Hornig - Trapp
Weltner

., 64

\ﬁ' ips & Tricks

Eine Fundgrube fiir den
Commodore 64 Anwender

EIN DATA BECKER BUCH

Hornig - Trapp
Weltner

, 64

\ﬁ' ips & Tricks

Eine Fundgrube fiir den
Commodore 64 Anwender

EIN DATA BECKER BUCH

ISBN 3-89011-065-7

Copyright (C) 1984 DATA BECKER GmbH
Merowingerstr. 30
4000 Diisseldorf

Alle Rechte vorbehalten. Kein Teil dieses Buches darf in
irgendeiner Form (Druck, Fotokopie oder einem anderen
Verfahren) ohne schriftliche Genehmigung der DATA BECKER
GmbH reproduziert oder unter Verwendung elektronischer
Systeme verarbeitet, vervielfdltigt oder verbreitet

werden.

Wichtiger Hinweis

Die in diesem Buch wiedergegebenen Schdaltungen,
Verfahren und Programme werden ohne Riicksicht auf die
Patentlage mitgeteilt. Sie sind ausschlieBlich fiir
Amateur- und Lehrzwecke bestimmt und diirfen nicht
gewerblich genutzt werden.

Alle Schaltungen, technische Angaben und Programme in
diesem Buch wurden von dem Autor mit groéBter Sorgfalt
erarbeitet bzw. zusammengestellt und unter Einschaltung
wirksamer KontrollmaBnahmen reproduziert. Trotzdem sind
Fehler nicht ganz auszuschlieBen. DATA BECKER sieht sich
deshalb gezwungen, darauf hinzuweisen, daB weder eine
Garantie noch die juristische Verantwortung oder
irgendeine Haftung fiir Folgen, die auf fehlerhafte
Angaben zuriickgehen, ilibernommen werden kann. Fir die
Mitteilung eventueller Fehler ist der Autor jederzeit
dankbar.

1. EINLEITUNGttt ittt eteaneaneananenns 1
2. TIPS & TRICKS FUR DEN HAUSGEBRAUCH - 4
- Steuern der Datasette von BASIC aus 4
- Eine Kopieréchutzvariante fiir Kassette 5
- Verschieben des Kassettenpuffers 6
- Laden nur mit Code ittt 8
- Fehlerkanal auslesenc.cuoeiteineeeencannns 9
- Aus SAVE mach LOAD !t iititiinennennnenas 10
- Automatisches Nachladenicoiiiiiennnnns 11
- LOAD und SAVE bei Maschinenprogrammen N 13
- Umwandlung ASCII- in Video-Codecciiu.n.. 15
- HEX-Eingabe e 18
— DATA-GENEYaAtOrt itiee ittt teaeeeeateenaenenannnns 20
= SCREEN-COPY + i it tietteeettneaeesaeseeaeneesneneeennns L 22
D = 7N 3 K o 1 .- T 26
- ESCAPE-FUNKtionoouiinneneienannnnnnn. e 31
- Bildschirmfarben dandernttt 34
- Zwel Billdschirme ittt iiiinnnnnnnn 37
- Laufschrift in Maschinensprache 42
- Die STOP-Funktioniiiiiiiennennnennnnns 46
- Zufall? Ndheres zu RNDccitiiiiiinennennnn 49
- Modifiziertes INPUTttt iriennenennnnnnn 55
- Floppy-Tricks e 58
3. SOFTWARESCHUTZ . -ttt ittty e e .. 66
- Manipulation der List-Funktion 66
- Listen ohne Zeilennummerncceveenenenns 66
- Verdndern des BASIC-LINKcuuiiruiiivinennennns 72
- Zeilen 10schen ? SYNTAX ERROR !coucuunn.. 74
- Kiinstliche Steuerzeichenccivin.. 77
- Schutz durch POKES ittt eencnnnnonanns 79
- Blockieren "gefahrlicher” Tasten 81

- Vortauschen eines Maschinensprache-Spiels 85

. BEFEHLSERWEITERUNG - SELBST GEMACHT ! 88

Andern des BASIC-Code-Link$§ccuiuiueunnnn.. 88
Verdndern der CHRGET-Routine 92
Andern der IRQ-Routinec.cciiiiinunnn... 94
 BRAFIK - .ot it e e e e e e e 96
Grundlagenttt e 96
Der Character-Generator im Speicher 99
Auslesen des Zeichensatzesiiiiinan.. 100
Kopieren des Character-Generators 103
Umschalten des Character-Generators 106
Hilfsprogramme zur Zeichendefinition 108
Design im Listing i, 120
Zum Thema MULTI COLORt inimenenennnannnaennnn 121
MACRO-Laufschrift 126
8 Blocks fUr SPRITESiiiiiuinnnennnnnnnnnnnnnn 127
CDAS SPIELt e e et e e e e e 128
DAS GOY A DD ..ttt ittt e e e e 129
Grafik ... e e 137
SOUNA ... e e e e e e 140
Die Anleitungcoeiuueunennn. e 141
Anfangsbild e 143
ZusammenfassSuUNgt e e e e e e 145
INTERRUPTS - . oo ettt e et ettt ettt ettt et 150
24 0 o 150
NMI . e e e e et 153
1820 157
. und wie man den IRQ programmiert ! 164
Tastatur-PieDttt ettt e 167
‘Nebenbei Musikttt iinnnnnnennnnn 169
. BETRIEBSSYSTEM: ROM IN RAM ittt 172
Kopierroutinen 173

. BETRIEBSSYSTEM~ROUTINEN @iiiiiiinnnnnn 176

T0.KERNAL e i i e e, 192

11.0ER SPEICHER - - - - - .. -« it e ettt et e eeeennn 220
- Wie speichert der Computer eine BASIC-Zeile ? 220
- BASIC-MOonitor ittt e e 224
- Kommentiertes Zeropage-Listing 228
- Wichtige Adressen der folgenden Pages et 238
- Allgemeines zur Variablenspeicherung 241
- Liste interessanter Zeiger, 245

12.ANHANG - - - . - . o e e e e et ettt 247
- Allgemeines zu den Tabellenc.u... 247
- Umrechnungstabelle u.... 248
- Tabelle der Geratenummerneeeeeeeneenn 258

13.HARDWARE=TIP . . .« ottt ettt e ettt e e 259

1. EINLEITUNG

Es diirfte jedem Benutzer inzwischen klar sein, daB der C-64
ein Super-Computer ist. Aber auch die Leute, die diesen
Computer gebaut haben, konnten nicht an alles denken. Wir
wollen TIhnen hier deshalb einige Fehler zeigen, mit denen
Sie Leute, die diese Fehler nicht kennen, sehr schén
erschrecken konnen, indem Sie die Fehler auftreten lassen
und sagen, der Computer sei kaputt. Auch in einem
Fachgeschdft konnte das eine gewisse Wirkung zeigen.

Doch nun zu den Fehlern:

1. Fehler:

Diesen Fehler werden Sie vielleicht auch schon bemerkt
haben. Wenn Sie gleichzeitig die linke Shift-Taste und die
beiden Cursor-Tasten driicken, dann erscheint ein Pik-Zeichen
auf dem Bildschirm.

2. Fehler:

Driicken Sie einmal gleichzeitig die Commodore-Taste, die
Taste mit dem Semikolon und die Gleich-Taste. Der Cursor
wird verschwinden.

Was ist passiert?

Nun driicken Sie Run-Stop/Restore und geben Sie den Befehl

POKE 53281,0

ein.

Wenn Sie jetzt noch einmal diese drei ersten Tasten
gleichzeitig driicken, so sehen Sie, warum der Cursor
verschwunden ist:

Die Zeichenfarbe hat von weifl zu blau gewechselt.

3. Fehler:

Hier handelt es sich eindeutig um den interessantesten
Fehler. ' ‘

Gehen Sie mit Threm Cursor auf die unterste Zeile vom
Bildschirm und schreiben Sie jetzt so lange (auch
Leerzeichen), bis der Cursor zum 2.Mal rechts aus dem
Bildschirm gesprungen ist. Driicken Sie jetzt die
INST-DEL-Taste. Sobald Sie versuchen, das 80.Zeichen zu
16schen, tritt der Fehler auf:

Auf dem Bildschirm erscheint folgendes Bild:

LOAD

?SYNTAX ERROR
READY
RUN

READY.

" Nun geht nichts mehr - der Computer ist im Niemandsland.
Aber das war noch ﬁicht alles: Ein BASIC-Programm wird
gestartet, bis es an eine INPUT-Anweisung kommt. Dort h&dngt
es sich auf, da die Tastatur nicht mehr funktioniert. Sollte
kein Programm vorhanden sein, so erscheint das oben
beschriebene Bild. Wer jetzt aber denkt, daB es aufBler Reset-
und ' Aus-Einschalten des Computers keine Moglichkeit mehr
gibt, den Computer aus dem Niemandsland wieder auf sicheren
Boden zurilickzufiihren, der hat sich geirrt. Geben Sie #
(SHIFT + 3) ein. Daraufhin gibt der totgeglaubte Computer
"PRESS PLAY ON TAPE" aus. Sollten Sie eine Datasette
angeschlossen haben, so kommen Sie dieser Aufforderung nach.
Nun éeht der C-64 wieder in den normalen Lade-Modus, den
Sie ganz einfach mit Run-Stop unterbrechen kodnnen.

Sonderbarerweise tritt dieser Fehler tritt nur bei einigen

Zeichenfarben auf: rot, cyan, dunkelblau, gelb (mit Variante
des Fehlers), rosa, dunkelgrau, hellblau und hellgrau.

Es funktioniert demnach nur bei Farben, die auf den Tasten
3,4,7 und 8 liegen.

tbrigens: Wenn dieser Fehler bei Thnen nicht auftritt, so
seien Sie beruhigt - Ihr Computer ist nicht defekt. Sie
haben nur einen Computer der neuen Serie. Bei diesen
Modellen tritt dieser Fehler nicht mehr auf.

Ob Sie einen Computer neueren Datums haben, konnen Sie auch
auf andere Art erfahren: Loschen Sie den Bildschirm und
geben Sie POKE 1024,1 ein. Sollte in der linken oberen Ecke
ein A erscheinen, so sind Sie gliicklicher Besitzer eines
neuen Modells, da bei einem <eren zusdtzlich ein Wert in
den Farb-RAM gePOKEt werden muB3, um ein Zeichen erscheinen
zu lassen. '

Fragen Sie uns Jjedoch nicht, woher die Fehler kommen, wir
wissen es nicht. Die ersten beiden scheinen mit der
Tastatur-Abfrage zusammenzuhidngen. Beim letzten erwies sich
der Verdacht, die TIRQ-Routine sei verbogen worden, als
unbegriindet (TI$ wird weitergesetzt, der Cursor blinkt
etc.). :

Das sollte nur ein kleiner Eihstieg sein. Wie Sie (trotz
dieser kleinen Fehler) das Beste aus Ihrem C-64 machen
kbnnen, sollen Ihnen die ndchsten Seiten zeigen.

2. TIPS & TRICKS FUR DEN HAUSGEBRAUCH

Auf den folgenden Seiten finden Sie eine ganze Reihe
niitzlicher BASIC- und Maschinen-Routinen.

Es werden interessante Speicheradressen und damit verbundene
Moglichkeiten aufgezeigt...

Kurz: Tips & Tricks fiir den Hausgebrauch |

STEUERN DER DATASETTE VON BASIC AUS

Es ist eine angenehme Eigenschaft, daB der Motor der
Datasette nach Beendigung eines LOAD-, bzw. SAVE-Vorganges
selbsttdtig stoppt.

Erst nach Betdtigung der Stoptaste am Rekorder kann der
Motor wieder durch Driicken der PLAY-Taste gestartet werden.
Der Motor der Datasette kann also folglich vom Computer aus
gesteuert werden.

Diese Eigenschaft 148t sich selbstverstdndlich auch fiir
eingene Zwecke ausnutzen ! '

Wichtig bei der Software-Kassettenmotorsteuerung ist die
Adresse 1, der Prozessor-Port.

AuBerdem wird das Kassettenmotor-Flag (Adresse 192, $CO)
benotigt.

Zur Demonstration der Steuereigenschaft. driicken Sie bitte
die PLAY-Taste des Rekorders : Das Band wird gespult, der
Motor lauft.)

Geben Sie nun folgende Zeile im Direktmode ein:

POKE 192,1: POKE 1,PEEK(1) OR 32

Der Motor der Datasette stoppt, ohne daB die STOP-Taste des
Rekorders betdtigt wurde. Das 5. Bit der Adresse 1 und das
Kassettenmotor-Flag wurden gesetzt.

Um den Motor nun wieder softwaregesteuert zu starten, geniigt
die folgende Zeile:

POKE 1,PEEK(1) AND 39: POKE 192,0

Der Rekorder arbeitet nun wieder wie vor Ihrem Eingriff !
Mit der Steuerung des Motor sind die Moglichkeiten jedoch
noch nicht erschopft. Es 1lassen sich im‘Gegenteil noch
Aussagen iiber die Betdtigung der Tasten am Rekorder machen.
Wieder wird Adresse 1 benutzt:

IF PEEK(1) =55 THEN PRINT" KEINE TASTE BETAETIGT !"-
" IF PEEK(1) =7 THEN PRINT" TASTE GEDRUECKT !!"

Dies 148t sich auch mit einem WAIT-Befehl nutzen:
WAIT 1,16

wartet solange, bis die STOP-Taste des Rekorders betdtigt
wird.

Hier noch einmal alle Steuereigenschaften zusammengefafit:

Rekordermotor aus:.......... POKE 192,1: POKE 1,PEEK(1) OR 32
Rekordermotor ein:.......... POKE 1,PEEK(1).AND 39:POKE 192,0
Warten auf STOP-Taste:...... WAIT 1,16

Warten auf PLAY-Taste:...... x IF PEEK(1)=55 THEN GOTO x

EINE KOPIER-SCHUTZ-VARIANTE FUR DIE DATASETTE

Im nun Folgenden soll gezeigt werden, wie auf einfache Art
verhindert werden kann, dag ein unerlaubt kopierte
Programm problemlos gestartet werden kann.

Man macht sich dabei folgende Eigenschaft zunutze: Wenn Sie
ein Programm auf Datasette abSAVEn, haben Sie die
M6glichkeit, einen bis zu 172 Zeichen langen Programmnamen
anzugeben. Wird das Programm jedoch in den Computer geladen,
so werden 1lediglich bis 2zu 16 Zeichen ausgegeben. Die

0brigen 160 Zeichen des Programmnamens bleiben im
Kassettenpuffer verborgen.

Das folgende kleine BASIC-Programm fragt nun das 17.Zeichen
des Programmnamens ab. Es wird beim Laden nicht auf den
Bildschirm ausgegeben und ist somit unbekannt.

Wird nun das Programm widerrechtlich kopiert, so wird das
17.Zeichen des Programmnamens nicht mit iibernommen, da es
dem Kopierer ja unbekannt ist.

10 IF PEEK(849) =AsC("X") THEN GOTO 30
20 PRINT"? LOAD ERROR":NEW
30 PRINT"ORIGINALPROGRAMM !"

Diese drei 2Zeilen sollten Sie vor TIhr eigenes Programm
stellen. Wenn Sie das Programm abSAVEn, so.geben Sie als
17.Zeichen im Programmnamen den Buchstaben "X" ein !

SAVE "1234567890123456X" (X genau an 17. Stelle!)

Wird das Programm jetzt kopiert, erkennt dies der Computer .
am fehlenden 17.Zeichen des Progrémmnamens, gibt ein ? LOAD
ERROR aus und loscht das Programm. So ist der Kopierschutz
als solcher gar nicht zu erkennen!

Wollen sie einen anderen Buchstaben als das X verwenden, so
muB lediglich Zeile 10 entsprechend abgedndert werden.

Es ist darauf zu achteﬁ, daf das mit dem Kopierschutz
versehene Programm lediglich mit LOAD ohne Namensbezeichnung
geladen wird. v
Perfekter wird der Kopierschutz, wenn die drei
Kontrollzeilen zusdtzlich mit einem Listschutz versehen
werden (siehe auch Kapitel Softwareschutz !).

VERSCHIEBEN DES KASSETTENPUFFERS

Der Kassettenpuffer liegt normalerweise von $033C - $03FB
(828 - 1019) im Speicher.

In ihm werden die Daten, die vom Rekorder kommen oder zu ihm
geleitet werden sollen, zwischengespeichert und blockweise
ausgegeben.

Der Kassettenpuffer wird somit nur bei LOAD-, bzw.
SAVE-Anweisungen in Verbindung mit der Datasette benutzt,
sonst ist dieser Sbeicherbereich ungenutzt.

Er wird daher sehr gern zur Speicherung kleinerer
Maschinenprogramme oder als Platz fiir die Sprite-Blocks
13-15 genutzt. Dies geht solange gut, bis - ja, bis der
Kassettenpuffer wieder einmal seiner eigentlichen Bedeutung
zugefiihrt wird, und Programme von Datasette geladen oder auf
Kassette geSAVEt werden.

In diesem Moment nédmlich werden alle zuvor in diesem
Speicherbereich stehenden Daten iiberschrieben.

Es gibt Jjedoch eine - simple, wenn auch wenig bekannte

Methode, dies zu verhindern. Man bedient sich des
Kassettenpuffer-vVektors ($B2/$B3, 178/179), der
normalerweise auf den Beginn des Kassettenpuffers zeigt.

Mdchte man also den Inhalt des urspriinglichen

Kassetten-Puffers vor Uberschreiben schiitzen, so legt man
den Vektor beispielsweise in dem ungenutzten Speicherbereich
ab $C000:

10 A=49152: REM ANFANGSADRESSE NEUER KASSETTENPUFFER
20 HI=INT(A-256)

30 LO=A-(HI*256)

40 POKE 178,L0: POKE 179,HI

Sollte der C-Bereich bereits belegt sein, bietet sich auch
der Bildschirmspeicher als Kassettenpuffer an. Er wird
wihrend des LADE-, bzw. SAVE-Vorganges der Datasette ohnehin
nicht benutzt.

Zeile 10 muB in diesem Fall ersetzt werden durch:

10 A=1024

LADEN NUR MIT CODE

Nach der Datasette kommen wir nun zur Floppy 1541. Auch hier
wird der Programm-Name bei LOAD-, bzw. SAVE-Befehlen im
Speicher des C64 abgelegt. Der Kassettenpuffer bleibt jedoch
von diesem Vorgang unberiihrt.

Vielmehr gibt der Zeiger $BB/$BC (187/188) AufschluB iber
die Adresse, ab der der Name gespeichert worden ist.

Das folgende kleine BASIC-Programm gibt den zuletzt bei
Disketten-Operationen benutzten Programmnamen auf dem
Bildschirm aus:

10 AD= PEEK(187)+256*PEEK(188)
20 FOR A=AD TO 40959: B=PEEK(A)
30 NA$=CHR$(B)

40 NEXT:PRINT NAS$

Man kann sich auch die Floppy-Programmnamen-Abspeicherung
zunutze machen! '

Stellen Sie einmal die folgenden Zeilen irgendeinem Ihrer
Programme voran!

10 FOR A=40955 TO 40959

11 B=PEEK(A)

12 READ C$: C=ASC(C$)

13 IFB =C THEN 15

14 PRINT"? LOAD ERROR";:NEW
15 NEXT

16 DATA C,0,D,E,1

SAVEn Sie nun das so verdnderte Programm unter eineﬁ
unbedingt 16 Zeichen 1langen Namen ab. Nun laden Sie das
Programm wie gewohnlich. Starten Sie es! Es kommt zu einem
LOAD ERROR, und das Programm ist geldscht.

Laden Sie das Programm erneut. Geben Sie diesmal den

kompletten Programmnamen ein und hingen Sie dahinter das
Kennwort "CODE1". Wenn das auf diese Weise geladene Programm
gestartet wird, gibt es keine Komplikationen.

Wieso? Nun, in Zeile 10 werden die letzten fiinf Zeichen des
gespeicherten Programmnamens abgefragt und mit dem Kennwort
in der DATA-Zeile verglichen. Nur wenn sie identisch sind,
kann das Programm fortgesetzt werden.

Wichtig ist auch, daB der reguldre Programmname 16 Zeichen
lang ist. Sonst ist es nicht mdglich, weitere Code-Zeichen
einzugeben.

FEHLERKANAL AUSLESEN

0ft kommt es bei der Benutzung der Floppy-Disk 1541 zu einem
Fehler, gut zu erkennen an der .blinkenden, roten LED.
Manchmal Jjedoch ist man sich keiner Schuld bewuBt und sucht
oft lange nach dem vermeindlichen Fehler.

Einfacher und schneller geht es mit der folgenden kleinen
Routine, die den Fehlerkanal der Floppy ausliest. Sie
gestattet die bequeme Ausgabe der Fehlermeldung und
erleichtert so das Aufspiiren des Fehlers.

Das Maschinen-Aquivalent dazu finden Sie unter dem Kapitel
Floppy-Tricks.

10 REM AUSLESEN DES FEHLERKANALS DER FLOPPY
20 OPEN 1,8,15: REM OEFFNEN DES KANALS

30 INPUT#1,F ,FM$,SP,SE

40 PRINT F ", "FM$","SP","SE

50 CLOSE 1

Variablen:

F = Fehlernummer
FM$ = Fehlermeldung
SP = Spur

SE = Sektor

AUS SAVE MACH LOAD !

Die folgenden Vektoren und deren Manipulation sind sowohl
fiir die Datasette als auch fiir das Floppy-Disk 1541
interessant.

Beschdaftigen wollen wir uns mit dem SAVE- ($0332/$0333
818/819) und dem LOAD-Vektor ($0330/$0331 816/817).

‘Diese beiden Zeiger deuten auf die im ROM liegenden LOAD-
bzw. SAVE-Routinen.

Gemd der Uberschrift soll nun aus SAVE LOAD werden. Dies
ist nicht allzu schwer (wenngleich .auch kein funktioneller
Austausch praktiziert wird, scheint dies doch wenigstens so
1):

POKE 818,PEEK(816): POKE 819,PEEK(817)

Ab sofort ist SAVE nicht mehr SAVE, sondern LOAD (VERIFY).
Nun kann man nicht mehr ohne weiteres SAVEn.

Den Normalzustand erreicht man wieder durch:

POKE 818,237: POKE 819,245 (Zeiger $F5ED)

Auch umgekehrt 148t sich LOAD ausschalten:

POKE 816,PEEK(818): POKE 817,PEEK(819)

Zuriick in den Normalzustand gelangt man wieder mit:

POKE 816,165: POKE 817,244 (Zeiger $F4A5)
LOAD und SAVE vertauschen - auch das ist nicht schwer:

POKE 816,237:POKE817,245: POKE818, 165: POKE819, 244

10

Das ausschalten von LOAD und SAVE erreicht man durch:

POKE 818(816),26: POKE819(817),167

Sowohl LOAD als auch SAVE werden einfach mit einem kiihlen
"READY" beantwortet.

AUTOMATISCHES NACHLADEN

Nehmen wir einmal folgenden Fall an: Sie haben ein Programm
geschrieben, das wihrend des Programmablaufes weitere Teile
nachliadt oder Dateien benutzt.

Dies 1ist kein Problem, wenn man weifl, ob mit Floppy oder
Datasette gearbeitet wird.

Nun kann man selbstverstdndlich den Benutzer vom Programm
aus fragen, welches Speichergerdt er benutzt. Dies ist
jedoch nicht nur umstdndlich, es ist auch fiir den Benutzer
unbequem. Eleganter geht es auf folgende Art (Beispiele):

450 FD=PEEK(186): OPEN 1,FD,1 oder

670 FD=PEEK(186): LOAD"TEST",FD, (Sekunddradresse)

Selbstverstdndlich ist der Computer nicht allwissend. So
kann er natiirlich auch nicht voraussagen, welches Gerdt Sie
zur Speicherung verwenden. In den oben genannten Beispielen
wird einfach davon ausgegangen, dafl das Gerdt, mit dem

das Hauptprogramm geladen wurde, auch zur weiteren
Speicherung benutzt wird.

Adresse 186 enthdlt die Nummer des zuletzt benutzten
Gerdtes. Sie missen nur auf weitere Gerdte, beispielsweise
den Drucker aufpassen.

Es empfiehlt sich, am Programmanfang der Variable FD den
Inhalt der Adresse 186 =zuzuweisen. So kann dann spiter

11

dieser Wert nicht mehr durch andere Gerdte verfélscht
werden!)

Ein Wortchen zu LOAD ERROR...

Es kann schon einmal vorkommen, daB8 ein von Kassette
geladenes Programm einen LOAD ERROR hervorruft.

Dieser Ladefehler muB8 allerdings noch nicht bedeuten, daB
das geladene Programm fiir den Benutzer verloren ist.

Sowohl der VC-20 als auch der Commodore 64 speichern das
Programm bei einem SAVE-Vorgang zweimal hintereinander auf
das Band.

Beim Ladevorgang wird die erste Version in den Speicher
geholt und mit der auf Band befindlichen zweiten Version
verglichen. Wenn sich diese beiden Versionen voneinander
unterscheiden, kommt es zum LOAD ERROR.

Méchte man das geladene Programm nun retten, mufl zundchst
iberpriift werden, ob es sich auflisten 148t. Wenn dies der
Fall ist, kann das Programm gerettet werden.

Im Kassettenpuffer ist in den Adressen 831/832 die Ldnge des
geladenen Programmes abgespeichert. Diese Information wird
jedoch erst vom Computer {ibernommen, wenn das Programm
fehlerfrei geladen worden ist.

Tritt nun ein LOAD ERROR auf, fehlen dem Computer diese
Informationen. Der Variablenstart liegt dann im
BASIC-Programm und zerstort dieses. '

Folgende Zeilen im Direktmode eingegeben, kdnnen das
fehlerhaft geladene Programm retten (sofern es sich listen
liel): i

POKE 46,PEEK(832): POKE 47,PEEK(831): POKE 48,PEEK(832):
POKE 49,PEEK(831): POKE 50,PEEK(832)

Anschliefiend kann das Programm mit RUN gestartet werdent

12

LOAD UND SAVE BEI MASCHINEN-PROGRAMMEN

Um ein Maschinenprogramm auf Band zu speichern, gibt es eine
Moglichkeit, die komfortabel ist, 1leider aber nicht oft
genug benutzt wird:

Das Maschinenprogramm direkt auf Band speichern!

Im Gegensatz zum Basic-Loader hat sie den Vorteil, daBl es
schneller geht, und daB der Speicher, den der Basic-Loader
einnehmen wiirde, eingespart wird.

Auch selbstdefinierte Zeichensédtze konnen so einfach
abgespeichert werden.

Zuerst miissen Sie wissen, wo das Programm beginnt, und wo es
endet. Nehmen wir an, Sie wollen den Bereich $5000-$6000
abSAVEn.

Beim SAVEn wird alles zwischen dem BASIC-Anfang (43/44) und.
dem Variablen-Anfang (45/46) auf Band gespeichert.

Sie nmiissen also $5000 in den Vektor 43/44 und $6000 in den
Vektor 45/46 schreiben.

$5000= #20480 LB= 0 HB= 80
$6000= #24576 LB= 0 HB= 96

Der Bereich $5000- $6000 wird auf folgende Art
abgespeichert:

POKE 43,0: POKE 44,80: POKE 45,0: POKE 46,96: CLR:
SAVE "(name)",1,1

Die erste EINS hinter dem SAVE ist die Ger&dte-Adresse (ACHT
fir Floppy).

Die zweite EINS bedeutet, daB der Bereich unmittelbar
abgespeichert wird, das heifit, bei erneutem Laden wird der
Bereich automatisch wieder an die gleiche Adresse geladen.
Auflerdem sieht der Computer diesen Bereich nicht als

13

BASIC-Programm an und berechnet demnach auch keine Links.

Noch ein Trick:

Nehmen wir an, Sie haben ein Programm im Bereich $5000-$6000
abgeSAVEt, wollen es jetzt aber in den Bereich $8000-$9000
laden. ’

Das geht ohne grofie Probleme.

Geben Sie SYS 63276 ($F72C) ein.

Es erscheint die Meldung PRESS PLAY ON TAPE. Dieser
Aufforderung kommen Sie nach. Es wird Jjedoch nur der
Tape-Header geladen.

Da im Tape-Header angegeben wird, von wo bis wo das Programm
steht, konnen Sie es einfach verschieben:

POKE 829,LB (Anfang)
POKE 830,HB (Anfang)
POKE 831,LB (Ende)+2
POKE 832,HB (Ende)

Fir $8000-$9000 miissen Sie eingeben:

POKE 829,0: POKE 830,128: POKE 831,0: POKE 832,144
SYS 62849 ($F581)

Der letzte Befehl setzt den Ladevorgang fort.

Nach Beendigung geben Sie NEW ein und kdnnen nun starten.
Dieser Trick geht allerdings nur mit Datasette, da das
Floppy den Kassetten-Puffer nicht benutzt. Somit kénnen auch
die einzelnen Adressen nicht auf die hier beschriebene Weise
gedndert werden.

14

UMWANDLUNG - ASCII-BILDSCHIRMCODE

Sicherlich werdeh Thnen die beiden Tabellen im Anhang des
C-64 Handbuches schon einmal aufgefallen sein: Ich meine die
Liste mit den Bildschirmcodes und die mit den ASCII-Werten.
Wédhrend der Bildschirmcode dazu benutzt wird, Zeichen durch
den POKE-Befehl in den Bildschimspeicher ($0400, 1024) zu
bringen, 1408t sich der ASCII-Code in einen String
verwandeln, der mit PRINT ausgegeben werden kann (ASC-CHRS$).
In beiden Tabellen befinden sich dieselben Zeichen,
lediglich die Code-Werte unterscheiden sich voneinander.

In manchen Programmen miissen jedoch ASCII-Codes in
Bildschirm-Codes verwandelt werden (siehe beispielsweise
Listing Zeichen-Editor). Dies 1laBt sich durch folgende
kleine BASIC-Routinen erreichen:

10 REM ASCII in BS-CODE

20 T$="A": T=ASC(T$): PRINT"ASCII-CODE =";T

30 PRINT "(home)" ;T$

40 BS=256*PEEK(648): REM BS=ANFANG BILDSCHIRMSPEICHER
50 CO=PEEK(BS): REM CO=BILDSCHIRMCODE

60 PRINT"BILDSCHIRM-CODE =";CO

70 END ’

Die Stringvariable T$ enthdlt das betreffende Zeichen, hier
der Buchstabe "A". Der ASCII-Wert wird mit ASC ermittelt und
ausgegeben. Um den Bildschirmcode 2zu ermitteln, wird
zundchst die.- Anfangsadresse des Bildschirmspeichers
errechnet (Adresse 648 = High-Byte des Video-RAM).

Der Buchstabe in T$ wird in die erste Speicherstelle des
Bildschirmspeichers gePRINTet.

Durch PEEK kann Jjetzt diese Speicherstelle ausgelesen
werden, und man erhdlt so den Bildschirmcode.

Der Nachteil dieser Routine ist der etwas unschone Eingriff
in den Bildschirmspeicher. Das betreffende Zeichen wird

15

dabei links oben auf dem Bildschirm ausgegeben.
Deshalb finden Sie nun zwei kleine Hilfsroutinen, die die
Umrechnung auf rein rechnerischem Weg vornehmen:

10 REM VIDEO- IN ASCII-CODE

20 INPUT"WIE LAUTET DER BILDSCHIRMCODE";CO

30 CO=CO AND 127

40 IF CO AND 32 THEN 70

50 IF CO AND 64 THEN AC=CO OR 32: GOTO 90

60 AC=CO OR 64: GOTO 90

70 IF CO AND 64 THEN AC=CO AND 63 OR 12: GOTO 90
80 AC=CO

90 PRINT "ASCII-CODE =";AC

100 END

10 REM ASCII- IN VIDEO-CODE
20 INPUT " WIE LAUTET DER ASCII-CODE";AC

30 IF AC AND 128 THEN CO=AC AND 127 OR 64: GOTO 70
40 IF NOT AC AND 64 THEN CO=AC: GOTO 70

50 IF AC AND 32 THEN CO=AC AND 95: GOTO 70

60 CO=AC AND 63

70 PRINT "VIDEO-CODE =";CO

Variablen:
AC = ASCII-Wert
co = Video-Code

Bequemes Zeilenlodschen

0ft miissen in Programmen Teile des Bildschirms geldscht
werden. Dies 148t sich natiirlich durch eine PRINT-Anweisung
und die Cursor-Steuertasten machen. Die folgende Moglichkeit
ist jedoch einfacher und vor allem iibersichtlicher. Die

16

aktuelle Cursorposition wird namlich gar nicht angetastet.
Steuerzeichen fallen also weg. Sie konnen eine bereits im
ROM abgespeicherte Routine benutzen: $E9FF (59903) Loschen
einer Bildschirmzeile.

Der Aufruf dieser Routine von BASIC sieht so aus:

POKE 781,x: SYS 59903

x = 0-24

Dem X-Register (781) wird die gewiinschte Zeile, die zwischen
O und 24 1liegen kann, zugewiesen. Den Rest erledigt die
Routine.

Durch eine kleine Manipulation 1&8t sich die ROM-Routine
sogar noch etwas vielseitiger einsetzen: Die ersten zwei
Bytes werden einfach ibersprungen (neue Sprungadresse
$EA01=59905). Jetzt kann dem Z-Register (Adresse 782) die
Anzahl ‘der Zeichen zugeordnet werden, die in der in X
angegebenen Bildschirmzeile geldscht werden sollen.

POKE 781,x: POKE 782,z: SYS 59905

x=0-24, 2=0-39 (0-255)

17

HEX-EINGABE

Zur Eingabe von Maschinen-Programmen in den Speicher gibt es
mehrere Moglichkeiten:

a) Monitor
b) Basic-Loader
c) Hexadezimale Zeichen

Wir wollen ein Programm zur letzten Moglichkeit vorstellen:
Vielleicht ist Ihnen auch schon folgendes passiert:

Sie schlagen eine Computer-Zeitschrift auf, finden ein
Programm, das Sie gern haben wollen, doch statt eines
Basic-Loaders finden Sie nur einige Seiten mit hexadezimalen
Zahlen vor.

Was nun?

Mit Hilfe dieses Programmes sind Ihre Probleme geldst.
Tippen Sie es ab und starten Sie es.

Zuerst fragt der Computer nach der Schrittweite. Gemeint ist
damit die Anzahl der hexadezimalen Zahlen in einer Zeile.
Sie darf 11 nicht iiberschreiten. Sollte es vorkommen, daf
die Vorlage lingere Zeilen benutzt, miiften Sie eventuell das
Programm entsprechend abandern. Es wurde daher extra
ilbersichtlich geschrieben.

Der Computer fragt nach der Anfangs-Adresse. Diese mufl
hexadezimal eingegeben werden und 4 Zeichen lang sein.

Der Computer schreibt die Jeweilige Speicherstelle des
ersten Elements jeder Zeile hin, und Sie miissen nun die
Zahlen eingeben.

Abgebrochen werden kann das Programm durch Eingabe von
RETURN.

a PRINT" (I8 HEX—E INGRBE—-FROGRAMM"

16 INPUT" EEESCHRITTHEITE : " SW: IFSHJ10RSH1 1 THENLG

28 INFUT"ANFANGSADRESSE : " i A%

3¢ IFLEMLA$»<>4THEHFRINT"FALSCHE EIMGAREE" :GOTO26

4@ POKELS.@: PRIMT :Y=3:FORZ=1T04 B$=MID$A$.2 .17 B=ASC(B$>
58 IFEX4TANDBE<SSTHEHSA=SA+YAL (B *1&TY: GOTOSG

5@ IFB>S4AMDBC T 1 THEMSH=SA+{ASC(BF)-S550%15tY : GOTOSH

7B PRIMNT"FALSCHE EIWGRBE":GOTOZ@

8@ W=Y-1HERTZ

188 PRINT"I'SA; (FUORZ1=GTOSW-1 FORZ2Z=1TOBSTEP—1

118 POKEZ94 .8 GETA%: IFA$=""THEN118 .

126 POKEZGT .68 B=ASCIA$) | IFBX47ANDBCSBTHENPE=PE+YAL TAF#158TZ22:GOTU16@
138 IFEXS4ANDBLP 1 THENPE=PE+ (ASCCA$I-SS0#15T22: G0TO166

14@ IFB=13THEMEHWD

158 GOTo118

188 PRIMTAS$: (HEXTZZ:PRIMT" " :FPOKESA+Z1 .FPE:PE=8:HEXTZ]
178 SH=SA+SW: PRIMT : GOTO186

READY .

19

DATA-GENERATOR

Dieses Programm hilft Thnen, ein im Speicher befindliches
Maschinen-Prgramm in Data-Zeilen zu iibersetzen.

Eingeben miissen Sie den Anfang des Maschinen-Programms, die
Linge, und die Zeilnennummer, ab der die Datas gebildet
werden sollen. Diese Zeilennummer sollte nicht unter 221
liegen, da sonst das Programm sich selbst iiberschreibt.

Die Data-Zeilen werden in Einer-Schritten geschrieben.

Da das Programm sich nach dem Erstellen jeder Data-Zeile
selbst unterbricht, muBiten die Variablen in speziellen
Speicherstellen untergebracht werden.

828-829 = Anfang des Maschinen-Programms
830-831 = Lange des Maschinen-Programms
832-833 = Momentane Zeilénnummer

Wenn Sie CLR-Home + RETURN in den Tastatur-Puffer schreiben,
dann wird die Zeile ins Programm iibernommen. Da auBerdem die
Befehle RUN 100 und noch einmal RETURN eingegeben wurde,
startet das Programm wieder bei Zeile 100.

In der 2Zeile 15 sind die Werte fir den Tastatur-Puffer
untergebracht.

Zeile 20 berechnet LOW- und HIGH-Byte.

Modglich gewesen ware auch, die Variablen selbst in
Data-Zeilen unterzubringen und sie dann bei jedem Lauf neu
zu lesen. Wenn s%e wollen, konnen Sie das Programm ja als
kleine tUbung in diesem Sinne umschreiben.

20

1a
15
28
25
25
38
4@
Sa
3]
felc)
1
11@
iza
138
146
158
isa
iva
18a
136
288
218
228

I

GOTO2S

DATAHL3.13.82.212.49.,43.48.13
HE=INTCH1A2550 LB=K1-256%HE : RETURM
PRINT" 2EBERREREIE IATH —~ GEMERATOR @"
PRIMT"BBGEREH SIE FOLGEMWDE PARAMETER EIN: pls"
IHFUT " MPROGRAMM-ARNFAHG" § PR

THPUT " BFROGRAMM-LAENGE" : PL

IHPUT" BRMFANGS-ZEILE" ; AZ
H1=PH-1:GOSURZE: POKES2S8.LB: POKESZS ,HE
Wil=pPL:GOSUEZE: PORKESZ26,LE:POKES31 .HE
H1=AZ GOSUE2E : PORES32 .LB:POKES3E . HE
HEPEER (3320 +256¥PEERK CS33)

Y=PEEK (8282 +25S#PEEK [B23)

Z=FEEK (2380 +2TEH#PEEK (8310

PRIHT"J"X" DATR":

FORZ1=1TO1@: FRIWTPEEK (Y+Z10"H. "
Z=Z—-1 IFZ=ATHEHPRINT"I} " :GOTO228
HEXTZ1 :FPRINT"H "

K=+l i Y=Y+la

1= GOsSURZE: POKESZES LB POKESZY ,HE
®¥1=2:G0s5UR2a: POKESZ8 .LEB: POKES31 .HB
Al=x:GOSUE2E : PORKESIZ LB POKES323 ,HE
FORZ1=631TOS38 READA: POKEZ]L JATHEXTZL :POKEL38,8:END
FOEESZ1 .19 POKES22 ., 12 POKELSS .2 :END

21

SCREEN-COPY

Wenn Sie selbst Programme schreiben, werden Sie sicherlich
schon oft Probleme beim Erstellen der Print-Befehle gehabt
haben, da es

a) nicht sehr iibersichtlich und
b) nicht so schnell

ist, mit PRINT-Befehlen zu arbeiten.
SCREEN-COPY wird Ihre Miihen drastisch verringern.
Tippen Sie es ab und starten Sie es mit

RUN 2 (!)

Nun haben Sie einen Cursor und kénnen auf dem Bildschirm
Thre Bildschirm-Maske erstellen.

Nachdem Sie alles fertig erstellt haben, gehen Sie auf die
letzte Zeile und driicken RETURN.

Nach kurzer Zeit werden Sie nach der Anfangszeile gefragt.
Geben Sie die gewiinschte Zahl ein.

‘Nun kénnen Sie sich zuriicklegen und entspannen, der Computer
erledigt den Rest fiir Sie.

Er ‘druckt der Reihe nach die Bildschirminhalte aus und
dbernimmt sie Zeile fiir Zeile ins Programm.

Nach Beendigung des Programms haben Sie ab der eingegebenen
Zeile Thren erstellten Bildschirm als PRINT-Anweisungen.

Sie haben jetzt die Moglichkeit, noch einen Bildschirm zu
erstellen und unter einer anderen Zeilennummer
abzuspeichern.

Sie konnen aber auch das Programm SCREEN-COPY loschen und
nur die PRINT-Anweisungen iibrig lassen.

22

Da es unpraktisch wdre, SCREEN-COPY zu l8schen, indem man
der Reihe nach die Zahlen von 1-25 und RETURN driickt, haben
wir uns auch dafiir ein Programm ausgedacht.

Wenn Sie also SCREEN-COPY l&schen wollen, so tippen Sie ein:

3 GoTozY

26 POKEZ54 .1

27 K=PEEK<254) :PRIMT"OJ"®

28 K=x+1:POKEZ2T54 .K: IFR=27THEMPRINT "SCREEN-COPY GELOESCHT" (EM

29 POKES31 .19:POKES32 .12 POKEE!
OKE13%2,5:END

[xx]
n

3.82: POKES24 , 213 PORKES3IS 13 P

RUN 26

Jetzt wird blitzschnell SCREEN-COPY geldscht, und Sie miissen
nur noch per Hand die Zeilen 0,26,27,28 und 29 ldschen.

Dann haben Sie nur noch Thre PRINT-Zeilen.

Wir halten das fiir eine sehr komfortable Art, Bildschirme zu
erstellen, auch wenn Sie einen Nachteil hat:

Farbidnderungen des Cursors, Revers on und Revers off miissen
nachrdglich eingefiigt werden.

Dieser Nachteil 1lieBle sich zwar beheben, der Aufwand wire
jedoch dem Nutzen gegeniiber nicht gerechtfertigt.

23

GaTOia

HE=IMT CRZ

GOSUEL

D B e e e el o TR K VI St Y By SRR B R PY O LN]
DOOERS B PR A P LU o

ORELIDR .S END

R o

R DO (NI W]

PRINT"Z3" : OFENL .8
IMFUTH1 .A$:
PRIMT : GOTOZ
FORZ=ETO599 : POKEZ4S7E+2 . PEEK T 1824+2) (HEXTZ
IHPUT " ANFANGES-ZEILE" : AZ : IFAZ<3E8THEMS

25680 LBE=AZ-255%HE
FOKESZE LB POKES25 HE
FOKES2E @ PORKES21 .98
SP=PEEK 838 +255*PEEK 1331 >
FORZ=ATO33: A=PEEK (. SF+Z)>

IFPEERCZ214>=24THENS

AUFE=ALE+CHRE (B (HEXTZ

ZE=FEEE (228 +256¥PEEK (3230
PRINT"O"ZE" " CHR$ (340 i ALE CHREC 340" 0"

SP=5F+4@: IFSP>25538THENZS
HE=IMT(SPA2568) LE=SP-256%HE | POKES3@ .LB: POKES31 (HE
ZE=FE+10 :HE=INT Z2E/255) : LE=ZE~256%HE POKES28 . LB POKES23 .H

POKES31 .19 POKES32 . 13 POKESS3 32 POKES34 . 213 POKES3T . 13:P

POEESZ] 19 FOKES32 .13 POKEL3S .2 END
A=AAMDLZ27 :
IFAAMHDE4 THEHE=AOR32 : RETURHN
B=AORE4 RETURN

IFARMDE4 THENE=AANDE30R 1 28 RETURHN
B=H:RETURM

IFARMD3Z THEMZ4

Da das Programm nicht ganz so einfach ist, einige

Erklarungen:

Zeilen 2-4:

Zeile 5

Zeile 8

Bildschirm wird als Datei erdffnet. In Zeile 3
wird nachgeschaut, ob der Cursor in der unter-
sten Zeile ist, wenn RETURN gedriickt wird.
Der Bildschirminhalt wird abgespeichert, da er
sich bei dem weiteren Geschehen verdndert.
Die Anfangszeilennummer wird eingegeben, auf
ihre Richtigkeit iiberpriift, in LOW- und HIGH-
BYTE zerlegt und in die Adressen 828-829
(Kassettenpuffer) geschrieben.

24

Zeile 9

Zeile 13
Zeile 14
Zeile 15

Zeile16-18:

Zeile 19

Zeile21-25:

Die Adresse, auf der der gespeichert
Bildschirminhalt beginnt, =zerlegt in
LOW- und HIGH-BYTE.

: Der String fiir die Zeile wird gebildet.
: Die Zeilennummer wird berechnet.
: Die fertige Zeile wird auf den Bildschirm ge-

bracht.

Die neue Zeilennummer und die neue Bildschirm-
inhaltsadresse wird berechnet, in LOW- und
HIGH-BYTE zerlegt und abgespeichert.

Diese beiden Werte miissen so abgespeichert
werden, da das Programm sich selbst
unterbricht, und bei einem neuen Start die

Variablen verloren wéren.

Das Programm unterbricht sich selbst und nimmt
die soeben generierte Zeile ins Programm auf,
indem der Cursor an den Bildschirmanfang
springt und RETURN gedriickt wird.

Danach wird das Programm wieder automatisch ge-
startet, indem RUN ausgegeben wird.

Diese ganzen Operationen geschehen durch POKEn
der entsprechenden ASCII-Werte in den

Tastatur-Puffer.

Ein Unterprogramm, das Bildschirm-Code-Werte
in ASCII-Werte umwandelt. Diese Umwandlung mufl
erfolgen, da die Werte auf dem Bildschirm und
in dem Bereich, in dem sie gesichert wurden,
als Video-Code-Werte vorliegen. Die generierte
Bildschirmzeile (AU$) muss die Werte aber als
ASCII-Werte bekommen. '
Dieses Unterprogramm kann auch fir andere
Zwecke gebraucht werden.

25

BASIC-TIPS

Da Sie, wenn Sie dieses Buch lesen, wahrscheinlich schon
fortgeschrittener BASIC—Programmierer sind, wird Sie dieses
Kapitel wahrscheinlich iiberraschen. Lesen Sie es aber
trotzdem durch, da wir sicher sind, dafl auch Sie etwas
dazulernen konnen.

. Wenn Sie schon einige Spiele in BASIC geschrieben haben, so

wird Thnen bestimmt ein grofier Nachteil von BASIC
aufgefallen sein: BASIC ist langsam.

Manchmal ist der entsprechende Programmierer aber auch nicht
ganz unschuldig daran...

Wir wollen Thnen hier zeigen, wie Sie Ihre BASIC-Programme
schneller machen konnen. ‘

BENUTZEN SIE EINEN PUNKT STATT DER NULL

Es wird Sie vielleicht ilberraschen: Wenn der Computer einen
(alleinstehenden) Dezimal-Punkt in einem BASIC-Programm
findet, so interpretiert er diesen automatisch als Null im
FlieBkommaformat.

Doch wieso sollte der Dezimal-Punkt anstatt einer Null
verwendet werden?

Nun, die "Null" im BASIC-Programm ist fiir den Computer gar
keine 2ahl, sondern ein ASCII-Zeichen. Dieses ASCII-Zeichen
mul erst in eine Zahl verwandelt werden, was natiirlich Zeit
kostet.

Wenn Sie also den Dezimal-Punkt statt dessen verwenden, so
braucht der Computer keine Umwandlung vorzunehmen und spart
so viel Zeit.

Beispiel:

1.PROGRAMM: 10 TI$="000000"
20 FORX=1T0100
30 A=A+0

26

40 NEXTZ
50 PRINTTI

2 .PROGRAMM: 10 TI$="000000"
20 FORX=1T0100
30 A=A+,
40 NEXTX
50 PRINTTI

Noch ofter kann man den Dezimal-Punkt in IF-Anweisungen
verwenden:

Statt 10 IFA=0THEN20

nehmen Sie 10 IFA=.THEN20

Denken Sie nur daran, wie oft Sie die 1.Version schon in
Programmen benutzt und welche Zeit Sie dabei.vergeudet
haben!

BENUTZEN SIE VARIABLEN SIAfT ASCII-ZEICHEN

Wenn Sie eine Zahl wie folgt schreiben, so wird diese Zahl
im BASIC-Speicher als ASCII-Werte abgespeichert:

10 POKE1024,1

Wird dieser Befehl 3jetzt ausgefilhrt, so muS der Computer
diesen ASCII-String erst in eine Integer-Zahl, und dann in
eine Fliefkommazahl (mit der der Computer ausschliefilich
rechnen kann) umwandeln. Diese Umwandlung kostet
erwartungsgemdfs viel Zeit.

Es muB also ein Weg gefunden werden, den ASCII-String, den
die Zahl darstellt, gleich als Fliefkommazahl abzuspeichern.
Dafiir bietet sich die Variable an.

Beispiel:

27

1.PROGRAMM: 10 TI$="000000"
20 FORX=1T0100
30 A=Aa+100
40 NEXTX
50 PRINTTI

2. PROGRAMM: 10 TI$="000000":B=100
20 FORX=1T0100
30 A=A+B
40 NEXTX
50 PRINTTI

Der Unterschied kann ganz schdn beachtlich werden, besonders
bei grofleren Zahlen, da dort der ASCII-String, der
umgewandelt werden muf, immer langer wird, die
Fliefkommazahl dagegen immer noch gleichlang ist (nur die
Werte der einzelnen Bytes werden gedndert).

BENUTZEN SIE FLIERKOMMA- STATT INTEGER-VARIABLEN

Wie Sie schon im vorigen Punkt gesehen haben, kostet die
Umwandlung in FlieSkomma-Zahlen viel Zeit.

Wenn Sie nun eine Integer-Variable (z.B. A%) benutzen, so
muB auch diese Zahl in eine FlieBkomma-Zahl umgewandelt

werden. Benutzen Sie statt dessen gleich eine
FlieBkomma-Variable (z.B. A).

Beispiel:

1.PROGRAMM: 10 TI$="000000"

20 B%=100:C%=50:D%=25
30 FORX=1T0100

40 A%=A%+B%-C%-D%

50 NEXTX

60 PRINTTI

28

2 .PROGRAMM: 10 TI$="000000"
20 B=100:C=50:D=25
30 FORX=1T0100
40 A=A+B-C-D
50 NEXTX
60 PRINTTI

BENUTZEN SIE FOR-NEXT-SCHLEIFEN

Sofern Sie es noch nicht machen, wollen wir Sie darauf
hinweisen: FOR-NEXT-Schleifen sind schneller und einfacher
zu programmieren als IF-Anweisungen.

Beispiel:

1. PROGRAMM: 10 TI$="000000":X=1
20 A=A+X)
30 X=X+1:IFX=101THEN20
40 PRINTTI

2.PROGRAMM: 10 TI$="000000"
20 FORX=1T0100
30 A=A+X
40 NEXTX
50 PRINTTI

LEGEN SIE UNTERPROGRAMME AN DEN PROGRAMMANFANG

Unterprogramme solten immer am Anfang des BASIC-Programms
stehen, da der Computer das BASIC-Programm vom Anfang her
nach der gesuchten Zeilennummer untersucht. Je spidter diese
Zeilennummer im BASIC-Programm zu finden ist, deéto langer
braucht der Computer.

Beispiel:

29

1, PROGRAMM: 10 TI$="000000"
20 FORX=1T0100
30 GOsSUB100
40 NEXTX
50 PRINTTI
60 END
100 A=A+X
110 RETURN

2.PROGRAMM: 10 A=A+Z
20 RETURN
100 TI$="000000"
110 FORX=1T0100
120 GOSUB10
130 NEXTX
140 PRINTTI

Das zweite Programm ist mit "RUN 100" zu starten.

Der Unterschied macht sich hier noch nicht so bemerkbar, da
die Programme nicht so léng sind, und der Computer deswegen
auch nicht so viele Zeilen durchzusuchen hat, bis er die
Richtige findet. Probieren Sie deswegen diesen Punkt einmal
an lidngeren Programmen aus.

Wenn Sie TIhr Programm nach all diesen Punkten durchsuchen,
konnen Sie es um einiges schneller machen.

30

ESCAPE-FUNKTION

Innerhalb von Anfilhrungszeichen befinden Sie sich, wie Sie
vielleicht bereits bemerkt haben, in einem besonderen Mode
(engl. Quote Mode) . Wenn Sie beispielsweise die
Cursor-Steuertasten betatigen, erscheinen die entsprechenden
Cursor-Steuerzeichen. Dasselbe gilt fir die Farbtasten. Die
Funktion der Steuertasten tritt erst bei Betdtigung der
PRINT-Anweisung ein.

.Das ist zwar sehr hiibsch, aber wie Sie aus eigener Erfahrung
sicherlich wissen, ist es oft sehr aufwdndig, wenn Sie aus
‘diesem Modus wieder heraus wollen, um z.B. eine falsche
Eingabe wieder zu korrigieren.

Diese kleine Routine schafft da Abhilfe. Mit einem Druck auf
F-1 springt der Computer aus dem Hochkomma-Modus (engl.
Quote-Mode) in den normalen Modus.

Aber es geht auch andersherum. Wenn Sie wieder in den
Quote-Mode. zuriickwollen, brauchen Sie nur F-2 zu driicken.

Um zu kldren, ob Sie im Quote-Mode sind oder nicht, wird dem
jeweiligen Modus entsprechend ein Hochkomma in der rechten
oberen Bildschirm-Ecke angezeigt/nicht angezeigt.

31

8 REM ESCRAFE

18 FORI=4@7a4T0467I5

2@ READAR

38 S=35+A

4@ POKEI .A

S8 MHEXKT

&8 IFS<>11883THENPRINTY?FEHLER IN DATARS" :END
7@ FPRINT"DATAS OK"

S8 SvsS4avad

98 DATAL128.169.15.141.,28,3,163.,153.,141
182 DATA21.3.133,58.88.96.,72,165.,263
119 DATARz261 .4 .246.34 ,261 .5,248.53,165
120 DATARZ12.268.4.,165,215.,248.13.163,34
132 DATAI41.39.4.169.1.141.,39.216.7V6.,52
1460 DATALISY.189.32.141.39.4,104.76.49
158 DATARZ324.1€5.212.248.18.163.6,133
18@ DATA212.133.,216.,1639.28.141.119.2
178 DATALE9.1,133,198,76.52.159.155.216
1368 DATAZ24@.226,76.68,159,169,255,133
138 DATRZ16.7V6.52.159

Das Maschinensprache-Listing wollen wir Ihnen auch nicht
vorenthalten:

9F00 SEI
9F01 LDA #$OF
9F03 STA $0314
9F06 LDA #$9F
9F08 STA $0315
9FOD STA $38
9FOD CLI

32

9FOE
9FOF
9F10
9F12
9F14
9F16
9F18
9F1A
9F1C
9F1E
9F20
9F22
9F24
9F27
9F29
9F2C
9F2F
9F31
9F34
9F35
9F38
9F3A
9F3C
9F3E
9F40
9F42
9F44
9F47
9F49
9F4B
9F4E
9F50
9F52
9F55
9F57
9F59

RTS
PHA
LDA
CMP
BEQ
CMP
BEQ
LDA
BNE
LDA
BEQ

'LDA

STA
LDA
STA
JMP
LDA
STA

PLA

JMP
LDA
BEQ
LDA
STA
STA
LDA
STA
LDA
STA
JMP
LDA
BEQ
JMP
LDA
STA
JMP

$CB
#504
9F38
#$05
$9F55
$D4
$9F22
$D8
$9F2F
#$22
$0427
#$01
#D827
$9F34
#$20
$0427

$EA31
$D4
$9F4E
#$00
$D4
$D8
#$14
$0277
#3$01
$C6
$9F34
$D8
$9F34
$9F37
#$FF
$D8
$9F34

33

BILDSCHIRMFARBEN ANDERN

Haufig passiert es einem, daf man irgendetwas auf dem
Bildschirm nicht 1lesen kann; weil die Bildschirmfarben (
Hintergrundfarbe, Rahmenfarbe, Farbe der Schrift)
ungliicklich gewdhlt sind. Das tritt besonders oft bei
Benutzern von Schwarz-Weifi-Gerdten auf. Mit Hilfe dieses
Programms konnen Sie in einigen Maschinensprache-Programmen,
aber selbstverstdndlich in (fast) allen Basic-Programmen
und im Direktmodus die Hintergrund- und die Rahmenfarbe
andern.

Die Bildschirmrahmenfarbe wird durch den Druck auf F1
gedndert. Mit F3 &dndern Sie die Hintergrundfarbe des
Bildschirms. Diese Routine liegt im IRQ. Das ist der Grund,
warum ein Flimmern auf dem Bildschirm entsteht, wenn Sie auf
F1 oder F3 driicken. Diese Routine fragt ab, ob eine dieser
Tasten gedriickt wurde. War dies der Fall, so wird der Wert
fiir Rahmen- oder Hintergrundfarbe um eins erhoht. Nun werden
IRQ-Routinen aber etwa 50-60 mal in der Sekunde vom Computer
angesprungen. Das bedeutet, bei gedriickter Taste wird die
Farbe 50-60 mal erhoht. ’

Um die Routine so kurz wie mdglich zu machen, haben wir
darauf verzichtet, dieses Flackern abzuschaffen.

Um die richtige Farbkombination zu bekommen, miissen Sie
mehrmals auf die entsprechende Taste driicken.

Wollen Sie diese Routine in einem anderen Programm
gleichzeitig verwenden, sollten Sie zuerst diese Routine in
den Computer laden und sie danach starten. Dann konnen Sie
ein Programm ihrer Wahl hineinladen.

Probleme beim gleichzeitigen Gebrauch der Programme konnten
sich ergeben, wenn das zweite Programm zu lang ist oder den
Bereich des Speichers ab 40704, den diese Routine bendtigt,
anderweitig belegt, oder wenn es die Funktionstasten F1 und

F3 benutzt. "

34

Doch gucken wir uns jetzt den BASIC-Lader an:

10 FOR I = 40704 TO 40745

20 READ A

30 POKE I,A

40 S=S+A

50 NEXT I

60 IF S<>4625 THEN PRINT "?FEHLER IN DATAS" : END
70 PRINT "DATAS 0.K."

80 SYS 40704]

90 DATA 120, 169,15,141,20,3,169,159, 141
100 DATA 21,3,133,56,88,96,72,165,203
110 DATA 201,4,240,8,201,5,240,10,104,76
120 DATA 49,234,238,32,208,76,26,159,238
130 DATA 33 208,76,26,159

Als Profi sind Sie vielleicht auch am
Maschinensprache-Listing interessiert, aber auch fiir
Nicht-Profis konnte es interessant sein. Darum an dieser
Stelle das Assembler-Listing.

9F00 SEI : Interrupt aus

9F01 LDA #$0F : dndern der Vektoren
9F03 STA $0314

9F06 LDA #$9F

9F08 STA $0315

9FOB STA $38 : Routine abblocken
9FOD CLI : Interrupt an

9FOE RTS : Ende des 1.Teils
9FOF PHA : Register retten
9F10 LDA $CB : Tastaturabfrage
9F12 CMP #$04 : F1 2

9F14 BEQ $9F1E

9F16 CMP #$05 : F2 2

9F18 BEQ $9F24

9F1A PLA

35

9F1B
9F1E
9F21
9F24
9F27

JMP $EA31
INC $D020
JMP $9F1A
INC $D021
JMP $9F1A

setzt IRQ fort

: erhoht Rahmenfarbe

: erhoht Hintergrundfarbe

Falls das Programm, das Sie gleichzeitig mit dieser Routine
laufen lassen wollen, die Tasten F1 und F3 schon belegt hat,
konnen Sie fiir die Routine auch andere Tasten nehmen.

Statt 4 fiir F1

und 5 fir F3 in Zeile 110 konnen Sie die

Werte der Tasten &ndern. Diese neuen Werte konnen Sie der
Tastaturdecodierungs-Tabelle im Anhang entnehmen.

36

ZWEI BILDSCHIRME

Diese Routine ermdglicht es, zwei Bildschirme zu benutzen.
Das Anwendungsgebiet filir diese Routine ist riesengrofi. Vor
allen Dingen in der Grafik (Umschaltung Low-Res auf
High-Res) findet diese Routine ihre Verwendung.

Wir wollen Ihnen hier diese Routine nur in Verbindung mit

zwei Low-res-Grafikbildschirmen (normaler Bildschirm)
zeigen, da dadurch die Routine leichter zu verstehen ist. Es
bleibt Thnen iiberlassen, diese Routine auf andere

Verwendungszwecke zurechtzuschneidern.

Man kann mit dem zweiten Bildschirm viele seiner Programme
stark verbessern. Z.B. kann man in Abenteuer-Spielen schon
einen anderen Bildschirm aufbauen lassen, wdhrend der
Spieler noch vor dem ersten Bildschirm ist. Aber auch bei
anderen Anwendungen wie . z.B. Textverarbeitung kann der
zweite Bildschirm ungeahnte Vorteile mit sich bringen. Der
Phantasie sind keine Grenzen gesetzt.

Doch nun zum eigentlichen Programm:

Tippen Sie und saven Sie es ab. Wichtig ist, daB Sie nach
dem Starten des Programms NEW eingeben (siehe
Assembler-Listing). Fiir die Nicht-Maschinen-Sprachler sei
gesagt, dal der Computer sich sonst bei Eingabe eines
Programms "verabschiedet".

Um in den zweiten Bildschirm zu gelangen, miissen Sie nur auf
F1 driicken. Wenn Sie umgeschaltet haben, kann es Ihenn
passieren, daff Ihr Cursor nicht mehr zu sehen ist. Aber
keine Angst, der Computer hat sich nicht aufgehdngt. Wenn
Sie RETURN oder &dhnliches driicken, erscheint er wieder. Auch
ist der zweite Bildschirm beim ersten Umschalten mit
diversen Zeichen vollgefiillt, da dieser Bereich vor dem
Umschalten vom Basic-Speicher belegt wurde. Loschen Sie -
einfach den Bildschirm, und er wird voll zu Ihrer Verfiigung
stehen.

37

Der Farbspeicher ist fiir beide Bildschirme identisch.
Dadurch werden die Farbinformatidnen von einem Bildschirm in
den anderen mit iibernommen. Um das zu verhindern, haben wir
in die Routine einen Teil eingebaut, der den gesamten
Farb-RAM auf die momentane Farbe des Cursors setzt.

Der Bildschirm-Speicher fiir den zweiten Bildschirm geht von
2048 ($0800) bis 3047 ($0BE7).

Gesagt werden mufl noch, dafl sich die Adressen der Zeiger fiir
die Sprites dndern. Sie sind jetzt bei 3064 bis 3071.

Zur besseren Ubersicht eine Tabelle:

Mit Routine
Normalzustand 1.Bildschirm 2.Bildschirm

Bildschirmspeicher- 1024 1024 2048
Anfang ($0400) ($0400) ($0800)
‘Bildschirmspeicher- 2023 2023 3047
Ende ($07E7) ($07E7) ($0BE7)

Zeiger fiir Sprites 2040 ($07F8) 2040 ($07F8) 3064 ($OBF8)

Basic-Speicher- 2048 3072 3072
Anfang ($0800) ($0C00) ($0C00)
Farb-Speicher 55296 55296 55296
($D800) ($D800) ($D800)
Erreichen des je- SYS 64738 Driicken von Driicken von
weiligen Zustandes F-3 F-1

38

Diese Routinen konnen Sie auch in Spielen zu benutzen. Es
gibt dazu zwei Moglichkeiten:

a) Fordern Sie den Benutzer zum Driicken von F1 bzw. F3
auf

b) POKE 203,4 um in den zweiten Bildschirm zu gelangen
POKE 203,5 um in den ersten Bildschirm zu gelangen

Nun der BASIC-Lader:

O REM 2 Bildschirme

10 FOR I=40702 TO 40789

20 READ A

30 POKE I,A

40 S=S+A

50 NEXT I

60 IF S=11070 THEN PRINT"DATAS O.K.":POKE3072,0:

SYS 40702: END

70 PRINT"FEHLER IN DATAS"

80 END

90 DATA169,12,133,44,120,169,17,141,20

100 DATA3,169,159,141,21,3,133,56,88,96

110 DATA165,203,201,4,208,13,169,37,141

120 DATA24,208,169,8,141,136,2,76,50
130 DATA159,201,5,208,36,169,21,141, 24

140 DATA208,169,4,141,136,2,169,216,133

150 DATA252,160,0,132,251,173,134,2,145

160 DATA251,200,240,13,192,232,208, 247

170 DATA166,252,224,219,208,241,76,49

180 DATA234,230,252,76,61,159

Und nun das Maschinen-Programm:

39

9EFE
9F00
9F02
9F03
9F05
9F08
9FOA
9FOD
9FOF
9F10
9F11
9F13
9F15
9F17
9F19
9F1C
9F1E
9F21
9F24
9F26
9F28
9F2A
9F2D
9F2F
9F32
9F34
9F36
9F38
9F3A
9F3D
9F3F
9F40
9F42
9F44
9F46

LDA
STA
SEI
LDA
STA
LDA
STA
STA
CLI
RTS
LDA
CMP
BNE
LDA
STA
LDA
STA
JMP
CMP
BNE
LDA
STA
LDA
STA
LDA
STA
LDY
STY
LDA
STA
INY
BEQ
CPY
BNE
LDX

#$0C
$2Cc

#3111
$0314
#$9F
$0315
$38

$CB
#$04
$9F24
#$25
$D018
#%08
$0288
$9F32
#$05
$9F4C
#$15
$D018
#$04
$0288
#$D8
$FC
#$00
$FB
$0286
($FB),Y

$9F4F
#SE8
$9F3D
$FC

40

9F48 CPX #$DB
9F4A BNE $9F3D
9F4C JMP $EA31
9F4F INC $FC
9F51 JMP $9F3D

Noch zwei Tips fiir den Umgang mit zwei Bildschirmen:
Der erstellte Bildschirm konnte abgeSAVEt werden (Hardcopy
fiir Floppy oder Datasette). Gehen Sie zu diesem Zweck

folgendermaflen vor:

a) Notieren Sie sich die Inhalte der Adressen 45/46
b) Geben Sie folgende Werte ein:

POKE 43,0:POKE 44,X

X resultiert aus dem Bildschirm, den Sie abSAVEn wollen.
Eine 4 SAVEt den ersten, eine 8 den zweiten Bildschirm.

c) Geben Sie weiterhin ein:
POKE 45,0:POKE 46,X+4
d) Geben Sie SAVE "(Name)",8 ein.
e) Nach dem SAVEen mufl der BASIC-Anfang wieder zuriickgesetzt
werden. Dies geschieht durch:

POKE 43,1: POKE 44,12: POKE 3072,0

POKE 45,...: POKE 46,... (gemerkte Werte)

41

LAUFSCHRIFT IN MASCHINENSPRACHE

Im Kapitel iiber das Spiel finden Sie ein kleines
Laufschriftprogramm in BASIC. Wir wollen Ihnen hier eine
Laufschrift vorstellen, die in Maschinensprache geschrieben
ist. Der dgroBle Unterschied zur BASIC-Routine liegt darin,
daB diese Routine im IRQ liegt und so im Direktmodus, in
BASIC-Programmen und sogar in einigen
Maschinensprache-Spielen laufen kann.

Sie konnen Ihren eigenen Text eingeben. Er erscheint dann in
der obersten Zeile des Bildschirms.

Der Text sollte nicht mehr als 40 Buchstaben umfassen. Es
werden ausschliefSilich Buchstaben angenommen. Graphik-Symbole
wandelt das Programm ab. Wollen Sie trotzdem
Graphik-Symbole verwenden, so miissen Sie die Werte dieser
-Zeichen direkt in die entsprechenden Speicherstellen POKEn.
Der Text wird ab Speicherstelle 40448 abgespeichert.

Die Farbe des Textes kOnnen Sie ebenfalls frei verdndern.
Dazu brauchen Sie nach- dem Start des Programmes nur
folgenden Poke einzugeben:

POKE 40760, (Farbe)

Um die Geschwindigkeit, in der der Text iiber den Bildschirm
lauft, bestimmen zu koénnen,. brauchen Sie lediglich folgendes
in den Computer einzugeben:

POKE 40783, (Geschwindigkeit)
Normalerweise enthdlt diese Adresse den Wert 5. Sie konnen

die Geschwindigkeit und die Farbe auch im Programm &ndern.
Der Farbwert steht an zweiter Stelle in der DATA-Zeile 260,

42

der Geschwindigkeitswert an siebter Stelle in Zeile 280.
Danach mufl jedoch auch die Priifsumme in Zeile 60
entsprechend abgedandert werden.

Hier der BASIC-Lader:

O REM LAUFSCHRIFT

10 FOR I=40704 TO 40789

20 READ A

30 POKE I,A

40 S=S+A

50 NEXT I

60 IF S<> 10107 THEN PRINT "?Fehler in
Datas" : 'END

70 PRINT "Datas ok"

80 PRINT : POKE 19,1

90 INPUT "Text : ";A$

100 POKE 19,0: PRINT

110 FOR I=1 TO LEN (A$)

120 POKE 40448+I-1, ASC(MID$(A$,I,1))
AND NOT 64

130 NEXT I

140 FOR I=LEN(A$) TO 40

150 POKE 40448+I,32

160 NEXT I

170 SYS 40704

180 INPUT "Neuer Text (j-n) ";A$

190 IF A$= "3" THEN 80

200 DATA 120,169,28,141,20,3,169,159, 141

210 DATA 21,3,88,133,56,162,0,189,0,158

220 DATA 157,40,158,232,224,40,144,245

230 DATA 96,206,255,159,208,50,162,0,173

240 DATA 50,159, 105,1,201,40,144,2,169,0

250 DATA 141,50,159,189,26,158,157,0,4

260 DATA 169,1,157,0,216,232,224,40, 144

43

270 DATA 240,174,50,159,232,224,40,144,2
280 DATA 162,0,142,50,159,162,5,142,255
290 DATA 159,76,49,234

Um diese Routine in Verbindung mit einem anderen Programm
gleichzeitig laufen zu lassen, miissen Sie zundchst diese
Routine in den Computer hereinladen und starten.
Anschlieiend kann das zweite Programm nachgeladen werden. Es
wird hierbei zwar der o.g. BASIC-Lader iiberschrieben, die
Laufschrift ist jedoch bereits in den IRQ eingebunden.

Fiir Interessierte hier das Maschinensprache-Listing der
Routine:

9FO00 SEI

9F01 LDA #$1C
9F03 STA $0314
9F06 LDA #$9F
9F08 STA $0315
9FOB CLI

9FOC STA $38
9FOE LDX #$00
9F10 LDA $9E0O,X
'9F13 STA $9F28,X
9F16 INX

9F17 CPX #$28
9F19 BCC $9F10
9F1B RTS

9F1C DEC $9FFF
9F1F BNE $9F53
9F21 LDX #$00
9F23 LDA $9F32
9F26 ADC #$01
9F28 CMP #$28
9F2A BCC $9F2E

44

9F2C LDA #$00
9F2E STA $9F32
9F31 LDA $9E1B,X
9F34 STA $0400,X
9F37 LDA #$01
9F39 STA $D80O,X
9F3C INX

9F3D CPX #$28
9F3F BCC $9F31
9F41 LDX $9F32
9F44 INX

9F45 CPX #$28
9F47 BCC $9F4B
9F49 LDX #$00
9F4B STX $9F32
9F4E LDX #$05
9F50 STX $9FFF
9F53 JMP $EA31

Diese Routine ist nach dem Schema aufgebaut, das im Kapitel
" ..und wie man den IRQ programmiert" beschrieben wird. Wenn
Sie wissen wollen, wie eine solche IRQ-Rotuine geschrieben
~wird, sollten Sie sich dieses Kapitel einmal ndher ansehen!

45

DIE STOP-FUNKTION

Diese Routine arbeitet im IRQ. Mittels F1 konnen Sie den
Computer "anhalten". Er wartet jetzt solange, bis Sie F3
driicken und fahrt erst dann fort in seiner Arbeit. Sie
konnen die Routine im Direktmodus als List-Stop benutzen
oder in einem Basic-Programm oder auch in einigen
Maschinensprache-Spielen als Stopper, falls das Telefon

klingelt oder dahnlich Unvorhersehbares passiert. Sinnvoller
ist diese Routine sicherlich als List-Stop. Sie koénnen sich
damit lange Programme viel einfacher und bequemer ansehen.
Es bleibt einem das 1ldstige BREAK-Driicken und danach das
erneute Eingeben des LIST-Befehls erspart.

~Sehen wir uns zundchst den BASIC-Lader an:

O REM STOP-FUNKTION

10 FOR I=40704 TO 40752

20 READ A

30 POKE I,A

40 S=S+A

50 NEXT I

60 IF S<> 5628 THEN PRINT "?Fehler in
Datas" : END

70 PRINT "Datas ok"

80 SYS 40704

90 DATA 120,1q9,15,141,20,3,169,159,141

100 DATA 21,3,133,56,88,96,72,165,203

110 DATA 201,4,240,4,104,76,49,234,169,1

120 DATA 59,72,169,41,72,8,72,138,72,152

130 DATA 72,76,49,234,165,203,201,5, 208

140 DATA 235,240,229

46

Das Assemblef—Listing

9F00
9F01
9F03
9F06
9F08
9FOB
9FOD
9FOE
9FOF
9F10
9F12
9F14
9F16
9F17
9F1A
9F1C
9F1D
9F1F
9F20
9F21
9F22
9F23
9F24
9F25
9F26
9F29
9F2B
9F2D
9F2F

SEI
LDA
STA
LDA
STA
STA
CLI
RTS
PHA
LDA
CMP
BEQ
PLA
JMP
LDA
PHA
LDA
PHA
PHP
PHA
TXA
PHA
TYA
PHA
JMP
LDA
CMP
BNE
BEQ

sieht folgendermafien aus:

#$0F
$0314
#$9F
$0315
$38

$CB
#04
$9F1A

$EA31
#9F

#29

$EA31
$CB
#05
$9F1A
$9F16

47

Sollten Sie die F1 und die F3 Taste schon belegt haben, so
konnen Sie ganz einfach diese Routine auf eine andere Taste
legen, indem Sie in den Adressen $9F12 und $9F2B die
entsprechenden Werte ab&dndern.

Fiir diejenigen, die keinen Maschinensprache-Monitor besitzen
und den BASIC-Lader benutzen, bedeutet das, daf der erste
Wert "4" in Zeile 110 und der Wert "5" in Zeile 130
gedndert werden muB. Die entsprechenden Werte fiir andere
Tasten erhalten Sie aus der Tabelle iiber die
Tastatur-Belegung im Anhang.

48

ZUFALL?

Haben Sie sich eigentlich schon einmal die RND-Routine
angeschaut?

Es wird Sie wahrscheinlich iberraschen (oder hatten Sie
vielleicht schon immer den Verdacht ?): Die Zahl, die da
generiert wird, ist gar nicht zufdllig gewdhlt, denn so
etwas kann der logisch arbeitende Computer nicht.

Diese 2ahl ist vielmehr in einem komplizierten Algorithmus
ausgerechnet worden. Dieser Algorithmus sieht folgendermafien
aus:

1) Der 1letzte RND-Wert (abgespeichert in Adresse 139-143)
wird in den FlieBkomma-Akkumulator (FAC) geladen.

2) Der FAC wird mit der Konstanten 11879546 (abgespeichert
im Bereich $EO08D-$E091), multipliziert.

3) Zu dieser Zahl wird die Konstante 3.92767774E-08
(abgespeichert im Bereich $E092-$E096), addiert.

4) Jetzt werden einige Speicherinhalte vertauscht:

$65 wird getauscht mit $62
$63 wird getauscht mit $64
In $66 wird der Wert Null geschrieben
In $61 wird der Wert $80 geschrieben

5) SchlieBlich wird der FAC noch 1linksbiindig gemacht,
gerundet und zum Schlufl wieder abgespeichert.

Noch eine Erkldarung zu den Konstanten:
Wenn Sie sich den Bereich, in dem die Konstanten liegen,
einmal anschauen, so werden Sie folgende (hexadezimale)

Zahlen vorfinden:

$EO8D 98 35 44 7A 00

49

$E092 68 28 B1 46 00

Wenn Sie sich nicht ndher mit dem FAC auskennen, so werden
Sie wahrscheinlich Probleme haben, aus diesen Zahlen die
zwei Konstanten herauszufinden.

Folgendes Programm erledigt diese Aufgabe fiir Sie:

LDA #$LB

LDY #$HB

JSR $BBA2 :Zahl in den FAC

JSR $BDDD :FAC in ASCII und ab $0100 ablegen
LDA #$00 :Low-Byte Adresse des Strings

LDY #$01 :High-Byte Adresse des Strings

JSR $AB1E :String ausgeben

RTS

LB-HB geben die Adresse an, ab der die (5) Bytes, die in den
FAC kommen sollen, stehen. Wollen Sie den FAC selbst
auslesen, so mufl die Adresse $0061 lauten.

Als BASIC-Lader (im Kassetten-Puffer) sieht das Programm so
aus:

10 FOR X=0 TO 17: READ A:POKE 828+X,A: NEXT X

20 DATA169,LB,160,HB,32,162,187

30 DATA32,221,189,169,0,160,1

40 DATA32,30,171,96
Gestartet wird die Routine mit SYS 828. Fiir LB-HB miissen Sie
jedesmal die entsprechenden Werte einsetzen. Sie konnen
diese Werte aber auch POKEn:

POKE 829,LB: POKE 831,HB

Einige Beispiele fiir LB-HB:

50

141 224 Konstante 1

146 224 Konstante 2

139 0 Letzter RND-Wert
97 (0] FAC

Doch weiter zur RND-Routine.

Diese Routine kann auch in der Maschinensprache angesprungen
werden. Will man das Maschinensprache-Aquivalent von RND(1)
haben, so heifit die Einsprungadresse $EOBE (57534).

Ein direktes Aquivalent zu RND(-1) und RND(O) haben wir
nicht gefunden. Probieren Sie aber rqhig einmal andere
Einsprungadressen zwischen $E097 und EOE aus.

Eine Zufallszahl kann man auch in Maschiﬁénsprache erzeugen,
indem man einen Zihler liest. Beispiele dafiir sind Adresse
160-162 fiir die Uhr, und Adresse 53266 fiir die Zeile, die
gerade auf dem Bildschirm (vom Elektronenstrahl) geschrieben
wird.

RND kann man iibrigens nicht nur fiir Spiele benutzen. Auch
fir Dateien, deren Daten nicht von jedem eingelesen werden
sollen, kann ﬁan diese Routine sehr gut gebrauchen.

Wenn Sie den oberen Teil sorgfdltig gelesen haben, haben
Sie mitbekommen, daB8 der letzte RND-Wert in den Adressen
139-143 abgespeichert ist. Da der Computer den neuen
(ndchsten) RND-Wert immer mit Hilfe dieses Wertes berechnet,
kann man RND ganz einfach auf einen festen Anfangswert
setzen. Da die RND-Werte bei jedem Durchgang immer gleich
berechnet werden, kann man die Daten mit einem Zahlen-Wert,
der durch RND bestimmt worden ist, ver- und bei einem neuen
Durchlauf wieder entschliisseln.

Folgendes Programm veranschaulicht dies:

51

10 GOSUB 1000

20 PRINT CHR$(147): X=20480

30 POKE 204,0 ,

40 GETAS$: IFA$=""THEN 40

50 IFA$= CHR$(133) THEN 100

60 IF ASC(A$)<32 OR ASC(A$) >95 THEN 40

70 IF PEEK(207) THEN 70

80 POKE 204,1: PRINTAS;

90 FOR YY=0 TO 3: Y=Y+INT(RND(1)*40): NEXT :Y=Y+ASC(A$)
95 POKE X,Y: X=X+1: Y=0: GOTO 30

100 POKE X,0: GOSUB 1000

110 PRINT CHR$(147): X=20480

120 Z=PEEK(X): IF 2=0 THEN END

130 FOR YY= O TO 3: Z=Z-INT(RND(1)*40): NEXTYY
140 PRINT CHR$(Z);: X=X+1: Z=0: GOTO 120

1000 PRINT CHR$(147): FORX=0 TO 4

1010 INPUT A: IF A<O OR A>255 THEN 1010

1020 POKE 139+X,A

1030 NEXT X

1040 RETURN

Nach Starten dieses Programms miissen Sie erst einmal fiinf
Werte eingeben. Nun konnen Sie einen beliebigen Text
eintippen. Sobald Sie fertig sind, miissen Sie die F1-Taste
driicken.

Nun kommt der zweite Teil. Sie geben wieder die fiinf Werte
ein, die Sie auch schon beim ersten Mal eingegeben haben,
und der Computer wird Ihnen den Text wieder ausgeben.

Sollten die Werte nicht mit den ersten Werten
iibereinstimmen, so wird der Text mehr oder weniger
verstiimmelt. ’

Dieses Programm ist noch nicht absolut sicher, da kleine

Abweichungen der Werte nicht beriicksichtigt werden (das
liegt an der INT-Funktion in Zeile 90 und 130). Deutlich
wird aber hier, wie Sie Daten-Texte verschliisseln konnen:

a) Setzen Sie den RND-Wert fest, indem Sie bestimmte Wer-

52

te (Code des Benutzers) in die Speicherstellen 139-143
POKEn.

b) Verschliisseln Sie die Daten mittels der RND-Funktion.
Wie diese Verschliisselung erfolgt (welche Formel Sie
benutzen), bleibt Ihnen iiberlassen.

c) Bei Einlesen der Daten mufl ein Schliissel eingegeben
werden, mit dessen Hilfe RND wieder auf einen bestimm-
ten Wert gesetzt wird.

d) Mittels RND werden die Daten wieder entschliisselt.

War der Schliissel falsch, so werden auch die Daten
falsch ausgegeben.

Durch diesen einfachen Trick ist es moglich, Texte und
Zahlen so zu verschliisseln, daB nur ein befugter Benutzer
diese Daten wieder erreichen kann. Theoretisch kann man zwar

auch an die Daten herankommen, indem man alle moglichen
Werte fiir den Benutzer-Code durchgeht, in der Praxis wiirde

das aber ziemlich lange dauern.

Noch ein Tip:

Wenn man es illegalen Benutzern noch schwerer machen will,

kann man auch noch die Funktion: z.B. Y=Y+RND(1) , mit der

die Daten verschliisselt bzw. entschliisselt werden, vom

Benutzer eingeben lassen. Da hier die Modglichkeiten im

Gegensatz zum Code unbegrenzt sind, diirfte es unmoglich

sein, Daten, die so verschliisselt sind, unbefugt zu’
bekommen.

Noch einmal kurz zusammengefafit:

Zur Erlangung einer Pseudo-Zufallszahl verwendet man in
BASIC den Befehl RND. Diesem Befehl folgt zwingend ein
Argument. Die Wahl dieses Argumentes ist keinesfalls
unbedeutend. Man unterscheidet vielmehr zwischen positivem
und negativem Argument sowie Null.

Ein positives Argument erzeugt eine Pseudo-Zufallszahl
basierend auf dem vorangegangenen Zufallswert. Ein negatives

53

Argument setzt die abgespeicherte Zufallsbasis, die iiber die
nichste Zufallszahl entscheidet, (Adressen 139-143), in
Abhdngigkeit zum Betrag des negativen Arguments.

Um eine wirklich zuf&llige Zahl durch RND(x%) zu erlangen,
sollte man deshalb die Basis neu setzen. Dies geschieht mit
folgender Zeile im Programm:

10 X=RND(-TI): X=INT(RND(1)*...

54

MODIFIZIERTES INPUT

In bezug auf Eingabe-Befehle sieht es beim C 64 recht mager
aus: Es gibt standardmdfig nur die Grundbefehle GET und
INPUT.

Fiir sehr viele Anwendungen reichen diese beiden Befehle
jedoch nicht aus: Bei GET fehlt der Cursor. Das
INPUT-Fragezeichen, das zwangslaufig bei diesem Befehl
erscheint, bereitet Kummer. Manche Satzzeichen nimmt INPUT
erst gar nicht an (da sie bestimmte Funktionen ausiiben).

Im nun folgenden wollen wir Ihnen in Sachen Eingabe ein paar
Tips geben, wie die oben gdenannten Mingel wenigstens
teilweise umgangen werden konnen.

Da ware zum Beispiel das Fragezeichen, das SO
charakteristisch fiir die INPUT-Anweisung ist. Aber was tun,
wenn das Fragezeichen fehl am Platze ist, wenn es sich beim
INPUT um eine Aufforderung handeln soll, etc. ?

Um das Fragezeichen des INPUTs auszuschalten, gibt es
mehrere Moglichkeiten:

10 POKE 19,1: INPUT"RETURN DRUECKEN !";A$:PRINT:POKE 19,0
oder

10 OPEN 1,0

20 INPUT#1,A%$

30 CLOSE 1

Man eroffnet einfach die Tastatur als Peripherie-Gerdt.
Schwieriger wird es, wenn man neben den normalen Zeichen
auch Satzzeichen wie Kommata, etc. eingeben konnen mufl, was

beispielsweise fiir Textverarbeitung notwendig ist.
Hierzu haben wir uns ein nicht allzu 1langes BASIC -

55

Aquivalent einfallen lassen. Es ist schnell genug, um auch
fiir Textverarbeitung eingesetzt werden zu konnen.
Gegeniiber dem normalen INPUT bietet es folgende

Besonderheiten:

- Es konnen einem String beliebig viele Elemente zugeordnet
werden. Dazu muB8 lediglich die DIM-Anweisung entsprechend
verandert werden.

- Es konnen auch Steuerzeichen eingegeben werden, die bei
der Ausgabe des Strings beriicksichtigt werden.

- Es konnen lediglich Texteingaben gemacht werden. Das Er-
gebnis der Abfrage ist in IN$ gespeichert. Durch VAL dirf-
ten auch Zahleneingaben kein Problem sein.

Hier zunichst das Listing:

18 REM SIMULIERTES IWFUT

28 FR#E="HWIE LAUTET DIE EIMNGREE 77" GOSUBSEEEE: REM AUFREUF DER
e LB S EEEE FEM AUFRLF DER
25 PRIMTIHE

A EMD

4@

5@

R

SEEEE REM SIMULIERTES IHPUT (ROUTIHED

SEELE DIM LMD 100E) PRIMNTERS " "

EEESE POKEZAD .6

BEAS] POKEZ12,1 GETIMS: IF IH$=" " THEHSH@S 1

EEESZ POKE 267 .6

EEHASES [FIMEF=CHR$C 120 THEMPOKEZ@4 . L PRINTY "0 TH$=" " GOTOSH A8 :
REM RETURMH-TASTE o
SEESG IF IM$=CHRE <200 THEHGOTOSE] 26

SOBEE PRIMTING;

SEETE IHECIHI=INE: IH=IH+1

SERSE GOTOSHESE

SE18E FORSL=ETOIH-1

SE1EL IHEF=THE+IMFCSLD
BE1EZ HEXT :RETURH
SE12E8 IF IMN=8THEMGOT S
SE125 POKEZLZ .-El CPOEEZ
CISTICHREC LISV)

SE1EE IW=IM-1: IH‘S‘Z IH="" GOTOEEEEE

(s lebate]
EY LB PRIMTCHRES OISV OCHRECZZDCHREE D320 CHRES

56

Verwendete wichtige Adressen:

212 : Hochkomma-Flag
204 : Cursor ein-ausschalten

Wichtige Variablen:

INS Ergebnis der Abfrage
FR$ Fragestring (wird bei Aufruf der Routine auf den
Bildschirm ausgegeben)

Eine weitere MOglichkeit, in einer Input-Anweisung ein Komma
benutzen zu konnen, bietet folgende Basic-Zeile:

10 POKE 198,1 : POKE 631,34 : INPUT A$

Innerhalb des Hochkommas werden die Kommata nicht als
Kennzeichen sondern als reguldre Eingabe interpretiert und
somit akzeptiert. In den Tastaturpuffer (Adresse 631-640)
wird ein Hochkomma (Code 34) geladen. tiber Adresse 198 wird
dies dem Computer mitgeteilt.

Bei der anschlieflenden INPUT-Anweisung wird ein Hochkomma
ausgegeben. Ab sofort konnen auch Kommata eingegeben werden.
Das ausgegebene Hochkomma wird spdter im String nicht
beriicksichtigt und beeinflufit auch nicht den LEN-Befehl.

57

FLOPPY-TRICKS

HardwaremiBig hat der C-64 die Moglichkeit, bis zu 8 Floppy
Disks anzuschlieBen. Fiir diese Floppys sind die Kandle 8-15
reserviert. Da jede Floppy aber vom Werk aus auf die
Geridte-Nummer 8 eingestellt ist, muB diese Nummer gedndert
werden.

Folgendes Programm soll Ihnen dabei helfen:

10 INPUT"ALTE NUMMER" ;AN

20 INPUT"NEUE NUMMER" ;NN

30 OPEN1,AN, 15

40 PRINT#1,"M-W"CHR$(119);CHR$(0) ;CHR$(2); CHR$ (NN+32) ; CHR$ (
NN+64)

50 CLOSE1

Sollten Sie also mehrere Floppys anschlieflien wollen, so
gehen Sie folgendermafien vor:

Schlieflen Sie eine Floppy an und &dndern Sie die
Gerite-Adresse in eine Nummer ungleich 8 um. Nun schlieflen
Sie die zweite Floppy an. Da diese hardwaremdfiig die Nummer’
8 hat, haben beide Fioppys unterschiedliche Adressen, und
konnen jetzt eindeutig angesprochen werden.

Nun &ndern Sie auch diese Floppy-Nummer um, usw.

Wollen Sie mehrere Floppys benutzen, so ist dieses Programm
noch besser:

10 PRINT"WIE VIELE FLOPPYS WOLLEN SIE ANSCHLIESSEN"
20 INPUTAY

30 IFAY<10RAY>8THEN20

40 AN=8:FORY=1TOAY

50 PRINT"MACHEN SIE NUN FLOPPY NR. "Y"AN"

60 GETAS$:IFA$=""THEN6O

58

70 OPEN1,AN, 15

80 PRINT#1,"M-W"CHR$(119);CHR$(0);CHR$ (2);CHR$(39+Y);
CHR$ (71+Y)

90 CLOSE1:PRINT"DIESES FLOPPY HAT DIE NUMMER'AN

100 AN=AN+1:NEXTY

Diese Art der Floppy-Umstellung hat Jjedoch ein
entscheidenden Nachteil: Sobald das Floppy Wwieder
ausgeschaltet wird, ist die Gerate-Nummer wieder 8.
Es gibt jedoch auch die Moglichkeit, die Floppy-Nummer
hardwaremdafig zu é&ndern. Da man bei dieser Methode aber
nur die Wahl zwischen Gerdte-Nummern von 8-11 hat, mul man
bei mehr als vier Geridten die Softwareldsung vorziehen. Vor
jedem Arbeiten missen also erst die Floppys initialisiert
werden. Dazu wiirde sich am besten ein EPROM eignen, das man
mit dem entsprechenden Programm und einem Autostar
versehen hat.
Man kann aber auch das zweite hier vorgestellte Programm vor
jedem Arbeiten laden.
Doch kommen wir zur Hardwareldsung. Da bei dieser Operation
das Floppy geoffnet werden muB3, sollten Sie sich dariiber im
klaren sein, daf damit die Garantie des Geradtes verfdllt.
Haben Sie jedoch keine Angst: Bei vorschriftsmdafigem
Arbeiten passiert der Floppy nichts.
Ziehen Sie also zuerst einmal den Netzstecker aus Ihrem
Gerat. Offnen Sie es nun indem Sie die vier Schrauben am
Boden 1l1l0sen (vorsichtig, da sonst der Schreib-Lese-Kopf
der Floppy durch die Erschiitterung zerstort werden kann).
Heben Sie danach den Deckel ab.
Nun haben Sie die Platine vor sich. Ungefdhr in der Mitte
befinden sich mehrere grofBere ICs. Suchen Sie zundchst
einmal die CPU, ein 6502. Direkt darunter befindet sich ein
Eih—Ausgabe—IC, ein 6522. Von diesem IC gehen Sie etwas in
Richtung der Vorderseite des Floppys. Sie stofien dann auf
“einen Elektrolyt-Kondensator. Auf der Platine tragt er die
Bezeichnung C64. Direkt neben diesem Kondensator befinden

59

sich zweli Lotbriicken. Sie haben die Form von zwei
Halbkreisen, die durch eine schmale Verbindung miteinander
verbunden sind.

Abhdngig davon, welche Sie durchschneiden, erhalten Sie
folgende Gerite-Nummern:

Getrennter Halbkreis Gerate-Nummer
Keiner
1 (der Rechte) 9
2 (der Linke) 10
1& 2 11

Nach dieser Operation, die sich komplizierter anhort, als
sie tatsachlich ist, behdlt Ihre Floppy die eingestellte
Gerate-Nummer 9 auch noch nach dem Ausschalten bei.

Da Sie Ihre Floppy jetzt schon einmal gedffnet haben, wollen
wir Ihnen noch etwas anderes zeigen:

Normalerweise kann man einfache Disketten auch beidseitig
benutzen, sofern man eine zweite Einkerbung vornimmt. Es
geht aber auch anders.

An der einen Langsseite der Platine befinden sich zahlreiche
Steckanschliisse. Der grofite davon muBl die Bezeichnung P6
tragen. An diesem Anschlufl befindet sich ein oranges und ein
violettes Kabel. 2Zwischen diese beiden Kabel miissen Sie
einen Schalter setzen, den Sie aus dem Floppy-Gehduse
herausfiihren. Nun konnen Sie Thre Disketten ohne Einkerbung
beidseitig benutzen, da die Lichtschranke, die normalerweise
die Einkerbung iiberpriift, durch einen geschlossenen Schalter
uberbriickt wird.

Nun wollen wir Ihnen eine kleine Routine zeigen, die Sie in
jedes Programm einbauen sollten, das mit dem Floppy
arbeitet.

Wenn Sie von einem Programm aus Dateien abSAVEn, etc., und

60

Sie haben vergessen, das Floppy einzuschalten, so stilirtzt
das Programm mit Ausgabe der Fehlermeldung "device not
present" ab. Viel besser wire es doch, wenn der Benutzer
darauf aufmerksam gemacht werden wiirde, daB sein Floppy
nicht eingeschaltet ist.

Folgende Routine schaut nach, ob das Floppy eingeschaltet
ist. Wenn ja, so wird die Speicherstelle $FF (255) auf Null
gesetzt, andernfalls enthdlt sie den Wert 5. Diese Werte
konnen nun von Ihrem Programm abgefragt werden, und das
Programm kann entsprechend darauf reagieren.

Wir haben die Routine in den Kassettenpuffer gelegt, da
dieser beim Floppy-Betrieb ungenutzt ist.

033C LDA #$01 :Ldnge des Filenamens

033E LDX #$DO :Adresse low

0340 LDY #$FF :Adresse high

0342 JSR $FFBD :Filenamenparameter setzen
0345 LDA #$01 :logische Filenummer

0347 LDX #$08 :Gerdte-Nummer

0349 LDY #$00 :Sekunddr-Adresse

034B JSR $FFBA :Fileparameter setzen
034E JSR $FFCO :Eroffnen des Files (OPEN)
0351 BCS $0355 :keine Antwort des Geraetes

0353 LDA #$00 :Gerat vorhanden
0355 STA $FF :Flag speichern
0357 LDA #$01 :logische Filenummer

0359 JSR $FFC3 :SchlieBen des Files (CLOSE)
035C RTS

Wir haben die Adresse des Filenamens ($FFDO) gewahlt, da in
dieser Adresse der Wert 36 steht, was dem ASCII-Wert fiir
"$" entspricht. Man hdtte auch $FFE5 wdhlen konnen.

Dann wiirde der Filename "*" Jlauten. Dies widre jedoch
unzweckmdflig, da Jja nicht irgendein Name gesucht werden
kann. Es kdme sonst zur Fehlermeldung "file not found"

61

Als BASIC-Lader:

10 FORY=0TO32:READA:POKE828+Y,A:NEXTY

20 DATA169,1,162,208, 160, 255,32,189,255

30 DATA169,1,162,8,160,0,32,186,255

40 DATA32,192,255,176,3,169,0,133,255,169,1,32,195,255,96

Die Routine miissen Sie von Basic her mit SYS 828 aufrufen.

Und zum Schluf noch eine Xkleine Routine, die den
Fehler-Kanal der Floppy liest.

Wie sich dies von BASIC aus machen 148t, kodnnen Sie unter
"Fehlerkanal auslesen" in diesem Kapitel nachlesen.

Wir wollen nun diese Abfrage in Maschinensprache umformen...

Wenn Sie sich im Kernal auskennen (siehe Kapitel KERNAL),
wissen Sie, daB es eine spezielle OPEN-Routine gibt.
Schwieriger wird es - schon mit dem Befehl INPUT#1. Doch im
Kernal gibt es eine Routine, mit der man ein Zeichen vom
IEC-Bus holen kann.

Wenn Sie sich die Routine anschauen, wird TIhnen
wahrscheinlich auffallen, daB die OPEN-Routine gar nicht
benutzt wird.

Da es in diesem Fall auch anders ging, haben wir uns zu
dieser Losung entschlossen.

Die Routine ist wieder im Kassettenpuffer.

033C LDA #$08 :Gerdte-Nummer fiir Floppy

033E STA $BA :Abspeichern

0340 JSR $FFB4 :TALK senden(Floppy soll senden)
0343 LDA #$6F : Sekunddar-Adresse

0345 STA $BO :Abspeichern

0347 JSR $FF96 :Sekundar-Adresse nach TALK senden
034A JSR $FFAS :Zeichen von der Floppy holen

034D JSR $FFD2 :Zeichen ausgeben (BSOUT)

0350 CMP #$0D :Return?

62

0352 BNE $034A :Nein, also weiter

0354 JSR $FFAB :UNTALK senden (Schlufl mit Senden)
0357 RTS : Zurick
Wahrscheinlich werden Sie sich fragen, wieso die

Sekunddr-Adresse nicht wie in der Basic-Version dieses
Programms 15 lautet. Nun, die 15 1ist in dieser Adresse

enthalten ($0F). Die andere Adresse ($60) ist fiir die
Floppy. Normalerweise wird $60 in der OPEN-Routine zu der
Sekundar-Adresse dazugerechnet. Da die OPEN-Routine hier
aber nicht benutzt wird, muf dieser Wert gleich

dazugerechnet werden.

Als BASIC-Lader:

10 FORX=0T027:READA:POKE828+X,A: NEXTX
20 DATA169,8,133,186,32,180,255,169,111,133,185,32, 150, 255
30 DATA32,165,255,32,210,255,201,13,208,246,32,171,255,96

Aufgerufen werden muf diese Routine wieder mit SYS 828.

Da das hier Xkeine Programmsammlung werden soll, haben wir
einige Routinen, die nur fir Floppy-Benutzer interessant
sind, nicht aufgefiihrt. Versuchen Sie sich doch selbst
einmal daran. Schreiben Sie z.B. die letzte Routine so um,
daB die OPEN-Routine benutzt wird, oder schreiben Sie eine
Routine, die das Directory von der Floppy liest, ohne ein
gerade laufendes Programm zu unterbrechen.

Und zum SchluB8 noch einige Tips:

Wenn Sie nach einem bestimmten Programm suchen, aber nicht
wissen, auf welcher Diskette es sich befindet, diirfte es
fiir Sie sehr niitzlich sein, zu wissen, daB8 es mdglich ist,
nur bestimmte Teile des Directorys zu laden:

63

LOAD "$0: (name)",8

Ist das gesuchte Programm nicht auf dieser Diskette, so wird
nur der Disk-Header (der Name der Disk) angezeigt.
Sie konnen hier auch den Stern benutzen:

LOAD "$0:PAS*",8

Hier werden alle Programme auf dieser Diskette aufgelistet,
die mit "PAS" beginnen.

Sie wissen wahrscheinlich, daf man ganz einfach Programme,
die sich auf Band befinden, laden und automatisch starten
kann, indem man SHIFT & RUN-STOP gleichzeitig driickt.

Das geht aber auch mit Disk:

LOAD "GRAFIK",8: (SHIFT & RUN-STOP)

Sie miissen einfach hinter der normalen LOAD-Eingabe statt
"RETURN" "SHIFT+RUN-STOP" driicken. Es erscheint "LOAD" und
das betreffende Programm wird geladen und automatisch
gestartet.

Auch hier kann natiirlich wieder der Stern verwendet werden:

LOAD "*",8: (SHIFT+RUN-STOP)

Nun wird das erste Programm, das sich auf der Diskette
befindet, geladen und gestartet.

Man kann beim Einladen des Directorys auch nur bestimmte
Programm-Typen einladen lassen:

LOAD "$*=T",8

64

T muf von IThnen folgendermaflen gewahlt werden:

T FILE-TYPE

P PROGRAMM

S SEQUENTIELL
R RELATIV

U USER

Diese kann man auch fiir alle anderen Floppy-Befehle
benutzen. So ist es z.B. moglich, alle Programm-Files zu
1l6schen, widhrend alle anderen File-Typen auf der Diskette
bleiben:

OPEN15,8,15
PRINT#1,"S:*=U"

Hier werden alle User-Files geloscht.

Versuchen Sie auch ruhig einmal, verschiedene Tips
miteinander zu kombinieren.

65

3. SOFTWARESCHUTZ
MANIPULATION DER LIST-FUNKTION

Der LIST-Befehl ist wohl einer der meistbenutzten Befehle
des BASIC-Programmierers. -Mit seiner Hilfe 1lassen sich
Programme "durchleuchten".

Manchem Programm-Autor ist dies aber gar nicht recht, weil
s0 einerseits Kenn- und Codewdrter einfach ausgelesen werden
konnen und zweitens das Programm verdndert werden kann.

Nachfolgend soll einiges iiber die LIST-Funktion gesagt

werden. Wie beispielsweise das LISTen eines Programmes
wirkungsvoll verhindert wird, und anderes mehr.

LISTEN OHNE ZEILENNUMMERN

Durch das Verdndern der Adresse 22 (Zeiger auf den
tempordren Stringstapel) 148t sich ein eigenartiger Effekt
erzielen: Die LIST-Funktion wird zwar ordnungsgemafs

durchgefiihrt, Zeilennummern werden jedoch unterschlagen.
POKE 22,35

ruft diese Verdnderung hervor. Mit Hilfe von

POKE 22,25

148t sich wieder der Ausgangszustand herstellen.

Aber vorsichtig: Naturgemaf haben solche kleinen
Manipulationen immer einen kleinen Nebeneffekt, iiber den
man sich im klaren sein sollte:

Solange die Adresse 22 den Wert 35 enthdlt, werden samtliche
PRINT-Anweisungen unterschlagen. Jede Fehlermeldung (SYNTAX

ERROR, etc.) stellt wieder den Ausgangszustand her.

Soll ein Programm ohne Zeilennummern auf dem Drucker

66

ausgegeben werden, so ist zu beachten, daB die letzte Zeile
des Listings unterschlagen wird. Sie erscheint erst nach
Eingabe von:

PRINT#1 (bzw. benutzte Dateinummer)
Selbstverstdndlich ist es auch moglich, andere Werte in die

Adresse 22 zu schreiben. Wir haben folgende Effekte
beobachtet:

POKE 22,25............ normal

POKE 22,32............ Zeilennummern werden unlesbar

POKE 22,33............ An Stelle der Zeilennummern !-Zeichen

POKE 22,34............ ?FORMULA TOO COMPLEX ERROR, wieder
Normalzustand

POKE 22,35............ Zeilennummern werden ginzlich unter-
schlagen.

Listschutz - Abschalten der LIST-Funktion

Manchmal ist es niitzlich, die Moglichkeiten des LIST-Befehls
ganz zZu unterbinden. Auch hierfir gibt es mehrer
Moglichkeiten:

1. Die folgende REM-Anweisung sorgt dafiir, daB samtliche
folgenden Programmzeilen nicht mehr aufgelistet werden
kbnnen. Statt dessen wird die Fehlermeldung SYNTAX ERROR
ausgegeben:

10 PRINT "LISTSCHUTZVARIANTE 1"
20 REM (SHIFT & L)
30 PRINT "NICHT MEHR AUFLISTBAR !"

Diese Art des Listschutzes ist jedoch leicht zu durchschauen

und somit leicht wieder 2zu entfernen (Es sei denn, man
kombiniert mehrere Schutzvarianten, beispielsweise die

67

Manipulation der BASIC-Zeilennummern miteinander, so daf die
REM-Anweisungen nicht entfernt werden konnen).

Wenn ca. alle 5 Zeilen im Programm eine solche REM-Anweisung
eingebaut wird, so wird das Entfernen dieser Zeilen zur
Tortur.

Die zweite Variante ist auf den ersten Blick gar nicht als
Listschutz zu erkennen. Geben Sie dazu folgendes
Beispielprogramm ein:

10 REM LISTSCHUTZVARIANTE 2
20 PRINT"GESCHUETZT": REM""

Anschliefiend fahren Sie mit Ihrem Cursor hinter das REM in
Zeile 20. Driicken Sie so oft die INST-Taste, wie Buchstaben
in dieser Zeile sind (in diesem Fall 26 Mal !).

Driicken Sie anschlieflend ebenso oft die DEL-Taste.

Hinter der REM-Anweisung in Zeile 20 befnden sich nun 26
reverse "T"s. Jedes "T" 1lO6scht ein Zeichen dieser Zeile.
Beim Auflisten wird die geschiitzte Zeile zwar ausgegeben,
durch die reversen "T"s jedoch sofort wieder geldscht.
Sollten dennoch Teile der Zeile erscheinen, so wurden zu
wenig "T"s hinter die REM-Anweisung gebracht.

Empfehlenswert 1ist dieser Schutz allerdings nur bei Zeilen
mit einer Lidnge kleiner als 10 Zeichen die REM-Anweisung
ausgenommen. Sie werden selbst sehen, daB sich langere
Zeilen beim Auflisten durch das kurze Aufblitzen verraten.

Vielleicht werden Sie jetzt bemerken, diese Schutzvarianten
seien doch alle Schnee von gestern, bekannt, uninteressant.
Wir meinen jedoch, dag diese beiden Varianten als
Grundprinzip recht niitzlich sind.

Nachfolgend finden Sie weitere, in ihrer Art vollig anders
konzipierte Schutzvarianten.

Die dritte Schutzvariante mutet zundchst vielleicht etwas

68

kompliziert an, ist es jedoch bei ndherer Betrachtung nicht
und erweist sich als recht hartnackig gegeniiber
"Programm-Einbrechern".

Folgendes Programm wird hinter ein eigenes Programm gehdngt:

62000 FOR A=PEEK(43)+256*PEEK(44)TOPEEK(45)+256*PEEK(46)-3

62010 IFPEEK(A)=58ANDPEEK(A+1)=58ANDPEEK (A+2)=58THENGOSUB
62030

62020 NEXT A:END

62030 IFPEEK(A+3)=58ANDPEEK(A+4)=58THENPOKEA,O:A=A+4:RETURN

Die Zeilen, die geschiitzt werden sollen, werden mit fiinf
Doppelpunkten gekennzeichnet. Aus...

45 PRINT "BEISPIEL"

wird die gekennzeichnete Zeile...

45 :::::PRINT "BEISPIEL"

Auf diese Weise kOnnen beliebig viele Zeilen gekennzeichnet
werden. Nachdem dies geschehen ist, wird das Schutzprogramm
mittels RUN 62000 gestartet.

Je nach Lange Ihres zu schiitzenden Programmes dauert es nun
einige Zeit, bis sich der blinkende Cursor zuriickmeldet.
Probieren Sie deshalb diesen Listschutz zundchst an
kleineren Programmen aus, damit Sie die Geschwindigkeit des
Schutzvorganges kennenlernen.

Wenn Sie nun das Programm auflisten, so sind zwar die
Zeilennummern der geschiitzten Zeilen, nicht aber deren
Inhalt zu sehen.

Nun kobnnen die Zeilen 62000 - 62030 geldscht und das
gschiitzte Programm abgeSAVEt werden.

69

Das Prinzip des Schutzes:

Zundchst wird eine Schleife initialisiert, die das gesamte
im Speicher befindliche BASIC-Programm durchlauft (43-44 =
BASIC-Anfang, 45-46 = Ende Programm).

Nun wird nach den fiinf Doppelpunkten (Code 58) gesucht. Sind
sie gefunden, wird der erste Doppelpunkt durch den Code O
ersetzt, die iibrigen vier Doppelpunkte bleiben unverandert.
Wird das Programm Jjetzt von der LIST-Routine durchlaufen,
findet diese den 0-Code. Das ist fiir sie das
Zeilen-Ende-Kennzeichen: Der Listvorgang bricht ab.

Dennoch wird die Zeile ordnungsgemdB ausgefiihrt, denn die
nachfolgenden vier Doppelpunkte werden als Koppelglieder
interpretiert.

Vielleicht wird Sie die Geschwindigkeit dieses Schutzes
leicht irritiert haben. Aus diesem Grunde finden Sie
nachfolgend ein dhnliches Schutzprogramm, jedoch in
Maschinensprache.

Gleich vorweg: Es schiitzt ein 13 KByte grofies Programm in
ca. einer Sekunde !

Hier der BASIC-Lader:

ZUM SCHUETZEH BELIERIGER BASIC-LIST

» s LHRENGE: =8 BYTES
MIT > UMD 4 DOPPELFUMKTEM GEREE

H E.’[LHHL T MERTER :
4” REM I’!::I SFIEL . STATT 16 REMY LAUTET DIE ZEILE DAHM: <16 >

w DIRICH s=ys

ZICHER FORHTROLLIEREH
= SUMME

HERH DER DATEH

E H HERT HOLEH

‘F‘IHT “H:HLE:F" IH IlHTH-' "

Lt

o EHII

Die Schutzroutine wird durch

SYS 8*4096

aufgerufen.

Die zu schiitzenden Zeilen werden nicht mehr mit fiinf
Doppelpunkten, sondern mit einem grofer-als- Symbol und vier
Doppelpunkten gekennzeichnet.

71

VERANDERN DES BASIC-LINK

Eine weitere Methode, Listen vor fremden Augen zu
verstecken, ist die Veranderung des BASIC LINKs.

Doch zundchst die Frage, was ist der BASIC LINK ?

Um diese Frage beantworten zu konnen, ein Auszug aus dem
BASIC-Speicher:

2048 0

2049 16 LINK low

2050 8 LINK high

2051 10 ZEILENNUMMER low

2052 O ZEILENNUMMER high

2053 153 Beginn Inhalt der Zeile

(...)

2063 0 Zeilenende

2064 31 LINK low (vorheriger LINK zeigt auf diese Adresse)
2065 8 LINK high

2066 20 ZEILENNUMMER low

2067 O ZEILENNUMMER high

2068 153 Beginn Inhalt der Zeile (153 = Code fir PRINT)

In Adresse 2048 befindet sich eine 0 als Kennzeichen des
BASIC-Anfanges. In den darauffolgenden beiden Adressen steht
der LINK. Dieser LINK enthdlt im Low-High-Byte-Format die
Adresse, ab der die ndchste BASIC-Zeile zu finden ist.

Die ndchsten zwei Bytes bilden die Zeilennummer der
momentanen Zeile.

Es folgt der Zeileninhalt, der durch eine Null als
Endezeichen beendet wird. Wieder folgt ein LINK, der die
Adresse der nun folgenden Zeile enthdlt. Es folgt die
Zeilennummer der Zeile, auf die der vorherige LINK zeigte.
Folgen keine BASIC-Zeilen mehr, so ist der letzte LINK O0,0.

72

Wichtig ist der LINK Jjedoch im Wesentlichen nur fiir die
LIST-Routine. Will man nun eine Zeile verschwinden lassen,
so geniigt es, den LINK auf diese Zeile zu verdndern: Man

verbiegt ihn einfach auf die ndchstfolgende Zeile.

Diese Aufgabe erledigt das nun folgende BASIC-Programm.

SE L PORESZZEL .1 PORKESSS (& PRIMNT " S

c1Eo" 3 LIME-CHAMGER "

2" MelEln T ESES PROGEAMM MAMIFULIERT DEM" :PRINWT
PUEETLEM~-LIMKE . S1E WERDEM HACH DER":PRINT
VERSTEM UMD DER ZHMEITEH ZEILENMUM-":PRINT
UHMER GEFRAGT . PRINT

PUSAEMTLICHE ZEILEM ZWISCHEM DIESEN" PRIMT

M IMCL . DER ZMEITEM HUMMER WERSCHMIM-":FPRIWT
JMDEMD OJE LAEHGER #THRE PROGRAMM .. " PRINT
AULUMED LAEMGER BRAUCHT DER WORGAMGH!" :PRINT:F

FORES
FRIMTTHE
FRIMTTAR
FRIMTTAE
FRIMTTHE
S FRIMNTTAER
2 PRIMTTHEY
FREIMTTAEY
HTTARE
FRIMTTHE

F‘IHT

FRIMTTAEBC L@ "EITTE TRSTE DRUECKEH 1"

GETHE: IFAE=""THEH S@&11

FPRINT"O"

IMPUT"DIE ERSTE ZEILEMHUMMER" :A: IMFUT"LIE ZWMEITE ZEILE

43 ﬁ+; SERPEER T340
B2+ 2REPEER CO+30 ¢ IFZL=ATHEMAl=0 AZ=a+1 : GOTOS

SLEATHEMPRINTYOEEILE EXISTIERT MICHT " :EHD

" all A; ZL
SHPEER CG+1 0 IFQE=PEEK {45 +25E#PEER (483 —3TH

=ETHEHFOKEAL .PEEK TG0 POKERZ P

FRs=PEEK {455 +2S6#PEEK {46 ~3TH

73

ZEILEN LOSCHEN? SYNTAX ERROR !

Eine weitere Methode bedient sich an Stelle des BASIC-LINKs
der im BASIC-Speicher abgelegten Zeilennummern.

Diese Zeilennummern sind wie auch die LINKs im
Low-High-Byte-Format abgelegt.

Wie Sie vielleicht wissen, ist es normalerweise nicht
moglich, groBere Zeilennummern als 63999 zu benutzen.
Andernfalls kommt es zu einem SYNTAX ERROR.

Wie man dennoch Zeilennummern bis 65535 erzeugen kann, soll
im Folgenden gezeigt werden. Weiterhin wird gezeigt, wie man
in einer Programmliste mehrere Zeilen mit gleicher
Zeilennummer oder in durcheinandergewiirfelter Reihenfolge
erzeugen kann.

Wie bereits erwdahnt, ist auch die Zeilennummer durch Low-
und High-Byte festgelegt. Daraus folgt, daf die kleinste
mogliche Zeilennummer O (0+256*0), die grofte hingegen den
Wert 65535 (255+256*255) annehmen kann.

Bei der Abarbeitung eines Programmes ist es dem Computer
weitestgehend gleich, welche Zeilennummern die Zeilen eines
BASIC-Programmes besitzen. Er arbeitet die Zeilen in der
Reihenfolge ab, in der sie im Speicher liegen.

Aus diesem Grund ist es ohne weiteres mdglich, die
Zeilennummern kiinstlich 2zu andern, ohne den Programmablauf
zu gefahrden.

Es muf lediglich beachtet werden, daB8 die Befehle GOTO,GOSUB
und THEN den veradnderten Bedingungen angepaf3it werden.

Alles schon und gut, werden Sie nun vielleicht einwenden,
wie ermittelt man aber nun die Adresse des Low- und
Highbytes der Zeilennummer der entsprechenden Zeile im
Speicher ?

Das dauert doch ewig !

74

Das haben wir uns auch gedacht und folgendes Hilfsprogramm
geschrieben. Mit seiner Hilfe wird es Ihnen keine Miihe
machen, die Zeilennummern auch lingerer Programme zu andern.

Zundchst das Listing:

B=FEEK 43
PRINT"O" 3
D=FEEE .

A IR =PEER TS+ 2SSk EER S 32 TH

SETHEHGOSLBEE 1 G

LLI“I-'EhI*' G T HI=PEER CG+3RD

PORELSS 1 PRIMT Y ZE TLEMHMUMMER - HHHHI:F' "PRIMT
FRIMTYGEFUMDEME ZEILEMHUMMER " LO+25E%H]
PRIMT:PRIMT"C1] AEHDERH"
FRIMT:FPRIMT"LZ2] WEITER"

PRINT PRIMT"LZ] EHDE"

GETAE : IFA$=""THEM:E 1 56

IFA$F="2" THEHRETURH

IFA$="2"THEHEHD

AE="E" PRINT : IMFUT"HEUE ZEILEHHUMMER

2
HI=THT CAS2580 LO=A—- 0 250%H]T »
PORKED+2 L0 PORES+Z JHI C RETURHN

R e e e e e e e A B I 1 B I)
Pt i (5 (R R R B N AV I ANl Y BB (R Rl S Y

e xR xR O O R (5 R O xR YR O R 5
R B I VB RO R VR B o oy Bt B Y B B Y By Bl By B)
DA I I R Ry R R B I I B R R K T I e B I)

75

PROGRAMMERKLARUNG :

In Zeile 60000 wird die erste LINK-Adresse bestimmt.
Anschlieflend wird zur Routine ab Zeile 60020 verzweigt. Dort
wird Low- und High-Byte der ersten Zeilennummer erfragt
(LINK-Adresse +2 und +3). Die somit errechnete Zeilennummer
wird als gefunden gemeldet (Zeile 60030). Nun kann gewahlt
werden zwischen 1) Andern und 2) Weiter

Punkt 2) 148t die gefundene Zeilennummer unverdndert und
sucht die ndchste. Bei der Wahl von Punkt 1) kann die
gefundene Nummer manipuliert werden: Sie kann durch eine
beliebige 2Zahl zwischen O und 65535 ersetzt werden. Die von
Thnen eingegebene Dezimalzahl wird in Low- und
High-Byte-Format verwandelt (Zeile 60070), und als neues
Low- bzw. High-Byte in den BASIC-Speicher gePOKEt.
Anschliefliend wird in Zeile 60010 der alte durch den neuen
LINK ersetzt. Wieder wird nach Zeile 60020 verzweigt...
Sofern das Programm nicht von Ihnen gestoppt wird, hidlt es
automatisch, sobald das Ende des im Speicher befindlichen
Programmes erreicht ist (Zeile 60010).

Die von Thnen manipulierten Zeilen haben gegeniiber
herkommlichen Zeilen folgende Vorteile:

Ist die manipulierte Zeilennummer groBer als 63999, kann die

Zeile nicht mehr durch Uberschreiben geldscht werden.
Ist die manipulierte Zeilennummer kleiner als die

76

vorhergehende, kann die manipulierte Zeile ebenfalls nicht
geldscht werden. Dies ist nur dann mdglich, wenn die
manipulierte Zeile die erste Zeile des Programms ist.

Ist Ihr Programm nach Ihren Wiinschen manipuliert worden, so
konnen Sie das Hilfsprogramm 1l8schen und TIhr Programm
getrost abspeichern. Der Schutz wird mitgespeichert.

Es folgt nun noch eine weitere Schutzvariante, die zunéchst
nicht als solche erkennbar ist !

KUNSTLICHES STEUERZEICHEN

Sicherlich werden TIhnen die ‘"natiirlichen" Steuerzeichen
nicht unbekannt sein: Es sind dies die Cursor-Steuerzeichen,
die man in so mancher PRINT-Anweisung findet, oder die
Farb-Steuerzeichen, die durch gleichzeitiges Driicken der
CTRL- und einer der Farbtasten erzeugt werden.

Ebenso gibt es auch sogenannte "kiinstliche" Steuerzeichen.
Steuerzeichen also, die auf Tastendruck erzeugbar sind.

Wir beschiftigen uns an dieser Stelle nur mit einem
kiinstlichen Steuerzeichen. Geben Sie einmal folgende
Beispielzeile ein:

10 REM""

Fahren Sie mit dem Cursor auf das zweite Anfiihrungszeichen.
Driicken Sie nun bitte gleichzeitig die CTRL- und RVS
ON(9)-Taste. Anschliefliend gleichzeitig SHIFT und M !

An Stelle des zweiten Anfiihrungszeichens erscheint jetzt ein
dunkles Kidstchen mit einem hellen Querstrich. Dies ist das
kiinstliche Steuerzeichen. Was es vermag, wird gleich
deutlich: Driicken Sie nun gleichzeitig SHIFT und Q.!

Wieder erscheint ein Steuerzeichen: CURSOR UP. Schalten Sie
nun den Revers-Mode ab, indem Sie gleichzeitig die CTRL- und

77

RVS OFF(0)-Taste driicken. Anschliefiend tippen Sie bitte
TESTZEILE" dahinter. Jetzt kann die RETURN-Taste betdtigt
werden.

Auf Threm Bildschirm miiBte nun folgendes zu sehen sein:

18 REM"RTESTZEILE

Listen Sie die Zeile auf.

Sie ist nicht mehr sichtbar, lediglich noch das Wort
TESTZEILE! Das 1. Steuerzeichen fiihrt einen Wagenriicklauf
(CR) durch . AuBerdem sorgt es dafiir, daB8 nachfolgende,
normale Steuerzeichen hinter der REM-Anweisung ausgefiihrt
werden.

Es folgt das Steuerzeichen Cursor-UP. Anschlieflend wird der
Text TESTZEILE ausgegeben, der den ersten Teil der Zeile,
10 REM", iiberschreibt.

Wie 148t sich damit nun ein Listschutz realisieren ?
Beispielsweise so:

1EE REMUEIIG SNYS 4@9E
Scheinbar wird in Zeile 90 ein Maschinenprogramm aktiviert.
Werden nun alle Zeilen nach Zeile 100 durch eine der
vorangegangenen Methoden unsichtbar gemacht, hdlt ein
AuBenstehender das Programm filr ein Maschinenprogramm und
sucht gar nicht erst nach einem versteckten BASIC-Listing.
Oder so:

18@ PRIMT'GESCHUETZT!" REM"ED

Die kritische Zeile wird zwar aufgelistet, vom nachfolgenden
Listing allerdings sofort wieder iiberschrieben.

78

Probieren Sie selbst einmal ein wenig mit diesem kiinstlichen
Steuerzeichen herum. Ihnen werden sicherlich noch eine Menge
weiterer Moglichkeiten einfallen !

Bisher wurde die LIST-Routine nur mehr oder weniger
geschickt ausgetrickst. Beim nun folgenden Listschutz wird
die gesamte LIST-Routine beeinflufit.

SCHUTZ DURCH POKES

Eine weitere Listschutzvariante verwendet die Adressen 774
und 775 ($0306-$0307). Diese beiden Adressen bilden den
sogenannten LIST-VEKTOR, der normalerweise auf die Adresse
$A71A zeigt. Diese Adresse liegt im BASIC-Interpreter und
ist die Anfangsadresse der Routine zur Umwandlung von
BasicToken in verstdndlichen Klartext.

Diese Routine wird von der LIST-Funktion benutzt. Durch
Andern des Listvektors auf eine beliebige andere Routine
148t sich die LIST-Funktion manipulieren.

Eine kleine Kostprobe:

POKE 774,226: POKE 775,252

Geben Sie diese beiden POKEs einmal ein. Wird jetzt der
Befehl LIST verwendet, begibt sich der Rechner in den
Einschaltzustand.

Der Grund ist klar: Der LIST-Vektor zeigt, durch die beiden
POKEs verbogen, auf Adresse $EA31, die RESET-Routine.

Diese wird 3jetzt an Stelle der urspriinglichen LIST-Routine
aufgerufen. Ebenso bietet es sich an, den Vektor auf eigene
Maschinenroutinen zu biegen, die dann durch LIST aufgerufen
werden.

Der offensichtliche Nachteil dieser Variante liegt

allerdings darin, daf dieser Listschutz erst nach Starten
des Programmes wirksam wird.

79

Bei gleichzeitiger Vefwendung eines Autostartes ist diese
Variante allerdings sehr interessant.

80

BLOCKIEREN "GEFAHRLICHER" TASTEN

Es gibt so manche "gefahrliche" Taste an Ihrem Computer.
Gefdhrlich fiir Programm-Autoren beispielsweise, di
verhindern mochten, dafl ihr im Ablauf befindliches Programm
gestoppt wird.

Da ware also zundchst die RUNSTOP-Taste, die es gilt, aufler
Gefecht 2zu setzen. Es ist nicht weiter schwierig, den
Interrupt-Vektor, der normalerweise auf die Adresse $EA31
zeigt, um drei Bytes nach oben zu schieben. So wird die
STOP-Tasten-Abfrage einfach iiberschlagen.

Dies geschieht mit:

POKE 788,PEEK(788)+3 oder ganz einfach: POKE 788,52

Wieder in den Normalmode gelangt man mit:

POKE 788,PEEK(788)-3 oder aber: POKE 788,49

Mit der STOP-Taste 148t sich aber im ausgeschalteten Zustand
noch weit mehr anfangen: Sie 1a8t sich Jjetzt wie eine
normale Taste von BASIC aus abfragen:

100 GET A$:IF A$="" THEN 100
110 IF A$=CHR$(3) THEN PRINT"STOP-TASTE GEDRUECKT!"

So kehrt beispielsweise ein Programm bei Betatigung der
STOP-Taste ins Meni zurlick, etc.

Spatestens jetzt wird die RESTORE-Taste unangenehm
auffallen. Mit ihrer Hilfe 1l&a8t sich noch immer ein
Programm unterbrechen. Doch auch ihr kann man den Garaus

machen!

Verantwortlich fiir diese Aktion ist der NMI-Vektor. Dieser
zeigt normalerweise auf Adresse $FE47. Hier macht man

81

einfach Nigel mit Kopfen und Uberspringt die gesamte
NMI-Routine, indem man den Vektor nach Adresse $FEC1
verbiegt (RTS).

Dies erreicht man durch:

POKE 792,193 NMI aus

Wieder zuriick in den Normalmode gelangt man mit:

POKE 792,71 NMI ein

Mochte man ohnehin beide Tasten, RUN STOP und RESTORE,
ausschalten, kann man sich komfortablerweise auch gleich dem
sogenannten STOP-Vektor zuwenden.

Dieser zeigt im Normalfall auf Adresse $F6ED. Auch hier ist
es lohnenswert, den Vektor zu verbiegen, zumal man gleich
zwei "Werner" auf einen Streich erledigt hat. Wieder
erledigt ein POKE das Verbiegen:

POKE 808, 254

Dieser POKE setzt nicht nur gleichzeitig RUNSTOP und RESTORE
auBer Gefecht, auBerdem wird auch das Listing je nach Ldnge
mehr oder weniger stark verfremdet, was den Programmablauf
an sich jedoch im Normalfall nicht beeintrachtigt.

Zuriick in den Normalmode gelangt man wieder mit:

POKE 808,237

Zwar kann ein Programm auch nach Benutzung der beschriebenen
POKEs unterbrochen werden, und zwar durch einen von aufien
zugefilhrten Hardware-Reset. Erstens ist nach diesem Reset
das BASIC-Programm nicht mehr ohne weiteres listbar.

Zweitens kann auch dieser Hardware-Reset softwaremdfiig
unterbunden werden. Wie dies gemacht wird, ist im Kapitel

82

iber Reset und Interrupts nachschlagbar.

Es gibt jedoch noch weitere "gefdhrliche" Tasten, mit denen
das Programm zwar nicht gestoppt werden kann, die aber
dennoch storend wirken konnen:

Durch gleichzeitiges Driicken von SHIFT- und C=-Taste
schaltet der Rechner den Zeichensatz um. Dies kann
verhindert werden durch

POKE 657,128

und wird durch

POKE 657,0

wieder riickgdngig gemacht.

Unser Repertoire an "abschaltwiirdigen" Tasten ist nun
erschopft. Sie finden an dieser Stelle nun eine kleine

Auflistung weiterer interessanter POKEs. Viel Spafl damit !

Effekt POKE-Kommando

KKk gk K kK kK Kk K K Kk Kk Kk kK Kk kK Kk ke k ki ke k k ek ke ok ke ok ke ke ke k ko ke ok ok ok ok ok ok ok

STOP ausschalten POKE 788,52:POKE 808,239
STOP wieder einschalten POKE 788,49:POKE 808,237

STOP, RESTORE und LIST ausschalten POKE 808,234
STOP, RESTORE und LIST ausschalten POKE 808,225
STOP, RESTORE und LIST wieder ein POKE 808,237

RESTORE ausschalten POKE 793,203
RESTORE ausschalten POKE 792,193
SAVE verhindern POKE 818,32:POKE 819,245
SAVE wieder einschalten POKE 818, 237:POKE819, 245

83

LIST verhindern POKE 775,200

LIST erlauben POKE 775,167
TASTATUR ausschalten POKE 649,0
TASTATUR wieder einschalten POKE 649,10

KK d K KK K K Kk kK ok kK kg Kk Kk kK Kk Kk ke ko ke ke ok e gk kg ko ko ke kb ok ok kR ok ok ok ke ok ke ok

84

VORTAUSCHEN EINES MASCHINENSPRACHE-SPIELS

Es gibt viele Versuche, ein BASIC-Programm wirklich sicher
vor dem Listen und Kopieren zu schiitzen. Aber es ist
inzwischen so, daB Jjeder, der ein biBchen Fachwissen
besitzt, und der mit einem Maschinensprache-Monitor
umzugehen weifl, einen List- oder Kopier-Schutz umgeht.
Viele von diesen Leuten jedoch 1lassen die Finger von
Maschinensprache-Programmen, weil Sie glauben, in
Maschinensprache-Programmen ohnehin nichts &dndern zu konnen,
weil sie Maschinensprache nicht verstehen.

Auflerdem steigt hdufig der Wert eines Programmes, wenn der
oder die Benutzer an ein Maschinensprache-Spiel glauben.
Diese Routine soll also ein Maschinensprache-Spiel
vortauschen, obwohl es sich im Grunde "nur" um ein
BASIC-Spiel handelt.

S0 ein Programm kennzeichnet sich fiir den Benutzer dadurch,
daB es nur eine Zeile in BASIC besitzt, in der der
Sprungbefehl zum Maschinenprogramm 2zu finden ist: ein
SYS-Befehl. Aber wie erreichen wir es, daB nur eine Zeile
mit einem SYS-Befehl erscheint?

Ganz einfach. Zuerst geben wir den SYS-Befehl ein. Sie
konnen nach den Beispielen unten verfahren. Lassen Sie
entweder den Text ganz weg, oder verindern Sie ihn nach
Thren Vorstellungen. Die Zeilennummern konnen Sie ebenfalls
frei wahlen.

Hier die Beispiele:

1984 SYS (2110) BY MEDLAY SPARROW
10 SYS 2110

Wenn Sie sich fUr eine Form entschieden haben, schreiben

Sie sie als BASIC-Zeile. Jetzt miissen Sie einige Zeilen
eingeben:

85

POKE 43,80 : POKE 2127,0 : NEW

10 FOR I = 2110 TO 2126

20 READ A

30 POKE I,A

40 NEXT I

50 DATA 169,80,133,43,169,52,141,20,3
60 DATA 169,193,141,24,3,76,113,168

Wir haben die Kontrolle der Daten weggelassen, weil es nur
sehr wenige sind. Achten Sie deshalb um so genauer auf die
Richtigkeit der DATA-Zeilen.

Jetzt ganz kurz ein dokumentiertes Maschinensprache-Listing
dieser kurzen Routine :

#$80 :neuer Basic-Anfang

0840 STA $2B :setzen

0842 LDA #%$34 :setzt RUN-STOP aus
0844 STA $0314

0847 LDA #$C1 :setzt RESTORE aus

0849 STA $0318

084C JMP $A871:Aufruf der RUN-Routine

Starten Sie das Programm mit "RUN" und 16schen Sie es

anschlieBiend wieder. Danach konnen Sie Ihr eigene
Programm, das geschiitzt werden soll, in den Computer
hineinladen.

Wichtig ist, daB das Programm in Zeile O anfdngt. Tippen Sie
nun

POKE 43,1

ein und speichern Sie dann das Spiel ganz normal ab.
Das Programm wird auch wieder ganz normal hereingeladen,

86

aber bei LIST erscheint eben nur die eine SYS-Zeile. Das
Programm wird wie iiblich mit RUN gestartet. Jetzt springt
der Computer zur kleinen Routine, die den Speicher
heraufsetzt und auBerdem RUN-STOP-RESTORE aussetzt. Das
BASIC-Programm wird gestartet. Wenn Sie es einmal gestartet
haben, 148t es sich nicht mehr ohne weiteres unterbrechen.

Ein 100%iger Schutz ist diese Routine natiirlich auch nicht,
aber zusammen mit anderen hier vorgestellten Methoden wird
es unerlaubten Benutzern schwer gemacht, in Ihre Programme
einzudringen.

87

4. BEFEHLS-ERWEITERUNG SELBST GEMACHT !

Um eigene Befehle ins Betriebssystem einzufiigen, kann man
mehrere Moglichkeiten nutzen.
Drei davon wollen wir hier vorstellen:

a) Verandern des BASIC-CODE-LINKS
b) Verdndern der CHRGET-Routine
c¢) Verandern der IRQ-Routine

A) ANDERN DES BASIC-CODE-LINKS

Das ist die effektivste Methode, um mehrere Befehle
einzufiigen. Wir nutzen dabei aus, daB es einen Vektor gibt,
der auf die Routine zeigt, die die eingegebenen
BASIC-Befehle auswertet.

Dieser Vektor hat die Adresse $0308-$0309 (776-777). Diesen
Vektor &ndern wir einfach auf ein von uns erstelltes
Maschinen-Programm. Doch wie sieht dieses Programm aus?
Nehmen wir an, wir haben es in den Kassetten-Puffer
($033C-$03FB) gelegt:

033cC LDA #$47

O33E STA $0308
0341 LDA #$03

0343 STA #0309
0346 RTS

88

0353
0356

STA $0286
JMP $A7E4

Das Programm 1a8t sich in zwei Teile gliedern:

TEIL
TEIL

JSR

CMP

LDA

1 ($033cC-
2 ($0347-

terung

$0073

#$5F

$ATE7

#$05:STA

$ATE4

$0346) legt den BASIC-Code-Link auf TEIL 2.
$0356) stellt die eigentliche Befehls-Erwei-
dar:

: Der Computer holt sich das nachste Zeichen,

das eingegeben worden ist ($0073=CHRGET-Rou-
tine)

: Dieses Zeichen wird mit dem ASCII-Wert fiir

" (Pfeil nach links)" verglichen

: Da die Zeichen nicht gleich sind, springt er

zur normalen Adresse, die den Vektor angibt.
Dort wird das eingegebene Zeichen daraufhin
untersucht, ob es einen anderen normalen BA-
SIC-Befehl darstellt.

$0286 : Das ist nun die eigentliche Befehls-
erweiterung. In diesem Fall ist es nichts
Weltbewegendes:

Die Zeichenfarbe wird einfach griin gesetzt.

: Der Computer kehrt wieder in den normalen Be-

triebs-Modus zuriick

Probieren wir es aus:

Das obige Maschinen-Programm als BASIC-Lader sieht so aus:

10 FOR X= 828 TO 856: READ A: POKE X,A: NEXT X

20 DATA 169,71,141,8,3,169,3,141,9,3,96

30 DATA 32,115,0,201,95,240,3,76,231,167,169,5,141,134,2,76
,228,167

RUN

SYS 828

89

Wenn Sie jetzt die "Pfeil links"-Taste driicken, (RETURN mufl
gedriickt werden), wird Ihre Zeichenfarbe griin.

Sie sehen, es ist gar nicht schwierig. Doch die Art, in der
das Programm geschrieben ist, hat einen entscheidenden
Nachteil:

Bei mehreren erweiterten Befehlen wird die Zeit, die der
Computer zum Nachschauen braucht, sehr lang.

Um das zu vermeiden, kann man sich folgendermafBen behelfen:
Allen neu definierten BASIC-Befehlen muf ein einheitliches
Erkennungszeichen vorangestellt werden, z.B. den "Pfeil nach
links" oder das Ausrufezeichen.

In einem Programm zur Befehls-Erweiterung mufl also zuerst
das Erkennungszeichen abgefragt werden. Wenn dieses nicht
gefunden wird, springt der Computer zur normalen
Tastaturdekodierung. Andernfalls prift er auf einen neuen
Befehl.

Zum besseren Verstdndnis ein Beispielprogramm:

033C LDA #$47

033E STA $0308

0341 LDA #$03

0343 STA #0309

0346 RTS

0347 JSR $0073

034A CMP #$21 :ASCII-Wert fir "ti"

034C BEQ 0351 :Neuer Befehl vorhanden

034E JMP $A7E7 :Kein neuer Befehl

0351 JSR $0073 :Liest Zeichen nach Ausrufe-Zeichen
0354 CMP #$91 :ON? ($91=Token fiir ON)

0356 BEQ O035F :Ja

0358 CMP #$A8 :NOT? ($A8=Token fiir NOT)

035A BEQ 0374 :Ja

035C JMP $AF08 :Kein giiltiger Befehl, also SYNTAX-ERROR
035F SEI :Befehl ON

90

0360 LDA #$6E :Legt IRQ auf $036E

0362 STA $0314

0365 LDA #$03

0367 STA $0315

036A CLI

036B JMP $A7E4 :Befehl ON abgeschlossen
036E INC $0286 :Neuer IRQ

0371 JMP $EA31 :Alter IRQ weiter

0374 SEI :Befehl NOT

0375 LDA #$31 :IRQ wieder normal

0377 STA $0314

037A LDA #$EA

037D STA $0315

0380 CLI

0381 JMP $A7E4 :Befehl NOT abgeschlossen

Als BASIC-Lader:

10 FOR X= 828 TO 898: READ A: POKE X,A: NEXTX

20 DATA 169,71,141,8,3,169,3,141,9,3,96

30 DATA 32,115,0,201,33,240,3,76,231,167,32,115,0, 201,145,
240,7,201,168

40 DATA 240,24,76,8,175,120,169,110,141,20,3,169,3,141,21,3
,88,76,228,167

50 DATA 238,134,2,76,49,234

60 DATA 120,169,49,141,20,3,169,234,141,21,3,88,76,228,167

Nach RUN und SYS 828 stehen Ihnen zwei neue Befehle zur
Verfiigung: !ON stellt den IRQ-Vektor auf die Adresse $036E
um. Nun wird jede 1/60 SEk. die Zeichenfarbe erhsht.
Abstellen 1laBt sich dieser Effekt mit dem zweiten neuen
Befehl: INOT.

Nun sehen Sie auch noch einen weiteren Vorteil des
Erkennungszeichens:

Es konnen alte Befehle mit neuen Funktionen belegt werden,
ohne daB die urspriinglichen Befehle ihre Funktion verlieren.

91

Nun noch einige Tips:

Am elegantesten wdre es, die Befehlswodrter in einer Tabelle
unterzubringen, und dann der Reihe nach mit dem eingegebenen
Befehl zu vergleichen (so ahnlich arbeitet der
BASIC-Interpreter). Interessant ist auch die Moglichkeit,
neue Befehle in Tokens umzuwandeln. Dadurch 148t sich
Speicherplatz sparen.

Der zustdndige Vektor heifit $0304-$0305 (772-773). Frei sind
noch die Tokens 202-254. ‘

B) ANDERN DER CHRGET-ROUTINE

Nun die zweite Moglichkeit der Befehls-Erweiterung:
Im Bereich $0073-$0084 liegt die sogenannte CHRGET-Routine.
Sie sieht folgendermafien aus:

0073 INC $007A
0075 BNE $0079
0077 1INC $007B
0079 1LDA $HHLL :Holt Zeichen aus dem BASIC-Text
007C CMP #$3A
O07E BCS $008A
0080 CMP #%$20
0082 BEQ $0073
0084 SEC

0085 SBC #%$30
0087 SEC

0088 SBC #$DO
008A RTS

Da diese Routine im RAM liegt (sie wird beim Einschalten des
Computers vom ROM ins RAM kopiert), konnen wir sie nach
'Belieben dndern. Der Vektor $0073-$007B kann so bleiben.
$007C muf3 den Befehl JMP $(eigenes Programm) enthalten.

92

In unserem Programm wird gepriift, ob das Zeichen, das gerade
gelesen wird, ein neuer Befehl ist. Wenn nicht, so mufBl die
normale CHRGET-Routine ausgefiihrt werden.

Als Beispiel geben wir dem Befehl NEW eine neue Bedeutung:
Er fiihrt einen RESET aus.

Die neue Routine liegt wieder in dem Kassetten-Puffer.

033C LDA #%$4C

033E STA $007C

0340 LDA #%$49

0342 sSTA $007D

0344 1LDA #3$03

0346 STA $0076

0348 RTS

0349. CMP #3$A2 :NEW?
034B BEQ $035F :Ja
034D CMP #$3A :Nein, aber CHRGET fortsetzen
034F BCS $035E

0351 CMP #%$20

0353 BNE $0358

0355 JMP $0073

0358 SEC

0359 SBC #$30

035B SEC

035C SBC #$DO

035E RTS

035F JMP $FCE2

Im ersten Teil wird einfach die CHRGET-Routine verandert.
Der zweite Teil wird bei jedem Ansprung der CHRGET-Routine
durchlaufen.

Doch hier zundchst der BASIC-Lader:

10 FOR X= 828 TO 865: READ A: POKE X,A: NEXT X

93

20 DATA 169,76,133,124,169,73,133,125,169,3,133,126,96
30 DATA 201,162,240,18,201,58,176,13,201,32,208,3,76,114,0
40 DATA 56,233,48,56,233,208,96,76,225,252

Wenn Sie nun NEW eingeben, so fiihrt der Computer einen RESET
aus. Wie Sie sehen, ist auch diese Mdglichkeit, neue Befehle
zu implementieren, nicht schwierig.

Nun zur letzten Moglicheit:

C) ANDERN DES IRQ-VEKTORS:

Auch diese Moglichkeit ist denkbar, wenn auch nicht so oft
gebraucht.

Wie Sie vielleicht wissen, ist die Interrupt—Routine (IRQ)
eine Routine, die jede 1/60 SEK. angesprungen wird.

Das konnen Sie ausnutzen:

033C SEI
033D LDA #%$49
033F STA $0314
0342 1LDA #$03
0344 STA $0315
0347 CLI

0348 RTS

0349 LDA $CB
034B CMP #$39
034D BEQ $0352
034F JMP $EA31
0352 JSR $E544
0355 JMP $EA31

Als BASIC-Lader:

94

10 FOR X= 828 TO 855: READ A: POKE X,A: NEXTX
20 DATA 120,169,73,141,20,3,169,3,141,21,3,88,96 -
30 DATA 165,203,201,57,240,3,76,49,234,32,68,229,76,49,234

Wenn Sie nun RUN und SYS 828 eingeben, sieht alles zunidchst
ganz normal aus. Sollten Sie jedoch ° driicken, so wird der
Bildschirm geldscht.

Vorsicht! Es kann passieren, daf8 der Cursor nach dem
Benutzen dieser Taste - nicht mehr sichtbar ist - do not
panic, wenn Sie etwas schreiben, wird er wieder sichtbar.
Zur Erklarung:

Der IRQ-Vektor wird auf die eigene Routine verbogen. Dort
wird gepriift, ob eine Taste gedriickt ist (in unserem Fall
wird auf die “-Taste gepriift). Wenn dies der Fall ist, so
wird der Bildschirm gelOscht.

In jedem Fall muB aber zur urspriinglichen IRQ-Routine
zurlickgesprungen werden.

Wie Sie vielleicht bemerkt haben, besteht zwischen den
ersten beiden Moglichkeiten und dieser letzten ein grofler
Unterschied:

Die ersten beiden nehmen den Befehl erst nach Driicken der
RETURN-Taste an. Bei dieser Moglichkeit reagiert der
Computer sofort.

Nachdem Sie jetzt verschiedene Methoden kennengelernt haben,
eigene Befehle in den Interpreter einzubinden, miissen Sie
selbst entscheiden, welche fiir Ihre Zwecke die
vorteilhafteste ist. Gut gebrauchen lassen sich alle drei.

95

5. GRAFIK

GRUNDLAGEN

Jeder, der frilher oder spidter einmal mehr als die iiber die
Tastatur erreichbare "Grafik" Dbenotigt, um ansprechende
Spiele oder Sonderzeichen zu erhalten, wird sich mit dem
Character-Generator des C-64 niher auseinandersetzen miissen.
Was ist eigentlich der Character (= Zeichen)-Generator ?
Samtliche Zeichen, die durch Tastendruck auf dem Bildschirm
ausgegeben werden konnen, miissen in ihrem Aussehen fest
definiert sein.

Der Speicherbereich, in dem dieses abgespeichert ist, nennt
man Character-Generator. Er liegt von $DO00 - $DFFF im ROM.
Es bleibt nun die Frage offen, wie das Zeichen in diesem
Bereich gespeichert wird. Um diese Frage zu klidren, sieht
man sich zweckmafiigerweise einmal die vergrofierte Matrix
eines beliebigen Bildschirmzeichens an. Beispielsweise das
"A":

76543210 Bit-Nummern
1...%% .1
2. . %xxx 2
J.*xx _xx 3
4_******‘4
5.%x _xx 5
6.**_ **.6
7_** _**.7
8........ 8
76543210

Wie Sie erkennen konnen, besteht das Zeichen aus einer
Matrix von 8*8 Feldern. Es konnen somit maximal 64 Punkte
gesetzt werden.

96

Um das AuBere des Zeichens nun zu digitalisieren, faBft man
jeweils eine 2Zeile des Zeichens in einem Byte zusammen.
Jedem moglichen Punkt der Zeile ist nun jeweils ein Bit des
Bytes zugeordnet.

Auch dies so0ll an einem Beispiel erklart werden. Dazu nehmen
wir als Beispiel die dritte Zeile des Buchstabens "A". Diese
sieht folgendermaflien aus:

Um nun den Wert des Bytes dieser Zeile errechnen zu kodnnen,
werden die Bits der gesetzten Punkte addiert, wdhrend nicht
gesetzte Punkte unbeachtet bleiben:

217 216 275 214 213 272 211 210 Werte der Bits
128 64 32 16 8 4 2 1 "

x * . . x * . * (gesetzter Punkt)

O +64 +32 + 0O + 0O+ 4 + 2 + 0O = 102 (Byte-Wert)

Sollte die Art und Weise der Digitalisierung eines Zeichens,
in diesem Fall einer Zeile eines Zeichens, unklar geblieben
sein, so kann das folgende kleine Trainingsprogramm zum

besseren Verstdndnis beitragen. Zundchst das Listing:

Benutzte Variablen:

J = enthidlt den Wert des aktuellen Bits (2°3)
EG$ = enthdlt die Darstellung der errechneten Zeile
BY = enthdlt den Byte-Wert

97

18 REM TRAIMIGSPROGRAMM CHARACTERGEHERATOR
28 PRIMNTCHE$C147) PORES2286 ., 1 POKES2221 .1 - POKESSS .5 REM COLOD

3@ CLECPRINT"® BYTE - BIT — TRAIMINGSPROGRAMM =PRI

48 PRIMT"C11 ZEILE EIMGEBEH" :FPRIMT

5@ PRIMT"LZ21 BYTE EIHMGEBEH" :PRIWT:PRINT

868 FRIMT"BITTE WREHLEH SIE "

VB GETA$: IFAE=""THEH?EG

26 IFAE="1"THEHZG2

56 REM ##% BYTE EIMGEBEH #¥#

1ed PRIMTCHRSC 1470

118 IMPUT"DER MWERT DES BYTES (@-2550",BY PRINT: IFBY<GOREY>2D
STHEH11@

128 FOR A=FTOBSTEFP-

12a JI=21A

14 IFJI=BYTHEMFRIHT"": : BY=EY-J:GOTO1568

156 PRIMT"ma";

1aé HERT

178 PRIWT"SMTASTE DRUECKEH !

128 GETARS: IFA$=""THEH12G

196 GOTOZe

288 REM #%% ZEILE EIHGEBEH #$%

218 PRINTCHRS$C 1470

226 PRIMNT"#=PUHKET GESETZT M=PUHKET HICHT GESETZT":PRIMT:PRI

HT

238 FOR A=VTOASTEP~-1

248 FRINTZ-A"PUNET 2";

241 GETAF: IFA$FC>"MY"THEHIFA$FC > "E"THEHZ241
258 PRIMTAS: IFA$="X"THEHEY=RBY+2TH EGE=EGH+"" GOTOZ7E
Z2E8 EGH=EGE+" nE"

278 HESTH

288 PRIMNT :PRIMTEGE"="RY

298 PRIWNT:PRIMT"RITTE TASTE DRUECEEM !I"
28 GETAE: IFAF=""THEHZ&G

1| GOTOZEe

98

Nach dem Starten des Programms konnen Sie ‘zwischen zwei
Modi wédhlen:

- Zeile eingeben
- Byte eingeben

Wenn Sie Nummer 1 (Zeile eingeben) wédhlen, konnen Sie nun
die acht Punkte einer Zeichenzeile setzen. Sie werden nach
den acht Punkten gefragt. Ein X setzt den entsprechenden
Punkt, ein anderer Buchstabe ldscht ihn.

sind alle acht Punkte definiert worden, wird die definierte
Bildschirmzeile ausgedruckt und der Byte-Wert der Zeile
errechnet.

Nummer 2 (Byte eingeben) bewirkt den umgekehrten Vorgang.

Sie geben den Byte-Wert ein, der zwischen O und 255 liegen
muB, und der Computer druckt die zugehorige Zeile aus.

DER CHARACTER-GENERATOR IM SPEICHER

Die Lage des Character-Generators im Speicher (ROM) ist aus
folgendem Diagramm ersichtlich:

$DO00 (53248)

1a Gro3/Grafik normal
$D400 (54272) Zeichensatz 1

1b Grof/Grafik revers
$D800 (55296)

2a Klein/Grofi normal
$DCOO (56320) Zeichensatz 2

2b Klein/Grof3i revers

$DFFF (57343)

99

Der Zeichengenerator ist also in zwei Blocks unterteilt, die
wiederum in zwei kleinere Blocks unterteilt sind.

Block 1 ist der erste Zeichensatz des C-64: -GroSbuchstaben
und Blockgrafik.

Block 2 1ist dementsprechend der zweite Zeichensatz mit
grofien und kleinen Buchstaben.

Jeder dieser Blocke beinhaltet seinen Zeichensatz wiederum
zweimal: Einmal in normaler und einmal in reverser

Darstellung.

Daraus 1&a8t sich auch die GroBe des Zeichengenerators
ableiten. Jedes Zeichen benotigt zur Abspeicherung 8 Bytes
(pro Zeile 1 Byte). Pro Block gibt es 256 Zeichen: 128
normale und 128 reverse Zeichen.

Diese lassen sich zur Demonstration kurz auf den Bildschirm
bringen:

10 FOR A=0 TO 255: POKE 1024+A,A: POKE 55296+A,1: NEXT

Da der zweite Zeichensatz ebenfalls 256 Zeichen enthilt,

kommt man insgesamt auf 512 verschiedene Zeichen. Es werden
also 512*8 = 4 KByte benotigt.

AUSLESEN DES ZEICHENSATZES

Kommen wir zu einem weiteren Problem. Der
Character-Generator 1liegt im ROM. Er ist daher nicht ohne
weiteres veranderbar, sondern mugi in einen anderen

Speicherbereich, der mit RAM ausgestattet ist, kopiert
werden.

Der Kopiervorgang an sich diirfte recht einfach mit
einer kleinen Schleife zu erledigen sein:

10 DIM B(4095)

100

20 FOR A=0 TO 4095: REM $D0O00 - $DFFF
30 B(A) =PEEK(53248+a)

40 NEXT A: REM AUSLESEVORGANG BEENDET
50 FOR A=0 TO 4095

60 PRINT B(A);: NEXT A

70 END

Das Programm bendtigt ca. eine Minute zum Auslesen des
Speichers. Anschliefiend werden eine ganze Menge Zahlen
ausgegeben.

Es 148t sich bereits auf den ersten Blick erkennen, daB es
sich hierbei nicht um den Inhalt des Character-Generators
handeln kann: Es dominieren Zahlen iiber 240 sowie die Null.

Doch der Fehler ist schnell gefunden: Der Speicherbereich
von $D000 bis $DFFF ist doppelt belegt. Neben dem

Character-ROM ist dort noch RAM-Speicher anzutreffen, der
sich in demselben Adreflbereich befindet wie das ROM.

In diesem RAM sind die VICs, die beispielsweise die Sprites
steuern, das SID (Sound Interface Device) und de
Farbspeicher untergebracht.

Unser Lesezugriff hat also nicht das ROM mit den fiir uns
wichtigen Informationen ausgelesen, sondern das
(uninteressante) RAM.

Um an das begehrte ROM heranzukommen, bedarf es einer
Information an den Computer. Daraufhin wird der Zugriff auf
das Character-ROM ermoglicht. Gleichzeitig aber kann der
Computer nicht mehr auf das RAM zuriickgreifen.

Man erreicht den Zugriff durch Loschen des 2. Bits der

Adresse 1 (Prozessorport). Gleichzeitig muB der Interrupt
verhindert werden (SEI). In BASIC sieht das so aus (folgende
Zeilen sind dem vorangegangenen Programm hinzuzufiigen):

5 POKE 56334,0: POKE 1,51: REM INTERRUPT OFF,ZUGRIFF MOEGL.

45 POKE 1,55: POKE 56334,1: REM INTERRUPT ON, CHAR-ROM OFF

101

Zwei Dinge sind anzumerken, bevor Sie das so verdnderte
Programm starten: Mit Hilfe der Adresse 56334 wird der
Interrupt verhindert. Bedingt durch diesen Eingriff kann das
einmal gestartete Programm nicht mehr durch RUNSTOP &
RESTORE vorzeitig abgebrochen werden.

Geben Sie nie POKE 1,51 ein, ohne zuvor den Interrupt
verhindert zu haben. Es Xkommt sonst zu einem Absturz des
Rechners!

Starten Sie das veridnderte Programm. Nach ca. einer Minute
werden wieder unzidhlige Werte ausgegeben. Diesmal handelt es
sich aber um den wirklichen Inhalt des Character-Generators.

Vielleicht wissen Sie nun nichts mit diesen 2ahlen
anzufangen. Deshalb wollen wir sie zundchst umformen. Dazu
verwandeln wir sie mit folgendem Zusatzprogramm in sichtbare
Zeichen.

Die nun folgenden Zeilen miissen an das vorangegangene
Listing angehingt werden. Die 2Zeilen 50-70 des alten
Listings werden dabei iiberschrieben.

Benutzte Variablen:

B(0)-B(4095) Inhalt des Zeichengenerators

A = Flag: O=Punkt gesetzt

X = Schleife, holt Punkte einer Zeile
2°X = derzeitiger Bit-Wert

Z = derzeitiger Character-Wert

50 REM *** ZAHLEN IN ZEICHEN WANDELN ***

55 Z=B(I)

60 FOR X=7 TO O STEP-1

70 A=Z AND 27X

80 IF A THEN PRINT ".";: GOTO 100: REM A=0, GESETZTER PUNKT

102

90 PRINT " ";:REM KEIN GESETZTER PUNKT
100 NEXT X: PRINT

110 I=I+1: IF I=4096 THEN END

120 GOTO 50

Starten Sie das so erweiterte Programm. Wieder dauert es ca.
eine Minute, bis der Speicher ausgelesen ist. Nun aber hat
sich einiges verédndert:

Aus niichternen Zahlen sind vergrofierte Zeichen geworden, die
auf den Bildschirm ausgegeben werden.

KOPIEREN DES CHARACTER-GENERATORS

Wie bereits erwdhnt liegt der originale Character-Generator
im ROM. Um ihn &ndern zu konnen, mufl er an eine andere mit
RAM ausgestattete Stelle im Speicher kopiert werden. Dies
ist nun keine Schwierigkeit mehr, da ja bekannt ist, wie man
den Generator ausliest.

Es bleibt nur zu iiberlegen, wohin der neue, veranderbare
Zeichensatz am zweckmdBigsten kopiert wird. Hierfir bieten
sich mehrere Speicherpositionen an:

a) im BASIC-Speicher

Die Kopie des Character Generators konnte an den Anfang des
BASIC-Speichers gelegt werden. Es miiBte lediglich der
BASIC-Start entsprechend verschoben werden. Hierbei gehen
dem BASIC-Programmierer allerdings 2 KByte Speicherplatz
verloren.

Weiterhin bietet es sich an, ihn ans Ende des
BASIC-Speichers zu legen. Das etwas umstédndliche

103

Heraufsetzen des BASIC-Starts entfdllt.

b) Unter das ROM

Sofern das Betriebssystem nicht durch Eingriffe des
Benutzers im RAM 1liegt, stehen hier Jjeweils 8 KByte
ungenutztes RAM zur Verfiigung. Da die PEEK-Anweisung jedoch
auf das ROM zuriickgreift, konnte der dort liegende, kopierte
Zeichensatz nicht ausgelesen werden (was jedoch nicht
unbedingt storend ist). Benutzen Sie die modifizierte
PEEK-Anweisung aus Tips & Tricks I.!

Im Folgenden finden Sie 2zwei Kopierprogramme, die den
Character-Generator einmal in den Anfang des BASIC-Speichers
und zum anderen unter das ROM des Betriebssystems kopieren.

Kopierprogramm 1: Character-Generator-Kopie an BASIC-Anfang

POKE 44,16: POKE 16+256,0: NEW

10 POKE 56334,0: POKE 1,51: REM ZUGRIFF AUF CHAR-ROM ERMOGL.

20 FOR K=0 TO 2047

30 POKE 2048+K, PEEK(53248+K)

40 NEXT

50 POKE 1,55: POKE 56334,1

60 POKE 53272,PEEK(53272) AND NOT 12 OR 2:REM UMSCHALTEN

Beginn Character-Gen.: 2048 ($0800), Bildschirm-RAM: 1024

(Aus internen Griinden hat der Character-Generator am
BASIC-Anfang 1lediglich 2 KByte zur Verfiigung. Es kann daher-
nur einer der beiden Zeichensdtze des Character-Generators
untergebracht werden. In diesem Fall Grofi/Grafik. Mochten
Sie hingegen 1lieber den Klein/Grofischrift-Zeichensatz, so
dndern Sie Zeile 30 ab in:

104

30 POKE 2048+K, PEEK(55296+K)

Kopierprogramm 2: Character-Generator-Kopie unter ROM

Der BASIC-Start ist hierbei nicht relevant.

10 POKE 56334,0: POKE 1,51: REM ZUGRIFF AUF CHAR-ROM

20 FOR K=0 TO 4095

30 POKE 57344+K, PEEK(53248+K)

40 NEXT K

50 POKE 1,55: POKE 56334,1

60 POKE 56576,196: REM HOECHSTER 16-K-BLOCK

70 POKE 648,3*64+4:REM BILDSCHIRM-RAM NACH (3*64+4)*256
80 POKE 53272,PEEK(53272) AND NOT 6 OR 8: REM UMSCHALTEN

Beginn Character-Gen.: 57344 ($EO00), BS-RAM: 50176

In den folgenden Beispielen verwenden wir den mit
Kopierprogramm 2 kopierten Character-Generator. Es sind
dabei folgende Dinge zu beachten:

- Statt 1024 lautet die Anfangsadresse des neuen
Bildschirmspeichers 50176
- In den Normal-Mode gelangt man wieder mit:

POKE 56576,199: POKE 648,4: POKE 53272,21
- RUNSTOP & RESTORE bewirken keine vollstdndige Riicksetzung
in den Normal-Mode. Es muB zusatzlich "POKE 648,4"
eingegeben werden.

Geben Sie einmal das zweite Kopierprogramm ein und starten
Sie es. Nach ca. 60 Sekunden meldet sich der Cursor wieder.
Wenn das Programm korrekt eingegeben wurde, diirfte der
gewohnte Zeichensatz sichtbar sein.

Zur Demonstration soll nun ein Zeichen verdndert werden. Das
erste Zeichen im Character-Generator ist der Klammeraffe. Er

105

soll jetzt sein AuBeres verlieren und verdndert werden.

Die ersten acht Bytes des Character-Generators werden durch-
den Klammeraffen belegt: 57344 bis 57351. Adresse 57344
beinhaltet dabei die oberste Zeile des Klammeraffen, 57351
hingegen die unterste.

Wir verdrnidern den Klammeraffen nun oben ein wenig:

POKE 57344, 255

Driicken Sie die Klammeraffen-Taste.! Der Klammeraffe ist
oben merklich platter geworden. Um das Zeichen
beispielsweise auch unten abzuplatten, geniigt:

POKE 57351, 255

UMSCHALTEN DES CHARACTERGENERATORS

Wie Sie den beiden Kopierprogrammen entnehmen kdnnen, sind
neben dem eigentlichen Kopiervorgang noch die Adressen 53272
und 56576 sowie 648 notwendig.

Was bewirken diese Adressen ?

Es muB8 dem Computer mitgeteilt werden, wo sich der neue
Zeichensatz im Speicher befindet. Hierfiir ist zundchst nur
die Adresse 53272 zustdndig.

Die Bits 1-3 regeln dabei die Verschiebung des
Zeichensatzes. Bit O ist unbenutzt, die Bits 4-7 verschieben
den Bildschirmspeicher.

Ubersicht der moglichen Startadressen und der zugehorigen

Bitkombinationen:

Bildschirmspeicher: Zeichensatz:
0000xxxx O xxxx000x O
0001xxxx 1024 (normal) xxxx001x 2048

106

0010xxxx 2048 xxxx010x 4096

0011xxxx 3072 xxxx011x 6144 (normal)
0100xxxx 4096 xxxx100x 8192
0101xxxx 5120 xxxx101x 10240
0110xxxx 6144 xxxx110x 12288
0111xxxx 7168 xxxx111x 14336

1000xxxx 8192
1001xxxx 9216

1010xxxx 10240 Soll der Bildschirm-
1011xxxx 11264 speicher verschoben
1100xxxx 12288 werden, so mufl gleich-
1101xxxx 13312 zeitig auch das High-
1110xxxx 14336 Byte des Videoram ver-
1111xxxx 15360 dndert werden:

POKE648, (Startadd) *256

Wie aus der Ubersicht zu entnehmen ist, konnen sowohl
Zeichensatz als auch Bildschirmspeicher nur innerhalb der
ersten 16 KByte verschoben werden. Es fehlen die vier
Adreflbits, die notig sind, um im gesamten C-64-Speicher
verschieben zu konnen. Diese finden sich in Adresse 56576.
Wird ein anderer als der erste 16K-Bereich gewahlt, so
verschiebt sich automatisch auch immer der
Bildschirmspeicher um den entsprechenden 16K-Schritt.

Auch die Sprite-Blocke und deren Zeiger werden in den
entsprechenden Schritten verschoben!

16-K-Bereich:

$0000 - $3FFF O - 16383 POKE 56576,199: POKE648,4

$4000 - $7FFF 16384 - 32767 POKE 56576,198: POKE648,4+1*64
$8000 - $BFFF 32768 - 49151 POKE 56576,197: POKE648,4+2*64
$CO00 - $FFFF 49152 - 65535 POKE 56576,196: POKE648,4+3+64

Zugegeben: Zu Demonstrationszwecken reicht die HerumPOKErei

107

in Sachen Character-Generator gerade noch aus. Mochte man
aber fiir sein neuestes Spiel einen neuen Zeichensatz
entwerfen, dann wird diese Art der Zeichendefinition zur
langwierigen und -weiligen Tortur.

Aus diesem Grund finden Sie auf den folgenden Seiten zwei
Listings, die die Definition des eigenen Zeichensatzes stark
vereinfachen.

HILFSPROGRAMME ZUR ZEICHENSATZDEFINITION

Auf den folgenden Seiten werden Sie das umfangreiche Listing
eines kompletten Zeicheneditors finden. Das Listing ist
zugegeben sehr 1lang, aber die Vielzahl der Moglichkeiten,
die dieser Editor aufweist, werden seine Lange wohl
rechtfertigen.

Das Programm ist so aufgebaut, da der Anwender im Prinzip
keinerlei Vorkenntnisse auf dem Character-Generator-Sektor
haben mufl. :

Das Erstellen der einzelnen Zeichen geschieht bequem mittels
Tastatur oder Joystick 2. Zeichensdtze konnen auf Disk
gespeichert werden. Zahlreiche Editierhilfen wie
beispielsweise das Drehen eines beliebigen Zeichens um 90,
180 oder 270 Grad, Invertieren, Vertauschen oder Duplizieren
von Zeichen etc., etc.

Abgerundet wird das Programm durch den eingebauten
Programm-Generator, der auf Wunsch den BASIC-Lader fiir den
selbstdefinierten Zeichensatzes schreibt (bis zu 256
Zeichen).

108

Doch hier zundchst das Listing:

S REM PROGRAM BY T.WELTHER#*#BAHHHOFSALLEE 103288 RIMTELH 1#T
EL.:{@85751) 35678

16 POKE4S.255:POKE4S .65 CLRE

28 POKEVSR .52 0=03243 : POKEO+32 .1 ' POKECG+332 .1 PRINT"I&" : POKEZ1
4.4 PRINT

38 IFPEER D102 =1 THEHPOKES 186G @ GOTO256

48 POKES2247 .6 PRIMTTABC72>" A "OPRINT
=1c) PDKEG+42,32PRIHTTHB£?)" # ZEICHEM-EDITOR #":PRINWT
5@ PRIMNTTREBLV)" &3 "CPOKEZL4 D18 PRINT

V@ PRINT"pBBIIL AEHDERH DES ZEICHEHESATZES" (PRIMT

88 PRINT"ERRIIC EINGEBAUTER PROGRAMMGEHERATOR"

3@ PORKEZ14 .21 :PRIMT :PRINT"SaBBIEEY T.WMELTHER » 22.SEFTEMBER 1
984

i1a :

128 REM ##% SPRITE IHITIALISIERUMG #¥

138 FORE=ATO?: POKEVA4+E®E 255 POKEVAS+HE®2 .0 PORKET@S+HE®D & HE
HTK

146 FORK=GTOZ3: POKEVA4+3HI+E (0 HEXTE

158 FORE=GTOSR: POKES3I2+K .8 HEXT *REM BLOCK 13 FULL

iva :

138 REM *%% CURSOR FLASH #dk

136 READA: IFA=-1THEHZ4&

288 POKEIL1Z2+E A C=C+A: B=F+1:GOTO128

218 DATALTY . 142.323.,232,224 .16 .248 ,6 142,142 , 3. 78,52 .234 . 165 ,8

s141.,142

228 DATA3.173.1432.2.,201 .4.248,11,141 .21 .282 169 .4 .141 ,143 .3,
Ve .52 .234

228 DATAL41 .21 .26 189 .
148,21 3,888,958 ,-1

248 IFL&LEGMSTHENLIHTZU —&3@

268

2va C‘B'REM *¥#4 KOPIERROUTIME ###

288 FORA=ETO42: READR: POKE 1 24836+ B O=C

238 DATARISZ2.16.183.8.,141 .14, 228,189 .51 . 1!

32,34 .,132

398 DATA3S .. 189,112,132,
36,355,238

210 DATAZT 282,202,242 163,55 ,1233 .1 183, 1 . 141 14,2268 ,98
329'IFL{}5(Q$THEHPPIHT“ DATEMFEHLER" LISTZ9E-3216

338 HVH4H1 REM AKTIVIEREH

[xx]

STELITEL2 128016890144 180 30141 20,3

BELLEILEVLIVTY L34 145038 . 200 282,245 ,2

LLI

]

$oofo 8 0
S0~ O
DO O o]

CLRID= 248 POKELSS 8 REM #%# FEHUE s##
F‘F.:IHT"HQ * MEHUE # 1LY

PRIMT"® 1| =3 ERSTELLEW EIMES ZEICHEWS" :PRINWT
PRINT"d 2 =3 DATEHEIMGABE" :FPRIWT
418 PREIMT"@ 3 Mg ZEICHEMUEBERSICHT" :FRINT
428 PRIMT"A 4 %5 ZEICHEW TAUWSCHEM" :FRIMT
43236 PRIMT"ill" ; FORT=GTO34 : PRIMT =" ‘HEXTT FPRINT : PRINT
440 PRINT"Z8 5 %3 ZEICHEMSATE LADEM" :PRINT

458 PRIMT" 28 & =3 ZFEICHEMSATZ SAVEW" (PRIMT

PRINT" 34 7 =3 FROGRAMM-GEHERATOR" :PRIMT

458 PRIMT"ilf" ; cFORT=TO34 PRIMT"="; ‘HEXTT FPRINT : PRINT
458 PRINT" @ & B3 PROGRAMM BEEHDEH"

$o
o
L]

109

GETAS$: IFA$=""THEH47d

CROTHEMPRIMTYO? BREARK IH MEWUE": :EMHD
IFA=A0RASETHEHGOTO47E
OHAGOTOS36 , 558 290 . 1028 , 1498, 1278 . 332530, 1228

GOSURLIVIE: REM ABFRAGE ZEICHEH
GOEURLISVE GOTOZ156: REM BILDECHIRM IMITIALISIEREN-BEWEGLH
OUTIHE

47
i
43
sl
S2
e
e
bk

REM ###% DATEMEINHGAERE #%#
FEIMT" A DATEHE THGHEE "

5]
1%
]
1G]
@ o
28 REM ##% ZEICHEHEDITOR s$#
@
(5]
F
I}
[}
(5]
B PRIMT:PRIMNT:PRINT"@FERBEHN SIE HACHFOLGEMWD DIE & DATEM EIH

2B PRIHT: PRIMT FORYY=ETOT PRINTW 1 KO D=8 SO o="": T
HE
21 FOWV D TFK O) SEORK O 3 2SS THEMK (Y
W =i

22 HERTWW

B OFd=5Fi=l:FL=12: GOSURIZ16: Fa=8: Fl=8: F4=a

I @ W

FOEEZ14 15 PRIWMT :PRINT"S0LL DIESES ZEICHEW ABGESPEICHERT
F—- DEHM CJIAH2 7"

GETA# : IFAE=""THEHSS&

IFAF="J"THEHKL$="EZE ICHEHE INGAEBE" : GOTO724

FRINT :FRIMT"ZURUECK ZUM MEMHUE (J-H2?"

GETHF : IFAF=""THEHS2®

IFAF="J"THEHGOTOZEE

GOTOSSE

FEM ##% EINGABE ###
248 PRIMT"I" ;ELE PRINT" sFEICHEN al)" ; : GOSUBTES
CJECGETAR$: IFAS=""THEM7Z1
A=FEEK 287 IFATHENV22
PRIMNT : IFAF=CHR$ 132> THEMAZ=" "
FOEEZE4 .1 FPRINT" OMERAEHDEREARES ZEICHEW: ":A$: FORT=ATO2
FRIMTCHRE 181 03
HESTT :PRIMT:PRIMNT:PRIMNT"@ 1 SSam"E$
PRIMT:PRIMT"@ 2 HE3M".F$¥ o
FRIMT:PRINT"@ 2 WSa@EUTO "ikf
FRIMT :PRIMT: PRIHT"EE 4 ECRFEHLER"
FRIMT:FRINT:FRIMT"#E3 5 W36,k .. WEITER"
GETCE: IFCE=""THENV21
IFCHE="5"THEN7S@
"THEHGOSURTSE
IFFEEK CP-10=1THEHGOTO?23
IFCE="1"THEHRY=RY+128 POKEZ14 .5 : PRIMT : PRINTTAEBCS "HEGA" ¢
FP 1.1 GOTOFRL
IFCE="1"THEHRY=RY-122 : POKEZ14 .5 PRINT : PRIMTTRBCSO "POSI"
OREP—1 (8 GOTOFEL
Va4l IFFEER(P-20=1THEHGOTOF4S
P42 IFCE="2"THEHRY=RV+25& POKEZ14 .7 PRINT :PRIMTTABCSY "KLEINS
GROSS" (H=1 GOTOV38
Va5 IFCE="2"THEMRY=RY-25& ' POKEZ14 .7 ' PRIMT :PRINTTARL S "GROSE A
GRAF " H=0 GOTOV3E
FTA7 IFCE="4" THEHGOTOV2E

PRI PRPR = SR A E B

STA RGOSR T RN =R AR R0 DSMS
i

O3 oD T 00 D3 D g 03 PO ORD PR3 R

\QT

e e R B R R e B R RN RN RN . 0

110

PORESSS 1 PRINT" S0 A$ POKESSS @ CO=PEEK) 1824+480+RY IFCH
"HEHGOSUERRRE6
IFCH= lTHEHF?l: TLRH
POREZ14 28 PRIMT PRINT"OK " CPRIMTY A GOTOETE
FEE IFPEER P s=ETHEHGOTOM32
v ALlE="" FPOKEZ14 3 PRINT :PRINTTARECS) "B Us" PORKER 8 GOT

-}
=4
HE b

¥ AlE="A" POKEZ14 3 PRINT PRIMNTTABCS " TH" : POREP .1 0G0
TOFEL

VEE R0 E="ALEY EE="POSTTINVY FE="GROSSAGRAF .Y IFPEERCPO=1T
Hi

Hig="E TH"
o0 =R+ 12
i RN HZSE

IFPE
% RETURH
POKEP=2 M GOTO7EL

(R IJ";

T‘11'|=153'3 R

A PORES42 188 PRINTY Y - AR=5525E

D’.

R Ut Bt M B Bt

o M B B

STEAGHEZHF A POKERAGHZHA L 141 IFCHO> 1 THENPOKEZTS48+A+608
OEERG+HF+S8E 32
HEXTH: IFCH=1 THEHRE TURH
GETHE | IFAF="" THENS
FOKE
GOT OIS

o

=y

S 151 PORESSE .4

FEM sk THUSOHEW $dE

FPRIMT" IR ZEICHEM TAUWSCHEM - "
FPRIMT" e 1| "eEs’F ICHEH RKOFIEREMY

FRIMT"H& 2 WEIF'HEH TALSCHERM"

FRINT s = SwnpEeHUE"

GETEE: IFGE=""THEH1 &G
TFWAL G DD TORY AL O3

TFGE="2"THEMK Ls—"m H

kL$~"J= ﬁPIEF*FH "
CH=1 : GOSUEBTE CGOSURT2E CH=8: PRINT
IF@E="2"THEHMGOEUEL 136 GOTOL 156

FORM=ETO? : POKEZSET2+0083+HY S PEEK {28872+ C0O#E+ 0 HEXKTY
FOEEZ14 15 PRINT PRINT"ZURLECE ZUM MEHUE CJAH> 2"

GETAS: IFFAE=""THEM1 15

IFAF="J"THEHGOITOZ:E

FRIMT"O" :GOTO1l8SE

FORM=BTOV 5100 =FEEK T 2BET72+C0HE+HY D L L2)=PEEK L 28872 +000%
CHERTY

FORWM=ETOF POKEZSE 72+ CEMS4Y 020) POREZSST2+C0%RIHY 0L 0
Tv’ RETLRH

ZTHEMPOKES 1886 1 RUN
HEM: A -2 BY:GOTOL126

Pl I i e i et el ettt > LI I S U I X Y IR
PIPI P T BI b o e e e e e e e e S S D e B S0 P3O Py T e T WD A0 00 0000 m [x Xl]

OO R U B B iyt B SR B NI R B SR B T At S P B R e - U U T
ficr IR 'y BT I T Iy By B By By At S 3 B LA i x Jon B i B ow T

X

PR

F’EH ##¥% PROGREAMM BEEMDEH ###
A PRIMNT"IBIS ZUM HAECHETEN MAL ... " POREVT32 .43 PRINT" MHelaHE
HI'

i o S
l"s.'z

i

@mr’

11

REM #¥# ABSAVEN ##%
FRINMT"OH ZEICHEMESATZ SPEICHERH "
FRIMT"@EDER YOH IHMEM GEREHMDERTE ZEICHEHSATE AR"
FRIMT"ADRESSE (DEZ.)» 28672 EAHMHM HUH ABGESPEI-"
FRINT"CHERT WERDEM.” :FRIMT: IFHI=8THEMHI=112 HII=12%
FRIMTYER BELEGT AUF DISKETTE CH. 17032 EEYTE."
FRINT"AUS PROGRAMMTECHHISCOHEH GRUEHDEH EAHH"
FPRIMT"DER ZEICHEMSATZ HWICHT AUF DATESETTE®
=@ PRIMNTYGESAYED WERDEW." PRIMT: FRIMT

IFPEER D126 CHFETHEMPRIMT" @UR FUER DISEETTE!" FORT=1TO9o
SIMERTT GOTO3S@
13368 PRIMT:PRIMTYUMTER WELCHEM HAMEM S0LL DER ZEICHEH-"
1385 PRINT"SATE ABGESFEICHERT WERDEM (DURCH EIMGABE":
1387 PRINT"WOH “PARAMETER" FARAM ..AEHDERUHGEN MOEG-"
1336 AF="": ITNPUT"LICH? " A% IFA$=""THEHGOTO3S6
1395 IFA$="PRRAMETER"ORRIGHTS A 20 ="PARAMNETER" THEMG
1488 IFKE=ATHEMIFLEFTS A% 12 <r0HRSE 2
OTOl426
1416 BE=AF
1426 PRIMT" Zefee
1436 PRINT"POEE4S @ POKEDS " i HE: " PO
1448 PRINT"SAVE"CHRE 340 @ "BECHRS S 340 L Saiely
1456 PRIMNT"POKE4S .1 POKE4d 2 PORES1666 1 GOTOLE" PFRINT &"
1488 FORA=GTOT : POKESR1+A . 13 HEXT (POEELSS & END
1478 POEESSE 12 PRINT" 28 FARAMETER
1471 PRINTHLS:FRIMT:PRIMT 3 1 ™ 1.1 SAVEH" PRINT:FRIMT"® =

1.HRELFTE" :PRINT
1472 PRINT"@ 2 ™ 2 HRELFTE" :PRINT:PRIMT"®d 4 % EEHHUHG ALS©
1473 PRINT:PRIMT @ 5 ™ FEHLER" PRIMT:PRINT"® & 8 0O.K.. WEI
TER"
1474 GETME: IFWE=""THEH1474
1475 IFW$="S"THEHKE=8 H2=112 'Hd=128: FOKESIZ47 .8 Waf="" afF="
"GOTOL47E
1476 IFME="2"THEMHZ=112 Hd=126: 12 s—"1 HEELFTE SHYEM. "
1477 IFM$="3"THEHHZ=126: H4=128 W23$="2 .HAELFTE SAYEH.."
1478 IFW$="4" THEMPOKESIZ47 .1 M°$—"FEHHHHH ALY
1473 IFW$F="1"THEHH2=112 'H4=122 W2%="1,1 SAYEMH.veeawe."
1438 IFWF="&" THEMGOTO1 286)
1431 PRIMT"EN" WS "apl)" ; W3S
1422 Wit="&NN" GOTO1471

4

AN]
SOTHEMEBE=CHR$ (2150 +R$ G

(E4S 8 POKESS . " i HY ;" "

1483
1496 REM #%# ZEICHEMSATZ LADEM ##%
1588 PRINT"IJE ZEICHEMSHTE LADEH "

1528 FRINT"SMeNMSIE KOEHHEM HUW EIMNEH 2UWOR AUF DISKEETTE":

1538 PRIMTYABGESFEICHERTEM ZEICHEMSATE LADEH." :PRINT:FPRIMT"ZA

COF = DIRECTORY MM

1548 AF="" PRINT:PRINT PRINT: INPUT"HAME DES ZEICHEMSATZES":A

*

15568 IFA$=""THEMGOTO3E
1

L}
1568 IFAF="$"ANDPEEK 125 =2THEHMGOSUR1 S48 PRINT : GOTO1S548

112

157Ve

IFPEEK CS3247)=@THEMIFLEF T$ A% . 1 0 HCHR$ C215) THEME$=CHR$

2150+A%: GOTO1saa

1598
1508

0333

1618
1628
1538
1648
15856
1556
157
153
15596
1vea
ivia
ivaa
17368
L1748
175a
1758
1vaa
1756
1214
1246
1356
1956
156
157a
1586
1331
1332

B$=A$

IFPEER 125 :=1THEMFRINT " @HUR FUER DISK-BEHUTZER" :FORT=@T
MEXTT : GOTO356

FORA=GTDS: POKES31+A .13 HEXT : PRINT " IsIaly"

FRIMT" e : PRIMT"LOADY CHRE$ C 34 0 BCHR$ O340 " 03 1 sinluials]s"
PRINT"FPOKES106@ .1 GOTOLE" PRINT"E" : POKELDS .2 END
FRINT"Q =ZEICHEMSATZ"

FREIMT:OPEML .2.15." 18" :OPENZ .8 .2, "#" :0=1
PRINT#1 ."B-R"; 2/, 05 FRINTH#1 . "EB-F":2:@
GETH#HZ . %% IFs$=""THEH$=CHR$ (@
B=RSCHED

GETHZ . ¥$: IFR$=""THEN $=CHR$ 2>
W=ASC{x$>

FORK=ETOF PRIMTH#1 . "B—P" 2 W#32+5: =" [FORY=GTO1S
GETH2 . #$: IF-$="""THEHX$=CHR$ @
IFASCCRF) =168THEHL 758

wE=YELE HEKTY

PRINTYS :HEXSTH: IFQ<ETHEHLGSE

CLIOSEL ' CLOSEZ ' RETURH

REM ##% ZUl AEMDERMDES ZEICHEM ok

KL#="3 ZEICHEHEDITOR "
CH=1:GOSUBY2E : CH=@

RETURH

FEM ##%#% BILDSCHIRMIMITIALISIERUMG s

FPRIMNT" M ZEICHEMEDITOR "
EM$="0FF" : P=532245 ' IFFEEK CF~1 3 THEHRY$="0H"
Z5%="GROSS/GRAF IK" IFPEEK (F—2 =1 THEHMZS$="FLE I M-GROSS"
FPRINT"ZEICHEH: ;A% "sRREVERS "RVE: "sRB" ;255 "6"; IFPE

EKCPI=1THEHNPRIMT"A"

2a1a
2024
2838
2848
258
pede 1y]
2ava
2836
2188
2148

PRIMT" ZelhBRBRRREc54 22 L GapRpRlF sS4 3218
PRINT"iRREERRRR"

FORK=GTO?: PRINT" sl k" iRy = a i i - HE T
FPRINT"iRRRREER

FRINT" iRRRRRT 5432 1 00RRRRrs543218
PRINT"RRERNEIZN, USER pRERRRREIATR I <"
IFFL=VTHEHRETURHM

PRIMNT"@&i F1 ® F2 B FS ® F¥ kg F2z "
PRIMT"@ TEST Bl DATEHM ROM M RAM SREOTATE®

113

[e e e ol

PR Al g s (R

PO QPRI PR T DM RIPI I
R L e B L]

R

R RN PR

P,

PRI R RS IS R B3 RO R R B3 R RD TR

gk B o)

-
[xy]

o &

DA Y]

£o0d o= B WD

FEM #$¥ BEWEGUMGSROUTIME ##¥

FORESSS 144 FORKESSL 3 8YS957 POREO+21 .5 POKEZG42 .11
SH=V32:2V=18&: Bv=8: BH=@:'REM SPRITE-POSITIOH

GETAS : POKEL3S .8 JO=FPEEL (SE322d) : IFA$=""THEMAS=@: GOTO2138
AS=RSCCAED

IFAS=1450R JOAMDL »=THEHFOKES11 , 4 : GOSUB2456 : REM CRSR UP
IFAS=170ORJOAMDZ) =aTHENPOKES11 .4 : GOSUE2486 : REM CRSRE DOW
IFAS=290FRC JORMDE) =aTHEHNFOEED1 1 .4 GOSUB2516:REM CRSR RIG
IFAS=1S70RCTOANDYG > =ATHEHFOEES1 1 4 GDSUB2S46 : REM CRSR LE
IFAS=13THEHEH=@: BW=8:SH=V32: 5VW=188
IFAS=3THEHFOKESSS .52 ' POKESS1 ,234 1 SYESI57 POKED+21 .8 : GOTO
IFAS=133THEHGOSURZ228: REM F1

IFAS=124THENGOSUR2S7E: REM F3

IFHb—l*TTHEHGHCHBEF&EI REM Fz

IFAS STHEMGDSUREZ728: REM FS

IFAS 1 9THEHF&=1& FL=1:G0SUR22168 F2=0:FL=0:G0T02136 : REM

IFAS=14@THENF2Z=12 : GOSUR3218 F2=8: GOTOZ21238 : REM F8
IFAS=13ETHENGOSURZE8G : REM FV
IFAS=147THEHGOSURB2Z VSR REM. CLERR
IFAS=1232THENGOSURZBEE . REM F4
IFAS=32THENGOSUR2E8E : REM LOESCHEW (SPACES
IFAS=12THENGDSUEB29VE: REM RETURH
IFASC128AMDAS>320RCTOAMD 1S) =aTHENFL=1 : GOSUR3B28 :FL=
FOREQ+4 ,5H: POREQ+S ,5Y GOTOZ 1268

FEM $¥# LUP ks

IFSY1BETHENSY=53-2 : BW=B"Y-48

RETURH

FEPM #¥¥ DOLH #$#

IFSW 186+ THRITHENSY=5+2 : BW=EBY+48

RETURH

FEM ##% RIGHT sk

IFSHCP 3+ 7S THENSH=5H+2 : BH=BH+1

RETURN

1 REM #%#% LEFT ###

IFSHZVRTHENSH=5H-8 : BH=BH-1
RETURHM
FEM #¥#% DATAS AUSGEBEN ©F1) ###
ATOV WY =8 HEKT : GOSURZ136

114

n
i
S

rcz
il

PORESSS 12 PRIMNT" 8 MAHIPULAT IOHEH

FPRINT:PRINT:PRIHT :FPEIHT"d 1 ® DARTEHM AUSGEREH" PRIMT
FRIMNT"# & M ZEICHEHW AEHDERM" FRIMT:PRIMT"@ = ™ ZEICHE
FETCHERM" (PRIMNT

PFIH] FREIHNT"d 4 B HMEMHUE" FORKEL1SZ .6

CRFRIMT"A S ® EDITOR"

IFSE=" " THEMZEZE

=MEYTHEMGOTOS3E

F="4 " THEMPOEES 1EE86 . 1 RUH

IFSE="1"THEMZVE&

IFS$="2"THEHKL $=" S IHGAERE DES HEUEM ZEICHEHES":CH=1:GOS0

T i

CTH GOTO2EDE:
FEg="3"THEMHGOSUBIZ2S6: CLR: O=52248 GOTO259E
FRIMNT" S DATEMALSGAEBE "

B I B B Ry IR TS Bt B ST Ly B e Y I Y]
-

FOREZL14 4 PRIMT:PRINT"SDIE DATEHM DET ZEICHEHE LAUTEH:":

-
i
—

R I Bl I R LN R I VI TN O N B]

bl

FORMW=ETOP PRIMNTYWTABCLZ 0RO 2 =" T HEXRT FL=12 F4=5:F3=1:

IB2218: FlL=@:F3=8

FREINT :FOEES4sS .5 PRIMNT"BITTE EIME TASTE DRUECKEH 1"

GETF#: IFF&=""THEHZ?2&

GOTOZE3E
LSER CLEAR JCLERAR-TASTE)

=32z Fa=12:FL=1:GOSUB3218: F2=0: C0=CZ FL=8: RETURH

REN +## MATREIY RECHTES CFS5) ###

FL=1:GOTOE218

FEM ###% USED RECHTS CFP) ###%

FL=@:G0TO2216

P B Bt B s SRt B O s O TR SO R

TR R O RO LR A N B LT O LV I LR G - B O KO U R S O Dl

P A A B VR VR R PR AV I PV W]
EIS'@'EE'EGHS"DHG!P{H

2’; REM #%% ZEICHEM TESTEM CF3) s
=8 H=8: FORMY=GTO? KOV =8 HEAT : GOSUR2136
28 F’EIFZ.EI:J':l SPOMESSS 12 PRIMNT TEST

POREO+21 23 PORED 188 POEEO+] , 186

FOEEZS4E , 1?-PDKEZG41:15-PDKED+39-6'PDFED+4“ B

FOREEQ+2 , 192 POREQ+Z .34 POKED+29 2 PORKEQ+22 .2

FORMY=ATOF FORERIZH+ZA O D ZA=ZA+3 HEXT : 7H*U

FPOEEZ14 .7 PRIMT :PRIMTTAECSO "L 1" S TREBC2EX "L 2
FOFEZ14 15 PRIMT : PRIMT"S0LL DAS ZEICHEW GESFEICHERT HWER
TOISHY

GETHF : IFA$=""THENZ2GG

IFAFC" I THEMPOREQ+2]1 .8 GOSUBLIVE FL=12 FZ2=12:GOSUEB3Z18
B F 2= G0TOZ 158

FPOREEO+21 & GOSURIZ26

CLE:O=53242 PRIMNT"Z2URLECE. ZUM MEMUE CJsH> 2"

GETAF : IFR$=""THEH2Z248

IFAE="J"THEHNGOTOZSE

GOTOS3R
REM ##%% RETURH-TRETE ###

IFSW1ES+TEITHEMSH=V3 SY=8%+8 BH= ' BW=BY+4& RETURH
SH=73: BH=8: RETURHN

FEM ### SPACE-TASTE CLOESCHEM? ¥¥#
POHE1é24+E+?$4@+B¥+BH)32iEETUEH

b—l-lE«xSJi'_{lrxlr‘_;;

PRI RGPS TS PP IS

= lB

PR R R] T| L0 MM 0 00 00 00 00 00
=S 0 S R G P T e S TR0

E!!S'SIQGQISISHS'GH

PO VO LI LI LV L OV O L

115

FEM ##% FPUMET SETZEH #%#%
FORE1824+8+7R48+BV+EBH . 81 POKESSZ296+64+ FR4E8+EV+EH . 3 RETUR

3RE0 REM ### ZEICHEH IMNVERTIEREH ###

BETE POREO+31 .14

3ESE FORE=GTO? FORKE=GTO? : PESFEEE 1824+ 288+EE+4E8%K D - [FPE=32
HEHFE=21 : GOTO2166

FEIE IFFPE=S1 THEWFE=22

2188 Io=288+KkK+38%k POEETO+10824 FPE: FOEEIO+SS29E .7 HERTER : HEX
TE:POEEQ+4] .2

2118 RETURH

21za ¢

3138 REM ##¥ DATAS BERECHHEM ###
3148 POKESSY 52 POKEISL . 234 5
ERUFT & SPRITE OFF

F10E FORMW=G@TOV : FORV=ATO?
1A AV I=PEER] TAZ4rH+AERE3-4 0 =210 0 IFACW =81 THEME WY a =k 0w o+

oy

FIPORED+Z1 8 H=G REM U-IHTE

HERTW PRIMTROM D I G =60 HeHA 6 HERTWYY H=8: RETURN

REM ##% FEICHEH YERGROESSERMH s

PUFED+41 14 TI=@: MI=2932 HE=322 IFF3=1 THEHHK=27
IFF2=12THEHDD=00-13

IFFL 1THENLG—13*4U365FH SGOTORZE8

CE=22872 FA=13

IFF4=@8THENF 4=FH

FORI=TOV:REM ZEILENMZAEHLER

IFFL=1THEHPOKESS334 .6 POKEL .51 REM CHARACTERGEHMERATOR A
SEM
20 IFFL=12THEMZZ=k 13t GOTO3S
BE ZZ=PEEk [CG+o%CO+1 2

T G L0 G L G0 00) G O

Ll T I l;JL(llJ.iMIJ! R SR IO O (VI N U U
m@@@@ﬁ&@ﬁ"ﬂ@

'-LH"OJ"JIJ’H’.’I&!’.CIPJHL‘Z!III

g
fxa]

3
e
3318 IFFL=1THEHPOKEL .55 PORESS334 , 1
FE11 PORE1GZ2+C4@3+ 1.7 22 PORESSZEQ+7TH40+ 1T . FA: PORE 1828+ P48+
JI.31
BI2E FORJI=ATOV: AE=ZZAHD2TJ: GETSTS
F322 IFSTH""THEHIFASCOSTH) =3THEMPOKE 1G22+ 7H4@+.1.7 L 32 POKED+
41 . 2:RETURH
333 IFHPTHEHPﬁhE1@24+15+DD~T+TT;Hl PORKESS228+1 2+00~J+.1.0 .F4:
GOT =6
3;4@ PﬂKE1@¢4+1?+DD—T+TJ JHE: PnPEq S+ 1 3+D0-T+T.T . FA
B35 HNEXT: JI=JJ+3@ HEXTI :FL=@: TPORKEO+4] 30 POKE L @28 +a#di+
J¥.E2: PETHPH
IRTE
RERO PEN k% ZEICHEMN SPEICHERHM ###
FIB2 AU=PEEKCSE245) FORWY=ATOT POEEZSSTZ+SRC0+HWY (E WY D
]

3333 IFCO3230RCOZ12VAMDCOCZSETHEHRY =1

3384 IFAU=1THEMIFRY=1THEHFOREZSE T2+ (2 C0— 1 225 243 255K W)
FEOTOR329

388 IFAU=1THEMPOREZSEVZ+ S CO+1 280 2490 255K WY D

B3B3 HEKT :RETURH

IE50

116

3391 REM *¥#¥ PROGRAMMGEHERATOR ###

3392 PRIMNT"ZM O M E N T 1" WE=1593: POKES3G680 .8 POKES3031 &
B33 DIMWHO2SS) DIMWICZES) FORA=ATOZSS UHIA=—1 MICA=—1 HEX
T:MO=189

23334 CH=1:GOSURZ1@: CH=8

3395 POKEZFE42+4512 WK POKESSZ95+512 . 12 PORKEZ7PS43+514 0141 POKE
ESSa23e+514 .2

FIIV POKEZTE48+4516 . 144 PORKESSZI6+515 .2 GOTO4R66

B333 KY=PEEK(S20@6) YH=FPEEK {52061 IFCOX2SSTHENGOTOI46S

3408 FORG=ATOV : KIGI=PEEK {2BET72+3M00+G) T HERTG : IFWHLCOL >~ 1 THEH
3482

34@1 WHOCO) =2000@+:Y#3 KY=KY+] POKESI00E , XY IFAY+HYHE2ESTHENG
OTO3433

2482 PORKEWHCCO) 00 FORYO=ATO? : POREMH CO+ 1450 . KOY0) CHEXTYD: R
ETURH

3485 FORG=ATOV KOG)=PEEK (ZRET7IZ+IHCO+G) C HEATG : KO=C0-258 IFWI ¢
KO3 1 THEM3487

3485 WICKOD=22084 3+ YD YH=YE4H L PORESI@RAL 9 IFKY+ YR 255 THENG
OTO3433

24@7 PORKEWICEOD) (KO FORI=ATOV POREMICEO)+141 KO I tHEXTL : RETUR
H

2463 POKES2E02 .8 POKES2168 . FEEK CS2868E » - FOKES
3418 ZK=PEEK S20@E) : 2k=2K~1 : IFZKATHEHI4E6
3428 POKED3006 . ZF CO=PEEK (20@0@+3% 2K) FORI=aTOV KL I) =FEEK 28
BEE+HIRZE AT+ 0 T HESXTI

3430 PRINT"8EE]" : ZC=PEEK «S3@62» POEESZ0@2 . Z20+1

2448 PRIMTZC+HZFA"DATACOYHL " FORI=ETOS PRIMTE I > "l " tHEXTI
PRIMTKOP)

2458 PRINT"GOTO3416" : FORM=ATO3 PORKEE31+M, 13 HEXTM POKEL92 .16
PRINT"S" : EMD

34EQ ZL=PEEK{S38&1) 2L=2l.—1: IFZL<BTHEHIS 1A

3478 PORKETI0@1 .21 CO=PEEK [22@43+3%ZL) FORI=ATO?F K L »=PEEK [22
B4+ +T+1 3 T HERTI

3480 PRINT "M : SC=PEEK 5!
34598 PRIMTZC+EVA"DATA"CO+ZSS M. " ¢
EXT PRIMTKCF)

1
PRIMTECIOD"H." ' H

3TOE PRIMT"GOTOZ488" : GOTOZS2S
3518 ZC=PEER{S3082)+37@: PRINT " " ZC+1 "DATA- 1" PRIMTZC+2"

3511 PRINT"340 READA:

3520 PRINT"356 FORK=

4@"

3521 PRINT"36@ POKES3272, 189 POKESSSTE, 150 POKESHS , 108 FOHRS

£1473"

3522 PRINT"GOTOZS36"

3525 FORM=0TOS: POKESI1+M, 131 HEXTH: POKE19S . 16 PRINT"@" : END
530 POKES36G2 .4 POKES3016 .8

3548 ARPEEK(S30082) : 1FAA=ATHENGOTOSS20

3556 POKES3692 ,AA-1

FHE@ PRINT " el : ZD=PEEK (530160 : FORA=ETOP : PRIMTZIH 1 B#F | HEXTH

‘POKES @18, ZD+E# 160

A=—1THEMZSE"
I

IF
ETOV READE : POREZSSFE+A¥S+E LB HEATE GOTOS

117

SVE PRIMTYGOTORS48Y - GOTOE52T
8 KE=FEEK 420 +25CkPEER (44 5+ CPEERCS218E5+PEEKCS3280 %1
2
Lyl FDPT-KF OFEEE 450 +205#PEER (480
EEE IFPEEF'T\ SEAMDPEEE . J+1 3 =S53ANDPEEL « J+2) =53THEMGOTO3&5E
S4E HEN
E5E VH=IHT§(JH256}+1)
S PRIWT" 8" : FRIMNTYPORKEJ-3 .6 POKET-4 .8 POKE4D .8 POKE4S . "Y
:LF? "GOTOIS2S
L3k
TER EEM ##¥ ROTATE #%#
716 IMFUT"WIEVIEL RECHTSDREHUMGEW (1.2-3> ",A%
8 POEETS1 .23 SYS59903 : PRINT"O" FORA=ATO? KIRY=E: WIA>=0: HE

@ D="AL A IFD=ATHEMGOTOZ 156

1 GOSUB313E: POKETS1 .24 SYS55303: IFD <10
2 POKEQ+41 14 POKERSS . 144 POKEDEL .2 559
OF W AY=6:HEXTA

H;ﬁ FORE=ATIF : FORA=FTOSSTEFP-1 M=2TA: IFK B —M>=THEMW A =W(A
+ET IR K CBY=R B~

3E MEXTA:HERTE: FORA=ATOV K A=A HEXTR: FORA=TOV : ACAS =K
THESRTA

48 FORA=ATOV: KOAY=AT7-A2 1 HEXTA : HEATC

BEEE Fe=12:FL=12:GOSUE321@: PRINTY)" F2=8:FL=8: POKED+4] ,3: GO
TOZ158

SEEE FP“14'LE‘ﬁ'P—ﬁ‘IFh =2 SO THEMPRIMTCHRES 140

RD>ETHEND=1
57 FORC=1TOD: FORA

I3 ~. G B D0 00 03 3 00 00 D) 00 I [B B I Y

4@l GETCH : JO=FEEK (S8326) : IFCE=""THENC$=CHR$ (&>
4882 C=RSCOCE) IFC= 1STDR(JDRMD4}=BTHENIFLE}QTHEHR=~25GDSUB4@
SE

4884 IFC=230R C JOANDE) =ATHEHIFLE<S18THENR=2 : GOSUB4@S
4@88s IFC=130RCJOANDLS p=ATHEHCO=FPEEK (27543+LED +KR : FR— R=8:G0
SUES4ASE GOSUR4BRSE
SEAT IFFL= dTHEHPﬂkEu459€+LE i
4@ IFFL=aTHENFL=8: POKESS296+LE . FR
483 FL=FL+1
418 IFC=1450RCIJOANDL) =ATHEHIFLE>=4@THENR=—4& : GOSUR485E8
46815 IFC=170RC JOAHDZ »=a8THEHIFLE<=1 1 ¥4@+ 258 THEHR=+48 : GOSUEB4A56
GEZE GOTO4EEL
4E5E FL=3: FOEESS296+LE .FR: LE=LE+R : FR=PEEK .55 296+LE? : RETURN
4B6@ IFLE=S12THEHIFPEEK (532725 <> 191 THEHKR=255 ' Wk=32: MO=1391:G
OTOE354
452 IFLE=S14THEHFRIMTCHR$ 1420 (PORKES227V2 .21 (POKESESVS . 151 P
DEES4S .4 PORKESL1A0E . 1 RUH
454 IFLE=S18THEHGOSUR4ETE : GOTOZ483
AEES GOSURBIZ99 RETURH
4E7E POEES2272 .21 ' PORESSSTE . 151 | POKES4S . 4
4@ PRIMT D" POKEZ14 18 PRINT PRINT"DER EDITOR MIRD HIERDUR
r~H GELOSCHT o o W 1"
=1 PRIMT"SIND SIE SICHER oJ/M> 271"
4M9u GETES: IFK$=""THEN4&3&
4E25S IFE$="J"THEMRETURN
SERE GOTO 268

118

Das Programm ist grofitenteils durch Meniitechnik
selbsterkldrend. Nun noch einige Detailerklarungen:

AUTO: Diese Funktion sorgt dafiir, daB neben dem eigentlichen
Zeichen auch dessen reverser Verwandte definiert wird. Man
spart so viel Arbeit beispielsweise bei der Definition eines
neuen Schriftsatzes, da die reversen Buchstaben automatisch
umdefiniert werden.

PROGRAMMGENERATOR: Nach Aufrufen dieses Punktes wird der
erste Zeichensatz aufgelistet. Mittels Tastatur oder
Joystick fiihrt man nun auf die Zeichen, die in den
BASIC-Lader iibernommen werden sollen. AnschlieBend driickt
man die RETURN-Taste. Die Eingabe wird durch einen
Farbwechsel des betreffenden Zeichens quittiert.

Unten rechts sind drei Funktionen wahlbar:

1. (Pfeil 1links): Auflisten des 2.Zeichensatzes. Auch von
ihm konnen Zeichen iibernommen werden.

2.(revers M): Zuriick ins Menii bei falscher Eingabe.
3.(revers P): Aktivieren des Programmgenerators, der den
BASIC-Lader erzeugt.

Der entworfene Zeichensatz liegt am BASIC-Ende.

119

DESIGN IM LISTING

Eine weitere Moglichkeit, Zeichen bequem und iibersichtlich
umzudefinieren, bietet das folgende, relativ kurze Listing.
Die Besonderheit hierbei ist, daB das Zeichen nicht durch
einen herkdmmlichen BASIC-Lader abgespeichert, sondern
direkt im Listing als Figur abgelegt ist.

Bei der Zeichendefinition wird diese Figur ausgelesen und in
Byte-Werte umgerechnet.

Es sollte jedoch nicht unerwdhnt bleiben, daB diese Art der
Zeichendefinition etwas langsamer ist als ein herkommlicher
BASIC-Lader, da die Bytewerte erst errechnet werden miissen.
Auf der anderen Seite sind die Vorteile zu sehen: Es ist
wesentlich ibersichtlicher, und Fehler durch falsche
Zahlenwerte konnen ebenfalls nicht auftreten, da das Zeichen
ja in seiner &dufBleren Form eingegeben wird.

1 PRIMT"O BITTE WARTEM! KOPIERWORGAMG BEMOETIGTM [
HUTE t*

18 PORESSZ24 ,8: POKEL .51

15 FORK=GTO4@35

28 POKEST 344+ PEER CE3248+K 0

25 HEXT

2@ POKEL LS55
58 PO ’
58 PORESSSTE 196 PO &4-A_¢u4+4 PEIHT"H"

188 READAF : IFA$<S"DESIGH" THEHGOTO L &6

118 REALES: B$=LEFTHIBF .10

126 PRIMT"S":B$

138 CO=PEERCS@RL17E)

148 FORK=ETO7 : READCE

141 IFCH="ENDE"THEWFRINMT"? MISSIHG STATEMEMTES IM":FEEK.SII+2
SENPEER (540 END

158 IFLEMCCH CEETHEMPRINTY? TOO MAHY SIGHS MY FEEK(S3) +256#
FPEEK {54t EHI

168 FORI=VPTOBSTEP-1 E$=MIDFICH B-T .10 IFKE="%"THENBY=EY+21
178 HEXTJ: PORESTVI44+S8C0+E L BY : BY=6: HEKTP

138 READAL: IFAF="DESIGH" THEHGOTOL 16

I

- 1 Ml

120

288 DATH DESIGH.A
213 DARTAEEEEEE
220 DATA%......%
238 DATA¥......%
248 DATA%.%
258 DATAX. ¥
250 DATA%......%
278 DATH#...... *
228 DATAREEREEERF
258 DATA DESIGH.E

38 TATA EEERREE
21a DATA E SO *
32 DATA L O
338 DATA L J
348 DATH E Rt 2 o
358 DATAH E T &
358 DATH Foouwann *
37¥@ DATA L2205

298 DATH ENDE

Wie Sie dem Listing entnehmen konnen, steht am Anfang in der
ersten Datazeile der DESIGN-Befehl- eine Zeichendefinition,
gefolgt von dem Zeichen, das verindert werden soll.
Anschliefiend folgen die acht DATA-Zeilen, die die &duBere
Form des Zeichens beinhalten. Ein Stern steht dabei jeweils
fir einen gesetzten Punkt.

ZUM THEMA MULTI COLOR. ..

Sicherlich werden Sie die Moglichkeit kennen,
sogenannten Multi-Color-(Mc-) Modus

Sprites im
darzustellen: Die
horizontale Auflésung nimmt um die Halfte ab. Zur Gestaltung
des Zeichens kénnen jedoch gleichzeitig drei Farben benutzt

werden. Auch selbstdefinierte Zeichen lassen sich im

121

Multi-Color-Mode darstellen. Wichtig hierfiir ist das
Register 22 (Steuerregister 2) des VIC. Dieses Register
(genau genommen das 4.Bit dieses Registers) entscheidet
dariiber, ob Zeichen in MC-Darstellung abgebildet werden oder
nicht.

Mit folgender Zeile schalten Sie den MC-Mode ein:
POKE 53270,PEEK(53270) OR 16

Durch

POKE 53270, PEEK(53270) AND NOT 16

gelangen Sie wieder in den Normalzustand.

Typische Erscheinungen des MC-Modes: Normalerweise stehen
Ihnen 16 Farben zur Verfiigung, in denen Zeichen auf dem
Bildschirm ausgegeben werden koénnen. Im MC-Mode schrumpft
diese Zahl zunidchst auf acht Farben. Es sind dies die
Grundfarben schwarz bis gelb. Verwenden Sie im MC-Mode
andere als diese Farben, so werden Sie die damit
ausgegebenen Zeichen auf dem Bildschirm kaum wiedererkennen.
Sie sind eckiger und bei manchen Farbkombinationen mit einem
Schatten versehen.

Im MC-Code ist ein gesetzter Punkt nicht mehr gleich einem
gesetzten Punkt auf dem Bildschirm. Vielmehr werden jeweils
2 Punkte nebeneinander zu einem Paar zusammengefaBt. So
ergeben sich insgesamt vier Kombinationsmdglichkeiten:

00 = Farbe O Hintergrundfarbregister O Adresse 53281
01 = Farbe 1 Hintergrundfarbregister 1 Adresse 53282
10 = Farbe 2 Hintergrundfarbregister 2 Adresse 53283
11 = Farb-RAM Zeichenfarbe Adresse 646

wurde eingangs erwdhnt, daB sich im MC-Mode nur noch acht
Farben darstellen lassen, so ist das nicht ganz richtig. Es

122

lassen sich im MC-Mode normale Buchstaben mit acht Farben
ausgeben. S

Zusidtzlich konnen acht MC-Zeichen ausgegeben werden. Dabei
hat nur das Farb-RAM acht verschiedene Farben zur Auswahl,
die iibrigen Farbregister Xkoénnen nach wie vor auf 16
verschiedene Farben zuriickgreifen.

Im Folgenden finden Sie das iberarbeitete Listing. Mit
diesem Programm wird der DESIGN-Befehl erweitert: Es steht
nunmehr auch der Befehl DESIGN-MC zur Verfiigung. Mit ihm
lassen sich Multi-Color-Zeichen entwerfen. Ein mit DESIGN-MC
entworfenes Zeichen sieht dann beispielsweise so aus:

300 DESIGN-MC,B 1=Farb-RAM
310 DATA 1111 2=Farbregister 2
320 DATA 2..2 3=Farbregister 1

330 DATA 2..2
340 DATA 3..3
350 DATA 3..3
360 DATA 1111
370 DATA ENDE

Hier das erweiterte Listing:

1 FPRINT"D BITTE CH. 1 MIHUTE WERTEH " :POEESHS &
FO 3 B POREL LS
ETOERSE

JEEST RS P

SRZVELAMDHOTEORS

]
Y
im
I
=
I
H f
=~ 0
T -
r
m
Rl
-
e
£
'3'1

1 LL=8: M=V
IFAF="DESTGH-MC" THEHMC=1 : LL=4 : Mi=32
READES B$3=LEFT$.B% .10
FRIMT"&":B$
1 CO=FEERCSE17VE)
FORE=8TOT : READCH
141 IFCH="EMDE"THEMPRIMT"? MISSIHG STATEMEMTS IH":PEEECS3)42
TERPEER CE4) CEMD
1568 IFLEMOCHEDCLLTHENFRINT"? TOO MANY SIGHS IHY;PEEKLS3)+256
#FEEK CE4) EMD i

et r R RO R I (AR
Dmm DS WS E

ny

-
-
]

.
B]
oo

123

il
5

Sl FORI=MMTORSTER -1 E$=MIDF0CF LT .10 IFKE="%" THEMEY=BY+21

IFMC=ATHEHGOTOLVE

2 BY=RYA2T 2R T

"THEMEY=H+ #I+10
PPOREESTI44+3 L BY RN =EHES
READAE : IFLEFT#CA% .8 r="DES TGH" THEMGOTOLE L

FOEE S22V0.PEERCSS FORLE T PORESSS 2 PRINT"BEERE" : REM MO

Pl o i R VI (N

DATH DESIGH.A
DIATF kb
DATA% .o v vu ¥
DATHA® . v v v u ¥
TDATH® . o 0w . o ¥
DATH# . v v v v o ¥
DATH® . v v . o ¥
JUSH N ST S
DA TH#EEERE R
DATA DESIGH-MC B
TATH
TATH
OHTA
TATH
DATH
DATHA
DAETH
DHTH e
TATH EMDE

[I B I I U v

i

hat

P o DO e IS R VRt B FR A O O VY I L it Rl 6 S B PR R ¢ R 1Y

[I I R B B o I ot

O3 03 G0 00 OF L0 D L0 L0 P PRI PY RS T RS PR PRI PD D e e e e e e e g e

W=

TRANSPARENTE DRUCKEN LEICHT GEMACHT

Das nun folgende Listing ermdglicht das Drucken eines
beliebig langen Transparentes.

Das Prinzip ist recht einfach: Der Text des Bandes wird
eingegeben. Anschliefliend wird der Vergrodfierungsfaktor
gewdahlt (Breite beliebig, Hohe max. 10).

Nun wird Zeichen fiir Zeichen des eingegebenen Textes
ausgelesen. Die &duflere Form wird aus dem ROM gelésen und mit
den vorangegangenen Angaben vergrofSert.

124

Letztlich wird das Zeichen gedreht, so daB auf dem Drucker

ein

endlos langes Transparent entstehen kann.

Doch nun das groftenteils sich selbst erkliarende Listing:

5 P
14
15
15
28
21
22
23
25
25

s S A N A B e el it ol L (I B TR IV IRV N A]
'.I'l [I B I L] -s [I I] ,'_.;i

»JO'[_'L'll'.ﬂCCII“JH-'-IQUITLH-I-'«-IZ-."'PJ'-‘G'@'3'3"3'-‘“‘5"@'3:"\1

oT
e

Ol

R

RINT"Q" POKESR220 .14 POKES2221 .14 POKES4S . 1

REM ##% TRAMSFAREHTIRUCKEER #*

PRIMT" & TRAHSFAREHT-IRLUCKER L LILILI

FRIMT"DRUCEER EIWMSCHALTEH | sissiy"

OPEH .4

IHFUT"BREITE" ; BR

INFUT"HOEHE" : HIO

PRIHT"O"

POREZ14 .21 POREZLL W SYSSSTR2 PORKEZEY

GETT#: IFT#=""THENZ:

IFPEEK L2687 2>THEH 2V

POREZE4 .1 IFTH$=CHR$. 1320 THEHFRE IHT" 20 .k . " D EMD

KF=k$+T#: IFLEMIKF THEME$=RIGHT$ k% . CLEMCKEI—100

FPOREZ14 .26 PRINT: PPIHTki IR THEMY Y =% 41

Ta=8: IFFPEEK G327 2

POKESSS .14 : PPIHF"Q";F$ CO=FEEE "

FREM ###% FEICHEH AUSLESEH ###

PORESS324 .8 POREL .51

FORA=ATOV

CH HJ—PEEh'4324W+'d#LHJ+H+'1 AW 2 2

HEXTH.

POKEL (55 PORKESSE34 .1

FEM ##% ZEICHEHN DREHEM H*#%

FORA=ATOV : ECAM=@: HEST

FORA=ATOV

FDPB FTORSTEP—1 W=21TE: IFCHO A H=MTHEMCHO A =CHO A —bl B0 F—ED
~Ei+21TH

NEHTB,H

REM ##% ZEICHEW AUSGEBEM #3¥#

FORI=ATOV: QF="" FORI=VTOSSTEF—1 W I=k L ANDET.T
IFWMITHEMFORU= 1 TOHD : @F=0F+" " HESTIL: GOTOZEG
FORLU=1TOHD : QF=0F+" " HESTIL

HEST.T s E="" 1 FORU=1TOBR : BY$=rm"E+0% HEXRTL

La~LEH-m?I:—1 IF RIGHTECEYS ,10=" "THEMSY$F=LEFTE O HYE LK)

25

PPIHT#4- ANEHERTL GOTO2S

EMD

|_-,|

laz4a)s PORESSS .1

125

MACRO-LAUFSCHRIFT

Das folgende Listing gestattet es, einen in
gespeicherten Text als Laufschrift auszugeben.

Das Besondere dabei ist die GroBe dieser Laufschrift:

Zeichen sind um den Faktor 8 vergrofert!

= POEESI286E .1 POKESIZ221 .1 POEESY4S & PRINT" "

18 IHFUT"TEST" : TH$: THE=ThE+" "
28 PRINT'D FORZ=1TOLEHCTEE

30 AF=MIDECTHE 2 .10

48 GOSUB1G@E: HERT £

S| EMD

(=21

e

26

9E

18a

1888 POKESSS , 1 PRINT E"; As : CO=FEEK 1824) : POKES45 .6
1818 POKESSR34 .8 POKEL .51

1628 FORJ=ETO7

1@ COCTI=PEEK Y SR248+(SHC00+T)

1G4 HEXTT

1858 POKEL .55 POKESS234 .1

FORK=7TOBSTER~1

FORY=ETO7

F=CO0Y AMDZ TR | IFATHEMKS S Y 2 =l$ v+ 0" : GOTOZe8a
E ST ETOSELI

HERTY : P=P+1

REM

FRIMT"&": : FORM=ETO7

IFGE 37 THEHR=33

PRIMTTFAE 38~ WS b

HERTH : G=G+1

IFF<33THENS 186

AE5E FORT=ETO7

4BEE LE=LEMCWE(TI 51 W$Tr=RIGHTS WS T LLED
4BPE HERTT

4188 HEXTH: RETURH

]
XU

[]

[N N I R T s YR |
AR el I A

S N A A R ey
DA B B IR R U x]

Ey
X
5
[xx]

TX$

Die

In BASIC ist das Programm natiirlich reichlich langsam. Das
Listing soll TIhnen 3jedoch als Anregung dienen und das
Prinzip veranschaulichen. Ubertragen Sie das Programm doch

einmal in Maschinensprache !

126

8 BLOCKS FUR SPRITES

Was bei der Programmierung von Sprites unangenehm auffdllt,
sind die wenigen zur Verfiligung stehenden Blocks, die zur
Abspeicherung des AuBeren der Sprites erforderlich sind.

Es sind lediglich diese vier Blocks, die fiir diesen Zweck zu
gebrauchen sind:

Block 11 Add. 704 - 766
Block 13 Add. 832 - 894
Block 14 Add. 896 - 958
Block 15 Add. 960 - 1022

Erschwerend kommt ferner hinzu, daB8 die Blocke 13-15 im
Kassettenpuffer 1liegen, der wdhrend des Programmablaufes im
Normalfall allerdings nicht benutzt wird.

Diese vier freien Blocke gewdahren nun auch nur die
Definition von vier verschiedenen Sprites.

Um sé&mtliche acht Sprites mit verschiedenem AuBeren auf dem
Bildschirm abbilden zu konnen, muB also noch Platz fiir
weitere Blocke geschaffen werden.)

Dies erreicht man durch Verlegen des BASIC-Startes. In
unserem Beispiel werden so acht Blocke, 32-39, frei.

Man ist so auch vom Kassettenpuffer unabhingig.

Der BASIC-Start wird von Adresse 2048 nach 2560 verschoben:

POKE 44,10 (Adresse 43 des Vektors bleibt unveradndert,
neue BASIC-Startadresse = 10*256)

POKE 10*256,0 (O an BASIC-Anfang)

NEW (Pointer setzen)

Wie aus dem NEW-Befehl bereits ersichtlich wird, miissen

diese drei Anweisungen vor dem Laden des eigentlichen
Programmes eingegeben werden.

127

6. DAS SPIEL

Wir wollen Ihnen jetzt an dem Spiel ELEVATORBOY einen Weg
der Programmierung erklaren.

Anfanger konnen daran 1lernen, wie man ein langeres Spiel
selbst programmiert. Fortgeschrittene konnen einzelne Tricks
ibernehmen. Vielleicht entdecken ja auch Sie etwas, daB Sie
bei Threm nachsten eigenen Spiel verbessern konnen.

Doch vorher erst eine kurze Spielbeschreibung. Diese
Spielbeschreibung soll spater in dhnlicher Weise im Spiel
erscheinen:

Sie sind Page in einem Hotel und sollen die Schuhe zum
Putzen aus den Zimmern holen. Fiir jedes Paar erhalten Sie 1
DM Trinkgeld vom Gast. Wenn Sie iiber 50 Schuhe beim Portier
abliefern, erhalten Sie ein sehr hohes Extra-Gehalt.

Aber sobald Sie einmal falsch auf den Paternoster gesprungen
sind, fallen Sie in den Fahrstuhlschacht und verlieren alle
Thre Schuhe.

Sie bewegen sich mit dem Joystick an Port 2. Hoch und runter
hat dabei keine Funktion. Driickt man auf den Feuerknopf, so
dndert sich die Fahrtrichtung des Paternosters. Beim ersten
Mal ist es sehr schwer, richtig auf den Fahrstuhl zu kommen.
Sie nmiissen dabei im richtigen Moment den Joystick in die
entsprechende Richtung driicken.

Wahrenddessen 1l&duft an der Seite ein Bonus in Form eines
langen, senkrechten Streifens ab. Bevor der Bonus ganz
abgelaufen ist, miissen Sie zum Portier. Danach erscheint ein
neues Bild, und Sie erhalten einen neuen Bonus.

Wenn Sie nicht vor dem Ablaufen des Bonus den Portier
erreichen, wird Ihnen ein Leben abgezogen.

Zuerst einmal stellen wir ein "Grundgeriist" des Spieles auf.
Dieses Geriist erganzen wir nach und nach, bis schliefilich
das fertige Spiel entstanden ist.

128

Im ersten Listing ist die Grafik sehr schlecht. Besser wird
sie erst, wenn wir in dem nichsten Schritt die Zeichen neu

definieren.
Da Sie wahrscheinlich aus den Zeichen 3jetzt noch nicht

schlau werden, sagen wir Ihnen, was sie spater einmal

darstellen werden:

ZEICHEN BEDEUTUNG
/Pound/ Zimmer mit einem Paar Schuhe
1 Geschlossene Tiir
Spieler (SIE)
% Portier
» Paternoster

Und noch eine Tabelle:
Die Reihenfolge der Ergidnzungen. Diese Reihenfolge ist auch
"eine Skala fiir die Wichtigkeit der einzelnen Punkte.

(0. "Gerippe")

1. Grafik

2. Sound

3. Anleitung

4. Anfangsbild
DAS GERIPPE

Das Gerippe soll nur das Wichtigste enthalten. Also miissen
wir genug Zeilen als Zwischenraum lassen, um spater noch
Grafik, usw. mit hineinzubringen.

wir fangen auch erst bei Zeile 100 an, und lassen so Platz
fiir das Anfangsbild. Zum verniinftigen Spielen ist dieses
Listing noch nicht geeignet. Sie sollten es trotzdem einmal

129

starten, um zu sehen, wie das Spiel sich spater entwickelt,
und um eine ungefihre Vorstellung des Ganzen zu bekommen.
Das Xkomplette Listing ist am Ende des Kapitels noch einmal
in "einem Stiick" abgedruckt.

Doch zuerst das Listing des Geriistes:

g PRIMT"ED" PORES228] .3

7 BEB=1024: R=54272
9 W=BREE+S3E D=BRE+4E7 G=a4@ BO=23 PUM=#

18 FE=16:L1I=3
11 PRINT" piplejeleininin]e]e]s] ELEYATOR BOY"
12 IFPEEK{SE3280<>111 THEM1Z

; ¢ TTEEE TTEET

FPRIMT"O"

FRINT!" mse-ee e
PRIFTY ittt ittt bbbt !
PRIMTY [s it ottt sttt il Y
FORI=1TO3

W=THT ORI L DS +1

FPRIMTEILIE L

FRIMT" (] it bttt it ot steitiifg | 9
HEXT

FRIMT"E ! “ e
PRIMT"E | g i i . T
FRIMT"®R
FORI=BEE+7 TEFP4E:FOREL 232 POREEI+R & HEST
FORES 35 POEER+R 8 POREX+1 .32 PORKES+2 .32 POEER~1 .32 POKE

P PR e oo S0 S D 0D 00 00 00 00 00 T O B 0 PO o

PRIMT" HI-SCORE "iHIS,
FRINT L L T Ty
GUSLIBZEGE

FORI=1TOFE ::MERT

IFFPEEE (D+G =31 THEMG=—G
D=D+0G
FOKED 34 POKED+E 34 POKED+ 12 . 34 PORKED+ 13 .34
IFOL=8THEHNZ GGG
FORER .32 W=E+0
IFPEERCH =21 THEH = +4E : GOT O3

T POKER+R @
EBO=B0-8 @325
POREINTCBOD#48+RBEE+3V , 32 IFBO=J1 THEHZ GGG
GOTOLEaa

LA B B SO A OO U X L By Bt B O LRI B SR B BN B B IO B I I B RS B I v B B B I B B)

PR N e e el et i el R AN L R R O L T O B T L T L T L T e e e O O S S
Db I I B Y B I I B B BT]

N B B o B B I T By By By B K BN |

130

2E=127T HEHH—F‘ Fl:Tl IRk

IFPEEK ¢ 553

2B =1 23THERY=
2E0=113THEMYY=1: hl_l T3e

03 03 03 G

DX By I o i oy B B is:s DR o]
3 LA REA R N PO

1

~41"I"HEI4'1‘=='f'—4t'1' IFPEEP r= 21 THEHSEGE®

i

D3 00 a3 03 4

=ZZTHEM : PORER 22 H=pE+y GOT

DI I Yy B

b
LI e e T

FAMDFEEE SR+ +48 0= L A2 THEHZ 1 56

Gl

ERINT S ePUHKTE " ; FLUMTR CPRIMT Y e=SCHUHE <" 5 PUM

RETLIFM

TFH=ATHEHG=—3 H=1

RETURH

FE=FE~-1: IFPUN<SETHENTR=TR+PUH : GOTO3E 1S

i TR=TR+THT U S BO%T)
 D=BRE+4ET G=d48 BO=23 PLUH=G

IFF‘EEP L
Q=1
FORER 35 POEES+R .8
FETURH

THE=TR+FLIH: LI—-LI-~1

v=3d THEHM=M 4 :

Pl]

COEEI#4E+ERBR+37V 156 HEXT OL=8
23 PUN=3

n—frﬂ+4ﬁf~
IFL I=aTHEN:

CROEERS+R A GOTO1L83

F'F‘IHT i PORES22EL L
FRIMHT" sleip]alsalninly]nlaln]s] DL HAST Y TR+FPUM: "$ YERDIEH

111THEHS
GO CSESE

131

Es stimmt nicht ganz, daB das Listing erst in Zeile 100
anfdngt. In den ersten Zeilen stehen der Name und die
Definition der Variablen. Aber dazwischen ist noch sehr viel
Platz fiir das Anfangsbild. In jedem Programm sollten die
Variablen in den vorderen Zeilen zum ersten Mal definiert
werden, damit man schnell eine Ubersicht iliber sie bekommen
kann.

Tabelle der wichtigsten Variablen (nach ihrer Wichtigkeit
geordnet)

VARIABLE BEDEUTUNG
X Adresse, in der sich der Spieler befindet. Am
Anfang enthdlt X den Wert 1560. Das ist etwa
in der Mitte des Bildschirm-Speichers.

BBB Adresse des Bildschirmspeicher-Anfanges. Die-
se Variable mufl verandert werden, sobald
der Zeichensatz gedndert wird. Die Variable
dient hier als Zeiger und ist eine Konstante,
die sich nicht veréandert.

R R ist dhnlich der Variablen BBB. Sie enthdlt
die Differenz zwischen Bildschirmspeicher-An-~
fang und Farbspeicher-Anfang. Diese Variable
(Konstante) muB ebenfalls bei Anwendung der
neuen Grafik-Zeichen verdndert werden. Aufler
dem vereinfacht sie die Verdnderung der Farbe
unter einem Zeichen auf dem Bildschirm. Will
man beispielsweise die Farbe unter der Spiel-
figur andern, so braucht man lediglich einzu-
geben: POKE X+R, (Farbe des Spielers).

D Adresse des ersten Paternosters. Die weiteren
Paternoster werden mit Hilfe von D errechnet.
Der zweite Paternoster ist bei D+6,der dritte
bei D+12, und der vierte bei D+18. So braucht
nur eine Variable erhoht zu werden und, Pro-
grammzeilen werden gespart.

132

BONUS

TR

PUN

LI

FE

Die Variable fiir den Bonus. In langen
Spielen sollte man die Variablen-Namen so
wdhlen, daB man sie spdter wiedererkennt,
d.h., der Name der Variablen sollte die Be-
deutung erkennen lassen,die sie darstellt.Da-
fir kann der Name der Variablen ruhig etwas
ldnger sein.

Y ist eine Hilfs-Variable fiir die Koordinate
des Spielers.Sie wird beispielsweise benutzt,
um zu priifen, ob das nachste Feld frei ist.

TR ist das erreichte Gehalt.

PUN ist die Anzahl der Schuhe, die man bei
sich trdagt. Nach einem Fall in den Paterno-
ster-Schacht wird diese Variable auf Null ge-
setzt.

LI stellt die Anzahl der noch vorhanden Leben
dar. Bei jedem Sturz oder bei Ablauf des Bo-
nus wird diese Variable um Eins erniedrigt.
Nach Verringern dieser Variable wird iiber-
priift, ob sie kleiner oder gleich Null ist.

FE ist die Arbeitsgeschwindigkeit. FE betrédgt
anfangs Zehn. Die Arbeitsgeschwindigleit kann
kaum mehr erhoht werden, aber als Anfanger
bei diesem Spiel kénnen Sie FE erhohen, um
damit die Arbeitsgeschwindigkeit zu erniedri-
gen, und das Spiel zu vereinfachen.Sobald Sie
beim Portier waren, erniedrigt sich FE um 5.

G ist die Richtung fiir die Paternoster. Sie
enthdlt entweder 40 fiir runter oder -40

fiir rauf. Zur Variable D fiir den Fahrstuhl

wird immer G hinzugezdhlt. Daraus ergibt sich
die Bewegung der Paternoster.

133

HIS

OL

BILD$(W)

I ist eine Schleifenvariable.Es ist praktisch
in verschiedenen Programmen immer die gleiche
Variable fiir Schleifen zu benutzen.

Man spart Speicherplatz, wenn man im einem
Programm immer die gleiche Schleifen-Variable
benutzt. Aber passen Sie auf,daB eine Schlei-
fe schon abgeschlossen ist, bevor die gleiche
Variable noch einmal verwendet wird.

HIS ist die Variable fiir den High-Score, die
bisher hochste, erreichte Punktzahl. Obwohl
der High-Score eigentlich nicht wichtig ist,
wurde er doch schon (wegen der Kiirze der Be-
rechnung) in das Gerippe eingebaut.

Die Variable H soll verhindern, daB auf ein-
nen Knopfdruck die Fahrtrichtung mehrmals ge-
wechselt wird. Bei Knopfdruck wird die Fahrt-
richtung gedndert und H auf 1 gesetzt. H wird
erst wieder auf O gesetzt, wenn der Joystick
in Ruhe-Phase ist. Wenn H=1 ist, reagiert der
Computer nicht auf den Knopfdruck. Auf die
gleiche Weise kann man wie z.B. bei dem Spiel
"FROGGER" die Linge der Bewegung einschrén-
ken.

Wenn OL den Wert 1 hat, befindet man sich auf
dem Fahrstuhl. Sonst ist OL gleich Null.

Zufallszahl fiir die Erstellung verschiede-
ner Bilder.

Die Variable BILD$(W) kann neun verschiedene
Variablen-Zuweisungen (Bilder) enthalten.Die-
variable ist dimensioniert und wé&hlt so je-
desmal ein anderes Gesamtbild aus. Je mehr
verschiedene Bilder ein Spiel hat, um so
interessanter ist das Programm.

134

Wichtig fiir die Ubersicht iiber ein langes Programm ist nicht
nur die Variablen-Liste, sondern auch eine Auflistung der

einzelnen Programmschritte.

Aufgabe

Zeilennummer
0-5

6 - 99

100 - 180
183 - 280
1000 - 2990
1050 - 1070
3000 - 3190
3500 - 3510
3800 - 3830

Hier wird spater der Zeichensatz einge-
lesen und aktiviert (siehe GRAPHIK).

Dieser Bereich ist fiir die Variablen-Defi-
nition vorgesehen. AuBlerdem liegt hier das
einfache Titelbild. Spater wird hier auch
das verbesserte Anfangsbild zu finden sein.

Definition der Variable BILDS$(w).

Hier wird das Gesamtbild erstellt.

Die Bewegung des Paternosters wird gere-
gelt.

Das ist der Bereich fiir die Bewegung der
Spielfigur auf dem Fahrstuhl.Diese Bewegung
ist gesondert von der normalen Bewegung des
Spielers.

Jetzt kommt die Lenkung der Spielfigur. Im
Gegensatz zu der Bewegungsroutine im Be-
reich von 1050 - 1070 wird die Bewegung in
dieser Routine durch den Joystick beein-
fluBt.

An dieser Stelle wird die Fahrtrichtung des
Paternosters geandert.

Diese Zeilen werden vom Programm ange-
sprungen, wenn die Spielfigur beim Portier

135

ist.

3900 - 3940 Hier steht wieder etwas fiir die Bewegung
der Spielfigur.

9000 - 9190 Dieser Teil beriicksichtigt den Sturz des
in den Fahrstuhlschacht.

9800 - 9890 Hier ist die Endroutine untergebracht. Die
Endroutine wird dann angesprungen, wenn man
kein Leben mehr hat.

50000 - Ende Dieser Bereich ist fiir die DATA-Zeilen

vorgesehen. Diese Daten dienen der Graphik
und werden auch indem Abschnitt erst einge-
geben.

Die Zeilen fiir die Soundeffekte sind nicht in dieser
Ubersicht aufgefiihrt. Sie werden mehreren dieser Punkte
hinzugefiigt. Bei dieser Aufzdhlung der einzelnen
Programmschritte wird deutlich, wie grofl die Abstadnde der
einzelnen Bereiche sind. Man kann diese Zeilenabstdnde
nachtrdglich mit einem guten RENUMBER-Programm herausnehmen.

136

GRAPHIK

Die erste Erweiterung des einfachen Listings ist der
Abschnitt iiber die Graphik. Er ist wegen der vielen neuen
Definitionen der Zeichen und der daraus folgenden vielen
Daten die lingste Ergdnzung. Aber dafiir werden alle Zeichen
bis einschlieBflich zur neun, also insgesamt 58 Zeichen,
gedndert. Sie erhalten ein v6llig neues Schriftbild. Mit der
neuen Graphik wird das Spiel gleich viel besser.

Ergidnzen oder dndern Sie bitte folgende Zeilen ab:

FEADA: IFA=—1THENZ

POKESV344+1 A I=1+1:G0TOL

POKES3272 .24 POKESSSTS 142 POKES4S , 195
GOTOS

POKES3272 .21 ' POKESSSTE 151 POKES4R .4 EHD
PRINT"ED" : POKES2221 .3
BEB=S5@176: R=512@

WGBBE DATALZY 127 .81 .22 .28.,22.5
SeeE1 DATAEE .58 .182.182 .126.12
SEE62 DATALIZG.124.182.124 ,126 . 18!
Se@a3 DATASA . 125,162 .,95,1082.,126 .8 f
S@a04 DATA124 .125.99.99,93.125.124.68:1
SEea5 DATALZT.1&85,958.,124 36,126 .12V A E
S@EEs DATALZT.126.124.95.124 126,112 ,8:F
S@ea7 DATASZ.121.112,115.115.682.31 .6: 0
50863 ATAI1S 115,115,127 ,127.115.,115.8:H
Saaas DATAZS ,28.28.28.28.28.22.8:1

50010 DARATAL2V .12V .7 . ”;1@3;63,31;% J

SeEll DATAL1S,119.,125.1256.,126.1159.115.,.8:K
SEa1z2 DATAL12.112.112.112.112.126.127 .8: L
S@813 DATA119.127.187 . 167 .167 .33 ,1159.,8:1M
S@@14 DATALIG2.115.122.127 1271131158 H
SAE1S DATASZ 127 .119,119.,119,1237 .82.,6:0
Se@1s DATAL2S,127 115127 126112112 .8:P
SEE17Y DATASZ.127.39.111.,111.127 .82.8:0
TeE1e DATALZE.127.115.127 ;124.-126.-119;@152

SJ B P

TEE1e DATASR -126 HELEE 128,85

SERzZa DATALZT .17 :':’5.-2-'4-;-5 28.28.8:7

pl = I‘HTﬁllq 119,113.119,127.127.28.a:1
SHeazz DATAL119.119.,50 .58 ,.52.28.8,8: v
SEEZI DATALL? 99167 167 187,127 .94 .8 W
SEE24 DATASZ 119 .94 .82.62.113.,93 .8 K
RE2S DATALLS . S9,.31 .14 .14 .14 .14 .8: Y%
SEE2s DATALZV &3.,7.28.112.125.,127 .4:
SEEZY DATAZ4G .246.192 .132.,192.,1532 -44@ 248: [
SEaza DHTH@;JE.IU S182.182.182 .35 .8 £
SE8z? DATALS . 15,3,3.3.3.15.15:1

SEE2e DATAHL2S . 1LD 126 FE.EZ.128.125 128 T

137

Do O o B VI oy]
Dol i B B

L N I
RN Sl R I Rt B

Saads

L

bk

o0 oo
DI Il

D o]
- & 0D

2

SERREZ
SEES3
SEETE4
SEASS
SRASE

SEAET
bl []

DATHZ23.,239,233.8,251 .,251 .251 .8:

DATHS .G ,&.68.,8,8.3.8

DATAHZSS ,@,.25%.8.255.6,255 .8 |

[}

DATAZSS 255,255,183 ,668,60 ,50 .80

DATHS .68 .60 ,24 ,255 .24 ,88 .35 #
DATALEL 25,87 .87 .85.,85.85.,101: %
DATAZ24 .24 ,24 ,60.58,126,255 .48 4

DATALZT 254,127,254 . 127,284,127 .254 :

DATAE .24 .24 125,125 .24 .24 .,24: 7
DATAHZY 42,205 568 38 .96 .48 .24 ¢
DATHZ4 126, 6.8.,6.12.24:)
DATA42 .72 .F2.16,. 16 .8, 15,8 %
DATAA .S58 .58, 125,126 .68 .68 .8 +
DATAHS .8 .8.8.,8,12.24 .48: ,
DATAS .0 .8 .125,125.8.8.8: -
DATAS Q.8 .68 .8 ,968 .93 .8,
DATAS .5 .12.24 .24 .,48.95,8:
DATAS .24 .60, 182,182 .88 .24 .8
DATAS . 12.28.68,12.12.12.48:1
DATARE . 12.12 .4 .82,16,368.8: 2

B
=

A

DATAE .36 .2 .4.2,18.30.8: 32
DATAS . 18,16 .15.28.30 .4 ,8: 4
DATAGB .28 .18 ,28.2.2.28.8: 5
DATAB . 12.12.16.,28.18,12.6:8
DATHS .26 ,18.4.8,18.16.8: 7
DATAB.12.12.12.18.18.12.8:8
DATAS .24 .35 .28 .4 ,358.24.8: 3
DATA-1

138

"

&

Wenn Sie Jjetzt das Programm starten, miissen Sie erst etwas
warten, bis der Computer alle Daten eingelesen hat.

Fiir das Spiel werden nicht alle 59 Buchstaben gebraucht. Wir
haben diese DATAs einfachheitshalber trotzdem abgedruckt. So
konnen Sie den Zeichensatz auch fiir Thre eigenen Programme
benutzen.

Im Listing erscheint hinter jeder DATA-Zeile ein Zeichen. In
dieser Zeile sind dann die 8 Daten des neuen Zeichens
enthalten.

Die Graphik in dem Spiel "Elevator Boy" besteht nur aus den
Bildschirmcode-Zeichen.

Eine weitere gute Moglichkeit, eine effektvolle Graphik zu
erstellen, ist Sprites zu benutzen. Da aber in diesem Spiel
keine Sprites benutzt wurden, soll in diesem Kapitel auch
nichts iiber Spritegraphik stehen. Das gleiche gilt auch fiir
die High-Resolution-Graphik.

Haben Sie das Spiel schon gestartet, wollen aber wieder in
die normale Graphik zuriick, brauchen Sie nur

RUN 5

einzugeben. Das erspart die vielen POKE-Befehle. Wenn Sie
versehentlich RUNSTOP/RESTORE gedriickt haben, konnen Sie
ebenso verfahren, miissen aber auBferdem danach den Bildschirm
loschen.

Wollen Sie das Programm danach wieder mit den neuen
Graphik-Symbolen spielen, geben Sie bitte

RUN 3

ein. Jetzt wird der Zeichensatz nicht noch ein zweites Mal
eingelesen. Dadurch entfdllt die 1lange Wartezeit vor dem
Spiel.

Man kann in Spielen auch besondere Graphikeffekte einbauen.
Z.B. ist beim Sturz in den Fahrstuhlschacht ein Kreuz unten

139

im Schacht zu sehen. Zusdtzlich wird dieser Effekt spater
mit einem Sound-Effekt erganzt.

Bei der Farbe der Figuren, des Hinter- und Vordergrundes
sollten Sie Thre Phantasie spielen 1lassen und gute
Farbkombinationen auswdhlen. Zu beachten wdre nur, daf die
Farben auch auf einem Schwarz/Weil-Fernseher zu
unterscheiden sein miissen. Rot. und blau sind beispielsweise
auf einem Schwarz/WeiBi-Fernseher nicht zu differenzieren.

SOUND

Wenn Sie die Graphik erfolgreich erginzt haben, kénnen Sie
jetzt zum ndchsten Abschnitt kommen - zu den Sound-Effekten.
Immer dann, wenn etwas Besonderes passiert, kann man einen
Sound-Effekt einbauen. Unter Sound-Effekten versteht man
Melodien oder auch einzelne ToOne. Wenn Sie gelegentlich
einmal in einer Spielhalle waren, ist Ihnen diese
Untermalung sicherlich bekannt. Auch in dem zum C-64
beigelegten Handbuch sind einige kleine Sound-Routinen
abgedruckt.

Beim Spiel "Elevator Boy" soll immer dann ein Ton erklingen,
wenn der Spieler ein Paar Schuhe nimmt, und wenn er in den
Fahrstuhlschacht £f&allt. Dafilir erganzen Sie bitte wieder Ihr
Programm um die nachfolgenden Zeilen:

250 POKE 54296, 15
252 POKE 54277,31
254 POKE 54278,128
256 POKE 54272,1
260 POKE 54273,1

3053 IF PEEK(X+Y)=28 THEN POKE 54276, 129
: PUN=PUN+1:G0OT03100
3180 POKE 54276,0

9110 POKE 54277, 31

140

9112 POKE 54278, 255

9114 POKE 54272,0

9116 POKE 54273,2

9118 POKE 54276,33

9120 FOR I=1 TO 500:NEXT I:POKE 54276,0

In den Zeilen 250 bis 260 setzt der Computer die Werte, die
fiir die Tonerzeugung wichtig sind. Wenn der Spieler auf ein
Paar Schuhe geht, braucht nur noch die Wellenform ein- und
wieder ausgeschaltet zu werden (Zeile 3053 und 3180).

Die Zeilen 9110 bis 9120 sind fiir den Sturz in den
Fahrstuhlschacht. Damit hier ein anderer Ton zu hdren ist,
werden neue Werte filir die Tonerzeugung festgesetzt.

Man kann zusatzlich zu den Sound-Effekten auch noch eine
Melodie ertonen lassen. In dem Kapitel iber
Interrupt-Handling steht ein dafiir geeignetes Programm.
Wahrend die Tone der Sound-Effekte iiber die erste der drei
Stimmen zu horen ist, l&uft in diesem Programm eine Melodie
iiber die dritte Stimme. Am besten 1lesen Sie sich die
Beschreibung zu dem Programm einmal kurz durch. Es heifit
"Musik aus dem Interrupt"”.

DIE ANLEITUNG

Der Nutzen einer Anleitung ist offensichtlich. Der Spieler
sieht sofort, worum es in dem Spiel geht. Haufig werden die
Anleitungen aber auch in Form einer Beschreibung
mitgeliefert. Auf diese Weise kann man seine Programme-auch
ein wenig schiitzen.

Unser Spiel ist selbsterklarend. Dazu filigen Sie bitte
folgende Zeilen ein.

25 PRINT " tirtrrerprenrrnrrrrrenprirtnd

26 PRINT " WOLLEN SIE ANWEISUNGEN (J/N)
* (viermal Cursor hoch) " : GET G$%

141

28 IF G$="N" OR PEEK(56320)=111 THEN 100
29 IF G$="J" THEN 42

38 GOTO 28

42 PRINT " (CLR-HOME)SIE SIND PAGE IN EIN
EM GROSSEN HOTEL UND";

43 PRINT "SOLLEN DIE SCHUHE AUS DEN ZIMM
ERN HOLEN.";

44 PRINT "FUER JEDES PAAR ERHALTEN SIE 1
$"

45 PRINT "TRINKGELD VOM GAST."

46 PRINT "WENN SIE UEBER 50 SCHUHE BEIM

PORTIER"

47 PRINT "ABLIEFERN, ERHALTEN SIE EIN HO
HES GEHALT."

49 PRINT : PRINT " (Pound) ZIMMER MIT

EINEM PAAR SCHUHE"

50 PRINT : PRINT " (T) GESCHLOSSE
NE TUER"

51 PRINT : PRINT " (#) Spielfigur
52 Print : PRINT " (%) Portier"
53 PRINT : PRINT " ("; CHR$(34) ;")
Fahrstuhl"”

56 IF PEEK (56320) <> 111 THEN56
Auflerdem miissen Sie Zeile zwolf 1lOschen.

Die Bedienung des Programms sollte moglichst unkompliziert
sein. Sie muB fiir den Spieler einfach und schnell zu
handhaben sein. Ein Spieler, der gemiitlich auf dem Sofa
liegt und einen Joystick in der Hand hdlt, mochte nicht nach
jeder Spielrunde aufstehen und das Spiel neu einstellen
missen.

Darum braucht in unserem Spiel die Frage auf Anweisungen
nicht mit "n" beantwortet zu werden. Es geniigt, wenn man in
diesem Fall auf den Feuer-Knopf am Joystick driickt.

142

ANFANGSBILD

Das Anfangsbild sollte den Spieler schon ein wenig
animieren. Dies erreicht man mit einer imposanten oder
zumindest guten Graphik im Anfangsbild. Ein Vorschlag
unsererseits 1ist, in das Anfangsbild eine Szene aus dem
Spiel einzubauen. Ein weiterer Vorschlag ist, daBf die
Graphik sich bewegen konnte. Beide Vorschldge wurden beim
Schreiben des Spiels beriicksichtigt.

Ein Teil aus dem Anfangsbild wollen wir Ihnen ersteinmal so
vorstellen. Es ist eine in BASIC geschriebene Laufschrift.

11 EL$ = " ELEVATOR BOY
(37 Leerzeichen)"

27 PRINT " (1 mal Cursor hoch)"EL$

30 FOR 0 = O TO 150 : NEXT
31 EL$ = RIGHT$ (EL$,1) + LEFT$ (ELS$,
LEN (EL$) -1)

39 GOTO 27

Diese Zeilen konnen Sie ebenfalls in das Spiel einfiigen, sie
gehdren ins Anfangsbild. Aber diese paar Zeilen sind
gleichzeitig ein kleines, eigenstandiges Programm. Sie
sollten es einmal allein ausprobieren. Wenn Sie das kleine
Programm gestartet haben, sehen Sie den Schriftzug "ELEVATOR
BOY" {iiber den Bildschirm laufen. Statt des Textes, kodnnen
Sie ihren eigenen Text in EL$ eingeben. In Zeile 30 k&nnen
Sie die Arbeitsgeschwindigkeit einstellen. Wenn Sie die
Zeile 30 ganz weglassen oder die Geschwindigkeit auf O
setzen, 1lduft die Schrift so schnell, dafl sie verschwimmt.
Die Laufrichtung konnen Sie 4&dndern, indem Sie LEFT$ und
RIGHT$ vertauschen.

143

Jetzt kommen weitere Zeilen, die Sie in das Gesamtlisting
einfiigen kOnnen. Durch diese Zeilen enthdlt das Spiel ein
bewegtes Anfangsbild.

FRINTTHEC 140" | ssiti
FRIMTTABI14) " | EEELE 4
PRINTTREC 140" | it
PRINTTREC 142" | TTEEE £
PRINTTABC 140" | it
PRINTTAEC142 " LPPETE £EETTI "
PRINTTAEC 14D " | it it |

PL=EEE+18&+M

FPOKEFL—4& .32

POEEFPL .35 POKEFL+R .&
POREEFL+43 34 POREPL R+, 2
FOREFL+2& .8

M=p+G 0 TFME4ER0RMI=AaTHEMNG=-G

e B B RV SR NRE WLl RN e Bt s (O B VA I]

LA SR PR PV R C I LRI I I LV I ol ool ol el codl ol el

144

ZUSAMMENFASSUNG

Jetzt ist das Programm vollstdndig. Auch wenn Sie nicht
mitverfolgt haben, wie das Spiel entstanden ist, konnen Sie
das alles umfassende Listing abtippen und spielen.

Dieses abschliefende Listing soll auBerdem denen, die die
einzelnen Schritte abgeschrieben haben, helfen, vielleicht
vorhandene Fehler zu finden und korrigieren.

Hier das Gesamtlisting:

READA : IFF=-1THEN
POKESTE4441 .F: I=T+1"
POKES3272 .24 POKESSS
GOTOS
FOKES3272 .2 St
PRINT"EI" POKES32S1 .3
BEB=5G175: R=5120
H=BBB+S36 D=BEE+487 : =40 B0=23 PUN=G

FE=1@:LI=3

EL$=" ELEYATOR ROY "

uR]
Sla2 POEESSR 19

SL.151 PORES4S . 4 EMD

= e 0] Ty O e 0 P e
- T

rPa

1
ey
-
=
pour]
b
A
-
z
-
I
=
o
B

FPREINTTABI 140" LT TEE
PRIMTTABC 14" e i |
FRINTTREC 140" L TEEEE £ TTT 1Y
PRIWTTAEC 140" 1« ;
FRIMTTAEC 143" L £££4 E
PRINTTAREC14) " | sisis «
FRINTTHEBC 142" LT TELE o -1

FPRINTTABO 14" | aiiie it
FRINTTHE 140" UP Tt ££€T11"
FRIMTTAEC 14" | aii it |

13
14

FRIMT:PRIMT 10000 b b i i i iyyygn
PRINT" WILLST DU AMMEISUMGEM ©I Mo#XIm
PRINT"O "EL$

GETGS | IFGE="H"ORPEEK (56320 =111THEM1 B&
IFGH="J"THEH42

FORO=ATO1S5@ : HEXT
EL#=RIGHT$:ELS . 1) +LEF T EL$ LEMIEL$3—12

PL=BEB+ 108+

POKEPL~48 , 32

POKEPL , 35 : POKEPL+R .@

POKEFL+48 34 POKEPL+R+4@ , 2

POKEPL+&@ , 32

M=M+G 1 TFM>4ER0RM = THENG=-(

GOTO2T

145

42 PRIMT"ZSIE SIMD PAGE I EITHENM GROSSEN HOTEL UMD

4% PRIMT"SOLLEN SCHUHE AUSDEN ZIMMERM HOLEH."

44 FRIMT"FUER JEDES PAAR SIE ERHALTEH SIE 1 #"

45 PRINT"TRIMEGELD MOM GRET .Y

45 PRIMNT"WEMH SIE UEBER S8& SCHUHE BEIM PORTIER"

47 PRIMT"AEBLIEFERH BEKOMMEN SIE EIM EXTRA GEHALT .

FRIMT"H C£1 ZIMMER MIT EIMEM PAAR SCHUHE"

FRINT" a8 [1+1 GESCHLOSSEHE TUERY

FRIMT M8 [1 LEERES ZIMMER"

FRIWT" oe) C#1 SPIELFIGUR"

FRINT" o8 [w1 FORTIER"

FRINT" o8 CrOHREE 240"] FHHF STUHLY

IFFEEE 5S¢ - ’
BILDE L

BILDE D
PRIHT"I"
PRIMT"
FRIMT"
FRIMT"
FORI=1T0O%

=IHT ORI L p#Eo+1

s S RS S ¢ B R VY T Sy Sy ot By B Y At By I n

O LT LRI LR O R R T B e e e el el el i oS o S IR B I R 1 B Y -
PRI P = e e DM 0 0 00 00 0 T N R e Ty e o= A

E FPRIMTEREILDE WD

SOPRINTY] st s it i il

B OHERT

5 PRIMT"E ! " (RS

T OFREIMTE) st st dftibiotis sttt i L 1

B PR TMHT " R it A

1 FOR I—BBB+?.“TIIPPB+H1T’%TE|-'4U PUFEI 3 = PO I'EI+F' J5 T HER

B OPOEER 35 POEEM+R 8 PORES+L (32 POREER+Z .32 PORKEX-1 .32 POKE

32

-

@ PORES429:8 15
@ OPORES4277 .21 POKESS427E 122 PORES4272, 1 POKES4273 .1

FRIMT" H1~MDURE MIHIS:
PRINT L L L T L oy

GUOSLE RS

FORI=1TOFE : HEXT

PORED 32 POEEDS 22 PORKED+1 2 .32 POEED+13 , 32
IFFEEE CD+GE =21 THEMG=~(3

D=T1+0

FOEED .24 POEED+S .24 POKED+12 , 34 POEED+ 132 .34
IFOL=8THEHZGER

: G

1 THEME= +48 LG0TODa0E
WS PORER+YR . &

et b b b e b bk el e e 1 RS REOD

DAY I B Y Ry B XY BB Y 1 Bt BS §
SRR R R NN)

SRR RREZAOD

146

ARE BO=RO—6 855

i P =TT CBO D #4484+ BRE+3T 32 IFBO=1 THEHZ
GOTOLaa8
IFFEER (S
IFFEEE
IFFEEE
IFFEERS
RETURH
I FPEE 4

27 THEMH=: RETURH
1 1 1 THEH“"EBPI

1 THERY="Y—-48: IFFEEE
STHEMFOKES42VE . 189 PUH=

£

el 4+ 2 =24 THEH 2G5
= =32THEH

[x]

PR T Y]

PORES427E &
RETURH

THEMG=~G: H=1
t

o
5

 D=RER+437 G=di: BO=23: PLUH=

FOKEN
HERY
IFPEEK %) =34 THEMH=/~48 | IFPEEK (%) =34 THEHI@GE
oL=1

FOKEN

SESPORER+R @

D=BBZE-+4-;< SRAE
IFLI=ATHEH
w=ERE+SEE P £ SEGOTOLISR

1 POKES427VE

=

Fl IF'I ITOSEE: HEST POKES427E .8
GOTOzEz2a

FRIHT"O" (POKE 1.1

FRIMNT" psla]a]s]es]n]a]ule]els] I HARET

@1953@ﬂi@ﬁxﬁoxm&3§~JME3®53&‘s

147

A a=31T HEHEJB
GO

A

—J m

PLH+1 :

POKER 232 W=k GOT

=REAMHDFEER CH+Y+4@ 0 =132 THEM2 1 B

FRINT"O +—F’UHI*..TE4-" i F"Uf‘HTR.i PPRIMT S HUHES" PN

=TR+FUM GOTOX21G

B POKES4273

" TRAPUNG "$

YERDIEH

2EAE IFTH+HPUHFHISTHEMHI S=TR+FUH

PEREE TR=E: FLUH=8

DREE GETAF: IFA$FC " "ORPEER =111THEHS
SEEE GO ITU"* -:'H

SEEE :

SRR

SEAEE

S DHTHmU 1¢F

DATALZ24 .12
DATALZY . ;
DATALZV .

DHTHEE:I‘I.ll_:
DATALLIS 115,115
DATAZE . : ~
DATHLZF 127,
DATALIS . 113, :
DATARLIZ. 112,112,112,
DATALLID 12V 187 . 187,

"L¢12T;

ficx]
—

YRR R B U s B B B iy Y
DA IO O o o R

O O OO O O OO OO
PR TSN TR PV I PR PR VRN PR O I ORI NI K I O O X N K O O B e e el S Sl gl B B

'\j - lq_l PO o e

DATASZ . 128
DATALZ2V ., 12) S
DATALLIZ . 1153 .112.11

DATALL®.115 .56 .52
DATALLS 99,187 . 1¢
DATAS2,113 .54 82 62,115 .99
DATALI12.59 .21 14 .14 .14 .14 08¢

DATALZV .83,V .28.112,

UNRSN s YO QRO X (XD VIR S B ¢ Rt s R I SRV I LNy B OO Bt B R B S A O N SRR v Bt v SR S X 6 B lI!

DATAZ4E J4U.14:;1H L
DHTHU-U-H @ .
DATAH2SS .8 .

3 DHTHl’" °H4 &

DATAR .24 .24 .
DATAZS .48
DATAR24 .12 .8 .8,
DATA4E . 72 .72,

b8

[}
o]
[
&

2
BEE
g
e

148

SRE43 DATAG .S
Saadd DATARS Bs
SEA4S TRTAG .G
5]
)

Seods DATAG .G .
SERa47 DATHG .5,
SEa4s DATARG .

SEads

DX] -

DATHS .
LIATARG
DATHS
DATHS ..
DRTHG .
DATAHE .
DATAS .12
DATHS . 2
DATA-1

a;a;-k-r — T P

T 0 0 0 T Ty

Wir hoffen, daB Sie noch viel SpaB mit diesem Spiel haben.

149

7. INTERRUPTS

Laut Definition sind Interrupts Routinen, die bei einer
Anforderung vom Computer von selber angesprungen werden.

Der C-64 kennt mehrere Interrupts:

Neben dem Raster-Interrupt (siehe Tips & Tricks 1) sind noch
vorhanden:

Hbchste Prioritat: RESET
Mittlere Prioritdt: NMI
Unterste Prioritét: IRQ

Die Prioritdt gibt an, welche dieser Routinen zuerst
angesprungen wird, wenn mehrere gleichzeitig vorliegen
sollten.

Obwohl andere Autoren Gegensdtzliches meinen, lassen sie
sich alle verhindern.

RESET

Softwaremdfig 1&Bt sich RESET durch SYS 64738 durchfiihren.
Diese Adresse ergibt sich aus den in $FFFC-FFFD im
LOW/HIGH-Byte angegebenen Werten.

Da es 3jedoch oft vorkommt, daB8 ein Programm abstiirzt, und
eine Eingabe nicht mehr mdglich ist, empfiehlt es sich,
einen RESET hardwaremidffiig herbeizufilhren.

Das erreicht man durch KurzschlieBen einer Masse- und einer
RESET-Leitung.

Zweckmifig ist ein Taster, den man fest ins Geh#duse einbaut.
Bewdhrt hat sich auch ein Summer in der Leitung, da es
manchmal vorkommt, daB man unbeabsichtigt den Kontakt
schliet, und dann dem Programm die Schuld gibt.

Was fiihrt der Computer eigentlich aus, wenn ein RESET

vorliegt?
Bedingt durch die Adressen $FFFC-$FFFD fiihrt der Computer

150

einen Sprung zur Adresse $FCE2 aus.
Sehen wir uns das Programm ab dieser Adresse doch einmal an:

FCE2. LDX, #$FF
FCE4 SEI

FCE5 TXS

FCE6 CLD

FCE7 JSR $FDO2
FCEA BNE $FCEF
FCEC JSP ($8000)
FCEF STX $D016
FCF2 JSR $FDA3
FCF5 JSR $FD50
FCF8 JSR $FD15
FCFB JSR $FF5B
FCFE CLI

FCFF JMP ($A000)

Die ersten vier Adressen sind fiir uns nicht so wichtig. Sie
dienen nur dem Computer. Zu sagen ist nur, daB in Adresse
$FCE4 das sog. Interrupt-Disable-Flag gesetzt wird, damit
der Computer im weiteren Verlauf nicht mehr gestdrt wird.
Probieren Sie es aus:

Ein einmal ausgeloster RESET 1la8t sich nicht mehr mit
RUN-STOP/RESTORE verhindern.

Interessant wird es erst wieder in Adresse $FCE7.

Dort springt der Computer zu einem Unterprogramm ab Adresse
$FDO2.

Dieses Unterprogramm ist wiirdig, angeschaut zu werden:

FDO2 LDX #$OF
FDO4 LDA $FDOF,X
FDO7 CMP $8003,X
FDOA BNE $FDOF
FDOC DEX

FDOD BNE $FDO4
FDOF RTS

151

In diesem Unterprogramm liest der Computer der Reihe nach
bestimmte Werte aus dem ROM, und vergleicht sie mit den
Werten, die bei Adresse $8004-$8008 vorliegen. Sind diese
Werte identisch, so wird ein indirekter Sprung ausgefiihrt.
Der Computer liest dabei die Werte der Adressen $8000-$8001
und faft $8000 als LOW- und $8001 als HIGH-Byte der
anzuspringenden Adresse auf.

Steht also in $8000 der Wert $00, und in $8001 $60, so geht
es weiter bei Adresse $6000.

Wollen Sie also ein Programm bei RESET starten lassen, so
milssen die Adressen $8000-$8008 folgendermaBien aussehen:

8000 LB Sprungvektor bei RESET

8001 HB

8002 LB Sprungvektor bei NMI (siehe NMI)
8003 HB

8004 195 "C" mit gesetztem Bit 7

8005 194 "B" " " "7

8006 205 "M" " "7

8007 56 "8"

8008 48 0"

Wollen Sie, daf Ihr Computer gleich nach dem Anschalten ein
Programm durchfiihrt, so miissen Sie ein EPROM in diesem
Bereich adressieren und die Werte wie angegeben setzen.

Nach diesem Prinzip arbeiten auch die Module, die sich nach
dem Anschalten sofort melden.

Doch weiter zum RESET.

Sollte ab $8000 kein Programm gefunden werden, macht der
Computer bel Adresse $FCEF weiter. In den darauffolgenden
Unterprogrammen initialisiert er neu die Pages 0,2 und 3,
die E/A-Teile und den Video-Bereich.

Zuletzt filhrt er schlieBlich einen Sprung zum
BASIC-Kaltstart durch.

152

Man kann ein BASIC-Programm auch durch RESET starten lassen.
Dann muB das Programm, auf das die Adressen $8000-$8001
zeigen, folgendermafien aussehen:

JSR $A659
JMP $A7AE

Diese zwei Zeilen sind das Maschinen-Aquivalent zum
Basic-Befehl RUN.

NMI

NMI hat eine niedrigere Prioritidt als RESET.

Die NMI-Einsprungadresse wird durch die Adressen $0318/$0139
(792/793) festgelegt. Normalerweise ist dies die Adresse
$FE47 (65095).

Da die eigentliche Routine bei $FE43 (65091) beginnt,
schauen wir uns doch die Adressen ab da doch einmal an:

FE43 SEI
FE44 JMP($0318)
FE47 PHA
FE48 TXA
FEA49 PHA
FE4A TYA
FE4B PHA

FEAC LDA #$7F

FE4E STA $DDOD
FE51 LDY $DDOD
FE54 BMI $FE72
FE56 JSR $FDO2
FE59 BNE $FES5E
FE5B JMP($8002)

153

FE5E JSR $F6BC
FE61 JSR $FFE1
FE64 BNE $FE72
FE66 JSR $FD15
FE69 JSR $FDA3
FE6C JSR $E518
FE6F JMP($A002)

Als erstes fEllt auf, daf in Adresse $FE43 das
Interrupt-Disable-Flag gesetzt wird.

Will man also den Vektor $0318-0319 auf ein eigenes Programm
zeigen lassen, so muB dieses Programm den Befehl CLI
enthalten, da sonst der IRQ verhindert ist (welche Folgen
das hat, erfahren Sie im n#dchsten Teil dieses Kapitels,
IRQ).

Beispiel fir ein eigenes Programm:

POKE792, 226 : POKE793, 252

Jetzt zeigt der NMI-Vektor auf RESET.

Bei Driicken der RESTORE-TASTE (=NMI) wird ein RESET
ausgeldst. Wenn Sie nach dem RESET noch einmal RESTORE
dricken, ist der Effekt natiirlich vorbei, da die Adressen
$0318/%$0319 wieder auf ihre Normalwerte gebracht worden
sind.

Doch weiter zur eigentlichen NMI-Routine:

Die Adressen $FE47-$FE4B (65095-65099) retten den
Akkumulator, das Y- und das X-Register.

In Adresse $FES54 (65108) wird gepriift, ob die RS
232-Schnittstelle aktiv ist. Sollte das der Fall sein, so
wird zu Adresse $FE72 (65138) gesprungen, wo die NMI-Routine
fiir die RS 232-Schnittstelle beginnt.

In Adresse $FE56 (65110) beginnt etwas, was Sie schon vom

RESET her kennen:

Es wird gepriift, ob ein Modul ab $8000 vorliegt.

- 154

Sollte das der Fall sein, so wird der Inhalt von $8002 als
LOW-, und der 1Inhalt von $8003 als HIGH-Byte der jetzt
anzuspringenden Adresse interpretiert und zu dieser Adresse
mit JMP($8002) verzweigt.

Da RESET und NMI auf das Vorhandensein bestimmter Werte bei
$8000 reagieren, ist es mit ganz einfachen Mitteln mdglich,
zwel verschiedene Proramme 2zu starten. Eins beginnt beim
Ausldsen eines RESET, und das andere beim Driicken der
RESTORE-Taste.

In Adresse $FE61 (65121) wird die STOP-Taste abgefragt. Ist
sie gedriickt, so kommt der Computer 2zu Adresse $FE66
(65126), und initialisiert die I/0-Einheit neu, l8scht den
Bildschirm und fiihrt schlieBlich einen Sprung zum
BASIC-Warmstart aus.

Hier sehen Sie auch, warum das Driicken der RESTORE-Taste
normalerweise nichts auslost:

Es wird immer erst die STOP-Taste abgefragt. Ist sie nicht
gedriickt, so wird zur NMI-Routine fir die RS
232-Schnittstelle verzweigt.

Probieren Sie das neu erworbene Wissen doch einmal aus:

10 FOR X = O TO 8: READ A: POKE 32768+X,A :NEXT X
20 DATA 68,229,53,164,195,205,56,48

RUN

Nun sehen die Adressen $8000-$8008 (32768-32776)
folgendermafien aus:

32768 68 32772 195
32769 229 32773 194
32770 53 32774 205
32771 164 32775 56

32776 48

155

Der Inhalt der Adressen 32768-32769 ergibt die Adresse, zu
der der Computer im Falle eines RESET springt. Diese Adresse
(58692) ist ein Unterprogramm das den Bildschirm 16scht.

Der 1Inhalt der Adressen 32770/32771 ergibt die Adresse, zu
der der Computer im Falle einer NMI-Anforderung springt.
Hier ist es die Adresse 42037. Die Unterroutine, die ab
dieser Adresse beginnt, gibt die Fehlermeldung "out of
memory error" aus.

Die Adressen 32772-32776 stellen die Codes da, die der
Computer braucht, um ein ROM ab $8000 zu erkennen.

Wenn Sie nun nach Eingabe dieser 2 Zeilen und dem Starten
RESTORE driicken, so wird die Meldung "out of memory error"
ausgegeben. Es kann vorkommen, daf der Cursor auf seiner
Stelle bleibt. Das ist ganz normal, da die IRQ-Routine den
Cursor verwaltet. Da NMI aber eine hbhere Prioritdt als IRQ
hat, wird die NMI-Routine angesprungen, bevor die
IRQ-Routine ihre Arbeit beendet hat.

Wenn Sie einen RESET ausldsen, wird der Bildschirm geloscht.
Damit haben Sie eine gute Mtglichkeit gefunden, ein Programm
zu starten.

Denkbar widre z.B. die MUglichkeit, ein Programm im Bereich
$8000 so abzuSAVEn, daBl das Programm nach dem Laden durch
Driicken der RESTORE-Taste oder durch RESET gestartet wird.
Da man dann keine BASIC-Zeile hat, die auf den Anfang des
Programms hinweist, ist es fiir fremde Benutzer schwer, das
Programm zu starten, sollten sie nicht durch Zufall darauf
kommen. Noch sicherer wdre diese LOsung, wenn man nach
Driicken von RESET bzw. RESTORE noch ein Code-Wort eingeben
muf3 (ohne daB danach gefragt wird).

Fur Leute, die sich mit diesen Dingen nicht so gut
auskennen, diirfte dieser Schutz nicht 1leicht zu knacken
sein. Noch schwerer wird das Ganze, wenn man noch andere
Arten des Programmschutzes dazunimmt (z.B Autostart).

156

IRQ

Dieser Interrupt hat zwar die niedrigste Prioritdt, sie ist
aber ebenso wichtig wie die anderen. Da sie weit am
hdufigsten angesprungen wird, halten wir sie sogar fiir die
Wichtigste.

Die Start-Adresse der IRQ-Routine ist in den Adressen
$0314/$0315 (788/789) verankert. Dort kann sie leicht
verdndert werden.

Probieren Sie es aus:

POKE788, 226 : POKE789, 252

Sobald Sie RETURN gedriickt haben, fiihrt der Computer einen
RESET aus.

Wieso das?

Nun, 226+252*256 ergibt 64738, und 64738 ist die Adresse fiir
RESET.

Und nun das Wichtigste:

Die IRQ-Routine wird nicht wie NMI oder RESET erst
angesprungen, wenn ein bestimmter Schalterkontakt vorliegt,
sondern alle 1/60 sec! .

Deswegen ist die IRQ-Routine auch so wichtig:

Sie erledigt alle Aufgaben, die immer wieder gemacht werden
miissen. Sie bringt z.B. die Uhr immer auf den neuesten
Stand, 188t den Cursor blinken und fragt die Stop-Taste ab.
Schauen wir uns die IRQ-Routine doch einmal an:

EA31 JSR $FFEA
EA34 LDA $CC
EA36 BNE $EA61
EA38 DEC $CD
EA3A BNE $EA61
EA3C LDA #$14
EA3E STA $CD
EA40 LDY $D3

157

EA42
EA44
EA47
EA49
EA4B
EA4D
EA4F
EA52
EA54
EA57
EA5A
EASC
EA5SE
EA61
EA63
EA65
EA67
EA69
EA6B
EA6D
EA6F
EA71
EA73
EA75
EA77
EA79
EA7B
EA7E
EA81
EA82
EA83
EA84
EA85
EA86

LSR $CF
LDX $0287
LDA($D1),Y
BCS $EASC
INC $CF
STA $CE
JSR $EA24
LDA($F3),Y
STA $0287
LDX $0286
LDA $CE
EOR #$80
JSR $EA1C
LDA $01
AND #$10
BEQ $EA71
LDY #$00
STY $CO
LDA $01
ORA #$20
BNE $EA79
LDA $CO
BNE $EAT7B
LDA $01
AND #$1F
STA $01
JSR $EA87
LDA $DCOD
PLA

TAY

PLA

TAX

PLA

RTI

158:

In Adresse $EA31 (59953) wird zu einem Unterprogramm ab
Adresse F69B (63131) gesprungen, das die Zeit auf den
neuesten Stand bringt und die Stop-Taste abfragt.
Uberspringt man den Aufruf dieses Unterproramms in der
IRQ-Routine, so wird die Zeit nicht mehr weitergestellt, und
RUN-STOP funktioniert auch nicht mehr (aufiler wdhrend einer
Cagsetten-Operation, da da RUN-STOP nicht iiber den IRQ
abgefragt wird).

Probieren Sie es aus:

POKE788,52

setzt den IRQ-Anfang auf $EA34 (59956).
Geben Sie nun folgendes kleines Programm ein:

10 PRINT TI$
20 GOTO 10

Nach dem Starten werden Sie merken, daB8 TI$ wie erwartet
nicht mehr weitergesetzt wird, sondern auf dem Stand
stehenbleibt, auf dem es vor der Eingabe von POKE 788,52
war.

Auch die STOP-Taste funktioniert nicht mehr.

Wieso geht aber RUN-STOP/RESTORE?

Schauen Sie sich dazu noch einmal den Teil iiber NMI an:
Sobald die RESTORE-Taste gedriickt ist, wird zu der
NMI-Routine gesprungen. Innerhalb dieser Routine wird
gepriift, ob die STOP-Taste gedriickt ist. Die IRQ-Routine hat
also damit garnichts zu tun, im Gegenteil, sie wird sogar
noch verhindert. 1In Adresse $EA36 (59958) wird gepriift, ob
der Cursor "angeschaltet" ist. Sollte dies nicht der Fall
sein, so wird sofort zur Adresse $EA61 (60001) gesprungen.
Ist er "angeschaltet", so geht es normal weiter. Aber Moment
mal! Wenn die Adresse $CC (204) darilber entscheidet, ob der
Cursor an oder aus ist, dann kann man sie vielleicht ja auch
beeinflussen.

Ja, es geht:

159

10 POKE204,0:REM CURSOR EIN
20 GETA$:IFA$=""THEN20
30 POKE204,1:REM CURSOR AUS

Wenn Sie dieses Programm ausprobieren, ist ein Cursor da. So
kann man also ganz einfach den Benutzer auf eine
GET-Anweisung aufmerksam machen. Das Programm hat jedoch
einen Nachteil: Driicken Sie eine Taste (verlassen Sie also
die 2Zeile 20), wenn der Cursor gerade auf dem Bildschirm
erscheint, so wird er da bleiben, und ein neuer Cursor
erscheint erst, beim Driicken einer weiteren Taste.

Fiigen Sie also noch folgende Zeile ein:

25 IFPEEK(207)=1THEN25

Aus Speicherstelle 207 geht hervor, ob der Cursor gerade auf
dem Bildschirm ist (=1) oder nicht (=2).

Weiter in der IRQ-Routine:

In Adresse $EA38 (59960) wird der Timer filr den Cursor um
Eins erniedrigt. Ist er ungleich Null, so wird zur Adresse
$EAG61 (60001) gesprungen. Ist er Null, dann wird er auf $14
(#20) gesetzt (da der Computer die IRQ-Routine alle 1/60 sec
anspringt, und dies 20mal tun mul, um den Cursor zu
verdndern, konnen Sie leicht nachrechnen, daB er in 1/3 sec
Intervallen blinkt).

Durch einfaches Andern der IRQ-Routine Xkann man die
Blinkzeit verdndern:

JSR $FFEA ;Zeit, STOP-Taste

LDA $CC ;Cursor an?

BNE * ;nein

DEC $CD ;Timer erniedrigen

BNE * ;ungleich Null, also weiter
LDA $FF ;Timer neu setzen

JMP $EAE ;IRQ weiter

* JMP $EA61 ;normal weiter

160

Als BASIC-Loader:

10 FORX=0TO18:READA:POKE24625+X, A:NEXTX
20 DATA 32,234,255,165,204,208,9, 198, 205, 208,5, 165, 255, 76,
62,234,76,97,234

Nach RUN miissen Sie nur noch
POKE788,96

eingeben, da die IRQ-Routine auf die neu erstellte Routine
verdndert werden mufl.

Nun kbnnen Sie in Speicherstelle 255 beliebige Werte von O
(kein Blinken des Cursors) ilber 1 (sehr schnelles Blinken)
bis 255 (sehr langsames Blinken) POKEn. Da die Adresse 255
dauernd gelesen wird, wirkt sich das Eingeben eines anderen
Wertes in diese Adresse sofort auf die Blinkzeit des Cursors
aus.

In den ndchsten Adressen, bis zu $EASE (59998), fiihrt der
Computer die Cursorfunktionen zu Ende, d.h. er gibt den
Cursor aus, merkt sich das Zeichen unter dem Cursor und
dessen Farbe usw.

Interessant 1ist auch der Effekt, der sich ergibt, wenn man
den ganzen Teil der IRQ-Routine, der den Cursor betrifft,
iberspringt:

POKE788,97
Nun wird
a) Keine Zeit mehr berechnet

b) Die STOP-Taste nicht mehr abgefragt
c) Kein Cursor mehr ausgegeben

161

Die Zeichen erscheinen aber immer noch, da die Tastatur erst
spiter in der IRQ-Routine abgefragt wird. Von Adresse
$EA61-$EA79 (60001-60025) geht es um den Rekorder. Sollte
eine Taste am Rekorder gedriickt sein, so wird der Motor
angestellt. Ist keine gedriickt, wird er ausgestellt (sofern
er an war).

Probieren Sie es aus:

a) Geben Sie ein: POKE788,123 (IRQ-Anfang = $EA7B)
Wenn Sie jetzt auf PLAY driicken, wird der Motor nicht
laufen.

b) Driicken Sie RUN-STOP-RESTORE, um wieder in den normalen
Modus zu kommen.
Driicken Sie jetzt die PLAY-Taste am Rekorder und geben
Sie nun POKE788,123 ein.
Wenn Sie jetzt die STOP-Taste am Rekorder driicken, so
wird der Motor immer noch laufen.

In Adresse $EA7B (60027) wird zu einem Unterprogramm
gesprungen, das die Tastatur-Abfrage erledigt, und die
entsprechenden Zeichen ausgibt.

Wenn Sie auch noch diese Adresse mit

POKE788, 126

iibergehen, so ist der Computer v6llig hilflos.

RUN-STOP/RESTORE funktioniert aber immer noch. Das liegt
daran, daB RESTORE nicht wie die anderen Tasten abgefragt
wird. Von der RESTORE-Taste geht eine Leitung fast direkt
zum Pin 4 (NMI) der CPU. RESTORE wird also direkt abgefragt.

In den Adressen $EA81-$EA85 (60033-60037) werden die
originalen Werte der Register wieder hergestellt.
SchlieBlich wird mit dem Befehl RTI (Return From Interrupt)
die IRQ-Routine abgeschlossen.

162

Da die IRQ-Routine 1leicht 2zu verbiegen ist, und so
regelmdfig angesprungen wird, ist sie fiir viele Zwecke zu
gebrauchen. Auch in diesem Buch wird sie oft benutzt.
Beispiele finden Sie auf den folgenden Seiten. Vielleicht
bekommen Sie dort eine Idee, wie Sie die IRQ-Routine nutzen
konnen. Sie diirfen nur nie vergessen, am Ende Ihrer eigenen
Routine wieder zur wurspriinglichen IRQ-Routine zuriick zu
springen da sonst

a) die STOP-Taste
b) die UHR

c) der Cursor

d) der Rekorder
e) die Tastatur

lahmgelegt sind (es seli denn, Sie wollen diesen Effekt
erzielen).

163

UND WIE MAN DEN IRQ PROGRAMMIERT !

Nun einige Programmier-Tips, betreffend der IRQ und was man
damit machen kann:

Wenn man selbst eine Interrupt-Routine programmiert, mufl man
den Vektor der Adressen 788/789 dndern. Wie diese Anderung
vorgeht, wird spater erklart. Der grofite Vorteil der
Interrupt-Routine besteht darin, daB sie alle 1/60 sec. aus
dem Direkt- sowohl wie aus dem Programm-Modus angesprungen
wird.

Da man dadurch eine Vielzahl von Moglichkeiten abdecken
kann, stellen wir IThnen nun einige diesbeziigliche Programme
vor:

Immexr Aktiv

Unser erstes Beispiel macht deutlich, welche Mdglichkeiten
sich durch die IRQ-Programmierung erdffnen, und in welcher
Geschwindigkeit der IRQ arbeitet.

10 DATA 120, 169,15, 141,20,3,169
20 DATA 159,141,21,3,133,56,88
30 DATA 96,238,32,208,76,49,234
40 FOR I= 40704 TO040724

50 READ A

60 POKE I,A

70 S=S+A

80 NEXT I

90 IF S <> 2171 THEN PRINT "FEHLER IN DATAS!":END
100 PRINT "DATAS OK": SYS 40704
110 NEW

Die Routine macht eigentlich nichts weiter, als bei jedem

Interrupt - Ansprung den Wert der Bildschirmrahmenfarbe um
eins zu erhohen. Doch der Tnterrupt wird so schnell

164

hintereinander angesprungen, so daB8 man keine einheitliche
Bildschirmrahmenfarbe mehr erkennen kann.

Erkennen kann man, dafl die Arbeitsgeschwindigkeit durch eine
gut programmierte Interrupt - Routine nicht vermindert wird.
Sie kdnnen, wdhrend diese Routine 1l&uft, weiterhin
BASIC-Zeilen schreiben oder bearbeiten lassen.

Wenn Sie das Flackern des Bildschirmrahmens stdrt, driicken
Sie einfach Runstop/Restore. Starten konnen Sie die Routine
mit

SYS 40704

Man kann diese Routine grundsadtzlich in zwei Teile teilen.
Imn ersten Teil werden der IRQ Vektor gedndert und die
Routine vor dem Uberschreiben geschiitzt. Das Andern der
Vektoren ist in BASIC nicht ohne Weiteres méglich. Denn wenn
die Anfangsadresse wie bei der Routine "Immer aktiv" bei
40719 anféngt (Anfang des zweiten Teils), und Sie geben

Poke 788, 15 : Poke 789, 159

ein, dann passiert folgendes:

Sobald die Zeile den Wert (788) gedndert hat, den Wert (789)
aber noch nicht, springt der Computer nicht nach $EA31,
sondern nach $EAOF. Der Computer hidngt sich dann meistens
auf.

Diese Routinen &ndern den Wert automatisch im 1.Teil der
Maschinensprache-Routine. Auf einer der nichsten Seite wird
beschrieben, wie man die Vektoren auch in BASIC &ndern kann.
In Maschinensprache gibt es den Befehl SEI (SEt Interrupt),
der verhindert, daB ein Interrupt ausgefiihrt wird. Dann
konnen Sie ungehindert den Vektor &ndern. Nach CLI (CLear
Interrupt),einem weiteren Maschinensprachebefehl, fiihrt der
Computer den Interrupt mit den neuen Werten aus. Dann wird
die Routine im ersten Teil noch abgeblockt, d.h., daB sie
weder von Variablen noch vom BASIC-Programm ohne Weiteres

165

iiberschrieben wird. Dafiir setzen wir einfach das
BASIC-Speicherende auf den Anfang der Routine.

Jetzt den ersten Teil zur besseren Ubersicht mit allen
Maschinensprachebefehlen:

SEI ; verhindert Interrupt

LDA # ; hier wird das Low-Byte
der Anfangsadresse des 2.
Teils bestimmt.

STA $ 0314 ; speichert dieses Low-Byte
in dem IRQ-Zeiger ab.

LDA # ; bestimmt das High-Byte
des 2.Teils.

STA $ 0315 ; speichert das High-Byte
im IRQ-Zeiger ab.

STA $ 38 ; setzt Speicherende High-

Byte auf den Anfang der
gesamten Routine, blockt
sie auf diese Weise ab.

CLI ; Interrupt wird wieder
ausgefiihrt.

AuBilerdem kann man im ersten Teil wie zum Beispiel bei der
Piepton-Routine, die auf einer der folgenden Seiten
abgedruckt ist, Werte setzen, die als Grundlage fiir den
zweiten Teil dienen.

Der zweite Teil:

Dies 1ist die eigentliche Routine. Nur dieser Teil wird vom
Computer angesprungen. Hier kann der Programmierer seine
Fantasie spielen lassen und irgendetwas hineinschreiben. Die
Interrupt-Routinen in diesem Buch sollen ja nur Anregungen
und Beispiele sein. Nur, zu lang sollte dieser Teil nicht
werden, damit sich die Arbeitsgeschwindigkeit des
Direktmodus nicht verringert.

166

Das Wichtigste an diesem Teil ist, daB am Ende der Routine
der Sprung zur Adresse $EA31 erfolgt, sonst wiirde sich der
Computer aufhdngen.

TASTATUR-PIEP

Nach soviel grauer Theorie endlich wieder einmal ein
Programm. Bei einigen Computern ertont beim Betdtigen einer
Taste ein Piepton. Beim Eingeben von Programmen und Tabellen
ist das sehr niitzlich. Der C-64 hat diese Einrichtung nicht.
Es ist Jjedoch moglich, diese akustische Hilfe durch eine
IRQ-Routine zu erzeugen:

O REM PIEPTON-ROUTINE

10 FOR I=0 TO 61

20 READ A

30 S=S+A

40 POKE 40704+I,A

50 NEXT I

60 IF S<>6973 THEN PRINT "FEHLER IN DATAS"
: END

70 PRINT "DATAS OK"

80 SYS 40704

90 DATA 169,255,141,6,212,141,24,212,169

100 DATA 9,141,5,212,169,103,141,1,212

110 DATA 169,33,141,0,212,120,169, 38,141

120 DATA 20,3,169,159,141,21,3,133,56,88

130 DATA 96,72,165,203,201,64,208,9,169

140 DATA O,141,4,212,104,76,49,234,169

150 DATA 17,141,4,212,76,50,159

Zum besseren Verstandnis hier auch das
Maschinensprache-Listing:

9F00 LDA #$FF
9F02 STA $D406

167

9FO5 STA $D418
9FO8 LDA #$09
9FOA STA $D405
9FOD LDA #$67
9FOF STA $D401
9F12 LDA #$21
9F14 STA $D400
9F17 SEI

9F18 LDA #$26
9F1A STA $0314
9F1D LDA #$9F
9F1F STA $0315
9F22 STA $38
9F24 CLI

9F25 RTS

9F26 PHA

9F27 LDA $CB
9F29 CMP #$40
9F2B BNE $9F36
9F2D LDA #$00
9F2F STA $D404
9F32 PLA

9F33 JMP $EA31
9F36 LDA #$11
9F38 STA $D404
9F3B JMP $9F32

Den Teil 1b von $9F17 bis $9F25 kennen wir bereits aus der
Routine "Immer Aktiv". Hier werden wieder die Vektoren
gedndert. Dagegen werden im Teil 1a von $9F00 bis $9F16 fast
alle Werte fiir die Tonerzeugung gesetzt, ausgenommen die
Wellenform. Diese Werte werden in der eigentlichen Routine
nicht mehr benttigt.

Teil 2 der Routine fragt die Adresse 203 ab, ob irgendeine
Taste gedriickt wurde. Liegt hier der Wert 64 vor, wurde
keine Taste gedriickt, und die Routine setzt die Wellenform

168

auf den Wert O, d.h. es ist kein Ton zu horen. Im Falle, dafB
eine Taste gedriickt wurde, ist der Wert ungleich 64, das
Programm setzt die Wellenform auf 17 und der Piepton wird
horbar. Nach dieser Abfrage springt das Programm zur Adresse
$EA31 (59953) weiter.

NEBENBEI MUSIK

Sind Sie ein so grosser Musikfan, daB Sie beim Programmieren
nicht auf Musik verzichten wollen, aber keine Musikkiste in
der N&he haben, und Ihre kleine Schwester Ihnen nichts
vorsingen will (oder Sie es nicht wollen), dann ist dieses
Programm genau das RichtiAe fiir Sie. Es sieht sehr lang aus.
Das kommt durch die Noten, denn jede Note braucht 3 Werte:
Frequenz low, Frequenz high und den Notenwert. Der
BASIC-Loader ist in zwei Abschnitte zu fassen:

In ersten wird die Routine geladen, im zweiten werden die
Noten und ihre Werte eingelesen.

Saven Sie das Programm ab, bevor Sie es ausprobieren !!!

B REM MUSIK ALS DEM IRG
18 DRATAR1Z2G, 1bﬂ;?q»141

Z8 DATAL41 .21 .,3.35.,
@ DATAL41 243,159 .18

3

48 DATAL1S9 .6, 141-;@;212,1643

S8 DATARZ4 . 12 141,

S8 DATHLES 202 .48 .

Y& DATA141 ., 1d;¢1;,

28 DATAL4S5.141 .14,

=l] DHTHI‘-21a,189J ! :

1868 DATAH1S3 3 141;1:;‘

118 DARTASE | 144 2.l :

128 DRTAR1G4 .17 u.1u4. +

1328 FORI=26284TORE957

148 READA

158 POEET LA

158 3=35+H

17@ HEXT

1238 IFS<HIISRITHEMPRIMT PFEHLER IM DATAS™:EHD
196 IMPUT"WIEVIELE HOTEM":H:PORKEZS944 .M
288 REM HOTEM @ =588 HOTEM !

169

FORI=ETO 5%

FPOREZ¥3VE+] . H
READK

HEST

SYE2E2E4

REM MUSIK-DATEH

DATALDE . 2.18, 18,132,168, 18.13.1a
DATHIEZ 14 .16.182 .18 .16, 18.13.1a
DATA 183 ,16,18,182,14,18,19&, 3.18
DATH la. 1318, 18, slez .14 .18
@ DATA 1a3.1&8.18, 14, 152,11 .18
DATA 196, 9.18, 19, 18,1318

DATA 182.14.18 J1E3 .17 .18
DATA 1 15,18, 1a.13.18
DATA 153 247 1618

488 DATA 153 PR N5 B FS ¥
416 DATH @, 8,18.2 S.158.11. 5
428 DATA 247 .18.18, 2. 247 18,18
428 DATA 1528.11.14d, 38, 3,15
448 DATA 247 .18, 5. JlgE, 2,18
458 DATA S5, 2.18, A.198 ., 3.28
4EE DATA 247 18015, 247 .18 .18
478 DATA 122, 3.18 JA5s.11010
428 DATA 18,135,148 S8, .18
28 DATH 18,132,164 Galez .14 .18
3 DATH 18,132,268, @, .93

170

Nach dem Start des Programmes werden Sie zuerst gefragt,
wieviele Noten das Musikstiick hat. Bei unserem Lied miissen
Sie 59 eingeben. Dann liest der Computer die Noten ein und
startet die Routine.

Wenn bis dahin alles richtig verlaufen ist und auch kein
Fehler in den DATAs ist, hdren Sie nun den "Yankee Doodle".
Wie oben schon erwdhnt, kénnen Sie jetzt programmieren und
die Musik spielt nebenbei weiter. Sie konnen diese Routine
aber auch wahrend eines Spiels zusédtzlich zu den
Spezial-Effekten laufen 1lassen, denn die Musik lauft nur
ilber die dritte Stimme.

Diese Routine kénnen Sie selber benutzen und die Musikwerte
adndern, ohne daB8 Sie selbst Maschinensprache kodnnen. Sie
miissen dafiir nur die Noten Ihres Musikstiickes in der Form
Frequeny low, Frequeny high und Notenwert statt der Noten
des “"Yankee Doodles" in die DATAs ab Zeile 300 schreiben.
Wenn Sie dann das Programm starten, miissen Sie nur noch die
Anzahl der Noten angeben. Das Programm kann bis zu 256 Noten
verarbeiten.

Was die Notenwerte betrifft, konnen Sie die Werte selber
wdhlen. Bei dem Lied "Yankee Doodle" haben wir fiir die
Viertelnote "10", fiir die halbe Note "20" und fiir die ganze
Note "40" als Notenwert gewdhlt. Sie brauchen sich aber
nicht nach diesen Werten zu richten.

171

8. BETRIEBSSYSTEM: ROM IN RAM

Der Commodore 64 bietet eine gegeniiber vielen anderen
Heimcomputern auflergewochnliche und zugleich sehr
interessante Eigenschaft:

Das Betriebssystem kann ins RAM des selben AdreBSlbereiches
verlegt werden.

Um diesen Vorgang verstehen zu konnen, sehen Sie sich bitte
einmal die folgende Skizze an. Sie zeigt die
Speicherorganisation ab $A000:

$A000
frei
$C000

Q
&
&
i 2
////g;eles RAM 4%
$D000 $
///;ID, VIC, I/0
$EO00Q
frei 4§
$FFFF &
&
RAM (%)
s
ROM £
&
4,
Q

Gewisse Speicherbereiche sind doppelt belegt. Das bedeutet,
in demselben Adreflbereich befinden sich sowohl ein RAM-, als
auch ein ROM-Speicher. Oder anders ausgedriickt, es gibt
beispielsweise die Adresse $A000 "zweimal": Einmal im ROM
und ein weiteres Mal im RAM des selben Speicherbereichs.
Der Computer kann jedoch nur einen der beiden
Speicherbereiche ansprechen (adressieren), entweder ROM oder
RAM.

Wir werden uns im Verlauf dieses Kapitels ndher mit den
beiden Bereichen $A000-$BFFF (BASIC-Interpreter) sowie $EO000
bis $FFFF (E/A-Einheit) befassen.

172

KOPIERROUTINEN

Das ROM der beiden Bereiche enthdlt Interpreter und
Ein/Ausgabe-Teil (E/A), das "darunterliegende" RAM hingegen
"nichts" ,es wird wie beispielsweise der BASIC-Speicher bei
jedem Ausschalten des Computers geldscht.

Es liegt also nichts n#dher, als Interpreter und/oder
E/A-Teil in dieses RAM zu kopieren und anschliefiend auf die
kopierten Bereiche umzuschalten. Dies ist nicht weiter
schwer, da der PEEK-Befehl das ROM ausliest, wdhrend der
POKE-Befehl ins RAM (wohin sonst ?) schreibt.

Eine Kopierroutine fiir den Interpreter konnte in BASIC
folgendermafien aussehen:

10 FOR A= 10*4096 TO 12*4096 -1
20 POKE A,PEEK(A)

30 NEXT A

40 END

Entsprechend die BASIC-Kopierroutine fiir das Betriebssystem:

10 FOR A= 14*4096 TO 16*4096 -1
20 POKE A,PEEK (A)

30 NEXT A

40 END

Erst wenn der 1Inhalt des betreffenden ROM-Bereiches ins
darunterliegende RAM kopiert worden ist, darf der
Speicherbereich ins RAM umgeschaltet werden,Sonst kommt es
zum Absturz des Computers.

Int.ROM * Int.RAM * BetrSys.ROM * BetrSys.RAM * Umschaltung

EAKKE KA KRR A R AR AR KRR AR KRR KRR KA AR K X kX

*x *x * *
I * 0 * I * 0 * POKE 1,55
0 * I * I * 0 * POKE 1,54
0 * I * 0 * I * POKE 1,53
I * 0 * 0 * I ol ety

173

Es ist von BASIC aus nicht moglich, das Betriebssystem
allein im ROM arbeiten zu lassen |

tibrigens: Sicherlich wird Ihnen die Linge aufgefallen sein,
die die BASIC-Kopier-Routinen benbtigen, um die
entsprechenden Speicherbereiche zu kopieren.

Das folgende Maschinenprogramm erledigt den gleichen Vorgang
allerdings erheblich schneller: Es braucht weniger als eine
Sekunde !

Zundchst das Assembler-Listing:

033C LDX#$20
033E LDA#$A0
0340 LDY#$00
0342 STY$22
0344 STA$23
0346 LDA($22),Y
0348 STA($22),Y
034A INY

034B BNE$0346
034D 1INC$23
034F DEX

0350 BNE$0346
0352 RTS

Und hier der BASIC-Loader:

10 FOR I=828 TO 851

20 READ X: POKE I,X: NEXT

30 DaTA 162,32,169,160,160,0,132,34,133,35,177,34
40 DATA 145,34,200,208,249,230,35,202,208, 244,96
50 SYS 828

174

Die Kopierroutine wird mit "SYS 828" aufgerufen.

Wollen Sie sowohl den Interpreter als auch den E/A-Teil mit
dieser Routine kopieren, so dndern Sie im BASIC-Loader Zeile
50:

50 SYS 828: POKE 831,224: SYS 828

Was 1l1ldaBt sich Jjetzt aber mit dem im RAM befindlichen
Betriebsgssystem anfangen ?

Sofern Sie das DATA BECKER-Buch "64 INTERN" besitzen, finden
Sie das komplette Assembler-Listing beider Bereiche. Sie
konnen nun dieses Ihren Wiinschen entsprechend andern. Es
bietet sich weiterhin an, die BASIC-Fehlermeldungen oder
Befehle 2zu veridndern, BASIC-Befehls-Routinen abzudndern,
etc.

Ihnen stehen nun alle Tiren offen, bis hin zum eigenen
Interpreter!

175

9. BETRIEBSSYSTEM-ROUTINEN

Wer in Maschinen-Sprache programmiert, steht oft vor grofien
Problemen, da die Assembler-Befehle nicht so vielseitig sind
wie die BASIC-Befehle. PRINT in Maschinen-Sprache ist schon
ein ganz schénes Problem. Doch vieles ist ganz einfach, wenn
man sich im Betriebssystem auskennt, denn viele Routinen
sind schon benutzerfertig vorhanden.

Das Betriebssystem teilt sich in zwei Teile auf:

a) Der Interpreter
b) Der Ein-Ausgabeteil

Der Interpreter ist der Teil, der die BASIC-Befehle in fiir
den Computer verstidndliche Maschinen-Befehle iibersetzt. Der
E/A - Teil ist fir alle Operationen mit der Auflenwelt
bestimmt. Sehen Sie sich die ndchsten Seiten ruhig einmal
an, vielleicht finden auch Sie einige Routinen, die fiir Sie
von Nutzen sind.

Blockverschiebe-Routine

Einsprungadresse: $A3B8 (41912)
Mit Hilfe dieser Routine kann man schnell und problemlos
einen Speicherbereich in einen anderen Bereich verschieben.
Dabei muf8 der alte Blockanfang in den Adressen $5F/$60
(95/96), das alte Blockende (+1!) in den Adressen $5A/$5B
(90/91) und das neue Blockende (+1!) in den Adressen $58/%$59
(88/89) stehen.

Priifung auf Platz im Stapel

Einsprungadresse: $A3FB (41979)
Diese Routine priift nach, ob noch genug Platz im Stapel

176

vorhanden ist. Sollte nicht mehr genug vorhanden sein, so
erfolgt die Fehlermeldung "out of memory".

Ausgabe von "out of memory"

Einsprungadresse: $A435 (42037)

Diese Routine veranlafSt den Computer zur Ausgabe von "out of
memory error"”. Der Computer springt danach in den
Ready- (Direkt-)Modus.

Fehlermeldung ausgeben

Einsprungadresse: $A43A (42042)
Mit Hilfe dieser Routine kann man leicht eine Fehlermeldung
ausgeben. Der Computer geht nach der Ausgabe wieder in den
Direkt-Modus.
Die Fehlernummer mufl dabei im X-Register {ibergeben werden.
Folgende Nummern fiihren zu folgender Fehlermeldung:

NUMMER
dez. hex. FEHLERMELDUNG

1 1 too many files

2 2 file open

3 3 file not open

4 4 file not found

5) device not present

6 6 not input file

7 7 not output file

8 8 missing file name

9 9 illegal device number
10 A next without for

11 B syntax

12 (o return without gosub
13 D out of data

14 E illegal quantity

15 F overflow

16 10 out of memory

177

17 11 undef/d statement

18 12 bad subscript

19 13 redim/d array

20 14 devision by zero
21 15 jillegal direct
22 16 type mismatch

23 17 string too long
24 18 file data

25 19 formula too complex
26 1A can/t continue
27 1B undef/d function
28 1C verify

29 1D load

30 1E break

Diese Routine kann man auch von BASIC aus nutzen:
POKE781,21:5Y542042
filhrt z.B. zur Ausgabe von "illegal direct error".

BASIC-Programmzeilen neu binden

Einsprungadresse: $A533 (42291)
Diese Routine bindet eine BASIC-Zeile neu, d.h. die Zeilen
werden wieder in ihre richtige Reihenfolge gebracht.

NEW

Einsprungadresse: $A644 (42564)

Diese Routine ist der BASIC-Befehl NEW. Ein BASIC-Programm
wird dadurch gel8scht (bzw "versteckt").

CLR

Einsprungadresse: $A660 (42592)

Diese Routine kommt dem BASIC-Befehl CLR gleich. Es werden
also alle Variablen geldscht.

178

RUN

RUN kann man nicht mit einem Befehl erledigen.

In Maschinen-Sprache sieht der BASIC-Befehl RUN
folgendermaBien aus:

JSR $A659
JSR $AT7AE

STOP-Taste

Einsprungadresse: $A82C (43052)

Bei dieser Routine wird die Stop-Taste abgefragt, und sollte
sie gedriickt sein, 8o wird ein laufendes BASIC-Programm
abgebrochen.

Sollte ein STOP-Befehl in einem BASIC-Programm auftauchen,
so wird direkt zur Adresse $A82F (43055) gesprungen. Mochten
Sie also ein BASIC-Programm von der Maschinen-Sprache aus
sofort unterbrechen, so miissen Sie diese Adresse anspringen.

GOTO

Einsprungadresse: $A8A3 (43171)

Die eigentliche Goto-Routine beginnt ab der Adresse $A8A0
(43168). In Adresse $A8A0 folgt jedoch ein Sprung zu einem
Unterprogramm, das die gliltige Zeilennummer in die Adressen
$14-%$15 (20-21) holt. Springen Sie also die Adresse $A8A3
an, so konnen Sie die Zeilennummer, die angesprungen werden
soll, selbst bestimmen, indem Sie sie in Low- und High-Byte
zerlegen und in den Adressen $14-$15 ablegen.

String ausgeben.

Einsprungadresse: $AB1E (43806)
Ein String wird ausgegeben. Dieser String mufl eine Null als
Endkennzeichen aufweisen; seine Adresse muB8 in das
Y-Register und in den Akkumulator gegeben werden.

Akkumulator : Low-Byte
Y-Register : High-Byte

179

Zum Versténdnis ein Beispiel:

LDA #$41
LDY #$03
JSR $AB1E
RTS

Mit diesem Programm wird der Kassettenpuffer bis zur ersten
Null ausgegeben. Damit 148t sich 1leicht der Name eines
Programms erfahren.

Das geht iibrigens auch in BASIC:

POKE780, 65: POKE782, 3:5Y543806

Einige Strings, die im ROM untergebracht sind:

MELDUNG AKKU (LOW) Y-REG (HIGH) ADRESSE
0.K. 100 163 $A364
ERROR(ohne CR) 105 163 $A369
IN 113 163 $A371
READY 118 163 $A376
BREAK (ohne CR) 129 163 $A381
BASIC BYTES FREE 96 228 $E460
(Einschaltmeldung) 115 228 $E473

Bei geeignetem Suchen werden Sie garantiert noch weitere
Meldungen finden. Sie konnen natirlich auch einen eigenen
Sring konstruieren.

Ausgabe eines Leerzeichens (bzw. Cursor right)
Einsprungadresse : $AB3B (43835)
Diese Routine gibt ein Leerzeichen oder Cursor right aus.
"Ein Leerzeichen wird ausgegeben, wenn ein File vorliegt
(Adresse $13 (19) ungleich Null).

180

In dieser Routine sind noch zwei andere Routinen verborgen:

a) $AB45 (43845)
Ausgabe eines Fragezeichens
b) $AB47 (43847)
Ausgabe des im Akku stehenden Zeichens

Zeichen auf Klammer zu priifen

Einsprungadresse: $AEF7 (44791)
Diese Routine priift das Zeichen, auf das der Vektor $7A-$7B
(122-123) zeigt, auf "Klammer zu". Falls es nicht Klammer zu
ist, wird SYNTAX ERROR ausgegeben, und der Computer springt
in den Ready-Modus.

In dieser Routine sind noch andere Routinen verborgen:

a) $AEFA (44794)
Wie $AEF7, nur auf "KLAMMER AUF"
b) $AEFD (44797)
Wie $AEF7, nur auf "KOMMA*
c) $AEFF (44799)
Wie $AEF7, nur auf das im Akku stehende Zeichen

SYNTAX ERROR

Einsprungadresse: $AFO08 (44808)

Diese Routine gibt "SYNTAX ERROR" aus. Der Computer geht
danach in den Direkt-Modus.

Zeichen auf Buchstabe priifen

Einsprungadresse: $B113 (45331)

Das 2Zeichen, das sich beim Ansprung dieser Routine im Akku
befindet, wird daraufhin iliberpriift, ob es ein Buchstabe ist.
Sollte es einer sein, so wird das Carry-Flag geldscht.

FAC-Zahl in Integer-Zahl

Einsprungadresse: $B1AA (45482)
Die Zahl, die gerade im FAC steht, wird in eine Integer-Zahl

181"

umgewandelt. Diese Integer-Zahl wird in Low- und High-Byte
zerlegt und in die Adressen $64/$65 (100/101) gespeichert.

BAD SUBSCRIPT ERROR

Einsprungadresse: $B245 (45637)
Ausgabe von *bad subscript error" und Sprung in den
Ready-Modus.

ILLEGAL QUANTITY ERROR

Einsprungadresse: $B248 (45640)
Ausgabe von "illegal quantity error” und Sprung in den
Ready-Modus.

Test auf Direkt-Modus

Einsprungadresse: $B3A6 (45990)

Diese Routine priift, ob sich der Computer im Direkt-Modus
befindet. Ist er es, so wird "illegal direct error"
ausgegeben.
Auch in dieser Routine sind wieder zwei andere verborgen:

a) $B3AB (45995)

illegal direct error
b) $B3AE (45998)

undef/d function error

FORMULA TOO COMPLEX ERROR
Einsprungadresse: $B4DO (46288)

FAC in LOW-HIGH-BYTE

Einsprungadresse: $B7F7 (47095)
Diese Routine wandelt die Zahl, die im FAC steht (sie muf
positiv und darf nicht gréBer als 65536 sein), in eine
Sechzehn-Bit-Zahl um. Diese wird in Low- und High-Byte
zerlegt und in Adresse $14/$15 (20/21) und Y-Register-Akku
abgelegt.

182

OVERFLOW-ERROR
Einsprungadresse: $B97E (47486)

DEVISION BY ZERO ERROR
Einsprungadresse: $BB8A (48010)

LOW-HIGH-BYTE in Integer-Zahl

Einsprungadresse: $BDCD (48589)
Mit Hilfe dieser Routine kann man Low/High-Byte in eine
Integer-Zahl verwandeln und ausgeben lassen.
Das Low-und das High-Byte muff im Akkumulator bzw. im
X-Register stehen.

Diese Routine kann man auch gut von BASIC aus nutzen:

183

10 INPUT"LOW-BYTE";LO

20 INPUT"HIGH-BYTE";HI

30 POKE781,L0O:POKE780,HI:S5YS48589
40 PRINT:GOTO10

In dieser Routine werden Iiibrigens zwei andere Routinen
benutzt:

a) Die Integer-Zahl wird in eine FlieBkommazahl umgewan-
delt ($BC49)

b) Die FlieBkommazahl wird in einen ASCII-String umgewan-
delt ($BDDF)

BREAK ERROR
Einsprungadresse: $E107 (57607)

Auf weitere Zeichen priifen

Einsprungadresse: $E211 (57873)
Hier wird gepriift, ob noch weitere Zeichen folgen.

Sollte dies nicht der Fall sein, so wird "syntax error"
ausgegeben.
Mochte man vorher priifen, ob ein Komma vorliegt, so mufi die
Einsprungadresse $E20E (57870) heiflen.

BASIC-Kaltstart
Einsprungadresse: $E394 (58260)
Diese Routine kann man als Teil-Reset bezeichnen:

a) BASIC-Programme und Variablen werden geldscht.

b) Der RAM wird wieder auf den Anschaltzustand gebracht.

c) Der Bereich $0300-$030B (768-779) wird wieder original
gesetzt. 4

d) Das Anfangsbild erscheint.

e) Es wird zum BASIC-Warmstart gesprungen.

184

Manches dagegen wird nicht verdndert, z.B. die Farben und
der Bereich $0314/$0333 (788/819), in dem unter anderem der
IRQ- und der NMI-Sprungvektor liegt.

Warten auf Commodore-Taste

Einsprungadresse : $E4E0 (58592)

Der Computer wartet darauf, daB8 die Commodore-Taste gedriickt
wird. Wird sie nach einer gewissen Zeit nicht gedriickt, so
springt der Computer von alleine wieder zuriick.

Bildschirm-Reset

Einsprungadresse : $E518 (58648)
Diese Routine stellt den Bildschirm wieder neu her, d.h. die
Farben werden wieder original gesetzt, der Bildschirm wird
geldscht, und der Cursor wird wieder in den Anschaltzustand
versetzt.
Diese Routine kann man jetzt differenzieren:

a) Bildschirm-Reset ohne Verdndern des Video-Controlers
Einsprungadresse : $E51B (58651)

b) Bildschirm ldschen
Einsprungadresse : $E544 (58692)

c) Cursor Home
Einsprungadresse : $E566 (58726)

d) Cursor Home und Neu-Initialisieren des Video-Controlers
Einsprungadresse : $E59A (58778)

e) Nur Video-Controller initialisieren
Einsprungadresse : $E5A0 (58784)

Ruckschritt in vorhergehende Zeile

Einsprungadresse : $E701 (59137)
Bei Ansprung dieser Routine geht der Cursor eine Zeile nach
oben.

Bildschirm scrollen
Einsprungadresse : $ES8EA (59626)

185

Bei Ansprung dieser Routine wird der gesamte Bildschirm um
eine 2Zeile nach oben geschoben, d.h. die oberste Zeile
verschwindet und unten kommt eine Leerzeile dazu.

Bildschirmzeile ldschen I

Einsprungadresse : $E9FF (59903)

Mit dieser Routine kann man eine Bildschirmzeile 1l6schen.
Die Nummmer dieser Zeile (die oberste Zeile hat die Nummer
Null) muB man im X-Register iibergeben.

Auch von BASIC her kann diese Routine genutzt werden:

POKE 781, (Zeilennummer) :SYS 59903

Bildschirmzeile 16schen II

Einsprungadresse : $E9FF (59905)

Diese Routine 1dscht, wie die oben aufgefiihrte Routine, die
Bildschirmzeile, deren Nummexr im X-Register steht.
Zusdtzlich kann dem Computer aber auch noch mitgeteilt
werden, bis 2zu welcher Stelle diese Zeile geldscht werden
soll (0-39).

Diese Zahl muB im Y-Register iibergeben werden.

Beispiel:

LDA #$0A

. LDX #$00
JSR $EI9FF
RTS

POKE781,0:POKE782, 10:SYS 59905
Dieses Maschinen-Programm und das BASIC-Aquivalent l8schen
die 1. Bildschirmzeile (Nummer Null) bis zur 11. Stelle

(Nummer 10).

Verzogerung von einer Millisekunde
Einsprungadresse : $EEB3 (60958)

186

Dieses Unterprogramm 1l&d8t den Computer eine Millisekunde
warten.

Systemmeldungen ausgeben

Einsprungadresse : $F12B (61739)
Mit Hilfe dieser Routine kann man alle Strings ausgeben, die
bei dem Umgang mit der Floppy & Datasette auftreten.

Zuerst wird allerdings getestet, ob man sich im
Programm-Modus befindet. Sollte das der Fall sein, so wird
nichts ausgegeben.
Der Offset der Meldung muB im Y-Register iibergeben werden.

Y-REGISTER
dez. hex. MELDUNG
o- 1 00-01 i-o error #
12- 13 0Cc-0D searching
23 17 for
27- 28 1B-1C press play on tape
46 2E press record & play on tape
73- 74 49-4A loading
81- 82 51-52 saving
89- 90 59-5A verifying
99-100 63-64 found
106-107 6A-6B o.k.
Diese Routine kann auch benutzt werden, ohne daB gepriift
wird, ob man im Programm-Modus ist. Dann muf die

Einsprung-Adresse allerdings $F12F (61743) heiflen.

Searching (for filename) ausgeben

Einsprungadresse: $F5AF (62895)

Bei Ansprung dieser Routine wird zuerst gepriift, ob man im
Programm-Modus ist. Sollte das der Fall sein, so wird sofort
wieder zuriickgesprungen.

Im anderen Fall wird "searching" ausgegeben. Nun wird

187

getestet, ob die Lange des Filenamens (abgespeichert in $B7)
gleich Null ist. Wenn ja, so wird die Routine jetzt beendet.
Wenn nein, so wird "for" ausgegeben und dann der Filename
(abgespeichert im Low-und High-Byte in $BB-$BC).

Beispiel:

POKE183, 2: POKE187,39: POKE188, 241:SYS 62895

Nun wird ‘“searching for o.k." ausgegeben, da der Zeiger
187-188 ($BB-$BC) auf die Systemmeldung "o.k." (Adresse
$F127) gesetzt wurde.

Diese Routine kann auch benutzt werden, ohne daB vorher auf
den Programm-Modus getestet wird. Die Einsprungadresse hieBe
in diesem Fall $F5B3 (62899).

Loading-Verifying ausgeben

Einsprungadresse: $F5D2 (62930)

Bei dieser Adresse wird "loading" bzw. "verifying"
ausgegeben. Das hdngt von der Adresse $93 (147) ab. Bei
$93=0 wird "loading", und bei $93=1 "verifying" ausgegeben.

"saving" ausgeben

Einsprungadresse: $F68F (63119)
Diese Routine gibt "saving" aus. Wollen Sie, daB nicht
getestet wird, ob man im Programm-Modus ist, so miissen Sie
die Adresse $F693 (63123) anspringen.

TOO MANY FILES
Einsprungadresse: $F6FB (63227)

FILE OPEN
Einsprungadresse: $F6FE (63230)

FILE NOT FOUND
Einsprungadresse: $F701 (63233)

188

DEVICE NOT PRESENT
Einsprungadresse: $F707 (63239)

NOT INPUT FILE
Einsprungadresse: $F70A (63242)

NOT OUTPUT FILE
Einsprungadresse: $F70D (63245)

MISSING FILE NAME
Einsprungadresse: $F710 (63248)

ILLEGAL DEVICE NUMBER
Einsprungadresse: $F713 (63251)

Programm-Header von Band lesen

Einsprungadresse: $F72C (63276)
Dieses Programm 1liest den Header von Band (siehe Kapitel
LOAD-SAVE)

Programm-Header generieren und auf Band schreiben
Einsprungadresse : $F76A (63338)
Mit diesem Unterprogramm kann man einen Programm-Header auf
Band schreiben.
Folgende Adressen milessen folgende Merkmale enthalten:

$C1-$C2 (193-194) : Startadresse des Programms
$AE-$AF (174-175) : Endadresse des Programms

$B7 (183) : Anzahl der Zeichen des Filenamens
$BB-$BC (187-188) : Low-High-Byte-Zeiger auf den Filenamen

Diese Werte miissen vor Ansprung der Routine gesetzt werden.
Band nach Filenamen absuchen

Einsprungadresse : $F7EA (63466)
Diese Routine sucht auf dem Band nach einem bestimmten

189

Filenamen. Dieser Filename muB folgendermaBen bestimmt
werden:

$B7 (183) : Ldnge des gesuchten Filenamens (soll
das ndchste Programm gesucht werden,
so muB diese Adresse auf Null gesetzt
werden)
$BB-$BC (187-188) : Adresse des gesuchten Filenamens

Bei Ansprung dieser Routine sucht der Computer solange das
Band ab, bis er den Header gefunden, das Bandende
erreicht hat (EOT-Signal) oder unterbrochen wird.

Bandtaste abfragen I

Einsprungadresse : $F817 (63511)

Bei dieser Routine wird die Datasette abgefragt. Ist eine
Bandtaste gedriickt, so wird sofort wieder zuriickgesprungen.
Im anderen Falle wird "press play on tape" ausgegeben und
gewartet, bis eine Taste gedriickt wird. Daraufhin wird "ok"
ausgegeben und zuriickgesprungen.

Stop-Taste wird in dieser Routine abgefragt.

Bandtaste abfragen II

Einsprungadresse : $F82E (63534)
Auch diese Routine fragt die Datasette daraufhin ab, ob eine
Taste gedriickt ist. Bei dieser Routine wird jedoch nichts
ausgegeben, sondern sofort wieder zuriickgesprungen. Es wird
jedoch das Y-Flag folgendermafien gesetzt:

a) Taste gedriickt : Y=1
b) Taste nicht gedriickt : Y=0

Bandtaste abfragen III

Einsprungadresse : $F838 (63544)

Diese Routine arbeitet wie $F817. Es wird nur statt "press
play on tape" "press record & play on tape" ausgegeben.

190

STOP-Taste

Einsprungadresse : $F8D0 (63696)
Diese Routine wird sofort wieder verlassen, wenn die
Stop-Taste nicht gedriickt ist.

Ist sie gedriickt, so wird der Band-Motor ausgestellt, die
IRQ-Routine wieder hergestellt, das Carry-Flag gesetzt und
dann erst zuriickgesprungen. Wichtig ist noch, daB in dieser
Routine zwei PLA-Befehle auftauchen, d.h. daB bei gedrilickter
Stop-Taste die erste Riicksprung-Adresse geldscht wird.

Rekorderbetrieb beenden

Einsprungadresse : $FC93 (64659)

Diese Routine beendet die Kommunikation mit dem Rekorder,
d.h. der Bildschirm wird wiederhergestellt, der Rekorder
ausgeschaltet und der Video-Controler wieder auf die
Standardwerte gesetzt.

Rekordermotor ausschalten
Einsprungadresse $FCCA (64714)

191

10. KERNAL

Wenn Sie sich das Betriebssystem einmal anschauen, wird
Thnen vielleicht auffallen, daB die Adressen $FF81-$FFF3
(65409-65523) 1lauter Aufrufe verschiedener Unterprogramme
sind. Doch wieso haben die Programmiererxr des
Betriebssystems diese Sprungtabelle geschaffen, da man die
Routinen doch auch direkt anspringen kénnte?

Da diese Tabelle bei allen Commodore-Computer identisch ist
($FF81 z.B. ist immer der Aufruf zum Video-Reset, nur die
Adresse, zu der gesprungen wird, ist verschieden), kann man
Programme, die diese Routinen benutzen, ganz einfach von
einem Computer auf ein anderes Modell iibernehmen. Es kommt
ja auf die Ansprungadresse in der Tabelle an, nicht, wohin
der Computer dann tatsdchlich springt.

Sie sollten diese Routinen oft benutzen, da es danit
einerseits einfacher ist, TIhr Programm auf einen anderen
Rechner von Commodore umzustellen und andererseits, da diese
Routinen, wie Sie noch sehen werden, vielseitig verwendbar
sind.

Diese Tabelle heifit "Kernal'.

In der folgenden Aufzdhlung sdmtlicher Adressen ist immer
als erstes die Kernal-Adresse, also die Adresse die Sie
anspringen miissen, und dann die Adresse, die schliefilich vom
Computer angesprungen wird, aufgefiihrt.

Kernal-Adresse: $FF81 (65409)

Funktion : Video-Reset

Tatsdchliche Sprungadresse : $FF5B

Diese Routine stellt den Bildschirm wieder auf seine
Standard-Werte. Es wird zu einem Programm ab Adresse $FF5B
(66571) gesprungen:

192

FF5B JSR $E518
FF5E LDA $D012
FF61 BNE $FF5E
FF63 LDA $D019
FF66 AND #$01

FF6B JMP $EDDD

In Adresse $FF5B wird zu einem Unterprogramm gesprungen, das

a) den Cursor wieder auf seine Standard-Werte bringt,
b) Klein-Grof-Umschaltung wieder ermdglicht,

c) die Linge des Tastatur-Puffers auf 10 setzt,

d) den Bildschirm 18scht und

e) den Cursor an den Bildschirm-Anfang springen lagt.

Von $FFS5E-$FF61 wird gepriift, ob die Rasterzeile, die Zeile,
die gerade auf dem Bildschirm geschrieben wird, zu Ende ist.
Ist das nicht der Fall, so wird gewartet, bis dieser Zustand
eintritt.

Sodann wird das Bit O von Speicherstelle $D019(53273) in die
Adresse $02A6 (678) geschoben (durch AND #$01 werden Bits
1-7 geldscht, nur Bit O wird entweder 1 oder 0O). Dann wird
Zu einem Programm gesprungen, das priift, ob eine PAL- oder
eine NTSC-Version des Fernsehers vorliegt. Dariiber
entscheidet die Speicherstelle $02A6, die eben gesetzt
wurde.

Probieren Sie es aus:

PRINT PEEK(53273) AND 1

Wenn Sie 1 erhalten, so haben Sie eine PAL-Version (16421
Zyklen). Bei Null 1liegt eine NTSC-Version (17048 Zyklen)
vor.

Und wenn Sie etwas anderes bekommen, so haben Sie etwas
falsch gemacht. Sie konnen aber davon ausgehen, daB bei

193

Ihnen eine 1 erscheint, da in Deutschland und den anderen
westeuropdischen Liandern (auBer Frankreich mit SECAM)
PAL-Norm vorherrscht.

Die NTSC-Version (ein Vorl&ufer von PAL) dagegen ist in den
USA verbreitet. Da der C-64 in beiden Landern vertreten ist,
wurden Routinen in dem Betriebssystem eingebaut, die ein
problemloses Umstellen ermdglichen.

Kernal-Adresse: $FF84 (65412)

Funktion : CIA/s initialisieren

Tatsidchliche Sprungadresse : $FDA3
Diese Routine setzt die CIA/s (die Ausgabe-IC/s) wieder auf
die Standard-Werte. Auch dieses Unterprogamm stellt fest, ob
eine PAL- oder eine NTSC-Version vorliegt, und legt die
Zyklen danach fest.

Kernal-Adresse: $FF87 (65415)

Funktion : RAM ldschen bzw. testen

Tatsdchliche Sprungadresse : $FD50
Diese Routine loscht die Zero-Page (auBer die Adressen $00
-$01), Page 2 und Page 3.
Auflerdem wird der Zeiger des Kassetten-Puffers
($B2-$B3:178-179) auf seinen normalen Wert gebracht, so daf
er bei $033C (828) beginnt. Als Weiteres wird (ab $0400
:1024) auf das RAM-Ende gepriift. Diese Adresse wird in Low-
und High-Byte zerlegt, und in die Adressen $0283-$0284
(643-644) geschrieben. Dann werden noch der RAM-Anfang auf
$0800 (2048) und der Video-RAM-Start auf $0400 (1024)
gelegt. In dieser Routine ist eine andere verborgen, die gut
benutzt werden kann. Mit ihrer Hilfe kann man leicht die
BASIC-Ram-Obergrenze festlegen.

eee : $FE20

X-Register: Low-Byte

Y-Register: High-Byte

194

Auch ein Lesen der Obergrenze ist moglich:
eee : $FE27
X-Register: Low-Byte
Y-Register: High-Byte

Kernal-Adresse: $FF8A (65418)

Funktion : I/O initialisieren

Tatsdchliche Sprungadresse : $FD15

Diese Routine setzt die I/0-Einheit wieder auf die
Standardwerte.

Kernal-Adresse: $FF8D (65421)

Funktion : I/O-Vektoren initialisieren

Tatsdchliche Sprungadresse : $FD1A

Bei Ansprung dieser Routine werden die Adressen $0314-$0333
(788-819) wieder auf die Normal-Werte gebracht.

Kernal-Adresse: $FF90 (65424)
Funktion : Status setzen
Tatsdchliche Sprungadresse : $FE18
Diese Routine setzt den Status:

FE18 STA $9D ;Flag fiir Direkt-Modus ($80=Direkt, $00=
Programm-Modus)

FE1A LDA $90

FE1C ORA $90

FE1E STA $90

FE20 RTS

Kernal-Adresse: $FF93 (65427)
Funktion: Sekunddr-Adresse nach Listen senden

195

Tatsdchliche Sprungadresse : $EDB9

Diese Routine gibt die Sekunddr-Adresse auf den IEC-Bus
(serielle Ausgabe) aus. Der IRQ wird dabei unterbrochen. Die
Sekundder-Adresse muf im Akku mit iibergeben werden. Mit
Listen ist ein Floppy gemeint, das Daten empfangen soll. Wie
man das einstellt, erfahren Sie spiter.

Kernal-Adresse: $FF96 (65430)

Funktion: Sekundidr-Adresse nach Talk senden

Tatsdchliche Sprungadresse : $EDC7
Diese Routine funktioniert wie $FF93, nur es wird die
Sekundar-Adresse zu einem Floppy gesendet, das Daten
schicken soll (Talk).

Kernal-Adresse: $FF99 (65433)

Funktion: RAM-Ende setzen-holen

Tatsdchliche Sprungadresse : $FE25

Bei dieser Routine wird das RAM-Ende gesetzt (Carry-Flag
gleich Null) oder gelesen (Carry-Flag gleich Eins). Beide
Male werden folgende Register folgendermafien benutzt.

X-Register : Low-Byte
Y-Register : High-Byte

Wie Sie Dbenutzt werden (Lesen oder Schreiben), hdngt vom
Carry-Flag ab.

Kernal-Adresse: $FFI9C (65436)

Funktion : RAM-Anfang setzen-holen

Tats#dchliche Sprungadresse : $FE34
Diese Routine hat die arbeitet auf die gleiche Weise wie
die Routine $FF99. In diesem Fall wird nur statt das
RAM-Endes der RAM-Anfang behandelt.

196

Kernal-Adresse: $FF9F (65439)

Funktion : Tastatur-Abfrage

Tatsdchliche Sprungadresse : $EA87

In diesem Unterprogramm werden die Tasten abgefragt,
entschlisselt und das entsprechende Zeichen wird ausgegeben.
Diese Routine (allerdings nicht iiber die Kernal-Adresse,
sondern direkt $EA87) wird auch von der IRQ-Routine benutzt.

Kernal-Adresse: $FFA2 (65442)

Funktion : Time-out Flag filr IEC-Bus setzen

Tatsédchliche Sprungadresse : $FE21
Dieses Unterprogramm setzt das Time-out-Flag ($0285 : 645):

FE21 STA $0285
FE24 RTS

Wie Sie sehen, muB das Flag im Akku mit iibergeben werden.

Kernal-Adresse: $FFAS5 (65445)

Funktion : Eingabe vom IEC-Bus (IECIN)

Tatsdchliche Sprungadresse : $EE13
Diese Routine holt ein 2Zeichen von der Floppy. Es miissen
allerdings andere Routinen, die die Verbindung ers
herstellen, vorher angesprungen worden sein.

Kernal-Adresse: $FFA8 (65448)

Funktion : Ausgabe vom IEC-Bus (IECOUT)

Tatsdchliche Sprungadresse : EDDD

Diese Routine gibt ein Zeichen (mit ATN-Signal) auf dem
IEC-Bus aus. Wie bei der Routine $FFA5 (IECIN) miissen
allerdings andere Routinen vorher angesprungen werden.

197

Kernal-Adresse: $FFAB (65451)

Funktion : UNTALK senden

Tatsdchliche Sprungadresse : $EDEF
Diese Routine sendet ein UNTALK-Signal. Daraufhin wird
jegliche Kommunikation mit einem aktiven Ein-Ausgabe-Gerit,
daf gerade Daten zum Computer sendet, unterbrochen.

Kernal-Adresse: $FFAE (65454)

Funktion : UNLISTEN senden

Tatsichliche Sprungadresse : $EDFE
Diese Routine hat die gleiche Wirkung wie die Routine UNTALK
(Adresse $FFAB), nur daB ein Gerdt angesprochen wird, das
gerade Daten vom Computer empféngt.

Kernal-Adresse: $FFB1 (65457)

Funktion : LISTEN senden

Tatsdchliche Sprungadresse : $EDOC
Diese Routine ist das Gegenstiick zur Routine UNLISTEN
(Adresse $FFAE), da hier eine Kommunikation mit einem Gerit
begonnen wird. Dabei mufi vorher die Gerédte-Nummer der Floppy
in den Akkumulator geladen und in Adresse $BA(186)
abgespeichert worden sein. Wollen Sie also zu einer Floppy
Daten senden, so miissen die ersten 3 Zeilen folgendermaBien

aussehen:
LDA #3$08 ; 8=Device-Number fiir Floppy
STA $BA ;abspeichern

JSR $FFB1 ; LISTEN-Routine

Kernal-Adresse: $FFB4 (65460)
Funktion : TALK senden

198

Tatsdchliche Sprungadresse : $EDO9

Diese Routine arbeitet &hnlich wie LISTEN, nur wird hir der
Floppy mitgeteilt, daf es Daten senden soll. Beide Routinen
(TALK u. LISTEN) benutzen die gleiche Routine:

EDO9 ORA #$40
EDOB .BYTE $2C
EDOC ORA #$20
EDOE JSR $FOA4

In $EDO9 ist der Einsprung fiir TALK.

IN $EDOC ist der Einsprung fiir LISTEN.

Wird TALK angesprungen, so wird die Gerdte-Nummer mit 64
logisch-oder verkniipft, d.h. zu der Gerdte-Nummer (die Bit
0-3 belegen kann) wird Bit 6 gesetzt. Danach wird durch
einen Programmier-Trick $EDOC iibersprungen, da sonst auch
noch Bit 5 gesetzt worden wire.

Wird LISTEN angesprungen, so wird die Geradte-Nummer mit 32
logisch oder-Verkniipft, so daB8 Bit 5 gesetzt wird.

Ab Adresse $EDOE geht es fiir beide Routinen gemeinsam
weiter.

Sie erkennen, daf das Floppy bei gesetztem Bit

a) Bit 5 der Gerate-Adresse Daten empfangt (LISTEN)
b) Bit 6 der Gerdte-Adresse Daten sendet

Kernal-Adresse: $FFB7 (65463)

Funktion : Status holen

Tatsdchliche Sprungadresse : $FEO07
Diese Routine holt den Status in den Akkumulator und setzt
ihn daraufhin auf Null. Diese Routine kann auch fir die RS
232-Schnittstelle benutzt werden, wenn die Gerdte-Adresse
($BA : 186) gleich zwei ist.

199

Kernal-Adresse: $FFBA (65466)

Funktion : Fileparameter setzen

Tatsdchliche Sprungadresse : $FEOO
Diese Routine 1legt alle Parameter fiir einen File fest. Der
Unterroutine muf8 die logische File-Nummer, die Gerate-Nummer
und die Sekundir-Adresse ilbergeben werden.

PARAMETER REGISTER WIRD ABGESPEICHERT IN
Logische Filenummer Akku $B8 (184)
Gerate-Nummer X-Register $BA (186)
Sekundédr-Adresse Y-Register $B9 (185)

Kernal-Adresse: FFBD (65469)

Funktion : Filenamenparameter setzen

Tatsédchliche Sprungadresse : $FDF9

In dieser Routine werden alle Parameter festgelegt, die
einen Filenamen betreffen.

200

PARAMETER REGISTER WIRD ABGESPEICHERT IN

Linge des Namens Akku $B7 (183)
Adresse low X-Register $BB (187)
Adresse high Y-Register $BC (188)

Wie bei der Kernal-Routine $FFBA miissen die entsprechenden
Werte im Akku, dem X- und dem Y-Register iibergeben werden.

Kernal-Adresse: $FFCO (65472)

Funktion: OPEN :
Tatsdchliche Sprungadresse: Ergibt sich aus $031A-$031B
Normalerweise $F34A

Da dieser Befehl sehr wichtig ist, wird er hier aufgelistet
und erklért:

F34A LDX $B8 : lddt die logische Filenummer

F34C BNE $F351 ; ungleich null, also weiter

F34E JMP $F70A ; gibt "not input file" aus

F351 JSR $F30F ; logische Filenummer schon vorhanden?
F354 BNE $F359 ; nein

F356 JMP $F6FE ; gibt "file open" aus

201

F359
F35B
F35D
F35F
F362
F364
F366
F369
F36B
F36D
F36F
F372
F374
F377
F379
F37B
F37D
F37F
F382
F384
F386
F388
F38B
F38E
F390
F393
F395
F397
F399
F39C
F39E
F3A1
F3A3
F3A5
F3a8
F3AA

LDX
CPX
BCC

INC
LDA
STA
LDA
ORA
STA
STA
LDA
STA
BEQ
CMP
BEQ
BCC
JSR
BCC
CMP
BNE
JMP
JSR
BCS
JMP
LDA
AND
BNE
JSR
BCsS
JSR
LDA
BEQ
JSR
BCC
BEQ

$98
#$0A
$F362
$F6FB
$98
$B8
$0259,x
$B9
#60
$B9
$026D, X
$BA
$0263,X
$F3DB
#$03
$F3D3
$F384
$F3D5
$F3D3
#$02
$F38B
$F409
$F7D0
$F393
$F713
$B9
#$OF
$FBBS
$F817
$F3D4
$FS5AF
$B7
$F3AF
$F7EA
$F3C2
$F3D4

;Anzahl der offenen Files
;mit 10 vergleichen

;kleiner als 10, alo weiter
;zu grofl, also "too many files
;Anzahl um Eins erhdhen
;logische Filenummer
;speichert sie in Tabelle ab
; Sekundar-Adresse

;Bit 6 und 5 fiir Floppy setzen
;Wwieder abspeichern

; Sekunddr-Adresse in Tabelle speichern
; Gerdte-Nummer

;in Tabelle abspeichern

;Tastur, also Riicksprung
;Bildschirm?

;Ja, also Riicksprung

;kein File auf IEC-Bus

;File auf IEC-Bus erdffnen

; fertig

;RS 232-Schnittstelle?

;nein, also Band

;RS 232 OPEN
;Kassetten-Puffer-Anfang holen
;Band-OPEN weiter

;gibt "illegal device number" aus

; Sekundar-Adresse

;Bits 4-7 lbschen

; Sekunddar-Adresse; O, also schreiben
;Play-Taste abfragen

;Stop-Taste gedriickt, also Abbruch

; "searching (for name)" ausgeben
;Ldnge des Filenamens

;kein Filename, also weiter

:sucht gewlinschten Tape-Header
;gefunden

;Abbruch

202

F3AC JMP $F704 ;EOT, also "file not found”

F3AF JSR $F72C ;weiter suchen

F3B2 BEQ $F3D4 ;EOT, also Ende

F3B4 BCC $F3C2 ;gefunden

F3B6 BCS $F3AC ;weiter suchen

F3B8 JSR $F838 ;wartet auf Record & Play-Taste
F3BB BCS $F3D4 ;Stop-Taste gedriickt, also Abbruch

F3BD LDA #$04 ;Kontroll-Byte fiir Tape-Header

F3BF JSR $F76A ;Header auf Band schreiben

F3C2 LDA #$BF ;2Zeiger auf Ende des Kassetten-Puffers
F3c4 LDY $B9 ; Sekundar-Adresse

F3C6 CPY #$60 ;mit 96 (Bit 5 und 6) vergleichen

F3C8 BEQ $F3D1 ;Sek.-Adresse gleich null, also weiter
F3CA LDZ #$00

F3cc LDA #$02 ;Kontroll-Byte fiir Datenblock
F3CE STA($B2),Z ;in Kassetten-Puffer schreiben
F3DO TZA ;Akku gleich Null

F3D1- STA $A6 ;Zeiger in Kassetten-Puffer
F3D3 CLC

F3D4 RTS

F3D5 File auf IEC-Bus eroffnen
Wie Ihnen beim Durchsehen der Routine vielleicht aufgefallen
ist, wird von der OPEN-Routine vorausgesetzt, daf einige
Parameter schon gesetzt worden sind.

1. Fir den Filenamen:

a) Linge ($B7 ; 183)

b) Adresse low ($BB ; 187)

c) Adresse high ($BC ; 188)

2. Fir das File:

a) Logische Filenummer ($B8 ; 184)

b) Sekundér-Adresse ($B9 ; 185)
c) Gerdte-Nummer ($BA ; 186)

203

Flir das Setzen dieser Parameter sind in Kernal schon zwei
Routinen vorgesehen:

a) Fileparameter setzen : $FFBA
b) Filenamenparameter setzen : $FFBD

Diese beiden Routinen miissen also vor dem Aufruf der
OPEN-Routine angesprungen werden.

Ein Beispiel:

Sie wollen ein File mit dem Namen "$" (Directory) auf dem
Floppy eroffnen:

LDA #$01 ;Ldnge des Filenamens

LDX #$DO ;Adresse low

LDY #$FF ;Adresse high

JSR $FFBD ;Filenamenparameter festlegen
LDA #$01 ;logische Filenummer

LDY #$00 ; Sekundar-Adresse

LDX #$08 ; Gerdte-Nummer

JSR $FFBA ;Fileparameter festlegen

Zur Erklédrung:

Die Adresse des Filenamens ist $FFDO. Auf diese Adresse sind
wir gekommen, da der Inhalt dieser Speicherstelle den
Dezimalwert 36 enthdlt, was dem ASCII-Wert von "$"
entspricht.

Kernal-Adresse: $FFC3 (65475)
Funktion : CLOSE
Tatsdchliche Sprungadresse : Vektor $031C-$031D (796-797)

204

Normalerweise: $F291

Auch diese Routine ist sehr wichtig. Sie ist das Gegenstlick
zur OPEN-Routine. Bei der CLOSE-Routine mufS aber nur ein
Wert angegeben werden: Die logische Filenummer. éie kennen
das wahrscheinlich von BASIC her. Da heift es auch nur
"CLOSE 1", wenn das File mit der logischen Filenummer 1
geschlossen werden soll. Vor dem Anspringen der OPEN-Routine
muB der Akkumulator mit der logischen Filenummer des Files,
das geschlossen werden soll, geladen worden sein. Wollen Sie
also das File mit der Nummer 10 schlieBen, so

muB8 das in Maschinensprache heifien:

LDA #$0A
JSR $FFC3
RTS

Zu der Routine ist weiter nichts zu sagen. Filir den Anwender
ist nur wichtig, daB sie funktioniert. Kurz erklart werden
soll nur noch, wie der Computer die anderen Werte

(Gerdte-Adresse etc.) bekommt:

Er merkt sich immer die Anzahl der gerade offenen Files (in
Adresse $98 : 158). Alle anderen Werte sind alle in
Tabellen untergebracht.

601-610 : Tabelle fir logische Files
611-620 : Tabelle fiir Ger&dte-Nummer
621-630 : Tabelle fiir Sekundar-Adresse

Zu Anfang sind in allen drei Tabellen die Werte Null.

Nehmen wir Jetzt an, es wird ein File mit der Nummer 1,
Sekunddr-Adresse O und Gerdte-Nummer 8 ertffnet. Automatisch
wird dann auch die Anzahl der logischen Files um einen
erhtht, so daB in Adresse $98 (158) der Wert 1 steht. Die
drei Tabellen sehen dann folgendermaBen aus:

205

601 1 0 0 0 0 0 0 0 0 0 Filenummer
611 0 0 0 0 0 0 0 0 0 0 Sekunddrnummer
621 8 0 0 0 0 0 0 0 0 0 Gerdtenummer

Nehmen wir an, es wird 3jetzt auch noch ein File mit der
logischen Nummer 3, Sekunddrnummer 1 und Gerdtenummer 1
eroffnet:

601 1 3 0 0 0 0 0 0 0 0 Filenummer
611 0 1 0 0 0 0 [0} 0 0 0 Sekunddrnummer
621 8 1 0 0 0 0 0 0 0 0 Ger&dtenummer

In dem gleichen Sinne werden alle anderen Files
abgespeichert.

Will der Computer jetzt die anderen Werte zu dem File mit
der logischen Nummer 3 haben, so geht er zuerst einmal die
Tabelle 601-610 durch. Ein Zdhler wird jedesmal erhtht, wenn
ein Platz weitergesprungen wird. Hat der Computer die
logische Filenummer gefunden, so merkt er sich den Z&dhler.
Da dieser 2Zihler auch auf die anderen Tabellen zutrifft
(d.h. die anderen Tabellen haben den Eintrag zu diesem File
am gleichem Platz), konnen die entsprechenden Werte ganz
einfach aus den entsprechenden Tabellen gelesen werden.

Kernal-Adresse: $FFC6 (65478)

Funktion : Eingabegeridt setzen (CHKIN)

Tatsdchliche Sprungadresse : Vektor $031E-$031F (798-799)
Normalerweise: $F20E
Diese Routine setzt ein Eingabegeridt fest. Die Festlegung
(Gerat, etc.) erfolgt durch ein File. Die 1logische
Filenummer mufl im X-Register mit iibergeben werden. Ist kein
File mit dieser Nummer erdffnet, so wird "file not open"

206

ausgegeben. Der ' Computer sucht sich dann die entsprechende
Gerdtenummer aus der Tabelle und schreibt sie in die
Speicherstelle $99 (153).

Sollte ein Floppy, also der IEC-Bus, angesprochen werden, so
wird zusdtzlich noch ein TALK-Signal gesendet. Daraufhin
wird der Status getestet. Ist er nicht o.k., so wird "device
not present" ausgegeben, da das Gerdt nicht geantwortet hat
und so folglich auch nicht da ist.

Wird das Band als Eingabe-Gerdt gesetzt (Geridtenummer Eins)
und die Sekundir-Adresse ist ungleich Null, wird "not input
file" ausgegeben, da ‘ein Output-File (Sekundar-Adresse Eins
meint schreiben) ja kein Eingabegerdt festsetzen kann.

Sie Xkonnen diese Routine auch anspringen, ohne dafl ein File
erdffnet wurde. Dann miissen Sie nur schon die entsprechenden
Werte (Gerdtenummer, Sekunddr-Adresse) in die entsprechenden
Speicherstellen ($BA;186 : $B9;187) geschrieben haben. Die
Einsprungadresse heifit dann F219 (61977).

Die Nummer des Eingabegerdats kommt in $99 (153).

Kernal-Adresse: $FFC9 (65481)

Funktion: Ausgabegerat setzen (CKOUT)

Tatsdchliche Sprungadresse: Vektor $0320-$0321 (800-801)
Normalerweise: $F250
Auch bei dieser Routine mufl die logische Filenummer wieder
im X-Register mit ilbergeben werden.

Ist kein File mit dieser Nummer erdffnet, so gibt der
Computer "file not open" aus. Soll ein File, das die
Datasette anspricht, das Ausgabegerat bestimmen, hat aber
die Sekunddr-Nummer Null (Lesen), so wird "not output file"
ausgegeben.
Auch diese Routine konnen Sie so verwenden, daB ein
Ausgabegerat gesetzt wird, ohne daB Sie ein File 6ffnen
miissen.

Geben Sie die gewiinschten Parameter (Gerdte-Adresse und
Sekunddr-Adresse) -in $BA (186) und $B9 (185) und springen

207

Sie die Routine ab $F25B (62043) an.

Wird bei dieser Routine ein Floppy angesprochen, so wird ein
LISTEN-Signal gesendet, der Status abgefragt und ggf.
"device not present" ausgegeben.

Die Nummer des Ausgabegeradts kommt in $9A (154).

Kernal-Adresse: $FFCC (65484)

'Funktion: I-O zuriicksetzen (CLRCH)

Tatsdchliche Sprungadresse : Vektor $0322-$0323 (802-803)
Normalerweise: $F333
Durch diese Routine kann man einen gerade aktiven I/0-Kanal
auf dem IEC-Bus schlieflen.

F333 LDX #$03 ;3=Bildschirm

F335 CPX $9A ;Nummer des Ausgabegerates
F337 BCS $FB3C ;kleiner als 3

F339 JSR $EDFE ;UNLISTEN zur Floppy senden
F33cC CPX $99 ;Nummer des Eingabegeridtes
F33E BCS #F343 ;kleiner als 3

F340 JSR $EDEF ;UNTALK zur Floppy senden

F343 STX $9A ;Ausgabe wieder auf Bildschirm
F345 LDA #3$00 ;O=Tastatur

F347 STX $99 ;Eingabe wieder von Tastatur
F349 RTS

Diese Routine arbeitet folgendermafien:

Sie schaut zuerst nach, ob das Ausgabegerdt der IEC-Bus ist.
Ist dies der Fall, so wird zu einer Routine gesprungen, die
den Datenverkehr abbricht (UNLISTEN). Ist dies nicht der
Fall, so wird geschaut, ob das Eingabegerat das Floppy ist.
Wenn 3ja, so wird ein UNTALK-Signal zur Floppy gesendet,
damit das Floppy weifl, daB es aufhohren soll, Daten zum
Computer zu senden.

Schliefllich wird noch bei beiden Mdglichkeiten (Floppy als
Ausgabegerdt oder Floppy als Eingabegerdt) der Bildschirm

208

wieder als Ausgabegerdt und die Tastatur wieder als Eingabe
gerat gesetzt.

Kernal-Adresse: $FFCF (65487)

Funktion: Eingabe eines Zeichens (BASIN)

Tatsdchliche Sprungadresse : Vektor $0324-$0325 (804-805)
Normalerweise: $F157 ’

Mit Hilfe dieser Routine kann man ein Zeichen von einem
beliebigen Eingabegeridt holen. Das geholte Zeichen befindet
sich nach Riicksprung im Akku. Da diese Routine nicht so
einfach ist, einige Beispiele:

Sie wollen einen String in einem Bereich (wir nehmen den
Bereich ab $033C) ablegen. Der String soll ilber die Tastatur
eingegeben werden. Das Programm legen wir ab dem Bereich
$6000 (24576) in den Speicher.

LDX #$00 ;Zdhler auf Null setzen
* JSR $FFCF ;BASIN (Zeichen holen)

STA $033C,X ;Zeichen ablegen

INX ;Zdhler erhodhen

CMP #3$0D ;Return?

BNE * ;nein

RTS i Ja

Als BASIC-Loader:

10 FORY=0TO13:READA:POKE24576+Y,A:NEXTY:SYS24576
20 DATA162,0,32,207,255,157,60,3,232,201,13, 208, 245,96

Sobald Sie das Programm eingegeben und RUN getippt haben,
erscheint ein Cursor auf dem Bildschirm. Nun kodnnen Sie TIhre
Zeichen eingeben. Abgebrochen wird das Programm durch
Eingabe von RETURN.

Testen Sie nun, ob Ihr String auch richtig abgelegt wurde:

L 1ist die Lédnge des von Ihnen eingegebenen Strings. Diese

209

Lédnge darf 192 nicht iberschreiten, da dann der
Kassetten-Puffer voll ist.

FORY=0TOL : PRINTCHRS$ (PEEK (828+Y)) ; : NEXTY

Wenn Sie alles richtig gemacht haben, so erscheinen Ihre
eingegebenen Zeichen (auch Cursorfunktionen) auf dem
Fernseher. Doch diese Routine kann nicht nur im
Zusammenhang mit der Tastatur benutzt werden. Genauso gut
kdnnen Daten von der Floppy, vom Band oder der RS
232-Schnittstelle iibernommen werden. Dabei miissen Sie aber
zuerst das Eingabegerat verdndern.

Gehen Sie so vor:

210

Nehmen wir an, Sie wollen Daten von der Floppy (die schon

wartet) iibernehmen:

a)

b)

c)

d)

e)

£)

g)

h)

Parameter setzen: LDA #$01 ;logische File-Nr.
LDX #%$08 ;Gerdtenummer
LDY #$00 ;Sekunddr-Adresse
JSR $FFBA ;Parameter setzen

Filenamenparameter setzen: LDA #$xx ;Lange des Namens
LDX #$y1 ;Adresse low
LDY #$y2 ;Adresse high
JSR $FFBD ;Parameter setzen

OPEN: JSR $FFCO ;OPEN-Routine

Setzen des Eingabegeradts: LDX #$01 ;logische File-Nr.
JSR $FFC6 ;CHKIN

Holen der Daten aus der gedffneten Datei:
BASIN

Falls nicht alle Daten libernommen sind, e)

Standard-Werte einschalten:JSR $FFCC ;CLRCH

Datei schliefien : LDA #$01 ;logische File-Nr.
JSR $FFC3 ;CLOSE

Wenn Sie es ersteinmal verstanden haben, konnen Sie dieses
System filr alle Arten von Dateien einsetzen.
Ein Beispiel dafiir finden Sie in dem Kapitel FLOPPY-TRICKS.

Kernal-Adresse: $FFD2 (65490)
Funktion : Ausgabe eines Zeichens (BSOUT)

211

Tatsachliche Sprungadresse : Vektor $0326-$0327 (806-807)
Normalerweise : $F1CA
Genauso wie ein Zeichen eingegeben wird (BASIN-Routine),
kann auch ein Zeichen ausgegeben werden.

Das geschieht durch diese Routine.
Am besten gleich ein Beispiel:

LDX #$00 ;Z&8hler auf Null
* LDA $FOBE,X ;Zeichen lesen
JSR $FFD2 ;und ausgeben (BSOUT)
INX ;Z2ahler erhohen
CPX #%$09 ;schon 9?
BNE * ;nein
RTS ;Jja

Diese Routine holt den Bereich $FOBE-$FOC6 (61630-61638
(Betriebssystem-Meldung "I/O ERROR")) der Reihe nach in den
Akkumulator und gibt ihn mit Hilfe der BSOUT-Routine auf dem
Bildschirm aus.

Als Basic-Loader:

10 FORX=0TO013:READA:POKE24576+X,A:NEXTX:S5YS524576
20 DATA162,0, 189,190, 240,32, 210,255, 232,224,9,208, 245,96

Beli RUN erhalten Sie die Meldung "I/O ERROR" auf dem
Bildschirm. Wie Sie sehen, ist auch die BSOUT-Routine leicht
zu bedienen. Natiirlich kann auch sie, wie die BASIN-Routine,
fir andere Gerdte genutzt werden. Die Schritte dazu sind
identisch zur BASIN-Routine, nur

a) die Sekunddr-Adresse muBl Eins sein.

b) statt der CHKIN-Routine muf8 die CKOUT-Routine ange-
sprungen werden, da ja ein Ausgabe-Gerdt festgelegt
werden soll. :

c) statt der BASIN-Routine mufBl natiirlich die BSOUT-Routi-
ne angesprungen werden.

212

Diese beiden Routinen sind sehr leistungsstark und kdnnen
oft benutzt werden, da sie fiir alle Arten der Ein/Ausgabe
geeignet sind.

Kernal-Adresse: $FFD5 (65493)

Funktion: LOAD

Tats8chliche Sprungadresse: $F49E

Dies ist die Load-Routine. Um Load auszufiihren, ist es aber
noétig, mehrere Parameter zu iibergeben.

Vor dem Anspringen der Load-Routine muB folgendes gesetzt
worden sein:

a) $BA (186) : Gerdtenummer
b) $B7 (183) : Linge des Filenamens (ist bei Gerdtenummer
8 unbedingt erforderlich, kann sonst Null

sein)
c) $B9 (185) : Sekunddr-Adresse
d) $BB-$BC : Low-High-Byte auf den Filenamen (wenn $B7=0

nicht erforderlich)
e) X-Register: Low-Byte der Startadresse(kommt in $C301954)
f) Y-Register: High-Byte der Startadresse (kommt in $C4)
g) Akku : Load-Verify-Flag (O=Load,1=Verify); kommt in
$93 (147)

In Adresse $F4A2 der Load-Routine wird ein indirekter Sprung
durchgefiihrt:

JMP ($0330)
Normalerweise ergibt das $F4AS5. Dieser Vektor kann aber auch

auf eigene Load-Routinen gesetzt werden (siehe KAPITEL Tips
& Tricks).

213

Kernal-Adresse: $FFD8 (65496)

Funktion: SAVE

Tatsichliche Sprungadresse : $F5DD
Auch fiir die Save-Routine miissen wieder einige Werte gesetzt
werden:

a) $AE-$AF (174-175) : Endadresse
b) $C1-$C2 : Startadresse

c) $BA : Gerdtenummer

d) $B9 : Sekundidr-Adresse (wird bei IEC-Save automa-
tisch auf Eins gesetzt)

e) $B7 : Linge des Filenamens (kann bis auf bei IEC-

Save Null sein)
£) $BB-$BC : Adresse des Filenamens (wenn $B7=0 irrelevant)

In einer Schleife werden dann der Reihe nach alle Bytes von
Startadresse bis zur Endadresse zum Jjeweiligen Gerit
gebracht.

Kernal-Adresse: $FFDB (65499)

Funktion: Zeit setzen

Tatsdchliche Sprungadresse: $F6E4
Der Akkumulator, das X- und das Y-Register setzen die
Uhrzeit. Wie Sie sicherlich wissen, ist die Uhrzeit in den
Adressen $AO-$A2 (160-162) untergeracht (und zwar ist TI
PEEK(160) * 65525 + PEEK(161) * 256 + PEEK(162)).

Durch diese Routine konnen Sie nun die Uhrzeit beliebig
stellen.

Der Akku kommt in Adresse $A2 (162, Low-Byte der Uhr)
Das X-Register kommt in Adresse $A1 (161, Mid-Byte der Uhr)
Das Y-Register kommt in Adresse $A0 (160,High-Byte der Uhr)

Kernal-Adresse: $FFDE (65502)

Funktion: Zeit holen
Tatsdchliche Sprungadresse: $F6DD

214

Nach dem Riicksprung enthalten die verschiedenen Register
folgende Werte:

REGISTER ADRESSE FUNKTION
Akku $A2 (162) Niedrigstes Zeit-Byte
X $A1 (161) Mittleres Zeit-Byte
Y $A0 (160) Hochstes Zeit-Byte

Kernal-Adresse: $FFE1 (65505)

Funktion: STOP-Taste abfragen

Tatsdchliche Sprungadresse: Vektor $0328-$0329 (808-809)
Normalerweise: $F6ED

Diese Routine funktioniert nur mit Hilfe der IRQ-Routine.

In einem Unterprogramm, das von der IRQ-Routine aus
angesprungen wird, wird bei gedriickter STOP-Taste ein Flag
($91 (145)) gesetzt. In diesem Kernal-Unterprogramm wird nun
das Flag abgefragt. Ist der richtige Inhalt vorhanden ($7F
(127)), dann wird eine andere Kernal-Routine, CLRCH ($FFCC)
durchgefiihrt. AuBerdem wird der Tastaturpuffer geleert,
indem eine Null in die Adresse $C6 (198) geschrieben wird.
Wird der Teil der IRQ-Routine, der die Stop-Taste abfragt,
durch POKE 788,52 aufler Betrieb gesetzt, so funktioniert
auch diese Routine nicht mehr, auBler man fiihrt den Sprung zu
dem Unterprogramm, das von der IRQ-Routine aus angesprungen
wird, vor dem Sprung zu dieser Kernal-Routine durch.

Kernal-Adresse: $FFE4 (65508)
Funktion: GETIN
Tatsdchliche Sprungadresse: Vektor $032A-$032B (810-811)
Normalerweise: $F13E
Diese Routine holt ein Zeichen.
Anhand der Speicherstelle $99 (aktives Eingabegerat (153))
springt der Computer zu verschiedenemn Routinen:

215

$99 (153) Eingabegerit Sprungadresse

(0] Tastatur $E5B4
2 RS 232-Schnittstelle $F086
anders Floppy-Band etc. $F166

Wird ein Zeichen von der Tastatur geholt, so sieht die
Routine folgendermafBien aus:

E5B4 L1LDY $0277 ;erstes Zeichen in Y-Register
E5B7 LDX #$00 ;Zahler

E5B9 LDA $0278,X ;Zeichen holen

E5BC STA $0277,X ;und eine Stelle vorher ablegen

E5BF INX ;Zdhler erhohen

E5CO0 CPX #$C6 ;Anzahl der Zeichen

E5C2 BNE $E5B9 ;noch nicht alle, also weiter
E5C4 DEC $C6 ;Zeichenanzahl um Eins erniedrigen
E5C6 TYA ‘ ;1.Zeichen in Akku holen

E5C7 CLI ; Interrupt wieder erlauben

E5C8 CLC

E5C9 RTS

Diese Routine holt sich das erste Zeichen aus dem
Tastatur-Puffer (631-640), schiebt die anderen alle eins auf
und erniedrigt die Zahl um einen.

Der Interrupt wurde verhindert, damit der Tastatur-Puffer
nicht noch kurzfristig gedndert wird (in -der IRQ-Routine
wird die Tastatur abgefragt, siehe Kapitel INTERRUPTS).

Kernal-Adresse: $FFE7 (65511)

Funktion: SchlieBlen aller offenen Files (CLALL)
Tatsichliche Sprungadresse: Vektor $032C-$032D (812-813)
Normalerweise: $F32F
Diese Routine benutzt eine andere Kernal-Routine, die
CLRCH—Rputine ($FFCC) . Es werden nur zwei Befehle

216

vorweggenommen:

F32F LDA #$00
F331 STA $98

Damit werden alle offenen Files geschlossen ($98 (158) =
Anzahl der offenen Files)
Ab Adresse $F333 geht es mit der CLRCH-Routine weiter.

Kernal-Adresse : $FFEA (65514)

Funktion : Zeit erhbhen-STOP-Taste abfragen

Tatsdchliche Sprungadresse : $F69B

Diese Routine wird auch von der IRQ-Routine benutzt,
allerdings wird direkt die Adresse $F69B angesprungen.

In dieser Routine wird die Uhrzeit erhoht.
‘Aufierdem wird nachgeschaut, ob der Wert filr 24h erreicht
worden ist. Ist das der Fall, so wird die Uhr wieder auf
Null gestellt.
Weiterhin wird getestet, ob die Stop-Taste gedriickt ist. Ist
sie es, 80 wird ein Flag ($91 (145)) gesetzt.

Da diese Routine wie gesagt von der IRQ-Routine genutzt
wird, £&allt auf, daB in der IRQ-Routine nur die Stop-Taste
abgefragt, nicht aber zu einer Routine gesprungen wird. Das
hat einen grofien Vorteil:

Je nachdem, was gerade ausgefiihrt wird, kann zu einer
anderen Routine gesprungen werden. Ist der Computer z.B.
gerade im Lade-Modus, und die Stop-Taste wird gedriickt, so
wird zu einer anderen Routine gesprungen, als wenn der
Computer im Programm-Modus gewesen wire.

Kernal-Adresse: $FFED (65517)

Funktion: Zeilen-Spalten-Anzahl holen

Tatséchliche Sprungadresse: $ES505
Diese Routine holt die Spalten-Anzahl (40) in das X-Register
und die Zeilen-Anzahl (25) in das Y-Register:

217

E505 LDX #%$28 ;Spalten-Anzahl
E507 LDY #$19 ;Zeilen-Anzahl
E509 RTS

Kernal-Adresse : $FFFO (65520)

Funktion : Cursor setzen-holen

Tatsidchliche Sprungadresse : $E50A

Ist das Carry-Flag gesetzt, so wird die Cursorposition
geholt, sonst wird sie gesetzt.

ES0A BCS $E513 ;setzen

E50C STX $D6 ;Zeile

E50E STY $D3 ;Spalte

E510 JSR $E56C :Cursor setzen
E513 LDX $D6

E515 LDY $D3

E517 RTS

Wie Sie sehen, ist

a) beim Holen der Cursor-Position die Zeile ins X-Register
und die Spalte ins Y-Register.

b) beim Setzen der Cursor-Position die Zeile ins X-Register
und die Spalte ins Y-Register zu iibergeben.

Kernal-Adresse : $FFF3 (65523)

Funktion : Startadresse I/0-Baustein holen

Tatsidchliche Sprungadresse : $E500

Nach Ansprung dieser Routine ist im X-Register das Low-Byte
($00) der Startadresse des I/0-Bausteins und im Y-Register
das High-Byte ($DC).

Die gesamte Routine sieht folgendermafien aus:

E500 LDX #$00 ; Low-Byte

E502 LDY #$DC ;High-Byte
E504 RTS

218

Diese Routine und die Routine zum Holen der Zeilen-/
Spalten-Anzahl mag auf den ersten Blick unsinnig erscheinen.
Man sieht den Sinn aber schnell ein, wenn man noch einmal
iiberdenkt, wozu der Kernal denn geschaffen ist: Zum Umsetzen
von Programmen auf einen anderen Computer.

Wie Sie sicherlich schnell einsehen werden, kann man kein
verniinftiges Programm schreiben, ohne daB Bildschirmformat
des Computers zu kennen. Mit Hilfe dieser Routinen kann man
das Programm so schreiben, dal es sich selbsttdtig nach dem
Format erkundigt.

Wir hoffen, daB dieser Ausflug in den Bereich des Kernal
lehrreich fiir Sie war, und dag Sie als
Maschinensprache-Programmierer doch die ein oder andere
Routine einmal benutzen konnen.

219

11.DER SPEICHER

WIE SPEICHERT DER COMPUTER EINE BASIC-ZEILE 7

Auf den folgenden Zeilen wollen wir TIhnen einige
Einzelheiten die Abspeicherung von BASIC-Zeilen betreffend
aufzeigen. :

Um die BASIC-Zeilen iiberhaupt verarbeiten zu koénnen, muB das
erste Byte des BASIC-Speichers "0" enthalten. Im Normalfall
fingt der BASIC-Speicher bei Adresse 2049 an. Also mufl
Adresse 2048 eine Null enthalten. POKEn wir in diese Adresse
eine 1, dann druckt der Computer bei NEW oder bei RUN die
Fehlermeldung SYNTAX ERROR aus (aber Vorsicht!! NEW fiihrt
der Computer trotzdem aus!). ‘

Wir haben ein Kkleines Programﬁ geschrieben, das die
Speicherung einer BASIC-Zeile verdeutlichen soll. Es zeigt
in der oberen Zeile des Bildschirms stindig an, wieviele
Bytes des BASIC-Speichers von der letzten Zeile verbraucht
wurden.

Nachdem Sie es eingegeben und mit RUN gestartet haben,
erscheint in der oberen 2Zeile des Bildschirms folgender
Ausdruck:

00 BYTES BENUTZT
Dies bedeutet, daB die 1letzte Eingabe (seit dem letzten
RETURN) kein Platz im BASIC-Speicher mehr verbraucht hat.
BASIC-Speicherplatz wird nur bei Programm-Zeilen belegt.
Geben Sie jetzt ein:
100 PRINT
Nun zeigt das Programm folgende Aussage an:

06 BYTES BENUTZT

Von diesen 6 Bytes sind fiinf sogenannte Verwaltungs-Bytes.

220

Das letzte Byte ist filr den Befehlscode (Token) fiir PRINT.
Die 5 Verwaltungs-Bytes unterteilen sich wiederum in:

a) zwel Bytes (die ersten beiden) fiir die Abfangsadresse
der ndchsten BASIC-Zeile (in Low-High-Byte).Die letzte
Zeile zeigt auf den Wert Null.

b) zweli Bytes (die zweiten beiden) fiir die Zeilennummer.
Auch diese beiden Bytes sind in Low - High-Byte unter-
teilt, so daB die Zeilen-Nummer 1000 die Werte 232/3
ergibt.

c) ein Byte filr die Kennzeichnung des Zeilen-Endes. Die-
ses Byte mufS den Wert Null haben, und es steht am Ende
der entsprechenden Zeile.

Geben Sie nun

20 PRINT"WERNER"

ein. Hier werden 14 Bytes bendtigt. Davon wieder die 5
bekannten Verwaltung-Bytes, ein Byte fiir den Token (PRINT)
und die 1ibrigen 8 fiir den Text (Werner gleich 6 und die
Anfilhrungszeichen jeweils ein Byte).

Geben Sie nun noch etwas ein:

30 PRINTCHR$(48)
Diesmal sind 11 Bytes erforderlich:
a) 5 Bytes fiir die Verwaltung
b) 1 Byte fiir den BASIC-Token "PRINT"
c) 1 Byte fiir den BASIC-Token "CHR$"
d) 4 Bytes fiir den "Text-Teil" " (48)".
Wenn Sie die Funktionen TAB und SPC verwenden, ist zu

beachten, dag diese Befehle bereits das Zeichen " ("
enthalten.

221

Die Zusammensetzung der Bytes einer BASIC-Zeile ist bei
allen BASIC-Befehlen gleich. Als letztes Beispiel wollen wir
dafir folgende Zeile zeigen:

40 POKE198,0

Und noch einmal eine Auflistung der benutzten Bytes:

a) 5 Bytes fiir die Verwaltung
b) 1 Byte filir den BASIC-Token "POKE"
c) 5 Bytes fir den Text (hier 198,0)

Und nun die Routine, zuerst den BASIC-Loader:

10 FOR I=0 TO 87

20 READ A

30 POKE 40704+I,A

40 S=S+A

50 NEXT I

60 IF S<>7590 THEN PRINT "FEHLER IN
DATAS" : END

70 PRINT"DATA O0.K."

80 SYS 40704

100 DATA120, 169,15, 141,20,3,169, 159,141,

21,3,133,56,88,96,169,48

110 DATA141,0,4,141,1,4,165,11,201,76,

240, 18,56,201,10, 144,8,238

120 DATAO, 4, 233,10,76,30,159, 105,48, 141,

1,4,162,2,189,69,159,157,0,4

130 DATA232,224, 18,208, 245,169,0, 202,157

,0,216,208,250,76,49,234,32,2,25,20,5

140 DATA19,32,2,5,14,21,20,26,20,32,32,

32

222

Fiir Assembler-Freaks:

9F00 SEI

9F01 LDA #OF
9F03 STA $0314
9F06 LDA #9F
9F08 STA $0315
9F0B STA $38
9FOD CLI

9FOE RTS

9FOF LDA #$30
9F11 STA $0400
9F14 STA $0401
9F17 LDA $0B
9F19 CMP #$4C
9F1B BEQ $9F2F
9F1D SEC

9F1E CMP #$0A
9F20 BCC $9F2A
9F22 INC $0400
9F25 SBC #$10
9F27 JMP $9F1E
9F2A ADC #$30
9F2C STA $0401
9F2F LDX #$02
9F31 LDA $9F45,X
9F34 STA $0400,X
9F37 INX

9F38 CPX #$12
9F3A BNE $9F31
9F3C LDA #$00
9F3E DEX

9F3F STA $D800,X
9F42 BNE $9F3E
9F44 JMP $EA31

Die restlichen Daten stellen die Bildschirm-Code-Werte fiir
den String "BYTES BENUTZT" dar.

223

BASIC-MONITOR

Vorhin haben wir schon gesehen, wie der Computer eine

BASIC-Zeile abspeichert. Das nun folgende, kurze
BASIC-Programm ermdglicht es, die Speicherinhalte des
Computers zu sichten. So kann man sich ganze

(Basic-)Programme anschauen. Es ist auch sehr interessant
und aufschlufireich, auf diese Art Teile des ROMs 2zu
untersuchen.

Wenn Ihnen Maschinensprache-Monitore nicht fremd sind,
kennen Sie sicher den Befehl "M" (Memory-Display). In
Deutsch heifit das "Speicher-Anzeige". Dieses Programm fiihrt
genau diesen Befehl aus.

Zuerst werden Sie nach der Anfangs- und Endadresse gefragt.
Nun werden auf dem Bildschirm die Anfangs-Adresse, und die
PEEKs dieser Adresse und der fiinf folgenden angezeigt. Am
Ende der Zeile stehen noch die Bildschirm-Code-Zeichen
dieser Speicher-Inhalte.

Beispielsweise die folgende (fiktive) ausgegebene Zeile:

2048 16 15 48 61 127 102 100 ="

L 2048-—]

L 2049
L 2050

L 2051

L 2052

L2053

Die Zeilen, die auf dem Bildschirm zu sehen sind, haben das
Muster der Zeile mit der Zahl 2048 am Anfang. Das Gebilde
unter dieser 2Zeile so0ll verdeutlichen, wie die Zahlen und
Zeichen zueinander stehen.

Wie Sie sehen, erfolgt die Zahlenausgabe im dezimalen
Zahlen-System, da dieser Monitor zum durchforsten von
BASIC-Programmen gedacht ist.

224

Da das Programm nur eine Funktion auszufiihren braucht, ist
die Bedienung denkbar einfach. Laden Sie das Programm herein
und starten Sie es dann. Der Computer meldet sich mit

BASIC-MONITOR
ANFANGSADRESSE?
Geben Sie nun die gewilinschte Adresse (in dezimal) ein.
ENDADRESSE?

Geben Sie wieder die gewiinschte Adresse ein. Der Computer
gibt Jetzt nach dem oben schon beschreibenen Muster die
entsprechenden Werte aus. Wie TIhnen beim Ausprobieren
vielleicht aufgefallen ist, druckt der Computer in der
letzten Zeile auch dann 6 Werte aus, wenn eigentlich nach
der eingegebenen Endadresse weniger Werte ausgegeben werden
miiBten.

Wenn Sie wdhrend eines lingeren Durchlaufs den Wunsch haben
das Programm zu stoppen, brauchen Sie nur auf F-1 zu
driicken.

Einige interessante Start-Adressen:
2048 : Anfang des BASIC-Speichers. Hier befindet
sich (normalerweise) der Monitor.

40964 : BASIC-Befehle

Nun erstmal der Monitor:

225

print"S@" che® 140 tpok : S5

print" @ Bazic—Mond o on A priabiprint
input" Anfanasadresse "ia

input"” Endaddrezse "ie

fori=atoesteps

preinti

Foro=@tod

wp=peek (i +od gozub2@@: rew print wsins
BE u=pesk (2140 #48+ 1 A2+ T340

108 pokew peek i +od pokeBd27Va+0 .1
118 next o

126 print

138 newti

148 input” W woch &inmal LiSnd
156 geta®ifak="" then 15@

188 1 Fag="ji"then tun

178 end

DO I A B A O
D A R B oy)

198

288 rem print formatieren

218

s} "upd gobo2dd
248 printepF Sretorn

Obwohl der Monitor in BASIC geschrieben ist, ist es méglich,
ein anderes BASIC-Programm damit zu untersuchen. Dazu miissen

226

' Sie aber einige Werte verd&ndern.
Gehen Sie folgendermafBien vor:

Da

Versetzen Sie Ihren Computer in den Anschaltzustand
Geben Sie ein:

POKE 44, 150

Statt der 150 konnen Sie auch eine andere Zahl zwischen
8 und 159 nehmen. Dadurch wird der BASIC-Anfang hochge-
setzt, so daB sich der Monitor und das Programm, daf
Sie untersuchen wollen nicht iiberschneiden.

Geben Sie

POKE 256*PEEK(44),0

ein. Dadurch wird eine Null an den BASIC-Anfang gesetzt,
was unbedingt erforderlich ist.

Laden Sie nun den BASIC-Monitor.

Geben Sie nun

POKE 44,8
ein. Dadurch wird der BASIC-Anfang wieder auf den
Normalwert gebracht.
Laden Sie nun das Programm, das Sie untersuchen wollen.
Geben Sie nun wieder

POKE 44, (Ihren Wert)
ein, um wieder zum Monitor zu gelangen.
Starten Sie nun den Monitor mit RUN. Nun kdnnen Sie das

Programm ganz einfach untersuchen (ab Adresse 2048).

der Monitor nicht lang und so einfach zu verstehen ist,

konnen Sie TIhn ja mal durch andere Befehle ergidnzen, um so
z.B. BASIC-Programme mit dem Monitor verdndern zu konnen.

227

KOMMENTIERTES ZEROPAGE-LISTING

Im Folgenden finden Sie ein kommentiertes Zeropage-Listing.
Es so0ll Ihnen helfen, die Bedeutung unbekannter Adressen in
fremden Listings zu kladren. Beim Durchschmtkern finden aber
auch Sie vielleicht so manche interessante Anregung !

Wir wiinschen Ihnen viel Spaf!

0000
0001

0002
0003
0004
0005
0006
0007
0008
0009
000a
000B
000cC
000D
O00E
O00F
0010
0011
0012

© 90 g WN

[N O T W U G G G ¥
©® 90 U b WN 20

6510 DATEN RICHTUNGSREGISTER FUR PROZESSORPORT
6510 PROZESSOR-PORT

Bit O: RAM oder ROM von $A000 bis $BFFF
(BASIC-Interpreter) * POKE 1,54

Bit 1: RAM oder ROM von $EO0O0 bis $FFFF
(Betriebssystem, KERNAL) * POKE 1,53

Bit 2: I/0 oder ROM von $DO00 bis $DFFF
(Charactergen.-Zugriff) * POKE 1,51

NICHT BENUTZT

VEKTOR LOW (Umrechnung Float-Fixed)

VEKTOR HIGH

VEKTOR LOW (Umrechnung Fixed-Float)

VEKTOR HIGH

SUCHZEICHEN

FLAG (Hochkomma-, GansefiiBchen-Mode)
SPEICHER FUR SPALTE BEIM TAB-BEFEHL

FLAG (O=LOAD; 1=VERIFY)

ZEIGER (Eingabepuffer); Anzahl der Elemente
FLAG (Standard-DIM)

TYPFLAG ($FF(255)=String, OO=numerisch)
TYPFLAG ($80(128)=Integer, 00=Flieflkomma)
FLAG (DATA/LIST); Hochkommaflag bei LIST
FLAG (FNx, Element)

EINGABEFLAG (00=INPUT; 64=GET; 136=READ)
VORZEICHEN BEI ATN (Flag fiir Gleichheit bei
Vergleich)

228

0013 19 AKTIVES I/0-GERAT
———— - POKE 19, 1:INPUT"OHNE FRAGEZEICHEN";A$:POKE19,0
———— - (Ausschalten des Fragezeichens bei INPUT)

0014 20 INTEGER-ADRESSE LOW
0015 21 INTEGER-ADRESSE HIGH
0016 22 ZEIGER AUF TEMPORAREN STRINGSTAPEL

————— - POKE 22,35: LIST

—_——— - (Listen ohne Zeilennummern)

0017 23 VEKTOR LOW (Letzter tempordrer String)
0018 24 VEKTOR HIGH

0019 25 STAPEL FUR TEMPORARE STRINGS

001A 26 "

001B 27 .

001C 28 "

001D 29 "

00O1E 30 "

001F 31 "

0020 32 "

0021 33 "

0022 34 BEREICH FUR HILFSZEIGER (nutzbar fiir M-Prg.)
0023 35 "

0024 36 "

0025 37 "

0026 38 BEREICH FUR PRODUKT BEI MULTIPLIKATION
0027 39 "

0028 40 "

0029 41 "

002A 42 "

002B 43 01 VEKTOR LOW (Basic-Anfang)

---- =-- ~-- An neuen BASIC-Anfang POKE (newadd)-1,0:NEW !!
002C 44 08 VEKTOR HIGH

002D 45 VEKTOR LOW (Variablen-Start)

002E 46 VEKTOR HIGH

002F 47 VEKTOR LOW (Beginn der Arrays (Felder))
0030 48 VEKTOR HIGH

0031 49 VEKTOR LOW (Ende der Arrays)

229

0032
0033
0034
0035
0036
0037

0038
0039

003a
003B

003c
003D
OO3E
O03F

0040
0041

0042
0043
0044

VEKTOR HIGH

VEKTOR LOW (Beginn der Strings)

VEKTOR HIGH

VEKTOR LOW (Hilfszeiger fiir Strings)

VEKTOR HIGH

VEKTOR LOW (BASIC-Speicher-Ende)

Herabsetzen des verfiigbaren BASIC-Speichers,um
beispielsweise dort abgelegte Assemblerprog-
gramme vor dem tberschreiben zu schiitzen.
VEKTOR HIGH

LOW-BYTE (aktuelle Zeilennummer)

PRINT PEEK(57) +256* PEEK(58) ergibt die aktu-
elle BASICFZeilennummer aus (Abfrage funktio-
niert nur im Programm-Mode!)

HIGH-BYTE

LOW-BYTE (vorherige Zeilennummer)

PRINT PEEK(59) +256*PEEK(60) ergibt die voran-
gegangene BASIC-Zeilennummer (auch im Direkt-
de)

HIGH-BYTE

LOW-BYTE (N&dchstes Statement filr CONT)

Zeiger auf Einsprungadresse bei CONT

HIGH-BYTE

LOW-BYTE (Augenblickliche DATA-Zeilennummer)
Enthdlt die augenblickliche Zeilennummer fir
DATA (In Verbindung mit READ;kann zum Ausgeben
der Zeilennummer bei eigenen Fehlermeldungen
benutzt werden !)

HIGH-BYTE

VEKTOR LOW (Adresse des aktuellen DATA-Elemen-
tes. Zeigt auf die Anfangsadresse des ndchsten
DATA-Elementes im BASIC-Speicher

VEKTOR HIGH

VEKTOR LOW (Zeiger auf Herkunft der Eingabe)
VEKTOR HIGH

230

0045
0046
0047
0048
0049
004A
004B
004cC
004D
004E
004F
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
005A
005B
005C
005D
OO5E
O0S5F
0060
0061
0062
0063
0064
0065
0066
0067
0068

69
70
A
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

76

REG 1 Variablenname (siehe "Grundsdtzliches

REG 2 Variablenname zur Variablenspeicherung

VEKTOR LOW Variablenadresse

VEKTOR HIGH

LOW-BYTE (Variablenwert)

HIGH-BYTE

LOW-BYTE (2Zwischenspeicher fiir Programmzeiger)

HIGH-BYTE

Maske fiir Vergleichsoperationen

VEKTOR LOW (Zeiger fiir FN)

VEKTOR HIGH

Stringdescriptor (verschieden genutzter Ar-
. beitsbereich)

Konstante $4C (JMP-Befehl fiir Funktionen)
Sprungvektor fiir Funktionen (LOW)

" (HIGH)
Register filr Arithmetik, Akku 3

Register fir Arithmetik, Akku 2

FlieBSkomma-Akku 1, FAC

n
"
"

Vorzeichen des FAC
Zadhler fiir Polynomberechnung (z.B. ab $E059)
Rundungsbyte fiir FAC

231

0069 105 Fliefkomma-Akku 2, ARG

006A 106 "

006B 107 "

006C 108 "

006D 109 "

006E 110 Vorzeichen des ARG

006F 111 Vergleich der Vorzeichen FAC/ARG
0070 112 Rundungsbyte fiir FAC

Kleine Anmerkung zu den vorangegangenen Speicherstellen:

Die "Formelauswertungsroutine"” befindet sich im
BASIC-Interpreter ab $AD9E.

Sie holt einen beliebigen Ausdruck und wertet ihn aus. Diese
Auswertung geschieht in reellen Zahlen, eventuell
vorkommende Integer (Ganzzahl) Variablen werden zundchst ins
FlieBSkommaformat umgewandelt.

Aber nicht nur 2Zahlen, auch Stringparameter koénnen von
dieser Routine bearbeitet werden.

Um Stringparameter von anderen numerischen Variablen zu
unterscheiden, wird ein entsprechendes Zeichen (Typflag)
gesetzt (Adresse 13).

Numerischer Werte werden im FAC 1 (ab $61)
zwischengespeichert. Da dies aber nicht fiir arithmetische
Verkniipfungen (Subtraktion, Addition, etc.) ausreicht, gibt
es einen weiteren FlieBSkomma-Akku (ab $69), ARG.

Das Ergebnis nach dem Aufruf der entsprechenden Routine
steht wie das Argument im FAC.

Bei Stringauswertungen werden die Adressen $64 / $65
hinzugezogen, die einen 2Zeiger auf den Stringdescriptor

bilden.

Dort stehen Informationen iiber L&nge und Adresse des
bearbeiteten Strings.

Die im Folgenden aufgefiihrten Routinen des Interpreters
diirften gerade bei der Maschinensprache-Programmierung fiir
die Auswertung beliebiger Ausdriicke interessant sein:

232

FAC = ARG + FAC (Addition) $B86A (47210)

FAC = ARG - FAC (Subtraktion) $B853 (47187)
FAC = ARG * FAC (Multiplikation) $BA28 (47656)
FAC = ARG / FAC (Division) $BB12 (47890)
FAC = ARG ~ FAC (Potenzieren) $BF7B (49019)

Die Routine $B475 (46197) holt die Stringldnge in den Akku.
Die Adresse liegt im Low-High-Format im X- und Y-Register.

0071 113 VEKTOR LOW (Zeiger fiir Polynomauswertung)

0072 114 VEKTOR HIGH Sie dienen als Zeiger auf den Po-
——————— lynomkoeffizienten ($E043) und als Zeiger fiir
——————— Polynomgrad ($E059).

0073 115 CHRGET-ROUTINE (Assembler-ROM-Listing):
0074 116

0075 117 0073 INC $7A

0076 118 0075 BNE $0079 Zeiger in BASIC-Text erhdhen
0077 119 0077 INC $7B

0078 120 0079 LDA $HHLL

0079 121

007A 122 Programmzeiger LOW

007B 123 Programmzeiger HIGH

007C 124

007D 125 007C CMP "$3A ":"

O07E 126 007E BCS $008A

007F 127 0080 CMP "$20 " " Space liibergehen
0080 128 0082 BEQ $0073

0081 129 0084 SEC

0082 130 0085 SBC "$30

0083 131 0087 SEC

0084 132 0088 SBC "$DO

0085 133 008A RTS

0086 134

0087 135 Die CHRGET-Routine liegt eigentlich im ROM ab

233

10

$E3A2, wird aber wdhrend des RESETS ins RAM ab
$0073 kopiert. Die Routine funktioniert nur im
RAM-Bereich. X- u. Y-Register werden nicht an-
getastet.

Carry=0 : Inhalt des gelesenen Bytes liegt im
Bereich $30 - $39 (Ziffern im ASCII-Code)
Zero=1 : Zeichen = $00 oder $3A (":")

letzter RND-Wert

Statuswort ST (bei z.B. IEC-Bus-Routinen)

Flag des Systems fiir STOP-Taste

Zeitkonstante fiir Kassette (von $F92C gesetzt)
LOAD/VERIFY-Flag ($00=LOAD; $01=VERIFY)

Wird von LOAD-Routine gesetzt, wdhrend Adresse
$0A (10) vom LOAD-Befehl gesetzt wird.

Flag fir zurilickgestelltes Zeichen bei IEC-Out
2Zuriickgestelltes Zeichen (Puffer)

End-0f-Tape (EOT) gefunden (Flag)
Zwischenspeicher fir Register

Anzahl der offenen Dateien

POKE 152,0 schlieBt alle Files,

POKE 152,12 verhindert das 6ffnen von Files
aktives Eingabegerdt (1=Tastatur)

POKE 153,2 verhindert Tastatur-Eingaben
aktives Ausgabegerdt (3=Bildschirm)

POKE 154,1 hat dieselbe Bedeutung wie bei
Adresse 19 in bezug auf INPUT

Paritatsbyte von Band

Flag fiir Byte empfangen

Direkt-Mode-Kontrolle ($00=Programm, $80=RUN)
Ein mit GOTO gestartetes Programm bewirkt $80!
Band Pass 1 Checksumme

Band Pass 2 Korrektur

234

00

TIME 3 (Ubertrag TIME 2)

TIME 2 (Ubertrag TIME 1)

TIME 1 (Z&hler fiir TI und TI$)

Bitzdhler. Z&hlt bei $FB97 die acht Bits eines
auszugebenden Bytes

Zyklen-Zahler ($A3=8 dann $A4=0)

Abwdrtszdhler schreiben auf Kassette

Zeiger in Bandpuffer (wird ein Zeichen in den
Kassettenpuffer geschrieben, erhtht sich diese
Adresse um 1 und zeigt auf die néchste freie
Stelle. Ist der Puffer voll (192 Zeichen),wird
das Zero-Flag gesetzt ($F80D).
Zwischenspeicher fiir LOAD/SAVE bei Kassette

Zeiger fiir Bandpuffer und Scrolling

HIGH-BYTE "
Lowbyte der Endadresse des geladenen Programms
High-Byte "

Zeitkonstanten fiir Band

VEKTOR LOW (Verschieben des Kassettenpuffers)
VEKTOR HIGH

Bitzdhler fiir Band

235

nachstes Bit fiir RS 232

Puffer fiir auszugebendes Byte

Liange des Programm-Namens

Zuletzt benutzte Dateinummer

Zuletzt benutzte Sekunddradresse

Zuletzt benutzte Gerdtenummer

VEKTOR LOW auf abgespeicherten Programmnamen
VEKTOR HIGH bei Floppy Disk

Zwischenspeicher fiir serielle Ein-/ Ausgabe
Anzahl der noch zu lesenden/schreibenden
Blocks (Routine ab $FBCD)

Serieller Wortpuffer. Puffer filr Adresse 189
Kassettenmotorflag

VEKTOR LOW Eingabe/Ausgabe-Startadresse
VEKTOR HIGH (zeigt auf $A000); fiir SAVE-Routine
Endadresse fiir Ein/Ausgabe vom Bildschirm
High-Byte "

Nummer der gedriickten Taste (64=keine Taste)
10 IF PEEK(197)=64 THEN 10 wartet auf Tasten-
druck (siehe auch Tabelle im Anhang).

Anzahl der Tasten, die aus dem Tastaturpuffer
ausgegeben werden sollen(siehe Tastaturpuffer)
Revers(RVS)Flag 1=revers, O=normal

POKE 199,1: PRINT "DEMO"

Zeiger auf Zeilenende fiir Eingabe

Cursorzeile fiir Eingabe (dient nur als Puffer)
Cursorspalte fiir Eingabe "

Nummer der gedriickten Taste (64=keine Taste)
scheinbar dieselbe Funktion wie Adresse 197.
Fir den Computer jedoch zeitverschobene Abfra-
ge auf zwischenzeitlich gedriickte Tasten.
Cursor-Flag O=Cursor ein 1=Cursor aus
Gestattet das Einschalten des Cursors im Prg.
Zahler fir Cursor blinken

Zeichen in Cursorposition

Einschaltflag 1=Cursor sichtbar O=unsichtbar

236

O0OFO 240
O0F1 241
O0F2 242
00F3 243
OOF4 244
OO0F5 245
O0F6 246
O0F7 247
OOF8 248
OO0F9 249
OOFA 250
OOFB 251
O0FC 252
OOFD 253
OOFE 254
OOFF 255

Ende Page O

10IFPEEK(207)THEN10 wartet, bis Cursor sich in
Aus-Phase befindet.

Eingabeflag (z.B. $E65F, $F16A)

VEKTOR LOW in aktuelles Video-RAM

VEKTOR HIGH

Eingabe der Cursorspalte fiir Eingabe-Cursor
Cursor-Zeile siehe Adresse 214. Aufruf der
Set-Routine: SYS 58732)

Hochkomma (")Flag Benutzung beispielsweise bei
ESCAPE-Routine. POKE 212,1: PRINT... gibt auch
eventuell vorkommende Steuerzeichen aus.

Lange der Bildschirmzeile (39/79)

Eingabe der Cursorzeile (siehe Adresse 211 1)
div. Zwecke (letzte Taste, Puffer, Priifsumme)
Anzahl der ausstehenden Inserts

MSB der Bildschirmzeilen-Anfiénge

Unechte Bildschirmzeile
Bildschirmzeilen-Marke

VEKTOR LOW Zeiger ins aktuelle Farb-RAM
VEKTOR HIGH (ab $D800)

VEKTOR LOW Tastatur-Dekodiertabelle
VEKTOR HIGH Zeiger: $EB81 (60289)
VEKTOR LOW RS 232 Eingabepuffer

VEKTOR HIGH

VEKTOR LOW RS 232 Ausgabepuffer

VEKTOR HIGH

Zeropageraum zur eigenen Verwendung(unbenutzt)

Anfang des Puffers Umwandlung FlieBSkomma-ASCII

237

WICHTIGE ADRESSEN DER FOLGENDEN PAGES
0277 - 0280 631-640 TASTATURPUFFER

In diesem Bereich konnen bis zu 10 Zeichen
zwischengespeichert ("gepuffert") werden.

Dies passiert beispielsweise immer dann, wenn Tasten
gedriickt werden, 3jedoch momentan nicht weiterverarbeitet
werden kodnnen (weil der Computer beispielsweise noch an
anderer Stelle beschdftigt ist).

Der Tastaturpuffer 1&aBt sich jedoch auch fiir eigene Zwecke
verwenden: Die in den Tastaturpuffer gebrachten Zeichen
kbnnen ausgegeben werden, sobald Adresse 198 die gewiinschte
Anzahl bekommt.

Die Besonderheit des Tastaturpuffers besteht darin, das die
Zeichen erst nach Beendigung des Programmes ausgegeben
werden (also bereits im Direktmode).

Auf diese Weise lassen sich BASIC-Zeilen in ein bereits
laufendes Programm einfiigen (siehe DATA-Generator Kapitel
1).

0286 646 ZEICHENFARB-SPEICHER
In dieser Adresse ist die augenblickliche Zeichenfarbe
abgespeichert. Sie kann von Ihnen gedndert werden, indem Sie

den Inhalt dieser Speicherstelle verdndern.

10 A=INT(RND(1)*15)
20 POKE 646,A: REM ZUFALLIGE FARBE

30 PRINT"*";

40 GOTO 10

0 = schwarz 1 = weif 2 = rot

4 = tiirkis 5 = violett 6 = griin

7 = blau 8 = gelb 9 = orange
10 = braun 11 = hellrot 12 = grau 1

238

13 = grau 2 14 = hellgriin 15 = hellblau
15 grau 3

0288 648 HIGH-BYTE DES VIDEO-RAMS

Die Abfrage

PRINT PEEK(648)*256

ergibt die aktuelle Anfangsadresse des Bildschirmspeichers.
Sie betradgt normalerweise 1024.

Verschoben werden kann der Bildschirmspeicher mit Hilfe des
4. - 7. Bits der Adresse 53272 und des O. und 1. Bits der
Adresse 56576 (siehe auch Kapitel "Grafik" !)

028A 650 REPEAT-FUNKTION FUR ALLE TASTEN

Diese Adresse steuert die Prellfdhigkeit der Tastatur:

POKE 650,0 Repeat nur fiir Steuertasten
POKE 650,64 Repeat off
POKE 650,128 Repeat fiir alle Tasten

028C 652 ZAHLER FUR REPEAT-VERZOGERUNG

sind alle Tasten durch Andern der Adresse 650 mit einer
Wiederholfunktion ausgestattet, so geht der Repeatvorgang
folgendermafien vor sich:

Es wird =zundchst nur ein Zeichen ausgegeben. Nach einer
gewissen Zeit erst werden dauernd weitere 2Zeichen
ausgegeben.

Der 1Inhalt dieser Speicherstelle bestimmt nun die Dauer
dieser kleinen Pause zwischen dem Ausgeben des ersten und
der weiteren Zeichen.

Einen fiir Ihren Zweck passenden Wert miissen Sie durch etwas
Herumprobieren selbst ermitteln!

239

028D; 028E 653;654 FLAG FUR SHIFT, C=- UND CTRL-TASTE

Bit O, 1 und 2 dieser Adresse werden jeweils bei Betdtigung
einer dieser Tasten gesetzt.

0291 657 SPERRFLAG FUR SHIFT/C=
Der Inhalt dieser Adresse entscheidet dariiber, ob die

Umschaltung von einem auf den anderen Zeichensatz durch
Driicken der Shift- und C=-Taste gestattet wird oder nicht.

240

ALLGEMEINES ZUR VARIABLENSPEICHERUNG

Im Folgenden finden Sie eine tibersicht, aus der hervorgeht,
wo welche Variablen im Speicher abgelegt werden:

-Anfang BASIC-Speicher ($2B, $2C) $0800

A -Bereich A: BASIC-Programm

-Variablen-Anfang ($2D, $2E)

B -Bereich B: Variablenspeicherung
-Beginn der Arrays ($2F, $30)
c -Bereich C: Speicherung der Array-Variablen

-Ende der Arrays ($31, $32)

-freier BASIC-Speicher

-freier BASIC-Speicher

-Stringbeginn (bewegt sich abwédrts, $33, $34)

-gespeicherte Strings

-BASIC-Speicher-Ende ($37, $38)

-$9FFF

241

Schema der Variablenspeicherung

Im Bereich A befindet sich das BASIC-Programm. Direkt
dahinter werden die FlieBSkomma- und Integervariablen sowie
DEF FN gespeichert (Bereich B).

Im Bereich C sind die sogenannten Arrays gespeichert, also
die Variablenfelder. Vom Ende des BASIC-Speichers her
abwdrts werden die Strings gespeichert.

Sémtliche Bereiche werden durch Zeiger bestimmt, die
normalerweise automatisch durch den Interpreter gesetzt
werden.

Diese Zeiger kdnnen jedoch auch von Ihnen verindert werden
(insbesondere BASIC-Start und -Ende):

43/44 BASIC-Anfang
45/46 Variablen-Anfang
47/48 Array-Anfang
49/50 Array-Ende

51/52 String-Anfang
53/54 Hilfszeiger
55/56 BASIC-Ende

Beim Verlegen des Variablenanfanges ist folgendes zu
beachten: Wird dieser Vektor hohergesetzt, so wird das
Programm beim anschliefienden AbSAVEn scheinbar lénger. Die
SAVE-Routine SAVEAd blind alles zwischen der in Adresse 43/44
und der in Adresse 45/46 bestimmten Grenze!

Zur Speicherung:

Da die Arrays iiber einen eigenen Speicherplatz verfiigen,
gibt es insgesamt noch vier unterschiedliche

242

Variablenformen:

a) FlieBkomma-Variablen (Variablennamen wie A, B, CD, etc.)
b) Stringvariablen (Variablennamen durch $ gekennzeichnet)
c) Integervariablen (Variablenname durch % gekennzeichnet)
und

d) Funktionen (FN)

Diese vier verschiedenen Variablentypen miissen von einander
unterschieden werden konnen. Dazu sind zwei Bits (=4
Moglichkeiten) notig.

Diese zwei Bits befinden sich im Namenszeichen.

Da es keine reversen Variablennamen gibt, steht schon einmal
das 7.Bit zur Verfiigung. Und da ein Variablenname
grundsdtzlich aus zwei Zeichen besteht (auch wenn nur eins
angegeben wird), kommt man auf die zwel Bits.

Im Bereich B der Skizze wird fiir jede benutzte Variable
gleich welcher Art ein Platz von sieben Bytes reserviert.
Zwei Bytes werden fiir die Namenszeichen gebraucht. Diese
beiden Bytes werden somit automatisch reserviert, egal ob
Variable A oder DR benutzt wird.

Nun zur oben erwdhnten Unterscheidungsmdglichkeit mit den
zwel 7. Bits der Namenszeichen:

7. Bit des...
Namenszeichen 1 Namenszeichen 2 Variablentyp
0 0 FlieBkomma
0 1 String
1 0 Funktion
1 1 Integer

243

Restliche Bedeutung aller sieben Bytes:

BYTE 1 2 3 4 5 6 7 Variable

N21 NZ2 gespeicherter Wert binar FlieSkomma

NZ1 NZ2 Ldnge LO HI 0 0 String
NZ1 NZ2 HI LO (0] 0 0. Integer
NZ1 = erstes Namenszeichen
NZ2 = zweites Namenszeichen

LO und HI = Low- und High-Adresse des Variableninhaltes

Eine Ausnahme bildet FN. Diese Funktion bendtigt 14 Bytes:

Wert der Argumentvariable

NZ1F/NZ2F = Erstes und zweites Namenszeichen
Funktion

LO/HI = Low- und High-Adresse der Funktion

LOA/HIA = Low- und High-Adresse des Argumentes
NZ1V/NZ2V = Erstes und zweites Namenszeichen des Argum.

244

LISTE INTERESSANTER ZEIGER

Die folgenden Seiten enthalten alle wichtigen Zeiger des
C-64.

Gerade mit Hilfe dieser Zeiger 1lassen sich a&uBlerst
wirkungsvolle Manipulationen hervorrufen.

Manche ROM-Routinen werden iibér Zeiger, die im RAM liegen,
angesprungen. Durch Verandern dieser Zeiger konnen eigene
Routinen angesprungen werden, ohne daB das ROM erst miihsam
ins RAM kopiert werden mufl.

Doch hier die Liste:

Low-, High-Byte Sprungadd. Routine
4 Umwandlung Fliefi-in Festkomma
5 6 Umwandlung Fest-in FlieBkomma
23 24 Zeiger auf zuletzt verw. String
34 35 Zeiger zur freien Verwendung
36 37 "
43 44 BASIC-Start(1.Byte Bas.Start=0)
45 46 Variablenstart
47 48 Array-Start
49 50 Ende der Arrays
51 52 Beginn der Strings (bewegt sich
abwarts)
53 54 Hilfszeiger fiir Strings
55 56 BASIC-Ende
61 62 Ndchstes Statement fiir "CONT"
65 66 Ndachstes DATA-Element
85 86 Sprungvektor fiir Funktionen
122 123 Programmzeiger der CHRGET-Rout.
178 179 Anfangsadresse Bandpuffer
187 188 Zeiger auf Programm-Name
209 210 Zeiger auf aktuelle BS-Zeile
243 244 Zeiger ins aktuelle Farb-RAM

245

245
247
249
655
768
770
772
774
776
778
785
788
790
792
794
796
798
800
802
804
806
808
810
812
814
816
818

246
248
250
656
769
771
773
775
7717
779
786
789
791
793
795
797
799
801
803
805
807
809
811
813
815
817
819

$E38B
$A483
$A57C
$A71A
$A7E4
$AES6
$B248
$EA31
$FE66
$FE47
$F34A
$F291
$F20E
$F250
$F333
$F157
$F1CA
$F6ED
$F13E
$F32F
$FE66
$F4A5
$F5ED

Tastatur-Dekodiertabelle

RS 232 Eingabepuffer

RS 232 Ausgabepuffer
Tastatur-Decodierung
BASIC-Warmstart
Zeilen-Eingabe

Umwandlung in Interpreter-Code
LIST (Umwandlung in Klartext)
BASIC-Befehlsadresse holen
Ausdruck auswerten
USR-Zeiger
Interrupt(IRQ)-Vektor
BREAK-Vektor

Nicht maskierbarer Interr. NMI
OPEN

CLOSE

CHKIN

CKOUT

CLRCH

INPUT

OUTPUT

STOP

GET

CLALL

Warmstart

LOAD

SAVE

Die Abfrage der Zeiger geschieht mit:

PRINT PEEK(low)+256*PEEK(high)

Manche Zeiger lassen

verdndern:

POKE 56334,0
POKE 56334,1

sich nur bei verhindertem Interrupt

Interrupt off
Interrupt on

246

12. ANHANG

ALLGEMEINES ZU DEN TABELLEN

Dieser Teil des Anhangs soll die Tabellensammlung, die im
C-64 Handbuch steht, erginzen. Wir sind nédmlich der Meihung,
daB dort wichtige Tabellen vergessen wurden. Damit man die
zu den einzelnen Zahlen gehdrenden Bedeutungen und Werte
schneller findet, haben wir mehrere kleine Tabellen zu einer
grofien zusammen gefaft. Nur die Ubersicht filr di
Joystick-Abfrage stellt eine eigene Tabelle dar.

In der ersten Tabelle finden Sie eine Ubersicht ilber die
drei Zahlensysteme, die am meisten benutzt werden. Es sind
Dezimal, Hexadezimal und Bindr. AuBlerdem finden Sie hier
folgende Bereiche: Maschinensprache-Befehle (MNEMONICs),
BASIC-Befehle (Token) und die Tastaturdecodier-Tabelle.

Zu den ersten drei Spalten der Tabelle braucht eigentlich
nichts gesagt zu werden. Als Computerbesitzer kommt man um
diese Zahlen-Systeme nicht herum. In BASIC werden Zahlen
fast nur dezimal dargestellt, hexadezimale Zahlen werden in
der Maschinensprache verwendet. Bindre Zahlen mufS man
konnen, um die Arbeitsweise des Computers zu verstehen.

In der Spalte iiber die MNEMONICs wird das Format eines
Maschinensprache-Befehls dargestellt. Jedes "z" bedeutet
eine hexadezimale Zahl.

Wie Sie bestimmt wissen, wird jedes BASIC-Befehlswort im
Speicher in eine Zahl umgewandelt. In der fiinften Spalte der
Tabelle sind diese Befehlsworte (Toke<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>