROGRAMMBEISPIEL

16 REM THIS FROGRAM SEMDS AWD RECEIVES DATA
TOCFROM A SILEMT FAR
11 FEM TERMIMAL MODIFIED FÜR FET ASCII
23 REM TI SILEHT "ee SET-UP: Sem BAUD. F-BIT ASCII,
MARK FARIT

“il REM FULL DUPLE#
26 REM SAME SET-UP AT COMPUTER USING S-LIHE
INTERFACE
las OREM 2.2. 3. CHRECR+3S0+CHR EC set leo REM OPE
THE CHAHNEL
118 GET#E.AF KEM TURH OH THE RECEIVER CHAMHEL
(TOSS A HULLS
26M REM MAIH LOOP
218 GET BE: FEM GET FROM COMPUTER KEY BRORRI
22M IF Beco" " THEM FRIHT#2, BF; (FEM IF A KEY
PRESSED. SEHD TO TERMINAL
2389 GET#2.0E° REM GET A KEY FROM THE TERMIHAL
240 FRIMT BE,CE: (REM FEIMT ALL INPUTS TO COMPUTER
SCREEM
239 SReST: IF Ska OF SR=S THEM 2A: REM CHECK
STATUS. IF GOOD THEN CONTIHUE
„sag REM ERROR REPORTIMG
„la PRIWT "ERROR: ".
320 IF Sk AMD 1 THEM PRIMT "PARITY"
„aa IF Se AWD 2 THEM FRIWT "FRAME"
2468 IF SE AWD 4 THEM PRIWT "RECEIVER BUFFER FULL"
328 IF Sk AND lee THEM FRIHT "BREAK"
S60 IF CPEERC6PS" AND 15 THEN 358 REM WALT UHTIL
ALL CHARS TREAHSMITTEN ©
rd CLOSE 2: EMD

EIN-/AUSGABE-ANLEITUNG 349

DATA
138 OREM Sue. sc. EHRE)
118 DIM FacesSo, 132997
aH FOR J=32 TO 64: Tad Io=] (HEAT
218 Tau 132=12: Tales: RYV= ls CT =e
ech FOR J=e3 TO Sa: k= J+a2: Tat Task: MERT
2a FOR J=S1 TO 95: Tad Jae] HEAT
24@ FOR J=193 TO 218:K=J-128° Tee Tok MEST
236 THtl46re 16: TAC lasoele
26h FOR J=8 TO 0255
ard Kalte.
acy IF RA SATHEM Fack vey Facke leg aay
290 HEAT
S40 PRINT" "CHRECL4 "3
318 GET#S. AF
sz2a IF AF=""OR STO>e THEM 364
S30 FREIMT " "CHREC LAP OI CHRECFRCASC CAE 2 34;
290 IF FeCASCCnSoo=34 THEM POKES 12. 0
224 GOTO 318
s FRIMTCHRE ORY SOAR EC Yo CHR EC 146050 GET AF

IF A@<o" " THEMPRIWTHS CHEE! TA CASIO CAE 3 oo:
CT=CT +1
IF CT=2 THEMO T=): belts 1 mbt?
GOTOS1 a

19 REM THIS PROGRAM SENDS AND RECEIVES TRUE ASCII
At

em

Ui

GF

7)

i

Ri

Mm

M
m
m

ZEIGER FUR EMPFANGS-/UBERTRAGUNGSPUFFER

$00F7—RIBUF — Ein Zwei-Byte-Zeiger zur Empfangspuffer-Basisadresse.

$00F9—ROBUF - Ein Zwei-Byte-Zeiger zur Ubertragungspuffer-Basisadresse.

Die beiden obigen Adressen werden durch die KERNAL-Routine OPEN bereitge-

stellt, wobei jede auf einen anderen 256-Byte-Puffer zeigt. Die Zuordnung wird

annulliert, indem man in die höherwertigen Bytes ($00F8 und $00FA) über die

KERNAL-Eingabe CLOSE eine Null schreibt. Die Zuordnung bzw. Annullierung

kann auch durch Maschinensprache-Programme erfolgen, wobei der/die erforderli-

chen Puffer erstellt oder gelöscht werden. Beim Arbeiten mit einem Maschinenspra-

che-Programm, das diese Puffer zuordnet, stets darauf achten, daß die Zeiger auf

dem oberen Speicherende stehen. Dies gilt besonders dann, wenn gleichzeitig

BASIC-Programme abgearbeitet werden sollen.

350 EIN-/AUSGABE-ANLEITUNG

ZERO-PAGE-ADRESSEN UND IHRE ANWENDUNG FÜR DAS
SYSTEM-INTERFACE RS-232

$00A7—INBIT — Empfänger Temp. Speicherung des Eingangsbits

$00A8—BITCI — Empfänger-Bitzählung EIN
$00A9—-RINONE — Empfänger-Flag Startbit-Prüfung
$00AA—RIDATA — Empfänger-Bytepuffer/Assemblierplatz
$00AB—RIPRTY — Empfänger-Paritätsbit-Speicherung
$00B4—BITTS — Übertrager-Bit-Zählung AUS

$00B5—NXTBIT — Übertrager, nächstes zu ubertragendes Bit

$00B6—RODATA — Ubertrager-Byte-Puffer/Disassemblierplatz

Die obigen Zero-Page-Adressen sind lediglich als Hilfsmittel für die Erklärung der
zugehörigen ROUTINEN gedacht. Sie können nicht direkt über BASIC- oder
KERNAL-Programme benutzt werden, um RS-232-Funktionen auszuführen. Hierzu
sind die System-Routinen RS-232 einzusetzen.

ADRESSEN, DIE NICHT IN DER ZERO-PAGE ENTHALTEN
SIND UND IHRE ANWENDUNG FÜR DAS SYSTEM-INTERFACE
RS-232

Allgemeine RS-232-Speicherung:

$0293—M51CTR — Pseudo-Steuerregister 6551 (siehe Abb. 6.1 .)
$0294—M51COR — Pseudo-Befehlsregister 6551 (siehe Abb. 6.2.)
$0295—M51AJB — Zwei Bytes nach dem Steuer- und Befehlsregister im Dateina-

menfeld. Diese Plätze enthalten die Baud-Rate für den Anfang des Bit-
Tests während des Interface-Betriebs, in dem wiederum die Baud-Rate
berechnet wird.

$0297—RSSTAT — Statusregister RS-232 (siehe Abb. 6.3.)

$0298—BITNUM — Anzahl der zu übertragenden/empfangenden Bits.
$0299—BAUDOF — Zwei Bytes, die der Zeit einer Bitzelle entsprechen. (Basierend

auf Systemuhr/Baud-Rate.)

$029B—RIDBE — Byteindex zum Ende des Empfänger-FIFO-Puffers.
$029C—RIDBS — Byteindex zum Anfang des Empfänger-FIFO-Puffers.
$029D—RODBS — Byteindex zum Anfang des Übertragungs-FIFO-Puffers.
$029E—RODBE — Byteindex zum Ende des Übertragungs-FIFO-Puffers.
$02A1—ENABL — Verzögert derzeitig aktive Interrupts im CIA #2 ICR. Ist Bit 4

eingeschaltet, wartet das System auf das “Receiver Edge“. Ist Bit 1
eingeschaltet, dann empfängt das System Daten. Ist Bit 0 eingeschaltet,
überträgt das System Daten.

EIN-/AUSGABE-ANLEITUNG 351

USERPORT

Über den Userport kann der COMMODORE 64 an die Außenwelt angeschlossen

werden. Durch Verwendung der über diesen Port zur Verfügung stehenden Leitun-

gen können Sie den COMMODORE 64 an einen Drucker, ein Modem und sogar an

einen anderen Computer anschließen.

Der Port des COMMODORE 64 wird direkt an einen der Chips 6526 CIA ange-

schlossen. Durch Programmierung kann der CIA an zahlreiche andere Geräte

angeschlossen werden.

PORT PIN DESCRIPTION

123 4 5 6 7 8 9 10 11 12

weer eee
A BCD EF H J K LEM N

PORT-PIN-BESCHREIBUNG

PIN
Beschreibung Anmerkungen

Oberseite

1 GROUND

2 +5V (Max. 100 mA)

3 RESET Durch Erdung dieses Pins führt der

COMMODORE 64 einen Kaltstart aus. Auch die

Zeiger auf ein BASIC-Programm werden zurück-

gestellt, der Speicher jedoch nicht gelöscht.

Gleichzeitig wird ein RESET-Signal an die

Peripherie-Geräte gegeben.

4 CNT1 Zählereingang des seriellen Ports vom CIA #1

(CIA 6526-Datenblatt)

5 SP1 Serieller Port vom CIA #1 (siehe CIA 6526-

| Datenblatt)
352 EIN-/AUSGABE-ANLEITUNG

N Beschreibung Anmerkungen

Oberseite

8 PC2 Handshake-Leitung vom CIA —2 (siehe

CIA 6526-Datenblatt)

9 SERIAL ATN | Dieser AnschluB ist mit der ATN-Leitung des

seriellen Busses verbunden.

10 9 VAC+phase | Direkt an den Transformator des COMMODORE

11 9 VAC—phase | 64 angeschlossen (max. 50 mA).

12 GND

Unterseite

A GND Beim COMMODORE 64 ist der Port B des CIA

B FLAG 2 # 1-Chips frei verfügbar. Neben Ein-/Ausgabe-

C PBO leitungen stehen zwei Handshake-Leitungen

D PB1 zur Verfugung. Die Ein-/Ausgabeleitung von

E PB2 Port B wird uber zwei Adressen gesteuert. Die

F PB3 eine Adresse ist der Port selbst und liegt bei

H PB4 56577 ($DDO1 in HEX). Auf diese Adresse

J PBS können Sie die Befehle PEEK (Eingabe) und

K PB6 POKE (Ausgabe) anwenden. Jede der 8 Ein-/

L PB? Ausgabeleitungen kann entweder als Eingabe-

M PA2 oder Ausgabeleitung definiert werden. Hierzu

N GND wird das Datenrichtungsregister entsprechend

eingestellt.

EIN-/AUSGABE-ANLEITUNG 353

Das DATENRICHTUNGS-REGISTER liegt bei Adresse 56579 ($DD03 in HEX).

Jede der acht Port-Leitungen hat ein Bit im 8-Bit-Datenrichtungs-Register (Data

Direction Register = DDR), über das gesteuert wird, ob es sich um eine Eingabe-

oder Ausgabeleitung handelt. Ist das Bit im DDR eine 1, dann ist die entsprechende

Port-Leitung eine Ausgabeleitung. Ist das Bit auf O gesetzt, dann handelt es sich um

eine Eingabeleitung. Ist z. B. Bit 3 des DDR auf 1 gesetzt, dann ist Port-Leitung 3

eine Ausgabeleitung. Ein weiteres Beispiel:

Das DDR ist wie folgt eingestellt:

BIT # 76543210

WERT:00111000

Die Leitungen 5, 4 und 3 sind Ausgabeleitungen, da diese Bits auf 1 gesetzt sind.

Bei den restlichen Leitungen handelt es sich um Eingabeleitungen, da deren Bits

auf O gesetzt sind.

Zum PEEKen oder POKEn des Userports muß sowohl das Datenrichtungs-Register

als auch das Port-Register selbst benutzt werden. Die in dem Beispiel gegebenen

Zahlen müssen vor der Verwendung in Dezimalzahien umgewandelt werden.

a+2°+ 2 = 32+ 16+ 8 = 56

(16 = 2T4=2x2x2x2, 8 = 213=2%2x%2)

Die übrigen zwei Leitungen, FLAG1 und PA2, unterscheiden sich von den restli-

chen Benutzer-Port-Leitungen. Diese zwei Leitungen werden hauptsächlich für das

“Handshaking“ eingesetzt und müssen anders programmiert werden, als die

Leitungen des Port B. Bei der Kommunikation zwischen zwei Geräten ist ein

Handshaking-Betrieb erforderlich. Da der Datenaustausch bei den beiden Geräten

verschieden lang dauern kann, ist es erforderlich, daß ein Gerät weiß, in welchem

Zustand sich das andere gerade befindet. Auch wenn beide Übertragungsrichtun-

gen gleich schnell sind, ist ein Handshake-Betrieb erforderlich, um anzuzeigen,

wann Daten übertragen werden sollen und ob sie empfangen wurden. Leitung

FLAG2 hat besondere Eigenschaften, durch die sie sich besonders für diesen

Zweck eignet.

FLAG2 ist ein für negative Flanken sensitiver Eingang, der als allgemeiner Interrupt-

eingang benutzt werden kann. Jede negative Flanke auf der FLAG-Leitung setzt das

FLAG-Interruptbit. Ist der FLAG-Interrupt zugelassen, dann führt dies zu einer

INTERRUPT REQUEST (IRQ).

354 EIN-/AUSGABE-ANLEITUNG

Ist der Flag-Interrupt nicht zugelassen, so kann eine eingetroffene negative Flanke

durch Abfrage des Interrupt-Flag-Registers erkannt werden.

PA2 ist Bit 2 von Port A des CIA. Es wird genau wie andere Bits dieses Ports

gesteuert. Der Port befindet sich in Adresse 65576 ($DDO0). Das Datenrichtungs-

Register befindet sich in Adresse 56578 ($DDO2).

Weitere Einzelheiten über den 6526 entnehmen Sie bitte Anhang M.

DER SERIELLE BUS

Über den seriellen Bus kann der COMMODORE 64 mit anderen Geräten wie z. B.

der VC-1541-Disketten-Station und dem VC-1525-Graphikdrucker kommunizieren.

Der Vorteil dieses seriellen Busses liegt darin, daß bis zu 5 Geräte angeschlossen

werden können. Es gibt verschiedene Funktionen, die am seriellen Bus möglich

sind — “control”, “talk” und “listen”. Ä

Ein als “CONTROLLER” fungierendes Gerät steuert die Kommunikation am seriel-

len Bus. Ein TALKER sendet Daten auf den Bus. Ein LISTENER empfängt Daten

vom Bus.

Der COMMODORE 64 ist der CONTROLLER. Er kann auch TALKER sein, z. B. bei

der Übertragung von Daten zum Drucker oder LISTENER (z. B. beim Laden eines

Programms von Diskette). Andere Geräte können entweder LISTENER (der DRUK-

KER), TALKER oder beides (die DISKETTENSTATION) sein. Ausschließlich der

COMMODORE 64 ist CONTROLLER.

Alle an den seriellen Bus angeschlossenen Geräte empfangen sämtliche über den

Bus übertragenen Daten. Damit der COMMODORE 64 die Daten zum gewünschten

Ziel übertragen kann, hat jedes Gerät eine Bus-Adresse. Durch Verwendung dieser

Geräte-Adresse kann der COMMODORE 64 den Zugriff auf den Bus steuern. Die

Adressen 4 bis 31 stehen zur Verfügung.

Der COMMODORE 64 kann ein bestimmtes Gerät anweisen, zu senden oder zu

empfangen. Wenn ein Gerät diesen TALK-Befehl vom COMMODORE 64 erhält,

beginnt es mit der Datenausgabe über den Serienbus. Empfängt ein Gerät den

LISTEN-Befehl vom COMMODORE 64, dann bereitet sich dieses Gerät auf den

Datenempfang vor (vom COMMODORE 64 oder einem anderen Gerät, das an den

Bus angeschlossen ist). Gleichzeitig kann jeweils nur ein Gerät über den Bus

übertragen, da es sonst zu einer Datenkollision kommt und das System zusammen-

bricht. Eine beliebige Anzahl an Geräten kann jedoch gleichzeitig die Daten emp-

fangen. |

EIN/AUSGABE-ANLEITUNG 355

STANDARD-ADRESSEN AUF DEM SERIELLEN BUS

NUMMER GERAT

4 oder 5 VC-1525 GRAPHIKDRUCKER

8 VC-1541 DISKETTENSTATION

Andere Gerateadressen sind möglich. Jedes Gerät hat seine eigene Adresse.

Bestimmte Geräte (wie z. B. der COMMODORE 64-Drucker) bieten dem Anwender

die Möglichkeit, zwischen zwei Adressen zu wählen.

Über die SEKUNDÄRADRESSE kann der COMMODORE 64 Betriebsinformationen

zu einem Gerät übertragen. Z. B. um einen Kanal zum Drucker zu öffnen und einen

Text in Groß-/Kleinschrift auszudrucken, benutzen Sie folgende Anweisung:

OPEN 1,4,7

wobei

1 logische Dateinummer (Nummer, zu der die Ausgabe PRINT# erfolgt)

4 Druckeradresse

7 gleich SEKUNDÄRADRESSE, die dem Drucker mitteilt, daß der Groß-Klein-

schrift-Modus gewählt ist.

Der serielle Bus verwendet 6 Leitungen — 3 Eingabe- und 3 Ausgabeleitungen.

Die 3 Eingabeleitungen übertragen Daten-, Steuer- und Timing-Signale zum COM-

MODORE 64. Die 3 Ausgabeleitungen übertragen Daten-, Steuer- und Timing-

signale zu externen Geräten, die an den seriellen Bus angeschlossen sind.

ANSCHLÜSSE DES SERIELLEN BUSSES

PIN BEZEICHNUNG

1 SERIAL SRQ IN

2 GND

3 SERIAL ATN IN/OUT

4 SERIAL CLK IN/OUT

3) SERIAL DATA IN/OUT

6 NO CONNECTION

356 EIN-/AUSGABE-ANLEITUNG

SERIAL SRQ IN: (SERIAL SERVICE REQUEST IN)

Jedes an den seriellen Bus angeschlossene Gerät kann dieses Signal auf Low

ziehen, um den COMMODORE 64 auf sich aufmerksam zu machen (siehe Abb.

6.4.).

NORMAL
| DATA BYTES

r

I BYTE SENT UNDER ATTENTION (TO DEVICES)

ATN

CLOCK Ts

Tat >| ITweh|+-Tv +|TRk

DATA II J WEE Welsty |
T al

— eg DATA VALID “LT

LISTENER READY-FOR-DATA LISTENER DATA-ACCEPTED

END-OR-IDENTIFY HANDSHAKE (LAST BYTE IN MESSAGE)

ATN
TALKER RERDY-TO-SEND TALKER SENDING

j

CLOCK

—-Tas Ts+|-HTy | |

DATA ll) LS U | LI
MSB

Ir, tyetal ter Tr Ten

LISTENER READY-FOR-DATA
EOI-TIMEOUT HANDSHAKE SYSTEM LINE

LISTENER READY-FOR-DATA RELEASE

TALK-ATTENTION TURN AROUND (TALKER=>LISTENER TO LISTENER<=TALKER)

ATN | DEVICE ACKNOWLEDGES IT IS NOW TALKER
TALKER READY-TO-SEND

CLOCK | | TNE

| Tr xy Toc | Toa IN It Tv

DATA |[a|[s}leJl7} [Lx Fe QUGEEEw LL
MSB | LSB u

IT. THY wt Tr

BECOMES LISTENER, CLOCK =

READY FOR DATA

HIGH, DATA LOW

Abb. 6.4.

EIN-/AUSGABE-ANLEITUNG 357

SERIAL ATN IN/OUT: (SERIAL ATTENTION IN/OUT)

Der COMMODORE 64 benutzt dieses Signal, um eine Befehlsfolge fur ein an den

seriellen Bus angeschlossenes Gerat zu beginnen. Setzt der COMMODORE 64

dieses Signal auf Low, dann warten alle an den Bus angeschlossenen Gerate auf

eine vom COMMODORE 64 zu sendende Adresse. Das adressierte Gerat antwortet

innerhalb eines festgelegten Zeitraums — anderenfalls nimmt der COMMODORE

64 an, daß das Gerät mit der speziellen Adresse nicht an den Bus angeschlossen

ist, und gibt die Fehlermeldung im Statuswort aus (siehe Abb. 6.4.).

TALKER READY-TO-SEND

TALKER SENDING

’

Ts TNE

Tre S| + Tv | Ts NET
UEEEEee LS:

| LSB MSB
ml DATA VALID Tel

LISTENER READY-FOR-DATA LISTENER DATA-ACCEPTED

SERIENBUS TIMING

Description Symbol Min. Typ. Max.

ATN RESPONSE (REQUIRED) ' Tat ~ — | 1000us
LISTENER HOLD OFF TH 0 _ ©
NON-EOI RESPONSE TO RFD? TNE _ 40us | 200us
BIT SET-UP TALKER* Ts 20us | 70us _
DATA VALID Ty 20us | 20us _
FRAME HANDSHAKE® Tr 0 20us | 1000us
FRAME TO RELEASE OF ATN TA 20us u =
BETWEEN BYTES TIME Tap — _ =
EOI RESPONSE TIME Tye | 200us | 250us _
EO! RESPONSE HOLD TIME TE 60s _ —
TALKER RESPONSE LIMIT Try 0 30us | 60us
BYTE-ACKNOWLEDGE4 Tpr 20us 30us =

Notes:
1. If maximum time exceeded, device not present error.
2. If maximum time exceeded, EOI response required.
3. If maximum time exceeded, frame error.
4. Ty and Tpp minimum must be 60us for external device to be a talker.

358 EIN/AUSGABE-ANLEITUNG

SERIAL CLK IN/OUT: (SERIAL CLOCK IN/OUT)

Dieses Signal wird für das “timing“ der Datenübertragung über den seriellen Bus

benutzt (siehe Abb. 6.4.).

SERIAL DATA IN/OUT:

Die Datenübertragung über diese Leitung des seriellen Busses geschieht Bit-seriell

(siehe Abb. 6.4.).

ERWEITERUNGSANSCHLUSS

Der Erweiterungsanschluß ist als 44-Pin-Steckverbinder (22/22) ausgebildet. Wenn

Sie vor dem COMMODORE 64 stehen, liegt der Erweiterungsanschluß ganz rechts

auf der Computer-Rückseite. Um diesen Anschluß zu benutzen, ist ein entspre-

chender 44-Pin-Stecker erforderlich.

Dieser Anschluß wird für Erweiterungen des COMMODORE 64 benötigt, die den

Zugriff auf den AdreB- oder Datenbus des Computers erfordern. Bei der Verwen-

dung des Erweiterungsbusses ist vorsichtig vorzugehen, da der COMMODORE 64

sonst beschädigt werden kann.

Der Erweiterungsanschluß ist wie folgt belegt:

22 21 201918 171615 141312111098 7654321

ZYXWVUTSRPNMLKJHFEDCBA

EIN-/AUSGABE-ANLEITUNG 359

Folgende Signale sind an diesem AnschluB verfugbar:

NAME PIN BEZEICHNUNG

GND 1 Erdung

+ 5VDC 2 (User-Port und Steckmodule dürfen zusammen nicht

+ 5VDC 3 mehr als 450 mA verbrauchen.)

IRQ 4 Interrupt-Request-Leitung Zum 6510 (Aktiv-L-Pegel)

R/W 5 | Lesen/Schreiben

DOT

CLOCK 6 | 8,18 MHz Video-Dot-Clock

1/01 7 | Ein-/Ausgabe-Bereich 1 bei $DEOO-$DFFF (Aktiv-L-Pegel

LS TTL-Ausgang)

GAME 8 | Aktiv-L-Pegel LS TTL-Eingang

EXROM 9 | Aktiv-L-Pegel LS TTL-Eingang

/02 10 | Ein-/Ausgabesatz 2 bei $DF00-$DFFF (Aktiv-L-Pegel LS

TTL-Ausgang)

ROML 11 Ausdekodierter 8K-RAM/ROM-Bereich bei $8000

(Aktiv-L-Pegel LS TTL-Ausgang)

BA 12 | Bus-Available Signal vom VIC-Chip 6569 (nicht gepuffert,

max. 1 LS TTL-Last)

DMA 13 | Direct-Memory-Access-Request-Leitung (Aktiv-L-

Eingang, LS TTL)

D7 14 | Datenbus-Bit7 —
D6 15 Datenbus-Bit 6

D5 16 Datenbus-Bit 5

D4 17 Datenbus-Bit 4 .
D3 18 Datenbus-Bit3 [nicht gepuffert, max. 1 LS TTL-Last

D2 19 Datenbus-Bit 2

D1 20 Datenbus-Bit 1

DO 21 Datenbus-Bit 0

GND 22 | Erdung

GND A

ROMH B Ausdekodierter 8K-RAM/ROM-Bereich bei $E000

(Aktiv-L-Pegel LS TTL-Ausgang)

RESET C 6510 RESET-AnschluB (Aktiv-L)

NMI D 6510 not Maskable Interrupt (Aktiv-L)

G2 E Phase 2 Systemclock

360 EIN-/AUSGABE-ANLEITUNG

NAME PIN BEZEICHNUNG

A15 F | Adreßbus Bit 15
A14 H Adreßbus Bit 14

A13 J Adreßbus Bit 13

A12 K Adreßbus Bit 12

A11 L AdreBbus Bit 11

A10 M AdreBbus Bit 10

AQ N AdreBbus Bit 9

ji ü Nubbran =. - * nicht gepuffert, max. 1 LS TTL-Last

A6 3 Adreßbus Bit 6

A5 T AdreßbusBit 5

A4 U Adreßbus Bit 4

A3 V AdreBbus Bit 3

A2 W AdreBbus Bit 2

Al X AdreBbus Bit 1

AO Y AdreBbus Bit O |

GND Z Erdung

Ein Strich uber dem Signalnamen bedeutet Aktiv-L

Einige der wichtigsten Leitungen des Erweiterungsanschlusses werden nachfol-

gend beschrieben:

Die Pins 1, 22, A und Z sind geerdet.

An Pin 6 liegt das Signal DOT CLOCK an. Über dieses Signal von 7,88 MHz erfolgt

die gesamte Systemzeitsteuerung.

Pin 12 ist das BA-Signal (Bus-available) des VIC-Chip. Diese Leitung geht 3 Zyklen

des Systemtaktes (2) bevor der VIC-Chip den System-Bus vollständig über-

nimmt, auf Low. Dies gilt so lange, wie Anzeigeinformationen vom VIC-Chip

abgerufen werden.

Pin 13 ist die DMA-Leitung (DIRECT MEMORY ACCESS-Leitung). Ist diese

Leitung auf Low, so befinden sich Adreßbus, Datenbus und Read-/Writeleitung des

Prozessors 6510 im hochohmigen Zustand. Auf diese Weise kann ein externer

Prozessor die Steuerung des Systembusses übernehmen. Diese Leitung sollte nur

auf Low gelegt werden, während der @2-Taktgeber L-Pegel hat. Da der VIC-Chip

weiterhin Anzeige-DMA ausführt, muß der externe Prozessor außerdem mit der

Zeitsteuerung des VIC-Chips übereinstimmen. (Siehe Timing-Diagramm des VIC-

Chip.) Diese Leitung liegt beim COMMODORE 64 auf H-Pegel.

EIN-/AUSGABE-ANLEITUNG 361

Z-80 MIKROPROZESSOR-MODUL

Beim Lesen dieses Buches und Arbeiten mit Ihrem Computer werden Sie festge-

stellt haben, wie vielseitig Ihr COMMODORE 64 wirklich ist. Noch wirkungsvoller

zeigt er sich jedoch bei der Kombination mit Peripheriegeraten. Peripheriegerate

sind z. B. Datassette, Diskettenstationen, Drucker und Modems. Diese Geräte

lassen sich über die verschiedenen Ports auf der Rückseite des COMMODORE 64

anschließen.

COMMODORE-Peripheriegeräte zeichnen sich besonders dadurch aus, daß sie

“intelligent“ sind, d. h., sie benötigen keinerlei RAM-Speicherkapazität. Sie können

also den 64K-Speicher des COMMODORE 64 voll ausnutzen.

Ein weiterer Vorteil des COMMODORE 64 besteht darin, daß die meisten Pro-

gramme, die Sie heute schreiben, auch noch mit den Geräten von morgen kompati-

bel sind. Dies liegt zum Teil am sinnvollen Aufbau des Betriebssystems (OS).

Eins kann das Betriebssystem des COMMODORE jedoch nicht: Ihre Programme für

die Computer einer anderen Herstellerfirma kompatibel machen.

Da der COMMODORE 64 jedoch so einfach zu handhaben ist, werden Sie erst gar

nicht daran denken, ein anderes Gerät zu benutzen. Für die Fälle, in denen ein

Anwender jedoch Software benutzen möchte, die nicht im Format des COMMO-

DORE 64 zur Verfügung steht, haben wir ein COMMODORE-CP/M®-Modul entwik-

Kelt.

CP/M® ist kein “computerabhängiges“ Betriebssystem. Vielmehr wird für das

Betriebssystem Speicherplatz verwendet, der normalerweise für die Programmie-

rung benutzt wird. Dies hat Vor- und Nachteile. Die Nachteile liegen darin, daß die

Programme kürzer als bei Verwendung des eingebauten Betriebssystems sein

müssen. Darüber hinaus kann nicht mit den Bildschirm-Editierfunktionen des COM-

MODORE 64 gearbeitet werden. Von Vorteil ist Jedoch, daß sie nun wesentlich mehr

Software speziell für CP/M® und den Mikroprozessor Z-80 benutzen können und

daß die über dieses CP/M®-Betriebssystem geschriebenen Programme auf belie-

bige andere Computer übertragen und dort ausgeführt werden können, die mit

CP/M® und Z-80-Karte ausgerüstet sind.

Bei den meisten Computern mit Z-80-Mikroprozessor muß die Z-80-Karte übrigens

im Gerät eingebaut werden. Hierbei ist besonders vorsichtig vorzugehen, da leicht

die empfindliche Schaltung beschädigt wird. Beim COMMODORE-Steckmodul

CP/M® ist dies nicht erforderlich, da es schnell und einfach an der Rückseite

Ihres COMMODORE 64 aufgesteckt wird.

ARBEITEN MIT COMMODORE CP/M®

Mit dem COMMODORE-Modul Z-80 können Sie für einen Z-80-Mikroprozessor

entworfene Programme auf Ihrem COMMODORE 64 laufen lassen. Zur Z-80-Karte

gehört auch eine Diskette mit dem COMMODORE-CP/M®-Betriebssystem.

362 EIN-/AUSGABE-ANLEITUNG

AUSFUHRUNG

Zur Ausführung von CP/M®:

1) CP/M®-Programm von der Diskette laden.

2) Uber die Tastatur RUN eingeben.

3) -Taste drücken.

Beim COMMODORE 64 sind 64K-Byte RAM durch den Prozessor 6510 oder 48K-

Byte RAM durch den Prozessor Z-80 erreichbar. Ein Schalten zwischen diesen

beiden Prozessoren ist möglich, sie können jedoch nicht gleichzeitig in ein und

demselben Programm benutzt werden. Das Umschalten wird durch die raffinierte

Timing-Technik des COMMODORE 64 möglich.

Nachfolgend sehen Sie die Speicheradressen-Verschiebung für das Z-80-Modul.

Bitte beachten Sie, daß durch Hinzufügen von 4096 Bytes zu den von CP/M®

benutzten Speicherplätzen sich die Speicheradressen des normalen Betriebssy-

stems des COMMODORE 64 ergeben. Die Speicheradressen von Z-80 und 6510

stehen in folgendem Zusammenhang:

ADRESSEN, Z-80 ADRESSEN, 6510

DEZIMAL HEXADEZIMAL| DEZIMAL |\HEXADEZIMAL

0000-4095 0000--OFFF 4096-8191 1000—1FFF
4096-8191 1000—1FFF 8192-12287 | 2000—2FFF
8192- 12287 2000—2FFF 12288-16383 | 3000-3FFF
12288-16383 3000—3FFF 16384-20479 | 4000—4FFF
16384—20479 4000— 4FFF 20480-24575 | 5000-5FFF
20480-24575 5000—5FFF 24576-28671 | 6000—6FFF
24576-28671 6000—6FFF 28672-32767 | 7000—7FFF
28672-32767 7000—7FFF 32768-36863 | 8000—8FFF
3276836863 8000—8FFF 36864-40959 | 9000—9FFF
36864—40959 9000—9FFF 40960-45055 | AOOO—AFFF
40960-- 45055 A000-AFFF | 45056—49151 | BOOO—BFFF
45056-49151 BOOO—BFFF | 49152-53247 | COOO—CFFF
49152-53247 C000-CFFF | 53248-57343 | DOOO—DFFF
5324857343 D000-DFFF | 57344-61439 | EO00-EFFF
5734461439 EO00--EFFF 61440-65535 | FOOO—FFFF
61440-65535 FOOO— FFFF 0000-4095 0000—OFFF

EIN-/AUSGABE-ANLEITUNG 363

Um den Z-80 einzuschalten und den 6510 auszuschalten, geben Sie folgendes

Programm ein:

1a REM THIS PROGRAM IS TO BE USED WITH THE Zei CARD
za REM IT FIRST STORES 258 DATA AT #€1ee0
erect Eas tb aa

SE REM THEM IT TURMS OFF THE &O1e Tet s AND ENABLES
44 REM THE 8c CART. THE SE CARD MUST BE TURMET
CFF
Ze REM TO REEMRELE THE Go .e SysTenM,
ad REM STORE Ze DATA
1i@ READ B: REM GET SIEE OF Zei CODE TO BE MOWEN
L228 FOR T=4G96 TO 4h9e¢+ke1 REM MOVE COTE
120 READ ACRPOKE 7.7
14k MEST I
2) REM EUM 220 CODE
2i@ PORE SEE 27: REM TURM OF SEE TRS
aol PORE Seese. Ge ° REM TURM OM See CARD
Zn PORE SEE. 7.29 ¢ REM TURM OM @31e Tei s WAEM
298 TOME
ate EMT
Lage REM She MACHINE LAMGURIGE CODE DATA SECTION
aa DATA 15: REM Slee OF DATA TO BE FASSEN
Lie REM 298 TUR OM Cone
L118 TATA BELEGE: REM OUR See CART REGUL RES
TURE OM TIME AT sen
LZAE REP eke reek DATA HERE
L2i@ DATA So. 02.245 ° REM LO HLA CLOCAT OOM OH
SIREEM 3
tec DATA SE: REM IMO HL CTMCREMEMT THAT LOCATION:
LSE REM See SELF TURE OFF DATA HERE
1310 TATA Ge. : REM Lo Ph
L228 TATA SG Be ke REM LO CMO UA CTA LOSATIOM
LSe8 TATA BE Ge ee REM HORS HOP Mor
Lak TATA 135.0. ee REM JM Pee

Bezüglich weiterer Einzelheiten über COMMODORE CP/M® und den Mikroprozes-

sor Z-80 fragen Sie bitte Ihren COMMODORE-Händler.

364 EIN-/AUSGABE-ANLEITUNG

ANHANG

365

ANHANG A

ABKÜRZUNGEN DER BASIC-SCHLÜSSELWÖRTER

Zur Zeitersparnis können bei der Eingabe von Programmen und Befehlen beim

COMMODORE 64 die meisten BASIC-Schlüsselwörter abgekürzt werden. Die

Abkürzung für PRINT ist z. B. ein Fragezeichen. Die übrigen Wörter werden wie

folgt abgekürzt: Eingabe des ersten bzw. der ersten zwei Buchstaben, danach der

nächste Buchstabe mit SHIFT-Taste. Werden Abkürzungen in Programmzeilen

benutzt, dann erscheint das Schlüsselwort bei der Auflistung in ausgeschriebener

Form.

Bild- Bild-
Abkür- schirm- Abkür- schirm-

Befehl zung anzeige Befehl zung anzeige

ABS A@lme AL END E Gag N EY

AnD AM AN EXP : Oil x E

asc ADB: AM FN NONE FN

ATN A Ol ı AN] FOR F En o F [

Hr cr cl] FRE shirt e F LJ

closes aA cf] GET ci: 6

CLR c EL cL] GET# NONE GET#

mm c immu cA cos cos colW]

cont c Mo cf] co ci sL

COS NONE cos IF NONE IF

DATA 4 pD Dia D INPUT NONE INPUT

DEF om: off INPUT# I n t Y

DIM > Gil: dk | INT NONE INT

366 Anhang A

| Bild- Bild-
Abkür- schirm- Abkür- schirm-

Befehl zung anzeige Befehl zung anzeige

ıErTs «LE QF Le (J RIGHTS ROTE | RN |

LEN NONE LEN RND R Gilg N R|A

LET ı Gap LF RUN R@GEu ele

LIST L Gia W Lh] SAVE se 4 Ss [4]

LOAD L Billag O L ‘a SGN S Bilas © S [|]

LOG NONE LOG SIN sem | shl

MID$ MON | MN | SPC(si p st]

NEW NONE NEW SQR S Q s@

NEXT NE: N MI STATUS ST ST

Not No NT step St: sTF

ON NONE ON stop 8 T s [|

OPEN or of] str sr Ss

OR NONE OR SYS se v s[]

PEEK PO: pP TAB(T Shirt 4 T

POKE re o Pf] TAN NONE TAN

POS NONE POS THN TH Tl]

PRINT? ? TIME ri TI

PRINT# PB R P|[] TIME$ TI$ TI$

READ = R E RFA usr Es u [¥|

REM NONE REM VAL ‚BA v

RESTORE RE la 5 RE [Y] VERFY VOM: vM

RETURN RE REN 7 El |wat wa w[4]

Anhang A 367

ANHANG B

BILDSCHIRM-ANZEIGE-CODES

Nachfolgend werden samtliche Zeichen aufgelistet, die mit den Zeichensatzen des

COMMODORE 64 möglich sind. In der Tabelle wird gezeigt, welche Zahlen fur ein

gewünschtes Zeichen in den Bildschirmspeicher (Plätze 1024-2023) gePOKEt

werden müssen. Außerdem sehen Sie, welches Zeichen einer vom Bildschirm

gePEEKten Zahl entspricht.

Es stehen zwei Zeichensätze zur Verfügung, von denen jeweils einer gewählt

werden kann. D. h., bei der Anzeige von Zeichen eines Satzes ist der andere Satz

"nicht wirksam. Zum Umschalten der Zeichensätze werden gleichzeitig die Tasten

und (4 gedrückt.
Bei BASIC wird durch POKE 53272,21 in den GroBschrift-Graphik-Modus und

durch POKE 53272,23 in den Klein-GroBschrift-Modus umgeschaltet.

Alle in der Tabelle gezeigten Zahlen können negativ dargestellt werden. Den

entsprechenden Adreß-Code erhält man, indem zu den gezeigten Werten 128

addiert wird. Soll ein ausgefüllter Kreis in Bildschirmadresse 1504 dargestellt

werden, dann POKEn Sie den Code für den Kreis (81) in Adresse 1504: POKE

1504,81.

Für die Farbsteuerung der einzelnen auf dem Bildschirm angezeigten Zeichen

existiert ein entsprechender Speicherbereich (Adressen 55296—56295). Um die

Farbe des Kreises z. B. in Gelb zu ändern (Farb-Code 7), wird der Farb-Code in den

entsprechenden Speicherplatz (55776) gePOKEt: POKE 55776, 7.

Die vollständigen Bildschirm- und Farbspeicherbelegungen sowie die Farb-Codes

finden Sie in Anhang D.

BILDSCHIRM-CODES

SATZ1 SATZ2 POKE | SATZ1 SATZ2 POKE | SATZ1 SATZ2 POKE

@ 0 C C 3 F f 6

A a 1 D d 4 G g 7

i b 2 E e 5 H h 8

368 Anhang B

SATZ2 POKE SATZ 1

uw)
©

q
m
a
o
o
a
o
w
u
e
g
r
2
r
o
e
-
7
x

x
u

35
zZ

oo
ıı

oc
cr
o
r

D
>
S
x
>
N

co
©

N ©
ao
©

e)]
©

oO
~

N
N

N

N

N
wv
N

UN)
N

o
r

N
N

(ee)
N

oO
N

©

co
©

N

©

N

o&
vT
©

Ww)
i

@
©

©

nm
©

oO
©

©

©

oO
©

©

N

©

S
I
D

LI
E
S
S
R
A
N
U
O
Z
N

L
O
B

U
S
T

D
R
O

KH AS
H
e

 w

“
I

O
K

oO
Oo

n
o

t
o

oo
N
N
»

do»
Oo

r
n
n

Y
v
v

oo
N
N
»

o
o

r
n
n

+
oO

>
B
I
N

D
D

BT
H
H

G
B

G
O

SO

N

N

re
a ”

-

N

F
L

eS
oS

-
Ve

a
e

+
-

I
~

O
r

n
o
n
v
w
v
t

o O
N

©
OD

-~VvVit
A

~([T]
(7p)

lu
>,

o
o
f

©
N
O
t

MN
o
n
»

9
oo

r-r
u
a

x
u
o

o
5

oo
oO

ı
x”

a
y

n
e

rn
SF

KF
a
a
a

a
a
a

n
a
d

nn
nn
H
H
H

©

N

P
l

-
e
e

-
E
c
o
a
o

+
o

>
>

B
K

D
N

”
Lu
Pc)

N

F
l

-
27>

x
3

Z
2
0
0

0
f@

H
F

D
>

2ZSx
>
N
n
-
u
n
r
e

L
e

+
”

369 Anhang B

370

SATZ1 SATZ2 POKE | SATZ1 SATZ2 POKE | SATZ1 SATZ2 POKE

M 93 | M 15 | U 117
4 + | 1o6 | [B 118

N N oo | FB 17 | | 119
96 | [a 0 | A 120

1 AL: 109 | lam 121
= 98 | A] 110 | LJ 122
Mm 99 | L 111 | m 123
a 100 | [7 112 | [8 124
[] 101 | FH 113 | A] 125
a 102 | FA 14 | #) 126
U] 103 | J] 115 | Ag 127

ba 104] D 116

Anhang B

Die Codes 128—258 sind die umgekehrten Bilder von 0—127.

ANHANG C

ASCII- UND CHR$-CODES

In diesem Anhang werden für alle X-Werte gezeigt, welche Zeichen bei der Anzeige
PRINT CHR$ (X) erscheinen. Außerdem finden Sie hier die über PRINT ASC (“X“)
moglichen Werte, wobei X ein beliebiges einzugebendes Zeichen ist. Dies ist
besonders nutzlich bei der Auswertung von in einer GET-Anweisung empfangenen
Zeichen, der Umwandlung von Zeichen der oberen/unteren Umschaltstellung
sowie der Anzeige von Zeichen-Befehlen (z.B. Umschaltung zu Zeichen der
oberen/unteren Umschaltstellung), die nicht in Anführungszeichen stehen können.

ANZEIGE CHR$ | ANZEIGE CHR$ | ANZEIGE CHR$ | ANZEIGE CHR$

0 17 “ 34 3 51

1 | # 35 4 52

2 19 $ 36 5 53

3 20 | % 37 6 54

4 21 & 38 7 55

pwn: J 5 22 39 2) 56

6 23 (40 9 57

7 24) 41 58

wirksam MER (8 25 | * 42 59
wirksam (EB (G9 26 + 43 = 60

10 27 44 = 61 -

11 28 — 45 > 62

12 29 46 ? 63

13 30 / 47 @ 64
14 31 0 48 A 65

15 32 1 49 B 66

16 33 2 50 C 67

Anhang C 371

372

ANZEIGE CHR$ | ANZEIGE CHR$ | ANZEIGE CHR$ | ANZEIGE CHR$

D 68 97 126 | 4 15
E 69 | [|] 98 | N | iR
F 70 | 4 99 128 157

G 7101 FG 100 | Orange 129 | MM 158
H 72 | Fy 101 130 | BA 159

| 73 |b} 102 131 160
J 74 | LL] 10 132 | M 161
K 75 ||] 104 | fi 133 we 162
L 76 | Hl 105 | 8 «134; ([] ~~ 163
M 77 | [N 106 | f 1385 | [J 164

N a/lPl 107 | w# el LC] 165
o | [| 108] tf w BB 166
p so | N 109 | 4 138] 167
Q 81 A 110! t 139 | bee 168
5, 2 | [1 111 | f8 140) M 169
S es | [| 112 RB: 1 170

T 84 113 142 | (HB 171

U 85 | L| 114 143 im = 172

vese|vV) ss | MM | (5 173
W e | [| 116 145 | Al 174
X ss | | 117 | BR 146 175
Y ss |X) 118 147 | [do 176
Z 90 119 or 148 FY 177

[91 1200 | [4 149 | IH 178
£ 2 | ia | &K sl A 17
] sl 218 sı| DD 180
! 946) HH 123 | MM 2) DD 121
- 9 | Bl 124 | I 153} AH 182
rH oe | DD ss | tsa | 183

Anhang C

ANZEIGE CHR$ | ANZEIGE CHR$ | ANZEIGE CHR$ | ANZEIGE CHR$

I el IT BE He 490
me 3 15 7A Hal

CODES 192-223 SAME AS 96-127
CODES 224-254 SAME AS 160-190
CODE 255 SAME AS 126

Anhang C 373

ANHANG D

BILDSCHIRM- UND FARBSPEICHERMAPPEN

In der nachstehenden Tabelle finden Sie die fur die Bildschirm-Zeichensteuerung

verantwortlichen Speicherplatze, die Platze zur Anderung einzelner Zeichen-Far-

ben sowie Zeichen-Farb-Codes.

BILDSCHIRM-SPEICHERBELEGUNG

SPALTE

0 10 20 30 39

1063

1024 ——» 0
1064
1104
1144
1184
1224
1264
1304
1344 =
1384
1424 19 I
1464 I
1504 m
1544
1584
1624
1664
1704
1744
1784
1824 20
1864
1904
1944
1984 24

2023

374 Anhang D

Zum Ändern einer Zeichenfarbe müssen folgende Werte in einen Farbspeicher-

Platz gePOKEt werden:

0 SCHWARZ 8 ORANGE

1 WEISS 9 BRAUN

2 ROT 10 HELLROT

3 ZYAN 11 GRAU 1

4 PURPUR 12 GRAU 2

5 GRÜN 13 HELLGRÜN

6 BLAU 14 HELLBLAU

7 GELB 15 GRAU 3

Um z.B. die Farbe eines Zeichens oben links auf dem Bildschirm in Rot umzuän-

dern, geben Sie folgendes ein: POKE 55296,2.

FARBSPEICHERBELEGUNG

SPALTE
0 10 20 30 39

55335

55296 —> 0
55336
55376
55416
55456
55496
55536
55576
55616
55656
55696 10
55736
55776
55816
55856
55896
55936
55976
56016
56056
56096 |
56136 20
56176
56216 |
56256 a

3H
13
d

t
56295

Anhang D 375

ANHANG E

MUSIKNOTENWERTE

In diesem Anhang finden Sie eine vollständige Liste der Noten, zugehörigen

Frequenzen und Frequenzparameter und der Werte, die in die Register FREQ HI

und FREQ LO des Klangchips gePOKEt werden müssen, um den gewünschten Ton

zu erzeugen.

376

NOTE OKTAVE DEZIMAL HI LOW

0 0-0 278 1 22

1 C#-0 295 1 39

2 D-V 313 1 57

3 D#-0 331 1 fis)

E-0 351 1 35

5 F=0 372 1 116

6 F#-0 394 1 138

7 G—0 417 1 161

8 G#-0 442 1 186

9 A=-0 468 1 212

10 A#-0 496 1 240

11 H—O 526 2 14

12 0-1 Sich 2 45

13 C#-1 590 2 78

14 D-1 625 2 113

15 D#-1 662 2 150

16 E-1 702 2 190

17 F-1 743 2 231

18 F#-1 788 3 20

19 G-1 834 3 66

20 G#-1 884 3 116

21 A-1 dof 3 169

22 A#-1 992 3 224

23 H=7 1051 4 27

24 0-2 1114 4 90

Anhang E

NOTE OKTAVE DEZIMAL HI LOW

25 C#-2 1180 4 156

26 D=2 1250 & 226

27 D#-2 1325) 45

28 E-2 1403 5 123

29 F-2 1487 5 207

30 F#-2 1575 6 39

31 G=2 1669 6 133

32 G#-2 1768 6 232

33 A-2 1873 7 81

34 A#-2 1985 7 193

35 H=2 2103 8 99

36 C= 2228 8 180

37 C#-3 2360 S 56

38 D-3 2500 9 196

39 D#-3 2649 10 89

40 E=3 2807 10 247

41 F3 2974 11 158

42 F#-3 3150 12 78

43 G-3 3338 13 10

44 G#-3 3536 13 208

45 A-3 3746 14 162

46 A#-3 3969 15 129

47 M—3 4205 16 109

48 0-4 4455 17 103

49 C#-4 4720 18 112

50 D-4 5001 19 137

51 D#-4 5298 20 178

52 E—4 5613 21 237

53 F—4 5947 23 59

54 F#-4 6301 24 157

39 G-4 6676 26 20

56 G#-4 7072 27 160

5/7 A—4 7493 29 69

58 A#—4 7939 31 3

59 H—4 8411 32 219

60 0-5 8911 34 207

61 C#-5 9441 36 225

62 D-5 10002 39 18

63 D#-5 10597 41 101
Anhang E

377

NOTE OKTAVE DEZIMAL HI LOW

64 E-5 11227 43 219
65 F-5 11894 46 118
66 F#-5 12602 49 58
67 G-5 13351 52 39
68 G#-5 14145 55 65
69 A-5 14986 58 138
70 A#-5 15877 62 5
71 H-5 16821 65 181
72 C-6 17821 69 157
73 C#-6 18881 73 193
74 D-6 20004 78 36
75 D#-6 21193 82 201
76 E-6 22454 87 182
77 F-6 23789 92 237
78 F#-6 25203 98 115
79 G-6 26702 104 78
80 G#-6 28290 110 130
81 A-6 29972 117 20
82 A#-6 31754 124 10
83 H-6 33642 131 106
84 C-7 35643 139 59
85 C#-7 37762 147 130
86 D-7 40008 156 72
87 D#-7 42387 165 147
88 E-7 44907 175 107
89 F-7 47578 185 218
90 F#-7 50407 196 231
91 G-7 53404 208 156
92 G#-7 56580 221 4
93 A-7 59944 234 40
94 A#-7 63508 248 20

Sie sind nicht an die Werte dieser Tabelle gebunden! Wenn Sie mehrere Stimmen

benutzen, sollten Sie sogar bewußt die zweite und dritte Stimme etwas „verstim-

men“, d.h. das Lo-Byte aus der Tabelle leicht (!) abändern. Sie bekommen so

einen volleren Klang.

378 Anhang E

FILTEREINSTELLUNGEN

Adresse Inhalt

54293

94294

54295

54296

Resonanz (Bits 4—7)

Filter, Stimme 3 (Bit 2)

Filter, Stimme 2 (Bit 1)

Filter, Stimme 1 (Bit 0)

Hochpaß (Bit 6)

Bandpaß (Bit 5)

Tiefpaß (Bit 4)

Lautstärke (Bits 0-3)

Grenzfrequenz, Low Byte (0-7)

Grenzfrequenz, High Byte (0-255)

Anhang E 379

ANHANG F

LITERATURVERZEICHNIS

Addison-Wesley

Compute

Cowbay Computing

Creative Computing

Dilithium Press

Faulk Baker Associates

Hayden Book Co.

Howard W. Sams

380 Anhang F

“BASIC and the Personal Computer“, Dwyer and

Critchfield

“Compute’s First Book of PET/CBM“

“Feed me, I’m Your PET Computer“, Carol Alexander

“Looking good with your PET“, Carol Alexander

“Teacher’s PET — Plans, Quizzes, and Answers“

“Getting Acquainted With Your VIC 20“, T. Hartnell

“BASIC Basic-English Dictionary for the PET“, Larry

Noonan

“PET NASIC“, Tom Rugg and Phil Feldman

“MOS Programming Manual“, MOS Technology

“BASIC From the Ground UP“, David E. Simon

“| Speak BASIC to My PET“, Aubrey Jones, jr.

“Library of PET Subroutines“, Nick Hampshire

“PET Graphics“, Nick Hampshire

“BASIC conversions Handbook, Apple, TRS-80, and

PET“, David A. Brain, Phillip R. Oviatt, Paul J. Paquin,

and Chandler P. Stone

“The Howard W. Sams Crash Course in Microcompu-

ters“, Louis E. Frenzel, jr.

“Mostly BASIC: Application for your PET“, Howard

Berenbon

“PET Interfacing“, James N. Downey and Steven M.

Rogers

“VIC 20 Programmer’s Reference Guide“, A. Finkel,

P. Higginbottom, N. Harris, and M. Tomczyk

Little, Brown & Co.

McGraw-Hill

Osborne/McGraw-Hill

P. C. Publications

Prentice-Hall

Reston Publishing Co.

“Computer Games for Business, Schools, and

Homes“, J. Victor Nagigian, and William S. Hodges

“The Computer Tutor: Learning Activities for Homes

and Schools“, Gary W. Orwig, University of Central

Florida, and William S. Hodges

“Hands-On BASIC With a PET“, Herbert D. Peckman

“Home and Office Use of VisiCalc“, D. Castlewitz,

and L. Chisauki

“PET/CBM Personal Computer Guide“, Carroll S.

Donahue

“PET Fun and Games“, R. Jeffries and G. Fisher

“PET and the IEEE“, A. Osborne and C. Donahue

“Some Common BASIC Programms for the OET“,

L. Poole, M. Borchers, and C. Donahue

“Osborne CP/M User Guide“, Thom Hogan

“CBM Professional Computer Guide“

“The PET Personal Guide“

“The 8086 Book“, Russell Rector and George Alexy

“Beginning Self-Teaching Computer Lessons“

“The PET Personal Computer for Beginners“,

S. Dunn and V. Morgan

“PET and the IEEE 488 Bus (GPIB)“, Eugene Fisher

and C. W. Jensen

“PET BASIC — Training Your PET Computer“, Ramon

Zamora, Wm. F. Carrie, and B. Allbrecht

“PET Games and Recreation“, M. Ogelsby, L. Lind-

sey, and D. Kunkin

“PET BASIC“, Richard Huskell

“VIC Games and Recreation“

Anhang F 381

Telmas Courseware “BASIC and the Personal Computer“, T. A. Dwyer,

and M. Critchfield

Total Information Services “Understanding Your PET/CBM, Vol. 1, BASIC Pro-

gramming“

“Understanding Your VIC“, David Schultz

In den COMMODORE -Zeitschriften finden Sie die aktuellsten Informationen Uber

Ihren COMMODORE 64. Hiervon möchten wir die folgenden zwei besonders

empfehlen:

COMMODORE — Die Mikrocomputer-Zeitschrift erscheint zweimal monatlich und

kann abonniert werden ($25,00 für ein Jahr).

POWER/PLAY — Diese vierteljährlich erscheinende Home-Computer-Zeitschrift

kann ebenfalls abonniert werden ($15,00 pro Jahr).

382 Anhang F

ANHANG G

VIC-CHIP REGISTERBELEGUNG

Register #
Dec Hex | DB7 DB6 DBS DB4 DB3 DB2 DB] DBO

0 0 |SOX7 SOXO |SPRITE O X

Component

] 1 |SOY7 SOYO | SPRITE 0 Y

Component

2 2 151X7 S1XO | SPRITE 1 X

3 3 151Y7 S1YO |SPRITE 1 Y

4 4 |S2X7 S2X0 | SPRITE 2 X

5 5 $2Y7 S2YO |SPRITE 2 Y

6 6 153X7 S3X0 |SPRITE 3 X

7 7 |S3Y7 S3YO |SPRITE 3 Y

8 8 |S4X7 S4X0 |SPRITE 4 X

9 9 |S4Y7 S4Y0 |SPRITE 4 Y

10 A 155X7 S5X0 |SPRITE 5 X

1] B 155Y7 S5YO |SPRITE 5 Y

12 C |S6X7 S6X0 | SPRITE 6 X

13 D |S6Y7 S6YO |SPRITE 6 Y

14 E |S7X7 S7XO |SPRITE 7 X

Component

15 F 157Y7 S7YO |SPRITE 7 Y

Component

16 10 |S7X8 | S6X8 | S5X8 | S4X8} S3X8 | S2X8 | SIX8| SOX8 |MSB of X

COORD.

17 11 Rc8 | ECM | BMM | Bınk | RSEL | YSCL2 | YSCL1] YSCLO | Mone

18 12 |RC7 RC6 RC5 RC4 RC3 RC2 RCI | RCO {RASTER

19 13. |LPX7 LPXO |LIGHT PEN X

20 14 ILPY7 LPYO |LIGHT PEN Y

Anhang G 383

Register #

Dec Hex DB7 DB6 DB5 DB4 DB3 DB2 DB] DBO

2]

22

23

24

25

26

27

28

29

30

3]

15

16

17

SE7 SEO SPRITE

ENABLE

(ON/OFF)

N.C. N.C. RST MCM CSEL XSCL2 XSCL1 XSCLO
X SCROLL
MODE

SEXY7 SEXYO SPRITE

EXPAND Y

VS13 VS12 VS11 VS10 CB13 CB12 CB11 N.C. SCREEN and

Character |
Memory Base

Address
IRQ N.C. NG. N.C. LPIRQ ISSC ISBC RIRQ Interrupt

Request’s

N.C. N.C. N.C. N.C. MLPI MISSC MISBC MRIRQ Interrupt

Request

MASKS

BSP7 BSPO Background-

Sprite

PRIORITY

SCM7 SCMO MULTICOLOR

SPRITE

SELECT

SEXX7 SEXXO SPRITE

EXPAND X

SSC7 SSCO Sprite-Sprite

COLLISION
 SBC7 SBCO Sprite- Background

COLLISION

384 Anhang F

COLOR CODES DEC HEX COLOR

32 20 lo 0 BLACK EXT 1 EXTERIOR COL

33 21 1 1 WHITE BKGDO

34 22 |2 2 RED BKGD1

35 23 13 3 CYAN BKGD2

36 24 14 4 PURPLE BKGD3

3725155 5 GREEN SMC 0 SPRITE
MULTICOLOR 0

38 26 |6 6 BLUE ISMC 1

39 277 7 YELLOW SOCOL SPRITE 0 COLOR

40 28 |8 8 ORANGE SICOL 7

4] 29 19 9 BROWN S2COL 2

42 2A |10 A LT RED S3COL 3

43 2B I B GRAY | S4COL 4

44 2C 112 C GRAY 2 S5COL 5

45 2D 113 D LT GREEN S6COL 6

46 2€ |14 € LT BLUE S7COL 7

15 F GRAY 3

| Anmerkung: Im Mehrfarben-Zeichenmodus können nur die Farben O—7 benutzt werden.

Anhang F 385

ANHANG H

ABGELEITETE MATHEMATISCHE FUNKTIONEN

Funktionen, die in Commodore-64-Basic nicht vordefiniert sind, können mit Hilfe

der folgenden Formel berechnet werden:

FUNKTION BASIC-ENTSPRECHUNG

SECANT SEC(X)= 1/COS(X)
COSECANT CSC(X)= 1/SIN(X)
COTANGENT COT(X)= 1/TAN(X)
INVERSE SINE ARCSIN(X)=ATN(X/SQR(— X*X+ 1))
INVERSE COSINE

INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT

HYPERBOLIC SINE

HYPERBOLIC COSINE

HYPERBOLIC TANGENT

HYPERBOLIC SECANT

HYPERBOLIC COSECANT

HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC SINE

INVERSE HYPERBOLIC COSINE

INVERSE HYPERBOLIC TANGENT

INVERSE HYPERBOLIC SECANT

INVERSE HYPERBOLIC COSECANT

INVERSE HYPERBOLIC COTAN-

GENT

ARCCOS(X)= — ATN(X/SQR

(-X*X +1)) +77/2

ARCSEC(X)=ATN(X/SQR(X* X— 1))

ARCCSC(X)=ATN(X/SQR(X* X— 1))

+(SGN(X)— 1* 77/2

ARCOT(X)=ATN(X)+ 77/2

SINH(X)= (EXP(X)— EXP(— X))/2

COSH(X)=(EXP(X)+ EXP(— X))/2

TANH(X)= EXP(— X)/(EXP(x) + EXP

(—X))*24+]

SECH(X)= 2/(EXP(X) + EXP(— X))

CSCH(X)= 2/(EX P(X) — EXP(— X))

COTH(X)=EXP(— X)/(EXP(X)

—EXP(—X))*24+1

ARCSINH(X)=LOG(X + SQR(X*X + 1))

ARCCOSH(X)=LOG(X + SQR(X* X— 1))

ARCTANH(X)=LOG((1 + X)/(1 —X))/2

ARCSECH(X)=LOG((SQR

(—X*X+1)+1/X)

ARCCSCH(X)=LOG((SGN(X)* SQR

(X*X+ 1/x)

ARCCOTH(X)=LOG((X + 1)/(X— 1))/2

Anhang H

ANHANG |

STECKERBELEGUNG DER ANSCHLUSSE FUR
PERIPHERIEGERATE

Dieser Anhang soll Ihnen zeigen, wie welches Gerat wo an den COMMODORE 64

angeschiossen werden kann.

1) Steuereingange fur Spiele 4) Serieller E/A (Disk/Drucker)

2) Modul-Steckplatz 5) Kassette

3) Audio/Video 6) User Port

Control Port 1

Signal Bemerkung

JOYAO
5

JOYA1 O O oO O oO
JOYA2
JOYA3

POT AY** oO O oO (6)

6 rg 8 9

aS =)

BUTTON A/LP*
+5V MAX. 100 mA
GND

POT AX**

 O
O
N
B
D
O
A
R
W
h
—

Control Port 2

Signal Bemerkung

JOYBO
JOYB1
JOYB2
JOYB3

POT BY**
BUTTON B |

+5V MAX. 100 mA
GND *) Button = Feuerknopf am LP = Light pen.

POT BX** **) POT = Paddle Potentiometer

u 5

o
o

O
N
D
O
I
P
O
D
M
N
—

Anhang! 387

Modul-Steckplatz

Pin Signal Pin Signal

22 GND Z. GND
21 CDO Y CAO
20 CD1 X CA1
19 CD2 W CA2
18 CD3 V CA3
17 CD4 U CA4
16 CD5 T DA5
15 CD6 Ss CA6
14 CD7 R CA7
13 DMA P CA8
12 BA N CA9
11 ROML M CA10
10 /O2 L CA11

9 EXROM K CA12
8 GAME J CA13
7 1/01 H CA14
6 Dot Clock F CA15
5 CR/W E G2
4 IRQ D NMI
3 +5V C RESET
2 +5V B ROMH
1 GND A GND

22 21 201918 17161514 1312111098 7654321

ZYXWVUTSRPNMLKJJHFEDCBA

 Audio/Video

I 3 Signal

LUMINANCE
GND
AUDIO OUT
VIDEO OUT
AUDIO IN
CHROMINANCE

 NICHT ANGESCHLOSSEN
NICHT ANGESCHLOSSEN O

o
N
S
N
D
V
I
P
W
@
M
D
—

Serielle E/A

Pin Signal

SERIAL SRQIN
GND
SERIAL ATN IN/OUT
SERIAL CLK IN/OUT
SERIAL DATA IN/OUT
RESET

 O
m
R
W
N
M
—

388 Anhang |

Cassette

Signal

GND
+5V

CASSETTE MOTOR
CASSETTE READ
CASSETTE WRITE
CASSETTE SENSE

User Port

Pin Signal Bemerkung

c
h

u

u

Z
S
P
T
R
-
I
N
M
O
O
O
D
P
N
S
O
O
R
N
D
U
R
W
N
D
—

GND
+5V

SER. ATN IN
9 VAC
9 VAC
GND
GND
FLAG2
PBO
PB1
PB2
PB3
PB4
PBS
PB6
PB’
PA2
GND

MAX. 100 mA

MAX. 100 mA
MAX. 100 mA

1

23 45 6 7 8 9 10 11 12

—ZI ZB BB HH eee

re ee

ABCODEF HJ K EMN

Anhang | 389

ANHANG J

ÜBERTRAGUNG VON FREMDEN BASIC-
PROGRAMMEN AUF COMMODORE-64-BASIC

Besitzen Sie Programme, die in einer anderen BASIC-Version als COMMODORE-

BASIC geschrieben wurden, werden einige kleinere Anpassungen nötig sein, bevor

sie auf dem COMMODORE 64 laufen können. Wir geben Ihnen nun einige Tips, die

die Anpassung leichter machen.

Dimensionen von Strings

Entfernen Sie alle Statements, die die Länge eines Strings festlegen. Ein Befehl wie

etwa DIM A§(I,J), der ein Stringarray für J Elemente der Lange | dimensioniert, muß

in das COMMODORE-BASIC-Statement DIM A$(J) abgeändert werden.

Einige BASIC-Versionen benutzen ein Komma (,) oder Kaufmanns-Und (&) zur

Verknüpfung von Strings. Diese müssen in ein Plus-Zeichen (+) geändert werden,

das in COMMODORE-BASIC der entsprechende Operator zur Stringverknüpfung

ist. | |

Im BASIC des COMMODORE 64 dienen die Funktionen MID$, RIGHT$ und LEFT$

der Erzeugung von Teilstrings. Formen wie A$(l) zur Ansprache des I-ten Zeichens

in String A$ oder A$(l,J) zur Gewinnung des Teilstrings von A$ von Position | bis J

müssen wie folgt geändert werden:

sonstiges BASIC COMMODORE-64-BASIC

A$(l) = X$ A$ = LEFT$(A$,I-1)+X$+MID$(A$,I+1)

A$(l,J) = X$ A$ = LEFT$(A$,|—1)+X$+MID$(A$,J+1)

Mehrfache Zuweisungen

Um die Variablen B und C gleichzeitig auf Null zu setzen, erlauben einige BASIC-

Versionen Statements der Form:

10 LET B=C=0

390 Anhang J

COMMODORE-64-BASIC würde das zweite Gleichheitszeichen als logischen

Operator interpretieren. Falls dann C=O ware, würde B=-1. Schreiben Sie statt

dessen zwei Befehle:

10 B=0 : C=0

Mehrfache Anweisungen

Einige BASIC-Versionen benutzen den Schrägstrich rückwärts (\) um mehrere

Statements in einer Zeile voneinander zu trennen. In COMMODORE-64-BASIC

werden alle Anweisungen durch einen Doppelpunkt (:) voneinander getrennt.

MAT-Funktionen

Programme, die die in einigen BASIC-Versionen vorrätigen MAT-Funktionen für

Matrizenoperationen verwenden, müssen umgeschrieben werden, indem diese

Funktionen mit Hilfe von FOR... NEXT-Schleifen nachgebildet werden.

Anhang J 391

ANHANG K

FEHLERMELDUNGEN

Dieser Anhang enthalt eine vollstandige Liste der Fehlermeldungen des COMMO-

DORE 64 zusammen mit einer Beschreibung der Ursachen.

BAD DATA Von einem File wurden String-Daten gelesen, das Programm erwar-

tete jedoch numerische Daten.

BAD SUBSCRIPT Das Programm versuchte, ein Element des Arrays anzuspre-

chen, dessen Nummer außerhalb des in der DIM-Anweisung vorgegebenen

Bereichs liegt.

CAN’T CONTINUE Der Befehl CONT arbeitet nicht, wenn ein Programm nicht

vorher mit RUN gestartet war, ein Fehler auftrat oder eine Zeile geändert wurde.

DEVICE NOT PRESENT Das angesprochene E/A-Gerät war nicht verfügbar bei

OPEN, CLOSE, CMD, PRINT#, INPUT# oder GET#.

DIVISION BY ZERO Division durch Null ist mathematisch undefiniert und nicht

erlaubt.

EXTRA IGNORED Nach Aufforderung durch INPUT wurden zu viele Daten einge-

geben. Nur die ersten wurden berücksichtigt.

FILE NOT FOUND Suchen Sie ein File auf Band, dann wurde eine END-OF-

TAPE-Markierung gefunden. Suchen Sie ein File auf der Diskette, dann existiert ein

File dieses Namens nicht.

FILE NOT OPEN Das mit CMD, PRINT#, INPUT#, GET# angesprochene File

muß zuerst mit OPEN geöffnet werden.

FILE OPEN Sie versuchten ein File zu öffnen und benutzten dazu eine logische

Filenummer, die bereits vergeben war.

FORMULA TOO COMPLEX Der Stringausdruck sollte in wenigstens zwei Teile

aufgespalten werden, damit das System ihn bearbeiten kann.

ILLEGAL DIRECT INPUT kann nur innerhalb eines Programms benutzt werden

und nicht im Direktmodus.

ILLEGAL QUANTITY Eine Zahl, die als Argument einer Funktion oder einer

Anweisung benutzt wurde, liegt außerhalb des erlaubten Bereichs.

LOAD Es gibt ein Problem mit dem Programm auf der Kassette.

NEXT WITHOUT FOR Entweder wurden einige Schleifen nicht korrekt verschach-

telt oder eine bei NEXT angegebene Variable entspricht nicht der bei FOR verwen-

deten.

392 Anhang K

NOT INPUT FILE Es wurde versucht, mit INPUT# oder GET# Daten von einem

File zu lesen, das nur zur Ausgabe bestimmt ist.

NOT OUTPUT FILE Sie versuchten Daten durch PRINT# an ein File zu senden,

das nur zum Lesen geoffnet wurde.

OUT OF DATA Eine READ-Anweisung wurde ausgeführt, es gibt aber keine Daten

in einer DATA-Zeile, die noch nicht mit READ gelesen wurden.

OUT OF MEMORY Es ist kein RAM-Bereich mehr für Programm oder Variablen

verfügbar. Dieser Fehler kann auch auftreten, wenn zu viele FOR... NEXT-Schlei-

fen oder Unterprogramme ineinander geschachtelt oder zu viele Klammern geöffnet

wurden.

OVERFLOW Das Ergebnis einer Rechnung ist größer als die größte erlaubte Zahl

(1.70141183 E + 38).

REDIM’D ARRAY Ein Array kann nur einmal DIMensioniert werden. Wird eine

Array-Variable aufgerufen, bevor sie DIMensioniert wurde, führt der Rechner eine

automatische DIM-Operation aus, wobei die Dimension auf zehn gesetzt wird. Jede

folgende DIM-Anweisung wird dann diesen Fehler verursachen.

REDO FROM START String-Zeichen wurden eingegeben, während ein INPUT-

Statement numerische Eingabe erwartete. Tippen Sie einfach die korrekten Einga-

ben noch einmal, und das Programm wird von selbst fortfahren.

RETURN WITHOUT GOSUB Eine RETURN-Anweisung wurde entdeckt, aber

kein GOSUB-Befehl wurde vorher gegeben.

STRING TOO LONG Ein String kann höchstens 255 Zeichen enthalten.

SYNTAX Eine Anweisung kann vom COMMODORE 64 nicht erkannt werden. Sie

haben eine Klammer vergessen oder zuviel angegeben, ein Schlüsselwort falsch

eingetippt usw.

TYPE MISMATCH Dieser Fehler tritt auf, wenn Sie eine Zahl statt eines Strings

verwenden und umgekehrt.

UNDEF’D FUNCTION Sie nehmen Bezug auf eine selbst definierte Funktion, die

noch nicht im DEF FN angelegt wurde oder deren Definitions-Zeile vom Programm

noch nicht durchlaufen wurde.

UNDEF’D STATEMENT Eine nicht existente Zeilennummer wurde mit GOTO,

GOSUB oder RUN angesprochen.

VERIFY Das Programm auf Band oder Diskette stimmt nicht mit dem Programm im

Speicher überein.

Anhang K 393

ANHANG L

DATENBLATT MIKROPROZESSOR 6510

BESCHREIBUNG

Die 6510-Familie ist ein Mikrocomputersystem, das imstande ist, viele Probleme

aus dem Bereich der Mikrocomputer und Peripheriegerate mit minimalen Kosten zu

lösen. Ein 8-Bit bidirektionaler |/O-Port befindet sich “on chip“, dessen Ausgabere-

gister unter Adresse 0000 und dessen Daten-Richtungsregister bei Adresse 0001

erreichbar sind. Das I/O-Port ist Bit fur Bit programmierbar.

Der Tri-state 16-Bit AdreBbus ermöglicht auf einfache Weise DMA und den Zugriff

mehrerer CPU auf ein und denselben Speicher.

Die interne Prozessorarchitektur ist identisch mit der des MOS TECHNOLOGY

6502, um die Software kompatibel zu machen.

BESONDERHEITEN DES 6510:

8-Bit bidirektionaler I/O-Port

5 Volt Versorgungsspannung

8-Bit Datenlänge

56 Befehle

Dezimale und binäre Arithmetik

13 Adressierungsarten

Absolute indirekte Adressierung

Programmierbarer Stackzeiger

Variable Stacklänge

Interruptmöglichkeiten

65K Bytes adressierbar

Direkt Memory Access (DMA)

Bus-compatibel zum M6800

“Pipeline“ Architektur

1-MHz und 2-MHz Takt

394 Anhang L

PIN-ANORDNUNG

un) E

9 IN

RIW

DB,

Po

wo
wv

n

st
Lo

<

-

oO
oO

a

3
s
i

3 iis
|

‘26
[113

Tea
s
s

1a
llallsıleltellsiteilell

6510

L
i
s

Leb:
I
E

JE
ILS

IL?
IL:

I
S
E
E
I
E
I
E
N
|

)
<

>

RDY

—
£

AEC

= 4
<

<

fe)
<

N

>
an

[oe]

<
<<

Ai2

=
<

<

395 Anhang L

396

AEC

t
t
t

t
t

+
ft

ft
T
H
R
E
E
-
S
T
A
T
E

A
D
D
R
E
S
S

B
U
F
F
E
R

Anhang L

LEGEND

fi = 8BIT LINE

| = 1BITLINE

AAAAAI

AAAAA I

6510 BLOCK-DIAGRAMM

DATA
DIRECTION P,---P,
REGISTER

PEAT AE RAL PERIPHERAL

U INTERFACE
Ss REGISTER = BUFFER

—

u \ Br
INDEX

INTERRUPT REGISTER
| Y bat LOGIC

und

un

REGISTER

a! al

’ 2 lk
q wr

= STACK
=) POINT
=) REGISTER
a (S)

rg

fm
m _ INSTRUCTION

1 ZK DECODE
ALU

= < > 6, OUT
EEE

= j !

}—1 2 a Lg]
5 ACCUMULATOR TIMING
ES A < CONTROL

at
= =

>

* I nd = PCL pe re

; 6, IN
jean ai PCH =>

5 PROCESSOR
< KY STATUS Lal REGISTER

INPUT < ;
x DATA

LATCH

LS RIW
er is

DATA Bus | INSTRUCTION
= a BUFFER r REGISTER

DATA

MERKMALE DES 6510

RATING SYMBOL VALUE UNIT

SUPPLY VOLTAGE Vec -0.3t0 +7.0 | Voc

INPUT VOLTAGE Vin ~0.3t0 +7.0 | Voc

OPERATING TEMPERATURE Ts 0 to +70 °C

STORAGE TEMPERATURE Tste -55 t0 +150 | °C

Anmerkung: Dieses Gerät ist gegen Schäden durch Hochspannung oder elektrische Felder

geschützt; Spannungen über dem angegebenen max. Nennwert sollten jedoch nicht angelegt werden.

ELEKTRISCHE EIGENSCHAFTEN
(Vcc = 5,0 V +/— 5%, Ves = 0, T, = 0° bis +70° C)

CHARACTERISTIC SYM-| MIN. TYP. MAX. |UNIT

BOL

Input High Voltage

$1, Dacin) Vin IVec = 0.2] — |Vece + 1.0V| Voc

Input High Voltage

RES, Py-P; IRQ, Data Vss + 2.0} — — Vos

Input Low Voltage

BT Pain) Vir |Vss = 0.3} — | Vss + 0.2 | Voc

RES, Po-P- IRQ, Data — = Vss + 0:8 Voc

Input Leakage Current

(Vin = 0 to 5.25V, Voc = 5.25V)
Logic lin — — 2.5 MA

1, Pacin) _— — 100 WA

Three State (Off State) Input Current

(Vin = 0.4 to 2.4V, Veo = 5.25V)

 Data Lines Irsı — — 10 pA

Output High Voltage

(loo = —100WApc, Vec = 4.75V)
Data, AO-A15, R/W, Po-Pz Von |Vsg + 2.41 — a Voc

Anhang L 397

CHARACTERISTIC SYM) MIN. |TYP. MAX. lUNIT
BOL

Out Low Voltage

(loo = 1.6MApe, Veco = 4.75V)

Data, AO-A15, R/W, Po-P; VoL — — | Vss + 0.4 | Voc

Power Supply Current loc — 125 mA

Capacitance C pF

Vin = 0, Ta = 25°C, f = 1MHz)

Logic, Po-P7 Cia — — 10

Data — — 15

AO-A15, R/W Cant — — 12

ob; Cd, — 30 50

dbo Coho — 50 80

398

RIW

ADDRESS
FROM
MPU

DATA
FROM

MEMORY

PERIPHERAL
DATA

ADDRESS
ENABLE
CONTROL

Anhang L

CLOCK TIMING

 Toye

+

oO
 i”

A

Tua >

« TepR

2.007

0.8v Ye
ea Tagg ee Tosu 1 Tr

va Tppsu ———>

Taesı

wi Voc -0.2V

TIMING FOR READING DATA FROM

MEMORY OR PERIPHERALS

CLOCK TIMING

 Teyc
—— PWH¢, _—| |
Voc — 0.2V PVoo-02V.

—_—___0.2V Jf |

l

Te Ty] i |

Voc — 0.2V / |

|

92 IN 0.2V SL PwHs |

Te — Ta 2 !

+ Taws >

R/W N 0.8 | /

al ag un

al SS u

ADDRESS DOV

FROM aay MPU -

DSU
Be T >

DATA “ne 20V, —
FROM Ken

MEMORY Leet Tray

<—Tppw
PERIPHERAL

DATA

Tags

ADDRESS Veo = 0.0"
ENABLE TA TO
CONTROL TIMING FOR WRITING DA

MEMORY OR PERIPHERALS

Anhang L 399

su
00€

—

—

G/S
—

—

IW)
a
w
]

ssaddy
posy

A
i
o
w
a
y

su
OS

001
—

00€
OO

Z—
Sr)

8059
wo}

aul)
dn43S

sseippy

su
ost

|
ool

—
00€

|
ool

—
SMEL

||
8059

Woy
SUL

dnyas
aylm/PpPey

SLINN
|

'XvW
|

‘dAL
|

'NIW
||

'XwW
|

"dAL
|

‘“NIW
| TO@WAS

IILSIAILDIVAVHI

ONIWIL
ZHW

7
ONIWIL

ZHW
|

(ILL
=

GVO1)
ONIWIL

311AM/AV3A

suc
|

—

—

0
—

—

0
ay

(AZ'O
40

pasnspaeyw)
SYDO|D

usawyagq
aUIy

ADjag

su
SL

—

—

SZ
—

—

4
73,

(AZO
—

2A
OF

AZO
WOA}

Painsoay)
Sul]

asiy
"DWIL

||o4

su
—

—

gez
—

—

0/27
|
Z
P
H
M
d

cp
(AZO

—
PA

40
painspew)

su
—

—

GZ
—

=

0er
|
LPHMd

Lp
UIPIM

sind
32019

su
—

cum
005

—

—

0001
|

M
L

eu}
9245

SLUNN
|

'XvW
|

“dAL
|

'NIW
|

'xvw
|

“dAL
|

“NIW
|
109WAS

IILSIAILIVAVHD

ONIWIL
ZHW

7
ONIWIL

ZHWL
ONIWIL

43019

(9
.02—.0

=
VL

‘A
0

=
SSA

%
S

F
A

O'S
=
A
)

N
S
L
A
V
H
O
S
N
A
D
I
F

I
H
I
S
I
H
L
A
F
I
3

NS L
I
V
H
O
S
N
A
D
I
S
-
“
S
M

Anhang L 400

su
09

09
ser]

swı]
dnyaS

SIqpuF
ssoippy

su
—

—

00€
nsadı

aul,
Adnjasg

nYpg
jOseudisag

srl
1

—

—

MGd
pıjon

DJOG
jpasydısad

9

u
o
y
s
u
n
4
y

BAYOHeUu
Zp

‘auny
Aojag

su
_

—

OEL
a3M|

u
o
y
s
u
n
4

S
A
I
S
O
d

TP
0

v
o
y
s
u
n
y

SrayoBau
AA/y

"Swı]
ADdjaq

su
—

—

0
0
€

nsaı
U
O
I
H
S
U
D
A

BAIWYOHauU

TP
Of

pıjpa
nyog

‘
s
e
w

Anjaq

su
G6E

—

—

403]
snq

UO
pıjpA

DING
94

UdILISUDIY
BAIWISOd

TP
‘
a
u
n

Anjag

su
—

_—
081

Mav
|

UOIHISUD4Y
SAIWISOd

TH

O}
pııpa

s
s
s
i
p
p
y

‘aunty
Apjag

su
O€

Ol
—

O€
Ol

MEAL
oui)

PIOH
M/A

su
0€

Ol
—

0€
Ol

VAL
awl!

PIOH
sseappy

su
001

GL
—

007
Ost

—

san
0159

wo}
awı]

dnyas
nypgq

su
O€

Ol
—

0€
Ol

MA]
SHM-SWIL

PIOH
OID

su
—

_—
YH

y
posy-ewily

PIOH
OjJOG

su
OS

—
—

|
ool

SQ]
pouag

Sul)
Ayiqnig

DING

401 Anhang L

SIGNALBESCHREIBUNG

TAKT (9,, 2.)

Die CPU 6510 benötigt einen sich nicht überlappenden Zweiphasentakt, der den

Pegel V.. hat.

ADRESSBUS (A,—A,;)

Diese Ausgänge sind TTL-kompatibel (1 Standardeingang + 103 pF).

DATENBUS (D,—D;)

Diese 8 Pins übermitteln die Daten von der CPU zum Speicher (oder anderen

Bausteinen) und umgekehrt. Es sind Tristate-Buffer, die TTL-Standard + 103 pF

treiben können.

RESET (RES):

Dieser Eingang wird benutzt, um den Prozessor nach dem Einschalten zu starten

oder (im Betrieb) in einen definierten Zustand zu bringen. Liegt dieser Eingang auf

L-Pegel, kann der Prozessor nicht ein- oder ausgeben. Wenn auf diesen Eingang

eine positive Flanke geschaltet wird, beginnt der Prozessor mit der Reset-Prozedur.

Nach einer Systeminitialisierungszeit von 6 Taktzyklen wird das Interruptflag

gesetzt, und der Prozessor lädt den Programmzähler mit dem Inhalt der Adresse

$FFFC und $FFFD. Wenn nach dem Einschalten V.. 4,75 V erreicht, muß RESET

noch 2 Taktzyklen auf Low gehalten werden. Während dieser Zeit wird R/W gültig.

Wenn RESET dann auf H geschaltet wird, beginnt der oben beschriebene Zyklus.

INTERRUPT REQUEST (IRQ):

Wenn dieser TTL-Eingang nach Low geschaltet wird, beginnt der Prozessor mit

einer Interruptroutine, nachdem er den vor dem IRQ-Befehl gültigen Befehl abgear-

beitet hat. Dann wird das Interruptflag im Flagregister geprüft. Falls das Interruptflag

nicht gesetzt ist, beginnt der Prozessor mit der Interruptroutine. Der Programmzäh-

ler und das Flagregister werden im Stack gespeichert.

Dann setzt der Prozessor das Interruptflag, damit derselbe Interrupt nicht noch

einmal bearbeitet wird. Am Ende dieses Ablaufs wird der Programmzähler mit dem

Inhalt von Adresse FFFE (Low-Byte) und FFFF (High-Byte) geladen.

402 AnhanglL

ADRESS ENABLE CONTROL (AEC):

Der AdreBbus ist nur gültig, wenn AEC auf High geschaltet ist. Wenn AEC Low

geschaltet ist, befinden sich die AdreBausgange im hochohmigen Zustand (Tri-

state). Dies erleichtert den direkten Speicherzugriff (DMA) und ermöglicht Multipro-

zessorsysteme.

/O PORT (P)—P7)

6 Pins werden als Port genutzt, durch den Daten direkt an Peripheriegerate

geschickt werden können. Das Datenregister ist im RAM unter Adresse 0000

erreichbar. Die Ausgange konnen einen Standard-TTL-Eingang und 130 pF treiben.

READ/WRITE (R/W):

Der Ausgang liegt immer auf High, er ist nur Low, wenn der Prozessor Daten in den

Speicher oder in einen Peripheriebaustein schreiben will.

ADRESSIERARTEN

IMPLIZIERTE ADRESSIERUNG:

Dies ist ein 1-Byte-Befehl, der eine Operation in der CPU bewirkt.

UNMITTELBARE ADRESSIERUNG:

Das auf den Befehl folgende Byte ist der Operand, es wird keine weitere Adresse

benötigt.

ABSOLUTE ADRESSIERUNG:

Hier stellt das 2. Byte das Low-Byte, das 3. Byte das High-Byte der resultierenden

Adresse dar. Diese Art der Adressierung erlaubt den Zugriff auf den gesamten

Speicher von 64 KB.

ZERO-PAGE-ADRESSIERUNG:

Diese Art erlaubt eine kürzere Codierung und damit eine schnellere Ausführung.

Das 2. Byte des Befehis stellt das Low-Byte dar, das High-Byte wird als 0000

angenommen.

Anhang L 403

INDIZIERTE ZERO-PAGE-ADRESSIERUNG:

Diese Adressierungsart benutzt die Indexregister. Die resultierende Adresse wird

errechnet, indem das 2. Byte des Befehls zum Indexregister X oder Y addiert wird.

Dies ist eine Zero-Page-Adresse, es wird kein Übertrag zum High-Byte addiert,

Pages werden also nicht überschritten.

INDIZIERTE ABSOLUTE ADRESSIERUNG:

Diese Art wird im Zusammenhang mit den Indexregistern X oder Y benutzt. Die

resultierende Adresse wird durch Addition des Inhaltes der Register X oder Yzum.

2. Byte des Befehls gebildet. Wenn nötig, wird ein Übertrag zum 3. Byte, dem High-

Byte, gebildet. Diese Art der Adressierung ermöglicht es, jede Speicherstelle zu

erreichen und durch Indexregisteroperationen beliebige Datenfelder mit einer

Basisadresse zu erreichen.

RELATIVE ADRESSIERUNG:

Diese Art wird nur im Zusammenhang mit Verzweigungsbefehlen gebraucht und

bestimmt die Zieladresse des Sprunges. Das 2. Byte des Befehls ist ein Offset, der

zu dem Low-Byte des Programmzählers addiert wird, wenn der Sprung ausgeführt

werden soll. Die Zieladresse kann 128 Stellen niedriger oder 127 Stellen höher als

die Adresse des nächsten Befehls sein.

INDIZIERT-INDIREKTE ADRESSIERUNG:

Hier wird das 2. Byte des Befehls zum Inhalt des X-Indexregisters ohne Carry

addiert. Das Ergebnis bestimmt eine Speicherstelle in der Zero-Page, wo sich das

Low-Byte der resultierenden Adresse befindet. Das High-Byte befindet sich in der

nächsten Speicherstelle. Beide Speicherstellen müssen sich in der Zero-Page

befinden.

INDIREKT-INDIZIERTE ADRESSIERUNG:

Hier bestimmt das 2. Byte des Befehls eine Speicherstelle in der Zero-Page.

Der Inhalt wird zum Inhalt des Y-Indexregisters addiert, das Ergebnis ist das Low-

Byte der resultierenden Adresse. Der Übertrag dieser Addition wird zum Inhalt der

nächsten Speicherstelle addiert, das Ergebnis ist das High-Byte der echten

Adresse.

404 Anhang L

ABSOLUT-INDIREKTE ADRESSIERUNG:

Das 2. Byte des Befehls ist das Low-Byte, das 3. Byte das High-Byte einer

Speicheradresse, in der sich das Low-Byte der echten Adresse befindet. Das High-

Byte der echten Adresse befindet sich auf dem nachsten Speicherplatz. Diese

Adresse wird in den Programmzahler geladen.

ANWEISUNGSSATZ —
ALPHABETISCHE REIHENFOLGE

ADC Add Memory to Accumulator with Carry

AND “AND“ Memory with Accumulator

ASL Shift Left One Bit (Memory or Accumulator)

BCC Branch on Carry Clear

BCS Branch on Carry Set

BEQ Branch on Result Zero

BIT Test Bits in Memory with Accumulator

BMI Branch on Result Minus

BNE Branch on Result not Zero

BPL Branch on Result Plus

BRK Force Break

BVC Branch on Overflow Clear

BVS Branch on Overflow Set

CLC Clear Carry Flag

CLD Clear Decimal Mode

CLI Clear Interrupt Disable Bit

CLV Clear Overflow Flag

CMP Compare Memory and Accumulator

CPX Compare Memory and Index X

CPY Compare Memory and Index Y

DEC Decrement Memory by One

DEX Decrement Index X by One

DEY Decrement Index Y by One

EOR “Exclusive-OR“ Memory with Accumulator

Anhang L 405

INC Increment Memory by One

INX Increment Index X by One

INY Increment Index Y by One

JMP Jump to New Location

JSR Jump to New Location Saving Return Address

LDA Load Accumulator with Memory

LDX Load Index X with Memory

LDY Load Index Y with Memory

LSR Shift One Bit Right (Memory or Accumulator)

NOP No Operation

ORA “OR“ Memory with Accumulator

PHA Push Accumulator on Stack

PHP Push Processor Status on Stack

PLA Pull Accumulator from Stack

PLP Pull Processor Status from Stack

ROL Rotate One Bit Left (Memory or Accumulator)

ROR Rotate One Bit Right (Memory or Accumulator)

RT| Return from Interrupt

RTS Return from Subroutine

SBC Subtract Memory from Accumulator with Borrow

SEC Set Carry Flag

SED Set Decimal Mode

SEI Set Interrupt Disable Status

STA Store Accumulator in Memory

STX Store Index X in Memory

STY Store Index Y in Memory

TAX Transfer Accumulator to Index X

TAY Transfer Accumulator to Index Y

TSX Transfer Stack Pointer to Index X

TXA Transfer Index X to Accumulator

TXS Transfer Index X to Stack Register

TYA Transfer Index Y to Accumulator

406 Anhang L

PROGRAMMIERBEISPIEL

7 0
| A _| ACCUMULATOR
7 0
iz Y INDEX REGISTER

| X] INDEX REGISTER
15 7 0
[PCH | PCL | PROGRAM COUNTER

87 0
1 S | STACK POINTER

0

[N[v{ Ielo|ı !z|e|

A

Y

X

“PC”

“Ss”

PROCESSOR STATUS REG "'P”

CARRY 1 = TRUE
ZERO 1 = RESULT ZERO

|__ys IRQ DISABLE 1 = DISABLE
DECIMAL MODE 1 = TRUE

> BRK COMMAND

>> OVERFLOW 1 = TRUE

> NEGATIVE 1 = NEG

Anhang L 407

ANWEISUNGSSATZ — OP-SCHLÜSSEL, AUSFUHRUNGSZEIT,

zu
u

e
|
r
|
i
s
a
l
e
|
r

jaalz
|

r
|sa

s|ıa
9

LV
l
e

ISVIE
|v

a
v
i
z

|z
l
e
v
y
)

V
-
W

v
a

=
e
e

€
| 9

|0z
a
n
s

d
w
n
r

(2
‘614

aes)
usr

-
-

--
_
_
—
_

€
Is

|09
€

| €
or

‘O01
MAN

OL
dwnr

dur
a

o
o

tl
ol

L
Ic

1
8
9

A
T
L
+
A

A
N
I

r
e

e
l

Lic
{84

X
L

+X
XNI

—
-
-

0
7

€
|

2
13312

|
9

194
©

|s
|93/€

|
9

|33
N
-
I
+
W
N

ONI
-
—
-

_-
_

0
0

€
|v
|
6
S
|
}
€
}

+
jas}

2
]

I
s

G
|LS

9
|1r

e
l
e
ı
i
s
r
j
e

|v
larlz

| Zz
jer]

(u
V
~
W
A
V

H
O
S
.

a

u
a

ot
ol

it
| ¢

|8a
A
T
L
A

Add
—

-
a
a

L
i
z
2
l
w
o

K
a
l
k

x3Q

_—
0
1
0
7

€
I
2
1
3
0
|
2

|9
190

e
s

|9dje
| 9

139
N
+
I
-
N

0
3
a

s
e
e

d
d

z
e

|POLE
|b

[OO]
2

|
100

W
-
A

Add

—
-
-
-
2
4
-
2
4
A

g
e

|vVAlE
|

v
[OAL

| |
0
3

W
-
X

Xdd

=
eS

wt
wt

et
€

|v
j6qre

|v
j
a
d
)
 2

|
v

Isa
G

|-LG
9

|LO
e
e

|SOlE
|

vp
|GOj}¢

12
1691

(WW
w
W
-
V

d
W
O

=
=
 =

=
L

1?
|88

A
+
0

AND

—
-
-
o
-
-
-

L
12%

|8¢
0

ime)

-
0

-
-
-

—-
ı

|z
Isa

a~0
q19

e
e

.
!z

|gı
+
0

O10

=
ee

oe
a

2
2

loz
(2)

L=A
NO

H
O
N
V
U
S

sag
_

z|z
los

(2)
0O=A

NO
H
O
N
V
H
G

OAg
—
~
—
|
,
-
-
—
—

L
| 2

100
(1

“614
98S)

Y
u
8

z
e
.

z
z

lo
(2)

0=N
NO

H
O
N
V
H
I

149
m

z
|z

joa
(2)
0
=

ZNO
H
O
N
V
H
E

3N8
u

u
e
n

z
|z

log
(7)

L
=
N

NO
H
O
N
V
H
S

Ind

W
-

—
—

WW
z

le
|vz|e

| v
[Oz

WVV
118

—
z

Iz
los

(2)
L=Z

NO
HONVUE

038
-

-
-

-
—-

z|z
jog

()
L=9

NO
H
O
N
V
H
8

sog
a

oe
es

es
2

|z
|06

(2)
0=9

NO
H
O
N
V
H
E

298
-

-
-

2
7.7

el,
|a1lz

|9
jor

ı
Iz

|volz
|s

[gole
| 9

|30
o
-
[
_
_
_
_
_

2
0
9

S
V

—
-
—
—
—
a
a
n

€
|v

|6€/€
IF

|GE}?]
v7

|SE
G

{Le
9

Ile
C
l
e

|SCl1E
|}

b
|G]

c
|

2?
I62|

WW)
V
-
W
N
V
V

QONV

nn
—-

—-
A
A
A

e
i
r
i
s
z
l
e

ir
jaulz

pb
|

G
|ız

9
|L9

z
l
e
|
s
g
l
e

Ir
Jaglz

|z
jeg}

dd
VW)

V
v
-
O
o
+
N
t
+
t
V

o
a
v

A
a
d
t

O
Z

N
I
#
I
N

[dO]

| N
Idol

|n

Idol

In
[dO]

In

[dO]

|
N

Ido
N

|dO
N

|dO|

| N
jdO]

|

N
[dO]

In

[dO]

IN
[dO]

|N

[do
u
o
n
e
ı
a
d
o

J
u
o
w
a
u
N

$
3
0
0
9

N
O
I
L
I
G
N
O
D

|A
‘e6ed

‘zZ |
Wespuy

|
sAneıay

A
'SQV

x'sqy
|x

‘eBeq‘Z]|
Alpu)

|
X

(pul)
|

peudwı
|

"wnaay
|eBeg

0187|
aynjosqy

|aeıpewu|
S
N
O
I
L
O
N
Y
L
S
N
I

Anhang L 408

SPEICHERANFORDERUNGEN

'
S
3
Q
0
I

dO
peuyjepun

jo
esn

ay}
10,

Ajjiqel|
auunsse

jouUeD
d
N
O
Y
D

H
O
L
I
N
A
N
O
D
I
N
I
S

3
H
O
A
O
W
W
N
O
D

:
3
L
O
N

S
3
l
A
9

O
N

“
L
I
N
S
S
Y

O
U
3
Z

H
O
S

G
A
M
O
S
H
O

38
L
S
N
W

H
O
L
V
A
I
N
N
N
I
O
V

S31DA0
‘(ON

_N
HO

3AISNI9X3
A

H3LNIOd
YOVLS

H3d
A
H
O
W
I
W

SW
Q
N
V
A
N
I

SI
DV14

Z
S
G
O
W

I
W
W
I
O
3

NI
41

(p)
9

119
A
H
O
W
S
W

IW
HO

A
SSIUHAAYV

3AIL03443
Yad

A
H
O
W
I
W

WW
"MOUHHOS

=
LON

A
Y
H
V
O

(E)
Z

118
A
M
O
W
A
W

IN
G
N
V

V
Y
O
L
V
I
N
W
N
O
O
V

V
'
3
9
V
d

I
N
3
4
3
4
4
1
Q
0

OL
S
Y
N
I
I
O

H
O
N
V
H
S

Al
.N,,

O
L

2 C

A
V

QG3AlIsIGOW
L
O
N

—
L
O
V
Y
H
L
E
N
S

-
A
X
3
0
N
I

A
‘
A
9
V
d

A
W
V
S

OL
S
H
N
I
I
O

H
O
N
V
H
E

S
I
N
,

OL
I
G
a
v

(2)
aalsıaon

/
aav

+
XX30NI

X
"03SSOUI

SI
A
H
V
A
N
N
O
S

39Vd
I

«N,
OL}

GOV
(1)

=
u

w
u

ot
L

|
2

|86
V
r
A

VAL
c
c
.
.
.

L172
|v6

S+xX
SXL

g
i

ll
L
I

|v8
V
~
X

VXL
_-

0
0

rIe
|vg

xX+-S
XSL

a

ae
L

| 2
jev

A~V
AVL

u

e
n

L
i
z

|
v
w

X
V

X
V
L

-
-
-
-

-
-

z
|v

v6
z|e|vrsle|r

j
o
s

W
A

ALS
—
—
-
—
-
—
—
—

2
|r

196
e|e1|98le|r

|
3
8

N
+
X

XLS
-
—
-

€
|S

|66
G
laslz

| r
|s6

9
16

9
18

z
l
e
ı
s
e
l
e
|
r

jag
N
V

VLS
—
—
<
—

§
—

—
—

L
| 7a

I

I~}
138

=~
D
o

o
u

ı
|

84
a~t

agas
ate

ee
a

oe
L

| 2
|se

|
,

938
.

—-
—-

(d)/rr
€

|
|64

r
|Gs} 2

|v
|Ss

G
|td

9
113

21
€

ssle|r
j
a
a
}
 z

| 2%
63]

W
V
+
-
I
9
-
W
-
V

oas
-—
e
e

L
[9

|09
ans

NHLH
(2

614
985)

SLY
(GaHOLS34)

L|9
|0r

INI
NHLH

(1
614

39S)
ILH

—
A
n

213212
|9

|
L

|z
|valz

|s
|agle

| 9
|39
6

HOH
me

a
l
l

lll
2

|3e|
2

| 9
|9e

ıLIzivelz|s
jozle]9

jaz
LPs

104

(day01S3¥)
L

|»
{82

d-SW
 S-i+Ss

did
n
n

e
g

L
Ir

|89
v-SWw

S
+
1
+
S

Wid
m

e
e

L
| €

|80
S
+
1
-
S

SWw~+d
dHd

—
-
—
-
—
-
—
-
—
—

LIE
|8r

S
+
1
-
S

SWw+-vV
WHd

-
-

-
_

0
0

€
|v

lol
r

[are
|r

Isı
GILL

9
|LO

Z/€
sole

|
r

Jaolz
|

2
|60

V
-
W
A
V

VYO
_
_
_

I
.

L|2
|va

NOILVH3dO
ON

dON
e
e

2
|3s|2

| 9
}9¢

L|Z
lwp]

21S
jor}

e
| 9

lar
9-10

2
-
0

us1
=

et
oe

a
oll

vr |O8| Z|
>

Iva
zje

|pvi
ely

jowl?
| z

j
o
v
y
 (1)

A
~
W

AQ)

—-—-—-—--—
0
r
r
|
z
|
r
|
s
g

€
| +

jaa
Z1€

|OVIE
|»

avl2
|

2
levi

(W
X
W

xQ1

A
Q
t

D
Z

N
I
#
I
N

[dO]

IN
[dO]

IN

Ido}

IN
|dO

N
IdO|

| N

!IdO
N

IdO
N

|dO|

IN
{dO}

IN

IdO|

| N
[dO]

|

N
jdO

IN

[dO
u
o
n
e
i
a
d
o

J
ı
U
o
w
a
u
W
N

$
3
0
0
9

N
O
I
L
I
G
N
O
O
|

A
'aßeg

‘Z2}
yOoupuy

|
aanejay

|
A

“Sqy
X‘sqy

{x
‘abeq

'z|
A(puy)

|
x

(pul)
|

payday
|

‘wnooy
jabeg

0187]
ainjosqy

|ayeıpawui|
S
N
O
I
L
O
N
Y
L
S
N
I

409 Anhang L

6510 SPEICHER-KONFIGURATION

FFFF

ADRESSIERBARER
_ EXTERNER _

_ SPEICHER Pe

T T T
0200
O1FF STACKPOINTER

O1FF = |NITIALISIERT
t | STACK |

| PAGE 1

0100
FF

A PAGE 0
(Zero-Page)

| AUSGABE-REGISTER 0001 _
Fur internen

| Ein-/Ausgabe-Port
on DATENRICHTUNGS-REGISTER 0000 +

Dadurch, daß das Datenregister des I/O-Ports in der Zero-Page liegt, werden die

vorteilhaften Zero-Page-Adressierungsarten noch verstärkt.

Indem die I/O-Pins durch das Datenrichtungsregister als Eingänge geschaltet

werden, hat der Benutzer die Möglichkeit, den Inhalt des Speicherplatzes 0001

durch Peripheriegeräte zu verändern. Diese Möglichkeit im Zusammenhang mit den

Adressierungsbefehlen für die Zero-Page erschließt neue und ungewöhnlich viel-

seitige Programmierungstechniken, die es noch nicht gab.

ACHTUNG:

Der Baustein ist gegen statische Aufladung geschützt, trotzdem sollten Vorkehrun-

gen getroffen werden, damit die Grenzwerte nicht überschritten werden.

410 Anhang L

ANHANG M

6526 COMPLEX INTERFACE ADAPTER (CIA)

BESCHREIBUNG

Der Baustein 6526 ist ein Interface-Adapter, mit dem 65XX-Bus kompatibel, mit

flexiblem Timing und diversen Ein-/Ausgabemöglichkeiten.

BESONDERHEITEN

e 16 einzeln programmierbare Ein-/Ausgabeleitungen

e 8- oder 16-Bit-Datentransport mit Handshaking-Betrieb beim Lesen oder

Schreiben

2 unabhängige, verknüpfbare 16-Bit-Intervalltimer

24-Stunden-(AM/PM)-Zeituhr mit programmierbarem Alarm

8-Bit-Schieberegister für serielle Ein-/Ausgabe

2 TTL-Eingänge können gespeist werden

CMOS-kompatibel

1- oder 2-MHz-Takt

BESTELLUNGSHINWEISE

MXS 6526

MXS 6526

Frequenzbereich

Kein Suffix = 1 MHz

A = 2 MHz

Packet-Bezeichner

C = Keramik

P = Plastik

Anhang M 411

SP

39

[1131181151

PIN-ANORDNUNG
6526

e
l
e
l
l
s
l
i
e
l
b
l
i
e
l
e
l
e
l
e
l
e
l
e
l
s
l
e
l
e
l
t
e
l
e
l
e
l
t
s
]

N

oO
nm

r

N

N

wt
w

N

a
<

<
<

<
<

<
<

oy
eal

ns)
a

co
O

mS
Q

>
a

a
a

a
a

a
i
a

2
a2

a
a

2
2

92
©

oO
Ss

Anhang M 412

6526

BLOCKSCHALTBILD

Do-D7

O
[DATA BUS BUFFERS |

7
|

PA

PRA | gurrins K_> PAo-PA7

 Sp SERIAL
SP «>| guypreR [* | port K _ on

DORA
’

CNT <——>_ N Bu en > PC BUFFER |

PB
— J bo PRE BUFFERS Ks PBo-PB7

— , mo 1, To
u BUFFER ALARM _ 2 wu‘

DDRB

=

>] TIMER B
| el —

=‘

~~~ | CRB 

FLAG BUFFER 

vy VY \ = 
— ——>7 TIMER A 

— IRQ INT/ 
IRQ BUFFER MASK 4 A 

CRA                   
  

CHIP ACCESS CONTROL 

Mit 
R/W 92 CS RS3 RS2 RS1 RSO RES 

    

Anhang M 413



MAX. NENNWERTE 

Versorgungsspannung Vcc —-0,3V bis +7,0V 

Ein-/Ausgangsspannung Vin -0,3V bis +7,0V 

Betriebstemperatur Top 0° C bis 70° C 

Lagertemperatur Tstc —55° C bis 150° C 

Alle Eingänge haben Schutzschaltungen, um Schäden durch hohe statische Entla- 

dungen zu vermeiden. Spannungen uberhalb der zulassigen Grenzwerte sollten 

jedoch nur wenn unbedingt notwendig und mit auBerster Vorsicht angelegt werden. 

KOMMENTAR 

Spannungen, die über den angegebenen max. Nennwerten liegen, können zu 

Schäden oder Beschädigungen des Geräts führen. Unter “max. Nennwerte” sind 

nur Spannungswerte aufgeführt. Wird das Gerät mit höheren als angegebenen 

Spannungen betrieben oder werden über einen längeren Zeitraum die max. Nenn- 

werte gewählt, kann dies die Gerätezuverlässigkeit beeinträchtigen. 

ELEKTRISCHE EIGENSCHAFTEN 
(Vcc + 5%, Vss = 0 V, Ta = 0—70° C) 

  

  

  

  

  

CHARACTERISTIC SYMBOL MIN. TYP.| MAX.| UNIT 

Input High Voltage Vin | +2.4) — Vec V 

Input Low Voltage Vir I-0.3| — — V 

Input Leakage Current; lin on 1.0 2.5 BLA 

Vin=Vss +5V 

(TOD, R/W, FLAG, #2, 

RES, RSO-RS3, CS)             
  

414 Anhang M



  

  

  

  

  

  

  

  

  

  

    

CHARACTERISTIC SYMBOL] MIN.| TYP. | MAX. | UNIT 

Port Input Pull-up Resistance Rpı 3.1 | 5.0 | — KO 

Output Leakage Current for Irsı — |+1.0/+10.0| pA 

High Impedance State (Three 

State); Vin = 4V to 2.4V; 

(DBO—DB7, SP, CNT, IRQ) 

Output High Voltage Vou +2.4 ne Vec V 

Vec=MIN, loan S __ 
—200wA (PAO—PA7, PC 

PBO-PB7, DBO-DB7) 

Output Low Voltage Vor | — — |+0.40| V 

Vec= MIN, lLoaD < 3.2 mA 

Output High Current (Sourcing); lon |—200+-1000) — WA 

Von > 2.4V (PAO—PA7, 

PBO-PB7, PC, DBO-DB7 

Output Low Current (Sinking); lon | 3.2 | — — mA 

Vor < .4V (PAO-PA7, PC, 

PBO-PB7, DBO-DB7) 

Input Capacitance Cw | — 7 10 pf 

Output Capacitance Cour | — 7 10 pf 

Power Supply Current lec | — 70 100 | mA             

Anhang M 

  

415



e
e
 
—
—
—
 

 
 

  
 
 

 
 

 
 

Y
 

HQL 
e
n
 

— 
 
 

 
   

 
 

 
 

 
 

  
 
 

  
 
 

 
 

 
 

 
 
 
 

 
 

 
 

  
 
 

 
 

 
 

 
 

  
  

 
 

  
 
 

 
 

ei 
— 

HMO] 
SMY| 

—
a
 

—
 

n
e
 

HOV, 
—
a
 

sav, 
r
e
 

ab 
S
O
M
,
 

ie 

X 

M
1
9
 

>
 

JAD] 

N
A
N
V
Y
O
V
I
G
-
D
N
I
N
L
L
-
S
I
3
4
H
D
S
 

9259 

0
9
0
.
2
9
0
 

Ni 
V
i
v
a
 

W
U
 

OSUY-ESU 

SO 

L
A
O
 
V
i
v
a
 

I
V
Y
3
H
d
I
H
3
d
 

INdNI 
28 

Anhang M 416



 
 

 
 

  
 
 

 
 

  
 
 
 
 

 
 

 
 

  
 
 

 
 

  
 
 

 
 

  
 
 

 
 

 
 

 
 

 
 

 
 

  
 
 

 
 

 
 

s
a
 

> 
<
<
 II 

| —
—
—
_
»
|
 

L
L
L
»
,
 

I
I
I
T
 

>
 

P
e
n
 

HMd 
| 

+
 

— 
00, 

—
>
]
 

X
 

K 
e
a
t
 

— 
Hav, 

savy, 

d
 

S
O
M
,
 

\
 >
 

Sdj 
—
 

N
 

wi 
  

N
N
V
Y
D
V
I
A
-
O
N
I
N
I
L
-
3
S
3
7
 

9259 

0
8
0
.
2
9
0
 

LNO 
vLvQ 

NI 
A
H
O
d
 

INdNI 
29 

417 Anhang M



6526 PINBELEGUNG 

®2-TAKTEINGANG 

TTL-kompatibler Takteingang zur Steuerung der internen Funktionen und ein 

Timing-Bezug für die Kommunikation mit dem Systemdatenbus. 

CS-CHIP SELECT 

Der Baustein reagiert nur dann auf die Steuereingänge RS und R/W, wenn dieser 

Eingang auf Low und der Takt auf High liegt. 

R/W READ/WRITE 

Das R/W-Signal wird normalerweise vom Prozessor erzeugt und kontrolliert die 

Richtung des Datentransportes. R/W = High bedeutet, daß die Daten aus dem 6526 

gelesen werden können, bei Low können Daten hineingeschrieben werden. 

RS3-RS0-AdreBeingange 

Damit werden die internen Register angesprochen (siehe Registerbelegung Seite 

420). 

DB7-BDO-Datenbus, Ein-/Ausgange 

Diese Pins verbinden den Chip mit dem Systemdatenbus und sind hochohmig, 

auBer wenn CS Low, R/W und 02 High liegen, um Daten aus dem 6526 zu lesen. 

Dann sind die Datenausgangsbuffer aktiviert und ubertragen die Daten vom ausge- 

wahlten Register an den Bus. 

IRQ INTERRUPT REQUEST AUSGANG 

Dies ist ein “open-drain“-Ausgang, der normalerweise mit dem Interrupteingang 

des Prozessors verbunden ist. Durch den externen Pullup-Widerstand ist es 

möglich, mehrere IRQ-Ausgänge miteinander zu verbinden. Wie dieser Ausgang 

aktiviert (auf Low gezogen) werden kann, wird im Folgenden noch beschrieben. 

418 Anhang M



RES RESET-EINGANG 

Wenn dieser Eingang Low-Pegel hat, werden alle internen Register gelöscht. Die 

Ports werden als Eingänge und die Portregister auf Null geschaltet (obwohl die Ports 

durch die Pullup-Widerstände als High gelesen werden würden). Die Intervalltimer- 

register werden auf Null und die Latches auf Eins gesetzt. Alle anderen Register 

werden auf Null gesetzt. 

6526 TIMING-CHARAKTERISTIKEN 

  

  

  

  

  

IMHz 2MHz 

Symbol | Characteristic MIN | MAX MIN MAX Unit 

&2 Clock 

Teyc |Cycle Time 1000 | 20,000 | 500 | 20,000 ns 

Tr, Tr |Rise and Fall Time — 25 ze 25 en 

Tcenw  |Clock Pulse Width 

(High) 420 |10,000 | 200 | 10,000 | ns 
Teıw  |Clock Pulse Width | 

(Low) 420 | 10,000 | 200 | 10,000 ns 

Write Cycle 

Tpp Output Delay 
From $2 — 1000 — 500 ns 

Twes CS low 

while @2 high 420 — 200 — ns 

Taps Address Setup Time | O — 0 BE AS 

Tapy |Address Hold Time | 10 — 5 — ns 

Taws |R/W Setup Time 0 — 0 — fig 

Taw |R/W Hold Time 0 — 0 — nis 

Tos Data Bus Setup 

Time 150 — 75 — ns 

ToH Data Bus Hold Time | 0 — 0 — ns 

Read Cycle 

Tps Port Setup Time 300 — 150 — ns 

Twes(2)|CS low 
while @2 high 420 — 20 — ns 

Taps |Address Setup Time | O oo 0 — ns 

TapH |Address Hold Time | 10 — 5 = ns 

Taws |R/W Setup Time 0 — 0 — ne 

TawH R/W Hold Time 0 — 0 aan ns                 
Anhang M 419



  

  

  

                

  

  

max and Voy min on outputs. 

Symbol | Characteristic MIN | MAX MIN MAX Unit 

Tacc Data Access from 

RS3-RSO — 550 — 275 ns 

Tco(3) |Data Access from 
cs — 320 | — 150 ns 

Tor Data Release Time | 50 — 25 — ris 

NOTES: 1—Alll timings are referenced from Vy, max and Viy min on inputs and Vo. 

2—Tweces is measured from the later of &2 high or CS low. CS must be low at 

least until the end of &2 high. 

3—Tco is measured from the later of &2 high or CS low. 

Valid data is available only after the later of Taco or Too. 

  

REGISTERBELEGUNG 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                

RS3 | RS2| RS1} RSO| REG NAME 

0 0 0 0 O |PRA PERIPHERAL DATA REG A 

0 0 0 1 1 | PRB PERIPHERAL DATA REG B 

0 0 1 0 2 |DDRA DATA DIRECTION REG A 

0 0 1 1 3 | DDRB DATA DIRECTION REG B 

0 1 0 0 4 |TA LO TIMER A LOW REGISTER 

0 1 0 1 5 |TA HI TIMER A HIGH REGISTER 

0 I 1 0 6 |TB LO TIMER B LOW REGISTER 

0 1 ] 1 7 |TBHI TIMER B HIGH REGISTER 

1 0 0 0 8 |TOD10THS | 10THS OF SECONDS REGISTER 

1 0 0 1 9 |TOD SEC SECONDS REGISTER 

1 0 1 0 | A ‚TOD MIN | MINUTES REGISTER 

1 0 1 1 B |TOD HR HOURS—AM/PM REGISTER 

1 1 0 0 C |SDR SERIAL DATA REGISTER 

1 1 0 1 D |ICR INTERRUPTCONTROL REGISTER 

1 1 1 0 E |CRA CONTROL REG A 

1 1 1 F |CRB CONTROL REG B 
  

420 Anhang M 

  

  

 



FUNKTIONSBESCHREIBUNG 

Ein-/Ausgangsports (PRA, PRB, DDRA, DDRB) 

Jeder der beiden Ports A und B bestehen aus einem 8-Bit-Datenregister (PRA bzw. 

PRB) und einem Datenrichtungsregister (DDRA bzw. DDRB). Ist eines der Bits im 

DDR Eins gesetzt, wird das entsprechende Bit im PR ausgegeben; ist das Bit im 

DDR Null, wird das entsprechende Bit als Eingang geschaltet. Beim Lesen stellt das 

PR das am Ausgang (PAO-PA7, PBO-PB7) gültige Bit dar, unabhängig davon, ob der 

betreffende Pin als Ausgang oder Eingang geschaltet ist. Beide Ports sind sowohl 

TTL- als auch CMOS-kompatibel (durch aktive und passive Pullup-Elemente) und 

können zwei TTL-Einheiten treiben. Zusätzlich zur normalen Funktion übernehmen 

PB6 und PB7 die Funktion eines Intervalltimer-Ausgangs. 

Handshaking 

Dieses Datenübertragungsverfahren kann durch Benutzung des Ausgangs PC und 

des Eingangs FLAG realisiert werden. PC wird für einen Taktzyklus Low geschaltet, 
wenn in PRB ein- oder ausgelesen wurde. Dieses Signal kann also als “data 

ready"- oder “data accepted“ -Signal fur PRB benutzt werden. (Bei 16-Bit-Daten- 

übertragungen [mit PRA und PRB] würde also PRA zuerst gelesen werden). Der 

FLAG-Eingang reagiert auf negative Flanken. Mit ihm kann das PC-Signal von 

einem anderen 6526 empfangen werden, oder er wird als Interrupteingang benutzt. 

Jede negative Flanke an FLAG setzt das Flag-Interrupt-Bit 4. 

  

  

  

  

  

              

REG| NAME D, | D, Id | D, | D, | D, | D, | D, 

0 PRA PA, |PAg |PAs |PA, |PA3 |PA, |PA, | PA, 

PRB PB, |PB, |PB, |PB, |PB3; | PB, |PB, | PB, 

2 DDRA DPA, | DPA, | DPA; | DPA, | DPA, | DPA, | DPA, | DPA, 

3 DDRB DPB, | DPB, | DPB, | DPB, | DPB, DPB, DPB, | DPB,             

INTERVALL-TIMER (TIMER A, TIMER B) 

Beide bestehen aus je einem 16-Bit-Intervalltimer (nur Lesen) und einem 16-Bit- 

Latch (nur Schreiben). Beim Schreiben werden die Daten in das Latch geschrieben, 

während beim Lesen der Inhalt des Intervalltimers angezeigt wird. Die Timer 

können sowohl unabhängig voneinander als auch zusammen benutzt werden. Die 

verschiedenen Betriebsarten erlauben Zeitverzögerungen, variable Impulslängen, 

Impulsfolgen und Signale unterschiedlicher Frequenz. 

Anhang M 421



Mit dem Eingang CNT können die Zähler externe Impulse zählen und Frequenzen, 

Impulslängen und Verzögerungszeiten messen. Jeder Zähler hat ein eigenes 

Kontrollregister zur unabhängigen Überwachung folgender Funktionen: 

START/STOP 

Ein Kontrollbit (cb) ermöglicht dem Prozessor, den Zähler zu jeder Zeit zu starten 

und zu stoppen. 

PB ON/OFF 

Ein Kontrollbit steuert die Ausgabe des Zählerüberlaufs an Port B (PB6 für Timer A, 

PB7 für Timer B). Dieses Bit überschreibt das DDRB-Kontrollbit und schaltet den 

entsprechenden Pin auf Ausgang. 

TOGGLE/PULSE 

Ein Kontrollbit bestimmt die Art des Ausgangssignals, das an Port B erscheint. Am 

Ende jedes Zählerzyklus (underflow) kann der Ausgang entweder von Low nach 

High und umgekehrt wechseln, oder ein einzelner positiver Impuls (Länge: 1 

Taktzyklus @2) erzeugt werden. Der Toggle-Ausgang wird auf High gesetzt, wenn 

der Zähler gestartet wird. Durch RES auf Low gesetzt. 

ONE SHOT/CONTINUOUS 

Ein Kontrollbit wählt eine der beiden Betriebsarten. Im One-Shot-Modus wird von 

dem Wert im Latch bis Null gezählt, ein Interrupt erzeugt, der Wert erneut geladen 

und der Zähler gestoppt. Im Continuous-Modus wird nicht gestoppt, sondern dieser 

Vorgang kontinuierlich wiederholt. 

FORCE LOAD 

Dieses Strobe-Bit erzwingt, daß der Inhalt des Latches in den Zeitzähler geladen 

wird, unabhängig davon, ob der Zähler läuft oder nicht. 

422 Anhang M



INPUT-MODE 

Kontrollbits erlauben die Auswahl des Taktes, der zur Dekrementierung des Zählers 

benutzt wird. Timer A kann ®2-Taktimpulse oder externe Impulse über CNT zählen. 

Timer B kann zusätzlich “underflow“-Impulse des Timers A zählen. Zusätzlich 

besteht eine Steuermöglichkeit über den Pin CNT. Der Inhalt des Latches wird bei 

jedem Zählerunterlauf, “force load“ oder nach einem Schreiben des H-Byte des 

Latches (bei angehaltenem Zähler) in den Zähler übernommen. Wenn der Zähler 

läuft, bewirkt das Schreiben des H-Bytes nur ein Laden des Latches, kein Laden 

des Zählers. 

LESEN (TIMER) 
REG NAME 

TALO | TAL, | TAL, | TAL, | TAL, | TAL3 | TAL, | TAL, | TALy 

TA HI | TAH,) TAH,| TAH, | TAH,| TAH;| TAH,| TAH,| TAH, 

  

  

  

                        

4 

5 

6 TB LO | TBL, | TBL, | TBLs | TBL, | TBL3-| TBL, | TBL, | TBLo 

7 TB HI | TBH,| TBH, | TBH, | TBH, | TBH3| TBH, | TBH,| TBH, 
  

SCHREIBEN (VORTEILER) 

REG NAME 

TA LO | PAL, |PAL, |PAL, |PAL, | PAL3 | PAL, | PAL, | PAL, 

TA HI | PAH, | PAH, | PAH, | PAH, | PAH3 | PAH, | PAH,| PAH, 

  

  

  

  

4 

5 

6 TBLO | PBL, |PBl, |PBL, |PBL, |PBL3 | PBL, | PBL, | PBL, 

7 TB HI | PBH; |PBH, |PBH; |PBH, |PBH; | PBH, | PBH, | PBH,                         

UHRZEIT (TOD — Time Of Day) 

Die TOD-Clock ist ein spezieller Zahler fur Echtzeitanwendungen. Sie besteht aus 

einer 24-Stunden-Uhr mit einer Auflosung von 1/10-Sekunden. Sie ist in 4 Register 

aufgeteilt: | 

1/10-Sekunden, 

Sekunden, 

Minuten, 

Stunden. 
Das AM/PM-Flag ist das MSB des Stundenregisters, um das Lesen zu vereinfa- 

chen. Jedes Register wird im BCD-Code gelesen, damit die Konvertierung für das 

Anhang M 423



Betreiben von Anzeigegeraten vereinfacht wird. Die Uhr benötigt einen Takt mit 50 

Hz oder 60 Hz (programmierbar) mit TTL-Pegel. Ein programmierbarer ALARM ist 

dafür vorgesehen, einen Interrupt zu einer bestimmten Zeit auszulösen. Die zuge- 

hörigen Register liegen auf den gleichen Adressen wie die Register der Uhr, der 

Zugriff auf die ALARM-Register erfolgt über ein Bit im Kontrollregister. In die 

ALARM-Register kann nur geschrieben werden; ein Leseimpuls auf die Adressen 

der TOD-Register ergibt immer die Zeit, unabhängig vom Zustand des ALARM- 

Kontrollbits. 

Um die Zeit zu lesen oder zu setzen, muß eine bestimmte Reihenfolge eingehalten 

werden. TOD wird automatisch gestoppt, wenn ein Schreibimpuls für die Stunden- 

register gültig wird, und wird erst wieder gestartet, nachdem in die 1/10-Sekunden- 

Register geschrieben wurde. Dies stellt sicher, daß TOD immer mit der gewünsch- 

ten Zeit gestartet wird. Da ein Übertrag von einem Register zum nächsten sich auch 

während eines Lesezyklus ereignen könnte, werden während eines Lesezyklus alle 

Registerinhalte konstant gehalten (gelatcht). Alle vier Register werden gespeichert, 

sobald die Stunden gelesen werden, und bleiben gespeichert, bis die 1/10- 

Sekunden gelesen wurden. Erst danach zeigen die Register die aktuellen Werte. 

Wenn nur ein Register gelesen werden soll, gibt es kein Problem mit dem Übertrag. 

Das Register kann sofort gelesen werden. Nach dem Stunden-Register muß aber 

immer das 1/10-Sekunden-Register gelesen werden, um die Verriegelung aufzu- 

heben. 

  

  

  

                          

LESEN 
REG NAME 

8 | TOD 10THS| 0 0 0 0 Ts | Ts | To | T; 
9 |TOD SEC |0 | SH, | SH. | SH, | Sle | SL, | SL | SL, 
A |TOD MIN 0 | MH, |MH,| MH,| ML, | ML, | ML, | ML, 
B |TOD HR |pm|o 0 HH | HL, | HL, | HL, | HL, 

SCHREIBEN 

CRB,=0 TOD 
CRB7=1 ALARM 

(Gleiches Format wie LESEN) 

424 Anhang M



SERIELLER PORT (SDR) 

Dies ist ein gebuffertes, synchrones, 8 Bit breites Schieberegistersystem. Ein 

Kontrollbit wählt entweder Ein-/oder Ausgabemodus. Im Eingabemodus werden die 

Daten vom Pin SP, gesteuert durch positive Taktflanken am Pin CNT, in ein 

Schieberegister geschoben. Nach 8 Impulsen am Eingang CNT werden die Daten in 

das serielle Datenregister übernommen, und ein Interrupt wird erzeugt. Wird dieser 

Port als Ausgang benutzt, bestimmt Timer A die Baudrate. Die Daten werden mit 1/2 

der Underflowrate von Timer A an Pin SP herausgeschoben. Die größte mögliche 

Baudrate ist ©2/4; sie wird aber durch Kabelkapazitäten und der Geschwindigkeit, 

mit der der Empfänger auf den Dateneingang reagiert, begrenzt. 

Die Übertragung beginnt, nachdem in das serielle Datenregister geschrieben wurde 

(vorausgesetzt, Timer A läuft im Modus CONTINUOUS). Das Taktsignal von Timer 

A erscheint als Ausgangssignal an Pin CNT. Die Daten aus dem seriellen Datenregi- 

ster werden in das Schieberegister übernommen und ausgegeben, wenn an CNT 

ein Impuls erscheint. Die Ausgabe wird mit der negativen Flanke von CNT gültig und 

bleibt gültig bis zur nächsten negativen Flanke. Nach 8 Impulsen an Pin CNT wird 

ein Interrupt erzeugt, um anzuzeigen, daß die nächsten Daten übertragen werden 

können. Falls das serielle Datenregister vor diesem Interrupt mit neuen Daten 

geladen wurde, werden diese automatisch in das Schieberegister geladen, und die 

Übertragung wird fortgesetzt. Falls also der Prozessor das Schieberegister rechtzei- 

tig nachlädt, ist die Übertragung kontinuierlich. Wenn keine Daten mehr übertragen 

werden sollen, erscheint nach 8 Impulsen an CNT an diesem Ausgang ein H-Pegel, 

und Pin SP bleibt auf dem Pegel, der dem zuletzt übertragenen Bit entspricht. 

SDR gibt zuerst das MSB aus, diese Reihenfolge sollte auch bei der Eingabe 

verwendet werden. Weil die benutzten Pins bidirektional sind, können viele 6526- 

Bausteine auf einen seriellen Bus zusammengeschaltet werden, wobei einer der 

Bausteine als Master, der Daten und Takt ausgibt, und alle anderen als Slaves 

fungieren. Deshalb sind diese Pins “open-drain“-Schaltungen. Die Vorschrift fur 

Verteilung von Master-/Slavefunktion kann über den seriellen Bus oder spezielle 

Leitungen übertragen werden. 

REG NAME 
  

C | SDR ss | Ss | Ss | Se | Ss | S2 | Si | So 
                        

Anhang M 425



INTERRUPT CONTROL (ICR) 

Es gibt 5 mögliche Quellen für einen Interrupt: Underflow von Timer A oder B; TOD 

ALARM; serieller Port voll/leer und FLAG. 
Die Maskier- und Interruptinformationen sind in einem Register zusammengefaßt. 

Das INTERRUPTKONTROLLREGISTER besteht aus einem Maskenregister, in das 

nur hineingeschrieben werden kann, und einem Datenregister, das nur gelesen 

werden kann. Jeder Interrupt setzt ein entsprechendes Bit im Datenregister. Wird 

der Interrupt durch das Maskenregister nicht gesperrt, wird das MSB des Datenregi- 

sters gesetzt (IR-Bit) und der Pin IRQ Low geschaltet. Sind mehrere 6526 zusam- 

mengeschaltet, können die IR-Bits abgefragt werden, um festzustellen, welcher 

Baustein den Interrupt ausgelöst hat. Nachdem das Datenregister gelesen wurde, 

wird es gelöscht und IRQ High gelegt. Da das Datenregister unabhängig vom 

Maskenregister gesetzt wird und jedes Interruptbit einzeln maskiert werden kann, 

um einen Interrupt zu verhindern, ist es möglich, Interruptanforderungen und 

ausgeführte Interrupts zu mischen. | 

Wenn das Bit IR abgefragt wird, wird das Datenregister gelöscht, die Informationen 

müssen also vom Benutzer gerettet werden. 

Das Maskenregister ermöglicht eine einfache Steuerung der Maskierung. Wenn 

man in das Register schreibt und das 7. Bit der geschriebenen Daten (SET/CLEAR) 

O ist, werden alle Bits, die 1 gesetzt sind, gelöscht, während die Bits, die O sind, 

nicht beeinflußt werden. Falls das 7. Bit der geschriebenen Daten 1 ist, wird jedes 

Maskierungsbit, das 1 ist, gesetzt, während diejenigen, die O sind, nicht berührt 

werden. Damit IR gesetzt werden und ein Interrupt ausgelöst werden kann, muß das 

korrespondierende Maskierungsbit gesetzt sein. 

LESEN (INT DATA) 

REG NAME 
  

                    
D ICR IR 0 0 FLG | SP | ALRM|TB | TA 

    

SCHREIBEN (INT MASK) 

REG NAME 
  

D | ICR sic | X X FLG | SP | ALRMITB | TA 
                        

426 Anhang M



STEUERREGISTER 

Der 6526 hat zwei Steuerregister: CRA und CRB. CRA ist mit TIMER A und CRB mit 

TIMER B verbunden. Es gilt folgendes Registerformat: 

CRA: 

Bit Name 

0 START 

1 PBON 

2 OUTMODE 

3 RUNMODE 

4 LOAD 

5 INMODE 

6 SPMODE 

7 TODIN 

CRB: 

Bit Name 

5,6 INMODE 

7 ALARM 

Funktion 

1=START TIMER A, O=STOP TIMER A. Dieses Bit wird 

automatisch ruckgestellt, wenn es im one-shot-mode zu 

einem Unterlauf kommt. 

1=TIMER AUSGABE A liegt an PB6 an, O=PB6 Normalbe- 

trieb. 

1=TOGGLE, O=PULS 

1=ONE-SHOT, O=KONTINUIERLICH 

1=FORCE LOAD (dies ist eine STROBE-Eingabe. Es erfolgt 

keine Datenspeicherung, Bit 4 liest stets eine 0, und das 

Schreiben einer O hat keinen Einfluß). 

1=TIMER A zählt positive CNT-Übergänge, O=TIMER A 

zählt ®2-Impulse. 

1=AUSGABE SERIELLER PORT, O=SERIELLER PORT 

(externer Taktgeber erforderlich). 

1=50-Hz-clock am TOD-Pin ergibt korrekte Uhrzeit. 

0=60-Hz-clock am TOD-Pin ergibt korrekte Uhrzeit. 

Funktion 

(Bits CRBO-CRB4 entsprechen CRAO—CRA4 von TIMER 

B. Bit 1 steuert jedoch die TIMER-Ausgabe B auf PB7.) 

Bits CRB5 und CRB6 wählen eine der vier Eingabemodi von 

TIMER B: 
CRB6 CRB5 

0 0 TIMER B zählt ©2-Impulse. 

0 1 TIMER B zählt positive CNT-Über- 

gänge. 

1 0 TIMER B zählt Unterlauf-Impulse 

von TIMER A. 

1 1 TIMER B zählt Unterlauf-Impulse 

von TIMER A, während CNT 

H-Pegel hat. 

1=ALARM setzen durch Schreiben in TOD-Register, 

0=TOD-clock setzen durch Schreiben in TOD-Register. 

Anhang M 427



TOD SP IN RUN OUT 
REG NAME IN MODE MODE LOAD MODE MODE PBON START 

  

                      
  
  

  

                    

E CRA 0=60Hz | O=INPUT |0=&2 1=FORCE | 0=CONT.| O=PULSE | O=PBgOFF | O=STOP 

LOAD 

1=50Hz | 1=OUTPUT| I=CNT | (STROBE) | 1=O.S. | 1=TOGGLE| 1=PB, ON | 1=START 

L TA ___| 

RUN OUT 

REG NAME ALARM IN MODE LOAD MODE MODE PBON START 

F CRB 0=TOD 0 0=2 1=FORCE | 0=CONT. | O=PULSE O=PB, OFF | 0=STOP 

1 1=CNT LOAD 

1 0=TA 

l= 1 1=CNT:TA| (STROBE) | 1=0.S. 1=TOGGLE | 1=PB, ON |1=START 

ALARM 

L TB J 
  

  
  

Alle nicht benutzten Register-Bits werden durch das Schreiben nicht beeinflußt und 

beim Lesen auf Null gesetzt. 

  
Änderungen vorbehalten. COMMODORE SEMICONDUCTOR GROUP übernimmt keinerlei Verant- 

wortung für Schäden, die aus der Anwendung der hier beschriebenen Produkte oder Schaltungen 

entsteht. Es werden keinerlei Lizenzen hinsichtlich der Patentrechte oder anderer Rechte erteilt.     
  

428 Anhang M



ANHANG N 

6566/6567 VIDEO-INTERFACE-CONTROLLER (VIC-I) 
CHIP SPECIFICATIONS 

Beschreibung 

Die Bausteine 6566 und 6567 sind Mehrzweck-Farb-Video-Bausteine sowohl für 

den Einsatz in Computer-Videoterminals als auch in Videospielen. Sie enthalten 47 

Kontrollregister, auf die über einen normalen 8-Bit-Mikroprozessorbus (65XX) 

zugegriffen werden kann, und können auf bis zu 16KB RAM zugreifen, um Videoin- 

formationen abzulegen. 

Im Folgenden werden die verschiedenen Betriebsarten und deren Optionen be- 

schrieben. 

ZEICHENDARSTELLUNGSMODUS 

In dieser Betriebsart holt der Baustein Characterzeiger aus dem VIDEO-MATRIX- 

Bereich des Speichers und übersetzt diese in die Adresse der Punktmatrix des 

Zeichens, welche sich in dem 2048 Byte großen CHARACTER-BASE-Bereich des 

Speichers befindet. Die Videomatrix umfaßt 1000 aufeinanderfolgende Speicher- 

plätze, welche alle einen 8-Bit-Characterzeiger enthalten. Die Plazierung der Video- 

matrix im Speicher wird durch VM13-VM10 in Register 24 ($18) festgelegt. Diese 4 

Bit bilden die 4 MSB der Videomatrixadresse. Die 10 unteren Bits werden von 

einem internen Zähler bereitgestellt, der die 1000 Zeichenspeicherplätze durch- 

zählt. Man beachte, daß die Bausteine nur 14 Adreßausgänge haben, deshalb ist 

zusätzliche Systemhardware notwendig, um den gesamten Speicherbereich des 

Systems ansprechen zu können. 

ZEICHENZEIGERADRESSE 

A13| A12| A11| A10|A09 |A08 | A07 | A06 | A05 | A04 | A03 | A02 | A01 | Aoo 
  

    VMI3lvmı2lvm1ılvmiolvco vce ve | vce |vcs | vc4 Ivca vc2 vcı |vco 

Anhang N 429



Die 8 Bit langen Characterzeiger erlauben, daB bis zu 256 verschiedene Zeichen 

gleichzeitig verfugbar sind. Jedes Zeichen ist im Character-Base-Bereich als 8x8- 

Punktematrix in 8 aufeinanderfolgenden Bytes abgelegt. Die Plazierung der Charac- 

ter-Base wird durch CB13-CB11 im Register 24 ($18) festgelegt, diese bilden die 3 

MSB der Adresse. Die 11 unteren Bits werden aus dem Characterzeiger (8 Bit) aus 

der Videomatrix, der ein bestimmtes Zeichen definiert, und einem 3-Bit-Rasterzah- 

ler (RC2-RCO), der eines der 8 Zeichenbytes auswählt, gebildet. Die resultierenden 

Zeichen werden in 25 Zeilen zu jeweils 40 Zeichen zusammengefaBt. Zusatzlich 

zum Characterzeiger gehört zu jeder Stelle der Videomatrix ein 4-Bit-FARBNYBBLE 

(der Videomatrixspeicher muB also 12 Bit breit sein), welcher eine von 16 verschie- 

denen Farben fur jedes Zeichen einzeln auswählt. 

ZEICHENDATENADRESSE 

A13| A12| A11lA1O| A09 | A08 | A07| A06| A05 | A04 | A03 | A02 | A01 | A00 
  

€B13|cB12\cB11|D7 | D6 | D5 | D4 | D3 | D2 | DI | DO | RC2| RC1 | RCO 

Betriebsart “STANDARDZEICHEN“ (MCM=BMM=ECM=0) 

In dieser Betriebsart werden die 8 aufeinanderfolgenden Bits der Character Base 

direkt als die 8 Zeilen des Zeichens dargestellt. Bei einer O wird die Hintergrund- 

farbe #0 (aus Register 33 ($21)), bei einer 1 die Farbe, die durch das Farbnybble 

bestimmt wird, dargestellt (siehe Farbcodetabelle). 

  

    

FUNKTION ZEICHENBIT FARBANZEIGE 

Hintergrund 0 Hintergrundfarbe #0 (Register 33 ($21)) 

Vordergrund 1 Durch 4-Bit-Farbnybble gewählte Farbe 
  

Somit hat jedes Zeichen eine Farbe (festgelegt durch das Farbnybble), und 

alle Zeichen haben die gleiche Hintergrundfarbe. 

430 Anhang N



Betriebsart “MEHRFARBIGE ZEICHEN“ 
(MCM=1, BMM=ECM=0) 
Diese Betriebsart ermöglicht es, vierfarbige Zeichen mit geringer Auflösung darzu- 

stellen. Sie wird eingeschaltet, wenn das Bit MCM in Register 22 ($16) 1 gesetzt 

wird, wodurch die in der Character Base gespeicherten Daten unterschiedlich 

interpretiert werden. Ist das MSB des Farbnybbles 0, wird das Zeichen wie bei der 

Betriebsart “Standardzeichen“ dargestellt. Dies erlaubt es, die beiden Betriebsar- 

ten zu mischen, es sind jedoch nur die 8 ersten Farben darstellbar. Wenn das MSB 

des Farbnybbles 1 ist (falls MCM:MSB(CM)=1), werden immer je 2 Bits folgender- 

maßen interpretiert: 

  

    

CHARACTER 

FUNCTION BIT PAIR COLOR DISPLAYED 

Background 00 Background #0 Color 

(register 33 ($21)) 

Background 01 Background #1 Color 

(register 34 ($22)) 

Foreground 10 Background #2 Color 

(register 35 ($23)) 

Foreground 11 Color specified by 3 LSB 

of color nybble 

Da immer 2 Bits benötigt werden, um einen Punkt zu beschreiben, wird das Zeichen 

jetzt als 4x8-Punktematrix dargestellt, wobei jeder Punkt doppelt so breit ist wie im 

Normalbetrieb. Man beachte, daß jedes Zeichenfeld jetzt 4 Farben beinhalten kann, 

2 als Vordergrund, 2 als Hintergrund (siehe MOB-Prioritat). 

Betriebsart “ERWEITERTE FARBE“ (ECM=1, BMM=MCM=0) 

Diese Betriebsart erlaubt es, für jedes einzelne Zeichen mit einer Auflösung von 

8x8 Punkten eine von 4 Hintergrundfarben auszuwählen. Diese Betriebsart wird 

eingeschaltet, wenn das Bit ECM des Registers 17 ($11) 1 gesetzt wird. Die 

Punktmatrix des Zeichens wird genauso wie bei der Betriebsart “Standardzeichen“ 

dargestellt (durch eine 1 wird die durch das Farbnybble bestimmte Vordergrund- 

farbe dargestellt), aber die 2 MSB des Characterzeigers bestimmen die Hinter- 

grundfarbe des Zeichens nach folgendem Schema: 

Anhang N 431



  

  

CHARACTERZEIGER u 
MSB-PAAR HINTERGRUND-FARBE FUR BIT 0 

00 Hintergrundfarbe #0 (Register 33 ($21)) 

01 Hintergrundfarbe #1 (Register 34 ($22)) 

10 Hintergrundfarbe #2 (Register 35 ($23)) 

11 Hintergrundfarbe #3 (Register 36 ($24)) 
  

Da die 2 MSB des Characterzeigers zur Auswahl der Hintergrundfarbe gebraucht 

werden, können nur noch 64 verschiedene Zeichen dargestellt werden. Der Bau- 

stein interpretiert CB10 und CB9 unabhängig vom Characterzeiger als 0, so daß nur 

die ersten 64 Zeichen dargestellt werden können. 

In dieser Betriebsart kann für jedes Zeichen eine der 16 Vordergrundfarben und 

eine von 4 verfügbaren Hintergrundfarben bestimmt werden. 

  

Anmerkung: Die beiden Betriebsarten “Mehrfarbige Zeichen“ und “Erweiterte Farbe“ sollten nicht 

gleichzeitig eingeschaltet werden.       

BIT MAP MODUS 

In dieser Betriebsart holt der Baustein Daten auf eine andere Art und Weise aus 

dem Speicher und stellt sie so dar, daß eine direkte Beziehung zwischen dem 

dargestellten Punkt und dem Bit im Speicher besteht. Diese Betriebsart verfügt über 

eine Auflösung von 320 Punkten horizontal und 200 Punkten vertikal. Sie wird 

eingeschaltet, indem das Bit BMM im Register 17 ($11) 1 gesetzt wird. Auf die 

Videomatrix wird noch genauso wie bei der Zeichendarstellung zugegriffen, aber ihr 

Inhalt wird jetzt nicht mehr als Characterzeiger, sondern als Farbinformation inter- 

pretiert. Der Videomatrixzähler wird als Adresse benutzt, um die Daten für die 

Darstellung der Punkte aus dem 8000 Byte umfassenden Anzeigespeicher zu 

holen. Die Adresse ist folgendermaßen zusammengesetzt: 

A13|A12 | Al] | A10 | A09 | A08 | A07 | A06 | A05 | A04 | Ao3 | A02 | AO | A00 
  

  CB13/VC9 vce | VC7 | VC6 vcs | VC4 | vc3 | ve2! VCl Ivco RC2| RC] | RCO 

432 Anhang N



VCx bezeichnet den Ausgang des Videomatrixzahlers, RCx den Rasterlinienzahler, 

und CB13 stammt aus Register 24 ($18). Der Videomatrixzähler wählt für 8 

Rasterlinien die gleichen Speicherplatze an, wahrend der Rasterzahler nach jeder 

horizontalen Zeile um 1 erhöht wird. Nachdem die 8. Zeile geschrieben ist, wählt der 

Videomatrixzähler die nächsten 40 Speicherplätze an. Aus dieser Adressierungsart 

resultiert, daß immer 8 aufeinanderfolgende Speicherplätze eine 8x8-Punktematrix 

auf dem Bildschirm bilden. 

Betriebsart “STANDARD BIT MAP“ (BMM=1, MCM=0) 

Hierbei wird die Farbinformation nur aus den Daten der Videomatrix abgeleitet (der 

Farbnybble wird nicht beachtet). Die 8-Bit-Daten aus der Videomatrix werden in 2 

4-Bit-Daten aufgeteilt, wodurch es möglich wird, 2 verschiedene Farben in jeder 

8x8-Punktematrix darzustellen. Wenn ein Bit des Anzeigespeichers 0 ist, erscheint 

der Punkt in der Farbe, die durch die unteren 4 Bit definiert wird. Wenn das Bit 1 ist, 

wird der Punkt in der Farbe gesetzt, die durch die oberen 4 Bit des entsprechenden 

Datenwortes in der Videomatrix festgelegt wird. 

  

  

BIT ANZEIGEFARBE 

0 Unteres Nybble des Videomatrix-Zeigers 
1 | Oberes Nybble des Videomatrix-Zeigers 
  

“MEHRFARBIGE DARSTELLUNG“ (BMM=MCM=1) 

Diese Betriebsart wird eingeschaltet, indem das Bit MCM im Register 22 ($16) und 

das Bit BMM im Register 17 ($11) 1 gesetzt werden. Sie benutzt dieselbe Ansteue- 

rung des Speichers wie die Standardbetriebsart, interpretiert die Daten jedoch 

anders. Je zwei Bits werden zusammengefaßt und nach folgendem Schema 

ausgewertet: 

  
BIT-PAAR ANZEIGEFARBE 

00 Hintergrundfarbe #0 (Register 33 ($21)) 

01 Oberes Nybble des Videomatrix-Zeigers 

10 Unteres Nybble des Videomatrix-Zeigers 

11 Videomatrix-Farbnybble     

Anhang N 433



Man beachte, daB das Farbnybble bei dieser Betriebsart benutzt wird. Da immer 2 

Bit bendtigt werden, um die Farbe eines Punktes zu bestimmen, sind die Punkte 

doppelt so breit wie in der Standardbetriebsart; es können also nur 160 Punkte 

horizontal und 200 Punkte vertikal dargestellt werden. Wenn man diese Betriebsart 

nutzt, können also 3 voneinander unabhängig ausgewählte Farben für jede 8x8- 

Punktematrix zusätzlich zur Hintergrundfarbe auf dem Bildschirm dargestellt 

werden. 

DARSTELLUNG VON BEWEGLICHEN OBJEKTEN 

Bewegliche Objekte (engl. movable objekt block, MOB) sind eine spezielle Art von 

Zeichen, die an jedem beliebigen Ort des Bildschirms unabhängig von der 8x8- 

-Punktematrix erzeugt werden können. Bis zu 8 MOBs können gleichzeitig erzeugt 

werden, jedes wird durch 63 Bytes im Speicher beschrieben und als Anordnung 

von 24x21 Punkten dargestellt (s.u.). Eine Anzahl von Sonderfunktionen macht die 

MOBs besonders für Videospiele und -graphiken interessant. 

MOB-ANZEIGEBLOCK 
  

  

        

BYTE BYTE BYTE 

00 01 02 

03 04 05 

57 58 59 

60 61 62 
  

MOB EINSCHALTEN 

Jeder MOB kann einzeln durch Setzen des entsprechenden Bits MnE im Register 

21 ($15) auf dem Bildschirm dargestellt werden. Wenn das entsprechende Bit 0 ist, 

ist der MOB nicht nur abgeschaltet, er wird auch bei der Ausführung der MOB- 

Sonderfunktionen nicht berücksichtigt. 

434 Anhang N



POSITION 

Die Lage des MOB auf dem Bildschirm wird durch die X- und Y-Koordinaten mit 

einer Auflösung von 512 Punkten horizontal und 256 Punkten vertikal bestimmt, die 

in den entsprechenden Registern abgelegt sind. Dabei beziehen sich die Koordina- 

ten auf den linken oberen Punkt des MOB. Wenn X zwischen 23 und 347 ($17— 

$157) und Y zwischen 50 und 249 ($32—$F9) liegt, ist der MOB sichtbar. Da der 

MOB nicht in jeder Position sichtbar ist, kann er übergangslos vom Bildschirm 

verschwinden und wieder erscheinen. 

FARBE 

Zur Festlegung der Farbe hat jeder MOB ein eigenes 4-Bit-Register. Es gibt zwei 

Betriebsarten: 

Normale Darstellung (MnMC=0) 

In dieser Betriebsart ist der MOB an den Stellen, wo eine O geschrieben ist, 

durchsichtig, es erscheint also die Hintergrundfarbe. Eine 1 bewirkt, daß die Farbe 

erscheint, die durch das Farbregister bestimmt wird. 

Mehrfarbige MOBs (MnMC=1) 

Jeder MOB kann unabhängig von den anderen mehrfarbig gestaltet werden, indem 

das entsprechende Bit MnMC im Register 28 ($1C) 1 gesetzt wird. Dann werden die 

Datenbits des MOBs paarweise folgendermaßen interpretiert: 

BIT PAIR COLOR DISPLAYED   

00 Transparent 

01 MOB Multi-color #0 (register 37 ($25)) 

10 MOB Color (registers 39-46 ($27-$2E)) 

11 MOB Multi-color #1 (register 38 ($26))   
Da immer zwei Bits benötigt werden, um einen Punkt zu bestimmen, wird die 

Auflösung auf 12x21 Punkte reduziert; da die Punkte aber doppelt so breit gezeich- 

net werden, ändert sich die Größe des MOBs nicht. 

Man beachte, daß bis zu 3 verschiedene Farben pro MOB zur Verfügung stehen, 

aber 2 Farben fur alle mehrfarbigen MOBs gültig sind. 

Anhang N 435



VERGROSSERUNG 

Jeder MOB kann einzeln um den Faktor 2 in beiden Richtungen vergrößert werden. 

Zwei Register enthalten die Kontrollbits für die Vergrößerung: 

REGISTER FUNCTION 

23 ($17) |Horizontal expand MnXE—"1"=expand; “0” =normal 

29 ($1D) | Vertical expand MnYE—"1"=expand; “0 =normal 

  

  
Wenn die MOBs vergrößert werden, findet keine Verbesserung der Auflösung statt. 

Die 24x21-(bzw. 12x21)-Punktematrix wird nur entsprechend vergrößert (der klein- 

ste Punkt eines MOBs kann also in der mehrfarbigen Darstellung bis zu viermal 

größer erscheinen). 

PRIORITÄT 

Die Priorität des MOBs in bezug auf andere auf dem Bildschirm dargestellte 

Informationen kann für jedes MOB einzeln durch Setzen des entsprechenden Bits 

(MnDP) im Register 27 ($1B) beeinflußt werden: 

  REG BIT PRIORITY TO CHARACTER OR BIT MAP DATA 

0 Non-transparent MOB data will be displayed (MOB in front) 

1 Non-transparent MOB data will be displayed only instead of 

Bkgd #0 or multi-color bit pair 01 (MOB behind)   
MOB — DISPLAY DATA PRIORITY 
  

  

      

MnDP = 1 MnDP = 0 

MOBn Foreground 

Foreground MOBn 

Background Background 
  

436 Anhang N



Untereinander haben die MOBs eine feste Rangfolge, wobei MOB O den höchsten 

und MOB 7 den niedrigsten Rang besitzen. Wenn Punkte von 2 MOBs (ausgenom- 

men transparente Punkte) zusammenfallen, werden immer die des MOBs mit der 

niedrigsten Nummer dargestellt. 

ERKENNEN VON KOLLISIONEN 

Zwei Arten von Beruhrungen werden erkannt: die Beruhrung zweier MOBs und die 

Überlappung eines MOBs mit einer anderen dargestellten Information: 

MOB-MOB-Berührung: 

Eine Berührung zweier MOBs findet statt, wenn die nichttransparenten Teile zweier 

MOBs an der gleichen Stelle abgebildet werden sollen (die Berührung transparenter 

Teile hat keine Folgen). Dann werden die Bits MnM für die beiden beteiligten MOB 

im Register 30 ($1E) 1 gesetzt. Diese bleiben gesetzt, bis das Register ausgelesen 

wird, dann werden alle Bits automatisch 0 gesetzt. Berührungen werden auch dann 

festgestellt, wenn sich die MOBs außerhalb des Bildschirms befinden. 

Überlappung mit anderen Informationen: 

Wenn ein MOB einen Bildpunkt berührt, der nicht in der Hintergrundfarbe darge- 

stellt wird, wird im Register 31 ($1F) das entsprechende Bit MnD 1 gesetzt. 

Transparente Teile des MOB spielen auch hier keine Rolle. Für spezielle Anwen- 

dungen wird auch die Überlappung mit dem Datenpaar 01 (Mehrfarbige Darstellung) 

nicht als Kollision erkannt. Auf diese Weise können Daten dargestellt werden, ohne 

daß diese Einfluß auf das Erkennen von Berührungen haben. 

Eine solche Berührung zwischen einem MOB und einer anderen, auf dem Bild- 

schirm dargestellten Information kann auch außerhalb des Bildschirms in der 

horizontalen Richtung stattfinden, wenn eine gültige Information durch “scrolling “ 

(s.u.) außerhalb des Bildschirms gelangt ist. 

Die zuständigen Interruptlatches werden gesetzt, sobald in dem betreffenden 

Register das erste Bit gesetzt wird. Sobald ein Bit in dem Register gesetzt ist, wird 

durch nachfolgende Berührungen kein Interruptflag mehr gesetzt, bis das betref- 

fende Register durch Auslesen gelöscht wurde. 

Anhang N 437



MOB-SPEICHERZUGRIFF 

Die Daten für jeden MOB werden in 63 aufeinanderfolgenden Bytes im Speicher 

abgelegt. Die 8 Blocks werden durch 8 MOB-Zeiger definiert, die am Ende der 

Videomatrix abgelegt sind. Da die Videomatrix nur 1000 Bytes benötigt, ist es 

möglich, von Platz 1016-1023 der Videomatrix die MOB-Zeiger O—7 abzulegen. 

Dieser 8 Bit lange Zeiger bildet zusammen mit dem 6 Bit langen MOB-Bytezähler 

. (um 63 verschiedene Bytes zu adressieren) eine 14 Bit lange Adresse. 

A13|A12/A11 |A10|A09|A08| A07| A06| A05 | A04 | A03 | A02| A01| A00 

MP7|MP6|MP5|MP4| MP3|MP2|MP1| MPO|MCS|MC4|MC3|MC2|MCI] MCO 
  

MPx bezeichnet die Bits des MOB-Zeigers und MCx die des MOB-Bytezahlers, die 

intern erzeugt werden. Die MOB-Zeiger werden am Ende jeder Videozeile eingele- 

sen. Wenn der Inhalt eines Y-Registers mit dem des Rasterlinienzahlers uberein- 

stimmt, beginnt der Zugriff auf die Daten des zugehörigen MOB. Der MOB- 

Bytezahler durchlauft automatisch die 63 Bytes und stellt immer 3 Bytes in jeder 

Zeile dar. 

SONSTIGE MERKMALE 

BILDSCHIRM ABSCHALTEN 

Der Bildschirm kann abgeschaltet werden, indem das Bit DEN in Register 17 ($11) 

“O“ gesetzt wird. Dann erscheint der gesamte Bildschirm in der Farbe, die durch 

Register 32 ($20) festgelegt wird. Dann wird nur die erste Phase des Speicherzu- 

griffs benötigt, wodurch der Systembus vollständig dem Prozessor zur Verfügung 

steht. Allerdings greift der VIC noch auf MOB-Daten zu, wenn diese nicht abge- 

schaltet sind. 

DEN muß für normalen Videobetrieb 1 gesetzt sein. 

438 Anhang N



AUSWAHL DER REIHEN UND SPALTEN 

Das normale Anzeigeformat besteht aus 25 Reihen zu je 40 Zeichen. Fur Spezialan- 

wendungen kann das Anzeigefenster auf 24 Reihen zu 38 Zeichen reduziert 

werden. Dies hat keinen Einfluß auf die Größe der dargestellten Zeichen, außer, daß 

Zeichen, die vorher an die Begrenzung stießen, jetzt von dieser überdeckt werden. 

Diese Betriebsart wird durch 2 Bits gesteuert: RSEL aus Register 17 ($11) und 

CSEL aus Register 22 ($16). Sie haben folgende Bedeutung: 

RSEL NUMBER OF ROWS CSEL NUMBER OF COLUMNS 
  

(6) 24 rows 0 38 columns 

  1 25 rows ] 40 columns 

Normalerweise wird man das größere Fenster benutzen, das kleinere wird haupt- 

sachlich in Verbindung mit “scrolling“ benutzt. 

SCROLLING 

Die Anzeige kann jeweils um eine Zeichenstelle in horizontaler und vertikaler 

Richtung verschoben werden. Wenn dies in Verbindung mit dem kleineren Anzei- 

geformat benutzt wird, kann eine leichte Schwenkbewegung der Anzeige durchge- 

führt werden, während der Systemspeicher nur aktualisiert zu werden braucht, 

wenn eine neue Zeile oder Spalte geschrieben werden muß. “Scrolling“ kann auch 

dazu benutzt werden, um eine feste Anzeige im Fenster zu zentrieren. 

  

    

BITS REGISTER FUNCTION 

X2,X1,X0 22 ($16) Horizontal Position 

Y2,Y1,Y0 17 ($11) Vertical Position 

LIGHT PEN 

Bei einer negativen Flanke am Lightpen-Eingang wird die gerade gultige Bildschirm- 

position in das Registerpaar 19 (LPX) und 20 (LPY) geschrieben. Da in Register 19 

nur die 8 MSB der X-Position gespeichert werden, insgesamt aber 516 verschie- 

dene Positionen unterschieden werden müßten (dazu benötigte man 9 Bits), beträgt 

die Auflösung in der X-Position nur 2 Punkte. 

In der Y-Richtung reichen die 8 Bit zur Auflösung des Bildschirms aus. Das 

Lightpen-Register kann nur einmal pro Bilddurchlauf getriggert werden, mehrmali- 

ges Triggern hat keinen Einfluß. Deshalb muß man das Lightpen-Register einige 

Male abfragen, bevor man den Lightpen auf den Bildschirm richtet (die Anzahl der 

Abfragen hängt von den Eigenschaften des Griffels ab). 

Anhang N 439



RASTERREGISTER 

Dieses Register hat 2 Funktionen: Wenn dieses Register gelesen wird, erscheinen 

die 8 unteren Bit der z. Z. gültigen Rasterposition (das MSB —RC8— steht in 

Register 17 ($11)). Dies kann man dazu benutzen, um den Inhalt der Anzeige ohne 

Flackern zu ändern, indem die Änderung außerhalb des sichtbaren Bereichs 

vorgenommen wird. Der sichtbare Bereich liegt zwischen Raster 51 und 251 

($033-$0FB). Wenn in das Register geschrieben wird (einschließlich RC8), wird 

der Wert für einen internen Vergleich gespeichert. Wird der gespeicherte Wert 

erreicht, wird das Rasterinterruptflag gesetzt (Register 25). 

INTERRUPTREGISTER 

Das Interruptregister (Register 25($19)) zeigt den Status der 4 Interruptquellen. Ein 

Bit wird 1 gesetzt, wenn die entsprechende Interruptquelle einen Interrupt verlangt. 

In der Tabelle sind die 4 Bits und die zugehörigen Quellen aufgeführt. 

LATCH | ENABLE 

BIT BIT WHEN SET 
  

IRST ERST Set when (raster count) = (stored raster count) 

IMDC I|EMDC |Set by MOB-DATA collision register (first collision only) 

IMMC |EMMC |Set by MOB—MOB collision register (first collision only) 

ILP ELP Set by negative transition of LP input (once per frame) 

IRQ Set high by latch set and enabled (invert of IRQ/ output)     
Damit ein Interrupt durchgeführt und der Ausgang IRQ 0 gesetzt werden kann, muß 

das entsprechende Bit in Register 26 ($1A) (Interrupt enable) 1 gesetzt werden. 

Wenn ein Interruptbit gesetzt ist, wird es erst gelöscht, wenn an dieser Stelle eine 1 

geschrieben wird. Dadurch wird eine beliebige Abarbeitung der Interrupts ermög- 

licht, onne daß Speicherplätze oder Software zur Erhaltung der Interrupt-Informa- 

tion benötigt wird. 

REFRESH FÜR DYNAMISCHE RAMS 

Im Baustein ist eine Schaltung eingebaut, die den Refresh dynamischer RAMs 

kontrolliert. Nach jeder Rasterlinie werden 5 8-Bit-Zeilenadressen zur Auffrischung 

der RAMs erzeugt, wodurch garantiert ist, daß bei Speicherorganisation von 128 

Reihen zu 512 Speicherplätzen jede Reihe mindestens alle 2 ms aufgefrischt wird 

(bei 256x256 organisierten Speichern alle 3,66 ms). Da der Refreshimpuls während 

der 1. Phase des Systemtaktes erzeugt wird, beeinflußt er andere Bausteine 

(Prozessor, I/O-Port etc.) auf dem 65XX-Systembus nicht. 

440 Anhang N



Der Baustein erzeugt auch RAS- und CAS-Signale, die normalerweise direkt mit 

den dynamischen RAMs verbunden sind, und zwar wahrend der 2. Phase des 

Systemtaktes und für jeden Videospeicherzugriff (einschließlich Refresh), so daß 

keine externe Takterzeugung notwendig ist. 

RESET 

Das Reset-Bit (RES) in Register 22 ($16) wird für den normalen Betrieb nicht 

benötigt. Es sollte demzufolge bei der Initialisierung des Video-Chips auf 0 gesetzt 

werden. Wenn das Bit auf 1 gesetzt wird, unterbricht der Video-Chip seine Funktion 

einschließlich Video-Ausgangssignal, Refresh für die dynamischen RAMs und 

System-Bus-Zugriff. 

FUNKTIONSWEISE DES 6566/6567 

Der Videobaustein 6566/6567 arbeitet auf besondere Art und Weise mit dem 

Systembus. Da die 65XX-Familie nur während der 2. Phase des Taktes (High) auf 

den Bus zugreift, benutzt der Videobaustein den Bus normalerweise nur während 

der 1. Phase des Taktes. Deshalb stören solche Operationen wie Refresh oder der 

Zugriff auf Zeichendaten den Prozessor nicht und beeinflussen nicht dessen 

Arbeitsgeschwindigkeit. Der Baustein stellt alle Kontrollsignale zur Verfügung, die 

benötigt werden, um diese Aufteilung des Busses aufrechtzuerhalten. 

Der Videobaustein liefert das Signal AEC (Address enable control), das die AdreB- 

treiber des Prozessors hochohmig schaltet, damit der Videochip auf den Bus 

zugreifen kann. AEC ist aktiv, wenn der Ausgang O geschaltet ist, somit kann der 

Ausgang direkt an die AEC-Eingänge der 65XX-Familie gelegt werden. 

Normalerweise ist dieses Signal nur wahrend der 1. Phase des Taktes gultig, so daB 

der Prozessor nicht gestört wird. Aufgrund dieser zeitlichen Aufteilung müssen alle 

Speicherzugriffe in der halben Zykluszeit durchgeführt werden. Da der Videochip 

einen 1-MHz-Takt liefert, müssen alle Speicherzyklen wie Adresseanlegen, Daten- 

zugriff und Datentransport zu den lesenden Bausteinen in 500 ms erledigt sein. 

Einige Funktionen des Bausteins erfordern mehr Daten, als während der 1. Takt- 

phase gelesen werden Können, so z.B. der Zugriff auf Characterzeiger in der 

Videomatrix und das Lesen der MOB-Daten, wenn diese dargestellt werden sollen. 

Dann muß ein Zugriff des Prozessors auf den Bus verhindert und auch während der 

2. Taktphase gelesen werden. Dies wird durch das Signal BA (Bus available) 

erreicht. Dieses Signal ist normalerweise 1, es wird jedoch während der 1. Takt- 

phase auf 0 gelegt, um zu zeigen, daß der Videochip während der 2. Taktphase auf 

Anhang N 441



den Bus zugreifen will. Dann bleiben dem Prozessor noch drei 2. Taktphasen, um 

laufende Speicherzugriffe abzuschließen. Während der vierten 2. Taktphase, nach- 

dem BA auf Low geschaltet wurde, bleibt AEC auf Low, damit der Videochip die 

Daten holen kann. 

Der Ausgang BA ist normalerweise mit den Eingängen RDY der anderen 65XX- 

Bausteine verbunden. Der Zugriff auf Characterzeiger geschieht alle 8 Rasterlinien 

innerhalb des Anzeigefensters und erfordert 40 aufeinanderfolgende Zugriffe wäh- 

rend der 2. Taktphase, um die Videomatrixzeiger zu holen. Das Einlesen der MOB- 

Daten erfordert folgende 4 Speicherzugriffe: 

  

    

PHASE DATA CONDITION 

1 MOB Pointer Every raster 

2 |MOB Byte 1 Each raster while MOB is displayed 

1 |MOB Byte 2 Each raster while MOB is displayed 

2 |MOB Byte 3 Each raster while MOB is displayed 

Die MOB-Zeiger werden nach jeder Zeile wahrend der 1. Taktphase gelesen. Falls 

erforderlich, werden zusätzliche Zyklen zum Einlesen der MOB-Daten benutzt. Alle 

notwendigen Signale zur Steuerung des Busses werden also von dem Videochip 

zur Verfügung gestellt. 

SPEICHERANSTEUERUNG 

Die zwei Versionen des Bausteins unterscheiden sich in der Art und Weise, wie sie 

die Adressen anlegen. 6566 hat 13 vollständig dekodierte Adressen, die direkt mit 

den Adressen des Systembusses verbunden werden Können. 

Die Adressen von Baustein 6567 werden gemultiplext, um sie direkt mit den 

Adressen von dynamischen 64K RAMs verbinden zu können. Die Adressen AOO— 

AO6 sind an den Ausgängen AOO—AO6 gültig, wenn der Ausgang RAS Low 

geschaltet ist, während die Adressen AO8—A013 an den Ausgängen AOQO—A05 

erscheinen, wenn CAS Low geschaltet wird. Die Ausgänge AO7—A11 an diesem 

Baustein sind statische Adreßausgänge, die mit einem ROM (2Kx8) verbunden 

werden können (dann müssen die unteren Adressen zwischengespeichert 

werden). 

442 Anhang N



SCHNITTSTELLE ZUM PROZESSOR 

Abgesehen von den speziellen, oben beschriebenen Speicherzugriffen kann auf 

die Register des Bausteins genauso wie bei jedem anderen Peripheriebaustein 

zugegriffen werden. Folgende Signale stehen für die Schnittstelle mit dem Prozes- 

_ sor zur Verfügung: 

DATENBUS (DB7-DB0) 

Dies ist ein bidirektionaler Datenport, der von den Signalen an den Pins CS, RW und 

Phase O kontrolliert wird. Auf den Datenbus kann nur zugegriffen werden, wenn 

AEC=Phase0=1 und CA=0 gilt. 

CHIP SELECT (CS/) 

Wenn dieser Pin Low gelegt wird, kann man in Verbindung mit dem Signal RW und 

den Adressen auf die Register des Bausteins zugreifen. Dieser Eingang wird nur 

beachtet, wenn AEC=Phase0=1 gilt. 

READ/WRITE (R/W) 

Mit diesem Eingang wird in Verbindung mit CS die Richtung des Datenflusses 

festgelegt. Bei RW=1 werden Daten aus dem angewählten Register auf den 

Datenbus geschrieben, ist RW=0, ist der Datenflu8 umgekehrt. 

ADRESSBUS (A05—A00) 

Die Anschlüsse AD-AS5 sind bidirektional. Wenn der Prozessor auf den Videochip 

zugreift, sind es AdreBeingange, und die angelegte Bitkombination wählt eines der 

Register an (siehe Tabelle). 

CLOCK OUT (Phase 0) 

An diesem Ausgang erscheint der 1-MHz-Takt für den Prozessor. Alle Systemope- 

rationen beziehen sich auf diesen Takt, der aus dem 8-MHz-Takt durch Teilung 

gewonnen wird. 

INTERRUPT (IRQ/) 

Dieser Ausgang wird Low gelegt, wenn von einer eingeschalteten Interruptquelle 

ein Interrupt ausgelöst wird. Es ist ein “open-drain“-Ausgang, der einen externen 

pull-up-Widerstand benötigt. 

Anhang N 443



VIDEOANSCHLUSS 

Das Videosignal der Bausteine besteht aus zwei getrennten Signalen, die extern 

gemischt werden mussen. SYNC/LUM beinhaltet alle Videoinformationen wie hori- 

zontale und vertikale Synchronisierung und die Hell-/Dunkelsteuerung, und ist ein 

“open-drain“-Ausgang, der einen externen pull-up-Widerstand benotigt. COLOR 

enthält alle Farbinformationen, auch den Farbhilfstrager, und ist ein “open-source “- 

Ausgang, der einen externen Widerstand von 1000 Ohm gegen Masse benotigt. 

Nach geeigneter Mischung dieser Signale kann das resultierende Signal einen 

Videomonitor oder mit einem entsprechenden Modulator einen normalen Fernseher 

ansteuern. 

ZUSAMMENFASSUNG DER BUS-AKTIVITATEN BEIM 6566/6567 
  

  

          

AEC PHO CS/ R/W ACTION 

0 0 X X | PHASE 1 FETCH, REFRESH 

0 1 X X | PHASE 2 FETCH (PROCESSOR OFF) 

1 0 X X |NO ACTION 

1 1 0 O | WRITE TO SELECTED REGISTER 

1 1 0 1 READ FROM SELECTED REGISTER 

1 1 1 X | NO ACTION 
  

444 Anhang N 

 



PIN-ANORDNUNG 
  

  
  

  

  

YS 

DBg | 1 «| Voc 

DB, | 2 39] DB; 

= a 

DB, | 3 38] DBs 
Larsen an. 

poorer pen 

DB; | 4 37| DBg 

DB, | 5 36] DByo 

DB, 6 35 DB; 

a! 

DBo 7 2] Ayo 

IRQ/ | « 23] Ag 

10 31) A CS/ ad 6567 7 

R/W 11 30} Ag (“1”) 

ed 
BA | 12 29} As(A13) 

Vop | 13 28] Ag(Ay2) 

COLOR | 14 27] A3(Aq4) 
| | 
— 

S/LUM [15 26} Ad(A49) 

re hear NNT 

AEC | 16 25] A4(Ag) 

PH) | 17 24 | AolAs) 

RAS/ | 18 2] Ay 
= 
et 

CASI 19 221 PHIN 

Vss | 20 21] PHCL         
(Multiplex-Adressen in Klammern) 

Anhang N 445



PIN-ANORDNUNG 

oO 
O 

Bio 

a 
a 

= 
= 

= 

DBg 

N
 

~
 

m
 

> 
B
i
 

<
 

 
 
 
 

<
 

En 
a
 

<
 

2
 

<
 

<
 

<
 

B
4
 

< 

 
 

BIlcıEalEIIEIEIlE 
Us 

lists 
lel A
R
P
A
 

 
 

  
6566 

  
 
 

a 
EI 

EZ 
|
|
|
 

| 
|
|
 

11 

— 

12 

oy 
em 
fe 
[i 
je 
is 
[" 
5 

 
 

=
 

DB, 

IRQ/ 

R/W 

é 

DBo 

a
 

feel 
QO 

oO 
Q 

DB, 

o
 

Q 

< 
Q 

a 
= 

O 
=) 

Zz 
= 

” 
[a 

Ww 
I 

= 
O 

Yn) 
oe 

> 
GS 

3 
zz 

&F 
I
o
 

> 
Q 

a 
Ö 

oO 

Anhang N 446



 
 

  

pundxe-, 
g
O
W
 

JAOW 
JALW 

SAZTW 
IIEW 

IArW 
HIASW 

349W 
JIAZW 

(ZL$) 
€7 

IX9} 
39S 

0X 
LX 

oX 
1359 

W
O
W
 

Se Pe] 
—
 

—
 

(91$) 
2
 

31q0UZ 
G
O
W
 

JOW 
J1W 

IzW 
JEW 

JyW 
ASW 

J9W 
4ZW 

(SL$) 
17 

A 
ued 

44617 
OAd7 

LAd] 
2 

ZAdI 
EAdI 

HAdI 
SGAdI 

9Adl 
ZAd] 

(7L$) 
07 

x 
uad 

4461] 
IXII 

 TXII 
EXdII 

HXdI 
SXdI 

9MXdI 
ZXdI 

 8XdI 
(eL$) 

6l 

12451534 
1a4soy 

0
%
 

Bor. 
TOU 

EDY 
you 

G
U
 

je}. 
L
e
 

(zı$) 
Bl 

1X8} 
39S 

OA 
LA 

CA 
1354 

Nig 
w
w
d
 

W934 
gDa 

(LL$) 
ZL 

uolsod-X 
40 

GSW 
B
X
O
W
 

B
X
L
W
 

B
X
T
W
 

B
X
E
W
 

B
X
F
W
 

B
X
S
W
 

8
X
9
W
 

8
X
Z
W
 

(OL$) 
9 

uoysod-A 
7 
G
O
W
 

O
A
9
W
 

IAZW 
TALW 

EAZW 
HAZW 

SALW) 
9
A
Z
W
 

Z
A
L
W
 

(40$) 
SI 

uoyisod-xX 
7 
G
O
W
 

O
X
Z
W
 

IXZW 
T
X
L
W
 

E
X
L
W
 

PXZLW 
S
X
L
W
 

9
X
L
W
 

ZLXLW 
(30$) 

Pl 

uoyIsod-A 
9 
G
O
W
 

OA9YW 
LAIW 

T
A
I
W
 

EAYW 
HAYW 

S
A
9
W
 

9
A
9
W
 

Z
A
9
W
 

(ao$) 
EL 

uoyisod-xX 
9 
G
O
W
 

O
X
9
W
 

IXIW 
T
X
I
W
 

E
X
I
W
 

P
X
I
W
 

SXIYW 
9IXIW 

ZLXOW 
(D0$) 

Zl 

uoyisod-A 
G 
G
O
W
 

O
A
S
W
 

LASW 
ZASW 

EAISW 
A
S
W
 

S
A
S
W
 

9
A
S
W
 

Z
A
S
W
 

(a0$) 
LL 

uoyisod-xX 
G 
G
O
W
 

O
X
S
W
 

LXSW 
T
X
S
W
 

E
X
S
W
 

X
S
W
 

S
X
S
W
 

9
X
S
W
 

Z
X
S
W
 

(vo$) 
OL 

uoyisod-\ 
7 
G
O
W
 

O
A
F
W
 

LAVW 
ZAPW 

EAFW 
PvAPW 

SAPW 
9SAPW 

ZLAYW 
(60$) 

60 

uolisod-x 
» 
G
O
W
 

O
X
F
W
 

IXFW 
Z2XPW 

E
X
F
W
 

P
X
P
W
 

S
X
P
W
 

9XFrW 
L
X
P
W
 

(80$) 
80 

uOHISOd-, 
€ 
G
O
W
 

O
A
E
W
 

LAEW 
TAEW 

EAEW 
PAEW 

SAEW 
Y9AEW 

ZLAEW 
(Z0$) 

ZO 

uoyisod-X 
€ 
G
O
W
 

O
X
E
W
 

LXEW 
Z
X
E
W
 

E
X
E
W
 

P
X
E
W
 

S
X
E
W
 

I
X
E
W
 

ZLXEW 
(90$) 

90 

uoHISOd-A 
7 
G
O
W
 

O
A
T
W
 

LAZTW 
TATEW 

EATW 
HATW 

G
A
T
W
 

Y9ATW 
ZLATW 

(SO$) 
SO 

uoysod-X 
Z 
G
O
W
 

O
X
Z
W
 

LXZW 
T
X
T
W
 

E
X
T
W
 

Y
X
T
W
 

SXTZW 
IXTZW 

L
X
Z
W
 

(vO$) 
v0 

uoysod-\ 
| 
G
O
W
 

O
A
L
W
 

LALW 
TALW 

EALW 
PvALW 

SALW) 
9
A
L
W
 

Z
A
L
W
 

(E0$) 
€0 

uoysod-X 
| 
G
O
W
 

O
X
I
W
 

IXIW 
Z
X
L
W
 

E
X
I
W
 

PXLIW 
S
X
I
W
 

9
X
I
W
 

Z
X
L
W
 

(ZO$) 
ZO 

uoyisod-\ 
0 
G
O
W
 

O
A
O
W
 

LAOW 
ZAOW 

EAOW 
PAOW 

S
A
O
W
 

9
A
O
W
 

Z
A
O
W
 

(LO$) 
LO 

uoyisod-x 
Q 
G
O
W
 

O
X
O
W
 

LXOW 
T
X
O
W
 

E
X
O
W
 

F
X
O
W
 

S
X
O
W
 

9
X
O
W
 

Z
X
O
W
 

(00$) 
00 

N
O
I
L
4
I
A
D
S
I
A
 

099 
L9q 

zaa 
egga 

yaa 
saad 

99a 
290 

S
S
I
A
A
A
Y
   

 
 

O
N
N
D
3
 
1984S 

LSID3u 

447 Anhang N



 
 

", 
-, 

UeBunse7 
ajje 

uayne] 
je4 

WOSSIP 
U] 

‘}Yya}seq 
InIyosuy 

Ulex 
gep 

‘ue 
IBI9Z 

YOUNIS 
uly 

B
u
n
y
o
w
u
y
 

| 
 
 

 
 

 
 

  

JOIOD 
Z 
G
O
W
 

ODIZW 
LOZW 

TZIZW 
E
D
Z
W
 

—
 

—
 

a
 

ur 
a7z$) 

9
 

410105 
9 
COW 

OI9W 
LOOW 

ZO9W 
ED9OW 

—
 

—
 

=
 

—
 

(az$) 
Sr 

10105 
G 
GOW 

OISW 
LOSW 

TZISW 
EISW 

—
 

—
 

=
 

_
 

(DZ$) 
vy 

10105 
p 
9OW 

ODFW 
LOFW 

TZIFW 
EIPW 

—
 

Zn 
_
 

—
 

(az$) 
er 

10105 
€ 
GOW 

ODEW 
LOEW 

Z
E
W
 

EDEW 
—
 

— 
—
 

— 
(vz$) 

Zr 
410109 

Z 
HOW 

OITW 
IITW 

TITW 
EITW 

—
 

— 
— 

—
 

(67$) 
Ir 

40100 
| 
G
O
W
 

O
D
L
W
 

LOLW 
Z
I
L
W
 

E
D
L
W
 

—
 

—
 

—
 

—
 

(82$) 
Or 

40105 
0 
G
O
W
 

O
D
O
W
 

LOOW 
TZIOW 

E
D
O
W
 

—
 

—
 

—
 

_
 

(Z2$) 
6€ 

L# 
J0[0211nW 

GOW 
OLWW 

IIWW 
ZIWW 

ELWW 
—
 

— 
— 

— 
(9z$) 

BE 
O# 

„9[0211nW 
GOW 

OOWW 
LOWW 

ZOWW 
EOWW 

— 
— 

—
 

—
 

(Sz$) 
LE 

10105 
€# 

PH¥G 
ODEG 

IL1D€G 
zIea 

EDED 
— 

— 
— 

— 
(rz$) 

9E 

10105 
TH 

PH¥G 
= 
ODZA 

1D%G 
zIza 

E
D
A
 

=
 

— 
oa 

—
 

(€Z$) 
SE 

40100 
1# 

pEya 
ODLA 

ıDı8 
z
a
 

edDıa 
—
 

—
 

—
 

(zz$) 
VE 

10105 
O# 

PEN 
OD0G 

1LD09 
zIoa 

£004 
—
 

—
 

—
 

ve 
(1Z$) 

€€ 
JOJOD 

J01194x3 
093 

193 
223 

693 
— 

— 
— 

— 
(02$) 

zE 
udISI|OD 

VWIVG-dOW 
dOW 

diW 
dew 

dew 
drw 

dsw 
A9W 

AZW 
(4L$) 

LE 
wos 

0) 
G
O
W
-
G
O
W
 

WOW 
WLW 

WCW 
WEW 

WrRYW 
WSW 

WOW 
WLW 

(JL$) 
O€ 

pundxs-x 
gOW 

3XOW 
IXIW 

4XZW 
IXEW 

3XFW 
3XSW 

3IX9W 
AXLW 

(al$) 
62 

|9S 
AOIOOHINW 

GOW 
D
W
O
W
 

D
W
L
W
 

D
W
Z
W
 

D
W
E
W
 

DIWrW 
D
W
S
W
 

D
W
9
W
 

D
W
Z
W
 

(DL$) 
82 

Aywsollg 
WIVG-dOW 

ddOW 
ddiW 

dazW 
ddew 

darw 
dasw 

dA9W 
dAZW 

(al$) 
ZZ 

‚
A
n
u
s
 

SıgpuJg 
1Sa3 

DIgaWw3 
DIWww3 

dj 
—
 

—
 

—
 

—
 

(VL$) 
97 

daysiBay 
sdnsayu| 

1Sal 
Dawı 

D
W
W
I
 

dil 
—
 

—
 

—
 

Owl 
(6L$) 

SZ 

sıauıog 
Aioway 

=— 
189 

Ziad 
E189 

OLWA 
IIWA 

ZIWA 
ELWA 

(81$) 
#7 

09a 
Lad 

zaa 
ead 

yaa 
saad 

9aq 
YA: Te 

ss3aaav 
N
O
I
L
4
d
I
A
D
S
3
Q
 

  
 
 

O
N
N
D
3
F
I
3
I
Y
F
L
S
I
D
3
I
U
 

Anhang N 448



FARB-CODES 
  

  

              

D4 D3 DI DO HEX DEC COLOR 

0 0 0 0 0 0 BLACK 

0 0 0 1 1 1 WHITE 

0 0 1 0 2 2 RED 

0 0 1 1 3 3 CYAN 

0 1 0 0 4 4 PURPLE 

0 1 0 1 5 5 GREEN 

0 1 1 0 6 6 BLUE 

0 1 1 1 7 7 YELLOW 

1 0 0 0 8 8 ORANGE 

1 0 0 1 9 9 BROWN 

1 0 1 0 A 10 LT RED 

1 0 1 1 B 11 DARK GREY 

1 1 0 0 C 12 MED GREY 

1 1 0 1 D 13 LT GREEN 

] 1 1 0 E 14 LT BLUE 

1 1 1 1 F 15 LT GREY     

Anhang N 449



ANHANG O 

6581 SOUND INTERFACE DEVICE (SID) 
CHIP SPECIFICATIONS 

KONZEPT 

Der SID 6581 ist ein dreistimmiger, elektronischer Musik-/Gerauschgenerator, 

buskompatibel mit der Prozessorfamilie 65XX und ahnlichen Prozessoren. Die 

Tonfrequenz kann ebenso wie Klang und Lautstarke in einem weiten Bereich mit 

hoher Genauigkeit eingestellt werden. Spezielle Schaltkreise verringern die nötige 

Software, was den Einsatz in Heimcomputern und preiswerten Musikinstrumenten 

ermöglicht. 

BESONDERHEITEN 

e 3 Tongeneratoren, O—4 kHz 

e 4 Kurvenformen pro Generator wählbar: 

Sinus, Dreieck, Rechteck (einstellbar) oder Rauschen 

e 3 Amplitudenmodulatoren, jeweils 48 dB 

e 3 Hüllkurvengeneratoren 

exponentieller Kurvenverlauf 

Anstiegszeit: 2 ms—8 s 

Abfallzeit: 6 ms—24 s 

Sustain-(Halte-)Pegel: O—max. Lautstärke 

Ausklingzeit: 6 ms—24 s 

e Synchronisierung der Oszillatoren 

e Ringmodulation 

e Programmierbare Filter 

Eck- bzw. Mittenfrequenz: 30 Hz-12 kHz 

Abfall: 12 dB/Oktave 

Tiefpaß, Bandpaß, Hochpaß oder Notchfilter 

450 Anhang O



Gesamtlautstarkeeinstellung 

Zufallsgenerator 

Anschlußmöglichkeit für 2 Potentiometer 

Audioeingang 

GND 

PIN-ANORDNUNG 

  

Vs
1l
= 

13
 
l
e
l
l
e
l
l
s
I
l
e
l
l
e
l
l
s
l
l
e
l
l
s
 

i
I
 

—_
 

w
 

| 

14   |   

N 

6581 

SID 

      

Vo 

AUDIO OUT 

EXT IN 

Anhang O 451



 
 

  
  

 
 

  

Q
1
E
L
I
V
H
O
S
H
D
0
1
8
-
1
8
S
9
 

 
 

 
 

 
 

    
 
 

 
 

  

 
 

 
 

  
 
 

 
 

  
 
   

 
 

 
 

 
 

 
 
 
 

X 
10d 

-
—
—
e
 

S10Od 
—
 

A 
10d 

NILIX3 
—
 

€ 
H
O
L
V
H
A
N
A
D
 

0
 

3
4
0
1
3
A
N
3
 

xal14 
„oe 

—
 

—
/
 

S
J
 

s
a
‘
 

; 
I
n
,
 

€ HOLVUAN39 
O
O
 

N
H
O
J
3
A
V
M
 

ino 
olanv 

A
W
N
I
0
A
 

| 
€ 
1
4
 

Y
O
L
V
I
N
G
O
W
 

F« 
> 

M
O
L
V
T
I
I
D
S
O
 

‘aa 
J
G
N
L
I
d
w
V
 

L
T
 

ies 
INOL 

u
 

<
i
)
 

—™~ 
WH/ONAS 

dH 
L 

Z 
H
O
L
V
H
A
N
A
D
 
(
u
 

dd 
aad 

3
4
O
1
3
A
N
3
 

I
 

v
y
 

a
m
)
 

! 
‘a 

: 
I
n
,
 

_[Z 
uo1vuaNn39 

z 1219 
2
0
]
 

yo1vinaow 
> 

WUOJ3AVM 
4 

VLawo 
4 

aanıldanvy 
| 
L
L
 

= 
a
 

al dv9 
u
 

v2 
431119 

WH/ONAS 
dvo 

a
y
y
 

L
U
 

| 
| H
O
L
V
H
A
N
A
D
 
(
a
u
 

a
 

3
4
0
1
3
A
N
3
 

u 
/ 

a) 
oo 

st” 
=
 

I
n
,
 

FI 
yoivuanao 

Lids 
H
O
L
V
I
N
G
O
W
 

Fe 
> 

EIDSENNMN. 
K 

a
 

v
i
 

J
a
N
n
L
I
I
d
N
V
 

v
i
 
a
 

“
N
 

INYIONAS 

  

  
 
 

 
 

 
 

 
 

  
 
 

 
 

 
 

 
 

  
 
 

 
 

 
 

  
 
     

  

 
 

 
 

  
 
 

  
 
 

 
 

 
 

 
 

  
 
 

   
 

  

 
 

 
 

  
 
 

  
 
 

   
       

 
 

  
  

Ssy344Ng Viva      
 

  
 
 

  
    

 
 

TOHLNOD SS3IIV dIHI     

Anhang O 452



BESCHREIBUNG 

Der 6581 hat 3 Stimmen, die voneinander unabhangig, miteinander oder mit 

externen Audioquellen kombiniert eingesetzt werden können. Jede Stimme besteht 

aus einem Tongenerator, einem Hüllkurvengenerator und einem Amplitudengene- 

rator. Die Tonhöhe kann über einen weiten Bereich eingestellt werden. Der Genera- 

tor produziert 4 Kurvenformen mit der eingestellten Frequenz. Mit den jeweiligen 

harmonischen Obertönen jeder Kurvenform läßt sich die Klangfarbe beeinflussen. 

Die Dynamik der Lautstärke wird vom Amplitudengenerator eingestellt, welcher 

wiederum vom Hüllkurvengenerator beeinflußt wird. Wenn er angesteuert wird, 

entsteht eine Hüllkurve mit programmierbarer Anstiegs- und Abfallzeit. Zusätzlich 

zu den 3 Stimmen gibt es noch ein programmierbares Filter, mit dem es möglich ist, 

komplexe, dynamische Klangfarben herzustellen (subtraktive Synthese). 

SID erlaubt dem Prozessor, die Veränderungen am Ausgang des 3. Generators und 

den 3. Hüllkurvengenerator zu lesen. Diese Ausgänge können dazu benutzt wer- 

den, dem Prozessor die notwendigen Informationen zur Steuerung eines Vibrato, 

Wobbelgenerators, durchstimmbaren Filters etc. zu liefern. Der dritte Oszillator 

kann auch als Zufallsgenerator für Spiele benutzt werden. Zwei A/D-Umsetzer sind 

für den Anschluß von zwei Potentiometern vorgesehen. Diese können als 

“PADDLE“ in einem Spiel oder zur Steuerung in einem Musiksynthesizer benutzt 

werden. Der SID kann externe Audiosignale verarbeiten, wodurch mehrere SIDs zu 

einer sogenannten “Daisy chain“ oder einem polyphonen System zusammenge- 

schaltet werden können. 

SID-KONTROLLREGISTER 

Es gibt 29 8-Bit-Register im SID, die die Klangerzeugung steuern. Hierbei handelt 

es sich um Nur-Schreib- oder Nur-Leseregister, die in Tabelle 1 aufgelistet sind. 

Anhang O 453



Tabelle 1 SID-Registerbelegung 

A
I
N
O
-
A
V
3
H
4
 

A
I
N
O
-
Q
V
3
H
 

A
I
N
O
-
A
V
3
H
 

A
I
N
O
-
A
V
3
H
 

A
I
N
O
-
3
L
I
4
M
 

A
I
N
O
-
3
L
I
H
M
 

A
I
N
O
-
3
L
I
U
M
 

A
I
N
O
-
3
L
I
H
M
 

A
I
N
O
-
3
L
I
U
M
 

A
T
N
O
-
3
L
I
H
M
 

A
T
I
N
O
-
3
L
I
H
M
 

A
I
N
O
-
3
L
I
H
M
 

A
I
N
O
-
3
L
I
H
M
 

A
I
N
O
-
3
L
I
H
M
 

A
I
N
O
-
3
L
I
H
M
 

A
I
N
O
-
3
L
I
H
M
 

A
I
N
O
-
3
L
I
H
M
 

A
I
N
O
-
A
L
I
G
M
 

A
I
N
O
-
3
L
I
H
M
 

A
T
N
O
-
3
L
I
H
M
 

A
I
N
O
3
L
I
U
M
 

A
I
N
O
-
Z
L
I
H
M
 

A
I
N
O
-
3
L
1
I
4
M
 

A
I
N
O
-
Z
L
I
H
M
 

A
I
N
O
-
3
L
I
B
M
 

A
I
N
O
-
3
L
I
H
M
 

A
I
N
O
-
3
L
I
H
M
 

A
I
N
O
-
3
L
I
H
M
 

A
I
N
O
-
3
L
I
H
M
 

A
d
A
L
 

9
3
u
 

EAN3 

W
O
Q
N
V
H
/
E
O
S
O
 

A 
LOd 

X 
LOd 

"OSIW 

10X/390W 

1114/S34 

IH 
94 

0
1
0
4
 

says 

3SV313U/NIVLSNS 

A
V
O
A
G
I
M
O
V
L
L
Y
 

938 
I
O
W
L
N
O
O
 

IH 
Md 

O1 
Md 

IH 
0344 

01 
0344 

£ 
910A 

3SW313U/NIVLSNS 

A
V
O
A
G
I
M
O
V
L
L
V
 

934 
I
O
W
L
N
O
O
 

IH 
Md 

O1 
Md 

IH 
O3uS 

01 
0344 

z 
asıoq 

ASVATSY/NIVLSNS 

A
V
O
A
C
I
M
O
V
L
L
Y
 

934 
I
O
W
L
N
O
O
 

IH 
Md 

O1 
Md 

IH 
0344 

O71 
0
3
4
3
 

r 
BDIOA 

3
W
V
N
 

9
3
4
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

    
  

    
  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 
 

 
 

 
 

 
 

 
 

 
 

                  
 
 

03 
ly 

cy 
€3 

97 
$3 

95 
43 

0
 

Lo 
de) 

£0 
vo 

so 
99 

Lo 

Ord 
bAd 

id 
Eid 

"Ad 
SAd 

9Ad 
Eid 

Oxd 
Xd 

eX 
®Xq 

Xd 
SXd 

Id 
“Xd 

Horn 
| 

Hon 
| 

A
O
A
 

| 
o
n
 

dq 
de 

dH 
440 

€ 
b
i
d
 

| 
2 

1113 
| 

€ 
L
s
 

| 
X31119 

| 
0534 

'!s34 
| 

°S3y 
eS3y 

E94 
9953 

$94 
994 

494 
894 

694 
0194 

94 
194 

294 
= 

= 
an 

= 
= 

054 
ISIH 

°SIH 
ESIy 

Onis 
| 

‘Nas 
| 

Enıs 
| 

Enıs 
%
9
q
 

| 
Hıoa 

| 
o
a
 

| 
Eroca 

Oyıv 
Iyıv 

<yıv 
Eyıv 

aivd 
| 

onas 
| 
N
 

| 
asaı 

| W
A
Y
 

| 
e
t
 

| 
“
L
I
U
 

| 
3sıon 

®Mmd 
| 

md 
| 
m
d
 

| 
''Md 

= 
= 

= 
= 

OMd 
IMd 

TMd 
EMd 

PMd 
SMd 

9Md 
“Nd 

84 
64 

Oly 
thy 

chy 
ely 

v
y
 

Sly 

04 
14 

23 
e4 

v4 
$4 

94 
‘4 

0514 
!ISIH 

“say 
| 

Esıu 
| 

Onis 
| 

Fnıs 
<nıs 

| 
Enıs 

o
a
 

| 
"
o
a
 

| 
“
o
a
 

| 
o
a
 

| 
M
ı
v
 

| 
Fuıv 

eyıv 
| 

Eyıv 
aivo 

| 
onaS 

| 
SRM 

| 
usar 

| W
A
Y
 

|
t
ı
 

| 
r
u
 

| 
asıon 

®Md 
| 

Md 
| 
m
d
 

| 
**Md 

— 
= 

= 
= 

OMd 
"Md 

&Md 
EMd 

PMd 
SMd 

I9md 
“Md 

8
,
 

6
,
 

o
l
y
 

t
h
y
 

e
l
y
 

e
l
y
 

b
l
y
 

S
l
y
 

04 
14 

24 
ey 

v4 
$4 

94 
14 

0514 
Isıu 

| 
?sıu 

esıy 
| 

n
i
s
 

| 
Fnıs 

| 
n
ı
s
 

| 
Enıs 

o
a
 

| 
'AOd 

| 
“
o
a
 

| 
&roa 

| 
M
ı
v
 

| 
Fmuv 

| 
f
v
 

| 
Eyıv 

aivo 
| 

ONAS 
| 

S
n
 

| 
tsar 

| W
V
 

| 
b
t
 

| 
I
m
 

| 
asion 

®md 
| 

$Md 
| 
m
a
 

| 
"Ma 

= 
= 

= 
= 

Omd 
!Md 

<Md 
EMd 

PMd 
SMd 

IMd 
“Md 

8J 
64 

Oly 
h
y
 

ely 
ely 

Pia 
Sty 

04 
by 

24 
ey 

v4 
Sy 

94 
L. 

0q 
lq 

2a 
Eq 

dag 
Sa 

9a 
Zq 

viva 

- Or Oo r Or Oo r Or Or Oo Sf or Oo r0 nr Oo or or Oo Tr 0 

Oy 

or Tr CO So fr FS © eS © oO FS SF SO - Oo oO fF fF © © 

oo Oo + :- © © © 9 rr “ - =- © © © © =” SE ool a ) oO OO © r - - 

0 

ey 
s
s
a
y
q
a
v
 

oo © vv Se m rr OOo Oo Oo Oo QO = = = SF SES SE 

- Tr ee oOo CO rr Tr rT r rT rs oo oo 00 0 0° 

oO rn vun © 

Anhang O 454



KONTROLLREGISTER 

GENERATOR 1 

FREQUENZ LOW/FREQUENZ HIGH (00,01) 

Zusammen stellen diese Register ein 16-Bit-Wort dar, welches die Frequenz des 1. 

Oszillators nach folgender Gleichung festlegt: 

Fout = (Fn*Fer/16777216)Hz = (F,*0,0587214734)Hz 

F„ ist die 16-Bit-Zahl aus den Registern, Fy ist der Systemtakt, der am Eingang @2 

anliegt. 

Dadurch kann die Tonhöhe ohne wahrnehmbare Tonschritte durchgestimmt 

werden. 

PW LO/PW HI (02,03) 

Diese Register bilden eine 12-Bit-Zahl (Bit 4-7 von PW HI werden nicht genutzt), 

welche das Tastverhältnis des Rechteckgenerators 1 bestimmt. Das Verhältnis 
errechnet sich wie folgt: 

PWout = (PW,/40,95)% 

PW, ist hier die 12-Bit-Zahl in den PW-Registern. Das Tastverhältnis kann so ohne 

wahrnehmbare Schritte verändert werden. Diese Register haben nur dann einen 

hörbaren Effekt, wenn der Rechteckgenerator 1 eingeschaltet ist. Wenn in den 

Registern O oder 4095 steht, entsteht ein DC-Signal, 2048 ergibt dagegen ein 

Rechteck mit 50% Tastverhältnis. 

KONTROLLREGISTER (04) 

Dieses Register enthält 8 Kontrollbits: 

GATE (Bit 0) 

Steuert den Hüllkurvengenerator. Wenn es 1 gesetzt ist, beginnt der Zyklus Attack/ 

Decay/Sustain. Wenn es O gesetzt wird, beginnt der Zyklus Release (genauere 

Erklärung im Kapitel Hüllkurvengenerator). 

Anhang O 455



SYNC (Bit 1) 

Wenn dieses Bit 1 gesetzt ist, wird die Frequenz des Generators 1 mit der Frequenz 

des Generators 3 synchronisiert (“Hard-Sync“-Effekte). 

Wenn die Frequenz des Generators 1 unter Berucksichtigung der Frequenz des 

Generators 3 variiert wird, entsteht eine große Zahl komplexer harmonischer 

Strukturen. Wenn Sync funktionieren soll, muß die Frequenz des dritten Generators 

kleiner als die des ersten Generators sein (nicht 0). Keine anderen Parameter der 3. 

Stimme beeinflussen Sync. 

RING MOD (Bit 2) 

Wenn dieses Bit 1 gesetzt ist, wird der Dreieckgenerator der 1. Stimme durch eine 

mit Frequenz 1 und 3 ringmodulierte Spannung ersetzt. Wenn jetzt die Frequenz 1 

verändert wird, entstehen nichtharmonische Obertöne, welche für Klingel- oder 

Gonggeräusche und Spezialeffekte gebraucht werden. Hierfür muß bei Generator 1 

Dreieck und bei Generator 3 eine Frequenz größer als Null eingestellt sein. Andere 

Parameter der 3. Stimme haben keine Wirkung. 

TEST (Bit 3) 

Wenn dieses Bit 1 gesetzt ist, wird der 1. Generator zurückgesetzt und auf 0 

gehalten, bis das Testbit gelöscht ist. Der Rauschgenerator ist abgestellt, und der 

Rechteckgenerator wird auf DC gehalten. Zwar wird dieses Bit normalerweise für 

Testzwecke benutzt, es kann jedoch Generator 1 auch mit externen Ereignissen 

synchronisieren (kompliziertere Kurvenformen, Realzeit-Verarbeitung). 

BIT 4 

Wenn dieses Bit gesetzt ist, ist der Dreieckgenerator eingeschaltet. Diese Kurven- 

form ist arm an Obertönen und hat einen weichen, einer Flöte ähnlichen Charakter. 

BIT5 

Wenn dieses Bit gesetzt ist, ist der Sägezahngenerator eingeschaltet. Dieser ist 

reich an geraden und ungeraden Obertönen und ergibt einen breiten, an Blechblä- 

ser erinnernden Klang. 

456 Anhang O



BIT 6 

Wenn dieses Bit gesetzt ist, ist der Rechteckgenerator ausgewahit. Der Obertonan- 

teil kann durch das Tastverhältnis eingestellt werden, die Möglichkeiten reichen 

vom hellen, hohlen Rechteckklang bis zum nasalen, schrillen Klang kurzer Impulse. 

Wenn das Tastverhaltnis beim Spielen verandert wird, entsteht ein “pashing“- 

Effekt, der den Eindruck einer Bewegung erweckt. Schnelles Hin- und Herschalten 

zwischen verschiedenen Tastverhältnissen kann interessante Sequenzen er- 

zeugen. 

BIT 7 

Wenn dieses Bit gesetzt ist, ist der Rauschgenerator eingeschaltet. 

Dieser produziert Rauschen, das die Klangfarbe vom tiefen Rumpeln bis zum 

zischenden weiBen Rauschen durch die Frequenzeinstellung des Generators 1 

verändern kann. Rauschen braucht man, um Expiosionen, Gewehrschusse, Düsen- 

jäger, Wind und ähnliche Geräusche zu erzeugen, oder für Trommeln und Becken. 

Indem man die Frequenz beim Spielen verändert, kann man Stürme nachbilden. 

Obwohl einer dieser Generatoren eingeschaltet sein muß, um die 1. Stimme am 

Ausgang erklingen zu lassen, ist es nicht notwendig, die einzelnen Generatoren 

auszuschalten, um die Stimme abzustellen. Die Lautstärke wird nur durch den 

Hüllkurvengenerator bestimmt. 

  
Bemerkung: Die Oszillatorausgänge können nicht addiert werden. Wenn mehr als ein Oszillator 

eingeschaltet ist, wird das Ergebnis eine logische “Und“-Verknüpfung der Kurvenform sein. Obwohl 

damit neue Kurvenformen erzeugt werden können, sollte dies vorsichtig benutzt werden. Wenn 

Rauschen eingeschaltet ist und zusätzlich eine Kurvenform eingeschaltet wird, verstummt das Rau- 

schen, bis das Testbild zurückgesetzt oder der Pin 5 (RES) Low geschaltet wird.       

ATTACK/DECAY (05) 

Bit 4-7 wählt eine von 16 möglichen Anstiegszeiten (Attack) für den Hüllkurvenge- 

nerator der 1. Stimme. Dies bestimmt, wie schnell der Ausgang auf volle Lautstärke 

anschwillt, wenn der Hüllkurvengenerator eingeschaltet wird (Gate). 

Bit O bis 3 wählen eine von 16 möglichen Abschwellzeiten (Decay) aus. Diese Zeit 

gibt an, wie schnell die Lautstärke vom Spitzenwert auf den ausgewählten Haltepe- 

gel (Sustain) abfällt. 

Anhang O 457



SUSTAIN/RELEASE (06) 

Bit 4-7 wählt einen von 16 möglichen Halte-(Sustain-)Pegeln des Hüllkurvengene- 

rators aus. Diese Phase folgt dem Abfall, der Pegel wird gehalten, solange das 

Gatebit gesetzt ist. Der Pegel kann von Stille (0) bis zur Spitzenlautstärke (16) linear 

eingestellt werden. Ein Wert von 8 würde demnach der halben Lautstärke, die beim 

Anstieg (Attack) erreicht wird, entsprechen. 

Mit Bit 0-3 kann eine der 16 Ausklingarten gewählt werden. Der Ausklingzyklus 

folgt der Haltezeit, wenn das Gatebit zurückgesetzt wird. Dann fällt die Lautstärke 

vom Haltepegel auf Null in der eingestellten Zeit. Die Ausklingzeiten mit den Werten 

0-16 sind identisch mit den Abfallzeiten 0-16. 

  

Bemerkung: Der geschilderte Ablauf kann ohne Einschränkung jederzeit durch das Gatebit verändert 

werden. Wenn das Gatebit z. B. zurückgesetzt wird, bevor die Anschlagszeit abgelaufen ist, beginnt 

sofort bei dem erreichten Pegel die Ausklingzeit. Wenn jetzt das Gatebit wieder gesetzt wird, beginnt 

sofort eine neue Anstiegszeit bei dem jetzt erreichten Pegel. Dadurch können komplizierte Amplituden- 

verläufe durch Realzeitprogrammierung erzeugt werden.       

Tabelle 2 Hüllkurvenraten 
  

  

  

  

WERT ANSTIEGSRATE ABKLING/ABFALLRATE 

DEZIMAL (HEX) (Takt/Zyklus) (Takt/Zyklus) 

0 (0) 2 ms 6 ms 

] (1) 8 ms 24 ms 

2 (2) 16 ms 48 ms 

3 (3) 24 ms | 72 ms 

4 (4) 38 ms 114 ms 

5 (5) 56 ms 168 ms 

6 (6) 68 ms 204 ms 

7 (7) 80 ms 240 ms 

8 (8) 100 ms 300 ms 

9 (9) 250 ms 750 ms 

10 (A) 500 ms 1.5 s 

11 (B) 800 ms 2.45 

12 (C) ls 35 

13 (D) 35 9s 

14 (E) 55 15 s 

15 (F) 85 24 s         

458 Anhang O



  

Bemerkung zur Tabelle: Die angegebenen Werte beziehen sich auf eine Taktfrequenz von 1 MHz. 

Wenn die Taktfrequenz abweicht, müssen die Werte mit 1 MHz/F(clk) multipliziert werden. 

Die angegebenen Zeiten beziehen sich auf die Zeit, die benötigt wird, um den Zyklus abzuschließen. 

Eine Anstiegszeit von 16 ms (Wert 2) bedeutet z. B., daß die Lautstärke nach 16 ms von Pegel 0 den 

Spitzenwert erreicht. Die Abfall-/Ausklingzeiten beziehen sich auf die Zeit, die benötigt wird, um vom 

Spitzenwert auf Null zu sinken.   
  

STIMME 2 

Die Register $07—$0D kontrollieren die Stimme 2 und haben die gleiche Funktion 

wie die Register 00-06, mit folgenden Ausnahmen: 

1) SYNC synchronisiert den Generator 2 mit Generator 1. 

2) RING MOD ersetzt die Dreieckspannung durch die ringmodulierte Kombination 

der Generatoren 1 und 2. 

STIMME 3 

Die Register $0E—$14 haben für die 3. Stimme die gleiche Funktion wie die 

Register 00—06, mit folgenden Ausnahmen: 

1) SYNC synchronisiert Generator 3 mit Generator 2. 

2) RING MOD ersetzt die Dreieckspannung durch ringmodulierte Kombination der 

Generatoren 2 und 3. 

Wenn man einen Ton ansprechen will, muß man also Frequenz, Kurvenform, 

Effekte (SYNC, RING MOD) und Hüllkurve bestimmen. Dann kann man den Ton 

jederzeit mit dem Gatebit abrufen. Der Ton hält solange an, bis das Gatebit 

zurückgesetzt wird. Jede Stimme kann einzeln, mit unterschiedlichen Parametern 

oder mit anderen Stimmen zusammen benutzt werden, um eine einzelne, kräftige 

Stimme zu erhalten. Dabei kann eine leichte Verstimmung der Oszillatoren unter- 

einander oder die Stimmung in musikalischen Intervallen einen wirkungsvollen 

Effekt ergeben. 

Anhang O 459 

 



FILTERREGISTER 

FC LO/FC HI (Register $15,$16) 

Diese Register bilden zusammen eine 11-Bit-Zahl (Bit 3-7 des Registers FC LO 

werden nicht genutzt). Diese bestimmt linear die Mitten- bzw. Eckfrequenz, sie 

kann von 30 Hz bis 12 kHz eingestellt werden. 

RES/FILT (Register $17) 

Bit 4—7 dieses Registers bestimmen die Resonanz des Filters. Dieser Effekt hebt 

die Frequenzen in der Nähe der Eckfrequenz an, dadurch ergibt sich ein schärferer 

Klang. Es können 16 verschiedene Einstellungen vorgenommen werden (linear von 

O bis 16). Bit O—3 legt fest, welches Signal gefiltert wird: 

FILT 1 (Bit 0): 

Eine 0 in diesem Register bedeutet, daß die Stimme 1 ohne Veränderung auf den 

Audioausgang geschaltet wird (Bypass). Wenn es gesetzt ist, wird die 1. Stimme 

gefiltert, ihr Obertonanteil verändert sich. 

FILT 2 (Bit 1): 

Gleiche Wirkung wie Bit O für die 2. Stimme. 

FILT 3 (Bit 2): 

Gleiche Wirkung wie Bit O für die 3. Stimme. 

FILTEX (Bit 3): 

Gleiche Wirkung wie Bit O für den Audioeingang. 

MODE/VOL (Register $18) 

Bits 4-7 bestimmen verschiedene Filter- und Ausgabearten: 

LP (Bit 4): Wenn dieses Bit gesetzt ist, ist der Tiefpaß eingeschaltet, d.h. alle 
Frequenzen unterhalb der Eckfrequenz bleiben unverändert, alle Frequenzen ober- 

halb werden mit 12 dB/Oktave abgeschwacht. Es entstehen volle Klänge. 

460 Anhang O



BP (Bit 5): 

Das gleiche fur den BandpaB. Alle Frequenzen unter und oberhalb der Mittenfre- 

quenz werden mit 6 dB/Oktave abgeschwacht. Es entstehen offene, dünne Klänge. 

HP (Bit 6): 

Das gleiche für den Hochpaß. Alle Frequenzen oberhalb der Eckfrequenz bleiben 

unverändert, unterhalb werden sie mit 12 dB/Oktave abgeschwächt. Es entstehen 

summende und blecherne Klänge. 

3 OFF (Bit 7): 

Eins gesetzt, trennt dieses Bit die 3. Stimme vom Audioausgang ab. Wenn man 

Stimme 3 am Filter vorbei schaltet (mit FILT 3=0) und 3 OFF gesetzt ist, wird die 3. 

Stimme nicht auf den Ausgang geschaltet, kann aber zur Modulation der anderen 

Stimmen benutzt werden. 

  

Bemerkung: Die Filter können zusammengeschaltet werden. Z. B. ergibt LP zusammen mit HP ein 

Notchfilter (Bandsperre). Damit der Filtereffekt hörbar wird, muß ein Filter eingeschaltet sein und eine 

Stimme durch das Filter geführt werden. Das Filter ist vielleicht das wichtigste Element im SID, da es 

durch die subtraktive Synthese viele Klangmöglichkeiten schafft (das Filter entzieht dem obertonrei- 

chen Eingangssignal bestimmte Frequenzen). Gute Ergebnisse erzielt man, wenn man die Eck- bzw. 

Mittenfrequenz während des Spielens variiert.       
VOL 0-VOL 3 (Bit 0-3): 

Hiermit wird die Gesamtlautstarke zwischen 0 (leise) und 15 (laut) in linearen Stufen 

eingestellt. Hiermit kann die Lautstärke beim Zusammenschalten mehrerer Chips 

abgestimmt oder Effekte wie Tremolo erzeugt werden. Bei VOL=0 ist der Ausgang 

stumm. 

WEITERE EIGENSCHAFTEN 

POTX (Register $19) 

Dieses Register erlaubt dem Prozessor, die Position eines Potentiometers, das an 

Pin 24 angeschlossen ist, in Schritten von O bei kleinstem Widerstand bis 255 bei 

vollem Widerstand zu erkennen. Das Ergebnis liegt immer vor und wird alle 512 

Takte erneuert. 

POTY (Register $1A) 

Das gleiche für ein zweites Potentiometer (an Pin 23). 

Anhang O 461



OSC 3/RANDOM (Register $1B) 

Dieses Register erlaubt dem Prozessor, die 8 oberen Bits des Ausgangs von 

Oszillator 3 zu lesen. Die Art der Ziffernfolge, die entsteht, ist direkt mit der 

Kurvenform verknüpft. Beim Sägezahn wächst die Zahlenfolge von 0 bis 255, um 

dann wieder bei 0 zu beginnen. Beim Dreieck wächst die Zahl von 0 bis 255, um 

dann von 255 bis O zu fallen. Beim Rechteck springt die Zahl zwischen O und 255 

hin und her. Beim Rauschen wird eine Kette von Zufallszahlen erzeugt, deshalb 

kann dieses Register auch als Zufallszahlengenerator benutzt werden. Es gibt viele 

Anwendungsmöglichkeiten für dieses Register, die wichtigste ist vielleicht die 

Steuerung von Modulationen. Die Zahlen, die erzeugt werden, können per Software 

zum Inhalt der Oszillator- oder Filterfrequenzregister addiert werden etc. So können 

viele dynamische Effekte erzeugt werden: Sirenen, indem OSC3 (Sägezahn) zum 

-Frequenzregister eines anderen Oszillators addiert wird. Vibrato entsteht, wenn 

OSC3 (Dreieck, 7 Hz) zum Frequenzregister einer anderen Stimme addiert wird. 

Dabei sollte der Audioausgang der 3. Stimme abgeschaltet sein (3OFF=1). 

ENV 3 (Register $1C) 

Im Prinzip das gleiche wie OSC3, es wird jedoch der Ausgang des Hüllkurvengene- 

rators 3 gelesen. Die Zahlen können z. B. zum Inhalt des Filterfrequenzregisters 

addiert werden, es entstehen sog. “Harmonische Hullkurven“ und Wahwah- 

Effekte. “Phasing“ entsteht, wenn dieser Ausgang zum Frequenzregister eines 

Oszillators addiert wird. Um dieses Signal zu erzeugen, muß das Gatebit geschaltet 

werden. Der Ausgang OSC3 spiegelt immer die Veränderungen am Ausgang des 3. 

Oszillators wider, er wird nicht vom Hüllkurvengenerator beeinflußt. 

PINBESCHREIBUNG 

CAP1A, CAP1B, (Pins 1, 2)/ CAP2A, CAP2B (Pins 3, 4): 

Hier sollten zwei Kondensatoren für das programmierbare Filter angeschlossen 

werden. C1 und C2 sollten i. A. 2200 pf haben und aus Polystyrene bestehen. 

Wenn mehrere SIDs zusammen arbeiten sollen, sollten die Kapazitäten abgegli- 

chen werden. 

Der Frequenzbereich (normalerweise 30 Hz bis 12 kHz) kann auf spezielle Pro- 

bleme zugeschnitten werden. So kann z.B. die obere Eckfrequenz beschnitten 

werden, um eine bessere Kontrolle über die unteren Frequenzen zu erhalten. 

462 Anhang O



Die obere Eckfrequenz kann nach folgender Gleichung errechnet werden: 

FCmax = 0,000026/C 

C ist die Kapazitat. Der Filterbereich erstreckt sich 9 Oktaven nach unten. 

RES (Pin 5): 

Reseteingang (TTL-Pegel) für den SID. Wenn dieser 10 Takte Low geschaltet ist, 

sind alle internen Register auf Null zurückgesetzt und der Audioausgang stumm. Er 

ist normalerweise mit der Resetleitung des Prozessors oder einer Einschaltlogik 

verbunden. 

22 (Pin 6): 

Takteingang des SID (TTL-Pegel). Alle Parameter beziehen sich auf diesen Takt, er 

steuert auch den Datentransport zwischen CPU und SID: Daten können nur dann 

transportiert werden, wenn @2 High liest (somit ist ®2 für den Datentransport eine 

Art Chip Select). Normalerweise ist ®2 mit dem Systemtakt verbunden, dessen 

Frequenz ungefähr 1 MHz betragen sollte. 

R/W: 

Dieser TTL-Eingang steuert den Datentransport. Liegt High an, kann der Prozessor 

Daten auslesen, bei Low Daten in ein Register schreiben. 

CS: 

Dieser TTL-Eingang steuert den Datentransport, er muß Low sein, damit ein 

Transport stattfinden kann: Es kann nur gelesen werden, wenn CS=Low, 02=High 

und R/W=High ist. Geschrieben werden kann nur, wenn CS=Low, 02=High und 

R/W=Low ist. Normalerweise ist dieser Eingang mit einer Dekodierschaltung 

verbunden, um den SID im gesamten Adreßbereich plazieren zu können. 

AO—A4: 

Mit diesen TTL-Eingängen kann eines der 29 Register ausgewählt werden. Es 

könnten 32 Register angesprochen werden, 3 Adressen sind jedoch nicht belegt. 

Wenn dort geschrieben werden soll, wird dies ignoriert, beim Lesen werden 

ungültige Daten gelesen. Die Anschlüsse werden mit den entsprechenden Adres- 

senleitungen des Prozessors verbunden, um den SID genauso ansprechen zu 

können wie einen Speicher. 

Anhang O 463



GND: 

Um beste Ergebnisse zu erzielen, sollte der SID eine vom Digitalteil getrennte 

Erdleitung erhalten. 

DO—D7: 

Diese bidirektionalen Leitungen werden zum Datentransport benutzt (TTL-Pegel, 

können als Ausgang 2 TTL-Eingänge treiben). Sie sind hochohmig, wenn der SID 

nicht angesprochen wird oder vom Prozessor in den SID geschrieben wird. Beim 

Lesen werden sie durchgeschaltet und übermitteln die Daten an den Prozessor. Sie 

werden mit dem Datenbus verbunden. 

POTX,POTY: 

Dies sind die Eingänge der A/D-Umsetzer, mit denen die Stellung der Potentiome- 

ter digitalisiert werden kann. Der UmsetzungsprozeB hangt von der Kapazitat ab, die 

vom Pin nach GND geschaltet ist und Uber das Potentiometer von +V.. gespeist 

wird. Die Werte müssen folgender Gleichung entsprechen: 

R*C = 0,00047 

R ist der max. Widerstand des Potentiometers und C die Kapazitat. 

Je größer die Kapazität ist, um so kleiner muß R sein. Empfohlen werden: C = 

1000 pF; R=470 kOhm. POTX und POTY können unterschiedliche Werte fur R und 

C aufweisen, solange die Gleichung erfüllt ist. 

Vee! 

Auch für die Spannungsversorgung (+5 V) sollte eine separate Leitung zur Verfu- 

gung stehen und ein Blockkondensator dicht am SID plaziert werden. 

EXT IN: 

Dieser Analogeingang erlaubt es, externe Signale mit dem Ausgangssignal des SID 

zu mischen oder sie zu filtern. Typische Quellen sind Gesang, Gitarre und Orgel. 

Der Eingangswiderstand beträgt 100 kOhm. Der Eingang hat einen Offset von 6 V 

und kann bis zu 3 Vp-p verarbeiten. 

464 Anhang O



Deshalb sollte der Eingang mit einem Elektrolytkondensator von 1000- 10000 nF 

entkoppelt werden. Mit FILTEX = O können viele SIDS zusammengeschaltet 

werden (Verstärkung = 1), die Anzahl wird nur durch den Geräuschspannungs- 

pegel im Ausgangssignal begrenzt. 

Der Gesamtlautstärkeregler wirkt auch auf diesen Eingang. 

AUDIO OUT: 

Dieser Ausgang (Open-source) umfaßt die 3 Stimmen, den Filter und den externen 

Eingang. Der Pegel wird durch den Gesamtlautstärkeregler bestimmt und erreicht 

max. 2 Vp-p bei einem Offset von 6 V. Es muß ein Widerstand (1 kOhm) gegen 

Masse geschaltet werden, und ein Elektrolytkondensator von 1000—10000 nF sollte 

den Ausgang entkoppeln. 

Voop: 

Auch hier sollte eine separate Leitung vorgesehen werden (+12 V). 

MERKMALE VON 6581 SID 

ABSOLUTE MAX. NENNWERTE 

  

  
NENNWERT SYMBOL WERT EINHEIT 

Versorgungsspannung Vop —0,3-bis #17 VDC 

Versorgungsspannung Voc —0,3 bis +7 VDC 

Eingangsspannung (analog) | Vina —0,3 bis +17 VDC 

Eingangsspannung (digital) Vind —0,3 bis +7 VDC 

Betriebstemperatur Ta | 0 bis 70 °C 

Lagertemperatur Teste —55 bis +150 °C             

Anhang O 465



(DAA 
7° T

=
H
O
A
 

 
 

 
 

 
 

 
 

 
 

 
 

  

y
r
 

—
 

mn 
0
0
%
 

HO) 
‘
B
u
l
o
i
n
o
s
 

!
/
Q
-
0
Q
)
 

j
u
a
l
i
n
 

YuBIW, 
I
n
d
i
n
O
 

(yw 
Z’E=PRO| 

| 
| 

IaA 
y'0 

_
 

A
N
D
 

104 
x
o
w
=
9
%
ı
A
 

‘7q—-0d) 
aBnyoA 

MOT 
Ind1nO 

(v7 
007=PPO0| 

| 

IaA 
| LZ0-29A| 

—
 

24 
HOA 

‘ulm=—99A 
‘7q—-0q) 

aßnyjon 
yBıH 

ındıno 

J
A
A
 

F
T
 
-
r
0
=
"
N
 

4
u
s
4
n
)
 

e6oy097] 
Induj 

ALI 
OL 

—
 

—
 

IS 
(xowW=29A 

‘7qQ—-0q) 
(440) 

0
4
S
-
S
S
1
y
]
 

(IQA 
S
-
0
=
"
A
 

'7V-0V 

vi 
GT 

_
 

=
 

| 
‘SD 

‘M/a 
‘TP 

'SIA) 
uauın) 

a6oy409e7 
ınduj 

JaA 
80 

—
 

E
0
-
 

IA 
(zd-0Q 

'rvV-OV 
aBo 

yon 
MO] 

ınduj 

IaA 
994 

—
 

T 
HIN 

‘SO 
'M/a 

‘7P 
'SIA) 

sBnyoA 
yBıy 

ynduy 

SLINNI 
XVW 

dAL 
NIW 

|109WAS 
J
I
L
S
I
A
I
L
D
V
A
V
H
D
 

          
  

 
 

(9.02 
SIQ 

O="L 
°%S 

F 
DGA 

GS=°°A 
'%S 

+ 
DAA 

Z
I
=
”
A
)
 
N
S
A
L
A
V
H
O
S
N
S
Y
D
I
S
 
I
H
I
S
I
H
L
M
3
I
3
 

Anhang O 466



 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

M
u
 

0001 
009 

—
 

Gq 
(|O401) 

uoypdiıssıg 
19MOd 

yw 
001 

OZ 
—
 

29 
(OA) 

s
u
n
)
 

Ajddng 
samog 

y
w
 

GZ 
0Z 

_— 
aa, 

(90) 
juasiny 

Ajddng 
s
a
M
o
d
 

OWA 
07 

GL 
ol 

[UO 
SOIION 

IV 

OWA 
90 

oat) 
r'0 

[UO 
8910\ 

BUC 

DAA 
€°9 

9 
LS 

mon 
(
X
O
W
 

= 
SWNIOA 

’PRo| 

VON 
L 
‘LAO 

Olanv) 
aßnyon 

IndınQ 
OIpNY 

OWA 
€ 

oat) 
—
 

IaA 
e9 

9 
LS 

WIA 
(NI 

LX3) 
aBnyjoA 

4Ndu]| 
oIpny 

VO: 
—
 

OS 
001 

uly 
(NI 

1X3) 
s
>
u
p
p
a
d
u
j
 

yndu| 

ALI 
—
 

—
 

009 
300) 

(ALOd 
‘XLOd) 

JUBIIND 
AUIS 

40d 

SGA 
—
 

Z
N
 

—
 

BER 
(ALOd 

‘XLOd) 
abnyoN 

196614 
40d 

(40-00 
'rV-OVv 

4d 
OL 

—
 

—
 

ie) 
‘SD 

'M/a 
‘7H 

'SIA) 
s>un4>ndn) 

Induj 

(DAA 
v'0= 

"A 

Wu 
—
 

—
 

ze 
ey 

"Bumuis 
’ZaA-0Q) 

a
u
n
)
 

Mo] 
INdINC 

    
  

  
 
 

    
  

467 Anhang O



6581 SID-TIMING 

a \ J 

R/W 

Do-D7 

    

  Tg 
  

  
  

  

  

  

  
      

  

  

AAA 
  

    
    
  

  
LI! X 

Ton -— 

- 
  

*Tacc wird nach dem letzten Auftreten von @2, CS, Au—A, gemessen. 

  

  

LESEZYKLUS 

SYMBOL NAME MIN | TYP MAX |UNITS 

Teyc Clock Cycle Time 1 — 20 US 

Te Clock High Pulse Width 450 | 500 |10,000 ns 

Tr, Te Clock Rise/Fall Time — — 25 ns 

Trs Read Set-Up Time 0 — — ns 

Tay Read Hold Time 0 — oe ns 

Tacc Access Time — — 300 ns 

Taw Address Hold Time 10 see _— ns 

Tou Chip Select Hold Time 0 — u ns 

Tox Data Hold Time 20 om on ns               

468 Anhang O 

 



  

  

a \ / \ 

a TN. 
Tams + |-—+ Tan 

  
  

  

    

  

  

  
  

    

  

  

  

cS | 
es KIN / 

TVo M— + Tox 
Do-D7 

4 

*Tw wird nach dem letzten Auftreten von @2, CS, R/W gemessen. 

SCHREIBZYKLUS 

SYMBOL NAME MIN | TYP MAX [UNITS 

Tw Write Pulse Width 300 Bi: _ - 

TwH Write Hold Time 0 — — nS 

Taws Address Set-up Time 0 — — ns 

Tan Address Hold Time 10 _— — ns 

Tou Chip Select Hold Time 0 — — ns 

Typ Valid Data 80 —— BE ns 

ToH Data Hold Time 10 — an ns                 

Anhang O 469



SID TONLEITER 

Im Anhang E sind alle Werte aufgelistet, die in die Frequenzregister eingeschrieben 

werden müssen, um die Töne einer “wohltemperierten“ Tonleiter zu erhalten. 

Diese besteht aus einer Oktave mit 12 Halbschritten: C, D, E, F, G, A, H, C und C#, 

D#, F#, G#, A#. Die Frequenz jedes Halbtones läßt sich durch Multiplikation der 

Frequenz des vorigen Halbtones mit der 12. Wurzel aus 2 errechnen. Der Tabelle 

liegt ein Systemtakt von 1,02 MHz zugrunde. Für andere Taktfrequenzen muß man 

die bei den Frequenzregistern angegebene Umrechnung anwenden. Die angege- 

bene Stimmung bezieht sich auf A4 = 440 Hz. Es ist möglich, eine andere 

Stimmung zu verwenden oder diese Tonfolge umzustellen. 

Obwohl dies eine einfache und schnelle Methode ist, die Tonleiter zu programmie- 

ren, werden allein zur Speicherung dieser Tabelle 192 Bytes benötigt. Diese 

Verschwendung des Speicherplatzes kann durch einen Algorithmus umgangen 

werden, mit dem die Notenwerte berechnet werden können. Da eine Oktave die 

Verdoppelung der Frequenz bedeutet, brauchen nur die 12 Notenwerte einer 

Oktave gespeichert zu werden. Wenn diese 12 Eingaben (24 Bytes) aus den 

Werten für die 8. Oktave bestehen (C7—H7), kann der Wert für jede beliebige Note 

errechnet werden, indem die Frequenz des entsprechenden Tones der 8. Oktave 

für jede Oktave Unterschied einmal durch 2 geteilt wird. Eine Division durch 2 istin 

binarer Darstellung eine Verschiebung um ein Bit nach rechts. Deshalb kann die 

Berechnung durch eine einfache Routine durchgeführt werden. Obwohl die Fre- 

quenz von H7 von dem Oszillator nicht gebildet werden kann, sollte sie zur 

Berechnung in die Tabelle aufgenommen werden. 

Für jeden Ton muß nun festgelegt werden, um welchen Halbton es sich handelt und 

in welcher Oktave er erklingen soll. Da man 4 Bit braucht, um 1 von 12 Halbtönen zu 

wählen, und 3 Bit, um eine von 8 Oktaven zu bestimmen, reicht ein Byte aus. Die 

unteren 4 Bit bestimmen z. B. den Halbton (sie adressieren einen Platz der Tabelle) 

und die oberen 4 Bit, um wieviel Stellen der Tabellenwert nach rechts verschoben 

werden muß. 

470 Anhang O



SID HULLKURVENGENERATOR 

HULLKURVENGENERATOR 

Der vierteilige ADSR (Attack, Decay, Sustain, Release) hat sich in der elektroni- 

schen Musik als optimaler Kompromiß zwischen Flexibilität und einfacher Bedie- 

nung erwiesen. Passende Wahl der Parameter erlaubt es, eine Vielzahl von Instru- 

menten nachzuahmen. 

Die Geige ist ein gutes Beispiel für ein Instrument mit lang anhaltendem Ton: Er 

schwillt langsam an, erreicht eine Spitzenlautstärke und fällt dann auf einen niedri- 

geren Wert ab. Der Geiger kann diesen Ton lange halten, um ihn dann langsam 

ausklingen zu lassen. Ein “SchnappschuB" dieser Hüllkurve zeigt dieses Bild: 

S 
-——A Tr D ~/-— SUSTAIN = R 7 

PERIOD   PEAK AMPLITUDE 

      

INTERMEDIATE 
LEVEL     

ZERO AMPLITUDE 

Diese Hüllkurve kann folgendermaßen nachgebildet werden: 

ATTACK: 10 ($A) 500 

DECAY: 8 300 ms 

SUSTAIN: 10 ($A) 

RELEASE: 9 750 ms cae | | 
  

Man beachte, daB der Ton solange anhalt, bis das Gatebit zuruckgesetzt wird. Mit 

wenigen Änderungen kann diese Hüllkurve für Blech- und Holzblasinstrumente und 

alle Streichinstrumente verwendet werden. 

Eine ganz andere Hüllkurve besitzen Schlag- und Tasteninstrumente. Die Hüllkurve 

von Schlaginstrumenten wird von einem nahezu augenblicklichen Anstieg und 

einem darauf folgenden Abfall bestimmt, diese Instrumente können den Ton nicht 

auf einer konstanten Lautstärke halten. Eine Trommel erreicht in dem Moment, in 

dem sie angeschlagen wird, ihre volle Lautstärke, um dann schnell auszuklingen. 

Anhang O 471



Die typische Hullkurve eines Beckens wird hier gezeigt: 

  

ATTACK: 0 2ms ‚No 

DECAY: 9 750ms N 
SUSTAIN: 0 
RELEASE: 9 750ms Are | a 

Man beachte, daß der Ton vollkommen ausklingt, obwohl das Gatebit nicht zuruck- 

gesetzt wird. 

Der Amplitudenverlauf von Klavieren ist komplizierter, er kann aber mit dem ADSR 

leicht erzeugt werden. Der Ton erreicht seine volle Lautstärke, wenn die Taste 

angeschlagen wird, und beginnt dann abzuschwellen. Wenn die Taste losgelassen 

wird, wird der Ton durch die Mechanik abgedämpft. Diese Hüllkurve ist hier 

dargestellt: 

  

ATTACK: O0 2 ms 0 

DECAY: 9 750 ms j ; 
SUSTAIN: O 

RELEASE: O 6 ms cae | 
  

Man beachte, daß der Ton abklingt, bis das Gatebit zurückgesetzt und dann 

abgestellt wird. 

Die einfachste Hullkurve ist die einer Orgel: Solange eine Taste gedruckt ist, hat der 

Ton volle Lautstarke und wird sofort abgestellt, wenn die Taste wieder losgelassen 

wird. 

Diese Hullkurve ist hier dargestellt: 

  

  
  

ATTACK: O0 2 ms A a 

DECAY: 0 6 ms | 

SUSTAIN: 15 ($F) 
RELEASE: 0 6 ms ar | u 

472 Anhang O



Die wirkliche Starke des SID liegt aber in der Erzeugung kunstlicher Klange. Der 

ADSR kann Hüllkurven erzeugen, die bei keinem Instrument vorkommen. Ein gutes 

Beispiel ist hierfür die “Rückwärts“-Hüllkurve. Sie wird von einem langsamen 

Anstieg und einem scharfen Abfall bestimmt, was so klingt, als hätte man das 

Instrument auf Tonband aufgenommen und würde die Aufnahme rückwärts abspie- 

len. Sie sieht folgendermaßen aus: 

ATTACK: 10 ($A) 500 ms j 

DECAY: 0 6 ms 

  

SUSTAIN: 15 ($F) 
RELEASE: 3 72 ms on   

Viele bemerkenswerte Klange entstehen, wenn der Hullkurvenverlauf des einen 

Instrumentes mit dem Klang eines anderen kombiniert wird. Dadurch entstehen 

Klange, die bekannten Instrumenten ahneln, aber irgendwie fremd klingen. Da 

Klänge im allgemeinen subjektiv empfunden werden, muß man mit verschiedenen 

Klangfarben und Hüllkurven experimentieren, bis man den gewünschten Klang 

erhält. 

TYPISCHE 6581/SID-ANWENDUNG 
+12 V +5V 

1.0 MHz | . | 

AUDIO   

    

          
  

  

    
  
  

  

0 i, m 
Mm CAP, ° oe ELECTROLYTIC OUT 

Fl AUDIO OUT . 2200 pF ra 

EN CIRCUIT CIRCUIT | cap, BR 

CAP, AUDIO 

| 
L ELECTROLYTIC IN 

un EXT IN he : i] £0) 
Vee IN POLYSTYRENE tt 0 

CAP 25 1.0 pF = 

Rea =] RES +5V 
og OUT > 92 POT X O 

u _ 6581 470 Kl) > A 

: I 
" ADDRESS DECODING u = PADDLES 

OR ADDRESS LINE +5V 
As POT Y O 

MPU Ag Ay T 

Az — 

      

  
  

  

  
        

| 

I
l
l
 

@
 z oO
 

Oo
 

© 

  

        < n n 

S
e
e
.
 D 

  

j
e
 

Anhang O 473



ANHANG P 

GLOSSAR 

ADSR 

ATTACK 

Binar 

Boole’scher Operator 

Byte 

CHROMA-Rauschen 

CIA 

DDR 

DECAY 

Dezimal 

e 

Hüllkurve 

FIFO 

Hexadezimal 

Ganze Zahl 

Jiffy-Uhr 

NMI 

Oktal 

Operand 

OS 

Pixel 

Warteschlange 

Register 

RELEASE 

ROM 

SID 

Vorzeichenzahlen 

Index 

SUSTAIN 

Syntax 

Abschneiden 

VIC-II 

Video-Bildschirm 

474 Anhang P 

Anstieg-/Abkling-/Halte-/Abfallhüllkurve 

Rate, mit der eine Musiknote die Spitzenlautstärke 

erreicht (Anstieg) 

Zahlensystem mit der Basis 2 

Logischer Operator 

Speicherplatz 

Farbverzerrung 

Komplex-Interface-Adapter 

Datenrichtungsregister 

Rate, mit der eine Musiknote von der Spitzenlautstär- 

ke bis zum Haltepegel abfällt (Abklingen) 

Zahlensystem mit der Basis 10 

Mathematische Konstante (ca. 2,71828173) 

Lautstärkenkontur einer Note über einen bestimmten 

Zeitraum 

Zuerst eingegeben/Zuerst ausgeben 

Zahlensystem mit der Basis 16 

Zahl ohne Dezimalpunkt 

Hardware-Intervall-Timer 

Nicht maskierbare Unterbrechung 

Zahlensystem mit der Basis 8 

Parameter 

Betriebssystem 

Auflösepunkt auf dem Bildschirm 

Einzel-Dateileitung 

Besonderer Speicherplatz 

Rate, mit der eine Musiknote vom Haltepegel bis auf 

die Null-Lautstärke abfällt (Abfall) 

Nur-Lesespeicher 

Sound-Interface-Vorrichtung 

Positive oder negative Zahlen 

Indexvariable 

Lautstärkepegel zum Halten einer Musiknote 

Programm-Satzstruktur 

Auslassen (nicht gerundet) 

Video-Interface-Chip 

Fernsehgerät



INDEX 

6566/6567 Funktionsweise, 441 

6581 SID, Merkmale von, 465 

ABS, 35 
ACPTR, 270 
ADC, 231 
ADDRESS ENABLE CONTROL, 403 
ADRESSBUS, 402, 443 
AND, 15, 35, 231 
ACS, 37 
ASCII-Code, 371 
ASL, 232 
ATN, 37 
ATTACK, 182 ff. 
ATTACK/DECAY, 457 
Addition, 10 

Adressierart, 219 
Adressierung, Zero-Page-, 403 

Adressierung, absolut-indirekte, 405 

Adressierung, absolute, 403 

Adressierung, implizierte, 403 

Adressierung, indirekt-indizierte, 404 

Adressierung, indiziert-indirekte, 404 

Adressierung, indizierte Zero-Page-, 404 

Adressierung, indizierte absolute, 404 

Adressierung, relative, 404 

Adressierung, unmittelbare, 403 

Akkumulator, 211 
Anführungszeichen, XI, 70, 331 

Anweisungs-Adressierarten, 228 

Anweisungssatz, 405 

Anweisungssatz MCS6510, 228 

Anweisungssyntax, XI 

Anwendungshinweise, XII 

Assembler, 307 
Ausdruck, 10 
Ausgabeport, 215 

BAD DATA, 392 

BAD SUBSCRIPT, 392 

BASIC-Schlüsselwörter, Xl 

BCC, 232 

BCS, 232 

BEQ, 233 

BIT, 233 

BIT 4, 456 

BIT 5, 456 

BIT 6, 457 

BIT 7, 457 

BMI, 233 

BNE, 234 

BPL, 234 

BRK, 234 

BYVS, 235 

Bandpaßfilter, 198 

Basic-Interpreter, 2, 16 

Basic-Schlüsselwort, 31, 35 

Basic-Schlüsselwörter, Abkürzung der, 366 

Basic-Zeichensatz, 3 

Befehlsregisterbelegung, 344 
Betriebssystem, 2, 208, 264 

Bildschirm-Anzeigecode, 368 

Bildschirm-Code, 368 
Bildschirm-Editor, 2, 12, 23, 94 

Bildschirm-Rollen, 128 

Bildschirm-Zeichenfarbe-Kombination, 151 

Bildschirmausgabe, 330 

Bildschirmcodes, 2 

Bildschirmeditor, 94 

Bildschirmlöschen, 149 

Bildschirmspeicher, 102 

Bit Map Modus, 100, 432 

Bit-Map-Modus, Mehrfarben-, 122 
Bit-Map-Modus, Standard-, 122 

Bit-Mapping, 121 
Boole’sche Wahrheitstabelle, 14 

CAN’T CONTINUE, 392 

CHAREN, 257 

CHIP SELECT, 443 

CHKIN, 271 

CHKOUT, 272 

CHR$, 38 

CHR$-Code, 371 

CHRIN, 273 

CHROUT, 274 

CINT, 276 

CIOUT, 275 

CLALL, 277 

CLC, 235 

CLD, 236 

CLI, 236 

CLOCK OUT, 443 

CLOSE, 38, 277 

CLR, 39 

CLRCHN, 278 

CLV, 236 

CMD, 39 

CMP, 237 

COMMODORE CP/M®, 362 ff. 

CONT, 40 

COS, 41 

CPX, 237 

CPY, 237 

Complex Interface Adapter 6526, 411 

Control Port 1, 387 

Control Port 2, 387 

Index 475



Cursor, 71 

DATA, 26, 42, 306 

DATASSETTE™, 185, 256 

DATENBUS, 443 

DEC, 238 

DECAY, 182 ff. 

DEF FN, 42 

DEVICE NOT PRESENT, 392 

DEX, 238 

DEY, 238 

DIVISION BY ZERO, 392 

DMA-Leitung, 361 
DIM, 43 

Datenumsetzung, 18 

Direkt-Modus, 3 

Disketten-Datenspeicherung, 335 

Division, 11 

Drehregler, 339 

Dreieckswelle, 193 

Dreieckswellenform, 202 

Drucker-Steuerzeichencodes, 333 

END, 44 
EOR, 239 
EXP, 45 
EXTRA IGNORED, 392 
Eckige Klammern, Xl 

Ein-/Ausgabe, 258 
Ein-/Ausgabeanordnung, 317 

Einfügemodus, 73 

Einführung, IX 
Eingabeanweisung, 18 
Eingabeport, 212 

Empfangspuffer, 350 

Erweiterte Farbe, Betriebsart, 431 
Erweiterter Hintergrundfarbmodus, 120 
Erweiterungsanschluß, 359 
Exponent, 6 

Exponentialberechnung, 12 

FILE NOT FOUND, 392 
FILE NOT OPEN, 392 
FILE OPEN, 392 
FN, 45 
FOR, 46 
FORCE LOAD, 422 
FORMULA TOO COMPLEX, 392 
FRE, 47 
FREQUENZ LOW/FREQUENZ HIGH, 455 
Farbspeicher, 103 

Farbspeicherbelegung, 375 

Farbspeichermappe, 374 

Farbsteuerung, 71 

Fehlermeldungen, 309, 352 

Felder, 9, 26 

Filtereinstellung, 379 

476 Index 

Filterregister, 460 

Flag, 223 
Fremde Basic-Programme — COMMODORE 64 

Basic, 390 

GET, 22, 23, 48 
GETIN, 279 
GOSUB, 26, 49 
GOTO, 51 
Ganze Zahl, 4, 7 
Generator 1, 455 
Gleitpunktzahl, 4, 7, 18 

Glossar, 474 

Graphikmöglichkeiten, 149 
Graphikübersicht, 100 

Graphikzeichen, 109 

Graphikzeichen, Lage der, 101 

HIRAM, 257 
Handshaking, 421 
Hexadezimaldarstellung, 214 

Hochpaßfilter, 199 

Hüllkurvengeber, 200 

Hüllkurvengenerator, 194 

1/O-PORT, 403 
IF, 81 
ILLEGAL DIRECT INPUT, 392 
ILLEGAL QUANTITY, 392 
INC, 239 
INPUT, 19 
INPUT, 53 
INPUT-MODE, 423 
INT, 54 
INTERRUPT, 443 
INTERRUPT CONTROL, 426 
INTERRUPT REQUEST, 402 
INX, 239 
INY, 240 
IOBASE, 280 
IOINIT, 281 

- IRQ, 305 
Index, 9 

Indexregister, 223 
Indexregister X, 211 

Indexregister Y, 212 

Indirekt indiziert, 221 

Indizieren, 221 

Indiziert indirekt, 222 

Interface RS-232, 341 
Interrupt-Aktivierungsregister, 150 
Interrupt-Statusregister, 149 

Interruptregister, 440 

Intervall-Timer, 421 

JMP, 240 
JSR, 240, 266



Kanal RS-232, 342 NEXT WITHOUT FOR, 392 

Kernal, 2, 264 NOP, 242 

Kernal-Routine, 268 ff. NOT, 14, 62 

Kollision zwischen Sprites und Daten, 144 NOT INPUT FILE, 393 

Kollision zwischen einzelnen Sprites, 144 NOT OUTPUT FILE, 393 

Kollisionserkennung, 144 Normal-Modus, 118 

Komprimieren, 24, 155 Numerische Variable, 19 

Kontrollregister, 256, 455 

ON, 62 
LDA, 216, 241 ONE SHOT/CONTINUOUS, 422 
LDX, 241 OP-Schlüssel, 408 

LDY, 242 OPEN, 63,.285, 331 
LEFT$, 55 OR, 14, 66 
LEN, 55 ORA, 243 
LESEN (TIMER), 423 OUT OF DATA, 393 
LET, 56 OUT OF MEMORY, 393 
LIST, 56 OVERFLOW, 393 
LISTEN, 275, 281 Oberwelle, 193 ff. 
LOAD, 57, 282, 392 Operator, 10 
LOG, 59 

LORAM, 257 PB ON/OFF, 422 
LSR, 242 PEEK, 67 
Lautstärkeregelung, 184 PHA, 243 

Lese-Timing-Diagramm, 417 PHP, 243 

Lichtgriffel, 336, 341 PLA, 244 

Light Pen, 439 PLOT, 286 

Listener, 356 PLP, 244 

Literaturverzeichnis, 380 POKE, 67 

Logische Operatoren, 13 POS, 68 

PRINT, 68, 330 

MEMBOT, 283 PRINT#, 74, 331 
MEMTOP, 284 PW LO/PW HI, 455 
MID$, 59 | Peripheriegerät, COMMODORE-, 362 
MOB, 434 ff. _Pinbelegung 6526, 418 

Magnetbandkassette, 333 Pixel, 121 

Mantisse, 6 Port-Pin-Beschreibung, 352 

Maschinencode, 209 Positionierung, horizontale, 139 

Maschinensprache, 208 Positionierung, vertikale, 138 

Maschinensprache + Basic, 304 Prioritat der Operationen, 15, 16 
Maschinensprache-Monitor, 307 Programm-Modus, 4 

Maschinensprache-Programme, 213 Programmierbare Zeichen, 108 

Maschinensprache-Routine, 306 Programmieren von Zahlen und Variablen, 4 
Mathematische Funktionen, abgeleitete, 386 Programmiertechniken, 18 

Matrize, 26 Programmzähler, 212 

Mehrfarben-Bit-Mapping, 127 Prozessor-Schnittstelle, 443 

Mehrfarben-Modus, 115, 135 Puffer, 92 

Mehrfarbige Graphiken, 115 

Mikroprozessor 6510, 397 QUOTE-Modus, 95 

Mikroprozessor-Modul Z-80, 362 

Modul-Steckplatz, 388 RAMTAS, 287 

Monitor 45, 213, 224, 307 RDTIM, 287 
Multiplikation, 11 READ, 26, 75 
Musiknotenwerte, 376 READ/WRITE, 403, 443 
Musiksynthesizer, 182 READST, 288 

REDIM’D ARRAY, 393 
NEW, 60 REDO FROM START, 393 
NEXT, 61 RELEASE, 182 ff. 

Index 477



REM, 21, 76 
RESET, 402, 440 
RESTOR, 289 
RESTORE, 77 
RETURN, 78, 331 
RETURN WITHOUT GOSUB, 393 
RIGHTS, 78 
RING MOD, 456 
RND, 79 
ROL, 244 
ROR, 245 
RTI, 245 
RTS, 245 
RUN, 80 
Rasterregister, 149, 440 
Rauschgenerator, 200 

Rauschwellenform, 203 
Rechenausdruck, 10 
Rechenoperation, 10 

Rechteckwelle, 194 

Refresh, 440 
Register, 211 

Ringmodulation, 205 

SAVE, 80, 289 
SBC, 246 
SCHREIBEN (VORTEILER), 423 
SCNKEY, 291 
SCREEN, 291 
SDR, 425 
SEC, 246 
SECOND, 292 
SED, 246 
SEI, 247 
SERIAL ATN IN/OUT, 358 
SERIAL CLK IN/OUT, 359 
SERIAL DATA IN/OUT, 359 
SERIAL SRQ IN, 357 
SETLFS, 293 
SETMISG, 294 
SETTIM, 295 
SETTMO, 296 
SETNAM, 295 
SGN, 82 
SID, 450 
SID-Hüllenkurvengenerator, 471 
SID-Kontrollregister, 453 

SID-Registerbelegung, 454 
SID-Timing 6581, 468 
SID-Tonleiter, 470 
SIN, 82 
SPC, 27, 83 
SQR, 83 
STA, 247 
START/STOP, 422 
STATUS, 84 
STEP, 85 

478 Index 

STOP, 86, 297 
STR$, 86 
STRING TOO LONG, 393 
STX, 247 
STY, 248 
SUSTAIN, 182 ff. 
SUSTAIN/RELEASE, 468 
SYNC, 456 
SYNTAX, 393 
SYS, 87 
SYS X, 304 
Sägezahnwelle, 191 
Schlüsselwort, 30 
Schlüsselwortabkürzung, 24 
Schrägstrich, Xl 
Schreib-Timing-Diagramm 6526, 416 
Scrolling, 439 
Sekundäradresse, 356 
Serieller Bus, 356 
Serieller Port, 425 
Sonderzeichen, 73 
Sound Interface Device 6581, 450 
Speicher-Konfiguration 6510, 410 
Speicheranforderung, 409 
Speicherbelegung, 210, 259, 308 

Speichermappe, 258 

Speicherplatz, 210 
_ Speicherverwaltung, 256 
Spiegelung, 105 

Spiele-Port, 336 

Spitze Klammer, Xl 

Sprite, 100 

Sprite, vergrößert, 136 
Sprite-Anzeigepriorität, 143 
Sprite-Erstellung, 162 ff. 
Sprite-Pointer, 133 
Sprite-Positionierung, 137, 139, 143 
Sprite-Programmierung, 139 

Sprite-Zeichnen, 144 

Spritedefinition, 131 

Spritepriorität, 160 

Sprites, 131 

Sprungtabelle, 264 
Stack, 219 

Stackpointer, 212 

Standard-Bit-Mapping, 122 
Standardzeichen-Betriebsart, 430 

Standardzeichenmodus, 107 

Stapel, 220 
Stapelzeiger, 212, 265 
Statusregister, 212 

Statusregister RS-232, 348 
Steckerbelegung, 387 
Steuerknüppel, 336 

Steuerregister CRA/CRB, 427 
Steuerregisterbelegung, 343 

Stimme, 459



String, 7, 17 
Stringkonstante, 7 

Stringvariable, 7, 19 

Subtraktion, 11 
Symbolbeschreibung, XIl 
Synchronisation, 205 

Syntax, XI 

Syntax-Format, XI 

System-Ram-Vektor, 301 

TAB, 27, 87 
TAKT, 402 
TALK, 298 
TAN, 88 
TAX, 248 
TAY, 248 
TEST, 456 
TIME, 88 
TIME$, 89 
TKSA, 299 
TOD, 423 
TOGGLE/PULSE, 422 
TSX, 249 
TXA, 249 
TXS, 249 
TYA, 249 
TYPE MISMATCH, 393 
Talker, 356 

Tastatur, 92 

TiefpaBfilter, 198 

Timeout-Flag, 296 

Timing-Charakteristiken 6526, 419 
Token, 211 

Tonfrequenzen, 184 

Tongenerator, 182 

UDTIM, 299 
UNDEF’D FUNCTION, 393 
UNDEF’D STATEMENT, 393 

UNLST, 300 
UNTLK, 301 
USR, 89 
USR(X), 304 
Überprüfung, 223 
Ubertragungspuffer, 350 
Unterlegte Zeichen, 71 

Unterprogramm, 224 

Unterstreichung, Xl 

User Port, 352, 389 

VAL, 90 
VECTOR, 301 
VERIFY, 90, 393 
VIC-Chip-Registerbelegung, 383 

Variable, 18, 19, 25 

Variablenname, 8 

Vergleichsoperatoren, 12 

Verkleinern der Programmzeilennummer, 25 

Verschachtelung, 15 
Verschieben, kontinuierliches, 128 

Verzweigung, 223 

Video-Bank, 101 

Video-Interface-Controller 6566/6567, 429 

Videoanschluß, 444 

Vibrato, 200 

WAIT, 91 

Wellenform, Ändern der, 190 

Zeichenanzeige, 100 

Zeichendarstellungsmodus, 429 

Zeichendefinition, 107 

Zeichenketten, 4, 514 

Zeichenkettenoperationen, 17 

Zeichenspeicher, 103 

Zero-Page, 219 

Zero-Page-Adressen, 351 

Index 479



  

 





WAS IST ALLES ENTHALTEN? 

Unser komplettes „BASIC-Lexikon“ umfaßt 

BASIC-Befehle, Anweisungen und Funktionen in 
alphabetischer Reihenfolge. Wir haben eine Über- 
sicht erstellt, in der alle Wörter und ihre Abkürzungen 
enthalten sind. In dem folgenden Abschnitt werden 

die einzelnen Begriffe genau definiert und anhand 

von Beispielprogrammen ihre Anwendung be- 

schrieben. 
Wenn Sie eine Einführung in die Anwendung der 

Maschinensprache für BASIC-Programme benö- 
tigen, wird für Sie unsere Übersicht hilfreich sein. 

Ein leistungsstarker Bestandteil des Betriebs- 
systems aller COMMODORE-Computer wird 

KERNAL genannt. Hierdurch wird sichergestellt, 

daß alle Programme, die Sie heute schreiben, auch 
noch auf den COMMODORE-Computern von 

morgen laufen können. 

Der Abschnitt über Ein/Ausgabeprogrammie- 

rung zeigt Ihnen, wie Sie Ihren Computer voll nutzen 

können. In diesem Abschnitt werden die möglichen 

Ergänzungen beschrieben — angefangen bei Licht- 

stiften und Joysticks bis hin zu Diskettenstationen, 

Druckern undZusatzgeräten für Telekommunikation 

(Modems). 

Wir zeigen Ihnen, wie man SPRITES und Sonder- 

zeichen programmiert. Sie werden lernen, wie man 

Lauf-Bilder in hochauflösender Farbgraphik erzeu- 
gen kann. 

Wir eröffnen Ihnen die Welt der Musik-Synthese 

und zeigen Ihnen, wie Sie eigene Songs schreiben 
und Klangeffekte mit dem eingebauten Synthesizer 

erzielen können. 
Dem erfahrenen Programmierer zeigen wir, wie 

er den COMMODORE 64 mit weiteren anspruchs- 
vollen Sprachen nutzen kann. 

Das Programmierhandbuch COMMODORE 64 soll 

also ein nützliches Werkzeug sein, damit Ihnen das 
zukünftige Programmieren auch wirklich Spaß 
macht. 

Commodore 

Commodore GmbH 

Lyoner Straße 38 

D-6000 Frankfurt/M. 71 

Commodore AG 

Aeschenvorstadt 57 

CH-4010 Basel 

Commodore GmbH 

Kinskygasse 40—44 
A-1232 Wien   
Nachdruck, auch auszugsweise, nur mit schriftlicher Genehmigung von Commodore. 

Artikel-Nr. 556420/1.85 Änderungen vorbehalten ISBN 3-89133-000-6


