
Re ¥

o
P

Homig : Trapp
Weltner

A Ips & T ricks

Eine Fundgrube für den
Commodore 64 Anwender

EIN DATA BECKER BUCH

ISBN 3-89011-065-7

Copyright (C) 1984 DATA BECKER GmbH

Merowingerstr. 30

4000 Düsseldorf

Alle Rechte vorbehalten. Kein Teil dieses Buches darf in

irgendeiner Form (Druck, Fotokopie oder einem anderen

Verfahren) ohne schriftliche Genehmigung der DATA BECKER

GmbH reproduziert oder unter Verwendung elektronischer

Systeme verarbeitet, vervielfältigt oder verbreitet

werden.

Wichtiger Hinweis

Die in diesem Buch wiedergegebenen Schaltungen,

Verfahren und Programme werden ohne Rücksicht auf die

Patentlage mitgeteilt. Sie sind ausschließlich für

Amateur- und Lehrzwecke bestimmt und dürfen nicht

gewerblich genutzt werden.

Alle Schaltungen, technische Angaben und Programme in

diesem Buch wurden von dem Autor mit größter Sorgfalt

erarbeitet bzw. zusammengestellt und unter Einschaltung

wirksamer Kontrollmaßnahmen reproduziert. Trotzdem sind

Fehler nicht ganz auszuschließen. DATA BECKER sieht sich

deshalb gezwungen, darauf hinzuweisen, daß weder eine

Garantie noch die juristische Verantwortung oder

irgendeine Haftung für Folgen, die auf fehlerhafte

Angaben zurückgehen, übernommen werden kann. Für die

Mitteilung eventueller Fehler ist der Autor jederzeit

dankbar.

1. EINLEITUNG-..-.-+++5-- Lecce eee ee wee ee ee wees 1

2. TIPS & TRICKS FÜR DEN HAUSGEBRAUCH :.-.-------- =... 4

- Steuern der Datasette von BASIC aus 4

- Eine Kopierschutzvariante fiir Kassette 5

- Verschieben des Kassettenpuffers wwe 6

- Laden nur mit Code0.-e cece e eee cece eee eeeee 8

- Fehlerkanal auslesen 2.2... cece eeees een. 9

- Aus SAVE mach LOAD !0ceeee cece eee eeeees 10
~ Automatisches Nachladen 2.50. ee eee eee 41

- LOAD und SAVE bei Maschinenprogrammen rer 13

- Umwandlung ASCII- in Video-Code zn cn nennen 15

- HEX-Eingabe ccc euececeaeuveeeeuaenees 18

- DATA-Generator cee eee ee eee eee ew eee nee 20

~ SCREEN-COpy ... 2... cc ec eee ee ee ee et eee eee 22

- BASIC-Tips Le ee wee eee ween eens ... 26

- ESCAPE-Funktion 1.0... 0.0.0.0 cece eee e eee ences anna 31°

- Bildschirmfarben ändern een 34

- Zwei Bildschirme 0... ccc eee ete eee eenee 37

- Laufschrift in Maschinensprache6.. 42

- Die STOP-Funktion 2... cee ee ee eee eee wee eee 46

- Zufall? Näheres zu RND eee ee ee ee ee ees 49

-~ Modifiziertes INPUT cece eee eee ee en 55

- Floppy-Tricks cee cece eens ee eeeeeeees 58

3. SOFTWARESCHUTZ--- 2c cee cece ene re Le ee ee .. 66

- Manipulation der List-Funktion-..4. . 66

- Listen ohne Zeilennummern Lee eee 66

- Veradndern des BASIC-LINK-. 26 2c cece eens 72

- Zeilen löschen ? SYNTAX ERROR !00 2c ee eees 74

- Kiinstliche Steuerzeichen rn 7

= Schutz durch POKEs a eee eee ee eens 2... 79

- Blockieren "gefährlicher" Tasten db eececceueueeveeuees 81

- Vortauschen eines Maschinensprache-Spiels 85

, BEFEHLSERWEITERUNG - SELBST GEMACHT !--. 88

Ändern des BASIC-Code-LinkS22cneeeeenennnn 88

Verändern der CHRGET-Routine00 0 eee 92

Ändern der IRQ-Routine: cu nme ernennen 94

. GRAFIK -: 2... we cc ee ee tee eee eee nee 96

Grundlagen ccc tee eee ee ee eee 96

Der Character-Generator im Speicher 99

Auslesen des Zeichensatzes 0... eee ee eee ee eee 100

Kopieren des Character-Generators00 50 eee 103 |

Umschalten des Character-Generators 106

Hilfsprogramme zur Zeichendefinition 108

Design im Listing 2... 0. ccc ee ee ee eee 120

Zum Thema MULTI COLOR ee ee 121.

MACRO-Laufschrift 2.2222 ee eee nee 126

8 Blocks ftir SPRITES 0... 0... ccc ccc ee eee 127

. DAS SPIEL .. 1... cc cee eee ee eee ee eee eee eee 128

DaS G@rippe ce ete eee nes 129

Grafik 2... ee te eee eee eens 137

Sound ce eee ees eee eee 140

Die Anleitung0.c cece eee eee ren 141

Anfangsbild cc ee ee eee ee eee ee 143

Zusammenfassung ... 2... ee ee ee ee eee nes 145

INTERRUPTS0. 0000 ccc cece eee eee cece eee eee eee e anes 150

RESET ccc ee eee eee eee eee eens ren. 150

NMI2 2220 onen. ren ernennen een nn 153

IRQ0-. Lubec eee eeueeeeuseeeuueeeeneeevneeenas 157
. und wie man den IRQ programmiert ! 164

Tastatur-Piep 2... ee eee eens 167

‘Nebenbei MuSik eee ccc ee eee ees 169

. BETRIEBSSYSTEM: ROM IN RAM ccc nnn cence c aces 172

Kopierroutinen See ee ee ee eee ete eee ees 173

. BETRIEBSSYSTEM-ROUTINEN ---::----- cece eer ee ne eens 176

10.KERNAL-. ee ee ee te ee te te eee 192

11.DER SPEICHER een 220

_- Wie speichert der Computer eine BASIC-Zeile ? 220

- BASIC-Monitor 2:2 oo onen essen een een nennen 224

- Kommentiertes Zeropage-Listing4.. 228

- Wichtige Adressen der folgenden Pages eee eee eee eee 238

- Allgemeines zur Variablenspeicherung 241

- Liste interessanter Zeiger 2... cee ee ee ees 245

12. ANHANG ...-- 0c ccc ccc ew nt ete eee re ..247

- Allgemeines zu den Tabellen 022. eee 247

~ Umrechnungstabelle 0 eee eee ee ee eee eee eee 248

- Tabelle der Gerätenummern2cceceeeeee 258

13. HARDWARE-TIP-.. 2... cece ce eee eee eee eee eee eee 259

1. EINLEITUNG

Es dürfte jedem Benutzer inzwischen klar sein, daß der C-64

ein Super-Computer ist. Aber auch die Leute, die diesen

Computer gebaut haben, konnten nicht an alles denken. Wir

wollen Ihnen hier deshalb einige Fehler zeigen, mit denen

Sie Leute, die diese Fehler nicht kennen, sehr schön

erschrecken können, indem Sie die Fehler auftreten lassen

und sagen, der Computer sei kaputt. Auch in einem

Fachgeschäft könnte das eine gewisse Wirkung zeigen.

Doch nun zu den Fehlern:

1. Fehler:

Diesen Fehler werden Sie vielleicht auch schon bemerkt

haben. Wenn Sie gleichzeitig die linke Shift-Taste und die

beiden Cursor-Tasten drücken, dann erscheint ein Pik-Zeichen

auf dem Bildschirm.

2. Fehler:

Drücken Sie einmal gleichzeitig die Commodore-Taste, die

Taste mit dem Semikolon und die Gleich-Taste. Der Cursor

wird verschwinden.

Was ist passiert?

Nun drücken Sie Run-Stop/Restore und geben Sie den Befehl

POKE 53281,0

ein.

Wenn Sie jetzt noch einmal diese drei ersten Tasten

gleichzeitig drücken, so sehen Sie, warum der Cursor

verschwunden ist:

-Die Zeichenfarbe hat von weiß zu blau gewechselt.

3. Fehler:

Hier handelt es sich eindeutig um den interessantesten

Fehler. a |

Gehen Sie mit Ihrem Cursor auf die unterste Zeile vom

Bildschirm und schreiben Sie jetzt so lange (auch

Leerzeichen), bis der Cursor. zum 2.Mal rechts aus dem

Bildschirm gesprungen ist. Driicken Sie jetzt die

INST-DEL-Taste. Sobald Sie versuchen, das 80.Zeichen zu

löschen, tritt der Fehler auf:

Auf dem Bildschirm erscheint folgendes Bild:

LOAD

?SYNTAX ERROR

READY

RUN

READY.

“Nun geht nichts mehr - der Computer ist im Niemandsland.

Aber das war noch nicht alles: Ein BASIC-Programm wird

gestartet, bis es an eine INPUT-Anweisung kommt. Dort hängt

es sich auf, da die Tastatur nicht mehr funktioniert. Sollte

kein Programm | vorhanden sein, so erscheint das oben

beschriebene Bild. Wer jetzt aber denkt, daß es außer Reset-

und Aus-Einschalten des Computers keine Möglichkeit mehr

gibt, den Computer aus dem Niemandsland wieder auf sicheren

Boden zurückzuführen, der hat sich geirrt. Geben Sie #

(SHIFT + 3) ein. Daraufhin gibt der totgeglaubte Computer

"PRESS PLAY ON TAPE" aus. Sollten Sie eine Datasette

angeschlossen haben, so kommen Sie dieser Aufforderung nach.

Nun geht der C-64 wieder in den normalen Lade-Modus, den

Sie ganz einfach mit Run-Stop unterbrechen können.

Sonderbarerweise tritt dieser Fehler tritt nur bei einigen

Zeichenfarben auf: rot, cyan, dunkelblau, gelb (mit Variante

des Fehlers), rosa, dunkelgrau, hellblau und hellgrau.

Es funktioniert demnach nur bei Farben, die auf den Tasten

3,4,7 und 8 liegen.

Übrigens: Wenn dieser Fehler bei Ihnen nicht auftritt, so

seien Sie beruhigt - Ihr Computer ist nicht defekt. Sie

haben nur einen Computer der neuen Serie. Bei diesen

Modellen tritt dieser Fehler nicht mehr auf.

Ob Sie einen Computer neueren Datums haben, können Sie auch

auf andere Art erfahren: Löschen Sie den Bildschirm und

geben Sie POKE 1024,1 ein. Sollte in der linken oberen Ecke

ein A erscheinen, so sind Sie glücklicher Besitzer eines

neuen Modells, da bei einem älteren zusätzlich ein Wert in

den Farb-RAM gePOKEt werden muß, um ein Zeichen erscheinen

zu lassen. |

Fragen Sie uns jedoch nicht, woher die Fehler kommen, wir

wissen es nicht. Die ersten beiden scheinen mit der

Tastatur-Abfrage zusammenzuhängen. Beim letzten erwies sich

der Verdacht, die IRQ-Routine sei verbogen worden, als

unbegründet (TI$ wird weitergesetzt, der Cursor blinkt

etc.). |

Das sollte nur ein kleiner Einstieg sein. Wie Sie (trotz

dieser kleinen Fehler) das Beste aus Ihrem C-64 machen

können, sollen Ihnen die nächsten Seiten zeigen.

2. TIPS & TRICKS FÜR DEN HAUSGEBRAUCH

Auf den folgenden Seiten finden Sie eine ganze Reihe

nützlicher BASIC- und Maschinen-Routinen.

Es werden interessante Speicheradressen und damit verbundene

Möglichkeiten aufgezeigt...

Kurz: Tips & Tricks für den Hausgebrauch |!

STEUERN DER DATASETTE VON BASIC AUS

Es ist eine angenehme Eigenschaft, daß der Motor der

Datasette nach Beendigung eines LOAD-, bzw. SAVE-Vorganges

selbsttätig stoppt.

Erst nach Betätigung der Stoptaste am Rekorder kann der

Motor wieder durch Drücken der PLAY-Taste gestartet werden.

Der Motor der Datasette kann also folglich vom Computer aus

gesteuert werden.

Diese Eigenschaft läßt sich selbstverständlich auch für

eingene Zwecke ausnutzen |

Wichtig bei der. Software-Kassettenmotorsteuerung ist die

Adresse 1, der Prozessor-Port.

Außerdem wird das Kassettenmotor-Flag (Adresse 192, $CO)

benötigt. _

Zur Demonstration der Steuereigenschaft. drücken Sie bitte

die PLAY-Taste des -Rekorders : Das Band wird gespult, der.

Motor läuft.

Geben Sie nun folgende Zeile im Direktmode ein:

POKE 192,1: POKE 1,PEEK(1) OR 32

Der Motor der Datasette stoppt, ohne daß die STOP-Taste des

Rekorders betätigt wurde. Das 5. Bit der Adresse 1 und das

Kassettenmotor-Flag wurden gesetzt.

Um den Motor nun wieder softwaregesteuert zu starten, genügt

die folgende Zeile: | |

POKE 1,PEEK(1) AND 39: POKE 192,0

Der Rekorder arbeitet nun wieder wie vor Ihrem Eingriff !

Mit der Steuerung des Motor sind die Möglichkeiten jedoch

noch nicht erschöpft. Es lassen sich im Gegenteil noch

Aussagen über die Betätigung der Tasten am Rekorder machen.

Wieder wird Adresse 1 benutzt:

IF PEEK(1) =55 THEN PRINT" KEINE TASTE.BETAETIGT !"

IF PEEK(1) =7 THEN PRINT" TASTE GEDRUECKT !!"

Dies läßt sich auch mit einem WAIT-Befehl nutzen:

WAIT 1,16

wartet solange, bis die STOP-Taste des Rekorders betätigt.

wird.

Hier noch einmal alle Steuereigenschaften zusammengefaßt:

Rekordermotor auSs:.......... POKE 192,1: POKE 1,PEEK(1) OR 32

Rekordermotor ein:.......... POKE 1,PEEK(1).AND 39:POKE 192,0

Warten auf STOP-Taste:...... WAIT 1,16 |

Warten auf PLAY-Taste:...... x IF PEEK(1)=55 THEN GOTO x

EINE KOPIER-SCHUTZ-VARIANTE FÜR DIE DATASETTE

Im nun Folgenden soll gezeigt werden, wie auf einfache Art

verhindert werden kann, daß ein unerlaubt kopierte

Programm problemlos gestartet werden kann. |

Man macht sich dabei folgende Eigenschaft zunutze: Wenn Sie

ein Programm auf Datasette abSAVEn, ° haben Sie die

Möglichkeit, einen bis zu 172 Zeichen langen Programmnamen

anzugeben. Wird das Programm jedoch in den Computer geladen, |

so werden lediglich bis zu 16 Zeichen ausgegeben. Die

übrigen 160 Zeichen des Programmnamens bleiben im

Kassettenpuffer verborgen. |

Das folgende kleine BASIC-Programm fragt nun das 17.Zeichen

des Programmnamens ab. Es wird beim Laden nicht auf den

Bildschirm ausgegeben und ist somit unbekannt.

Wird nun das Programm widerrechtlich kopiert, so wird das

17.Zeichen des Programmnamens nicht mit übernommen, da es

dem Kopierer ja unbekannt ist.

10 IF PEEK(849) =ASC("X") THEN GOTO 30

20 PRINT"? LOAD ERROR": NEW

30 PRINT" ORIGINALPROGRAMM !"

Diese drei Zeilen sollten Sie vor Ihr eigenes Programm

stellen. Wenn Sie das Programm abSAVEn, so. geben Sie als

17.Zeichen im Programmnamen den Buchstaben "X" ein |

SAVE "1234567890123456X" (X genau an 17. Stelle!)

wird das Programm jetzt kopiert, erkennt dies der Computer .

am fehlenden 17.Zeichen des Programmnamens, gibt ein ? LOAD

ERROR aus und löscht das Programm. So ist der Kopierschutz

als solcher gar nicht zu erkennen!

Wollen Sie einen anderen Buchstaben als das X verwenden, so

muß lediglich Zeile 10 entsprechend abgeändert werden.

Es ist darauf zu achten, daß das mit dem Kopierschutz

versehene Programm lediglich mit LOAD ohne Namensbezeichnung

geladen wird. |

Perfekter wird der Kopierschutz, wenn die drei

Kontrollzeilen zusätzlich mit einem Listschutz versehen

werden (siehe auch Kapitel Softwareschutz !).

VERSCHIEBEN DES KASSETTENPUFFERS

Der Kassettenpuffer liegt normalerweise von $033C - $03FB

.(828 - 1019) im Speicher. |

In ihm werden die Daten, die vom Rekorder kommen oder zu ihm

geleitet werden sollen, zwischengespeichert und blockweise

ausgegeben.

Der Kassettenpuffer wird somit nur bei LOAD-, bzw.

SAVE- -Anweisungen in Verbindung mit der Datasette benutzt,

sonst ist dieser Speicherbereich ungenutzt.

Er wird daher sehr gern zur Speicherung kleinerer

Maschinenprogramme oder als Platz für die Sprite-Blocks

43-15 genutzt. Dies geht solange gut, bis - ja, bis der

Kassettenpuffer wieder einmal seiner eigentlichen Bedeutung

zugeführt wird, und Programme von Datasette geladen oder auf

Kassette geSAVEt werden.

In diesem Moment nämlich werden alle zuvor in diesem

Speicherbereich stehenden Daten überschrieben.

Es gibt jedoch eine simple, wenn auch wenig bekannte

Methode, dies zu verhindern. Man bedient sich des

Kassettenpuffer-Vektors ($B2/$B3, 178/179), der

normalerweise auf den Beginn des Kassettenpuffers zeigt.

Möchte man also den Inhalt des ursprünglichen

Kassetten-Puffers vor Überschreiben schützen, so legt man

den Vektor beispielsweise in dem ungenutzten Speicherbereich

ab $COOO:

10 A=49152: REM ANFANGSADRESSE NEUER KASSETTENPUFFER
20 HI=INT(A-256)
30 LO=A- (HI*256)
40 POKE 178,L0: POKE 179,HI

Sollte der C-Bereich bereits belegt sein, bietet sich auch

der Bildschirmspeicher als Kassettenpuffer an. Er wird

während des LADE-, bzw. SAVE-Vorganges der Datasette ohnehin

nicht benutzt.

Zeile 10 muß in diesem Fall ersetzt werden durch:

10 A=1024

LADEN NUR MIT CODE

Nach der Datasette kommen wir nun zur Floppy 1541. Auch hier

wird der Programm-Name bei LOAD-, bzw. SAVE-Befehlen im

Speicher des C64 abgelegt. Der Kassettenpuffer bleibt jedoch

von diesem Vorgang unberührt.

Vielmehr gibt der Zeiger $BB/$BC (187/188) Aufschluß über

die Adresse, ab der der Name gespeichert worden ist.

Das folgende kleine BASIC-Programm gibt den zuletzt bei

Disketten-Operationen benutzten Programmnamen auf dem

Bildschirm aus:

10 AD= PEEK(187)+256* PEEK (188):

20 FOR A=AD TO 40959: B=PEEK(A)

30 NA$=CHR$(B)

40 NEXT: PRINT NA$

Man kann sich auch die Floppy-Programmnamen-Abspeicherung

zunutze machen! |

Stellen Sie einmal die folgenden Zeilen irgendeinen Ihrer

Programme voran!

10 FOR A=40955 TO 40959

11 B=PEEK(A)

12 READ C$: C=ASC(C$)

13 IFB =C THEN 15

14 PRINT"? LOAD ERROR"; : NEW

15 NEXT

16 DATA C,0,D,E,1

SAVEn Sie nun das so veränderte Programm unter einem

unbedingt 16 Zeichen langen Namen ab. Nun laden Sie das

Programm wie gewöhnlich. Starten Sie es! Es kommt zu einem

LOAD ERROR, und das Programm ist gelöscht.

Laden Sie das Programm erneut. Geben Sie diesmal den

kompletten Programmnamen ein und hängen Sie dahinter das

Kennwort "CODE1". Wenn das auf diese Weise geladene Programm

gestartet wird, gibt es keine Komplikationen.

Wieso? Nun, in Zeile 10 werden die letzten fünf Zeichen des

gespeicherten Programmnamens abgefragt und mit dem Kennwort

in der DATA-Zeile verglichen: Nur wenn sie identisch sind,

kann das Programm fortgesetzt werden.

Wichtig ist auch, daß der reguläre Programmname 16 Zeichen

lang ist. Sonst ist es nicht möglich, weitere Code-Zeichen

einzugeben.

FEHLERKANAL AUSLESEN

Oft kommt es bei der Benutzung der Floppy-Disk 1541 zu einem

Fehler, gut zu erkennen an der .blinkenden, roten LED.

Manchmal jedoch ist man sich keiner Schuld bewußt und sucht

oft lange nach dem vermeindlichen Fehler.

Einfacher und schneller geht es mit der folgenden kleinen

Routine, die den Fehlerkanal der Floppy ausliest. Sie.

gestattet die bequeme Ausgabe der Fehlermeldung und

erleichtert so das Aufspüren des Fehlers.

Das Maschinen-Aquivalent dazu finden Sie unter dem Kapitel

Floppy-Tricks.

40 REM AUSLESEN DES FEHLERKANALS DER FLOPPY
20 OPEN 1,8,15: REM OEFFNEN DES KANALS
30 INPUT#1,F ,FM$,SP,SE
40 PRINT F ","FM$","SP","SE
50 CLOSE 1

Variablen:

F = Fehlernummer

FM = Fehlermeldung

SP = Spur

SE = Sektor

AUS SAVE MACH LOAD !

Die folgenden Vektoren und deren Manipulation sind sowohl

für die Datasette als auch für das Floppy-Disk 1541

interessant. |

Beschäftigen wollen wir uns mit dem SAVE- ($0332/$0333

818/819) und dem LOAD-Vektor ($0330/$0331 816/817).

Diese beiden Zeiger deuten auf die im ROM liegenden LOAD-

bzw. SAVE-Routinen.

Gemäß der Überschrift soll nun aus SAVE LOAD werden. Dies

ist nicht allzu schwer (wenngleich auch kein funktioneller

Austausch praktiziert wird, scheint dies doch wenigstens so

1):

-POKE 818, PEEK(816): POKE 819, PEEK(817)

Ab sofort ist SAVE nicht mehr SAVE, sondern LOAD (VERIFY).

Nun kann man nicht mehr ohne weiteres SAVEn.

Den Normalzustand erreicht man wieder durch:

POKE 818,237: POKE 819,245 (Zeiger $F5ED)

Auch umgekehrt 148t sich LOAD ausschalten:

POKE 816,PEEK(818): POKE 817,PEEK(819)

Zurück in den Normalzustand gelangt man wieder mit:

POKE 816,165: POKE 817,244 (Zeiger $F4A5)

LOAD und SAVE vertauschen - auch das ist nicht schwer:

POKE 816,237:POKE817,245:POKE818,165:POKE819, 244

10

Das ausschalten von LOAD und SAVE erreicht man durch:

POKE 818(816),26: POKE819(817),167

Sowohl LOAD als auch SAVE werden einfach mit einem kühlen

"READY" beantwortet.

AUTOMATISCHES NACHLADEN

Nehmen wir einmal folgenden Fall an: Sie haben ein Programm

geschrieben, das während des Programmablaufes weitere Teile

nachlädt oder Dateien benutzt.

Dies ist kein Problem, wenn man weiß, ob mit Floppy oder

Datasette gearbeitet wird.

Nun kann man selbstverständlich den Benutzer vom Programm

aus fragen, welches Speichergerät er benutzt. Dies ist

jedoch nicht nur umständlich, es ist auch für den Benutzer

unbequem. Eleganter geht es auf folgende Art (Beispiele):

450 FD=PEEK(186): OPEN 1,FD,1 oder

670 FD=PEEK(186): LOAD"TEST" ‚FD, (Sekundäradresse)

Selbstverständlich ist der Computer nicht allwissend. So

kann er natürlich auch nicht voraussagen, welches Gerät Sie

zur Speicherung verwenden. In den oben genannten Beispielen

wird einfach davon ausgegangen, daß das Gerät, mit dem

das Hauptprogramm geladen wurde, auch zur weiteren

Speicherung benutzt wird. |

Adresse 186 enthält die Nummer des zuletzt benutzten

Gerätes. Sie müssen nur auf weitere Geräte, beispielsweise

den Drucker aufpassen.

Es empfiehlt sich, am Programmanfang der Variable FD den

Inhalt der Adresse 186 zuzuweisen. So kann dann später

11

dieser Wert nicht mehr durch andere Geräte verfälscht

werden!

Ein Wörtchen zu LOAD ERROR...

Es kann schon einmal vorkommen, daß ein von Kassette

geladenes Programm einen LOAD ERROR hervorruft.

Dieser Ladefehler muß allerdings noch nicht bedeuten, daß

das geladene Programm für den Benutzer verloren ist. |

Sowohl der VC-20 als auch der Commodore 64 speichern das

Programm bei einem SAVE-Vorgang zweimal hintereinander auf

das Band.

Beim Ladevorgang wird die erste Version in den Speicher

geholt und mit der auf Band befindlichen zweiten Version

verglichen. Wenn sich diese beiden Versionen voneinander

unterscheiden, kommt es zum LOAD ERROR. | |

Möchte man das geladene Programm nun retten, muß zunächst

überprüft werden, ob es sich auflisten läßt. Wenn dies der

Fall ist, kann das Programm gerettet werden.

Im Kassettenpuffer ist in den Adressen 831/832 die Länge des

geladenen Programmes abgespeichert. Diese Information wird

jedoch erst vom Computer übernommen, wenn das Programm

fehlerfrei geladen worden ist. _ | Ä |
Tritt nun ein LOAD ERROR auf, fehlen dem Computer diese

Informationen. Der Variablenstart liegt dann im

BASIC-Programm und zerstört dieses. | . |

Folgende Zeilen im Direktmode eingegeben, können das

fehlerhaft geladene Programm retten (sofern es sich listen.

ließ):

POKE 46, PEEK(832): POKE 47,PEEK(831): POKE 48,PEEK(832):

POKE 49, PEEK(831): POKE 50,PEEK(832)

Anschließend kann das Programm mit RUN gestartet werden!

12.

LOAD UND SAVE BEI MASCHINEN-PROGRAMMEN

Um ein Maschinenprogramm auf Band zu speichern, gibt es eine

Möglichkeit, die komfortabel ist, leider aber nicht oft

genug benutzt wird:

Das Maschinenprogramm direkt auf Band speichern!

Im Gegensatz zum Basic-Loader hat sie den Vorteil, daß es

schneller geht, und daß der Speicher, den der Basic-Loader

einnehmen würde, eingespart wird.

Auch selbstdefinierte Zeichensätze können so einfach

abgespeichert werden.

Zuerst müssen Sie wissen, wo das Programm beginnt, und wo es

endet. Nehmen wir an, Sie wollen den Bereich $5000-$6000

abSAVEn. |

Beim SAVEn wird alles zwischen dem BASIC-Anfang (43/44) und.

dem Variablen-Anfang (45/46) auf Band gespeichert.

Sie müssen also $5000 in den Vektor 43/44 und $6000 in den

Vektor 45/46 schreiben.

$5000= #20480 LB= O HB= 80

$6000= #24576 LB= 0 HB= 96

Der Bereich $5000- $6000 wird auf folgende Art

abgespeichert:

POKE 43,0: POKE 44,80: POKE 45,0: POKE 46,96: CLR:

SAVE "(name)",1,1

Die erste EINS hinter dem SAVE ist die Geräte-Adresse (ACHT

für Floppy).. |

Die zweite EINS bedeutet, daß der Bereich unmittelbar

abgespeichert wird, das heißt, bei erneutem Laden wird der

Bereich automatisch wieder an die gleiche Adresse geladen.

Außerdem sieht der Computer diesen Bereich nicht als

13

BASIC-Programm an und berechnet demnach auch keine Links.

Noch ein Trick:

Nehmen wir an, Sie haben ein Programm im Bereich $5000-$6000

abgeSAVEt, wollen es jetzt aber in den Bereich $8000-$9000

laden.

Das geht ohne grofie Probleme.

Geben Sie SYS 63276 ($F72C) ein.

ES erscheint die Meldung PRESS PLAY ON TAPE. Dieser

Aufforderung kommen Sie nach. Es wird jedoch nur der

Tape-Header geladen.

Da im Tape-Header angegeben wird, von wo bis wo das Programm

steht, können Sie es einfach verschieben:

POKE 829,LB (Anfang)

POKE 830,HB (Anfang)

POKE 831,LB (Ende)+2

POKE 832,HB (Ende)

Für $8000-$9000 müssen Sie eingeben:

POKE 829,0: POKE 830,128: POKE 831,0: POKE 832,144
SYS 62849 ($F581)

Der letzte Befehl setzt den Ladevorgang fort.

Nach Beendigung geben Sie NEW ein und können nun starten.

Dieser Trick geht allerdings nur mit Datasette, da das

Floppy den Kassetten-Puffer nicht benutzt. Somit können auch

die einzelnen Adressen nicht auf die hier beschriebene Weise

geändert werden.

14

UMWANDLUNG ASCII-BILDSCHIRMCODE

Sicherlich werden Ihnen die beiden Tabellen im Anhang des

C-64 Handbuches schon einmal aufgefallen sein: Ich meine die

Liste mit den Bildschirmcodes und die mit den ASCII-Werten.

Während der Bildschirmcode dazu benutzt wird, Zeichen durch

den POKE-Befehl in den Bildschimspeicher ($0400, 1024) zu

bringen, läßt sich der ASCII-Code in einen String

verwandeln, der mit PRINT ausgegeben werden kann (ASC-CHR$).

In beiden Tabellen befinden sich dieselben Zeichen,

lediglich die Code-Werte unterscheiden sich voneinander.

In manchen Programmen müssen jedoch ASCII-Codes in

Bildschirm-Codes verwandelt werden (siehe beispielsweise

Listing Zeichen-Editor). Dies läßt sich durch folgende

kleine BASIC-Routinen erreichen:

10 REM ASCII in BS-CODE

20 T$="A": T=ASC(T$): PRINT"ASCII-CODE =";T
30 PRINT "(home)" ;T$

40 BS=256*PEEK(648): REM BS=ANFANG BILDSCHIRMSPEICHER
50 CO=PEEK(BS): REM CO=BILDSCHIRMCODE
60 PRINT"BILDSCHIRM-CODE =";CO
70 END |

Die Stringvariable T$ enthält das betreffende Zeichen, hier

der Buchstabe "A". Der ASCII-Wert wird mit ASC ermittelt und

ausgegeben. Um den Bildschirmcode zu ermitteln, wird

zunächst die. Anfangsadresse des Bildschirmspeichers

errechnet (Adresse 648 = High-Byte des Video-RAM).

Der Buchstabe in T$ wird in die erste Speicherstelle des

Bildschirmspeichers gePRINTet.

Durch PEEK kann jetzt diese Speicherstelle ausgelesen

werden, und man erhält so den Bildschirmcode.

Der Nachteil dieser Routine ist der etwas unschöne Eingriff

in den Bildschirmspeicher. Das betreffende Zeichen wird

15

dabei links oben auf dem Bildschirm ausgegeben.

Deshalb finden Sie nun zwei kleine Hilfsroutinen, die die

Umrechnung auf rein rechnerischem Weg vornehmen:

10 REM VIDEO- IN ASCII-CODE

20 INPUT"WIE LAUTET DER BILDSCHIRMCODE" ;CO

30 CO=CO AND 127

40 IF CO AND 32 THEN 70

50 IF CO AND 64 THEN AC=CO OR 32: GOTO 90

60 AC=CO OR 64: GOTO 90

70 IF CO AND 64 THEN AC=CO AND 63 OR 12: GOTO 90

80 AC=CO

90 PRINT "ASCII-CODE =";AC

100 END

10 REM ASCII- IN VIDEO-CODE

20 INPUT " WIE: LAUTET DER ASCII-CODE" ;AC

30 IF AC AND 128 THEN CO=AC AND 127 OR 64: GOTO 70

40 IF NOT AC AND 64 THEN CO=AC: GOTO 70

50 IF AC AND 32 THEN CO=AC AND 95: GOTO 70

60 CO=AC AND 63 |

70 PRINT "VIDEO-CODE =";CO

Variablen:

AC = ASCII-Wert

co = Video-Code

Bequemes Zeilenlöschen

oft müssen in Programmen Teile des Bildschirms gelöscht

werden. Dies läßt sich natürlich durch eine PRINT-Anweisung

und die Cursor-Steuertasten machen. Die folgende Möglichkeit

ist jedoch einfacher und vor allem übersichtlicher. Die

16

aktuelle Cursorposition wird nämlich gar nicht angetastet.

Steuerzeichen fallen also weg. Sie können eine bereits im

ROM abgespeicherte Routine benutzen: $E9FF (59903) Löschen

einer Bildschirmzeile.

Der Aufruf dieser Routine von BASIC sieht so aus:

POKE 781,x: SYS 59903

x = 0-24

Dem X-Register (781) wird die gewünschte Zeile, die zwischen

O und 24 liegen kann, zugewiesen. Den Rest erledigt die

Routine. |

Durch eine kleine Manipulation läßt sich die ROM-Routine

sogar noch etwas vielseitiger einsetzen: Die ersten zwei

Bytes werden einfach übersprungen (neue Sprungadresse

$EAO1=59905). Jetzt kann dem Z-Register (Adresse 782) die

Anzahl der Zeichen zugeordnet werden, die in der in X

angegebenen Bildschirmzeile gelöscht werden sollen.

POKE 781,x: POKE 782,2: SYS 59905

x=0-24, z=0-39 (0-255)

17

HEX-EINGABE

Zur Eingabe von Maschinen-Programmen in den Speicher gibt es

mehrere Möglichkeiten:

a) Monitor

b) Basic-Loader

c) Hexadezimale Zeichen

Wir wollen ein Programm zur letzten Möglichkeit vorstellen:

Vielleicht ist Ihnen auch schon folgendes passiert:

Sie schlagen eine Computer-Zeitschrift auf, finden ein

Programm, das Sie gern haben wollen, doch statt eines

Basic-Loaders finden Sie nur einige Seiten mit hexadezimalen

Zahlen vor.

Was nun?

Mit Hilfe dieses Programmes sind Ihre Probleme gelöst.

Tippen Sie es ab und starten Sie es.

Zuerst fragt der Computer nach der Schrittweite. Gemeint ist

damit die Anzahl der hexadezimalen Zahlen in einer Zeile.

Sie darf 11 nicht überschreiten. Sollte es vorkommen, daß

die Vorlage längere Zeilen benutzt, müßten Sie eventuell das

Programm entsprechend abändern. Es wurde daher extra

übersichtlich geschrieben.

.Der Computer fragt nach der Anfangs-Adresse. Diese muß

hexadezimal eingegeben werden und 4 Zeichen lang sein. |

Der Computer schreibt die jeweilige Speicherstelle des

ersten Elements jeder Zeile hin, und Sie müssen nun die

Zahlen eingeben.

Abgebrochen werden kann das Programm durch Eingabe von

RETURN.

a FRIHT" Is HE=-E INGABE-FRÜSRAMM"
THPUT" Sees CHR ITTHEITE: "3 Sh: IF SHCLORSHS 11 THEM

INPUT "ANF AHMGSADRESSE : "> AS
IFLEH“AS2<>4THEHMPRINT"FALSCHE ETHGABE” :- GOoTO2e6
PORELS.@:° PRINT: Y=3: FORZ=1704: BS=MIDS¢At .2.19: B=ASC CBS)

IF B>47ANDE<SS THEHSA=SA+VAL « BS o #1 6T YY : GOTOSE |

IFEFS4RANDEBSFITHENSA=SAHLÄASCHEH) - IPHlötVr:50OTOSE

PRIHT"FALSCHE EINGABE" :GOTOZA

Yz'l-1:HEATEZ '

FREINT" "SA; :FÜRZIS0TOSU-1:FORZZ=1TO8S5STEP—1

FÜOREZa4 2: GETA#: IFA$=""THEN11G -

POKEZOA?T .G: BeASCCAS) > IF B>4+7AMDBCSSTHEHMPE=PE+VAL CAS el et]e2 GOTOLSe

IF B>S4AHNDB<? 1 THEMPE=]=PE+ (ASC CAS) —-SSoe1etle - GOTO16ES

IFB=13THENEND

GITO113
PRINTAS) (MEXTS2: PRINT! "ss PORESA+Z1 »- PE: PE=@:°HEATS1

SA=SAtSH: PRIHT > GOoTOLee

ee

I
IR

N

Sa

li

P
e

“
)
H

Ch

P
W

h
a
e

O
e

G
G

G
G

&
G

&
G
M
:

Gi

i

Gi

M&
:

m:

i

READY .

19

DATA-GENERATOR

Dieses Programm hilft Ihnen, ein im Speicher befindliches

Maschinen-Prgramm in Data-Zeilen zu übersetzen.

Eingeben müssen Sie den Anfang des Maschinen-Programns, die

Länge, und die Zeilnennummer, ab der die Datas gebildet

werden sollen. Diese Zeilennummer sollte nicht unter 221

liegen, da sonst das Programm sich selbst überschreibt.

Die Data-Zeilen werden in Einer-Schritten geschrieben.

Da das Programm sich nach dem Erstellen jeder Data-Zeile

selbst unterbricht, mußten die Variablen in speziellen

Speicherstellen untergebracht werden. | |

828-829 = Anfang des Maschinen-Programms

830-831 = Länge des Maschinen-Programms

832-833 = Momentane Zeilennummer

Wenn Sie CLR-Home + RETURN in den Tastatur-Puffer schreiben,

dann wird die Zeile ins Programm übernommen. Da außerdem die

Befehle RUN 100 und noch einmal RETURN eingegeben wurde,

startet das Programm wieder bei Zeile 100. |

In der Zeile 15 sind die Werte für den Tastatur-Puffer

untergebracht.

Zeile 20 berechnet LOW- und HIGH-Byte. |

Möglich gewesen wäre auch, die Variablen selbst in

Data-Zeilen unterzubringen und sie dann bei jedem Lauf neu

zu lesen. Wenn Sie wollen, können Sie das Programm ja als

kleine Übung in diesem Sinne umschreiben.

20

Pe
lt

Pi

fa

d
te

e
ee

ee

ee

ee

et

e
e

L
B

PG

R
e

P
o
e

M
W

O
w

oh)

On

Be

Go

f
a
e

EN

A
Q
a
a
g
a
a
w
g
a
a
w
h

@
&

GOTOE

DATALS. 13.392.212

HBE=INHTL A253: LE 1-2 EI: RE TUR

PRIHT" SRR RBRRRRSIN DATA — GENERATOR Bi"
FREINHT"BISGEBEH SIE FÜLGENDE PARAMETER ETH: Siege)"

THRUT " SP EOGRANM-—AHF AWG" > PA

THREUT " SP ROGRANMN-LAEMGE "> PL
IHPUT"BAHFRANGS-ZEILE"AZ

M1=PA- 1: GOSUB2ZE > PORESSS .LB:PORES29 .HB

MI=PL: GOSUBEH: PORESSe LB: PORES31 .HE

mis AZ GOSUBSH > PORES 32 .LE: PORES Ss .HE

=PEER S32)+256#FPEER « S33 3

v= PEER S25 9+256#PEEKRK «S253
2=PEERK (23 9+256e#PEER (331 >

PRETHT "Q's" DATA";
FORZI= ITOIG: PRIHTPEER SC Y4+219 "Gp."

=2-1: IFZ=UTHEHFRINT"B "6010220

NEXTZI: FEIHT'B "

ese] oh 1
“l= =r mon. PORESLS .LB: PORESS9 .HB

ss PGOSUBSE: PORES SO .LEB: POKES S31 HB

lex: GOSUBZB: PORES S32 .-LB: POKES 33 .HB

FORZ1=631 70636: READA: PORES1 .A: HERTEL: FÜKRE13S,9:END

POREG31.13°POKE632.13: POKE1L9¢.2:° END

mike

;

21

SCREEN-COPY

Wenn Sie selbst Programme schreiben, werden Sie sicherlich

schon oft Probleme beim Erstellen der Print-Befehle gehabt

haben, da es

a) nicht sehr übersichtlich und

b) nicht so schnell

ist, mit PRINT-Befehlen zu arbeiten.

SCREEN-COPY wird Ihre Mühen drastisch verringern.

Tippen Sie es ab und starten Sie es mit

RUN 2 (!)

Nun haben Sie einen Cursor und können auf dem Bildschirm

Ihre Bildschirm-Maske erstellen.

Nachdem Sie alles fertig erstellt haben, gehen Sie auf die

letzte Zeile und drücken RETURN.

Nach kurzer Zeit werden Sie nach der Anfangszeile gefragt.

Geben Sie die gewünschte Zahl ein.

Nun können Sie sich zurücklegen und entspannen, der Computer

erledigt den Rest für Sie.

Er druckt der Reihe nach die Bildschirminhalte aus und

übernimmt sie Zeile für Zeile ins Programm. |

Nach Beendigung des Programms haben Sie ab der eingegebenen

Zeile Ihren erstellten Bildschirm als PRINT-Anweisungen.

Sie haben jetzt die Möglichkeit, noch einen Bildschirm zu

erstellen und . unter einer anderen Zeilennummer

abzuspeichern. . .

Sie können aber auch das Programm SCREEN-COPY löschen und

nur die PRINT-Anweisungen übrig lassen.

22

Da es unpraktisch wäre, SCREEN-COPY zu löschen, indem man

der Reihe nach die Zahlen von 1-25 und RETURN drückt, haben

wir uns auch dafür ein Programm ausgedacht.

Wenn Sie also SCREEN-COPY löschen wollen, so tippen Sie ein:

a GOTOZ?

26 PORKESS4 .1

2f M=PEERK CO S549 > PRINT Qe

28 #=4+1°> POR E254 RM: IFR=Z7THENHPRINT"SCREEN- COPY GELÜESCHT" EN
D

29 POKES31.19:>POREG632.13°POREG33 .S2:PORE634 .213°FPOKE635 .13°F
OKE133,5:EHND

RUN 26

Jetzt wird blitzschnell SCREEN-COPY gelöscht, und Sie müssen

nur noch per Hand die Zeilen 0,26,27,28 und 29 löschen.

Dann haben Sie nur noch Ihre PRINT-Zeilen.

Wir halten das für eine sehr komfortable Art, Bildschirme zu

erstellen, auch wenn Sie einen Nachteil hat:

Farbänderungen des Cursors, Revers on und Revers off müssen

‘nachraglich eingefiigt werden.

Dieser Nachteil ließe sich zwar beheben, der Aufwand wäre

Jedoch dem Nutzen gegenüber nicht gerechtfertigt.

23

GOTO

PRINTS" OPEWL ot

IHPUT#L .AS: IFPEER ¢214>=24THEMS

FRIHT:GOTO2

FÜRZ=EATO333 : PFOREZ4STFE+Z PEER U La24+2> (HEAT S

IHPUT"SIAHFAHGS- ZEILE": AZ: IFAZISOTHENS

HB=IHNHTCAZ “25685 > LB=AL-255e#HE

FOR ESAS . ee PORESS9 .HE

FPoaR ES se [PORES S1 oe

SP=PEEK (S30) 425SePEEK C831

FORCE TORS : R=PEER SSP +2 >

GOSUBZ1

AUS=AUS+CHRE CBO HERTS

ZE=PEER (828 9+e256ePEER (S25

PRINT SY SE" SCHR t S495 AUS: CHR RED

. SP=SP+40: [PSP > sh S36 THEHek

7 HE=LTHT CSP e258) (LB=SP-2S6#HE > POKESSO LB: POKES 31 - HE

E=ZE+1M:HB=INTLZEZ236> LBR=ZE-255#HB > POKESZS .LB: POKRES29 .H

P POKE G21 .19: PORES32.13: POKE6S33 .82: POKEG 34.213: POKE635 13:

fE1S8 .3-° END
POREG31.19°>FPOKE6832.13:°PORE13&.2: EMD

A=ARHLIZT: IFARHDSZTHENZI

IFARHDS4 THEMB=AOR 32: RETURH

BR=HORE4 > RE TUR
IFARHDE4 THENB=AAHDE SOR 12: RE TUR

B=A: RE TURH fe
a

Pa

P
P

P
P

e
e

A

OG

h
o

WM

3
1
7
,

A

fe

ot

Pe

ee

la

M
B
i
t

h
e

om

m
w

Da das Programm nicht ganz so einfach ist, einige

Erklarungen:

Zeilen 2-4: Bildschirm wird als Datei eröffnet. In Zeile 3

wird nachgeschaut, ob. der Cursor in der unter-

sten Zeile ist, wenn RETURN gedrückt wird.

Zeile 5 . Der Bildschirminhalt wird abgespeichert, da er

| sich bei dem weiteren Geschehen verändert.

Zeile 8 : Die Anfangszeilennummer wird eingegeben, auf

ihre Richtigkeit überprüft, in LOW- und HIGH-

BYTE zerlegt und in die Adressen 828-829

 (Kassettenpuffer) geschrieben.

24

Zeile 9

zeile 13

Zeile 14

Zeile 15

zeile16-18:

zeile 19

zeile21-25:

: Die Adresse, auf der der gespeichert

Bildschirminhalt beginnt, zerlegt in

LOW- und HIGH-BYTE.

Der String für die Zeile wird gebildet.

Die Zeilennummer wird berechnet.

Die fertige Zeile wird auf den Bildschirm ge-

bracht.

Die neue Zeilennummer und die neue Bildschirm-

inhaltsadresse wird berechnet, in LOW- und

HIGH-BYTE zerlegt und abgespeichert.

Diese beiden Werte müssen so abgespeichert.

werden, da das Programm sich selbst

unterbricht, und bei einem neuen Start die

Variablen verloren wären.

Das Programm unterbricht sich selbst und nimmt

die soeben generierte Zeile ins Programm auf,

indem der Cursor an den Bildschirmanfang

springt und RETURN gedrückt wird.

Danach wird das Programm wieder automatisch ge-

startet, indem RUN ausgegeben wird.

Diese ganzen Operationen geschehen durch POKEn

der entsprechenden ASCII-Werte in den

Tastatur-Puffer.

Ein Unterprogramm, das Bildschirm-Code-Werte

in ASCII-Werte umwandelt. Diese Umwandlung muß

erfolgen, da die Werte auf dem Bildschirm und

in dem Bereich, in dem sie gesichert wurden,

als Video-Code-Werte vorliegen. Die generierte

Bildschirmzeile (AU$) muss die Werte aber als

ASCII-Werte bekommen. |

Dieses Unterprogramm kann auch für andere

Zwecke gebraucht werden.

25

BASIC-TIPS

Da Sie, wenn Sie dieses Buch lesen, wahrscheinlich schon

fortgeschrittener BASIC-Programmierer sind, wird Sie dieses

Kapitel wahrscheinlich überraschen. Lesen Sie es aber

trotzdem durch, da wir sicher sind, daß auch Sie etwas

dazulernen können.

- Wenn Sie schon einige Spiele in BASIC geschrieben haben, so

wird Ihnen bestimmt ein großer Nachteil von BASIC

aufgefallen sein: BASIC ist langsam.

Manchmal ist der entsprechende Programmierer aber auch nicht

ganz unschuldig daran...

Wir wollen Ihnen hier zeigen, wie Sie Ihre BASIC-Programme

schneller machen können. |

BENUTZEN SIE EINEN PUNKT STATT DER NULL

Es wird Sie vielleicht überraschen: Wenn der Computer einen.

(alleinstehenden) Dezimal-Punkt in einem BASIC-Programm

findet, so interpretiert er diesen automatisch als Null im

Fließkommaformat.

Doch wieso sollte der Dezimal-Punkt anstatt einer Null

verwendet werden?

Nun, die "Null" im BASIC-Programm ist für den Computer gar

keine Zahl, sondern ein ASCII-Zeichen. Dieses ASCII-Zeichen

muß erst in eine Zahl verwandelt werden, was natürlich Zeit

kostet. | | |

Wenn Sie also den Dezimal-Punkt statt dessen verwenden, so

braucht der Computer keine Umwandlung vorzunehmen und spart

so viel Zeit. .

Beispiel:

1. PROGRAMM: 10 TI$="000000"

20 FORX=1T0100

30 A=A+0

26

40 NEXTZ

50 PRINTTI

2. PROGRAMM: 10 TI$="000000"

20 FORX=1T0100

30 A=A+.

40 NEXTX

50 PRINTTI

Noch öfter kann man den Dezimal-Punkt in IF-Anweisungen

verwenden:

Statt 10 IFA=OTHEN20
nehmen Sie 10 IFA=.THEN2O

Denken Sie nur daran, wie oft Sie die 1.Version schon in

Programmen benutzt und welche Zeit Sie dabei, vergeudet

haben!

BENUTZEN SIE VARIABLEN S TATT ASCII-ZEICHEN

Wenn Sie eine Zahl wie folgt schreiben, so wird diese Zahl

im BASIC-Speicher als ASCII-Werte abgespeichert:

10 POKE1024, 1

wird dieser Befehl jetzt ausgeführt, so muß der Computer

diesen ASCII-String erst in eine Integer-Zahl, und dann in

eine Fließkommazahl (mit der der Computer ausschließlich

rechnen kann) umwandeln. Diese Umwandlung kostet

erwartungsgemäß viel Zeit.

Es muß also ein Weg gefunden werden, den ASCII-String, den

die Zahl darstellt, gleich als Fließkommazahl abzuspeichern.

Dafür bietet sich die Variable an.

Beispiel:

27

1. PROGRAMM: 10 TI$="000000"

20 FORX=1T0100

30 A=A+100

40 NEXTX

50 PRINTTI

2. PROGRAMM: 10 TI$="000000" : B=100.
20 FORX=1T0100
30 A=A+B

40 NEXTX
50 PRINTTI

Der Unterschied kann ganz schön beachtlich werden, besonders

bei größeren Zahlen, da dort der ASCII-String, der

umgewandelt werden muß, immer länger wird, die

Fließkommazahl dagegen immer noch gleichlang ist (nur die

Werte der einzelnen Bytes werden geändert).

BENUTZEN SIE FLIERKOMMA- STATT INTEGER-VARIABLEN

Wie Sie schon im vorigen Punkt gesehen haben, kostet die

Umwandlung in Fließkomma-Zahlen viel Zeit.

Wenn Sie nun eine Integer-Variable (z.B. A%) benutzen, so

muß auch diese Zahl in eine Fließkomma-Zahl umgewandelt

werden. Benutzen Sie statt dessen gleich eine

Fließkomma-Variable (z.B. A). |

Beispiel:

1. PROGRAMM: 10 TI$="000000"

20 B%=100:C%=50:D%=25
30 FORX=1T0100
40 A%=A%+B%-C%-D%
50 NEXTX
60 PRINTTI

28

2. PROGRAMM: 10 TI$="000000"
20 B=100:C=50:D=25
30 FORX=1T0100
40 A=A+B-C-D
50 NEXTX
60 PRINTTI

BENUTZEN SIE FOR-NEXT-SCHLEIFEN

Sofern Sie es noch nicht machen, wollen wir Sie darauf

hinweisen: FOR-NEXT-Schleifen sind schneller und einfacher

zu programmieren als IF-Anweisungen.

Beispiel: |

1. PROGRAMM: 10 TI$="000000" :X=1

20 A=A+X |

30 X=X+1:IFX=101THEN2O

40 PRINTTI

2.PROGRAMM: 10 TI$="000000"

20 FORX=1T0100

30 A=A+X

40 NEXTX

50 PRINTTI

LEGEN SIE UNTERPROGRAMME AN DEN PROGRAMMANF ANG

Unterprogramme solten immer am Anfang des BASIC-Programms

stehen, da der Computer das BASIC-Programm vom Anfang her

nach der gesuchten Zeilennummer untersucht. Je später diese

Zeilennummer im BASIC-Programm zu finden ist, desto länger

braucht der Computer.

Beispiel:

29

1, PROGRAMM: 10 TI$="000000"

20 FORX=1T0100

30 GOSUB100 ©

40 NEXTX

50 PRINTTI

60 END

100 A=A+X

110 RETURN

2. PROGRAMM: 10 A=A+Z

20 RETURN

100 TI$="000000"

110 FORX=1T0100

- 120 GOSUB10

130 NEXTX

140 PRINTTI

Das zweite Programm ist mit "RUN 100" zu starten.

Der Unterschied macht sich hier noch nicht so bemerkbar, da

die Programme nicht so lang sind, und der Computer deswegen

auch nicht so viele Zeilen durchzusuchen hat, bis er die

Richtige findet. Probieren Sie deswegen diesen Punkt einmal

an längeren Programmen aus.

Wenn Sie Ihr Programm nach all diesen Punkten durchsuchen,

können Sie es um einiges schneller machen.

30

ESCAPE-FUNKTION

Innerhalb von Anführungszeichen befinden Sie sich, wie Sie

vielleicht bereits bemerkt haben, in einem besonderen Mode

(engl. Quote Mode). Wenn Sie beispielsweise die

_ Cursor-Steuertasten betätigen, erscheinen die entsprechenden

Cursor-Steuerzeichen. Dasselbe gilt für die Farbtasten. Die

Funktion der Steuertasten tritt erst bei Betätigung der

PRINT-Anweisung ein.
Das ist zwar sehr hübsch, aber wie Sie aus eigener Erfahrung

sicherlich wissen, ist es oft sehr aufwändig, wenn Sie aus

diesem Modus wieder heraus wollen, um z.B. eine falsche

Eingabe wieder zu korrigieren.

Diese kleine Routine schafft da Abhilfe. Mit einem Druck auf

F-1 springt der Computer aus dem Hochkomma-Modus (engl.

Quote-Mode) in den normalen Modus. | |

Aber es geht auch andersherun. Wenn Sie wieder in den

Quote-Mode. zurtickwollen, brauchen Sie nur F-2 zu driicken.

Um zu klären, ob Sie im Quote-Mode sind oder nicht, wird dem

jeweiligen Modus entsprechend ein Hochkomma in der rechten

oberen Bildschirm-Ecke angezeigt/nicht angezeigt.

31

A FR

18

in

g
i

fh:

m

S
u

Gr

a

a

a

a

Gs

Gi

m
e
l

d
d

D
h

130

136

EM ESCAPE
FOR T=467H4TOo4a7

READA

S=S+A

POKETI .A

HET

IFS<>116G3THENPRINT"’ PFEHLER IN DATAS": EMD

FRIHT"DATAS ok"

sys4a7a4

DATAI2Z6.169.,15, 141.20,3,163,153,141

DIATAZ1.3.133,:5965.,.35.965,72,185.,203

DATAZE1 .4.240.34 .261 3.240 .53,165

DATARZ1 2.283 .4 6.165.216.2466 .13.165.34

DATAI41 .39.4.169.1 .141 .39.216,7°6 .52

IATAISS, 169 ,32 .141 .39 ,4 ,104 ,76 ,43

IATAzZ34.169.212.29498,13,.163.6,133

IRTAZ12.133.218.163.28,141.119,2

DATF1E3.1.133,1938,76.,52.159,155.216

TATAZ4SS .226 ..76 605,159,169 .255.133

DATAZ18.78, ‚1593

en.
of

Se

Das Maschinensprache-Listing wollen wir Ihnen auch nicht

vorenthalten:

9FOO SEI

9F01 LDA #$0F

9FO3 STA $0314
9FO6 LDA #$9F
9FO8 STA $0315

9FOD STA $38

9FOD CLI

32

9FOE

9FOF

9F10

9F12

9F14

9F16

9F18

OFA

9F1C

9F1E

9F20

9F22

9F24

9F27

9F29

9F2C

9F2F

9F31

9F34

9F35

9F38

9F3A

9F3C

9F3E

9F40

9F42

9F44

9F47

9F49

9F4B

9F4E

9F50

9F52

9F55

9F57

9F59

RTS

PHA

LDA

CMP

BEQ

CMP

BEQ

LDA

BNE

LDA

BEQ

LDA
STA

LDA

STA

JMP

LDA

STA

PLA |

JMP

LDA

BEQ

LDA

STA

STA

LDA

STA

LDA

STA

JMP

LDA

BEQ

JMP

LDA

STA

JMP

$CB

#504

9F38

#$05

$9F55

$D4

$9F22

$D8

$9F2F

#$22

$0427

#$01

#D827

$9F34

#$20

$0427

$EA31
$D4
$9F4E

#$00
$D4
$D8
#$14
$0277
#$01
$C6
$9F34
$D8
$9F34
$9F37
#$FF
$D8
$9F34

33

BILDSCHIRMFARBEN ÄNDERN

Häufig passiert es einem, daß man irgendetwas auf dem

Bildschirm nicht lesen kann, weil die Bildschirmfarben (

Hintergrundfarbe, Rahmenfarbe, Farbe der Schrift)

unglücklich gewählt sind. Das tritt besonders oft bei

Benutzern von Schwarz-Weiß-Geräten auf. Mit Hilfe dieses

Programms können Sie in einigen Maschinensprache-Programmen,

aber selbstverständlich in (fast) allen Basic-Programmen

und im Direktmodus die Hintergrund- und die Rahmenfarbe

ändern.

Die Bildschirmrahmenfarbe wird durch den Druck auf F'

geändert. Mit F3 ändern Sie die Hintergrundfarbe des

Bildschirms. Diese Routine liegt im IRQ. Das ist der Grund,

warum ein Flimmern auf dem Bildschirm entsteht, wenn Sie auf

Fi oder F3 drücken. Diese Routine fragt ab, ob eine dieser

Tasten gedrückt wurde. War dies der Fall, so wird der Wert

für Rahmen- oder Hintergrundfarbe um eins erhöht. Nun werden

IRQ-Routinen aber etwa 50-60 mal in der Sekunde vom Computer

angesprungen. Das bedeutet, bei gedrückter Taste wird die

Farbe 50-60 mal erhöht.

Um die Routine so kurz wie möglich zu machen, haben wir

darauf verzichtet, dieses Flackern abzuschaffen.

Um die richtige Farbkombination zu bekommen, müssen Sie

mehrmals auf die entsprechende Taste drücken.

Wollen Sie diese Routine in einem anderen Programm

gleichzeitig verwenden, sollten Sie zuerst diese Routine in

den Computer laden und sie danach starten. Dann können Sie

ein Programm ihrer Wahl hineinladen.

Probleme beim gleichzeitigen Gebrauch der Programme könnten

sich ergeben, wenn das zweite Programm zu lang ist oder den

Bereich des Speichers ab 40704, den diese Routine benötigt,

anderweitig belegt, oder wenn es die Funktionstasten F1 und

F3 benutzt. a

34

Doch gucken wir uns jetzt den BASIC-Lader an:

10 FOR I = 40704 TO 40745
20 READ A
30 POKE I,A
40 S=S+A

50 NEXT I
60 IF S<>4625 THEN PRINT "?FEHLER IN DATAS" : END
70 PRINT "DATAS 0.K."
80 SYS 40704 | |

90 DATA 120,169,15,141, 20,3, 169,159,141
100 DATA 21,3,133,56,88,96, 72,165,203
110 DATA 201,4,240,8,201,5, 240,10, 104, 76
120 DATA 49,234,238,32, 208, 76,26, 159,238
130 DATA 33 208,76,26, 159

Als Profi sind Sie vielleicht auch am

Maschinensprache-Listing interessiert, aber auch für

Nicht-Profis könnte es interessant sein. Darum an dieser

Stelle das Assembler-Listing.

9FOO SEI : Interrupt aus

9FO1 LDA #$0F | : ändern der Vektoren

9F03 STA $0314

9FO6 LDA #$9F

9F08 STA $0315

9FOB STA $38 : Routine abblocken

9FOD CLI : Interrupt an

9FOE RTS : Ende des 1.Teils

9FOF PHA : Register retten

9F10 LDA $CB~. : Tastaturabfrage

9F12 CMP #$04 : F1 ?

9F14 BEQ $9F1E

9F16 CMP #$05 | : F2 ?

9F18 BEQ $9F24

9F1A PLA

35

9F1B

9F1E

9F21

9F24

9F27

IMP $EA31
INC $D020
IMP $9F1A
INC $D021
‘SMP $9F1A

setzt IRQ fort

erhoht Rahmenfarbe

erhoht Hintergrundfarbe

Falls das Programm, das Sie gleichzeitig mit dieser Routine

laufen lassen wollen, die Tasten F1 und F3 schon belegt hat, |

können Sie für die Routine auch andere Tasten nehmen.

Statt 4 für FA und 5 für F3 in Zeile 110 können Sie die

Werte der Tasten ändern. Diese neuen Werte können Sie der

Tastaturdecodierungs-Tabelle im Anhang entnehmen.

36

ZWEI BILDSCHIRME

Diese Routine ermöglicht es, zwei Bildschirme zu benutzen.

Das Anwendungsgebiet für diese Routine ist riesengroß. Vor

allen Dingen in der Grafik (Umschaltung Low-Res auf

High-Res) findet diese Routine ihre Verwendung.

Wir wollen Ihnen hier diese Routine nur in Verbindung mit

zwei Low-res-Grafikbildschirmen (normaler Bildschirm)

zeigen, da dadurch die Routine leichter zu verstehen ist. Es

bleibt Ihnen überlassen, diese Routine auf andere

Verwendungszwecke zurechtzuschneidern.

Man kann mit dem zweiten Bildschirm viele seiner Programme

stark verbessern. Z.B. kann man in Abenteuer-Spielen schon

einen anderen Bildschirm aufbauen lassen, während der

Spieler noch vor dem ersten Bildschirm ist. Aber auch bei

anderen Anwendungen wie ‚z.B. Textverarbeitung kann der

zweite Bildschirm ungeahnte Vorteile mit sich bringen. Der

Phantasie sind keine Grenzen gesetzt.

Doch nun zum eigentlichen Programm:

Tippen Sie und saven Sie es ab. Wichtig ist, daß Sie nach

dem Starten des Programms NEW eingeben (siehe

Assembler-Listing). Für die Nicht-Maschinen-Sprachler sei

gesagt, daß der Computer sich sonst bei Eingabe eines

Programms "verabschiedet".

Um in den zweiten Bildschirm zu gelangen, müssen Sie nur auf

F1 drücken. Wenn Sie umgeschaltet haben, kann es Ihenn

passieren, daß Ihr Cursor nicht mehr zu sehen ist. Aber

keine Angst, der Computer hat sich nicht aufgehängt. Wenn

Sie RETURN oder ähnliches drücken, erscheint er wieder. Auch

ist der zweite Bildschirm beim ersten Umschalten mit

diversen Zeichen vollgefüllt, da dieser Bereich vor dem

Umschalten vom Basic-Speicher belegt wurde. Löschen Sie

einfach den Bildschirm, und er wird voll zu Ihrer Verfügung

stehen. |

37

Der Farbspeicher ist ftir beide Bildschirme identisch.

Dadurch werden die Farbinformationen von einem Bildschirm in

den anderen mit tibernommen. Um das zu verhindern, haben wir

in die Routine einen Teil eingebaut, der den gesamten

Farb-RAM auf die momentane Farbe des Cursors setzt. |

Der Bildschirm-Speicher fiir den zweiten Bildschirm geht von

2048 ($0800) bis 3047 ($0BE7).

Gesagt werden muß noch, daß sich die Adressen der Zeiger für

die Sprites ändern. Sie sind jetzt bei 3064 bis 3071.

zur besseren Übersicht eine Tabelle:

Mit Routine

Normalzustand 1.Bildschirm 2.Bildschirm

mn En cere ca tee ee eee mt ee em dene AED wee ame ene eee au cm dr GAME SUMME me ee ns Ee GD dem Sid ee GD aim die AED a Se ee me we am MEER eee NEE es es ee tes ees ee eee ee Emm

Bildschirmspeicher- 1024 1024 2048

Anfang ($0400) ($0400) ($0800)

Bildschirmspeicher- 2023 2023 3047

Ende ($07E7) ($07E7) ($OBE7)

Basic-Speicher- 2048 3072 3072

Anfang ($0800) ($OCOO) ($OCOO)

Farb-Speicher 55296 55296 55296

| ($D800) ($D800) ($D800)

Erreichen des je- _ SYS 64738 Drücken von Drücken von

weiligen Zustandes F-3 F-1

38

Diese Routinen können Sie auch in Spielen zu benutzen. Es

gibt dazu zwei Möglichkeiten:

a) Fordern Sie den Benutzer zum Drücken von F1 bzw. F3

auf

b) POKE 203,4 um in den zweiten Bildschirm zu gelangen

POKE 203,5 um in den ersten Bildschirm zu gelangen

Nun der BASIC-Lader:

O REM 2 Bildschirme

10

20

30

40

50

60

70

80

FOR I=40702 TO 40789
READ A
POKE I,A
S=S+A

NEXT I
IF S=11070 THEN PRINT"DATAS 0.K.":POKE3072,0:
SYS 40702: END |

PRINT"FEHLER IN DATAS"
END

90 DATA169,12,133,44,120,169,17,141,20

100
110
120
430
140
150
160
170
180

DATA3, 169, 159, 141,21,3,133,56,88,96

DATA165,203,201,4,208,13,169,37,141

DATA24,208,169,8,141,136,2,76,50

DATA159,201,5,208,36,169,21,141,24

DATA208,169,4,141,136,2,169,216, 133

DATA252,160,0,132,251,173,134,2,145

DATA251,200,240,13,192,232,208,247

DATA166, 252,224,219,208,241,76,49

DATA234,230,252,76,61, 159

Und nun das Maschinen-Programm:

39

SEFE
9FOO
9FO2
9FO3
9FO5
9FO8
9FOA
9FOD
9FOF
9F10
oF 11
9F13
9F15
9F17
9F19
9F1C
9FIE
9F21
9F24
9F26

_ 9F28
9FZA
9F2D
9F2F
9F32
9F34
9F36
9F38
OF3A
9F3D
9F3F
9F40
9F42
9F44
9F46

LDA

STA

SEI

LDA

STA

LDA

STA

STA

CLI

RTS

LDA

CMP

BNE

LDA

STA

LDA

STA

JMP

CMP

BNE

LDA

STA

LDA

STA

LDA

STA

LDY

STY

LDA

STA

INY

BEQ

CPY

BNE

LDX

#$0C

$2C

#511

$0314

#$9F

$0315

$38

$CB

#$04

$9F24

#$25

$D018

#$08

$0288

$9F32

#$05

$9F4C

#515

$D018

#$04

$0288

#5D8

$FC

#$00

$FB

$0286

($FB),Y

$9FAF
#$E8

$9F3D

$FC.

40

9F48 CPX #5DB

9F4A BNE $9F3D

9FAC JMP $EA31

9FAF INC $FC

9F51 JMP $9F3D

Noch zwei Tips fiir den Umgang mit zwei Bildschirmen:

Der erstellte Bildschirm könnte abgeSAVEt werden (Hardcopy

für Floppy oder Datasette). Gehen Sie zu diesem Zweck

folgendermaßen vor:

a) Notieren Sie sich die Inhalte der Adressen 45/46

b) Geben Sie folgende Werte ein:

POKE 43,0:POKE 44,X

X resultiert aus dem Bildschirm, den Sie abSAVEn wollen.

Eine 4 SAVEt den ersten, eine 8 den zweiten Bildschirm.

c) Geben Sie weiterhin ein:

POKE 45,0:POKE 46,X+4

d) Geben Sie SAVE "(Name)",8 ein.

e) Nach dem SAVEen muß der BASIC-Anfang wieder zurückgesetzt

werden. Dies geschieht durch:

POKE 43,1: POKE 44,12: POKE 3072,0

POKE 45,...: POKE 46,... (gemerkte Werte)

41

LAUFSCHRIFT IN MASCHINENSPRACHE

Im Kapitel liber das Spiel finden Sie ein kleines

Laufschriftprogramm in BASIC. Wir wollen Ihnen hier eine

Laufschrift vorstellen, die in Maschinensprache geschrieben

ist. Der große Unterschied zur BASIC-Routine liegt darin,

daß diese Routine im IRQ liegt und so im Direktmodus, in

BASIC-Programmen und sogar in einigen

Maschinensprache-Spielen laufen kann.

Sie können Ihren eigenen Text eingeben. Er erscheint dann in

der obersten Zeile des Bildschirms.

Der Text sollte nicht mehr als 40 Buchstaben umfassen. Es

werden ausschließlich Buchstaben angenommen. Graphik-Symbole

wandelt das Programm ab. Wollen Sie trotzdem

 Graphik-Symbole verwenden, so müssen Sie die Werte dieser

Zeichen direkt in die entsprechenden Speicherstellen POKEn.

Der Text wird ab Speicherstelle 40448 abgespeichert.

Die Farbe des Textes können Sie ebenfalls frei verändern.

Dazu brauchen Sie nach dem Start des Programmes nur

folgenden Poke einzugeben:

POKE 40760, (Farbe)

Um die Geschwindigkeit, in der der Text über den Bildschirm

läuft, bestimmen zu können,. brauchen Sie lediglich folgendes

in den Computer einzugeben: |

POKE 40783, (Geschwindigkeit)

Normalerweise enthält diese Adresse den Wert 5. Sie können

die Geschwindigkeit und die Farbe auch im Programm ändern.

Der Farbwert steht an zweiter Stelle in der DATA-Zeile 260,

42

der Geschwin

Danach muß

entsprechend

Hier der BASI

OR

10

20

30

40

50

60

70

80

90

100

110

120

130
140
150
160
170
180
190
200
210
220
230
240
250
260

digkeitswert an siebter Stelle in Zeile 280.

jedoch auch die Prüfsumme in Zeile 60

abgeändert werden.

C-Lader:

EM LAUFSCHRIFT

FOR I=40704 TO 40789

READ A

POKE I,A

S=S+A

NEXT I

IF S<> 10107 THEN PRINT "?Fehler in

Datas” : ‘END

PRINT "Datas ok"

PRINT : POKE 19,1

INPUT "Text : ";A$

POKE 19,0: PRINT

FOR I=1 TO LEN (A$)

POKE 40448+I-1, ASC(MID$(A$,I,1))

AND NOT 64
NEXT I

FOR I=LEN(A$) TO 40

POKE 40448+1,32

NEXT I

SYS 40704

INPUT "Neuer Text (j-n) ";A$

IF A$= "5" THEN 80

DATA 120,169,28,141,20,3, 169,159, 141

DATA 21,3,88,133,56,162,0,189,0, 158

DATA 157,40,158,232,224,40,144,245

DATA 96,206, 255, 159, 208,50, 162,0,173

DATA 50,159,105,1,201,40, 144,2,169,0

DATA 141,50,159,189,26,158,157,0,4

DATA 169,1,157,0,216,232,224,40, 144

43

270 DATA 240, 174,50,159,232,224,40,144,2

280 DATA 162,0, 142,50, 159, 162,5, 142,255

290 DATA 159,76,49,234

Um diese Routine in Verbindung mit einem anderen Programm

gleichzeitig laufen zu lassen, müssen Sie zunächst diese

Routine in den Computer hereinladen und starten.

Anschließend kann das zweite Programm nachgeladen werden. Es

wird hierbei zwar der o.g. BASIC-Lader überschrieben, die

Laufschrift ist jedoch bereits in den IRQ eingebunden.

Für Interessierte hier das Maschinensprache-Listing der

Routine:

9FOO SEI
9FO1 LDA #$1C
9FO3 STA $0314
9FO6 LDA #$9F

9FO8 STA $0315
9FOB CLI
9FOC STA $38
9FOE LDX #$00
9F10 LDA $9E00,X
9F13 STA $9F28,X
9F16 INX
9F17 CPX #$28
9F19 BCC $9F10
9F1B RTS
9F1C DEC $9FFF
9F1F BNE $9F53
9F21 LDX #$00
9F23 LDA $9F32
9F26 ADC #$01
9F28 CMP #$28
9F2A BCC $9F2E

44

9F2C LDA #$00
Q9F2E STA $9F32
9F31 LDA $9E1B,X
9F34 STA $0400,X
9F37 LDA #$01
9F39 STA $D800,X
9FIC INX
9F3D CPX #$28
9F3F BCC $9F31
9F41 LDX $9F32
9F44 INX
9F45 CPX #$28
9F47 BCC $9F4B
9F49 LDX #$00
9FAB STX $9F32
9FAE LDX #$05
9F50 STX $9FFF
9F53 JMP $EA31

Diese Routine ist nach dem Schema aufgebaut, das im Kapitel

"und wie man den IRQ programmiert" beschrieben wird. Wenn

Sie wissen wollen, wie eine solche IRQ-Rotuine geschrieben

wird, sollten Sie sich dieses Kapitel einmal näher ansehen!

45

DIE STOP-FUNKTION

Diese Routine arbeitet im IRQ. Mittels F1 können Sie den

Computer "anhalten". Er wartet jetzt solange, bis Sie F3

drücken und fährt erst dann fort in seiner Arbeit. Sie

können die Routine im Direktmodus als List-Stop benutzen

oder in einem Basic-Programm oder auch in einigen

Maschinensprache-Spielen als Stopper, falls das Telefon

klingelt oder ähnlich Unvorhersehbares passiert. Sinnvoller

ist diese Routine sicherlich als List-Stop. Sie können sich

damit lange Programme viel einfacher und bequemer ansehen.

Es bleibt einem das lästige BREAK-Drücken und danach das

erneute Eingeben des LIST-Befehls erspart.

' Sehen wir uns zunächst den BASIC-Lader an:

O REM STOP-FUNKTION
10 FOR I=40704 TO 40752
20 READ A |
30 POKE I,A
40 S=S+A

50 NEXT I
60 IF S<> 5628 THEN PRINT "?Fehler in

Datas" : END
70 PRINT "Datas ok"

80 SYS 40704
90 DATA 120, 169,15, 141, 20,3, 169, 159,141
100 DATA 21,3,133,56,88, 96,72, 165, 203
110 DATA 201,4,240,4,104, 76,49, 234,169, 1
120 DATA 59,72,169,41,72,8, 72, 138,72, 152
130 DATA 72,76,49, 234,165,203, 201,5, 208
140 DATA 235,240,229

46

Das Assembler-Listing

_9FOO
9FO1
9FO3
9FO6
9FO8
9FOB
9FOD
9FOE
9FOF
9F10
9F12
9F14
OF 16
9F17
OF1A
9F1C
9F1D
OFIF
9F20
9F21
9F22
9F23

 9F24
9F25
9F26
9F29
9F2B
9F2D

_9F2F

SEI
LDA
STA
LDA
STA
STA
CLI
RTS
PHA-

LDA

CMP

BEQ

PLA

JMP

LDA

PHA

LDA

PHA

PHP

PHA

TXA

PHA

TYA

PHA

JMP

LDA

CMP

BNE

BEQ

sieht folgendermaßen aus:

#50F

$0314

#59F

$0315

$38

$CB

#04

$9F1A

$EA3 1

#9F

#29

$EA31
$CB
#05
SOF 1A
$9F16

47

Sollten Sie die F1 und die F3 Taste schon belegt haben, so

können Sie ganz einfach diese Routine auf eine andere Taste

legen, indem Sie in den Adressen $9F12 und $9F2B die

entsprechenden Werte abändern.

Für diejenigen, die keinen Maschinensprache-Monitor besitzen

und den BASIC-Lader benutzen, bedeutet das, daß der erste

Wert "4" in Zeile 110 und der Wert "5" in Zeile 130

geändert werden muß. Die entsprechenden Werte für andere

Tasten erhalten Sie aus der Tabelle über die

Tastatur-Belegung im Anhang.

48

ZUFALL?

Haben Sie sich eigentlich schon einmal die RND-Routine

angeschaut?

Es wird Sie wahrscheinlich überraschen (oder hatten Sie

vielleicht schon immer den Verdacht ?): Die Zahl, die da

generiert wird, ist gar nicht zufällig gewählt, denn so

etwas kann der logisch arbeitende Computer nicht.

Diese Zahl ist vielmehr in einem komplizierten Algorithmus

ausgerechnet worden. Dieser Algorithmus sieht folgendermaßen

aus:

1) Der letzte RND-Wert (abgespeichert in Adresse 139-143)

wird in den Fließkomma-Akkumulator (FAC) geladen.

2) Der FAC wird mit der Konstanten 11879546 (abgespeichert

im Bereich $EO8D-$EO91), multipliziert.

3) zu dieser Zahl wird die Konstante 3.92767774E-08

(abgespeichert im Bereich $EO92-$EO9I6), addiert.

4) Jetzt werden einige Speicherinhalte vertauscht:

$65 wird getauscht mit $62

$63 wird getauscht mit $64

In. $66 wird der Wert Null geschrieben

In $61 wird der Wert $80 geschrieben

5) Schließlich wird der FAC noch linksbündig gemacht,

gerundet und zum Schluß wieder abgespeichert.

Noch eine Erklärung zu den Konstanten:

Wenn “Sie sich den Bereich, in dem die Konstanten liegen,

einmal anschauen, so werden Sie folgende (hexadezimale)

Zahlen vorfinden:

- $EO8D 98 35 44 7A 00

49

$EO92 68 28 Bi 46 00

Wenn Sie sich nicht näher mit dem FAC auskennen, so werden

Sie wahrscheinlich Probleme haben, aus diesen Zahlen die

zwei Konstanten herauszufinden.

Folgendes Programm erledigt diese Aufgabe für Sie:

LDA #$LB

LDY #$HB

JSR $BBA2 :Zahl in den FAC

JSR $BDDD :FAC in ASCII und ab $0100 ablegen

LDA #$00 :Low-Byte Adresse des Strings

LDY #$01 :High-Byte Adresse des Strings

JSR $AB1E :String ausgeben

RTS

LB-HB geben die Adresse an, ab der die (5) Bytes, die in den

FAC kommen sollen, stehen. Wollen Sie den FAC selbst

auslesen, so muß die Adresse $0061 lauten.

Als BASIC-Lader (im Kassetten-Puffer) sieht das Programm so

aus:

10 FOR X=0 TO 17: READ A:POKE 828+X,A: NEXT X
20 DATA169,LB, 160,HB, 32, 162, 187

30 DATA32,221,189,169,0, 160, 1

40 DATA32,30,171,96

Gestartet wird die Routine mit SYS 828. Für LB-HB müssen Sie

jedesmal die entsprechenden Werte einsetzen. Sie können

diese Werte aber auch POKEn:

POKE 829,LB: POKE 831,HB

Einige Beispiele für LB-HB:

50

141 224 Konstante 1

146 224 Konstante 2

139 0 Letzter RND-Wert

97 0 FAC

Doch weiter zur RND-Routine.

Diese Routine kann auch in der Maschinensprache angesprungen

werden. Will man das Maschinensprache-Aquivalent von RND(1)

haben, so heißt die Einsprungadresse $EOBE (57534). |

Ein direktes Aquivalent zu RND(-1) und RND(O) haben wir

nicht gefunden. Probieren Sie aber ruhig einmal andere

Einsprungadressen zwischen $E097 und SEOrE aus.

Eine Zufallszahl kann man auch in Maschinensprache erzeugen,

indem man einen Zähler liest. Beispiele dafür sind Adresse

160-162 für die Uhr, und Adresse 53266 für die Zeile, die

gerade auf dem Bildschirm (vom Elektronenstrahl) geschrieben

wird.

RND kann man übrigens nicht nur für Spiele benutzen. Auch

für Dateien, deren Daten nicht von jedem eingelesen werden

sollen, kann man diese Routine sehr gut gebrauchen.

Wenn Sie den oberen Teil sorgfältig gelesen haben, haben

Sie mitbekommen, daß der letzte RND-Wert in den Adressen

139-143 abgespeichert ist. Da der Computer den neuen

(nächsten) RND-Wert immer mit Hilfe dieses Wertes berechnet,

kann man RND ganz einfach auf einen festen Anfangswert

setzen. Da die RND-Werte bei jedem Durchgang immer gleich

berechnet werden, kann man die Daten mit einem Zahlen-Wert,

der durch RND bestimmt worden ist, ver- und bei einem neuen

Durchlauf wieder entschlüsseln.

Folgendes Programm veranschaulicht dies:

51

10 GOSUB 1000

20 PRINT CHR$(147): X=20480

30 POKE 204,0

40 GETA$: IFA$=""THEN 40

50 IFA$= CHR$(133) THEN 100

60 IF ASC(A$)<32 OR ASC(A$) >95 THEN 40

70 IF PEEK(207) THEN 70

80 POKE 204,1: PRINTAS$;

90 FOR YY=O TO 3: Y=Y+INT(RND(1)*40): NEXT :Y=Y+ASC(A$)

95 POKE X,Y: X=X+1: Y=0: GOTO 30

100 POKE X,0: GOSUB 1000

110 PRINT CHR$(147): X=20480

120 Z=PEEK(X): IF Z=0 THEN END

130 FOR YY= O TO 3: Z=Z-INT(RND(1)*40): NEXTYY

140 PRINT CHR$(Z);: X=X+1: Z=0: GOTO 120
1000 PRINT CHR$(147): FORX=O TO 4

1010 INPUT A: IF A<O OR A>255 THEN 1010

1020 POKE 139+X,A

1030 NEXT X

1040 RETURN

Nach Starten dieses Programms müssen Sie erst einmal fünf

Werte eingeben. Nun können Sie einen beliebigen Text

eintippen. Sobald Sie fertig sind, müssen Sie die F1-Taste

drücken. |

Nun kommt der zweite Teil. Sie geben wieder die fünf Werte

ein, die Sie auch schon beim ersten Mal eingegeben haben,

und der Computer wird Ihnen den Text wieder ausgeben.

Sollten die Werte nicht mit den ersten Werten

übereinstimmen, so wird der Text mehr oder weniger

verstümmelt. |

Dieses Programm ist noch nicht absolut sicher, da kleine

Abweichungen der Werte nicht berücksichtigt werden (das

liegt an der INT-Funktion in Zeile 90 und 130). Deutlich

wird aber hier, wie Sie Daten-Texte verschlüsseln können:

a) Setzen Sie den RND-Wert fest, indem Sie bestimmte Wer-

52

te (Code des Benutzers) in die Speicherstellen 139-143

POKEn.

b) Verschlüsseln Sie die Daten mittels der RND-Funktion.

Wie diese Verschlüsselung erfolgt (welche Formel Sie

benutzen), bleibt Ihnen überlassen.

c) Bei Einlesen der Daten muß ein Schlüssel eingegeben

werden, mit dessen Hilfe RND wieder auf einen bestimm-

ten Wert gesetzt wird.

d) Mittels RND werden die Daten wieder entschlüsselt.

War der Schlüssel falsch, so werden auch die Daten

falsch ausgegeben.

Durch diesen einfachen Trick ist es möglich, Texte und

Zahlen so zu verschlüsseln, daß nur ein befugter Benutzer

diese Daten wieder erreichen kann. Theoretisch kann man zwar

auch an die Daten herankommen, indem man alle möglichen

Werte für den Benutzer-Code durchgeht, in der Praxis würde

das aber ziemlich lange dauern.

Noch ein Tip:

Wenn man es illegalen Benutzern noch schwerer machen will,

kann man auch noch die Funktion: z.B. Y=Y+RND(1) , mit der

die Daten verschlüsselt bzw. entschlüsselt werden, vom

Benutzer eingeben lassen. Da hier die Möglichkeiten im

Gegensatz zum Code unbegrenzt sind, dürfte es unmöglich

sein, Daten, die so verschlüsselt sind, unbefugt zu’

bekommen.

Noch einmal kurz zusammengefaßt:

Zur Erlangung einer Pseudo-Zufallszahl verwendet man in

BASIC den Befehl RND. Diesem Befehl folgt zwingend ein

Argument. Die Wahl dieses Argumentes ist keinesfalls

unbedeutend. Man unterscheidet vielmehr zwischen positivem

und negativem Argument sowie Null.

Ein positives Argument erzeugt eine Pseudo-Zufallszahl

basierend auf dem vorangegangenen Zufallswert. Ein negatives

53

Argument setzt die abgespeicherte Zufallsbasis, die iiber die

nachste Zufallszahl entscheidet, (Adressen 139-143), in

Abhängigkeit zum Betrag des negativen Arguments.

Um eine wirklich zufällige Zahl durch RND(x) zu erlangen,

sollte man deshalb die Basis neu setzen. Dies geschieht mit

folgender Zeile im Programm:

10 X=RND(-TI): X=INT(RND(1)*...

54

MODIFIZIERTES INPUT

In bezug auf Eingabe-Befehle sieht es beim C 64 recht mager

aus: Es gibt standardmäßig nur die Grundbefehle GET und

INPUT.

Für sehr viele Anwendungen reichen diese beiden Befehle

jedoch nicht aus: Bei GET fehlt der Cursor. Das

INPUT-Fragezeichen, das zwangsläufig bei diesem Befehl

erscheint, bereitet Kummer. Manche Satzzeichen nimmt INPUT

erst gar nicht an (da sie bestimmte Funktionen ausüben).

Im nun folgenden wollen wir Ihnen in Sachen Eingabe ein paar

Tips geben, wie die oben genannten Mängel wenigstens

teilweise umgangen werden können.

Da wäre zum Beispiel das Fragezeichen, das so

charakteristisch für die INPUT-Anweisung ist. Aber was tun,

wenn das Fragezeichen fehl am Platze ist, wenn es sich beim

INPUT um eine Aufforderung handeln soll, etc. ?

Um das Fragezeichen des INPUTs auszuschalten, gibt es

mehrere Möglichkeiten:

10 POKE 19,1: INPUT"RETURN DRUECKEN !";A$:PRINT:POKE 19,0

oder

10 OPEN 1,0

20 INPUT#1,A$

30 CLOSE 1

Man eröffnet einfach die Tastatur als Peripherie-Gerät.

Schwieriger wird es, wenn man neben den normalen Zeichen

auch Satzzeichen wie Kommata, etc. eingeben können muß, was

beispielsweise für Textverarbeitung notwendig ist.

Hierzu haben wir uns ein nicht allzu langes BASIC -

55

Äquivalent einfallen lassen. Es ist schnell genug, um auch

für Textverarbeitung eingesetzt werden zu können.

Gegenüber dem normalen INPUT bietet es folgende

Besonderheiten:

- Es können einem String beliebig viele Elemente zugeordnet

werden. Dazu muß lediglich die DIM-Anweisung entsprechend

verändert werden.

- Es können auch Steuerzeichen eingegeben werden, die bei

der Ausgabe des Strings berücksichtigt werden.

- Es können lediglich Texteingaben gemacht werden. Das Er-

gebnis der Abfrage ist in INS gespeichert. Durch VAL dürf-

ten auch Zahleneingaben kein Problem sein.

Hier zunächst das Listing:

PORE Sade ,0

PORE SLA. 1° GETIN€: ITFIHF="" THEHEAES 1

FORE 26.

RSS DTP IME=CHR$* iso THEMPORE 24. LO PRIHT" "CO THEE GOTO Lae:

:ETURH- TASTE

IFINFSCHREE 253 THENHGSOTOSEN ZU

FREIHMTINF;

INF£LIN>=IHE:IN=IN+1
0 en om,

GOTOS HGS

FÜRSL=SSTÖTN-1

INF=IHF+INFLEL>
HES T > RE TUR

IF IM=8@THEMHGOTOS bese

POOREST 2.8° PORE SHY eo PRINTCHES © 1 OP OCHRE « seo CHR S$ «seo CHR

EHRE IST:

IN=IH-1: Ins CTHI="" GOTH

me

i
me

ee

2
%

16 REM SIMULIERTES INPUT

za FRE="WMIE LAUTET DIE EIHGABE 7° "GOSUB rue E SOSUBSEORAE SREP AUFRUF DER

25 FRIMTINE

3 EMT

ta:

SA

Be

Be REM SIMULIERTES IHMPUT «ROUTINE)

5 DIM THS. 1 GGG> PRINTFRES" "5;
Be

Be

Be
et Ao

n
en

oh
ee

gr
A
p
e

G
m

&

=,

oc
h

I

GG

h
i

h
e

0

Ma
e

fe

ee

ye

ty

fo

+
me

u

a

a

iu

OT
)

T
e

I

Pet

va
g

Pa

fa

Tr

a

l
d

h
d

iT
;

“a
e”

56

Verwendete wichtige Adressen:

212 : Hochkomma-Flag

204 : Cursor ein-ausschalten

Wichtige Variablen:

IN$ Ergebnis der Abfrage

FR$ Fragestring (wird bei Aufruf der Routine auf den

Bildschirm ausgegeben)

Eine weitere Möglichkeit, in einer Input-Anweisung ein Komma

benutzen zu können, bietet folgende Basic-Zeile:

10 POKE 198,1 : POKE 631,34 : INPUT A$

Innerhalb des Hochkommas werden die Kommata nicht als

Kennzeichen sondern als reguläre Eingabe interpretiert und

somit akzeptiert. In den Tastaturpuffer (Adresse 631-640)

wird ein Hochkomma (Code 34) geladen. Über Adresse 198 wird

dies dem Computer mitgeteilt.

Bei der anschließenden INPUT-Anweisung wird ein Hochkomma

ausgegeben. Ab sofort können auch Kommata eingegeben werden.

Das ausgegebene Hochkomma wird später im String nicht

berücksichtigt und beeinflußt auch nicht den LEN-Befehl.

57

FLOPPY-TRICKS

Hardwaremäßig hat der C-64 die Möglichkeit, bis zu 8 Floppy

Disks anzuschließen. Für diese Floppys sind die Kanäle 8-15

reserviert. Da jede Floppy aber vom Werk aus auf die

Geräte-Nummer 8 eingestellt ist, muß diese Nummer geändert

werden.

Folgendes Programm soll Ihnen dabei helfen:

10 INPUT"ALTE NUMMER"; AN

20 INPUT"NEUE NUMMER"; NN

30 OPEN1,AN, 15

40 PRINT#1,"M-W"CHR$(119) ;CHR$(O) ; CHR$(2) ; CHRS (NN+32) ; CHRS (

NN+64)

"50 CLOSE1

Sollten Sie also mehrere Floppys anschließen wollen, so

gehen Sie folgendermaßen vor:

Schließen Sie eine Floppy an und ändern Sie die

Geräte-Adresse in eine Nummer ungleich 8 um. Nun schließen

Sie die zweite Floppy an. Da diese hardwaremäßig die Nummer

8 hat, haben beide Floppys unterschiedliche Adressen, und

können jetzt eindeutig angesprochen werden.

Nun ändern Sie auch diese Floppy-Nummer um, USW.

Wollen Sie mehrere Floppys benutzen, so ist dieses Programm

noch besser:

10 PRINT"WIE VIELE FLOPPYS WOLLEN SIE ANSCHLIESSEN"
20 INPUTAY
30 IFAY< 10RAY>8THEN20

40 AN=8 : FORY=1TOAY |
50 PRINT"MACHEN SIE NUN FLOPPY NR. "Y"AN"
60 GETA$: IFA$=" "THEN6O

58

70 OPEN1,AN, 15
80 PRINT#1, "M-W"CHR$(119);CHR$(O) ; CHR$(2) ; CHR$(39+Y) ;

CHR$ (71+Y)

90 CLOSE1:PRINT"DIESES FLOPPY HAT DIE NUMMER"AN
100 AN=AN+1:NEXTY

Diese Art der Floppy-Umstellung hat jedoch ein

entscheidenden Nachteil: Sobald das Floppy wieder

ausgeschaltet wird, ist die Geräte-Nummer wieder 8.

Es gibt jedoch auch die Möglichkeit, die Floppy-Nummer

hardwaremäßig zu ändern. Da man bei dieser Methode aber

nur die Wahl zwischen Geräte-Nummern von 8-11 hat, muß man

bei mehr als vier Geräten die Softwarelösung vorziehen. Vor

jedem Arbeiten müssen also erst die Floppys initialisiert

werden. Dazu würde sich am besten ein EPROM eignen, das man

mit dem entsprechenden Programm und einem Autostar

versehen hat.

Man kann aber auch das zweite hier vorgestellte Programm vor

jedem Arbeiten laden.

Doch kommen wir zur Hardwarelösung. Da bei dieser Operation.

das Floppy geöffnet werden muß, sollten Sie sich darüber im

klaren sein, daß damit die Garantie des Gerätes verfällt.

Haben Sie jedoch keine Angst: Bei vorschriftsmäßigem

Arbeiten passiert der Floppy nichts.

Ziehen Sie also zuerst einmal den Netzstecker aus Ihrem

Gerät. Öffnen Sie es nun indem Sie die vier Schrauben am

Boden lösen (vorsichtig, da sonst der Schreib-Lese-Kopf

der Floppy durch die Erschütterung zerstört werden kann).

Heben Sie danach den Deckel ab.

Nun haben Sie die Platine vor sich. Ungefähr in der Mitte

befinden sich mehrere größere ICs. Suchen Sie zunächst

einmal die CPU, ein 6502. Direkt darunter befindet sich ein

Ein-Ausgabe-IC, ein 6522. Von diesem IC gehen Sie etwas in

Richtung der Vorderseite des Floppys. Sie stoßen dann auf

‘einen Elektrolyt-Kondensator. Auf der Platine trägt er die

Bezeichnung C64. Direkt neben diesem Kondensator befinden

59

sich zwei Lötbrücken. Sie haben die Form von zwei

Halbkreisen, die durch eine schmale Verbindung miteinander

verbunden sind.

Abhängig davon, welche Sie durchschneiden, erhalten Sie

folgende Geräte-Nummern:

Getrennter Halbkreis Geräte-Nummer

Keiner

1 (der Rechte) 9

2 (der Linke) 10

1& 2 11

Nach dieser Operation, die sich komplizierter anhort, als

sie tatsächlich ist, behält Ihre Floppy die eingestellte

Geräte-Nummer 9 auch noch nach dem Ausschalten bei.

Da Sie Ihre Floppy jetzt schon einmal geöffnet haben, wollen

wir Ihnen noch etwas anderes zeigen:

Normalerweise kann man einfache Disketten auch beidseitig

benutzen, sofern man eine zweite Einkerbung vornimmt. Es

geht aber auch anders.

An der einen Längsseite der Platine befinden sich zahlreiche

Steckanschlüsse. Der größte davon muß die Bezeichnung P6

tragen. An diesem Anschluß befindet sich ein oranges und ein

violettes Kabel. Zwischen diese beiden Kabel müssen Sie

einen Schalter setzen, den Sie aus dem Floppy-Gehäuse

herausführen. Nun können Sie Ihre Disketten ohne Einkerbung

beidseitig benutzen, da die Lichtschranke, die normalerweise

die Einkerbung überprüft, durch einen geschlossenen Schalter

überbrückt wird.

“Nun wollen wir Ihnen eine kleine Routine zeigen, die Sie in

jedes Programm einbauen sollten, das mit dem Floppy

arbeitet.

Wenn Sie von einem Programm aus Dateien abSAVEn, etc., und

60

Sie haben vergessen, das Floppy einzuschalten, so stürtzt

das Programm mit Ausgabe der Fehlermeldung "device not

present" ab. Viel besser wäre es doch, wenn der Benutzer

darauf aufmerksam gemacht werden würde, daß sein Floppy

nicht eingeschaltet ist.

Folgende Routine schaut nach, ob das Floppy eingeschaltet

ist. Wenn ja, so wird die Speicherstelle $FF (255) auf Null
gesetzt, andernfalls enthält sie den Wert 5. Diese Werte

können nun von Ihrem Programm abgefragt werden, und das

Programm kann entsprechend darauf reagieren.

Wir haben die Routine in den Kassettenpuffer gelegt, da

dieser beim Floppy-Betrieb ungenutzt ist.

033C LDA #$01 :Länge des Filenamens

033E LDX #$DO :Adresse low

0340 LDY #$FF :Adresse high

0342 JSR $FFBD :Filenamenparameter setzen

0345 LDA #$04 :logische Filenummer

0347 LDX #$08 :Geräte-Nummer

0349 LDY #$00 :Sekundär-Adresse

034B JSR $FFBA :Fileparameter setzen
O34E JSR $FFCO :Eröffnen des Files (OPEN)

0351 BCS $0355 :keine Antwort des Geraetes

0353 LDA #$00 :Gerät vorhanden

0355 STA $FF :Flag speichern

0357 LDA #$01 :logische Filenummer

0359 JSR $FFC3 -SchlieBen des Files (CLOSE)

035C RTS |

Wir haben die Adresse des Filenamens ($FFDO) gewählt, da in

dieser Adresse der Wert 36 steht, was dem ASCII-Wert für

"$" entspricht. Man hätte auch $FFE5 wählen können.

Dann würde der Filename "*" lauten. Dies wäre jedoch

unzweckmäßig, da ja nicht irgendein Name gesucht werden

kann. Es käme sonst zur Fehlermeldung "file not found"

61

Als BASIC-Lader:

10 FORY=0TO32:READA : POKE8S28+Y,A: NEXTY

20 DATA169,1, 162,208, 160, 255,32,189,255

30 DATA169,1,162,8,160,0,32, 186,255

40 DATA32,192,255,176,3,169,0, 133,255, 169,1,32,195,255,96

Die Routine müssen Sie von Basic her mit SYS 828 aufrufen.

Und zum Schluß noch eine kleine Routine, die den

Fehler-Kanal der Floppy liest.

Wie sich dies von BASIC aus machen läßt, können Sie unter

"Fehlerkanal auslesen” in diesem Kapitel nachlesen.

Wir wollen nun diese Abfrage in Maschinensprache umfornmen...

Wenn Sie sich im Kernal auskennen (siehe Kapitel KERNAL),

' wissen Sie, daß es eine spezielle OPEN-Routine gibt.

Schwieriger wird es schon mit dem Befehl INPUT#1. Doch im

Kernal gibt es eine Routine‘, mit der man ein Zeichen vom

IEC-Bus holen kann. |

Wenn sie sich die Routine anschauen, wird Ihnen

wahrscheinlich auffallen, daß die OPEN-Routine gar nicht

benutzt wird.

Da es in diesem Fall auch anders ging, haben wir uns zu

dieser Lösung entschlossen.

Die Routine ist wieder im Kassettenpuffer.

033C LDA #$08 :Geräte-Nummer für Floppy

O33E STA $BA :Abspeichern

0340 JSR $FFB4 :TALK senden(Floppy soll senden)

0343 LDA #$6F : Sekundär-Adresse |

0345 STA $B9 :Abspeichern

0347 JSR $FF96 :Sekundär-Adresse nach TALK senden

034A JSR $FFA5 :Zeichen von der Floppy holen

034D JSR $FFD2 :Zeichen ausgeben (BSOUT)

0350 CMP #$0D :Return?

62

0352 BNE $034A :Nein, also weiter

0354 JSR $FFAB :UNTALK senden (Schluß mit Senden)

0357 RTS : Zurück

Wahrscheinlich werden Sie sich fragen, wieso die

Sekundär-Adresse nicht wie in der Basic-Version dieses

Programms 15 lautet. Nun, die 15 ist in dieser Adresse

enthalten ($OF). Die andere Adresse ($60) ist fiir die

Floppy. Normalerweise wird $60 in der OPEN-Routine zu der

Sekundär-Adresse dazugerechnet. Da die OPEN-Routine hier

aber nicht benutzt wird, muß dieser Wert gleich

dazugerechnet werden.

Als BASIC-Lader:

10 FORX=0T027:READA: POKE828+X,A:NEXTX

20 DATA169,8,133, 186,32, 180, 255,169, 111,133, 185,32, 150,255

30 DATA32,165,255,32,210, 255, 201, 13, 208, 246,32,171,255,96

Aufgerufen werden muß diese Routine wieder mit SYS 828.

Da das hier keine Programmsammlung werden soll, haben wir

einige Routinen, die nur für Floppy-Benutzer interessant

sind, nicht aufgeführt. Versuchen Sie sich doch selbst

einmal daran. Schreiben Sie z.B. die letzte Routine so um,

daß die OPEN-Routine benutzt wird, oder schreiben Sie eine

Routine, die das Directory von der Floppy liest, ohne ein

gerade laufendes Programm zu unterbrechen.

Und zum Schluß noch einige Tips:

Wenn Sie nach einem bestimmten Programm suchen, aber nicht

wissen, auf welcher Diskette es sich befindet, dürfte es

für Sie sehr nützlich sein, zu wissen, daß es möglich ist,

nur bestimmte Teile des Directorys zu laden:

63

LOAD "$0: (name)",8

Ist das gesuchte Programm nicht auf dieser Diskette, so wird

nur der Disk-Header (der Name der Disk) angezeigt.

Sie können hier auch den Stern benutzen:

LOAD "$0:PAS*",8

Hier werden alle Programme auf dieser Diskette aufgelistet,

die mit "PAS" beginnen.

Sie wissen wahrscheinlich, daß man ganz einfach Programme,

die sich auf Band befinden, laden und automatisch starten

kann, indem man SHIFT & RUN-STOP gleichzeitig drückt.

Das geht aber auch mit Disk:

LOAD "GRAFIK" ,8: (SHIFT & RUN-STOP)

Sie müssen einfach hinter der normalen LOAD-Eingabe statt

"RETURN" "SHIFT+RUN-STOP" drücken. Es erscheint "LOAD" und

das betreffende Programm wird geladen und automatisch

gestartet.

Auch hier kann natürlich wieder der Stern verwendet werden:

LOAD "*",8: (SHIFT+RUN-STOP)

Nun wird das erste Programm, das sich auf der Diskette

befindet, geladen und gestartet.

Man kann beim Einladen des Directorys auch nur bestimmte

Programm-Typen einladen lassen:

LOAD "$*=T",8

64

T muß von Ihnen folgendermaßen gewählt werden:

T FILE-TYPE

P PROGRAMM

5 SEQUENTIELL

R RELATIV

U USER

Diese kann man auch für alle anderen Floppy-Befehle

benutzen. So ist es z.B. möglich, alle Programm-Files zu

löschen, während alle anderen File-Typen auf der Diskette

bleiben:

OPEN15,8, 15

PRINT#1,"S:*=U"

Hier werden alle User-Files gelöscht.

Versuchen Sie auch ruhig einmal, verschiedene Tips

miteinander zu kombinieren.

65

3. SOFTWARESCHUTZ

MANIPULATION DER LIST-FUNKTION

Der LIST-Befehl ist wohl einer der meistbenutzten Befehle

des BASIC-Programmierers. Mit seiner Hilfe lassen sich

Programme "Gurchleuchten”".

Manchem Programm-Autor ist dies aber gar nicht recht, weil

so einerseits Kenn- und Codewörter einfach ausgelesen werden

können und zweitens das Programm verändert werden kann.

Nachfolgend soll einiges über die LIST-Funktion gesagt

werden. Wie beispielsweise das LISTen eines Programmes

wirkungsvoll verhindert wird, und anderes mehr.

LISTEN OHNE ZEILENNUMMERN

Durch das Verändern der Adresse 22 (Zeiger auf den

temporären Stringstapel) läßt sich ein eigenartiger Effekt

erzielen: Die LIST-Funktion wird zwar ordnungsgemäß

durchgeführt, Zeilennummern werden jedoch unterschlagen.

POKE 22,35

ruft diese Veränderung hervor. Mit Hilfe von

POKE 22,25

1äßt sich wieder der Ausgangszustand herstellen.

Aber vorsichtig: Naturgemäß haben solche kleinen

Manipulationen immer einen kleinen Nebeneffekt, über den

man sich im klaren sein sollte:

Solange die Adresse 22 den Wert 35 enthält, werden sämtliche

PRINT-Anweisungen unterschlagen. Jede Fehlermeldung (SYNTAX

ERROR, etc.) stellt wieder den Ausgangszustand her.

Soll ein Programm ohne Zeilennummern auf dem Drucker

66

ausgegeben werden, so ist zu beachten, daß die letzte Zeile

des Listings unterschlagen wird. Sie erscheint erst nach

Eingabe von:

PRINT#1 (bzw. benutzte Dateinummer)

Selbstverständlich ist es auch möglich, andere Werte in die

Adresse 22 zu schreiben. Wir haben folgende Effekte

beobachtet:

POKE 22,25............ normal

POKE 22,32............ Zeilennummern werden unlesbar

POKE 22,33............ An Stelle der Zeilennummern !-Zeichen

POKE 22,34............ ?FORMULA TOO COMPLEX ERROR, wieder

| Normalzustand

POKE 22,35............ Zeilennummern werden gänzlich unter-

schlagen.

Listschutz - Abschalten der LIST-Funktion

Manchmal ist es nützlich, die Möglichkeiten des LIST-Befehls

ganz zu unterbinden. Auch hierfür gibt es mehrer

Möglichkeiten:

1. Die folgende REM-Anweisung sorgt dafür, daß sämtliche

folgenden Programmzeilen nicht mehr aufgelistet werden

können. Statt dessen wird die Fehlermeldung SYNTAX ERROR

ausgegeben:

10 PRINT "LISTSCHUTZVARIANTE 1"

20 REM (SHIFT & L)

30 PRINT "NICHT MEHR AUFLISTBAR !"

Diese Art des Listschutzes ist jedoch leicht zu durchschauen

und somit leicht wieder zu entfernen (Es sei denn, man

kombiniert mehrere Schutzvarianten, beispielsweise die

67

Manipulation der BASIC-Zeilennummern miteinander, so dafi die

REM-Anweisungen nicht entfernt werden können).

Wenn ca. alle 5 Zeilen im Programm eine solche REM-Anweisung

eingebaut wird, so wird das Entfernen dieser Zeilen zur

Tortur.

Die zweite Variante ist auf den ersten Blick gar nicht als

Listschutz zu erkennen. Geben Sie dazu folgendes

Beispielprogramm ein:

10 REM LISTSCHUTZVARIANTE 2

20 PRINT"GESCHUETZT": REM""

Anschließend fahren Sie mit Ihrem Cursor hinter das REM in

Zeile 20. Drücken Sie so oft die INST-Taste, wie Buchstaben

in dieser Zeile sind (in diesem Fall 26 Mal !).

Drücken Sie anschließend ebenso oft die DEL-Taste.

Hinter der REM-Anweisung in Zeile 20 befnden sich nun 26

reverse "T"s. Jedes "T" löscht ein Zeichen dieser Zeile.

Beim Auflisten wird die geschützte Zeile zwar ausgegeben,

durch die reversen "T"s jedoch sofort wieder gelöscht.

Sollten dennoch Teile der Zeile erscheinen, so wurden zu

wenig "T"s hinter die REM-Anweisung gebracht.

Empfehlenswert ist dieser Schutz allerdings nur bei Zeilen

mit einer Länge kleiner als 10 Zeichen die REM-Anweisung

ausgenommen. Sie werden selbst sehen, daß sich längere

Zeilen beim Auflisten durch das kurze Aufblitzen verraten.

Vielleicht werden Sie jetzt bemerken, diese Schutzvarianten

seien doch alle Schnee von gestern, bekannt, uninteressant.

wir meinen | jedoch, daß diese beiden Varianten als

Grundprinzip recht nützlich sind.

Nachfolgend finden Sie weitere, in ihrer Art völlig anders

konzipierte Schutzvarianten.

Die dritte Schutzvariante mutet zunächst vielleicht etwas

68

kompliziert an, ist es jedoch bei näherer Betrachtung nicht

und erweist sich als recht hartnäckig gegenüber

"Programm-Einbrechern".

Folgendes Programm wird hinter ein eigenes Programm gehängt:

62000 FOR A=PEEK(43)+256* PEEK (44) TOPEEK (45) +256* PEEK (46) -3

62010 IFPEEK (A) =58ANDPEEK (A+1)=58ANDPEEK (A+2)=58THENGOSUB

62030

62020 NEXT A:END

62030 IFPEEK(A+3)=58ANDPEEK (A+4)=58THENPOKEA,0:A=A+4: RETURN

Die Zeilen, die geschützt werden sollen, werden mit fünf

Doppelpunkten gekennzeichnet. Aus...

45 PRINT "BEISPIEL"

wird die gekennzeichnete Zeile...

45 :::::PRINT "BEISPIEL"

Auf diese Weise können beliebig viele Zeilen gekennzeichnet

werden. Nachdem dies geschehen ist, wird das Schutzprogramm

mittels RUN 62000 gestartet.

Je nach Länge Ihres zu schützenden Programmes dauert es nun

einige Zeit, bis sich der blinkende Cursor zurückmeldet.

Probieren Sie deshalb diesen Listschutz zunächst an

kleineren Programmen aus, damit Sie die Geschwindigkeit des

Schutzvorganges kennenlernen.

Wenn Sie nun das Programm auflisten, so sind zwar die

Zeilennummern der geschützten Zeilen, nicht aber deren

Inhalt zu sehen.

Nun können die Zeilen 62000 - 62030 gelöscht und das

gschützte Programm abgeSAVEt werden.

69

Das Prinzip des Schutzes:

zunächst wird eine Schleife initialisiert, die das gesamte

im Speicher befindliche BASIC-Programm durchläuft (43-44 =

BASIC-Anfang, 45-46 = Ende Programm).

Nun wird nach den fünf Doppelpunkten (Code 58) gesucht. Sind

Sie gefunden, wird der erste Doppelpunkt durch den Code O

ersetzt, die übrigen vier Doppelpunkte bleiben unverändert.

Wird das Programm jetzt von der LIST-Routine durchlaufen,

findet diese den O-Code. Das ist fiir sie das

Zeilen-Ende-Kennzeichen: Der Listvorgang bricht ab.

Dennoch wird die Zeile ordnungsgemäß ausgeführt, denn die

nachfolgenden vier Doppelpunkte werden als Koppelglieder

interpretiert.

Vielleicht wird Sie die Geschwindigkeit dieses Schutzes

leicht irritiert haben. Aus diesem Grunde finden Sie

nachfolgend ein ähnliches Schutzprogramn, jedoch in

Maschinensprache. |

Gleich vorweg: Es schützt ein 13 KByte großes Programm in

ca. einer Sekunde !

Hier der BASIC-Lader:

le REM MRSCHIHBENFRÖGERAMM ZUM SCHUETZEN BELIEEIGER BASIC-LIET

2a REM BEGINN $8000 CHES .8276e>. LAEMGE: Sa BYTES
38 REM GESCHUETETE ZEILE MUSS MIT > UND 4 DOPPELFUNKTEN GEKE
HHZELCHMET MERDEN
48 REM BEISPIEL: STATT “1 REM’ LAUTET DIE ZEILE DAHN: is >
REM“
SQ REM START DES M-PRGS DURCH SYSéedas

2

14 TP A=-1 THEMGOTOLSa: REM EMDE-KEHHEZEICHEN KOHTROLLIEREH
114 CH=CH+A: REM BERECHNUNG DER CHECK-SUMME
120 PORESe4096+1 04° REM SPELCHERHM DER DATEN
12@ I=1+1:GÖTOFE:RBEM NAECHSTEN WERT HOLEH
152 [PCHS>9839THEHPRIMT"FEHLER IH DATASI "LISTE
180 PRIMT"IDRATAS CK, STARTEN DES PRGS. MITTELS E See
$6 1" ENE
204 DATHLG2 120.1689 .8.188.0,152 34 133.85 177 224 201.177 eae

:
0

2
t I

en

L
a
!

to
te

im

Fo

n

t
r
:

Pe
n

x

ii

nt

= Ti

oi
Rp

ee

th
,

fd
i

5

2
:

IT

me

a

R
a
d

[E
h

R
a
 gt i

i
fe

|
4

im:

mi

ie

mi

IE

G

1

I fs
.

fo
u

wa
g A

12
;

f Ba
al

it
 a

x po
te

iT

' ME
d i

h
a

fs
.

i
n
 4!

Es
,

e
i

.
 de
 & i=

~

f
e
 mo

fe
n

“
i

ts
 Ü

u
i

a
i

fi

ho

ow

3
.J

!

am.

Sa
!

fe
ud

.
T
i

“a
f

3

iD

om
]

i

fe
r

CE
:

fa

fa

Ri

io
f
e

TT

P
G

TD
hs

f

i
 1%

n
p
:

=

wa
de

d

wm
,

fo
e

Die Schutzroutine wird durch

SYS 8*4096

aufgerufen.

Die zu schützenden Zeilen werden nicht mehr mit fünf

Doppelpunkten, sondern mit einem größer-als-Symbol und vier

Doppelpunkten gekennzeichnet.

71

VERÄNDERN DES BASIC-LINK

Eine weitere Methode, Listen vor fremden Augen zu

verstecken, ist die Veränderung des BASIC LINKS.

Doch zunächst die Frage, was ist der BASIC LINK ?

Um diese Frage beantworten zu können, ein Auszug aus dem

BASIC-Speicher:

2048 0

2049 16 LINK low

20650 8 LINK high
2051 10 ZEILENNUMMER low

2052 O ZEILENNUMMER high

2053 153 Beginn Inhalt der Zeile

(...)

2063 O Zeilenende

2064 31 LINK low (vorheriger LINK zeigt auf diese Adresse)

2065 8 LINK high |
2066 20 ZEILENNUMMER low

2067 O ZEILENNUMMER high

2068 153 Beginn Inhalt der Zeile (153 = Code fiir PRINT)

In Adresse 2048 befindet sich eine O als Kennzeichen des

BASIC-Anfanges. In den darauffolgenden beiden Adressen steht

der LINK. Dieser LINK enthalt im Low-High-Byte-Format die

Adresse, ab der die nächste BASIC-Zeile zu finden ist.

Die nächsten zwei Bytes bilden die Zeilennummer der

momentanen Zeile.

Es folgt der Zeileninhalt, der durch eine Null als

Endezeichen beendet wird. Wieder folgt ein LINK, der die

Adresse der nun folgenden Zeile enthält. Es folgt die

Zeilennummer der Zeile, auf die der vorherige LINK zeigte.

Folgen keine BASIC-Zeilen mehr, so ist der letzte LINK 0,0.

72

Wichtig ist der LINK jedoch im Wesentlichen nur fiir die

LIST-Routine. Will man nun eine Zeile verschwinden lassen,

so genügt es, den LINK auf diese Zeile zu verändern: Man

verbiegt ihn einfach auf die nächstfolgende Zeile.

Diese Aufgabe erledigt das nun folgende BASIC-Programm.

m
s
i
 SAGER PÜKESZEER

Saal FRINTTAR«
Saaaz FRIHTTAR«
aaa FRIHNTTABE
Aaa PRINT TABS

SHGG5 FRINTTABY
a5 PRINTTARS

PRIMT TABS
PRINT TABS
PR IHT TAB ©

, PORES S281 .12 °° POREG4d6E .6° PRIA?

»"23 LIWHE-CHAHGER "

V2" MeN TESES PROGRAMM MAWIPULIERT DEM" > PRIWT

»"ZEILEH-LIHE,. SIE WERDEN WHACH DER" > PRTHT

M"ERSTEH UHI DER ZMEITEH ZEILENHUM-":PRIHT

"HER GEFRAGT." :PFRIMT

>"SPAEMTLICHE ZEILEH ZUISCHEH DIESEN": FRIMT
2"THCL, DER ZUMEITEN HUMMER VER SCHHMIH-" PRINT

»"DEHI JE LREMGER @IHRM@ PROGRAMA." PROIWT
2"UNSO LAEHGER BRAUCHT DER YORGAHGIN"SPRINT:P

i

Tt

pe
s

ts
i

u”

i
;

To
,

tm

je
! Bi

an
,

em
,

In:

I
fo

ne
 f

oo
ts

 f
an

fa

te

m
d

GE

F
E

m:
jet

il

it
y

eT;

CA
LA

OA

OA

Ln

on

N

To

hy
:

mt

mE

ay

a;

Ty

=

PRIMTTABSI@2"RITTE TASTE DRUECKEN 1"
BETAS: IFAS=""THEM 6ae1 1
PRINT "cy" 3
IHFUT"DIE ERSTE ZEILEHNUMMER" A: IHPUT"DIE ZMEITE ZEILE

HER" SE
FRIHT"GEFUHDENE ZEILEHHUMMER
G=FEEK CdS 3+256ePEER (44>
2L=PEEKCG+2 9 +256#PEER (0439: IFZL=ATHENAL=@: Az=0+1 : GOTOS

iT
me:

oa
d
a

pe
t

T
y

Ts

x
r

Le

=.

em

m
t

-
—

.

i

i

Wi

TS

Lh

fa

ee

i

53

$
IT

me

ty

ch

ty

1,

de
‘

Mi

me

i IF ZLSATHENFRINT"DEEILE EXISTIERT MICHT 1": EMD
PRINTTABS 239" "52
(=PEEK LG +256#PEER (G41 9° [FQ>=PEEK C459 +256#PEEK (46 9-37TH

m
m

i
n
n

me
Mm

me

im

a

od
e

x

ß n
e

tm
,

38

by
s

ar
s

GBOTOASHa se

G=PEER (4:39+256ePEER (44
IFPEER G42 3 +256#PEER (+39 =E THEHPOKEAL -PEEK (G2 ¢ POKER .P

o> EMD
G=PEER (> +256ePEER (0419: [FOO=PEEK (45 9+256ePEEK (460~-3TH

i

i

me

it

mi

oi

re

mi
aH

-

ha

=
 m
b

C
O

fe

to

i
ho

R
o

3 + ar

id

zZ
2

FT
]

he
n

m

is

oe

—

u

u

a
ih

ace, sete, 0. son

” ch
e

+,

{ %,

{ i

FT
E

IT
E

hy

ty

oy

IT
E

oy

ay

mi

at

ob.

= ‘wa
lla

!

GOTosaae

73

ZEILEN LOSCHEN? SYNTAX ERROR !

Eine weitere Methode bedient sich an Stelle des BASIC-LINKs

der im BASIC-Speicher abgelegten Zeilennummern.

Diese Zeilennummern sind wie auch die LINKs im

Low-High-Byte-Format abgelegt.

Wie Sie vielleicht wissen, ist es normalerweise nicht

moglich, größere Zeilennummern als 63999 zu benutzen.

Andernfalls kommt es zu einem SYNTAX ERROR.

Wie man dennoch Zeilennummern bis 65535 erzeugen kann, soll

im Folgenden gezeigt werden. Weiterhin wird gezeigt, wie man

in einer Programmliste mehrere zeilen mit gleicher

Zeilennummer oder in durcheinandergewürfelter Reihenfolge

erzeugen kann.

Wie bereits erwähnt, ist auch die Zeilennummer durch Low-

und High-Byte festgelegt. Daraus folgt, daß die kleinste

mögliche Zeilennummer 0 (0+256*0), die größte hingegen den

Wert 65535 (255+256*255) annehmen kann.

Bei der Abarbeitung eines Programmes ist es dem Computer

weitestgehend gleich, welche Zeilennummern die Zeilen eines

BASIC-Programmes besitzen. Er arbeitet die Zeilen in der

Reihenfolge ab, in der sie im Speicher liegen.

Aus diesem Grund ist es ohne weiteres möglich, die

Zeilennummern künstlich zu ändern, ohne den Programmablauf

zu gefährden.

Es muß lediglich beachtet werden, daß die Befehle GOTO,GOSUB

und THEN den veränderten Bedingungen angepaßt werden.

Alles schön und gut, werden Sie nun vielleicht einwenden,

wie ermittelt man aber nun die Adresse des Low- und

Highbytes der Zeilennummer der entsprechenden Zeile im

Speicher ?

Das dauert doch ewig !

74

Das haben wir uns auch gedacht und folgendes Hilfsprogramm

geschrieben. Mit seiner Hilfe wird es Ihnen keine Miihe

machen, die Zeilennummern auch längerer Programme zu ändern.

Zunächst das Listing:

i

29
)

mi

Hr!

x)

ve

ca
ch
e

3

7
e
e
 er

de
n

e
e

ch

hy,
h
i

M
i
n
i

id
=

ee

P
e
e

tT
;

e
T
,

‘ 4

IT

Ih

Fy

Me

PT

ee

in

ie

=
mi

PR
E

te
e

p
e
e

pe
t
e
k

ee

pe
e

ET
T

er

s
r

}

See
"

Te

SS

ee

oS

he

i

o
m

ok

it

P
o
e

fü

G
B
M

D
w

s
i

oF

te

T
e
:

Te

iy

ih

ay

m

t

G=PEEK C43 9+25GePEER C44 >
PRINTS" GOSUBGE1 ae
O=PEER CG) +2564ePEER (0419: 1PG>=PEER (482 +258ePEEK 6469-3 TH

GOTOSRRE 1
IFPEEK (G3 = THEMGOSUBGE 1 an
HEXTG: EMD
LOSPEER G42) -HI=PEER CO+3 >
POKE133 1: PRINT" ZEILENMUMMER-CHANGER" :PRIMT
FRIHT"GEFUNDENE ZEILENHUMMER ©" LO+S8eaHI
PRIHT:PRIHT"E1I AENDERM"
FRINT:PRINT"L2I HEITER"
PRIHNT:PRIHT"L3I ENDE"
GETAS: [FAS="" THEME 158
IFAS="2" THENRETURH
IFAS= "3" THEMEMD
AS="8° CO PRTHT OO LTMPUT HEUE ZETLENHMUMMER CG—eS8c3505 "pps pty

HI=IHTER 2559 1.0=R- N 2I5HHT 3b

FÜREGU+Z.LOFFOREO+ZCHTDS RETURN

75

PROGRAMMERKLARUNG :

In Zeile 60000 wird die erste LINK-Adresse bestimmt.

Anschließend wird zur Routine ab Zeile 60020 verzweigt. Dort

wird Low- und High-Byte der ersten Zeilennummer erfragt

(LINK-Adresse +2 und +3). Die somit errechnete Zeilennummer

wird als gefunden gemeldet (Zeile 60030). Nun kann gewählt

werden zwischen 1) Ändern und 2) Weiter

Punkt 2) läßt die gefundene Zeilennummer unverändert und

sucht die nächste. Bei der Wahl von Punkt 1) kann die

gefundene Nummer manipuliert werden: Sie kann durch eine

beliebige Zahl zwischen O und 65535 ersetzt werden. Die von

Ihnen eingegebene Dezimalzahl wird in Low- und

High-Byte-Format verwandelt (Zeile 60070), und als neues

Low- bzw. High-Byte in den BASIC-Speicher gePOKEt.

Anschließend wird in Zeile 60010 der alte durch den neuen

LINK ersetzt. Wieder wird nach Zeile 60020 verzweigt...

Sofern das Programm nicht von Ihnen gestoppt wird, hält es

automatisch, sobald das Ende des im Speicher befindlichen

Programmes erreicht ist (Zeile 60010).

Die von Ihnen manipulierten Zeilen haben gegenüber

herkömmlichen Zeilen folgende Vorteile:

Ist die manipulierte Zeilennummer größer als 63999, kann die

zeile nicht mehr durch Überschreiben gelöscht werden.

Ist die manipulierte Zeilennummer kleiner als die

76

vorhergehende, kann die manipulierte Zeile ebenfalls nicht

geloscht werden. Dies ist nur dann möglich, wenn die

manipulierte Zeile die erste Zeile des Programms ist.

Ist Ihr Programm nach Ihren Wünschen manipuliert worden, so

können Sie das Hilfsprogramm löschen und Ihr Programm

getrost abspeichern. Der Schutz wird mitgespeichert.

Es folgt nun noch eine weitere Schutzvariante, die zunächst

nicht als solche erkennbar ist |!

KÜNSTLICHES STEUERZEICHEN

Sicherlich werden Ihnen die "natürlichen" Steuerzeichen

nicht unbekannt sein: Es sind dies die Cursor-Steuerzeichen,

die man in so mancher PRINT-Anweisung findet, oder die

Farb-Steuerzeichen, die durch gleichzeitiges Drücken der

CTRL- und einer der Farbtasten erzeugt werden.

Ebenso gibt es auch sogenannte "künstliche" Steuerzeichen.

Steuerzeichen also, die auf Tastendruck erzeugbar sind.

Wir beschaftigen uns an dieser Stelle nur mit einem

künstlichen Steuerzeichen. Geben Sie einmal folgende

Beispielzeile ein:

10 REM"”

Fahren Sie mit dem Cursor auf das zweite Anführungszeichen.

Drücken Sie nun bitte gleichzeitig die CTRL- und RVS

ON(9)-Taste. Anschließend gleichzeitig SHIFT und M |!

An Stelle des zweiten Anführungszeichens erscheint jetzt ein

dunkles Kästchen mit einem hellen Querstrich. Dies ist das

künstliche Steuerzeichen. Was es vermag, wird gleich

deutlich: Drücken Sie nun gleichzeitig SHIFT und Q.!

Wieder erscheint ein Steuerzeichen: CURSOR UP. Schalten Sie

nun den Revers-Mode ab, indem Sie gleichzeitig die CTRL- und

71

RVS OFF(O)-Taste drücken. Anschließend tippen Sie bitte

TESTZEILE" dahinter. Jetzt kann die RETURN-Taste betätigt

werden.

Auf Ihrem Bildschirm müßte nun folgendes zu sehen sein:

153 EEM'BROTESETZEILE

Listen Sie die Zeile auf.

Sie ist nicht mehr sichtbar, lediglich noch das Wort

TESTZEILE! Das 1. Steuerzeichen führt einen Wagenrücklauf

(CR) durch . Außerdem sorgt es dafür, daß nachfolgende,

normale Steuerzeichen hinter der REM-Anweisung ausgeführt

werden.

Es folgt das Steuerzeichen Cursor-UP. Anschließend wird der

Text TESTZEILE ausgegeben, der den ersten Teil der Zeile,

10 REM", überschreibt.

Wie läßt sich damit nun ein Listschutz realisieren ?

Beispielsweise so:

La REN RIS Svs dass

Scheinbar wird in Zeile 90 ein Maschinenprogramm aktiviert.

Werden nun alle Zeilen nach Zeile 100 durch eine der

vorangegangenen Methoden unsichtbar gemacht, hält ein

Außenstehender das Programm für ein Maschinenprogramm und

sucht gar nicht erst nach einem versteckten BASIC-Listing.

Oder so:

L8G PRINT GESCHUETZT !° REMI

Die kritische Zeile wird zwar aufgelistet, vom nachfolgenden

Listing allerdings sofort wieder überschrieben.

78

Probieren Sie selbst einmal ein wenig mit diesem künstlichen

Steuerzeichen herum. Ihnen werden sicherlich noch eine Menge

weiterer Möglichkeiten einfallen !

Bisher wurde die LIST-Routine nur mehr oder weniger

geschickt ausgetrickst. Beim nun folgenden Listschutz wird

die gesamte LIST-Routine beeinflußt.

SCHUTZ DURCH POKES

Eine weitere Listschutzvariante verwendet die Adressen 774

und 775 ($0306-$0307). Diese beiden Adressen bilden den

sogenannten LIST-VEKTOR, der normalerweise auf die Adresse

$A71A zeigt. Diese Adresse liegt im BASIC-Interpreter und

ist die Anfangsadresse der Routine zur Umwandlung von

BasicToken in verständlichen Klartext.

Diese Routine wird von der LIST-Funktion benutzt. Durch

Ändern des Listvektors auf eine beliebige andere Routine

1äßt sich die LIST-Funktion manipulieren.

Eine kleine Kostprobe:

POKE 774,226: POKE 775,252

Geben Sie diese beiden POKEs einmal ein. Wird jetzt der

Befehl LIST verwendet, begibt sich der Rechner in den

Einschaltzustand. |

Der Grund ist klar: Der LIST-Vektor zeigt, durch die beiden

POKEs verbogen, auf Adresse $EA31, die RESET-Routine.

Diese wird jetzt an Stelle der ursprünglichen LIST-Routine

aufgerufen. Ebenso bietet es sich an, den Vektor auf eigene

Maschinenroutinen zu biegen, die dann durch LIST aufgerufen

werden.

Der offensichtliche Nachteil dieser Variante liegt

allerdings darin, daß dieser Listschutz erst nach Starten

des Programmes wirksam wird.

79

Bei gleichzeitiger Verwendung eines Autostartes ist diese

Variante allerdings sehr interessant.

80

BLOCKIEREN “GEFAHRLICHER" TASTEN

Es gibt so manche "gefährliche" Taste an Ihrem Computer.

Gefährlich für Programm-Autoren beispielsweise, di

verhindern möchten, daß ihr im Ablauf befindliches Programm

gestoppt wird.

Da wäre also zunächst die RUNSTOP-Taste, die es gilt, außer

Gefecht zu setzen. Es ist nicht weiter schwierig, den

Interrupt-Vektor, der normalerweise auf die Adresse $EA31

zeigt, um drei Bytes nach oben zu schieben. So wird die

STOP-Tasten-Abfrage einfach überschlagen.

Dies geschieht mit:

POKE 788, PEEK(788)+3 oder ganz einfach: POKE 788,52

Wieder in den Normalmode gelangt man mit:

POKE 788,PEEK(788)-3 oder aber: POKE 788,49

Mit der STOP-Taste 148t sich aber im ausgeschalteten Zustand

noch weit mehr anfangen: Sie läßt sich jetzt wie eine

normale Taste von BASIC aus abfragen:

100 GET A$:IF A$="" THEN 100

110 IF A$=CHR$(3) THEN PRINT"STOP-TASTE GEDRUECKT! "

So kehrt beispielsweise ein Programm bei Betätigung der

STOP-Taste ins Menü zurück, etc.

Spätestens jetzt wird die RESTORE-Taste unangenehm

auffallen. Mit ihrer Hilfe läßt sich noch immer ein

Programm unterbrechen. Doch auch ihr kann man den Garaus

machen!

Verantwortlich für diese Aktion ist der NMI-Vektor. Dieser

zeigt normalerweise auf Adresse $FE47. Hier macht man

81

einfach Nägel mit Köpfen und überspringt die gesamte

NMI-Routine, indem man den Vektor nach Adresse $FEC1

verbiegt (RTS).

Dies erreicht man durch:

POKE 792,193 NMI aus

Wieder zurück in den Normalmode gelangt man mit:

POKE 792,71 NMI ein

Möchte man ohnehin beide Tasten, RUN STOP und RESTORE,

ausschalten, kann man sich komfortablerweise auch gleich dem

sogenannten STOP-Vektor zuwenden.

Dieser zeigt im Normalfall auf Adresse $F6ED. Auch hier ist

es lohnenswert, den Vektor zu verbiegen, zumal man gleich

zwei "Werner" auf einen Streich erledigt hat. Wieder

erledigt ein POKE das Verbiegen:

POKE 808,254

Dieser POKE setzt nicht nur gleichzeitig RUNSTOP und RESTORE

außer Gefecht, außerdem wird auch das Listing je nach Länge

mehr oder weniger stark verfremdet, was den Programmablauf

an sich jedoch im Normalfall nicht beeinträchtigt.

Zurück in den Normalmode gelangt man wieder mit:

POKE 808,237

Zwar kann ein Programm auch nach Benutzung der beschriebenen

POKES unterbrochen werden, und zwar durch einen von außen

zugeführten Hardware-Reset. Erstens ist nach diesem Reset

das BASIC-Programm nicht mehr ohne weiteres listbar.

Zweitens kann auch dieser Hardware-Reset softwaremäßig

unterbunden werden. Wie dies gemacht wird, ist im Kapitel

82

uber Reset und Interrupts nachschlagbar.

Es gibt jedoch noch weitere "gefährliche" Tasten, mit denen

das Programm zwar nicht gestoppt werden kann, die aber

dennoch störend wirken können: |

Durch gleichzeitiges Drücken von SHIFT- und C=-Taste

schaltet der Rechner den Zeichensatz um. Dies kann

verhindert werden durch

POKE 657,128

und wird durch

POKE 657,0

wieder rückgängig gemacht.

Unser Repertoire an "abschaltwürdigen" Tasten ist nun

erschöpft. Sie finden an dieser Stelle nun eine kleine

Auflistung weiterer interessanter POKEs. Viel Spaß damit |!

Effekt POKE-Kommando

KREKEKKK KKK KKK KKK KKK KKK AK KK KKK KRKKKKKK KKK KKK KKK KKK KKK KK EK KK

STOP ausschalten POKE 788,52:POKE 808,239

STOP wieder einschalten POKE 788,49:POKE 808,237

STOP, RESTORE und LIST ausschalten POKE 808,234

STOP, RESTORE und LIST ausschalten POKE 808,225

STOP, RESTORE und LIST wieder ein POKE 808, 237

RESTORE ausschalten POKE 793,203

RESTORE ausschalten POKE 792,193

SAVE verhindern POKE 818,32:POKE 819,245

SAVE wieder einschalten POKE 818,237: POKE819, 245

83

LIST verhindern | POKE 775,200

LIST erlauben | POKE 775,167

TASTATUR ausschalten POKE 649,0

TASTATUR wieder einschalten POKE 649,10

KKK KKK KKK KEK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KE KKK KE KKK KKKKKKK

84

VORTAUSCHEN EINES MASCHINENSPRACHE-SPIELS

Es gibt viele Versuche, ein BASIC-Programm wirklich sicher

vor dem Listen und Kopieren zu schützen. Aber es ist

inzwischen so, daß jeder, der ein bißchen Fachwissen

besitzt, und der mit einem Maschinensprache-Monitor

umzugehen weiß, einen List- oder Kopier-Schutz umgeht.

Viele von diesen Leuten jedoch lassen die Finger von

Maschinensprache-Programmen, weil Sie glauben, in

Maschinensprache-Programmen ohnehin nichts ändern zu können,

weil sie Maschinensprache nicht verstehen.

Außerdem steigt häufig der Wert eines Programmes, wenn der

oder die Benutzer an ein Maschinensprache-Spiel glauben.

Diese Routine soll also ein Maschinensprache-Spiel

vortäuschen, obwohl es sich im Grunde "nur" um ein

BASIC-Spiel handelt.

So ein Programm kennzeichnet sich für den Benutzer dadurch,

daß es nur eine Zeile in BASIC besitzt, in der der

Sprungbefehl zum Maschinenprogramm zu finden ist: ein

SYS-Befehl. Aber wie erreichen wir es, daß nur eine Zeile

mit einem SYS-Befehl erscheint?

Ganz einfach. Zuerst geben wir den SYS-Befehl ein. Sie

können nach den Beispielen unten verfahren. Lassen Sie

entweder den Text ganz weg, oder verändern Sie ihn nach

Ihren Vorstellungen. Die Zeilennummern können Sie ebenfalls

frei wählen.

Hier die Beispiele:

1984 SYS (2110) BY MEDLAY SPARROW

10 SYS 2110

Wenn Sie sich für eine Form entschieden haben, schreiben

Sie sie als BASIC-Zeile. Jetzt müssen Sie einige Zeilen

eingeben:

85

POKE 43,80 : POKE 2127,0 : NEW

10 FOR I = 2110 TO 2126

20 READ A

30 POKE I,A

40 NEXT I

50 DATA 169,80,133,43,169,52,141,20,3

60 DATA 169, 193,141,24,3,76,113, 168

Wir haben die Kontrolle der Daten weggelassen, weil es nur

sehr wenige sind. Achten Sie deshalb um so genauer auf die

Richtigkeit der DATA-Zeilen.

Jetzt ganz kurz ein dokumentiertes Maschinensprache-Listing

dieser kurzen Routine :

#$80 :neuer Basic-Anfang

0840 STA $2B :setzen

0842 LDA #$34 :setzt RUN-STOP aus

0844 STA $0314

0847 LDA #$C1 :setzt RESTORE aus

0849 STA $0318

084c JMP $A871:Aufruf der RUN-Routine

Starten Sie das Programm mit "RUN" und löschen Sie es

anschließend wieder. Danach können Sie Ihr eigene

Programm, das geschützt werden soll, in den Computer

hineinladen.

Wichtig ist, daß das Programm in Zeile O anfängt. Tippen Sie

nun

POKE 43,1

ein und speichern Sie dann das Spiel ganz normal ab.

Das Programm wird auch wieder ganz normal hereingeladen,

86

aber bei LIST erscheint eben nur die eine SYS-Zeile. Das

Programm wird wie üblich mit RUN gestartet. Jetzt springt

der Computer zur kleinen Routine, die den Speicher

heraufsetzt und außerdem RUN-STOP-RESTORE aussetzt. Das

BASIC-Programm wird gestartet. Wenn Sie es einmal gestartet

haben, läßt es sich nicht mehr ohne weiteres unterbrechen.

Ein 100%iger Schutz ist diese Routine natürlich auch nicht,

aber zusammen mit anderen hier vorgestellten Methoden wird

es unerlaubten Benutzern schwer gemacht, in Ihre Programme

einzudringen.

87

4. BEFEHLS-ERWEITERUNG SELBST GEMACHT !

Um eigene Befehle ins Betriebssystem einzufügen, kann man

mehrere Möglichkeiten nutzen.

Drei davon wollen wir hier vorstellen:

a) Verändern des BASIC-CODE-LINKS

b) Verändern der CHRGET-Routine

c) Verändern der IRQ-Routine

A) ÄNDERN DES BASIC-CODE-LINKS

Das ist die effektivste Methode, um mehrere Befehle

einzufügen. Wir nutzen dabei aus, daß es einen Vektor gibt,

der auf die Routine zeigt, die die eingegebenen

BASIC-Befehle auswertet.

Dieser Vektor hat die Adresse $0308-$0309 (776-777). Diesen

Vektor ändern wir einfach auf ein von uns erstelltes

Maschinen-Programm. Doch wie sieht dieses Programm aus?

Nehmen wir an, wir haben es in den Kassetten-Puffer

($033C-$03FB) gelegt:

033C LDA #$47

033E STA $0308

0341 LDA #$03

0343 STA #0309

0346 RTS

ee ee

88

"0353 STA $0286

0356 JMP $A7E4

Das Programm läßt sich in zwei Teile gliedern:

TEIL 1 ($033C-$0346) legt den BASIC-Code-Link auf TEIL 2.

TEIL 2 ($0347-$0356) stellt die eigentliche Befehls-Erwei-

terung dar:

JSR $0073 : Der Computer holt sich das nächste Zeichen,

das eingegeben worden ist ($0073=CHRGET-Rou-

tine)

CMP #$5F : Dieses Zeichen wird mit dem ASCII-Wert für

"(Pfeil nach links)" verglichen

JMP $A7E7 : Da die Zeichen nicht gleich sind, springt er

zur normalen Adresse, die den Vektor angibt.

Dort wird das eingegebene Zeichen daraufhin

untersucht, ob es einen anderen normalen BA-

SIC-Befehl darstellt.

LDA #$05:STA $0286 : Das ist nun die eigentliche Befehls-

erweiterung. In diesem Fall ist es nichts

Weltbewegendes:

Die Zeichenfarbe wird einfach grün gesetzt.

JMP $A7E4 : Der Computer kehrt wieder in den normalen Be-

triebs-Modus zurück

Probieren wir es aus:

Das obige Maschinen-Programm als BASIC-Lader sieht so aus:

10 FOR X= 828 TO 856: READ A: POKE X,A: NEXT X
20 DATA 169,71,141,8,3,169,3,141,9,3,96
30 DATA 32,115,0,201,95,240,3,76,231,167,169,5,141,134,2,76

‚228,167

RUN

SYS 828

89

Wenn Sie jetzt die "Pfeil links"-Taste drücken, (RETURN muß

gedrückt werden), wird Ihre Zeichenfarbe grün.

Sie sehen, es ist gar nicht schwierig. Doch die Art, in der

das Programm geschrieben ist, hat einen entscheidenden

Nachteil:

Bei mehreren erweiterten Befehlen wird die Zeit, die der

Computer zum Nachschauen braucht, sehr lang.

Um das zu vermeiden, kann man sich folgendermaßen behelfen:

Allen neu definierten BASIC-Befehlen muß ein einheitliches

Erkennungszeichen vorangestellt werden, z.B. den "Pfeil nach

oder das Ausrufezeichen.

zur Befehls-Erweiterung muß also zuerst

links"

In einem Programm

das Erkennungszeichen abgefragt werden. Wenn dieses nicht

gefunden wird, springt der Computer zur normalen

Tastaturdekodierung. Andernfalls prüft er auf einen neuen

Befehl.

Zum besseren Verständnis ein Beispielprogramn:

033C

O33E

0341

0343

0346

0347

034A

034C

O34E

0351

0354

0356

0358

035A

035C

O35F

LDA

STA

LDA

STA

RTS

JSR

CMP

BEQ

JMP

JSR

CMP

BEQ

CMP

BEQ

JMP

SEI

#547

$0308

#$03

#0309

$0073

#$21

0351

$A7E7

$0073

#$9 1

O35F

#SA8 ©

0374

$AFO8

:ASCII-Wert für

:Neuer Befehl vorhanden

:Kein neuer Befehl

:Liest Zeichen nach Ausrufe-Zeichen

:ON? ($91=Token fiir ON)

:Ja

:NOT? ($A8=Token fiir NOT)

:Ja

:Kein gültiger Befehl, also SYNTAX-ERROR

:Befehl ON

90

0360 LDA #$6E :Legt IRQ auf $036E

0362 STA $0314

0365 LDA #$03

0367 STA $0315

O36A CLI

036B JMP $A7E4 :Befehl ON abgeschlossen

O36E INC $0286 :Neuer IRQ

0371 IMP $EA31 :Alter IRQ weiter

0374 SEI :Befehl NOT

0375 LDA #$31 :IRQ wieder normal

0377 STA $0314

037A LDA #$EA

037D STA $0315

0380 CLI

0381 JMP $A7EA :Befehl NOT abgeschlossen

Als BASIC-Lader:

10 FOR X= 828 TO 898: READ A: POKE X,A: NEXTX

20 DATA 169,71,141,8,3,169,3,141,9,3,96

30 DATA 32,115,0,201,33,240,3,76,231,167,32,115,0,201,145,

240,7,201,168 M |

AO DATA 240,24,76,8,175,120,169,110,141,20,3,169,3,141,21,3

,88,76,228, 167

50 DATA 238,134,2,76,49,234 |

60 DATA 120, 169,49,141,20,3, 169,234, 141,21,3,88, 76,228, 167

Nach RUN und SYS 828 stehen Ihnen zwei neue Befehle zur

Verfügung: !ON stellt den IRQ-Vektor auf die Adresse $036E

um. Nun wird jede 1/60 SEk. die Zeichenfarbe erhöht.

Abstellen läßt sich dieser Effekt mit dem zweiten neuen

Befehl: !NOT.

Nun sehen Sie auch noch einen weiteren Vorteil des

Erkennungszeichens:

Es können alte Befehle mit neuen Funktionen belegt werden,

ohne daß die ursprünglichen Befehle ihre Funktion verlieren.

91

Nun noch einige Tips:

Am elegantesten wäre es, die Befehlswörter in einer Tabelle

unterzubringen, und dann der Reihe nach mit dem eingegebenen

Befehl zu vergleichen (so ähnlich arbeitet der

BASIC-Interpreter). Interessant ist auch die Möglichkeit,

neue Befehle in Tokens umzuwandeln. Dadurch läßt sich

Speicherplatz sparen.

Der zuständige Vektor heißt $0304-$0305 (772-773). Frei sind

noch die Tokens 202-254. |

B) ANDERN DER CHRGET-ROUTINE

Nun die zweite Möglichkeit der Befehls-Erweiterung:

Im Bereich $0073-$0084 liegt die sogenannte CHRGET-Routine.

Sie sieht folgendermaßen aus:

0073 INC $007A

0075 BNE $0079

0077 INC $007B

0079 LDA $HHLL :Holt Zeichen aus dem BASIC-Text

007C CMP #$3A

OO7E BCS $008A

0080 CMP #$20

0082 BEQ $0073

0084 SEC

0085 SBC #$30

0087 SEC

0088 SBC #$DO

008A RTS

Da diese Routine im RAM liegt (sie wird beim Einschalten des

Computers vom ROM ins RAM kopiert), können wir sie nach

‘Belieben ändern. Der Vektor $0073-$007B kann so bleiben.

$007C. muß den Befehl JMP $(eigenes Programm) enthalten.

92

In unserem Programm wird geprüft, ob das Zeichen, das gerade

gelesen wird, ein neuer Befehl ist. Wenn nicht, so muß die

normale CHRGET-Routine ausgeführt werden.

Als Beispiel geben wir dem Befehl NEW eine neue Bedeutung:

Er führt einen RESET aus.

Die neue Routine liegt wieder in dem Kassetten-Puffer.

033C LDA #$4C

033E STA $007C

0340 LDA #$49

0342 STA $007D

0344 LDA #$03

0346 STA $0076

0348 RTS

0349. CMP #$A2 :NEW?

034B BEQ $035F :Ja

034D CMP #$3A :Nein, aber CHRGET fortsetzen

O34F BCS $035E

0351 CMP #$20

0353 BNE $0358

0355 JMP $0073

0358 SEC

0359 SBC #$30

035B SEC

035C SBC #$D0

O35E RTS

O35F JMP $FCE2

Im ersten Teil wird einfach die CHRGET-Routine verändert.

Der zweite Teil wird bei jedem Ansprung der CHRGET-Routine

durchlaufen.

Doch hier zunächst der BASIC-Lader:

10 FOR X= 828 TO 865: READ A: POKE X,A: NEXT X

93

20 DATA 169,76,133,124, 169, 73,133,125, 169,3,133,126,96

30 DATA 201,162,240,18,201,58,176,13,201,32,208,3,76,114,0

40 DATA 56, 233,48,56,233, 208,96, 76,225,252

Wenn Sie nun NEW eingeben, so fiihrt der Computer einen RESET

aus. Wie Sie sehen, ist auch diese Möglichkeit, neue Befehle

zu implementieren, nicht schwierig.

Nun zur letzten Möglicheit:

C) ÄNDERN DES IRQ-VEKTORS:

Auch diese Möglichkeit ist denkbar, wenn auch nicht so oft

gebraucht. |

Wie Sie vielleicht wissen, ist die Interrupt-Routine (IRQ)

eine Routine, die jede 1/60 SEK. angesprungen wird.

Das können Sie ausnutzen:

033C SEI
033D LDA #$49
033F STA $0314
0342 LDA #$03
0344 STA $0315
0347 CLI
0348 RTS
0349 LDA $CB
034B CMP #$39
034D BEQ $0352
O34F JMP $EA31
0352 JSR $E544
0355 JMP $EA31

Als BASIC-Lader:

94

10 FOR X= 828 TO 855: READ A: POKE X,A: NEXTX

20 DATA 120,169,73,141,20,3,169,3,141,21,3,88,96 .

30 DATA 165,203,201,57,240,3,76,49,234,32,68,229,76,49,234

Wenn Sie nun RUN und SYS 828 eingeben, sieht alles zunächst

ganz normal aus. Sollten Sie jedoch * drücken, so wird der

Bildschirm gelöscht.

Vorsicht! Es kann passieren, daß der Cursor nach dem

Benutzen dieser Taste : nicht mehr sichtbar ist - do not

panic, wenn Sie etwas schreiben, wird er wieder sichtbar.

Zur Erklärung:

Der IRQ-Vektor wird auf die eigene Routine verbogen. Dort

wird geprüft, ob eine Taste gedrückt ist (in unserem Fall

wird auf die *-Taste geprüft). Wenn dies der Fall ist, So

wird der Bildschirm gelöscht.

In jedem Fall muß aber zur ursprünglichen IRQ-Routine

zurückgesprungen werden.

Wie Sie vielleicht bemerkt haben, besteht zwischen den

ersten beiden Möglichkeiten und dieser letzten ein großer

Unterschied; |

Die ersten beiden nehmen den Befehl erst nach Drücken der

RETURN-Taste an. Bei dieser Möglichkeit reagiert der

Computer sofort.

Nachdem Sie jetzt verschiedene Methoden kennengelernt haben,

eigene Befehle in den Interpreter einzubinden, müssen Sie

selbst entscheiden, welche für Ihre Zwecke die

vorteilhafteste ist. Gut gebrauchen lassen sich alle drei.

95

J. GRAFIK

GRUNDLAGEN

Jeder, der früher oder später einmal mehr als die über die

Tastatur erreichbare "Grafik" benötigt, um ansprechende

Spiele oder Sonderzeichen zu erhalten, wird sich mit dem

Character-Generator des C-64 näher auseinandersetzen müssen.

Was ist eigentlich der Character (= Zeichen)-Generator ?

Sämtliche Zeichen, die durch Tastendruck auf dem Bildschirm

ausgegeben werden können, müssen in ihrem Aussehen fest

definiert sein.

Der Speicherbereich, in dem dieses abgespeichert ist, nennt

man Character-Generator. Er liegt von $D0O00 - $DFFF im ROM.

Es bleibt nun die Frage offen, wie das Zeichen in diesem

Bereich gespeichert wird. Um diese Frage zu klären, sieht

man sich zweckmäßigerweise einmal die vergrößerte Matrix

eines beliebigen Bildschirmzeichens an. Beispielsweise das

"A":

76543210 Bit-Nummern

xx

KKK

J
I
S

oF

a

w
D
N

1
=

%*

*
e

e
1.

W
a

e
o
.

we
8

* *

S
o

O
F

DB
W

PH
|

76543210

Wie Sie erkennen können, besteht das zeichen aus einer

Matrix von 8%8 Feldern. Es können somit maximal 64 Punkte

gesetzt werden.

96

Um das Äußere des Zeichens nun zu digitalisieren, faßt man

jeweils eine Zeile des Zeichens in einem Byte zusammen.

Jedem möglichen Punkt der Zeile ist nun jeweils ein Bit des

Bytes zugeordnet.

Auch dies soll an einem Beispiel erklärt werden. Dazu nehmen

wir als Beispiel die dritte Zeile des Buchstabens "A". Diese

sieht folgendermaßen aus:

Um nun den Wert des Bytes dieser Zeile errechnen zu können,

werden die Bits der gesetzten Punkte addiert, während nicht

gesetzte Punkte unbeachtet bleiben:

217 276 275 274 273 212 211 270 Werte der Bits

128 64 32 16 8 4 2 1 "

x * . . * * . *(gesetzter Punkt)

O +64 +32 +0 +0 + 4 + 2 +0 = 102 (Byte-Wert)

Sollte die Art und Weise der Digitalisierung eines Zeichens,

in diesem Fall einer Zeile eines Zeichens, unklar geblieben

sein, so kann das folgende kleine Trainingsprogramm zum

besseren Verständnis beitragen. Zunächst das Listing:

Benutzte Variablen:

J = enthält den Wert des aktuellen Bits (2°A)

EG$

BY

enthält die Darstellung der errechneten Zeile

enthält den Byte-Wert

97

ia REM TREAINIGSPRÖGRAMM CHAFACTERGEHERRATOR

24 PRIATCHRS (1470: PORESS290.1-°FORES3281.1°POKEG46-.6:° REM COLO
Li . '

yt
 CLECPRIWT' @ BYTE - BIT — TRAIHINGSPROGERAMM —

7
«e

n

FRIHT"E1I ZEILE EIHGSEBEH":FRIMT
PRIHT"C2] ErTE EINGEBEH":PRIHT:PRIHT

FRIMT"EITTE WMAEHLEH SIE 1"

GETAE: IFAF=""THENTE

IFA+="1' THENHZAN

REM #64 EVYTE EINGEBEN 8%

PRIHTCHRS« 14>
THPUT DER WERT DES BYTES «@-2559' ‘3 Bir: FEIHT: IFETLAORERT >25

EH11

FOR A=PTORSTEP-1

J=2TA
IF J<=BYTHEMPRIHT' "3 (BY=BY-J > GOTOLES

PRE THT " tesa’ 3

HES T

PRIHT’ SITASTE DRUECKEH 1"

BETAS: IFAS="" THEML Se
GOTOZE

REM #&e ZEILE EIHGEBEH ik

PRIMTCHRS IHN
FEIHT"A=PFUHRT GESETZT M=PUHET HICHT GESETZT":PRIHT:PFRI

mi

=

Pu

Ro

P
u
r
e

m

m

fe
e

{A

e
e
t

1

OG

m
E
;

LA

Da

Wa
r

er

e
e

fa

th

T

*
ol
en

i oe

-

m
L

M
a
l

i

L
a
k

fe

hb

—-
d
f
e

M
i
c

d
o
)

T
E
N

B
i

Pa

mi
o

0

D
i

Z
n

n
e

iz

FÜR A=7ToasSTEr-i

FEINTS-R"PUHET Ps
GETAS > [FASS "MM" THEMHIFARS <>!" THEH241

PRIHTAS: [TFAS="%" THEHBY=BY+2TA: EGS=EGSt+"" GOTOL TS
EGE=-EGE+" ge"

HEXTA
PRIHT:> PRIHTEGS"="RY
PRIHT- PRIHT "BITTE TASTE DREUECKEN 1"

GETHS > [FAS=""THEH she

GOTOLE

M
R
S

Aa
 f
a

he
te

fo

Pe

Ps

98

Nach dem Starten des Programms können Sie ‘zwischen zwei

Modi wählen:

- Zeile eingeben

- Byte eingeben

Wenn Sie Nummer 1 (Zeile eingeben) wählen, können Sie nun

die acht Punkte einer Zeichenzeile setzen. Sie werden nach

den acht Punkten gefragt. Ein X setzt den entsprechenden

Punkt, ein anderer Buchstabe löscht ihn.

Sind alle acht Punkte definiert worden, wird die definierte

Bildschirmzeile ausgedruckt und der Byte-Wert der Zeile

errechnet.

Nummer 2 (Byte eingeben) bewirkt den umgekehrten Vorgang.

Sie geben den Byte-Wert ein, der zwischen O und 255 liegen

muß, und der Computer druckt die zugehörige Zeile aus.

DER CHARACTER-GENERATOR IM SPEICHER

Die Lage des Character-Generators im Speicher (ROM) ist aus

folgendem Diagramm ersichtlich:

$D0O00 (53248)

1a Groß/Grafik normal

$D400 (54272) Zeichensatz 1

1b Groß/Grafik revers

$D800 (55296)
2a Klein/Groß normal

$DCOO (56320) Zeichensatz 2

2b Klein/Groß revers

$DFFF (57343)

99

Der Zeichengenerator ist also in zwei Blocks unterteilt, die

wiederum in zwei kleinere Blocks unterteilt sind.

Block 1 ist der erste Zeichensatz des C-64: 'Großbuchstaben

und Blockgrafik.

Block 2 ist dementsprechend der zweite Zeichensatz mit

großen und kleinen Buchstaben.

Jeder dieser Blöcke beinhaltet seinen Zeichensatz wiederum

zweimal: Einmal in normaler und einmal in reverser

Darstellung.

Daraus 1äßt sich auch die Größe des Zeichengenerators

ableiten. Jedes Zeichen benötigt zur Abspeicherung 8 Bytes

(pro Zeile 1 Byte). Pro Block gibt es 256 Zeichen: 128

normale und 128 reverse Zeichen.

Diese lassen sich zur Demonstration kurz auf den Bildschirm

bringen:

10 FOR A=0 TO 255: POKE 1024+A,A: POKE 55296+A,1: NEXT

Da der zweite zeichensatz ebenfalls 256 Zeichen enthält,

kommt man insgesamt auf 512 verschiedene Zeichen. Es werden

also 512*8 = 4 KByte benötigt.

AUSLESEN DES ZEICHENSATZES

Kommen: wir zu einem weiteren Problen. Der

Character-Generator liegt im ROM. Er ist daher nicht ohne

weiteres veränderbar, sondern muß in einen anderen

Speicherbereich, der mit RAM ausgestattet ist, kopiert

werden.

Der Kopiervorgang an sich dürfte recht einfach mit

einer kleinen Schleife zu erledigen sein:

10 DIM B(4095)

100

20 FOR A=0 TO 4095: REM $DO00 - $DFFF

30 B(A) =PEEK(53248+A)

40 NEXT A: REM AUSLESEVORGANG BEENDET

50 FOR A=0 TO 4095

60 PRINT B(A);: NEXT A

70 END |

Das Programm benötigt ca. eine Minute zum Auslesen des

Speichers. Anschließend werden eine ganze Menge Zahlen

ausgegeben.

Es läßt sich bereits auf den ersten Blick erkennen, daß es

sich hierbei nicht um den Inhalt des Character-Generators

handeln kann: Es dominieren Zahlen über 240 sowie die Null.

Doch der Fehler ist schnell gefunden: Der Speicherbereich

von $D000 bis $DFFF ist doppelt belegt. Neben dem

Character-ROM ist dort noch RAM-Speicher anzutreffen, der

sich in demselben Adreßbereich befindet wie das ROM.

In diesem RAM sind die VICs, die beispielsweise die Sprites

steuern, das SID (Sound Interface Device) und de

Farbspeicher untergebracht.

Unser Lesezugriff hat also nicht das ROM mit den für uns

wichtigen Informationen ausgelesen, sondern das

(uninteressante) RAM.

Um an das begehrte ROM heranzukommen, bedarf es einer

Information an den Computer. Daraufhin wird der Zugriff auf

das Character-ROM ermöglicht. Gleichzeitig aber kann der

Computer nicht mehr auf das RAM zurückgreifen. |

Man erreicht den Zugriff durch Löschen des 2. Bits der

Adresse 1 (Prozessorport). Gleichzeitig muß der Interrupt

verhindert werden (SEI). In BASIC sieht das so aus (folgende

Zeilen sind dem vorangegangenen Programm hinzuzufügen):

5 POKE 56334,0: POKE 1,51: REM INTERRUPT OFF,ZUGRIFF MOEGL.

45 POKE 1,55: POKE 56334,1: REM INTERRUPT ON, CHAR-ROM OFF

101

Zwei Dinge sind anzumerken, bevor Sie das so veränderte

Programm starten: Mit Hilfe der Adresse 56334 wird der

Interrupt verhindert. Bedingt durch diesen Eingriff kann das

einmal gestartete Programm nicht mehr durch RUNSTOP &

RESTORE vorzeitig abgebrochen werden.

Geben Sie nie POKE 1,51 ein, ohne zuvor den Interrupt

verhindert zu haben. Es kommt sonst zu einem Absturz des

Rechners!.

Starten Sie das veränderte Programm. Nach ca. einer Minute

werden wieder unzählige Werte ausgegeben. Diesmal handelt es

sich aber um den wirklichen Inhalt des Character-Generators.

Vielleicht wissen Sie nun nichts mit diesen Zahlen

anzufangen. Deshalb wollen wir sie zunächst umformen. Dazu

verwandeln wir sie mit folgendem Zusatzprogramm in sichtbare

Zeichen.

Die nun folgenden Zeilen müssen an das vorangegangene

Listing angehängt werden. Die Zeilen 50-70 des alten

Listings werden dabei überschrieben.

Benutzte Variablen:

B(0O)-B(4095) Inhalt des Zeichengenerators

A = Flag: O=Punkt gesetzt

X = Schleife, holt Punkte einer Zeile

2” X = derzeitiger Bit-Wert

Zz = derzeitiger Character-Wert

50 REM *** ZAHLEN IN ZEICHEN WANDELN ***

55 Z=B(I)

60 FOR X=7 TO O STEP-1

70 A=Z AND 21X

80 IF A THEN PRINT ".";: GOTO 100: REM A=O, GESETZTER PUNKT

102

90 PRINT " ";:REM KEIN GESETZTER PUNKT

100 NEXT X: PRINT

110 I=I+1: IF I=4096 THEN END

120 GOTO 50

Starten Sie das so erweiterte Programm. Wieder dauert es ca.

eine Minute, bis der Speicher ausgelesen ist. Nun aber hat

sich einiges verändert:

Aus nüchternen Zahlen sind vergrößerte Zeichen geworden, die

auf den Bildschirm ausgegeben werden.

KOPIEREN DES CHARACTER-GENERATORS

Wie bereits erwähnt liegt der originale Character-Generator

im ROM. Um ihn ändern zu können, muß er an eine andere mit

RAM ausgestattete Stelle im Speicher kopiert werden. Dies

ist nun keine Schwierigkeit mehr, da ja bekannt ist, wie man

den Generator ausliest.

Es bleibt nur zu überlegen, wohin der neue, veränderbare

Zeichensatz am zweckmäßigsten kopiert wird. Hierfür bieten

sich mehrere Speicherpositionen an:

a) im BASIC-Speicher

Die Kopie des Character Generators könnte an den Anfang des

BASIC-Speichers gelegt werden. Es müßte lediglich der

BASIC-Start entsprechend verschoben werden. Hierbei gehen

dem BASIC-Programmierer allerdings 2 KByte Speicherplatz

verloren.

Weiterhin bietet es sich an, ihn ans Ende des

BASIC-Speichers zu legen. Das etwas umständliche

103

Heraufsetzen des BASIC-Starts entfällt.

b) Unter das ROM

Sofern das Betriebssystem nicht durch Eingriffe des

Benutzers im RAM liegt, stehen hier jeweils 8 KByte

ungenutztes RAM zur Verfügung. Da die PEEK-Anweisung jedoch

auf das ROM zurückgreift, könnte der dort liegende, kopierte

Zeichensatz nicht ausgelesen werden (was jedoch nicht

unbedingt störend ist). Benutzen Sie die modifizierte

PEEK-Anweisung aus Tips & Tricks I.!

Im Folgenden finden Sie zwei Kopierprogramme, die den

Character-Generator einmal in den Anfang des BASIC-Speichers

und zum anderen unter das ROM des Betriebssystems kopieren.

Kopierprogramm 1: Character-Generator-Kopie an BASIC-Anfang

POKE 44,16: POKE 16+256,0: NEW

10 POKE 56334,0: POKE 1,51: REM ZUGRIFF AUF CHAR-ROM ERMÖGL.

20 FOR K=0 TO 2047

30 POKE 2048+K, PEEK(53248+K)

40 NEXT

50 POKE 1,55: POKE 56334, 1

60 POKE 53272,PEEK(53272) AND NOT 12 OR 2:REM UMSCHALTEN

Beginn Character-Gen.: 2048 ($0800), Bildschirm-RAM: 1024

(Aus internen Gründen hat der Character-Generator am

BASIC-Anfang lediglich 2 KByte zur Verfügung. Es kann daher

nur einer der beiden Zeichensätze des Character-Generators

untergebracht werden. In diesem Fall Groß/Grafik. Möchten

Sie hingegen lieber den Klein/Großschrift-Zeichensatz, so

ändern Sie Zeile 30 ab in:

104

30 POKE 2048+K, PEEK(55296+K)

Kopierprogramm 2: Character-Generator-Kopie unter ROM

Der BASIC-Start ist hierbei nicht relevant.

10 POKE 56334,0: POKE 1,51: REM ZUGRIFF AUF CHAR-ROM

20 FOR K=0 TO 4095

30 POKE 57344+K, PEEK(53248+K)

40 NEXT K |

50 POKE 1,55: POKE 56334, 1

60 POKE 56576,196: REM HOECHSTER 16-K-BLOCK

70 POKE 648,3*64+4:REM BILDSCHIRM-RAM NACH (3*64+4) *256

80 POKE 53272,PEEK(53272) AND NOT 6 OR 8: REM UMSCHALTEN

Beginn Character-Gen.: 57344 ($E000), BS-RAM: 50176

In den folgenden Beispielen verwenden wir den mit

Kopierprogramm 2 kopierten Character-Generator. Es sind

dabei folgende Dinge zu beachten:

- Statt 1024 lautet die Anfangsadresse des neuen

Bildschirmspeichers 50176

- In den Normal-Mode gelangt man wieder mit:

POKE 56576,199: POKE 648,4: POKE 53272,21

- RUNSTOP & RESTORE bewirken keine vollständige Rücksetzung

in den Normal-Mode. Es muß zusätzlich "POKE 648,4"

eingegeben werden.

Geben Sie einmal das zweite Kopierprogramm ein und starten

Sie es. Nach ca. 60 Sekunden meldet sich der Cursor wieder.

Wenn das Programm korrekt eingegeben wurde, dürfte der

gewohnte Zeichensatz sichtbar sein.

zur Demonstration soll nun ein Zeichen verändert werden. Das

erste Zeichen im Character-Generator ist der Klammeraffe. Er

105

soll jetzt sein Äußeres verlieren und verändert werden.

Die ersten acht Bytes des Character-Generators werden durch:

den Klammeraffen belegt: 57344 bis 57351. Adresse 57344

beinhaltet dabei die oberste Zeile des Klammeraffen, 57351

hingegen die unterste.

Wir verändern den Klammeraffen nun oben ein wenig:

POKE 57344,255

Drücken Sie die Klammeraffen-Taste.! Der Klammeraffe ist

oben merklich platter geworden. Um das zeichen

beispielsweise auch unten abzuplatten, genügt:

POKE 57351, 255

UMSCHALTEN DES CHARACTERGENERATORS

Wie Sie den beiden Kopierprogrammen entnehmen können, sind

neben dem eigentlichen Kopiervorgang noch die Adressen 53272

und 56576 sowie 648 notwendig.

Was bewirken diese Adressen ?

Es muß dem Computer mitgeteilt werden, wo sich der neue

Zeichensatz im Speicher befindet. Hierfür ist zunächst nur

die Adresse 53272 zuständig.

Die Bits 1-3 regeln dabei die Verschiebung des

Zeichensatzes. Bit O ist unbenutzt, die Bits 4-7 verschieben

den Bildschirmspeicher.

übersicht der möglichen Startadressen und der zugehörigen

Bitkombinationen:

Bildschirmspeicher: Zeichensatz:

0000xxxx O Ä xxxx000x 0O

0001xxxx 1024 (normal) xxxx001x 2048

106

0010xxxx 2048 7 xxxx010x 4096

0011xxxx 3072 xxxx011x 6144(normal)

0100xxxx 4096 Xxxx100x 8192

0101xxxx 5120 xxxx101x 10240

0110xxxx 6144 XXXX110x 12288

0111xxxx 7168 xxxx111x 14336

1000xxxx 8192

1001xxxx 9216

1010xxxx 10240 - Soll der Bildschirm-

1011xxxx 11264 speicher verschoben

1100xxxx 12288 werden,so muß gleich-

1101xxxx 13312 zeitig auch das High-

1110xxxx 14336 Byte des Videoram ver-

1111xxxx 15360 ändert werden:

POKE648, (Startadd) *256

Wie aus der Übersicht zu entnehmen ist, können sowohl

Zeichensatz als auch Bildschirmspeicher nur innerhalb der

ersten 16 KByte verschoben werden. Es fehlen die vier

Adreßbits, die nötig sind, um im gesamten C-64-Speicher

verschieben zu können. Diese finden sich in Adresse 56576.

Wird ein anderer als der erste 16K-Bereich gewählt, so

verschiebt sich automatisch auch immer der

Bildschirmspeicher um den entsprechenden 16K-Schritt.

Auch die Sprite-Blöcke und deren Zeiger werden in den

entsprechenden Schritten verschoben!

16-K-Bereich:

$0000 - $3FFF O - 16383 POKE 56576,199: POKE648, 4

$4000 - $7FFF 16384 - 32767 POKE 56576,198: POKE648, 4+1*64

$8000 - $BFFF 32768 - 49151 POKE 56576,197: POKE648,4+2*64

$C000 - $FFFF 49152 - 65535 POKE 56576,196: POKE648, 4+3+64

Zugegeben: Zu Demonstrationszwecken reicht die HerumPOKErei

107

in Sachen Character-Generator gerade noch aus. Möchte man

aber für sein neuestes Spiel einen neuen Zeichensatz

entwerfen, dann wird diese Art der Zeichendefinition zur

langwierigen und -weiligen Tortur. |

Aus diesem Grund finden Sie auf den folgenden Seiten zwei

Listings, die die Definition des eigenen Zeichensatzes stark

vereinfachen.

HILFSPROGRAMME ZUR ZEICHENSATZDEFINITION

Auf den folgenden Seiten werden Sie das umfangreiche Listing

eines kompletten Zeicheneditors finden. Das Listing ist

zugegeben sehr lang, aber die Vielzahl der Möglichkeiten,

die dieser Editor aufweist, werden seine Länge wohl

rechtfertigen.

Das Programm ist so aufgebaut, daß der Anwender im Prinzip

keinerlei Vorkenntnisse auf dem Character-Generator-Sektor

haben muß. | |

Das Erstellen der einzelnen Zeichen geschieht bequem mittels.

Tastatur oder Joystick 2. Zeichensätze können .auf Disk

gespeichert werden. Zahlreiche Editierhilfen wie

beispielsweise das Drehen eines beliebigen Zeichens um 90,

180 oder 270 Grad, Invertieren, Vertauschen oder Duplizieren |

von Zeichen etc., etc.

Abgerundet wird das Programm durch den eingebauten

' Programm-Generator, der auf Wunsch den BASIC-Lader für den

selbstdefinierten Zeichensatzes schreibt (bis zu 256

Zeichen).

108

Doch hier zunächst das Listing:

= REM PROGRAM BY T.WELTHERS*BAHHHOFSALLEE 122280 RINTELH 18T

EL. (@SP51> 3676

ia PORE4S3 . 2253: POKES6 .68: CLE

24 POREYSS . 32: 033245 > POREO+32 .1:°>PORE0+S3.1° PRINT" Cee" PORESL
4.4:PRIMT

3a IFPEER* 21 8@89=1THEHPORES 1 Gee 2 GO TO3SE

46 POKES 324° .4° PRIHTTABS 75" a ":PRIMT

28 POREQ+42 .3°PRIWHTTABS 72" # ZEICHEN-ELITOÖR #': PRINT

BH PRIHTTABS 7" se "oO RPORELLT4.16°> FR THT
va PRINT'EIBBIIL AENTERH DES ZEICHENSATZER":PRIMT

SH PEINT'IBBIIL EIMGERAUTER PROGRAMMGEHNERATOR"

sa PÜREZ14.Z1:FRINT:FREIHT "BE T.HELTHER . Z2,5EFTEMEBER 1
334 "

11g :

l2a REM ##* SPRITE INITIALISTERUNG nok

136 FORE=87TOUP: PORE Ye4+heS oS: PORE YeS+h es FÜKE FOS+EHI SEC HE
ATE

ig3a FÜRk=aTO33: PÜRKETO4HSH IHR EC HNEMTE

154 FÜRK=STOSS: FÜORES3Z+E EC HNEATIREM BLOCH 13 FULL
178

154 REM ae CURSOR FLASH sok
130 RERDRA: IFA=-1 THEHNZ4A

28a PORESI2+E A: C=C+A: B= B+1 GOTOLSe

21a DATA 4+ ide. 3.232.224.1656 .246 6.142.142 .5.76.52 234 18S.
sl4il.ide

zei DATFIS, 1"73.143.2.201.4.242.11.141.21.202,. 189.4 141.143.
PS se saad

a3 DATAL4 1 21-208 169 8.76.1 FS .3.128.169 .144.166.35.141 .28.3
A.21.3,88,.96,-1
IFC<>6G89THEML 1ST208-238

i

oh

he

me

=

m
i

.

a

oP Meee" ene ot

L288 sede LESS LSS lL leo Ll) l4 220.56

HENFEIHT"? DATENFEHLER" : 1L13T234- 210
EM AKTIVIEREN | om

e

CLE O=S3e4S (PORE LSo.8-REM ae MEHUE 38%

PRIMT ” old * MEHUE *% eis}"

PRIMT" a Mm ERSTELLEH EIMHES ZEICHENE":FRIMT

FEIHT'3Z 5 2 DHTENEINGSABE":FRIHT

FEIHT'3 3 mE 2 ZEICHEHNUERBERSICHT":FRIHT

FRIHT" gd - = ZEICHEN TAUSCHEN" :PFRIHT

FEIHT'BIN" : : FORT=ETO24:PRINT"’=": :NHEHSTT:FRIHT:PRIHT
PRINT” gta 5 = ZEICHENHSATE LADEH":FRIHT

PRIHT' ga & Me GEICHENSATS SAVEH" PRINT

PRIMT' go 7° MS FPROGRAMNM-GENERATOR" > PRT

FPRIMT gy: : FORT=ETO34: PRIHT"="::NE=STT:FRIHNT:'FRINT

PRINT gags 8S PROGRAMM BEEHNDEH'"

W
e

Q
i

B
o
e

w
o

&

r
u
n

ry

A
N

B
i

i
e

O
I

O
W
E

e
e

w
o

b
e

Co

ah

Bi

me

ee

Ty

fh
2!

5 Fi

7

tJ
Gi

B
E
R

R
R
R

R
E

B
O

os

OF

i

td

to

to

td

oo

Oo

Po
 P

a
fo

fo

 f
a

-

109

GETAS: [FAS="" THENA TS
IFAS=CHR$< 29 THENPRINT"G? BREAK IM MENUE": ‘EMD
A=YALCAS) : TER-BORA>BTHENGOTO47E
ONAGOTOS3G 530 B08 1620, 1498 1278. 2398 .1236

REM #03: SETCHEWMHEDITOR 4%

GOSUBLF Se: REM ABFRAGE ZEICHEN
GOSUBLTSP Ee GOTOLLIEe: REM BILDSCHIRM INITIALITSTERENSBEMEGUN

SOUT IME:

M
o
n

h
t

Et
A

it

bo

a

AO

oo

mi

a
 =

m
n

a

Do

LE

"e
no
n

Sel REM a DATENEINGABE HH

Be PRINT" id IHTEHEIMGABE "

a FRIHTIFRINTIFRINT'TSGEBEHN STE HACHFOLSEND DIE & DATEN EIN

Z
e
i

i
h

dh

ih

OH

G3

I;
 FRIHTIPRINTIFORWYSBTOT PRINTONHLWGSCKODERC KEY I

UIT! SEEN CHEMT —

i
n

E POR VSG TOP RDS VAL Cee Yoo TP ROW CRORE cel o> 2355 THEME ¢

Woe
MEE Th?

Feet Fe) FLele GOSUBS218 °F s=8° FL =e: P=

FÜREZ14.15:°PRIHT:FEINT"SOLL DIESES ZEICHEN ABGESPEICHERT

R- DEM SC Thy"

GETAF: IFAF=""THEHNESE
IFAF=" I" THENHEL Fe" ee IT CHEME INMGABE" > GOTOr es

PRINT: PRIHT SURUECK 2UM MEMUE oTeAHo?"

GETAS: IFAS=""THENSSe

TFAS=" 0" THEMGOTOSse8e
SOTAS9e

i

hy

Pe
s

fe
a

$3

fo
e

Po
d

ee

lb

me

C
E

oo
o

Ba

we

Ba

CT

fe
a

fa
p

et

Er

om
)

ch
;
a

a
 n
r

Da

D
i
e

Da

ER

a

th

da
r

er

ar

E
F
T

Dr

De

fe

i
ei

REM ##% EINGABE sak

Feiazd4a: FRINT"D’SKLEFRINT’ESISEEICHEHN Tl: GOSUBTSS

FORE SE J. GETAE : IFA$="" THEM Pe I

A=PEERK © 2b >: TFATHEMY 2S

FRIHT: IFAF=SCHREE L23> THENAF=" "

POKESH4 1 FPRIHMT GOVERREWMDERBARES ZEICHEN: "fs: FORT=ETOZ

FIHTCHREL ISIS:

HEATT:FRIMT:FREINT’FEINT'3 1 See ES

FREIHT:FEINT'I Z al": FE sf

PRINT PRIHT' @ 3 SRT OG ee

PRIMTOPRIHT: PRIHT ia + SSF EWHLER"

PEIHMT PE LHT: PRINT id 3 Shea... WEITER”

GETCE: TFC#="" THEN SI]

TFC#="S" THEM PSe

TFCS= "3" THEMGOSUB? Sn

IFFEEEEP-1>= UTHENGOTO ra

LFCge" LT THENRYERWALDE FOREZ14.5 PRINT :PRIHTTARE SP "HESS":

.EP-1.1:GOT0731

"33 IFO$="1" THEHRWERY—- 125: FOREZI4.5:PRIMT:PRINTTABESP"POSI":

FOREP-1.8- GOTO" 31

T4i TFRFEER CP-25=1THENGOTOF4S

P43 [FCE="2" THEMRV=RY+e258 (FP OREZI4. 2° PRIWT PRIHTTABC So "KLETHA

GROES" oR | GOTO Se

4a IFCF=" ZZ" THEHRW=ERW-255 FOHREZ14. 7 PRIHT > PRIWTTABS 3S) "GROSS

SPERF "Meat GOTO Se

ra” IFC$="g4'" THENGOTOTZO

“4
+

“b
om
b

Mb

wd

ted

wd

ted

d
a

ao
t

ow,

“is

Fi

o
t
t

td

ee

a

Pa

fl

Pi

fü

fl

*
a

iR

I

i 3 J
=

“b
mp

mE

md

md

md

om
md

110

™d

Pa
h

ur

ii

E
r
 PORES465 . 1° PRIHT Si Ae PORE S46 4: 00=PEER 1 A244 + > TECH

THENGÖSUEZZENS

IFCH=1THEHNRETUFRH

PORE Z1L4.30° FR THT OPRIMT OR "OPRIHT" 2": GOTOSFE
IT ERRTSHTHENGET SE

AlfF="" POKEZ14.2:PRIHT:FRINTTABES IRRE" POR EP a: GOT

u‘

d
r
:

Bu

w
i

P
M

m

d
e

i
Te

t
tt

fo
ne

~
“dé

AUZ= "FA" PORES. PRIAT OPRINTTABS S 3 ORE TH PÜOHER 1 GC

1

a
s

Rye Me FS: Bae POS TT P= "GROSS GRAF. TEPEER CPO =1T
wae "ET"
[FPEERK P1921 THENES="HEGAT IV! : RYSRY+ 12S
IFFEER CP }-2 = 1THEMFS= "ELE LHe GROSS" : RVeRY+SSe
RETURN
POKEP-2.N:GOTOFS1

—

=

1

00

mo

I
)

m]

II

sj

|
rm

IT

E
0
1

=
pi

fü

fü

=

Pa
c

t
e
e

e
t
e

ee

ee

je
ar

a

da

a

Dr

Da

fh

I

Pu

7

ee

TT

LG

if

= n= 19: REM #8 LEBERSTICHT Wk

ro

m PURE Se ee MD PORES SSPE . Lae POKE E84, 10 PRIAT "Ade Shoa8
ORAS TOSS

FOKEZTSAGHRN. Fr: POKERAGH+ZEHR 14: TFOEHTZFILTHENPOKE TEA HA

> POREAO+A+EGED ,

HES TRA : LE CH= 1 THEHRETURN

GETAS: IFAS="" THEME Se

PORESSeP2 .21° PORESG5 76.151 POR Ee4S .4
GOTOS6e

o
e
 i

t
=

Mr

et

E
m
]

o,

a

ei

.
G
o
a
.

m
o

REM S86 TALUSCHENM see

PRT T) cag ZEICHEHM TAUSCHEN - "

PRI)" glee 1 SAREE TCHEM EOP TEREM"

PRIHT" Sid 2 BAR ZEICHEN TAUSCHEH"
PRINT Saisie 2 SRE HUE

GETOE: [Pirk=""THENLGAe

IFVAL COE SS LORVAL Cot o> STHEMPORES 1 eee . 1: RU
TFit="2" THEHELS="9TAUSCHEHM: A we? BY GOTOLLe&

ELe="SEOPTEREM: ACAD -> ACB
CH= 1 GOSUEF SE CeO GOSUB PS CH=: PR LAT

IFO$="2" THEMHGOSUBLISE GOTOLLS a

FORVSE TO PORE SS Pet loee+Y DPE ER C2 Peele oO MER TY

FORESTS. TE PRIM PRINT" 2URUECK SUP NEHUE Th 7"

GETAS: [FAS=""THEHL lee

TFAS="0" THEMGOTOSEe

FEIHT'’IGOTOIGSE

FORV=ATOP Clevo =PEER C2887 e+Coee+y DC YISPEEKE Be 72+

HESTY
FoR Y= Toe PORE SSE Pe+loeeey Oe YO PORE Sea Pet liom! OL

HTW :BETUFRH

QA

OL
A

u

R

B
i
d

ft

a

a

d
i

Pa
g

ee

Wi

OG

IR

In

Je

da

Di

u

IF

Pt
e

de

f
e

de
ad

e
fa

ce

Zu
ne
 f

ie

fe

fe
e

fh

fe

fe

fee
l
Ze

fau
le

pe
e

ja
FE
N

x
+
 T
h
e

i

REM a PROGRAM BEEHDEHN 86%

PRIM? GEIS ZUM NAECHSTEN NAL..." PORE PSS .49°>PRIHT” Siege
I

fo
t

de
n

jun
i

l
n

M

mi

2

zu
r

a
n
n
 Fd

mi

m

Tm
:

mo

m
f

ja
 fl

nh

111

REN aa ALESAYVEM ado
PRINT” [ag ZEICHEHSATE SPEICHERH "
PRINT GIIDER VON IHHEH GEAEHDERTE ZEICHEHSATZ AR”
PRIHT ADRESSE CDES.2 26872 KAHM HUM ABGESPEI-—"
FRINT"CHERT MERDEH." PRINT: IFHI=SATHENHI=1L2:HLI=e128
PRIHT"ER BELEGT AUF DISKETTE CH. 17635 KETTE,"
FRIHT"AUS FROGRAMMTECHHISCHEN GRUENDEN KAHN"
FRINT"DER ZEICHENSATE HICHT AUF DATASETTE"
FRINT"GESFWELD WERDEN." PRIHTIPRIHT
IFPEEK 138 CHSTHENPRIHT"SHUR FUER DISKETTE:FORT=LTO33

JE TT: GOTÜREH

FRINT:FRIMT"UHTER WELCHEN HANEN SOLL DER FEICHEH-"
FRINHT"SATZ ABGESPEICHERT MERDEN CDURCH EINGABE";
FRINT"WOH SPRREAMETER“ PARAM.AENDERUHGEN MDEG-"
Age": INPUT"LICH>" AS: IFA$e" " THENGOTOSSE
FAS=" PARAMETER" ORR IGHTS (Ad .33=" PARAMETER" THEMGOTOL4 7a
FRE=@THEHIFLEF TS <A . 12 Co CHRE C2159 THEMBS=CHREC 2159 +Ae GG

Az
A BE=A$

1426 PRINT" coer"
1430 PRINT POKES .@: POKE44 0" GH25" POKES 8 POKE4E "SH mg
idda@ PRINT" SAY ENCHRS C34 9"@: "BS CHRS C34)" » Sai"
1452 PRINT’ POKES. 1 POKE44 8: POKES1G@0.1:°G0TOLG" PRINT a
1450 FORA=BTOT : POKESS14A 13 °MERT POKEI9& .&: EMD
147@ POKEG46.12: PRINT" fig PARAMETER

i471 PRINTHIS:PRIWT OPRIHT'@ 2 @ oie. SAVEM" © PRIHTOFRIHT @ 2
i HAELFTE" PRINT

1472 PRINT" @ 2 @ @.HAELFTE":PRIWT:?PRIHT’@ 4 W KEHHUNG Aue
1473 PRINT:FRINT"AS = FEHLER" :PRINTIPRINTAE WM oO... HEI
TER" |
1474 GETHE: [FWS=""THEHL4 74
1475 [FMS="S" THEHKE=@ > H2=112:Hd=1 28: POKES S247 oe
"GOTO Fe
1476 IFMS="2" THENHS=112:H4=1 26 H2s="1.HAELFTE SAVEM. ."
1477 TFWS=" 3" THENH2=128 H4=125 Hee="2 HRELPTE SAVEH. 2"
1478 [FM¢="4" THENPOKES S247 . 1 WS$="KEHHUMG AUS"
1479 [PWS=" 1" THENH@=112°H4=128 Wob= "ied SAVE. eee ee”
14304 IFl$="S" THENGOTOLZER
1461 PRIWT" SI" Wess OM SE
1482 HLS=" tlg": GOTO1drI

a
l
a

Gi

bo

hi

oo

oo

Ri

Bü

fü

I
E

E
i
f
e
r

W
i
l

i
n
d

1
9

Mr

Mr

ee

i

a

.
_

i
m

e
t
e

e
e

e
e

e
e

e
e

e
e

e
e
e

M
i
h
o

to

m0

0

oo

ee
e

TT

TP

md

m
e
i

i ?

1

ia

a

di

ed

m;

§

j=

2

fo
ot

=

i
he

 et ie"

REM $e ZEICHENSATE LADEN #4%

FEIMT" 38 ZEICHEHSATE LADEN "

PRIMT" Galea TE KOENNEN HUH EINEN 2UYVOR AUF DISKETTE":

PRINT ABGESPEICHERTEHM ZEICHEHSATE LADEN." IFRINT:FRINT’A
= DIRECTORY"

A$="":PRINT:FRIHT:FRINT: TMPUT'HAME DES ZEICHEHSATZES" >A

a
b

m
i
n

hk
2

fe

fy

i
s
s

n
i
d

l
i

mi

~
Wr

me

mo

me

i
EU

ER
?

“i
h

IFA$="" THENGOTO2SS

IFAS=TSÜANDPEER. ‚IS =8STHENGOSUEIE4E: PRINT: GOTO1S542 pi

d
i

D
e

e
e
e

pe
t

Lh

Lh

oo
h

I
ti

mm

112

nr J
13
8 b

[
n
m
 on

f
r

ee

fh

Q
O

O
S

m
o
a

MA

h
e

W
O

m
A
h

w
h
e

O
l

o
l

mh

o
h
h

h
s
e

Wo

Mm

Si

i
t

t
m

Ta

om

u

P
a
m

Mm

I

I

SG

S
E

E
I

E
R

es

Ri

hh

w
e

me
Ww

me

a

e
e

T
H
Y

T
T

S
T

T
W

W
W

W
O

O
m

d
d

A

U
N

oh
oo

h
o
o

oh

oh

oo

oh

We

T
e

M
M
M

M
M
M
M

M
R
R
P

e
R

B
e

e
e

e
e
e

B
Q
O

H
O
B

Ws

e
m

IE

I+AF:50TOled

IFPEEE «© +7 >=ETHEHNIFLEFTEEAF LS FCHREL 2155 THENBFSCHRE
wi

B$=A$

IFPEER SS 136251 THEMPRIWT SUR FUER DISK-BEHUTZER"!: FOR T=a7

NETT: GOTO3SEA

FORARK8TOS > PORESGS1+A.13° HEAT: PRLMT " Soeqeqe)"

PRINT" Sielet PRIA LOAD CHES < 34> BSCHR So S45",

PRINT "PORES 1@6@ ..1°GOTOL8" > PRIHT" Ss)" > PORELSS.
PRINT" =ZETCHEMSATS"

„1 8lsisisieie]"
“EMT oO

u

PRIHT-OPEML OS .15."TG" (OPENS... UR 1S: hed
PRIHT#1 ."B-R" 3 2383000 PRIWTSl ."B-P" S258

GET#He Hs: TERE="" THEMHRE=CHRE Ce >
DAS o ae >

GET#2 4S: IFRE="" THEMKS=CHRE CS
WM=AS «eb >

FORS=8TOr PRINTHI oY BAP! 23 Reo S45 YS="" POR Y=aTOLS
GET#2 .43° TFRE="" THEHRE=CHRE © as

IFASCO4$9=16GTHEMI TS

TS=P(S$+HS HEMT Y

PRIHTYE:HE=TA: IFOLFSTHEN EEE

CLOSEL: CLOSES > RETURH

REM ame ZU REHDERHDES ZEICHEN #%%

KL =" gd AE TCHEMEDI Tor "
CH=1 > GOSUBY SH : CH=

RETUFH

REM *### BILDSCHIRMIHITIALTSIERUNG 4%

PRINT" oh | EEICHEHEDITOR "

Rv S= "OFF (PeS2246: IFPEERCP—1 > THEMRYS= "0H"

= "GROSS. GRAF IE": T[FPEERCP-29=1 THEMZS$="ELE LH GROSS"

PRIN "SETCHEM: "SAS; "MBIREVERS "GRVSs "MR SSe5 "es TP PE
I=L THEMPRIHT"A"

PRINT" Gee RR BRET S452 1 Eee S54 3:
PRIMT " Ri"
FÜRK=ETO7:PRINT"IRBI'E IRRE eR ES TE

PRINT" SRR Bepy"
PRINT "RRR E3432 1 OER e432 1

PRINT" SRR, USER Bee Tr

IFFL=YTHEHNRETUFH

PRINT’ ij FI u F2 u FH FY u. F2 "

PEINT"3 TEST U DATEHN ROM WP RAM | GaMROTATE"

a
 1a" Ko

1 u

‘Ty us ‘ejeqe)"

113

=,

I

-

wa
pa

fü

fü

Pt

me

t
t

de

ut

u

ed

mr

mr

3

Mm
io
e

mG

Oo

Oh

m

mm

ci

ra
 f

ü
=

od
e

—

mS
)

fa
 3

Si

w
a

G2

ha

Po
a

Th

hs

OD
 f
s

M
i

C
h

f
o

me

me

rh
e

ms

fe
a

Ph
a

Pes

aL

M
A
b

h
h
h

B
t

td

t
t

bd

to

bo

T
P

Po

Po

fo

Po

oh

fo

he

a

Pa

Po

yr

a

ee

ee

a

a

an

yo

he
:

g

C
h
o
a

H
A
A

M
A
N
E

P
O
A

O
h

o
e

a

o
e

iz

a

Pa

DE

Fo

Po

Po

fh

Bo

Ta

Po
 f

o
Po

Po

Bs

fe

Po

Po

Bs
 f

e
Bo

Bo

Pa

Pu

L
A
C

CA

LA

REM #80: BEMEGUHGSROUT INE sab

FORESS3 144: FORESEL .3:5175957 PÜKEO+ 21.5 FORE ZU 2 011

SH=72: W125: EV: EH=AiREM SPRITE-FÖSITIOH
GETAF:FORE133 2: IO=PEER N Sé326>: IFAS=""THEMAS=6 > oOTO2138

AS=AS 0 AS

IFAS=1450R ¢ TORMDL >=@THEMPORES1 1.4: GOSUB2458:°REMN CREE UP

IFAS=170R° JOAND2 > =@THEMPORES11.4°G0SUBE438:> REM CRSrE DOM

IFAS=290R¢ JORHDS?=G@THEMPORES 11.4: G0SUBZ51G:° REM CRSR RIG

IFAS=1570R¢ JOANDS >=@THEMPORES1 1.4: GOSUBZS4@: REM CRSR LE

IFAS=1STHENBH=@ : BY=G: SH=73 : SV¥=186
IFAS=3THEHNFOKE3S3 .52:° POKES61 „234575957 POKEO+Z1 2: GOTO

IFAS=133THEHGOSUBZEa 2a: REM Fi

IFAS=134THEHGOSUBSS Ya: REM F3

non YTHEHGOSUEZTEAE: REM Fe

IFAS= STHENGOSUB a Met : FEM FE

IFAS= LSOTHEME? 2:FL=1:° G05SUBRS216:>Fe=8: FL: GOTO21L Se: REM

TFAS=L4e6THEHF2=12: ZSUBZ3Z1E: FZ=ei:GOTOZ1S2:°REM FS

IFAS=1 36 THEMHGOSUB: REM FY

IFAS=14°THEMHGOSUBS REM. CLEAR
IFAS= 136 THENGOSUBS068 : REM Fed

IFAS=3ZTHENGOSURZBAG: REM LOESCHEN «SPACE >

IFAS= 1 STHENGUSUBES? aA: REM RETURH

IFASZ12Z3SAHDA5>3Z0R N TOARWDLS > =STHENFL=1 > GOSUB Sasa: FL

POREC+4 .SH POREO+CS ,SY GoOTOe1T Se

FEN BEE LIF sok

IFS¥> 1 BSeBTHEMS Ves > Bie Bi —4e

RPE TUR

REP 34% DOM 35%

IF S's 1 86+ SRS THEMSYeSY¥+ : Bye By +4

RE TURE

FEN #4 RIGHT 84%

IF SH. 3478 THEHSH=SH+6 : BH= BH+ 1

FRE TUR

FEN 4k LEFT 3%

IF SH??? STHENSH=SH—-S : BH=BH-1

RE TUR

FEN #80: DATAS AUSGEBEM «Filo ak

FOR YVYaaToy kav o=ea: HEAT GOSUBS I Se

4
iT

;
ic

Zn

mi

ii

pi

ta

Pa

BY

od

0)

2

N 3

=
 oi

114

ak PORE eee . bo PR IMT" id MAHL PULAT LOWE Ps

abl FRIHTOPEIMT PRIATOPREIMT' ol @ DATEN AUSGEBEH":> PRIWT

eele FRIHT @ 2 @ SEICHEHW REHDERH" OFRIWT:SPRIHT' @ 3 @ ZEICHE
MH SPETCHERH! > PR THT

ebel FRIHT SPRINT’ @ 4 @ NEMUEY PORELSS .@
5

PRIHT OPEIHT' @ OS @ EDITOR"

GETS#: TF Sé="" THEME SE

TFSd="5" THEMGOUTOS Se

IF S$="4" THEMPORES 1 ae .1 > RU

TFS$="1" THEME Pee

TP S$="2" THEMELS=" BET HGABE DES NEUEN ZEICHENE" CHE: GO
TSH: GOTOSS Se

[FS¢=""3" THEMGOSUBS 38° CLR: O=ase4e - GOTO ASe

PRINT" 2 TATENMAUSGABE "

PORES LS .4:° RFR THT OPRIHT alle DATEH DES ZEICHEHS LAUTEH:"

Ty

e
t

ha
i!

us
 V
B
S

La

RE

-

oc
h

Ba

ke

PE
RS

RO

Bo

Po

fo

Bo

mi

LA

ee

7
.

5
2

34

et

m

et

Hi

on

ha

oo
oh

FORYVSOTO? : PRINTVV TABS 12K OvYo "=" NEXT OFLS12F4=S:FS=1 |
UBS LGPL Sa Pe

PRINT: PORES4S .6°PRINT"BITTE EINE TASTE DRUECKEN 1"
GETFS: [FF#=""THEMZ Se
GOToaEIE
REM dk USER CLERR SCLEAR-TASTE> sake
C2=00:00=32F2=12:FL=1:GOSUB321@:F2=A: C0=C2:FL=@: RETURN
REM dk MATRIN RECHTS <FSi> serie
FL=1:G0T03218
REM ek USED RECHTS (FF dae
FLea@: GoTOs216
REM doh ZEICHEN TESTEN ¢FS> sab
Hea FORVYSO@TO? KOVV9=0 HEMT: GOSUBS1 30
POKEL33 01: POKE646 12: PRINT" TEST

d
d

i
h
n

Ih

D
h

dh

I
Wi

ha

To

Poa

Boa

Ge

fa

T
T
S

n
d
”

o
t

7

s

a:
or

Ue

ee

IT
PL

I,

‘u
te

ß

1x3
)

rer

m

a
d
s

po

fi

fa

fi

pe

a
d

L
i
f
e

Z
i
p
)

oh

ed

od

e
e
e

Pe

LR

of

dd

Pa
l

co
 ate

FOREO+ZI .3:FOFEO 122: POKEO+1 . 1G

FOREZE42, 12: FOHEZ dl: 13 POREUT S39 6° POR EO+S .&

POREO+2 .192:° POR E0+3 .94:POREQ+29 .2: Pu I Ee toto ot

FOR Y= TO : POKEB32+Z A. EN ERDE 2° HEMT 2A =e

oo

th

ee

if
s

CO

mp

hy

LA

ko

fe

PT

me
Mo

SE

A

to

oo

m
y

un
,

FOREZ14 7: PRIMT:PREIHTTARES5"T: 1" TABCB@I"L: a

PORESL4 015° PRTMT PRINT SOLL DAS ZEICHEH GESPEICHERT WER
POT eho"

GETAS: IFAS="" THEHS3He

ee 0 THEHFOREUFEN. BH GOSUBLSYe Flete Fe=le > GOSsuUBSe1a
(Fes: GOTO 1 Se

en kEOr21.2: GOSUEZF322

IR: 0=523242: PREINT"ZURUECH ZUM MEMUE SJeMo 7"
GETAF: IFAF="" THENZIEN

IFAF=" IT" THENGOTOSSE
GOTOS22

REM #380: RETURN TASTE Ei

TF Sel 1 b+ PSs THEMS S°SYSSY+S: BH: Bie Bie} et - RETURN
SH="3:> BH=G: RE TUR

REM 34% SPACE-TASTE SLOESCHEN> 8%

PORE LG24+6+7#404+BY+BH . 32: RETURH

ee

Sr

a

in

=

m

=

Pa
fa

al
Pa

Pa
fü

Ru
pa

Bü
MT

WO

WG

lo

to

lo

Ge
i

T
E
D

AO

TI

CO

oo

ot

yu
r

ee

oe

a

a

ii

it

i
bd

Pa

fe

fa

fu

fe

fa

fea

fa

en und‘

115

EM #4 PUMET SETZEM 8%

SEEN EIZAHEHTE4HEHEN HEHE: FÜOKESSZPEHEH FH EV +EN EI BETUR 14

h
a

RE
Si

“T
l

REM ##* ZEICHEN INVERTIEREN He
POKEC+41 .14
FORK=@707 > FOREK=OT0? : PE=PEEK¢ 1824+285+EK+40eK 9: [FPE=22T

Esai GOTOS1 ae
IFPE=61 THEMPE=22
LOS2S6+KK+40#K PORE TO+1 824 PE SPOKE [0455296 .7 MEXTKK MEX
a
RETURM

a

Z
i
e
h

id

Z
n

e
f

T

i
m

n
u
m

a

cr

“
T
i
t
o

D
t

te

bo

to

obs

te

e
e

g
e

e
e
e

e
M

o
o

REM ak DATAS BERECHHENM ab

FOKESS9 .S2:POKESS1 S34: SYSSS7: POREQ+21.@:H=@: REM U-THTE
TOo& SPRITE OFF

fe

fi

mt I POR vee Tio?

6@ ACYVISPEEK. 1AS44+H+293—Y9 Meet: [FAC = THEME CY SKY b+

HEAT OPRIHTE CV) ORG Vee HeH+ee HEARTY Hee: RETURM

REM #4 ZEICHEN VERGROESSERN sk
POKECQ+41 14: 0J=@: 00=293 :HRK=32 : [FF 2=1 THEHHK #8?
IFFZ=12THENDO=DO-13
IFFL=1 THENCG= 13484096 : FASS: GOTOSZ6e
Ci=2S8 72 FA=1S

FF 4=8THEHF 4=F RA

Or I=ST07: REM ZEILENZAEHLER

FFL=ITHEHFORESEZZH SEN FOKEL .S1 REM CHARACTERGEHERATOR A

Pa

Po

Po

Po

fo

DI

DE

ee

S
C

o
m

on

B
c
d

P
e

oe

oo

Me

te

r
PS

d
e

a

m

n
d

a

a

a
“

Sac

‘ad
!

"as
"

FFLELSTHEHS2Z=h i ld GOTOSS18

Z=PEERLCGHSHCO-+ 1)

FFL=1THEHNFOREL . en

I

F

I

SEM
I

1 B

POEE LA2ZS+ee404+ 77 . 3° POR ERS

Y
o

du
b

jo
b

ya

FOR J=BTO7 AE=ZZAHDZTT:GETSTE

IFSTFE>""THEHIFASCESTEISSTHENFORE 1 O20H 74H IT 32 POKEO-+-
>RETURH

sgh (HENPURE I BES +1 3400-143 S81 °° PORESS 296+ 1 34+00-~-I+07 .F4:

 POKE1024+13+D0- J+J SHE PORES Se9e8+ 1 34+00-—J+I07 .FA

_HES We IIe Trac: HEMT IO FPLE8 F4s8: POR E441) „2 PORE Lee o+eed ast
*RETL iret

e
t

a

La

dc

Pr

in

Ra

RB

PO
P.

m
o
p

i
.

S
W
R
A

G
o
w

o
o

a

J

REM SRK ZEICHEN SPEICHERN sae

RUSPEER CS 32465 FORYVV=eaTOr PORES Petey obey 8

IFCOS 338 30RCO> 12 rAHDCoc256 THEME =1

a HENIFRW = THEHFOREZIETEZHLDRUCO- 1250 7, SSSR YYD
1335

IFAU=1 THENPOKEZBETZ+CBRCCOH2EI IH WW. Pate bo au UT Ze

HEMT > RETURH

ii
i

fh
Oo

Oo

ta

i
te

te

h
a

te
e

Se

ct

ce

ly

Ca

i

0

fo

=

Ga

Kr

ho

a

Ga

te

ed

ee

ke

TS

ob

od
A

og

Ob

bd

Oo

fa

a

it

oO

fa
t

Te
d

ty

LT

ty

u

i

0

£0

in

i
i

d
e

fd

oo

i

116

FEM ake PROGRAMMGEHERATOR set
PRINT'OM O M EON T bc bK=159° POKES 3800 .@: POKES 3aa1 a
DIMNWH C255: DIMMI C255 >: FORA=GTOSSS WHOA =—1 _ he

td

hd

WO

WG

WO

—
 he u Pe

1

2

3

T1895

4 CH=1 > GOSUBS14: CH=

5 One Peder ste sk PORE SS298¢3512.13:° POKESPE45+514 141° Por
236+5 14 .2

r POKES? S4S+516 144° POKE S52 vet = ae

ST=PEEK CS 3Hb > > YH=PEER ¢ See 1 rer SS THEHGÖTCSEE

FORG=BTOT:KEGI=PEEKC2BE72. SECC+G "NERTG: IFWHECOI>

A
y ITHEH

YHLCOSeZaaE HE rekr+l FORES FE oY IP RY + Hoe SS THEMG
3493

POKEWHC COS JOOS FPORYVOS@TO? > POKEMHSCO9+140 .E OOo HEMT YO: Be Gm

O
G

m
m

40

Wo

CA

Wo

to

N
E
E

T
E
M
B
E
R
S
.

Ti

ee "ROG =PERR SC SBe Pete CO4+G) HERG: BOSCO ene: IFAT «

6

fg

M
d

G
i

od

bb

to

T
o

od

S
o
d

i

i)

ml

un

I: Ky=22649 +43 YRS H+] FOREN N IF RT TARZSSTHEHG

B
A
R
G
h
A
R
B
A
R
L

E
G
U

“
i

FORES in

ta
l

fe
t mi { m
t ML PEER © See oa
k BM: PORES SL .PEER Sage

ania tiene ia THEN

22k CO=PEER CRM +Se2k 9 FOR T=8@Tor ke Lo =FPEER S28 i

S468 o~"

F

7

La
a
POKEML CKO KO: FOR IEQTO? : POKEMI CKO o4+141 00003 HEXTO: RETUR

PO

PO
* MERTI

4:30 PRINT" Il" : ZE=PEEK ¢ S23

S448 PRIHTZC+3° 8" DATA COM. '
-PRIHTE © 72

2456 PRIHT"GOTOS416" > FORM=87T0S > PORES SL+M. 13: HEXTM: PORELSS .18
-PRINT" St" > EMD

S460 2L=PEER CS S081 >: 2L=2bL.-1: IFSLSeTHEMSS 1

S478 PORES 3081.2: CO=PEERK 2284545821 5 FOR

B43+3e2L+1+19 HEXMTI
a420 PREIHT" Aa": ZC=PEERNSDEN

34398 Steere tS a!
EXT:PRINTK«

SAE PRINT" GOTOS46a" GOTOSS25

3516 2C=PEER CS S662 9+ 370: PR IMT" Tele! SC+ i DATA-L" PRIWTSC+e": :

3511 PRINT'S $4 READE: TFA=—-1 THEM See"

3526 PRIHT"S5@ FORK=€TO? : READE: POKE ZEST S+Ase+k . BO HEXTE : GOTOS
+44 n

an | La
Be hen

t
i

me

Gb

od

oo

tg

w
h
e

GE
m
 =

.
*

{ a

-.

5

=,

fe
 Tt

2m

im

=
 a

Fe
vl

et

pt

= om

=
.

ji

= [HEMT I

SBeaTOy Ko LT a=PEEK foo

ner ‚FORESS mas rl

ii. -FORT=87TI6 PRINTER Io Ba ch

PRINT’ 366 PORES 32°. 189 (PORESSS

PRINT" GOTOSS 3a"

FORM=ETO3: POFREE31+M. LE: NEST: FORE13S LEG PRINT"S" END
PORES 3002.4: PORES oe 1

RA=PEER: Saaaz>: IFAfst

PORES 382 .AR

PRINT" elle"
CES SOL . 20+ le

5
 5,129: FORES4S . 1a: TCHR

ta

MTHEMGOTO SESH

f
a
e

I

a
r

n
N
A
L
W
E
R

EL

MN

m
n

ar

Ge

ha

OP

Ra

=

an

2:

1

D=PEEK CS 38189 > FORA=8TOF > PFEINTEIH BEP NESTRA

ou
Re

|
ho

ho

od

Oo

oa

om

in

vO a

117

S578 PRINT" GOTOSS4a" -GOTOSSS5

S820 KE=PEER CC 439+256ePEER (44 9+500+¢(PEER (S31089+PEER (S328 1

io ,
3522 FORJ=EETOPEER C43 5+2568PEER 0 46>

3538 LTFPPEERK« J>=5SAWDPEER ¢ I+1 9 =SSAHDPEER © J+2>=S3THEMGOTOSE28

eh HEAT I

BSA VYHE THT ne Tene o+1 9
555 FRISTEN": FRINT"’POREI-3.8: PORET—-4 0: POKES45 2: PORE4E „"W

LR GBOTMS525

REM eee ROTATE sk
IHFUT"MIEWIEL REÖCHTSDREHUNGEN 21.”
POREP SL .23: SY SS99a3: PRINT SI": FÜRF M

m

Mi

lo

a

En
m
i

fü

is

et

a

La
l

z

Gt

Ka
t

La
t

+
M
m
)

w
m

A
a
m
o

T=VAL CAS > TF OSEaTHEMGOTOS215
BOSUIBS1L SE POREPS1 24: SsREsoon:

POKEQ+41.14:> POKES59 .144:° POR E96

OF MAS => MEXATA
FORB=8TO? >: FORA=" TOBSTEP-1: Meta: IFE¢ B2—-M>=@ THEN CAD =H CF

an FH 10RDS3THEND= 1

22: S4S595?: FORC=1TOD: FORA

=

fe
r

Oo
h

0.
3

TE

fa

ee

A

fe
r

ee

i

4 :

IFC=1450R¢ JORMDL)=@THEMIFLED>=4@THENR=—4@: GOSUB4IBSE
IFPC=170R° JORMDS 2 =@THEMIFLE<=1 146+265 THEHR=+46 > GOSuB4eS

GOTI4AG 1 |
FL=3: POKES5295+LE .PR:LE=LE+R: FR=PEEK CSS2965+LE > RETURN En

Ku
=
taal IFLE=S12THEHIFPEER CS 3272 o<> 191 THENR R256 ‘Wks 32: MD=191°G

Pte TCBs Ki Ebekı E>-M

S830 HEXTA: HEXTE: FORA=8TO? KC AS=HoAD HEATAS FORAS8TOP > ACAD =k

Ae MEATA |

mea FO IRFASETOR ROA =A POA? HEARTA HEAT

SoSH Fes=le:FlL=Le: GOSLE3 ZI: PRINT": FZ=ei: Fleet PÖREÜ+41 ,3:60

TO21 58

4600 FR=it4:-LE=@: R=8: [FER=25 5 THEMPRIMTCHRES« ido

$001 GETCE: JO=FPEER CC Sé 3269: TF CS="" THEHCS=ICHRS i>

4602 CASIO) TPC 1L SPOR JOARND4 > =a THEM IFPLESSeTHEHMR=—2: GOSUB4e

mh

4 TFC=290F ¢ TORHIS >=G@THEMIFLE<SIEBeTHEHR=2 : G0SUB4a5

+ IFl=130RX TORANDIS>=ETHEHNGO=PEER 27543 + LE > HER: eRe YT R=: G0

SEES: GOSUESFENSIA

4 IFFL=STHEMFORESS298+LE si

+ IFFLES& THEHPLES: PORES S 298+ E > FR

+ FL=FL+1

ef
ef

«}

e}

e}

"
I
h

MI
R

Oo

l
e
n

M
o
b
i

hs

oo

G
o

o
m

B
T

es

iA

res

tl
16)

OTs 334
a IFLE=S147THEHPRIMTCHRE © HE SPOREITSETE 21: FORESESTS 151°

QEES43 .4° PORES LAGE. 1: Pete

Lit IFLE=S1STHENGÖOSURAETE: GOTOZ403

15 GOSUE3323: RETURH
407Q PORES Sere .21°POKES8S°6 .LS1°>POK E643 .4

aaa FPRIHT SO PORESL4. 1a: PRTHT PRINT DER EDITOR WIRD HIERDUR

TH GELÖSCHT. ..1"
42421 FEINT"YSIHDOSIE SICHER «JeHo 774°

+aaa GETEF: TFE$e"" THENIEODE

4895 TFR¢=" 7" THEMRE TURN

4436 GOTO see

118

Das Programm ist größtenteils durch Menütechnik

selbsterklärend. Nun noch einige Detailerklärungen:

AUTO: Diese Funktion sorgt dafür, daß neben dem eigentlichen

Zeichen auch dessen reverser Verwandte definiert wird. Man

spart so viel Arbeit beispielsweise bei der Definition eines

neuen Schriftsatzes, da die reversen Buchstaben automatisch

umdefiniert werden.

PROGRAMMGENERATOR: Nach Aufrufen dieses Punktes wird der

erste zeichensatz aufgelistet. Mittels Tastatur oder

Joystick führt man nun auf die Zeichen, die in den

BASIC-Lader übernommen werden sollen. Anschließend drückt

man die RETURN-Taste. Die Eingabe wird durch einen

Farbwechsel des betreffenden Zeichens quittiert.

Unten rechts sind drei Funktionen wählbar:

1. (Pfeil links): Auflisten des 2.Zeichensatzes. Auch von

ihm können Zeichen übernommen werden.

2.(revers M): Zurück ins Menü bei falscher Eingabe.

3.(revers P): Aktivieren des Programmgenerators, der den

BASIC-Lader erzeugt.

Der entworfene Zeichensatz liegt am BASIC-Ende.

119

DESIGN IM LISTING

Eine weitere Möglichkeit, Zeichen bequem und übersichtlich

bietet das folgende,

Die Besonderheit hierbei ist, daß

BASIC-Lader

direkt im Listing als Figur abgelegt

umzudefinieren,

einen herkömmlichen

Bei der Zeichendefinition wird diese

relativ kurze Listing.

das Zeichen nicht durch

abgespeichert, sondern

ist.

Figur ausgelesen und in

Byte-Werte umgerechnet.

Es sollte jedoch nicht unerwähnt bleiben, daß diese Art der

Zeichendefinition etwas langsamer ist als ein herkömmlicher

BASIC-Lader,

Auf der anderen Seite

da die Bytewerte erst errechnet werden müssen.

sind die Vorteile zu sehen: Es ist

Fehler durch falsche

Zahlenwerte können ebenfalls nicht auftreten, da das Zeichen

wesentlich übersichtlicher, und

ja in seiner äußeren Form eingegeben wird.

i| FPEIHT"I BITTE WARTEN!
HUTE 1"

18 PORESS 334.4: POKEL .S1
13 FORKR=aTo4eass
24 PORES SP 344+k

HEART

PORE 1.35: PORE SS 334 |

PORES 322 -PEER S322 > AHDHOTSORS

POKESG37°6 .196 °° FPORE64S .a#6é4+4: PRINT"
READAS : [FAS<> "DESTGH" THEHGOTOL G&S
FREADBS : BE=LEF TS BRS .1>

PRIHT' sy". BS
CO=PEER CSA 76 >

FORK =aTO? > READS

IFC$="ENDE" THEHFRINT"? MISSIHG
¥#PEER CS) EMD

TFLEH SCS 9S STHEMPRIWT"

ooo > EMD

FORIJ="TOBSTEP-1 KS=MI DSC .8-J.19° 1F eR S=":

HET I: PORES SY s44+38C0+k . BY BY: HEX TE

REARDAS: [FAS="ESTGH" THEMGOTOL Le

EOP TERVORGAHG BEMHCETIGT a En. 1 MI

sPEBRR CS S245+K 3

ji

STATEMENTS IN"; PEEK CSS i
 fee

Er en
“Ss TOO MAW SIGHS TM" PEER CaS 3 +e5oe

i THEMB Ys Blot

SG
s
h

M
A
T

B
L

|

i
h
m

fe
e

e
e
e

TE

et

E
e
e

IT

LT
E
A
D

z
z

hh

m

Z
t

n
n

120

DATA DESIGH.A

TAT Ae eee

DATAR «ww ee et
DATA «ew eH

DATA oe eB

THAT AR ow oe
TIA TAR 0 we

DA TAM 6 wn ot

id
 O
d

do

Od
 o

o
0)
 O

o
Oo

Od

A

A
Po
 P
o

bo
Fü
 P

l
W
a
b
i

¢
P
w

M
L

G
d

wh

oh

bh

o
o
h

ee

E
E
E

T
E

DAT Aa ee

TATA DESIGH.B

TATA RHR
DATA ee

DATA a

TATA Kon

DATA | RE.
DATA OR eee ol

TATA Benn ot

DATA ERE
DATA ENTE

Wie Sie dem Listing entnehmen konnen, steht am Anfang in der
ersten Datazeile der DESIGN-Befehl- eine Zeichendefinition,
gefolgt von dem Zeichen, das verändert werden soll.
Anschließend folgen die acht DATA-Zeilen, die die äußere
‘Form des Zeichens beinhalten. Ein Stern steht dabei jeweils
für einen gesetzten Punkt.

ZUM THEMA MULTI COLOR...

Sicherlich werden Sie die Möglichkeit kennen, Sprites im
sogenannten Multi-Color-(MC-) Modus darzustellen: Die
horizontale Auflösung nimmt um die Hälfte ab. Zur Gestaltung
des Zeichens können jedoch gleichzeitig drei Farben benutzt
werden. Auch selbstdefinierte Zeichen lassen sich im

121

Multi-Color-Mode darstellen. Wichtig hierfür ist das

Register 22 (Steuerregister 2) des VIC. Dieses Register

(genau genommen das 4.Bit dieses Registers) entscheidet

darüber, ob Zeichen in MC-Darstellung abgebildet werden oder

nicht.

Mit folgender Zeile schalten Sie den MC-Mode ein:

POKE 53270, PEEK(53270) OR 16

Durch

POKE 53270, PEEK(53270) AND NOT 16

gelangen Sie wieder in den Normalzustand.

Typische Erscheinungen des MC-Modes: Normalerweise stehen

Ihnen 16 Farben zur Verfiigung, in denen Zeichen auf dem

Bildschirm ausgegeben werden können. Im MC-Mode schrumpft

diese Zahl zunächst auf acht Farben. Es sind dies die

Grundfarben schwarz bis gelb. Verwenden Sie im MC-Mode

andere als diese Farben, so werden Sie die damit

ausgegebenen Zeichen auf dem Bildschirm kaum wiedererkennen.

Sie sind eckiger und bei manchen Farbkombinationen mit einem

Schatten versehen.

Im MC-Code ist ein gesetzter Punkt nicht mehr gleich einem

gesetzten Punkt auf dem Bildschirm. Vielmehr werden jeweils

2 Punkte nebeneinander zu einem Paar zusammengefaßt. So

ergeben sich insgesamt vier Kombinationsmöglichkeiten:

00 = Farbe O Hintergrundfarbregister O Adresse 53281

01 = Farbe 1 Hintergrundfarbregister 1 Adresse 53282

10 = Farbe 2 Hintergrundfarbregister 2 Adresse 53283

11 = Farb-RAM Zeichenfarbe Adresse 646

Wurde eingangs erwähnt, daß sich im MC-Mode nur noch acht

Farben darstellen lassen, so ist das nicht ganz richtig. Es

122

lassen sich im MC-Mode normale Buchstaben mit acht Farben

ausgeben. ö

Zusätzlich können acht MC-Zeichen ausgegeben werden. Dabei

hat nur das Farb-RAM acht verschiedene Farben zur Auswahl,

die übrigen Farbregister können nach wie vor auf 16

verschiedene Farben zurückgreifen.

Im Folgenden finden Sie das überarbeitete Listing. Mit

diesem Programm wird der DESIGN-Befehl erweitert: Es steht

nunmehr auch der Befehl DESIGN-MC zur Verfügung. Mit ihm

lassen sich Multi-Color-Zeichen entwerfen. Ein mit DESIGN-MC

entworfenes Zeichen sieht dann beispielsweise so aus:

300 DESIGN-MC,B 1=Farb-RAM

310 DATA 1111 2=Farbregister 2

320 DATA 2..2 3=Farbregister 1

330 DATA 2..2

340 DATA 3..3

350 DATA 3..3

360 DATA 1111

370 DATA ENDE

Hier das erweiterte Listing:

1 PRIHT' BITTE CA. 1 MIHUTE MARTEH (°° POoKESd6.6
1 PORES 334.8: POKEL 54
1S FORK =8TO4a95

za PORESS S44+k . PEER CSSe4o+k 9
ao HEXT

Sh PORE] OSS PORE Se Soe 1

„ia FORE SS2°2 .PEER CS S272 > AM DOTSORS

FOKESESTS 196: POKES4& .Sa8444: PRINT"
READAS : IFLEFTS< At .69¢> "DESIGN" THENGOTOL ae
LLSa: MM=?
IFAS] "DES IGH-MC" THEMMC= 1: Lod: MiM=2
READES : BS=LEFT#CBS .1>
PRINT" i" 5 Bs
CO=PEEK < 501763
FORK=ATOT:READCH
IFC#="ENDE" THENPRINT"? MISSIMG STATEMENTS IH" SPEEKIS2>+Z
a

IFLEM (C$ 9<>LLTHENPRINT"? TOO MANY SIGHS IN"; PEEK C632+256
ER CG4 >: END B

e

e
e

t
t

o
T

D
I
T

B
R

|

a

m

Si

He

oe

S
s

ee

123

„2

a

iT
; ~ an
de

FOR J=MATOBSTEP- 1 ES=M Lod wl. do TPR E=" 8" THEMBY = Byer é

v u
.

5
IFMC=8THEHGOTOL TS
[FRS="1"THEMBYSBY+2t (2H 3 BYR BY +S ok I4 1 9
[FR S= "2" THEHBY SEY +27 0 Sa 9
[FES= "3" THEHBYSBY +27 SHI 419
NEXT: POKES? S44+GeC0+k |B: By HERTE
READAS > [FLEPTS cag 692" TES IGM" THENGOTOLEL
POKE S327 PEER CSS27@0R16: PORES46 .8: PRINT" BEBE": REM MC

Mm

Mi

x

tg

f
e

fr
et
s

Ju
le

fm
t

fes
wte

fo
et
us

fe
es

tow

i 3

a
,

L
i

W
a
a

H
U

h
i

P
e

D
o

h
i

B
i

R
a
e

a
SD

M
a
n

dh

dh

ih

IT

a

a

ee

si

+,

‘an
che

DATA DESIGH.A
THAT T Fea ae ae oe
DATE onen HH
DATFIE ee ee
TATA. eee HH
TATA. ee ee
DATE. nun.
TAT FR ee a
TAT Fa ae
DATA DESIGH—MC .B
DATA 1111
DATA soos
DATA SS
TATA
TATA ae

DATA 2EDE
DATA 1iil
DATA nun
DATA EHDE

m

mh

Ge

i
ct

cak
e

g

MG

i

he

ho

bo

ko

EEE

LE

Po

Po

Po

Po

PO

Bo

Po

Po

Po

Po

TRANSPARENTE DRUCKEN LEICHT GEMACHT

Das nun folgende Listing ermöglicht das Drucken eines

beliebig langen Transparentes.

Das Prinzip ist recht einfach: Der Text des Bandes wird

eingegeben. Anschließend wird der Vergrößerungsfaktor

gewählt (Breite beliebig, Höhe max. 10)._

Nun wird Zeichen für Zeichen des eingegebenen Textes

ausgelesen. Die äußere Form wird aus dem ROM gelesen und mit

den vorangegangenen Angaben vergrößert.

124

Letztlich wird das Zeichen gedreht, so daß auf dem Drucker

ein endlos langes Transparent entstehen kann.

Doch nun das größtenteils sich selbst erklärende Listing:

S PRINT": POKES 3280.14: PORES 3281.14: PORK E646 1
REM #380: TRAHSPAREMTORUCKER 84% |

PRINT" TEHHSFAREHT-DRLUCHER Bun]
FRINT"DREUCKER EIHNSCHALTEH Velslalsl'"

OPEHSF . 4

THPUT" BRET TE". Be

THPUT"HOEHE" > Hi

PROMT a"

PORESLTS4 6-21 (PORESL IOV SYSSar ae > PORE fee 0
GETT$: IFTF="" THENZE
IFPEER SC 2h o THEM 27

PORE SH4.1°> TF TS=CHRE «13> THEMPR IMT Ook." EMT

RS=hS+7$°> TFLEM RS o> SS THEME E=RTGHTE CRS CLEMO RE o—1 33

PORES 4.28: PRIWATO PRIHTES > TEV Ye THE te i tod

TH=@: [FPEERCSS2729=23THEHTH=256

PORES46 .14:° PRINT S's Té CO=PEER SC aed o PORE G46 .1
REM 44% ZEICHEH AUSLESEN *4%

POFRESES324 MU FÖOREL 51
FÜRA=ETOT

CHEFD=SFEERLSSEHSH DECO A+ T} DE Se

HEATA.

PORE S35: PORE SS 334 oi .

FET +e ZEICHEN DREHEM see

FORASE TO? RA =a HER T
FORA=8 To

FuRB="TOBSTEP—1 : Wet BE: IFCHEFDS=MTHENCHE FD SCHE ADAC KT ED
rrBo+e = TA
HEATE >A

REM #8* ZEICHEN AUSGEEEH #8

OR T=aTOo7 Be" FOR T="? TORSTEP-1 i Wt=k Doane To

i

mi

i

me

2
PG

e
e

e
t

d
P

RI

TG

fh

Be
P
e
t

-,

15
1

m
f
,

CE

LP
P

UT
E

S
I
T

IN

E
i

N
e

n
n

d
i

ia

R
e

a
h

N

F

& TFT THEHFORU= 1 TOHO Den" NERTUGOTO2SE
= Fökl=1 TORO Eee OY OME RTI

= HEAT I Ree" "9 OF ORUE LT TORR : Adee e+e HER TU

= Let EN« Meo LO TP RICHTET 15=" "THEMAYE=LEP TECHS LDS
T0255

PRINTH#HS wave HEATIOOGOTOSS

EMT my
!

a

mj
 i
an

i

mi

me

me

Pa

fer

3

125

MACRO-LAUFSCHRIFT

Das folgende Listing gestattet es, einen in

gespeicherten Text als Laufschrift auszugeben.

Das Besondere dabei ist die Größe dieser Laufschrift:

Zeichen sind um den Faktor 8 vergrößert!

FOHRESFZER 1: PFÜKES3ZSL 1 FPOKEEd4E „E FRINT"I

IHFUT" TERT": Tht: THES THS+" "

PRINT S FPORZ=1TOLEM* THs >

AS=MIDE¢ THE. 1 2

GOSUELARECNERT 2
EMT

m
G

en
,

‘on
de

sl: nn "SS AF: CO=FPEER (l@249 > PORESB46 .6
aaa SPOKE DT JG dl

1%

T

=

ı
m ni

Ä ns

1
h

’

noe 19 ePEEK Sse s+ CBC +

HES TI

FORE] .S5: PORE Sea 334 oi

FoRe= > TORSTEP—1

FoR Y=a To?

R=locYIAHDZTS: IFATHENHME SEHE ta GOTO

MET Dt

HEATrT: F=P+1l

REM

PRINT Sy". > FORM To?

ITFG> 3Y THEMG=32

PRINMTTABS S8—-lis Wee blo

HER=TU: Ger 1

TFR<s9 THEH4 lee

FOR T=aToy?

LE=LENM bet To-do To =k IGHT ES 42,25 T>.LE?>

HEAT T

HEATH RE TURE

bb

de
i

fec
k

fe
n

fec
t

fh

fee
t

fee
t

fe
d

ee

te

p
T
,

fk

[C
H

Y
B
R
R

EL
L
f

fe

we
ts

Wo
r

ee

a

a

a
ae

ee

s
t

a

me
fh

a

ae
a

S
e

e
a

a
a

Gr

a

a

s
e

” ‘o
ut
s’

S
A
M

h
i

M
i
e

A
e

ih

ii

B
ü

h
e

n
i

&
 fh

Lf
TX$

Die

In BASIC ist das Programm natürlich reichlich langsam. Das

Listing soll Ihnen jedoch als Anregung dienen und das

Prinzip veranschaulichen. Übertragen Sie das Programm doch

einmal in Maschinensprache !

126

8 BLOCKS FUR SPRITES

Was bei der Programmierung von Sprites unangenehm auffällt,

sind die wenigen zur Verfügung stehenden Blocks, die zur

Abspeicherung des Äußeren der Sprites erforderlich sind.

Es sind lediglich diese vier Blocks, die für diesen Zweck zu

gebrauchen sind:

Block 11 Add. 704 - 766

Block 13 Add. 832 - 894

Block 14 Add. 896 - 958

Block 15 Add. 960 - 1022

Erschwerend kommt ferner hinzu, daß die Blöcke 13-15 im

Kassettenpuffer liegen, der während des Programmablaufes im

Normalfall allerdings nicht benutzt wird.

Diese vier freien Blöcke gewähren nun auch nur die

Definition von vier verschiedenen Sprites.

Um sämtliche acht Sprites mit verschiedenem Äußeren auf dem

Bildschirm abbilden zu können, muß also noch Platz für

weitere Blöcke geschaffen werden.

Dies erreicht man durch Verlegen des BASIC-Startes. In

unserem Beispiel werden so acht Blöcke, 32-39, frei.

Man ist so auch vom Kassettenpuffer unabhängig.

Der BASIC-Start wird von Adresse 2048 nach 2560 verschoben:

POKE 44,10 (Adresse 43 des Vektors bleibt unverändert,

neue BASIC-Startadresse = 10*256)

POKE 10*256,0 (0 an BASIC-Anfang)

NEW (Pointer setzen)

Wie aus dem NEW-Befehl bereits ersichtlich wird, miissen

diese drei Anweisungen vor dem Laden des eigentlichen

Programmes eingegeben werden.

127

6. DAS SPIEL

wir wollen Ihnen jetzt an dem Spiel ELEVATORBOY einen Weg

der Programmierung erklären.

Anfänger können daran lernen, wie man ein längeres Spiel

selbst programmiert. Fortgeschrittene können einzelne Tricks

übernehmen. Vielleicht entdecken ja auch Sie etwas, daß Sie

bei Ihrem nächsten eigenen Spiel verbessern können.

Doch vorher erst eine kurze Spielbeschreibung. Diese

Spielbeschreibung soll später in ähnlicher Weise im Spiel

erscheinen:

Sie sind Page in einem Hotel und sollen die Schuhe zum

Putzen aus den Zimmern holen. Für jedes Paar erhalten Sie 1

DM Trinkgeld vom Gast. Wenn Sie über 50 Schuhe beim Portier

abliefern, erhalten Sie ein sehr hohes Extra-Gehalt.

Aber sobald Sie einmal falsch auf den Paternoster gesprungen

sind, fallen Sie in den Fahrstuhlschacht und verlieren alle

Ihre Schuhe.

Sie bewegen sich mit dem Joystick an Port 2. Hoch und runter

hat dabei keine Funktion. Drückt man auf den Feuerknopf, so

ändert sich die Fahrtrichtung des Paternosters. Beim ersten

Mal ist es sehr schwer, richtig auf den Fahrstuhl zu kommen.

Sie müssen dabei im richtigen Moment den Joystick in die

entsprechende Richtung drücken.

währenddessen läuft an der Seite ein Bonus in Form eines

langen, senkrechten Streifens ab. Bevor der Bonus ganz

abgelaufen ist, müssen Sie zum Portier. Danach erscheint ein

neues Bild, und Sie erhalten einen neuen Bonus.

Wenn Sie nicht vor dem Ablaufen des Bonus den Portier

erreichen, wird Ihnen ein Leben abgezogen.

Zuerst einmal stellen wir ein "Grundgerüst" des Spieles auf.

Dieses Gerüst ergänzen wir nach und nach, bis schließlich

das fertige Spiel entstanden ist.

128

Im ersten Listing ist die Grafik sehr schlecht. Besser wird

sie erst, wenn wir in dem nächsten Schritt die Zeichen neu

definieren.

Da Sie wahrscheinlich aus den Zeichen jetzt noch nicht

schlau werden, sagen wir Ihnen, was sie später einmal

darstellen werden:

ZEICHEN BEDEUTUNG

/Pound/ zimmer mit einem Paar Schuhe

1 Geschlossene Tür

Spieler (SIE)

% Portier

. Paternoster

Und noch eine Tabelle:

Die Reihenfolge der Ergänzungen. Diese Reihenfolge ist auch

"eine Skala für die Wichtigkeit der einzelnen Punkte.

(0. "Gerippe")

1. Grafik

2. Sound

3. Anleitung

4. Anfangsbild

DAS GERIPPE

Das Gerippe soll nur das Wichtigste enthalten. Also müssen

wir genug Zeilen als Zwischenraum lassen, um später noch

Grafik, usw. mit hineinzubringen.

Wir fangen auch erst bei Zeile 100 an, und lassen so Platz

für das Anfangsbild. Zum vernünftigen Spielen ist dieses

Listing noch nicht geeignet. Sie sollten es trotzdem einmal

129

starten, um zu sehen, wie das Spiel sich spater entwickelt,

und um eine ungefähre Vorstellung des Ganzen zu bekommen.

Das komplette Listing ist am Ende des Kapitels noch einmal

in "einem Stück" abgedruckt.

Doch zuerst das Listing des Gerüstes:

6 PRINT SE" : PORES S2e1 2
? BER=1G24:R=S4272
3 MeBBE+S32: D=BBE+487: Geda: Ele: PUN=R
ig FE=s1ä:Lie3
11 PRINT" Beieieinieieinieieie] ELEVATOR Bü"
12 IFPEERKSS83200¢>111 THENI2

He EILDEL >=" ITTEER TITEKE TTEET EEEEE EEEEEN

1a BILTELZI=e" ITTITTE EEEEE ETEEE EEEET EEEREI

Sa BIL iso=" ITEEEE TTTEE KEEEE EREEE EEEETI

za BILTEc4o=" IEEEEE EEERE ETEEER EETTE EETTTI
4a BILDELSIe" ITEEER EEEEE EREEE EEEEE teptr i
an BILUS Gos" JEEKEE EETTT EEEET EEEET EEERTI

BE BILD Pas" IEESEE ETTEE EETER EEEETOCEKETTI

Te BILIELSD=e" lEEEEE OTTEEE EEEEE EETEE EETTTI

BILDELFD=e" JEEREE OTTEEE EEEEEOTTITTE EEELE!"
PRIMT "a":

oe oe ee ee se ett et ttt tte tt te Fre DRT | geet te ee G
no

co

PRT RT ptt titel

+ ge ge oe et ee tte tgs tte PRCA)" [Sl gee eg

FORT=i1 TOS

MINT ORD 1 eo +1
FRIMTEILDE chlo
FEIHT" fal eet tee fg

HEAT

FRIHWT ta ve yi
FEIHT'I Ve eee fee Ge ee

FFINT'R ee

FORT=BEB+ 5S TOBBB+917STEPAR: PORE JSS: POREI+E .8 HEMT

PORES o> PORE e+ Oe PORE A+] SS: POR ER +S 1

FREIHMT" _ HI-SCORE "“SHIS;

PRIWT oo bide a "
GOSLER SAG

FORT=1TOFE > HET

FOKED. 32 FOREDH+S „32: FPOÜHRED + 12.32: FOKED+123.

TFPEER . D4+G2=31 THENG=—-G
D=T+ö

FORED 34: PÜRED+E . 34° POREDI+12 .34:°POKRED¢1& .:

IFÜOL=ETHENZAGE |
PORES . Set) Meee

TFRPEER Ho 31 THEMR=24+46 : GOT OSE

PORES .35°> PORES +E 1A
BO=BO-a Bak

Wi

©

fea

Tea

fea

Ta

Tea

Pl

Pi

P
e
e

e
e
t

re
be

bs

[Fi

Te

MG

ee

a

E
o

P
P

ee

ee

a

il

te
t Po

is
t

aa
y

ta
i

ha
i

Mm

ME

Se

ma

Mm

A

a

=.

i
zu

m,

"a
nd

e

A

ir

mi

mi

ho
r

ee

M
m
)

LE

o
d

PR

Pe

n
i

I

e
m

B
a

,

ws

ch
e

mi
 a um
)

m

et

=

tm

—_ kei

[

+

Eu

mi

+

x

kc

ke
 + $5
3

a2

fs

ee

“
T
i

int
 | H 4

eb

;
 x m m ln

iy

i

PH
 iA

Pi

Pi

fü

me

e
e
e

e
e
t

et

f
f

ig
i GOTO 1 ae 7
,

ba
st

?

130

vr
)

D
t

mt

rh
:

ra
e

B
a

Eu

fa
ch

i

i

fe me
t 53

t

3

at
e

7
%

ta
i

t
7
.

fo

is
t

ee

we
e

=~
, ex

auc
h

fe

Ri

Mm

io

fo
d

fs
)

3
es

fs

4
3

Ao

he

. 1
an
te
s!

..

ba
?

IM

U
O

op

1h
;

yi

ad

iT
;

?
N

r
i

bs
?

ta
t

wi

ject
s? 3

i

:
re

t
if

n
t
 ot

is

I

a

“i
mm

et

Ey
:

f

Qt

02
3

0

Gd
ob

ad

hd

ti

fo
r

Wi

Mi

me

mo
:

Ka

mw
oo

if

0

mi

t x

K
r
]

i
l

de

ee

RD

PR
TE

cc
‘

n
e

N
r

"
,

fa
!

ta
?

ta
d

ba
b

ba
i

da
d

E
r

iR

1%

o
r

er

a

A
D
D

AD

AD

AD

AD

fa
t

td

mo
ee

ee

ue

fr

LT

ER

a

me

md

p
i

i
a

i
ma

TH

ch

‘

Lu

GE

U
e

Pe

ee

fe

L

ej

ig
h

ig
h

ig
h

hi

tt

ti

SD

AD

AD

AD

AD

AD

AD

dl

2
ID

K
E
I
N
E

om
,

Bi
z ‘ee

ti

3%

Ef

tg
p

tg

hl

i
v

IFFEER DEZE = ZVTÜHENH=M: RETURN
IFPEER © Se sbi oli La THEM See

TIFPEER © 283 Sat = 1 eS THEM = — 1 GOTOsSase
TFREER Se 32h] LSTHEM Y= 1 GOT OSS

RETURM |
IFPEER CH +4'9=31 THENY="'-40: [FPEER C449 =2 1 THENSa08
[EPEEK C844 9=28THEMPUMSPUN+1 GOTOSL80
LFPEER CS+4 9=32THEMRE TURM
IFPEER CM+4! 9 =3@THENRE TURH
IFPEER CM+4 9 =340RPEER (8444489 =34 THEHS9 86
IFPEERCH+4 9 =3F THEMSeag
IFPEER CS +4 9 =S2AMDPEER CS +4'4+409=22 THEM: POKEX 32 Nee 50T

i

IFPEEK oat = SAP PEER Cay +4 = 1 be THEM 1 ae
PORE se

Beeb OL st

PORES CSS PORES +E et

PRIM TO HEUER TES SPUH+TRS OPRTHT! © -SCHUHE Se" 5 PL
FETLIEH

IFH=STHEHG=-G:H=1

PE TLR

FESFE-1: TPPOUMS Se THEMTR=TR+PUH : GOTOSS 1a
TR= :TE+IHTEPUOHSEN BO 5

B= BRE+ S38 D=ERBE+427: Geda Ele: PlnNed
GOTO ee

PORES oat

et

IFPEER © sho =34 THEMA=4-4e > TPPEER {>= 34 THENMSaee
ML=1

PORES . SS: PORES +E .

RE TUR

TE=TE+FÜH:LT=SLT-1

IFEO=: 1 THENGOTOPSZE

FOHER 22: Beat IFPEEENH+4R) = 31 THENFIAN
FÜHREN . "PÜRER+R 2: GOTOSE1S

PORE .

Bose > FOR [= Does + PORE THSG+ BRB S? Lee HEAT Ole
TeBRB+4 39 (Gea: Bos: PU

IFLI=8THEHSSae

B= BEB+S 38° PORES SS PORER+E A GOTOLSS
PORES 39° PORER+R .

BOTOSH28

PRIAT' °s -PORESSSS2.1 |
FRITH " eleieteleleteteyelete tele] DU HAST “GS TR+FPURG "Ss VERDIEH

i
iG

OG

TFTR+PUHSH TS THEMH I S=TR+PLH
Tris: PUP

GETAS: IFA¢SS ""ORPEER (Se 3289=111 THEME
GOTOSSSe

131

Es stimmt nicht ganz, daß das Listing erst in Zeile 100

anfängt. In den ersten Zeilen stehen der Name und die

Definition der Variablen. Aber dazwischen ist noch sehr viel

Platz für das Anfangsbild. In jedem Programm sollten die

Variablen in den vorderen Zeilen zum ersten Mal definiert

werden, damit man schnell eine Übersicht über sie bekommen

kann. |

Tabelle der wichtigsten Variablen (nach ihrer Wichtigkeit

geordnet)

VARIABLE BEDEUTUNG

X Adresse, in der sich der Spieler befindet. Am

Anfang enthält X den Wert 1560. Das ist etwa

in der Mitte des Bildschirm-Speichers.

BBB Adresse des Bildschirmspeicher-Anfanges. Die-

se Variable muß verändert werden, sobald

der Zeichensatz geändert wird. Die Variable

dient hier als Zeiger und ist eine Konstante,

die sich nicht verändert.

R R ist ähnlich der Variablen BBB. Sie enthält

die Differenz zwischen Bildschirmspeicher-An-

fang und Farbspeicher-Anfang. Diese Variable

(Konstante) muß ebenfalls bei Anwendung der

neuen Grafik-Zeichen verändert werden. Außer

dem vereinfacht sie die Veränderung der Farbe

unter einem zeichen auf dem Bildschirm. will

man beispielsweise die Farbe unter der Spiel-

figur ändern, so braucht man lediglich einzu-

geben: POKE X+R, (Farbe des Spielers).

D Adresse des ersten Paternosters. Die weiteren

Paternoster werden mit Hilfe von D errechnet.

Der zweite Paternoster ist bei D+6,der dritte

bei D+12, und der vierte bei D+18. So braucht

nur eine Variable erhöht zu werden und, Pro-

grammzeilen werden gespart.

132

BONUS

TR

PUN

LI

FE

Die Variable für den Bonus. In langen

Spielen sollte man die Variablen-Namen so

wählen, daß man sie später wiedererkennt,

d.h., der Name der Variablen sollte die Be-

deutung erkennen lassen,die sie darstellt.Da-

für kann der Name der Variablen ruhig etwas

länger sein. |

Y ist eine Hilfs-Variable für die Koordinate

des Spielers.Sie wird beispielsweise benutzt,

um zu prüfen, ob das nächste Feld frei ist.

TR ist das erreichte Gehalt.

PUN ist die Anzahl der Schuhe, die man bei

sich trägt. Nach einem Fall in den Paterno-

ster-Schacht wird diese Variable auf Null ge-

setzt.

LI stellt die Anzahl der noch vorhanden Leben

dar. Bei jedem Sturz oder bei Ablauf des Bo-

nus wird diese Variable um Eins erniedrigt.

Nach Verringern dieser Variable wird über-

prüft, ob sie kleiner oder gleich Null ist.

FE ist die Arbeitsgeschwindigkeit. FE beträgt

anfangs Zehn. Die Arbeitsgeschwindigleit kann

kaum mehr erhöht werden, aber als Anfänger

bei diesem Spiel können Sie FE erhöhen, um

damit die Arbeitsgeschwindigkeit zu erniedri-

gen, und das Spiel zu vereinfachen.Sobald Sie

beim Portier waren, erniedrigt sich FE um 5.

 Gist die Richtung für die Paternoster. Sie

enthält entweder 40 für runter oder -40

für rauf. Zur Variable D für den Fahrstuhl :

wird immer G hinzugezählt. Daraus ergibt sich

die Bewegung der Paternoster.

133

HIS

OL

BILD$(W)

I ist eine Schleifenvariable.Es ist praktisch

in verschiedenen Programmen immer die gleiche

Variable fiir Schleifen zu benutzen.

Man spart Speicherplatz, wenn man im einem

Programm immer die gleiche Schleifen-Variable

benutzt. Aber passen Sie auf,daß eine Schlei-

fe schon abgeschlossen ist, bevor die gleiche

Variable noch einmal verwendet wird.

HIS ist die Variable für den High-Score, die

bisher höchste, erreichte Punktzahl. Obwohl

der High-Score eigentlich nicht wichtig ist,

wurde er doch schon (wegen der Kürze der Be-

rechnung) in das Gerippe eingebaut.

Die Variable H soll verhindern, daß auf ein-

nen Knopfdruck die Fahrtrichtung mehrmals ge-

wechselt wird. Bei Knopfdruck wird die Fahrt-

richtung geändert und H auf 1 gesetzt. H wird

erst wieder auf O gesetzt, wenn der Joystick

in Ruhe-Phase ist. Wenn H=1 ist, reagiert der

Computer nicht auf den Knopfdruck. Auf die

gleiche Weise kann man wie z.B. bei dem Spiel

"FROGGER" die Länge der Bewegung einschrän-

ken.

Wenn OL den Wert 1 hat, befindet man sich auf

dem Fahrstuhl. Sonst ist OL gleich Null.

Zufallszahl für die Erstellung verschiede-

ner Bilder.

Die Variable BILD$(W) kann neun verschiedene

Variablen-Zuweisungen (Bilder) enthalten.Die-

Variable ist dimensioniert und wählt so je-

desmal ein anderes Gesamtbild aus. Je mehr

verschiedene Bilder ein Spiel hat, um so

interessanter ist das Programm.

134

Wichtig fiir die Ubersicht tiber ein langes Programm ist nicht

nur die Variablen-Liste, sondern auch eine Auflistung der

einzelnen Programmschritte.

Aufgabe

un mn cer ee ee es ee eee ese ne eee eee ee eee ee ee ee et cee eS ce ge mun com Gt ame ome au em ame eee em awe fe Ge ane GE ce See oe em oom

Zeilennummer

0-5

6 - 99

100 - 180

183 - 280

1000 - 2990

1050 - 1070

3000 - 3190

3500 - 3510

3800 - 3830

Hier wird später der Zeichensatz einge-

lesen und aktiviert (siehe GRAPHIK).

Dieser Bereich ist für die Variablen-Defi-

nition vorgesehen. Außerdem liegt hier das

einfache Titelbild. Später wird hier auch

das verbesserte Anfangsbild zu finden sein.

Definition der Variable BILD$(w).

Hier wird das Gesamtbild erstellt.

Die Bewegung des Paternosters wird gere-

gelt.

Das ist der Bereich für die Bewegung der

Spielfigur auf dem Fahrstuhl.Diese Bewegung

ist gesondert von der normalen Bewegung des

Spielers.

Jetzt kommt die Lenkung der Spielfigur. Im

Gegensatz zu der Bewegungsroutine im Be-

reich von 1050 - 1070 wird die Bewegung in

dieser Routine durch den Joystick beein-

flußt.

An dieser Stelle wird die Fahrtrichtung des

Paternosters geändert.

Diese Zeilen werden vom Programm ange-

sprungen, wenn die Spielfigur beim Portier

135

ist.

3900 - 3940 Hier steht wieder etwas ftir die Bewegung

der Spielfigur.:

9000 - 9190 Dieser Teil berücksichtigt den Sturz des

in den Fahrstuhlschacht.

9800 - 9890 Hier ist die Endroutine untergebracht. Die

Endroutine wird dann angesprungen, wenn man

kein Leben mehr hat.

50000 - Ende Dieser Bereich ist für die DATA-Zeilen

vorgesehen. Diese Daten dienen der Graphik

und werden auch indem Abschnitt erst einge-

geben.

Die Zeilen für die Soundeffekte sind nicht in dieser

übersicht aufgeführt. Sie werden mehreren dieser Punkte

hinzugefügt. Bei dieser Aufzählung der einzelnen

Programmschritte wird deutlich, wie groß die Abstände der

einzelnen Bereiche sind. Man kann diese Zeilenabstände

nachträglich mit einem guten RENUMBER-Programm herausnehmen.

136

GRAPHIK

Die erste Erweiterung des einfachen Listings ist der

Abschnitt iiber die Graphik. Er ist wegen der vielen neuen

Definitionen der Zeichen und der daraus folgenden vielen

Daten die längste Ergänzung. Aber dafür werden alle Zeichen

bis einschließlich zur neun, also insgesamt 58 Zeichen,

geändert. Sie erhalten ein völlig neues Schriftbild. Mit der

neuen Graphik wird das Spiel gleich viel besser.

Ergänzen oder ändern Sie bitte folgende Zeilen ab:

READA: IF Fie— 1 THEN 1
2 POKES? 344+. T=1+1:G07TO)

3 POKES 3272.24: TPOKESSS76 +148! POKEG4S .196

4 GOTO6
S POKESS2?%e2.21:°POKESéS 76.1 51° PORE64S.4:° EHD

5 PRINT" poten SeB1 SS

Y BBB=3017°6: R=
OGG DATHiZ? ‚127 Sl 22 20.22.5608
SQ@Q1 DATHGEG .68,182.182.126.126.182.68°A

saagz DATAIZE.IZ4.102.129.126.1903. 126.0:

sacga3 DATH6GG .126.162 .96,.162.126.68-0°0

S004 DATA S24 .126.99 ,.99,.99.126.124.8°5

saaas DATALS? .126.96,led 396.126.1227 -.8°8
SHGG6 DATALS? 126.124.9596 .124.128.112 .6°F

SMG@a?y DATASZ.121.112.115.1159.653.31.0:06

saags TATAL15.115.1159.127.127.115.115.0:H

sagt DATAZS,293.23.29.29.29.29.0:1

2419 DATALZT.127.7.7.102,.52.31,20:J

Saaiı DATALIS.119.126.126.126.1135.115.8°K

saalz DATALI2Z.112-112-112-112.126.127 6°

saa13 DATR113.127. tae ley ‚187.99 119,6 r

S4G@14 DATA1G3.115.123.127.127.113 119.0 N
Saa15 DATAG2 .127 ‚113, 118, 113,127 .,82.,9:0

sazıs DATALZE.127.119.127.126.112.112.0:P

at IATAS= ‚127,33; 111.111.12°.82.0:0

zaaiz DATmlece.127.115.127.124.125.119.0R

2319 DATAGS . 126,96 .62,3.63.126 0:3

SHAS TATALS SY ler 33.28.28 28.28 BT

aa | DATH119.119 1190119 .127 127 ,28.@: U

SHE! DATALIS LIS Se Se Soe SY

SHG23 DATALIS.S9.10P . 1a LBP ler. 34.8
—HBe4 TATASS .119.54 .62.62.119.99 8°54

SHH DATA113.53.31 14.14.14, 1.07

aMBee DATALEZF.E3,7,25.112.128.127.0: ZZ

„adzrT DATAZIA. 24.132.132, 192.192. 240,24:

sagz23 DATAA.25.102.102.102.102.,365..M:E

3323 DATALF,15.3.3.3.3,15.19: 3

SH434 DATAIZE.125.1265,.70.52. 126,126. 126: 7

137

i
i
t

mi

a

hl

=
mi

my

Qa

ta

fat

[Q
R

a as
!

LA

I Nees” Vane’ *eve® Sen

r
i

m1

i
1

gl

N
&

Cae” Fans! Yan Yuan Yan‘

Sa
Sr
San
Seas
Ei
Sa
Ei

a

u

mi

P
h
P

L

R
R
L

L
E

ad

en

m
 and
,

Kr
 } i

L
A
L
A

LA

L
n

i

Mr

i

a

Te

im

mo

5 —,

ENS 1

SHEA St

SSS

AS

ASS

SASS

AS
Haag

i
r
a

DATAZ33 .2239 235.08,
LDATAG 4.4.8.8 ,8.68,
DATAZSS 2,255 ,9,25
DATA2ZSS ‚255 255,18
DATAG 68 .60,24 ,255
DATALE 1; SSBF SPS
DATHS4 . 24.24 ac
DATALZF 254, 127,285
DATAG .24.24,.128.12
DATH24 .48 96 96 S68
DATA24 12 06.6.6 06,
DATA 72. 72-16.16
DATAG.S4.68.126.12
DATAG 4.8.4 .8,12.2
DATAG.@.8.126.126.
DATAG 2.6.8.0 .56 .5
DATAG 66.12.24 .24 .4
DATAG .24.68.182,18
DATAG .12.29.60.12,
DATAG .12.18.4.8,16
UATAG 34.2 .452,18 5:
DATAG.16.16.16.28,
DATAG . 34 .16,.28.2.2
VATAG.12-18.16.28.
DATAG 28 .19.4.8,16
DATAG.12.18.12.18.
DATAG 624 36 628 4 63

SalveSloe

i

Ms SS a

“4 68,608.65

set BE 35

= S35 ,85.1

126.255,

4.127.204

Beth,

35.45,

12.24:>

SH .16 Se

6 66.60.84:

eS

RA.

mots,

S98 .B

sb 4

l2.12.8:1

30.8: 2
34.43
at 4 ts

128 OS

13,12 .8°6

516.

ls.i2.@:3

Bed 4°39

138

u

|
4.68

4: ¥
4 ai

=]

>
g
a
s
 [eu
m
d
.

»
B
i

-
-

=,

7
%

rm
!

Wenn Sie jetzt das Programm starten, müssen Sie erst etwas

warten, bis der Computer alle Daten eingelesen hat.

Für das Spiel werden nicht alle 59 Buchstaben gebraucht. Wir

haben diese DATAs einfachheitshalber trotzdem abgedruckt. So

können Sie den Zeichensatz auch für Ihre eigenen Programme

benutzen.

Im Listing erscheint hinter jeder DATA-Zeile ein Zeichen. In

dieser Zeile sind dann die 8 Daten des neuen Zeichens

enthalten.

Die Graphik in dem Spiel "Elevator Boy" besteht nur aus den

Bildschirmcode-Zeichen.

Eine weitere gute Möglichkeit, eine effektvolle Graphik zu

erstellen, ist Sprites zu benutzen. Da aber in diesem Spiel

keine Sprites benutzt wurden, soll in diesem Kapitel auch

nichts über Spritegraphik stehen. Das gleiche gilt auch für

die High-Resolution-Graphik.

Haben Sie das Spiel schon gestartet, wollen aber wieder in

die normale Graphik zurück, brauchen Sie nur

RUN 5

einzugeben... Das erspart die vielen POKE-Befehle. Wenn Sie

versehentlich RUNSTOP/RESTORE gedrückt haben, können Sie

ebenso verfahren, müssen aber außerdem danach den Bildschirm

löschen.

Wollen Sie das Programm danach wieder mit den neuen

Graphik-Symbolen spielen, geben Sie bitte

RUN 3

ein. Jetzt wird der Zeichensatz nicht noch ein zweites Mal

eingelesen. Dadurch entfällt die lange Wartezeit vor dem

Spiel.

Man kann in Spielen auch besondere Graphikeffekte einbauen.

z.B. ist beim Sturz in den Fahrstuhlschacht ein Kreuz unten

139

im Schacht zu sehen. Zusätzlich wird dieser Effekt später

mit einem Sound-Effekt ergänzt.

Bei der Farbe der Figuren, des Hinter- und Vordergrundes

sollten Sie Ihre Phantasie spielen lassen und qgute

Farbkombinationen auswählen. Zu beachten wäre nur, daß die

Farben auch auf einem Schwarz/Weiß-Fernseher zu

unterscheiden sein müssen. Rot. und blau sind beispielsweise

auf einem Schwarz/Weiß-Fernseher nicht zu differenzieren.

SOUND

Wenn Sie die Graphik erfolgreich ergänzt haben, können Sie

jetzt zum nächsten Abschnitt kommen - zu den Sound-Effekten.

Immer dann, wenn etwas Besonderes passiert, kann man einen

Sound-Effekt einbauen. Unter Sound-Effekten versteht man

Melodien oder auch einzelne Tone. Wenn Sie gelegentlich

einmal in einer Spielhalle waren, ist Ihnen diese

Untermalung sicherlich bekannt. Auch in dem zum C-64

beigelegten Handbuch sind einige kleine Sound-Routinen

abgedruckt.

Beim Spiel "Elevator Boy" soll immer dann ein Ton erklingen,

wenn der Spieler ein Paar Schuhe nimmt, und wenn er in den

Fahrstuhlschacht fällt. Dafür ergänzen Sie bitte wieder Ihr

Programm um die nachfolgenden Zeilen:

250 POKE 54296, 15

252 POKE 54277,31

254 POKE 54278, 128

256 POKE 54272,1

260 POKE 54273,1

3053 IF PEEK(X+Y)=28 THEN POKE 54276, 129

- PUN=PUN+1:GOTO3 100

3180 POKE 54276,0

9110 POKE 54277,31

140

9112 POKE 54278,255

9114 POKE 54272,0

9116 POKE 54273,2

9118 POKE 54276,33 |

9120 FOR I=1 TO 500:NEXT I:POKE 54276,0

In den Zeilen 250 bis 260 setzt der Computer die Werte, die

fiir die Tonerzeugung wichtig sind. Wenn der Spieler auf ein

Paar Schuhe geht, braucht nur noch die Wellenform ein- und

wieder ausgeschaltet zu werden (Zeile 3053 und 3180).

Die Zeilen 9110 bis 9120 sind fiir den Sturz in den

Fahrstuhlschacht. Damit hier ein anderer Ton zu horen ist,

werden neue Werte fiir die Tonerzeugung festgesetzt.

Man kann zusatzlich zu den Sound-Effekten auch noch eine

Melodie ertönen lassen. In dem Kapitel über

Interrupt-Handling steht ein dafür geeignetes Programm.

während die Töne der Sound-Effekte über die erste der drei

Stimmen zu hören ist, läuft in diesem Programm eine Melodie

über die dritte Stimme. Am besten lesen Sie sich die

Beschreibung zu dem Programm einmal kurz durch. Es heißt

"Musik aus dem Interrupt".

DIE ANLEITUNG

Der Nutzen einer Anleitung ist offensichtlich. Der Spieler

sieht sofort, worum es in dem Spiel geht. Häufig werden die

Anleitungen aber auch in Form einer Beschreibung

mitgeliefert. Auf diese Weise kann man seine Programme auch

ein wenig schützen. |

Unser Spiel ist selbsterklärend. Dazu fügen Sie bitte

folgende Zeilen ein.

25 PRINT " IE IE EU EEEEETLETLEEEEERIE LU

DEEELEIEE®

26 PRINT " WOLLEN SIE ANWEISUNGEN (J/N)

* (viermal Cursor hoch) "4 GET G$

141

28 IF G$="N" OR PEEK(56320)=111 THEN 100

29 IF G$="J" THEN 42

38 GOTO 28

42 PRINT "(CLR-HOME)SIE SIND PAGE IN EIN

EM GROSSEN HOTEL UND";

43 PRINT "SOLLEN DIE SCHUHE AUS DEN ZIMM

ERN HOLEN.";

44 PRINT "FUER JEDES PAAR ERHALTEN SIE 1

sO
45 PRINT "TRINKGELD VOM GAST."

46 PRINT "WENN SIE UEBER 50 SCHUHE BEIM

PORTIER"

47 PRINT "ABLIEFERN, ERHALTEN SIE EIN HO

HES GEHALT.”

49 PRINT : PRINT " (Pound) ZIMMER MIT

EINEM PAAR SCHUHE"

50 PRINT : PRINT " (f) GESCHLOSSE

NE TUER"

51 PRINT : PRINT" (#) Spielfigur

52 Print : PRINT " (%) Portier"

53 PRINT : PRINT " ("; CHR$(34) ;")

Fahrstuhl"

56 IF PEEK (56320) <> 111 THEN56

Außerdem müssen Sie Zeile zwölf löschen.

Die Bedienung des Programms sollte möglichst unkompliziert

sein. Sie muß für den Spieler einfach und schnell zu

handhaben sein. Ein Spieler, der gemütlich auf dem Sofa

liegt und einen Joystick in der Hand hält, möchte nicht nach

jeder Spielrunde aufstehen und das Spiel neu einstellen

müssen.

Darum braucht in unserem Spiel die Frage auf Anweisungen

nicht mit "n" beantwortet zu werden. Es genügt, wenn man in

diesem Fall auf den Feuer-Knopf am Joystick drückt.

142

ANFANGSBILD

Das Anfangsbild sollte den Spieler schon ein wenig

animieren. Dies erreicht man mit einer imposanten oder

zumindest guten Graphik im Anfangsbild. Ein Vorschlag

unsererseits ist, in das Anfangsbild eine Szene aus dem

Spiel einzubauen. Ein weiterer Vorschlag ist, daß die

Graphik sich bewegen könnte. Beide Vorschläge wurden beim

Schreiben des Spiels berücksichtigt.

Ein Teil aus dem Anfangsbild wollen wir Ihnen ersteinmal so

vorstellen. Es ist eine in BASIC geschriebene Laufschrift.

11 EL$ = " ELEVATOR BOY

(37 Leerzeichen)"

27 PRINT "(1 mal Cursor hoch) "EL$

30 FOR O0 = O TO 150 : NEXT

31 EL$ = RIGHT$ (EL$,1) + LEFT$ (EL$,

LEN (EL$) -1)

39 GOTO 27

Diese Zeilen können Sie ebenfalls in das Spiel einfügen, sie

gehören ins - Anfangsbild. Aber diese paar Zeilen sind

gleichzeitig ein kleines, eigenständiges Programm. Sie

sollten es einmal allein ausprobieren. Wenn Sie das kleine

Programm gestartet haben, sehen Sie den Schriftzug "ELEVATOR

BOY" über den Bildschirm laufen. Statt des Textes, können

Sie ihren eigenen Text in EL$ eingeben. In Zeile 30 können

Sie die Arbeitsgeschwindigkeit einstellen. Wenn Sie die

Zeile 30 ganz weglassen oder die Geschwindigkeit auf O

setzen, läuft die Schrift so schnell, daß sie verschwimmt.

Die Laufrichtung können Sie ändern, indem Sie LEFT$ und

RIGHT$ vertauschen.

143

Jetzt kommen weitere Zeilen, die Sie in das Gesamtlisting

einfügen können. Durch diese Zeilen enthält das Spiel ein

bewegtes Anfangsbild.

FREINT:FRINTTARN 142" ben ee"

PRIHTTABRC 429 "°1TTTEE EEREREN

PRIWHTTABS L4 a" late tee!
PRINTTABCL4°°ITEELE ETE"

PREHTTABC LA 2" beet fee |"

FRIHTTABC 4° "lEEEEE £EEEET"
PRIMTTABC 149" betes tee"

PRIHTTABC 4° "ITTEEE EEEET!®

PRIHTTABCL4 3" bee tee |

PRIHTTREC ido °lttTtte EEETTIN
PRIHWTTABC L420 late pete {|

PEIWT: PRIMTTABY Lao" leer fee | |
PL=BBEB+ 1 +h
PUREPL 4 . Se

POKEFL „35: POKEFL+R 2

POREPL +43 .34: POR EPL+R+46 .2
POKEPL +88 oe

N=N+G: TFNS>46R0RM<=aTHENG=—G

23

[3

PR

pe
e

te
te

h
pt

pee

k
ek

fe
t

pe
t

So

Oi

£3
}

“
M
m

C
h
B

Po

P
e

S
O

Oo

m
o

N
B
i

Qi

fa

03

bo

oo

0

fa

144

ZUSAMMENFASSUNG

Jetzt ist das Programm vollständig. Auch wenn Sie nicht

mitverfolgt haben, wie das Spiel entstanden ist, können Sie

das alles umfassende Listing abtippen und spielen.

Dieses abschließende Listing soll außerdem denen, die die

einzelnen Schritte abgeschrieben haben, helfen, vielleicht

vorhandene Fehler zu finden und korrigieren.

Hier das Gesamtlisting:

I RERDRA: IFA=—- 1 THENS

2& PORES 344400: T=I+1 GoToi

2 PORES S272 .24° POR ESGS°%6 . 14° PORES . 1968
+ GOTES

= PORES Sere .21 PORESESSS .Lal: PORES6p43 .4° EHD

© PRINT Sp PORES S231 2
Y BRE=S6017°6 (R=S1 20

3 #=BRR+3 26° D=BRBR+487 > G=48: BOe23 > Pub

14 FE=18:Li=3
11 EL¢=" ELEVATOR Boy "
12 PRIHT PRIWTTABCL 43" leet eee)

13 FREIHTTAELISFI"TITTTER EEEEEN”

14 PRIHTTABS Lao" bee en
LS PRIATTABC ido" Iteeee EPP tl
16 PRIHTTABL ido" bei feed"
17° FRINTTABE LAS" TEREEE EEEBEI"
1S PRIWTTABS ido lee ee!

13 FRINTTABEIAHFITTERE EEF ETI"
za FRINTTARE 143" ben eeeee!

zi FRINTTRBELAS"ITTTTE ERETTI"

E22 PRINTTABS ldo" leone me
23 PRINT PRINTTABC 49" levee eee"
25 PRIAT SPRINT FEL bee Eb ebb hee bebe eee edge beep eeebebaae
25 PRINT" WILLST DU AHMEISUHGEN SIPNSEIIEDN" 000000”
ar PRINT"ZI "ELS
eas GETG$: [FGS="H"ORPEER C S63269=111 THEMES

23 [FGS="J" THEM |

38 FORQ=8TO158:> HEXT
31 ELS=R TIGHTS (ELS. 1o+LE FTE (ELS LEM CELE s-1>

32 PL=BEB+ 1 ae+t
33 POREPL-44.32
34 POKEPL .35: POREPL+R .@

35 POREPL +44 .34: POREPL+R+43 .2
36 POREPL+&@ .32
27 M=M+G: TEMS 4000RM< =a THEMHG=—G

33 GOTO2?

145

+2 FRIHT SEITE SIND PAGE IM EINEM GEÖSSEHN HOTEL UND";
3 FRIMT’SOLLEN SCHUHE AUSDEH ZIMMERH HOLEN."

44 FRIMT"FÜUER JEDES PARR SIE ERHALTEN SIE 1 +"

42 FRINT'TRIHEGELD Vor GAST." |
46 PRINT HEHH SIE LEBER 5 SCHUHE BEIM PORTIER"

47 FPRIHT"ABLIEFERHM .BEROMMEM STE EW EXTRA GEHALT .":
49 FRIHT" a C£I ZIMMER MIT EIMEM PAAR SCHUHE"

a FRINT'" gfe] [73 GESCHLOSSENE TUER!

m1 FRINT" ee EI LEEFES ZIMMER"

aac FRIWT" eed C#] SPIELFIGUR"
FR THT " Sis] Cd FORTIER"

PRINT” eel C CHR. S40" FAHRS TUL"

TFPEER (Se 328oc> 1 LITHEMSE

BILDS¢lo=" ITTEEE OTTEEE OTTEE

RILDELZI=e" ITTIIE EEEEE ETERE EEEET KEEKEI
BILD sos" ITEREE TTTEE EEERE EEEEE ELE

BILUT¢i dss" IEEEEE EKEEEE ETER

RBILDE:
BILDS«

BILDEN

EILDE:
BILD See" IEEEEE TTEEE EEERE TTTTE EEEEEIN

PRIHMT "ig? :
oe ff et ene te te ee tt te tt

FR TT tte tt ttitinctttt tet ttnettntnentndnettonttn

au aan ae He a’ a re oO

Mr

me
i

er

my

i
ft

£

T
ar IFELEE EEEEE ELEEE EEE TrIII Ve"

ye" IfFEEE ELT? EREET EREET EEE
yet IREEEE EITER ERTER EREET BRETT"

W
h

ta

h
a
e

m
i

Bb

id

TY

wom aMeee 6

ym" IEEEEE TEES EEERE CETEE KET T I" M
j
)

i
UP

ft

te
h

ih

1
t
h

a
r

t
y

a
0

FRET RT pet tt tt ttt ttt tit tinted tints Ht

Er

CUP IF FEIHT" ige nee

FORT =1 TCs

W= THT Rh 1 oso +1

FPRIMTRIL DE < blo

FEIHT" ge ttt

HET

FEIHT'S } ve 1"
re PRINT oR Dem gl

La

io

d
C
h
o
i

om
g

0

Bo

a

a

a

i
f

,
5
3

u
r

hr

m
n

ET

a

iP

ma

nd
te

te
e

pe
te

FR DRT" gg ee tttiog tl

FORT=BRE+S PTOBRBR+31 SF STEPAR: PORET . 3a: POREI+E .8:° HExT

PORES . 33° POR EM+H PORE R +1. 22 POR EM+eS . 32 ¢POREX-1 oe: PORE

set ~

PORES 42595 .15

PORE S42 °P 2.31: FOR ES+4ePra.125 (PORE S427°2 .1°PORES427°3 .1

FROIMT" HI-SCORE "HIS:

FT eo”

GOSUB Ses

FOR I= 1 TORE: WHEAT

PORET . 32: POR ET+6 .32:PORED+12 .

IFPEER (0469221 THENG=—t

T= +6

FÜHREND. 24: PORED+S . 24 POKED +12 .:

IFOL=STHENZEGN

FÜrRER . 32: Be#+ü

TFPEER Cee =231 THENMR=H+48 GO TON

PORES „25: FOHERA+R 5

Bene "ana!

= In
t

e
b

ft,
 =

Pa

Ra

pa

Ra

fac
e

Pe
k

Pa
t

Ba
e

te
e

ee

ee

eh

et
e

e
e

de
e

et

e
e
e

te
t
e
T

LH

an

3
ui

se hec
k

me

03

He

i

md

ky

LT
P

ob
og

Fa

{

yo
n.

ti
t 2: PORED+ 193 .32

i

J
 :FORED+12.24

i
p

e
f

fe

fe

mr

to
r

me

me

mm
a

ma

I
I
I

E
i

Pe

a

in

wr

ma

a

r
i

a

u

N

a

146

ni

i

fr
. (in

d
ent

s
7

je

go

je

m :

pe
e,

3
%

"
a
h

u
n

sen
ts

hd
 f

ee

fe x
Ra

en

Bo
t)

Ya

Wa
d

at

ar

a

o
e
;

ba
d est

3
La

 mi

me
t

A
L
A

fe

kg

fb

ew

Ge

Lo

oe

m
i

i

La

La
:

z

ti

tH

iG

Ke
t

fe
t

Ka
l

1
J

3
‘sa

ke

1
ia
d = un

ri
t

r
y

is
t

bg

a

ı
A
m
e
n

ih

IT

i
ih

Lf

i

i

ER
)

”
ae
,

e
n

“
In

d
=

18
08

wm
:

ht

a

a tA

wot i

4 Sa

[T
I

ET

pe
t
de

ee

te

ee

te
t

1
0

[0

Feb

ee

ee

LE

mo

0
23

ae
GE

ee

EP

ar

Gs

er

a
mr

en

o
m

W
d

id

lt

i

4G

u

B
e
e

I
ı

15

Kr

cak
e

a

Dr

ae
d

oa
Pe

we
t
R
E

oe

od

i

Pa
p

pe
e

ee

ee

f
d

Pe

ee

W
I
A
D

P
G

NG

Wo

ko

A

AD

AD

NG

RD

N
E
D

0

2

Rr

a

mm

Wr

ar

Ma
r

hy
,

EE

a

i
md

TP

a

i

lr

a

Gi

m
e

ee

Io

fi

bed

iu

“i
Ag

mi

B= BO-e JS

PORE DHT < BOO#48+BRB+37 .32: TP RO=<1 THEMSeba
TE Eee

S269= 12° THENHH=6 > RE TURM
TEPEEK CSea26=¢111THENS508

IFPEER «Se 326 oS Le SsTHEMY=—1 °° GOTOSa Se

IFPEER Se 326921 1 STHENY=1 > GOTO Sasa
RE TURE

IPPEER Wat eed) THEN Y= —4e: TPPEER Cat 2531 THEHSe& Tek

7 TRPRPEER H+ Yo = Se THEMHPORES4e°8 129 PUN=PUH4+1:GOTO3 1
TFPEER «4 o = 23 THEMRE TUR

TFRPEER © +o = Se THEMRE TURK

TFPEER © eto = S40R PEER © e444 = S4 THEM Soa
TFFEER CC a+ = THEHZSSE

IFFEER HH =32AHDFEER a4 rd = 32 THEM PORES o Se: =

TFPEER C3449 = S2AHDPEER ¢C h+4' +409 = 182 THEM S 1 ae
POKES a2
Bia OL
POKES 35: POR ER+E 8
FRIHT"ZI +PUWE TES} > PURETRG PR LAT eeSCcHUHE "| PL
PORES 4275 0
FETURH
IFH=ATHEHG=-G:He1
RFE TURE
FE=FE-1: IFFÜHZSOTHEHTR=STR+PUHGOTO22 1A
TR=TR+ LMT «PLUMAS BOR? 3 >
MEBBE+S 36 DsBRR+4a 7 Gede: boss
GOTO

POKES 32
elas hel phy!
IFFEEK HD THENKEH- 42: IFFEEK SD id THEHFEIAEN
Cis 1
FÜKER „35: FOKEK-+R a
RE TURK
TE=TE+PÜH:LI=LI-1
TF Re < 1 THEMGOTOSese
PUKE .32: Kes+da: [PPEER OC M4+409=31 THEHSL ae
PORES 35 POKER+E .@: GOTOS815
PORES o:
BQ=2°3 (FOR T=1 1023: PORE I #46+BBB+37 132° HEMT: OL=
D=BRR+4 SP: Gede: Boles: PUG
IFLI=@THENSSa8
H=BBE+S36 (POKES 35° FORER+E 4: GOTOLS3
POKEN .39 ' POKEN+ +h 1a

ca
 :PÜH=E

ai

td

La
l

m1

fa

a

wr

PORE S427 9 .31° PORE S42°8 .25 35° PORE S4 ore o> PORE S4er3
PS a u

FOR T=1 T0588: WERT PORE S42°6 »
GOTOASHSe |

PRIHT' "> (PORES S231 .1

PRI-MT" Sleleleieleletelatede tele) DU HAST "s TR+PURS "S$

bs
s

147

12 POKE

VEROTEM

mo

[0

o
n
 Ea
s

2 o
y
 t

m

th

=
uf

a

=,

= te

=,

eat

=,

ale
 :

ST

uo

a
ua

it
s

eo

‘one “eee” “ene” “ene” ene’

Et
I

A
i

za

mr

i
1%

;
e
a
t

PR
ee

cm
 " un
e

=,

‘ek
e!

et “eae” “ene” vena” “one

P
o
i

Ph

mi

mi

=.

u 2%

ac
h‘

mi

=
.

ck
?

= Bi

ts
!

i
had

!

R
R
M

R
e

e
e

e
e
 e
e

°
t 3

Mm

OF

oo

Bo

id

m
e
.

m

a

e
t

Pi
 yon

,
IR

LI
TE

R
C
H
E
N

CH

ER

CH

IA

CN

CH

EN

OR

LT

ch

uf

$

Wi

Se

ee

he

wa

Pa

K
i

R
i
c
h
i
e

Z
i
i
o

a

a

Si

fa

mi

Ai

ia
n

cn

oc

oh

"u

Zi B
R

}
x

fi

A
m
i

m
e

ma
t

fa
d

ta
d

T
E

SESS

Sata 4}

SAAS
SAEs

+
3 zZ ba
l

“
J

st

+ o
o

jose “eee, Toon “ene” “eee

Tr

mi

me

mi

i
 e
o

&

&

t
tw

ee

I
t

L
A
L
A

A

IFTE+FÜHNSHLSTHEHH SS
TR=

TRAP UH
=: CPUS

en

BOTOSE kl

DATAL SP ler eS .ee 2.22 6

TATHGe Sh .lee lee. se. leh. lee BA

Imtrliza.iz4.1a2.124. 122.102. 128.0: 6

IATrea. 12.102,98. 102. 128.80.

DATA Les » 125.223,23,23,. 125 124.0: D

IimTmlz7 122.985. 124.95. 125. 12V EC E

DATAL2? ‚125.124 .,35.124. 120.112. F

InTAezZ.121.112.115.115.83.231.0°06

naTa115.115.1159. 127.127, 115.115 SCH

InTmz23.20 022,20. 22.28. 205.0:1

DATALSP ler. PP LAS eS BL ed

DATALIS LIS. 26 ee lee LIS LS ak

naTmiiz.112.112.112.112.1265 127 GEL
IaTm119.127 107. 107.107,220 112.2 M

= 1! TATALES . 1 4

LATHES 12
TATALSE .

S123.

‚119. 119, 1:
‚132.127.

ua ben 0 Tue

DATAGE ‚127.98. 111, slid. 127 .62.6:0
DATALZ6 127 115.127 124 126 6115 87 R DATASS 126 .96.62,3 68,126.08:
DATAL2? 12? 93 28.28 28 28. an
DATALIS.115.119. 113. ie ! beri eek EU

DATALIS . 33.107. MLO? oy Bae}
DATES 1113184 162 62/119 99 +0:%

TATALIS.S9.51.14.14., ids is

DATALEY BS oP ee
TATASK44 . Set

DATHAS . 36.1 ’ s

IATR12.15.2.3.3.3.15.15:]

DATALZS =

TATA SS .: .

DATAG BG
TATAHSZSS .

u
 e
b
.

I Pa

ee

S
S
 fh,

ha

p
i
a

ai

te

s
i

mi

fy

0
i

i
oe
 i

T;

i
e

-
h
a

F
a

i

S
h

Ty

mt
i

m:

fs

it

go
s

fh

hei

it

Se
em

s

fh i a
 on T

-
.

,
e

ti

Fi
 22S ot SS thet be:

DATASS 3 2S SSS Laos Bee ee ees

TATA Be ee 4 2S 4 Ee oe
DATA SS. BP 8? Ba Ba Bai S$

TT Mets 22rd se 2G Ges ae cain oA ve

TATAHLSS .254.12

DATAS 24-24. 128, 126 24. el a

IATAzZ4+ 45.96.96 .365 95,48 ,24° 5

TATAS4 . Le ob 6B. lS ed: = a

DATA4E.TE.TZ.15.185 0,150

148

SA@G43 DATAG. SO .68,.126 LIE +
SaG44 DATAG-G.0.6,6,12.24.4e: ,
SGG45 DATAG A .8.126.126.8,8.0:-
Sa046 DATAG.G.4.4,8,55 98 a: ,
SA047 DATAG.S 12.24 24.48.96 .8: 4
Sands DATAG. 24.60.1082 102 .60.24.8:0
Sands DATAG 12.28 .66.12.12.12.8:1
saasa DATAE.12.13.4.58. 18.39.02

Saasi DATAG. SAS 4.2.18 .5 88
Saao2 DATARS .16.16.20.20.4,0:4
SaG5S DATAG.SA.16 28.2.2 .25 .8°5
Saad DATAG. 12.18 .16.28,18.12.0:6
Saa55 DATA. SA,18.4.5.16.16.8:7
SaaS DATAG.L2S.18.12-18.18.12,.8:°8
SaO57 DATAG 24.36.2864 38 24 as
Saas DATA-1

REAL .

Wir hoffen, daß Sie noch viel Spaß mit diesem Spiel haben.

149

7. INTERRUPTS

Laut Definition sind Interrupts Routinen, die bei einer

Anforderung vom Computer von selber angesprungen werden.

Der C-64 kennt mehrere Interrupts:

Neben dem Raster-Interrupt (siehe Tips & Tricks 1) sind noch

vorhanden:

Höchste Priorität: RESET

Mittlere Priorität: NMI

Unterste Priorität: IRQ

Die Priorität gibt an, welche dieser Routinen zuerst

angesprungen wird, wenn mehrere gleichzeitig vorliegen

sollten.

Obwohl andere Autoren Gegensätzliches meinen, lassen sie

sich alle verhindern.

RESET

Softwaremäßig läßt sich RESET durch SYS 64738 durchführen.

Diese Adresse ergibt sich aus den in §$FFFC-FFFD im

LOW/HIGH-Byte angegebenen Werten.

Da es jedoch oft vorkommt, daß ein Programm abstürzt, und

eine Eingabe nicht mehr möglich ist, empfiehlt es sich,

einen RESET hardwaremäßig herbeizuführen.

Das erreicht man durch Kurzschließen einer Masse- und einer

RESET-Leitung.

Zweckmäßig ist ein Taster, den man fest ins Gehäuse einbaut.

Bewährt hat sich auch ein Summer in der Leitung, da es

manchmal vorkommt, daß man unbeabsichtigt den Kontakt

schließt, und dann dem Programm die Schuld gibt.

Was führt der Computer eigentlich aus, wenn ein RESET

vorliegt?

Bedingt durch die Adressen $FFFC-$FFFD führt der Computer

150

einen Sprung zur Adresse $FCE2 aus.

Sehen wir uns das Programm ab dieser Adresse doch einmal an:

FCE2. LDX, #$FF

FCE4 SEI

FCE5 TXS

FCE6 CLD

FCE7 JSR $FDO2

FCEA BNE $FCEF

FCEC JSP ($8000)

FCEF STX $D016

FCF2 JSR $FDA3

FCF5 JSR $FD50

FCF8 JSR $FD15

FCFB JSR $FF5B

FCFE CLI

FCFF JMP ($A000)

Die ersten vier Adressen sind ftir uns nicht so wichtig. Sie

dienen nur dem Computer. Zu sagen ist nur, daß in Adresse

$FCE4 das sog. Interrupt-Disable-Flag gesetzt wird, damit

der Computer im weiteren Verlauf nicht mehr gestört wird.

Probieren Sie es aus: |

Ein einmal ausgelöster RESET läßt sich nicht mehr mit

RUN-STOP/RESTORE verhindern.

Interessant wird es erst wieder in Adresse $FCE7.

Dort springt der Computer zu einem Unterprogramm ab Adresse

$FDO2.

Dieses Unterprogramm ist würdig, angeschaut zu werden:

FDO2 LDX #$0F

FDO4 LDA $FDOF,X

FDO7 CMP $8003,X

FDOA BNE $FDOF

FDOC DEX

FDOD BNE $FDO4

FDOF RTS

151

In diesem Unterprogramm liest der Computer der Reihe nach

bestimmte Werte aus dem ROM, und vergleicht sie mit den

Werten, die bei Adresse $8004-$8008 vorliegen. Sind diese

Werte identisch, so wird ein indirekter Sprung ausgeführt.

Der Computer liest dabei die Werte der Adressen $8000-$800 1

und faßt $8000 als LOW- und $8001 als HIGH-Byte der

anzuspringenden Adresse auf.

Steht also in $8000 der Wert $00, und in $8001 $60, so geht

es weiter bei Adresse $6000.

Wollen Sie also ein Programm bei RESET starten lassen, so

müssen die Adressen $8000-$8008 folgendermaßen aussehen:

8000 LB Sprungvektor bei RESET

8001 HB

8002 LB Sprungvektor bei NMI (siehe NMI)

8003 HB

8004 195 "C" mit gesetztem Bit 7
8005 194 "B" " " "7

8006 205 "M" " " "7

8007 56 "8"

8008 48 "0"

Wollen Sie, daß Ihr Computer gleich nach dem Anschalten ein

Programm durchführt, so müssen Sie ein EPROM in diesem

Bereich adressieren und die Werte wie angegeben setzen.

Nach diesem Prinzip arbeiten auch die Module, die sich nach

dem Anschalten sofort melden. |

Doch weiter zum RESET.

Sollte ab $8000 kein Programm gefunden werden, macht der

Computer bei Adresse $FCEF weiter. In den darauffolgenden

Unterprogrammen initialisiert er neu die Pages 0,2 und 3,

die E/A-Teile und den Video-Bereich.

Zuletzt führt er schließlich einen Sprung zum

BASIC-Kaltstart durch.

152

Man kann ein BASIC-Programm auch durch RESET starten lassen.

Dann muß das Programm, auf das die Adressen $8000-$8001

zeigen, folgendermaBen aussehen:

JSR $A659

JMP $A7AE

Diese zwei zeilen sind das Maschinen-Aquivalent zum

Basic-Befehl RUN.

NMI

NMI hat eine niedrigere Priorität als RESET.

Die NMI-Einsprungadresse wird durch die Adressen $0318/$0139

(792/793) festgelegt. Normalerweise ist dies die Adresse

$FE47 (65095).

Da die eigentliche Routine bei $FE43 (65091) beginnt,

schauen wir uns doch die Adressen ab da doch einmal an:

FE43 SEI

FE44 JMP ($0318)

FE47 PHA

FE48 TXA

FE49 PHA

FE4A TYA

FE4B PHA

FE4C LDA #$7F

FE4E STA $DDOD

FES 1 LDY $DDOD

FE54 BMI $FE72

FE56 JSR $FDO2

FE59 BNE $FE5E

FE5SB JMP($8002)

153

FE5E JSR $F6BC

FE61 JSR $FFE1

FE64 BNE $FE72

FE66 JSR $FD15

FE69 JSR $FDA3

FE6C JSR $E518

FE6F JMP($A002)

Als erstes fällt auf, daß in Adresse $FE43 das

Interrupt-Disable-Flag gesetzt wird.

Will man also den Vektor $0318-0319 auf ein eigenes Programm

zeigen lassen, so muß dieses Programm den Befehl CLI

enthalten, da sonst der IRQ verhindert ist (welche Folgen

das hat, erfahren Sie im nächsten Teil dieses Kapitels,

IRQ).

Beispiel ftir ein eigenes Programn:

Jetzt zeigt der NMI-Vektor auf RESET.

Bei Driicken der RESTORE-TASTE (=NMI) wird ein RESET

ausgelist. Wenn Sie nach dem RESET noch einmal RESTORE

drücken, ist der Effekt natürlich vorbei, da die Adressen

$0318/$0319 wieder auf ihre Normalwerte gebracht worden

sind.

Doch weiter zur eigentlichen NMI-Routine:

Die Adressen $FE47-$FE4B (65095-65099) retten den

Akkumulator, das Y- und das X-Register.

In Adresse $FE54 (65108) wird geprüft, ob die RS

232-Schnittstelle aktiv ist. Sollte das der Fall sein, so

wird zu Adresse $FE72 (65138) gesprungen, wo die NMI-Routine

für die RS 232-Schnittstelle beginnt.

In Adresse $FE56 (65110) beginnt etwas, was Sie schon vom

RESET her kennen: |

Es wird geprüft, ob ein Modul ab $8000 vorliegt.

154

Sollte das der Fall sein, so wird der Inhalt von $8002 als

LOW-, und der Inhalt von $8003 als HIGH-Byte der jetzt

anzuspringenden Adresse interpretiert und zu dieser Adresse

mit JMP($8002) verzweigt.

Da RESET und NMI auf das Vorhandensein bestimmter Werte bei

$8000 reagieren, ist es mit ganz einfachen Mitteln möglich,

zwei verschiedene Proramme zu starten. Eins beginnt beim

Auslösen eines RESET, und das andere beim Drücken der

RESTORE-Taste.

In Adresse $FE61 (65121) wird die STOP-Taste abgefragt. Ist

sie gedrückt, so kommt der Computer zu Adresse $FE66

(65126), und initialisiert die I/O-Einheit neu, löscht den

Bildschirm und führt schließlich einen Sprung zum

BASIC-Warmstart aus.

Hier sehen Sie auch, warum das Drücken der RESTORE-Taste

normalerweise nichts auslöst:

Es wird immer erst die STOP-Taste abgefragt. Ist sie nicht

gedrückt, so wird zur NMI-Routine für die RS

232-Schnittstelle verzweigt.

Probieren Sie das neu erworbene Wissen doch einmal aus:

10 FOR X = O TO 8: READ A: POKE 32768+X,A :NEXT X

20 DATA 68,229,53, 164,195, 205,56, 48

RUN

Nun sehen die Adressen $8000-$8008 (32768-32776)

folgendermaßen aus:

32768 68 32772 195

32769 229 32773 194

32770 53 32774 205

32771 164 32775 56

32776 48

155

Der Inhalt der Adressen 32768-32769 ergibt die Adresse, zu

der der Computer im Falle eines RESET springt. Diese Adresse

(58692) ist ein Unterprogramm das den Bildschirm löscht.

Der Inhalt der Adressen 32770/32771 ergibt die Adresse, zu

der der Computer im Falle einer NMI-Anforderung springt.

Hier ist es die Adresse 42037. Die Unterroutine, die ab

dieser Adresse beginnt, gibt die Fehlermeldung "out of

memory error" aus. |

Die Adressen 32772-32776 stellen die Codes da, die der

Computer braucht, um ein ROM ab $8000 zu erkennen.

Wenn Sie nun nach Eingabe dieser 2 Zeilen und dem Starten

RESTORE drücken, so wird die Meldung "out of memory error"

ausgegeben. Es kann vorkommen, daß der Cursor auf seiner

Stelle bleibt. Das ist ganz normal, da die IRQ-Routine den

Cursor verwaltet. Da NMI aber eine höhere Priorität als IRQ

hat, wird die NMI-Routine angesprungen, bevor die

IRQ-Routine ihre Arbeit beendet hat.

Wenn Sie einen RESET auslösen, wird der Bildschirm gelöscht.

Damit haben Sie eine gute Möglichkeit gefunden, ein Programm

zu starten.

Denkbar wäre z.B. die Möglichkeit, ein Programm im Bereich

$8000 so abzuSAVEn, daß das Programm nach dem Laden durch

Drücken der RESTORE-Taste oder durch RESET gestartet wird.

Da man dann keine BASIC-Zeile hat, die auf den Anfang des

Programms hinweist, ist es für fremde Benutzer schwer, das

Programm zu starten, sollten sie nicht durch Zufall darauf

kommen. Noch sicherer wäre diese Lösung, wenn man nach

Drücken von RESET bzw. RESTORE noch ein Code-Wort eingeben

muß (ohne daß danach gefragt wird).

Für Leute, die sich mit diesen Dingen nicht so gut

auskennen, dürfte dieser Schutz nicht leicht zu knacken

sein. Noch schwerer wird das Ganze, wenn man noch andere

Arten des Programmschutzes dazunimmt (z.B Autostart).

156

IRQ

Dieser Interrupt hat zwar die niedrigste Priorität, sie ist

aber ebenso wichtig wie die anderen. Da sie weit am

häufigsten angesprungen wird, halten wir sie sogar für die

Wichtigste.

Die Start-Adresse der IRQ-Routine ist in den Adressen

$0314/$0315 (788/789) verankert. Dort kann sie leicht

verändert werden.

Probieren Sie es aus:

POKE788 , 226: POKE789, 252

Sobald Sie RETURN gedrückt haben, führt der Computer einen

RESET aus.

Wieso das?

Nun, 226+252*256 ergibt 64738, und 64738 ist die Adresse für

RESET.

Und nun das Wichtigste:

Die IRQ-Routine wird nicht wie NMI oder RESET erst

angesprungen, wenn ein bestimmter Schalterkontakt vorliegt,

sondern alle 1/60 sec! \

Deswegen ist die IRQ-Routine auch so wichtig:

Sie erledigt alle Aufgaben, die immer wieder gemacht werden

müssen. Sie bringt z.B. die Uhr immer auf den neuesten

Stand, 1äßt den Cursor blinken und fragt die Stop-Taste ab.

Schauen wir uns die IRQ-Routine doch einmal an:

EA31 JSR $FFEA
-EA34 LDA $CC
EA36 BNE $EA61
EA38 DEC $CD
EA3A BNE $EA61
EA3C LDA #$14
EA3E STA $CD
EA4O LDY $D3

157

EA42

EA44

EA47

EA49

EA4B

EA4D

EA4F

FA52

EA54

EA57

EA5A

EA5C

EASE

FA61

EA63

EA65

EA67

EA69

EA6B

EA6D

EA6F

EA71

EA73.

EA75

EA77

EA79

EA7B

EA7E

EA8 1

EA82

EA83

EA84

EA85

EA86

LSR $CF
LDX $0287
LDA($D1),Y
BCS $EA5C
INC $CF
STA $CE
JSR $EA24
LDA($F3),Y
STA $0287
LDX $0286
LDA $CE
EOR #$80
JSR $EA1C
LDA $01
AND #$10

 BEQ $EA71

LDY #$00
STY $CO
LDA $01
ORA #$20
BNE $EA79
LDA $CO
BNE $EA7B
LDA $01
AND #$1F
STA $01
JSR $EA87
LDA $DCOD
PLA
TAY
PLA
TAX
PLA
RTI

158:

In Adresse $EA31 (59953) wird zu einem Unterprogramm ab

Adresse F69B (63131) gesprungen, das die Zeit auf den

neuesten Stand bringt und die Stop-Taste abfragt.

überspringt man den Aufruf dieses Unterproramms in der

IRQ-Routine, so wird die Zeit nicht mehr weitergestellt, und

RUN-STOP funktioniert auch nicht mehr (außer während einer

Cassetten-Operation, da da RUN-STOP nicht über den IRQ

abgefragt wird).

Probieren Sie es aus:

POKE788,52

setzt den IRQ-Anfang auf $FA34 (59956).

Geben Sie nun folgendes kleines Programm ein:

10 PRINT TI$

20 GOTO 10

Nach dem Starten werden Sie merken, daß TI$ wie erwartet

nicht mehr weitergesetzt wird, sondern auf dem Stand

stehenbleibt, auf dem es vor der Eingabe von POKE 788,52

war. u

Auch die STOP-Taste funktioniert nicht mehr.

Wieso geht aber RUN-STOP/RESTORE?

Schauen Sie sich dazu noch einmal den Teil über NMI an:

Sobald die RESTORE-Taste gedrückt ist, wird zu der

NMI-Routine gesprungen. Innerhalb dieser Routine wird

geprüft, ob die STOP-Taste gedrückt ist. Die IRQ-Routine hat

also damit garnichts zu tun, im Gegenteil, sie wird sogar

noch verhindert. In Adresse $EA36 (59958) wird geprüft, ob

der Cursor "angeschaltet" ist. Sollte dies nicht der Fall

sein, so wird sofort zur Adresse $EA61 (60001) gesprungen.

Ist er "angeschaltet", so geht es normal weiter. Aber Moment

mal! Wenn die Adresse $CC (204) darüber entscheidet, ob der

Cursor an oder aus ist, dann kann man sie vielleicht ja auch

beeinflussen.

Ja, es geht:

159

10 POKE204,0:REM CURSOR EIN

20 GETA$: IFA$=""THEN2O

30 POKE204,1:REM CURSOR AUS

Wenn Sie dieses Programm ausprobieren, ist ein Cursor da. So

kann man also ganz einfach den Benutzer auf eine

GET-Anweisung aufmerksam machen. Das Programm hat jedoch

einen Nachteil: Driicken Sie eine Taste (verlassen Sie also

Gie Zeile 20), wenn der Cursor gerade auf dem Bildschirm

erscheint, so wird er da bleiben, und ein neuer Cursor

erscheint erst, beim Driicken einer weiteren Taste.

Fiigen Sie also noch folgende Zeile ein:

25 IFPEEK(207)=1THEN25

Aus Speicherstelle 207 geht hervor, ob der Cursor gerade auf

dem Bildschirm ist (=1) oder nicht (=2).

Weiter in der IRQ-Routine:

In Adresse $EA38 (59960) wird der Timer für den Cursor um

Eins erniedrigt. Ist er ungleich Null, so wird zur Adresse

$EA61 (60001) gesprungen. Ist er Null, dann wird er auf $14

(#20) gesetzt (da der Computer die IRQ-Routine alle 1/60 sec

anspringt, und dies 20mal tun muß, um den Cursor zu

verändern, können Sie leicht nachrechnen, daß er in 1/3 sec

Intervallen blinkt).

Durch einfaches Ändern der IRQ-Routine kann man die

Blinkzeit verändern:

JSR $FFEA ;Zeit,STOP-Taste
LDA $CC :Cursor an?

BNE * ‚nein

DEC $CD ‚Timer erniedrigen

BNE * ‚ungleich Null, also weiter

LDA $FF :Timer neu setzen

JMP $EAE ;IRQ weiter

* JMP $EA61 :normal weiter

160

Als BASIC-Loader:

10 FORX=0T018: READA : POKE24625+X, A: NEXTX |

20 DATA 32,234,255, 165, 204, 208,9,198,205, 208,5,165, 255, 76,

62,234, 76,97,234

Nach RUN müssen Sie nur noch

POKE788, 96

eingeben, da die IRQ-Routine auf die neu erstellte Routine

verändert werden muß.

Nun können Sie in Speicherstelle 255 beliebige Werte von O

(kein Blinken des Cursors) über 1 (sehr schnelles Blinken)

bis 255 (sehr langsames Blinken) POKEn. Da die Adresse 255

dauernd gelesen wird, wirkt sich das Eingeben eines anderen

Wertes in diese Adresse sofort auf die Blinkzeit des Cursors

aus.

In den nächsten Adressen, bis zu $EA5E (59998), führt der

Computer die Cursorfunktionen zu Ende, d.h. er gibt den

Cursor aus, merkt sich das Zeichen unter dem Cursor und

dessen Farbe usw.

Interessant ist auch der Effekt, der sich ergibt, wenn man

den ganzen Teil der IRQ-Routine, der den Cursor betrifft,

überspringt:

POKE788 , 97

Nun wird

a) Keine Zeit mehr berechnet

b) Die STOP-Taste nicht mehr abgefragt

c) Kein Cursor mehr ausgegeben

161

Die Zeichen erscheinen aber immer noch, da die Tastatur erst

später in der IRQ-Routine abgefragt wird. Von Adresse

$EA61-$EA79 (60001-60025) geht es um den Rekorder. Sollte

eine Taste am Rekorder gedrückt sein, so wird der Motor

angestellt. Ist keine gedrückt, wird er ausgestellt (sofern

er an war).

Probieren Sie es aus:

a) Geben Sie ein: POKE788,123 (IRQ-Anfang = $EA7B)

Wenn Sie jetzt auf PLAY drücken, wird der Motor nicht

laufen.

b) Drücken Sie RUN-STOP-RESTORE, um wieder in den normalen

Modus zu kommen.

Drücken Sie jetzt die PLAY-Taste am Rekorder und geben

Sie nun POKE788,123 ein.

Wenn Sie jetzt die STOP-Taste am Rekorder drücken, so

wird der Motor immer noch laufen.

In Adresse $EA7B (60027) wird zu einem Unterprogramm

gesprungen, das die Tastatur-Abfrage erledigt, und die

entsprechenden Zeichen ausgibt.

Wenn Sie auch noch diese Adresse mit

POKE788, 126

übergehen, so ist der Computer völlig hilflos.

RUN-STOP/RESTORE funktioniert aber immer noch. Das liegt

daran, daß RESTORE nicht wie die anderen Tasten abgefragt

wird. Von der RESTORE-Taste geht eine Leitung fast direkt

zum Pin 4 (NMI) der CPU. RESTORE wird also direkt abgefragt.

In den Adressen $EA81-$EA85 (60033-60037) werden die

originalen Werte der Register wieder hergestellt.

Schließlich wird mit dem Befehl RTI (Return From Interrupt)

die IRQ-Routine abgeschlossen.

162

Da die IRQ-Routine leicht zu verbiegen ist, und so

regelmäßig angesprungen wird, ist sie für viele Zwecke zu

gebrauchen. Auch in diesem Buch wird sie oft benutzt.

Beispiele finden Sie auf den folgenden Seiten. Vielleicht

bekommen Sie dort eine Idee, wie Sie die IRQ-Routine nutzen

können. Sie dürfen nur nie vergessen, am Ende Ihrer eigenen

Routine wieder zur ursprünglichen IRQ-Routine zurück zu

springen da sonst

a) die STOP-Taste

b) die UHR

c) der Cursor

d) der Rekorder

e) die Tastatur

lahmgelegt sind (es sei denn, Sie wollen diesen Effekt

erzielen).

163.

UND WIE MAN DEN IRQ PROGRAMMIERT !

Nun einige Programmier-Tips, betreffend der IRQ und was man

damit machen kann:

Wenn man selbst eine Interrupt-Routine programmiert, muß man

den Vektor der Adressen 788/789 ändern. Wie diese Änderung

vorgeht, wird später erklärt. Der größte Vorteil der

Interrupt-Routine besteht darin, daß sie alle 1/60 sec. aus

dem Direkt- sowohl wie aus dem Programm-Modus angesprungen

wird.

Da man dadurch eine Vielzahl von Möglichkeiten abdecken

kann, stellen wir Ihnen nun einige diesbezügliche Programme

vor:

Immer Aktiv

Unser erstes Beispiel macht deutlich, welche Möglichkeiten

sich durch die IRQ-Programmierung eröffnen, und in welcher

Geschwindigkeit der IRQ arbeitet.

10 DATA 120,169,15,141,20,3, 169
20 DATA 159,141,21,3,133,56,88
30 DATA 96,238,32,208,76,49,234
40 FOR I= 40704 T040724
50 READ A
60 POKE I,A
70 S=S+A
80 NEXT I
90 IF S <> 2171 THEN PRINT "FEHLER IN DATAS!":END
1400 PRINT "DATAS OK": SYS 40704
110 NEW

Die Routine macht eigentlich nichts weiter, als bei jedem

Interrupt - Ansprung den Wert der Bildschirmrahmenfarbe um

eins zu erhöhen. Doch der Tnterrupt wird so schnell

164

hintereinander angesprungen, so daß man keine einheitliche

Bildschirmrahmenfarbe mehr erkennen kann.

Erkennen kann man, daß die Arbeitsgeschwindigkeit durch eine

gut programmierte Interrupt - Routine nicht vermindert wird.

Sie können, während diese Routine läuft, weiterhin

BASIC-Zeilen schreiben oder bearbeiten lassen.

Wenn Sie das Flackern des Bildschirmrahmens stört, drücken

Sie einfach Runstop/Restore. Starten können Sie die Routine

mit

SYS 40704

Man kann diese Routine grundsätzlich in zwei Teile teilen.

Im ersten Teil werden der IRQ Vektor geändert und die

Routine vor dem Überschreiben geschützt. Das Ändern der

Vektoren ist in BASIC nicht ohne Weiteres möglich. Denn wenn

die Anfangsadresse wie bei der Routine "Immer aktiv" bei

40719 anfängt (Anfang des zweiten Teils), und Sie geben

Poke 788, 15 : Poke 789, 159

ein, dann passiert folgendes:

Sobald die Zeile den Wert (788) geändert hat, den Wert (789)

aber noch nicht, springt der Computer nicht nach $EA31,

sondern nach $EAOF. Der Computer hängt sich dann meistens

auf.

Diese Routinen ändern den Wert automatisch im 1.Teil der

Maschinensprache-Routine. Auf einer der nächsten Seite wird

beschrieben, wie man die Vektoren auch in BASIC ändern kann.

In Maschinensprache gibt es den Befehl SEI (SEt Interrupt),

der verhindert, daß ein Interrupt ausgeführt wird. Dann

können Sie ungehindert den Vektor ändern. Nach CLI (CLear

Interrupt) ‚einem weiteren Maschinensprachebefehl, führt der

Computer den Interrupt mit den neuen Werten aus. Dann wird

die Routine im ersten Teil noch abgeblockt, d.h., daß sie

weder von Variablen noch vom BASIC-Programm ohne Weiteres

165

überschrieben wird. Dafür setzen wir einfach das

BASIC-Speicherende auf den Anfang der Routine.

Jetzt den ersten Teil zur besseren tbersicht mit allen

Maschinensprachebefehlen:

SEI — : verhindert Interrupt

LDA # ; hier wird das Low-Byte

der Anfangsadresse des 2.

Teils bestimmt.

STA $ 0314 ; speichert dieses Low-Byte

in dem IRQ-Zeiger ab.

LDA # ; bestimmt das High-Byte

des 2.Teils.

STA $ 0315 : speichert das High-Byte

im IRQ-Zeiger ab.

STA $ 38 : setzt Speicherende High-

Byte auf den Anfang der

gesamten Routine, blockt

sie auf diese Weise ab.

CLI ; Interrupt wird wieder

ausgeführt.

Außerdem kann man im ersten Teil wie zum Beispiel bei der

Piepton-Routine, die auf einer der folgenden Seiten

abgedruckt ist, Werte setzen, die als Grundlage für den

zweiten Teil dienen.

Der zweite Teil:

Dies ist die eigentliche Routine. Nur dieser Teil wird vom

Computer angesprungen. Hier kann der Programmierer seine

Fantasie spielen lassen und irgendetwas hineinschreiben. Die

Interrupt-Routinen in diesem Buch sollen Ja nur Anregungen

und Beispiele sein. Nur, zu lang sollte dieser Teil nicht

werden, damit sich die Arbeitsgeschwindigkeit des

Direktmodus nicht verringert.

166

Das Wichtigste an diesem Teil ist, daß am Ende der Routine

der Sprung zur Adresse $EA31 erfolgt, sonst würde sich der

Computer aufhängen.

TASTATUR-PIEP

Nach soviel grauer Theorie endlich wieder einmal ein

Programm. Bei einigen Computern ertönt beim Betätigen einer

Taste ein Piepton. Beim Eingeben von Programmen und Tabellen

ist das sehr nützlich. Der C-64 hat diese Einrichtung nicht.

Es ist jedoch möglich, diese akustische Hilfe durch eine

IRQ-Routine zu erzeugen:

O REM PIEPTON-ROUTINE

10 FOR I=O TO 61

20 READ A

30 S=S+A

40 POKE 40704+1I,A

50 NEXT I

60 IF S<>6973 THEN PRINT "FEHLER IN DATAS"

: END

70 PRINT "DATAS OK"

80 SYS 40704

90 DATA 169,255,141,6,212,141,24,212, 169

100 DATA 9,141,5,212,169,103,141,1,212

110 DATA 169,33,141,0,212,120, 169,38, 141

120 DATA 20,3,169,159,141,21,3,133,56,88

130 DATA 96, 72,165,203,201,64,208,9, 169

140 DATA 0,141,4,212,104,76,49,234, 169

150 DATA 17,141,4,212,76,50, 159

zum besseren Verständnis hier auch das

Maschinensprache-Listing:

9FOO LDA #$FF

9FO2 STA $D406

167

9FO5 STA $D418
9FO8 LDA #$09
9FOA STA $D405
Q9FOD LDA #$67
9FOF STA $D401
9F12 LDA #$21
9F14 STA $D400
9F17 SEI
9F18 LDA #$26
9F1A STA $0314
9F1D LDA #$9F
QF1F STA $0315
9F22 STA $38
9F24 CLI
9F25 RTS
9F26 PHA
9F27 LDA $CB
9F29 CMP #$40
9F2B BNE $9F36
9F2D LDA #$00
9F2F STA $D404
9F32 PLA
9F33 JMP $EA31
9F36 LDA #$11
9F38 STA $D404
9F3B JMP $9F32

Den Teil 1b von $9F17 bis $9F25 kennen wir bereits aus der.

Routine "Immer Aktiv". Hier werden wieder die Vektoren

geändert. Dagegen werden im Teil 1a von $9F00 bis $9F16 fast

alle Werte für die Tonerzeugung gesetzt, ausgenommen die

Wellenform. Diese Werte werden in der eigentlichen Routine

nicht mehr benötigt.

Teil 2 der Routine fragt die Adresse 203 ab, ob irgendeine

Taste gedrückt wurde. Liegt hier der Wert 64 vor, wurde

keine Taste gedrückt, und die Routine setzt die Wellenform

168

auf den Wert O, d.h. es ist kein Ton zu hören. Im Falle, daß

eine Taste gedrückt wurde, ist der Wert ungleich 64, das

Programm setzt die Wellenform auf 17 und der Piepton wird

hörbar. Nach dieser Abfrage springt das Programm zur Adresse

$EA31 (59953) weiter.

NEBENBEI MUSIK

Sind Sie ein so grosser Musikfan, daß Sie beim Programmieren

nicht auf Musik verzichten wollen, aber keine Musikkiste in

der Nähe haben, und Ihre kleine Schwester Ihnen nichts

vorsingen will (oder Sie es nicht wollen), dann ist dieses

Programm genau das RichtiAe für Sie. Es sieht sehr lang aus.

Das kommt durch die Noten, denn jede Note braucht 3 Werte:

Frequenz low, Frequenz high und den Notenwert. Der

BASIC-Loader ist in zwei Abschnitte zu fassen:

Im ersten wird die Routine geladen, im zweiten werden die

Noten und ihre Werte eingelesen.

Saven Sie das Programm ab, bevor Sie es ausprobieren !!!

REM MUSIE Als DEM IMG A

ia DATAL2&, ore S241 ce. a. 1les. 144

2 DATAL41 . PSB .1033.58 169.8

3 DATAL41 243, 153.1539,1,141.241.159
+2 DATAIGS Mold. .26.212.153.31 .141

“4 DATRZ4.212.141.13.212.98. 2065 0241

BM TATAHLSS 208.438.728.135 .72.169.8

va DATAI41.12.212.174.2423,1593.1299 8

> DATALAS » L4l.id.212.189 6.146.141

34 DATALS . ele 18a sas 14e 141 41 159

lH DATAI57.232.141.19.212. 222.90. 22d

116 DATAES . 144. lhe oles ses. Lo

126 DATAIB4 . Pe. led Pe 4 ad
1324 FURT= 288647026957

146 FEATA

138 PORE .A

168 S=5+A

1Ye HEAT

186 IFSC>11531THEHFRIHT"TFEHLER IM DATAS": END
136 THPUT"HMIEVIELE HOTEW" SH: PORE Se S44 oH

ei a REM HOTEN : T=5 HOTEM |!

169

u
:

i

WE

-
J
I
i
h

I
E

R
i

D
i
m

eu
me

es

T
T
:

ta
i

ii

bac
h?

.
.

‘=
 me

B
d

es
3

a
oi

s!

mi

5*
)

di
23

m

i
me

ei

het

i

im
e

Te

ma

3
Kr

ch

G
w
e

CG
IR

AI

R
B
i

IT

oA

oo

h
e

M
b
p
h
h
b
p
h

Pp
p
h
p

h
o
d

o)

oo

O
O

oo

td

ob

Oo

ob

Po

ho
 f

o
Po

Po

 f
e

Bo

Ro

Po

Wo

Me

me

i

FÜRI=ETU 53
RERDL
FÜKESTIZUHT.L
READH
PORES? 3? 6+] +H
READ
PORE SP Sa2+1 oH
MENT
Sy Sse Se rece” “ase” “ene” Vane:

QATAISEe. 2.18,

TATALTeS . 14.18.18

TATA les. ie. le)

DATA ‚123.160.

DATA 516.18

TATA 3,18

TATA 14,]

TATA 16

TATA sil

DATA sll.

DATA

fo
nt

x

%

fu

nt

-
1

to
h

fe

i

Mi

Ty

he

5

f
o
e

e
e
e

h
o
u
:

f
o

fb

ho

ob

f
r
e

eR

h,

i

1

Pe
e

oe

IT

m

m

it

fe

i

n
d

xt

Re

t
a
)

I

n
n

IE

ei

m

b
e

i
r

IR

Ih

at

y'
s u =,

‘on
de

.

"=

.

:

ee

.

wes,

ta
t

i -

ei

ee Ye

fa

fa

ui

ei

a
ji

 Er

a

a

e
u

i

m
e

ee

et

iT
:

PY
: hi

fe
t

e
e

P
e
e

e
f

te
t
e
t
!

a

a

A

e
e

h
e

E
e

in

Pa

ai

-j

pi

et

ei

e
e

et

ji

be
i

fe
a

fr
et

fe

fa

fe

[
n
e
i
n

d
a

c
h

i
o

mi

ui

i
43

. i
 Se
’

—_
 iF}

{
eo
a ft ow

ed

ch

fe

a

pe
t

fe

f
e
h
l

pen
t

et

fee

fe
n

fec
t

owed
OC:

a

me
e

B
i
e

H
W

Oe

Wo

S
e

to

Gi

og

mp

oe

oe

ll

m

m

~
.

fs

j
i

d
i
o

O
G

A

fe

oh

A
A

.
=

.

i
 _ iy

ogres atten tigen

ji
 wt iT

~

ro
}

KH

ge
b

fe

T
E
 any

a

7
"4

?

:
D
D

oo

B
i
o

PY

Fi

wi

p
h

1
h

da

ad

.

.

.

I

e
e

e
t

e
e

t
y

iT
;

>
 ip
 T

Pu
po

t ay
 a

wd
o
r
 Br

mi

n
i

r
t

= zZ
i
s

tT
:
ı

+

fi

i

.

‘e
o

.

Bo

R
i

W
e

Wo

xy

“o
e "u

S
i
e
n
a

i
a

u

ia

m

SI

R
n

-

+
AO

OF

7

>
 iT i an

"u
d

i
e

ei

ei

D
e
e

2

ui

e
i
 je

ta

3

mt

md

e
s

al
l

em

rh

Ti

fo
ot
s

2 ~
~

= e
e
e

i
h
i
n

p
e

Ts

Ne

fb

e
e

e
e

1
%

fo
s

fe
ck

ja
ck

Fa
te

=.

3 =,

a

is
:

ß DATA ry

ws

170

Mi

a

of

=,

‘od
s!

by
s

ih

id

a
t

Nach dem Start des Programmes werden Sie zuerst gefragt,

wieviele Noten das Musikstück hat. Bei unserem Lied müssen

Sie 59 eingeben. Dann liest der Computer die Noten ein und

startet die Routine.

Wenn bis dahin alles richtig verlaufen ist und auch kein

Fehler in den DATAs ist, hören Sie nun den "Yankee Doodle".

Wie oben schon erwähnt, können Sie jetzt programmieren und

die Musik spielt nebenbei weiter. Sie können diese Routine

aber auch während eines Spiels zusätzlich zu den

Spezial-Effekten laufen lassen, denn die Musik läuft nur

über die dritte Stimme.

Diese Routine können Sie selber benutzen und die Musikwerte

ändern, ohne daß Sie selbst Maschinensprache können. Sie

müssen dafür nur die Noten Ihres Musikstückes in der Form

Frequeny low, Frequeny high und Notenwert statt der Noten

des "Yankee Doodles" in die DATAs ab Zeile 300 schreiben.

Wenn Sie dann das Programm starten, müssen Sie nur noch die

Anzahl der Noten angeben. Das Programm kann bis zu 256 Noten

verarbeiten.

Was die Notenwerte betrifft, können Sie die Werte selber

wählen. Bei dem Lied "Yankee Doodle" haben wir für die

Viertelnote "10", fiir die halbe Note "20" und für die ganze

Note "40" als Notenwert gewählt. Sie brauchen sich aber

nicht nach diesen Werten zu richten.

171

8. BETRIEBSSYSTEM: ROM IN RAM

Der Commodore 64 bietet eine gegenüber vielen anderen

Heimcomputern außergewöhnliche und zugleich sehr

interessante Eigenschaft:

Das Betriebssystem kann ins RAM des selben Adreßbereiches

verlegt werden.

Um diesen Vorgang verstehen zu können, sehen Sie sich bitte

einmal die folgende Skizze an. Sie zeigt die

Speicherorganisation ab $A00O0:

$A000

frei

 $C000

freies RAM

SID, VIC, 1/0

$DO00

$EOOO

 $FFFF

Gewisse Speicherbereiche sind doppelt belegt. Das bedeutet,

in demselben Adreßbereich befinden sich sowohl ein RAM-, als

auch ein ROM-Speicher. Oder anders ausgedrückt, es gibt

beispielsweise die Adresse $AO00 "zweimal": Einmal im ROM

und ein weiteres Mal im RAM des selben Speicherbereichs.

Der Computer kann Jedoch nur einen der beiden

Speicherbereiche ansprechen (adressieren), entweder ROM oder

RAM.

Wir werden uns im Verlauf dieses Kapitels näher mit den

beiden Bereichen $A0O00-$BFFF (BASIC-Interpreter) sowie $EO0O0

bis $FFFF (E/A-Einheit) befassen.

172

KOPIERROUTINEN

Das ROM der beiden Bereiche enthält Interpreter und

Ein/Ausgabe-Teil (E/A), das "darunterliegende" RAM hingegen

"nichts" ‚es wird wie beispielsweise der BASIC-Speicher bei

jedem Ausschalten des Computers gelöscht.

Es liegt also nichts näher, als Interpreter und/oder

E/A-Teil in dieses RAM zu kopieren und anschließend auf die

kopierten Bereiche umzuschalten. Dies ist nicht weiter

schwer, da der PEEK-Befehl das ROM ausliest, während der

POKE-Befehl ins RAM (wohin sonst ?) schreibt.

Eine Kopierroutine für den lInterpreter könnte in BASIC

folgendermaßen aussehen:

10 FOR A= 10*4096 TO 12*4096 -1

20 POKE A, PEEK(A)

30 NEXT A

40 END

Entsprechend die BASIC-Kopierroutine für das Betriebssysten:

10 FOR A= 14*4096 TO 16*4096 -1

20 POKE A,PEEK (A)

30 NEXT A

40 END

Erst wenn der Inhalt des betreffenden ROM-Bereiches ins

darunterliegende RAM kopiert worden ist, darf der

Speicherbereich ins RAM umgeschaltet werden, Sonst kommt es

zum Absturz des Computers.

Int.ROM * Int.RAM * BetrSys.ROM * BetrSys.RAM * Umschaltung

RKKAÄKKKKKKKKKK KT TITTEN NK

x * x ok

I * 0 * I * 0 * POKE 1,55

0 x I * I * 0 * POKE 1,54

0 x I x 0 x I * POKE 1,53

1 x 0 * 0 x I ae

173

Es ist von BASIC aus nicht möglich, das Betriebssystem |

allein im ROM arbeiten zu lassen |!

Übrigens: Sicherlich wird Ihnen die Länge aufgefallen sein,

die die BASIC-Kopier-Routinen benötigen, um die

entsprechenden Speicherbereiche zu kopieren.

Das folgende Maschinenprogramm erledigt den gleichen Vorgang

allerdings erheblich schneller: Es braucht weniger als eine

Sekunde |!

Zunächst das Assembler-Listing:

033C LDX#$20
033E LDA#$A0
0340 LDY#$00
0342 STY$22
0344 STA$23
0346 LDA($22),Y
0348 STA($22),Y
034A INY
034B BNE$0346
034D INC$23
034F DEX
0350 BNE$0346
0352 RTS

Und hier der BASIC-Loader:

10 FOR I=828 TO 851
20 READ X: POKE I,X: NEXT
30 DATA 162,32, 169,160, 160,0, 132,34, 133,35,177,34
AO DATA 145,34, 200, 208, 249, 230,35, 202, 208, 244, 96
50 SYS 828 |

174

Die Kopierroutine wird mit "SYS 828" aufgerufen.

Wollen Sie sowohl den Interpreter als auch den E/A-Teil mit

dieser Routine kopieren, so ändern Sie im BASIC-Loader Zeile

50:

50 SYS 828: POKE 831,224: SYS 828

Was läßt sich jetzt aber mit dem im RAM befindlichen

Betriebssystem anfangen ?

Sofern Sie das DATA BECKER-Buch "64 INTERN" besitzen, finden

Sie das komplette Assembler-Listing beider Bereiche. Sie

können nun dieses Ihren Wünschen entsprechend ändern. Es

bietet sich weiterhin an, die BASIC-Fehlermeldungen oder

Befehle zu verändern, BASIC-Befehls-Routinen abzuändern,

etc.

Ihnen stehen nun alle Türen offen, bis hin zum eigenen

Interpreter!

175

9. BETRIEBSSYSTEM-ROUTINEN

Wer in Maschinen-Sprache programmiert, steht oft vor großen

Problemen, da die Assembler-Befehle nicht so vielseitig sind

wie die BASIC-Befehle. PRINT in Maschinen-Sprache ist schon

ein ganz schönes Problem. Doch vieles ist ganz einfach, wenn

man sich im Betriebssystem auskennt, denn viele Routinen

sind schon benutzerfertig vorhanden.

Das Betriebssystem teilt sich in zwei Teile auf:

a) Der Interpreter

b) Der Ein-Ausgabeteil

Der Interpreter ist der Teil, der die BASIC-Befehle in für

den Computer verständliche Maschinen-Befehle übersetzt. Der

E/A - Teil ist für alle Operationen mit der Außenwelt

bestimmt. Sehen Sie sich die nächsten Seiten ruhig einmal

an, vielleicht finden auch Sie einige Routinen, die für Sie

von Nutzen sind.

Blockverschiebe-Routine

Einsprungadresse: $A3B8 (41912)

Mit Hilfe dieser Routine kann man schnell und problemlos

einen Speicherbereich in einen anderen Bereich verschieben.

Dabei muß der alte Blockanfang in den Adressen $5F/$60 |

(95/96), das alte Blockende (+1!) in den Adressen $5A/$5B

(90/91) und das neue Blockende (+1!) in den Adressen $58/$59

(88/89) stehen.

Prüfung auf Platz im Stapel

Einsprungadresse: $A3FB (41979)

Diese Routine prüft nach, ob noch genug Platz im Stapel

176

vorhanden ist. Sollte nicht mehr genug vorhanden sein, so

erfolgt die Fehlermeldung "out of memory".

Ausgabe von "out of memory"

Einsprungadresse: $A435 (42037)

Diese Routine veranlaßt den Computer zur Ausgabe von "out of

memory error". Der Computer springt danach in den

Ready - (Direkt-)Modus.

Fehlermeldung ausgeben

Einsprungadresse: $A43A (42042)

Mit Hilfe dieser Routine kann man leicht eine Fehlermeldung

ausgeben. Der Computer geht nach der Ausgabe wieder in den

Direkt-Modus.

' Die Fehlernummer muG dabei im X-Register tibergeben werden.

Folgende Nummern fiihren zu folgender Fehlermeldung:

NUMMER

dez. hex. FEHLERMELDUNG

1 1 too many files

2 2 file open

3 3 file not open

4 4 file not found

5 5 device not present

6 6 not input file

7 7 not output file

8 8 missing file name

9 9 illegal device number

10 A next without for

11 B syntax

12 C return without gosub

13 D out of data

14 E illegal quantity

15 F overflow

16 10 out of memory

177

17 11 undef/d statement

18 12 bad subscript

19 13 redim/d array

20 14 devision by zero

21 15 illegal direct

22 16 type mismatch

23 17 string too long

24 18 file data

25 19 ‘formula too complex

26 1A can/t continue

27 1B undef/d function

28 1C verify

29 1D load
30 1E break

Diese Routine kann man auch von BASIC aus nutzen:

POKE781,21:SYS42042

führt z.B. zur Ausgabe von "illegal direct error".

BASIC-Programmzeilen neu binden

Einsprungadresse: $A533 (42291)

Diese Routine bindet eine BASIC-Zeile neu, d.h. die Zeilen

werden wieder in ihre richtige Reihenfolge gebracht.

NEW

Einsprungadresse: $A644 (42564)

Diese Routine ist der BASIC-Befehl NEW. Ein BASIC-Programm

wird dadurch gelöscht (bzw "versteckt").

CLR

Einsprungadresse: $A660 (42592)

Diese Routine kommt dem BASIC-Befehl CLR gleich. Es werden

also alle Variablen gelöscht.

178

RUN

RUN kann man nicht mit einem Befehl erledigen.

In Maschinen-Sprache sieht der BASIC-Befehl RUN

folgendermaßen aus:

JSR $A659

JSR $A7AE

STOP-Taste

Einsprungadresse: $A82C (43052)

Bei dieser Routine wird die Stop-Taste abgefragt, und sollte

sie gedrückt sein, so wird ein laufendes BASIC-Programm

abgebrochen.

Sollte ein STOP-Befehl in einem BASIC-Programm auftauchen,

so wird direkt zur Adresse $A82F (43055) gesprungen. Möchten

Sie also ein BASIC-Programm von der Maschinen-Sprache aus

sofort unterbrechen, so müssen Sie diese Adresse anspringen.

GOTO

Einsprungadresse: $A8A3 (43171)

Die eigentliche Goto-Routine beginnt ab der Adresse $A8AO

(43168). In Adresse $A8AO folgt jedoch ein Sprung zu einem

Unterprogramm, das die gültige Zeilennummer in die Adressen

$14-$15 (20-21) holt. Springen Sie also die Adresse $A8A3

an, so können Sie die Zeilennummer, die angesprungen werden

soll, selbst bestimmen, indem Sie sie in Low- und High-Byte

zerlegen und in den Adressen $14-$15 ablegen.

String ausgeben.

Einsprungadresse: $AB1E (43806)

Ein String wird ausgegeben. Dieser String muß eine Null als

Endkennzeichen aufweisen; seine Adresse muß in das

Y-Register und in den Akkumulator gegeben werden.

Akkumulator : Low-Byte

Y-Register : High-Byte

179

Zum Verständnis ein Beispiel:

LDA #$41

LDY #$03

JSR $AB1E

RTS

Mit diesem Programm wird der Kassettenpuffer bis zur ersten

Null ausgegeben. Damit läßt sich leicht der Name eines

Programms erfahren.

Das geht übrigens auch in BASIC:

POKE780, 65: POKE782,3:SYS43806

Einige Strings, die im ROM untergebracht sind:

MELDUNG AKKU (LOW) Y-REG (HIGH) ADRESSE

O.K. 100 163 $A364

ERROR(ohne CR) . 105 163 $A369

IN 113 163 $A371

READY 118 163 $A376

BREAK (ohne CR) 129 163 $A381

BASIC BYTES FREE 96 228 $E460

(Einschaltmeldung) 115 228 $E473

Bei geeignetem Suchen werden Sie garantiert noch weitere

Meldungen finden. Sie können natürlich auch einen eigenen

Sring konstruieren.

Ausgabe eines Leerzeichens (bzw. Cursor right)

Einsprungadresse : $AB3B (43835)

Diese Routine gibt ein Leerzeichen oder Cursor right aus.

‘Ein Leerzeichen wird ausgegeben, wenn ein File vorliegt

(Adresse $13 (19) ungleich Null).

180

In dieser Routine sind noch zwei andere Routinen verborgen:

a) $AB45 (43845)

Ausgabe eines Fragezeichens

b) $AB47 (43847)

Ausgabe des im Akku stehenden Zeichens

zeichen auf Klammer zu prüfen

Einsprungadresse: $AEF7 (44791)

Diese Routine prüft das Zeichen, auf das der Vektor $7A-$7B

(122-123) zeigt, auf "Klammer zu". Falls es nicht Klammer zu

ist, wird SYNTAX ERROR ausgegeben, und der Computer springt

in den Ready-Modus.

In dieser Routine sind noch andere Routinen verborgen:

a) $AEFA (44794)

Wie $AEF7, nur auf "KLAMMER AUF"

b) $AEFD (44797)

Wie $AEF7, nur auf "KOMMA“

c) $AEFF (44799) |

Wie $AEF7, nur auf das im Akku stehende Zeichen

SYNTAX ERROR

Einsprungadresse: $AFO8 (44808)

Diese Routine gibt "SYNTAX ERROR" aus. Der Computer geht

danach in den Direkt-Modus.

Zeichen auf Buchstabe prüfen

Einsprungadresse: $B113 (45331)

Das Zeichen, das sich beim Ansprung dieser Routine im Akku

befindet, wird daraufhin überprüft, ob es ein Buchstabe ist.

Sollte es einer sein, so wird das Carry-Flag gelöscht.

FAC-Zahl in Integer-Zahl

Einsprungadresse: $B1AA (45482)

Die Zahl, die gerade im FAC steht, wird in eine Integer-Zahl

181

umgewandelt. Diese Integer-Zahl wird in Low- und High-Byte

zerlegt und in die Adressen $64/$65 (100/101) gespeichert.

BAD SUBSCRIPT ERROR

Einsprungadresse: $B245 (45637)

Ausgabe von “bad subscript error" und Sprung in den

Ready-Modus.

ILLEGAL QUANTITY ERROR

Einsprungadresse: $B248 (45640)

Ausgabe von "illegal quantity error" und Sprung in den

Ready-Modus.

Test auf Direkt-Modus

Einsprungadresse: $B3A6 (45990)

Diese Routine prüft, ob sich der Computer im Direkt-Modus

befindet. Ist er es, so wird "illegal direct error"

ausgegeben. |

Auch in dieser Routine sind wieder zwei andere verborgen:

a) $B3AB (45995)

illegal direct error

b) $B3AE (45998)

undef/d function error

FORMULA TOO COMPLEX ERROR

Einsprungadresse: $BADO (46288)

FAC in LOW-HIGH-BYTE

Einsprungadresse: $B7F7 (47095)

Diese Routine wandelt die Zahl, die im FAC steht (sie muß

positiv und darf nicht größer als 65536 sein), in eine

 Sechzehn-Bit-Zahl um. Diese wird in Low- und High-Byte

zerlegt und in Adresse $14/$15 (20/21) und Y-Register-Akku

abgelegt.

182

OVERFLOW-ERROR

Einsprungadresse: $B97E (47486)

DEVISION BY ZERO ERROR

Einsprungadresse: $BB8A (48010)

LOW-HIGH-BYTE in Integer-Zahl

Einsprungadresse: $BDCD (48589)

Mit Hilfe dieser Routine kann man Low/High-Byte in eine

Integer-Zahl verwandeln und ausgeben lassen.

Das Low-und das High-Byte muß im Akkumulator bzw. im

X-Register stehen.

Diese Routine kann man auch gut von BASIC aus nutzen:

183

10 INPUT"LOW-BYTE";LO

20 INPUT" HIGH-BYTE" ; HI

30 POKE781,L0:POKE780,HI:SYS48589

40 PRINT:GOTO1O

In dieser Routine werden übrigens zwei andere Routinen

benutzt:

a) Die lInteger-Zahl wird in eine Fließkommazahl umgewan-

delt ($BC49)

b) Die Fließkommazahl wird in einen ASCII-String umgewan-

delt ($BDDF)

BREAK ERROR

Einsprungadresse: $E107 (57607)

Auf weitere Zeichen prüfen

Einsprungadresse: $E211 (57873)

Hier wird geprüft, ob noch weitere Zeichen folgen.

Sollte dies nicht der Fall sein, so wird "syntax error"

ausgegeben.

Möchte man vorher prüfen, ob ein Komma vorliegt, so muß die

Einsprungadresse $E2OE (57870) heißen.

BASIC-Kaltstart

Einsprungadresse: $E394 (58260)

Diese Routine kann man als Teil-Reset bezeichnen:

a) BASIC-Programme und Variablen werden gelöscht.

b) Der RAM wird wieder auf den Anschaltzustand gebracht.

c) Der Bereich $0300-$030B (768-779) wird wieder original

gesetzt. |

d) Das Anfangsbild erscheint.

e) Es wird zum BASIC-Warmstart gesprungen.

184

Manches dagegen wird nicht verändert, z.B. die Farben und

der Bereich $0314/$0333 (788/819), in dem unter anderem der

IRQ- und der NMI-Sprungvektor liegt.

Warten auf Commodore-Taste

Einsprungadresse : $E4EO (58592)

Der Computer wartet darauf, daß die Commodore-Taste gedrückt

wird. Wird sie nach einer gewissen Zeit nicht gedrückt, so

springt der Computer von alleine wieder zurück.

Bildschirm-Reset

Einsprungadresse : $E518 (58648)

Diese Routine stellt den Bildschirm wieder neu her, d.h. die

Farben werden wieder original gesetzt, der Bildschirm wird

gelöscht, und der Cursor wird wieder in den Anschaltzustand

versetzt.

Diese Routine kann man jetzt differenzieren:

a) Bildschirm-Reset ohne Verändern des Video-Controlers

Einsprungadresse : $E51B (58651)

b) Bildschirm löschen

Einsprungadresse : $E544 (58692)

c) Cursor Home

Einsprungadresse : $E566 (58726)

d) Cursor Home und Neu-Initialisieren des Video-Controlers

Einsprungadresse : $E59A (58778)

e) Nur Video-Controller initialisieren

Einsprungadresse : $E5AO (58784)

Rückschritt in vorhergehende Zeile

Einsprungadresse : $E701 (59137)

Bei Ansprung dieser Routine geht der Cursor eine Zeile nach

oben.

Bildschirm scrollen

Einsprungadresse : $E8EA (59626)

185

Bei Ansprung dieser Routine wird der gesamte Bildschirm um

eine Zeile nach oben geschoben, d.h. die oberste Zeile

verschwindet und unten kommt eine Leerzeile dazu. |

Bildschirmzeile löschen I

Einsprungadresse : $E9FF (59903)

Mit dieser Routine kann man eine Bildschirmzeile löschen.

Die Nummmer dieser Zeile (die oberste Zeile hat die Nummer

Null) muß man im X-Register übergeben.

Auch von BASIC her kann diese Routine genutzt werden:

POKE 781, (Zeilennummer):SYS 59903

Bildschirmzeile löschen II

Einsprungadresse : $E9FF (59905)

Diese Routine löscht, wie die oben aufgeführte Routine, die

Bildschirmzeile, deren Nummer im X-Register steht.

Zusätzlich kann dem Computer aber auch noch mitgeteilt

werden, bis zu welcher Stelle diese Zeile gelöscht werden

soll (0-39).

Diese Zahl muß im Y-Register übergeben werden.

Beispiel:

LDA #$0A

LDX #$00

JSR $E9FF

RTS

POKE781,0:POKE782,10:SYS 59905

Dieses Maschinen-Programm und das BASIC-Aquivalent löschen

die 1. Bildschirmzeile (Nummer Null) bis zur 11. Stelle

(Nummer 10).

Verzögerung von einer Millisekunde

Einsprungadresse : $EEB3 (60958)

186

Dieses Unterprogramm läßt den Computer eine Millisekunde

warten.

Systemmeldungen ausgeben

Einsprungadresse : $F12B (61739)

Mit Hilfe dieser Routine kann man alle Strings ausgeben, die

bei dem Umgang mit der Floppy & Datasette auftreten.

zuerst wird allerdings getestet, ob man sich im

Programm-Modus befindet. Sollte das der Fall sein, so wird

nichts ausgegeben.

Der Offset der Meldung muß im Y-Register übergeben werden.

Y-REGISTER

dez. hex. MELDUNG

O- 1 00-01 i-o error #

12- 13 OC-OD searching

23 17° for

27- 28 1B-1C press play on tape

46 2E press record & play on tape

73- 74 49-41 loading

81- 82 51-52 saving

89- 90 59-5A verifying

99-100 63-64 found

106-107 6A-6B o.k.

Diese Routine kann auch benutzt werden, ohne daß geprüft

wird, ob man im Programm-Modus ist. Dann muß die

Einsprung-Adresse allerdings $Fi2F (61743) heißen.

Searching (for filename) ausgeben

Einsprungadresse: $F5AF (62895)

Bei Ansprung dieser Routine wird zuerst geprüft, ob man im

Programm-Modus ist. Sollte das der Fall sein, so wird sofort

wieder zurückgesprungen.

Im anderen Fall wird "searching" ausgegeben. Nun wird

187

getestet, ob die Länge des Filenamens (abgespeichert in $B7)

gleich Null ist. Wenn ja, so wird die Routine jetzt beendet.

Wenn nein, so wird "for" ausgegeben und dann der Filename

(abgespeichert im Low-und High-Byte in $BB-$BC).

Beispiel:

POKE183 , 2: POKE187,39: POKE188, 241:SYS 62895

Nun wird "searching for o0.k." ausgegeben, da der Zeiger

187-188 ($BB-$BC) auf die Systemmeldung "o.k." (Adresse

$F127) gesetzt wurde.

Diese Routine kann auch benutzt werden, ohne daß vorher auf

den Programm-Modus getestet wird. Die Einsprungadresse hieße

in diesem Fall $F5B3 (62899).

Loading-Verifying ausgeben

Einsprungadresse: $F5D2 (62930)

Bei dieser Adresse wird "loading" bzw. "verifying"

ausgegeben. Das hängt von der Adresse $93 (147) ab. Bei

$93=0 wird "loading", und bei $93=1 "verifying" ausgegeben.

"saving" ausgeben

Einsprungadresse: $F68F (63119)

Diese Routine gibt "saving" aus. Wollen Sie, daß nicht

getestet wird, ob man im Programm-Modus ist, so müssen Sie

die Adresse $F693 (63123) anspringen.

TOO MANY FILES

Einsprungadresse: $F6FB (63227)

FILE OPEN

Einsprungadresse: $F6FE (63230)

FILE NOT FOUND

Einsprungadresse: $F701 (63233)

188

DEVICE NOT PRESENT

Einsprungadresse: $F707 (63239)

NOT INPUT FILE

Einsprungadresse: $F70A (63242)

NOT OUTPUT FILE

Einsprungadresse: $F70D (63245)

MISSING FILE NAME

Einsprungadresse: $F710 (63248)

ILLEGAL DEVICE NUMBER

Einsprungadresse: $F713 (63251)

Programm-Header von Band lesen

Einsprungadresse: $F72C (63276)

Dieses Programm liest den Header von Band (siehe Kapitel

LOAD-SAVE)

Programm-Header generieren und auf Band schreiben

Einsprungadresse : $F76A (63338)

Mit diesem Unterprogramm kann man einen Programm-Header auf

Band schreiben.

Folgende Adressen müessen folgende Merkmale enthalten:

$Cc1-$C2 (193-194) : Startadresse des Programms

$AE-$AF (174-175) : Endadresse des Programms

$B7 (183) : Anzahl der Zeichen des Filenamens

$BB-$BC (187-188) : Low-High-Byte-Zeiger auf den Filenamen

Diese Werte müssen vor Ansprung der Routine gesetzt werden.

Band nach Filenamen absuchen

Einsprungadresse : $F7EA (63466)

Diese Routine sucht auf dem Band nach einem bestimmten

189

Filenamen. Dieser Filename muß folgendermaßen bestimmt

werden:

$B7 (183) : Länge des gesuchten Filenamens (soll

das nächste Programm gesucht werden,

so muß diese Adresse auf Null gesetzt

werden)

$BB-$BC (187-188) : Adresse des gesuchten Filenamens

Bei Ansprung dieser Routine sucht der Computer solange das

Band ab, bis er den Header gefunden, das Bandende

erreicht hat (EOT-Signal) oder unterbrochen wird.

Bandtaste abfragen I

Einsprungadresse : $F817 (63511)

Bei dieser Routine wird die Datasette abgefragt. Ist eine

Bandtaste gedrückt, so wird sofort wieder zurückgesprungen.

Im anderen Falle wird "press play on tape" ausgegeben und

gewartet, bis eine Taste gedrückt wird. Daraufhin wird "ok”

ausgegeben und zurückgesprungen.

Stop-Taste wird in dieser Routine abgefragt.

Bandtaste abfragen II

Einsprungadresse : $F82E (63534)

Auch diese Routine fragt die Datasette daraufhin ab, ob eine

Taste gedrückt ist. Bei dieser Routine wird Jedoch nichts

ausgegeben, sondern sofort wieder zuriickgesprungen. Es wird

jedoch das Y-Flag folgendermaBen gesetzt:

a) Taste gedrückt : Y=1

b) Taste nicht gedrückt : Y=0

Bandtaste abfragen III

Einsprungadresse : $F838 (63544)

Diese Routine arbeitet wie $F817. Es wird nur Statt "press

play on tape" "press record & play on tape" ausgegeben.

190

STOP-Taste

Einsprungadresse : $F8DO (63696)

Diese Routine wird sofort wieder verlassen, wenn die

Stop-Taste nicht gedrückt ist.

Ist sie gedrückt, so wird der Band-Motor ausgestellt, die

IRQ-Routine wieder hergestellt, das Carry-Flag gesetzt und

dann erst zurückgesprungen. Wichtig ist noch, daß in dieser

Routine zwei PLA-Befehle auftauchen, d.h. daß bei gedrückter

Stop-Taste die erste Rücksprung-Adresse gelöscht wird.

Rekorderbetrieb beenden

Einsprungadresse : $FC93 (64659)

Diese Routine beendet die Kommunikation mit dem Rekorder,

d.h. der Bildschirm wird wiederhergestellt, der Rekorder

ausgeschaltet und der Video-Controler wieder auf die

Standardwerte gesetzt.

Rekordermotor ausschalten

Einsprungadresse $FCCA (64714)

191

10. KERNAL

Wenn Sie sich das Betriebssystem einmal anschauen, wird

Ihnen vielleicht auffallen, daß die Adressen $FF81-$FFF3

(65409-65523) lauter Aufrufe verschiedener Unterprogramme

sind. Doch wieso haben die Programmierer des

Betriebssystems diese Sprungtabelle geschaffen, da man die

Routinen doch auch direkt anspringen könnte?

Da diese Tabelle bei allen Commodore-Computer identisch ist

($FF81 z.B. ist immer der Aufruf zum Video-Reset, nur die

Adresse, zu der gesprungen wird, ist verschieden), kann man

Programme, die diese Routinen benutzen, ganz einfach von

einem Computer auf ein anderes Modell übernehmen. Es kommt

ja auf die Ansprungadresse in der Tabelle an, nicht, wohin

der Computer dann tatsächlich springt.

Sie sollten diese Routinen oft benutzen, da es damit

einerseits einfacher ist, Ihr Programm auf einen anderen

Rechner von Commodore umzustellen und andererseits, da diese

Routinen, wie Sie noch sehen werden, vielseitig verwendbar

sind.

Diese Tabelle heißt "Kernal".

In der folgenden Aufzählung sämtlicher Adressen ist immer

als erstes die Kernal-Adresse, also die Adresse die Sie

anspringen müssen, und dann die Adresse, die schließlich vom

Computer angesprungen wird, aufgeführt.

Kernal-Adresse: $FF81 (65409)

Funktion : Video-Reset

Tatsächliche Sprungadresse : $FF5B

Diese Routine stellt den Bildschirm wieder auf seine

Standard-Werte. Es wird zu einem Programm ab Adresse $FF5B

(66571) gesprungen:

192

FF5B JSR $E518

FF5E LDA $D012

FF61 BNE $FF5E

FF63 LDA $D019

FF66 AND #$01

FF6B JMP $EDDD

In Adresse $FF5B wird zu einem Unterprogramm gesprungen, das

a) den Cursor wieder auf seine Standard-Werte bringt,

b) Klein-Groß-Umschaltung wieder ermöglicht,

c) die Länge des Tastatur-Puffers auf 10 setzt,

ad) den Bildschirm löscht und

e) den Cursor an den Bildschirm-Anfang springen läßt.

Von $FF5E-$FF61 wird geprüft, ob die Rasterzeile, die Zeile,

die gerade auf dem Bildschirm geschrieben wird, zu Ende ist.

Ist das nicht der Fall, so wird gewartet, bis dieser Zustand

eintritt.

Sodann wird das Bit O von Speicherstelle $D019(53273) in die

Adresse $02A6 (678) geschoben (durch AND #$01 werden Bits

1-7 gelöscht, nur Bit O wird entweder 1 oder O0). Dann wird

zu einem Programm gesprungen, das prüft, ob eine PAL- oder

eine NTSC-Version des Fernsehers vorliegt. Darüber

entscheidet die Speicherstelle $02A6, die eben gesetzt

wurde.

Probieren Sie es aus:

PRINT PEEK(53273) AND 1

Wenn Sie 1 erhalten, so haben Sie eine PAL-Version (16421

Zyklen). Bei Null liegt eine NTSC-Version (17048 Zyklen)

vor.

Und wenn Sie etwas anderes bekommen, so haben Sie etwas

falsch gemacht. Sie können aber davon ausgehen, daß bei

193

Ihnen eine 1 erscheint, da in Deutschland und den anderen

westeuropäischen Ländern (außer Frankreich mit SECAM)

PAL-Norm vorherrscht. |

Die NTSC-Version (ein Vorläufer von PAL) dagegen ist in den

USA verbreitet. Da der C-64 in beiden Ländern vertreten ist,

wurden Routinen in dem Betriebssystem eingebaut, die ein

problemloses Umstellen ermöglichen.

Kernal-Adresse: $FF84 (65412)

Funktion : CIA/s initialisieren

Tatsächliche Sprungadresse : $FDA3

Diese Routine setzt die CIA/s (die Ausgabe-IC/s) wieder auf

die Standard-Werte. Auch dieses Unterprogamm stellt fest, ob

eine PAL- oder eine NTSC-Version vorliegt, und legt die

Zyklen danach fest.

Kernal-Adresse: $FF87 (65415)

Funktion : RAM löschen bzw. testen

Tatsächliche Sprungadresse : $FD50

Diese Routine löscht die Zero-Page (außer die Adressen $00

-$01), Page 2 und Page 3.
Außerdem wird der Zeiger des Kassetten-Puffers

($B2-$B3:178-179) auf seinen normalen Wert gebracht, so daß

er bei $033C (828) beginnt. Als Weiteres wird (ab $0400

:1024) auf das RAM-Ende geprüft. Diese Adresse wird in Low-

und High-Byte zerlegt, und in die Adressen $0283-$0284

(643-644) geschrieben. Dann werden noch der RAM-Anfang auf

$0800 (2048) und der Video-RAM-Start auf $0400 (1024)

gelegt. In dieser Routine ist eine andere verborgen, die gut

benutzt werden kann. Mit ihrer Hilfe kann man leicht die

BASIC-Ram-Obergrenze festlegen.

eee : $FE2O

X-Register: Low-Byte

Y-Register: High-Byte

194

Auch ein Lesen der Obergrenze ist mdglich:

eee : $FE27

X-Register: Low-Byte

Y-Register: High-Byte

Kernal-Adresse: $FF8A (65418)

Funktion : I/O initialisieren

Tatsächliche Sprungadresse : $FD15

Diese Routine setzt die I/O-Einheit wieder auf die

Standardwerte.

Kernal-Adresse: $FF8D (65421)

Funktion : I/O-Vektoren initialisieren

Tatsächliche Sprungadresse : $FD1A

Bei Ansprung dieser Routine werden die Adressen $0314-$0333

(788-819) wieder auf die Normal-Werte gebracht.

Kernal-Adresse: $FF90 (65424)

Funktion : Status setzen

Tatsachliche Sprungadresse : $FE18

Diese Routine setzt den Status:

FE18 STA $9D ;Flag fiir Direkt-Modus ($80=Direkt, $00=

Programm-Modus)

FE1A LDA $90

FE1C ORA $90

FE1E STA $90

FE2O RTS

Kernal-Adresse: $FF93 (65427)

Funktion: Sekundär-Adresse nach Listen senden

195

Tatsächliche Sprungadresse : $EDB9

Diese Routine gibt die Sekundär-Adresse auf den IEC-Bus

(serielle Ausgabe) aus. Der IRQ wird dabei unterbrochen. Die

Sekundäer-Adresse muß im Akku mit übergeben werden. Mit

Listen ist ein Floppy gemeint, das Daten empfangen soll. Wie

man das einstellt, erfahren Sie später.

Kernal-Adresse: $FF96 (65430)

Funktion: Sekundär-Adresse nach Talk senden

Tatsächliche Sprungadresse : $EDC7

Diese Routine funktioniert wie $FF93, nur es wird die

Sekundär-Adresse zu einem Floppy gesendet, das Daten

schicken soll (Talk).

Kernal-Adresse: $FF99 (65433)

Funktion: RAM-Ende setzen-holen

Tatsächliche Sprungadresse : $FE25

Bei dieser Routine wird das RAM-Ende gesetzt (Carry-Flag

gleich Null) oder gelesen (Carry-Flag gleich Eins). Beide

Male werden folgende Register folgendermaßen benutzt.

X-Register : Low-Byte

Y-Register : High-Byte

Wie Sie benutzt werden (Lesen oder Schreiben), hängt vom

Carry-Flag ab.

Kernal-Adresse: $FF9C (65436)

Funktion : RAM-Anfang setzen-holen

Tatsächliche Sprungadresse : $FE34

Diese Routine hat die arbeitet auf die gleiche Weise wie

die Routine $FF99. In diesem Fall wird nur statt das

RAM-Endes der RAM-Anfang behandelt.

196

Kernal-Adresse: $FF9F (65439)

Funktion : Tastatur-Abfrage

Tatsächliche Sprungadresse : $EA87

In diesem Unterprogramm werden die Tasten abgefragt,

entschlüsselt und das entsprechende Zeichen wird ausgegeben.

Diese Routine (allerdings nicht über die Kernal-Adresse,

sondern direkt $EA87) wird auch von der IRQ-Routine benutzt.

Kernal-Adresse: $FFA2 (65442)

Funktion : Time-out Flag für IEC-Bus setzen

Tatsächliche Sprungadresse : $FE21

Dieses Unterprogramm setzt das Time-out-Flag ($0285 : 645):

FE21 STA $0285

FE24 RTS

Wie Sie sehen, muß das Flag im Akku mit übergeben werden.

Kernal-Adresse: $FFA5 (65445)

Funktion : Eingabe vom IEC-Bus (IECIN)

Tatsächliche Sprungadresse : $EE13

Diese Routine holt ein Zeichen von der Floppy. Es müssen

allerdings andere Routinen, die die Verbindung ers

herstellen, vorher angesprungen worden sein.

Kernal-Adresse: $FFA8 (65448)

Funktion : Ausgabe vom IEC-Bus (IECOUT)

Tatsächliche Sprungadresse : EDDD

Diese Routine gibt ein Zeichen (mit ATN-Signal) auf dem

IEC-Bus aus. Wie bei der Routine $FFA5 (IECIN) müssen

allerdings andere Routinen vorher angesprungen werden.

197

Kernal-Adresse: $FFAB (65451)

Funktion : UNTALK senden

Tatsächliche Sprungadresse : $EDEF

Diese Routine sendet ein UNTALK-Signal. Daraufhin wird

jegliche Kommunikation mit einem aktiven Ein-Ausgabe-Gerät,

daß gerade Daten zum Computer sendet, unterbrochen.

Kernal-Adresse: $FFAE (65454)

Funktion : UNLISTEN senden

Tatsächliche Sprungadresse : $EDFE

Diese Routine hat die gleiche Wirkung wie die Routine UNTALK

(Adresse $FFAB), nur daß ein Gerät angesprochen wird, das

gerade Daten vom Computer empfängt.

Kernal-Adresse: $FFB1 (65457)

Funktion : LISTEN senden

Tatsächliche Sprungadresse : $EDOC

Diese Routine ist das Gegenstück zur Routine UNLISTEN

(Adresse $FFAE), da hier eine Kommunikation mit einem Gerät

begonnen wird. Dabei muß vorher die Geräte-Nummer der Floppy

in den Akkumulator geladen und in Adresse $BA(186)

abgespeichert worden sein. Wollen Sie also zu einer Floppy

Daten senden, so müssen die ersten 3 Zeilen folgendermaßen

aussehen:

LDA #$08 :8=Device-Number für Floppy

STA $BA ‚abspeichern

JSR $FFB1 : LISTEN-Routine

Kernal-Adresse: $FFB4 (65460)

Funktion : TALK senden

198

Tatsächliche Sprungadresse : $EDO9

Diese Routine arbeitet ähnlich wie LISTEN, nur wird hir der

Floppy mitgeteilt, daß es Daten senden soll. Beide Routinen

(TALK u. LISTEN) benutzen die gleiche Routine:

EDO9 ORA #$40

EDOB .BYTE $2C

EDOC ORA #$20

EDOE JSR $FOA4

In $EDO9 ist der Einsprung ftir TALK.

IN $EDOC ist der Einsprung fiir LISTEN.

Wird TALK angesprungen, so wird die Geräte-Nummer mit 64

logisch-oder verknüpft, d.h. zu der Geräte-Nummer (die Bit

0-3 belegen kann) wird Bit 6 gesetzt. Danach wird durch

einen Programmier-Trick $EDOC übersprungen, da sonst auch

noch Bit 5 gesetzt worden wäre.

wird LISTEN angesprungen, so wird die Geräte-Nummer mit 32

logisch oder-Verknüpft, so daß Bit 5 gesetzt wird.

Ab Adresse $EDOE geht es für beide Routinen gemeinsam

weiter.

Sie erkennen, daß das Floppy bei gesetztem Bit

a) Bit 5 der Geräte-Adresse Daten empfängt (LISTEN)

b) Bit 6 der Geräte-Adresse Daten sendet

Kernal-Adresse: $FFB7 (65463)

Funktion : Status holen

Tatsächliche Sprungadresse : $FEO7

Diese Routine holt den Status in den Akkumulator und setzt

ihn daraufhin auf Null. Diese Routine kann auch für die RS

232-Schnittstelle benutzt werden, wenn die Geräte-Adresse

($BA : 186) gleich zwei ist.

199

Kernal-Adresse: $FFBA (65466)

Funktion : Fileparameter setzen

Tatsächliche Sprungadresse : $FEOO

Diese Routine legt alle Parameter für einen File fest. Der

Unterroutine muß die logische File-Numnmer, die Geräte-Nummer

und die Sekundär-Adresse übergeben werden.

PARAMETER REGISTER WIRD ABGESPEICHERT IN

Logische Filenummer Akku $B8 (184)

Geräte-Nummer X-Register $BA (186)

Sekundär-Adresse Y-Register $B9 (185)

Kernal-Adresse: FFBD (65469)

Funktion : Filenamenparameter setzen

Tatsächliche Sprungadresse : $FDF9

In dieser Routine werden alle Parameter festgelegt, die

einen Filenamen betreffen.

200

PARAMETER REGISTER WIRD ABGESPEICHERT IN

Länge des Namens Akku $B7 (183)

Adresse low X-Register $BB (187)

Adresse high Y-Register $BC (188)

Wie bei der Kernal-Routine $FFBA müssen die entsprechenden

Werte im Akku, dem X- und dem Y-Register übergeben werden.

Kernal-Adresse: $FFCO (65472)

Funktion: OPEN

Tatsächliche Sprungadresse: Ergibt sich aus $031A-$031B

Normalerweise $F34A

Da dieser Befehl sehr wichtig ist, wird er hier aufgelistet

und erklärt: |

F34A LDX $B8 : lädt die logische Filenummer

F34C BNE $F351 ; ungleich null, also weiter

F34E JMP $F70A ; gibt "not input file" aus

F351 JSR $F30F ; logische Filenummer schon vorhanden?

F354 BNE $F359 ; nein

F356 JMP $F6FE ; gibt "file open” aus

201

F359

F35B

F35D

F35F

F362

F364

F366

F369

F36B

F36D

F36F

F372

F374

F377

F379

F37B

F37D

F37F

F382

F384

F386

F388

F38B

F38E

F390

F393

F395

F397

F399

F39C

F39E

F3A1

F3A3

F3A5

F3A8

F3AA

LDX

CPX

BCC

JMP

INC

LDA

STA

LDA

ORA

STA

STA

LDA

STA

BEQ

CMP

BEQ

BCC

JSR

BCC

CMP

BNE

JMP

JSR

BCS

JMP

LDA

AND

BNE

JSR

BCS

JSR

LDA

BEQ
JSR

BCC

BEQ

$98

#50A

$F362

$F6FB

$98

$B8

$0259,x

$B9

#60

$B9

$026D,X

$BA

$0263,X
$F3DB
#503
$F3D3

$F384
$F3D5
$F3D3

#502
$F38B
$F409
$F7DO

$F393
$F713
$B9
#$0F
$FBB8
$F817
$F3D4

$F5AF
$B7
$F3AF
$F7EA

$F3C2
$F3D4

‚Anzahl der offenen Files

;mit 10 vergleichen

‚kleiner als 10, alo weiter

‚zu groß, also "too many files"

‚Anzahl um Eins erhöhen

‚logische Filenummer

:speichert sie in Tabelle ab

;Sekundär-Adresse

‚Bit 6 und 5 für Floppy setzen

‚wieder abspeichern

;Sekundär-Adresse in Tabelle speichern

;Gerate-Nummer

:in Tabelle abspeichern

;‚Tastur, also Rücksprung

‚Bildschirm?

:ja, also Rlicksprung

‚kein File auf IEC-Bus
;File auf IEC-Bus eröffnen

‚fertig

;RS 232-Schnittstelle?

‚nein, also Band

;RS 232 OPEN

‚Kassetten-Puffer-Anfang holen

‚Band-OPEN weiter

-gibt "illegal device number” aus

; Sekundar-Adresse

‚Bits 4-7 löschen

;:Sekundär-Adresse; 0, also schreiben

‚Play-Taste abfragen

:Stop-Taste gedrückt, also Abbruch

;‚"searching (for name)" ausgeben

‚Länge des Filenamens

‚kein Filename, also weiter

:sucht gewünschten Tape-Header

‚gefunden |

‚Abbruch

202

F3AC JMP $F704 ;EOT, also "file not found"

F3AF JSR $F72C ‚weiter suchen

F3B2 BEQ $F3D4 ;EOT, also Ende

F3B4 BCC $F3C2 ;gefunden

F3B6 BCS $F3AC ‚weiter suchen

F3B8 JSR $F838 ;wartet auf Record & Play-Taste

F3BB BCS $F3D4 ;Stop-Taste gedriickt, also Abbruch

F3BD LDA #$04 ;Kontroll-Byte für Tape-Header

F3BF JSR $F76A ;Header auf Band schreiben

F3C2 LDA #$BF ;Zeiger auf Ende des Kassetten-Puffers

F3C4 LDY $B9 ; Sekundar-Adresse

F3C6 CPY #$60 ;mit 96 (Bit 5 und 6) vergleichen

F3C8 BEQ $F3D1 -Sek.-Adresse gleich null, also weiter

F3CA LDZ #$00

F3CC LDA #$02 ;Kontroll-Byte fiir Datenblock

F3CE STA($B2),Z ;in Kassetten-Puffer schreiben

F3D0 TZA ;Akku gleich Null

F3D1- STA $A6 ;Zeiger in Kassetten-Puffer

F3D3 CLC

F3D4 RTS

F3D5 File auf IEC-Bus eröffnen

Wie Ihnen beim Durchsehen der Routine vielleicht aufgefallen

ist, wird von der OPEN-Routine vorausgesetzt, daß einige

Parameter schon gesetzt worden sind.

1. Für den Filenamen:

a) Länge ($B7 ; 183)

b) Adresse low ($BB ; 187)

c) Adresse high ($BC ; 188)

2. Für das File:

a) Logische Filenummer

b) Sekundär-Adresse

c) Geräte-Nummer

($B8 ; 184)

($B9 ; 185)

($BA ; 186)

203

Für das Setzen dieser Parameter sind in Kernal schon zwei

Routinen vorgesehen:

a) Fileparameter setzen : $FFBA

b) Filenamenparameter setzen : $FFBD

Diese beiden Routinen miissen also vor dem Aufruf der

OPEN-Routine angesprungen werden.

Ein Beispiel:

Sie wollen ein File mit dem Namen "$" (Directory) auf dem

Floppy eröffnen:

LDA #$01 ‚Länge des Filenamens

LDX #$DO ‚Adresse low

LDY #$FF ‚Adresse high

JSR $FFBD ;Filenamenparameter festlegen

LDA #$01 ‚logische Filenummer

LDY #$00 ; Sekunddr-Adresse

LDX #$08 ;Gerate-Nummer

JSR $FFBA ;Fileparameter festlegen

‚zur Erklärung:

Die Adresse des Filenamens ist $FFDO. Auf diese Adresse sind

wir gekommen, da der Inhalt dieser Speicherstelle den

Dezimalwert 36 enthält, was dem ASCII-Wert von "$"

entspricht.

Kernal-Adresse: $FFC3 (65475)

Funktion : CLOSE

Tatsächliche Sprungadresse : Vektor $031C-$031D (796-797)

204

Normalerweise: $F291

Auch diese Routine ist sehr wichtig. Sie ist das Gegenstück

zur OPEN-Routine. Bei der CLOSE-Routine muß aber nur ein

Wert angegeben werden: Die logische Filenumnmer. Sie kennen

das wahrscheinlich von BASIC her. Da heißt es auch nur

"CLOSE 1", wenn das File mit der logischen Filenumnmer 1

geschlossen werden soll. Vor dem Anspringen der OPEN-Routine

muß der Akkumulator mit der logischen Filenummer des Files,

das geschlossen werden soll, geladen worden sein. Wollen Sie

also das File mit der Nummer 10 schließen, so

muß das in Maschinensprache heißen:

LDA #$0A

JSR $FFC3

RTS

Zu der Routine ist weiter nichts zu sagen. Für den Anwender

ist nur wichtig, daß sie funktioniert. Kurz erklärt werden

soll nur noch, wie der Computer die anderen Werte

(Geräte-Adresse etc.) bekommt:

Er merkt sich immer die Anzahl der gerade offenen Files (in

Adresse $98 : 158). Alle anderen Werte sind alle in

Tabellen untergebracht.

601-610 : Tabelle für logische Files

611-620 : Tabelle für Geräte-Nummer

621-630 : Tabelle für Sekundär-Adresse

Zu Anfang sind in allen drei Tabellen die Werte Null.

Nehmen wir jetzt an, es wird ein File mit der Nummer 1,

Sekundär-Adresse O und Geräte-Nummer 8 eröffnet. Automatisch

wird dann auch die Anzahl der logischen Files um einen

erhöht, so daß in Adresse $98 (158) der Wert 1 steht. Die

drei Tabellen sehen dann folgendermaßen aus:

205

601 1 O OÖ OÖ OÖ OÖ O OÖ O O Filenummer

611 OÖ O O OÖ OÖ OÖ OÖ OÖ O O Sekundärnummer

621 8 OÖ OÖ Ö O O OÖ OÖ O O Geratenummer

Nehmen wir an, es wird jetzt auch noch ein File mit der

logischen Nummer 3, Sekundärnummer 1 und Gerätenumnmer 1

eröffnet:

601 1 3 OÖ 0 O Ö O 0 O O Filenummer

611 OÖ 1 O OÖ O OÖ OÖ O OÖ O Sekundärnummer

621 8 1 O OÖ O OÖ Ö O OÖ O Gerätenummer

In dem gleichen Sinne werden alle anderen Files

abgespeichert.

will der Computer jetzt die anderen Werte zu dem File mit

der logischen Nummer 3 haben, so geht er zuerst einmal die

Tabelle 601-610 durch. Ein Zähler wird jedesmal erhöht, wenn

ein Platz weitergesprungen wird. Hat der Computer die

logische Filenummer gefunden, so merkt er sich den Zähler.

Da dieser Zähler auch auf die anderen Tabellen zutrifft

(d.h. die anderen Tabellen haben den Eintrag zu diesem File

am gleichem Platz), können die entsprechenden Werte ganz

einfach aus den entsprechenden Tabellen gelesen werden.

Kernal-Adresse: $FFC6 (65478)

Funktion : Eingabegerät setzen (CHKIN)

Tatsächliche Sprungadresse : Vektor $031E-$031F (798-799)

Normalerweise: $F20E

Diese Routine setzt ein Eingabegerät fest. Die Festlegung

(Gerät, etc.) erfolgt durch ein File. Die logische

Filenummer muß im X-Register mit übergeben werden. Ist kein

File mit dieser Nummer eröffnet, so wird "file not open"

206

ausgegeben. Der Computer sucht sich dann die entsprechende

Gerätenummer aus der Tabelle und schreibt sie in die

Speicherstelle $99 (153).

Sollte ein Floppy, also der IEC-Bus, angesprochen werden, so

wird zusätzlich noch ein TALK-Signal gesendet. Daraufhin

wird der Status getestet. Ist er nicht o.k., so wird "device

not present" ausgegeben, da das Gerät nicht geantwortet hat

und so folglich auch nicht da ist.

Wird das Band als Eingabe-Gerät gesetzt (Gerätenummer Eins)

und die Sekundär-Adresse ist ungleich Null, wird "not input

file" ausgegeben, da ein Output-File (Sekundär-Adresse Eins

meint schreiben) ja kein Eingabegerät festsetzen kann. |

Sie können diese Routine auch anspringen, ohne daß ein File

eröffnet wurde. Dann müssen Sie nur schon die entsprechenden

Werte (Gerätenummer, Sekundär-Adresse) in die entsprechenden

Speicherstellen ($BA;186 : $B9;187) geschrieben haben. Die

Einsprungadresse heißt dann F219 (61977).

Die Nummer des Eingabegeräts kommt in $99 (153).

Kernal-Adresse: $FFC9 (65481)

Funktion: Ausgabegerät setzen (CKOUT)

Tatsächliche Sprungadresse: Vektor $0320-$0321 (800-801)

Normalerweise: $F250

Auch bei dieser Routine muß die logische Filenummer wieder

im X-Register mit übergeben werden.

Ist kein File mit dieser Nummer eröffnet, so gibt der

Computer "file not open" aus. Soll ein File, das die

Datasette anspricht, das Ausgabegerät bestimmen, hat aber

die Sekundär-Nummer Null (Lesen), so wird "not output file"

ausgegeben. |

Auch diese Routine können Sie so verwenden, daß ein

Ausgabegerät gesetzt wird, ohne daß Sie ein File öffnen

müssen. |

Geben Sie die gewünschten Parameter (Geräte-Adresse und

Sekundär-Adresse) in $BA (186) und $B9 (185) und springen

207

Sie die Routine ab $F25B (62043) an.
Wird bei dieser Routine ein Floppy angesprochen, so wird ein

LISTEN-Signal gesendet, der Status abgefragt und ggf.

"device not present" ausgegeben.

Die Nummer des Ausgabegeräts kommt in $9A (154).

Kernal-Adresse: $FFCC (65484)

Funktion: I-O zurücksetzen (CLRCH)

Tatsächliche Sprungadresse : Vektor $0322-$0323 (802-803)

Normalerweise: $F333

Durch diese Routine kann man einen gerade aktiven I/O-Kanal

auf dem IEC-Bus schließen.

F333 LDX #$03 ;3=Bildschirm

F335 CPX $9A ;Nummer des Ausgabegerates

F337 BCS $FB3C ;kleiner als 3

F339 JSR $EDFE ;UNLISTEN zur Floppy senden

F33C CPX $99 ;Nummer des Eingabegerates

F33E BCS #F343 ;kleiner als 3

F340 JSR $EDEF ;UNTALK zur Floppy senden

F343 STX $9A ‚Ausgabe wieder auf Bildschirm

F345 LDA #$00 ;O=Tastatur

F347 STX $99 ‚Eingabe wieder von Tastatur

F349 RTS

Diese Routine arbeitet folgendermaßen:

Sie schaut zuerst nach, ob das Ausgabegerät der IEC-Bus ist.

Ist dies der Fall, so wird zu einer Routine gesprungen, die

den Datenverkehr abbricht (UNLISTEN). Ist dies nicht der

Fall, so wird geschaut, ob das Eingabegerät das Floppy ist.

Wenn ja, so wird ein UNTALK-Signal zur Floppy gesendet,

damit das Floppy weiß, daß es aufhöhren soll, Daten zum

Computer zu senden.

Schließlich wird noch bei beiden Möglichkeiten (Floppy als

Ausgabegerät oder Floppy als Eingabegerät) der Bildschirm

208

wieder als Ausgabegerät und die Tastatur wieder als Eingabe

gerät gesetzt.

Kernal-Adresse: $FFCF (65487)

Funktion: Eingabe eines Zeichens (BASIN)

Tatsächliche Sprungadresse : Vektor $0324-$0325 (804-805)

Normalerweise: $F157 |

Mit Hilfe dieser Routine kann man ein Zeichen von einem

beliebigen Eingabegerät holen. Das geholte Zeichen befindet

sich nach Rücksprung im Akku. Da diese Routine nicht so

einfach ist, einige Beispiele:

Sie wollen einen String in einem Bereich (wir nehmen den

Bereich ab $033C) ablegen. Der String soll über die Tastatur

eingegeben werden. Das Programm legen wir ab dem Bereich

$6000 (24576) in den Speicher.

LDX #$00 ‚Zähler auf Null setzen

* JSR $FFCF ;BASIN (Zeichen holen)

STA $033C,X ‚Zeichen ablegen

INX ‚Zähler erhöhen

CMP #$0D ;Return?

BNE * ‚nein

RTS :Ja

Als BASIC-Loader:

10 FORY=0T013:READA: POKE24576+Y, A: NEXTY:SYS24576

20 DATA162,0,32,207,255,157,60,3,232,201,13,208,245,96

Sobald Sie das Programm eingegeben und RUN getippt haben,

erscheint ein Cursor auf dem Bildschirm. Nun können Sie Ihre

Zeichen eingeben. Abgebrochen wird das Programm durch

Eingabe von RETURN.

Testen Sie nun, ob Ihr String auch richtig abgelegt wurde:

L ist die Länge des von Ihnen eingegebenen Strings. Diese

209

Länge darf 192 nicht überschreiten, da dann der

Kassetten-Puffer voll ist.

FORY=OTOL: PRINTCHR$ (PEEK (828+Y)) ; :NEXTY

Wenn Sie alles richtig gemacht haben, so erscheinen Ihre

eingegebenen Zeichen (auch Cursorfunktionen) auf dem

Fernseher. Doch diese Routine kann nicht nur im

Zusammenhang mit der Tastatur benutzt werden. Genauso gut

können Daten von der Floppy, vom Band oder der RS

232-Schnittstelle übernommen werden. Dabei müssen Sie aber

zuerst das Eingabegerät verändern. |

Gehen Sie so vor:

210

Nehmen wir an, Sie wollen Daten von der Floppy (die schon

wartet) übernehnen:

a)

b)

Cc)

d)

e)

f)

g)

h)

Parameter setzen: LDA #$01 ;logische File-Nr.

LDX #$08 ;Gerätenummer

LDY #$00 ;Sekundär-Adresse

JSR $FFBA ;Parameter setzen

Filenamenparameter setzen: LDA #$xx ;Lange des Namens

LDX #$y1 ;Adresse low

LDY #$y2 ;Adresse high

JSR $FFBD ;Parameter setzen

OPEN: JSR $FFCO ;OPEN-Routine

Setzen des Eingabegeräts: LDX #$01 ;logische File-Nr.

JSR $FFC6 ;CHKIN

Holen der Daten aus der gedffneten Datei:

BASIN

Falls nicht alle Daten übernommen sind, e)

Standard-Werte einschalten:JSR $FFCC ;CLRCH

Datei schließen : | LDA #$01 ;logische File-Nr.

JSR $FFC3 ;CLOSE

Wenn Sie es ersteinmal verstanden haben, können Sie dieses

System für alle Arten von Dateien einsetzen.

Ein Beispiel dafür finden Sie in dem Kapitel FLOPPY-TRICKS.

Kernal-Adresse: $FFD2 (65490)

Funktion : Ausgabe eines Zeichens (BSOUT)

211

Tatsächliche Sprungadresse : Vektor $0326-$0327 (806-807)

Normalerweise : §$F1CA

Genauso wie ein Zeichen eingegeben wird (BASIN-Routine),

kann auch ein Zeichen ausgegeben werden.

Das geschieht durch diese Routine.

Am besten gleich ein Beispiel:

LDX #$00 ‚Zähler auf Null

* LDA $FOBE,X ‚Zeichen lesen

JSR $FFD2 ;und ausgeben (BSOUT)

INX ‚Zähler erhöhen

CPX #$09 ‚schon 9?

BNE * ;nein

RTS :Ja

Diese Routine holt den Bereich $FOBE-$FOC6 (61630-61638

(Betriebssystem-Meldung "I/O ERROR")) der Reihe nach in den

Akkumulator und gibt ihn mit Hilfe der BSOUT-Routine auf dem

Bildschirm aus.

Als Basic-Loader:

10 FORX=OTO13 : READA: POKE24576+X,A:NEXTX: SYS24576

20 DATA162,0, 189,190, 240,32, 210,255, 232, 224,9, 208, 245,96

Bei RUN erhalten Sie die Meldung "I/O ERROR" auf dem

Bildschirm. Wie Sie sehen, ist auch die BSOUT-Routine leicht

zu bedienen. Natürlich kann auch sie, wie die BASIN-Routine,

für andere Geräte genutzt werden. Die Schritte dazu sind

identisch zur BASIN-Routine, nur

a) die Sekundär-Adresse muß Eins sein.

b) statt der CHKIN-Routine muß die CKOUT-Routine ange-

sprungen werden, da ja ein Ausgabe-Gerät festgelegt

werden soll.

c) statt der BASIN-Routine muß natürlich die BSOUT-Routi-

ne angesprungen werden.

212

Diese beiden Routinen sind sehr leistungsstark und können

oft benutzt werden, da sie für alle Arten der Ein/Ausgabe

geeignet sind.

Kernal-Adresse: $FFD5 (65493)

Funktion: LOAD

Tatsächliche Sprungadresse: $F49E

Dies ist die Load-Routine. Um Load auszuführen, ist es aber

nötig, mehrere Parameter zu übergeben.

Vor dem Anspringen der Load-Routine muß folgendes gesetzt

worden sein:

a) $BA (186) : Gerätenummer

b) $B7 (183) : Länge des Filenamens (ist bei Gerätenummer

8 unbedingt erforderlich, kann sonst Null

sein)

c) $B9 (185) : Sekundär-Adresse

ad) $BB-$BC : Low-High-Byte auf den Filenamen (wenn $B7=0

nicht erforderlich)

e) X-Register: Low-Byte der Startadresse(kommt in $C36195A)

f) Y-Register: High-Byte der Startadresse (kommt in $C4)

g) Akku : Load-Verify-Flag (O=Load,1=Verify); kommt in

| $93 (147)

In Adresse $F4A2 der Load-Routine wird ein indirekter Sprung

durchgeführt:

JMP ($0330)

Normalerweise ergibt das $F4A5. Dieser Vektor kann aber auch

auf eigene Load-Routinen gesetzt werden (siehe KAPITEL Tips

& Tricks).

213

Kernal-Adresse: $FFD8 (65496)

Funktion: SAVE

Tatsächliche Sprungadresse : $F5DD

Auch für die Save-Routine müssen wieder einige Werte gesetzt

werden:

a) $AE-$AF (174-175) : Endadresse

b) $C1-$C2 : Startadresse

c) $BA : Gerätenummer

d) $B9 : Sekundär-Adresse (wird bei IEC-Save automa-

tisch auf Eins gesetzt)

e) $B7 : Länge des Filenamens (kann bis auf bei IEC-

Save Null sein)

f) $BB-$BC : Adresse des Filenamens (wenn $B7=0 irrelevant)

In einer Schleife werden dann der Reihe nach alle Bytes von

Startadresse bis zur Endadresse zum jeweiligen Gerät

gebracht.

Kernal-Adresse: $FFDB (65499)

Funktion: Zeit setzen

Tatsächliche Sprungadresse: $F6E4

Der Akkumulator, das X- und das Y-Register setzen die

Uhrzeit. Wie Sie sicherlich wissen, ist die Uhrzeit in den

Adressen $AO-$A2 (160-162) untergeracht (und zwar ist TI

PEEK(160) * 65525 + PEEK(161) * 256 + PEEK(162)).

Durch diese Routine können Sie nun die Uhrzeit beliebig

stellen.

Der Akku kommt in Adresse $A2 (162, Low-Byte der Uhr)

Das X-Register kommt in Adresse $A1 (161, Mid-Byte der Uhr)

Das Y-Register kommt in Adresse $AO (160,High-Byte der Uhr)

Kernal-Adresse: $FFDE (65502)

Funktion: Zeit holen

Tatsächliche Sprungadresse: $F6DD

214

Nach dem Rücksprung enthalten die verschiedenen Register

folgende Werte:

REGISTER ADRESSE FUNKTION

Akku $A2 (162) Niedrigstes Zeit-Byte

X $A1 (161) Mittleres Zeit-Byte

Y $AO (160) Höchstes zeit-Byte

Kernal-Adresse: $FFE1 (65505)

Funktion: STOP-Taste abfragen

Tatsächliche Sprungadresse: Vektor $0328-$0329 (808-809)

Normalerweise: $F6ED

Diese Routine funktioniert nur mit Hilfe der IRQ-Routine.

In einem Unterprogramm, das von der IRQ-Routine aus

angesprungen wird, wird bei gedrückter STOP-Taste ein Flag

($91 (145)) gesetzt. In diesem Kernal-Unterprogramm wird nun

das Flag abgefragt. Ist der richtige Inhalt vorhanden ($7F

(127)), dann wird eine andere Kernal-Routine, CLRCH ($FFCC)

durchgeführt. Außerdem wird der Tastaturpuffer geleert,

indem eine Null in die Adresse $C6 (198) geschrieben wird.

Wird der Teil der IRQ-Routine, der die Stop-Taste abfragt,

durch POKE 788,52 außer Betrieb gesetzt, so funktioniert

auch diese Routine nicht mehr, außer man führt den Sprung zu

dem Unterprogramm, das von der IRQ-Routine aus angesprungen

wird, vor dem Sprung zu dieser Kernal-Routine durch.

Kernal-Adresse: $FFE4 (65508)

Funktion: GETIN |

Tatsächliche Sprungadresse: Vektor $032A-$032B (810-811)

Normalerweise: $F13E

Diese Routine holt ein Zeichen. | |

Anhand der Speicherstelle $99 (aktives Eingäbegerät (153))

springt der Computer zu verschiedenen Routinen:

215

$99 (153) - Eingabegerät Sprungadresse

“Zus ee ce ome Oe cme cee am em eet CER tam ome ame em eee eee een oe ee eee GAME Gm ame ame HER eee ee wee eee eee ome em ERBE cee ce om cme em cen ene ame am one om aw ame am em om

O Tastatur $E5B4

2 RS 232-Schnittstelle $F086

anders Floppy-Band etc. $F166

Wird ein Zeichen von der Tastatur geholt, so sieht die

Routine folgendermaßen aus:

E5B4 LDY $0277 ‚erstes Zeichen in Y-Register

E5B7 LDX #$00 ;Zahler

E5B9 LDA $0278,X ;Zeichen holen

E5BC STA $0277,X ;und eine Stelle vorher ablegen

E5BF INX ‚Zähler erhöhen

E5CO CPX #$C6 ;Anzahl der Zeichen

E5C2 BNE $E5B9 ‚noch nicht alle, also weiter

E5C4 DEC $C6 ‚Zeichenanzahl um Eins erniedrigen

E5C6 TYA ;1.Zeichen in Akku holen

E5C7 CLI ;‚Interrupt wieder erlauben

E5c8 CLC

E5C9 RTS

Diese Routine holt sich das erste Zeichen aus dem

Tastatur-Puffer (631-640), schiebt die anderen alle eins auf

‘und erniedrigt die Zahl um einen.

Der Interrupt wurde verhindert, damit der Tastatur-Puffer

nicht noch kurzfristig geändert wird (in der IRQ-Routine

wird die Tastatur abgefragt, siehe Kapitel INTERRUPTS).

Kernal-Adresse: $FFE7 (65511) |

Funktion: SchlieBen aller offenen Files (CLALL)

Tatsächliche Sprungadresse: Vektor $032C-$032D (812-813)

Normalerweise: $F32F

Diese Routine benutzt eine andere Kernal-Routine, die

CLRCH-Routine ($FFCC). Es werden nur zwei Befehle

216

vorweggenommen:

F32F LDA #$00

F331 STA $98

Damit werden alle offenen Files geschlossen ($98 (158) =

Anzahl der offenen Files).

Ab Adresse $F333 geht es mit der CLRCH-Routine weiter.

Kernal-Adresse : $FFEA (65514)

Funktion : Zeit erhöhen-STOP-Taste abfragen

Tatsächliche Sprungadresse : $F69B

Diese Routine wird auch von der IRQ-Routine benutzt,

allerdings wird direkt die Adresse $F69B angesprungen.

In dieser Routine wird die Uhrzeit erhöht.

Außerdem wird nachgeschaut, ob der Wert für 24h erreicht

worden ist. Ist das der Fall, so wird die Uhr wieder auf

Null gestellt.

Weiterhin wird getestet, ob die Stop-Taste gedrückt ist. Ist

sie es, so wird ein Flag ($91 (145)) gesetzt.

Da diese Routine wie gesagt von der IRQ-Routine genutzt

wird, fällt auf, daß in der IRQ-Routine nur die Stop-Taste

abgefragt, nicht aber zu einer Routine gesprungen wird. Das

hat einen großen Vorteil:

Je nachdem, was gerade ausgeführt wird, kann zu einer

anderen Routine gesprungen werden. Ist der Computer z.B.

gerade im Lade-Modus, und die Stop-Taste wird gedrückt, so

wird zu einer anderen Routine gesprungen, als wenn der

Computer im Programm-Modus gewesen wäre.

Kernal-Adresse: $FFED (65517)
Funktion: Zeilen-Spalten-Anzahl holen

Tatsächliche Sprungadresse: $E505

Diese Routine holt die Spalten-Anzahl (40) in das X-Register

und die Zeilen-Anzahl (25) in das Y-Register:

217

E505 LDX #$28 -Spalten-Anzahl

E507 LDY #$19 :Zeilen-Anzahl

E509 RTS

Kernal-Adresse : $FFFO (65520)

Funktion : Cursor setzen-holen

Tatsächliche Sprungadresse : $E5OA

Ist das Carry-Flag gesetzt, so wird die Cursorposition

geholt, sonst wird sie gesetzt.

E50A BCS $E513 ‚setzen

E50C STX $D6 ;Zeile

E50E STY $D3 ‚Spalte

E510 JSR $E56C :Cursor setzen

E513 LDX $D6

E515 LDY $D3

E517 RTS

Wie Sie sehen, ist

a) beim Holen der Cursor-Position die Zeile ins X-Register

und die Spalte ins Y-Register.

b) beim Setzen der Cursor-Position die Zeile ins X-Register

und die Spalte ins Y-Register zu tibergeben.

Kernal-Adresse : $FFF3 (65523)

Funktion : Startadresse I/O-Baustein holen

Tatsächliche Sprungadresse : $E500

Nach Ansprung dieser Routine ist im X-Register das Low-Byte

($00) der Startadresse des I/O-Bausteins und im Y-Register

das High-Byte ($DC).

Die gesamte Routine sieht folgendermaßen aus:

E500 LDX #$00 ; Low-Byte

E502 LDY #$DC ;High-Byte

E504 RTS

218

Diese Routine und die Routine zum Holen der Zeilen-/

Spalten-Anzahl mag auf den ersten Blick unsinnig erscheinen.

Man sieht den Sinn aber schnell ein, wenn man noch einmal

überdenkt, wozu der Kernal denn geschaffen ist: Zum Umsetzen

von Programmen auf einen anderen Computer.

Wie Sie sicherlich schnell einsehen werden, kann man kein

vernünftiges Programm schreiben, ohne daß Bildschirmformat

des Computers zu kennen. Mit Hilfe dieser Routinen kann man

das Programm so schreiben, daß es sich selbsttätig nach dem

Format erkundigt.

Wir hoffen, daß dieser Ausflug in den Bereich des Kernal

lehrreich für Sie war, und daß Sie als

Maschinensprache-Programmierer doch die ein oder andere

Routine einmal benutzen können.

219

11.DER SPEICHER

WIE SPEICHERT DER COMPUTER EINE BASIC-ZEILE 7

Auf den folgenden zeilen wollen wir Ihnen einige

Einzelheiten die Abspeicherung von BASIC-Zeilen betreffend

aufzeigen. | '

Um die BASIC-Zeilen überhaupt verarbeiten zu können, muß das

erste Byte des BASIC-Speichers "0" enthalten. Im Normalfall

fängt der BASIC-Speicher bei Adresse 2049 an. Also muß

Adresse 2048 eine Null enthalten. POKEn wir in diese Adresse

eine 1, dann druckt der Computer bei NEW oder bei RUN die

Fehlermeldung SYNTAX ERROR aus (aber Vorsicht!! NEW führt

der Computer trotzdem aus!).

Wir haben ein kleines Programm geschrieben, das die

Speicherung einer BASIC-Zeile verdeutlichen soll. Es zeigt

in der oberen Zeile des Bildschirms ständig an, wieviele

Bytes des BASIC-Speichers von der letzten Zeile verbraucht

wurden. a

Nachdem Sie es eingegeben und mit RUN gestartet haben,

erscheint in der oberen Zeile des Bildschirms folgender

Ausdruck:

00 BYTES BENUTZT

Dies bedeutet, daß die letzte Eingabe (seit dem letzten

RETURN) kein Platz im BASIC-Speicher mehr verbraucht hat.

BASIC-Speicherplatz wird nur bei Programm-Zeilen belegt.

Geben Sie jetzt ein:

100 PRINT

Nun zeigt das Programm folgende Aussage an:

06 BYTES BENUTZT

Von diesen 6 Bytes sind fünf sogenannte Verwaltungs-Bytes.

220

Das letzte Byte ist für den Befehlscode (Token) für PRINT.

Die 5 Verwaltungs-Bytes unterteilen sich wiederum in:

a) zwei Bytes (die ersten beiden) für die Abfangsadresse

der nächsten BASIC-Zeile (in Low-High-Byte) .Die letzte

Zeile zeigt auf den Wert Null.

b) zwei Bytes (die zweiten beiden) für die Zeilennummer.

Auch diese beiden Bytes sind in Low - High-Byte unter-

teilt, so daß die Zeilen-Nummer 1000 die Werte 232/3

ergibt.

c) ein Byte für die Kennzeichnung des Zeilen-Endes. Die-

ses Byte muß den Wert Null haben, und es steht am Ende

der entsprechenden Zeile.

Geben Sie nun

20 PRINT "WERNER"

ein. Hier werden 14 Bytes benötigt. Davon wieder die 5

bekannten Verwaltung-Bytes, ein Byte für den Token (PRINT)

und die übrigen 8 für den Text (Werner gleich 6 und die

Anführungszeichen jeweils ein Byte).

Geben Sie nun noch etwas ein:

30 PRINTCHR$(48)

Diesmal sind 11 Bytes erforderlich:

a) 5 Bytes für die Verwaltung

b) 1 Byte für den BASIC-Token "PRINT"

c) 1 Byte für den BASIC-Token "CHR$"

d) 4 Bytes für den "Text-Teil" "(48)".

Wenn Sie die Funktionen TAB und SPC verwenden, ist zu

beachten, daß | diese Befehle bereits das Zeichen "("

enthalten.

221

Die Zusammensetzung der Bytes einer BASIC-Zeile ist bei

allen BASIC-Befehlen gleich. Als letztes Beispiel wollen wir

dafür folgende Zeile zeigen:

40 POKE198,0

Und noch einmal eine Auflistung der benutzten Bytes:

a) 5 Bytes fiir die Verwaltung

b) 1 Byte fiir den BASIC-Token "POKE"

c) 5 Bytes fiir den Text (hier 198,0)

Und nun die Routine, zuerst den BASIC-Loader:

10 FOR I=0 TO 87

20 READ A

30 POKE 40704+I,A

40 S=S+A

50 NEXT I

60 IF S<>7590 THEN PRINT "FEHLER IN

DATAS" : END

70 PRINT"DATA O.K."

80 SYS 40704

100 DATA120,169,15,141,20,3,169, 159,141,

21,3,133,56,88,96,169,48

110 DATA141,0,4,141,1,4,165,11,201,76,

240, 18,56,201,10, 144,8, 238 |

120 DATAO, 4, 233,10, 76,30, 159, 105,48, 141,

1,4,162,2,189,69,159,157,0,4

130 DATA232, 224,18, 208, 245, 169,0, 202,157

,0,216, 208, 250, 76,49, 234,32,2,25, 20,5

140 DATA19,32,2,5,14,21,20, 26, 20, 32,32,

32

222

Für Assembler-Freaks:

9FOO SEI
9FO1 LDA #OF
9FO3 STA $0314
9FO6 LDA #9F
9FO8 STA $0315
9FOB STA $38
9FOD CLI
9FOE RTS
9FOF LDA #$30
9F11 STA $0400
9F14 STA $0401
9F17 LDA $0B
9F19 CMP #$4C
9F1B BEQ $9F2F
9FID SEC
9FIE CMP #$0A
9F20 BCC $9F2A
9F22 INC $0400
9F25 SBC #$10
9F27 IMP $9F1E
9F2A ADC #$30
9F2C STA $0401
9F2F LDX #$02
9F31 LDA $9F45,X
9F34 STA $0400,X
9F37 INX
9F38 CPX #$12
9F3A BNE $9F31
9F3C LDA #$00
9F3E DEX
9F3F STA $D800,X
9F42 BNE $9F3E
9F44 JMP $EA31

Die restlichen Daten stellen die Bildschirm-Code-Werte für

den String "BYTES BENUTZT" dar.

223

BASIC-MONITOR

Vorhin haben wir schon gesehen, wie der Computer eine

BASIC-Zeile abspeichert. Das nun folgende, kurze

BASIC-Programm ermöglicht es, die Speicherinhalte des

Computers zu sichten. So kann man sich ganze

(Basic-)Programme anschauen. Es ist auch sehr interessant

und aufschlußreich, auf diese Art Teile des ROMs zu

untersuchen.

Wenn Ihnen Maschinensprache-Monitore nicht fremd sind,

kennen Sie sicher den Befehl "M" (Memory-Display). In

Deutsch heißt das "Speicher-Anzeige". Dieses Programm führt

genau diesen Befehl aus.

zuerst werden Sie nach der Anfangs- und Endadresse gefragt.

Nun werden auf dem Bildschirm die Anfangs-Adresse, und die

PEEKs dieser Adresse und der fünf folgenden angezeigt. Am

Ende der Zeile stehen noch die Bildschirm-Code-Zeichen

dieser Speicher-Inhalte.

Beispielsweise die folgende (fiktive) ausgegebene Zeile:

2048 16 15 48 61 127 102 100 = "at

v | ons
L 2049

L 2050

kn, 2051
L——. 2052 un]

L205 3

Die Zeilen, die auf dem Bildschirm zu sehen sind, haben das

Muster der Zeile mit der Zahl 2048 am Anfang. Das Gebilde

unter dieser Zeile soll verdeutlichen, wie die Zahlen und

Zeichen zueinander stehen. |

Wie Sie sehen, erfolgt die Zahlenausgabe im dezimalen

Zahlen-Systenm, da dieser Monitor zum durchforsten von

BASIC-Programmen gedacht ist.

224

Da das Programm nur eine Funktion auszuführen braucht, ist

die Bedienung denkbar einfach. Laden Sie das Programm herein

und starten Sie es dann. Der Computer meldet sich mit

BASIC-MONITOR

ANFANGSADRESSE?

Geben Sie nun die gewünschte Adresse (in dezimal) ein.

ENDADRESSE?

Geben Sie wieder die gewünschte Adresse ein. Der Computer

gibt jetzt nach dem oben schon beschreibenen Muster die

entsprechenden Werte aus. Wie Ihnen beim Ausprobieren

vielleicht aufgefallen ist, druckt der Computer in der

letzten Zeile auch dann 6 Werte aus, wenn eigentlich nach

der eingegebenen Endadresse weniger Werte ausgegeben werden

müßten.

Wenn Sie während eines längeren Durchlaufs den Wunsch haben

das Programm zu stoppen, brauchen Sie nur auf F-1 zu

drücken.

Einige interessante Start-Adressen:

2048 : Anfang des BASIC-Speichers. Hier befindet

sich (normalerweise) der Monitor.

40964 : BASIC-Befehle

Nun erstmal der Monitor:

225

print" SS’ chr #14) pokeS 3281.6 poke Sse oe
Print” j@ Basic-Moni tor on a’ :print:print

input" Anfanasadre: .

input" Endaddresse Ne

fi
t

fi
s

Mm
:

@o

mo

mm

.
—
r

D ‘e
b

SA Forit=atoestepe

BA pri ati s

CH Forested
2A sp=peekCitod: gosubZee: rem print wsi res

uspeek OS l4 4404+ 1 Bo4+s3+0

eek titos pokesderetu od

print

vezxti

input" 9 yazh einmal Wirt

getat:ifaf="" then 150

irfatfe" "then run

ered

rem print formatieren

pF sehr po
iflent updo c4thenkp $=" U+ep di gohode

 Frintxp$; "return

B
r

f
i
e

ib

i
c
h

ih

B
i

R
e

a

i
s

Te
a

pi

I

PR
E

ee

ee

et

ee

ee

t
t

pe
e

BE
Y

at

=,

od
e

Obwohl der Monitor in BASIC geschrieben ist, ist es mdglich,

ein anderes BASIC-Programm damit zu untersuchen. Dazu müssen

226

Sie aber einige Werte verändern.

Gehen Sie folgendermaßen vor:

Da

Versetzen Sie Ihren Computer in den Anschaltzustand

- Geben Sie ein:

POKE 44, 150

Statt der 150 können Sie auch eine andere Zahl zwischen

8 und 159 nehmen. Dadurch wird der BASIC-Anfang hochge-

setzt, so daß sich der Monitor und das Programm, daß

Sie untersuchen wollen nicht überschneiden.

Geben Sie

POKE 256*PEEK(44),0

ein. Dadurch wird eine Null an den BASIC-Anfang gesetzt,

was unbedingt erforderlich ist.

Laden Sie nun den BASIC-Monitor.

Geben Sie nun ©

POKE 44,8

ein. Dadurch wird der BASIC-Anfang wieder auf den

Normalwert gebracht.

Laden Sie nun das Programm, das Sie untersuchen wollen.

Geben Sie nun wieder

POKE 44, (Ihren Wert)

ein, um wieder zum Monitor zu gelangen.

Starten Sie nun den Monitor mit RUN. Nun können Sie das

Programm ganz einfach untersuchen (ab Adresse 2048).

der Monitor nicht lang und so einfach zu verstehen ist,

können Sie Ihn ja mal durch andere Befehle ergänzen, um so

z.B. BASIC-Programme mit dem Monitor verändern zu 'können.

227

KOMMENTIERTES ZEROPAGE-LISTING

Im Folgenden finden Sie ein kommentiertes Zeropage-Listing.

Es soll Ihnen helfen, die Bedeutung unbekannter Adressen in

fremden Listings zu klären. Beim Durchschmökern finden aber

auch Sie vielleicht so manche interessante Anregung !

Wir wünschen Ihnen viel Spaß!

0000 0 6510 DATEN RICHTUNGSREGISTER FUR PROZESSORPORT

0001 1055 6510 PROZESSOR-PORT

---- - Bit O: RAM oder ROM von $A000 bis $BFFF

-- - (BASIC-Interpreter) * POKE 1,54

--- - Bit 1: RAM oder ROM von $E000 bis $FFFF

-_--- - (Betriebssystem, KERNAL) * POKE 1,53

Bit 2: I/O oder ROM von $DO00 bis $DFFF

(Charactergen.-Zugriff) * POKE 1,51

0002 2 NICHT BENUTZT

0003 3 VEKTOR LOW (Umrechnung Float-Fixed)

0004 4 VEKTOR HIGH

0005 5 VEKTOR LOW (Umrechnung Fixed-Float)

0006 6 VEKTOR HIGH

0007 7 SUCHZEICHEN

0008 8 FLAG (Hochkomma-, Gänsefüßchen-Mode)

0009 9 SPEICHER FÜR SPALTE BEIM TAB-BEFEHL

OOOA 10. FLAG (O=LOAD; 1=VERIFY)

000B 11° ZEIGER (Eingabepuffer); Anzahl der Elemente

000C 12 FLAG (Standard-DIM)
000D 13 TYPFLAG ($FF(255)=String, OO=numerisch)

OOOE 14 TYPFLAG ($80(128)=Integer, OO=FlieSkomma)

OOOF 15 FLAG (DATA/LIST); Hochkommaflag bei LIST

0010 16 FLAG (FNx, Element)

0011 17 EINGABEFLAG (OO=INPUT; 64=GET; 136=READ)

0012 18 VORZEICHEN BEI ATN (Flag für Gleichheit bei

Vergleich)

228

0013

0014

0015

0016

0017

0018

0019

001A

001B

001C

001D

OO1E

O001F

0020

0021

0022

0023

0024

0025

0026

0027

0028

0029

002A

002B

002C

002D

002E

002F

0030

0031

01

08

AKTIVES I/O-GERAT

POKE 19, 1:INPUT"OHNE FRAGEZEICHEN" ;A$: POKE19,0

(Ausschalten des Fragezeichens bei INPUT)

INTEGER-ADRESSE LOW

INTEGER-ADRESSE HIGH

ZEIGER AUF TEMPORAREN STRINGSTAPEL

POKE 22,35: LIST

(Listen ohne Zeilennummern)

VEKTOR LOW (Letzter temporärer String)

VEKTOR HIGH

STAPEL FUR TEMPORARE STRINGS

BEREICH FÜR HILFSZEIGER (nutzbar für M-Prg.)

BEREICH FÜR PRODUKT BEI MULTIPLIKATION

VEKTOR LOW (Basic-Anfang)

An neuen BASIC-Anfang POKE (newadd)-1,0:NEW !!

VEKTOR HIGH

VEKTOR LOW (Variablen-Start)

VEKTOR HIGH

VEKTOR LOW (Beginn der Arrays (Felder))

VEKTOR HIGH

VEKTOR LOW (Ende der Arrays)

229

0032

0033

0034

0035

0036

0037

0038

0039

003A

003B

003C

003D

OO3E

003F

0040

0041

0042

0043

0044

VEKTOR HIGH

VEKTOR LOW (Beginn der Strings)

VEKTOR HIGH

VEKTOR LOW (Hilfszeiger für Strings)

VEKTOR HIGH

VEKTOR LOW (BASIC-Speicher-Ende)

Herabsetzen des verfügbaren BASIC-Speichers ‚um

beispielsweise dort abgelegte Assemblerprog-

gramme vor dem überschreiben zu schützen.

VEKTOR HIGH

LOW-BYTE (aktuelle Zeilennummer)

PRINT PEEK(57) +256* PEEK(58) ergibt die aktu-

elle BASIC-Zeilennummer aus (Abfrage funktio-

niert nur im Programm-Mode!)

HIGH-BYTE

LOW-BYTE (vorherige Zeilennummer)

PRINT PEEK(59) +256*PEEK(60) ergibt die voran-

gegangene BASIC-Zeilennummer (auch im Direkt-

de)

HIGH-BYTE

LOW-BYTE (Nachstes Statement fiir CONT)

zeiger auf Einsprungadresse bei CONT

HIGH-BYTE

LOW-BYTE (Augenblickliche DATA-Zeilennummer)

Enthalt die augenblickliche Zeilennummer fiir

DATA (In Verbindung mit READ;kann zum Ausgeben

der Zeilennummer bei eigenen Fehlermeldungen

benutzt werden !)

HIGH-BYTE .

VEKTOR LOW (Adresse des aktuellen DATA-Elemen-

tes. Zeigt auf die Anfangsadresse des nächsten

DATA-Elementes im BASIC-Speicher

VEKTOR HIGH

VEKTOR LOW (Zeiger auf Herkunft der Eingabe)

VEKTOR HIGH

230

0045

0046

0047

0048

0049

004A

004B

004C

004D

OO4E

OO4AF

0050

0051

0052

0053

0054

0055

0056

0057

0058

0059

005A

005B

005C

005D

OO5E

OO5F

0060

0061

0062

0063

0064

0065

0066

0067

0068

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

76

REG 1 Variablenname (siehe "Grundsätzliches

REG 2 Variablenname zur Variablenspeicherung

VEKTOR LOW Variablenadresse |

VEKTOR HIGH

LOW-BYTE (Variablenwert)

HIGH-BYTE

LOW-BYTE (Zwischenspeicher für Programmzeiger)

HIGH-BYTE

Maske für Vergleichsoperationen

VEKTOR LOW (Zeiger für FN)

VEKTOR HIGH

Stringdescriptor (verschieden genutzter Ar-

" beitsbereich)

Konstante $4C (JMP-Befehl fiir Funktionen)

Sprungvektor fiir Funktionen (LOW)

" | (HIGH)

Register fiir Arithmetik, Akku 3

FlieBkomma-Akku 1, FAC

Vorzeichen des FAC

zähler für Polynomberechnung (z.B. ab $E059)

Rundungsbyte für FAC

231

0069 105 Fließkomma-Akku 2, ARG

006A 106 8

O06B 107 "

006c 108 "

006D 109 .
OO6E 110 Vorzeichen des ARG

OO6F 111 Vergleich der Vorzeichen FAC/ARG

0070 112 Rundungsbyte fiir FAC

Kleine Anmerkung zu den vorangegangenen Speicherstellen:

Die "Formelauswertungsroutine" befindet sich im

BASIC-Interpreter ab $AD9E.

Sie holt einen beliebigen Ausdruck und wertet ihn aus. Diese

Auswertung geschieht in reellen zahlen, eventuell

vorkommende Integer (Ganzzahl) Variablen werden zunächst ins

Fließkommaformat umgewandelt.

Aber nicht nur Zahlen, auch Stringparameter können von

dieser Routine bearbeitet werden.

Um Stringparameter von anderen numerischen Variablen zu

unterscheiden, wird ein entsprechendes Zeichen (Typflag)

gesetzt (Adresse 13).

Numerischer Werte werden im FAC 1 (ab $61)

zwischengespeichert. Da dies aber nicht für arithmetische

Verknüpfungen (Subtraktion, Addition, etc.) ausreicht, gibt

es einen weiteren Fließkomma-Akku (ab $69), ARG.

Das Ergebnis nach dem Aufruf der entsprechenden Routine

steht wie das Argument im FAC.

Bei Stringauswertungen werden die Adressen $64 / $65

hinzugezogen, die einen Zeiger auf den Stringdescriptor

bilden. |

Dort stehen Informationen über Länge und Adresse des

bearbeiteten Strings. |

Die im Folgenden aufgeführten Routinen des Interpreters

dürften gerade bei der Maschinensprache-Programmierung für

die Auswertung beliebiger Ausdrücke interessant sein:

232.

FAC

FAC

FAC

FAC

FAC

ARG

ARG

ARG

ARG

ARG

Routine

Die Adresse

FAC (Addition)

FAC (Subtraktion)

$B86A (47210)

$B853 (47187)

FAC (Multiplikation) $BA28 (47656)

FAC (Division)

FAC (Potenzieren)

$BB12 (47890)

$BF7B (49019)

$B475 (46197) holt die Stringlänge in den Akku.

liegt im Low-High-Format im X- und Y-Register.

VEKTOR LOW (Zeiger für Polynomauswertung)

VEKTOR HIGH Sie dienen als Zeiger auf den Po-

lynomkoeffizienten ($E043) und als Zeiger für

Polynomgrad ($EO59).

CHRGET-ROUTINE (Assembler-ROM-Listing):

0073 INC $7A

0075 BNE $0079

0077 INC $7B

0079 LDA $HHLL

Programmzeiger

Programmzeiger

007C

007E

0080

0082

0084

0085

0087

0088

OO8A

CMP

BCS

CMP

BEQ

SEC

SBC

SEC

SBC

RTS

"S3A

$008A
"$20

$0073

"$30

"$D0

zeiger in BASIC-Text erhöhen

LOW

HIGH

"" Space übergehen

Die CHRGET-Routine liegt eigentlich im ROM ab

233

10

$E3A2, wird aber während des RESETS ins RAM ab

$0073 kopiert. Die Routine funktioniert nur im

RAM-Bereich. X- u. Y-Register werden nicht an-

getastet.

Carry=0 : Inhalt des gelesenen Bytes liegt im

Bereich $30 - $39 (Ziffern im ASCII-Code)

Zero=1 : Zeichen = $00 oder $3A (":")

letzter RND-Wert

Statuswort ST (bei z.B. IEC-Bus-Routinen)

Flag des Systems für STOP-Taste

zeitkonstante für Kassette (von $F92C gesetzt)

LOAD/VERIFY-Flag ($00=LOAD; $01=VERIFY)

Wird von LOAD-Routine gesetzt, während Adresse

$0A (10) vom LOAD-Befehl gesetzt wird.

Flag für zurückgestelltes Zeichen bei IEC-Out

Zurückgestelltes Zeichen (Puffer)

End-Of-Tape (EOT) gefunden (Flag)

Zwischenspeicher für Register

Anzahl der offenen Dateien

POKE 152,0 schließt alle Files,

POKE 152,12 verhindert das Öffnen von Files

aktives Eingabegerät (1=-Tastatur)

POKE 153,2 verhindert Tastatur-Eingaben

aktives Ausgabegerät (3=Bildschirm)

POKE 154,1 hat dieselbe Bedeutung wie bei

Adresse 19 in bezug auf INPUT

Paritätsbyte von Band

Flag für Byte empfangen

Direkt-Mode-Kontrolle ($00=Programm, $80=RUN)

Ein mit GOTO gestartetes Programm bewirkt $80!

Band Pass 1 Checksumme

Band Pass 2 Korrektur

234

00

TIME 3 (Übertrag TIME 2)

TIME 2 (Übertrag TIME 1)

TIME 1 (Zähler für TI und TI$)

Bitzähler. Zählt bei $FB97 die acht Bits eines

auszugebenden Bytes

Zyklen-Zahler ($A3=8 dann $A4=0)

Abwärtszähler schreiben auf Kassette

Zeiger in Bandpuffer (wird ein Zeichen in den

Kassettenpuffer geschrieben, erhöht sich diese

Adresse um 1 und zeigt auf die nächste freie

Stelle. Ist der Puffer voll (192 Zeichen) ‚wird

das Zero-Flag gesetzt ($F80D).

Zwischenspeicher für LOAD/SAVE bei Kassette

Zeiger für Bandpuffer und Scrolling

HIGH-BYTE "

Lowbyte der Endadresse des geladenen Programms

High-Byte "

Zeitkonstanten für Band

VEKTOR LOW (Verschieben des Kassettenpuffers)

VEKTOR HIGH

Bitzähler für Band

235

nachstes Bit fiir RS 232

Puffer fiir auszugebendes Byte

Lange des Programm-Namens

Zuletzt benutzte Dateinummer

Zuletzt benutzte Sekundaradresse

Zuletzt benutzte Gerätenummer

VEKTOR LOW auf abgespeicherten Programmnamen

VEKTOR HIGH bei Floppy Disk

Zwischenspeicher für serielle Ein-/ Ausgabe

Anzahl der noch zu lesenden/schreibenden

Blocks (Routine ab $FBCD)

Serieller Wortpuffer. Puffer für Adresse 189

Kassettenmotorflag

VEKTOR LOW Eingabe/Ausgabe-Startadresse

VEKTOR HIGH (zeigt auf $A000); fiir SAVE-Routine

Endadresse fiir Ein/Ausgabe vom Bildschirm

High-Byte "

Nummer der gedriickten Taste (64=keine Taste)

10 IF PEEK(197)=64 THEN 10 wartet auf Tasten-

druck (siehe auch Tabelle im Anhang).

Anzahl der Tasten, die aus dem Tastaturpuffer

ausgegeben werden sollen(siehe Tastaturpuffer)

Revers(RVS)Flag 1=revers, O=normal

POKE 199,1: PRINT "DEMO"

Zeiger auf Zeilenende für Eingabe

Cursorzeile für Eingabe (dient nur als Puffer)

Cursorspalte für Eingabe "

Nummer der gedrückten Taste (64=keine Taste)

scheinbar dieselbe Funktion wie Adresse 197.

Für den Computer jedoch zeitverschobene Abfra-

ge auf zwischenzeitlich gedrückte Tasten.

Cursor-Flag O=Cursor ein 1=Cursor aus

Gestattet das Einschalten des Cursors im Prg.

Zähler für Cursor blinken

Zeichen in Cursorposition

Einschaltflag 1=Cursor sichtbar O=unsichtbar

236

OOFO 240
OOF1 241
OOF2 242
OOF3 243
OOF4 244
OOF5 245
OOF6 246
OOF7 247
OOF8 248
OOF9 249
OOFA 250

OOFB 251
OOFC 252
OOFD 253
OOFE 254
OOFF 255

Ende Page O

10IFPEEK(207)THEN1O wartet, bis Cursor sich in

Aus-Phase befindet.

Eingabeflag (z.B. $E65F, $F16A)

VEKTOR LOW in aktuelles Video-RAM

VEKTOR HIGH

Eingabe der Cursorspalte für Eingabe-Cursor

Cursor-Zeile siehe Adresse 214. Aufruf der

Set-Routine: SYS 58732)

Hochkomma(")Flag Benutzung beispielsweise bei

ESCAPE-Routine. POKE 212,1: PRINT... gibt auch

eventuell vorkommende Steuerzeichen aus.

Länge der Bildschirmzeile (39/79)

Eingabe der Cursorzeile (siehe Adresse 211 !)

div. Zwecke (letzte Taste, Puffer, Prüfsumme)

Anzahl der ausstehenden Inserts

MSB der Bildschirmzeilen-Anfänge

Unechte Bildschirmzeile

Bildschirmzeilen-Marke

VEKTOR LOW Zeiger ins aktuelle Farb-RAM

VEKTOR HIGH (ab $D800)

VEKTOR LOW Tastatur-Dekodiertabelle

VEKTOR HIGH Zeiger: $EB81 (60289)

VEKTOR LOW RS 232 Eingabepuffer

VEKTOR HIGH

VEKTOR LOW RS 232 Ausgabepuffer

VEKTOR HIGH |

Zeropageraum zur eigenen Verwendung (unbenutzt)

Anfang des Puffers Umwandlung Fließkomma-ASCII

237

WICHTIGE ADRESSEN DER FOLGENDEN PAGES

0277 - 0280 631-640 TASTATURPUFFER

In diesem Bereich können bis zu 10 Zeichen

zwischengespeichert ("gepuffert") werden.

Dies passiert beispielsweise immer dann, wenn Tasten

gedriickt werden, jedoch momentan nicht weiterverarbeitet

werden können (weil der Computer beispielsweise noch an

anderer Stelle beschäftigt ist).

Der Tastaturpuffer läßt sich jedoch auch für eigene Zwecke

verwenden: Die in den Tastaturpuffer gebrachten Zeichen

können ausgegeben werden, sobald Adresse 198 die gewünschte

Anzahl bekommt.

Die Besonderheit des Tastaturpuffers besteht darin, daß die

Zeichen erst nach Beendigung des Programmes ausgegeben

werden (also bereits im Direktmode).

Auf diese Weise lassen sich BASIC-Zeilen in ein bereits

laufendes Programm einfügen (siehe DATA-Generator Kapitel

1).

0286 646 ZEICHENFARB-SPEICHER

In dieser Adresse ist die augenblickliche Zeichenfarbe

abgespeichert. Sie kann von Ihnen geändert werden, indem Sie

den Inhalt dieser Speicherstelle verändern.

10 A=INT(RND(1)*15)

20 POKE 646,A: REM ZUFÄLLIGE FARBE

30 PRINT"*”;

40 GOTO 10

O = schwarz 1 = weiß 2 = rot

4 = türkis 5 = violett 6 = grün

7 = blau = gelb = orange

10 = braun 11 = hellrot 12 = grau 1

238

13 = grau 2 14 = hellgriin 15 = hellblau

15 = grau 3

0288 648 HIGH-BYTE DES VIDEO-RAMs

Die Abfrage

PRINT PEEK (648) *256

ergibt die aktuelle Anfangsadresse des Bildschirmspeichers.

Sie beträgt normalerweise 1024.

Verschoben werden kann der Bildschirmspeicher mit Hilfe des

4. - 7. Bits der Adresse 53272 und des O. und 1. Bits der

Adresse 56576 (siehe auch Kapitel "Grafik" !)

028A 650 REPEAT-FUNKTION FÜR ALLE TASTEN

Diese Adresse steuert die Prellfahigkeit der Tastatur:

POKE 650,0 Repeat nur für Steuertasten

POKE 650,64 Repeat off

POKE 650,128 Repeat fiir alle Tasten

028C 652 ZAHLER FUR REPEAT-VERZOGERUNG

Sind alle Tasten durch Andern der Adresse 650 mit einer

Wiederholfunktion ausgestattet, so geht der Repeatvorgang

folgendermaßen vor sich:

Es wird zunächst nur ein Zeichen ausgegeben. Nach einer

gewissen Zeit erst werden dauernd weitere Zeichen

ausgegeben. |

Der Inhalt dieser Speicherstelle bestimmt nun die Dauer

dieser kleinen Pause zwischen dem Ausgeben des ersten und

der weiteren Zeichen.

Einen für Ihren Zweck passenden Wert müssen Sie durch etwas

Herumprobieren selbst ermitteln!

239

028D;028E 653;654 FLAG FÜR SHIFT, C=- UND CTRL-TASTE

Bit O, 1 und 2 dieser Adresse werden jeweils bei Betätigung

einer dieser Tasten gesetzt.

0291 657 SPERRFLAG FÜR SHIFT/C=

Der Inhalt dieser Adresse entscheidet darüber, ob die

Umschaltung von einem auf den anderen Zeichensatz durch

Drücken der Shift- und C=-Taste gestattet wird oder nicht.

240

ALLGEMEINES ZUR VARIABLENSPEICHERUNG

Im Folgenden finden Sie eine Übersicht, aus der hervorgeht,

wo welche Variablen im Speicher abgelegt werden:

-Anfang BASIC-Speicher ($2B, $2C) $0800

A -Bereich A: BASIC-Programm

-Variablen-Anfang ($2D, $2E)

B -Bereich B: Variablenspeicherung

-Beginn der Arrays ($2F, $30)

Cc -Bereich C: Speicherung der Array-Variablen

-Ende der Arrays ($31, $32)

 -freier BASIC-Speicher

-freier BASIC-Speicher

-Stringbeginn (bewegt sich abwärts, $33, $34)

-gespeicherte Strings

 -BASIC-Speicher-Ende ($37, $38)

~$9FFF

241

Schema der Variablenspeicherung

Im Bereich A befindet sich das BASIC-Programm. Direkt

dahinter werden die Fließkomma- und Integervariablen sowie

DEF FN gespeichert (Bereich B).

Im Bereich C sind die sogenannten Arrays gespeichert, also

die Variablenfelder. Vom Ende des BASIC-Speichers her

abwärts werden die Strings gespeichert. |

Sämtliche Bereiche werden durch Zeiger bestimmt, die

normalerweise automatisch durch den Interpreter gesetzt

werden.

Diese Zeiger können jedoch auch von Ihnen verändert werden

(insbesondere BASIC-Start und -Ende):

43/44 BASIC-Anfang

45/46 Variablen-Anfang

47/48 Array-Anfang

49/50 Array-Ende

51/52 String-Anfang

53/54 Hilfszeiger

55/56 BASIC-Ende

Beim Verlegen des Variablenanfanges ist folgendes zu

beachten: Wird dieser Vektor höhergesetzt, so wird das

Programm beim anschließenden AbSAVEn scheinbar länger. Die

SAVE-Routine SAVEd blind alles zwischen der in Adresse 43/44

und der in Adresse 45/46 bestimmten Grenze!

zur Speicherung:

Da die Arrays über einen eigenen Speicherplatz verfügen,

gibt es insgesamt noch vier unterschiedliche

242

Variablenformen:

a) Fließkomma-Variablen (Variablennamen wie A, B, CD, etc.)

b) Stringvariablen (Variablennamen durch $ gekennzeichnet)

c) Integervariablen (Variablenname durch % gekennzeichnet)

und

d) Funktionen (FN)

Diese vier verschiedenen Variablentypen müssen von einander

unterschieden werden können. Dazu sind zwei Bits (=4

Möglichkeiten) nötig.

Diese zwei Bits befinden sich im Namenszeichen.

Da es keine reversen Variablennamen gibt, steht schon einmal

das 7.Bit zur Verfügung. Und da ein Variablenname

grundsätzlich aus zwei Zeichen besteht (auch wenn nur eins

angegeben wird), kommt man auf die zwei Bits.

Im Bereich B der Skizze wird für jede benutzte Variable

gleich welcher Art ein Platz von sieben Bytes reserviert.

Zwei Bytes werden für die Namenszeichen gebraucht. Diese

beiden Bytes werden somit automatisch reserviert, egal ob

Variable A oder DR benutzt wird.

Nun zur oben erwähnten Unterscheidungsmöglichkeit mit den

zwei 7. Bits der Namenszeichen:

7. Bit des...

Namenszeichen 1 Namenszeichen 2 Variablentyp

0 0 Fließkomma

OÖ 1 String

1 0 Funktion

1 1 Integer

243

Restliche Bedeutung aller sieben Bytes:

BYTE 1 2 3 4 5 6 7 Variable

mm Aalen Mean MER METER CD Gm ANGE CRD (EEE Gee Jude Gm Mmis Omly (MEER Summe SEM dumm GI (mem Gt gem GE sinn GEE GED CUP GED GR GE SEP GD GED GED Om cme GED Gm Eh Anne EE GEE Gite au SE GER Ste GEE Gt ee Gee oe EES ae ou NET

NZ1 NZ2 gespeicherter Wert binär Fließkomma

NZ 1 NZ2 Länge LO HI 0 OÖ String

NZ 1 NZ2 HI LO Ö Ö 0. Integer

NZ1 = erstes Namenszeichen

NZ2 = zweites Namenszeichen

LO und HI = Low- und High-Adresse des Variableninhaltes

Eine Ausnahme bildet FN. Diese Funktion benötigt 14 Bytes:

Wert der Argumentvariable

NZ1F/NZ2F = Erstes und zweites Namenszeichen

Funktion

LO/HI = Low- und High-Adresse der Funktion

LOA/HIA = Low- und High-Adresse des Argumentes

NZ1V/NZ2V = Erstes und zweites Namenszeichen des Argun.

244

LISTE INTERESSANTER ZEIGER

Die folgenden Seiten enthalten alle wichtigen Zeiger des

C-64.

Gerade mit Hilfe | dieser Zeiger lassen sich äußerst

wirkungsvolle Manipulationen hervorrufen.

Manche ROM-Routinen werden über Zeiger, die im RAM liegen,

angesprungen. Durch Verändern dieser Zeiger können eigene

Routinen angesprungen werden, ohne daß das ROM erst mühsam

ins RAM kopiert werden muß.

Doch hier die Liste:

Low-, High-Byte Sprungadd. Routine

3 4 Umwandlung Fließ-in Festkomma

6 Umwandlung Fest-in Fließkomma

23 24 zeiger auf zuletzt verw. String

34 35 Zeiger zur freien Verwendung

36 37 | "

43 44 BASIC-Start(1.Byte Bas.Start=0)

45 46 | Variablenstart

47 48 | Array-Start

49 50 Ende der Arrays

51 52 Beginn der Strings (bewegt sich

abwärts)

53 54 Hilfszeiger für Strings

55 56 BASIC-Ende

61 62 Nächstes Statement für "CONT"

65 66 Nächstes DATA-Element

85 86 Sprungvektor für Funktionen

122 123 Programmzeiger der CHRGET-Rout.

178 179 Anfangsadresse Bandpuffer

187 188 Zeiger auf Programm-Name

209 210 Zeiger auf aktuelle BS-Zeile

243 244 Zeiger ins aktuelle Farb-RAM

245

245
247
249
655
768
770
772
774
776
778

785
788
790
792
794
796
798
800
802
804
806
808
810
812
814

816

818

246

248

250

656

769

771

773

775

777

779

786

789

791

793

795

797

799

801

803

805

807

809

811

813

815

817

819

$E38B
$A483
$A57C
$A71A
$A7EA
$AE86
$B248
$EA31
$FE66
$FE47
$F34A
$F291
$F20E
$F250
$F333
$F157
$F1CA
$F6ED
$F13E
$F32F
$FE66
$F4A5
$F5ED

Tastatur-Dekodiertabelle

RS 232 Eingabepuffer

RS 232 Ausgabepuffer

Tastatur-Decodierung

BASIC-Warmstart

Zeilen-Eingabe

Umwandlung in Interpreter-Code

LIST (Umwandlung in Klartext)

BASIC-Befehlsadresse holen

Ausdruck auswerten

USR-Zeiger

Interrupt (IRQ) -Vektor

BREAK-Vektor

Nicht maskierbarer Interr. NMI

OPEN

CLOSE

CHKIN

CKOUT

CLRCH

INPUT

OUTPUT

STOP

GET

CLALL

Warmstart

LOAD

SAVE

Die Abfrage der Zeiger geschieht mit:

PRINT PEEK (low) +256* PEEK (high)

Manche Zeiger lassen

verändern:

POKE 56334,0

POKE 56334, 1

sich nur bei verhindertem Interrupt

Interrupt off

Interrupt on

246

12. ANHANG

ALLGEMEINES ZU DEN TABELLEN

Dieser Teil des Anhangs soll die Tabellensammlung, die im

C-64 Handbuch steht, ergänzen. Wir sind nämlich der Meinung,

daß dort wichtige Tabellen vergessen wurden. Damit man die

zu den einzelnen Zahlen gehörenden Bedeutungen und Werte

schneller findet, haben wir mehrere kleine Tabellen zu einer

großen zusammen gefaßt. Nur die Übersicht für di

Joystick-Abfrage stellt eine eigene Tabelle dar.

In der ersten Tabelle finden Sie eine Übersicht über die

drei Zahlensysteme, die am meisten benutzt werden. Es sind

Dezimal, Hexadezimal und Binär. Außerdem finden Sie hier

folgende Bereiche: Maschinensprache-Befehle (MNEMONICS),

BASIC-Befehle (Token) und die Tastaturdecodier-Tabelle.

Zu den ersten drei Spalten der Tabelle braucht eigentlich

nichts gesagt zu werden. Als Computerbesitzer kommt man um

diese Zahlen-Systeme nicht herum. In BASIC werden Zahlen

fast nur dezimal dargestellt, hexadezimale Zahlen werden in

der _Maschinensprache verwendet. Binäre Zahlen muß man

können, um die Arbeitsweise des Computers zu verstehen.

In der Spalte über die MNEMONICs wird das Format eines

Maschinensprache-Befehls dargestellt. Jedes "z" bedeutet

eine hexadezimale Zahl.

Wie Sie bestimmt wissen, wird jedes BASIC-Befehlswort im

Speicher in eine Zahl umgewandelt. In der fünften Spalte der

Tabelle sind diese Befehlsworte (Tokens) zu finden.

Die letzte Spalte stellt die Tastatur-Decodierungs-Tabelle

(Tast. Deko.) dar. Dieser Wert wird z.B. in Adresse 197 oder

203 ausgegeben.

247

UMRECHNUNGS TABELLE

Dezi. Hex. Binar Mnemonic Token Tast. Deko.

O $00 %00000000 BRK Inst Del

1 $01 0000000 1 ORA (zz,X) . RETURN

2 $02 %00000010 Cursor right

3 $03 %000000 1 1 F-7

4 $04 %00000 100 F-1

5 $05 %00000101 ORA zz F-3

6 $06 %00000110 ASL zz F-5

7 $07 %00000111 ‘Cursor down
8 $08 %0000 1000 PHP 3

9 $09 %00001001 ORA #22 W

10 $0A %0000 1010 ASL A

11 $0B %0000 1011 4

12 $0C %0000 1100 Z

13 $OD %0000 1101 ORA zZZZzZ S

14 $0E %00001110 ASL 222z E

15 $0OF %00001111 SHIFT links

16 $10 %000 10000 BPL zzzz 5

17 $11 00010001 ORA (22),Y R

18 $12 %000 10010 D

19 $13 %00010011 6

20 $14 %000 10100 Cc

21 $15 %00010101 ORA zz,X F

22 $16 %00010110 ASL 2z,X T

23 $17 %00010111 X

24 $18 “000 11000 CLC 7

25 $19 %000 11001 ORA 2222,Y y

26 $1A %000 11010 G

27 $1B 00011011 8

28 $1C %00011100 B

29 $1D %00011101 IRA 222z,X H

248

Dezi. Hex. Binär Mnemonic Token Tast. Deko.

30 $1E %00011110 ASL zzzz,X U

31 $1F 00011111 V

32 3520 %00 100000 JSR 222zZ 9

33 $21 %00 100001 AND (zz,X) I

34 $22 %00 100010 J

35 $23 %00 100011 0

36 $24 %00 100100 BIT zz M

37 $25 %00100101 AND zz K

38 $26 %00 100110 ROL zz Ö

39 $27 %00 100111 N

40 $28 %00101000 PLP +

41 $29 %00101001 AND #zz P

42 $2A 00101010 ROL L

43 $2B 00101011 -

44 $2C %00101100 BIT 222z

45 $2D %00101101 AND zzzz :

46 $2E %00101110 ROL 22zz u

47 $2F %00101111 '

48 $30 %00 110000 BMI zzzz PFUND

49 $31 00110001 AND (zZ),y *

50 $32 %00110010 ;

51 $33 %00110011 CLR HOME

52 $34 %00110100 SHIFT right

53 $35 %00110101 _ AND zz,X =

54 $36 %00110110 ROL 2z,X *

55 $37 %00110111 -

56 $38 %00111000 SEC 1

57 $39 %00111001 AND zzZ2Z,y PFEIL

58 $3A 00111010 CTRL

59 $3B %00111011 2

249

Dezi. Hex. Binär Mnemonic Token Tast. Deko

60 $3C %00111100 SPACE

61 $3D %00111101 AND zzz2,X commodore

62 $3E “00111110 ROL zzZzZ,X Q

63 $3F 00111111 RUN STOP

64 $40 %0 1000000 RTI KEINE TASTE

65 $41 %0100000 1 EOR (22,X)

66 $42 %0 1000010

67 $43 %0100001 1

68 $44 %01000100

69 $45 %01000101 EOR zz

70 $46 %01000110 LSR zz
71. $47 %01000111
72 $48 %01001000 PHA
73 $49 %01001001 EOR #zz
74 $4A 01001010 LSR

75 $4B %01001011

76 $4C %0 1001100 JMP zzzz

77 $4D %01001101 EOR zzzz

78 $4E %01001110 LSR zzzz

79 $4F 01001111

80 $50 %01010000 BVC zzzz

81 $51 %01010001 EOR(zz),y

82 $52 %01010010

83 $53 %01010011

84 $54 %01010100

85 $55 %01010101 EOR zz,X

86 $56 %01010110 LSR zz,X

87 $57 %01010111

88 $58 %01011000 CLI

89 $59 %01011001 EOR zzzz,Yy

250

Dezi. Hex Binär Mnemonic Token Tast. Deko.

90 $5A %01011010

91 $5B %01011011

92 $5C %01011100

93 $5D %01011101 EOR zzzz,X

94 $5E 01011110 LSR zzzz,X

95 $5F %01011111

96 $60 %0 1100000 RTS

97 $61 %01100001 ADC (22,X)

98 $62 %01100010

99 $63 %01100011

100 $64 %01100100
101 $65 %01100101 ADC zz

102 $66 %01100110 ROR zz

103 $67 %01100111

104 $68 %01101000 PLA

105 $69 %01101001 ADC #zz

106 $6A %01101010 ROR

107 $6B %01101011

108 $6C %01101100 JMP (2222)

109 $6D %01101101 ADC zzzz

110 $6E 01101110 ROR ZZZZ

111 $6F %01101111

112 $70 .%01110000 BVS zzzz

113 $71 01110001 ADC (2z),y

114 $72 %01110010

115 $73 %01110011

116 $74 %01110100

117 $75 %01110101 ADC zz,X

118 $76 %01110110 ROR 2z,X

119 $77 %01110111

251

Dezi Hex Binär Mnemonic Token Tast. Deko.

120 $78 %0 1111000 SEI

121 $79 %01111001 ADC 22Z22,yY

122 $7A 01111010

123 $7B %01111011

124 $7C %01111100

125 $7D 01111101 ADC zzzz,X

126 $7E %01111110 ROR zzzz,X

127 $7F %01111111

128 $80 % 10000000 END

129 $81 % 10000001 5TA(zz,X) FOR

130 $82 %10000010 NEXT

131 $83 %1000001 1 DATA

132 $84 % 10000 100 STy zz INPUT#

133 $85 %10000 101 STA zz INPUT

134 $86 %10000110 STX zz ‘ DIM

135 $87 %10000111 READ

136 $88 %10001000 DEy LET

137 $89 %10001001 GOTO

138 $8A %10001010 TAX RUN

139 $8B %10001011 IF

140 $8C %10001100 STy Z222zZ RESTORE

141 $8D %10001101 STA 222z GOSUB

142 $8E %10001110 STX zzzZ RETURN

143 $8F %10001111 REM

144 $90 %10010000 BCC 222z STOP

145 $91 % 10010001 STA (22),Y ON

146 $92 %10010010 WAIT

147 $93 %10010011 LOAD

148 $94 %10010100 STy zz,X SAVE

149 $95 10010101 STA z2,X VERIFy

252

Dezi. Hex Binär Mnemonic Token Tast. Deko.

150 $96 10010110 STX zzZ,Y DEF

151 $97 %10010111 POKE

152 $98 %10011000 TyA PRINT#

153 $99 % 10011001 STA zzzz,y PRINT

154 $9A %10011010 TXS CONT

155 $9B %10011011 LIST

156 $9C % 10011100 CLR

157 $9D %10011101 STA zzzz,X CMD

158 $9E %10011110 SYS

159 $9F %10011111 OPEN

160 $AO %10100000 LDy #zz CLOSE

161 $A1 % 10100001 LDA (2z,X) GET

162 $A2 % 10100010 LDX #zz NEW

163 $A3 % 10100011 TAB (

164 $A4 %10100100 LDy zz TO

165 $A5 %10100101 LDA zz FN

166 $A6 %10100110 LDX zz SPC (

167 $A7 %10100111 THEN

168 $A8 % 10101000 TAy NOT

169 $A9 %10101001 LDA #zz STEP

253

170 $AA %10101010 TAX +

171 SAB %10101011 -

172 $AC “10101100 LDy 2222 *

173 $AD %10101101 LDA zzzz -

174 $AE %10101110 LDX zzzz *

175 $AF %10101111 AND

176 $BO %10110000 BCS 2222 OR

177 $B1 %10110001 LDA (zz),y
178 $B2 %10110010 =
179 $B3 %10110011

254

Dezi. Hex. Binär Mnemonic Token Tast. Deko.

180 $B4 10110100 LDY z2,X SGN

181 $B5 10110101 LDA zz,X INT

182 _ $B6 10110110 LDX 22,Y ABS

183 $B7 %10110111 USR

184 $B8 % 10111000 CLV FRE

185 $B9 %10111001 LDA zzzz,Y POS

186 $BA %10111010 TSX SQR

187 $BB %10111011 RND

188 $BC %10111100 LDY zzzz,X LOG

189 $BD %10111101 LDA zzzz,X EXP

wem et wm un au em dm mem mb Ges ames ee outs ms ce eee Gueib ee eo ee GEM ee ee ee ee et ee ee om ee Am GAME dam (EHEM ate) ome Fee ome ene aie Ge GE qui GE em am ou

190 $BE %10111110 LDX 2222z,Y Cos

191 $BF %10111111 SIN
192 $CO %11000000 cCPY #zz TAN
193 $C1 %11000001 CMP (zz,X) ATN
194 $C2 %11000010 PEEK

195 $C3 %11000011 LEN
196 $C4 %11000100 CPY zz STR$
197 $C5 %11000101 CMP zz VAL
198 $C6 %11000110 DEC zz ASC
199 $C7 %11000111 CHR$

200 $C8 %11001000 INY LEFT$
201 $Cc9 %11001001 CMP #zz RIGHT$
202 $CA %11001010 DEX MID$
203 $CB %11001011 GO
204 $CC % 11001100 CPY zzzz

205 $CD %11001101 CMP 222z

206 $CE %11001110 DEC zzzz

207 $CF %11001111

208 $DO %11010000 BNE zzzz

209 $D1 %1101000 1 CMP (22),Y

255

Dezi. Hex. Binär Mnemonic Token Tast. Deko.

210 2$D2 %11010010
211 2$D3 %11010011
212 2$DA %11010100
213 2$D5 %11010101 CMP zz,X
214 2$D6 %11010110 DEC zz,X

245 $D7 %11010111
216 $D8 %11011000 CLC
217 $D9 %11011001 CMP zzzz,Y
218 $DA %11011010
219 $DB %11011011

220 $DC %11011100
221 $DD %11011101 CMP zzzz,X
222 $DE %11011110 DEC zzzZ,X

223 $DF %11011111
224 $EO %11100000 CPX #zz

225 $E1 %11100001 SBC (zz,X)
226 $E2 %11100010
227 $E3 %11100011
228 $E4 %11100100 CPX zz
229 $E5 %11100101 SBC zz

230 $E6 %11100110 INC zz
231 $E7 %11100111
232 $E8 %11101000 INX

233 $E9 %11101001 SBC #2z

234 $EA %11101010 NOP

235 $EB %11101011

236 $EC %11101100 CPX zzzz

237 $ED %11101101 SBC 222zz

238 $EE “11101110 DEC zzzz

239 $EF %11101111

256

Dezi. Hex Binär Mnemonic Token Tast. Deko.

240 $FO %11110000 BEQ zzzz

241 $F1 %11110001 SBC (22),Y

242 $F2 %11110010

243 $F3 %11110011

244 $F4 11110100

245 $F5 £%11110101 SBC zz,X

246 $F6 %11110110 INC zz,X

247 3F7 %11110111

248 $F8 %11111000 SED

249 $F9 11111001 SBC zzzz,Y

250 $FA “11111010

251 $FB %11111011

252 $FC %11111100

253 $FD %11111101 SBC zzzz,X

254 $FE %11111110 INC zzzz,X

255 $FF %11111111 PI

257

TABELLE DER GERÄTENUMMERN

Aus der folgenden übersicht geht hervor, welche

Gerätenummern welchem Gerät entsprechen:

NUMMER zugehöriges GERÄT

OO une. Tastatur

rn Tape (Kassette)

2 eee eee RS 232

3B Lee eee eee. Bildschirm

Drucker

SD kee ee ee eee (optionell) Drucker

Beeren - |
DT Law ee eee -

8Be. Floppy Disk

9 LL ee eee (optionell) Floppy Disk

10, ... ee eee, "

110 www eee eee "

12 3 "

13 Kenner. "

14eee "

4 bo "

258

13. HARDWARE-TIP

Hardwaremäßiger Betriebsstop

Sicherlich haben Sie es auch schon erlebt:

Gerade haben Sie eine sehr gute Runde in einem Action-Spiel

erwischt - da klingelt das Telefon oder es klingelt an der

Haustür, und Sie müssen Ihren Computer verlassen. Damit ist

die Runde und die gute Laune verloren, da die wenigsten

Spiele eine Taste haben, mit der Sie den Computer anhalten

können.

Doch zum Glück gibt es eine Möglichkeit, den Computer

hardwaremäßig zu stoppen. Verbinden Sie dazu die IRQ-Leitung

am Expansionsport mit einer GND(Masse)-Leitung, und setzen

Sie einen Schalter dazwischen. |

Sobald Sie den Kontakt schließen, wird der Computer

anhalten, und erst wieder weitermachen, wenn die Leitung

wieder unterbrochen wird. |

Doch den Schalter können Sie nicht nur zum Stoppen von

Programmen verwenden. Denken Sie auch einmal an eine andere

Sache, die oft viel zu schnell vor sich geht: Das Listen von

Programmen.

Geht Ihnen wieder einmal CTRL beim Listen zu schnell, und

ist es Ihnen zu mühselig dauernd LIST einzutippen, so setzen

Sie doch einen Taster zwischen die Leitung, und halten Sie

den Computer an.

Eines muß allerdings noch gesagt werden:

Durch Schließen des Kontaktes wird die IRQ-Routine öfter als

sonst angesprungen, so daß der Cursor schneller blinkt, und

die Uhr noch ungenauer als vorher ist. Beim Listen und

Spielen dürfte das aber nicht von Bedeutung sein.

259

Spickzettel
ade. screen
Ein neues DATA BECKER BUCH,
das den Einsatz des COMMO-
DORE 64 in der Schule ent-
scheidend mitpragen durfte,
wurde von Professor Voß
geschrieben. Besonders fur

ZUM .
COMMODORE 64

 Schüler der Mittel- und Ober- EIN DATA BECKER BUCH

stufe geschrieben, enthält
das Buch viele interessante
Problemiösungs- und Lernprogramme, die beson-
ders ausführlich und leicht verständlich beschrie-
ben sind. Sie ermöglichen ein intensives und anre-
gendesLernen, unteranderem mitfolgendenThe-
men: Satz des Pythagoras, quadratische Gleichun-
gen, geometrische Reihen, Pendelbewegungen,
mechanische Hebel, Molekülbildung, exponentiel-
lesWachstum, Vokabelnlernen, unregelmäßigevVer-
ben, Zinseszinsrechnung. Ein kurzer Überblick über
die Grundlagen der EDV, eineknappeWiederholung
der wichtigsten BASIC-Elemente und eine Einfüh-
rung in die Grundzüge der Problemanalyse vervoll-
ständigen das Ganze. Mit diesem Buch machen die
Hausaufgaben wieder Spaß!

DAS SCHULBUCH ZUM COMMODORE 64, 1984, über 300
‘Seiten, DM 49-

Tempo!
MASCHINENSPRACHE FUR
FORTGESCHRITTENE ist be-
reits das zweite Buch von
Lothar Englisch zum Thema
Maschinenprogrammierung
mit dem COMMODORE 64.
Hier wird von der Problem-
analyse bis zum Maschinen-
sprachealgorithmus in die
Grundlagen der professio-
nellen Maschinensprache-
programmierung eingeführt. In diesem Buch fin-
den Sie unter anderem folgende Themen behan-
delt: Problemlösungen in Maschinensprache, Pro-
grammierung von Interruptroutinen, Interrupt-
quellen beim COMMODORE 64, Interrupts durch
CIA's und Videocontroller, Programmierung der
Ein-Ausgabe-Bausteine, die CIAs des COMMODORE
64, Timer, Echtzeituhr, parallele und serielle Ein/
Ausgabe, BASIC-Erweiterungen, Programmierung
eigener BASIC-Befehle und -Funktionen, Möglich-
keiten zur Einbindung ins Betriebssystem sowie
viele weitere Tips & Tricks zur Maschinenprogram-
mierung. Dieses Buch sollte jeder haben, der wirk-
lich intensiv mit der Maschinensprache des COM-
MODORE 64 arbeiten will.

MASCHINENSPRACHE FÜR FORTGESCHRITTENE, 1984,
ca. 200 Seiten, DM 39,-

grammlistings vor allem

Macht Druck.
DAS GROSSE DRUCKERBUCH
für Drucker-Anwender mit
COMMODORE-Computern ist
endlich da! Es enthält eine
riesige Sammlung von Tips
& Tricks, Programmlistings
und Hardwareinformatio-
nen. Rolf Brückmann und
Klaus Gerits beschäftigen
sich mit Sekundäradressen,
Anschluß einer Schreib-
maschine am Userport, Druckerschnittstellen (Cen-
tronics, V 24, IEC-Bus), hochauflösender Grafik, Text-
und Grafikhardcopy, Grafik mit Standardzeichen-
Satz, formatierter Datenausgabe, Plakatschrift,
Textverarbeitung und vieles mehr. Zusätzlich wird
das Betriebssystem des MPS801 zerlegt, mit Prozes-
sorbeschreibung (8035), Blockschaitbild und einem
ausführlich kommentierten ROM-Listing. Thomas
Wiens schrieb den Teil über die Programmierung
des PlottersVC-1520: Handhabung desPiotters, Pro-
grammierung von Sonderzeichen, Funktionendar-
stellung, Kuchen und Säulendiagramme, Entwurf
dreidimensionaler Gegenstände. Natürlich wieder
viele interessante Listings. Unentbehrlich für
jeden, der einen COMMODORE 64 oder VC-20 und
einen Drucker besitzt.

DAS GROSSE DRUCKERBUCH, 1984, über 300 Seiten,
DM 49-

Tausend-
sassa.
Fast alles, was man mit dem
COMMODORE 64 machen
kann, ist in diesem Buch aus-
führlich beschrieben. Es ist
nicht nur spannend zu lesen
wie ein Roman, sondern ent-
hält neben nützlichen Pro-

 EIN DATA BECKER BUCH

|
|
|

EIN DATA BECKER BUCH I

|

viele, viele Anwendungs-

möglichkeiten des C64. Dabei wurde besonderer

Wert darauf gelegt, daß das Buch auch für Laien
leicht verständlich ist. Eine Auswahl aus der The-
menvielfalt: Gedichte vom Computer, Einladung

zur Party, Diplomarbeit - professionell gestaltet,
individuelle Werbebriefe, Autokosten im Griff, Bau-

.kostenberechnung, Taschenrechner, Rezeptkartei,
Lagerliste, persönliches Gesundheitsarchiv, Diät-
plan elektronisch, intelligentes Wörterbuch, kleine
Notenschule, CAD für Handarbeit, Routenoptimie-
rung, Schaufensterwerbung, Strategiespiele. Teil-
weise sind Programmlistings fertig zum Eintippen
enthalten, soweit sich die „Rezepte“ auf 1-2 Seiten
realisieren ließen. Wenn Sie bisher nicht immer
wußten, was Sie mit Ihrem 64er alles anfangen soll-
ten, nach dem Lesen des IDEENBUCHES wissen Sie's
bestimmt!

DAS IDEENBUCH ZUM COMMODORE 64, 1984, über 200
Seiten, DM 29-

Prof. 64.
Ein faszinierendes Buch, um
in die Welt der Wissenschaft FÜR TECHNIK

UND
WISSENSCHAFT einzusteigen, hat Rainer

Severin geschrieben. Zu-
nächst werden Variablen-
typen, Rechengenauigkeit
und nützliche POKE-Adres-
sen des COMMODORE 64
bezüglich den Anforderun-
gen wissenschaftlicher Pro-
bleme analysiert. Verschie-
dene Sortieralgorithmen wie Bubble, Quick und
Shell-Sort werden miteinander verglichen. Die Pro-
grammbeispiele aus der Mathematik nehmen
dabei eine zentrale Stelle im Buch ein: Nullstellen
nach Newton, numerische Ableitung mit dem Dif-
ferenzenquotienten, lineare und nichtlineare
Regression, Chi-Quadrat-Verteilung und Anpas-
sungstest, Fourieranalyse und -synthese, Skalar-,
Vektor- und Spatprodukt, ein Programmpaket zur
Matrizenrechnung fur Inversion, Eigenwerte und
vieles weitere mehr. Programme aus der Chemie
(Periodensystem), Physik, Biologie (Schadstoffe in

. Gewässern - Erfassung der Meßwerte), Astronomie
(Planetenpositionen) und Technik (Berechnung
komplexer Netzwerke, Pilatinenlayout am Bild-
schirm) und viele weitere Softwarelistings zeigen
die riesigen Möglichkeiten auf, diederComputerin
Wissenschaft und Technik hat.

COMMODORE 64 FÜR TECHNIK UND WISSENSCHAFT,
1984, über 200 Seiten, DM 49-

EIN DATA BECKER BUCH

Grundkurs.
Das neue BASIC-Trainings-

uch zum C-64 ist eine aus-
führliche, didaktisch gut ||| BASIC
geschriebene Einführung in zum
das CBM BASIC V2. Alle
Befehle werden ausführlich
erläutert. Dieses Buch geht
aber über eine reine Befehls-
beschreibung hinaus, es wird EIN DATA BECKER BUCH

eine fundierte Einführungin
die Programmierung gege-
ben. Von der Problemanalyse bis zum fertigen
Algorithmus lernt man das Entwerfen eines Pro-
grammes und den Entwurf von Datenflußplänen.
ASCII-Code und verschiedene Zahlensysteme wie
hexadezimal, binär und dezimal sind nach. der Lek-
ture des Buches keine Fremdworte mehr. Die Pro-
grammierung von Schleifen, Sprüngen, bedingten
Sprüngen lernt man leicht durch „learning by
doing“. So enthält das Trainingsbuch viele Auf-
gaben, Übungen und unzählige Beispiele. Den
Schluß des Buches bildet eine Einführung ins pro-
fessionelle Programmieren, in der es um mehr-
dimensionale Felder, Menuesteuerung und Unter-
programmtechnik geht. Endlich ein Buch, das
Ihnen wirklich hilft, solide und sicher BASIC zu ler-
nen.

BASIC TRAININGSBUCH ZUM COMMODORE 64, 1984,
Ca. 250 Seiten, DM 39-

DAS

COMMODORE 64

Sang und Klang!
Der COMMODORE 64 ist ein
Musikgenie. DAS MUSIKBUCH
hilft Ihnen, die riesigen
Kiangmoglichkeiten des C64
zu nutzen. DieThemenbreite
reicht von einer Einführung
in die Computermusik über
die Erklärung der Hardware-
grundlagen des COMMODORE
64 und die Programmierung
in BASIC bis hin zur fort-
geschrittenen Musikpro-
grammierung in Maschinensprache. Einiges aus
dem inhalt: Soundregister des COMMODORE 64,
Gate-Signal, Programmierung der "ADSR'-Werte,
Synchronisation und Ring-Modulation, Counter-
prinzip, lineare und nichtlineare Musikprogram-
mierung, Frequenzmodulation, Interrupts in der
Musikprogrammierung und vieles mehr. Zahl-
reiche Beispielprogramme, komplette Songs und
nützliche Routinen ergänzen den Text. Geschrie-
ben wurde das Buch von Thomas Dachsel, dem
Autor der weltbekannten Musikprogramme Syn-
thimat und Synthesound. Erschließen Sie sich die
Welt des Sounds und der Computermusik mit dem
Musikbuch zum C-64!

DAS MUSIKBUCH ZUM COMMODORE 64, Uber 200 Sei-
ten, DM 39-

Nützlich.
Das Trainingsbuch zu MULTI-
PLAN bietet eine gute Einfuh-
rung in die Grundiagen der
Tabellenkalkulation. Dabei
wird großer Wert auf ein
möglichstschnellesEinarbei-
ten in die wichtigsten
Befehle gelegt, so daß man
bald sicher mit MULTIPLAN
arbeiten kann, ob nun auf
dem COMMODORE 64 oder EIN DATA BECKER BUCH

einem anderen Rechner. Am —
Ende wird man in der Lage sein, den umfangrel-
chen Befehlssatz von MULTIPLAN auch kommerziell
zu nutzen. Übungen am Ende jedes Kapitelssorgen
dafür, daß man das Gelernte lange behält. Grund-
lage des Buches sind viele Seminare, die der Autor
zu MULTIPLAN konzipiert und erfolgreich durch-
geführt hat.

DAS TRAININGSBUCH ZU MULTIPLAN, 1984, ca. 250 Sei-
ten, DM 49-

Für Tüftler:
Ein hochinteressantes Buch
für Hobbyelektroniker hat
Rolf Brückmann vorgelegt.
Er ist ein engagierter Techni- DER
ker, für den der Computer jj) COMMODORE 64
Hobby und Beruf zur glei- ||| oem nesr den weır
chen Zeit ist. Vor allem aber
kennt er den C-64 in- und aus-
wendig. So werden einfüh-
rend die Schnittstellen des
COMMODORE 64 detailliert
beschrieben und kurz die
Funktionsweise der CIAs 6526 erläutert. Hauptteil
des Buches sind die Beschreibungen der vielfälti-
gen Einsatzmöglichkeiten des COMMODORE 64. Die
vielen Schaltungen, von Rolf Brückmann alle selbst

entwickelt, sind jeweils umfangreich dokumen-
tiert und leichtverständlich erklärt. Die Reihe der
hier ausführlich behandelten Anwendungen mit
dem COMMODORE 64 ist äußerst umfangreich:
Motorsteuerung, Stoppuhr mit Lichtschranke,
Lichtorgel, A/D-Wandler, Spannungsmessung, Tem-
peraturmessung und vieles mehr. Dazu kommen
noch eine Reihe kompletter Schaltungen zum Sel-
berbauen, wie ein EPROM Programmiergerät für
den C-64, eine EPROM-Karte, ein Frequenzzähler
und Sprachein/ausgabe (!). Zusätzlich sind jeweils
Schaltplan, Softwarelisting und zu einigen Schal-
tungen sogar zusätzlich Platinenlayouts vorhan-

en.

DER COMMODORE 64 UND DER REST DER WELT, 1984,
ca. 220 Seiten, DM 49, -

Computerkünstler.
Das Grafikbuch zum COMMODORE 64 Buch aus der
Bestseller-Serie von DATA BECKER stammt aus der

Feder von Axel Plenge. Es geht weit über die reine

Hardware-Beschreibung der

Grafikeigenschaften desC-64

hinaus. Der Inhalt reicht von a

den Grundlagen der Grafik- Pienge

dee bis zum pas

Computer Aided Design. Es

ist ein Buch fur alle, die mit |jj] SRAFIKBUCH
ihrem C-64 kreativ tätig sein
wollen. Themen sind 2.B.: Zei-

chensatzprogrammierung,

bewegte Sprites, High-Re-

solution, Multicolor-Grafik,
Lightpenanwendungen, Be-

triebsarten des VIC, Verschie-

ben der Bildschirmspeicher,

IRQ-Handhabung, 3-Dimensionale Grafik, Projektio-

nen, Kurven- Balken- und Kuchendiagramme, Lauf-

schriften, Animation, bewegte Bilder. Viele Pro-

grammlistings und Beispiele sind selbstverständ-

lich. Das COMMODORE-BASIC V2 unterstützt die her-
ausragenden Grafikeigenschaften des C-64 be-

kanntlich kaum. Hier helfen die vielen Beispielpro-

gramme in diesem Buch weiter, die die faszinie-

rende Welt der Computergrafik jedermann zu-

gänglich machen. Kompetent ist der Autor dazu wie
kaum ein anderer, schließlich hat er das äußerst lei-
Stungsfähige Programm SUPERGRAFIK geschrieben.

DAS GRAFIKBUCH ZUM COMMODORE 64, 1984, 295 Sei-
ten, DM 39,-

Vielfalt.
Auf dem neuesten Stand ist
VC-20 TIPS & TRICKS von Dirk
Paulissen gebracht worden,
der über hundert Seiten
hinzufügte. Bisher schon
enthalten waren informatio-
nen über Speicheraufbau
des VC-20 und die Erweite- Eine Fundgrube tür den
rungsmöglichkeiten, ein Gra-
fikkapitel über program-
mierbare Zeichen, Lauf-
schrift und die Supererwei-
terung. Stark erweitert wurde der Abschnitt über
POKES und andere nützliche Routinen. Ob esum die
Programmierung der Funktionstasten, Pro-
gramme die sich selber starten, „Maus‘-Simulation
mit dem Joystick oder die Änderung von Speicher-
bereichen geht, man ist immer wieder über die
Fülle der Möglichkeiten erstaunt. Der Clou dieses

ausen Riedner
Schellenberger Paulissen

Tips & Tricks

EIN DATA BECKER BUCH

Buches sind aber die vielen Programmilistings. Die
BASIC-Erweiterungen allein stellen Schon ein erst-
klassiges Toolkit dar: APPEND (Anhängen von Pro-
grammen, AUTO (automatische Zeilennummerie-
rung), BASIC-Befehle auf Tastendruck, PRINT POSI-
TION, UNNEW, Strings größer als88 Zeichen einlesen
und vieles mehr. Die Bandbreite reicht von Spielen
wie Goldgräber oder Starshooter bis zu nützlichen
Programmen wie Cassetteninhaltsverzeichnis und
-katalog mit automatischem Suchen nach Dateien
und einem Terminkalender. Fur den VC-20 Anwen-
der ist dieser 324 Seiten-Walzer eine wahre Fund-
grube, in der es immer etwas neues zu entdecken
gibt.

VC-20 TIPS & TRICKS, 3. erweiterte und Uberarbeitete
Auflage, 1984, 324 Seiten, DM 49-

interessant.

Einen guten Einstieg in PAS-
CAL bietet dieses Trainings-
buch. Es gibt eine leichtver-
ständliche Einführung, .
sowohl in UCSD-PASCAL Bi manmasauch

auch in PASCAL64, wobei “
allerdings EDV-und BASIKC- PASCAL
Grundkenntnisse voraus- UND pascaL 64
gesetzt werden. Der Autor,
Ottmar Korbmacher, ist Stu-
dent der Mathematik. Ihm EIN DATA BECKER BUCH

gelingt es, in einem sprach- ————
lich aufgelockerten Stil mit vielen interessanten
Beispielprogrammen, dem Leser Programmstruk-
turen, Ein/Ausgabe, Arithmetik und Funktionen,
Prozeduren und Rekursionen, Sets, Files und
Records näherzubringen. Die Übungsaufgaben am
Ende jeden Kapitels helfen dabei, das Gelernte zu
vertiefen. Ein Anhang mit allen PASCAL-Schlüssel-
worten, der ansich schon ein umfangreiches Lexi-
kon darstellt, macht das Buch für jeden PASCAL-
Anwender interessant.

DAS TRAININGSBUCH ZU PASCAL, 1984, ca. 250 Seiten;
DM 39-

Bewährt.
Die bereits dritte Auflage
von VC-20 INTERN ist wieder
erheblich erweitert worden.
Das Buch beschäftigt sich
ausführlich mit der Technik
und dem Betriebssystem. des
VC-20. Dazu gehört natürlich
zuerst einmal ein ausführlich
dokumentiertesROM-Listing.
Dazu gehört auch die Bele-
gung der Zeropage, dem
wichtigsten Speicherbe-
reich für den 6502-Prozessor, eine übersichtliche
Auflistung der Adressen aller Betriebssystemrouti-
nen, ihrer Bedeutung und ihrer Übergabeparame-
ter. Dies ermöglicht dem Programmierer endlich,
den VC-20 von Maschinensprache aus sinnvoll ein-
zusetzen. Denn warum Routinen, die bereits vor-
handen sind, noch einmal schreiben? Weiterer
inhalt: Einführung in die Maschinensprache -

EIN DATA BECKER BUCH

_ Maschinensprachemonitor, Assembler, Disassem-
bler - Verbindung von Maschinensprache- und
BASIC-Programmen - Beschreibung der wichtigen
IC's des VC-20 - Blockschaltbild - drei Original COM-
MODORE-Schaltpläne. Das Buch braucht jeder der
sich intensiv mit der Maschinenspracheprogram-
mierung des VC-20 auseinandersetzen möchte.

VC-20 INTERN, 3. Auflage, 1984, ca. 230 Seiten, DM 49,-

Starthilfe!
DassollteihrerstesBuch zum
COMMODORE 64 sein: 64 FÜR
EINSTEIGER ist eine sehr
leicht verständliche Einfüh- |
rung in Handhabung, Ein- 64
satz, Ausbaumöglichkeiten FÜR EINSTEIGER
und Programmierung des EDV
COMMODORE 64, die keinerlei al
Vorkenntnisse voraussetzt. =
Sie reicht vom Anschluß des BT
Geräts über die Erklärung Em DATA BECKER BUCH
der einzeinen Tasten und
Funktionen sowie die Peripheriegeräte und ihre
Bedienung bis zum ersten Befehl. Schritt für
Schritt führt das Buch Sie in die Programmier-
sprache BASIC ein, wobei Sie nach und nach eine
komplette Adressenverwaltung erstellen, die Sie
anschließend nutzen können. Zahlreiche Abbildun-
gen und Bildschirmfotos ergänzen den Text. Viele
Anwendungsbeispiele geben nützliche Anregun-
gen zum sinnvollen Einsatz des COMMODORE 64. Das
Buch istsowohl als Einführung als auch als Orientie-
rung vor dem 64er Kauf gut geeignet.

64 FÜR EINSTEIGER, 1984, ca. 200 Seiten, DM 29-

Von A bis 2.
So etwas haben Sie gesucht: Umfassendes Nach-
Schlagewerk zum COMMODORE 64 und seiner Pro-
grammierung. Allgemeines Computerlexikon mit
Fachwissen von A-Z und
Fachwörterbuch mit Über-
setzungen wichtiger engli-
scher Fachbegriffe - das
DATA BECKER LEXIKON ZUM I}
COMMODORE 64 stellt prak-
tisch drei Bücher in einem
dar. Es enthält eine unglaub-
liche Vielfalt an Informatio-
nen und dient so zugleich als
kompetentes Nachschlage-
werk und als unentbehr-
liches Arbeitsmittel. Viele
Abbildungen und Beispiele ergänzen den Text. Ein
Muß für jeden COMMODORE 64 Anwender!

DAS DATA BECKER LEXIKON ZUM COMMODORE 64,
1984, 354 Seiten, DM 49,-

Fundgrube.
64 Tips & Tricks ist eine hoch-
interessante Sammlung von
Anregungen zur fortge-
schrittenen Programmiie- Ä
rung des COMMODORE 64, 64
POKEs und andere nitz- . .
liche Routinen, interessan- |] Ps & Tricks
ten Programmen : sowie tunen ton
interessanten Programmiier-
tips & -tricks. Aus dem Inhalt:
3D-Graphik in BASIC-Farbige
Balkengraphik - Definition
eines eigenen Zeichensatzes - Tastaturbelegung
und ihre Anderung - Dateneingabe mit Komfort -
Simulation der Maus mit einem Joystick - BASIC für
Fortgeschrittene - C-64 spricht deutsch -CP/M auf
dem COMMODORE 64 - Druckeranschluß über den
USER-Port - Datenübertragung von und zu ande-
ren Rechnern -Expansion-Port -Synthesizer in Ste-
reo - Retten einer nicht ordnungsgemäß geschlos-
senen Datei - Erzeugen einer BASIC-Zeile in BASIC -
Kassettenpuffer als Datenspeicher - Sortieren von
Stringfelder - Multitasking auf dem COMMODORE
64 - POKE’'s und die Zeropage - GOTO, GOSUB und
RESTORE mit berechneten Zeilennummern, INSTR
und STRING-Funktion - Repeat-Funktion für alle

EIN DATA BECKER BUCH

Tasten - und vieles andere mehr. Alle Maschinen-
programme mit BASIC-Ladeprogrammen. 64 Tips &
Tricks ist eine echte Fundgrube für jeden COMMO-
DORE 64 Anwender. Schon über 65000mal verkauft!

64 TIPS & TRICKS, 1984, über 300 Seiten, DM 49,-

Know-how!
350 Seiten dick ist die 4.
erweiterte und überarbei- j
tete Auflage von 64 INTERN Sen

geworden. Das bereits über
65000mal verkaufte Stan- | 64
dardwerk bietet jetzt noch intern
mehr Informationen. Hinzu- annahm
gekommen ist ein Kapitel "eid

dokumentiertem Schattpian

Uber den IEC-Bus und viele,
viele Erganzungen, die sich
im Laufe der Zeit angesam-
melt haben. Ebenfalls über-
arbeitet und noch ausführlicher ist jetzt die Doku-
mentation des ROM-Listings. Weitere Themen:
genaue Beschreibung des Sound- und Video-Con-
trollers mit vielen Hinweisen zur Programmierung
von Sound und Grafik, der Ein/Ausgabesteuerung
(CIAs), BASIC-Erweiterungen (RENEW, HARDCOPY,
PRINTUSING), Hinweise zur Maschinenprogrammie-
rung wie Nutzung der E/A-Routinen des Betriebs-
systems, Programmierung der Schnittstelle RS 232,
ein Vergleich VC20 - C-64 - CBM zur Umsetzung von
Programmen. Dies und viele weitere Informatio-
nen machen das umfangreiche Werk zu einem
unentbehrlichen Arbeitsmittel für jeden, der sich
ernsthaft mit Betriebssystem und Technik des C-64
auseinandersetzen will. Zum professionellen
Gehalt des Buches tragen auch zwei Original-COM-
MODORE-Schaltpläne zum Ausklappen und zahl-
reiche ausführlich beschriebene und dokumen-
tierte Fotos, Schaltbilder und Blockdiagramme bei.

64 INTERN, 4.überarbeitete und erweiterte Auflage,
1984, ca. 350 Seiten, DM 69,-

EIN DATA BECKER BUCH

Erfolgreich.
64 für Profis zeigt, wie man
erfolgreich Anwendungs-
probleme in BASIC löst und er
verrät die Erfolgsgeheim-
nisse der Programmier- 64
profis. Vom Programment- +
wurf über Menisteuerung, ||| ‘Profs
Maskenaufbau, Parametri- 17: ag

Sir Fortgeschrittene

sierung, Datenzugriff und
Druckausgabe bis hin zur
guten Dokumentation wird
anschaulich mit vielen Bei-
spielen dargestellt wie Profi-Programmierung vor
sich geht. Besonders stolz sind wir auf die völlig
neuartige Datenzugriffsmethode QUISAM, die in
diesem Buch zum ersten Mal vorgestellt wird.
QUISAM erlaubt eine beliebige Datensatzlänge, die
dynamisch mit der Eingabe der Daten wächst. Eine
lauffertige Literaturstellenverwaltung veran-
schaulicht die Arbeitsweise von QUISAM. Neben die-
sem Programm finden Sie noch weitere Pro-
gramme zur Lager- und Adressenverwaltung, Text-
verarbeitung und einen Reportgenerator. Alle
diese Programme sind mit Variablenliste versehen
und ausführlich beschrieben. Damit sind diese für
Ihre Erweiterungen offen und können von Ihnen
an Ihre persönlichen Bedürfnisse angepaßt wer-
den. Steigen Sie in die Welt der Programmierprofis
ein.

64 FÜR PROFIS, 2. Auflage, 1984, ca. 300 Seiten,
DM 49-

EIN DATA BECKER BUCH

Rundum gut!
Endlich ein Buch, das Ihnen
ausführlich und verständlich
die Arbeit mit der Floppy VC-
1541 erklärt. Das große
Floppybuch ist für Anfänger,
Fortgeschrittene und Profis
gleichermaßen. interessant.
Sein Inhalt reicht von der
Programmspeicherung Dis
zum DOS-Zugriff, von der
sequentiellen Datenspeiche-
rung bis zum Direktzugriff,
von der technischen Beschreibung bis zum aus-

führlich dokumentierten DOS-Listing, von den
 Systembefehlen bis zur detaillierten Beschreibung

EIN DATA BECKER BUCH

der Programme auf der Test-Demo-Diskette. Exakt .
beschriebene Beispiel- und Hilfsprogrammeergän-
zen dieses neue Superbuch. Aus dem Inhalt: Spei-
chern von Programmen -Floppy-Systembefehle -
Sequentielle Datenspeicherung - relative Daten-
Speicherung - Fehlermeldungen und ihre Ursa-
chen - Direktzugriff - DOS-Listing der VC-1541 -
BASIC-Erweiterungen und Programme - Overlay-
technik - Diskmonitor - IEC-Bus und serieller Bus -
Vergleich mit den großen CBM-Floppies. EinMuß für
jeden Floppy-Anwender! Bereits über 45.000mal
verkauft.

DAS GROSSE FLOPPY-BUCH, 2. überarbeitete Auflage,
1984, ca. 320 Seiten, DM 49,-

BASIC-PLUS.
SIMON’S BASIC ist ein Hit -
wenn man es richtig nutzen
kann. Auf über 300 Seiten
erklärt Innen das DATA
BECKER Trainingsbuch detail-
liert den Umgang mit den
über 100 Befehlen des
SIMON’s BASIC. Alle Befehle
werden ausführlich dar-.
gestellt, auch die, die nicht
im Handbuch stehen! Natür-
lich zeigen wir auch die —
Macken des SIMON's BASIC und geben wichtige Hin-
weise wie man diese umgeht. Natürlich enthält das
Buch viele Beispielprogramme und viele inter-
essante Programmiertricks. Weiterer Inhalt: Ein-
führung in das CBM-BASIC 2.0 - Programmierhilfen
- Fehlerbehandiung - Programmschutz - Pro-
grammstruktur - Variablen - Zanlenbehandiung -
Eingabekontrolle-Ein/AusgabePeripheriebefehle
- Graphik - Zeichensatzerstellung - Sprites - Musik
-SIMON’SBASIC und dieVerträglichkeitmitanderen
Erweiterungen und Programmen. Dazu ein um-
fangreicher Anhang. Nach jedem Kapitel finden Sie
Testaufgaben zum optimalen Selbststudium und
zur Lernerfolgskontrolle.
DAS TRAININGSBUCH ZUM SIMON’s BASIC, 2. Uber-
arbeitete Auflage, 1984, ca. 380 Seiten, DM 49-

EIN DATA BECKER BUCH

Futtern
erwünscht!
Diese beliebteumfangreiche |jl MM BECKER
Programmsammlung hat es
in sich. Über 50 Spitzenpro-
gramme für den COMMO-
DORE 64ausden unterschied-
lichsten Bereichen, von
attraktiven Superspielen ~
(Senso, Pengo, Master Mind,
Seeschlacht, Poisson Square,
Memory) über Grafik- und
Soundprogramme (Fourier 64, Akustograph, Funk-
tionsplotter) und mathematische Programme
(Kurvendiskussion, Dreieck) sowie Utilities (SORT,
RENUMBER, DISK INIT, MENUE) bis hin zu kompletten
Anwendungsprogrammen wie ,Videothek’, .File
Manager“ und einer komfortablen Haushaitsbuch-
fuihrung, in der fast professionell gebucht wird. Der
Hit zu jedem Programm sind aktuelle Program-
miertips und Tricks der einzeinen Autoren zum Sel-
bermachen. Also nicht nur abtippen, sondern auch
dabei lernen und wichtige Anregungen fur die
eigene Programmierung sammeln.
DATA BECKER's GROSSE 64er PROGRAMMSAMMLUNG,
1984, 250 Seiten, DM 49-

Schrittmacher.
Eine leicht verstandliche Ein-
führung in die Maschinen-
spracheprogrammierung
fur alle, denen das C-64 BASIC
nicht mehr ausreicht. Sie
lernen Aufbau und Arbeits-
weise des 6510-Mikroprozes-
sors kennen und anwenden.
Dabei werden die Analogien
zu BASIC Ihnen beim Verständnis helfen. Ein weite-
res Kapitel beschäftigt sich mit der Eingabe von
Maschinenprogrammen. Dort erfahren Sie auch
alles über Monitor-Programme sowie über Assem-
bier. Zum einfachen und komfortablen Erstellen
Ihrer eigenen Maschinensprache enthält das Buch
einen kompletten ASSEMBLER, damit Sie gleich von
Anfang an komfortabel und effektiv programmie-
ren können. Weiterhin finden Sie dort einen DIS-
ASSEMBLER, mit dem Sie sich Ihre Maschinenpro-
gramme oder die Routinen des BASIC-Interpreters
und des BASIC-Betriebssystems ansehen können.
Ein besonderer Clou ist ein in BASIC geschriebener
Einzelschrittsimulator, mit dem Sie Ihre Pro-
gramme schrittweise ausführen können. Dabei
werden Sie nach jedem Schritt über Register-
inhalte und Flags informiert und können den logi-
schen Ablauf Ihres Programmes verfolgen. Eine
unschätzbare Hilfe, besonders für den Anfänger.
Als Beispielprogramm finden Sie ausführlich
beschriebene Routinen zur Grafikprogrammie-
rung und für BASIC-Erweiterungen. Natürlich sind
alle Beispiele und Programme auf den C-64 zuge-
schnitten.

DAS MASCHINENSPRACHEBUCH zum COMMODORE 64,
Ca. 200 Seiten, DM 39,-

SYNTHIMAT
SYNTHIMAT verwandelt Ihren COMMODORE 64 in
einen professionellen, polyphonen, dreistimmi-
gen Synthesizer, der in seinen unglaublich vie-
len Möglichkeiten großen Systemen kaum
nachsteht.

SYNTHIMAT in Stichworten:
drei Oszillatoren (VCOs) mit 7 FuBlagen und 8
Wwellenformen - drei Hüllkurvengeneratoren
(ADSRS) - ein Filter (VCF) mit8 Betriebsarten und
Resonanzregulierung - VCF mit Eingang für
externe Signalquelle - ein Verstärker (VCA) -
Ringmodulation mit allen drei VCOs - 8 soft-
waremäßig realisierte Oszillatoren (LFOs) - Kräf-
tiger Klang durch polyphones Spielen - zwei
Manuale (Solo und Begleitung) - speichern von
bis zu 256 Klangregistern - schneller Register-

« wechsel - speichern von 9 Registerdateien auf
Diskette - „Bandaufnahme" auf Diskette durch
direktes Spielen - keine lästige Noteneingabe -
Speichern von bis zu 9 „Bandaufnahmen' je Dis-
kette - integrierte 24 Stunden-Echtzeitunr -
einstellbares PITCH-BENDING - farblich gekenn-
zeichnete, übersichtlich angeordnete Module -
umfangreiches Handbuch -läuftmiteinem Dis-
kettenlaufwerk - Diskettenprogramm.

DM 99,-

STRUKTO 64
STRUKTO 64 ist eine fantastische neue Program-
miersprache für strukturiertes Programmieren
mit dem C-64 und für alleProgrammierer geeignet,
die den C-64 als Allround-Computer einsetzen und
auf einfache Weise anspruchsvolle Programme
erstellen wollen.

STRUKTO 64 in Stichworten:
Interpretersprache, die die Vorzüge von BASIC und
PASCAL vereint - strukturiertes Programmieren -
übersichtliche Programme - leichte Eriernbarkeit
- einfache Bedienung - eingebautesToolkiterleich-
tert das Eingeben und Verbessern von Program-
men - leichteres Arbeiten mit der Floppy - Sprite-
Editor ermöglicht das Einlesen der Sprite-Formen
direkt vom Bildschirm - Graphikbedienung wird
mit gut durchdachten Befehlen unterstützt -
Abspielen von Musik ist unabhängig vom Pro-
grammablauf möglich -ca.80 neue Befehle-Iliefer-
bar als Diskettenprogramm - ausführliches deut-
sches Handbuch.

DM 99-

„na

Für viele ein Traum, für die meisten bisher zu
teuer: die Rede ist von einer echten Datenbank
für den 64er. SUPERBASE 64 füllt eine Lücke.
Nicht allein die Kapazität, die verwaltet werden
kann, bewegt sich in professionellen Regionen,
die ausgeprägten Fähigkeiten des SUPERBASE
64 im Rechnen und Kalkulieren lassen dieses
Paket beinahe als Rund-Um-Software erschei-
nen.

SUPERBASE 64 in Stichworten:
maximale Datensatzlänge 1108 Zeichen, verteilt
auf bis zu 4 Bildschirmseiten - bis zu 127 Felder
pro Datensatz, wobei Textfelder bis zu 255 Zei-
chen lang sein können - insgesamt 15 Einzel-
dateien können zu einer SUPERBASE-Datenbank
verknüpft werden - Speicherkapazität nur
durch Diskette begrenzt - umfangreiche Aus-
wertungsmöglichkeiten und komfortabler
Report-Generator - Kalkulationsmöglichkeiten
und Rechnen - Import- (Einlesen von externen
Daten) und Export- (Ausgabe von SUPERBASE
Dataien als sequentielle Datei) Funktionen
ermöglichen Datenaustausch mit anderen Pro-
grammen - durch leistungsfähige, eigene
Datenbanksprache auch als kompletter An-
wendungsgenerator verwendbar.

DM 398,-

MASTER 64
MASTER 64 ist ein professionelles Programm-
entwicklungssystem für den C-64, das es Ihnen
ermöglicht, die Programmentwicklungszeit
auf einen Bruchteil der sonst üblichen Zeit zu
reduzieren. MASTER 64 bietet einen Programm-
komfort, den Sie nutzen sollten.

MASTER 64 In Stichworten:
70 zusätzliche Befehle - Bildschirmmasken-

generator - definieren von Bildschirmzonen -

Eingabe aus Zonen - formatierte Ausgabe -

Abspeicherung von Bildschirminhalten - Arbei-
ten mit mehreren Bildschirmmasken - ISAM

Dateiverwaltung, in der Datensätze über einen

Zugriffschlüsselangesprochen werden kön nen

- Datensätze bis zu 254 Zeichen - Schlüssellänge

bis zu 30 Zeichen - Dateigröße nur von Disket-

tenkapazität abhängig - Zugriff über Schlüssel
und Auswahlmasken - Bildschirm- und Druck-

maskengenerator - Erstellung beliebiger För-

mulare und Ausgabemasken - BASIC-Er weite-

rungen - Toolkitfunktionen - Mehrfachgenaue

Arie Timetik (Rechnen mit 22 Stellen Genauig-

eit).

DM 198, -

TEXTOMAT
Das Bearbeiten vonTexten gehört zum wichtig-
sten Betätigungsfeld von Homecomputer-An-
wendern. So ist es auch nicht verwunderlich,
daß eine Unzahl verschiedenerTextprogramme
für den 64er angeboten wird. TEXTOMAT zeich-

net sich dadurch aus, daß er auch vom Einstei-
ger sofort benutzt werden kann. Über eine
Menuezeile können alle Funktionen angewählt
werden. Selbstverständlich beherrscht TEXTO-
MAT deutsche Umlaute und Sonderzeichen.

TEXTOMAT In Stichworten:
Diskettenprogramm - durchgehend menue-
gesteuert - deutscher Zeichensatz auch auf
COMMODORE-Druckern Rechenfunktionen für
alleGrundrechenarten -24.000 Zeichen proText
im Speicher - beliebig lange Texte durch Ver-
knüpfung - horizontales Scrolling für 80 Zei-
chen pro Zeile - läuft mit 1oder 2 Floppies -frei
programmierbare Steuerzeichen - Formular-
steuerung für Randeinstellung u.s.w. - kom-
plette Bausteinverarbeitung - Blockoperatio-
nen, Suchen und Ersetzen - Serienbriefschrei-
bung mit DATAMAT - formatierte Ausgabe auf
Bildschirm - an fast jeden Drucker anpaßbar -
ausführliches deutsches Handbuch mit
Übungslektionen.

DM 99,-

PAINT PIC
Malen (mit dem Computer, welch eine faszinie-
rende Idee. Mit dem Malprogramm PAINT PIC für

. den COMMODORE 64 wird diese Idee Realität. Mit
PAINT PIC ist es auch fur den Einsteigerleicht, fanta-
stische Computerbilder zu erstellen. Man Kann die
Bilder auf Diskette abspeichern und wieder laden
und selbstverständlich steht auch weiterhin der
COMMODORE-Zeichensatz zur Verfügung. Wichtig:
PAINT PIC benötigt keine zusätzliche Hardware.

PAINT PIC In Stichworten:
Programmsteuerung: Tastatur - Steuerung des

Stifts: Cursortasten und eckige Klammer (diag.)

(Joystick kann benutzt werden) - Routinen: Linien,

Rechtecke, Dreiecke, Parallelogramme, Kreise,

Kreisbögen, Ellipsen, Bestimmung vonMittelpunkt,
und perspektivischer Linie, Kopieren und Drehen

von Teilbildern, Verdoppeln, halbieren und spiel-

gein von Teilbildern - Modi: Malstiftmodus
(schmale Linie) Pinselmodus (8 verschiedene Brei-

ten) (Art der Linie selbst definierbar) — Textmodus
(kompl. Zeichensatz COMMODORE) (Hoch-Tief-
Schrift) - Speichern: Teilbilder (Blöcke) oder ganze
Bilder — Menue: 1 Hauptmenue mit 8 Untermenues

- mit ausführlichem deutschen Handbuch -Disket-
‘tenprogramm - Bilder kann man auf Diskette
abspeichern.

DM 99,-

PROFIMAT
Wer sich tiefer in die Innereien des Computers
begeben will; Kommt ohne besonderes Werk-
zeug nicht aus. Einerseits muß der volleEinblick
in alle Speicherbereiche möglich sein, anderer-
seits soll der Umgang mit Maschinenprogram-
men so komfortabel wiemöglich gestaltetsein.
PROFIMAT hat Lösungen für beide Probleme:
Der Maschinensprache-Monitor PROFI-MON bie-
tet alle Hilfsmittel zum Umgang mit Maschinen-
programmen; PROFI-ASS ist ein Macro-Assem-
bler, der das Schreiben von Maschinenpro-
grammen fast so einfach macht wie das Pro-
grammieren in BASIC.

PROFIMAT In Stichworten:
Registerinhalte und Flags anzeigen - Speicher-
inhalte anzeigen - Maschinenprogramme
laden, ausführen und speichern - Speicher-
bereiche durchsuchen, vergleichen, füllen und
verschieben - echter Einzelschrittmodus - Set-
zen von Unterbrechungspunkten - schneller
Trace-Modus - Rückkehr zu BASIC - formatfreie
Eingabe - Verkettung beliebig vieler Quellpro-
gramme - erzeugter Objektcode kann in Spei-
cher oder auf Diskette gehen - formatiertes
Assemblerlisting - ladbare Symboltabellen -
redefinierbare Symbole - Operatoren - Unter-
stützung der Fließkommaarithmetik - be-
dingte Assemblierung - Assemblerschleifen -
MACROS mit beliebigen Parametern.

DM 99-

 KONTOMAT
KONTOMAT ist ein menuegesteuertes Einnah-
me-Überschußprogramm nach § 4(3) EStG mit
Kassenbuch, Bankkontenüberwachung, auto-
matischer Steuerbuchung, AFA Tabellenerstel-
lung, Kontenblättern, Ermittlung der USt.Vor-
anmeldungswerte und Monats- und Jahres-
abrechnung. Der neue KONTOMAT ist voll para-
meterisiert und läßt sich damit an Ihre Bedürf-
nisse anpassen. Für alleGewerbetreibenden, die
nicht laut HGB zur Buchführung verpflichtet
sind. KONTOMAT ist für den gewerblichen Ein-
satz, aber auch als Lernprogramm oder zur
Haushaltsbuchführung geeignet.

KONTOMAT in Stichworten: |
Diskettenprogramm - maximal 120 Konten -
Beträge mit bis zu 6Vor- und 2Nachkommastellen -
4 Mehrwert- und Vorsteuersätze - intervallmäßige
Belegeingabe - A Buchungsarten (SOLL, HABEN,
SOLL/HABEN und°HABEN/SOLL) - Anzeige der Soll-
und- Habensumme bei mehrfachen Buchungssät-
zen - komfortable Belegeingabe mit Datum,
Buchungstext, Stuerkennzeichen und Betrag -
Druck des Journals während der Belegeingabe -
Druck von umfangreichen Kontenblättern -Druck
einer Summen- und Saldenliste mit Monats- und

, Jahresumsatzsummen - betriebswirtschaftliche
Auswertung mit Druckausgabe - Ermittlung und
Druckausgabe der Umsatzsteuerzahllast -Speiche-
rung der Anlagegüter und automatische Abschrei-
bung am Jahresende - übersichtliche AfA-Liste -
arbeitet mit 1 oder 2 Laufwerken - umfangreiches
deutsches Handbuch.

DM 148,-

FAKTUMAT
Mit FAKTUMAT ist das Schreiben von Rechnun-

gen kein Alptraum mehr. Eine Sofortfakturie-

rung mit integrierter Lagerbuchführung. Indi-

viduelle Anpassung von Steuersätzen, Maßein-

heiten und Firmendaten. Kunden- und Artikel-

stamm voll pflegbar. Schneller Zugriff auf Kun-

den- und Artikeldaten, über freidefinierbaren,
6-stelligen Schlüssel. Automatische Fortschrei-

bung von Artikel- und Kundendaten, individuell
nutzbar. Alles in allem die Arbeits- und Zeit-

ersparnis, die Sie sich schon immer gewünscht

haben.

FAKTUMAT In Stichworten:
voll menuegesteuert -lauft mit einer oder zwei
Floppies - Diskettenwechsel (eine Floppy) nur
beim Wechsel vom Hauptmenue ins Unterpro-
gramm und umgekehrt - mit Ausnahme des
Ausschaltens der Floppy während der Verarbei-
tung werden alle Fehler abgefangen (z.B. Druk-
‚kernicht eingeschaltet -arbeitet mit 1525, 1526
(?), MPS 801, EPSON Drucker und DATA BECKER
interface - voll parameterisiert: Firmenkopf,
MWSt. und Rabattsätze, Größe der Dateien belie-
big wählbar - 5 Zeilen für Firmenkopf je 30
Zeichen (erste Zeile erscheint auf derRechnung
in Breitschrift - 4 Mehrwertsteuer-Sätze; wäh-

rend der Rechnungsschreibung können also
Artikel mit unterschiedlichem Mehrwert-
steuer-Satz verrechnet werden - 10 Rabatt-
sätze (Rabattsatz 1 vorbelegt mit 0%), bei der
Rechnungsschreibung kann jedem Artikel ein
Rabattsatz zugewiesen werden - maximal 1900
Artikel bei 50 Kunden oder 950 Kunden bei 100
Artikel (max. Artikel = [1000-Kundenl»2; max.
Kunden = [2000-Artikell/2) - manuelle Eingabe
von Artikeln und/oder Kunde während der
Rechnungsschreibung - d.h. es können mehr
Artikel verrechnet weden als überhaupt in die
Datei passen (bei Verzicht auf Lagerbuchfüh-
rung) bzw. es können Rechnungen an Kunden
geschrieben werden, die nicht erfaßt wurden -

integrierte Lagerbuchführung mit Ausgabe
einer Inventurliste - Rechnungsbeträge und
Datum werden in der Kundendatei festgehal-
ten - Druck von: Rechnung (mit Abbuchen aus
Lager), Rechnung (ohne Abbuchen aus Lager),
Lieferschein - deutsches detailliertes Hand-
buch mit Übungs- und Anwendungsteil -
deutsche Bedienerführung innerhalb des Pro-
gramms (z.B. „Artikel nicht'vorhanden‘ anstelle
„RECORD NOT PRESENT").

DM 148,-

UNI-TAB
Heute schon die Bundesliga-Tabelle von morgen
kennen, das geht mit UNI-TAB. Alle Rechnereien, die
man ohne dieses Programm nie machen würde,
lassen sich in Sekundenschnelle durchführen. Wer

will, kann mit simulierten Spielergebnissen den
Weltmeister '86 vorausberechnen. Aber nicht nur
Fußball-Ligen können tabellarisch erfaßt werden,
fast alle Sportarten sind UNI-TAB-fähig. Gag am
Rande: für viele Sportarten stehen die bekannten
Piktogramme zur Verfügung.

UNI-TAB in Stichworten:
Menuesteuerung über die Funktionstasten mit
leicht verständlichen Auswahlmöglichkeiten -
Bedienerfreundiich (Mannschaften werden über
Kennzahlen gesteuert) - Ligen mit 4 bis 20 Mann-
schaften können verwaltet werden (6 bis 38 Spiel-
tage möglich) - unsinnige Ligen (2.B.13 Mannschaf-
ten sollen 5 Spieltage absolvieren) sind ausge-
schlossen - favorisierte Mannschaft kann während
des Programmablaufs durch reverse Darstellung
gekennzeichnet werden - Tabelle kann geändert
werden (wichtig bei Spielanullierungen) - drei ver-
schiedene Tabellenarten können abgespeichert
und später eingelesen werden (die aktuelle Tabelle
funabhangig von der Vollständigkeit eines Spiel-
tagesl, der komplette Spieltag [Vollständigkeit und
Nummer des Spieltages werden automatisch
errechnetl, die simulierte Tabelle [der Anwender
kann so selbst Schicksal spielen und seinen Tip spä-
ter mit dem tatsächlichen Geschehen verglei-
cheni) - zwei verschiedene Arten der Saisonüber-
sicht (die statistische Übersicht zeigt an, welchen
Tabellenplatz das jeweilige Team bei welchem
Punkte- und Torverhältnis an den einzelnen Spiel-
tagen einnahm; die graphische Übersicht zeigt die
Leistungskurve jeder Mannschaft) - alie Tabellen
und Graphiken sind als Hardcopy auf einem Druk-
ker darstellbar -— bei Fehlbedienung (z.B. ge-
wünschte Druckausgabe bei nicht eingeschalte-
tem Drucker) erscheinen leicht verständliche
deutsche Fehlermeldungen.

. DM 69--

SUPERGRAFIK 64
Entdecken Sie die faszinierende Welt der Com-
putergraphik mit SUPERGRAFIK 64, der starken
Befehlserweiterung mit den vielseitigen MÖg-
lichkeiten. Durch die neue verbesserte Version
jetzt noch leistungsstärker.

SUPERGRAFIK 64 In Stichworten:
2 unabhängige Graphikseiten (320 x 200 Punkte)
- logische Verknüpfung der beiden Graphiksei-
ten (AND, OR, EXOR) - 1 Standard Low-Graphik
Seite (80x50 Punkte) - Normalfarben Graphik
(300 x 200 Punkte) - Multicolor-Graphik (160 x200
Punkte) - verdecktes Zeichnen (z.B. Text sicht-
bar, Graphikseite 2 wird erstellt) -Textfensterin
der Graphik - 183 Befehle und Befehlskombina-
tionen (1. Für jeden Befehl wählbare Zwischen-
modi: Zeichnen, Löschen, Punktieren, Graphik-
Cursor bewegen, Zeichnen mit/ohne Farbset-
zung, Punkte zählen; 2. Durch einfache Befehle
zu Steuernde Graphikfiguren: Punkt, Linie,
Linienschar, Linie vom Graphik-Cursor, Kreise,
Kreisbögen, Ellipse, Ellipsenbégen, selbstdefi-
nierbare Figuren, rotieren und vegrößern die-
ser Figuren, Rahmen, Feld, Text in Graphik; 3.
Weitere Graphikbefehle: Graphikseiten- und
Moduswechsel, Graphik löschen, Graphik inver-
tieren, Scrolling von Text und Graphik, Wählen
der Rahmen- Hintergrund- Zeichen- oder
Punktfarbe) - Speichern, Laden von Graphik
(auch verdeckt) - Kopieren des Textbildschirms
in die Graphikseite - Hardcopies für EPSON, Sei-
kosha GPA00VC, Farbt(ldrucker Seikosha GP700
und andere mit DATA BECKER Interface - 16!
Sprites gleichzeitig auf dem Bildschirm - alle
Sprite-Eigenschaften veränderbar - Positionie-
ren und Bewegen (!) von 16 Sprites gleichzeitig
und unabhängig voneinander, während das
übrige Programm weiterläuft (IRQ) -Sprite-Kol-
lisionsüberprüfung, Joystickunterstützung -
automatische Unterbrechung des BASIC-Pro-
gramms bei Kollisionen (Interrupt), Sprung in
Unterbrechungsroutine, dann Weiterführung
des Hauptprogramms - komfortable Sound-
programmierung mit Verstellung aller mMög-
lichen Sound-Parameter (Lautstärke, Klang, Fil-
ter, Tonhöhe, Tonlänge), ebenfalls unabhängig
vom übrigen Programmiauf - zahlreichen Pro-
grammiertools (MERGE, RENUMBER usw.) - um-
fangreiche Anleitung - Diskettenprogramm.

DM 99-

PASCAL 64
Beim Wort „Compiler“ fällt dem Eingeweihten
sicher der Begriff „Geschwindigkeit“ ein. Ein
PASCAL-Compiler sollte jedoch weitere Assozia-
tionen wecken. Strukturiertes Programmieren
heißt das Zauberwort. PASCAL wurde eigens zu
didaktischen Zwecken entwickelt und erfüllt

diese Aufgabe auch heute noch. Der PASCAL 64
Compiler bringt diese phantastische Program-
miersprache auf den 64er.
Gerade die neue, verbesserte Version unter-
stützt die Möglichkeiten des C-64 in jeder Hin-
sicht und macht leistungsfähige Programme
möglich.

PASCAL 64 in Stichworten:
besitzt einen sehr umfangreichen Befehlsvor-
rat - erlaubt Interruptprogrammierung und
bietet Schnittstellen zu Monitor und Assembler
- erzeugt sehr schnelle Programme in reinem
Maschinencode - unterstützt relative Dateiver-
waltung, Graphik und Sound - bietet die Daten-
typen REAL, INTEGER, CHAR und BOOLEAN sowie
Aufzähltypen und POINTER, die zu Datenstruk-
turen RECORD, SET, ARRAY und PACKED ARRAY
kombiniert werden können - erlaubt vorzeiti-
gen Abschluß von Prozeduren mit EXIT, unein-
geschränkte Rekursionen undkomfortableVer-
arbeitung von Teilfeldern (Strings) - ist ein aus-
gereiftes, deutsches Produkt und wird mit aus-
führlichem Handbuch geliefert.

DM 99-

DISKOMAT
Der Umgang mit Diskettenlaufwerken ist fur
viele noch immer mit Geheimnissen belastet.
Andere störensich an den wenig komfortablen
Diskettenbefehlen des BASIC V2. DISKOMAT
bringt Abhilfe; alle Diskettenbefehle des BASIC
4.0 stehen zur Verfügung. Außerdem können |
mit dem Programm SUPERTWIN zwei 1541-Lauf-
werke wie ein Doppellaufwerk verwaltet wer-
den. Für Benutzer, die sich die Fähigkeiten der
Floppy 1541 ganz erschließen wollen, steht der
DISK-MONITOR bereit; er macht es endlich mög-
lich, den direkten Zugriff auf einzelne Blocks
einfach und bequem vorzunehmen. |
DISKOMAT in Stichworten:
Diskettenprogramm - DISK BASIC unterstützt
Diskettenbefehle des BASIC 40 (CONCAT,
HEADER, APPEND, RENAME, OPEN, COLLECT,
DSAVE, SCRATCH, DCLOSE, BACKUP, DLOAD, DIREC-
TORY, RECORD, COPY, CATALOG, DS & DSS) - SUPER
TWIN behandelt 2 Laufwerke 1541 wie ein Dop-
pellaufwerk -DISK-MONITOR ermöglicht direkte
Analyse und Manipulation von Disketten (direk-
tes Lesen und Schreiben einzeiner Blöcke,
ändern von Blöcken mittels Bildschirm-Editor,
Anzeige des Diskettenstatus, direktes Absen-
den von Disketten-Befehlen) - ausführliches
deutsches Handbuch beschreibt jeden einzel-
nen der 3 Programmteile.

DM 99,-

HAUSVERWALTUNG
Jetzt können alle Hausbesitzer aufatmen: das Pro-
gramm HAUSVERWALTUNG bietet ihnen eine sehr
komfortable Verwaltung der Mietwohnungen mit
dem COMMODORE 64.
Alles, was Sie dazu brauchen, ist ein COMMODORE 64,
ein Diskettenlaufwerk 1541, ein anschiußfähiger
Drucker und das obengenannte Programm HAUS-
VERWALTUNG. Die nachfolgenden und viele weitere
leistungsfähige Features ermöglichen eineäußerst
rationelle Verwaltung Ihrer Mietwohnungen.

HAUSVERWALTUNG in Stichworten:
Dikettenprogramm -Verwaltung von 50Einheiten
pro Objekt möglich - Stammdatenverwaltung für
Häuser und Mieter - Verbuchen der Miete, Neben-
kosten und Garagenmieten - Mietkontoanzeige -
Haus- und Mieteraufstellung - Mahnungen - Ver-
buchen der anfallenden Kosten - Kostengegen-
überstellung - Jahresendabrechnung mit automa-
tischem Jahresübertrag - umfangreiches deut-
Sches Handbuch.

DM 198-

TRAININGSKURS zu ADA
Diese Programmiersprache der Zukunft, die das
Pentagon in Auftrag gegeben hat, wird jetzt
durch DATA BECKER auch dem C-64 Anwender
zuganglich gemacht durch den TRAININGSKURS
zu ADA, der eine sehr gute Einführung in diese
Supersprache bietet. Der dazu gelieferte Com-
piler liefert ein umfangreiches Subset der
Sprache.

ADA in Stichworten:

blockstrukturierte Programme - modularer
Aufbau der Programme - ermöglicht die
Behandlung von Ausnahmezuständen -Fehler-
überprüfung beim Übersetzen und zur Laufzeit
- ermöglicht das einfache Einbinden von
Maschinenprogrammen - sehr leichtes Arbei-
ten mit Programmbibliotheken - Programm-
diskette enthält Editor, Übersetzer, Assembler
und Disassembler - umfangreiches deutsches
Handbuch.

DM 198,-

DATAMAT
Daten verwalten kann ein schier endloses Han-
tieren mit Karteikasten und Aktenordnern
bedeuten; kann aber auch C-64 plus DATAMAT
heißen. Dann wird Suchen und Sortieren zum
Spaß. Der DATAMAT bietet in seiner neuen Ver-
sion einiges, was in dieser Preisklasse bisher
unvorstellbar schien. Nicht nur Geschwindig-
keit und Bedienungsfreundlichkeit wurden
weiter verbessert, auch die Anpassung an die
meisten Drucker ist inzwischen machbar.

DATAMAT In Stichworten:
menuegesteuertes Diskettenprogramm, da-
durch extrem einfach zu bedienen - für jede
Art von Daten - völlig frei gestaltbare Eingabe-
maske - 50 Felder pro Datensatz - 253 Zeichen
pro Datensatz - biszu 2000 Datensätze pro Datei
je nach Umfang - Schnittstelie zu TEXTOMAT -
läuft mit 1 oder 2 Floppies - völlig in Maschinen-
sprache - extrem schnell - deutscher Zeichen-
satzauch auf COMMODORE-Druckern -fastjeder
Drucker anschließbar - ausdrucken über RS 232
- duplizieren der Datendiskette - verbesserte
Benutzerführung - Hauptprogramm komplett
im Speicher (kein Diskettenwechsel mehr) -
integrierte Minitextverarbeitung - deutsches
Handbuch mit Übungslektionen
Sie können:
jeden Datensatzin 2-3Sekunden suchen - nach
beliebigen Feldern selektieren - nach allen Fel-
dern gleichzeitig sortieren - Listen in völlig
freiem Format drucken - Etiketten drucken.

DM 99--

ZAHLUNGSVERKEHR
Umfangreicher Zahlungsverkehr kann zur
Plage werden. Das Software-Paket ZAHLUNGS-
VERKEHR übernimmt den größten Teil dieser
Arbeit. Außerden notwendigenrFähigkeitenfür
das Ausfüllen und Auflisten von Überweisun-
gen und Schecks ist der ZAHLUNGSVERKEHR in
der Lage, Sammellisten, Einzugslisten etc. selb-
ständig zusammenzustellen.

ZAHLUNGSVERKEHR in Stichworten:
Diskettenprogramm - max. 100 Zahlungsemp-

 fänger pro Diskette - drei definierbare Absen-
derbanken - 25 Zahlungsdateien - 14 frei defi-
nierbare Formulare - Kontrolidruck bei Beleg-
eingabe möglich - Eingabe von Rechnungs-
daten oder eines Verwendungszwecks - AuS-
druck einer Sammel-Überweisungsliste - Kor-
rekturmöglichkeit der einzeinen Zahlungs-
dateien -arbeitetmiteineroderzweiFloppies-
umfangreiches deutsches Handbuch.

DM 148-

