ST
BASIC

Programmier-
Handbuch

‘ AATARI

DEMENTI

Es wurden alle erdenklichen MaBnahmen getroffen, um die Richtigkeit dieser Pro-
dukt-Dokumentation zu gewihrleisten. Da die Firma ATARI jedoch standig Verbes-
serungen und Nacharbeiten an ihrer Computer-Hardware und -Software vornimmt,
koénnen wir keine Garantie fiir die Vollstindigkeit und Richtigkeit dieser Dokumenta-
tion seit ihrem Erscheinen iibernehmen und schlieBen alle Gewihrleistungsanspriiche
aufgrund unvollstiandiger, unrichtiger oder nachtriglich verinderter Angaben aus.

Die Vervielfiltigung dieser Dokumentation, auch auszugsweise, ist ohne die schriftli-
che Genehmigung der ATARI Corp. nicht gestattet.

ATARI, ST, ST BASIC und ST sind Warenzeichen bzw. eingetragene Warenzei-
chen der ATARI Corp.

GEM ist ein Warenzeichen der Firma Digital Research, Inc.

N ATARI®

© 1986 Atari Corp.
Alle Rechte vorbehalten.

EINFUHRUNG

BASIC ist die beliebteste und am meisten verwendete Programmiersprache. Sie ist
leicht zu erlernen und dennoch ein leistungsfihiges Hilfsmittel bei der Programmie-
rung. ST BASIC gleicht im wesentlichen den allgemeinen BASIC-Dialekten, zieht je-
doch Vorteile aus der Fenstertechnik, den Drop-Down-Meniis und Grafik-Abbildern
des GEM-Desktop. Diese BASIC-Version nutzt zudem die Geschwindigkeit sowie
die grafischen Fihigkeiten des ST Computer-Systemes.

Das ST BASIC Programmierhandbuch ist so aufgebaut, dafl der Programmierer pro-
blemlos Zugriff auf alle benétigten Informationen nehmen kann. Neulinge in der
BASIC-Programmierung sollten zuerst die Beispiele in Kapitel 1 des Handbuches
durcharbeiten. Hier werden die besonderen Charakteristika von ST BASIC und dem
BASIC-Dektop demonstriert und erliutert.

In Kapitel 2, Anhénge, erhalten Sie leicht verstdandliche Erkldrungen zu jedem Aspekt
dieser Sprache. Dabei handelt es sich um Beschreibungen aller reservierten Worter,
der logischen Operatoren, Vorrangregeln und Fehlermeldungen. AuBlerdem finden
Sie hier Beispielprogramme fiir die Mehrzahl der erklarten Begriffe.

Unabhéngig davon, ob Sie gerade erst mit dem Programmieren begonnen haben, oder
ob Sie bereits ein Experte auf diesem Gebiet sind, sollten Sie sich vor Ihrer Arbeit mit
ST BASIC ein Sicherungsduplikat Ihrer ST BASIC-Programmdiskette anfertigen. Le-
sen Sie bitte im ATARI ST Bedienungshandbuch nach, um zu erfahren, wie ein Si-
cherungsduplikat erstellt werden kann.

INHALTSVERZEICHNIS

KAPITEL 1: EINFUHRUNG IN ST BASIC 1
Ladeanweisungen, 1
Uberblick iiber das GEM-Desktop e 2
Fenster 2
Menils e 5
Dialogfelder und Fehlermeldungen 5
Sonderfunktionen 5
Schreiben von Programmen in STBASIC 6
Eingabe 6
Programmlauf 8
Editieren von Programmen 8
Fehlerbehebung e 11
Speichern von Programmen 13
Ladenvon Programmen 14
Verkniipfen von Programmen, 14
Loschen von Programmen 15
Beenden des Programmes STBASIC 15
Befehlseingabe tiber Tastatur 15
Gespeicherte Grafiken 16
Erweiterung des Arbeitsspeichers fiir ST BASIC 17

KAPITEL 2: ANIIANGE
Anhang A: Reservierte Worterin STBASIC A1

Anhang B: Logische Operatoren, Vorrangregeln und Funktionen von ST BASIC B-1

Anhang C: Befehle, Funktionen und Anweisungen C-1
Anhang D: Fehlermeldungen D-1
Anhang E: Der ASCII-Zeichensatz des ST Computers E-1
Anhang F: Assembler-Sprachmodule F-1
Anhang G: Abgeleitete Funktiénen G-1

Anhang H: Beispielprogramme H-1

KAPITEL 1
EINFUHRUNG IN ST BASIC

Das erste Kapitel dieses Handbuches beinhaltet eine allgemeine FEinfiihrung in
ST BASIC und demonstriert die Arbeitsweise von ST BASIC innerhalb der Desktop-
Oberfliche des ST Computer-Systemes.

Das Kapitel ist in drei Abschnitte untergliedert:

® Ladeanweisungen
® Uberblick iiber das GEM-Desktop
@ Schreiben von Programmen in ST BASIC

Anmerkung: Bevor Sie damit beginnen, in ST BASIC zu programmieren, sollten Sie
sich ein Sicherungsduplikat Ihrer Programmdiskette anfertigen. Damit schiitzen Sie
sich vor einem Verlust der Daten auf Ihrer ST BASIC-Diskette, sofern die Programm-
diskette versehentlich einmal geldscht oder zerstdrt wird. Lesen Sie bitte im
ATARI ST Bedienungshandbuch nach, um zu erfahren, wie ein Sicherungsdupli-
kat angefertigt werden kann.

LADEANWEISUNGEN

Bevor sie mit ST BASIC arbeiten konnen, miissen Sie die Programmdiskette in den
- Arbeitsspeicher des ST Computers laden. Befolgen Sie hierzu die nachstehenden An-
weisungen. Wenn Sic ein Computer-System mit nur einem Laufwerk besitzen, lesen
Sie bitte die Instruktionen unter “Ladeanweisung bei einem angeschlossenen Disket-
tenlaufwerk®. Demzufolge gelten die Hinweise unter “Ladeanweisung bei zwei ange-
schlossenen Laufwerken“ fiir Computer-Systeme mit zwei Diskettenlaufwerken.

Ladeanweisung bei einem angeschlossenen Laufwerk
1. Schalten Sie den ST Computer ein. Wenn das GEM-Desktop auf dem Bildschirm
~ zu sehen ist, klicken Sie zweimal auf das “Diskstation B“-Abbild.

2. Sobald Sie iiber ein Dialogfeld dazu aufgefordert werden, die Diskette B in Lauf-
- werk A einzulegen, entfernen Sie die TOS Systemdiskette aus Laufwerk A und
legen die ST BASIC-Programmdiskette ein.
Driicken Sie dann die RETURN-Taste.

3. Nachdem sich das Diskettenfenster gedffnet hat, klicken Sie zweimal auf das
“BASIC.PRG*“-Abbild. Daraufhln erscheint das BASIC- -Desktop auf dem Bild-
schirm.

Ladeanweisung bei zwei angeschlossenen Laufwerken

1. Schalten Sie den ST Computer ein. Wenn das GEM-Desktop auf dem Bildschirm
zu sehen ist, legen Sie die ST BASIC-Programmdiskette in Laufwerk B ein und
klicken zweimal auf das “Diskstation B“-Abbild.

2. Nachdem sich das Diskettenfenster geoffnet hat, klicken Sie zweimal auf das
“BASIC.PRG“-Abbild. Daraufhin erschemt das BASIC -Desktop auf dem Bild-
schirm.

Desk File Run Edit Debug
LIST OUTPUT

!

I-IIIIII-III.-.CIILI

i-ﬁCOMMAND%

ok 1
ol Lilsirs

Das BASIC-Desktop ist Ihr wichtigster Bezugspunkt fiir alle Arbeiten mit ST BASIC.
In den néchsten beiden Abschnitten dieses Kapitels wird beschrieben, wie ein kleines
Programm in ST BASIC geschrieben wird, und wie das BASIC-Desktop fiir die Arbeit
mit ST BASIC verwendet werden kann.

UBERBLICK UBER DAS GEM-DESKTOP

ST BASIC arbeitet mit den Standard-Operationen des GEM-Desktop. Die Arbeits-
schritte fiir den Zugriff auf Meniibegriffe, die Auswahl von Optionen, die Handha-
bung von Fenstern und die Ladevorginge werden detailliert im ATARI ST
Bedienungshandbuch beschrieben.

Fenster
Fiir die Arbeit mit ST BASIC stehen Thnen vier unterschiedliche Fenster zur Verfii-
gung: Das Befehlsfenster (Command), das Ausgabefenster (Output), das Auflistungs-
fenster (List) und das Bearbeitungsfenster (Editor). Nachdem Sie das Programm ST
BASIC geladen haben und das BASIC-Desktop auf dem Bildschirm zu sehen ist, ist
das Befehlsfenster aktiviert. Alle vier Fenster sind verfiigbar (wobei das Bearbeitungs-
fenster zu einem Grofteil von den anderen Fenstern iiberlagert wird und daher nur
teilweise zu sehen ist).

Die Verfahren fiir das Bewegen, VergroBern, Offnen, SchlieBen, Rollen und Anord-
nen von Fenstern entsprechen den Methoden, die in Kapitel 4 des ATARI ST
Bedienungshandbuches beschrieben sind. Bitte lesen Sie dort nach, um weitere Infor-
mationen zu diesem Thema zu erhalten.

Das Befehlsfenster
BASIC-Befehle und Programmzeilen werden in das Befehlsfenster eingegeben. Die
Anfrage “Ok*“ zeigt an, dal ST BASIC bereit fiir eine Befehlseingabe ist. Geben Sie

PRINT “HALLO*“

ein und driicken Sie RETURN. Das Wort “HALLO* erscheint nun im Ausgabefen-
ster. Geben Sie IThren Namen ein und driicken Sie die RETURN-Taste, um die Ar-
beitsweise von ST BASIC kennenzulernen.

Anmerkung: Wenn Sie eine Eingabe vornehmen, die ST BASIC nicht kennt, er-
scheint die Fehlermeldung “Something is wrong“ (fehlerhafte Eingabe) im Befehls-
fenster. Durch ein Exponentialzeichen (*) wird die Stelle innerhalb der Programm-
Anweisung gekennzeichnet, bei der ST BASIC den Fehler lokalisiert hat. Eine voll-
stdndige Auflistung aller vorkommenden Fehlermeldungen von ST BASIC finden Sie
in Anhang D.

Ihr ST Computer kann auch die Funktion eines Taschenrechners iibernehmen. Geben
Sie beispielsweise

PRINT 2+2 [RETURN]
in das Befehlsfenster ein. Im Ausgabefenster erscheint das Ergebnis, 4.

Sie koénnen fiir Thre Berechnungen auch den numerischen Tastaturblock verwenden.
Geben Sie ein:

? [Leertaste]

Geben Sie dann iiber den numerischen Tastaturblock
(5+3)*(6+2)/4+2 [Enter]

ein. Das Ergebnis, 18, erscheint wiederum im Ausgabefenster. Beachten Sie hierbei,
wie ST BASIC arithmetische Operationen handhabt. Die Reihenfolge der einzelnen
Rechenarten ist

1. Multiplikation
2. Division

3. Addition

4. Subtraktion

Anmerkung: Die Schreibweise eines Wortes in eckigen Klammern innerhalb eines
Programm-Beispieles (z.B. [RETURN] oder [Esc] bedeutet, da$3 Sie die angegebene
Taste auf der ST Tastatur betitigen sollen.

Das Ausgabefenster

Das Ausgabefenster von ST BASIC wird dazu verwendet, um die Resultate eingege-
bener Befehle oder von Programm-Operationen anzuzeigen. Alle Programmeingaben
und Ausgaben an den Monitor erscheinen in diesem Fenster.

Geben Sie

INPUT A

ein. Sobald Sie die RETURN-Taste driicken, erscheint ein Fragezeichen im Ausgabe-
fenster. Wenn Sie nun die Zahl 2 eintippen, erscheint diese im Ausgabefenster. Driik-
ken Sie dann RETURN. Im Befehlsfenster ist wieder die Anfrage “Ok* zu sehen.
Geben Sie

10 PRINT “HALLO“ [RETURN]

ein. Sie haben gerade ein einzeiliges BASIC-Programm geschrieben. Geben Sie
RUN [RETURN]

ein. Das Wort “HALLO“ erscheint im Ausgabefenster.

Das Auflistungsfenster
Geben Sie

LIST [RETURN]

ein. Ihr einzeiliges Programm erscheint daraufhin im Auflistungsfenster. In diesem
Fenster wird immer das Programm angezeigt, das sich derzeit im Arbeitsspeicher des
Computers befindet. Wenn Sie einen Drucker an Thren ST Computer angeschlossen
haben, konnen Sie durch Eingabe von LLIST eine Auflistung Thres Programmes iiber
den Drucker ausdrucken lassen.

Das Bearbeitungsfenster
Geben Sie

EDIT [RETURN]

ein. Ihr Programm wird nun im Bearbeitungsfenster dargestellt. Verdnderungen am
Programm konnen nur innerhalb dieses Fensters vorgenommen werden. Lesen Sie bit-
te unter dem Abschnitt “Schreiben eines Programmes in ST BASIC* nach, um aus-
fithrlichere Informationen iiber das Bearbeitungsfenster zu erhalten. Durch Betitigen
der Funktiunstaste [F10] verlassen Sie den Editor.

Meniis |

Die Meniileiste erstreckt sich iiber den oberen Rand des ST Desktop. Die Meniititel
lauten “Desk”, “File“, “Run®, “Edit“ und “Debug®. Fiir jeden Meniititel existiert ein
eigenes Menii. Um die einzelnen Meniioptionen ablesen zu kdénnen, richten Sie den
Maus-Zeiger auf den Meniititel. Das Menii wird automatisch unter dem Meniititel
hervorgezogen. Wollen Sie keinen Mentibegriff auswéhlen, klicken Sie auf eine freie
Stelle des ST BASIC-Desktop. Daraufhin verschwindet das Menii wieder unter sei-
nem Meniititel.

Dialogfelder und Fehlermeldungen

Dialogfelder erscheinen auf dem ST BASIC-Desktop, sobald das Programm Informa-
tionen von Thnen bendétigt, die aus dem Programmlisting nicht zu entnehmen sind.
Falls eine Fehlermeldung dargestellt wird, wird eine Information angezeigt, die sich
auf ein ST BASIC-Format oder -Programm bezieht. Eine vollstandige Auflistung aller
vorkommenden Fehlermeldungen von ST BASIC finden Sie in Anhang D.

Um ein Dialogfeld verlassen zu konnen, zeigen Sie auf eines der beiden “Exit“-Felder
und klicken einmal die linke Maustaste. Ist ein “Exit“-Feld mit einem verstirkten
Rand versehen, entspricht ein Betédtigen der RETURN-Taste einem Klicken in dieses
Feld.

Sonderfunktionen

In ST BASIC stehen Thnen drei Sonderfunktionen zur Verfiigung, durch die das Ein-
geben und Lesen Ihrer Programme vereinfacht werden kann: die Funktionen AUTO
und RENUM, sowie die Verwendung von Sprungmarken.

AUTO Zeilennummer
Geben Sie

AUTO [RETURN]

ein. Im Befehlsfenster erscheinen zwei Sternchen und die Zahl 10. Die Zahl 10 ist die
erste Zeilennummer, die von der AUTO-Funktion generiert wurde. Die beiden Stern-
chen signalisieren, daf} im Arbeitsspeicher bereits eine Programmzeile mit der Num-
mer 10 existiert. '

Driicken Sie die RETURN-Taste. ST BASIC wartet nun auf die Eingabe der Pro-
grammzeile 20. Da Sie bisher noch keine Zeile mit der Nummer 20 eingegeben hatten,
befinden sich vor der Zahl keine Sternchen.

Geben Sie
PRINT “ICH BIN EIN TOLLER ATARI COMPUTER* [RETURN]
ein. Im Arbeitsspeicher befindet sich jetzt ein zweizeiliges Programm. Um die auto-

matische Zeilennumerierung abzuschalten, betdtigen Sie die Tastenkombination
[CONTROL][G].

Im Befehlsfenster erscheint wieder die Anfrage “Ok“. Geben Sie LIST ein, um Thr
Programm aufzulisten. Da Zeile 20 fiir die Darstellung im Auflistungsfenster zu lang
ist, mussen Sie in das GroBeneinstellungsfeld in der unteren rechten Ecke des Aufli-
stungsfensters klicken und das Fenster so weit vergrofern, bis das gesamte Programm-
listing sichtbar ist.

Renum

ST BASIC verfiigt iiber eine RENUM-Funktion, tiber die Sie Ihr Programm automa-
tisch neu numerieren lassen konnen. RENUM nimmt Zugriff auf die Diskette. Aus
diesem Grund sollten Sie vor Verwendung dieser Funktion sicherstellen, daB sich eine
Diskette im Laufwerk befindet.

Anmerkung: Die Funktion RENUM arbeitet nicht, wenn die eingelegte Diskette mit
einem Schreibschutz versehen ist. Weitere Informationen hierzu erhalten Sie in Kapi-
tel 6 des ATARI ST Bedienungshandbuches.

Geben Sie
RENUM 30,10,5 [RETURN]

ein. Sobald die Anfrage “Ok“ auf dem Bildschirm erscheint, konnen Sie Ihr Pro-
gramm durch Eingeben von LIST auflisten lassen. Die ehemalige Zeile 10 hat jetzt die
Nummer 30. Die Erhohungen der Zeilennummern erfolgen in Fiinferschritten. Des-
halb wird die nichste Zeilennummer 35 sein. Néhere Erklarungen zur RENUM-Funk-
~ tion erhalten Sie in Anhang C.

Sprungmarken _

ST BASIC gestattet die Verwendung von Sprungmarken (Labels) fiir die Kennzeich-
nung von Programmzeilen. Eine Anweisung GOTO DONE ist beispielsweise leichter
zu lesen als GOTO 300 und erleichtert ein Nachvollziehen der- Auswirkungen be-
stimmter Programmzeilen auf Ihren Programmlauf.

SCHREIBEN VON PROGRAMMEN IN ST BASIC

- In diesem Abschnitt erfahren Sie, wie einfache Programmiertechniken innerhalb der
GEM-Benutzeroberfliche eingesetzt werden. Befolgen Sie die nachstehenden An-
weisungen sorgféltig.

- Anmerkung: Sie konnen ST BASIC-Programme in GroB3buchstaben oder in normaler
Schreibschrift eingeben.

- Eingabe
Sofern sich im Auflistungsfenster bereits ein Programmlisting befindet, 16schen Sie
dieses Listing durch Eingeben von

CLEARW 1

Geben Sie dann
NEW [RETURN]

ein. Dadurch wird ein im Arbeitsspeicher des Computers befindliches Programm
geloscht. Geben Sie '

LIST [RETURN]
ein. Das Auflistungsfenster mii3te nun unbeschrieben sein. Geben Sie
AUTO [RETURN]

ein und schreiben Sie das nachstehende Programm. Beachten Sie, daB die Zeilennum-
mern von ST BASIC vorgegeben werden. Sie miissen diese Zahlen nicht selbst einge-
ben.

10 REM ZAEHL.BAS

20C=0

30 ZAEHL: ERHOEHUNG DER VARIABLEN C

40 C=C+1

50 PRINT C;

60 IF C=5 THEN PRINT “WIEDERHOLUNG!“:GOTO 20
70 GOTO ZAEHL

Das Programm ZAEHL.BAS befindet sich nun im Arbeitsspeicher.
Geben Sie [CONTROL][G] ein, um AUTO abzuschalten.

Anhand dieses einfachen Programmes werden bereits einige Funktionen von ST
BASIC illustriert.

In Zeile 10 steht eine Anmerkung (REM), die die nachfolgende Funktion verdeutli-
chen soll. Das REM wird von ST BASIC nicht beachtet. Sie konnen anstelle von REM
auch ein einfaches Anfiihrungszeichen () verwenden (siehe Zeile 30).

Zeile 30 wird durch die Sprungmarke ZAEHL identifiziert. In Zeile 70 wird dieselbe
Sprungmarke innerhalb einer GOTO-Anweisung verwendet. Bei der ersten Defini-
tion muf eine Sprungmarke von einem Doppelpunkt (:) gefolgt werden. Eine Sprung-
marke darf kein reserviertes Wort von ST BASIC sein, muf3 mit einem Buchstabenzei-
chen beginnen und darf keine Leerstellen enthalten.

In Zeile 60 wird gezeigt, wie das Doppelpunktzeichen eingesetzt werden kann, um
mehrere Befehle in eine Programmzeile schreiben zu kdnnen. Sie konnen beliebig vie-
le Befehle in eine Programmzeile setzen, solange diese durch Doppelpunktzeichen
voneinander abgetrennt werden und die Zeile nicht ldnger als 249 Zeichen wird.

Programmlauf

Desk File JENTY Edit Debug

Run OUTPUT =

Break ! a

Stop -

Continue |

Step]

\/ Buf Graphics | &

g

| .

[N |

I =

1 .

: lL]

. .
%ECOMMAND_—_%__%E!
(o8

1

]

1.

L a

Ok -1
@[[]Qili

Offnen Sie das Menii “Run* und klicken Sie auf “Run“. Daraufhin wird im Ausgabe-
fenster wiederholt

123 4 5 WIEDERHOLUNG!

ausgegeben. Um das Programm anzuhalten, klicken Sie auf “Break* im Menii “Run®.
Durch die Mitteilung --Break -- at line .. erfahren Sie, in welcher Programmzeile der
Programmlauf abgebrochen wurde. Geben Sie STOP [RETURN] ein, um den Break-
Modus zu verlassen. Innerhalb des Break-Modus kénnen sémtliche Programmier-Be-
fehle verwendet werden. '

Sie konnen Ihr Programm zeilenweise ausfithren lassen. Dazu wihlen Sie “Step aus
dem Menii “Run“ aus. Nach jedem Betétigen der RETURN-Taste wird die néchste
Programmzeile ausgefiihrt. Beachten Sie, dafl die Nummer der gerade ausgefiihrten
Programmzeile im Befehlsfenster dargestellt wird. Geben Sie nun

END [RETURN]
ein, um die Option “Step“ abzuschalten..

Editieren von Programmen

ST BASIC verfiigt iiber einen leicht zu bedienenden Editor, mit dem Verdnderungen
an Thren Programmen vorgenommen werden konnen, ohne dabei eine vollstindige
Programmzeile neu eingeben zu miissen. Um ein Programm zu editieren, wihlen Sie
das Menii “Edit“ aus und klicken auf die Option “Start Edit“. (Sie konnen auch ED
eingeben.)

Bringen Sie den Cursor zum Buchstaben “W* von “Wiederholung® in Zeile 60. Jetzt
konnen sie dieses Wort iiberschreiben. Schreiben Sie stattdessen “Weiter“. Beachten
Sie, daf3 das Schriftbild sich verdndert,um kennzuzeichnen, daB Sie in dieser Pro-
grammzeile Anderungen vorgenommen haben, die noch nicht in den Programmspei-
cher iibernommen wurden. Driicken Sie die RETURN-Taste. Sie miissen nun noch
die verbliebenen Buchstaben “holung“ 16schen.

Die Funktionstasten
Bevor Sie mit Ihrer Arbeit fortfahren, sollten Sie die Option “Help Edit“ im Menii
“Edit“ auswahlen.

Desk File Run Edit Debug

LIST OUTPUT =
i

| 8

| .

HELP EDIT: | .
InsertSpace - Fi ! :
DeleteChar - F2 &
InsertLine -F3 -
DeleteLine -F4 1.

Page Up -F5 -

Page Down - F6]

Load Text -F7
___; ‘Save Text -F8
N New Buffer -F9
Exit Edit -F18

!

:5:5
| 1 1]

a
"
_jou
| Lieirg

Aus dem daraufhin erscheinenden Dialogfeld kénnen Sie eine Beschreibung aller
Funktionstasten-Befehle von ST BASIC entnehmen.

Klicken Sie in das “Ok“-Feld, um das Dialogfeld auszublenden.

Im nachfolgenden Beispiel werden die Funktionstasten fiir die Editierung des Pro-
grammes verwendet. Sie konnen jedoch auch mit der Maus und den Optionen des Me-
nis “Edit“ arbeiten, wenn Sie dies vorziehen.

Zeichen I6schen/einfiigen (Delete Char/Insert Space) ,
Wihrend sich der Cursor iiber dem ersten Buchstaben des zu 16schenden Wortteiles
“holung® befindet, driicken Sie die Funktionstaste [F2]. Jedes Driicken von [F2] 16scht
das derzeit unter dem Cursor befindliche Zeichen und verschiebt die rechts daneben-
liegenden Zeichen um eine Position nach links. Loschen Sie nun alle Zeichen auf diese
Weise.

Bewegen Sie den Cursor auf den Buchstaben “W* von “Weiter®. Driicken Sie fiinfmal
die Funktionstaste [F1]. Geben Sie dann

MACH
ein. In der Programmezeile steht nun:
60 IF C=5 THEN PRINT “MACH WEITER!*:GOTO 20

Neuer Speicherinhalt (New Buffer)

Wenn Sie [RETURN] driicken, werden die im Bearbeitungsfenster dargestellten Pro-
grammzeilen in den Programmspeicher libertragen. Um zu sehen, was sich derzeit im
Programmspeicher befindet, driicken Sie [F9], New Buffer. Der Inhalt des Programm-
speichers wird daraufhin in das Bearbeitungsfenster einkopiert. Haben Sie die
RETURN-Taste noch nicht gedriickt, erscheint im Editierfenster IThr urspriingliches
Programm ohne die gerade vorgenommenen Veridnderungen.

9

Zeile einfiigen/l6schen (Insert Line/Delete Line)

Bewegen Sie den Cursor in Zeile 30. Driicken Sie dann [F4]. Zeile 30 wird daraufhin
aus dem Programmspeicher entfernt, wie Sie anhand des verdnderten Schriftbildes er-
kennen konnen. Diese Zeile verbleibt allerdings solange im Bearbeitungsfenster, bis
Sie [RETURN] driicken. Diese Funktion vereinfacht Korrekturarbeiten erheblich.
Bringen Sie den Cursor einfach in Zeile 30 und driicken Sie [RETURN]. Sobald Sie
[F9] fiir “New Buffer” driicken, wird die Zeile sowohl im Programmspeicher, als auch
im Editier-Speicher geloscht.

Driicken Sie [F9] fiir “New Buffer“. Zeile 30 wird nun gel6scht.

Bewegen Sie den Cursor in Zeile 50 und driicken Sie [F3] fiir “Insert Line“. Dadurch
wird Platz fiir die Eingabe einer neuen Programmzeile geschaffen.

Da die Numerierung Ihrer Programmzeilen langsam unordentlich wird, sollten Sie sie
neu durchnumerieren lassen.

Schaffen Sie zuerst durch Driicken von [F3] Platz fiir eine neue Programmzeile. Geben
Sie dann RENUM [RETURN] ein. Sobald der Cursor wieder sichtbar wird, konnen
Sie “New Buffer* aufrufen, um zu sehen, wie IThr Programm nun numeriert ist.

Durch Thre Verdnderungen hat sich ein Fehler eingeschlichen. In Zeile 70 steht
“GOTO ZAEHL", aber die Zeile mit der Sprungmarke “ZAEHL“ wurde von Ihnen
soeben geldscht.

Veréandern Sie Zeile 30 wie folgt:
30 ZAEHL:C=C+1

Sie kénnen den Programmlauf direkt tiber das Bearbeltungsfenster aufnehmen lassen.
Schaffen Sie Platz fiir eine neue Zeile und geben Sie

RUN [RETURN]
einf

Mit [CONTROL][C] kann das Programm angehalten werden. Sie kehren damit wie-
der ins Bearbeitungsfenster zuriick.

Text laden/speichern (Load Text/Save Text)

Der ST BASIC Editor speichert den Inhalt des Bearbeitungsfensters auf Diskette.
Allerdings ist die Speicherkapazitit hier auf 24 Textzeilen beschridnkt. UmfaBt Ihr
Programm mehr als 24 Zeilen, werden die auBerhalb des Fensters liegenden Textzei-
len nicht auf Diskette abgelegt.

Anmerkung: Diese Funktion unterscheidet sich von der Funktion “Save As“im Meni
“File“. Mit Hilfe der Funktion “Save As“ konnen Sie vollstindige Programme spei-
chern, die dann wieder geladen und gestartet werden kénnen. Bei Verwendung der
Funktion “Load Text/Save Text“ kann zudem kein Dateiname angegeben werden.
Der gespeicherte Text muf3 nicht unbedingt ein ST BASIC-Programm sein.

Betitigen Sie die Funktionstaste [F8] fiir “Load Text“. Dann driicken Sie [RETURN]
fiir jede Programmzeile. Wenn Sie jetzt [F9] driicken, befindet sich Ihr Programm so-
wohl im Bearbeitungsfenster, als auch im Programmspeicher.

10

Vorhergehende/Nachfolgende Seite (Page Up/Page Down)

Die Funktionen Page Up [F5] und Page Down [F6] erméglichen die Bearbeitung von
Programmen, die mehr als einen Fensterausschnitt umfassen. Mit Page Up [F5] wer-
den Programmzeilen sichtbar gemacht, die sich iiberhalb des aktuellen Fensteraus-
schnittes befunden hatten. Umgekehrt kénnen Sie mit [F6] in die letzten beiden Pro-
grammzeilen gelangen.

Anmerkung: Die maximal sichtbare Zeilenldnge umfaf3t 80 Zeichen. Falls Sie iiber

den rechten Rand des sichtbaren Fensterausschnittes hinausschreiben, verschiebt sich

der Text im Fenster nach links, um diese Eingaben sichtbar zu machen. Im Bearbei-
tungsfenster konnen Sie maximal 80 Zeichen pro Zeile eingeben. Wenn Sie beabsich-

tigen, ein Programm zu editieren, das Zeilen mit mehr als 80 Zeichen enthalt, wird der

Teil der Zeile, der hinter dem achtzigsten Zeichen liegt, in die darunterliegende Zeile

geschoben. Dabei wird dieser Teil nur dann als Teil der dariiberliegenden Zeile ange-

sehen, wenn das erste Zeichen der zweiten Zeile ein Leerzeichen ist. Andernfalls miis-

sen Sie die Zeilensegmente so verdndern, daB Sie sie als zwei separat numerierte Pro-

grammzeilen eingeben konnen.

Sie kénnen den Editor durch Klicken auf die Funktion “Exit Edit“, oder durch Driik-
ken von [F10] verlassen.

Fehlerbehebung

Mit den Mdéglichkeiten, die Ihnen innerhalb des Meniis “Debug® zur Verfiigung ste-
hen, ist die Beseitigung von Fehlern eine problemlose Tétigkeit. Zwei Optionen des
Meniis “Debug* helfen Ihnen dabei, festzustellen, was ein Programm gerade tut und
welches Problem aufgetreten sein konnte. Bei diesen Optionen handelt es sich um
“Trace” und “Tron*.

Wihlen Sie das Menii “Debug*“ aus.

Desk File Run Edit LI

Troff
Trace
Untrace

shesEnasw --u---‘-

l:m.

YT 1]

[ST

1.
'™

Is

11

Klicken Sie auf die Option “Trace®.

Desk File Run Edit Debug
& LIST OUTPUT

|

TRACE: Debugging on lines...
|

N R ——

ALL | Lines Entered |

| T | [CANCEL]

-
[

|

Ok LIST
ok 1

of

[G

1

5

=|é
M

Klicken Sie in das “Ok“-Feld im Dialogfeld.

Jetzt konnen Sie Ihr Programm mit “Run* ablaufen lassen. Wiahrend eine Programm-
zeile ausgefiihrt wird, listet “Trace* diese Zeile im Befehlsfenster auf.

Um die Option “Trace“ zu verlassen, halten Sie das Programm an, 6ffnen das Meni
“Debug® und wihlen “Untrace® aus. Bestétigen Sie Ihre Wahl durch Klicken in das
“Ok*“-Feld im “Trace“-Dialogfeld.

Klicken Sie auf die Option “Tron“ im Menii “Debug*.

Desk File Run Edit Debug
LIST OUTPUT

TRON: Debugging on lines...
|

[Lines Entered |

| oK 1 [CANCEL]

(I X R 1T] Q] Il....‘l.lla

= e o - - -

Ok LIST
ok §

[

12

“Tron“ zeigt die Nummer der derzeit in Ausfiihrung befindlichen Programmzeile an.
Klicken Sie in das “Ok“-Feld im Dialogfeld.

Starten Sie Thr Programm nochmals. Wihrend die Programmzeilen nacheinander aus-
gefithrt werden, erscheinen die entsprechenden Zeilennummern im Befehlsfenster.

Um die Option “Tron“ wieder abzuschalten, halten Sie Thr Programm an, 6ffnen das
Menii “Debug® und klicken auf die OpthIl “Troff“. Bestétigen Sle auch hier Ihre
Wahl durch Klicken in das “Ok*“-Feld im Dialogfeld.

TRACE und TRON werden in Anhang C noch ausfiihrlich beschrieben.

Speichern von Programmen
Um ein Programm auf Diskette zu speichern, 6ffnen Sie das Menii “File* und klicken
auf die Option “Save As“.

Desk File Run Edit Debug
LIST OUTPUT

-

ITEM SELECTOR

Directory:
*.BAS

0 * BAS election:
o L e

B ——————

Ww

S
-

I
1

&

ok

&

&

[

T

r—e

b |
hess

Geben Sie ZAEHL in das Auswahlfeld (ITEM SELECTOR) ein. Beachten Sie, da3
von ST BASIC automatisch der Extender .BAS an Ihren Dateinamen angefiigt wird.
Durch den Extender wird ST BASIC kenntlich gemacht, daB es sich bei der Datei um
eine ST BASIC-Programmdatei handelt. Um die Datei auf Diskette zu speichern,
klicken Sie in das “Ok“-Feld. Sobald die Bestitigung auf dem Bildschirm erscheint, ist
Ihre Datei auf der Diskette abgelegt.

Sie kénnen ein Programm auch durch Eingeben von
SAVE ZAEHL [RETURN]
speichern. ST BASIC legt diese Datei als ZAEHL.BAS auf Diskette ab.

13

Anmerkung: Die Option “Save As* ersetzt (liberschreibt) jede Datei auf der Diskette,
die unter demselben Dateinamen abgelegt wurde. Wenn Sie “SAVE® im Befehlsfen-
ster eintippen, wird im Gegensatz dazu eine gegebenenfalls bereits bestehende Datei
mit demselben Namen nicht geldscht.

Laden von Programmen

Geben Sie NEW [RETURN] ein, um das im Arbeitsspeicher befindliche Programm zu
16schen. Vergewissern sie sich durch Eingeben von LIST, daB der Arbeitsspeicher frei
ist.

Um das zuvor gespeicherte Programm von Diskette in den Arbeitsspeicher zu laden,
offnen Sie das Menii “File“ und klicken auf die Option “Load®. Im Auswahlfeld er-
scheint die Angabe ZAEHL.BAS. Sie konnen ZAEHL.BAS durch Klicken auf den
Dateinamen und nachfolgendes Klicken in das “Ok*“-Feld auswihlen. Sobald die An-
frage “Ok* auf dem Bildschirm erscheint, befindet sich Ihr Programm im Speicher.
Um sich hiervon zu vergewissern, konnen Sie es tiber LIST auflisten lassen. Die Kopf-
zeile, “List of ZAEHL.BAS*“ dient als Hinweis fiir Sie, da3 das aufgelistete Programm
unter dem Namen ZAEHL.BAS abgelegt ist.

Sie kénnen ein Programm auch durch Eingeben von
LOAD ZAEHL
in den Arbeitsspeicher des Computers laden.
. Verkniipfen von Programmen
- Manchmal ist es einfacher und bequemer, ein Programm in einzelnen Modulen zu
schreiben und diese zu einem spéteren Zeitpunkt zu assemblieren. Diese Mdglichkeit

besteht tiber die Funktion MERGE.

Geben Sie das nachstehende Programm ein und speichern Sie es unter dem Namen
NACHTRAG.BAS.

20 PRINT “VERLAENGERT DURCH VERKNUEPFEN*
30 END .

Geben Sie NEW ein und schreiben Sie dieses Programin:

10 PRINT “DAS IST EIN KURZES PROGRAMM*
20 END

Geben Sie RUN ein, um das Programm ablaufen zu lassen.
Wihlen Sie dann die Option “Merge* aus dem Menii “File“ aus. Darauthin klicken Sie

auf “NACHTRAG.BAS“ im Auswahlfeld und bestétigen Ihre Wahl tiber das “Ok“-
Feld.

14

Listen sie Thr Programm auf. Wie Sie sehen konnen, wurden die beiden Programmseg-
mente verbunden. Wenn Sie die Zeile 20 betrachten werden Sie feststellen, daB die
Zeile 20 des ersten Programmes, END, durch Zeile 20 des damit Verknupften Pro-
grammes ersetzt wurde. Aus diesem Grund sollten Sie Ihre Zeilennumerierung sehr
sorgféltig vornehmen, wenn sie mit der Option MERGE arbeiten.

Loschen von Programmen

Um ein Programm zu 16schen, klicken Sie auf die Option “Delete File“ im Menii
“File“. Wihlen Sie durch Klicken den Namen der zu 16schenden Datei, wie beispiels-
weise NACHTRAG.BAS, aus und bestétigen Sie diese Wahl durch Klicken in das
“Ok“-Feld. Sobald die Anfrage “Ok“ auf dem Bildschirm erscheint, ist diese Datei
geloscht.

Beenden des Programmes ST BASIC
Um die Arbeit mit ST BASIC zu beenden, 6ffnen Sie das Meni “File“ und klicken hier
auf die Option “Quit“.

Befehlseingabe iiber Tastatur

Sofern Sie dies vorziehen, konnen Sie Programmierbefehle tiber die ST Tastatur ein-
geben, anstatt sie unter Verwendung der Maus auszuwéhlen. Diese abgekiirzten Ein-
gaben sind:

AUTO

[CONTROL][G] Hiltein Programm an oder beendet die automatische Zeilen-
numerierung

[CONTROL][C] Haltein Programm anund beendet es, ohne eine Moglichkeit zu
bieten, mit diesem Programm fortzufahren

CONT oder [RETURN] (um mit einem Programmlauf fortzufahren)
DELETE <Zeilennummern-Liste> (um Programmzeilen zu 16schen)
EDIT oder ED (um in den Editier-Modus zu gelangen)

ERA <Dateiname> (um eine Datei zu l9schen)

LOAD <Dateiname> (um eine Datei zu laden)

MERGE <Dateiname> (um Programme zu verkniipfen)

NEW (um den Arbeitsspeicher zu 16schen)

QUIT (um ST BASIC zu beenden)

RUN <Dateiname> (um ein Programm ablaufen zu lassen)

SAVE <Dateiname> (um ein Programm zu speichern)

STEP (um ein Programm schrittweise zu durchlaufen)

TRACE (um die Fehteraufdeckung einzuschalten)

TROFF (um die Zeilennummern-Anzeige abzuschalten)

TRON (um die Zeilennummern-Anzeige einzuschalten)
UNTRACE (um die Fehleraufdeckung abzuschalten)

Eine vollstindige Auflistung aller ST BASIC-Befehle finden sie in Anhang A dieses
Handbuches.

15

Gespeicherte Grafiken
Um gespeicherte Grafiken mit ST BASIC auf Ihrem ST Computer-System verwen-
den zu k6nnen, miissen Sie Platz im Arbeitsspeicher schaffen.

Wenn Sie auf das Schreibtischzubehor des GEM-Desktop verzichten, konnen Sie
30.000 Bytes Speicherplatz gewinnen. Um das Schreibtischzubehor zu entfernen, kon-
nen sie zwei Methoden anwenden:

1.

Loschen Sie das Schreibtischzubehér auf dem Sicherungsduplikat der ST BASIC
Programmdiskette. Dazu 6ffnen Sie einfach das Diskettenfenster der Programm-
diskette und werfen die Datei DESK.ACCin den Papierkorb. In diesem Fall haben
Sie das Schreibtischzubehor noch immer auf Ihrer Originaldiskette gespeichert und
konnen es von dort wieder auf das Sicherungsduplikat zuriickkopieren und ver- -
wenden.

Geben Sie der Datei DESK.ACC einen neuen Namen. Dann k6nnen Sie die Datei

- DESK.ACC auswihlen, das Menii “File* 6ffnen und die Option “Show Info* aus-

wéahlen. Im daraufthin erscheinenden Dialogfeld steht ein Cursor am Ende des
Dateinamens. Durch Driicken ‘der [Backspace]-Taste kann der Dateiname
DESK.ACC nun geldscht werden. Verwenden sie als neuen Namen eine beliebige
Bezeichnung. Lediglich der Extender darf nicht auf . ACC lauten.

Anmerkung: Genauere Informationen tiber das Loschen und Umbenennen von Da-
teien erhalten Sie im ATARI ST Bedienungshandbuch.

16

ERWEITERUNG DES ARBEITSSPEICHERS

FUR ST BASIC

Nachdem Sie TOS von der Systemdiskette, und ST BASIC von der ST Programmdis-
kette in den Arbeitsspeicher des ST Computers geladen haben, verbleibt lediglich ein
geringfiigiger Teil des Speicherplatzes fiir Thre Programmierung.

Fiir die Erweiterung des verfiigbaren Speicherplatzes stehen Ihnen zwei Mdoglichkei-
ten zur Verfiigung: '

1. Schalten Sie die Option “Buffer Graphics“ ab. Damit gewinnen Sie zusitzliche
32.000 Bytes an verfiigbarem Speicherplatz. Zeigen Sie hierzu auf das Menii “Run“
und kontrollieren Sie, ob sich vor der Option “Buf Graphics“ ein Hékchen be-
findet. In diesem Fall wéhlen Sie die Option aus und klicken in dem darauthin er-
scheinenden Dialogfeld in das “Ok*“- Feld, um die Option abzuschalten.

Anmerkung: Falls Sie die Option “Buf Graphics* abschalten, wihrend sich ein Pro-
gramm im Arbeitsspeicher befindet, wird dieses Programm im Speicher geldscht.

2. Wenn Sie auf die Verwendung des Schreibtischzubehors verzichten konnen, kon-

nen Sie iiber weitere 30.000 Bytes an Speicherplatz fiir Ihre Programmierarbeiten
verfiigen. Lesen Sie hierzu auf Seite 16 dieses Handbuches nach.

17

ANHANG A

RESERVIERTE WORTER IN ST BASIC

Nachfolgend sehen Sie eine Auflistung aller reservierten Worter, die in ST BASIC
verwendet werden. Falls Sie eines dieser Worter als Variablennamen benutzen, er-
scheint die Fehlermeldung “something is wrong“. Eine detaillierte Beschreibung aller

reservierten Worter erhalten Sie in Anhang C.

ABS
ALL
AND

AS

ASC
ATN
AUTO
BASE
BLOAD
BREAK
BSAVE
CALL
CDBL
CHAIN
CHRS
CINT
CIRCLE
CLEAR
CLEARW
CLOSE
CLOSEW
COLOR
COMMON
CONT
CONTRL
CONT
COS
CSNG
CVvD

CVI

CVS
DATA

DEF
DEF FN
DEF SEG
DEFDBL
DEFINT
DEFSNG
DEFSTR
DELETE
DIM

DIR
EDIT
ELLIPSE
ELSE
END
EOF
EQV
ERA
ERASE
ERL
ERR
ERROR
EXP
FIELD
FIELD4#
FILL

FIX
FLOAT
FOLLOW

A-1

FOR
FRE
FULLW
GB
GEMSYS
GET
GETH#
GO
GOSUB
GOTO
GOTOXY
HEXS$

IF

IMP
INKEY$
INP
INPUT
INPUTS$
INPUTS$
INSTR
INT
INTIN
INTOUT
KILL
LEFTS$
LEN
LET
LINE INPUT
LINE INPUTH#
LINEF
LIST

LLIST
LOAD
LOC
LOF
LOG
LOG10
LPOS
LPRINT
LSET
MERGE
MID$
MKDS$
MKI$
MKS$
MOD
NAME
NEW
NEXT
NOT
OCT$
OLD
ON
OPEN
OPENW
OPTION
OR
ouT

PCIRCLE

PEEK

PELLIPSE

POKE
POS
PRINT
PRINTH#

PRINT USING

PTSIN

PTSOUT

PUT

QUIT
RANDOMIZE
READ
REM
RENUM
REPLACE
RESET
RESTORE
RESUME
RETURN
RIGHTS
RND

- RSET

RUN
SAVE
SGN
SIN
SOUND
SPACES$
SPC
SQR
STEP
STOP
STRS

A-2

STRINGS
SWAP
SYSDBG
SYSTAB
SYSTEM
TAB
TAN
THEN
TO
TRACE
TROFF
TRON

-UNBREAK

UNFOLLOW
UNTRACE
USING

- VAL

VARPTR
VDISYS
WAIT
WAVE
WEND
WHILE
WIDTH
WRITE
WRITEH#
XOR

ANHANG B

LOGISCHE OPERATOREN, VORRANGREGELN
UND FUNKTIONEN VON ST BASIC

LOGISCHE OPERATOREN

Die von ST BASIC anerkannten Operatoren sind NOT, AND, OR, XOR, IMP und
EQYV. Diese logischen Operatoren arbeiten auf der Basis von Flags, die aus logischen
Ausdriicken resultieren. Eine TRUE-Flag entspricht -1, eine FALSE-Flag 0. Deshalb
ergibt die Anweisung “A=1: B=2: PRINT A=B*“ den Wert 0, wihrend die Anwei-
sung “A=1: B=2: PRINT A<>B* das Resuiltat -1 ergibt.

Das Ergebnis von AND ist TRUE, wenn beide Argumente wahr sind.
Beispiel: 2+2=4 AND 3+2=5 ergibt TRUE.

Das Ergebnis von OR ist TRUE, wenn eines der Argumente wahr ist.
Beispiel: 2+2=4 OR 3+2=7 ergibt TRUE.

IMP ist die Abkiirzung fiir IMPLICATION (Folgerung). IMP arbeitet auf der Basis
logischer Ausdriicke und tiberpriift die Giiltigkeit von Pramissen und Folgerungen.
IMP ist in allen Féllen giiltig, es sei denn, eine Pramisse ergibt TRUE, die Folgerung
dagegen FALSE. '

Die Anweisung “2+2=4 IMP 3+2=6“ ergibt FALSE.
Die nachfolgenden Ariweisungen sind giiltige Folgerungen und ergeben TRUE:

2+2=4IMP 3+3=6
2+2=3IMP 3+3=6
2+2=3IMP 3+3=7

Die nachstehenden Operatoren arbeiten bitweise mit Ein-Byte Integerwerten wie
folgt:

AND ergibt ein Resultat, in dem ein Bit nur dann 1 entspricht, wenn beide Argumente
eine 1 enthalten. So ergibt “A% =5: B% =3: C% =A% AND B% fiir C% den Wert 1.

OR produziert ein Ergebnis, in dem ein Bit 1 entspricht, wenn eines der Argumente ei-
ne 1 enthélt. Beispielsweise entspricht in “A%=5: B%=3: C% =A% OR B%“ C%
dem Wert 7.

XOR erstellt Ergebnisse, in denen ein Bit dann 1 entspricht, wenn lediglich ein Argu-
ment eine 1 enthélt. In diesem Fall ergibt “A% =5: B%=3: C% =A% XOR B%* fiir
C% den Wert 6.

EQYV ergibt Resultate, in denen ein Bit 1 entspricht, wenn entweder in beiden Argu-
menten eine 1, oder in beiden Argumenten eine 0 enthalten ist. Ein Bit entspricht dann
0, wenn die Bits in den beiden Argumenten unterschiedlich sind. Demnach ergibt
“A%=5:B%=3: C%=A% EQV B%*“ den Wert -7 fiir C%.

B-1

TRUE-Tabelle fiir logische Operationen

NOT XOR

X NOT X X Y XXORY
T A
i 1 0
AND| ,, -
X Y XAND Y
0 0 0 MPx Y XIMPY
0 1 0 0) 1
! 0 0 0 1 1
1 1 1 1 0 0
OR 1 1 1
= ; XL EQVIy y XEQVY
0 1 1 0 0 1
1 0 1 0 1 0
P 1 rooe ?
Arithmetische Oléeratoren _
Symbol Name Beispiel
+ Addition X+Y
- Subtraktion X-Y
* Multiplikation X*Y
/ Division XY
' Integer-Division XY
MOD Modul XMODY
) Exponierung XY
Relationale Operatoren
Symbol Bedeutung Beispiel
= Gleichzeichen | X=Y
<> Ungleichzeichen X<>Y
< Kleiner als - Zeichen X<Y
> GroBer als - Zeichen X>Y
<= Kleiner Gleich - Zeichen X<=Y
- >= GroBer Gleich - Zeichen X>=Y

B-2

Vorrangregeln der Operatoren

Operator Erklarung

() Begriffe in Klammern haben hochste Prioritit
) Exponierung

- Negatives Vorzeichen

* Multiplikation

/ FlieBkomma- und Integer-Division

MOD Modul

+, Addition, Subtraktion

=,<>,<,>,<=,>= Relationale Operatoren
NOT AND OR XOR Logische Operatoren in der angegebenen
IMP, EQV Reihenfolge

Zusammenfassung der Funktionen von ST BASIC

Funktionen arbeiten mit Konstanten und Variablen, um Werte fiir Variablen zu erhal-
ten. Eine Konstante ist eine Zahl wie beispielsweise 250.4 oder eine Zeichenkette wie
z.B. “HALLO. Eine Variable ist ein bezeichneter numerischer Wert wie GESAMT
oder ein bezeichneter String wie NAMES.

Variablennamen

Variablennamen diirfen keine Leerzeichen enthalten. Sie diirfen beliebig lang sein.
Allerdings ist zu beachten, daf3 lediglich die ersten 31 Zeichen einer Variablen als Un-
terscheidungsmerkmal von ST BASIC verwendet werden.

Numerische Variablen

Numerische Variablen gibt es in unterschiedlichen Formen. In der nachstehenden Ta-
belle finden sie eine Zusammenstellung von Variablentypen.

ZEICHEN FUR DIE VARIABLENDEKLARATION

Zeichen Typ Beispiel

$ String NAMES$

Yo Integerzahl DATEN.NUMMER%
! Realzahl GESAMT.GEWINN!
Typendeklaration

Die nachfolgenden Anweisungen deklarieren Variablentypen in ST BASIC (Lesen
Sie hierzu auch in Anhang C nach.)

DEFSTR bezeichnet String-Variablen
DEFINT bezeichnet Integer-Variablen
DEFSNG bezeichnet Realzahlen-Variablen

Numerische Funktionen
Die in ST BASIC verfiigbaren numerischen Funktionen konnen Sie der nachstehen-
den Tabelle entnehmen.

NUMERISCHE FUNKTIONEN

Funktion Erkldrung

ABS Gibt den absoluten Wert einer Zahl aus

ATN Gibt den Arcustangens einer Zahl aus

COS Gibt den Cosinus einer Zahl aus

EXP Gibt die Potenz e eines Wertes aus

LOG Gibt den natiirlichen Logarithmus einer Zahl aus
LOG10 Gibt den Basis 10 - Logarithmus einer Zahl aus
RND Generiert eine Folge zufillig gewéhlter Zahlen
SIN Gibt den Sinus einer Zahl in Radian aus

SQR Gibt die Quadratwurzel einer Zahl aus

TAN Gibt den Tangens einer Zahl in Radian aus

String-Funktionen

Strings konnen mit Pluszeichen (+) verkettet werden (z.B. A$ = B$ + C$). In der
nachstehenden Tabelle sehen Sie die anderen in ST BASIC verfiigbaren String-Funk-
tionen.

STRING-FUNKTIONEN

Funktion Erklarung
INSTR Sucht das erste Vorkommen einer bestimmten Zeichenfolge
in einem String und gibt deren Position aus.

LEFTS$ Gibt die ersten Zeichen einer Zeichenkette aus.

LEN Gibt die Zeichenldnge eines Strings aus.

MID$ Entfernt einen String aus einer Zeichenkette.

RIGHTS Gibt die letzten Zeichen eines Strings aus.

SPACES$ Gibt einen String aus, der aus Leerzeichen besteht.
- STRS Wandelt eine Zahl in einen String um.

STRINGS$ Gibt einen String mit der angegebenen Lénge aus.

Arrays

ST BASIC verfiigt iiber numerische und String-Arrays. Uber die Anweisung DIM
werden Variablen dimensioniert. Im Bezug auf Arrays beziehen sich Unterbereiche
auf Reihen, Spalten und Ebenen - in dieser Reihenfolge. Werte von Unterbereichen
konnen jede giiltige numerische Konstante, Variable oder beliebige numerische Aus-
driicke sein. Am effizientesten ist die Verwendung von Integerzahlen, da bei der An-
gabe von Realzahlen diese fiir eine Verwendung als Unterbereich in einem Array zu-
vor in Integerzahlen umgewandelt werden. Arrays akzeptieren direkte Eingaben und
koénnen wie jede andere Variable in einer BASIC-Anweisung verwendet werden.

B-4

ZWEIDIMENSIONALES ARRAY

0) (1) 2
©0) (0,0 0.1) (0.2) SO
1) (1.0 (1.1) (1.2) MO
2) (2.0 (2.1 (2.2) DI
(3) (3.0) (3.1) (3.2) MI
4) (4.0) (4.1) (4.2) DO
(5) (5.0) (5.1) (5.2) FR
6) (6.0 (6.1) (6.2) SA

6 AM 2PM 10PM

Die maximale Anzahl von Elementen in einem Array ist durch den verfiigbaren Spei-
- cherplatz eingeschrinkt. Elemente unterschiedlicher Datentypen belegen unter-
schiedlich viel Speicherplatz.

INTEGERZAHLEN belegen 2 Bytes
REALZAHLEN belegen 4 Bytes
STRINGS belegen 6 Bytes.

Zeilenformat
Das Zeilenformat in ST BASIC ist:

<Zeilennummer> <Sprungmarke:> <Anweisung> <:Anweisung> <:’REM>

Die Angabe einer Sprungmarke ist optional. Eine Sprungmarke kann anstelle einer
Zeilennummer als Zeilenangabe innerhalb einer GOTO- oder GOSUB-Anweisung
verwendet werden.

Einschrinkungen bei der Angabe des Dateinamens

ST BASIC Programmzeilen verwenden den Extender .BAS, um als BASIC-Program-
me gekennzeichnet zu sein. Ein Dateiname darf nicht mehr als 8 Zeichen, und der
Extender nicht mehr als 3 Zeichen umfassen. Der Dateiname STBASIC.DAT ist bei-
spielsweise eine giiltige Angabe.

B-5

ANHANG C
BEFEHLE, FUNKTIONEN UND ANWEISUNGEN

In diesem Abschnitt werden die Befehle, Funktionen und Anweisungen von ST
BASIC in alphabetischer Reihenfolge aufgefiihrt und beschrieben. Die Schreibweise
der Syntax-Angaben hat folgende Bedeutung:

® ® ® Worter in spitzen Klammern, < >, beschreiben die Datenart, die Sie hier
eingeben miissen. Diese Angaben erkldren sich selbst. So bedeutet beispielsweise
<Variable>, daB Sie an dieser Position innerhalb einer Anweisung eine Variable vor-
geben miissen. ’

® @ @ Bcgriffe in eckigen Klammern, [], kénnen optional verwendet werden, diir-
fen jedoch nicht mehrmals hintereinander geschrieben werden.

- @ @ @ Begriffe in runden Klammern, (), konnen optional verwendet werden. Im
Gegensatz zu Angaben in eckigen Klammern kénnen diese Begriffe mehrmals hinter-
einander geschrieben werden.

® ® O In GroBbuchstaben geschriebene Worter sind ST BASIC Befehlsworter.

ABS _ X=ABS(N) FUNKTION
Syntax: X = ABS (<numerischer Ausdruck>)
Effekt: Gibt den absoluten Wert einer Zahl aus. Der absolute Wert einer

Zahlistimmer positiv oder Null.
Erklarung:

ABS gibt einen Integer-Wert fiir ein Integer-Argument aus. Bei Realzahlen hat der
ausgegebene Wert dieselbe Genauigkeit wie das Argument.

Beispiel:

Ok 101% = ABS (-9)
Ok 20 PRINT 1%
Ok 30 X! = ABS(325556.244)
OK 40 PRINT X!
Ok 50 END
Ok RUN
9
325556
Ok

C-1

ABS X=ABS(N) FUNKTION

Syntax: X = ABS (<numerischer Ausdruck>)

Effekt: Gibtden absoluten Wert einer Zahl aus. Der absolute Wert einer
Zahlist immer positiv oder Null.

Erklarung:

ABS gibt einen Integer-Wert fiir ein Integer-Argument aus. Bei Realzahlen hat der
ausgegebene Wert dieselbe Genauigkeit wie das Argument.

Beispiel:
Ok 101% = ABS (-9)
Ok 20 PRINT 1%
Ok 30 X! = ABS(325556.244)
OK 40 PRINT X!
Ok 50 END
Ok RUN
9
325556
Ok
ATN X!=ATN (N%) FUNKTION
Syntax: X!'= ATN (<numerischer Ausdruck>)
Effekt: Errechnet den Arcustangens einer Zahl.
Erklirung:

Die Funktion ATN gibt eine Realzahl mit einfacher Genauigkeit aus. Die Zahl ist ein
Winkel in Radian, der zwischen -PI/2 und PI/2 liegt. Die Funktion TAN ist das Gegen-
stiick zu ATN.

Beispiel:

Ok 10 RADIAN! = ATN (0.99999)

Ok 20 PRINT “Der Winkel in Radian ist “;RADIAN!

Ok 30 PRINT

Ok 40 PI = 3.14159

Ok 50 GRAD = RADIAN! * 180/P1

Ok 60 PRINT “Der Winkel in Grad ist “=;CINT(GRAD)
Ok RUN

Der Winkel in Radian ist .785393

Der Winkel in Grad ist 45

Ok

C-2

AUTO AUTO BEFEHL

AUTO50,25
AUTO 20
AUTO 50
Syntax: AUTO [<erste Zeilennummer>] [, <Erhohung>]
Effekt: Erstellt fiir jedes Betitigen der RETURN-Taste eine Zeilennum-

mer. Mit [CTRL] [G] wird AUTO abgeschaltet. Eine Zeilennum-
mer darf nicht groBer als 65535 sein. Der Befehl AUTO kann
innerhalb des Editors nicht verwendet werden.

Erklarung:

Sie geben die erste zu erstellende Zeilennummer, sowie die Erhohung zur néchsten zu
generierenden Zeilennumer an. Wenn Sie die erste zu erstellende Zeilennummer
nicht angeben, beginnt AUTO mit Zeilennummer 10. Geben Sie keine Erhohung vor,
erfolgt die Erhohung entweder in Zehnerspriingen oder in der zuletzt durch einen
AUTO-Befehl angegebenen Weise.

Existiert eine Zeilennummer bereits, druckt AUTO zwei Sternchen vor diese Num-
mer (**10). Wenn Sie eine neue Programmzeile eingeben, wird die alte Zeilennum-
mer nach Betédtigen der RETURN- Taste durch die neue Zeile ersetzt. Driicken Sie
lediglich die RETURN-Taste, bleibt die alte Zeilennummer unveréindert.

Mit [CTRL] [G] wird AUTO abgeschaltet. [CTRL] [G] entspricht von der Funktion
her nicht der RETURN-Taste. [CTRL] [G] gibt keine Programmzeile ein und veridn-
dert eine bereits vorhandene Zeile nicht.

Beispiele:

Ok AUTO Ok AUTO 50,25
10 50

20 75

30 100

Ok AUTO, 20 Ok AUTOS50

10 50

30 70

50 90

C-3

BLOAD BLOAD TEST.DAT, 250 ANWEISUNG

Syntax: BLOAD <Dateiangabe,>[,<Adresse>|
Effekt: Ladt eine Dateiin den Arbeitsspeicher.
Erkldrung:

BLOAD wird verwendet, um Maschinensprache-Programme und Arrays sowie deren
Inhalt zu laden. BLOAD kann zudem Bildschirmbilder darstellen.

BLOAD l4dt eine Datei an der von Ihnen angegebenen Adresse in den Arbeitsspei-
cher. Die Dateiangabe ist der vollstindige Dateiname inclusive Extender. Die Adres-
se ist der numerische Ausdruck, bei dem mit dem Laden begonnen werden soll.

Wenn Sie die Adresse nicht angeben, wird der mit BSAVE spezifizierte Startpunkt an-
genommen. Die Datei wird an dieselbe Adresse geladen, an der sie sich zuvor befand.

BLOAD iiberpriift keine Adressen. Obwohl es moglich ist, an jeder beliebigen Stelle
die Anweisung BLOAD zu verwenden, sollten Sie sie nicht iiber Datenbereiche von
BASIC oder iiber Ihr Programm laden. In diesem Fall konnte Ihr Programm ab-
stiirzen. '

Beispiel:

Ok 110 BLOAD “ARRAY*“,23

C-4

BRFEAK BRFAK - 40 | | BEFEHL
BRFAK 10 -40
BRFAK 40, 125
BRFAK
BRFAK 40

Syntax: BREAK [<Zeilennummern-Liste>]
Effekt: Halt den Programmlauf an.
Erkléifung:

BREAK, alleine verwendet, bewirkt, da3 der Programmlauf nach Ausfithrung jeder
Programmzeile angehalten wird. Sowohl die Programmzeile, als auch jede eventuelle
Ausgabe wird ausgegeben. Durch Betitigen von [RETURN] oder Eingeben von
CONT wird die niachste Programmzeile ausgefiihrt. Damit entspricht BREAK dem
Befehl STEP.

Geben Sie hinter BREAK Zeilennummern an, hélt das Programm nur in den betref-
fenden Zeilen an.

Der BREAK-Modus wird durch den Befehl UNBREAK abgeschaltet.
Beispiel:

Ok1ON =5
Ok20FORX =1TO5
Ok30N=N-1
Ok 40 PRINT N
Ok 50 NEXT X
Ok BREAK 50
Ok RUN
4
b 50 NEXT X
Br

C-5

BSAVE BSAVE TEST.DAT, 250, 500 ANWEISUNG

Syntax: BSAVE <Dateiangabe>,<Adresse>,<Linge>
Effekt: Legt einen Teil des Arbeitsspeichers in einer Datei ab.
Erklérung:

BSAVE speichert Maschinensprache-Programme, Daten oder Bildschirmbilder ab.
<Dateiangabe> ist die Angabe Ihres Dateinamens.
Die Adresse ist ein numerischer Ausdruck.
Beispiel:
Ok BSAVE “ARRAY* ,23,650

.C-6

CALL CALLDRAW X, Y, 72) ANWEISUNG

Syntax: CALL <numerischer Variable> [(<Parameter Liste>)]

Effekt: Gibt die Programmkontrolle an eine Maschinensprache-Unter-
routine ab.

Erklarung:

Die numerische Variable ist die Anfangs-Speicheradresse der Maschinensprache-Un-
terroutine. Die Routine wird mit BLOAD in den Arbeitsspeicher geladen.

Die optionale Parameter-Liste besteht aus Ausdriicken, die als Argumente fiir die Da-
teniibertragung zwischen Hauptprogramm und Assembler-Routine dienen. Die Para-
meter-Liste wird in Klammern eingeschlossen und muf3 durch Kommata abgegrenzt
werden.

Beispiel:

Ok 500 BLOAD “ASHLER¥,185000
Ok 550 CHART = 185666
Ok 600 CALL CHART(I%, A$, X)

Anmerkung: Die Assembler-Routine, die iiber den Befehl CALL aufgerufen wird,
sucht nach 2 Parametern im Anwender-Stack (A7). Der erste Parameter ist eine 2-By-
te-Integerzahl, die die Anzahl formaler Parameter angibt, die vom Anwenderpro-
gramm ibertragen wurden (in Zeile 600 im obigen Beispiel wére die Anzahl der Para-
meter 3). Jeder dieser Werte belegt 8 Bytesim Array, unabhéngig davon, ob es sich bei
dem formalen Parameter um eine Integerzahl, Realzahl oder andere Werte handelt.
In jedem Fall enthélt bei Verwendung einer String-Variablen als formaler Paramater
der 8-Byte-Wert im Array einen Zeiger zur Speicheradresse, in der dieser String abge-
legt ist.

C-7

CHAIN CHAIN NEUPROG, 100, ALL ANWEISUNG
CHAIN MERGE NEUPROG, 100 DELETE 500-600

Syntax: CHAIN <Dateiname>[,<Zeilenangabe>][,ALL]
CHAIN MERGE <Dateiname>[,Zeilenangabe>]
[, DELETE<Zeilenangabe-Liste>|

Effekt: Ubergibt die Kontrolle und iibertriigt Variablen an ein anderes
Programm. Der Extender .BAS wird automatisch an den Datei-
namen angesetzt, sofern Sie nicht selbst einen anderen Extender
vorgeben.

Erklarung:

Das Programm, das Sie iiber die CHAIN-Anweisung spezifizieren, ersetzt das derzei-
tige Programm im Arbeitsspeicher. Das mit CHAIN eingebrachte Programm wird oft
auch Overlay genannt, da es das urspriingliche Programm oder Teile davon iiber-
schreibt. <Dateiname> ist der Dateiname des neuen Programmes. Es kann sich um
jeden beliebigen String- Ausdruck eines legalen Dateinamens handeln.

Die Option MERGE verkniipft ein ein Programm mit einem existenten Programm,
anstatt es zu ersetzen. CHAIN MERGE speichert alle Variablen, Typendeklaratio-
nen, Anweisungen und Optionen. Wenn Sie die Option MERGE weglassen, miissen
Sie alle DEF-Anweisungen in jedem mit CHAIN neu angefiigten Programm neu auf-
stellen. Die Option MERGE ersetzt die Anweisungen im neuen Programm durch die
Anweisungen im urspriinglichen Programm. Sind einige der Zeilennummern im neu-
en Programm identisch zu Zeilennummern im urspriinglichen Programm, ersetzen die
neuen Programmezeilen die alten.

Sie kénnen nach dem Dateinamen eine Zeilenangabe spezifizieren, durch die ange-
zeigt wird, ab welcher Zeile im neuen Programm mit der Programmausfithrung begon-
nen werden soll. Andernfalls beginnt der Programmlauf mit der ersten ausfithrbaren
Anweisung.

Die Option ALL zeigt an, daf alle Variablen aus dem urspriinglichen Programm an
das neue Programm iibertragen werden. ALL in Verbindung mit CHAIN MERGE ist
nicht giiltig.

Wird die Option ALL weggelassen, miissen Sie mit der Anweisung COMMON ange-
ben, welche Variablen sowohl von dem urspriinglichen, als auch vom neuen Pro-
gramm verwendet werden konnen.

Lesen Sie hierzu auch unter COMMON nach.

Verwenden Sie die Option DELETE nur in Verbindung mit CHAIN MERGE. Mit
DELETE konnen Sie Teile des alten Programmes aus dem Arbeitsspeicher entfernen,
um Platz fiir das neue Programm zu schaffen. Die Option DELETE I6scht Zeilen aus
dem alten Programm, bevor es mit dem neuen Programm <Dateiname> verbunden
wird. Geben Sie nach dem Befehlswort DELETE die Zeilennummern an, die geldscht
werden sollen.

C-8

Beispiele:
Die nachfolgende Anweisung bindet ein Programm mit dem Namen KURS.BAS ein:
Ok 400 CHAIN “KURS“

In diesem Beispiel wird das Programm KURS.BAS eingebunden. Der Programmlauf
beginnt bei Zeile 1200. Alle Programm-Variablen kénnen vom urspriinglichen Pro-
gramm in das neue Programm iibernommen werden.

Ok 400 CHAIN “KURS*“, 1200, ALL

Im letzten Beispiel werden die Zeilen eines Overlays mit dem Namen GESAMT.OVR
mit dem bereits im Arbeitsspeicher befindlichen Programm verkniipft. Die Program-
mausfiihrung beginnt bei Zeile 900. Bevor die verkniipfte Datei in den Speicher gela-
den wird, wird durch die Anweisung eine Zeilenangabe-Liste, die von Zeile 900 bis zu
Zeile 2000 reicht, geldscht.

Ok 710 CHAIN MERGE “GESAMT.OVR*, 900, DELETE 900-2000

C9

CHR$ A$ = CHR$(97) | FUNKTION

Syntax: A$ = CHR$(<numerischer Ausdruck>)

Effekt: Gibt das Zeichen aus, dessen ASCII-Wert der eingegebenen
Dezimalzahl entspricht.

Erklérung:
CHRS gibt einen Ein-Zeichen-String aus.
Der numerische Ausdruck muB einer legalen Integerzahl entsprechen.

Der ASCII-Wert des ausgegebenen Zeichens ist <Ausdruck>MOD 256. Das bedeu-
tet, da3 der Ausdruck in eine Zahl zwischen 0 und 256 konvertiert wird. Ist der Aus-
druck groBer als 256, wird er wie ein Restwert einer Division durch 256 behandelt
(siehe Beispiele).

CHRS wandelt Realzahlen in Integerzahlen um.

Verwenden Sie die Funktion CHRS$, um Sonderzeichen wie Zeilenvorschiibe oder
Zeilenschaltungen an einen Ausgabe- Datenkanal zu iibermitteln.

CHRS ist das Gegenstiick zu ASC.
Beispiel:

Ok 10 PRINT CHRS$(83)
Ok 20 PRINT CHR$(100)
Ok 30 PRINT CHR$(356)
Ok RUN

S

d

d

Ok

C-10

CINT I% = CINT(N) FUNKTION

Syntax: 1% = CINT(<numerischer Ausdruck>)
Effekt: Rundet eine Zahl auf die nichste Integerzahl auf oder ab.
Erklérung:

Der numerische Ausdruck muB zwischen -32768 und 32767 liegen. Andernfalls tritt ein
Uberlauffehler auf.

Lesen Sie auch unter FIX und INT nach.
Beispiel:

Ok 10 PRINT CINT(5.2)
Ok 20 PRINT CINT(62.89)
Ok 30 PRINT CINT(-456.61)
Ok RUN
5
63
-457
Ok

C-11

CIRCLE CIRCLE 50,80,50 ANWEISUNG
CIRCLE 50,80,50,900,1800

Syntai: CIRCLE <horizont. Mittelpunkt, vertik. Mittelpunkt,
Radius>[<,Anfangswinkel, Endwinkel>|

Effekt: CIRCLE zeichnet Kreise und Kreisausschnitte.

Erklarung:

CIRCLE zeichnet einen Kreis, dessen Mittelpunkt an dem Punkt liegt, der durch die
ersten beiden Parameter (horizontaler und vertikaler Mittelpunkt) vorgegeben wur-
de. Die Positionen werden in Pixel angegeben und von der oberen linken Ecke des
Ausgabefensters aus gezéhlt.

Der dritte Parameter (Radius) wird ebenfalls in Pixel ausgedriickt. Die horizontale
und vertikale Pixelangabe ist abhéngig von der gewédhlten Auflosung, sowie von der
GroBe des Ausgabefensters. Der Kreis wird in der festgelegten Zeichenfarbe (Para-
meter 3 der COLOR-Anweisung) dargestelit.

Die letzten beiden Parameter (Anfangs- und Endwinkel) sind optional. Wird hier
nichts angegeben, zeichnet CIRCLE einen Kreis. Andernfalls zieht CIRCLE einen
Kreisausschnitt zwischen den beiden Punkten. CIRCLE zeichnet allerdings nur einen
Kreisbogen und kein eingefirbtes Kreissegment. Winkel werden in Grad mal 10 ange-
geben. So werden 45 Grad als 450, 180 Grad als 1800 usw. angegeben. O Grad zeigt
zum rechten Rand des Fensters, 90 Grad zum oberen, 180 Grad zum linken und 270
Grad zum unteren Fensterrand. CIRCLE 100,30,30,0,3600 zeichnet einen vollstandi-
gen schwarzen Kreis.

Lesen Sie auch unter PCIRCLE, ELLIPSE und PELLIPSE nach.
Beispiel:

Ok 10 COLOR 1,0,1: CLEARW 2

Ok 20 CIRCLE 100,50,40

Ok 30 COLOR 1,0,2

Ok 40 CIRCLE 100,50,40,300,90

Ok RUN

[Im Ausgabefenster erscheint ein schwarzer Kreis mit einem roten Kreisaus-
schnitt tiber 60 Grad, beginnend bei 30 Grad]

Ok

C-12

CLEAR CLEAR ANWEISUNG

Syntax: CLEAR

Effekt: Bereinigt den mit Programmdaten belegten Arbeitsspeicher, ohne
das derzeitim Arbeitsspeicher befindliche Programm zu 16schen.

Erklarung:

CLEAR setzt alle numerischen Variablen und String-Variablen auf Null. Der Befehl
CLEAR macht alle Arrays undefiniert.

Beispiele:

Das nachfolgende Beispiel 16scht alle Daten aus dem Speicher, ohne das Originalprd-'
gramm zu l6schen:

Ok CLEAR
CLEARW CLEARW 2 ANWEISUNG
Syntax: CLEARW <numerischer Ausdruck>
Effekt: CLEARW 16scht BASIC-Fensterinhalte.
Erklédrung:

CLEARW loscht den Inhalt des angegebénen Fensters. Dabei werden die Fenster fol-
gendermalBen bezeichnet:

0 = Bearbeitungsfenster
1 = Auflistungsfenster
2 = Ausgabefenster

3 = Befehlsfenster

Beispiel:
Ok 10 CLEARW 2

Ok 20 PRINT “HALLO*
Ok RUN

C-13

CLOSE CLOSE ANWEISUNG

CLOSE #1
CLOSEL3,4
Syntax: CLOSE [#]<Dateinummer>
Effekt: SchlieBt geoffnete Disketten-Dateien und schlie3t jede Ein- oder

Ausgabe ab.
Erklarung: |

Die CLOSE-Anweisung schlieft geéffnete Dateien, beldf3t die Dateinummern unver-
andert und gibt den gesamten Speicherplatz frei, der von der Datei verwendet wird.
Die Dateien miissen unter Verwendung der OPEN-Anweisung ge6ffnet worden sein.

Die Dateinummer ist die Kennummer, die Sie einer Datei in der OPEN-Anweisung
zuordnen. Sie kénnen eine beliebige Anzahl von Dateinummern in der optionalen
CLOSE-Anweisung angeben. Trennen Sie hierbei die einzelnen Dateinummern
durch Kommata ab.

Ein Nummernzeichen (#) vor der Dateinummer kann optional gesetzt werden.
Dateinummern konnen jeder beliebige numerische Ausdruck sein. Der Ausdruck
mufB einer Zahl zwischen 1 und 15 entsprechen. 15 ist die maximal erlaubte Anzahl von
Dateien. Andernfalls tritt ein “Bad File Number“-Fehler auf. Entsprechen Dateinum-
mern Realzahlen, wandelt CLOSE diese in Integerzahlen um.

Wenn Sie nach dem Befehlswort CLOSE keine Dateinummer vorgeben, schlie3t die
Anweisung alle derzeit gedffneten Dateien.

ANMERKUNG: NEW, END, RUN, LOAD, OLD, QUIT und SYSTEM schlieen
alle geoffneten Dateien automatisch. Die STOP-Anweisung schlieft keine Disketten-
Dateien.

Beispiele:

Die nachfolgende Anweisung schlie3t alle ge6ffneten Disketten- Dateién:

Ok 310 CLOSE

In diesem Beispiel werden die gedffneten Disketten-Dateien, denen die Dateinum-
mern 3 und 7 zugeordnet wurden, geschlossen:

Ok 600 CLOSE #3, #7

C-14

CLOSEW CLOSEW 1 ANWEISUNG

Syntax: CLOSEW <Fenster-Nummer>

Effekt: Schlief3t eines der BASIC-Fenster.
Erklérung:

CLOSEW wird verwendet, um eines der vier BASIC-Fenster zu schlieBen. Dieser
Aufruf mu zum SchlieBen aller Fenster fiir jedes separat vorgenommen werden. Die
Angabe <Fenster-Nummer> lautet folgendermafen:

0 - Bearbeitungsfenster
1 - Auflistungsfenster
2 - Ausgabefenster

3 - Befehlsfenster

Anmerkung: CLOSEW gibt eine interne Meldung an den BASIC- Interpreter, um

dem System eine Kontrolle des jeweiligen Fenster- Status zu ermoglichen. Aus diesem
Grund sollten Sie BASIC-Fenster niemals iiber direkte AES-Aufrufe schlieBen.

C-15

COLOR COLOR 1,0,1,1,1 ANWEISUNG

Syntax: COLOR <Textfarbe, Fiillfarbe, Linienfarbe, Index, Stil>
Effekt: Legt die Text-, Fiill- und Zeichenfarbe, sowie die Fiillmuster fest.
Erklarung:

COLOR setzt die Farbe des im Ausgabefenster gedruckten Textes, des Hintergrundes
(Fillfarbe) und der im Ausgabefenster gezeichneten Linien fest. Zudem werden Far-
ben und Muster, mit denen die gezeichneten Formen gefiillt werden sollen, festgelegt.
COLOR beeinfluBt nachfolgende PRINT und Grafik-Farben, verdndert allerdings
bereits im Ausgabefenster vorhandene Texte oder Zeichnungen nicht.

Die untenstehende Tabelle zeigt die einzelnen Farbwerte in unterschiedlichen Auflo-
sungen:

FARBWERT NIEDRIG MITTEL HOCH
X
X

O OIAUN AW =D
elaRele

e letolotolololalalalolotalalals

Die nachfolgende Tabelle zeigt die Muster, die iiber Parameter 4 und 5 ausgewahlt
werden konnen, sowie den verfiigbaren Fiill-Stil. Unter jedem Késtchen sind zwei
Zahlen angegeben, die durch ein Komma voneinander abgetrennt sind. Die Zahl links
neben dem Komma gibt den Fiill-Stil an (Unausgefiillt, ausgefiillt mit einem Muster,
oder ausgefiillt mit einer Schraffierung). Die Zahl rechts neben dem Komma steht fiir
den Index des gewéhlten Musters bzw. der Schraffierung.

C-16

(KRR

CWRY

FFFRPIF
ALK

KWK

>

FEIPIT S
LERLLTRR LKLY
IR I

s

LLL LR RLY
PRI FF IS

“““““

<<

Beispiele:

Ok 10 COLOR 1,0,1

Ok 20 PRINT “SCHWARZ*
Ok 30 COLOR 2,0,1

Ok 40 PRINT “ROT*

Ok 50 COLOR 1,0,1

Ok RUN

SCHWARZ E*EE In schwarzer Schrift *****
ROT *A*E* In roter Schrift *****

Ok

Ok 10 COLOR 1,2,3,1,1

Ok 20 FULLW 2: CLEARW 2
Ok 30 K=(K+10) MOD 3600
Ok 40 FOR I1=3 TO 11

Ok COLOR 1,1.1.1.2

Ok 60 J=I*400

Ok 70 PCIRCLE 150,80.80,(J +K+3600) MOD 3600, (J+K+400) MOD 3600

Ok 80 NEXT
Ok 90 GOTO 30

C-17

COMMON COMMON A$, COUNT, N ANWEISUNG

Syntax: COMMON < Variable> <, Variable>

Effekt: Gibt die Variablen an, die ein Programm an ein mit CHAIN
eingebundenes Programm iibergeben kann.

Erklirung:

ST BASIC behandelt alle COMMON-Anweisungen in einem Programm als eine ein-
zige konsekutive Liste von Variablen. Aus diesem Grund kann ein Programm eine be-
liebige Anzahl von COMMON-Anweisungen enthalten.

COMMON-Anweisungen konnen an jeder beliebigen Stelle innerhalb eines Program-
mes erscheinen. Am giinstigsten ist eine Plazierung dieser Anweisungen am Anfang
des Programmes.

COMMON wird in Verbindung mit CHAIN verwendet.

Lesen Sie hierzu auch unter CHAIN nach.

Beispiel:

Das nachfolgende Beispiel bindet in ein Programm mit dem Namen “STBASIC® ein
und iibergibt die Variablen VAL!, NAME und die Feld-Variable SCALE().

Oki 0COMMON VAL!, NAMES$, SCALE()
Ok:. 0CHAIN “STBASIC“

C-18

CONT ' CONT BEFEHL

Syntax: CONT

Effekt: Nimmt einen durch BREAK, STOP oder CTRL-G unterbrochen-
en Programmlauf wieder auf.

Erklarung:

Eine BREAK- oder STOP-Anweisung in einem Programm, bzw. das Betitigen
von CTRL-G (sofern nicht getrapped) bringt ST BASIC in den BREAK-Modus. Im
BREAK-Modus kénnen Sie Direktmodus- Anweisungen verwenden, um dazwischen-
liegende Programmwerte zu verdndern.

Mit CONT wird der Programmlauf fortgesetzt.

Sie kénnen auch eine Direktmodus GOTO-Anweisung verwenden, um die Programm-
ausfiihrung in eine spezielle Programmezeile zu leiten.

Beispiel:

Ok10N =5
Ok20FORX =1TOS5
Ok30N=N-1
Ok 40 PRINT N
Ok 50 NEXT X
Ok RUN

4

3

2

[driicke [CTRL] [G]]

-- Break -- at line 30
Ok CONT

1

0
Ok

C-19

COoS X=COS (Y) FUNKTION

Syntax: X = COS (<numerischer Ausdruck>)
Effekt: Gibt den Cosinus einer Zahl aus.
Erklarung:

Die COS-Funktion gibt eine Realzahl mit einfacher Genauigkeit aus. Die Zahl ist der
Cosinus-Wert des Winkels im numerischen Ausdruck.

Alle trigonometrischen Funktionen in ATARI BASIC erfordern die Angabe des Win-
kels in Radian.

Beispiel:

Ok 10 PI = 3.14159

Ok 20 DEGREES = 180

Ok 30 RADIANS = DEGREES * (P1/180)
Ok 40 ANS! = COS(RADIANS)

Ok 50 PRINT “der Cosinus ist“; ANS!

Ok RUN

Der Cosinus ist -1

Ok

C-20

CVD,CVL,CVS CVD(AS) AS = 8 Byte String FUNKTION
CVI(B$) B$ =2 Byte String
CVS(C$) C$ =4 Byte String

Syntax: CVD(<8-Byte String>)
CVI(<2-Byte String>)
CVS(<4-Byte String>)

Effekt: CVD-, CVI- und CVS-Funktionen wandeln Byte Strings in nu-
merische Variablen um. Dient zur Umwandlung in ASCII-Zahlen,
die aus Random-Dateien ausgelesen werden konnen.

Erklarung:

ST BASIC speichert Zahlen in einer Random-Datei als Byte Strings. Um die Zahlen
aus der Datei auszulesen, miissen die Strings in die dazugehorigen numerischen Da-
ten-Typen konvertiert werden. Die Funktionen verdndern nicht den Wert der Zahl,
sondern lediglich den Daten-Typ. Diese Strings sind die exakte Byte-Représentation
der gespeicherten Zahlen. Es handelt sich dabei NICHT um Zeichen-Strings, die
gedruckt werden konnen.

Die Funktion CVD konvertiert einen 8-Byte String in eine Realzahl mit doppelter
Genauigkeit.

Die Funktion CVI wandelt einen 2-Byte String in eine Integerzahl um.

Die Funktion CVS konvertiert einen 4-Byte String in eine Realzahl mit einfacher
Genauigkeit.

Falls der String, der aus der Datei ausgelesen wird, kiirzer ist als fiir die Konvertierung
erforderlich, wird er nach rechts mit Binér-Nullen aufgefillt.

MKDS$, MKI$ und MKSS$ sind die gegenséitzlichen Funktionen zu CVD, CVI und
CVS.

Beispiel:

Ok 10 OPEN “R¥,#1,“NUMBERS*

Ok 20 FIELD #1, 2 AS A$, 4 AS B$, 8 AS C$
Ok 30 GET #1, REC%

Ok 40 1% = CVI(AS$)

Ok 50 X! = CVS(B$)

Ok 60 Y4 = CVD(C$)

Ok 70 PRINT I%, X!, Y#

Ok 80 CLOSE #1

Ok 90 END

Uber diesen Programmlauf wird ein Satz Zahlen aus der Datei entnommen und ausge-
druckt.

C-21

DATA DATA 25,15,925,Wort ANWEISUNG

Syntax: DATA <Konstante> ,<Konstante>

Effekt: Definiert eine Liste von Konstanten, die eine READ- Anweisung
Variablen zuordnen kann.

Erklarung:

DATA-Anweisungen ermoglichen Thnen, feste Werte Variablen zuzuordnen. Die
Werte werden geméaB ihrer Reihenfolge in einer DATA-Anweisung zugeordnet.

Jede DATA-Konstante mul} eine dazugehdrige READ-Variable besitzen und umge-
“kehrt. Die Konstanten und Variablen passen gemif der Reihenfolge, in der sie aufge-
listet sind, zusammen; die erste DATA-Konstante ist von der ersten READ-Varia-
blen abhéngig usw.

DATA-Konstante konnen Integerzahlen, Realzahlen oder Strings in jeder beliebigen
Kombination sein. Die Daten-Typen fiir die Konstanten in der DATA-Liste miissen
jedoch mit den Variablen zusammenpassen, die ihnen in einer READ-Anweisung zu-
geordnet wurden. Setzen Sie keine Anfithrungszeichen um Strings in einer DATA-
Anweisung.

DATA-Anweisungen kdnnen beliebig lang sein. Sie konnen jedoch in eine Zeile, die
eine DATA-Anweisung enthilt, keine anderen, zusétzlichen Anweisungen mehr
schreiben.

Obwohl jede Konstante eine zugehdrige Variable besitzen mul3, brauchen Sie nicht fiir
jede DATA .nweisung eine READ-Anweisung. Sie konnen mehrere DATA-An-
weisungen it in Programm einarbeiten, denen Sie innerhalb einer einzigen READ-
Anweisung ' riablen zuordnen. In diesem Fall passen sie zuerst gemif3 der Reihen-
folge der Kc ;tanten im Programm, und danach gemif ihrer Reihenfolge innerhalb
der Zeilen z71 immen.

Die RESTO E-Anweisung ordnet READ-Anweisungen DATA-Anweisungszeilen
Zu. !

Lesen Sie hierzLu auch unter READ und RESTORE nach.
Beispiel: ‘

Ok 10 READ X
Ok 20 DATA 33.3, 5, “PLATZRESERVIERUNG*
Ok 30 PRINT X
Ok40 READ X, Y$
Ok 50 PRINT X,Y$
Ok RUN
33.3 :
S PLATZRESERVIERUNG

C-22

DEF FN DEF FNA (A) = A*2+5 ANWEISUNG

Syntax: DEF FN<Funktionsname>[(<Parameter,Parameter>)] =
<Definition>

Effekt: Definiert anwenderspezifische Funktionen.

Erklarung:

DEF FN erlaubt Ihnen die Definition eigener Funktionen fiir die Verwendung in ei-
nem Programm. Der Name fiir die Funktion kann ein beliebiger, giiltiger Variablen-
name sein.

Die Variablenliste in Klammern ist optional. Sie konnen jeden Variablen-Typ mit
Ausnahme von Arrays verwenden. Diese Variablen sind an die definierte Funktion
gebunden und beeinflussen Variablen mit demselben Namen an einer anderen Stelle
im Programm nicht. Die Variablen in Klammern konnen als “Platzreservierungen* fiir
die Werte, die beim Aufrufen der Funktion an sie iibertragen werden, angesehen wer-
den. Die Werte, die Sie an die Funktion libertragen, miissen beziiglich des Typs und
der Zahl mit den Werten in Klammern zusammenpassen.

Sie konnen beliebige globale Variablen innerhalb der Funktionsdefinition in Threm
Programm verwenden. Sie werden genauso behandelt wie von der Funktionsdefin-
ition angegeben. Wenn Sie ihre Werte innerhalb der Funktion verdndern, behalten sie
ihre neuen Werte wihrend des gesamten Programmes bei.

Die Definition ist ein Ausdruck, der die Arbeitsweise der Funktion festlegt. Die Be-
schreibung ist auf eine Programmzeile beschrénkt. Enthélt der Funktionsname eine
Typen-Spezifikation wie beispielsweise FNAS, muf} die Definition mit diesem Typ zu-
sammenpassen. Die Parameter, die an die Funktion ibertragen werden (in Klammern
gesetzt) miissen sich ebenfalls an diesen Typ anpassen.

Beispiel:

Ok 10 INPUT “BREITE MATERIAL IN CM*;

MATERIAL.BREITE

Ok 20 INPUT “BREITE FENSTERBANK IN CM*;
FENSTER.BREITE

Ok 30 BRETTER.NOETIG = FENSTER.BREITE / MATERIAL.BREITE
Ok 40 INPUT “LAENGE FENSTERBANK IN CM*;
FENSTER.LAENGE

Ok 50 MENGENMETER.NOETIG = BRETTER.NOETIG
*FENSTER.LAENGE

Ok 60 INPUT “MATERIALPREIS PRO METER®;

PREIS.METER!

Ok 70 DEF FNMATERIAL = METER.NOETIG/

15 + MENGENMETER.NOETIG :

Ok 80 DEF FNKOST! = (PREIS.METER) * FNMATERIAL

Ok 90 PRINT “SIE BRAUCHEN “;MATERIAL;“ CM AN
“sMATERIAL.BREITE;“ CM MATERIAL.“:PRINT “IHRE KOSTEN
SIND: “;FNKOST!

Ok 100 DEF FNIN METERN = MATERIAL /36

C-23

Ok 110 PRINT MATERIAL; CM IN METERN IST “; FNINMETERN
Ok RUN
BREITE MATERIAL IN CM? 30
BREITE FENSTERBANK IN CM? 60
LAENGE FENSTERBANK IN CM? 60
MATERIALPREIS PRO METER? 2.00
SIE BRAUCHEN 128 CM AN 30 CM MATERIAL. IHRE KOSTEN
SIND 7.1111
128 CM IN METER IST 3.5556
Ok

C-24

DEF SEG DEF SEG 0 ANWEISUNG

DEF SEG1
Syntax: DEF SEG [<numerischer Ausdruck>]
Effekt: DEF SEG etabliert den Operationsmodus von PEEK und POKE,

sowie das von den Befehlen verwendete Offset.
Erklarung:
Die Operationsmodi werden wie folgt definiert:

Ist DEF SEG > 0, wird ein Byte gePEEKt oder gePOKE?t. Der in DEF SEG ver-
wendete Wert des numerischen Ausdruckes wird als Offset fiir die in PEEK oder
POKE spezifizierte Adresse angesehen.

Ist DEF SEG = 0, werden zwei Bytes gePEEKt oder gePOKEt. Der Wert des
in DEF SEG verwendeten numerischen Ausdruckes wird als Offset fiir die in PEEK
oder POKE spezifizierte Adresse angesehen.

Wenn DEF SEG = 0ist und gleichzeitig die Adresse durch DEFDBL angegeben
wurde, werden vier Bytes (Long-Integer) gePEEKt oder gePOKE:.

Beispiele:

82.6 Ok 10 DEF SEG=0

Ok 20 DEFDBL S:S=SYSTAB+20:’ZEIGER GRAFIK-SPEICHER

Ok 30 X=PEEK(S):’xIST EIN 4-BYTE WERT

Ok 40 RESET:’LEGT DEN AKTUELLEN BILDSCHIRM IM GRAFIK-
SPEICHER AB

Ok 50 BSAVE “BILD“,X,32767

Ok 60 CLEARW 2: 'LOESCHE BILDSCHIRM

Ok 70 BLOAD “BILD“,X: LADEN DES BILDES IN DEN GRAFIK-
SPEICHER

Ok 80 OPENW 2: 'DARSTELLUNG DES GRAFIK-SPEICHERS
IM FENSTER

Ok 10 DEF SEG=100
- Ok 20 PRINT PEEK(500)

Anmerkung: Damit wird eine 1-Byte Integerzahl aus der absoluten Speicherstelle 600
ausgegeben.

Ok 10 DEF SEG=0

Ok 20 LOC4=175000
Ok 30 PRINT PEEK(LOCH)

Anmerkung: Damit wird eine 4-Byte Integerzahl aus der Speicherstelle 175000 ausge-
geben.

C-25

DEFDBL DEFDBLA ANWEISUNG

DEFDBLA-D
Syntax: DEFDBL <Buchstabe> <-Buchstabe>
Effekt: Gibt einen Buchstaben, bzw. einen Bereich von Buchstaben an,

der als Realzahl mit doppelter Genauigkeit definiert werden soll.
Erklérung:

Die DEFDBL-Anweisung gibt vor, daf3 die Variablen, deren Namen mit einem der
angegebenen Buchstaben beginnen, Realzahlen mit doppelter Genauigkeit sind. Sie
konnen einen einzelnen Buchstaben oder einen Bereich von Buchstaben, wie bei-
spielsweise A-D, als Parameter angeben.

Typenangabe-Zeichen haben generell Vorrang vor DEFDBL-Anweisungen.
DEFDBL-Anweisungen konnen nur als erste Anweisungen in einem Programm ein-
gegeben werden. DEFDBL wird immer in Verbindung mit DEF SEG, PEEK oder
POKE verwendet.

Anmerkung: DEFDBL-Anweisungen verdndern die ST BASIC Interpretatior von
Programmezeilen.

Beispiel:

Ok 10 DEFDBL X-Y
Ok 20 X = 123123412345123456
Ok 30Y = $H333
Ok 40 PRINT X,Y
Ok RUN

1.23123392D+017 819
Ok

C-26

DEFINT DEFINT A ANWEISUNG

DEFINT A-D
Syntax: DEFINT <Buchstabe> <-Buchstabe>
Effekt: Gibt einen Buchstaben oder Bereich von Buchstaben an, der als

Integerzahl definiert werden soll.
Erklarung:

Die DEFINT-Anweisung gibt vor, daf} die Variablen, deren Namen mit einem der an-
gegebenen Buchstaben beginnen, Integerzahlen sind. Sie konnen einen einzelnén
Buchstaben oder einen Bereich von Buchstaben, wie beispielsweise M-Z, als Parame-
ter verwenden.

Typenangabe-Zeichen haben generell Vorrang vor DEFINT-Anweisungen.

Anmerkung:DEFINT-Anweisungen verdndern die ST BASIC Interpretation von
Programmzeilen. Wenn Sie eine Variable mit der DEFINT-Anweisung als Integerzahl
vorgeben, behandelt ST BASIC sie auch dann als Integerzahl, wenn Sie die DEFINT-
Anweisung nachtraglich 16schen.

Beispiel:
Ok 10 DEFINT X-Y
Ok20X =178.9
Ok30Y =78.1
Ok 40 PRINT X,Y
Ok RUN

78 78

Ok

C-27

DEFSNG DEFSNG A ANWEISUNG

DEFSNGA-D
Syntax: DEFSNG <Buchstabe> <-Buchstabe>
Effekt: Gibt einen Buchstaben oder Bereich von Buchstaben an, der als

Realzahl definiert werden soll.
Erklarung:

Die DEFSNG-Anweisung definiert die Variablennamen, die mit einem der angegebe-
nen Buchstaben beginnen, als Realzahlen. Sie konnen einen einzelnen Buchstaben
oder einen Bereich von Buchstaben, wie beispielsweise A-D, als Parameter verwen-
den.

Typenangabe-Zeichen haben generell Vorrang vor DEFSNG- Anweisungen.

Anmerkung: DEFSNG-Anweisungen verdndern die ST BASIC Interpretation von
Programmezeilen.

Beispiel:

Ok 10 DEFSNG X-Y
Ok20X =23D+16
Ok 30Y = 456654456654
Ok 40 PRINT X,Y
Ok RUN
2.3E+17 4.56654E+11

C-28

DEFSTR DEFSTR A ANWEISUNG

DEFSTRA-D
Syntax: DEFSTR <Buchstabe> <-Buchstabe>
Effekt: Gibt einen Buchstaben oder Bereich von Buchstaben an, der als

Zeichenkette definiert werden soll.
Erklarung:

Die DEFSTR-Anweisung gibt vor, daB} alle Variablen, deren Anfangsbuchstaben in
der Parameterliste aufgefiihrt sind, Strings sind. Sie konnen einen einzelnen Buchsta-
ben oder einen Bereich von Buchstaben, wie beispielsweise M-Z, als Parameter ver-
wenden. :

Typenangabe-Zeichen haben generell Vorrang vor DEFSTR- Anweisungen. Der vor-
gegebene Variablentyp ist eine Realzahl.

Anmerkung: DEFSTR-Anweisungen verdndern die ST BASIC Interpretation von
Programmzeilen. Wenn Sie eine Variable mit der DEFSTR-Anweisung als String vor-
geben, behandelt ST BASIC sie auch dann als Realzahl, wenn Sie die DEFSTR-An-
weisung nachtréglich 16schen.

Beispiel:

Ok 10 DEFSTR A-C
Ok 20 A = “12.7.42¢

Ok 30 B = “1066“

Ok 40 C = “4.12.XX«

Ok 50 PRINT A,B,C

Ok RUN

12.7.42 1066 4.12.XX
Ok

C-29

DELETE DELETE - 40 BEFEHI

DELETE20
DELETE 20,30
DELETE20-30
Syntax: DELETE <Zeilennummer Liste>
Effekt: DELETE l6scht Programmzeilen aus dem Arbeitsspeicher.

Erklarung:

DELETE loscht die von Thnen angegebenen Programmzeilen. Das Loschen einer ein-
zelnen Programmzeile erfolgt besser iiber die Eingabe der Zeilennummer und Betéti-
gen der RETURN-Taste.

Beispiel:
Ok10X =10
Ok20Z =10

Ok 30 PRINT X,Z
Ok DELETE 20-30
Ok LIST

Ok 10X = 10

Ok

C-30

DIM DIM AS$ (5) ANWEISUNG
DIMX (5,10, 4)
DIM B$(10) ,C$(20)
DIMX(5,104) ,Y(1,2,8)

Syntax: DIM<Array-Name>(<Unterbereich> <,Unterbereich>)
(,<Array-Name>[<Unterbereich>])

Effekt: Definiert die Anzahl der Dimensionierungen und die Anzahl der
Elemente in einem Array.

Erklarung:

Die DIM-Anweisung reserviert Platz fiir einen String oder ein numerisches Array
durch Spezifizieren der Anzahl von Dimensionierungen und der oberen Grenze der
Elemente in jeder Dimension. Die Anzahl der Dimensionierungen ist abhédngig von
der Anzahl der Unterbereiche. Ein Unterbereich entspricht einer Dimensionierung,
zwei Unterbereiche entsprechen zwei Dimensionierungen usw. Die Anzahl der Ele-
mente und Dimensionierungen, die Sie spezifizieren konnen, ist abhédngig vom verfiig-
baren Speicherplatz. Allerdings ist die maximale Anzahl der Dimensionierungen in
jedem Fall auf 15 begrenzt.

Die untere Grenze jeder Dimensionierungist 0 oder 1, abhdngig von OPTION BASE.
DIM setzt den Anfangswert der Elemente automatisch auf 0.
In ST BASIC sind Arrays dynamisch. Sie konnen Arrays mit DIM dimensionieren,
das Array spéter im Programm l6schen und dann mit DIM unter Verwendung dessel-
ben Namens, aber mit neuen Dimensionierungen erneut einrichten. Bei dynamischen
Arrays koénnen Sie das Array auch unter Verwendung einer numerischen Variablen
dimensionieren.
Sie konnen ein Array verwenden, ohne es zuvor mit einer DIM- Anweisung zu definie-
ren. In diesem Fall wird fiir das Array automatisch eine obere Grenze von 10 Elemen-
ten in jeder Dimension vorgegeben. Ist beispielsweise die erste Referenz zu
ARRAY A

ARRAY A(7,3)
wird das Array so eingerichtet, als wire es mit

DIM A(10,10)

definiert worden.

Die vorgegebene Anzahl von erlaubten Dimensionen ist 4 fiir Integerzahlen und 3 fiir
Strings sowie Realzahlen.

C-31

Anmerkung: In ST BASIC koénnen 30 % des verfiigbaren Speicherplatzes als Arrays
bezeichnet werden. Allerdings diirfen alle Arrays zusammen nicht mehr als 32 K um-
fassen, unabhéngig vom insgesamt verfiigbaren Speicherplatz.

Beispiel:
Ok 10 DIM HAEUSERS (1,1,1)

Ok 20 HAEUSERS (0,0,0) = “ETAGENPLAN1“
Ok 30 HAEUSERS (0,0,1) = “ETAGENPLAN3“

Ok 40 HAEUSERS (0,1,0) = “ETAGENPLAN3“
Ok 50 HAEUSERS (0,1,1) = “ETAGENPLAN3“
Ok 60 HAEUSERS (1,0,0) = “ETAGENPLAN1“

Ok 70 HAEUSERS (1,0,1) = “ETAGENPLAN2¢
Ok 80 HAEUSERS (1,1,1) = “ETAGENPLAN2*
Ok 90 IF HAEUSERS (1,0,0) = “ETAGENPLAN2“ THEN GOTO 300

C-32

DIR DIR BEFEHL
DIRA:
DIR B:BAS.PRG
DIRB:*.PRG
DIR B:BAS.*
DIR B:*.*
DIRB:BAS.PR?

Syntax: DIR [<Laufwerk:>][<Dateiname, Dateiart>|
Effekt: Listet die Dateien einer Diskette auf.
Erklarung:

Der Befehl DIR zeigt das Verzeichnis der in das angesteuerte Laufwerk eingelegten
Diskette an.

Sie konnen angeben, welches Laufwerk und welche Dateien Sie anzeigen lassen wol-
len. Das Sternchen [*] und das Fragezeichen [?] gelten als “Joker“-Benennungen.

Das Zeichen [*] zeigt eine “Unbedeutend“-Spezifikation fiir ein beliebiges Feld an. So
bedeutet *.BAS, daBl jede Datei mit dem Extender .BAS aufgelistet werden soll.
FIG.* gilt entsprechend fiir alle Dateiarten mit dem Namen FIG, und B*.BAS fiir alle
Dateiarten mit dem Extender .BAS, die mit dem Anfangsbuchstaben B beginnen.

Das Fragezeichen [?] gilt als “Unbedeutend“-Spezifikation fiir ein einzelnes Zeichen.
So bedeutet 2IG.BAS, daB3 jede Datei, deren Name drei Buchstaben umfaft und mit
IG.BAS endet (z.B. BIG.BAS, PIG.BAS, FIG.BAS usw.), aufgelistet wird.

Beispiel:
Ok DIR Verzeichnis aller Dateien auf der eingelegten Diskette
Ok DIRA: Verzeichnis aller Dateien auf Diskette A

Ok DIRB:BAS.PRG Suchtnachder Datei BAS.PRG auf Diskette B
Ok DIRB:*.PRG Verzeichnis aller Dateien mit dem Extender .PRG auf

Diskette B

Ok DIRB:BAS.* Verzeichnis aller Dateien jeder Art mit dem Namen
BAS auf Diskette B

Ok DIRB:*.* Verzeichnis aller Dateien jeder Art auf Diskette B

Ok DIRB:BAS.PR? Verzeichnis aller Dateien auf Diskette B, die mit BAS
beginnen und tiber einen Extender mit den Anfangs-
buchstaben PR verfiigen.

C-33

EDIT EDIT ED BEFEHL

EDIT30ED 30
Syntax: EDIT <Zeilennummer> ED <Zeilennummer>
Effekt: Ruftden ST BASIC Editor auf.

Erklarung:

Der Befehl EDIT ruft den ST BASIC Editor auf. Sie konnen eine Zeilennummer an-
geben, in der mit dem Editieren begonnen werden soll. Wird keine Zeilennummer
vorgegeben, beginnt EDIT in der ersten Zeile des derzeit im Speicher befindlichen
Programmes.

C-34

ELLIPSE ELLIPSE 50,80,100,50 ANWEISUNG
ELLIPSE 50,80,100,50,900,1800

Syntax: ELLIPSE <horizont. Mittelpunkt, vertik. Mittelpunkt, horizont.
Radius, vertik. Radius>[<,Anfangswinkel, Endwinkel>]

Effekt: ELLIPSE zeichnet Ellipsen und Kreisausschnitte.

Erklarung:

ELLIPSE zeichnet eine Ellipse, deren Mittelpunkt an dem Punkt liegt, der durch die
ersten beiden Parameter (horlzontaler und vertikaler Mittelpunkt) vorgegeben wur-
de. Die Positionen werden in Pixel angegeben und von der oberen linken Ecke des
Ausgabefensters aus gezéhlt.

Der dritte und vierte Parameter (horizontaler und vertikaler Radius) wird ebenfalls in
Pixel ausgedriickt. Die horizontale und vertikale Pixelangabe ist abhédngig von der ge-
wahlten Auflosung, sowie von der Gro3e des Ausgabefensters.

Die Ellipse wird in der festgelegten Zeichenfarbe (Parameter 3 der COLOR-Anwei-
sung) dargestellt.

Die letzten beiden Parameter (Anfangs- und Endwinkel) sind optional. Wird hier
nichts angegeben, zeichnet ELLIPSE eine vollstindige Ellipse. Andernfalls zieht
ELLIPSE einen Ellipsenausschnitt zwischen den beiden Punkten. ELLIPSE zeichnet
allerdings nur einen Kreisbogen und kein eingeférbtes Kreissegment. Winkel werden
in Grad mal 10 ausgedriickt. So werden 45 Grad als 450, 180 Grad als 1800 usw. ange-
geben. O Grad zeigt zum rechten Rand des Fensters, 90 Grad zum oberen, 180 Grad
zum linken und 270 Grad zum unteren Fensterrand. ELLIPSE 100,80,40,50,0,3600
zeichnet eine vollstindige Ellipse.

Lesen Sie auch unter PELLIPSE, CIRCLE und PCIRCLE nach.
Beispiel:

Ok 10 COLOR 1,0,1:CLEARW 2

Ok 20 ELLIPSE 100,80,40,80

Ok 30 COLOR 1,0,2 ‘

Ok 40 ELLIPSE 100,80,40,80,300,90

Ok RUN

[Im Ausgabefenster wird eine schwarze Ellipse mit einem roten Kreisbogen tiber
60 Grad, beginnend bei 30 Grad, gezeichnet]

Ok

C-35

END END ANWEISUN(

Syntax: , END

Effekt: Beendet einen Programmlauf, schlieBt alle Dateien und kehrt zurr
Befehls-Level zuriick.

Erklarung:

Sie konnen eine END-Anweisung an jede beliebige Stelle, an der Sie zum Befehls-
Level zuriickkehren wollen, setzen. Ein END am Ende des Programmes kann optio-
nal verwendet werden.

END unterscheidet sich von STOP dahingehend, daf hier alle Dateien geschlossen
werden und zum Befehls-Level zuriickgekehrt, jedoch keine STOP-Meldung ausgege-
ben wird.

Beispiel:

Ok 10 PRINT “DAS PROGRAMM*
Ok 20 PRINT “LAEUFT*“

Ok 30 PRINT “ABER ES ERREICHT*
Ok 40 PRINT “NIEMALS DAS LETZTE*
Ok 50 PRINT “WORT DIESES“

Ok 60 END

Ok 70 PRINT “PROGRAMMES*“

Ok RUN

DAS PROGRAMM

LAEUFT

ABER ES ERREICHT

NIEMALS DAS LETZTE

WORT DIESES

Ok

C-36

EOF X=EOF (1) FUNKTION

Syntax: X = EOF (<Dateinummer>)

Effekt: Gibt TRUE (-1) am Ende einer sequentiellen oder Random
Access - Datei aus.

Erklarung:

Wenn Sie in eine sequentielle Datei schreiben, wird automatisch dessen Ende mar-
kiert. Versuchen Sie, iber das Ende der Datei hinaus zu lesen, tritt ein Fehler auf. Mit
EOF konnen Sie tiberpriifen, ob Sie sich am Dateiende befinden.

EOF gibt -1 aus, wenn Sie sich am Dateiende befinden. Andernfalls wird 0 aus-
gegeben.

Beispiel:

Ok 100 INPUT “DATEI “;F$

Ok 110 IF LEN(F$) = 0 THEN END

Ok 120 ON ERROR GOTO 20000

Ok 130 OPEN “I“,1,F$

Ok 140 WHILE NOT EOF(1)

Ok 150 LINE INPUT #1,R$: ?R$

Ok 160 WEND

Ok 200 2:CLOSE 1: GOTO 100

Ok 20000 IF ERR = 53 THEN ?“DATEI*F$;

“ NICHT GEFUNDEN*: RESUME 100 ELSE ON ERROR GOTO 100

C-37

ERA ERA DATELTXT BEFEHL

ERA B: DATELTXT
Syntax: ERA [<Laufwerk:>]<Dateiname>
Effekt: Loschteine Datéi von Diskette.

Erkldrung:

Der Befehl ERA 16scht alle Dateien mit dem angegebenen Dateinamen von der Dis-
kette im angesteuerten Laufwerk. Eine geloschte Datei kann nicht wieder zurtiickge-
holt werden.

ERASE ERASE A$, BS, C _ ANWEISUNG
Syntax: ERASE <Array-Name> ,<Array-Name>

Effekt: Loscht Arrays.

Erkldrung:

ERASE l6scht ein Array, so da Sie es neu dimensionieren oder den dadurch belegten
Speicherplatz wiedergewinnen konnen. Sie miissen Felder grundsétzlich 16schen, be-
vor Sie sie neu dimensionieren.

Lesen Sie hierzu auch unter DIM nach.
Beispiel:
Ok 10 DIM RECHNUNGS (10,10)
Ok 20 RECHNUNGS (0,0) = “BEYELSTEIN, KARIN*

Ok 30 ERASE RECHNUNG$
Ok 40 DIM RECHNUNGS$(5,5,5)

C-38

ERL, ERRX = ERL FUNKTION

X=ERR
Syntax: X =ERL
X =ERR
Effekt: Die Variablen ERL und ERR sind reservierte Variablen, die in

Unterroutinen fiir Fehlerbehandlung verwendet werden.
Erklérung:

ERL enthéilt die Zeilennummer, in der ein Fehler auftrat. ERR enthilt den Fehler-
Code. ERL und ERR sind reservierte Variablen, was bedeutet, da3 Sie diese nicht
links neben ein Gleichzeichen in einer Zuordnungs-Anweisung schreiben dirfen.

Ist die Anweisung oder der Befehl, in dem der Fehler auftrat, im Direkt-Modus ge-
schrieben, ist der Wert von ERL Null. Tritt im Direkt-Modus ein Fehler auf, wird der
Programmlauf grundsétzlich angehalten.

Ist die Anweisung im indirekten Modus geschrieben, schreiben Sie IF-Anweisungen
wie folgt:

IF ERL = <Fehlerzeile> THEN <auszufiihrende Anweisung>
IF ERR = <Fehler-Code> THEN <auszufiihrende Anweisung>

Lesen Sie hierzu auch unter ERROR nach, um weitere Informationen iiber Fehlerauf-

deckung, sowie Beispiele fiir die Verwendung von ERL und ERR in Fehlerbehand-
lungs-Unterroutinen zu erhalten.

C-39

ERROR ERROR X ANWEISUNG

Syntax: ERROR<numerischer Ausdruck>

Effekt: Simuliert einen BASIC Laufzeitfehler und tibergibt die Kontrolle
an eine Fehleraufdeckungs-Routine.

Erklarung:

Sie kénnen Fehler und Fehlermeldungen in Thren Programmen mit der ERROR-An-
weisung definieren. ERROR ordnet einem Fehler eine Fehler-Codezahl zu. Die Zahl
muB ein Integer-Ausdruck sein.

Bei jedem Auftreten des Fehlers bezieht sich das Programm auf die Fehler-Codezahl.
Entspricht der Fehler-Code einem ST BASIC Fehler-Code, wird die ST BASIC Feh-
lermeldung ausgedruckt. Ist dagegen eine von Ihnen geschriebene Fehleraufdeckung
aktiviert, wird die Programmkontrolie an Thre Fehleraufdeckungs-Routine iiber-
geben.

Zwei vordefinierte Variablen sind der ERROR-Anweisung zugeordnet: ERL und
ERR.

Beim Auftreten eines Fehlers enthdlt ERR die Fehlercode-Konstante. Diese kann
zum Schreiben von Fehlermeldungen verwendet werden (z.B.:

IF ERR = 100 THEN PRINT “BITTE ZAHL PRUEFEN UND NEU
EINGEBEN*.)

ERL enthélt die Zeilennummer, in der der Fehler auftrat.

Wurde keine Anwender-Fehleraufdeckung gesetzt, wird die Meldung, die dem Wert
in ERR entspricht, ausgegeben. Das Programm wird angehalten. Dieser Fall tritt auch
ein, wenn eine ERROR-Anweisung im Direkt-Modus ausgefiihrt wird, unabhéngig
davon, ob Sie eine Fehleraufdeckung gesetzt haben oder nicht.

Wenn Sie eine Fehleraufdeckung setzen, springt das Programm in die Fehleraufdek-
kungs-Routine. Sie konnen ERR und ERL wie jede beliebige numerische Variable
verwenden. Um die Fehleraufdeckung zu verlassen, verwenden Sie RESUME. Dabei
ist es unerheblich, ob in die Fehleraufdeckung aufgrund eines aufdeckbaren
- ST BASIC Fehlers, oder aufgrund einer ERROR-Anweisung gesprungen wurde.

Entspricht der Fehler-Code einem vordefinierten ST BASIC Fehler-Code, simuliert
das Programm den Fehler und druckt die Fehlermeldung fiir diesen Code. Die
ST BASIC Fehlermeldungen finden Sie im Anhang D dieses Handbuches.

Wenn Sie eigene Fehler definieren, sollten Sie moglichst Ihren Fehler-Codes Werte
geben, die erheblich groBer sind als die Codes von ST BASIC. In diesem Fall wird es
niemals erforderlich werden, Ihr Programm nachtréiglich zu verdndern, wenn zu einem
spiteren Zeitpunkt die Fehler-Codes von ST BASIC tiberarbeitet und veridndert wer-
den sollten.

Lesen Sie hierzu auch unter ON ERROR GOTO, GOTO und RESUME nach.

C-40

Beispiele:

Sie konnen Fehler sowohl im direkten, als auch im indirekten Modus simulieren.
Nachfolgend sehen Sie ein Beispiel fiir Direkt-Modus:

Ok ERROR 55
Eine bereits gedffnete Datei kann nicht geloscht (KILL) oder gedffnet (OPEN)
werden

Nachfolgendes Beispiel betrifft den Indirekt-Modus:

Ok 500 ON ERROR GOTO 550
Ok 510 INPUT “WOLLEN SIE EINEN DISPOSITIONSRAHMEN FUER
IHR KONTO¥; E$

Ok 515 IF E$ = “NEIN“ THEN GOTO 600

Ok 520 INPUT “ IST DER IN ZEILE 33 AUFGEFUEHRTE BETRAG
~ KLEINER ALS $10,000%:X$

Ok 525 IF X$ = “NEIN“ THEN ERROR 200

Ok 530 IF ERR = 200 THEN

Ok 535 PRINT “SIE SIND NICHT KREDITWUERDIG.“

Ok 540 IF ERL = 525 THEN GOTO 600

Ok 550 RESUME

Ok RUN

WOLLEN SIE EINEN DISPOSITIONSRAHMEN FUER THR KONTO? JA
IST DER IN ZEILE 33 AUFGEFUEHRTE BETRAG KLEINER ALS
$10,000? NEIN SIE SIND NICHT KREDITWUERDIG.

C-41

EXP X=EXP (Y) FUNKTION

Syntax: X = EXP (<numerischer Ausdruck>)
Effekt: Gibt die Konstante e, erhoht um einen Exponenten, aus.
Erklarung:

Die Konstante e ist die Basis natiirlicher Logarithmen und entspricht ungefahr 2.7182.
EXP gibt eine Realzahl aus.

Der numerische Ausdruck muB kleiner gleich 43.6682 sein.
Beispiel:

Ok 10 X = EXP(3.254)
Ok 20 Y = EXP(8.97)
Ok 30 PRINT X,Y
Ok RUN

25.8937 7863.59
Ok

C-42

FIELD FIELD #1,8 ASX$,4ASY$,2 AS S$ ANWEISUNG

Syntax: FIELD #<Dateinummer>,<Feldbreite> AS <String-
Variable> < ,Feldbreite> AS <String-Variable>

Effekt: Weist Variablen Plitze in zuféllig gewdhlten Datei- Speichern zu.

Erklarung:

Sie miissen eine FIELD-Anweisung schreiben, um Informationen zwischen Random-
Dateidisketten und -speichern zu libertragen. Die FIELD-Anweisung ordnet lediglich
Variablen-Plitze zu; sie verschiebt keine Daten.

Die Dateinummer ist die Zahl, die Sie der Datei beim Offnen zugewiesen hatten. Die
Feldbreite definiert die Anzahl der Bytes, die an die String-Variable gegeben werden
sollen. So ordnet beispielsweise FIELD #10, 20 AS X§$, 30 AS Z$ die ersten 20 Bytes
Speicher X$, und die nachsten 30 Bytes Z$ zu.

Sie konnen nicht mehr Speicherplatz zuordnen als Sie beim Offnen der Datei geschaf-
fen hatten. Die vorgegebene Datensatzlinge ist 128 Bytes. Sie konnen fiir jede Datei
beliebig viele FIELD-Anweisungen schreiben.

Eine Neuzuweisung von Feldplitzen 16scht die urspriingliche Aufzeichnung
(mapping) nicht. Im Gegenteil kdnnen zwei Maps zusammen bestehen. Wenn Sie
beispielsweise

FIELD #10,20 AS X$,40 ASZ$,10 ASY$
und
FIELD #10, 70 AS N$

spezifizieren, sind die ersten 20 Bytes von N$ ebenfalls in X§, die néchsten 40 Bytes
auch in Z$, und die letzten 10 Bytes auch in Y$enthalten.

Verwenden Sie niemals INPUT oder LET, um Eingaben in eine Variable vorzuneh-
men, die in einer FIELD-Anweisung deklariert wurde. In diesem Fall wiirde der Va-
riablen-Zeiger an den String-Platz, und nicht in den Speicher bewegt.

Beispiel:

Ok 100 OPEN “R¥, #5, “STEUER*, 40
Ok 110 FIELD #5,20 ASI$, 10 ASD$, 10 ASE$

C-43

FILL FILL 150,80 ANWEISUNG

Syntax: FILL <numerischer X-Ausdruck>,<numerischer Y- Ausdruck>

Effekt: Fillt Formen mit Farben oder Mustern aus.
Erkldrung:

Fiillt gezeichnete Formen mit Farben oder Mustern, die zuvor in einer COLOR-An-
weisung definiert wurden, aus. Die X- und Y- Koordinaten bezeichnen die Anfangs-
position fiir FILL.

Lesen Sie hierzu auch unter COLOR nach.
Beispiel:

Ok 10 COLOR 1,2,1

Ok 20 CIRCLE 150,80,80
Ok 30 FILL 150,80

Ok 40 COLOR 1,1,1,4,4
Ok 50 FILL 150,80

FIX X = FIX(Y) FUNKTION
Syntax: X = FIX(Zahl)

Effekt: Verkiirzt eine Realzahl in eine Integerzahl.

Erklarung:

FIX rundet Zahlen nicht auf oder ab, sondern entfernt lediglich die Dezimalstellen
hinter dem Komma. Der Integer-Ausdruck muf3 zwischen -32768 und 32767 liegen.

Lesen Sie hierzu auch unter CINT und INT nach.
Beispiel:

Ok 10 X = 239.77
Ok 20 PRINT FIX(X)
Ok 30 PRINT FIX(-678.3)
OF RUN
239
-678
Ok

C-44

FLOAT X =FLOAT(Y) FUNKTION

Syntax: X =FLOAT (<Integer-Ausdruck>)
Effekt: Wandelt eine Integerzahl in eine Realzahl um.
Erkldrung:

FLOAT verandert die Darstellung der Integerzahl nicht, odnet ihr jedoch mehr Spei-
cherplatz zu. Der Integer-Ausdruck muf zwischen -32768 und 32767 liegen.

Beispiel:

Ok 10 X = FLOAT(97)
Ok 20 PRINT X
Ok RUN

97

C-45

FOLLOW FOLLOW N BEFEHL

FOLLOWN,B
Syntax: FOLLOW <Variable>[,<Variable>]
Effekt: Verfolgt die Werte von Programm-Variablen.

Erklarung:

Der Befehl FOLLOW ist eine Fehlerbehebungshilfe, die die Ubersicht iiber alle Pro-
gramm-Variablen behilt. Nach jedem Verdndern des Wertes einer angegebenen Va-
riablen druckt FOLLOW den Variablennamen, ihren Wert und die Programmezeile, in
der die Verdnderung eintrat, aus. Der Befehl UNFOLLOW beendet FOLLOW.

Beispiel:

Ok 10FOR X=1TO 3
Ok20N=N+1
Ok30B=B+1

Ok 40 PRINT N

Ok 50 PRINT B

Ok 60 NEXT X

Ok RUN

WWNN =

Ok FOLLOW N,B
Ok RUN
N! =1 at line 20
B! =1 at line 30
1
1
N! = 2 at line 20
B! =2 at line 30
2
N! = 3 at line 20
B! = 3 at line 30
3
Ok UNFOLLOW
Ok

C-46

FOR FORI=1TOS5STEP1 ANWEISUNG

Syntax: FOR <Zihl-Variable> = <numerischer Ausdruck>TO
<numerischer Ausdruck> [STEP<numerischer Ausdruck>]

Effekt: Erstellt eine Schleife, die so oft ausgefiihrt wird, wie angegeben
wurde.

Erklarung:

Die FOR-Anweisung setzt die Anfangs- und Endwerte einer Zéhl- Variablen, sowie
~den in jeder ausgefithrten FOR...NEXT Schleife hinzuzuaddierenden Wert fest.

Der Wert, der zu der Z&hl-Variablen hinzuaddiert wird, ist grundsétzlich 1, sofern Sie
nicht mit STEP eine unterschiedliche Erhohung vorgeben. Der Wert hinter STEP
kann positiv oder negativ sein.

NEXT bewirkt, daf3 die Instruktionen zwischen FOR und NEXT ausgefiihrt werden,
solange der Wert der Zéhl-Variablen kleiner als der durch TO vorgegebene Endwert
ist. Ist der absolute Wert der Zahl-Variablen groBer als der absolute Endwert, wird die
Programmausfithrung an die hinter NEXT folgende Programmzeile weitergegeben.

Sie konnen FOR...NEXT Anweisungen auch verschachteln. Das bedeutet, da Sie in-
nerhalb einer Schleife eine weitere Schleife einbringen konnen. Wenn Sie Schleifen
verschachteln, mufl die NEXT-Anweisung fiir die innere Schleife vor die der &uBBeren
Schleife gesetzt werden.

Lesen Sie hierzu auch unter NEXT nach.
Beispiele:

Ok10FORX =1TOS5
Ok 20 PRINT X
Ok 30 NEXT
Ok 40 PRINT “DER WERT DER ZAEHL-VARIABLEN IST “X
Ok RUN ‘
1
2
3
4
5
DER WERT DER ZAEHL-VARIABLEN IST 6
Ok

C-47

Ok10FORX =2TO 1STEP -1
Ok20FORY=1TOS5

Ok 30 PRINT X Ok 40 PRINT Y
Ok SO0NEXTY

Ok 60 NEXT X

Ok RUN

Ok

KN AP WRNRRERRPEUORNDRNDLWNDDDNDFRDND

)

C-48

FRE X =FRE(0) FUNKTION

Syntax: X = FRE (<Test-Argument>)
Effekt: Gibt die Anzahl nicht verwendeter Bytes im Arbeitsspeicher aus.
Erklarung:

FRE erfordert ein Test-Argument. Verwenden Sie ein beliebiges Argument, um die
Anzahl freier Bytes im aktuellen Speichersegment zu erfahren.

Beispiel:

Ok PRINT FRE(0)
43000

Anmerkung: Der Umfang der BASIC-Arrays ist auf 32 K beschrinkt, unabhingig
vom verfiigbaren Speicherplatz. Die Arrays diirfen nicht mehr als ein Drittel des ge-
samten zur Verfiigung stehenden Speicherplatzes einnehmen.

FULLW FULLW 2 ANWEISUNG
Syntax: FULLW <numerischer Ausdruck>

Effekt: Erweitert BASIC-Fenster auf die volle Bildschirmgrof3e.
'Erkléirungf

FULLW vergroBert das angegebene Fenster auf den vollen Bildschirm-Umfang. Die
Fenster werden wie folgt angegeben:

0 = Bearbeitungsfenster
1 = Auflistungsfenster
2 = Ausgabefenster

3 = Befehlsfenster

Beispiel:
Ok 10 FULLW 2:CLEARW 2

Ok 20 PRINT “HALLO“
Ok RUN

C-49

GET GET #1,5 . ANWEISUNG

Syntax: GET [#]<Dateinummer> [,<Datensatz-Nummer>]

Effekt: Liest einen Datensatz von einer Random- Diskettendatei in den
Datei-Speicher.

Erklarung:

Die Dateinummer ist die Zahl, die Sie der Datei beim Offnen zugewiesen hatten. Die
Datensatz-Nummer ist optional. Falls Sie diese Angabe entfallen lassen, wird der Da-
tensatz, der der ersten GET- oder PUT-Angabe folgt, in den Speicher eingelesen. Die
grofite verwendbare Datensatz-Nummer ist 32767.

Lesen Sie unter OPEN nach, um ein Beispiel fiir die Verwendung von GET im Zusam-
menhang zu erhalten.

Belsplel
Ok 100 IF X$ = “JA“ THEN GET=H=5 TYPE%: GOTO 200

C-50

GOSUB GOSUB 250 ANWEISUNG

GOSUB ENTRY

Syntax: GOSUB <Zeilennummer> oder GOSUB <Sprungmarken-
Name>

Effekt: Gibt die Programmkontrollé an eine Unterroutine ab.

Erklarung:

Die GOSUB-Anweisung ist mit der RETURN-Anweisung kombiniert, die die Pro-
grammkontrolle an die direkt nach der GOSUB-Anweisung folgende Programm-
anweisung zuriickgibt.

Die Zeilennummer oder Sprungmarke zeigt die Zeile an, in der die Unterroutine
beginnt.

Sie kOnnen innerhalb einer Unterroutine eine weitere Unterroutine aufrufen. Unter-
routinen diirfen nicht mehr als 16-fach verschachtelt werden. '

Sie konnen mehr als eine RETURN-Anweisung in Thre Unterroutine schreiben.
Wenn Sie Bedingungen iiberpriifen, die den Programmlauf festlegen, werden Sie
mehrere RETURN-Anweisungen in einer einzigen Unterroutine bendtigen.

Anmerkung: Es wire ratsam, bei einer GOSUB-Anweisung anstelle der Zeilennum-
mern Sprungmarken-Namen anzugeben. Zeilennummern werden durch Verwendung
der RENUM-Anweisung verdndert. Deshalb miiliten Sie nach Verwendung einer
RENUM-Anweisung alle GOSUB <Zeilennummer>-Anweisungen dahingehend
iiberpriifen, ob die angegebenen Zeilennummern sich noch auf die dazugehdrigen Un-
terroutinen beziehen. Bei Verwendung von GOSUB <Sprungmarken-Name> wer-
den alle Zeilenadressen von ST BASIC automatisch an die neuen Gegebenheiten
angepaBt.

Beispiel:

Ok 10 GOSUB 100 ,
Ok 20 REM RETURN-PUNKT DER UNTERROUTINE
Ok 30 PRINT A
Ok 40 END
Ok 100 REM ANFANG UNTERROUTINE
Ok 110 GOSUB BOO
Ok 120 A = 5*5
Ok 130 RETURN
Ok 140 BOO: PRINT “BOO!*
Ok 150 RETURN
Ok RUN
15625
BOO!
25
Ok

C-51

GOTO GOTO 50 ANWEISUNG

GOTO ENTRY
Syntax: GOTO <Zeilennummer> oder GOTO <Sprungmarken-Name>
Effekt: Gibt die Programmkontrolle bedingungslos an eine angegebene
Zeilennummer ab.

Erklidrung:

Die GOTO-Anweisung iibergibt die Programmkontrolle an eine angegebene Zeile
und fahrt dort mit der Programmausfiihrung fort. Wenn Sie mit GOTO in eine nicht
ausfithrbare Anweisung springen, beginnt die Programmausfiihrung bei der nichsten
ausfithrbaren Anweisung nach der angegebenen Zeile.

Anmerkung: Es wire ratsam, bei einer GOTO-Anweisung anstelle der Zeilennum-
mern Sprungmarken-Namen anzugeben. Zeilennummern werden durch Verwendung
der RENUM-Anweisung verdndert. Deshalb miiiten Sie nach Verwendung einer
RENUM-Anweisung alle GOTO <Zeilennummer>-Anweisungen dahingehend
tiberpriifen, ob die angegebenen Zeilennummern sich noch auf die dazugehdrigen Un-
terroutinen beziehen. Bei Verwendung von GOTO <Sprungmarken-Name> werden
alle Zeilenadressen von ST BASIC automatisch an die neuen Gegebenheiten ange-
paBt. . '

Beispiel:

Ok 10 TOP: INPUT “BITTE NAMEN EINGEBEN“; NAMES$

Ok 100 INPUT “WOLLEN SIE DAS PROGRAMM BEENDEN*;
ANTWORTS

Ok 120 IF ANTWORTS$ = “JA“ THEN GOTO 200

Ok 130 GOTO TOP

Ok 200 END

C-52

GOTOXY GOTOXY X,Y ANWEISUNG

Syntax: GOTOXY <Spaltenposition>,<Reihenposition>

Effekt: Setzt den Ausgabe-Cursor an den Schnittpunkt der angegebenen
Reihe/Spalte.

Erklédrung:

GOTOXY setzt den Ausgabe-Cursor an den Schnittpunkt der Reihe/Spalte, die durch
die beiden Parameter vorgegeben wurde.

Beispiel:

Ok 10 GOTOXY 2,3 v
Ok 20 PRINT “SPALTE?2, REIHE3“

C-53

HEXS$ X = HEX$(Y) FUNKTION

Syntax: X = HEX$(numerischer Ausdruck)

Effekt: Gibt eine Zeichenkette aus, die dem Hexadezimalwert einer Zahl
entspricht.

Erklarung:

Eine Hexadezimalzahl ist eine Basis 16 Integerzahl.'Hexadezimalzahlen werden in
den Zahlen 0 bis 9, gefolgt von den Zeichen A bis F dargestellt und représentieren die
Werte 1 bis 15.

HEXS stellt der ausgegebenen Hexadezimalzahl kein &H voran. Wollen Sie den Wert
in einem Programm verwenden, miissen Sie ihm das Zeichen &H voranstellen, um
kennzuzeichnen, daf es sich um einen hexadezimalen Wert handelt.

HEXS$ rundet Realzahlen vor der Umwandlung in Hexadezimal in Integerzahlen auf
oder ab.

Der normale giiltige Bereich fiir Integerzahlen liegt zwischen -32768 und 65535.

Wenn Sie einen Adressen-Ausdruck einer Integer-Variablen zuordnen wollen, miis-
sen Sie den Wert unter Verwendung von VAL der Variablen zuordnen, um einen
Integer-Uberlauffehler zu vermeiden (siehe auch nachstehendes Beispiel).

Beispiel:

Ok 10 A% = VAL(“&H“ + HEX$(FRE(0)))
Ok 20 PRINT A%

Ok RUN

-22536

Ok

C-54

IF IF X=Y THEN PRINT A: GOTO 250 ANWEISUNG

ELSE GOTO 30
Syntax: IF <logischer Ausdruck> THEN <Anweisung> <:Anweisung>>
[ELSE <Anweisung> <:Anweisung>>]
Effekt: Stellt Bedingungen auf, die den Programmlauf festlegen.
Erklarung:

Die IF-Anweisung entspricht einem Ausdruck, der entweder wahr (nicht 0) oder
falsch (0) ist. Ist der Ausdruck wahr, werden die Anweisungen hinter THEN ausge-
fiihrt. Ist er falsch, fahrt das Programm bei der Anweisung hinter ELSE mit der Aus-
fiihrung fort. Wurde kein ELSE angegeben, wird die Programmausfiihrung in der
nichsten ausfithrbaren Programmzeile wieder aufgenommen.

Sie konnen IF-Anweisungen innerhalb einer IF-Anweisung verwenden. Jede ELSE-
Angabe bezieht sich auf das nachstliegende THEN. THEN- und ELSE-Bestimmun-
gen haben nur in Verbindung mit einer IF- Anweisung Giiltigkeit.

Sie kénnen innerhalb der THEN- oder ELSE-Bestimmung einer IF- Anweisung eine
FOR- oder WHILE-Schleife schreiben. Die FOR- oder WHILE-Anweisung muf3 sich
vollstandig innerhalb der THEN- oder ELSE-Bestimmung befinden: das dazugehori-
ge NEXT muB8 sich in derselben Bestimmung wie die FOR-Anweisung, bzw. das ent-
sprechende WEND in derselben Bestimmung wie die WHILE-Anweisung befinden
(siche auch nachstehendes Beispiel 1).

Wenn Sie eine IF- Anweisung innerhalb einer FOR- oder WHILE-Anweisung verwen-
den (wobei alle Segmente in derselben Anweisungszeile stehen miissen), schlieBt ein
NEXT oder WEND auch die IF-Konstruktion (siche auch nachstehendes Beispiel 2).

Beispiel 1:

Ok 5 A%=5
Ok 10 IF A% >3 THEN FOR K%=1TO
5:PRINT A% *K%: NEXT ELSE FOR
K%=1TO 5: PRINT A%/K% :NEXT
Ok RUN
5
10
15
20
25
Ok

C-55

Beispiel 2:

Ok 10 FOR X = 1 TO 5:IF X<3 THEN PRINT X*X:NEXT:PRINT
“DONE“
Ok RUN
1
4
DONE
(Die NEXT-Bestimmung wird immer ausgefiihrt)

INP X=INP (3 FUNKTION
“Syntax: X = INP (<Datenkanal-Nummer>)

Effekt: Gibt einen Byte-Wert von einem ausgewéahlten Datenkanal aus.

Erklédrung:

Die Datenkanal-Nummer muf3 zwischen 0 und 65535 liegen. Die Funktion INP ist das
Gegenstiick zur OUT-Anweisung.

Um den Status des Datenkanals lesen zu konnen, wird ein negativer Datenkanal-Wert
(z.B. INP(-3)) eingegeben. Eine Null zeigt an, daB kein Zeichen verfiigbar ist; -1
signalisiert, da} ein Zeichen verfiigbar ist.

Fiir den ATARI ST Computer gelten folgende Datankanal-Zuweisungen:

0 = PRINTER (Parallel-Port)

1= AUX (RS-232)

2 = CONSOLE (Bildschirm)

3 = MIDI (Musical Instrument Digital Interface)
4 = KEYBOARD (Tastatur)

Beispiel:

Ok 200 Y = INP (3)
Ok 210 IF INP (3) » X THEN GOTO 200

C-56

INPUT INPUT A$ ANWEISUNG
INPUT “NAME: “,A$
INPUT “NAME“;A$
INPUTX,Y,Z
INPUT “Hoehe, Breite, Alter<, X, Y, Z

Syntax: INPUT [;] [<Prompt-String><; oder,>] <Variable>,
<Variable<
Effekt: Ermdglicht eine Dateneingabe wihrend des Programmlaufes und

ordnet diese Daten den Programm-Variablen zu.
Erklarung:

Die INPUT-Anweisung bittet um eine Dateneingabe wiahrend der Programmausfiih-
rung und erwartet Ihre Antwort. Nach erfolgter Eingabe muf3 die RETURN-Taste ge-
driickt werden, um die Eingabe an das Programm zu iibermitteln.

Der Prompt-String ist eine String-Konstante und muf3 in Anfithrungszeichen gesetzt
werden. Die Variablen konnen Zeichenketten oder Zahlen sein. Ihre Eingaben miis-
sen in der passenden Variablenart erfolgen. Zeichenketten-Antworten werden nicht
in Anfithrungszeichen gesetzt.

Wenn Sie einen Prompt-String verwenden, druckt die INPUT-Anweisung diese Zei-
chenkette als Anfrage auf den Bildschirm. Dabei wird der Prompt-String als Frage
oder Aufforderung dargestellt, abhéingig davon, ob Sie die Eingabe des Strings mit ei
nem Komma oder einem Strichpunkt-Zeichen abgeschlossen haben.

Wird der Prompt-String mit einem Strichpunkt von den Variablen abgetrennt, fiigt die
INPUT-Anweisung am Ende des Prompt-Strings ein Fragezeichen, gefolgt von einer
Leerstelle, an.

Trennen Sie den Prompt-String mit einem Komma von den Variablen ab, wird die Ein-
gabe ohne Fragezeichen und ohne Leerstelle auf dem Bildschirm ausgegeben. Thre
Antwort wird in dieselbe Zeile eingegeben. Aus diesem Grund miissen Sie als letztes
Zeichen in IThrem Prompt-String eine Leerstelle eingeben, falls Sie einen Abstand zwi-
schen der Anfrage und der Antwort auf dem Bildschirm wiinschen.

Wenn Sie keinen Prompt-String bzw. einen Null-String schreiben, druckt INPUT ein
Fragezeichen und eine Leerstelle auf den Bildschirm und wartet Ihre Antwort ab.

Die INPUT-Anweisung gibt eine Anfrage fiir jede Variable aus. Dabei entspricht jede
Antwort einer INPUT-Variablen. Weicht die Anzahl der Variablen von der Anzahl
der Antworten ab, tritt ein Fehler auf.

Sie miissen individuelle Antworten durch Kommata voneinander absetzen. Sie kon-

nen auch innerhalb einer Antwort Kommata verwenden. Allerdings muf3 der Ant-
wort-String dann in Anfiihrungszeichen gesetzt werden.

C-57

Sie konnen als Antwort auf eine INPUT-Anfrage eine vollstandige Zeile mit Zeichen
eingeben. Eine Zeilenschaltung oder ein Zeilenumbruch schlieBt die Eingabezeile ab
Die maximale Zeilenldnge ist 255 Zeichen.

Beispiel:

Ok 10 INPUT “HEUTIGES DATUM EINGEBEN: “, X$

Ok 20 INPUT “KENNUMMER EINGEBEN: “,Z$

Ok 30 IF Z$ = “359152“ THEN GOTO 100

- Ok 40 PRINT “UNBEFUGTER DATENZUGRIFF NICHT ERLAUBT*:

END

Ok 100 PRINT “ZUGRIFF AUF DATEN GESTATTET!“: END

Ok RUN

HEUTIGES DATUM EINGEBEN: 9 NOVEMBER 1985

KENNUMMER EINGEBEN: 359152

ZUGRIFF AUF DATEN GESTATTET!

Ok

C-58

INPUT = INPUT4=#1,A$,X ANWEISUNG

Syntax: INPUT#<Dateinummer>, <Variable>, <Variable>

Effekt: Liest Daten aus einer sequentiellen Diskettendateiin Programm-
Variablen ein.

Erkldrung:

Die Dateinummer ist die Zahl, die Sie der Datei beim Offnen zugewiesen hatten. Sie
ordnen die Daten der Datei Variablen zu. Die Typen einer Variablen und der ihr zuge-
ordneten Daten miissen iibereinstimmen.

Die INPUTH-Anweisung arbeitet dhnlich wie die INPUT-Anweisung. Allerdings er-
scheint keine Meldung. Bevor Sie die eingegebenen Daten-Begriffe einer Variablen
zuordnen, entfernt INPUT4# alle vorangestellten Leerzeichen, Tabulatoren, Zeilen-
schaltungen und Zeilenvorschiibe, die Sie zusammen mit den Daten eingegeben hat-
ten. Das erste Zeichen nach den oben angefiihrten Sonderzeichen wird als Anfangs-
punkt der Daten angesehen. Ein Leerzeichen, eine Zeilenschaltung, ein Zeilenvor-
schub, ein Komma oder das Erreichen von 255 Zeichen signalisiert den Endpunkt der
Daten.

Es gibt drei Arten von Daten fiir die INPUT4#-Anweisung: Zahlen in allen numeri-
schen Formaten, angefiihrte und nicht angefiihrte Strings.

Daten werden als Zahl angesehen, wenn die Variable, der sie zugeordnet werden, nu-
merischen Charakter hat. Andernfalls werden sie als String behandelt. Zahlen werden
durch Erreichen des Dateiendes bzw. nach 255 Zeichen, durch eine Zeilenschaltung,
einen Zeilenvorschub, ein Komma oder ein nicht numerisches Zeichen beendet.

Strings werden als angefiihrt behandelt, wenn das erste Zeichen nach eventuellen
Leerstellen ein Anfiithrungszeichen ist. Alle zwischen zwei Anfithrungszeichen gesetz-
te Daten werden als Daten in angefiihrten Strings angesehen. Anfiithrungszeichen diir-
fen innerhalb eines angefiihrten Strings nicht als regulire Zeichen verwendet werden,
da hierdurch félschlicherweise das Ende des Strings markiert wiirde. Angefiihrte
Strings werden ebenfalls durch Erreichen des Dateiendes bzw. nach 255 Zeichen been-
det.

Nicht angefiihrte Strings konnen im Gegensatz zu angefiihrten Strings Anfiihrungszei-
chen enthalten. Sie werden durch eine Zeilenschaltung, einen Zeilenvorschub, ein
Komma oder durch Erreichen des Dateiendes bzw. nach 255 Zeichen beendet. Voran-
gestellte Leerzeichen in nicht angefiihrten Strings werden ignoriert.

Beispiel:

Ok 10 OPEN “I“, #1, “RECHNUNG*“
Ok 20 INPUT#1, KUNDES$, RECHNUNG%, DATUMS$

C-59

INPUTS$ X$ =INPUTS (6) FUNKTION

X$ = INPUTS (6, +D
Syntax: INPUT$(<Anzahl der Zeichen>[,[#]<Dateinummer<])
Effekt: Gibt die angegebene Zahl von Zeichen iiber Tastatur oder eine

Daten-Datei aus.
Erklarung:

INPUTS liest die angegebene Anzahl von Zeichen iiber Tastatur oder eine Datei aus
und gibt einen String aus, der diese Zeichen enthélt. Alle Zeichen werden ausnahms-
los ohne Ubersetzung und genau in der eingegebenen Form ausgegeben. So wird bei-
spielsweise ein [CONTROL] [G] vom Terminal und ein [CONTROL] [Z] von der Da-
ten-Datei an den String geleitet.

Wenn Sie den String aus einer Datei eingeben, miissen Sie eine gedffnete Dateinum-
mer angeben. Versuchen Sie, nach dem Dateiende Daten auszulesen, erhalten Sie
einen Fehler.

Lesen Sie hierzu auch unter EOF nach.
‘Beispiel:

Ok 20 X$ = INPUT$(6)

Ok 30 IF X$ = “GEORG*“ THEN 1000 ELSE PRINT “UNGUELTIG“: END
Ok 1000 PRINT “GUELTIG*

Ok RUN

KENNWORT?

ARNOLD

UNGUELTIG

Ok

C-60

INSTR X = INSTR (3,A$,“DO%) FUNKTION

X=INSTR (3,A$,B$)

Syntax: X = INSTR([<Anfangspunkt>,] <Zielstring-Ausdruck>,
<Musterstring>)

Effekt: Sucht eine Zeichenkette innerhalb eines anderen Strings und gibt
deren Position aus.

Erklarung:

INSTR sucht nach dem ersten Vorkommen eines Musterstrings innerhalb eines Ziel-
strings und gibt dessen Position aus.

Sie konnen einen Anfangspunkt fiir die Suche vorgeben. Der optionale Anfangspunkt
ist eine Integerzahl zwischen 1 und 255.

Zielstring und Musterstring konnen String-Konstanten, Ausdriicke oder Variablen
sein.

Ist der Musterstring ldnger als der Zielstring, oder ist der Zielstring ein Nullstring,
oder kommt der Musterstring im Zielstring nicht vor, gibt INSTR 0 aus.

Ist der Musterstring 0, gibt INSTR die Anfangsposition Null aus.
Beispiel:

Ok 10 X$ = “WIE GEHT ES DIR?¢
Ok 20 X = INSTR(3,X$,“GE")
Ok 30 PRINT X
Ok RUN
5
Ok

C-61

INT X=INT(Y) FUNKTION

Syntax: X = INT(numerischer Ausdruck)
Effekt: Wandelt eine Zahl oder einen Ausdruck in eine Integerzahl um.
Erklarung:

INT entfernt Dezimalstellen.

Beispiel:

Ok 10 X = INT(2.999)

Ok 20 PRINT X

Ok RUN

2

Ok
KILL KILL DATELDAT ANWEISUNG
Syntax: KILL<String-Ausdruck>
Effekt: Loscht eine Diskettendatei.
Erklarung:

Der String-Ausdruck entspricht einem Dateinamen. KILL 16scht die Datei mit dem
angegebenen Dateinamen. So 16scht KILL A$ die Datei, die tiber A spezifiziert wur-
de. Sie konnen mit KILL jede Art von Diskettendatei 16schen. Sie konnen eine Datei
jedoch nicht mit KILL 16schen, die derzeit gedffnet ist. In diesem Fall erhalten Sie eine
Fehlermeldung.

Im nachstehenden Beispiel wird eine Datei mit dem Namen ATARI.BAS erstellt.
Diese Datei wird dann iiber die KILL-Anweisung geloscht.

Im Gegensatz zu ERA kann KILL auch innerhalb eines ST BASIC Programmes ver-
wendet werden (z.B. Ok 10 KILL “DATEN.1%).

Beispiel:

Ok NEW

Ok 10 A=45:B=56

Ok 20 PRINT A+B

Ok 30 END

Ok SAVE ATARI

Ok B $=“ATARI.BAS“
Ok KILL B$

Ok

C-62

LEFT X$ = LEFTS (AS, 5)] FUNKTION

Syntax: X$ = LEFT$(<Zielstring><Anzahl der Zeichen>)

Effekt: Gibt eine Zeichenkette aus, die die ersten Zeichen eines Strings,
gerechnet von links aus, enthélt.

Erklarung:

LEFTS$ beginnt beim ersten Zeichen von links und gibt die von Thnen spezifizierte An-
zahl von Zeichen, gezihlt nach rechts, aus. Die Anzahl der Zeichen mu8 eine positive
Zahl zwischen 1 und 255 sein. Real-Ausdriicke werden in Integerzahlen umgewandelt.

Der Zielstring kann eine String-Konstante, -Variable oder ein String-Ausdruck sein.

Ist die Anzahl der Zeichen groBer als die Lange des Zielstrings, gibt LEFT$ den ge-
samten Zielstring aus. Ist die Anzahl der Zeichen 0, gibt LEFTS$ einen Nullstring aus.

Beispiel:

Ok 10 INPUT “RADIUS“;R

Ok 20 PRINT 3.1416*R"™2

Ok 30 INPUT “NEUER BEREICH*;C$
Ok 40 IF LEFT$(C$,1)=“J“THEN 10
Ok 50 END

RADIUS 73

28.2735

NEUER BEREICH ?J
RADIUS ?

C-63

LEN Z=1LEN (A%) | FUNKTION

Syntax: Z = LEN(<String-Ausdruck>)
Effekt: ~ Gibtdie Lange einer Zeichenkette aus.
Erklarung:

LEN gibt die Anzahl von Zeichen in einer Zeichenkette als Integerzahl aus. Ist der
Ausdruck ein Nullstnng, gibt LEN Null aus.

Beispiele:

Ok 10 ADDRESS$ = “2114 PARKER ST, BIRDLAND, NEW YORK®
Ok 20 FOR X = 1TO LEN(ADDRESSS)

Ok 40 PRINT CHR$(42);

Ok 50 NEXT X

Ok RUN

skkskokokckkekokskckkokskkkkckk ke hokskkkkkkkkokkk

Ok

Ok 10 A$=“DER STRING IST 30 ZEICHEN LANG*
Ok 20 PRINT A$
Ok 30 PRINT LEN(AS$)
Ok RUN
DER STRING IST 30 ZEICHEN LANG
30

C-64

LET LETX(D)=Y ANWEISUNG
LET X=Y
| Syntax: LET <Variable>=<Ausdruck>
Effekt: Ordnet einen Wert einer Variablen oder Array- Variablen zu.

Erklarung:

Die Verwendung von LET fiir die Zuordnung von Werten zu Variablen ist optional.
So ist beispielsweise LET X = Y identisch zu X = Y. Sowohl Variable, als auch Aus-
druck konnen Strings oder Zahlen sein. Bei numerischen Variablen und Ausdriicken
wird die Art des Ausdruckes umgewandelt, um dem Variablentyp zu entsprechen.

Beispiel:

Ok 10 LET NAMES$ = “BEYELSTEIN“

Ok 20 WOHNORTS = “ELTVILLE, HESSEN*

Ok 30 LET REISEZIEL$ = HAWAII*

Ok 40 TAG.DER.ABREISE = 10.11.

Ok 50 TAG.DER.RUECKKEHR = 28.11.

Ok 60 DAUER.DER.REISE = TAG.DER.RUECKKEHR -
TAG.DER.ABREISE

Ok 70 PRINT NAMES$

Ok 80 PRINT WOHNORTS$

Ok 90 PRINT “REISEZIEL: “: REISEZIELS$

Ok 100 PRINT “DAUER DER REISE: “ DAUER.DER.REISE

Ok RUN

BEYELSTEIN

ELTVILLE, HESSEN

REISEZIEL: HAWAII

DAUER DER REISE: .18

Ok

C-65

LINEINPUT LINE INPUT “NAME? “; A$ ANWEISUNG

LINE INPUT; “NAME? “; A$
Syntax: LINE INPUT[;] [<Prompt>[,oder ;]]<String-Variable>
Effekt: Erfordert eine Eingabe iiber Tastatur und ordnet diese Eingabe

einer String-Variablen zu.
Erklarung:

LINE INPUT entspricht in etwa der INPUT-Anweisung, da hier eine Eingabe iiber
Tastatur gefordert wird. LINE INPUT erlaubt jedoch die Eingabe einer vollstindigen
Zeile mit 255 Zeichen als Antwort. Thre Antwort wird der String-Variablen zugeord-
net. Eine Zeilenschaltung oder ein Zeilenvorschub schlieBt Ihre Eingabe ab und tiber-
mittelt sie dem Computer.

Die optionale Prompt-Angabe ist ein String, den Sie als Aufforderung fiir eine Einga-
be schreiben konnen. LINE INPUT stellt diese Prompt-Angabe im Ausgabefenster
dar und wartet auf IThre Antwort. LINE INPUT ergédnzt die Prompt-Angabe nicht
automatisch mit einem Fragezeichen oder einer Leerstelle. Sie konnen jedoch selbst
ein Fragezeichen oder eine Leerstelle innerhalb des Prompt-Strings eintragen. Das
FEinfiigen einer Leerstelle ist ratsam, da ansonsten Ihre Eingabe direkt hinter die
Prompt-Angabe gesetzt wiirde.

Beispiel:

Ok 10 LINE INPUT “GRUND FUER DIE RUECKSENDUNG*;R$
Ok 20 PRINT “DANKE! WIR BEARBEITEN IHRE RETOURE*

Ok RUN

GRUND FUER DIE RUECKSENDUNG?

FALSCHE GROESSE, FALSCHE FARBE, GEFAELLT NICHT.

DANKE! WIR BEARBEITEN IHRE RETOURE.

Ok

C-66

LINEINPUT# LINE INPUTH#1, A$ ANWEISUNG

Syntax: LINE INPUT#<Dateinummer>, <String-Variable>

Effekt: Erfordert eine Eingabe iiber eine sequentielle Diskettendatei
und ordnet diese Eingabe einer String-Variablen zu.

Erkldrung:

Wie LINE INPUT ordnet auch LINE INPUTH eine Zeile mit maximal 254 Zeichen
Lénge einer String-Variablen als Eingabe zu. Allerdings kommt hier die Eingabe von
einer sequentiellen Diskettendatei. Die Dateinummer ist die Zahl, die Sie der Datei
beim Offnen zugewiesen hatten.

LINE INPUTS4 liest alle Zeichen in einer sequentiellen Datei, bis es bei einer Zeilen-
schaltung angelangt. Dann werden diese Zeichen der String-Variablen zugeordnet.
Die nédchste LINE INPUT4- Anweisung beginnt am Endpunkt der ersten LINE
INPUTH-Anweisung und ordnet die nachfolgende Zeile, wiederum bis zu einer Zei-
lenschaltung, der néchsten String-Variablen zu.

Folgt einem Zeilenvorschub direkt eine Zeilenschaltung, werden diese Zeichen als re-
gulire Zeichen behandelt und markieren kein Zeilenende.

Beispiel:

Ok 10 OPEN “O¢“, #4, “PUNKTE*

Ok 20 LINE INPUT “ANGABE TEAMS, SIEGER UND PUNKTE.“, S$
Ok 30 PRINT4H4, S$

Ok 40 CLOSE =H=4

Ok 50 OPEN “I“, #4, “PUNKTE*

Ok 60 LINE INPUT44,S$

Ok 70 PRINT S$

Ok 80 CLOSE 4#4

Ok RUN

ANGABE TEAMS, SIEGER UND PUNKTE.

HSV & FCB: FCB. 3-0; HERTA BSC & FC KOELN: FC KOELN. 2-1
HSV & FCB: FCB. 3-0; BORUSSIA & FC KOELN: FC KOELN. 2-1
Ok '

C-67

LINEF LINEF 30,50,90,100 ANWEISUNG

Syntax: LINEF [<Koordinatenpunkt, Koordinatenpunkt>|
Effekt: LINEEF zeichnet eine Linie.
Erkldrung:

LINEF zeichnet eine Linie zwischen den beiden angegebenen Koordinatenpunkten.
Die Koordinatenpunkte sind Pixel-Positionen, die von der oberen linken Ecke (0,0)
des Ausgabefensters aus gezdhlt werden. Die Anzahl verfiigbarer Punkte in der Hori-
zontalen und Vertikalen ist abhédngig von der gewdhlten Aufldsung.

Beispiel:

Ok 10 COLOR 1,0,1:CLEARW 2

Ok LINEF 50,50,80,80

Ok RUN

[Im Ausgabefenster erscheint eine Linie zwischen den beiden

Koordinatenpunkten]
Ok

C-68

LIST LIST BEFEHL
< LIST 10-50

LIST 10,30, 50

LIST 10-30, 70-90

LIST-30

Syntax: LIST [<Zeilenangabe, Liste>]
Effekt: Zeigt Programmzeilen im Auflistungsfenster an.
Erklédrung:

LIST zeigt von Thnen spezifizierte Zeilen des aktuellen Programmes im Auflistungs-
fenster an.

LIST listet das vollstindige Programm auf.

LIST 10 zeigt lediglich Zeile 10 des Programmes an.

LIST 10-50 zeigt die Programmzeilen 10 bis 50 an.

LIST 10, 30, 50 zeigt die Zeilen 10, 30 und 50 des Programmes an.

LIST 10-30, 70-90 listet zwei Gruppen von Zeilen auf, einmal Zeile 10 bis 30, und ein-
mal Zeile 70 bis 90.

LIST - 30 listet alle Zeilen vom Anfang des Programmes bis zur Zeile 30 auf.

Durch Betitigen von [CONTROL] [G] beenden Sie das Auflisten und kehren zuriick
ins Befehlsfenster.

LLIST LLIST BEFEHL
LLIST10-50
LLIST10,30,50
LLIST 10-30,70-90
LLIST-30
Syntax: LLIST [<Zeilenangabe, Liste>]
Effekt: LLIST listet das Programm auf dem Drucker auf.
Erklarung:

LLIST arbeitet genauso wie LIST; allerdings werden die angegebenen Zeilen tiber den
Drucker ausgegeben.

Der Befehl WIDTH LPRINT stellt die Zeilenbreite fiir den Drucker ein. ST BASIC
setzt die Zeilenbreite automatisch auf 72 Zeichen fest. WIDTH LPRINT 40 wiirde
diese Voreinstellung auf 40 Zeichen pro Zeile verdndern.

C-69

LOAD LOAD DATEI BEFEHL

Syntax: LOAD <Dateiname>
Effekt: LOAD ladt Programmdateien in den Arbeitsspeicher.
Erklidrung:

LOAD 1ladt ST BASIC Programmdateien in den Arbeitsspeicher des Computers.
LOAD nimmt einen .BAS Extender an, sofern Sie keine anderweitigen Vorgaben
“festlegen. Wenn Sie ein Programm mit LOAD in den Arbeitsspeicher laden, wird ein
noch im Speicher befindliches Programm mit simtlichen Variablen dadurch geldscht.

LOAD entspricht dem Befehl OLD.

LOC X=LOC®) FUNKTION

Syntax: X = LOC(<Dateinummer>)

Effekt: Gibt entweder eine Datensatz-Nummer, oder die Anzahl der
Bytes, die von einer Datei gelesen, bzw. in eine Datei geschrieben
wurden, aus.

Erklarung:

Bei Verwendung nach GET oder PUT fiir eine Random-Diskettendatei gibt LOC die
Nummer des Datensatzes aus, die zuletzt mit GET oder PUT gelesen oder geschrieben
wurde.

GET #1
PUT #1,LOC(1)

ersetzt den Datensatz #1 in dem Slot, aus dem er gelesen wurde.

Bei Verwendung mit sequentiellen Dateien gibt LOC die Anzahl von Bytes aus, die
seit dem Offnen der Datei gelesen oder geschrieben wurden.

Beispiel:

Ok 10 OPEN “R“, #8, “DATEI“

Ok 20 FIELD #38,20 ASZ$,3 AS V$
Ok 30 GET #8, C%

Ok 40 IF LOC(8) > 25 THEN GOTO 90

C-70

LOF X=LOF(@®) ' FUNKTION

‘Syntax: _ X = LOF(<Dateinummer>)
Effekt: Gibt die Anzahl der Bytes in der Datei aus.
Erklarung:

Bei einer Datei, die gerade fiir eine Ausgabe gedffnet wurde, entspricht die Anzahl
der Bytes 0.

Beispiel:

Ok 100 X = LOF(5)
Ok 110 IF X > 100 THEN PRINT “OEFFNE NEUE DATEI*: GOTO 200

LOG X=LOG(N) FUNKTION
Syntax: X = LOG(<numerischer Ausdruck>)

Effekt: Gibt den natiirlichen Logarithmus einer Zahl aus.

Erklarung:

Der numerische Ausdruck muf} gréBer als Null sein.
Beispiel:

Ok 10 PRINT LOG(23)/LOG(2)

Ok RUN '

4.52356
Ok

C-7

LOG10 X=LOG10(Y) FUNKTION

Syntax: X = LOG10(<numerischer Ausdruck>)
Effekt: Gibt den Basis 10 - Logarithmus einer Zahl aus.
Erklérung:

Der numerische Ausdruck muf3 groBBer als Null sein.

Beispiel:

Ok 10 X = LOG10(1000)

Ok 20 PRINT X

Ok RUN

3

LPOS LPOS(X) FUNKTION
Syntax: LPOS(X)
Effekt: Gibt die Position des Druckkopfes des Zeilendruckers innerhalb

des Zeilendrucker-Speichers aus.
Erklédrung:
Die ausgegebene Position ist Anzahl der Zeichen, die seit der letzten Zeilenschaltung
gedruckt wurden. Die Riicktaste wird mit -1 gezdhlt. Falls Sie Drucker-Kontrollzei-
chen verwenden, durch die die Position des Druckkopfes verdndert wird, kann LPOS
die genaue Position des Druckkopfes nicht reflektieren.

Beispiel:

Ok 10X =90
Ok 20 IF LPOS(X) > 45 THEN GOTO 100

C-72

LPRINT LPRINT A$; “=%“X ANWEISUNG

LPRINT USING F$;A$, X

Syntax: LPRINT [<Liste mit Ausdriicken>]
LPRINT USING <Formatstring- Ausdruck>;<Liste mit
Ausdriicken>

Effekt: Leitet die Ausgabe an den Drucker.

Erklérung:

Die LPRINT-Anweisung arbeitet wie die PRINT- und PRINT USING- Anweisun-
gen. Allerdings geht hier die Ausgabe an einen Zeilendrucker. Sie konnen die Zeilen-
breite fiir den Drucker iiber die WIDTH LPRINT-Anweisung einstellen. Die Vorein-
stellung liegt bei 72 Zeichen pro Zeile. Der Formatstring-Ausdruck muf durch einen
Strichpunkt von der Variablen-Liste abgetrennt werden. Die aufgelisteten Ausdriicke
miissen durch Kommata voneinander abgesetzt sein.

Lesen Sie hierzu auch unter WIDTH LPRINT nach.
Beispiel:

Ok 10 LPRINT “DIESE AUSGABE ERFOLGT AN DEN DRUCKER®

C-73

LSET LSETA$=B$ ANWEISUNG

SyntaX: LSET<String-Variable>=<String-Ausdruck>

Effekt: Verschiebt einen String in eine spezifizierte String-Variable, ohne
die String-Variable neu zuzuordnen.

Erklarung:

LSET wird normalerweise dazu verwendet, um Daten in Datei- Speicher zu iibertra-
gen. Dazu werden die Daten in Variable iibertragen, die iiber eine vorhergegangene
FIELD-Anweisung in Datei-Speichern aufgezeichnet wurden. LSET istin seinen Ver-
wendungsmaoglichkeiten allerdings nicht allein darauf beschréankt.

Belegt der String-Ausdruck eine geringere Anzahl an Bytes, als Sie der String-Varia-
blen in einer FIELD-Anweisung zugeteilt hatten, justiert LSET den linken Rand und
verschiebt den String durch Einsetzen von Leerstellen weiter nach rechts.

Ist der String langer als die Ziel-Stringvariable, werden die zusétzlichen Zeichen von
LSET ignoriert.

Belegt ein String eine groBere Anzahl an Bytes, als Sie ihm in der FIELD-Anweisung
zugeteilt haben, werden die rechts liegenden Zeichen entfernt.

Sie miissen Zahlen und numerische Variable mit MKD$, MKS$ oder MKIS$ in Strings
umwandeln, bevor Sie sie mit LSET verschieben. _
Das Gegenstiick zu LSET ist RSET.
Beispiel:

Ok 10 OPEN “I“, #2, “TEST*, 5

Ok 20 FIELD #2,5 AS S§
Ok 30 LSET N$ = NN§

C-74

MERGE MERGE DATELBAS BEFEHL

Syntax: MERGE <Dateiname>

Effekt: Fiigt eine ST BASIC Diskettendatei in ein Programm im Arbeits-
speicher ein.

Erklarung:

Der MERGE-Befehl fiigt eine Datei von Diskette in die bereits im Arbeitsspeicher be-
findliche Datei ein. Solange die Zeilennummern der beiden Dateien unterschiedlich
sind, 16scht MERGE die Originaldatei nicht. Stimmen dagegen Zeilennummern der
Diskettendatei mit Zeilennummern der Datei im Speicher iiberein, werden die Pro-
grammzeilen im Arbeitsspeicher gegen die gleichlautenden Zeilennummern der Dis-
kettendatei ersetzt.

Lesen Sie hierzu auch unter CHAIN nach.
Beispiel:

Ok 10 PRINT “DAS IST DAS ORIGINALPROGRAMM*

Ok 20 PRINT “DIESE ZEILE WIRD DURCH MERGE GELOESCHT*“
Ok 30 PRINT “DIESE ZEILE BLEIBT WEGEN IHRER
UNTERSCHIEDLICHEN ZEILENNUMMER ERHALTEN*

Ok SAVE ORIGINAL

Ok NEW

Ok 15 PRINT “DAS IST DAS OVERLAY*“

Ok 20 PRINT “DIESE ZEILE ERSETZT ZEILE 20 IM ORIGINAL*“
Ok SAVE OVERLAY

Ok LOAD ORIGINAL

Ok MERGE OVERLAY

Ok RUN

DASIST DAS ORIGINALPROGRAMM

DASIST DAS OVERLAY

DIESE ZEILE ERSETZT ZEILE 20 IM ORIGINAL

DIESE ZEILE BLEIBT WEGEN IHRER UNTERSCHIEDLICHEN
ZEILENNUMMER ERHALTEN

Ok

C-75

MID$ MID$(A$,5,10) = B$ FUNKTION/ANWEISUNG
MID$(A$,5,5) = “HALLO“

Syntax: MID$(<String-Ausdruck>,<Anfangspunkt>[,Léange]) =
(<String-Ausdruck>)

Effekt: Funktion: Gibt ein Segment einer Zeichenkette aus.
Anweisung: Ordnet einem String-Segment einen Wert zu.

Erklérung:

MIDS$ gibt ein Segment eines Strings aus. Der Anfangspunkt ist ein numerischer Aus-
druck, der auf den Anfang des Segmentes zeigt. Die Linge ist ein numerischer Aus-
druck, der die Linge des Segmentes rechts neben dem Anfangspunkt spezifiziert.
Wenn Sie die Lingenangabe entfallen lassen, gibt MID alle Zeichen hinter dem An-
fangspunkt aus.

Ist die Angabe fiir den Anfangspunkt hoher als die Stringlange, gibt MID$ einen Null-
string aus.

Falls die Lange des Segmentes grof3er ist als die Anzahl von Zeichen rechts neben dem
Anfangspunkt, werden alle Zeichen hinter dem Anfangspunkt ausgegeben.

MIDS$ kann auch dazu verwendet werden, um ein String-Segment zu definieren.
Lesen Sie hierzu auch unter RIGHT$ und LEFTS$ nach.
Beispiel:

Ok 10 X$ = “MR. JAMES GRAHAM SCOTT*

Ok 20 Y$ = MID$(X$,18,5)

Ok 30 PRINT Y$

Ok RUN

SCOTT
Ok

C-76

MKD$, MKIS,
MKSS$

X$ = MKD$ (A) FUNKTION
X$ =MKI$ (B)
X$=MKSS$ (O)

Syntax:

Effekt:

Erkléarung:

X$ = MKD$(<numerischer Ausdruck>)
X$ = MKI$(<Integerwert>)
X$ = MKS$(<numerischer Ausdruck>)

Die Funktionen MKD$, MKI$ und MKS$ wandeln ASCII-
Strings, die Zahlen reprasentieren, in Byte-Strings fiir die Ver-
wendung in Random-Dateispeichern um.

MKIS gibt einen 2-Byte String aus.
MKSS$ gibt einen 4-Byte String aus.
MKDS$ gibt einen 8-Byte String aus.

Sie miissen ASCII-Werte mit diesen Funktionen in Zeichenketten umwandeln, bevor
Sie sie mit RSET oder LSET in einen Random-Dateispeicher tibertragen konnen. Die
Funktionen CVD, CVIund CVS sind die Gegenstiicke zu MKD$, MKI$ und MKSS$.

Beispiel:

Ok 100 FINAL = (100/X) * (100 - Y)
Ok 110 FIELD #2, 5 AS Z$, 5 AS B$
Ok 120 LSET Z$ = MKI$(FINAL)
Ok 130 LSET B$ = T$

Ok 140 PUT 4 2

C-77

NAME NAME AUG.DAT AS SEPT.DAT ANWEISUNG

Syntax: NAME <alter String-Ausdruck> AS <neuer String- Ausdruck>
Effekt: Benennt eine Datei neu.
Erklarung:

Die NAME-Anweisung gibt einer bereits bestehenden Datei lediglich einen neuen
Namen. NAME veriandert weder die Datei, noch den Disketten-Inhalt. Vergewissern
Sie sich, daB die alte Datei wirklich auf der Diskette vorhanden ist uiind der neue Name
nicht bereits fiir eine andere Datei verwendet wurde. Ansonsten wiirde ein Fehler auf-
treten.

Beispiel:
Ok NAME “VERSION2.BAS“ AS “VERSION3.BAS*

NEW NEW NEUPRG.BAS BEFEHL

Syntax: NEW [NAME]

Effekt: Loscht eine Dateiim Arbeitsspeicher und benennt optional das
neue Programm.

Erklarung:

Verwenden Sie NEW, wenn Sie beabsichtigen, ein neues Programm zu schreiben.
Falls Sie das derzeit im Arbeitsspeicher befindliche Programm nicht gespeichert
haben, wird dieses durch NEW geloscht. Wenn Sie die Option NAME verwenden,
konnen Sie den SAVE-Befehl spiater ohne Namensangabe verwenden.

Beispiel:

Ok 10 X = SQR(25)
Ok 20 PRINT X

Ok NEW

Ok LIST

Ok

C-78

NEXT NEXT X ANWEISUNG

NEXTX,Y
Syntax: NEXT [<Ziahler>] ,Zihler
Effekt: Markiert das Ende einer FOR/NEXT-Schleife.

Erklarung:

Die NEXT-Anweisung in einer FOR/NEXT-Schleife iibergibt die Programmkontrol-
le an den Schleifenanfang. Die Schleife wird erneut durchlaufen, wenn die Z&hl-Varia-
ble noch nicht groBer ist als die in der FOR-Anweisung vorgegebene Obergrenze.

Die Angabe des Namens fiir die Zihl-Variable ist optional. Die NEXT-Anweisung
nimmt die nichstliegende Z&hl-Variable an.

Haben Sie Schleifen verschachtelt, miissen Sie angeben, zu welcher Zihl-Variablen
Sie am Ende der Schleifenausfithrung zuriickkehren wollen. Verwenden Sie NEXT,
um die Programmausfiihrung zuerst an die verschachtelte Schleife, und danach an die
auBlere Schleife zu iibergeben. Hierzu wird als Erstes die verschachtelte Zéhl-Varia-
ble, und danach die 4u3ere Zahl-Variable angegeben.

Lesen Sie hierzu auch unter FOR nach.
Beispiel:

Ok10FORZ=1TO3
Ok 20 PRINT “Y*
Ok30FORQ=1TO2
Ok 40 PRINT “X*

Ok 50 NEXT Q,Z

Ok RUN

O MM X XK

C-79

OCTS$ X$=0CTS$ (Y) FUNKTION

Syntax: X$ = OCTS$ (<numerischer Ausdruck>)
Effekt: Gibt den String-Ausdruck einer Basis 8-Zahl aus.
Erklédrung:

OCTS gibt eine Zeichenkette aus, die dem Basis 8 — Wert eines Hexadezimal- oder
Dezimalwertes entspricht. Der Wert des Dezimal- oder Hexadezimalausdruckes wird
auf eine Integerzahl gerundet, bevor er umgewandelt wird. Er muf3 zwischen —32768
und 32767 liegen.

Lesen Sie hierzu auch unter HEX$ und STR$ nach.

Beispiel:
Ok 10 X$ = OCT$(3.4)
Ok 20 PRINT X$
Ok RUN
3
OLD OLD TEST BEFEHL
Syntax: OLD <Dateiname>
Effekt: Ladt eine bestehende Programm-Datei in den Arbeitsspeicher.

OLD istidentisch mit LOAD.
Erklarung:
OLD schlieBt alle geoffneten Dateien und 16scht alle Variablen oder Daten im Ar-
beitsspeicher, bevor die angegebene Datei von Diskette in den Speicher geladen wird.

OLD 16scht alle ST BASIC Programme im Arbeitsspeicher.

Der Dateiname ist der Name, den Sie der Datei beim Speichern zugewiesen hatten.
Sie miissen dabei den Dateityp .BAS nicht angeben.

Beispiel:
Ok OLD TEST

Ok
Das Programm TEST.BAS befindet sich nun im Arbeitsspeicher

C-80

ON ON X GOTO INIT, 100, ENTRY, DONE ANWEISUNG
ON X GOSUB INIT, 100, ENTRY, DONE

Syntax: ON <numerischer Ausdruck> GOTO <Zeilenangabe>
<Zeilenangabe>
ON <numerischer Ausdruck> GOSUB <Sprungmarke>,
<Sprungmarke>

Effekt: Ubergibt die Programmkontrolle an eine Programmzeile in einer

Auflistung, abhéngig vom errechneten Ergebnis des numerischen
Ausdruckes. Die ON-Anweisung hat zwei Formen. ‘

Erklarung:

Der Wert des numerischen Ausdruckes legt fest, wohin die Programmausfiihrung
tibergeben wird. Entspricht der Wert des Ausdruckes 1, iibergibt ON die Kontrolle an
die erste Sprungmarke. Entspricht er 2, wird die Kontrolle entsprechend an die zweite
Sprungmarke iibergeben, usw.

Uberpriifen Sie den Wert des Ausdruckes, bevor Sie eine ON- Anweisung schreiben.
Nicht-Integerzahlen werden auf die nichste ganze Zahl auf- oder abgerundet.

In einer ON GOSUB-Anweisung muf} jeder numerische Ausdruck die Zahl der ersten
Zeile einer Unterroutine sein. Die RETURN- Anweisung in der Unterroutine tiber-
gibt die Programmkontrolle an die erste ausfithrbare Anweisung, die der ON-Anwei-
sung folgt.

Sie konnen in einer ON-Anweisung jede giiltige Zeilenangabe verwenden. Eine ON-
Anweisung kann an jeder beliebigen Stelle im Programm geschrieben werden.

10 ON X GOTO 200, PAINT, 400

Falls der Wert von X 1 ist, springt das Programm in Zeile 200; ist der Wert 2, springt
das Programm in die Anweisung mit der Sprungmarke PAINT, usw.

Beispiel:

Ok10X =1

Ok 20 ON X GOTO 70,80,90,990

Ok 70 PRINT “MONAT DES JAHRES:“X + 1
Ok 80 PRINT “MONAT DES JAHRES:“X + 2
Ok 90 PRINT “MONAT DES JAHRES:“X + 3
Ok 120 X=X+1: GOTO 20

Ok 990 END

Ok RUN

MONAT DES JAHRES: 2

MONAT DES JAHRES: 3

MONAT DES JAHRES: 4

MONAT DES JAHRES: 4

MONAT DES JAHRES: 5

MONAT DES JAHRES: 6

Ok
C-81

ON ERROR ON ERROR GOTO 200 ANWEISUNG

GOTO

Syntax: ON ERROR GOTO <Zeilenangabe>

Effekt: Ermdéglicht die Aufdeckung eines Laufzeit-Fehlers und iibergibt
die Kontrolle an eine Zeilennummer, sobald ein Fehler auftritt.

Erklarung:

ON ERROR GOTO springt in eine angegebene Programmzeile, sobald ST BASIC ei-
nen Fehler entdeckt, und ermdglicht dadurch die Handhabung von Laufzeitfehlern.
Als Parameter muB3 eine Zeilennummer verwendet werden. Die Angabe einer
Sprungmarke ist nicht moglich.

Sie konnen diese Fehlerbehandlung deaktivieren oder die urspriingliche Fehlerbe-
handlung von ST BASIC wieder einrichten, wenn Sie ON ERROR GOTO 0 verwen-

den.

Wenn Sie ON ERROR GOTO 0 in einer Fehleraufdeckungsroutine verwenden,
druckt ST BASIC seine Original-Fehlermeldung aus und hilt das Programm an. Sie
sollten in einer Fehleraufdeckungsroutine immer ON ERROR GOTO 0 verwenden,
um unerwartete Fehler feststellen zu konnen.

Lesen Sie hierzu auch unter RESUME, sowie in Anhang D, Fehlermeldungen, nach.

| Beispiel:

Ok 80 ON ERROR GOTO 100

C-82

OPEN OPEN “0O%,#1,“DATELDAT*, 128 ANWEISUNG
OPEN “I“,#1,“DATELDAT%, 128 '
OPEN “R¢,#1,“DATELDAT%, 128

Syntax: OPEN <Modus>,[#]<Dateinummer>,<Dateiname>
[,<Datensatzlinge>]

Effekt: Ermoglicht die Ein- oder Ausgabe an eine Datei oder einen Daten-
kanal.

Erklirung:

Sie miissen eine Diskettendatei mit OPEN 06ffnen, bevor Sie Daten daraus entneh-
men, bzw. in sie einlesen konnen. Die OPEN-Anweisung ordnet der Datei einen I/O-
Speicher zu und legt den Modus fest, unter dem fiir eine Ein- und Ausgabe Zugriff auf
die Datei genommen werden kann.

Die Dateinummer ist ein Integer-Ausdruck mit einem Wert zwischen 1 und 15. Eine
Dateinummer ist einer Datei zugeordnet, solange diese geoffnet ist. Das Schlieen
einer Datei 16scht die zugeordnete Dateinummer. Damit kann diese Nummer neu
verwendet werden. Die Datensatzlinge ist ein Integer-Ausdruck, iiber den die Daten-
satzlange fiir Random-Dateien festgelegt wird. Diese Angabe ist optional. Die vor-
gegebene Linge ist 128 Bytes. Die Angabe einer Datensatzlinge fiir sequentielle Da-
teien wird nicht beachtet.

Der Datei-Modus ist entweder eine sequentielle Ausgabe/Eingabe oder eine Random-
Eingabe/Ausgabe. Der Modus wird durch Eingabe einer der nachfolgenden Kenn-
buchstaben festgelegt: ‘

O Ausgabe fiir sequentielle Dateien
I Eingabe fiir sequentielle Dateien
R Ein- und Ausgabe fiir Random-Dateien

Die Eingabe dieser Kennbuchstaben muf} in GroBschreibung erfolgen.

Wenn Sie Random Access-Datensitze eingeben, muf3 die erste Datensatz-Nummer
mit “1“ eingegeben werden. Alle nachfolgenden Datensatz-Nummern miissen se-
quentiell sein. D.h., die erste Datensatz-Nummer ist “1“, die Nummer fiir den zweiten
Datensatz ist “2“, fiir den dritten “3“ usw. Diese Eingabe kann iiber eine FOR/NEXT-
Schleife erfolgen. Datensitze, die in einer falschen Reihenfolge eingegeben werden,
verursachen einen Fehler. Sobald die Datei etabliert ist, konnen die Datensétze (mit
GET #1,VAR) in jeder beliebigen Reihenfolge aufgerufen werden.

Beispiel:

Ok 10 OPEN “R*, #1, “GUTHABEN*

Ok 20 FIELD #1,10 AS V§, 10 AS X$,30 AS N§

Ok 30 INPUT “4-STELLIGEN CODE EINGEBEN®“, CODE!
Ok 40 GET #1, CODE!

C-83

OPENW OPENW2 ANWEISUNG

Syntax: OPENW <Fenster-Nummer>
Effekt: Offnet ein ST BASIC-Fenster.
Erklarung:

OPENW wird verwendet, um ein ST BASIC-Fenster zu 6ffnen, das zuvor iiber den
Befehl CLOSEW geschlossen worden war. Das gedffnete Fenster wird im Vorder-
grund des Bildschirmes dargestellt. Wurde das Fenster bereits geoffnet, verbleibt es
als oberstes Fenster auf dem Bildschirm. Die <Fenster-Nummer> spezifiziert die
ST BASIC-Fenster wie folgt:

0 = Bearbeitungsfenster
1 = Auflistungsfenster
2 = Ausgabefenster

3 = Befehlsfenster

Anmerkung: OPENW gibt eine interne Meldung an den BASIC-Interpreter, durch
die das System den Status der Fenster nachvollziehen kann. Aus diesem Grund sollten
Sie ST BASIC-Fenster (die iiber CLOSEW geschlossen wurden) nicht iiber Direkt-
aufrufe von AES o6ffnen.

C-84

OPTIONBASE OPTIONBASE(ANWEISUNG

OPTION BASE1
Syntax: OPTION BASE <1 oder 0>
Effekt: Setzt die Basis fiir Array-Dimensionierungen.

Erklarung:

OPTION BASE wird fiir die Festsetzung des Mindestwertes fiir Array-Unterbereiche
innerhalb einer Dimensionierung verwendet. Die vorgegebene Basis ist Null Aus die-

sem
Grund hat das erste Element in einem Array einen Unterbereich Null. Sie kénnen die
Array-Dimensionierungen so setzen, daf3 sie bei 1 beginnen, oder sie auf Null belassen.

Sie konnen OPTION BASE beliebig oft verwenden.
Lesen Sie hierzu auch unter DIM nach.
Beispiel:

Ok 10 OPTION BASE 1

Ok 20 DIM A% (10)

Ok 30 OPTION BASE 0

Ok 40 DIM B%(10)

A% hat nun 10 Elemente (1-10) und B% 11 Elemente (0-10).

ouT ouUT2,X ANWEISUNG
Syntax: OUT <Integer-Ausdruck>,<Integer- Ausdruck>

Effekt: Ubermittelt ein Byte an einen Datenausgabekanal.

Erklarung:

Der erste Integer-Ausdruck ist die Datenkanal-Nummer. Der zweite Ausdruck ist das
Byte, das Sie an den Ausgabekanal leiten wollen. Der Wert des Bytes muf3 zwischen 0
und 65535 liegen.

Die Datenkanile des ATARI ST Computers lauten wie folgt:

0 = PRINTER (Parallel-Port)

1= AUX (RS-232)

2 = CONSOLE (Blldschlrm)

3 = MIDI (Musical Instrument Digital Interface) 4 = KEYBOARD (Tastatur)

Beispiel:
Ok 100 If X% >5 THEN OUT 3,(X-2)
C-85

PCIRCLE PCIRCLE 50,80,50 ANWEISUNG
/ PCIRCLE 50,80,50,900,1800

Syntax: PCIRCLE <horizont. Mittelpunkt, vertik. Mittelpunkt, Radius>
[<,Anfangswinkel, Endwinkel>]

Effekt: PCIRCLE zeichnet ausgefiillte Kreise und Kreisausschnitt-Formen.

Erklarung:

PCIRCLE zeichnet vollstindig in einer Farbe und mit einem Muster ausgefiillte Krei-
se. Der Kreismittelpunkt liegt am Schnittpunkt der beiden ersten Parameter (horizon-
taler und vertikaler Mittelpunkt). Die Positionen werden in Pixel angegeben, gerech-
net von der oberen linken Ecke des Ausgabefensters.

Der dritte Parameter, Radius, wird ebenfalls in Pixel angegeben. Die horizontale und
vertikale Pixelanzahl ist abhéngig von der gewéhlten Auflosung. Der Kreis wird in der
angegebenen FILL-Farbe (Parameter 2 der COLOR-Anweisung) gezeichnet.

Die letzten beiden Parameter, Anfangs- und Endwinkel, sind optional verwendbar.
Werden sie nicht angegeben, zeichnet PCIRCLE einen vollstdndigen Kreis. Bei Anga-
be eines Anfangs- und Endwinkels wird ein Kreisausschnitt gezeichnet, der zwischen
den beiden Punkten liegt. PCIRCLE zeichnet ein ausgefiilltes Kreissegment und kei-
nen Kreisbogen. Die Winkel werden in Grad mal 10 angegeben. So werden 45 Grad als
450, 180 Grad als 1800, usw. angegeben. 0 Grad zeigt im Ausgabefenster nach rechts,
90 Grad nach oben, 180 Grad nach links und 270 Grad nach unten. COLOR
1,3,1:PCIRCLE 100,30,30,0,3600 zeichnet einen vollstindigen, griin ausgefiillten
Kreis.

Lesen Sie hierzu auch unter CIRCLE, ELLIPSE und PELLIPSE nach.
Beispiel:

Ok 10 COLOR 1,0,1:CLEARW 2

Ok 20 CIRCLE 100,50,40

Ok 30 COLOR 1,2,1

Ok 40 PCIRCLE 100,50,40,300,900

Ok RUN

[Im Ausgabefenster erscheint ein schwarzer Kreis mit einem rot ausgefiillten

Kreissegment, beginnend bei 30 Grad, tiber eine Lange von 60 Grad]
Ok

C-86

PEEK X=PEEK (Y) FUNKTION

Syntax: X = PEEK (<Speicheradresse>)
Effekt: Gibt den Inhalt einer Speicheradresse aus.
Erklarung:

PEEK gibt das an der angegebenen Speicheradresse befindliche Byte aus. Der Typ des
ausgegebenen Wertes ist wie folgt von der letzten DEF SEG-Anweisung abhéngig:

Ist DEF SEG > 0, gibt PEEK ein Byte aus, unabhéingig davon, wie die PEEK-
Adresse spezifiziert wurde. Die in PEEK angegebene Adresse wird durch den
Wert, der in der letzten DEF SEG-Anweisung angegeben wurde, eingerichtet.

Wenn DEF SEG gleich Null ist, gibt PEEK ein 2-Byte Wort aus, sofern die
PEEK-Adresse als FLOAT-Ausdruck angegeben wurde.

Falls DEF SEG gleich Null ist und gleichzeitig die Adresse durch DEFDBL spe-
zifiziert wurde, gibt PEEK einen 4-Byte Long-Integerwert aus.

Sie miissen die Speicheradresse iiber eine Variable, und nicht iiber eine Konstante spe-
zifizieren (siehe nachstehendes Beispiel).

Lesen Sie hierzu auch unter POKE und SEG nach.
Anmerkung: Beim PEEKen wird der ST Computer in den Supervisor-Modus um-
geschaltet. D.h., Sie konnen auf jede Speicheradresse, also auch auf geschiitzte Spei-
cherplitze, Zugriff nehmen.
Beispiel:

Ok 100 BYTE% = PEEK(234)

C-87

PELLIPSE PELLIPSE 50,80,100,50 ANWEISUNG
PELLIPSE 50,80,100,50,900,1800

Syntax: PELLIPSE <horizont. Mittelpunkt,vertik. Mittelpunkt,
horizont.Radius, vertik. Radius>[<,Anfangswinkel, Endwinkel>|

Effekt: PELLIPSE zeichnet ausgefiillte Ellipsen und elliptische Kreis-
formen.

Erklarung:

PELLIPSE zeichnet eine Ellipse, deren Mittelpunkt durch die beiden ersten Parame-
ter (horizontaler und vertikaler Mittelpunkt) festgelegt wird. Die Positionen werden
in Pixel ausgedriickt, gerechnet von der oberen linken Ecke des Ausgabefensters. Pa-
rameter 3 und 4, horizontaler und vertikaler Radius, werden ebenfalls in Pixel angege-
ben. Die horizontale und vertikale Pixelanzahl ist abhédngig von der gewéhlten Auflo-
sung. Die Ellipse wird in der vorgegebenen Zeichenfarbe (Parameter 3 der COLOR-
Anweisung) gezeichnet.

Die letzten beiden Parameter, Anfangs- und Endwinkel, sind optional verwendbar.
Werden sie nicht angegeben, zeichnet PELLIPSE eine vollstindige Ellipse. Bei Anga-
be eines Anfangs- und Endwinkels wird ein Ellipsenausschnitt gezeichnet, der zwi-
schen den beiden Punkten liegt. PELLIPSE zeichnet ein ausgefiilltes Kreissegment
und keinen Kreisbogen.

Die Winkel werden in Grad mal 10 angegeben. So werden 45 Grad als 450, 180 Grad
als 1800, usw. angegeben. 0 Grad zeigt im Ausgabefenster nach rechts, 90 Grad nach
oben, 180 Grad nach links und 270 Grad nach unten. COLOR 1,3,1:PELLIPSE
100,50,50,50,0,3600 zeichnet eine vollstdndige, griin ausgefiillte Ellipse.

Lesen Sie hierzu auch unter ELLIPSE, CIRCLE und PCIRCLE nach.
Beispiel:

Ok 10 COLOR 1,0,1:CLEARW 2

Ok 20 PELLIPSE 100,80,40,80

Ok 30 COLOR 1,2,1

Ok 40 PELLIPSE 100,80,40,80,300,900

Ok RUN

[Auf dem Bildschirm wird eine schwarze Ellipse mit einem roten Kreisbogen
tiber 60 Grad, beginnend bei 30 Grad, gezeichnet]

Ok

C-88

POKE POKE 1565,X ANWEISUNG

Syntax: POKE<Adresse zum POKEn>,<Daten zum POKEn>
Effekt: Schreibt POKE-Daten in den Speicher.
Erklarung:

POKE speichert einen Wert der Daten, die mit POKE in eine Speicher-Adresse ge-
bracht werden sollen. Die POKE-Adresse ist eine absolute Adresse, die als numeri-
scher Ausdruck angegeben wird. Der Datentyp wird durch die letzte DEF SEG-An-
weisung, sowie durch die Art der Spezifikation der POKE-Adresse definiert.

Die in POKE angegebene Adresse wird durch den Wert, der in der letzten DEF
SEG-Anweisung angegeben wurde, eingerichtet.

Wenn DEF SEG gleich Null ist, entsprechen die Daten einem 2-Byte-Wort,
sofern die POKE-Adresse als FLOAT-Ausdruck angegeben wurde.

Falls DEF SEG gleich Null ist und gleichzeitig die Adresse durch DEFDBL spe-
zifiziert wurde, sind die Daten ein 4- Byte Long-Integerwert.

Liegt der Daten-Ausdruck auferhalb des giiltigen Bereiches von 0 bis 255, speichert
POKE das niederwertige Byte des Ergebnisses. So hat beispielsweise

Ok 5 DEF SEG=300000
Ok 10 POKE X% ,257

den gleichen Effekt wie

Ok 5 DEF SEG=300000
Ok 10 POKE X%,1

Das Gegenstiick zu POKE ist PEEK. sie kénnen PEEK und POKE fiir die Ubermitt-
lung von Argumenten und Daten in Maschinensprache-Unterroutinen verwenden.

Lesen Sie hierzu auch unter PEEK und DEF SEG nach.

Beispiel:
Ok 100 FOR LOC% =1 TO LEN(OUT,MSGS$)
Ok 120 POKE MSG.LOC% +LOC% ,ASC(MID$(OUT,MSG$,LOCS,))
Ok 130 NEXT LOC%

Anmerkung: Beim PEEKen und POKEn wird der 520ST Computer in den Supervi-
sor-Modus umgeschaltet. D.h., Sie konnen auf jede Speicheradresse, also auch auf
geschiitzte Speicherplitze, Zugriff nehmen.

Das System stiirzt ab, wenn Sie in Speicherplitze POKEn, die vom TOS Betriebs-
system belegt sind. Bei einem Systemabsturz miissen Sie neu booten.

C-89

POS X=POS(0) FUNKTION

Syntax: X =POS(<Test-Argument>)
Effekt: Gibt die derzeitige Cursorposition am Bildschirm oder Drucker aus.
Erklarung:

Die am weitesten links liegende Cursorposition ist Null. POS gibt nicht unbedingt die
physikalische Position des Druckkopfes an.

Lesen Sie hierzu auch unter LPOS nach.
Beispiel:
Ok 40 X = POS(0)

Ok 50 PRINT “DRUCKKOPF SITZT IN SPALTE: “; X
Ok 60 IF WIDTH.LINE <POS(0) THEN WIDTH.CHR = X

C-90

PRINT PRINT X,Y ANWEISUNG
PRINT X;Y
PRINT A$
?A$

Syntax: PRINT [<Ausdruck> <,oder ;><Ausdruck [<, oder ;>]]
Effekt: Druckt Daten im Ausgabefenster aus.
Erklarung:

PRINT tibermittelt Ausdriicke an das Ausgabefenster. Sie konnen eine beliebige Anzahl
von Ausdriicken zusammen mit der PRINT-Anweisung verwenden. Die einzelnen Aus-
driicke miissen durch Kommata oder Strichpunkte voneinander abgetrennt werden.

Die Interpunktionszeichen, die fiir die Abtrennung der einzelnen Ausdriicke verwen-
det werden, legen die Positionen der Ausdriicke auf dem Bildschirm fest. ST BASIC
unterteilt eine Zeile in einzelne Druckzonen, die jeweils 14 Stellen umfassen. Wenn
Sie die Ausdriicke in der PRINT-Anweisung durch Kommata abtrennen, wird jeder
Ausdruck von ST BASICin der nidchsten verfiigbaren Druckzone dargestellt. Bei Ver-
wendung eines Strichpunktes werden die String- Ausdriicke von ST BASIC konsekutiv
und ohne abtrennende Leerstellen ausgedruckt. Numerische Ausdriicke werden zu-
sammenhéingend gedruckt, wobei zwischen dem Vorzeichen und der Zahl eine Leer-
stelle gesetzt wird.

Wenn Sie eine Auflistung von Ausdriicken mit einem Komma abschlieen, springt ST
BASICin die nachfolgende Druckzone, geht jedoch nicht weiter zu einer neuen Zeile.
SchlieB3en Sie eine Auflistung mit einem Strichpunkt ab, beld3t ST BASIC den Cursor
am Ende des letzten Ausdruckes.

Anstelle von PRINT kann in ST BASIC Programmen auch ein Fragezeichen verwen-
det werden. ? A entspricht PRINT A.

Beispiel:

Ok 10 PRINT “TEST VON ST BASIC*
Ok 20 PRINT

Ok 30 A$ = “EINS“ : B$ = “ZWEI“ : C$ = “DREI“
Ok 40 A=23:B0567:C=5

Ok 50 PRINT A$,B$,C$

Ok 60 PRINT A$;B$;C$

Ok 70 PRINT A,B,C

Ok 80 PRINT A;B;C;

Ok 90 END

Ok RUN

TEST VON ST BASIC

EINS ZWEI DREI
EINSZWEIDREI

23 567 5

23 567 5
Ok

C-91

PRINT# PRINT# LAS,X ANWEISUNG
24

Syntax: PRINT# <Dateinummer>,<Ausdruck>,<Ausdruck>
Effekt: Gibt Daten an eine Diskettendatei aus.
Erklarung:

Die PRINTH#-Anweisung schreibt Ausdriicke in die Datei, die durch die Dateinum-
mer vorgegeben wurde. Die Dateinummer ist die Kennzahl, die Sie der Datei beim
Offnen zugewiesen hatten. Jede PRINT#-Anweisung erstellt einen eigenen Daten-
satz. Jeder Ausdruck in einer PRINTH#-Anweisung erstellt ein eigenes Feld.

Sie konnen eine beliebige Anzahl von Ausdriicken zusammen mit der PRINTH-
Anweisung verwenden. Die Ausdriicke miissen durch Kommata oder Strichpunkte
voneinander abgetrennt werden.

PRINTH schreibt die Daten exakt in der Form in die Datei, in der sie auch mit der
PRINT-Anweisung auf dem Bildschirm dargestellt wiirden.

Sie miissen iiber die entsprechenden Interpunktionszeichen genau angeben, wie die
Daten in der Datei erscheinen sollen.

Beispiel:
1 X$ = “Lewis“
Z$=C.S.“

Gewiinschte Darstellungsform auf der Diskette: Lewis, C.S.

Da weder vor “Lewis“, noch hinter “C.S.“ ein Komma gesetzt wurde, schreibt die
Anweisung

1 Ok PRINTH#1,X$;Z$
Lewis C.S.

auf Diskette.
Wollen Sie ein Komma als Abgrenzungszeichen verwenden, miissen Sie die Anweisung
Ok PRINT#1,X$;“,“;Z$

verwenden, wobei das Kommazeichen als literaler String in Anfithrungszeichen
gesetzt werden mulB3.

Beispiel:

Ok 50 PRINT#VIER.TEX; A$,B$,C$

C-92

PRINTUSING PRINT USING FORMS$;X,Y,Z ANWEISUNG
PRINT4# 1, USINGFORMS$;:X,Y,Z
2USING

Syntax: PRINT USING<String-Ausdruck>;<“Liste der Ausdriicke*“>;
PRINT#<Dateinummer>,USING<“String-Ausdruck“>;
<Liste der Ausdriicke>

Effekt: Druckt eine Ausgabe geméf dem vorgegebenen Format.
Erklérung:

Die PRINT USING-Anweisung druckt Daten auf den Bildschirm. Die PRINTH#
USING-Anweisung druckt Daten in eine Diskettendatei. Sie konnen Strings oder
Zahlen Uber beliebige Anweisungen drucken. Bei der PRINT# USING-Anweisung
istdie Dateinummer die Kennzahl, die Sie der Datei beim Offnen zugewiesen hatten.
Bei beiden Anweisungen entspricht der String- Ausdruck in Anfiihrungszeichen einer
Liste von Zeichen, iiber die die Felder und Formate der gedruckten Daten festgelegt
werden. Die Auflistung enthélt die zu druckenden Begriffe, die durch Kommata oder
Strichpunkte voneinander abgetrennt sein miissen. Wird die Auflistung mit einem
Strichpunkt beendet, wird der Cursor am Ende des letzten Ausdruckes belassen.

Die Zeichen in der Format-Spezifikation werden durch die Daten in der Druckliste
ersetzt, es sei denn, es handelt sich um literale Zeichen.

Die nachfolgende Tabelle enthélt die Formatierzeichen von ST BASIC.

Formatierzeichen fiir String-Felder
Zeichen Erkldrung

! Gibt der Anweisung an, daf3 das erste Zeichen jedes spezifizierten
Strings gedruckt werden soll.

\Zeichen\ Zeichen plus 2 zeigt die Gesamtanzahl von Zeichen an, die von
dem spezifizierten String gedruckt werden soll.

& Spezifiziert ein String-Feld mit variabler Lange.

C-93

Zeichen

#

* ok

$$
**$

AAAA

Formatierzeichen fiir numerische Felder
Erklarung
Reprisentiert jede Ziffernposition in einem numerischen Feld.
Fiigt Nullen ein, um eventuelle Ziffernpositionen aufzufiillen.

Druckt das Vorzeichen der Zahl, Plus oder Minus, vor der ge-
druckten Zahl aus.

Druckt negative Zahlen mit einem vorangestellten Minuszeichen
aus.

Fiillt Leerstellen in einem numerischen Feld mit Sternchen auf.
Setzt direkt links neben die gedruckte Zahl ein Dollarzeichen.

Fiillt Leerstellen mit Sternchen auf und setzt links neben_die Zahl
ein Dollarzeichen.

Fiigt links neben dem Dezimalpunkt nach jeder dritten Ziffer ei
Komma ein. '

Spezifiziert ein Exponential-Format.

Druckt das nachfolgende Zeichen als literales Zeichen.

Sie konnen $String-Konstanten in einen Format-String einfiigen, wie im nachfolgenden
Beispiel demonstriert wird:

Beispiel:

Ok 10 PRINT USING “DAS IST DATEI _###“;4

Ok RUN

DAS IST DATEI # 4

Ok

C-94

PUT PUT #1,5 ANWEISUNG

Syntax: PUT [#]<Dateinummer>,<Datensatz-Nummer>

Effekt: Schreibt einen Datensatz von einem Speicher in eine Random-
Diskettendatei.

Erklarung:

Die Dateinummer ist die Kennzahl, die Sie der Datei beim Offnen zugewiesen hatten.
Die Datensatz-Nummer ist optional verwendbar. Sofern Sie eine Datensatz-Nummer
angeben, muf} diese bei Eins beginnen und in sequentieller Folge fortfahren. Fiir die
Zuordnung von Datensatz-Nummern in einer Datei wird am besten eine FOR TO
NEXT-Schleife geschrieben. Geben Sie keine Datensatz-Nummer an, verwendet
PUT die nichste Datensatz-Nummer nach der letzten GET- oder PUT-Anweisung.
Die grofite giiltige Datensatz-Nummer ist 32767.

Sie sollten vor der Verwendung von PUT LSET oder RSET setzen, um die Daten in
den Random-Speicher zu bringen.

Beispiel:

Ok 100 LSET Q$=X$
Ok 120 PUT#2,RCORD%

QUIT QUIT BEFEHL
Syntax: QUIT

Effekt: Beendet ST BASIC und kehrt zuriick zum GEM.

Erkldrung:

"QUIT schlieB3t alle Dateien und bringt Sie zum GEM-Befehlslevel zuriick. Jedes im
Arbeitsspeicher befindliche Programm wird geldscht, sofern es nicht zuvor gespei-
chert wurde.

QUIT entspricht SYSTEM.
Beispiel:

Ok QUIT

C-95

RANDOMIZE RANDOMIZE X ANWEISUNG

Syntax: RANDOMIZE [<numerischer Ausdruck>]
Effekt: Setzt den Random-Zahlengenerator.
Erklarung:

RANDOMIZE wird zusammen mit der RND-Funktion verwendet, um zuféllig be-
stimmte Zahlen zu generieren. Wenn Sie den optional verwendbaren numerischen
Ausdruck nicht angeben, fragt ST BASIC nach einer Zahl, auf der RANDOMIZE ba-
sieren soll.

Falls Sie am Anfang eines Programmes, das mit zufillig bestimmten Zahlen arbeitet,
kein RANDOMIZE mit dem Parameter Null verwenden, gibt die Funktion RND bei
jedem Programmlauf dieselbe Sequenz von Zahlen in gleicher Reihenfolge aus.

Lesen Sie auch unter RND nach, um weitere Informationen tiber die Generierung zu-
fallig bestimmter Zahlen zu erhalten.

Beispiel:

Ok 10 RANDOMIZE 0
Ok20FORX =1TO 10
Ok 30 PRINT RND
Ok 40 NEXT X
Ok RUN

957395

427143

.806267

.0206223

.86628

.886706

.435054

199773

.505868

.801594
Ok

C-96

READ READ A,BAS ANWEISUNG

Syntax: READ<Variable>, <Variable>
Effekt: Ordnet Werte aus einer DATA-Anweisung Variablen zu.
Erklarung:

Die Anweisungen READ und DATA werden immer in Kombination verwendet.
READ ordnet die in DATA aufgelisteten Werte nacheinander einer damit korrespon-
dierenden Auflistung von Variablen zu. Die Variablen kdnnen numerische Ausdriicke
oder Strings sein. Sie miissen vom Typ her den Konstanten-Werten in der DATA-An-
weisung entsprechen. Andernfalls wiirde ein Fehler auftreten.

Sie konnen eine READ-Anweisung mit mehreren DATA-Anweisungen zusammen
verwenden. Umgekehrt konnen Sie mehrere READ-Anweisungen mit einer DATA-
Anweisung kombinieren. Ist die Anzahl von Werten in der DATA-Anweisung gro3er
als die Anzahl von Variablen in der READ-Anweisung, greift die ndchste READ-An-
weisung die verbliebenen Konstanten aus der ersten DATA-Anweisung auf und ord-
net diese den Variablen ihrer Liste zu. Gibt es keine nachfolgende READ-Anwei-
sung, werden die verbliebenen Daten ignoriert.

Gibt es weniger Werte in der DATA-Anweisung als in der READ-Anweisung, wird
die nichste DATA-Anweisung angesteuert und ausgelesen. Folgt keine weitere
DATA-Anweisung, tritt ein Fehler Nr. 4 (zuwenig Werte) auf.

Sie konnen iiber die RESTORE-Anweisung DATA-Begriffe vom Anfang einer spezi-
fizierten Zeilennummer neu lesen lassen.

Lesen Sie hierzu auch unter DATA und RESTORE nach.
Beispiel:

Ok 10 READ X,Y,Z
Ok 20 RESTORE
Ok 30 DURCHSCHNITT = (X+Y+2Z)/3
Ok 40 DATA 23.4,89.2,77
Ok 50 PRINT DURCHSCHNITT
Ok 60 READ X,Y,Z
Ok 70 ERGEBNIS = X*Y*Z
Ok 80 PRINT ERGEBNIS
Ok 90 END
Ok RUN
63.2
160720
Ok

C-97

REM REM ANMERKUNG ANWEISUNG

’ANMERKUNG
Syntax: REM <Anmerkung>
Effekt: Ermoglicht Anmerkungen im Programmcode.

Erklarung:

Anmerkungen dienen dazu, die Logik eines Programmes deutlich zu machen. REMs
erscheinen im Programmlisting in der Form, in der Sie sie geschrieben hatten, haben
jedoch keine Auswirkungen auf die Programmausfithrung. Anmerkungen diirfen ma-
ximal 245 Zeichen lang sein. Schreiben Sie eine Anmerkung, die ldnger ist als die Bild-
schirmbreite, konnen Sie die Zeile mit einem Zeilenvorschub verldngern.

Wenn Sie iiber eine GOTO- oder GOSUB-Anweisung in eine REM-Zeile springen,
wird der Programmlauf in der ersten ausfithrbaren Zeile nach REM fortgefiihrt.

Das einfache Apostroph-Zeichen bewirkt denselben Effekt wie REM. So ist beispiels-
weise

Ok 100 ’das ist eine Anmerkung
eine giiltige Anweisung.
Beispiel:

Ok 10 REM DIESES PROGRAMM ERRECHNET QUADRATZAHLEN
Ok 20 INPUT “ZAHL EINGEBEN, DIE POTENTIERT WERDEN SOLL*;X
Ok 30 S=X*X

Ok 40 PRINT S

Ok 50 'RUCKKEHR ZUR ZEILE FUR DIE ZAHLENEINGABE

Ok 60 GOTO 20

Ok 70 END

Ok RUN

C-98

RENUM RENUM 50,10,20 ANWEISUNG

Syntax: 9 RENUM [<neue erste Zeile>][,<Anfangszeile>][,<Erh6hung>]
Effekt: Numeriert Programmzeilen neu.
Erklarung:

Enthélt Ihr Programm unregelméBige Zeilennummern, die durch nachtrégliches Ein-
fiigen neuer Zeilen zwischen bereits erstellte Zeilen entstanden sind, konnen Sie das
gesamte Programm neu durchnumerieren, ohne dabei GOTO- oder andere Adressen-
abhingige Anweisungen anpassen zu miissen.

Wird RENUM alleine verwendet, wird das Programm in Zehnerschritten, beginnend
bei Zeilennummer 10, fortlaufend durchnumeriert.

Sie konnen auch eine neue Zeilennummer fiir die erste Zeile des Programmes vorge-
ben. Zudem ist moglich, eine Anfangszeilennummer anzugeben, ab der das Pro-
gramm neu numeriert werden soll.

AuBerdem konnen Sie festlegen, in welchen Schritten die Zeilennummern erh6ht wer-
den. Mit der Anweisung ‘

RENUM 10,30,10

beginnt die Neunumerierung in der ehemaligen Zeile 30, die die neue Zeilennummer
10 erhélt. Die Zeilennummern werden in Zehnerschritten erhoht.

RENUM 10,30,20

bewirkt eine Neunumerierung bei der ehemaligen Zeile 30, die die neue Zeilennum-
mer 10 zugeordnet bekommt. Die Erh6hung erfolgt in Zwanzigerschritten, also 10, 30,
50, 70 usw.

Sie koénnen jede einzelne Option von RENUM alleinstehend verwenden. Wenn Sie
jedoch beispielsweise nur eine unterschiedliche Erh6hung festlegen, sollten Sie fiir die
beiden ersten Optionen Kommata als Stellenmerker setzen, um kennzuzeichnen, daf3
Sie einen Erhohungswert und nicht eine neue erste Zeilennummer oder Anfangszeile
angeben wollen (z.B. RENUM ,,20).

RENUM paBt alle Zeilennummern-Referenzen in GOTO-, GOSUB-,IF ... THEN ...
ELSE-, ON ... GOTO- und ON ... GOSUB-Anweisungen an die neue Zeilennume-
rierung an. Haben Sie in einer dieser Anweisungen eine nicht existierende Zeilennum-
mer verwendet, wird diese unverdndert belassen.

Sie konnen RENUM nicht dazu verwenden, um die Reihenfolge der Programmzeilen
zu verandern.

RENUM legt eine Datei mit der Bezeichnung BASIC.WRK auf der derzeit im Lauf-
werk befindlichen Diskette an. Aus diesem Grund darf die eingelegte Diskette nicht
mit einem Schreibschutz versehen sein.

C-99

Beispiel:

Ok 15 X=5

Ok20Z=3

Ok25Y=10

Ok 30 PRINT X+Y-Z

Ok RENUM
LIST

10 X=5

20Z=3 "

30Y=10

40 PRINT X+Y-Z

Ok

C-100

REPLACE REPLACE DATELBAS ANWEISUNG
REPLACE DATELBAS, 100-800

Syntax: REPLACE [<Dateiname>][,<Zeilennummern-Liste>]
Effekt: Ersetzt eine alte Version einer Datei durch eine neue Version.
Erklérung:

REPLACE wird zusammen mit OLD oder LOAD verwendet. Nachdem Sie eine alte
Datei geladen und iiberarbeitet haben, wird mit REPLACE die tiberarbeitete Fassung
der Datei auf Diskette abgelegt, wobei die alte Datei geldscht wird.

Wenn Sie einen Dateinamen angeben, speichert REPLACE das Originalprogramm
unter <Dateiname> und nicht unter dem Original-Dateinamen. Sie konnen Teile
eines Programmes speichern, wenn Sie die betreffenden Zeilennummern hinter
REPLACE angeben.

In der Regel entspricht REPLACE dem Befehl SAVE. Es besteht lediglich der Unter-
schied, daB3 mit REPLACE der Name der Datei, die Sie speichern wollen, bereits ei-
ner anderen Datei zugeordnet worden sein darf. In untenstehendem Beispiel wird das
Programm ZAEHLEN in den Arbeitsspeicher geladen, die Zeile 130 ersetzt und die
liberarbeitete Fassung auf Diskette gespeichert.

Beispiel:
Ok OLD ZAEHLEN
Ok 130 IF X = 10 THEN END

Ok REPLACE
Ok

C-101

RESET RESET ANWEISUNG

Syntax: RESET

Effekt: RESET legt den Inhalt des Ausgabefensters in den Grafik-Spei-
cher ab.

Erkldrung:

Wenn die Option “Buffered Graphics“ aktiviert ist, kopiert RESET den Inhalt des
Ausgabefensters in den Grafik-Speicher. Dadurch kann eine Grafik auf Diskette ab-
gelegt, und nach der Ausfithrung weiterer Grafik-Operationen wieder ins Ausgabe-
fenster eingebracht werden. Uber die Anweisung OPENW wird der Inhalt des Grafik-
Speichers wieder zuriick ins Ausgabefenster gebracht.

Beispiel:

10 COLOR 1,1,1,1,1:FULLW 2

Ok 20 CIRCLE 100,100,50

Ok 30 RESET: "LEGT DAS BILD IM SPEICHER AB
Ok 40 CLEARW 2

Ok 50 PCIRCLE 100,100,50

Ok 60 FOR I=1 TO 1000:NEXT

Ok 70 OPENW 2

Ok 80 END

C-102

RESTORE RESTORE 200 ANWEISUNG

Syntax: RESTORE <Zeilenangabe>
Effekt: Liest DATA-Anweisungen neu.
Erklarung:

RESTORE ermoglicht eine Spezifikation der DATA-Anweisung, die Sie zusammen
mit READ-Anweisungen verwenden wollen. RESTORE sucht den ersten Begriff der
ersten DATA-Anweisung in oder nach der angegebenen Programmzeile und kenn-
zeichnet diesen als Startpunkt fiir die nichste READ-Anweisung.

Sie konnen jede beliebige DATA-Anweisung durch Angeben der betreffenden Zei-
lennummer als Objekt einer RESTORE-Anweisung festlegen. Die mit RESTORE
verwendete Zeilenangabe muf sich nicht auf die DATA-Anweisung beziehen; die an-
gegebene Zeilennummer muf} auch nicht unbedingt im Programm vorhanden sein.
Die néchste READ-Anweisung sucht die DATA-Anweisung direkt in der angegebe-
nen Programmzeile, bzw. in den darauffolgenden Zeilen.

Beispiel:

Ok 10READ X,Y,Z
Ok 20 RESTORE
Ok 30 DURCHSCHNITT = (X + Y + Z)/3
Ok 40 DATA 23.4,89.2, 77
Ok 50 PRINT DURCHSCHNITT
Ok 60 READ X,Y,Z
Ok 70 ERGEBNIS = X * Y * Z
Ok 80 PRINT ERGEBNIS
Ok 90 END
Ok RUN
63.2
160720
Ok

C-103

RESUME RESUME (0) : ANWEISUNG
2 RESUME NEXT
RESUME 200

Syntax: RESUME (0)
RESUME NEXT
RESUME <Zeilenangabe>

Effekt: Féhrt nach einem Fehler mit dem Programmlauf fort.

Erklarung:

Nach der Aufdeckung und Behebung eines Fehlers wird mit RESUME der normale
Programmlauf wieder aufgenommen. Sie diirfen eine RESUME-Anweisung nur am
Ende einer Fehleraufdeckungs-Routine schreiben. Die Ausfiihrung einer RESUME-
Anweisung an einer anderen Stelle innerhalb eines Programmes wiirde einen unauf-

findbaren Fehler ergeben.

RESUME allein oder mit einer nachgestellten‘Null gibt die Programmkontrolle an die
Anweisung zuriick, bei der der Fehler auftrat.

RESUME NEXT iibergibt die Programmkontrolle an die ndchste Anweisung nach
der Anweisung, die den Fehler verursachte.

RESUME <Zeilenangabe> iibergibt die Programmkontrolle an die angegebene Zei-
lennummer.

Beispiel:
Ok 100 ON ERROR GOTO 700

Ok 700 IF (ERR = 300) AND (ERR = 150) THEN PRINT
“MINDESTANZAHL ABHANGIGER WERTE IST 1¢: RESUME 140

C-104

RETURN RETURN ANWEISUNG

Syntax: RETURN

Effekt: Ubergibt die Kontrolle von einer Unterroutine an die Anweisung,
die dem letzten GOSUB folgte.

Erklarung:

RETURN iibergibt die Programmausfiihrung an die erste ausfiihrbare Anweisung im
Hauptprogramm hinter einem Unterroutinen-Aufruf. Die Unterroutine kann eine
GOSUB- oder eine ON ... GOSUB-Anweisung sein.

Beispiel:

Ok 10 GOSUB ALPHA
Ok 20 REM RUCKKEHRPUNKT DER UNTERROUTINE
Ok 30 PRINT A
Ok 40 GOTO 200
Ok ALPHA: REM BEGINN DER UNTERROUTINE
Ok 110 A=5*6
Ok 120 RETURN
Ok 200 END
Ok RUN
30
Ok

C-105

RIGHT$ X$ = RIGHT$(A$,5) FUNKTION

Syntax: X$ = RIGHT$(<Zielstring>,< Anzahl der Zeichen>)

Effekt: Gibt die letzten Zeichen, gerechnet von rechts, einer Zeichen-
kette aus.

Erklarung:

RIGHTS ordnet die von Thnen angegebene Anzahl von Zeichen in einem Zielstring,
gerechnet von rechts, einer neuen String- Variablen zu. Ist die angegebene Zeichenan-
zahl gréBer oder gleich der Stringldnge, wird der gesamte String ausgegeben. Geben
Sie als Anzahl Null an, wird ein Null-String ausgegeben.

Beispiele:

Ok 10 AS$ = “Marketing-Strategie*

Ok 20 B$ = “Regionale Aktionen“

Ok 30 C$ = “Testergebnisse“

Ok 40 INPUT “KATALOG NUMMER“; KATALOGS

Ok 50 IF RIGHT$(KATALOGS,1) = “1“ THEN PRINT “SIE HABEN
GEWAEHLT: “

Ok 60 PRINT “TEST KATALOG SERIE 1¢

Ok 70 PRINT “BITTE WAEHLEN SIE AUS: “

Ok 80 PRINT A$

Ok 90 PRINT B$

Ok 100 PRINT C$

Ok RUN

KATALOG NUMMER? ATARI GESAMTKATALOG 201
SIE HABEN GEWAEHLT:

TEST KATALOG SERIE 1.

BITTE WAEHLEN SIE AUS:

Marketing-Strategie

Regionale Aktionen

Testergebnisse

Ok

Ok 10 A$ = “ST BASIC*
Ok 20 B$ = RIGHTS$(AS,5)
Ok 30 PRINT B$

RUN

BASIC

Ok

C-106

RND X=RND FUNKTION

X=RND(Y)

X=RND()

X=RND (-Y)
Syntax: X = RND [(<numerischer Ausdruck>)]
Effekt: Generiert eine Random-Zahl und gibt sie aus.

Erklarung:

RND gibt eine uniform verteilte Zufallszahl, die zwischen 0 und 1 liegt, aus. Falls Sie
vor Verwendung der RND-Anweisung keine RANDOMIZE-Anweisung gesetzt ha-
ben, wird dieselbe Folge zufillig gewihlter Zahlen bei jedem Programmlauf wieder
generiert.

Die Funktionsweise von RND ist unterschiedlich, abhédngig davon, ob der numerische
Ausdruck eine positive oder negative Zahl oder eine Null ist:

RND (<positive Zahl>) gibt die nachste Zahl der derzeitigen Sequenz aus.

RND (0) gibt die zuletzt erstellte Random-Zahl aus, ohne die derzeitige Sequenz zu
beeinflussen.

RND (<negative Zahl>) setzt den Random-Zahlengenerator mit der negativen Zahl
neu und gibt die erste zufillig gewiahlte Zahl innerhalb der neuen Sequenz aus.

‘Die Angabe des numerischen Ausdruckes ist optional. Wird hierfiir keine Angabe
gemacht, handelt RND, als hitten Sie einen positiven Ausdruck als Argument einge-
setzt.

Anmerkung: Lesen Sie hierzu auch unter RANDOMIZE nach.
Beispiel:

Ok 10 RANDOMIZE

Ok 20 X = RND

Ok 30 WURF$ = “ZAHL“

Ok 40 IF X >.5 THEN WURF$ = “KOPF*

Ok 50 INPUT “KOPF ODER ZAHL“;W$

Ok 60 IF W$ = WURF$ THEN PRINT “GEWONNEN“ ELSE PRINT
“VERLOREN*

Ok RUN

Angabe der Random-Zahl (zwischen -32768 und +32767)? 2
KOPF ODER ZAHL? ZAHL

GEWONNEN

Ok

C-107

RSET RSET A$=B$ ANWEISUNG

Syntax: RSET <String-Variable>=<String- Ausdruck>

Effekt: Verschiebt eine Zeichenkette in eine angegebene String-Variable,
ohne die String-Variable neu zuzuordnen.

Erklirung:

RSET wird in der Regel dazu verwendet, um Daten in Datei-Speicher einzubringen.
Dazu werden die Daten in Variablen zuriickgesetzt, die iliber eine vorhergehende
FIELD-Anweisung in Dateispeichern abgelegt wurden.

Ist der zu verschiebende String kiirzer als der Ziel-String, setzt RSET den String
rechtsbiindig an und fiillt ihn links mit Leerzeichen auf. Ist die Zeichenkette ldnger als
der Ziel-String, werden die zusétzlichen Zeichen von RSET nicht beachtet.

Zahlen miissen mit RSET oder LSET umgewandelt werden, bevor sie mit MKSS$,
MKI$ oder MKD$ verwendet werden konnen.

Beispiel:
Ok 10 OPEN “R“,#3,“TEST*
Ok 20 FIELD #3,20 AS A$,20 AS B$

Ok 30 RSET A$=X$
Ok 40 RSET B$§=STRESS$

C-108

RON RUN BEFEHL
RUN ,200
RUN DATELBAS

Syntax: RUN
RUN <,Zeilenangabe>
RUN <Dateiname>

Effekt: Beginnt einen Programmlauf.
Erkldrung:

RUN fiihrt ein derzeit im Speicher oder auf einer Diskettendatei befindliches Pro-
gramm aus. Die Programmausfiihrung beginnt in der ersten Programmzeile, sofern
Sie nicht andere Vorgaben gemacht haben. Ist das auszufiihrende Programm in einer
Diskettendatei abgelegt, 16scht RUN jedes im Arbeitsspeicher befindliche Programm,
bevor das angegebene Programm geladen wird.

Programmausgaben erscheinen im Ausgabefenster.

Um den Programmlauf anzuhalten und den BREAK-Modus zu aktivieren, betitigen
Sie die Tastenkombination [CONTROL][G] oder klicken auf die Option “Break” im
Meni “Run“.

Wollen Sie mit der Programmausfithrung fortfahren, geben Sie CONT ein oder driik-
ken Sie [RETURN].

Wenn Sie den BREAK-Modus verlassen und gleichzeitig die Programmausfiihrung
beenden wollen, geben Sie STOP oder END ein. Mit [CONTROL][C] wird der Pro-
grammlauf abgebrochen und Sie kehren zuriick zu ST BASIC.

C-109

SAVE SAVE DATEI BEFEHL
SAVE DATEI 20-30 '
SAVE DATE]I, 10, 30, 70, 80
SAVE DATEL -30

Syntax: SAVE [<Dateiname>], [<Zeilenangabe-Liste>]
Effekt: Speichert Programmzeilen auf Diskette.
Erkldrung:

SAVE legt ein Programm, bzw. die von Ihnen angegebenen Zeilen eines Programmes
in einer Diskettendatei ab. SAVE ergianzt den Dateinamen mit dem Extender .BAS,
sofern Sie keine anderen Vorgaben machen. Wenn Sie versuchen, ein Programm mit
SAVE unter einem bereits auf der Diskette befindlichen Dateinamen zu speichern, er-
halten Sie eine Fehlermeldung. SAVE ersetzt eine bereits bestehende Diskettendatei
nicht durch ein neues Programm.

Um eine bestehende Diskettendatei mit einem neuen Programm zu iiberschreiben,
verwenden Sie REPLACE.

SGN X =SGN() FUNKTION
Syntax: X = SGN(<numerischer Ausdruck>)

Effekt: Gibt das Vorzeichen einer Zahl aus.

Erklérung:

SGN gibt 1 aus, wenn der numerische Ausdruck positiv ist, —1, wenn er negativ ist,
und 0, wenn der Ausdruck Null entspricht.

Beispiel:

Ok 10 X = SGN(-3)
Ok 20 Y = SGN(0)
Ok 30 Z = SGN(2)
Ok 40 PRINT X'
Ok 50 PRINT Y
Ok 60 PRINT Z
Ok RUN
-1

0

1
Ok

C-110

SIN X =SIN(®Y) FUNKTION

Syntax: X = SIN(<numerischer Ausdruck>)

Effekt: Gibt den Sinus eines Argumentes, das in Radian ausgedriickt wird,
aus.

Erklarung:

Die Funktion SIN geht davon aus, daf3 der Ausdruck ein in Radian angegebener Win-
kel ist. Um Gradzahlen in Radianzahlen umzuwandeln, multiplizieren Sie die Grad-
zahl mit Pi und teilen das Ergebnis durch 180 (Pi = 3.141593). SIN wandelt Integerzah-
len in Realzahlen um und gibt Realzahlen aus.

Beispiel:
Ok 10 PRINT SIN(23)
Ok RUN

—.84622
Ok

C-111

SOUND SOUND STIMME, LAUTSTARKE, NOTE, ANWEISUNG

OKTAVE, STIMME

Syntax: SOUND <numerischer Ausdruck>, <numerischer Ausdruck>,
<numerischer Ausdruck>, <numerischer Ausdruck>, <numeri-
scher Ausdruck>,

Effekt: SOUND steuert die drei Tonkanile.

Erklérung:
Mit SOUND werden Musiknoten generiert.

Fir STIMME (voice) wird die Kennzahl des verwendeten Tonkanales (1-3) angege-
ben.

Uber LAUTSTARKE (volume) kann die Lautstéirke geregelt werden (0 = Aus, 15 =
grofite Lautstérke).

Mit NOTE (note) und OKTAVE (octave) wird die Tonhohe einer Note eingestellt.
Sie geben eine Oktaven-Kennzahl (zwischen 1 und 8), sowie eine Noten-Kennzahl
(zwischen 1 und 12) an. Die Noten-Kennzahlen entsprechen den Noten-Positionen auf
der Tonleiter. Ein 440 Hz A entspricht Note 10 in Oktave 4.

DAUER (duration) entspricht der Zeitdauer (gerechnet in 1/50 Sekunden), iiber die
eine Note gehalten wird, bevor der néchste Ton beginnen soll. Die letzte SOUND-An-
weisung fiir jede Stimme sollte grundsitzlich den Ton abschalten (z.B. SOUND
3,0,0,0,0). Sie konnen die SOUND-Anweisung auch als Timing-Funktion verwenden.
Setzen Sie hierzu die Lautstirke auf 0 und die Dauer auf die gewiinschte Verzégerung.

Beispiel:
Ok 10 SOUND 1,8,12 .4,
Ok 20 SOUND 1,8,9,4,2
Ok 30 SOUND 1,0,0,0,0,

25
5

C-112

SPACE$ X$ = SPACES(Y) FUNKTION

Syntax: X$= SPACE$(<numerischer Ausdruck>)
Effekt: Gibt einen String mit Leerzeichen aus.
Erklérung:

SPACES gibt die iiber den numerischen Ausdruck von Thnen angegebene Anzahl von
Leerzeichen aus. Der Wert des Ausdruckes muf3 zwischen 0 und 255 liegen.

Anmerkung: Wenn Sie lediglich zum Drucken eine Anzahl von Leerzeichen erstellen
wollen, sollten Sie besser die Funktion SPC (X) verwenden.

Beispiel:

Ok10X =10
Ok20FORV=1TO5
Ok 30 PRINT SPACES$(X); ““
Ok 40 NEXT V
OkS0FORZ=1TO21
Ok 60 PRINT “-“;

Ok 70 NEXT Z

Ok RUN

C-113

SPC PRINT SPC(X) FUNKTION

Syntax: PRINT SPC(<numerischer Ausdruck>)
Effekt: Gibt Leerzeichzen an eine PRINT-Anweisung aus.
Erklarung:

SPC druckt die Anzahl von Leerzeichen aus, die Sie iber den numerischen Ausdruck
vorgeben. Der Ausdruck muf3 zwischen -32768 und 32767 liegen.

Ist die vorgegebene Anzahl von Leerzeichen grofler als die eingestellte Zeilenbreite
fiir den Drucker, wird der Wert iiber MOD entsprechend umgewandelt. (Nihere In-
formationen iiber die Umwandlung von Zeichen mit MOD erhalten Sie unter CHRS$.)

Wenn beispielsweise die Zeilenbreite auf 72 Zeichen eingestellt ist und der numerische
Ausdruck mit 100 eingegeben wird, fiigt SPC 28 Leerzeichen ein.

Ist der numerische Ausdruck groBer als 255, entspricht die Anzahl eingefiigter Leer-
zeichen dem numerischen Ausdruck MOD 255.

Anmerkung: Verwenden sie SPC immer nur zusammen mit PRINT, LPRINT und
PRINTH.

Beispiel:
Ok 10 PRINT “ALPHABET*
Ok 20 PRINT
Ok 30 PRINT “A“SPC(3)“a“SPC(7)“B“SPC(3)“b“SPC(7)“C*“SPC(3)“c*
Ok RUN
ALPHABET
A a B b C ¢
SQR X=SQR() FUNKTION
Syntax: X = SQR(numerischer Ausdruck)
Effekt: Gibt die Quadratwurzel einer Zahl aus.
Erkldrung:

Die Zahl darf kein negatives Vorzeichen haben. SQR gibt eine Realzahl aus.
Beispiel:

Ok 10 PRINT SQR(9)

Ok RUN

3
Ok

C-114

STEP STEP BEFEHL
STEP, 200
STEP PROGR.BAS

Syntax: STEP
STEP <,Zeilenangabe>
STEP <Dateiname>

Effekt: Fiihrt ein Programm zeilenweise aus.
Erklarung:

STEP fiihrt ein Programm zeilenweise aus, wobei jede Zeile und eventuelle Ausgabe
dargestellt wird. Erst nach Betitigen von [RETURN] wird die nachste Zeile ausge-
fihrt.

Um den STEP-Modus zu verlassen, geben Sie CONT ein. Damit wird der Programm-
lauf weltergefuhrt Wollen Sie d1e Programmausfiihrung nach STEP abbrechen,
geben Sie END ein.

Beispiel:

Ok10X =9
Ok 20 PRINT X
Ok 30 PRINT “WIE GEHT ES DIR?“
Ok 40 END
- Ok STEP, 10
S 10 X=9
BR [RETURN]
S 20 PRINT X
BR [RETURN]
$ 30 PRINT “WIE GEHT ES DIR?*
BR [RETURN]
WIE GEHT ES DIR?
S 40 END
BR [RETURN]
Ok

C-115

STOP STOP ANWEISUNG

Syntax: STOP

Effekt: STOP hélt die Programmausfithrung an und iibergibt die Kontrolle
iiber BASIC an das Befehlsfenster.

Erklarung:

Nach der Eingabe von STOP ist das Programm im BREAK-Level. Sie konnen ein Pro-
gramm an jeder Stelle iiber STOP anhalten. Im Gegensatz zu END beld3t STOP Da-
teien gedffnet, springt in den BREAK-Modus und ermdglicht ein Fortfahren mit der
Programmausfithrung zu einem spateren Zeitpunkt. Zudem wird bei Verwendung von
STOP die Meldung “STOP“ ausgegeben.

Mit CONT oder [RETURN] konnen Sie den Programmlauf wieder aufnehmen.
Beispiel:

Ok 10 A=4:B=6:C=8
Ok 20 PRINT A,A*B
Ok 30 STOP
Ok 40 PRINT C*A
Ok 50 END
Ok RUN

4 24
Stop at line 30
Br CONT

32
Ok

C-116

STR$ X$ = STR$(Y) 'FUNKTION

Syntax: X$ = STR$(<numerischer Ausdruck>)

Effekt: Gibt einen String aus, der das dem Argument entsprechende Dezi-
malzeichen enthalt.

Erklarung:

Der ausgegebene String enthélt die Standard-Reprisentation des Ausdruckes. Er
beinhaltet die Zeichen, die ausgedruckt wiirden, wenn eine PRINT-Anweisung ausge-
fiihrt worden wire.

Bei positiven Zahlen setzt STRS ein Leerzeichen fiir das Pluszeichen vor die Zahl.
STRS 16scht alle Leerzeichen, die hinter einer Zahl angegeben wurden.

VAL ist das Gegenstiick zu STRS.
Lesen Sie hierzu auch unter OCT$ und HEXS$ nach.
Beispiel:

Ok 10 VORWAHL = 089
Ok 20 PRINT STR$(VORWAHL) + “ (MUENCHEN)*
Ok RUN
089 (MUENCHEN)
Ok “

C-117

STRINGS$ X$ = STRINGS$(Y,A$) FUNKTION
X$ = STRING$(Y,N) |

Syntax: X$ = STRINGS$(<numerischer Ausdruck>,<numerischer oder
String- Ausdruck>)

Effekt: Gibt einen String mit der angegebenen Lénge aus. Die Zeichen
werden durch das zweite Argument definiert.

 Erklarung:

Der erste numerische Ausdruck gibt die Linge des Strings aus, der iiber STRINGS$
ausgegeben wird. Er muf zwischen 0 und 255 liegen.

Fiir den zweiten Parameter konnen Sie sowohl einen numerischen, als auch einen
String-Ausdruck verwenden. Innerhalb eines numerischen Ausdruckes muf3 die
Angabe eines Zeichens liber seinen ASCII-Code erfolgen. Ein String-Zeichen kann in
beliebiger Weise angegeben werden.

STRINGS gibt eine Zeichenkette in der angegebenen Linge aus, die das Zeichen ent-
hélt, das entweder iiber den ASCII-Code oder den ersten Buchstaben des String- Aus-
druckes spezifiziert wurde.

STRINGS produziert eine geringfiigigere Speicheraufsplittung und arbeitet erheblich
schneller als ein Verketten. Wenn Sie eine Zeichenkette erstellen, die eine Anzahl
verschiedener Zeichen enthilt, ist die Verwendung von STRINGS$ oder SPACES fiir
- die Generierung eines Strings in der erforderlichen Linge, sowie die Verwendung von
MIDS$ fiir das Einbringen individueller Zeichen in diesen String effizienter als ein Ver-
ketten von Zeichenketten.

Beispiel:
Ok 10 Z$ = STRINGS$(20,“*)
Ok 20 PRINT Z$
Ok RUN
sk ok sk sk sk ok sk ok sk R oskok Sk Rk ok kokok
Ok

C-118

SWAP SWAP X,Y ANWEISUNG

Syntax: SWAP <erste Variable>,<zweite Variable>
Effekt: Vertauscht die Werte zweier Variablen.
Erklédrung:

Sie konnen jeden Variablentyp mit SWAP austauschen. Allerdings miissen die beiden
Variablen, zwischen denen Werte getauscht werden sollen, vom gleichen Typ sein. Es
besteht die Moglichkeit, Array-Variablen auszutauschen. Arrays selbst konnen dage-
gen nicht getauscht werden. '

SWAP A% (3),B%(7.,5) ist eine giiltige Anweisung
SWAP A%(),B%() ist ungiiltig

Beispiel:

Ok 10 X$ = “THOMAS BERGER*

Ok 20 Y$ = “ANNE MEIER“

Ok 30 O$ = “EHEMALIGER*“

Ok 40 C$ = “NEUER*®

Ok 50 M$ = “MARKETING MANAGER: “

Ok 60 PRINT O$;M$;X$

Ok 70 SWAP X$,Y$

Ok 80 SWAP 0O3$,CS$

Ok 90 PRINT O$;M$;X$

Ok RUN

EHEMALIGER MARKETING MANAGER: THOMAS BERGER
NEUER MARKETING MANAGER: ANNA MEIER
Ok

C-119

SYSTAB X = PEEK(SYSTAB+OFFSET) VARIABLE

Syntax: X =PEEK(SYSTAB+OFFSET)
Effekt: Systemzeiger-Tabelle.
Erklarung:

SYSTAB ist die Anfangs-Speicheradresse einer Tabelle mit Systemparametern und
-zeigern. Mit Ausnahme der Adresse SYSTAB+2, die eine READ/WRITE-Spei-
cherstelle .ist, ist SYSTAB eine READ/ONLY-Speicherstelle.

SYSTAB enthilt lediglich 2-Byte Werte. Lediglich SYSTAB+20, der Grafikspeicher-
Zeiger, enthilt eine 4-Byte Long-Integeradresse.

Der Grafikspeicher umfaf3t 32768 Bytes. SYSTAB ist folgendermaf3en organisiert:

Offset Funktion

0 Grafik-Auflésung (Ebenen) 1 = HI,2 =MED, 4 =10
2 Aussehen der “Ghostline“ im Editor (siehe nachstehende Tabelle)
*4 EDIT AES Handhabung
*6 LIST AES Handhabung
*8 OUTPUT AES Handhabung
*10 COMMAND AES Handhabung
12 EDIT Offnungs-Flag (0 = geschlossen, 1 = gedffnet)
14 LIST Offnungs-Flag (0 = geschlossen, 1 = geoffnet)
16 OUTPUT Offnungs-Flag (0 = geschlossen, 1 = gedffnet)
18 COMMAND Offnungs-Flag (0 = geschlossen. 1 = getffnet)
20 Grafik-Speicher (4-Byte Zeiger auf 32768 Byte Speicher, sofern
BUFFERED GRAPHICS aktiviert ist)
**24 GEMFLAG (0 = Normal, 1 = Aus)

BIT BESCHREIBUNG

0 Verstarkt

1 Intensitat

2 Schrig

3 Unterstrichen
4 Invertiert

5 Schattiert

C-120

* Die Verwendung der mit einem Sternchen (*) gekennzeichneten Offsets setzt
Kenntnisse tiber das TOS Betriebssystem voraus.

** GEMDOS kann dazu verwendet werden, um die Wechselwirkung zwischen ST
BASIC und GEM abzuschalten und dadurch die Verarbeitungsgeschwindigkeit zu
steigern. Ist BASIC abgeschaltet, konnen keinerlei BASIC-Funktionen ausgefiihrt
werden, bei denen der Bildschirm, die Maus oder die Tastatur involviert ist. Disk I/O-
und Verarbeitungsfunktionen sind verfiigbar. In Threm Programm muf diese Wech-
selwirkung wieder aktiviert werden, bevor Anwender-Eingaben in irgendeiner Form
angenommen werden konnen.

SYSTEM SYSTEM BEFEHL
Syntax: SYSTEM

Effekt: VerlaBt ST BASIC und kehrt zuriick zum GEM.

Erklarung:

SYSTEM schlief3t alle Dateien und bringt Sie zuriick zum GEM- Befehlslevel. Jedes
im Arbeitsspeicher befindliche Programm, das nicht zuvor auf Diskette gespeichert
wurde, wird damit geldscht.

SYSTEM ist von der Funktion her identisch mit QUIT.

Beispiel:

Ok SYSTEM

C-121

TAB PRINT TAB(Y) FUNKTION

Syntax: PRINT TAB(<Tabulatorposition>)
Effekt: Bewegt den Cursor an eine angegebene Tabulatorposition.
Erkldrung:

TAB wird in Kombination mit PRINT, LPRINT und PRINT# verwendet.

Die Angabe der Tabulatorposition muf3 im Bereich zwischen -32768 und +32767
liegen. Liegt die derzeitige Druckposition bereits hinter der spezifizierten Tabulator-
position, springt TAB in die nichste Zeile und dort an die Tabulatorposition, die Sie
vorgegeben haben. Spalte 1 ist die am weitesten links liegende Tabulatorposition. Die
duBerste rechte Position wird durch eine WIDTH-Anweisung definiert. Ist die angege-
bene Position grofer als 255, wird die Angabe iiber MOD 255 umgerechnet. Ist die Po-
sition gréfer oder gleich der vorgegebenen Zeilenbreite, wird ebenfalls iiber MOD
(Breite) umgerechnet.

Nihere Informationen tiber das Umrechnen von Werten mit MOD erhalten Sie unter
CHRS.

- Beispiel:

Ok 10 PRINT “1985 EINKUENFTE IM QUARTAL*
Ok 20 PRINT

Ok 30 PRINT TAB (10)“WINTER*

Ok 40 PRINT TAB (70)“ZU WEIT*

Ok 50 PR™NT TAB (100)“SOMMER*“

Ok 60 EN)

Ok RUN

1985 EIN] UENFTE IM QUARTAL
\ WINTER

ZU WEI1

SOMMER

C-122

TAN X=TAN(Y) FUNKTION

Syntax: X = TAN(<Winkel in Radian>)
Effekt: Gibt die Tangente einer Zahl aus.
Erklarung:

Die Funktion TAN arbeitet auf der Basis trigonometrischer Werte und gibt eine Real-
zahl aus. Um Gradzahlen in Radianangaben umzuwandeln, multiplizieren Sie die
Gradzahl mit PI. (PI = 3.141593.) Dann teilen Sie das Ergebnis durch 180.

Anmerkung: Alle trigonometrischen Funktionen von ST BASIC erfordern eine Anga-
be der Winkel in Radian.

Beispiel:

Ok 10 RADIAN! = 34

Ok 20 TANGENTE! = TAN(RADIAN!)
Ok 30 PRINT TANGENTE!

Ok RUN

—.6235

Ok

C-123

TRACE TRACE BEFEHL

TRACE 20,40
TRACE20-40
TRACE -40
Syntax: TRACE [<Zeilenangaben-Liste>]

Effekt: Verfolgt den Programmlauf Zeile fiir Zeile und druckt selektiv die
. gesamte Zeile aus.

Erklarung:

Sie konnen den Befehl TRACE fiir die Aufdeckung und Behebung von Programmier-
fehlern verwenden, um die Programmzeilen wéhrend ihrer Ausfithrung darstellen zu
lassen.

TRACE zeigt jede Programmzeile an, bevor sie ausgefithrt wird.

TRACE 20, 40 stellt die Zeilen 20 und 40 jedesmal dar, wenn sie ausgefiihrt werden.
TRACE 20-40 druckt die Zeilen 20 bis 40 bei jeder Ausfithrung aus.

UNTRACE beendet den TRACE-Modus.

Lesen Sie hierzu auch unter TRON und FOLLOW nach.

Beispiel:

Ok10FORX =1TO2
Ok20N=N+1
Ok30B=B +1

Ok 40 PRINT N

Ok 50 PRINT B

Ok 60 NEXT X

Ok RUN

O TRACE
O RUN

T "FORX=1TO2
T20N=N+1
T30B=B +1
T 40 PRINT N
1

T 50 PRINT B
1

T 60 NEXT X
T20N=N+1
T30B=B+1

C-124

T 40 PRINT N

1
T 50 PRINT B
2
T 60 NEXT X
Ok UNTRACE
Ok
TROFF TROFF BEFEHL
TROFF10,40
TROFF 10-40
TROFF -40
Syntax: TROFF [<Zeilenangabe-Liste>]
Effekt: TROFF schaltet den Befehl TRON ab.
Erklarung:

TROFF schaltet den Befehl TRON entweder vollsténdig, oder lediglich fiir bestimmte
Programmezeilen ab.

Lesen Sie hierzu auch unter TRON nach.

TRON TRON ' BEFEHL
_ TRON 20,40

TRON 20-40
TRON -40

Syntax: TRON [<Zeilenangabe-Liste>]

Effekt: Verfolgt selektiv den Programmlauf und druckt die Zeilen-
nummern aus.

Erklarung:

TRON wird fiir die Fehleraufdeckung und -behebung verwendet, um den Programm-
lauf zeilenweise nachvollziehen zu konnen.

TRON stellt jede Programmzeile wihrend ihrer Ausfiihrung dar und behilt die Uber-
sicht tiber die Werte von Variablen. Die Zeilenangabe erfolgt in eckigen Klammern.

Mit TROFF wird der Befehl TRON abgeschaltet.

Lesen sie hierzu auch unter TRACE und FOLLOW nach.

C-125

Beispiel:

Ok10FORX=1TO3
Ok20N= N+1
Ok30B= B +1

Ok 40 PRINT N
Ok 50 PRINT B
Ok 60 NEXT X
Ok RUN
1
1
2
2
3
3
Ok TRON
Ok RUN
[10]
20]
30]
[40] 1 (erscheint im Ausgabefenster)
[50] 1 (erscheintim Ausgabefenster)
60]
20]
30]
[40] 2 (erscheint im Ausgabefenster)
[50] 2 (erscheint im Ausgabefenster)
60] .
20]
30]
[40] 3 (erscheint im Ausgabefenster)
[50] 3 (erscheint im Ausgabefenster)
[60]
Ok TROFF
Ok

C-126

UNBREAK

UNBREAK BEFEHL
UNBREAK 20,50

UNBREAK -50

UNBREAK 20-50

Syntax:
Effekt:

Erklarung:

UNBREAK [<Zeilenangabe-Liste>]

Widerruft selektiveinen BREAK-Befehl.

UNBREAK widerruft den Befehl BREAK entweder vollstdndig oder fiir die angege-

benen Zeilen.

Lesen Sie hierzu auch unter BREAK nach.

UNFOLLOW UNFOLLOW BEFEHL
UNFOLLOWX,Y

Syntax: UNFOLLOW [<Variable<],[<Variable>]

Effekt: Widerruft den Befehl FOLLOW entweder vollstédndig oder fiir die
angegebenen Variablen. '

Erklarung:

UNFOLLOW hebt den Befehl FOLLOW entweder vollstidndig, oder lediglich fiir die
angegebenen Variablen auf. '

Lesen Sie hierzu auch unter FOLLOW nach.

C-127

UNTRACE UNTRACE BEFEHL

UNTRACE10,40,70
UNTRACE10-40
UNTRACE -40
Syntax: UNTRACE [<Zeilenangabe-Liste>]
Effekt: Widerruft den Befehl TRACE.

Erklarung:

UNTRACE widerruft den Befehl TRACE entweder vollstédndig oder fiir angegebene
Zeilennummern.

Lesen Sie hierzu auch unter TRACE nach.

VAL » X=VAL(AS) . FUNKTION

Syntax:. X = VAL(<Ziffernstring-Ausdruck>)

Effekt: Durchsucht einen Zeichen-String und wandelt die Zeichen in Real-
zahlen um. '

Erklarung:

VAL durchlduft eine Zeichenkette von links nach rechts und iiberspringt dabei voran-
gestellte Leerzeichen, Tabulatorenstops und Zeilenvorschiibe, bis das Ende der Zei-
chenkette erreicht, bzw. bis ein Zeichen gefunden wurde, das keiner Ziffer entspricht.
VAL durchsucht Strings in derselben Weise, in der die Anweisung INPUT4 in nume-
rischen Variablen liest.

Ist das erste Zeichen des Strings kein giiltiger Teil einer Zahl, gibt VAL eine Null aus.
VAL ist das Gegenstiick zu STRS.
Beispiel:

Ok 10 READ ID$

Ok 20 IF VAL(ID$) < 300 THEN 30

Ok 30 VERFALLDATUMS = “1. JAN. 1986
Ok 40 IF VAL(ID$) > 300 THEN 50

Ok 50 VERFALLDATUMS = “1. JAN. 1990%

C-128

VARPTR X = VARPTR(Y) FUNKTION

X =VARPTR(#1)
Syntax: X = VARPTR(<Variable>)

X = VARPTR(#<Dateinummer>)
Effekt: Gibt die Adresse einer Variablen aus.
Erklarung:

Sie konnen VARPTR dazu verwenden, um die Adresse von Variablen zu erfahren,
die an eine Maschinensprache-Unterroutine iibergeben werden sollen. Die Variable
kann beliebiger Art (also auch ein Array) sein. Sie miissen ihr jedoch einen Wert zu-
gewiesen haben, bevor Sie iiber VARPTR ihre Adresse erfahren konnen. VARPTR
gibt einen Wert aus, der der absoluten Adresse des ersten Bytes der bezeichneten
Variablen entspricht.

I‘_m'Falle einer Datei entspricht die Dateinummer der Kennzahl, die Sie der Datei beim
Offnen zugewiesen hatten. VARPTR gibt die Startadresse des Eingabe-/Ausgabe-
speichers der Datei aus.

Beispiel:
Ok 50 X = VARPTR(MATERIAL)

VDISYS VDISYS(®1) FUNKTION
Syntax: VDISYS(<Test-Argument<)
Effekt: Ermoéglicht dem Anwender, Zugriff auf das VDI Interface des

Betriebssystemes zu nehmen.
Erkldrung:

Um Zugriff auf das VDI Interface zu nehmen, miissen Sie die Arrays CONTRL,
INTIN UND PTSIN mit den entsprechenden Werten POKEn, bevor Sie VDISYS auf-
rufen. Uber die Arrays INTOUT und PTSOUT kann eine Ausgabe vom VDI-Level
aus erfolgen.

Beispiel:

Ok 10 REM KREIS BEI 50,50 MIT RADIUS 25
Ok 20 COLOR 1,1,1,1,1 :FULLW 2

Ok 30 POKE CONTRL,11

Ok 40 POKE CONTRL+2,3

Ok 50 POKE CONTRL+6,0

Ok 60 POKE CONTRL+10,4

Ok 70 POKE PTSIN,50

Ok 80 POKE PTSIN+2,50

Ok 90 POKE PTSIN+8,25

Ok 100 VDISYS(1) 120

WAIT WAIT 200,X,Y : ANWEISUNG

Syntax: WAIT <Datenkanal-Nummer>,<Integer-Ausdruck>
[,<Integer-Ausdruck>]

Effekt: Halt das Programm an und wartet darauf, da3 vom I/O- Daten-
kanal ein Bit-Muster entwickelt wird. '

Erkladrung:

WAIT unterbricht einen Programmlauf solange, bis in einem Eingabekanal des
Rechners ein vorgegebenes Bit-Muster erstellt wurde. Der logische Operator XOR
iberpriift die Daten des Kanals darauthin, ob sie dem optional anzugebenden zweiten
Integer- Ausdruck entsprechen. Wird fiir den zweiten Integer- Ausdruck keine Anga-
be gemacht, wird als Wert Null angenommen.

Der Operator AND iiberpriift die Daten dann gegen den ersten Ausdruck. Entspricht
der Wert Null, wird die Programmausfithrung in einer Schleife wieder zuriickgesetzt
und wartet auf die néchsten Daten aus dem Kanal.

Findet WAIT kein Bit-Muster, das als Ergebnis Null ausweist, springt das Programm
in eine Endlosschleife und Sie miissen den Rechner neu booten.

Beispiel:

Ok 100 WAIT 5,&H2,&H3
Ok 110 PRINT “ZAHL GEFUNDEN*

C-130

WAVE : WAVE STIMME, HULLKURVE, FORM, ANWEISUNG
DAUER, VERZOGERUNG

Syntax: WAVE <numerischer Ausdruck>, <numerischer Ausdruck>,
<numerischer Ausdruck>, <numerischer Ausdruck>,
<numerischer Ausdruck>,

Effekt: Mit WAVE koénnen die Wellenformen in einer SOUND-Anwei-
sung eingestellt werden.

Erklarung:

STIMME (voice) gilt fiir das Mixer-Register des Tongenerators. Eine Null auf den
Bits 0-2 aktiviert die Stimmen 1-3. Eine Null auf den Bits 3-5 setzt “noise fiir die Stim-
men 1-3. Sie kdnnen mehr als eine Stimme gleichzeitig aktivieren.

HULLKURVE (envelope) ist das Hiillkurvengenerator-Register. Der Wert 1 auf den

Bits 0-2 aktiviert die Hiillkurve fiir die Stimmen 1-3. Es kénnen mehrere Hiillkurven
gleichzeitig aktiviert werden.

FORM (shape) steht fiir das Register der Hiillkurvenform und Zykluseinstellung. Die
Bits 0-3 werden gemaf der untenstehenden Tabelle gesetzt.

DAUER (period) legt die Zeitdauer der Hiillkurve fest.

VERZOGERUNG (delay) dient zur Einstellung der Zeitintervalle (in 1/50 Sekun-
~ den-Erhohungen), bevor ST BASIC mit dem Programmlauf fortfihrt.

Das Registermodell des Tonerzeugungs-ICs

Register Bit ’ 87 B6 85 B4 B3 B2 B1 BO
RO Kanal A untere 8 Bit (Ton A)
Tonhohe
R1 obere 4 Bit (A)
R2 Kanal é untere 8 Bit (Ton B)
Tonhdhe
R3 obere 4 Bit (B)
R4 Kanal C untere 8 Bit (Ton C)
Tonh&he
RS obere 4 Bit (C)
R6 Rauschen . 5 Bit Rauschperiode
R7 2uordnung ein/aus Rauschen Ton
1/08 I/0A. C B A c B A
R8 Amplitude A M 13 L2 L1 Lo
R9 Amplitude B _ M L3 L2 u Lo
R10 Amplitude C ' M L3 L2 L1 Lo
R11 HUl Lkurven untere 8 Bit (Feinabstimmung)
Frequenz
R12 HUl Lkurven obere 8 Bit (Grobabstimmung)
Frequenz
R13 HUl lkurve E3 E2 3] EO
R14 E/A-Port A 8 Bit Parallelport A

R15 E/A-Port B 8 Bit Parallelport 8

C-131

WEND WEND ANWEISUNG

Syntax: WEND |
Effekt: Kennzeichnet das Ende einer WHILE/WEND-Schleife.
Erklédrung:

WEND kann nur in Verbindung mit WHILE verwendet werden. Es iibergibt die Pro-
grammausfiihrung wieder zuriick an die WHILE-Anweisung. Ein verschachteltes
WEND nimmt Bezug auf die néchstgelegene WHILE-Anweisung.

Lesen Sie hierzu auch unter WHILE nach.
Beispiel: |

Ok 10 X=8

Ok 20 WHILE X
Ok 30 PRINT “$*;
Ok 40 X=X-1

Ok 50 WEND

Ok 60 END

Ok RUN

ARRRRRR
Ok

C-132

WHILE WHILEA<B ANWEISUNG

Syntax: WHILE <logischer Ausdruck<

Effekt: Stellt eine Bedingung auf, die eine WHILE/WEND- Schleife
steuert.

Erklarung:

WHILE beginnt eine WHILE/WEND-Schleife, die solange ausgefiihrt wird, bis der
logische Ausdruck falschist (z.B. 0). Die Anweisungen zwischen WHILE und WEND
werden ausgefiihrt, solange der konditionale Ausdruck innerhalb der WHILE-Anwei-
sung wahr ist.

Die Anweisung WEND am Ende der Schleife gibt die Programmausfiihrung wieder
zuriick an die WHILE-Bedingung. Die Bedingung der WHILE-Schleife wird zahlen-
mafig berechnet und die Schleife wird solange erneut ausgefiihrt, bis die Bedingung
nicht mehr wahr ist (0). Sobald die Bedingung falsch ist, wird der Programmlauf bei
der Anweisung hinter WEND aufgenommen.

Sie konnen WHILE/WEND-Schleifen verschachteln. Jedes WEND gilt fiir das
nichstgelegene WHILE. Die Verwendung von WHILE ohne dazugehoriges WEND
oder umgekehrt verursacht eine Fehlermeldung.

Lesen Sie hierzu auch unter WEND nach.
Beispiel:

Ok 10 M=10

Ok 20 P=5

Ok 30 WHILE M>P
Ok 40 PRINT “ZAEHLSCHLEIFE*
Ok 50 M=M-1

Ok 60 WEND

Ok 70 END

Ok RUN
ZAEHLSCHLEIFE
ZAEHLSCHLEIFE
ZAEHLSCHLEIFE
ZAEHLSCHLEIFE
ZAEHLSCHLEIFE
Ok

C-133

WIDTH WIDTH 72 ANWEISUNG

WIDTH LPRINT 72
Syntax: WIDTH [LPRINT] <Integer-Ausdruck>
Effekt: Stellt die Zeilenbreite fiir den Bildschirm oder Drucker ein.

Erklarung:

Die vorgegebene Zeilenbreite fiir den Bildschirm und den Drucker liegt bei 72 Zei-
chen. Diese Voreinstellung kann iiber WIDTH geédndert werden.

Der Integer-Ausdruck entspricht der Zeichenanzahl pro Zeile und muf3 zwischen 14
und 255 liegen. Mit der Option LPRINT konnen Sie die Zeilenbreite fiir den Drucker
angeben. Andernfalls wird lediglich die Zeilenbreite fiir die Bildschirmdarstellung
verdndert.

Bei einem Ausdruck setzt ST BASIC vor jedes Zeichen, das normalerweise hinter
dem vorgegebenen Zeilenende gedruckt werden wiirde, eine Zeilenschaltung. Um un-
erwiinschte Zeilenschaltungen bei einem Ausdruck zu verhindern, sollten Sie die Zei-
lenbreite auf 255 Zeichen setzen. ST BASIC geht dann davon aus, daf3 das angeschlos-
sene Gerit eine unbegrenzte Zeilenbreite hat und fiigt keine Zeilenschaltungen ein.

Lesen Sie hierzu auch unter POS und LPOS nach.
Beispiel:

Ok 10 WIDTH 33

Ok 20 FOR I=1TO 50
Ok 30 PRINT “—*;
Ok 40 NEXT

Ok RUN

C-134

WRITE WRITEXY,A$ ANWEISUNG

Syntax: WRITE[<Ausdruck>],<Ausdruck>

Effekt: Gibt Daten an das Terminal aus.
Erklédrung:

Wie PRINT sendet auch WRITE Ausgaben an den Bildschirm. Allerdings setzt
WRITE Kommata zwischen einzelne Begriffe und Anfiihrungszeichen um Strings.

Jeder Begriff wird auf dem Terminal durch ein Kommazeichen vom nachfolgenden
Begriff abgesetzt.

String-Werte werden in Anfiithrungszeichen gesetzt. Nach dem letzten Begriff springt
der Cursor an den Anfang der nichsten Zeile.

WRITE zeigt eine Leerzeile am Terminal an, wenn Sie keine Auflistung von Ausdriik-
ken fiir eine Ausgabe vorgeben.

Lesen Sie hierzu auch unter PRINT und PRINT4# nach.
Beispiel:

Ok 100 X$=“HALLO*
Ok 110 Z=010583
Ok 120 WRITE Z
Ok 130 WRITE
Ok 140 WRITE X$
Ok RUN
10583

“HALLO“
Ok

C-135

WRITE# WRITE #LX,Y,A$ ANWEISUNG

Syntax: WRITE#[<Ausdruck>],<Ausdruck>
Effekt: Gibt Daten an eine sequentielle Datei aus.
Erklarung:

WRITE## ist von der Funktion her &hnlich wie WRITE. Allerdings werden mit
WRITE# die Daten an eine sequentielle Datei, und nicht an das Terminal gesandt.
Die Dateinummer ist die Kennzahl, die Sie der Datei beim Offnen zugewiesen hatten.
Sie miissen die Datei im O-Modus geoffnet haben.

WRITES4 ist der Anweisung PRINT= vorzuziehen, wenn Sie beabsichtigen, die Da-
ten liber eine Reihe von INPUT4-Anweisungen wieder zuriickzulesen. Die Ausgabe
von WRITE4 erfolgt in der fiir ein akkurates Zuriicklesen der Daten erforderlichen
Form.
Die Richtlinien fiir die Form der Ausdriicke entsprechen den Vorgaben fiir PRINTH.
Lesen Sie hierzu auch unter PRINT und PRINT4 nach.
Beispiel:

Ok 10 KWS=34.275

Ok20K$=“DURCHSCHNITTLICHE KILOWATTSTUNDEN PRO WOCHE*

Ok 30 WRITE #2,K$,KWS
Damit wird wie folgt auf die Diskette geschrieben:

“DURCHSCHNITTLICHE KILOWATTSTUNDEN PRO WOCHE“,34.275
SchlieBen Sie nun die Datei und 6ffnen Sie sie neu. Lesen Sie die Datei dann mit:

Ok 40 INPUTH#2,K$,KWS

“DURCHSCHNITTLICHE KILOWATTSTUNDEN PRO WOCHE* fiir K$
und 34.275 fiir B$

C-136

ANHANG D
FEHLERMELDUNGEN

Kennziffer Meldung
2 Fehlerhafte Eingabe
3 RETURN-Anweisung erfordert entsprechendes GOSUB
4 READ-Anweisung hat zuwenig DATA-Werte
5 Funktionsaufruf nicht erlaubt
6 Zahlzu grof
7 Zu wenig Speicherplatz
8 Anweisung oder Befehl bezieht sich auf nicht vorhandene Zeile
9 Unterbereich bezieht sich auf ein Element au3erhalb des Arrays
10 Array mehr als einmal definiert
11 Division durch Null nicht méglich
12 Anweisung im Direkt-Modus ungiiltig
13 Werte stimmen vom Typ her nicht iberein -
14 Undefinierter Fehler
15 String langer als 255 Zeichen
16 Ausdruck zu lang oder zu komplex
17 CONT arbeitet nurim BREAK-Modus
18 Funktion muB erst iiber DEF FN definiert werden
19 Undefinierter Fehler
20 RESUME-Anweisung vor Aufrufen der Fehler-Routine
21 Nicht belegt '
22 Ausdruck enthélt Operator ohne nachfolgenden Operanden
23 Programmzeile zu lang
24-29 Nicht belegt
30 Ungtiltige Fenster-Nummer
31 Argument auBerhalb des giiltigen Bereiches
32 Befehl kann im Editor nicht ausgefiihrt werden
33 Zeile zu komplex
34-49 Nicht belegt .
50 FIELD-Anweisung verursacht Uberlauf
51 Ungiiltige Gerdte-Nummer
52 Dateiname oder -nummer ungiiltig
53 Dateiim angegebenen Laufwerk nicht gefunden
54 Ungiiltiger Datei-Modus
55 Loéschen (KILL) oder Offnen (OPEN) gedffneter Dateien nicht
moglich
56 Undefinierter Fehler
57 Disketten-Eingabe/Ausgabefehler
58 Datei bereits vorhanden
59-60 Nicht belegt
61 Diskette voll

D-1

62 Dateiende erreicht

63 Datensatz-Nummer in PUT oder GET groB3er als 32767 oder 0
64 Ungiiltiger Dateiname
65 Ungiiltiges Zeichen in der Programmdatei
66 Programmdatei enthélt Anweisung ohne Zeilennummer
67-98 Nicht belegt
99 ——Break——
100 Undefinierter Fehler
101 Zuviele Programmzeilen
102 ON-Anweisung auf3erhalb des giiltigen Bereiches
103 Ungiiltige Zeilennummer
104 Variablen-Eingabe erforderlich
105 Undefinierter Fehler
106 Zeilennummer existiert nicht
107 Zahl zu groB fiir eine Integer
108 Eingegebene Daten ungiiltig. Eingabe ab dem ersten Begriff neu
beginnen
109 STOP
110 Unterroutinen- Aufruf zu verschachtelt
111 Ungiiltige BLOAD-Datei
112-201 Nicht belegt
202 Befehl hier nicht moglich
203 Zeilennummernangabe erforderlich
204 FOR-Anweisung ohne abschlieBendes NEXT oder WHILE-
Anweisung ohne abschlieBendes WEND
205 NEXT-Anweisung ohne vorhergehendes FOR oder WEND-
Anweisung ohne vorhergehendes WHILE
206 Komma fehlt
207 Klammer fehlt
208 OPTION BASE muf3 0 oder 1 sein
209 Abschluf3 der Anweisung erforderlich
210 Zuviele Argumente in der Liste
211 Nicht belegt
212 Neudefinition von Variablen nicht moglich
213 Funktion mehr als einmal definiert
214 Sprungin eine Schleife nicht méglich
215-220 Nicht belegt
221 Systemfehler #X, Neustart erforderlich
222 Programm lauft nicht
223 Zu viele FOR-Schleifen

D-2

ANHANG E

DER ASCII-ZEICHENSATZ DES ST COMPUTERS

In den nachfolgenden Tabellen werden simtliche Zeichensitze aufgefiihrt, die IThnen
mit dem ST Computer zur Verfiigung stehen. Um eines dieser Zeichen in ST BASIC
zu verwenden, geben Sie das nachstehende Programm ein und starten Sie es:

5
6
10
20

30
40
50
60

70
80
90
100
110
120
‘130
140
150

"AUFLISTUNG ALLER ST ASCII-ZEICHEN
"UND IHRER CODES

FULLW2:CLEARW?2

GOTOXY 1,2:7“LISTE DER ST ASCII-ZEICHEN*:
GOTOXY 0,4

P=0:1=0

FORC=1TO255

IFP>4THENP=0:1=1+1:?

IF1=10THEN GOTOXY 1,14: INPUT “WEITER MIT
[RETURN]... “,A$

IF1=10THEN 1=0:GOTOXY 0,4

IFC=10THEN ? “10=[RETURN]*“;:GOTO 120

IF C=7THEN ? “7=[GLOCKE]*;:GOTO 120

IF C=251THEN GOTOXY 0,124

? C;“= “,CHR$(C),“ “;
P=P+1
NEXTC

GOTOXY 1,16: INPUT “BEENDEN MIT [RETURN]... “ A$

END

Es gibt zwei Zeichen-Tabellen. Die erste gilt fiir 8x16 Zeichen, die zweite entspre-
chend fir 16x16 Zeichen. Die verschiedenen Zeichensatz-Groen werden fir die
unterschiedlichen Bildschirmauflésungen verwendet.

veree 16({32|48|64{80|96|112128|144|160|176|192|208|224|240
dhzlo[1[2]3]4]5]6
ofo . sl
3| EXEESE BT
414
B FoiiE

E-1

P
T
=
e
1
4
H
.
’e

1t 1

y Gupe

| Saeesegasss FHRTRIR
18988 &)0 0

1803
yonane

H
.

111t
T
T
X
TS
1s0cass
T
jessesus
32
:
it
s
=4
o9
o8
e8!
=3
4
=

po

-
108
%r
%‘_L._L.,
oo
[
s
A
ss 4
3 e
33 28|
1000
T
3
sesvesi
e
senue

T

T

IT

s T3

T
1
1
T

1T
T
1
T
e
TR
sencssss
It
rassual

108

I

e

jse
e

3t

3T

T

1t

30003
1T
39088

)svsjesnases

1
T
11
1008088
TITITIT
Tt
yssnaes
resnensse
sassssssls

11
1T

T

T

snnes

H
ront
1T
1T
L
T
1

selesas

S OPNRENeNE:

198995

10t
e
T

1980

I
1e8 8
18808

I
I
1esesEn;
T
1
sesesas
13
1T
1T
T
13
T

Tt

100

1t

TIT
10008884
T
et

sen et
Ieues

aanene

13
a8

1
t

ase

ase

X o

11

8

H4+H
H3H
HH
T
3008 &

19080 o

180
18880
1

1sensase
yessesas
38890803
ressesas
18080008
snsenses|s

§
os
H

4

’e

18881

5

jseseess:

isesissenssss]e

1sses
jsasee
1T

18wt
I3
11
191

ot

1SN 1T

1888808

Iovansag
Jusess.

T
1ncesnes

100
13T

=t

reaun

181

T

TIT
10
1988

Ieuness

sae

a1

T
IseEsess
Ianesens
It
svas
Jessesss/e
1808880

T 1 IOT

sese

It

10 ¢

T

1T
T
n

T
11

T
ressas

a0t
TT

TTIILL

T
Iens

1808808
18880081

T

ITIITIT

T
4
e

yseves

it

hed 88 d a8

T AR

1T
T

Tt
sea 0

THIT
IessunS
18850 en
TITITIT

IOt

ronas:
TTIIT

1t

18

0 ¢ T 1T ¥

1806800 808088801 1o nt 113

badunt
T

IR e

T
1
L

T

T

Jesmaen:
1SS ST
TITTItT

T
T
3
1oe

T
198
e

e

1T
11 Iean: 3. It

TITIL
TS

E-2

Tt

'e

H4H
ssss.
T

s Ssac08e

TIT

1T

1T

1

TIT
’e
sene
TR
T
sensnsssisncsssnd
snansaes
181
T
T e
yseeanes
TIT
It
sesssEa;

T

:I
a8

3ne

In0
T

* TIT .
3

IIIL
rnoan:
ressnes
31
ransens

198RS

TN
THIT
ressenas
1svssas

1T
T

1T
T
T
e

TItt

Tt

: S sagseses

i

T
)4

T BHEAAF T jovases)
T

T

T v'e

o 1T TTIITIIT
’as)ES0 VOB8E8 0T

ssee

T
208

18000
TIIT
1T

4 14

 ousenss
Isesunas
1

has

TIILIL
T
LT
Isssenes
TIITY

1o e
11
e
3
T
3
T

rens
T

2|3|4|5|/6|?7|8|9/A|B|C|D|E|F|

T

1
e
T

o
e

T

T
ITIITY
1988088 ¢

1838880y

TRT
Sesesese

3T
1T
e
Isseans
T

1
¢

H
H

jenve
8

6946

|
.!

2ole

1ot
1n0fe

3t
It

T
1
L
10na)
T

jausy

t

T

11T
H
.

198881

3t
1
L

ITIT

1008 'e
T
T
1essan:

I

1T

IR Regugpsey

Tiis
T
¢

It
1008

0 (1632486480 96|112[128(144(160176|192|208224|240

jeseans

T
’e

sosncscsissusnns:

1ejeses
reosese vas
resnevasisw:

1T
i1y

1

sescoess/sssancaclesnsens:
1onsseesioascsssaleasassas

?
8
9
10
1
12
3
14
15

ro e

160085 v

1 1 » . HHI 5004 H 34 I .
‘ tH Byt BT]] HH HH H
1 H . THIH 1111 1
H 111
20 0
}) 1 el T
1 1 19udst 19803 jssssssnpss 1t] 188
H H peiey HH A I & HHH H s . B .
Hi s H 1 H H H1H s H H]
T . . u 1] 1] s e H H e THIHT
HEH sed H mx HH 81 e (11K e]
H 8388 : I s H sy
[13 iy 1
L] (111 88 juni 111 1 1 1 TH1T [H 1 1t
g e ® TR HH H 0
1t B .e seus e ..m HH
31 .8 1 seye e H e
H - 14141 H 4
ﬂ Xﬂxr Hrn(41 114 1 1 "“rr
1 o8 0 T 44 3 1 HiT s
t i Tt ittt i Jnsenes Lt
€ . THIT HHHH HH T §ee 0 T "
HEHTEN 13 184 sse s 14141 1 ee § 08
H 1133 HH H4H sse s sep s HH +H 444 208
1 H sees (] HA ose @ HH HE
8 1311 sd gonsginssons e sseen _wat 1e I'H seew see e 1 111
343 I 3 I onet L]
tl L] Ty jansssensas 1 Tt Ir 1111 (1]
3 (3 I1)] " ¥ T I T e
3 3 H H 1 1 se s]
— -4 + 4 -4 0 4 484 - ¥
e 1 se s
3 H i o8 .
3 H ee e]
H 99 SUBETE ¥
3] I 111t lessssve
= Y 1] ® TR BAE seee
3 HH prs sesp sBR0esEne: H
3 s 8y e
+-4 4 441 41
ALﬁ 1 HH HH H
; 8 HH H I
. L HO 3) e
ads 1] sBesusinss IRNSEERsRNNA 1t tH
T] » T 0] e ¥ T
] s s e H H 131 It e 28e9Ys
HH 1 . ss H e tH 1 o8 8 0
1 58 * s e B4 s
se m 88 H HH o e es
o9 H H .o Ineet 1
] 1 . a8 1 i1 16a 11
1 X . AT e 90BN ERENT T A
¥ rr: H HH 111 ve H HUnt . H H
» 29] I H H . s
e 1
H is e 28 H] 1
- 88 H HH H] H
~ IR111 t . I 1) s Tt T
i hod ¥ » H H44
e » ¥ O 1t H
s H
ses I H } H
H ® FHH H
HH 10y HHH 1t
) 11t (it TIITY 180 RT 1)
» TR A N 1¥) H
s T H H
» is e
ge o ® H¥ H
> H 1 11 H
i 31 1 [1317 W
s 1t 111 uss 18 1 111t 1 1
(71 . T HE
HHHH HH H T .o HHHH
. 1 fee H H .
133 .8 H agess . 1t Hl
s HH 3 1
¥ HAEHEY 11 9
be s 1 ey 11 LRI
1998t 1 e 0 s]
H H 0 HiH H L
H i H B : 8 H
® . . e
XH H H J
o poRNs TRREHA A H ¥ THHB
THH I3 e H H
tH 2 4 4414 44 1
H 8 98 3 {4 s 98
sese Sssed sees 111 ¢ HE¥H eose 8 11
- sss: e 8. see e
3 j9doususst HE seee H HH
ot s
HAH ¥
bot 1 sadesees 11T
se HHH 3 o8
H e sessgepees (1 048
s sesaRecses 4 H [
°
190 joppunsey [11 ()
T v ss R ¥
* 1} 44 ¢4 44 - 44144 H44
S8 H i eae
288 s H a8 4 3
H se ae H : T
HHH : g HH T I HH
11TX.IT] 3 Ll egesssgen T ITX]
HF H I FRF TX] 5
H H 1 ? 1111 £11
H s9ees 4 I H 1 11T » H
¢ 4441 F 11
® 133 H 1]
9 o8 o
1 sepe 11T B H
1 199001 100 (11 1980y It 9
R B 3
HH HH H
sessRovs HIEEHH . B
H 3 H ¢
o @ Q@ HHEH O HiHH Q w L H
seseRese sogines HH 11 L H
(IH B H H H
On. . __Juxin
13 RH H HHHR s
0 e8se 9— 3 4 —a H
1 4144 lL
(11 8e
H tH H H e = IHaH - [o= HOIHL ws |
. H1t HHHH .. H]

E-3

ANHANG F
ASSEMBLER-SPRACHMODULE

Die CALL-Anweisung in ST BASIC ermdglicht eine Verwendung von Assembler-
Sprachmodulen. Um ein Modul zu verwenden, miissen Sie dieses iiber eine BLOAD-
Anweisung in den Arbeitsspeicher laden. Dann muf3 die Modul-Startadresse einer Va-
riablen zugeordnet, und das Modul iiber BASIC mit CALL aufgerufen werden (wobei
alle notwendigen Parameter tibertragen werden).

Parameter werden in folgender Weise von BASIC an Assemblerprogramme iiberge-
ben: Das Maschinensprache-Modul sucht nach 2 Parametern auf dem Anwender-
Stack (A7). Der erste Parameter ist eine 2-Byte Integerzahl, durch die die Anzahl der
zu ibergebenden Parameter vorgegeben wird. (Im untenstehenden Beispiel handelt
es sich um drei Parameter.) Der zweite Parameter ist ein 4-Byte Zeiger auf ein Array,
das die Parameter enthélt. Jeder Parameter im Array belegt 8 Bytes, unabhéngig da-
von, welcher Art er ist. Handelt es sich um eine String-Variable, ist der 8-Byte Wert
ein Zeiger zu dem String.

Bevor es zum BASIC zuriickkehrt, kann das Assemblerprogramm alle Parameter, die
an BASIC iibergeben werden sollen, in einer vorgegebenen Speicherstelle ablegen.
Spéter kann das BASIC- Programm iiber PEEK auf diese Parameter zugreifen.

Beispiel:
500 DIM A$(8):1%=70:X=22

510 LISTE=18566: 'STARTADRESSE DES ASSEMBLER- SPRACHCODES
530 CALL LISTE(I%, A$, X)

F-1

ANHANG G
ABGELEITETE FUNKTIONEN

Abgeleitete Funktion Terminologie der ST BASIC-Funktion

Sekante DEF FNSEC(X)=1/COS(X)

Cosekante DEF FNCSC(X)=1/SIN(X)

Inverser Sinus DEFFNARCSIN(X)=ATN(X/SQR(-X*X+1))

Inverser Cosinus DEFFNARCCOS(X)=-ATN(X/SQR(-X*X+1)
+KONSTANTE)

Inverse Sekante DEFFNARCSEC(X)=ATN(SQR(X*X-1))+

' (SGN(X-1)*KONSTANTE)

Inverse Cosekante DEFFNARCCSC(X)=ATN(1/SQR(X*X-1))+
(SGN(X-1)*KONSTANTE)

Inverse Cotangente DEFFNARCCOT(X)=ATN(X)+KONSTANTE

Hyperbolischer Sinus DEFFNSINH(X)=(EXP(X)-EXP(X))/2

Hyperbolischer Cosinus

Hyperbolische Tangente

Hyperbolische Sekante
Hyperbolische Cosekante

Hyperbolische Cotangente

Inverser hyperbolischer Sinus
Inverser hyperbolischer Cosinus
Inverse hyperbolische Tangente

Inverse hyperbolische Sekante
Inverse hyperbolische Cosekante

Inverse hyperbolische Cotangente

DEF FNCOSH(X)=(EXP(X)+EXP(-X)/2

DEF FNTANH(X)=-EXP(-X)/(EXP(X)+EXP
(-X))*2+1

DEF FNSECH(X)=2/(EXP(X)+EXP(-X))
DEF FNCSCH(X)=2/(EXP(X)-EXP(-X))

DEF FNCOTH(X)=EXP(-X)/(EXP(X)-EXP
-X))*2+1

DEFFNARCSINH(X)=LOG(X+SQR(X*X+1))
DEFFNARCCOSH(X)+LOG(X+SQR(X*X- 1))
DEFFNARCTANH(X)=LOG((1+X)/(1- X))/2

DEFFNARCSECH(X)=LOG((SQR(- X*X+1)
+1)/X) |

DEFFNARCCSCH(X)=LOG((SGN(X)*SQR
(X*X+1)+1)/X)

DEF FNARCCOTH(X)=LOG((X+1)/(X-1))/2
G-1

Anmerkung: In dieser Tabelle entspricht die Variable X in Klammern dem Wert oder
Ausdruck, der iiber die abgeleitete Funktion berechnet werden soll. Sie kdnnen einen be-
liebigen Variablennamen verwenden, solange dieser dem zu berechnenden Wert oder
Ausdruck entspricht.

G-2

ANHANG H
BEISPIELPROGRAMME

KASTCHEN

Das nachfolgende Programm ist ein interessantes Beispiel fiir die Verwendung der
Anweisung RND mit Farb-Grafiken. Das Programm wurde fiir Low-Resolution ge-
schrieben.

170
180
190

'SYMMETRISCHES AUSFULLEN VON KASTCHEN
randomize 0:c=0

color 1,0,1,1,1:fullw 2:clearw 2

for x=18 to 284 step 19

linef x,0,x,166

next x

for y=13 to 153 step 14

linef 0,y,303,y

nexty

c=c+1:if c=16 then c=1

color 1,c,1
col=int(rnd*16)*19+9:row=int(rnd*12)*14+7

fill col,row,1

if col>151 then cenc=col-151:fill col-(cenc*2),row,1

if col<152 then colh=302-col:fill colh,row,1

if row>82 then rowh=row-((row-82)*2):fill col,rowh, 1

if row<83 then rowh=164-row:fill col,rowh,1

if col>151 then fill col-(cenc*2),rowh,1 else fill colh,rowh,1
goto 100

GEMUSTERTE KREISE

Bei diesem Programm wird ein Kreis gezeichnet und in einzelne Segmente unterteilt.
Die einzelnen Kreissegmente werden dann mit verschiedenen Mustern ausgefiillt. Um
das Programm abzuwandeln, konnen Sie Zeile 120 folgendermaBen abdndern:

120 pellipse x,y,x,y,b,b+100

10
20
30
40
50
60
70
80
90
100
110
120

"KREIS MIT 36 GEMUSTERTEN SEGMENTEN
color 1,0,1,1,1:fullw 2:clearw 2
if peek(systab)=1 then 60

if peek(systab)=2 then 70

goto 80
x=306:y=172:s=170:goto 90
x=304:y=83:5=182:goto 90
x=151:y=83:5=91
a=24:1=2:b=0

forp=1toa

color 1,1,1,p,i

pcircle x,y,s,b,b+100

H-1

130 b=b+100

140 nextp

150 ifi=1then end

160 i=3:a=12:goto 100

GEMUSTERTES RASTER

In diesem Programm wird die Bildschirmauflésung automatisch ausgewihlt. Dann
werden 36 verschiedene Fiillmuster dargestellt.

10 "RASTER MIT 36 VERSCHIEDENEN FUELLMUSTERN
20 color 1,0,1,1,1:fullw 2:clearw 2
30 if peek(systab)=1 then 60
40 if peek(systab)=2 then 70
50 goto 80
60 x=102:y=56:a=28:b=308:c=56:d=51:e=561:f=102:goto 90
70 x=102:w=28:a=14:b=154:c=28:d=51:e=561:f=102:goto 90
80 x=51:y=28:a=14:b=154:c=28:d=25:e=280:f=51
90 forx=ftoe-dstepf

100 linef x,0,x,345

110 nextx

120 fory=ctob-astepc

130 linef 0,y,615,y

140 nexty

150 i=2:p=1

160 fory=atobstepc

170 forx=dtoestepf

180 color 1,1,1,p,i:fill x,y,1

190 p=p+1:if p=25 then p=1:i=i+1

200 ifi=4 then end

210 nextx,y

H-2

DEMO FUR NIEDRIGE AUFLOSUNG

Eine interessante Demonstration tiber Formen und Farben in niedriger Auflosung.

10 color 1,0,1,1,1:fullw 2:clearw 2
20 KREIS: c=1
30 for b=0 to 3360 step 240
40 colorl,c,1
50 pcircle 151,83,91,b,b+240
60 c=c+1
70 nextb
80 gosub VERZOEGERUNG
90 OVAL:c=1
100 for b=0 to 3360 step 240
110 color1,c,1
120 pellipse 151,83,151,83,b,b+240
130 c=c+1 '
140 nextb
150 gosub VERZOEGERUNG
160 FILLPTNS: c=1:a=24:i=2
170 forp=1toa
180 clearw 2
190 for x=61 to 244 step 61
200 linef x,0,x,166
210 nextx
220 for y=55to 110 step 55
230 linef0,y,303,y
240 nexty
250 y=2
260 for x=30 to 270 step 60
270 color 1,c,1,p,i
280 fill x,y,1
290 c=c+1:if c=16 then c=1
300 nextx
310 y=y+55:if y=167 then 330
320 goto 260
330 nextp
340 ifi=3 then 360
350 a=12:i=3:goto 170
360 gosub VERZOEGERUNG
370 FARBIGERKREIS: c=1:r=91
380 for b=0 to 3600 step 200
390 color1,c,1
400 pcircle 151,83,r,b,b+200
410 c=c+1l:ifc=16thenc=1
420 nextb
430 r=r-1:if r=0 then 450
440 goto 380 -
450 gosub VERZOEGERUNG

H-3

460 FARBIGEELLIPSE:c=1:x=151:y=83
470 for b=0 to 3600 step 240 ‘

480 color1,c,1

490 pellipse 151,83,x,y,b,b+240

500 c=c+1:ifc=16thenc=1

510 nextb

520 x=x-2:y=y-2:if y=3 then 540

530 goto 470

540 gosub VERZOEGERUNG

-550 end

560 VERZOEGERUNG: for z=1 to 3000:next
570 color 1,0,1,1,1:clearw 2

580 return

DEMO FUR HOHE AUFLOSUNG

Dieses Programm zeigt die Moglichkeiten Thres hochauflésenden Monochrom-Moni-
tors.

10 fullw 2:clearw 2
- 20 QUADRATE: a=2:b=3:1=61:w=56
30 x=a:iy=b
40 linefx,y,x+1,y
50 linefx+1,y,x+1,y+w
60 linefx+1,y+w,x,y+w
70 linef x,y+w,x,y
80 x=x+61
90 if x>600 then x=a:y=y+56
100 if y>320 then 120
110 goto 40
120 a=a+2:b=b+2:1=1-4:w=w-4
130 if w<O0 then 150
140 goto 30
150 gosub VERZOEGERUNG
160 LINIEN: x=0:y=0
170 while x<614
180 linef 307,172,x,y
190 x=x+5
200 wend
210 while y<<344
220 linef 307,172,x,y
230 y=y+3
240 wend
250 while x>0
260 linef 307,172,x,y
270 x=x-5

H-4

280 wend

290 while y>0

300 linef307,172,x,y

310 y=y-3

320 wend

330 gosub VERZOEGERUNG

340 ENTWUREF: x1=1:x2=614:y1=1:y2=343
350 linef x1,y1,x2,yl

360 linefx2,yl,x2,y2

370 linef x2,y2,x1,y2

380 linef x1,y2,x1,yl

390 x1=x1+2:x2=x2-2:yl=yl+2:y2=y2-2
400 if y2>-22 then 350

410 gosub VERZOEGERUNG

420 end

430 VERZOEGERUNG: for z=1 to 5000:next
440 clearw 2:return

TRIGONOMETRISCHE GRAFIKEN

Mit diesem Programm koénnen Sie beliebige trigonometrische Funktionen grafisch
veranschaulichen.

10 °TRIG GRAPHS
20 ’VON ROB COLLIER
30 pi=3.1415926
40 fullw 2:color 1,0,1:clearw 2
50 BILDSCHIRM:
60 if peek(systab)=4 then goto LOW
70 if peek(systab)=2 then goto MEDIUM
80 if peek(systab)=1 then goto HIGH
90 INIT:t=0:1=0
100 Ing=r/4:inc=pi/lng:off=b/4
110 FUNKTION: value=-2*pi
120 clearw 2
130 print“Funktion auswahlen:“:print
140 print “1) Sinus*
150 print “2) Cosinus*
160 print “3) Tangente*
170 print “4) Cosekante*
180 print “5) Sekante“
190 print “6) Cotangente“
200 print:input wahl
210 if wahl>0 and wahl<7 then goto GRAFIK

- 220 ?“wadhlen Sie eine dieser Zahlen aus.“

230 goto FUNKTION
240 ZEICHNEN:

250 value=-2*pi

260 x=1:x1=1:y1=b/2

260 x=1:x1=1:y1=b/2
270 on wahl gosub
SINUS,COSINUS, TANGENTE,COSEKANTE,SEKANTE,COTANGENTE
280 y=off*y:y=b/2-y
290 if y<tor y>b goto SPRUNG
300 if x<1 or x>r goto SPRUNG
310 linef x1,yl,x,y
320 SPRUNG: x1=x
330 yl=y:x=x+1
340 value=value+inc
350 if value>2*pi then goto ENDE
360 goto 270
370 ENDE: input wait$
380 goto 120
390 GRAFIK: color 1,bg,gr:clearw 2
400 linef 1,b/2,r,b/2
410 linefr/2,t,r/2,b
420 color 1,bg,ln
430 goto ZEICHNEN
440 SINUS: y=sin(value):return
450 COSINUS: y=cos(value):return
460 TANGENTE: y=tan(value):return
470 COSEKANTE: hold=sin(value)
480 if hold=0 then return
490 y=1/hold:return
500 SEKANTE: hold=cos(value)
510 if hold=0 then return
520 y=1/hold:return
530 COTANGENTE:hold=tan(value)
540 if hold= O then return
550 y=1/ho d:return
560 LOW:1=303:b=167
570 gr=2:ln=14:bg=4
580 gotoINT
590 MEDIUM: r=608:b=167
600 gr=1:In=2:bg=3
610 goto IN.T
620 HIGH: r= 615:b=343
630 gr=1:In= :bg=0
640 goto INIT
I

[

EFFEKTIVZINS-BERECHNUNG

Das nachstehende Programm kann fiir die Analyse Ihrer Finanzen verwendet werden.

10
20

30
40

50

60

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

"Effektivzins-Berechnungsprogramm von Richard Lauck
"Das Programm arbeitet mit einer Formel der Newton’schen Methode zum
Schitzen von Wurzeln
"Es verwendet Integralberechnungen mit Ypsilon, “Y“, definiert in Zeile 100
"Bei den Formeln wird vorausgesetzt, daf3 alle Zahlungen am Ende eines Zeit-
raumes getatigt werden.
clearw 2:fullw 2:?
? “LETZTE PAUSCHALZAHLUNG = “;:INPUT R
? “MONATLICHE RATE = “;:INPUT A
? “KAUFPREIS HEUTE = «; INPUT C
7 “ANZAHL DER RATEN = “;:INPUTN
Z=12:1=0.01:Y=0.01:K=0
?2:PRINT “ EFFEKTIVER ZINSSATZ BEI: “
PRINT “ “
PRINT “EINE LETZTE PAUSCHALZAHLUNG VON DM*“;R
PRINT “EINE MONATLICHE RATE VON DM*“;A
PRINT “BEI EINER RATENZAHL VON - “;N
GOSUB 250
F=F+5.0Y-03:F=100*F:F=INT(F):F=F/100
F1=F1+5.0Y-03:F1=100*F1:F1=INT(F1):F1=F1/100
[=11:K=K+1
IF ABS(F)-Y>0 THEN 160
PRINT « “
X=Z*I:PRINT “DER EFFEKTIVE ZINSSATZ IST “;100*X;“%“
PRINT « “
END
T=(1+I)'N
F=C-R/T-A*(1-1/T)/1

T2=T*(1+])

F1=R*N/T2+A*(1-1/T-I*N/T2)/1/1
I11=I-F/F1
RETURN

ZAHLENSPIEL

Dieses Programm erstellt ein selbstdndig antwortendes Zahlenspiel. Sie geben eine
Zahl ein, der Computer wiahlt eine zwischen Ihrer Vorgabe und Null liegende Zahl
aus, und Sie miissen diese Zahl erraten.

10 ’Ein Spiel, das Sie sich selbst leicht oder schwer machen kdnnen - von Rich Lauck.
20 fullw 2:clearw 2
30 goto 0,0
40 7 “ Spielen wir ZAHLEN RATEN?*
50 7 “ Geben sie eine Zahl ein und driicken Sie“
60 ?“ RETURN. Ich waehle eine Zahl zwischen®
70 7 Ihrer Zahl und “;
80 ?“Null.“
90 ?“ Also, geben Sie eine Zahl ein “
100 INPUT “ und driicken Sie RETURN. “, TOP
110 ?:? “Versuchen Sie, meine Zahl zu erraten
120 RANDOMIZE 0
130 ANTWORT =INT(RND*(TOP))
140 ?:? “ Raten Sie und ich gebe Hinweise.“:goto 180
150 ?:input “ J fir neues Spiel, andere Taste fiir ENDE. “,neu$:?
160 if neu$=“j“ or neu$=“J* then 90
170 end
180 input frage
190 if frage > antwort then ?*“Zahl zu klein, neuer Versuch.“:goto 180
200 if frage > antwort then ?“Zahl zu grof3, neuer Versuch.“:goto 180
210 ? “Richtig geraten.“:goto 150

KASTCHEN-DEMO

Dieses Farbprogramm in niedriger Auflosung verwendet AES und VDI, um mehrfar-
bige Késtchen an einer von Ihnen gewéhlten Bildschirmposition zu zeichnen.

AES (Application Environment Services) ist der Teil von GEM, der fiir die Drop-
Down Meniis, Fenster und Dialogfelder zustdndig ist. VDI (Virtual Device Interface)
enthdlt die Grafik- und Textroutinen von GEM.

Befolgen Sie nachstehende Schritte, um das Programm einzusetzen:

1. Starten Sie das Programm mit RUN

2. Zeigen Sie mit Hilfe der Maus auf die Bildschirmposition, an der das Késtchen ge-
zeichnet werden soll.

3. Driicken Sie die rechte Maustaste, um das Kastchen zu zeichnen.
4. Driicken Sie die linke Maustaste, um das Programm zu beenden.
5 a¥=gb

10 control = peek (a#)
20 global = peek(a# + 4) 30 gintin = peeck(a# + 8)

H-8

40
50
60
100
1070
1071
1072
1074
1075
2000
2010
2020
2025
2027
2028
2030
3000
3010
3020
3022
3024
3030
3035
3037
3040
3050
3060
3070
3080
3090
3095
3100
3110
3112

3115,

3116
3117
3120
3130

gintout = peek(a# + 12)
addrin = peek(a# + 16)
addrout = peek(a# + 20)
clearw 2:fullw 2

- poke systab+24,1

noke contrl,122:poke contrl+2,0:poke contrl+6,1
poke intin,0:vdisys(1)

mouse =1

gemsys(79)

x = peek(gintout + 2)

y = peek (gintout + 4)

key = peek (gintout + 6)

if key = 2 then gosub 3000

if key = 1 then poke systab+24,0:end
if key=0 then gosub 3115

goto 1075

rem skskoskskskokskokokskokokoskkkkskokkokkskkokoskokskoskskskskskskskskskkkkk

rem Kistchen zeichnen mit vdi
color 1,(rnd*15)+1,1,rnd*25,2
if mouse=0 then 3040
mouse=0

poke contrl,123:poke contrl+2,0:poke contrl+6,0
vdisys(1)

poke contrl, 11

poke contrl +2,2

poke contrl +6,0

poke contrl +10,1

poke ptsin,x

poke ptsin +2,y

poke ptsin +4,x+50

poke ptsin +6,y+50

vdisys(1)

return

if mouse=1 then return

poke contrl,122:poke contrl+2,0:poke contrl+6,0
poke intin,0:vdisys(1)

mouse =1: return

end

"% 1 & Yy
{
{
(i
)
[
; .
¥ i
<
T i
|
1
\ !
b
\
x
s 4
: 3 TR
o R, Y I -

